<%BANNER%>

Development of a Rational Design Approach (LRFD phi) for Drilled Shafts Considering Redundancy, Spatial Variability, and...

Permanent Link: http://ufdc.ufl.edu/UFE0021766/00001

Material Information

Title: Development of a Rational Design Approach (LRFD phi) for Drilled Shafts Considering Redundancy, Spatial Variability, and Testing Cost
Physical Description: 1 online resource (161 p.)
Language: english
Creator: Otero, Johanna Karina
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: New designs move toward larger single shaft; thus the need to improve LRFD resistance factors, and phi for nonredundant shaft. In general, geotechnical design practice involves analysis using representative values of design parameters (strength, recoveries, etc.), usually an average or lowest value obtained from field and laboratory test results. It is followed by an application of a suitable factor of safety. In nature, soil parameters vary horizontally and vertically, so our research used the same soil boring parameters, but this time used information obtained from sites localized close to the design site instead using the whole site average. Random soil models were created based on geostatistics analysis using soil parameters. The created random soil models were used on a finite element program that modeled a 3-foot-diameter, 20-foot-long drilled shaft, giving the drilled shaft capacity for each random soil model and a suitable phi factor.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Johanna Karina Otero.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Ellis, Ralph D.
Local: Co-adviser: McVay, Michael C.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021766:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021766/00001

