<%BANNER%>

Allowable Limits for Conductivity Test Methods and Diffusion Coefficient Prediction of Concrete Structures Exposed to Ma...

Permanent Link: http://ufdc.ufl.edu/UFE0021765/00001

Material Information

Title: Allowable Limits for Conductivity Test Methods and Diffusion Coefficient Prediction of Concrete Structures Exposed to Marine Environments
Physical Description: 1 online resource (216 p.)
Language: english
Creator: Vivas, Enrique A
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: concrete, conductivity, diffusion, durability, permeability, rcp, resistivity
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This work details research conducted on methods used to rapidly determine the resistance of concrete to the penetration of chloride ions. These methods, based on the electrical conductivity of concrete, were Rapid Chloride Permeability (RCP) (AASHTO T277, ASTM C1202) and Surface Resistivity (SR) (FM 5-578). The results of these conductivity tests were compared to the Bulk Diffusion (NordTest NTBuild 443) test, which allow a more natural penetration of the concrete by the chlorides. Nineteen different mixtures were prepared using materials typically used in construction in the State of Florida. Twelve mixtures were laboratory prepared and the remaining seven mixtures were obtained at various field sites around the State. The concrete mixtures were designed to have a range of permeabilities. Some of the designs included such pozzolans as fly ash and silica fume. One mixture was prepared with calcium nitrate corrosion inhibitor. Diffusion coefficients were determined from the Bulk Diffusion test using a 1 and 3-year chloride exposure period. The electrical results from the short-term tests RCP and SR at 14, 28, 56, 91, 182 and 364 days of age were then compared to the long-term diffusion reference test. A new calibrated scale to categorize the equivalent RCP measured charge in coulombs to the chloride ion permeability of the concrete was developed. The proposed scale was based on the correlation of the 91-day RCP results related to the chloride permeability measured by a 1-year Bulk Diffusion test. Finally, to provide additional data to which the laboratory long-term Bulk Diffusion results can be compared, several concrete specimens were collected from six selected FDOT bridges located in marine environments. A total of 14 core samples were obtained from the substructures tidal zone of exposure. The average chloride exposure was ten-years. The diffusion results obtained showed considerable lower chloride penetration than the 1 and 3 year laboratory results. It appears that the laboratory methods overestimate the chloride ingress from concrete exposed in the field.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Enrique A Vivas.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Hamilton, Homer R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021765:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021765/00001