Material Information

Title: Development of a Rational Design Approach (LRFD phi) for Drilled Shafts Considering Redundancy, Spatial Variability, and Testing Cost
Physical Description: 1 online resource (161 p.)
Language: english
Creator: Otero, Johanna Karina
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: New designs move toward larger single shaft; thus the need to improve LRFD resistance factors, and phi for nonredundant shaft. In general, geotechnical design practice involves analysis using representative values of design parameters (strength, recoveries, etc.), usually an average or lowest value obtained from field and laboratory test results. It is followed by an application of a suitable factor of safety. In nature, soil parameters vary horizontally and vertically, so our research used the same soil boring parameters, but this time used information obtained from sites localized close to the design site instead using the whole site average. Random soil models were created based on geostatistics analysis using soil parameters. The created random soil models were used on a finite element program that modeled a 3-foot-diameter, 20-foot-long drilled shaft, giving the drilled shaft capacity for each random soil model and a suitable phi factor.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Johanna Karina Otero.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Ellis, Ralph D.
Local: Co-adviser: McVay, Michael C.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021766:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101108_AAAACF INGEST_TIME 2010-11-08T23:04:57Z PACKAGE UFE0021766_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 10232 DFID F20101108_AABWIJ ORIGIN DEPOSITOR PATH otero_j_Page_034.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
3d0cb091e7bfc9049b74e4018000ae25
SHA-1
275e873046b75961cb27315f0df3fd390b527d31
1007 F20101108_AABWHV otero_j_Page_153.txt
a5f8d12b0171be18cc41efe7339275bf
8454de26578f3c5c8a4710cfc860ec436f5f0cc6
1054428 F20101108_AABVFH otero_j_Page_129.tif
d2a797bda038cd08e4acf6289849e275
1b06fb73f1fa055112e61ac11b103237f1c48ac9
25271604 F20101108_AABVET otero_j_Page_046.tif
2cf6858abebdadfcbae84e1c5a00134f
2833d5755b3f73a8763e72625507c1f7cf906f85
20982 F20101108_AABWIK otero_j_Page_097.QC.jpg
85f0ba3d4eb062e6a8d21b6e6d05e993
64118cb173e20471363634d5237913dd98252eaa
1483 F20101108_AABWHW otero_j_Page_154.txt
8dd5ead8dd437506b942f4dc14fef7d3
ec576d32b4c23c4e292758dad5cd370b33f40154
5083 F20101108_AABVFI otero_j_Page_020thm.jpg
61aab17b788d0e1d3c0098ea3af7fb02
27bb1504183acc887aca8742d5945e7b0553bf11
1683 F20101108_AABVEU otero_j_Page_012.txt
163093190c55d3874a78109d0f1d0811
457b95d1f332719c4080ccef4f32d28621e8ecd4
6262 F20101108_AABWIL otero_j_Page_124thm.jpg
94e7aabc975d5e5bfe0e196f10629fac
034e4ca947ce5395315b952c5427401e1e2364ac
930 F20101108_AABWHX otero_j_Page_155.txt
6be595c282bd7f0e50f338be26a81da9
dc6ea4ee4fd2b7f51e7dca0257f272476b62dc2b
3053 F20101108_AABVFJ otero_j_Page_120.txt
4ae104f0f7cf3f58ed037440336825cc
eb4c4dfe756cc02767cd0e8b7081e66d217bd37a
87981 F20101108_AABVEV otero_j_Page_006.pro
21a2c8a5cac579f483dd0d2c34b3de80
9edba6873c96c6c75ebd4e70c45d95ed1b23beb2
2646 F20101108_AABWJA otero_j_Page_060thm.jpg
db93c44656576c100a8ac03b0cc5a686
5c559c315a9c27b7deab35c961b84e65e0c3799f
5771 F20101108_AABWIM otero_j_Page_074thm.jpg
59038931a62d7647728aae1ccdac1c78
f49b1a1542a90a95490e92d517aae538b4f20f2a
4227 F20101108_AABWHY otero_j_Page_157.txt
e57c57d49ae137b9a956c3177b68256e
07f0fcf8051966a1617ed6be9349a57b93cea0c6
1053954 F20101108_AABVFK otero_j_Page_147.tif
a6cf79882af001102ed9889181ac5312
db9736f17377fa314fe20f58c19197c19b442a98
45266 F20101108_AABVEW otero_j_Page_041.jpg
e6d07bb69b98cf3b5f49825ae1d615cb
2665236853e8f23ebb9d06b20a48a7c5f1c52754
23197 F20101108_AABWJB otero_j_Page_035.QC.jpg
f225e2cfe7938599d0093c1094193226
96104d37306a5a6edffc050db43f7432d13eaff4
26858 F20101108_AABWIN otero_j_Page_111.QC.jpg
4dafc3f07965e4f8df8cc496805978c3
4c8c6dcd4b49a3eaa5746985b2e1cfce92c234cd
1908 F20101108_AABWHZ otero_j_Page_158.txt
3da47020dba6c9a9667b9ef7feeb036f
0200d3e267d7e949b439a6c66788cbd113c15c65
61666 F20101108_AABVFL otero_j_Page_074.jpg
e69b414e6701fe00bf10c7a6b9b8818b
1479d31388d88ed9881e153d245c729b9305b60b
5195 F20101108_AABVEX otero_j_Page_099thm.jpg
5ee262b88396e925e2140bee83fdb526
f9a8915c0e9f8cd69f3f554e950ac5b31fbfd22c
7190 F20101108_AABWJC otero_j_Page_114thm.jpg
ae67cf40acc65ffa8ec1280132b004f1
55ede30f4daa918caf4a34765606ecaf3ce27b84
4432 F20101108_AABWIO otero_j_Page_063thm.jpg
a095682ed98793790f00f843a47e5a79
afdf57a08b014081cbc4e1eca5e0ab476e0bf378
15930 F20101108_AABVFM otero_j_Page_152.QC.jpg
ad9731e8c40e1cf0959e8db7af7c910f
0ccc9f42b615424778eef61fa58e10df7f14a79c
129052 F20101108_AABVEY otero_j_Page_128.jp2
ef370d30f62cfbc96ede78a41bf6627e
63a86371d7ded4ce3f4d94c8ccaab7408a144ab7
10121 F20101108_AABVGA otero_j_Page_002.jpg
8ed0939b1875e4bc7cbf95c2d6a436c2
572054e4bedc85f498a7e654cb5e4a390169c065
6037 F20101108_AABWJD otero_j_Page_120thm.jpg
38fde391354d70f1b97d484176aa4a7a
7207929ac3551d066e2371f6a0ccd961b8e1152d
13796 F20101108_AABWIP otero_j_Page_077.QC.jpg
c7876c027124fb03acd91015e1452127
0673cea026224a1959a0074236e69fce8df75408
F20101108_AABVFN otero_j_Page_067.tif
cc7fb07f1a13938ee13e25ea1c032a43
09ad279acf1300286914193edefd3fb69bb814d2
22142 F20101108_AABVEZ otero_j_Page_155.pro
d64c196d20b7c4132248dd9a8999abce
eba7f338aedeb04ffe42238eef806dddec49b900
14728 F20101108_AABVGB otero_j_Page_003.jpg
a90d816ea68d212566194436df29edbd
3515a8b14e9a8037b9e53b99ca5f32922ecc8a09
24082 F20101108_AABWJE otero_j_Page_070.QC.jpg
bc46f01a66a07b7455b61e03d1f65b2c
c5922d45453af8501f05da2f680cfd7b4073f902
3178 F20101108_AABWIQ otero_j_Page_034thm.jpg
f9ba7dc286ae0cd66c9a28f3f325edd8
bd161e126bc48bcdb7a53ec2e8c01b7f47e53b31
81744 F20101108_AABVFO otero_j_Page_143.jp2
a7044266baafbaf79a614dcc1aa8853d
bd68fc16d82c744e269567f11ee38191bf06feab
81636 F20101108_AABVGC otero_j_Page_005.jpg
45de07262ba4fa0248764a2d31148265
c10030436b88d7f49fad0ee922c47c4047f9c141
4540 F20101108_AABWJF otero_j_Page_076.QC.jpg
a276c3d32c15979888fdaf5332339560
8b21d55b95ae1a14fceeb83eba152134ce0c00a2
7070 F20101108_AABWIR otero_j_Page_016thm.jpg
c67404a9c6612c49a341f088665ea879
9aafa3468e06f8f4be22dea26eb8caed56cf6ee9
51355 F20101108_AABVFP otero_j_Page_113.pro
2ded96b4b9f8b91f94b3bf58a77dde93
85704bd7d3f98134517bb6c6385c021816a8f662
93034 F20101108_AABVGD otero_j_Page_006.jpg
57b3a5fcd7ca91a306a16deec5a0aa5d
756c1fac084a61d22d8341ac4589b853bc47435c
6500 F20101108_AABWJG otero_j_Page_045thm.jpg
be8dbadb7a5ecea67ea967be197beacf
5434c5880b274c1ecc83444c72a19513501f0635
7106 F20101108_AABWIS otero_j_Page_036thm.jpg
d094a3bf16f4f09efae51eab4bf8a13f
eec27990469ff1ded7e63663a835910b0509a64d
7162 F20101108_AABVFQ otero_j_Page_119thm.jpg
1f2fa11b20debf12d7ee45bd2efe4ea0
c6b9e17aef88cc7c260e0859614ac2f2006de7d5
38677 F20101108_AABVGE otero_j_Page_007.jpg
de8967f56d3a90d3267544fa45f85b25
d5a74d3a851fc77a6fc9edc9e187b34ad01d6148
6532 F20101108_AABWJH otero_j_Page_111thm.jpg
d9ac6194ad1a0ad078feae7697188a49
3defcdebddd2b0e0627b9ae6b48201c33c86ac27
28128 F20101108_AABWIT otero_j_Page_123.QC.jpg
26c3c2a6d1ec8087c48ebbacb24750f6
addec0ead9e0ae8df64f53a23c3ebd740737b61d
1051895 F20101108_AABVFR otero_j_Page_120.jp2
7440cb16f17f6332f7c05f15013869b9
836d685b96e6a9ea196ae8898b62bf034d458d99
82965 F20101108_AABVGF otero_j_Page_008.jpg
b9b54fcb137c2d29ca58794d0f7bc06f
beb0590d8caa8e128e7825dde221e56574adabcb
21788 F20101108_AABWJI otero_j_Page_075.QC.jpg
013af1017922bb66268044000f0e9700
2472739d0f9db6fb0304523ec413952bcfa73eac
26531 F20101108_AABWIU otero_j_Page_124.QC.jpg
e8e621b5b14c59cf2b8403132e40593f
7a44a8a4945aa1297ea9b6fda41d44ace2df353f
17031 F20101108_AABVFS otero_j_Page_158.QC.jpg
4cd3e3a5cbb6ffcd39ff30c2f2f9aa12
cf35d7247e94b8c61baa13ee7e27b6dba24ecb23
68456 F20101108_AABVGG otero_j_Page_009.jpg
62288253c3f308fcb9b933c364cd396a
bfbd33a10a116cf9d4d90e1471cc29de63b3cc25
25834 F20101108_AABWJJ otero_j_Page_120.QC.jpg
6f7f318186393a48dec50e7a90a443a3
3a89bab8083475bec64b1915adbb84915ad4ade6
6722 F20101108_AABWIV otero_j_Page_028thm.jpg
4cd3275884501403a89df051b95ba672
e40e2fa2114bb9a850235d32095af23e658cba87
36443 F20101108_AABVFT otero_j_Page_047.pro
8b7768d5e1037fd701727ce061305e73
cec61eab25ececb722fc2e5d826847b730101b81
72032 F20101108_AABVGH otero_j_Page_010.jpg
084cc0ab519b8f4da3bbcd42d8d173cd
f9e435f92624d4324fe937dcf660225bf1742c44
6598 F20101108_AABWJK otero_j_Page_031thm.jpg
24ed52cdb394f31656b464f7655ca52a
d98dc8371eebfdced3f1ee33eee6a4eef912381f
25879 F20101108_AABWIW otero_j_Page_030.QC.jpg
c551d564076d97153816d89c148f7161
4934514002406101ca6dcdddc7b5dc457ef2a20d
68935 F20101108_AABVFU otero_j_Page_049.jpg
f62a2ffa5f0c72af7bfb332a31a6763f
5fab05e9837aecaec8eab530582c16707ad3bca0
67458 F20101108_AABVGI otero_j_Page_011.jpg
21b18556c7e8a981bea5038bd8be0036
1f94d25dc8803f6024b4c3007a9287de75aae8e6
2872 F20101108_AABWKA otero_j_Page_094thm.jpg
f88f31df1570294c84d7089921cba825
efd7a5c721ffd31858768a865a18095a4272b9e9
23509 F20101108_AABWJL otero_j_Page_096.QC.jpg
49e5cd9ec8228c001c90a67c03583363
5bf437edaacec5ddda01b8bd306bd06f4b25421b
26383 F20101108_AABWIX otero_j_Page_146.QC.jpg
082f9c8758e00d10ceb42368363066bb
aece0ee90cad98a554885229df568d9212512ebb
30133 F20101108_AABVFV otero_j_Page_160.jpg
ffb49e62d8d6effabda0b55ec26929fe
fef99b46b3508fcbef489175671030fc0b59b83e
58651 F20101108_AABVGJ otero_j_Page_012.jpg
b877f675f6c6892b676798cc8e326422
01502eb54f480617c27595229bc6713a7491ead5
5964 F20101108_AABWJM otero_j_Page_051thm.jpg
578780a37ac6867622e4b26f619b8044
d7364507c414ee9825203da94c1fe29e9fb69031
28263 F20101108_AABWIY otero_j_Page_125.QC.jpg
f83ec41caa10c22adea49521e0e32cf6
2de23f4cd0aadb88c83d00eee9bb7ca966d6e634
184925 F20101108_AABVFW UFE0021766_00001.mets FULL
b335422a097f03a3d758d620ff5abd2b
24d8c9978cf99460fa0bb51f103ccf455d67312e
67681 F20101108_AABVGK otero_j_Page_013.jpg
ca1b31b674f73d8fc068d477056ef1f0
467f351dba250d16e483d65bdcfe05f95128d7bb
3558 F20101108_AABWKB otero_j_Page_080thm.jpg
4ccaf4ed6eac2d2a01f5cfa907f7090b
80a2c2b55a906c6f05a43aa6d85ef2ca35305429
3527 F20101108_AABWJN otero_j_Page_161thm.jpg
14c9dbba353fef689c675279b28dcb53
a7d31a0bb9e1e43912f968dc346eef82fcd5bc8e
6808 F20101108_AABWIZ otero_j_Page_125thm.jpg
216167258981182ff0e6a71103d60c1d
a0328b226209d79a4d4e526d4acf9b85428b714c
68404 F20101108_AABVGL otero_j_Page_014.jpg
58d0f56de52987c184f3bc0a975ed9da
82ace326e2bdcf5b6afc7c97434f5b57844666aa
18461 F20101108_AABWKC otero_j_Page_059.QC.jpg
d08c466eb506e26f93d9b98e51863f63
31c80d08409ac067c6b9d8ac47f66091921557d0
6942 F20101108_AABWJO otero_j_Page_146thm.jpg
6cfa01b4f60c922e12c70a2634371529
2b200c8f3c34c20bfdb3b4c2c3c51dfbbc89b55e
73124 F20101108_AABVHA otero_j_Page_029.jpg
a1215d24e0dd57d31eb0dd5f65dfa6c9
3d2f6ad0e94762cc3df5df2b9d51a481736a818e
70041 F20101108_AABVGM otero_j_Page_015.jpg
146dbae4309715bd87c59509cf590118
7e1e1b453cda809ba3d4c253b883939ab0d216b2
4818 F20101108_AABWKD otero_j_Page_151thm.jpg
07a070fede58f7727336409973c7543b
9f2d3e4ce5ee61f7d247ed1bc7397eb862b3d15b
3576 F20101108_AABWJP otero_j_Page_082thm.jpg
8b5f8b6844e56a6f080df79c390a1bcf
dfa16de82237a40cce1e261869e30602f44bed05
26408 F20101108_AABVFZ otero_j_Page_001.jpg
d0a795e6cbbb3d247aaa7c3d9579aed5
73c781fd07a1376347a4938126445dce62aebb04
72282 F20101108_AABVHB otero_j_Page_031.jpg
e013559f08fef7e0d28395680a20103a
8fbf351b9e7f4f125303d313fd195eadddf78202
75373 F20101108_AABVGN otero_j_Page_016.jpg
d72b0fe8d2e2b493e8f4bb501e3ade2a
ae3b7e187a1cbd4b16ec6b22e5868c48acc008c1
4935 F20101108_AABWKE otero_j_Page_137thm.jpg
e44a31d081407db01e88971e18db0e6f
a42db5d0aa5ef9752c8392bac11a4d9a3f165ba9
4860 F20101108_AABWJQ otero_j_Page_044thm.jpg
60b04edd50afc9f72f4b93ac9fd534bb
4041ffcb98b2442b852337d0c2c86fe270dd3ede
80212 F20101108_AABVHC otero_j_Page_032.jpg
3a1a39994e61da2bc3e0e8b249215d21
ee5d4fabb01460a82b83e97c0d9e2a47513bae3b
81833 F20101108_AABVGO otero_j_Page_017.jpg
364a841a9dbb0f041dbaa9d82a1d072b
de63586f0362211f1d8e9ccb9b29e969a3b1d2da
26566 F20101108_AABWKF otero_j_Page_144.QC.jpg
0cc0598ea82ae91340f20919be4216e9
1f9404439f7c96973202d0a94cc2d67e02079e3a
4017 F20101108_AABWJR otero_j_Page_102thm.jpg
155cb8c085bf4827aa142801ee1881a6
fccf0268b99c3c8dc80880de88c9742b4b8a8555
12145 F20101108_AABVHD otero_j_Page_033.jpg
477a88f2fa2c24c56b7fe09e621aa315
bd67198aafa11c85878fdea17553127df3b01e8b
84123 F20101108_AABVGP otero_j_Page_018.jpg
6863fd4f4103901bdd698f911e569100
04df96f2fe3c3afd9b0f34d134e0948102311b1e
6328 F20101108_AABWKG otero_j_Page_075thm.jpg
2c174f6839db4570778243862f455590
1730067f244c53f78411fc8e232bf14a78ecabbd
5735 F20101108_AABWJS otero_j_Page_143thm.jpg
45e984503c746bff36f6abcc3b5f8b77
6d83d2488bcb17d5feccceb80afb97d6a339087e
32670 F20101108_AABVHE otero_j_Page_034.jpg
e305dec0e20b38d596f9ef211e9c1a76
de160b18c6cb2302905cb6cef4da0d76f0102581
45444 F20101108_AABVGQ otero_j_Page_019.jpg
da6dde92f4cfd3bcf6945950d41a6548
34e0a0ca3240214dd0b0d4535c6d0662e7068b98
23723 F20101108_AABWKH otero_j_Page_006.QC.jpg
b40f6f51bd54f9bff8315e364ebfe067
18188633c1a8f87abf347fd18fad691677330861
8191 F20101108_AABWJT otero_j_Page_060.QC.jpg
6a7d69384dbada6c4c101f58b3174051
1fe27214eeae1999c5196d0786aef8bb046eecd9
72439 F20101108_AABVHF otero_j_Page_035.jpg
66c7ddace31952734f076f2aa64634b9
326c30c3d186b17801692400f6fa0ab2d7675e63
46121 F20101108_AABVGR otero_j_Page_020.jpg
7de2c918960829288b48c664b7b452b4
cd10f4d68dec38e2250884104b3e47925fdef181
2548 F20101108_AABWKI otero_j_Page_089thm.jpg
47bc28234720dbce533ab48cfa62a370
b579c7d079d24c19b358962182de8d5887f1274f
27571 F20101108_AABWJU otero_j_Page_115.QC.jpg
a98edea11ddf3700857dabca55a9802d
c885a7de8f06df392f1237d5d3174d5af7b77d52
75303 F20101108_AABVHG otero_j_Page_036.jpg
56aac1f415c6c7e9e516545d0e1e13e7
e26f95c94d028f3e4a158f6f04ddbb0619702bba
44257 F20101108_AABVGS otero_j_Page_021.jpg
7137dbfd7bb714503eecea8288c7250e
d16e11b0a34d33e50e725e539001b18a970a1bbe
28417 F20101108_AABWKJ otero_j_Page_117.QC.jpg
37ac5b79a271f29fe4ad867388f4f57e
a076a03f996cf5fe5737b9ae9fdd3fb1e1fdfa82
13383 F20101108_AABWJV otero_j_Page_128.QC.jpg
fdfcd91516ee67283896603e52c1be07
6bf4dc140ec8511a00d31693dfe0912dcd47dc51
71829 F20101108_AABVHH otero_j_Page_037.jpg
2b0d24ca5ac7c3636c8eee3004d0283a
d5f907e754c5712ad1d40a93b2498f898aefce5f
41055 F20101108_AABVGT otero_j_Page_022.jpg
dc17d448624d2a8b1214bf4455c9d74e
dfcce400c3194c7978a53fa38bf9362713921937
21377 F20101108_AABWKK otero_j_Page_068.QC.jpg
ef3bfcde6fca73393f932c904c53d784
5abbb9978a4c856d2dd96165f24e8fe7067f0dd9
6746 F20101108_AABWJW otero_j_Page_069thm.jpg
e6222e3fc40b02b3f3bb304c4bf35390
3f1833b3012ee8f4b9144956cac65d2b46cdd5e3
51387 F20101108_AABVHI otero_j_Page_038.jpg
67a9d4b1cb13238930a98ea2f2ff053d
9d82eebdbd5dd1ef45626936fc0c0c6355f63a6a
70570 F20101108_AABVGU otero_j_Page_023.jpg
c96f761b90a7adbf900a377d72e593b8
994425a45375b1541805be38ec91c0289c8ee4d4
20527 F20101108_AABWLA otero_j_Page_091.QC.jpg
2f70af51ab3df237135bd1b18d3d8c0f
2220fb942aa57afe59ab2d1bd1fd3031786453bd
28283 F20101108_AABWKL otero_j_Page_110.QC.jpg
b5765106ff8a75e386a4a529ef8ec9e6
ae3ad2da609565187fe06a5fe1407767f41db2f0
1562 F20101108_AABWJX otero_j_Page_033thm.jpg
4773d1f77286afb3e156b0408558caa1
cbf8fd9a9bedfe8cc8551b7ce8dcaf54a0ab1eba
52135 F20101108_AABVHJ otero_j_Page_039.jpg
372c3c29a04c3e0e499ca304c4bd9284
f1bb2bbe25608ae290ba369183cfbe4baa4a93f6
67460 F20101108_AABVGV otero_j_Page_024.jpg
3cd2e9211ad0fb69bf5b531225367da2
6e3bf23d5ffcfc9deb2b6ad092aa60c3450e74f9
5452 F20101108_AABWLB otero_j_Page_084thm.jpg
4316556cd6053fb7f5fe2fdabf75f601
fe47f6f7f4a618994d01ce782cbd46e443ced5b4
18509 F20101108_AABWKM otero_j_Page_130.QC.jpg
d6a367be5d576e014df8bf7495118a86
0cca3b8793125b0a19cf83763911a68f42875835
5047 F20101108_AABWJY otero_j_Page_154thm.jpg
dc4718d38e563e68dd3dd674c2ed5b05
c959942bacf211728316ff9b9245a0e9ae10a121
52227 F20101108_AABVHK otero_j_Page_040.jpg
5cff225ce4bef5e9d40b064c1f9aabd5
08e68e21b493ad53ebbdf3ed883ba33def774be9
20496 F20101108_AABVGW otero_j_Page_025.jpg
73ccc48bf01616e63bcd4b69804a90de
53479ac991b8e1f17dc6dea15db4258a506406be
17709 F20101108_AABWKN otero_j_Page_056.QC.jpg
ab760538fb635f3bb41dd65aed0b4f9d
6140d116a8a77bfee969154c0bd87c548d907e7d
4485 F20101108_AABWJZ otero_j_Page_003.QC.jpg
50ad610d49e48558f85017cda411c637
129f1a771e1bc047a2a1df313d7310edf21f6d46
45031 F20101108_AABVHL otero_j_Page_044.jpg
980d9ce0841c0bcead65b3d53ed87de5
2e178c305ca408a083c6ae25c9229c92313ba0e7
33187 F20101108_AABVGX otero_j_Page_026.jpg
753dac97648acb67f09ed7f43a7077fd
a55f321cd626c0016099e6c94fab275e1e9d73a9
13361 F20101108_AABWLC otero_j_Page_132.QC.jpg
26c45f43fd2e4f411d00d9ba0b1e8818
54488f7c804acd91e1006e90ebd9af55d5aa2f04
25505 F20101108_AABWKO otero_j_Page_109.QC.jpg
5a625e8e4f861e5a0ba465105e68094b
4db86e821ed2f95fc895948ef0269a21fc90a533
21990 F20101108_AABVIA otero_j_Page_062.jpg
361c231ba33c229b40cdeec096bf620d
269b9d9af51216aa027a2c341948bcdfedb8bf42
68961 F20101108_AABVHM otero_j_Page_045.jpg
b0f21df5ea7a7b510438aa32b111b446
82e2626677c86d63f5024d1ce8b7980a89430cfd
71444 F20101108_AABVGY otero_j_Page_027.jpg
fbbabecfb5d7aa4ed99bd923e002401d
fb6ec9c6d54f14e24cbf8943610f491473d5c687
16923 F20101108_AABWLD otero_j_Page_135.QC.jpg
bca7e9ddec2e2978708db242b744aa7b
3c5369cc8f05db0ce97ca8768cdbc43dd22be98c
24351 F20101108_AABWKP otero_j_Page_069.QC.jpg
9256729d2f71ba994b1ba4f2f2aece1d
1c7b917a898653a9a878e3e0105f62b696139705
42636 F20101108_AABVIB otero_j_Page_063.jpg
8456ab6e02cb7bfc59518980071f0179
2b472a97221ada9707ceca42f8065f36f3c90729
101059 F20101108_AABVHN otero_j_Page_046.jpg
512fff0933046701f3689c7cf800f859
ed7f76bac04a0806a769ad89af000dea3d4aec8d
70479 F20101108_AABVGZ otero_j_Page_028.jpg
3a89d6da75bf86c2124a3c9c8adaf1ed
783fbd1d0c4e9c6679b02d881adf6410c2373715
4480 F20101108_AABWLE otero_j_Page_157thm.jpg
721d48de54ab32848c768db211a73505
95c7bf9d6f39ddd0fd1e0898e0c39f967b1e609f
25767 F20101108_AABWKQ otero_j_Page_107.QC.jpg
fbd96be89236cb33a8d86267d961e6e4
30999570857ebfb932bac88b024672de0783939b
19845 F20101108_AABVIC otero_j_Page_064.jpg
0acfc1f2bd86b283143a595f0aee2001
1c8871b704f2fc5cab46144f7eeadc88e1e1c5a6
63600 F20101108_AABVHO otero_j_Page_047.jpg
2aedee6ee7dcf3ecd3279430dd0f0a6e
f82ac65f15c1839019708570d84fb1510f1de069
19212 F20101108_AABWLF otero_j_Page_098.QC.jpg
cf7e47603cfd477b5a0d2a90cb569296
bc01d6dfa040f8b36429f05e1ebfc5363f66cb02
13885 F20101108_AABWKR otero_j_Page_021.QC.jpg
9fdeb6c32c69523c679b98f4bb9492a9
785f00e42da3f0652d37a5c9af6d0d1e3e662d5f
78920 F20101108_AABVID otero_j_Page_065.jpg
e14cb6be45ccdb87450cffd3f2c475b4
cf300ff11d2c6da2fc16c9d48249f883b4ec3b90
67061 F20101108_AABVHP otero_j_Page_048.jpg
6c7f8a0f35435d950d918ce71f82fd43
48250ad20695e8b193ea81c6cd7219ef2804827d
24488 F20101108_AABWLG otero_j_Page_029.QC.jpg
60ba2ac072ad67d32cdfb9e93d68c6b5
bb0fc5e9f5b341bdf11f6798a798178522b51def
7215 F20101108_AABWKS otero_j_Page_062.QC.jpg
a47abf0b68abfb84fc6fc5cbeb4a4f27
51bf89e0a64ba0a6534186e50e08d5e592d947d7
75415 F20101108_AABVIE otero_j_Page_066.jpg
04ea205b4a55772410bc3f5ce6c11435
c54984c273bb9ccf25ae30f6120bb7135ea1a797
59535 F20101108_AABVHQ otero_j_Page_050.jpg
a23f3d903e0c6358cc7b91ba6782f83c
43ddbb539d0ee18b6398a79b4444d252217fe98c
3962 F20101108_AABWLH otero_j_Page_022thm.jpg
ef5ecb54f60028d8704c6a5fc6fa1b1f
a2e2512ec4ead9b2c1b8d5f63ac814a603acffe7
5982 F20101108_AABWKT otero_j_Page_068thm.jpg
54a184d0d64323da165084fd805fc360
d021dfce5549d6a798185458cea4893213ddfc3b
72492 F20101108_AABVIF otero_j_Page_067.jpg
0c3b0becd103f97b2ba4c76a4781c48d
b00d54b974390b0c07d2f6f9865e4d81cba941ef
70541 F20101108_AABVHR otero_j_Page_051.jpg
35b9bf898b930aa1b78b86207728660f
a68dc978cf372f9726ca1c6d4544d6638b0dece0
27772 F20101108_AABWLI otero_j_Page_127.QC.jpg
482bb3a22328134ec6dd60f6dbfeb63e
ebcd6aa65aca126fa6d069880cd9bb6e1fc997ed
1335 F20101108_AABWKU otero_j_Page_002thm.jpg
3b7401612b267130f35a90508fa96a3f
b615d6f83face49781d71b9eb674e5058f4a66e5
63049 F20101108_AABVIG otero_j_Page_068.jpg
4d1cb11b70c1b3be983af212eca87a6e
64f5eb23cbea145769285eed27cd4a33b2e54397
71225 F20101108_AABVHS otero_j_Page_054.jpg
3ab442540bac69d760a11354cf557f36
56e3dac96b4c69650a788177b28aac29a45af685
7029 F20101108_AABWLJ otero_j_Page_018thm.jpg
454080d73e9989a9d63d88f2d914371a
5163ca955f1c5d7261963a74b0aab3fe031bc1fa
29145 F20101108_AABWKV otero_j_Page_113.QC.jpg
73ca0272eb924737bbc70009db041e55
41368054f2bd924ff46031af244009ea6d31d04d
73379 F20101108_AABVIH otero_j_Page_069.jpg
28e378c7b29e23ae69a6281d057dbe6e
f3791a080140727813d8f404b91cb5aa93043af5
78226 F20101108_AABVHT otero_j_Page_055.jpg
b1c915628759fc8eb34252d86fad8fcc
65d899c79f6b506e4a3d1978c66a95ff60f5db10
16222 F20101108_AABWLK otero_j_Page_020.QC.jpg
4b77a3bda4b5a8f32a96cf7b49c314dc
bab601d39b8d81ece8490c6c32008a463741eb81
4792 F20101108_AABWKW otero_j_Page_149thm.jpg
5a52ddd8862a5dd2f5baefcc4a387934
1145aef9b65fcad2999fcd2aa05bc1afbb813c5d
72886 F20101108_AABVII otero_j_Page_070.jpg
9f2cdea8312b532b81b5156352f1ef8d
b07e75d38d8bf245dd03d42620ab4b74e797cb80
53560 F20101108_AABVHU otero_j_Page_056.jpg
a3b4c8124f06af5a6567c56254a6c043
6f8a06ab8671580405ee05782dd1f2c4ac42169a
4525 F20101108_AABWMA otero_j_Page_043thm.jpg
2313376685a865d90830d49105d412d6
610c2f96c11232437248b4eb909b719e2500a2ee
3952 F20101108_AABWLL otero_j_Page_101thm.jpg
0c7db81517e86848d77dabcf3b29e801
08f81c97f6b296a1964202de244f630c75bbbd3a
4396 F20101108_AABWKX otero_j_Page_086thm.jpg
4684560600679e4f5425077ac1096293
ff83e6ec1ec4e744ca04ff0269e504e9a45cbf85
77031 F20101108_AABVIJ otero_j_Page_071.jpg
3e536db6e02482fef817b5761baaea13
3bd118c666b65f21928d915271a1e1308bbf3cd0
79868 F20101108_AABVHV otero_j_Page_057.jpg
b4eec4d227f190ae7ecd8bbd51e600d4
f3aee4a9df7739009c03cd05182b0c632a9b8ecc
5736 F20101108_AABWMB otero_j_Page_050thm.jpg
a1d0af1d08c9b1fd9ccc844457f35753
73cdf5f93a512d867395b45e25212d9ed5f49c04
21498 F20101108_AABWLM otero_j_Page_051.QC.jpg
81bf9ad93e6b2adf8ed18b09b48be94e
7ee0b315857c5cf4b7ab147500d3f05ca4affe0d
24625 F20101108_AABWKY otero_j_Page_065.QC.jpg
5083beb5dd9cf9b87bee7d8ad323f607
a7adc95e870b4e9b0ce576164a0be5489d3d8e2a
68892 F20101108_AABVIK otero_j_Page_073.jpg
3a2dd33eee1b2ca12fea66976813ea9e
3b7c4b20f421e5ec1989f400e8b1d6ec9fae6a11
45211 F20101108_AABVHW otero_j_Page_058.jpg
d2a35cab2c3ea394dc1b58b59b8d4418
5c0d57b33bfaf9ed7166e7299377ceb6eb4b9672
28499 F20101108_AABWMC otero_j_Page_116.QC.jpg
5f64a40a189517f6e66b2f95e13396c9
68bb30ac5764b49e637642aed8e0d0d720422ce2
20203 F20101108_AABWLN otero_j_Page_009.QC.jpg
e7bc42453f393e57769a1fef0fd27309
17ad90578decfce025a57a9d040833dad09eff60
4428 F20101108_AABWKZ otero_j_Page_131thm.jpg
499c25549696c77dca907f5901a99dca
6960ce53590379387a61e6f7e71956bb1619dbe4
69932 F20101108_AABVIL otero_j_Page_075.jpg
02541bdc87c51c708f5dad7d3b20054a
8401160af6cefc61fac42075ba0a690c306af052
59247 F20101108_AABVHX otero_j_Page_059.jpg
6f21f317f44ed181119cd69a447ab3ee
031c5c24453a2b935f88eeb063fa49e93269e2e4
73327 F20101108_AABVJA otero_j_Page_091.jpg
fec8f46efbe28d084409ccc2ab851155
d04474dd6ac784e33eba8848fc9ac98bc1315b60
5885 F20101108_AABWLO otero_j_Page_047thm.jpg
dcb03e7e6dc0d26317003257a56ce782
4b58598ce0db1d61e94b09e8813c037f601f3e27
13129 F20101108_AABVIM otero_j_Page_076.jpg
94084e1782e4ccaec3620f0ae6ae895a
5d4df056032051d442b000cb2cd6d52b86347507
24386 F20101108_AABVHY otero_j_Page_060.jpg
69345ca1a68dbd6b5169a19a8c875dcd
4d8d6d26518dee086f1ca86326bb65f308b62e0a
2919 F20101108_AABWMD otero_j_Page_106thm.jpg
c51244e0a310fecb94c52851569b33b8
34564addf85bd82073ea70ad135365ab2b56c01b
13507 F20101108_AABWLP otero_j_Page_042.QC.jpg
a760be1e9f983d845df9eed2dc9bb247
245910cfe36d6a3564be3f7d59006183cf93419f
46320 F20101108_AABVIN otero_j_Page_077.jpg
6d0f8974a15e30afab547102d9dfaafe
02dc80c5f1e6891d331b6b09a9baa579e9db0576
34724 F20101108_AABVHZ otero_j_Page_061.jpg
40a83c915f4e15d249572c046ac1cdda
c006d0499fe893edede9eb297d71305e3c362a30
27731 F20101108_AABVJB otero_j_Page_092.jpg
fa2808aadd3fd1593339eb0964d86144
1c4c49b5988248d3c2c79f04d09dfa0925b43e97
6214 F20101108_AABWME otero_j_Page_024thm.jpg
598b586c3a528d4963a71450cb41da83
8eb1696779bd7e1a9970bf790cf1aa3e51534678
4764 F20101108_AABWLQ otero_j_Page_152thm.jpg
1c0a6ccd090ce1877844992ba86b7dd4
3b8bfc6eb7908593f1f36958f7b94e2832b86911
39010 F20101108_AABVIO otero_j_Page_078.jpg
54930d1371baf4582264f3e44917c98a
7156789c5166f6eae02097c9ad628eb2b4fc2793
30300 F20101108_AABVJC otero_j_Page_093.jpg
2559692aaddb05d9e6b3eff6fa735cef
0e796a8ddb08cecffef9a6e684ca1a7445a86859
6613 F20101108_AABWMF otero_j_Page_115thm.jpg
2dc02aee7cacfb6826168374a2e2b6c8
92bffcb11139359c87e2ced46c86c6ad6cb20f6c
12279 F20101108_AABWLR otero_j_Page_153.QC.jpg
9ab7f673a4bb1008c8ad45e5347aa818
6e3cdd4ef4ed27234de192f4ace2ca4b05cf1709
37232 F20101108_AABVIP otero_j_Page_079.jpg
9a6d58facb5f85714fb8a92d27e644ca
0c6ae394e3aac5862491a21120c0ad6e8121809b
22963 F20101108_AABVJD otero_j_Page_094.jpg
b7cc14a8f2864570f03a820445bfa70f
cf4e35425e2d18f8fec15088d9ddbcfb0b7eb763
23905 F20101108_AABWMG otero_j_Page_031.QC.jpg
74bf2f9473869add0e9e935a93a733ff
0099f31cacd68d2da159e3e4c61b97d5ee777ff3
15730 F20101108_AABWLS otero_j_Page_085.QC.jpg
0eeb35381f4711bf3162048ca91355e8
8975916f7063d87a8b032d09d2665f559c08897b
40984 F20101108_AABVIQ otero_j_Page_080.jpg
0a7c57965b6ea5c2dbedba97294f6393
9e6f63bccff15a9c9578d7c512b4b312e84e8f9c
63781 F20101108_AABVJE otero_j_Page_095.jpg
d5d75ef7cbd6afcbd69bd6104a91ca50
e58aa80da23b300d8f7a72087206ddb9513928f6
3153 F20101108_AABWMH otero_j_Page_004thm.jpg
6b54a02ab0cf6a0b457c97bed2edab77
6cbed8b8d92aec717fc3c3d2c35a525cf2bb0f3f
13188 F20101108_AABWLT otero_j_Page_131.QC.jpg
fadaf57baa11ad79f9a3bda6b018f0a2
7348f156152f3cfbd842fa56901e1fb856a3d4d6
58265 F20101108_AABVIR otero_j_Page_081.jpg
f33b01047552e0b8dae91783525fc85e
8331cd9a817869138ff398d87d809ad6764a17e2
71382 F20101108_AABVJF otero_j_Page_096.jpg
054010cc76d34392c7a551e743b6da50
d0a3fcc2cb3423b18255389c8288703df2a9ca1e
7910 F20101108_AABWMI otero_j_Page_001.QC.jpg
c5600b730dba6c34426cd45c5a5176f8
6632ae4d7b9eeabf2cd350c6192746cbdfed1085
26192 F20101108_AABWLU otero_j_Page_018.QC.jpg
ded9db62960faa44f333360bb91fd9fb
72cdf2630b216676170c5773bd93abc1269c1104
35212 F20101108_AABVIS otero_j_Page_082.jpg
6cb9240f3d3604fbc665bbdbe407cb25
b8c05f51b5bfa7fdb5df0e03fb9b267cf0efd753
65186 F20101108_AABVJG otero_j_Page_097.jpg
86b5df1e2dfdbfe03d62c26a9dffe663
4c69d58d053cec9401d5d7b18a5f2a0f566e3a3f
10733 F20101108_AABWMJ otero_j_Page_147.QC.jpg
727f92659e0c2ec927f10d6ae55eebce
bb573b7b30ba9a4e7a8f197a22cff02832883078
12348 F20101108_AABWLV otero_j_Page_161.QC.jpg
2e93f8361a02f2a58a81862b76fea72a
26010d095599242d2b0f8081575e9b64310af0d4
41239 F20101108_AABVIT otero_j_Page_083.jpg
ee86efbfa879db9faa27690d78252628
acd47917dd24b1bd47c173d59ad8368ad1216f76
56922 F20101108_AABVJH otero_j_Page_098.jpg
efb883a67a52509be15987471ef21d47
be73f1403774fa0aee833b386bff4929fd93b595
3518 F20101108_AABWMK otero_j_Page_093thm.jpg
fd508b39001c3fa74fe944de07f19ca7
ab153a3010e4de3b7b793f71b593a746803fa660
1823 F20101108_AABWLW otero_j_Page_156thm.jpg
aabbcf5d6214d8fdd198cb00dad3787d
b6b4b5d15b937142db384f160c29a281207bdb20
57180 F20101108_AABVIU otero_j_Page_084.jpg
1d8c9a9e81166ded58365c9d0c44ca88
bea3ad09f348a1fe12bdd15cd1d7b272629c6428
59197 F20101108_AABVJI otero_j_Page_099.jpg
fe009b8789a9e70eb0f93a197194b084
3d912a95cad00770c392c738b591f4fb78ddb33d
10067 F20101108_AABWNA otero_j_Page_093.QC.jpg
25daf0d27e5281970fb061f0c4e8bdc2
52d43da752b0ac7ccf820fc85a1174aa82fe77cc
5670 F20101108_AABWML otero_j_Page_098thm.jpg
f06b99a9daaee6f61523a38ece610e37
3dcace8894f2f2b7604cb2d0bd08bcad771c211d
3992 F20101108_AABWLX otero_j_Page_077thm.jpg
13649c598062faf437bfc7d861609ce6
b5b85aff664f5788b2ee9a0fa7e8c48cb5a1bd64
50733 F20101108_AABVIV otero_j_Page_085.jpg
8f1659811afca0c8affc3acee11d620c
cdd9f0a75b7488af550fc9a47ef97a7f456f38bc
49685 F20101108_AABVJJ otero_j_Page_100.jpg
48a6ae0395844aa434d149018d4a478d
a7897e19797cb2d41f7b8e7d442bbf96caaa286c
24407 F20101108_AABWNB otero_j_Page_067.QC.jpg
69456457488020b4f9df7c67f7a1d817
c2737673a5f96d87e3fe31b9dd53b8bbb63be611
9405 F20101108_AABWMM otero_j_Page_106.QC.jpg
ccd1bbfb7c9b82d7d417526e3386ac48
fe901f544c914f7c301a47036a8ef066a74a16eb
18105 F20101108_AABWLY otero_j_Page_012.QC.jpg
3fb1a32b353d26ec2b2b5b34755c11e6
63e2c80050c4006e0a621bd0f26963415cbd4ea0
44214 F20101108_AABVJK otero_j_Page_101.jpg
cc70aa401c8e4a05299292df33ea4aed
4beb6d2676970db2c90e5a95ffdc4c580ee09857
36011 F20101108_AABVIW otero_j_Page_086.jpg
1d6941c2d2932e183c243e1dc46c337e
816dc7f8c636f7635723c49ea7d7e09310905b0e
6380 F20101108_AABWNC otero_j_Page_023thm.jpg
df09905e37bd9f7a2be04075212a7674
04f3c5a66f5cd479904ca32d321063ce2cb6037e
6804 F20101108_AABWMN otero_j_Page_055thm.jpg
5996a4c23451d45a291935356ced8d23
d1f12bc6eab46b1a7044c557eded69dd9c0046e7
4571 F20101108_AABWLZ otero_j_Page_139thm.jpg
9aa9acf2d87e9e4bad398f9653f9a13d
20a02699584b5d46401a7d423bce800726e465f8
104910 F20101108_AABVKA otero_j_Page_119.jpg
9de5ef8b235ceba9597aca7479b27171
c28f22bb09f5858575b309cf9fc4ce25e51c911f
49848 F20101108_AABVJL otero_j_Page_102.jpg
2bb0eee050776f2a2304cbb7cecac19e
e9639d493ebe16856dae9f6ccb279187254663a0
25953 F20101108_AABVIX otero_j_Page_088.jpg
8d8d2c5d31b8d29fb2fef2f045e15a49
b33bb2e24366c26f72d85e7f4f39060611a90e7c
6196 F20101108_AABWND otero_j_Page_013thm.jpg
c7289222e26d571e75b89d6e9c7e0d89
e40e93fce542a38164c6fffbe6fba5466380e885
11401 F20101108_AABWMO otero_j_Page_078.QC.jpg
7aad6f43dc08b26ada9be934ba11388a
087e8ecc65f945092bf710b3f8214d576bc9bd10
97008 F20101108_AABVKB otero_j_Page_120.jpg
d1480ae2b0c35210912fc6a3032fb843
bdb05641c8c5ff911643f0dd691792ba8043295b
48727 F20101108_AABVJM otero_j_Page_103.jpg
ded1f0046b2fd7fa9ff3acb80ff49019
8c547787b9d6735f70cf6c862b4dfe72c8512e08
20640 F20101108_AABVIY otero_j_Page_089.jpg
1daa39d7668617b539fcc97a1839f762
8860273b24a8cd218e33515588fdf4d619834cb1
11351 F20101108_AABWMP otero_j_Page_007.QC.jpg
f051816a8eec2699044a9b9ff7f21dd9
908a8f252af2f63eed9ef470d17a79b786f1d6df
62963 F20101108_AABVJN otero_j_Page_104.jpg
2ff4ad21da0ddfab5c7ff32d98856d42
97be9803f20ef2bb4aba88fa5a0e67e92cb5d1fe
23011 F20101108_AABVIZ otero_j_Page_090.jpg
b61d34fa6c5f6f3ed234f0d58654b33f
d426251fde206d2950bf18daa8783bebe6eb1401
25080 F20101108_AABWNE otero_j_Page_055.QC.jpg
aafd753ab376ea1153ba411cecb35737
e97db4448583e2a8c7a719e0da347f69dd645c03
4580 F20101108_AABWMQ otero_j_Page_104thm.jpg
6fc133f762c754cf3ce312473cc82599
61e6c55fccc910d4ed10d681cdc9014da3cb0642
105125 F20101108_AABVKC otero_j_Page_121.jpg
f5f5f76cfeb95c7f2a6776c18aad85a0
092628e1ff498b8e67a81789850a75a3fea3bc34
70919 F20101108_AABVJO otero_j_Page_105.jpg
46da7ad842470d771224f69e194cc1d2
6976323069aeaa3d1537f91489a89f147c1a143a
7402 F20101108_AABWNF otero_j_Page_090.QC.jpg
58066e0ccc30f4e8c3175c0e6b38627d
9e589f3e05e9701c77c863ef347ee47cb4c66946
4585 F20101108_AABWMR otero_j_Page_019thm.jpg
819e514557d79bdc46329a1e64bb9b71
c6d8682d234ff93aac50cbf135eee5e87b76405f
93797 F20101108_AABVKD otero_j_Page_122.jpg
be9d018c4294aa282c9a186a2637b02e
97286b5951ecdbc161c0dc825c0078faff780179
28048 F20101108_AABVJP otero_j_Page_106.jpg
2979bf9e251c2e16165c9ee1a2183ef5
1f3543bdd7054d10def3c570b85662a618b1770c
4683 F20101108_AABWNG otero_j_Page_085thm.jpg
e780b90ff9bcccc7736db86d7ff9cab3
879fe2cda564e2f4aa7f39a91a0f915fe6fe5584
11242 F20101108_AABWMS otero_j_Page_155.QC.jpg
0a0725b67c16bece2d9ea60d82b92af4
8bd6a9959b1bcc472de64079056c526b9f9c3fab
103934 F20101108_AABVKE otero_j_Page_123.jpg
82afe51f1886c0328a4a2fd2ed085d6f
a1cab3ff7052d8e3a4988286b088d0ce509b04ce
82635 F20101108_AABVJQ otero_j_Page_107.jpg
f54f67b84bef1980e079f6be048dee2f
aa712c1376ffa4bf8f9085b9f2894a9b3cec848a
16261 F20101108_AABWNH otero_j_Page_138.QC.jpg
cd7aa24b9986c130e0bf915b95076655
f0dc1c298c513d804fa498f476af177303dcd8c4
4403 F20101108_AABWMT otero_j_Page_021thm.jpg
a92436786a3d2406347f508733ec2fbf
f7b0674b06a4ae059f0f13fd4419970e9f9281c1
103396 F20101108_AABVKF otero_j_Page_124.jpg
de419cfe736ef79c28c43a3d2d298517
3c758f444c448d9ca7c6c5405bee51378e348a2c
74411 F20101108_AABVJR otero_j_Page_108.jpg
88dbc90d8f5ca4f9b0433485c3d53f5e
aaaa44b79fe25b13e9c72987c6b7f3034d67dead
239377 F20101108_AABWNI UFE0021766_00001.xml
e44a3e5b98019e05814065a17bdbd970
347730cb0cb3f96c883a4f21da02d359470e17ed
3974 F20101108_AABWMU otero_j_Page_026thm.jpg
a61e9beb4db4b77a5bc5cbaadea56972
6c60f78f85e745e4bcd01fe4929ebde74c81ed20
108010 F20101108_AABVKG otero_j_Page_125.jpg
dbd666a9f21af0924b76581a0f072b8b
e78e5e63d57204d308d81cb768edfa4355dd2215
83739 F20101108_AABVJS otero_j_Page_109.jpg
84dd2085baa17db1217b9b0f7ae8ffb4
d54ed54f3152d8bb7847ce940865f52e93af6c69
3114 F20101108_AABWNJ otero_j_Page_002.QC.jpg
1a28d6ac43a231a6d74cf5ba1c5135de
b796073bd2bdeb184f6aaef2fd9d9a0f8ad40c1a
8962 F20101108_AABWMV otero_j_Page_160.QC.jpg
22012ace44dc6395fed020f3818841d2
3774b2a914a3512d15c2e979d66d41679b303ab4
107501 F20101108_AABVKH otero_j_Page_126.jpg
68a42f7d426ef133e322ceb33df4793a
3e10a732b28434954eceb0bfd9337428e25f174d
92168 F20101108_AABVJT otero_j_Page_110.jpg
d7d13ec6036db01dc6b1fdeef0744696
ab20bfec5ff0d094d9d3fe3a3b5cdbf1b53be993
1617 F20101108_AABWNK otero_j_Page_003thm.jpg
135056b3dbfdd2fc3ed3000b6d0b2005
70914c4dc0e181787710b043abe308ef53e7bbb7
7055 F20101108_AABWMW otero_j_Page_032thm.jpg
ae4a123aeab2fe8fe62591f3d0da5b67
a0860aed5217418a803c55a8ab849a21c1c65c8b
113481 F20101108_AABVKI otero_j_Page_127.jpg
89ce1256cd91deffdddfe8df02300202
91719f747c56ed9e9d77a3289213b88cc5d35114
108637 F20101108_AABVJU otero_j_Page_112.jpg
aa1fac84ceac13b6967f9fa719f82d50
36804ad69abfa27028af6a47babcf16a5a9f3504
25797 F20101108_AABWOA otero_j_Page_017.QC.jpg
d18396e4c2b8e5915a61a972da7ca0fb
b525fa088257d0fe7e447b62dff0c2197e45fd8b
10260 F20101108_AABWNL otero_j_Page_004.QC.jpg
1c96c4f03482f376978b2c7720cb104a
17d9b107babd97b4f7b9f8911543789ffd8a8132
15932 F20101108_AABWMX otero_j_Page_151.QC.jpg
6f8967843f55a7c745606d8d2ca2bdf8
97921f898ff5a41d7aa0bc0aeb7434f39b64b44b
53887 F20101108_AABVKJ otero_j_Page_128.jpg
ecdb682584e7de4176f99bb3ce09478a
cdfd256d9f93103feaa5754f395b69f641688f24
108363 F20101108_AABVJV otero_j_Page_113.jpg
89f7493f1f4eb73daf8fa97c03c75866
5a351c1b20700a3c9f5cf4d57c7e3baf3f447fa8
7155 F20101108_AABWOB otero_j_Page_017thm.jpg
37f56b032f6e28f0675b990c4b2b4dee
e600506dc63e3f1e45d4cd288ca935b790b72b0a
21308 F20101108_AABWNM otero_j_Page_005.QC.jpg
5e1babcc3dbc4046a10cdf77655c303c
48fa3fb45be63d1ba46e1f8617c7ad23d3e0f7a0
6908 F20101108_AABWMY otero_j_Page_126thm.jpg
716cfbf058730a47b8aa7614c755f611
2b4294d783ff26691d3796103f81b5b53eb1d204
49947 F20101108_AABVKK otero_j_Page_129.jpg
2369752efd3cebefcdb9733e08d9e322
fd505ea49ed0cd9c823da03bf7ad7c21fb356a3b
109105 F20101108_AABVJW otero_j_Page_114.jpg
017e0cc0148349a7716c6f8c96a3af1d
2fd4c9835c03d89ebc34c39d82023ff7ae6739b8
15200 F20101108_AABWOC otero_j_Page_019.QC.jpg
e4160fd652e9cefae62f260e8b0e2a27
ae297aa34a31a81099ecc0733e28287d4091e3e8
5562 F20101108_AABWNN otero_j_Page_005thm.jpg
86e2cc1e747d78282de982646fee36b4
2d00a6b8b2591553e988b81c529bb7d34be20c4f
6846 F20101108_AABWMZ otero_j_Page_072thm.jpg
7ac673f96f83ddb972a5873b6537f44b
9556b6b83872b7b5ad5aad90dcb414dd01fb4cb1
69472 F20101108_AABVKL otero_j_Page_130.jpg
bcd6e78da1b983855be1a3a63e7eb1d4
b71cf30e7ff00d3d714349d2f191817d515f000b
104447 F20101108_AABVJX otero_j_Page_115.jpg
7463441e06417f1016a5d80c83c3f88b
ba9d3137b79a6c5193777c9b39f46f1e7647c131
91393 F20101108_AABVLA otero_j_Page_146.jpg
16f67a66ed62d9075b8c21386cc1369c
690d145d0583b68d539e8cd16c02d53a162b537a
21890 F20101108_AABWOD otero_j_Page_023.QC.jpg
120d7361a69ca539ffd9f1385f419372
83fba6ed1e5870cfc4866de201918ba28ed9d2f0
3389 F20101108_AABWNO otero_j_Page_007thm.jpg
0b2391e14ac882a033e8f6f138f093c5
4c49448578067dfcafc18f1fd28842521699cbaa
38281 F20101108_AABVKM otero_j_Page_131.jpg
c51333dbb1d76713a653cd851d37ecb2
fc62f75bb0a25fba71eed574faa656621b0033e9
108886 F20101108_AABVJY otero_j_Page_116.jpg
fc7adb9f6e04184bb8c88fd77faa1aab
2022aa6f8f70d5cf910b9b7d6c930d9524de502d
37124 F20101108_AABVLB otero_j_Page_147.jpg
7b31c7c89af61a267834b9ee533e29ed
1e13e6f9ba35e588b92fdb0c8b27664b8d3de16c
22907 F20101108_AABWOE otero_j_Page_024.QC.jpg
05292c4a14c34e9c38835bfcc0f2d0ed
4ab46895621cd5f683596a6dda629ca29fb3b648
24210 F20101108_AABWNP otero_j_Page_008.QC.jpg
01db92181babdd776312dcba7cea0b07
42b6b0f27f734b364354d705ce21ef001e45b870
43951 F20101108_AABVKN otero_j_Page_132.jpg
05638c35d949acacda9815aca306a202
73e6ed56c84cd2acf12d4279d28fec9d3fc97c5c
86494 F20101108_AABVJZ otero_j_Page_118.jpg
2ea517c85ef72afcb38f5e1c9e967bcc
6a2ce7f1680f14b4b199ed93288ed15f8546b402
56321 F20101108_AABVLC otero_j_Page_148.jpg
cbc8b11f7e4a9430ce841e3c0cc32147
d02dab7e7ccff851cae6bba55516fecb82e4cc66
6251 F20101108_AABWNQ otero_j_Page_008thm.jpg
f5ae170a5b153c236cf3e84c22e926e7
6b530a1ff9c5ceaafdcf88163ce5d579c066b8da
43402 F20101108_AABVKO otero_j_Page_133.jpg
73f941478ed33c956fcb09ced848d461
e419e6c078d680feafd8b68531092885f6b039da
6653 F20101108_AABWOF otero_j_Page_025.QC.jpg
e43500bc491a386c53da4ce5eff706c6
1c893216647dfe7739b245c06738731dc4be44ef
5235 F20101108_AABWNR otero_j_Page_009thm.jpg
614ada66770e1298a8577410056a5dc6
97cbe0f65b7a07662976a3f4371cf8e2240ea74b
52459 F20101108_AABVKP otero_j_Page_134.jpg
8b1376fe9acd721ba8de78f26d6739f3
1a479ae89147a3ff2fb304f61d2d9a4fd5944745
46442 F20101108_AABVLD otero_j_Page_150.jpg
dcacec0d64b4772607418d8a7c9800e6
cc511ac2946f920aaf4f6f8041fcb16d384b27b0
2313 F20101108_AABWOG otero_j_Page_025thm.jpg
5f8b5109247ae2e2de13d9ee617a529c
3a222089e0b6024b7235e8b0b147501f94ea85fc
5428 F20101108_AABWNS otero_j_Page_010thm.jpg
609ca31f88e89b4c9ad3716bf24e8a3e
25e76170ce897e0cef2b385efef2322c781ef109
54521 F20101108_AABVKQ otero_j_Page_136.jpg
de2093969ec3aad381c5b123a7df815a
8af3d58881b022dab499edd55f621a8faea84697
53819 F20101108_AABVLE otero_j_Page_151.jpg
713626838b9c6fcc60dbd88d766af5ef
11da4610af1d75bfd262891da4c9ac5e17b607a5
11222 F20101108_AABWOH otero_j_Page_026.QC.jpg
05ada7a78979c942888a43e4ebbc604d
1f59a91013a9b7bcb4cb980e520b512be14b2163
20383 F20101108_AABWNT otero_j_Page_011.QC.jpg
061bce468f05b280e2d22dab683743f3
a045532bcdd0e0db63cd322bf9ba018c3618b534
51864 F20101108_AABVKR otero_j_Page_137.jpg
b86dd614f6f6c89bfd092d40cc011af0
8512cfaa8fb4ab03bf2150f1f6af729d506b5e07
53258 F20101108_AABVLF otero_j_Page_152.jpg
1885e5f624b052d899316f7ccebd2bfe
3c8e4deaef02182758ea2c13d4e6eeb40505c7c6
23259 F20101108_AABWOI otero_j_Page_027.QC.jpg
5f3576ed08e4fb4c0353fe44e1ef7f15
0df8c431fef9da02b102cd2a7db203c7363af4d4
5284 F20101108_AABWNU otero_j_Page_011thm.jpg
a1a0ad56af20850bad5daca5718c96eb
efcf478da04ee0dc2374e697b087a85866359ad8
51134 F20101108_AABVKS otero_j_Page_138.jpg
a0305b55127d53b0f7230fcd93bea540
db2ad5ee0ac582f992408a354d5ef9170376be28
39564 F20101108_AABVLG otero_j_Page_153.jpg
f03339b85e086988b4702295cccb9483
f839c6c11135e8e8101be9c57bf94be18c389885
6413 F20101108_AABWOJ otero_j_Page_027thm.jpg
c638bd1e6c955de09da9158d728e5fb5
1c9c34a5ee6fa7deabdef60bb12eb3b47c52e6c5
4997 F20101108_AABWNV otero_j_Page_012thm.jpg
2d373919df7e61448cb658eaf2fd5685
747a71354c4399e46b0580db466c6dfafd65969d
49931 F20101108_AABVKT otero_j_Page_139.jpg
a2b30c50908a7647ba0e2f28b52769e2
a4020445a5d09322bdd9b96d7deec92e843afdf6
58487 F20101108_AABVLH otero_j_Page_154.jpg
e23f5b9813f914729821e54d10d01887
72dcca859105cb3e0a03e9c26e644757264165e3
23294 F20101108_AABWOK otero_j_Page_028.QC.jpg
cb6e68ded5e87fdcb4d0e626e86655b2
aa12d2168116dd80a8d0a689bbd83e8346f1c749
22468 F20101108_AABWNW otero_j_Page_013.QC.jpg
8f0175d876005972a763e884ae9fe1d8
2e0a95e921522f8ec6e28a2008cffab08b092299
54050 F20101108_AABVKU otero_j_Page_140.jpg
a5904c4e2d271feb91768813c63e6e55
a60b1ad870cbaaa12dd9d85cf493c2a02ee7846d
36129 F20101108_AABVLI otero_j_Page_155.jpg
cac527acb1849ec1254f952207602f9e
b3d09f2e873555e071b87cd10345aa3a5198f10a
14904 F20101108_AABWPA otero_j_Page_044.QC.jpg
76b459e7298132d8c222313d54bcb642
bf705ad61e391e49077e28f3414e6cc503823e4f
6439 F20101108_AABWOL otero_j_Page_029thm.jpg
c13a8b34f0695ba5c6f126fec72c0390
b5ed327112bdf86f563385c3ab4a091feaa42953
22950 F20101108_AABWNX otero_j_Page_014.QC.jpg
fd1848772f243453ddd6210c958ec20a
1f911c41110847ae8363c862817259c2b6388718
66085 F20101108_AABVKV otero_j_Page_141.jpg
9a89310f2046a53a761860f5c8e8c14d
7a9fee23cf8300d54e598c5305ad0d8a4bf4929b
16635 F20101108_AABVLJ otero_j_Page_156.jpg
8a666b8193245f26e4d7c23b691a23b8
67bffa7070aa638cf714e4c75a81b892dd958df6
22682 F20101108_AABWPB otero_j_Page_045.QC.jpg
b4f7100f84eec937fa0d7ad040df1157
8a6211203a9725b96ee0f211c3f70f8346cfa4e5
7048 F20101108_AABWOM otero_j_Page_030thm.jpg
70c11117e66e7ba92d00ffbd6fbaf742
8df0086835720fa458e239c7dc4c067bd7d53156
22666 F20101108_AABWNY otero_j_Page_015.QC.jpg
6981933223d637dbdc878ecd259fde79
6b05e6b481e3bb12c80f4fbea874c460461f674b
56546 F20101108_AABVKW otero_j_Page_142.jpg
26c97dce7811d38ab23c6e2988967b86
735e0218b5d431db6640dac0403f287da34c04d5
60436 F20101108_AABVLK otero_j_Page_157.jpg
a6a4f9acee7d622df24711607c090451
228784f5d20f589571e0f50bb0feef732cbd0d89
28536 F20101108_AABWPC otero_j_Page_046.QC.jpg
bb11b8cf1d13e22df71eadd568a7f427
bea2a2dc2323621d12f533422d74fe4d02d13e15
4136 F20101108_AABWON otero_j_Page_033.QC.jpg
d989d4524ebc0e9b7c721dec4f7fd83e
789f88d9b804455efda026176be269ca1fee5ba0
6353 F20101108_AABWNZ otero_j_Page_015thm.jpg
55d2b53ca9d5b223106ce21eade3de65
ca57bcc6c184782bafd74b80453214d1648cf8d2
65118 F20101108_AABVKX otero_j_Page_143.jpg
06cb9e99833fabb0de493be10dd07a77
72704e233c01c934cc4421ce49fb0ea4fe9ad036
104726 F20101108_AABVMA otero_j_Page_015.jp2
694983ae9ca14d1b541b9469b9bf3c2c
0c1d3c6ed3b2973240ee0b935bd6a36e4bca2f80
60575 F20101108_AABVLL otero_j_Page_158.jpg
82e1291adcc72d18b6da6a7bd0cdee21
5e3ae27955d04b9ca1a760e3df1b691a35d8ce31
19712 F20101108_AABWPD otero_j_Page_047.QC.jpg
8a6d3fd2a4914cd7979027abd43f79bd
5b5ff0c95127346632e6a9934a5a3dcb7315a8ae
6729 F20101108_AABWOO otero_j_Page_035thm.jpg
fe29b72ca546e7ccccc4b4901d6fe63b
2d4a1afd8ca2a8001a838a42aeba242cc133e0bd
92217 F20101108_AABVKY otero_j_Page_144.jpg
a09950930034a6744d619ec06e38c756
bf335e44ba246cfd57533e73e76931310b8446aa
113043 F20101108_AABVMB otero_j_Page_016.jp2
f021f40cfa4fec6dfd7cf357ef762790
e06d8084d1baa608b89ad6b88302d2bd400e8f30
80574 F20101108_AABVLM otero_j_Page_159.jpg
a15aa3dac63a2182accfc7b902f05ee9
4f167044731cdb960759378f721145be37345a84
21915 F20101108_AABWPE otero_j_Page_048.QC.jpg
900eedee8e2a82896aba2e4fab507fb6
5da3ddd0ef3e97cdfafb401db5e1982475b60087
25204 F20101108_AABWOP otero_j_Page_036.QC.jpg
e15d9ed6135131723f64cdfb8e4b592c
7b8e818484edb083103a6c376b7985b7d756ceea
91611 F20101108_AABVKZ otero_j_Page_145.jpg
447ea96b0991278fb9a048af823cb996
65cc258f94fff44ab1e1b848af6b398ea44c8c20
125053 F20101108_AABVMC otero_j_Page_017.jp2
b198c90fe86d786c83eca9364855bff3
158d4f919814b5eecbd1356d2c0b23ce02d76fd8
28753 F20101108_AABVLN otero_j_Page_001.jp2
27c6054f617a3e2a3f0fd2fc089e306f
5431b9315e73fd2ce2617627fb51969bd9cccc6b
6087 F20101108_AABWPF otero_j_Page_048thm.jpg
3b2d511a23c2733f18c6990e2c3647db
c7313b92386c1aaa666cfb412cef9f6a620df6a3
23760 F20101108_AABWOQ otero_j_Page_037.QC.jpg
ed2b83f49aa0667ce78ec94389b68c87
4135e942d25f0db153a6a6bffc54f88e750bbb6c
127150 F20101108_AABVMD otero_j_Page_018.jp2
7fbabfc2ed5e72472bc519a829826e9d
aaa71a9e792760e367db5832ee132741c334ec98
5699 F20101108_AABVLO otero_j_Page_002.jp2
49512570989cf328616a70d162e50576
afb8ddbfeeda5b0a0776487c62082d4dff45fcfb
6475 F20101108_AABWOR otero_j_Page_037thm.jpg
be54ca03235fbb2d2f7f4f96eb0b2bc3
50c49bf192d8dd9bc367c21b2e3ec47a3c9a2a9b
14087 F20101108_AABVLP otero_j_Page_003.jp2
3aff3e6ecb8e3da663e73f91a6553669
12b175a119e66617f2a37867b330cbb60b0d1f89
21127 F20101108_AABWPG otero_j_Page_049.QC.jpg
ff8869e2ad5b7dd93ca3793285133ded
3fcf573764f99665d134dd52d96b5e6bd8bc714f
16976 F20101108_AABWOS otero_j_Page_038.QC.jpg
1158708fb83eb4bfc7a36f1839ef13c6
1e16c647fdb88a1570bc6ac396bc8133ea6f93b8
66099 F20101108_AABVME otero_j_Page_019.jp2
9821f570b54b07dca8d3f4cec9ab1f72
609d69d79bed6fbb0560aa544e1037d227680f8c
43038 F20101108_AABVLQ otero_j_Page_004.jp2
a8be522abbf1dd7625bce3ced24e52a2
6cb782561f8685bba756dd27b9ef47c87ca69bf5
19052 F20101108_AABWPH otero_j_Page_050.QC.jpg
aa7b683f8cc8521625905b2210210799
ecdb212cb3fa355db80fd22bbb4ed151191f1b5b
5054 F20101108_AABWOT otero_j_Page_038thm.jpg
b71a3556af87763687cca3a2bd89e930
392902a2edec815ce4be156e3313da74cda38848
67736 F20101108_AABVMF otero_j_Page_020.jp2
fef4797bb14eb84a9fa51b8cc8d28241
eacbca18d77b5eca7ddb3bbc180cf9dcb348ee3b
1051950 F20101108_AABVLR otero_j_Page_005.jp2
746e6ae5ebb3a33a2bc483e6c107d411
b97afb19263c8908142aac3e7f9600cceda85483
19030 F20101108_AABWPI otero_j_Page_052.QC.jpg
e6063951781dfc3de36ad5cde2e3d8f4
e2926c9ec2326fde7897ada5658a8177e54069fd
5249 F20101108_AABWOU otero_j_Page_039thm.jpg
fd2549a3e332aa9446f7b9ca7ce491f3
b456175a8e3abcc6cb913416272d96b627cb3ee0
59239 F20101108_AABVMG otero_j_Page_021.jp2
4cb6eddc10b8e2eb0b6b53c22cfca896
6df15c8c2dc67ecf6a2ff03828cb88d931f6aa48
1051972 F20101108_AABVLS otero_j_Page_006.jp2
47685523aae27ec924908b5dc5996678
9d387af1758b7576adce7fd3ebba7b9ca85e8eca
5482 F20101108_AABWPJ otero_j_Page_052thm.jpg
bd0be56ae1a15ec53e0fb928427879ef
10dbecea45e2e064e1ef1d1ad3ceb4aa4cc1bf48
17043 F20101108_AABWOV otero_j_Page_040.QC.jpg
4588875cc93c2a53d32e892d4d09ecc6
962a6689e559f2dc92ddf50acce947f78f8df61c
53520 F20101108_AABVMH otero_j_Page_022.jp2
7815cbf90bb8a63562955af9def0ce46
74a1b21f83e7d6fb6e021f6a6d5c1b46cbd89d8d
922488 F20101108_AABVLT otero_j_Page_007.jp2
e6297d29d9c056044bc821aa4b4198eb
b6b98accb4567253b0944e95f006d0fc29c6f017
24141 F20101108_AABWPK otero_j_Page_053.QC.jpg
8e6745fdd939f0aa674ef9d019cb4a01
d774860e0d640adb1ba526a5e8f1c4c83715e939
4871 F20101108_AABWOW otero_j_Page_040thm.jpg
c92dc0ffd94b0459f06df4739a9da132
b2cec6d2c414cf55d2cd93dd682baaa1c108fd30
102877 F20101108_AABVMI otero_j_Page_023.jp2
9bb2c89874fea9a4860b0f33f2c11c68
1b1e57763c7311bceb75e4994a20e0185f2f16d8
1051980 F20101108_AABVLU otero_j_Page_008.jp2
57233a95abb84554577805a0756ebb52
958a51ddce02d2dea4953c7e646f7e9275b599f7
6923 F20101108_AABWQA otero_j_Page_065thm.jpg
627f049ec83383ae11d5551b08c99fbf
7cce326416e527f413f3ce5c8645c8ba9ee970d5
6431 F20101108_AABWPL otero_j_Page_053thm.jpg
df7e79d855dcd327dbd7bd42510343d5
e9a5aa2e74a49f910f4acd5238ed9c3dbd8bf899
13251 F20101108_AABWOX otero_j_Page_041.QC.jpg
1617cad82b46283ca3142d6889f29187
d6cf22040b8b01c94e97dadd914cba9216a20972
105374 F20101108_AABVMJ otero_j_Page_024.jp2
0b4699e998f2f16537ce66d19e3b6a92
6384da46b7e1a35da3d31544fcd8bb746fe06423
1051958 F20101108_AABVLV otero_j_Page_010.jp2
39093bb4094367fc8752441baf8cfd26
a19f14b2aed49351fabb5cfc3a671e8f6f95edf5
25193 F20101108_AABWQB otero_j_Page_066.QC.jpg
8c7b6c19527e12835646b4151ae1914e
9ec7b452093243e066d1951ff23b0e0ccf18cfb9
22965 F20101108_AABWPM otero_j_Page_054.QC.jpg
86848a4c46b3893d8c11e1abb34d3c1b
dbab6f7ebfd54a424371a84ed022f033f3501fbe
4050 F20101108_AABWOY otero_j_Page_041thm.jpg
e33713b73d8bfc5b7ca503e446d562db
5b9ac924900290c87ee02a54b7644274a8ebe4f7
25037 F20101108_AABVMK otero_j_Page_025.jp2
1db287f2552186cfd83e1aa9d82c1cb4
dc1590881821ffe352ec70e94c9595bcf975bb04
1051965 F20101108_AABVLW otero_j_Page_011.jp2
4fbbd8e4165a9c407de77e23765873ab
b91fcc00bb702b5b2a556d75f3768304d8a9e1dd
6806 F20101108_AABWQC otero_j_Page_066thm.jpg
2877c494c7a1bc1fe79a342333d7882e
d7faa5ca34680179ef5d1021734fefe593ff2cc8
6392 F20101108_AABWPN otero_j_Page_054thm.jpg
548396982165e0df45aa62f21cc4619b
7044c9e3fd81cff5b1913b3f665a64e65e3fe5ae
14321 F20101108_AABWOZ otero_j_Page_043.QC.jpg
bc5207cace2c82c90eeb370e57d214c8
0d4fce50e8f723babcdae9998a0e2c238781ee53
838614 F20101108_AABVNA otero_j_Page_043.jp2
32689cb6e8f2bec38a1983e772eff64e
e5bbb07917bfa3af35fae6880a91ae5cc53626a6
361553 F20101108_AABVML otero_j_Page_026.jp2
350bb5b51b09217df81dd779a17a323d
924da0664aa523468da850001b25808eb2074819
83317 F20101108_AABVLX otero_j_Page_012.jp2
13e1f4afa87ee754aa7aa4b8350ab78e
d8ef903e2f32263a678a98d9454ec594e4ae1629
6423 F20101108_AABWQD otero_j_Page_067thm.jpg
4bfacfce282f6c13081937798f2184e6
d6056d995fe763129ecf9670ab5bcab83d966827
5037 F20101108_AABWPO otero_j_Page_056thm.jpg
9c0c0fabde4546ea0852752b3159c1cc
9ae3423cf3e6615130db1693faa1c761da806784
1051986 F20101108_AABVNB otero_j_Page_044.jp2
e674690d841e17a35406a07ebe21bcac
d335d4331da16c5dfc7493544cd83c5a642184ee
105652 F20101108_AABVMM otero_j_Page_027.jp2
023c9cfc0804d71c856acb8800110859
8fa7888782a0c7a92dbb22b07c42c72ab314c0b4
100766 F20101108_AABVLY otero_j_Page_013.jp2
fb5559bb205de7964dea3a5da7c3ea36
8df2cdf1cb61efe5d4ba398768a78dcc10670849
26360 F20101108_AABWQE otero_j_Page_071.QC.jpg
666822f25de1e03d6b0605685fb09ba0
e9cc00728d762add4891f99f3f826eee6a6894be
26077 F20101108_AABWPP otero_j_Page_057.QC.jpg
92f8cbc09a75ad82889117759d100b4b
18c78d6cbf647b1bb24a5401be031476ceaba995
104569 F20101108_AABVNC otero_j_Page_045.jp2
0b8546f367b868f6bb4a5d63c6e4b674
3dbc0661adcfc204bc5a8b460621a97c2388456a
105462 F20101108_AABVMN otero_j_Page_028.jp2
31321552c22cc6784e24325dc7953645
1ba8e535a1fc74d1a71d6bd97acdf19205ddfa21
104461 F20101108_AABVLZ otero_j_Page_014.jp2
bcb5629d1bf7c5dc5f0ed9ba81698aae
f4e01b21bcf09ae7e60e4a7a4a573c205dda46ef
F20101108_AABWQF otero_j_Page_071thm.jpg
cbaec099c29c904d2da882313b194871
97a1da651a5fbc78c31272e826fd0af016db882f
7126 F20101108_AABWPQ otero_j_Page_057thm.jpg
0bd364426c5bebdbeba237f72e217370
87aaf37f281f1e0e385519ccb066f97f17e870ee
1051961 F20101108_AABVND otero_j_Page_046.jp2
69bd329cde07a9e8b1b0e154913428c4
03f762ebe2d981178ac8084523c7b4e1534185da
118733 F20101108_AABVMO otero_j_Page_030.jp2
11908b2ac5ac7163ec2a49c9427a3908
53036cb81f3473819c119881249149e32c41d09e
23659 F20101108_AABWQG otero_j_Page_072.QC.jpg
8efe97bff8887d98471f0d13c52fa1b4
a166d6d97f67a61beb7862a515b177d99f587fe0
15243 F20101108_AABWPR otero_j_Page_058.QC.jpg
f51459263829c435e238dc790ec22918
5a04f5aa2b894d30a4247e600eaae3609afdf443
855736 F20101108_AABVNE otero_j_Page_047.jp2
0725fc81f767c388e20bf1d8216348ca
445ecb89027d76ed4efffa795af31f7fea8736b1
107630 F20101108_AABVMP otero_j_Page_031.jp2
3a96e209402df85a0a3dd6edf9c95200
1392895a4990f8941e3aa6e89e96f58557bd143b
4337 F20101108_AABWPS otero_j_Page_058thm.jpg
f9534b1d6cce2ace77118746764fac6f
1adb72b9918f87b06704e4fc487e6d13f3b3d66e
121677 F20101108_AABVMQ otero_j_Page_032.jp2
25174c93443c9baf1a3798e3a5ef926c
2f01eb298369e94a789516132e1473a76894e790
23610 F20101108_AABWQH otero_j_Page_073.QC.jpg
7c766c41b81df9d1082c4a13689a60bb
942389b2ed60f8e3e90f38e37fe42fed41063df4
5193 F20101108_AABWPT otero_j_Page_059thm.jpg
968c2d4dc15c07bd2484152671d6c8aa
94e0876ffefab3aa8e8b6c0de042db983b18c62a
102499 F20101108_AABVNF otero_j_Page_048.jp2
6465624e95f15f91a534fae3727a4a0f
46e4b9e11e83b378691946ef81b259e37f608bbc
9849 F20101108_AABVMR otero_j_Page_033.jp2
abf5c9dd847a9f3534e3421734c1bb26
888a4bd31ee3447758ddb692339d801d10df9372
6620 F20101108_AABWQI otero_j_Page_073thm.jpg
851baaafc199958b9755994fa7381a14
bd8e8307690df7e0db5e5c82a5c03c47c98e46ff
12505 F20101108_AABWPU otero_j_Page_061.QC.jpg
bc676b9f1294c8821f6deb6502e7a73c
3a3361f7d0c8888773200e38f49dc21fc6e975f2
942497 F20101108_AABVNG otero_j_Page_049.jp2
86164533e32b528a307e0b9b6a1dfba3
baed7496963341ebd3244b8952b733f67e7a767d
38664 F20101108_AABVMS otero_j_Page_034.jp2
b9756c72ad06dc9b856488e46bfa8eb1
791c194ad852167cf9b33059f6282779538eaa15
20270 F20101108_AABWQJ otero_j_Page_074.QC.jpg
b70443eb010479f8ffdb8bc5b979db96
e8b6f0122082ae8069d6800d29add493352841d0
4220 F20101108_AABWPV otero_j_Page_061thm.jpg
45c33defcd48d73583eb34fac2d9e348
db971c2a3a2bb34e2524c9f098a99a7324c5ef00
799914 F20101108_AABVNH otero_j_Page_050.jp2
d65dd2c9249d3ab43151b56102a04a84
7a5da72fc67b38286f93feb32b33ee06b3b5516d
107202 F20101108_AABVMT otero_j_Page_035.jp2
9364bd227d152e173d5f030bf60f9e9e
facd5bb23918a941df21cdbab2d7df1e8cd4a2ad
1629 F20101108_AABWQK otero_j_Page_076thm.jpg
2600ab6a93c7a75a1548930a84df9d9b
4eb3cc737355700d9598cbfef92150888e6c150e
2759 F20101108_AABWPW otero_j_Page_062thm.jpg
46855a1fc20562ad46a8bb1c83899933
d67b4cf2bd1f28c5ffc6bd2c5145351c46493157
953762 F20101108_AABVNI otero_j_Page_051.jp2
b82aafaeff7a51de1c543132ea5c8a36
ba706f0fd7a4489153ecb61a3d586632aac0a593
113831 F20101108_AABVMU otero_j_Page_036.jp2
7ad95e6f3cd7b224e20cc5a4c7cef1e6
d0e216541ad0582a94ad61e73722d24a16b1db0d
7803 F20101108_AABWRA otero_j_Page_094.QC.jpg
493e5d4eebfcbebfe14bc37a2a5b0d1f
5db660efb020a58d46f2477c1c70679a0dcc0ef6
3306 F20101108_AABWQL otero_j_Page_078thm.jpg
69318dd29eec4f2329fa91d9a7c38fda
389a153c0a542cfb9a17441aa7e4e5ffb91832e6
13010 F20101108_AABWPX otero_j_Page_063.QC.jpg
cdb65f27a3ce745443bb07c23b7ddd46
723412a663f50c522d5e084476552ec512bf79f7
734059 F20101108_AABVNJ otero_j_Page_052.jp2
688b5bffbb8348903b65dd0d8e7d8e44
1219ed7250221a37c9a135d496722580956a4d27
107266 F20101108_AABVMV otero_j_Page_037.jp2
d05fd5dca9afa87d060eb22e889a6684
b1f336e48a5d1753b833c66710049b630b6166eb
20776 F20101108_AABWRB otero_j_Page_095.QC.jpg
3338eaa8a7b9ee09472a7ff29e1f1dcc
e976fe8e0000db9cb577ce77492431a995aa0ea0
11385 F20101108_AABWQM otero_j_Page_079.QC.jpg
56c7ae8c1dd0c1d506509c92efa69b21
f776ff09f753c562b7a648f99996ac9056c4173d
7512 F20101108_AABWPY otero_j_Page_064.QC.jpg
9a05cd8637784d9059db0cce25d4047f
421a2ce9d35ddfbc7accea0b1ac12c2753c78d9a
121476 F20101108_AABVNK otero_j_Page_053.jp2
c57ade3654b513d9893bdc423d5e4976
fb0a0d46f29392f6179ad6164bf7dd3370ab9cfb
72688 F20101108_AABVMW otero_j_Page_038.jp2
7b29eedfb1b4916acb40872ab208d4d0
bc8de5f9f07844f358792c1c5053155e125f28bf
5743 F20101108_AABWRC otero_j_Page_095thm.jpg
a9490ad6119f7a50acd073a0bdd44e2a
7e8991eb769f83262f09f164782a44326969fac8
12195 F20101108_AABWQN otero_j_Page_080.QC.jpg
84bdfe6304c408552546bcad438c8350
745bb5d4cd5605c768221e87454bf2f57e6cdf9e
3028 F20101108_AABWPZ otero_j_Page_064thm.jpg
3d31e3a2462d358b42bb81041d000a4f
075e6552e37d1af129b78c8b1f07486238561199
108003 F20101108_AABVNL otero_j_Page_054.jp2
44c266763420cad71cae3f68bffce8df
d796e8f52526534b35c5b660ac4e6058fee941a1
75835 F20101108_AABVMX otero_j_Page_039.jp2
44a895d3d2c4a6c9c96d0870557f254b
f34db8e4ed69cf665fd2d098e13381c9e04ba140
117714 F20101108_AABVOA otero_j_Page_071.jp2
09f20d327deefcfd0f9ca54874916e79
377895015e17540a5a5d0843d59e0a1696e2e4d7
6566 F20101108_AABWRD otero_j_Page_096thm.jpg
e4977884572ca0ac7b72af4d6e95b000
9e6a3d146ff3989500e391f9d8d636aa87c67472
5435 F20101108_AABWQO otero_j_Page_081thm.jpg
763ec6b5194052c9dfb8af431d8fe978
f2a84c7c5bde7222d07ea3bd2ec649e982cbaae1
1051976 F20101108_AABVNM otero_j_Page_055.jp2
8f1df40a7b561ff596d79c9a55f252d2
05f639ea9aa9e888003e5ebc32cafffb137d36d9
878199 F20101108_AABVMY otero_j_Page_041.jp2
ea28288252b3b5c1e06664ef6a0b76f9
5674f67b3612c6f10b01541674b4be36bd8db43f
109922 F20101108_AABVOB otero_j_Page_072.jp2
2c5e65b75bb3bd2d771e436c673a6bfd
d4246e829ec0f489fa98d5ceecf229fc0a1ff22b
6266 F20101108_AABWRE otero_j_Page_097thm.jpg
8ceb949595314bc354e36bc2adaa3a1e
8de94dd8248249bf2a8d3a0f0aad37ed344d6ed7
11154 F20101108_AABWQP otero_j_Page_082.QC.jpg
c0d87a123ae26828419c55763803175a
f0491b6c8f5067b324a9eac19e1517a66338cfaa
119999 F20101108_AABVNN otero_j_Page_057.jp2
ffbfb9abb4d4125d199063b6f19807ab
7c96d1d756142068fbc58dd57fc128a2332f27a1
106119 F20101108_AABVMZ otero_j_Page_042.jp2
08f97d88bdcab4c88f62bce4aa59163f
f716dbb5be9288bf936804819f2f2d06472bda8b
105318 F20101108_AABVOC otero_j_Page_073.jp2
2b724d77e2d657a422c9b4409e19e499
f3e71f3000217ce1d743beaa18a80cd5710c0763
17949 F20101108_AABWRF otero_j_Page_099.QC.jpg
70ebe514ac1026772cc22a39d620812a
0f3e7cc4fbf8bd8f741071ca501f80699c3f9b8e
4264 F20101108_AABWQQ otero_j_Page_083thm.jpg
454c6e60b0d7d4077a537901d28f543c
e354ed3a64c9f1099d30aef4ae93a653d7e935c4
65801 F20101108_AABVNO otero_j_Page_058.jp2
463e720458b044d831c265437b0a6157
fd5185a36fcd98a4829c8fe496b9e4ba6d7f0551
92921 F20101108_AABVOD otero_j_Page_074.jp2
49d3808d4147c1449ff93d04866a8a57
a85f6b2f86d4f17b748413c3a73db1c93ef92afe
15534 F20101108_AABWRG otero_j_Page_100.QC.jpg
4e181cc580c0c1e769b70b8d14f8d8cb
fd80a38c3cc2b4da0c6c472f8caf69dabcdd2675
18331 F20101108_AABWQR otero_j_Page_084.QC.jpg
e2bc382eff92e01b7b1d87e057e2da07
56ded144a37d6c9115ea579deafc6723aae7e851
84867 F20101108_AABVNP otero_j_Page_059.jp2
0474fdfbe6ded3a495ae2f7ebaffdd6c
22aac7f4685a824e145367983b644cc395823e63
100388 F20101108_AABVOE otero_j_Page_075.jp2
e212109711823f9387a57638d07d81b6
43b643cc51fd7b695b985252adde316e4d760b88
4906 F20101108_AABWRH otero_j_Page_100thm.jpg
5ec6f452948115dee17bf41d5f8e2d92
c78cff55a7b8f292ce54a992b326babf3058f4c7
16282 F20101108_AABWQS otero_j_Page_087.QC.jpg
9e133ca590143ea74eb8df3c0cff483a
feda81675cbba6bf322cec19f4b1aeb88adc5cae
218617 F20101108_AABVNQ otero_j_Page_060.jp2
1972b46f6f8921497f306aa75fc9788f
7ea90370d6a9e834e25f190b08ae2d218198c151
11398 F20101108_AABVOF otero_j_Page_076.jp2
52bdad8e2a497f8cd51e601cf48a3373
537eb5d45d5163109b0544f630bbb0f36347edd0
4687 F20101108_AABWQT otero_j_Page_087thm.jpg
b113c4a24e931219bb6c9ab865b8e33f
54b2ac5c6ddef19a3fb1e74e665840b5c300a722
400679 F20101108_AABVNR otero_j_Page_061.jp2
ad979dc7ddba437eb906ecc0a3a2c901
62f270ce931127d6b80afe8103c24e15adeb1a7b
13304 F20101108_AABWRI otero_j_Page_101.QC.jpg
ff447f75cb34c14afda0f5defdaa1c4b
5f3575d93edc6af4634240b320d76ec9d415ac21
8480 F20101108_AABWQU otero_j_Page_088.QC.jpg
62f0f03787ae978974d6ec16ec7881ae
88b03aa684b6638c9624fddbd15449d1d52eda05
169678 F20101108_AABVNS otero_j_Page_062.jp2
54c791dee68109058774d24ca0014c3f
996811bb4e9ee5711dcad948eb9dc897e1f9214d
107729 F20101108_AABVOG otero_j_Page_077.jp2
06e432668dc5d69e3a8c7c5de34b6ca5
0748cee627dcfff1b9a8cb96a20de812b1b4510a
14578 F20101108_AABWRJ otero_j_Page_102.QC.jpg
26c6097e9cfa4aa06a5c77c7ae8deed2
8caf862ac66066cc4c7da6378a8044a21af7cb24
2906 F20101108_AABWQV otero_j_Page_088thm.jpg
c9230b6861d7135f477e864335e52ff2
befc4bfeaa27aa833dd1b803e9d6ca642f8ef769
81236 F20101108_AABVOH otero_j_Page_078.jp2
ab62e436b244595b8b35c472033092b2
6f90ac8d3ec0d957cde44662653beba32ffab53b
545199 F20101108_AABVNT otero_j_Page_063.jp2
684bab0177fdb4c7fb9037e8b0aad9fe
49952bcf7e077f518d766b5d1672ef59cb6ae122
14274 F20101108_AABWRK otero_j_Page_103.QC.jpg
a98b6534a7e3bd5ca3fa970e52fe1c38
54b5d8ecf50c1284551fe4fd37053fbfc938492d
6681 F20101108_AABWQW otero_j_Page_089.QC.jpg
9221a4886666594b888bc6194e7effec
0bede81c809fd9d0400ad64cdcd5ad23ba34552c
77602 F20101108_AABVOI otero_j_Page_079.jp2
8b594674192256db74092f263f2c96dd
9d2afe35cdd33d2923d28e606ff5f8629a039fba
151067 F20101108_AABVNU otero_j_Page_064.jp2
9db5b0db7b9f88bf3703d0b0c5f3b227
939ffcd138b03f6458b16734f3fec86fcebe48ad
29814 F20101108_AABWSA otero_j_Page_119.QC.jpg
db90536bae1a5ffb89a56e2a335d2411
45d50f6db92ea14705499f20af7bcaf4491464e6
F20101108_AABWRL otero_j_Page_103thm.jpg
685c501b4e7fcdedd4188e18b57194ff
d8b7791eebe661accff7965d3dc9c4f77f85efa5
2600 F20101108_AABWQX otero_j_Page_090thm.jpg
e95577d6722d6976d1a34fea1fbc9da4
cc1f2f7449e9c1dd6e422054972abb2ae029ff09
94310 F20101108_AABVOJ otero_j_Page_080.jp2
1d4d85775a876c56d334dd1fb5996739
7a9fb3bcff9dd09d0046d10a0995caa4c00767f2
F20101108_AABVNV otero_j_Page_065.jp2
a1a38a7034e085d4533513fe489494e7
61a246b7fa077b9d3656b5ddfb9d2ebff4a286a2
29971 F20101108_AABWSB otero_j_Page_121.QC.jpg
846ebf03a438e7e34ddb63014ad66ff8
f023ab43f88b5593ddf4fb9817be28cdbd012763
17977 F20101108_AABWRM otero_j_Page_104.QC.jpg
e6a31f21027092764498c69680990329
76b9a65000a88c6687631f57b41222d83172af7d
8735 F20101108_AABWQY otero_j_Page_092.QC.jpg
53cb5dd57e5afe085d521f890a864bd2
f332ef529de3b1c33f054c6402e1896b26e9e30f
78179 F20101108_AABVOK otero_j_Page_081.jp2
8fd65615e2e7f2f35c1057203197ee7e
833a55e53210f195aedd63cf551a67f8303faca8
113734 F20101108_AABVNW otero_j_Page_066.jp2
a2c99c9ec5d2850da62bc782a3821028
99593c991f5b357d9df95d57dffcaf953123e373
7388 F20101108_AABWSC otero_j_Page_121thm.jpg
b8dec070eaf0813084a2d75c7450b2ed
32a6cf305e47efc53ee050f9aa4ff89f45d0cda2
22200 F20101108_AABWRN otero_j_Page_105.QC.jpg
0b8f3b9d5b5e6e04c94d8cccee8a6eb0
e60b41a268a6d73e52d1721dadb30a2ed1bf06fd
2925 F20101108_AABWQZ otero_j_Page_092thm.jpg
11f2809e5dc1aa146d83dc924b50142f
999359ba150c1b0b5b9dd574542e8bdaa469b81f
83330 F20101108_AABVPA otero_j_Page_098.jp2
1ad7821cdbb65dd67ddca9f7a08297a7
3f0bdf343befd68b69138e37ee1cfd661f0c2640
41361 F20101108_AABVOL otero_j_Page_082.jp2
d27715556dfc13e3167bb0d91cfd94cb
1c1c1a3f90dabe6cc0ed0227afb0ce885624c61e
109655 F20101108_AABVNX otero_j_Page_067.jp2
9c25f494f749456b412288aa81c6ade0
4d4f07878c3bc8b0ad1265d17590d8ef8902f536
24478 F20101108_AABWSD otero_j_Page_122.QC.jpg
672f023e582217c9d9dfa89572d2e4ce
cd9e8dfb865892879cca0ca0b06e27ff0d9a3025
6168 F20101108_AABWRO otero_j_Page_105thm.jpg
b18c66b8a0f569e7c47c6913ac43d932
4e50a7d37c9416082d10cf026a2ed0c6365039bf
80567 F20101108_AABVPB otero_j_Page_099.jp2
d27d4b83f6c11852ffa5cd1568c455d1
8fd3325a2ac6ef5b70e30a7ea7c4de16a945bd88
570711 F20101108_AABVOM otero_j_Page_083.jp2
eecc37e2834a818aeed2cf5bd783843a
9141bdcfd35d573498dd451d1caeb0967bef2092
94647 F20101108_AABVNY otero_j_Page_068.jp2
562d8eb4e3539968b9d1c7976db22df7
bfefaf09f84796c8f3c7abcb4e9da0652e75df93
5781 F20101108_AABWSE otero_j_Page_122thm.jpg
3ce1028de7e5d034ffaf5280c4d7c743
5e5a5112ea8c26af599039dd6f84ea0d6d350938
F20101108_AABWRP otero_j_Page_107thm.jpg
631206957c102f1ec4646786a75528c6
acaa1cf20774fc17b56af06c23891fb3810fb5e8
61592 F20101108_AABVPC otero_j_Page_100.jp2
e65825713e98b8b0cc0b667a6141ab86
c31922f71ec490c00655dba308f850b4a997b5db
940308 F20101108_AABVON otero_j_Page_084.jp2
7e6d3d89fd34563941298d06c1e16b98
ca94dda871100056f2c9fac3a92770f3e25f82b0
110267 F20101108_AABVNZ otero_j_Page_069.jp2
545bf427044fd7c9ec10d3686b79f4f6
83aa521b309d68772f6de15899425fadcf2c3c6d
6854 F20101108_AABWSF otero_j_Page_123thm.jpg
ea8ff6977f81cedd412ea2e24a6ad489
753b0c9fce3363f898ea5298e811ff275217c23a
24362 F20101108_AABWRQ otero_j_Page_108.QC.jpg
23ba7bd5edb4b1b03c34234a02c1cb28
f53074cc994eaa6186e32ed52973b608b550f5df
57321 F20101108_AABVPD otero_j_Page_101.jp2
65ad97e0096536506bf7b55c3943a71d
a4fa42e719a07a347e2ccfa6dff96585024bb7fa
789487 F20101108_AABVOO otero_j_Page_085.jp2
5d232ace0720457891356bd326459a86
a00c7b6e4989b3d7577249dae5adb355effc2799
28356 F20101108_AABWSG otero_j_Page_126.QC.jpg
abdc17dc35296a66a96a0e025473ee1c
8ac790237bacbee7a68ab14ac704a88b7db5b16b
6238 F20101108_AABWRR otero_j_Page_108thm.jpg
95880fae0db73762f1edac580db46863
aeedeaeecdc832a63fc506af7da085aed2d8647e
699625 F20101108_AABVPE otero_j_Page_102.jp2
a23306e7055d7d635c3a714d53300158
6c328860c20e7bd49cf235f795e9f24df7271545
425513 F20101108_AABVOP otero_j_Page_086.jp2
ec510d3f5979f1dce9a73bbe4ca53a37
d265fb560e5f06ef4ec0d4c25a6ae9ff58e4bffb
6486 F20101108_AABWSH otero_j_Page_127thm.jpg
dd0e00c9242c60566ca30f8fab326a19
cb2aa6df7b9d117b13bedf12295972f23775f88d
6427 F20101108_AABWRS otero_j_Page_109thm.jpg
5a586e117365674b91c660c4fd2c9050
788bc0bd48a8a17cb29fa5ccfc8342662341f55b
724405 F20101108_AABVPF otero_j_Page_103.jp2
8a140d27b00777c2d6a5844d0dd0a2dc
c30a99fc6e4236e7e68d8e3b6d03b13e169c41a9
1051967 F20101108_AABVOQ otero_j_Page_087.jp2
19f9185bfc70bc0367e0a1df2dd5357a
ef6704d1352a2921bdcb451bb493bd5bbbd3a692
3407 F20101108_AABWSI otero_j_Page_128thm.jpg
7890be5b6837f78529a41e60b7ac9e1c
9fd98bd8e8afa1c9885fe4cc874f8f08c4756858
6732 F20101108_AABWRT otero_j_Page_110thm.jpg
3c037855096c64a385cfd9fc4b897a36
2121090ab731439794916d44ead9afbba7d6cfdf
958698 F20101108_AABVPG otero_j_Page_104.jp2
dc3c16e127f1d8626b76ec8ea5fa35b2
94dd16bae3fa63f62d10c960960fcaf9b616c9e4
408453 F20101108_AABVOR otero_j_Page_088.jp2
388fd74fa6dc0868b4f3cdaa74417651
2e7d54804b2036ac272be8d451321e5cdaef6ef6
27402 F20101108_AABWRU otero_j_Page_112.QC.jpg
6072a1d5dff5901427a7fb7c5f9e70c4
ffa0ca200805eb7a075dd40bf6a56b3706e35c77
237948 F20101108_AABVOS otero_j_Page_089.jp2
619f8d1b4781d4b5ca06bd01c6c1c5f8
b6ad88a9ce11619507c11f2fbe44212189baf754
12265 F20101108_AABWSJ otero_j_Page_129.QC.jpg
a34ba5763e287ea1344ae1b0685abd16
8fc5f5a5ea2fa5b01cc1dd70128f3745f435b85e
6459 F20101108_AABWRV otero_j_Page_112thm.jpg
4f86735cdc45155ac3a17e64a89002ce
b3f356337af5715c3629fbf66a516bccef86383a
103781 F20101108_AABVPH otero_j_Page_105.jp2
1db1b884ca97c1d2bb86f20b5248f5ed
22cffcd20aa6d291b7c8cd6cb0a3ef62c9624a47
1051909 F20101108_AABVOT otero_j_Page_091.jp2
f28504193fdd0daeed237a9d14b8285a
1869cdb62c0b3c00845d2c6bdc188337d7a47add
3165 F20101108_AABWSK otero_j_Page_129thm.jpg
c4b5a6cc0f5b922c61e868c15dd12338
3815c7b598bcad7453313fe9a84779535a3d263f
29469 F20101108_AABWRW otero_j_Page_114.QC.jpg
87622dbd804caddffae88ef9a1e577db
6c43eb828e8aa9adf7e1f6e5733b067f284c4e0d
36498 F20101108_AABVPI otero_j_Page_106.jp2
51771b47ff4f0a22e7ccc096e515a890
d91acbd9972adb0ba6e49ceb6a0ff90f2cd57f2e
352513 F20101108_AABVOU otero_j_Page_092.jp2
ec158b4be76956f05d4fb6bf3c782748
c56596ac98630c6c53a060f3293e909113106e96
26265 F20101108_AABWTA otero_j_Page_145.QC.jpg
9dfca26281885cb9afc78e4eb73d2115
9eee97b0dc595edcf56dbac14ac408f906ffdb1d
4885 F20101108_AABWSL otero_j_Page_130thm.jpg
a4bdbb0b753e9bba255ad2db67a03323
12e453293294f137562765b669f84f275af5bdbd
6656 F20101108_AABWRX otero_j_Page_116thm.jpg
b0c6d8e16d0e06fc2717a243fa3c1223
72fd7b7d0761709bd13b9687bc13a9bd2b3654ef
73213 F20101108_AABVPJ otero_j_Page_107.jp2
624e7ef100d1feae3d06230d01084a6c
a57114062c77fbc73eec8db44bcf609dfc20eb98
356284 F20101108_AABVOV otero_j_Page_093.jp2
905205b59bd4d865cb4ed014afb8d5c0
1e90f63cfec43cdf6ce8d3e716d842d417bce2ef
3217 F20101108_AABWTB otero_j_Page_147thm.jpg
f25993f3aaee96c2c656ba4ecc95f441
5565f6be1d981cba42728661a1d5e50d2748afc9
4340 F20101108_AABWSM otero_j_Page_132thm.jpg
fc1d8b7cac1007fa4982a0c951956a11
13f7315155a61e836ef31bbb7927646be15afaa8
23281 F20101108_AABWRY otero_j_Page_118.QC.jpg
380c365e064ae877e26d511b117fa93d
7290fbd0bed781ee02a774f665cde5ab89061478
54295 F20101108_AABVPK otero_j_Page_108.jp2
ce4c0fbd6c84bab0fa19a70bd80152b9
7d490d7039e7fe383f162d54bb976a74288b5764
225147 F20101108_AABVOW otero_j_Page_094.jp2
54856c9ae520ee6d9ae95f67151e860e
982e5e747a6e675fd5c7d7c4e0bde9c02970403a
4805 F20101108_AABWTC otero_j_Page_148thm.jpg
470f3e0a1be02bc6ce0c7505f4471bff
c22044b276bf4a79f48be511fd3cb4cece114202
13402 F20101108_AABWSN otero_j_Page_133.QC.jpg
6de01ba9709dd377121ac7e9efa867ba
61a80a0baaf22fba2944481ec27af6aa1f50c6a9
5497 F20101108_AABWRZ otero_j_Page_118thm.jpg
c56042c5e0f54126b5cb3b22e2125883
19e8b8643f6b8088ca6366430744794dcc4351b8
72107 F20101108_AABVPL otero_j_Page_109.jp2
ec80e219df43cad03a5504c0e24e1933
006e12e033e69aba2891a74b1b02737d1c20d618
95225 F20101108_AABVOX otero_j_Page_095.jp2
b50e87062f8713d93b8fa9e280473e71
edebba153ce6060245f5e18366f91d0e1c7d3b03
118797 F20101108_AABVQA otero_j_Page_129.jp2
9fe41e7cea5d75318c1cf12c37ab485e
ef812b0087ee600c71641899bf9ed8390b3d9ed4
16590 F20101108_AABWTD otero_j_Page_149.QC.jpg
cfa2383060c9011fc136a0560164b65c
c1574463cea3fa64c1e432a8e635502a0dac6163
4368 F20101108_AABWSO otero_j_Page_133thm.jpg
de7d25014a9c2dee6dd055dd7cc2d476
e5af25f3c4f6f699d1027aafe14bf57b6aad6d8a
74606 F20101108_AABVPM otero_j_Page_110.jp2
ad465adc735d9a7887f727919e297d1a
aea41af53f2e3ff944b5da3a151bf615b888183b
106295 F20101108_AABVOY otero_j_Page_096.jp2
2a4516e577aa91532cb948817f4c3cc8
2e1ea38698f01d21b93fbc7acc9c837b46ef4940
103292 F20101108_AABVQB otero_j_Page_130.jp2
4bf52fff9294ae36ccdffbef313a1f57
117f9a8b9ce40c9509175d6c197e814ddc14d416
14199 F20101108_AABWTE otero_j_Page_150.QC.jpg
c08953db4daaa00d17b78f2761512296
26288b2fe6a29ee3a694460fbf5815114e46ff53
4904 F20101108_AABWSP otero_j_Page_135thm.jpg
f7ec2091ca963e0f5dd7e8289b708094
fbaaa628db6a500625af05f44724ba8530669cc5
1051942 F20101108_AABVPN otero_j_Page_111.jp2
1a5cf93e6af2a935d5a13376ee227dba
d9b1881001caf02a9dc8ff14df1c37495a44f000
96918 F20101108_AABVOZ otero_j_Page_097.jp2
8292ae6b987dbf9ee3225d07d0ee4955
cd4d21530342b33571471a43991f96a92be7072a
602242 F20101108_AABVQC otero_j_Page_131.jp2
eaa6c89684d5a32dc94639a53d4a5326
7b5ea9e24bfaf496433a91574c9436ceab234f0f
4438 F20101108_AABWTF otero_j_Page_150thm.jpg
37fcaf79e4b964842865778e7c16957c
ab64855e323ca6293152da9c22a0816ac2831c63
17218 F20101108_AABWSQ otero_j_Page_136.QC.jpg
e42e626c33f2a8e1eac862f10b2d09e6
681a1bca68bdb0d7879e424635c1c9e926cfaefa
1051983 F20101108_AABVPO otero_j_Page_112.jp2
a780ef112cc3589cb43bf1411188ab16
da6daa125309efa4b479c60703c2a366af0fbe03
600581 F20101108_AABVQD otero_j_Page_132.jp2
b8599dd37bae79789afce2014877ba36
91df144d0bdd1992ba5339df47ef258561b01cab
3890 F20101108_AABWTG otero_j_Page_153thm.jpg
18fde606b7378b0c03527c441b8e7a9c
31021f8e31121e1f1644e20e1c27b95fe39a8191
5140 F20101108_AABWSR otero_j_Page_136thm.jpg
d1e70e16e4827fa54f63adbe16980af9
84e3b6ff7f69ec92a3cbc4a9cb86ebec0eb154c3
1051974 F20101108_AABVPP otero_j_Page_113.jp2
5f1770df17906994efe55aa5dc1bfc33
5728c69c633d6c6f2ef3d68544d983f016730ccb
630699 F20101108_AABVQE otero_j_Page_133.jp2
8b695410901203699146efa3c84fe102
4c310e0ec5cd9de0a06c841ecce347789025b877
18184 F20101108_AABWTH otero_j_Page_154.QC.jpg
5a5f23ec39a6e493305f560fdabc6a49
47a87bed78c9944cfba5865c2b369d090f3b9465
16751 F20101108_AABWSS otero_j_Page_137.QC.jpg
c17341d86920d46224586fb9c6e99370
6be029b21f477750e41222c9f04146d671c9fef4
F20101108_AABVPQ otero_j_Page_114.jp2
8125e8f27641ecf272cb22a55fcd279b
a4070eaa62ea6505c373327b3294de45f3ec500c
727218 F20101108_AABVQF otero_j_Page_134.jp2
622508610de418b533b327c8eae87935
04bc8590e6738178e9ab6fb908392df20ad539cb
3366 F20101108_AABWTI otero_j_Page_155thm.jpg
a7621724c44190b1f46c8717466e30d9
9c8a7abddb8cfcf31f21d38a57778ab471ad2efa
4848 F20101108_AABWST otero_j_Page_138thm.jpg
e92c54b83b44691d852917f3c9f15845
87d81199057387a90cddbcba3392e5a40f52d7c0
1051828 F20101108_AABVPR otero_j_Page_115.jp2
2f1229e28c8ef8f4c877ddf95c2cd75f
1091efe3474fe05eee811b232ebc16abae387fe0
828357 F20101108_AABVQG otero_j_Page_135.jp2
1f88e0ecb7be208815d1693fc2c8dd9c
ab4603d01a4d70bb80bf926438a057f9d8157f86
5110 F20101108_AABWTJ otero_j_Page_156.QC.jpg
23f09a7fa73535815c2186af287d8fdd
ffc65d34ed22b70ba9e0bbc1fa458a2b838e97f2
14760 F20101108_AABWSU otero_j_Page_139.QC.jpg
76bdf67256965b665af114691575b67d
1f7d3f50bee784098a7435d1dff72db31107c8ce
1051953 F20101108_AABVPS otero_j_Page_116.jp2
f4df079b2c1f5471e9b9e1d0c3bfe444
69cb1dbc071ab445f810bd14b9f7fd124f13e468
727129 F20101108_AABVQH otero_j_Page_136.jp2
9796043f92350d5ec26f1ca0a7b18148
8a6663b43670ffe130ead7e04a6655ef70ddcd7a
19832 F20101108_AABWSV otero_j_Page_141.QC.jpg
c3f820a01cde6c107911a5c92832d3a1
31f7059e3c8ac99e7436eb680addc5796e4b3027
1007538 F20101108_AABVPT otero_j_Page_118.jp2
c533a4c30fc2f83f12fd13430fb4eb5a
2773a322f5f5f9570e8631d83d01cd8b4f87422e
16577 F20101108_AABWTK otero_j_Page_157.QC.jpg
391b772a7888bc44083299f79a99293b
b7b1a9a8106693105b210c132c0877ff75b457df
17315 F20101108_AABWSW otero_j_Page_142.QC.jpg
c85d5cdd671b71efc68a5c916a2abad0
c5142bec1c4145c02a9108bc361615ffc97caf9d
1051854 F20101108_AABVPU otero_j_Page_121.jp2
17210119760ef54047f6a408fed765cd
020c4489942583c64e819622811eadd7443c80a5
693994 F20101108_AABVQI otero_j_Page_137.jp2
8657c97179260e56dfc0e4a3fa8e9e54
2b3f03536758642ad1b36a86ccd7dd8bf9b85cd3
4888 F20101108_AABWTL otero_j_Page_158thm.jpg
9f8355634abf7687aa49c510d44c431d
d16664bc693ba530418074b85ae3344c887aa7a5
5025 F20101108_AABWSX otero_j_Page_142thm.jpg
30ec4d4ef2d5eb3e079fa6fbdbe35740
b37f2b0c257ca20641c33c2cc9b1c22c9a64ad68
1051944 F20101108_AABVPV otero_j_Page_122.jp2
bc2c2e56f69608c9d21410eb05a755db
cd1c1a1860b380f5a02493e831c19ad9da5a8d64
703696 F20101108_AABVQJ otero_j_Page_138.jp2
a55e525e372b62e5792f10b890b3b468
eef5093aefb455fc0db30447b051dab1b7e6e2a2
25053 F20101108_AABWTM otero_j_Page_159.QC.jpg
91ee30fee21b1bd74063a7450093e4c8
a818236a1808f725483d3ea9a07e1fe8b1a0d44d
19398 F20101108_AABWSY otero_j_Page_143.QC.jpg
8a5ab4adf2ac2df7e2a58db956c60c28
d146aeb2f8d97b72e8512fc79589c44f01dacf3b
1051855 F20101108_AABVPW otero_j_Page_123.jp2
b746db1be1aa6e58ca4f5be662972cd5
55fd73cd8fb0deabbed9c197598c46a924b2665b
678576 F20101108_AABVQK otero_j_Page_139.jp2
8e7c718ddb18218500436a0778d41039
95dd42c1302d79f2c9ab2715a55c721c4880929d
6672 F20101108_AABWTN otero_j_Page_159thm.jpg
28763adeb47836d08c62a68e79329c88
49020d81dfbb7f65fb1a1f6904e6629ae907e378
7006 F20101108_AABWSZ otero_j_Page_144thm.jpg
8157ab9e497035085a4ec1cbe785e917
fe252b5941f057b5e0a5f38a668a725bfa059a9d
1051970 F20101108_AABVPX otero_j_Page_124.jp2
1780ad084ef5995a1b30c9b7e172d41e
f5464cf760795d89eeba86ded945f38b16cf5332
890393 F20101108_AABVRA otero_j_Page_158.jp2
7587935373515af8138d7e81ebb61f30
6c112e233abafc7e23a923b811cc813b9fd0a6af
83425 F20101108_AABVQL otero_j_Page_141.jp2
bc8fa7a4d26e01d8346b9e16c8955890
cbd8e08daee8ef738b98123e3690f7016675fcb9
2562 F20101108_AABWTO otero_j_Page_160thm.jpg
94706969a382c9ff3f99dc10ee5b1e74
074a1c07b2f2e9904099a3a25ae28875459921c8
1051971 F20101108_AABVPY otero_j_Page_125.jp2
6d711cef6981fa37096be379eb2a7d08
af1a469386143f3ad0b5f05142c459410edbd7cf
120585 F20101108_AABVRB otero_j_Page_159.jp2
4eb36a402e72b3e71466fd2484fd8fc0
ee11790f2430e8868624f67cf65b4f0e05850695
68806 F20101108_AABVQM otero_j_Page_142.jp2
1cf9fe827314679bdb0c0ff72c25c93d
4c9d6f62e77a1fd80a92cfd1959b4a9e7b1b8023
1051894 F20101108_AABVPZ otero_j_Page_127.jp2
8015156cb06f90a528f424d01d0b5df8
89430282d9cc51fbd3b73b0341f3e9192d109d93
35814 F20101108_AABVRC otero_j_Page_160.jp2
95f8bf7f95db2971ba38d7a36cc7e3ff
36a9439829a3813bc4a2c658353a6b7522915657
146535 F20101108_AABVQN otero_j_Page_144.jp2
3be072e30dc21eda6ce69112e6093ca8
2c9aff52e7813e8d47f4091c398e91a132d44a2e
50784 F20101108_AABVRD otero_j_Page_161.jp2
b1ee7ac49ba00a36142a45b393d8d666
c9cb3b82705a1f7fa3e0d6bb92ec109f4ae71b06
142987 F20101108_AABVQO otero_j_Page_145.jp2
bb25a78a5a06ebe0e92535e6b6cd272a
ea14a9a1bcab2db11efe8b86673eec13df9919ac
F20101108_AABVRE otero_j_Page_001.tif
5e62b7f681cf6c8dbe9bc204eaf59ecd
dadb7b01659c23127e053b14085d63515f2f226f
144092 F20101108_AABVQP otero_j_Page_146.jp2
3c3d6da8c622b809ba30de394fd8c35a
695db890f2bddeb230dba39ea9fe6f1e6610e7f7
F20101108_AABVRF otero_j_Page_002.tif
0a7ad47f3401efd669e3834cc7a54248
09331188e2c6924bbfc8e588652ddd185215736a
50786 F20101108_AABVQQ otero_j_Page_147.jp2
0d3e4462d72867c3306b1198ee865302
505a3e27593dc09e0884e858b65c5f6ffdd8829a
F20101108_AABVRG otero_j_Page_003.tif
d7da5be8c2ca45114b949d5af836809d
91bcb3b6197e41224b7f47d3fd9749606c38ba2e
68489 F20101108_AABVQR otero_j_Page_148.jp2
623180413bcbd60cc4a26bcb4fcf88ed
0023e74af332d1434d061aec1339fbce70c1ffd5
F20101108_AABVRH otero_j_Page_004.tif
627a9e0558d7f1a572c53d876634d572
c2817d94dda35482b99c313072decbf0e8d6e797
66477 F20101108_AABVQS otero_j_Page_149.jp2
2c2d556805f4ab5e8cfbedd71e1fc50f
af603a270e9705c7b85d906837f50d105689b193
F20101108_AABVRI otero_j_Page_005.tif
eec0487ebf429e403183f9785f9d7aaa
22fc3a9f294da1217b2f1ccc4423d10f51d946e1
55266 F20101108_AABVQT otero_j_Page_150.jp2
d51e3dcb6149a027e5f410d61b0777fe
f87a4f36789280283e01aade765b8a2af32198ec
67051 F20101108_AABVQU otero_j_Page_151.jp2
1e53424773b97675b6d754f612ce9399
ffc235bd56aac76024915157bdb9ab61ac9d86ee
F20101108_AABVRJ otero_j_Page_006.tif
c29946a848582dfce6364ddd4ccc6821
39041c09edbfbc6960f006fb8485a3d458a9a862
65065 F20101108_AABVQV otero_j_Page_152.jp2
74c27687d6cb9b0b058052c928f04d94
be9b4e02a571ea2a9b822734ddbce8cdee6d4a71
F20101108_AABVRK otero_j_Page_007.tif
310f2e434d6616ab513cce9df83268f7
6d42e524dc010d76eece17c6c54dc8be0749a2b0
47788 F20101108_AABVQW otero_j_Page_153.jp2
67243464235d3fd40e24cd667c4254bf
0a6c9a3cb4dc4ff1fd647efd3949bd8229b1853c
F20101108_AABVSA otero_j_Page_023.tif
bbcc3cd594bced16123b2eb292af0bb0
3f889b8164f8a17431470f98bed29688edd0620b
F20101108_AABVRL otero_j_Page_008.tif
83b7466a77043db3db8433f38ca141fb
0a598c18b8d0922e727b27223457e6aaecff95ff
83596 F20101108_AABVQX otero_j_Page_154.jp2
fb5192398f193996479d97f6ed544e7b
05bd105d708fc24b101af7f1c5b5888dddeae25d
F20101108_AABVSB otero_j_Page_024.tif
3d3d8f170293f9658794360b7de9c874
e0d271d51343435a03b03338ee45f0fdeb189a8c
F20101108_AABVRM otero_j_Page_009.tif
f1d4f7a9a0abe4c95568cca0e46f40b8
eb0292969f6c52a45ee9075c4254d23cfd760149
48575 F20101108_AABVQY otero_j_Page_155.jp2
f24e99f8e55a90d2fb6c20649f828796
2a77685c6b3ffedcf32ece56103ca117f8713707
F20101108_AABVSC otero_j_Page_025.tif
fd36258c1e18dc218e397a1f595db26f
b6e14c4e964e1de705a92a29fd4d46453bfeaa8a
F20101108_AABVRN otero_j_Page_010.tif
f2e8e5d82bb523148ee69ff8ba6c0e0c
a7dfa8b12d785c6c86dd69235ee0b35294bee016
16707 F20101108_AABVQZ otero_j_Page_156.jp2
fcbf66d87a5a722dcd10b292c3a0fc16
fe77f07c6b7ac07c31bf1d1cf342a876f0eed872
F20101108_AABVSD otero_j_Page_026.tif
96e263493393ca0b6e38e4915c6c3507
55311421558ac67fbeaa7dc455af4d2449b039e5
F20101108_AABVRO otero_j_Page_011.tif
98101c27ca06ffe646d6e8a10f5e6ead
80ff4d6116e5306426a314ddfb71bf949daa76ee
F20101108_AABVSE otero_j_Page_027.tif
3fed91f7522c964f5b09253af3664ffb
7b7fff48ecd52218c12607eab614fc8624932970
F20101108_AABVRP otero_j_Page_012.tif
14d3f660998536bf2f1fb1fb03b1b3ee
538d30b446839d9c21fdfd5ffd150276bd9fc312
F20101108_AABVSF otero_j_Page_028.tif
fe765cf42d3c7e7f6ab6995af2cffa15
3987c1479c8aea78cd4e463933d0b4f6083c09b0
F20101108_AABVRQ otero_j_Page_013.tif
54ee24d12f31d09c324d7849f7e1f208
5ac35fc7ef580743b5399f0f905d4594a82a25c7
F20101108_AABVSG otero_j_Page_029.tif
5c98358ef8cc10e5d19ff9afd3f19c9c
62d8c207c980ce71bf3758cc560794bb865b35ca
F20101108_AABVRR otero_j_Page_014.tif
b170cad39d82b122c2d64786e45271d7
771b5b9075db132de5bb9d4746eddc9501e51ad6
F20101108_AABVSH otero_j_Page_030.tif
c0d801ea3f22d4d2fdf9927b5760f2bd
2eaf8c6ad7ae562e90c7ecca6db2ee3a33b63dd0
F20101108_AABVRS otero_j_Page_015.tif
9b1b704680060341a7a6637b2ce10543
6e0409bb6e9d89fef8f1e80b1b4df96f9c24cba4
F20101108_AABVSI otero_j_Page_031.tif
ad28988d218489f6d4e16d9a43474a0d
2ae051015bc4e3678da9eed3a0c39aeae8967a81
F20101108_AABVRT otero_j_Page_016.tif
8abb89e19b5e58cfea2d82d5e568137b
50847291b73427d96e43c08e1ea6b20f61645faa
F20101108_AABVSJ otero_j_Page_032.tif
4124f490fbad81ececfd3a25efa23a63
6ce30e259b1364f386ee6f5359d4362c326f6f40
F20101108_AABVRU otero_j_Page_017.tif
6a82bfacc7f997f743eb16499df9e4cf
f9adfc54537057df6a8a9936e3b63656f0e72389
F20101108_AABVRV otero_j_Page_018.tif
34d104b2369e1edf948089e7f25c7190
0ef4d7a16dad919ed56979a776048c69db0f8aa1
F20101108_AABVSK otero_j_Page_033.tif
cb7f54fe4e87720f3382a5988ae9c3e2
9696437306dfe6cb2fa205b058e0874783fc3b29
F20101108_AABVRW otero_j_Page_019.tif
30f03b9d855e0d080664fc0f0585b98b
f3ecadd83676719f0e1f6c7236589def983aaf2e
F20101108_AABVSL otero_j_Page_034.tif
dc1705f292b4e0a13b1fa53fe5547a73
e244e1cbf91ba1662499f4739ca820960f8496e0
F20101108_AABVRX otero_j_Page_020.tif
15505dde6b3153bd89eec17d06b52bd8
543b30c9079058ae1812d19916100e915a375a02
F20101108_AABVTA otero_j_Page_052.tif
34a3b5fc69d8b9d7533ff2d660640d11
1a14797d11e6c9e83a181fddb3528aa84920f802
F20101108_AABVSM otero_j_Page_035.tif
6ef9cedf08ad5cbe5e16e9a0ada57c38
54fde99dad5cf119724e29509a496cab96f0c225
F20101108_AABVRY otero_j_Page_021.tif
96e4b83be99d161fddca621a36d690ff
2ec7687af25adf5835c6aec810e38bc68f899e38
F20101108_AABVTB otero_j_Page_053.tif
de0b026afd90cc529b4e04c424624be3
e90541830642c4cdf30624c2e9fb5a21194b43d3
F20101108_AABVSN otero_j_Page_036.tif
2cc81da58bca8bcee93effe170632a72
16df042a115f14dc8c0c86ce9d7766a90e8b5922
F20101108_AABVRZ otero_j_Page_022.tif
c13b0f63ff53f72d06b46d6ce2e701bf
9e7532ece5393012e842e796f79aab9ac1d171ca
F20101108_AABVTC otero_j_Page_054.tif
293b58bcac287297cba9e842cf1764ed
dc8043fb03cb74c8ee03520acdfb277d6ceba382
F20101108_AABVSO otero_j_Page_037.tif
7ed4272abf4f56970210c0fdd3e407f5
be823437c1c0310caab86ec53d0d4bfb6fec3712
F20101108_AABVTD otero_j_Page_055.tif
a60938f22c4394e91636a7797e15bc89
0fcc07819eea484e0816a74c02452c1457e9eaca
F20101108_AABVSP otero_j_Page_038.tif
f5c30001eabc93105fa5f48a2c0cad5e
32f7ceefcf4500ad2210617b8df1980db32ad65e
F20101108_AABVTE otero_j_Page_056.tif
23981b10cc12db5e0d1fa8f5087b1b3c
9aac0dc41dd8caf5d76711deefa96fbf658aa165
F20101108_AABVTF otero_j_Page_057.tif
e25fb662c6bd72fc4390e432835d55cc
5daeab3dd5d3296b0b91a5bb1cd1561aaacf038d
F20101108_AABVSQ otero_j_Page_039.tif
2664c9eec6c9021e7c422e03a05617fe
f1927ab91727a9f353142d70f6a2c5aff563931a
F20101108_AABVTG otero_j_Page_058.tif
d8e0e49a451f272a966afa759c31641a
e82314c0888605f8d22209a2126698fa8d501acc
F20101108_AABVSR otero_j_Page_040.tif
1216cb7c512c6ea2af09ad889b537dcd
c427de6d811045b5372cb80fee7887df06357e55
F20101108_AABVTH otero_j_Page_059.tif
2086cec07eb28d3f5d8118780ee2984d
4844a5a4a10dca18834b1d8b76f4dbec9c2972da
25265604 F20101108_AABVSS otero_j_Page_041.tif
41109bbab11f3f735423a28f45929f45
d41ac650848bce5043422862500861c496fbcf32
F20101108_AABVTI otero_j_Page_060.tif
d7fc37bd97600154dc0e2199474ee02f
2a9d647dc6683a6da5db9cffd50c687b1079785e
F20101108_AABVST otero_j_Page_043.tif
a8d5420b98483be5c4647587feaec709
34c40201b1c900ca4cb4547da543a73e57925f18
F20101108_AABVTJ otero_j_Page_061.tif
0dbe22ee54994f2b23f64afa8c864e20
afe043b797b3f34fdaf33541bce89f5bd7c44a46
F20101108_AABVSU otero_j_Page_044.tif
516b59cc99f47356d4fb73b88520d92c
7ea956bb858c7ed907f3e82ea7e254a6a2c2c681
F20101108_AABVTK otero_j_Page_062.tif
2714ba1c6aad4d9a8171a68857947007
f92ebf40f28fc181f548c70149809e18d8872c09
F20101108_AABVSV otero_j_Page_045.tif
a2b34efebd5116180b5a60007a5f8fee
912dbe760dc6a09251fe339650b7b703fbbcd797
F20101108_AABVSW otero_j_Page_047.tif
4107f731e8d75942193d7a1784acfef3
10d0d7bac6c60b5b78bad910a528bc1384c6f8ae
F20101108_AABVUA otero_j_Page_079.tif
2c4b5be7404fe5a5ee51f5dfafc2d80c
8ed2d6899cdfaffc14f73cb98dc453f86afd37a1
F20101108_AABVTL otero_j_Page_063.tif
3db56b22b6533bed2852db1409f36e9c
f13986f045d22a43e946c253a16463f0f0c0f2fd
F20101108_AABVSX otero_j_Page_048.tif
0ad525e7e183d8754b96364cf1e256cc
d7a45cbb662ba5261cb34e16e680daf6d224868f
F20101108_AABVUB otero_j_Page_080.tif
3ad7e036dee69069719acaa42b025eee
108e7e0c3dbd435179e064a414c5e032e8e948ed
F20101108_AABVTM otero_j_Page_064.tif
738552adefc6a28079b844e3f876f19f
9fba28310a343dba2876b6ea4a89465a3f0238d4
F20101108_AABVSY otero_j_Page_049.tif
d716654a75e89fe84689ce1ab65dc887
0c0029875a4be1822d2426109600795b218b199a
F20101108_AABVUC otero_j_Page_081.tif
c355ba85f08f2dfe46b2b061a6602eef
473995ac611a9e93cf7acc8b98e4941307baccb8
F20101108_AABVTN otero_j_Page_065.tif
e964bf9b18804fc14981d581de1b4a0b
74f52f185e67756a46d5199122b68be675853899
F20101108_AABVSZ otero_j_Page_051.tif
83538c690874d6081bae50d681008d3e
c119b771f54104ac4f4b6d210c13ef0fc83b660c
F20101108_AABVUD otero_j_Page_083.tif
fd9f2aa4ddbcd29f93cf3c806371f516
cbd56ff08faf77b5abd6d9c868f9ca0c95583913
F20101108_AABVTO otero_j_Page_066.tif
5aa2a56c8bbc6f4dac9cf92f789b18e3
e99bab0f4f04224c8bbcae7747c4aee4b1b17e83
F20101108_AABVUE otero_j_Page_084.tif
6251b9a0fe0625bf2b93923d45963ffe
2f740bec644981b426c1ff7a57a7ceea96825dc3
F20101108_AABVTP otero_j_Page_068.tif
1abc311019368d7d6fef6e12bec42e2e
ef246681ab3fafec41e691bae7074482c52e0b4a
F20101108_AABVUF otero_j_Page_085.tif
0e10459b211ee9330a74039c6cb56514
f09c62473aa01b6870ca0cac520a3130064dcb11
F20101108_AABVTQ otero_j_Page_069.tif
bd1bdea72d0946890d423e8fbc5fe47d
364eae4561196333e65c83ff2456f04dd574b30a
F20101108_AABVUG otero_j_Page_086.tif
ac04e142400e43b17013e1c68847d848
73df682656187865cbc3b84a354d461033c6be78
F20101108_AABVTR otero_j_Page_070.tif
adc019e0426f15ea6776f23813319e82
b020bad83f87704ccc5d353185ee41d72d46480c
3892 F20101108_AABWAA otero_j_Page_088.pro
902f01c3cad69bc947447ba08ba8b73c
8d273b192e0504795cdd12e19d98d40465473227
F20101108_AABVUH otero_j_Page_087.tif
057af3c856a40f7d3e756151353b2e67
3c6ae747fe3779bb4385b0cfe2b5dac88f9dc0a5
F20101108_AABVTS otero_j_Page_071.tif
3147d2a9f8063fb75da5990686515078
71c1d5347b1c2edacd47b462ba4b7e4b208cbb3e
3646 F20101108_AABWAB otero_j_Page_089.pro
303d4b2ba8fab695260bde40ac05a827
7e906d02f3f8da1c46044625a781fe5673a4076e
F20101108_AABVUI otero_j_Page_088.tif
884ef6133b1a9c98d3a0cd69cd8523fd
7cf9ea71d231ca662ef5e85783a470737dd28727
F20101108_AABVTT otero_j_Page_072.tif
a1b47fde77c92ced45d640946e412685
33bc509c8da5bb16b32cf93e89e9e1cdd36d500a
7523 F20101108_AABWAC otero_j_Page_090.pro
8bd26e7843b06ae6bc30d542fe562218
08d763350c47425bd333d14fb054f32e610c653a
F20101108_AABVUJ otero_j_Page_089.tif
7844cb99d2c2b5b129cb1877256800ae
9f201151f064cfa1cc9034cc92b4d39c7b1d5fc9
F20101108_AABVTU otero_j_Page_073.tif
185c39c00416f13c577fa4c9cccecc82
d729f76999c1d54d27ed6eaeba825639bd59e823
1603 F20101108_AABWAD otero_j_Page_091.pro
efa0d37f6c4ca7ae2aabade7b9c08666
e317330697c9ad4edf01e110edd818457fc5abb2
F20101108_AABVUK otero_j_Page_090.tif
f1ec3f23b35fdc940b218bd7ee4232a3
ed71ca37f23bce122a0f8f2c19dce3e32c5195be
F20101108_AABVTV otero_j_Page_074.tif
ee35877bf1d3bc6b04667ce498c8348d
dff659d68dff8e9978e1293610525efb0c255260
5120 F20101108_AABWAE otero_j_Page_092.pro
2f63940d3228935cbf8f9c2f3d6ff8ae
048fc3ef1f5370cc929413a5fbe7f104ccb32cd6
F20101108_AABVUL otero_j_Page_091.tif
ffdd12580d7c889a2bf32290f2a2c67e
79bc381e15133891aee6d52f9ee0ec083f247a4e
F20101108_AABVTW otero_j_Page_075.tif
692c9fd531c624322817f8a53f8958b5
9d967a87f0a0116ee8089062a00f5c0c809b4f84
F20101108_AABWAF otero_j_Page_094.pro
88ed41bc7707f0696c3432af1a489414
cd52061d1950a914ed9d6616ba060e52602fffaf
F20101108_AABVTX otero_j_Page_076.tif
74b2402bd845e5db38d9da62b0b0e62f
f2b9f5cd66ee35e4df62eeaf3bebbea0532b5844
44668 F20101108_AABWAG otero_j_Page_095.pro
cd71b6f6b50ff8576416f57d5f70cc37
3c3cbd2319404e6e4d84cec16e0344b8c7c344c6
F20101108_AABVVA otero_j_Page_107.tif
c79c11c767fcb6513ab5b55079979489
1142e6ab48c0f14a72b69e5d14959c8da8976d2a
F20101108_AABVUM otero_j_Page_092.tif
8c51fa90305a3b8c7c1f11212eebb5ae
e6e6f26e34fe6fce88f8da00209aee9e97e591be
F20101108_AABVTY otero_j_Page_077.tif
96c1dfd41c53f6606335ae104545c15b
759555dc2527b7efa1d1aed4fdb239ae7051fdcf
48425 F20101108_AABWAH otero_j_Page_096.pro
ee190667cafb2c3eb1ed27f94e7f61e0
c42d3b8dd1f8dac8037503ba1f61dec55be417dd
F20101108_AABVVB otero_j_Page_108.tif
0215ab5f6af2d23c66ff77dd1398f875
a31079d35fb7fdc620b003ae4bb7801b4430db13
F20101108_AABVUN otero_j_Page_093.tif
1631e00357bc13ad38db1e6ea6dceb39
521e371c86369bade222264f5f1e2b093cbfacc7
F20101108_AABVTZ otero_j_Page_078.tif
b6fcde45efc88e309b034c8319ffdee7
98b5509ae01a514ba5c61d3d045389e1169d9cad
44473 F20101108_AABWAI otero_j_Page_097.pro
b9f8f67488fb90cd8e5afcb08cefefda
10866c0d6c8d644b0678dd70f16721a1867009a0
F20101108_AABVVC otero_j_Page_109.tif
e951af3e457679d497b935fef4d98500
2c5d5ca96529e240a59f409f66e7e0f55cc0cc11
F20101108_AABVUO otero_j_Page_094.tif
4bb7f831b45bb904efb42fbc26b4471a
f56721026c7eddb8e9f36374990d8de41e1bf24c
37927 F20101108_AABWAJ otero_j_Page_098.pro
36ba904428ef00e3a006aa33bd13b22c
e31644caba553401e09c1cf3c91b4e1a621c71e0
F20101108_AABVVD otero_j_Page_110.tif
bef536b94fc2d170c38e51f1d2a7e38b
e027086b1883be82fe18cb77a5d1d76c3ca53215
F20101108_AABVUP otero_j_Page_095.tif
db28ce57da50c0f49b667c7d68652634
03f19a8ce81992534f9a55cdf6fb608a605634bf
30934 F20101108_AABWAK otero_j_Page_099.pro
4d8aeaefea7e482f5080ffd156f37869
9b022d019e1b76309fac682efd383c790cc4c63d
F20101108_AABVVE otero_j_Page_111.tif
728f91b085f757971a30a5e80f3d299f
ac4a2da2f158b580d68c09379ec5f6090c82052c
F20101108_AABVUQ otero_j_Page_097.tif
312911a02d24083b1f7faca769404b5e
09870dfdff39023214aad97696dea6cc92bfd16c
24822 F20101108_AABWAL otero_j_Page_100.pro
31286cf812d9f6250a91fb0e2b001b31
6fbaa5f7d417c022af874a89d9c02c47acc5fd5f
F20101108_AABVVF otero_j_Page_112.tif
777d5372d8b5ebcdfc666bf7ca7033cb
d360fc57afc0e816a7b3154fcf988fceb31f9c40
F20101108_AABVUR otero_j_Page_098.tif
d0d0c3c5f3ce2be532e60d07973e9160
d13bc3fb173f69f0c8aefac7cbba5386954afca9
39017 F20101108_AABWBA otero_j_Page_117.pro
b4e732348449e07dbd1913c2d226b4ab
f0242e73472bc5b7cac260a09e557735e4a0b5e2
F20101108_AABWAM otero_j_Page_101.pro
c256e87fece3167cb540e203bd301c47
2d010394087345c53de7dd71be69337d9482d3a2
F20101108_AABVVG otero_j_Page_113.tif
b55dce1f23a7b724d7ee9e77dc2ea389
91df7eb6aea1d253686fe61409c612f592f4e870
F20101108_AABVUS otero_j_Page_099.tif
db3d2ac9c352bcabdf239f16e19eaae5
74b532826a0477311fed4bab97795ef7d543a77d
56338 F20101108_AABWBB otero_j_Page_118.pro
937dafc4d37e26fc4689c0690cbc9e67
40f25745b0854195848116b0fcd01949ad3b9b87
31234 F20101108_AABWAN otero_j_Page_103.pro
41d32533ff8157a3f4a628eb4332a134
cfdb607086c1e88c9facefd58a4afae7f226a483
F20101108_AABVVH otero_j_Page_114.tif
201d021a766a9f410c69ccae4a5b97be
e5cd2c25fbbc1df5cd559860e18ebd043008771f
F20101108_AABVUT otero_j_Page_100.tif
b55333cb4ad4c9c107e32dd9478b2df4
c41dde6b2e4a1a15ff47800c7ad2720b5bf831cb
38445 F20101108_AABWBC otero_j_Page_119.pro
164fcb27ee98fc86b11c84592c851b17
f8fb7929539cf6831c241174e30b7878b2d95fb4
100150 F20101108_AABWAO otero_j_Page_104.pro
c645f2f37c79b96f2d5125d0dca0315f
0765ead2eafdf5f9d40e947a146481f5231fd3e5
F20101108_AABVVI otero_j_Page_115.tif
59e2fe5c09319dd66f6c6ba0fb051b06
f2ed041c04b379317377acc7a50948015c8b9e0b
F20101108_AABVUU otero_j_Page_101.tif
1e6e9e75b982d5490ab8370d777e87f3
5faa1779893a466f357322f98eaa069e0340edbf
61847 F20101108_AABWBD otero_j_Page_120.pro
de3b7070219052751633af8d7d45a050
b0d710b78278bfe70fe751404cbdd0bfd1a151f4
48481 F20101108_AABWAP otero_j_Page_105.pro
aad9d7e4db621b3d7efc35f378f9982d
5662d04a61135e57bbfa0b4a20f47c83b60f473b
8423998 F20101108_AABVVJ otero_j_Page_116.tif
1fca7bdeca695bb6431be45949005245
70ad7fd27b93de36f0f6d30075ec418e0b0a175d
F20101108_AABVUV otero_j_Page_102.tif
18bcfc326c71dc2dad65dfad9137ff57
28bceb3f304f25df45b168a2ae593d1ec81fb937
43451 F20101108_AABWBE otero_j_Page_121.pro
ca3a3958f8315e3322bb68e29b1657d6
d036a958c3fdca334428a7c1593affecc450d79b
15702 F20101108_AABWAQ otero_j_Page_106.pro
9ca6317732393aa56080b874bda7a3ee
8cfb624490c9bb3d2955265954de1c4d26b7c87a
F20101108_AABVVK otero_j_Page_117.tif
2df7a09d4a68d0c271d5130ce11a4be7
1de6c117334a164cf1b361463c7db738321e1730
F20101108_AABVUW otero_j_Page_103.tif
57893227c770d0a8ea7f7e4ec5b18992
12b93104bfd3d277243663fdaa84a9f5e69f2f02
60380 F20101108_AABWBF otero_j_Page_122.pro
7565e4879af2a357ce4d46c00c668f2b
dedca25c6cc0aa167647310e6d040e529c8d5172
28337 F20101108_AABWAR otero_j_Page_107.pro
75c20285945a6ae7fa8127ce7386cba4
7d3c8ad2c691b489f66374520ac299640dd7d3cc
F20101108_AABVVL otero_j_Page_118.tif
bfe978378f06c337d298707f474b7a7a
6765d8db536efacdd45251d5ffe905e8f70fee81
F20101108_AABVUX otero_j_Page_104.tif
dc6cf17076dbe1af96904187ae8e2e1a
a6aca89bbde8c10c9837ad821d3ba1ad26adf846
48635 F20101108_AABWBG otero_j_Page_123.pro
637021e0bc2b47b5b22f9f6cc2e5edb6
ddec44242d059b81984de1dde7b6911f09967784
F20101108_AABVWA otero_j_Page_134.tif
15c18e05593213be9c087676763667e9
ad26c1b3471fb6efbc1b804620c775327260a5ca
18805 F20101108_AABWAS otero_j_Page_108.pro
e55de55bfeeb212268b151c8fae683ec
01be6126a643b71040d075721ab90f29d3e60d51
F20101108_AABVVM otero_j_Page_119.tif
b0e2a92d6d039109e0112a588fd4ec99
918bcf44482b1870f06f92d580f337c674a7ebeb
F20101108_AABVUY otero_j_Page_105.tif
d86952e8e5496fbb5c40201ee8f5cd39
3adf733feaca0334cc5fd8da0d37244cddfd05d0
66965 F20101108_AABWBH otero_j_Page_124.pro
e2704e27a482bbe5099f75b250348e83
c25f16bb33fbd3757377b782b02deb887ae5b9ba
F20101108_AABVWB otero_j_Page_135.tif
e7a64dc1655eb2876cfa9fe9b0280f46
5d6d941ba9dd792797f61fcbdc977c8012b8796f
32110 F20101108_AABWAT otero_j_Page_109.pro
7129954e5bad2dc85fd9a4fe03840dc6
28331cb7300923bc4ac8144b55eccab4d26c3374
F20101108_AABVUZ otero_j_Page_106.tif
61fb70e428a9044e33484dab4f362273
491ee2a03d904a0008b24edec2ffc247feac130f
51036 F20101108_AABWBI otero_j_Page_126.pro
eb3322ff28345026903fdfa10ef5bb2e
e78b43bc49694fa5785675c1d39fecdb58552654
F20101108_AABVWC otero_j_Page_136.tif
2195aa67bd90f388353126af4b1ec6bb
556dd4993f15770714485ca850718c251ff59674
27394 F20101108_AABWAU otero_j_Page_110.pro
f46b5859cfaf7404c6932bbdadf9edcb
1a18f955a31aae6f8d0cae3408853a2eb549667b
F20101108_AABVVN otero_j_Page_120.tif
29ab32549fd36cb6c57824959bbd232b
a7487147a1d21e46c920b0f1022b33da4d797de2
74866 F20101108_AABWBJ otero_j_Page_127.pro
5d991eacaf3a646b0d8c146dc837e330
3c522db433a2b2359108600aa299a1750726dc88
F20101108_AABVWD otero_j_Page_137.tif
8d18e5f96cd11541b3e9487164c958fd
cb6acd6a16f73b299ae2597a7fc801b812d5e5ec
67935 F20101108_AABWAV otero_j_Page_111.pro
be46accff0073d80fe05d8346d8915d0
2a713eeca434fc2032b355bb906679343ba28590
F20101108_AABVVO otero_j_Page_121.tif
befc665b96fffa7d9ea90dc51eafca69
8338ebe96d76214f8ab63408e8fc90e8269242eb
64122 F20101108_AABWBK otero_j_Page_128.pro
e187fd7a94c1023a4ff2d352390fa685
8999240cfd62bf9c40e562b21d9a53b7246ab8bd
F20101108_AABVWE otero_j_Page_138.tif
58ad1d3c0ee29ff3f060fc4b43c66f0c
abe276a4416c301b0b1e5f87cc43154bc6773b62
65659 F20101108_AABWAW otero_j_Page_112.pro
85e2bab918938460771dec1f0d162705
221c1148ac8dfc01eeeb0b9c43e1a0c43ed26901
F20101108_AABVVP otero_j_Page_122.tif
7234e2573b9f8b19425ab3e0b3b514e3
8bd1a8468fcec8e88b62b63dbb2b95d37f57456d
59659 F20101108_AABWBL otero_j_Page_129.pro
313a84a94a73334a01a434a0f74121e3
f72feeefe137697e9f7d2d32c7b6a0416ac459d9
F20101108_AABVWF otero_j_Page_139.tif
67a88f851c776bb0ec30ad34a7d17e3f
2d705795b5e9e8752e5b964bc5117cca8544f00a
F20101108_AABVVQ otero_j_Page_123.tif
fe93b8742c90247c6efecdbf51ce47aa
f02fbbb41b5640836fc41762689d668c85055ce9
56825 F20101108_AABWBM otero_j_Page_130.pro
8b10fb2cff3a5feb494771eaa6f1ea82
606610f627f7f30bb717d7509733d3487be9fd2b
F20101108_AABVWG otero_j_Page_140.tif
e58ad3fee65ddb05cbea2f327791882b
bec2d2f75bac465e1ab7180887218906d0083993
61505 F20101108_AABWAX otero_j_Page_114.pro
837f9aa11f6beae03c2a8df0748ff33d
ea7f535b0a995f35bc2982c31c16f14be14e42b8
F20101108_AABVVR otero_j_Page_124.tif
93fddf7c24d7bfc68b4a2942a2a1d239
3e549fe0036726ec63d567cc8289937b7b641bd7
66178 F20101108_AABWCA otero_j_Page_145.pro
a246b3f56ee1b3f63ce24cb27a8f885a
3c0ca2588141e094641a165b2a3fe520be53cbbe
7478 F20101108_AABWBN otero_j_Page_131.pro
274b219b9ad3ab5286c9d5ff51732565
b4c6d91207b70402b99a6c60c1cfea4fb26ed0ce
F20101108_AABVWH otero_j_Page_141.tif
814b8108313592c57d42789b46d086ae
ca10493cfe75a208df8f1775381e5f9268c0f415
45707 F20101108_AABWAY otero_j_Page_115.pro
f15de6c54c81fdb68adb72920f0bc9d1
444198602063051e20dc5a3e481d160efb955f7e
F20101108_AABVVS otero_j_Page_125.tif
7745fc9566489970b2de548aa487fd11
3f9f367fe378866ee7aa82b8f6639d4514507932
67002 F20101108_AABWCB otero_j_Page_146.pro
b8783bfbbc7590080b4183a5e0566e17
9721952d91dab7cc1d627654581668543af798e8
18973 F20101108_AABWBO otero_j_Page_133.pro
0b28000d749fc71dd5651ed3daa2d7c3
aae526c21cb8a01e2773bdf33f1218f03ba01d46
F20101108_AABVWI otero_j_Page_142.tif
b3f4a316001b5f32edf850d3c4ee1437
64f372b491d0c949173a32311b18f32d277cfe68
72500 F20101108_AABWAZ otero_j_Page_116.pro
eb9b297abbd27e1800f497fee7461bb6
0052ea9886729b7af4c351d9cac86d9b302b9f9b
F20101108_AABVVT otero_j_Page_126.tif
bfd2ba2cea2928bcdc9d7fa82ec8f18b
669d2a9235d776d4f955e3ac804e0896eea29340
20721 F20101108_AABWCC otero_j_Page_147.pro
75d54a47445b1b7fbc7d4fe8a83948c5
3bccc09ce8e93fdcea84493b5e99b2912efeb9ee
21934 F20101108_AABWBP otero_j_Page_134.pro
0d2656066e15cbb9462694642e7bc70f
9b9747950ac6bf306ad44068f6f576847595043e
F20101108_AABVWJ otero_j_Page_143.tif
70300c5405cdf38b6594705d77b96cb5
3f4a2aa936d5d87d6b1694e99dfcb691b42cfc2d
F20101108_AABVVU otero_j_Page_127.tif
522eef7235368a72747dd8daa82cb2f1
c8671737934be2976b16a4cbff2651b0d3799950
31145 F20101108_AABWCD otero_j_Page_148.pro
2047d6c6b412185986757daf5de64597
9f123874f970a385cda6bba99c5dd0f55d59da25
24831 F20101108_AABWBQ otero_j_Page_135.pro
0620b612edd2973ea85e876048c6dee6
865f217142e8ed2b9df4b773e16e688d4726f2df
F20101108_AABVWK otero_j_Page_144.tif
45d5a1ba403c57aea4b6d2003e8a4760
39f641c8e7491f9c5150ba025eeddad9f7599de3
F20101108_AABVVV otero_j_Page_128.tif
57c1cf9e13292210ecb44ca5c6e44bf4
21873d5042633119e6eec047d66dc6d7e0d97a3a
30263 F20101108_AABWCE otero_j_Page_149.pro
e6ab0ccbdd2222079235c859815b524a
f9211b91290eacea6d84a34ec55788d4f012dbca
25175 F20101108_AABWBR otero_j_Page_136.pro
10fdd91c2b34261c0494f63f8a7ab4dc
9c971de7bfd77f268eb54a590608cf84144cb4e9
F20101108_AABVWL otero_j_Page_145.tif
cfa5bb1471e3cda4278ca08ff3e834fc
bccf5efad25247657515d775d27ee4afc1faec94
F20101108_AABVVW otero_j_Page_130.tif
c242d9a4d9a8311af1e037b53d716dba
6dad15e876dc94c1d4e80bc7c012f5c9a550abda
24296 F20101108_AABWCF otero_j_Page_150.pro
ca9bd4120c5d94a1023063f50b13de81
3f33f9a7531876a5c5a0364ca4f8c874e421a3ee
985 F20101108_AABVXA otero_j_Page_002.pro
21a3a29f65230fcd67ca3865c9113c23
b6a3c6900a2862b6466810f5633b9d3ed41254ed
23821 F20101108_AABWBS otero_j_Page_137.pro
74566efa32e536c649bff2af126fe8db
f820f405e8b84035d0f333761f3d3dfd950d29bd
F20101108_AABVWM otero_j_Page_146.tif
00bb407cae53e0c98d9f83494ac09574
b664111758d2a8a0da9828674280482048988d2e
F20101108_AABVVX otero_j_Page_131.tif
334e0d17369c3e506d80f38cfa40b0a2
682509f09dd9c49e17e1afdcfc354d834405c16f
33859 F20101108_AABWCG otero_j_Page_151.pro
3de1f980ed2f8cb54f81e3e299f8e924
32ee159130ec0fba5c769bbe8a99a9aba5e03b83
4796 F20101108_AABVXB otero_j_Page_003.pro
626082156004855d355085d895bff6c4
85d2fd151bd22f3659e0d5865da51a2841adabd8
22620 F20101108_AABWBT otero_j_Page_138.pro
32dc59dc91db9b0441c0d6058b4f8ba1
f569710082829346302b265e938b9564fe259cdd
F20101108_AABVWN otero_j_Page_149.tif
b6746c3d38718a0dae9d2d85bb5aac39
a66609def32a2311ee1854eb81edf079a9c83a1d
F20101108_AABVVY otero_j_Page_132.tif
99d2db40346a865e07a03ba2381ac873
c9bfed8f5d132cb1a7a3795e93061b544483df54
36861 F20101108_AABWCH otero_j_Page_154.pro
b7c52823fed6fe1f53aa79205dd80ee0
e2beacf7bb474f4e1af47e6fdd2b0560d4ee6efa
18099 F20101108_AABVXC otero_j_Page_004.pro
0429ee7b1bceb63a74261a9a177fdaf6
64e630001f8e1e76e2f6449f4a4a017cb981f9f6
23200 F20101108_AABWBU otero_j_Page_139.pro
24732024a584fa56a31a15f179c41eb3
308c35f45622e0c49416cef913842bf57b001390
F20101108_AABVVZ otero_j_Page_133.tif
a9ee697e4e64226f71965a14215fcade
9e2a382297fd82b823356407c5e6722293c43913
6493 F20101108_AABWCI otero_j_Page_156.pro
2c1ee56c8a0c498132911f090fbb2717
089ba79caf8b265dc5a6ba641eebba5b3c4afe1a
72565 F20101108_AABVXD otero_j_Page_005.pro
8268283afeb0f4c3959195b7acfa3095
a77eaa2f9e8dc5035e470906a010b42bdf350bae
31144 F20101108_AABWBV otero_j_Page_140.pro
b06c487f1fc543df26472fb853bb79d3
cfe4fccdf189cc2336779fb22870162a2a6e07fc
F20101108_AABVWO otero_j_Page_150.tif
88f54e3f64b77a1da50f6d08cd665517
c68dcd27f014cb9acb36f55b5c0a41a1b16a4075
95306 F20101108_AABWCJ otero_j_Page_157.pro
023bced6f71e0c3bc70dd9570d7b6495
beb21ca22eba2b074277ebabfa27fffe627a900e
20326 F20101108_AABVXE otero_j_Page_007.pro
e711f3b598a149044bb690b17bea9bdd
d081a766cf70cb048ea7d372e4eb1950c4b8b092
38046 F20101108_AABWBW otero_j_Page_141.pro
5405083b724d3b69f9800b6431cdc538
9c7955de2a397aab8050e3a71b688f0ea97e0932
F20101108_AABVWP otero_j_Page_151.tif
74cece710d587d1504c86b9fd411df50
0d4e91ae923e706b23ed9a03459e7dd5596b35b5
43653 F20101108_AABWCK otero_j_Page_158.pro
50c939beb128b2992cd36a41ae00e08c
8ed63fe39f8001dc4c0a6cb0d0a7182f8f7a63b0
60104 F20101108_AABVXF otero_j_Page_008.pro
e9a4fa6b0356bbbeabf6f070c920b230
4dc581a833e907918e1d41abe2d361839d5b0553
30899 F20101108_AABWBX otero_j_Page_142.pro
cbcc9472cee9ca6e0c8259bf43ab7213
6f3a0a1eedc789b8b0402c0e76c18d22d6ce4045
F20101108_AABVWQ otero_j_Page_152.tif
8d77cee1e618c2dfd8e9f212573001a1
1acf29eb310b0a00e3a0c6446474b92534876c4d
55567 F20101108_AABWCL otero_j_Page_159.pro
71357a3e981cc22fab2ef7cbf8f86582
957e5529aa821724489f58fda20faded2c5317ce
49794 F20101108_AABVXG otero_j_Page_009.pro
e66b4b552dc000c2258d176b839e70f4
aa1aa8c55643ad3ca828c54ba0d9c5d22add6c12
F20101108_AABVWR otero_j_Page_153.tif
28e4e75a2e136bfa0643cda298104237
99a6f9901fcd64e552835734fea3584ca98b1f3d
2410 F20101108_AABWDA otero_j_Page_018.txt
a19fcfedc43c10d7619da0a8282fe32e
5e3df990cc865251199ac4d970411d2c15b7ba8b
15286 F20101108_AABWCM otero_j_Page_160.pro
56ad301467de3f6963e3950c14d9cbdb
d96e2cbdd6fcde1436b4e63786e22d6d5a4eda4d
56889 F20101108_AABVXH otero_j_Page_010.pro
5bb7bdf1644f90ae802a59fe199e2cff
69f0a802864e5581949734743ab8bf15b060de5e
37401 F20101108_AABWBY otero_j_Page_143.pro
0a26ec01e90ec077ae25a6799be92036
421808c5c26f614c9c0a694cf2ca1d9a9ec6428e
F20101108_AABVWS otero_j_Page_154.tif
5db942ab08841e277b7197466537e402
39de59123f6372cbaca876207b700ae863bedd49
1227 F20101108_AABWDB otero_j_Page_019.txt
87077354b67f91b100dea8482cdf4067
31b14289fc6f0babb339eeb52a59d56ae1ce4f67
21416 F20101108_AABWCN otero_j_Page_161.pro
d4917e905387fe61faeaec34a4224bf6
bc7bb250ff0bb7892a1d87898c21dce1cf5abde6
49485 F20101108_AABVXI otero_j_Page_011.pro
985c49573f995b3504de56c63f785a25
888dc8d34c916dc7bd2a45a507c4561554d94ea5
67706 F20101108_AABWBZ otero_j_Page_144.pro
95fe1083e1023eb8ec47821fa46e0fc3
87a2ee57f59d637490cc20c38499d6d575479580
F20101108_AABVWT otero_j_Page_156.tif
50d525d9efcabaee22491a91e8b3d627
4cf798982e6147a88c67f822c21e0884cab7dd22
1284 F20101108_AABWDC otero_j_Page_021.txt
a51313af2bd269adcbe6c250b73f07fe
728d304991072d832560832962122a52f8372d9b
547 F20101108_AABWCO otero_j_Page_001.txt
38e794b4cf02ce8b20cdb424112e59fe
a872f23490849906db94b838863f4a07712725b0
36769 F20101108_AABVXJ otero_j_Page_012.pro
5919f4f6d801585448d15402df418b5a
c1621fd1de46b97b034bde4201019bb1ad801209
F20101108_AABVWU otero_j_Page_157.tif
db383b100948a95419984f630f00196e
9814415ff6ae8a9b885b87e201f2a2019ce5cccd
1311 F20101108_AABWDD otero_j_Page_022.txt
b0d7b609b5716a8051f8eb46f033b34d
40cb217e5156de8fe29df22c06a0a6e04b52150b
100 F20101108_AABWCP otero_j_Page_002.txt
827eedd2693b7a8d7277f0aca02d3462
467450deb40b71fc28508d89bdb0ab71fd91e5a0
46533 F20101108_AABVXK otero_j_Page_013.pro
f5af603232933a0c9fef073a1f905587
9fb1eadb740d3faaa9a66098d7cec7a0a87cd646
F20101108_AABVWV otero_j_Page_158.tif
0dc4a6eb698c1b532a490795d100eb94
9817e30e9fadd4d2f3678c8f0079058ea8878e57
2078 F20101108_AABWDE otero_j_Page_023.txt
81a6250b3e64489dd3ac46959bfc793d
5ef3dbb9ee2faf8013c187b5cb25a33afcc66cee
234 F20101108_AABWCQ otero_j_Page_003.txt
c93201b630585ac66dbd57f76f5bff1b
fd2faa6aa8a66338721dc7728d24dd95db8b993f
48878 F20101108_AABVXL otero_j_Page_014.pro
1cfd35ee17d32befbb0660f96e67cef2
e96612f43d759dac0d10f5873c087eb85b2f0b50
F20101108_AABVWW otero_j_Page_159.tif
7cb001c4e26681a997305e142c490461
74273f9c429c4079259f28a6ad6051e42e848f78
2083 F20101108_AABWDF otero_j_Page_024.txt
4eca04613f00e80572b1b8fe9aca42cb
a192ba2e9e2cef9319d616cbad56d6673f59289d
766 F20101108_AABWCR otero_j_Page_004.txt
3238e7c9e9b435d224120fd8c63ddc53
86c72e7d02a99ec7ae18e82327c629351c841488
48451 F20101108_AABVXM otero_j_Page_015.pro
ff929cac58120cd12af4de1a6be78367
6ef290fce3f9e829140fa54c4d63e6ee461076e6
F20101108_AABVWX otero_j_Page_160.tif
7524395a611bc64e45cf4b49847aef53
60285d33bf95860e0ed24adda503601f40a4a309
408 F20101108_AABWDG otero_j_Page_025.txt
df41443ae445270a5558f61dfc38095e
657b3f4620279cdf9fb43245c7e9340bbdecda6c
2846 F20101108_AABVYA otero_j_Page_033.pro
426f6cb4279f6c668723146e3a21f39d
82a841ab4b8152d2aac90f95e7ca33b4b835b792
3756 F20101108_AABWCS otero_j_Page_006.txt
d89109e4d145551ab4ee98ace9ea052f
24851cf569c4540700d6449bbf4dcf1d74164229
53597 F20101108_AABVXN otero_j_Page_016.pro
e1e9496f2eec2eaf47a5ce379312fbe7
a822ad06f752c12084758cf2793394522c395c35
F20101108_AABVWY otero_j_Page_161.tif
c9cf82455732f9868cca79c9cb39e3f3
9e64f7a7caa2ff128548d5cdb2fbfcb72f9a9fdb
428 F20101108_AABWDH otero_j_Page_026.txt
2ddab40202963dc198ce4927eb9a0d42
1356bb41fa3b69334c83ea69df9ab884978643d4
15463 F20101108_AABVYB otero_j_Page_034.pro
035e7c0d641fec9ce462c57e3edb3f59
8430cb8dfdc6705289fa7d9b9f7eaf0169bac257
839 F20101108_AABWCT otero_j_Page_007.txt
309226b63f3ea414ed97cc9cdfa3bc07
7e33350878eb6ad8014a0902a59a587c598950d9
9638 F20101108_AABVWZ otero_j_Page_001.pro
1a5da20dcfb293cac103815d3a7fb979
70397bfea125183b0aa10a9ac66ec70c660740c2
2051 F20101108_AABWDI otero_j_Page_027.txt
bc8c895755c12db434f4cf545e9c99c8
e22d809b46ff175832ba87cb5f15178ed573c821
50362 F20101108_AABVYC otero_j_Page_035.pro
7c3c6e94797a1cef05281e73026b2020
21f55ccfda5bbf20939d26adfef263729844bf97
2426 F20101108_AABWCU otero_j_Page_008.txt
952e8f699a44fce7188b10ac9a0c0a7c
cd49e2a9be1832a62eab242a6f6cab7b975a8ca3
60099 F20101108_AABVXO otero_j_Page_017.pro
dbe5f36a8b37de3f87f28824268a13fb
8ed6f81ea9f40a8876cdd5c6ebc6a69d6aaca09e
1933 F20101108_AABWDJ otero_j_Page_028.txt
29c676b351dce0a3c248d6ab2bb66220
3f3c0d8c2f3820770485b8b54476f35793a1a970
54322 F20101108_AABVYD otero_j_Page_036.pro
b2f426518ea957febc6d1a5ca98b82e1
235a323943345189b5fcdb003b99374c918d7ea4
2012 F20101108_AABWCV otero_j_Page_013.txt
35dc164846f9524239887a40e81e1d66
73d33d57242f35805d157d51af3712f96d63165c
2231 F20101108_AABWDK otero_j_Page_030.txt
72ae52b47aa25292e879b790c0dae6f0
257e435146b1fa44e48722c6f7bb18d188f7116e
50601 F20101108_AABVYE otero_j_Page_037.pro
6c0aa6de0480b29f2fa7491c0f0a420a
f4f2abdd3d76c3bca320f02bdde2e7e332e2b58c
F20101108_AABWCW otero_j_Page_014.txt
262f6c3c26ed16a699857584a0fa6bb6
bddc8a99cf0344e1f7fba5060f4d32ae419a5576
60400 F20101108_AABVXP otero_j_Page_018.pro
a238c00513cd7bbf2df45caab46b1f66
121416f2dbb9f24f678425b727be9a98677f179e
2014 F20101108_AABWDL otero_j_Page_031.txt
123759ec525fd88317ab172f9d019508
ef7e9d18980f65fd86795e8e80192f216e0907b7
32433 F20101108_AABVYF otero_j_Page_038.pro
0d34672d92d40c5b7505eb94b4138565
dbc6f02e983d4dd4752e94b66b361995c8e9fe98
1935 F20101108_AABWCX otero_j_Page_015.txt
a0f22ae793bf8eafe801e6c83fab6f1f
e9c22a097cf2a219d01f8479a19cbd4239e3f32b
27697 F20101108_AABVXQ otero_j_Page_019.pro
630e27dfa8cb876f254dd510e7be0d4c
b5d0d1a94285d471b023cb63d47c962db9e64c1f
1882 F20101108_AABWEA otero_j_Page_048.txt
5e6f59bf8d4ad3f2982f42a76a0b9ed5
8fab2e9d8467bee3bd23eac26f377d9f2918dbaf
2265 F20101108_AABWDM otero_j_Page_032.txt
654bea5b374992660c26fc376ab3d432
fbb0f8c96436ed92a1d99b7ce76ba6316d308120
35500 F20101108_AABVYG otero_j_Page_039.pro
d937c5d5889ded9c8485d8f4da18eafe
67e4838bccda200e23ed3ffa76b0ab409846e52e
2117 F20101108_AABWCY otero_j_Page_016.txt
6cb527024c940a6044180b60d671ce5d
a66581529dab5cff5acfe4b3d25c3b960c83b98b
30351 F20101108_AABVXR otero_j_Page_020.pro
9fd152f7c98035399ca6ae20d87780fb
5ec526133375041d7ac1d7bc1da79ad0061355ee
1703 F20101108_AABWEB otero_j_Page_049.txt
33f931081c912d2980e8b666da55ab96
74696211427b2c922a43f0f9b7cdc224a4679600
120 F20101108_AABWDN otero_j_Page_033.txt
2a6495083a32574c2e81239dc01adcfc
9201ba2ebcf75ac5ba74ba93e5496201d4cf91fe
28447 F20101108_AABVYH otero_j_Page_040.pro
1343f3a4f5cbe87968710e653e3f9d7d
39641f3016cd17d168669253d34d5f6d6f648507
26735 F20101108_AABVXS otero_j_Page_021.pro
32bc32647d85712a3350127175e775b6
4c0a0e4678c13c31c62f0b20d4a4180acc8c2c13
1130 F20101108_AABWEC otero_j_Page_050.txt
56eef130c3afac1ad2a6eac70bf032af
6992359c91801a5001da0845eacad9e3e1ead59f
780 F20101108_AABWDO otero_j_Page_034.txt
a22fa6e2be4b7cc421491bd6210d65ab
852e22ded084a2be6d54ffcfbddf392c36bfcecb
38856 F20101108_AABVYI otero_j_Page_041.pro
dbe57b5622525f2e4b719a3b5b30fc50
20df83d952f893e24c1deda55fd18dd2fa9258b5
2374 F20101108_AABWCZ otero_j_Page_017.txt
2dcac2eb2ff71feea6b8a27706ca99f2
d1d8f9cd3d262cf7d04e76f5fd18f57201faf3cc
48285 F20101108_AABVXT otero_j_Page_023.pro
3620a78c9766f4ed3e3ee60d93f2bbb0
4a9092ea786b6e3f7b4c9959cabaaa844625862b
1565 F20101108_AABWED otero_j_Page_051.txt
2d415907157bcc7a02bfff32d031de97
d1d17847a5ad257fb52ebdd45169d4f1c89ab2e3
2101 F20101108_AABWDP otero_j_Page_035.txt
d814f0200b49215a50d6f98a97a66e19
316b14b6055c5928b9bcb3e0e8a0ee97ebb879a1
8389 F20101108_AABVYJ otero_j_Page_043.pro
d05307c355cc2732aad4278ed3c6b7d0
c80527141847d997dcbb6928d0a4ba0765908981
10040 F20101108_AABVXU otero_j_Page_025.pro
425c93b8e8e5e5900a41e326f4a4d36e
91c3ed88a831e25e2772b81d7269bb58109964bf
715 F20101108_AABWEE otero_j_Page_052.txt
e538f57d5d51274898b143af2428302c
f6ff65fe02aa119b4245cc94295514562ad2a28f
1302 F20101108_AABWDQ otero_j_Page_038.txt
3556e0f59826fdfbed22cc72c18544b6
69eca57fe9ce3a79352a7600c7891b111e1682b6
3242 F20101108_AABVYK otero_j_Page_044.pro
c9d295f41d5fd15466fd91b8d8fe684b
6d5877c49c7a8b5b08b9729c42a361770c586cff
7096 F20101108_AABVXV otero_j_Page_026.pro
849da3785de9e66ae10033cca3a63159
1f0131071c132622da2c03b4832c2c1396860478
2319 F20101108_AABWEF otero_j_Page_053.txt
39041a8767b930d1b3807ab80cfa94e8
ba615ed3994706ad12c9804ed1a82e25ed1ac389
2063 F20101108_AABWDR otero_j_Page_039.txt
365f72427771bf7e161ce9e28c330169
308f4cb11ebaccdcbface84cd6fd97f534cf8737
48815 F20101108_AABVYL otero_j_Page_045.pro
bbc32ea6bddbcd65e83308dd74d49b89
31fc2a51509a70150ac8c1d5c4e626e08008c3fa
49262 F20101108_AABVXW otero_j_Page_027.pro
166d030f83fe686f5db10311e609fd3d
c425adf53265a19338ea221f8af9c66a4de0ad57
2007 F20101108_AABWEG otero_j_Page_054.txt
822deb0fe5d19565c58117926bd606fe
50439fad5105de571d2c1394cabdbb0b4884e9a0
3774 F20101108_AABVZA otero_j_Page_062.pro
7d94e5c0b1953bee8005141e8ef7f6fe
c4a5d754d88f2a5320e153fb18ae33c3579e705d
1559 F20101108_AABWDS otero_j_Page_040.txt
54b87ce80381779feb28905a481746f5
de63bf25523a39d348ad9c84c003f67dd88f3400
47421 F20101108_AABVYM otero_j_Page_048.pro
743f472758053fefb614a1816e80b808
94aa3dd26ef4388eec4af60116c3b35d98d2a118
55927 F20101108_AABVXX otero_j_Page_030.pro
f695a07abeac1225fe8c247beb7e7ef3
c6c4c9308d38a25240ad7cba8880267eb7f84332
2005 F20101108_AABWEH otero_j_Page_055.txt
e1236af63be90f6c1ee7aa5ff0518299
ef3475c80a53104183a7aa897493d3d46f64746f
10940 F20101108_AABVZB otero_j_Page_063.pro
c7c46651615d7af2871b30ee139311cd
b979e006139cd20d03bcaa39aecdf6cdd479047f
2317 F20101108_AABWDT otero_j_Page_041.txt
b76d031f6a33a1d6b5ed936eb7e4442b
23be9b16199139a65b6cde589697655828cd19f5
42211 F20101108_AABVYN otero_j_Page_049.pro
5869805ddadf386d63b57de2b14279a5
b4d31369697b854ddff6e4716e5b96a1285c0693
49702 F20101108_AABVXY otero_j_Page_031.pro
5c0867ee2ba31f78ce86e7e4ec1b09c5
87e928838ea15acaf9260ce1d195d3b143f348de
1414 F20101108_AABWEI otero_j_Page_056.txt
0e42f02ea6e0e14c853cac8b927242ee
46629cbc43eb15dc9203fb51a9d0c2ef6b11db2e
3639 F20101108_AABVZC otero_j_Page_064.pro
74de2356aeabce45328749d53e05242f
e85b2cffc74e33d408079ee75b74d78fef35cfff
2824 F20101108_AABWDU otero_j_Page_042.txt
b803e6319afe16b9f4b1a75168b48ea2
12624ce4ea1fe375bf1d67dfe9377f683bc700e5
27537 F20101108_AABVYO otero_j_Page_050.pro
107e796058ade6d0fd0aae7cddcfd583
e0e04cff67db76c42b5bf5079a6f99a72ca7ecf5
57695 F20101108_AABVXZ otero_j_Page_032.pro
b6f82d27c4cac3a6b3dcf4c4929b6feb
a5022bd5615692d381be70f133aaaabd9e0c4127
2212 F20101108_AABWEJ otero_j_Page_057.txt
78f87fbf607b5bae699957e2381088f5
5e6485cf0978e7519296af728e31fa53ba6dde26
47938 F20101108_AABVZD otero_j_Page_065.pro
90834862022eb65e710d31735aa40d41
2f92a426d103acdd367ea8bbac0f73eb88f0c093
512 F20101108_AABWDV otero_j_Page_043.txt
7855624cf6147383e4533d7a5df004b3
c3d6ee43d441cf7bf2f2fd18ea93008b8b48a301
38102 F20101108_AABVYP otero_j_Page_051.pro
6d50d848a18be5a17c58ce97d765ffe6
407b4a31a4391de983ccac7a532dbe62990d89cd
1194 F20101108_AABWEK otero_j_Page_058.txt
167b0c208318ff1173010ac1fde14b72
faa15bf4070bfb564b0dac8ac2a21a7cd9172ee5
53450 F20101108_AABVZE otero_j_Page_066.pro
ceee14f73640b8d49367640611a3c1c8
0af804bfbdb47a801d8485a97c42fb209fc92c4e
167 F20101108_AABWDW otero_j_Page_044.txt
3294a4cc5e85c73dd91a03e90e0714b8
07c6fdeb622d86f53fe0fe5e0a5a3b4926344802
52327 F20101108_AABVZF otero_j_Page_067.pro
09059443a4618fdc09e232fb9ced8789
635b49a18e7d1887f06e0e89457b46f017046480
2043 F20101108_AABWDX otero_j_Page_045.txt
030b9533d059eab50ab061aaf88b73fa
3612ea08c01656c9402c8888cc3240edac59529b
16347 F20101108_AABVYQ otero_j_Page_052.pro
bb7713c4db12ed6e1cb4f292cb017427
0c387d15535dc20080b7309466b4c2433df2dbfd
1506 F20101108_AABWEL otero_j_Page_059.txt
4fcf33aa817b68f5157cbe5666f7d2e9
a6072024ceaa8b4cc580763764e14c9d2f193003
43473 F20101108_AABVZG otero_j_Page_068.pro
4dcc760e5fb17139c980f37557dfdf94
97109bf213828b9b85ca72b288d39ae83582d270
2720 F20101108_AABWDY otero_j_Page_046.txt
d6f4de16c0856a80138f132568737527
b822ce0b5145266533bb7eff98697cff65e79708
57526 F20101108_AABVYR otero_j_Page_053.pro
907e1dc0669c11311dd4eab36b040269
32f155673867168c0b41efcd2a8b5ef5547fa53b
1866 F20101108_AABWFA otero_j_Page_074.txt
13f2ef0366ba32f0f4b23e2061861dfb
7346eecdb071cd2c94d0f295c4043625ab894f74
223 F20101108_AABWEM otero_j_Page_060.txt
83e4c55d69811b9f5dd517a38e24ab33
6fe38ce71b1333139f1dff2689a360c2a0136663
51280 F20101108_AABVZH otero_j_Page_069.pro
85de612585db34ae460f415a9c12e428
d3f6bb93edc525726e95563f9f8b80ed295f66b4
1553 F20101108_AABWDZ otero_j_Page_047.txt
cf4598b63f6ccf91531e100cca077a78
614c031d137c64dedfee4b3f26db3746c1f42f26
50642 F20101108_AABVYS otero_j_Page_054.pro
0b2a79bdff18cd96ac6171be8fb8ca7e
5ba880ff2208e15766ecd28758fc92d87364b8ac
1948 F20101108_AABWFB otero_j_Page_075.txt
f6ee69a574670ed78f5c3e2448643d4c
2bc79cb704058c7d83618b4fe6a6daf1d3c60fd7
288 F20101108_AABWEN otero_j_Page_061.txt
449e13d6d21fde39f77af5b531e9db7d
2ede535d7803c3a55f635782a5277d7a6559d0bb
51688 F20101108_AABVZI otero_j_Page_070.pro
9871357cb37772fc38954485088d730f
25cafd4f57823385153c89d67a4301b97ed4481e
49590 F20101108_AABVYT otero_j_Page_055.pro
7a6581857f441784ba600570ca76c1c5
5699648116dd4804c335c329a01d54152fda8e1a
154 F20101108_AABWFC otero_j_Page_076.txt
8d0fe7c74bb0ed66b4534b4d0e9ba8ec
4f3da2647d79f0be4353133bc36346b34c47d39c
332 F20101108_AABWEO otero_j_Page_062.txt
d6ed23f246063ec4eaaa8604854c9a87
b31a140958f490d6945dc03f00a4bd2da582cece
56340 F20101108_AABVZJ otero_j_Page_071.pro
488ac8f81ccdb28316024bdcc51ed1ad
2945b45acc7cfcf1e0861889c8047014e6f9f5a0
35131 F20101108_AABVYU otero_j_Page_056.pro
c05079ef2b7992b21ed5fa825d0eb10e
b87a4adcd72fb7997066aebfc1a8a2e2bc322c11
46070 F20101108_AABVCB otero_j_Page_043.jpg
2f24ace64c8b6c352f73c32adf2d01df
d67c2cdb5f0526ee475d76940cf5128df4d15732
2887 F20101108_AABWFD otero_j_Page_077.txt
e932b2d6f2a2ddece005b10e5da46240
45ea29224377afbb0107ed815d470e993139deb4
700 F20101108_AABWEP otero_j_Page_063.txt
795db94059e8be8f2d577d1bd91473e7
9d4acd66a1a3facdcbcc57634f3f5778a4bec3a7
52250 F20101108_AABVZK otero_j_Page_072.pro
d56e04b3ae2b54634ec301bcb189096e
9d00ccb5a55e297f933b19c29d43205744d229e0
56114 F20101108_AABVYV otero_j_Page_057.pro
7e895c2ba6a718e05cb1ae437e322dc4
906f98cdbab0800e3f4c1a7513274af3a5f9090d
F20101108_AABVCC otero_j_Page_037.txt
696e684d11c9998bbdf95737397efd04
1b18b217adb2d2e6d362c6d28c6a96fa3d938863
2006 F20101108_AABWFE otero_j_Page_078.txt
e1339b25ab53fccddde1b274c540af6d
b933c291f318344a9580ad6f0b71a4d3b3d3e9fc
651 F20101108_AABWEQ otero_j_Page_064.txt
a366ac70834f1c82559859364d7ae8b4
b3368e6658256e3e65e2e6f77081b36d7404eae4
48143 F20101108_AABVZL otero_j_Page_073.pro
ad5b3b5d189dc46fcdbb6c7df5c07142
1c4061f2ffc038a9a03899b533f3cc37957e9531
28845 F20101108_AABVYW otero_j_Page_058.pro
771e85b3d72d5e391a326aa49533acce
a3f904563b85951ee43957d8db1452389f4c8e3c
21347 F20101108_AABVCD otero_j_Page_153.pro
f6c85945b4782306d28de5f245381b63
77caa220ea38aa53f72fad1acdddc8c1b6a0aab1
2161 F20101108_AABWFF otero_j_Page_080.txt
a582268a2a628b7655f35688fb5c3a08
138a5663de11026167c5fb15251e4200883b7704
2057 F20101108_AABWER otero_j_Page_065.txt
4925835436cf905f0efb3be5a00e18ef
e1d7205b003478bee816a3fff5698616fc969436
43497 F20101108_AABVZM otero_j_Page_074.pro
27f7c20cfbbf88a4abed3330087e68a2
9e345664e8f6c01eb4bb30b6f8c87bcf12541d4d
35246 F20101108_AABVYX otero_j_Page_059.pro
fc89b1d62ab44cefe96cc84c28a8682f
39a82c678742d4c56fffc75a4771554aa93b5e5d
13056 F20101108_AABVCE otero_j_Page_022.QC.jpg
60dd254dd1ac507a6a63665bb0c98619
f882a54fa456562819f1132fe2390f2dd85e459a
F20101108_AABWFG otero_j_Page_082.txt
9da3551f10e2af17e2a89bcc21366194
0f8a8d7c02d298a3e7b2bbb1b3a3d97908a1f420
2111 F20101108_AABWES otero_j_Page_066.txt
1c958baca4957ee77db78be0e0d93cc9
e34da72f55434a8257f438ec16bde3fa7a3566db
44225 F20101108_AABVZN otero_j_Page_075.pro
d4d6c864295d0b7803f538a9e473bb62
af16ea0253aa66dec2228aa56bdfd117599dc8f3
5304 F20101108_AABVYY otero_j_Page_060.pro
dcf1153ecfd8feb93670ba64c5772abc
72106785ef91e2980539f549ede4a23cfc2530c6
97758 F20101108_AABVCF otero_j_Page_117.jpg
ba362baf569408035e9a3cc5d8d53883
6ac0d6f71bb59d72bcebd67aec8a92c48e226176
675 F20101108_AABWFH otero_j_Page_084.txt
d77acd065cedc7e375b8dcb10cead5cb
80597363ec6ef38e95896bf438f3756426b6b1bc
2069 F20101108_AABWET otero_j_Page_067.txt
d7d4ba8e83dc26fe39d9882d525d32b4
7e61f0d6ba551eac263b489549b499489330cda2
3626 F20101108_AABVZO otero_j_Page_076.pro
4474f9b9888a272c22b0c06c689dce84
5c7b29bb47e63e159038b7a52b22ffdc6b5df912
5050 F20101108_AABVYZ otero_j_Page_061.pro
7a61f84f63ae784f13ab576cdae23a8e
59cc861b72eec47cde012fc6122611a1d929440d
2040 F20101108_AABVCG otero_j_Page_011.txt
46c74b194a8bfc1c6aede67ba5ddc1f3
803bf4dceb281b7619b2625196d0702ce6f24e70
871 F20101108_AABWFI otero_j_Page_085.txt
61b177a7383a69dcc8173bc0f93b309a
bcdebd75e4a2daa7dc1f6f772e75801c2c9570d1
1773 F20101108_AABWEU otero_j_Page_068.txt
c918e08e7b923915020b3e88e2d89299
b7dc006b01679ea1e7c36a1d7601a17a4d2b4853
51887 F20101108_AABVZP otero_j_Page_077.pro
9736e8eab73f367fe9de1a254af864bc
1b7c5d7d976692b40ddbd84394ebd77bda66e153
15992 F20101108_AABVCH otero_j_Page_140.QC.jpg
acfa334c52eb39558276d4a812cb955e
173207338750183235aaca12b54bced5f0c3785c
834 F20101108_AABWFJ otero_j_Page_086.txt
aa9972c4a97d914afc598268aedb3399
1f36896f1094779ef724961bdae231d16bf01c76
2028 F20101108_AABWEV otero_j_Page_069.txt
8bc46590dac031767d0c9c1adee67222
cd8cc84dbb7a3bc1959804d9a3c0e769e3779051
37957 F20101108_AABVZQ otero_j_Page_078.pro
a443be062c50c7969699a09cbc6764c8
4400a9d71093d7337ff596023ce0edf9b79d45ea
16932 F20101108_AABVCI otero_j_Page_148.QC.jpg
c1405c8feb7d7145e5abec9db51c04e5
405cef669bd23f74b52c471b3b5ef6b661a46d3b
128 F20101108_AABWFK otero_j_Page_087.txt
8247f96960430aa7423cd5052f1879a5
e28519eef6b8e50a300905b447eac2675bcc6e70
F20101108_AABWEW otero_j_Page_070.txt
9dec3dad6af529d1a7d77ab0d251b277
2145f983990ea79b82a2d84d78d5ed40f515c3ec
7161 F20101108_AABVCJ otero_j_Page_113thm.jpg
1bcf2bbaad9cb668b502ed2f4dd94bb3
0f2f7834cdfdb6088772c9bb93b8d5901d7c2f01
215 F20101108_AABWFL otero_j_Page_088.txt
651036ed05c8256e99f881633f1da75c
43eb7ed3f64fddc61815c591b09d5e49badac802
2236 F20101108_AABWEX otero_j_Page_071.txt
1d350e39278022c6b8a7cef916d70c30
5bc12a650c8fbc944069698e0915e87456ced87d
33783 F20101108_AABVZR otero_j_Page_079.pro
3cf9fad0a92f98634206194b05928884
64dfaa12e681b32c9602c13f22355cf78b8e8642
1301 F20101108_AABWGA otero_j_Page_103.txt
d6b25722e08c5f15fa3f1335db1ea040
6fc1c0c07a07b8630867076e7680a2a2d5956305
51549 F20101108_AABVCK otero_j_Page_029.pro
5ae1239b8a49441f2cb273f0d32b052d
4425647839a96d3bb0acccb03ee45f377a1fd6d2
246 F20101108_AABWFM otero_j_Page_089.txt
4489f3bde1cca3292e330e4d252aa753
f8cc96ef42fcfea5c9018ff3de3425ab2bf61858
2060 F20101108_AABWEY otero_j_Page_072.txt
1125dc858bb9627c62e2cfa49853a7ad
361873a0a71a006f45bd8db46d7b486e25f63b13
43122 F20101108_AABVZS otero_j_Page_080.pro
18690a56da65a0ee1f8896553d86cadd
061ffedb0cda0161c011eb8590ddde21e42669bb
4415 F20101108_AABWGB otero_j_Page_104.txt
fee8fd01d1b1fc1bf2e9581f91d9fa6c
93f30eea98141a764590c020887f695a41f6dae3
1051979 F20101108_AABVCL otero_j_Page_126.jp2
3d34b3bdfcde89e06395607cd8641dc2
992f5e02270b5851dcb4747262d401cbbda7cff9
532 F20101108_AABWFN otero_j_Page_090.txt
d0bc9860861df532739bf69ba9ca554d
453aec41c43f8e6a1013b5176dc627aa77a4bf46
1925 F20101108_AABWEZ otero_j_Page_073.txt
f12618a6397d088028ad99bd1a2d2f2a
ecc7bbcf89a972ac6bbee2a8485dcd0a1cad83b9
31952 F20101108_AABVZT otero_j_Page_081.pro
99152f49724724eba565711b043b284d
f02f7f82a0fb10c95c40036e129eda5b20280f09
3322 F20101108_AABVDA otero_j_Page_005.txt
df0e5915685909fb4b496148b435c1d4
e04cdcc6dc278c866bb1441fb24ea9ea4d37ee6a
2036 F20101108_AABWGC otero_j_Page_105.txt
012f70f1c3ff790246784290bdaba6fb
47c53833a72e32bc59db04aff5bba6312282028e
918473 F20101108_AABVCM otero_j_Page_157.jp2
7a7d16480b9f9f2fec388c48b1bb43b0
3e8d8c8856b36e00fa16dc14853ab1aede2bfa8c
211 F20101108_AABWFO otero_j_Page_091.txt
4f5f7196f14e7b1038384d5caec12c0f
a15d0f5df890e62c6a6f13f40eb85ed2bdf0909d
15477 F20101108_AABVZU otero_j_Page_082.pro
60b49bc590581e916c2f47acacd70cd3
97e54751ffe3ba49f27f904a8f88dd2c3118797d
18284 F20101108_AABVDB otero_j_Page_132.pro
a63b5abd1bb88f3d43c017634afd6630
3bba7e6b6ab922ba538e6724fd25822b121b5a22
659 F20101108_AABWGD otero_j_Page_106.txt
5781daaff47325d6bf19f26d3d5452de
f95782e0544682ceec11c80a94666a7094b31692
2166 F20101108_AABVCN otero_j_Page_036.txt
768f1ec9046382f09f7f1fb21fa25946
974453c9fd2798ba17bc5fb31422832aef06a7c6
F20101108_AABWFP otero_j_Page_092.txt
28d4e2369d647c2b6bd53f7de65a4b29
8a59786f1a89186f78819df3ef759bd4adeb8169
9593 F20101108_AABVZV otero_j_Page_083.pro
d247d97b71b55690c7dc1dfe4b2dcbb0
3553e029f75c507529a3381a97eb5eb3f4c31db5
56836 F20101108_AABVDC otero_j_Page_125.pro
492e90fc45fba230e2c2b8cd717fe6ca
9a8d4d7aaeee6c0415c894241cd3928a8903f608
1567 F20101108_AABWGE otero_j_Page_107.txt
975d5fb15f106565b43c0a6c27e1b470
6b78e54af905e40ca22de2a2b1f857eb1ccbd019
67505 F20101108_AABVCO otero_j_Page_040.jp2
b9d84dcff4b67b707e493efeeeedc14f
e91bffeff042d779a8fbe477ad66f4639c4e7ff1
678 F20101108_AABWFQ otero_j_Page_093.txt
83dc707c4290fcd0c6a820fcc701e812
5310e4442e4c4ad7ab16226df5fffe0ec809cfd8
13432 F20101108_AABVZW otero_j_Page_084.pro
b269d3309f1ef5cda7b0bd3d3edaab6a
9ca0ae9640a7a5e700799cdecbaa5eb537e5debc
37412 F20101108_AABVDD otero_j_Page_161.jpg
8b437a3c3c4abab6076d39326b8a7640
f8830f45e49d4c3cc7906bf1869e782cabebfccc
1040 F20101108_AABWGF otero_j_Page_108.txt
e87b2dea471ac812c277fba5e42bff23
579d39d183bef03e6483f1c09cc6ee1633df6d3f
2058 F20101108_AABVCP otero_j_Page_009.txt
88fd890d85bbe88fbd2e70e3b5fbef1e
4a8a493da15cc9d7b379b32d3ae85b5495fb073b
382 F20101108_AABWFR otero_j_Page_094.txt
ea5fcb8abbc7cbfe1c14f3a66554f1ba
d3498a9d027d6dae0dcec5f21611712c56ab362c
19390 F20101108_AABVZX otero_j_Page_085.pro
de41be633283cbfb5e73c4022e74ebb1
18fe9b9b0b4e29ef10a942653d92db2d73d54529
80308 F20101108_AABVDE otero_j_Page_053.jpg
c1b5c8ad18398f596cfcbca72fdcb19b
3b2dfd90ed2608c4dfd3873e9f67d0001852ed9c
1812 F20101108_AABWGG otero_j_Page_109.txt
cea1aea34207d7f04fbf6cffdf2dae37
c8c79975394870c71341eec4c6fff613a3d66657
926 F20101108_AABVCQ otero_j_Page_133.txt
2a99b5998f16411951dbb68d0db6e011
56879b4678347028ff416a81a0efbd3d8769aed5
1883 F20101108_AABWFS otero_j_Page_095.txt
d0bd4b72c2323cfac6b6fb6e475c7e87
f7ad21e6d333455a68a3ce2a594320b582680884
1263 F20101108_AABWGH otero_j_Page_110.txt
448e4705aa4402c57bfeea1b52f5e81e
feb2e348602bb055a00073c7d03c541c92ffc2b8
15039 F20101108_AABVZY otero_j_Page_086.pro
13cc4bda79c329775299fd91a33177fa
9a37872000acc70583567d3a753ec295c9d200b5
F20101108_AABVDF otero_j_Page_096.tif
9c5816df8824ff3bdb58bfb538fddfb2
bece0589258512a3cfb0cc20bbe79b10ff58e6d6
1019366 F20101108_AABVCR otero_j_Page_117.jp2
5246cb3e071ab18c1b096c2194e332f0
dbae398b11c24ab2f471b5731bf8d702d244c288
1949 F20101108_AABWFT otero_j_Page_096.txt
29b6dfabd541fd1c75655b2ca35cc504
61400859c72e7d35b50ef9045296bdfeed299b78
3382 F20101108_AABWGI otero_j_Page_111.txt
3e42beeb56a6607a61af7a59f166826f
10cb81b5fb97d730c85fd8137d25455d8062c96c
3152 F20101108_AABVZZ otero_j_Page_087.pro
3ac68ae1da6bcd7a573f7644c0da0ef2
d35add273c5401e2d7d31693375fc189e8be7441
1474 F20101108_AABVDG otero_j_Page_020.txt
ec1a79fd8242e4810f0f17cf7608efc1
be06e1fbba3824b1a6085ad3de96420b89327593
1051911 F20101108_AABVCS otero_j_Page_009.jp2
fd5c9b083588817038eaec7ca5bd1589
19532b01442e3526bbc2b99e43565a102ef1768a
1833 F20101108_AABWFU otero_j_Page_097.txt
5e2979158ab7a1c8808e469dcc4abc66
872a967b9f68ed201e07739913623607d1907165
3101 F20101108_AABWGJ otero_j_Page_112.txt
f782325084e02b45cc0383fe869c7b1c
701e64d403446719b88a8aaeddcdf983faabb8b5
F20101108_AABVDH otero_j_Page_029.txt
9edcbda3c22eb82857979d25ea120cb7
61a6c83ec348edfdae870eecda7c448c19bc9dbb
6852 F20101108_AABVCT otero_j_Page_117thm.jpg
d7b367e9195707f7d5143b38842c106a
539cf2816ce5355cda9fc8d5981ef50c1c15c221
1536 F20101108_AABWFV otero_j_Page_098.txt
e94d5d0130e1a20dbe41b93afd0735d6
6e55d84ece1bfe197a56cd9d516cfae161b1206f
2499 F20101108_AABWGK otero_j_Page_113.txt
0b3a4ea2f83a52b239d22681690e10b0
e1a8debf2622c82ef23473f17f06c1a16948a40d
4519 F20101108_AABVDI otero_j_Page_134thm.jpg
ec5582cb080fb4098121ae859acd7f0b
9f28529ce7846f26d1b766d1cba11b9d41b517db
495 F20101108_AABVCU otero_j_Page_083.txt
01e0ad436dbcf41b1fe301f6a924c1cc
5ece8843b3decf8cc2aa87b31b1579912861b6dd
1425 F20101108_AABWFW otero_j_Page_099.txt
2354491a9eae4bfc8bd64ab2c90fc622
0deaee7a7e41aa315f75d03afd149ff134c3ecc7
2862 F20101108_AABWGL otero_j_Page_114.txt
e29dec60e663328338dcd286b71f6fce
2c790c3187e70844e7f61d0e3d183a0a3c83b2e5
110462 F20101108_AABVDJ otero_j_Page_070.jp2
3c30d11c600abe5e7581ddcfb55255cc
24e61d0d371324d8469125c643f89e32811d79b2
2421 F20101108_AABVCV otero_j_Page_010.txt
561cd72facc9c5f60db199dbc94fd388
0d1190797cc123a4eaa10547fd8ae01c69670393
1133 F20101108_AABWFX otero_j_Page_100.txt
ed7a4e8b8122cef35043c99f674b4756
aa5bb7b9f3985603b6d646538881ebc385bea292
2603 F20101108_AABWHA otero_j_Page_130.txt
c9478263e7e60d5f00eb8de1b1544dcc
c3f7dd7ff6768afb16d465a645b259f360c7f5f7
2252 F20101108_AABWGM otero_j_Page_115.txt
0693704c746857c5a1f0112b8a5bef3f
862b274815508318999cc8ef9bcaf879d3edbb69
5821 F20101108_AABVDK otero_j_Page_091thm.jpg
1bb7313ea64a5b53b427d7770235f980
1bb807dbb7a1267831b0fb5f6c116b7bea92134f
F20101108_AABVCW otero_j_Page_082.tif
633fc81d2ea5b933adfddb5600483e93
fedcc8c9e14b693f99635b5b6a28082a23f1ef60
1053 F20101108_AABWFY otero_j_Page_101.txt
f5d260bf011d5de6478d4c420c8a5b0c
be61b0e6639036dbfec25c50dc01c74a91f3598a
372 F20101108_AABWHB otero_j_Page_131.txt
81176dfbf7bd009308fc3f4d1b9eb870
1dbe312b3656a6a6ebd1f4cf66bbc265da170b8e
3531 F20101108_AABWGN otero_j_Page_116.txt
181d80251b29d17948c92f3176a6af14
a90eff37583f639ae0827c2996b7b03c83a467da
73851 F20101108_AABVDL otero_j_Page_072.jpg
1d369b6c60aec3c7b2e1b762914b704f
12e8484911e07a4a6a5cca9caff4b744371c06c2
6954 F20101108_AABVCX otero_j_Page_070thm.jpg
65172f4009edafe80cc4df03f3e36511
3d254dedea22ba17f3b6c42a32af1ba5ea0113be
1498 F20101108_AABWFZ otero_j_Page_102.txt
1e361865e4f30301cb2de417f9236bfd
b73df55ff7c0a51f7cf7f2567c71b2c321376135
826 F20101108_AABWHC otero_j_Page_132.txt
9f5e459fbc93202987882eecdf682486
eca6a8021cba922348e616185e30c0427d29d7b2
2132 F20101108_AABWGO otero_j_Page_117.txt
10fd905424e2628b50bd3c8e274feb29
f95afa4f9a911d129ea0eaeb078b793afa035553
24485 F20101108_AABVDM otero_j_Page_022.pro
f0f04e12f896566d2fa42222ade858a8
cb894bcd4c46ace2bea690f00bef7b2a3a71f0c7
35753 F20101108_AABVCY otero_j_Page_102.pro
57ccfc9ad8e5d8102d3ec9c53376188f
793f46cdfb4b2f6fb72e5f2ed82e7f7c7a7eb36d
67261 F20101108_AABVEA otero_j_Page_046.pro
8d09de47eb73eaa04c31f30011a5c6a6
903e73049f6e1e3a694c40f5719b2fa6b64779fe
993 F20101108_AABWHD otero_j_Page_134.txt
689f6cc333b297961ad0ea237445256a
01e069e1eb3375f82de6c53579ad7f610824aa09
2802 F20101108_AABWGP otero_j_Page_118.txt
654dc862ed5fc95bee8fd6112e452a24
030c989390abaa3323b1686c083379e9cd57176f
13606 F20101108_AABVDN otero_j_Page_083.QC.jpg
fac4e93b88d520df50cf84a2d352540c
46ef9a7fa12427efcfb0c8c377a82f555772f09e
F20101108_AABVCZ otero_j_Page_119.jp2
0bcc67acfc6a1abd55610a58ab08bcee
5530f771827cdfb308acece0de0f89a435db6d04
267 F20101108_AABVEB otero_j_Page_156.txt
afa09e95a01a3cb03524a606461a010d
e7c45cb569a715b631bca44baddef400ebb0ceaa
1076 F20101108_AABWHE otero_j_Page_136.txt
c2c2041870a73a05a11830b2e7194a89
7c8f4507edd1989cfaa62c98960833a025e33604
1894 F20101108_AABWGQ otero_j_Page_119.txt
ff49d55c717f7d3ab0a46b29e470a611
1621ec36990055788c9977eb420e0ca9a385ae6e
57255 F20101108_AABVDO otero_j_Page_052.jpg
775956ed79c70b9b3a1c345175a8befd
a56fae92390817278e8b59b4f6e0f0e563fd122b
70338 F20101108_AABVEC otero_j_Page_140.jp2
27461d587f3a43783dbd2f606e1abbc5
7adcb81691d8f61a837b4e4206989eea0021842c
1009 F20101108_AABWHF otero_j_Page_137.txt
22cb0527415e4f4a240930fa9ab5e2dd
bb26d5910d71578fb271ab4e0462b2cdaa4163f9
2354 F20101108_AABWGR otero_j_Page_121.txt
47394e85ca981686ae03db35e0d288ea
ef3c2201931c89b9cd4a06a7a43c1adac5d17e04
1572 F20101108_AABVDP otero_j_Page_079.txt
35cccbf4a1c6ca69bedf192b79dab7fb
5db4b28113da5c768b411f93adbf6cd871c70a16
230017 F20101108_AABVED otero_j_Page_090.jp2
5549d98519f8f8938fc35000e8afdcb6
e09a836f686fbb6e095eef1efcdb491ba9b8149a
991 F20101108_AABWHG otero_j_Page_138.txt
2aba2e4615607baa7acd385234c638a1
5c8b5f2139bd753054e81b6ed2a46a9a568ccae0
2946 F20101108_AABWGS otero_j_Page_122.txt
babf7bf0e229d1c595532ede7a2f6634
ac7cb72c114132c14d75eb1c04cbad4ff7da1833
5864 F20101108_AABVDQ otero_j_Page_006thm.jpg
e64bac9ed2cac58a8aa2316329489fb6
6b6ab96a420e4267fd57cb59eaf73c7faeb71c62
111692 F20101108_AABVEE otero_j_Page_029.jp2
202431ecd85d6c3578a742b14f36863f
9369e898d763c9b507d18ff45aa9d28367f42f91
F20101108_AABWHH otero_j_Page_139.txt
b7fa1e30f61947bf0283b2f0ce8a4b44
c175ed37962412722429e99af0610d24e4b224e4
2408 F20101108_AABWGT otero_j_Page_123.txt
81fd7fb6b3859c67aec492abb8d054a1
d4f6b5bae81189ffa63ad348c85842c176c6ba1b
32260 F20101108_AABVDR otero_j_Page_004.jpg
72075b81a6f6c3ca393994706c3ea78c
6f6be76abb772857de85789de9795d994207b31b
103247 F20101108_AABVEF otero_j_Page_111.jpg
e7240e28c602be54aec33d444dfeb23a
59ae71c53913bd17ad36ad568439f0c267026b44
1368 F20101108_AABWHI otero_j_Page_140.txt
22ce363f2dacc0d4c15e3c669080b17b
307b9f210796215e8b1ad611624a2c76d9229479
3262 F20101108_AABWGU otero_j_Page_124.txt
41a6471d60cb5b7878a023f324fcc0aa
34e753597e51cd193ff7f6b20836c80e23a1feb0
6417 F20101108_AABVDS otero_j_Page_014thm.jpg
4b6678daf0a489741bad7957f0db8622
7288aa7705e031cbe568c46dadd3c3d72a6dccea
6142 F20101108_AABVEG otero_j_Page_049thm.jpg
7aa511c935470ae84d7d1831a8f1d48b
2fef920d34423a06f2097f6aa68e4a5aa35dd8d0
1665 F20101108_AABWHJ otero_j_Page_141.txt
dd5defe3507050c51066033f18288571
65cd733b1346a7afa2e80e624ae10472b3a6942c
2961 F20101108_AABWGV otero_j_Page_125.txt
d36a4f5cf10582efe00d36e236c97789
9ad62020c5dc4a4ba56f96bad6dd0da5d1993cdb
18504 F20101108_AABVDT otero_j_Page_081.QC.jpg
f1bdcea5fb3abc2497ef4c502028f0cf
9311ea4da9c754f3bc8e214abb13c4f4846a5cd5
F20101108_AABVEH otero_j_Page_155.tif
4c61d970a555fc2a5622fed8e51d5461
84008d3eeede4871dba8c8ec31bd6a3d90c192a1
1362 F20101108_AABWHK otero_j_Page_142.txt
205a203fc4c148bc6da53e3c54130ea1
5f3c8d35bee5b9e1ce3f7bfeeabf57ea22da83b1
2532 F20101108_AABWGW otero_j_Page_126.txt
7df5325fe8c5945f89f5400668753a07
5de2f768904fa21e5a4ddc53ce611a6ea4f307b0
1914 F20101108_AABVDU otero_j_Page_081.txt
9efb583224a0e7d064571b88ff4b276a
62c88021ff449f9b5e14750bff50811943d97859
1107 F20101108_AABVEI otero_j_Page_135.txt
01a8d47fffe2a5105dc0776c45c2eab2
2c4e13fcfb23b15a4fbffb3ce63ea9b3070a1e2c
1632 F20101108_AABWHL otero_j_Page_143.txt
87de45904b0565770fcb9b7cc374c159
bbc355f6d83ad7671171e1b9db50ddcec76c8cac
3667 F20101108_AABWGX otero_j_Page_127.txt
6098c27b57d863981fa17dceebf0642e
1887d2a21c2da7139a9fc52c1a8d683900511f10
25034 F20101108_AABVDV otero_j_Page_016.QC.jpg
eb51af64c5ac2c9d68f7f1714b2499b0
03e7841c1694794c111be90d95d7064edde4a27d
F20101108_AABVEJ otero_j_Page_050.tif
294c192a86efa9520babdfc8f8f939ef
3b7e13a395c2d6d27affdcbb9f68a1541e179f27
2239 F20101108_AABWIA otero_j_Page_159.txt
64cc46c82f1674da15f3eb935205e18a
7134e31af32ce0a62479d39bee9cb3118843d302
3052 F20101108_AABWHM otero_j_Page_144.txt
3f0115d1062cf32f03ff2c7807287375
f9f6ee5a768298824ed0f2c11582fd832f2628e5
2786 F20101108_AABWGY otero_j_Page_128.txt
a81bd3b3d926790b13d0785adcdbabca
121783173b13dca51b872ecb7f41abc3f46ee309
32559 F20101108_AABVDW otero_j_Page_152.pro
766afdb64ed703d8a5e73479d485e309
15126c10dad2a7ff88b7380af491c1978cf62b90
16786 F20101108_AABVEK otero_j_Page_039.QC.jpg
4fd030c4324afb81d9cc9fc56a0d9263
4c5f7c0d5a8d3020c4fc1a5c3161eb5c03a1d6fa
628 F20101108_AABWIB otero_j_Page_160.txt
8bbba4199ae15e7d6f319bbde0865bcc
0e215c16f68fcf36b458d76e39b21b5f55f7d12d
2949 F20101108_AABWHN otero_j_Page_145.txt
06cbccc93245c1830c805b7a903c88ea
29436c23b07c46ee3de569cd1fc54cf16587f3da
2480 F20101108_AABWGZ otero_j_Page_129.txt
cbe1e4a090f6d0945c74298bcf84c240
91305b9e7cb6680e8d147fe51f542c2efb7d11e3
50012 F20101108_AABVDX otero_j_Page_042.pro
49308fc6c8864dd6b68db229921c6bd0
fa6887e94170ea268b3bf854337a1f4d34963294
7489 F20101108_AABVEL otero_j_Page_046thm.jpg
29154e589376157cfb15b6b6dc8eff7f
6ffc397ff2dd1ed7e79e026045628228ff4cdf99
900 F20101108_AABWIC otero_j_Page_161.txt
d1f40722a34025df62ba6ca0e103fffb
3fdc25ea7a3adddb6a8f28eaac26903f69444e8c
3024 F20101108_AABWHO otero_j_Page_146.txt
d582b780ed31a299601ec117cf4bb90f
9066bc8bb0421a72ffb9c207441592d946a6fff4
78968 F20101108_AABVDY otero_j_Page_030.jpg
2f92d3a02176507a1020b1b48821b853
5172d49f151220c762f65c3dc47322601cfb283d
48661 F20101108_AABVFA otero_j_Page_028.pro
86e66174d19e3dfd8966161deb92d43d
d7acb006ed4b7bb27ed33a940a281d7c0d1a991e
F20101108_AABVEM otero_j_Page_148.tif
95170a6333d56f5bec7ad11a37431cfb
ea7392fb7ca53b7d8b31136c96f8c8d746b270b7
2513 F20101108_AABWID otero_j_Page_001thm.jpg
05bea3016734b6446c081b54b6574b3a
c0c244ffb174fe9598b79ddfa874abdd1b59299d
873 F20101108_AABWHP otero_j_Page_147.txt
4df1b2545f3146600e5b8c55edd8e6a2
00d5eaed8ee24332ac6de05e44b0ce75b8c11111
54958 F20101108_AABVFB otero_j_Page_149.jpg
31adf256f10c957236f6c82a4edaca75
af9801698b393f9c5452107fe9d87edd53a42591
26260 F20101108_AABVEN otero_j_Page_032.QC.jpg
ce8a2d14c4c670d7746b5c0887a21894
b259a464d3cefe3d803ee5b082b5ee6a63756254
58999 F20101108_AABVDZ otero_j_Page_087.jpg
740c951225cedd6c816b31e91b7cd20b
1628d43b2e1f24192bdae95fd0d55838010a81a7
1838495 F20101108_AABWIE otero_j.pdf
b755a4c9aa24ba58e287c3c28c6fc6a5
50a7edc1c5cba4a956ad614d3be1ddbe56066d50
1367 F20101108_AABWHQ otero_j_Page_148.txt
616b968b4cdb457e46282c0815e9b63d
68d60d5b6e77ca3eac569f9284def59684101113
15089 F20101108_AABVFC otero_j_Page_134.QC.jpg
abf9ef701598970faf0f833fee9c45ee
808a92e527eeaaa92e0ccd1f1d188d20d4e94aeb
6669 F20101108_AABVEO otero_j_Page_145thm.jpg
6fdd63e9bfae83f9792066b235aab939
a4adda2c79c0c355469e9a44cb439c4dba635dc7
5777 F20101108_AABWIF otero_j_Page_141thm.jpg
eb4ef4263fddada54bfc5c5bb069f254
8661f5a3766a8d57aab303ebffdef48fb6cb5949
1346 F20101108_AABWHR otero_j_Page_149.txt
7553bc82c616a64b4e7b170c1b149754
594f463a142ba3381109a35409ae00c54101606b
F20101108_AABVFD otero_j_Page_042.tif
99e4802c5a7461f2e01de2e6796d78b0
ceb09307c940245dccd8f907b967e62b5bee6497
50077 F20101108_AABVEP otero_j_Page_024.pro
e204043ab1bd01f48dbbbe77d2b697e5
964aa06eba2fc10efeed5ee9d2d9b8a8351bd741
21004 F20101108_AABWIG otero_j_Page_010.QC.jpg
63b1a2f84669d67e1c3835d2faa007cf
6353012b948822f0a4c52a075a7af338e00ac65c
1230 F20101108_AABWHS otero_j_Page_150.txt
f71eb13f626a5b61d4a284792065cd0a
4bdbd6a136e76b59c7a97b4c65fe51a3d4961d8f
11528 F20101108_AABVFE otero_j_Page_093.pro
e84b238d58556d96565a4e33074c501c
5ccefd69838777c56fad5afa3597536c7b1e4a0f
78650 F20101108_AABVEQ otero_j_Page_056.jp2
3d32a3a8c6fe53087c283cfe12a9c858
93548201128b4b5d6aba82b6251dd4068bac1eb7
4933 F20101108_AABWIH otero_j_Page_140thm.jpg
c1ce1bb7f2f6fa47f13a7f7e8c206166
92c8c64ad70b382465120f95d436085c596eb2f2
1673 F20101108_AABWHT otero_j_Page_151.txt
e6a3d8dd34050a93455d69fc817c4758
343113becf199f333841c54dffc12fd1434c1da5
45693 F20101108_AABVFF otero_j_Page_042.jpg
fed3280e172351094d009b715ae173dd
861476b4de5066fc6b722034b3d77f75059b0a7d
3895 F20101108_AABVER otero_j_Page_042thm.jpg
6f0312452435c6f36971d97f1a26cbf7
2b71a1fa0f0a3c7322fdc551b91b4530b37b02f7
3237 F20101108_AABWII otero_j_Page_079thm.jpg
8576529551ae0c175e6cee85528f6eab
dfde481c3e485436f5f98652e42cea3054a25263
1628 F20101108_AABWHU otero_j_Page_152.txt
16f7e439070db1182ece54973dd30617
ad76aaaaceff86a14689e0f825f565b0c7e91a3c
12861 F20101108_AABVFG otero_j_Page_086.QC.jpg
e65d5a198665d618db8e5e44221af6bd
f50458f34471feb918c0825a33d58f85ccad0728
56887 F20101108_AABVES otero_j_Page_135.jpg
20c0a05cf921ded49dbb4dc97e7a9598
009ae1b642cb399b6905de61dd20970a15362239







DEVELOPMENT OF A RATIONAL DESIGN APPROACH (LRFD phi) FOR DRILLED
SHAFTS CONSIDERING REDUNDANCY, SPATIAL VARIABILITY, AND TESTING
COST



















by

JOHANNA KARINA OTERO


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007





































O 2007 Johanna Karina Otero




























To my parents Maria Isabel Sanchez and Rafael Otero who have supported me all the way since
the beginning of my studies, and to Enrique who accompanied me on this last stage









ACKNOWLEDGMENTS

I would especially thank to my advisor, Dr. Ralph Ellis, for his generous time and

commitment. His permanent conviction on my professional capacity during my doctoral work

made this research a reality. Also, thanks to Dr. McVay for to share part of his geotechnical

knowledge. Special thanks go to Dr. Guerly for his supervision and technical support on the

stochastic world.

I would like to acknowledge Dr. Horhota and the Florida Department of Transportation

(FDOT) State Material Office for providing the funding and help for this research proj ect.

Thanks also go to Farouque, Haki and Enrique who assisted me on different stages of the proj ect

investigation.












TABLE OF CONTENTS


page

ACKNOWLEDGMENTS .............. ...............4.....


LIST OF TABLES ................. ...............8..___ .....


LIST OF FIGURES .............. ...............10....


AB S TRAC T ............._. .......... ..............._ 12...


CHAPTER


1 INTRODUCTION ................. ...............13.......... ......


Introducti on ................. ...............13.................

Background .................. ...............13.................
Site Characterization .............. ...............14....
Subsoil Exploration ................. ...............14.......... .....
Geotechnical variability ............... ...............14....
Conventional geotechnical modeling ................. ...............15........... ....
LRFD ............... ......... .._ .. ......__ .. ...........1
FMOS First Order Second Moment .....__.....___ ..........._ ...........1
Reliability index .................... ...............20.
Solving for the resistance factor .....__.....___ ..........._ ............2
Problem Statement ............ ..... ._ ...............23....

Obj ectives ................. ...............24._ ___......
M ethod s .............. ...............24....


2 LITERATURE REVIEW ............_...... ._ ...............27...


Static and Dynamic Field testing of Drilled Shafts ................... .....___ ... ....__........2
Modeling Spatial Variability in Pile Capacity for Reliability-Based Design .......................28
Reliability-Based Foundation Design for Transmission Line Structures ............... .... ...........29
Transportation Research Board Circular E-CO79 ................. ...............30........... ...
Estimation for Stochastic Soils Models ............ .....___ ...............31.
Practice of Sequential Gaussian Simulation .................. .... ....... ........ ................... .......3
Bearing Capacity of a Rough Rigid Strip Footing on Cohesive Soil-a Probabilistic
Study .............. ...............32....

3 DATA COLLECTION ................. ...............35................


Existent Data Collection ................. ...............35........... ....
New Field Data Collection .............. ....... ...............36
The Fuller Warren Bridge (District 2)............... ...............37...
17th Street Bridge Fort Lauderdale (District 4)................... ...............3











4 GEOSTATISTICS AND NUMERICAL MODEL .............. ...............45....


Geostati sti cs ................. ...............45......_.._ ....

(Semi) Variogram ............ ..... ..__ ...............46...
Semivariogram models............... ...............47.
Anisotropy ................. .......... ...............48.......
Covariance and correlogram .............. ...............49....
Kriging ................. ....._ ...............49......
Types of Kriging .............. ...............51....
Stochastic Simulation .................. ...............53..
Sequential Gaussian simulation .............. ...............53....
Software ................. ...............54.................
Numerical M odels ............... .. ............. ...............5
FLAC3D (Fast Lagrangian Analysis of Continua) .............. ...............57....

5 DATA ANALYSIS .............. ...............65....


Cases Studies .............. ...............65....
Full er Warren ................. ...............65.................
Summary Statistics .............. ...............65....
Spatial Continuity ................. ...............66.......... ......
Fuller Warren Semivariogram ............ .......__ ...............67..
17th Street Brid ge ............ ...... ._ ...............68..
Summary Statistics .............. ...............68....
17th Street Bridge Semivariogram .............. ...............68....
17th Street Bridge Simple Kriging ..................... ...............69 ....
17th Street Bri dge S equential Gaus si an Simul ati on ................. ............... 69...........
17th Street Bridge Random Field Model ................. ...............69........... ..
17th Street Bridge Finite Elements Analysis............... ...............70
17th Street Bridge Determinist Capacity ................. ...............71...............
17th Street Brid ge Parametric Study ................ ... .......... ........... ........7
17th Street Bridge Comparison of Deterministic and Predicted End Bearing .................73
17th Street Bridge LRFD Phi Factors .............. ...............73....

6 COST ANALYSIS .............. ...............95....


Factor Influencing Cost .............. ...............95....
Drilled Shaft Cost and Excavation .............. ...............96....
Soil Boring Test Costs ............ ..... ._ ...............97...
Relative Costs Analysis .............. ...............97....
Drilled Shaft Cost ............ ..... ._ ...............97...
Drilled Shaft Excavation .............. ...............98....
Boring Test Cost............... ...............98..

7 CONCLUSIONS AND RECOMMENDATIONS .......___......... .........___......105











APPENDIX

A DATA FROM STATIC AND DYNAMIC FIELD TESTING OF DRELLED SHAFTS
(FULLER WARREN AND 17TH STREET BRIDGE) .............. ...............107....

B SOIL BORING DATA FROM FIELD INVESTIGATION PROCESS SED BY MSO.........11 1

C SOIL BORING INFORMATION PROCES SED ............ ..... .__ ........._.......12

D FREQUENCY DISTRIBUTIONS .............. ...............13 1...

E SGS RANDOM FIELD TABLES ............ ..... ._ ...............140..

F FLAC3D PROGRAMMING MODELS .............. ...............150....

G UNIT COST DATA .............. ...............157....

LIST OF REFERENCES ................. ...............159................

BIOGRAPHICAL SKETCH ................. ...............161......... ......










LIST OF TABLES


Table page

2-1 LRFD $ Factors, Probability of Failure (Pf) and Fs Based on Reliability $ for
Nearest Boring Approach. ............. ...............34.....

2-2 LRFD $ Factors, Probability of Failure (Pf) and Fs Based on Reliability $ for
Random Selection ................ ...............34.................

3-1 Measured Unit End Bearing from Load Tests. ............. ...............39.....

3-2 17th Street Bridge Soil Boring Data (State Proj ect No. 86180-1522) ............... .... ...........40

3-3 Fuller Warren State Materials Office Soil Laboratory Data ................. ............. .......41

4-1 Commercially Available Numerical Programs for Rock Mechanics Study. .....................59

4-2 Sequential Gaussian Simulation Data Values ................. ........._.. ...... 60_._. ...

4-3 WINTSLIB SGS Example Results............... ...............60

5-1 Fuller Warren Bridge Soil Boring Information. ............. ...............77.....

5-2 Fuller Warren Soil Boring Modified Data. .............. ...............78....

5-3 Table 17th Street Bridge Soil Boring Information. ............. ...............80.....

5-4 17th Street Bridge Wingslib Results ................. ...............81........... ..

5-5 M material Properties............... ..............8

5-6 17TH Street Bridge Cohesion Mean Results Values from Simulations ................... ...........81

5-7 17TH Street Bridge End Bearing Capacity Mean Values from FLAC3D ................... .......81

5-8 17TH Street Mean, Standard, and COV of Predicted End Bearing Capacity Bias .............81

5-9 17TH Street Bridge $ Values for different Reliability Index P FOSM (Traditional). .........82

5-10 17TH Street Bridge $ Values for different Reliability Index P FOSM (Modified) ............82

5-11 17th Street Bridge COV and h............... ...............82...

6-1 FDOT Item Average Unit Cost Database. ............. ...............99.....

6-2 Summary of Drilled Shaft of 48" Diameter (0455 88 5). ............. .....................9

6-3 Summary of Excavation Shaft of 48" Diameter (0455 122 5) ................. ............... ....99










6-4 Summary of Soil Lab from 2003 to 2007 .............. ...............99....

6-5 Summary of Drilled Shaft Cost (Material, labor) for $ Factors FO SM ................... ....... 100

6-6 Summary of Drilled Shaft Cost (Material, labor) for $ Factors FOSM (Modified)........ 100

6-7 Summary of Drilled Shaft Cost Excavation for $ Factors FO SM ................. ............... 100

6-8 Summary of Drilled Shaft Cost Excavation for $ Factors FOSM (Modified). ................ 100

6-9 Average Cost for a 1 foot length and 4 feet Diameter Drilled Shaft, (One Soil
Boring) ........... ..... .. ...............101...

6-10 Average Cost for a 1 foot length 4 feet Diameter Drilled Shaft, (Five Soil Boring).......101

6-11 LRFD $ Factors, Probability of Failure and Fs Based on Reliability, P for Nearest
Boring Approach ................. ...............101................

A-1 Fuller Warren Bridge Soil Boring Data. .............. ...............107....

A-2 17th Street Bridge Soil Boring Data. .............. ...............109....

B-1 17th Street Soil Boring Data ................. ...............111........... ..

B-2 Fuller Warren Soil Boring Data ................. ...............123..............

C-1 17th Street Bridge Processed Soil Boring Data. .............. ...............128....

C-2 Fuller Warren Bridge Processed Soil Boring Data ................. ............................130

E-1 17th Street Bridge SGS feetet. ............. ...............140....

E-2 17th Street Bridge SGS (5feet). ............. ...............142....

E-3 17th Street Bridge SGS (12 feet). ............. ...............144....

E-4 17th Street Bridge SGS (20feet). ............. ...............148....

F-1 FLAC Results.............. .............150.











LIST OF FIGURES

Figure page

1-1 Location of Boundaries between Materials. ............. ...............26.....

1-2 Litho Logical Heterogeneity. ............. ...............26.....

1-3 Inherent Spatial Soil Variability. ............. ...............26.....

3-1 Load Test Bridge Locations ........._.__ ......._._ ...............43..

3-2 Fuller Warren Bridge Shaft Locations. .............. ...............43....

3-3 Fuller Warren Bridge during Site Inspection ................. ...............44........... ..

3-4 17th Street Bridge Load Test Location. .............. ...............44....

4-1 Semivariogram Model. ............. ...............61.....

4-2 Most popular Semivariogram Models. ............. ...............61.....

4-3 Semivariogram and Covariance. .............. ...............62....

4-4 Numerical Approaches to Model an Excavation in a Rock Mass .............. ...................63

4-5 WINTSLIB SGS Example Location Data Values. ............. ...............63.....

4-6 WINTSLIB SGS Example Results Graph............... ...............64.

5-1 Fuller Warren Soil Boring Location. ............. ...............83.....

5-2 Fuller Warren Histogram CBl1................. ...............83.___ ...

5-3 Fuller Warren Histogram CB2 ................. ...............84........... ...

5-4 Fuller Warren Histogram CB3 ................ ...............84........... ...

5-5 Fuller Warren New Borings Frequency Distribution qu, qt and RQD. ............. ................85

5-6 Frequency Distribution for quqt ................. ...............86........... ...

5-7 Fuller Warren Bridge quqt and E Correlation............... ..............8

5-8 17th Street Soil Boring Locations ................. ...............87........... ..

5-9 17th Street Frequency Distribution............... ..............8

5-10 17th Street Semivariogram .............. ...............89....



10










5-11 17th Street Bridge Correlation quqt vs E. .............. ...............90....

5-12 17th Street Bridge FLAC Model Grid .............. ...............91....

5-13 17th Street Axial Force vs Pile Displacement .............. ...............92....

5-14 17th Street Correlation Length vs Cohesion Mean ................. ...............93........... .

5-15 17th Street Correlation Length vs Total Bearing Capacity ................. .......................93

5-16 17TH Street Correlation length vs End Bearing Capacity ................. ........................94

6-1 FDOT Basis of Estimates Handbook Description for the Item 455 88 "Drilled Shaft"..102

6-2 FDOT Basis of Estimates Handbook Description for the Item 455 122 "Unclassified
Shaft Excavation". ........... ...............103.....

6-3 Example of the 2006 Item Average Unit Cost for the Items 455 88 5 and 455 122 5.....104

D-1 Total Capacity Frequency Distribution 5 feet Correlation Length ................ ...............131

D-2 Total Capacity Frequency Distribution 12 feet Correlation Length .............. .... ........._..131

D-3 Fuller Warren Bridge Old and New Borings. ............. ...............132....

D-4 Fuller Warren Bridge Old Borings. ............. ...............133....

D-5 Fuller Warren Bridge New Borings ................. ...............134..............

D-6 17th Street Bridge Old and New Borings. ............. ...............135....

D-7 17th Street Bridge New Borings ................. ...............136........... ..

D-8 Fuller Warren Bridge New Boring CBl1 ........................... ........137

D-9 Fuller Warren New Boring CB2. ................ ...............138..............

D-10 Fuller Warren New Boring CB3 .............. ...............139....









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DEVELOPMENT OF A RATIONAL DESIGN APPROACH (LRFD phi) FOR DRILLED
SHAFTS CONSIDERING REDUNDANCY, SPATIAL VARIABILITY, AND TESTING
COST


By

Johanna Karina Otero

December 2007

Chair: Ralph Ellis
Cochair: Michael McVay
Major: Civil Engineering

New designs move toward larger single shaft, so the need to improve LRFD resistance

factors, 4, for non- redundant shaft, emerge. In general geotechnical design practice involve

analysis using representatives values of design parameters,(like strength, recoveries, etc), usually

an average or lowest value obtained from field and laboratory test results. It followed by an

application of a suitable factor of safety. In nature soil parameter varies in horizontally and

vertically direction, so our research used the same soil boring parameters, but this time use

information obtained from sites localized close to the design site instead using the whole site

average. Random soil models were created based on geostatistics analysis using soil parameters.

The created random soil models were used on a finite element program that modeling a three feet

diameter, twenty feet long drilled shaft, giving the drilled shaft capacity for each random soil

model and a suitable, 5, factor.










CHAPTER 1
INTTRODUCTION

Introduction

This research initiative was based on the need to improve the LRFD resistance factors, 4,

for non- redundant shaft design, due the new designs methods moves toward larger single shaft

design (e.g. Cross -Town, New River, etc).

Most geotechnical analysis in general practice involve analysis using representatives

values of design parameters,(like strength, recoveries, compressibility, etc), usually an average or

the lowest value obtained from field and laboratory test results, and it followed by an application

of a suitable factor of safety to get an allowable loading condition. However, in nature soil

parameter varies in both horizontally and vertically direction.

Our case used the same soil boring parameters than those used on most geotechnical

analyses, but this time use information obtained from sites localized close to the design site

instead using the whole site average. Random soil models were created based on geostatistics

analysis using soil parameters. The created random soil models were used on a finite element

program that modeling a six feet diameter, twenty feet long drilled shaft, giving the drilled shaft

capacity for each random soil model.

Additionally, a cost comparison between using the actual method involving an increment

on the drilled shaft construction due to using a bigger LRFD resistance factors, 4. And using the

proposed LRFD resistance factors, 5, but with an increment on additional field coring of rock

around the location where the shaft will be is accomplished.

Background

Foundation design depends basically on the engineering properties of the soil or rock that

is supporting the foundation. But the soil characteristics at any site frequently are non-










homogeneous, that means that the soil profile may vary. Therefore, for estimate the natural soil

or rock in-situ properties, it is necessary to pass by two phases; site characterization and subsoil

exploration.

Site Characterization

On this phase, the engineer glances for formation of the soil origin and alterations that

usually are caused by the environment processes, like chemical weathering and the introduction

of new substances. Those alterations vary on space and time. If the engineer has an

understanding of soil formation and later alteration of geotechnical materials, he will have a

better acknowledge of the material variability and the behavior that it could have during

construction process and structure lifetime.

Subsoil Exploration

This phase is where the engineer obtains information that assists him/her on calculations of

the load bearing capacity of the foundation, estimation of the possible settlement of a structure,

establishing foundation problems, choosing the appropriate foundation type, and determining

construction methods for changing subsoil condition. The subsoil phase has three basic steps;

collection of preliminary information, reconnaissance and site.

Geotechnical variability

Natural soils are rarely homogeneous and highly variable in their properties. This soil

variability can be classified into three main categories. The first is the location of boundaries

between materials (see Figure 1-1). The second is litho logical heterogeneity that is the locations

of anomalies, or areas of significantly differences properties, within a single material type (see

Figure 1-2). And the third is inherent spatial soil variability (see Figure 1-3). Soil and rock

material vary so that a property measures at two different points will have different values,

assuming no error on measurement.









Conventional geotechnical modeling

The conventional method of modeling soil structures is to evaluate the results from field

testing studies and then to make soil profiles. In theses profiles, each layer is assumed to be

homogeneous with singles values for the engineering properties of each layer. This properties

information is obtained from in situ soil testing and lab testing. This information is evaluated

later by the engineer and a single conservative value is chosen to represent the property of the

material. The variability normally is not quantified.

The usual design practice for soil design is deterministic. This involves the estimation of

ultimate bearing capacity using average values of design parameters and application of a suitable

factor of safety (F) to arrive an allowable bearing capacity (Griffiths & Fenton 1999).

LRFD

The purpose of foundation design is to guarantee that a system achieves adequately in its

design life. However, there are some uncertainties on the two phases described above, (site

characterization and subsoil exploration) that make it impossible to ensure that any unfortunate

performance will occur under all possible circumstances.

Foundation failures are always undesirable events. They occur for diverse reasons,

negligence, lack of knowledge, greed, etc. The probability of failure is often higher for projects

involving new materials, technology, and extreme parameters (larger shaft diameter) for which

there is little or no prior experience. Therefore, the design provisions include built-in safety

margins: load effects are usually overestimated and resistances are underestimated. In load and

resistance factor design (LRFD), load components are multiplied by load factors and resistance is

multiplied by a resistance factor. The basic equation is:

(Rn Eli Qi (1-1)










Where vi is a load factor applied to load components Qi and $ is resistance factor applied

to the resistance (measured of load carrying capacity) Rn In words it equation says that the

capacity of the foundation (modified by the factor 4) must be larger than the total effect of all the

loads acting on it.

The mention above design formulas are developed by code committees with input from

practicing engineers, researchers, and scientists. However, things are changing and there are new

requirements that need to be satisfied, for example moving toward larger single shaft

construction. New rules are required, for example "field coring of rock at the location of the as

built non-redundant shaft" (FDOT Structures Bulletin, 2005). Similar to cycles, new requirement

results could improve the formulas over again.

The goal of load and resistance factor design (LRFD) analysis is to develop factors that

decrease the nominal resistance to give a design with an acceptable and consistent probability of

failure. To accomplish this, an equation that incorporates and relates together all of the variables

that affect the potential for failure of the structure, must be developed for each limit state. The

parameters of load and resistance are considered as random variables, with the variation modeled

using the available statistical data. A random variable is a parameter that can take different

values that are not predictable. An example is compressive strength of the soil, qu that can be

determined using a testing machine.

There are three levels of probabilistic design: Levels I, II, and III (Withiam et al. 1998;

Nowak and Collins 2000). The Level I method is the least accurate. It is sufficient here to point

out that only Level III is a fully probabilistic method. Level III requires complex statistical data

beyond what is generally available in geotechnical and structural engineering practice. Level II

and Level I probabilistic methods are more viable approaches for geotechnical and structural










design. In Level I design methods; safety is measured in terms of a safety factor, or the ratio of

nominal (design) resistance and nominal (design) load. In Level II, safety is expressed in terms

of the reliability index, P. The Level II approach generally requires iterative techniques best

performed using computer algorithms. But for simple cases, there are available closed-form

solutions to estimate p. Closed-form analytical procedures to estimate load and resistance factors

should be considered approximate, with the exception of very simple cases where an exact

closed-form solution exists (Calibration to Determine Load and Resistance Factors for

Geotechnical and Structural Design 2005).

For LRFD calibration purposes, statistical characterization should focus on the prediction

of load or resistance relative to what is actually measured in a structure. Therefore, this statistical

characterization is typically applied to the ratio of the measured to predicted value, termed the

bias. The predicted (nominal) value is calculated using the design model being investigated. Note

that the term bias factor (or bias) is typically defined as the ratio of the mean of the measured

value divided by the nominal (predicted) value. However, for the purposes described herein, the

term bias is used to refer to individual measured values of load or resistance divided by the

predicted value corresponding to that measured value.

Regardless of the level of probabilistic design used to perform LRFD calibration, the steps

needed to conduct a calibration are as follows:

* Develop the limit state equation to be evaluated, so that the correct random variables are
considered. Each limit state equation must be developed based on a prescribed failure.

* Statistically characterize the data. Key parameters include the mean, standard deviation,
and coefficient of variation (COV) as well as the type of distribution that best fits the data
(i.e., often normal or lognormal).

* Determine load and resistance factors using reliability theory. It must be recognized that
the accuracy of the results of a reliability theory analysis is directly dependent on the
adequacy, in terms of quantity and quality, of the input data used. The final decision made










regarding the magnitude of the load and resistance factor selected for a given limit state
must consider the adequacy of the data. If the adequacy of the input data is questionable,
the final load and resistance factor combination selected should be more heavily weighted
toward a level of safety that is consistent with past successful design practice, using the
reliability theory results to increase coming as to whether or not past practice is
conservative or nonconservative exists (Calibration to Determine Load and Resistance
Factors for Geotechnical and Structural Design 2005).

Current assessment of drilled shaft skin and tip resistance is performed on laboratory rock

core samples (unconfined compression, split tension, and intact Young's Modulus) recovered

from a site. Generally, all the samples are averaged over the whole site using either a log normal

distribution or arithmetic mean throwing out one standard deviation above and below.

Unfortunately, these methods don't account for spatial variability of strength and voids, i.e.

recoveries at a specific locale, which is important for end bearing for a particular shaft. For this

stage a probabilistic approach (Monte Carlo, Bayesian etc.) will be developed to identify the

local strength, recovery, etc. for a specific shaft (i.e. use data near location) as well as for the

whole site. From the specific locale data, LRFD resistance factors, 4, may be determined for end

bearing based. The LRFD resistance factors, 4, for end bearing will also be determined using the

geometric mean (lognormal) from the whole site as well. The FDOT online Internet Foundation

Database (e.g. Osterberg, Statnamic results) has sufficient laboratory data to determine LRFD

resistance factors,$, for end bearing on a site basis, but not for a specific location within a site.

Additionally, there are many methods have been developed to calibrate the LRFD

resistance factors using statistical data. FOSM (First Order Second Moment) is popular because

it does not require a computer program to find the results. FORM (First Order Reliability

Method) is more complicated that FOSM and iterates to find a solution. Each of these methods

results in a different set of resistance factors. The one used on this research was the FOSM.









FMOS First Order Second Moment

FOSM state for First Order Second Moment, First Order because use the first-order terms

in the Taylor series expansion, Second moment because only means and variance are needed.

It has been used (NCHRP 507, 2004) to calibrate LRFD factors using a statistical dataset

containing the measured and predicted resistances. The bias of member i of the dataset is

defined as,


A, = r'" (1-2)


where hi is the bias, rm is the measured resistance, and rn is the nominal resistance. Each

element in the dataset will have a corresponding bias. The average of these biases is found with

the following equation.


E[il ]= (1-3)


where N is the number of elements within the dataset. The standard deviation of the

dataset is,


cr, =(1-4)
N-1

The coefficient of variation (COV) of the bias data is,


COV[il,]= (1-5)


The reliability index is found using a function of the two random variables R, resistance

and Q load. Assuming RN and QN are normally distributed, this combined function would be,

g(R, Q,)= R,- Q,(1-6)









When QN is larger then RN, g() is negative. Therefore, failure can be defined as when g()

is less then or equal to zero. However, FOSM assumes that the load and resistance random

variables are lognormal random variables, this limits the load and resistance values to only

positive numbers.

Now considering the relationship between a normally distributed random variable RN, and

a lognormal random variable R,

R = eRN
(1-7)
In (R) = R,

Writing the g(R,Q) equation in terms of lognormal random variables yields,


g(R, Q) = In(R) -InQ) = In R (1-8)

This equation is equivalent to the first definition of g(R,Q). When R is less then Q g() will

still be negative. The g(R,Q) function is a random variable.


G = g(R, Q) = Ini~ (1-9)


Yet, R/Q is a lognormal random variable. Therefore the distribution of In(R/Q) is normal.

This results in the random variable G having a normal distribution.

Reliability index

The reliability index (P) is defined as the mean value of G (E[G]) divided by the lognormal

standard deviation of G (r(G).

E[G]
P = (1-10)
CG

As previously defined,

G= In(R) In() (1-11)









with R and Q being lognormal random variables. This yield,

E[G] = E[1n(R)] E[1n(Q)]

E [R, ] E[Q, ]
E[G=ln1J+(COV[Rhi])2 n-1+(COV[Q,])22




E[G]= In ER J+ CI[(,) (1-12)
E[Q, ] J1+(COV[R,])2

With RN and QN being normally distributed, so that E[RN] and E[QN] are the normal

means. The coefficients of variation are also calculated using the normal means and normal

standard deviations.

icG = In[(1+(OIR.~)(1+V[R'T,])2)1+CO[Q])). (1-13)

This results in the reliability index being defined as:

E[R, ] J1+(C'OV[Q,])2
E[Q, ] 1+(C'OV[R,])2]
P = (1-14)
IJn[(1+ (CIOV[RI, ]:)2)(1+ (CO V[Q,])

Solving for the resistance factor

The following derivation for the resistance factor is based largely on NHI 1998. Solving

for the resistance factor begins with the fundamental LRFD equation.

95 r,' > r 9, (1 15)

In this equation rn stands for the nominal resistance. Solving for the resistance factor and

plugging in the bias yields:











RN = r, AR
E[R,]i= r, -E[ilR] (1-16)
r=E [R, ]
"E[ AR]


E [ AR
>2 C q (1-17)
E [R, ]

E[RN] is the expected value of the normally distributed resistance random variable. The

next step involves solving the reliability index equation previously derived (equation 1-14) for

the E[RN] term.

E:[Q, ]- eP'.`Iln[(1+(r,~CO~V[R]))(+(OVQg)
E [R, ] = (1-18)
(1+(COV[Q, ])2)
(1 +(CO V[R, ]) 2

This is then substituted into the fundamental LRFD equitation .

(1+(COV[Q, ])2)
E [~] ARr,
(1+(COV[R, ])2 2
~= (1-19)
E[Q), ]- esO.41n~'-C~I[("'1+(COV[Ry])~2)1(O[]2

NHI 1998 represents the coefficient of variation of the load as,

(COV[Q])2 = (COV[QD])2 +(COV[QL])2 (1-20)

and rewriting this equation for dead and live loads yields,

(1+(COV[QD])2 + (COV[QL])2)
E[il AR QD Dy Q L,+y,q
(1 +(CO V[R, ]) 2
~= (1-21)
E:[Q, ]- eP'.`Iln[~l~~~(1+j(CO[)2(+CV[D)+CO[L)

With,










E[Q,]i= E[iQD D q + E[il, ]- q,


(1-22)


Where hQD and hQL are the dead and live load bias factors respectively. This results in,

(1+(COV[QD])2 + (COV[QL])2) D
E[il AR, QD QOL
(1 +(CO V[R, ]) 2 4L
~= (1-23)
+ :/iDr i.e 1ly-In(1+(COV[RN])2)(1'+(CVOD~COV[Q]2(OV[L)


This equation is used to calibrate the resistance factor using the FOSM method. It is

dependent on the target reliability index and the ratio of dead to live load.

Problem Statement

In the last 20 years, the use of drilled shaft foundations as an alternative to driven piles for

supporting bridges has become common practice. Reasons for their use are: 1) higher resistance

to lateral loads such as wind loads (e.g. hurricanes etc.) and ship impacts, 2) need to minimize

construction noise and vibration in urban areas, 3) right of way constrains which require minimal

foundation footprints and 4) the economy of replacing large number of piles with a single or few

drilled shaft with out pile caps. Also with the introduction of larger and more autonomous

equipment, and the aspiration to reduce costs, shaft diameters have been getting larger and

larger.

Due to the loss of foundation redundancy or the move toward larger single shaft

construction (e.g. Cross-Town, New River, Ringling, etc.), field coring of rock at the location of

the as built non-redundant shaft is now required (FDOT Structures Bulletin, 2005). However, to

accurately assess skin and end bearing of a non-redundant shaft, the need for coring in the

vicinity of a proposed shaft during the design phase is also of strong interest. For instance, the

thickness of limestone layers, recoveries (voids), strength and compressibility in the near vicinity

of the shaft may significantly improve the LRFD resistance factors, 4, for design. Consequently,










there is a strong need to assess the LRFD resistance factors, 4, for shaft design, e.g. end bearing,

based on the frequency distribution of strengths, recoveries and compressibility data for the

whole site vs. a specific location, especially for non-redundant shafts. In addition, there is the

question as to the number of cores, samples etc. to ensure a specific reliability.

Fortunately, a probabilistic based LRFD resistance factor assessment answers the latter

questions. For instance, using a Monte Carlo or Bayesian theory, strength, compressibility, etc.,

statistical (mean, standard deviation, etc.) properties for a specific shaft or for the whole site may

be generated from core and laboratory data near a specific shaft or over the whole site. Using

random sampling, kriging, Sequential Gaussian simulation, end bearing, etc. may be computed

for a specific shaft or for all the shafts on the site. It is expected that the difference in LRFD

resistance factors for end bearing will be significant different if applied at a specific location vs.

the whole site.

Obj ectives

1. To estimate the influence of the spatial variability of a site on the selection of Load
Resistance Factor Design.

2. To assess the resistance factors, 4, for drilled shaft design applying the modified FOSM
(First Order Second Moment), based on the frequency distribution of strengths, recoveries,
compressibility data and spatial variability.

3. To calculate testing cost and compare those against the final shaft built cost. This
comparison will be done by assuming spatial variability testing influences.



Methods

The method used in this research was the Empirical. It explains the data collected through

the development of a model that hypothesizes about the relationship between the data and

relevant variables of the environment. The empirical research is grounded in reality rather than in









some abstract territory. The base for this research was soil data, and was done in five stages.

Therefore, the abstract was replaced by collected data.

The five research stages were literature review, lab and field data collection, data analysis,

LRFD resistance factor development and cost comparison. Each of these stages will be explained

in details in further chapters.



























Figure 1-1. Location of Boundaries between Materials.






Petles








Bedrock


Figure 1-2. Litho Logical Heterogeneity.


0.00
-40-

-45-

-50-


0 -60


-65-

-70 -


20.00 40.00 60.00 80.00 100.00 120.00


qu (tsf)


Figure 1-3. Inherent Spatial Soil Variability.










CHAPTER 2
LITERATURE REVIEW

The LRFD resistance factors,$, for end bearing, is determinate without have into account

spatial variability of strength and voids. On larger single shaft construction, spatial variability is

important due to large cost involves on construction. The basis for below literature review was

spatial variability, Reliability-Based Design, LRFD resistance factor design, and limestone

parameters.

Static and Dynamic Field testing of Drilled Shafts

The "Static and Dynamic Field testing of drilled shafts" (FDOT and UF) past geotechnical

research, is the first part of this research. One of the principal founding of that study was the

proposed LRFD resistance factor, 4, and ASD factor of safety for O'Neill end bearing. However,

that research required include additional rock properties to the study (i.e. mass modulus of the

rock) or simply add variables that can improve the LRFD resistance factor that were reached (i.e.

spatial variability).

The "Static and Dynamic Field testing of drilled shafts" basically shows the necessity of

have into account the drilled shaft unit bearing on design. It due many designers either neglected

or uses a small nominal value. However, evident from the Osterberg tip results significant end

bearing has been generated on drilled shaft founded in Florida Limestone.

The study follows the O'Neill tip resistance model, which identify tip resistance vs. tip

displacement. The approach is dependent on the rocks' compressibility (i.e., Young's Modulus,

E) and strength (qu) characteristics.

The procedure used there was the computation of all the tip resistances vs. tip displacement

for the entire Osterberg tests available at that moment (six locations in total). It had two different

approaches for each location, nearest boring (between 100 ft) and Random Selection based on all









the site selection. For each available test, a comparison between measured and predicted FDOT

failure resistance is made. Furthermore, the same comparison was complete for nearest boring

and random selection.

The LRFD specifications as approved by AASHTO recommend the use of load factors to

account for uncertainty in the load, and resistance factor to account for uncertainty in the

materials. Therefore, this research followed the AASHTO recommendation saying that a

probabilistic approach for estimating resistance factors be used on a database of measured and

predicted values. From that procedure LRFD 4 factors, Probability of failure (Pf) and Fs Based

on Reliability 4 for nearest boring and random selection approach were calculated. Table 2-1

and Table 2-2 showed the results obtained in the Static and Dynamic Field testing of drilled

shafts research. On the first column is the Reliability for drilled shafts. The Second column is the

LRFD factor. And, the fourth and fifth columns pertain to probability of failure and factor of

safety .

Comparing the LRFD factor from nearest boring and random selection results, the nearest

boring has higher resistance factor for the same design approach. Based on this study results

evidently, the use of the nearest boring greatly diminished the variability of rock properties and

the subsequent mobilized unit end bearing.

Modeling Spatial Variability in Pile Capacity for Reliability-Based Design

The American Petroleum Institute (API) recommends using site-specific data for soil

properties when developing pile capacity profiles for offshore structures (API 1993). However,

there are many situations where this site-specific information is not available or would be costly

and time consuming to obtain. It is therefore advantageous to be able to predict the expected pile









capacity at a site that does not have a site-specific soil boring by using the properties of the

offshore field as a whole.

This paper does the introduction to the development of a site-specific model for predicting

axial side capacity, which is the first step for a achieving the same level of reliability in design at

a site whether or not a soil boring has been drilled at that site by using the properties of the

offshore fields as a whole. This paper developed a similar procedure to the "Static and Dynamic

Field Testing of Drilled Shaft" analysis. But, instead predicting axial side capacity the named

study predicted end bearing capacity.

The model provides a methodology to predict site specific pile capacity profiles with depth

and to quantify the uncertainty associated with these predictions. The process of model

development consists of the following steps: (1) establish a conceptual geological model; (2)

compile geotechnical data to relate the geological model to pile capacity; (3) develop a

quantitative model describing spatial trends and variability in pile capacity; and (4) calibrate the

quantitative model with geotechnical data.

The models are part of a reliability-based methodology for design offshore pile

foundations without site-specific geotechnical data that could be used on a lot of cases. The

paper is completed with three examples of the application of the model on real cases.

Reliability-Based Foundation Design for Transmission Line Structures

The Electric Power Research Institute published on 1988, three volumes on Reliability-

Based Foundation Design for Transmission Line Structure, Volume 1 "Geotechnical Site

Characterization Strategy"; and Volume 3 "Uncertainties in Soil Property Measurement". Each

of those volumes focused on geotechnical problems. The first volume explained on its second

chapter "Geotechnical Material Variability" a guide for to do Geotechnical modeling having into









account the material variability. Also, explained reasons for geotechnical material variability and

random field models that could be helpful for this research.

The second chapter titled "Geotechnical Material Variability" explained topics like reasons

for geotechnical variability, conventional subsurface geotechnical modeling, and random field

models. Also, shows a procedure (statistical model) for to quantify variability of the soil and

measurement errors. It procedure is alternative to the conventional subsurface modeling that

requires a great deal of engineering judgment to interpret the results of discrete measurement and

generalized them over depth and lateral extent. The procedure consist on uses a consistent

mathematical model, such as a random field model. Explanations of some steps that should be

followed for to do the model are on that chapter also. The steps are basically to analyze spatial

variability, trend, distribution of the property about its mean and correlation.

Transportation Research Board Circular E-CO79

The Transportation Research Board Circular E-CO79, published on September 2005,

described a complete procedure for to calibrate and determine the load and resistance factors for

geotechnical and structural design. It included all the steps that will necessary to follow. Also, it

provides alternatives for to do the calibration of the model after the factors have been obtained.

The circular document guides the reader starting in an overview of the calibration approach

through the final selection of Load and Resistance Factors. In the course, explain with examples

and applications, the limit state equation development, some calibration concepts, the target

reliability index selection, statistical consideration of calibration and characterization, how

estimate the load and resistance factors, and calibrations using the Monte Carlo method with

different variables.

It text will be useful in the process of developing the phi factor. The application of the

Monte Carlo method is an option for to have a simulation of the data obtained. It due the data









obtained on the field is reduced due the costs implied on its acquisition. Also, some guidance on

statistical characterization will be used as technique of estimating the load and resistance factor

would be applied.

Estimation for Stochastic Soils Models

The Journal of Geotechnical and Geoenvironmental Engineering paper, published in 1999

by Gordon A. Fenton, talked about the uncertainty in spatial soil variation and how to quantify it

rationally. It described how the mean and variance are not sufficient for to make a reliability

study, that each day more clients and engineers are interested in more sophisticated models and

rational soil correlation structures. This paper clarified reasonable correlations models.

Explained how soils are best represented using fractal or finite scale models. Also, explained

how the soil parameters will be estimated have been selected the model.

The papers give solution to questions by looking at a number of tools which aid in

selecting appropriate stochastic models. These tools included the sample covariance, spectral

density, variance function, variogram, and wavelet variance functions. Additionally, common

models, corresponding to finite scale and fractal models, are investigated and estimation

techniques discussed.

Practice of Sequential Gaussian Simulation

The Geostatistics Banff, published on 2004 a Marek Nowak and Georges Verly paper. It

described the practice of sequential Gaussian simulation within the mining industry. The paper

shows a process for simulation with the obj ective of reducing the mistakes that could be

undetected due to the lack of theory of simulation in practice. The paper described four of the

most important aspects of the process, like, a gradual trend adjustment, a modified bootstrap

approach, a number of pre and post simulation check. All of the approaches, solutions and









checks presented in this paper are simple, flexible, and can be easily implemented in other

industries.

Bearing Capacity of a Rough Rigid Strip Footing on Cohesive Soil-a Probabilistic Study

The paper indicates the use of a probabilistic study on the bearing capacity of a rough rigid

strip footing on a cohesive soil. The first step on this paper was to use statistics help for to create

random Hield model. The parameters used for this purpose were Young modulus E, Poison ratio

and undrained shear strength. The first two were held constant and the shear strength is modeled

as a random variable. It is assumed to be characterized by a lognormal distribution. And this

information was used for to get the spatial correlation function and the correlation coefficient

length needed for to generate random fields. After getting the random fields a finite element

method was used for to recreated the footing and get the bearing capacity of it. The researcher of

this paper was not working with real data if not with assumed statistical properties (our case is

using real field data). The last stage of this paper was the Monte Carlo simulation for each set of

assumed statistical properties. Each realization, while having the same underlying statistics, had

fairly different spatial pattern of shear strength values beneath the footing and hence, a different

value of bearing capacity. Our research followed a very similar procedure that the used on this

investigation paper, but the differences are that this paper did all the analysis based on assumed

statistical properties and our research are real soil properties obtained from the field and instead

using a strip footing our is thirty two length drilled shaft. This paper was very helpful in the

description of their procedure and the results obtained.

Additionally to these papers mentioned are about twenty to thirty more that made

contributions to the investigations, the most relevant are, "Observations on Geotechnical

reliability-based design development in North America", "Spatial Trends in Rock Strength-can

they be Determined from core holes?", and "Drilled Shaft Design for Transmission structures










Using LRFD and MRFD" and the rest of them are mentioned on the references or through the

research.










Table 2-1. LRFD $ Factors, Probability of Failure (Pf) and Fs Based on Reliability $ for Nearest
Boring Approach (FDOT & UF 2003).
Reliability, P LRFD $ Pc (%) Factor of Safety
2.0 0.86 8.5 1.65
2.5 0.71 1.0 1.98
3.0 0.60 0.1 2.37
3.5 0.50 0.01 2.84
4.0 0.42 0.002 3.40
4.5 0.35 0.0002 4.07



Table 2-2. LRFD $ Factors, Probability of Failure (Pf) and Fs Based on Reliability $ for
Random Selection (FDOT & UF 2003).
Reliability, P LRFD $ Pc (%) Factor of Safety
2.0 0.56 8.5 2.60
2.5 0.43 1.0 3.32
3.0 0.33 0.1 4.24
3.5 0.26 0.01 5.42
4.0 0.21 0.002 6.92
4.5 0.16 0.0002 8.84










CHAPTER 3
DATA COLLECTION

The Data Collection was divided in two different research stages. The first one, the existent

data was recollected from diverse resources, like Florida Department of Transportation database,

University of Florida past researches, and soil labs maps. And secondly, the data obtained from

the soil borings from the Hield and processed on the FDOT Materials lab. Both new and old data

was analyzed and it made contribution to the Einal investigation.

Existent Data Collection

The existent lab data was gathered from different resources like, the FDOT database,

University of Florida Geotechnical Department, and Florida Department of Transportation

Districts past proj ects. Among the data that was gathered are strengths (qu-qt), recoveries and

compressibility, as well as load testing information. The used data was taken from four of the

seven proj ects available around Florida that at the time of the initial investigation had available

load test information and additionally any soil boring data, which were relevant to the research.

These four proj ects that had the requirements described in the last paragraph were Apalachicola

Bridge (Calhoun), Victory Bridge (Chattahooch), Fuller Warren Bridge (Jacksonville) and 17th

Street Causeway (Fort Lauderdale). The localization around Florida of the mentioned bridges is

showed in Figure 3-1.

The other three sites that appear in the location map as a white shadow belong to bridges

that had some load test information at the time of the initial investigation, but the load test shafts

were set in a soil different to limestone.

The data obtained from each one of the bridges showed on the Eigure is the Measured Unit

End Bearing from Osterberg Load Tests. A summary of this information is showed in the Table

3-1. The table contains in the first column the bridges names, the shaft number and length in the









second and third columns respectively. The fourth is for the unknown friction and the bottom

movement on the fifth. The last four columns belong to information about the failure status and

the values for each type of the failure. The mobilized bearing is described as a value less than the

shaft diameter over thirty shaft displacement value. FDOT failure is when the displacement is

exact that displacement rate and Maximum over it.

The values used in the investigation from the above table were the Bottom movement,

FDOT failure, Maximum failure and Mobilized bearing value. Those results were compared with

the Predicted unit end bearings obtained from the finite element model for the different random

Shields created using the information obtained from the soil boring lab results. The lab results used

on the random Hield creation includes strengths (qu-qt), recoveries (REC) and compressibility for

to predict the Unit End bearing.

An example from the 17th Street Bridge is the Table 3-2. The Figure shows the bridge

name with the state proj ect number on the title. The first row includes the soil boring name and

location along the bridge. The first column describes the elevation of the sample, and the other

six columns show the strengths (qu and qt), recovery and RQD. This is just one unsystematic

example but the complete tables used for each one of the mentioned bridges are illustrated on the

APPENDIX A.