Material Information

Title: Allowable Limits for Conductivity Test Methods and Diffusion Coefficient Prediction of Concrete Structures Exposed to Marine Environments
Physical Description: 1 online resource (216 p.)
Language: english
Creator: Vivas, Enrique A
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: concrete, conductivity, diffusion, durability, permeability, rcp, resistivity
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This work details research conducted on methods used to rapidly determine the resistance of concrete to the penetration of chloride ions. These methods, based on the electrical conductivity of concrete, were Rapid Chloride Permeability (RCP) (AASHTO T277, ASTM C1202) and Surface Resistivity (SR) (FM 5-578). The results of these conductivity tests were compared to the Bulk Diffusion (NordTest NTBuild 443) test, which allow a more natural penetration of the concrete by the chlorides. Nineteen different mixtures were prepared using materials typically used in construction in the State of Florida. Twelve mixtures were laboratory prepared and the remaining seven mixtures were obtained at various field sites around the State. The concrete mixtures were designed to have a range of permeabilities. Some of the designs included such pozzolans as fly ash and silica fume. One mixture was prepared with calcium nitrate corrosion inhibitor. Diffusion coefficients were determined from the Bulk Diffusion test using a 1 and 3-year chloride exposure period. The electrical results from the short-term tests RCP and SR at 14, 28, 56, 91, 182 and 364 days of age were then compared to the long-term diffusion reference test. A new calibrated scale to categorize the equivalent RCP measured charge in coulombs to the chloride ion permeability of the concrete was developed. The proposed scale was based on the correlation of the 91-day RCP results related to the chloride permeability measured by a 1-year Bulk Diffusion test. Finally, to provide additional data to which the laboratory long-term Bulk Diffusion results can be compared, several concrete specimens were collected from six selected FDOT bridges located in marine environments. A total of 14 core samples were obtained from the substructures tidal zone of exposure. The average chloride exposure was ten-years. The diffusion results obtained showed considerable lower chloride penetration than the 1 and 3 year laboratory results. It appears that the laboratory methods overestimate the chloride ingress from concrete exposed in the field.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Enrique A Vivas.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Hamilton, Homer R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021765:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101108_AAAACH INGEST_TIME 2010-11-08T23:46:44Z PACKAGE UFE0021765_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 13840 DFID F20101108_AABYPC ORIGIN DEPOSITOR PATH vivas_e_Page_061.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
57a19aee11188a342de0effe55e947f5
SHA-1
98624f21ed5385cf50e7b3b045385f7a4d186d62
4962 F20101108_AABYON vivas_e_Page_053thm.jpg
5b0e69b77817b33adb9f9d4d5731ce3a
27d348ae11084bd16bcf928be16f02ff32234237
3922 F20101108_AABYNZ vivas_e_Page_046thm.jpg
1b93eab189075b24505a0dd251e5895b
c5a8e47851e267c4c5d7da337d8e52cd282f8a5e
113587 F20101108_AABXMA vivas_e_Page_213.jp2
85949f82251f7448926a0be2e9983063
ea2ba4cd4fc89bc8bc2c84e32e7f9b22c212f7ee
81350 F20101108_AABXLL vivas_e_Page_197.jp2
a9a94ba5c4b81c35605aef943260d953
9db66af9f1d73760ad7c88598990e1ea79e27b25
27795 F20101108_AABXKX vivas_e_Page_183.jp2
11a282ae93b705c88cf716d710cd90d1
1526320fa50e5f1a6f1bc28d572a348dd3e5df82
4598 F20101108_AABYPD vivas_e_Page_061thm.jpg
4007b51ccd07741da2d786c5b6390771
844c842709325b96392bb9e0d8f06f74fb29ebb9
15788 F20101108_AABYOO vivas_e_Page_054.QC.jpg
aa61b848d1882ae42726a3a67e4b0dde
642e64687895a9444cb1b276c4b3a42ef205a93b
131960 F20101108_AABXMB vivas_e_Page_214.jp2
c13efa36aea389e8e0c36e89c2e37edf
1d94d4055c05dc4cf885a3823374c51c86c554d9
83655 F20101108_AABXLM vivas_e_Page_198.jp2
23e628db67decb01d503457752a5d41b
9db5d774b4fd6b87aa7b43a18e4af65aa49edbd5
201795 F20101108_AABXKY vivas_e_Page_184.jp2
88943d12e1d0b8e0efea2dc8d42b15c4
a41278b555514b8801f379427e777a828d53ecfe
4748 F20101108_AABYOP vivas_e_Page_054thm.jpg
17c031a1fde63806e878eecd8a72a3e0
cc21dfa0e4f66806078762f56561fc532f2f6805
29006 F20101108_AABXLN vivas_e_Page_199.jp2
27c3bb0d5f39e4517da2fd22c2297190
b58fb05d103efc20bb6e066a49c1a1a1df45c9a6
142898 F20101108_AABXKZ vivas_e_Page_185.jp2
69baac8ec0e022258778489fd79c5a48
b47c66caa742ef73d082f61568678491812b11ab
15007 F20101108_AABYPE vivas_e_Page_062.QC.jpg
41723e1f9a62a17b717dc1a684d74a5b
104cbc387c42a0e3ed5de6267e78299ba174148a
12899 F20101108_AABYOQ vivas_e_Page_055.QC.jpg
49571bfff8818f576f7a59b7521edac5
53acab3e1c1ac108ca421e82a099a5b664eb2692
73106 F20101108_AABXMC vivas_e_Page_215.jp2
54243ae6506a9bb9e13c69abb2c53c2d
3696b6ffa79300af174d58adb34abc9dda80a8b0
82249 F20101108_AABXLO vivas_e_Page_200.jp2
a6a61dd7098a0e1182c91ccafe90ff09
a0c341624de98c73aae87f8a1341579fb29a776f
4868 F20101108_AABYPF vivas_e_Page_062thm.jpg
f03665bdedccc9d9f30906d1115ee292
f59f88c300277fdf713a56ebe12e588651597bbe
3854 F20101108_AABYOR vivas_e_Page_055thm.jpg
8ad694835ebf5ef88b34fbb132261ac6
d5b466aa05bb20e5105dfe2c7ff0ac3fd0c381d0
48179 F20101108_AABXMD vivas_e_Page_216.jp2
65c45dd784cf64f362727a0e955664b4
7eb49cfced9f6af8a12b87c59cfe7c296ecb6845
84158 F20101108_AABXLP vivas_e_Page_202.jp2
57aa45c98d633bde1e47e59510895b2b
7c4a251ea5c234e79852c689e3aee587d3644d37
14282 F20101108_AABYPG vivas_e_Page_063.QC.jpg
8e4b6adee80d38c410a08027badbec5c
3a995d4745dd9ac0fb5e230e1d6f575df3120130
6429 F20101108_AABYOS vivas_e_Page_056.QC.jpg
04a764d5fc1b15cd9405bd8bb463e59b
780837401c9b3d6b35db13e5314a40e305433f4a
1053954 F20101108_AABXME vivas_e_Page_001.tif
a53c84101798643017345072bf1ab076
935b44adae81f4903d07ad4a8b33c82633ec5a01
29600 F20101108_AABXLQ vivas_e_Page_203.jp2
003df02344985aa1ea5cbe09118d76c7
1dca5dffef2315d8d9dbd5a6a1b60204d72b4306
4454 F20101108_AABYPH vivas_e_Page_063thm.jpg
454d2ebe408c01b5978e6c3b8f635eac
87894adab0b29964a7427e3aae408350ddc4e367
2221 F20101108_AABYOT vivas_e_Page_056thm.jpg
3d241ec298d13e590d9199769e6dc926
064fc9c0ffa5d9b20a35aa12b898426dc768904b
F20101108_AABXMF vivas_e_Page_002.tif
11b3a61193b65d6dd13b8cbfb711b270
0bbbb669d7d9346ac90708eead48658f71858e2c
82990 F20101108_AABXLR vivas_e_Page_204.jp2
15e0d04259780a85320dd15d976ffaec
14e112aa6083256019403f813ee2c7ff728c0502
19187 F20101108_AABYPI vivas_e_Page_064.QC.jpg
81f9a3fde995b7d6f46b59a7513e5702
3f8f6c6d8280dd7cd684429fc8da58098a35ef84
15576 F20101108_AABYOU vivas_e_Page_057.QC.jpg
4baa040892780ba671ba9725744996a8
d740264ca56ec94d8cd9407a0c4bc4dde2f9e686
F20101108_AABXMG vivas_e_Page_003.tif
8f638e9722f15781ba2e2dcdf9780f2f
63829a78e748f85ac9f70f183f43734e61d3e081
28810 F20101108_AABXLS vivas_e_Page_205.jp2
104ea7e6e886c926ad4c9f8ba865b960
f0c21f2ddc461a7920e5e627f52529fe5b36269e
5621 F20101108_AABYPJ vivas_e_Page_064thm.jpg
9a5854e78ed4afb201f832c0c2365b1e
a8dc5d83bdb5801a2c2027ea4e647d520f06000e
4789 F20101108_AABYOV vivas_e_Page_057thm.jpg
82ded4811cf1efd598fed39df2297889
ea490efae8d14617c2fd58cc1f467edf62f88bb1
F20101108_AABXMH vivas_e_Page_004.tif
adf4ef228119bb4e171e472341ad1e14
c3221b47b22f4e92919c677358226e60eeb494da
68879 F20101108_AABXLT vivas_e_Page_206.jp2
7200245ecccdc18d0108d94b9a75d1f9
eadb623bf1b7c02fd354882bb6c7fd5523146d58
11448 F20101108_AABYPK vivas_e_Page_065.QC.jpg
187c00d5c382605993e2fb33b01f4f77
6ddc4ff94acad9858decaf13e140f72362b9980f
15406 F20101108_AABYOW vivas_e_Page_058.QC.jpg
2c61a5e23adc19fe9ecf58f67d2b3d9b
d51cfae131fc90a5cc2d9b6e9c6c0cefcd08f2d9
25271604 F20101108_AABXMI vivas_e_Page_005.tif
3ad12b0e77ac022bda70cb7eb6b1d805
a9774980aab53b916d3fdf1bb8a332309f1c95b2
56072 F20101108_AABXLU vivas_e_Page_207.jp2
50c28450a2c617701b90dabba1a08acd
3a1f1ca95debcd766e107596d75ac44d38b8db71
14574 F20101108_AABYQA vivas_e_Page_073.QC.jpg
f90ea609e39b58c8a1c380a37cca8df9
ae39d49d4275c4e76cea0f4d04b7392975219e37
3529 F20101108_AABYPL vivas_e_Page_065thm.jpg
7cb918502a8cdc392a7a3da00d18ffd8
37c367af4de6750ab84595913bce7c34429a3276
4859 F20101108_AABYOX vivas_e_Page_058thm.jpg
2bb9912b03016b348dba7908c177f903
9b730373dc4cbb4cc007a1e37055b17f3f3040b6
F20101108_AABXMJ vivas_e_Page_006.tif
0afbfe5c19416985207fd1a06dc5c755
40e098307950cf12f16d46681b3456f5564eac53
60719 F20101108_AABXLV vivas_e_Page_208.jp2
9dbae95e099619c346490544cb6a79b9
a49b5f60aec01e118e305df3d2f11c0e5ac33d6e
3979 F20101108_AABYQB vivas_e_Page_074thm.jpg
c6b90ea0fec7a45205c6aeae5c5b29b9
e48ef8195d22a0d0db40ffe9ce64406c84c63d05
22710 F20101108_AABYPM vivas_e_Page_066.QC.jpg
5697495cff3afdf6b692d3b8eff66d0b
b0787dec4dabe2426551c321f21dc5ab0de67dbe
15919 F20101108_AABYOY vivas_e_Page_059.QC.jpg
55153691afa6ae14df3505b09b33b4a0
2d8cf7b82389b0739a5bf61710a35d9d0ba39f3d
F20101108_AABXMK vivas_e_Page_007.tif
07db7d6b231fe7bef07d024be2b2b0ec
7cdd19afb82cc57009de5666c7779e566a41112a
63596 F20101108_AABXLW vivas_e_Page_209.jp2
784bca3dd4e06c9f4aa7b04025318652
0ec31df46c4b8ae6bf591db8668b353de5556045
11675 F20101108_AABYQC vivas_e_Page_075.QC.jpg
bc75a46032024977eecfcb1d6d5aa736
9ec17923f9102caafd393273b84e1459da4d4ddd
6502 F20101108_AABYPN vivas_e_Page_066thm.jpg
afdae993b546e2785d9b4dbf8c26d2c5
4f07b562dd778fe381b6822c23a2448ee9b6a75d
4665 F20101108_AABYOZ vivas_e_Page_059thm.jpg
1c91b6b8ff21c7227f5a17819cfa687a
e8ef038b19bdd8195630674b93f149773fdd7b40
F20101108_AABXML vivas_e_Page_008.tif
d4d0ee6575130bf7d1cd2be3640ac56a
bb3235a5eb8188d00d09d6a3f24cda1808e6804d
126775 F20101108_AABXLX vivas_e_Page_210.jp2
dbbeebb8f2af6fc40145e290301bd493
611fd9847946c3ec79732ead11fed9ff14863190
F20101108_AABXNA vivas_e_Page_024.tif
012fbf414b6c96333c4d60d468bf2150
46938af7075c6df8ad4feb1d8bbba5b1bfc688ac
3629 F20101108_AABYQD vivas_e_Page_075thm.jpg
fdb643f68120d8b6fadc7729a50f80c3
5753f0c06312cfce69ca774eb0f41d9aa92497e2
25960 F20101108_AABYPO vivas_e_Page_067.QC.jpg
529ea3ce0790dfbb12d96bb25750f414
4a7b1b22c8a31b02e46eee450def5cd2f4770951
F20101108_AABXMM vivas_e_Page_009.tif
15cac4d610870d9c9157fdbeab445127
4c90681517ef029b6bc4b77cf34a4d5fc1403c8f
122811 F20101108_AABXLY vivas_e_Page_211.jp2
41b714d407bfd3b993c79687857b04eb
d63f127a4a52ec735c884e6c76963e88a334f36e
F20101108_AABXNB vivas_e_Page_025.tif
7d909bd40167c5f8e261de84b4d90340
0057956431356767b280bbe050a74da624ed7792
9270 F20101108_AABYQE vivas_e_Page_076.QC.jpg
2bcb1db089859e9dcd1b24bf66976b1b
0440447170905c13b48be6d84d429ff16f9213c9
7004 F20101108_AABYPP vivas_e_Page_067thm.jpg
05c95414b492427253ab6b7955a095fd
f69716d17f81f286b2d03efd97a4d7160ab8e93c
F20101108_AABXMN vivas_e_Page_011.tif
02af643e87707a6bd9afc55052219889
fdae540ba458257b5299e0fc614234bcd4729263
124824 F20101108_AABXLZ vivas_e_Page_212.jp2
bb9c05df4868f4d76f1533fef874d714
f17191171c176b0a72e3e31a0fb313ee70f8a40f
F20101108_AABXNC vivas_e_Page_026.tif
69a0a7a49ae7f98ae77aceba2e1c31ac
1290b0bba2b93a3f6ffa40130f5ac7c40047112a
24086 F20101108_AABYPQ vivas_e_Page_068.QC.jpg
f1ffc985c9e698a4cfbbdaf7aa5596eb
c419eccc238afe3163c90cad67f3ad15ff649f93
F20101108_AABXMO vivas_e_Page_012.tif
c2e29e30decf26957c64ad553427c8c3
fbf79bb9ff14f23399aa0be690372f756cbe4c89
3204 F20101108_AABYQF vivas_e_Page_076thm.jpg
cf302f22650e5ab941010f7be81c7f36
baef6f15ddb93306d9bf0f775db333cc97bfd630
6717 F20101108_AABYPR vivas_e_Page_068thm.jpg
74153f0f65d6947feee236c6feba55c8
d7c9d34b2d0d4cbed749f0fd9ae0795b897b7842
F20101108_AABXMP vivas_e_Page_013.tif
535014a3b92b9182eb40c16608c6a546
df1add42649077c9eeac5e5487d692070bdb7b5d
F20101108_AABXND vivas_e_Page_027.tif
5809b23e07afd25191a544bd04c969cd
947ddd9f89ddcaf6bf00ef570347e73f3e7ae2b7
23271 F20101108_AABYQG vivas_e_Page_077.QC.jpg
4e411dc2b7d6a1a0a46ef5161fb6258d
b8699f277f6edf891ce63c2e4cc78265346410de
25481 F20101108_AABYPS vivas_e_Page_069.QC.jpg
349e1718db89e7da48f8daf9c78a68d2
018838c7356367bb3104cb6bd0ded95a2af365bb
F20101108_AABXMQ vivas_e_Page_014.tif
b0d0ac06326146be167fc663f2a9d577
2512cfbbd542f78ff9178e34baefed540ea8ffac
F20101108_AABXNE vivas_e_Page_028.tif
5579f3376c9d996f8ba6db48e0dd6527
199e4ae4897ee393d91f44bb055b1af718368b5e
6396 F20101108_AABYQH vivas_e_Page_077thm.jpg
92a1a49f29f5edb9545612ce1e649068
926dab0170ef677f04bd4cf0ab2dae061b4aaed9
6922 F20101108_AABYPT vivas_e_Page_069thm.jpg
8c4d033428b9e04ea433eafce5c8945d
4eaa2dd22de2f4ff04e27cff43bdeb1cd8b5301a
F20101108_AABXMR vivas_e_Page_015.tif
316ece73ff9ef9dda42e4a3a560abf7c
2df07b4f1fa91d8e9810cdb710a80cfc0b6999a3
F20101108_AABXNF vivas_e_Page_029.tif
d5cd4bcbf76637f365ee4a426b62d255
b3cdaff1b45f8f66314ac07f85086e3ef0ac73c7
25410 F20101108_AABYQI vivas_e_Page_078.QC.jpg
727bc269dda0f6f08dd65c62486ba7fc
bdeff1f8ddd6d418a1e0baf4412b6a36124aacea
11944 F20101108_AABYPU vivas_e_Page_070.QC.jpg
d4d1d5fce2e934ec165076df1a236c09
eeb050d9cc556737a55afc1261b77c261b5b9c24
F20101108_AABXMS vivas_e_Page_016.tif
709ac44c6dd381d85adeee483c059aa8
a7e29fda4953aa0937f18d7b803d42690b42e958
F20101108_AABXNG vivas_e_Page_030.tif
646492683b23ec914a013fc6101511b3
b36d2b229443e388406299a98c7874c447fb9be1
6671 F20101108_AABYQJ vivas_e_Page_078thm.jpg
19b717835b9acac37fa4f4ff9f2cf7d0
d14c9b0519bb802d726a0a8fdbdf583d1d54688e
3598 F20101108_AABYPV vivas_e_Page_070thm.jpg
992a0dfe5324ece8ad730d6e3a966a4e
eb7f988f4481bade7a884caf8a2f2a33917bbee6
F20101108_AABXNH vivas_e_Page_031.tif
50293255c82a1729f5ef3febd999dc28
c70df337ea25731b2a177803467dad06b7d0cf0c
F20101108_AABXMT vivas_e_Page_017.tif
d72d02b0fd5738b90f88c1ecc623d293
95d4f92982b81080fb88acdffb4bf8f7655766b6
25349 F20101108_AABYQK vivas_e_Page_079.QC.jpg
5c9e7b7a521bbc9d9bc14c45e547b3e7
f7db0a1a00551f2e8e3ab4b4a164c5df25088815
16493 F20101108_AABYPW vivas_e_Page_071.QC.jpg
4044a69d328f72372cde378488e05c9c
ba77510e426d19ec60acae87ff9d506c0712b7b1
F20101108_AABXNI vivas_e_Page_032.tif
05ee461db5bbc330016ee11ca7f989ba
d0928ef779c94fa8ec4483fd2da8c7c0c96141c6
F20101108_AABXMU vivas_e_Page_018.tif
bddde19606547de6b76b057e433bf9cf
2ebc2e836a14a3fb11bfef9f116bcf39f6e13946
25605 F20101108_AABYRA vivas_e_Page_088.QC.jpg
d22ea43b302ad5866da01569d185d8ca
7eea251dd8b77b2357ebe934dc711335ccdb873d
25249 F20101108_AABYQL vivas_e_Page_080.QC.jpg
ebe54396037317f85559809b642cbfef
573b7e302d9ee604cd22817cea363396e74005eb
4803 F20101108_AABYPX vivas_e_Page_071thm.jpg
936138aef4d642b5dc943bbb218a1ea9
900d4159577915c370ac4731d6e048a02a3e4364
F20101108_AABXNJ vivas_e_Page_033.tif
8d9ee4108ba41888a7076f2ae7d1ea9b
abbdc2d3466efbd2c3a9c97ff2d41db424771f5a
F20101108_AABXMV vivas_e_Page_019.tif
0bbbd951fbb794981fdfb7bea8b71c71
55479d55a8cd81b8aeb3c855f908480dc5d067a7
6928 F20101108_AABYRB vivas_e_Page_088thm.jpg
e4a7f25975f48547a8190850a9f84e79
31025bc62a4f1ed5268588746442ba3b9828e846
F20101108_AABYQM vivas_e_Page_080thm.jpg
c48115bad2e28255e9f74392203e1f58
f76b8e13ca669246516eb67ff74be8ee572e1bc7
10669 F20101108_AABYPY vivas_e_Page_072.QC.jpg
484b2e59d9075e074f2ec414f5f8db3a
4df3d21476e93b2cc268245efd269cf54c83035b
F20101108_AABXNK vivas_e_Page_034.tif
e3b44fbfd97107fb74087b6fda4f2a3e
a90deba574d6a7fcab9a0d33a6ab03dc3bb4570f
F20101108_AABXMW vivas_e_Page_020.tif
604b67603f8348ac063bcf71c11896f4
18cee8a7973aefec74e5f90d0df83b44de0ac3c8
17184 F20101108_AABYRC vivas_e_Page_089.QC.jpg
19fe02aab997ee28e7e39fe06ec64c0e
899afb17505f1805ec5961bff37c47971c6ece8c
26398 F20101108_AABYQN vivas_e_Page_081.QC.jpg
0861b0ec9c4d2024d8c2f82d90c1722d
9d1eb22cd5ebf10f8e1ef4e70ef50590378604d2
3458 F20101108_AABYPZ vivas_e_Page_072thm.jpg
1554561f3f2c33ee27a638504fe396f6
a1068b9956ec9f2a4e57005c97f28e9cbb95dc9e
F20101108_AABXOA vivas_e_Page_050.tif
a896ed0af681b437b9a081bda859d5e6
914101c3c8e0302b93644553d8b8885c416c47d7
F20101108_AABXNL vivas_e_Page_035.tif
4c6b2ccaf6aded422e63f19b62a94f49
ce25afe84035865eb367ad2e3f64e74bc433d8f6
F20101108_AABXMX vivas_e_Page_021.tif
08031cd8715e5d3a667ab62424c6ed00
74610292782d2199c44884ed3ca088b9bec83db9
4955 F20101108_AABYRD vivas_e_Page_089thm.jpg
a8766cbb5f2e47e49b85cb4d89b5b4eb
6bcb0f9595d178635a15e1a452e1b1b18e546266
7332 F20101108_AABYQO vivas_e_Page_081thm.jpg
0632be7482cd3a153139bcbb0b70e2e0
defe093558fbb44c385b0b5777988ac08857e8d5
F20101108_AABXOB vivas_e_Page_051.tif
d02d44cb6c8344ad6518f65b159e7cea
8efc57c205b91e63ca43a378cfa9f506fc4c19a6
F20101108_AABXNM vivas_e_Page_036.tif
4c7f9acb08a4036f5c5dbc74eeba5032
79251683c1a9a89813924e69489ac2a73a6918e0
F20101108_AABXMY vivas_e_Page_022.tif
4bf71d45825bc99145e7b880f8ada0c8
5caba9e39c8297b53efe256829175491af802d63
11659 F20101108_AABYRE vivas_e_Page_090.QC.jpg
343358ad61f0edeb6fbd838e75fac2ae
95468e3c300d8d03c1767de5203a9a2765876eaf
26075 F20101108_AABYQP vivas_e_Page_082.QC.jpg
66cb04fbf876cfcff6eb9ede4ea97f1b
73cc48bd8607354a6ac43c51256a1996cbe30c9b
F20101108_AABXOC vivas_e_Page_052.tif
9b3b00e1ba07997eca6fc96edbc71c31
23876d79a87f4ac1e96434977bf098cad0604e34
F20101108_AABXNN vivas_e_Page_037.tif
54bbf38651b29dbf9c13c5b2a09385e7
74b46cb7841a62b3715b13858acbdea73a711cce
F20101108_AABXMZ vivas_e_Page_023.tif
2e85eda62f7daaca6ac6da0330c0bcc2
b1a94b6877b87c3f2b93573ae5aaf1a56c529219
3526 F20101108_AABYRF vivas_e_Page_090thm.jpg
9b07f09329bc3814fb9a00382b321a71
9829c751d492dd317c278f60a1fb85b2ec17f7cb
7049 F20101108_AABYQQ vivas_e_Page_082thm.jpg
c8465683fc957efbe3fd8fbdf0f6de0b
7c5a5e57ba7f408c781f521db11783c5ea76aadc
F20101108_AABXOD vivas_e_Page_053.tif
24547dcba4f5312e409b3e5c021236ff
fa6085e9e215636d39c2bbfefec5e05678f6b87a
F20101108_AABXNO vivas_e_Page_038.tif
63d1f6efc6803e3bd3f8d91386c1c2b1
c25c682d330656026557ed9a5bdcb277bfa5c815
26626 F20101108_AABYQR vivas_e_Page_083.QC.jpg
8a1d7421c32825c5bf1cccb7191244d7
95c2a51fbb78dc136aa28d74d2ec77565595f710
F20101108_AABXNP vivas_e_Page_039.tif
97e237318c34469ce7d0bbf972b28822
7b0a315cf0837cf518b1874f8a630625349a945e
14294 F20101108_AABYRG vivas_e_Page_091.QC.jpg
f184fbd051cecd9045c04b15df55a39d
e0beb3ede7c788348ca93003ce71e5b177466306
7172 F20101108_AABYQS vivas_e_Page_083thm.jpg
acec40d8ef742b1f783d0298d570bc70
93fb17b0a67105c1f35fd035490420bc15fde253
F20101108_AABXOE vivas_e_Page_054.tif
64e9a9602399b4738a4d07f26a9ca499
b2d23e943af857451293713e9bd62ef8ffb65c22
F20101108_AABXNQ vivas_e_Page_040.tif
be81bab159a5ce5e631e9afd25343a95
3b621f807451c170b355e24617341ec5b114caf3
3990 F20101108_AABYRH vivas_e_Page_091thm.jpg
68a374e7d805ec2a6fd3fb9adb94ffa9
fe62c7460711e4c8a58b08410c93fcbc56c77f9e
26168 F20101108_AABYQT vivas_e_Page_084.QC.jpg
56410e0868b0a1961150d8a94f4dae7f
818a68cc93b7fc6b372ba4bb6718ab116b15e9b2
F20101108_AABXOF vivas_e_Page_055.tif
f16c3709af9f57e00110c564db698963
05f0fa376214a48394547f0b8483af55c531b799
F20101108_AABXNR vivas_e_Page_041.tif
9e780aedad7ce752e39afe2f798e10e0
08debbe1dffb039b936e91efc21671b39319c147
15057 F20101108_AABYRI vivas_e_Page_092.QC.jpg
69012fc67ca95cbe593b023550752d15
d423e664848b1c0aa6b783d4845e805183513da1
25155 F20101108_AABYQU vivas_e_Page_085.QC.jpg
71b5ae340ff0c23340afebfacd7ac660
e3a12b5c0766670aa99826aec3f4f87c161c8ef5
F20101108_AABXOG vivas_e_Page_056.tif
f0ab317695d864bc1f97ea374458ed7b
39cecd4c88522450bced8c69eae63f6791fff803
F20101108_AABXNS vivas_e_Page_042.tif
03a47e34b9c784d03f88efe809760a1e
b94ee27492f6d9c1f2f955bf5d82a91dae3ad371
14389 F20101108_AABYRJ vivas_e_Page_093.QC.jpg
7f568276003ddacc04b3abc0b2b47366
88fa8f250bb9ca40491389975b2053c64c777024
6871 F20101108_AABYQV vivas_e_Page_085thm.jpg
0abb004f98521c8872c9d54e6fdaeef7
a7f67ea28229d17b550f099fbdded354a1c5d714
F20101108_AABXOH vivas_e_Page_057.tif
cfc52c4b89ec673f017e015b5f43ac35
5133a2c49be630c541ece8980a81729ac2af325a
F20101108_AABXNT vivas_e_Page_043.tif
5ae445d93987993c9c0e9e3b849975af
97430930da176ac6a1806a49ecf42342c8e929d7
3916 F20101108_AABYRK vivas_e_Page_093thm.jpg
9ca804d104db9e3d4cd50a41da5145c4
6e3720cd9925514bbdf824320b7b73668cf6c5bf
26141 F20101108_AABYQW vivas_e_Page_086.QC.jpg
f40e9b2f705ce250a4e72834952f1922
ccaccdd13a51ba93ee4a7120d08dd8596de13028
F20101108_AABXOI vivas_e_Page_058.tif
ac5d5861147416ff40130a9146372be9
2303bd44d7ff91b8b8febd100603900cead31727
F20101108_AABXNU vivas_e_Page_044.tif
12be45bcb078c749e32dbf565961120f
49484cc14c0ef7464c7885a3ee2d6eec14785a1f
16092 F20101108_AABYSA vivas_e_Page_102.QC.jpg
78e72339dd1837de0c2a99180b7ef84b
a731f33574740194b3d11ba0bcd7dce32a41c652
15123 F20101108_AABYRL vivas_e_Page_094.QC.jpg
218acaec5a32a1beccdd75dfc7c80964
95f7f1f4a7dda0d1543a3d6a38c01008cf0f9d34
7071 F20101108_AABYQX vivas_e_Page_086thm.jpg
7f8120634d65acaf6bde58d775d95ee1
5a0c2c400ddb5f35e3f5c900612573d048356537
F20101108_AABXOJ vivas_e_Page_059.tif
b4c1da6918f2aaffcf981cbb4f398e05
1e2ef46ab2fcf0047f72c967e6fca8cc63a07110
F20101108_AABXNV vivas_e_Page_045.tif
55205faec0f004112de3d25127a61799
677efc395d57131f89ceecd3657d1d2cbf8ff130
5278 F20101108_AABYSB vivas_e_Page_102thm.jpg
7d060453998b8b380fb434bcf09a59c0
2379c21f68347273e5f3efe2e88a59e8ed36239c
4130 F20101108_AABYRM vivas_e_Page_094thm.jpg
06b3ef64ebefce08f5b6aad0d2ff190c
ec3f5505065da78dbbea77bd4ca79a72971e3a72
27248 F20101108_AABYQY vivas_e_Page_087.QC.jpg
ebad3dd0d9b2fbe4e20600707e4e44fa
e8c72b5e86a7b893ba8cb0ff95b948f0652de670
F20101108_AABXOK vivas_e_Page_060.tif
e84f4cae605f2a2efc5187badca34a9a
063d4ed256148c44c05bbc38b49354999c58630e
F20101108_AABXNW vivas_e_Page_046.tif
929a39a3f80d71c496b9c53059840593
86951776027d710b8f0b619c53fa111b46b393bd
16552 F20101108_AABYSC vivas_e_Page_103.QC.jpg
04480248563ca306d0e06a6838744b2a
e9c4297d782a3ca571407cef08324a08e9a1dd28
5015 F20101108_AABYRN vivas_e_Page_095thm.jpg
d889cc589f72f475e7878d08e6f057b6
85ce2b694ed70b171685c7b86119df4a89e4e477
7275 F20101108_AABYQZ vivas_e_Page_087thm.jpg
91f27342192fbf4a228c472d4c26c889
b4bd679eb8fb14ce6038161c066ccb44aa644714
F20101108_AABXOL vivas_e_Page_061.tif
1a45927580887fac6b55a2c35f410392
8ef9b31844f284f821ce72796d0203df45fc53cc
F20101108_AABXNX vivas_e_Page_047.tif
5108c3f8f92574c3b52d9c33514546bc
bcafc23a6cc5f0fa24afeb82d34b752da72c3f99
F20101108_AABXPA vivas_e_Page_076.tif
3b2e124bf3a2980dfea4573dbc5ac74f
ab5ae6e3202da2375f3adf1da58da00048bda023
5352 F20101108_AABYSD vivas_e_Page_103thm.jpg
cde6b9b120565797bae91d0c02721281
6e289eef1e2d5ced148a3f39b015c4dcd04dc754
19642 F20101108_AABYRO vivas_e_Page_096.QC.jpg
cda0a37f8369e554dfb093f5483583c5
378842f8f4f286d91d620226df1ed697aed80dd5
F20101108_AABXOM vivas_e_Page_062.tif
29e4d6344e0ea3e1fbab791869ac8dc3
aa73998fe38a717b774e37571635a5051737e795
F20101108_AABXNY vivas_e_Page_048.tif
143f98f453951b87d9ee238dea3fb7b3
37ea743c202ebf22c648e2e49c4346da0eaaeb0a
F20101108_AABXPB vivas_e_Page_077.tif
ee48f873651aa2ca31036a19f80f6ddb
80959ffaa092fbeaea5f8ac2dad1b5f04ca30b08
13590 F20101108_AABYSE vivas_e_Page_104.QC.jpg
33d81df0024a06ae7fcb1fe7784b8d55
85c5fd056ba09a63ed575a3e740cd98aa72ed17d
5572 F20101108_AABYRP vivas_e_Page_096thm.jpg
93c9f9f3040790c2b556abacf57c2695
479a72e89e8d5e3e11e047ab404c335f02946bbe
F20101108_AABXON vivas_e_Page_063.tif
f4dd1b4af19d52e93fab21072bdedcec
34fffa8a7d9a6144d3e24d19cd2e2758a7f72819
F20101108_AABXNZ vivas_e_Page_049.tif
9d7de47bc8d4ecef78fa07e974d63b43
915c5b921beae4efa4f7fedee376dabcee1e1bad
F20101108_AABXPC vivas_e_Page_078.tif
0f2b11dde2add6b7535bde2382fec9fa
0c1a20970be8b9c17119537969769bf2be7c3e63
4203 F20101108_AABYSF vivas_e_Page_104thm.jpg
9cb255737241ad88f223783b68ece45d
c9698bf07318370a1077172e458e15838c447596
20282 F20101108_AABYRQ vivas_e_Page_097.QC.jpg
80034d4fd7354fe2240f103c45819769
8fbb993188b2112b3846edfc5c9ee295e030bfb2
F20101108_AABXOO vivas_e_Page_064.tif
d05efa39c1ed36e408688148b50c032d
09d34aca6d388116fd28237b13dd54a4e1d754cd
F20101108_AABXPD vivas_e_Page_079.tif
34fe9a3e1fce89603cb62b984e76b442
9c14b7d7ece24db37adc5464f4326aa86594ef6e
3756 F20101108_AABYSG vivas_e_Page_105thm.jpg
aa7ae5ce49060bf83e10a8247d7df217
d69f927e86c498357df3616cd2357eb76edcd5c1
5769 F20101108_AABYRR vivas_e_Page_097thm.jpg
45649211dfd7a2df5aeaf41f7cf606bb
e3dddcb8f4dc2ae8d86cda662c4c7eed85ad19b1
F20101108_AABXOP vivas_e_Page_065.tif
92490a31c6abb58bb323cb3b5bca070f
829bf445adc314e2a519e2648f1dbebf2dea2681
F20101108_AABXPE vivas_e_Page_080.tif
563015a44c439f2e5b2a2d026e417e2d
2b61eefe7c8d4d82678f41915b4b6668b331ab84
14415 F20101108_AABYRS vivas_e_Page_098.QC.jpg
b6d762ce3548f6ffa9f8c20d35b1bdb1
1a1d30c79bf9a4f0b6d55663f1a43db2272a2572
F20101108_AABXOQ vivas_e_Page_066.tif
da00865351931edeae75184ba2ce256b
857f3e62f86363154499ad75a6345a291620f032
7215 F20101108_AABYSH vivas_e_Page_106.QC.jpg
f28e8342814e0e5626b9ab993adec49a
5691987908805d77977f7149b0be7d86bd85141f
4656 F20101108_AABYRT vivas_e_Page_098thm.jpg
830e4a9d335bb4983bfbedd6b0fcf259
e04822bd85ce46d47196f6359394ecae24912afe
F20101108_AABXOR vivas_e_Page_067.tif
bea55f97366009e1915eca6d57effcbe
2abf0c49fc029f21fd461655f6a9ef1537dd3cb9
F20101108_AABXPF vivas_e_Page_081.tif
1813b78e4a654b92862305b30254f2d3
8c99cbd30d59e006b97beed442a42a51b5d4228d
2541 F20101108_AABYSI vivas_e_Page_106thm.jpg
d61a154ebd11c9beda81fd9706321616
898c696d15fdffb7febac7646ff64cfd0cfca758
11333 F20101108_AABYRU vivas_e_Page_099.QC.jpg
922126ec92b05a2249a9e8728c545275
0880dc9d05946d0e983f3344dc0b176e505dbc7d
F20101108_AABXOS vivas_e_Page_068.tif
d0bde4dac75cdb6f330807f10867e77c
1bc399a60cef517209f0c53d778e97d8eedb3a8f
F20101108_AABXPG vivas_e_Page_082.tif
f4f7360446c6742a1efd9bce4251bd07
668520b17d1de75074852fbcd1ee32aa01c92d6d
17159 F20101108_AABYSJ vivas_e_Page_107.QC.jpg
b69d6480caa27445795de0b6233ff16c
2f9f8702cfa026d36ca235a2737bc0471bdfb687
3806 F20101108_AABYRV vivas_e_Page_099thm.jpg
50da8776e096d18bfb16377755cafa4f
1170ed56e3b3f955f78fe8c80ee26101e7120528
F20101108_AABXOT vivas_e_Page_069.tif
05d385d132b0156626a09228f64b7a47
6e9b62d8f8d9dcced2c02f032a4f57e91c0fb512
F20101108_AABXPH vivas_e_Page_083.tif
2971461764afcc8cd2aff543bc3dc7ca
9b97a105e56e3b56c123cb200aa4792056fd8aa6
5248 F20101108_AABYSK vivas_e_Page_107thm.jpg
bdd3c1e6348ecca5d4a51fa090ffd5c5
4c1183164117452663d7d95486d5f1b5bc24ae90
17083 F20101108_AABYRW vivas_e_Page_100.QC.jpg
c5ff00f30c2161f6ddb66b06bbf42589
fa82df731401e2ca37d6517cb373a2f809042c83
F20101108_AABXOU vivas_e_Page_070.tif
cfb6dc94fa7934e503689023edcf5650
f48162cef553a3558325a03f7cb09792beeb1e74
F20101108_AABXPI vivas_e_Page_084.tif
38e14d38f8d31cd3c6aea0a8e513c352
6ddb08298a2678d3b3cf1509b232f7a3a6b17bb4
6964 F20101108_AABYTA vivas_e_Page_115thm.jpg
5d07fc78b29ed8360afbb1a0d0a5bf9e
3aba05c140f11987bcbf628010ad74b4cf981d11
12252 F20101108_AABYSL vivas_e_Page_108.QC.jpg
159e34f38c28d67ff6d35f536562f137
3646c3e977879100df929199b21473249d1e53d3
4783 F20101108_AABYRX vivas_e_Page_100thm.jpg
943d742e69526524279088390c962809
d7e9e3614133901b84dceb9179f86b287c3ebb03
F20101108_AABXOV vivas_e_Page_071.tif
496ed89360a35d14738b0a5e7bf70336
cfb2ea7c21cfce919b85c2cd4b56a59586088945
F20101108_AABXPJ vivas_e_Page_085.tif
7b00ca85c4a46f14b5cb828a96fa8e9e
8d3fcb64b4bbffaacd2c9b76372ee67f70e82989
24158 F20101108_AABYTB vivas_e_Page_116.QC.jpg
8bfcd7c16d4fff07e48b970e8e0cee07
6fa0f36ed1714b0dadda351ade30dfac1f499244
4016 F20101108_AABYSM vivas_e_Page_108thm.jpg
33cbaad26d1ac7615a9ef6fbe9c56b92
d500f65d180d18ef8c10b6c730b09aab7be9a3ab
16234 F20101108_AABYRY vivas_e_Page_101.QC.jpg
53398d31d8cebdf8221dbaf10fe5496c
6490035018bb60126ebee1c8324bc370e933c5e9
F20101108_AABXOW vivas_e_Page_072.tif
948d8fd0b4e92f6063e11fcfe3aaa430
3b1b5a9c8357559fc0edbfc59aa315581b996be4
F20101108_AABXPK vivas_e_Page_086.tif
c4b33f8a05464a397fd36f77e0e41e80
0dd1080926eac5734c43efbf68a5db22856b0247
6628 F20101108_AABYTC vivas_e_Page_116thm.jpg
a6c6f9914ca5c17d4264077b681e54db
772a8259b4eaa4ad2439c07578825e5522645665
17267 F20101108_AABYSN vivas_e_Page_109.QC.jpg
918273cf38831d2fe68ca3665f20cdb4
f274f9436dcf1ef7e5d7630c41deb5fbf23e1129
5186 F20101108_AABYRZ vivas_e_Page_101thm.jpg
b873acf6bb4e7f6f325fc42e34bf8a2a
b8bcede4220f8c7dcdd0d0d2655c0219f74b7722
F20101108_AABXOX vivas_e_Page_073.tif
a9fbf215db96302b9957f23f017ac353
f15177fd494567a59340646e3c6fd67cb324db73
F20101108_AABXQA vivas_e_Page_103.tif
c3af96fa820f49794924573c2a045f2c
29d4c5618cb20f5483949200e1f7334b85195fe2
F20101108_AABXPL vivas_e_Page_087.tif
5dfccbf1b8335bfae1791873d9d1de41
a50d52fb0cc65b7bd81ed7983684f039e18cd8a4
24295 F20101108_AABYTD vivas_e_Page_117.QC.jpg
f41a9f18b69096db518dcc33e9faee54
b0a7d765c5f05cbb9c7e439a803600332182d888
5468 F20101108_AABYSO vivas_e_Page_109thm.jpg
8755f9338a50b60913728ddc06145bb3
9f489a1c99c5ebe6b6115909cb847ded003b6938
F20101108_AABXOY vivas_e_Page_074.tif
76d585c510f58e010789a75a5f6b2ce7
0e2f9ab6db3daadcabc7d49e386b6d6331e65ccf
8423998 F20101108_AABXQB vivas_e_Page_104.tif
3b4793edabb83515de1f27b3eb72501d
422a077a59c16efacc1e629cc6110e1faf2a5abd
F20101108_AABXPM vivas_e_Page_088.tif
4e566957ca8f67a669bbf94cb421af0a
4c0d6cdbc9decc488fdd85f2cd8044c44f228ee7
6918 F20101108_AABYTE vivas_e_Page_117thm.jpg
adca8b917742fece41188c48d655c8f0
2ffaf71011ed8265602d85c423396c060681f4d2
14516 F20101108_AABYSP vivas_e_Page_110.QC.jpg
c46061b285248094521cdff520c9b479
d167a43890be0f4a89178bd598e3ec523e29490d
F20101108_AABXOZ vivas_e_Page_075.tif
687b70547b81e45294a467e17fce31b2
9964f0e0a8dcd98abcc464b55b5595b0d7ac920d
F20101108_AABXQC vivas_e_Page_105.tif
54c0ff989021a2f87e70f51eeeac0092
123435a6d6bd0a6740c0f14c9885b6a5f19d1d7d
F20101108_AABXPN vivas_e_Page_089.tif
8018e60a0c9258896e8cb205ed900018
4e307b583323a208351f3c726bab9900b7059852
25972 F20101108_AABYTF vivas_e_Page_118.QC.jpg
9cf516b02dc4da548546d2f907a2b356
5e516aa459b2426c59507b540111447b2289c7ff
4320 F20101108_AABYSQ vivas_e_Page_110thm.jpg
f70e111686bb4d45ca97cdfcc51d6c0d
328589081e6fa9aabeb7617158160821ded71ba1
F20101108_AABXQD vivas_e_Page_106.tif
3c7f52a569fecf8f063d5a0006ea591b
8b459fbb19317de1b36d3779ac4bded00f085519
F20101108_AABXPO vivas_e_Page_090.tif
11e7aa96de3a00aa7d14a83f740828c3
97f23933fa8a430feb77e0a3f04e9854e2a89ce1
6992 F20101108_AABYTG vivas_e_Page_118thm.jpg
a971e4798f474b72354047f98072f434
a58bbb4abdcf042c37402804f332e961421973cd
13719 F20101108_AABYSR vivas_e_Page_111.QC.jpg
b759f72ece91cf7c2a03c7adcd6f7fa5
5bd8c517e733b3f635e98a37e11fd63b0e711b34
F20101108_AABXQE vivas_e_Page_107.tif
6f10e01b298b5e293e2bfaee4355e515
b29bace2f4b32a2d794bf74970894f35ffabce79
F20101108_AABXPP vivas_e_Page_091.tif
9617225883418a0facd76c2a014dcf87
c85a42f00f92a1d9e07ab8df4f0e2be1dfdbca32
16861 F20101108_AABYTH vivas_e_Page_119.QC.jpg
22731efbff723e5757932bdbafe1eefe
ee1a906b1cc0668d20ae00024bb41e3cc157008e
4354 F20101108_AABYSS vivas_e_Page_111thm.jpg
fdb17d4e8d6287284302295d10fe3c5c
2a4f418b3a9a25758dfdeccdf6be430663eb76fa
F20101108_AABXQF vivas_e_Page_108.tif
95ea7a814fb15e779344379fad325237
ec1bb16deda62a47c69de1493df2a1b22a0bdc07
F20101108_AABXPQ vivas_e_Page_092.tif
bfda0c51349477bcff247bb905c6fea6
4d4bfd2552efb135a5f309b98ff011269d748dd9
15507 F20101108_AABYST vivas_e_Page_112.QC.jpg
5911addfd7567e3012a9a47fdc7ef767
70b38783ab62ca99cfdb317be10326a5d1fd5304
F20101108_AABXPR vivas_e_Page_094.tif
3b25298669b738af429adaccf9515b0e
d33e7d8a12d1eddc248769e98a3d10afbe336f26
4745 F20101108_AABYTI vivas_e_Page_119thm.jpg
85953735c4e12dac24b7b19f257f6eb4
2d4665f9730853cf363578c6b1ae30f49798448a
5004 F20101108_AABYSU vivas_e_Page_112thm.jpg
a32c245c3cada04d253ea41148b652ba
6d33f469dd14a5929e2a48df6be4e9eaf87155ea
F20101108_AABXQG vivas_e_Page_109.tif
9dac08dbbd4fa3ddbaea43df207cea43
4762cfedae5b2ccc3e9202e017dd9b75fc9ac904
F20101108_AABXPS vivas_e_Page_095.tif
80cd800d40f0aae28e5158e780ad7e26
2fcd1ceb4047c7994a3c4c88cdd78a417b5624df
15503 F20101108_AABYTJ vivas_e_Page_120.QC.jpg
681dd914986653b0c0a1d53e50f61df9
8b547ee694e506fc11eb48f3815a983d7675e03a
7328 F20101108_AABYSV vivas_e_Page_113.QC.jpg
aff19932064c2590c2ef31941be43794
53571fd90f1f01c13298cd66cd00adf6fa7e2109
F20101108_AABXQH vivas_e_Page_110.tif
d440421e99749ac93c6a46b90d7461ea
d488eb8ca60c65a446d5a85c4f8377a24763bae2
F20101108_AABXPT vivas_e_Page_096.tif
171230fa40e71f73e1b1af7922eb2863
0bd68806d9e4af997a7a9cfdd82a8ffaf5b4a4e3
4689 F20101108_AABYTK vivas_e_Page_120thm.jpg
d154f3588c3fdeca4d64a9fe91823bfc
2db4741b40df0c6559a5dc918fe15dec1c0f5b36
2559 F20101108_AABYSW vivas_e_Page_113thm.jpg
d24c6ee37d3253b182a8f18eae628c70
0888b48273ceac1380278fe274a2d3e988bef81e
F20101108_AABXQI vivas_e_Page_111.tif
d9abdd93d79377a0d06b61ee2b9b133e
799f54818aac99e48242748781fd23f13fda2dc2
F20101108_AABXPU vivas_e_Page_097.tif
eef45d4714270fefd2a93b0b448711ea
99b8b8990768900125b6e45e7f58608c89c50ec7
6840 F20101108_AABYUA vivas_e_Page_129thm.jpg
c5ad76ef7030726b9954fd58dad8002d
4cc825cde25970da1df1d31233783e4b0c7d3536
19007 F20101108_AABYTL vivas_e_Page_121.QC.jpg
f95679889ddc65746af3230cedd5090c
5df9530bd2fe049ebe1bf816fcef64ecd43a7feb
24575 F20101108_AABYSX vivas_e_Page_114.QC.jpg
1047946e21ec8ae73fe20614449387ed
4275e77fd54544764b66c7161ccb660dad0bbd2b
F20101108_AABXQJ vivas_e_Page_112.tif
fd16862aeb8bfe58aa6c8169b3483a36
f6329c9e1b608ce2d7ae20dadd87898cac75eabd
F20101108_AABXPV vivas_e_Page_098.tif
303facb2688eb170fbbdad39a31bfa9d
ca7115c89468ef51012922c2f913381f14163d2c
12936 F20101108_AABYUB vivas_e_Page_130.QC.jpg
6c57f0fc999cb4f5b0b6f131461edb7c
0444991c4e6c0c3e4693154621bb45c64db121eb
5265 F20101108_AABYTM vivas_e_Page_121thm.jpg
479fa43e174ef74234bd1778d190f579
e92c203e19c6999ccbe940f40e592807a72c9e9b
6588 F20101108_AABYSY vivas_e_Page_114thm.jpg
737690060a3716bbf014837409675c89
7d223cde2bdd929e045c6f86eefa6dcce747ca44
F20101108_AABXQK vivas_e_Page_113.tif
ebcf5a2042500603a8bc04fefcdffdc1
91472e850a16b292a8f6dbe453f3b87cb337fa5a
F20101108_AABXPW vivas_e_Page_099.tif
ec057b1214c017904238bb3ea94f0224
629e82c774ca4f878a44e25706cffd090e46b165
3869 F20101108_AABYUC vivas_e_Page_130thm.jpg
c619f9db00ef4dc39aed42d1d482d52c
2a00f5593db3ff811f74988263c9d2c402b54466
13396 F20101108_AABYTN vivas_e_Page_122.QC.jpg
9d1d3e058ca07ee7e5660b344f464c00
219698db9b4fb3c0a81dbdf216a95756f9f0ad02
26019 F20101108_AABYSZ vivas_e_Page_115.QC.jpg
aec0b63a86564b1a1c70c41c9813fd7e
92611974a815372049af8f17bf81a82512316e2e
F20101108_AABXRA vivas_e_Page_129.tif
f6fec03266c945544d3f023199e72ad9
23a67bfc1d45b43892d9f3c9ff9c67949db2e03e
F20101108_AABXQL vivas_e_Page_114.tif
4d273f6371305dcf38022977c41ff4d0
40754f99cbd13aba000a5fa5c018f932877e67a0
F20101108_AABXPX vivas_e_Page_100.tif
157e8c10237e6290bf65802509b4aa7d
b37e3851c0315e837bcf9d74ed8636a0022249a8
16519 F20101108_AABYUD vivas_e_Page_131.QC.jpg
9bfa6e997fe2703d51c6613c4c72ba73
af171fa3b06e32da28349c5b1e2ec93736cf4b5a
F20101108_AABYTO vivas_e_Page_122thm.jpg
2711dc11ae01fafadd2cdb8ae0c1d8c9
cc9e1484790217d3233f5e628556562dc7ffe47d
F20101108_AABXRB vivas_e_Page_130.tif
58f231ccaa9de1d6d0516027f33c1831
7baa1abdbfae26768672bde98eac022f138fa173
F20101108_AABXQM vivas_e_Page_115.tif
e83d2ef6406271022f47c5ac889d891c
bb61ca8d2a63ab86eb2f0434bfd9d3c23a952fb7
F20101108_AABXPY vivas_e_Page_101.tif
c889c3a983808a8a7e8c7aa22615fccc
3998b8c1d6805b20e459c9b6f463da4b0c7ff838
5031 F20101108_AABYUE vivas_e_Page_131thm.jpg
5b960dc100664e39d053e6b695c87e81
2ac875471ccec4ba9b67df5d0ee25b0e82478d22
3691 F20101108_AABYTP vivas_e_Page_123thm.jpg
84d2a81d3abef4b6d91e284886fb7a6b
a13351aeb10b878f7f30235b6dd3ebbad67b30ac
F20101108_AABXRC vivas_e_Page_131.tif
b0e89ef5eb65af8641fa4159f48b07f2
87b5886ebd3172c402566785ba0be47a2d239a18
F20101108_AABXQN vivas_e_Page_116.tif
7a48c030681cebe8c2a0137e3d3c2d4c
4309b42d91e96409f18d2637a1b2804a5b25bdad
F20101108_AABXPZ vivas_e_Page_102.tif
fffda4a01f56ff6607d2542340c93f0f
376fabb79a374ee33c93ac278879ae61c0859655
24857 F20101108_AABYUF vivas_e_Page_132.QC.jpg
eccf95643e7ad6eedcd5c3afa4d46419
3b428ec308358d8e38ab6b7ad55cdd8f25d49889
4102 F20101108_AABYTQ vivas_e_Page_124thm.jpg
a2fdee85ce509748a8983efe7bc634d4
36fcf3ff9df0a99059e13606d3dee373cba1d5dc
F20101108_AABXRD vivas_e_Page_132.tif
3b335b3e20f3e68e18a5f21fbf1a3630
ea6f7dec9500ce66210d645db914451288b1cb2f
F20101108_AABXQO vivas_e_Page_117.tif
ff496c6b77c591f218053eb0dfa63caf
c413bbaa3d1b6446b0646dc9939584aadd9164ba
24961 F20101108_AABZAA vivas_e_Page_212.QC.jpg
27fa2c980024392857be4ae7778974ba
befbb9774cfe2c3b5ae86d19d477b6c87c352cfd
6753 F20101108_AABYUG vivas_e_Page_132thm.jpg
837dd641ee6bb8f6a3aae251bae80c41
c1d2c724079d72175de3e42d548ceb7582eaeb58
24794 F20101108_AABYTR vivas_e_Page_125.QC.jpg
667614e02c70b467f030719e71adbd22
b98180cfcc7c8ce243ff24b9c49ae5f5fb258757
F20101108_AABXRE vivas_e_Page_133.tif
5519dff4e84cbdd91c3a236ae086cd0d
40a7e04e6c2cdbb03d564451a9eb58af7e77547e
F20101108_AABXQP vivas_e_Page_118.tif
d71f6881438ab93299e8cee5dbe638e1
a9a12cf102dc1631297b1d3eb3ed7c217e321d67
6957 F20101108_AABZAB vivas_e_Page_212thm.jpg
8d91ef8eb288b0b61c09bbd35a7ec082
2819153516829857c24a3883b8f1697b1595b188
17201 F20101108_AABYUH vivas_e_Page_133.QC.jpg
e8902c82511bafecf6d9cbbc9db52c29
5fd879883bc02357f8ef8ab799c8dacfb1b0355a
6907 F20101108_AABYTS vivas_e_Page_125thm.jpg
ed53d4ab8105a6deeb853fc75959b18c
c5441ffe5aca03a04519eeb5b41d6bb4231746b4
F20101108_AABXRF vivas_e_Page_134.tif
d35f7618c6663e88abd2a28eab70d0fe
73aba7c5135bc04821b48fa62660258a4a90ead7
F20101108_AABXQQ vivas_e_Page_119.tif
fe72e9d76822bf872621058fc3cf8ad6
ae572b9f072775496d12a3a65be065f45d0f3ab7
22923 F20101108_AABZAC vivas_e_Page_213.QC.jpg
90dae75813c5932cb992f0785eedb57e
0fb2e3db68b58aa0763913acaf62befb453f6429
5161 F20101108_AABYUI vivas_e_Page_133thm.jpg
f472199163eee62b259be3afd0be6084
a86e0a270bfe94f6aff3ef87381cbab6f25b8ff9
21912 F20101108_AABYTT vivas_e_Page_126.QC.jpg
05f0fe4b4f3f268e5b0b4c6940bf1221
2189a83f152420b10f21fe8c541868180c897b4b
F20101108_AABXRG vivas_e_Page_135.tif
cd93df1795fea3ff2b34aa6713055507
8b65a806c9970865300d4e5e634e77d7e5ac8408
F20101108_AABXQR vivas_e_Page_120.tif
c90aeb8421e4d60ce3c0b286f6fb4a3f
1684803a289c038ea06d3241b420f632a5e2ed0e
6449 F20101108_AABZAD vivas_e_Page_213thm.jpg
f4b1438f002908c3899f4e4281b8c8fc
53691bb5771b6a021dab51a23d5ae4a8d647e766
6024 F20101108_AABYTU vivas_e_Page_126thm.jpg
441656ba78030c24c5b913f58dc9039e
1fabcebe219eba2a95230322a1b59650731e90fd
F20101108_AABXQS vivas_e_Page_121.tif
e7847bac97a9c2f3c8ec0e4f874b9f1a
72ecb4ddd92904a05d5efba21193ee6925ce75b7
25471 F20101108_AABZAE vivas_e_Page_214.QC.jpg
28300c181650bcaa0ed2ab0a73d69225
0635dde1cdfa328ade0c25270a5f10037720fab6
28817 F20101108_AABYUJ vivas_e_Page_134.QC.jpg
b59fa986375ac02a62088209b5e77b8f
48a53af4a32361e6dabaf5186b0af5fb33e4d02d
26108 F20101108_AABYTV vivas_e_Page_127.QC.jpg
c2fd7372ba1929a82d330637fbd915bc
f29dc687db8dd1da048506f9369d13035b3d7f80
F20101108_AABXRH vivas_e_Page_136.tif
3b616da1eba048e41a1bc6711af2da6e
b6798a6aa6b0979de2645fcfa084c825678fbfa8
F20101108_AABXQT vivas_e_Page_122.tif
445b1c69a3491507ca86def5777e6ebb
ccafcd9ec95183dd425c7ea5e6782c9e972ec034
7107 F20101108_AABZAF vivas_e_Page_214thm.jpg
c7ba609d2d9e3802b6fe7361b54922de
f1d319b8f3d20786f850db2f0b9eaab64177dac6
7212 F20101108_AABYUK vivas_e_Page_134thm.jpg
9ad8f6606763073a0fe8b43e589ed066
0f9d9a0b551700591257b2f470554533da3c1006
7020 F20101108_AABYTW vivas_e_Page_127thm.jpg
8d016b62b12c7662f0220f9df6979488
e95d3d1f4686fa20802b874d50087984ab34865d
F20101108_AABXRI vivas_e_Page_137.tif
20b27d4629f6e37829f3f0230096b22e
21f9cc84876d3af274049df34ef8ccc6c51742bd
F20101108_AABXQU vivas_e_Page_123.tif
f1910c2addfb18d5bdc39602c3843a72
8c53b8864a9101443540a0c31a1d5bfcad0d5333
15484 F20101108_AABZAG vivas_e_Page_215.QC.jpg
e53b9a28fe7c05184d6fd8dc7930c005
17f00cf34f6d213f15cac3d24d56b15e0a255dac
3457 F20101108_AABYVA vivas_e_Page_142thm.jpg
35f6ad5a5e5bf0ec3a9175b3f699b90c
f590f71cafc65ccb3be54b23ec2d8fd2e750c745
12591 F20101108_AABYUL vivas_e_Page_135.QC.jpg
f99aeae3fab7d392329ed1395b62ed09
87fd1e46354536fdce8cb5992b41a25d146f952c
25626 F20101108_AABYTX vivas_e_Page_128.QC.jpg
4391bf6b5c3de088f8631918df8cf174
691b2be4632d79b803518c1d0e24348d1bea91ba
F20101108_AABXRJ vivas_e_Page_138.tif
07c8a7acdd4fc0af7fa7e4aff3172646
07844ebecbda4d4432c517f35ab698f885999d22
F20101108_AABXQV vivas_e_Page_124.tif
b59d012cdddd36c185b2c1ef3c5895de
b8ce35094b8a39e1c901aaf950f8c46e32a40a59
4350 F20101108_AABZAH vivas_e_Page_215thm.jpg
6365d9c317ef9278f7e50cf76c285936
4e2e1066c64905102b0318a03d5a2cfe3de169b6
6496 F20101108_AABYVB vivas_e_Page_143thm.jpg
30fc561030f05672c1fbbda2348d223b
d003a2b5cdb0000dca2dec3717fc4d3a4186eff1
4197 F20101108_AABYUM vivas_e_Page_135thm.jpg
906c84003015c8a9c3d1aff1842a5b8b
cf310a68d6f43a57a2298f04252758d47dd266b7
6675 F20101108_AABYTY vivas_e_Page_128thm.jpg
4025a75cd5c6656e18363cbdf6020684
d1b6b28093fa4234c76b133b3416b20ad57dbc6a
F20101108_AABXRK vivas_e_Page_139.tif
8f15a11e4aee157596451cac691a7ac4
6a7681afc2cd9bc31cc1036da398735e3fa37d5c
F20101108_AABXQW vivas_e_Page_125.tif
69c2026d37af9622aa4f0fcf4e242644
61d178ca630545f7fe99b6c8e7f4e60d54be0bf5
12197 F20101108_AABZAI vivas_e_Page_216.QC.jpg
86b497a867528d3e940abe3ac7d73ebb
36401ad53e83b64d3d68bc24ae493fb63fa28262
21488 F20101108_AABYVC vivas_e_Page_144.QC.jpg
a78c00f751f43b574e9435c136855493
6b1982a19f2b585f304c4aaa466b8e4698256a26
13085 F20101108_AABYUN vivas_e_Page_136.QC.jpg
8a4593506ae9735cbfcff956cc188a80
99903837553cc5427f6ddc6003ae865cb0e84d51
25977 F20101108_AABYTZ vivas_e_Page_129.QC.jpg
619eea7e24fb650cdfd6b3425ec3b219
a340e2504caa67bab6f4d086a4b1b4921f2b6e81
F20101108_AABXRL vivas_e_Page_140.tif
bf56838193b649f489ebb2b434ad8be2
ca12653d82d17f5f4529d8361e26beb7bf4a3ba8
F20101108_AABXQX vivas_e_Page_126.tif
c6db054ab236368f697bbac8cd3ba5fd
cc6d35d747d854f263b2bc50ac6268b474903ffe
F20101108_AABXSA vivas_e_Page_155.tif
4fb896c0b905c1b63ef11746e74923dc
375797efbce4a95892669612e34d2ec6d7ed5ccd
3445 F20101108_AABZAJ vivas_e_Page_216thm.jpg
e9df7ce5bd1b8117c2405bc5dffac72f
afa6673533f7049491fc5e4b9d5f7fad2e860b03
5924 F20101108_AABYVD vivas_e_Page_144thm.jpg
b925e068be02214782702f9adc27da27
3b5c90d102452449b37ca6590047f0ca24c9fadf
4399 F20101108_AABYUO vivas_e_Page_136thm.jpg
974bc06521a8273ed1c52989660c3c7d
6e75751091cc4ef2cec1f12222a46883772678bb
F20101108_AABXRM vivas_e_Page_141.tif
f7be8e93688eb222a64646413d17212e
dfa0d1ed4f857c556acaabaf8baed549ede74dc4
F20101108_AABXQY vivas_e_Page_127.tif
7bffc7a8ad8cc6a8ee7cd7ce4464862c
046d8ca8376db41211a527563f1040302b9079f6
F20101108_AABXSB vivas_e_Page_156.tif
88f9342fdbdda4f86d4d8f54630b532a
eb60448715674fc004dff7eec2dd05de0bfb448d
22963 F20101108_AABYVE vivas_e_Page_145.QC.jpg
502a3e2d4b5f5f846feee17b4d26b851
54d56c52d4ceefa45a6edfc0a564497e14e7f94d
12673 F20101108_AABYUP vivas_e_Page_137.QC.jpg
0e58dd8029eb33f7ceb839adaccfaa2e
c3ca4dca59a84740b583cf995ef3966aa0226faa
F20101108_AABXRN vivas_e_Page_142.tif
98b49a79f517c61ba9577515bc7c6224
45a4d9a96eca1c1c86d9b1ee6510fdfc71e7b56d
F20101108_AABXQZ vivas_e_Page_128.tif
d8d0ffc457c64835d639942a0c7e09a8
e1029ed6362a6799e61a0f813a4370b1fef01fef
F20101108_AABXSC vivas_e_Page_157.tif
ff152d3917516620a3a5c67a8303c2b8
419f2c5eb56e9b179590553fad547036113255d3
6835 F20101108_AABYVF vivas_e_Page_145thm.jpg
70508ed2367c924e67573df9d6336961
d9d3afc6c11b55cede15a0546b2657f1c4de1b2d
4231 F20101108_AABYUQ vivas_e_Page_137thm.jpg
83ab8515970e504427190bc3db3bf5cd
343f559041c63ce1f8ff211ab116360855c3f20b
F20101108_AABXRO vivas_e_Page_143.tif
c5f4d3ca5b4d0d2c625a4f9779ac2135
d602b7717c3dc50532d5e9e538e0ae8cc4f59cff
F20101108_AABXSD vivas_e_Page_158.tif
a855df034b0f6b0541e5a0b40ca31887
240bd37c7b6c039928e64c2dea4d20febb12a432
22473 F20101108_AABYVG vivas_e_Page_146.QC.jpg
7a75b66128fa10028c4065bbc39d540e
2af0b6e98a66cfe0eebcc9330bfa712d7f5082f5
13309 F20101108_AABYUR vivas_e_Page_138.QC.jpg
b47a425b6e3f773582daf5973b8fb1f2
916da232f1bba11fcaf0a33690b6707ed0fd1207
F20101108_AABXRP vivas_e_Page_144.tif
9719d83107b6accf0f65a337f7e415bd
e1e544b1c03990cb36412ae7e03d79531733f90e
F20101108_AABXSE vivas_e_Page_159.tif
9a6020fd6e1cb84baed7d1733af06d19
58b63dbe8dad1176aafb147065cadb258acf4d61
6586 F20101108_AABYVH vivas_e_Page_146thm.jpg
8317777b5c06e5d682c098c2f08a2078
7e2421c8b7d25f79611d930e83a2b6e138457233
4331 F20101108_AABYUS vivas_e_Page_138thm.jpg
64dd74e3c92111ddfa2c47a5dd561c33
e7ddd2770739b50df9a2d9bdf8c29a60af7baa56
F20101108_AABXSF vivas_e_Page_160.tif
c3dd7807391188c38f27cc6fbb761395
ce9d5200dd4929d5ccc41a7a14d3a6fd3e1e4f47
F20101108_AABXRQ vivas_e_Page_145.tif
840394cc3c7d423df1fb20c83d33fc99
b4c266797cff3fef4fa144f3da2190236c146906
10872 F20101108_AABYVI vivas_e_Page_147.QC.jpg
e382c909b75bf7434afe077db6457a2e
276abfe6035b570bd08a35c373d5459b29432dfc
13034 F20101108_AABYUT vivas_e_Page_139.QC.jpg
3a35d83ecd7b0d797f98c249de2f08aa
985728afcb68340c8e2e71885321d43cbcb3842b
F20101108_AABXSG vivas_e_Page_161.tif
4ed8b3d2f967f447d0d9f4d87b464f40
d3db3df197ee4b3c953741ef6edd6ef65c2b4c9d
F20101108_AABXRR vivas_e_Page_146.tif
177d6cf9fad7f5ff92fbe333e66ec2b7
51b49101bedc12ffb10d2dcbb32c7f8dcd61425b
3338 F20101108_AABYVJ vivas_e_Page_147thm.jpg
1a7c62b8891492e9291b1a54f9ef3cd8
ff362d3ed8ed7c924df954a54bb810ede49cedd3
4294 F20101108_AABYUU vivas_e_Page_139thm.jpg
6381a093a06997d7c608af4ee362cc53
9897aee3cf74034db89abd6f8c15284d0dabeed5
F20101108_AABXSH vivas_e_Page_162.tif
5ac51d5845e785fafc125a8e417081df
02fff331909b7ae84cbbf09da9ed0e28a298e4cc
F20101108_AABXRS vivas_e_Page_147.tif
4e1575872e22b41bda76afe1fca02a0b
e085d53eeee92882515f6f4373933db9f21ad4dc
24128 F20101108_AABYUV vivas_e_Page_140.QC.jpg
7487cda59583fd3d2694ce9051f35485
023d0e4689c0b9a38f726936f72baba5db1ac997
F20101108_AABXRT vivas_e_Page_148.tif
3edd7dd960f7222a59d6e484a82dc46e
7039e77dcbe20911db87a7aa3c3d5f20c6eb2714
15651 F20101108_AABYVK vivas_e_Page_148.QC.jpg
7125005ab49addcbfcf18372dab5b53e
fa96efadcc973a546954aed91f60cc51b6cc0706
6572 F20101108_AABYUW vivas_e_Page_140thm.jpg
9f11d2bba4d99813aaa097afcd2a25d1
8cda1dc85f7abda6bdaf9494b8eeec84b712d9af
F20101108_AABXSI vivas_e_Page_163.tif
118b7a58a554721f0da5ccc1416f9265
13f5c0c8628f1972dff33d3f0da206095736f0ac
F20101108_AABXRU vivas_e_Page_149.tif
bebd5294cc802786fb64ecb7b60d79d4
3e3102027ad5459827551d8123c7074aec856db8
5288 F20101108_AABYWA vivas_e_Page_156thm.jpg
ba622802ca48b2f4f9416ac9dbe64d3f
dc5bfe047892ceb6a0d0599f3389786dc95335d6
F20101108_AABYVL vivas_e_Page_148thm.jpg
320f78abca14117fcb532151d46223da
dde01f097305558c7cbe18177f6084108f009ab6
23477 F20101108_AABYUX vivas_e_Page_141.QC.jpg
62dd28461e8db269805c57ecaaae1d5c
7d71017beff6f040630812beb0badececd898c64
F20101108_AABXSJ vivas_e_Page_164.tif
c192ac65974ce77cf971782e50d2bd63
01a4e25adab2a19a2d88e45b05a0d8ee1d0143a7
F20101108_AABXRV vivas_e_Page_150.tif
8268f23ceb5a94b066ea2cd6bae48ec4
e63c62a76433ef890ddcbee28a160ffa3fd5b9f6
17667 F20101108_AABYWB vivas_e_Page_157.QC.jpg
d20fb58032e27e87825d98086fab99b7
7662d1b572f1c400d78863d2cfd58b659ec4d36d
23104 F20101108_AABYVM vivas_e_Page_149.QC.jpg
3c32eb6b14d72d0faafe8ac3c8bff0c5
ac4e9a887b2c2eb87561bb12ad1e88f379fa6509
F20101108_AABYUY vivas_e_Page_141thm.jpg
38fa86596a544671f2edd27918a4c1b8
c0ef126f8b2fa66e1e24463921b15644248f60a5
F20101108_AABXSK vivas_e_Page_165.tif
71da1889d5578cb8e46757ecd5a34401
28b2dff18ba343389f433d2ae428e76466d31b3c
F20101108_AABXRW vivas_e_Page_151.tif
2243781f47bc384911789f62c4484d5d
098d4fba344b7abe12463653fbf022210105ecd0
5273 F20101108_AABYWC vivas_e_Page_157thm.jpg
27ec736b56a2a131e521e0dbd12b1906
3b99c6b3c4816c67ba216a77cc9807d7aa2a6e17
6051 F20101108_AABYVN vivas_e_Page_149thm.jpg
077ddb0d2bce905ca07484b39f1db2b6
f81f59b56e634a12caea1e44027478a58a0f59a9
12034 F20101108_AABYUZ vivas_e_Page_142.QC.jpg
4d4e146bf6dc32adcc4c49a69ed00c75
ba8ca72dda15b505fd579e6aaa8bdc2c1e5aef6f
F20101108_AABXTA vivas_e_Page_181.tif
36fd926b4423bc21a6df8329b9479ec7
824a6cd9ea18f7d6bdbb7782a339021ded404c28
F20101108_AABXSL vivas_e_Page_166.tif
72796d59ac84bfbf72f3c0fabca9d115
bae44862c18fb5e188e5dcff77a0cf9275da146a
F20101108_AABXRX vivas_e_Page_152.tif
a311a5b0e416f54234bc7d42f41ede4e
d9f29550a48e6f1af6ea3c67992b2739f412b2fc
18091 F20101108_AABYWD vivas_e_Page_158.QC.jpg
00dc872589baf40ce27e6dbf92f477c5
7268ba4219b831435b0a60b10a94238c6b7d8d25
5825 F20101108_AABYVO vivas_e_Page_150thm.jpg
62bb854beb7c27549f7f2757eb728cbb
f514947bf9eeeff76153b7292d877c769497d8f0
F20101108_AABXTB vivas_e_Page_182.tif
6e035d54fa1bf24524a6fe846d557ed7
115d2e86c8204d761837cf08374beaaaa21ed3cc
F20101108_AABXSM vivas_e_Page_167.tif
89685bc66e341ea47d3b2dfa2befdcb5
3aec322e0a7757b6d1498eca3c25b919215032a7
F20101108_AABXRY vivas_e_Page_153.tif
4df35c60cce4edb615c570f55888281f
90da45c52bf63b3260efa86828ba5c24aa48ec0f
5404 F20101108_AABYWE vivas_e_Page_158thm.jpg
ca45a11dacc9e3df731e4ebbe9bc50bf
8336dc9b75f1b06471f180510b1e261d11d5791b
21933 F20101108_AABYVP vivas_e_Page_151.QC.jpg
dbbc9b4656371a48f13ac1995ff6ffae
31ac17eb9779414fb81eeb3a362c1c27c59e416c
F20101108_AABXTC vivas_e_Page_183.tif
d32feb3441529829e24585eee8ada6ca
4c996305c25432fd424a66767d61d9393f6f6aec
F20101108_AABXSN vivas_e_Page_168.tif
35656b251a5fca5fe3bce0f8e93d79bd
2a43d9c1cd2542b899feaf33c253bff0a1dfc1f0
F20101108_AABXRZ vivas_e_Page_154.tif
8b48f5836967c864be85f229cdd64c09
a89ea3b8caa8b7dd4a9a268aac430739a07f48a1
18363 F20101108_AABYWF vivas_e_Page_159.QC.jpg
b5636068d0913c225b8a6ebb987634c3
d1b54a971610163af903d5151fe483acb448f5e4
5879 F20101108_AABYVQ vivas_e_Page_151thm.jpg
4e76241a625c3bc4cec1d778a9c9bb35
0e42976a36f1c3bfe30fe8bc13863a82c51148bd
F20101108_AABXTD vivas_e_Page_184.tif
964ccfdcb5fff6b745bcefad4ffa20e0
f9d2687a9825bdaeb6a74d9f417093e865dcb46b
F20101108_AABXSO vivas_e_Page_169.tif
a8eab667be4af23364cd511a85895eee
00958279797757cdfd82694921156feaaf57c104
5461 F20101108_AABYWG vivas_e_Page_159thm.jpg
e200a0beb60ca459df0dc5d02a17c431
ab092309efddae5ea104e1ff8d25ef1e57dc02c5
6674 F20101108_AABYVR vivas_e_Page_152.QC.jpg
c956802d2710640880b6b0b35ee40fbd
62687857270086964876404e4ac0713c78430f22
F20101108_AABXTE vivas_e_Page_185.tif
c320e2f0dca23e853b1b9149cfe48357
f951c6e6c937ec9d640ba378010bc59c2556af3c
F20101108_AABXSP vivas_e_Page_170.tif
7f9708c55b63ff08c3bf3bb9a3a8c6f6
5a9b5de0ebbabe178c6e805e9e4002977b60bff6
17709 F20101108_AABYWH vivas_e_Page_160.QC.jpg
72195926edd651cc8a244544f2855450
cbd15b8005891eec6c2b98a4d182ab334cbfe774
2303 F20101108_AABYVS vivas_e_Page_152thm.jpg
0ef1b09431bd8b7f560fb2632f15b116
e55422d5491efbd8729d7b0afc4f8e63bde21ebe
F20101108_AABXTF vivas_e_Page_186.tif
814cc1fc6a3694f5b80e06c415811e1c
a611ede6821eda0aefa0dc356f55723d7a81e9bd
F20101108_AABXSQ vivas_e_Page_171.tif
f458d35d3c4d0b69c84f5dfbcbc2c3a3
075a909f693d4d037f5df6fc05276c2ac0087843
5263 F20101108_AABYWI vivas_e_Page_160thm.jpg
5ebd8d1fe87fe8f05620a7ae6fa15a95
8bba6c791b73b405d90920c107b327002de4b364
18409 F20101108_AABYVT vivas_e_Page_153.QC.jpg
99b65825168bd35a7d2a5d9f55957340
a756d356a6bc41eec4f3ead369d5c6ff54f4dd36
F20101108_AABXTG vivas_e_Page_187.tif
182c70fc093011ec43af38b2ea274924
289a3aa463d8f986f584d1899bcd36ad6827fae4
F20101108_AABXSR vivas_e_Page_172.tif
35161e46d306a75e72898c80112b7b1e
a9e7ccd71189ab462f164bdfa0039d9e52c99989
17533 F20101108_AABYWJ vivas_e_Page_161.QC.jpg
322831d71a525dc978161b69a7886420
f0202965c109cdb964b08d419bcdae5612fbe10d
5459 F20101108_AABYVU vivas_e_Page_153thm.jpg
1fdec2e391b08db19787415e40152a26
c1c840dbfb59b45c9d83eb15ab8d73bcc35c2dbf
F20101108_AABXTH vivas_e_Page_188.tif
bb9d1e60b6567e13c1ec05f5816d906d
5a226f35b672588c4b4c5b03ba00a440de020446
F20101108_AABXSS vivas_e_Page_173.tif
7dded6c5858655e17c056d0805cc8f98
35455817163f628f8d0cce19e1f06e69e2355bc0
5173 F20101108_AABYWK vivas_e_Page_161thm.jpg
0523b25b250d796f62b02451846c5a48
10ab4b183803566e31ee942398be9eb66613d63a
17914 F20101108_AABYVV vivas_e_Page_154.QC.jpg
05b7986b3bf26f67b636e9e5ddd86c17
d3782fc67f1ecaa8b709e650a55f67139c406c89
F20101108_AABXTI vivas_e_Page_189.tif
379b354312e8f5e4372aaf84e0431d3c
a616ad302693b45560cae7a3c28ed0e13939f9ed
F20101108_AABXST vivas_e_Page_174.tif
f8e68c1a3a6ffff86b8262e3e120226f
48138c7cefdf8029919e0c156e3d5a82e2d7c971
5356 F20101108_AABYVW vivas_e_Page_154thm.jpg
37ac1af0e339d64edf2655c91c39ea7e
9f7e317d05afe84574a0c59f84406a030ce7b0a3
F20101108_AABXSU vivas_e_Page_175.tif
3b2b06f47c256468994b1326ecc2b201
13f986df4ca7dbdf58e3d77b5ffc25ccec859639
18015 F20101108_AABYXA vivas_e_Page_170.QC.jpg
d91c35306ef42b27972ec216b584abdd
303ef0b531b0e839587aa28d3833ba0aa413b126
10581 F20101108_AABYWL vivas_e_Page_162.QC.jpg
57f2e888303d7e066c597d3d23077fb5
d6ad5011dd1873725f2af152991227d451a4abd1
18054 F20101108_AABYVX vivas_e_Page_155.QC.jpg
49d06e801da9567056133483f46c97fc
0f9e034cded4458234d47e9865ee1f73d36fd061
F20101108_AABXTJ vivas_e_Page_190.tif
d5daf034507b36084b98b554b9985d20
823d10b107074aa6d8c615bc1d75290b4e915c1a
F20101108_AABXSV vivas_e_Page_176.tif
462730708839b2a2c8904e0867e3ef9a
d2b36b477bb6558f2339d7352750ebbd6198c3c5
F20101108_AABYXB vivas_e_Page_170thm.jpg
91b8cac1bf4ae3e7a57c56b5fb8e8bea
ad73981bf5e40b61e55d335315423d5a171eac58
3271 F20101108_AABYWM vivas_e_Page_162thm.jpg
b22f9f43b9ef991f7af8e206f81a2844
d396820bd3bfb1d88d83e2a2779ced7c061c7a60
5405 F20101108_AABYVY vivas_e_Page_155thm.jpg
a28eee51ed08e7c4d68a8ed114e0a623
d7595fea4e9269b238f427eff4789b2c425ba857
F20101108_AABXTK vivas_e_Page_191.tif
4f7197f2334b16ea9be962d7b09ebe98
4dd3cba48889824e4056b662ab407d36a03e5b09
F20101108_AABXSW vivas_e_Page_177.tif
3782246c3fdd913c31118910520ade39
6f33d03ff8b4b5603dd5d94762af01510c533c76
18358 F20101108_AABYXC vivas_e_Page_171.QC.jpg
bff85c5f63b449aca4364dc187fbe055
06b4fd77a80762bb8bdcee3dfcb98ec03de4ce53
22635 F20101108_AABYWN vivas_e_Page_163.QC.jpg
98e9cc0aa57be76e99eada927e800f59
c7f5e6da0b6d091ecbe7a4c65b6b348631c3b8bf
17792 F20101108_AABYVZ vivas_e_Page_156.QC.jpg
c2ea2b025af36f7b3b815b5e69b37921
ad9560be4105c99a61204fbe43d7aae3a2c1e7a7
F20101108_AABXTL vivas_e_Page_192.tif
8a8d82ef2d26e7f87c14f04af8f71261
33ec80b1c333fedaacdc1ad5becd7dddc8285828
F20101108_AABXSX vivas_e_Page_178.tif
b7d333cbf64be029f6ce93a1f19a114d
ece7bb01bc97e7980822c97fc683d1b9cd13e444
F20101108_AABXUA vivas_e_Page_207.tif
27060b078b03b072a1715219a4cf3843
68255f034cb8da6f54f63103bc60d65618881977
5282 F20101108_AABYXD vivas_e_Page_171thm.jpg
c7fd5db74f7e20d6f66e19f7dece3f45
2119aaf85ee622a2b4c7363c0b50abcca7eb4915
5957 F20101108_AABYWO vivas_e_Page_163thm.jpg
d187f612aaa61bae4d924685d59b569f
ead27adf08a5920080bcc29d1ba5756ced46f24a
F20101108_AABXTM vivas_e_Page_193.tif
ea0a23dc2b235639035a54803d2e55b6
ab4ff9f22be11d41329d24a84cf11e821eacd70f
F20101108_AABXSY vivas_e_Page_179.tif
17150ebd0a81b4a94095aacb9ab6adc5
58f136f28f93ca36f2a6544561ec1e69f91e6de4
F20101108_AABXUB vivas_e_Page_208.tif
f739f64ddb48c928a37657946ebc47cb
130a10a68f94ee3d4f6586bcae1848ce36c65954
19199 F20101108_AABYXE vivas_e_Page_172.QC.jpg
3cd357cff9d0a7f735f1498d2fcc1061
1c6a5b5e29ba156f2a1b9526e28967bbd45de44c
20836 F20101108_AABYWP vivas_e_Page_164.QC.jpg
87a3a10f9196d3c352ce2589ad4380e3
d7a63d5c77eaaad3a2651439b001c19502282b26
F20101108_AABXTN vivas_e_Page_194.tif
83af0d69c55a2d3aa2f313cb2fa2550c
2a763fe7cf2234e75f6ab50905bffa0dfaeaec11
F20101108_AABXSZ vivas_e_Page_180.tif
e101254aad41c42eb3be280f4867172a
7dc7d51c5496fb0cd108ebca3f6f2fe45df417d9
F20101108_AABXUC vivas_e_Page_209.tif
46445c961bae88123857c13cff03b470
4f5c0d17903edd342456ba5d0dec47c173d0ccf4
5381 F20101108_AABYXF vivas_e_Page_172thm.jpg
f2c7b7dcc3bb8d33ca8398083dbbc0d2
7d8534eac4edfc5a29e7a1374ef9db9142d232a3
5639 F20101108_AABYWQ vivas_e_Page_164thm.jpg
b21f7689a34b9df9b7e0b84fcdcd03d4
34d39d046ecc8f11fc922da4f5582193df7645a7
F20101108_AABXTO vivas_e_Page_195.tif
7f360492d46a21862fc7628760e34eb4
e4dc60be8fd597573320c021b6c365508ba40af3
F20101108_AABXUD vivas_e_Page_210.tif
8ec2f45a168099ed9510553cadb895b5
aedac5f77053ac2c7888f6f4d64b5c6d7b1296d4
19395 F20101108_AABYXG vivas_e_Page_173.QC.jpg
043324d17c409dac23793ea6bd8fd06d
650d774601d7c38853a95e8b6fc653cf58cf6bf1
21858 F20101108_AABYWR vivas_e_Page_165.QC.jpg
29b8047cb8e6d9290b75dc48d4f53bf5
26fb45228e0a83fff5cf27fc380338e78903130d
F20101108_AABXTP vivas_e_Page_196.tif
696dd489d53a3d5a58229cf2fbcb46bd
cd2d8fe909a14f699512e2ce8fae7a584d6f1f65
F20101108_AABXUE vivas_e_Page_211.tif
a4ebf328a597f2f5c51ca5daf55ff82e
a58e9610a7748bbf4e87e2359f71f91bbd3a75f8
5475 F20101108_AABYXH vivas_e_Page_173thm.jpg
db6835e795028cf3abb2021a051d369e
129dc479a6826c28e1b85b560d51cae24ca1b108
5842 F20101108_AABYWS vivas_e_Page_165thm.jpg
da36a51165305af50f0746e6bcc419c5
f0ddfc5d79d4fe2e72ecbcf0ac05a5e01e4ea046
F20101108_AABXTQ vivas_e_Page_197.tif
fa6549b60e8b073cfed6d4be77a91e35
93f4f01fe63ffb135c39a0dcd5bd6b3fb304e281
F20101108_AABXUF vivas_e_Page_212.tif
63dc1f9f0a89ff5d4e9420d896bf5261
82e342d109cf78d9106a763b04d1e808e0bba366
18862 F20101108_AABYXI vivas_e_Page_174.QC.jpg
edbcaad01c230170c4e0e8443250c6cc
647e922b336a50f30df8f68efe2e5c03a895baf3
6807 F20101108_AABYWT vivas_e_Page_166.QC.jpg
1edb974ebd504d7a2b8705ceb2c83873
f577544c611b434e059ff294df9cc6f9b9805746
29577 F20101108_AABYAA vivas_e_Page_153.pro
52d3e6765c0008b21ae9fc1ef3cd4fd3
7e9d8cbf344744d6b72ca6c7a362953547276f0c
F20101108_AABXTR vivas_e_Page_198.tif
085b798d657e5875e155a8403c1a7811
e0c92d5bc23a48295e9eb0764bf984e062e07590
F20101108_AABXUG vivas_e_Page_213.tif
dc94c33f5f2df580e10c8d7154995652
7fc26fee87b57f6d43b006a03d05102df293f07b
5350 F20101108_AABYXJ vivas_e_Page_174thm.jpg
775edcc14507a10b9e5311b53166026b
019e7d4e5f1b772302f05ba87ac3f3ffd9deedea
2278 F20101108_AABYWU vivas_e_Page_166thm.jpg
887d0e1a386a621026f8169095235b68
b0111e7d1fecd743dd1ca0ae1aec8a118b4f3180
27599 F20101108_AABYAB vivas_e_Page_154.pro
ce0a504d5943f2ba3a63c295f10bf41d
95b9ba0b968c67c3ccaa3e9324c7d6b2e77aaf37
F20101108_AABXTS vivas_e_Page_199.tif
ccff07230f2d9ee1b43cc9c1d9bdc22a
4b6b4c5561db4c13e195e347e5e8a99135a56d5a
F20101108_AABXUH vivas_e_Page_214.tif
16ef0d5d5080f50a426741c7e4124ab8
946158d617dcc0f1447bf8b6cec2ee2ce3d8ce69
18754 F20101108_AABYXK vivas_e_Page_175.QC.jpg
912a0fbe7e28af9b890b27a3d279684f
e54dd0621e78fbb60adb7f7bb54e92fff6bf4461
19000 F20101108_AABYWV vivas_e_Page_167.QC.jpg
a8bf688ead892b7e50ff89a2a08546c3
d112b498900b3e699df328d16639f1b0a4d66b61
28024 F20101108_AABYAC vivas_e_Page_155.pro
88a5c83af0cd554d45b52eef6921124a
6046c84361cc3fd119437821306614333b2ec7c4
F20101108_AABXTT vivas_e_Page_200.tif
93471fa0fa2a38aef09a8e7d0d2a0ed0
bd5ddbb5c2da07b954652652915d7435c4b28cdc
F20101108_AABXUI vivas_e_Page_216.tif
29167b5c3c9173e6efe2881cbd4afb95
c937e26f54552f2be47670523f2e1f1e0fba04b2
5340 F20101108_AABYXL vivas_e_Page_175thm.jpg
d1d8f0a6ded3f1ebfdd7499f4387a49a
b3a4c35aabf25e88c4e87a1d5bcdbe0e0c2e9251
18180 F20101108_AABYWW vivas_e_Page_168.QC.jpg
78263c0de5d7266576e0f363b2c24067
12c33bd45877b72abb019bb382e576707422fe47
27770 F20101108_AABYAD vivas_e_Page_156.pro
b217ab826b7db29c017799158270fd2c
59c58ed255ddcbb789b807fcfbc348a8f2eb2bdf
F20101108_AABXTU vivas_e_Page_201.tif
7148e633ee9b3f56069d0c79fcbee6da
adbeda8003b73f97c99d126e53acfbce91fe4866
9738 F20101108_AABXUJ vivas_e_Page_001.pro
e3d9429a9316f74bef8382b7ed45bbc2
4dd396f558f8a4696e9805aca71790f897ad41b4
2569 F20101108_AABYYA vivas_e_Page_183thm.jpg
a1b299362ee089aca98c55db34263fd3
ced42dd0a64a269a78e09a268f3ae65ca8bbafd1
5407 F20101108_AABYWX vivas_e_Page_168thm.jpg
f9bbc7de4107f93a883cbec1ae353db9
b22bff3266d96218a32012a722a62f007efab4d9
27748 F20101108_AABYAE vivas_e_Page_157.pro
e50ec9c1363a87b9aeba8a09a3f5f09a
bb7ad5cc089fb4021260899bf2a6c4f6ba435266
F20101108_AABXTV vivas_e_Page_202.tif
17b09362984e017f602862ffd81e4ac9
4eb7a94bc64a9e8fd6aaf8e0ce6a649fffdfe340
31578 F20101108_AABYYB vivas_e_Page_184.QC.jpg
cc31d5606df6f128fc337e9b9fd3fba8
21825f3b950cdc34d2b3cf7f53b6f44e7c7b74f5
11125 F20101108_AABYXM vivas_e_Page_176.QC.jpg
2792db54fdfb6296fdfcde9996ac1b93
5ee6ef43ae6713ebf44c60a812ac3c439fbcf3a8
18368 F20101108_AABYWY vivas_e_Page_169.QC.jpg
d795fb6d5a5b6c78af0f3dc36da8a520
f9ad8fd84b2739b23250034d74c0d3d492d247ef
28116 F20101108_AABYAF vivas_e_Page_158.pro
8999bc501e92c26c92a42f554258b552
80f6b756fce7e43f1656fe34cd6227e3b4e12e3f
F20101108_AABXTW vivas_e_Page_203.tif
8f361554c0b56812ae3a10183f580987
99a99c716a4d6737817afc4725a57d998af79706
881 F20101108_AABXUK vivas_e_Page_002.pro
ceefa5e58800e1cb2a4dab2ac98336ea
7e7fc9fd8f0bed8da0efd739fee58cb40df9d2c1
7949 F20101108_AABYYC vivas_e_Page_184thm.jpg
6b60f68708e44bf37a8aaebf7fefafb0
d72ac8eb8a27e6989e4f1aa97935401cc300909c
3332 F20101108_AABYXN vivas_e_Page_176thm.jpg
7817826d7ae3d1372a331498b8270799
ee6ca7632f0d8368e80a3fc54b966612c37e4cab
5432 F20101108_AABYWZ vivas_e_Page_169thm.jpg
74c1008816f134cffb7dc9d6e6d89287
7ce9cf8d4cee01a007093fa43cedda789a14cea1
28384 F20101108_AABYAG vivas_e_Page_159.pro
256edd554f00aea102e8d304e2bd5feb
9a7251fd3752c9804a302791f16ea1286b6aa18c
F20101108_AABXTX vivas_e_Page_204.tif
db50c2f9e381656a757644b79b341ebc
470d296e97da489d0ce4bb76aa784a8da1f93838
51196 F20101108_AABXVA vivas_e_Page_019.pro
4c5a844ae60097b0b928698df44588c9
6aaeb943b4a687cbdfbd2ce24ab520639db280f7
5512 F20101108_AABXUL vivas_e_Page_003.pro
ff1747cb3cb221ba04a59c1cc513fa8f
b99ddc4fcadbfb85b6338b43ccc57c381eb97c8b
28571 F20101108_AABYYD vivas_e_Page_185.QC.jpg
1e95f7f0774080a44f829d27c3fe0bbc
81cd414b3434fce1b20e1272ba18a9f3d385b5c7
14645 F20101108_AABYXO vivas_e_Page_177.QC.jpg
3ccd8b05ab0adc5f1ffa94789f7ed46f
9d2c875f7845092b8f0d2d08087ca7eac7362f10
28280 F20101108_AABYAH vivas_e_Page_160.pro
fa1f057f6ad8f17a49a510037359cdf2
d3a9743718d05a89f68687cc977e7083767d240e
F20101108_AABXTY vivas_e_Page_205.tif
799a9f53f4315806312ba46cf67e8c42
7207ab14b6bb585437c7f23672809a894670e4c4
45916 F20101108_AABXVB vivas_e_Page_020.pro
c6a39c3aa7e8956958653b16a95f9703
a999c4eaf97331700ca652db073926abeecdab3e
43038 F20101108_AABXUM vivas_e_Page_004.pro
eeac84cef8859e993e60135eba7ea81e
0695d1a0372d62ef6ce10d36caa17227d3aa4ce3
6545 F20101108_AABYYE vivas_e_Page_185thm.jpg
81e0c3358fc9c92d10ed5fd80aaace77
aa22b7f4bb2fd2f7e303687183ff0d1d81e0d188
4428 F20101108_AABYXP vivas_e_Page_177thm.jpg
934cb47a17bdc7813c4ecebeedb8068a
46c5dc7223d73285a706c85b31d1368ab94a6717
29101 F20101108_AABYAI vivas_e_Page_161.pro
7453167d3faf397d1df7bb4fa1774ac4
498547bd58f9e5820496b88b30b7879e30f04ca0
F20101108_AABXTZ vivas_e_Page_206.tif
f6c81fa1337bfeb0a932e66b315c43f5
4a023a7caee7c301e51a9da5f967aa41c985f60c
47289 F20101108_AABXVC vivas_e_Page_021.pro
f4742dbb3330c53dc12116fc03d7d513
47e25e8ba65b8a03a20494477b9aa4b0307831ad
76645 F20101108_AABXUN vivas_e_Page_005.pro
ed4adb8f0b90a97249e78286fee57759
56b4afb8544e14e8ca36b94988239f449c743700
F20101108_AABYYF vivas_e_Page_186thm.jpg
421d51b99db83930ff580c10de24aa1f
dbbb2beced7b9348eaf16d43b1e50f7efb07988c
25950 F20101108_AABYXQ vivas_e_Page_178.QC.jpg
28d0ed0f9446b53ff28f439c2f73fcbd
cd47dfe4b7930e61b8aeaab34726e484f7244f0d
85636 F20101108_AABYAJ vivas_e_Page_163.pro
703c4bfa5f64efbd79b076cabb961aa5
c236002a44127266798046e255d44ccd43b5c32e
51367 F20101108_AABXVD vivas_e_Page_022.pro
0ba05a4293dec0aeab8b9af134a50ffb
28631617a6a4cb43f065ccae191955c8890d5c56
60995 F20101108_AABXUO vivas_e_Page_006.pro
d856b9fd75e3aec869fbd8820ee38b69
e54881511862655688c6cf097df571d610b70073
29165 F20101108_AABYYG vivas_e_Page_187.QC.jpg
7ac6cf9c7885edbab0cd1852532dcbb3
3f0fa197c371bd94caf2e973037d376aa69ca412
6936 F20101108_AABYXR vivas_e_Page_178thm.jpg
3d68533ee22450995e8e7039cfdb5b4c
aee2af6616f190487f23139c1be39679b8e75721
72001 F20101108_AABYAK vivas_e_Page_164.pro
bd08ec9a4fcce8d3590d23ebcb3ab5eb
7739b38bec4785da774dc283767a56dc657adef2
56774 F20101108_AABXVE vivas_e_Page_023.pro
04344df3d8c6a0658471842487261a6b
2663462998584c94959ccb735888df6dea546eed
58029 F20101108_AABXUP vivas_e_Page_007.pro
19d026ef4130304bfe3b55496bad8dd7
60e846f43d3fd71ac41bad3e43b1e6f1b7361c2c
6783 F20101108_AABYYH vivas_e_Page_187thm.jpg
75b331a49be66af4909a214c403d31a3
8815ed5a3be990d56e993d437a56053a58f7ca62
25614 F20101108_AABYXS vivas_e_Page_179.QC.jpg
4c8b15f106ef5cf65f7d0de0a8f4ad7d
cc4d10a750ed8c0e723830374c0959b6f1e62906
86700 F20101108_AABYAL vivas_e_Page_165.pro
ed2404d8537bbf1250b5ad2330cfa97b
963f56cebe13d281d354e132938fc2aa0dd17b7a
53176 F20101108_AABXVF vivas_e_Page_024.pro
4367892360a917c1f0c51e15e2c2bd95
17ada9063e1d435b9e383a5c7bb0d0cc63c422c9
68096 F20101108_AABXUQ vivas_e_Page_008.pro
4227132c61c92d4f2efde41c58c41125
b433f02261c26da7f174ed29f3a48ac629a08343
29563 F20101108_AABYYI vivas_e_Page_188.QC.jpg
4c1b7009b7b8fa45c053c11d61a977d1
b027f1bf82b85eb993299566fdce05aa7904f25b
11002 F20101108_AABYXT vivas_e_Page_180.QC.jpg
a3be5c226c658762d035424bf9e767ac
0647f4de01618cb269e550fd8a53d7d60bcd3a64
24385 F20101108_AABYBA vivas_e_Page_180.pro
2f90cf7a51df7dff949035fdffa3d2a3
f92f857b2a63179370557716ecc34075f4962840
12601 F20101108_AABYAM vivas_e_Page_166.pro
82ea0e092185419c85f529261c852e0a
0288187e7a66ba8d5030cb1672a97f5040429635
55874 F20101108_AABXVG vivas_e_Page_025.pro
6fe2c2e78bcc4d30da50acbdf8b51513
d4e8b51136484e78ffb535e700551d11ac330498
51115 F20101108_AABXUR vivas_e_Page_009.pro
126cfd8ff998daa308008eed311dc9a2
9270a6b6651599b12c492936d7c2415206d75e24
6769 F20101108_AABYYJ vivas_e_Page_188thm.jpg
dbc6345d1133c6e735556c1358b22a7e
5e1c7557bf0da5935aa1632df591273ec72e3e92
3326 F20101108_AABYXU vivas_e_Page_180thm.jpg
0c964005f7f0e5cecd802b4808dca73d
275c29401ae33e4846e14e3cca6c2e950feb5a91
29073 F20101108_AABYBB vivas_e_Page_181.pro
f1de59fa87084367a2d428c59cc9e3f9
ce63732ea1ff13c549e5d8e80e5f4a4748415d3d
28775 F20101108_AABYAN vivas_e_Page_167.pro
1802acc581e0858aec87213bfbb834c7
0e2f7a3b2a2247662b134ec4bf12e852a14fdb46
53917 F20101108_AABXVH vivas_e_Page_026.pro
556915ab68e9f958bff1f23110d7b99a
aba1538585d598bed6b7df6004665316cc3c3c89
61699 F20101108_AABXUS vivas_e_Page_010.pro
80766aa9b2aad57e3d3f9dd112efe194
9a8eab29d3408cebefe74c3789959ab90e3dfebd
6600 F20101108_AABYYK vivas_e_Page_189thm.jpg
2a504184d071778f14bdba59a0919048
5648ef20fa2baed28560c2d106e21fa8ab3d669e
18286 F20101108_AABYXV vivas_e_Page_181.QC.jpg
57925de3b93b61a12c6f46bc5ab46972
cc9ab2770102a9b96df3db8919e8cac37016a056
27203 F20101108_AABYBC vivas_e_Page_182.pro
8db879401d5fee57d5dc7e3719819688
3289ec59f85ca937ff228490ea9a5f13147f5ad3
27394 F20101108_AABYAO vivas_e_Page_168.pro
1dd5860007e5bd85adade2549b6c77ff
56d1b2fb78310d8b0d8c1152cc8ee9dd94fc3bda
55014 F20101108_AABXVI vivas_e_Page_027.pro
4551e2426dd8c08aff47fe68eafdfe61
39db6ba9011268c8e41d4bc8d47412a265742b6f
61947 F20101108_AABXUT vivas_e_Page_011.pro
96a3417f6c7e8c7564a0ad16f96e28db
edb69e0801eea7494614d8b19688248c53b0de8d
29279 F20101108_AABYYL vivas_e_Page_190.QC.jpg
fc5816ed7ba20eb56c35d65e9c27a61e
b95289bce8407e3a1128bc59bcd5f98d31635517
5228 F20101108_AABYXW vivas_e_Page_181thm.jpg
7fa7402941eefd5f254c3c2d168422ce
a7a924b0c49e4aaf6a166cd067afa31a83686871
9358 F20101108_AABYBD vivas_e_Page_183.pro
91bcad404d76ebbdb334470528ff7fc1
f81597a81e45089b9f082fb1930d08675589eb69
27153 F20101108_AABYAP vivas_e_Page_169.pro
cfc45ec8175813bbe53d8e4b5b3075cb
a1d589a05105c856e4fc9d96ec2d25c566ad079a
47700 F20101108_AABXVJ vivas_e_Page_028.pro
0aec6bb4e3c2221849497a365bee0d4b
0252d8f3770c08cd0dc8927388669ef26acb3daa
69689 F20101108_AABXUU vivas_e_Page_012.pro
ca6872586d3d8b121698eb8af5d302c4
d4b1c5f5acc8629b7add5fbafa1c9d8b9c5c1217
23112 F20101108_AABYZA vivas_e_Page_198.QC.jpg
0cf40403ec94e3b3bf9bf7c875387614
e5d388e61b4d47a21eb3e5b2aed2c89f119ed9f5
6678 F20101108_AABYYM vivas_e_Page_190thm.jpg
1a6f1e736fc6994b19de0be24b0081f8
acf34696246af88662259bccff6c0b88d5458405
17331 F20101108_AABYXX vivas_e_Page_182.QC.jpg
b9f2fdfd9243e150266e6bd4406f4c0f
c4bc1039840305382d652b2c40041694c9d2e2ac
123706 F20101108_AABYBE vivas_e_Page_184.pro
c09d7f35428b2e247f452a5ab8081a46
5bdc7ab7af8ea0d4ec61c2c8cdc69611cde20972
26849 F20101108_AABYAQ vivas_e_Page_170.pro
b8d37f72158f681b4b05a50400c18b66
7e3e1f3eb0b1038b20b33a859490658914738587
54950 F20101108_AABXVK vivas_e_Page_029.pro
7dd1a4c92ef5b60bcbc4f65823843265
550f325dd14e137e9ee7ee32a319af483803b8d0
70870 F20101108_AABXUV vivas_e_Page_013.pro
2fd4c6408d851005feeb59f2004e3273
d1dbe3543c9a0a2b8528d468dc8f4cf1095d70f0
6950 F20101108_AABYZB vivas_e_Page_198thm.jpg
972cf346c9857c223d5c6a5726ac5127
569e52c0bdeda9ff6d1302eb0cf8b44696c8ff30
5055 F20101108_AABYXY vivas_e_Page_182thm.jpg
4c3f5146e3894bef4d6e8bd67e564b5d
6280916aa210aeddadc22b569e36bcd9d3dc11d5
133434 F20101108_AABYBF vivas_e_Page_185.pro
21fc2b7ec5229b491afda3bf8b8876c2
df3e49f0e7c260aa48b500abb05515335c8f648a
27586 F20101108_AABYAR vivas_e_Page_171.pro
8451c7297550e22aec191d6e3c117b02
edab9b01f574b0fc322975c0b0c831f2c6aa74c1
18659 F20101108_AABXUW vivas_e_Page_014.pro
dcfd539af0f0f0580240440922989b67
f0933990f7c32e2e4f7de96455828e3d52c0a77b
9130 F20101108_AABYZC vivas_e_Page_199.QC.jpg
161c8d93c551711e79ce5ea9cb5217f9
420ba3486e31eb6f23529768d66dcc2ba33dfba1
29470 F20101108_AABYYN vivas_e_Page_191.QC.jpg
b26638d97d58714b31e24f67d12a705b
49e77df46c80adc7c6854d0197063868d5662f94
7963 F20101108_AABYXZ vivas_e_Page_183.QC.jpg
f28ff329acc3589f63f445296e2e470b
bfe1739300058bd2aab13bea38095b28c0f60950
148922 F20101108_AABYBG vivas_e_Page_186.pro
6a3c0a45564e5c715043a4ad73f9219f
568bcf39a81e07271e22e821039bd4a24f49d303
28461 F20101108_AABYAS vivas_e_Page_172.pro
fe59004e044e7036997485a4f4b4d13f
0a284a0b03ce57532d32e64ee1902a8432814bfb
52404 F20101108_AABXWA vivas_e_Page_045.pro
a7f2ea057d92a97fe8893aa971e8a425
b1195a1be02430f75d08fce3c27a91ab1dea97d6
53281 F20101108_AABXVL vivas_e_Page_030.pro
b33195022b4fe4d65f630e256959d5d5
bb65df3b6f88c682f9d6aa0939abf7101cab7688
42981 F20101108_AABXUX vivas_e_Page_015.pro
9e359ab7fa2153229f31cf0aae917945
f8550ade274e552415ec61f0269444ee73ad2cf1
3057 F20101108_AABYZD vivas_e_Page_199thm.jpg
4083b7794854c1a2c5e86d674e4cf547
8dfc857b63b36c640d74da437443ddc4060014b1
6712 F20101108_AABYYO vivas_e_Page_191thm.jpg
17927abfbb7d74c7a05489e95e10c589
b2a5f228037dee168ded7f640af1632e211088fd
156861 F20101108_AABYBH vivas_e_Page_187.pro
7d58c7d3db0d261bb6935980957cb1d5
1a10c4947a6fc9dafae4829456a2bf029e123777
29042 F20101108_AABYAT vivas_e_Page_173.pro
49019fbe23ed490b10616b52f506d100
9f3c57e3573ca92da2a76afedbdde15a061fe663
38231 F20101108_AABXWB vivas_e_Page_047.pro
133056b15572260af499a6bc71fea2cb
4fbe846348426d351fed829585e73397c6ab547e
52005 F20101108_AABXVM vivas_e_Page_031.pro
d82f3ec566b87beb6cccf700b4d2e184
0f916b76e8943dfa16d02745362e54ec0c8ff79a
23258 F20101108_AABXUY vivas_e_Page_016.pro
dfc6880fd568b8faf9683324c5eca0a9
19eec33867519f6d863ec4c6d6b2bfa06e038be3
22680 F20101108_AABYZE vivas_e_Page_200.QC.jpg
e419b0fb52c5cdcb70ec8e35ce11c2cd
137e8f4d0a0304b53b5d36203a03fc99b4f37504
29552 F20101108_AABYYP vivas_e_Page_192.QC.jpg
a0a19351f52dc87dcdf661e8d8d68b6c
d498be84bf3ca5dc6ab89e30852475610902568d
133197 F20101108_AABYBI vivas_e_Page_189.pro
d7d973bd46fb9f4df8d06bd80aeb3b3d
3bb6283b321b84397651ccffbb50c5d63618df1d
28029 F20101108_AABYAU vivas_e_Page_174.pro
ad24d3b004ea0cde3150eb77708a6009
46317905e4290c12266d5f33b331b1143bc7a226
30953 F20101108_AABXWC vivas_e_Page_048.pro
6115899bfe5d947c4b9c549b04a63435
0e3cfe2bb437dc850b834ffaccda4c180ec276d2
47083 F20101108_AABXVN vivas_e_Page_032.pro
f1d5001525f148f0b41ae99c9173f5b9
49e6e3aec892caf14bd070729a589279c181626b
54168 F20101108_AABXUZ vivas_e_Page_017.pro
306c92d26aa1894e69e6904a7e83ca6a
f9477a98cfabdaa59a15d6a1c34c52b294002f5d
6861 F20101108_AABYZF vivas_e_Page_200thm.jpg
f2675aac4e0101777d79941cb5f4da79
9230dcfda023d94810dad594035ed8391a5e8147
6707 F20101108_AABYYQ vivas_e_Page_192thm.jpg
d8c4094f435cff7f9fce5ecedba88c75
2db35331198d4b37a5d3b90ca2f251cb2683dfcf
155262 F20101108_AABYBJ vivas_e_Page_190.pro
62b75a4eaca34c530b883d7ba47112ab
7f77fee63a22f4559135ab3d39f90a42359d8812
35444 F20101108_AABXWD vivas_e_Page_049.pro
f55124538fdbbf3f581570008dd4aec9
7ab9a626da4529734180f4172d3c0767fc9d9877
56738 F20101108_AABXVO vivas_e_Page_033.pro
0d71269d2120033e0d0440c104fc5aa8
62ca3fc771bce8be684eb945fe10d3e412042bd0
9142 F20101108_AABYZG vivas_e_Page_201.QC.jpg
e630325067fed7eb63c6ae45393e1bbf
29205cd6e1e6ed0810c6b8204a55b2680c64c874
22079 F20101108_AABYYR vivas_e_Page_193.QC.jpg
f6fac65b6421ad2f4dbe551ea8f155bd
9dcf1b3fa48920fe856e9f7c7f21f61cec9e9933
160714 F20101108_AABYBK vivas_e_Page_191.pro
292aca80971bc7ac6fedc29c42d9f074
9eb3314f219f271de6cbe035ae4f821aa78c6ffb
27298 F20101108_AABYAV vivas_e_Page_175.pro
98f66b38b6b27a5680566b63653f1005
5a33433720c246e62cca45da582b872ecc578781
43663 F20101108_AABXWE vivas_e_Page_050.pro
2713159836701a3e07cb6d02ec409137
3387e49abb82dba16df288e9a2ebdbe93449cf9e
54373 F20101108_AABXVP vivas_e_Page_034.pro
74d4b439124a51b0f2e05d813acecb2b
bc9dbecbd9c2f0c6b6bcda58d87661e1e0ebec0f
3026 F20101108_AABYZH vivas_e_Page_201thm.jpg
5bfc263cb967410810bbbcc15b047816
394e5147e27fd1f500f078da30ae877ee6611375
6252 F20101108_AABYYS vivas_e_Page_193thm.jpg
99bfe301d46185e6170f38a09cf59fc7
c6003398964984bed264ab2a472586a2ee1886a8
157841 F20101108_AABYBL vivas_e_Page_192.pro
f014405093135b121e0c3c3d6f0b86b8
d636485ee776420ab0b1142241ad004024bc213b
13574 F20101108_AABYAW vivas_e_Page_176.pro
6d48cfd7a9a2e75c3aeef84627a87a72
aac27202ccb758bf8b5f08d09498add713f61b28
26378 F20101108_AABXWF vivas_e_Page_051.pro
446362ffec66b10d89feba31ab789cc1
fdee7330e01e7cd767f65dbc3b27fff75772c4a0
48598 F20101108_AABXVQ vivas_e_Page_035.pro
a06df7ce23f7f16652e486a8048b7335
b1d889593d19e71cc50305c044d026c582773a60
23064 F20101108_AABYZI vivas_e_Page_202.QC.jpg
dea320e8091e89b07169e7782aea89d2
bbcd8a8e388ed5c6402108a0f64bdb4462701a99
22009 F20101108_AABYYT vivas_e_Page_194.QC.jpg
5516af2d450b939ff56533607181a4c0
eeda3ce1c9175f014184adee7e13938efccfa3df
19226 F20101108_AABYCA vivas_e_Page_207.pro
79c7714bb088712d817ed87d0c237790
d83bc3196b27ee326883a6974c982687b70db875
47548 F20101108_AABYBM vivas_e_Page_193.pro
0c8a554a336844eac740e477650c92ef
15fc616e633999772a28cca68df13fa96174e0e7
26735 F20101108_AABYAX vivas_e_Page_177.pro
f32eb3c7d123f539be415ab29d25f498
d35c5e61a69424b54aed3f53afd991e6ce7ca5a4
19452 F20101108_AABXWG vivas_e_Page_052.pro
c8f85750723846a74b1b8e4a9301adaa
6e0ded7d0beaaa123a233b15fcab042559029aec
39607 F20101108_AABXVR vivas_e_Page_036.pro
a9ca6aad5f41a8fd00bb239a583777f3
11db827fdb9e1c84c4cf017dde6f76a62deb2a52
6939 F20101108_AABYZJ vivas_e_Page_202thm.jpg
b52ad9cb9d0e15c215ac31fdf058df59
d3c09228f33cdf985c3e305a8c1421852f5b1e57
6474 F20101108_AABYYU vivas_e_Page_194thm.jpg
f69bb8d698974910981b40276154dc01
ecb10651ccc18ceb312787d85117600e30bd36b0
34390 F20101108_AABYCB vivas_e_Page_208.pro
9849f42714520e67287276f22daf40a6
fbf279c917ce5afff74ea68a87613f95f7a45d6e
23390 F20101108_AABYBN vivas_e_Page_194.pro
9596e8c2a30c08fe137e335a89959d4f
4f6b2b88106716584ab9217d473c46a0c662bf64
71388 F20101108_AABYAY vivas_e_Page_178.pro
806734e2dfbd92a8cd9c89c87571cf3e
c5a589d57b8bf0ddda7649ec17262b1719d6fb9f
25584 F20101108_AABXWH vivas_e_Page_053.pro
869444aca563367369193a04c9b4031e
e9f24d72ef3a9adcfef1eb4217bb4f4c5d4db38b
20832 F20101108_AABXVS vivas_e_Page_037.pro
18a100422c5cdbcf288e9f3a56842696
9ecfb762438268f62e2ac0d7256345c6d1d076f4
9199 F20101108_AABYZK vivas_e_Page_203.QC.jpg
2f28825591623488a5b6ab092adca5e5
cfe1d74812c89bfd4d68abac7786977adce86fdb
21949 F20101108_AABYYV vivas_e_Page_195.QC.jpg
8a41018913df095024d11ce3937b7f77
7600ff1840241b4b02e10c39828634850b6ba390
23580 F20101108_AABYCC vivas_e_Page_209.pro
200dae23fef61a4fbdae95ed7e83d322
21fa329aa61a8069ac1e6f12e1dfae9a24043177
23611 F20101108_AABYBO vivas_e_Page_195.pro
296a942b19c29b819f23f0cda27bd36e
d0175333095ffc82137f340b9ecf7fc67662cbec
71408 F20101108_AABYAZ vivas_e_Page_179.pro
68a914a963938e4754818c424ded84d7
7a809988c108f544f6b5a1074d9f4fcea6806009
27538 F20101108_AABXWI vivas_e_Page_054.pro
d85b5124967b528bb248dbb7baf4a3bb
922625001723ccd4df94a3c0888b249009cc494d
10515 F20101108_AABXVT vivas_e_Page_038.pro
2d4e3aa94abec48fc7636a5cf2054597
13aa3f20592c6440019a0b4cee9fda598f12cfab
22679 F20101108_AABYZL vivas_e_Page_204.QC.jpg
173b7bacab8e623d9cf0cce8b1fbb0d0
0ffcbd3cfdf155b0dc00de29c5ce0bbf081f3428
6464 F20101108_AABYYW vivas_e_Page_195thm.jpg
22bbcebdde255925d62aa79a4cf8c409
6a597cccb4e679042cb25f9eedd63f95ccb3dacf
57008 F20101108_AABYCD vivas_e_Page_210.pro
3272aad6aefb87098b12d17238f086f8
8da6dc0c28faf84706842aefb086c9da2e5c7670
29008 F20101108_AABYBP vivas_e_Page_196.pro
38a556cfe64ae670ca4597caf6f206fe
0ae6dacf4a85fb26aa897d599c8e506188da19c3
20327 F20101108_AABXWJ vivas_e_Page_055.pro
515aa49a0843c4015a6d06b33563df57
46073721cebeb0ff5b21d48371046c26e3a888a3
8194 F20101108_AABXVU vivas_e_Page_039.pro
0720d5b48135615797b5b51ffa647e44
035afd3fb2c7974b4420538fcbeaaecf3a42df0c
6842 F20101108_AABYZM vivas_e_Page_204thm.jpg
0035c183d4bee475f2b592849a49c770
fc8a1608c0b37a56f7bcedd8160917e35f830e13
23719 F20101108_AABYYX vivas_e_Page_196.QC.jpg
a62b47a421b8431ad7b7999195a34632
f4f41edd7c792a811a9f8c183340b19ceca9a140
57747 F20101108_AABYCE vivas_e_Page_211.pro
a1fc3aa694ed8d4d4eaa6f1844dcddb3
34edf0a461d85f5d6e330cbef05c6280a0035c78
27015 F20101108_AABYBQ vivas_e_Page_197.pro
cf9a705a4f84698e0a018dfb3ff9cfe7
d39e7453b19812d01ce43c99fdbbbdc1aa5487ca
7649 F20101108_AABXWK vivas_e_Page_056.pro
46099826210990b7f7ee1e3cbbdd0397
466a527fd0b2e9e5d99ed87e25c1cb01d3dec558
18631 F20101108_AABXVV vivas_e_Page_040.pro
155567bed292fd6862fa0545bf3a7f97
fae73abb7b7a1fc3e252b36f74435541aba7739e
9119 F20101108_AABYZN vivas_e_Page_205.QC.jpg
d4945eea341d22bbd0edc0362e6e4a49
7aa4a62cbd9e66e639b4fc84649f8fbe428c77a2
6982 F20101108_AABYYY vivas_e_Page_196thm.jpg
e9148c2ce6aaa40182eddfa113fd4685
3f59370fad3e7f3b1aabd5b99eb695c34eefccd8
58366 F20101108_AABYCF vivas_e_Page_212.pro
d886609c25c576907d3e45a225f6be1f
2df5f7397339829e19aeeefed32628a78e19525d
26987 F20101108_AABYBR vivas_e_Page_198.pro
5a5e0baf5ce6e0b9ae2b27d45121b9d5
70761c6b630734032b6d45bc708c88f00290b461
24339 F20101108_AABXWL vivas_e_Page_057.pro
d8a3674a1e00ca9e8a8d122f641424ed
86f86a221e39d84e01738c5eae9e2ac2608cb036
13486 F20101108_AABXVW vivas_e_Page_041.pro
311a82c198d75d3d6dc2590482191187
c02be597d82eb7bdb14ec073d6cb89f536c1d299
6949 F20101108_AABYYZ vivas_e_Page_197thm.jpg
e0ba562e80d45b03bf0583848e89f921
f591bbcaa7cf327660fbd96d4f45d84a7e0e5223
52478 F20101108_AABYCG vivas_e_Page_213.pro
69295f1b2b063fe9d3f93e471b20215e
3fa87382e11c242ef4286e85d228fb4cb800360b
7801 F20101108_AABYBS vivas_e_Page_199.pro
7218401a9738c6c6da2ea1fb516e7fcc
1aff26f5c4680fa5fb9f9f1e68d63cd3668b7427
48213 F20101108_AABXVX vivas_e_Page_042.pro
6b5965f05437bef68729193d6d316d1c
ec34dbaca6f603b77bd9c98003efc0a5217c8434
6067 F20101108_AABXXA vivas_e_Page_073.pro
b3189ba7944396e576148b517b569579
5ef42d4f46cc6d3b2c34e0af5cae93bdd833d844
3031 F20101108_AABYZO vivas_e_Page_205thm.jpg
7c012b7fa72306d7a0902cf110eefec9
d1b63d3a6cde263f874a5bf252237250b1723e6b
61529 F20101108_AABYCH vivas_e_Page_214.pro
262abc960498129f4436d53fd5adfc37
5df1b2df45b4d2da60dc452ecd1857fbff761caf
26852 F20101108_AABYBT vivas_e_Page_200.pro
c242d6a334d77aedc93a2b6d0b16e1a5
ee56f2e2d5691e473459363695d151f3338b6a9f
4804 F20101108_AABXWM vivas_e_Page_058.pro
cdc5cd883f586f92cabc45b82f6bae00
a11a5ece152657e302b587f06272b57fc77bef1d
53617 F20101108_AABXVY vivas_e_Page_043.pro
b37372cce3c49a82ebc8452b0e9191d1
2243ab7d7de728431c48e2729406ad6eb9434138
4427 F20101108_AABXXB vivas_e_Page_074.pro
d2b8c7a6ee5ddee94e1ffff3240852e3
217428aca352f510ea656dec9f0a27b21832a838
16412 F20101108_AABYZP vivas_e_Page_206.QC.jpg
1de25b60b8dd77a272c1afbfd79d249b
e95fcc7893b77128fc360aa2f0520876bf5e10d2
32544 F20101108_AABYCI vivas_e_Page_215.pro
1d7ca850e16cea60abad2dbcd82dacb8
7ee4d134aed49dd1dc1182bd9fa02dba18fa83a4
8091 F20101108_AABYBU vivas_e_Page_201.pro
334a0cac4e5c3805945b65e54ada9997
a7bf39c81f4268dbf847ea179042a8b314623a78
53126 F20101108_AABXVZ vivas_e_Page_044.pro
bd6cc5eca3933b19c7a0b393d8a2a272
492ffea5eb307f74159c10c3a86f5571cf5f6abe
2459 F20101108_AABXXC vivas_e_Page_075.pro
e50da5ebc6b88634ab52d4b4fa5da8af
6b045cecf0aab37278d8bea521ee57c2d9800f19
5737 F20101108_AABXWN vivas_e_Page_059.pro
7c7d37c80c031d7b02d42cc4a34c3866
bce0c6b13d674a0f2abeaa79e307ce4a5923f978
4895 F20101108_AABYZQ vivas_e_Page_206thm.jpg
47e64e4da59ffb4c0b8ab269d4a64874
f1511876b6f2a39636ec37b37fa45de69336b23c
20454 F20101108_AABYCJ vivas_e_Page_216.pro
e230596f9a46ec8909eb9f2e16cc34da
a89ac803dcff8040109035f55c2490f922ffc994
26515 F20101108_AABYBV vivas_e_Page_202.pro
cd1fdb6b519ece30abcf1706ca476095
ae1815de9917e5e536b7c583a1d242b64f81a628
1468 F20101108_AABWUB vivas_e_Page_120.txt
3b1a05db4c4da482bbf8267d23ce95f1
6a2785dcc226750dc3c92a991688f29389694aa7
3095 F20101108_AABXXD vivas_e_Page_076.pro
57095928e5634bb07770cd20364c2d57
96f1745ec5033d1ea664e2df11045606556533cd
7116 F20101108_AABXWO vivas_e_Page_060.pro
afd0d47815d0cb8a7ad228a8e5186bb2
93f99ed0ffff57f9e63efe051cce1d8cb18b7f79
15318 F20101108_AABYZR vivas_e_Page_207.QC.jpg
d186ea33bb3466f44da7419ff9c3bbcd
1f96b2e82162eff0598aaef1962db590061c38cd
548 F20101108_AABYCK vivas_e_Page_001.txt
0154f249438323f0df9d892fa8653829
bb3afc9bfd82a13c64e41fd98e03bd361c12f7dc
48546 F20101108_AABWUC vivas_e_Page_063.jpg
99bacf2dead442a905c3e116896d3670
4a3f5b5a019d17a8a3a990bc9cd2a7286edc715f
48408 F20101108_AABXXE vivas_e_Page_077.pro
cb142bc0c1713e0b1ded7b8fa518b9a7
4e3ca7a90d8f058f12de1227145b5f9570427222
5492 F20101108_AABXWP vivas_e_Page_061.pro
ec908119dd38bed27bb725917e64aa58
d59764bc39aaea6555c960366320caff32ba25a4
4670 F20101108_AABYZS vivas_e_Page_207thm.jpg
ea58c127974fb85428c4c5a3f98b6db0
0d9ffc108d89dd596f56c72ee64b62490da65e49
90 F20101108_AABYCL vivas_e_Page_002.txt
98ef27f4639a6153f19a72ac38be57c6
682cb785e8bc79778cd708433345ab1838adf080
8394 F20101108_AABYBW vivas_e_Page_203.pro
b6207453e79eaa0b92ead04c06ceda8f
1d1f370c8d8b44caeced04e968ceb5c1bd3f86d3
34485 F20101108_AABWUD vivas_e_Page_119.pro
1b43c59f3a48283a8e4bbd796eb33c56
1ae8229a721a83cc34f30c454ec3d515226231bf
54751 F20101108_AABXXF vivas_e_Page_078.pro
42334d4319440aa7ab328a10a221b7b7
ed6d168c3f2d9440df188de82f8e18ad3dbd5d10
6924 F20101108_AABXWQ vivas_e_Page_062.pro
40e19d719fa50a201e3127134f7e3435
dedfc38c89544d88659f48481331cd6cc5a07c94
14368 F20101108_AABYZT vivas_e_Page_208.QC.jpg
9629a922af1cdd5f3f856728cd1294a7
19cbde27072743684dac992f326bca35a5b698e2
2211 F20101108_AABYDA vivas_e_Page_017.txt
4e0779f2aa7a0f85c2b9346d5b755ed5
edaffb7aa1238628d1be8da7b4ce57278ea45c52
294 F20101108_AABYCM vivas_e_Page_003.txt
21d55909717c31b69a29ea75c0dc40f2
adddb99dc346ddb002ad983962df41a468d4d154
27668 F20101108_AABYBX vivas_e_Page_204.pro
2dda09c21e5d269d05274e5e88b10a6e
bb32ffa2ca18882d3ac58212767ab731aeacda31
108989 F20101108_AABWUE vivas_e_Page_141.jp2
2cccf99f519a78548e653d86c209b3ad
4f60bafbe19a1413653ef7550a6d23658ae9132f
53653 F20101108_AABXXG vivas_e_Page_079.pro
437b9b270ce27eb9592f276151ab8615
519354c83719f56037285fb53357cb5e998d11de
12590 F20101108_AABXWR vivas_e_Page_063.pro
f74ac49d4543f0d2ecd8cd1a00d2b05f
12bef8b1b952359d96424ea58aaa14910be705ed
4017 F20101108_AABYZU vivas_e_Page_208thm.jpg
ede572b1fcdf7bdefe2ce96e5ab24d03
97a1a98a830a9cd26e10fc238f96e35688877a9c
1276 F20101108_AABYDB vivas_e_Page_018.txt
5d115b6b4019b755f379a28d6d540a37
3c0df49c986b464094d461a538f0b4670c3de916
1748 F20101108_AABYCN vivas_e_Page_004.txt
a8b2ad7b4caa60769ea2163907fd85db
0200e8e4e96104d9b3c90d0dcaa2f27b0d58e6ef
8655 F20101108_AABYBY vivas_e_Page_205.pro
55e7ec134fefc9dd342bf39989451ac8
72d4d682e727b7751c5f89dabbcab028a2389a8b
31827 F20101108_AABWUF vivas_e_Page_018.pro
fe331484934828ba0cf4c8c6ae8fa2f9
b4aab70bc043145e06321a5fddfa190b3a0625b3
54659 F20101108_AABXXH vivas_e_Page_080.pro
9a0cba1c8b17cfb439e52707c966ce6c
b9beea6d26ab94ec636428266c3326d93b1d7e98
6016 F20101108_AABXWS vivas_e_Page_064.pro
c146ab5ff6f0b0ba4096d0c6d2162af5
9ced84d13e017bb59674cc89954505fe11ff1958
16135 F20101108_AABYZV vivas_e_Page_209.QC.jpg
c4d704747aeb3ae45bb1298c1bec2ecd
7186fe497700d50a55513cb9601bfdb75a50fc49
2127 F20101108_AABYDC vivas_e_Page_019.txt
6e3fa434d249e8fe1bf6564202c6fa8a
6fbdc7f2d0e03ba66a6a09571a0cd495e4874d61
3337 F20101108_AABYCO vivas_e_Page_005.txt
93f852edfccd11f9a30b90b79bae1bca
3fa6eb19e1b995b90494c9a6fa0bd994d9388dc5
32371 F20101108_AABYBZ vivas_e_Page_206.pro
1b75f82d5a136676f9ca52bbf3dda451
8127f51817747a0a56e08c3da2fdbce9f2fe340d
24728 F20101108_AABWUG vivas_e_Page_143.QC.jpg
051f34621402d0e4d7164c95a622e17f
6a4cf364875eacc2fa77119978378a9267e04ed9
55704 F20101108_AABXXI vivas_e_Page_081.pro
3720214c2b2f34acc0641c6e0cf03d64
f19bb230712c6d575c5cfb3cb476b29145ae955d
3146 F20101108_AABXWT vivas_e_Page_065.pro
47bfd21f281305255b1c28a098117b63
435f1ccf3e2ec259971dd8fb394f69801a427ec2
50556 F20101108_AABXAA vivas_e_Page_109.jpg
c059d2b0a68a3ad32ec01d7a6e8447bb
8a5397edb415cdde04782f118366ce82de1ddb55
4847 F20101108_AABYZW vivas_e_Page_209thm.jpg
67c0581334275e95bd5928849092e63f
c477fa8678d07fb5bf48cdf9e65a47db3bb8baf5
1923 F20101108_AABYDD vivas_e_Page_020.txt
5dbb6653c2a1f1e9d8edc78528006200
b9568834b68effc4f7d580ce14bf9a6c48637001
2493 F20101108_AABYCP vivas_e_Page_006.txt
5a99358526e08c616dbb51510d1588a7
a52fbb3f51f952047c0fc3501b4d99171036c58c
4101 F20101108_AABWUH vivas_e_Page_092thm.jpg
26f9105c317bbc06e82a1229b9d228b1
dfb54e9f5ae6781f38f10958c6498a2a62037a96
56675 F20101108_AABXXJ vivas_e_Page_082.pro
2acb649f0eb0b39f366c7736640451f6
ab028f9f23ea21bba3538cc8361e0627b79d463b
47155 F20101108_AABXWU vivas_e_Page_066.pro
de2cfab6abaeb09e4a3e93ef75e79d56
345ebf2dee24c1df64b2d7a9f200dd0ee9f21e7e
47166 F20101108_AABXAB vivas_e_Page_110.jpg
57d066cd6362f07914537fce33a95509
0ef24a4d90d4b42a974996e801f67f6429df021f
25064 F20101108_AABYZX vivas_e_Page_210.QC.jpg
0db9f60ca110b9c0e063a6cb0ee773ab
472e5e64a65e0597d98a0b2e8e09b96ddc4a533b
1975 F20101108_AABYDE vivas_e_Page_021.txt
fc420f15a65518df4e238b0cfa33f4d6
688414bf7448b01be1e4e25c40b901428bea35c7
2336 F20101108_AABYCQ vivas_e_Page_007.txt
cce9dfe0be59f673f0426d131b0ed989
f58df044a10b3c7ee04fa17502f0f0a0db240845
4623 F20101108_AABWUI vivas_e_Page_073thm.jpg
590416a059a258c70a3dc0741cca00f3
dc2f84996d0bbbae2bc1e8e43ee5c30747892d8d
55227 F20101108_AABXXK vivas_e_Page_083.pro
dcf345b757cea220e992df69d16df19e
dc0a652241434154d145dff2960b404db7a014c1
53721 F20101108_AABXWV vivas_e_Page_067.pro
5db6af0c70d40182d312b5b2e55f025d
5541ad1d33f560b7413b793605efe2961abbbcfe
41549 F20101108_AABXAC vivas_e_Page_111.jpg
06bfe5932065ceee317000037f09c1e6
7430b1c8c7715f8e5c2d57dad4db14fcf478d409
6914 F20101108_AABYZY vivas_e_Page_210thm.jpg
4c1e6c63295a5a838dcf558bc2c10159
8c905dc9febe72617f5c19c1bbe129941441f371
2032 F20101108_AABYDF vivas_e_Page_022.txt
027e566aaaded27bf9378ea7861a96e5
0d16c6860b160efc29b0b073970bc0d17cc67e9c
2769 F20101108_AABYCR vivas_e_Page_008.txt
9a61a3e8114bae816594dd32a386060f
9ab104fe87bb728005887e5839627060cd0bff60
28807 F20101108_AABWUJ vivas_e_Page_186.QC.jpg
e7cfa0b4d16a864fa759ad45941751f8
0a469e1c7fd779eb7f4585ce30fb5019b3f916b3
55719 F20101108_AABXXL vivas_e_Page_084.pro
ce72bb1ef3cd7952c36205089507158c
c8643a15a441eaabe2c257ed2c4577d66c566889
50586 F20101108_AABXWW vivas_e_Page_068.pro
7d89a8865547fa30b5547e5da7f7cb0d
4de4e9a331ea2b66c85e43508322c6fe7df2993a
46248 F20101108_AABXAD vivas_e_Page_112.jpg
1adda8256aa73832e87b9b06a5da28e1
efdea00bb6a68fb0fc7f71bf39e0b57da29d1ab7
24581 F20101108_AABYZZ vivas_e_Page_211.QC.jpg
0ab02fc9955900fe9227b362948d6525
b9f9e2784d1f8680d0a288c2e730caed68e53233
2227 F20101108_AABYDG vivas_e_Page_023.txt
6f8cc6cbae53681379578a241c367d0a
99f42449eef22af7af7c9a6a56062c25beb149ba
2084 F20101108_AABYCS vivas_e_Page_009.txt
2d3b0f24f5305f5e1e16c0b8bf708ca8
11ba74ae73156a62b6020ec3ae6b52662f9d1d63
F20101108_AABXYA vivas_e_Page_099.pro
c3315eee4dc7f8f9dbaf3fa711b2aba3
660812a27e0b9974c5035bf524292360f7958493
10414 F20101108_AABWUK vivas_e_Page_123.QC.jpg
7859cef7b9e271ab3daa25182b779a28
c0a348b30ba14fafaf53ec948ecc6b3c976feb6d
53732 F20101108_AABXXM vivas_e_Page_085.pro
f8671f40f876b105dc61aaae4984fc4c
26d83d443a2c9a37b348c41ab19c1e0912961016
21566 F20101108_AABXWX vivas_e_Page_070.pro
a179129943a160b33b2c2322c6f7b4ea
ea7e8bd15039d5d9eb89aa01287a998984141209
22862 F20101108_AABXAE vivas_e_Page_113.jpg
9cd5d92852729f82493282e0f18b38ac
8857e5da7b8c2095beafb0d0dc92c75169dc5d6c
2095 F20101108_AABYDH vivas_e_Page_024.txt
b62f605b72bf4f0f89abd0ced5daf255
e58421ffeb253e575185053304f8696d0c8d89d1
2438 F20101108_AABYCT vivas_e_Page_010.txt
8c7193a3e97884c44e31cafa8d322608
4aa5bcfb98b3b9a86d47c1ae0eeadb81b973c6f5
12487 F20101108_AABXYB vivas_e_Page_100.pro
0e35570090bbd56f0a13b96af619dd69
8591107f7d5a46c84fd68b0b9ba98f0a747adbfb
30440 F20101108_AABXWY vivas_e_Page_071.pro
2e72dc724e71090842f7c226facd594b
282a432913867b6b3ffc3b1641effe1a4b9c71e9
74412 F20101108_AABXAF vivas_e_Page_114.jpg
6a55536f433250ff83ebae05118761b4
349c974da335f43f5e55ab361262e78ccfc97979
2201 F20101108_AABYDI vivas_e_Page_025.txt
4412b550d1afb8e9534956b576cfcfbb
8079b58876b38b2d47b8e5c65becc9d3aa12e5b5
2503 F20101108_AABYCU vivas_e_Page_011.txt
a983c54468fb6113095a58f30fa3c196
05ab94823869c5ba5f46fac5e0e15814725034ee
77319 F20101108_AABWVA vivas_e_Page_029.jpg
c272b89ffe97fed7b5f87cf5afdda84d
18708bf94c31697e52cbcbf0af929118d90ff66e
12669 F20101108_AABXYC vivas_e_Page_101.pro
42535295850497f2d0dbb74ff84ee40d
dc1c224ae2240f7def5703188b5e4cd0aca98abb
56260 F20101108_AABWUL vivas_e_Page_115.pro
852dce936dc08cf0f3fe225228e8fc6d
419985464c73cb1f7919534251842d9e142d2ea1
55623 F20101108_AABXXN vivas_e_Page_086.pro
cec25b1f6c293cc2ff9a06666bb68cb4
7ae8602f97b5e69d88cf3608d101c1cd816a41f5
3270 F20101108_AABXWZ vivas_e_Page_072.pro
6c9911e5fadc70440b0ea35d7209169b
60566fe5a4757dc532fa82c19d7f409de072b01d
79582 F20101108_AABXAG vivas_e_Page_115.jpg
ecfd885c63a97f65f1cb3ae12c2fa7d5
4e8d578418517c58be56c1f7635b5f97534a77c2
2116 F20101108_AABYDJ vivas_e_Page_026.txt
a323dbb855853af8c1ab27e30c7a711b
b45fe34f9e234d3a6d06f34eb1df10108cd603ca
2828 F20101108_AABYCV vivas_e_Page_012.txt
9f95aaf7932b072b649acdcec746f21a
4c35006aeeb48d7bad58315aa1b8641b00ee9e7a
F20101108_AABWVB vivas_e_Page_079thm.jpg
1856dc7f30bcd74345a296ff2c876cd0
7abc247094dcff5ba6b821fae3830152445812a0
19189 F20101108_AABXYD vivas_e_Page_102.pro
5d1b6d11ca91428446b325a7dc98074b
fdcc7081386ad786c39f5f79df2d41e404369af5
11763 F20101108_AABWUM vivas_e_Page_105.QC.jpg
d11a591a0b28f648efb0d11e929c3d4b
c16178c9c9b9e09f2899e4cd0879fde632259784
57489 F20101108_AABXXO vivas_e_Page_087.pro
2068d7ee4c424dfa6e5bac29c3490c82
fba491d174d91cfcbbd57a16b8d58e52e845c8e9
73685 F20101108_AABXAH vivas_e_Page_116.jpg
988914987f63cbecae5c665d7556c2f6
535b507e44b9c8907761a77c650909b8af705260
2163 F20101108_AABYDK vivas_e_Page_027.txt
dc3d61835f5d474ca3c1e4acdbf8d0dc
7f6d4291e13147678e7e79ab926e75d7c1000749
2878 F20101108_AABYCW vivas_e_Page_013.txt
91c49d65503428088120deee84c576d3
a9347006da587392d42f12df7af4b0878b76ff99
51270 F20101108_AABWVC vivas_e_Page_107.jpg
ee28f45bcc1c4616558662fb189244ac
6776ec0bddba1dff3cd195bc3cff4bf034a47cc9
14456 F20101108_AABXYE vivas_e_Page_103.pro
6872265567be6e771cfeb351d9d37235
684e4479f12c43ef80d4815556551feece759894
18214 F20101108_AABWUN vivas_e_Page_095.QC.jpg
dd39dd665d2d0e8959350a171d9dc40f
dd8a393517abe679f5284a2e345edf905967ed7a
54007 F20101108_AABXXP vivas_e_Page_088.pro
2b8c6715538a5665be6b2dd9e9020e0c
3b746e833322f076b054286a23c49275e933a17b
75523 F20101108_AABXAI vivas_e_Page_117.jpg
4d1f284b4cf7fa392632cc734649f610
0633b3c28c2e6a69d40d3ba630c1b486cdfbe2b6
1961 F20101108_AABYDL vivas_e_Page_028.txt
ece9a71ffe293dc9ec28531040b66972
34e1f7fa3c68e01fb53a73b371be74f452aa0191
115013 F20101108_AABWVD vivas_e_Page_128.jp2
edd1f8c25b4e91cb7132471b603432bf
78aa63806b97e20afdbdeeb96054200ae0b5d4d7
13111 F20101108_AABXYF vivas_e_Page_104.pro
6b650316825b421218e2de581684b5bf
defca41e60012b4f4221c5fd94239b8bd94ed7d2
105873 F20101108_AABWUO vivas_e_Page_190.jpg
69d7ca71fc6007045be20ff1bdd62701
9866073bdffbf15fae8f65316f32db62d1f2506a
32871 F20101108_AABXXQ vivas_e_Page_089.pro
d363e3c109b9e8252f562fb9b45e9979
7f3ed9b415d27da4a59d70ca2fbaa906de39047c
78347 F20101108_AABXAJ vivas_e_Page_118.jpg
42cdfc3fd3e258b8f52d4a377702fe33
833e1773c4c3e62005480ec301c7fd59362d28cc
2117 F20101108_AABYEA vivas_e_Page_043.txt
121816767d91dffe8216760ddadd028e
6fd107afa0d12e4eb7fb00e6299367a2ddc08c3e
2158 F20101108_AABYDM vivas_e_Page_029.txt
e5d21be8cbf0269e21bd872f92d50aac
4509967ab1bac341d0ab3a81dd287d2b5d4a20b3
750 F20101108_AABYCX vivas_e_Page_014.txt
f712dd3c03c77b958a8bd3a0c8048292
5e471510ad8367d8ebc259c87ebf370be71e855f
28898 F20101108_AABWVE vivas_e_Page_189.QC.jpg
c9312169f25647a69de13857da553900
ff7eea25ba9cee36a8e7f1eee8963d31303f68e8
9670 F20101108_AABXYG vivas_e_Page_105.pro
f6d3a05986c77d0f51f91530da2108b6
2ab0b4d2cb9088acd54f2304058833a223bcdd5f
2151 F20101108_AABWUP vivas_e_Page_125.txt
939ba7c1c72d4ddeae923fb1deaa4f8c
623c4546e7b213079b3754c96d666e50a7498ce2
21362 F20101108_AABXXR vivas_e_Page_090.pro
23af1f60415db35cacc2291390e39dbd
54fea5f5eac261117a7431324b2e7f376a0b65e3
50840 F20101108_AABXAK vivas_e_Page_119.jpg
322fe81c8cecb160e217163010d88a0f
70f62cbfae74d0c596041f9cc8fc1c3281943596
2131 F20101108_AABYEB vivas_e_Page_044.txt
432ea7e3d4dbea48304288fa05da9b7f
1ba10172954d6106aaac98a5450277fbdc177fd5
2093 F20101108_AABYDN vivas_e_Page_030.txt
988fcf4c0f32c7da711ab4be9680f662
fd29b3bcb7649be4dce184d1e70564a231165d9f
1907 F20101108_AABYCY vivas_e_Page_015.txt
866319c4eeaea1fe614067907ad0ae60
b1ba8ac3f80c55a98db25fb3aa8512ddb6d5ee17
4882 F20101108_AABXYH vivas_e_Page_106.pro
acb443148a0efcf4248f1f0570cd3d5b
81d114c01a469868a11c5c359b460f5e56e3d312
113834 F20101108_AABWVF vivas_e_Page_125.jp2
61bae2cd9ad4861d6f97508f05fe02d7
3f04454e650c96701216d73c032c46b6020973c5
111308 F20101108_AABWUQ vivas_e_Page_022.jp2
c8be176d6523e15512524380d095a47a
1258ca0cd0f4031ca32ad630bdbd2bee46421218
27776 F20101108_AABXXS vivas_e_Page_091.pro
e634fe2e260f5864274b218626879556
3a69c9b5818c75f6761a07f4fdc8bccf74f085fd
47908 F20101108_AABXAL vivas_e_Page_120.jpg
1c732300c86f572f03f8acda02ce71c3
6359b53c3fff2e053b1e59f56b407d9b373791d6
2065 F20101108_AABYEC vivas_e_Page_045.txt
33185515db87e838e36204c7c49f072b
1e7c20dbea1d22b7a0a989661be1dd7a5fcfefce
F20101108_AABYDO vivas_e_Page_031.txt
c54a4239109a8681e4d23a8bfa93e46c
b797afa291aaeb1a8de51ed9281a379466fc19d3
939 F20101108_AABYCZ vivas_e_Page_016.txt
159f3b2b36e265f7383e0a678d6db513
dac3e67e0c1a0e644436d0e07c4c467e8363e646
12594 F20101108_AABXYI vivas_e_Page_107.pro
40c35b3d8615a46abaace98897214aa2
0af9558bd46d1c0ee28c3a4a8eeae7727b84f2c8
12950 F20101108_AABWVG vivas_e_Page_124.QC.jpg
c0c2a3446bda3a5ada4f9e621370f309
ab3427b394852c9aa573992175f3305748f45f79
14216 F20101108_AABWUR vivas_e_Page_162.pro
2f4f0c93f4f75844088ab6ad0fbcbcda
ac403badd6c9fab34bb69d956ac40663e8da6f85
30227 F20101108_AABXXT vivas_e_Page_092.pro
13b25cb365483836e3a01113322b00ba
393ecfdf7ca3553d6ccc16045f5ba57ff4e52f2c
38519 F20101108_AABXBA vivas_e_Page_135.jpg
8a4667956edabaee94c4a456f3e167c7
56462c9e5c6adce79cbcad892b3cdc908f3bce9d
58831 F20101108_AABXAM vivas_e_Page_121.jpg
5d17e3087fa7124f4569f27c3d8b4d2b
adc67a1433ac5fab611a93d292a032f5694771ea
1000 F20101108_AABYED vivas_e_Page_046.txt
48513c69d3d2961fd078f9d5dbfb9526
6db1c4a69b9f6ddd48f2425a96bd097ab7be7651
1936 F20101108_AABYDP vivas_e_Page_032.txt
ce339913098a7604e63f3608580e2e52
eea6020cd52761f216c9c22fcb450359f5347caf
13999 F20101108_AABXYJ vivas_e_Page_108.pro
3c3246d354c796e1313523bb67f3e46e
9416f83bcd9ac9382a8cf96470b56d8191864448
77149 F20101108_AABWVH vivas_e_Page_085.jpg
85c4239a919519aadec35a0e6e191b08
2ed84719742b0fa39e519b7277142f4a164c8f7e
F20101108_AABWUS vivas_e_Page_093.tif
1a67044faff391f757f07266a21ec10a
f47f3cb1c7e83515ed898acba6340c5a21709541
29297 F20101108_AABXXU vivas_e_Page_093.pro
76c3cfe282d9d8a873278edda505695c
751247f76323b246dda7ae09b9996758ff3e4e53
40263 F20101108_AABXBB vivas_e_Page_136.jpg
0ba82e8266a77930e7dbf4edddfbd027
b3f2cdcb1874f90efe26896b18f2d215f2b775a0
38146 F20101108_AABXAN vivas_e_Page_122.jpg
0803a47147afc000413cebc781fdf40d
472a94076cd334d2577a0d4c60d478d764bc378b
1903 F20101108_AABYEE vivas_e_Page_047.txt
73d0ab4d28a7e36bc23e5a7b8cfe8aa4
074f2b59f3436459203fbe94314ab68fa4f786a6
2229 F20101108_AABYDQ vivas_e_Page_033.txt
2dc20e652d02209cc10e2e2f6ecd7d39
0b4ab80ec268450bb835bdf1418780e4c350b962
18377 F20101108_AABXYK vivas_e_Page_109.pro
40adb51bcca4d6c49ff03d9116771119
053c8a8b43452d8cbb879adc0f66d06866c282b2
12005 F20101108_AABWVI vivas_e_Page_074.QC.jpg
455f21be325b9ae151a8696c55feeabf
318a524c2e5516bc9e4f099989741c85d7a312a3
647 F20101108_AABWUT vivas_e_Page_063.txt
0c7fd4ef3d9f7f814c087159e67c0779
0dfbb5e4821bc904ddcc0f43fcd5ac147c90201d
30201 F20101108_AABXXV vivas_e_Page_094.pro
c91830d82b34b6fa1719f665d2e613ae
8a6d1cd7d3a8494451559fed3a10bd2def431bb0
38220 F20101108_AABXBC vivas_e_Page_137.jpg
f65e0fbc40b96989c9452e49d3bed961
df2cd28dea0425f5ab396cd69574fa5641c6273d
31476 F20101108_AABXAO vivas_e_Page_123.jpg
777f9455c1e39045a234eeead3d93028
a1bda1bcb7ee3f9fa51dafa542a7c73a2886607d
1392 F20101108_AABYEF vivas_e_Page_048.txt
cc467a7535295e24112ed45cb21fa0d9
5662c2cf87c4dc0bfcb9a94fc67b6ad95054565a
2140 F20101108_AABYDR vivas_e_Page_034.txt
b9cd520f9fe726a3f162165b0746c544
34b6f4986dfe84cbfecf35c4379ffc184abad881
18177 F20101108_AABXYL vivas_e_Page_110.pro
fbaf276cb2026d469279caa5d9343ff6
29f5619d5f22c3be6551012656f94fe862e2b7a9
217 F20101108_AABWVJ vivas_e_Page_074.txt
7a42da501d9bcd0476bf507a370dcfb7
5354c2774e2f01bf21a03b85bbc616d31192b166
7001 F20101108_AABWUU vivas_e_Page_084thm.jpg
4bdc9454d42c8f3541524149b80eeabb
03023f4f06f71b9256dc62888994b566c55d1780
38844 F20101108_AABXXW vivas_e_Page_095.pro
e6864b6ae373751f1e5a61c94dfad92b
141b0b75a5ac7adf4824c038fe014c6ad8322fca
41402 F20101108_AABXBD vivas_e_Page_138.jpg
e36306b21ff9a364334f1c0141b659d8
ac31cb712fe19bf02c0bd0832451977350cd023b
41965 F20101108_AABXAP vivas_e_Page_124.jpg
c8b067fe4f00b4e0b8974541d653af58
30be01f1b6fee54232dcd35009c0b21a9f8d116b
1750 F20101108_AABYEG vivas_e_Page_049.txt
0483acb0bca4d5f6a66dee2534bcfb97
abc0bceedaec85f27c7675ea3b64110dea2db26d
1925 F20101108_AABYDS vivas_e_Page_035.txt
d0011afd61602c0e69c9f866ac8abc03
f0628f6da7aadf747558dc20580bcfa74981be31
55244 F20101108_AABXZA vivas_e_Page_127.pro
fd30a80ff3bed69ac19d65eb6b15f747
77cb3199d4eeb28654458c8d1322ad6e32660697
12501 F20101108_AABXYM vivas_e_Page_111.pro
7a3b672a947900eafb7fd3afeca4c336
f82d59cc7e20ec15bea57fbbf4c0382e948355ed
6863 F20101108_AABWVK vivas_e_Page_211thm.jpg
0d01b8c8f22ae842f03b9756f8d291ec
d7d6ac96a45b6c10a311474f864f6e2c0e328467
54365 F20101108_AABWUV vivas_e_Page_069.pro
8ae1f648a197f9441639fcb97ec3563f
0be57837c31ee54a70f0b3d45043ab3099cf55cd
41363 F20101108_AABXXX vivas_e_Page_096.pro
627d677d2528171b0f537b8f4ffc91b8
76ade227362d27e72f50fadab9f05b2ecf047e62
40288 F20101108_AABXBE vivas_e_Page_139.jpg
fee66226a19174cfd576df803aeb1de6
2ea566835f967757cc4cc1ca7fcfe111b41b8fc5
76895 F20101108_AABXAQ vivas_e_Page_125.jpg
5dfcabefae629d8bf9d0eeca07a7639d
c1560f5c1971c0581ddfd46a1e3dfb8a848490fc
2002 F20101108_AABYEH vivas_e_Page_050.txt
2a3192db7d5f7454a0fd407eb2aa7418
9186a6cdbb41f7c394bcff12f477b70bb006b7aa
1838 F20101108_AABYDT vivas_e_Page_036.txt
de36ffa18a86c8f0c7f69eb018786162
07d58d8fe93f7541d7fd9bd06abb74f07acfa810
53739 F20101108_AABXZB vivas_e_Page_128.pro
26a5049369976e0108378530898c46ee
6ea80f8903740d4bbf7d462f056cd1ac34fc8238
18313 F20101108_AABXYN vivas_e_Page_112.pro
ab76ced88b27877c0e0ecccbe099df88
0af65dce87c2749dd9c636d9f490feb2b6e8d0b5
28582 F20101108_AABWVL vivas_e_Page_201.jp2
fb057b3b65427b32e3d95ad0ea10da9f
e301fa6193f4a351b5a1a4d130ba8bdc9a3222a7
F20101108_AABWUW vivas_e_Page_215.tif
e251b42551667d346592fe33786ff34e
7db9485fbcca4988bf32b5ab5b97703780a8f05b
44170 F20101108_AABXXY vivas_e_Page_097.pro
b4b37334bab70b492640575c89d51ca9
651d78398c478f398daeed7817968b75be113ffa
73904 F20101108_AABXBF vivas_e_Page_140.jpg
e6ac308eea6805b45c019bbd3d1dbb83
bf5215f9aef315a3a71d3bf3b062bf3083d53182
69386 F20101108_AABXAR vivas_e_Page_126.jpg
9ace3577f64d1c4c51ecce70eb70a389
bfbbe6a77a682116898837a065bb4b99fe9d035e
1212 F20101108_AABYEI vivas_e_Page_051.txt
25a111757e0ab66315fcf45d05f16816
d65c731bdc01628ff642516f5e1f08faa4aa7dd6
849 F20101108_AABYDU vivas_e_Page_037.txt
7877d01726140c7425bdb3874830dcbe
bd2f669a6bf68417fad66c41329153b18f641d34
56498 F20101108_AABXZC vivas_e_Page_129.pro
57ffd4fa3de5301c39ae9183bd571baf
20646df5d676e2b19a46d266b0b5dca69198e1b3
23007 F20101108_AABWUX vivas_e_Page_197.QC.jpg
35b33bf17df728ca4655618bf11cd37c
2748dd9a5fc3ae5f575feb53e2675798b582c54e
18306 F20101108_AABXXZ vivas_e_Page_098.pro
ec5f15f9a814a50d48615cc13c7eb549
4a3fcc851947647d5f508eb21c142c4a93ceb2cf
72643 F20101108_AABXBG vivas_e_Page_141.jpg
445b96f5abc6990b7a30826e04382129
23e2deccf342319dbad174901d79cc696d760ce1
26167 F20101108_AABWWA vivas_e_Page_001.jpg
ed5c2dc109ac375005071fbfa8d4ad54
bbf24ee4d9bc979ab75407ef2bdc2595b128709e
78150 F20101108_AABXAS vivas_e_Page_127.jpg
83c8c282c9a89239a6a527ceb0d10164
543da7aca807af50922c34f7abf2eaedbb5804f5
970 F20101108_AABYEJ vivas_e_Page_052.txt
2d09d80096bf4856a0a0f58829dae714
3c0dd33ef34f00bb2a501a7d59f1176631505b7e
637 F20101108_AABYDV vivas_e_Page_038.txt
768599a56f72d56b47dc94ac13c91ab3
60bb19e18c407c18768e8361c4c682a040a782c8
23886 F20101108_AABXZD vivas_e_Page_130.pro
94d3b8e7a22ecbff2eebae6dede80e26
3794dc46385daec39b488483864f7843a3b16834
7979 F20101108_AABXYO vivas_e_Page_113.pro
c04f75dc2ad66cedede9af085781e524
f46d2b7bf5491633a6abb969a7b1fc23ccc48b37
1370 F20101108_AABWVM vivas_e_Page_119.txt
b662f417676c7f49d4ae868b4ea65bde
d626b4846e52581dd7afcb112c19d43d38f3c9e7
7098 F20101108_AABWUY vivas_e_Page_027thm.jpg
4335225af0c926e4dd2eacb5e0399cd6
d55b0b90b90ce6ec4700b7665507c9083a5da305
82474 F20101108_AABXBH vivas_e_Page_143.jpg
ffa25b1f7ed3efa6580578cfff590ea6
44d742a25d7000a01ff77f4d30e184aabfbe56d5
9898 F20101108_AABWWB vivas_e_Page_002.jpg
4f9a222cc6093950b235068c662ff4d8
771797b200d34f6dffd065839cf743109c499ad1
76392 F20101108_AABXAT vivas_e_Page_128.jpg
ba14c4cbb045f40fb48a920619977d9d
4d0cdf0e0cb48054fc60ec6f0aa21b204d47a79d
1208 F20101108_AABYEK vivas_e_Page_053.txt
f247508c224e03cc32c7930607d77718
173295ea0c28d2b7641b1fd8a74383a5921edd14
353 F20101108_AABYDW vivas_e_Page_039.txt
357f4ec02f038a2c4ab842926ab552c4
0766128a447a0676ad7d0e6eb0c852c8c5960165
28528 F20101108_AABXZE vivas_e_Page_131.pro
b0e825d43a4d7f67352f446851fe5999
cae1f6c85ad47cd59640245400379162241a281c
51929 F20101108_AABXYP vivas_e_Page_114.pro
fe5e5ab81713bd584b60cc963f6313dc
8e5bd89c3af1a286e233051333e3afde71d82bed
1446 F20101108_AABWVN vivas_e_Page_196.txt
0b02db54e826bd0a15ecc2743b1072bb
8335e2201b537e37f2c7330832e93f93ba8cf8b5
5583 F20101108_AABWUZ vivas_e_Page_167thm.jpg
381af0ac469753f678a38e83b75bc049
e2ba99b47edb2a552cc66aaccb69256b478feaf8
68457 F20101108_AABXBI vivas_e_Page_144.jpg
542f7e01abcc8398ad9e4ab9c750a705
36147b556a30406e539942c2f4032a76d8bd2f62
15359 F20101108_AABWWC vivas_e_Page_003.jpg
49df9b2472f44633a052f215e7a89dea
61a528cac57e88e1de55489db188a9064c04ae73
79230 F20101108_AABXAU vivas_e_Page_129.jpg
caa7c1f8285b88052824c20bce81af40
036efde82d18ce3d0e5727efdf3ea5ef66b58981
1265 F20101108_AABYEL vivas_e_Page_054.txt
bdbce7046336306faf76b232be70dc68
d77338d7a378027c09aa4e99ec54024074801fb0
859 F20101108_AABYDX vivas_e_Page_040.txt
af9d66134ab2c2f0168f964b35956660
79e84b80e1598fb26396966c3a56c7ef8f6e3cc2
55872 F20101108_AABXZF vivas_e_Page_132.pro
32f6c260094362579e2efc11d691965b
f4c87f09eb9c150b71214b39bd924a1c62336cd7
51355 F20101108_AABXYQ vivas_e_Page_116.pro
8746df1595f615efffaf333443269c7a
c5a47f80398ca8f9fbbc566c92b969c8fea0dd58
160211 F20101108_AABWVO vivas_e_Page_188.pro
f3f418140eea6f13d2d0d64724b2634a
c77217375cc540ecf1ed752f922a314992653a28
68587 F20101108_AABXBJ vivas_e_Page_145.jpg
29efbd1bd33a152d93da9608cb1de7f5
f22459a1dbb1562875786670ce74ab4ea18bfab8
66530 F20101108_AABWWD vivas_e_Page_004.jpg
db233ce5ca302705edce29655b3ca8ac
78f63bff6b0bc383589b12210dbebd440599bf58
38565 F20101108_AABXAV vivas_e_Page_130.jpg
258b517adab0b846a23aa4267290753a
d3cec1bac6c7f06442a0cf57a7b2ab38a3cb6f86
855 F20101108_AABYFA vivas_e_Page_070.txt
1d43f80bb491946fa131703cae978870
a11cf4810a67dc12c84de23602ad3b4304a398c1
F20101108_AABYEM vivas_e_Page_055.txt
5eac0e0737d84c1724a0e717f4275c65
803ce07d50f78dabd3e33a627ba85062a0874fbf
27977 F20101108_AABXZG vivas_e_Page_133.pro
77f28e820161758aaefbae48e4155541
986fd09c9ffb61c34963341f89bc10e20166b96d
53445 F20101108_AABXYR vivas_e_Page_117.pro
a9ecee9f5d435e52e5712b7128a74ac7
ba3a171c5d5d66f43bffd8676f40407e2e0885a3
21747 F20101108_AABWVP vivas_e_Page_150.QC.jpg
2a02d34ffe90c32bfd3a02add712ad65
fd2821869423c999fb3d5e722943807764fd111f
66898 F20101108_AABXBK vivas_e_Page_146.jpg
3a7b6687445c0b1b03ffa12d0124329f
8eb9d9afd1283c766190431a1f664c59ad227686
85638 F20101108_AABWWE vivas_e_Page_005.jpg
f6df294629cf1d39b7536e219076e626
e663a99b46841fa8c56c57a4dbcab823983b8ba3
1979 F20101108_AABYFB vivas_e_Page_071.txt
5c0550b7b9b0a21b2ce29864bb6e67ba
e2610635e0f44a5d99bc62a94c5da531b8e6535c
426 F20101108_AABYEN vivas_e_Page_056.txt
b8a579e38af9edfda8c81c631f80a4e7
d642646082af87442133324813af8a5b1c7616a1
688 F20101108_AABYDY vivas_e_Page_041.txt
b3def30e8c480b8d1e3e6a368654148b
684bf71f46a5216cdc73181188fd68f1be11a368
64143 F20101108_AABXZH vivas_e_Page_134.pro
86422eeef8665436ac8e397b4921a2ef
c21f11cd48c614d7eb040ab257c722bfe7b4bb50
55932 F20101108_AABXYS vivas_e_Page_118.pro
b5de1cf9368172b1f9f5ce6c2449729e
237f2d29f8ea5ef24e6049bd4e53d273c0732623
F20101108_AABWVQ vivas_e_Page_010.tif
ef23dcb000b82678efa9a385f211dd6f
641bc80dae07c6e0839309f7a6e5ef3e39e21a1f
31100 F20101108_AABXBL vivas_e_Page_147.jpg
97ac23d0fa8c82b9cde03ca869352104
eb3e0c129c63c7087a37ed25ad5af992e25de0b4
94873 F20101108_AABWWF vivas_e_Page_006.jpg
986ecf5dcdac2ae4650cabae96bad8aa
44a4ea2af09da4b01c0e9cbad57ff15a1bdf9186
51005 F20101108_AABXAW vivas_e_Page_131.jpg
9977e12445b7b6f4700527924f5f6803
5213e990c54d0b4b1921f086210734f9d2bd3b02
174 F20101108_AABYFC vivas_e_Page_072.txt
76f6110bcd7dafd825c9a17ce125c3dd
bb22df37e16a3bd5b9d98aafd5db47523f651132
1183 F20101108_AABYEO vivas_e_Page_057.txt
963a7ceeb7b1db33be03bd9968f46248
36a0426c9ff2bcd38cb55a5f73ffae0204b47d04
1995 F20101108_AABYDZ vivas_e_Page_042.txt
792f07c755fe524585955c3b08ac8022
08c63f9ee9dbb28ebdfcdce02706922485980e63
15649 F20101108_AABXZI vivas_e_Page_135.pro
eb9a9dbad148f224092ed94899562676
a38944856be5fc4ad6227510488082a2399953bf
29805 F20101108_AABXYT vivas_e_Page_120.pro
bc8d1011fe14dcf45b7f98b78f3f9003
137dca8ce40bd830c420be5f3cfad9b0f1aaa6ee
F20101108_AABWVR vivas_e_Page_179thm.jpg
c1ac86469ff9320161d462b0094a6fde
943ba581f8748125dc5e17ad8d5d613ad2b3ee43
34626 F20101108_AABXCA vivas_e_Page_162.jpg
7bfdb4d528efc45a3a5526e589d81985
ca30338188d6022c775bdb5da436c7678c7e7f80
48540 F20101108_AABXBM vivas_e_Page_148.jpg
f75e0a9008a473b743510fd9dd603e42
d16629248beb7444411dcd278c4486dd90ff4530
81076 F20101108_AABWWG vivas_e_Page_007.jpg
6280687d4eed30657263e6351775838e
b244edff26b145bdc5b802d7a7a6848963366228
84391 F20101108_AABXAX vivas_e_Page_132.jpg
f96213699caf1262a523a3e4bc18389e
b6761cb7ce456754314226467d7e818bf49c7b2f
286 F20101108_AABYFD vivas_e_Page_073.txt
9ef30ffe1fe7053929165bca30306572
edca8b67a6a0b500b5188b22fa0db275c89ad658
224 F20101108_AABYEP vivas_e_Page_058.txt
e2d3972559588b9a894122a4566292d3
eedd29a03aed73eb37c0b06e0befd574e32d420a
14940 F20101108_AABXZJ vivas_e_Page_136.pro
5b0a76744803ceae1794dae337467f8b
81d7eb16d3c91a28cfe5a066deb58b7264f746e8
38448 F20101108_AABXYU vivas_e_Page_121.pro
f33dd769335773dc14de066b60a6985e
fb784c7a2fd25832d68f17a5c7ab7351e21a3461
856 F20101108_AABWVS vivas_e_Page_109.txt
2ef88630a606fc131e869a11572a264f
726d426cc653b654392bfc379cdb2f81a761e063
77746 F20101108_AABXCB vivas_e_Page_163.jpg
734066c3e76da1a99790b91ec2641f10
cc77637250fc1bbd40578efdcfd5fb7c784fc8f2
73351 F20101108_AABXBN vivas_e_Page_149.jpg
0095eecc8ea5dc216b79b96fb7519c80
189c817e2e32045f3ccb62e1233ecf322dfa0763
102383 F20101108_AABWWH vivas_e_Page_008.jpg
ec1c5eccf5bb963228493f5895fd11c5
d8169785aa3a1b0613e22f690ee5d3af96088b22
52880 F20101108_AABXAY vivas_e_Page_133.jpg
13db38d13d58e01b902daa788ed7c80b
a1de0f8aa0efe90be2c050a3276a55eded8600b6
107 F20101108_AABYFE vivas_e_Page_075.txt
3c92252f2961a4109b2c055121a26a26
884e7e8a6f3d3042462d951eeb0fdbad749ad686
255 F20101108_AABYEQ vivas_e_Page_059.txt
e3507dc5b1ce91a1959b97630d0d4591
5c6177e456f550b8e227e0a63afc47e17b624b15
12571 F20101108_AABXZK vivas_e_Page_137.pro
fbd4e70f571efeaf842dd1fd13ff121e
539684218569fdbdb73aa25552422fb8103ff8aa
16306 F20101108_AABXYV vivas_e_Page_122.pro
9e02653b5173afdc25fc2fd9b27f53ef
94401c526259afbc28e85ad10883b49d99f880e7
25002 F20101108_AABWVT vivas_e_Page_046.pro
19a7c6e35df323ab4d4c139029d3d4ce
5fe23a07892a2b3300455d2c7a377f41a4f75b63
70090 F20101108_AABXCC vivas_e_Page_164.jpg
4c96e81a322a59abafe1cdc6812498d7
6b376e7f99d3163704c2294556bbe85309cbdbea
68339 F20101108_AABXBO vivas_e_Page_150.jpg
f73add5854b977110085424994cde3bf
d165023811a029552f1612835089d5ba0cf1340b
75001 F20101108_AABWWI vivas_e_Page_009.jpg
1c2167cb8668304e23da3e7585df7025
120bbd78ec7b514ea3853d0981b72dc1f4884e80
97101 F20101108_AABXAZ vivas_e_Page_134.jpg
82fd864e43468436e745eae0092e0ccf
dfe56b721bb0848dfa22c53fd1bfbe2fe688177e
204 F20101108_AABYFF vivas_e_Page_076.txt
196c3c29a48aa37b9a06867d2567350a
26db2c7267f877deb3ca2d82656875f3fe7be260
314 F20101108_AABYER vivas_e_Page_060.txt
09c266ca0e25652fce22b44a98b0a581
c03651b97079c1a262534016607d5b184889da20
17304 F20101108_AABXZL vivas_e_Page_138.pro
09d045e58a3099d84eb1556bdc40b581
5461effc2b55930dc978a293b6e9b8b4ad5ff9a6
10772 F20101108_AABXYW vivas_e_Page_123.pro
60da52c3ac56799faa9ed396c4917400
29436c7618d4fe1b7f618c910312a2f553434104
38042 F20101108_AABWVU vivas_e_Page_142.jpg
6dbd52a28e50f7329473d87d2c897d68
c3774cdc7403b6e64b44abf3c1ace5a800ca00c5
74641 F20101108_AABXCD vivas_e_Page_165.jpg
b0b75df92d07dd5ee074cad299ad24c2
a6bf56b425a5a649c36ddb3b899d24d51cad691f
69075 F20101108_AABXBP vivas_e_Page_151.jpg
e70b886d7215cb992d4bc9ef0e8ec951
4fe5c0e539cf4237a81df92859b7b1a18f88a084
85744 F20101108_AABWWJ vivas_e_Page_010.jpg
c699953ad5b303b9bda86c71de65e4d2
4dc69022d5a90ff5f237eae0e26520fa0f0efb21
2047 F20101108_AABYFG vivas_e_Page_077.txt
9f53135afa4ba9ee8f35a8b31ee9f2ec
e42d987bf2154d7826e8095e0c75024f836ad872
207 F20101108_AABYES vivas_e_Page_061.txt
ca1a74d5e6beb23fb301c2164abc3167
fd99f197bca343b385b8fcdd91135f32d663e23e
15640 F20101108_AABXZM vivas_e_Page_139.pro
5f440dcef2af6fcceb8032541ea5fde7
7940877aaeafc31611d719b646e6bec693069c4b
19336 F20101108_AABXYX vivas_e_Page_124.pro
aed81cc2fd36f67b182948a0ed84fcc9
512b4a8b42b4526784258d20fc52211a14b12534
3050 F20101108_AABWVV vivas_e_Page_203thm.jpg
4837a46e5e3d1dcb1df55dcaa6f2c6fd
4ef9f2c66c348f98db5b0c0a196c79b4976cfb35
21787 F20101108_AABXCE vivas_e_Page_166.jpg
c257bf40b73df10505c10061410e088a
6f9daf6ef785854d16c998e23d3fa450b054c57b
20572 F20101108_AABXBQ vivas_e_Page_152.jpg
3606fced52022205f2866aed8f034429
a9738bbe51d72dd592c0a1bfb5f5e7bd6360d638
83354 F20101108_AABWWK vivas_e_Page_011.jpg
26275b335ad90a6fa09dd10518fdbd66
9389f1653ca246b092648a989e1a75a891bc25e0
2160 F20101108_AABYFH vivas_e_Page_078.txt
36f832f14e2b12b615955fe577f4a144
6a9ef50af852a474a048137ba6ef28ca6a759795
355 F20101108_AABYET vivas_e_Page_062.txt
d38eec49f8ebb2e75502fa2f835c8f5a
bce762021452503e1f46a3ecd41f04ec7e2e4b20
51619 F20101108_AABXZN vivas_e_Page_140.pro
b5aadcfa9079329a5349d5852c7c25c6
34c570635052a69e5f7841e496efff27d9e60dbf
52582 F20101108_AABXYY vivas_e_Page_125.pro
b3e6efa5fb70f9bd97339e14817f2352
53c917d2afb695c882172aecab3b26d9ed44f45a
89147 F20101108_AABWVW vivas_e_Page_179.jpg
435566bc560d35004b18a4763d4d3b4e
f3c21bbaa52d5c7db0dd4aade64c424ece689863
62759 F20101108_AABXCF vivas_e_Page_167.jpg
f6f26b39041288f0b2154f2559ae36e2
bead3f2fc7d6f1daca0e9c680ab2fe3c31f6ac08
61162 F20101108_AABXBR vivas_e_Page_153.jpg
9d93f271cbd9da488c1d473bc0d91b77
e09ee43e8d0b9534ef5fae9822910ce666c43d3f
99126 F20101108_AABWWL vivas_e_Page_012.jpg
5f1ca2616f47cf11aeb4c20fd15f5772
eff42f7a68723b5331f038e7a23b523a25f8c749
2136 F20101108_AABYFI vivas_e_Page_079.txt
6536b9c4c55b9800c23509adc3d5c528
6e863bd0be9c33009c89d80e3d6cc6a0ffae5e2a
377 F20101108_AABYEU vivas_e_Page_064.txt
7fabce2e598db14580c427dbfc85e51f
caed582fc6db32a290d54e678d8adccc9d45a192
50476 F20101108_AABXZO vivas_e_Page_141.pro
e6d88b66c8be05db5f017ae1185152cb
f33dd3e2f73c3539a74df9caaca4ac7d234300dc
49977 F20101108_AABXYZ vivas_e_Page_126.pro
edda7979c40050a73e7ddc5f90edecbb
c22b510b1e27f1b569d6f66576cda960afdf55ea
319724 F20101108_AABWVX UFE0021765_00001.xml FULL
246d4957b269b3f65409e6dc6394f716
8ff7298384bf2104b6932245dc4754fb1b5c2a91
59807 F20101108_AABXCG vivas_e_Page_168.jpg
540b9fabe6220ace7cc1887205a35200
38e540281c9eec0e18da7cb53fab995a03e4a3e4
78798 F20101108_AABWXA vivas_e_Page_027.jpg
0bbf59a54880dd4056f1b7b9636fb2f9
98f766b5854290a64dca1f41a70f452afa6b2276
59062 F20101108_AABXBS vivas_e_Page_154.jpg
cb48f5e7906171dc763b6fecff425b23
81987684c35aebb1a6117b8d616934edf2d637ee
106451 F20101108_AABWWM vivas_e_Page_013.jpg
4e16f4a2b2d640e253d5b22d423d3cc2
54de515ab69e23e9f240d66f39f69635154a0a4a
2150 F20101108_AABYFJ vivas_e_Page_080.txt
f6f27ee26337496a0b44345ac11ff9f9
b0e249d9853a5d674baf2368bd75936fbf5f3e40
161 F20101108_AABYEV vivas_e_Page_065.txt
9291d0501835bfd929805b4f619f30b1
bba0ff40a89cb6934259c595355d80a5bc9aa1d2
60016 F20101108_AABXCH vivas_e_Page_169.jpg
f4c16ba599593353e87c07c0d6d15cfa
53f01853281019b3d8517dcfac861243486f4950
67314 F20101108_AABWXB vivas_e_Page_028.jpg
c4250457077ca57d9be5047d000f7080
97da763152d31660040fef70bfa479b588bb12c9
59336 F20101108_AABXBT vivas_e_Page_155.jpg
56f7a5522a2da8c5f17cfc6d102c232b
22245017d3fb572e4ffb8d3a1d9e93152a0db370
2195 F20101108_AABYFK vivas_e_Page_081.txt
121bbfdaa588d243cf62c7d30168709f
1fa188164c433a56f554155be44507de211d5aaf
2020 F20101108_AABYEW vivas_e_Page_066.txt
37c96faa754bd209ce07172ce9dbf5d3
b5cf4b8a3efd82edd23d9b4697e2e30dee6ae3d3
18970 F20101108_AABXZP vivas_e_Page_142.pro
66412c88fe0003729dbe1b7a5fd2fbcd
be8fe3eda57011034c3d9cbeec6957733e7459c6
58941 F20101108_AABXCI vivas_e_Page_170.jpg
467fb9ebdb36aa53c6944d57a47b9792
6d4ea0c4cda6f31880bc3e4222d00538497b7692
77509 F20101108_AABWXC vivas_e_Page_030.jpg
174607890c435cf9bafd9560de5a5348
755b5a366340f93243e11ce3e88a09c2fc6e9c09
58691 F20101108_AABXBU vivas_e_Page_156.jpg
cc3f8933d6765b7a0aa5934a8c2e4e2d
33c8fcb7ca09976063d03c3433cc74c763ea0a48
31105 F20101108_AABWWN vivas_e_Page_014.jpg
caeb7b51c781b7c3a59677fb0330772e
7b3f29fd72d4d9ae66b5f7e795ab4d267bfb08b6
2220 F20101108_AABYFL vivas_e_Page_082.txt
3ce145e9b1da9a7dafa0c9941bdb014f
7f206f34a3ba8aa18d396b4d1b3869170ac51dc0
2141 F20101108_AABYEX vivas_e_Page_067.txt
65918fb1b67f52484a18f92476274e20
5f8c1aba5f3df2dd286da939e980da45155b2036
57664 F20101108_AABXZQ vivas_e_Page_143.pro
9a0cbbde0eb68bd2ecaa2bdccf9d1fdd
1d103e3b5755ec89d5c81225b234216fb04886ab
59408 F20101108_AABXCJ vivas_e_Page_171.jpg
b1d613b3b14000946d55cb4f9bbc99d0
2a292c76061fac2cd7a7231879bc41a9b0919df9
73132 F20101108_AABWXD vivas_e_Page_031.jpg
e3a671d62ab66107ad73b2e13734a21f
f661e6bd2ceeb19f3db8e806c832ef9808825e68
58542 F20101108_AABXBV vivas_e_Page_157.jpg
b415a996484fe773575589c60482bb30
d504d8435083b4bc6c82144a5b8b23341eb8776b
66543 F20101108_AABWWO vivas_e_Page_015.jpg
e55ff1b9297b1b05f78d49725b2d4d51
eb8bc438ca8358ed6a1dc3a2689a62178947eac5
2554 F20101108_AABYGA vivas_e_Page_097.txt
4b2e6bc7204fc1e67838634ec038018d
24554fc34137c65d2a1f922c3a917b4210ea875c
2196 F20101108_AABYFM vivas_e_Page_083.txt
f762bf2e90392573070e8af9b61ffd0e
a2aa21d855fe42fd2b66ba0ffe233fff8c4d1cf0
2007 F20101108_AABYEY vivas_e_Page_068.txt
736ad90ddbc6cf18916edb396be29388
2be49d3b166d169f6d6fe67c9461954e76071688
49515 F20101108_AABXZR vivas_e_Page_144.pro
ea4bf9801255eea3678b930ab9eeb6a8
50761c8ba878d62b0366464474f6c26784a611e7
61384 F20101108_AABXCK vivas_e_Page_172.jpg
5d6cf4de755ef844a42a21c62124048b
375defa42df1c876537b2927e4c6035348ca3443
67084 F20101108_AABWXE vivas_e_Page_032.jpg
443a6d1912f87b2b9f02296a36ccc56d
315336ca77fd94eb05692322f52a47fbccca4128
59685 F20101108_AABXBW vivas_e_Page_158.jpg
bd735a4b163d18102c95f3d3de903274
f819b7356fd3601441fcf08097da983c45427607
38108 F20101108_AABWWP vivas_e_Page_016.jpg
a62e4101a821e2fdd452143143b433b6
728f349c851805feec4eca4d37526d308f387acb
869 F20101108_AABYGB vivas_e_Page_098.txt
7698a4f2a056f3d1915c0147c3a2f146
bb473d2431354e16fff9748bb162ae2b2cb6a000
2187 F20101108_AABYFN vivas_e_Page_084.txt
5f9a71280208234796fe543ec60fe08e
10bbe67ed81704ffd8b8b90b449f0c9142eaca39
28740 F20101108_AABXZS vivas_e_Page_145.pro
194116e0c37125a152cb28a3b8fa9b15
e564633fb7abd88c88067cea694658ff230df8b6
62081 F20101108_AABXCL vivas_e_Page_173.jpg
9f0c78ca280769d8e6278bb763262ab1
9b1cd32f2e87e21b8b42a743c30a942d6a788ce4
78226 F20101108_AABWXF vivas_e_Page_033.jpg
2daba4185fe37cdf1e1da13a889694cd
d20123c9fec3d539f80ac9778e8227aff474b52c
76115 F20101108_AABWWQ vivas_e_Page_017.jpg
7eb1c1c4ed305ca2358c8e9f84b1344c
9da2bb59cec10b1292e30659527d80d06c49ab3a
588 F20101108_AABYGC vivas_e_Page_099.txt
cb5445d2a5392e5d6f5ec15780fcad76
763f6507785dc8bc4ee7faea3616f200af3189b0
2118 F20101108_AABYFO vivas_e_Page_085.txt
c6dca172a5cd55b213c3d8b823391a3d
9549366c593d59effe05e76b4cb380dea365f9ca
2164 F20101108_AABYEZ vivas_e_Page_069.txt
3fe69eef7cabe7a1310e54e82bbacd87
5bd1f241ffd7af5c37d942767d133fc258c57d34
23781 F20101108_AABXZT vivas_e_Page_146.pro
05d78934b6f4fa6489219c5a6ade8ee1
39daff21786c067e75f8b01582980cf57ea53298
60159 F20101108_AABXCM vivas_e_Page_174.jpg
8b877a01a7ee8b6a838d1efffae32aac
3a362c9ae24c12ecdf75dbaf652c2a4f91a80245
76917 F20101108_AABWXG vivas_e_Page_034.jpg
e185b765b0e4335ac58e40f4cc73578c
9a0cb1ab8c40c1838660d1fedc4bdaa7d610cc80
60372 F20101108_AABXBX vivas_e_Page_159.jpg
14ee77c7089c807a96b190c3e3e614b8
23bbb8e6437d7d129b9d644824654a291a1416ef
48393 F20101108_AABWWR vivas_e_Page_018.jpg
992b7c8e7f636cc3531b4d7786eeb07d
543678f49575101c4e7ac3ad45922965b02e5335
102942 F20101108_AABXDA vivas_e_Page_189.jpg
965a3e5263f14288d8ae491656c5c656
43348412426949fc107350aa5949a63aca5af550
732 F20101108_AABYGD vivas_e_Page_100.txt
2cac9d05df523e5294a90542de674097
68dc7d3b9e506e162bab01f90dcd06ef96dc0cdc
2185 F20101108_AABYFP vivas_e_Page_086.txt
6ba6fdca94e6d979eb31dd8faf1de00a
5211816c343ec50ebc1698b566c6b15737e7965d
8785 F20101108_AABXZU vivas_e_Page_147.pro
726bcbb060e3bfad6dd4516b804048c7
6d60abfd9720e0249b5038b911ee5167a6076556
59938 F20101108_AABXCN vivas_e_Page_175.jpg
7b2d868954d11cfb38f9bde656dd9866
8a0ae456df0f573bb4536f12dd33f6cfe7db8de0
69901 F20101108_AABWXH vivas_e_Page_035.jpg
8aeba8e3313c03899631392b5230b980
f7803bfbfc2407874014e7b33f98933a3a36bf7d
58513 F20101108_AABXBY vivas_e_Page_160.jpg
90c283e0c38d4643a21fb035749002f8
2bb0330956a3efca96504a1072ebe770199e4697
74053 F20101108_AABWWS vivas_e_Page_019.jpg
29623ef8a78be7e1ae5c8506f08bf372
42b44423920291a47b4104af6135d57b06439ae4
107206 F20101108_AABXDB vivas_e_Page_191.jpg
4b782478114270c2cf1b59e929875962
6fee032db859858b9b7d8e7e05bf7dcedcf058b6
589 F20101108_AABYGE vivas_e_Page_101.txt
86a4578c1e007bcdbe3b66171982e8f1
57bd431385516d4341ce881e9a7064cdbdf2a877
2293 F20101108_AABYFQ vivas_e_Page_087.txt
05ec588a6339688edcb87179f1ac8e89
c2eee7454c251b49140b7d02844c2adff41ee3f5
29817 F20101108_AABXZV vivas_e_Page_148.pro
10370b52267c8323ea2b3a2d43ea44d9
4040bdfc782fca3b8911dc9ccc9cde600188bd7c
35298 F20101108_AABXCO vivas_e_Page_176.jpg
844946ec14e25513646693f79cb8ba4c
fcdc2826c262e63522573bd8c311d3a5d96e0cb5
63723 F20101108_AABWXI vivas_e_Page_036.jpg
55eb8dc9380da50dc5c7f68f6c817c25
b1ccee25004c7aa3edc187d955ad8b09b1fff7f5
57821 F20101108_AABXBZ vivas_e_Page_161.jpg
4be93d4cc5794bd4ec15e0ec9e80040a
d8ac9e81da8338015b77ff8cf5db73f09a2af222
65396 F20101108_AABWWT vivas_e_Page_020.jpg
9a3fa1cad54dc58181ad4eb340a13432
01511cae7242c38244d9fb389dfb8799ad1851f5
107307 F20101108_AABXDC vivas_e_Page_192.jpg
6e7bcd4f7ac4faef107b4f9e18949895
1da3222915b3eae07a9b1ac7e658efad79c3ee4d
1162 F20101108_AABYGF vivas_e_Page_102.txt
aca99463313d4e4815f9e0f71a24652b
9d84b03f8ce9d8b2de8b6a84448e3c44bf59382a
2129 F20101108_AABYFR vivas_e_Page_088.txt
c9ceb42430d908ec5bbd5346efe05715
1cf9e157af993846fa6febfa2fc16fd566d5645e
68270 F20101108_AABXZW vivas_e_Page_149.pro
0b744da5d467fe9b60955f04c21fc537
f7c3260fc0c3fb84f4ec8fe9d1ed45f7d0104184
45233 F20101108_AABXCP vivas_e_Page_177.jpg
2de799a363947c495eb99fc72b1788a8
ce06f1c2430fe52edc3f6d55cacd66e8e78e1f32
38287 F20101108_AABWXJ vivas_e_Page_037.jpg
b2406862327f817fcd00beeb0eb5c3e5
7d103b3339b8343b98df800aed4e76ee1a3e528e
66271 F20101108_AABWWU vivas_e_Page_021.jpg
515898850455f86f2e079907e8251a17
cfba619ab9cde7c32470537d3f1c011f01fb667d
69375 F20101108_AABXDD vivas_e_Page_193.jpg
41fe0e638fd094520e0a0a2c2f450716
e5d4b025ed4c6a72a05dc36295e4de1d417b4fc8
793 F20101108_AABYGG vivas_e_Page_103.txt
4300e0bfe4bc38c91bfc730269a99525
faa2cdfd032465855f22ba9680a0bef5e3923c84
1308 F20101108_AABYFS vivas_e_Page_089.txt
80af3473b156fdfeb80aa434d1b3bef7
7c580a31a3b254f891a7545bcbe78ce680f72de6
61857 F20101108_AABXZX vivas_e_Page_150.pro
eca8f174cca4c9a88c90ae898f9c9f7c
69f322596469731a3dac3b1acede4ede110f8cec
89867 F20101108_AABXCQ vivas_e_Page_178.jpg
877bd45cd3f72f887ceb7a777290fead
9d9a53ad7d69ee579724954a9b54dc93ff68e12b
31548 F20101108_AABWXK vivas_e_Page_038.jpg
b5c23af775f5d67bd1b387fff2a83245
e6402b7c67215cc1d7b4ac99a454a37dbd637213
74628 F20101108_AABWWV vivas_e_Page_022.jpg
7d2241d16f2a213a8606eac69d5cfcd2
01e4f9b3a3390bc844647303f5cb3f3ff29398ba
64446 F20101108_AABXDE vivas_e_Page_194.jpg
298a9bd5d5afa166f0f6c2fbcc68ad4f
fb3b612c6cb7edaf04e43b8bdbd627b458d78adf
657 F20101108_AABYGH vivas_e_Page_104.txt
f746c35461853f5bbdbff13409ff2738
b577c6f76481295bc0e5fc1e25dd487d88af48c2
1490 F20101108_AABYFT vivas_e_Page_090.txt
349da60f418c881d098b2e24090ede3e
9af513de2886d858a25b2972294e62047dccb550
64658 F20101108_AABXZY vivas_e_Page_151.pro
1a52bb67505e93890b40101c3056864a
a24f73a54fe93b39456337f08c2d84ca182d6b71
37509 F20101108_AABXCR vivas_e_Page_180.jpg
3720deeb2f726c8409b6eda3beabfa05
fa556539db21bb537478b0232065b6b6528f2cf4
32976 F20101108_AABWXL vivas_e_Page_039.jpg
33a6a0bed35e1ba4bd202c0599ae7f57
fa8e7f863a04022182ad93e53787e9d7ae6b809e
79739 F20101108_AABWWW vivas_e_Page_023.jpg
c7c7a28e225aa80b5a0b02b641ffb2c5
2b4de6d94fcabe380672492dcd6ee85e8b04c94c
64500 F20101108_AABXDF vivas_e_Page_195.jpg
ba24514d00e713e12c5e735bb9e17c75
8d08ac87be42e714e53af1cdfb050d5efe4d29b3
539 F20101108_AABYGI vivas_e_Page_105.txt
3881807b4173dc8d278e0dd29db78d8b
2175cd323f39e8a4ba052feb9f2f26bd4f0a88e2
1489 F20101108_AABYFU vivas_e_Page_091.txt
fbe2e1b530ec8569e646806030f75c5f
338561a8d0f1f6ed0457a85f4fc61efe3c2b0416
10281 F20101108_AABXZZ vivas_e_Page_152.pro
9b6e634c8aab632fb6648a1892b19c13
abe6db57ddf8c9a657a1e499f2f8c0f59bad4fae
60593 F20101108_AABXCS vivas_e_Page_181.jpg
ade25c3609c91945ce97682abc72e8dc
eaca104c7415720446ed4815321d389c955c3009
49039 F20101108_AABWXM vivas_e_Page_040.jpg
2a0c635e188d82484a022730563e8897
976226475d8cb713f40cf2fa919ac91c6016b28a
74755 F20101108_AABWWX vivas_e_Page_024.jpg
98716146d30995c53c90bd847c1eeff6
00a2e15ded8b70f9b9ec14455401ef6fe0144eea
68682 F20101108_AABXDG vivas_e_Page_196.jpg
7b866c0ee31f5923ae704e78d84c7b33
f76c03d919462484f0be0d6feb4c8930de0a7789
49110 F20101108_AABWYA vivas_e_Page_054.jpg
5d09e6461a966e7b380ad382fcd7fe3a
3a62625458f7b73c0df6a8fd359c6ec9448bb74f
254 F20101108_AABYGJ vivas_e_Page_106.txt
aa54b2290e437f8c43e49f095d70d5ea
c7eb4804d7fdc4daf33e37a3962c2f350fa58d7b
1565 F20101108_AABYFV vivas_e_Page_092.txt
c1204a5da12f27091253164e7caf17b1
2e59d5df56375b22b2595f0a0778c68956031a77
57545 F20101108_AABXCT vivas_e_Page_182.jpg
ff28ba5b215ff144ed10d67c11cb4266
4a85586a5b9849939e7224323b42e5eec37f8444
34639 F20101108_AABWXN vivas_e_Page_041.jpg
f88b02895b4184a40d53db46c081b345
e07ad6f3ac0bf4d51fd096819a6aabfec5a846dc
79963 F20101108_AABWWY vivas_e_Page_025.jpg
724c037b289be8cfcf31f07cde07659b
4be29aa707b4a758dd26a00a7fac2f33ec27831a
67829 F20101108_AABXDH vivas_e_Page_197.jpg
f1e45a4644199a0b7295ba238723e1c8
ca77afadf2222cc31bbe32282b877a3ae01b8885
40349 F20101108_AABWYB vivas_e_Page_055.jpg
5b4f941fc5c9bbda717c8841d8376edb
3862cad73bdcda996bfe967ebab17b0fe7c1457f
606 F20101108_AABYGK vivas_e_Page_107.txt
7bbde56e832a364bd4f3a21e71fb93c6
f7e22482ef3cffda404bf64dfa426e3502fd036a
1545 F20101108_AABYFW vivas_e_Page_093.txt
9cb9805c50579839a3ddaa77b89e4393
b60766a7684e18f0474b0ffc6a00a113f62ac0db
26467 F20101108_AABXCU vivas_e_Page_183.jpg
ce6f86906acee1c9556dece353984ccf
3a11d00f21cc778ad1a139ce47987c4571f0318b
78033 F20101108_AABWWZ vivas_e_Page_026.jpg
47bfcf34836589ef83a2c3711d79be31
6a4ada4221359251dfeebf014ee668fe8b6098c0
70778 F20101108_AABXDI vivas_e_Page_198.jpg
2fc03e0d7f183b20dc5745ed22dfe543
0201573ee063b5c4be92b21f1d59a9db1a4f903b
20426 F20101108_AABWYC vivas_e_Page_056.jpg
22ae6d780691f8e5b9e40ad64e629d4e
339a23ad61e5923960adf19b205f955ca64277a5
665 F20101108_AABYGL vivas_e_Page_108.txt
ec7cc073e97b4a709f2c5158045a6a4e
7a407283862df601d67d3e881b7229d64c4bd8ee
1564 F20101108_AABYFX vivas_e_Page_094.txt
ac19ff3f2e0fab6f60e3a0fc6f6b489b
ce44e04e4bfe4b57732a0db4ca069a86a533b095
111388 F20101108_AABXCV vivas_e_Page_184.jpg
6679415711d1a1cd0b6c024c12336e93
6f764baf3a735b2aa902b86fd78d59e768b752f5
69196 F20101108_AABWXO vivas_e_Page_042.jpg
cf13fe2b966e9093df53cc950eeccde6
f3d2f6c502abdebb655537fd2dbe06f65ea8101c
27780 F20101108_AABXDJ vivas_e_Page_199.jpg
f5fa61c4e7bbc996c84cdbae01620bf4
4fbf4f287d01c6cf882c10a2353da1c005aabb81
44519 F20101108_AABWYD vivas_e_Page_057.jpg
4448c598cd4c920107be3d4b8479c2b5
d71799165dfd04bcbc7facbb6eed63f8ac562dda
2169 F20101108_AABYHA vivas_e_Page_127.txt
07bd290e251cab0ab1d42ac23d365c60
1f322db335bd0813bfaae1a7fde65b4b92bf7ddf
846 F20101108_AABYGM vivas_e_Page_110.txt
05733b9de6bce02d370345ac409ffa34
ae5379c3a045bcd187e8fca2898e85177ccdca61
1794 F20101108_AABYFY vivas_e_Page_095.txt
3ef82f2ab94f2218c74db7ed64f4f616
4b023c309bc1c9ceb11a77449c0b0ac162d76995
101678 F20101108_AABXCW vivas_e_Page_185.jpg
cfdb4ce1c6924bdc1c553ef94ada97ec
e6eaa6dacd12e5a99afe94b12252c51c062f0895
78464 F20101108_AABWXP vivas_e_Page_043.jpg
29799baab2a4ea7753230ac7eccd80cb
a9314bf15912134a0eaec8487c5c2221d52092a4
70340 F20101108_AABXDK vivas_e_Page_200.jpg
bfeae7bf21dc2615de95e9d11834191b
034cec23a104d2f8e1d02ecea066914c5d75f614
49401 F20101108_AABWYE vivas_e_Page_058.jpg
0af7a512227deac421f028f52475f0de
807ad1ec4c475d9b4cec5c4ea6036a37d257dce3
2147 F20101108_AABYHB vivas_e_Page_128.txt
ce1e46a6c80a55d786eb67f256f584d8
856c4b3b98c4c0d02e51e92f412d72440aec2526
620 F20101108_AABYGN vivas_e_Page_111.txt
49af2b7d5e3634588f4ae7d371fa924e
ee65e871567c433dd30f3b2cbec00d2ca254b0ae
2100 F20101108_AABYFZ vivas_e_Page_096.txt
8cb717a2242c07e624855bb2cf38d638
4fb7f4ba720ea3b611107f1921dc5f92b7229ca8
104101 F20101108_AABXCX vivas_e_Page_186.jpg
f41b15b64a3711e7bb754b9994e6c160
75356b28de6ffd93d212fd83ee1c4a4059940f5e
75152 F20101108_AABWXQ vivas_e_Page_044.jpg
ad50e8c3ce67b60416265d7b5ef77458
c75b679eb931d0522344bd06320df91cd0d6eb64
27477 F20101108_AABXDL vivas_e_Page_201.jpg
785f42c03f3617f1bb2deee9589bddba
60a02af9b1581b90a2c25b5d12f2dd82910360cf
51803 F20101108_AABWYF vivas_e_Page_059.jpg
7cd6e885fb800ae61af531f66087d1ea
3a7e0f496c9720617bb5ddedf6e2eb0b600db1bf
2218 F20101108_AABYHC vivas_e_Page_129.txt
dd4e0d344d2c6081f1fda1414625f03d
fead15ceb4c4bb2b8b62bbc767f5d3a739a3a80f
863 F20101108_AABYGO vivas_e_Page_112.txt
2b2461675f155b09450fde206d19c83d
92785f85c566d22933c8fda4fb69f62cb63b3933
74745 F20101108_AABWXR vivas_e_Page_045.jpg
f6eacaff21217d5e59228d753a9f5e24
e5233f07db9bd5e998ef3ed7c31c602ccf9b85db
36689 F20101108_AABXEA vivas_e_Page_216.jpg
84db47d6225f28c8640c397b48790b30
5e62d7eb612c823a259116e318fa58e929419d7d
71055 F20101108_AABXDM vivas_e_Page_202.jpg
641cf39143a7e26452d54b37304880ce
3dc68a4d1843701d19ac28fad4f74f6666cf5f6e
43379 F20101108_AABWYG vivas_e_Page_060.jpg
4bce77e17e4dba6874b19ffde131b02c
9ec13a0d306ba3d5e56cbbb5e7641026bf1b7bad
955 F20101108_AABYHD vivas_e_Page_130.txt
3007efc4b94242fc17004e63706d1050
a5da4966e27b6190eb56cc5f4d754c8cc70b0f68
418 F20101108_AABYGP vivas_e_Page_113.txt
71b80d743d59a331979be2c0bce28a58
3149bf0d3d7d7fea62299f3c075175e013f0b9b3
41207 F20101108_AABWXS vivas_e_Page_046.jpg
8357a10b234ccc306e5a4a68df2ff2c9
ad659dd4a7040d1f5b28813b50b6144ad0398b9d
28597 F20101108_AABXEB vivas_e_Page_001.jp2
cca8d19b4b4ee30a7b3db202f664cd1a
ce4568418945f1f56a191b02e85fefeffc0ad76f
27924 F20101108_AABXDN vivas_e_Page_203.jpg
ff8056e1902ba022b799ae50b5888a40
e9c4d909781e960ba9089fe3bec14c7547a4accd
44972 F20101108_AABWYH vivas_e_Page_061.jpg
842672c66f75a25a143b3f54445e5e1c
459e58a1b98b3c0c271687ecb51b9b1d916d8952
106341 F20101108_AABXCY vivas_e_Page_187.jpg
81c213b1cdffc9e7052ab61e4ce6ad6f
dd2ed82955f5fe55776c828819b8cdbde43cb2cb
1301 F20101108_AABYHE vivas_e_Page_131.txt
9e21816bdc30d9daca0c94ce4cfd4fa2
549cea15c574c8461053723f059c85d4a42ba71c
2135 F20101108_AABYGQ vivas_e_Page_114.txt
a7ba26a95897e877b9af5ac07ec681e6
49fece332fadd0ace2d652cbf33df7ef85c5476e
61545 F20101108_AABWXT vivas_e_Page_047.jpg
cc6d2edcecb804287aba857b5264c07a
c339f73a979cb631e959c2a3a6e6bd1196e0e9a5
5125 F20101108_AABXEC vivas_e_Page_002.jp2
db67148e71d2e23e415c6cd529b67a31
8d24344feab5d68797424800976dd2523b7bc95e
70498 F20101108_AABXDO vivas_e_Page_204.jpg
68c84fd737e38705540e63705ba60e24
553e2dbb3a432bf9c2e22d528e988f16d2ba108f
49606 F20101108_AABWYI vivas_e_Page_062.jpg
720656fc9755bfad05f6d5fec5dc9c6a
a02d10c7de07e09eb68ee4a009c009ef82594c0b
107582 F20101108_AABXCZ vivas_e_Page_188.jpg
caa193f662efc4bc5b2ad0f5e9234955
646862460cfafd05e26abb813682cb90a4100b67
2788 F20101108_AABYHF vivas_e_Page_132.txt
8a8231549495f1687497be4bca579d89
32f9db87647e6344b3706bf6cd79886fda24b9c9
2223 F20101108_AABYGR vivas_e_Page_115.txt
863b3f95e086710a11b64cf296241411
aa20d597418ecc8ee5d4036f9bb220466992418b
52518 F20101108_AABWXU vivas_e_Page_048.jpg
73a79367f39ace9cfb7c1401c0b6cba4
e237bbe37cd600cf94b0fd6d92eda85af866546d
15020 F20101108_AABXED vivas_e_Page_003.jp2
400294dd68408496c35092b83afaea34
371896398b6baaa959b53047d525b04e2dd428ab
27746 F20101108_AABXDP vivas_e_Page_205.jpg
4cd39c0872e30a39d8c91144c363a4e0
954d160ecdfd9531f782aee4f22b6bfec338a7e3
63245 F20101108_AABWYJ vivas_e_Page_064.jpg
b5e5f53ab780ab6868f40a5cdd0419c6
56530e351ddecd6eb5432ed9248030d7b1de452a
1215 F20101108_AABYHG vivas_e_Page_133.txt
f9b79787ce8e2de6ad42eb4053145c28
6bab03c479ba917486e87a359368a1a5839203a6
2027 F20101108_AABYGS vivas_e_Page_116.txt
c4abb5864e1a2151a2c395df8063043b
fb6557e94899e6ee51c18225037da9bb429b0b67
56998 F20101108_AABWXV vivas_e_Page_049.jpg
551dd3398f6ba2fb680bf77eb253fab6
5d832502fcb660b65bf2eaecf559128bc5cac189
95722 F20101108_AABXEE vivas_e_Page_004.jp2
9c83dea11d0bca9c66004901393da4d6
8c7fe23a18b80341d7428a75b103bdd96efb3d81
52469 F20101108_AABXDQ vivas_e_Page_206.jpg
343c8e44915212bbb52937c9b7ed626f
8d1ae6f619ca35526edb0b9214a427334b120eea
39269 F20101108_AABWYK vivas_e_Page_065.jpg
8e4cb3fa57f01976ba146db4eb54a59f
678288596c2bd09f481df0a24748fbed6393fc04
2919 F20101108_AABYHH vivas_e_Page_134.txt
5fd4cd32a649732ce2fc04f889878aa5
29425f70b76bcca513fb1979cbb1594d51bc6037
2109 F20101108_AABYGT vivas_e_Page_117.txt
415d4d267918d03048252a6802b0bae0
e1a57a46becd61dfd88630720cf4254cca228fff
69998 F20101108_AABWXW vivas_e_Page_050.jpg
89b057c9acb27073eb68285d2018ab15
1427c6c3bc763861714a9678668798383b68f133
1051949 F20101108_AABXEF vivas_e_Page_005.jp2
04798cc41f1751366ac6c6abf7d27215
c51b5ead61e9d0aa67f0016e8d9c901527c25baa
46187 F20101108_AABXDR vivas_e_Page_207.jpg
f05ee132594c0608bab026a416b02be4
cb8f864602bee31af22de2e74c2ef72f24cce71b
69760 F20101108_AABWYL vivas_e_Page_066.jpg
60f57384a40ea41a9b89d21f86c09835
4ed3553285389836c612a047636daf01975c3fc2
815 F20101108_AABYHI vivas_e_Page_135.txt
73b66261f923cfad0b6a8da82c51cd0c
a655356af68c593790130d6579c009e76edf4d55
F20101108_AABYGU vivas_e_Page_118.txt
3fb64e940046b6b3a817cdba1ae54d92
037229d36e91421f59e472707c0e32372c708249
46458 F20101108_AABWXX vivas_e_Page_051.jpg
dc2a7ab541e9979db4ee6088c6200214
c5cbf77f6a0febf17592ecd5468a6bcae6164c5f
1051965 F20101108_AABXEG vivas_e_Page_006.jp2
283d3f4ecf335ca5e7c5f49942936108
571e128f96dc48d93c45efe05ec018d2837d968c
79247 F20101108_AABWZA vivas_e_Page_081.jpg
d93ba06a735fd1b178f78e5956e7786c
97a6fceb72ac72d394aa0822cd917513c7d2bc45
45994 F20101108_AABXDS vivas_e_Page_208.jpg
eef71f91fdd0178cc51a9b2fb1240354
07110bbcc2bc87ef7727fc5d0d4f59b8f55ba2a4
77988 F20101108_AABWYM vivas_e_Page_067.jpg
f314eb7f7a0395d1ed653149bbfa32fc
180a7cd4766048abb8196a8f418db40860ecf923
708 F20101108_AABYHJ vivas_e_Page_136.txt
bdcce237f1c92d0be8aafe1f5713f2cd
7269bb42ca2cd085e1609e80103e8271b03e74fa
1785 F20101108_AABYGV vivas_e_Page_121.txt
b262735678182f2c12ca1e85be605b4d
d57b38484882d4caffc8aa6c667a63a497d27d1e
34587 F20101108_AABWXY vivas_e_Page_052.jpg
d93ee708453847a9700a1406aefb7e69
7353d6e09b9a572da38eca47c7250c997084275a
1051978 F20101108_AABXEH vivas_e_Page_007.jp2
4c2c8f4d3d91887154c59048193f2358
161ea6f3a10890c5653d42443a6452e086aba47f
78787 F20101108_AABWZB vivas_e_Page_082.jpg
591ae9065b95d5bd8ba2eb0ce3e79574
f66e73a157a39f8dfd77884f2057bf1128f5b176
51048 F20101108_AABXDT vivas_e_Page_209.jpg
a6765dd804780a0429e316eb37d7fec3
aa47f88473544e33e778b39b2d015135c38188ff
72816 F20101108_AABWYN vivas_e_Page_068.jpg
e9d7b398cbf39fee9edec44a53fe218c
b89817dc0990197e7425d62d35c3e5d216c4c7ad
563 F20101108_AABYHK vivas_e_Page_137.txt
bfd007b01bc9f360be953218b8a4876b
0601e735b9ddfbb261d4ad61352a6473edd3106e
761 F20101108_AABYGW vivas_e_Page_122.txt
58ca5fa949248ad2ca213b0d02f86844
3e49ad67527d314acf4247a9459041bd0ea2aff2
45869 F20101108_AABWXZ vivas_e_Page_053.jpg
c45b4c5f17fd252831dc12f46114f03a
36095c68718676c0dcfa6f0609a15d35fa9cd2eb
1051953 F20101108_AABXEI vivas_e_Page_008.jp2
bb377aea21e00ad59b5f0627d294eb00
5986dbf5d17c7c798da99af11ecb0db707fb0d9c
77779 F20101108_AABWZC vivas_e_Page_083.jpg
e8d3e30590a25c3d94a03ccd2a938777
faab9ef50780341f304f0e49f7c746252333c225
83894 F20101108_AABXDU vivas_e_Page_210.jpg
057ec19415aa2fb2e7a640274ee8df02
45b186ba41b210900e4b18f56ba6dbebae4cea52
77444 F20101108_AABWYO vivas_e_Page_069.jpg
7cbfc425252a4585f9617c2b74d927e5
2e82ed9ced0b7b22c74466bcb9923d7e4529778e
892 F20101108_AABYHL vivas_e_Page_138.txt
08928bbf21070ce4b1453d9b64e8fd16
eafcfb86f09d75e387d35d982494314bd00c3077
470 F20101108_AABYGX vivas_e_Page_123.txt
81338c397c1b3606a360e5878a0fe4ff
4776d351ea65659150adf998653d050bf6c49af2
1051982 F20101108_AABXEJ vivas_e_Page_009.jp2
89918d27930a69bc66ee74a18f6cba55
01303a9eea6e88aada780e1c744ed8c6478b3535
79452 F20101108_AABWZD vivas_e_Page_084.jpg
77852ccf24fc3ed8193f0ebb56a976d6
2658811bca99274224b5bb222d2798017b7d9b17
82780 F20101108_AABXDV vivas_e_Page_211.jpg
49f8994cec0f6d2cbacdd310c6b9bf87
239796bf12abad64375de23c816af182cd83e38b
1558 F20101108_AABYIA vivas_e_Page_153.txt
f9f299ef342ea5dd2af922003d94c96f
959f5846ddf46d722ee7cb6a6b22b6ac4dab30ec
781 F20101108_AABYHM vivas_e_Page_139.txt
d0ca4b1e0fd94b92d4788fee9916f1e9
9d7411fc3ab442ef919d8a1cf8d9ea4f9403805a
935 F20101108_AABYGY vivas_e_Page_124.txt
85f953e0db76f65c6a9015d345b44e41
e722667c85bc09793890ee0f3062cf391270f784
1051960 F20101108_AABXEK vivas_e_Page_010.jp2
151f696418533f49831d520cf37439fd
9c3fa005fe9db2e0399c3c2be48e43438c886f42
79193 F20101108_AABWZE vivas_e_Page_086.jpg
8fceeaa6b7962e2c972e825c38ed6209
26df9d8ada9d380185ef3f12ca1608df3e0dc326
84060 F20101108_AABXDW vivas_e_Page_212.jpg
cb66cbf2d04367c1c9ab2dc9c73af208
afcc8032c6547fdeb9fb97f939cb2952ce1e960f
36858 F20101108_AABWYP vivas_e_Page_070.jpg
8c06cb3bf7a804fddad76440cb0c1c98
608a5f8785ca60f573f7573a78a72fdef8c9dd3d
1530 F20101108_AABYIB vivas_e_Page_154.txt
742fd1fb3523f08acf7da17974fb9c65
b772cd60f76eeda087c4e10521e405742a8f6219
F20101108_AABYHN vivas_e_Page_140.txt
34124398141d8faa3d335bc1701a4aa6
3ffcade5c335c28f8e88e4d3584e8829043012cc
2138 F20101108_AABYGZ vivas_e_Page_126.txt
81a943f9d7d7ddc54ffbb6a0614a0860
e9e2a9ac1ba5ca1ba8ace6bb80033a062c720e5f
F20101108_AABXEL vivas_e_Page_011.jp2
0c344d14db1a6a02f0e053ca043a1cf7
cbdbcd2a9fb5db844be11d47852cfc9b05ba473b
81257 F20101108_AABWZF vivas_e_Page_087.jpg
5acd1e978148a0c41e2e91331a05a801
a5373ad5d7973c22f68bce7bccb1e475ae0263da
76102 F20101108_AABXDX vivas_e_Page_213.jpg
268ee60b9346171d5df515326f08d7c1
109fbc579f14539f8d2436e6ccd24c2d5c7f1b49
52220 F20101108_AABWYQ vivas_e_Page_071.jpg
f302bbd643f2bb0ac72e4ee8de0ebf57
f0ee30828addc46dd57a1444b6bf5c146917b33b
1560 F20101108_AABYIC vivas_e_Page_155.txt
bea3a3eb4a20b66a6abb2be1995923fd
a8b36c5d08f814a63939ec636b726211bb5f6b46
2049 F20101108_AABYHO vivas_e_Page_141.txt
8f70a2cdc17a7bbd8ebcddac19e83741
e6ed5c4a04b72fc07d06ca872371b52d11e4c93f
1051968 F20101108_AABXEM vivas_e_Page_012.jp2
22c6548d477ad6d9ab567a3bc9386226
a861075a85433c46939d9d5b8fb1de29add05bc5
77126 F20101108_AABWZG vivas_e_Page_088.jpg
644d20979f5ad28d283cdacde0dcd428
1d5b2bc368b207631524311af60337fe522dbc81
89299 F20101108_AABXDY vivas_e_Page_214.jpg
e8fca7afb0767e5669c4c06a282c919e
5cdb92b0f5e3202783f69c60b0d8795a36fe6c68
32268 F20101108_AABWYR vivas_e_Page_072.jpg
f6e127e8ac90caa4358819f07009d30a
77bba97db13fc5eaa833d4516df47fd71d480aa4
118498 F20101108_AABXFA vivas_e_Page_027.jp2
962be72034e56da4172219d8f5060fb3
6edf049de69d5c719c91c6e93fe551cb59cc32be
1550 F20101108_AABYID vivas_e_Page_156.txt
6ec3553cb6a720516981cf1594c1d3cb
a200b0a372a5a6d1023700f280ddc3051a48f0b8
811 F20101108_AABYHP vivas_e_Page_142.txt
2f7739eca07c14d7084bff24853d7d24
e71e08125e38e8a934b7d27ccf5664a27e9eca8a
1051986 F20101108_AABXEN vivas_e_Page_013.jp2
5456e4049adff55121f7efdf44083e8a
1c42925c120b5509cee05e672ad799732de97184
50383 F20101108_AABWZH vivas_e_Page_089.jpg
74a1da5e9f1e25c9298b15878cfb2959
e5088fa9e519db895116852dddbe889bf7d4b7dd
44221 F20101108_AABWYS vivas_e_Page_073.jpg
9f4f9e4fea8ed87df2b28e857e1db987
40bc18db1e757ff86a3bf9779b71da6149a4539c
102411 F20101108_AABXFB vivas_e_Page_028.jp2
a9a9e8668fd318a61e6731eb093715cc
b7c0d7b4ed8b8c1d8d7e47e4e52a6ab2ca17b5af
1546 F20101108_AABYIE vivas_e_Page_157.txt
b1b575a987442f80f6403b3147f54b22
2f5e57fc486fdab70e659da2871b48c8a0a657c5
2694 F20101108_AABYHQ vivas_e_Page_143.txt
16d735de5006c42da0d01a7111ecc9e2
fa35d673a57e90d194c4bdc6705d5bbd1f827edb
739806 F20101108_AABXEO vivas_e_Page_014.jp2
1f03dad44f06e0c4ac7d34376b94d328
31d18a66f3a349422ab1b361165656fc487aae5b
39380 F20101108_AABWZI vivas_e_Page_090.jpg
6cb593e012b7947f32869d0dbd076822
541df12ee7a77efe45f6a9692ad0610344bdc6cf
51560 F20101108_AABXDZ vivas_e_Page_215.jpg
19b6c054f3d99bbabf1f9be70442943d
3c34571723b90ad22b7a98e7ea6a3fd57e45a20a
35144 F20101108_AABWYT vivas_e_Page_074.jpg
8e545d800d52b7c1cc574534ce7eab08
af3e99104d855a9048c60a1ee2b2b77d03936ba1
117857 F20101108_AABXFC vivas_e_Page_029.jp2
ee5654e3450e554d41d818cd488b1b1e
ed60ff9c641c53b9a50ae92f85bbedbfe1b9c82f
1578 F20101108_AABYIF vivas_e_Page_158.txt
19d073ea4cc2769870f70a92e0b3a1a2
1609d159c612b0921fb20595d9d1ec673d2f088b
2290 F20101108_AABYHR vivas_e_Page_144.txt
3b0b1d26df55a612470d0c9188ceaf5e
5563ae4a289370f7ada46eea3a83b77b5dc8e924
95930 F20101108_AABXEP vivas_e_Page_015.jp2
fe8ede55cce1a70df521cc256e2fdae7
ff62b63a842f5b187908de7032672544ca5bafb4
47850 F20101108_AABWZJ vivas_e_Page_091.jpg
a993d8ee9f5c3f72b1213c4519b0d680
9b89abfa0114f7de412a8fd7674c679946208175
36142 F20101108_AABWYU vivas_e_Page_075.jpg
9bb7c69ea9de09dbdb118222e5694219
a25ce255a129f919633db3e004db51bf4db8eb96
116774 F20101108_AABXFD vivas_e_Page_030.jp2
09ddbf0ed0d5d328b4ce327958faabf3
db9c2e6e0a939500e0d0618dcb0d0e079457f80b
1576 F20101108_AABYIG vivas_e_Page_159.txt
0ebc7355f384518a21fcc637f29a1b83
c3efe1917b12c43964ad83ce43a21a29a71b8f38
F20101108_AABYHS vivas_e_Page_145.txt
08c4265a809f670bccaa7102f84ac6b3
dd270ac8f3a96212176fcbc46406a93212ef21cc
53323 F20101108_AABXEQ vivas_e_Page_016.jp2
ffd80e9575871bf2d1a39a9c3509798f
d762cbd1c5f230d5314d9bb0cc5a97494de8da75
51266 F20101108_AABWZK vivas_e_Page_092.jpg
4e12a74449d08079de3c6e62eb05d76f
449c6386f76d05cb8993246615a3782c59618fcb
29661 F20101108_AABWYV vivas_e_Page_076.jpg
c1fc3f337e0094af6a4400acbb2d74ff
a270142074bb46fd285a54172f4302c653e099c5
110228 F20101108_AABXFE vivas_e_Page_031.jp2
fbd0a01d57c6f1c5df3d5ccfe983a888
092f482227819cb84083036fdf3f16ca954bc6a4
1535 F20101108_AABYIH vivas_e_Page_160.txt
cb0835999892f45ec0c83508733a72d5
8ce5a5e8b3324e931e1cd75038eb28a036d77a63
1144 F20101108_AABYHT vivas_e_Page_146.txt
44bf444befc565e50fcda9db18ed8c5e
3000ddeeba1a372d76ba5e793352d274b94658b3
114416 F20101108_AABXER vivas_e_Page_017.jp2
55cdd3f554c9eda576b6cddd60e8a9da
b6fb85bd5884f84873654d7243ad9c2b41fec2a2
48433 F20101108_AABWZL vivas_e_Page_093.jpg
8d150f4f7c9e9c0373df30f5a3983a24
f4a704e543e71e1d1ec6f33cf2814585d5be2786
70814 F20101108_AABWYW vivas_e_Page_077.jpg
1c542e65ddcadacd5d8db9f5efdceee2
bce6c25031706804e7b92114d5f78b23254fa984
102697 F20101108_AABXFF vivas_e_Page_032.jp2
04a58857107556c9d802b0c5b44bd9b9
bd26aa7cb981a7fbacfabd12878c37589c377d33
1605 F20101108_AABYII vivas_e_Page_161.txt
eb9abb9f12db6da03c2df07b366b5867
986eaaf3143ccb8dd4fb0ba6d25cfde7d27afebc
422 F20101108_AABYHU vivas_e_Page_147.txt
3c566a332e9e70e084b0c8ff3138d118
df53c22853877376b30c38885bda1015fbec45d0
70238 F20101108_AABXES vivas_e_Page_018.jp2
2dbba8677bb97560c0e2a3bbe04ba0db
95510cc6523f803544bcee391baad1f3b6a1b2db
51368 F20101108_AABWZM vivas_e_Page_094.jpg
ecd32ab5761dfdfd597d054f4c56e75c
89f48158d08e2a323cb42f61a2c9129ece8a5e75
76766 F20101108_AABWYX vivas_e_Page_078.jpg
432a86fd3c44371ba19d53e7f5095c97
1043ec131eb43c2e5fa62cf30343c7bafaf739d8
119268 F20101108_AABXFG vivas_e_Page_033.jp2
3940243fa1a19aa54e59f791ca0ccf05
96ecf3f9e28d9b2ffe56b308e81ced86521a2e9b
774 F20101108_AABYIJ vivas_e_Page_162.txt
67ff871070490c0aed537ebf0829bf13
59b7a3769d0eafc5b9016368e3de07cc311300b2
1926 F20101108_AABYHV vivas_e_Page_148.txt
065083b77cd2c69855f8914b26a64b6a
fce282b9cc3dac1dcc83e6d97ce188a506281dc8
108909 F20101108_AABXET vivas_e_Page_019.jp2
d467f35ba980dcd1e95491c60226d8c4
b829c00d05067164a94bb2116cbc56d872db0b66
62311 F20101108_AABWZN vivas_e_Page_095.jpg
daa43fae870ff80475e37dd4f9171acc
8732568b91fc2706ea2a867764cc2a97770b61bd
77095 F20101108_AABWYY vivas_e_Page_079.jpg
4206cc46462fa8ad5c23a41b90c90dd4
12a0ba7b194e21b00cef052c15dcf5172d9106ff
118140 F20101108_AABXFH vivas_e_Page_034.jp2
31a99fc7ea3677d9f009ea1edbdcf481
d5218505982ecb7a6028d35943b3bffeb7fa953f
3848 F20101108_AABYIK vivas_e_Page_163.txt
bc48bf4fd3909afe36f34aae742a5829
902ae9501742f4f9f6990a6810c88797ad55aa6a
2890 F20101108_AABYHW vivas_e_Page_149.txt
c0951d41968ff1238f152196b04fffba
acd69823b0ca12b09d87cd2a2c87011d68de9ec3
98455 F20101108_AABXEU vivas_e_Page_020.jp2
1e3fa4a7f4f03dc23b30b1bbbde5d78f
e2f1e13aa04b3d7dbcd73b87ecc673afe19d5c31
63289 F20101108_AABWZO vivas_e_Page_096.jpg
62ed02005aad91a962b5e4beb611b29d
56fc067cdeed880b37579043224a751e73b2984c
77431 F20101108_AABWYZ vivas_e_Page_080.jpg
3dce4c90fd7359a6f5ab67c839e32646
81e23e92f429370f55f4171ca7c3cda43022a945
104867 F20101108_AABXFI vivas_e_Page_035.jp2
41769fef14a2ee39b6febf338bd1491d
357281712edff54ae625705865bf16397cadae4c
3244 F20101108_AABYIL vivas_e_Page_164.txt
f653009703400ab881884721b3267f84
c72e927073a1f0699802fd25bfb186382c7f6fdd
2651 F20101108_AABYHX vivas_e_Page_150.txt
5d418c924927294b32bb0cd043d3fd68
40745d9db23326bcf99fe26e16e01d341e766916
100471 F20101108_AABXEV vivas_e_Page_021.jp2
09bbc82cad63805e4313bd1217aa4760
aa28b884d561cb99d7b03fe7c9f3588544e5eebd
67624 F20101108_AABWZP vivas_e_Page_097.jpg
a5f8e52e8c34edd53d01ea6ae5e9cbca
19fd0e79e61ac35cb0d7bf2539cf368ffb7ffcfe
89105 F20101108_AABXFJ vivas_e_Page_036.jp2
56eb8c6d5a36e14f996a1c41d8c95a93
088fe43774c6a5db3724c32a12a4bed7c95b061e
2960 F20101108_AABYJA vivas_e_Page_179.txt
35f2329b2027f100549c1ac47f932960
28d56807ca11ddf3b4eaaa3fdbf17a5e2f016693
3962 F20101108_AABYIM vivas_e_Page_165.txt
984bb2378e157f1f838843ab2e8b677c
1125221322718265204f4bffc1529394795c06b5
2825 F20101108_AABYHY vivas_e_Page_151.txt
8f5c828a76aa0bb96e4baac3043575f2
10d6017683bd759d0a07253e99add2f34fe8d476
120654 F20101108_AABXEW vivas_e_Page_023.jp2
200f7d38def5f936588acf5018e9979d
5afd8b81cab3d8e8fe3c24d77d99445c8932e18a
51740 F20101108_AABXFK vivas_e_Page_037.jp2
d42aa5fb0cd7028d5f6830867d6c9a9b
817512b73c6e64b27671ef9a5de1fa43878f0ce6
1015 F20101108_AABYJB vivas_e_Page_180.txt
fd8ec99957015774796393857a9f1223
5275fbbfdec835a09cf98965563fd1beb2db1821
654 F20101108_AABYIN vivas_e_Page_166.txt
488176ef65706ab4bbb46ffafeec6115
13898f94cca42328d111e94e4c30b6bb1f116b86
472 F20101108_AABYHZ vivas_e_Page_152.txt
9707965fa68ac76426899db8c687bdff
072927cded7989f3a0b458210c6db38181468cf9
114281 F20101108_AABXEX vivas_e_Page_024.jp2
010475219748cd2b38642070a212a6cb
96e958f2fad687c1b28859e076ef59e1cf7fcb1b
44882 F20101108_AABWZQ vivas_e_Page_098.jpg
4bfad0936e520bd0339ca38c5b106edb
cb1d518b61e251c0ef14d39897415aad8998a879
37081 F20101108_AABXFL vivas_e_Page_038.jp2
5501637992005add315fa3956af63adf
b06db1cac0937b887d35c04994ae1688e7d4434e
F20101108_AABYJC vivas_e_Page_181.txt
cede6d66726859f076688175d5b53979
7e439d7eda70c258b7bee04ce70f30c01974dbd4
1579 F20101108_AABYIO vivas_e_Page_167.txt
7565ae18d83a9193aa001a88e9c4ad21
5aa201bb2a3efe81ff243e2ced0d040c298ca03e
120197 F20101108_AABXEY vivas_e_Page_025.jp2
ffc1730a123fd1343a22b7ded56e5c2c
3c01fb1af75d23d99bb58733173b5258d9a8250d
35291 F20101108_AABWZR vivas_e_Page_099.jpg
50847c8944dfdfc64d2e9a4f64fd7f17
75cb88cc578b354a45f9cf571c43115dda76344b
64715 F20101108_AABXGA vivas_e_Page_053.jp2
fd5496d047e1a92d44251d79f8c75f22
40e09b474091c216306e50be03c7279f5b703cb8
38318 F20101108_AABXFM vivas_e_Page_039.jp2
9195aad588491b47c712b9ad41d38d9e
a68cbb1a37961417091a073d5ae6758ab13fb538
1452 F20101108_AABYJD vivas_e_Page_182.txt
a29bd874cfbddace561c0ba67af537c9
cd81b53603354041d7708121fdbf1569946acff7
1470 F20101108_AABYIP vivas_e_Page_168.txt
1543507279ee5c9b87293d08786c4d21
debdaae0837bb61427e2455af2f1e27f6104d8dd
116968 F20101108_AABXEZ vivas_e_Page_026.jp2
1e6e090588db6ef7472f59f55f0ac7d3
0570f0b4edf30b754d642c8279b4681058a1819e
53998 F20101108_AABWZS vivas_e_Page_100.jpg
8fa3a81a41c9068940697bfceaf723ce
0c06f367a4eae8178ad58d0341a74b38245993a0
66769 F20101108_AABXGB vivas_e_Page_054.jp2
2072bceb82dbeeff51cf4c235e4c00c2
0b8fb79697ede20713df717d94e07a9caddc62e8
64836 F20101108_AABXFN vivas_e_Page_040.jp2
14dadff758ee59caf800e4ab5ef1c1cf
bb58b7d8b3175c151fbfb5692b7d9d02f1f42bd8
443 F20101108_AABYJE vivas_e_Page_183.txt
4524e452a85e8154f018e29001a7c399
c9f7dc979f3a7de0885529fc1c23da6fa188d237
1453 F20101108_AABYIQ vivas_e_Page_169.txt
aacdeea4d9f1fae1b02cd3c43d323f5b
2281d45fbe6e0c44cdcc3d80d39cbb2eb3ce8ef0
45965 F20101108_AABWZT vivas_e_Page_101.jpg
3c91327272c13c69da30db11dc997241
212a5e9b3e7d4224843d44b7a0770e0b8c824eaf
51552 F20101108_AABXGC vivas_e_Page_055.jp2
5c64fffa651c6ee021ff1515446c8999
f98a18257f1e09f4d637a361bca6445efec2d59d
363525 F20101108_AABXFO vivas_e_Page_041.jp2
10c308943ed65d4a9fa5808b449a4798
f0855d49f2bb397c8c420e5483ab99ccec0a48a7
5045 F20101108_AABYJF vivas_e_Page_184.txt
28cc3c2bb68454a7102744dd85d4ae0d
da1b68c0c70e0f681d645d086cd7c4486d634673
1451 F20101108_AABYIR vivas_e_Page_170.txt
d440f354cea78f75224fedd8ec20bc8b
a8da08775455f0b720a4098b40a19ac98170f682
46438 F20101108_AABWZU vivas_e_Page_102.jpg
759b0c17883a7d1357fbc3dad74f3b6f
7b4907e54587f5c4d8cbf1294e54abb34a22a3e5
20954 F20101108_AABXGD vivas_e_Page_056.jp2
80343f680256c0cae1293535442c0426
246fbdea1394089ab6f02fc021d85b84ba720c98
105804 F20101108_AABXFP vivas_e_Page_042.jp2
48a21febf5c800d6278f03ebd1d0b213
1204aa9212a57bb79d8d20cf079ce006e55fb632
5966 F20101108_AABYJG vivas_e_Page_185.txt
a08ac1a93d27206bf7e3eebbb17edbbb
f1d067ca3b5aaa285fb641f5ad1fa6eeb8c198e3
F20101108_AABYIS vivas_e_Page_171.txt
a62601a66c82599be9efa113983032c8
5fba977c308489dac016a1aa297d727335c44c4e
46650 F20101108_AABWZV vivas_e_Page_103.jpg
45017e79adece0f98e9503074f69b760
36ae6a089b18f7b6d58515bdcb97bd33bf4937d2
60885 F20101108_AABXGE vivas_e_Page_057.jp2
7aebd6b596fce056e37b2e6cdb62de00
45b46411086b8b78c3d6b471056da11c564e3b68
116634 F20101108_AABXFQ vivas_e_Page_043.jp2
7b78d1e428520a67a51c11c0270fbfa7
cc2bae08aef8ba7034511593a7646935adb407a6
6532 F20101108_AABYJH vivas_e_Page_186.txt
9f072d169463f3124706f98e8fef5b15
2e338b0a5487766bc3b4818cfddb5fe24f76a919
1543 F20101108_AABYIT vivas_e_Page_172.txt
9aed3815f7b1046472a2c9cb4138d10b
f17a237404b2e280e0fe4320c4fe0b9a6bbdce9c
40668 F20101108_AABWZW vivas_e_Page_104.jpg
9aec9bceeb04a0140590118e19394f1f
62df174a56f30f04e049e7f62a6ec964ae689407
1051943 F20101108_AABXGF vivas_e_Page_058.jp2
dd53805486a6dccfe0475c1995abe882
0b808dc9dbc2afa95e4604570f2ae042b87ca985
113996 F20101108_AABXFR vivas_e_Page_044.jp2
21c90a79e524aaf2d1788d4aa24cb5a9
d6c520a7da661fc0aa219d5dbbdf8599274d43a7
6905 F20101108_AABYJI vivas_e_Page_187.txt
eb7642bba3d98544e5d2a2186f4076c5
f29d3762bcf289c7bb60a5777e8cda46695ef27c
1525 F20101108_AABYIU vivas_e_Page_173.txt
4c32c3a2f5cafc70b04f9088b1dc2a0a
ac1e1d93f4956d0d05cddfcd72e6689b0a941775
37199 F20101108_AABWZX vivas_e_Page_105.jpg
9df4e54c395f793d49e5ecd8a3a4f1a2
65b79beac6b74ab2774c1466db0fd84a5e5ffc75
767412 F20101108_AABXGG vivas_e_Page_059.jp2
cb069079048c31a25f52d161a19b3dd3
6d54ff9c978afa690c313fca6f43666b3bb145cb
112872 F20101108_AABXFS vivas_e_Page_045.jp2
fc801fa9efda6fb69ab04ed87acc10c1
7c4cc9dc4ca358b117295a01df9b726632599344
7058 F20101108_AABYJJ vivas_e_Page_188.txt
642c0c18abf1a0ec0a58c9ef9b516439
036b23ba48a672ce18bda3d77796d58764c23da6
1508 F20101108_AABYIV vivas_e_Page_174.txt
17e7d2b88f01eaad45c609c33a002217
7a638001fee2b067835ca4654456530c963b9a51
21890 F20101108_AABWZY vivas_e_Page_106.jpg
eb30819d708191dbb6c937afb18ad859
b5122478d07359ef1fcd65aa38035eb32a263b1e
993259 F20101108_AABXGH vivas_e_Page_060.jp2
559b1b5c3a29fa24b0a99ecb25e7eb27
2c8bf363829f785cf4258cff26e8c28d31c19c92
56454 F20101108_AABXFT vivas_e_Page_046.jp2
55aec24c999710b4df932803e3318119
8f2bd88c5467e33a30d577c476d892e49a963ed9
5930 F20101108_AABYJK vivas_e_Page_189.txt
1747496f68ae644a564915223cf02d31
ade94fd9a24d1af2edbace6a6bb19a65cc7d9e7d
F20101108_AABYIW vivas_e_Page_175.txt
2ddef8275d4b0a70336a357d1e88836e
7e0861fe85516a0bea6dba136bca959fc85c98e0
35686 F20101108_AABWZZ vivas_e_Page_108.jpg
54a9595fa1a5da6712cdae5671c195ac
a8d7a7621d8b17acd819afebfc0a38d305aa5abf
1051908 F20101108_AABXGI vivas_e_Page_061.jp2
7f81cfe082646f3eb951eaea15fb5f58
db943150037611ef8ada65e58020aa16a0af94eb
86497 F20101108_AABXFU vivas_e_Page_047.jp2
3d52cd8ea2f32b3f7edd57fee997dbac
0d5662766696c3fde5ad2f3c7c0020a5eb5fcfe1
6862 F20101108_AABYJL vivas_e_Page_190.txt
b32de122b8d3fa5f6f2f95a8b284c268
14fe5f150594c6eea86ebbdfc01dd9e1f5fe7512
771 F20101108_AABYIX vivas_e_Page_176.txt
6fa52e831b16871c4bc5e507d51d77bd
5355cae113340dbfcdefe04b856c1706307777a9
F20101108_AABXGJ vivas_e_Page_062.jp2
77084aaff711b2d68777083370b4b2ab
cfe5b4c847b23e24d43fe90700e0fb6c32e1811a
74298 F20101108_AABXFV vivas_e_Page_048.jp2
d654b571bf696226a7030bd98741b4e6
e6ee1358ac89bfeb457d146f324b471ac6958f12
1674 F20101108_AABYKA vivas_e_Page_206.txt
2e9be91e39165652dc1a9085c40581af
063b14f837485c0d545e389960c11349fd759e67
7105 F20101108_AABYJM vivas_e_Page_191.txt
8f06c01c3d0af6745f7a9cc6dff5ffdf
5dd312a2df9e1b17a2ac81bfac639cf1a8e6e2ee
1337 F20101108_AABYIY vivas_e_Page_177.txt
6e4deb724b0512c05ec96f77eb90b938
950711b344db321b0cfa61332bcaf36fb7a4bc67
1051967 F20101108_AABXGK vivas_e_Page_063.jp2
d68f56a3b444f5c804336cb6a04aad76
1898d755f79bb86f1c3b3f71ae91586ecd01cfeb
81516 F20101108_AABXFW vivas_e_Page_049.jp2
db2f3b845615e2fcc2f2cc449782b44e
3adf11b8272f94aea5a23ea1cb44d6fdc9683af5
1002 F20101108_AABYKB vivas_e_Page_207.txt
300708a8706b94f7385372cb2e604219
a7d7546190d4f610a64fc626b05bb9912ac2c803
F20101108_AABYJN vivas_e_Page_192.txt
c7360d16106414cc9010eec26f9536f8
d6b92ff97dd9fa25de461eb4f1e8af29da9b9a3f
2913 F20101108_AABYIZ vivas_e_Page_178.txt
8e3c9f05a1a074e448802b133d20ec15
a50293fd90d58a80685f718b0231bc67af4b62c5
1051980 F20101108_AABXGL vivas_e_Page_064.jp2
f155adab519a25be8d92f7a0baab0483
7c9842d236b07f0b7dd688f9ae2190211bebabe2
100309 F20101108_AABXFX vivas_e_Page_050.jp2
39c047e0ac0f023044c646cb91953641
14751575828381d5e4410ecffcde354d349f412f
1506 F20101108_AABYKC vivas_e_Page_208.txt
566548209595fa4918e4f4f703821360
81676d767cc9fe9f9167918a1bc3f7661cc653d5
1942 F20101108_AABYJO vivas_e_Page_193.txt
284c3f8999f6ef3fb6e3cc5de5c8b4ca
e52d4243969c7cab6651d3f8a93cd11ab26c1d0f
115329 F20101108_AABXHA vivas_e_Page_079.jp2
8d6dce6963cb7d2fc09af0cd92ea8f77
9b86d1d473f5aa7b52ac5815c1197bde5cc8405d
996518 F20101108_AABXGM vivas_e_Page_065.jp2
7000b0c28a5a0d514997d9ec60f7dca3
7c71aab8c58c0b777fae4feca3087ab0b21c4210
61191 F20101108_AABXFY vivas_e_Page_051.jp2
85f325cb05ac50d5dc2567540dc131a1
e1c0dfffeac68e571c370dbecea902039b34ccb5
1232 F20101108_AABYKD vivas_e_Page_209.txt
fc9704e309c64db5d8ff31932d9b9e6c
75cae2adf90d3075448ad6e744013db8d7a8e563
F20101108_AABYJP vivas_e_Page_194.txt
2781ee0b1945cf8b120e722d19d5351a
ed33310c10e5c96fc8312a4b39ac2f6db2d42324
117125 F20101108_AABXHB vivas_e_Page_080.jp2
8ca7ae80b121ca424d4d1b1980e6cfe9
12dfd7b6c2741a4574f819a04e8dffe2cfa8079b
103398 F20101108_AABXGN vivas_e_Page_066.jp2
48136f1a85b37e6cd7ed2b02aaf1aee6
d5b3e30a2bec6ad361b5db4362df9a09a5fbf174
45438 F20101108_AABXFZ vivas_e_Page_052.jp2
d6d12b98d8a5cce18b8f99bcafef5c8d
ba8e245e69749adcfa73524f8aedcf23da5c2ab6
2280 F20101108_AABYKE vivas_e_Page_210.txt
c23be034dba729b104b403fb9553b28c
00fc5c12a604e868d6777c3fcfe673d3663e6f08
F20101108_AABYJQ vivas_e_Page_195.txt
d0af72632319b2f6bcf77f7acc739c21
fb04e8fba8aeef06a6279e334186ce142e23bd28
119373 F20101108_AABXHC vivas_e_Page_081.jp2
02091ff0bf5e09fc8b6e8ad52358140c
a76a39a868183f6dd8af12982b490e83b52d48b8
116731 F20101108_AABXGO vivas_e_Page_067.jp2
b81e9bebaf6a30bf8fc74f699aa64664
2bee5c7230f00c182d834f3d48deaa49d14f5f61
F20101108_AABYKF vivas_e_Page_211.txt
1e7af339211284c0165474b15bfb5f79
89b0d6d11402af235beb5a00ca49926508a705c0
1434 F20101108_AABYJR vivas_e_Page_197.txt
37208df3687cfdfc880b853803aa6b99
070e424767ac35d2da36493eaa6c6fe227be8435
119799 F20101108_AABXHD vivas_e_Page_082.jp2
33ab237e3be7e72cfd418dbf694eee3b
f4b484c7de1477e9789af54e4e5aef9413a8e404
109241 F20101108_AABXGP vivas_e_Page_068.jp2
5ca1795023182c1b80db7c4fa216ae58
3f84537aa907fcec67576c5009134a8cd045b4c0
2362 F20101108_AABYKG vivas_e_Page_212.txt
12e7e014d72b90d95bfdced257e5c8c7
2f487ab8838fc9a5e4ef7ceb1e6f06d12c452135
1307 F20101108_AABYJS vivas_e_Page_198.txt
96290e40bedd6ac0e99255c1a5b0e2cf
d111dcccee5f54171cbd6f2f949e7c6f86f78f68
118501 F20101108_AABXHE vivas_e_Page_083.jp2
3d5dc130f6f3b468678b8553415be76a
9fb2e6b20999100b836d9cbd5aa6b5e656984f93
117726 F20101108_AABXGQ vivas_e_Page_069.jp2
09f26666f0d0d7d3ac14ff7d17864b4a
129d0a7ec7907cfabdc7a4e8736d9de435023e3f
2121 F20101108_AABYKH vivas_e_Page_213.txt
82f38dff55c08c28c71da87da9a0ac7b
6b8c65bd82b8ac2e8b33971a6d083bbf3de26fcc
411 F20101108_AABYJT vivas_e_Page_199.txt
724b7225b824ad724759a1cd9945029b
754e078d1f086ba557e51105d28888086de44418
120658 F20101108_AABXHF vivas_e_Page_084.jp2
d4e078559806b73098595467da0e33d5
6420de900fce02648aab38a9ab1c943831ff152e
50550 F20101108_AABXGR vivas_e_Page_070.jp2
342b4b43adaac6b379e8f218a16770b3
59a826d49ed97aa98d628946b3d9aa680cfe00d7
2484 F20101108_AABYKI vivas_e_Page_214.txt
02fafd3b44195115d609ab531a68c1a1
e4ed4803f41c708031793e8a807f3114a28c78ef
1341 F20101108_AABYJU vivas_e_Page_200.txt
65491c433938eac8d85a054c5a2bb327
0b309892bd77712abb4d367d2ecde09824f3d61d
115058 F20101108_AABXHG vivas_e_Page_085.jp2
311eb83f582a3d2121e4826e730ffa38
ffc036b3aaee215805430b48c1f2e9612ef680fe
67232 F20101108_AABXGS vivas_e_Page_071.jp2
f23b7ab8447702df6697d19649c2e139
27585591537ea873e2e6967e3a080d34702684d8
1344 F20101108_AABYKJ vivas_e_Page_215.txt
fa7da1429fa2b09135515d7569253033
c024bda5b3a1b42e6f82ee1a493deb747c751b1c
440 F20101108_AABYJV vivas_e_Page_201.txt
4a786cf9e3394cb2f335a2bb5c7af2c6
cfebfa56556910b0d7bf48e25a8a0df5beaf584c
118446 F20101108_AABXHH vivas_e_Page_086.jp2
693659893383f1a161bc9a38e357c49f
784a670259c9e2300ef140e8cd1627656ff02313
705682 F20101108_AABXGT vivas_e_Page_072.jp2
24ec2260a23ade9459bf3531c2f20beb
8c1d271afe5b674ed966b601849b94541df1ddbc
858 F20101108_AABYKK vivas_e_Page_216.txt
57e3f9e5015bbd8cff1bd9fc72483e97
06f76cb063a347fa2a5dbcc0721bf10b62c63567
1304 F20101108_AABYJW vivas_e_Page_202.txt
2534c1718e7a8dcf59f36b374ae0b1eb
56dec25abe24ef9d8eecf3dc0bd663f945579449
121100 F20101108_AABXHI vivas_e_Page_087.jp2
f1f003c6445569c0b2279092c1dc8d7e
69792cd5915ce982043e7d83f10b2f8c579a8afa
1021174 F20101108_AABXGU vivas_e_Page_073.jp2
429639955bd3b0ff719d02ff0ae53ff9
9e714796b8f4adcae4f21b52e77bf72840960ae1
2387 F20101108_AABYKL vivas_e_Page_001thm.jpg
703dbce7a7bbfebc69332269877bcdbb
213ce8840e4b76bf46da2b6e3ad068a9f14bad78
432 F20101108_AABYJX vivas_e_Page_203.txt
02953c80526d31ebab77e32bad76e46a
9cff552ecde08d76acdf333a78a02eab3ac359cd
115556 F20101108_AABXHJ vivas_e_Page_088.jp2
36c475a33f6bed545036a55773f9b808
dc3c14631d3f5bf2ecd822f2a58b8cd93599a39e
769734 F20101108_AABXGV vivas_e_Page_074.jp2
f214a196026225b93f3d7ac6a7e8fbcb
8daeee03469bfe1364f4da2281d0c0f7eb54aad0
6279 F20101108_AABYLA vivas_e_Page_007thm.jpg
ab56b56d88da02cf1cbc2594f234b26a
d299207697a7f1f34537689800af259fd624d248
2491425 F20101108_AABYKM vivas_e.pdf
250bdf5d535a05282d6565eacb50bed7
1c0a5ba4bb45f80adaf6200e9d8801e4de05dffe
F20101108_AABYJY vivas_e_Page_204.txt
15a6b32c11251be2292d6495ecff9116
2493641b42c820dd499421db359d6ccb1796360d
73805 F20101108_AABXHK vivas_e_Page_089.jp2
2150f2d58104c0e4c5459cb547a82e91
3fb113e4c96594dc727cebabeeccf8a34fdfc555
929326 F20101108_AABXGW vivas_e_Page_075.jp2
5a4ed657681c0f385de59b19e8dfdf00
230f3dc64f3b17309aa5cd199281305ca454f1a0
27446 F20101108_AABYLB vivas_e_Page_008.QC.jpg
d2526bb27d14e797a33a26e4a3d6c1c5
76fa46b9bd3def8580604357d270c7a9323c340b
246845 F20101108_AABYKN UFE0021765_00001.mets
96e2a859f0706f2a0df1c8b68927a987
0311ba430a4091e827a5b4224019e368c6abb2ba
452 F20101108_AABYJZ vivas_e_Page_205.txt
768360c8918bcbfd3052aaf32ae6a760
9ff9d9d3f1ce3369961e5f8b85ea2d64db2f887a
51758 F20101108_AABXHL vivas_e_Page_090.jp2
dae4b21c5c7c63b514dd338287cd841a
34a440a01627a2ff32f7d6aa0fcc9616f981e888
613322 F20101108_AABXGX vivas_e_Page_076.jp2
1d5d65496af5395397d39b2b825fc8ea
951d5ed75ac50d9033d988e77863b2c14d3e35a3
7242 F20101108_AABYLC vivas_e_Page_008thm.jpg
5e74a967b16a850ee03f45b0d6c6a569
60c17e8422be74fc1a6ae97ca2ab09c3428a2daf
8003 F20101108_AABYKO vivas_e_Page_001.QC.jpg
2aa34002bb4cbd241cf184a78f3f10c1
a9e524d2ef5b7018b950eec686799c43c7549122
66154 F20101108_AABXHM vivas_e_Page_091.jp2
f4a9244713b2ee3d8e580ac45ec1dda6
5be7b054a8a90aac8dfa1e3f90833a26b7008197
106298 F20101108_AABXGY vivas_e_Page_077.jp2
b0d22b162a79af17adb9069c34c9cda8
b1de64959a2e70bc51a7a84e873b8fa6e97f4681
400305 F20101108_AABXIA vivas_e_Page_105.jp2
1e90cd7e581f294918dc850aa879d531
02dbf78632cef701e0b761bf212d5a1de9b7255e
21404 F20101108_AABYLD vivas_e_Page_009.QC.jpg
24f6a8b91890cf905ddbf11a178ac200
297944b44a6af18e0881d6522a91d69ae412f670
3076 F20101108_AABYKP vivas_e_Page_002.QC.jpg
ac2da0553dbe9d1384fa867ffd40c605
c50f76ddb354246d77abf152e63e1797c57e4a26
72985 F20101108_AABXHN vivas_e_Page_092.jp2
cb9ef4573ef8c4efc4381505fd244d55
61c939b2ea51a2b1d14c48a4d8e954738c8326d7
117219 F20101108_AABXGZ vivas_e_Page_078.jp2
c37786da2f79daf6f2823dc1b8518440
3ae36e9249783f60cec5372e09f78a97538f89ee
22643 F20101108_AABXIB vivas_e_Page_106.jp2
a1ea8b57649e950fadb8359f390aea46
a01628cf9f7d2cc2ee3caf35a9f0d4f0f3a63df2
5774 F20101108_AABYLE vivas_e_Page_009thm.jpg
f23df879d622717bc5f568723531d758
db3b153823ef01403cb8e250b25358bb258c3206
1334 F20101108_AABYKQ vivas_e_Page_002thm.jpg
256ca3828a01c470cc2f575f742bd668
bf4078a6810ddef736301ca260c04b11d9fb4ddb
67444 F20101108_AABXHO vivas_e_Page_093.jp2
ac2b21550e3800b927cb2bbae8784efd
5f48fcd2554a97fd81ce20e39dad4fbedb3ae389
66735 F20101108_AABXIC vivas_e_Page_107.jp2
3ccdd4aeb4e354704aa3cae62ef7587c
faeb1ad576a9c32c228b97dca8dced20fad36860
25096 F20101108_AABYLF vivas_e_Page_010.QC.jpg
5f8597474adbc404c5888309d9305707
c151e6f49738e8858545aa20899bb580aeadbdff
4688 F20101108_AABYKR vivas_e_Page_003.QC.jpg
d69b16c0343bcec3344829fc708de510
b9c1b53428e660e5515178ea8ddeb308e8f5910b
73488 F20101108_AABXHP vivas_e_Page_094.jp2
bbe1087edb63c568b090888019e213fd
77367e38e2c4fd93236892917d9aaa31d2c3ed5c
45864 F20101108_AABXID vivas_e_Page_108.jp2
a728a6b0479aa7897fcc28f0a1d6a51c
7afabe1035671a9b43229717b9af973c0dec878e
6590 F20101108_AABYLG vivas_e_Page_010thm.jpg
5cd97b3ae3e38fc77ace83ee7899f09e
dad23820b5fb18aab40b9b518c251b534247ce01
1679 F20101108_AABYKS vivas_e_Page_003thm.jpg
b679ff2688ff4c76ad12f8ca899fb261
41ca0ce5438da5452381702e000c1109ecce5f64
89194 F20101108_AABXHQ vivas_e_Page_095.jp2
d1b849b2a29d7fe0ab01640af6041ca6
fd5ece70d73eda62c7104f9987922d8cff95affb
64474 F20101108_AABXIE vivas_e_Page_109.jp2
9ed704ddf1738c1e90472e3f6d57ac5b
a879a080a4608bbd176f0528ccd1fc2dd1de2734
23928 F20101108_AABYLH vivas_e_Page_011.QC.jpg
22b31a7600c4a615d811f363ee77fd4f
bc37f78f1ea1571e7d9fceb795f9b314efbd2ceb
21818 F20101108_AABYKT vivas_e_Page_004.QC.jpg
537807e77bd6b09023fab800da689247
654395849e991a16924b960491e7a6d6e82168a5
87965 F20101108_AABXHR vivas_e_Page_096.jp2
54ea7bd095d75ab5e5e601c48a9294cd
8287725b57ff0b055411cd36929a89707f7b8a3e
58684 F20101108_AABXIF vivas_e_Page_110.jp2
33aa642d14d7a52b507e916c77cb767d
f4918674f8e128975daaac9541f8f6b842809458
6443 F20101108_AABYLI vivas_e_Page_011thm.jpg
c991d6149bd0f3798ee765fb91da7a45
035ce53e052ed1857defa7bd6fa05e4797ddaf88
5913 F20101108_AABYKU vivas_e_Page_004thm.jpg
d692c76d1110f8fbd6ef2d6caddf5dec
fcad0f9613231a9e9196310d442911ae4c62dcb7
95528 F20101108_AABXHS vivas_e_Page_097.jp2
f9dd388bf7e3d832efc8eba939d8aedf
22b3f396fb73fff47d9b4cff1c8f195bf3278e6e
50074 F20101108_AABXIG vivas_e_Page_111.jp2
57eecb6a27509645cb921e997b43f343
9c3622b08028a904f1653ef31537163acde652f1
28793 F20101108_AABYLJ vivas_e_Page_012.QC.jpg
6367b93a7f75d399d962bbe6a0e1434f
8f6b7db896b59934ee01028b81439117609e3c98
22456 F20101108_AABYKV vivas_e_Page_005.QC.jpg
88f63ae01c7b2a0cee21d0314b0236d2
3096de36bc2ca49321da1f303f55a0f98fc7479f
58217 F20101108_AABXHT vivas_e_Page_098.jp2
8ec84adb0f52c9469d39510174347b88
91d354f1474a830682b4283a128f8377101e674c
63442 F20101108_AABXIH vivas_e_Page_112.jp2
5ba47d7a306e6dfad1c72567091372e7
2c541fbc67effa973c7212a43a2ee6023679b425
7343 F20101108_AABYLK vivas_e_Page_012thm.jpg
b5983acfb003d2734e3b0c39f12efc00
e2c9047bd8f2af214468f383f6dd3599a4e6f520
5734 F20101108_AABYKW vivas_e_Page_005thm.jpg
60aa5260088de1d682235ed9215b892e
2bf412aaaba030740b845a0336dac706353b1450
43157 F20101108_AABXHU vivas_e_Page_099.jp2
1e16527279e8a2c73f51cfc607a65eff
25c8d3d4fdf9ff809027318f3b22cfb8c8120371
26206 F20101108_AABXII vivas_e_Page_113.jp2
a32d7d43510a2a9f4c01a65aa2a978cb
10b52e38009ef918722c897b400b0e63ee190ca6
6004 F20101108_AABYMA vivas_e_Page_020thm.jpg
24b6e9261d90f2732094beed1a79719e
6a5495bdf2a866e53443ebafc9f9df151c51e113
29729 F20101108_AABYLL vivas_e_Page_013.QC.jpg
94176e6bb5984b6966e2bf8654a1ce91
b6f5c6778062d6a73bb5955d2e62c47f0e853010
26020 F20101108_AABYKX vivas_e_Page_006.QC.jpg
057eb289a3ef603dc9275c04f7b85b9f
61547ff02d11cef12feb098e2b99662bb67ef3b3
647504 F20101108_AABXHV vivas_e_Page_100.jp2
92690ebea41ce73e2c5ae4e6f6fd634e
2420f290e182c195b4e113d552834c114b06dfc5
111488 F20101108_AABXIJ vivas_e_Page_114.jp2
f3702f1ee717b764c37306d47f961077
6ed7c52425ef27c7980dd6cf69d8d7567d376662
7729 F20101108_AABYLM vivas_e_Page_013thm.jpg
e94745732f13a46ed5172e4b6f62f92a
901bf04c530fbc62ca45ef1622743730d8eb32fd
6746 F20101108_AABYKY vivas_e_Page_006thm.jpg
0a25781edba2ecc0f90c8c31d53f135f
01424d44acdd02c31828656a3c3574af44b07078
119461 F20101108_AABXIK vivas_e_Page_115.jp2
6b04b6984911102d891f45f93b07d27a
3d6080961ad17369175a718f2afbef8b82e72014
59547 F20101108_AABXHW vivas_e_Page_101.jp2
04ff5fc69a3608eb615334227e08776e
6b2381aaa233f6ccd44966a54c969a87f9c6121b
22283 F20101108_AABYMB vivas_e_Page_021.QC.jpg
a9c5752be2c85f8f04ac097104a8e23d
f37e0094b18f02e63f59d39912fd1b90da9907b9
9336 F20101108_AABYLN vivas_e_Page_014.QC.jpg
1ad104580bd177b6178a60644fd6e687
668c93283befc7f857668f9c9c90398a3c9bfc0d
23476 F20101108_AABYKZ vivas_e_Page_007.QC.jpg
318acef237e8541dc653c7359f1d3ab4
5f7043b78ad15017afcbcfbfbb892ebcae13dfb8
110652 F20101108_AABXIL vivas_e_Page_116.jp2
d9414021d171daca7d7771f160b82b38
efb424170e3831a3624d898d42b23a00a9ae51a6
57541 F20101108_AABXHX vivas_e_Page_102.jp2
44afce6c8bb90f0f31a8bf8fa8cac8fd
dca39c34d160be25fe11ef904aa92164628fe2da
6470 F20101108_AABYMC vivas_e_Page_021thm.jpg
93f19d131e7bf1ba2a1a4b86c9712e03
2c901d7ff7a205d7755398b1ed1a530581443a62
2935 F20101108_AABYLO vivas_e_Page_014thm.jpg
57cd1fb975a2c78c46e29daa7ccb51ef
5ef31b92cbf2806f593def053f3a7d2cffd596ea
72385 F20101108_AABXJA vivas_e_Page_133.jp2
0c59ade6470f8e05b76da8a7e66f4c2a
b73275cb3cffe087be45830eba092ba992dcfb6f
113580 F20101108_AABXIM vivas_e_Page_117.jp2
5d6ab96a2972f17c92364c1c3e12b04a
55df7f72f6d6121cf93a87731b0a323fd1ae7576
58961 F20101108_AABXHY vivas_e_Page_103.jp2
733f3004a7347ce45613900d7ba4f3b3
8653face4b3ab386f3a493f4438f054a4d7700a2
24667 F20101108_AABYMD vivas_e_Page_022.QC.jpg
a13ac2d2287583ec2cb2b6cde21bc6c0
27fe4a1e67c5b422e05681eddf5265df55bb1713
21002 F20101108_AABYLP vivas_e_Page_015.QC.jpg
26cde4a2539112dfc01ff9723160eb0e
a22be6bb077f53fcfb54626da57c82c989f62060
137703 F20101108_AABXJB vivas_e_Page_134.jp2
7b8659f58230463dd09f1c29a1b1229c
9f5da28f8e0b2d0e092a5fd2bdbdb3aff4978e99
118725 F20101108_AABXIN vivas_e_Page_118.jp2
91968c1bad8d43e5d952cd076a85c1b4
c487e88b1acebab3e66635d7e9bec0bc88346c4d
472407 F20101108_AABXHZ vivas_e_Page_104.jp2
b58a16d9e915b30b602dddfb9d7cc6e4
3dffb1f63a4f06152848540ab22eb76ac2301604
6810 F20101108_AABYME vivas_e_Page_022thm.jpg
4aaeacd1eb79b6ae8564c53f0754b721
983cf0772adea66b9a124972874bd0745641f5c8
5729 F20101108_AABYLQ vivas_e_Page_015thm.jpg
63030253c90890779b38fb0c79c31436
8e346c7b616eb7145367e82f76099bec69edb4af
45954 F20101108_AABXJC vivas_e_Page_135.jp2
f3ef64cf67bcba3d01def90b8739d760
3a2d92a8ca12d09ff1bc70b3d563cc975d55a7e2
73862 F20101108_AABXIO vivas_e_Page_119.jp2
e3f31d1f8fdc200d9b7313bcca2b0272
9ef341d054f04f4226686fac3caa76473530f4dc
26148 F20101108_AABYMF vivas_e_Page_023.QC.jpg
320bc70075256feeafe31f8ae84bcff2
917702bc36adefec3bf094a953efdb0402f865be
12791 F20101108_AABYLR vivas_e_Page_016.QC.jpg
cad64b1212630dcf1d786715544b20d1
fac5fd4626f1a06824ba86637041c1e49e01c4c9
48663 F20101108_AABXJD vivas_e_Page_136.jp2
1fea09b93f1346448e51b3a2c3cbe86a
4c6ad10785ecad9cc845dd61c3791c622566d699
68598 F20101108_AABXIP vivas_e_Page_120.jp2
237350910f85b3dcdb2b0e51f7d891b9
a25c6d9bb766804df3102f2e0a65129d0ed45d70
6978 F20101108_AABYMG vivas_e_Page_023thm.jpg
94d96e0efbde113b226e815afa7aa425
76adc9cba800e49c2fb5d77d5da698550ba85e3f
3888 F20101108_AABYLS vivas_e_Page_016thm.jpg
90b47d6b8454e391b958c549a985ef01
d7614c97a7b155b5c238c807c8aafce6234b14fb
47322 F20101108_AABXJE vivas_e_Page_137.jp2
d8d8ffb703c57cb86235930bc66a0592
f54b0775894e42fcedae9941e79eed9724eaf437
83809 F20101108_AABXIQ vivas_e_Page_121.jp2
e7af7c6174f1d2a648d35a1690e625be
32b6f4815200cb70728395c3fcaddd4f22a17df6
24929 F20101108_AABYMH vivas_e_Page_024.QC.jpg
d9e86bb49c375b9263608be813ad7c7e
4102953d9ad4e838c2d76efc98c3a55268616b0c
24448 F20101108_AABYLT vivas_e_Page_017.QC.jpg
4896df3fae1541a99bc8ce7fc8023871
3d2661c972b83af98fcb7d944aec6b5f159e49f8
50681 F20101108_AABXJF vivas_e_Page_138.jp2
8e194ca88bfa15b4edede0e1c9148859
c8aabc8d3d920392815b20ebbc3343d94ab60452
48556 F20101108_AABXIR vivas_e_Page_122.jp2
134eb3f63179b7cb1fc79f89a7d951b8
70170998a24ceaf5029a69fb6481011bddea433d
6838 F20101108_AABYMI vivas_e_Page_024thm.jpg
a41272709a6c474fe70ae2a31fd572bd
ed79038b73eeaf47346397e4290940481fefa6f6
6864 F20101108_AABYLU vivas_e_Page_017thm.jpg
feea127e94c63e3368176d8ce55bdf14
5276b48e1f583f89c3c86eef39734842993fdcfe
50341 F20101108_AABXJG vivas_e_Page_139.jp2
49d330387f1bf7205ade8c0f4e2cff69
40881ace80640285047827a14b433e9f2cb1fa2c
36842 F20101108_AABXIS vivas_e_Page_123.jp2
9406efd9ac3c4ef4246a0b38dda46ca4
bd4b3210e35fedcd8c82e2e858e973ab7460d24f
26473 F20101108_AABYMJ vivas_e_Page_025.QC.jpg
c406c4aed710fe8b202d6f756d5b231b
0892b2526214f75b7812f47ffbe624221193d574
16001 F20101108_AABYLV vivas_e_Page_018.QC.jpg
7800e915648bf066fc65a5dbfca6eb66
c5e13c40549c8c1c5e335a4dd4e099d2f03640aa
110974 F20101108_AABXJH vivas_e_Page_140.jp2
15e231240693a8f1a8489a7ea442e5b7
f5a2473be71635557234e1693c19efc7bfefd55d
52779 F20101108_AABXIT vivas_e_Page_124.jp2
c66f7b930256df747d55c7d4dfbd001b
676a0d0b460412046208cbdea4953dd827f6f150
7069 F20101108_AABYMK vivas_e_Page_025thm.jpg
b5fa9f6f846b82e5d140e711675ff234
ce3b2a83c70f8523212e2893d55be3ea348d7bc5
4470 F20101108_AABYLW vivas_e_Page_018thm.jpg
0437ec0c82a58ec1770a18b5a35acc9e
ca1a07393b472ab80734759afc6e78f9ab3f104d
49906 F20101108_AABXJI vivas_e_Page_142.jp2
fd2a570fd04854c78d7d06155d242bc5
e833ea1b15297a269fc6b005e566295b53077bb7
103214 F20101108_AABXIU vivas_e_Page_126.jp2
b6f04bb2128c1e3be863eca33d202f31
c803c890baff608a672f0e3f00568ce971de6ff3
25202 F20101108_AABYNA vivas_e_Page_034.QC.jpg
fef7a006b86d6c21511dd6c6d9b24840
f3e0af1aba95a99396fca1a71551655013cb9995
25127 F20101108_AABYML vivas_e_Page_026.QC.jpg
cea5b7bc40d634d050c15c3a92f85a57
7dd767170fce879dc32c8f4119442f1acca34d61
23893 F20101108_AABYLX vivas_e_Page_019.QC.jpg
296349a51def34ea553ba579704271e9
057d7c8b674376282182fa2b0031c98cc349faac
1051958 F20101108_AABXJJ vivas_e_Page_143.jp2
27ee930bac93c5addc4f708dd980f599
ff9100098c52a6ea8f6a4194442014c6fe93f3a7
117644 F20101108_AABXIV vivas_e_Page_127.jp2
98696fc6977a9ea98b17a0cfc28ec743
3a57b0cc3b7c17af39367c6001611bb79d6b9eb5
6846 F20101108_AABYNB vivas_e_Page_034thm.jpg
e15a0a2d05a9fd67ff9f89b711614074
7f94e1fc2b404ad6a0e8fce68385cc84461d2e54
6847 F20101108_AABYMM vivas_e_Page_026thm.jpg
f839c426d5809f245161997251f3e290
bbb8ba27ee6241a0c6b4ee1ef7c9274e9d7fc643
6655 F20101108_AABYLY vivas_e_Page_019thm.jpg
8e233576c1a806e72d3674346d23e36c
a43c06c2b96048c606036ad07b989c4ea53a0ee7
95781 F20101108_AABXJK vivas_e_Page_144.jp2
fd677c20fb5839a700064b3fec1b8d52
de0da960f790dd9e0053bdc5a20640097c713dc6
119829 F20101108_AABXIW vivas_e_Page_129.jp2
e8a19ba32d6b0e05f859b1329541f618
ea33b9cae6a30a2dc9f6aa62d5f38bf4a1205e07
25640 F20101108_AABYMN vivas_e_Page_027.QC.jpg
ad9b4562af2dacd27e60f4f7a173e9b0
48f09c1ced022f540ae592972e082f4efffaf951
21398 F20101108_AABYLZ vivas_e_Page_020.QC.jpg
04ff9d4b2c8fc213022d34ad7feb687c
57d043f4617c861568b8f83d76d64293af8e1225
79184 F20101108_AABXJL vivas_e_Page_145.jp2
efb31272b03fa66233018fa9186c7772
804f468f8c48407e05904bbcbcc7a8dfb3ee9fa1
53464 F20101108_AABXIX vivas_e_Page_130.jp2
ab3e02cae69c0209101a4f3133d801e3
4db440046b3d5ee46da0bd166bfd37bdd99da817
23106 F20101108_AABYNC vivas_e_Page_035.QC.jpg
ad4c1a042880901cff034445d4b2d33b
13dfb984393897030f897cfcc50b40f0a8418daa
22175 F20101108_AABYMO vivas_e_Page_028.QC.jpg
61a82981ec2e8b6763e8aca1893919a4
6acc5bd11cfd726346494d8bc6d4075bc94be471
78891 F20101108_AABXJM vivas_e_Page_146.jp2
2f717a9660eb9f791fcbf42f4eaae8b6
7f6615e775fdab988d87c27e612a844ea32493f8
70786 F20101108_AABXIY vivas_e_Page_131.jp2
3ad64c6ce441ba7c0c4995e62e3c8613
510ca2e9bb9ce231d5abaf33ddbc56ad0925d7a0
70821 F20101108_AABXKA vivas_e_Page_160.jp2
9087dea90e333d8e28a923243540f5dd
da34ff23c1d7a0d4bb221b4a5fa5123638476af2
6305 F20101108_AABYND vivas_e_Page_035thm.jpg
7b76357c2ba611f8f9cce5c8b404ada3
9c667bf81cf195f02ed146daf61e791aacd51ab6
6402 F20101108_AABYMP vivas_e_Page_028thm.jpg
30f1b8b9e9f74a816406fa544a487f4e
ac7ab3a3e59c9f90898d0ceaa01ef689ca3f9ac8
33863 F20101108_AABXJN vivas_e_Page_147.jp2
ae78492903820b945c7594fa3a5b894b
60cfc581d730737cc32346abcd00377742afee8b
119591 F20101108_AABXIZ vivas_e_Page_132.jp2
1c5444849f5821a03f6476a434255034
b48bcb62ffcfb4441c8985ffdc1b19362d1aa7a2
69758 F20101108_AABXKB vivas_e_Page_161.jp2
5a7f76448ca3ac42c739014d17e94795
007ba113bb1e189584f968f0cb107871f91dbd5d
19516 F20101108_AABYNE vivas_e_Page_036.QC.jpg
f308f2b0d7e10ac1c9f4d5c94eae8dfc
4b6056d564d44d616e6b041aa4bd30af49a5bdf4
25699 F20101108_AABYMQ vivas_e_Page_029.QC.jpg
a05624a6730d1063c26c77c946322d76
ab1b539e6a6407a32a468255a7d891dd94734f67
68721 F20101108_AABXJO vivas_e_Page_148.jp2
78de90129b909f370e79ca89dc9311c4
b8f8837344551a1323f67100d709c9486eeeee94
38563 F20101108_AABXKC vivas_e_Page_162.jp2
afa81d43bcf835dfaa1a21f8827f9463
ecd9d5ad26048c2ac1aab72542de1d7c6fc24003
5647 F20101108_AABYNF vivas_e_Page_036thm.jpg
16bbae5383ae5b19593f34ee0fc49051
fa028adbcb4b3c4e18adce303ae4bb7f48f63a8a
6970 F20101108_AABYMR vivas_e_Page_029thm.jpg
d00b116296e781dd741b80193bd0fd38
833fd5326d6d8c150a2948688c2f0ef7660c2702
103639 F20101108_AABXJP vivas_e_Page_149.jp2
4e64f69e87b06e6054f63cd6de4c4aaa
8098e61077dc8b2aeadc0a01e995f274b25c87ec
111634 F20101108_AABXKD vivas_e_Page_163.jp2
032b04a2133f1d9d6483e10420ae9efb
8f51ccd9bae3588ab3b6a1e3bf74007ec7390663
10958 F20101108_AABYNG vivas_e_Page_037.QC.jpg
4ddb8b5083f887fc7d1e993675a9a956
63d2d1173d6072f5a9be52182d2133acf9192e9c
25128 F20101108_AABYMS vivas_e_Page_030.QC.jpg
953b67f246b13c3b8fc1df5da4b36274
3b26889b15e13db170d9952be048379a9ad5553c
94638 F20101108_AABXJQ vivas_e_Page_150.jp2
9ef7223e680ecc4cb0f933372d06dfdb
0590e6c040d2c34e1ecd803438ad6f1a9888197c
97256 F20101108_AABXKE vivas_e_Page_164.jp2
23db570124f07523df2f478cc0322cf1
70bfe2f4768ecc78fcadd4ab0790d831b5f2979d
F20101108_AABYNH vivas_e_Page_037thm.jpg
7f0bf363dc8cda524cf2582393c5f4ef
c373d0ddd26292eb6ec29bdce89975c217b532fa
6713 F20101108_AABYMT vivas_e_Page_030thm.jpg
6f33526aec5639c65009b52c9a96ea35
48f889091572a93f95e767f694c62d2361479ee7
95552 F20101108_AABXJR vivas_e_Page_151.jp2
59059c6e8f30a9e5e0667e38424ab194
5930753ea0403bb711e9e88502fa9b9a1df878cf
107954 F20101108_AABXKF vivas_e_Page_165.jp2
54324cc6a02bc03cc6bb69e532124269
e800b01cdecfd842d5666ec06dfa1ac489b64553
10487 F20101108_AABYNI vivas_e_Page_038.QC.jpg
6a4f9cb26e836a0ffab045ac9f5de206
85282778d7a19053948a05b58a9a43f4104d6600
23741 F20101108_AABYMU vivas_e_Page_031.QC.jpg
31629ae06d3c15c135822543611bb160
e617a3c033880a75ee66f63fe416303c4dabe377
20822 F20101108_AABXJS vivas_e_Page_152.jp2
c20eaadb3e2610df38a45eaeebecf420
70e79bd7ee3436564e32660e9ca2240111c13e46
21765 F20101108_AABXKG vivas_e_Page_166.jp2
07bf448e672a03dcbb811b060a89e4b2
3b9788407ed309014bd7b048874e0c0ad34cee2b
3451 F20101108_AABYNJ vivas_e_Page_038thm.jpg
d348bf2a6befa20646dab2f06b3e12e8
2bc61568197d0cc4499b00b97e5c9f24f758c8e2
6697 F20101108_AABYMV vivas_e_Page_031thm.jpg
e7e9879a2300823be5cbaf9d043000da
5f0aa54889894f7a68848b5fa3f1d53c4643f9ca
74204 F20101108_AABXJT vivas_e_Page_153.jp2
7bd797bf3f49d5ff019e20f6e0ac4629
b63f7f29012ed34434ff0c72ee74001b6680e73c
75415 F20101108_AABXKH vivas_e_Page_167.jp2
fd86adb5b7919421598b2a46abd00095
4c11b47a0b58ea82a88de887f30b889315e577ea
10555 F20101108_AABYNK vivas_e_Page_039.QC.jpg
6b757c5fd0998043341f6848884a46f4
72d9af9813762551bc3d070f5701b5308778428d
22111 F20101108_AABYMW vivas_e_Page_032.QC.jpg
ec427a15fd54d20dd5609a620a6e771e
1a139639a8659c8c4ee6c6430e4bdb07f51c5f5e
71007 F20101108_AABXJU vivas_e_Page_154.jp2
1e432f57ab19787d9f5f37d2715c6c83
11d51ca38a51e9ae8edb9df4119fbff33a1b01b1
72021 F20101108_AABXKI vivas_e_Page_168.jp2
78b06301e05db6457c057707341939e8
b4cce37a20a8b927252dff678d77010e979887ba
18979 F20101108_AABYOA vivas_e_Page_047.QC.jpg
13f3ef1a0bbbde7c1dc017d27d457278
dcb600430ad1480811954e09770e9316585fe2ba
3149 F20101108_AABYNL vivas_e_Page_039thm.jpg
b4ef23f3ae019a5a45e022655048bc95
9c2b1977ffdea50a2e33194870e959235e67fc65
6163 F20101108_AABYMX vivas_e_Page_032thm.jpg
84006658899c2a50cbb03a1907967a27
f4831a78554120ec5d5ca81c83f076b4b650401b
71239 F20101108_AABXJV vivas_e_Page_155.jp2
ea64adc10d2ff9cc94163638e2675cd1
7fdf926ce299ec23305f89af96335ff784721b26
72366 F20101108_AABXKJ vivas_e_Page_169.jp2
085db87bcbe02d88a69b6d50fb5f629a
8f9dd6b2c7c8fd5acd94d603f834ce14acb0a5da
5615 F20101108_AABYOB vivas_e_Page_047thm.jpg
45c1a29ad507c72ce111a358275ad9a0
baea4ac42b6057f33d0d30f6381b51b8ff2c69b3
15858 F20101108_AABYNM vivas_e_Page_040.QC.jpg
b28cd22a87952a53a47236af67bd60b7
76305332a780f147e55334eadc7dfca85fc80e07
25871 F20101108_AABYMY vivas_e_Page_033.QC.jpg
b6bac3c55ebe2f5d2df24469382b0b51
e767eb51159e766e339a1dbc0fa9e38084827a3b
71018 F20101108_AABXJW vivas_e_Page_156.jp2
af487995843ab638f397b5516d2c968b
8c9acb178ba30a8e2c0805bc696d45f178f7e406
71206 F20101108_AABXKK vivas_e_Page_170.jp2
0ff3c6bbc955cee05a123ff9f5b9453b
226603b91fde5a4c584886fa3190b161d7712eda
16821 F20101108_AABYOC vivas_e_Page_048.QC.jpg
1453c0e2945818c49ce3fe71c571163a
caa1e987dfb7bf645bbb2529302631208f7cb8f5
4717 F20101108_AABYNN vivas_e_Page_040thm.jpg
9c9c1aef5662bf2d77850635681878a7
4b4de8118c05df91ca933040ae65d59941817950
7181 F20101108_AABYMZ vivas_e_Page_033thm.jpg
7f7cb94ea01ee8fe23b9dacd7bfe67cb
d46f04d0dedb25ed0656bc221678cef17b77a514
70345 F20101108_AABXJX vivas_e_Page_157.jp2
cd94cf1f105ac38bcdd6f6aec5a1d491
58cfe24cce401ed2fea250809c3cf37cf020fc3c
149155 F20101108_AABXLA vivas_e_Page_186.jp2
0781ffab1abd3809018ad5cce7e5ba5f
a008d07d185196573b19762706db612d4a9b3078
71270 F20101108_AABXKL vivas_e_Page_171.jp2
b5b28a3577b42181f01218f336fe104a
02504f554c4d036836c6271e47919bafb6318a02
11304 F20101108_AABYNO vivas_e_Page_041.QC.jpg
8da67f95343500671c9049cb290ab5eb
1b3041b5d10f2d2d10de4f990986c23770922bf2
71856 F20101108_AABXJY vivas_e_Page_158.jp2
0d4c77a28888cfb9b256e84743299d4e
1e099fd765755ae8efe20e6fab9e622e763a18fb
73459 F20101108_AABXKM vivas_e_Page_172.jp2
b171c716f7170b2b20c6886f8d55dce6
06c28b11b5f0aa214be45b8e1aabae65b8f9e870
5272 F20101108_AABYOD vivas_e_Page_048thm.jpg
7a08492fc4762a9e09f0074aca0d1457
4204a0d6a598f463b402c15d4f4ae33fcf1992b0
3648 F20101108_AABYNP vivas_e_Page_041thm.jpg
d9295306fe9926273b14678871c47bb2
34102825968590a4900ca2c6c0f78e4e2c134f52
72973 F20101108_AABXJZ vivas_e_Page_159.jp2
c71ca05d4e9928e242db9c296dfbe41b
a72285cd21de768e61507117325d32e1946c94bf
154563 F20101108_AABXLB vivas_e_Page_187.jp2
1ff89bc5b5eb45b3e18b959fcf41d00d
d5961921b436a9c375c42808ce39999595834ef2
73429 F20101108_AABXKN vivas_e_Page_173.jp2
601892ce8e5ac580cd4f0bcf582a6d59
ad025990902e57792189e4822aba88a0a839357d
18167 F20101108_AABYOE vivas_e_Page_049.QC.jpg
78da6e744f31b14fc93b7a6f132eabdb
e05c624a68a130945dd72b279edfec5815fb80b9
22881 F20101108_AABYNQ vivas_e_Page_042.QC.jpg
4834218e2e64468f0adfc0c2c3cb4cff
8150db5ac194c48b4f2dd0cb3a60591dc39a6ec6
156154 F20101108_AABXLC vivas_e_Page_188.jp2
d6fbfb3c88624c15736ab7adb6d8204c
1cff8bbc1c700c0cbd61d006c8ad8fa358a2e59b
72715 F20101108_AABXKO vivas_e_Page_174.jp2
e92bff6152f48e8e52b79f2f85e57ed9
0d5b30bc4c0918750572f70742f01eadb04bcfa2
5406 F20101108_AABYOF vivas_e_Page_049thm.jpg
eb9375dfcf45cf0b3587c66a7e4e2748
ef3ba91f3e6e56479bd2e1b6073fbeacf3044563
6304 F20101108_AABYNR vivas_e_Page_042thm.jpg
c05099a46ff46b8928830b69e4669b88
bf188f696e762d68b6b2ffe0baec2503e3bb8c1b
141378 F20101108_AABXLD vivas_e_Page_189.jp2
5c4c8bf8abba606105ee3e5305b523c5
3f1c1ada356159ebcd113b4db1e1dc8412f5591c
72610 F20101108_AABXKP vivas_e_Page_175.jp2
e1fb0b0542e12d188db594dc634b20e0
e4858ba63512e5bfe09a3a0533c26784dd7e439f
22275 F20101108_AABYOG vivas_e_Page_050.QC.jpg
e4a3bc139f599b3d446fd2551ff89f85
63b813afe4f6dda81e53f7ba6c0983d6434a88c3
25511 F20101108_AABYNS vivas_e_Page_043.QC.jpg
890169cff3e2db70ffdd5d1d6863516e
566a2e742aa74fdc0b872a3873e19c90c701ffaf
150009 F20101108_AABXLE vivas_e_Page_190.jp2
c87824d7db60b6bfc959c740056b9031
1f13559ba6c4832de84db4e37b3ce8dfb89a6a9a
39659 F20101108_AABXKQ vivas_e_Page_176.jp2
2b9608a95c96cb504cd1fd07342ceec9
89acbdf0b843266dea9234c97ca17683de3ce39a
6245 F20101108_AABYOH vivas_e_Page_050thm.jpg
8f5de7501556aa1a6f7a7c0040255e20
9fd3846b9eac962b81007c7f20675fe70f5ca4db
6995 F20101108_AABYNT vivas_e_Page_043thm.jpg
efe2c89b9d66be1a54b415998e0c9c96
11dcc903c1f8bdbe0899f6286955069700d0e99c
157603 F20101108_AABXLF vivas_e_Page_191.jp2
24133b2aae6c97f224b1db12376a6b08
782cb28680c8586e21fab8dc24adea6f59a356b0
63561 F20101108_AABXKR vivas_e_Page_177.jp2
db6973128b7a107c609006c5a4255ce5
c71c2025158f4fa9d98ecba1a6dd426bbd78f1fa
13962 F20101108_AABYOI vivas_e_Page_051.QC.jpg
8bbbf68b2d5d7b3cafeaddd7407132af
d44a9da8f4f926adb2ceba78770c4db351dad71c
24918 F20101108_AABYNU vivas_e_Page_044.QC.jpg
fa98caf842fe6424d762b0124aa697bc
0b55436ef20d7e86ad7154aadabd7d0b2e431a2c
156633 F20101108_AABXLG vivas_e_Page_192.jp2
80c9828ae313d91e1acfed5240c56450
3514f0b15893f4014de93bef3c1e83d7305e63a2
133086 F20101108_AABXKS vivas_e_Page_178.jp2
29568cbc21a30fc079851f8a028dbd40
d3f19c97f0e5a83fb909329a0106ac827ec5a179
4097 F20101108_AABYOJ vivas_e_Page_051thm.jpg
d0069aafdf1a0d058d34b2d29cf14e77
c2b1447f43ea148dd38fdfb8a31e4895afe2c450
6612 F20101108_AABYNV vivas_e_Page_044thm.jpg
a8a570750b2da1b48401fa1fb906c269
f01648641d1b2f8b95d0d6b49f925bf8e3fbd929
102562 F20101108_AABXLH vivas_e_Page_193.jp2
58b177954ce2cdd96630e9e4641d33ec
a238ae0f7e5f4b8cbc1a6c62c54902a39c562c0d
133766 F20101108_AABXKT vivas_e_Page_179.jp2
7e6bcfc99924f6147dea28a823e2d786
7b9fa9c88812f482348ed2f79ac51a05b8e31476
11266 F20101108_AABYOK vivas_e_Page_052.QC.jpg
9d9184c6d3bdbb5ef3d611d413fe32f5
c8663e8911fcbfbcadbcfd95c395df8d723176b6
24720 F20101108_AABYNW vivas_e_Page_045.QC.jpg
ad6e242013a78335938140ada5f141cd
c0bbaac56d6f064097d27902fdf71a74ea9a8ed6
73716 F20101108_AABXLI vivas_e_Page_194.jp2
46685d565c4983f5e62b2ef12039b8c2
718798a5d231459ca474d5d9f455e62e9b64100f
49165 F20101108_AABXKU vivas_e_Page_180.jp2
6b3b50c16d250145baeba0568e35365c
86a389a8250ba2906258e13a8802584d7f17d4d0
14557 F20101108_AABYPA vivas_e_Page_060.QC.jpg
647e3b704b2c40b17e850c98df253564
c0de53f120c31dfeca0e8714f2aafe378ed0dd82
3704 F20101108_AABYOL vivas_e_Page_052thm.jpg
598db48b2fff7e7e1fa4dc7c34ee7e65
d07138d7835934d76b0dd8d88b02d6a0e5ed396f
6963 F20101108_AABYNX vivas_e_Page_045thm.jpg
e52ebd8c71a3e1347b744faa1f4d8a53
be475303319849f02fa37a55a97d740343241672
73452 F20101108_AABXLJ vivas_e_Page_195.jp2
ea74e6aa1ebd4182559076e88cc09557
617d2f9293584a573b4c6ed5c2ad6f11b32ff50e
72735 F20101108_AABXKV vivas_e_Page_181.jp2
3b8f44868172e57d9b456aa106dc4712
5df5d6401d93a2f4fddf9565ba30a5ec7960a779
4560 F20101108_AABYPB vivas_e_Page_060thm.jpg
ec26786a755988d801b7bb99dbfd8294
ae3bdb9093ee9525bf623796f486df5c92536206
15537 F20101108_AABYOM vivas_e_Page_053.QC.jpg
b59371438108334df2addce0349786fa
585119e8c334c32c6f55d7d2237134f314cf4669
13803 F20101108_AABYNY vivas_e_Page_046.QC.jpg
c5881925f6985e83a68f095bc347eefd
014e165423f90471bfc4078eac1ac1384c48905e
83982 F20101108_AABXLK vivas_e_Page_196.jp2
8ed914016b1b04c323ae1f9eb9bf3bdc
1877c88a83f558526f11903c08fa551442ae6741
69035 F20101108_AABXKW vivas_e_Page_182.jp2
d168c2f6f8fab3039e7b275cfdce86bf
a84296e1ffa625ffee20f25d85c991a8c0762764