New Field Data Collection

The second stage for data collection was the information obtained from the new soil

borings on the bridges Hield. The bridge site selection was done using a preliminary research for

the mentioned bridges. It includes details as the accessibility to the site (not to be under water),

that the site were on limestone rock, the selected location had to have strength data, that the load

test have preferably a FDOT end bearing failure, and last but not lest that the O-Cell were on the

tip of the drilled shaft. Due to theses details some of the seven proj ects were not used. Those are









the bridges showed on the Figure 3-1 with a white shadow. The principal two recurrent failed

details were that the load test locations were offshore, and that the load test results did not reach

the tip movement (end bearing failure criteria).After the preliminary selection the finally four

selected sites or bridges were:

* Apalachicola River Bridge (District 3)
* Victory Bridge (District 3)
* Fuller Warren Bridge (District 2)
* 17th Street Bridge (District 4)
The field exploration was accomplished by Universal a soil exploration company in

Jacksonville and Fort Lauderdale. And the rock cores obtained from Universal were tested at the

State Materials Office soil lab district 2 (Gainesville Fl.). Consequently, strength values,

recoveries and compressibility records were obtained from them and subsequently were used to

establish LRFD resistance factors for end bearing for each specific site location.

From the pre-selected sites name above, just two of them were tested. It is the case of

Fuller Warren Bridge Jacksonville (District 2) and 17th Street Bridge Fort Lauderdale (District

4). The data obtained from each bridge is showed in the APPENDIX B but an example of the

data obtained from the State Material Office lab is showed in the Table 3-3. In this table is

illustrated the information for each rock core took from the field, as length, diameter, depth, unit

mass, qu, qt, recovery, RQD, density, etc. The data obtained from theses tables was used on the

simulation of random fields and later on the model on the finite element program.

The next couple of paragraphs are dedicated to relevant information about the two bridges

selected for the research.

The Fuller Warren Bridge (District 2)

It is localized over the St. Johns River in downtown Jacksonville on the Interstate Highway

95 (1-95). It replaced the old Gilmore Street Bridge. It has four Load tests LT-1, LT-2, LT-3 and









LT-4. In the Figure 3-2 are showed the plan view and the soil profie indicating the mentioned

shaft load tests localization. Only the load test LT-4 was used on this research. Additionally, in

the Figure 3-3 are couple of pictures under the Fuller Warren Bridge during the site inspection.

These pictures shows the position of the load test LT4 where the additional soils boring were

realized around.

17th Street Bridge Fort Lauderdale (District 4)

This is a bascule replacement bridge for the old movable bridge on S.E. 17th Street

Causeway over the intercostals waterway in Fort Lauderdale, located on Broward County. The

17th Street Causeway Bridge has four Osterberg Load tests LTSO-1, LTSO-2, LTSO-3 and

LTSO-4. The only load test used was the LTSO4. Figure 3-4 shows pictures where the load test

LTSO4 is localized.

Data collection for the Fuller Warren Bridge was realized by the Jacksonville Universal

Engineering Science firm. The soil samples were taken to State Materials Office soil lab district

2 (Gainesville Fl.) were all the necessary lab exploration were realized. The same procedure was

followed with the 17th Street Bridge Fort Lauderdale but the firm in charge to do the soil

exploration was PSI Engineering.










Table 3-1. Measured Unit End Bearing from Load Tests.


Shaft
Length
(ft)
119.4
142.0
100.1
77.5
64.2
101.2
113.9
87.8
85.0
72.0
84.0
134.0
89.2
99.1
41.0


Unknown
Friction
(ft)
5.2
9.1
11.1
2.6
0
0
0
0
0
0
0
9
0
0
0


Bottom
Move.
(in)
0.624
1.95
1.89
3.53
4.41
2.97
3.2
5.577
5.977
2.1
1.7
1.3
2.69
4.46
0.23

2.56
2.94
3.12
0.4

2.9
2.5
1.74


Mobilized
Bearing
(tsf)
x
x
41.5
x
x
x
x
x
x
70
60
65
x
x
87

x
x
x
x

x
x
x

109
x

x
124.4
x


FDOT Max.
Failure Failure
(tsf) (tsf)
x x
x x
x x
x 66.4
61.7 90.3
28 39
22.4 30.2
18.5 29.4
72.6 92
x x
x x
x x
38 40
36 44
x x

80.8 89.5
34 34
34 70
x x


Shaft
Name
LSTSO
LSTSO
LSTSO
LSTSO
Test 1
Test 2
Test 4
Test 5A
46-11A
53-2
57-10
59-8
62-5
69-7
LT-1

LT-2
LT-3a
LT-4
26-2

52-4
91-4
4-14

3-1
3-2


Failure
Status
Both
Tip Fail
Both
Tip Fail
Tip Fail
Tip Fail
Tip Fail
Tip Fail
Both
Both
Both
Both
Both
Both
Skin
Fail
Both
Both
Both
Skin
Fail
Both
Both
Both


17th Street
Bridge


Acosta
Bridge


Apalachicola
Bridge





Fuller
Warren
Bridge



Gandy
Bridge


Hillsborough
Bridge
Victory
Bridge


27.9
120.7
66.8
38.4

54.5
74.7
70.8

33.2
38.6

46.6
45.0
50.7


0
0
0
9.8

4.33
6.7
7.33

0
9.66

7.7
0
12.14


139.2
42.9
x


0.5 Both
0.4 Skin
Fail
2.367 Both
0.528 Both
0.4 Skin
Fail


10-2
19-1
19-2










Table 3-2. 17th Street Bridge Soil Boring Data (State Project No. 86180-1522).
BB-1 (32+93) S-4 (33+00)


EL (ft) qu


REC
30
67


RQD
22
28


EL (ft) qu
-32 211.2
-36 116.9


REC
68.3
19.4


RQD qt


REC RQD


REC


RQD qt
32.2
27.34


-65
-72
-85 114.2 13
BB-4 (34+81)
EL (ft) qu REC
-69 32.74 22
-88 28.8 35


BB-9 (35+06)
REC RQD EL (ft) qu REC
-115
-131
-131
BB-7 (35+44)
REC RQD EL (ft) qu REC
-49
-65 414 20
-72 37.8
-82 120.8 98
-82
-92 82.98 98
-102
-108 82.44 35
-131 140.6 35
-131
BB-8 (36+10)
REC RQD EL (ft) qu REC
38 35 -39 361.3 6
38 38 -46 158.7 48
38 35 -46 272.7 48


RQD qt
5
10


RQD


qt
26.5
24.63
32.9


REC
5
43
43


RQD


S-12 (35+29)
EL (ft) Qu
-32 211
-32
-49 117
-49
-72


REC RQD qt


RQD qt REC RQD
43.5 18 4


38
26.3 98 38


68.34

19.4
19.6


117.47 66


64.6 35 10


BB-11
EL@ (t
-36


(35+53)
qu REC
379.4 38


RQD
35


33
60


RQD qt
5
19 55
19 53.99
76.78
12 40.4
14.04


REC RQD


qt
143.97
189.01
112.6
26.3
68.7


48
48
48
50
17


-46
23 -56 285.0 50
-95


27.04
140.01










Table 3-3. Fuller Warren


State Materials Office Soil Laboratory Data.


State Materials Office

Foundations Laboratory


Rock Core
Unconfined Compression-Split
Tensile


Effective/Revised: 4/27/05


By: G.J.

Wet Unit
Wt. (pcf)
149.1
142.6
125.2
132.0
150.2
117.1
154.9
150.3
143.5
146.7
139.1
143.3
151.0
143.3
150.0
140.2
135.9
132.5
132.0
118.9
124.2
125.3
124.1
126.9
133.5


Page 1 of 1


Corr. Factor
1.00
1.01





1.01

1.00

1.00

1.00

1.00


1.00


1.00


1.00


L/D
Rati
o
2.02
1.86
1.05
1.02
0.99
1.05
1.83
0.98
2.02
0.99
2.04
0.98
2.04
0.99
2.06
1.06
1.03
2.09
1.07
1.05
2.06
1.03
0.91
2.00
1.02


Samp.
No.
lU
2U
3T
4T
5T
IT
2U
3T
4U
5T
6U
7T
8U
IT
2U
3T
4T
5U
6T
7T
8U
9T
10T
11U
12T


Depth Top
(ft)


Depth
Bot. (ft)


Length
Test Date (in)
8/21/2006 4.8380
4.4327
2.4345
2.4350
2.3500
8/21/2006 2.4165
4.3357
8/22/2006 2.3220
4.8068
2.3535
4.8825
2.3395
4.8715
8/22/2006 2.3315
4.8632
2.4395
2.4330
4.8955
2.4855
2.4545
4.8125
2.3865
2.1210
4.7020
2.4110


Wet Wt.
(g)
853.2
740.4
335.2
375.0
409.9
308.4
774.8
406.1
806.8
400.6
799.2
393.8
865.4
380.8
838.4
376.5
378.1
734.4
366.7
328.7
672.7
332.8
291.7
676.5
369.5


Boring /Core
CB-3/1





CB-3/2








CB-3/3


Dia. (in)
2.3950
2.3835
2.3100
2.3785
2.3730
2.2995
2.3655
2.3760
2.3820
2.3720
2.3895
2.3870
2.3890
2.3510
2.3610
2.3110
2.3555
2.3430
2.3285
2.3375
2.3360
2.3230
2.3185
2.3455
2.3595










Table 3-3. Continued.


Max.
Load
(lbs.)
6782
3530
368
1378
3224
204
5720
1552
3252
1623
4229
1715
5690
379
3187
120
243
501
169
88
731
287
93
433
437


S.T.
Strength
(psi)


Displ. @
q(u) Fail
(psi) (in)
1505.6 0.0522
784.1 0.0634
0.0633
0.0687
0.0515
0.0743
1287.5 0.0549
0.0415
729.8 0.0541
0.0468
943.0 0.0563
0.0419
1269.3 0.0454
0.0410
727.9 0.0630
0.0237
0.0276
116.1 0.0297
0.0236
0.0209
170.5 0.0455
0.0422
0.0402
100.3 0.0348
0.0324


Strain @
Fail


Tare
%Recov./ Wt.
%RQD (g)
72/50 430.3
72/50 430.7
72/50 366.1
72/5 0 43 1.4
72/50 428.3
77/67 428.1
77/67 430.2
77/67 430.3
77/67 431.4
77/67 371.5
77/67 433.1
77/67 312.1
77/67 375.9
100/92 366.0
100/92 370.8
100/92 370.6
100/92 425.7
100/92 430.6
100/92 424.6
100/92 430.4
100/92 302.8
100/92 425.0
100/92 410.1
100/92 428.2
100/92 428.4


Dry
Wt.
(g)
1238.5
1094.7
629.8
752.7
803.2
671.1
1143.4
805.4
1153.8
732.4
1133.4
664.9
1172.8
713.2
1140.2
729.9
755.5
1049.6
731.8
685.1
828.1
692.4
646.5
973.0
742.1


Boring Samp.
/Core No.
CB-3/1 lU
2U
3T
4T
5T
CB-3/2 IT
2U
3T
4U
5T
6U
7T
8U
CB-3/3 IT
2U
3T
4T
5U
6T
7T
8U
9T
10T
11U
12T


Dry Unit
Wt.(pcf)
141.6
128.3
99.3
113.4
137.8
92.5
144.2
139.0
128.5
132.4
122.2
129.0
139.4
130.8
138.0
134.1
118.8
111.9
110.8
92.3
97.5
101.1
100.8
102.3
113.5


Wet Wt.
(g)
1281.5
1168.7
698.4
805.4
837.2
735.5
1196.6
835.8
1237.8
771.6
1230.0
703.9
1239.0
746.4
1207.2
746.2
802.9
1164.0
790.5
758.6
972.4
756.6
701.0
1103.6
797.4


w(%)
5.32
11.14
26.01
16.40
9.07
26.50
7.46
8.10
11.63
10.86
13.79
11.05
8.31
9.56
8.71
4.54
14.37
18.48
19.11
28.86
27.47
24.01
23.05
23.97
17.63


(


%)
1.08
1.43





1.27

1.13

1.15

0.93

1.30


0.61


0.95


0.74


41.6
151.5
368.0
23.4

179.0

185.1

195.5

44.0

13.5
27.0

18.6
9.7

32.9
12.1

48.9











































TESjT SHIFT LOCATION PLAN


""'~~~~~- --,~


~Apalachicola
(~Calhourg'



I GandyBidge





H,,,illbrog


I~r ~vrLrk


C10tka Keys


Figure 3-1. Load Test Bridge Locations.


I
LFrC""


Figure 3-2. Fuller Warren Bridge Shaft Locations.


Fuller Warren
s t~a ses (acksonville)
TitavR~ e




























Figure 3-3. Fuller Warren Bridge during Site Inspection.


Figure 3-4. 17th Street Bridge Load Test Location.










CHAPTER 4
GEOSTATISTICS AND NUMERICAL MODEL

Geostatistics

Geostatistics were first developed to provide better estimates of ore reserves. In coal

mining, they have been used to evaluate energy content, sulfur, ash, and other quality attributes

of deposits. In fact, Geostatistics can be used to study many properties that vary in space, but are

measured at distinct locations. Field Researches as diverse as hydrology, forestry, air pollution,

and global warming have all made extensive use of Geostatistics. (Ledvina et al., 1994;

Armstrong, 1998).

The Geostatistics term has been used amply in mining design but just a few of times in

geotechnical. Since it will be not a clear word, let me recall two definitions: "Geostatistics: study

of phenomena that vary in space and/or time" (Deutsch, 2002) and "Geostatistics offers a way of

describing the spatial continuity of natural phenomena and provides adaptations of classical

regression techniques to take advantage of this continuity." (Isaaks and Srivastava, 1989).

Geostatistics deals with spatially auto correlated data. It is data that has correlation between

elements of a random variable separated from them by a given interval.

The basic idea of Geostatistics is this. Suppose the goal is to determine the cohesion in a

limestone field. If two core holes are drilled just 1 ft apart from each other, one would expect that

their cohesion values would be very similar. If a third hole is drilled 10 ft away, the cohesion

value might be expected to change a little, but still be close the original value. As more holes are

drilled further and further away, a distance is eventually reached where the first holes no longer

help predict the cohesion value.

Between the basic elements of Geostatistics are:

*(Semi) variogram analysis characterization of spatial correlation.









*Kriging optimal interpolation; generates best linear unbiased estimate at each location;
employs semivariogram model.
*Stochastic simulation generation of multiple equally probable images of the variable;
also employs semivariogram model.


(Semi) Variogram

Establishing the spatial correlation structure of a site having erratic variation in its soil

properties would require an extensive amount of subsoil exploration, which may not be feasible

in many proj ects due to the high costs (Fenton & Griffiths 1999). One of the most common

methods for to estimate the correlation coeffieient length is the semivariogram.

The semivariogram is a statistic that appraises the average decrease in similarity between

two random variables as the distance between the variables increases. It describe how spatial

continuity change as a function of distance and direction.

Significant terminology is used to describe the important features of the semivariogram

model, these terms are:

*Sill: The semi variance value at which the variogram levels off. Also it is used to refer to
the "amplitude" of a certain component of the semivariogram. For the plot above, "sill"
could refer to the overall sill (1.0) or to the difference (0.8) between the overall sill and the
nugget (0.2). Meaning depends on context.

*Range: The lag distance at which the semivariogram (or semivariogram component)
reaches the sill value. Presumably, autocorrelation is essentially zero beyond the range.

*Nugget: In theory the semivariogram value at the origin (0 lag) should be zero. If it is
significantly different from zero for lags very close to zero, then this semivariogram value
is referred to as the nugget. The nugget represents variability at distances smaller than the
typical sample spacing, including measurement error. The ratio of the nugget effect to the
sill is often referred to as the relative nugget effect and is usually quoted in percentage.

*Trend: If the empirical semivariogram continues climbing steadily beyond the global
variance value, this is often indicative of a significant spatial trend in the variable, resulting
in a negative correlation between variable values separated by large lags. Three options for
dealing with lag include: 1) Fit a trend surface and work with residuals from the trend 2)
Try to Eind a "trend-free" direction and use the variogram in that direction as the variogram
for the "random" component of the variable 3) ignore the problem and use a linear or
power variogram. See Figure 4-1.









Semivariogram models

For the sake of kriging (or stochastic simulation), we need to replace the empirical

semivariogram with an acceptable semivariogram model. Part of the reason for this is that the

kriging algorithm will need access to semivariogram values for lag distances other than those

used in the empirical semivariogram. More importantly, the semivariogram models used in the

kriging process need to obey certain numerical properties in order for the kriging equations to be

solvable. (Technically, the semivariogram model needs to be non-negative definite, in order the

system of kriging equations to be non-singular.) Therefore, geostatisticians choose from a palette

of acceptable or licit semivariogram models.

Using h to represent lag distance, a to represent (practical) range, and c to represent sill,

the five most frequently used models are:

[~o if h = 0




Spherical: g~h)=1 < a a
c therwse


ExpnEnrtial: gph)= c 1- exp





PowTer: g~Ph)= c hb" witih 0 < to < 2


The nugget model represents the discontinuity at the origin due to small-scale variation.

On its own it would represent a purely random variable, with no spatial correlation. The

spherical model actually reaches the specified sill value, c, at the specified range, a. The

exponential and Gaussian approach the sill asymptotically, with a representing the practical










range, the distance at which the semi variance reaches 95% of the sill value. The Gaussian

model, with its parabolic behavior at the origin, represents very smoothly varying properties.

(However, using the Gaussian model alone without a nugget effect can lead to numerical

instabilities in the kriging process.) The spherical and exponential models exhibit linear behavior

the origin, appropriate for representing properties with a higher level of short-range variability.

Examples of this model are showed in Figure 4-2.

Anisotropy

The omni directional semivariogram is that one that for which the directional tolerance is

larger enough that the direction of any particular separation vector become unimportant. It

contains all possible directions combined into a single variogram. The calculation of the

omnidirectional semivariogram does not imply that the spatial continuity is the same in all

directions. It provides a starting point for to establishing some of the parameter required for

sample semivariogram calculations.

In many cases, a random variable shows different autocorrelation structures in different

directions, and an anisotropic semivariogram model should be developed to reflect these

differences. The most commonly employed model for anisotropy is geometric anisotropy, with

the semivariogram reaching the same sill in all directions, but at different ranges. In geological

settings, the most prominent form of anisotropy is a strong contrast in ranges in the

(stratigraphically) vertical and horizontal directions, with the vertical semivariogram reaching

the sill in a much shorter distance than the horizontal semivariogram. In some settings, there may

also be significant lateral anisotropy, often reflecting prominent directionality in the depositional

setting.









Covariance and correlogram

There are two other tools used on describing spatial continuity these are the Covariance

and Correlation function. Though these two are equally useful, the semivariogram however is the

most traditional. Under the condition of second-order stationary (spatially constant mean and

variance), the covariance function, correlogram, and semivariogram obey the following

relationships:

C(0) = Cov(Z(u),Z(u))= Var(Z(u))

p(h) = C(h) C(0)

Y (h)= C(0)-C(h)

In words, the lag-zero covariance should be equal to the global variance of the variable

under consideration; the correlogram should look like the covariance function scaled by the

variance, and the semivariogram should look like the covariance function turned upside down.

The representation is showed in Figure 4-3.

Unlike time series analysts, who prefer to work with either the covariance function or the

correlogram, geostatisticians typically work with the semivariogram. This is primarily because

the semivariogram, which averages squared differences of the variable, tends to filter the

influence of a spatially varying mean.

Kriging

Kriging technique was named after a South African mining engineer named Daniel

Gerhardus Krige who develops the method in an attempt to more accurately predict ore reserves.

Kriging is a group of geostatistical techniques to interpolate the value Z(xo) of a random

Hield Z(x) (e.g. the elevation Z of the landscape as a function of the geographic location x) at an

unobserved location xo from observations Zi Z(i)l i Ir 1 of the random Hield at










nearby locations 1,r i n. Kriging computes the best linear unbiased estimator (To0) of

Z(xo) based on a stochastic model of the spatial dependence quantified either by the variogram

y(x,y) or by expectation CL(x) = E[Z(x)] and the covariance function c(x,y) of the random field. It

have been demonstrated that kriging is not possible without knowledge of the semivariogram or

the covariance.

The kriging estimator is given by a linear combination





of the observed values z, = Zyx,) with weights 0i") i = 1, 73chosen such that the

variance (also called kriging variance or kriging error):





(with wn,,xn) = 1) of the prediction error Z~r) Z(r)is minimized subject to the unbiased

ness condition:





Depending on the stochastic properties of the random field different types of kriging apply.

For the different types of kriging the unbiased ness condition is rewritten into different linear

constraints for the weights w,.

The kriging variance must not be confused with the variance of the kriging predictor ~(r )

itself.








Types of Kriging


Classical types of kriging are:


Simple kriging assuming a known constant trend: CL(x) = 0.
Ordinary kriging assuming an unknown constant trend: CL(x) = CL.


* Universal Kriging assuming a general linear trend model k-0
* IRFk-Kriging assuming CL(x) to be an unknown polynomial in x.
* Indicator Kriging using indicator functions instead of the process itself, in order to
estimate transition probabilities.
* Multiple indicator kriging is a version of indicator kriging working with a family of
indicators. However, MIK has fallen out of favor as an interpolation technique in recent
years. This is due to some inherent difficulties related to operation and model validation.
Conditional Simulation is fast becoming the accepted replacement technique in this case.
* Disjunctive Kriging is a nonlinear generalization of kriging.
* Lognormal Kriging interpolates positive data by means of logarithms.
For this research we were focused in two of theses types, Simple and Ordinary Kriging

Simple Kriging
Simple kriging is the most basic form of kriging in the sense that the model is the simplest
in its mathematical formulation.

The kriging weights of simple kriging have no unbiasedness condition and are given by the

simple kriging equation system:


~(xl~ ~n>


*Simple Kriging Interpolation

The interpolation by simple kriging is given by:


C (~t~l, ~O~I


C(-~,, 2O)


2d~l i

w, cj=Az,)


~(l~lr .111r
S~~) =









*Simple Kriging Error

The kriging error is given by:










whc lastote eealzd es squares vers=iono h as-Mro hoe
(Chiles&Delfine 1999 p. 159)










aeweightleads lithnear combin lastio sqae ro of the aviabedaa i s "nbased" sine i ries ohv R





ofteerr.Tedsigihfaueoordinary krgng sit imo inmzigte ro






variance. In ordinary kriging, it is used a probability model in which the bias and the error

variance can both be calculated and then choose weights for the nearby samples that ensure that

the average error for our model, mR, iS exactly cero and that our modeled error variance,GR, iS

minimized.









Stochastic Simulation

Stochastic Simulation is the process of building alternative, equally probable, high

resolution models of the spatial distribution of the random variable in study. The simulation is

called conditional if the resulting realizations honor data values at their locations.

Simulation differs from kriging in two primary aspects:

* In kriging the goal is to provide a best local estimate of the variable without specific regard
to the resulting spatial statistics of the estimates taken together. In simulation, reproduction
of global features and statistics take precedence over local accuracy. Kriging provides a set
of local representations, where local accuracy prevails. Simulation provides alternative
global representations, where reproduction of patterns of spatial continuity prevails.

* Kriging provides only an incomplete measure of local accuracy and no appreciation of
joint accuracy when several locations are considered together. Simulations are designed
specifically to provide such measures of accuracy, both local and involving several
locations. These measures are given by the differences between alternative simulated
values at any location (local accuracy)or the alternative simulated fields (global or j oint
accuracy).

Sequential Gaussian simulation

There are many algorithms that can be devised to create stochastic simulations (1) matrix

approaches (LU Decomposition), which are not extensively used because of size restrictions (an

N x N matrix must be solved where N, the number of locations, could be in the millions), (2)

turning bands methods where the variable is simulated on 1-D lines and then combined into a 3-

D model; not commonly used because of artifacts, (3) spectral method using FFTs can be CPU

fast, but honoring conditioning data requires an expensive kriging step, (4) fractal which are not

used extensively because of the restrictive assumption of self-similarity, and (5) moving average

methods, which are infrequently used due to CPU requirements. The common approach adopted

in recent times is the sequential Gaussian simulation (SGS) approach. This method is simple,

flexible, and reasonable efficient.










Sequential Gaussian Simulation is the most straightforward algorithm for generating

realizations of a multivariate Gaussian field. It is provided by the sequential simulation principle

of including all data available within a neighborhood of the point on question, including the

original data and all previously simulated values. Each variable is simulated sequentially

according to its normal cdf fully characterized through a Simple Kriging system.

The detailed steps in Sequential Gaussian Simulation are:

* Determine the univariate cdf representative of the entire study area and not only of the
sample data available.
* Transform data to "normal space"
* Establish grid network and coordinate system (Zrel-space)
* Assign data to the nearest grid node (take the closest of multiple data assigned to the same
node)
* Determine a random path through all of the grid nodes
* Find nearby data and previously simulated grid nodes
* Construct the conditional distribution by kriging
* Draw simulated value from conditional distribution
* Check results
* Back transform
(Statios 2001)

By using different random number seeds the order of visiting locations is varied and,

therefore, multiple realizations can be obtained. In other words, since the simulated values are

added to the data set, the values available for use in simulation are partly dependent on the

locations at which simulations have already been made and, because of this, the values simulated

at any one location vary as the available data vary.

Software

The wide range of public domain and low cost software now available means that the tools

of Geostatistics are readily available to the geotechnical. Widely used public domain software

packages include WINTGSLIB Geostatistical Software Library, and Gstat the first one used for

the case studies presented in this research. In addition, several commercial GISystems include










geostatistical functions and there is a range of commercial geostatistical packages. Before

starting using the WINGSLIB software, a manual check test was realized. All the steps described

on the Sequential Gaussian Simulation process, were followed and the results were positive.

The data required for to do simulation using SGS in WINGSLB software were:

* The variable to be simulated (Cohesion Values)
* The Semivariogram structure to be used
* The maximum and minimum of original data that should be used to simulate a grid node.
* Data Variance
* X, Y and Z coordinates for the available data
* Definition of the grid system
* The number of previously simulated point to use for the simulation of another node.
* Type of kriging to be used.
This manual check was realized to demonstrate that the results obtained from the Wingslib

software are the same or similar to those obtained doing the process manually.

The example in 2D used eight data values, showed in Table 4-2. The location on a plan

view of data values is illustrated in Figure 4-5. The WINGSLB results values are in Table 4-3

and those same results are represented in Figure 4-6.

As you observe in Table 4-3 the last two values correspond to the coordinates X,Y (0,2)

and X,Y (2,0). Using WINSLIB the results were 198.95 and 5.52 respectively. And doing the

process manually the results are 198.52 and 5.95 respectively. The difference is very small

comparing the two results. So, it was proved that using WINGSLB the results obtained are

similarly to those that are obtained doing the process manually.

Numerical Models

Numerical models are available for the user in form of computer codes or programs. A

numerical model program is capable of: (1) solving the equations of equilibrium, (2) satisfying

the strain compatibility equations, and (3) following certain constitutive equations when










prescribed boundary conditions are set forth. The program will produce displacements and stress

changes associated in addition to many other quantities of interest for geotechnical design.

To select the appropriate for each case it is necessary to survey within the wide number of

options and to select one that fit to each case. At this time there are three approaches to model

engineering problems: Continuum, Discrete, and Hybrid. In the Continuum approach, there is no

chance for a failure surface to be explicitly developed since model elements cannot separate at

the boundaries except on pre-defined boundaries like "interfaces" (see Figure 4-4). In the

Discrete approach, elements are ready to separate on boundaries but discontinuity (failure

surface) cannot propagate through the elements, they are still modeled as continuum (see Figure

4-4 c). Finally, the Hybrid approach, as the name implies, incorporates both the Discrete and

Continuum approaches (see Figure 4-4 e).

The numerical solution methods include:

Continuum methods:

* Finite Difference Method (FDM).
* Finite Element Method (FEM).
* Boundary Element Method (BEM).


Discrete methods

* Discrete Element Method (DEM).
* Discrete Fracture Network (DFN) methods.


Hybrid continuum/discrete models

* Hybrid FEM/BEM.
* Hybrid FEM/DEM.
* Other hybrid models.









From a survey made on South Africa (SIMRAC 1999) a list of many numerical models

program available for the use in rock mechanics worldwide is showed in Table 4-1.

FLAC3D (Fast Lagrangian Analysis of Continua)

Flac3D is a powerful Three-dimensional continuum program for modeling soil, rock and

structural behavior. The FLAC3D can model non-linear systems as they evolve in time (Itasca

2002). Used interactively or in batch mode, FLAC is a general analysis and design tool for

geotechnical, civil, and mining engineers that can be applied to a broad range of problems in

engineering studies. The explicit finite difference formulation of the code makes FLAC3D

ideally suited for modeling geomechanical problems that consist of several stages, such as

sequential excavation, backfilling and loading.

The formulation can accommodate large displacements and strains and non-linear material

behavior, even if yield or failure occurs over a large area or if total collapse occurs. FLAC3D

uses an explicit finite difference time-marching scheme to solve the equations of equilibrium.

The equation of motion is solved to drive new velocities and displacements from stress and

forces. Velocities are then used to calculate the strain rates, from there a new stresses can be

calculated through the constitutive equation. These calculations are carried out over one time

step, during which velocities are assumed to be constant. The advantage of using the explicit

formulation is that the numerical scheme stays stable even when the physical system is unstable.

This is particularly advantageous, when modeling "non-linear", "large strain" behavior and

actual "physical instability". The disadvantage of the time-marching explicit scheme of the

FLAC3D is that calculation times can be longer than those of implicit formulations.

Materials are represented by polyhedral elements within a three-dimensional grid that is

adjusted by the user to fit the shape of the obj ect to be modeled. Each element behaves according

to a prescribed linear or nonlinear stress/strain law in response to applied forces or boundary









restraints. The material can yield and flow and the grid can deform (in large-strain mode) and

move with the material that is represented. The explicit, Lagrangian calculation scheme and the

mixed-discretization zoning technique used in FLAC3D ensure that plastic collapse and flow are

modeled very accurately. Because no matrices are formed, large three-dimensional calculations

can be made without excessive memory requirements. The drawbacks of the explicit formulation

are overcome by automatic inertia scaling and automatic damping that does not influence the

mode of failure. FLAC3D offers an ideal analysis tool for solution of three-dimensional

problems in geotechnical engineering.

The FLAC3D has many constitutive models built in. The user has the option of choosing

the most relevant constitutive model for his problem.

The following FLAC3D material models are the most used:

Elastic, isotropic;

Drucker-Prager plasticity;

Mohr-Coulomb plasticity;

Strain-hardening / softening Mohr-Coulomb plasticity;

Bi-linear strain-hardening / softening ubiquitous-j oint plasticity










Table 4-1. Commercially Available Numerical Programs for Rock Mechanics Study.


Type(a)
2D BEM

3D BEM

2D BEM
2D BEM
2D FEM
3D BEM
2D FDM

3D FDM
3D BEM

3D BEM
3D BEM
2D DEM

2D DEM

3D DEM
2D BEM

3D DEM

2D- 3D FDM
2D- 3D FEM
3D FEM
3D FEM
3D FEM


Program
BESOL/
MINAP_97
BESOL/MS

CSIR Minap32
DIGS
Elfen
Examine
FLAC

FLAC3D
Map3D

MINIFFT
MINSIM
PFC2D

PFC3D

Phase
3DEC

UDEC

WAVE
PLAXIS
ANSYS
ABAQUS
ALGOR


Source
Mining Stress
Systems
Mining Stress
Systems
CSIR Miningtek
CSIR Miningtek
CSIR Miningtek
Rocscience Inc.
Itasca Consulting
Group Inc.
Group Inc.
Mine Modeling
Ltd.
CSIR Miningtek
CSIR Miningtek
Itasca Consulting
Group Inc.
Itasca Consulting
Group Inc.
Rocscience Inc.
Itasca Consulting
Group Inc.
Itasca Consulting
Group Inc.
CSIR Miningtek
Plaxis BV
ANSYS, Inc.
ABAQUS, Inc.
ALGOR, Inc.


Use
Common

Common

Academic
Research
Testing Beta
Rare
Common

Rare
Moderate

Research
Common
Rare

Rare

Rare
Rare

Moderate

Research
Moderate
Rare
Rare
Rare


Complexity
Simple

Simple

Simple
Specialist
Mediocre
Mediocre
Advanced

Complex
Mediocre

Specialist
Simple
Complex

Complex

Simple
Complex

Advanced

Specialist
Moderate
Mediocre
Mediocre
Mediocre


(a) BEM: Boundary Element Method; FDM: Finite Difference Method; DEM: Distinct Element Method; FEM:
Finite Element Method.










Table 4-2. Sequential Gaussian Simulation Data Values.
X Coordinate Y Coordinate


Values


Table 4-3. WINTSLIB SGS Example Results.
X Coordinate Y Coordinate


Values


80
190
10
80
200
















0.8







V10.4



e.2 'r Nugget



0.0
0 2000



Figure 4-1. Semivariogram Model.


Linear


4000 6000 8000
Lag (meters)


10000


QClausia


Figure 4-2. Most popular Semivariogram Models.














: : Varnance =U 0




SSemlvariogram
to



1




N




SCCVarlance








O 2000 4000 6000 8000 10000

Lag (m)


Figure 4-3. Semivariogram and Covariance.
























































Location nap


CannumContinuum wijth
method miumeeet









Carinunnlo 1o t-fel







Bousa n eierenR Bondary lement
~ ~ ~ ~ ~ ~ ~ la tomuIurdr nthiddr



Figure 44 ueia prahst oe nEcvto naRc as(ig20)


2.50_







1.50_


200.000

180.000

160.000

140.000

120.000

100.000

80.000


40.000

20.000


0


+ O







g g? +







O +


' l I I '
.50 1.50 2.50


Figure 4-5. WINTSLIB SGS Example Location Data Values.















250[


160.000

140.000

120.000

,_ 100.000

80 000


40.000

20.000


0.0



-0.5000 2 50C




Figure 4-6. WINSLB SGS Example Results Graph.










CHAPTER 5
DATA ANALYSIS

Cases Studies

In this research, two case studies are presented. The first case study is an analysis of the

Fuller Warren Bridge in Jacksonville Florida. The second case study is the 17th Street Bridge in

Fort Lauderdale Florida. Both of them were field sites with performed Drilled Shaft Load Test in

Limestone. The data analysis followed the theory description showed on the CHAPTER 4.

The main purpose was to generate random fields using Sequential Gaussian Simulation

(SGS) that was based on the best suited Semivariogram. Each realization, while having the same

statistics (Semivariogram), will have quite difference spatial pattern properties of cohesion, bulk

and shear values on the soil and hence a difference value of end bearing capacity. This was

followed by a finite element model analysis using the random fields obtained on the SGS results.

Fuller Warren

Summary Statistics

The data obtained from the FDOT soil labs are shown in APPENDIX B. It was necessary

to transforms these tables to a different format accepted by the software (APPENDIX C). Some

of the properties showed on these tables, like qu, qt, and, RQD were used on statistics analysis.

The Fuller Warren field data was obtained from three different borings, localized

strategically near to Load Test LT4 in the Southwest side of the Bridge. Each of these boring

CB 1, CB2, and CB3 has its own information like qu, qt, RQD, and depth. An example is showed

in Table 5-1. The same data was presented in a different format and it is showed in Table 5-2.

Additionally, the soil boring location is showed in Figure 5-1.

The raw data for each boring was analyzed through histograms, frequency distribution and

summary statistics realization. The histograms for each soil boring CB 1, CB2 and CB3 are









showed in Figure 5-2 to Figure 5-4. These three boring histograms illustrate clearly a difference

tendency on properties values from elevation 55 feet and below. This behavior suggests a limit

for two different layers on the soil. Additionally, an example of frequency distribution (for qu, qt

and RQD), and statistics summary for all new borings (CB 1, CB2 and CB3) is showed in

Figure 5-5. It shows that the most suitable frequency distribution is the lognormal. The complete

set of graphs showing each of the boring data in all sites for the same bridge are showed in

APPENDIX D.

The frequency distributions comparing all data (past FDOT research), new data (CB 1,CB2

and CB3) and a combination of both is showed in Figure 5-6. The Eigure showed how the

standard deviation from the combination of old and new data is reduced from 25.66 to 20.32-tsf

when more data values (new data) are added.

Several attempts have been made to obtain the classical statistical properties of the soil,

such as the mean value, COV, and probability distribution, throughout geotechnical engineering

practice. These statistical characteristics have been discussed by several authors and most of

them have implemented distribution models like normal, lognormal, and beta for to curve fit

results of Hield data. This implies that these distributions are can be used to fitted soil properties

distribution results obtained under Hield conditions.

Accorded to the obtained results showed in Figure 5-5, the maj ority of the "closes fitted"

distribution model selected for the Fuller Warren site were Lognormal and Beta.

Spatial Continuity

Spatial continuity exists in most earth science data sets. Two data sets close to each other

are more likely to have similar values than two data sets that are far apart. When we look at a

data graph or posting, the values do not appear to be randomly located, but rather, low values

tend to be near and high values tend to be near other high values. That is the case for each of the









three soil borings that shows a clear vertical difference between qu, qt and RQD values from -35

to -55 feet depth and -55 to -65 feet depth (Figure 5-2 to Figure 5-4)

The h-scatterplot is another tool used for to analyze vertical spatial continuity. It explains

all possible pair of data whose locations are separated by a certain distance in a particular

direction. On this research, the h-scatterplots, the x-coordinate of a point correspond to the

(qu)^.5(qt)^. 5/2 value and the y-coordinate to the (qu)^.5(qt)^.5 value a distance of 1.5 feet away

in a vertical direction.

One of the essential features of an h-scatterplot is the fatness of the cloud of points. And a

way to summarizing this feature is the Correlation Coefficient. As the cloud of points gets fatter,

we expect the correlation coefficient to decrease. The relationship between the correlation

coefficient of an h-scatterplot and h is called the correlogram. Other indices of spatial continuity

are the Semivariogram that is the relationship between the moment of inertia of an h-scatterplot

and h. And the Covariance function that is the relationship between the covariance of an h-

scatterplot and h.

Although the h-scatterplot contain much more information than any of the three summary

statistics (semivariogram, correlogram and covariance function), it is very common to bypass the

actual h-scatterplot and go directly to any of these three to describe spatial continuity.

Fuller Warren Semivariogram

Due to the small amount of soil boring location (just three CB1,CB2 and CB3) and the big

length between them (35 to 45 feet apart), any real representative correlation length was founded

for this bridge data. There are two possibilities to use the Fuller Warren data. The first is to add

two or three more soil boring to the site or secondly, to use the correlation length of 12 feet like

that one founded on the 17th Street Bridge. It is not the best solution but it could represent a









better approximation. Since, not real correlation was founded neither Kriging nor Sequential,

Gaussian Simulation was performed on this bridge.

17th Street Bridge

Summary Statistics

The 17th Street Bridge field data was obtained from six different borings localized

strategically near to Load Test LT4 in the Northeast side of the Bridge (see Figure 5-8). Each of

these boring has its own information like qu, qt, RQD, and depth (see Table 5-3). The rest of the

borings soil data is available in APPENDIX B.

The Frequency distributions, for both individual borings, and the complete field site are

showed in the Figure 5-9. No pattern like that layers differences on the Fuller Warren bridge data

was found in this bridge data.

It was discovered from the statistic study that a Proportional Effect is present on the 17th

Street bridge data analysis. Proportional effect on statistics is used when the variance or

semivariogram of a random variable (qu^0.5*qt^0.5/2 in this case) is proportional to the square

of its mean. (Hans Wackernagel 2003). This phenomenon is often an argument to postulate the

log normality of the random variable.

17th Street Bridge Semivariogram

The semivariogram for the 17th Street Bridge was realized using two directions, horizontal

and vertical. The initial idea was to use just one semivariogram for all the data, but after

reviewing the statistic results it was noted that there were two different ranges for each direction.

The semivariogram range was found to be 12 feet distance. The nugget effects that represent the

random measurement error, was fount to be 0.3 of the total sill (Figure 5-10).









17th Street Bridge Simple Kriging

The Simple kriging was performed using the cohesion (qu~o.5 (qt~o5 /2 information from the

soil borings, for each soil borings. The results obtained from simple kriging were used as a step

on the Sequential Gaussian Simulation process.

17th Street Bridge Sequential Gaussian Simulation

The Sequential Gaussian Simulation (SGS) for the 17th Street Bridge was done using the

WINGSLIB software. A small part of the results obtained from the Wingslib is showed in Table

5-4, but the complete table is presented in the APPENDIX E. The results showed on these tables,

are the coordinates for each grid point on space and the correspondent simulated cohesion value

for each grid point.

17th Street Bridge Random Field Model

The behavior of a drilled shaft on limestone rock is influenced by the strengths parameters,

qu and qt, Poisson ratio (u) and Young modulus (E). While the parameter E and u, influence the

computed settlement, the bearing capacity depends primarily on the strengths qu and qt

parameters (Gordon & Griffiths 2001). In the present research the Poisson ratio was held

constant and the strengths in the forms (qu^'0.5qt^'0.5)/2 are modeled as a random variable. After

obtaining the random field the E parameter is calculated from the correlation equation

E=165.06*(qu^'0.5qt^`0.5)/2+300000. The correlation square ratio between E and

(qu^0.5qt^0.5)/2 for the 17th Street Bridge is 0.6126 (Figure 5-11).

The spatial correlation lengths, or the range from the semivariogram, describe the distance

over which the spatial random values will tend to be correlated. From the 17th Street bridge

semivariogram the ranges on the horizontal and vertical direction were taken, like most of the

soil field the isotropy was not assumed. The random fields were created using the parameters

from the semivariogram showed in Figure 5-10. The range for the vertical direction was 6 feet









and for the horizontal direction was 12 feet. Also a nugget effect of 0.3 was used on both

directions. Each random field, while having the same semivariogram parameters, will have quite

different spatial pattern of cohesion values, due to the dissimilar seed used, and hence a different

value of bearing capacity.

The software used on the random field, based on semivariogram parameters, calculation

was the WINTGSLIB, and a different seed was used in each calculation. Examples of the random

field and summary tables are founded in APPENDIX E. On these tables is showed the statistics

of the results obtained using different seed values, like mean, standard deviation, etc. It is noticed

that having the same parameter, but with different seed, the final results will change.

17th Street Bridge Finite Elements Analysis

The load-deflection response of a single concrete pile foundation is calculated for loading

in the axial direction. The pile is three feet diameter by twenty feet of length embedded in

limestone rock layer. The properties of the concrete pile and the limestone that are kept constant

are showed in Table. 5-5.

As it was described on CHAPTER 4 the software used for the modeling procedure was

FLAC3D. A modified example founded on the FLAC3D manual was used as support of the

current model.

The soil block model used to simulate our specimen was introduced in the computer

program with the following parameter: the coordinates axes were localized on the lower left

corner and the z-axis oriented along the pile axis and upward. The top of the model, at z=40 feet

is free surface. The base of the model, at z=0, is fixed in the z direction, and roller boundaries are

imposed on the sides of the model, at x=30 feet and y=30 feet (see Figure 5-12).The finite

element mesh consists of square elements of equal size (1.5 x 1.5 x 2.0 feet). Each element has

its own properties, cohesion, bulk, shear and Young modulus.









The axial-bearing capacity of a pile is a function of the skin friction resistance along the

pile shaft and the end-bearing capacity at the pile tip. The skin friction resistance is modeled by

placing an interface between the pile walls and the rock. The friction and cohesion properties of

the interface represent the frictional resistance between the concrete and the limestone. For this

model a friction angle of 50 and cohesion of 30000 (tsf) are assumed for the interfaces properties.

The ultimate bearing capacity of the pile in the axial direction is calculated by applying a

vertical velocity at the top of the pile. Many thousand of time steps are required to propagate a

loading through the model. If the velocity is applied suddenly, the inertial effects will dominate

initially and make it more difficult to identify the steady state response of the system. The axial

stress at the top of the pile is calculated and stored. It is plotted versus the axial displacement at

the pile top and an example is showed in the Figure 5-13.

Combined damping is used for this stage of the analysis because this type of damping is

more efficient at removing kinetic energy from the model for the prescribed loading condition.

Three different correlation lengths were used on this study, 1,5, and 12 feet. The 12 feet

was the length that the semivariogram recommend to use, but to see the behavior on the Einal

capacity, it was necessary to compare the 12 feet with other lengths.

17th Street Bridge Determinist Capacity

The estimated total failure bearing and the End bearing capacities for the determinist soil

properties by the finite element method were 1260 (tons), and 235 (tons) respectively.

Deterministic soil properties mean an average of all soil properties values from the site.

17th Street Bridge Parametric Study

Thirty to forty realizations of statistical soil properties for each one of the correlation

lengths were completed. Each realization, while having the same underlying statistics, will have

quite different spatial pattern of cohesion, bulk, and shear, and hence, a different value of bearing










capacity. The results obtained from each simulation were compiled and are showed in the

APPENDIX E. A summary graph is in the Figure 5-14. In the figure the values on the x direction

are the correlation length 1, 5, and 12 feet respectively. On the Y direction are the cohesion mean

of forty simulations, for each one of the correlation length. The values used in Figure 5-14 are

also showed in Table 5-6.

The cohesion means shows a higher value for the correlation length of 12 feet and a small

cohesion value for the 1 foot correlation length. The row data cohesion mean value is 42647

(PSF), and it is showed that the one foot correlation length cohesion mean value is the closest

one to the raw data, and the twelve feet the isolated. The explanation for this is that the smallest

the correlation length, the smallest the coefficient of variation of the simulated data from the

sequential Gaussian simulation program.

The same tendency on the cohesion behavior is showed on the end bearing capacity

obtained from the finite element method Figure 5-15. But in this case the deterministic capacity

value is 235 (tons). Therefore, this case is inversed to the cohesion graph. The twelve feet

capacity value is approximated to the deterministic capacity value and the one foot is far-away.

The explanation for the lower capacity values for one and five feet correlation lengths lies in the

fact that as the spatial correlation length decreased, the weakest trail becomes increasingly

tortuous, and its length correspondingly longer. As a result the weakest trail starts to look for

shorter ways cutting through higher strength materials (Griffiths & Fenton 1999). If there were a

correlation length bigger than 12 feet correlation length, the result could be bigger or smaller but

in any case far away from the determinist value; it is because it allows enough variability for a

failure surface to develop which deviates significantly from the deterministic results.









Consequently, the optimum failure path will be the same as in the uniform material. In our case

the result that tends to that result, is the correlation length suggested by the semivariogram.

In the APPENDIX G is show all the programming models used on this research, for to

obtain the bearing capacity for each one of the soil simulations. Additionally, the results graphs

and tables are in this same appendix.

17th Street Bridge Comparison of Deterministic and Predicted End Bearing

Table 5-7 shows a comparison of Simulated and deterministic End Bearing capacity from

the finite elements program. Each correlation has its own predicted End bearing and it is

compared with the End bearing capacity obtained from the deterministic value So, for one, five,

and twelve feet correlation lengths the predicted End Bearing are 218.36, 218.375, and 238.125

tons respectively compared to 235 from the deterministic result.

17th Street Bridge LRFD Phi Factors

According the explanation in CHAPTER 1, the goal of resistance factor design (LRFD)

analysis is to develop factors that decrease the nominal resistance to give a design with an

acceptable and consistent probability of failure. Where load components are multiplied by load

factors and resistance is multiplied by a resistance factor. The basic equation is:

(Rn > Cyi Qi

where vi is a load factor applied to load components Qi and $ is resistance factor applied to

the resistance (measured of load carrying capacity) Rn. In words it equation says that the

capacity of the foundation (modified by the factor 4) must be larger than the total effect of all the

loads acting on it.

FOSM method has been used (NCHRP 507, 2004) to calibrate LRFD factors using a

statistical dataset containing the measured and predicted resistances. It assumes that the load and









resistance are modeled as lognormal random variables. This limits the load and resistance values

to only positive numbers.

The next equation is used to calibrate the resistance factor using the FOSM method. It is

dependent on the target reliability index and the ratio of dead to live load.




(1+(C`OV[QD])2 + (COV[QL])2) D
E[il AR QD + QL
(1+(C`OV[R,]i)2 L
qD fly-qln[(1+(COVR~~(CV[Ry]2)(+(COV[Q]2+CV[L)
(E[ilQD]- + E[il, ]) -e


In the 17th Street Bridge instead using it for to calibrate the resistance factor as a method, it

was used for to account for differences or variability based on correlation lengths.

The FOSM equation was used for to get Phi factor for different correlation length, but

instead using a measured value it was used the deterministic value obtained from the same finite

element program. It allows seeing the differences on the phi factor, based on spatial variability

and reliability index.

To account for spatial variability on the 17th Street Bridge, a total of forty End bearing

values were predicted for five and twelve feet correlation length, and thirty values for the one

foot length case. Additionally, the deterministic value was obtained using the same program.

From the predicted and deterministic values at all the correlation length, the mean hP, Standard

deviationoP, and coefficient of variation COVR, WeTO found for the design approach (Table 5-8).

Using the computed mean, hP, and coefficient of variation COVR, for each correlation

length, the LRFD resistance factor, 5, were determined for different values of reliability index, P.

The results are shown in Table 5-9.









Additionally, a Modified FOSM equation was also used, due to a NCHRP 507 report that

shows that the resistance factors developed by FORM (First Order Reliability Method) tend to be

10 to 15% greater than the factors developed using the FOSM method. This means that the

FOSM resistance factors are conservative (it is recognized that the FORM resistance factors are

more accurate). Since the purpose of LRFD is to design based off of the probability of failure, it

is more beneficial to have accurate resistance factors.

The modified FOSM equation is based on a past (Styler 2006) research, which stated that

the published FOSM equation had an error that offered results consistently lower than actual

resistance factors. The modified equation is:


(E[AQD 2)(COIV[lQD 2 "+(E[/1, ])2(C OV[A])
(1+ )

D(E[AQD- 21 +2 D E[jlQD]E[jl ]+(E[A, ])2
E[l AR Ly L QDD O
(1+(COV[R])2 4L
(E[ D ~2co[,lZ(CO[ D +EAT.CV )
ply- In[(1+(COV[R])2)1)

(E[lQD]- + E[il, ]) -e



The modified FOSM equation is still in terms of the target reliability index and the dead to

live load ratio. Results from the 17TH Street Bridge using the modified equation are illustrated in

Table 5-10. It is shown that positively the values using the new equation are a little higher than

those using the traditional FOSM equation.

The results for the phi factors show a proportional inversely relationship with correlation

length, a bigger value when the correlation length is minor and small value when the length is

larger. This result explanation lies in the fact that with smaller correlation distances better

knowledge of the proximity soil properties, so a bigger factor could be used.









The modified FOSM results are slightly bigger than the traditional, and based on Styler

2006 theory, closer to accurate results.












B


6782
3530
368
1378
3224
204
5720
1552
3252
1623
4229
1715
5690
379
3187
120
243
501
169
88
731
287
93
433
437


Tare
Wt.
(g)
430.3
430.7
366.1
431.4
428.3
428.1
430.2
430.3
431.4
371.5
433.1
312.1
375.9
366.0
370.8
370.6
425.7
430.6
424.6
430.4
302.8
425.0
410.1
428.2
428.4


Dry
Wt.
(g)
1238.5
1094.7
629.8
752.7
803.2
671.1
1143.4
805.4
1153.8
732.4
1133.4
664.9
1172.8
713.2
1140.2
729.9
755.5
1049.6
731.8
685.1
828.1
692.4
646.5
973.0
742.1


loring Samp.
/Core No.
CB-3/1 lU
2U
3T
4T
5T
CB-3/2 IT
2U
3T
4U
5T
6U
7T
8U
CB-3/3 IT
2U
3T
4T
5U
6T
7T
8U
9T
10T
11U
12T


Dry Unit
Wt.(pcf )
141.6
128.3
99.3
113.4
137.8
92.5
144.2
139.0
128.5
132.4
122.2
129.0
139.4
130.8
138.0
134.1
118.8
111.9
110.8
92.3
97.5
101.1
100.8
102.3
113.5


Wet Wt.
(g)
1281.5
1168.7
698.4
805.4
837.2
735.5
1196.6
835.8
1237.8
771.6
1230.0
703.9
1239.0
746.4
1207.2
746.2
802.9
1164.0
790.5
758.6
972.4
756.6
701.0
1103.6
797.4


w(%)
5.32
11.14
26.01
16.40
9.07
26.50
7.46
8.10
11.63
10.86
13.79
11.05
8.31
9.56
8.71
4.54
14.37
18.48
19.11
28.86
27.47
24.01
23.05
23.97
17.63


%) %RQD
1.08 72/50
1.43 72/50
72/50
72/50
72/50
77/67
1.27 77/67
77/67
1.13 77/67
77/67
1.15 77/67
77/67
0.93 77/67
100/92
1.30 100/92
100/92
100/92
0.61 100/92
100/92
100/92
0.95 100/92
100/92
100/92
0.74 100/92
100/92


41.6
151.5
368.0
23.4

179.0

185.1

195.5

44.0

13.5
27.0

18.6
9.7

32.9
12.1

48.9


Displ. @
q(u) Fail
(psi) (in)
1505.6 0.0522
784.1 0.0634
0.0633
0.0687
0.0515
0.0743
1287.5 0.0549
0.0415
729.8 0.0541
0.0468
943.0 0.0563
0.0419
1269.3 0.0454
0.0410
727.9 0.0630
0.0237
0.0276
116.1 0.0297
0.0236
0.0209
170.5 0.0455
0.0422
0.0402
100.3 0.0348
0.0324


Strain @
Fail %Recov./


(9


Table 5-1. Fuller Warren Bridge Soil Boring Information.
Max. S.T.


Load Strength
(lbs.) (psi)










Table 5-2. Fuller Warren Soil Boring Modified Data.
Name of Boring
CB-1 (New) CB-2 (New) CB-3 (New)
Distance from Load Test (ft)


30
EL.
(ft)
-40.5
-40.5
-40.5
-45.5
-45.5
-45.5
-45.5
00-45.5
-50.5
-50.5
-50.5
-50.5
-50.5
-55.5


15
EL.
~i (psi) (ft)
48974.00 -41
-41
30083.74 -41
75668.97 -46
-46
-46
81523.95 -46
75899.59 -51
38959.02 -51
52082.74 -51
15682.83 -51
69402.72 -51
24923.43 -51
14642.92 -51


qu qt
(tsf) (tsf)
15.36 31.21
96.14 2.14
6.36
143.30 9.07
59.24 7.21
52.29 15.85
68.09 18.33
13.65
113.41 18.62
11.95
1.86
0.89
1.44
12.56 1.37


qu qt
(tsf) (tsf)
42.57 25.23
4.36
18.66 3.54
56.42 1.76
15.32
10.34
64.77 18.36
65.12 8.41
37.24 8.51
140.06 10.11
8.29 1.91
78.44 0.84
15.68 5.49
10.61 1.82


qt
(tsf)
3.00
10.91
26.50
1.69
12.89
13.33
14.08
3.17
0.97
1.94
1.34
0.70
2.37
0.87


qu
(tsf)
108.40
56.45

92.70
52.55
67.90
91.39
52.41
8.36
12.28
7.22


RQD
37
37
37
74
74
74
74
74
48
48
48
48
48
77


Ei (psi) EL. (ft)
20725.93 -37.58
93362.29 -37.58
-42.58
108694.81 -42.58
20329.10 -42.58
50938.20 -42.58
87522.73 -47.58
163837.76 -47.58
143167.10 -47.58
-47.58
-47.58
-47.58
-52.58
16123.94 -52.58


RQD
23
23
52
52
52
52
87
87
87
87
87
87
98
98


E


RQD
50
50
50
67
67
67
67
92
92
92
92
92
92
92


Ei (psi)
139525.37
55345.75

102818.36
64868.52
81761.47
136076.85
56192.28
19141.58
18051.95
13564.22


1










Table 5 2. Continued.
Name of Boring
CB-1 (New) CB-2 (New) CB-3 (New)
Distance from Load Test (ft)
30 25 15
EL. EL. EL. EL. EL. EL. EL. EL. EL. EL.
(ft) EL. (ft) (ft) (ft) EL. (ft) EL. (ft) (ft) (ft) (ft) EL. (ft) (ft) (ft) (ft) (ft) EL. (ft)
-55.5 22.01 0.91 77 33646.94 -52.58 9.08 1.28 98 13980.61 -51 3.52 92
-55.5 22.92 2.58 77 28351.18 -52.58 18.88 1.90 98 21191.30 -56 27.07 1.30 60 35561.05
-55.5 11.89 1.77 77 13580.10 -52.58 20.99 1.40 98 20221.36 -56 19.84 2.93 60 24011.06
-55.5 2.00 77 -52.58 16.81 1.36 98 21522.93 -56 14.39 2.74 60 13791.05
-60.5 7.08 1.05 67 6509.45 -52.58 1.04 98 -56 1.75 60
-60.5 7.36 0.66 67 8173.66 -52.58 1.64 98 -56 1.42 60
-60.5 8.59 0.25 67 10247.30 -57.58 16.72 1.77 47 26059.97 -61 9.09 1.09 100 11308.89
-60.5 7.57 1.05 67 11768.07 -57.58 10.80 47 11899.08 -61 9.33 0.87 100 9220.15
io-60.5 0.93 67 -57.58 18.28 47 19700.99 -61 9.89 1.37 100 11249.80
-65.5 3.02 0.40 38 3832.10 -62.58 11.08 1.14 77 11334.53 -61 9.80 1.32 100 11165.85
-65.5 0.40 38 -62.58 9.44 1.44 77 12460.26 -61 8.10 0.40 100 10801.59
-65.5 0.43 38 -62.58 9.59 1.24 77 13170.90 -61 5.90 100 9630.65
-65.5 0.25 38 -62.58 10.08 0.97 77 14308.84 -61 3.96 100 8026.87
-62.58 7.49 0.42 77 15724.97 -66 5.99 0.81 45 8732.30
-66 8.04 0.69 45 10850.17










Table 5-3. Table 17th Street Bridge Soil Boring Information.
Max. S.T. Displ. @ Strain @ Tare Dry
Boring Samp. Dry Unit Load Strength q(u) Fail Fail %Recov./ Wt. Wet Wt. Wt.
/Core No. w (%) Wt.(pcf) (lbs.) (psi) (psi) (in) (%) %RQD (g) (g) (g)
9/1 1T 6.88 93.3 1279.5 144.8 0.1211 98/64 76.3 349.6 332


4586
1349.6
5926.1
3102.2
4364.8
2644.6
3740
16570
4704.7
5139.4
4575.3
3925.7
3660
5147.2
8931.8
4117.4
12046.9
1619.8
4587.7
1663.5


1014.4 0.0481
0.1402
1283.9 0.0533
0.0323
971.6 0.0426
0.1008
0.1115
3651.9 0.0723
1032.8 0.0302
0.0406
0.0323
0.0201
0.0345
0.0344
2022.7 0.0411
0.0385
2714.5 0.0564
0.0306
1005.8 0.0652
0.1097


77
75.4
77.1
75.1
74.2
77.9
76.3
75.6
75.5
76.3
77.1
77.9
75.1
75.4
77
76.1
77.1
76.5
81.6
75.7


758.7
399.1
639.9
412.2
660.6
357.7
415.8
671.4
693.5
494.8
452.4
444.9
454.7
481.9
916.8
485
863.6
418.7
700.4
312.7


2U
3T
4U
5T
7U
8T
9T
10U
9/2 2U
3T
4T
5T
9/3 IT
2T
3U
4T
5U
6T
7U
8T


119.7
107.7
127.8
133.4
123.0
122.8
128.2
145.8
130.4
143.2
145.2
134.0
138.6
151.6
151.8
150.1
149.6
132.2
136.8
104.3


0.99 98/64
98/64
1.39 98/64
98/64
1.02 98/64
98/64
98/64
2.00 98/64
0.74 62/8
62/8
62/8
62/8
87/33
87/33
0.86 87/33
87/33
1.24 87/33
87/33
1.67 87/33
87/33


803.8
429.4
684.2
435.4
695.5
373.6
430.4
682.5
716.1
502.5
461.8
450.6
458.1
486.6
930.4
489.7
881.4
431.4
724.1
318.7


6.62
9.36
7.87
6.88
5.95
5.68
4.30
1.86
3.66
1.84
2.50
1.55
0.90
1.16
1.62
1.15
2.26
3.71
3.83
2.53


139.6

378.2

361.6
437.2


553.9
556.0
447.4
416.8
598.8

469.1

335.6

225.2






























































0.110698
0.164009
0.170386


1 1.089557
5 1.104859
12 1.012976


Table 5-4. 17th' Street Bridge Wingslib Results.
X Coordinate Y Coordinate


Z Coordinate


Cohesion Simulated
9.59
18.59
11.10
30.10
7.38
35.32
36.60
19.25
14.42



Cohesion (psf)
77421.79
70154.74
54409.3
60513.67
67786.84
62980.13
50742.8
53058.95
68361.9
79498.88


0
3
27
0
9
0
0
22.5
0


0
1.5
3
9
19.5
13.5
0
22.5
19.5


Table. 5-5 Material Properties
Bulk (psf) Shear (psf)
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07
1.40E+07


Friction


8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06
8.80E+06


Table 5-6. 17TH Street Bridge Cohesion Mean Results Values from Simulations
Correlation Length (ft) Cohesion Mean (psf)


42695
42931
43731
42647


5
12
Raw Data


Table 5-7. 17TH Street Bridge End Bearing Capacity Mean Values from FLAC3D
Correlation Length (ft) End Bearing Capacity (tons))
1 216.36
5 218.37
12 238.12
Deterministic 235



Table 5-8. 17TH Street Mean, Standard, and COV of Predicted End Bearing Capacity Bias
Correlation Length
(ft) Mean Standard Deviation COV


0.120611
0.181206
0.172597










Table 5-9. 17TH Street Bridge $ Values for different Reliability Index P FOSM (Traditional)
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0
1 0.773 0.684 0.605 0.535
5 0.726 0.633 0.553 0.482
12 0.658 0.573 0.500 0.435

Table 5-10. 17TH Street Bridge $ Values for different Reliability Index P FOSM (Modified)
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0
1 0.957 0.887 0.822 0.762
5 0.868 0.788 0.715 0.650
12 0.785 0.710 0.643 0.582

Table 5-11. 17th Street Bridge COV and h
Correlation Length (ft) COV h


0.1106975
0.1640086
0.17038627


0.1206112
0.18120632
0.17259719












40 ft




55 ft35f


Figure 5-1. Fuller Warren Soil Boring Location.


CB-1 Elevation vs. qu, qt,RQD,qb

160.00
140.00
120.00 '
100.00
80.00
60.00 ~ 'i
40.00

20.00 0 I
-20.00 -' n -40 -4 -50 -5 -00 -05 -
Elevation (ft)

-* qu (tsf) -=- qt (tsf) -a- Recovery qb(tsf) (FDOT) -a- quqt

Figure 5-2. Fuller Warren Histogram CBl.










CB-2 Elevation vs. qu, qt,RQD,qb


160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00


-40 -45 -50 -55 -60 -65

Elevation (ft)


-* qu (tsf) -=- qt (tsf) -a- Recovery


qb(tsf) (FDOT) -a quqt


Figure 5-3. Fuller Warren Histogram CB2.


CB-3 Elevation vs. qu, qt,RQD,qb

120.00

100.00 AA A

80.00

60.00

40.00




-35 -40 -45 -50 -55 -60 -65 -70

Elevation (ft)


qb(tsf) (FDOT) -a- quqt


-* qu (tsf) -e qt (tsf) -a Recovery


Figure 5-4. Fuller Warren Histogram CB3.








































MEAN= 33.2623 4.9771 70.5119
STD = 35.5262 6.7102 21.6325

MNPDFEXP = 30.9262 4.9163 29.2225
STDPDFEXP= 28.4992 4.7548 25.2514

MNPDFLOG= 27.5770 4.0548 56.0055
STDPDFLOG = 25.9415 4.9143 17.7774

MNPDFGAM= 31.4924 4.8403 58.0390
STDPDFGAM = 27.7417 5.1162 17.8002

MNPDFRAYL = 42.9191 7.3741 45.8545
STDPDFRAYL = 22.4075 3.8534 23.3869

sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003
sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043
sqerrorLOGN= 1.0e-005 0.1938 0.0000 0.0093
sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041
sqerrorRAYL = 1.0e-005 0.5839 0.0968 0.0009


Figure 5-5. Fuller Warren New Borings Frequency Distribution qu, qt and RQD.


0"
0 10 20
qt


50 100
qu


30 40


0.03,


O 50
RQD


QU


QT


RQD




















0 05


60 80 100


Frequency Distnbution New+Old Bonngs



01


0 05 ,



0 20 40 60 80 100 1
quqt (tsf)


MEAN = 40.4560 11.8474 18.7135
ISTD = 25.6634 12.0870 20.3264


Frequency Distnbution Old Bonngs


Frequency Distnbution New bonngs


S20 40 60 80
quqt (tsf)


100 1:


Figure 5-6. Frequency Distribution for quqt.


y = 383.66x + 1E+06
R2 = 0.6645


quqt vs Ei (psf)


25000000

20000000

S15000000

m 10000000

5000000


0 10000 20000 30000 40000 50000

quqt (ps?


Figure 5-7 Fuller Warren Bridge quqt and E Correlation


01


0 05



0 0 20 40 [
quqt (Tsf





Figure 5-8. 17th Street Soil Boring Locations (SMO 2007).


1
Pier I
Pier
I I~ I


O


Ylrr
I :r~ I












0.015 0.05

0.04
0.01





0.053

0.042
0.035


0.011


S1 2 3 0 20 40 60 8
q u (5ts.Y t)e

Figre5-.1tStetFeunyDsrbio










~Varogram plot


2 50


2 00



S1.50


1.00


50


.00
.) 10.0




Figure 5-10. 17th Street Semivariogram.


r`i


20.0 30.0 40.0
Distance












quqt vs E
y = 165.06x + 3E+06
R2 = 0.6126


+

**


** *
4



**


40000000

35000000

30000000

25000000

uJ 20000000

15000000

10000000

5000000


* Series
- Linear (Series1)


50000


100000

quqt


150000


200000


Figure 5-11. 17th Street Bridge Correlation quqt vs E.













































Figure 5-12. 17th Street Bridge FLAC Model Grid















91








































IIJ JI. 1. I .


SFile Edit 5ebbings Ploitems Window r7


I l l 1 1 1 1


Hishvyl,
r til 1


Figure 5-13. 17th Street Axial Force vs Pile Displacement














Correlation Length vs Cohesion Mean


43800


43600


43400














0 2 4 6 8 10 12 14
Correlation Length (feet)




Figure 5-14. 17th Street Correlation Length vs Cohesion Mean


Correlation Length vs Total Bearing Capacity Mean


1200 00

1195 00

1190 00

S1185 00

S1180 00

:117500

~~1170 00

1165 00

1160 00

1155 00

1150 00
0 2 4 6 8
Corre lation le ngth (ft)


10 12 14


Figure 5-15. 17th Street Correlation Length vs Total Bearing Capacity













Correlation Length vs End Bearing Capacity Mean


210.00



235.00


o
T.230.00





S220.00





215.00



210.00
0 2 4 6 8 10 12 14

Correlation length (ft)




Figure 5-16. 17TH Street Correlation length vs End Bearing Capacity










CHAPTER 6
COST ANALYSIS

The principal initiative of the cost analysis is to find a cost comparison between the

different $ factors obtained from this Geostatistics study. This study compared results from the

three correlation lengths to the deterministic result. The first one used the soil parameter from the

borings made around the specific drilled shaft, and the deterministic used the design parameters

from soil borings over the whole site. Moreover, the cost analysis is divided in two stages. The

first stage includes the materials, labor and equipment cost of the drilled shaft construction and

the second stage includes the costs of additional borings around each drilled shaft.

Factor Influencing Cost

Several factors influence the final costs of a drilled shaft construction, among them are:

Subsurface and site conditions
Geometry of Drilled Shaft
Specification, including inspection procedures
Weather conditions
Location of work as related to travel and living cost of crew
Governmental regulation
Availability of optimum equipment
Experience of the contractor
Insurance and bonding

These factors are just a sample of all the variables that could influence a drilled shaft

construction costs. This cost analysis assembles most of these influence variables in three big

groups. Those are: 1) Drilled Shaft Construction, 2) Drilled Shaft Excavation and 3) Boring Test

Costs.

The drilled shaft construction includes the costs of: concrete, steel, temporary casing,

labor, materials, equipment and incidentals necessary to complete the drilled shaft. The second

group includes all the work related to the drilled shaft excavation. Finally, the boring test cost










includes the soil boring auger and the laboratory analysis. It will depend basically on the number

of tests to be performed.

Drilled Shaft Cost and Excavation

The analysis is based on the Florida Department of Transportation average unit cost

database. The database item descriptions are presented in the Basis of Estimates Handbook

(Figure 6-1). This document was created with the purpose of presenting a standard method of

documenting the design quantities for construction paid items. The handbook also presents the

standard method of calculating quantities for many paid items that require special methods of

measurement.

The FDOT Item Average Unit Cost Database is numerated from item 000 to 1999 and the

items are categorized by paid item range. Table 6-1 shows this categorization. The used items for

this research were in the Road &Bridge category from 100 to 577. These items are 455 88 5

Drilled Shaft and 455 122 5 Excavation Unclassified shaft. The item 455 88 5 is specified for a

Drilled Shaft of 48" diameter. Figure 6-1 shows the FDOT Basis of Estimates Handbook

description for this item. The analyzed drilled shaft in this research was 36" of diameter.

However, due to the lack of information for this diameter on the FDOT data base, data from a

48" diameter shaft was used instead. The same procedure was used on the item 455 122

Unclassified Shaft Excavation. Figure 6-2 shows the description of this item. The quantity on

this item is measured as the depth of excavation from the ground to tip of the shaft measured in

linear feet.

The Basis Estimates Handbook is divided by years. Therefore, data from 2002 to 2006

were used. An example of the 2006 Item average Unit Cost for the items 455 88 5 and 455 122 5

are showed in the Figure 6-3. The complete data information is presented in APPENDIX G.









Moreover, the summary of the Drilled Shaft and Excavation shaft of 48' diameter are presented

in Table 6-2 and Table 6-3.

Soil Boring Test Costs

The rates for soil laboratory tests are based on the State Material Office cost database. The

available FDOT data from 2003 through 2006 divided annually was used for the analysis. Table

6-4 shows the most common soil test used for Drilled Shaft studies and at the same time used on

the 17th Street Bridge. Additionally, the cost of obtaining the soil samples in a rock soil from O'

to 50' is $26.25/LF and from 50'-100' is $30.63/LF. These costs are based on actual (2007) cost

from FDOT District 4.

Relative Costs Analysis

The analysis was divided into three groups: 1) Drilled Shaft Cost, 2) Drilled Shaft

Excavation and 3) Boring Test Cost.

Drilled Shaft Cost

All the cost analysis will be based on a one foot length by four feet diameter drilled shaft

in lime rock soil. The total Drilled Shaft construction cost was $267.97 per linear feet. This result

was compared with the costs generated by the used of the new $ factors presented previously in

CHAPTER 5. Those $ factors accounted for three correlation lengths, and four reliability indices

(Table 5-10). It is assumed that each 4 factors represent a percentage of the deterministic value.

For example from Table 5-10 a value with a correlation length of 5 feet and a reliability index

of 3.0 the $ factor is 0.788. Therefore, this value represents the 100/78.88% of the total

determinist cost corresponding to this 4 factor. Consequently, the total cost of the determinist

value of $267.97 multiply by 1/0.788 will derive on $423.33 per linear feet. This cost










corresponds to the use of a specific 5 factor. The complete sets of results are presented in Table

6-5 and Table 6-6.

Drilled Shaft Excavation

The same procedure followed on the Drilled Shaft Construction Cost section was followed

for the Drilled Shaft Excavation. The cost analysis for the excavation item is also based on a one

foot length by four feet diameter drilled shaft on lime rock. This excavation cost is $173.92 per

linear feet. The complete set of cost results are presented in

Table 6-7, and Table 6-8.

Boring Test Cost

This analysis was based on the influence of number of soil borings around the drilled shaft.

The average of the Drilled Shaft construction cost, Excavation, and soil lab test cost presented in

Table 6-2 to Table 6-4 are shown in Table 6-9. The total construction cost assuming just one soil

boring test was $267.97 per linear feet, the excavation $173.92 and the laboratory soil test costs

$24.5 per linear feet. The average auger cost of $30.63 per linear feet was obtained from FDOT

District 4 (Table 6-9). The total is $497.02 per linear feet assuming one soil boring per drilled

shaft.

Under the same circumstances but assuming five soil borings around the drilled shaft, the

total cost per linear feet was $717.54 per linear feet (Table 6-10). The difference was $220.52

per linear feet. If the drilled shaft is 20 feet long as the 17th Street Bridge case, the differences

will result on $4,410.4.









Table 6-1. FDOT Item Average Unit Cost Database.
ITEM CATEGORY
100 to 577 Roadway & Bridge
579 to 590 Landscape
600 to 715 Traffic Operations
721 to 770 Peripherals
800 to 899 Mass Transit
900 to 999 Special Use
1000 to 1999 Utility

Table 6-2. Summary of Drilled Shaft of 48" Diameter (0455 88 5).
Year No. of Contracts Weighted Average Total Quantity (LF) Total Amount
2006 4 $356.66 2456 $875,956.96
2005 3 $204.33 1087 $222,106.71
2004 6 $277.60 2533 $703,106.80
2002-2003 10 $233.29 3488 $813,715.52
Average $267.97

Table 6-3. Summary of Excavation Shaft of 48" Diameter (0455 122 5).
Year No. of Contracts Weighted Average Total Quantity (LF) Total Amount
2006 3 $328.19 2380 $781,092.20
2005 2 $170.14 1011 $172,011.54
2004 5 $77.78 2128 $165,515.84
2002-2003 9 $119.58 3270 $391,026.60
Average $173.92

Table 6-4. Summary of Soil Lab from 2003 to 2007
Unconfined
Moi sture Specific Split Tensile Compression
Test Name Content ($) Gravity ($) ($) ($) Average ($)
2003-2004 8 57.37 89 83.63 238
2004-2005 8.15 55.83 95.83 85.38 245.19
2005-2006 8.43 57.24 95.72 87.80 249.19
2006-2007 8.15 57.34 95.37 86.63 247.49
Average 8.1825 56.945 93.98 85.86 244.9675










Table 6-5. Summary of Drilled Shaft Cost (Material, labor) for $ Factors FOSM
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0
1 $346.66 $391.77 $442.93 $500.88
5 $369.10 $423.33 $484.58 $555.95
12 $407.25 $467.66 $535.94 $616.02

Table 6-6. Summary of Drilled Shaft Cost (Material, labor) for $ Factors FOSM (Modified)
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0
1 $280.01 $302.11 $326.00 $351.67
5 $308.72 $340.06 $374.78 $412.26
12 $341.36 $377.42 $416.75 $460.43

Table 6-7. Summary of Drilled Shaft Cost Excavation for $ Factors FOSM
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0
1 $224.99 $254.27 $287.47 $325.08
5 $239.56 $274.76 $314.50 $360.83
12 $264.32 $303.53 $347.84 $399.82

Table 6-8. Summary of Drilled Shaft Cost Excavation for $ Factors FOSM (Modified)
Correlation
Length (ft) p 2.5 p 3.0 p 3.5 p 4.0


$181.73
$200.37
$221.55


$196.08
$220.71
$244.96


$211.58
$243.24
$270.48


$228.24
$267.57
$298.83









Table 6-9. Average Cost for a 1 foot length and 4 feet Diameter Drilled Shaft, (One Soil Boring)
Average Drilled Shaft Cost / LF $267.97
Average Drilled Shaft Excavation Cost/ LF $173.92
Average of four Soil Tests Cost/ LF $24.5(*)
Average of Auger Soil Boring/ LF $30.63
TOTAL/ LF $497.02
(*) Assuming a set of soil tests every 10 ft.

Table 6-10. Average Cost for a 1 foot length 4 feet Diameter Drilled Shaft, (Five Soil Boring)
Average Drilled Shaft Cost / LF $267.97
Average Drilled Shaft Excavation Cost/ LF $173.92
Average of four Soil Tests Cost/ LF $122.5
Average of Auger Soil Boring/ LF $153.15
TOTAL/ LF $717.54

Table 6-11i. LRFD $ Factors, Probability of Failure and Fs Based on Reliability, P for Nearest
Boring Approach (McVay and Ellis 2001)

Reliability, P LRFD, $ PR%) Factor of Safety
2.0 0.86 8.5 1.65
2.5 0.71 1.0 1.98
3.0 0.60 0.1 2.37
3.5 0.50 0.01 2.84
4.0 0.42 0.002 3.40
4.5 0.35 0.0002 4.07











45!i- 88- AA DRILLED SHAFT
Unit LF; M1


Accuracy Linear Foot; 10th of a
Meter


PlanQuantity? no


Notes
Detailed







Rlelauted Items


Intended to pas for the coest of concrete and steel, temporary casing, all labor, materials,
equipment and incidentals necessary to complete the drilled shaft. Length Is measured
from top-of-shaft elevation to the design tip el~eva~tion shown in the plans. Pay Itern 455-
122-XAA is required with this item. Pay Item 455-122 covers the cost of the shaft
excavation. I:lea,~rlr specify in plans CSL testing requirements as required. C0 51~ of Shaft
Inspection Device included in cost of drilled shiaft, 455- 88-XAA. CSL tubes Included
under 455- 88-XAA1. CSL testing paid for under Item 455-142.
Required 455-122 (24.5-122) Recommended~ 455-142 wvhen C: SL testing is


required
COMVP 7110.0(503-03


I


Forms


Design SHTabQuant
Construction Refer to Comp Book


Documentation


Design


Locate in plans. Summarize quantities by location on tabulation of
quantities sheet in the plans, or detail calculations in the computation book.


Construction Record finall quantity on the tabulation sheet (plans) or computation forrn
Compp book).
PPM Clhapter


Rleferences


SDG's 3.6


Other
Standards
Specifications


Figure 6-1. FDOT Basis of Estimates Handbook Description for the Item 455 88 "Drilled Shaft".











45!i-122- AA



Notes
Detailed

Related Ite~ms
Forms

Dorcumentatioln


UNCLASSIFIED SHAFT EXCAVATION


Unit LF; M1


Accuracy Linear Foot; 10th of a
Mrleter


PlanQuantity? no


Intended for the excavation of the drilled shafts Pay Item 40F-88-XAA is required with
this Item. Quantity is the depth of excavated hole from ground elevation to tip of shaft.
Required 455- 88-AA Recommended
Design SHTab~uant COMP 700-050-03
Construction Refer to I:comp Book


Design


Locate in plans. Summarize quantities by location on tabulation of
quantities sheet in the plans, or detail calculations in the computation book.


Construction Record -fiinal quantity on the talbulation sheet (plans) or computation "form
Compp book).


References


PPMA Chapter
Other


SDG's 3.6i


Standards
Specifications
Prep & Doc Manual Chapter(s) 6, 7, 13


Status
Struct. 4i56-122- AA


UNCLASSIFIED SHAFT EXCAVATION


AA =
'1 (24'" Diameter )
2 (30'" Diameter )
3 (36"" Diameter.)
4 (42'" Diameter.)
5 (48"" Diameter.)
16 (60'" Diameter.)
7 (72'" Diameter.)
8 (54"" Diameter )


Figure 6-2. FDOT Basis of Estimates Handbook Description for the Item 455 122 "Unclassified
Shaft Excavation".
















CHROD5 03/21/2007-OS8.10.20 Dea~r 15
Blorida Departst. DE Pransprtat~io
Itsr Awaag tit Cast

CantzaCt Prplr L'CC') S'IATEIC
21slallyin gr MRII I'ZEMS WIITH KITH
Inces~a GiD 52LIDDEDOADDII



Ha. De Maichted Total Tbtrl IUlit
Item Cants+ averago amunt "akntity Mtsrw Obs Dalrript ic


04309s61218 4 $ 71.D 454, 77. 00 1, 49.000 1.? H IINB mrC EIEEKILE 40 IIW (8?ECED: 18'
04309B61220 2 C102.95 $133770. 00 329.C000 1.P H IINB mre (Z21[ 40.. HOT MLIERCE 110"
0430561221 3 147.3 S18,675. 00 153.000 F.P 5 I M(M4)(O8rGE 1"
I4309U61225 1 5450.CC 59,450o.00 21.00 .F H8 BI INB 992 (ZCU 40;. :IBa BCR~EEE IS";
0430962218 1 $6I0.00 84,52.0 .000 LP H WINB 902 (Z'llEETIT 801 (HOT ENCED (8'
04309D6221 1 SE-0.00 $:30,0. o 00 618.000 1.? H WIN9 9 (E'llS) iHOTBHCR5"E 12';i
043CIDB2123 8 9215.2 1EES, $140 U. 74 2.000 EAI H MTERE END EDC :CGFITORAL~ E 115" 0:-
(430982B125 21 51, 504.61 9272,334.75 181.0i00 Ea BI ETERE EnD 57 :01810541, Et 13"~ cD
043OB21112 24 91, 841.87 9250,454.54 136.000 EA~ 8 MTERED END 50C (CIQIONA E~ 24' CD)
0430982~133 14 91, 7191.16 9165, 868.91 61. 000 EA, H MTERED END EDC :CGFITORAL~m E 30" CII
043CIDB2138 11 93, 016.11 9111,412.88 413.000 EA HI MTERED END EDC (COR"IORAL~ Em 136" CI
043ODB2140 D 1, s11.s1 4ES,235. 20 20.000i ER B MTERED END EMn (GIFITrca. E 42"' cD:
043ODB2141 7 i3, 525.68 $56,410. 95 16.000 EA~ 8 MTERED END 50 (CGIQIOA E~ 418" CD)
C4309B2142 2 93, 360.27 96, 720i.54 2.000Q EA HI W'TERED EN EMC :01810541. EI 54"' 0
0430982143 1 96, 077.61 42,30.E .000 Ea H mTERED END 5"7 (GIFITORaL Eu 10" CD:
043098262~3 2 5906.67 Sl, 000i.00 3.000 Ea H ETER HIE] SB"rOU/WWA i .1E." n
043ODB2625 7 i1, 285.66 S59, 140. 13 46. 000 Ea 5 ME BIE m ECT'n:OUT/Efqa.,f A rTI) .18
(409229 T $2 174 478, 14. 32 37. 000i Ea BI mTER HIE ~cE';OUT/Ef.q'ARU;r .;4"
0430DB263s 3 3 1 51,07.01 S18,070.2 10 l.000 Ea H mTEa ~irS~r ~ Hill SETOTniAE=3"U
0430DB2638e 2 986,30.00 S18,000e.0 3o.000 Ea H mTEa ~irS~r ~ HilSC1D/.AE=36" ni
043CIDB260 4 3,30C.62 S1,8587. 50 6.000 EI H MTER Bil LS OIEE:0T/W.ARE):42 9:
0430984B121 1 5950.CC 5950.CC 1.000 Ea BI ETERE EnD BUT :01810541, Et 12"~ o
0430584123 11 $1 2.1 4, 616. 56 40. 000 EA~ 8 MTERED END 50C (CIQIONA 1 115" EOl
04309841125 38 91, 2391.2e 91, 023.648.091 826.00 EAo Ho MTERED END EDC :CGFITORAL~m E 18" ED:.
0430984I129 23 91, 713.06 9413,638.11 253.00 EAo Ho MTERED END EDC :CGF"ITORL~U Em 24" ED::
043098413 105 54,104.27 422,673.50 64.000i ER B MTERED END EMc ;GIFITORM. Et 30"' ED
0430584139 2 ad 93 29 45, 76. 08 11. 000 EA~ 8 MTERED END 50C (CIQIONA E~ 136 EDOu
C4309B4140 2 93, 778.04 411, 335.5 T1 .000Q EA HI W'TERED EN EMC :01810541. EI 42 ED:*
0430984141l 2 9T, 965.18 $:39, 82. 92 5.000 EA, H MTERED END EDC :CGFITORAL~m E 48" ED:.
043098462~3 1 5950.0 n 1, 700i.0 2.000 Ea H mETER HIE] STOTWE.IW/M:Er I1E" W
0430584625 7 g1,303.94 S53,461. 72 41.000 Ea 5 TE BIE]~ SECTN:DT/X.EI7/MPE 118" EI
(409469 D 2,123 488,718.49 42l.000 9 EA M'g ETE HIE CEI'P.;OUT/X.E.I/M:E 24' EDI
043098463s3 31 52,50.se $17, 567. 78 T.000 Ea H mTER~ Hill SECRUTWE.I7/l 130" mi
0430984638 93,0.0 Il24, 1070. 00 s.000 Ea H mETER HIE] SECRUTXE.IW/MPr 136" W
043058464 2 93,750..00 S15,~000.00 4.000 ER H mTER HIE 2ELT'nOIVT/W.E.IUM>El 142" El





Figure 6-3. Example of the 2006 Item Average Unit Cost for the Items 455 88 5 and 455 122 5.










CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

A probabilistic study on the end bearing capacity of a axially loaded drilled shaft, on soil

with randomly varying cohesion, bulk, and shear have been realized. Random field theory

using Sequential Gaussian simulation has been combined with a finite element program.

The results were compared with the deterministic result obtained from the same software.

The obj ective of this procedure was to see the variability of the 5, factor with spatial

variability. Additional cost analyses based on result were completed.

The following conclusions can be made:

The cohesion means obtained from the sequential Gaussian simulation program

shows a higher value for bigger correlation length, and a small cohesion mean

value for minor correlation length. The explanation to this phenomenon is that the

smallest the correlation length the smallest the coefficient of variation for

simulation exist.

The end bearing capacity mean, obtained from the finite element program, is bigger

for larger correlation lengths, and smaller for minor correlation lengths. It is

because as the spatial correlation length decreased, the weakest trail becomes

increasingly tortuous, and its length correspondingly longer. As a result the weakest

trail starts to look for shorter ways cutting through higher strength materials

A smaller resistance factors, 5, were obtained for larger correlation lengths, it
because the bigger uncertainties with distances (spatial variability).

Resistance factors, 5, obtained with correlation lengths valued bigger than the
founded using the semivariogram takes to variable results.

The drilled shaft construction costs, like materials, labor and equipment, and
excavations are less when using the obtained resistance factors, 4. But, the increase










on soil boring cost are around twice bigger than the saving achieved from the
construction cost.

The research was based in just one bridge information; more investigation should be

realized using more sites. The spatial variability can be better define with more information, so

as more the number of sampling the better the design parameter definitions and the bigger the

resistance factors, 5, used. The number of sampling for to get a bigger factor should be at least

four, for a correct semivariogram definition, additionally, the distances between them should be

as close as possible.












APPENDIX A
DATA FROM STATIC AND DYNAMIC FIELD TESTING OF DRELLED SHAFTS (FULLER
WARREN AND 17TH STREET BRIDGE)

Table A-1. Fuller Warren Bridge Soil Boring Data.
BL-2 BL-4
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-35 96.5 62 32 -15 54.5 80 47
-35 27.8 62 32 -15 12.5 80 47
-40 70.5 41 8 -20 98.5 43 20
-40 13.7 41 8 -20 6.1 43 20
-25 89 100
-25 9.1 100

BL-11 BL-13
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-35 92 25 25 -45 82 87 51
-35 13.9 25 25 -45 17.2 87 51
-45 68.5 30 17
-45 24.35 30 17



BL-20 BL-23
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-35 56.5 25 17 -20 95 50 47
-35 8.4 25 17 -20 9.9 50 47
-25 82 48 19
-25 12.95 48 19



BL-36 BL-37
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-20 244.5 70 49 -15 258 100
-20 54.05 70 49 -15 25.2 100
-25 104 100 -20 22.5 87 47
-20 5.6 87 47
-22 117.5 77 25

BW-1 BW-3
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-30 92.5 32 17 -45 28.75
-30 16.75 32 17











Table A-1. Continued.
BW-5 BW-12
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-25 44.8 -35 31.85 27
-30 32.75 -40 27.4
-35 29.95



BW-14
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-30 43 20 42
-30 9.55 20 42


Added Bcring (Hole 1: Near Boring BL-1) Added Boring (Hole 2: Near Boring BL-1)
Dep.(ft) qu REC RQD qt REC RQD Dep.(ft) qu REC RQD qt REC RQD
-20 596.2 38 38 -23 65.4 15 10
284 -28 30.8
401.6 -28 34.6 52 33
17.4 24.6
60.2 33.3
80.9 14
-25 110.5 11
-30 43.4 63 26 -33 58.5
32.2
52.9
87.7
15.8
6.6
-35 50.4
-35 87.7 73 66
85.1
77.9
20.4
29.4
12
23.6
17.9
18.3
18.2
47.8
-40 55.1










Table A-2. 17th Street Bridge Soil Boring Data.
BB-1 (32+93) S-4 (33+00)
EL.(ft) q u IREC RQDI qt IREC RQD EL.(ft)l qu IREC RQDI qt IREC RQD
-65 32.2 30 22 -32 211.2 68.3
-72 27.34 67 28 -36 116.9 19.4
-85 114.2 13 7




BB-4 (34+81) BB-9 (35+06)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-69 32.74 22 5 -115 26.5 5
-88 28.8 35 10 -131 24.63 43
-131 32.9 43




S-12 (35+29) BB-7 (35+44)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-32 211 -49 43.5 18 4
-32 68.34 -65 414 20 7
-49 117 -72 37.8
-49 19.4 -82 120.8 98 38
-72 19.6 -82 26.3 98 38
-92 82.98 98 38
-102 117.47 66 7
-108 82.44 35 8

-131 140.6 35 10
-131 64.6 35 10

BB-11 (35+53) BB-8 (36+10)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-36 379.4 38 35 143.97 38 35 -39 361.3 6 5
-36 189.01 38 38 -46 158.7 48 19 55 48 19
-36 112.6 38 35 -46 272.7 48 19 53.99 48 19
-75 26.3 33 -46 76.78 48 19
-98 27.04 60 23 68.7 60 23 -56 285.02 50 12 40.4 50 12
-98 140.01 60 23 -95 14.04 17 5











Table A-2. Continued.
BB-10 (36+07) N-17 (36+19)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-36 283.4 45.8 13.5 148.76 45.8 13.5 -66 432 33 28
-36 52.-54 45.8 13.5 -66 45.24 33 28
-49 444.3 69 36 49.84 69 36
-49 212.84 69 36 60.5 69 36
-49 65.7 69 36
-56 377.6 84 59
-56 381.6 84 59
-56 320.6 84 59
-105 219.04 31 7

S-15 (37+10) N-14 (35+55)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-49 51.4 -39 389 63 31
-49 17.5
-72 38.34
-72 7.7



BB-6 (38+07) N-25 (38+38)
EL.(ft) qu REC RQD qt REC RQD EL.(ft) qu REC RQD qt REC RQD
-49 64.95 42 17 -56 26.54 85 59
-66 152.5 45 24 -72 281.3 80
-82 58.2 45 24 -79 331.4 47
-82 12.4 51 13
-92 365.4 57 10
-92 101.4 57 10
-125 19.2 45 31
-125 20.95 45 31
-125 31.04 45 31

Addec Boring (34+81, 10' No th+)
Dep.(ft) qu REC RQD qt REC RQD Dep.(ft) qu REC RQD qt REC RQD
-53 51.7 50.5 50.5
58.5
59.9
86.1
-58 58.6
-58 20.1 47 40.5
-64 46.1 53 53
-64 250.1 56.5 53
28.2
13.5
8.4
-69 9.8
-77 122.5 33 17
-77 357.9
-90 14.5 23.5 13
-109 41.5 22 13


















APPENDIX B

SOIL BORING DATA FROM FIELD INVESTIGATION PROCESSED BY MSO



Table B-1. 17th Street Soil Boring Data.

STATE MATERIALs Rock Core Effective/Revised Date:
OFFICE 12/22/05

Foundations Laboratory UcnieCon sin- By: B.W. Page 1 of 1









4/1 1T 52 O 4/9/2007 2 4615 2 3955 337 2 115 8 1 03
2U 4/9/2007 4 6333 2 3962 635 7 115 9 1 93 1 OO
3U 4/9/2007 4 7535 2 3960 704 3 125 2 1 98 1 OO
4T 4/9/2007 2 3770 2 3830 336 4 120 9 1 OO
5U 4/9/2007 4 9210 2 3985 788 7 135 1 2 05 1 OO
6T 4/9/2007 2 5933 2 3880 383 O 125 6 1 09
7U 4/9/2007 4 4755 2 3945 660 8 124 9 1 87 1 01
8U 4/9/2007 4 7955 2 3960 764 9 134 8 2 OO 1 OO
9T 4/9/2007 1 9430 2 4010 305 4 132 3 O 81
10U 4/9/2007 4 9680 2 3980 785 4 133 4 2 07 1 OO
11T 57 O 4/9/2007 2 0933 2 3970 319 2 128 7 O 87

4/2 1T 57 O 4/9/2007 2 4955 2 3990 300 0 101 3 1 04
2U 4/9/2007 4 3760 2 3830 533 4 104 1 1 84 1 01
3T 4/9/2007 2 6210 2 3815 333 7 108 9 1 10
4T 4/9/2007 2 4920 2 4035 391 4 131 9 1 04
5U 4/9/2007 3 9130 2 3560 532 2 118 9 1 66 1 02
6T 4/9/2007 2 4735 2 3430 332 9 118 9 1 06
7T 4/9/2007 2 4045 2 3990 378 1 132 5 1 OO
8T 4/9/2007 2 6580 2 3955 392 5 124 8 1 11
9U 620 4/9/2007 4 8115 2 3820 710 5 126 2 2 02 1 OO

4/3 1T 62 O 4/9/2007 1 8750 2 3630 217 7 100 9 O 79
2U 4/9/2007 3 6345 2 3990 656 7 152 3 1 52 1 04
3U 4/9/2007 3 6035 2 3945 619 6 145 5 1 50 1 04
4T 4/10/2007 2 3630 2 3580 287 3 106 1 1 OO
5T 67 O 4/10/2007 2 4010 2 3610 280 1 101 5 1 02

4/4 1T 67 O 4/10/2007 2 3499 2 3780 353 1 128 9 O 99
2U 4/10/2007 5 0140 2 3475 682 8 119 9 2 14 1 OO
3T 4/10/2007 2 4170 2 2935 310 4 118 4 1 05
4U 4/10/2007 3 4240 2 3803 413 5 103 4 1 44 1 05
5T 4/10/2007 2 2945 2 3507 276 5 105 8 O 98
6T 4/10/2007 2 1785 2 3897 249 5 97 3 O 91
7T 4/10/2007 2 4660 2 3578 287 5 101 7 1 05
8U 4/10/2007 4 5855 2 3688 543 1 102 4 1 94 1 OO
9T 72 O 4/10/2007 2 2500 2 3417 264 6 104 O O 96


1:iII -IIF ILiEblHLCE T i-I TIII Ltl:II II L*I- I l t I L I ~_-
IF _+ 1:*- I L -T I I III ti I~IIIIi~ -i I-T



4/5 1U 72 O 4/10/2007 4 3355 2 3968 769 5 149 9 1 81 1 01
2U 4/10/2007 4 1755 2 3973 752 O 152 O 1 74 1 02
3T 4/10/2007 2 7900 2 3953 513 1 155 5 1 16
4T 4/10/2007 2 3720 2 4007 427 7 151 8 O 99
5T 4/10/2007 2 1110 2 4037 370 3 147 3 O 88
6T 77 O 4/10/2007 2 1705 2 3942 358 7 139 8 O 91

4/6 1U 77 O 4/10/2007 4 4615 2 3982 789 5 149 2 1 86 1 01
2U 4/10/2007 3 6695 2 3942 651 7 150 3 1 53 1 04
3T 82 O 4/10/2007 2 4030 2 3955 395 8 139 2 1 OO

4/7 1T 82 O 4/10/2007 2 6260 2 4087 468 2 149 1 1 09
2U 4/10/2007 4 9695 2 3965 862 9 146 6 2 07 1 OO
3U 87 O 4/10/2007 3 9910 2 4072 711 8 149 3 1 66 1 02

4/8 NA 187 O 92 O 4/10/2007


















17th Street Bridge


11 I I 1 1 1




4/1 1T 1000 1053 1375 2 1485 00527 100/77 754 411 9 381 3
2U 977 1056 3357 2 741 4 00425 092 "755 7105 654
3U 990 1139 5394 3 11953 00505 1 06 "762 778 8 7155
4T 12 15 107 8 1498 2 168 4 0 0398 "75 411 374 6
5U 964 1233 7650 7 1693 3 00548 1 11 "77 861 7 792 7
ST 11 33 1128 438 4 451 00319 "764 455 8 4172
7U 1013 1134 4492 3 989 3 00344 077 "749 726 6661
8U 730 1256 7813 1732 9 00623 1 30 "756 838 2 786 3
9T 702 1236 2047 2 279 4 00643 "77 381 8 361 8
10U 609 1257 6338 7 1403 5 00486 098 "755 840 8 796 9
11T 800 1192 1733 3 2199 00443" 756 394 3 370 7


4/2 1T 321 982 14142 1504 01128 90/48 777 377 367 7
2U 308 101 0 1978 9 439 0 00355 081 "759 595 4 579 9
3T 433 1044 1262 1 1287 00891 "76 401 6 388 1
4T 1079 1190 3328 353 7 00556 "76 9 467 429
5U 8 51 109 5 2030 7 454 7 0 0354 0 90 "76 585 9 545 9
6T 433 1140 2302 1 252 9 00906 "757 405 8 392 1
7T 702 1238 2290 3 252 8 00902 "775 450 9 426 4
8T 1064 1128 2816 1 281 6 00969 "76 1 454 5 418 1
9U 5 61 119 5 3170 6 711 5 0 0553 1 15 "75 1 780 8 743 3

4/3 1T 309 978 12801 1839 00246 82/14 779 294 5 288
2U 222 1490 6791 7 1447 0 00489 1 35 "749 700 686 4
3U 075 1444 9992 7 21348 00458 1 27 "748 691 7 6871
4T 076 1053 1260 9 144 1 00434 "75 352 3 350 2
5T 1 28 1002 8129 91 3 00452 "775 354 4 350 9

4/4 1T 495 1228 2832 6 322 7 00400 87/34 762 430 3 4136
2U 9 54 109 4 2457 9 567 9 0 0247 0 49 "75 756 696 7
3T 6 11 111 6 1563 5 1796 00658 "755 384 8 367
4U 650 97 1 1591 8 341 7 00329 096 "754 486 6 461 5
5T 448 101 2 1743 1 205 7 00986 "779 353 1 341 3
6T 331 942 688 7 842 00312 "77 1 327 1 319 1
7T 3 95 97 9 963 8 105 5 0 0704 "75 8 362 8 351 9
8U 4 70 97 8 1058 1 239 1 0 0223 0 49 "76 9 607 4 583 6
9T 626 979 1296 7 1567 01132 "779 339 4 324







4/5 1U 284 1457 10309 5 2256 4 00540 125 58/25 755 832 4 8115
2U 283 1478 10395 3 2262 9 00506 1 21 "75 1 826 805 3
3T 2 01 152 4 4593 437 5 0 0638 "757 587 1 577
4T 1 76 1491 39134 437 5 00460 "76 503 1 495 7
5T 205 1443 2823 3 354 2 00309 "769 445 3 437 9
6T 357 1350 3007 5 368 4 00760 "777 435 422 7

4/6 1U 186 1465 10446 5 22921 00512 115 775 865 4 851
2U 196 1474 10971 3 2351 0 00473 129 756 727 2 7147
3T 1 46 1372 3324 5 367 7 00283 755 471 3 465 6

4/7 1T 152 1468 4003 3 402 9 00483 42/20 77 5391 532 2
2U 1 32 1447 16231 4 3598 5 00498 1 00 "76 1 9104 899 5
3U 234 1459 10079 6 2161 3 00438 1 10 "749 786 6 770 3


I I I I I I I I 12/O


Location:
Date Received:
Tested by:


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:




























In *1 11. 1'1II I*I I ll I* l il II I I I 111 1al 'I\ I.I 1 11 I* I. I .1
1.. u idi'llI I\. i .Il I\. i. I\illr I \I l ib
*1.1 III lII i s 1 111 1


5/1 1T 52.0 2.4015 2.3885 330.1 116.9 1.01
2T 2.4510 2.3675 333.5 117.7 1.04
3U 4.2535 2.4005 665.8 131.8 1.77 1.02
4T 2.3715 2.3815 380.4 137.2 1.00
5U 4.2280 2.3980 677.2 135.1 1.76 1.02
6T 2.1840 2.3965 325.2 125.8 0.91
7U 3.9255 2.3800 595.6 129.9 1.65 1.03
8U 4.1990 2.3780 628.0 128.3 1.77 1.02
9T 2.3305 2.2213 342.5 144.5 1.05
10U 3.7045 2.3075 486.8 119.7 1.61 1.03
11T 2.5410 2.3835 360.8 121.2 1.07
12T 57.0 2.2945 2.3860 342.5 127.2 0.96
13U 3.6425 2.4065 621.9 143.0 1.51 1.04


5/2 1U 57.0 4.1540 2.3005 625.3 138.0 1.81 1.01
2T 2.3740 2.3655 353.0 128.9 1.00
3T 1.9955 2.3900 278.7 118.6 0.83
4U 3.7010 2.3695 529.2 123.5 1.56 1.03
5T 62.0 2.1560 2.4000 300.6 117.4 0.90


5/3 1U 62.0 4.8695 2.3820 854.4 150.0 2.04 1.00
2T 2.3920 2.3970 392.7 138.6 1.00
3T 2.2700 2.3490 229.5 88.9 0.97
4T 67.0 2.1725 2.3970 338.8 131.7 0.91


5/4 1T 67.0 1.8100 2.2860 195.0 100.0 0.79
2T 1.6915 2.3205 155.7 82.9 0.73
3T 72.0 1.8465 2.3020 185.0 91.7 0.80


B IN SAWJIP DPHETH TEST LENGTH DIA. WVET WVET L /D CORR.
NO. ~TOP BOT. DATE MASS UIMAS RATIO FCO
CORE (11) (I) in) (in) (0) (pdf)


5/5 1T 72.0 1.8750 2.3860 320.2 145.5 0.79
2U 3.3513 2.3965 606.8 152.9 1.40 1.05
3T 2.4415 2.4000 345.7 119.2 1.02
4U 4.8035 2.4030 881.2 154.1 2.00 1.00
5U 4.9085 2.4010 819.0 140.4 2.04 1.00
6T 1.8025 2.4070 316.5 147.0 0.75
7U 4.0455 2.3900 687.6 144.3 1.69 1.02
8T 2.1895 2.4005 385.6 148.2 0.91
9U 4.6335 2.3990 826.1 150.3 1.93 1.00
10U 77.0 3.8715 2.4000 650.9 141.6 1.61 1.03


5/6 1T 77.0 2.2060 2.4065 405.9 154.1 0.92
2U 4.7255 2.3990 835.7 149.0 1.97 1.00
3T 2.1880 2.3830 357.1 139.4 0.92
4U 82.0 3.6900 2.3870 657.5 151.7 1.55 1.04


5/7 1T 82.0 2.2215 2.3845 382.2 146.8 0.93
2U 87.0 3.6250 2.3885 630.9 148.0 1.52 1.04


Table B-1. Continued.
















17th Street Bridge


5/1 1T 904 107 2 1772 1 196 7 0 1135 100/82 75 1 405 7 378 3
2T 8 16 108 9 1390 3 152 5 0 0964 "755 408 2 383 1
3U 7 50 122 6 5753 4 1252 0 0 0315 0 74 "74 9 737 4 691 2
4T 821 126 8 3673 9 414 1 0 0638 "77 456 7 427 9
5U 835 124 7 81095 1767 1 0 0604 1 43 "77 9 751 3 699 4
6T 7 19 117 3 7139 868 0 0394 "769 401 8 380
7U 8 49 119 8 3836 9 841 0 0 0407 1 04 "77 5 670 7 624 3
8U 8 10 118 7 31953 708 2 0 0228 0 54 "75 700 7 653 8
9T 693 135 1 2784 1 342 4 0 0873 "754 4166 394 5
10U 5 13 113 9 2008 466 4 0 0066 0 18 "75 8 561 1 537 4
11T 494 115 5 1703 3 179 0 0 0854" 77 9 4155 399 6
12T 432 121 9 3028 1 352 1 0 0565 "77 1 4177 403 6
13U 136 141 1 10398 8 2201 4 0 0585 1 61 "769 696 5 688 2


5/2 1U 397 132 7 2665 4 633 1 0 0563 136 70/20 77 7 700 6 676 8
2T 0 98 127 6 1608 2 182 3 0 0440 "76 417 4137
3T 126 117 1 1573 5 210 0 0 0374 "77 5 342 1 338 8
4U 6 90 115 6 3880 851 3 0 1273 3 44 "76 2 573 2 541 1
5T 4 45 112 4 1110 3 136 6 0 0307 "75 7 362 349 8

5/3 1U 1 79 147 4 9570 4 2147 7 0 0630 1 29 77/ 15 757 928 5 913 5
2T 1 21 136 9 3920 7 435 3 0 0381 "755 468 1 463 4
3T 201 87 1 1000 5 119 5 0 0812 "75 1 303 6 299 1
4T 190 129 2 2292 2 280 2 0 0588 "756 4136 407 3

5/4 1T 362 965 982 8 151 2 0 1229 52/O 76 270 8 264
2T 2 72 80 7 392 63 6 0 1238 "75 9 226 7 222 7
3T 4 61 87 7 273 8 41 0 0 0446 "75 7 259 6 251 5







5/5 1T 123 143 7 21798 310 2 0 0172 80/63 77 3 397 3931
2U 1 90 150 1 5546 2 1169 2 0 0425 1 27 "75 6 680 2 668 9
3T 238 116 5 920 9 100 1 0 0247 "763 4198 4118
4U 226 150 7 10731 9 2366 3 0 0558 1 16 "749 955 4 935 9
5U 305 136 2 3268 8 722 0 0 0271 0 55 "77 894 1 869 9
6T 2 66 143 2 2258 7 331 4 0 0873 "764 392 7 384 5
7U 2 77 140 4 4315 8 941 5 0 0426 1 05 "76 2 751 7 733 5
8T 1 96 145 4 2358 6 285 7 0 0325 "77 6 462 3 454 9
9U 2 18 147 1 6641 7 1463 2 0 0554 1 20 "755 900 7 883 1
10U 295 137 5 5546 1 1191 7 0 0395 1 02 "783 728 709 4

5/6 1T 087 152 8 3107 5 372 6 0 0300 66/30 765 482 7 479 2
2U 1 30 147 1 8502 2 1877 6 0 0544 1 15 "75 9109 900 2
3T 221 136 4 3750 5 457 9 0 0485 "742 429 6 421 9
4U 2 13 148 5 101654 21943 0 0512 1 39 "81 6 739 1 725 4

5/7 1T 244 143 3 5093 612 1 0 0387 37/18 76 458 5 449 4
2U 2 22 144 8 9645 3 2073 6 0 0472 1 30 76 2 707 3 693 6


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:


Location:
Date Received:
Tested by:

































6/1 1T 52.0 1.9870 2.3910 272.5 116.4 0.83
2U 5.2945 2.3465 756.2 125.8 2.26 1.00
3T 2.3995 2.3670 372.9 134.5 1.01
4T 2.1695 2.3813 357.0 140.8 0.91
5U 4.9755 2.3908 790.4 134.8 2.08 1.00
6T 2.2120 2.3722 349.7 136.3 0.93
7U 4.1560 2.3880 660.8 135.2 1.74 1.02
8T 2.4715 2.3530 358.4 127.0 1.05
9U 4.3230 2.3750 677.5 134.8 1.82 1.01
10T 2.4515 2.2730 337.6 129.3 1.08
11T 57.0 2.3845 2.1530 323.7 142.1 1.11


6/2 1U 57.0 3.8650 2.4130 588.3 126.8 1.60 1.03
2T 2.2650 2.3790 349.6 132.3 0.95
3T 2.3615 2.3400 259.4 97.3 1.01
4T 2.3770 2.3775 406.5 146.7 1.00
5U 4.5670 2.4130 735.5 134.2 1.89 1.01
6T 2.2730 2.3795 349.3 131.6 0.96
7T 62.0 2.3500 2.3665 351.0 129.4 0.99


6/3 1T 62.0 2.1080 2.3765 250.8 102.2 0.89
2U 3.5275 2.3957 615.8 147.5 1.47 1.04
3U 3.4635 2.3770 591.4 146.6 1.46 1.04
4T 2.4800 2.3557 257.6 90.8 1.05
5U 4.3140 2.3707 551.0 110.2 1.82 1.01
6T 1.8850 2.3350 219.7 103.7 0.81
7U 4.4285 2.3725 565.7 110.1 1.87 1.01
8T 2.2850 2.3757 274.3 103.2 0.96
9U 67.0 5.2080 2.3627 658.6 109.9 2.20 1300


6/4 1U 67.0 4.4235 2.3710 487.7 95.1 1.87 1.01
2T 2.3640 2.3732 294.7 107.4 1.00
3T 1.9045 2.3665 233.8 106.3 0.80
4U 3.9975 2.3658 463.7 100.5 1.69 1.02
5T 2.2850 2.3908 270.8 100.6 0.96
6T 2.3470 2.3717 270.5 99.4 0.99
7T 2.2670 2.3843 270.2 101.7 0.95
8T 72.0 1.9775 2.3643 236.3 103.7 0.84


6/5 1U 72.0 4.3710 2.3745 714.5 140.6 1.84 1.01
2T 2.0435 2.3770 368.4 154.8 0.86
3U 4.5400 2.3770 665.7 125.9 1.91 1.01
4T 2.6210 2.3900 449.9 145.8 1.10
5T 2.3695 2.3440 318.7 118.7 1.01
6U 4.4540 2.3820 584.7 112.2 1.87 1.01
7T 1.9690 2.3915 259.2 111.6 0.82
8U 77.0 4.4395 2.3930 672.2 128.3 1.86 1.01


6/6 1T 77.0 2.3335 2.3855 407.0 148.7 0.98
2U 3.9965 2.3740 674.5 145.3 1.68 1.02
3T 82.0 2.0250 2.3805 333.5 141.0 0.85


Table B-1. Continued.
















17th Street Bridge


BORING SAMP D MAX ST q (u) DISPL @) STRAIN %RECO TARE WTDRY
NO UNIT MS LOAD STRENGTH FAIL @ FAIL W WT WT
CORE(~ pf (lbs) (psl) (psl) (m) (%) % RQD (g) (g) (g)


6/1 1T 924 106 5 1758 5 235 6 0 1252 100/62 763 326 9 305 7
2U 839 116 1 2846 5 658 3 0 0200 0 38 "762 830 3 771 9
3T 1453 117 5 3201 6 358 9 0 0836 "754 446 6 399 5
4T 655 132 1 3330 8 410 4 0 0511 "75 4199 398 7
5U 896 123 7 5693 3 1268 2 0 0350 0 70 "769 845 8 782 6
6T 551 129 2 1942 3 235 6 0 0616 "75 408 2 390 8
7U 879 124 3 2542 3 557 7 0 0308 0 74 "76 734 1 680 9
8T 12 07 113 4 2583 7 282 8 0 0851 "763 433 9 395 4
9U 990 122 6 3311 5 738 8 0 0275 0 64 "764 749 688 4
10T 14 18 113 2 788 4 90 1 0 0271 "77 7 414 3 372 5
11T 6 19 133 8 2896 2 359 1 0 0964" 757 398 1 379 3

6/2 1U 260 123 6 4409 9 936 4 0 1758 4 55 72/37 77 5 642 6 628 3
2T 8 56 121 9 1745 3 206 2 0 0705 "75 7 424 5 397
3T 3 87 93 7 871 7 100 4 0 1053 "74 9 329 9 320 4
4T 340 141 9 6055 682 1 0 0486 "756 474 2 461 1
5U 751 124 8 3801 2 825 6 0 0303 0 66 "765 805 5 754 6
6T 11 67 117 9 2097 8 246 9 0 0430 "742 420 5 384 3
7T 512 123 1 2339 3 267 8 0 0591 "757 4101 393 8

6/3 1T 129 100 9 1389 6 176 6 0 0688 80/51 749 325 3 322 1
2U 143 145 5 10020 2 2131 3 0 1268 3 59 "756 679 3 670 8
3U 1 92 143 8 4800 3 1035 5 0 0311 0 90 "76 665 3 654 2
4T 435 87 0 1040 9 113 4 0 1196 "757 332 3 321 6
5U 356 106 4 1966 440 2 0 0205 0 48 "77 7 6189 600 3
6T 3 85 99 8 866 3 125 3 0 1288 "74 2 292 6 284 5
7U 3 51 106 3 2473 7 554 8 0 4020 9 08 "75 7 632 6 613 7
8T 345 997 1302 4 152 7 0 0788 "765 349 339 9
9U 2 83 106 9 1828 4169 0 0357 0 69 "754 722 6 704 8

6/4 1U 263 92 7 1289 8 289 6 0 2128 4 81 68/30 763 552 9 540 7
2T 2 05 105 2 11237 127 5 0 0449 "77 2 370 6 364 7
3T 376 102 5 1072 1 151 4 0 0605 "749 298 2 290 1
4U 2 78 97 8 1081 4 240 7 0 0544 1 36 "77 535 4 523
5T 2 50 98 1 892 6 104 0 0 0590 "76 2 343 1 336 6
6T 318 963 1147 1 131 2 0 0634 "764 345 6 337 3
7T 376 980 11487 135 3 0 0905 "763 343 8 334 1
8T 336 100 3 1509 8 205 6 0 1603 "75 1 303 295 6


6/5 1U 1 23 138 9 6235 5 1393 7 0 0445 1 02 80/60 81 6 796 1 787 4
2T 1 24 152 9 3890 2 509 9 0 0562 "769 445 3 440 8
3U 1 53 124 0 6375 1 1428 6 0 0322 0 71 "75 740 7 730 7
4T 135 143 8 2505 254 6 0 0378 "755 525 4 5194
5T 105 117 5 2201 1 252 3 0 1374 "77 1 395 8 392 5
6U 1 69 110 4 2312 3 514 6 0 0550 1 23 "75 5 660 2 650 5
7T 078 110 8 1209 9 163 6 0 0332 "76 335 2 333 2
8U 165 126 2 27165 598 4 0 0979 221 "762 748 4 737 5

1T 1 80 146 0 5188 1 593 3 0 0366 48 /17 74 8 481 5 474 3
2U 137 143 3 3525 6 778 9 0 0294 0 74 "76 1 750 6 741 5
3T 089 139 7 3676 3 485 5 0 0483 "762 406 1 403 2


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:


Location:
Date Received:
Tested by:













Table B-1. Continued.

STATE MATERIALs Rock Core Effective/Revised Date:
OFFICE 12/22/05
Unconfined Compression-
Foundations Laboratory By: B.W. Page 1 of 1
Split Tensile





II ~ i I' I I .I I i I I I 1- .i I I ." I



7/1 1T 52.0 1.9905 2.3980 285.2 120.9 0.83
2U 57.0 3.7880 2.3845 633.0 142.6 1.59 1.03


7/2 1T 57.0 2.2260 2.3560 293.3 115.1 0.94
2T 1.9940 2.3500 293.5 129.3 0.85
3U 4.3135 2.3815 693.7 137.5 1.81 1.01
4T 2.2580 2.3835 403.4 152.5 0.95
5U 4.6970 2.3950 841.0 151.4 1.96 1.00
6T 2.0550 2.3970 364.0 149.5 0.86
7T 1.7540 2.3670 254.8 125.8 0.74
8T 2.1750 2.3915 334.1 130.3 0.91
9T 2.4540 2.3975 412.3 141.8 1.02
10U 4.2085 2.3010 612.9 133.4 1.83 1.01
11T 2.4605 2.3720 375.3 131.5 1.04
12U 5.0075 2.3880 763.2 129.6 2.10 1.00
13T 62.0 2.2130 2.3675 337.6 132.0 0.93


7/3 1T 62.0 2.2015 2.2940 223.3 93.5 0.96
2T 67.0 2.3255 2.3015 229.1 90.2 1.01


7/4 67.0 72.0 NA SAND


7/5 1T 72.0 2.4535 2.3843 376.1 130.8 1.03
3T 2.1355 2.3915 366.2 145.4 0.89
4T 2.1765 2.3920 388.8 151.4 0.91
5U 3.8825 2.3842 674.7 148.3 1.63 1.03
6U 4.1465 2.3872 735.6 151.0 1.74 1.02
7U 3.7250 2.3710 576.4 133.5 1.57 1.03
8T 1.4850 2.3715 226.6 131.6 0.63
9U 77.0 3.9970 2.3770 670.0 143.9 1.68 1.02


7/6 1T 77.0 2.0110 2.3840 364.4 154.6 0.84
2T 2.1070 2.3953 378.2 151.7 0.88
3U 3.6625 2.3932 646.9 149.6 1.53 1.04
4U 82.0 3.9280 2.3900 685.7 148.2 1.64 1.03


7/7 1T 82.0 2.1955 2.3965 390.7 150.3 0.92
2T 87.0 2.2945 2.3890 384.8 142.5 0.96


7/8 1T 87.0 92.0 2.3110 2.3970 338.9 123.8 0.96
















17th Street Bridge


BORING SAMP D MAX ST q (u) DISPL @) STRAIN %RECO TARE WTDRY
NO UNIT MS LOAD STRENGTH FAIL @FAIL W WT WT
CORE(~ pf (lbs) (psl) (psl) (m) (%) % RQD (g) (g) (g)


7/1 1T 356 116 7 2871 382 9 0 0986 52/10 77 359 2 349 5
2U 1 25 140 8 11000 2389 1 0 0734 1 94 77 2 711 703 2


7/2 1T 267 112 1 1725 4 209 4 0 1515 93/50 74 1 366 6 359
2T 5 61 122 4 2714 9 368 8 0 0663 "75 9 364 348 7
3U 4 11 132 1 6379 5 14145 0 0646 1 50 "745 765 9 738 6
4T 325 147 7 4748 7 561 7 0 0388 "759 476 1 463 5
5U 053 150 6 131088 2903 0 0 0698 1 49 "76 1 891 1 886 8
6T 168 147 1 3542 8 457 9 0 0347 "763 438 4 432 4
7T 638 118 2 29189 447 6 0 0936 "757 329 3 3141
8T 588 123 0 3484 4 426 5 0 0672 "75 406 1 387 7
9T 1 90 139 1 4411 4 477 3 0 0591 "76 488 2 480 5
10U 385 128 5 41956 997 8 0 0359 0 85 "75 682 659 5
11T 2 11 128 8 2239 8 244 3 0 0287" 754 448 7 441
12U 6 12 122 2 4652 1 1038 7 0 0314 0 63 "769 834 4 790 7
13T 1 78 129 7 2716 6 330 1 0 0326 "76 2 408 7 402 9

7/3 1T 0 63 92 9 1277 5 161 0 0 1324 42 / O 74 297 2 295 8
2T 075 895 1871 7 222 6 0 1413 77 333 2 331 3


I 7/4 50/ 0

7/5 1T 1 19 129 3 3141 3 341 9 0 0411 83/54 742 448 9 444 5
3T 1 27 143 6 2780 1 346 6 0 0292 "757 442 1 437 5
4T 109 149 8 3555 4 434 8 0 0262 "757 464 6 460 4
5U 090 147 0 10908 5 2378 3 0 0542 1 40 "749 746 5 740 5
6U 137 149 0 11900 5 2611 5 0 0548 1 32 "756 809 4 799 5
7U 194 131 0 3889 5 853 0 0 0300 0 81 "762 607 2 597 1
8T 149 129 7 21007 379 7 0 0599 "749 300 4 297 1
9U 1 15 142 3 9887 3 21786 0 0468 1 17 "764 743 1 735 5

7/6 1T 136 152 6 5727 5 760 5 0 0456 67 27 77 7 442 437 1
2T 083 150 5 3472 4 438 0 0 0288 "77 5 456 452 9
3U 1 16 147 9 11070 3 2373 7 0 0550 1 50 "765 722 2 7148
4U 1 02 146 7 7211 3 1566 7 0 0737 1 88 "76 3 722 8 716 3

7/7 1T 1 98 147 4 5630 4 681 3 0 0402 43/7 76 466 8 459 2
2T 2 15 139 5 3660 1 425 1 0 0219 757 460 5 452 4

7/8 1T 1 38 122 1 1884 9 216 6 0 0368 23 /8 77 416 411 4


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:


Location:
Date Received:
Tested by:
































8/1 1T 52.0 2.1765 2.3665 290.2 115.5 0.92
2U 3.9035 2.3900 669.1 145.6 1.63 1.03
3T 2.3245 2.3913 249.4 91.0 0.97
4U 4.3995 2.3833 494.8 96.0 1.85 1.01
6U 4.4095 2.3905 745.8 143.6 1.84 1.01
7T 1.5920 2.3745 233.4 126.1 0.67
8U 57.0 3.8605 2.3753 560.6 124.8 1.63 1.03


8/2 1T 57.0 2.3260 2.3933 357.7 130.2 0.97
2U 4.5345 2.3895 712.2 133.4 1.90 1.01
3T 2.0255 2.3955 316.4 132.0 0.85
4U 4.0815 2.3973 631.0 130.5 1.70 1.02
5T 2.3285 2.4045 344.4 124.1 0.97
6U 62.0 4.0865 2.3912 570.2 118.4 1.71 1.02


8/3 1U 62.0 4.4460 2.3633 510.1 99.6 1.88 1.01
2T 2.0945 2.3863 259.6 105.6 0.88
3T 2.3430 2.3708 262.8 96.8 0.99
4T 2.3025 2.3858 254.1 94.0 0.97
5T 1.8790 2.3665 313.8 144.6 0.79
6U 4.7045 2.3860 852.5 154.4 1.97 1.00
7T 2.2252 2.3870 405.1 155.0 0.93
8U 4.3420 2.3868 789.6 154.8 1.82 1.01
9T 2.4615 2.3933 432.8 148.9 1.03
10U 4.71 55 2.3927 801.4 144.0 1.97 1.00
11T 67.0 2.0520 2.3777 327.5 136.9 0.86


8/4 1U 67.0 4.51 65 2.3643 761.0 146.2 1.91 1.01
3T 2.3610 2.3775 283.3 103.0 0.99
4T 2.1220 2.3710 253.2 103.0 0.89
5U 5.0405 2.3805 576.3 97.9 2.12 1.00
6T 72.0 2.0905 2.3848 250.7 102.3 0.88


8/5 1U 72.0 3.9240 2.3735 700.6 153.7 1.65 1.03
2T 2.0870 2.3748 327.2 134.8 0.88
4U 4.2615 2.3708 731.2 148.1 1.80 1.01
5U 4.71 25 2.3745 826.9 151.0 1.98 1.00
6T 1.8625 2.3745 301.7 139.4 0.78
7T 2.1330 2.3822 341.4 136.8 0.90
8U 77.0 3.7315 2.3673 659.3 152.9 1.58 1.03


8/6 77.0 82.0 NA


8/7 1T 82.0 87.0 2.2285 2.3755 406.0 156.6 0.94


8/8 87.0 92.0 NA


Table B-1. Continued.
















17th Street Bridge


BORING SAMP D MAX ST q (u) DISPL @) STRAIN %RECO TARE WTDRY
NO UNIT MS LOAD STRENGTH FAIL @FAIL W WT WT
CORE(~ pf (lbs) (psl) (psl) (m) (%) % RQD (g) (g) (g)


8/1 1T 190 113 3 2768 5 342 2 0 0618 85/40 757 364 9 359 5
2U 244 142 1 10983 7 2384 1 0 0540 1 38 "77 7 744 5 728 6
3T 10 29 82 5 587 3 67 3 0 0477 "75 7 324 4 301 2
4U 744 894 1094 7 243 0 0 0406 0 92 "749 567 2 533 1
6U 7 06 134 1 54104 11935 0 0393 0 89 "76 820 8 771 7
7T 1037 114 3 1071 180 4 0 0374 "749 305 8 284 1
8U 11 92 111 5 2448 3 537 6 0 0545 141 "765 630 5 571 5

8/2 1T 212 127 5 3284 3 375 6 0 0476 61/138 742 431 4 424
2U 146 131 5 41595 921 6 0 0346 0 76 "77 2 784 8 774 6
3T 234 129 0 31202 409 4 0 0254 "757 390 7 383 5
4U 600 123 1 5359 1162 9 0 0502 1 23 "754 703 667 5
5T 2 24 121 4 3494 8 397 4 0 0457 "77 420 412 5
6U 808 109 5 3299 7199 0 0796 1 95 "763 636 6 594 7

8/3 1U 088 988 1058 239 4 0 0282 0 63 85/63 762 579 1 574 7
2T 189 103 6 1465 3 186 6 0 1091 "764 334 8 330
3T 3 30 93 7 1507 4 172 8 0 1471 "75 1 334 9 326 6
4T 332 91 0 1277 5 148 0 0 0729 "763 325 4 3174
5T 100 143 2 3369 1 482 3 0 0248 "76 1 389 3 386 2
6U 1 16 152 6 91205 2036 4 0 0488 1 04 "81 6 936 2 926 4
7T 102 153 4 5483 6 657 2 0 0370 "762 481 476 9
8U 092 153 4 8597 7 1899 0 0 0384 0 88 "77 1 866 5 859 3
9T 1 12 147 2 4848 9 524 0 0 0444 "769 509 8 505
10U 1 16 142 3 6241 3 1385 6 0 0423 0 90 "748 875 8 866 6
11T 090 135 7 3860 6 503 7 0 0599" 76 1 401 7 398 8

8/4 1U 1 68 143 8 41666 943 8 0 0503 1 11 73/46 763 832 3 819 8
3T 274 100 2 1869 212 0 0 0974 "756 352 6 345 2
4T 3 10 999 1096 2 138 7 0 0710 "755 3184 311 1
5U 1 69 962 11039 248 0 0 0730 1 45 "77 9 636 9 627 6
6T 176 100 5 1599 8 204 3 0 0898 "742 322 9 3186

8/5 1U 078 152 5 10016 2208 2 0 0569 1 45 73/38 76 1 774 6 769 2
2T 080 133 8 3009 1 386 5 0 0311 "757 401 9 399 3
4U 1 16 146 4 8808 2 1968 7 0 0691 1 62 "81 6 807 3 799
5U 1 09 149 3 61293 1382 9 0 0542 1 15 "762 902 9 894
6T 100 138 0 3366 1 484 5 0 0270 "765 378 2 375 2
7T 172 134 5 2593 7 325 0 0 1258 "757 4123 406 6
8U 073 151 8 9882 5 21752 0 0924 2 48 "77 2 727 7 723


I 8/6 23/ 0

8/7 1T 1 91 153 7 7095 3 853 3 0 0373 30 /0 76 9 483 475 4


I/ we I I I I I I I I 6/O


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:


Location:
Date Received:
Tested by:













Table B-1. Continued.

STATE MATERIALs Rock Core Effective/Revised Date:
OFFICE 12/22/05
Unconfined Compression-
Foundations Laboratory By: B.W. Page 1 of 1
Split Tensile





II ~ i I' I I .I I i I I I 1- .i I I ." I



9/1 1T 52.0 2.3675 2.3758 274.8 99.7 1.00
2U 4.8455 2.3993 734.1 127.7 2.02 1.00
3T 2.5725 2.3918 357.3 117.8 1.08
4U 3.8405 2.3895 623.0 137.8 1.61 1.03
5T 2.2010 2.3723 364.2 142.6 0.93
7U 4.1760 2.3723 631.5 130.3 1.76 1.02
8T 1.9400 2.4003 299.0 129.8 0.81
9T 2.2845 2.3838 357.8 133.7 0.96
10U 57.0 3.6120 2.3605 616.1 148.5 1.53 1.04


9/2 2U 57.0 4.0595 2.3835 642.7 135.2 1.70 1.02
3T 2.4610 2.4002 426.2 145.8 1.03
4T 2.1900 2.3923 384.5 148.8 0.92
5T 62.0 2.3480 2.3793 372.9 136.1 0.99


9/3 1T 62.0 2.3540 2.3748 382.8 139.9 0.99
2T 2.3030 2.3762 411.0 153.3 0.97
3U 4.7730 2.3712 853.7 154.3 2.01 1.00
4T 2.3620 2.3657 413.8 151.8 1.00
5U 4.5455 2.3710 806.2 153.0 1.92 1.01
6T 2.2490 2.3638 355.2 137.1 0.95
7U 3.9055 2.3790 647.2 142.0 1.64 1.03
8T 67.0 2.0000 2.3515 243.9 107.0 0.85


9/4 1T 67.0 2.0470 2.3715 332.2 140.0 0.86
2U 4.8350 2.3870 751.7 132.4 2.03 1.00
3T 2.0110 2.3808 227.2 96.7 0.84
4T 2.2550 2.3907 274.4 103.3 0.94
5T 2.0905 2.3708 248.0 102.4 0.88
6U 3.6590 2.3763 436.6 102.5 1.54 1.04
7T 72.0 1.9035 2.3728 228.5 103.4 0.80


9/5 1T 72.0 2.1880 2.3832 366.2 142.9 0.92
2U 4.5405 2.3837 780.4 146.7 1.90 1.01
3T 2.2630 2.3797 404.8 153.2 0.95
4U 4.4335 2.3853 712.6 137.0 1.86 1.01
5U 77.0 4.8720 2.3825 861.7 151.1 2.04 1.00


9/6 1U 77.0 3.6205 2.3862 662.8 156.0 1.52 1.04
2T 2.4180 2.3888 439.7 154.6 1.01
3T 82.0 1.9630 2.3873 356.4 154.5 0.82


9/7 1U 82.0 87.0 4.2860 2.3872 770.9 153.1 1.80 1.01
















17th Street Bridge


BORING SAMP D MAX ST q (u) DISPL @) STRAIN %RECO TARE WTDRY
NO UNIT MS LOAD STRENGTH FAIL @FAIL W WT WT
CORE(~ pf (lbs) (psl) (psl) (m) (%) % RQD (g) (g) (g)


9/1 1T 688 933 1279 5 144 8 0 1211 98/64 763 349 6 332
2U 662 119 7 4586 10144 0 0481 0 99 "77 803 8 758 7
3T 936 107 7 1349 6 139 6 0 1402 "754 429 4 399 1
4U 7 87 127 8 5926 1 1283 9 0 0533 1 39 "77 1 684 2 639 9
5T 688 133 4 3102 2 378 2 0 0323 "75 1 435 4 412 2
7U 5 95 123 0 4364 8 971 6 0 0426 1 02 "74 2 695 5 660 6
8T 568 122 8 2644 6 361 6 0 1008 "77 9 373 6 357 7
9T 430 128 2 3740 437 2 0 1115 "763 430 4 4158
10U 1 86 145 8 16570 3651 9 0 0723 2 00 "756 682 5 671 4

9/2 2U 366 130 4 4704 7 1032 8 0 0302 0 74 62 / 8 755 716 1 693 5
3T 184 143 2 51394 553 9 0 0406 "763 502 5 494 8
4T 2 50 145 2 4575 3 556 0 0 0323 "77 1 461 8 452 4
5T 1 55 134 0 3925 7 447 4 0 0201 "77 9 450 6 444 9

9/3 1T 090 138 6 3660 416 8 0 0345 87/33 75 1 458 1 454 7
2T 1 16 151 6 5147 2 598 8 0 0344 "754 486 6 481 9
3U 1 62 151 8 8931 8 2022 7 0 0411 0 86 "77 930 4 9168
4T 1 15 150 1 41174 469 1 0 0385 "76 1 489 7 485
5U 226 149 6 12046 9 27145 0 0564 1 24 "77 1 881 4 863 6
6T 371 132 2 16198 335 6 0 0306 "765 431 4 4187
7U 383 136 8 4587 7 1005 8 0 0652 1 67 "81 6 724 1 700 4
8T 2 53 104 3 1663 5 225 2 0 1097 "757 3187 312 7


9/4 1T 134 138 1 3476 3 455 9 0 0404 68/17 762 408 3 403 9
2U 1 15 130 8 6042 2 1350 2 0 0451 0 93 "763 823 9 8154
3T 401 930 802 1 106 7 0 0909 "77 2 302 8 294 1
4T 298 100 3 1647 194 5 0 1026 "757 348 9 341
5T 321 992 986 8 126 8 0 0723 "759 320 5 3129
6U 2 15 100 3 848 3 184 7 0 0877 2 40 "76 1 508 6 499 5
7T 227 101 1 1367 3 192 7 0 0828 "762 301 9 296 9

9/5 1T 097 141 6 3361 410 3 0 0543 80/37 72 2 437 2 433 7
2U 104 145 2 6839 4 1523 5 0 0341 0 75 "766 856 4 848 4
3T 109 151 6 5095 1 602 3 0 0367 "767 477 2 472 9
4U 1 21 135 4 6111 7 1355 4 0 0470 1 06 "76 1 776 6 768 2
5U 1 20 149 3 7936 3 1780 2 0 0341 0 70 "76 3 937 8 927 6

9/6 1U 1 97 152 9 9747 7 2099 6 0 0406 1 12 47/ 16 767 737 9 725 1
2T 162 152 1 5475 7 603 5 0 0583 "764 5157 508 7
3T 1 54 152 2 4377 4 594 7 0 0467 "79 435 5 430 1

9/7 1U 1 09 151 4 8963 4 1975 7 0 0694 1 62 30 /13 77 3 844 1 835 8


Table B-1. Continued.

Project Number:
Lab Number:
Bridge Number:
LIMS Number:


Location:
Date Received:
Tested by:


























71**I I II l* I l *I l I I I II I Il i I II I II II


CIB-1/1 1T 40 50 8/10/2006 2 3420 2 4850 463 4 155 4 0 94
2U 48177 2 4610 799 3 132 9 1 96 1 00
3T 2 4465 2 4200 374 3 126 7 1 01
4T 2 3805 2 4200 396 3 137 9 0 98
5U 45 50 4 1642 2 4765 751 1 142 6 1 68 1 02


CIB-1/2 1U 45 50 8/10/2006 3 6302 2 4545 679 5 150 7 1 48 1 04
2T 2 4455 2 4625 442 7 1448 0 99
3U 4 5233 2 4315 750 0 136 0 1 86 1 01
4T 2 3470 2 4250 399 4 140 4 0 97
5U 4 6885 2 4535 805 6 138 5 191 1 01
6T 2 1235 2 4700 384 2 143 9 0 86
7T 2 5135 2 4600 454 9 145 1 1 02
8U 48195 2 4570 848 6 141 5 1 96 1 00
9T 2 5560 2 4640 472 0 147 5 1 04
10U 50 50 4 7962 2 4740 892 8 147 5 194 1 00


CIB-1/3 1T 50 50 8/10/2006 2 4945 2 4510 464 0 150 2 1 02
2U 4 7732 2 4630 911 1 152 6 1 94 1 00
3T 2 4785 2 4495 451 5 147 2 1 01
4T 8/11/2006 2 4555 2 4545 388 3 127 3 1 00
5T 2 3780 2 4340 355 0 122 2 0 98
6T 55 50 2 4080 2 4240 346 0 118 6 0 99


CB-1/4 1U 55 50 8/14/2006 4 7672 2 3530 693 6 127 5 2 03 1 00
2T 2 5350 2 3975 384 2 127 9 1 06
3T 2 5305 2 4060 353 4 1170 1 05
4U 4 8415 2 4215 758 8 129 6 2 00 1 00
5T 2 2020 2 4115 341 0 129 2 0 91
6U 4 8682 2 4230 766 8 130 1 2 01 1 00
7T 2 3085 2 4170 345 1 1241 0 96
8U 4 7217 2 4350 727 1 126 0 1 94 1 00
9T 60 50 2 5060 2 4400 393 8 128 0 1 03


CB-1/5 1T 60 50 8/14/2006 2 3600 2 0160 227 1 114 8 1 17
2T 2 0215 2 1000 207 7 1130 0 96
3T 2 4585 2 2185 285 8 1146 1 11
4U 4 0008 2 0860 420 4 117 1 1 92 1 01
5U 48755 22955 597 1 1127 2 12 1 00
6T 2 4770 2 4000 349 0 1186 1 03
7U 4 8537 2 4230 680 3 1158 2 00 1 00
8U 4 6912 2 4060 665 3 1188 1 95 1 00
9T 65 50 2 4465 2 3815 326 2 1140 1 03


CIB-1/6 1T 65 50 8/15/2006 2 5280 2 3400 328 9 115 3 1 08
2T 2 3860 2 2185 296 0 122 3 1 08
3U 4 8008 2 3850 675 2 1199 2 01 1 00
4T 2 3295 2 4040 344 1 1240 0 97
5T 70 50 2 3140 2 3200 303 5 1182 100


Table B-2. Fuller Warren Soil Boring Data














Table B-2. Continued.

Prject Number: Fuller Warren Location: CB-1
Lb Number: Date Received: 8/9/2006
Bidge Number: Tested by: JC
LIMS Number:


BORING SAMP w DRY MAX ST q (u) DISPL @~ STRAIN %RECO TARE WET DRY
NO UNIT WT LOAD STRENGTH FAIL @a FAIL WT WT WT
CORE (%~) (pcf) (1bs) (psl) (psl) (In) (%) % RQD (g) (g) (g)


CIB-111 1T 3 35 150 4 3963 2 433 5 0 0640 67/37 427 1 873 8 859 3
2U 16 73 113 8 1017 4 213 3 0 0497 1 03 431 1 1224 3 1110 6
3T 23 01 103 0 276 8 29 8 00464 410 1 781 1 711 7
4T 15 60 119 3 799 8 88 4 0 0445 425 5 821 1 767 7
5U 10 93 128 6 6578 2 1335 3 00609 146 433 1181 1 1107 4


CB-112 1U 8 01 139 5 9815 4 1990 3 0 0699 1 93 94/74 424 3 1098 2 1048 2
2T 10 47 131 1 1191 125 9 0 0443 418 9 861 819 1
3U 14 44 118 9 3855 822 8 0 0496 1 10 302 8 1051 7 957 2
4T 11 77 125 6 896 100 2 00512 370 7 769 5 727 5
5U 14 05 121 4 3453 726 2 0 0672 1 43 435 2 1239 4 1140 3
6T 11 39 129 1 1814 220 2 0 0509 328 3 711 6 672 4
7T 11 43 130 2 2473 254 6 0 0558 434 1 887 6 841 1
8U 11 42 127 0 4494 945 7 0 0522 1 08 368 9 1201 4 1116 1
9T 11 39 132 4 1875 189 6 0 0411 429 5 900 9 852 7
10U #DIV/01 #DIV/01 #VALUEl I#VALUEl


CB-113 1T 8 79 138 1 2483 1 258 6 0 0504 60/48 377 8 840 9 803 5
2U 8 31 140 9 7533 1575 1 0 0527 1 10 372 3 1279 6 1210
3T 949 134 5 1582 165 9 00408 428 2 878 2 839 2
4T 16 13 109 6 245 25 9 0 0289 427 1 814 5 760 7
5T 24 16 98 5 112 12 4 0 0213 372 3 726 9 657 9
6T 31 27 90 4 183 19 9 0 0297 435 2 780 7 698 4


CB-114 1U 26 38 100 9 759 174 5 0 0516 1 08 92/77 427 1 1118 4 974 1
2T 23 05 103 9 181 190 00223 372 4 756 2 684 3
3T 30 80 89 5 121 12 7 0 0393 435 3 780 1 698 9
4U 22 23 106 1 1408 305 7 0 0440 0 91 419 1165 6 1029 8
5T 22 22 105 7 299 35 9 00278 364 9 705 4 643 5
6U 22 05 106 6 1468 318 3 0 0547 1 12 308 2 1073 8 935 5
7T 27 86 97 1 215 24 6 00356 313 1 657 8 582 7
8U 25 34 100 5 772 165 1 0 0576 1 22 373 2 1098 8 952 1
9T 23 43 103 7 267 27 8 00440 425 5 819 744 3


CB-115 1T 36 30 84 3 109 14 6 0 0336 90/67 315 2 542 481 6
2T 41 19 80 0 61 92 00242 431 1 6378 577 5
3T 45 34 78 8 29 3 4 0 0173 432 5 716 5 627 9
4U 37 67 85 1 338 98 4 00608 152 3704 789 6 674 9
5U 36 26 82 7 423 102 3 00610 1 25 370 6 965 9 807 5
6T 33 82 88 7 136 14 5 0 0386 376 5724 3 636 4
7U 34 34 86 2 550 1193 00565 1 16 312 990 3 8169
8U 29 72 91 6 479 105 1 0 0420 0 90 300 9965 2 813
9T 30 54 87 4 119 130 00401 371 3 697 620 8


CB-116 1T 29 23 89 2 51 7 5 6 0 0276 58/38 315 2 643 7 569 4
2T 27 22 96 1 46 5 5 0 0407 431 3 726 7 663 5
3U 28 98 93 0 187 41 9 0 0531 1 11 370 4 1045 1 893 5
4T 21 96 101 7 53 60 00284 3649 708 7 646 8
5T 25 61 94 1 30 35 00372 432 5 735 6 673 8














Table B-2. Continued.

STATE MATERIALsRokC r Effective/Revised Date:
OFFICE 4/27/05
Unconfined Compression-
Foundations Laboratory By: G.J. Page 1 of 1
Split Tensile







CB-2/1 1U 37 58 8/16/2006 4 0513 2 3715 674 2 143 5 1 71 1 02
2T 2 4250 2 3875 437 6 153 6 1 02
3T 42 58 2 4635 2 3500 390 2 139 1 1 05

CB-2/2 1T 42 58 8/16/2006 2 2305 2 3730 359 4 138 8 O 94
2U 4 8233 2 3865 806 6 142 4 2 02 1 00
3T 2 2735 2 3440 328 3 127 5 0 97
4U 8/17/2006 4 7352 2 3685 756 7 138 2 2 00 1 00
5T 24425 23845 413 1 1443 1 02
6T 47 58 2 4775 2 3770 429 6 148 9 1 04

CB-2/3 1T 47 58 8/17/2006 2 3155 2 3325 393 3 151 4 0 99
2U 46713 2 3815 790 1 1447 1 96 1 00
3T 24450 23890 4152 1443 1 02
4U 2 6913 2 3880 784 5 247 9 1 13 1 09
5T 2 3950 2 3885 401 6 142 6 1 00
6U 4 7383 2 3925 769 6 137 6 1 98 1 00
7T 2 4370 2 3935 401 1 139 4 1 02
8U 4 9098 2 3895 872 3 150 9 2 05 1 00
9T 2 2950 2 3770 310 1 1160 0 97
10U 4 7280 2 3760 630 4 1146 1 99 1 00
11T 2 3950 2 3630 294 3 106 7 1 01
12U 52 58 4 7902 2 3810 834 4 149 0 2 01 1 00

CB-2/4 1T 52 58 8/17/2006 2 3575 2 3365 383 7 144 6 1 01
2U 4 7825 2 3870 798 5 142 1 2 00 1 00
3U 4 7328 2 3500 775 3 143 9 2 01 1 00
4T 8/18/2006 2 3815 2 3675 367 4 133 5 1 01
5U 4 6380 2 3510 701 1 132 7 1 97 1 00
6T 2 3035 2 3635 327 9 123 6 0 97
7U 4 6880 2 3645 655 3 121 3 1 98 1 00
8T 2 2875 2 3445 3126 120 6 0 98
9U 4 7233 2 3485 662 1 123 3 2 01 1 00
10T 2 3315 2 3390 330 5 125 7 1 00
11T 2 3140 2 3530 340 4 128 9 0 98
12U 4 8088 2 3595 699 7 126 8 2 04 1 00
13T 2 5235 2 3475 359 1 125 3 1 07
14T 57 58 2 5360 2 3615 357 3 122 5 107

CB-2/5 1U 57 58 8/18/2006 4 8678 2 3470 705 9 127 7 2 07 1 00
2T 2 4855 2 3655 363 3 126 7 1 05
3U 4 7017 2 3590 677 6 125 6 1 99 1 00
4T 2 3865 2 3325 350 0 130 8 1 02
5U 62 58 4 9502 2 3395 7183 128 6 2 12 1 00

CB-2/6 1T 62 58 8/18/2006 2 3460 2 3535 294 3 109 9 1 00
2U 4 7983 2 3545 623 0 1136 2 04 1 00
3T 2 3445 2 3675 301 1 111 1 0 99
4U 4 7540 2 3515 627 6 1158 2 02 1 00
5T 2 3380 2 3355 311 5 118 5 1 00
6U 46223 2 3500 629 1 1195 1 97 1 00
7U 4 8098 2 3650 654 8 118 1 2 03 1 00
8T 2 3175 2 3130 3128 122 4 1 00
9U 4 8382 2 3155 6541 122 3 2 09 1 00
10T 67 58 2 4185 2 3000 323 1 122 5 1 05

































CB-3/1 1U 41' 8/21/2006 4.8380 2.3950 853.2 149.1 2.02 1.00
2U 4.4327 2.3835 740.4 142.6 1.86 1.01
3T 2.4345 2.3100 335.2 125.2 1.05
4T 2.4350 2.3785 375.0 132.0 1.02
5T 46' 2.3500 2.3730 409.9 150.2 0.99


CB-3/2 1T 46' 8/21/2006 2.4165 2.2995 308.4 117.1 1.05
2U 4.3357 2.3655 774.8 154.9 1.83 1.01
3T 8/22/2006 2.3220 2.3760 406.1 150.3 0.98
4LJ 4.8068 2.3820 806.8 143.5 2.02 1300
5T 2.3535 2.3720 400.6 146.7 0.99
6U 4.8825 2.3895 799.2 139.1 2.04 1300
7T 2.3395 2.3870 393.8 143.3 0.98
8U 51' 4.8715 2.3890 865.4 151.0 2.04 1.00


CB-3/3 1T 51' 8/22/2006 2.3315 2.3510 380.8 143.3 0.99
2U 4.8632 2.3610 838.4 150.0 2.06 1300
3T 2.4395 2.3110 376.5 140.2 1.06
4T 2.4330 2.3555 378.1 135.9 1.03
5U 4.8955 2.3430 734.4 132.5 2.09 1.00
6T 2.4855 2.3285 366.7 132.0 1.07
7T 2.4545 2.3375 328.7 118.9 1.D5
8U 4.8125 2.3360 672.7 124.2 2.06 1.00
9T 2.3865 2.3230 332.8 125.3 1.03
10T 2.1210 2.3185 291.7 124.1 0.91
11U 4.7020 2.3455 676.5 126.9 2.00 1.00
12T 56' 2.4110 2.3595 369.5 133.5 1.02


CB-3/4 1T 56' 8/25/2006 2.4285 2.3140 361.2 134.7 1.05
2T 2.4045 2.3495 360.4 131.7 1.02
3U 4.7600 2.3470 716.7 132.6 2.03 1.00
4T 2.3475 2.3350 351.6 133.2 1.01
5U 4.8043 2.3400 701.4 129.3 2.05 1.00
6U 4.8840 2.3575 697.0 124.5 2.07 1.00
7T 2.4785 2.3545 368.8 130.2 1.05
8T 61' 2.4740 2.3655 330.1 115.7 1.D5


CB-3/5 1T 61' 8/29/2006 2.3695 2.3380 291.2 109.1 1.01
2U 4.7328 2.3555 593.2 109.6 2.01 1300
3T 2.2640 2.3445 282.7 110.2 0.97
4U 4.7637 2.3380 606.0 112.9 2.04 1.00
5U 4.5473 2.3420 570.4 110.9 1.94 1.00
6U 4.7163 2.3305 605.3 114.6 2.02 1.00
7T 2.3420 2.5030 330.6 109.3 0.94
8U 4.7265 2.3425 626.8 117.2 2.02 1.00
9T 2.3560 2.3405 313.9 118.0 1.D1
10U 4.6853 2.3125 627.2 121.4 2.03 1.00
11U 4.6542 2.2635 600.2 122.1 2.06 1.00
12T 66' 2.5205 2.3035 313.7 113.8 1.09


CB-3/6 1T 66' 8/29/2006 2.3570 2.3525 329.7 122.6 1.00
2U 4.5855 2.3315 637.4 124.0 1.97 1.00
3T 2.4500 2.3325 331.8 120.7 1.05
4U 71' 4.7435 2.3535 651.6 120.3 2.02 1.00


Table B-2. Continued.














Table B-2. Continued.

Prject Number: CB-3 Location: Fuller Warren
Lb Number: Date Received: 8/10/2006
Bridge Number: Tested by: JC
LIMS Number:


BORING SAMP w DRY MAX ST q (u) DISPL @~ STRAIN %RECO TARE WET DRY
NO UNIT WT LOAD STRENGTH FAIL @a FAIL WT WT WT
CORE (%~) (pcf) (1bs) (psl) (psl) (In) (%) % RQD (g) (g) (g)


CB-3/1 1U 5 32 141 6 6782 1505 6 0 0522 1 08 72/50 430 3 1281 5 1238 5
2U 11 14 128 3 3530 784 1 0 0634 1 43 430 7 1168 7 1094 7
3T 26 01 99 3 368 41 6 00633 366 1 698 4 629 8
4T 16 40 113 4 1378 151 5 0 0687 431 4 805 4 752 7
5T 907 137 8 3224 368 0 00515 428 3 837 2 803 2


CB-312 1T 26 50 92 5 204 23 4 0 0743 77/67 428 1 735 5 671 1
2U 746 144 2 5720 1287 5 00549 1 27 430 2 1196 6 1143 4
3T 8 10 139 0 1552 179 0 00415 430 3 835 8 805 4
4U 11 63 128 5 3252 729 8 0 0541 1 13 431 4 1237 8 1153 8
5T 10 86 132 4 1623 185 1 0 0468 371 5 771 6 732 4
6U 13 79 122 2 4229 943 0 0 0563 1 15 433 1 1230 0 1133 4
7T 11 05 129 0 1715 195 5 00419 312 1 703 9 664 9
8U 8 31 139 4 5690 1269 3 0 0454 0 93 375 9 1239 0 1172 8

CB-313 1T 9 56 130 8 379 44 0 0 0410 100/92 366 0 746 4 713 2
2U 871 138 0 3187 727 9 00630 130 370 8 1207 2 1140 2
3T 454 134 1 120 135 00237 370 6 746 2 729 9
4T 14 37 1188 243 27 0 00276 425 7 802 9 755 5
5U 18 48 111 9 501 116 1 0 0297 0 61 430 6 1164 0 1049 6
6T 19 11 110 8 169 18 6 0 0236 424 6 790 5 731 8
7T 28 86 92 3 88 97 00209 430 4 758 6 685 1
8U 27 47 97 5 731 170 5 0 0455 0 95 302 8 972 4 828 1
9T 24 01 101 1 287 32 9 00422 425 0 756 6 692 4
10T 23 05 100 8 93 12 1 0 0402 410 1 701 0 646 5
11U 23 97 102 3 433 100 3 0 0348 0 74 428 2 1103 6 973 0
12T 17 63 1135 437 48 9 00324 428 4 797 4 742 1


CB-3/4 1T 19 83 112 4 159 18 0 0 0444 85/60 371 3 730 3 670 9
2T 19 85 109 9 361 40 6 00204 377 9 737 8 678 2
3U 20 45 110 1 1627 376 0 0 0503 1 06 304 2 1019 9 898 4
4T 21 49 109 7 328 38 1 0 0311 435 2 786 3 724 2
5U 24 66 103 7 1185 275 5 0 0551 1 15 370 7 1070 4 932
6U 26 73 98 3 873 199 9 0 0708 1 45 419 1113 1 966 7
7T 25 87 103 4 223 24 3 00379 375 9 743 7 668 1
8T 37 81 83 9 181 197 00368 366 695 5 605 1


CB-315 1T 40 81 77 4 131 15 1 0 0392 100/100 366 0 656 5 572 3
2U 41 51 77 4 550 126 2 00528 1 12 371 4 963 6 789 9
3T 40 60 78 4 101 12 1 00494 375 9 657 8 576 4
4U 38 32 81 6 556 129 5 0 0669 1 40 435 3 1039 9 872 4
5U 39 91 79 3 594 137 3 00557 1 22 4190 988 0 825 7
6U 34 81 85 0 581 136 1 00575 1 22 304 2 908 0 752 1
7T 30 13 84 0 175 190 00442 370 6 699 3 623 2
8U 29 44 90 6 485 112 5 0 0492 1 04 377 9 1002 2 860 2
9T 32 05 89 3 159 18 4 0 0365 427 2 740 3 664 3
10U 26 49 96 0 344 81 9 0 0398 0 85 375 3 1001 3 870 2
11U 26 54 96 5 221 55 0 0 0319 0 69 433 0 1032 3 906 6
12T 28 11 88 8 51 5 6 0 0220 371 5 684 6 615 9


CB-3/6 1T 20 39 101 8 98 11 2 0 0234 58/45 431 4 760 8 705 0
2U 21 02 102 5 356 83 1 0 0437 0 95 428 5 1064 8 954 3
3T 24 32 97 1 86 95 00405 428 2 759 4 694 6
4U 24 31 96 8 486 111 7 0 0488 1 03 430 4 1080 9 953 7























CB-4 (e)CB-5 (e)CB-6(Nw

EL. (f) q tf u(s)qq~s) Ei (s) EL. (f) q tf u(s)qq~s) Ei (s) EL. (f) q tf u(s)q~s) Ei(si
-52 10.69 53.38 11.94 80829.45 -52 10.98 127.23 18.69 123700.43 -52 16.97 47.39 14.18 174256.09
-53 12.12 86.06 16.15 112508.32 -53 29.82 127.23 30.80 123700.43 -53 25.84 47.39 17.50 174256.09
-54 3.24 121.92 9.95 152060.87 -54 6.25 60.55 9.73 81116.67 -54 29.55 91.31 25.97 180288.98
-55 3.24 71.23 7.60 128709.26 -56 24.65 50.99 17.73 130425.71 -54.5 16.97 40.15 13.05 75248.87
-56 20.11 124.77 25.05 133386.84 -57 12.89 33.58 10.40 261 797.27 -55 20.36 53.19 16.46 116133.00
-57 15.83 101.05 20.00 143472.97 -58 25.35 158.50 31.70 137071.11 -56 6.49 53.19 9.29 116133.00
-57.5 10.83 31.61 9.25 54116.25 -60 13.13 45.58 12.23 46711.83 -57 25.86 67.42 20.88 20587.29
-58 9.27 31.61 8.56 54116.25 -60 15.12 61.29 15.22 24748.90 -59 14.85 67.42 15.82 20587.29
-59 25.47 32.74 14.44 50258.73 -62 9.84 154.63 19.50 166002.00 -60 7.23 67.42 11.04 20587.29
-60 18.21 32.74 12.21 50258.73 -64 31.34 154.63 34.81 166002.00 -60.5 49.11 59.45 27.02 124443.40
-61 20.27 51.23 16.11 61906.50 -65 8.60 154.63 18.23 166002.00 -61.5 17.78 59.45 16.25 124443.40
-62 13.24 104.18 18.57 107548.83 -66 20.18 154.63 27.93 166002.00 -62 19.28 59.45 16.93 124443.40
-65 10.37 153.71 19.96 167965.36 -67 10.89 84.19 15.14 92242.77 -62.5 12.71 153.46 22.09 59292.48
-66 6.57 40.89 8.20 115282.48 -69 4.58 84.19 9.82 92242.77 -63 12.71 74.55 15.39 115316.42
-67 23.23 40.89 15.41 115282.48 -72 2.95 84.19 7.88 92242.77 -64 8.17 31.69 8.04 92628.95
-68 12.93 24.60 8.92 35563.47 -73 22.33 84.19 21.68 92242.77 -65 9.02 39.95 9.49 6111.94
-69 14.81 17.22 7.99 491 75.58 -74 7.20 170.37 17.52 203698.80 -66 11.00 30.02 9.08 60825.36
-70 7.60 17.22 5.72 491 75.58 -75 23.86 51.98 17.61 130769.50 -67 9.18 20.85 6.92 6020.61
-72 11.28 17.22 6.97 491 75.58 -76 20.57 67.79 18.67 8941 0.93 -69 10.90 17.33 6.87 17687.90


-77 26.83 85.80 23.99 116801.38 -71 9.74 17.33 6.50 17687.90
-78 26.83 135.18 30.11 163096.18 -72 14.80 100.35 19.27 136894.81
-80 32.97 157.99 36.09 158144.06 -73 36.71 102.86 30.72 201 41 9.69
-85 44.07 149.30 40.56 159257.64 -75 18.17 37.05 12.97 41673.40


-78 42.72 56.08 24.47 105885.43
-82 34.96 56.08 22.14 105885.43


APPENDIX C
SOIL BORING INFORMATION PROCESSED


Table C-1. 17th Street Bridge Processed Soil Boring Data.


20.57 105.35 23.28 122375.591 -70


17.33


5.70 17687.90


11.78


43.09


11.26 27136.26


















CB-7 (e)CB-8 (e)CB-9(Nw

EL. (f) q tf u(s) qq~s) Ei (s) EL. (ft) t(s) tf uttf Ei (s) EL. (f) q tf u(s) qq~s) Ei(si
-52 27.57 172.01 34.43 123378.55 -52 24.64 171.66 32.52 172341.16 -52 10.43 73.03 13.80 102183.65
-57.5 15.08 101.85 19.59 94451 .43 -54 4.84 17.49 4.60 26327.58 -53 10.05 92.44 15.24 92509.46
-58 26.56 101.85 26.00 94451 .43 -55 12.99 85.93 16.70 133906.89 -54 27.23 69.96 21.82 95248.98
-59 40.44 209.01 45.97 195348.15 -57 12.99 38.71 11.21 38084.20 -55 26.03 69.96 21.34 95248.98
-60 32.97 209.01 41.50 195348.15 -58 27.04 66.36 21.18 120782.02 -55.5 31.48 262.94 45.49 182445.65
-61 30.71 71.84 23.48 116969.04 -60 29.48 83.73 24.84 94551.15 -56 39.88 74.36 27.23 138835.66
-62 34.37 71.84 24.84 116969.04 -61 28.61 51.83 19.26 36950.25 -59 40.03 74.36 27.28 138835.66
-63 17.59 74.79 18.14 165651.22 -62 13.44 17.24 7.61 37794.70 -61 32.21 74.36 24.47 138835.66
-64 23.77 74.79 21.08 165651.22 -63 12.44 17.24 7.32 37794.70 -62 30.01 145.63 33.05 234895.75
-65 11.59 74.79 14.72 165651.22 -64 10.66 146.62 19.77 19631 2.18 -62.5 43.11 145.63 39.62 234895.75
-67 16.03 74.79 17.31 165651.22 -65 34.73 146.62 35.68 19631 2.18 -63.5 33.77 195.44 40.62 218771.42
-72 24.61 171.24 32.46 170366.07 -66 47.32 136.73 40.22 214724.74 -65 24.16 72.42 20.91 60246.07
-73 31.30 171.24 36.61 170366.07 -67 37.73 99.77 30.68 154467.47 -67 16.21 97.22 19.85 144754.85
-74 31.30 188.03 38.36 197601.72 -68 36.27 67.95 24.82 84740.90 -67.5 32.82 97.22 28.24 144754.85
-75 27.34 61.42 20.49 105915.18 -69 15.26 67.95 16.10 84740.90 -68.5 7.68 97.22 13.66 144754.85
-77 27.34 156.86 32.74 186067.63 -70 9.99 17.86 6.68 17126.44 -69 14.00 97.22 18.45 144754.85
-78 54.76 156.86 46.34 186067.63 -72 14.71 158.99 24.18 152286.14 -70 9.13 13.30 5.51 7704.23
-80 31.54 170.90 36.71 158064.46 -73 27.83 141.75 31.40 121415.11 -72 13.88 13.30 6.79 7704.23
-81 31.54 112.80 29.82 83499.76 -76 34.89 99.57 29.47 120236.98 -73 29.54 109.69 28.46 202857.23
-83 49.05 112.80 37.19 83499.76 -77 23.40 156.61 30.27 87842.81 -75 43.37 97.59 32.53 127850.72
-87 30.61 112.80 29.38 83499.76 -87 61.43 156.61 49.04 87842.81 -76 43.37 128.18 37.28 254347.86


-80 43.45 151.17 40.52 187232.64
-82 42.82 142.25 39.02 122014.76


15.60


112.80


20.97


83499.76


Table C-1. Continued.














Table C-2. Fuller Warren Bridge Processed Soil Boring Data.

CB-1 (New)
30
EL. (ft) qu (tsf) qt (tsf) Recovery quqt(tsf) Ei (psi)
-40.5 15.36 31.21 67 10.95 20725.93
-42.5 96.14 2.14 67 7.18 93362.29
-45.5 143.30 9.07 94 18.02 108694.81
-46.5 59.24 7.21 94 10.34 20329.10
-47.5 52.29 15.85 94 14.40 50938.20
-48.5 68.09 18.33 94 17.67 87522.73
-50.5 113.41 18.62 60 22.97 143167.10
-55.5 12.56 1.37 92 2.07 16123.94
-56.5 22.01 0.91 92 2.24 33646.94
-57.5 22.92 2.58 92 3.85 28351.18
-58.5 11.89 1.77 92 2.29 13580.10
-60.5 7.08 1.05 90 1.37 6509.45
-61.5 7.36 0.66 90 1.10 8173.66
-62.5 8.59 0.25 90 0.73 10247.30
-63.5 7.57 1.05 90 1.41 11768.07
-65.5 3.02 0.40 58 0.55 3832.10

CB-2 (New)
25
EL. ft uts) t(tf Reoey utts) Ei(si
-37.58 42.57 25.23 25 16.39 48974.00
-42.58 18.66 3.54 68 4.06 30083.74
-43.58 56.42 1.76 68 4.98 75668.97
-47.58 64.77 18.36 90 17.24 81 523.95
-48.58 65.12 8.41 90 11.70 75899.59
-49.58 37.24 8.51 90 8.90 38959.02
-50.58 140.06 10.11 90 18.82 152082.74
-51.58 8.29 1.91 90 1.99 15682.83
-52 78.44 0.84 90 4.05 69402.72
-52.58 15.68 5.49 98 4.64 24923.43
-53.58 10.61 1.82 98 2.20 14642.92
-54.58 9.08 1.28 98 1.71 13980.61
-55.58 18.88 1.90 98 2.99 21191.30
-56.58 20.99 1.40 98 2.71 20221.36
-57 16.81 1.36 98 2.39 21522.93
-57.58 16.72 1.77 80 2.72 26059.97
-62.58 11.08 1.14 77 1.78 11334.53
-63.58 9.44 1.44 77 1.84 12460.26
-64.58 9.59 1.24 77 1.72 13170.90
-65.58 10.08 0.97 77 1.56 14308.84
-66.58 7.49 0.42 77 0.89 15724.97

CB-3 (New)
15
EL. (t qu(s) q(tf Reoey qqts) Ei(pi
-41 108.40 3.00 72 9.01 139525.37
-42 56.45 10.91 72 12.41 55345.75
-46 92.70 1.69 77 6.25 102818.36
-47 52.55 12.89 77 13.01 64868.52
-48 67.90 13.33 77 15.04 81761.47
-49 91.39 14.08 77 17.93 136076.85
-51 52.41 3.17 100 6.44 56192.28
-52 8.36 0.97 100 1.42 19141.58
-53 12.28 1.94 100 2.44 18051.95
-54 7.22 1.34 100 1.55 13564.22
-56 27.07 1.30 85 2.97 35561.05
-57 19.84 2.93 85 3.81 24011.06
-58 14.39 2.74 85 3.14 13791.05
-61 9.09 1.09 100 1.57 11308.89
-62 9.33 0.87 100 1.42 9220.15
-63 9.89 1.37 100 1.84 11249.80
-64 9.80 1.32 100 1.80 11165.85
-65 8.10 0.40 100 0.90 10801.59
-66 5.99 0.81 58 1.10 8732.30
-67 8.04 0.69 58 1.18 10850.17











APPENDIX D
FREQUENCY DISTRIBUTIONS


0 02


0 00500



550 56


610 620 630


Figure D-1. Total Capacity Frequency Distribution 5 feet Correlation Length


520 540 560 580 600 620 640


Figure D-2. Total Capacity Frequency Distribution 12 feet Correlation Length



131
























) 20 40 60


0.03








0 50 100
RQD

FullerWarren MEAN= 56.6495 8.4384 63.0673
STD = 78.6970 10.6514 25.6656
SKEW = 4.0955 1.8064 -0.1906
KURT = 24.6259 6.3517 1.9980

MNPDFEXP = 56.6321 8.3339 29.6672
STDPDFEXP= 56.5155 8.0886 25.1402
SKPDFEXP = 1.9848 1.7879 1.4168
KUPDFEXP = 8.7361 6.8332 3.5806

MNPDFLOG= 53.7941 6.7613 46.0365
STDPDFLOG = 66.7919 8.8546 20.5086
SKPDFLOG = 3.1883 2.5116 1.2676
KUPDFLOG = 16.7575 9.8725 3.1364


sqerrorNORM = 1.0e-005 0.1896 0.0147 0.0008
sqerrorEXP = 1.0e-006 0.4337 0.0909 0.0524
sqerrorLOGN= 1.0e-006 0.0867 0.1634 0.1023


0.025


0.02

0.015

0.01

0.005

0
0


200 400


0.04


Figure D-3. Fuller Warren Bridge Old and New Borings.










































FullerWarren MEAN= 84.0846 21.0250 31.8000
STD = 103.4132 12.8320 15.8931
SKEW = 3.1996 0.8896 0.3480
KURT = 14.4114 3.2306 2.1762

MNPDFEXP = 83.5399 16.3554 20.5342
STDPDFEXP = 82.2767 14.0040 17.1492
SKPDFEXP = 1.8272 1.2029 1.2207
KUPDFEXP = 7.2899 3.5943 3.4034


MNPDFLOG= 78.7380 19.3564 27.8348
STDPDFLOG= 79.1172 11.3702 13.9045
SKPDFLOG = 2.4872 1.2153 1.0484
KUPDFLOG= 11.0840 4.0844 3.3541


sqerrorNORM = sqerrorNORM = 1.0e-005 0.1173 0.0002 0.0009
sqerrorEXP = 1.0e-006 0.6094 0.0027 0.0002
sqerrorLOGN= 1.0e-006 0.3260 0.0093 0.0001


0.015


0.01


0.005


0
0


0.06


0.04


0.02


0
0


0.08


200 400


0.06

0.04

0.02


0 20 40 60


RQD











20 40 60 80


Figure D-4. Fuller Warren Bridge Old Borings.






































0 50 100
RQD

FullerWarrenMEAN= 33.2623 4.9771 70.5119
STD = 35.5262 6.7102 21.6325
SKEW = 1.4909 1.9667 -0.2355
KURT = 4.3762 6.4417 1.9256

MNPDFEXP = 30.9262 4.9163 29.2225
STDPDFEXP= 28.4992 4.7548 25.2514
SKPDFEXP = 1.4166 1.8230 1.5131
KUPDFEXP = 4.7127 6.9671 3.7210

MNPDFLOG= 27.5770 4.0548 56.0055
STDPDFLOG = 25.9415 4.9143 17.7774
SKPDFLOG = 1.8682 2.5286 1.2478
KUPDFLOG = 6.5454 10.3575 2.8813

MNPDFGAM= 31.4924 4.8403 58.0390
STDPDFGAM = 27.7417 5.1162 17.8002
SKPDFGAM = 1.3825 1.9486 1.0286
KUPDFGAM= 4.6979 7.1993 2.6588


sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003
sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043
sqerrorLOGN= 1.0e-005 0.1938 0.0000 0.0093
sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041


0.04

0.03

0.02

0.01


0 50 100 15


10 20
qt


30 40


0.03


Figure D-5. Fuller Warren Bridge New Borings.















0.01 E




0. IlI1..

O 100 200 2
quqt/2


0.05

0.041

0.03

0.02

0.01


0 20 40 60
qu(tst)

MEAN= 1.0e+004 0.0060 0.0006 6.2192
STD = 1.0e+004 0.0042 0.0006 4.8059
SKEW = 0.5721 0.8510 0.7210
KURT = 2.4376 2.2529 2.3001

MNPDFEXP = 1.0e+004 0.0042 0.0005 4.5972
STDPDFEXP = 1.0e+004 0.0035 0.0004 3.9074
SKPDFEXP = 1.1923 1.2702 1.1766
KUPDFEXP = 3.4116 3.8305 3.4654

MNPDFLOG = 1.0e+004 0.0043 0.0004 4.8072
STDPDFLOG= 1.0e+004 0.0032 0.0004 3.4648
SKPDFLOG = 1.3965 1.6554 1.3606
KUPDFLOG= 4.0138 5.1557 4.1142

MNPDFGAM= 1.0e+004 0.0049 0.0005 5.3568
STDPDFGAM = 1.0e+004 0.0033 0.0004 3.6765
SKPDFGAM= 0.9666 1.2516 0.9698
KUPDFGAM= 3.0719 3.7974 3.1902

sqerrorNORM = 1.0e-005 0.1110 0.0016 0.0279
sqerrorEXP= 1.0e-006 0.1716 0.0205 0.8014
sqerrorLOGN= 1.0e-006 0.0112 0.0037 0.7291


0.015


0.05


Figure D-6. 17th Street Bridge Old and New Borings.