ALLOWABLE LIMITS FOR CONDUCTIVITY TEST METHODS AND DIFFUSION
COEFFICIENT PREDICTION OF CONCRETE STRUCTURES EXPOSED TO MARINE
ENVIRONMENTS





















By

ENRIQUE A. VIVAS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007


































O 2007 Enrique A. Vivas





























To my loving family, my mother Carmen Yolanda, my father Pedro Alexander and my brother
Pedro Luis, as they have offered their unyielding love and support, and last but not least, to
Johanna "Ponchis"









ACKNOWLEDGMENTS

I thank the Florida Department of Transportation for providing the funding for this

research proj ect. This proj ect was a collaborative effort among the University of Florida, and the

FDOT State Materials Office Research Laboratory (Gainesville).

I would like to thank my committee chair and advisor, Dr. Trey Hamilton, for his guidance

and support. It was truly an honor to work under his guidance. Special thanks go to Mario

Paredes, FDOT State Materials Corrosion Office, for his supervision and technical support

during the course of the proj ect. I cannot thank him enough for all of his help. Moreover, I would

like to thank the FDOT State Materials Office Research Laboratory personnel for their help on

constructing the specimens and conducting materials testing, especially Charlotte Kasper, Phillip

Armand and Sandra Bober whose help was critical to the completion of this proj ect. The

assistance of Elizabeth (Beth) Tuller, Robert (Mitch) Langley and Richard DeLorenzo is

gratefully acknowledged. My sincere gratitude goes to Dennis Baldi and Luke Mcleod who

assisted in the field investigations of the project. Moreover, the assistance of staff from FDOT

Districts (D2, D3, D4, D5 and D7) for their assistance in the field investigations; especially

Bobby Ivery, Steve Hunt, Wilky Jordan, Ken Gordon, Donald Vanwhervin, Daniel Haldi and

Keith West. I would like to thank CEMEX, BORAL Materials Technologies Inc., W.R. Grace &

Co., Burgess Pigment Co., Lafarge, RINKER Materials Corp., S. Eastern Prestress Concrete Inc.,

Gate Concrete Products and COUCH Concrete for their contributions to this research.












TABLE OF CONTENTS


page

ACKNOWLEDGMENT S .............. ...............4.....


LI ST OF T ABLE S ................. ...............7................


LIST OF FIGURES .............. ...............10....


AB S TRAC T ............._. .......... ..............._ 15...


CHAPTER


1 INTRODUCTION ................. ...............17.......... ......


2 LITERATURE REVIEW ................. ...............19................


Mechanism of Chloride lon Transport .............. .....................19
Diffusion of Chloride Ions ................. ....... ....... ...............20.....
Test Methods to Predict Permeability of the Concrete ............... .......... ......... ................ ..21
Resistance of Concrete to Chloride lon Penetration (AASHTO T259) ..........................22
Bulk Diffusion Test (Nordtest NT BUILD 443) ................... ............ ............2
Rapid Chloride Permeability Test (AASHTO T277, ASTM C1202) .............................25
Surface Resistivity Test Using the Four-Point Wenner Probe (FM 5-578) ....................27
Time Dependent Diffusion in Concrete ................. ... ......... .......... ..... ........... 3
Effective Diffusion Coefficients of Concrete Structures Exposed to Marine
Environm ents .............. ...............33....


3 CONCRETE MIXTURE DESIGNS AND FIELD CORE SAMPLING ............... .... ...........42


Concrete M ixtures .................. ...............42..
Laboratory Concrete Mixtures .............. ...............42....
Field Concrete Mixtures ............ ......_.._ ...............43....
Field Core Sampling .............._ ....... ...............44.....
Brid ge Selection .............. ...............45....
Coring Procedures .............. ...............45....

4 TE ST PROCEDURE S .............._ ....... ...............66.....


Laboratory and Field Concrete Sample Matrix .............. ...............66....
Chloride lon Content Analysis .............. ...............66....
Diffusion Test .............._ ....... ...............66.....
Bulk Diffusion Test ..........._.._ ....... ...............66.....
Electrical Conductivity Tests ..........._.................._ ...............67....
Rapid Chloride Permeability Test (RCP) ................ ...............67........... ...
Surface Resistivity Test ................... ....... ... .. ...............69.....
Bridge Core Sample Chloride lon Content Analysis............... ...............69











5 RE SULT S AND DI SCU SSION ............... ...............7


Fresh Properties .............. ...............77....
Mechanical Properties .............. .... .. ...............7
Long-Term Chloride Penetration Procedures............... ...............7
Comparison of Conductivity and Long-Term Diffusion Tests............... ...............81.
Rapid Chloride Permeability Test (RCP) ....._ ................ ............... 81.....
Surface Resistivity .................. ....... ...... ...............82......
Relating Electrical Tests and Bulk Diffusion ....................... ... .. .......................8
Refinement of the Long-Term Diffusion Coefficient Prediction Using Monte Carlo
Sim ulation .............. ...............87....

6 FIELD CORE SAMPLING................ ...............11


Diffusion Coefficients of Cored Samples............... .. .. ................ 114
Correlation of Long-Term Field Data to Laboratory Test Procedures ................ ...............1 15

7 RECOMMENDED APPROACH FOr DETERMINING LIMITS OF CONDUCTIVITY
TEST S............... ...............125.

RCP and Bulk Diffusion ................. ...............125...............
SR and Bulk Diffusion ................. ...............128...............

8 SUMMARY AND CONCLUSIONS ................ ...............140...............

APPENDIX

A CONCRETE MIXTURE LABELING SYSTEM CONVERSION .............. ...................142

B CONCRETE COMPRESSIVE STRENGTHS ................. ...............143...............


C LABORATORY LONG-TERM CHLORIDE PENETRATION TEST (BULK
DIFFUSION) DATA AND ANALYSIS RESULTS .............. ...............148....

D FIELD CORE SAMPLING DATA AND ANALYSIS RESULTS............__.. ...............1 77

E SHORT-TERM ELECTRICAL TEST DATA RESULTS .............. ....................18

F REGRESSION FIT OF CONDUCTIVITY AND LONG-TERM DIFFUSION TESTS ....193

G COMPARISON OF CONDUCTIVITY AND LONG-TERM LABORATORY
DIF FU SION TE STS ............... ............... 196

H ANALYSIS OF DATA OBTAINED FROM OTHER PROJECTS ................. ...............206

LIST OF REFERENCES .........._._ .. ....._. ...............210....

BIOGRAPHICAL SKETCH .............. ...............216....











LIST OF TABLES


Table page

2-1 Comparison of RCP Results with Ponding Tests (AASHTO T277, ASTM C1202) ........36

2-2 Measured Electrical Resistivities of Typical Aggregates used for Concrete.....................36

2-3 Apparent Surface Resistivity using a Four-point Wenner Probe ................. ................. 36

2-4 Several Curve Fitting Constants m that Describes the Rate of Change of the
Diffusion Coefficient with Time for Various Concrete Mix Designs .............. ................37

3-1 Laboratory Mixtures Material Sources. ............. ...............47.....

3-2 Laboratory Mixture Designs. .............. ...............47....

3-3 Standard Method for Casting and Vibrating Concrete Cylinders (AASHTO T23)...........48

3-4 Specified Compressive Strength of FDOT Concrete Classes ................. ............... .....49

3-5 Field Mixture Designs............... ...............49

3-6 Field Mixture Material Sources. ............. ...............50.....

3-7 Locations of Field Mixtures. ........... ........... ...............51....

3-8 FDOT Cored Bridge Structures for the Investigation ................. ......... ................52

3-9 FDOT Cored Bridge Element Mixture Designs. ............. ...............53.....

3-10 FDOT Cored Bridge Element Mixture Material Sources. ................... ............... 5

3-11 28-Day RCP Test Data from Concrete Mixture Designs of the Cored Samples. ..............56

3-12 Summary of Cores Extracted and Associated Properties. ............. .....................5

4-1 Concrete Permeability Research Sample Matrix for Laboratory Mixtures. ......................71

4-2 Bridge Core Samples Profiling Scheme. ............. ...............71.....

5-1 Fresh Concrete Properties. .............. ...............90....

5-2 1-Year Bulk Diffusion Coefficients ................. ...............91...............

5-3 1-Year Bulk Diffusion Surface Concentration. ................ ...............92........... ..

5-4 3 -Year Bulk Diffusion Coefficients ................. ...............93...............










5-5 3-Year Bulk Diffusion Surface Concentration. ............. ...............94.....

5-6 Bulk Diffusion Ratio of Change from 3 -Years to 1-Year of Exposure. ................... .........95

5-7 Pozzolans and Corrosion Inhibitor Effects on Bulk Diffusion Coefficients ................... ...95

5-8 Correlation Coefficients (R2) Of RCP to Reference Tests. ....___ ............. ..... ..........96

5-9 Correlation Coefficients (R2) Of Surface Resistivity to Reference Tests...........................96

5-10 1 and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs). .........96

5-11 Correlation Coefficients (R2) Of RCP and Surface Resistivity to Reference Tests by
Monte Carlo Simulation Analysis ................. ...............97................

5-12 1 and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs) by
Monte Carlo Simulation Analysis ................. ...............97................

6-1 Calculated Diffusion Parameters of Cored Samples ................. ...........................120

6-2 Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal
Zones ................. ...............121................

6-3 Laboratory Bulk Diffusion Coefficients for Comparable Mixtures with an Expected
Low Chloride Permeability Design. ............. ...............121....

7-1 Allowable RCP Values for a 28-Day Test for Concrete Elements Under Extremely
Aggressive Environments (Very Low Chloride Permeability) and Associated
Confidence Levels. ............. ...............131....

7-2 28-Day RCP Pass Rates of Several Concrete Samples by FDOT Standard
Specifications (FDOT 346 2004)............... ...............131.

7-3 Allowable RCP Values for a 28-Day Test with a 90% Confidence Levels for
Concrete Elements with Different Chloride Permeability. ............... ....................3

7-4 Allowable RCP Values for a 28-Day Test with a 95% Confidence Levels for
Concrete Elements with Different Chloride Permeability. ............... ....................3

7-5 Allowable RCP Values for a 28-Day Test with a 99% Confidence Levels for
Concrete Elements with Different Chloride Permeability. ............... ....................3

7-6 Allowable Surface Resistivity Values for a 28-Day Test for Concrete Elements
Under Extremely Aggressive Environments. ............. ...............133....

7-7 28-Day Surface Resistivity Pass Rates of Several Concrete Samples by FDOT
Standard Specifications (FDOT 346 2004)............... ...............133.










7-8 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 90%
Confidence Levels for Concrete Elements with Different Chloride Permeability. .........134

7-9 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 95%
Confidence Levels for Concrete Elements with Different Chloride Permeability. .........134

7-10 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 99%
Confidence Levels for Concrete Elements with Different Chloride Permeability. .........134

A-1 Appendix Concrete Mixture Labeling System Conversion ........_._.......... ......... ......142

B-1 Concrete Compressive Strength Data Results .............. ...............143....

C-1 Initial Chloride Background Level of Concrete Mixtures. ............. ......................148

C-2 1-Year Bulk Diffusion Chloride Profie Testing Results ................. .......__ ..........149

C-3 3 -Year Bulk Diffusion Chloride Profie Testing Results ................. .......................163

D-1 Initial Chloride Background Level of Cored Samples ................. .........................177

D-2 Chloride Profie Testing Results of Cored Samples. ............. ...... ............... 178

E-1 RCP Coulombs Testing Results ................. ...............184........... ...

E-2 SR (Lime Cured) Testing Results. ............_. ...._.. ...._... ..........8

E-3 SR (Moist Cured) Testing Results. ............. ...............189....

H-1 HRP Proj ect Concrete Mixture Designs. ...._._._.. ... ..._.... ....__._ .........20

H1-2 Initial Chloride Background Levels from HRP Proj ect ........._..... ....___.. .............206

H1-3 1-Year Bulk Diffusion Chloride Profie Testing from HRP Proj ect. ........._..... .............206

H-4 St. George Island Bridge Pile Testing Proj ect Chloride Profile Testing of Gored
Samples ................. ...............208................










LIST OF FIGURES


Figure page

2-1 Fick' s Second Law of Diffusion Regression Analysis Example. ........._._._........._.......3 8

2-2 Ninety-day Salt Ponding Test Setup (AASHTO T259) ................. .........................38

2-3 Bulk Diffusion Test Setup (NordTest NTBuild 443). ............. ...............39.....

2-4 Rapid Chloride Permeability Test Setup (AASHTO T277, ASTM C1202). ....................39

2-5 Four-point Wenner Probe Test Setup. ............. ...............40.....

2-6 Time-Dependent Diffusion Coefficients for Concrete having Various
Water/Cementitious and Contents of High Reactivity Metakaolin ................. ................40

2-7 Different Times t for Calculating the Curve Fitting Constant that Describes the Rate
of Change of the Diffusion ................. ........__... ....__. ...._... ....._. .....41

2-8 Diffusion Regression Analysis Example of a Bridge Cored Sample. ............. ................41

3-1 Air Curing of Cast Concrete Specimens. ........._.._.. ................._ ..........5

3-2 Casting of Field Mixture Specimens. ........._.._... ........__. ...._... ....._. ........58

3-3 Field Samples Curing during transport to Laboratory. ................... ...............5

3-4 FDOT District Map with Field Mixture Locations. ...._.._................. ........._.._.. ..59

3-5 Hurricane Pass Bridge (HPB) General Span View. ....._____ ............ ............._..59

3-6 Hurricane Pass Bridge (HPB) Sub structure Elements. ................... ...............6

3-7 Broadway Replacement East Bound Bridge (BRB) General Span View. ................... ......60

3-8 Broadway Replacement East Bound Bridge (BRB) Substructure Elements. ....................60

3-9 Seabreeze West Bound Bridge (SWB) General Span View. .............. ....................6

3-10 Seabreeze West Bound Bridge (SWB) Sub structure Elements. ............. ....................61

3-11 Granada Bridge (GRB) General Span View. .............. ...............61....

3-12 Granada Bridge (GRB) Sub structure Elements ................ ...............62........... ..

3-13 Turkey Creek Bridge (TCB) General Span View ................. ...............62..............

3-14 Turkey Creek Bridge (TCB) Sub structure Elements. .................... ..............6











3-15 New Roosevelt (NRB) General Span View ................. ...............63........... ..

3-16 New Roosevelt (NRB) Sub structure Elements. .............. ...............63....

3-17 Cored Element Location Defined by the Water Tide Region between High Tine Line
(HTL) and the Organic Tide Line (OTL) .............. ...............63....

3-18 Brid ge Coring Process .............. ...............64....

3-19 Obtaining Cored Sample............... ...............64.

3-20 Repairing Structural Cored Member............... ...............65.

4-1 Cutting Bulk Diffusion Samples into Two Halves. ............. ...............72.....

4-2 Bulk Diffusion Saline Solution Exposure ................. ...............72........... ..

4-3 RCP test top surface removal of the sample preparation procedure. .............. .... ........._...73

4-4 RCP Sample Preparation............... ..............7

4-5 RCP Sample Sealed with Epoxy ................. ...............74.____ ....

4-6 RCP Sample Preconditioning Procedure .............. ...............74....

4-7 RCP Test Set-Up............... ...............75.

4-8 Surface Resistivity Measurements. .............. ...............75....

4-9 Profile Grinding Using a Milling Machine ...._ ......_____ .......___ ..........7

5-1 Comparative Compressive Strength Development of Laboratory Control Mixture and
Laboratory M ixtures .............. ...............98....

5-2 Comparative Compressive Strength Development of Laboratory Control Mixture and
Field M ixtures ........... __..... ._ ...............99....

5-3 1-Year Bulk Diffusion Coefficient Comparisons. ..........._ ..... ._ .............._..100

5-4 3-Year Bulk Diffusion Coefficient Comparisons. ............. ...............100....

5-5 Pozzolans and Corrosion Inhibitors Effects on Bulk Diffusion Coefficients. .................101

5-6 1-Year Bulk Diffusion vs. RCP (AASHTO T277) ................. ................ ......... .101

5-7 3 -Year Bulk Diffusion vs. RCP (AASHTO T277) ................. ................ ......... .102

5-8 1-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity ............ .. ...._._..........102










5-9 3-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity ..........._... ....._._.........103

5-10 1-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity ........._._ .... ....._._........103

5-11 3-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity .............. .....................0

5-12 Curing Method Comparison of Correlation Coefficients with 1-Year Bulk Diffusion
Test. ........._ ...... .. ...............104...

5-13 Curing Method Comparison of Correlation Coefficients with 3 -Year Bulk Diffusion
Test. ........._ ...... .. ...............105...

5-14 AASHTO T259 Total Integral Chloride Content Analysis. ............. ......................0

5-15 RCP Test Coulomb Results Change With the Addition of Fly Ash and Silica Fume.....106

5-16 RCP Test Coulomb Results Change With Age............... ...............107..

5-17 General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 1-
Year Bulk Diffusion. ................. ...............108....... .....

5-18 General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 3-
Year Bulk Diffusion. ................. ...............108....... .....

5-19 Relating Electrical Tests and 1-Year Bulk Diffusion ................. ...._._ ................109

5-20 Relating Electrical Tests and 3-Year Bulk Diffusion ................. ...._._ ................109

5-21 Schematic Process of Bulk Diffusion Correlation to RCP Using Monte Carlo
Simulation ........._ ............ ...............110....

5-22 1-Year Bulk Diffusion Coefficient of Variation Change by the Number of Samples
Used in Monte Carlo Simulation for the Different 28-Day RCP Standard Limits..........111

5-23 1-Year Bulk Diffusion Coefficient of Variation Change by the Number of Samples
Used in Monte Carlo Simulation for the Different 91-Day RCP Standard Limits..........112

5-24 General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 1-
Year Bulk Diffusion by Monte Carlo Simulation Analysis ................. .....................112

5-25 General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 3-
Year Bulk Diffusion by Monte Carlo Simulation Analysis ................. .....................113

6-1 Diffusion Regression Analysis for Cored Samples for NRB and HPB Bridge..........._....122

6-2 Diffusion Regression Analysis for Cored Sample GRB Bridge ...........__.................122

6-3 Chloride Exposure Zones of a Typical Bridge Structure ................. .......................123










6-4 Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal
Zones. ................. ...............123.............

6-5 Time Dependent Laboratory and Field Diffusion Coefficient Trend of Change............. 124

7-1 90% Confidence Limit for Mean Response of 28-Day RCP Test vs. 1-Year Bulk
Diffusion Test Correlation. ............. ...............135....

7-2 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Very Low Chloride Permeability ................. ...............135..............

7-3 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Moderate Chloride Permeability ................. ...............136........... ...

7-4 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Low Chloride Permeability ................. ...............136........... ...

7-5 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Negligible Chloride Permeability. ............. ...............137....

7-6 90% Confidence Limit for Mean Response of 28-Day Surface Resistivity Test
(Moist Cured) vs. 1-Year Bulk Diffusion Test Correlation..........._.._.._ ....._.._.. ......137

7-7 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Very Low Chloride Permeability ................. ............... ....138

7-8 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Moderate Chloride Permeability ................. ............... .....138

7-9 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Low Chloride Permeability ................. ........................139

7-10 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Negligible Chloride Permeability. ............. ....................13

B-1 Concrete Compression Strength Graphs ................. ...............145........... ...

C-1 1-Year Bulk Diffusion Coefficient Regression Analysis ................. .......................153

C-2 3 -Year Bulk Diffusion Coefficient Regression Analysis ................. .......................167

D-1 Cored Samples Chloride Diffusion Coefficient Regression Analysis. ............................181

F-1 Electrical Test Modified Linear Regression Analysis to 1-Year Bulk Diffusion Data ...194

F-2 Electrical Test Modified Linear Regression Analysis to 3-Year Bulk Diffusion Data ...195

G-1 RCP Coulombs vs. 1-Year Bulk Diffusion Coefficients ................ ........_. ........._196











G-2 RCP Coulombs vs. 3-Year Bulk Diffusion Coeffcients ................. ......__............197

G-3 SR (Lime Cured) vs. 1-Year Bulk Diffusion Coeffcients ........._. ..... ..._._..........198

G-4 SR (Lime Cured) vs. 3-Year Bulk Diffusion Coeffcients .............. ....................20

G-5 SR (Moist Cured) vs. 1-Year Bulk Diffusion Coeffcients ................. ......._._.........202

G-6 SR (Moist Cured) vs. 3-Year Bulk Diffusion Coeffcients ................. ......._._.........204

H-1 Diffusion Coeffcient Results from HRP Proj ect. .....__._.. .... .._.... ......._._.........207

H1-2 St. George Island Bridge Pile Testing Proj ect Diffusion Coeffcients ..........................209









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ALLOWABLE LIMITS FOR CONDUCTIVITY TEST METHODS AND DIFFUSION
COEFFICIENT PREDICTION OF CONCRETE STRUCTURES EXPOSED TO MARINE
ENVIRONMENTS

By

Enrique A. Vivas

December 2007

Chair: H. R. Hamilton
Major: Civil Engineering

This work details research conducted on methods used to rapidly determine the resistance

of concrete to the penetration of chloride ions. These methods, based on the electrical

conductivity of concrete, were Rapid Chloride Permeability (RCP) (AASHTO T277, ASTM

C1202) and Surface Resistivity (SR) (FM 5-578). The results of these conductivity tests were

compared to the Bulk Diffusion (NordTest NTBuild 443) test, which allow a more natural

penetration of the concrete by the chlorides.

Nineteen different mixtures were prepared using materials typically used in construction in

the State of Florida. Twelve mixtures were laboratory prepared and the remaining seven mixtures

were obtained at various field sites around the State. The concrete mixtures were designed to

have a range of permeabilities. Some of the designs included such pozzolans as fly ash and silica

fume. One mixture was prepared with calcium nitrate corrosion inhibitor.

Diffusion coefficients were determined from the Bulk Diffusion test using a 1 and 3-year

chloride exposure period. The electrical results from the short-term tests RCP and SR at 14, 28,

56, 91, 182 and 364 days of age were then compared to the long-term diffusion reference test.










A new calibrated scale to categorize the equivalent RCP measured charge in coulombs to

the chloride ion permeability of the concrete was developed. The proposed scale was based on

the correlation of the 91-day RCP results related to the chloride permeability measured by a 1-

year Bulk Diffusion test.

Finally, to provide additional data to which the laboratory long-term Bulk Diffusion results

can be compared, several concrete specimens were collected from six selected FDOT bridges

located in marine environments. A total of 14 core samples were obtained from the substructures

tidal zone of exposure. The average chloride exposure was ten-years. The diffusion results

obtained showed considerable lower chloride penetration than the 1 and 3 year laboratory results.

It appears that the laboratory methods overestimate the chloride ingress from concrete exposed in

the field.










CHAPTER 1
INTTRODUCTION

Deterioration of reinforced and prestressed concrete structures exposed to a marine

environment is a growing problem in the state of Florida and in many other countries throughout

the world. The main reason is corrosion of the reinforcing steel due to the penetration of chloride

ions through the concrete either through cracks or diffusion, or both. Chloride diffusion is the

principal mechanism that drives chloride ions through the pore structure of uncracked concrete

(Tuutti 1982; Stanish and Thomas 2003). Therefore, the ability to measure and predict chloride

diffusion, both for existing and planned structures is very important.

The chloride diffusion of porous materials such as concrete is determined conventionally

by tests based on the immersion of specimens in a known chloride concentration solution for a

period of time. These methods, however, are time-consuming and often required several years to

obtain representative results. Therefore, several accelerated test methods have been proposed

over the years to address the lack of practicability of the long-term diffusion procedures. These

accelerated test methods are intended to predict diffusion rates for a specific mixture design in a

relatively short time period. In some methods, the transport of chloride ions through the concrete

is accelerated by applying an external electrical potential, forcing the chloride ions through the

sample at an accelerated rate. The electrical resistivity of saturated concrete samples has also

been used as an indirect measure of the ease in which chlorides ions can penetrate concrete

(Hooton, Thomas and Stanish 2001). However, there is very little experimental information on

the ability of these accelerated procedures to reliably predict the penetration of chloride ions into

concrete under natural conditions.

The accelerated methods have been criticized because they do not necessarily replicate the

natural conditions of chloride penetration of concrete (Pfeifer, McDonald and Krauss 1994).










Nevertheless, the results of these accelerated methods are commonly used for mixture design

development and quality control. Though imperfect, a rational method to relate the short-term

results to the results of tests under more natural conditions might improve the usefulness of the

short-term results. Or at least, this would help to make the short-term results more meaningful.

Long-term diffusion coefficients obtained from uncracked concrete samples tested in the

laboratory were selected as a benchmark to evaluate the electrical tests. These diffusion

coefficients represented a more natural rate of chloride ingress into the concrete.

The obj ective of this research was to develop a rational method by which selected

accelerated electrical tests can be calibrated so that, with reasonable confidence, chloride

diffusion coefficients under natural conditions can be predicted for the typical concrete mixtures

used in this research. This approach was expanded to include the development of limits for use in

evaluating the results of the accelerated test methods. Moreover, laboratory diffusion test

methods were compared to chloride ingress into concrete exposed to aggressive marine

environments.










CHAPTER 2
LITERATURE REVIEW

Mechanism of Chloride lon Transport

There are four fundamental modes that chloride ions are transported through concrete.

They are diffusion, capillary absorption, evaporative transport and hydrostatic pressure.

Diffusion is the movement of chloride ions under a concentration gradient. It will occur when the

concentration of chlorides on the outside of the concrete member is greater than on the inside.

The chlorides ions in concrete will naturally migrate from the regions of high concentration (high

energy) to the low concentration (low energy) as long as sufficient moisture is present along the

path of migration. Moreover, it is the principal mechanism that drives chloride ions into the pore

structure of concrete (Tuutti 1982; Stanish and Thomas 2003).

Capillary absorption occurs when the dry surface of the concrete is exposed to moisture

(perhaps containing chlorides). The solution is drawn into the porous matrix of the concrete by

capillary suction, much like a sponge. Generally, the shallow depth of chloride ion penetration

by capillary action will not reach the reinforcing steel. It will, however, reduce the distance that

chloride ions must travel by diffusion (Thomas, Pantazopoulou and Martin-Perez 1995).

The evaporative transport mechanism, also known as wicking effect, is produced by vapor

conduction from a wet side surface to a drier atmosphere. This is a vapor diffusivity process

where a retained body of liquid in the pore structure of the concrete evaporates and leaves

deposits of chlorides inside. For this mechanism to occur, it is necessary that one of the surfaces

be air-exposed.

Another mechanism for chloride ingress is permeation, driven by hydrostatic pressure

gradients. A hydrostatic pressure gradient can provide the required force to move liquid

containing chlorides ions through the internal concrete matrix. An external hydrostatic pressure









can be supplied by a constant wave action or by a retained body of water like bridges, piers,

dams, etc. that are exposed to a marine environment (Chini, Muszynski and Hicks 2003).

Diffusion of Chloride Ions

Chloride diffusion into concrete, like any other diffusion process, is controlled by Fick' s

First Law. It describes the flow of an impurity in a substance, showing that the rate of diffusion

of the material across a given plane is proportional to the concentration gradient across that

plane. It states for chloride diffusion into concrete or for any diffusion process considered in one-

dimensional situation that:

dC
J = -D (2-1)

where J the rate of diffusion of the chloride ions
D chloride diffusion coefficient (m2/S)
C concentration of chloride ions (% mass)
x depth below the exposed surface (to the middle of a layer) (m).

The minus sign means that mass is flowing in the direction of decreasing concentration.

The diffusion coefficient considered the effect of the chloride ions movement through a

heterogeneous material like the concrete. Hence, the rate of diffusion calculated includes the

effect of the concrete porous matrix that contains both solid and liquid components. The equation

can be used only when no changes in concentration in time are present. Therefore, this equation

can be only be used after a steady-state condition have been reached.

Fick' s Second Law is a derivation of the first law to represent the changes of concentration

gradient with time. It states that for the diffusion coefficient (D) the rate of change in

concentration with time (t) is proportional to the rate at which the concentration gradient changes

with distance in a given direction:

dC 82C
= D (2-2)
dt Dx 2









If the following boundary conditions are assumed: surface concentration is constant

(C(x=0, t 0) = Co), initial concentration in the concrete is zero (C(x 0, t=0) = 0) and

concentration at an infinite point far enough from the surface is zero (C(x= w, t 0) = 0). The

equation can then be reduced to:

C (x, t) x
= 1- erf ( ) (2-3)

where C(x, t) chloride concentration, measured at depth x and exposure time t (% mass)
t the exposure time (sec)
erf error function (tables with values of the error function are given in standard
mathematical reference books).

The Crank' s solution to Fick' s Second Law of Diffusion can also be presented in the

following form:


C~Jxt t)=C C,-C) (2-4)

where C, initial chloride-ion concentration of the cementitious mixture prior to the submersion
in the exposure solution (% mass)

A common method of determining the concrete chloride diffusion is to expose saturated

samples constantly to a chloride solution for a known period of time. The chloride concentrations

at varying depths are then obtained and diffusion coefficients and surface chloride concentrations

are determined by fitting the profied data to the non-linear Fick' s Second Law of Diffusion

solution (Figure 2-1).

Test Methods to Predict Permeability of the Concrete

Permeability is defined as the resistance of the concrete to chloride ion penetration. Several

researchers (Dhir and Byars 1993; Li, Peng and Ma 1999; Page, Short and El Tarras 1981) have

attempted to capture the natural diffusion of chlorides through the concrete pore structure by

immersing or ponding samples with salt solution. These test methods, however, require

considerable time to obtain a realistic flow of chlorides. Consequently, numerous accelerated test









procedures have been designed to predict the penetration of chloride ions. The accelerated

methods permit diffusion rates to be established for a specific mixture design in a relatively short

time period. The migration of chlorides through the sample is generally accelerated by the

application of an electrical potential, forcing the chloride ions through the sample at an

accelerated rate.

The following sections describe the testing procedures that have been selected for the

research as the methods that represent the more natural ingress of chloride ions and some

accelerated test methods.

Resistance of Concrete to Chloride lon Penetration ("90-Day Salt Ponding Test")
(AASHTO T259)

AASHTO T259 has been traditionally the most widely used method of determining the

actual resistance of concrete to chloride ion penetration. For this test, three concrete slabs

measuring 3-inch (76-mm) thick and 12-inch (305-mm) square are used. These slabs are moist

cured for 14 days and then kept for an additional 28 days in a drying room with a 50 percent

relative humidity environment. A dam is affixed to the non-finished face of the slab and a 3

percent NaCl solution is ponded on the surface, leaving the bottom face of the slabs exposed to

the drying environment (Figure 2-2). The specimens are maintained with a constant amount of

the chloride solution for a period of 90 days. They are removed from the drying room and

chloride ion content of half-inch thick slices is determined according to the standard method of

test for sampling and testing for chloride ion in concrete and concrete raw materials (ASTM

C1152/C1152M 1990 or AASHTO T 260 1997).

The ponding test has several limitations. The complete test takes at least 118 days to

complete (moist cured for 14 days, dried for 14 days and ponded for 90 days). This means that

the chloride permeability samples must be cast at least four months before a particular concrete









mixture will be used in the field. In addition, the 90-day ponding period is often too short to

allow sufficient chloride penetration in higher strength concrete. Pozzolans such as fly ash or

silica fume have been shown to greatly reduce the permeability of concrete, thus reducing the

penetration of chlorides over the 90-day test period (Scanlon and Sherman 1996). Consequently,

an extended ponding time is generally necessary to ensure sufficient penetration of chloride ions

(Hooton, Thomas and Stanish 2001; Scanlon and Sherman 1996).

Another drawback of this test method is that sampling every 0.5 inch (13 mm) does not

provide a fine enough measurement to allow for determination of a profile of the chloride

penetration. Only the average of the chloride penetration in those slices is obtained, not the

actual variation of the chloride concentration over that 0.5 inch (13 mm) (Hooton, Thomas and

Stanish 2001). The actual penetration depth is a more useful measurement rather than an average

chloride content as measured in the slices (Hooton 1997). This is particularly important in low

permeability concrete where the chloride content can change drastically over a short length.

The ponding test forces chloride intrusion through immediate absorption; long-term

diffusion of chloride into the concrete under a static concentration gradient; and wicking due to

drying from the exposed surface of the specimen (Scanlon and Sherman 1996). Since the sample

initially has to be dried for 28 days, an absorption effect occurs when it is first exposed to the

NaCl solution by capillary suction, pulling chlorides into the concrete (Glass and Buenfeld

1995). During the ponding process one of the exposed faces is submerged in the solution while

the other is exposed to air at 50 percent relative humidity (presumably to model the underside of

a bridge deck). This creates vapor conduction wickingg) from the wet side face of the sample to

the drier face, which enhances the natural diffusion of the chloride ions. There is still some

controversy concerning the relative importance of these mechanisms in actual field conditions.









McGrath and Hooton (1999) have suggested that the relative importance of the absorption effect

is overestimated. Hooton, Thomas and Stanish (2001) have indicated that the relative amounts of

chloride ions drawn into the concrete by the absorption effect compared to the amount entering

by diffusion will be greater when the test is run only for a short period of time compared to the

relative amounts during the lifetime of a structure. Moreover, they exposed that the wicking

effect is also overestimated by the test procedure. The actual structure humidity gradient will

likely be less, at least for part of the time, than the exposed during the test.

Bulk Diffusion Test (Nordtest NTBUILD 443)

The bulk diffusion procedure was developed in order to address some of the problems with

the 90-day salt ponding test. The test was standardized as a Nordtest procedure (an organization

for test methods in the Nordic countries). The main focus of the modifications was to attain a

better controlled "diffusion only" test with no contribution from absorption or wicking effects

(Hooton, Thomas and Stanish 2001). This will improve the precision of the profile obtained for

the simulation of a long-term chloride penetration. The method can be applied to new samples or

samples taken from existing structures.

The sample configuration used for this procedure is a 4-inch (102-mm) diameter by 4-inch

(102-mm) long concrete cylinder. In contrast to AASHTO T259, the specimens are immediately

placed in a saturated limewater solution after a 28 days moist cured period. This wet condition

prevents the initial sorption when the solution first contacts the specimen. Furthermore, the

sample is sealed on all faces except the one that is exposed to the 2.8 M NaCl solution (16.5%

NaC1) (Figure 2-3). The test procedure calls for an exposure period of at least 35 days for lower-

quality concretes (NTBuild 443 1995). For higher-quality concrete mixtures, the exposure time

must be extended to at least 90-days.









The chloride profiles are performed immediately after the exposure period. The profile

layers are obtained by grinding the sample with a diamond-tipped bit. The benefit of pulverizing

the profile by this method is the accuracy of depths that can be attained. Chloride profiles with

depth increments on the order of 0.02 inch (0.5 mm) can be attained. The actual chloride

penetration depth calculated by this method gives more resolution than the 0.5-inch (13-mm)

layers obtained from 90-day salt ponding test procedure.

Electrical Indication of Concrete's Ability to Resist Chloride lon Penetration ("Rapid
Chloride Permeability")(AASHTO T277, ASTM C1202)

The rapid chloride permeability test (RCP) is one of the short-term procedures most widely

used to assess concrete durability. The test is, however, a measurement of the electrical

conductivity of concrete, rather than a direct measure of concrete permeability. Nonetheless, its

results correlate reasonably well with those from the long term 90-day salt ponding test (Whiting

1981). More recent research has found inconsistent test results when the samples contained

pozzolans or corrosion inhibitors (Pfeifer, McDonald and Krauss 1994; Scanlon and Sherman

1996 and Wee, Suryavanshi and Tin 2000).

The test method measures the electrical conductance by subj ecting a 4-inch (102-mm)

diameter by 2-inch (51-mm) thick saturated sample to a 60-volt DC potential for a period of six

hours. One side of the specimen is immersed in a reservoir with a 3.0 percent NaCl solution, and

the other side to another reservoir containing a 0.3 N NaOH solution (1.2% NaOH) (Figure 2-4).

The cumulative electrical charge, measured in coulombs, represents the current passed through

the concrete sample during the test period. The area under the current versus time curve was

found to correlate with the resistance of the specimen to chloride ion penetration (Whiting 1981).

According to ASTM C1202, permeability levels based on charge passed through the sample are

presented on Table 2-1.The RCP test has received much criticism from researchers during the









past decade for inconsistencies found when the electrical resistivity-based measurements

obtained are compared with diffusion-based test procedures like the 90-day salt ponding test

(Andrade 1993; Feldman et al. 1994; Pfeifer, McDonald and Krauss 1994; Scanlon and Sherman

1996 and Shi, Stegemann and Caldwell 1998; Shi 2003). One of the main criticisms is that

permeability depends on the pore structure of the concrete, while electrical conductivity of the

water saturated concrete depends not only on the pore structure but also the chemistry of pore

solution. Changes in pore solution chemistry generate considerable alterations in the electrical

conductivity of the sample. These variations can be produced by adding fly ash, silica fume,

metakaoline or ground blast furnace slag. Silica fume, metakaoline and ground blast furnace slag

are reactive materials that may considerably improve the pore structure and reduce the

permeability of the concrete. This is not the case with fly ash, however, because it is slow

reacting and generally reduces permeability by only 10 to 20% at 90 days. In addition, the

reduction in charge passed in the presence of fly ash is mainly due to a reduction of pore solution

alkalinity, rather than a reduction in the permeability of the concrete (Shi 2003).

Another criticism is that the high voltage of 60 volts applied during the test leads to an

increase in temperature, especially for a low quality concrete, which may result in an apparent

increase in the permeability due to a higher charge being passed (McGrath and Hooton 1999;

Snyder et al. 2000 and Yang, Cho and Huang 2002). Several modifications to the procedures

have been proposed to minimize the temperature effect. One (Yang, Cho and Huang 2002)

proposes an increase in the standardized acrylic reservoirs from 250 m l(as recommended by

ASTM C1202) to 4750 ml. It was found that the chloride diffusion coefficient from RCP reached

a steady-state after chloride-ions pass through the specimen. Another modification is to record









the charge passed at the 30-minute mark and linearly extrapolate to the specified test period of 6

hours (McGrath and Hooton 1999).

The standardized RCP test method, ASTM C1202, is commonly required by construction

proj ect specifications for both precast and cast-in-place concrete. An arbitrary value, chosen

from the scale shown on Table 2-1 of less than 1000 coulombs is usually specified by the

engineer or owner for concrete elements under extremely aggressive environments (Pfeifer,

McDonald and Krauss 1994). This low RCP coulomb limit is required by the Florida Department

of Transportation (FDOT) when Class V or Class V Special concrete containing silica fume or

metakaolin as a pozzolan is tested on 28 days concrete samples (FDOT 346 2004).

Surface Resistivity Test Using the Four-Point Wenner Probe (FM 5-578)

Concrete conductivity is fundamentally related to the permeability of fluids and the

diffusivity of ions through a porous material (Whiting and Mohamad 2003). As a result, the

electrical resistivity can be used as an indirect measure of the ease in which chlorides ions can

penetrate concrete (Hooton, Thomas and Stanish 2001). The resistivity of a saturated porous

medium, such as concrete, is mainly measured by the conductivity through its pore solution

(Streicher and Alexander 1995).

Two procedures have been developed to determine the electrical resistivity of concrete.

The first method involves passing a direct current through a concrete specimen placed between

two electrodes. The electrical concrete porous resistivity between the two electrodes is measured.

The actual resistance measured by this method can be reduced by an unknown amount due to

polarization at the probe contact interface. The second method solves the polarization problem

by passing an alternating current (AC) through the sample. A convenient tool to measure using

this method is the four-point Wenner Probe resistivity meter (Hooton, Thomas and Stanish

2001). The set up utilizes four equally spaced surface contacts, where a small alternating current










is passed through the concrete sample between the outer pair of contacts. The current drive

presents a trapezoidal waveform at a frequency of 13-Hz. A digital voltmeter is used to measure

the potential difference between the two inner electrodes, obtaining the resistance from the ratio

of voltage to current (Figure 2-5). This resistance is then used to calculate resistivity of the

section. The resistivity p of a prismatic section of length L and section area A is given by:

AR
p = (2-5)

where R is the resistance of the specimen calculated by dividing the potential V by the applied
current I.

The resistivity p for a concrete cylinder can be calculated by the following formula:


p = (2-6)

where d is the cylinder diameter and L its length (Morris, Moreno and Sagiies 1996).

Assuming that the concrete cylinder has homogeneous semi-infinite geometry (the

dimensions of the element are large in comparison of the probe spacing), and the probe depth is

far less than the probe spacing, the concrete cylinder resistivity p is given by Equation 2-7


p (n (2-7)

where a is the electrode spacing (Figure 2-5).

The non-destructive nature, speed, and ease of use make the Wenner Probe technique a

promising alternative test to characterize concrete permeability. Results from Wenner Probe

testing can vary significantly if the degree of saturation or conductivity of the concrete is

inconsistent. Techniques to achieve more uniform saturation, such as vacuum saturation or

submerging in water overnight, can be performed in the laboratory. However, the laboratory pre-

saturation procedure still presents some inconsistencies. The known conductivity of the added

solution changes when mixed with the ions (mainly alkali hydroxides) still present in the









concrete pores after the drying process (Hooton, Thomas and Stanish 2001). To overcome this

problem, Streicher and Alexander (1995) suggested the use of a high conductivity solution, for

example 5 M NaC1, to saturate the sample so that the change in conductivity from the ions

remaining in the concrete is insignificant.

Use of the Wenner Probe on concrete in the field presents further complications. The test

can give misleading results when used on field samples with unknown conductivity pore

solution. Therefore, the pore solution must be removed from the sample to determine its

resistivity or the sample must be pre-saturated with a known conductivity solution (Hooton,

Thomas and Stanish 2001). Moreover, pre-saturation of the concrete requires that the sample be

first dried to prevent dilution of the saturation solution. Some in situ drying techniques, however,

can cause microcracks to form in the pore structure of the concrete, resulting in an increase in

diffusivity. Another possible problem with the in situ readings is that reinforcing steel can cause

a "short circuit" path and give a misleadingly low reading. The readings should be taken at right-

angles to the steel rather than along the reinforcing length to minimize this error (Broomfield and

Millard 2002). Hooton, Thomas and Stanish (2001) have suggested that because of these

problems, the Wenner probe should only be used in the laboratory, on either laboratory-cast

specimens or on cores taken from the structure without steel.

The test probe spacing is critical to obtaining accurate measurements of surface resistivity.

The Wenner resistivity technique assumes that the material measured is homogeneous (Chini,

Muszynski and Hicks 2003). In addition, the electrical resistivity of the concrete is mainly

governed by the cement paste microstructure (Whiting, and Mohamad 2003). It depends upon

the capillary pore size, pore system complexity and moisture content. Changes in aggregate type,

however, can influence the electrical resistivity of concrete. Monfore (1962) measured the









electrical resistivity of several aggregates typically used in concrete by themselves (Table 2-2).

The resistivity of a concrete mixture containing granite aggregate has higher than a mixture

containing limestone (Whiting and Mohamad 2003). Moreover, other research (Hughes, Soleit

and Brierly 1985) shows that as the aggregate content increases, the electrical resistance of the

concrete will also increase. Gowers and Millard (1999) determined that the minimum probe

spacing should be 1.5 times the maximum aggregate size, or '/ the depth of the specimen, to

guarantee more accurate readings. Morris, Moreno and Sagiies 1996 suggest averaging multiple

readings taken with varying internal probe spacings. Another reasonable technique is to average

multiple readings in different locations of the concrete surface. In the case of test cylinders, the

readings can be made in four locations at 90-degree increments to minimized variability induced

by the presence of a single aggregate particle interfering with the readings (Chini, Muszynski

and Hicks 2003).

Chini, Muszynski and Hicks (2003) evaluated the possible replacement of the widely used

electrical RCP test (AASHTO T277, ASTM C1202) by the simple non-destructive surface

resistivity test. The research program correlated results from the two tests from a wide

population of more than 500 sample sets. The samples were collected from actual job sites of

concrete pours at the state of Florida. The tests were compared over the entire sample population

regardless of concrete class or admixture present to evaluate the strength of the relationship

between procedures. The two tests showed a strong relationship. The levels of agreement (R2)

values reported were as high as 0.95 for samples tested at 28 days and 0.93 for samples tested at

91 days. Finally, a rating table to aid the interpretation of the surface resistivity results was

proposed (Table 2-3) based on the previous permeability ranges provided in the standard RCP

test (Table 2-1).









Time Dependent Diffusion in Concrete

As concrete matures, the ongoing internal hydration process reduces the diffusion

coefficient (Stanish and Thomas 2003). The diffusion will decrease as the time passes since the

capillary pore volume is reduce by the continued formation of internal hydration products.

Moreover, some chloride ions will become chemically or physically bound as they penetrate the

pore system (Nokken et al. 2006). Previous research has found that the change in chloride

diffusion during time followed a nonlinear tendency (Boddy et al. 1999; Mangat and Molloy

1994; Nokken et al. 2006). When plotted on a logarithmic scale the data were found to be linear.

(Figure 2-6). Therefore, the variation of the chloride diffusion coefficient with time can be

expressed as a power function:


D(t) =Dry tre' (2-8)

where D(t) diffusion coefficient at time t (instantaneous diffusion coefficient)
Dry the diffusion coefficient at some reference time tryf
m curve fitting constant that describes the rate of change of the diffusion coefficient.

The constant m depends on the concrete mix proportions such as the type of cementitious

materials used for the mixture to account for the rate of reduction of diffusion with time (Nokken

et al. 2006). Only few values of the m are available from the literature for relatively short time

periods of exposure. Although these data represent only concrete behavior at early ages (up to 3

years), further research (Thomas and Bamforth 1999) have indicated that the transport properties

continue to decay at the same rate predicted from these early age tests. Further research to

properly quantify this parameter would improve the precision of the diffusion predictions. Table

2-4 shows some reported constant m values by previous research proj ects (Stanish and Thomas

2003; Boddy, Hooton and Gruber 2001; Thomas and Bamforth 1999; Nokken et al. 2006;

Thomas et al. 1999).









The mathematical model proposed by Crank' s solution to Fick' s second law of diffusion

assumes a constant diffusion coeffcient over the testing period. This same mathematical model

is typically used in some form to calculate the diffusion coeffcient for the previously discussed

chloride penetration test methods. In reality, the diffusion coeffcient is decreasing rather rapidly

(Figure 2-6) during the early age of the sample. Consequently, the resultant coefficient value is

an average of the changing diffusion coefficient over the period of exposure. This average

measured diffusion coefficient will equal the instantaneous diffusion coefficient at some point

during the testing period. The diffusion coefficient obtained from Equation 2-8, D(t), represents

this instantaneous diffusion coefficient at time t. Given that the change in diffusion with time is

non-linear, the determination of the effective age during the exposure that correlates to the

average diffusion coeffcient determined for that period is not straightforward. Stanish and

Thomas (2003) developed a useful method to establish at what age the instantaneous diffusion

coeffcient, effective age, is equal to the average diffusion coefficient. To determine this age, the

instantaneous diffusion coeffcient presented in Equation 2-8 was integrated over time in order to

determine an average of diffusion coefficient:




D ,, (2-9)


where DAVn average diffusion coeffcient over the testing period.
tl and tz represent the age of the concrete at the start and completion of the diffusion test
exposure, respectively.

Additionally, the effective age at which the average of diffusion coefficient occurs was

also determined from the Equation 2-8:


D ,, = D,,, t,,, m (2-10)









where: terf- effective age at which the DAVn occurs.

The obtained expression by equating Equations 2-9 and 2-10 determines at what age the

average of diffusion coefficient will occur based on diffusion tests conditions (beginning and end

of the immersion period, tl and t2) and the rate of change of diffusion coefficient with time, m.

Moreover, a subsequent research proj ect by Nokken et al. (2006) calculated different diffusion

coefficient estimations by using three different times (effective age, average age and total age)

(Figure 2-7). They found that there was a significant variation in the diffusion coefficients

calculated at the selected times in the time-dependent reduction Equation 2-8. This can lead to

significantly conservative or unconservative estimations of the service life of structures (Stanish

and Thomas 2003).

The concrete diffusion coefficient values have been used to model the period of time for

chloride ions to reach a critical corrosion concentration at the surface of the steel reinforcement

(Kirkpatricka et al. 2002). The time for corrosion initiation can be estimated from the diffusion

equation (Equation 2-4) when the concentration of chloride ions at steel reinforcement (C(x, t)) is

set equal to the chloride corrosion initiation concentration. Therefore, it is believed that this

estimation would be more accurate if the rate of change in the concrete diffusion properties with

time were included in the prediction (Nokken et al. 2006).

Effective Diffusion Coefficients of Concrete Structures Exposed to Marine Environments

The most notable assumption when using the previously described methods to determine

diffusion coefficients is that diffusion is the unique chloride mechanism that transports the

chloride ions through the concrete. This is a reasonable assumption for tests conducted under

controlled laboratory conditions, such as the bulk diffusion test. The bulk diffusion test is

believed to attain controlled "diffusion only" results with no contribution from other chloride

transports mechanisms. Figure 2-8 shows a typical example of a bulk diffusion sample fit to the









non-linear Fick' s Second Law of Diffusion. The results show very good agreement with the

expected diffusion regression. However, this controlled laboratory testing method presents

several drawbacks on estimating the lifetime behavior of concrete structural members exposed to

aggressive marine environments with consistently high temperature and humidity. These

environment conditions forced the chloride intrusion through additional mechanisms. Chloride

ingress by absorption and leaching of surface chloride are some of the additional mechanisms

induced by these environmental conditions. In order to differentiate between them, previous

researches (Kranc and Sagiies 2003; Sohanghpurwala 2006) have catalogued the results obtained

from laboratory samples as "apparent" diffusion coefficients and "effective" for diffusion

coefficients calculated from samples exposed to field conditions.

A marine substructure element is intermittently subj ected to chloride exposure due to

changes of the water tides. These changes in water tides are due to the periodic tidal forces and

the effects of meteorological, hydrological and oceanographic conditions. This wetting and

drying phenomenon creates a chloride intrusion mechanism by absorption. Since the concrete

exposed surface is dry during a low tide period and hot weather conditions, an absorption effect

occurs when it is exposed to a high tide water level. The absorption is generated by capillary

suction of the concrete at the surface pulling chlorides into the concrete. This allows chloride ion

to penetrate more rapidly than by natural diffusion. The chloride ions then continue to move by

natural diffusion. Therefore, the absorption effect decreases the chloride path to reach the

reinforcing steel (Thomas et al. 1995).

The continuous changes on the water tides also induce leaching of unbonded shallow

surface chlorides. During concrete drying period, shallow surface water evaporates and chlorides

are left either as chemically bonded to the pore walls or as unbonded crystal forms.










Subsequently, when the concrete is again wetted, some of these unbonded crystals are leached

out of the concrete surface. Therefore, chloride profies content can thus differ from that of a

chloride penetration under permanent immersion. The chloride concentration near the exposed

surface can be considerably less than deeper into the concrete. The profie shown in Figure 2-8

was obtained from a cored sample at the splash zone of a substructure element of a bridge. The

profile shows considerably lower chloride concentration near to the surface than the predicted by

Fick' s Law. It also shows that the consequent chloride profile penetrations, following the initial

surface values affected by leaching, fit the diffusion trend behavior. These consequent chlorides

accumulated at a further penetration either by the initial diffusion or absorption followed a

diffusion behavior. Therefore, effective diffusion coefficients can be also approximately

calculated by fitting the Fick' s Second Law of Diffusion by excluding these misleading peaks in

the regression analysis.

The effective diffusion coefficients account for all the effects that an aggressive

environment could subj ect a concrete element. Therefore, it provides a good estimate of the rate

of migration of chloride ions into the concrete. Previous researches (Sague~s 1994, Sague~s et al.

2001) have quantified few effective diffusion coefficients for particular structures located at the

state of Florida. These diffusion coefficients were calculated from cored samples obtained at

different bridge substructure locations around the state. The high cost and labor associated with

coring concrete samples from existing structures make this approach of analysis sometimes

untenable. Therefore, there is limited information on how these diffusion coefficients can be

predicted.










Table 2-1. Comparison of RCP Results with Ponding Tests (AASHTO T277, ASTM C 1202)
(Whiting 1981).


Type of Aggregate
Sandstone
Limestone
Marble
Granite


Chloride lon
Permeability
High
Moderate
Low
Very Low
Negligible


Total Integral Chloride
to 41 mm Depth
After 90-day
Pending Test
> 1.3


Chloride
Permeability
High


Moderate


Low



Very Low


Charge
(Coul omb s)
> 4,000


2,000 4,000


1,000 2,000


100 1,000


Type of Concrete
High water-to-cement ratio
(>0.6) conventional Portland
cement concrete
Moderate water-to-cement ratio
(0.4-0.5) conventional
Portland cement concrete
Low water-to-cement ratio
(<0.4) conventional Portland
cement concrete
Latex modified concrete,
internally sealed concrete


0.8 -1.3


0.55 0.8


0.35 0.55


Negligible


< 100 Polymer impregnated concrete,
polymer concrete


< 0.35


Table 2-2. Measured Electrical Resistivities of Typical Aggregates used for Concrete (Monfore
1968).


Resistivity (ohm-cm)
18,000
30,000
290,000
880,000


Table 2-3. Apparent Surface Resistivity for 4-inch (102-mm) Diameter by 8-inch (204-mm)
Long Concrete Cylinder using a Four-point Wenner Probe with 1.5-inch (38-mm)
Probe Spacing. Values for 28 and 91-day Test (Chini, Muszynski and Hicks 2003).


Surface Resistivity Test
28-Day Test 91-Day Test
(KOhm-cm) (KOhm-cm)
< 12 < 11
12 -21 11 -19
21 37 19 37
37 254 37 295
> 254 > 295


RCP Test Charge
(C oul omb s)
> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100










Table 2-4. Several Curve Fitting Constants m that Describes the Rate of Change of the Diffusion
Coefficient with Time for Various Concrete Mix Designs (Stanish and Thomas 2003;
Boddy, Hooton and Gruber 2001; Thomas and Bamforth 1999; Nokken et al. 2006;
Thomas et al. 1999).
Mix Design(a) m Mix Design(a) m
0.40w/c-0% 0.43 0.3 5w/c-12%FA 0.77
0.50Ow/c-0% 0.32 0.3 5w/c-1 8%FA 0.70
0.66w/c-0% 0.10 0.31w/c-12%FA 0.55
0.30w/c-4% SF 0.60 0.48w/c-70%Slag 1.20
0.40w/c-8% SF 0.61 0.30w/c-4%SF, 25%Slag 0.64
0.40w/c-12% SF 0.49 0.30w/c-8%SF, 25%Slag 0.75
0.50w/c-25%/FA 0.66 0.40w/c-8%HRM 0.44
0.5 0w/c-5 6%FA 0.79 0.40w/c-12%HRM 0.50
0.5 4w/c-30O%FA 0.70 0.30w/c-10%SF, 25%FA 0.45
(a) Fly-Ash (FA), Silica Fume (SF), Ground Blast Furnace Slag (Slag) and High Reactivity Metakaolin
(HRM).











I


0 20 40 60 80
Mid-Layer Profile from Surface (mm)


Figure 2-1. Fick' s Second Law of Diffusion Regression Analysis Example.


3 % NaCl Solution Plastic dam

0.5 in
S3 in


Slab :"'


12 in
50 % relative humidity
atmosphere


Surface Chloride
Concentration


1.2 -


E 0.8 -
o

-
0.4 -


+ Test Values
- Fitted Regression


Figure 2-2. Ninety-day Salt Ponding Test Setup (AASHTO T259).











16.5 % NaCl Solution


'Sealed on All
Faces Except
One


Figure 2-3. Bulk Diffusion Test Setup (NordTest NTBuild 443).


60 V Power supply Epoxy Coated
+-_Concrete Sample


Stainless steel anode Stainless steel cathode


Figure 2-4. Rapid Chloride Permeability Test Setup (AASHTO T277, ASTM C1202).



































1E-10



1E-11



fi1E-12-


SI I I
10 100 1000 10000
Total Time (days)


Current Applied
(I)


Current Flow
Lmnes


Equipotential lines


Figure 2-5. Four-point Wenner Probe Test Setup.


2E-11


NE1.5E-11

1E1



S5E-12


1E-13


0 400


800 1200


Total Time (days)


-e 0.4/0%/HRM
-6- 0.4/12%HRM
-a- 0.3/8%HRM


-El 0.4/8%HRM
-M- 0.3/0%/HRM
-e 0.3/12%HRM


o 0.4/0%/HRM
a 0.4/12%HRM
m 0.3/8%HRM


0 0.4/8%HRM
x 0.3/0%/HRM
o 0.3/12%HRM B


Figure 2-6. Time-Dependent Diffusion Coefficients for Concrete having Various
Water/Cementitious and Contents of High Reactivity Metakaolin (HRM) Plotted
using A) Linear Scale and B) Logarithmic Scale (Boddy, Hooton and Gruber 2001).











Effective Emre Avrage time Total tirn



Chloride Exposure Period
Curing Period

3 10 20 30 40 50 Q
Tirne (Days)


Figure 2-7. Different Times t for Calculating the Curve Fitting Constant that Describes the Rate
of Change of the Diffusion (Nokken et al. 2006).


S30

a

15


~10


+ Include in the Regression
x Not Include in the Regression
- Fitted Regression


0 10 20 30 40
Mid-Layer from Surface (mm)


Figure 2-8. Diffusion Regression Analysis Example of a Bridge Cored Sample.










CHAPTER 3
CONCRETE MIXTURE DESIGNS AND FIELD CORE SAMPLING

Concrete Mixtures

Nineteen concrete mixtures were selected and prepared in the laboratory and in the field

for the proj ect. A labeling system was implemented to identify each of the selected concrete

mixture designs. The first term of the notation system represents the water-cementitious ratio in

percentage, followed by the cementitious amount in pounds per cubic yard (lb/yd3) and finally

the pozzolans or corrosion inhibitor contents in percentage of cementitious measured by weight.

For example the concrete mixture labeled as "3 5_752_8SF_20F" (Table 3-2) has a water-

cementitious ratio of 3 5 percent (3 5%), 752 pounds per cubic yard (lb/yd3) Of total cementitious

materials, 8 percent (8%) by weight of cementitious of Silica Fume and 20 percent (20%) by

weight of cementitious of Fly-Ash.

Laboratory Concrete Mixtures

Twelve representative mixtures using locally available materials in the State of Florida

were selected and cast in the laboratory, such that they represented a variety of different concrete

qualities and constituents. These concrete mixtures were selected from a range of possibilities,

from the most permeable possible designs to less permeable quality mixtures that include

pozzolans and a single mixture containing calcium nitrite corrosion inhibitor (Table 3-1 and

Table 3-2). The wide permeability range between the selected designs should allow a better point

of comparison between the test procedures under for different conditions.

The mixtures were performed under controlled environmental conditions, with a constant

air temperature for each mixture. The size of the concrete batch for each mixture was six cubic

feet (0. 17 cubic meters). This volume of concrete included the specimens, concrete for quality









control testing, and several extra samples. The quality control procedures executed during

mixing and casting of the test samples were:

Standard Test Method for Slump of Hydraulic Cement Concrete (ASTM C 143).

Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
(ASTM C 173).

Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete (ASTM C
1064).

Standard Test Method for Density (Unit Weight) of Freshly Mixed Concrete (ASTM C 13 8).

The standard process for casting concrete cylinders proposed by the AASHTO T23 method

was followed (Table 3-3). An external vibration device, also known as vibrating table was used

to ensure complete compaction of the specimens. The 4-inch (102-mm) diameter cylinders were

cast and vibrated in two layers as is shown in Table 3-3. The vibration period for each mixture

was determined by visual inspection of the first set of samples vibrated. The samples were

vibrated until the larger air bubbles ceased breaking through the top of surface but before visible

segregation occurred. It was generally between 15-seconds to 30-seconds for each inserted layer.

After the samples were cast in their respective molds and the top exposed surface finished with

the help of a trowel, they were left approximately 24-hours for atmospheric curing. During this

period, the exposed surfaces of samples were covered with plastic bags (Figure 3-1) to minimize

evaporation of the water in the surface of the concrete. Finally, the samples were de-molded and

placed in their particular curing environment until their testing date.

Field Concrete Mixtures

In addition to the laboratory concrete mixtures, seven field mixtures obtained from FDOT

construction proj ects around the State were collected. The mixtures were chosen to represent a

wide range of concrete permeabilities through the use of different constituents. From the FDOT

concrete specification (Table 3-4), Class II concrete was chosen as the lower bound of the range









as most permeable, and Class V and VI as the least permeable (Table 3-5 and Table 3-6). These

mixtures also represent the typical concretes used in structural members such as bridge concrete

barriers, prestressed concrete beams and piles that are constantly exposed to chloride attacks.

The State of Florida is divided by the FDOT into seven geographic regions (Figure 3-4). In

order to attain a balanced group of samples that reflected local materials of the state, specimens

from three districts were collected. Samples from District 3 (North Florida), District 2 (Central

Florida) and District 4 (South Florida) were selected (Figure 3-4 and Table 3-7). The concrete

batches for the specimens were supplied directly from mixer trucks to several wheel barrows at

the job site or at the ready mix plant (Figure 3-2). The volume of concrete supplied was enough

for the casting of the specimens, quality control testing, and several extra samples. The same

quality control testing and standard casting procedures for the laboratory mixtures were followed

in the Hield.

After the samples were cast in their respective molds, they were left approximately 24-

hours for atmospheric air curing with the exposed surfaces covered by plastic bags to prevent

evaporation of water from the concrete. Afterward, they were de-molded and submerged in water

tanks so that their treatment prior to arriving at the laboratory is controlled curing conditions was

as uniform as possible (Figure 3-3). The high temperature of the water tanks induced by

Florida's hot weather was controlled by the addition of several bags of ice.

Field Core Sampling

The laboratory test procedure Bulk Diffusion was used to estimate the long-term chloride

diffusion performance of concrete. However, this test was conducted using a maximum of 3-year

chloride exposure. Longer term diffusion test results are needed to confirm these laboratory

findings. Therefore, to provide additional data to which these laboratory results can be










corroborated, several concrete specimens were collected from FDOT bridges located in marine

environments.

Bridge Selection

With the assistance of FDOT personal, recently constructed bridges (since 1991) were

surveyed. The search criteria included bridges in which the structural elements were originally

designed to meet the FDOT specifications (FDOT 346 2004) for concrete elements under

extremely aggressive environments. The mixture designs for the selected structural elements

used silica fume as a pozzolan for a FDOT class V or class V special mixture. The search criteria

also included mixtures for which RCP data were available (Table 3-11). This information

allowed a direct comparison with the laboratory results reported in previous sections. Six bridges

had substructures that met these requirements (Table 3-8, Table 3-9 and Table 3-10).

The intent of the sampling was to take concrete cores from undamaged concrete near the

tide lines. The cores were then sliced or ground and chloride content was measured to produce a

profile, from which the diffusion coefficient was calculated.

Coring Procedures

A total of 14 core samples were obtained from the substructures of the six selected bridges.

Figure 3-5 through Figure 3-16 show a general view of the bridge structures and the cored

substructure elements. Concrete cores were extracted from the substructure elements in the tidal

region between the high tide line (HTL) and the organic tide line (OTL) (Figure 3-17). HTL was

determined visually by the oil or scum stain on the structural element. OTL was also identified

visually as the elevation that appeared to have continuous marine growth present such as

barnacles or other growth. This line is usually lower than the HTL and represents a tide level that

is regularly inundated providing a regular source of water to support the marine growth and to

keep the concrete saturated. The location of the extracted cores was measured from HTL and










OTL to the sample center. Core elevations ranged from 3-inch (76-mm) to 12-inch (305-mm)

below HTL and 3-inch (76-mm) to 10-inch (254-mm) above OTL. Table 3-12 shows a summary

of the date and location of the cores were extracted.

A rebar locator was used to measure the depth of cover and bar spacing in the structural

members (Figure 3-18). Due to high variability, however, the coring bit rarely reached the

reinforcement during the drilling process (Figure 3-19). The samples were cored with a

cylindrical 4-inch (102-mm) diameter core drill bit, resulting in a core diameter of 3-3/4-inch

(95-mm). The specimens were cored using a fresh-water bit-cooling system. After the desired

depth was reached, the cores were extracted as shown in Figure 3-19. The structural members

were then repaired using a high bond strength mortar containing silica fume. The mortar material

was applied and compacted in several layers as is shown in Figure 3-20.
























































24.4

45.1


(a) Fly-Ash (F), Classified Fly-Ash (CF) and Silica Fume (SF).


35


Mixture Name(a)
Materials 49 564 35 752 45 752


Table 3-1. Laboratory Mixtures Material Sources.


Materials
Portland Cement
Fly-Ash
Classified Fly-Ash
Silica Fume
Metakaolin
Slag
Calcium Nitrite
Water
Fine Aggregate
Coarse Aggregate
Air Entrainer
Water Reducer
Super Plasticizer


Source
CEMEX Type II
Boral Materials Technologies Inc. Fly Ash Class F
Boral Materials Technologies Inc. Micron3
W.R. Grace Force 10,000D
Burgess Pigment Co. Burgess #30
Lafarge NewCem-Grade 120
W.R. GRACE DCI-S
Gainesville, FL
Silica Sand
Crushed Limestone
W.R. Grace Darex
W.R. Grace WRDA 64
W.R. GRACE Daracem 19


Table 3-2. Laboratory Mixture Desigs


28 900 8SF
20F
10/22/03
0.28
648
Fly-Ash
(20%)
180

Silica Fume
(8%) 72
252
1,000

1,670




6.8

29.3

180


35 752
20F
10/23/03
0.35
601.6
Fly-Ash
(20%)
150.4


752
12CF
1/5/04
0.35
661.8
Classified
Fly-Ash
(12%)
90.2


Casting Date
W/C
Cement (pcy)
Pozzolan 1
(pcy)


Pozzolan 2
(pcy)
Water (pcy)
Fine Aggregate
(pcy)
Coarse
Aggregate
(pcy)
Calcium Nitrite
(oz)
Air Entrainer
(oz)
Water Reducer
(oz)
Super Plasticizer
(oz)


9/29/03
0.49
564


10/15/03
0.35
752


10/21/03
0.45
752


276.4
1,105

1,841




3.0

18.3

20.2


263.2
1,080


338.4
990


263.2
1,043

1,750




5.6

24.4

37.6


263.2
1,061

1,750


1,750 1,647


4.0

24.4

29.7


4.0

24.4

17.7









Table 3-2. Continued.

Mixture Name(a)
~35 752 35 752 8SF 35 752 35 752 1014 35 752 35 752
Materials
8SF 20F 10OM 20F 50Slag 4.5CN


Casting Date 1/28/04 1/29/04 2/4/04 2/5/04 2/17/04 3/9/04
W/C 0.35 0.35 0.35 0.35 0.35 0.35
Cement (pcy) 691.8 541.4 676.8 526.4 376 752
Pozzolan 1 Fly-Ash Fly-Ash
(pcy) (20%) (20%)
150.4 150.4
Pozzolan 2 SF'a) SF'a) M'a) M'a) Slag
(pcy) (8%) (8%) (10%) (10%) (50%)
60.2 60.2 75.2 75.2 376
Water (pcy) 263.2 263.2 263.2 263.2 263.2 229.5
Fine 1,058 1,021 1,051 1,037 1,053 1,030
Aggregate
(pcy)
Coarse 1,750 1,750 1,750 1,729 1,750 1,703
Aggregate
(pcy)
Calcium -----576
Nitrite (oz)
Air Entrainer 5.6 5.6 5.6 5.6 5.6 7.5
(oz)
Water 24.4 24.4 24.4 24.4 24.4 24.4
Reducer
(oz)
Super 37.6 45.1 90.2 136.9 33.8 33.8
Plasticizer
(oz)
(a) Calicium Nitrite (CN), Fly-Ash (F), Silica Fume (SF) and Metakaolin (M).

Table 3-3. Standard Method for Casting and Vibrating Concrete Cylinders (AASHTO T23).
Cylinder Number of Number of Vibrator
Diameter (in) Layers Insertions per Layer Approximate Depth of Layer
4 2 1 1/ depth of specimen
6 2 2 1/ depth of specimen
9 2 4 1/ depth of specimen












V V \ j


Table 3-5. Field Mixture Designs.
Mixture Name(a), FDOT Concrete Classes and Geographic Location
29 450 33 658 34 686 30 673 28 800 29 770
45 570 20F 18F 18F 20F 20F 18F
Class II Class II Class V Class V Class V Class VI Class VI
South North Central North Central
Materials FL FL South FL FL FL FL North FL


Table 3-4. Specified Compressive Strength ofFDOT Concrete Classes.


FDOT Concrete Classes


Design Compressive Strength (psi)


Class I
Class I Special
Class II
Class II Bridge Deck
Class III
Class III Seal
Class IV
Class IV Drill Shaft
Class V
Class V Special
Class VI


3,000
3,000
3,400
4,500
5,000
3,000
5,500
4,000
6,500
6,000
8,500


7/11/03
0.29
450
Fly-Ash
(20%)
115
162.3
1,137


7/18/03
0.34
686
Fly-Ash
(18%)
154
288
935


7/9/03
0.30
673
Fly-Ash
(20%)
169
251.9
973.5


7/17/03
0.28
800
Fly-Ash
(20%)
200
280
868


1,650


2.0


8/11/03
0.45
569.7



254.5
1,434


Casting Date
W/C
Cement(pcy)
Pozzolan 1
(pcy)

Water (pcy)
Fine
Aggregate
(pcy)
Coarse
Aggregate
(pcy)
Air Entrainer
(oz)
Water Reducer
(oz)
Super
Plasticizer
(oz)
(a) Fly-Ash (F).


8/12/03
0.33
657.4
Fly-Ash
(18%)
150
269.7
1,048


1,724


1.0

8.0


7/10/03
0.29
770
Fly -Ash
(18%)
165
267.5
727.5


1,655 1,918


0.3 2.0


1,720 1,914


1,918


5.0


45.6


17 40


-70.0


55.0


52 110





































Table 3-6. Continued.


Sources.

29 450


Table 3-6. Field Mixture Material
Source(a)
Materials 45 570
Portland RINKER
Cement Miami Type

Fly-Ash -


20F


33 658 18F
RINKER Monj os
Type I

BORAL BOWEN
Class F

West Palm Beach,
FL
Silica Sand

Crushed
Limestone
Master Builders
MBAE-90
Master Builders
POZZ 961R
Master Builders
POZZ 400N


34 686 18F
PENNSUCO
Type II

ISG Fernandine
Beach, FL
Class F
Jacksonville, FL

Silica Sand

Crushed
Limestone
Master Builders
MBVR- S
Master Builders
POZZ 100XR
Master Builders
RHEO 1,000


Southdown
Brooksville
Type II
BORAL Plant
Daniel Class F

St. George Island,
FL
Silica Sand

Crushed Granite

Master Builders
MBAE-90
Master Builders
POZZ 300R


Water


Miami, FL


Fine
Aggregate
Coarse
Aggregate
Air Entrainer

Water
Reducer
Super
Plasticizer
(a) Fly-Ash (F).


Silica Sand

Crushed
Limestone
W.R. GRACE
DAREX
W.R. GRACE
WRDA 60


Source~a
30 673 20F
CEMEX Type II

BORAL Plant Daniel
Class F
St. George Island, FL


Materials
Portland Cement


28 800 20F
PENNSUCO Type II

ISG Fernandine Beach,
FL Class F
Jacksonville, FL


29 770 18F
CEMEX Type II

BORAL Plant Daniel
Class F
St. George Island, FL


Fly-Ash

Water


Fine Aggregate


Silica Sand


Silica Sand


Silica Sand


Coarse Aggregate Crushed Granite


Crushed Limestone

Master Builders
MB VR- S
Master Builders POZZ
100XR
Master Builders
3,000FC


Crushed Granite


Air Entrainer

Water Reducer

Super Plasticizer

(a) Fly-Ash (F).


Master Builders
MBAE-90
Master Builders POZZ
300R
Master Builders RHEO
1,000


Master Builders
MBAE-90
Master Builders POZZ
300R
Master Builders RHEO
1,000










Table 3-7. Locations of Field Mixtures.


Location and Contact
Information of the Concrete
Supplier Plant
RINKER MATERIALS CORP.
1501 Belvedere Road. Belle
Glade West Palm Beach, FL
32406 Phone: (561) 833-5555
FDOT Plant No. 93-104

S. EASTERN PRESTRESS
CONCRETE INTC. West
Palm Beach, FL 33416 P.O.
BOX 15043 Phone: (561)
793-1177 FDOT Plant No.
93-101

GATE CONCRETE
PRODUCTS 402 Hecksher
Drive Jacksonville, FL 32226
Phone: (904) 757-0860
FDOT Plant No. 72-055

COUCH CONCRETE 60
Otterslide Rd. Eastpoint, FL
32328 Phone: (850) 670-5512
FDOT Plant No. 49-479


FDOT
Di stri ct
DISTRICT
4


Mixture
Name(a)
45 570


Concrete
Class
Class II


Location of the
Concrete Casting
Interstate I-95 at
West Palm Beach,
FL.


33 658
18F


Class V At the Plant






Class V At the Plant


Class VI


Class II At the Plant

Class V St. George Island
Bridge
Class VI Construction Site


DISTRICT
2


34 686
18F

28_800
20F

29 450
_20F
30_673
20F
29 770
18F


DISTRICT
3


(a) Fly-Ash (F).










Cored Bridge Structures for the Investigation.


County
(Di stri ct)


Abbr.
HPB


Location


Bridge # Project # Year Built


1980/91(a)


Lee (DI) SR-865 San
Carlos Blvd


120089 12004-
3506
790187 79080-
3544


BRB Volusia
(DS)


US-92 E
International
Speedway
Blvd.


2001


SWB


Volusia
(DS)


SR-430


790174 79220-
3510
790132 79150-
3515

700203 70010-
3529


1997


1983/97(a)


GRB Volusia
(DS)
TCB Brevard
(DS)


SR-40 Granada
Blvd.


Table 3-8. FDOT

Bridge Name
Hurricane Pass


Broadway
Replacement
East Bound


Seabreeze West
Bound
Granada


Turkey Creek


New Roosevelt


US-1


1999


NRB


Martin (D4) US-1/SR-5


890152


-(b) 1997


(a) Built year/Modified year
(b) Unknown Information










Bridge Name Abbreviation
HPB BRB SWB GRB TCB NRB
Class V Class V
Class V Class V Class V Special Special Class (a)
Lee (DI) Volusia Volusia Volusia Brevard Martin
Materials (DS) (DS) (DS) (DS) (D4)
FDOT 3514 05-M2028 05-0446 05-0426 07-MO223B -(a)


Table 3-9. FDOT Cored Bridge Element Mixture Designs.


Mixture #
W/C 0.35 0.33 0.35 0.35 0.33 -(a)
Cement(pcy) 617 605 595 618 785 -(a)

Pozzolan 1 Fly-Ash Fly-Ash Fly-Ash Fly-Ash Fly-Ash -(a)
(pcy) (19.5%) (19.5%) (18%) (18%) (18%)
135 168 145 150 192
Pozzolan 2 SF'b) SF'b) SF'b) SF'b) SF'b) (a
(pcy) (10.3%) (10.3%) (7.8%) (8.3%) (8.1%)
87 89 63 70 86

Water (pcy) 263 219 271.6 292 355 -(a)
Fine 1,111 912 1,055 1,314 1,281 -(a)
Aggregate
(pcy)
Coarse 1,616 1,925 1,784 1,475 2,286 -(a)
Aggregate
(pcy)
Air Entrainer 7 8.4 10 6.8 9.2 -(a)
(oz)
Water Reducer 30.85 42 17.9 30.9 31.4 -(a)
(oz)
Super 56 134 95.2 185.4 98.1 -(a)
Plasticizer
(oz)
(a) Unknown Information
(b) Silica Fume










Table 3-10. FDOT Cored Bridge Element Mixture Material Sources.
Bridge Name Abbreviation


Materials
Portland
Cement



Fly-Ash


Silica Fume



Water
Fine
Aggregate
Coarse
Aggregate

Air Entrainer


HPB
Florida Mining &
Materials
AASHTO M-85
Type II
Florida Mining &
Materials Class F

W.R. GRACE
DARACEM 10,000

Port Manatee, FL
Florida Crushed Stone
Silica Sand


BRB
Pennsuco Tarmac
AASHTO M-85
Type II

Boral Bowen Class F


Master Builders MB-SF
110


Dayton Beach, FL
Florida Rock Ind. Silica
Sand


SWB
BROCO (Brooksville)
AASHTO M-85
Type II

Florida Mining &
Materials Class F

W.R. GRACE
DARACEM 10,000D

Orlando, FL
Florida Rock Ind. Silica
Sand

Martin Marietta
Aggregates Crushed
Granite
W.R. GRACE DAREX


W.R. GRACE WRDA
64

W.R. GRACE
DARACEM 100


Florida Crushed Stone Martin Marietta


Crushed Limestone

W.R. GRACE
Daravair 79


Aggregates Crushed
Granite
Master Builders MBAE
90


Water Reducer W.R. GRACE WRDA


Master Builders
POZZ .200N


Super
Plasticizer


W.R. GRACE WRDA Master Builders RHEO
19 1,000









Table 3-10. Continued.


Bridge Name Abbreviation
GRB
BROCO (Brooksville)
AASHTO M-85 Type II
MONEX Crystal River
Class F
Master Builders
RHEOMAC SF 100

West Palm Beach, FL

Florida Rock (Marison)
Silica Sand

Martin Marietta Aggregates
Crushed Granite


TCB
BROCO (Brooksville)
AASHTO M-85 Type II
Florida Fly Ash Class F

W.R. GRACE DARACEM
10,000D


NRB
-(a)


-(a)

-(a)


Materials
Portland
Cement

Fly-Ash

Silica Fume


Water


Tampa, FL


Fine
Aggregate
Coarse
Aggregate
Air Entrainer


Vulca/ICA Silica Sand


Florida Crushed Stone
Crushed Limestone


Master Builders MBVR-S W.R. GRACE Daravair 79


Water Reducer Master Builders LL961R

Super Master Builders RHEO
Plasticizer 1,000
(a) Unknown Information


W.R. GRACE WRDA

W.R. GRACE WRDA 19










Table 3-11i. 28-Day RCP Test Data from Concrete Mixture Designs of the Cored Samples.


Bridge Name
Hurricane Pass
Broadway Replacement East Bound
Seabreeze West Bound
Granada
Turkey Creek
New Roosevelt
(a) Data unavailable


28-Day RCP (Coulombs)
-(a)
952
700
538
-(a)
-(a)










Table 3-12. Summary of Cores Extracted and Associated Properties.
Struct. Elevation Elevation
Bridge Lab. Date Structural Bent Pier Cored Below Above
Abbr. # Cored Element Type(a) #(b) #(b) Side HTL (in) OTL (in)


HPB 5016 2-1-06 Pile

5017 2-1-06 Pile

5018 2-1-06 Pile

BRB 5054 3-2-06 Column


5081 5-3-06 Column


SWB 5082 5-3-06 Column

5083 5-3-06 Column

GRB 5084 5-3-06 Crashwall

TCB 5078 5-24-06 Pile

5079 5-24-06 Pile


5080 5-24-06 Pile


NRB 5075 6-1-06 Pile Cap

5076 6-1-06 Pile Cap

5077 6-1-06 Pile Cap


PC

PC

PC

CIP


CIP


CIP

CIP

CIP


3 1 NW

7 1 NW

6 1 NW

11 1 SW


7 1 NE


3 1 NE

7 1 SW

9 1 NW

3 15 NE

4 15 NE


5 15 NE


CIP

CIP

CIP


8 1 S

10 1 S

7 1 S


(a) CIP: Cast in Place and PC: Pretensioned Concrete.
(b) Bent# and Pier# were labeled in ascendant number from North to South or West to East direction depending on
the bridge location. The Bent# 1 is considered as the bridge abutment.


























Figure 3-1. Air Curing of Cast Concrete Specimens.


Figure 3-2. Casting of Field Mixture Specimens.


Figure 3-3. Field Samples Curing during transport to Laboratory.



















St. George Island
CPR15
CPR18
CPR21


West Palm Beach
CPR13
CPR16


~pS5' "


Figure 3-4. FDOT District Map with Field Mixture Locations.


Figure 3-5. Hurricane Pass Bridge (HPB) General Span View.











--~-3
'ICI~
4----~..



?, r


Figure 3-6. Hurricane Pass Bridge (HPB) Sub structure Elements.


Figure 3-7. Broadway Replacement East Bound Bridge (BRB) General Span View.


Figure 3-8. Broadway Replacement East Bound Bridge (BRB) Substructure Elements.





Figure 3-9. Seabreeze West Bound Bridge (SWB) General Span View.


Figure 3-10. Seabreeze West Bound Bridge (SWB) Sub structure Elements.


Figure 3-11. Granada Bridge (GRB) General Span View.



























C A 1B


Figure 3-12. Granada Bridge (GRB) Substructure Elements. A) Pier Elements, B) Barge
Crashwall.


Figure 3-13. Turkey Creek Bridge (TCB) General Span View.


I _
I~ -~-_ --._~F


Figure 3-14. Turkey Creek Bridge (TCB) Substructure Elements.



















*--- r
~C~ r r ,.. ; ~mo~e:~a~F-~~~~.._
I~l~b~Z1TiP~ij~ ~~Tnala*ys~--~P~-l-- -


P'
'~'~':r"*7;


Figure 3-15. New Roosevelt (NRB) General Span View.


Figure 3-16. New Roosevelt (NRB) Substructure Elements.


HIel l~ideLin IH TL I


Figure 3-17. Cored Element Location Defined by the Water Tide Region between High Tine
Line (HTL) and the Organic Tide Line (OTL). Sample from Broadway Replacement
East Bound Bridge (BRB) (East Bound) BENT 11, PIER 1.


























Figure 3-18. Bridge Coring Process. A) Locating Reinforcing Steel, B) Locating Drill for
Coring.











A .. B~-

Figure 3-19. btaining Core Sample. A) Etratn rlldCrB Lcto fth xrce
Coeta ece retesn tad



















-A B
Figue 3-0. Rpaiing trucuralCord Meber.A) Ptchng Cred penig B FinshedPie
Member.Q~ iii










CHAPTER 4
TEST PROCEDURES

Laboratory and Field Concrete Sample Matrix

A total of 988 samples from 19 separate mixtures were cast for testing. The concrete

mixtures were divided into two groups. Twelve were mixed and formed at the FDOT State

Materials Office (SMO) in Gainesville. The remaining 7 mixtures were obtained at various field

sites around the state and brought back to the SMO for storage and eventual testing (Table 4-1).

The cast samples were primarily 4-inch (102-mm) diameter by 8-inch (204-mm) long cylinders.

Chloride lon Content Analysis

Chloride ions are typically present in concrete in two forms, soluble chlorides in the

concrete pore water and chemically bound chlorides. There are several laboratory methods to

estimate these amounts of chloride in the concrete structure. The FDOT standardized test method

(FM 5-516) to determine low-levels of chloride in concrete and raw materials was selected for

the analysis. This wet chemical analysis method also known as acid-soluble method determines

the sum of all chemically bound and free chlorides ions from powdered concrete samples.

Diffusion Test

Bulk Diffusion Test

The Bulk Diffusion Test was conducted using the NT BUILD 443 (NT BUILD 443 1995)

test procedure. Samples were 4-inch (102-mm) diameter by 8-inch (204-mm) long, with three

samples cast for each mixture. The samples were kept in a moist room with a sustained 100%

humidity for 28 days, removed from the moist conditions, and sliced on a water-cooled diamond

saw into two halves (Figure 4-1). The cut specimens were immersed in a saturated Ca(OH)2

solution in an environment with an average temperature of 73oF (23oC). The samples were

weighed daily in a surface-dry condition until their mass did not change by more than 0.1










percent. The specimens were then sealed with Sikadur 32 Hi-Mod epoxy (on all surfaces except

the saw-cut face) and left to cure for 24-hours. The sealed samples were then returned to the

Ca(OH)2 tanks to repeat the above saturation process by weight control. The samples were then

immersed under surface-dry conditions in salt solution (16.5 percent of sodium chloride solution

mixed with deionized water) in tanks with tight closing lids (Figure 2-3 and Figure 4-2). The

tanks were shaken once a week and the NaCl solution was changed every 5 weeks. The original

procedure called for at least 35 days of exposure before the chloride penetration analysis was to

be conducted. Moreover, it suggests to sample between 0.04-inch to 0.08-inch (1-mm to 2-mm)

increments by powder grinding the profies for this exposure time and type of high quality

concrete. With the equipment available for the use on the proj ect, an exposure of 3 5 days is

insufficient to achieve a measurable chloride profile. A coarser chloride sampling evaluation was

implemented; 0.25-inch (6.5-mm) increments were tested on 1 and 3 years old samples. Finally,

the respective acid-soluble chloride content of the profie samples at varying depths were

obtained in accordance with the FDOT standard test method FM 5-516. The initial chloride

background levels for each of the concrete mixes were also determined from the extra unexposed

samples.

Electrical Conductivity Tests

Rapid Chloride Permeability Test (RCP)

The RCP test was conducted in conformance with AASHTO T277 and ASTM C1202. The

specimen dimensions were 4-inch (102-mm) diameter by 8-inch (204-mm) long. All samples

were kept in a moist room with a sustained 100% humidity until testing day. RCP tests were

conducted at ages of 14, 28, 56, 91, 182 and 364 days, with three samples tested at each age.

The procedure calls for two days of specimen preparation. On the first day, the samples

were removed from the moist room to be cut on a water-cooled diamond saw. A '/-inch (6.4-










mm) slice was first removed to dress the top edge of the sample (Figure 4-3), and then the 2-inch

(51l-mm) thick sample required for the test was sliced (Figure 4-4). The sides of the specimens

were roughened (Figure 4-4) followed by application of Sikadur 32 Hi-Mod epoxy to seal the

specimen (Figure 4-5).

The second day of preparation began with the desiccation process to water-saturate the

samples. The specimens were placed in a desiccation chamber connected to a vacuum pump

capable of maintaining a pressure of less than 1 mm Hg (133 Pa). The vacuum was maintained

for three hours to remove the pore solution from the samples. The container was then filled with

boiled de-aerated water until the samples were totally submerged and the pump was left running

for an additional hour (Figure 4-6). The desiccation chamber was return to atmospheric pressure

and the samples were left submerged for 18 hours, plus or minus 2 hours.

After the samples were removed from the desiccation chamber, each sample was placed

into their acrylic cells and sealed with silicone (Figure 2-4 and Figure 4-7). The upper surface of

the specimen was left in contact with the 3.0 percent NaCl solution (this side of the cell was

connected to the negative terminal of the power supply) and the bottom face was exposed to the

0.3 N NaOH solution (this side of the cell was connected to the positive terminal of the power

supply). The test was left running for 6 hours with a constant 60-volt potential applied to the cell.

A data logging system recorded the temperature of the anolyte solution, charge passed, and

current every 5 minutes. Furthermore, it calculated the cumulative charge passed during the test

in coulombs by determining the area under the curve of current (amperes) versus time (seconds).

The three total readings from each sample were averaged to obtain a representative Einal result

for the specimens set.









Surface Resistivity Test

The Surface Resistivity test was conducted conforming to Florida Method of Test

designation FM 5-578. The Surface Resistivity was measured on 4-inch (102-mm) diameter by

8-inch (204-mm) long concrete cylinders. To evaluate the effect of curing, two sets of three

samples each were tested. The first set was kept in a moist room with a sustained 100%

humidity, and the other in saturated Ca(OH)2 Solution (dissolved in tap water) tanks. Due to its

nondestructive test nature, the test was performed to a wider amount of ages than the other

electrical tests. For the purpose of this proj ect, the samples were tested at 14, 28, 56, 91, 182,

364, 454 and 544 days. Additionally, these samples are being monitoring until no further

changes in the surface resistivity reading is observed as part of another research proj ect.

Commercial four-probe Wenner array equipment was utilized for resistivity measurements. The

model used had wooden plugs in the end of the probes that were pre-wetted with a contact

medium to improve the electrical transfer with the concrete surface (Figure 4-8). The inter-probe

spacing was set to 1.5-inch (38-mm) for all measurements.

On the day of testing the samples were removed from their curing environment and the

readings were taken under surface wet condition. Readings were then taken with the instrument

placed such that the probes were aligned with the cylinder axis. Four separate readings were

taken around the circumference of the cylinder at 90-degrees increments (Oo, 90o, 180o and 2700)

This process was repeated once again, in order to get a total of eight readings that were then

averaged. This minimized possible interference due to the presence of a single aggregate particle

obstructing the readings (Chini, Muszynski and Hicks 2003).

Bridge Core Sample Chloride lon Content Analysis

The core samples obtained from the bridge substructures were profiled at varying depths to

obtain their respective acid-soluble chloride content in accordance with the FDOT standard test









method FM 5-516 (APPENDIX D). The core surface was first cleaned to remove barnacles or

other debris. Two methods were used to obtain the respective profile samples. The top 0.48-inch

(12-mm) was profied using a milling machine. Powder samples were taken at increments of

0.08-inch (2-mm) (Figure 4-9). Subsequent profies were obtained by cutting the sample into

0.25-inch (6.5-mm) thick slices using a water-cooled diamond saw. The core proofing scheme

summary is presented in Table 4-2. The sample obtained from the two proofing methods was

pulverized and placed in plastic bags until the chloride content testing was executed. The initial

chloride background levels of cored samples were determined from the deepest section of the

specimens (APPENDIX D), assuming that chlorides have not yet reached this depth.





Table 4-1. Concrete Permeability Research Sample Matrix for Laboratory Mixtures.
Total Number of Samples per Test (4"x8" Cylinders)


Strength
(ASTM
C39)
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18


RCP
(AASHTO
T277)
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18


Surface
Re sistivity
(FM 5-578)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6


Bulk
Diffusion
(NTBuild 443)
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3


Extra
Cylinders

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7


Mixture Name
Lab. 49 564
Mixes 35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M4
35 752 1014 20F
35_752_50Slag
35 752 4.5CN
Field 45 570
Mixes 29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F


Total


342


342


57 133


Table 4-2. Bridge
Core Sample
Identification


Core Samples Profiing Scheme.
Profie Penetration


ProBing Method


(mm)


0 -2 Milling
2 -4 Milling
4 -6 Milling
6 -8 Milling
8 -10 Milling
10 -12 Milling
- 18.35 Slicing
- 24.70 Slicing
- 31.05 Slicing
- 37.40 Slicing


12
18.35
24.70
31.05





























Figure 4-1. Cutting Bulk Diffusion Samples into Two Halves.


Figure 4-2. Bulk Diffusion Saline Solution Exposure.


























Figure 4-3. RCP test top surface removal of the sample preparation procedure.


Figure 4-4. RCP Sample Preparation: A) Cutting of the 2-inch Sample for the Test and B)
Preconditioning RCP Sample Surfaces to Receive Epoxy.






















Figure 4-5. RCP Sample Sealed with Epoxy.


1


Figure 4-6. RCP Sample Preconditioning Procedure: A) Reduction of Absolute Pressure and B)
Sample Desiccation










|ib


Figure 4-7. RCP Test Set-up.


Figure 4-8. Surface Resistivity Measurements.























A B

Figure 4-9. Profile Grinding Using a Milling Machine. A) Milling Machine Set Up and B)
Milling Process.










CHAPTER 5
RESULTS AND DISCUSSION

Fresh Properties

Several quality control procedures were executed during mixing and casting of the test

samples for the laboratory and field mixtures. The results obtained from the standard testing

procedures for slump (ASTM C 143), air content (ASTM C 173), concrete temperature (ASTM

C 1064), air temperature and unit weight of the concrete (ASTM C 13 8) are included in Table

5-1. Due to natural variability of concrete workability, a consistent concrete slump from mixture

to mixture is difficult to obtain. The laboratory concrete mixture slump measurements ranged

between 2.25 to 9.75-inch (57 to 248-mm) and the field mixtures between 0.5 to 7.75-inch (13 to

197-mm). The laboratory mixture unit weight measurements presented a coefficient of variation

of 1.5% and the field mixtures vary by 2.3%. This indicates that there were no large variations in

entrapped air or aggregate volume proportions among mixtures. The air content for all batches

was within the target range of 1.0 to 6.0%. The laboratory concrete mixture air contents range

from 1.25% to 6.0% and the field mixtures from 1.5% to 4%.

Mechanical Properties

The compressive strength of each mixture was evaluated in accordance with ASTM C39.

Though compressive strength is not a concrete permeability indicator, it represents a helpful tool

for checking the design compressive strength. Therefore, the compressive strength changes

caused by the mixture proportions and different added pozzolan can then be used as quality

indicators of the corrected preparation of the cast mixtures. Moreover, the strength trend of

change by time can be used as an indirect comparative reference to the electrical conductivity

results tested at the same age. The electrical conductivity of water saturated concrete depends on










part on its pore structure; as the pore structure of a concrete samples is reduced, the electrical

conductivity will decrease and the concrete strength will increase.

Compressive strengths were tested after 14, 28, 56, 91,182 and 364 days of continuous

moist curing for all the concrete mixtures. Detailed results are given in APPENDIX B.

Maximum values of strength were achieved in mixtures with the lowest water-cementitious

ratios. The effect on the mixtures by the addition of fly ash resulted in a slower gain of strength

during the early ages of hydration. During the first 56 days after casting, compressive strength of

fly ash mixes mixture was significantly less than those of the control mixture (Figure 5-1). This

lower early strength development is due to the low reactivity of the mineral admixture fly ash

(Mindess,Young and Darwin 2002). Strength tests conducted between 56 and 180 days showed

that the fly ash mixtures gained a compressive strength comparably equal to those of the control

mixture. Finally at 364 days after casting, the fly ash mixtures developed higher compressive

strength exceeding those of the control mixture.

The effect on the mixtures by the addition of the highly reactive pozzolan silica fume

contributed to the early development of compressive strength. During the first 14 days after

casting, compressive strengths of silica fume mixtures were less than those of the control mixture

(Figure 5-1). On the other hand, strength tests conducted between 28 and 182 days showed that

the silica fume mixtures had higher compressive strengths than those of the control mixture.

Finally at 364 days after casting, the effect of silica fume was stabilized and the compressive

strength was comparably equal to those of the control mixture.

The effect on the mixture by the addition of the pozzolan metakaoline contributed to the

early development of compressive strength. This beneficial effect was sustained until 364-days

after casting (Figure 5-1). On the other hand, the addition of calcium nitrite reduced the concrete










compressive strengths compared to the control mixture by about 30 percent for all the testing

days. Similar concrete strength behavior was reported by previous researches (Berke 1987;

Kondratova, Montes and Bremner 2003). They reported that the calcium nitrite can reduce

concrete compressive strength. However, other findings by Ann et al. (2005) contradict this

conclusion. They found that the calcium nitrite addition enhanced the concrete strength at early

ages compared to a control mixture.

Finally, Figure 5-2 shows some of the field mixtures compressive strength compared to the

laboratory control mixture. The compressive strengths are reduced compared to the control as the

water-cementitious ratio is increased or the amount of cementitious is reduced. Conversely, a

noticeable increase in strength was observed on the field mixture 28_ 800_20F with lower water-

cementitious ratio and higher amount of cementitious than the laboratory control mixture

(3 5_752).

Long-Term Chloride Penetration Procedures

The Nordtest Bulk Diffusion (NTBuild 443) test results after a 1 and 3 years of exposure

period were used as a benchmark to evaluate the conductivity tests. After their exposure period,

each of the samples were profiled and tested using the FDOT standard test method FM5-5 16 to

obtain their acid-soluble chloride ion content at varying depths.

The Bulk Diffusion procedure represents the most common test method of determining

chloride diffusion coefficients for concrete specimens. This procedure is believed to simulate a

"diffusion only" mechanism (Hooton, Thomas and Stanish 2001). The saturation of the samples,

previous exposure to the chloride solution, eliminates the contribution by the absorption

mechanism. Furthermore, the wicking effect is also eliminated with the sealing of all specimen

faces except the one exposed to the NaCl solution. The diffusion coefficients were determined by

fitting the data obtained in the chloride profiles analysis to Fick' s Diffusion Second Law










equation. The measured chloride contents at varying depths were fitted to Fick's diffusion

equation by means of a non-linear regression analysis in accordance with the method of least

square fit. The computerized mathematical tools of the program MathCad were used to fit the

data to the non-linear regressions. Table 5-2 to Table 5-5 show the obtained chloride diffusion

coefficients and surface concentration for 1 and 3 years of exposure. Moreover, chloride profies

and curve fitting results for each concrete mixture are summarized in APPENDIX C.

The mixture proportions affect directly the rate of chloride diffusion into concrete. Several

factors such as the water-cementitious ratios and the types and amounts of cementitious materials

used for the mixture will change the rate of chloride diffusion. Figure 5-3 and Figure 5-4 show a

comparison of the obtained chloride diffusion coefficients for 1 and 3 years of exposure for the

entire set of mixtures.

Table 5-6 shows the relative decrease in diffusion from 1 to 3-years of exposure.

Moreover, the effects on the diffusion coefficient by the addition of different pozzolans and

corrosion inhibitor are compared in Table 5-7. Mixtures having the same water-cementitious

ratios, cementitious contents and different pozzolan combinations and corrosion inhibitor were

compared. The chosen mixtures were cast under laboratory conditions with the same source of

materials. Mixture 35_752 that did not contain pozzolan was selected as the control to make the

comparisons. The changes in diffusion from 1 to 3-years compared to the control mixture are

also presented graphically in Figure 5-5. The results show that the addition of metakaolin

(3 5_752_10M) decreases the chloride diffusion compared to the control mixture by about 70

percent for the 1 and 3 years of exposure results. Moreover, the addition of silica fume

(3 5_752_8 SF), ground blast furnace slag (3 5_752_50Slag) and ternary blends of fly-ash with

metakaolin (3 5_752_10M_2F) or silica fume (3 5_752_8 SF_20F) decreases the chloride









diffusion approximately 50 percent for the 1 and 3 years of exposure results. The chloride

diffusion for samples containing fly-ash (3 5_752_20F) and classified fly-ash (3 5_752_12CF) did

not improve for samples exposed for a year. However, they improved for the longer exposure

period of 3 year. These could be related to the slow pozzolanic reaction of the mineral admixture

fly ash. Finally, the addition of calcium nitrite (3 5_752_4.5CN) did not improve the concrete

diffusion coefficient. The addition of calcium nitrite increased the chloride diffusion compared to

the control mixture by about 60 percent for the 1 year of exposure results and 133 percent for the

longer exposure of 3 years. Similar chloride diffusion behaviors were reported by previous

researches (Berke 1987; Ma, Li and Peng 1998; Kondratova, Montes and Bremner 2003). They

reported that the calcium nitrite tends to increase concrete chloride permeability values. Ma, Li

and Peng (1998) found that the addition of calcium nitrite influences the hydration process of

cement paste. It appears that calcium nitrite has the function of accelerating and stabilizing the

formation of the crystal phase of calcium hydroxide. This leads to an increase in the micropore

diameter in the hardened cement paste and thus to an increase in chloride permeability compared

to concrete without inhibitor.

Comparison of Conductivity and Long-Term Diffusion Tests

Rapid Chloride Permeability Test (RCP)

The results of the Rapid Chloride Permeability tests (RCP) (AASHTO T277) at ages 14,

28, 56, 91, 182 and 364 days were plotted with their respective 1 and 3 years Bulk Diffusion. It

was found that a power regression provided the best representation of the trends (APPENDIX F).

Other researchers (Hooton, Thomas and Stanish 2001) have also found this to be true in their

work. As an example, Figure 5-6 shows the 28-day and 91-day RCP results against the 1-year

Bulk Diffusion results for both the laboratory and field samples. Similarly, Figure 5-7 shows the

same RCP results plotted against the 3-year Bulk Diffusion results.









Previous research has shown that the RCP test method presents some limitations when

applied to concrete modified with chemical admixtures as corrosion inhibitors (Shi, Stegemenn

and Caldwell 1998). Concrete modified with a corrosion inhibitor such as calcium nitrite exhibits

a higher coulomb value than the same concrete without the corrosion inhibitor when tested with

the RCP test. Yet long-term chloride ponding tests have indicated that concrete with calcium

nitrite is at least as resistant to chloride ion penetration as the control mixture. Conversely, the

RCP results compared with the 1 and 3 years Bulk Diffusion results tend to follow the same

trend as the other concrete mixtures. The calcium nitrite effect, however, is represented by only

one mixture on the entire specimen population. Consequently, there is not enough information to

draw a solid Einal conclusion from the available data results. Therefore, the concrete mixture

containing calcium nitrite (3 5_752_4.5CN) was not included on the general correlations with

long-term tests in order to establish a uniform level of comparison between all the electrical tests.

General levels of agreement (R2) to references are presented in Table 5-8. Moreover, detailed

graphs with their least-squares line-of-best fit for the complete set of data are presented in

APPENDIX G.

Surface Resistivity

The electrical conductivity derived from the surface resistivity test was also compared to

their respective 1 and 3 years Bulk Diffusion. The surface resistivity test was conducted using

two methods of curing, one at 100% humidity (moist cured) and the other in a saturated Ca(OH)2

solution (lime cured). Surface resistivity results from the two curing regimens at 14, 28, 56, 91,

182, 364, 455 and 546 days of age are compared to their respective diffusion test results. The

data were then fit with a curve to provide an empirical relationship between the short and long

term tests. Power function was selected because it provided the best fit with the relationship

between the two set of test results (APPENDIX F). Concrete modified with a corrosion inhibitor









as calcium nitrite may exhibit misleading results in electrical resistivity tests (Shi, Stegemenn

and Caldwell 1998). Consequently, these values were excluded from the curve fit. Figure 5-8 and

Figure 5-9 show detailed graphs of the test correlations with their respective derived least-square

line-of-best fit.

The surface resistivity correlation coefficients (R2) for the two curing regimens are

compared in Figure 5-12 and Figure 5-13. The figures show the R2 TOSults for the Bulk Diffusion

correlation for the two exposure periods, respectively. The comparison between the two curing

procedures shows little difference. A relative gain in correlation, however, was observed for the

moist cured regimen at 14 days of age. The difference in the number of samples tested at that age

(Table 5-9) might explain the relative increase in the correlation. Fewer samples were tested for

the moist cured regimen than for the lime cured specimens. Consequently, the probability of

fitting a set of data increases for fewer numbers of records. Therefore, it is concluded that either

of the methods will derive on equal surface resistivity behavior. General levels of agreement (R2)

to references for both curing methods are presented in Table 5-9. Moreover, detailed graphs with

their least-squares line-of-best fit for the complete set of data are presented in APPENDIX G.

Relating Electrical Tests and Bulk Diffusion

The standardized RCP test method, ASTM C1202, is commonly required on construction

proj ect specifications for both precast and cast-in-place concrete. Pfeifer, McDonald and Krauss

(1994) indicate that the engineer or owner usually select an arbitrary limit of 1000 coulombs for

concrete elements under extremely aggressive environments. This RCP coulomb limit for 28-day

moist cured concrete is required by the Florida Department of Transportation (FDOT) when

Class V or Class V Special concrete containing silica fume or metakaolin is specified (FDOT

346 2004). The typical application for this high performance concrete is piling to be installed in

salt water.









The commonly used 1000 coulomb limit at 28-day RCP test has been chosen based on a

scale reported in the standardized test procedure (Table 2-1). This scale presents a qualitative

method that relates the equivalent measured charge in coulombs to the chloride ion permeability

of the concrete. The original research program that derived the rating scale (Whiting 1981) was

based upon a reduced amount of single core concrete samples that did not include pozzolans or

corrosion inhibitors. The set of data results were linearly fitted (R2 Of 0.83) and five qualitative

ranges of chloride permeability were defined based on the long-term chloride ponding test

AASHTO T259. These permeability ranges were selected by grouping concrete mixture with

similar AASHTO T259 and RCP results.

The applicability of the RCP has been considered extensively in the literature (Whiting

1981; Whiting 1988; Whiting and Dziedzic 1989; Ozyildirim and Halstead 1988; Scanlon and

Sherman 1996) with samples containing a wide variety of pozzolans and corrosion inhibitors.

They have demonstrated no consistent correlation between the RCP results and the rates of

chloride permeability presented in standard procedure. The electrical conductivity of the water

saturated concrete depends on part on the chemistry of pore solution. Changes in pore solution

chemistry generate considerable alterations in the electrical conductivity of the sample. These

variations can be produced by the presence of pozzolans or corrosion inhibitors that were not

included on the original research that developed the rating table. Therefore, this indicates that the

RCP test was never intended as a quantitative predictor of chloride permeability into any given

concrete (Pfeifer, McDonald and Krauss 1994). The test was designed as a quality control

procedure that should be calibrated with long-term tests. As stated in the scope of the RCP

standard method, the rapid test procedure is applicable to types of concrete in which correlations

have been established between this rapid test procedure and long-term chloride ponding tests.









It has been argued by the industry that a RCP limit of 1000 coulombs to categorize very

low chloride permeability concrete on a 28-day sample is unreasonably low. The original RCP

coulomb limits were derived from correlations between 90-day RCP samples and 90-day

AASHTO T259 ponding test. Therefore, the use of these restrictions on lower testing ages, as 28

days, represents a conservative approach to quality control. The electrical conductivity of

concrete decreases with time as the process of hydration takes place. This is particularly true of

fly ash or other slower reacting pozzolans. Conversely, silica fume is rather fast acting resulting

in low apparently age RCP values. Figure 5-15 shows these effects on the electrical conductivity

by the addition of fly ash and silica fume. Moreover, Figure 5-16 illustrates the changes on RCP

results for the complete set of mixtures. Results show a higher rate of RCP coulombs decrease

for the first 91 days of curing, followed by a relative stable flat trend in most of the cases.

Furthermore, the chloride ponding test used as a benchmark to derive the original RCP

coulomb limits, AASHTO T259, presents several limitations. Chloride profies obtained from the

long-term chloride ponding test were analyzed using the total integral chloride method. This

method calculates the total quantity of chlorides that has penetrated the samples during the

exposure period of exposure. It is obtained by integrating the area under the chloride profie

curve from the surface of exposure to the point where the chloride background is reached (Figure

5-14). Previous research Eindings (Hooton, Thomas and Stanish 2001; Vivas, Hamilton and Boyd

2007) have indicated that this chloride content measurement method is not a good indicator of

diffusion of chlorides in concrete. The method only takes into consideration the total amount of

soluble chlorides for a particular depth. Significant information such as the shape of the chloride

penetration curve is not reflected in this result.









Diffusion mechanism is considered the principal mechanism that drives chloride ions into

the pore structure of concrete (Tuutti 1982; Stanish and Thomas 2003). However, the AASHTO

T259 test set up induces a combined effect of diffusion, adsorption and vapor conduction

wickingg) mechanisms. Previous research (McGrath and Hooton 1999) has suggested that the

relative importance of the absorption effect is overestimated by the AASHTO T259 test set up.

Hooton, Thomas and Stanish (2001) have indicated that the relative amounts of chloride ions

drawn into the concrete by the absorption effect compared to the amount entering by diffusion

will be greater when the test is run only for a short period of time compared to the relative

amounts during the lifetime of a structure. Moreover, they exposed that the wicking effect is also

overestimated by the test procedure. The actual structure humidity gradient will likely be less, at

least for part of the time, than the exposed during the test. Therefore, the use of a well-controlled

"diffusion only" ponding test as Bulk Diffusion test will improve the precision of the chloride

penetration profile and may more accurately reflect the extent of long-term penetration of

chloride into concrete than the AASHTO T259 test. Consequently, a method to relate the

equivalent measured charge in coulombs to the chloride ion permeability of the concrete based

on the Bulk Diffusion test is needed.

Curve fitting of the relationship between RCP or SR and the 1 and 3-year Bulk Diffusion

test results were previously presented. Figure 5-17 and Figure 5-18 shows the correlation

coefficients (R2) Of those fits as a function of the time at which the respective RCP test was

conducted. The plots are for 1 and 3-year Bulk Diffusion results. The R2 ValUeS for both Bulk

Diffusion ages increase dramatically for approximately the first 91-days. The RCP R2 reaches

plateau at 91 days when compared to those of 1-year Bulk Diffusion. This is believed to be

related to the high variability on the different pozzolan internal reactions at early age concretes.









Concrete mixtures containing highly reactive pozzolans as silica fume will react faster than

mixtures containing slower reacting pozzolans as fly ash. However, as the concrete internal

hydration takes place, these reactions will be reduced. Consequently, the short-term test results

obtained from these more stable mixtures will correlate better to the long-term specimens. RCP

samples compared to those of 3-year Bulk Diffusion achieve a maximum R2 value at 1 year of

testing. R2 ValUeS from correlations of Surface Resistivity tests (Table 5-9) to the references were

also included in the comparison with similar results. Even duo the maximum R2 Value for the 3-

year Bulk Diffusion results is reached at 1-year RCP, the 91-day R2 is considered also a

reasonable correlation level. Therefore based on the reduced variability reached at 91-days, it is

concluded that the earliest effective age at which the RCP and SR will correlate with the 1 or 3

year Bulk Diffusion test is 91 days. Furthermore, the relationship between the 91-day RCP

results and the BD tests can be used to derive a target Bulk Diffusion coefficient for Florida

concretes. This target is based on the 1000 coulomb requirement that is commonly used to

characterize durable concrete. The ultimate goal is to be able to predict a 1 or 3-year Bulk

Diffusion from a test conducted at 91-days. The diffusion coefficient related to a given coulomb

value can be obtained from the trend line equation of the test correlations as shown in Figure

5-19 and Figure 5-20. Table 5-10 shows a complete scale for categorizing 91 day RCP results

related to the chloride permeability measured by a 1 and 3 year Bulk Diffusion test.

Refinement of the Long-Term Diffusion Coefficient Prediction Using Monte Carlo
Simulation

Closed form statistical solutions were used to develop the scale presented in the previous

section. 91-days was found to be the earliest effective testing age to predict the chloride diffusion

penetration of a 1 and 3 year Bulk Diffusion test when using either SR or RCP. The proposed

diffusion coefficients related to a given coulomb value were obtained from a fit of the available










experimental data (Figure 5-19 and Figure 5-20). Each of the data values used in the test

correlations was a product of an average of three experimental results. Some of these results had

high coefficient of variation with up to 15% on the RCP results (APPENDIX E) and 30% on the

Bulk Diffusion (Table 5-2 and Table 5-4).

To ensure that the variability in the data was accounted for appropriately Monte Carlo

simulation was conducted. This simulation was focused on obtain the respective diffusion

coefficient results related to the standard RCP limits. The available RCP data and Bulk Diffusion

test results at 1 and 3 years of chloride exposure were included in the analysis. Each of the Bulk

Diffusion coefficients and RCP test results were simulated with separate independent random

variables using a normal distribution. The parameters required to define the shape of the normal

distribution, mean and standard deviation, were calculated from the three available data points

from each set of mixture test results. A complete set of Bulk Diffusion and RCP results were

randomly generated from the different normal distribution models. In some of the cases due to

the high coefficient of variation of the variables, the RCP or Bulk Diffusion randomly generated

values resulted on negative values, which was incorrect. Therefore, these negative simulated

results were replaced with new positive random results. The respective best-fit-equation was then

calculated based on the power function model. The diffusion coefficients related to the standard

coulomb limit values were then obtained from the new trend line equation. This process was

repeated many times and different diffusion coefficient results for each RCP limits were

obtained. Finally, the average and standard deviation of the obtained group of diffusion results

were assembled in a histogram.

Figure 5-21 shows a schematic of the correlation process using the Monte Carlo

simulation. Initially 100 simulations were run and the average and standard deviation of each









group was recorded. The coefficient of variation (COV) of the obtained set of results for each of

the number of samples was then calculated (Figure 5-22 and Figure 5-23). To ensure a low COV

the selected number of interaction was increased from 100 to 50000 samples which reduced the

COV to less than 1%.

The average and standard deviation of the correlation coefficient (R2) Obtained for each of

RCP and Surface Resistivity curve-fitting using the simulation (Table 5-11) are compared in

Figure 5-24 and Figure 5-25. The obtained results corroborated previous findings. The average

of RCP and Surface Resistivity trend of agreement reaches a maximum value on samples tested

at 91 days when compared to those of I and 3 year Bulk Diffusion. Therefore, it is concluded

that the most effective RCP and Surface Resistivity testing age to predict the chloride diffusion

penetration of a 1 or 3 year Bulk Diffusion test is 91 days. More realistic diffusion coefficients

associated with these test results can be derived. The average and standard deviation of the

chloride permeability measured by a 1 and 3 year Bulk Diffusion test related to 91 day RCP

results including the grade of variability from the experimental data is presented in Table 5-12.










Table 5-1. Fresh Concrete Properties.


Air Concrete
Content Temperature
(%) (oF)
3.5 76
2 79
2.5 80
3 81
1.5 80
4.5 80
2.5 76
4.5 78
4.5 76
1.25 80
2 74
6 76
4 94
1.5 92
3.5 88
2 90
1.7 96
2.8 98
2 93


Air
Temperature
(oF)
72
72
75
75
72
73
72
70
78
80
72
72
81
96
98
89
99
93
96


Unit
Weight
(pcf)
140.62
144.62
140.40
142.32
144.32
140.52
143.72
139.72
145.22
144.02
142.82
140.49
140.49
148.64
145.01
143.08
148.77
142.16
147.39


Slump
(in)
7.5
3
9.75
9
2.25
6
3
4
5.5
8
6
9
0.5
3
7
7
6.5
7.75
5.5


Mixture Name
Lab. 49 564
Mixes 35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M
35 752 10M 20F
35_752_50Slag
35 752 4.5CN
Field 45 570
Mixes 29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F










Table 5-2. 1-Year Bulk Diffusion Coefficients.
1-Year Bulk Diffusion (x10-1) (m2/SOC)


Coefficient of
Variation
(%)


Standard
Deviation
3.182
0.407
0.627
0.085
0.869
0.516
0.360
0.619
0.198
0.168
0.567
1.024
1.405
1.017
0.068
1.354
0.101
0.834
0.827


Mixture Name
49 564
35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M
35 752 10M 20F
35_752_50Slag
35 752 4.5CN
45 570
29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F


Sample A
22.451
4.050
10.645
1.345
4.222
5.374
2.299
2.351
0.877
2.251
2.994
6.644
11.703
6.306
5.829
3.027
2.231
3.330
2.212


Sample B
16.607
4.433
9.738
1.175
5.255
4.637
2.255
2.729
1.206
2.425
2.100
8.406
9.155
4.452
5.723
5.729
2.169
2.490
3.361


Sample C
17.347
4.863
9.440
1.254
5.948
4.378
1.656
3.562
1.232
2.587
3.151
6.622
9.404
4.656
5.851
4.526
2.366
1.662
1.756


Average
18.801
4.449
9.941
1.258
5.142
4.796
2.070
2.881
1.105
2.421
2.748
7.224
10.087
5.138
5.801
4.427
2.255
2.494
2.443










Table 5-3. 1-Year Bulk Diffusion Surface Concentration.
1-Year Bulk Diffusion Surface Concentration (lb/yd3)


Coefficient of
Variation
(%)


Standard
Deviation
2.465
1.794
1.859
5.147
1.669
3.715
3.032
5.592
7.930
5.045
10.135
10.257
4.607
3.909
7.218
2.438
1.453
1.398
6.242


Mixture Name
49 564
35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M
35 752 10M 20F
35_752_50Slag
35 752 4.5CN
45 570
29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F


Sample A
34.385
46.835
47.345
53.651
46.474
54.147
54.787
55.771
71.946
57.641
55.913
73.541
47.348
59.443
58.558
30.835
31.105
25.791
43.569


Sample B
39.102
49.390
51.026
59.521
47.442
60.405
55.418
66.298
62.979
47.788
75.667
53.329
53.144
67.260
51.562
27.014
30.618
28.249
31.820


Sample C
35.500
45.930
49.637
49.262
44.192
60.744
60.326
57.763
78.792
54.601
61.852
60.400
56.449
63.426
44.124
26.301
33.343
28.176
34.043


Average
36.329
47.385
49.336
54.145
46.036
58.432
56.843
59.944
71.239
53.343
64.477
62.424
52.314
63.376
51.415
28.050
31.688
27.405
36.477










Table 5-4. 3-Year Bulk Diffusion Coefficients.
3 -Year Bulk Diffusion (x10-1) (m2/SOC)


Coefficient of
Standard Variation
Deviation (%)
2.991 11
0.502 10
2.281 21
0.308 35
0.042 2
0.100 3
0.165 8
0.226 9
0.187 13
0.036 2
0.506 22
3.448 30
7.174 28
0.791 8
0.565 18
0.421 17
0.495 25
0.694 31
0.135 10


Mixture Name
49 564
35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M
35 752 10M 20F
35_752_50Slag
35 752 4.5CN
45 570
29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F


Sample A
29.829
5.371
9.706
1.212
2.160
3.806
1.796
2.850
1.601
2.168
2.346
8.174
31.792
10.036
3.426
2.305
2.165
3.004
1.517


Sample B
25.367
4.383
8.962
0.850
2.240
3.711
2.126
2.683
1.227
2.108
2.785
15.054
26.808
10.012
2.527
2.265
2.412
1.891
1.384


Sample C
24.146
5.034
13.232
0.600
2.224
3.606
1.951
2.402
1.392
2.172
1.776
11.208
17.648
11.394
3.570
3.013
1.459
1.730
1.246


Average
26.448
4.929
10.633
0.887
2.208
3.708
1.958
2.645
1.407
2.149
2.303
11.479
25.416
10.481
3.174
2.528
2.012
2.208
1.382










Table 5-5. 3-Year Bulk Diffusion Surface Concentration.
3-Year Bulk Diffusion Surface Concentration (lb/yd3)


Coefficient of
Variation
(%)


Standard
Deviation
3.298
3.730
5.028
4.204
0.913
2.356
1.737
1.160
5.295
2.726
3.944
5.562
2.219
5.936
2.744
3.998
7.530
9.922
10.130


Mixture Name
49 564
35 752
45 752
28 900 8SF 20F
35 752 20F
35 752 12CF
35 752 8SF
35 752 8SF 20F
35 752 10M
35 752 10M 20F
35_752_50Slag
35 752 4.5CN
45 570
29 450 20F
33 658 18F
34 686 18F
30 673 20F
28 800 20F
29 770 18F


Sample A
42.142
38.149
32.424
43.308
48.987
44.462
43.873
44.198
48.341
54.117
58.649
43.146
32.031
28.404
50.868
52.297
47.266
48.184
46.782


Sample B
37.922
42.069
42.464
51.303
49.661
47.510
41.652
41.879
58.918
48.665
54.684
32.824
31.344
38.815
46.620
55.521
39.726
58.766
65.549


Sample C
35.642
45.607
36.961
45.051
47.854
49.098
40.450
43.106
53.198
51.317
62.573
41.576
35.485
38.552
45.735
60.245
54.786
68.012
49.553


Average
38.569
41.942
37.283
46.554
48.834
47.023
41.991
43.061
53.486
51.367
58.635
39.182
32.953
35.257
47.741
56.021
47.259
58.320
53.961





Table 5-6. Bulk Diffusion Ratio of Change from 3 -Years to 1-Year of Exposure.
Bulk Diffusion (x10-12) (m2/Sec) Bulk Diffusion
Ratios
Mixture Name 1-Year Samples 3-Year Samples (3 -Years/1-Year)
49 564 18.801 26.448 1.41
35 752 4.449 4.929 1.11
45 752 9.941 10.633 1.07
28 900 8SF 20F 1.258 0.887 0.71
35 752 20F 5.142 2.208 0.43
35 752 12CF 4.796 3.708 0.77
35 752 8SF 2.070 1.958 0.95
35 752 8SF 20F 2.881 2.645 0.92
35 752 10M 1.105 1.407 1.27
35 752 10M 20F 2.421 2.149 0.89
35_752_50Slag 2.748 2.303 0.84
35 752 4.5CN 7.224 11.479 1.59
45 570 10.087 25.416 2.52
29 450 20F 5.138 10.481 2.04
33 658 18F 5.801 3.174 0.55
34 686 18F 4.427 2.528 0.57
30 673 20F 2.255 2.012 0.89
28 800 20F 2.494 2.208 0.89
29 770 18F 2.443 1.382 0.57

Table 5-7. Pozzolans and Corrosion Inhibitor Effects on Bulk Diffusion Coefficients.
1-Year Samples 3-Year Samples


Ratio of Diff. to
Bulk Diff. (x10-12) COntrol Bulk D
Mixture Name (a) (m2/Sec) Mixture(c)
35 752(b 4.449 1.00
35 752 20F 5.142 1.16
35 752 12CF 4.796 1.08
35 752 8SF 2.070 0.47
35 752 8SF 20F 2.881 0.65
35 752 10M 1.105 0.25
35 752 10M 20F 2.421 0.54
35_752_50Slag 2.748 0.62
35 752 4.5CN 7.224 1.62
(a) These mixtures were cast at the laboratory with the same source of materials.
(b) 35_752 is defined as the Control Mixture.


Ratio of Diff.
to Control
Mixture(c)
1.00
0.45
0.75
0.40
0.54
0.29
0.44
0.47
2.33


,iff. (x10-12)
(m2/Sec)
4.929
2.208
3.708
1.958
2.645
1.407
2.149
2.303
11.479










Table 5-8. Correlation Coefficients (R2) Of RCP to Reference Tests.


Test Conducted
Age (Days)


1-Year Bulk
Diffusion (a)


3 -Year Bulk
Diffusion (a)


Number of
Sample Sets


Test Procedure


0.59


0.39


RCP 28 0.67 0.47
56 0.81 0.70
(AASHTO T277) 91 0.80 0.76
182 0.79 0.78
364 0.77 0.81
(a) Concrete Mixture Containing Calcium Nitrite (35_752_4.5CN) was not included in the correlation.


Table 5-9. Correlation Coefficients (R2) Of Surface Resistivity to Reference Tests.


Test Conducted
Age (Days)
14
28
56
91
182
364
455
546
14


1-Year Bulk
Diffusion (a)


3 -Year Bulk
Diffusion (a)


Number of
Sample Sets


Test Procedure

Surface
Resi stivity
(Lime Cured)






Surface
Res~istiv~i t~


0.48
0.77
0.80
0.84
0.81
0.70
0.70
0.68
0.76


0.29
0.49
0.60
0.72
0.77
0.77
0.77
0.73
0.50


18
18
18
18
18
18
18
13(b)


LVICyIC 28
(Moist Cured) 56
91
182
364
455
546
(a) Concrete Mixture Containing Calcium Nitrite (35_752_


0.75 0.53
0.75 0.60
0.79 0.72
0.77 0.79
0.74 0.76
0.70 0.78
0.69 0.75
_4.5CN) was not included in the correlation.


(b) Fewer set of samples were available for this correlation.


Table 5-10. I and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs).
91-Day RCP Charge Passed 1-Year Bulk Diffusion 3 -Year Bulk Diffusion
(Coulombs) (x10-12) (m2/S) (x10-12) (m2/S)


> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100


> 8.478
4.044 8.478
1.929 4.044
0.165 1.929
< 0.165


> 10.518
3.834 10.518
1.398 3.834
0.049 1.398
< 0.049
















































Table 5-12. I and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs) by
Monte Carlo Simulation Analysis.
1-Year Bulk Diffusion (x10-12) 3 -Year Bulk Diffusion (x10-12)
91-Day RCP (m2/S) (m2/S)
Charge Passed Standard Standard
(C oul omb s) Average Deviation Average Deviation


Table 5-11i. Correlation Coefficients (R2) Of RCP and Surface Resistivity to Reference Tests by
Monte Carlo Simulation Analysis.
Test -Year Bulk Diffusion (a) 3 -Year Bulk Diffusion (a)


Conducted
Age (Days)


Standard
Deviation

0.07


Standard
Deviation

0.04


Test Procedure

RCP (AASHTO
T277)


Average
0.54


Average
0.37


lrll/28 0.61
56 0.75
91 0.74
182 0.73
364 0.72
Surface 14 0.43
Resi stivity 28 0.71
(Lime 56 0.74
Cured) 91 0.78
182 0.74
364 0.66
455 0.65
546 0.64
Surface 14 0.73
Resi stivity 28 0.69
(Moi st 56 0.69
Cured) 91 0.73
182 0.72
364 0.70
455 0.65
546 0.64
(a) Concrete Mixture Containing Calcium Nitrite (35_752_


0.08 0.46
0.06 0.66
0.05 0.73
0.05 0.75
0.05 0.78
0.08 0.28
0.07 0.48
0.07 0.58
0.06 0.69
0.06 0.73
0.05 0.75
0.05 0.74
0.05 0.71
0.04 0.48
0.06 0.51
0.07 0.58
0.06 0.70
0.05 0.76
0.05 0.73
0.05 0.75
0.05 0.72
4.5CN) was not included in the correlation.


0.05
0.05
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.06
0.04
0.04
0.04
0.03
0.04
0.05
0.04
0.04
0.04
0.04
0.04


> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100


> 8.924
4.020 8.924
1.820 4.020
0.162 1.820
< 0.162


> 0.676
0.196 0.676
0. 170 0. 196
0.039 0. 170
< 0.039


> 10.866
3.814 10.866
1.345 3.814
0.044 1.345
< 0.044


> 0.969
0.204 0.969
0. 115 0.204
0.013 0. 115
< 0.013










12000


12000


oa8000 1

S6000 i

4000 -


oa8000 -

S6000 i

4000 -


-*- 35_752 (Control)
~35 752 20F
1 I


-*- 35_752 (Control)
~t35 752 8SF


0 100 200 300 400
Age (Days)


0 100 200 300 400
Age (Days)


12000




oa8000

S6000

4000


12000 -



10 000 -



S6000 -

4000 -


-*- 35_752 (Control)
~t35 752 4.5CN


-- 35_752 (Control)
t35 752 10M


ill


ill


0 100 200 300 400
Age (Days)


0 100 200 300 400
Age (Days)


Figure 5-1. Comparative Compressive Strength Development of Laboratory Control Mixture
(3 5_752) and Laboratory Mixtures Containing: A) Fly Ash (3 5_752_20F), B) Silica
Fume (3 5_752_8 SF), C) Calcium Nitrite (3 5_752_4.5CN) and D) Metakaoline
(35_752_10M).










12000


12000


oa8000

S6000

4000


oa8000 -

m 6000 i

4000 -


-*- 35_752 (Control)
-M- 34 686 18F


-* 35_752 (Control)
-M--45 570


0 100 200 300 400
Age (Days)


0 100 200 300 400
Age (Days)


12000




oa8000

S6000

4000


-4 -5_752 (Control)
-94-28 800 20F


ill


0 100 200 300 400
Age (Days)


Figure 5-2. Comparative Compressive Strength Development of Laboratory Control Mixture
(3 5_752) and Field Mixtures: A) 45_570, B) 34_686_18F and C) 28_800_20F.














































0 3-Year Samples


30
0 1-Year Samples


~20

10 -


0 o
3

cN 0 00
o
UI

MitreNm

Noe Calicim itrie (CN) FlyAs (F) Clsife Fl-s (C) Siic Fum (SF an Meaaln()

Fiur 5-.1Ya ukDifso ofiietCmaios


30




~20




C 10

0


0 0~O 0 N p m 0
IAa 3


b0
iD~
v~v,
O\v,
bb


Mixture Name


Note: CaliciumNitrite (CN), Fly-Ash (F), Classified Fly-Ash (CF), Silica Fume (SF) and Metakaolin (M).


Figure 5-4. 3-Year Bulk Diffusion Coefficient Comparisons.











Control i -Year Data
Mixture O 3-Year Data


Mixture Name
Note: Calicium Nitrite (CN), Fly -Ash (F), Classified Fly -Ash (CF), Silica Fume (SF) and Metakaolin (Ml).


Figure 5-5. Pozzolans and Corrosion Inhibitors Effects on Bulk Diffusion Coefficients.


15000


15000






PI 5000


10000



5000


0 10 20
Bulk Diffusion (x10-1 2) (2/s)


10 20 30
Bulk Diffusion (x10-1 2) (2/S)


Figure 5-6. 1-Year Bulk Diffusion vs. RCP (AASHTO T277) at A) 28 Days and B) 91 Days.










15000


15000


SR = 0.474 J R = 0.755
10000o -I I 10000-
o +o


PI 5000 -1 +- I 5000 -1 X


/ x Calcium Nitrite Mix x Calcium Nitrite Mix
01 1 I 0
0 10 20 30 0 10 20 30
Bulk Diffusion (x10-1 2) (2/s) Bulk Diffusion (x10-12) (2/S)
A B

Figure 5-7. 3-Year Bulk Diffusion vs. RCP (AASHTO T277) at A) 28 Days and B) 91 Days.

0.3 0.3
y 0.019x0.0
I I R2 0.840
S0.2 0.2-

0. y=0070.5 .
R2 = 0.0770

x Calcium Nitrite Mix I x Calcium Nitrite Mix
01 1 I 0
0 10 20 30 0 10 20 30
Bulk Diffusion (x10 1) (m /s) Bulk Diffusion (x10' 2) (m /s)
A B

Figure 5-8. 1-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity at: A) 28 Days and B) 91
Days.



































0.848
y 0.016x
R2 0.787







x Calcium Nitrite Mix


0 10 20 30
Bulk Diffusion (x10 1) (m /s)


V.,
y=0.02X0.763

R2 0.747
0.2 -



0.1 +

x Calcium Nitrite Mix


0 10 20 3
Bulk Diffusion (x10 ') (m /s)


u 0.2
I

0.1


u 0.2
I

0.


10 20 1
Bulk Diffusion (x10 1) (m /s)


10 20 30
Bulk Diffusion (x10 1) (m /s)


Figure 5-9. 3-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity at: A) 28 Days and B) 91
Days.


0.3



S0.2

0.1


Figure 5-10. 1-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity at: A) 28 Days and B) 91
Days.











0.487
y = 0.042x
R2 = 0.533







xCalcium Nitrite Mix

)10 20 3
Bulk Diffusion (x10 1) (m /s)


u 0.2
I

-
( .1


u 0.2
I

E .


10 20 30
Bulk Diffusion (x10 1) (m /s)


Figure 5-11. 3-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity at: A) 28 Days and B) 91
Days.


~y0.8

S0.6

0.4

S0.2
00


14 28 56 91 182 364 454 544
Age (Days)


O SR (Lime Cured) SR (Moist Cured)


Figure 5-12. Curing Method Comparison of Correlation Coefficients with 1-Year Bulk Diffusion
Test.












~~0.8-

2~0.6-


+0.


14 28 56 91 182 364 454 544
Age (Days)
O SR (Lime Cured) SR (Mloist Cured)


Figure 5-13. Curing Method Comparison of Correlation Coefficients with 3-Year Bulk Diffusion
Test.




.4 Total Integral
2 Chloride Content







Initial Chloride Background

De pth of Pe ne tration (mm)


Figure 5-14. AASHTO T259 Total Integral Chloride Content Analysis.










8000


5 60001 35 752 8SF


o 4000-


S2000-




0 100 200 300 400
Testing Age (Days)


Figure 5-15. RCP Test Coulomb Results Change With the Addition of Fly Ash and Silica Fume.
























11111I
0 100 200 300 400
Testing Age (Days)


-A- 35 752 8SF
-+-35 752 8SF 20F
-m-35 752 10M
-A-35 752 10M 20F
-X- 35_752_50Slag
-a- 35 752 4.5CN


12000


12000


8000



4000


8000



4000


0 100 200 300 400
Testing Age (Days)


12000


12000


8000



4000


8000



4000


0 100 200 300 400
Testing Age (Days)


0 100 200 300 400
Testing Age (Days)


Figure 5-16. RCP Test Coulomb Results Change With Age for: A,B) Laboratory Mixtures and
C,D) Field Mixtures.











I I


I


-m- RCP

-+ Suface Resistivity (ime)

-M- Suface Resistivity (Mloist)


0.8 -



S0.6 -

-

S0.4 -

-

0.2 -


a


-m- RCP

-+ Suface Resistivity (ime)

-x- Suface Resistivity (Mloist)


200 400
Age (Days)


Figure 5-17. General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 1-
Year Bulk Diffusion.


1-



0.8 -



U 0.6 -

-

S0.4 -



0.2


200 400
Age (Days)


600


Figure 5-18. General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 3-
Year Bulk Diffusion.










15000


2000


E 10000

o

PI 5000


a 1000

P.
500


10 20 :
Bulk Diffusion (x10 l) (m /)


0 1 2 3
Bulk Diffusion (x10 ')(m /s


Figure 5-19. Relating Electrical Tests and Bulk Diffusion. A) 1-Year Bulk Diffusion vs. RCP at
91 Days and B) 1-Year Bulk Diffusion Coefficient Associated with a 91-Day RCP
Test of a 1000 Coulombs.


15000



E 10000

o

PI 5000
U


2000



150

a 1000

P.
C) 500


10 20 :
Bulk Diffusion (x10 ') (m /s)


0 1 2 3
Bulk Diffusion (x10 1) (m /s)


Figure 5-20. Relating Electrical Tests and Bulk Diffusion. A) 3-Year Bulk Diffusion vs. RCP at
91 Days and B) 3-Year Bulk Diffusion Coefficient Associated with a 91-Day RCP
Test of a 1000 Coulombs.













Best-fit-curve based on
Power Function Model


Bulk Diffusion (m /s)



Family of Curves Fitted to the Random
Variables Generated
-*** ;


Bulk Diffusion (m Is)


RCP Limit


Y
FI
~ 'G
~rFI
rc~
aO




a


Bulk Diffusion (m2/S)


Bulk Diffusion (m Is)


Figure 5-21. Schematic Process of Bulk Diffusion Correlation to RCP Using Monte Carlo
Simulation: A) Generating Data Parameters from Normal Random Variables, B)
Curve Fitting of Generated Variables Based on Power Function Model, C) Family of
Curves Generated for each Set of Random Variables, D) Associated Bulk Diffusion
Coefficients to the RCP Limits of each Fitted Curve and E) Bulk Diffusion Histogram
for Simulated Data.











600



400



200



0-
3.3


3.8 4.2

Bulk Diffusion (x10 )2(m /s)


Figure 5-21. Continued.


-* 100 Coulombs
-m- 1000 Coulombs
-x- 2000 Coulombs
-6- 4000 Coulombs









)0 1000 10000 100000
Number of Samples


1.5


1000 10000 100000
Number of Samples


Figure 5-22. 1-Year Bulk Diffusion Coefficient of Variation Change by the Number of Samples
Used in Monte Carlo Simulation for the Different RCP Standard Limits. A) Mean and
B) Standard Deviation for 28-Day RCP Test.











-* 100 Coulombs
-m- 1000 Coulombs
-x- 2000 Coulombs
-6- 4000 Coulombs









00 1000 10000 100000
Number of Samples


1.5 -


1-



0.5 -


0


1000 10000
Number of Samples


100000


Figure 5-23. 1-Year Bulk Diffusion Coefficient of Variation Change by the Number of Samples
Used in Monte Carlo Simulation for the Different RCP Standard Limits. A) Mean and
B) Standard Deviation for 91-Day RCP Test.


1.00 -



S0.80 -

0.60




S0.20 -


-m- RCP
_ Surface Resistivity (Lime)
-x- Surface Resistivity (Mloist)


200 400
Age (Days)


Figure 5-24. General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 1-
Year Bulk Diffusion by Monte Carlo Simulation Analysis.










1.00


S0.80-



U 0.60-

lr -m- RCP
S0.40 -( -+- Surface Resistivity (Limne)
U I- -- Surface Resistivity (Moist)

0.20
0 200 400 600
Age (Days)


Figure 5-25. General Correlation Coefficients (R2) Of Electrical Tests by Testing Ages with 3-
Year Bulk Diffusion by Monte Carlo Simulation Analysis.










CHAPTER 6
FIELD CORE SAMPLING

Diffusion Coefficients of Cored Samples

The chloride diffusion coefficients and surface chloride concentrations of the cored

samples were obtained by fitting the obtained concentrations at varying depths and the initial

chloride background levels to the non-linear Fick' s Second Law of Diffusion solution (Table

6-1). The Fick' s Second Law solution assumes that the unique chloride mechanism that

transports the chloride ions through the concrete is diffusion. This is a reasonable assumption for

tests conducted under controlled laboratory conditions, such as the Bulk Diffusion test. Elements

located in marine environments, however, are intermittently subj ected to chloride exposure due

to tidal fluctuations. Wetting and drying due to tides encourages absorption, which is generated

by capillary suction of the concrete pulling seawater into the concrete. Moreover, the tidal

fluctuations also induce leaching of unbonded shallow surface chlorides. During concrete drying

period, shallow surface water evaporates and chlorides are left either as chemically bonded to the

pore walls or as unbonded crystal forms. Subsequently, when the concrete is again wetted, some

of these unbonded crystals are leached out of the concrete surface. Therefore, chloride profiles of

field cores can differ from that obtained under permanent chloride immersion, such as the

laboratory test Bulk Diffusion. The chloride concentration near the exposed surface can be

considerably less than deeper into the concrete. However, previous research (Sagiies et al. 2001)

has shown that diffusion coefficients can be approximately calculated by fitting the Fick' s

Second Law of Diffusion solution by excluding these misleading peaks in the regression

analysis. The consequent chloride profile penetrations, following the initial surface values

affected by leaching and absorption, fit the "pure diffusion" trend behavior. Figure 6-1 shows









some of the diffusion coefficient regression analysis of the bridge cored samples. Diffusion

analyses for each of the cored sample are summarized in APPENDIX D.

The chloride profile obtained from the Granada crash wall (Figure 6-2) was initially

puzzling. The flat trend of chloride ingress showing chloride levels barely above background

levels indicated little chloride penetration. This low penetration was likely caused by the epoxy

coating applied to the surface of the structural elements (Figure 3-12).

Correlation of Long-Term Field Data to Laboratory Test Procedures

The true aim of both the short and long-term chloride exposure testing is to capture the

ability of the concrete in the field to resist chloride intrusion. As the chloride concentration

builds up in a concrete member, it approaches the chloride threshold, which is the point at which

the reinforcement begins to corrode. The longer the chloride penetration is delayed, the longer

the service life of the structure. Unfortunately, the exposure conditions in the field are quite

varied and do not really match those of the standard short or long term laboratory tests that have

been discussed thus far. Some of the factors include chloride concentration of solution, absolute

and variation in temperature, humidity and age of concrete among others. Additionally,

mechanisms other than diffusion contribute to the intrusion of chlorides. Nevertheless, it is

common to take cores of field concrete, determine chloride concentration at varying depths and

calculate chloride diffusion coefficients.

The diffusion coefficients obtained from a pile exposed to seawater are affected by the

sampling locations. The FDOT Structures Design Guidelines (FDOT SDG 2007) defines the

splash zone as the vertical distance from 4 feet below mean low water level (MLW) to 12 feet

above mean high water level (MHW) for structural coastal crossings. This defined exposure zone

is considered to be too wide for comparison purposes of diffusion coefficients. Previous

researchers (Luping 2003; Sagties et al. 2001) have shown that chloride sampling is very










sensitive to the position within the splash zone where the concrete core is taken. Small

differences in the core position have resulted in significant differences in the chloride profie. A

common approach is to measure the location of the core sample in reference to MHW level.

Moreover, additional subdivision of chloride exposure zone has been presented in previous

literature (Tang and Andersen 2000; Tang, L. 2003; Cannon et al. 2006). Figure 6-3 shows these

chloride exposure zones for a typical bridge piling surrounded by seawater. The tidal zone is the

exposed area defined between the MHW and MLW marks that is intermittently subj ected to

chloride exposure due to changes of water tides. The submerged zone, defined as that portion of

the pile below the MLW mark, is continuously exposed to salt solution. The splash zone is above

the MHW mark and is subj ected to wetting and drying due to wave action. Finally, the dry zone

is above the splash zone and is not directly exposed to chlorides present in seawater but may

receive occasional airborne chlorides. There is no general agreement in current literature that

defines where the splash zone ends and the dry zone begins. The results presented in this section

are based on samples obtained in the tidal zone of exposure.

Diffusion is believed to be the predominant chloride ingress mechanism for samples

obtained from the submerged zone because the concrete is continuously exposed to salt solution

similar to the laboratory test Bulk Diffusion. The chloride concentration in the seawater

surrounding the pile is usually relatively constant. The chlorides ions will naturally migrate from

the high concentration on the outside (high energy) to the low concentration (low energy) in the

inside with a constant moisture present along the path of migration. When the pile is not

continuously submerged, other chloride ingress mechanisms tend to control the chloride

penetration.









Previous research (Tang and Andersen 2000; Tang 2003) that compared samples exposed

to the different zones over a 5 year period showed that the diffusion coefficients were highest in

the submerged zone followed by tidal, splash and dry zone. Tang (2003) showed, however, that

when the exposure period was 10 years, the chloride ingress in the tidal zone significantly

increased during the period from year 5 to year 10. Table 6-2 summarizes the results of this

previous research. The table also includes diffusion coefficients calculated from chloride

sampling on 39-year old piles extracted during a bridge demolition (Cannon et al., 2006).

Diffusion analyses for each of these cored samples are summarized in APPENDIX H. The

diffusion coefficients from the 39-year old piles appear to confirm the trend implied by Tang's

work.

Table 6-2 also includes the ratio of the diffusion coefficient for the submerged zone to that

of the tidal zone. These ratios are plotted in Figure 6-4 and show a decreasing trend over the life

of the structure. Indeed the data from the 39-year old piles constructed with a completely

different mixture appears to confirm the decreasing trend that Tang's work implies.

The trend illustrated in Figure 6-4 might be used to relate the results of bulk diffusion test

to those of the field cores obtained from the bridges in service. If it is assumed that the

environmental conditions of the bulk diffusion test are similar to those of the completely

submerged pile in service, then the diffusion coefficients can be compared to give a reasonable

correlation between laboratory tests and field conditions. From this viewpoint, the plot in Figure

6-4 indicates that the bulk diffusion test will likely give the highest diffusion coefficient for

concretes less than about ten years old. As the concrete ages, however, the tidal zone diffusion

coefficient appears to exceed that of the submerged zone signifying that the bulk diffusion test

might not give the most conservative results.









This connection can be tested by comparing the results of the 1 and 3 year bulk diffusion

testing to the diffusion coefficients of the piles from which the samples were collected for this

research, as long as the mixture proportions and constituents are comparable. The diffusion

coefficients from mixture design 35_752_8SF_20F (Table 5-2 and Table 5-4) are compared to

diffusion coefficients from extracted cores that were taken from piles that used a similar mixture

design (including the addition of silica fume). The comparison is based on the cores taken at the

tidal zone. Additionally, available chloride profiles from FDOT research currently in progress

(Paredes 2007) were included in this analysis. Table 6-3 shows the summary of the calculated

laboratory diffusion coefficients with the statistical parameters average and standard deviation.

Detailed data on these calculations are presented in APPENDIX H.

Figure 6-5 shows the diffusion coefficients of the selected laboratory and field samples

plotted on a logarithmic scale. The field samples used in the plot were selected because they

were extracted from tidal zone. There is nearly an order of magnitude difference between the

diffusion coefficients from the bulk diffusion tests and those from the field-cored samples. This

variation can be attributed to the several factors affecting chloride diffusion under field

conditions as the sampling location and the concrete ageing.

Assuming that the ratio of the submerged to tidal diffusion coefficients is controlled

primarily by environment, then the ratios from Table 6-2 can be used to "convert" the tidal

diffusion coefficient to a submerged diffusion coefficient. Although this assumption is probably

not strictly correct since variation in concrete permeability will likely affect the ratio as well, it

makes a convenient method by which the laboratory results can be related to field results.

Because the piles sampled for this research were approximately ten years in service, the highest

calculated ratio of 1.52 for a comparable age of exposure of 10 years will give the most









conservative result. Applying this ratio to the Hield results ostensibly converts those diffusion

coefficients to a submerged condition as is shown in Figure 6-5. Comparing these diffusion

coefficients to the laboratory diffusion coefficients indicates that the 1 and 3 year bulk diffusion

coefficients are higher than the field values for a ten year period.

It is not clear why 1 and 3 year laboratory values are higher than the ten-year Hield values.

This analysis considered only the diffusion coefficients and not the chloride content at the level

of the steel. The diffusion coefficients are derived from fitting a curve to the chloride profile

data. It perhaps gives a better indication of the shape of the curve rather than a direct indication

of the chloride content at a certain depth. Further data are needed to better characterize this time

dependency. One suggestion is to obtain shorter and longer exposure periods in the laboratory

samples to establish time variations of the diffusion for the laboratory samples. This trend can

then be used to establish correlation with the longer-term results obtained from the field on

comparable mixtures. Nevertheless, it appears that the 1 and 3-year bulk diffusion results

overestimate the diffusion coefficients from ten-year old concrete in the field.











Diffusion
Coefficient
(x10-12)
(m2/Sec)
0.050
0.149
0.151


Water
Chloride
COntent
(ppm)
19284


Table 6-1. Calculated Diffusion Parameters of Cored Samples.
Initial Surface
Chloride Chloride
Exposure Content Content
Bridge Name Lab. # (Years) (lb/yd3) (lb/yd3)
Hurricane Pass 5016 15 0.547(a) 20.336
(HPB)5017 0.533 41. 112
5018 0.561 44.904


14864(c)



14864(c)


14864(c)

9608


Broadway
Replacement
(BRB)
Seabreeze West
Bound (SWB)

Granada (GRB)

Turkey Creek
(TCB)


5054
5081

5082
5083

5084

5078
5079
5080


5 0.467
0.858(b)

9 0.467
0.432

9 0.637

7 0.556
0.423
0.417


33.012
32.401

42.497
49.660

0.942

26.791
30.269
33.237


0.585
0.358

0.628
0.329

0.051

0.185
0.132
0.155


New Roosevelt 5075 9 0.614 27.046 0.361 31072
(NRB) 5076 0.432 28.700 0.540

5077 0.382 29.696 0.373

(a) Initial Chlorides were not tested for this sample. An average between Lab sample# 5017 and 5018 was
reported.
(b) Initial Chloride value was considered an erroneous value (too high). The value of initial chlorides from Lab
sample# 5054 was used.
(c) The Bridge Structures are exposed to the same body of water.










Table 6-2. Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal Zones.


Diffusion Coefficient (x10-12) (m2/SOC)
Exposed for Exposed for Exposed for
0.6-1.3 5.1-5.4 10.1-10.5
years years years
4.55 2.51 1.95
1.98 1.31 1.43
2.30 1.92 1.36
2.35 1.93 1.67
0.54 0.91 1.10
4.35 2.12 1.52
3.78 1.26 1.25
1.49 0.41 1.33
2.54 3.07 0.94


Exposed
for ~39
years












11.48
18.27
0.63


Chloride
Exposure Zone
Submerged
Tidal
Ratio (Sub./Tidal)
Submerged
Tidal
Ratio (Sub./Tidal)
Submerged
Tidal
Ratio (Sub./Tidal)
Submerged
Tidal
Ratio (Sub./Tidal)


Mixture

1-40(a)(c)



2-40 (a) (c)



3-40(a) (d)



Pile 44-2(b) (c)


(a) Tang, L. 2003.
(b) Cannon et al. 2006.
(c) Plain cement concrete mixture. No additional cementitious materials were added.
(d) Concrete mixture containing silica fume.


Table 6-3. Laboratory Bulk Diffusion Coefficients for Comparable Mixtures with an Expected
Low Chloride Permeability Design.
1-Year Bulk Diffusion 3 -Year Bulk Diffusion
Coefficient (x10-12) (m2/SOC) COefflcient (x10-12) (m2/SOC)


Sample Standard
Mixture(a) ID Results Average Deviation Results t
35 752 A 2.351 2.850
8SF 20F B 2.729 2.683
C 3.562 2.402
HRP3(b) A 1.691 2.220 0.744
B 1.782
HRP4(b) A 2.071
B 1.355
(a) Mixture design: w/c: 0.35, Cementitious:752 pcy, 20% Fly Ash and 8% Silica Fume.
(b) Samples obtained from FDOT research currently in progress (Paredes 2007).


Standard
Average Deviation


2.645


0.226





+ Include in the Regression

-Fitted Regression









0 0.5 1 1.5 2
Mid-Layer from Surface (in)