0.04\

0.03






0 20 40 60 80
qt (tst)























50 100 1
qu (tsf)


MEAN= 1.0e+004 0.0033 0.0005 4.0354
STD = 1.0e+004 0.0036 0.0007 4.1662
SKEW = 1.4909 1.9667 1.5006
KURT = 4.3762 6.4417 4.2151

MNPDFEXP = 1.0e+004 0.0031 0.0005 3.6832
STDPDFEXP= 1.0e+004 0.0028 0.0005 3.3610
SKPDFEXP = 1.4166 1.8230 1.3552
KUPDFEXP = 4.7127 6.9671 4.4338

MNPDFLOG = 1.0e+004 0.0028 0.0004 3.3867
STDPDFLOG= 1.0e+004 0.0026 0.0005 2.9839
SKPDFLOG = 1.8682 2.5286 1.7647
KUPDFLOG = 6.5454 10.3575 6.1003

MNPDFGAM= 1.0e+004 0.0031 0.0005 3.8192
STDPDFGAM = 1.0e+004 0.0028 0.0005 3.2012
SKPDFGAM = 1.3825 1.9486 1.2998
KUPDF GAM = 4.6979 7.1993 4.4234


sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003
sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043
sqerrorLOGN= 1.0e-005 0.1938 0.0000 0.0093
sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041


0.04


0.03

0.02

0.01





x 10-s


0 10 20
qt (tsf)


30 40


O 0.5 1
Ei (psi)


1.5 2
x 105


Figure D-7. 17th Street Bridge New Borings.

















0.2

0.1


0 10 20 30 40


Fuller Warren MEAN = 40.6770 5.6533 59.0000
STD = 43.8454 7.7969 16.2741
SKEW = 1.1377 1.7369 -0.2460
KURT = 3.0363 5.4691 1.3395


MNPDFEXP = 35.4210 5.5212 22.4767
STDPDFEXP= 31.5161 5.2677 19.7376
SKPDFEXP = 1.2780 1.7062 1.5784
KUPDFEXP = 4.0350 6.2048 3.8275

MNPDFLOG= 29.4949 4.1192 46.3333
STDPDFLOG = 29.1923 5.4296 13.3009
SKPDFLOG = 1.7745 2.4799 1.3628
KUPDFLOG = 5.7006 9.4714 2.7984

MNPDFGAM= 35.1343 5.2196 47.4964
STDPDFGAM = 31.6539 5.8278 13.2912
SKPDFGAM = 1.2908 1.9324 1.2163
KUPDFGAM= 4.0534 6.6096 2.6321


sqerrorNORM = 1.0e-005 0.6799 0.0320 0.0000
sqerrorEXP= 1.0e-005 0.3160 0.0222 0.0074
sqerrorLOGN= 1.0e-005 0.2110 0.0085 0.0160
sqerrorGAM = 1.0e-005 0.3215 0.0209 0.0077


0.04

0.03 i

0.02

0.01


0


0.1 -

0.08

0.06

0.04

0.02

O
O


0.4

0.3


50 100


20 40 60 80


Figure D-8. Fuller Warren Bridge New Boring CBl.









































FullerWarrenEAN = 30.3093 5.0613 74.5000
STD = 32.0428 6.2900 23.5584
SKEW = 2.0375 1.8282 -0.7659
KURT = 7.0180 5.6542 2.4186

MNPDFEXP = 28.8431 4.9667 28.9120
STDPDFEXP= 27.0370 4.7615 25.2984
SKPDFEXP = 1.5024 1.7542 1.5628
KUPDFEXP = 5.1612 6.4929 3.8012

MNPDFLOG= 27.2953 4.3067 51.6272
STDPDFLOG = 23.2056 4.7122 19.8380
SKPDFLOG = 1.9139 2.3214 1.4651
KUPDFLOG= 7.2505 9.2016 2.9963

MNPDFGAM= 29.8271 4.9493 54.7557
STDPDFGAM = 24.1703 4.8362 19.5059
SKPDFGAM = 1.4061 1.7783 1.2851
KUPDFGAM= 5.1809 6.5286 2.7296


sqerrorNORM = 1.0e-004 0.2195 0.0025 0.0032
sqerrorEXP = 1.0e-004 0.1553 0.0008 0.0003
sqerrorLOGN= 1.0e-005 0.9675 0.0110 0.0006
sqerrorGAM = 1.0e-004 0.1333 0.0025 0.0006


0.06


0.04


0.02 /


ol
0


0.05


50 100


10 20


Figure D-9. Fuller Warren New Boring CB2.


0.04

0.03

0.02

0.01


0 50 10






















20 30


Fuller Warren MEAN = 30.9569 4.2200 77.3793
STD = 33.1697 6.0748 20.3354
SKEW = 1.1429 2.3112 -0.2341
KURT = 2.8870 7.9730 1.4244

MNPDFEXP = 26.9212 4.1906 28.6658
STDPDFEXP= 23.9281 4.0814 25.3287
SKPDFEXP = 1.2791 1.9112 1.5975
KUPDFEXP = 4.0327 7.5835 3.8601

MNPDFLOG = 23.4179 3.5494 60.1970
STDPDFLOG = 21.6499 4.0810 16.9897
SKPDFLOG = 1.7166 2.6733 1.4052
KUPDFLOG = 5.5971 11.9322 2.7615

MNPDFGAM= 27.2903 4.1714 61.5707
STDPDFGAM = 23.7335 4.2676 16.9482
SKPDFGAM = 1.2574 1.9894 1.2835
KUPDFGAM= 4.0039 7.7753 2.6131


sqerrorNORM = 1.0e-004 0.2302 0.0009 0.0131
sqerrorEXP = 1.0e-004 0.1278 0.0024 0.0073
sqerrorLOGN= 1.0e-005 0.7795 0.0204 0.0453
sqerrorGAM = 1.0e-004 0.1260 0.0028 0.0077


0.06


0.04~


0.02


0
0


0.05-

0.04

0.03

0.02

0.01

0
0


50 100 1


Figure D-10. Fuller Warren New Boring CB3


0.3

0.2

0.1


0 10
















Table E-1. 17th Street Bridge SGS feetet.
A
PSF


PSF


PSF

Mean 42503.73487
Standard Error 223.6157448
Median 39001.786
Mode 49700
Standard Deviation 21519.45762
Sample Variance 463087056.4
Kurtosis -0.581050641
Skewness 0.497640383
Range 99866.79713
Minimum 117.150872
Maximum 99983.948
Sum 393627088.6
Count 9261


PSF

Mean 42557.4383
Standard Error 220.0553434
Median 39532.284
Mode 11399.9996
Standard Deviation 21176.82563
Sample Variance 448457943.8
Kurtosis -0.580991141
Skewness 0.47042905
Range 98897.99504
Minimum 862.72496
Maximum 99760.72
Sum 394124436.1
Count 9261


APPENDIX E
SGS RANDOM FIELD TABLES


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42562.48642
219.7863813
39538.838
38500
21150.94231
447362360.5
-0.507237829
0.48869983
99365.73316
598.72084
99964.454
394171186.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42658.43886
221.5141441
39514.378
41800
21317.21199
454423526.9
-0.568971001
0.480259697
98794.59432
1077.72768
99872.322
395059802.3
9261














PSF


PSF


PSF


PSF


I


Table E-1. Continued.


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximum
Sum
Count


42518.58199
219.4444741
39411.644
48900.002
21118.03918
445971578.7
-0.526496513
0.488121523
99546.9086
430.7594
99977.668
393764587.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximum
Sum
Count


43109.75042
223.6009188
39677.666
38500
21518.03086
463025652
-0.575002397
0.468898326
99622.97688
375.72712
99998.704
399239398.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximum
Sum
Count


42377.27821
219.7337363
39054.524
15199.9998
21145.87606
447148074.4
-0.568985276
0.486387424
99352.60342
622.84458
99975.448
392455973.5
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximum
Sum
Count


42587.84604
220.7370971
39504.638
15199.9998
21242.43358
451240984.2
-0.544309321
0.478158775
99739.27387
191.482126
99930.756
394406042.2
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42446.51502
221.3665243
39289.578
38500
21303.00593
453818061 7
-0.564645925
0.495661419
99259.75486
631.13714
998911892
393097175.6
9261













PSF


PSF


PSF


PSF


I


Table E-2. 17th Street Bridge SGS (5feet).


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


45806.79179
222.6907591
42021.988
49700
21430.44246
459263864
-0.689609294
0.381837804
99308.9843
594.1977
99903.182
424216698.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41246.08288
217.5866605
38500
41800
20939.25418
438452365.5
-0.448952677
0.545106492
98730.14074
1258.95726
99989.098
381979973.5
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


45632.38736
224.5743392
42031.22
30800
21611.70708
467065883.1
-0.69715789
0.35706524
97915.1958
2035.8922
99951.088
422601539.3
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42598.52685
217.1910467
39472.638
15199.9998
20901.18264
436859435.9
-0.532426787
0.498080027
99879.66534
109.310656
99988.976
394504957.1
9261














PSF


PSF


PSF


PSF


I


Table E-2. Continued.


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


44489.19162
222.650213
41394.268
48900.002
21426.54054
459096639.7
-0.649152833
0.41713792
99747.25472
223.29528
99970.55
412014403.6
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41666.77162
216.0629871
38692.49
49700
20792.62486
432333248.4
-0.514976359
0.501212334
99806.4971
67.244902
99873.742
385875971.9
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum


42756.64801
224.632869
39366.7
49700
21617.33964
467309373.1
-0.551513094
0.508615793
99542.12376
371.65624
99913.78
395969317.2


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


43683.07808
222.3762153
39940.616
48900.002
21400.17263
457967388.5
-0.63673678
0.421260262
99744.20568
158.764318
99902.97
404548986.1
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41831.42157
216.718847
38761.494
48900.002
20855.74094
434961930
-0.50047995
0.533206704
99290.7898
697.6282
99988.418
387400795.2
9261


































D
PSF


E
PSF


F
PSF


PSF


PSF


PSF


Table E-3. 17th Street Bridge SGS (12 feet).


PSF


PSF


PSF


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41584.65934
205.8633641
38963.996
49700
19811.07343
392478630.3
-0.457306535
0.493885727
99151.57972
611.08428
99762.664
385115530.2
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


52111.7188
233.0037394
49829.998
48900.002
22422.90273
502786566.9
-0.9338627
0.102754863
99192.8432
732.4568
99925.3
482606627.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


39762.78304
212.0978036
36918.004
15199. 9998
20411.03904
416610514.6
-0.264671923
0.646850373
99913.70662
62.269382
99975.976
368243133.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


39355.34143
215.9959574
36115.68
11399.9996
20786.17431
432065042.7
-0.386909561
0.640670637
99816.1107
87.5993
99903.71
364469817
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


46573.85942
232.6746559
42937.85
49700
22391.23368
501367345.7
-0.802132918
0.28637968
99937.26621
14.7757856
99952.042
431320512.1
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


40064.89254
212.0271793
37300
38500
20404.24257
416333114.8
-0.443063463
0.530885072
99619.43411
97.851888
99717.286
371040969.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


37173.00379
208.7527541
34311.524
11399. 9996
20089.13124
403573194.1
-0.17153857
0.714709268
99077.68402
339.23998
99416.924
344259188.1
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


47907.34312
228.4042742
43876.092
49700
21980.27739
483132594.2
-0.80052981
0.300035536
98726.572
1247.8
99974.372
443669904.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41663.39521
220.5532068
38535.546
11399.9996
21224.73707
450489463.6
-0.530291652
0.522353319
99212.07664
480.66536
99692.742
385844703.1
9261














PSF


PSF


PSF


PSF


PSF


PSF


Table E-3. Continued.


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42900.29827
219.2799472
39601.91
15199.9998
21102.20608
445303101.5
-0.643142448
0.430785494
99267.1778
550.6242
99817.802
397299662.3
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


42408.97909
218.869694
39127.61
48900.002
21062.72574
443638415.5
-0.538154163
0.49509214
99698.04192
212.13808
99910.18
392749555.3
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


46519.50275
223.6012514
42316.284
49700
21518.06286
463027029.4
-0.695072802
0.381873107
99382.08064
559.82136
99941.902
430817115
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


43704.58521
214.6861676
39961.776
41800
20660.12788
426840884.2
-0.585301651
0.445114079
98805.25304
1054.96096
99860.214
404748163.6
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


39506.03724
199.8427351
37021.622
38500
19231.68367
369857657
-0.35014142
0.56895775
99826.24379
143.53621
99969.78
365865410.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


44470.57504
224.9408061
41004.174
49700
21646.97368
468591469.6
-0.659852085
0.436021337
99576.18214
260.83786
99837.02
411841995.5
9261


PSF


PSF


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


52001.27262
231.0221144
49700
49700
22232.20286
494270843.9
-0.875814507
0.140331985
99156.84372
837.24428
99994.088
481583785.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


47226.12953
228.5146525
43423.728
41800
21990.89954
483599662.6
-0.743959545
0.347746576
96633.395
3327.115
99960.51
437361185.5
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


46392.57197
235.8458747
42452.282
48900.002
22696.41304
515127164.7
-0.793047923
0.343204355
99050.74032
935.39768
99986.138
429641609
9261


































Q
PSF


R
PSF


S
PSF


PSF


PSF


PSF


Table E-3. Continued.


PSF


PSF


PSF


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


51470.31861
236.2322652
49608.578
49700
22733.59697
516816431.2
-0. 913495054
0.171190865
99976.04256
18.9974382
99995.04
476666620.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


41320.25623
206.1301759
38500
32200
19836.74982
393496643.2
-0.37199239
0.55984348
99177.92682
734.86918
99912.796
382666892.9
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


40438.14456
215.9221412
37335.826
11399.9996
20779.07069
431769778.5
-0.492837597
0.533478348
99853.50113
94.534874
99948.036
374497656.8
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


47042.63871
223.6413497
43499.474
48900.002
21521.92168
463193112.9
-0.740545222
0.319788177
97029.068
2876.152
99905.22
435661877.1
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


44797.74259
231.159873
41342.338
38500
22245.45993
494860487.6
-0.671942245
0.424328387
99524.53918
393.21682
99917.756
414871894.1
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


45763.25705
222.6925403
42281.89
48900.002
21430.61387
459271211
-0.75114585
0.319107618
99124.16976
841.91824
99966.088
423813523.6
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


44061.74486
218.5590664
41032.302
48900.002
21032.83278
442380054.7
-0.626614687
0.424741976
99303.45
617.266
99920.716
408055819.2
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


48102.4208
221.9101921
44215.9
38500
21355.32531
456049919.2
-0.74765644
0.29905297
98855.61356
1139.09244
99994.706
445476519
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count


37070.10498
198.1461848
34927.44
15199. 9998
19068.4177
363604553.7
-0.200228081
0.659719139
99517.49996
375.12404
99892.624
343306242.2
9261












Table E-3. Continued.
VV X Y
PSF PSF PSF

Mean 44963.57643 Mean 42967.49829 Mean 47554.61147
Standard Error 222.873721 Standard Error 222.1398912 Standard Error 248.1298149
Median 41800 Median 39449. 822 Median 43413.186
Mode 49700 Mode 49700 Mode 11399.9996
Standard Deviation 21448.04963 Standard Devbition 21377.4302 Standard Devbition 23878. 54684
Sample Variance 460018833 Sample Variance 456994521.B Sarnple Variance 570184999.2
Kurtosis -0.664903412 Kurtosis -0.588149668 Kurtosis -0.886393787
Skewness 0.400653996 Skewness 0.47779941 Skewness 0.30788879
Range 98933.37236 Range 98727.84014 Range 99288.7588
Minimum 1062.49964 Minimum 1192.01386 Minimum 707.5792
Maximum 99995.872 Maximum 9991 9. 854 Maximum 99996. 338
Sum 416407681.4 Sum 397922001.7 Sum 440403256..9
Count 9261 Count 9261 Count 9261













PSF


PSF


PSF


PSF


Table E-4. 17th Street Bridge SGS (20feet).


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


45407.11477
235.5262499
41856.568
48900.002
22665.65424
513731882.1
-01732519328
0.383255739
99920.77422
60.007784
99980.782
420515289.9
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


44728.03485
231.9539298
41280.174
48900.002
22321.87526
498266115
-01718776057
0.39948428
99567.77814
414.47586
99982.254
414226330.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


42210.90062
222.0514785
39094.814
49700
21368.92187
456630822.1
-01546710456
0.494754071
99843.95339
84.734612
99928.*B88
390915150.6
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


43657.61793
225.*B671411
39968.552
49700
21716.87187
471622524
-01656686698
0.442924124
99635.08658
222.54142
99857.*B28
404313199.7
9261













PSF


PSF


PSF


PSF


Table E-4. Continued.


Mean
Standard Error
Median
Mode
Standard Oswiation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


41916.56315
215.7209468
39004.65
41800
20759.70892
430965514.3
-01571675821
0.480379812
99964.77187
10.554133
99975.326
388189291.3
9261


Mean
Standard Error
Median
Mode
Standard Oswiation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


42862.22371
214.3914192
39756.89
38500
20631.76305
425669646.5
-0.597299848
0.420685131
99763.42888
18.545119
99781.974
396947053.7
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


45380=.61602
235.732166
41800
38500
22685.47038
514630566.5
-01716214975
0.415227363
99922.89606
65.887942
99988.784
420269885
9261


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku dosis
Skewness
Range
Minimum
Maximurn
Sum
Count


41610.78171
222:.7657464
38575.492
32200
21437.6588
459573214.61
-01524411823
0.521869386
99693.49401
158.311992
99851.806
385357449.4
9261











APPENDIX F
FLAC3D PROGRAMMING MODELS

Table F-1. FLAC Results.
1 (feet)
Cap
.15(ton) Bias
A 200 1.175 0.007300506
B 240 0.979167 0.012186026
C 235 1 0.008020456
D 220 1.068182 0.000456898
E 210 1.119048 0.000869697
F 200 1.175 0.007300506
G 285 0.824561 0.070222666
H 250 0.94 0.022367296
I ~225 1.044444 0=.002035143
J 265 0.886792 0.041113462
K 235 1 0.008020456
L 230 1.021739 0.004599263
LL 185 1.27027 0.032657286
L1 235 1 0.008020456
N 190 1.236842 0.021692902
10 230 1.021739 0.004599263
O 190 1.236842 0.021692902
P 190 1.236842 0.021692902
R 200 1.175 0.007300506
S 235 1 0.008020456
T 215 1.093023 1.20149E.-05
U 235 1 0.008020456
V 240 0.979167 0.012186026
VV 200 1.175 0.007300506
X 187.5 1.253333 0.026822687
Y 195 1.205128 0.013356703
Z 200 1.175 0.007300506
AA 190 1.236842 0.021692902
BB 220 1.068182 0.000456898
Determinis 235

Mean 1.089557 0.407317752
Standar 0.120611204
COV 0.110698










Table F-1. Continued.


5 (feet)


A
B
C
D
E
F
G
H

J
K
L
LL
M
N

O
P
Q
R
S
T
U
V
VV
X
Y
Z
AA
BB
CC
DD
EE
FF
GG
HH
I I
JJ
KK
MM
Determinis


Cap
.15(ton)
235
185
220
215
215
190
230
195
285
225
175
240
240
295
215
200
190
190
265
190
250
230
190
235
240
225
175
200
245
200
190
150
280
220
260
180
180
230
300
160
225

Mean
Standar
CC)V


Bias
1
1.27027
1.068182
1.093023
1.093023
1.236842
1.021739
1.205128
0.824561
1.044444
1.342857
0.979167
0.979167
0.79661
1.093023
1.175
1.236842
1.236842
0.886792
1.236842
0.94
1.021739
1.236842
1
0.979167
1.044444
1.342857
1.175
0.959184
1.175
1.236842
1.566667
0.839286
1.068182
0.903846
1.305556
1.305556
1.021739
0.783333
1.46875


0.01099541
0.027360888
0.001345216
0.000140085
0.000140085
0.01741954
0.006908913
0.010053913
0.078566743
0.003649919
0.056643116
0.015798563
0.015798563
0.095017342
0.000140085
0.00491976
0.01741954
0.01741954
0.047553019
0.01741954
0.02717849
0.006908913
0.01741954
0.01099541
0.015798563
0.003649919
0.056643116
0.00491976
0.021221301
0.00491976
0.01741954
0.213266321
0.07052917
0.001345216
0.040406164
0.040279107
0.040279107
0.006908913
0.103378754
0.13241666


1.104859 1.280593501
0.181206321
0.164009










Table F-1. Continued


12 (feet)


A
B
C
D
E
F
G
H

J
K
L
LL
M
N

O
P
Q
R
S
T
U
V
W
X
Y
Z
AA
BB
CC
DD
EE
FF
GG
HH
I I
JJ
KK
MM
Determinis


Cap
.15(ton)
260
250
240
270
250
215
200
250
280
200
235
265
310
260
190
200
285
205
225
210
280
240
285
200
200
285
330
210
225
195
250
200
230
225
260
270
185
190
300
165
235

Mean
Standar
CC)\/


Bias
0.903846
0.94
0.979167
0.87037
0.94
1.093023
1.175
0.94
0.839286
1.175
1
0.886792
0.758065
0.903846
1.236842
1.175
0.824561
1.146341
1.044444
1.119048
0.839286
0.979167
0.824561
1.175
1.175
0.824561
0.712121
1.119048
1.044444
1.205128
0.94
1.175
1.021739
1.044444
0.903846
0.87037
1.27027
1.236842
0.783333
1.424242


0.01190932
0.0154095
0.00721962
0.03754473
0.0154095
0.00083453
0.01229105
0.0154095
0.0505572
0.01229105
0.0041133
0.03145038
0.09367914
0.02569251
0.02982774
0.01229105
0.05739551
0.0067579
0.00038772
0.0030154
0.0505572
0.00721962
0.05739551
0.01229105
0.01229105
0.05739551
0.12391371
0.0030154
0.00038772
0.01987908
0.0154095
0.01229105
0.00179741
0.00038772
0.02569251
0.03754473
0.04249175
0.02982774
0.07884958
0.12967736


1.012976 1.16180183
0.17259719
0.170386











Table F-2


1 (feet) End Bearing
.15(ton)


Mean
Standard Error
Median
Mode
Standard Deviation
Sarnpk>Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Sum
Count


218.362069
4.689030312
220
200
25.25120102
637.*B231527
0.124369761
0.651972746
100
185
285
6332.5
29


5 (feet) End Bearing .15(ton)


Mean
Standard Error
Median
Mode
Standard Deviation
Sarnpk>Variance

Ku rtosis
Skewness
Range
Minimum
Maximum
Surn
Count


218.375
5.727205375
217.5
190
36.22202723
1312.035256

0.226714365
0.449655743
150
150
300
8735


12 (feet) End Bearing 15(ton)


Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Ku rtosis
Skewness
Range
Minimum
Maximum
Surn
Count


238.125
6..175031
237.5
200
39.05433
1525.24
-0.63762
0.310262
165
165
330
9525









TYPICAL FLAC3D EXAMPLE

; Vertically loaded pile

model mohr

prop bulk 8.86E+06 shear 6.10E+06 fric 15 coh 71980.51 range group 1
prop bulk 8.70E+06 shear 5.99E+06 fric 15 coh 70372.78 range group 2
prop bulk 8.00E+06 shear 5.51E+06 fric 15 coh 63234.3 range group 3

prop bulk 8.39E+06 shear 5.78E+06 fric 20 coh 67204.36 range group 7998
prop bulk 7.94E+06 shear 5.47E+06 fric 20 coh 62625.79 range group 7999
prop bulk 7.48E+06 shear 5.15E+06 fric 20 coh 57934.44 range group 8000

ini dens 4.4 range group 1
ini dens 4.4 range group 2
ini dens 4.4 range group 3

ini dens 3.1 range group 7998
ini dens 3.1 range group 7999
ini dens 3.1 range group 8000

gen zone brick pO (13.5,13.5,20) pl (16.5,13.5,20) p2 (13.5,16.5,20) p3 (13.5,13.5,40)&
p4 (16.5,16.5,20) p5 (13.5,16.5,40) p6 (16.5,13.5,40) p7 (16.5,16.5,40)&
size 2 2 20

gen zone brick pO (13.5,13.5,40) pl (16.5,13.5,40) p2 (13.5,16.5,40) p3 (13.5,13.5,40.1)&
p4 (16.5,16.5,40) p5 (13.5,16.5,40.1) p6 (16.5,13.5,40.1) p7 (16.5,16.5,40.1)&
size 2 2 1

group pile range x=13.5 16.5 y=13.5 16.5 z=20 40.1
save pile_geom.say

model elas range group pile
prop bulk 6.50E+06 shear 3.00E+06 range group pile

interface 1 prop kn 1.8e7 ks 1.8e7 fric 5 coh 30000

ini dens 3.1 range group pile
model null range z 39.9 40.15

Eix z range z -.1 .1
Eix x range x -.1 .1
Eix x range x 29.9 30.1
Eix y range y -.1 .1
Eix y range y 29.9 30.1










set gray 0 0 -32.18
ini szz 0. grad 0 0 100 range z 0 40
ini sxx 0. grad 0 0 50 range z 0 40
ini syy 0. grad 0 0 50 range z 0 40

hi~st unb al

solve rat 1.0e-5
save pile0.say

model elas range group pile
prop bulk 3.10E+08 shear 2.54E+08 range group pile
ini dens 4.9 range group pile
call find add.fis
solve rat 1.e-5
save pilel.say

ini state 0
ini xdis 0 ydis 0 zdis o

; monitor vertical loading at pile cap
def zs top
ad = toplhead
zftot = 0.0
loop while ad # null
gp_pnt = mem(ad+1)
zf = gp~zfunbal(gp_pnt)
zftot = zftot + zf
ad = mem(ad)
endloop
zs top = zftot / 9
end
fix z range z 40.05 40.15 group pile

def ramp
while_stepping
if step < ncut then
udapp = float(step) udmax / float(ncut)
else
udapp = udmax
endif
ad = top~head
loop while ad # null
gp_pnt = mem(ad+1)
gp~zvel(gp_pnt) = udapp
ad = mem(ad)









endloop
end

hist gp zdis 15,15,40
hist gp zvel 15,15,40
hist zs~top
hist zone szz 15,15,39.9
hist zone szz 15,15,20

set mech damp comb
set udmax = -le-4 ncut 15000
step 112500
plot create history
plot add hist 4 vs -2
save pile2.say

























CHOOD5 03/21/2007-OBS.10.20 Daqua 15
FIGmida D~pR~tzEt E PFWmp~t~iDE
Its ATHErga Rit CGllt
amC~ 11DS/Diful to 2DD6/12/31
C~antct TIpII L'O'') B'JATEMII
Il1splaying: WRLIlI I'ZIMS WLITH KITH
Rea~lsa 0100 52IDD99009DD



Ba. De Buichted Totl Ttl Thit
Itsr Csant Avarag Amun~t Quantity Kast Obs? DalccEr imt


04309D61218 4 $1.TD 459, 77. 00 1,8l94.000 1.? H WINg P (ECHEE.IT. 401;BDT CIENCHED .;8-
04309D61220 2 5102.95 $)33770. 00 329.0U00 1.P HI IWI mVC cr'K 40:(HO BHERCE 10"; I
I4309U61221 3I 5147.9 418,675. 00 133.00e0 FF H IINB MC (Z;EM 40. :BaT BHCR~EEE 12";
0430561225 1 5450.00 59,50.00 21. 000 F.F 8 IWI mr" cr2 40) (OT Bs~Iirm~ 18";
C43096221 B 1 $50I.00 44,200 612.000ll 8 ITC Hr WINPVC*;ECIIEIT.E 801.E 'EChE~I; *;&
04309s62221 1 SE-0.00 430, 550. 00 611.000 1.? H IINB mr" ir'K SO:= HOT BS~im 12";
0430DB21123 8 91, 159.25 $1ES,14. 74 25.000i Ea H METERED cND IBK' GII 4111a. Eru 15"~ c
043OB21112 21 51, 504.61 9272,334.76 181.000 EA 8 MTIERE END LED:I (CHIONRL. K 118" L:.
(430982B129 24 91, 841.87 9250,494.54 ~ 136.0i00 EAl 8 MTIEREE EnD LED'J irrcHIONA Et 24~ c
0430DB21333 14 91, 719.16 9165, 868.11 61. 000 EA MTEREDi cND LED'J rcHIGHAL Eru 30"~ L
0430DB213H 11 53 5.1 51,423 3. 000 Ea H METERD END 5c 7orrau CHIGHA E 36" m:
043ODB2140 D 1, a11. s1 $r5,235. 20 20.000 ER H MTERET END J"ID' (CIGHRL. E0) 42"' i0
(430982141l ? 93, 525.68 456,410. 05 16.000i El 8 MTIEREE EnD LED'J rrrcHIGHA Et 43"~ c
0430982142 2 33, 360.27 36, 720.54 2.000 EA~ H WTERED EN gID' (CHIGHBAL") E II 54"P
043CIDB21433 1 96, 077.61 424,310. ES 4~.000 EI H MTERED END gID' (CGHIGHAL~ Em 160" CII
043CIDB2623 2 t596.5.6 9, 000.00 l.000 Ea H MTER HIE LS OIEC.F:00T/W.Q'AE 15"
(4308262 9 1, 285.66 459, 14~0. 13 46s.oo 000 E MTIER HIE CBETOUT/X.WL4 n: 1 8" U;
043ODB2629 T $2,174 78, 1 5. 3 7. 000 Ea 8 TRBESC(D/fQ'RE.4
04309D8263 31 91, 107.01 S18,070.2 10 l.000 Ea H MTER~ ~IE LSBOIET(OD/W.ARE.30 U
043098263e 2 96, 030.00 18,000o. 00 3.000 Ea H MTER~ ~IE LBC.ODT/W.WARE:.36 U;
0430DB2640 4 53,306.6 2 $118,857. 68 c.000 Ea H mTER 150 SET0D/Wq.'RE .42" 9:
0430584121 1 5950.00 5950.00 1.000 Ea 8 mTEREE END LED'J icHIOL K1 12" EDou
(430984123 11 $1 2.1 4, 616. 56 40.Oi 000 EA MTIEREE EnD LED"J ;GIGHALc~ Et 15~ EI;
04309841125 33 91, 239.28 91, 023,548.09 825.000 EA MTEREDi cND LED'J rcHIGHAL Eru 18 ED:
0430984I120 23 i1, 713.08 413,638.13 2E3.000 Ea H METERD END 57r roHIGHaLu Eru 24" ED:
0430584133 10 4410.2 55,673.50 54.000 ER H MTERET END J"ID' (CIGHRL. E0) 30"' II)
(430984139 2 ad 93 29 45, 76. 08 11. 000i El 8 MTIEREE EnD LED' rrrcHIONA Et 36"~ ID
0430984140 2 33, 778.84 $11, -33. 52 g.00 EA H MTERED END ID' (CHIGHAL") E 42 ED:
0430984141l 2 ST, 965.18 $39, 825. 02 5.000 EA MTEREDi cND LED'J rcHIGHAL Eru 48 ED:
043098462~3 1 5950.0 CI 1, 700.00 2.000 Ea H MTER 150 LSOIEC.F00TI.I7P I1E" Eil
(43098462 9 1,303.04 453,461. 72 41.000 Ea 8 MTIER n P(IMESECT.;OT/X.EI/M:E 118" EI
0430584629 S 211.4 9,719.49 42.000 Ea 8 mTER~ BIESE(OIDT/Ef.E.P3 I7/P 24" X~
04309846333 1 92, 509.68 $17, 567. 78 T.000 EAl H mTeR ~IE LBC.OIVT/W.E.KI72 130" ml
04309846~38 31 93, 230.00 429,0U70. 00 D.000 Ea H MTER~ ~ID LSIIEC.T(ODT/X.EI7P 136" E
0430984640 2 43, 750.00 4115,000. 00 4.00am ER 8 MTER~ 152 CSECT.OUTW.EIW/M I 142" ElI


APPENDIX G

UNIT COST DATA

























































Notes


4!if-111-



Notes
Details


COREIPILOT HOLE- DRILLED SHAFT EXCAVATION


Unit LF; M1


Accuracy Linear Foot; 10th of a
Mreter


PlanQuantity? no


Intended for payment of pilot holes or cares for drilled shaft projects to deter mine the
quality of the material below the tip.
Pilot holes are taken at shaft locations prior to shaft excavation.
Cores are taken belowv the tip of an excavated shaft.
Pilot holes or cores when deemed necessary, are typically taken 3 to 5 shaft diameters
belowl the~ shatt's planned tip elevation. Use! 3 shaft diameters unless otherwise noted in
the plans.
Show location in the plans. Clarify whether pilot holes or cores are to be taken. B~ase
rtrauantlry on the anticipated pilot hole and/or core Ilengthl needed. Include pay item note.

Establish quantities as follows~ Cores. measured from the bottom of shaft elevation to the
bottom of the core (3 to 5 shaft diameters belowv tip); Pilot holes: measured from the
ground elevation to the bottom elevation of the pilot hole (13 to 5 shaft diamneters belowv tip).
Required 455- 88- AA, 455-122- AA Recommended
Design SHTabouant COMUP700O-050j-0







Construction Refer to Comp Book


Related Items
Forms


Documnentatiorn




Refernces


Design


Locate in plans. Summarize quantities by ocallotn on tabulation of
QuantritlFs sheet in the plans, or detail calculations in the computation book.


Construction RecordJ final quantity on the tabulation sheet (plans) or computation forrn
Compp book).
PPM Ch~apter
Other
Standards
Specifications


Prep & Doc Manual Chaptler~s) 7i~ 13
Status


Struc. 4ti5-11r-


COREIPILOT HOLE- DRILLED SHAFT EXC AVIATION









LIST OF REFERENCES


Allen, T., Nowak, A.S. and Bathurst, R.J. (2005). "Calibration to Determine Load and
Resistance Factors for Geotechnical and Structural Design." Transportation Research
Board.

Ang, H-S. and Tang, W.H. (1975). "Probability Concepts in Engineering Planning and Design."
Vol. I Basic Principles, 19-45.

Fenton, G.A. (1999). "Estimation for Stochastic Soil Models." ASCE Journal of Geotechnical
and Geoenvironmental Engineering, 125 (6), 470-485.

Fenton, G.A. (2002). "Probabilistic Foundation Settlement on a Spatially Random Soil." ASCE
Journal of Geotechnical and Geoenvironmental Engineering, 128 (5), 381-390.

Fenton, G.A. and Griffiths, D.V. (2003). "Bearing Capacity of Spatially Random c-0 Soils."
Canadian Geotechnical Journal, 40(1), 54-65.

(Jing 2003).

Kulhawy, F.H., Spry M.J. and Grigoriu, M.D. (1988). "Reliability-Based Foundation Design for
Transmission Line Structures." EPRI Vol. 1. Geotechnical Site Characterization Strategy.

Kulhawy, F.H., Filippas O.B. and Grigoriu, M.D. (1988). "Reliability-Based Foundation Design
for Transmission Line Structures." EPRI Vol. 3. Uncertainties in Soil Property
Measurement.

Learning Resource Centre at Learning Development-University of Wollongong (2001). "Self
Directed Learning Resource."

Mark, C., McWilliams, L., Pappas, D. and Rusnak, J. (2004). "Spatial Trends in Rock Strength-
Can They be Determined from Coreholes?" National Institute for Occupational Safety and
Health .

McVey, M. and Ellis, E. (2003). "Static and Dynamic Field Testing of Drilled Shafts." Florida
Department of Transportation No. 99052794.

National Cooperative Highway Research Program (NCHRP) (2004). "Load and Resistance
Factor Design (LRFD) for Deep Foundations." Report 507.

National Highway Institute (1998). "Load and Resistance Factor Design (LRFD) for Highway
Bridge Sub structures." NHI Course No. 13068, Volume 2.

Nowak, A.S. and Collins, K.R. (2000). "Reliability of Structures." Chapter 8 Design Codes.

Nowak, M. and Verly, G. (2004). "The Practice of Sequential Gaussian Simulation."
Geostatistics Banff, 1, 387-398.










Phoon, K. K., Kulhawy, F. H. and Grigoriu, M. D. (2003). "Development of a Reliability-Based
Design Framework for Transmission Line Structure Foundations." Journal of Geotechnical
and Geoenvironmental Engineering, 798-806.

Phoon, K.K. and Kulhawy, F.H. (2002). "Observations on Geotechnical Reliability-Based
Design Development in North America." Foundation Design Codes and Soil
Investigation in View of International Harmonization and Performance, 31-48.

Schaeffer, R. and Mcclave, J. (1995). "Probability and Statistics for Engineers." Fourth Edition,
76-83 and 122-164.









BIOGRAPHICAL SKETCH

Johanna Otero was born in Monteria, Colombia, to Maria Isabel Sanchez and Rafael Otero.

She graduated from Colegio la Sagrada Familia High School in Monteria Colombia in December

1992. She received his Bachelor of Science in civil engineering in the fall of 1998 from the

University EAFIT, Medellin Colombia..

After graduation as an Engineer, she worked on the transportation area on Pereira

Colombia for almost four years.

Johanna continued her education by entering graduate school to pursue a Master of

Engineering in the Construction Management Group of the Civil and Coastal Engineering

Department at the University of Florida in the fall 2003. She received his Master of Engineering

in the fall of 2004. Currently, she is pursuing a Doctorate of Philosophy at the same institution.





PAGE 1

1 DEVELOPMENT OF A RATIONAL DESIGN APPROACH (LRFD phi) FOR DRILLED SHAFTS CONSIDERING REDUNDANCY, SPA TIAL VARIABILITY, AND TESTING COST by JOHANNA KARINA OTERO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Johanna Karina Otero

PAGE 3

3 To my parents Maria Isabel Sanchez and Rafael Otero who have supported me all the way since the beginning of my studies, and to Enri que who accompanied me on this last stage

PAGE 4

4 ACKNOWLEDGMENTS I would especially thank to my advisor, Dr. Ralph Ellis, for his generous time and commitment. His permanent conviction on my pr ofessional capacity during my doctoral work made this research a reality. Al so, thanks to Dr. McVay for to share part of his geotechnical knowledge. Special thanks go to Dr. Guerly fo r his supervision and technical support on the stochastic world. I would like to acknowledge Dr. Horhota and th e Florida Department of Transportation (FDOT) State Material Office for providing the f unding and help for this research project. Thanks also go to Farouque, Haki and Enrique who assisted me on different stages of the project investigation.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........8 LIST OF FIGURES................................................................................................................ .......10 ABSTRACT....................................................................................................................... ............12 CHAPTER 1 INTRODUCTION..................................................................................................................13 Introduction................................................................................................................... ..........13 Background..................................................................................................................... ........13 Site Characterization.......................................................................................................14 Subsoil Exploration.........................................................................................................14 Geotechnical variability...........................................................................................14 Conventional geotechnical modeling.......................................................................15 LRFD........................................................................................................................... ....15 FMOS First Order Second Moment.........................................................................19 Reliability index.......................................................................................................20 Solving for the resistance factor...............................................................................21 Problem Statement.............................................................................................................. ....23 Objectives..................................................................................................................... ..........24 Methods........................................................................................................................ ..........24 2 LITERATURE REVIEW.......................................................................................................27 Static and Dynamic Field testing of Drilled Shafts................................................................27 Modeling Spatial Variability in Pile Ca pacity for Reliability-Based Design.........................28 Reliability-Based Foundation Design for Transmission Line Structures...............................29 Transportation Research Board Circular E-C079...................................................................30 Estimation for Stochastic Soils Models..................................................................................31 Practice of Sequential Gaussian Simulation...........................................................................31 Bearing Capacity of a Rough Rigid Strip Footing on Cohesive Soil-a Probabilistic Study.......................................................................................................................... .........32 3 DATA COLLECTION...........................................................................................................35 Existent Data Collection....................................................................................................... ..35 New Field Data Collection.....................................................................................................36 The Fuller Warren Bridge (District 2).............................................................................37 17th Street Bridge Fort Lauderdale (District 4)................................................................38

PAGE 6

6 4 GEOSTATISTICS AND NUMERICAL MODEL................................................................45 Geostatistics.................................................................................................................. ..........45 (Semi) Variogram............................................................................................................46 Semivariogram models.............................................................................................47 Anisotropy................................................................................................................48 Covariance and correlogram....................................................................................49 Kriging........................................................................................................................ .....49 Types of Kriging......................................................................................................51 Stochastic Simulation......................................................................................................53 Sequential Gaussian simulation...............................................................................53 Software....................................................................................................................... ....54 Numerical Models............................................................................................................... ...55 FLAC3D (Fast Lagrangian Analysis of Continua).........................................................57 5 DATA ANALYSIS................................................................................................................65 Cases Studies.................................................................................................................. ........65 Fuller Warren.................................................................................................................. ........65 Summary Statistics..........................................................................................................65 Spatial Continuity............................................................................................................66 Fuller Warren Semivariogram.........................................................................................67 17th Street Bridge.................................................................................................................. ..68 Summary Statistics..........................................................................................................68 17th Street Bridge Semivariogram...................................................................................68 17th Street Bridge Simple Kriging...................................................................................69 17th Street Bridge Sequential Gaussian Simulation.........................................................69 17th Street Bridge Random Field Model..........................................................................69 17th Street Bridge Finite Elements Analysis....................................................................70 17th Street Bridge Determinist Capacity..........................................................................71 17th Street Bridge Parametric Study................................................................................71 17th Street Bridge Comparison of Determ inistic and Predicted End Bearing.................73 17th Street Bridge LRFD Phi Factors..............................................................................73 6 COST ANALYSIS.................................................................................................................95 Factor Influencing Cost........................................................................................................ ..95 Drilled Shaft Cost and Excavation.........................................................................................96 Soil Boring Test Costs......................................................................................................... ...97 Relative Costs Analysis........................................................................................................ ..97 Drilled Shaft Cost............................................................................................................97 Drilled Shaft Excavation.................................................................................................98 Boring Test Cost..............................................................................................................98 7 CONCLUSIONS AND RECOMMENDATIONS...............................................................105

PAGE 7

7 APPENDIX A DATA FROM STATIC AND DYNAMIC FIELD TESTING OF DRILLED SHAFTS (FULLER WARREN AND 17TH STREET BRIDGE)........................................................107 B SOIL BORING DATA FROM FIELD I NVESTIGATION PROC ESSED BY MSO.........111 C SOIL BORING INFORMATION PROCESSED................................................................128 D FREQUENCY DISTRIBUTIONS.......................................................................................131 E SGS RANDOM FIELD TABLES........................................................................................140 F FLAC3D PROGRAMMING MODELS..............................................................................150 G UNIT COST DATA.............................................................................................................157 LIST OF REFERENCES.............................................................................................................159 BIOGRAPHICAL SKETCH.......................................................................................................161

PAGE 8

8 LIST OF TABLES Table page 2-1 LRFD Factors, Probability of Failure (Pf) and Fs Based on Reliability for Nearest Boring Approach..................................................................................................34 2-2 LRFD Factors, Probability of Failure (Pf) and Fs Based on Reliability for Random Selection..............................................................................................................34 3-1 Measured Unit End Bearing from Load Tests...................................................................39 3-2 17th Street Bridge Soil Boring Data (State Project No. 86180-1522)...............................40 3-3 Fuller Warren State Material s Office Soil Laboratory Data..............................................41 4-1 Commercially Availabl e Numerical Programs for Rock Mechanics Study......................59 4-2 Sequential Gaussian Simulation Data Values....................................................................60 4-3 WINSLIB SGS Example Results.......................................................................................60 5-1 Fuller Warren Bridge Soil Boring Information.................................................................77 5-2 Fuller Warren Soil Boring Modified Data.........................................................................78 5-3 Table 17th Street Bridge Soil Boring Information.............................................................80 5-4 17th Street Bridge Wingslib Results...................................................................................81 5-5 Material Properties........................................................................................................ .....81 5-6 17TH Street Bridge Cohesion Mean Re sults Values from Simulations..............................81 5-7 17TH Street Bridge End B earing Capacity Mean Values from FLAC3D..........................81 5-8 17TH Street Mean, Standard, and COV of Predicted End Bearing Capacity Bias.............81 5-9 17TH Street Bridge Values for different Reliability Index FOSM (Traditional)..........82 5-10 17TH Street Bridge Values for different Reliability Index FOSM (Modified)............82 5-11 17th Street Bridge COV and ............................................................................................82 6-1 FDOT Item Average Unit Cost Database..........................................................................99 6-2 Summary of Drilled Shaft of 48 Diameter (0455 88 5)...................................................99 6-3 Summary of Excavation Shaf t of 48 Diameter (0455 122 5)...........................................99

PAGE 9

9 6-4 Summary of Soil Lab from 2003 to 2007..........................................................................99 6-5 Summary of Drilled Shaft Cost (Material, labor) for Factors FOSM..........................100 6-6 Summary of Drilled Shaft Cost (Material, labor) for Factors FOSM (Modified)........100 6-7 Summary of Drilled Shaft Cost Excavation for Factors FOSM...................................100 6-8 Summary of Drilled Shaft Cost Excavation for Factors FOSM (Modified).................100 6-9 Average Cost for a 1 foot length and 4 feet Diameter Dril led Shaft, (One Soil Boring)........................................................................................................................ .....101 6-10 Average Cost for a 1 foot length 4 feet Diameter Drilled Shaf t, (Five Soil Boring).......101 6-11 LRFD Factors, Probability of Failure and Fs Based on Reliability, for Nearest Boring Approach..............................................................................................................101 A-1 Fuller Warren Bridge Soil Boring Data...........................................................................107 A-2 17th Street Bridge Soil Boring Data.................................................................................109 B-1 17th Street Soil Boring Data.............................................................................................111 B-2 Fuller Warren Soil Boring Data.......................................................................................123 C-1 17th Street Bridge Processed Soil Boring Data................................................................128 C-2 Fuller Warren Bridge Processed Soil Boring Data..........................................................130 E-1 17th Street Bridge SGS (1feet).........................................................................................140 E-2 17th Street Bridge SGS (5feet).........................................................................................142 E-3 17th Street Bridge SGS (12 feet)......................................................................................144 E-4 17th Street Bridge SGS (20feet).......................................................................................148 F-1 FLAC Results............................................................................................................... ....150

PAGE 10

10 LIST OF FIGURES Figure page 1-1 Location of Boundaries between Materials.......................................................................26 1-2 Litho Logical Heterogeneity..............................................................................................26 1-3 Inherent Spatial Soil Variability........................................................................................26 3-1 Load Test Bridge Locations...............................................................................................43 3-2 Fuller Warren Bridge Shaft Locations...............................................................................43 3-3 Fuller Warren Bridge during Site Inspection.....................................................................44 3-4 17th Street Bridge Load Test Location...............................................................................44 4-1 Semivariogram Model.......................................................................................................61 4-2 Most popular Semivariogram Models...............................................................................61 4-3 Semivariogram and Covariance.........................................................................................62 4-4 Numerical Approaches to Mode l an Excavation in a Rock Mass.....................................63 4-5 WINSLIB SGS Example Location Data Values...............................................................63 4-6 WINSLIB SGS Example Results Graph............................................................................64 5-1 Fuller Warren Soil Boring Location..................................................................................83 5-2 Fuller Warren Histogram CB1...........................................................................................83 5-3 Fuller Warren Histogram CB2...........................................................................................84 5-4 Fuller Warren Histogram CB3...........................................................................................84 5-5 Fuller Warren New Borings Fre quency Distribution qu, qt and RQD..............................85 5-6 Frequency Dist ribution for quqt.........................................................................................86 5-7 Fuller Warren Bridge quqt and E Correlation....................................................................86 5-8 17th Street Soil Boring Locations.......................................................................................87 5-9 17th Street Frequency Distribution.....................................................................................88 5-10 17th Street Semivariogram.................................................................................................89

PAGE 11

11 5-11 17th Street Bridge Correlation quqt vs E............................................................................90 5-12 17th Street Bridge FLAC Model Grid................................................................................91 5-13 17th Street Axial Force vs Pile Displacement....................................................................92 5-14 17th Street Correlation Length vs Cohesion Mean.............................................................93 5-15 17th Street Correlation Length vs Total Bearing Capacity.................................................93 5-16 17TH Street Correlation length vs End Bearing Capacity...................................................94 6-1 FDOT Basis of Estimates Handbook Descript ion for the Item 455 88 Drilled Shaft..102 6-2 FDOT Basis of Estimates Handbook Descri ption for the Item 455 122 Unclassified Shaft Excavation............................................................................................................103 6-3 Example of the 2006 Item Average Unit Cost for the Items 455 88 5 and 455 122 5.....104 D-1 Total Capacity Frequency Distri bution 5 feet Corr elation Length..................................131 D-2 Total Capacity Frequency Dist ribution 12 feet Correlation Length................................131 D-3 Fuller Warren Bridge Old and New Borings...................................................................132 D-4 Fuller Warren Bridge Old Borings..................................................................................133 D-5 Fuller Warren Bridge New Borings.................................................................................134 D-6 17th Street Bridge Old and New Borings.........................................................................135 D-7 17th Street Bridge New Borings.......................................................................................136 D-8 Fuller Warren Bridge New Boring CB1..........................................................................137 D-9 Fuller Warren New Boring CB2......................................................................................138 D-10 Fuller Warren New Boring CB3......................................................................................139

PAGE 12

12 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DEVELOPMENT OF A RATIONAL DESIGN APPROACH (LRFD phi) FOR DRILLED SHAFTS CONSIDERING REDUNDANCY, SPA TIAL VARIABILITY, AND TESTING COST By Johanna Karina Otero December 2007 Chair: Ralph Ellis Cochair: Michael McVay Major: Civil Engineering New designs move toward larger single shaft, so the need to improve LRFD resistance factors, for nonredundant shaft, emerge. In ge neral geotechnical desi gn practice involve analysis using representatives values of design pa rameters,(like strength, recoveries, etc), usually an average or lowest value obtained from fiel d and laboratory test results. It followed by an application of a suitable factor of safety. In nature soil parameter varies in horizontally and vertically direction, so our rese arch used the same soil boring parameters, but this time use information obtained from sites localized close to the design site instead using the whole site average. Random soil models were created based on geostatistics analysis using soil parameters. The created random soil models were used on a fin ite element program that modeling a three feet diameter, twenty feet long drilled shaft, givi ng the drilled shaft capacity for each random soil model and a suitable, factor.

PAGE 13

13 CHAPTER 1 INTRODUCTION Introduction This research initiative was based on the n eed to improve the LRFD resistance factors, for nonredundant shaft design, due the new designs methods moves toward larger single shaft design (e.g. Cross Town, New River, etc). Most geotechnical analysis in general prac tice involve analysis using representatives values of design parameters,(like strength, recoveri es, compressibility, etc), usually an average or the lowest value obtained from field and laborator y test results, and it followed by an application of a suitable factor of safety to get an allowable loading c ondition. However, in nature soil parameter varies in both horizonta lly and vertically direction. Our case used the same soil boring paramete rs than those used on most geotechnical analyses, but this time use information obtained from sites localized close to the design site instead using the whole site av erage. Random soil models were created based on geostatistics analysis using soil parameters. The created random soil models were used on a finite element program that modeling a six feet diameter, twenty feet long drilled shaft, giving the drilled shaft capacity for each random soil model. Additionally, a cost comparison between usi ng the actual method involving an increment on the drilled shaft construction due to us ing a bigger LRFD resistance factors, And using the proposed LRFD resistance factors, but with an increment on additional field coring of rock around the location where the sh aft will be is accomplished. Background Foundation design depends basically on the engineer ing properties of the soil or rock that is supporting the foundation. But the soil characteris tics at any site frequently are non-

PAGE 14

14 homogeneous, that means that the soil profile may vary. Therefore, for estimate the natural soil or rock in-situ properties, it is necessary to pass by two phases; site characterization and subsoil exploration. Site Characterization On this phase, the engineer glances for forma tion of the soil origin and alterations that usually are caused by the environment processes, like chemical weatheri ng and the introduction of new substances. Those alterations vary on space and time. If the engineer has an understanding of soil formation and later alterati on of geotechnical materials, he will have a better acknowledge of the materi al variability and the behavi or that it could have during construction process and structure lifetime. Subsoil Exploration This phase is where the engine er obtains information that as sists him/her on calculations of the load bearing capacity of the foundation, estima tion of the possible settlement of a structure, establishing foundation problems, choosing the appropriate foundation ty pe, and determining construction methods for changing subsoil condi tion. The subsoil phase has three basic steps; collection of preliminary information, reconnaissance and site. Geotechnical variability Natural soils are rarely homogeneous and highl y variable in their pr operties. This soil variability can be classified into three main cat egories. The first is the location of boundaries between materials (see Figure 1-1). The second is litho logical heterogeneity that is the locations of anomalies, or areas of significantly differences properties, within a single material type (see Figure 1-2). And the third is inhe rent spatial soil variability (see Figure 1-3). Soil and rock material vary so that a property measures at two different points will have different values, assuming no error on measurement.

PAGE 15

15 Conventional geotechnical modeling The conventional method of modeling soil structur es is to evaluate the results from field testing studies and then to make soil profiles. In theses profiles, each layer is assumed to be homogeneous with singles values for the engine ering properties of each layer. This properties information is obtained from in situ soil testi ng and lab testing. This information is evaluated later by the engineer and a single conservative value is chosen to represent the property of the material. The variability normally is not quantified. The usual design practice for soil design is deterministic. This invol ves the estimation of ultimate bearing capacity using average values of design parameters and application of a suitable factor of safety (F) to arrive an allowa ble bearing capacity (Griffiths & Fenton 1999). LRFD The purpose of foundation design is to guarantee that a system achieves adequately in its design life. However, there are some uncertain ties on the two phases described above, (site characterization and subsoil exploration) that ma ke it impossible to ensure that any unfortunate performance will occur under all possible circumstances. Foundation failures are always undesirable ev ents. They occur for diverse reasons, negligence, lack of knowledge, greed etc. The probability of failure is often higher for projects involving new materials, technology, and extreme parameters (lar ger shaft diameter) for which there is little or no pr ior experience. Therefore, the desi gn provisions include built-in safety margins: load effects are usually overestimated and resistances are underestimated. In load and resistance factor design (LRFD), load components are multiplied by load factors and resistance is multiplied by a resistance factor. The basic equation is: Rn > i Qi (1-1)

PAGE 16

16 Where i is a load factor applied to load components Qi and is resistance factor applied to the resistance (measured of load carrying cap acity) Rn In words it equation says that the capacity of the foundation (modified by the factor ) must be larger than the total effect of all the loads acting on it. The mention above design formulas are deve loped by code committees with input from practicing engineers, researchers, and scientists However, things are ch anging and there are new requirements that need to be satisfied, fo r example moving toward larger single shaft construction. New rules are required, for example f ield coring of rock at the location of the as built non-redundant shaft (FDOT Structures Bulle tin, 2005). Similar to cycles, new requirement results could improve the formulas over again. The goal of load and resistance factor design (L RFD) analysis is to develop factors that decrease the nominal resistance to give a design with an acceptabl e and consistent probability of failure. To accomplish this, an equation that incor porates and relates togeth er all of the variables that affect the potential for failure of the struct ure, must be developed for each limit state. The parameters of load and resistance are considered as random variables, with the variation modeled using the available statistical data. A random vari able is a parameter that can take different values that are not predictable. An example is compressive strength of the soil, qu that can be determined using a testing machine. There are three levels of probabilistic design : Levels I, II, and III (Withiam et al. 1998; Nowak and Collins 2000). The Level I method is the l east accurate. It is sufficient here to point out that only Level III is a fully probabilistic me thod. Level III requires complex statistical data beyond what is generally available in geotechnical and structural engineering practice. Level II and Level I probabilistic methods are more viable approaches fo r geotechnical and structural

PAGE 17

17 design. In Level I design methods; safety is measured in terms of a safety factor, or the ratio of nominal (design) resistance and nom inal (design) load. In Level II, safety is expressed in terms of the reliability index, The Level II approach generally requires iterative techniques best performed using computer algorithms. But for simple cases, there are available closed-form solutions to estimate Closed-form analytical procedures to estimate load and resistance factors should be considered approximate, with the ex ception of very simple cases where an exact closed-form solution exists (Calibration to Determine Load and Resistance Factors for Geotechnical and Stru ctural Design 2005). For LRFD calibration purposes, statistical characterization should focus on the prediction of load or resistance relative to wh at is actually measured in a structure. Theref ore, this statistical characterization is typically applied to the ratio of the measured to predicted value, termed the bias. The predicted (nominal) value is calculated using the design model be ing investigated. Note that the term bias factor (or bi as) is typically defined as the ra tio of the mean of the measured value divided by the nominal (predicted) value. However, for the purpose s described herein, the term bias is used to refer to individual measured values of load or resistance divided by the predicted value corresponding to that measured value. Regardless of the level of proba bilistic design used to perf orm LRFD calibra tion, the steps needed to conduct a calib ration are as follows: Develop the limit state equation to be evaluated, so that th e correct random variables are considered. Each limit state e quation must be developed base d on a prescribed failure. Statistically characterize the data. Key parame ters include the mean, standard deviation, and coefficient of variation (COV) as well as the type of distribution that best fits the data (i.e., often normal or lognormal). Determine load and resistance factors using reli ability theory. It must be recognized that the accuracy of the results of a reliability theory analysis is directly dependent on the adequacy, in terms of quantity and quality, of the input data used. The final decision made

PAGE 18

18 regarding the magnitude of the load and resistance factor selected for a given limit state must consider the adequacy of the data. If the adequacy of th e input data is questionable, the final load and resistance factor combinati on selected should be more heavily weighted toward a level of safety that is consistent with past successful design practice, using the reliability theory results to increase coming as to whether or not past practice is conservative or nonconservative exists (Calib ration to Determine Load and Resistance Factors for Geotechnical a nd Structural Design 2005). Current assessment of drilled sh aft skin and tip resistance is performed on laboratory rock core samples (unconfined compression, split te nsion, and intact Youngs Modulus) recovered from a site. Generally, all the samples are averag ed over the whole site us ing either a log normal distribution or arithmetic m ean throwing out one standard deviation above and below. Unfortunately, these methods dont account for spa tial variability of strength and voids, i.e. recoveries at a specific locale, wh ich is important for end bearing fo r a particular shaft. For this stage a probabilistic approach (Monte Carlo, Bayesian etc.) will be developed to identify the local strength, recovery, etc. for a specific shaft (i.e. use data near location) as well as for the whole site. From the specific local e data, LRFD resistance factors, may be determined for end bearing based. The LRFD resistance factors, for end bearing will also be determined using the geometric mean (lognormal) from the whole site as well. The FDOT online Internet Foundation Database (e.g. Osterberg, Statnamic results) has sufficient laboratory data to determine LRFD resistance factors, for end bearing on a site basis, but not for a specific location within a site. Additionally, there are many methods have been developed to calibrate the LRFD resistance factors using statisti cal data. FOSM (First Order Second Moment) is popular because it does not require a computer pr ogram to find the results. FORM (First Order Reliability Method) is more complicated that FOSM and iterates to find a so lution. Each of these methods results in a different set of resistance factors. The one used on this research was the FOSM.

PAGE 19

19 FMOS First Order Second Moment FOSM state for First Order Second Moment, Fi rst Order because use the first-order terms in the Taylor series expansion, Second moment because only means and variance are needed. It has been used (NCHRP 507, 2004) to calibrate LRFD factors using a statistical dataset containing the measured and predicted resistances. The bias of member i of the dataset is defined as, n m ir r (1-2) where i is the bias, rm is the measured resistance, and rn is the nominal resistance. Each element in the dataset will have a corresponding bi as. The average of these biases is found with the following equation. N Ei R ] [ (1-3) where N is the number of elements within th e dataset. The standard deviation of the dataset is, 1 ] [2 N ER i R (1-4) The coefficient of variation (COV) of the bias data is, ] [ ] [R R RE COV (1-5) The reliability index is found using a function of the two ra ndom variables R, resistance and Q load. Assuming RN and QN are normally distributed, this combined function would be, N N N NQ R Q R g ) ( (1-6)

PAGE 20

20 When QN is larger then RN, g() is negative. Therefore, failure can be defined as when g() is less then or equal to zero. However, FO SM assumes that the load and resistance random variables are lognormal random variables, this limits the load and resistance values to only positive numbers. Now considering the relationship between a normally distributed random variable RN, and a lognormal random variable R, N RR R e RN ln (1-7) Writing the g(R,Q) equation in terms of lognormal random variables yields, Q R Q R Q R g ln ln ln ) ( (1-8) This equation is equivalent to the first defini tion of g(R,Q). When R is less then Q g() will still be negative. The g(R,Q) function is a random variable. Q R Q R g G ln ) ( (1-9) Yet, R/Q is a lognormal random variable. Theref ore the distribution of ln(R/Q) is normal. This results in the random variab le G having a normal distribution. Reliability index The reliability index ( ) is defined as the mean value of G (E[G]) divided by the lognormal standard deviation of G ( G). GG E ] [ (1-10) As previously defined, ) ln( ) ln( Q R G (1-11)

PAGE 21

21 with R and Q being lognormal random variables. This yield, 2 2]) [ ( 1 ] [ ln ]) [ ( 1 ] [ ln ] [ )] [ln( )] [ln( ] [N N N NQ COV Q E R COV R E G E Q E R E G E 2 2]) [ ( 1 ] [ ]) [ ( 1 ] [ ln ] [N n N NR COV Q E Q COV R E G E (1-12) With RN and QN being normally distributed, so that E[RN] and E[QN] are the normal means. The coefficients of va riation are also calculated us ing the normal means and normal standard deviations. )] ]) [ ( 1 )( ]) [ ( 1 ln[(2 2 N N GQ COV R COV (1-13) This results in the reliability index being defined as: )] ]) [ ( 1 )( ]) [ ( 1 ln[( ]) [ ( 1 ] [ ]) [ ( 1 ] [ ln2 2 2 2 N N N N N NQ COV R COV R COV Q E Q COV R E (1-14) Solving for the resistance factor The following derivation for the resistance fact or is based largely on NHI 1998. Solving for the resistance factor begins w ith the fundamental LRFD equation. i i nq r (1-15) In this equation rn stands for the nominal resistance. Solving for the resistance factor and plugging in the bias yields:

PAGE 22

22 ] [ ] [ ] [ ] [ 1R N n R n N R n N i i nE R E r E r R E r R q r (1-16) i i N Rq R E E ] [ ] [ (1-17) E[RN] is the expected value of the normally di stributed resistance random variable. The next step involves solving the reliability inde x equation previously de rived (equation 1-14) for the E[RN] term. ) ]) [ ( 1 ( ) ]) [ ( 1 ( ] [ ] [2 2 )] ]) [ ( 1 )( ]) [ ( 1 ln[(2 2N N Q COV R COV N NR COV Q COV e Q E R EN N T (1-18) This is then substituted into the fundamental LRFD equitation )] ]) [ ( 1 )( ]) [ ( 1 ln[( 2 22 2] [ ) ]) [ ( 1 ( ) ]) [ ( 1 ( ] [N N TQ COV R COV N i i N N Re Q E q R COV Q COV E (1-19) NHI 1998 represents the coefficient of variation of the load as, 2 2 2]) [ ( ]) [ ( ]) [ ( QL COV QD COV Q COV (1-20) and rewriting this equation for dead and live loads yields, )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2] [ ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV N L QL D QD N RN Te Q E q q R COV QL COV QD COV E (1-21) With,

PAGE 23

23 L QL D QD Nq E q E Q E ] [ ] [ ] [ (1-22) Where QD and QL are the dead and live load bias fact ors respectively. This results in, )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV QL L D QD QL L D QD N RN Te E q q E q q R COV QL COV QD COV E (1-23) This equation is used to calibrate the resist ance factor using the FOSM method. It is dependent on the target reliability index and the ratio of dead to live load. Problem Statement In the last 20 years, the use of drilled shaft foundations as an alternative to driven piles for supporting bridges has become common practice. R easons for their use are: 1) higher resistance to lateral loads such as wind loads (e.g. hurricane s etc.) and ship impacts, 2) need to minimize construction noise and vibration in urban areas, 3) right of way constrains which require minimal foundation footprints and 4) the ec onomy of replacing large number of piles with a single or few drilled shaft with out pile caps. Also with the introduction of larger and more autonomous equipment, and the aspiration to reduce costs, shaft diameters have been getting larger and larger. Due to the loss of foundation redundancy or the move toward la rger single shaft construction (e.g. Cross-Town, New River, Ringling, etc.), field co ring of rock at the location of the as built non-redundant shaft is now required (F DOT Structures Bulletin, 2005). However, to accurately assess skin and end bearing of a non-redundant shaft, the need for coring in the vicinity of a proposed sh aft during the design phase is also of strong interest. For instance, the thickness of limestone layers, recoveries (voids), strength and compressibility in the near vicinity of the shaft may significantly improv e the LRFD resistance factors, for design. Consequently,

PAGE 24

24 there is a strong need to asse ss the LRFD resistance factors, for shaft design, e.g. end bearing, based on the frequency distributi on of strengths, recoveries and compressibility data for the whole site vs. a specific location, especially for non-redundant shaf ts. In addition, there is the question as to the number of cores, sample s etc. to ensure a specific reliability. Fortunately, a probabilistic based LRFD resist ance factor assessmen t answers the latter questions. For instance, using a Mo nte Carlo or Bayesian theory, strength, compressibility, etc., statistical (mean, standard deviation, etc.) properti es for a specific shaft or for the whole site may be generated from core and laboratory data near a specific shaft or over the whole site. Using random sampling, kriging, Sequential Gaussian si mulation, end bearing, etc. may be computed for a specific shaft or for all the shafts on the si te. It is expected that the difference in LRFD resistance factors for end bearing will be significant different if applied at a specific location vs. the whole site. Objectives 1. To estimate the influence of the spatial vari ability of a site on the selection of Load Resistance Factor Design. 2. To assess the resistance factors, for drilled shaft design a pplying the modified FOSM (First Order Second Moment), based on the freq uency distribution of strengths, recoveries, compressibility data and spatial variability. 3. To calculate testing cost and compare t hose against the final shaft built cost. This comparison will be done by assuming spat ial variability testing influences. Methods The method used in this research was the Empi rical. It explains the data collected through the development of a model that hypothesizes about the relationship between the data and relevant variables of the environment. The empirical research is grounded in reality rather than in

PAGE 25

25 some abstract territory. The base for this rese arch was soil data, and was done in five stages. Therefore, the abstract was replaced by collected data. The five research stages were literature review lab and field data collection, data analysis, LRFD resistance factor development and cost comp arison. Each of these stages will be explained in details in further chapters.

PAGE 26

26 Figure 1-1. Location of Bounda ries between Materials. Figure 1-2. Litho Logical Heterogeneity. Figure 1-3. Inherent Spatial Soil Variability. -70 -65 -60 -55 -50 -45 -40 0.0020.0040.0060.0080.00100.00120.00 qu (tsf)Depth (ft) Peat lenses Bedrock Material A Material B Material C

PAGE 27

27 CHAPTER 2 LITERATURE REVIEW The LRFD resistance factors, for end bearing, is determin ate without have into account spatial variability of strength and voids. On larger single shaft construction, spatial variability is important due to large cost involves on construc tion. The basis for belo w literature review was spatial variability, Reliability-Based Design, LR FD resistance factor design, and limestone parameters. Static and Dynamic Field testing of Drilled Shafts The Static and Dynamic Field testing of drilled shafts (FDOT and UF) past geotechnical research, is the first part of this research. One of the principal founding of that study was the proposed LRFD resistance factor, and ASD factor of safety for ONeill end bearing. However, that research required include a dditional rock properties to th e study (i.e. mass modulus of the rock) or simply add variables that can improve th e LRFD resistance factor that were reached (i.e. spatial variability). The Static and Dynamic Field testing of drilled shafts basically shows the necessity of have into account the drilled sh aft unit bearing on design. It du e many designers either neglected or uses a small nominal value. However, eviden t from the Osterberg tip results significant end bearing has been generated on drille d shaft founded in Florida Limestone. The study follows the ONeill tip resistance m odel, which identify tip resistance vs. tip displacement. The approach is dependent on th e rocks compressibility (i.e., Youngs Modulus, E) and strength (qu) characteristics. The procedure used there was the computation of all the tip resistances vs. tip displacement for the entire Osterberg tests available at that mome nt (six locations in total). It had two different approaches for each location, nearest boring (b etween 100 ft) and Random Selection based on all

PAGE 28

28 the site selection. For each available test, a comparison between measur ed and predicted FDOT failure resistance is made. Furthermore, the same comparison was complete for nearest boring and random selection. The LRFD specifications as approved by AASHT O recommend the use of load factors to account for uncertainty in the load, and resistan ce factor to account for uncertainty in the materials. Therefore, this research fo llowed the AASHTO recommendation saying that a probabilistic approach for estimating resistance f actors be used on a database of measured and predicted values. From that procedure LRFD factors, Probability of fa ilure (Pf) and Fs Based on Reliability for nearest boring and random selec tion approach were calculated. Table 2-1 and Table 2-2 showed the results obtained in the Static and Dynamic Field testing of drilled shafts research. On the first column is the Reliab ility for drilled shafts. The Second column is the LRFD factor. And, the fourth and fifth columns pe rtain to probability of failure and factor of safety. Comparing the LRFD factor fr om nearest boring and random se lection results, the nearest boring has higher resistance factor for the same design approach. Based on this study results evidently, the use of the neares t boring greatly diminished the va riability of rock properties and the subsequent mobilized unit end bearing. Modeling Spatial Variability in Pile Ca pacity for Reliability-Based Design The American Petroleum Institute (API) recommends using site-specific data for soil properties when developing pile capacity profile s for offshore structures (API 1993). However, there are many situations where this site-specific information is not available or would be costly and time consuming to obtain. It is therefore advantageous to be ab le to predict the expected pile

PAGE 29

29 capacity at a site that does not have a site-s pecific soil boring by using the properties of the offshore field as a whole. This paper does the introduction to the development of a site-specific model for predicting axial side capacity, which is the first step for a ac hieving the same level of reliability in design at a site whether or not a soil boring has been dril led at that site by using the properties of the offshore fields as a whole. This paper develope d a similar procedure to the Static and Dynamic Field Testing of Drilled Shaft analysis. But, instead predicting axial side capacity the named study predicted end bearing capacity. The model provides a methodology to predict site specific pile capacity profiles with depth and to quantify the uncertainty associated w ith these predictions. The process of model development consists of the following steps: (1) establish a conceptu al geological model; (2) compile geotechnical data to relate the geol ogical model to pile capacity; (3) develop a quantitative model describing spatia l trends and variability in pile capacity; and (4) calibrate the quantitative model with geotechnical data. The models are part of a reliability-b ased methodology for design offshore pile foundations without site-specific geotechnical data that could be used on a lot of cases. The paper is completed with three examples of the application of the model on real cases. Reliability-Based Foundation Design for Transmission Line Structures The Electric Power Research Institute pub lished on 1988, three volumes on ReliabilityBased Foundation Design for Transmission Line Structure, Volume 1 Geotechnical Site Characterization Strategy; and Volume 3 Uncertainties in Soil Property Measurement. Each of those volumes focused on geotechnical probl ems. The first volume explained on its second chapter Geotechnical Material Variability a guide for to do Geotechnical modeling having into

PAGE 30

30 account the material variability. Al so, explained reasons for geotech nical material variability and random field models that could be helpful for this research. The second chapter titled Geot echnical Material Variability explained topics like reasons for geotechnical variability, conventional subs urface geotechnical modeling, and random field models. Also, shows a procedure (statistical model) for to quantify variability of the soil and measurement errors. It procedure is alternativ e to the conventional subsurface modeling that requires a great deal of engineeri ng judgment to interpret the resu lts of discrete measurement and generalized them over depth and lateral extent The procedure consist on uses a consistent mathematical model, such as a random field mode l. Explanations of some steps that should be followed for to do the model are on that chapter also. The steps are basically to analyze spatial variability, trend, distribution of the property about its mean and correlation. Transportation Research Board Circular E-C079 The Transportation Research Board Circ ular E-C079, published on September 2005, described a complete procedure for to calibrate a nd determine the load and resistance factors for geotechnical and structural design. It included all the steps that will necessary to follow. Also, it provides alternatives for to do the calibration of the model after the factors have been obtained. The circular document guides the reader starti ng in an overview of the calibration approach through the final selection of Load and Resistance Factors. In th e course, explain with examples and applications, the limit state equation develo pment, some calibration concepts, the target reliability index selection, statistical consid eration of calibration and characterization, how estimate the load and resistance factors, and calibrations using the Monte Carlo method with different variables. It text will be useful in the process of de veloping the phi factor. The application of the Monte Carlo method is an option for to have a si mulation of the data obtained. It due the data

PAGE 31

31 obtained on the field is reduced due the costs im plied on its acquisition. Also, some guidance on statistical characterization will be used as technique of estimating the load and resistance factor would be applied. Estimation for Stochastic Soils Models The Journal of Geotechnical a nd Geoenvironmental Engineering paper, published in 1999 by Gordon A. Fenton, talked about the uncertainty in spatial soil variati on and how to quantify it rationally. It described how the mean and varian ce are not sufficient for to make a reliability study, that each day more clients and engineers ar e interested in more sophisticated models and rational soil correlation structures. This pape r clarified reasonable correlations models. Explained how soils are best repr esented using fractal or finite scale models. Also, explained how the soil parameters will be estima ted have been selected the model. The papers give solution to questions by looking at a number of tools which aid in selecting appropriate stochastic models. These tools included the sample covariance, spectral density, variance function, variogram, and wavelet variance functions. Additionally, common models, corresponding to finite scale and fract al models, are invest igated and estimation techniques discussed. Practice of Sequential Gaussian Simulation The Geostatistics Banff, published on 2004 a Marek Nowak and Georges Verly paper. It described the practice of sequential Gaussian si mulation within the mining industry. The paper shows a process for simulation with the objectiv e of reducing the mistakes that could be undetected due to the lack of theory of simulatio n in practice. The paper described four of the most important aspects of the process, like, a gradual trend adjustment, a modified bootstrap approach, a number of pre and post simulation check. All of the approaches, solutions and

PAGE 32

32 checks presented in this paper are simple, flex ible, and can be easily implemented in other industries. Bearing Capacity of a Rough Rigid Strip Foot ing on Cohesive Soil-a Probabilistic Study The paper indicates the use of a probabilistic study on the bearing capacity of a rough rigid strip footing on a cohesive soil. Th e first step on this paper was to use statistics help for to create random field model. The parameters used for this purpose were Young modulus E, Poison ratio and undrained shear strength. The fi rst two were held constant a nd the shear strength is modeled as a random variable. It is assumed to be ch aracterized by a lognormal distribution. And this information was used for to get the spatial corr elation function and the correlation coefficient length needed for to generate random fields. Af ter getting the random fi elds a finite element method was used for to recreated the footing and get the bearing capacity of it. The researcher of this paper was not working with real data if not with assumed statistical properties (our case is using real field data). The last stage of this paper was the Monte Carlo simulation for each set of assumed statistical properties. E ach realization, while having the same underlying statistics, had fairly different spatial pattern of shear strength values beneath the footi ng and hence, a different value of bearing capacity. Our research followed a very similar procedure that the used on this investigation paper, but the diffe rences are that this paper did all the analysis based on assumed statistical properties and our research are real soil properties obtained from the field and instead using a strip footing our is thir ty two length drilled shaft. This paper was very helpful in the description of their procedur e and the results obtained. Additionally to these papers mentioned are about twenty to thirty more that made contributions to the investigations, the most relevant are, Observations on Geotechnical reliability-based design development in North Am erica, Spatial Trends in Rock Strength-can they be Determined from core holes?, and D rilled Shaft Design for Transmission structures

PAGE 33

33 Using LRFD and MRFD and the rest of them are mentioned on the references or through the research.

PAGE 34

34 Table 2-1. LRFD Factors, Probability of Failure (Pf) and Fs Based on Reliability for Nearest Boring Approach (FDOT & UF 2003). Reliability, LRFD Pf (%) Factor of Safety 2.0 0.868.51.65 2.5 0.711.01.98 3.0 0.600.12.37 3.5 0.500.012.84 4.0 0.420.0023.40 4.5 0.350.00024.07 Table 2-2. LRFD Factors, Probability of Failure (Pf) and Fs Based on Reliability for Random Selection (FDOT & UF 2003). Reliability, LRFD Pf (%) Factor of Safety 2.0 0.568.52.60 2.5 0.431.03.32 3.0 0.330.14.24 3.5 0.260.015.42 4.0 0.210.0026.92 4.5 0.160.00028.84

PAGE 35

35 CHAPTER 3 DATA COLLECTION The Data Collection was divided in two different research stages. The first one, the existent data was recollected from divers e resources, like Florida Department of Transportation database, University of Florida past rese arches, and soil labs maps. And s econdly, the data obtained from the soil borings from the field and processed on the FDOT Materials lab. Both new and old data was analyzed and it made contribut ion to the final investigation. Existent Data Collection The existent lab data was gathered from di fferent resources like, the FDOT database, University of Florida Geotechnical Department and Florida Department of Transportation Districts past projects. Among the data that was gathered are strengths (q u-qt), recoveries and compressibility, as well as load testing informati on. The used data was taken from four of the seven projects available around Flor ida that at the time of the init ial investigation had available load test information and additionally any soil bo ring data, which were rele vant to the research. These four projects that had th e requirements described in the last paragraph were Apalachicola Bridge (Calhoun), Victory Bridge (Chattahooch), Fuller Warren Bridge (Jacksonville) and 17th Street Causeway (Fort Lauderdale). The localiza tion around Florida of the mentioned bridges is showed in Figure 3-1. The other three sites that app ear in the location map as a wh ite shadow belong to bridges that had some load test information at the time of the initial investigation, but the load test shafts were set in a soil different to limestone. The data obtained from each one of the bri dges showed on the figure is the Measured Unit End Bearing from Osterberg Load Tests. A summ ary of this information is showed in the Table 3-1. The table contains in the first column the bridges names, the shaft number and length in the

PAGE 36

36 second and third columns respec tively. The fourth is for th e unknown friction and the bottom movement on the fifth. The last four columns be long to information about the failure status and the values for each type of the failure. The mobili zed bearing is described as a value less than the shaft diameter over thirty shaft displacement value. FDOT failure is when the displacement is exact that displacement rate and Maximum over it. The values used in the investigation from the above table were the Bottom movement, FDOT failure, Maximum failure and Mobilized bear ing value. Those results were compared with the Predicted unit end bearings ob tained from the finite element model for the different random fields created using the informa tion obtained from the soil boring la b results. The lab results used on the random field creation include s strengths (qu-qt), recoveries (REC) and compressibility for to predict the Unit End bearing. An example from the 17th Street Bridge is the Table 3-2. The Figure shows the bridge name with the state project number on the title. The first row includes the soil boring name and location along the bridge. The first column descri bes the elevation of th e sample, and the other six columns show the strengths (qu and qt), reco very and RQD. This is just one unsystematic example but the complete tables used for each on e of the mentioned bridges are illustrated on the APPENDIX A. New Field Data Collection The second stage for data collection was th e information obtained from the new soil borings on the bridges field. The bridge site sele ction was done using a preliminary research for the mentioned bridges. It includes details as the accessibility to the site (not to be under water), that the site were on limestone ro ck, the selected location had to ha ve strength data, that the load test have preferably a FDOT end bearing failure, and last but not lest that the O-Cell were on the tip of the drilled shaft. Due to theses details so me of the seven projects were not used. Those are

PAGE 37

37 the bridges showed on the Figure 3-1 with a white shadow. Th e principal two recurrent failed details were that the load test locations were offs hore, and that the load te st results did not reach the tip movement (end bearing failure criteria).Af ter the preliminary selection the finally four selected sites or bridges were: Apalachicola River Bridge (District 3) Victory Bridge (District 3) Fuller Warren Bridge (District 2) 17th Street Bridge (District 4) The field exploration was accomplished by Un iversal a soil exploration company in Jacksonville and Fort Lauderdale. And the rock cores obtained from Universal were tested at the State Materials Office soil lab district 2 (Gai nesville Fl.). Consequently, strength values, recoveries and compressibility r ecords were obtained from them and subsequently were used to establish LRFD resistance factors for end bearing for each specific site location. From the pre-selected sites name above, just two of them were test ed. It is the case of Fuller Warren Bridge Jacksonville (District 2) and 17th Street Bridge Fort Lauderdale (District 4). The data obtained from each bridge is showed in the APPENDIX B but an example of the data obtained from the State Materi al Office lab is showed in the Table 3-3. In this table is illustrated the information for each rock core took from the field, as length, diameter, depth, unit mass, qu, qt, recovery, RQD, density, etc. The data obtained from theses tables was used on the simulation of random fields and later on the model on the finite element program. The next couple of paragraphs are dedicated to relevant information about the two bridges selected for the research. The Fuller Warren Brid ge (District 2) It is localized over the St. Johns River in downtown Jacksonville on th e Interstate Highway 95 (I-95). It replaced the old Gilmore Street Brid ge. It has four Load tests LT-1, LT-2, LT-3 and

PAGE 38

38 LT-4. In the Figure 3-2 are showed the plan view and the soil profile indicating the mentioned shaft load tests localization. Only the load test LT-4 was used on this research. Additionally, in the Figure 3-3 are couple of pictures under the Fulle r Warren Bridge during the site inspection. These pictures shows the position of the load te st LT4 where the additional soils boring were realized around. 17th Street Bridge Fort La uderdale (District 4) This is a bascule replacement bridge for the old movable bridge on S.E. 17th Street Causeway over the intercostals waterway in Fort Lauderdale, located on Broward County. The 17th Street Causeway Bridge has four Osterberg Load test s LTSO-1, LTSO-2, LTSO-3 and LTSO-4. The only load test used was the LTSO4. Figure 3-4 shows pictures where the load test LTSO4 is localized. Data collection for the Fuller Warren Bridge was realized by the Jacksonville Universal Engineering Science firm. The soil samples were ta ken to State Materials Office soil lab district 2 (Gainesville Fl.) were all the necessary lab exploration were r ealized. The same procedure was followed with the 17th Street Br idge Fort Lauderdale but the fi rm in charge to do the soil exploration was PSI Engineering.