* Include inthe Regression
x Not Include inthe Regression
- Fitted Regression


~~~~~~~~ Inld nh~ges
+ NoInclude m the Regression

- Fitted Re session


"~e
,h40

30

S20

S10


,h40 -

S30 -

U 20 -

*C 10 -


0 0.5 1 1.5
Mid-Layer from Surface (in)


0 0.5 1 1.5
Mid-Layer from Surface (in)


Figure 6-1. Diffusion Regression Analysis for Cored Samples: A) NRB (Lab #5075) and B) HPB
(Lab# 5017).


50

S40

30

O 20

C 10


Figure 6-2. Diffusion Regression Analysis for Cored Sample GRB (Lab #5084).


















Dry Zone


MHW

Water
Level


Splash Zone

Tidal Zone


MLW


Submerged Zone


Figure 6-3. Chloride Exposure Zones of a Typical Bridge Structure.


O 10 20 30 40


Cl Exposure Period (Years)


-X- 1-40(a)
-EB 3-40(a)


+ 2-40(a)
n Pile 44-2(b)


(a) Tang, L. 2003.
(b) Cannon et al. 2006.


Figure 6-4. Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal
Zones.

















1 -Year Laboratory Data


h

"E
v
h
N
b
3
x
V
1
E
o
Y
o
o
U
E
.e


a


Field Data Average x 1.52


Field Data Average


t---;b; --


(a) Submerged Exposure
(b) Tidal Exposure
(c) Estimated Submerged Exposure


0.01


100


O 35_752_8SF_20F
O 35_752_8SF_20F
X HRP3 (Sample B)
x HRP4 (Sample B)
4 HPB(LAB#50 18)
BRB(LAB#5081)
A SWB(LAB#5083)
- TCB(LAB#5079)
* NRB(LAB#5075)
* NRB(LAB#5077)


1000
Cl Exposure Period (Days)

(Sample A) O 3 5_752_8 SF_20F
(Sample C) X HRP3 (Sample A)
x HRP4 (Sample A)
+ HPB(LAB#5017)
g BRB(LAB#5054)
A SWB(LAB#5082)
TCB(LAB#5078)
TCB(LAB#5080)
*NRB(LAB#5076)


10000


(Sample B)


Figure 6-5. Time Dependent Laboratory and Field Diffusion Coefficient Trend of Change.


I










CHAPTER 7
RECOMMENDED APPROACH FOR DETERMINIG LIMITS OF CONDUCTIVITY TESTS

In the previous section, it was concluded that 91 days was the earliest age at which the

RCP and Surface Resistivity testing age correlated well with the chloride diffusion penetration of

a 1 or 3 year Bulk Diffusion test. More realistic diffusion coefficients associated with these test

results can be derived. However, the present FDOT specifications (FDOT 346 2004) require

shorter time period of 28 days to predicted diffusion rates for a specific mix design. Therefore,

the following recommendations present a method by which RCP and Surface Resistivity rapid

electrical tests can be calibrated so that, with reasonable confidence, diffusion coefficients can be

predicted from 28 days samples. It is anticipated that this approach would be used for quality

control purpose and not for service life prediction.

The original RCP coulomb limit standards (Table 2-1) are the staring point for the new

recommendations. These coulomb limits were derived in the original research from 91-day RCP

samples. Therefore, to maintain consistency with the original method and because this age

appears to be optimal for predicting the long-term chloride diffusion, the diffusion coefficient

associated with the coulombs limits for a 91-day test were selected as the "standards" for which

the allowable limits would be set when the RCP or SR test is conducted at 28 days after casting.

The 1-year Bulk Diffusion results derived from the Monte Carlo analysis were selected as the

"standard" benchmark coefficients (Table 5-12) for the analysis. The fundamental assumption is

that the selected diffusion coefficient is sufficiently low to give the desired service life with the

associated concrete cover.

RCP and Bulk Diffusion

The coulomb limits associated with the "standard" diffusion coefficients (Table 5-12) are

calculated from the trend line equation derived on the 28-day RCP correlation to the 1-year Bulk









Diffusion test. A statistical study is included to ensure the validity of this new RCP limit. A

confidence interval for the mean response of the test correlations was employed. This confidence

interval represents the statistical probability that the next set of samples tested will fall within the

specified acceptance range. It was found that a modified linear regression trend presented as a

power function (APPENDIX F) provided the best representation of the relationship between the

RCP and Bulk Diffusion test results. Therefore, the confidence interval was calculated according

to the analytical derivation presented as followed:

pr, x, = 70 Elfo) (7-1)

E(yo)= ts -+ o(7-2)
n SX


S, bS
s = (7-3)
n-2

Su = (xi X2) (7-4)

S, = (yG, Y)1 (7-5)


S~ = (xI X)(yI Y) (7-6)

where pv so is the mean confidence limit response for an independent variable xo; yo: dependent
variable from regression analysis equation;s(yo) is the standard error of dependent variable; t,:
one-tailed Student' s t-distribution value with n-2 degrees of freedom for an specific confidence
level; yi: experimental dependent variables; y : mean of experimental dependent variables; xi:
experimental independent variables; x : mean of experimental independent variables; b: slope
value from regression analysis; n: number of samples.

Figure 7-1 shows the 90% confidence limit for the mean response of the 28-day RCP test

correlation to the 1-year Bulk Diffusion reference test. The 28-day RCP test coulomb limit for

concrete elements with very low chloride permeability with 90% confidence on the correlated

data is derived as shown in Figure 7-2. Moreover, several coulomb limits for concrete elements

under extremely aggressive environments at different levels of confidence are presented in Table









7-1. The RCP coulomb limits were rounded to reflect the variability in the data and for a more

practical utilization. The different levels of confidence are provided to offer some flexibility to

the Florida Department of Transportation to make a final decision specifically suitable to their

standards.

It is important to recognize that the limits presented in Table 7-1 and in the following

sections are based on the relatively limited data gathered from the laboratory specimens prepared

and tested as a part of this research proj ect. For example, consider the 90% confidence level in

the table. This indicates that if a random sample is selected from the tests reported in this

research that has an RCP value less than 1,422 coulombs, then, with 90% confidence, that same

concrete would have a 1-year bulk diffusion coefficient that is less than 1.820x10-12 m2/S. Recall

that this diffusion coefficient standard was established in the previous chapter to represent

concrete that will have RCP test results of 1000 coulombs when tested at 91 days.

In addition, the recommended RCP limits are evaluated to corroborate their applicability to

the standard FDOT specifications. These more flexible proposed RCP limits still need to meet

the basic rating criteria of the current FDOT specification. Therefore, the recommended limits

must discriminate between concrete samples that were designed as low chloride permeable and

samples with higher permeability. FDOT categorizes Class V and Class V Special containing

silica fume or metakaolin as a pozzolan as low permeable mixtures. The higher RCP associated

with the lower confidence level showed in Table 7-1 is selected as the more representative limit

for the evaluation. The proj ect concrete mixtures were divided into two groups. The first group

included mixtures that were not design to meet FDOT standard specifications and the second

group included samples designed to meet the minimum requirements. Table 7-2 shows the 28-

day RCP pass rates by FDOT standard specifications for the two groups of samples. All the RCP









coulomb results from the first group of samples exceed the current FDOT standard of 1000

coulombs as well as the limit of 1400 coulombs. In the second group, less than half of the

samples passed the current FDOT RCP limit. Data from field mixtures were also used to evaluate

various RCP limits (Chini, Muszynski, and Hicks 2003). Data from the 491 samples collected on

construction proj ects were included in the analysis (Table 7-2). The samples were collected from

actual j ob sites of concrete pours in the state of Florida.

The diffusion coefficients presented in Table 7-1 were also used to derive the entire

equivalent charges in coulombs for the different chloride permeability ranges. The allowable

coulomb limits for a 28-day RCP test response with a 90% of confidence on the correlated data

are derived in Figure 7-3 to Figure 7-5. Coulomb limits for concrete elements with different

chloride permeability at different levels of confidence are summarized in Table 7-3 to Table 7-5.

Moreover, the RCP coulomb limits were rounded for a more practical utilization.

SR and Bulk Diffusion

Chini, Muszynski and Hicks (2003) evaluated the possible replacement of the widely used

electrical RCP test (AASHTO T277, ASTM C1202) by the simple non-destructive Surface

Resistivity test. A permeability rating table to aid the categorization of the equivalent Surface

Resistivity results to the chloride permeability of the concrete was proposed (Table 2-3). A

minimum resistivity value of 37 KOhm-cm was reported to represent concrete with low chloride

ion permeability. However, the permeability interpretation of the Surface Resistivity test results

was entirely based on correlations to the previous ranges provided in the standard RCP test

(Table 2-1). As it was indicated in the previous section, incorrect interpretation of electrical test

results can be made when relying entirely on these RCP standard ranges. Therefore, a more

rational approach to setting the limits of the Surface Resistivity results is needed.









The Surface Resistivity test was conducted using two methods of curing, one at 100%

humidity (moist cured) and the other in a saturated Ca(OH)2 Solution (lime cured). It was

previously concluded that either of the methods will derive an equal resistivity behavior.

Consequently, Surface Resistivity results from the most commonly used curing method, moist

cured, are used in this section. The long-term diffusion coefficients derived in the previous

section are also used as a benchmark for the interpretation of the Surface Resistivity results

(Table 5-12). These coefficients are believed to represent a realistic interpretation of low chloride

permeability concrete. The 28-day Surface Resistivity limits associated with the standard

diffusion are calculated from the trend line equation of correlation to the reference test. A

statistical study is included to ensure the validity of these new Surface Resistivity limits. A

confidence interval for the mean response of the test correlations was included. Figure 7-6 shows

the 90% confidence interval for the mean response of the 28-day Surface Resistivity test

correlation to the 1-year Bulk Diffusion reference test. The allowable 28-day Surface Resistivity

limit for concrete elements with very low chloride permeability with a 90% of confidence on the

correlated data is derived in Figure 7-7. Moreover, several Surface Resistivity limits for concrete

elements under extremely aggressive environments at different levels of confidence are

presented in Table 7-6. The limits were rounded for a more practical utilization. The different

levels of confidence are provided to offer some flexibility to the Florida Department of

Transportation to make a final decision specifically suitable to their standards.

Additionally, the recommended Surface Resistivity limits are evaluated to corroborate their

applicability to evaluate low chloride permeability concrete. A low chloride permeability

concrete is assumed as the FDOT standard to be a Class V or Class V Special concrete

containing silica fume or metakaolin as a pozzolan. Similar analysis as shown in Table 7-2 for









the RCP limits evaluation is presented. The lower resistivity limit associated with the lower

confidence level (Table 7-6) is selected as the more representative for the evaluation.

Furthermore, Surface Resistivity results reported by Chini, Muszynski and Hicks (2003) research

are also included in the validation (Table 7-7).

The diffusion coefficients presented in Table 7-1 were also used to derive the entire

equivalent surface resistivity limits for the different chloride permeability ranges. The allowable

Surface Resistivity limits for a 28-day SR test response with a 90% of confidence on the

correlated data are derived in Figure 7-8 to Figure 7-10. Resistivity limits for concrete elements

with different chloride permeability at different levels of confidence are summarized in Table

7-8 to Table 7-10. Moreover, the Surface Resistivity limits were rounded for a more practical

utilization.
















(Coulombs) Values) (Coulombs) Confidence Level
1,422 1,400 90%
1,335 1,300 95%
1,174 1,150 99%

Table 7-2. 28-Day RCP Pass Rates of Several Concrete Samples by FDOT Standard
Specifications (FDOT 346 2004).


Table 7-1. Allowable RCP Values for a 28-Day Test for Concrete Elements Under Extremely
Aggressive Environments (Very Low Chloride Permeability) and Associated
Confidence Levels.
28-Day RCP Limits


Charge Passed


Charge Passed (Rounded


28-Day RCP Limits (Coulombs)

Without Silica Fume or MK(3)


With Silica Fume or MK(3)


1000 1150 1300 1400 1000 1150
14 14 14 14 5'1 5 1


0 0 0 0 2 2


1300
5 1


1400
5(1


Total
Number of
Mixtures
Number of
Passed
Mixtures
Percentage of
Passed
Mixtures
Total
Number of
Mixtures (2)
Number of
Passed
Mixtures
Percentage of
Passed
Mixtures


3 4


0% 0%


0% 40% 40% 60% 80%



455 36 36 36 36


2 2




d o


455 455 455


4 8 13 18 15 18 21 23


<1%


4% 42% 50% 58% 64%


(1) All Mixtures were cast at the FDOT laboratory.
(2) All Mixtures were collected from actual job sites.
(3) Metakaolin.


























Table 7-4. Allowable RCP Values for a 28-Day Test with a 95% Confidence Levels for Concrete
Elements with Different Chloride Permeability.


Table 7-5. Allowable RCP Values for a 28-Day Test with a 99% Confidence Levels for Concrete
Elements with Different Chloride Permeability.
Current Research Allowable RCP Limits 99%
AASHTO T277 Standard Limits
Confidence Level
1-Year Bulk 28-Day RCP
Chloride 9lDyRP Diffusion Charge Passed
Charge Passed -12~LZ Charge Passed
Permeability (x0)(Rounded Values)
(Coulombs) (2is (COulombs) Cuo s


Table 7-3. Allowable RCP Values for a 28-Day Test with a 90% Confidence Levels for Concrete


Elements with Different

AASHTO T277 Standard Limits


Chloride Permeability.
Current Research Allowable RCP Limits 90%
Confidence Level


1-Year Bulk
Diffusion

(m /s)
> 8.924
4.020 8.924
1.820 4.020
0. 162 1.820
< 0.162


28-Day RCP

Charge Passed
(C Oulomb s)
> 5,473
2,991 5,473
1,422 2,991
113 -1,422
< 113


91-Day RCP
Charge Passed
(C oulomb s)

> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100


Chloride
Permeability

High
Moderate
Low
Very Low
Negligible


Charge Passed
(Rounded Values)
(Coulomb s)
> 5,450
2,950 5,450
1,400 2,950
110 -1,400
< 110


Current Research Allowable RCP Limits 95%
Confidence Level


AASHTO T277 Standard Limits


1-Year Bulk
Diffusion
(x10 ) >
(m /s)
> 8.924
4.020 8.924
1.820 4.020
0. 162 1.820
< 0.162


28-Day RCP

Charge Passed
(C Oulomb s)
> 5,105
2,861 5,105
1,335 -2,861
93 -1,335
< 93


91-Day RCP
Charge Passed
(C oulomb s)

> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100


Chloride
Permeability

High
Moderate
Low
Very Low
Negligible


Charge Passed
(Rounded Values)
(Coulomb s)
> 5,100
2,850 5,100
1,300 -2,850
90 1,300
< 90


> 4,400
2,600 4,400
1,150 -2,600
60 1,150
< 60


High
Moderate
Low
Very Low
Negligible


> 4,000
2,000 4,000
1,000 2,000
100 1,000
< 100


> 8.924
4.020 8.924
1.820 4.020
0. 162 1.820
< 0.162


> 4,427
2,614 -4,427
1,174 -2,614
61 -1,174
< 61










Table 7-6. Allowable Surface Resistivity Values for a 28-Day Test for Concrete Elements Under
Extremely Aggressive Environments.
28-Day Surface Resistivity (Moist Cured)
Conductivity Resistivity Resistivity (Rounded Confidence
(1/(kOhm-cm)) (kOhm-cm) Values) (kOhm-cm) Level
0.0377 26.52 27 90%
0.0360 27.76 28 95%
0.0328 30.50 31 99%

Table 7-7. 28-Day Surface Resistivity Pass Rates of Several Concrete Samples by FDOT
Standard Specifications (FDOT 346 2004).


28-Day Surface Resistivity Limits (KOhm-cm)


With Silica Fume or MK(3)


Without Silica Fume or MK(3)


37 31 28 27 37
14 14 14 14 5


0 0 0 0 1


Total
Number of
Mixtures
Number of
Passed
Mixtures
Percentage of
Passed
Mixtures
Total
Number of
Mixtures (2)
Number of
Passed
Mixtures
Percentage of
Passed
Mixtures


4 4


0% 0%


0% 20% 60% 80% 80%



462 40 40 40 40


2 2
.; N
4 &


2


462 462 462


7 16 25 28 8 18 19 20


4% 5%


6% 20% 45% 48% 50%


(1) All Mixtures were cast at the FDOT laboratory.
(2) All Mixtures were collected from actual job sites.
(3) Metakaolin.










Table 7-8. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 90%
Confidence Levels for Concrete Elements with Different Chloride Permeability.
AASHTO T277 Standard Current Research Allowable SR Limits
Limits 90% Confidence Level


28-Day Surface Resistivity


91-Day RCP
Charge
Passed
(Coul omb s)

> 4,000
2,000-4,000
1,000-2,000
100-1,000
< 100


1-Year Bulk
Diffusion
(x10-12)
(m2/S)

> 8.924
4.020 8.924
1.820 4.020
0.162 1.820
< 0.162


Re sistivity
(Rounded
Values)
(kOhm-cm)
< 8
8 -14
14 -27
27 -233
> 233


Chloride
Permeability


High
Moderate
Low
Very Low
Negligible


COnductivity
(1/(kOhm-cm))

> 0.1248
0.0722-0.1248
0.0377-0.0722
0.0043-0.0377
< 0.0043


Re sistivity
(kOhm-cm)

< 8.01
8.01-13.86
13.86-26.52
26.52-232.93
> 232.93


Table 7-9. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 95%
Confidence Levels for Concrete Elements with Different Chloride Permeability.
AASHTO T277 Standard Current Research Allowable SR Limits
Limits 95% Confidence Level


28-Day Surface Resistivity


91-Day RCP
Charge
Passed
(Coul omb s)

> 4,000
2,000-4,000
1,000-2,000
100-1,000
< 100


1-Year Bulk
Diffusion
(x10-12)
(m2/S)

> 8.924
4.020 8.924
1.820 4.020
0.162 1.820
< 0.162


Re sistivity
(Rounded
Values)
(kOhm-cm)
< 9
9 -15
15 28
28 270
> 270


Chloride
Permeability


High
Moderate
Low
Very Low
Negligible


COnductivity
(1/(kOhm-cm))

> 0. 1186
0.0699-0.1186
0.0360-0.0699
0.0037-0.0360
< 0.0037


Re sistivity
(kOhm-cm)

< 8.43
8.43-14.31
14.31-27.76
27.76-269.58
> 269.58


Table 7-10. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 99%
Confidence Levels for Concrete Elements with Different Chloride Permeability.
AASHTO T277 Standard Current Research Allowable SR Limits
Limits 99% Confidence Level


28-Day Surface Resistivity


91-Day RCP
Charge
Passed
(Coul omb s)

> 4,000
2,000-4,000
1,000-2,000
100-1,000
< 100


1-Year Bulk
Diffusion
(x10-12)
(m2/S)

> 8.924
4.020 8.924
1.820 4.020
0.162 1.820
< 0.162


Re sistivity
(Rounded
Values)
(kOhm-cm)
< 10
10 -16
16 -31
31 364
> 364


Chloride
Permeability


High
Moderate
Low
Very Low
Negligible


COnductivity
(1/(kOhm-cm))

> 0. 1069
0.0654-0.1069
0.0328-0.0654
0.0028-0.0328
< 0.0028


Re sistivity
(kOhm-cm)

< 9.36
9.36-15.29
15.29-30.50
30.50-363.58
> 363.58











0.862 '
y =1042x '
R2 = 0.669








+ / - 90% Confdence Limit
Fitted Correlation


15000 -




S10000 -




U 5000 -


Bulk Diffusion (x10 1)(m /s)


Figure 7-1. i
D


2500 -



i~2000 -



o 1500 -



1000 -



500 -


90% Confidence Limit for Mean Response of 28-Day RCP Test vs. 1-Year Bulk
>iffusion Test Correlation.


-Fitted Correlation
- 90% Confidence Limit,



1422 *





1.820x10-1


1.4 1.8
Bulk Diffusion (x10-12)(HI2/S)


Figure 7-2. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Very Low Chloride Permeability.











- Fitted Correlation i
- 90% Confidence Limit


15473


*


10000


8000 -
600-


6000 -


8.924x10


-12


2000


0


Figure 7-3. 28-Day RCP Coulombs Limit with a 90%
with a Moderate Chloride Permeability.


Confidence Level for Concrete Elements


6000


- Fitted Correlation
- 90% Confdence Limit





2912



4.020x10


S4000




C. 2000


Figure 7-4. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements
with a Low Chloride Permeability.


O 2 4 6 8 10
Bulk Diffusion (x10-12)(HI2/S)


Bulk Diffusion (x10 1)(m /s)










I I _


-Fitted Correlation
- 90% Confdence Limit


300 -



200 -


0.162x10-1


Bulk Diffusion (x10 ')(m /s)


Figure 7-5. 28-Day RCP Coulombs Limit with a 90%
with a Negligible Chloride Permeability.


Confidence Level for Concrete Elements


0.3







S0.1




S0.


0 10 20 30
Bulk Diffusion (x10 )(Km /s)


Figure 7-6. 90% Confidence Limit for Mean Response of 28-Day Surface Resistivity Test (Moist
Cured) vs. 1-Year Bulk Diffusion Test Correlation.













I -Fitted Correlation


- 90% Confden

0.0377


- Fitted Correlation

- 90% Confdence Limit




0.1248







*44+ 8.924x10


0.06~






a 0.04




-
S0.02 1





0-


Ice Limit


L
L
I
I
I


r
r
r
r


Figure 7-7. 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Very Low Chloride Permeability.


0.25


0.2


0.15


0.1


0.05


0 2 4 6 8 10 12

Bulk Diffusion (x10 )(Hm /s)


Figure 7-8. 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Moderate Chloride Permeability.


11.820x10~2
1.820x10


1.5 2

Bulk Diffusion (x10 ')(m /s)











I


-


0.15


-Fitted Correlation
- 90% Confdence Limit $




0.0722 *






,4.020x10


0.1 I


0.05


Bulk Diffusion (x10' 2)(m /s)


Figure 7-9. 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Low Chloride Permeability.


0.015


- Fitted Correlation
90% Confidence Limit







0.0043 -*



0.162x10-12


h-

re0.01




1 0.005


Bulk Diffusion (x10 1)(m /s)


Figure 7-10. 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for
Concrete Elements with a Negligible Chloride Permeability.










CHAPTER 8
SUMMARY AND CONCLUSIONS

This work details results of a research proj ect aimed at evaluating currently available

conductivity tests and compare the results of these tests to those from long-term diffusion tests.

Rapid Chloride Permeability (RCP) and Surface Resistivity (SR) were evaluated. The long-term

test Bulk Diffusion was selected as a benchmark to evaluate conductivity tests. This test was

conducted using 1 and 3 years chloride exposure. Diffusion coefficients from Bulk Diffusion test

results were determined by fitting the data obtained in the chloride profiles analysis to Fick' s

Diffusion Second Law equation. The electrical results from the short-term tests RCP and SR at

14, 28, 56, 91, 182 and 364 days of continuous moist curing were then compared to the long-

term diffusion reference test. Moreover, cored samples obtained at the tidal zone of marine

exposure from several bridge structures around the state of Florida were obtained to be compared

to the laboratory diffusion results. Conclusions were as follows:

The SR test was conducted using two methods of curing, one at 100% humidity (moist

cured) and the other in a saturated Ca(OH)2 Solution (lime cured). The comparison of

results of the SR tests between the two curing procedures showed no significant

differences. Therefore, it is concluded that either of the methods will provide similar

results.

The mixture proportions affected directly the rate of chloride diffusion into concrete. The

mixture designs with the higher water-cementitious ratios, lower cementitious contents

and without the presence of pozzolans showed significantly higher diffusion coefficients

compared with the rest of the samples. Furthermore, the addition of metakaolin decreased

the chloride diffusion compared to the control mixture about 70 percent for the 1 and 3

years of exposure results. Moreover, the addition of silica fume, ground blast furnace slag









and ternary blends of fly-ash with metakaolin or silica fume decreased the chloride

diffusion approximately 50 percent for the 1 and 3 years of exposure results. The chloride

diffusion for samples containing fly-ash and classified fly-ash did not improve for

samples exposed for a year. However, they improved for the longer exposure period of 3

year. These could be related to the slow pozzolanic reaction of the mineral admixture fly

ash. Finally, the addition of calcium nitrite did not improve the concrete diffusion

coefficient. The calcium nitrite admixture reduces the tendency for reinforcing steel to

undergo corrosion but not the penetration of chlorides through concrete.

* The correlation coefficients (R2) Obtained for the short-term tests showed that the best

testing age for an RCP and SR test to predict a 1 and 3 years Bulk Diffusion test was 91

days. Moreover, this finding was corroborated by the use of a Monte Carlo simulation. A

simulation was used to obtain the respective correlation coefficients (R2) for respective

tests including the grade of variability from the experimental data.

* A calibrated scale relating the equivalent RCP measured charge in coulombs to the

chloride ion permeability of the concrete was developed. The proposed scale was based

on the correlation of the 91-day RCP results related to the chloride permeability

measured by a 1-year Bulk Diffusion test.

* A method by which RCP and SR can be calibrated so that, with reasonable confidence,

diffusion coefficients can be predicted from 28 days samples was presented.

* The diffusion results obtained from the bridge cored samples obtained at the tidal zone

with an average of ten-year of exposure showed considerable lower chloride penetration

than the 1 and 3 year laboratory results. It appears that the laboratory methods

overestimate the chloride ingress from concrete exposed in the field.










APPENDIX A
CONCRETE MIXTURE LABELING SYSTEM CONVERSION

The names of the concrete mixtures in the previous main body sections are different than

the presented in the following Appendix sections. Therefore Table A-1 shows the respective

mixture labeling conversions.

Table A-1. Appendix Concrete Mixture Labeling System Conversion.
Main Body Mixture Appendix Mixture
Name Labels Name Labels
49 564 CPR1
35 752 CPR2
45 752 CPR3
28 900 8SF 20F CPR4
35 752 20F CPR5
35 752 12CF CPR6
35 752 8SF CPR7
35 752 8SF 20F CPR8
35 752 10M CPR9
35 752 10M 20F CPR10
35_752_50Slag CPR11
35 752 4.5CN CPR12
45 570 CPR13
29 450 20F CPR15
33 658 18F CPR16
34 686 18F CPR17
30 673 20F CPR18
28 800 20F CPR20
29 770 18F CPR21



































Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5869 5866 5782 5839
28 6352 6284 6219 6285
56 6293 6431 6442 6389
91 6300 6411 6390 6367
182 7185 6990 7023 7066
364 6768 7295 6779 6947
MIX CPR5
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 6797 6686 7079 6854
28 7441 7354 7023 7273
56 8376 8393 7942 8237
91 8482 8390 8471 8448
182 9016 8601 8533 8717
364 9212 9323 9089 9208

MIX CPR7 Sample not included in Average
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 7709 7850 7026 7528
28 8082 8343 8861 8429
56 8995 8896 8158 8683
91 8161 9410 8924 8832
182 9483 8424 8891 8933
364 8951 9111 7379 9031
MIX CPR9
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 8493 8957 8795 8748
28 8681 8541 8443 8555
56 8792 9418 8996 9069
91 8352 8117 8225 8231
182 9239 9028 9335 9201
364 9520 9018 9962 9500


Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 8382 8434 8531 8449
28 9122 9058 8797 8992
56 9261 9198 9173 9211
91 9475 9620 9499 9531
182 9406 9416 9073 9298
364 9077 9416 9908 9467
MIX CPR6
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5784 6053 5722 5853
28 6163 6386 6327 6292
56 6682 7004 6889 6858
91 7505 7251 7295 7350
182 7745 7444 7405 7531
364 7670 8086 7600 7785
MIX CPR8
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 6533 6536 6342 6470
28 7106 6969 7153 7076
56 6936 7499 7515 7317
91 7072 5224 7475 6590
182 7535 7969 8004 7836
364 8007 7198 7769 7658
MIx CPR10
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 7768 7727 8195 7897
28 8098 8598 8169 8288
56 8582 8939 8593 8705
91 8964 8859 9078 8967
182 9573 9277 9343 9398
364 9050 9489 9270 9270


APPENDIX B
CONCRETE COMPRESSIVE STRENGTHS


Table B-1. Concrete Compressive Strength Data Results
MIX CPR1 MIX CPR2
Testing Age COMPRESSIVE STRENGTH (psi) Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG. (Days) A B C AVG.
14 5442 5502 5732 5559 14 7952 7914 8104 7990
28 5710 5745 5690 5715 28 8462 7857 8030 8116
56 6214 5992 6321 6176 56 8814 8576 7703 8364
91 6400 6208 6510 6373 91 8681 8608 8194 8494
182 6638 6247 6217 6367 182 8371 8768 8738 8626
364 6594 6145 6314 6351 364 8842 8817 8842 8834
MIX CPR3 MIX CPR4
















Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
17 7251 6858 8007 7372
28 7647 8109 8101 7952
56 8021 7883 8460 8121
91 7940 8016 8236 8064
182 8629 8035 8323 8329
364 8547 8752 8649 8649
MIx CPR13
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5710 6065 5927 5901
28 6425 6432 6705 6521
56 7550 7398 6725 7224
91 7625 7392 6862 7293
182 7940 7314 7421 7558
364 8258 7996 7879 8044
MIx CPR16
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5926 6448 5792 6055
28 6388 5629 6303 6107
56 6942 7645 6761 7116
91 7658 6427 7687 7257
182 7674 8234 7854 7921
364 7533 7904 8683 8040
MIx CPR18
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5835 6126 6792 6251
28 6709 6934 6962 6868
56 7163 6954 8076 7398
91 8112 8196 8211 8173
182 9137 8634 8747 8839
364 8644 9366 9370 9127
MIx CPR21
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5298 5697 5601 5532
28 5940 6252 6112 6101
56 7138 7707 7209 7351
91 7396 8691 7512 7866
182 8910 8333 8294 8512
364 8689 9270 8691 8883


Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 5257 5893 5264 5471
28 5824 5035 5633 5497
56 6573 6375 5373 6107
91 6323 6598 5689 6203
182 6351 6072 5871 6098
364 6562 5320 7732 6538
MIx CPR15
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 4036 3275 3904 3738
28 5069 4633 3768 4490
56 5826 4982 4961 5256
91 6208 5309 5871 5796
182 6070 6151 6709 6310
364 6094 6614 6673 6460
MIX CPR17
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 6241 5525 7198 6321
28 7052 7056 7612 7240
56 7926 7986 7979 7964
91 8024 8284 8345 8218
182 9808 9678 8409 9298
364 10314 10308 10425 10349
MIx CPR20
Testing Age COMPRESSIVE STRENGTH (psi)
(Days) A B C AVG.
14 8889 8976 8987 8951
28 10125 9521 9510 9719
56 10116 11309 10036 10487
91 11368 10708 11696 11257
182 12044 11159 11383 11529
364 12337 11634 11221 11731


Table B-1. Continued.
MIx CPR11 MIX CPR12























































-


CPR1-W/C=0.49, Plain
564 lb Cementitious


CPR2-W/C=0.35, Plain
752 lb Cementitious


S12000


6000


3000


,,12000



6000


-


-


L~L~


4__ 4---4-- ---*


0003


II ill


I I I I I


14 28 56 91 182 364
Age (Days)

CPR4-W/C=0.28, 20%FA, 8%SF
900 lb Cementitious


S12000

9000 i

S6000 -
-
3000 -


4---+---*


14 28 56 91 182 364
Age ifays)

CPR3-W/C=0.45, Plain
752 lb Cementitious
~12000

9000 -

Eo6000- ---

3000 I I -
14 28 56 91 182 364
Age (Days)

CPR5-W/C= 0.35, 20% FA
752 lb Cementitious


I I I I I


14 28 56 91 182 364
Age Q@ays)

CPR6-W/C= 0.35, 12% CFA
752 lb Cementitious


~12000 -


6000 -
S3000 -


Ij12000

90-
S6000

3000


*_t~e--t~*


-e---


I I I I I


14 28 56 91 182 364
kge (Days)

CPR7-W/C=0.35, 8%SF
752 lb Cementitious


14 28 56 91 182 364
Age (Days)

CPR8-W/C=0.35, 20%FA, 8%SF
752 lb Cementitious


~-12000 -

9000 -
E-
S6000 -

S3000 -


Ij12000

S9000
r-
S6000

3000


I'
14 28 56 91 182 364
kge (Days)


II ill


14 28 56 91 182 364
Age (Days)


Figure B-1. Concrete Compression Strength Graphs.





CPR9-W/C=0.35, 10%Meta
752 lb Cementitious
12000

9000 ~- +-

6000 -

3000
14 28 56 91 182 364
Age (Days)


CPR11-W/C=0.35, 50%Slag
752 lb Cementitious


14 28 56 91 182 364
Age (Days)


14 28 56 91 182 364
Age (Days)


CPR10-WIC-0.35, 10% 1Meta, 20% FA
752 lb Cementitious


12000

9000 -

6000 -
'2~~~ -


J\


14 28 56 91 182 364
Age (Days)

CPR12-W/C=0.35, 4.5CN
752 lb Cementitious


12000 -

9000
6 0-
6000 -


a 12000

9000

6000

3000


14 28 56 91 182 364
Age (Days)


14 28 56 91 182 364
Age (Days)


CPR13-W/C=0.45, Plain
569.7 lb Cementitious


CPR15-W/C=0.29, 20%FA
565 lb Cementitious


12000 -

9000 -
6 0-


S12000-

S9000-


CPR16-W/C=0.33, 18%FA
807.4 lb Cementitious


CPR17-W/C=0.34, 18%FA
840 lb Cementitious


12000 -
90-



3000 -


r~12000 -


900-

3000 -


14 28 56 91 182 364
Age (Days)


14 28 56 91 182 364
Age (Days)


Figure B-1. Continued.










CPR18-W/C=0.30, 20%FA
842 lb Cementitious


CPR20-W/C=0.28, 20%FA
1000 lb Cementitious


12000 -
90-



3000 -


12000 -


3000


a


14 28 56 91 182 364
Age (Days)


14 28 56 91 182 364
Age (Days)


CPR21-W/C=0.29, 18%FA
935 lb Cementitious


~12000 -



3000 -


14 28 56 91 182 364
Age (Days)


Figure B-1. Continued.











APPENDIX C
LABORATORY LONG-TERM CHLORIDE PENETRATION TEST (BULK DIFFUSION)
DATA AND ANALYSIS RESULTS


Table C-1.


Mixture
Name
CPR1
CPR2
CPR3
CPR4
CPR5
CPR6
CPR7
CPR8
CPR9
CPR10
CPR11
CPR12
CPR13
CPR15
CPR16
CPR17
CPR18
CPR20
CPR21


Initial Chloride Background Level of Concrete Mixtures.
Initial Chloride Background Level (lb/yd3)


Coefficient of
Variation
(%)
14
29
22
24
26
8
19
18
7
15
18
4
2
8
3
21
13
20
8


Standard
Deviation
0.019
0.023
0.028
0.036
0.036
0.009
0.044
0.017
0.005
0.011
0.034
0.006
0.004
0.042
0.003
0.037
0.033
0.024
0.027


Sample A
0.112
0.097
0.093
0.192
0.181
0.097
0.284
0.077
0.070
0.087
0.146
0.147
0.181
0.467
0.124
0.187
0.221
0.146
0.323


Sample B
0.149
0.053
0.136
0.130
0.112
0.114
0.204
0.111
0.076
0.070
0.209
0.139
0.174
0.546
0.130
0.212
0.274
0.100
0.286


Sample C
0.137
0.087
0.145
0.130
0.126
0.110
0.212
0.101
0.080
0.066
0.200
0.136
0.178
0.533
0.125
0.139
0.281
0.112
0.338


Average
0.133
0.079
0.125
0.151
0.140
0.107
0.233
0.096
0.075
0.074
0.185
0.141
0.178
0.515
0.126
0.179
0.259
0.119
0.316


















NaCl (lblyd )
B C AVG

38.941 36.229 36.572
29.105 23.789 26.405
21.452 21.007 21.868
18.183 18.610 17.934
14.491 13.567 14.049
11.26 10.128 11.310
9.119 8.519 9.011
6.768 6.285 6.645
4.512 4.169 4.807
3.346 2.783 3.697
2.206 1.693 2.772
1.351 0.992 2.067


MIX CPR4

Depth
(in.) A
0.0 -0.25 38.985
0.25 -0.50 17.066
0.50 -0.75 3.553
0.75 1.0 0.861

1.0 -1.25 0.524
1.25 1.5 0.338
1.5 1.75 0.365
1.75 -2.0 0.297
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0

MIX CPR6

Depth
(in.) A
0.0 -0.25 46.150
0.25 -0.50 33.319
0.50 -0.75 21.566
0.75 1.0 12.985
1.0 -1.25 5.993
1.25 1.5 2.060
1.5 -1.75 0.607
1.75 -2.0 0.423
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0


NaCl (lblyd )
B C

42.387 35.510
16.198 14.251
3.701 3.363
0.966 1.195

0.475 0.554
0.369 0.348
0.380 0.314
0.306 0.285


AVG

38.961
15.838
3.539
1.007

0.518
0.352
0.353
0.296


NaCl (lblyd )
B C AVG

40.827 41.401 40.336
29.107 24.517 27.156
18.215 15.873 16.029
9.060 10.595 8.958
5.210 7.267 5.477
3.287 5.609 3.847
3.224 4.141 3.280
2.888 4.202 3.074
3.267 4.375 3.419
2.952 4.131 3.168


NaCl (lblyd )
B C

50.752 52.240
35.785 33.166
22.170 20.228
11.790 12.543
4.713 5.547
1.480 1.623
0.551 0.513
0.341 0.350


AVG

49.714
34.090
21.321
12.439
5.418
1.721
0.557
0.371


Table C-2. 1-Year Bulk Diffusion Chloride Profile Testing Results.


NaCl (lblyd )
B C AVG

48.040 46.615 46.920
35.387 33.338 33.025
22.518 22.259 22.732
17.604 18.464 18.322

14.951 13.151 13.698
9.737 8.800 9.340
5.864 5.611 6.066
3.502 3.011 3.613
2.098 1.214 1.833
1.225 0.506 0.912


MIX CPR1

Depth
(in.) A
0.0 -0.25 34.545
0.25 -0.50 26.321
0.50 -0.75 23.144
0.75 1.0 17.010
1.0 -1.25 14.090
1.25 1.5 12.543
1.5 -1.75 9.394
1.75 -2.0 6.883
2.0 -2.25 5.741
2.25 -2.5 4.962
2.5 -2.75 4.417
2.75 -3.0 3.858

MIX CPR3

Depth
(in.) A
0.0 -0.25 46.106
0.25 -0.50 30.350
0.50 -0.75 23.419
0.75 1.0 18.898

1.0 -1.25 12.992
1.25 1.5 9.483
1.5 1.75 6.724
1.75 -2.0 4.326
2.0 -2.25 2.188
2.25 -2.5 1.005
2.5 -2.75 -
2.75 -3.0 -

MIX CPR5

Depth
(in.) A
0.0 -0.25 38.780
0.25 -0.50 27.843
0.50 -0.75 13.999
0.75 1.0 7.220
1.0 -1.25 3.955
1.25 1.5 2.644
1.5 -1.75 2.475
1.75 -2.0 2.131
2.0 -2.25 2.616
2.25 -2.5 2.420
2.5 -2.75 -
2.75 -3.0 -


MIX CPR2

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 39.658 42.397 39.408 40.488
0.25 -0.50 24.826 27.064 27.004 26.298
0.50 -0.75 16.312 17.004 15.944 16.420
0.75 1.0 8.230 10.622 10.422 9.758
1.0 -1.25 2.457 3.732 5.092 3.760
1.25 1.5 0.597 1.149 1.575 1.107
1.5 -1.75 0.203 0.449 0.406 0.353
1.75 -2.0 0.208 0.442 0.261 0.304
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0





MIX CPR8

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 43.411 52.654 47.410 47.825
0.25 -0.50 26.436 33.023 31.477 30.312
0.50 -0.75 10.189 15.293 17.026 14.169
0.75 1.0 2.072 4.142 7.735 4.650
1.0 -1.25 0.444 0.780 2.201 1.142
1.25 1.5 0.285 0.277 0.485 0.349
1.5 -1.75 0.261 0.328 0.323 0.304
1.75 -2.0 0.230 0.246 0.254 0.243
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0

MIX CPR10

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 45.224 37.533 41.907 41.555
0.25 -0.50 25.403 22.540 29.947 25.963
0.50 -0.75 9.655 9.029 9.319 9.334
0.75 1.0 3.648 2.556 2.318 2.841

1.0 -1.25 1.001 0.697 0.569 0.756
1.25 1.5 0.629 0.332 0.239 0.400
1.5 -1.75 0.396 0.343 0.267 0.335
1.75 -2.0 0.297 0.197 0.252 0.249
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0

MIX CPR12

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 69.233 49.494 57.569 58.765
0.25 -0.50 40.869 32.618 31.393 34.960
0.50 -0.75 29.825 26.071 25.373 27.090
0.75 1.0 20.954 18.914 19.066 19.645
1.0 -1.25 15.925 13.838 12.720 14.161
1.25 1.5 8.291 8.149 6.450 7.630
1.5 -1.75 4.341 1.584 2.119 2.681
1.75 -2.0 1.801 0.279 0.422 0.834
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0


Table C-2. Continued.

MIX CPR7

Depth
(in.) A
0.0 -0.25 43.899 43
0.25 -0.50 22.238 25
0.50 -0.75 11.418 9.
0.75 1.0 4.154 2.
1.0 -1.25 1.083 0.
1.25 1.5 0.436 0.:
1.5 -1.75 0.296 0.
1.75 -2.0 0.321 0.:
2.0 -2.25 -
2.25 -2.5 -
2.5 -2.75 -
2.75 -3.0 -


NaCl (lblyd )
B C

.250 45.915
.091 20.441
791 8.095
405 2.653
995 0.540
520 0.322
418 0.276
350 0.257


AVG

44.355
22.590
9.768
3.071
0.873
0.426
0.330
0.309


MIX CPR9

Depth
(in.) A
0.0 -0.25 48.113
0.25 -0.50 14.635
0.50 -0.75 1.920
0.75 1.0 0.309

1.0 -1.25 0.173
1.25 1.5 0.156
1.5 1.75 0.226
1.75 -2.0 0.193
2.0 -2.25 -
2.25 -2.5 -
2.5 -2.75 -
2.75 -3.0 -

MIX CPR11

Depth
(in.) A
0.0 -0.25 44.076
0.25 -0.50 30.684
0.50 -0.75 14.201
0.75 1.0 3.512
1.0 -1.25 0.509
1.25 1.5 0.254
1.5 1.75 0.262
1.75 -2.0 0.242
2.0 -2.25 -
2.25 -2.5 -
2.5 -2.75 -
2.75 -3.0 -


NaCl (lblyd )
B C

45.023 56.627
17.553 22.058
4.008 5.600
0.757 1.258

0.295 0.318
0.252 0.264
0.255 0.260
0.233 0.287


AVG

49.921
18.082
3.843
0.775

0.262
0.224
0.247
0.238


NaCl (lblyd )
B C

58.043 48.732
34.266 36.170
10.895 13.385
2.216 6.459
0.777 1.621
0.257 0.888
0.224 0.321
0.273 0.244


AVG

50.284
33.707
12.827
4.062
0.969
0.466
0.269
0.253










































MIX CPR16

Depth
(in.) A
0.0 -0.25 51.166
0.25 -0.50 33.770
0.50 -0.75 26.831
0.75 1.0 17.011

1.0 -1.25 5.372
1.25 1.5 2.526
1.5 1.75 0.730
1.75 -2.0 0.552
2.0 -2.25 -
2.25 -2.5 -
2.5 -2.75 -
2.75 -3.0 -

MIX CPR18

Depth
(in.) A
0.0 -0.25 23.175
0.25 -0.50 17.438
0.50 -0.75 2.444
0.75 1.0 1.471
1.0 -1.25 0.554
1.25 1.5 0.537
1.5 1.75 0.500
1.75 -2.0 0.475
2.0 -2.25 -
2.25 -2.5 -
2.5 -2.75 -
2.75 -3.0 -


MIX CPR17

Depth
(in.) A
0.0 -0.25 25.271
0.25 -0.50 14.685
0.50 -0.75 9.357
0.75 1.0 2.395

1.0 -1.25 0.818
1.25 1.5 0.318
1.5 1.75 0.315
1.75 -2.0 0.272
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0

MIX CPR20

Depth
(in.) A
0.0 -0.25 21.321
0.25 -0.50 13.299
0.50 -0.75 6.956
0.75 1.0 3.511
1.0 -1.25 1.143
1.25 1.5 0.683
1.5 1.75 0.390
1.75 -2.0 0.386
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0


NaCl (lblyd )
B C

44.492 37.763
31.682 27.849
21.832 18.556
12.563 12.231

6.033 4.443
3.360 2.343
1.438 1.163
0.883 1.111


NaCl (lblyd )
B C

23.579 22.050
16.791 15.539
10.492 9.782
6.113 4.634

5.194 2.314
1.786 0.740
0.585 0.368
0.360 0.478


AVG

44.474
31.100
22.406
13.935

5.283
2.743
1.110
0.849


AVG

23.633
15.672
9.877
4.381

2.775
0.948
0.423
0.370


NaCl (lblyd )
B C

23.337 25.515
15.201 17.456
3.556 5.027
1.728 1.353
0.525 0.546
0.513 0.489
0.514 0.453
0.486 0.451


NaCl (lblyd )
B C

22.307 21.288
13.693 10.158
4.668 3.236
2.889 1.052
0.432 0.270
0.277 0.872
0.305 0.278
0.233 0.317


AVG

24.009
16.698
3.676
1.517
0.542
0.513
0.489
0.471


AVG

21.639
12.383
4.953
2.484
0.615
0.611
0.324
0.312


Table C-2. Continued.


MIX CPR13

Depth
(in.) A
0.0 -0.25 43.625
0.25 -0.50 32.307
0.50 -0.75 25.692
0.75 1.0 23.628
1.0 -1.25 14.022
1.25 1.5 9.532
1.5 1.75 5.203
1.75 -2.0 2.839
2.0 -2.25 1.150
2.25 -2.5 0.747
2.5 -2.75 -
2.75 -3.0 -


MIX CPR15

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 46.511 53.907 53.385 51.268
0.25 -0.50 37.704 47.275 41.115 42.031
0.50 -0.75 32.423 17.389 16.610 22.141
0.75 1.0 24.999 11.275 12.845 16.373
1.0 -1.25 10.027 7.656 9.560 9.081
1.25 1.5 5.243 3.889 4.210 4.447
1.5 -1.75 1.956 2.185 2.929 2.357
1.75 -2.0 0.853 1.379 1.210 1.147
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0


NaCl (lblyd )
B C

50.518 53.273
35.405 35.104
22.104 28.521
18.670 22.457
15.142 13.773
9.368 9.182
6.037 5.750
3.341 2.915
1.266 0.740
0.953 0.660


AVG

49.139
34.272
25.439
21.585
14.312
9.361
5.663
3.032
1.052
0.787














Table C-2. Continued.

MIX CPR21

Depth NaCl (blyd )
(in.) A B C AVG
0.0 -0.25 32.782 24.576 25.698 27.685
0.25 -0.50 22.953 20.168 13.717 18.946
0.50 -0.75 5.269 8.619 3.701 5.863
0.75 1.0 0.937 2.435 1.234 1.535
1.0 -1.25 0.401 0.467 0.369 0.412
1.25 1.5 0.416 0.328 0.304 0.349
1.5 -1.75 0.318 0.313 0.335 0.322
1.75 -2.0 0.455 0.345 0.326 0.375
2.0 -2.25
2.25 -2.5
2.5 -2.75
2.75 -3.0











CPR1 (Sample A) 364-Day Bulk Diffitsion



60 60


~40




IIL
0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.245E-11 BackgroundOl d3) 0.133
Surfacebl~yd^3) 34.385 Sum(Error)^2 22.07

CPR1 (Sample C) 364-Day Bulk Diffusion



S60


S40 --


S20 --


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.735E-11 Background(Il/yd^3) 0.133
Surfacebl~yd^3) 35.5001 Sum(Error)^2 29.996

CPR2 (Sample B) 364-Day Bulk Diffusion



S60


S40 --


S20


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.433E-12 Backgroundnl/yd^3)1 0.09
Surfacebl~yd^3) 49.3901 Sumn(Error)^2 4.615


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.661E-11 BackgroundOl d3) 0.133
Surfacebl~yd^3) 39.1021 Sum(Error)^2 23.57

CPR2 (Sample A) 364-Day Bulk Diffitsion
80Il


S60-


S40


S20


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.050E-12 Background(lb/yd^3) 0.07
Surfacebl~yd^3) 46.835 Sum(Error)^2 4.801

CPR2 (Sample C) 364-Day Bulk Diffusion
80Il


S60-


S40


S20-


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.863E-1 Bcronld3) 0.07
Surfacebl~yd^3) 45.9301 Sumn(Error)^2 2.43


CPR1 (Sample B) 364-Day Bulk Diffusion


Figure C-1. 1-Year Bulk Diffusion Coefficient Regression Analysis.































I ~Depth (in) I
Diffusion(m^2/sec)l 1.064E-11 BackgroundOl d3) 0.125
Surfacebl~yd^3) -1 '1-1: Nunti-.11ini1s 2 32.245


CPR3 (Sample C) 364-Day Bulk Diftixsion




S60 --


S40 --







0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 9.440E-12 Background(lb/yd^3) 0.125
Surfacebl~yd^3) 49.6371 Sum(Error)^2 21.269


CPR4 (Sample B) 364-Day Bulk Diftixsion




S60 --


S40 -







0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.175E-12 Backgroundnblvyd^3) 0.151
Surfacebl~yd^3) 59.5211 Sumn(Error)^2 0.362

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 9.738E-1 BackgroundOl d3) 0.125
Surfacebl~yd^3) 51.0261 Sum(Error)^2 32.624


CPR4 (Sample A) 364-Day Bulk Ditfusion
80Il


S60


S40







0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.345E-1 Bakground(lblyd^3) 0.151
Surfacebl~yd^3) 53.651 Sum(Error)^2 2.183


CPR4 (Sample C) 364-Day Bulk Diftixsion
80Il


S60


S40







0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.254E-1 Bcronld3) 0.151
Surfacebl~yd^3) 49.2621 Sumn(Error)^2 0.594


CPR3 (Sample A) 364-Day Bulk Ditfusion


CPR3 (Sample B) 364-Day Bulk Diftixsion


0 1 2 3 4





























0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.222E-1 BackgroundOl d3) 0.140
Surfacebl~yd^3) -h.-I -1 bunti-.In.1,s11 2 25.196


CPR5 (Sample C) 364-Day Bulk Diffusion




S60


S40 -


S20 --


U, O
0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.948E-12 BackgrounIb/d"l3d^3 0.140
Surfacebl~yd^3) 44.1921 Sum(Error)^2 80.317


CPR6 (Sample B) 364-Day Bulk Diffusion




S60


S40 --


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.637E-12 Backgroundnblvyd^3) 0.107
Surfacebl~yd^3) 60.405 Sumn(Error)^2 4.615

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.255E-1 BackgroundOl d3) 0.140
Surfacebl~yd^3) 47.4421 Sum(Error)^2 29.211


CPR6 (Sample A) 364-Day Bulk Diffitsion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.374E-12 BackgrounIb/d"l3d^3 0.10
Surfacebl~yd^3) 54.1471 Sum(Error)^2 3.72


CPR6 (Sample C) 364-Day Bulk Diffusion
80Il



S60-


S40


S20-



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.378E-1 Bcronld3) 0.10
Surfacebl~yd^3) 60.7441 Sumn(Error)^2 5.08


CPR5 (Sample A) 364-Day Bulk Diffitsion


CPR5 (Sample B) 364-Day Bulk Diffusion





























0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.299E-1 BackgroundOl d3) 0.233
Surfacebl~yd^3) 54.78 Sum(Error)^2 3.243


CPR7 (Sample C) 364-Day Bulk Diffusion




S60


S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.656E-1 Background(lblyd^3) 0.233
Surfacebl~yd^3) 60.3261 Sum(Error)^2 1.66


CPR8 (Sample B) 364-Day Bulk Diffusion




S60 -


S40 --


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.729E-12 Backgrounnb/d"l3d^3 0.06
Surfacebl~yd^3) 66.2981 Sumn(Error)^2 10.26

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.255E-1 BackgroundOl d3) 0.233
Surfacebl~yd^3) 55.418 Sum(Error)^2 4.376


CPR8 (Sample A) 364-Day Bulk Diffusion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.351E-12 Background(lb/yd^3) 0.096
Surfacebl~yd^3) 55.771 Sum(Error)^2 9.72


CPR8 (Sample C) 364-Day Bulk Diffusion
80Il



S60-


S40


S20-



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 3.562E-1 Bcronld3) 0.096
Surfacebl~yd^3) 57.763 Sumn(Error)^2 3.753


CPR7 (Sample A) 364-Day Bulk Diffusion


CPR7 (Sample B) 364-Day Bulk Diffusion





























0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 8.766E-13 BackgroundOl d3) 0.075
Surfacebl~yd^3) 71.946 Sum(Error)^2 0.343


CPR9 (Sample C) 364-Day Bulk Diffusion




S60 -


S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.232E-12 Background(lb/yd^3) 0.075
Surfacebl~yd^3) 78.7921 Sum(Error)^2 0.217


CPR10 (Sample B) 364-Day Bulk Diffusion




S60


S40 -


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.425E-12 Backgroundnblvyd^3) 0.074
Surfacebl~yd^3) 47.7881 Sumn(Error)^2 3.795

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.206E-12 BackgroundOl d3) 0.075
Surfacebl~yd^3) 62.9791 Sum(Error)^2 0.30


CPR10 (Sample A) 364-Day Bulk Diffitsion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.251E-12 Background(lb/yd^3) 0.074
Surfacebl~yd^3) 57.6411 Sum(Error)^2 2.08


CPR10 (Sample C) 364-Day Bulk Diffusion
80Il



S60-


S40


S20-



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.587E-1 Bcronld3) 0.074
Surfacebl~yd^3) 54.6011 Sumn(Error)^2 40.766


CPR9 (Sample A) 364-Day Bulk Diffitsion


CPR9 (Sample B) 364-Day Bulk Diffusion





























0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.994E-1 BackgroundOl d3) 0.185
Surfacebl~yd^3) 55.913 Sum(Error)^2 23.64


CPR11 (Sample C) 364-Day Bulk Diffusion




S60 -


S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 3.151E-12 Background(lb/yd^3) 0.185
Surfacebl~yd^3) 61.852 Sum(Error)^2 41.78


CPR12 (Sample B) 364-Day Bulk Diffusion




S60


S40 --


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 8.406E-1 Backgon ~d3) 0.141
Surfacebl~yd^3) 53.32 Sumn(Error)^2 34.381

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.100E-12 BackgroundOl d3) 0.185
Surfacebl~yd^3) 75.6671 Sum(Error)^2 20.332


CPR12 (Sample A) 364-Day Bulk Diffitsion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 6.644E-1 Bakground(lblyd^3) 0.141
Surfacebl~yd^3) 73.541 Sum(Error)^2 87.970


CPR12 (Sample C) 364-Day Bulk Diffusion
80Il



S60


S40


20-



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 6.622E-1 Bcronld3) 0.141
Surfacebl~yd^3) 60.4001 Sumn(Error)^2 92.280


CPR11 (Sample A) 364-Day Bulk Diffitsion


CPR11 (Sample B) 364-Day Bulk Diffusion





























0 20 40 60 80 100

Depth (mm)
Diffusion(m^2/sec)l 1.170E-11 Back grunoun ~d3) 0.178
Surfacebl~yd^3) -1 '\\1 Nunti-.1 1ni1! 2 25.57


CPR13 (Sample C) 364-Day Bulk Diffusion




S60


S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 9.404E-12 Background(lb/yd^3) 0.178
Surfacebl~yd^3) 56.4491 Sum(Error)^2 30.48


CPR15 (Sample B) 364-Day Bulk Diffusion



80



S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.452E-12 Backgroundnblvyd^3) 0.515
Surfacebl~yd^3) 67.2601 Sumn(Error)^2 129.612

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 9.155E-1 BackgroundOl d3) 0.178
Surfacebl~yd^3) 53.1441 Sum(Error)^2 46.819


CPR15 (Sample A) 364-Day Bulk Diffitsion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 6.306E-1 Bakground(lblyd^3) 0.515
Surfacebl~yd^3) 59.-Mi sunti-.Inc.1,s! 2 1.443


CPR15 (Sample C) 364-Day Bulk Diffusion
80Il



S60


S40


20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.656E-1 Bcronld3) 0.515
Surfacebl~yd^3) 63 .4261 Sumn(Error)^2 69.269


CPR13 (Sample A) 364-Day Bulk Diffitsion


CPR13 (Sample B) 364-Day Bulk Diffusion































I ~Depth (in) I
Diffusion(m^2/sec)l 5.829E-1 BackgroundOl d3) 0.16
Surfacebl~yd^3) 58.558 Sum(Error)^2 3258


CPR16 (Sample C) 364-Day Bulk Diffusion




S60


S40 -


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.851E-12 Background(lb/yd^3) 0.126
Surfacebl~yd^3) 44.1241 Sum(Error)^2 6.116


CPR17 (Sample B) 364-Day Bulk Diffusion




S60


S40 --


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.729E-12 Backgrounnb/d"l3d^3 0.179
Surfacebl~yd^3) 27.0141 Sumn(Error)^2 2.928

Figure C-1. Continued.


0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 5.723E-1 BackgroundOl d3) 0.126
Surfacebl~yd^3) 51.562 Sum(Error)^2 1.914


CPR17 (Sample A) 364-Day Bulk Diffitsion
80Il


S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 3.027E-12 Background(lb/yd^3) 0.17
Surfacebl~yd^3) 30.835 Sum(Error)^2 4.053


CPR17 (Sample C) 364-Day Bulk Diffusion
80Il


S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 4.526E-1 Bcronld3) 0.17
Surfacebl~yd^3) 26.3011 Sumn(Error)^2 1.103


CPR16 (Sample A) 364-Day Bulk Diffitsion


CPR16 (Sample B) 364-Day Bulk Diffusion


0 1 2 3 4













CPR18 (Sample A) 364-Day Bulk Diffitsion




60 --


40 --


20 --


CPR18 (Sample B) 364-Day Bulk Diffusion




60 60


~40



S20



0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.169E-1 BackgroundOl d3) 0.259
Surfacebl~yd^3) 30.618 Sum(Error)^2 10.314


CPR20 (Sample A) 364-Day Bulk Diffitsion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 3.330E-12 Background(lb/yd^3) 0.119
Surfacebl~yd^3) 25.791 Sum(Error)^2 0.225


CPR20 (Sample C) 364-Day Bulk Diffusion
80Il



S60-


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.662E-1 Bcronld3) 0.119
Surfacebl~yd^3) 28.1761 Sumn(Error)^2 0.717


I ~Depth (in) I
Diffusion(m^2/sec)l 2.231E-1 BackgroundOl d3) 0.259
Surfacebl~yd^3) 31.105 Sum(Error)^2 31.462


CPR18 (Sample C) 364-Day Bulk Diffusion




S60


S40 --


S20 --



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.366E-1 Background(lblyd^3) 0.259
Surfacebl~yd^3) 33.1-11 sunti-..111ni! 2 13.152


CPR20 (Sample B) 364-Day Bulk Diffusion




S60


S40 --


S20 -



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 2.490E-12 Backgroundnblvyd^3) 0.119
Surfacebl~yd^3) 28.2491 Sumn(Error)^2 3.121

Figure C-1. Continued.


0 1


2 3 4












CPR21 (Sample B) 364-Day Bulk Diffitsion



60 60






S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 3.361E-1 BackgroundO yd3) 0.316
Surfacebl~yd^3) 31.820 Sum(Error)^2 22.83


I ~Depth (in) I
Diffusion(m^2/sec)l 2.212E-1 BackgroundO yd3) 0.316
Surfacebl~yd^3) 43.56 Sum(Error)^2 34.620


CPR21 (Sample C) 364-Day Bulk Diffitsion



S60


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.756E-1 Background(lblyd^3) 0.316
Surfacebl~yd^3) 3-I**-Il lunti-.Inc.1,s 2 2.471

Figure C-1. Continued.


CPR21 (Sample A) 364-Day Bulk Diffitsion


0 1 2 3 4

















MIX CPR2

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 37.154 39.357 42.339 39.617

0.25 -0.50 27.537 29.155 34.621 30.438
0.50 -0.75 23.160 25.107 27.150 25.139

0.75 1.0 16.862 19.349 20.440 18.884
1.0 -1.25 14.387 12.610 15.927 14.308

1.25 1.5 9.829 10.459 13.710 11.333

1.5 -1.75 10.340 5.863 8.575 8.259
1.75 -2.0 5.697 4.866 5.282

2.0 -2.25 4.130 1.298 -2.714

2.25 -2.5 1.981 0.844 -1.413
2.5 -2.75 1.146 0.917 -1.032

2.75 -3.0 0.607 0.773 -0.690
3.0-3.25

3.25 -3.5
3.5 -4.0

MIX CPR4

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 36.046 41.032 34.361 37.146

0.25 -0.50 22.629 23.515 17.399 21.181

0.50 -0.75 14.121 11.295 5.292 10.236
0.75 1.0 5.975 3.172 2.386 3.844

1.0 -1.25 1.317 1.371 0.482 1.057

1.25 1.5 1.357 0.576 0.967
1.5 -1.75 0.385 0.371 0.466 0.407

1.75 -2.0 0.368 0.856 0.372 0.532
2.0 -2.25

2.25 -2.5

2.5-2.75
2.75 -3.0

3.0 -3.25

3.25 -3.5
3.5 -4.0

MIX CPR6

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 38.232 39.903 43.053 40.396
0.25 -0.50 33.886 34.925 34.932 34.581

0.50 -0.75 27.434 29.759 28.634 28.609

0.75 1.0 15.267 21.663 21.051 19.327
1.0 -1.25 13.720 13.355 13.408 13.494

1.25 1.5 9.621 8.028 8.831 8.827
1.5 -1.75 5.210 2.932 4.416 4.186

1.75 -2.0 2.309 1.367 1.681 1.786

2.0 -2.25 0.656 0.274 0.598 0.509
2.25 -2.5 0.349 0.285 0.612 0.415

2.5 -2.75

2.75 -3.0
3.0 -3.25

3.25 -3.5
3.5 -4.0


NaCI (lb/yd )
B C

33.452 34.588

35.226 34.828
33.214 28.138

27.243 28.077
26.474 22.327

25.658 14.609

22.339 20.012
17.235 19.116

14.146 14.477

13.994 12.994
12.696 12.880

11.258 11.358
10.252 8.386

8.306 6.849
-8.006


A G

37.773

36.024
33.059

27.379
25.472

21.556

22.360
19.288

16.041

14.765
14.463

11.006
10.848

9.367
10.358


NaCI (lb/yd )
B C

41.429 36.779

34.038 30.973

29.453 25.809
25.212 22.980

18.944 21.055

15.550 19.729
13.631 14.762

11.477 13.927
8.165 10.256

7.706 9.120

5.431 7.437
3.156 5.436

2.584 3.425

1.697 2.363
1.319 1.474


A

30.180

28.312

21.316
20.950

13.411

15.245
11.003

9.063
8.265

5.523

3.916
1.531

1.351

1.175
1.214

CPR5


NaCI (lb/yd )
B C

39.266 42.149
38.666 29.563

22.811 23.244

12.896 12.387
5.711 8.140

2.537 3.222
2.113 1.791

2.039 1.756

1.360 1.621
1.206 1.546

1.531 1.791

1.642 2.041
2.730 1.719

2.470 2.030


A

42.960
28.962

24.604

15.365
5.200

2.083
1.534

1.168

1.295
1.452

1.789

1.877
2.059

1.884


A G

41.458
32.397

23.553

13.549
6.350

2.614
1.813

1.654

1.425
1.401

1.704

1.853
2.169

2.128


Table C-3. 3-Year Bulk Diffusion Chloride Profile Testing Results.


A G

36.129

31.108

25.526
23.047

17.803

16.841
13.132

11.489
8.895

7.450

5.595
3.374

2.453

1.745
1.336


MIX

Depth
(in.)
0.0 -0.25

0.25 -0.50
0.50 -0.75

0.75 1.0
1.0 -1.25

1.25 1.5

1.5 -1.75
1.75 -2.0

2.0 -2.25

2.25 -2.5
2.5 -2.75

2.75 -3.0
3.0-3.25

3.25 -3.5
3.5 -4.0

MIX

Depth
(in.)
0.0 -0.25

0.25 -0.50

0.50 -0.75
0.75 1.0

1.0 -1.25

1.25 1.5
1.5 -1.75

1.75 -2.0
2.0 -2.25

2.25 -2.5

2.5-2.75
2.75 -3.0

3.0 -3.25

3.25 -3.5
3.5 -4.0

MIX

Depth
(in.)
0.0 -0.25
0.25 -0.50

0.50 -0.75

0.75 1.0
1.0 -1.25

1.25 1.5
1.5 -1.75

1.75 -2.0

2.0 -2.25
2.25 -2.5

2.5 -2.75

2.75 -3.0
3.0 -3.25

3.25 -3.5
3.5 -4.0


CPR1


A

45.278

38.017
37.825

26.818
27.616

24.401

24.728
21.513

19.501

17.308
17.812

10.401
13.905

12.947
12.709

CPR3





Table C-3. Continued.

MIX CPR7

Depth NaCI (lb/yd3)

(in.) A B C AVG

0.0 -0.25 37.602 35.221 36.545 36.456

0.25 -0.50 25.020 26.580 22.891 24.830

0.50 -0.75 21.457 20.615 15.849 19.307

0.75 1.0 9.612 12.823 11.790 11.408

1.0 -1.25 4.064 5.054 7.054 5.391

1.25 1.5 0.886 0.975 2.702 1.521

1.5 -1.75 0.466 0.268 0.440 0.391

1.75 -2.0 0.291 0.254 0.202 0.249

2.0 -2.25 ----

2.25 -2.5 ----

2.5-2.75 ----

2.75 -3.0 ----

3.0 -3.25 ----

3.25 -3.5 ----

3.5 -4.0 ----

MIX CPR9

Depth NaCI (lb/yd )

(in.) A B C AVG
0.0 -0.25 39.434 49.439 45.287 44.720

0.25 -0.50 30.800 30.579 28.557 29.979

0.50 -0.75 18.881 18.325 18.288 18.498

0.75 1.0 9.913 8.528 9.834 9.425

1.0 -1.25 1.903 3.119 3.735 2.919

1.25 1.5 0.761 1.551 0.722 1.011

1.5 -1.75 0.316 0.759 0.422 0.499

1.75 -2.0 0.294 0.212 0.395 0.300

2.0 -2.25 ----

2.25 -2.5 ----

2.5-2.75 ----

2.75 -3.0 ----

3.0 -3.25 ----

3.25 -3.5 ----

3.5 -4.0 ----

MIX CPR11

Depth NaCI (lb/yd3)

(in.) A B C AVG

0.0-0.25 50.261 42.966 53.800 49.009

0.25 -0.50 38.149 44.938 38.003 40.363

0.50 -0.75 29.264 26.989 23.563 26.605

0.75 1.0 19.071 19.626 16.032 18.243

1.0 -1.25 10.176 11.156 7.755 9.696

1.25 1.5 2.532 4.770 1.961 3.088

1.5 -1.75 0.603 0.990 0.450 0.681

1.75 -2.0 0.235 0.162 0.390 0.262

2.0 -2.25 ----

2.25 -2.5 ----

2.5-2.75 ----

2.75 -3.0 ----

3.0 -3.25 ----

3.25 -3.5 ----

3.5 -4.0 ----


MIX CPR8

Depth NaCI (lb/yd3)

(in.) A B C AVG

0.0 -0.25 36.681 35.872 37.243 36.599

0.25 -0.50 31.887 26.630 28.037 28.851

0.50 -0.75 24.104 25.113 21.110 23.442

0.75 1.0 17.647 15.455 14.300 15.801

1.0 -1.25 9.109 7.672 8.621 8.467

1.25 1.5 3.162 2.094 1.698 2.318

1.5 -1.75 0.615 0.480 0.406 0.500

1.75 -2.0 0.240 0.255 0.296 0.264

2.0 -2.25

2.25 -2.5

2.5-2.75

2.75 -3.0

3.0 -3.25

3.25 -3.5

3.5 -4.0

MIX CPR10

Depth NaCI (lb/yd )

(in.) A B C AVG
0.0 -0.25 43.994 39.019 41.456 41.490

0.25 -0.50 38.626 35.126 35.993 36.582

0.50 -0.75 22.472 22.847 26.470 23.930

0.75 1.0 22.922 13.241 14.800 16.988

1.0 -1.25 2.251 5.591 6.117 4.653

1.25 1.5 0.552 0.604 1.337 0.831

1.5 -1.75 0.263 0.303 0.204 0.257

1.75 -2.0 0.173 0.720 0.310 0.401

2.0 -2.25

2.25 -2.5

2.5-2.75

2.75 -3.0

3.0 -3.25

3.25 -3.5

3.5 -4.0

MIX CPR12

Depth NaCI (lb/yd3)

(in.) A B C AVG

0.0-0.25 47.519 36.716 44.526 42.920

0.25 -0.50 30.467 24.307 33.428 29.401

0.50 -0.75 26.049 22.354 25.778 24.727

0.75 1.0 24.141 18.097 24.907 22.382

1.0 -1.25 20.604 19.309 21.900 20.604

1.25 1.5 11.860 19.183 18.654 16.566

1.5 -1.75 11.790 17.116 13.320 14.075

1.75 -2.0 12.301 16.036 13.351 13.896

2.0 -2.25 7.340 11.693 12.555 10.529

2.25 -2.5 9.698 8.211 10.170 9.360

2.5-2.75 6.666 5.572 7.173 6.470

2.75 -3.0 5.368 4.447 5.200 5.005

3.0 -3.25 1.820 3.661 4.153 3.211

3.25 -3.5 0.740 1.865 1.752 1.452

3.5 -4.0 0.508 2.560 0.936 1.335





















A G

35.062

30.888
26.988

22.789
20.100

17.336

15.153
13.520

13.837

13.523
13.183

10.976
8.992

8.286
6.932


A G

42.013

33.206

25.886
18.023

11.586

6.901
3.630

1.677
1.322

0.882


Table C-3. Continued.

MIX CPR13

Depth N\
(in.) A B
0.0 -0.25 34.930 33.65

0.25 -0.50 29.764 30.21
0.50 -0.75 28.128 26.01

0.75 1.0 23.025 22.11
1.0 -1.25 20.798 18.83

1.25 1.5 18.275 16.90

1.5 -1.75 16.273 14.01
1.75 -2.0 14.508 13.16

2.0 -2.25 14.764 13.85

2.25 -2.5 14.579 13.89
2.5 -2.75 14.287 14.66

2.75 -3.0 12.319 11.38
3.0 -3.25 11.493 9.53

3.25 -3.5 10.303 7.99
3.5 -4.0 9.078 6.70

MIX CPR16

Depth N\
(in.) A B
0.0 -0.25 46.394 39.54

0.25 -0.50 33.459 32.95

0.50 -0.75 28.506 23.56
0.75 1.0 21.678 13.28

1.0 -1.25 13.546 7.70

1.25 1.5 8.632 4.96
1.5 -1.75 4.026 3.09

1.75 -2.0 1.387 1.32
2.0 -2.25 -

2.25 -2.5 -

2.5-2.75 -
2.75 -3.0 -

3.0 -3.25 -

3.25 -3.5 -
3.5 -4.0 -

MIX CPR18

Depth N\
(in.) A B
0.0 -0.25 34.944 29.51
0.25 -0.50 36.966 30.59

0.50 -0.75 28.346 26.11

0.75 1.0 9.759 11.01
1.0 -1.25 3.010 2.71

1.25 1.5 0.557 0.62
1.5 -1.75 0.425 0.48

1.75 -2.0 0.535 0.64

2.0 -2.25 0.644 0.42
2.25 -2.5 0.529 0.45

2.5-2.75 -

2.75 -3.0 -
3.0 -3.25 -

3.25 -3.5 -
3.5 -4.0 -


MIX CPR15

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 25.830 34.635 36.062 32.176

0.25 -0.50 22.799 30.031 31.169 28.000
0.50 -0.75 20.588 29.284 29.640 26.504

0.75 1.0 20.337 28.959 24.304 24.533
1.0 -1.25 15.978 19.974 22.326 19.426

1.25 1.5 12.256 18.060 19.882 16.733

1.5 -1.75 8.534 13.630 14.740 12.301
1.75 -2.0 6.896 11.755 11.020 9.890

2.0 -2.25 -5.861 7.455 6.658

2.25 -2.5 -3.889 6.594 5.242
2.5 -2.75 -3.536 4.457 3.997

2.75 -3.0 -3.087 4.608 3.848
3.0 -3.25 -3.522 4.484 4.003

3.25 -3.5 -3.459 4.731 4.095
3.5 -4.0 4.688 5.851 5.270

MIX CPR17

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 43.951 45.944 51.951 47.282

0.25 -0.50 35.440 37.455 44.942 39.279

0.50 -0.75 25.867 28.429 28.558 27.618
0.75 1.0 16.003 18.825 21.209 18.679

1.0 -1.25 8.010 5.838 17.922 10.590

1.25 1.5 2.813 1.584 7.898 4.098
1.5 -1.75 0.770 0.469 2.625 1.288

1.75 -2.0 0.442 0.293 1.209 0.648
2.0 -2.25 0.309 0.306 0.453 0.356

2.25 -2.5 0.359 0.317 0.327 0.334

2.5-2.75
2.75 -3.0

3.0 -3.25

3.25 -3.5
3.5 -4.0

MIX CPR20

Depth NaCI (lb/yd )
(in.) A B C AT G
0.0 -0.25 41.525 49.320 58.420 49.755
0.25 -0.50 33.760 37.401 39.894 37.018

0.50 -0.75 26.664 26.421 27.469 26.851

0.75 1.0 17.167 13.624 15.999 15.597
1.0 -1.25 11.977 6.043 6.853 8.291

1.25 1.5 6.402 2.083 2.079 3.521
1.5 -1.75 1.775 0.878 0.564 1.072

1.75 -2.0 0.913 0.848 0.500 0.754

2.0 -2.25 0.221 0.180 0.209 0.203
2.25 -2.5 0.143 0.171 0.164 0.159

2.5-2.75

2.75 -3.0
3.0 -3.25

3.25 -3.5
3.5 -4.0


raCI (lb/yd )


9g 36.597

13 32.687
1 26.826

3 23.230
~3 20.670

)3 16.829

12 15.173
i2 12.891

9g 12.889

)0 12.099
i4 10.597

12 9.227
2 5.952

7 6.558
0 5.017


raCI (lb/yd )


~2 40.104

5g 33.203

i8 25.585
14 19.108

6 13.506

8 7.104
1 3.773

0 2.324
1.322

0.882


raCI (lb/yd )


9 43.414
)1 35.498

19 21.906

17 6.781
3 1.731

4 0.526
5 0.409

4 0.659

6 0.329
8 0.387


A G

35.959
34.352

25.457

9.186
2.485

0.569
0.440

0.613

0.466
0.458








































2.5-2.75

2.75 -3.0
3.0 -3.25

3.25 -3.5
3.5 -4.0


Table C-3. Continue

1\fX CPR21

Depth
(in.) A
0.0-0.25 36.265

0.25 -0.50 32.551
0.50 -0.75 18.981

0.75 1.0 5.263
1.0 -1.25 2.084

1.25 1.5 0.729

1.5 -1.75 0.471
1.75 -2.0 0.554

2.0 -2.25 0.459
2.25 -2.5 0.473


NaCI (lb/yd )
B C AYG

51.995 38.738 42.333

41.476 31.858 35.295
25.400 15.377 19.919

6.456 4.530 5.416
2.411 1.513 2.003

0.554 0.722 0.668

0.560 0.582 0.538
0.889 0.596 0.680

0.379 0.463 0.434
0.428 0.414 0.438













CPR1 (Sample A) 1092-Day Bulk Diffitsion




60 6

O
~40


OO

U t

0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.983E-11 Background(lyd3) 0.133
Surfacebl~yd^3) 42.14 Sum(Error)^2 111.39


CPR1 (Sample C) 1092-Day Bulk Diffitsion




S60


S40 --


S20 -O-





Depth (in)
Diffusion(m^2/sec)l 2.415E-11l Background(lblyd^3)1 0.133
Surfacebl~yd^3) 35.6421 Sum(Error)^2 78.87


CPR2 (Sample B) 1092-Day Bulk Diffitsion




S60


S40 -


S20





Depth (in)
Diffusion(m^2/sec)l 4.383E-12 Backgroundnblvyd^3) 0.09
Surfacebl~yd^3) 42.0691 Sum(Error)^2 12.811


CPR1 (Sample B) 1092-Day Bulk Diffitsion




60 60


~40


S20


0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.537E-11 Backgrunduldyd^3 0.133
Surfacebl~yd^3) 37.92 Sum(Error)^2 34.265


CPR2 (Sample A) 1092-Day Bulk Diffitsion




S60-


S40


S20





Depth (in)
Diffusion(m^2/sec)l 5.371E-12 Bakrudlyd^3) 0.07
Surfacebl~yd^3) 38.14 Sum(Error)^2 19.12


CPR2 (Sample C) 1092-Day Bulk Diffitsion
80Il


S60-


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 5.034E-12 Bakgondld3) 0.07
Surfacebl~yd^3) 45.60 Sum(Error)^2 6.12


Figure C-2. 3-Year Bulk Diffusion Coefficient Regression Analysis.











CPR3 (Sample A) 1092-Day Bulk Diffitsion



60 60


~40



20

0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 9.706E-1 Background(lyd3) 0.125
Surfacebl~yd^3) 32.-0-1 sunRI-.111ni! 2 24.78

CPR3 (Sample C) 1092-Day Bulk Diffitsion



S60


S40 --


S20 --




Depth (in)
Diffusion(m^2/sec)l 1.323E-11 Bsackground(llyd^3)I 0.125
Surfacebl~yd^3) 36.9611 Sum(Error)^2 16.389

CPR4 (Sample B) 1092-Day Bulk Diffitsion



S60


S40 -


S20


0 nn I 3

Depth (in)
Diffusion(m^2/sec)l 8.501E-13 Bsackgroundnblvd^3)1 0.151
Surfacebl~yd^3) 51.303 Sum(Error)^2 2.67

Figure C-2. Continued.


I ~Depth (in)
Diffusion(m^2/sec)l 8.962E-12 Background(lyd3) 0.125
Surfacebl~yd^3) 42.46 Sum(Error)^2 12.215

CPR4 (Sample A) 1092-Day Bulk Diffitsion



S60-


S40


S20




Depth (in)
Diffusion(m^2/sec)l 1.212E-12 Bakrudl~yd^3) 0.151
Surfacebl~yd^3) 43.3081 Sum(Error)^2 3.77

CPR4 (Sample C) 1092-Day Bulk Diffitsion
80Il


S60-


S40


S20-




Depth (in)
Diffusion(m^2/sec)l 5.998E-13 Bakgondld3) 0.151
Surfacebl~yd^3) 45.051 Sum(Error)^2 1.928


CPR3 (Sample B) 1092-Day Bulk Diffitsion


0 1 2 3 4











CPR5 (Sample B) 1092-Day Bulk Diffitsion



60 60


~40


S20

I O
0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.240E-12 Background(lyd3) 0.140
Surfacebl~yd^3) 49.6611 Sum(Error)^2 94.298

CPR6 (Sample A) 1092-Day Bulk Diffitsion



S60-


S40


S20




Depth (in)
Diffusion(m^2/sec)l 3.806E-12 Bakrudlyd^3) 0.10
Surfacebl~yd^3) 44.462 Sum(Error)^2 29.179

CPR6 (Sample C) 1092-Day Bulk Diffitsion
80Il


S60-


S40


S20-




Depth (in)
Diffusion(m^2/sec)l 3.606E-12 Bakgondld3) 0.10
Surfacebl~yd^3) 49.0981 Sum(Error)^2 15.013


I ~Depth (in) I
Diffusion(m^2/sec)l 2.160E-12 Background(lyd3) 0.140
Surfacebl~yd^3) 48.98 Sum(Error)^2 46.661

CPR5 (Sample C) 1092-Day Bulk Diffitsion



S60


S40 --


S20 --




Depth (in)
Diffusion(m^2/sec)l 2.224E-12 Background(lb/yd^3) 0.140
Surfacebl~yd^3) 47.8541 Sum(Error)^2 24.17

CPR6 (Sample B) 1092-Day Bulk Diffitsion



S60


S40 -


S20




Depth (in)
Diffusion(m^2/sec)l 3.711E-12 Backgroundnblvyd^3) 0.107
Surfacebl~yd^3) 47.5101 Sum(Error)^2 47.28

Figure C-2. Continued.


CPR5 (Sample A) 1092-Day Bulk Diffitsion


0 1 2 3 4






























I ~Depth (in) I
Diffusion(m^2/sec)l 1.796E-1 Background(lyd3) 0.233
Surfacebl~yd^3) 43.873 Sum(Error)^2 27.617


CPR7 (Sample C) 1092-Day Bulk Diffitsion



S60


S40 --


S20 --





Depth (in)
Diffusion(m^2/sec)l 1.951E-12 Backgroun(b/d"l3d^3 0.233
Surfacebl~yd^3) 40.4501 Sum(Error)^2 13.613


CPR8 (Sample B) 364-Day Bulk Diffitsion



S60


S40 -


0 2






Depth (in)
Diffusion(m^2/sec)l 2.683E-12 Backgroundnblvyd^3) 0.06
Surfacebl~yd^3) 41.879 Sum(Error)^2 49.59

Figure C-2. Continued.


I ~Depth (in)
Diffusion(m^2/sec)l 2.126E-12 Background(lyd3) 0.233
Surfacebl~yd^3) 41.652 Sum(Error)^2 23.136


CPR8 (Sample A) 1092-Day Bulk Diffitsion



S60-


S40


S20





Depth (in)
Diffusion(m^2/sec)l 2.850E-12 Bakrudl~yd^3) 0.096
Surfacebl~yd^3) 44.1981 Sum(Error)^2 40.838


CPR8 (Sample C) 1092-Day Bulk Diffitsion



S60-


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 2.402E-12 Bakgondld3) 0.096
Surfacebl~yd^3) 43.1061 Sum(Error)^2 17.445


CPR7 (Sample A) 1092-Day Bulk Diffitsion


CPR7 (Sample B) 1092-Day Bulk Diffitsion


0 1 2 3 4


0 1 2 3 4































I ~Depth (in) I
Diffusion(m^2/sec)l 1.601E-12 Background(lyd3) 0.075
Surfacebl~yd^3) 48.3411 Sum(Error)^2 23.62


CPR9 (Sample C) 1092-Day Bulk Diffitsion




S60


S40 --


S20 --





Depth (in)
Diffusion(m^2/sec)l 1.392E-12 Background(lb/yd^3) 0.075
Surfacebl~yd^3) 53.198 Sum(Error)^2 3.818


CPR10 (Sample B) 1092-Day Bulk Diffusion




S60


S40 -


S20



0 I n I 4

Depth (in)
Diffusion(m^2/sec)l 2.108E-12 Backgroundnblvyd^3) 0.074
Surfacebl~yd^3) 48.665 Sum(Error)^2 52.531

Figure C-2. Continued.


I ~Depth (in)
Diffusion(m^2/sec)l 1.227E-12 Background(lyd3) 0.075
Surfacebl~yd^3) 58.918 Sum(Error)^2 1.641


CPR10 (Sample A) 1092-Day Bulk Diffusion




S60-


S40


S20


10 n I

Depth (mm)
Diffusion(m^2/sec)l 2.168E-12 Bakrudl~yd^3) 0.074
Surfacebl~yd^3) 54.117 Sum(Error)^2 157.50


CPR10 (Sample C) 1092-Day Bulk Diffusion
80Il


S60-


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 2.172E-12 Bakgondld3) 0.074
Surfacebl~yd^3) 51.317 Sum(Error)^2 67.296


CPR9 (Sample A) 1092-Day Bulk Diffitsion


CPR9 (Sample B) 1092-Day Bulk Diffitsion


0 1 2 3 4


0 1 2 3 4






























I ~Depth (in) I
Diffusion(m^2/sec)l 2.346E-1 Background(lyd3) 0.185
Surfacebl~yd^3) 58.64 Sum(Error)^2 31.993


CPR11 (Sample C) 1092-Day Bulk Diffusion



S60 -


S40


S20



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.776E-1 Background(lblyd^3) 0.185
Surfacebl~yd^3) 62.573 Sum(Error)^2 8.68


CPR12 (Sample B) 1092-Day Bulk Diffusion



60- -


~40- -

$ 0 O
O O



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.505E-11 Bsackgroundnblvd^3)1 0.141
Surfacebl~yd^3) 1' \'-\1 sunRI-.1ini1! 2 106.19

Figure C-2. Continued.


I ~Depth (in)
Diffusion(m^2/sec)l 2.785E-12 Background(lyd3) 0.185
Surfacebl~yd^3) 54.68 Sum(Error)^2 115.51


CPR12 (Sample A) 1092-Day Bulk Diffusion



6 60-


S40


S20-

eI I

0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 8.174E-12 Bakrudl~yd^3) 0.141
Surfacebl~yd^3) 43.1461 Sum(Error)^2 141.8


CPR12 (Sample C) 1092-Day Bulk Diffusion



S60-


S40


S20-



0 1 2 3 4

Depth (in)
Diffusion(m^2/sec)l 1.121E-11 b Bcronld3) 0.141
Surfacebl~yd^3) 41.5761 Sumn(Error)^2 70.94


CPR11 (Sample A) 1092-Day Bulk Diffusion


CPR11 (Sample B) 1092-Day Bulk Diffusion


0 1 2 3 4


0 1 2 3 4













CPR13 (Sample A) 1092-Day Bulk Diffusion



60


40 -


20


CPR13 (Sample B) 1092-Day Bulk Diffusion


.


I ~Depth (in) I
Diffusion(m^2/sec)l 3.179E-11 Backgrunduldyd^3 0.178
Surfacebl~yd^3) 32.031 Sum(Error)^2 62.519


CPR13 (Sample C) 1092-Day Bulk Diffusion




S60


S40 --


S20 -





Depth (in)
Diffusion(m^2/sec)l 1.765E-11 Bsackground(llyd^3)I 0.178
Surfacebl~yd^3) 35.485 Sum(Error)^2 41.517


CPR15 (Sample B) 1092-Day Bulk Diffusion




S60


S40 --


S20





Depth (in)
Diffusion(m^2/sec)l 1.001E-11 Bsackgroundnblvd^3)1 0.515
Surfacebl~yd^3) 38.815 Sum(Error)^2 70.88

Figure C-2. Continued.


I ~Depth (in)
Diffusion(m^2/sec)l 2.681E-11 Background(lyd3) 0.178
Surfacebl~yd^3) 31.344 sunRI-.Inc.11,s! 2 75.405


CPR15 (Sample A) 1092-Day Bulk Diffusion




S60-


S40


S20





Depth (in)
Diffusion(m^2/sec)l 1.004E-11 Bakrudl~yd^3) 0.515
Surfacebl~yd^3) "\ 4**4 \1unti-.I .1,s1 2 14.883


CPR15 (Sample C) 1092-Day Bulk Diffusion
80Il



S60-


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 1.139E-11 b Bcronld3) 0.515
Surfacebl~yd^3) 38.552 Sum(Error)^2 39.657


0


I l l


40


20


0 1


2 3 4


0 1


23 4





























0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 3.426E-1 Background(lyd3) 0.16
Surfacebl~yd^3) 50.8681 Sum(Error)^2 18.967


CPR16 (Sample C) 1092-Day Bulk Diffusion




S60


S40 -


S20 --





Depth (in)
Diffusion(m^2/sec)l 3.570E-12 BackgrounIb/d"l3d^3 0.126
Surfacebl~yd^3) 45.735 Sum(Error)^2 9.04


CPR17 (Sample B) 1092-Day Bulk Diffusion




S60


S40 --


S20


I0 I 2

Depth (in)
Diffusion(m^2/sec)l 2.265E-12 Backgroundnblvyd^3) 0.179
Surfacebl~yd^3) 55.521 Sum(Error)^2 66.04

Figure C-2. Continued.


01 23 4

Depth (in)
Diffusion(m^2/sec)l 2.527E-12 Backgrouduldyd^3 0.126
Surfacebl~yd^3) 46.6201 Sum(Error)^2 13.162


CPR17 (Sample A) 1092-Day Bulk Diffusion




S60-


S40


S20





Depth (in)
Diffusion(m^2/sec)l 2.305E-12 Bakrudlyd^3) 0.17
Surfacebl~yd^3) 52.9 Sum(Error)^2 23.848


CPR17 (Sample C) 1092-Day Bulk Diffusion
80Il


S60-


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 3.013E-12 Bakgondld3) 0.17
Surfacebl~yd^3) 60.2451 Sum(Error)^2 45.841


CPR16 (Sample A) 1092-Day Bulk Diffusion


CPR16 (Sample B) 1092-Day Bulk Diffusion





























0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 2.165E-1 Background(lyd3) 0.259
Surfacebl~yd^3) 47.2661 Sum(Error)^2 196.8


CPR18 (Sample C) 1092-Day Bulk Diffusion




S60


S40 --


S20 --





Depth (in)
Diffusion(m^2/sec)l 1.459E-12 Backgroun(b/d"l3d^3 0.259
Surfacebl~yd^3) 54.7861 Sum(Error)^2 62.999


CPR20 (Sample B) 1092-Day Bulk Diffusion




S60


S40 --


S20





Depth (in)
Diffusion(m^2/sec)l 1.891E-12 Backgroundnblvyd^3) 0.119
Surfacebl~yd^3) 58.7661 Sum(Error)^2 19.541

Figure C-2. Continued.


01 23 4

Depth (in)
Diffusion(m^2/sec)l 2.412E-12 Background(lyd3) 0.259
Surfacebl~yd^3) 39.7261 Sum(Error)^2 151.98


CPR20 (Sample A) 1092-Day Bulk Diffusion




S60-


S40


S20





Depth (in)
Diffusion(m^2/sec)l 3.004E-12 Bakrudl~yd^3) 0.119
Surfacebl~yd^3) 48.18 Sum(Error)^2 17.569


CPR20 (Sample C) 1092-Day Bulk Diffusion
80Il


S60


S40


S20-





Depth (in)
Diffusion(m^2/sec)l 1.730E-12 Bakgondld3) 0.119
Surfacebl~yd^3) 68.01 Sum(Error)^2 9.173


CPR18 (Sample A) 1092-Day Bulk Diffusion


CPR18 (Sample B) 1092-Day Bulk Diffusion




























0 12 3 4

Depth (in)
Diffusion(m^2/sec)l 1.517E-12 Background(lyd3) 0.316
Surfacebl~yd^3) 46.78 Sum(Error)^2 73.40

CPR21 (Sample C) 1092-Day Bulk Diffusion



S60


S40


S20



0 1 2 3 4

Depth (mm)
Diffusion(m^2/sec)l 1.246E-1 Background(lblyd^3) 0.316
Surfacebl~yd^3) 49.553 Sum(Error)^2 48.17

Figure C-2. Continued.


CPR21 (Sample A) 1092-Day Bulk Diffusion


CPR21 (Sample B) 1092-Day Bulk Diffusion


a~60





S20





Depth (in)
Diffusion(m^2/sec)l 1.384E-12 Background(lyd3) 0.316
Surfacebl~yd^3) 65.54 Sum(Error)^2 86.231











APPENDIX D
FIELD CORE SAMPLING DATA AND ANALYSIS RESULTS

Table D-1. Initial Chloride Background Level of Cored Samples.
Initial Chloride Samples (lb/yd3)


Bridge Name
Hurricane Pass (HPB)




Broadway Replacement
(BRB)

Seabreeze West Bound
(SWB)

Granada (GRB)

Turkey Creek (TCB)




New Roosevelt (NRB)


Lab. #

5016
5017
5018
5054
5081
5082
5083
5084

5078
5079
5080
5075
5076
5077


Average
0.547(a)
0.533
0.561
0.467
0.858(b)
0.467
0.432
0.637

0.556
0.423
0.417
0.614
0.432
0.382


0.515
0.529
0.426
0.843
0.435
0.390
0.669

0.550
0.423
0.414
0.623
0.445
0.332


0.514
0.594
0.483
0.904
0.508
0.441
0.649

0.574
0.420
0.415
0.609
0.423
0.407


0.570
0.560
0.492
0.828
0.458
0.465
0.594

0.544
0.427
0.423
0.609
0.427
0.408


(a) Initial Chlorides were not tested for this sample. An average between Lab sample# 5017 and 5018 was
reported.
(b) Initial Chloride value was considered an erroneous value (too high). The value of initial chlorides from Lab
sample# 5054 was used.













Bridge Hurricane (HPB)
Lab # 5016

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.25 13.327 13.285 13.452 13.355
0.25 -0.50 3.110 3.512 3.555 3.392
0.50 -0.75 2.155 2.201 2.176 2.177
0.75 1.0 0.677 0.688 0.687 0.684
1.0 -1.25 0.564 0.490 0.495 0.516
1.25 1.50 0.440 0.441 0.422 0.434
1.50 1.75 0.357 0.341 0.349 0.349
1.75 -2.0 0.373 0.435 0.360 0.389
2.0 -2.25 0.349 0.350 0.345 0.348


Bridge Hurricane (HPB)
Lab # 5018

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 37.618 37.627 38.201 37.815
0.08 -0.16 34.599 34.440 34.804 34.614
0.16 -0.24 30.440 30.431 30.556 30.476
0.24 -0.32 25.696 25.936 26.046 25.893
0.32 -0.40 22.942 23.073 22.980 22.998
0.40 -0.48 19.042 17.179 17.252 17.824
0.48 -0.72 7.728 8.263 7.944 7.978
0.72 -0.97 1.744 1.772 1.783 1.766
0.97 1.22 0.454 0.504 0.469 0.476
1.22 1.47 0.592 0.603 0.548 0.581
Bridge Broadway Replacement (BRB)
Lab # 5081


Bridge Hurricane (HPB)
Lab # 5017

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 32.329 32.186 31.936 32.150
0.08 -0.16 33.485 33.629 32.969 33.361
0.16 -0.24 26.499 26.952 26.844 26.765
0.24 -0.32 22.561 22.301 22.305 22.389
0.32 -0.40 20.412 20.575 20.585 20.524
0.40 -0.48 15.275 15.260 15.259 15.265
0.48 -0.72 7.910 8.005 8.149 8.021
0.72 -0.97 2.766 2.737 2.774 2.759
0.97 1.22 0.773 0.795 0.802 0.790
1.22 1.47 0.317 0.366 0.359 0.347
Bridge Broadway Replacement (BRB)
Lab # 5054

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 20.128 20.785 20.920 20.611
0.08 -0.16 26.407 25.674 26.311 26.131
0.16 -0.24 23.063 22.699 22.624 22.795
0.24 -0.32 19.445 20.026 19.302 19.591
0.32 -0.40 19.561 19.906 19.906 19.791
0.40 -0.48 16.881 16.904 17.254 17.013
0.48 -0.72 7.497 8.001 7.857 7.785
0.72 -0.97 1.175 1.222 1.217 1.205
0.97 1.22 0.553 0.589 0.596 0.579
1.22 1.47 0.453 0.475 0.501 0.476
Bridge Seabreeze (SWB)
Lab # 5082

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 40.658 40.645 40.062 40.455
0.08 -0.16 38.187 37.863 38.175 38.075
0.16 -0.24 31.937 31.980 31.836 31.918
0.24 -0.32 29.026 28.978 29.297 29.100
0.32 -0.40 27.541 27.760 27.114 27.472
0.40 -0.48 26.470 26.290 26.278 26.346
0.48 -0.72 20.980 20.701 20.330 20.670
0.72 -0.97 7.624 7.376 8.123 7.708
0.97 1.22
1.22 1.47


Table D-2. Chloride Profile Testing Results of Cored Samples.


NaCI(lblyd )
B C
30.399 30.521
24.693 24.628
20.166 19.773
16.016 15.949
13.895 14.079
12.318 12.657
3.711 3.586
0.264 0.236
0.265 0.268
0.300 0.266


Depth
(in)
0.0 -0.08
0.08 -0.16
0.16 -0.24
0.24 -0.32
0.32 -0.40
0.40 -0.48
0.48 -0.72
0.72 -0.97
0.97 1.22
1.22 1.47


A
30.614
24.608
20.438
16.360
14.177
12.665
3.649
0.248
0.252
0.288


AVG
30.511
24.643
20.126
16.108
14.050
12.547
3.649
0.249
0.262
0.285











Table D-2. Continued.
Bridge Seabreeze (SWB)
Lab # 5083

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 39.841 39.841 39.868 39.850
0.08 -0.16 38.948 39.148 38.488 38.861
0.16 -0.24 34.426 35.015 34.545 34.662
0.24 -0.32 32.315 32.972 32.720 32.669
0.32 -0.40 26.697 26.801 27.009 26.836
0.40 -0.48 22.871 23.330 23.327 23.176
0.48 -0.72 13.869 14.011 14.201 14.027
0.72 -0.97 1.623 1.990 2.382 1.998
0.97 1.22 0.459 0.459 0.436 0.451
1.22 1.47 0.466 0.495 0.452 0.471
Bridge Turkey Creek (TCB)
Lab # 5078

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 26.038 25.618 25.965 25.874
0.08 -0.16 19.101 19.205 19.277 19.194
0.16 -0.24 14.341 14.275 14.242 14.286
0.24 -0.32 11.838 12.028 11.490 11.785
0.32 -0.40 9.381 9.381 9.303 9.355
0.40 -0.48 6.469 6.447 6.363 6.426
0.48 -0.72 4.410 4.328 4.338 4.359
0.72 -0.97 1.605 1.616 1.599 1.607
0.97 1.22 2.257 2.257
1.22 1.47 0.770 0.816 0.743 0.776
Bridge Turkey Creek (TCB)
Lab # 5080


Bridge Granada Crashwall (GRB)
Lab # 5084

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 0.918 0.869 0.858 0.882
0.08 -0.16 0.671 0.676 0.694 0.680
0.16 -0.24 0.560 0.595 0.616 0.590
0.24 -0.32 0.478 0.501 0.490 0.490
0.32 -0.40 0.450 0.472 0.484 0.469
0.40 -0.48 0.504 0.443 0.437 0.461
0.48 -0.72 0.445 0.459 0.408 0.437
0.72 -0.97 0.385 0.402 0.381 0.389
0.97 1.22 0.453 0.398 0.377 0.409
1.22 1.47 0.354 0.397 0.404 0.385
Bridge Turkey Creek (TCB)
Lab # 5079

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 28.194 27.837 27.908 27.980
0.08 -0.16 21.143 21.023 21.023 21.063
0.16 -0.24 14.089 14.089 13.962 14.047
0.24 -0.32 10.707 10.489 10.430 10.542
0.32 -0.40 8.336 8.122 7.789 8.082
0.40 -0.48 5.869 5.748 5.986 5.868
0.48 -0.72 2.699 2.681 2.714 2.698
0.72 -0.97 0.748 0.773 0.736 0.752
0.97 1.22 0.399 0.407 0.404 0.403
1.22 1.47 0.359 0.388 0.411 0.386
Bridge New Roosevelt (NRB)
Lab # 5075


NaCI(lblyd )
B C
30.474 30.039
34.464 25.219
16.257 16.663
13.398 13.060
10.331 10.372
6.790 6.746
2.930 2.902
0.673 0.679
0.346 0.329
0.260 0.263


NaCI (lblyd )
B C AVG
14.872 14.674 14.985
22.262 21.926 21.919
19.279 19.575 19.378
17.213 17.144 17.115
15.593 15.784 15.690
13.481 13.530 13.455
8.465 8.497 8.431
2.856 3.172 3.000
0.420 0.490 0.459
0.327 0.343 0.328


Depth
(in)
0.0 -0.08
0.08 -0.16
0.16 -0.24
0.24 -0.32
0.32 -0.40
0.40 -0.48
0.48 -0.72
0.72 -0.97
0.97 1.22
1.22 1.47


Depth
(in)
0.0 -0.08
0.08 -0.16
0.16 -0.24
0.24 -0.32
0.32 -0.40
0.40 -0.48
0.48 -0.72
0.72 -0.97
0.97 1.22
1.22 1.47


A
30.194
24.939
16.425
13.378
9.990
6.699
2.893
0.665
0.305
0.276


AVG
30.236
28.207
16.448
13.279
10.231
6.745
2.908
0.672
0.327
0.266


A
15.410
21.570
19.279
16.989
15.694
13.353
8.330
2.973
0.467
0.315











Table D-2. Continued.
Bridge New Roosevelt (NRB)
Lab # 5076

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 14.954 14.833 15.161 14.983
0.08 -0.16 14.049 14.165 14.162 14.125
0.16 -0.24 13.676 13.814 13.712 13.734
0.24 -0.32 14.504 14.612 14.603 14.573
0.32 -0.40 16.213 16.186 16.358 16.252
0.40 -0.48 15.562 15.595 15.438 15.532
0.48 -0.72 13.960 13.934 14.240 14.045
0.72 -0.97 5.197 5.876 5.986 5.686
0.97 1.22 3.265 3.288 3.252 3.268
1.22 1.47 0.401 0.416 0.417 0.411


Bridge New Roosevelt (NRB)
Lab # 5077

Depth NaCI (lblyd )
(in) A B C AVG
0.0 -0.08 17.903 17.903 17.816 17.874
0.08 -0.16 23.959 23.888 24.035 23.961
0.16 -0.24 21.334 21.872 21.374 21.527
0.24 -0.32 19.257 19.140 19.134 19.177
0.32 -0.40 16.463 16.652 16.576 16.564
0.40 -0.48 14.474 14.926 14.789 14.730
0.48 -0.72 10.243 10.398 9.955 10.199
0.72 -0.97 2.528 2.576 2.588 2.564
0.97 1.22 0.513 0.526 0.507 0.515
1.22 1.47 0.246 0.270 0.256 0.257













Hurricane Bay Bridge #120089 LAB#5016
60II



40



20


I ~Depth (in) I
Diffusion(m^2/sec) 4.994E-14 Backgon ~d3 0.547
Surfacebl~yd^3) '" ;; unRI-~..Iror)^2 1.803


Hurricane Bay Bridge #120089 LAB#5018
60 II




S40 -









0 1 2 3

Depth (in)
Diffusion(m^2/sec) 1.511E-131 Background(lblyd^3 0.561
Surfacebl~yd^3) 44.9041 Sum(Error)^2 16.52


Broadway Replac. Bridge #790187 LAB#5081
60 II




S40 --



S20 --




0 1 2 3

Depth (in)
Diffusion(m^2/sec) 3.578E-13 Backgrun oun ~d3 0.467
Surfacebl~yd^3) 32.4011 Su(Eror)^2 14.315


I ~Depth (in)
Diffusion(m^2/sec) 1.487E-13 BackgroundOlyd3 0.533
Surfacebl~yd^3) 41.1121 Sumn(Error)^2 6.30


Broadway Replac. Bridge #790187 LAB#5054
60II




S40









0 1 2 3

Depth (in)
Diffusion(m^2/sec) 15.854E-131 Background(lblyd^3 0.467
Surfacebl~yd^3) 33.012 Sum(Error)^2 30.891


Seabreeze Bridge #790174 LAB#5082
60II




S40



S20




0 1 2 3

Depth (in)
Diffusion(m^2/sec) 16.280E-131 Backgroundbl~yd^3 0.467
Surfacebl~yd^3) 42.4971 Sum(Error)^2 29.283


Hurricane Bay Bridge #120089 LAB#5017


0 1 2


Figure D-1. Cored Samples Chloride Diffusion Coefficient Regression Analysis.













Granada Crashwall #790132 LAB#5084





40



20


I ~Depth (in)
Diffusion(m^2/sec) 5.077E-14 Backgrun oun ~d3 0.400
Surfacebl~yd^3) 0.9421 Sum(Error)^2 0.005


Turkey Creek Bridge #700203 LAB#5079
60II




S40









0 1 2 3

Depth (in)
Diffusion(m^2/sec) 1.316E-131 Background(lblyd^3 0.423
Surfacebl~yd^3) 30.2691 Sum(Error)^2 5.892


New Roosevelt Bridge #890152 LAB#5075
60II




S40



S20




0 1 2 3

Depth (in)
Diffusion(m^2/sec) 13.606E-131 Backgroundbl~yd^3 0.614
Surfacebl~yd^3) 27.046 Sum(Error)^2 7.356


I ~Depth (in) I
Diffusion(m^2/sec) 3.291E-13 BackgroundOlyd3 0.432
Surfacebl~yd^3) 49.660 Sum(Error)^2 38.365


Turkey Creek Bridge #700203 LAB#5078
60 II




S40 --









0 1 2 3

Depth (in)
Diffusion(m^2/sec) 1.854E-131 Background(lblyd^3 0.556
Surfacebl~yd^3) 26.7911 Sum(Error)^2 9.983


Turkey Creek Bridge #700203 LAB#5080
60 II




S40 --



S20 --




0 1 2 3

Depth (in)
Diffusion(m^2/sec) 1.553E-13 BackgroundOl d3 0.417
Surfacebl~yd^3) 33.2371 Su(Eror)^2 5.199

Figure D-1. Continued.


Seabreeze Bridge #790174 LAB#5083


0 1 2













New Roosevelt Bridge #890152 LAB#5076





40 --



20 --


New Roosevelt Bridge #890152 LAB#5077
60II



40



20


I ~Depth (in) I
Diffusion(m^2/sec) 5.404E-13 BackgroundOlyd3 0.432
Surfacebl~yd^3) 28.700 Sum(Error)^2 12.185

Figure D-1. Continued.


I ~Depth (in)
Diffusion(m^2/sec) 3.727E-13 Backgroundbl~yd^3 0.8
Surfacebl~yd^3) 29.696 Sumn(Error)^2 10.14





APPENDIX E
SHORT-TERM ELECTRICAL TEST DATA RESULTS


Table E-1. RCP Coulombs Testing Results.
MIX 14-Day RCP Data (Coulomb) COV MX28-Day RCP Data (Coulomb) COV
Sample A Sample B Sample C Average Std (%) Sample A Sample B Sample C Average Std (%)
CPR1 8719 8965 8780 8821 128.10 1.45 CPR1 6917 6644 6847 6803 141.80 2.08
CPR2 5054 5001 5291 5115 154.42 3.02 CPR2 3753 4333 3779 3955 327.62 8.28
CPR3 11689 12568 13535 12597 923.35 7.33 CPR3 9580 9141 9113 9278 261.91 2.82
CPR4 1450 1248 1380 1359 102.57 7.55 CPR4 781 806 757 781 24.50 3.14
CPR5 7348 7269 8877 7831 906.43 11.57 CPR5 5537 5686 5414 5546 136.21 2.46
CPR6 8244 8033 6785 7687 788.53 10.26 CPR6 6548 8648 7699 7632 1051.62 13.78
CPR7 2065 1942 2145 2051 102.26 4.99 CPR7 1371 1485 1248 1368 118.53 8.66
CPR8 2373 2408 2426 2402 26.95 1.12 CPR8 1582 1397 1468 1482 93.33 6.30
CPR9 1090 1169 896 1052 140.48 13.36 CPR9 1063 821 949 944 121.07 12.82
CPR10 1362 1362 1318 1347 25.40 1.89 CPR10 1178 1362 1213 1251 97.71 7.81
CPR11 2610 2988 2979 2859 215.69 7.54 CPR11 2215 2496 1969 2227 263.69 11.84
CPR12 12217 13887 12744 12949 853.72 6.59 CPR12 5186 6363 8631 6727 1751.06 26.03
CPR13 8288 7058 7427 7591 631.19 8.31 CPR13 5669 5836 6820 6108 621.95 10.18
CPR15 9141 7761 8451 975.81 11.55 CPR15 7014 8156 7585 807.52 10.65
CPR16 3964 5704 5001 4890 875.33 17.90 CPR16 3894 4263 3727 3961 274.27 6.92
CPR17 5010 5423 -5217 292.04 5.60 CPR17 5036 3542 3234 3937 963.86 24.48
CPR18 6680 7277 6979 422.14 6.05 CPR18 3252 3032 3142 155.56 4.95
CPR20 4201 4904- 4553 497.10 10.92 CPR20 3173 3691 2997 3287 360.77 10.98


CPR21 7427 7708- 7568 198.70 2.63

MIX 56-Day RCP Data (Coulomb) COV
Sample A Sample B Sample C Average Std (%)
CPR1 6952 8411 7207 7523 779.24 10.36
CPR2 3779 3858 4263 3967 259.65 6.55
CPR3 8640 10107 6978 8575 1565.51 18.26
CPR4 540 514 448 501 47.43 9.47
CPR5 2645 2645 2426 2572 126.44 4.92
CPR6 4184 4368 4395 4316 114.82 2.66
CPR7 984 1055 1055 1031 40.99 3.97
CPR8 1011 1002 1090 1034 48.42 4.68
CPR9 834 830 888 851 32.39 3.81
CPR10 923 905 838 889 44.79 5.04
CPR11 1679 1740 1723 1714 31.48 1.84
CPR12 5871 5915 6064 5950 101.15 1.70
CPR13 5098 5713 5537 5449 316.73 5.81
CPR15 5774 5115 2821 4570 1550.10 33.92
CPR16 3261 2742 2610 2871 344.14 11.99
CPR17 2303 2268 2162 2244 73.42 3.27
CPR18 1591 1740 1652 1661 74.91 4.51
CPR20 2250 1863 1960 2024 201.36 9.95
CPR21 2347 2575 2461 2461 114.00 4.63
MIX 182-day RCP Data (Coulomb) COV
Sample A Sample B Sample C Average Std (%)
CPR1 6047 5801 6056 5968 144.70 2.42
CPR2 2883 2883 2584 2783 172.63 6.20
CPR3 6759 6003 5933 6232 458.02 7.35
CPR4 386 359 396 380 19.14 5.03
CPR5 1213 1195 1283 1230 46.49 3.78
CPR6 4400 2992 4334 3909 794.54 20.33
CPR7 1027 887- 957 98.99 10.34
CPR8 814 989- 902 123.74 13.73
CPR9 719 738 -729 13.44 1.84
CPR10 577 657 -617 56.57 9.17
CPR11 1222 1325 -1274 72.83 5.72
CPR12 4604 4436 -4520 118.79 2.63
CPR13 4166 4184 3955 4102 127.34 3.10
CPR15 2769 2329 2566 2555 220.22 8.62
CPR16 1538 1195 1090 1274 234.30 18.39
CPR17 1644 1283 1626 1518 203.43 13.40
CPR18 544 621 588 584 38.63 6.61
CPR20 867 923 914 901 30.07 3.34
CPR21 712 914 888 838 109.89 13.11


CPR21 4377 5502- 4940 795.50 16.10

MIX 91-Day RCP Data (Coulomb) COV
Sample A Sample B Sample C Average Std (%)
CPR1 4676 5054 5599 5110 464.01 9.08
CPR2 3076 3770 41 31 3659 536.19 14.65
CPR3 8042 7181 7110 7444 51 8.81 6.97
CPR4 408 460 388 419 37.17 8.88
CPR5 1775 1723 1749 1749 26.00 1.49
CPR6 2979 3120 2900 3000 111.45 3.72
CPR7 858 719 976 851 128.64 15.12
CPR8 967 1037 1099 1034 66.04 6.38
CPR9 819 786 923 843 71.50 8.49
CPR10 805 878 949 877 72.00 8.21
CPR11 1564 1635 1854 1684 151.16 8.97
CPR12 5655 4484 5207 5115 590.86 11.55
CPR13 4421 4913 4720 4685 247.90 5.29
CPR15 3568 4148 4412 4043 431.75 10.68
CPR16 2092 2206 2224 2174 71.58 3.29
CPR17 1793 2347 2118 2086 278.38 13.35
CPR18 1160 1134 984 1093 95.00 8.69
CPR20 1477 1301 1547 1442 126.75 8.79
CPR21 1510 1646 1529 1562 73.65 4.72
MIX 364-day RCP Data (Coulomb) COV
Sample A Sample B Sample C Average Std (%)
CPR1 4922 4660 -4791 185.26 3.87
CPR2 2684 3011 3060 2918 204.41 7.00
CPR3 4627 5111 4050 4596 531.18 11.56
CPR4 309 300 268 292 21.55 7.37
CPR5 862 792 753 802 55.23 6.88
CPR6 1371 1520 1564 1485 101.15 6.81
CPR7 791 721- 756 49.50 6.55
CPR8 863 797- 830 46.67 5.62
CPR9 490 533 -512 30.41 5.94
CPR10 349 393 -371 31.11 8.39
CPR11 1103 983 -1043 84.85 8.14
CPR12 3618 3727 -3673 77.07 2.10
CPR13 4192 4488 -4340 209.30 4.82
CPR15 1814 1794 1839 1816 22.55 1.24
CPR16 1180 1031 -1106 105.36 9.53
CPR17 1175 1579 1508 1421 215.70 15.18
CPR18 329 357 306 331 25.54 7.72
CPR20 891 732 882 835 89.31 10.70
CPR21 390 432 453 425 32.08 7.55
















Table E-2. SR (Lime Cured) Testing Results.
14-Day Surface Resistivity (Lime Cured) (kn.cm) CO 14-Day Surface Resistivity (ime Cured) (kR.cm) CO
MIX Sample Reading Locations (Deg.) Std. MIX Sample Reading Locations (Deg.) Std.
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 54 59 54 56 53 56 54 57 554 A 122 111 11 111 113 109 109 121 113
CPR1 B 5 1 5 5 3 5 1 5 5 1 5 3 5 1 5 13 5 3 0 23 4 26 CPR11 B 10 7 10 11 1 10 1 10 8 9 8 10 9 10 1 10 4 10 8 0 46 4 23
C 46 53 54 54 46 52 55 54 5 18 C 117 102 109 106 116 98 98 109 107
A78 77 83 79 77 78 87 8 799 A 82 83 10 101 85 84 99 98 915
CPR2 B 77 76 68 7 77 76 68 71 729 73 066 898 CPR12 B 87 87 96 103 92 98 101 99 954 90 061 672
S7 7 8 6 1 6 5 7 1 6 5 6 6 4 6 68 C 8 1 8 7 8 1 8 5 82 82 85 8 5 835
A5 52 51 56 5 51 53 55 523 A 65 71 67 67 68 69 66 72 681
CPR3 B 5 46 46 46 48 45 46 48 469 50 027 543 CPR13 B 63 64 62 63 64 64 61 64 631 66 028 424
C 56 49 48 47 56 46 46 47 494 C 65 7 71 68 69 68 66 66 679
A 19 171 195 197 173 177 191 196 186 A 45 4 43 46 46 4 43 47 438
CPR4 B 19 5 17 6 17 3 19 8 19 5 17 7 19 7 19 18 8 18 3 0 68 3 71 CPR15 B 3 2 4 3 3 8 3 9 3 7 4 1 4 3 8 3 85 4 0 0 30 7 43
C 175 204 15 5 171 173 191 15 9 174 175 C 27 37 33 46 33 37 45 51 386
A 57 63 62 58 55 62 62 56 594 A 64 68 7 7 65 65 69 7 676
CPR5 B 61 62 65 58 61 6 63 55 606 59 020 336 CPR16 B 62 72 63 75 65 73 62 75 684 69 025 358
C 54 58 62 56 52 57 58 57 568 C 67 71 75 78 67 67 75 78 723
A6 56 57 62 59 57 59 6 588 A 62 61 67 61 6 62 63 66 628
CPR6 B 64 63 63 59 58 6 62 6 611 61 018 294 CPR17 B 5 56 57 55 52 57 6 52 549 58 042 726
C 66 6 58 67 67 57 57 66 623 C 55 53 57 61 63 54 5 57 563
A108 99 10 105 102 104 96 106 103 A 82 76 7 8 8 75 72 81 77
CPR7 B 9 7 10 2 10 6 11 8 9 8 10 4 10 5 11 8 10 610 5 0 24 2 25 CPR18 B 7 2 7 4 7 4 7 1 7 3 7 7 7 2 6 9 7 28 7 3 0 36 4 98
C 96 102 105 118 105 108 104 118 107 C 65 64 68 78 64 7 73 76 698
A 84 9 82 82 78 91 83 83 841 A 5 1 63 48 61 5 6 48 66 559
CPR8 B 85 89 79 79 86 88 81 78 831 84 006 074 CPR20 B 54 43 51 62 54 64 61 53 553 60 081 1338
C 84 91 87 8 8 86 86 8 843 C 77 71 69 66 7 72 68 63 695
A 312 284 276 271 316 284 283 275 288 A 57 5 5 52 52 49 48 49 509
CPR9 B 27 7 24 1 27 9 26 8 27 7 24 8 28 2 27 2 26 8 28 1 1 10 3 90 CPR21 B 5 4 5 5 3 5 5 4 4 9 5 4 5 5 18 5 1 0 09 1 85
S265 282 299 296 266 282 304 296 286 C 52 48 47 52 52 51 45 52 499
A218 244 242 199 223 213 206 227 222
CPR10 B 218 23 6 23 1 217 216 238X 23 4 219 22 6 22 6 0 50 2 21
S24 2 19 9 23 7 24 9 24 4 21 3 24 3 22 5 23 2
28-Day Surface Resistivity (Lime Cured) (kO.cm) 28-Day Surface Resistivity (Lime Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A56 63 6 65 57 59 57 61 598 A 163 154 154 161 171 171 154 152 16
CPR1 B 5 7 5 8 6 5 6 6 5 8 6 5 9 5 85 5 9 0 06 1 09 CPR11 B 14 7 13 8 15 3 14 7 14 6 13 9 15 3 13 9 14 5 15 0 0 89 5 97
C 54 59 62 61 55 57 62 61 589 C 157 133 143 142 158 134 141 143 144
A 7 88 98 88 76 88 97 88 888 A 95 98 114 107 96 96 106 112 103
CPR2 B 89 88 8 82 89 91 76 81 845 83 074 895 CPR12 B 11 115 10 113 107 116 99 112 109 103 067 653
8 8 3 68 7 81 74 68 71 744 C 94 96 95 96 95 98 97 94 956
A 56 56 61 62 54 55 56 64 58 A 73 75 72 71 73 74 71 71 725
CPR3 B 56 5 52 5 55 5 52 52 521 55 029 536 CPR13 B 68 66 66 66 68 66 65 66 664 70 034 488
C 63 53 52 51 6 56 52 51 548 C 71 75 7 71 71 74 75 7 721
A 33 308 342 346 35 4 319 345 324 33 4 A 86 92 76 8 89 92 79 86 85
CPR4 B 36 2 33 1 31 4 35 4 35 8 32 1 31 7 40 2 34 5 33 1 1 53 4 64 CPR15 B 7X 8 8 9 6 9 8X 8 8 9 1 9 3 8 9 87 0 20 2 30
C 33 6 375 278 271 33 9 347 293 277 315 C 86 88 103 71 86 92 98 72 87
A75 78 76 75 72 81 8 71 76 A 72 73 72 73 7 72 72 74 723
CPR5 B 76 78 86 75 75 84 84 81 799 76 044 588 CPR16 B 72 77 68 82 78 78 69 8 755 76 033 430
C 68 73 76 7 66 69 75 71 71 C 72 79 84 77 7 88 83 77 788
A71 77 68 72 7 71 71 67 709 A 81 85 96 95 82 84 96 89 885
CPR6 B 71 75 73 71 72 73 73 71 724 72 014 190 CPR17 B 83 79 92 86 9 8 94 82 858 87 014 166
C 79 69 71 77 77 68 7 78 736 C 84 85 89 86 9 79 91 87 864
A 21 2 20 9 19 20 4 20 3 19 2 19 4 20 2 20 1 A 13 1 10 4 10 1 10 8 12 4 10 3 9 9 10 6 11
CPR7 B 18 4 19 5 20 3 20 9 18 2 19 7 20 20 6 19 7 20 3 0 72 3 54 CPR18 B 11 1 10 9 11 10 9 10 9 12 9 11 6 11 11 3 11 0 0 22 1 95
S20 621 120 122 5 19 22 120 622 721 1 C 10 11 4 10 7 11 8 10 1 11 3 105 11 3 109
A 147 161 163 171 158X 168 158X 15 9 161 A 104 126 109 109 109 105 10 101 108
CPR8 B 15 6 17 4 15 15 8 15 8 17 5 15 7 15 3 16 16 20 25 1 57 CPR20 B 11 4 12 6 11 8 12 7 11 4 11 4 11 4 12 2 11 912 01 2610 52
C 161 167 165 162 163 172 167 161 165 C 129 119 112 155 147 126 123 153 133
A 34 6 29 4 27 9 28 2 33 4 30 7 28 7 29 6 30 3 A 9 7 9 1 88 9 4 10 9 1 9 7 10 1 9 49
CPR9 B 279 279 314 275 304 272 303 26 286 298 104 348 CPR21 B 96 97 10 98 101 93 93 95 966 97 018 181
S28 28 4 31 34 9 28 1 27 7 30 6 34 7 30 4 C 8 9 9 7 8 4 11 3 105 9 6 9 6 10 7 984
A21 3 22 7 19 23 2 20 6 21 3 19 4 20 8 21
CPR10 B 216 24 1 243 222 218 239 235 225 23 227 152 669
S24 122 126 125 125 1 20 25 923 8
















Table E-2. Continued.
56-Day Surface Resistivity (Lime Cured) (kQ.cm) CO 56-Day Surface Resistivity (ime Cured) (kR.cm) CO
MIX Sample Reading Locations (Deg.) Std. MIX Sample Reading Locations (Deg.) Std.
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 65 7 67 71 64 72 64 71 68 A 207 20 201 203 215 197 198 21 204
CPR1 B 68 64 71 65 65 63 68 65 661 67 010 151 CPR11 B 18 177 196 181 189 178 194 184 185 191 109 568
C 61 69 72 7 6 69 72 69 678 C 201 174 189 183 204 172 178 181 185
A 9 6 10 10 9 9 9 10 9 6 10 8 10 3 10 1 A 10 5 10 2 11 7 11 2 10 10 2 11 6 11 2 10 8
CPR2 B 9 8 9 7 9 3 9 9 7 9 1 9 8 9 9 31 9 3 0 89 9 58 CPR12 B 12 2 12 9 12 2 12 2 11 7 12 7 11 1 12 2 12 2 11 2 0 81 7 24
C 89 88 77 8 83 93 79 8 836 C 115 11 106 102 105 111 107 98 107
A 62 65 63 68 66 6 63 65 64 A 81 82 81 84 81 79 79 86 816
CPR3 B 62 58 58 58 59 57 57 58 584 62 029 466 CPR13 B 75 76 74 75 76 75 73 77 751 79 035 442
C 73 63 61 58 67 6 59 56 621 C 77 83 83 78 77 83 86 78 806
A 482 444 52 534 47 449 526 504 491 A 86 87 79 84 82 84 8 91 841
CPR4 B 55 9 53 3 50 5 48 1 57 4 49 5 52 1 48 5 51 9 48 4 3 87 7 99 CPR15 B 8 1 8 3 9 1 8 5 8 5 8 89 8X 8853 8 5 0 06 0 70
C 446 484 417 425 449 475 438X 407 443 C 84 82 93 78 86 85 88 79 844
A 105 111 116 106 107 127 114 10 111 A 89 91 89 97 88 91 91 101 921
CPR5 B 11 8 11 7 12 3 10 9 11 3 12 3 12 2 10 6 11 611 10 58 526 CPR16 B 9 3 9 7 8 6 10 4 9 8 9X 885 10 6 9 59 9 5 0 27 2 79
C 10 4 10 7 10 1 10 6 10 2 11 1 10 4 10 3 10 5 C 8 8 10 10 3 9 6 8 8 10 10 4 9 9 9 73
A 94 92 88 99 95 88 87 96 924 A 121 123 131 134 12 124 128 126 126
CPR6 B 9 6 9 4 9 4 9 1 9 2 9 6 9 4 9 8 9 44 9 5 0 24 2 52 CPR17 B 12 2 12 12 6 11 9 12 8 12 5 12 5 12 1 12 3 12 3 0 29 2 39
C 10 2 88 93 10 2 10 3 9 1 9 4 10 4 9 71 C 11 8 11 7 122 12 1 12 1 122 11 9 12 12
A 367 379 349 341 363 362 35 1 35 1 358X A 198 182 176 184 199 186 177 186 186
CPR7 B 35 3 35 1 36 4 36 7 34 37 36 3 37 6 36 1 36 5 1 03 2 82 CPR18 B 19 9 18 6 19 7 19 2 19 1 19 7 17 4 19 4 19 1 18 9 0 29 1 51
C 364 37 371 409 357 383 37 391 377 C 185 191 186 198 187 192 188 198 191
A 24 1 29 2 29 27 5 27 3 29 27 8 27 3 27 7 A 14 6 16 2 15 8 14 8 14 7 15 7 15 3 15 15 3
CPR8 B 268 289 265 272 264 294 269 27 1 274 279 065 232 CPPJO B 138X 159 165 162 146 153 158 157 155 15 5 0 18 1 14
S29 1 30 4 29 27 3 28 3 28 6 29 3 27 28 6 C 16 16 1 15 15 16 1 15 9 15 5 15 3 15 6
A 39 8 37 35 9 34 6 40 6 37 1 33 35 1 36 6 A 16 14 8 14 7 15 5 16 2 14 7 15 3 16 15 4
CPR9 B 37 2 33 8 39 2 32 8 36 4 34 38 7 34 6 35 8 37 3 1 92 5 14 CPR21 B 15 3 14 15 4 14 1 14 8 14 14 9 14 14 6 14 6 0 79 5 44
C 34 8 35 41 5 45 3 36 3 36 5 41 4 45 1 39 5 C 13 3 13 7 13 6 15 13 1 13 9 13 14 9 13 8
A 285 317 274 302 306 322 257 309 297
CPR10 B 29 1 32 2 29 7 29 6 25 2 30 6 317 30 6 298X 30 7 170 5 54
C 35 2 31 4 33 31 1 34 1 30 5 34 5 31 7 32 7
91-Day Surface Resistivity (Lime Cured) (kO.cm) 91-Day Surface Resistivity (Lime Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 73 83 77 83 72 82 76 85 789 A 234 226 218 23 228 218 211 227 224
CPR1 B 7 1 7 3 7 5 7 6 7 1 7 4 7 9 7 5 7 43 7 6 0 28 3 68 CPR11 B 19 5 18 7 22 1 20 18 6 18 6 20 8 19 8 19 8 20 9 1 37 6 57
C 71 73 78 76 66 73 78 76 739 C 214 192 204 198 221 202 206 198 204
A 112 109 112 105 112 108 116 11 111 A 111 11 126 121 108 105 127 124 117
CPR2 B 10 1 10 9 9 9 8 10 2 10 10 8 9 2 10 10 5 053 5 07 CPR12 B 12 4 13 1 11 5 13 3 11 9 11 6 11 5 12 9 12 3 11 6 0 64 5 53
C 10 4 9 7 9 7 12 2 10 1 9 8 9 7 11 5 10 4 C 11 11 11 1 109 11 1 109 11 109 11
A 87 71 76 82 71 71 69 77 755 A 89 9 1 89 93 89 91 87 86 894
CPR3 B 64 7 59 67 64 65 55 62 633 69 062 902 CPR13 B 82 82 83 87 82 85 84 83 835 87 031 358
C 75 74 72 58 69 68 68 57 676 C 86 91 91 85 84 94 89 86 883
A 63 8 52 63 2 61 4 58 5 56 59 1 64 6 59 8 A 9 8 10 1 9 6 10 1 10 4 10 3 9 8 10 5 10 1
CPR4 B 64 9 59 4 66 62 7 56 5 62 9 71 9 60 8 63 1 59 3 4 14 6 98 CPR15 B 9 8 10 5 10 7 9 8 10 7 10 3 10 3 9 8 10 2 10 3 0 24 2 35
C 55 7 60 8 55 3 49 7 54 1 54 7 57 1 51 9 54 9 C 10 7 10 11 10 3 10 6 10 1 11 6 10 1 10 6
A 149 161 146 137 14 163 158 138 149 A 129 138 122 144 124 132 13 145 133
CPR5 B 163 15 7 161 146 15 3 162 15 7 142 15 5 149 061 407 CPR16 B 142 139 136 159 156 145 142 146 146 137 080 584
C 134 137 16 146 133 142 156 136 143 C 125 141 142 112 123 141 135 128 131
A 11 6 11 6 10 8 11 6 11 7 10 9 11 6 11 4 11 4 A 15 1 16 3 17 7 17 15 8 16 8 17 7 16 4 16 6
CPR6 B 123 115 107 116 116 115 112 113 115 115 013 113 CPR17 B 176 166 175 158 172 164 159 149 165 164 028 169
C 114 105 115 123 125 107 115 128 117 C 156 163 162 159 167 158 161 16 161
A 378 431 383 381 402 401 368 397 393 A 312 285 287 30 314 293 295 294 298
CPR7 B 36 6 40 1 42 4 41 3 37 4 41 6 40 8 41 5 40 2 41 1 2 33 5 67 CPR18 B 31 5 32 2 30 9 29 2 29 3 30 2 29 7 28 9 30 2 29 3 1 24 4 23
C 37 7 43 2 43 47 4 43 4 43 2 44 6 47 43 7 C 25 5 282 285 293 266 289 27 29 1 279
A 35 2 38 33 6 33 4 33 7 36 9 33 6 33 8 34 8 A 20 4 20 3 20 6 20 20 9 20 19 4 20 3 20 2
CPR8 B 34 8 38 33 8 35 1 35 6 36 4 32 6 33 34 9 34 6 0 43 1 24 CPR20 B 19 2 20 6 19 2 21 5 20 8 19 6 21 4 21 1 20 4 20 4 0 18 0 86
C 344 33 5 35 1 33 3 343 33 5 35 6 33 2 341 C 201 22 217 189 206 208 202 204 206
A 422 369 358 363 445 393 389 355 387 A 247 253 229 219 225 252 232 229 236
CPR9 B 35 8 36 2 41 2 36 4 35 3 34 7 41 7 35 8 37 1 39 3 2 49 6 33 CPR21 B 22 2 22 5 22 9 21 4 22 3 22 9 23 4 21 22 3 23 5 1 18 5 02
C 36 6 40 6 41 4 49 38 4 40 7 42 7 46 6 42 C 25 2 263 23 5 244 25 9 25 9 23 6 22 7 24 7
A 31 233 228 4 31 30 732 727 430 730 7
CPR10 B 30 308X 318 315 30 6 29 9 319 319 31 1 32 1 2 23 6 93
S36 28 5 36 3 35 1 36 8 33 7 36 9 34 3 34 7
















Table E-2. Continued.
182-Day Surface Resistivity (ime Cured) (lo.cm) CO 182-Day Surface Resistivity (ime Cured) (kn.cm) C1
MIX Sample Reading Locations (Deg.) Std. MIX Sample Reading Locations (Deg.) Std.
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 8 8 9 4 86 9 5 11 9 7 8 5 9 2 9 34 A 28 26 5 26 1 25 6 29 25 9 25 4 25 26 4
CPR1 B 8 7 8 5 9 2 84 8 6 8 5 9 4 85 8 73 9 1 0 34 3 76 CPR11 B 24 3 22 4 25 9 23 6 23 4 22 3 25 6 23 9 23 9 24 7 1 50 6 09
C 89 85 103 102 86 81 10 98 93 C 263 227 226 23 7 262 225 229 23 1 238X
A 134 167 135 123 12 1 127 143 127 135 A 12 1 119 134 135 118 116 137 134 127
CPR2 B 144 129 127 123 128 144 13 2 122 13 1 128 081 628 CPR12 B 133 154 139 136 141 134 142 141 14 130 085 653
C 114 155 106 124 126 114 109 106 119 C 126 133 118 121 134 122 118 121 124
A 9 101 82 91 83 84 83 85 874 A 111 121 105 108 104 11 102 108 109
CPR3 B 8 6 9 2 88 7 9 9 3 9 9 2 7 7 8 71 8 6 0 14 1 59 CPR13 B 10 6 11 4 10 1 10 7 10 7 9 9 10 1 10 4 10 5 10 8 0 32 2 96
C 81 106 85 69 9 92 84 72 849 C 111 128 113 106 11 112 103 107 111
A 725 755 797 856 703 763 786 792 772 A 148 155 141 152 132 152 85 152 14
CPR4 B 79 2 78 4 77 6 83 4 884 76 2 85X 8 2 81 4 76 9 4 61 5 99 CPR15 B 16 5 16 1 16 9 16 1 16 5 15 4 15 9 16 5 16 2 15 2 1 15 7 56
C 826 797 618 626 717 825 671 694 722 C 134 156 158 15 154 154 167 158 154
A 25 4 26 5 31 3 25 6 26 2 26 1 27 9 23 5 26 6 A 20 7 21 5 21 2 24 3 20 1 20 6 20 7 24 6 21 7
CPR5 B 23 6 27 3 27 6 31 1 24 3 26 6 28 5 23 7 26 6 25 3 2 16 8 52 CPR16 B 24 1 23 7 21 4 26 7 24 8 23 3 20 4 26 9 23 9 22 4 1 29 5 76
S21 5 22 3 24 2 22 3 23 3 23 1 23 8 22 2 22 8 C 20 725 222 121 4 18 22 622 420 721 6
A 163 158 15 1 16 163 155 15 1 153 157 A 225 239 249 246 224 244 253 24 24
CPR6 B 147 154 154 15 143 155 154 158 152 157 057 363 CPR17 B 25 2 25 1 23 4 248 267 25 2 23 9 243 248 241 063 261
C 176 147 155 169 18 153 157 169 163 C 245 228 234 233 245 239 236 227 236
A 41 6 47 2 44 2 44 7 43 6 51 6 40 1 41 44 3 A 59 8 51 1 59 2 61 4 58 3 55 7 55 5 57 57 3
CPR7 B 42 7 45 50 2 47 7 43 4 44 1 44 7 47 3 45 6 45 9 1 79 3 90 CPR18 B 56 57 55 6 56 3 55 1 62 2 58 2 55 6 57 55 6 2 57 4 61
C 487 477 464 502 455 447 476 516 478 C 512 53 528 526 504 54 517 558 527
A 43 6 44 5 44 39 42 3 48 1 43 2 39 4 43 A 34 8 31 7 29 3 30 7 31 5 31 9 31 29 31 2
CPR8 B 44 6 44 4 40 2 41 2 41 8 44 1 41 1 41 6 42 4 43 2 0 95 2 21 CPR20 B 31 1 32 5 29 4 33 3 32 2 29 2 29 6 31 5 31 1 30 9 0 44 1 43
C 411 45 2 45 4 43 7 412 497 43 6 441 443 C 296 34 301 278 321 297 319 281 304
A 456 436 426 423 473 446 417 424 438 A 427 244 141 237 21 122 157 134 209
CPR9 B 42 8 40 5 44 2 39 40 8 39 6 45 7 40 3 41 6 43 4 1 61 3 72 CPR21 B 10 7 40 3 40 2 39 7 42 1 43 1 42 1 37 6 37 33 5 11 31 33 73
C 416 409 458X 484 428 448 45 3 486 448 C 46 9 42 6 40 2 428X 45 4 413 40 9 417 42 7
A 40 41 9 34 5 41 39 4 40 7 35 5 31 5 38 1
CPR10 B 37 9 40 41 7 37 8 42 2 42 5 42 3 40 2 40 6 41 3 3 61 8 74
C 444 425 473 454 469 425 459 465 452
364-Day Surface Resistivity (Lime Cured) (kQ.cm) 364-Day Surface Resistivity (Lime Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 14 3 13 4 10 9 7 12 11 7 10 1 10 3 11 4 A 32 8 30 6 26 9 32 7 29 2 29 4 27 7 28 29 7
CPR1 B 9 7 13 4 12 6 11 4 14 2 9 8 15 5 10 7 12 2 12 0 0 55 4 60 CPR11 B 26 2 27 3 30 5 29 8 25 8 25 31 1 27 8 27 9 28 9 0 87 3 00
C 12 5 13 2 99 14 6 9 3 16 10 4 14 3 12 5 C 37 2 27 2 26 1 26 9 32 4 28 5 25 1 28 2 29
A 147 144 148 143 133 162 145 144 146 A 126 125 156 14 1 129 122 153 147 137
CPR2 B 14 7 12 7 16 2 12 1 13 7 13 1 14 2 12 4 13 6 13 5 1 17 8 67 CPR12 B 15 8 16 7 16 16 4 15 2 16 3 15 3 16 3 16 14 7 1 18 801
C 13 4 12 6 10 2 12 3 13 3 13 4 9 9 12 9 12 3 C 15 5 15 9 13 6 13 4 14 2 15 6 13 13 3 14 3
A 11 2 3 8 3 11 1 11 9 8 3 9 7 8 95 A 10 4 11 6 11 11 4 10 5 11 2 10 6 11 3 11
CPR3 B 91 123 92 7 92 87 68 68 864 89 026 296 CPR13 B 10 106 102 102 105 109 101 101 103 108 044 406
C 91 92 98 79 88 103 106 76 916 C 114 118 108 108 108 112 113 111 112
A 83 5 92 9 96 3 104 87 1 82 6 99 1 100 93 3 A 20 5 20 7 20 3 20 4 20 2 20 4 21 20 4 20 5
CPR4 B 97 9 85 92X 8 25 102 90 8 96 7 85 91 6 89 4 5 36 6 00 CPR15 B 22 7 23 7 23 6 22 24 7 22 3 25 9 22 5 23 4 22 4 1 69 7 54
C 85 2 95 8 74 6 76 88 8 92 4 75 8 77 4 83 3 C 20 3 21 8 22 9 22 6 27 23 7 25 3 23 7 23 4
A 34 1 41 8 42 4 30 7 36 40 8 40 4 34 37 5 A 29 2 29 5 26 7 35 7 31 3 29 7 28 6 33 30 5
CPR5 B 44 43 6 38 2 43 6 39 5 36 7 35 6 41 4 40 3 38 2 1 90 4 96 CPR16 B 38 34 7 46 40 3 47 4 45 7 35 7 38 1 40 7 37 1 5 73 15 47
C 36 4 43 6 35 7 34 5 37 8 32 8 38 3 34 6 36 7 C 34 4 38 7 49 8 43 6 32 6 39 45 1 36 9 40
A 224 218 213 231 226 224 212 238 223 A 295 327 329 315 311 313 298 312 313
CPR6 B 20 6 23 2 21 5 22 22 5 22 1 22 4 22 1 22 1 22 2 0 15 0 67 CPR17 B 35 4 34 4 32 4 32 3 38 4 32 7 34 8 31 5 34 33 8 2 43 7 18
S23 4 199 228 221 245 212 222 222 223 C 379 399 327 35 7 343 376 373 33 3 361
A 473 419 33 6 43 5 407 43 6 419 445 421 A 101 903 877 923 976 949 895 899 929
CPR7 B 55 4 42 3 40 5 47 2 46 5 42 45 6 47 3 45 9 44 6 2 18 4 89 CPR18 B 87 2 102 84 2 91 7 95 2 88X 8882 89 5 90X 8 91 4 97 5 58
C 433 465 442 501 406 469 438 523 46 C 827 862 848 85 2 802 83 7 823 824 83 4
A 484 534 438 475 459 51 451 466 477 A 548X 44 6 44 1 43 6 39 1 415 398X 42 2 43 7
CPR8 B 48 2 51 4 48 1 43 6 39 8 44 7 45 7 41 1 45 3 46 8 1 29 2 75 CPR20 B 41 6 42 4 44 2 44 2 37 3 42 6 44 2 45 2 42 7 44 7 2 67 5 98
C 478 493 397 464 501 496 487 473 474 C 48 468 455 502 475 536 462 443 478
A 51 8 55 7 45 7 48 54 5 47 3 53 1 46 50 3 A 64 1 69 7 63 8 61 5 67 9 69 5 63 65 8 65 7
CPR9 B 70 2 42 5 50 6 45 4 47 7 46 1 50 9 45 3 49 8 50 7 1 18 2 33 CPR21 B 64 1 62 3 63 8 62 2 64 8 62 7 67 5 61 2 63 6 65 5 1 81 2 76
S52 59 7 54 3 46 8 48 9 50 4 51 1 53 3 52 1 C 73 1 68 63 6 65 2 71 67 5 63 9 65 1 67 2
A 558 564 513 532 552 552 526 535 542
CPR10 B 518 52 3 56 5 52 3 516 52 7 53 4 52 5 52 9 55 1 28X6 5 19
C 61 4 55 2 57 63 1 58 3 57 2 57 4 57 2 58 4
















Table E-2. Continued.
455-Day Surface Resistivity (ime Cured) (kn.cm) CO 455-Day Surface Resistivity (Lime Cured) (lo.cm) C1
MIX Sample Reading Locations (Deg.) Std. MIX Sample Reading Locations (Deg.) Std.
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 108 122 108 105 132 114 105 103 112 A 313 335 32 285 321 333 295 276 31
CPR1 B 12 1 12 2 15 3 12 2 11 2 11 1 13 3 11 9 12 4 12 4 1 11 8 97 CPR11 B 26 8 26 8 30 4 26 3 26 7 27 4 30 7 25 3 27 6 29 1 1 73 5 92
C 148 107 144 138 10 141 118 178134 C 33 9 287 287 274 316 268 284 25 7 289
A 185 155 141 145 142 221 145 133 158 A 13 155 148 133 13 1 152 148 136 142
CPR2 B 13 3 26 9 16 4 14 1 15 4 27 5 17 9 12 7 18 16 6 1 22 7 31 CPR12 B 14 5 15 7 15 1 16 5 14 3 16 4 15 3 16 3 15 5 14 7 0 73 4 96
C 14 3 17 21 5 20 7 14 2 15 7 12 5 12 2 16 C 14 2 13 2 13 8 15 6 14 2 13 3 14 8 15 8 14 4
A 158 98 105 92 89 85 84 94 101 A 116 133 13 123 124 123 112 115 122
CPR3 B 8 1 74 146 92 115 8 77 86 939 96 045 475 CPR13 B 109 109 116 107 105 109 111 108 109 115 067 582
C 9 5 8 4 10 2 8 4 10 11 1 7 7 8 3 9 2 C 11 6 12 1 10 1 11 6 10 9 12 1 11 10 4 11 2
A 107 108 953 121 96 122 92 1 115 107 A 244 234 236 242 23 7 227 23 7 229 23 6
CPR4 B 104 100 135 109 130 111 112 121 115 108 2 6 59 6 09 CPR15 B 25 3 26 6 24 3 25 2 26 6 26 1 23 2 24 1 25 2 24 9 1 21 4 84
C 109 108 96 8 96 3 105 108 102 93 1 102 C 25 8 25 4 27 5 24 1 25 7 24 5 28 1 26 4 25 9
A 47 3 45 8 68 4 34 1 47 8 41 2 46 8 33 45 6 A 27 2 31 1 28 2 33 2 31 4 32 8 27 1 33 2 30 5
CPR5 B 38 7 52 8 47 1 40 9 37 4 43 2 44 5 41 43 2 41 9 4 40 10 50 CPR16 B 35 1 44 5 34 7 38 1 43 8 37 9 33 1 38 6 38 2 34 0 3 90 11 46
C 39 3 34 8 39 8 37 7 33 9 37 9 37 6 35 2 37 C 27 3 33 9 39 6 32 5 30 8 30 1 37 8 34 4 33 3
A 236 228 207 222 232 224 212 245 226 A 314 343 335 332 332 338 348 32 333
CPR6 B 21 2 22 4 22 3 21 8 22 8 21 9 21 9 23 8 22 3 22 6 0 36 1 61 CPR17 B 34 9 33 1 33 3 33 5 36 4 33 3 33 34 1 34 33 4 0 46 1 39
S23 7 24 8 22 9 20 9 23 5 24 1 23 2 20 8 23 C 33 633 231 933 7 34 33 31 933 233 1
A 39 5 39 38 8 46 6 38 7 39 1 39 4 45 9 40 9 A 107 91 1 98 2 99 98 1 92 3 94 3 100 97 5
CPR7 B 39 5 42 3 42 3 40 7 38 4 41 9 42 2 41 9 41 2 41 4 0 69 1 67 CPR18 B 91 1 98 6 97 5 92 6 100 97 1 92 3 91 5 95 194 5 3 31 3 50
C 41 7 45 7 39 9 42 7 40 1 45 40 2 42 2 42 2 C 83 2 896 90 7 97 7 93 1 88 9 92 4 92 3 91
A 469 472 498 513 465 458 494 499 484 A 466 467 455 451 465 482 456 446 461
CPR8 B 474 484 446 512 485 447 45 1 519 477 481 036 074 CPR20 B 43 4 466 483 458X 463 494 483 443 466 45 4 156 3 44
C 47 2 45 1 51 4 51 1 48 7 43 5 49 50 7 48 3 C 42 7 462 429 42 41 6 45 7 44 8 43 3 43 7
A 465 427 446 435 452 452 446 432 444 A 692 691 721 704 689 718 669 73 2 702
CPR9 B 40 9 42 8 45 6 38 1 40 8 41 3 47 2 39 6 42 45 3 3 78 835 CPR21 B 59 6 64 2 64 2 62 5 66 1 60 70 1 64 4 63 9 67 5 3 26 4 83
C 41 7 50 1 55 5 45 8 48 9 56 51 8 45 8 49 5 C 71 3 66 5 64 4 71 4 72 3 62 9 70 1 68 8 68 5
A 55 57 8 50 2 57 2 55 6 55 9 50 8 56 1 54 8
CPR10 B 503 544 534 536 517 533 55 55 7 534 56 1 347 6 19
C 55 8 60 1 60 8 57 4 60 9 64 8 63 7 56 6 60
546-Day Surface Resistivity (Lime Cured) (kO.cm) 546-Day Surface Resistivty (Lime Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 122 118 105 113 97 112 95 124 111 A 338 302 30 314 312 325 311 343 318
CPR1 B 9 7 7 2 12 11 9 9 2 9 6 11 1 11 6 10 3 10 4 0 57 5 48 CPR11 B 28 27 3 30 31 1 27 9 26 2 31 9 29 2 29 30 6 1 46 4 78
C 92 101 106 103 88 101 10 106 996 C 37 29 306 343 316 293 244 309 309
A 12 113 4 14 13 3 13 12 914 613 213 3 A 13 2 12 5 15 9 15 6 13 1 12 7 15 14 4 14 1
CPR2 B 14 7 12 6 15 8 18 3 12 7 12 3 14 8 16 2 14 7 13 8 0 73 5 30 CPR12 B 14 9 16 1 14 8 16 2 14 6 16 3 14 2 16 2 15 4 14 3 1 03 7 23
C 146 146 118 128 183 115 127 119 135 C 143 135 13 128 144 144 144 103 134
A 88 82 87 88 87 85 87 89 866 A 162 159 133 139 14 164 115 112 141
CPR3 B 9 2 8 2 7 1 7 2 88 7 8 68 7 3 7X 8 83 0 45 5 37 CPR13 B 14 4 13 2 13 5 12 2 11 3 10 7 10 1 12 3 12 2 13 1 0 92 7 02
C 87 94 8 75 83 10 77 78 843 C 116 183 143 128 112 127 123 112 13 1
A 837 115 987 852 847 101 925 869 935 A 265 237 246 266 265 24 244 23 249
CPR4 B 95 4 97 103 90 2 99 1 102 109 89 2 98 1 92 9 5 49 5 91 CPR15 B 27 3 29 6 28 6 29 3 29 2 27 5 30 25 4 28 4 26 5 1 75 6 63
C 87X 8 66 73 9 94 1 90 1 86 3 83 6 94 6 87 1 C 26 7 25 2 25 6 26 7 26 2 28 1 25 5 24 7 26 1
A 36 9 32 9 40 6 37 9 37 7 34 6 41 8 38 8 37 7 A 32 1 38 33 3 39 8 35 6 38 1 33 5 37 35 9
CPR5 B 37 9 35 6 40 4 40 8 38 5 39 8 46 42 40 1 37 6 2 48 6 59 CPR16 B 38 5 42 2 54 1 48 4 45 2 54 8 50 7 45 9 47 5 41 6 5 78 13 89
C 33 6 36 2 32 8 37 2 34 5 36 8 35 2 35 35 2 C 34 7 43 5 49 378 36 5 44 1 52 1 33 2 41 4
A 25 6 26 8 23 2 23 5 25 5 27 1 22 3 24 6 24 8 A 31 1 32 5 33 31 5 33 2 34 3 32 6 31 32 4
CPR6 B 22 3 24 4 24 9 23 9 22 6 24 2 23 1 24 4 23 7 24 4 0 62 2 55 CPR17 B 35 7 35 6 34 1 33 7 39 1 35 6 33 8 37 2 35 6 34 2 1 64 4 79
S26 4 26 24 1 21 9 26 5 26 4 24 7 22 3 24 8 C 32 6 41 33 9 34 7 36 2 33 8 33 1 31 6 34 6
A 39 7 43 3 38 9 39 3 40 1 42 8 39 9 38 8 40 4 A 114 98 7 99 6 109 114 104 106 106 106
CPR7 B 38 6 41 4 42 6 40 5 41 9 42 1 39 3 39 5 40 7 40 7 0 38 0 92 CPR18 B 96 8 92 4 102 93 3 102 112 98 4 97 9 99 3 102 1 375 3 67
C 39 5 41 3 37 8 39 8 36 1 44 2 41 1 49 41 1 C 108 99 5 94 2 103 103 108 93 6 97 1 101
A 51 51 6 51 9 47 49 4 52 9 53 49 5 50 8 A 47 4 48 5 43 1 42 5 46 3 45 1 48 4 46 45 9
CPR8 B 54 2 52 47 50 3 53 7 54 4 46 4 49 4 50 9 51 0 0 29 0 57 CPR20 B 44 7 41 9 43 2 47 1 44 6 44 3 46 2 48 5 45 1 44 8 128 2 85
C 505 527 542 498 497 522 53 1 486 514 C 475 418 403 388 424 491 43 1 442 43 4
A 45 6 51 2 48 49 8 53 3 50 4 47 9 45 3 48 9 A 81 1 83 5 74 8 79 5 76 3 78 7 72 5 73 8 77 5
CPR9 B 44 6 45 2 48 3 45 3 45 1 44 9 51 4 48 8 46 7 49 8 3 59 7 21 CPR21 B 72 5 69 5 74 1 71 4 72 3 70 5 73 4 67 2 71 4 75 6 3 66 4 84
C 51 9 51 3 55 7 58 6 49 50 2 54 6 58 5 53 7 C 84 9 77 2 75 3 75 2 79 3 79 7 72 6 78 7 77 9
A 60 3 60 1 51 9 57 5 61 5 63 5 54 61 58 7
CPR10 B 60 1 59 9 60 2 60 58 3 60 1 64 5 69 4 61 6 62 7 4 68 7 47
C 706 686 718 691 705 615 641 668 679
















Table E-3. SR (Moist Cured) Testing Results.
14-Day Surface Resistivty (Moist Cured) (lo.cm) 14-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 6 61 66 68 6 62 68 71 65 A 132 144 141 136 134 144 14 135 138
CPR1 B 5 9 5 2 5 9 6 5 9 5 4 5 9 6 5 8 6 1 0 34 5 52 CPR11 B 14 9 13 5 13 17 1 14 3 14 14 8 15 4 14 6 13 3 1 72 12 98
C 64 5 9 69 5 7 63 6 6 2 5 6 6 1 C 11 1 13 3 9 9 11 2 10 9 13 10 3 10 9 11 3
A 8 92 94 87 81 96 92 88 90 A 86 79 76 81 85 79 82 82 813
CPR2 B 78 81 79 8 79 81 81 81 80 85 049 575 CPR12 B 84 87 91 93 86 78 83 89 864 81 060 738
C 77 89 87 88 75 93 89 87 86 C 72 76 76 76 74 71 76 75 745
A57 54 53 55 51 54 51 56 54 A 67 66 66 59 64 65 64 56 634
CPR3 B 57 61 59 62 57 59 59 61 59 55 036 649 CPR13 B 57 63 66 6 59 59 65 63 615 62 014 227
C 55 52 55 49 54 51 55 5 53 C 53 61 59 58 58 7 59 67 606
A 277 241 25 3 246 272 23 6 25 1 246 25 3 A 0 0 0 0 0 0 0 0 0
CPR4 B 242 25 1 25 266 253 258 247 276 255 257 059 229 CPR15 B 0 0 0 0 0 0 0 0 0 00 000 000
S241 25 9 288 28 1 247 23 6 291 269 264 C 0 0 0 0 0 0 0 0 0
A 62 62 61 62 59 6 65 61 62 A 82 86 73 81 8 84 7 81 796
CPR5 B 63 65 59 65 61 65 6 68 63 63 011 181 CPR16 B 75 61 66 62 77 64 65 61 664 73 066 906
C 62 63 6 65 63 62 66 68 64 C 76 74 76 67 73 74 69 79 735
A59 57 57 61 59 6 52 62 58 A 0 0 0 0 0 0 0 0 0
CPR6 B 58 59 57 57 58 6 55 59 58 59 022 367 CPR17 B 0 0 0 0 0 0 0 0 0 00 000 000
C 62 66 59 59 62 68 57 62 62 C 0 0 0 0 0 0 0 0 0
A165 161 149 185 165 153 172 194 168 A 0 0 0 0 0 0 0 0 0
CPR7 B 164 17 169 15 163 165 158 17 164 166 023 136 CPR18 B 0 0 0 0 0 0 0 0 0 00 000 000
C 176 166 163 168 169 162 16 17 167 C 0 0 0 0 0 0 0 0 0
A 15 14 4 14 6 14 6 14 8 14 3 14 7 14 2 14 6 A 0 0 0 0 0 0 0 0 0
CPR8 B 144 148 139 135 14 15 1 136 134 14 1 138 088 637 CPR20 B 0 0 0 0 0 0 0 0 0 00 000 000
C 11 8 13 1 13 1 13 3 12 9 13 13 3 12 4 12 9 C 0 0 0 0 0 0 0 0 0
A 38 7 40 9 39 3 36 1 36 9 41 3 39 4 35 38 5 A 0 0 0 0 0 0 0 0 0
CPR9 B 35 4 36 42 4 35 34 9 36 6 42 1 35 4 37 2 38 7 1 62 4 19 CPR21 B 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00
C 41 2 40 3 39 2 38 8 43 43 5 39 9 37 6 40 4 C 0 0 0 0 0 0 0 0 0
A364 341 368 388 364 354 381 374 367
CPR10 B 34 7 35 37 2 34 4 34 4 37 5 36 1 33 9 35 4 34 6 2 63 7 62
S31 32 7 32 8 30 5 31 4 30 7 33 6 30 2 31 6
28-Day Surface Resistivty (Moist Cured) (kQ.cm) 28-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A63 72 74 8 61 67 78 81 72 A 193 182 185 205 187 185 177 203 19
CPR1 B 6 3 6 2 7 6 6 6 1 6 6 9 6 6 6 46 6 9 0 37 5 43 CPR11 B 18 18 9 18 16 8 17 8 19 5 18 1 17 1 18 17 4 1 90 10 92
C 74 6 9 7 2 6 5 6 7 7 4 6 8 6 5 6 93 C 15 318 7 13 14 815 217 7 13 14 715 3
A93 98 105 10 9 95 106 101 985 A 101 88 73 101 92 92 79 104 913
CPR2 B 9 89 92 9 88 87 94 9 9 95 047 496 CPR12 B 94 88 10 92 96 91 83 99 929 89 060 678
C 89 103 99 97 89 107 102 97 979 C 82 84 85 79 81 79 85 79 818
A 55 58 57 59 54 57 54 58 565 A 68 68 65 6 68 67 65 63 655
CPR3 B 61 6 68 65 61 62 67 66 638 59 041 698 CPR13 B 67 65 64 65 62 64 68 63 648 65 005 073
C 59 57 58 53 59 56 57 55 568 C 59 64 61 73 59 65 63 73 646
A 464 44 443 444 484 41 437 442 446 A 93 77 8 81 76 76 71 79 791
CPR4 B 45 6 47 5 44 47 5 42 3 46 43 9 44 9 45 2 44 8 0 35 0 79 CPR15 B 9 7 5 8 2 7 6 8 7 7 2 8 4 7 6 8 03 7 9 0 07 0 87
C 47 4 40 1 46 6 46 41 6 38 6 49 3 47 8 44 7 C 8 7 5 8 72 10 7 6 7 6 7 3 7 9
A 2 76 79 83 79 79 8 78 795 A 85 92 72 75 88 89 74 71 808
CPR5 B 81 82 76 82 83 82 75 84 806 81 021 254 CPR16 B 81 67 67 63 82 64 69 63 695 77 067 866
8 8 4 83 9 8 8 82 89 835 C 88 82 79 79 86 8 78 79 814
A74 71 68 72 72 68 67 71 704 A 115 108 13 129 115 104 115 127 118
CPR6 B 68 71 69 7 67 73 67 68 691 72 032 442 CPR17 B 96 99 105 108 96 10 101 108 102 116 129 1113
C 74 82 72 75 72 83 71 72 751 C 125 129 136 122 122 13 135 117 127
A 28 2 25 4 29 8 31 4 28 6 28 5 31 8 31 6 29 4 A 14 8 14 8 14 6 13 8 14 6 14 8 15 6 14 8 14 7
CPR7 B 28 5 28 6 28 7 25 9 29 8 28 4 28 27 28 1 28 7 0 66 2 28 CPR18 B 13 6 14 6 13 5 14 9 13 8 13 6 13 2 13 7 13 9 14 0 0 69 4 93
C 316 272 276 298 296 265 277 289 286 C 126 137 136 14 128 137 129 136 134
A 254 238 256 256 262 245 252 249 252 A 123 128 14 141 127 129 139 13 1132
CPR8 B 24 3 27 3 23 6 23 4 23 5 25 4 23 7 23 6 24 4 24 3 0 87 3 58 CPR20 B 14 1 13 4 12 6 11 8 13 4 12 9 13 5 12 1 13 13 1 0 13 1 03
S24 2 23 23 9 23 23 9 21 9 23 8 23 6 23 4 C 13 13 2 14 1 12 2 14 1 12 8 13 4 12 7 13 2
A33 4 36 6 32 4 32 1 35 35 5 33 7 32 7 33 9 A 12 9 17 4 15 7 14 12 7 13 5 11 8 13 8 14
CPR9 B 27 5 34 5 32 6 33 2 29 2 33 9 34 4 32 7 32 3 33 5 1 08 3 23 CPR21 B 13 6 13 6 10 7 11 8 11 2 11 7 11 5 11 2 11 9 12 9 1 04 8 05
C 36 3 34 9 35 5 32 5 34 2 34 6 34 6 31 6 34 3 C 14 6 13 1 10 9 12 6 15 12 3 11 9 11 7 12 8
A359 336 327 339 322 335 314 352 336
CPR10 B 33 6 32 7 32 9 34 2 32 2 36 31 5 33 1 33 3 31 7 2 90 9 13
S29 5 28 7 30 2 25 7 30 25 5 30 8 26 8 28 4
















Table E-3. Continued.
56-Day Surface Resistivty (Moist Cured) (lo.cm) 56-Day Surface Resistivity (Moist Cured) (kQ.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 74 73 79 88 73 75 8 88 788 A 215 222 212 205 224 221 226 198 215
CPR1 B 6 6 6 7 7 1 7 3 6 8 6 5 7 7 2 6 9 7 5 0 56 7 37 CPR11 B 22 5 23 5 20 9 25 7 23 6 22 7 20 2 26 5 23 2 20 8 2 83 13 59
C 84 7 5 8 6 7 2 7 9 7 3 8 6 7 3 7 85 C 17 6 20 7 15 17 17 8 21 4 14 7 17 3 17 7
As 10 2 11 11 1 11 9 7 10 10 610 810 6 As 10 10 8 9 6 11 1 10 4 9 6 9 1 11 1 10 2
CPR2 B 96 96 98 94 97 94 99 96 963 101 047 464 CPR12 B 102 94 92 108 104 96 109 101 101 97 081 842
C 9 6 10 8 10 3 10 9 7 11 1 10 1 10 3 10 2 C 9 8 4 9 1 8 3 8 9 85 9 8 7 8 74
A 57 59 58 58 56 58 57 6 579 A 78 78 75 81 68 8 77 82 774
CPR3 B 68 66 7 7 64 65 7 7 679 62 051 819 CPR13 B 73 71 74 71 74 71 77 74 731 76 025 333
C 62 59 64 59 63 6 62 6 611 C 74 73 8 74 83 79 82 76 776
A 683 581 62 638 685 571 637 651 633 A 86 89 88 94 86 91 8 9 88
CPR4 B 62 4 64 4 54 8 67 61 2 65 4 63 2 69 2 63 5 63 8 0 79 1 24 CPR15 B 9 8 9 8 8 9 9 7 8 4 8X 889 9 05 8 8 0 21 2 42
C 571 63 7 704 645 603 598 725 697 648 C 88 86 9 81 88 85 9 82 863
A 11 6 12 8 12 6 13 4 11 9 12 2 12 12 4 12 4 A 8 1 12 7 9 8 11 3 11 1 12 6 10 8 11 3 11
CPR5 B 13 5 12 5 11 9 12 7 13 13 11 8 12 6 12 6 12 6 0 18 1 41 CPR16 B 11 1 8 9 10 1 8 7 11 3 9 9 8 9 1 9 75 10 6 0 71 6 76
C 12 6 11 6 12 7 13 2 12 2 13 2 12 4 13 7 12 7 C 11 9 10 2 11 2 10 9 11 7 10 3 10 8 11 1 11
A 96 94 93 101 98 96 92 96 958 A 167 15 7 173 176 162 158X 178 175 168
CPR6 B 9 2 10 1 9 9 4 9 3 9 3 9 4 9 1 9 35 9 6 0 32 3 29 CPR17 B 13 5 12 9 14 2 13 5 13 13 14 1 13 4 13 5 15 5 1 83 11 76
C 9 7 10 7 9 9 9 7 9 8 10 7 9 2 10 1 9 98 C 16 9 17 4 18 4 15 6 16 6 11 5 18 4 16 16 4
A 38 6 37 3 41 2 42 2 37 9 34 9 45 4 43 40 1 A 18 17 4 14 6 16 5 18 2 13 5 19 1 15 7 16 6
CPR7 B 34 2 34 3 41 37 8 37 4 40 39 3 36 3 37 5 38 8 1 26 3 26 CPR18 B 13 7 14 8 13 6 17 8 14 3 17 5 17 3 15 7 15 6 16 4 0 76 4 61
S41 386 376 425 412 349 366 389 389 C 161 168 17 172 187 159 181 167 171
A 35 2 32 6 33 8 34 6 37 34 5 35 6 33 6 34 6 A 11 4 16 5 11 4 11 3 15 5 16 8 11 2 16 8 13 9
CPR8 B 32 7 34 1 31 5 32 3 32 9 33 1 32 1 32 9 32 7 33 1 1 31 3 94 CPR20 B 11 8 16 1 11 3 15 2 11 2 16 3 16 9 13 7 14 1 14 9 1 57 10 56
C 309 322 303 313 329 329 348 316 321 C 169 168 166 18 166 157 167 161 167
A 37 7 41 4 39 2 35 38 6 40 9 40 7 36 4 38 7 A 15 3 17 6 15 5 16 3 17 2 17 8 15 6 16 1 16 4
CPR9 B 35 4 38 3 42 7 37 8 35 1 38 5 39 2 36 9 38 39 3 1 68 4 28 CPR21 B 16 3 15 1 15 6 14 8 15 15 3 16 14 8 15 4 16 3 0 83 5 11
C 41 2 39 7 38 4 36 7 39 4 46 49 6 38 6 41 2 C 17 7 17 5 16 1 17 4 16 9 17 5 16 16 9 17
A 37 7 38 5 39 6 38 6 37 9 39 37 3 41 6 38 8
CPR10 B 38 8 43 39 39 8 38 9 42 2 38 5 37 9 39 8 37 6 3 02 8 04
C 363 33 1 358X 315 371 324 345 322 341
91-Day Surface Resistivty (Moist Cured) (kQ.cm) 91-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std.CO
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 64 75 79 84 81 71 84 86 78 A 258 232 245 223 248 244 249 233 242
CPR1 B 7 3 7 3 7 4 7 7 7 5 7 3 7 3 7 6 7 43 7 8 0 41 5 20 CPR11 B 25 4 22 8 22 6 26 5 24 7 23 8 23 6 25 9 24 4 22 5 3 13 13 93
C 89 7 9 9 7 7 8 8 7 7 83 7 6 8 24 C 18 321 215 4 19 18 624 115 718 618 9
A 10 7 12 1 11 5 10 9 10 3 11 3 11 1 11 7 11 2 A 11 10 8 4 10 811 110 1 84 10 710 1
CPR2 B 9 2 10 8 11 10 4 10 5 11 1 10 8 10 5 10 5 10 8 0 37 3 39 CPR12 B 10 9 11 11 6 11 5 11 1 10 7 11 9 11 1 11 2 9 9 1 48 15 01
C 104 108 109 104 101 107 106 109 106 C 0 96 92 97 97 96 9 95 829
A 63 62 66 62 64 64 62 67 638 A 85 84 88 77 84 85 82 77 828
CPR3 B 71 71 71 75 69 7 72 72 714 66 043 647 CPR13 B 78 85 8 85 84 8 79 81 815 82 006 077
C 67 62 67 62 65 59 7 61 641 C 78 85 84 76 81 84 85 83 82
A 79 6 74 9 77 7 78 92 72 5 79 9 78 1 79 1 A 12 110 4 89 9 6 9 4 9 8 7 5 9 8 9 69
CPR4 B 70 3 77 78 81 71 3 75 5 76 5 78 9 76 1 78 0 1 68 216 CPR15 B 11 6 15 3 87 8 8 11 9 11 3 9 3 8 7 10 7 10 0 0 60 6 03
C 65 5 81 4 88 1 79 2 73 6 79 5 87 8 75 7 78 9 C 9 8 9 7 9 3 9 2 8 8 10 110 1 10 9 63
A 17 2 17 18 20 16 17 918 718 217 9 A 17 7 18 2 13 4 15 8 18 1 18 5 13 7 15 5 16 4
CPR5 B 18 7 20 17 4 17 7 18 4 19 8 17 2 18 4 18 5 18 5 0 66 3 59 CPR16 B 16 6 13 1 13 5 13 3 14 9 13 3 13 3 12 3 13 8 15 3 1 35 8 83
S18 18 3 19 20818 1 19 8 19 20 619 2 C 16 4 14 4 13 5 16 1 17 1 16 6 16 8 15 4 15 8
A 13 12 2 12 1 12 2 13 1 12 11 6 12 5 12 3 A 20 8 21 4 23 2 23 3 20 8 21 3 22 5 23 2 22
CPR6 B 12 128 12 119 12 129 117 119 122 127 076 599 CPR17 B 18 181 194 176 183 173 196 179 183 207 213 1027
S13 14 6 13 3 13 7 13 5 14 4 12 6 13 3 13 6 C 21 21 3 23 1 20 7 21 6 22 3 24 1 20 7 21 9
A 439 384 456 459 424 386 421 484 432 A 365 396 371 368 359 40 362 364 373
CPR7 B 41 1 38 6 40 8 36 9 40 1 40 6 38 2 37 1 39 2 40 7 2 14 5 25 CPR18 B 34 5 35 2 35 1 37 5 34 34 7 35 1 37 2 35 4 36 1 1 04 2 87
C 43 9 38 3 38 41 5 40 8 37 6 38 7 39 8 39 8 C 34 3 35 8 36 3 36 9 34 7 35 7 34 9 36 6 35 7
A 43 6 39 6 42 3 38 7 43 5 41 7 39 4 39 2 41 A 21 4 21 9 24 7 24 2 22 4 22 1 24 9 23 23 1
CPR8 B 384 382 381 373 383 446 35 1 385 386 389 196 505 CPR20 B 242 239 248 205 24 232 234 219 232 228 067 292
C 36 6 36 5 38 5 37 2 33 9 38 4 38 4 37 4 37 1 C 20 8 20 7 22 6 23 8 21 8 21 2 23 3 21 9 22
A 38 1 35 5 36 1 37 8 41 45 8 38 8 37 1 38 8 A 24 21 1 20 2 21 2 23 1 20 7 22 21 4 21 7
CPR9 B 37 41 8 38 6 36 8 34 8 40 39 2 35 8 38 38 9 0 94 2 41 CPR21 B 19 6 18 6 17 6 20 5 20 3 19 1 18 4 19 7 19 2 20 0 1 45 7 22
C 42 1 42 6 39 2 36 8 41 40 3 39 5 37 4 39 9 C 17 5 19 6 19 8 20 1 18 4 19 6 18 20 5 19 2
A 45 43 8 47 2 46 5 47 1 45 3 45 5 46 1 45 8
CPR10 B 429 471 416 425 426 483 477 449 447 435 316 726
C 40 9 39 4 41 1 35 3 41 2 41 1 41 2 38 8 39 9
















Table E-3. Continued.
182-Day Surface Resistivity (Moist Cured) (kQ.cm) 182-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 83 78 97 94 81 89 104 103 911 A 255 276 277 237 239 261 27 249 258
CPR1 B 8 7 8 5 89 8 7 7 7 8 7 9 6 8 3 864 9 1 0 50 5 48 CPR11 B 27 9 27 9 25 3 31 2 27 3 28 2 25 1 32 3 28 2 25 2 3 27 12 97
C 9 4 8 9 10 8 94 94 9 7 9 8 9 7 9 64 C 21 8 25 4 18 4 208 21 7 25 5 19 1 20 8 21 7
A 11 1 12 6 12 9 12 4 11 3 12 5 12 6 11 8 12 2 A 13 4 10 3 10 6 12 3 11 6 11 1 10 4 12 3 11 5
CPR2 B 11 5 10 4 11 2 11 1 10 9 10 8 10X 8 11 11 11 7 0 61 5 21 CPR12 B 12 3 10 9 11 5 11 10 9 10 6 11 9 11 5 11 3 10 9 0 87 7 98
S11 12 7 11 9 11 9 10 6 12 5 12 1 11 9 11 8 C 10 5 9 8 9 6 9 7 10 9 9 4 10 94 9 91
A 65 67 68 65 63 68 66 67 661 A 92 86 92 82 89 91 93 82 884
CPR3 B 77 78 76 82 8 75 74 73 769 71 054 760 CPR13 B 86 83 88 92 83 87 91 88 873 87 022 254
S7 7 77 68 67 7 74 68 705 C 76 88 83 84 78 88 82 94 841
A 89 1 79 7 80 2 77 5 88 4 76 1 81 1 77 3 81 2 A 15 9 16 6 14 9 17 3 15 5 16 8 14 9 17 3 16 2
CPR4 B 75 7 84 79 7 87 71 1 78 6 77 4 869 80 1 81 1 1 04 1 29 CPR15 B 19 5 17 1 17 6 17 3 19 16 5 16 8 16 9 17 6 16 7 0 79 4 76
C 72 9 70 2 99 1 77 2 78 5 74 4 97 6 87 2 821 C 16 5 16 7 16 3 15 7 17 1 16 16 4 15 6 16 3
A 27 27 3 27 6 26 8 26 9 26 3 29 2 30 27 6 A 25 8 27 9 21 2 22 1 26 1 27 7 19 9 22 24 1
CPR5 B 29 2 31 2 27 3 28 3 28 8 30 9 28 28 6 29 28 6 0 84 2 95 CPR16 B 23 4 18 6 19 1 17 5 23 2 18 4 19 17 4 19 6 21 9 2 26 10 32
S27 4 29 8 29 1 31 8 27 1 27 8 28 3 31 9 29 2 C 24 2 21 5 20 5 21 8 23 7 19 7 22 8 22 1 22
A 179 175 167 182 184 178 166 185 177 A 298 309 298 327 306 274 313 322 306
CPR6 B 17 17 2 17 2 18 6 16 8 18 17 4 18 6 17 6 18 3 1 20 6 54 CPR17 B 25 9 24 26 2 24 8 23 4 24 9 24 7 24 2 24 8 28 6 3 34 11 68
C 19 2 22 3 18 2 18 7 19 5 21 6 19 7 18 6 19 7 C 29 9 31 31 4 304 29 2 30 32 8 29 4 30 5
A 45 7 43 1 45 6 43 44X 8 9 44 4 39 5 43 1 A 63 8 67 9 65 5 62 1 57 8 61 4 60 9 59 8 62 4
CPR7 B 41 37 5 42 1 39 5 38 4 41 1 42 7 39 4 40 2 41 3 1 60 3 88 CPR18 B 55 2 62 61 3 54 8 52 64 8 60 65 6 59 5 61 6 1 86 3 02
S42 39 2 40 6 40 2 40 6 39 3 41 2 41 2 40 5 C 64 2 59 6 60 8 64 3 60 3 61 8 64 8 67 4 62 9
A 50 7 44 9 47 9 48 45 8 47 48 4 47 4 47 5 A 29 4 31 2 34 6 31 2 31 5 29 6 31 6 33 4 31 6
CPR8 B 44 49 6 43 8 42 7 44 2 55 5 43 6 48 5 46 5 46 2 1 47 3 18 CPR20 B 35 5 38 3 32 4 31 6 34 7 35 31 3 28 33 4 32 7 1 00 3 07
C 44 3 41 4 48 1 43 2 44 1 46 1 44 4 45 3 44 6 C 33 2 31 6 34 1 36 2 32 8 30 8 35 2 32 1 33 3
A 42 3 46 9 41 7 41 4 38 7 48 7 42 4 39 2 42 7 A 45 2 45 3 39 4 41 1 42 40 3 42 2 43 9 42 4
CPR9 B 39 1 42 2 47 3 41 2 35 6 42 8 47 2 41 2 42 1 43 5 2 03 4 67 CPR21 B 45 8 44 6 41 8 40 6 38 7 39 43 3 41 2 41 9 42 1 0 30 0 71
C 44 7 51 4 44 7 41 4 47 6 54 4 41 3 41 3 45 9 C 67 40 2 36 4 37 3 42 9 38 2 36 37 6 42
A 58 2 59 2 60 6 59 5 55 59 3 61 1 62 59 4
CPR10 B 55 9 63 57 59 53 3 62 7 56 3 56 9 58 56 6 3 71 6 56
C 555 485 528 514 569 504 567 467 524
364-Day Surface Resistivity (Moist Cured) (kO.cm) 364-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 10 87 97 118 89 87 109 114 10 A 367 342 35 4 356 325 348 35 2 308 344
CPR1 B 8 9 7 5 9 7 9 5 8X 881 88 9 7 888 9 6 0 62 6 48 CPR11 B 33 1 31 3 32 6 34 7 32 9 31 1 32 36 9 33 1 31 4 4 16 13 26
C 9 8 10 3 10 8 92 10 3 9 5 9 8 9 3 9 88 C 28 5 27 7 25 2 25 3 26 8 30 5 24 7 24 3 26 6
A 11 7 13 6 13 8 12 8 12 5 13 7 14 2 12 8 13 1 A 13 411 810 713 1 13 11 810 614 212 3
CPR2 B 11 7 11 3 12 11 3 12 3 11 2 11 6 11 8 11 7 12 6 80 6 40 CPR12 B 12 4 12 6 14 13 5 12 5 12 8 13 7 14 1 13 2 12 3 0 86 6 99
C 11 6 14 1 13 1 12 7 11 6 13 9 13 13 4 12 9 C 12 7 11 11 4 11 11 1 11 12 211 411 5
A 6 9 83 71 6 89 73 76 753 A 99 97 95 86 10 101 95 87 95
CPR3 B 75 82 86 66 84 87 69 72 776 72 076 1059 CPR13 B 9 92 96 101 94 92 97 92 943 94 018 189
C 8 1 6 4 6 1 8 6 5 9 4 9 5 9 4 8 6 34 C 8 2 9 3 8 9 10 1 8 4 9 1 8 8 10 5 9 16
A 95 2 75 9 89 2 92 3 97 7 79 7 92 6 87 1 887 A 25 923 821 225 925 723 8 19 24 623 7
CPR4 B 91 6 89 4 863 955 856 93 87 5 96 4 90 7 897 0 98 109 CPR15 B 26 2 23 6 24 5 21 5 26 5 22 7 24 7 22 6 24 23 3 0 99 4 26
C 81 4 97 6 95 5 97X 8 12 84 2 89X 8 96 89 6 C 22 8 22 1 21 9 21 6 21 7 22 9 22 8 21 7 222
A 383 291 258 395 369 349 285 342 334 A 301 396 268 288 341 403 282 302 323
CPR5 B 35 31 2 44 3 34 6 38 4 36 7 33 6 33 35 9 35 0 1 38 3 94 CPR16 B 31 3 34 2 26 3 25 8 28 6 27 8 25 5 24 7 28 29 6 2 32 7 86
C 34 6 39 9 35 4 33 33 2 33 8 33 6 42 3 35 7 C 29 1 25 2 28 5 29 2 31 9 28 6 27 1 28 3 28 5
A 20 1 23 7 22 5 22 8 23 7 21 6 20 2 22 2 22 1 A 29 3 34 2 40 2 43 4 38 6 36 8 38 1 36 8 37 2
CPR6 B 237 228 219 233 244 245 221 229 232 237 182 771 CPR17 B 294 287 33 1 28 273 276 307 284 292 334 404 1209
S245 278 266 276 246 25 4 247 241 25 7 C 318 365 362 327 337 321 365 325 34
A 44 39 3 41 6 38 2 46 5 41 7 42 1 48 3 42 7 A 94 1 96 3 106 93 9 98 9 96 2 100 101 98 2
CPR7 B 43 3 49 3 40 7 38 7 40 5 40 9 40 2 40 41 7 42 1 0 56 1 33 CPR18 B 88 2 92 4 90 3 91 2 93 8 90 1 88 6 93 1 91 94 2 3 69 3 92
C 43 6 33 9 40 8 42 4 45 5 41 2 42 7 44 3 41 8 C 90 3 97 7 90 5 92 4 96 95 3 92 6 91 8 93 3
A 66 3 57 5 57 8 58 9 56 3 56 9 60 2 57 9 59 A 38 6 37 36 5 45 35 4 39 8 41 3 43 3 39 6
CPR8 B 52 5 58 7 53 8 56 4 58 3 60 5 53 56 1 56 2 56 5 2 26 4 00 CPR20 B 44 4 43 2 45 5 36 6 41 8 44 4 42 9 43 2 42 8 42 1 2 26 5 35
C 53 6 57 57 2 51 54 51 3 56 6 55 3 54 5 C 47 2 43 44 8 44 7 42 6 42 4 43 1 44 1 44
A 57 4 64 8 64 2 51 9 55 6 52 5 50 3 49 8 55 8 A 82 3 72 4 71 8 70 5 79 5 66 4 68 66 1 72 1
CPR9 B 62 57 4 62 1 62 7 54 9 59 8 78 6 53 4 61 4 60 0 3 67 6 11 CPR21 B 68 2 67 1 64 8 62 9 69 1 62 2 68 1 65 1 65 9 66 4 5 56 8 38
C 692 689 633 598 613 589 625 58 627 C 62 595 586 647 604 595 591 644 61
A 87 909 87 1 88 86 5 884 74 9 86 7 862
CPR10 B 92 7 82 3 60X 8 49 70 5 104 82 2 99 4 846 85 3 0 82 0 96
C 83X 8 7 92 72 3 97 6 82 3 837 83 5 853
















Table E-3. Continued.
455-Day Surface Resistivity (Moist Cured) (lo.cm) 455-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 113 108 125 126 11 10 133 125 118 A 364 341 375 357 35 5 35 6 367 377 362
CPR1 B 10 1 9 8 10 4 10 2 9 8 9 8 10 4 10 9 10 2 11 3 0 93 8 28 CPR11 B 37 5 41 33 1 35 7 37 5 42 33 9 35 7 37 1 34 1 4 42 12 97
C 119 116 13 1 108 122 118 125 107 118 C 286 273 245 352 298 273 247 345 29
A 146 16 162 16 144 164 164 159 157 A 138X 127 112 137 13 9 122 121 138X 129
CPR2 B 13 8 13 3 13 3 14 2 13 1 13 7 14 13 3 13 6 14 3 1 26 8 79 CPR12 B 13 1 12 9 13 7 14 5 13 1 12 7 14 6 14 3 13 6 12 9 0 73 5 67
C 12 8 5 9 14 8 14 6 13 9 16 15 1 15 2 13 5 C 12 5 11 9 11 7 124 12 1 12 12 1 12 5 12 2
A 82 93 87 93 81 95 96 101 91 A 112 116 113 108 119 117 116 11 114
CPR3 B 9 7 9 7 9 7 10 4 9 7 9 8 10 2 10 4 9 95 9 4 0 45 4 73 CPR13 B 10 6 10 6 10 5 10 6 10 9 11 1 10 5 11 1 10 7 11 0 0 35 3 16
C 95 9 9X 889 9 2 8 8 10 1 9 9 29 C 9 9 11 9 11 10 7 9 7 11 3 10 8 11 5 10 9
A 116 98 2 119 108 119 98 2 112 113 110 A 29 1 25 6 20 9 27 1 27 8 24 9 18 4 28 1 25 2
CPR4 B 111 112 106 115 115 122 114 117 114 112 1 1 75 1 56 CPR15 B 32 3 22 1 23 8 22 2 26 4 25 6 25 5 22 8 25 1 24 6 0 98 400
C 96 4 103 132 120 105 101 127 113 112 C 26 9 21 6 23 2 23 1 23 5 22 6 24 5 22 3 23 5
A 44 4 44 9 47 6 46 3 43 45 6 47 4 45 4 45 6 A 42 7 48 3 34 6 40 5 48 9 49 35 4 35 3 41 8
CPR5 B 47 9 54 1 45 6 44 3 47 6 48 8 46 5 44 47 4 47 3 1 74 3 67 CPR16 B 37 3 35 8 32 4 29 5 34 8 35 2 35 7 30 8 33 9 37 2 4 12 11 06
C 49 7 45 4 50 8 52 6 46 3 46 2 47 6 53 8 49 1 C 38 4 32 9 35 6 36 40 5 35 3 33 8 34 6 35 9
A 258 275 258 278 269 294 269 286 273 A 398 338 382 365 338 337 362 358 36
CPR6 B 25 6 25 2 25 8 30 8 27 22 5 25 8 30 2 26 6 26 9 0 39 1 45 CPR17 B 36 3 28 5 29 6 26 4 25 2 30 31 4 28 29 4 33 2 3 41 10 25
S263 266 272 271 27 258 275 263 267 C 34 323 338 329 348 342 375 351 343
A 50 6 52 4 50 6 47 9 48 9 50 3 49 7 46 1 49 6 A 108 114 101 104 92 1 115 103 0 1 91 9
CPR7 B 45 8 40 7 44 7 47 1 45 3 41 7 45 47 8 44 8 46 8 2 47 5 28 CPR18 B 89 6 86 7 885 93 91 3 91 5 91 7 94 4 90 8 92 7 2 33 2 51
C 47 9 47 7 44 1 45 4 47 5 47 4 44 7 44 5 46 2 C 108 85 4 85 7 104 92 9 98 4 95 6 92 9 95 3
A 642 588 618 572 606 574 607 612 602 A 37 429 366 469 368 399 387 424 402
CPR8 B 602 665 672 615 627 676 681 618 645 596 5 17 866 CPR20 B 475 395 422 325 425 396 412 324 397 402 055 137
C 474 516 50 598 556 519 557 614 542 C 446 412 392 425 378 374 418 417 408
A 495 476 508 568 513 478 53 3 566 517 A 83 2 714 695 704 767 682 75 5 702 73 1
CPR9 B 45 5 48 3 54 4 49 8 47 5 49 54 2 49 9 49 8 51 5 1 59 3 08 CPR21 B 77 70 3 70 5 69 9 72 7 75 2 69 7 73 8 72 4 70 4 4 09 5 81
C 54 8 50 52 8 54 3 51 4 50 1 53 2 57 2 53 C 71 2 72 2 64 4 66 5 62 2 61 8 61 7 65 7 65 7
A 828 859 882 845 803 856 848 862 848
CPR10 B 76 3 85 84 3 92 3 76 7 85 8 79 8 93 7 84 2 827 3 12 3 77
C 802 723 83 6 763 815 771 872 749 791
546-Day Surface Resistivity (Moist Cured) (kO.cm) 546-Day Surface Resistivity (Moist Cured) (kO.cm)
MIX Sample Reading Locations (Deg.) Std. CO AIX Sample Reading Locations (Deg.) Std. C1
Average (%/) Average (%/)
0 90 180 270 0 90 180 270 Dev. O 90 180 270 0 90 180 270 Dev.
A 10 4 12 11 7 10 1 10 3 11 3 11 6 9 4 10 9 A 33 5 38 3 43 3 36 8 34 5 35 4 42 9 35 3 37 5
CPR1 B 9 5 10 3 10 2 9 9 7 10 6 10 9 4 9 84 10 6 0 65 6 14 CPR11 B 38 29 2 36 6 40 7 37 5 32 4 34 8 39 1 36 34 6 3 76 10 84
S11 101 121 112 113 103 121 103 111 C 29 357 28 273 308 364 262 297 304
A 138 142 152 149 135 148 16 148 147 A 115 136 128 128 133 149 115 122 128
CPR2 B 13 1 12 6 13 13 13 6 12 6 12 8 12 4 12 9 13 9 0 91 6 55 CPR12 B 12 1 11 6 11 11 1 13 6 11 10 6 11 6 11 6 12 9 1 36 10 53
C 129 138 135 154 137 143 14 157 142 C 134 136 144 138 146 135 163 147 143
A 77 85 81 87 78 88 84 89 836 A 113 115 117 106 106 112 117 104 111
CPR3 B 9 4 9 3 9 6 9 5 9 3 9 2 9 7 9 7 9 46 8 9 0 56 6 30 CPR13 B 10 6 10 7 11 11 4 10 6 10 7 10 8 11 10 9 10 9 0 19 1 78
C 88 8 7 9 8 6 8X 886 9 8 5 8 75 C 10 5 11 4 10 4 11 10 5 10 8 11 3 10 1 10 8
A 113 107 103 102 117 110 106 102 108 A 26 7 27 8 22 8 30 5 26 2 27 5 22 9 30 8 26 9
CPR4 B 104 114 102 109 102 117 99 6 107 107 106 5 1 23 1 15 CPR15 B 33 3 31 5 29 6 27 4 33 2 31 30 4 27 9 30 5 28 5 1 88 6 60
C 94 1 111 119 93 4 98 2 112 118 95 5 105 C 26 8 27 2 29 3 28 5 28 7 26 7 28 4 27 7 27 9
A 44 7 42 4 48 43 5 45 4 43 8 44 3 42 1 44 3 A 46 8 46 5 35 7 36 4 45 49 2 35 3 36 41 4
CPR5 B 448 448 442 438 451 463 461 465 452 454 130 287 CPR16 B 367 324 36 379 381 372 358 385 366 378 317 839
C 431 512 469 437 454 525 459 461 469 C 35 353 325 363 397 349 342 351 354
A 28 1 28 5 31 7 28 7 29 3 30 2 30 8 30 5 29 7 A 38 1 43 1 45 8 41 3 42 7 41 44 5 45 3 42 7
CPR6 B 27 8 25 2 27 3 31 3 28 6 26 5 27 5 31 6 28 2 28 5 1 10 3 87 CPR17 B 35 37 6 38 1 36 1 36 3 39 1 40 2 36 3 37 3 39 6 2 78 7 02
S26 8 26 5 27 6 29 27 27 1 27 5 29 1 27 6 C 41 7 32 3 32 9 38 9 39 3 40 2 44 1 41 2 38 8
A 47 3 44 1 47 2 48 7 47 3 41 7 45 2 48 1 46 2 A 127 126 128 121 139 139 126 113 127
CPR7 B 43 2 45 7 40 3 37 1 43 8 38 8 41 2 40 5 41 3 43 6 2 46 5 64 CPR18 B 109 114 114 116 109 113 110 118 113 119 2 7 43 6 23
C 44 5 43 1 42 8 43 5 43 5 40 2 43 6 44 7 43 2 C 110 119 125 114 119 114 121 117 117
A 64 4 61 1 63 4 62 7 64 4 62 5 61 3 60 9 62 6 A 44 8 46 7 48 7 51 8 44 6 45 2 50 9 51 4 48
CPR8 B 666 683 747 67 681 696 726 581 681 652 279 428 CPR20 B 535 55 1 534 423 569 537 524 444 515 499 175 351
C 61 1 59 2 59 5 74 2 71 3 72 3 59 9 60 5 64 8 C 50 1 47 2 48 9 53 2 50 3 47 1 52 5 52 8 50 3
A 55 6 55 9 53 51 9 55 4 64 54 53 7 55 4 A 103 85 3 93 4 87 1 102 88 4 89 4 893 92 3
CPR9 B 49 6 53 6 57 8 52 5 48 7 54 55 5 54 8 53 3 55 6 2 39 4 29 CPR21 B 87 86 6 86 5 93 2 867 83 9 824 90X 8 71 86 6 5 88 6 79
C 575 60 595 538 564 625 591 558 581 C 773 878 748 882 772 782 772 835 805
A 91 794 2 83892 8 7 7 95 90 993 791 2
CPR10 B 87 1 94 1 93 1 107 86 4 96 1 92 1 106 95 3 90 3 5 53 6 13
C 899 785 889 873 808 829 812 85 2 843










APPENDIX F
REGRESSION FIT OF CONDUCTIVITY AND LONG-TERM DIFFUSION TESTS

The results of the short-term test RCP and SR were compared to the Bulk Diffusion test

results. Bulk Diffusion test (independent variable) results after a 1 and 3 years of chloride

exposure period were used as a benchmark to evaluate the conductivity tests (dependent

variable) at different concrete ages. It was found that a modified linear regression (Equation F-2)

expressed as a power function provided the best representation of the trends. Other researchers

(Hooton, Thomas and Stanish 2001) have also found this to be true in their work. The scatter

plots of the data (APPENDIX G) showed that the relationship of the test results followed an

increasing rate and variability around the trend as the dependent variable increases. This

behavior can be simulated by the use of a power function. Therefore, the dependent (y-axis) and

independent (x-axis) variable of the general linear regression equation (Equation F-1) can be

modified as followed:

y = mx + b (F-1)
log(y) = log(x)m + b
log(y)= log(x")+ b
y = xml~b
y =ax m (F -2)
where: y is the dependent variable (electrical tests); x is the independent variable (diffusion
tests); m is the slope of the linear regression analysis; b is the intersect to the y-axis of the linear
regression analysis; a is 10b


Figure F-1 and Figure F-2 show the effectiveness of the modified linear regression model

assumption for some of the tests. The modified axis data tend to follow the linear trend.

Moreover, the pattern of residuals (y,-y, pred; where: yi are the experimental dependent variables

and y, pred are the dependent variables from the regression analysis) showed homogeneous error

variances across the independent variable axis (constant variance).










RCP (91 Days) vs. 364-Day BD
0.8-


~0.4-



aQ 0 d 0.5 1 +1.5
.2-0.4-


-0.8-
Log(BD(x10-12) (2/S))

SR(Mloist) (91 Days) vs. 364-Day
BD
0.8-

a 0.4-



0 *.5 1 1.5
S-0.4-

-0.8-
Log(BD(x10-12) 2S)


RCP (91 Days) vs. 364-Day BD






U2-
y = 0.936x +2.733



0 0.5 1 1.5
Log(BD(x10-12) (2/s))

SR(Mloist) (91 Days) vs. 364-Day
BD

00.5 1 1 5
-0.5 -




3-1.5 -y = 0.848x 1.787
R2 = 0.787
-2
Log(BD(x10-12) (2/s))

SR(Lime) (91 Days) vs. 364-Day
BD

00.5 1 1 5
-0.5 -




-1.5 +y = 0.803x 1.725
R2 = 0.840
-2
Log(BD(x10-12) (2/s))


SR(Lime) (91


Days) vs. 364-Day
BD


0.8-

a 0.4-



0 *6.5 1 1.5
S-0.4-

-0.8-
Log(BD(x10-12) (2/S))


Figure F-1. Electrical Test Modified Linear Regression Analysis to 1-Year Bulk Diffusion Data
(x Concrete mixture containing Calcium Nitrite (CPR12). It was not include in the
general correlation calculations).










RCP (91 Days) vs. 1092-Day BD
0.8-


~0.4-



4 4*0.5 11.
~-0.4-

-0.8-
Log(BD(x10-12) (2/S))

SR(Moist) (91 Days) vs. 1092-Day
BD
0.8-

S0.4-



1 () 4.5 1 I1.5
S-0.4-

-0.8-
Log(BD(x10-12) (2/S))

SR(ime) (91 Days) vs. 1092-Day
BD
0.8-

S0.4-




S-0.4-

-0.8-
Log(BD(x10-12) (2/S))


RCP (91 Days) vs. 1092-Day BD



5



1 y = 0.687x + 2.900
c~l R2 = 0.755

0 0.5 1 1.5
Log(BD(x10-12) (2/s))

SR(Moist) (91 Days) vs. 1092-Day
BD

) 0 5 1 1 5
-0.5 -




3-1.5 -y =0.615x 1.632
R2 = 0.723
-2
Log(BD(x10-12) (2/s))

SR(ime) (91 Days) vs. 1092-Day
BD

) 0 5 1 1 5
-0.5 -




-1.5 y = 0.560x 1.566
R2 = 0.715
-2
Log(BD(x10-12) (2/s))


Figure F-2. Electrical Test Modified Linear Regression Analysis to 3-Year Bulk Diffusion Data
(x Concrete mixture containing Calcium Nitrite (CPR12). It was not include in the
general correlation calculations).
















RCP (14 Days) vs. 364-Day BD
15000


o10000 -


500- + y = 1550.771xo7s
R2 = 0.592

0 5 10 15 20
Bulk Difliasion (x10m1) (n Is)

RCP (56 Days) vs. 364-Day BD
15000
y = 619.604x095
10000o -I R2 = 0.810


S 5000 p


RCP (28 Days) vs. 364-Day BD
15000


S10000-


S5000 y =1041.691x0.862
M R2 = 0.669

0 5 10 15 20
Bulk Difliasion (x10m1) (n Is)

RCP (91 Days) vs. 364-Day BD
15000
2 V~~ = 540.534x0.3
10000o -1 R2 =0.802


S 5000 -x


RCP (182 Days) vs. 364-Day BD
15000
2S y = 382.517x1.12
0 10000 -I R2 = 0.787


5000 -



0 5 10 15 20
Bulk Difliasion (x10m1) (n Is)


RCP (364 Days) vs. 364-Day BD
15000
2S y =259.604xt~s
o 10000 -I R2 = 0.770


5000 -1



0 5 10 15 20
Bulk Difliasion (x10m1) (n Is)


APPENDIX G
COMPARISON OF CONDUCTIVITY AND LONG-TERM LABORATORY DIFFUSION
TESTS


0 5 10 15 2
Bulk Difliasion (x10m1) (n Is)


0 5 10 15
Bulk Difliasion (x10m1) (n Is)


Figure G-1. RCP Coulombs vs. 1-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).










RCP (14 Days) vs. 1092-Day BD
15000


o10000 -


5000 0.482
PIy =2415.106x
R2 0.388

0 10 20 30
Bulk Diffusion (x10-12) (HI2/s)

RCP (56 Days) vs. 1092-Day BD
15000
0.690
~5:y = 966.545x

o 10000o -I R = 0.698


5000 -

0 I


RCP (28 Days) vs. 1092-Day BD
15000


o10000-


5000 -+0.549
A ~y =1647.192x
M /R2 0.474

0 10 20 30
Bulk Diffusion (x10-12) (HI2/S)

RCP (91 Days) vs. 1092-Day BD
15000
0.687
p5 y = 794.546x
a2
g o 1000 R2 = 0.755


pi5000 -x4



0 10 20 30
Bulk Diffusion (x10-12) (HI2/S)

RCP (364 Days) vs. 1092-Day BD
15000
0.839
y = 382.249x


5000o -1 R?0x1
00



0 10 20 30
Bulk Diffusion (x10-12) 2m/S)


0 10 20 30
Bulk Diffusion (x10-1 2) (HI2/s)


RCP (182 Days) vs. 1092-Day BD
15000
0.762
y = 565.798x
o 10000 -I R2 = 0.782


pi5000 -x



0 10 20 30
Bulk Diffusion (x10-12) 2m/s)


Figure G-2. RCP Coulombs vs. 3-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).


















x ~y = 0.063x053
4 + R2 = 0.475

0 5 10 15 2(
Bulk Diffusion (m2/s)


4 x y = .0370.658

R2 = 0.770

0 5 10 15 2(
Bulk Diffusion (m2/S)


Bulk Diffusion

y 0.024xo7s
-R2 0.799






0 5 10 15 2
Bulk Diffusion (m2/s)


SR (Lime) (91 Days) vs. 364-Day
Bulk Diffusion
0.3

y= 0.019x0.0
0.2 R2 0.840


o, .1 -


I
0 5 10 15
Bulk Diffusion (m2/S)


SR (ime) (14 Days) vs. 364-Day
Bulk Diffusion


SR (ime) (28 Days) vs. 364-Day
Bulk Diffusion


0.3


g 0.2
0.1


0.3


U 0.2

0.1


SR (Lime) (56 Days) vs. 364-Day


0. ^
oO U
0 .1


0 5 10 15
Bulk Diffusion (m2/S)


SR (ime) (182 Days) vs. 364-Day
Bulk Diffusion


SR (ime) (364 Days) vs. 364-Day
Bulk Diffusion


0.3 -


S0.2 -


S0.1 -


0.3 -


S0.2
-
'C0.1


y = 0.011x.0
R2 = 0.702


y = 0.014x072
R2 = 0.808


0 5 10 15
Bulk Diffusion (m2/s)


Figure G-3. SR (Lime Cured) vs. 1-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).
























0 5 10 15
Bulk Diffusion (m2/S)


SR (ime) (455 Days) vs. 364-Day
Bulk Diffusion


SR (Lime) (546 Days) vs. 364-Day
Bulk Diffusion


y = 0.010x0.823
R2 = 0.682


S0.2 -


o~
0.1


y 0.011x
R2 0.695


U 0.2 1

-
0.1


0 5 10 15
Bulk Diffusion (m2/s)


Figure G-3. Continued.











Bulk Diffusion





x 0.301
y = 0.086x
R2 = 0.286

0 10 20 3(
Bulk Diffusion (m2/s)


Bulk Diffusion

y 0.035xoss
-R2 0.602






0 10 20 3
Bulk Diffusion (m2/s)


SR (Lime) (28 Days) vs. 1092-Day
Bulk Diffusion
0.3


S0.2-

~t ~ 0.397
S0.1 x y =0.054x
R2 = 0.492

0 10 20 30
Bulk Diffusion (m2/S)

SR (Lime) (91 Days) vs. 1092-Day
Bulk Diffusion
n 2


l" I I I
0 10 20 30
Bulk Diffusion (m2/S)


SR (Lime) (14 Days) vs. 1092-Day


0.3


S0.2
0.1


SR (Lime) (56 Days) vs. 1092-Day


0.3


S0.2

0.1


y = 0.027x.6
R2 = 0.715


U 0.2
o
'C 0.1


0 10 20
Bulk Diffusion (m2/S)


SR (Lime) (182 Days) vs. 1092-Day
Bulk Diffusion


SR (Lime) (364 Days) vs. 1092-Day
Bulk Diffusion


0.586
y = 0.019x
R2 = 0.773


0.638
y = 0.014x
R2 = 0.774


U 0.2 -

O
S0.1


U 0.2

O
'C0.1


Bulk Diffusion (m2/s)


Figure G-4. SR (Lime Cured) vs. 3-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).























I_


SR (Lime) (455 Days) vs. 1092-Day
Bulk Diffusion


SR (Lime) (546 Days) vs. 1092-Day
Bulk Diffusion


0.3 -


U 0.2 -

-
0.1


0.626
y = 0.014x
R2 = 0.765


0.644
y = 0.013x
R2 = 0.731


U 0.2 1

-
0.1


10 20
Bulk Diffusion (m2/s)


10 20
Bulk Diffusion (m2/S)


Figure G-4. Continued.












Bulk Diffusion






~~y = 0.032x078
R2 = 0.757

0 5 10 15 2(
Bulk Diffusion (n~i/s)


SR (Moist) (28 Days) vs. 364-Day
Bulk Diffusion
0.3


S0.2-


S0.1 y=0080.763

R2 = 0.747


Bulk Diffusion

y 0.021xoo
-R2 0.745


l 'I
0 5 10 15
Bulk Diffusion (nI /)


SR (Moist) (14 Days) vs. 364-Day


0.3


S0.2
0.1


0 5 10 15
Bulk Diffusion (nI /s)


SR (Mloist) (56 Days) vs. 364-Day


SR (Mloist) (91 Days) vs. 364-Day
Bulk Diffusion
0.3
y = 0.016x.4
9 0.2 -1 R2 = 0.787


0.3


S0.2

0.1


0 5 10 15
Bulk Diffusion (nI /s)

SR (Moist) (182 Days) vs. 364-Day
Bulk Diffusion


0 5 10 15
Bulk Diffusion (nI /s)


SR (Moist) (364 Days) vs. 364-Day
Bulk Diffusion


0.3 -

-
S0.2 -


0.3 -


S0.2


0.863
y = 0.012x
R2 = 0.770


0.945
y = 0.009x
R2 = 0.744


0 5 10 15
Bulk Diffusion (nI /s)


Figure G-5. SR (Moist Cured) vs. 1-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).






















I I
0 5 10 15
Bulk Diffusion (m2/S)


SR (Moist) (455 Days) vs. 364-Day
Bulk Diffusion


SR (Mloist) (546 Days) vs. 364-Day
Bulk Diffusion


y = 0.009xo.85
R2 = 0.698


y = 0.008x0.0
R2 = 0.685


U 0.2 -


o~
0.1


U 0.2 1

-
0.1


0 5 10 15
Bulk Diffusion (nI /s)


Figure G-5. Continued.












Day Bulk Diffusion

y = 0.042x0.487
-R2 = 0.533






0 10 20 3
Bulk Diffusion (nI /s)


Bulk Diffusion


Bulk Diffusion


UI
0 10 20
Bulk Diffusion (nI/s)

SR (Moist) (364 Days) vs. 1092-


II


SR (Mloist) (14 Days) vs. 1092-


SR (Mloist) (28 Days) vs. 1092-


Day Bulk Diffusion


0.3 -


S0.2
o
-


0.3
2
U 0.2
o
0.1


*. x 4
y = 0.047x044
R2 = 0.495


10 20
Bulk Diffusion (nI /s)


SR (Moist) (56 Days) vs. 1092-Day


SR (Moist) (91 Days) vs. 1092-Day


0.3


S0.2

0.1


0.3


S0.2
a
0.


y = 0.031x058
R2 = 0.602


y = 0.023x0.1
R2 = 0.723


-


-


0 10 20
Bulk Diffusion (nI /s)

SR (Moist) (182 Days) vs. 1092-
Day Bulk Diffusion


Day Bulk Diffusion


0.3 -


S0.2


'C 0.1


C~U0.2 -

oO
r 0.1


y = 0.017x069
R2 = 0.788


y = 0.013x0.2
R2 = 0.761


0 10 20 30
Bulk Diffusion (nI /s)


10 20
Bulk Diffusion (nI /s)


Figure G-6. SR (Moist Cured) vs. 3-Year Bulk Diffusion Coefficients (x Concrete mixture
containing Calcium Nitrite (CPR12). It was not include in the general correlation
calculations).























I_


SR (Mloist) (455 Days) vs. 1092-

03 Day Bulk Diffusion
0.683
. Ay = 0.012x .8
U 0.2 -1 R2 = 0.777


0.0- 4


SR (Mloist) (546 Days) vs. 1092-

03 Day Bulk Diffusion


0.717
y = 0.011x
R2 = 0.750


U 0.2 1

-
0.1


10 20
Bulk Diffusion (nI /s)


10 20
Bulk Diffusion (m2/S)


Figure G-6. Continued.















































NaCl (lblyd )


Depth NaCl (blyd )
(in) A B C AYG
0.13 36.518 37.006 -36.762
0.38 22.111 21.579 -21.845
0.63 3.639 5.450 -4.545
0.88 1.665 1.858 -1.762
1.13 0.353 0.346 -0.350
1.38 0.310 0.325 -0.318
1.63 0.326 0.308 -0.317
1.88 0.305 0.329 -0.317


(in) A B C AYG
0.13 39.780 37.705 -38.743
0.38 24.557 17.593 -21.075
0.63 8.962 4.097 -6.530
0.88 1.052 1.396 -1.224
1.13 0.375 0.404 0.390
1.38 0.370 0.411 0.391
1.63 0.368 0.400 0.384
1.88 0.382 0.397 0.390


APPENDIX H
ANALYSIS OF DATA OBTAINED FROM OTHER PROJECTS


Table H-1. HRP Proj ect (Paredes 2007) Concrete Mixture Designs.
Materials and Specifications

Mixture FDOT Cementicious Pozzolan Pozzolan Coarse
Name Class W/C (pcy) (%Cement.) (%Cement.) Aggregate
HRP3 V 0.35 752 Fly-Ash Silica Fume 89 Limestone
(20%) Slurry
(8%)
HRP4 V 0.35 752 Fly-Ash Silica Fume 89 Limestone
(20%) Densified
(8%)

Table H1-2. Initial Chloride Background Levels from HRP Proj ect (Paredes 2007).
TEST Initial Chloride Background Levels

AllX NaCl (lblyd )
A B C AYG
HRP3 0.426 0.426 0.435 0.429
HRP4 0.310 0.368 0.344 0.341


Table H1-3. 1-Year Bulk Diffusion Chloride Profile Testing from HRP Proj ect (Paredes 2007).
AllX HRP3 Mnx HRP4
TEST Bulk Diffusion TEST Bulk Diffusion


Depth




























0 0.5 11.5 2

Depth (in)
Diffusion(m^2/sec)l 1.691E-12 Background~lyd^3) 0.429
Surface~l/yd^3) 49.517Sum(Error)^2 26.813



HRP4-Sample A(20% Fly-Ash, 8% SF Densified)














0 0.5 1 1.5 2

Depth (in)
Dillision(m^2/sec)l 2.071E-121 Background(lblyd^3) 0.49
Surfacebl~yd^3) 52.171 Sum(Error)^2 15.161


I ~Depth (in)
Diffusion(m^2/sec)l 1.782E-12 Background~lyd^3) 0.429
Surface~l/yd^3) -11'\~2 sunid1iinl y 2 12.318



HRP4-Sample B(20% Fly-Ash, 8% SF Densified)














0 0.5 1 1.5 2

Depth (in)
Diffusion(m^2/sec)l 1.355E-121 Background(lblyd^3) 0.429
Surfacebl~yd^3) 51.815 Sum(Error)^2 2.(40


HRP3-Sample A(20% Fly-Ash, 8% SF Slurry)


HRP3-Sample B(20% Fly-Ash, 8% SF Slurry)


Figure H-1. Diffusion Coefficient Results from HRP Proj ect (Paredes 2007).
















Pile 44-2
Loaction SUBMERGED ZONE (6-ft below MHW)
Depth NaCl (blyd )
(in) A B C AVG
0.25 30.239 30.746 30.042 30.342
0.75 24.310 24.339 24.339 24.329
1.50 20.436 20.041 20.261 20.246
2.50 19.451 19.161 19.585 19.399
3.50 14.732 14.610 14.703 14.682
4.50 13.604 13.630 13.777 13.670
5.50 14.549 14.298 14.404 14.417


Pile 44-2
Loaction SPLASH ZONE (3-ft above MHW)
Depth NaCl (blyd )
(in) A B C AVG
0.25 20.062 19.933 19.801 19.932
0.75 16.966 16.973 17.258 17.066
1.50 13.277 13.447 13.320 13.348
2.50 8.979 8.879 9.026 8.961
3.50 5.999 5.866 5.866 5.910
4.50 3.739 3.550 3.374 3.554
5.50 1.652 1.648 1.655 1.652


Pile 44-2
Loaction TIDAL ZONE (1-ft below MHW)
Depth NaCl (blyd )
(in) A B C AVG
0.25 18.569 18.985 18.884 18.813
0.75 16.492 16.927 17.017 16.812
1.50 17.062 16.861 17.247 17.057
2.50 14.018 14.111 14.355 14.161
3.50 12.435 12.630 12.794 12.620
4.50 11.067 10.961 10.957 10.995
5.50 10.260 10.596 9.963 10.273


Pile 44-2
Loaction DRY ZONE (7-ft above MHW)
Depth NaCl (blyd )
(in) A B C AVG
0.25 5.122 5.115 5.198 5.145
0.75 7.310 7.203 6.771 7.095
1.50 5.223 5.175 5.191 5.196
2.50 3.536 3.462 3.454 3.484
3.50 1.672 1.745 1.666 1.694
4.50 1.013 0.958 1.021 0.997
5.50 0.371 0.384 0.355 0.370


Table H1-4. St. George Island Bridge Pile Testing Project Chloride Profile Testing of Cored

Samples (Cannon et al. 2006).



























0 5 10 15 20

Depth (in)
Diffusion(In^2/sec)l 1.148E-11 Background(lblyd^3) 0.400
SurfaceOlbyd^3) 27.738 Sumn(Error)^2 32.192



PILE 44-2 (3ft above MHW)(SPLASH)














0 5 10 15 20

Depth (in)
Diffusion(In^2/sec)l 2.495E-12 Background(lblyd^3) 0.400
SurfaceOlbyd^3) 21.163 Sumn(Error)^2 0.184


0 5 10 15 20

Depth (in)
Diffusion(In^2/sec)l 1.827E-11 Background(lblyd^3) 0.400
SurfaceOlbyd^3) 18.879 Sum(n(Error)^ 1.849



PILE 44-2 (7ft above MHW)(DRY)
30II








10




0 5 10 15 20

Depth (in)
Diffusion(In^2/sec)l 1.646E3-121 Background(lblyd^3) 0.400
SurfaceOlbyd^3) 9.219 Sum(n(Error)^ 0.179


PILE 44-2 (6ft below MHW)(SUBMERGED)


PILE 44-2 (1ft below MHW))(TIDAL)


Figure H1-2. St. George Island Bridge Pile Testing Proj ect Diffusion Coefficients (Cannon et al.
2006) (Initial chloride background levels information was not available in this
proj ect. It was assumed a minimum value of 0.40 lb/yd3 for all the samples).









LIST OF REFERENCES


AASHTO T 23 (1993). "Standard Method of Test for Making and Curing Concrete Test
Specimens." American Association of States Highway and Transportation Officials.

AASHTO T 259-80 (1993). "Standard Method of Test for Resistance of Concrete to Chloride
lon Penetration." American Association of States Highway and Transportation Officials.

AASHTO T 260 (1997). "Standard Method of Test for Sampling and Testing for Chloride lon in
Concrete and Concrete Raw Materials." American Association of States Highway and
Transportation Officials.

AASHTO T 277-86 (1990). "Rapid Determination of the Chloride Permeability of Concrete."
American Association of States Highway and Transportation Officials.

ASTM C 39 (1999). "Standard Test Method for Compressive Strength of Cylindrical Concrete
Specimens." American Society for Testing and Materials.

ASTM C 138 (2001). "Standard Test Method for Density (Unit Weight), Yield, and Air Content
(Gravimetric) of Concrete." American Society for Testing and Materials.

ASTM C 143 (2000). "Standard Test Method for Slump of Hydraulic Cement Concrete."
American Society for Testing and Materials.

ASTM C 173 (2001). "Standard Test Method for Air Content of Freshly Mixed Concrete by the
Volumetric Method." American Society for Testing and Materials.

ASTM C 1064 (1999). Standard Test Method for Temperature of Freshly Mixed Portland
Cement Concrete." American Society for Testing and Materials.

ASTM C1152/C1152M (1990). "Standard Test Method for Acid-Soluble Chloride in Mortar and
Concrete." American Society for Testing and Materials.

ASTM C 1202 (1997). "Standard Test Method for Electrical Indication of Concrete' s Ability to
Resist Chloride lon Penetration." American Society for Testing and Materials.

Andrade, C. (1993). "Calculation of chloride diffusion coefficients in concrete from ionic
migration measurements." Cement and Concrete Research, 23(3), 724-742.

Ann, K.Y., Jung, H.S., Kim, H.S. and Moon,H.Y. (2005). "Effect of Calcium Nitrite-Based
Corrosion Inhibitor in Preventing Corrosion of Embedded Steel in Concrete." Cement and
Concrete Research, 36(3), 530-535.










Berke, N.S. (1987). "Effect of Calcium Nitrite and Mix Design on the Corrosion Resistance of
Steel in Concrete (Part 2 Long-Term Results)". Proceedings of the Corrosion-87
Symposium on Corrosion of Metals in Concrete. Houston: National Association of
Corrosion Engineers, 134.

Broomfield, J. and Millard, S. (2002). "Measuring concrete resistivity to assess corrosion rates."
A report from The Concrete Society/Institute of Corrosion liaison committee, Current
Practice Sheet (128), 37-39.


Boddy, A., Bentz, E., Thomas, M.D.A. and Hooton, R.D. (1999). "An overview and sensitivity
study of a multimechanistic chloride transport model." Cement and Concrete Research,
29(6), 827-837.

Boddy, A., Hooton, R.D. and Gruber K.A. (2001). "Long-term Testing of the Chloride-
Penetration Resistance of Concrete Containing High-Reactivity Metakaolin." Cement and
Concrete Research, 31(5), 759-765.

Cannon, E., Lewinger, C., Abi, C. and Hamilton, H. R. (2006). "St. George Island Bridge Pile
Testing". Final Report No. BD545, Florida Department of Transportation.

Chini, A.R, Muszynski, L.C. and Hicks, J. (2003). "Determination of Acceptance Permeability
Characteristics for Performance-Related Specifications for Portland Cement Concrete."
Final Report No. BC 354-41, Florida Department of Transportation.

Dhir, R.K., and Byars, E.A. (1993). "PFA concrete: Chloride diffusion rates." Magazine of
Concrete Research, 45(162), 1-9.

Feldman, R.F., Chan, G.W., Brousseau, R.J. and Tumidaj ski, P.J. (1994). "Investigation of the
Rapid Chloride Permeability Test." ACI Materials Journal, 91(3), 246-255.

FDOT 346 (2004). "Florida Department of Transportation Standard Specification for Road and
Bridge Construction." Florida Department of Transportation (FDOT). 346-3.1(d).

FDOT SDG (2007). "Structures Design Guidelines." Florida Department of Transportation
(FDO T).

FM 5-516 (2005). "Florida Method of Test For Determining Low-Levels of Chloride in Concrete
and Raw Materials." Florida Department of Transportation (FDOT).

FM 5-578 (2004). "Florida Method of Test for Concrete Resistivity as an Electrical Indicator of
its Permeability." Florida Department of Transportation (FDOT).










Glass, G.K., and Buenfeld, N.R. (1995). "Chloride threshold levels for corrosion induced
deterioration of steel in concrete." International RILEM Workshop.

Gowers, K.R. and Millard, S.G. (1999). "Measurement of Concrete Resistivity for Assessment of
Corrosion Severity of Steel Using Wenner Technique." ACI Materials Joumnal, 96(5), 536-
541.


Hooton, R.D. (1997). "Discussion of the rapid chloride permeability test and its correlation to the
90-day chloride ponding test." PCI Joumnal, 42(3), 65-66.

Hooton, R.D.,Thomas, M.D.A. and Stanish, K. (2001). "Prediction of Chloride Penetration in
Concrete." Final Report No. FHWA/RD-00/142, Federal Highway Administration.


Hughes, B.P., Soleit, A.K.O. and Brierly, R.W. (1985). "New Technique for Determining the
Electrical Resistivity of Concrete." Magazine of Concrete Research, 37(133), 243-248.


Kirkpatricka, T., Weyers, R.E., Anderson-Cook, C.M. and Sprinkel, M.M. (2002). "Probabilistic
Model for the Chloride-Induced Corrosion Service Life of Bridge Decks." Cement and
Concrete Research, 32(12), 1943-1960.

Kranc, S.C. and Sagties, A.A. (2003). "Advanced Analysis of Chloride lon Penetration Profiles
in Marine Sub structure." Final Report No. BB 880, Florida Department of Transportation.

Kondratova, I.L., Montes, P. and Bremner, T.W. (2003). "Natural Marine Exposure Results for
Reinforced Concrete Slabs with Corrosion Inhibitors." Cement and Concrete Composites,
25(4), 483-490.

Li, Z., Peng, J., and Ma, B. (1999). "Investigation of chloride diffusion for high-performance
concrete containing fly ash, microsilica, and chemical admixtures." ACI Materials Joumnal,
96(3), 391-396.

Luping, T. and Nilson, L.O. (1992). "Chloride Diffusivity in High-Strength Concrete at Different
Ages." Nordic Concrete Research, Publication No. 11.

Ma, B., Li, Z. and Peng, J. (1998). "Effect of Calcium Nitrite on High Performance Concrete
Containing Fly Ash". Supplementary Proceedings of the Six CANMET/ACI International
Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Bangkok,
113-24.


Mangat, P.S. and Molloy, B.T. (1994). "Prediction of Long Term Chloride Concentration in
Concrete." Materials and Structures, 27, 338-346.










McGrath, P.F. and Hooton, R.D. (1999). "Re-evaluation of the AASHTO T259 90-day salt
ponding test." Cement and Concrete Research, 29(8), 1239-1248.

Mindess, S., Young, J.F and Darwin, D. (2002). "Concrete." Second Edition, Prentice-Hall.

Monfore, G.E. (1968). "The Electrical Resistivity of Concrete." Joumnal of the PCA Research
and Development Laboratories, 10(2), 35-48.

Morris, W., Moreno, E.I. and Sagiies, A.A. (1996). "Practical evaluation of resistivity of
concrete in test cylinders using a Wenner array probe." Cement and Concrete Research,
26(12), 1779-1787.

Nokken, M., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2006). "Time Dependent Diffusion
in Concrete--Three Laboratory Studies." Cement and Concrete Research, 36(1), 200-207.

NT BUILD 443 (1995). "Concrete, hardened: Accelerated chloride penetration." Nordtest
method.


Ozyildirim, C., and Halstead, W.J. (1988). "Use of Admixtures to Attain Low Permeability
Concretes" Final Report No. FHWA/VA-88-R11.


Page, C.L., Short, N.R., and El Tarras, A. (1981). "Diffusion of chloride ions in hardened cement
pastes." Cement and Concrete Research, 11(3), 395-406.

Paredes, M. (2007). "High Reactive Pozzolans Proj ect (HRP)". Proj ect in Progress. Florida
Department of Transportation.

Pfeifer, D.W., McDonald, D.B. and Krauss, P.D. (1994). "The rapid chloride permeability test
and its correlation to the 90-day chloride ponding test." PCI Joumnal, 41(4), 82-95.


Sagiies, A.A. (1994). "Corrosion of Epoxy Coated Rebar in Florida Bridges." Final Report No.
99700-755 6-010, WPI 0510603, Florida Department of Transportation.


Sagiies, A.A., Kranc, S.C., Presuel-Moreno, F., Rey, D., Torres-Acosta, A. and Yao, L. (2001).
"Corrosion Forecasting for 75-Year Durability Design of Reinforced Concrete." Final
Report No. BA 502, Florida Department of Transportation.

Scanlon, J.M. and Sherman, M.R. (1996). "Fly ash concrete: An evaluation of chloride
penetration testing methods." Concrete Intemnational, 18(6), 57-62.










Shi, C., Stegemenn, J.A. and Caldwell, R. (1998). "Effect of Supplementary Cementing
Materials on the Specific Conductivity of Pore Solution and Its Implications on the Rapid
Chloride Permeability Test (AASHTO T277 and ASTM C1202) Results." ACI Materials
Journal, 95(4), 389-394.

Shi, C. (2003). "Another look at the Rapid Chloride Permeability Test (ASTM C1202 or
AASHTO T277)".

Snyder, K.A., Ferraris, C., Martys, N.S. and Garboczi, E.J. (2000). "Using Impedance
Spectroscopy to Assess the Viability of the Rapid Chloride Test for determining Concrete
Conductivity." Journal of Research of the National Institute of Standars and Technology,
105(4), 497-509.

Sohanghpurwala, A.A (2006). "Manual on Service Life of Corrosion Damaged Reinforced
Concrete Bridge Superstructure Elements". CONCORR, Inc.

Stanish, K. and Thomas, M. (2003). "The use of bulk diffusion tests to establish time-dependent
concrete chloride diffusion coefficients." Cement and Concrete Research, 33(1), 55-62.

Streicher, P.E and Alexander, M.G. (1995). "A Chloride Conduction Test for Concrete." Cement
and Concrete Research, 25(6), 1284-1294.

Tang, L. and Andersen, A. (2000). "Chloride ingress data from five years field exposure in a
Swedish marine environment". Proceedings of the 2nd International RILEM Workshop on
Testing and Modelling the Chloride Ingress into Concrete, Paris, 11-12, pp. 105-119.


Tang, L. (2003). "Chloride Ingress in Concrete Exposed to Marine Environment-Field data up to
10 years exposure". SP Swedish National Testing and Research Institute Building
Technology and Mechanics. SP REPORT 2003:16.

Thomas, M.D.A., Pantazopoulou, S.J. and Martin-Perez, B. (1995). "Service Life Modelling of
Reinforced Concrete Structures Exposed to Chlorides: A Literature Review." Department
of Civil Engineering, University of Toronto, 45.

Thomas, M.D.A. and Bamforth, P.B. (1999). "Modelling Chloride Diffusion in Concrete Effect
of Fly Ash and Slag." Cement and Concrete Research, 29(4), 487-495.

Thomas, M.D.A., Shehata, M.H., Shashiprakash, S.G., Hopkins, D.S. and Cail, K. (1999). "Use
of Ternary Cementitious Systems Containing Silica Fume and Fly Ash in Concrete."
Cement and Concrete Research, 29(8), 1207-1214.

Tuutti, K. (1982). "Corrosion of steel in concrete." Swedish Cement and Concrete Research
Institute, 469.










Vivas, E., Boyd, A. and Hamilton, H. R. (2007). "Permeability of Concrete Comparison of
Conductivity and Diffusion Methods." Final Report No. BD 536, Florida Department of
Transportation.

Whiting, D. (1981). "Rapid determination of the chloride ion permeability of concrete." Federal
Highway Administration, Final Report No. FHWA/RD-81/119.

Whiting, D. (1988). "Permeability of Selected Concretes." Permeability of Concrete, SP-108,
American Concrete Institute. 195-222.


Whiting, D., and Dziedzic, W. (1989). "Resistance to Chloride Infiltration of Superplasticized
Concrete as Compared With Currently Used Concrete Overlay Systems." Final Report No.
FHWA/OH-89/009.


Whiting, D. and Mohamad, N. (2003). "Electrical Resistivity of Concrete-A Literature Review."
Portland Cement Association, R&D Serial No. 2457.


Wee, T.H., Suryavanshi, A.K. and Tin, S.S. (2000). "Evaluation of Rapid Chloride Permeability
Test (RCPT) Results for Concrete Containing Mineral Admixtures." ACI Materials
Journal, 97(2), 221-232.


Yang, C.C., Cho, S.W. and Huang, R. (2002). "The relationship between charge passed and the
chloride-ion concentration in concrete using steady-state chloride migration test." Cement
and Concrete Research, 32(2), 217-22.









BIOGRAPHICAL SKETCH

Enrique A. Vivas was born in 1976 in Valencia, Venezuela, to Yolanda and Pedro Vivas.

He graduated from La Salle High School in Valencia Venezuela in July of 1993. He received his

Bachelor of Science in Civil Engineering in the Fall of 1999 from the University of Carabobo,

Venezuela. While attending the University of Carabobo full time, Enrique worked part time for

the Department of Civil Engineering, for three year as an Assistant Engineer at the Physical Plant

Office.

Enrique continued his education by entering graduate school to pursue a Master of

Engineering in the Structural Group of the Civil and Coastal Engineering Department at the

University of Florida in the Spring 2002. He received his Master of Engineering in the Spring of

2004.





PAGE 1

1 ALLOWABLE LIMITS FOR CONDUCTIV ITY TEST METHODS AND DIFFUSION COEFFICIENT PREDICTION OF CONCRETE STRUCTURES EXPOSED TO MARINE ENVIRONMENTS By ENRIQUE A. VIVAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Enrique A. Vivas

PAGE 3

3 To my loving family, my mother Carmen Yoland a, my father Pedro Alexander and my brother Pedro Luis, as they have offered their unyielding love and support, and la st but not least, to Johanna Ponchis

PAGE 4

4 ACKNOWLEDGMENTS I thank the Florida Department of Trans portation for providing the funding for this research project. This project was a collaborative effort among the University of Florida, and the FDOT State Materials Office Res earch Laboratory (Gainesville). I would like to thank my committee chair and advisor, Dr. Trey Hamilton, for his guidance and support. It was truly an honor to work unde r his guidance. Special thanks go to Mario Paredes, FDOT State Materials Corrosion Offi ce, for his supervision and technical support during the course of the project. I cannot thank him enough for all of his help. Moreover, I would like to thank the FDOT State Materials Office Re search Laboratory personnel for their help on constructing the specimens and conducting material s testing, especially Ch arlotte Kasper, Phillip Armand and Sandra Bober whose help was critical to the completion of this project. The assistance of Elizabeth (Beth) Tuller, Robert (Mitch) Langley and Richard DeLorenzo is gratefully acknowledged. My sincere gratitude goes to Dennis Baldi and Luke Mcleod who assisted in the field investigati ons of the project. Moreover, the assistance of staff from FDOT Districts (D2, D3, D4, D5 and D7 ) for their assistance in the fi eld investigations; especially Bobby Ivery, Steve Hunt, Wilky Jordan, Ken Go rdon, Donald Vanwhervin, Daniel Haldi and Keith West. I would like to thank CEMEX, BO RAL Materials Technologies Inc., W.R. Grace & Co., Burgess Pigment Co., Lafarge, RINKER Material s Corp., S. Eastern Pres tress Concrete Inc., Gate Concrete Products and C OUCH Concrete for their contri butions to this research.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES................................................................................................................ .......10 ABSTRACT....................................................................................................................... ............15 CHAPTER 1 INTRODUCTION..................................................................................................................17 2 LITERATURE REVIEW.......................................................................................................19 Mechanism of Chloride Ion Transport...................................................................................19 Diffusion of Chloride Ions..................................................................................................... .20 Test Methods to Predict Permeability of the Concrete...........................................................21 Resistance of Concrete to Chlori de Ion Penetration (AASHTO T259)..........................22 Bulk Diffusion Test (Nordtest NTBUILD 443)..............................................................24 Rapid Chloride Permeability Te st (AASHTO T277, ASTM C1202).............................25 Surface Resistivity Test Using the Four-Point Wenner Probe (FM 5-578)....................27 Time Dependent Diffusion in Concrete..................................................................................31 Effective Diffusion Coefficients of Conc rete Structures Exposed to Marine Environments................................................................................................................... ...33 3 CONCRETE MIXTURE DESIGNS AND FIELD CORE SAMPLING...............................42 Concrete Mixtures.............................................................................................................. ....42 Laboratory Concrete Mixtures........................................................................................42 Field Concrete Mixtures..................................................................................................43 Field Core Sampling............................................................................................................ ...44 Bridge Selection..............................................................................................................45 Coring Procedures...........................................................................................................45 4 TEST PROCEDURES............................................................................................................66 Laboratory and Field Conc rete Sample Matrix......................................................................66 Chloride Ion Content Analysis...............................................................................................66 Diffusion Test................................................................................................................. ........66 Bulk Diffusion Test.........................................................................................................66 Electrical Conductivity Tests..................................................................................................67 Rapid Chloride Permeability Test (RCP)........................................................................67 Surface Resistivity Test...................................................................................................69 Bridge Core Sample Chloride Ion Content Analysis..............................................................69

PAGE 6

6 5 RESULTS AND DISCUSSION.............................................................................................77 Fresh Properties............................................................................................................... .......77 Mechanical Properties.......................................................................................................... ..77 Long-Term Chloride Penetration Procedures.........................................................................79 Comparison of Conductivity and Long-Term Diffusion Tests...............................................81 Rapid Chloride Permeability Test (RCP)........................................................................81 Surface Resistivity...........................................................................................................82 Relating Electrical Test s and Bulk Diffusion.........................................................................83 Refinement of the Long-Term Diffusion Co efficient Prediction Using Monte Carlo Simulation..................................................................................................................... ......87 6 FIELD CORE SAMPLING..................................................................................................114 Diffusion Coefficients of Cored Samples.............................................................................114 Correlation of Long-Term Field Data to Laboratory Test Procedures.................................115 7 RECOMMENDED APPROACH FOr DETERMI NING LIMITS OF CONDUCTIVITY TESTS.......................................................................................................................... .........125 RCP and Bulk Diffusion.......................................................................................................125 SR and Bulk Diffusion..........................................................................................................128 8 SUMMARY AND CONCLUSIONS...................................................................................140 APPENDIX A CONCRETE MIXTURE LABELING SYSTEM CONVERSION.....................................142 B CONCRETE COMPRESSIVE STRENGTHS.....................................................................143 C LABORATORY LONG-TERM CHLORI DE PENETRATION TEST (BULK DIFFUSION) DATA AND ANALYSIS RESULTS...........................................................148 D FIELD CORE SAMPLING DATA AND ANALYSIS RESULTS.....................................177 E SHORT-TERM ELECTRICAL TEST DATA RESULTS..................................................184 F REGRESSION FIT OF CON DUCTIVITY AND LONG-TER M DIFFUSION TESTS....193 G COMPARISON OF CONDUCTIVITY AND LONG-TERM LABORATORY DIFFUSION TESTS.............................................................................................................196 H ANALYSIS OF DATA OBTAINED FROM OTHER PROJECTS....................................206 LIST OF REFERENCES.............................................................................................................210 BIOGRAPHICAL SKETCH.......................................................................................................216

PAGE 7

7 LIST OF TABLES Table page 2-1 Comparison of RCP Results with Ponding Tests (AASHTO T277, ASTM C1202)........36 2-2 Measured Electrical Resistivities of Typical Aggregates used for Concrete.....................36 2-3 Apparent Surface Resistivity us ing a Four-point Wenner Probe......................................36 2-4 Several Curve Fitting Constants m that Describes the Rate of Change of the Diffusion Coefficient with Time fo r Various Concrete Mix Designs...............................37 3-1 Laboratory Mixtures Material Sources..............................................................................47 3-2 Laboratory Mixture Designs..............................................................................................47 3-3 Standard Method for Casting and Vibrat ing Concrete Cylinders (AASHTO T23)...........48 3-4 Specified Compressive Strengt h of FDOT Concrete Classes............................................49 3-5 Field Mixture Designs...................................................................................................... ..49 3-6 Field Mixture Material Sources.........................................................................................50 3-7 Locations of Field Mixtures...............................................................................................51 3-8 FDOT Cored Bridge Struct ures for the Investigation........................................................52 3-9 FDOT Cored Bridge El ement Mixture Designs................................................................53 3-10 FDOT Cored Bridge Elemen t Mixture Material Sources..................................................54 3-11 28-Day RCP Test Data from Concrete Mixture Designs of the Cored Samples...............56 3-12 Summary of Cores Extracted and Associated Properties..................................................57 4-1 Concrete Permeability Research Samp le Matrix for Laboratory Mixtures.......................71 4-2 Bridge Core Samples Profiling Scheme............................................................................71 5-1 Fresh Concrete Properties..................................................................................................90 5-2 1-Year Bulk Diffusion Coefficients...................................................................................91 5-3 1-Year Bulk Diffusion Surface Concentration..................................................................92 5-4 3-Year Bulk Diffusion Coefficients...................................................................................93

PAGE 8

8 5-5 3-Year Bulk Diffusion Surface Concentration..................................................................94 5-6 Bulk Diffusion Ratio of Change fr om 3-Years to 1-Year of Exposure.............................95 5-7 Pozzolans and Corrosion Inhibitor E ffects on Bulk Diffusi on Coefficients......................95 5-8 Correlation Coefficients (R2) of RCP to Reference Tests.................................................96 5-9 Correlation Coefficients (R2) of Surface Resistivity to Reference Tests...........................96 5-10 1 and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs)..........96 5-11 Correlation Coefficients (R2) of RCP and Surface Resistivity to Reference Tests by Monte Carlo Simulation Analysis......................................................................................97 5-12 1 and 3 year Bulk Diffusion Relative to 91-Day RCP Charge Passed (Coulombs) by Monte Carlo Simulation Analysis......................................................................................97 6-1 Calculated Diffusion Para meters of Cored Samples........................................................120 6-2 Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal Zones.......................................................................................................................... ......121 6-3 Laboratory Bulk Diffusion Co efficients for Comparable Mixtures with an Expected Low Chloride Permeability Design.................................................................................121 7-1 Allowable RCP Values for a 28-Day Test for Concrete Elements Under Extremely Aggressive Environments (Very Low Chloride Permeability) and Associated Confidence Levels...........................................................................................................131 7-2 28-Day RCP Pass Rates of Several Concrete Samples by FDOT Standard Specifications (FDOT 346 2004).....................................................................................131 7-3 Allowable RCP Values for a 28-Day Te st with a 90% Confidence Levels for Concrete Elements with Different Chloride Permeability...............................................132 7-4 Allowable RCP Values for a 28-Day Te st with a 95% Confidence Levels for Concrete Elements with Different Chloride Permeability...............................................132 7-5 Allowable RCP Values for a 28-Day Te st with a 99% Confidence Levels for Concrete Elements with Different Chloride Permeability...............................................132 7-6 Allowable Surface Resistivity Values fo r a 28-Day Test for Concrete Elements Under Extremely Aggressive Environments...................................................................133 7-7 28-Day Surface Resistivity Pass Rates of Several Concrete Samples by FDOT Standard Specifications (FDOT 346 2004)......................................................................133

PAGE 9

9 7-8 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 90% Confidence Levels for Concrete Elements with Different Chloride Permeability..........134 7-9 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 95% Confidence Levels for Concrete Elements with Different Chloride Permeability..........134 7-10 Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 99% Confidence Levels for Concrete Elements with Different Chloride Permeability..........134 A-1 Appendix Concrete Mixture Labeling System Conversion.............................................142 B-1 Concrete Compressive Strength Data Results.................................................................143 C-1 Initial Chloride Background Level of Concrete Mixtures...............................................148 C-2 1-Year Bulk Diffusion Chlori de Profile Testing Results.................................................149 C-3 3-Year Bulk Diffusion Chlori de Profile Testing Results.................................................163 D-1 Initial Chloride Background Level of Cored Samples.....................................................177 D-2 Chloride Profile Testing Results of Cored Samples........................................................178 E-1 RCP Coulombs Testing Results.......................................................................................184 E-2 SR (Lime Cured) Testing Results....................................................................................185 E-3 SR (Moist Cured) Testing Results...................................................................................189 H-1 HRP Project Concrete Mixture Designs..........................................................................206 H-2 Initial Chloride Backgro und Levels from HRP Project...................................................206 H-3 1-Year Bulk Diffusion Chloride Profile Testing from HRP Project................................206 H-4 St. George Island Bridge Pile Testing Project Chloride Prof ile Testing of Cored Samples........................................................................................................................ ....208

PAGE 10

10 LIST OF FIGURES Figure page 2-1 Ficks Second Law of Diffusion Regression Analysis Example.......................................38 2-2 Ninety-day Salt Ponding Test Setup (AASHTO T259).....................................................38 2-3 Bulk Diffusion Test Setup (NordTest NTBuild 443)........................................................39 2-4 Rapid Chloride Permeability Test Setup (AASHTO T277, ASTM C1202).....................39 2-5 Four-point Wenner Probe Test Setup................................................................................40 2-6 Time-Dependent Diffusion Coeffici ents for Concrete having Various Water/Cementitious and Contents of High Reactivity Metakaolin...................................40 2-7 Different Times t for Calculating the Curv e Fitting Constant that Describes the Rate of Change of the Diffusion................................................................................................41 2-8 Diffusion Regression Analysis Exam ple of a Bridge Cored Sample................................41 3-1 Air Curing of Cast Concrete Specimens............................................................................58 3-2 Casting of Field Mixture Specimens..................................................................................58 3-3 Field Samples Curing during transport to Laboratory.......................................................58 3-4 FDOT District Map with Field Mixture Locations............................................................59 3-5 Hurricane Pass Bridge (H PB) General Span View............................................................59 3-6 Hurricane Pass Bridge (HPB) Substructure Elements.......................................................60 3-7 Broadway Replacement East Bound Br idge (BRB) General Span View..........................60 3-8 Broadway Replacement East Bound Bri dge (BRB) Substructure Elements.....................60 3-9 Seabreeze West Bound Bridge (SWB) General Span View..............................................61 3-10 Seabreeze West Bound Bridge (SWB) Substructure Elements.........................................61 3-11 Granada Bridge (GRB) General Span View......................................................................61 3-12 Granada Bridge (GRB) Substructure Elements.................................................................62 3-13 Turkey Creek Bridge (TCB) General Span View..............................................................62 3-14 Turkey Creek Bridge (TCB) Substructure Elements.........................................................62

PAGE 11