PAGE 39

39 Table 3-1. Measured Unit End Bearing from Load Tests. Shaft Name Shaft Length (ft) Unknown Friction (ft) Bottom Move. (in) Failure Status Mobilized Bearing (tsf) FDOT Failure (tsf) Max. Failure (tsf) LSTSO 1 119.4 5.20.624Both x xx LSTSO 2 142.0 9.11.95Tip Failx xx LSTSO 3 100.1 11.11.89Both 41.5 xx 17th Street Bridge LSTSO 4 77.5 2.63.53Tip Failx x66.4 Test 1 64.2 04.41Tip Failx 61.790.3 Test 2 101.2 02.97Tip Failx 2839 Test 4 113.9 03.2Tip Failx 22.430.2 Acosta Bridge Test 5A 87.8 05.577Tip Failx 18.529.4 46-11A 85.0 05.977Both x 72.692 53-2 72.0 02.1Both 70 xx 57-10 84.0 01.7Both 60 xx 59-8 134.0 91.3Both 65 xx 62-5 89.2 02.69Both x 3840 Apalachicol a Bridge 69-7 99.1 04.46Both x 3644 LT-1 41.0 00.23Skin Fail 87 xx LT-2 27.9 02.56Both x 80.889.5 LT-3a 120.7 02.94Both x 3434 Fuller Warren Bridge LT-4 66.8 03.12Both x 3470 26-2 38.4 9.80.4Skin Fail x xx 52-4 54.5 4.332.9Both x 139.2x Gandy Bridge 91-4 74.7 6.72.5Both x 42.9x Hillsborough Bridge 4-14 70.8 7.331.74Both x xx 3-1 33.2 00.5Both 109 xx 3-2 38.6 9.660.4Skin Fail x xx 10-2 46.6 7.72.367Both x 45x 19-1 45.0 00.528Both 124.4 xx Victory Bridge 19-2 50.7 12.140.4Skin Fail x xx

PAGE 40

40 Table 3-2. 17th Street Bridge Soil Boring Data (State Project No. 86180-1522). BB-1 (32+93) S-4 (33+00) EL (ft) qu REC RQD qt REC RQDEL (ft) qu REC RQD qt RECRQD -65 32.23022-32211.268.3 -72 27.346728-36116.919.4 -85 114.213 7 BB-4 (34+81) BB-9 (35+06) EL (ft) qu REC RQD qt REC RQDEL (ft) qu REC RQD qt RECRQD -69 32.7422 5 -115 26.55 -88 28.835 10 -131 24.6343 -131 32.943 S-12 (35+29) BB-7 (35+44) EL (ft) Qu REC RQD qt REC RQDEL (ft) qu REC RQD qt RECRQD -32 211 -49 43.5184 -32 68.34-65414207 -49 117 -7237.8 -49 19.4-82120.89838 -72 19.6-82 26.39838 -9282.989838 -102 117.47667 -10882.44358 -131140.63510 -131 64.63510 BB-11 (35+53) BB-8 (36+10) EL (ft) qu REC RQD qt REC RQDEL (ft) qu REC RQD qt RECRQD -36 379.4 38 35 143.973835-39361.365 -36 189.013838-46158.74819 554819 -36 112.63835-46272.74819 53.994819 -75 26.333-46 76.784819 -98 27.04 60 23 68.76023-56285.05012 40.45012 -98 140.0160 23 -95 14.04175

PAGE 41

Table 3-3. Fuller Warren State Materials Office Soil Laboratory Data. State Materials Office Rock Core Effective/Revised: 4/27/05 Foundations Laboratory Unconfined Compression-Split Tensile By: G.J. Page 1 of 1 Boring /Core Samp. No. Depth Top (ft) Depth Bot. (ft) Test Date Length (in) Dia. (in) Wet Wt. (g) Wet Unit Wt. (pcf) L/D Rati o Corr. Factor CB-3/1 1U 41' 8/21/20064.8380 2.3950 853.2 149.1 2.02 1.00 2U 4.4327 2.3835 740.4 142.6 1.86 1.01 3T 2.4345 2.3100 335.2 125.2 1.05 4T 2.4350 2.3785 375.0 132.0 1.02 5T 46' 2.3500 2.3730 409.9 150.2 0.99 CB-3/2 1T 46' 8/21/20062.4165 2.2995 308.4 117.1 1.05 2U 4.3357 2.3655 774.8 154.9 1.83 1.01 3T 8/22/20062.3220 2.3760 406.1 150.3 0.98 4U 4.8068 2.3820 806.8 143.5 2.02 1.00 5T 2.3535 2.3720 400.6 146.7 0.99 6U 4.8825 2.3895 799.2 139.1 2.04 1.00 7T 2.3395 2.3870 393.8 143.3 0.98 8U 51' 4.8715 2.3890 865.4 151.0 2.04 1.00 CB-3/3 1T 51' 8/22/20062.3315 2.3510 380.8 143.3 0.99 2U 4.8632 2.3610 838.4 150.0 2.06 1.00 3T 2.4395 2.3110 376.5 140.2 1.06 4T 2.4330 2.3555 378.1 135.9 1.03 5U 4.8955 2.3430 734.4 132.5 2.09 1.00 6T 2.4855 2.3285 366.7 132.0 1.07 7T 2.4545 2.3375 328.7 118.9 1.05 8U 4.8125 2.3360 672.7 124.2 2.06 1.00 9T 2.3865 2.3230 332.8 125.3 1.03 10T 2.1210 2.3185 291.7 124.1 0.91 11U 4.7020 2.3455 676.5 126.9 2.00 1.00 41 12T 56' 2.4110 2.3595 369.5 133.5 1.02

PAGE 42

Table 3-3. Continued. Boring /Core Samp. No.w (%) Dry Unit Wt.(pcf) Max. Load (lbs.) S.T. Strength (psi) q(u) (psi) Displ. @ Fail (in) Strain @ Fail (%) %Recov./ %RQD Tare Wt. (g) Wet Wt. (g) Dry Wt. (g) CB-3/1 1U 5.32 141.6 67821505.6 0.0522 1.08 72/50430.31281.51238.5 2U 11.14 128.3 3530784.1 0.0634 1.43 72/50430.71168.71094.7 3T 26.01 99.3 36841.6 0.0633 72/50366.1698.4629.8 4T 16.40 113.4 1378151.5 0.0687 72/50431.4805.4752.7 5T 9.07 137.8 3224368.0 0.0515 72/50428.3837.2803.2 CB-3/2 1T 26.50 92.5 20423.4 0.0743 77/67428.1735.5671.1 2U 7.46 144.2 57201287.5 0.0549 1.27 77/67430.21196.61143.4 3T 8.10 139.0 1552179.0 0.0415 77/67430.3835.8805.4 4U 11.63 128.5 3252729.8 0.0541 1.13 77/67431.41237.81153.8 5T 10.86 132.4 1623185.1 0.0468 77/67371.5771.6732.4 6U 13.79 122.2 4229943.0 0.0563 1.15 77/67433.11230.01133.4 7T 11.05 129.0 1715195.5 0.0419 77/67312.1703.9664.9 8U 8.31 139.4 56901269.3 0.0454 0.93 77/67375.91239.01172.8 CB-3/3 1T 9.56 130.8 37944.0 0.0410 100/92366.0746.4713.2 2U 8.71 138.0 3187727.9 0.0630 1.30 100/92370.81207.21140.2 3T 4.54 134.1 12013.5 0.0237 100/92370.6746.2729.9 4T 14.37 118.8 24327.0 0.0276 100/92425.7802.9755.5 5U 18.48 111.9 501116.1 0.0297 0.61 100/92430.61164.01049.6 6T 19.11 110.8 16918.6 0.0236 100/92424.6790.5731.8 7T 28.86 92.3 889.7 0.0209 100/92430.4758.6685.1 8U 27.47 97.5 731170.5 0.0455 0.95 100/92302.8972.4828.1 9T 24.01 101.1 28732.9 0.0422 100/92425.0756.6692.4 10T 23.05 100.8 9312.1 0.0402 100/92410.1701.0646.5 11U 23.97 102.3 433100.3 0.0348 0.74 100/92428.21103.6973.0 42 12T 17.63 113.5 43748.9 0.0324 100/92428.4797.4742.1

PAGE 43

43 Figure 3-1. Load Test Bridge Locations. Figure 3-2. Fuller Warren Bridge Shaft Locations. LT 1 LT 2 LT 3 LT 4

PAGE 44

44 Figure 3-3. Fuller Warren Bri dge during Site Inspection. Figure 3-4. 17th Street Bridge Load Test Location.

PAGE 45

45 CHAPTER 4 GEOSTATISTICS AND NUMERICAL MODEL Geostatistics Geostatistics were first devel oped to provide better estimate s of ore reserves. In coal mining, they have been used to evaluate energy c ontent, sulfur, ash, and other quality attributes of deposits. In fact, Geostatistics can be used to study many properties that vary in space, but are measured at distinct locations. Field Researches as diverse as hydrology, fo restry, air pollution, and global warming have all made extensive us e of Geostatistics. (Ledvina et al., 1994; Armstrong, 1998). The Geostatistics term has been used amply in mining design but just a few of times in geotechnical. Since it will be not a clear word, let me recall two definitio ns: Geostatistics: study of phenomena that vary in space and/or time (D eutsch, 2002) and Geosta tistics offers a way of describing the spatial continuity of natural phenomena and provi des adaptations of classical regression techniques to take advantage of this continuity. (Isaaks and Srivastava, 1989). Geostatistics deals with spatially auto correlated data. It is data that has correlation between elements of a random variable separa ted from them by a given interval. The basic idea of Geostatistics is this. Suppose the goal is to determine the cohesion in a limestone field. If two core holes are drilled just 1 ft apart from each other, one would expect that their cohesion values would be very similar. If a third hole is drilled 10 ft away, the cohesion value might be expected to change a little, but still be close the original value. As more holes are drilled further and further away, a distance is ev entually reached where the first holes no longer help predict the cohesion value. Between the basic elements of Geostatistics are: (Semi) variogram analysis charact erization of spatial correlation.

PAGE 46

46 Kriging optimal interpolation; generates best linear unbiased estimate at each location; employs semivariogram model. Stochastic simulation generation of multiple equally probable images of the variable; also employs semivariogram model. (Semi) Variogram Establishing the spatial correla tion structure of a site having erratic variation in its soil properties would require an extens ive amount of subsoil exploration, which may not be feasible in many projects due to the high costs (Fent on & Griffiths 1999). One of the most common methods for to estimate the correlation coefficient length is the semivariogram. The semivariogram is a statistic that appraise s the average decrease in similarity between two random variables as the dist ance between the variables increas es. It describe how spatial continuity change as a functi on of distance and direction. Significant terminology is used to describe th e important features of the semivariogram model, these terms are: Sill: The semi variance value at which the variogram levels off. Also it is used to refer to the amplitude of a certain component of th e semivariogram. For the plot above, sill could refer to the overall sill (1.0) or to the difference (0.8) between the overall sill and the nugget (0.2). Meaning depends on context. Range: The lag distance at which the semivariogram (or semivariogram component) reaches the sill value. Presumably, autocorrelation is essentially zero beyond the range. Nugget: In theory the semivariogram value at the or igin (0 lag) should be zero. If it is significantly different from zero for lags very close to zero, then this semivariogram value is referred to as the nugget. The nugget represen ts variability at dist ances smaller than the typical sample spacing, including measurement e rror. The ratio of the nugget effect to the sill is often referred to as the relative nugget effect and is usually quoted in percentage. Trend: If the empirical semivariogram conti nues climbing steadily beyond the global variance value, this is often indicative of a si gnificant spatial trend in the variable, resulting in a negative correlation between variable values separated by large la gs. Three options for dealing with lag include: 1) Fit a trend surface and work with residuals from the trend 2) Try to find a trend-free direc tion and use the variogram in th at direction as the variogram for the random component of the variable 3) ignore the problem and use a linear or power variogram. See Figure 4-1.

PAGE 47

47 Semivariogram models For the sake of kriging (or stochastic simu lation), we need to replace the empirical semivariogram with an acceptable semivariogram mode l. Part of the reason for this is that the kriging algorithm will need access to semivariogram values for lag distances other than those used in the empirical semivari ogram. More importantly, the semi variogram models used in the kriging process need to obey certa in numerical properties in order for the kriging equations to be solvable. (Technically, the semivariogram model n eeds to be non-negative definite, in order the system of kriging equations to be non-singular.) Therefore, geostatisticia ns choose from a palette of acceptable or licit semivariogram models. Using h to represent lag distance, a to represent (practical) range, and c to represent sill, the five most frequently used models are: The nugget model represents the discontinuity at the origin due to sm all-scale variation. On its own it would represent a purely random variable, with no spatial correlation. The spherical model actually reaches the specified sill value, c, at the specified range, a. The exponential and Gaussian approach the sill asymptotically, with a representing the practical

PAGE 48

48 range, the distance at which the semi variance reaches 95% of the sill value. The Gaussian model, with its parabolic behavior at the origin, represents very smoothly varying properties. (However, using the Gaussian model alone w ithout a nugget effect can lead to numerical instabilities in the krig ing process.) The spherica l and exponential models e xhibit linear behavior the origin, appropriate for repres enting properties with a higher le vel of short-range variability. Examples of this model are showed in Figure 4-2. Anisotropy The omni directional semivariogram is that on e that for which the directional tolerance is larger enough that the directi on of any particular separation vector become unimportant. It contains all possible directions combined in to a single variogram. The calculation of the omnidirectional semivariogram does not imply that the spatial continuity is the same in all directions. It provides a starti ng point for to establishing some of the parameter required for sample semivariogram calculations. In many cases, a random variable shows different autocorrelation structures in different directions, and an anisotropic semivariogram model should be developed to reflect these differences. The most commonly employed model fo r anisotropy is geometric anisotropy, with the semivariogram reaching the same sill in all di rections, but at different ranges. In geological settings, the most prominent fo rm of anisotropy is a strong contrast in ranges in the (stratigraphically) vertical and horizontal directions, with the vertical semivariogram reaching the sill in a much shorter distan ce than the horizontal semivariogram. In some settings, there may also be significant lateral anisotropy, often refl ecting prominent directi onality in the depositional setting.

PAGE 49

49 Covariance and correlogram There are two other tools used on describing sp atial continuity these are the Covariance and Correlation function. Though these two are equa lly useful, the semivariogram however is the most traditional. Under the condition of secondorder stationary (spatia lly constant mean and variance), the covariance function, correlo gram, and semivariogram obey the following relationships: C(0) = Cov(Z(u),Z(u))= Var(Z(u)) (h) = C(h) C(0) (h)= C(0)-C(h) In words, the lag-zero covarian ce should be equal to the glob al variance of the variable under consideration; the correlogram should lo ok like the covariance f unction scaled by the variance, and the semivariogram should look like the covariance function turned upside down. The representation is showed in Figure 4-3. Unlike time series analysts, who prefer to wo rk with either the covariance function or the correlogram, geostatisticians typi cally work with the semivariogr am. This is primarily because the semivariogram, which averages squared differ ences of the variable, tends to filter the influence of a spatially varying mean. Kriging Kriging technique was named after a Sout h African mining engineer named Daniel Gerhardus Krige who develops the method in an a ttempt to more accurately predict ore reserves. Kriging is a group of geostatistical techniques to interpolate the value Z ( x0) of a random field Z ( x ) (e.g. the elevation Z of the landscape as a function of the geographic location x ) at an unobserved location x0 from observations of the random field at

PAGE 50

50 nearby locations Kriging computes the best linear unbiased estimator of Z ( x0) based on a stochastic model of the spatial dependence quantified either by the variogram ( x y ) or by expectation ( x ) = E [ Z ( x )] and the covariance function c ( x y ) of the random field. It have been demonstrated that kriging is not pos sible without knowledge of the semivariogram or the covariance. The kriging estimator is given by a linear combination of the observed values zi = Z ( xi) with weights chosen such that the variance (also called kriging va riance or kriging error): (with w0( x0) = 1) of the prediction error is minimized subject to the unbiased ness condition: Depending on the stochastic properties of the ra ndom field different type s of kriging apply. For the different types of kriging the unbiased ness condition is rewritte n into different linear constraints for the weights wi. The kriging variance must not be confused with the variance of the kriging predictor itself.

PAGE 51

51 Types of Kriging Classical types of kriging are: Simple kriging assuming a known constant trend: ( x ) = 0. Ordinary kriging assuming an unknown constant trend: ( x ) = Universal Kriging assuming a general linear trend model IRFk-Kriging assuming ( x ) to be an unknown polynomial in x Indicator Kriging using indicator functions instead of the process itself, in order to estimate transition probabilities. Multiple indicator kriging is a version of indicator krig ing working with a family of indicators. However, MIK has fallen out of fa vor as an interpolati on technique in recent years. This is due to some inherent difficu lties related to operation and model validation. Conditional Simulation is fast becoming the acce pted replacement technique in this case. Disjunctive Kriging is a nonlinear generalization of kriging. Lognormal Kriging interpolates positive data by means of logarithms. For this research we were focused in two of theses types, Simple and Ordinary Kriging Simple Kriging Simple kriging is the most basic form of krigi ng in the sense that the model is the simplest in its mathematical formulation. The kriging weights of simple kriging have no unbiasedness conditi on and are given by the simple kriging equation system: Simple Kriging Interpolation The interpolation by simple kriging is given by:

PAGE 52

52 Simple Kriging Error The kriging error is given by: which leads to the generalized least squa res version of the Gauss-Markov theorem (Chiles&Delfiner 1999, p. 159): Ordinary Kriging Ordinary kriging is an estimation method th at is often associated with the acronym B.L.U.E. for best linear unbiased estimator. Ordinary kriging is linear because its estimates are weighted linear combinations of the availabl e data; it is unbiased since it tries to have mR, the mean residual or error, equal to 0; it is best because it aims at minimizing R, the variance of the errors. The distinguish f eature of ordinary kriging, is its aim of minimizing the error variance. In ordinary kriging, it is used a pr obability model in which the bias and the error variance can both be calcul ated and then choose weights for th e nearby samples that ensure that the average error for our model, m R, is exactly cero and that our modeled error variance, R, is minimized.

PAGE 53

53 Stochastic Simulation Stochastic Simulation is the process of bu ilding alternative, e qually probable, high resolution models of the spatial distribution of the random variab le in study. The simulation is called conditional if the resul ting realizations honor data values at their locations. Simulation differs from krigi ng in two primary aspects: In kriging the goal is to provide a best local es timate of the variable without specific regard to the resulting spatial statistics of the estimates taken together. In simulation, reproduction of global features and statistics take preceden ce over local accuracy. Kriging provides a set of local representations, wher e local accuracy prevails. Si mulation provides alternative global representations, where reproduction of patterns of spatial continuity prevails. Kriging provides only an incomplete measur e of local accuracy and no appreciation of joint accuracy when several lo cations are considered together. Simulations are designed specifically to provide such measures of accuracy, both local and involving several locations. These measures are given by the differences between alternative simulated values at any location (local accuracy)or the alternative simulated fields (global or joint accuracy). Sequential Gaussian simulation There are many algorithms that can be devised to create stochastic simulations (1) matrix approaches (LU Decomposition), which are not exte nsively used because of size restrictions (an N x N matrix must be solved where N, the numbe r of locations, could be in the millions), (2) turning bands methods where the variable is simu lated on 1-D lines and then combined into a 3D model; not commonly used because of artifacts, (3) spectral method using FFTs can be CPU fast, but honoring conditioning data requires an expensive kriging step, (4) fractal which are not used extensively because of the restrictive assu mption of self-similarity, and (5) moving average methods, which are infrequently used due to CPU requirements. The common approach adopted in recent times is the sequential Gaussian si mulation (SGS) approach. This method is simple, flexible, and reasonable efficient.

PAGE 54

54 Sequential Gaussian Simulation is the most straightforward algorithm for generating realizations of a multivariate Gaussian field. It is provided by the sequential simulation principle of including all data availabl e within a neighborhood of the point on question, including the original data and all previously simulated values. Each variable is simulated sequentially according to its normal cdf fully character ized through a Simple Kriging system. The detailed steps in Sequential Gaussian Simulation are: Determine the univariate cdf representative of the entire study ar ea and not only of the sample data available. Transform data to normal space Establish grid network and coordinate system (Zrel-space) Assign data to the nearest grid node (take the closest of multiple data assigned to the same node) Determine a random path through all of the grid nodes Find nearby data and previous ly simulated grid nodes Construct the conditional distribution by kriging Draw simulated value from conditional distribution Check results Back transform (Statios 2001) By using different random number seeds the or der of visiting locati ons is varied and, therefore, multiple realizations can be obtained. In other words, since the simulated values are added to the data set, the values available fo r use in simulation are partly dependent on the locations at which simulations have already been made and, because of this, the values simulated at any one location vary as the available data vary. Software The wide range of public domain and low cost software now available means that the tools of Geostatistics are readily av ailable to the geotechnical. Wide ly used public domain software packages include WINGSLIB Geostatistical Softwa re Library, and Gstat the first one used for the case studies presented in this research. In addition, several comme rcial GISystems include

PAGE 55

55 geostatistical functions and ther e is a range of commercial geostatistical packages. Before starting using the WINGSLIB software, a manual check test was realized. All the steps described on the Sequential Gaussian Simulation process, were followed and the results were positive. The data required for to do simulation using SGS in WINGSLIB software were: The variable to be simulated (Cohesion Values) The Semivariogram structure to be used The maximum and minimum of original data that should be used to simulate a grid node. Data Variance X, Y and Z coordinates for the available data Definition of the grid system The number of previously simulated point to use for the simulation of another node. Type of kriging to be used. This manual check was realized to demonstrat e that the results obtained from the Wingslib software are the same or similar to those obtained doing the process manually. The example in 2D used eight data values, showed in Table 4-2. The location on a plan view of data values is illustrated in Figure 4-5. The WINGSLIB results values are in Table 4-3 and those same results are represented in Figure 4-6 As you observe in Table 4-3 the last two values corre spond to the coordinates X,Y (0,2) and X,Y (2,0). Using WINSLIB the results were 198.95 and 5.52 respectively. And doing the process manually the results are 198.52 and 5.95 respectively. The difference is very small comparing the two results. So, it was proved th at using WINGSLIB the results obtained are similarly to those that are obt ained doing the process manually. Numerical Models Numerical models are available for the user in form of computer codes or programs. A numerical model program is capable of: (1) solving the equations of equilibrium, (2) satisfying the strain compatibility equations, and (3) following certain constitutive equations when

PAGE 56

56 prescribed boundary conditions are set forth. The program will produce displacements and stress changes associated in addition to many other qua ntities of interest for geotechnical design. To select the appropriate for each case it is n ecessary to survey within the wide number of options and to select one that f it to each case. At this time ther e are three approaches to model engineering problems: Continuum, Discrete, and Hybrid. In the C ontinuum approach, there is no chance for a failure surface to be explicitly deve loped since model elements cannot separate at the boundaries except on pre-defined boundaries like int erfaces (see Figure 4-4). In the Discrete approach, elements are ready to se parate on boundaries but di scontinuity (failure surface) cannot propagate through the elements they are still modeled as continuum (see Figure 4-4 c). Finally, the Hybrid approach, as the name implies, incorporates both the Discrete and Continuum approaches (see Figure 4-4 e). The numerical solution methods include: Continuum methods: Finite Difference Method (FDM). Finite Element Method (FEM). Boundary Element Method (BEM). Discrete methods Discrete Element Method (DEM). Discrete Fracture Network (DFN) methods. Hybrid continuum/discrete models Hybrid FEM/BEM. Hybrid FEM/DEM. Other hybrid models.

PAGE 57

57 From a survey made on South Africa (SIMRA C 1999) a list of many numerical models program available for the use in rock mechanics worldwide is showed in Table 4-1. FLAC3D (Fast Lagrangian Analysis of Continua) Flac3D is a powerful Three-dimensional cont inuum program for modeling soil, rock and structural behavior. The FLAC3D can model nonlinear systems as they evolve in time (Itasca 2002). Used interactively or in batch mode, FLAC is a general analysis and design tool for geotechnical, civil, and mining e ngineers that can be applied to a broad range of problems in engineering studies. The explic it finite difference formulati on of the code makes FLAC3D ideally suited for modeling geomechanical problem s that consist of several stages, such as sequential excavation, b ackfilling and loading. The formulation can accommodate large displa cements and strains and non-linear material behavior, even if yield or failu re occurs over a large area or if total collapse occurs. FLAC3D uses an explicit finite difference time-marching scheme to solve the equations of equilibrium. The equation of motion is solved to drive ne w velocities and displacements from stress and forces. Velocities are then used to calculate th e strain rates, from there a new stresses can be calculated through the constitutive equation. These calculations are carried out over one time step, during which velocities ar e assumed to be constant. The advantage of using the explicit formulation is that the numerical scheme stays stable even when the physical system is unstable. This is particularly advantageous, when mode ling non-linear, large strain behavior and actual physical instability. Th e disadvantage of the time-marching explicit scheme of the FLAC3D is that calculation times can be longer than those of implicit formulations. Materials are represented by polyhedral elements within a three-dimensional grid that is adjusted by the user to fit the shape of the object to be modeled. Each element behaves according to a prescribed linear or nonlinea r stress/strain law in response to applied forces or boundary

PAGE 58

58 restraints. The material can yiel d and flow and the grid can defo rm (in large-strain mode) and move with the material that is represented. Th e explicit, Lagrangian calculation scheme and the mixed-discretization zoning technique used in FLAC3D ensure that plastic collapse and flow are modeled very accurately. Because no matrices ar e formed, large three-dimensional calculations can be made without excessive memory requirement s. The drawbacks of the explicit formulation are overcome by automatic inertia scaling and automatic damping that does not influence the mode of failure. FLAC3D offers an ideal an alysis tool for solution of three-dimensional problems in geotechnical engineering. The FLAC3D has many constitutive models bui lt in. The user has the option of choosing the most relevant constitutive model for his problem. The following FLAC3D material models are the most used: Elastic, isotropic; Drucker-Prager plasticity; Mohr-Coulomb plasticity; Strain-hardening / softening Mohr-Coulomb plasticity; Bi-linear strain-hardening / softening ubiquitous-joint plasticity

PAGE 59

59 Table 4-1. Commercially Available Nume rical Programs for Rock Mechanics Study. Program Source Type(a) Use Complexity BESOL/ MINAP_97 Mining Stress Systems 2D BEM Common Simple BESOL/MS Mining Stress Systems 3D BEM Common Simple CSIR Minap32 CSIR Miningtek 2D BEM Academic Simple DIGS CSIR Miningtek 2D BEM Research Specialist Elfen CSIR Miningtek 2D FE M Testing Beta Mediocre Examine Rocscience Inc. 3D BEM Rare Mediocre FLAC Itasca Consulting Group Inc. 2D FDM Common Advanced FLAC3D Group Inc. 3D FDM Rare Complex Map3D Mine Modeling Ltd. 3D BEM Moderate Mediocre MINIFFT CSIR Miningtek 3D BEM Research Specialist MINSIM CSIR Miningtek 3D BEM Common Simple PFC2D Itasca Consulting Group Inc. 2D DEM Rare Complex PFC3D Itasca Consulting Group Inc. 2D DEM Rare Complex Phase Rocscience Inc. 3D DEM Rare Simple 3DEC Itasca Consulting Group Inc. 2D BEM Rare Complex UDEC Itasca Consulting Group Inc. 3D DEM Moderate Advanced WAVE CSIR Miningtek 2D3D FDM Research Specialist PLAXIS Plaxis BV 2D3D FEM Moderate Moderate ANSYS ANSYS, Inc. 3D FEM Rare Mediocre ABAQUS ABAQUS, Inc. 3D FEM Rare Mediocre ALGOR ALGOR, Inc. 3D FEM Rare Mediocre (a) BEM: Boundary Element Method; FDM: Finite Differe nce Method; DEM: Distinct Element Method; FEM: Finite Element Method.

PAGE 60

60 Table 4-2. Sequential Gaussi an Simulation Data Values. X Coordinate Y Coordinate Values 0 0 80 0 1 190 1 0 10 1 1 80 1 2 200 2 1 5 2 2 80 Table 4-3. WINSLIB SGS Example Results. X Coordinate Y Coordinate Values 0 0 80 0 1 190 1 0 10 1 1 80 1 2 200 2 1 5 2 2 80 0 2 198.95 2 0 5.52

PAGE 61

61 Figure 4-1. Semivariogram Model. Figure 4-2. Most popular Semivariogram Models.

PAGE 62

62 Figure 4-3. Semivariogram and Covariance.

PAGE 63

63 Figure 4-4. Numerical Approach es to Model an Excavation in a Rock Mass (Jing 2003). Figure 4-5. WINSLIB SGS Exam ple Location Data Values.

PAGE 64

64 Figure 4-6. WINSLIB SGS Example Results Graph.

PAGE 65

65 CHAPTER 5 DATA ANALYSIS Cases Studies In this research, two case studies are presented. The first case study is an analysis of the Fuller Warren Bridge in Jacksonville Fl orida. The second case study is the 17th Street Bridge in Fort Lauderdale Florida. Both of them were field sites with performed Drilled Shaft Load Test in Limestone. The data analysis followed the theory description showed on the CHAPTER 4. The main purpose was to generate random fi elds using Sequential Gaussian Simulation (SGS) that was based on the best suited Semivari ogram. Each realization, while having the same statistics (Semivariogram), will have quite differe nce spatial pattern properties of cohesion, bulk and shear values on the soil and hence a differe nce value of end bearing capacity. This was followed by a finite element model analysis usin g the random fields obtained on the SGS results. Fuller Warren Summary Statistics The data obtained from the FDOT soil labs are shown in APPENDIX B. It was necessary to transforms these tables to a diffe rent format accepted by the software (APPENDIX C). Some of the properties showed on these tables, like qu, qt, and, RQD were used on statistics analysis. The Fuller Warren field data was obtained from three different borings, localized strategically near to Load Test LT4 in the Sout hwest side of the Bridge Each of these boring CB1, CB2, and CB3 has its own information like qu, qt, RQD, and depth. An example is showed in Table 5-1. The same data was presented in a different format and it is showed in Table 5-2. Additionally, the soil bori ng location is showed in Figure 5-1. The raw data for each boring was analyzed th rough histograms, frequency distribution and summary statistics realization. The histogr ams for each soil boring CB1, CB2 and CB3 are

PAGE 66

66 showed in Figure 5-2 to Figure 5-4. These three boring histog rams illustrate clearly a difference tendency on properties values from elevation 55 f eet and below. This behavior suggests a limit for two different layers on the soil. Additionally, an example of frequency distribution (for qu, qt and RQD), and statistics summary for all ne w borings (CB1, CB2 and CB3) is showed in Figure 5-5. It shows that the most suitable frequency distribution is the lognormal. The complete set of graphs showing each of the boring data in all sites for the same bridge are showed in APPENDIX D. The frequency distributions comparing all data (past FDOT research), new data (CB1,CB2 and CB3) and a combination of both is showed in Figure 5-6. The figure showed how the standard deviation from the combination of ol d and new data is reduced from 25.66 to 20.32-tsf when more data values (new data) are added. Several attempts have been made to obtain th e classical statistical properties of the soil, such as the mean value, COV, and probability distribution, throughout geotechnical engineering practice. These statistical characteristics have been discussed by severa l authors and most of them have implemented distribution models like normal, lognormal, and beta for to curve fit results of field data. This implies that these dist ributions are can be used to fitted soil properties distribution results obtai ned under field conditions. Accorded to the obtained results showed in Figure 5-5, the majority of the closes fitted distribution model selected for the Fulle r Warren site were Lognormal and Beta. Spatial Continuity Spatial continuity exists in most earth scienc e data sets. Two data sets close to each other are more likely to have similar values than two da ta sets that are far ap art. When we look at a data graph or posting, the values do not appear to be randomly lo cated, but rather, low values tend to be near and high values tend to be near other high values. That is the case for each of the

PAGE 67

67 three soil borings that shows a clear vertical di fference between qu, qt and RQD values from -35 to -55 feet depth and -55 to -65 feet depth (Figure 5-2 to Figure 5-4) The h-scatterplot is another tool used for to an alyze vertical spatial continuity. It explains all possible pair of data whose locations are se parated by a certain dist ance in a particular direction. On this research, the h-scatterplots the x-coordinate of a point correspond to the (qu)^.5(qt)^.5/2 value and the y-co ordinate to the (qu)^.5(qt)^.5 value a distance of 1.5 feet away in a vertical direction. One of the essential features of an h-scatterplot is the fatne ss of the cloud of points. And a way to summarizing this feature is the Correlation Coefficient. As the cloud of points gets fatter, we expect the correlation coefficient to decr ease. The relationship be tween the correlation coefficient of an h-scatterplot and h is called the correlogram. Other indices of spatial continuity are the Semivariogram that is the relationship betw een the moment of inertia of an h-scatterplot and h. And the Covariance function that is the re lationship between the covariance of an hscatterplot and h. Although the h-scatterplot contain much more information than any of the three summary statistics (semivariogram, correlogram and cova riance function), it is very common to bypass the actual h-scatterplot and go dire ctly to any of these three to describe spatial continuity. Fuller Warren Semivariogram Due to the small amount of soil boring location (just three CB1,CB2 and CB3) and the big length between them (35 to 45 feet apart), any real representative corr elation length was founded for this bridge data. There are two possibilities to use the Fuller Warren data. The first is to add two or three more soil boring to the site or secondly, to use th e correlation length of 12 feet like that one founded on the 17th Street Bridge. It is not the best solution but it could represent a

PAGE 68

68 better approximation. Since, not real correla tion was founded neither Kr iging nor Sequential, Gaussian Simulation was performed on this bridge. 17th Street Bridge Summary Statistics The 17th Street Bridge field data was obtained from six di fferent borings localized strategically near to Load Test LT4 in the Northeast side of the Bridge (see Figure 5-8). Each of these boring has its own information like qu, qt, RQD, and depth (see Table 5-3). The rest of the borings soil data is available in APPENDIX B. The Frequency distributions, for both individual borings, and the complete field site are showed in the Figure 5-9. No pattern like that layers di fferences on the Fuller Warren bridge data was found in this bridge data. It was discovered from the statistic study th at a Proportional Effect is present on the 17th Street bridge data analysis. Proportional effect on statistics is used when the variance or semivariogram of a random variable (qu^0.5*qt^0.5/2 in this case) is prop ortional to the square of its mean. (Hans Wackernagel 2003). This phenomenon is often an argument to postulate the log normality of the random variable. 17th Street Bridge Semivariogram The semivariogram for the 17th Street Bridge was realized using two directions, horizontal and vertical. The initial idea was to use just one semivariogram for all the data, but after reviewing the statistic results it was noted that th ere were two different ra nges for each direction. The semivariogram range was found to be 12 feet distance. The nugget effect s that represent the random measurement error, was fount to be 0.3 of the total sill (Figure 5-10).

PAGE 69

69 17th Street Bridge Simple Kriging The Simple kriging was perf ormed using the cohesion (qu)0.5 (qt)0.5 /2 information from the soil borings, for each soil borings. The results obtained from simple kriging were used as a step on the Sequential Gaussian Simulation process. 17th Street Bridge Sequential Gaussian Simulation The Sequential Gaussian Simulation (SGS) for the 17th Street Bridge was done using the WINGSLIB software. A small part of the result s obtained from the Wingslib is showed in Table 5-4, but the complete table is presented in the APPENDIX E. The results showed on these tables, are the coordinates for each grid point on sp ace and the correspondent simulated cohesion value for each grid point. 17th Street Bridge Random Field Model The behavior of a drilled shaft on limestone ro ck is influenced by the strengths parameters, qu and qt, Poisson ratio ( and Young modulus (E). While the parameter E and influence the computed settlement, the bearing capacity de pends primarily on the strengths qu and qt parameters (Gordon & Griffiths 2001). In the pr esent research the Poisson ratio was held constant and the strengths in the forms (qu^0.5qt ^0.5)/2 are modeled as a random variable. After obtaining the random field the E parameter is calculated from the correlation equation E=165.06*(qu^0.5qt^0.5)/2+300000. The correlation square ratio between E and (qu^0.5qt^0.5)/2 for the 17th Street Bridge is 0.6126 (Figure 5-11). The spatial correlation lengths, or the range fr om the semivariogram, describe the distance over which the spatial random values w ill tend to be correlated. From the 17th Street bridge semivariogram the ranges on the horizontal and vert ical direction were taken, like most of the soil field the isotropy was not assumed. The rando m fields were created using the parameters from the semivariogram showed in Figure 5-10. The range for the ve rtical direction was 6 feet

PAGE 70

70 and for the horizontal direction was 12 feet. Also a nugget effect of 0.3 was used on both directions. Each random field, while having the same semivariogram parameters, will have quite different spatial pattern of cohe sion values, due to the dissimilar seed used, and hence a different value of bearing capacity. The software used on the random field, ba sed on semivariogram parameters, calculation was the WINGSLIB, and a different seed was used in each calculation. Examples of the random field and summary tables are founded in APPENDIX E. On these tables is showed the statistics of the results obtained using different seed values, like mean, standard deviation, etc. It is noticed that having the same parameter, but with di fferent seed, the final results will change. 17th Street Bridge Finite Elements Analysis The load-deflection response of a single concrete pile foundati on is calculated for loading in the axial direction. The pile is three feet diameter by twenty feet of length embedded in limestone rock layer. The propertie s of the concrete pile and the li mestone that are kept constant are showed in Table. 5-5. As it was described on CHAPTER 4 the software used for the modeling procedure was FLAC3D. A modified example founded on the FL AC3D manual was used as support of the current model. The soil block model used to simulate our specimen was introduced in the computer program with the following parameter: the coordinates axes were localized on the lower left corner and the z-axis oriented along the pile axis and upward. The top of the model, at z=40 feet is free surface. The base of the model, at z=0, is fixed in the z direction, and roller boundaries are imposed on the sides of the model, at x=30 feet and y=30 feet (see Figure 5-12).The finite element mesh consists of square elements of e qual size (1.5 x 1.5 x 2.0 feet). Each element has its own properties, cohesion, bulk, shear and Young modulus.

PAGE 71

71 The axial-bearing capacity of a pile is a f unction of the skin friction resistance along the pile shaft and the end-bearing capacity at the pi le tip. The skin friction resistance is modeled by placing an interface between the pile walls and th e rock. The friction and cohesion properties of the interface represent the fricti onal resistance between the concre te and the limestone. For this model a friction angle of 5 and cohesion of 30000 (tsf) are assumed for th e interfaces properties. The ultimate bearing capacity of the pile in th e axial direction is calculated by applying a vertical velocity at the top of the pile. Many thousand of time st eps are required to propagate a loading through the model. If the velocity is applied suddenly, th e inertial effects will dominate initially and make it more difficult to identify the steady state response of the system. The axial stress at the top of the pile is calculated and stored. It is plotted versus the axial displacement at the pile top and an example is showed in the Figure 5-13. Combined damping is used for this stage of th e analysis because this type of damping is more efficient at removing kine tic energy from the model for th e prescribed lo ading condition. Three different correlation lengths were used on this study, 1,5, and 12 feet. The 12 feet was the length that the semivariogram recommend to use, but to see the behavior on the final capacity, it was necessary to compar e the 12 feet with other lengths. 17th Street Bridge Determinist Capacity The estimated total failure bearing and the E nd bearing capacities for the determinist soil properties by the finite element method we re 1260 (tons), and 235 (tons) respectively. Deterministic soil properties mean an average of all soil properties values from the site. 17th Street Bridge Parametric Study Thirty to forty realizations of statistical so il properties for each one of the correlation lengths were completed. Each realization, whil e having the same underlying statistics, will have quite different spatial pattern of cohesion, bulk, and shear, and hence, a different value of bearing

PAGE 72

72 capacity. The results obtained from each simu lation were compiled and are showed in the APPENDIX E. A summar y graph is in the Figure 5-14. In the figure th e values on the x direction are the correlation length 1, 5, and 12 feet respectively. On the Y direction are the cohesion mean of forty simulations, for each one of the correlation length. The values used in Figure 5-14 are also showed in Table 5-6. The cohesion means shows a higher value for the correlation length of 12 feet and a small cohesion value for the 1 foot correlation leng th. The row data cohesion mean value is 42647 (PSF), and it is showed that the one foot corr elation length cohesion mean value is the closest one to the raw data, and the twelve feet the isolated. The explanati on for this is that the smallest the correlation length, the smallest the coefficien t of variation of the simulated data from the sequential Gaussian simulation program. The same tendency on the cohesion behavior is showed on the end bearing capacity obtained from the finite element method Figure 5-15. But in this case the deterministic capacity value is 235 (tons). Therefore, this case is i nversed to the cohesion gr aph. The twelve feet capacity value is approximated to the deterministic capacity value and the one foot is far-away. The explanation for the lower capacit y values for one and five feet correlation lengths lies in the fact that as the spatial correlation length d ecreased, the weakest trail becomes increasingly tortuous, and its length correspondi ngly longer. As a result the w eakest trail starts to look for shorter ways cutting through highe r strength materials (Griffiths & Fenton 1999). If there were a correlation length bigger than 12 feet correlation le ngth, the result could be bigger or smaller but in any case far away from the determinist value; it is because it allows enough variability for a failure surface to develop which deviates sign ificantly from the de terministic results.

PAGE 73

73 Consequently, the optimum failure path will be th e same as in the uniform material. In our case the result that tends to that result, is the correlation length suggested by the semivariogram. In the APPENDIX G is show all the programming models used on this research, for to obtain the bearing capacity for each one of the so il simulations. Additionally, the results graphs and tables are in this same appendix. 17th Street Bridge Comparison of Det erministic and Predicted End Bearing Table 5-7 shows a comparison of Simulated an d deterministic End Bearing capacity from the finite elements program. Each correlation has its own predicted End bearing and it is compared with the End bearing capacity obtained from the deterministic value So, for one, five, and twelve feet correlation lengths the pred icted End Bearing are 218.36, 218.375, and 238.125 tons respectively compared to 235 from the deterministic result. 17th Street Bridge LRFD Phi Factors According the explanation in CHAPTER 1, the goal of resi stance factor design (LRFD) analysis is to develop factors that decrease th e nominal resistance to give a design with an acceptable and consistent probability of failure Where load components are multiplied by load factors and resistance is multiplied by a resistance factor. The basic equation is: Rn > i Qi where i is a load factor applied to load components Qi and is resistance factor applied to the resistance (measured of load carrying capacity) Rn. In words it equation says that the capacity of the foundation (modified by the factor ) must be larger than the total effect of all the loads acting on it. FOSM method has been used (NCHRP 507, 200 4) to calibrate LR FD factors using a statistical dataset containing the measured and pred icted resistances. It assumes that the load and

PAGE 74

74 resistance are modeled as lognormal random variables. This limits the load and resistance values to only positive numbers. The next equation is used to calibrate the resi stance factor using the FOSM method. It is dependent on the target reliability index and the ratio of dead to live load. )] ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 22 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ]) [ ( 1 ( ] [QL COV QD COV R COV QL L D QD QL L D QD N RN Te E q q E q q R COV QL COV QD COV E In the 17th Street Bridge instead using it for to calib rate the resistance f actor as a method, it was used for to account for differences or variability based on correlation lengths. The FOSM equation was used for to get Phi f actor for different correlation length, but instead using a measured value it was used the deterministic value obtained from the same finite element program. It allows seeing the differences on the phi factor, based on spatial variability and reliability index. To account for spatial variability on the 17th Street Bridge, a tota l of forty End bearing values were predicted for five and twelve feet correlation length, and thirty values for the one foot length case. Additionally, the deterministi c value was obtained using the same program. From the predicted and deterministic values at all the correlation length, the mean standard deviation and coefficient of variation COVR, were found for the design approach (Table 5-8). Using the computed mean, and coefficient of variation COVR, for each correlation length, the LRFD resistance factor, were determined for different values of reliability index, The results are shown in Table 5-9.

PAGE 75

75 Additionally, a Modified FOSM equation was also used, due to a NCHRP 507 report that shows that the resistance factors developed by FO RM (First Order Reliability Method) tend to be 10 to 15% greater than the factors developed using the FOSM method. This means that the FOSM resistance factors ar e conservative (it is re cognized that the FORM resistance factors are more accurate). Since the purpose of LRFD is to design based off of the probability of failure, it is more beneficial to have accurate resistance factors. The modified FOSM equation is based on a past (Styler 2006) research which stated that the published FOSM equation had an error that o ffered results consistently lower than actual resistance factors. The modified equation is: )] ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 )( ]) [ ( 1 ln[( 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2]) [ ] [ ( ) ( ) ]) [ ( 1 ( ) ]) [ ( ] [ ] [ 2 ]) [ ( ]) [ ( ]) [ ( ]) [ ( ]) [ ( 1 ( ] [ QL QL QD L D QD L D QL QL QD QD L D TE E E q q E q q COV E COV E q q R COV QL L D QD QL L D QD QL QL QD L D QD L D QL QL QD QD L D Re E q q E q q R COV E E E q q E q q COV E COV E q q E The modified FOSM equation is still in terms of the target reliability index and the dead to live load ratio. Results from the 17TH Street Bridge using the modifi ed equation are illustrated in Table 5-10. It is shown that posi tively the values using the new equation are a little higher than those using the traditional FOSM equation. The results for the phi factors show a proporti onal inversely relations hip with correlation length, a bigger value when the correlation leng th is minor and small value when the length is larger. This result explanation lies in the fact that with smaller correlation distances better knowledge of the proximity soil properties so a bigger factor could be used.

PAGE 76

76 The modified FOSM results are slightly bigger than the traditional, and based on Styler 2006 theory, closer to accurate results.

PAGE 77

Table 5-1. Fuller Warren Bridge Soil Boring Information. Boring /Core Samp. No.w (%) Dry Unit Wt.(pcf) Max. Load (lbs.) S.T. Strength (psi) q(u) (psi) Displ. @ Fail (in) Strain @ Fail (%) %Recov./ %RQD Tare Wt. (g) Wet Wt. (g) Dry Wt. (g) CB-3/1 1U 5.32 141.6 67821505.6 0.0522 1.08 72/50430.31281.51238.5 2U 11.14 128.3 3530784.1 0.0634 1.43 72/50430.71168.71094.7 3T 26.01 99.3 36841.6 0.0633 72/50366.1698.4629.8 4T 16.40 113.4 1378151.5 0.0687 72/50431.4805.4752.7 5T 9.07 137.8 3224368.0 0.0515 72/50428.3837.2803.2 CB-3/2 1T 26.50 92.5 20423.4 0.0743 77/67428.1735.5671.1 2U 7.46 144.2 57201287.5 0.0549 1.27 77/67430.21196.61143.4 3T 8.10 139.0 1552179.0 0.0415 77/67430.3835.8805.4 4U 11.63 128.5 3252729.8 0.0541 1.13 77/67431.41237.81153.8 5T 10.86 132.4 1623185.1 0.0468 77/67371.5771.6732.4 6U 13.79 122.2 4229943.0 0.0563 1.15 77/67433.11230.01133.4 7T 11.05 129.0 1715195.5 0.0419 77/67312.1703.9664.9 8U 8.31 139.4 56901269.3 0.0454 0.93 77/67375.91239.01172.8 CB-3/3 1T 9.56 130.8 37944.0 0.0410 100/92366.0746.4713.2 2U 8.71 138.0 3187727.9 0.0630 1.30 100/92370.81207.21140.2 3T 4.54 134.1 12013.5 0.0237 100/92370.6746.2729.9 4T 14.37 118.8 24327.0 0.0276 100/92425.7802.9755.5 5U 18.48 111.9 501116.1 0.0297 0.61 100/92430.61164.01049.6 6T 19.11 110.8 16918.6 0.0236 100/92424.6790.5731.8 7T 28.86 92.3 889.7 0.0209 100/92430.4758.6685.1 8U 27.47 97.5 731170.5 0.0455 0.95 100/92302.8972.4828.1 9T 24.01 101.1 28732.9 0.0422 100/92425.0756.6692.4 10T 23.05 100.8 9312.1 0.0402 100/92410.1701.0646.5 11U 23.97 102.3 433100.3 0.0348 0.74 100/92428.21103.6973.0 77 12T 17.63 113.5 43748.9 0.0324 100/92428.4797.4742.1

PAGE 78

Table 5-2. Fuller Warren Soil Boring Modified Data. Name of Boring CB-1 (New) CB-2 (New) CB-3 (New) Distance from Load Test (ft) 30 25 15 EL. (ft) qu (tsf) qt (tsf) RQD Ei (psi) EL. (ft) qu (tsf) qt (tsf) RQD Ei (psi) EL. (ft) qu (tsf) qt (tsf) RQDEi (psi) -40.5 15.36 31.21 37 20725.93-37.5842.5725.2323 48974.00-41108.403.0050139525.37 -40.5 96.14 2.14 37 93362.29-37.58 4.3623 -4156.4510.915055345.75 -40.5 6.36 37 -42.5818.663.5452 30083.74-41 26.5050 -45.5 143.30 9.07 74 108694.81-42.5856.421.7652 75668.97-4692.701.6967102818.36 -45.5 59.24 7.21 74 20329.10-42.58 15.3252 -4652.5512.896764868.52 -45.5 52.29 15.85 74 50938.20-42.58 10.3452 -4667.9013.336781761.47 -45.5 68.09 18.33 74 87522.73-47.5864.7718.3687 81523.95-4691.3914.0867136076.85 -45.5 13.65 74 163837.76-47.5865.128.4187 75899.59-5152.413.179256192.28 -50.5 113.41 18.62 48 143167.10-47.5837.248.5187 38959.02-518.360.979219141.58 -50.5 11.95 48 -47.58140.0610.1187 152082.74-5112.281.949218051.95 -50.5 1.86 48 -47.588.291.9187 15682.83-517.221.349213564.22 -50.5 0.89 48 -47.5878.440.8487 69402.72-51 0.7092 -50.5 1.44 48 -52.5815.685.4998 24923.43-51 2.3792 78 -55.5 12.56 1.37 77 16123.94-52.5810.611.8298 14642.92-51 0.8792

PAGE 79

Table 5 2. Continued. Name of Boring CB-1 (New) CB-2 (New) CB-3 (New) Distance from Load Test (ft) 30 25 15 EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) EL. (ft) -55.5 22.01 0.91 77 33646.94-52.589.081.2898 13980.61-51 3.5292 -55.5 22.92 2.58 77 28351.18-52.5818.881.9098 21191.30-5627.071.306035561.05 -55.5 11.89 1.77 77 13580.10-52.5820.991.4098 20221.36-5619.842.936024011.06 -55.5 2.00 77 -52.5816.811.3698 21522.93-5614.392.746013791.05 -60.5 7.08 1.05 67 6509.45-52.58 1.0498 -56 1.7560 -60.5 7.36 0.66 67 8173.66-52.58 1.6498 -56 1.4260 -60.5 8.59 0.25 67 10247.30-57.5816.721.7747 26059.97-619.091.0910011308.89 -60.5 7.57 1.05 67 11768.07-57.5810.80 47 11899.08-619.330.871009220.15 -60.5 0.93 67 -57.5818.28 47 19700.99-619.891.3710011249.80 -65.5 3.02 0.40 38 3832.10-62.5811.081.1477 11334.53-619.801.3210011165.85 -65.5 0.40 38 -62.589.441.4477 12460.26-618.100.4010010801.59 -65.5 0.43 38 -62.589.591.2477 13170.90-615.90 1009630.65 -65.5 0.25 38 -62.5810.080.9777 14308.84-613.96 1008026.87 -62.587.490.4277 15724.97-665.990.81458732.30 79 -668.040.694510850.17

PAGE 80

Table 5-3. Table 17th Street Bridge Soil Boring Information. Boring /Core Samp. No.w (%) Dry Unit Wt.(pcf) Max. Load (lbs.) S.T. Strength (psi) q(u) (psi) Displ. @ Fail (in) Strain @ Fail (%) %Recov./ %RQD Tare Wt. (g) Wet Wt. (g) Dry Wt. (g) 9/1 1T 6.88 93.3 1279.5144.8 0.1211 98/6476.3349.6332 2U 6.62 119.7 45861014.4 0.0481 0.99 98/6477803.8758.7 3T 9.36 107.7 1349.6139.6 0.1402 98/6475.4429.4399.1 4U 7.87 127.8 5926.11283.9 0.0533 1.39 98/6477.1684.2639.9 5T 6.88 133.4 3102.2378.2 0.0323 98/6475.1435.4412.2 7U 5.95 123.0 4364.8971.6 0.0426 1.02 98/6474.2695.5660.6 8T 5.68 122.8 2644.6361.6 0.1008 98/6477.9373.6357.7 9T 4.30 128.2 3740437.2 0.1115 98/6476.3430.4415.8 10U 1.86 145.8 165703651.9 0.0723 2.00 98/6475.6682.5671.4 9/2 2U 3.66 130.4 4704.71032.8 0.0302 0.74 62/875.5716.1693.5 3T 1.84 143.2 5139.4553.9 0.0406 62/876.3502.5494.8 4T 2.50 145.2 4575.3556.0 0.0323 62/877.1461.8452.4 5T 1.55 134.0 3925.7447.4 0.0201 62/877.9450.6444.9 9/3 1T 0.90 138.6 3660416.8 0.0345 87/3375.1458.1454.7 2T 1.16 151.6 5147.2598.8 0.0344 87/3375.4486.6481.9 3U 1.62 151.8 8931.82022.7 0.0411 0.86 87/3377930.4916.8 4T 1.15 150.1 4117.4469.1 0.0385 87/3376.1489.7485 5U 2.26 149.6 12046.92714.5 0.0564 1.24 87/3377.1881.4863.6 6T 3.71 132.2 1619.8335.6 0.0306 87/3376.5431.4418.7 7U 3.83 136.8 4587.71005.8 0.0652 1.67 87/3381.6724.1700.4 80 8T 2.53 104.3 1663.5225.2 0.1097 87/3375.7318.7312.7

PAGE 81

81 Table 5-4. 17th Street Bridge Wingslib Results. X Coordinate Y Coordinate Z Coordinate Cohesion Simulated 0 009.59 3 1.5018.59 27 3011.10 0 9030.10 9 19.527.38 0 13.5635.32 0 01036.60 22.5 22.51019.25 0 19.51414.42 Table. 5-5 Material Properties Bulk (psf) Shear (psf) Friction Cohesion (psf) 1.40E+07 8.80E+061577421.79 1.40E+07 8.80E+061570154.74 1.40E+07 8.80E+061554409.3 1.40E+07 8.80E+061560513.67 1.40E+07 8.80E+061567786.84 1.40E+07 8.80E+061562980.13 1.40E+07 8.80E+061550742.8 1.40E+07 8.80E+061553058.95 1.40E+07 8.80E+061568361.9 1.40E+07 8.80E+061579498.88 Table 5-6. 17TH Street Bridge Cohesion Mean Re sults Values from Simulations Correlation Length (ft) Cohesion Mean (psf) 1 42695 5 42931 12 43731 Raw Data 42647 Table 5-7. 17TH Street Bridge End Bearing Capacity Mean Values from FLAC3D Correlation Length (ft) End Bearing Capacity (tons)) 1 216.36 5 218.37 12 238.12 Deterministic 235 Table 5-8. 17TH Street Mean, Standard, and COV of Predicted End Bearing Capacity Bias Correlation Length (ft) Mean Standard Deviation COV 1 1.0895570.1206110.110698 5 1.1048590.1812060.164009 12 1.0129760.1725970.170386

PAGE 82

82 Table 5-9. 17TH Street Bridge Values for different Reliability Index FOSM (Traditional) Correlation Length (ft) 1 0.7730.6840.605 0.535 5 0.7260.6330.553 0.482 12 0.6580.5730.500 0.435 Table 5-10. 17TH Street Bridge Values for different Reliability Index FOSM (Modified) Correlation Length (ft) 1 0.9570.8870.822 0.762 5 0.8680.7880.715 0.650 12 0.7850.7100.643 0.582 Table 5-11. 17th Street Bridge COV and Correlation Length (ft) COV 1 0.11069750.1206112 5 0.16400860.18120632 12 0.170386270.17259719

PAGE 83

83 2 3 1 40 ft 35 ft 55 ft N 2 3 1 40 ft 35 ft 55 ft N Figure 5-1. Fuller Warren Soil Boring Location. CB-1 Elevation vs. qu, qt,RQD,qb-20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 -70 -65 -60 -55 -50 -45 -40 -35 Elevation (ft)qu (tsf), qt (tsf), RQD qu (tsf) qt (tsf) Recovery qb(tsf) (FDOT) quqt Figure 5-2. Fuller Warren Histogram CB1.

PAGE 84

84 CB-2 Elevation vs. qu, qt,RQD,qb 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 -70 -65 -60 -55 -50 -45 -40 -35 Elevation (ft)qu (tsf), qt (tsf), RQD qu (tsf) qt (tsf) Recovery qb(tsf) (FDOT) quqt Figure 5-3. Fuller Warren Histogram CB2. CB-3 Elevation vs. qu, qt,RQD,qb0.00 20.00 40.00 60.00 80.00 100.00 120.00 -70 -65 -60 -55 -50 -45 -40 -35 Elevation (ft)qu (tsf), qt (tsf), RQD qu (tsf) qt (tsf) Recovery qb(tsf) (FDOT) quqt Figure 5-4. Fuller Warren Histogram CB3.

PAGE 85

85 0 50 100 150 0 0.01 0.02 0.03 0.04 qu 0 10 20 30 40 0 0.1 0.2 0.3 0.4 qt 0 50 100 0 0.01 0.02 0.03 RQD QU QT RQD MEAN = 33.2623 4.9771 70.5119 STD = 35.5262 6.7102 21.6325 MNPDFEXP = 30.9262 4.9163 29.2225 STDPDFEXP = 28.4992 4.7548 25.2514 MNPDFLOG = 27.5770 4.0548 56.0055 STDPDFLOG = 25.9415 4.9143 17.7774 MNPDFGAM = 31.4924 4.8403 58.0390 STDPDFGAM = 27.7417 5.1162 17.8002 MNPDFRAYL = 42.9191 7.3741 45.8545 STDPDFRAYL = 22.4075 3.8534 23.3869 sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003 sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043 sqerrorLOGN = 1.0e-005 0.1938 0.0000 0.0093 sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041 sqerrorRAYL = 1.0e-005 0.5839 0.0968 0.0009 Figure 5-5. Fuller Warren New Borings Fr equency Distribution qu, qt and RQD.

PAGE 86

86 0 20 40 60 80 100 120 0 0.05 0.1 Frequency Distribution Old Borings quqt (tsf) 0 20 40 60 80 100 0 0.05 0.1 Frequency Distribution New borings quqt (Tsf) 0 20 40 60 80 100 120 0 0.05 0.1 Frequency Distribution New+Old Borings quqt (tsf) MEAN = 40.4560 11.8474 18.7135 STD = 25.6634 12.0870 20.3264 Figure 5-6. Frequency Distribution for quqt. quqt vs Ei (psf)y = 383.66x + 1E+06 R2 = 0.6645 0 5000000 10000000 15000000 20000000 25000000 01000020000300004000050000 quqt (psfE (psf) Figure 5-7 Fuller Warren Bridge quqt and E Correlation

PAGE 87

87 Figure 5-8. 17th Street Soil Boring Locations (SMO 2007).

PAGE 88

88 0 100 200 300 0 0.005 0.01 0.015 qu0.5qt0.5/2 0 20 40 60 80 0 0.01 0.02 0.03 0.04 0.05 qt(tsf) 0 20 40 60 0 0.01 0.02 0.03 0.04 0.05 qu (tsf) Figure 5-9. 17th Street Frequency Distribution

PAGE 89

89 Figure 5-10. 17th Street Semivariogram.

PAGE 90

90 quqt vs Ey = 165.06x + 3E+06 R2 = 0.6126 0 5000000 10000000 15000000 20000000 25000000 30000000 35000000 40000000 050000100000150000200000 quqtE Series1 Linear (Series1) Figure 5-11. 17th Street Bridge Corr elation quqt vs E.

PAGE 91

91 Figure 5-12. 17th Street Bridge FLAC Model Grid

PAGE 92

92 Figure 5-13. 17th Street Axial Force vs Pile Displacement

PAGE 93

93 Correlation Length vs Cohesion Mean 42600 42800 43000 43200 43400 43600 43800 02468101214 Correlation Length (feet)Cohesion Mean (lbs) Figure 5-14. 17th Street Correlation Le ngth vs Cohesion Mean Correlation Length vs Total Bearing Capacity Mean 1150.00 1155.00 1160.00 1165.00 1170.00 1175.00 1180.00 1185.00 1190.00 1195.00 1200.00 02468101214 Correlation length (ft)Total Bearing Capcity Mean (tons) Figure 5-15. 17th Street Correlation Length vs Total Bearing Capacity

PAGE 94

94 Correlation Length vs End Bearing Capacity Mean 210.00 215.00 220.00 225.00 230.00 235.00 240.00 02468101214 Correlation length (ft)End Bearing Capcity Mean (tons) Figure 5-16. 17TH Street Correlation length vs End Bearing Capacity

PAGE 95

95 CHAPTER 6 COST ANALYSIS The principal initiative of the cost analysis is to find a cost comparison between the different factors obtained from this Geostatistics study. This study compared results from the three correlation lengths to the deterministic result. The first one used the soil parameter from the borings made around the specific drilled shaft, an d the deterministic used the design parameters from soil borings over the whole si te. Moreover, the cost analysis is divided in two stages. The first stage includes the materials, labor and equi pment cost of the drilled shaft construction and the second stage includes the costs of add itional borings around each drilled shaft. Factor Influencing Cost Several factors influence the final costs of a drilled shaft construction, among them are: Subsurface and site conditions Geometry of Drilled Shaft Specification, including inspection procedures Weather conditions Location of work as related to travel and living cost of crew Governmental regulation Availability of optimum equipment Experience of the contractor Insurance and bonding These factors are just a sample of all the va riables that could influence a drilled shaft construction costs. This cost analysis assembles most of these influence variables in three big groups. Those are: 1) Drilled Shaft Construction, 2) Drilled Shaft Excavation and 3) Boring Test Costs. The drilled shaft construction includes the co sts of: concrete, steel, temporary casing, labor, materials, equipment and incidentals necessa ry to complete the drilled shaft. The second group includes all the work relate d to the drilled shaft excavation. Finally, the boring test cost

PAGE 96

96 includes the soil boring auger and the laboratory analysis. It will depend basically on the number of tests to be performed. Drilled Shaft Cost and Excavation The analysis is based on the Florida Department of Tran sportation average unit cost database. The database item descriptions are presented in the Basi s of Estimates Handbook (Figure 6-1). This document was created with th e purpose of presenting a standard method of documenting the design quantities for construction paid items. The handbook also presents the standard method of calculating quantities for many paid items that require special methods of measurement. The FDOT Item Average Unit Cost Database is numerated from item 000 to 1999 and the items are categorized by paid item range. Table 6-1 shows this categorization. The used items for this research were in the Road &Bridge cat egory from 100 to 577. These items are 455 88 5 Drilled Shaft and 455 122 5 Excavation Unclassifi ed shaft. The item 455 88 5 is specified for a Drilled Shaft of 48 diameter. Figure 6-1 shows the FDOT Basis of Estimates Handbook description for this item. The analyzed drilled shaft in this research was 36 of diameter. However, due to the lack of information for this diameter on the FDOT data base, data from a 48 diameter shaft was used instead. The same procedure was used on the item 455 122 Unclassified Shaft Excavation. Figure 6-2 shows the description of this item. The quantity on this item is measured as the depth of excavati on from the ground to tip of the shaft measured in linear feet. The Basis Estimates Handbook is divided by ye ars. Therefore, data from 2002 to 2006 were used. An example of the 2006 Item aver age Unit Cost for the items 455 88 5 and 455 122 5 are showed in the Figure 6-3. The complete data information is presented in APPENDIX G.

PAGE 97

97 Moreover, the summary of the Drilled Shaft and Excavation shaft of 48 diameter are presented in Table 6-2 and Table 6-3. Soil Boring Test Costs The rates for soil laboratory tests are based on the State Material Office cost database. The available FDOT data from 2003 through 2006 divided annually was used for the analysis. Table 6-4 shows the most common soil test used for Dri lled Shaft studies and at the same time used on the 17th Street Bridge. Additionally, the cost of obtai ning the soil samples in a rock soil from 0 to 50 is $26.25/LF and from 50-100 is $30.63/ LF. These costs are based on actual (2007) cost from FDOT District 4. Relative Costs Analysis The analysis was divided into three groups: 1) Drilled Shaft Cost, 2) Drilled Shaft Excavation and 3) Boring Test Cost. Drilled Shaft Cost All the cost analysis will be ba sed on a one foot length by four feet diameter drilled shaft in lime rock soil. The total Dri lled Shaft construction cost was $267.97 per linear feet. This result was compared with the costs ge nerated by the used of the new factors presented previously in CHAPTER 5. Those factors accounted for three correlation lengths, and four reliability indices (Table 5-10). It is assumed that each factors represent a percentage of the deterministic value. For example from Table 5-10 a value with a correlation le ngth of 5 feet and a reliability index of 3.0 the factor is 0.788. Therefore, this valu e represents the 100/ 78.88% of the total determinist cost corresponding to this factor. Consequently, the total cost of the determinist value of $267.97 multiply by 1/0.788 will derive on $423.33 per linear feet. This cost

PAGE 98

98 corresponds to the use of a specific factor. The complete sets of results are presented in Table 6-5 and Table 6-6. Drilled Shaft Excavation The same procedure followed on the Drilled Sh aft Construction Cost section was followed for the Drilled Shaft Excavation. The cost analys is for the excavation item is also based on a one foot length by four feet diameter drilled shaft on lime rock. This excavation cost is $173.92 per linear feet. The complete set of cost results are presented in Table 6-7, and Table 6-8. Boring Test Cost This analysis was based on the influence of nu mber of soil borings ar ound the drilled shaft. The average of the Drilled Shaft construction cost, Excavation, and soil lab test cost presented in Table 6-2 to Table 6-4 are shown in Table 6-9. The total construction cost assuming just one soil boring test was $267.97 per linear feet, the excavation $173.92 and the laboratory soil test costs $24.5 per linear feet. The average auger cost of $30.63 per linear feet was obtained from FDOT District 4 (Table 6-9). The total is $497.02 per linear feet assuming one soil boring per drilled shaft. Under the same circumstances but assuming fi ve soil borings around the drilled shaft, the total cost per linear feet was $717.54 per linear feet (Table 6-10). The difference was $220.52 per linear feet. If the drilled shaft is 20 feet long as the 17th Street Bridge case, the differences will result on $4,410.4.

PAGE 99

99 Table 6-1. FDOT Item Average Unit Cost Database. ITEM CATEGORY 100 to 577 Roadway & Bridge 579 to 590 Landscape 600 to 715 Traffic Operations 721 to 770 Peripherals 800 to 899 Mass Transit 900 to 999 Special Use 1000 to 1999 Utility Table 6-2. Summary of Drilled Sh aft of 48 Diameter (0455 88 5). Year No. of Contracts Weighted Aver ageTotal Quantity (LF) Total Amount 2006 4 $356.66 2456 $875,956.96 2005 3 $204.33 1087 $222,106.71 2004 6 $277.60 2533 $703,106.80 2002-2003 10 $233.29 3488 $813,715.52 Average $267.97 Table 6-3. Summary of Excavation Shaft of 48 Diameter (0455 122 5). Year No. of Contracts Weighted Aver ageTotal Quantity (LF) Total Amount 2006 3 $328.19 2380 $781,092.20 2005 2 $170.14 1011 $172,011.54 2004 5 $77.78 2128 $165,515.84 2002-2003 9 $119.58 3270 $391,026.60 Average $173.92 Table 6-4. Summary of Soil Lab from 2003 to 2007 Test Name Moisture Content ($) Specific Gravity ($) Split Tensile ($) Unconfined Compression ($) Average ($) 2003-2004 8 57.378983.63 238 2004-2005 8.15 55.8395.8385.38 245.19 2005-2006 8.43 57.2495.7287.80 249.19 2006-2007 8.15 57.3495.3786.63 247.49 Average 8.1825 56.94593.9885.86 244.9675

PAGE 100

100 Table 6-5. Summary of Drilled Shaft Cost (Material, labor) for Factors FOSM Correlation Length (ft) 1 $346.66$391.77$442.93 $500.88 5 $369.10$423.33$484.58 $555.9512 $407.25$467.66$535.94 $616.02 Table 6-6. Summary of Drilled Sh aft Cost (Material, labor) for Factors FOSM (Modified) Correlation Length (ft) 1 $280.01$302.11$326.00 $351.67 5 $308.72$340.06$374.78 $412.2612 $341.36$377.42$416.75 $460.43 Table 6-7. Summary of Drilled Shaft Cost Excavation for Factors FOSM Correlation Length (ft) 1 $224.99$254.27$287.47 $325.08 5 $239.56$274.76$314.50 $360.8312 $264.32$303.53$347.84 $399.82 Table 6-8. Summary of Drilled Shaft Cost Excavation for Factors FOSM (Modified) Correlation Length (ft) 1 $181.73$196.08$211.58 $228.24 5 $200.37$220.71$243.24 $267.5712 $221.55$244.96$270.48 $298.83

PAGE 101

101 Table 6-9. Average Cost for a 1 foot length and 4 feet Diameter Drilled Shaft, (One Soil Boring) Average Drilled Shaft Cost / LF $267.97 Average Drilled Shaft Excavation Cost/ LF $173.92 Average of four Soil Tests Cost/ LF $24.5(*) Average of Auger Soil Boring/ LF $30.63 TOTAL/ LF $497.02 (*) Assuming a set of soil tests every 10 ft. Table 6-10. Average Cost for a 1 foot length 4 feet Diameter Drilled Sh aft, (Five Soil Boring) Average Drilled Shaft Cost / LF $267.97 Average Drilled Shaft Excavation Cost/ LF $173.92 Average of four Soil Tests Cost/ LF $122.5 Average of Auger Soil Boring/ LF $153.15 TOTAL/ LF $717.54 Table 6-11. LRFD Factors, Probability of Failure and Fs Based on Reliability, for Nearest Boring Approach (McVay and Ellis 2001) Reliability, LRFD, Pf(%) Factor of Safety 2.0 0.86 8.5 1.65 2.5 0.71 1.0 1.98 3.0 0.60 0.1 2.37 3.5 0.50 0.01 2.84 4.0 0.42 0.002 3.40 4.5 0.35 0.0002 4.07

PAGE 102

102 Figure 6-1. FDOT Basis of Estimates Handbook Desc ription for the Item 455 88 Drilled Shaft.

PAGE 103

103 Figure 6-2. FDOT Basis of Estimates Handbook De scription for the Item 455 122 Unclassified Shaft Excavation.

PAGE 104

104 Figure 6-3. Example of the 2006 Item Average Unit Cost for the Items 455 88 5 and 455 122 5.

PAGE 105

105 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS A probabilistic study on the end bearing capacity of a axially loaded drilled shaft, on soil with randomly varying cohesion, bulk, and shear have been realized. Random field theory using Sequential Gaussian simulation has been combined with a finite element program. The results were compared with the determinis tic result obtained from the same software. The objective of this procedure was to see the variability of the factor with spatial variability. Additional cost analyses based on result were completed. The following conclusions can be made: The cohesion means obtained from the sequential Gaussian simulation program shows a higher value for bigger correla tion length, and a small cohesion mean value for minor correlation length. The expl anation to this phenomenon is that the smallest the correlation length the smallest the coefficient of variation for simulation exist. The end bearing capacity mean, obtained from the finite element program, is bigger for larger correlation lengths, and smalle r for minor correlation lengths. It is because as the spatial correlation length decreased, the weakest trail becomes increasingly tortuous, and its length correspondingly longer. As a result the weakest trail starts to look for shorter ways cutting through higher strength materials A smaller resistance factors, were obtained for larger correlation lengths, it because the bigger uncertainties with distances (spatial variability). Resistance factors, obtained with correlation lengt hs valued bigger than the founded using the semivariogram takes to variable results. The drilled shaft construction costs, like materials, labor and equipment, and excavations are less when using the obtained resistance factors, But, the increase

PAGE 106

106 on soil boring cost are ar ound twice bigger than the saving achieved from the construction cost. The research was based in just one bridge information; more investigation should be realized using more sites. The spatial variability can be better define with more information, so as more the number of sampling the better the design parameter definitions and the bigger the resistance factors, used. The number of sampling for to get a bigger factor should be at least four, for a correct semivariogram definition, ad ditionally, the distances between them should be as close as possible.

PAGE 107

107 APPENDIX A DATA FROM STATIC AND DYNAMIC FIELD TESTING OF DRILLED SHAFTS (FULLER WARREN AND 17TH STREET BRIDGE) Table A-1. Fuller Warren Bridge Soil Boring Data. EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -3596.56232-1554.58047 -3527.86232-1512.58047 -4070.5418-2098.54320 -4013.7418-206.14320 -2589100 -259.1100 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -35922525-45828751 -3513.92525-4517.28751 -4568.53017 -4524.353017 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -3556.52517-20955047 -358.42517-209.95047 -25824819 -2512.954819 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -20244.57049-15258100 -2054.057049-1525.2100 -25104100-2022.58747 -205.68747 -22117.57725 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -3092.53217-4528.75 -3016.753217 j BL-4 BL-11BL-13 BL-20BL-23 BL-36BL-37 BW-1BW-3 BL-2

PAGE 108

108 Table A-1. Continued. EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -2544.8-3531.8527 -3032.75-4027.4 -3529.95 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -30432042 -309.552042 Dep.(ft)quRECRQDqtRECRQDDep.(ft)quRECRQDqtRECRQD -20596.23838-2365.41510 284-2830.8 401.6-2834.65233 17.424.6 60.233.3 80.914 -25110.511 -3043.46326-3358.5 32.2 52.9 87.7 15.8 6.6 -3550.4 -3587.77366 85.1 77.9 20.4 29.4 12 23.6 17.9 18.3 18.2 47.8 -4055.1 Added Boring (Hole 1: Near Boring BL-1)Added Boring (Hole 2: Near Boring BL-1) BW-5BW-12 BW-14

PAGE 109

109 Table A-2. 17th Street Bridge Soil Boring Data. EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -6532.23022-32211.268.3 -7227.346728-36116.919.4 -85114.2137 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -6932.74225-11526.55 -8828.83510-13124.6343 -13132.943 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -32211-4943.5184 -3268.34-65414207 -49117-7237.8 -4919.4-82120.89838 -7219.6-8226.39838 -9282.989838 -102117.47667 -10882.44358 -131140.63510 -13164.63510 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -36379.43835143.973835-39361.365 -36189.013838-46158.74819554819 -36112.63835-46272.7481953.994819 -7526.333-4676.784819 -9827.04602368.76023-56285.02501240.45012 -98140.016023-9514.04175 j BB-7 (35+44) BB-11 (35+53) BB-9 (35+06) S-12 (35+29) BB-1 (32+93)S-4 (33+00) BB-4 (34+81) BB-8 (36+10)

PAGE 110

110 Table A-2. Continued. EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -36283.445.813.5148.7645.813.5-664323328 -3652.6445.813.5-6645.243328 -49444.3693649.846936 -49212.84693660.56936 -4965.76936 -56377.68459 -56381.68459 -56320.68459 -105219.04317 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -4951.4-393896331 -4917.5 -7238.34 -727.7 EL.(ft)quRECRQDqtRECRQDEL.(ft)quRECRQDqtRECRQD -4964.954217-5626.548559 -66152.54524-72281.380 -8258.24524-79331.447 -8212.45113 -92365.45710 -92101.45710 -12519.24531 -12520.954531 -12531.044531 Dep.(ft)quRECRQDqtRECRQDDep.(ft)quRECRQDqtRECRQD -5351.750.550.5 58.5 59.9 86.1 -5858.6 -5820.14740.5 -6446.15353 -64250.156.553 28.2 13.5 8.4 -699.8 -77122.53317 -77357.9 -9014.523.513 -10941.52213 Added Boring (34+81, 10' North+) N-17 (36+19) BB-6 (38+07)N-25 (38+38) S-15 (37+10)N-14 (35+55) BB-10 (36+07)

PAGE 111

111 APPENDIX B SOIL BORING DATA FROM FIELD I NVESTIGATION PROCESSED BY MSO Table B-1. 17th Street Soil Boring Data. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 4/11T52.04/9/20072.46152.3955337.2115.81.03 2U4/9/20074.63332.3962635.7115.91.931.00 3U4/9/20074.75352.3960704.3125.21.981.00 4T4/9/20072.37702.3830336.4120.91.00 5U4/9/20074.92102.3985788.7135.12.051.00 6T4/9/20072.59332.3880383.0125.61.09 7U4/9/20074.47552.3945660.8124.91.871.01 8U4/9/20074.79552.3960764.9134.82.001.00 9T4/9/20071.94302.4010305.4132.30.81 10U4/9/20074.96802.3980785.4133.42.071.00 11T57.04/9/20072.09332.3970319.2128.70.87 4/21T57.04/9/20072.49552.3990300.0101.31.04 2U4/9/20074.37602.3830533.4104.11.841.01 3T4/9/20072.62102.3815333.7108.91.10 4T4/9/20072.49202.4035391.4131.91.04 5U4/9/20073.91302.3560532.2118.91.661.02 6T4/9/20072.47352.3430332.9118.91.06 7T4/9/20072.40452.3990378.1132.51.00 8T4/9/20072.65802.3955392.5124.81.11 9U62.04/9/20074.81152.3820710.5126.22.021.00 4/31T62.04/9/20071.87502.3630217.7100.90.79 2U4/9/20073.63452.3990656.7152.31.521.04 3U4/9/20073.60352.3945619.6145.51.501.04 4T4/10/20072.36302.3580287.3106.11.00 5T67.04/10/20072.40102.3610280.1101.51.02 4/41T67.04/10/20072.34992.3780353.1128.90.99 2U4/10/20075.01402.3475682.8119.92.141.00 3T4/10/20072.41702.2935310.4118.41.05 4U4/10/20073.42402.3803413.5103.41.441.05 5T4/10/20072.29452.3507276.5105.80.98 6T4/10/20072.17852.3897249.597.30.91 7T4/10/20072.46602.3578287.5101.71.05 8U4/10/20074.58552.3688543.1102.41.941.00 9T72.04/10/20072.25002.3417264.6104.00.96 BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 4/51U72.04/10/20074.33552.3968769.5149.91.811.01 2U4/10/20074.17552.3973752.0152.01.741.02 3T4/10/20072.79002.3953513.1155.51.16 4T4/10/20072.37202.4007427.7151.80.99 5T4/10/20072.11102.4037370.3147.30.88 6T77.04/10/20072.17052.3942358.7139.80.91 4/61U77.04/10/20074.46152.3982789.5149.21.861.01 2U4/10/20073.66952.3942651.7150.31.531.04 3T82.04/10/20072.40302.3955395.8139.21.00 4/71T82.04/10/20072.62602.4087468.2149.11.09 2U4/10/20074.96952.3965862.9146.62.071.00 3U87.04/10/20073.99102.4072711.8149.31.661.02 4/8NA87.092.04/10/2007Effective/Revised Date: 12/22/05 By: B.W.Page 1 of 1 STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile

PAGE 112

112 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 4/11T10.00105.31375.2148.50.0527100 / 7775.4411.9381.3 2U9.77105.63357.2741.40.04250.92"75.5710.5654 3U9.90113.95394.31195.30.05051.06"76.2778.8715.5 4T12.15107.81498.2168.40.0398"75411374.6 5U9.64123.37650.71693.30.05481.11"77861.7792.7 6T11.33112.8438.445.10.0319"76.4455.8417.2 7U10.13113.44492.3989.30.03440.77"74.9726666.1 8U7.30125.678131732.90.06231.30"75.6838.2786.3 9T7.02123.62047.2279.40.0643"77381.8361.8 10U6.09125.76338.71403.50.04860.98"75.5840.8796.9 11T8.00119.21733.3219.90.0443"75.6394.3370.7 4/21T3.2198.21414.2150.40.112890 / 4877.7377367.7 2U3.08101.01978.9439.00.03550.81"75.9595.4579.9 3T4.33104.41262.1128.70.0891"76401.6388.1 4T10.79119.03328353.70.0556"76.9467429 5U8.51109.52030.7454.70.03540.90"76585.9545.9 6T4.33114.02302.1252.90.0906"75.7405.8392.1 7T7.02123.82290.3252.80.0902"77.5450.9426.4 8T10.64112.82816.1281.60.0969"76.1454.5418.1 9U5.61119.53170.6711.50.05531.15"75.1780.8743.3 4/31T3.0997.81280.1183.90.024682 / 1477.9294.5288 2U2.22149.06791.71447.00.04891.35"74.9700686.4 3U0.75144.49992.72134.80.04581.27"74.8691.7687.1 4T0.76105.31260.9144.10.0434"75352.3350.2 5T1.28100.2812.991.30.0452"77.5354.4350.9 4/41T4.95122.82832.6322.70.040087 / 3476.2430.3413.6 2U9.54109.42457.9567.90.02470.49"75756696.7 3T6.11111.61563.5179.60.0658"75.5384.8367 4U6.5097.11591.8341.70.03290.96"75.4486.6461.5 5T4.48101.21743.1205.70.0986"77.9353.1341.3 6T3.3194.2688.784.20.0312"77.1327.1319.1 7T3.9597.9963.8105.50.0704"75.8362.8351.9 8U4.7097.81058.1239.10.02230.49"76.9607.4583.6 9T6.2697.91296.7156.70.1132"77.9339.4324 BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 4/51U2.84145.710309.52256.40.05401.2558 / 2575.5832.4811.5 2U2.83147.810395.32262.90.05061.21"75.1826805.3 3T2.01152.44593437.50.0638"75.7587.1577 4T1.76149.13913.4437.50.0460"76503.1495.7 5T2.05144.32823.3354.20.0309"76.9445.3437.9 6T3.57135.03007.5368.40.0760"77.7435422.7 4/61U1.86146.510446.52292.10.05121.1577.5865.4851 2U1.96147.410971.32351.00.04731.2975.6727.2714.7 3T1.46137.23324.5367.70.028375.5471.3465.6 4/71T1.52146.84003.3402.90.048342 / 2077539.1532.2 2U1.32144.716231.43598.50.04981.00"76.1910.4899.5 3U2.34145.910079.62161.30.04381.10"74.9786.6770.3 12 / 0 DISPL. @ FAIL. DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number: 17th Street Bridge Location: Date Received: Tested by:

PAGE 113

113 Table B-1. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 5/11T52.02.40152.3885330.1116.91.01 2T2.45102.3675333.5117.71.04 3U4.25352.4005665.8131.81.771.02 4T2.37152.3815380.4137.21.00 5U4.22802.3980677.2135.11.761.02 6T2.18402.3965325.2125.80.91 7U3.92552.3800595.6129.91.651.03 8U4.19902.3780628.0128.31.771.02 9T2.33052.2213342.5144.51.05 10U3.70452.3075486.8119.71.611.03 11T2.54102.3835360.8121.21.07 12T57.02.29452.3860342.5127.20.96 13U3.64252.4065621.9143.01.511.04 5/21U57.04.15402.3005625.3138.01.811.01 2T2.37402.3655353.0128.91.00 3T1.99552.3900278.7118.60.83 4U3.70102.3695529.2123.51.561.03 5T62.02.15602.4000300.6117.40.90 5/31U62.04.86952.3820854.4150.02.041.00 2T2.39202.3970392.7138.61.00 3T2.27002.3490229.588.90.97 4T67.02.17252.3970338.8131.70.91 5/41T67.01.81002.2860195.0100.00.79 2T1.69152.3205155.782.90.73 3T72.01.84652.3020185.091.70.80 BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 5/51T72.01.87502.3860320.2145.50.79 2U3.35132.3965606.8152.91.401.05 3T2.44152.4000345.7119.21.02 4U4.80352.4030881.2154.12.001.00 5U4.90852.4010819.0140.42.041.00 6T1.80252.4070316.5147.00.75 7U4.04552.3900687.6144.31.691.02 8T2.18952.4005385.6148.20.91 9U4.63352.3990826.1150.31.931.00 10U77.03.87152.4000650.9141.61.611.03 5/61T77.02.20602.4065405.9154.10.92 2U4.72552.3990835.7149.01.971.00 3T2.18802.3830357.1139.40.92 4U82.03.69002.3870657.5151.71.551.04 5/71T82.02.22152.3845382.2146.80.93 2U87.03.62502.3885630.9148.01.521.04STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile Effective/Revised Date: 12/22/05 By: B.W.Page 1 of 1

PAGE 114

114 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 5/11T9.04107.21772.1196.70.1135100 / 8275.1405.7378.3 2T8.16108.91390.3152.50.0964"75.5408.2383.1 3U7.50122.65753.41252.00.03150.74"74.9737.4691.2 4T8.21126.83673.9414.10.0638"77456.7427.9 5U8.35124.78109.51767.10.06041.43"77.9751.3699.4 6T7.19117.3713.986.80.0394"76.9401.8380 7U8.49119.83836.9841.00.04071.04"77.5670.7624.3 8U8.10118.73195.3708.20.02280.54"75700.7653.8 9T6.93135.12784.1342.40.0873"75.4416.6394.5 10U5.13113.92008466.40.00660.18"75.8561.1537.4 11T4.94115.51703.3179.00.0854"77.9415.5399.6 12T4.32121.93028.1352.10.0565"77.1417.7403.6 13U1.36141.110398.82201.40.05851.61"76.9696.5688.2 5/21U3.97132.72665.4633.10.05631.3670 / 2077.7700.6676.8 2T0.98127.61608.2182.30.0440"76417413.7 3T1.26117.11573.5210.00.0374"77.5342.1338.8 4U6.90115.63880851.30.12733.44"76.2573.2541.1 5T4.45112.41110.3136.60.0307"75.7362349.8 5/31U1.79147.49570.42147.70.06301.2977 / 1575.7928.5913.5 2T1.21136.93920.7435.30.0381"75.5468.1463.4 3T2.0187.11000.5119.50.0812"75.1303.6299.1 4T1.90129.22292.2280.20.0588"75.6413.6407.3 5/41T3.6296.5982.8151.20.122952 / 076270.8264 2T2.7280.739263.60.1238"75.9226.7222.7 3T4.6187.7273.841.00.0446"75.7259.6251.5 BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 5/51T1.23143.72179.8310.20.017280 / 6377.3397393.1 2U1.90150.15546.21169.20.04251.27"75.6680.2668.9 3T2.38116.5920.9100.10.0247"76.3419.8411.8 4U2.26150.710731.92366.30.05581.16"74.9955.4935.9 5U3.05136.23268.8722.00.02710.55"77894.1869.9 6T2.66143.22258.7331.40.0873"76.4392.7384.5 7U2.77140.44315.8941.50.04261.05"76.2751.7733.5 8T1.96145.42358.6285.70.0325"77.6462.3454.9 9U2.18147.16641.71463.20.05541.20"75.5900.7883.1 10U2.95137.55546.11191.70.03951.02"78.3728709.4 5/61T0.87152.83107.5372.60.030066 / 3076.5482.7479.2 2U1.30147.18502.21877.60.05441.15"75910.9900.2 3T2.21136.43750.5457.90.0485"74.2429.6421.9 4U2.13148.510165.42194.30.05121.39"81.6739.1725.4 5/71T2.44143.35093612.10.038737 / 876458.5449.4 2U2.22144.89645.32073.60.04721.30"76.2707.3693.617th Street Bridge Location: Date Received: Tested by:DISPL. @ FAIL. DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number:

PAGE 115

115 Table B-1. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 6/11T52.01.98702.3910272.5116.40.83 2U5.29452.3465756.2125.82.261.00 3T2.39952.3670372.9134.51.01 4T2.16952.3813357.0140.80.91 5U4.97552.3908790.4134.82.081.00 6T2.21202.3722349.7136.30.93 7U4.15602.3880660.8135.21.741.02 8T2.47152.3530358.4127.01.05 9U4.32302.3750677.5134.81.821.01 10T2.45152.2730337.6129.31.08 11T57.02.38452.1530323.7142.11.11 6/21U57.03.86502.4130588.3126.81.601.03 2T2.26502.3790349.6132.30.95 3T2.36152.3400259.497.31.01 4T2.37702.3775406.5146.71.00 5U4.56702.4130735.5134.21.891.01 6T2.27302.3795349.3131.60.96 7T62.02.35002.3665351.0129.40.99 6/31T62.02.10802.3765250.8102.20.89 2U3.52752.3957615.8147.51.471.04 3U3.46352.3770591.4146.61.461.04 4T2.48002.3557257.690.81.05 5U4.31402.3707551.0110.21.821.01 6T1.88502.3350219.7103.70.81 7U4.42852.3725565.7110.11.871.01 8T2.28502.3757274.3103.20.96 9U67.05.20802.3627658.6109.92.201.00 6/41U67.04.42352.3710487.795.11.871.01 2T2.36402.3732294.7107.41.00 3T1.90452.3665233.8106.30.80 4U3.99752.3658463.7100.51.691.02 5T2.28502.3908270.8100.60.96 6T2.34702.3717270.599.40.99 7T2.26702.3843270.2101.70.95 8T72.01.97752.3643236.3103.70.84 6/51U72.04.37102.3745714.5140.61.841.01 2T2.04352.3770368.4154.80.86 3U4.54002.3770665.7125.91.911.01 4T2.62102.3900449.9145.81.10 5T2.36952.3440318.7118.71.01 6U4.45402.3820584.7112.21.871.01 7T1.96902.3915259.2111.60.82 8U77.04.43952.3930672.2128.31.861.01 6/61T77.02.33352.3855407.0148.70.98 2U3.99652.3740674.5145.31.681.02 3T82.02.02502.3805333.5141.00.85STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile Effective/Revised Date: 12/22/05 By: B.W.Page 1 of 1

PAGE 116

116 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 6/11T9.24106.51758.5235.60.1252100 / 6276.3326.9305.7 2U8.39116.12846.5658.30.02000.38"76.2830.3771.9 3T14.53117.53201.6358.90.0836"75.4446.6399.5 4T6.55132.13330.8410.40.0511"75419.9398.7 5U8.96123.75693.31268.20.03500.70"76.9845.8782.6 6T5.51129.21942.3235.60.0616"75408.2390.8 7U8.79124.32542.3557.70.03080.74"76734.1680.9 8T12.07113.42583.7282.80.0851"76.3433.9395.4 9U9.90122.63311.5738.80.02750.64"76.4749688.4 10T14.18113.2788.490.10.0271"77.7414.3372.5 11T6.19133.82896.2359.10.0964"75.7398.1379.3 6/21U2.60123.64409.9936.40.17584.5572 / 3777.5642.6628.3 2T8.56121.91745.3206.20.0705"75.7424.5397 3T3.8793.7871.7100.40.1053"74.9329.9320.4 4T3.40141.96055682.10.0486"75.6474.2461.1 5U7.51124.83801.2825.60.03030.66"76.5805.5754.6 6T11.67117.92097.8246.90.0430"74.2420.5384.3 7T5.12123.12339.3267.80.0591"75.7410.1393.8 6/31T1.29100.91389.6176.60.068880 / 5174.9325.3322.1 2U1.43145.510020.22131.30.12683.59"75.6679.3670.8 3U1.92143.84800.31035.50.03110.90"76665.3654.2 4T4.3587.01040.9113.40.1196"75.7332.3321.6 5U3.56106.41966440.20.02050.48"77.7618.9600.3 6T3.8599.8866.3125.30.1288"74.2292.6284.5 7U3.51106.32473.7554.80.40209.08"75.7632.6613.7 8T3.4599.71302.4152.70.0788"76.5349339.9 9U2.83106.91828416.90.03570.69"75.4722.6704.8 6/41U2.6392.71289.8289.60.21284.8168 / 3076.3552.9540.7 2T2.05105.21123.7127.50.0449"77.2370.6364.7 3T3.76102.51072.1151.40.0605"74.9298.2290.1 4U2.7897.81081.4240.70.05441.36"77535.4523 5T2.5098.1892.6104.00.0590"76.2343.1336.6 6T3.1896.31147.1131.20.0634"76.4345.6337.3 7T3.7698.01148.7135.30.0905"76.3343.8334.1 8T3.36100.31509.8205.60.1603"75.1303295.6 6/51U1.23138.96235.51393.70.04451.0280 / 6081.6796.1787.4 2T1.24152.93890.2509.90.0562"76.9445.3440.8 3U1.53124.06375.11428.60.03220.71"75740.7730.7 4T1.35143.82505254.60.0378"75.5525.4519.4 5T1.05117.52201.1252.30.1374"77.1395.8392.5 6U1.69110.42312.3514.60.05501.23"75.5660.2650.5 7T0.78110.81209.9163.60.0332"76335.2333.2 8U1.65126.22716.5598.40.09792.21"76.2748.4737.5 1T1.80146.05188.1593.30.036648 / 1774.8481.5474.3 2U1.37143.33525.6778.90.02940.74"76.1750.6741.5 3T0.89139.73676.3485.50.0483"76.2406.1403.217th Street Bridge Location: Date Received: Tested by:DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number:

PAGE 117

117 Table B-1. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 7/11T52.01.99052.3980285.2120.90.83 2U57.03.78802.3845633.0142.61.591.03 7/21T57.02.22602.3560293.3115.10.94 2T1.99402.3500293.5129.30.85 3U4.31352.3815693.7137.51.811.01 4T2.25802.3835403.4152.50.95 5U4.69702.3950841.0151.41.961.00 6T2.05502.3970364.0149.50.86 7T1.75402.3670254.8125.80.74 8T2.17502.3915334.1130.30.91 9T2.45402.3975412.3141.81.02 10U4.20852.3010612.9133.41.831.01 11T2.46052.3720375.3131.51.04 12U5.00752.3880763.2129.62.101.00 13T62.02.21302.3675337.6132.00.93 7/31T62.02.20152.2940223.393.50.96 2T67.02.32552.3015229.190.21.01 7/467.072.0NASAND 7/51T72.02.45352.3843376.1130.81.03 3T2.13552.3915366.2145.40.89 4T2.17652.3920388.8151.40.91 5U3.88252.3842674.7148.31.631.03 6U4.14652.3872735.6151.01.741.02 7U3.72502.3710576.4133.51.571.03 8T1.48502.3715226.6131.60.63 9U77.03.99702.3770670.0143.91.681.02 7/61T77.02.01102.3840364.4154.60.84 2T2.10702.3953378.2151.70.88 3U3.66252.3932646.9149.61.531.04 4U82.03.92802.3900685.7148.21.641.03 7/71T82.02.19552.3965390.7150.30.92 2T87.02.29452.3890384.8142.50.96 7/81T87.092.02.31102.3970338.9123.80.96Effective/Revised Date: 12/22/05 By: B.W.Page 1 of 1 STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile

PAGE 118

118 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 7/11T3.56116.72871382.90.098652 / 1077359.2349.5 2U1.25140.8110002389.10.07341.94"77.2711703.2 7/21T2.67112.11725.4209.40.151593 / 5074.1366.6359 2T5.61122.42714.9368.80.0663"75.9364348.7 3U4.11132.16379.51414.50.06461.50"74.5765.9738.6 4T3.25147.74748.7561.70.0388"75.9476.1463.5 5U0.53150.613108.82903.00.06981.49"76.1891.1886.8 6T1.68147.13542.8457.90.0347"76.3438.4432.4 7T6.38118.22918.9447.60.0936"75.7329.3314.1 8T5.88123.03484.4426.50.0672"75406.1387.7 9T1.90139.14411.4477.30.0591"76488.2480.5 10U3.85128.54195.6997.80.03590.85"75682659.5 11T2.11128.82239.8244.30.0287"75.4448.7441 12U6.12122.24652.11038.70.03140.63"76.9834.4790.7 13T1.78129.72716.6330.10.0326"76.2408.7402.9 7/31T0.6392.91277.5161.00.132442 / 074297.2295.8 2T0.7589.51871.7222.60.1413"77333.2331.3 7/4 50 / 0 7/51T1.19129.33141.3341.90.041183 / 5474.2448.9444.5 3T1.27143.62780.1346.60.0292"75.7442.1437.5 4T1.09149.83555.4434.80.0262"75.7464.6460.4 5U0.90147.010908.52378.30.05421.40"74.9746.5740.5 6U1.37149.011900.52611.50.05481.32"75.6809.4799.5 7U1.94131.03889.5853.00.03000.81"76.2607.2597.1 8T1.49129.72100.7379.70.0599"74.9300.4297.1 9U1.15142.39887.32178.60.04681.17"76.4743.1735.5 7/61T1.36152.65727.5760.50.045667 2777.7442437.1 2T0.83150.53472.4438.00.0288"77.5456452.9 3U1.16147.911070.32373.70.05501.50"76.5722.2714.8 4U1.02146.77211.31566.70.07371.88"76.3722.8716.3 7/71T1.98147.45630.4681.30.040243 / 776466.8459.2 2T2.15139.53660.1425.10.0219"75.7460.5452.4 7/81T1.38122.11884.9216.60.036823 / 877416411.4 DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number: 17th Street Bridge Location: Date Received: Tested by:

PAGE 119

119 Table B-1. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 8/11T52.02.17652.3665290.2115.50.92 2U3.90352.3900669.1145.61.631.03 3T2.32452.3913249.491.00.97 4U4.39952.3833494.896.01.851.01 6U4.40952.3905745.8143.61.841.01 7T1.59202.3745233.4126.10.67 8U57.03.86052.3753560.6124.81.631.03 8/21T57.02.32602.3933357.7130.20.97 2U4.53452.3895712.2133.41.901.01 3T2.02552.3955316.4132.00.85 4U4.08152.3973631.0130.51.701.02 5T2.32852.4045344.4124.10.97 6U62.04.08652.3912570.2118.41.711.02 8/31U62.04.44602.3633510.199.61.881.01 2T2.09452.3863259.6105.60.88 3T2.34302.3708262.896.80.99 4T2.30252.3858254.194.00.97 5T1.87902.3665313.8144.60.79 6U4.70452.3860852.5154.41.971.00 7T2.22522.3870405.1155.00.93 8U4.34202.3868789.6154.81.821.01 9T2.46152.3933432.8148.91.03 10U4.71552.3927801.4144.01.971.00 11T67.02.05202.3777327.5136.90.86 8/41U67.04.51652.3643761.0146.21.911.01 3T2.36102.3775283.3103.00.99 4T2.12202.3710253.2103.00.89 5U5.04052.3805576.397.92.121.00 6T72.02.09052.3848250.7102.30.88 8/51U72.03.92402.3735700.6153.71.651.03 2T2.08702.3748327.2134.80.88 4U4.26152.3708731.2148.11.801.01 5U4.71252.3745826.9151.01.981.00 6T1.86252.3745301.7139.40.78 7T2.13302.3822341.4136.80.90 8U77.03.73152.3673659.3152.91.581.03 8/677.082.0NA 8/71T82.087.02.22852.3755406.0156.60.94 8/887.092.0NAEffective/Revised Date: 12/22/05 By: B.W.Page 1 of 1 STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile

PAGE 120

120 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 8/11T1.90113.32768.5342.20.061885 / 4075.7364.9359.5 2U2.44142.110983.72384.10.05401.38"77.7744.5728.6 3T10.2982.5587.367.30.0477"75.7324.4301.2 4U7.4489.41094.7243.00.04060.92"74.9567.2533.1 6U7.06134.15410.41193.50.03930.89"76820.8771.7 7T10.37114.31071180.40.0374"74.9305.8284.1 8U11.92111.52448.3537.60.05451.41"76.5630.5571.5 8/21T2.12127.53284.3375.60.047661 / 3874.2431.4424 2U1.46131.54159.5921.60.03460.76"77.2784.8774.6 3T2.34129.03120.2409.40.0254"75.7390.7383.5 4U6.00123.153591162.90.05021.23"75.4703667.5 5T2.24121.43494.8397.40.0457"77420412.5 6U8.08109.53299719.90.07961.95"76.3636.6594.7 8/31U0.8898.81058239.40.02820.6385 / 6376.2579.1574.7 2T1.89103.61465.3186.60.1091"76.4334.8330 3T3.3093.71507.4172.80.1471"75.1334.9326.6 4T3.3291.01277.5148.00.0729"76.3325.4317.4 5T1.00143.23369.1482.30.0248"76.1389.3386.2 6U1.16152.69120.52036.40.04881.04"81.6936.2926.4 7T1.02153.45483.6657.20.0370"76.2481476.9 8U0.92153.48597.71899.00.03840.88"77.1866.5859.3 9T1.12147.24848.9524.00.0444"76.9509.8505 10U1.16142.36241.31385.60.04230.90"74.8875.8866.6 11T0.90135.73860.6503.70.0599"76.1401.7398.8 8/41U1.68143.84166.6943.80.05031.1173 / 4676.3832.3819.8 3T2.74100.21869212.00.0974"75.6352.6345.2 4T3.1099.91096.2138.70.0710"75.5318.4311.1 5U1.6996.21103.9248.00.07301.45"77.9636.9627.6 6T1.76100.51599.8204.30.0898"74.2322.9318.6 8/51U0.78152.5100162208.20.05691.4573 / 3876.1774.6769.2 2T0.80133.83009.1386.50.0311"75.7401.9399.3 4U1.16146.48808.21968.70.06911.62"81.6807.3799 5U1.09149.36129.31382.90.05421.15"76.2902.9894 6T1.00138.03366.1484.50.0270"76.5378.2375.2 7T1.72134.52593.7325.00.1258"75.7412.3406.6 8U0.73151.89882.52175.20.09242.48"77.2727.7723 8/6 23 / 0 8/71T1.91153.77095.3853.30.037330 / 076.9483475.4 8/8 6 / 0 DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number: 17th Street Bridge Location: Date Received: Tested by:

PAGE 121

121 Table B-1. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEMASSUNIT MASSRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) 9/11T52.02.36752.3758274.899.71.00 2U4.84552.3993734.1127.72.021.00 3T2.57252.3918357.3117.81.08 4U3.84052.3895623.0137.81.611.03 5T2.20102.3723364.2142.60.93 7U4.17602.3723631.5130.31.761.02 8T1.94002.4003299.0129.80.81 9T2.28452.3838357.8133.70.96 10U57.03.61202.3605616.1148.51.531.04 9/22U57.04.05952.3835642.7135.21.701.02 3T2.46102.4002426.2145.81.03 4T2.19002.3923384.5148.80.92 5T62.02.34802.3793372.9136.10.99 9/31T62.02.35402.3748382.8139.90.99 2T2.30302.3762411.0153.30.97 3U4.77302.3712853.7154.32.011.00 4T2.36202.3657413.8151.81.00 5U4.54552.3710806.2153.01.921.01 6T2.24902.3638355.2137.10.95 7U3.90552.3790647.2142.01.641.03 8T67.02.00002.3515243.9107.00.85 9/41T67.02.04702.3715332.2140.00.86 2U4.83502.3870751.7132.42.031.00 3T2.01102.3808227.296.70.84 4T2.25502.3907274.4103.30.94 5T2.09052.3708248.0102.40.88 6U3.65902.3763436.6102.51.541.04 7T72.01.90352.3728228.5103.40.80 9/51T72.02.18802.3832366.2142.90.92 2U4.54052.3837780.4146.71.901.01 3T2.26302.3797404.8153.20.95 4U4.43352.3853712.6137.01.861.01 5U77.04.87202.3825861.7151.12.041.00 9/61U77.03.62052.3862662.8156.01.521.04 2T2.41802.3888439.7154.61.01 3T82.01.96302.3873356.4154.50.82 9/71U82.087.04.28602.3872770.9153.11.801.01STATE MATERIALS OFFICE Foundations LaboratoryRock CoreUnconfined CompressionSplit Tensile Effective/Revised Date: 12/22/05 By: B.W.Page 1 of 1

PAGE 122

122 Table B-1. Continued. BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT MAS S LOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) 9/11T6.8893.31279.5144.80.121198 / 6476.3349.6332 2U6.62119.745861014.40.04810.99"77803.8758.7 3T9.36107.71349.6139.60.1402"75.4429.4399.1 4U7.87127.85926.11283.90.05331.39"77.1684.2639.9 5T6.88133.43102.2378.20.0323"75.1435.4412.2 7U5.95123.04364.8971.60.04261.02"74.2695.5660.6 8T5.68122.82644.6361.60.1008"77.9373.6357.7 9T4.30128.23740437.20.1115"76.3430.4415.8 10U1.86145.8165703651.90.07232.00"75.6682.5671.4 9/22U3.66130.44704.71032.80.03020.7462 / 875.5716.1693.5 3T1.84143.25139.4553.90.0406"76.3502.5494.8 4T2.50145.24575.3556.00.0323"77.1461.8452.4 5T1.55134.03925.7447.40.0201"77.9450.6444.9 9/31T0.90138.63660416.80.034587 / 3375.1458.1454.7 2T1.16151.65147.2598.80.0344"75.4486.6481.9 3U1.62151.88931.82022.70.04110.86"77930.4916.8 4T1.15150.14117.4469.10.0385"76.1489.7485 5U2.26149.612046.92714.50.05641.24"77.1881.4863.6 6T3.71132.21619.8335.60.0306"76.5431.4418.7 7U3.83136.84587.71005.80.06521.67"81.6724.1700.4 8T2.53104.31663.5225.20.1097"75.7318.7312.7 9/41T1.34138.13476.3455.90.040468 / 1776.2408.3403.9 2U1.15130.86042.21350.20.04510.93"76.3823.9815.4 3T4.0193.0802.1106.70.0909"77.2302.8294.1 4T2.98100.31647194.50.1026"75.7348.9341 5T3.2199.2986.8126.80.0723"75.9320.5312.9 6U2.15100.3848.3184.70.08772.40"76.1508.6499.5 7T2.27101.11367.3192.70.0828"76.2301.9296.9 9/51T0.97141.63361410.30.054380 / 3772.2437.2433.7 2U1.04145.26839.41523.50.03410.75"76.6856.4848.4 3T1.09151.65095.1602.30.0367"76.7477.2472.9 4U1.21135.46111.71355.40.04701.06"76.1776.6768.2 5U1.20149.37936.31780.20.03410.70"76.3937.8927.6 9/61U1.97152.99747.72099.60.04061.1247 / 1676.7737.9725.1 2T1.62152.15475.7603.50.0583"76.4515.7508.7 3T1.54152.24377.4594.70.0467"79435.5430.1 9/71U1.09151.48963.41975.70.06941.6230 / 1377.3844.1835.817th Street Bridge Location: Date Received: Tested by:DISPL. @ FAIL.Project Number: Lab Number: Bridge Number: LIMS Number:

PAGE 123

123 Table B-2. Fuller Warren Soil Boring Data BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEWT.UNIT WTRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) CB-1/1 1T40.508/10/20062.34202.4850463.4155.40.94 2U4.81772.4610799.3132.91.961.00 3T2.44652.4200374.3126.71.01 4T2.38052.4200396.3137.90.98 5U45.504.16422.4765751.1142.61.681.02 CB-1/2 1U45.508/10/20063.63022.4545679.5150.71.481.04 2T2.44552.4625442.7144.80.99 3U4.52332.4315750.0136.01.861.01 4T2.34702.4250399.4140.40.97 5U4.68852.4535805.6138.51.911.01 6T2.12352.4700384.2143.90.86 7T2.51352.4600454.9145.11.02 8U4.81952.4570848.6141.51.961.00 9T2.55602.4640472.0147.51.04 10U50.504.79622.4740892.8147.51.941.00 CB-1/3 1T50.508/10/20062.49452.4510464.0150.21.02 2U4.77322.4630911.1152.61.941.00 3T2.47852.4495451.5147.21.01 4T8/11/20062.45552.4545388.3127.31.00 5T2.37802.4340355.0122.20.98 6T55.502.40802.4240346.0118.60.99 CB-1/4 1U55.508/14/20064.76722.3530693.6127.52.031.00 2T2.53502.3975384.2127.91.06 3T2.53052.4060353.4117.01.05 4U4.84152.4215758.8129.62.001.00 5T2.20202.4115341.0129.20.91 6U4.86822.4230766.8130.12.011.00 7T2.30852.4170345.1124.10.96 8U4.72172.4350727.1126.01.941.00 9T60.502.50602.4400393.8128.01.03 CB-1/5 1T60.508/14/20062.36002.0160227.1114.81.17 2T2.02152.1000207.7113.00.96 3T2.45852.2185285.8114.61.11 4U4.00082.0860420.4117.11.921.01 5U4.87552.2955597.1112.72.121.00 6T2.47702.4000349.0118.61.03 7U4.85372.4230680.3115.82.001.00 8U4.69122.4060665.3118.81.951.00 9T65.502.44652.3815326.2114.01.03 CB-1/6 1T65.508/15/20062.52802.3400328.9115.31.08 2T2.38602.2185296.0122.31.08 3U4.80082.3850675.2119.92.011.00 4T2.32952.4040344.1124.00.97 5T70.502.31402.3200303.5118.21.00Effective/Revised Date: 4/27/05 By: G.J.Page 1 of 1 STATE MATERIALS OFFICEFoundations LaboratoryRock CoreUnconfined CompressionSplit Tensile

PAGE 124

124 Table B-2. Continued. CB-1 8/9/2006BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT WTLOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) CB-1/1 1T3.35150.43963.2433.50.064067/37427.1873.8859.3 2U16.73113.81017.4213.30.04971.03431.11224.31110.6 3T23.01103.0276.829.80.0464410.1781.1711.7 4T15.60119.3799.888.40.0445425.5821.1767.7 5U10.93128.66578.21335.30.06091.464331181.11107.4 CB-1/2 1U8.01139.59815.41990.30.06991.9394/74424.31098.21048.2 2T10.47131.11191125.90.0443418.9861819.1 3U14.44118.93855822.80.04961.10302.81051.7957.2 4T11.77125.6896100.20.0512370.7769.5727.5 5U14.05121.43453726.20.06721.43435.21239.41140.3 6T11.39129.11814220.20.0509328.3711.6672.4 7T11.43130.22473254.60.0558434.1887.6841.1 8U11.42127.04494945.70.05221.08368.91201.41116.1 9T11.39132.41875189.60.0411429.5900.9852.7 10U#DIV/0!#DIV/0!*#VALUE!*#VALUE! CB-1/3 1T8.79138.12483.1258.60.050460/48377.8840.9803.5 2U8.31140.975331575.10.05271.10372.31279.61210 3T9.49134.51582165.90.0408428.2878.2839.2 4T16.13109.624525.90.0289427.1814.5760.7 5T24.1698.511212.40.0213372.3726.9657.9 6T31.2790.418319.90.0297435.2780.7698.4 CB-1/4 1U26.38100.9759174.50.05161.0892/77427.11118.4974.1 2T23.05103.918119.00.0223372.4756.2684.3 3T30.8089.512112.70.0393435.3780.1698.9 4U22.23106.11408305.70.04400.914191165.61029.8 5T22.22105.729935.90.0278364.9705.4643.5 6U22.05106.61468318.30.05471.12308.21073.8935.5 7T27.8697.121524.60.0356313.1657.8582.7 8U25.34100.5772165.10.05761.22373.21098.8952.1 9T23.43103.726727.80.0440425.5819744.3 CB-1/5 1T36.3084.310914.60.033690/67315.2542481.6 2T41.1980.0619.20.0242431.1637.8577.5 3T45.3478.8293.40.0173432.5716.5627.9 4U37.6785.133898.40.06081.52370.4789.6674.9 5U36.2682.7423102.30.06101.25370.6965.9807.5 6T33.8288.713614.50.0386376.5724.3636.4 7U34.3486.2550119.30.05651.16312990.3816.9 8U29.7291.6479105.10.04200.90300.9965.2813 9T30.5487.411913.00.0401371.3697620.8 CB-1/6 1T29.2389.251.75.60.027658/38315.2643.7569.4 2T27.2296.1465.50.0407431.3726.7663.5 3U28.9893.018741.90.05311.11370.41045.1893.5 4T21.96101.7536.00.0284364.9708.7646.8 5T25.6194.1303.50.0372432.5735.6673.8 DISPL. @ FAIL.Fuller Warren Project Number: Lab Number: Bridge Number: LIMS Number:JCLocation: Date Received: Tested by:

PAGE 125

125 Table B-2. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEWT.UNIT WTRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) CB-2/1 1U37.588/16/20064.05132.3715674.2143.51.711.02 2T2.42502.3875437.6153.61.02 3T42.582.46352.3500390.2139.11.05 CB-2/2 1T42.588/16/20062.23052.3730359.4138.80.94 2U4.82332.3865806.6142.42.021.00 3T2.27352.3440328.3127.50.97 4U8/17/20064.73522.3685756.7138.22.001.00 5T2.44252.3845413.1144.31.02 6T47.582.47752.3770429.6148.91.04 CB-2/3 1T47.588/17/20062.31552.3325393.3151.40.99 2U4.67132.3815790.1144.71.961.00 3T2.44502.3890415.2144.31.02 4U2.69132.3880784.5247.91.131.09 5T2.39502.3885401.6142.61.00 6U4.73832.3925769.6137.61.981.00 7T2.43702.3935401.1139.41.02 8U4.90982.3895872.3150.92.051.00 9T2.29502.3770310.1116.00.97 10U4.72802.3760630.4114.61.991.00 11T2.39502.3630294.3106.71.01 12U52.584.79022.3810834.4149.02.011.00 CB-2/4 1T52.588/17/20062.35752.3365383.7144.61.01 2U4.78252.3870798.5142.12.001.00 3U4.73282.3500775.3143.92.011.00 4T8/18/20062.38152.3675367.4133.51.01 5U4.63802.3510701.1132.71.971.00 6T2.30352.3635327.9123.60.97 7U4.68802.3645655.3121.31.981.00 8T2.28752.3445312.6120.60.98 9U4.72332.3485662.1123.32.011.00 10T2.33152.3390330.5125.71.00 11T2.31402.3530340.4128.90.98 12U4.80882.3595699.7126.82.041.00 13T2.52352.3475359.1125.31.07 14T57.582.53602.3615357.3122.51.07 CB-2/5 1U57.588/18/20064.86782.3470705.9127.72.071.00 2T2.48552.3655363.3126.71.05 3U4.70172.3590677.6125.61.991.00 4T2.38652.3325350.0130.81.02 5U62.584.95022.3395718.3128.62.121.00 CB-2/6 1T62.588/18/20062.34602.3535294.3109.91.00 2U4.79832.3545623.0113.62.041.00 3T2.34452.3675301.1111.10.99 4U4.75402.3515627.6115.82.021.00 5T2.33802.3355311.5118.51.00 6U4.62232.3500629.1119.51.971.00 7U4.80982.3650654.8118.12.031.00 8T2.31752.3130312.8122.41.00 9U4.83822.3155654.1122.32.091.00 10T67.582.41852.3000323.1122.51.05STATE MATERIALS OFFICEFoundations LaboratoryRock CoreUnconfined CompressionSplit Tensile Effective/Revised Date: 4/27/05 By: G.J.Page 1 of 1

PAGE 126

126 Table B-2. Continued. BORINGSAMPDEPTHDEPTHTESTLENGTHDIA.WETWETL / DCORR. NO.TOPBOT.DATEWT.UNIT WTRATIOFACTOR CORE(ft)(ft)(in)(in)(g)(pcf) CB-3/1 1U41'8/21/20064.83802.3950853.2149.12.021.00 2U4.43272.3835740.4142.61.861.01 3T2.43452.3100335.2125.21.05 4T2.43502.3785375.0132.01.02 5T46'2.35002.3730409.9150.20.99 CB-3/2 1T46'8/21/20062.41652.2995308.4117.11.05 2U4.33572.3655774.8154.91.831.01 3T8/22/20062.32202.3760406.1150.30.98 4U4.80682.3820806.8143.52.021.00 5T2.35352.3720400.6146.70.99 6U4.88252.3895799.2139.12.041.00 7T2.33952.3870393.8143.30.98 8U51'4.87152.3890865.4151.02.041.00 CB-3/3 1T51'8/22/20062.33152.3510380.8143.30.99 2U4.86322.3610838.4150.02.061.00 3T2.43952.3110376.5140.21.06 4T2.43302.3555378.1135.91.03 5U4.89552.3430734.4132.52.091.00 6T2.48552.3285366.7132.01.07 7T2.45452.3375328.7118.91.05 8U4.81252.3360672.7124.22.061.00 9T2.38652.3230332.8125.31.03 10T2.12102.3185291.7124.10.91 11U4.70202.3455676.5126.92.001.00 12T56'2.41102.3595369.5133.51.02 CB-3/4 1T56'8/25/20062.42852.3140361.2134.71.05 2T2.40452.3495360.4131.71.02 3U4.76002.3470716.7132.62.031.00 4T2.34752.3350351.6133.21.01 5U4.80432.3400701.4129.32.051.00 6U4.88402.3575697.0124.52.071.00 7T2.47852.3545368.8130.21.05 8T61'2.47402.3655330.1115.71.05 CB-3/5 1T61'8/29/20062.36952.3380291.2109.11.01 2U4.73282.3555593.2109.62.011.00 3T2.26402.3445282.7110.20.97 4U4.76372.3380606.0112.92.041.00 5U4.54732.3420570.4110.91.941.00 6U4.71632.3305605.3114.62.021.00 7T2.34202.5030330.6109.30.94 8U4.72652.3425626.8117.22.021.00 9T2.35602.3405313.9118.01.01 10U4.68532.3125627.2121.42.031.00 11U4.65422.2635600.2122.12.061.00 12T66'2.52052.3035313.7113.81.09 CB-3/6 1T66'8/29/20062.35702.3525329.7122.61.00 2U4.58552.3315637.4124.01.971.00 3T2.45002.3325331.8120.71.05 4U71'4.74352.3535651.6120.32.021.00Effective/Revised Date: 4/27/05 By: G.J.Page 1 of 1 STATE MATERIALS OFFICEFoundations LaboratoryRock CoreUnconfined CompressionSplit Tensile

PAGE 127

127 Table B-2. Continued. CB-3 8/10/2006BORINGSAMP.wDRYMAX.S. T.q (u)STRAIN% RECOV.TAREWETDRY NO.UNIT WTLOADSTRENGTH@ FAIL.WT.WT.WT. CORE(%)(pcf)(lbs)(psi)(psi)(in)(%)% RQD(g)(g)(g) CB-3/1 1U5.32141.667821505.60.05221.0872/50430.31281.51238.5 2U11.14128.33530784.10.06341.43430.71168.71094.7 3T26.0199.336841.60.0633366.1698.4629.8 4T16.40113.41378151.50.0687431.4805.4752.7 5T9.07137.83224368.00.0515428.3837.2803.2 CB-3/2 1T26.5092.520423.40.074377/67428.1735.5671.1 2U7.46144.257201287.50.05491.27430.21196.61143.4 3T8.10139.01552179.00.0415430.3835.8805.4 4U11.63128.53252729.80.05411.13431.41237.81153.8 5T10.86132.41623185.10.0468371.5771.6732.4 6U13.79122.24229943.00.05631.15433.11230.01133.4 7T11.05129.01715195.50.0419312.1703.9664.9 8U8.31139.456901269.30.04540.93375.91239.01172.8 CB-3/3 1T9.56130.837944.00.0410100/92366.0746.4713.2 2U8.71138.03187727.90.06301.30370.81207.21140.2 3T4.54134.112013.50.0237370.6746.2729.9 4T14.37118.824327.00.0276425.7802.9755.5 5U18.48111.9501116.10.02970.61430.61164.01049.6 6T19.11110.816918.60.0236424.6790.5731.8 7T28.8692.3889.70.0209430.4758.6685.1 8U27.4797.5731170.50.04550.95302.8972.4828.1 9T24.01101.128732.90.0422425.0756.6692.4 10T23.05100.89312.10.0402410.1701.0646.5 11U23.97102.3433100.30.03480.74428.21103.6973.0 12T17.63113.543748.90.0324428.4797.4742.1 CB-3/4 1T19.83112.415918.00.044485/60371.3730.3670.9 2T19.85109.936140.60.0204377.9737.8678.2 3U20.45110.11627376.00.05031.06304.21019.9898.4 4T21.49109.732838.10.0311435.2786.3724.2 5U24.66103.71185275.50.05511.15370.71070.4932 6U26.7398.3873199.90.07081.454191113.1966.7 7T25.87103.422324.30.0379375.9743.7668.1 8T37.8183.918119.70.0368366695.5605.1 CB-3/5 1T40.8177.413115.10.0392100/100366.0656.5572.3 2U41.5177.4550126.20.05281.12371.4963.6789.9 3T40.6078.410112.10.0494375.9657.8576.4 4U38.3281.6556129.50.06691.40435.31039.9872.4 5U39.9179.3594137.30.05571.22419.0988.0825.7 6U34.8185.0581136.10.05751.22304.2908.0752.1 7T30.1384.017519.00.0442370.6699.3623.2 8U29.4490.6485112.50.04921.04377.91002.2860.2 9T32.0589.315918.40.0365427.2740.3664.3 10U26.4996.034481.90.03980.85375.31001.3870.2 11U26.5496.522155.00.03190.69433.01032.3906.6 12T28.1188.8515.60.0220371.5684.6615.9 CB-3/6 1T20.39101.89811.20.023458/45431.4760.8705.0 2U21.02102.535683.10.04370.95428.51064.8954.3 3T24.3297.1869.50.0405428.2759.4694.6 4U24.3196.8486111.70.04881.03430.41080.9953.7 DISPL. @ FAIL.Fuller Warren Project Number: Lab Number: Bridge Number: LIMS Number:JCLocation: Date Received: Tested by:

PAGE 128

APPENDIX C SOIL BORING INFORMATION PROCESSED Table C-1. 17th Street Bridge Processed Soil Boring Data. 128 123 EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi)EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi)EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi) -5210.6953.3811.9480829.45-5210.98127.2318.69123700.43-5216.9747.3914.18174256.09 -5312.1286.0616.15112508.32-5329.82127.2330.80123700.43-5325.8447.3917.50174256.09 -543.24121.929.95152060.87-546.2560.559.7381116.67-5429.5591.3125.97180288.98 -553.2471.237.60128709.26-5624.6550.9917.73130425.71-54.516.9740.1513.0575248.87 -5620.11124.7725.05133386.84-5712.8933.5810.40261797.27-5520.3653.1916.46116133.00 -5715.83101.0520.00143472.97-5825.35158.5031.70137071.11-566.4953.199.29116133.00 -57.510.8331.619.2554116.25-6013.1345.5812.2346711.83-5725.8667.4220.8820587.29 -589.2731.618.5654116.25-6015.1261.2915.2224748.90-5914.8567.4215.8220587.29 -5925.4732.7414.4450258.73-629.84154.6319.50166002.00-607.2367.4211.0420587.29 -6018.2132.7412.2150258.73-6431.34154.6334.81166002.00-60.549.1159.4527.02124443.40 -6120.2751.2316.1161906.50-658.60154.6318.23166002.00-61.517.7859.4516.25124443.40 -6213.24104.1818.57107548.83-6620.18154.6327.93166002.00-6219.2859.4516.93124443.40 -6510.37153.7119.96167965.36-6710.8984.1915.1492242.77-62.512.71153.4622.0959292.48 -666.5740.898.20115282.48-694.5884.199.8292242.77-6312.7174.5515.39115316.42 -6723.2340.8915.41115282.48-722.9584.197.8892242.77-648.1731.698.0492628.95 -6812.9324.608.9235563.47-7322.3384.1921.6892242.77-659.0239.959.496111.94 -6914.8117.227.9949175.58-747.20170.3717.52203698.80-6611.0030.029.0860825.36 -707.6017.225.7249175.58-7523.8651.9817.61130769.50-679.1820.856.926020.61 -7211.2817.226.9749175.58-7620.5767.7918.6789410.93-6910.9017.336.8717687.90 -7720.57105.3523.28122375.59-707.4917.335.7017687.90 -7726.8385.8023.99116801.38-719.7417.336.5017687.90 -7826.83135.1830.11163096.18-7214.80100.3519.27136894.81 -8032.97157.9936.09158144.06-7336.71102.8630.72201419.69 -8544.07149.3040.56159257.64-7518.1737.0512.9741673.40 -7711.7843.0911.2627136.26 -7842.7256.0824.47105885.43 -8234.9656.0822.14105885.43 CB-6 (New) CB-4 (New)CB-5 (New)

PAGE 129

Table C-1. Continued. 129 456 EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi)EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi)EL. (ft)qt (tsf)qu (tsf)quqt(tsf)Ei (psi) -5227.57172.0134.43123378.55-5224.64171.6632.52172341.16-5210.4373.0313.80102183.65 -57.515.08101.8519.5994451.43-544.8417.494.6026327.58-5310.0592.4415.2492509.46 -5826.56101.8526.0094451.43-5512.9985.9316.70133906.89-5427.2369.9621.8295248.98 -5940.44209.0145.97195348.15-5712.9938.7111.2138084.20-5526.0369.9621.3495248.98 -6032.97209.0141.50195348.15-5827.0466.3621.18120782.02-55.531.48262.9445.49182445.65 -6130.7171.8423.48116969.04-6029.4883.7324.8494551.15-5639.8874.3627.23138835.66 -6234.3771.8424.84116969.04-6128.6151.8319.2636950.25-5940.0374.3627.28138835.66 -6317.5974.7918.14165651.22-6213.4417.247.6137794.70-6132.2174.3624.47138835.66 -6423.7774.7921.08165651.22-6312.4417.247.3237794.70-6230.01145.6333.05234895.75 -6511.5974.7914.72165651.22-6410.66146.6219.77196312.18-62.543.11145.6339.62234895.75 -6716.0374.7917.31165651.22-6534.73146.6235.68196312.18-63.533.77195.4440.62218771.42 -7224.61171.2432.46170366.07-6647.32136.7340.22214724.74-6524.1672.4220.9160246.07 -7331.30171.2436.61170366.07-6737.7399.7730.68154467.47-6716.2197.2219.85144754.85 -7431.30188.0338.36197601.72-6836.2767.9524.8284740.90-67.532.8297.2228.24144754.85 -7527.3461.4220.49105915.18-6915.2667.9516.1084740.90-68.57.6897.2213.66144754.85 -7727.34156.8632.74186067.63-709.9917.866.6817126.44-6914.0097.2218.45144754.85 -7854.76156.8646.34186067.63-7214.71158.9924.18152286.14-709.1313.305.517704.23 -8031.54170.9036.71158064.46-7327.83141.7531.40121415.11-7213.8813.306.797704.23 -8131.54112.8029.8283499.76-7634.8999.5729.47120236.98-7329.54109.6928.46202857.23 -8349.05112.8037.1983499.76-7723.40156.6130.2787842.81-7543.3797.5932.53127850.72 -8730.61112.8029.3883499.76-8761.43156.6149.0487842.81-7643.37128.1837.28254347.86 -9015.60112.8020.9783499.76-8043.45151.1740.52187232.64 -8242.82142.2539.02122014.76 CB-7 (New)CB-8 (New)CB-9 (New)

PAGE 130

130 Table C-2. Fuller Warren Bridge Processed Soil Boring Data. EL. (ft)qu (tsf)qt (tsf)Recoveryquqt(tsf) Ei (psi) -40.515.3631.216710.9520725.93 -42.596.142.14677.1893362.29 -45.5143.309.079418.02108694.81 -46.559.247.219410.3420329.10 -47.552.2915.859414.4050938.20 -48.568.0918.339417.6787522.73 -50.5113.4118.626022.97143167.10 -55.512.561.37922.0716123.94 -56.522.010.91922.2433646.94 -57.522.922.58923.8528351.18 -58.511.891.77922.2913580.10 -60.57.081.05901.376509.45 -61.57.360.66901.108173.66 -62.58.590.25900.7310247.30 -63.57.571.05901.4111768.07 -65.53.020.40580.553832.10 EL. (ft)qu (tsf)qt (tsf)Recoveryquqt(tsf) Ei (psi) -37.5842.5725.232516.3948974.00 -42.5818.663.54684.0630083.74 -43.5856.421.76684.9875668.97 -47.5864.7718.369017.2481523.95 -48.5865.128.419011.7075899.59 -49.5837.248.51908.9038959.02 -50.58140.0610.119018.82152082.74 -51.588.291.91901.9915682.83 -5278.440.84904.0569402.72 -52.5815.685.49984.6424923.43 -53.5810.611.82982.2014642.92 -54.589.081.28981.7113980.61 -55.5818.881.90982.9921191.30 -56.5820.991.40982.7120221.36 -5716.811.36982.3921522.93 -57.5816.721.77802.7226059.97 -62.5811.081.14771.7811334.53 -63.589.441.44771.8412460.26 -64.589.591.24771.7213170.90 -65.5810.080.97771.5614308.84 -66.587.490.42770.8915724.97 EL. (ft)qu (tsf)qt (tsf)Recoveryquqt(tsf) Ei (psi) -41108.403.00729.01139525.37 -4256.4510.917212.4155345.75 -4692.701.69776.25102818.36 -4752.5512.897713.0164868.52 -4867.9013.337715.0481761.47 -4991.3914.087717.93136076.85 -5152.413.171006.4456192.28 -528.360.971001.4219141.58 -5312.281.941002.4418051.95 -547.221.341001.5513564.22 -5627.071.30852.9735561.05 -5719.842.93853.8124011.06 -5814.392.74853.1413791.05 -619.091.091001.5711308.89 -629.330.871001.429220.15 -639.891.371001.8411249.80 -649.801.321001.8011165.85 -658.100.401000.9010801.59 -665.990.81581.108732.30 -678.040.69581.1810850.17 CB-3 (New) 15 CB-1 (New) 30 CB-2 (New) 25

PAGE 131

131 APPENDIX D FREQUENCY DISTRIBUTIONS Figure D-1. Total Capacity Frequency Di stribution 5 feet Co rrelation Length Figure D-2. Total Capacity Frequency Distribution 12 feet Correlation Length 500 520 540 560 580 600 620 640 660 680 700 0 0.005 0.01 0.015 0.02 0.025 0.03 550 560 570 580 590 600 610 620 630 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

PAGE 132

132 0 200 400 600 0 0.005 0.01 0.015 0.02 0.025 qu 0 20 40 60 0 0.1 0.2 0.3 0.4 qt 0 50 100 0 0.01 0.02 0.03 0.04 RQD FullerWarren MEAN = 56.6495 8.4384 63.0673 STD = 78.6970 10.6514 25.6656 SKEW = 4.0955 1.8064 -0.1906 KURT = 24.6259 6.3517 1.9980 MNPDFEXP = 56.6321 8.3339 29.6672 STDPDFEXP = 56.5155 8.0886 25.1402 SKPDFEXP = 1.9848 1.7879 1.4168 KUPDFEXP = 8.7361 6.8332 3.5806 MNPDFLOG = 53.7941 6.7613 46.0365 STDPDFLOG = 66.7919 8.8546 20.5086 SKPDFLOG = 3.1883 2.5116 1.2676 KUPDFLOG = 16.7575 9.8725 3.1364 sqerrorNORM = 1.0e-005 0.1896 0.0147 0.0008 sqerrorEXP = 1.0e-006 0.4337 0.0909 0.0524 sqerrorLOGN = 1.0e-006 0.0867 0.1634 0.1023 Figure D-3. Fuller Warren Br idge Old and New Borings.

PAGE 133

133 0 200 400 600 0 0.005 0.01 0.015 qu 0 20 40 60 0 0.02 0.04 0.06 0.08 qt 0 20 40 60 80 0 0.02 0.04 0.06 RQD FullerWarren MEAN = 84.0846 21.0250 31.8000 STD = 103.4132 12.8320 15.8931 SKEW = 3.1996 0.8896 0.3480 KURT = 14.4114 3.2306 2.1762 MNPDFEXP = 83.5399 16.3554 20.5342 STDPDFEXP = 82.2767 14.0040 17.1492 SKPDFEXP = 1.8272 1.2029 1.2207 KUPDFEXP = 7.2899 3.5943 3.4034 MNPDFLOG = 78.7380 19.3564 27.8348 STDPDFLOG = 79.1172 11.3702 13.9045 SKPDFLOG = 2.4872 1.2153 1.0484 KUPDFLOG = 11.0840 4.0844 3.3541 sqerrorNORM = sqerrorNORM = 1.0e-005 0.1173 0.0002 0.0009 sqerrorEXP = 1.0e-006 0.6094 0.0027 0.0002 sqerrorLOGN = 1.0e-006 0.3260 0.0093 0.0001 Figure D-4. Fuller Warren Bridge Old Borings.

PAGE 134

134 0 50 100 150 0 0.01 0.02 0.03 0.04 qu 0 10 20 30 40 0 0.1 0.2 0.3 0.4 qt 0 50 100 0 0.01 0.02 0.03 RQD FullerWarren MEAN = 33.2623 4.9771 70.5119 STD = 35.5262 6.7102 21.6325 SKEW = 1.4909 1.9667 -0.2355 KURT = 4.3762 6.4417 1.9256 MNPDFEXP = 30.9262 4.9163 29.2225 STDPDFEXP = 28.4992 4.7548 25.2514 SKPDFEXP = 1.4166 1.8230 1.5131 KUPDFEXP = 4.7127 6.9671 3.7210 MNPDFLOG = 27.5770 4.0548 56.0055 STDPDFLOG = 25.9415 4.9143 17.7774 SKPDFLOG = 1.8682 2.5286 1.2478 KUPDFLOG = 6.5454 10.3575 2.8813 MNPDFGAM = 31.4924 4.8403 58.0390 STDPDFGAM = 27.7417 5.1162 17.8002 SKPDFGAM = 1.3825 1.9486 1.0286 KUPDFGAM = 4.6979 7.1993 2.6588 sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003 sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043 sqerrorLOGN = 1.0e-005 0.1938 0.0000 0.0093 sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041 Figure D-5. Fuller Warren Bridge New Borings.

PAGE 135

135 0 100 200 300 0 0.005 0.01 0.015 quqt/2 0 20 40 60 80 0 0.01 0.02 0.03 0.04 0.05 qt (tsf) 0 20 40 60 0 0.01 0.02 0.03 0.04 0.05 qu(tsf) MEAN = 1.0e+004 0.0060 0.0006 6.2192 STD = 1.0e+004 0.0042 0.0006 4.8059 SKEW = 0.5721 0.8510 0.7210 KURT = 2.4376 2.2529 2.3001 MNPDFEXP = 1.0e+004 0.0042 0.0005 4.5972 STDPDFEXP = 1.0e+004 0.0035 0.0004 3.9074 SKPDFEXP = 1.1923 1.2702 1.1766 KUPDFEXP = 3.4116 3.8305 3.4654 MNPDFLOG = 1.0e+004 0.0043 0.0004 4.8072 STDPDFLOG = 1.0e+004 0.0032 0.0004 3.4648 SKPDFLOG = 1.3965 1.6554 1.3606 KUPDFLOG = 4.0138 5.1557 4.1142 MNPDFGAM = 1.0e+004 0.0049 0.0005 5.3568 STDPDFGAM = 1.0e+004 0.0033 0.0004 3.6765 SKPDFGAM = 0.9666 1.2516 0.9698 KUPDFGAM = 3.0719 3.7974 3.1902 sqerrorNORM = 1.0e-005 0.1110 0.0016 0.0279 sqerrorEXP = 1.0e-006 0.1716 0.0205 0.8014 sqerrorLOGN = 1.0e-006 0.0112 0.0037 0.7291 Figure D-6. 17th Street Bridge Old and New Borings.

PAGE 136

136 0 50 100 150 0 0.01 0.02 0.03 0.04 qu (tsf) 0 10 20 30 40 0 0.1 0.2 0.3 0.4 qt (tsf) 0 0.5 1 1.5 2 x 105 0 2 4 6 x 10-5 Ei (psi) MEAN = 1.0e+004 0.0033 0.0005 4.0354 STD = 1.0e+004 0.0036 0.0007 4.1662 SKEW = 1.4909 1.9667 1.5006 KURT = 4.3762 6.4417 4.2151 MNPDFEXP = 1.0e+004 0.0031 0.0005 3.6832 STDPDFEXP = 1.0e+004 0.0028 0.0005 3.3610 SKPDFEXP = 1.4166 1.8230 1.3552 KUPDFEXP = 4.7127 6.9671 4.4338 MNPDFLOG = 1.0e+004 0.0028 0.0004 3.3867 STDPDFLOG = 1.0e+004 0.0026 0.0005 2.9839 SKPDFLOG = 1.8682 2.5286 1.7647 KUPDFLOG = 6.5454 10.3575 6.1003 MNPDFGAM = 1.0e+004 0.0031 0.0005 3.8192 STDPDFGAM = 1.0e+004 0.0028 0.0005 3.2012 SKPDFGAM = 1.3825 1.9486 1.2998 KUPDFGAM = 4.6979 7.1993 4.4234 sqerrorNORM = 1.0e-005 0.7224 0.0185 0.0003 sqerrorEXP = 1.0e-005 0.3605 0.0020 0.0043 sqerrorLOGN = 1.0e-005 0.1938 0.0000 0.0093 sqerrorGAM = 1.0e-005 0.3299 0.0037 0.0041 Figure D-7. 17th Street Bridge New Borings.

PAGE 137

137 0 50 100 150 0 0.01 0.02 0.03 0.04 0 10 20 30 40 0 0.1 0.2 0.3 0.4 0 20 40 60 80 0 0.02 0.04 0.06 0.08 0.1 FullerWarren MEAN = 40.6770 5.6533 59.0000 STD = 43.8454 7.7969 16.2741 SKEW = 1.1377 1.7369 -0.2460 KURT = 3.0363 5.4691 1.3395 MNPDFEXP = 35.4210 5.5212 22.4767 STDPDFEXP = 31.5161 5.2677 19.7376 SKPDFEXP = 1.2780 1.7062 1.5784 KUPDFEXP = 4.0350 6.2048 3.8275 MNPDFLOG = 29.4949 4.1192 46.3333 STDPDFLOG = 29.1923 5.4296 13.3009 SKPDFLOG = 1.7745 2.4799 1.3628 KUPDFLOG = 5.7006 9.4714 2.7984 MNPDFGAM = 35.1343 5.2196 47.4964 STDPDFGAM = 31.6539 5.8278 13.2912 SKPDFGAM = 1.2908 1.9324 1.2163 KUPDFGAM = 4.0534 6.6096 2.6321 sqerrorNORM = 1.0e-005 0.6799 0.0320 0.0000 sqerrorEXP = 1.0e-005 0.3160 0.0222 0.0074 sqerrorLOGN = 1.0e-005 0.2110 0.0085 0.0160 sqerrorGAM = 1.0e-005 0.3215 0.0209 0.0077 Figure D-8. Fuller Warren Bridge New Boring CB1.

PAGE 138

138 0 50 100 150 0 0.02 0.04 0.06 0 10 20 30 0 0.1 0.2 0.3 0.4 0 50 100 0 0.01 0.02 0.03 0.04 0.05 FullerWarren EAN = 30.3093 5.0613 74.5000 STD = 32.0428 6.2900 23.5584 SKEW = 2.0375 1.8282 -0.7659 KURT = 7.0180 5.6542 2.4186 MNPDFEXP = 28.8431 4.9667 28.9120 STDPDFEXP = 27.0370 4.7615 25.2984 SKPDFEXP = 1.5024 1.7542 1.5628 KUPDFEXP = 5.1612 6.4929 3.8012 MNPDFLOG = 27.2953 4.3067 51.6272 STDPDFLOG = 23.2056 4.7122 19.8380 SKPDFLOG = 1.9139 2.3214 1.4651 KUPDFLOG = 7.2505 9.2016 2.9963 MNPDFGAM = 29.8271 4.9493 54.7557 STDPDFGAM = 24.1703 4.8362 19.5059 SKPDFGAM = 1.4061 1.7783 1.2851 KUPDFGAM = 5.1809 6.5286 2.7296 sqerrorNORM = 1.0e-004 0.2195 0.0025 0.0032 sqerrorEXP = 1.0e-004 0.1553 0.0008 0.0003 sqerrorLOGN = 1.0e-005 0.9675 0.0110 0.0006 sqerrorGAM = 1.0e-004 0.1333 0.0025 0.0006 Figure D-9. Fuller Warren New Boring CB2.

PAGE 139

139 0 50 100 150 0 0.02 0.04 0.06 0 10 20 30 0 0.1 0.2 0.3 0.4 0 50 100 0 0.01 0.02 0.03 0.04 0.05 FullerWarren MEAN = 30.9569 4.2200 77.3793 STD = 33.1697 6.0748 20.3354 SKEW = 1.1429 2.3112 -0.2341 KURT = 2.8870 7.9730 1.4244 MNPDFEXP = 26.9212 4.1906 28.6658 STDPDFEXP = 23.9281 4.0814 25.3287 SKPDFEXP = 1.2791 1.9112 1.5975 KUPDFEXP = 4.0327 7.5835 3.8601 MNPDFLOG = 23.4179 3.5494 60.1970 STDPDFLOG = 21.6499 4.0810 16.9897 SKPDFLOG = 1.7166 2.6733 1.4052 KUPDFLOG = 5.5971 11.9322 2.7615 MNPDFGAM = 27.2903 4.1714 61.5707 STDPDFGAM = 23.7335 4.2676 16.9482 SKPDFGAM = 1.2574 1.9894 1.2835 KUPDFGAM = 4.0039 7.7753 2.6131 sqerrorNORM = 1.0e-004 0.2302 0.0009 0.0131 sqerrorEXP = 1.0e-004 0.1278 0.0024 0.0073 sqerrorLOGN = 1.0e-005 0.7795 0.0204 0.0453 sqerrorGAM = 1.0e-004 0.1260 0.0028 0.0077 Figure D-10. Fuller Warren New Boring CB3

PAGE 140

140 APPENDIX E SGS RANDOM FIELD TABLES Table E-1. 17th Street Bridge SGS (1feet). A PSF Mean42562.48642 Standard Error219.7863813 Median39538.838 Mode38500 Standard Deviation21150.94231 Sample Variance447362360.5 Kurtosis-0.507237829 Skewness0.48869983 Range99365.73316 Minimum598.72084 Maximum99964.454 Sum394171186.8 Count9261 B PSF Mean42658.43886 Standard Error221.5141441 Median39514.378 Mode41800 Standard Deviation21317.21199 Sample Variance454423526.9 Kurtosis-0.568971001 Skewness0.480259697 Range98794.59432 Minimum1077.72768 Maximum99872.322 Sum395059802.3 Count9261 C PSF Mean42503.73487 Standard Error223.6157448 Median39001.786 Mode49700 Standard Deviation21519.45762 Sample Variance463087056.4 Kurtosis-0.581050641 Skewness0.497640383 Range99866.79713 Minimum117.150872 Maximum99983.948 Sum393627088.6 Count9261 D PSF Mean42557.4383 Standard Error220.0553434 Median39532.284 Mode11399.9996 Standard Deviation21176.82563 Sample Variance448457943.8 Kurtosis-0.580991141 Skewness0.47042905 Range98897.99504 Minimum862.72496 Maximum99760.72 Sum394124436.1 Count9261

PAGE 141

141 Table E-1. Continued. E PSF Mean42518.58199 Standard Error219.4444741 Median39411.644 Mode48900.002 Standard Deviation21118.03918 Sample Variance445971578.7 Kurtosis-0.526496513 Skewness0.488121523 Range99546.9086 Minimum430.7594 Maximum99977.668 Sum393764587.8 Count9261 F PSF Mean43109.75042 Standard Error223.6009188 Median39677.666 Mode38500 Standard Deviation21518.03086 Sample Variance463025652 Kurtosis-0.575002397 Skewness0.468898326 Range99622.97688 Minimum375.72712 Maximum99998.704 Sum399239398.7 Count9261 G PSF Mean42377.27821 Standard Error219.7337363 Median39054.524 Mode15199.9998 Standard Deviation21145.87606 Sample Variance447148074.4 Kurtosis-0.568985276 Skewness0.486387424 Range99352.60342 Minimum622.84458 Maximum99975.448 Sum392455973.5 Count9261 H PSF Mean42587.84604 Standard Error220.7370971 Median39504.638 Mode15199.9998 Standard Deviation21242.43358 Sample Variance451240984.2 Kurtosis-0.544309321 Skewness0.478158775 Range99739.27387 Minimum191.482126 Maximum99930.756 Sum394406042.2 Count9261 I PSF Mean42446.51502 Standard Error221.3665243 Median39289.578 Mode38500 Standard Deviation21303.00593 Sample Variance453818061.7 Kurtosis-0.564645925 Skewness0.495661419 Range99259.75486 Minimum631.13714 Maximum99890.892 Sum393097175.6 Count9261

PAGE 142

142 Table E-2. 17th Street Bridge SGS (5feet). A PSF Mean45806.79179 Standard Error222.6907591 Median42021.988 Mode49700 Standard Deviation21430.44246 Sample Variance459263864 Kurtosis-0.689609294 Skewness0.381837804 Range99308.9843 Minimum594.1977 Maximum99903.182 Sum424216698.7 Count9261 B PSF Mean41246.08288 Standard Error217.5866605 Median38500 Mode41800 Standard Deviation20939.25418 Sample Variance438452365.5 Kurtosis-0.448952677 Skewness0.545106492 Range98730.14074 Minimum1258.95726 Maximum99989.098 Sum381979973.5 Count9261 C PSF Mean45632.38736 Standard Error224.5743392 Median42031.22 Mode30800 Standard Deviation21611.70708 Sample Variance467065883.1 Kurtosis-0.69715789 Skewness0.35706524 Range97915.1958 Minimum2035.8922 Maximum99951.088 Sum422601539.3 Count9261 D PSF Mean42598.52685 Standard Error217.1910467 Median39472.638 Mode15199.9998 Standard Deviation20901.18264 Sample Variance436859435.9 Kurtosis-0.532426787 Skewness0.498080027 Range99879.66534 Minimum109.310656 Maximum99988.976 Sum394504957.1 Count9261

PAGE 143

143 Table E-2. Continued. E PSF Mean44489.19162 Standard Error222.650213 Median41394.268 Mode48900.002 Standard Deviation21426.54054 Sample Variance459096639.7 Kurtosis-0.649152833 Skewness0.41713792 Range99747.25472 Minimum223.29528 Maximum99970.55 Sum412014403.6 Count9261 G PSF Mean41666.77162 Standard Error216.0629871 Median38692.49 Mode49700 Standard Deviation20792.62486 Sample Variance432333248.4 Kurtosis-0.514976359 Skewness0.501212334 Range99806.4971 Minimum67.244902 Maximum99873.742 Sum385875971.9 Count9261 H PSF Mean42756.64801 Standard Error224.632869 Median39366.7 Mode49700 Standard Deviation21617.33964 Sample Variance467309373.1 Kurtosis-0.551513094 Skewness0.508615793 Range99542.12376 Minimum371.65624 Maximum99913.78 Sum395969317.2 I PSF Mean43683.07808 Standard Error222.3762153 Median39940.616 Mode48900.002 Standard Deviation21400.17263 Sample Variance457967388.5 Kurtosis-0.63673678 Skewness0.421260262 Range99744.20568 Minimum158.764318 Maximum99902.97 Sum404548986.1 Count9261 J PSF Mean41831.42157 Standard Error216.718847 Median38761.494 Mode48900.002 Standard Deviation20855.74094 Sample Variance434961930 Kurtosis-0.50047995 Skewness0.533206704 Range99290.7898 Minimum697.6282 Maximum99988.418 Sum387400795.2 Count9261

PAGE 144

144 Table E-3. 17th Street Bridge SGS (12 feet). A BC PSFPSFPSF Mean41584.65934Mean52111.7188Mean39762.78304 Standard Error205.8633641Standard Error233.0037394Standard Error212.0978036 Median38963.996Median49829.998Median36918.004 Mode49700Mode48900.002Mode15199.9998 Standard Deviation19811.07343Standard Deviation22422.90273Standard Deviation20411.03904 Sample Variance392478630.3Sample Variance502786566.9Sample Variance416610514.6 Kurtosis-0.457306535Kurtosis-0.9338627Kurtosis-0.264671923 Skewness0.493885727Skewness0.102754863Skewness0.646850373 Range99151.57972Range99192.8432Range99913.70662 Minimum611.08428Minimum732.4568Minimum62.269382 Maximum99762.664Maximum99925.3Maximum99975.976 Sum385115530.2Sum482606627.8Sum368243133.8 Count9261Count9261Count9261 DEF PSFPSFPSF Mean39355.34143Mean46573.85942Mean40064.89254 Standard Error215.9959574Standard Error232.6746559Standard Error212.0271793 Median36115.68Median42937.85Median37300 Mode11399.9996Mode49700Mode38500 Standard Deviation20786.17431Standard Deviation22391.23368Standard Deviation20404.24257 Sample Variance432065042.7Sample Variance501367345.7Sample Variance416333114.8 Kurtosis-0.386909561Kurtosis-0.802132918Kurtosis-0.443063463 Skewness0.640670637Skewness0.28637968Skewness0.530885072 Range99816.1107Range99937.26621Range99619.43411 Minimum87.5993Minimum14.7757856Minimum97.851888 Maximum99903.71Maximum99952.042Maximum99717.286 Sum364469817Sum431320512.1Sum371040969.8 Count9261Count9261Count9261 GHJ PSFPSFPSF Mean37173.00379Mean47907.34312Mean41663.39521 Standard Error208.7527541Standard Error228.4042742Standard Error220.5532068 Median34311.524Median43876.092Median38535.546 Mode11399.9996Mode49700Mode11399.9996 Standard Deviation20089.13124Standard Deviation21980.27739Standard Deviation21224.73707 Sample Variance403573194.1Sample Variance483132594.2Sample Variance450489463.6 Kurtosis-0.17153857Kurtosis-0.80052981Kurtosis-0.530291652 Skewness0.714709268Skewness0.300035536Skewness0.522353319 Range99077.68402Range98726.572Range99212.07664 Minimum339.23998Minimum1247.8Minimum480.66536 Maximum99416.924Maximum99974.372Maximum99692.742 Sum344259188.1Sum443669904.7Sum385844703.1 Count9261Count9261Count9261

PAGE 145

145 Table E-3. Continued. A A BBZ PSFPSFPSF Mean42900.29827Mean42408.97909Mean46519.50275 Standard Error219.2799472Standard Error218.869694Standard Error223.6012514 Median39601.91Median39127.61Median42316.284 Mode15199.9998Mode48900.002Mode49700 Standard Deviation21102.20608Standard Deviation21062.72574Standard Deviation21518.06286 Sample Variance445303101.5Sample Variance443638415.5Sample Variance463027029.4 Kurtosis-0.643142448Kurtosis-0.538154163Kurtosis-0.695072802 Skewness0.430785494Skewness0.49509214Skewness0.381873107 Range99267.1778Range99698.04192Range99382.08064 Minimum550.6242Minimum212.13808Minimum559.82136 Maximum99817.802Maximum99910.18Maximum99941.902 Sum397299662.3Sum392749555.3Sum430817115 Count9261Count9261Count9261 IKL PSFPSFPSF Mean43704.58521Mean39506.03724Mean44470.57504 Standard Error214.6861676Standard Error199.8427351Standard Error224.9408061 Median39961.776Median37021.622Median41004.174 Mode41800Mode38500Mode49700 Standard Deviation20660.12788Standard Deviation19231.68367Standard Deviation21646.97368 Sample Variance426840884.2Sample Variance369857657Sample Variance468591469.6 Kurtosis-0.585301651Kurtosis-0.35014142Kurtosis-0.659852085 Skewness0.445114079Skewness0.56895775Skewness0.436021337 Range98805.25304Range99826.24379Range99576.18214 Minimum1054.96096Minimum143.53621Minimum260.83786 Maximum99860.214Maximum99969.78Maximum99837.02 Sum404748163.6Sum365865410.8Sum411841995.5 Count9261Count9261Count9261 LLMN PSFPSFPSF Mean52001.27262Mean47226.12953Mean46392.57197 Standard Error231.0221144Standard Error228.5146525Standard Error235.8458747 Median49700Median43423.728Median42452.282 Mode49700Mode41800Mode48900.002 Standard Deviation22232.20286Standard Deviation21990.89954Standard Deviation22696.41304 Sample Variance494270843.9Sample Variance483599662.6Sample Variance515127164.7 Kurtosis-0.875814507Kurtosis-0.743959545Kurtosis-0.793047923 Skewness0.140331985Skewness0.347746576Skewness0.343204355 Range99156.84372Range96633.395Range99050.74032 Minimum837.24428Minimum3327.115Minimum935.39768 Maximum99994.088Maximum99960.51Maximum99986.138 Sum481583785.7Sum437361185.5Sum429641609 Count9261Count9261Count9261

PAGE 146

146 Table E-3. Continued. OP PSFPSFPSF Mean51470.31861Mean41320.25623Mean40438.14456 Standard Error236.2322652Standard Error206.1301759Standard Error215.9221412 Median49608.578Median38500Median37335.826 Mode49700Mode32200Mode11399.9996 Standard Deviation22733.59697Standard Deviation19836.74982Standard Deviation20779.07069 Sample Variance516816431.2Sample Variance393496643.2Sample Variance431769778.5 Kurtosis-0.913495054Kurtosis-0.37199239Kurtosis-0.492837597 Skewness0.171190865Skewness0.55984348Skewness0.533478348 Range99976.04256Range99177.92682Range99853.50113 Minimum18.9974382Minimum734.86918Minimum94.534874 Maximum99995.04Maximum99912.796Maximum99948.036 Sum476666620.7Sum382666892.9Sum374497656.8 Count9261Count9261Count9261 QRS PSFPSFPSF Mean47042.63871Mean44797.74259Mean45763.25705 Standard Error223.6413497Standard Error231.159873Standard Error222.6925403 Median43499.474Median41342.338Median42281.89 Mode48900.002Mode38500Mode48900.002 Standard Deviation21521.92168Standard Deviation22245.45993Standard Deviation21430.61387 Sample Variance463193112.9Sample Variance494860487.6Sample Variance459271211 Kurtosis-0.740545222Kurtosis-0.671942245Kurtosis-0.75114585 Skewness0.319788177Skewness0.424328387Skewness0.319107618 Range97029.068Range99524.53918Range99124.16976 Minimum2876.152Minimum393.21682Minimum841.91824 Maximum99905.22Maximum99917.756Maximum99966.088 Sum435661877.1Sum414871894.1Sum423813523.6 Count9261Count9261Count9261 TUV PSFPSFPSF Mean44061.74486Mean48102.4208Mean37070.10498 Standard Error218.5590664Standard Error221.9101921Standard Error198.1461848 Median41032.302Median44215.9Median34927.44 Mode48900.002Mode38500Mode15199.9998 Standard Deviation21032.83278Standard Deviation21355.32531Standard Deviation19068.4177 Sample Variance442380054.7Sample Variance456049919.2Sample Variance363604553.7 Kurtosis-0.626614687Kurtosis-0.74765644Kurtosis-0.200228081 Skewness0.424741976Skewness0.29905297Skewness0.659719139 Range99303.45Range98855.61356Range99517.49996 Minimum617.266Minimum1139.09244Minimum375.12404 Maximum99920.716Maximum99994.706Maximum99892.624 Sum408055819.2Sum445476519Sum343306242.2 Count9261Count9261Count9261

PAGE 147

147 Table E-3. Continued. WXY PSFPSFPSF Mean44963.57643Mean42967.49829Mean47554.61147 Standard Error222.873721Standard Error222.1398912Standard Error248.1298149 Median41800Median39449.822Median43413.186 Mode49700Mode49700Mode11399.9996 Standard Deviation21448.04963Standard Deviation21377.4302Standard Deviation23878.54684 Sample Variance460018833Sample Variance456994521.8Sample Variance570184999.2 Kurtosis-0.664903412Kurtosis-0.588149668Kurtosis-0.886393787 Skewness0.400653996Skewness0.47779941Skewness0.30788879 Range98933.37236Range98727.84014Range99288.7588 Minimum1062.49964Minimum1192.01386Minimum707.5792 Maximum99995.872Maximum99919.854Maximum99996.338 Sum416407681.4Sum397922001.7Sum440403256.8 Count9261Count9261Count9261

PAGE 148

148 Table E-4. 17th Street Bridge SGS (20feet). A B PSFPSF Mean45407.11477Mean44728.03485 Standard Error235.5262499Standard Error231.9539298 Median41856.568Median41280.174 Mode48900.002Mode48900.002 Standard Deviation22665.65424Standard Deviation22321.87526 Sample Variance513731882.1Sample Variance498266115 Kurtosis-0.732519328Kurtosis-0.718776057 Skewness0.383255739Skewness0.39948428 Range99920.77422Range99567.77814 Minimum60.007784Minimum414.47586 Maximum99980.782Maximum99982.254 Sum420515289.9Sum414226330.7 Count9261Count9261 CD PSFPSF Mean42210.90062Mean43657.61793 Standard Error222.0514785Standard Error225.6671411 Median39094.814Median39968.552 Mode49700Mode49700 Standard Deviation21368.92187Standard Deviation21716.87187 Sample Variance456630822.1Sample Variance471622524 Kurtosis-0.546710456Kurtosis-0.656686698 Skewness0.494754071Skewness0.442924124 Range99843.95339Range99635.08658 Minimum84.734612Minimum222.54142 Maximum99928.688Maximum99857.628 Sum390915150.6Sum404313199.7 Count9261Count9261

PAGE 149

149 Table E-4. Continued. FG PSFPSF Mean41916.56315Mean42862.22371 Standard Error215.7209468Standard Error214.3914192 Median39004.65Median39756.89 Mode41800Mode38500 Standard Deviation20759.70892Standard Deviation20631.76305 Sample Variance430965514.3Sample Variance425669646.5 Kurtosis-0.571675821Kurtosis-0.597299848 Skewness0.480379812Skewness0.420685131 Range99964.77187Range99763.42888 Minimum10.554133Minimum18.545119 Maximum99975.326Maximum99781.974 Sum388189291.3Sum396947053.7 Count9261Count9261 HI PSFPSF Mean45380.61602Mean41610.78171 Standard Error235.732166Standard Error222.7657464 Median41800Median38575.492 Mode38500Mode32200 Standard Deviation22685.47038Standard Deviation21437.6588 Sample Variance514630566.5Sample Variance459573214.6 Kurtosis-0.716214975Kurtosis-0.524411823 Skewness0.415227363Skewness0.521869386 Range99922.89606Range99693.49401 Minimum65.887942Minimum158.311992 Maximum99988.784Maximum99851.806 Sum420269885Sum385357449.4 Count9261Count9261

PAGE 150

150 APPENDIX F FLAC3D PROGRAMMING MODELS Table F-1. FLAC Results. 1 (feet) Cap .15(ton) Bias A 200 1.175 0.007300506 B 240 0.979167 0.012186026 C 235 1 0.008020456 D 220 1.068182 0.000456898 E 210 1.119048 0.000869697 F 200 1.175 0.007300506 G 285 0.824561 0.070222666 H 250 0.94 0.022367296 I 225 1.044444 0.002035143 J 265 0.886792 0.041113462 K 235 1 0.008020456 L 230 1.021739 0.004599263 LL 185 1.27027 0.032657286 M 235 1 0.008020456 N 190 1.236842 0.021692902 230 1.021739 0.004599263 O 190 1.236842 0.021692902 P 190 1.236842 0.021692902 R 200 1.175 0.007300506 S 235 1 0.008020456 T 215 1.093023 1.20149E-05 U 235 1 0.008020456 V 240 0.979167 0.012186026 W 200 1.175 0.007300506 X 187.5 1.253333 0.026822687 Y 195 1.205128 0.013356703 Z 200 1.175 0.007300506 AA 190 1.236842 0.021692902 BB 220 1.068182 0.000456898 Determinis 235 Mean 1.089557 0.407317752 Standar 0.120611204 COV 0.110698

PAGE 151

151 Table F-1. Continued. 5 (feet) Cap .15(ton) Bias A 235 1 0.01099541 B 185 1.27027 0.027360888 C 220 1.068182 0.001345216 D 215 1.093023 0.000140085 E 215 1.093023 0.000140085 F 190 1.236842 0.01741954 G 230 1.021739 0.006908913 H 195 1.205128 0.010053913 I 285 0.824561 0.078566743 J 225 1.044444 0.003649919 K 175 1.342857 0.056643116 L 240 0.979167 0.015798563 LL 240 0.979167 0.015798563 M 295 0.79661 0.095017342 N 215 1.093023 0.000140085 200 1.175 0.00491976 O 190 1.236842 0.01741954 P 190 1.236842 0.01741954 Q 265 0.886792 0.047553019 R 190 1.236842 0.01741954 S 250 0.94 0.02717849 T 230 1.021739 0.006908913 U 190 1.236842 0.01741954 V 235 1 0.01099541 W 240 0.979167 0.015798563 X 225 1.044444 0.003649919 Y 175 1.342857 0.056643116 Z 200 1.175 0.00491976 AA 245 0.959184 0.021221301 BB 200 1.175 0.00491976 CC 190 1.236842 0.01741954 DD 150 1.566667 0.213266321 EE 280 0.839286 0.07052917 FF 220 1.068182 0.001345216 GG 260 0.903846 0.040406164 HH 180 1.305556 0.040279107 II 180 1.305556 0.040279107 JJ 230 1.021739 0.006908913 KK 300 0.783333 0.103378754 MM 160 1.46875 0.13241666 Determinis 225 Mean 1.104859 1.280593501 Standar 0.181206321 COV 0.164009

PAGE 152

152 Table F-1. Continued 12 (feet) Cap .15(ton) Bias A 260 0.903846 0.01190932 B 250 0.94 0.0154095 C 240 0.979167 0.00721962 D 270 0.87037 0.03754473 E 250 0.94 0.0154095 F 215 1.093023 0.00083453 G 200 1.175 0.01229105 H 250 0.94 0.0154095 I 280 0.839286 0.0505572 J 200 1.175 0.01229105 K 235 1 0.0041133 L 265 0.886792 0.03145038 LL 310 0.758065 0.09367914 M 260 0.903846 0.02569251 N 190 1.236842 0.02982774 200 1.175 0.01229105 O 285 0.824561 0.05739551 P 205 1.146341 0.0067579 Q 225 1.044444 0.00038772 R 210 1.119048 0.0030154 S 280 0.839286 0.0505572 T 240 0.979167 0.00721962 U 285 0.824561 0.05739551 V 200 1.175 0.01229105 W 200 1.175 0.01229105 X 285 0.824561 0.05739551 Y 330 0.712121 0.12391371 Z 210 1.119048 0.0030154 AA 225 1.044444 0.00038772 BB 195 1.205128 0.01987908 CC 250 0.94 0.0154095 DD 200 1.175 0.01229105 EE 230 1.021739 0.00179741 FF 225 1.044444 0.00038772 GG 260 0.903846 0.02569251 HH 270 0.87037 0.03754473 II 185 1.27027 0.04249175 JJ 190 1.236842 0.02982774 KK 300 0.783333 0.07884958 MM 165 1.424242 0.12967736 Determinis 235 Mean 1.012976 1.16180183 Standar 0.17259719 COV 0.170386

PAGE 153

153 Table F-2 1 (feet) End Bearing .15(ton) Mean 218.362069 Standard Error 4.689030312 Median 220 Mode 200 Standard Deviation 25.25120102 Sample Variance 637.6231527 Kurtosis 0.124369761 Skewness 0.651972746 Range 100 Minimum 185 Maximum 285 Sum 6332.5 Count 295 (feet) End Bearing .15(ton) Mean 218.375 Standard Error 5.727205375 Median 217.5 Mode 190 Standard Deviation 36.22202723 Sample Variance 1312.035256 Kurtosis 0.226714365 Skewness 0.449655743 Range 150 Minimum 150 Maximum 300 Sum 8735 Count 4012 (feet) End Bearing .15(ton) Mean 238.125 Standard Error 6.175031 Median 237.5 Mode 200 Standard Deviation 39.05433 Sample Variance 1525.24 Kurtosis -0.63762 Skewness 0.310262 Range 165 Minimum 165 Maximum 330 Sum 9525 Count 40

PAGE 154

154 TYPICAL FLAC3D EXAMPLE ;----------------------------------------------; Vertically loaded pile ;----------------------------------------------model mohr prop bulk 8.86E+06 shear 6.10E+06 fric 15 coh 71980.51 range group 1 prop bulk 8.70E+06 shear 5.99E+06 fric 15 coh 70372.78 range group 2 prop bulk 8.00E+06 shear 5.51E+06 fric 15 coh 63234.3 range group 3 prop bulk 8.39E+06 shear 5.78E+06 fric 20 coh 67204.36 range group 7998 prop bulk 7.94E+06 shear 5.47E+06 fric 20 coh 62625.79 range group 7999 prop bulk 7.48E+06 shear 5.15E+06 fric 20 coh 57934.44 range group 8000 ini dens 4.4 range group 1 ini dens 4.4 range group 2 ini dens 4.4 range group 3 ini dens 3.1 range group 7998 ini dens 3.1 range group 7999 ini dens 3.1 range group 8000 ; gen zone brick p0 (13.5,13.5,20) p1 (16.5, 13.5,20) p2 (13.5,16.5,20) p3 (13.5,13.5,40)& p4 (16.5,16.5,20) p5 (13.5,16.5,40) p6 (16.5,13.5,40) p7 (16.5,16.5,40)& size 2 2 20 gen zone brick p0 (13.5,13.5,40) p1 (16.5,13. 5,40) p2 (13.5,16.5,40) p3 (13.5,13.5,40.1)& p4 (16.5,16.5,40) p5 (13.5,16.5,40.1) p6 (16.5,13.5,40.1) p7 (16.5,16.5,40.1)& size 2 2 1 group pile range x=13.5 16.5 y=13.5 16.5 z=20 40.1 save pile_geom.sav ; model elas range group pile prop bulk 6.50E+06 shear 3.00E+06 range group pile interface 1 prop kn 1.8e7 ks 1.8e7 fric 5 coh 30000 ; ini dens 3.1 range group pile model null range z 39.9 40.15 ; fix z range z -.1 .1 fix x range x -.1 .1 fix x range x 29.9 30.1 fix y range y -.1 .1 fix y range y 29.9 30.1

PAGE 155

155 set grav 0 0 -32.18 ini szz 0. grad 0 0 100 range z 0 40 ini sxx 0. grad 0 0 50 range z 0 40 ini syy 0. grad 0 0 50 range z 0 40 ; hist unbal ; solve rat 1.0e-5 save pile0.sav ; model elas range group pile prop bulk 3.10E+08 shear 2.54E+08 range group pile ini dens 4.9 range group pile call find_add.fis solve rat 1.e-5 save pile1.sav ; ini state 0 ini xdis 0 ydis 0 zdis 0 ; ; monitor vertical loading at pile cap def zs_top ad = top_head zftot = 0.0 loop while ad # null gp_pnt = mem(ad+1) zf = gp_zfunbal(gp_pnt) zftot = zftot + zf ad = mem(ad) endloop zs_top = zftot / 9 end fix z range z 40.05 40.15 group pile ; def ramp while_stepping if step < ncut then udapp = float(st ep) udmax / float(ncut) else udapp = udmax endif ad = top_head loop while ad # null gp_pnt = mem(ad+1) gp_zvel(gp_pnt) = udapp ad = mem(ad)

PAGE 156

156 endloop end ; hist gp zdis 15,15,40 hist gp zvel 15,15,40 hist zs_top hist zone szz 15,15,39.9 hist zone szz 15,15,20 ; set mech damp comb set udmax = -1e-4 ncut 15000 step 112500 plot create history plot add hist 4 vs -2 save pile2.sav

PAGE 157

157 APPENDIX G UNIT COST DATA

PAGE 158

158

PAGE 159

159 LIST OF REFERENCES Allen, T., Nowak, A.S. and Bathurst, R.J. (2005). Calibration to Determine Load and Resistance Factors for Geotechnical and Stru ctural Design. Tran sportation Research Board. Ang, H-S. and Tang, W.H. (1975). Probability Concepts in Engineering Planning and Design. Vol. I Basic Principles, 19-45. Fenton, G.A. (1999). Estimation for Stochastic Soil Models. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125 (6), 470-485. Fenton, G.A. (2002). Probabilistic Foundation Settlement on a Spatially Random Soil. ASCE Journal of Geotechnical and Geoenvironm ental Engineering, 128 (5), 381-390. Fenton, G.A. and Griffiths, D.V. (2003). Bearing Capacity of Spatially Random cSoils. Canadian Geotechnical J ournal, 40(1), 54-65. (Jing 2003). Kulhawy, F.H., Spry M.J. and Grigoriu, M.D. (1988). Reliability-Bas ed Foundation Design for Transmission Line Structures. EPRI Vol. 1. Geotechnical Site Characterization Strategy. Kulhawy, F.H., Filippas O.B. and Grigoriu, M. D. (1988). Reliability -Based Foundation Design for Transmission Line Structures. EPRI Vol. 3. Uncertainties in Soil Property Measurement. Learning Resource Centre at Learning Deve lopment-University of Wollongong (2001). Self Directed Learning Resource. Mark, C., McWilliams, L., Pappas, D. and Rusnak, J. (2004). Spatial Trends in Rock StrengthCan They be Determined from Coreholes? Na tional Institute for Occupational Safety and Health. McVey, M. and Ellis, E. (2003). Static and Dyna mic Field Testing of Drilled Shafts. Florida Department of Transportation No. 99052794. National Cooperative Highway Research Pr ogram (NCHRP) (2004). Load and Resistance Factor Design (LRFD) for Deep Foundations. Report 507. National Highway Institute (1998). Load and Re sistance Factor Design (LRFD) for Highway Bridge Substructures. NHI Course No. 13068, Volume 2. Nowak, A.S. and Collins, K.R. (2000). Reliabili ty of Structures. Chapter 8 Design Codes. Nowak, M. and Verly, G. (2004). The Pr actice of Sequential Gaussian Simulation. Geostatistics Banff, 1, 387-398.

PAGE 160

160 Phoon, K. K., Kulhawy, F. H. and Grigoriu, M. D. (2003). Development of a Reliability-Based Design Framework for Transmission Line Stru cture Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 798-806. Phoon, K.K. and Kulhawy, F.H. (2002). Obs ervations on Geotechnical Reliability-Based Design Development in North America. Foundation Design Codes and Soil Investigation in View of Internati onal Harmonization and Performance, 31-48. Schaeffer, R. and Mcclave, J. (1995). Probability and Statistics for Engineers. Fourth Edition, 76-83 and 122-164.

PAGE 161

161 BIOGRAPHICAL SKETCH Johanna Otero was born in Monter ia, Colombia, to Maria Isabel Sanchez and Rafael Otero. She graduated from Colegio la Sagrada Familia High School in Monteria Colombia in December 1992. She received his Bachelor of Science in ci vil engineering in the fall of 1998 from the University EAFIT, Medellin Colombia.. After graduation as an Engi neer, she worked on the transportation area on Pereira Colombia for almost four years. Johanna continued her education by entering graduate school to pursue a Master of Engineering in the Construction Management Group of the Civil and Coastal Engineering Department at the University of Florida in th e fall 2003. She received his Master of Engineering in the fall of 2004. Currently, she is pursuing a Doctorate of Philosophy at the same institution.