11 3-15 New Roosevelt (NRB) General Span View.......................................................................63 3-16 New Roosevelt (NRB) Substructure Elements..................................................................63 3-17 Cored Element Location Defined by the Wa ter Tide Region between High Tine Line (HTL) and the Organic Tide Line (OTL)..........................................................................63 3-18 Bridge Coring Process..................................................................................................... ..64 3-19 Obtaining Cored Sample....................................................................................................64 3-20 Repairing Structural Cored Member..................................................................................65 4-1 Cutting Bulk Diffusion Samples into Two Halves............................................................72 4-2 Bulk Diffusion Saline Solution Exposure..........................................................................72 4-3 RCP test top surface removal of the sample preparation procedure..................................73 4-4 RCP Sample Preparation....................................................................................................73 4-5 RCP Sample Sealed with Epoxy........................................................................................74 4-6 RCP Sample Preconditioning Procedure...........................................................................74 4-7 RCP Test Set-Up............................................................................................................ ....75 4-8 Surface Resistivity Measurements.....................................................................................75 4-9 Profile Grinding Using a Milling Machine........................................................................76 5-1 Comparative Compressive Strength Development of La boratory Control Mixture and Laboratory Mixtures..........................................................................................................98 5-2 Comparative Compressive Strength Development of La boratory Control Mixture and Field Mixtures................................................................................................................. ...99 5-3 1-Year Bulk Diffusion Coefficient Comparisons............................................................100 5-4 3-Year Bulk Diffusion Coefficient Comparisons............................................................100 5-5 Pozzolans and Corrosion Inhibitors Effects on Bulk Diffusion Coefficients..................101 5-6 1-Year Bulk Diffusion vs. RCP (AASHTO T277)..........................................................101 5-7 3-Year Bulk Diffusion vs. RCP (AASHTO T277)..........................................................102 5-8 1-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity.............................................102

PAGE 12

12 5-9 3-Year Bulk Diffusion vs. SR (Lime Cured) Conductivity.............................................103 5-10 1-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity............................................103 5-11 3-Year Bulk Diffusion vs. SR (Moist Cured) Conductivity............................................104 5-12 Curing Method Comparison of Correlation Co efficients with 1-Year Bulk Diffusion Test........................................................................................................................... ........104 5-13 Curing Method Comparison of Correlation Co efficients with 3-Year Bulk Diffusion Test........................................................................................................................... ........105 5-14 AASHTO T259 Total Integral Chloride Content Analysis.............................................105 5-15 RCP Test Coulomb Results Change With the Addition of Fly Ash and Silica Fume.....106 5-16 RCP Test Coulomb Results Change With Age................................................................107 5-17 General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 1Year Bulk Diffusion.........................................................................................................108 5-18 General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 3Year Bulk Diffusion.........................................................................................................108 5-19 Relating Electrical Tests and 1-Year Bulk Diffusion......................................................109 5-20 Relating Electrical Tests and 3-Year Bulk Diffusion......................................................109 5-21 Schematic Process of Bulk Diffusi on Correlation to RCP Using Monte Carlo Simulation..................................................................................................................... ...110 5-22 1-Year Bulk Diffusion Coefficient of Va riation Change by the Number of Samples Used in Monte Carlo Simulation for the Different 28-Day RCP Standard Limits..........111 5-23 1-Year Bulk Diffusion Coefficient of Va riation Change by the Number of Samples Used in Monte Carlo Simulation for the Different 91-Day RCP Standard Limits..........112 5-24 General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 1Year Bulk Diffusion by Monte Carlo Simulation Analysis.............................................112 5-25 General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 3Year Bulk Diffusion by Monte Carlo Simulation Analysis.............................................113 6-1 Diffusion Regression Analysis for Co red Samples for NRB and HPB Bridge...............122 6-2 Diffusion Regression Analysis for Cored Sample GRB Bridge......................................122 6-3 Chloride Exposure Zones of a Typical Bridge Structure.................................................123

PAGE 13

13 6-4 Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal Zones.......................................................................................................................... ......123 6-5 Time Dependent Laboratory and Field Diffusion Coefficient Trend of Change.............124 7-1 90% Confidence Limit for Mean Response of 28-Day RCP Test vs. 1-Year Bulk Diffusion Test Correlation...............................................................................................135 7-2 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Very Low Chloride Permeability..........................................................................135 7-3 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Moderate Chloride Permeability...........................................................................136 7-4 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Low Chloride Permeability...................................................................................136 7-5 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Negligible Chloride Permeability.........................................................................137 7-6 90% Confidence Limit for Mean Res ponse of 28-Day Surface Resistivity Test (Moist Cured) vs. 1-Year Bu lk Diffusion Test Correlation.............................................137 7-7 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Very Low Chloride Permeability...........................................138 7-8 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a M oderate Chloride Permeability............................................138 7-9 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Low Chloride Permeability....................................................139 7-10 28-Day Surface Resistivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Negligible Chloride Permeability..........................................139 B-1 Concrete Compression Strength Graphs..........................................................................145 C-1 1-Year Bulk Diffusion Coe fficient Regression Analysis.................................................153 C-2 3-Year Bulk Diffusion Coe fficient Regression Analysis.................................................167 D-1 Cored Samples Chloride Diffusion Coefficient Regression Analysis.............................181 F-1 Electrical Test Modified Linear Regressi on Analysis to 1-Year Bulk Diffusion Data...194 F-2 Electrical Test Modified Linear Regressi on Analysis to 3-Year Bulk Diffusion Data...195 G-1 RCP Coulombs vs. 1-Year Bulk Diffusion Coefficients.................................................196

PAGE 14

14 G-2 RCP Coulombs vs. 3-Year Bulk Diffusion Coefficients.................................................197 G-3 SR (Lime Cured) vs. 1-Year Bulk Diffusion Coefficients..............................................198 G-4 SR (Lime Cured) vs. 3-Year Bulk Diffusion Coefficients..............................................200 G-5 SR (Moist Cured) vs. 1-Y ear Bulk Diffusion Coefficients..............................................202 G-6 SR (Moist Cured) vs. 3-Y ear Bulk Diffusion Coefficients..............................................204 H-1 Diffusion Coefficient Re sults from HRP Project.............................................................207 H-2 St. George Island Bridge Pile Te sting Project Diffusion Coefficients............................209

PAGE 15

15 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ALLOWABLE LIMITS FOR CONDUCTIV ITY TEST METHODS AND DIFFUSION COEFFICIENT PREDICTION OF CONCRETE STRUCTURES EXPOSED TO MARINE ENVIRONMENTS By Enrique A. Vivas December 2007 Chair: H. R. Hamilton Major: Civil Engineering This work details research conducted on methods used to rapidly determine the resistance of concrete to the penetrati on of chloride ions. These me thods, based on the electrical conductivity of concrete, were Rapid Chlo ride Permeability (RCP) (AASHTO T277, ASTM C1202) and Surface Resistivity (SR) (FM 5-578). Th e results of these conductivity tests were compared to the Bulk Diffusion (NordTest NT Build 443) test, which allow a more natural penetration of the conc rete by the chlorides. Nineteen different mixtures were prepared using materials typi cally used in construction in the State of Florida. Twelve mixtures were labo ratory prepared and the remaining seven mixtures were obtained at various field sites around the St ate. The concrete mixtures were designed to have a range of permeabilities. Some of the designs included such pozzolans as fly ash and silica fume. One mixture was prepared with calcium nitrate corro sion inhibitor. Diffusion coefficients were determined from the Bulk Diffusion test using a 1 and 3-year chloride exposure period. The electrical result s from the short-term tests RCP and SR at 14, 28, 56, 91, 182 and 364 days of age were then compared to the long-term diffusion reference test.

PAGE 16

16 A new calibrated scale to categorize the equiva lent RCP measured charge in coulombs to the chloride ion permeability of the concrete was developed. The proposed scale was based on the correlation of the 91-day RCP results relate d to the chloride permeability measured by a 1year Bulk Diffusion test. Finally, to provide additional da ta to which the laboratory lo ng-term Bulk Diffusion results can be compared, several concrete specimens we re collected from six selected FDOT bridges located in marine environments. A total of 14 co re samples were obtained from the substructures tidal zone of exposure. The average chloride exposure was ten-years. The diffusion results obtained showed considerable lowe r chloride penetration than the 1 and 3 year laboratory results. It appears that the laboratory me thods overestimate the chloride i ngress from concrete exposed in the field.

PAGE 17

17 CHAPTER 1 INTRODUCTION Deterioration of reinforced and prestressed concrete structures exposed to a marine environment is a growing problem in the state of Florida and in many other countries throughout the world. The main reason is corrosion of the rein forcing steel due to the penetration of chloride ions through the concrete eith er through cracks or diffusion, or both. Chloride diffusion is the principal mechanism that drives chloride ions through the pore structure of uncracked concrete (Tuutti 1982; Stanish and Thomas 2003). Therefore, the ability to measure and predict chloride diffusion, both for existing and planned structures is very important. The chloride diffusion of porous materials such as concrete is determined conventionally by tests based on the immersion of specimens in a known chloride concentration solution for a period of time. These methods, however, are time -consuming and often required several years to obtain representative results. Therefore, several accelerated test methods have been proposed over the years to address the lack of practicabil ity of the long-term diffusion procedures. These accelerated test methods are intended to predict diffusion rates for a specific mixture design in a relatively short time period. In some methods, the transport of chloride ions through the concrete is accelerated by applying an external electrical potential, forcing the chloride ions through the sample at an accelerated rate. The electrical resi stivity of saturated concrete samples has also been used as an indirect measure of the ease in which chlorides ions can penetrate concrete (Hooton, Thomas and Stanish 2001). However, there is very little experimental information on the ability of these accelerated procedures to reliab ly predict the penetration of chloride ions into concrete under na tural conditions. The accelerated methods have been criticized b ecause they do not neces sarily replicate the natural conditions of chloride penetration of concrete (Pfe ifer, McDonald and Krauss 1994).

PAGE 18

18 Nevertheless, the results of these accelerated methods are commonly used for mixture design development and quality control. Though imperfect, a rational method to re late the short-term results to the results of tests under more natura l conditions might improve the usefulness of the short-term results. Or at least, this would help to make the shor t-term results more meaningful. Long-term diffusion coefficients obtained from uncracked concrete samples tested in the laboratory were selected as a benchmark to ev aluate the electrical tests. These diffusion coefficients represented a more natural rate of chloride ingres s into the concrete. The objective of this research was to de velop a rational method by which selected accelerated electrical tests can be calibrated so that, with r easonable confidence, chloride diffusion coefficients under natura l conditions can be predicted for the typical concrete mixtures used in this research. This appr oach was expanded to include the development of limits for use in evaluating the results of the accelerated test methods. Moreover, laboratory diffusion test methods were compared to chloride ingress in to concrete exposed to aggressive marine environments.

PAGE 19

19 CHAPTER 2 LITERATURE REVIEW Mechanism of Chloride Ion Transport There are four fundamental modes that chlori de ions are transpor ted through concrete. They are diffusion, capillary absorption, eva porative transport and hydrostatic pressure. Diffusion is the movement of chloride ions under a concentration gradient. It will occur when the concentration of chlorides on the outside of the concrete member is greater than on the inside. The chlorides ions in concrete will naturally migrate from the regions of high concentration (high energy) to the low concentration (low energy) as long as sufficien t moisture is present along the path of migration. Moreover, it is the principal mechanism that driv es chloride ions into the pore structure of concrete (Tuutti 1982; Stanish and Thomas 2003). Capillary absorption occurs when the dry surface of the concrete is exposed to moisture (perhaps containing chlorides). Th e solution is drawn into the por ous matrix of the concrete by capillary suction, much like a sponge. Generally, th e shallow depth of chloride ion penetration by capillary action will not reach the reinforcing st eel. It will, however, re duce the distance that chloride ions must travel by diffusion (T homas, Pantazopoulou and Martin-Perez 1995). The evaporative transport mechanism, also know n as wicking effect, is produced by vapor conduction from a wet side surface to a drier atmosphere. This is a vapor diffusivity process where a retained body of liquid in the pore structure of the concrete evaporates and leaves deposits of chlorides inside. For this mechanism to occur, it is necessary that one of the surfaces be air-exposed. Another mechanism for chloride ingress is permeation, driven by hydrostatic pressure gradients. A hydrostatic pressu re gradient can provide the required force to move liquid containing chlorides ions through the internal conc rete matrix. An external hydrostatic pressure

PAGE 20

20 can be supplied by a constant wave action or by a retained body of water like bridges, piers, dams, etc. that are exposed to a marine environment (Chini, Muszynski and Hicks 2003). Diffusion of Chloride Ions Chloride diffusion into concrete, like any othe r diffusion process, is controlled by Ficks First Law. It describes the flow of an impurity in a substance, showing th at the rate of diffusion of the material across a given plane is proporti onal to the concentrati on gradient across that plane. It states for chloride diffusion into concre te or for any diffusion process considered in onedimensional situation that: dx dC D J (2-1) where J the rate of diffusion of the chloride ions D chloride diffusion coefficient (m2/s) C concentration of chloride ions (% mass) x depth below the exposed surface (t o the middle of a layer) (m). The minus sign means that mass is flowing in the direction of d ecreasing concentration. The diffusion coefficient considered the effect of the chloride ions movement through a heterogeneous material like the concrete. Hence, the rate of diffusion calculated includes the effect of the concrete porous matrix that cont ains both solid and liquid components. The equation can be used only when no changes in concentrati on in time are present. Therefore, this equation can be only be used after a steadystate condition have been reached. Ficks Second Law is a derivation of the first law to represent the changes of concentration gradient with time. It states that for the diffusion coefficient ( D ) the rate of change in concentration with time ( t ) is proportional to the rate at whic h the concentration gradient changes with distance in a given direction: 2 2 x C D t C (2-2)

PAGE 21

21 If the following boundary conditions are assu med: surface concentration is constant ( C(x=0, t>0) = C0), initial concentration in the concrete is zero ( C(x>0, t=0) = 0 ) and concentration at an infinite point far enough from the surface is zero ( C(x= t>0) = 0 ). The equation can then be reduced to: ) 4 ( 1 ) (0Dt x erf C t x C (2-3) where C(x,t) chloride concentration, measured at depth x and exposure time t (% mass) t the exposure time (sec) erf error function (tables with values of the error func tion are given in standard mathematical reference books). The Cranks solution to Ficks Second Law of Diffusion can also be presented in the following form: Dt x erf C C C t xi s s4 ) ( ) ( C (2-4) where Ci initial chloride-ion concentration of the cementitious mixture prior to the submersion in the exposure solution (% mass) A common method of determining the concrete chloride diffusion is to expose saturated samples constantly to a chloride solution for a known period of time. The ch loride concentrations at varying depths are then obtained and diffusion coefficients and surface chloride concentrations are determined by fitting the profiled data to the non-linear Ficks Second Law of Diffusion solution (Figure 2-1). Test Methods to Predict Permeability of the Concrete Permeability is defined as the resistance of the concrete to chloride ion penetration. Several researchers (Dhir and Byars 1993; Li, Peng and Ma 1999; Page, Short and El Tarras 1981) have attempted to capture the natural diffusion of ch lorides through the conc rete pore structure by immersing or ponding samples with salt soluti on. These test methods, however, require considerable time to obtain a realistic flow of ch lorides. Consequently, numerous accelerated test

PAGE 22

22 procedures have been designed to predict the penetration of chloride ions. The accelerated methods permit diffusion rates to be established fo r a specific mixture desi gn in a relatively short time period. The migration of chlorides through the sample is generally accelerated by the application of an electrical pot ential, forcing the chloride ions through the sample at an accelerated rate. The following sections describe the testing pr ocedures that have been selected for the research as the methods that represent the more natural ingress of ch loride ions and some accelerated test methods. Resistance of Concrete to Chloride Ion Pe netration (-Day Salt Ponding Test) (AASHTO T259) AASHTO T259 has been traditionally the most widely used method of determining the actual resistance of concrete to chloride ion penetration. For th is test, three concrete slabs measuring 3-inch (76-mm) thick and 12-inch (305 -mm) square are used. These slabs are moist cured for 14 days and then kept for an additi onal 28 days in a drying room with a 50 percent relative humidity environment. A dam is affixed to the non-finished face of the slab and a 3 percent NaCl solution is ponded on the surface, l eaving the bottom face of the slabs exposed to the drying environment (Figure 2-2). The specimens are mainta ined with a constant amount of the chloride solution for a period of 90 days They are removed from the drying room and chloride ion content of half-inch thick slices is determined acco rding to the standard method of test for sampling and testing for chloride ion in concrete and concrete raw materials (ASTM C1152/C1152M 1990 or AASHTO T 260 1997). The ponding test has several limitations. The co mplete test takes at least 118 days to complete (moist cured for 14 days, dried for 14 days and ponded for 90 days). This means that the chloride permeability samples must be cast at l east four months before a particular concrete

PAGE 23

23 mixture will be used in the field. In additi on, the 90-day ponding period is often too short to allow sufficient chloride penetra tion in higher strength concrete. Pozzolans such as fly ash or silica fume have been shown to greatly reduce the permeability of concrete, thus reducing the penetration of chlorides over the 90-day test period (Scanlon and Sherman 1996). Consequently, an extended ponding time is generally necessary to en sure sufficient penetrat ion of chloride ions (Hooton, Thomas and Stanish 2001; Scanlon and Sherman 1996). Another drawback of this test method is that sampling every 0.5 inch (13 mm) does not provide a fine enough measurement to allow for determination of a prof ile of the chloride penetration. Only the average of the chloride pe netration in those slices is obtained, not the actual variation of the chloride concentration over that 0.5 inch (13 mm) (Hooton, Thomas and Stanish 2001). The actual penetratio n depth is a more useful measur ement rather than an average chloride content as measured in the slices (Hoot on 1997). This is particularly important in low permeability concrete where the chloride content can change drastically over a short length. The ponding test forces chloride intrusi on through immediate absorption; long-term diffusion of chloride into the c oncrete under a static concentration gradient ; and wicking due to drying from the exposed surface of the specimen (Scanlon and Sherman 1996). Since the sample initially has to be dried for 28 days, an absorption effect occurs when it is first exposed to the NaCl solution by capillary suction, pulling chlo rides into the concrete (Glass and Buenfeld 1995). During the ponding process one of the exposed faces is submerged in the solution while the other is exposed to air at 50 percent relative humidity (presumably to model the underside of a bridge deck). This creates vapor conduction (wic king) from the wet side face of the sample to the drier face, which enhances the natural diffu sion of the chloride ions. There is still some controversy concerning the relativ e importance of these mechanisms in actual field conditions.

PAGE 24

24 McGrath and Hooton (1999) have su ggested that the relative impor tance of the absorption effect is overestimated. Hooton, Thomas and Stanish ( 2001) have indicated that the relative amounts of chloride ions drawn into the concrete by the ab sorption effect compared to the amount entering by diffusion will be greater when the test is run on ly for a short period of time compared to the relative amounts during the lifetim e of a structure. Moreover, th ey exposed that the wicking effect is also overestimated by the test proced ure. The actual structure humidity gradient will likely be less, at least for part of th e time, than the exposed during the test. Bulk Diffusion Test (Nordtest NTBUILD 443) The bulk diffusion procedure was developed in or der to address some of the problems with the 90-day salt ponding test. The te st was standardized as a Nord test procedure (an organization for test methods in the Nordic countries). The ma in focus of the modifications was to attain a better controlled diffusion only test with no contribution from absorption or wicking effects (Hooton, Thomas and Stanish 2001). This will impr ove the precision of the profile obtained for the simulation of a long-term chloride penetrati on. The method can be applied to new samples or samples taken from existing structures. The sample configuration used for this proced ure is a 4-inch (102-mm) diameter by 4-inch (102-mm) long concrete cylinder. In contrast to AAS HTO T259, the specimens are immediately placed in a saturated limewater solution after a 28 days moist cured period. This wet condition prevents the initial sorption wh en the solution first contacts the specimen. Furthermore, the sample is sealed on all faces except the one that is exposed to the 2.8 M NaCl solution (16.5% NaCl) (Figure 2-3). The test procedure calls for an exposure period of at least 35 days for lowerquality concretes (NTBuild 443 1995 ). For higher-quality concrete mixtures, the exposure time must be extended to at least 90-days.

PAGE 25

25 The chloride profiles are performed immediat ely after the exposure period. The profile layers are obtained by grinding the sample with a diamond-tipped bit. The benefit of pulverizing the profile by this method is the accuracy of depths that can be at tained. Chloride profiles with depth increments on the order of 0.02 inch (0 .5 mm) can be attained. The actual chloride penetration depth calculated by this method gives more resoluti on than the 0.5-inch (13-mm) layers obtained from 90-day salt ponding test procedure. Electrical Indication of Concretes Ability to Resist Chloride Ion Penetration (Rapid Chloride Permeability)( AASHTO T277, ASTM C1202) The rapid chloride permeability test (RCP) is one of the short-term procedures most widely used to assess concrete durability. The test is, however, a measurement of the electrical conductivity of concrete, rather th an a direct measure of concrete permeability. Nonetheless, its results correlate reasonably well with those fr om the long term 90-day salt ponding test (Whiting 1981). More recent research has found inconsistent test results when the samples contained pozzolans or corrosion inhibito rs (Pfeifer, McDonald and Krauss 1994; Scanlon and Sherman 1996 and Wee, Suryavanshi and Tin 2000). The test method measures the electrical conductance by subjecting a 4-inch (102-mm) diameter by 2-inch (51-mm) thick saturated sample to a 60-volt DC poten tial for a period of six hours. One side of the specimen is immersed in a reservoir with a 3.0 percent NaCl solution, and the other side to another reservoir cont aining a 0.3 N NaOH solution (1.2% NaOH) (Figure 2-4). The cumulative electrical charge, measured in coulombs, represents the current passed through the concrete sample during the test period. The area under the current versus time curve was found to correlate with the resist ance of the specimen to chlori de ion penetration (Whiting 1981). According to ASTM C1202, permeability levels based on charge passed through the sample are presented on Table 2-1.The RCP test has received much criticism from researchers during the

PAGE 26

26 past decade for inconsistencies found when the electrical resistivit y-based measurements obtained are compared with diffu sion-based test procedures lik e the 90-day salt ponding test (Andrade 1993; Feldman et al. 1994; Pfeifer, McDonald and Kr auss 1994; Scanlon and Sherman 1996 and Shi, Stegemann and Caldwell 1998; Shi 2003) One of the main criticisms is that permeability depends on the pore structure of the concrete, while electri cal conductivity of the water saturated concrete depends not only on the pore structure but also the chemistry of pore solution. Changes in pore solution chemistry genera te considerable alterati ons in the electrical conductivity of the sample. Thes e variations can be produced by adding fly ash, silica fume, metakaoline or ground blast furnace slag. Silica fume, metakaoline and ground blast furnace slag are reactive materials that may considerably improve the pore structure and reduce the permeability of the concrete. This is not the ca se with fly ash, however, because it is slow reacting and generally reduces permeability by on ly 10 to 20% at 90 days. In addition, the reduction in charge passed in the presence of fly as h is mainly due to a reduction of pore solution alkalinity, rather than a reduction in th e permeability of the concrete (Shi 2003). Another criticism is that the high voltage of 60 volts applied during the test leads to an increase in temperature, especially for a low quality concrete, which may result in an apparent increase in the permeability due to a higher ch arge being passed (McGrath and Hooton 1999; Snyder et al. 2000 and Yang, Cho and Huang 2002). Several modifications to the procedures have been proposed to minimize the temperat ure effect. One (Yang, Cho and Huang 2002) proposes an increase in the standardized acry lic reservoirs from 250 ml (as recommended by ASTM C1202) to 4750 ml. It was found that the chloride diffusion coefficient from RCP reached a steady-state after chloride-ions pass through the specimen. Anot her modification is to record

PAGE 27

27 the charge passed at the 30-minute mark and linearly extrapolate to the speci fied test period of 6 hours (McGrath and Hooton 1999). The standardized RCP test method, ASTM C1 202, is commonly required by construction project specifications for both precast and cast-in-place concrete An arbitrary value, chosen from the scale shown on Table 2-1 of less than 1000 coulombs is usually specified by the engineer or owner for concrete elements under extremely aggressive environments (Pfeifer, McDonald and Krauss 1994). This low RCP coulom b limit is required by the Florida Department of Transportation (FDOT) when Class V or Class V Special conc rete containing silica fume or metakaolin as a pozzolan is tested on 28 days concrete samples (FDOT 346 2004). Surface Resistivity Test Using the Four-Point Wenner Probe (FM 5-578) Concrete conductivity is fundame ntally related to the permeability of fluids and the diffusivity of ions through a porous material (Whiting and Mohamad 2003). As a result, the electrical resistivity can be used as an indirect measure of the ease in which chlorides ions can penetrate concrete (Hooton, Thomas and Stanis h 2001). The resistivity of a saturated porous medium, such as concrete, is mainly measur ed by the conductivity th rough its pore solution (Streicher and Alexander 1995). Two procedures have been developed to dete rmine the electrical resistivity of concrete. The first method involves passing a direct curren t through a concrete specimen placed between two electrodes. The electrical concrete porous re sistivity between the two electrodes is measured. The actual resistance measured by this met hod can be reduced by an unknown amount due to polarization at the probe contac t interface. The second method so lves the polarization problem by passing an alternating current (AC) through th e sample. A convenient tool to measure using this method is the four-point Wenner Probe resistivity meter (Hooton, Thomas and Stanish 2001). The set up utilizes four equally spaced surf ace contacts, where a sma ll alternating current

PAGE 28

28 is passed through the concrete sample between th e outer pair of contact s. The current drive presents a trapezoidal waveform at a frequency of 13-Hz. A digital voltmeter is used to measure the potential difference between the two inner elec trodes, obtaining the resistance from the ratio of voltage to current (Figure 2-5). This resistance is then used to calculate resistivity of the section. The resistivity of a prismatic section of length L and section area A is given by: L AR (2-5) where R is the resistance of the specimen cal culated by dividing the potential V by the applied current I. The resistivity for a concrete cylinder can be ca lculated by the following formula: I V L d 1 42 (2-6) where d is the cylinder diameter and L its length (Morris, Moreno and Sages 1996). Assuming that the concrete cylinder has homogeneous semi-infinite geometry (the dimensions of the element are large in comparis on of the probe spacing), and the probe depth is far less than the probe spacing, the concrete cylinder resistivity is given by Equation 2-7 I V a 2 (2-7) where a is the electrode spacing (Figure 2-5). The non-destructive nature, sp eed, and ease of use make the Wenner Probe technique a promising alternative test to characterize c oncrete permeability. Results from Wenner Probe testing can vary significantly if the degree of saturation or conductivity of the concrete is inconsistent. Techniques to achieve more uniform saturation, such as vacuum saturation or submerging in water overnight, can be performed in the laboratory. However, the laboratory presaturation procedure still presents some inc onsistencies. The known conductivity of the added solution changes when mixed with the ions (m ainly alkali hydroxides) still present in the

PAGE 29

29 concrete pores after the drying process (Hooton, Thomas and St anish 2001). To overcome this problem, Streicher and Alexander (1995) suggested the use of a high cond uctivity solution, for example 5 M NaCl, to saturate the sample so th at the change in conductivity from the ions remaining in the concrete is insignificant. Use of the Wenner Probe on concrete in the fi eld presents further complications. The test can give misleading results when used on field samples with unknown conductivity pore solution. Therefore, the pore solution must be removed from the sample to determine its resistivity or the sample must be pre-satu rated with a known conduc tivity solution (Hooton, Thomas and Stanish 2001). Moreover, pre-saturation of the concrete requires that the sample be first dried to prevent dilution of the saturation solution. Some in situ drying techniques, however, can cause microcracks to form in the pore structur e of the concrete, resulting in an increase in diffusivity. Another possible problem with the in s itu readings is that reinforcing steel can cause a short circuit path an d give a misleadingly low reading. Th e readings should be taken at rightangles to the steel rather than along the reinforcing length to mi nimize this error (Broomfield and Millard 2002). Hooton, Thomas and Stanish (2001) have suggested that because of these problems, the Wenner probe should only be used in the laboratory, on either laboratory-cast specimens or on cores taken from the structure without steel. The test probe spacing is critical to obtaining accurate measurements of surface resistivity. The Wenner resistivity technique assumes that th e material measured is homogeneous (Chini, Muszynski and Hicks 2003). In addition, the electr ical resistivity of the concrete is mainly governed by the cement paste microstructure (Whiting, and Mohamad 2003). It depends upon the capillary pore size, pore system complexity a nd moisture content. Changes in aggregate type, however, can influence the electr ical resistivity of concrete Monfore (1962) measured the

PAGE 30

30 electrical resistivity of seve ral aggregates typically used in concrete by themselves (Table 2-2). The resistivity of a concrete mixture containing gran ite aggregate has higher than a mixture containing limestone (Whiting a nd Mohamad 2003). Moreover, othe r research (Hughes, Soleit and Brierly 1985) shows that as the aggregate cont ent increases, the electr ical resistance of the concrete will also increase. Gowers and Millard (1999) determ ined that the minimum probe spacing should be 1.5 times the maximum aggregat e size, or the depth of the specimen, to guarantee more accurate readings. Morris, More no and Sages 1996 suggest averaging multiple readings taken with varying inte rnal probe spacings. Another reas onable technique is to average multiple readings in different locations of the conc rete surface. In the case of test cylinders, the readings can be made in four locations at 90-degree increments to minimized variability induced by the presence of a single aggregate particle interfering with the read ings (Chini, Muszynski and Hicks 2003). Chini, Muszynski and Hicks (2003) evaluated the possible replacement of the widely used electrical RCP test (AASHTO T277, ASTM C1202) by the simple non-destructive surface resistivity test. The research program correlated results from the two tests from a wide population of more than 500 sample sets. The samp les were collected from actual job sites of concrete pours at the state of Florida. The te sts were compared over the entire sample population regardless of concrete class or admixture presen t to evaluate the strength of the relationship between procedures. The two test s showed a strong relationship. The levels of agreement (R2) values reported were as high as 0.95 for samples te sted at 28 days and 0.93 for samples tested at 91 days. Finally, a rating table to aid the inte rpretation of the surface resistivity results was proposed (Table 2-3) based on the previous permeability ranges provided in the standard RCP test (Table 2-1).

PAGE 31

31 Time Dependent Diffusion in Concrete As concrete matures, the ongoing internal hydration process reduces the diffusion coefficient (Stanish and Thomas 2003). The diffu sion will decrease as the time passes since the capillary pore volume is reduce by the continue d formation of intern al hydration products. Moreover, some chloride ions will become chem ically or physically bound as they penetrate the pore system (Nokken et al. 2006). Previous resear ch has found that the change in chloride diffusion during time followed a nonlinear te ndency (Boddy et al. 1999; Mangat and Molloy 1994; Nokken et al. 2006). When plotted on a logari thmic scale the data were found to be linear. (Figure 2-6). Therefore, the variation of the ch loride diffusion coefficient with time can be expressed as a power function: m ref reft t D t D ) ( (2-8) where D(t) diffusion coefficient at time t (i nstantaneous diffusion coefficient) Dref the diffusion coefficient at some reference time tref m curve fitting constant that describes the rate of change of the diffusion coefficient. The constant m depends on the concrete mix pr oportions such as the type of cementitious materials used for the mixture to account for the rate of reduction of di ffusion with time (Nokken et al. 2006). Only few values of the m are availa ble from the literature for relatively short time periods of exposure. Although these data represent only concrete behavior at early ages (up to 3 years), further research (Thomas and Bamforth 1999) have indicated that the transport properties continue to decay at the same rate predicted fr om these early age tests. Further research to properly quantify this parameter would improve the precision of the diffusion predictions. Table 2-4 shows some reported constant m values by prev ious research projects (Stanish and Thomas 2003; Boddy, Hooton and Gruber 2001; Thomas and Bamforth 1999; Nokken et al. 2006; Thomas et al. 1999).

PAGE 32

32 The mathematical model proposed by Cranks solution to Ficks second law of diffusion assumes a constant diffusion coefficient over the testing period. This same mathematical model is typically used in some form to calculate th e diffusion coefficient for the previously discussed chloride penetration test methods. In reality, the diffusion coefficient is de creasing rather rapidly (Figure 2-6) during the early age of the sample. C onsequently, the resultant coefficient value is an average of the changing diffusion coefficient over the period of exposure. This average measured diffusion coefficient will equal the inst antaneous diffusion coefficient at some point during the testing period. The di ffusion coefficient obtained from Equation 2-8, D(t), represents this instantaneous diffusion coefficient at time t. Given that the change in diffusion with time is non-linear, the determination of th e effective age during the expos ure that correlates to the average diffusion coefficient determined for that period is not straightforward. Stanish and Thomas (2003) developed a useful method to esta blish at what age the instantaneous diffusion coefficient, effective age, is equal to the averag e diffusion coefficient. To determine this age, the instantaneous diffusion coefficient presented in E quation 2-8 was integrated over time in order to determine an average of diffusion coefficient: 2 1 2 1 t t t t m ref ref AVGdt dt t t D D (2-9) where DAVG average diffusion coefficient over the testing period. t1 and t2 represent the age of the concrete at th e start and completion of the diffusion test exposure, respectively. Additionally, the effective age at which the average of diffusion coefficient occurs was also determined from the Equation 2-8: m eff ref ref AVGt t D D (2-10)

PAGE 33

33 where: teff effective age at which the DAVG occurs. The obtained expression by equating Equations 2-9 and 2-10 determines at what age the average of diffusion coefficient will occur based on diffusion tests conditions (beginning and end of the immersion period, t1 and t2) and the rate of change of di ffusion coefficient with time, m. Moreover, a subsequent research project by Nokken et al. (2006) calculated different diffusion coefficient estimations by using three different times (effective age, average age and total age) (Figure 2-7). They found that th ere was a significant variation in the diffusion coefficients calculated at the selected times in the time-depe ndent reduction Equation 2-8. This can lead to significantly conservative or unconser vative estimations of the service life of structures (Stanish and Thomas 2003). The concrete diffusion coefficient values have been used to model the period of time for chloride ions to reach a critical corrosion concen tration at the surface of the steel reinforcement (Kirkpatricka et al. 2002). The time for corrosion initiation can be estimated from the diffusion equation (Equation 2-4) when the concentration of chloride ions at steel reinforcement (C(x,t)) is set equal to the chloride corrosion initiation concen tration. Therefore, it is believed that this estimation would be more accurate if the rate of change in the concrete diffusion properties with time were included in the pr ediction (Nokken et al. 2006). Effective Diffusion Coefficients of Concrete Structures Exposed to Marine Environments The most notable assumption when using the previously described methods to determine diffusion coefficients is that diffusion is the un ique chloride mechanism that transports the chloride ions through the concrete. This is a reasonable assumption for tests conducted under controlled laboratory conditions, such as the bulk diffusion te st. The bulk diffusion test is believed to attain controlled diffusion only re sults with no contribution from other chloride transports mechanisms. Figure 2-8 shows a typical example of a bulk diffusion sample fit to the

PAGE 34

34 non-linear Ficks Second Law of Diffusion. The results show very good agreement with the expected diffusion regression. However, this controlled laboratory te sting method presents several drawbacks on estimating the lifetime behavior of concrete structural members exposed to aggressive marine environments with consis tently high temperature and humidity. These environment conditions forced the chloride in trusion through additional mechanisms. Chloride ingress by absorption and leaching of surface chlo ride are some of the additional mechanisms induced by these environmental conditions. In or der to differentiate between them, previous researches (Kranc and Sags 2003; Sohanghpurwala 2006) have cat alogued the results obtained from laboratory samples as apparent diffusi on coefficients and effective for diffusion coefficients calculated from sample s exposed to field conditions. A marine substructure element is intermitten tly subjected to chloride exposure due to changes of the water tides. These changes in water tides are due to the peri odic tidal forces and the effects of meteorological hydrological and oceanographic conditions. This wetting and drying phenomenon creates a chlori de intrusion mechanism by absorption. Since the concrete exposed surface is dry during a low tide period an d hot weather conditions, an absorption effect occurs when it is exposed to a high tide water level. The absorption is generated by capillary suction of the concrete at the surface pulling chlori des into the concrete. This allows chloride ion to penetrate more rapidly than by natural diffusion. The chloride ions then continue to move by natural diffusion. Therefore, the absorption eff ect decreases the chloride path to reach the reinforcing steel (Thomas et al. 1995). The continuous changes on the water tides also induce leaching of unbonded shallow surface chlorides. During concrete drying period, shallow surface water evaporates and chlorides are left either as chemically bonded to th e pore walls or as unbonded crystal forms.

PAGE 35

35 Subsequently, when the concrete is again wett ed, some of these unbonded crystals are leached out of the concrete surface. Therefore, chloride profiles content can thus differ from that of a chloride penetration under permanent immersion. The chloride concentration near the exposed surface can be considerably less than deeper into the concrete. The profile shown in Figure 2-8 was obtained from a cored sample at the splash z one of a substructure element of a bridge. The profile shows considerably lower chloride concen tration near to the surf ace than the predicted by Ficks Law. It also shows that the consequent chloride profile penetrations, following the initial surface values affected by leaching, fit the diffu sion trend behavior. These consequent chlorides accumulated at a further penetration either by the initial diffusion or absorption followed a diffusion behavior. Therefore, effective diffusi on coefficients can be also approximately calculated by fitting the Ficks Second Law of Diffusion by excluding these misleading peaks in the regression analysis. The effective diffusion coefficients account for all the effects that an aggressive environment could subject a concrete element. Th erefore, it provides a good estimate of the rate of migration of chloride ions into the concrete. Previous rese arches (Sags 1994, Sags et al. 2001) have quantified few effective diffusion coefficients for particul ar structures located at the state of Florida. These diffusion coefficients were calculated from cored samples obtained at different bridge substructure lo cations around the state. The high co st and labor associated with coring concrete samples from existing structures make this approach of analysis sometimes untenable. Therefore, there is limited informa tion on how these diffusion coefficients can be predicted.

PAGE 36

36 Table 2-1. Comparison of RCP Results with Ponding Tests (AASHT O T277, ASTM C1202) (Whiting 1981). Chloride Permeability Charge (Coulombs) Type of Concrete Total Integral Chloride to 41 mm Depth After 90-day Ponding Test High > 4,000 High water-to-cement ratio (>0.6) conventional Portland cement concrete > 1.3 Moderate 2,000 4,000 Moderate water-to-cement ratio (0.4-0.5) conventional Portland cement concrete 0.8 1.3 Low 1,000 2,000 Low water-to-cement ratio (<0.4) conventional Portland cement concrete 0.55 0.8 Very Low 100 1,000 Latex modified concrete, internally sealed concrete 0.35 0.55 Negligible < 100 Polymer impregnated concrete, polymer concrete < 0.35 Table 2-2. Measured Electrical Resistivities of Typical Aggregates used for Concrete (Monfore 1968). Type of Aggregate Resistivity (ohm-cm) Sandstone 18,000 Limestone 30,000 Marble 290,000 Granite 880,000 Table 2-3. Apparent Surface Resistivity for 4inch (102-mm) Diameter by 8-inch (204-mm) Long Concrete Cylinder using a Four-poi nt Wenner Probe with 1.5-inch (38-mm) Probe Spacing. Values for 28 and 91-day Test (Chini, Muszynski and Hicks 2003). Surface Resistivity Test Chloride Ion Permeability RCP Test Charge (Coulombs) 28-Day Test (KOhm-cm) 91-Day Test (KOhm-cm) High > 4,000 < 12 < 11 Moderate 2,000 4,000 12 -21 11 -19 Low 1,000 2,000 21 37 19 37 Very Low 100 1,000 37 254 37 295 Negligible < 100 > 254 > 295

PAGE 37

37 Table 2-4. Several Curve Fitting Constants m that Describes the Rate of Change of the Diffusion Coefficient with Time for Various Concre te Mix Designs (Stanish and Thomas 2003; Boddy, Hooton and Gruber 2001; Thomas and Bamforth 1999; Nokken et al. 2006; Thomas et al. 1999). Mix Design(a) m Mix Design(a) m 0.40w/c-0% 0.43 0.35w/c-12%FA 0.77 0.50w/c-0% 0.32 0.35w/c-18%FA 0.70 0.66w/c-0% 0.10 0.31w/c-12%FA 0.55 0.30w/c-4% SF 0.60 0.48w/c-70%Slag 1.20 0.40w/c-8% SF 0.61 0.30w/c-4%SF, 25%Slag 0.64 0.40w/c-12% SF 0.49 0.30w/c-8%SF, 25%Slag 0.75 0.50w/c-25%FA 0.66 0.40w/c-8%HRM 0.44 0.50w/c-56%FA 0.79 0.40w/c-12%HRM 0.50 0.54w/c-30%FA 0.70 0.30w/c-10%SF, 25%FA 0.45 (a) Fly-Ash (FA), Silica Fume (SF), Ground Blast Furn ace Slag (Slag) and High Reactivity Metakaolin (HRM).

PAGE 38

38 0 0.4 0.8 1.2 1.6 020406080 Mid-Layer Profile from Surface (mm)Chloride Concentratio n (%Concrete) Test Values Fitted Regression Surface Chloride Concentration Figure 2-1. Ficks Second Law of Di ffusion Regression Analysis Example. 3 % NaCl Solution 3 in 0.5 in 12 in1 2 i nConcrete Slab Plastic dam 50 % relative humidity atmosphere Figure 2-2. Ninety-day Salt Pondi ng Test Setup (AASHTO T259).

PAGE 39

39 16.5 % NaCl Solution Sealed on All Faces Except One Concrete Cylinder (4 in diameter, 4 in length) Figure 2-3. Bulk Diffusion Test Setup (NordTest NTBuild 443). Data Logger Stainless steel anode Stainless steel cathode 3.0 % NaCl reservoir 1.2 % NaOH reservoir 60 V Power supply + Epoxy Coated Concrete Sample (4 in diameter, 2 in length) Figure 2-4. Rapid Chloride Permeability Test Setup (AASHTO T277, ASTM C1202).

PAGE 40

40 a aaCurrent Applied (I) Potential Measured (V)Concrete Surface to be TestedCurrent Flow Lines Equipotential lines Figure 2-5. Four-point We nner Probe Test Setup. 0 5E-12 1E-11 1.5E-11 2E-11 04008001200 Total Time (days)App. Diffusion (m2/s) 0.4/0%HRM 0.4/8%HRM 0.4/12%HRM 0.3/0%HRM 0.3/8%HRM 0.3/12%HRMA 1E-13 1E-12 1E-11 1E-10 10100100010000 Total Time (days)App. Diffusion (m2/s) 0.4/0%HRM 0.4/8%HRM 0.4/12%HRM 0.3/0%HRM 0.3/8%HRM 0.3/12%HRMB Figure 2-6. Time-Dependent Diffusion Coefficients fo r Concrete having Various Water/Cementitious and Contents of Hi gh Reactivity Metakaolin (HRM) Plotted using A) Linear Scale and B) Logarith mic Scale (Boddy, Hooton and Gruber 2001).

PAGE 41

41 Figure 2-7. Different Times t for Calculating the Curve Fitting Constant that Describes the Rate of Change of the Diffusion (Nokken et al. 2006). 0 5 10 15 20 25 30 01020304050 Mid-Layer from Surface (mm)Chloride Concentration ( lb/yd3 ) Include in the Regression Not Include in the Regression Fitted Regression Figure 2-8. Diffusion Regression Analysis Example of a Bridge Cored Sample.

PAGE 42

42 CHAPTER 3 CONCRETE MIXTURE DESIGN S AND FIELD CORE SAMPLING Concrete Mixtures Nineteen concrete mixtures were selected a nd prepared in the laboratory and in the field for the project. A labeling system was implemen ted to identify each of the selected concrete mixture designs. The first term of the notation system represents the water-cementitious ratio in percentage, followed by the cementitious amount in pounds per cubic yard (lb/yd3) and finally the pozzolans or corrosion inhibitor contents in percentage of cementitious measured by weight. For example the concrete mixt ure labeled as _752_8SF_20F (Table 3-2) has a watercementitious ratio of 35 percent (35%), 752 pounds per cubic yard (lb/yd3) of total cementitious materials, 8 percent (8%) by weight of ceme ntitious of Silica Fume and 20 percent (20%) by weight of cementitious of Fly-Ash. Laboratory Concrete Mixtures Twelve representative mixtures using locally available materials in the State of Florida were selected and cast in the laboratory, such that they represented a variety of different concrete qualities and constituents. These concrete mixtures were selected from a range of possibilities, from the most permeable possible designs to less permeable quality mixtures that include pozzolans and a single mixture containi ng calcium nitrite co rrosion inhibitor (Table 3-1 and Table 3-2). The wide permeability range between the selected designs should allow a better point of comparison between the test proc edures under for different conditions. The mixtures were performed under controlled environmental conditions, with a constant air temperature for each mixture. The size of th e concrete batch for each mixture was six cubic feet (0.17 cubic meters). This volume of concre te included the specimens, concrete for quality

PAGE 43

43 control testing, and several ex tra samples. The quality control procedures executed during mixing and casting of the test samples were: Standard Test Method for Slump of H ydraulic Cement Concrete (ASTM C 143). Standard Test Method for Air Content of Freshly Mixed Conc rete by the Volumetric Method (ASTM C 173). Standard Test Method for Temperature of Fres hly Mixed Portland Ceme nt Concrete (ASTM C 1064). Standard Test Method for Density (Unit Wei ght) of Freshly Mixed Concrete (ASTM C 138). The standard process for casting concrete cylinders proposed by the AASHTO T23 method was followed (Table 3-3). An external vi bration device, also known as vibrating table was used to ensure complete compaction of the specimens The 4-inch (102-mm) diameter cylinders were cast and vibrated in two layers as is shown in Table 3-3. The vibration period for each mixture was determined by visual inspection of the firs t set of samples vibrated. The samples were vibrated until the larger air bubbl es ceased breaking through the top of surface but before visible segregation occurred. It was gene rally between 15-seconds to 30-s econds for each inserted layer. After the samples were cast in their respective molds and the t op exposed surface finished with the help of a trowel, they were left approximately 24-hours for atmospheric curing. During this period, the exposed surfaces of sample s were covered with plastic bags (Figure 3-1) to minimize evaporation of the water in the surface of the concrete. Finally, the samples were de-molded and placed in their particular curing en vironment until their testing date. Field Concrete Mixtures In addition to the laboratory concrete mixtur es, seven field mixtures obtained from FDOT construction projects around the St ate were collected. The mixtures were chosen to represent a wide range of concrete permeab ilities through the use of different constituents. From the FDOT concrete specification (Table 3-4), Class II concrete was c hosen as the lower bound of the range

PAGE 44

44 as most permeable, and Class V and VI as the least permeable (Table 3-5 and Table 3-6). These mixtures also represent the typical concretes used in structural members such as bridge concrete barriers, prestressed concrete beams and piles that are constantly exposed to chloride attacks. The State of Florida is divided by the FDOT into seven geographic regions (Figure 3-4). In order to attain a balanced group of samples that reflected local materials of the state, specimens from three districts were collected. Samples from District 3 (North Florid a), District 2 (Central Florida) and District 4 (Sout h Florida) were selected (Figure 3-4 and Table 3-7). The concrete batches for the specimens were supplied directly from mixer trucks to several wheel barrows at the job site or at the ready mix plant (Figure 3-2). The volume of concrete supplied was enough for the casting of the specimens, quality control testing, and several extra samples. The same quality control testing and standard casting proc edures for the laboratory mixtures were followed in the field. After the samples were cast in their respectiv e molds, they were left approximately 24hours for atmospheric air curing with the exposed surfaces covered by plastic bags to prevent evaporation of water from the concrete. Afterwar d, they were de-molded and submerged in water tanks so that their treatment prior to arriving at the laboratory is controlled curing conditions was as uniform as possible (Figure 3-3). The high temperature of the water tanks induced by Floridas hot weather was controlled by the addition of several bags of ice. Field Core Sampling The laboratory test procedure Bu lk Diffusion was used to estimate the long-term chloride diffusion performance of concrete. However, this test was conducted using a maximum of 3-year chloride exposure. Longer term diffusion test results are needed to confirm these laboratory findings. Therefore, to provide additional data to which these laboratory results can be

PAGE 45

45 corroborated, several concrete sp ecimens were collected from F DOT bridges located in marine environments. Bridge Selection With the assistance of FDOT personal, re cently constructed bri dges (since 1991) were surveyed. The search criteria in cluded bridges in which the struct ural elements were originally designed to meet the FDOT specifications (FDOT 346 2004) for concrete elements under extremely aggressive environments. The mixture designs for the selected structural elements used silica fume as a pozzolan for a FDOT class V or class V special mixture. The search criteria also included mixtures for whic h RCP data were available (Table 3-11). This information allowed a direct comparison with the laboratory re sults reported in previous sections. Six bridges had substructures that met these requirements (Table 3-8, Table 3-9 and Table 3-10). The intent of the sampling was to take concre te cores from undamaged concrete near the tide lines. The cores were then sliced or ground and chloride content was measured to produce a profile, from which the diffusion coefficient was calculated. Coring Procedures A total of 14 core samples were obtained from the substructures of the six selected bridges. Figure 3-5 through Figure 3-16 show a general view of the bridge structures and the cored substructure elements. Concrete cores were extracted from the substructure elements in the tidal region between the high tide line (HTL) and the organic tide line (OTL) (Figure 3-17). HTL was determined visually by the oil or scum stain on the structural element. OTL was also identified visually as the elevation that appeared to have continuous ma rine growth present such as barnacles or other growth. This lin e is usually lower than the HTL and represents a tide level that is regularly inundated providing a regular source of water to s upport the marine growth and to keep the concrete saturated. The location of the extracted cores was measured from HTL and

PAGE 46

46 OTL to the sample center. Core elevations ra nged from 3-inch (76-mm) to 12-inch (305-mm) below HTL and 3-inch (76-mm) to 10-inch (254-mm) above OTL. Table 3-12 shows a summary of the date and location of the cores were extracted. A rebar locator was used to measure the dept h of cover and bar spaci ng in the structural members (Figure 3-18). Due to high variability, howe ver, the coring bit rarely reached the reinforcement during the drilling process (Figure 3-19). The samples were cored with a cylindrical 4-inch (102-mm) diameter core drill bit, resulting in a core diameter of 3-3/4-inch (95-mm). The specimens were cored using a fres h-water bit-cooling system. After the desired depth was reached, the cores we re extracted as shown in Figure 3-19. The structural members were then repaired using a high bond strength mortar containing s ilica fume. The mortar material was applied and compacted in se veral layers as is shown in Figure 3-20.

PAGE 47

47 Table 3-1. Laboratory Mixt ures Material Sources. Materials Source Portland Cement CEMEX Type II Fly-Ash Boral Materials Technologies Inc. Fly Ash Class F Classified Fly-Ash Boral Mate rials Technologies Inc. Micron3 Silica Fume W.R. Grace Force 10,000D Metakaolin Burgess Pigment Co. Burgess #30 Slag Lafarge NewCem-Grade 120 Calcium Nitrite W.R. GRACE DCI-S Water Gainesville, FL Fine Aggregate Silica Sand Coarse Aggregate Crushed Limestone Air Entrainer W.R. Grace Darex Water Reducer W.R. Grace WRDA 64 Super Plasticizer W.R. GRACE Daracem 19 Table 3-2. Laboratory Mixture Designs. Mixture Name(a) Materials 49_564 35_752 45_752 28_900_8SF _20F 35_752 _20F 35_752 _12CF Casting Date 9/29/03 10/15/03 10/21/03 10/22/03 10/23/03 1/5/04 W/C 0.49 0.35 0.45 0.28 0.35 0.35 Cement (pcy) 564 752 752 648 601.6 661.8 Pozzolan 1 (pcy) Fly-Ash (20%) 180 Fly-Ash (20%) 150.4 Classified Fly-Ash (12%) 90.2 Pozzolan 2 (pcy) Silica Fume (8%) 72 Water (pcy) 276.4 263.2 338.4 252 263.2 263.2 Fine Aggregate (pcy) 1,105 1,080 990 1,000 1,043 1,061 Coarse Aggregate (pcy) 1,841 1,750 1,647 1,670 1,750 1,750 Calcium Nitrite (oz) Air Entrainer (oz) 3.0 4.0 4.0 6.8 5.6 5.6 Water Reducer (oz) 18.3 24.4 24.4 29.3 24.4 24.4 Super Plasticizer (oz) 20.2 29.7 17.7 180 37.6 45.1 (a) Fly-Ash (F), Classified FlyAsh (CF) and Silica Fume (SF).

PAGE 48

48 Table 3-2. Continued. Mixture Name(a) Materials 35_752 _8SF 35_752_8SF _20F 35_752 _10M 35_752_10M _20F 35_752 _50Slag 35_752 _4.5CN Casting Date 1/28/04 1/29/04 2/4/04 2/5/04 2/17/04 3/9/04 W/C 0.35 0.35 0.35 0.35 0.35 0.35 Cement (pcy) 691.8 541.4 676.8 526.4 376 752 Pozzolan 1 (pcy) Fly-Ash (20%) 150.4 Fly-Ash (20%) 150.4 Pozzolan 2 (pcy) SF(a) (8%) 60.2 SF(a) (8%) 60.2 M(a) (10%) 75.2 M(a) (10%) 75.2 Slag (50%) 376 Water (pcy) 263.2 263.2 263.2 263.2 263.2 229.5 Fine Aggregate (pcy) 1,058 1,021 1,051 1,037 1,053 1,030 Coarse Aggregate (pcy) 1,750 1,750 1,750 1,729 1,750 1,703 Calcium Nitrite (oz) 576 Air Entrainer (oz) 5.6 5.6 5.6 5.6 5.6 7.5 Water Reducer (oz) 24.4 24.4 24.4 24.4 24.4 24.4 Super Plasticizer (oz) 37.6 45.1 90.2 136.9 33.8 33.8 (a) Calicium Nitrite (CN), Fly-Ash (F), Silica Fume (SF) and Metakaolin (M). Table 3-3. Standard Method for Casting and Vibrating Concrete Cylinders (AASHTO T23). Cylinder Diameter (in) Number of Layers Number of Vibrator Insertions per Layer Approximate Depth of Layer 4 2 1 depth of specimen 6 2 2 depth of specimen 9 2 4 depth of specimen

PAGE 49

49 Table 3-4. Specified Compressive Stre ngth of FDOT Concrete Classes. FDOT Concrete Classes Desi gn Compressive Strength (psi) Class I 3,000 Class I Special 3,000 Class II 3,400 Class II Bridge Deck 4,500 Class III 5,000 Class III Seal 3,000 Class IV 5,500 Class IV Drill Shaft 4,000 Class V 6,500 Class V Special 6,000 Class VI 8,500 Table 3-5. Field Mixture Designs. Mixture Name(a), FDOT Concrete Classes and Geographic Location 45_570 29_450 _20F 33_658 _18F 34_686 _18F 30_673 _20F 28_800 _20F 29_770 _18F Class II Class II Class V Class V Class V Class VI Class VI Materials South FL North FL South FL Central FL North FL Central FL North FL Casting Date 8/11/03 7/11/03 8/ 12/03 7/18/03 7/9/ 03 7/17/03 7/10/03 W/C 0.45 0.29 0.33 0.34 0.30 0.28 0.29 Cement(pcy) 569.7 450 657.4 686 673 800 770 Pozzolan 1 (pcy) Fly-Ash (20%) 115 Fly-Ash (18%) 150 Fly-Ash (18%) 154 Fly-Ash (20%) 169 Fly-Ash (20%) 200 Fly-Ash (18%) 165 Water (pcy) 254.5 162.3 269.7 288 251.9 280 267.5 Fine Aggregate (pcy) 1,434 1,137 1,048 935 973.5 868 727.5 Coarse Aggregate (pcy) 1,655 1,918 1,724 1,720 1,914 1,650 1,918 Air Entrainer (oz) 0.3 2.0 1.0 5.0 4.0 2.0 5.0 Water Reducer (oz) 45.6 22 8.0 17 40 16 47 Super Plasticizer (oz) 70.0 55.0 110 52 110 (a) Fly-Ash (F).

PAGE 50

50 Table 3-6. Field Mixt ure Material Sources. Source(a) Materials 45_570 29_450_20F 33_658_18F 34_686_18F Portland Cement RINKER Miami Type II Southdown Brooksville Type II RINKER Monjos Type I PENNSUCO Type II Fly-Ash BORAL Plant Daniel Class F BORAL BOWEN Class F ISG Fernandine Beach, FL Class F Water Miami, FL St. George Island, FL West Palm Beach, FL Jacksonville, FL Fine Aggregate Silica Sand Silica Sand Silica Sand Silica Sand Coarse Aggregate Crushed Limestone Crushed Granite Crushed Limestone Crushed Limestone Air Entrainer W.R. GRACE DAREX Master Builders MBAE-90 Master Builders MBAE-90 Master Builders MBVR-S Water Reducer W.R. GRACE WRDA 60 Master Builders POZZ 300R Master Builders POZZ 961R Master Builders POZZ 100XR Super Plasticizer Master Builders POZZ 400N Master Builders RHEO 1,000 (a) Fly-Ash (F). Table 3-6. Continued. Source(a) Materials 30_673_20F 28_800_20F 29_770_18F Portland Cement CEMEX Type II PENNSUCO Type II CEMEX Type II Fly-Ash BORAL Plant Daniel Class F ISG Fernandine Beach, FL Class F BORAL Plant Daniel Class F Water St. George Island, FL Jacksonville, FL St. George Island, FL Fine Aggregate Silica Sand Silica Sand Silica Sand Coarse Aggregate Crushed Granite Crushed Limestone Crushed Granite Air Entrainer Master Builders MBAE-90 Master Builders MBVR-S Master Builders MBAE-90 Water Reducer Master Builders POZZ 300R Master Builders POZZ 100XR Master Builders POZZ 300R Super Plasticizer Master Builders RHEO 1,000 Master Builders 3,000FC Master Builders RHEO 1,000 (a) Fly-Ash (F).

PAGE 51

51 Table 3-7. Locations of Field Mixtures. FDOT District Mixture Name(a) Concrete Class Location of the Concrete Casting Location and Contact Information of the Concrete Supplier Plant 45_570 Class II Interstate I-95 at West Palm Beach, FL. RINKER MATERIALS CORP. 1501 Belvedere Road. Belle Glade West Palm Beach, FL 32406 Phone: (561) 833-5555 FDOT Plant No. 93-104 DISTRICT 4 33_658 _18F Class V At the Plant S. EASTERN PRESTRESS CONCRETE INC. West Palm Beach, FL 33416 P.O. BOX 15043 Phone: (561) 793-1177 FDOT Plant No. 93-101 34_686 _18F Class V DISTRICT 2 28_800 _20F Class VI At the Plant GATE CONCRETE PRODUCTS 402 Hecksher Drive Jacksonville, FL 32226 Phone: (904) 757-0860 FDOT Plant No. 72-055 29_450 _20F Class II At the Plant 30_673 _20F Class V DISTRICT 3 29_770 _18F Class VI St. George Island Bridge Construction Site COUCH CONCRETE 60 Otterslide Rd. Eastpoint, FL 32328 Phone: (850) 670-5512 FDOT Plant No. 49-479 (a) Fly-Ash (F).

PAGE 52

52 Table 3-8. FDOT Cored Bridge St ructures for the Investigation. Bridge Name Abbr. County (District) Location Bridge # Project # Year Built Hurricane Pass HPB Lee (D1) SR-865 San Carlos Blvd 120089 120043506 1980/91(a) Broadway Replacement East Bound BRB Volusia (D5) US-92 E International Speedway Blvd. 790187 790803544 2001 Seabreeze West Bound SWB Volusia (D5) SR-430 790174 792203510 1997 Granada GRB Volusia (D5) SR-40 Granada Blvd. 790132 791503515 1983/97(a) Turkey Creek TCB Brevard (D5) US-1 700203 700103529 1999 New Roosevelt NRB Martin (D4) US-1/SR-5 890152 -(b) 1997 (a) Built year/Modified year (b) Unknown Information

PAGE 53

53 Table 3-9. FDOT Cored Bri dge Element Mixture Designs. Bridge Name Abbreviation HPB BRB SWB GRB TCB NRB Class V Class V Class V Class V Special Class V Special Class (a) Materials Lee (D1) Volusia (D5) Volusia (D5) Volusia (D5) Brevard (D5) Martin (D4) FDOT Mixture # 3514 05-M2028 05-0446 05-0426 07-M0223B -(a) W/C 0.35 0.33 0.35 0.35 0.33 -(a) Cement(pcy) 617 605 595 618 785 -(a) Pozzolan 1 (pcy) Fly-Ash (19.5%) 135 Fly-Ash (19.5%) 168 Fly-Ash (18%) 145 Fly-Ash (18%) 150 Fly-Ash (18%) 192 -(a) Pozzolan 2 (pcy) SF(b) (10.3%) 87 SF(b) (10.3%) 89 SF(b) (7.8%) 63 SF(b) (8.3%) 70 SF(b) (8.1%) 86 -(a) Water (pcy) 263 219 271.6 292 355 -(a) Fine Aggregate (pcy) 1,111 912 1,055 1,314 1,281 -(a) Coarse Aggregate (pcy) 1,616 1,925 1,784 1,475 2,286 -(a) Air Entrainer (oz) 7 8.4 10 6.8 9.2 -(a) Water Reducer (oz) 30.85 42 17.9 30.9 31.4 -(a) Super Plasticizer (oz) 56 134 95.2 185.4 98.1 -(a) (a) Unknown Information (b) Silica Fume

PAGE 54

54 Table 3-10. FDOT Cored Bridge El ement Mixture Material Sources. Bridge Name Abbreviation Materials HPB BRB SWB Portland Cement Florida Mining & Materials AASHTO M-85 Type II Pennsuco Tarmac AASHTO M-85 Type II BROCO (Brooksville) AASHTO M-85 Type II Fly-Ash Florida Mining & Materials Class F Boral Bowen Class F Florida Mining & Materials Class F Silica Fume W.R. GRACE DARACEM 10,000 Master Builders MB-SF 110 W.R. GRACE DARACEM 10,000D Water Port Manatee, FL Dayton Beach, FL Orlando, FL Fine Aggregate Florida Crushed Stone Silica Sand Florida Rock Ind. Silica Sand Florida Rock Ind. Silica Sand Coarse Aggregate Florida Crushed Stone Crushed Limestone Martin Marietta Aggregates Crushed Granite Martin Marietta Aggregates Crushed Granite Air Entrainer W.R. GRACE Daravair 79 Master Builders MBAE 90 W.R. GRACE DAREX Water Reducer W.R. GRACE WRDA Master Builders POZZ.200N W.R. GRACE WRDA 64 Super Plasticizer W.R. GRACE WRDA 19 Master Builders RHEO 1,000 W.R. GRACE DARACEM 100

PAGE 55

55 Table 3-10. Continued. Bridge Name Abbreviation Materials GRB TCB NRB Portland Cement BROCO (Brooksville) AASHTO M-85 Type II BROCO (Brooksville) AASHTO M-85 Type II -(a) Fly-Ash MONEX Crystal River Class F Florida Fly Ash Class F -(a) Silica Fume Master Builders RHEOMAC SF 100 W.R. GRACE DARACEM 10,000D -(a) Water West Palm Beach, FL Tampa, FL -(a) Fine Aggregate Florida Rock (Marison) Silica Sand Vulca/ICA Silica Sand -(a) Coarse Aggregate Martin Marietta Aggregates Crushed Granite Florida Crushed Stone Crushed Limestone -(a) Air Entrainer Master Builders MB VR-S W.R. GRACE Daravair 79 -(a) Water Reducer Master Builders LL961R W.R. GRACE WRDA -(a) Super Plasticizer Master Builders RHEO 1,000 W.R. GRACE WRDA 19 -(a) (a) Unknown Information

PAGE 56

56 Table 3-11. 28-Day RCP Test Da ta from Concrete Mixture De signs of the Cored Samples. Bridge Name 28-Day RCP (Coulombs) Hurricane Pass -(a) Broadway Replacement East Bound 952 Seabreeze West Bound 700 Granada 538 Turkey Creek -(a) New Roosevelt -(a) (a) Data unavailable

PAGE 57

57 Table 3-12. Summary of Cores Extr acted and Associated Properties. Bridge Abbr. Lab. # Date Cored Structural Element Type(a) Bent #(b) Pier #(b) Struct. Cored Side Elevation Below HTL (in) Elevation Above OTL (in) 5016 2-1-06 Pile PC 3 1 NW 3 3 5017 2-1-06 Pile PC 7 1 NW 6 0 HPB 5018 2-1-06 Pile PC 6 1 NW 6 0 5054 3-2-06 Column CIP 11 1 SW 12 0 BRB 5081 5-3-06 Column CIP 7 1 NE 4 8 5082 5-3-06 Column CIP 3 1 NE 8 8 SWB 5083 5-3-06 Column CIP 7 1 SW 5 10 GRB 5084 5-3-06 Crashwall CIP 9 1 NW 6 8 5078 5-24-06 Pile PC 3 15 NE 4 10 5079 5-24-06 Pile PC 4 15 NE 9 6 TCB 5080 5-24-06 Pile PC 5 15 NE 9 6 5075 6-1-06 Pile Cap CIP 8 1 S 7 6 5076 6-1-06 Pile Cap CIP 10 1 S 6 7 NRB 5077 6-1-06 Pile Cap CIP 7 1 S 6 7 (a) CIP: Cast in Place and PC: Pretensioned Concrete. (b) Bent# and Pier# were labeled in ascendant number from North to South or West to East direction depending on the bridge location. The Bent# 1 is considered as the bridge abutment.

PAGE 58

58 Figure 3-1. Air Curing of Cast Concrete Specimens. Figure 3-2. Casting of Field Mixture Specimens. Figure 3-3. Field Samples Curing during transport to Laboratory.

PAGE 59

59 St. George Island CPR15 CPR18 CPR21 Jacksonville CPR17 CPR20 West Palm Beach CPR13 CPR16 Figure 3-4. FDOT Dist rict Map with Field Mixture Locations. Figure 3-5. Hurricane Pass Bri dge (HPB) General Span View.

PAGE 60

60 Figure 3-6. Hurricane Pass Bridge (HPB) Substructure Elements. Figure 3-7. Broadway Replacement East Bound Bridge (BRB) General Span View. Figure 3-8. Broadway Replacement East B ound Bridge (BRB) Substructure Elements.

PAGE 61

61 Figure 3-9. Seabreeze West Bound Br idge (SWB) General Span View. Figure 3-10. Seabreeze West Bound Bri dge (SWB) Substructure Elements. Figure 3-11. Granada Bridge (GRB) General Span View.

PAGE 62

62 A B Figure 3-12. Granada Bridge (GRB) Substructu re Elements. A) Pier Elements, B) Barge Crashwall. Figure 3-13. Turkey Creek Bri dge (TCB) General Span View. Figure 3-14. Turkey Creek Bridge (TCB) Substructure Elements.

PAGE 63

63 Figure 3-15. New Roosevelt (NRB) General Span View. Figure 3-16. New Roosevelt (N RB) Substructure Elements. High Tide Line (HTL) Organic Tide Line (OTL) Figure 3-17. Cored Element Location Defined by the Water Tide Region between High Tine Line (HTL) and the Organic Tide Line (OTL). Sample from Broadway Replacement East Bound Bridge (BRB) (Eas t Bound) BENT 11, PIER 1.

PAGE 64

64 A B Figure 3-18. Bridge Coring Process. A) Loca ting Reinforcing Steel, B) Locating Drill for Coring. A B Figure 3-19. Obtaining Cored Sample. A) Extracti ng Drilled Core, B) Location of the Extracted Core that Reached Prestressing Strand.

PAGE 65

65 A B Figure 3-20. Repairing Structural Cored Member. A) Patching Cored Opening B) Finished Pier Member.

PAGE 66

66 CHAPTER 4 TEST PROCEDURES Laboratory and Field Concrete Sample Matrix A total of 988 samples from 19 separate mixt ures were cast for testing. The concrete mixtures were divided into two groups. Twelve were mixed and formed at the FDOT State Materials Office (SMO) in Gainesville. The remain ing 7 mixtures were obtained at various field sites around the state and brought back to th e SMO for storage and eventual testing (Table 4-1). The cast samples were primarily 4-inch (102-mm ) diameter by 8-inch (204-mm) long cylinders. Chloride Ion Content Analysis Chloride ions are typically present in concre te in two forms, soluble chlorides in the concrete pore water and chemically bound chloride s. There are several laboratory methods to estimate these amounts of chloride in the concrete structure. The FDOT st andardized test method (FM 5-516) to determine low-levels of chloride in concrete and raw materials was selected for the analysis. This wet chemical analysis method also known as acid-soluble method determines the sum of all chemically bound and free chlorides ions from powdered concrete samples. Diffusion Test Bulk Diffusion Test The Bulk Diffusion Test was conducted us ing the NT BUILD 443 (NT BUILD 443 1995) test procedure. Samples were 4-inch (102-mm) diameter by 8-inch (204-mm) long, with three samples cast for each mixture. The samples were kept in a moist room with a sustained 100% humidity for 28 days, removed from the moist conditions, and sliced on a water-cooled diamond saw into two halves (Figure 4-1). The cut specimens were immersed in a saturated Ca(OH)2 solution in an environment with an average temperature of 73oF (23oC). The samples were weighed daily in a surface-dry condition until th eir mass did not change by more than 0.1

PAGE 67

67 percent. The specimens were then sealed with Sikadur 32 Hi-Mod epoxy (on all surfaces except the saw-cut face) and left to cure for 24-hours. The sealed samples were then returned to the Ca(OH)2 tanks to repeat the above sa turation process by weight cont rol. The samples were then immersed under surface-dry conditions in salt solu tion (16.5 percent of sodi um chloride solution mixed with deionized water) in tanks with tight closing lids (Figure 2-3 and Figure 4-2). The tanks were shaken once a week and the NaCl so lution was changed every 5 weeks. The original procedure called for at least 35 days of exposure be fore the chloride penetration analysis was to be conducted. Moreover, it suggests to sample be tween 0.04-inch to 0.08-inch (1-mm to 2-mm) increments by powder grinding the profiles for th is exposure time and type of high quality concrete. With the equipment available for the use on the project, an exposure of 35 days is insufficient to achieve a measurable chloride pr ofile. A coarser chloride sampling evaluation was implemented; 0.25-inch (6.5-mm) increments were tested on 1 and 3 years old samples. Finally, the respective acid-soluble chlori de content of the profile samp les at varying depths were obtained in accordance with the FDOT standard test method FM 5-516. The initial chloride background levels for each of the concrete mixes were also determined from the extra unexposed samples. Electrical Conductivity Tests Rapid Chloride Permeability Test (RCP) The RCP test was conducted in conforma nce with AASHTO T277 and ASTM C1202. The specimen dimensions were 4-inch (102-mm) di ameter by 8-inch (204-mm) long. All samples were kept in a moist room with a sustained 100% humidity until testing day. RCP tests were conducted at ages of 14, 28, 56, 91, 182 and 364 da ys, with three samples tested at each age. The procedure calls for two days of specimen preparation. On the first day, the samples were removed from the moist room to be cut on a water-cooled diamond saw. A -inch (6.4-

PAGE 68

68 mm) slice was first removed to dress the top edge of the sample (Figure 4-3), and then the 2-inch (51-mm) thick sample required for the test was sliced (Figure 4-4). The sides of the specimens were roughened (Figure 4-4) followed by application of Sikadur 32 Hi-Mod epoxy to seal the specimen (Figure 4-5). The second day of preparation began with th e desiccation process to water-saturate the samples. The specimens were placed in a de siccation chamber connected to a vacuum pump capable of maintaining a pressure of less than 1 mm Hg (133 Pa ). The vacuum was maintained for three hours to remove the pore solution from the samples. The container was then filled with boiled de-aerated water until the samples were totally submerge d and the pump was left running for an additional hour (Figure 4-6). The desiccation chamber wa s return to atmospheric pressure and the samples were left submerged for 18 hours, plus or minus 2 hours. After the samples were removed from the de siccation chamber, each sample was placed into their acrylic cells and sealed with silicone (Figure 2-4 and Figure 4-7). The upper surface of the specimen was left in contact with the 3.0 percent NaCl solution (this side of the cell was connected to the negative terminal of the power supply) and the bottom face was exposed to the 0.3 N NaOH solution (this side of the cell was connected to the positive terminal of the power supply). The test was left running for 6 hours with a constant 60-vo lt potential applie d to the cell. A data logging system recorded the temperature of the anolyte solution, charge passed, and current every 5 minutes. Furthermore, it calculated the cumulative charge passed during the test in coulombs by determining the area under the curv e of current (amperes) versus time (seconds). The three total readings from each sample were averaged to obtain a representative final result for the specimens set.

PAGE 69

69 Surface Resistivity Test The Surface Resistivity test was conducte d conforming to Florida Method of Test designation FM 5-578. The Surface Resistivity wa s measured on 4-inch (102-mm) diameter by 8-inch (204-mm) long concrete cylinders. To eval uate the effect of curi ng, two sets of three samples each were tested. The first set was kept in a moist room with a sustained 100% humidity, and the other in saturated Ca(OH)2 solution (dissolved in tap water) tanks. Due to its nondestructive test nature, the test was performe d to a wider amount of ages than the other electrical tests. For the purpose of this project, the samples were tested at 14, 28, 56, 91, 182, 364, 454 and 544 days. Additionally, these samp les are being monitoring until no further changes in the surface resistivity reading is obs erved as part of another research project. Commercial four-probe Wenner a rray equipment was utilized for resistivity measurements. The model used had wooden plugs in the end of the probes that were pre-wetted with a contact medium to improve the electrical tr ansfer with the concrete surface (Figure 4-8). The inter-probe spacing was set to 1.5-inch (38-mm) for all measurements. On the day of testing the samples were re moved from their curing environment and the readings were taken under surface wet condition. R eadings were then taken with the instrument placed such that the probes were aligned with the cylinder axis. Four separate readings were taken around the circumference of the cylinder at 90-degrees increments (0o, 90o, 180o and 270o). This process was repeated once again, in order to get a total of eight readings that were then averaged. This minimized possible interference due to the presence of a single aggregate particle obstructing the readings (Chi ni, Muszynski and Hicks 2003). Bridge Core Sample Chloride Ion Content Analysis The core samples obtained from the bridge subs tructures were profiled at varying depths to obtain their respective acid-soluble chloride cont ent in accordance with the FDOT standard test

PAGE 70

70 method FM 5-516 (APPENDIX D). The core surface wa s first cleaned to remove barnacles or other debris. Two methods were us ed to obtain the respective profile samples. The top 0.48-inch (12-mm) was profiled using a milling machine. Powder samples were taken at increments of 0.08-inch (2-mm) (Figure 4-9). Subsequent profiles were obtained by cutting the sample into 0.25-inch (6.5-mm) thick slices using a watercooled diamond saw. The core profiling scheme summary is presented in Table 4-2. The sample obtained from the two profiling methods was pulverized and placed in plastic bags until the chlo ride content testing was executed. The initial chloride background levels of cored samples were determined from the deepest section of the specimens (APPENDIX D), assuming that chloride s have not yet reached this depth.

PAGE 71

71 Table 4-1. Concrete Permeability Research Sample Matrix for Laboratory Mixtures. Total Number of Samples per Test (4x8 Cylinders) Mixture Name Strength (ASTM C39) RCP (AASHTO T277) Surface Resistivity (FM 5-578) Bulk Diffusion (NTBuild 443) Extra Cylinders 49_564 18 18 6 3 7 35_752 18 18 6 3 7 45_752 18 18 6 3 7 28_900_8SF_20F 18 18 6 3 7 35_752_20F 18 18 6 3 7 35_752_12CF 18 18 6 3 7 35_752_8SF 18 18 6 3 7 35_752_8SF_20F 18 18 6 3 7 35_752_10M 18 18 6 3 7 35_752_10M_20F 18 18 6 3 7 35_752_50Slag 18 18 6 3 7 Lab. Mixes 35_752_4.5CN 18 18 6 3 7 45_570 18 18 6 3 7 29_450_20F 18 18 6 3 7 33_658_18F 18 18 6 3 7 34_686_18F 18 18 6 3 7 30_673_20F 18 18 6 3 7 28_800_20F 18 18 6 3 7 Field Mixes 29_770_18F 18 18 6 3 7 Total 342 342 114 57 133 Table 4-2. Bridge Core Samples Profiling Scheme. Core Sample Identification Profile Penetration (mm) Profiling Method A 0 2 Milling B 2 4 Milling C 4 6 Milling D 6 8 Milling E 8 10 Milling F 10 12 Milling G 12 18.35 Slicing H 18.35 24.70 Slicing I 24.70 31.05 Slicing J 31.05 37.40 Slicing

PAGE 72

72 Figure 4-1. Cutting Bulk Diffusi on Samples into Two Halves. Figure 4-2. Bulk Diffusion Saline Solution Exposure.

PAGE 73

73 Figure 4-3. RCP test top surface removal of the sample preparation procedure. A B Figure 4-4. RCP Sample Preparation: A) Cutting of the 2-inch Sample for the Test and B) Preconditioning RCP Sample Surfaces to Receive Epoxy.

PAGE 74

74 Figure 4-5. RCP Sample Sealed with Epoxy. A B Figure 4-6. RCP Sample Preconditi oning Procedure: A) Reduction of Absolute Pressure and B) Sample Desiccation

PAGE 75

75 Figure 4-7. RCP Test Set-up. Figure 4-8. Surface Resistivity Measurements.

PAGE 76

76 A B Figure 4-9. Profile Grinding Us ing a Milling Machine. A) Milling Machine Set Up and B) Milling Process.

PAGE 77

77 CHAPTER 5 RESULTS AND DISCUSSION Fresh Properties Several quality control procedures were ex ecuted during mixing and casting of the test samples for the laboratory and field mixtures. Th e results obtained from the standard testing procedures for slump (ASTM C 143), air conten t (ASTM C 173), concrete temperature (ASTM C 1064), air temperature and unit weight of th e concrete (ASTM C 138) are included in Table 5-1. Due to natural variability of concrete work ability, a consistent concrete slump from mixture to mixture is difficult to obtai n. The laboratory concrete mixt ure slump measurements ranged between 2.25 to 9.75-inch (57 to 248-mm) and the field mixtures between 0.5 to 7.75-inch (13 to 197-mm). The laboratory mixture unit weight measur ements presented a coefficient of variation of 1.5% and the field mixtures vary by 2.3%. This indicates that there were no large variations in entrapped air or aggregate volume proportions am ong mixtures. The air content for all batches was within the target range of 1.0 to 6.0%. Th e laboratory concrete mixt ure air contents range from 1.25% to 6.0% and the fiel d mixtures from 1.5% to 4%. Mechanical Properties The compressive strength of each mixture was evaluated in accordance with ASTM C39. Though compressive strength is not a concrete perm eability indicator, it represents a helpful tool for checking the design compressive strength. Th erefore, the compressive strength changes caused by the mixture proportions and different added pozzolan can then be used as quality indicators of the corrected prep aration of the cast mixtures. Mo reover, the strength trend of change by time can be used as an indirect comparative reference to the electrical conductivity results tested at the same age. The electrical co nductivity of water satura ted concrete depends on

PAGE 78

78 part on its pore structure; as the pore structure of a concrete samples is reduced, the electrical conductivity will decrease and the co ncrete strength will increase. Compressive strengths were tested after 14, 28, 56, 91,182 and 364 days of continuous moist curing for all the concrete mi xtures. Detailed results are given in APPENDIX B. Maximum values of strength were achieved in mixtures with the lowest water-cementitious ratios. The effect on the mixtures by the addition of fly ash resulted in a slower gain of strength during the early ages of hydration. During the first 56 days after ca sting, compressive strength of fly ash mixes mixture was significantly le ss than those of th e control mixture (Figure 5-1). This lower early strength development is due to the low reactivity of the mineral admixture fly ash (Mindess,Young and Darwin 2002). Strength tests conducted betw een 56 and 180 days showed that the fly ash mixtures gained a compressive st rength comparably equal to those of the control mixture. Finally at 364 days after casting, th e fly ash mixtures developed higher compressive strength exceeding those of the control mixture. The effect on the mixtures by the addition of the highly reactive pozzolan silica fume contributed to the early development of compre ssive strength. During th e first 14 days after casting, compressive strengths of silica fume mixtures were less th an those of the control mixture (Figure 5-1). On the other hand, strength tests conducted between 28 and 182 days showed that the silica fume mixtures had higher compressive strengths than those of the control mixture. Finally at 364 days after casting, the effect of silica fume was stabilized and the compressive strength was comparably equal to those of the control mixture. The effect on the mixture by the addition of the pozzolan metakaolin e contributed to the early development of compressive strength. This beneficial effect was sustained until 364-days after casting (Figure 5-1). On the other hand, the addition of calcium nitrite reduced the concrete

PAGE 79

79 compressive strengths compared to the control mixture by about 30 percent for all the testing days. Similar concrete strength behavior was reported by previous researches (Berke 1987; Kondratova, Montes and Bremner 2003). They re ported that the calcium nitrite can reduce concrete compressive strength. However, other findings by Ann et al. (2 005) contradict this conclusion. They found that the ca lcium nitrite addition enhanced the concrete strength at early ages compared to a control mixture. Finally, Figure 5-2 shows some of the field mixtur es compressive strength compared to the laboratory control mixture. The compressive strengt hs are reduced compared to the control as the water-cementitious ratio is increased or the am ount of cementitious is reduced. Conversely, a noticeable increase in strength was observed on the field mixture 28_ 800_20F with lower watercementitious ratio and higher amount of cemen titious than the laboratory control mixture (35_752). Long-Term Chloride Penetration Procedures The Nordtest Bulk Diffusion (NTBuild 443) test results after a 1 and 3 years of exposure period were used as a benchmark to evaluate th e conductivity tests. Afte r their exposure period, each of the samples were profiled and tested us ing the FDOT standard test method FM5-516 to obtain their acid-soluble chloride ion content at varying depths. The Bulk Diffusion procedure represents the most common test method of determining chloride diffusion coefficients for concrete specim ens. This procedure is believed to simulate a diffusion only mechanism (Hooton, Thomas and Stanish 2001). The saturation of the samples, previous exposure to the chloride solution, eliminates the contribution by the absorption mechanism. Furthermore, the wicking effect is al so eliminated with the sealing of all specimen faces except the one exposed to the NaCl solution. The diffusion coefficients were determined by fitting the data obtained in the chloride prof iles analysis to Ficks Diffusion Second Law

PAGE 80

80 equation. The measured chloride contents at va rying depths were fitt ed to Ficks diffusion equation by means of a non-linear regression anal ysis in accordance with the method of least square fit. The computerized mathematical tool s of the program MathCad were used to fit the data to the non-linear regressions. Table 5-2 to Table 5-5 show the obtained chloride diffusion coefficients and surface concentration for 1 and 3 years of exposure. Moreover, chloride profiles and curve fitting results for each concrete mixture are summarized in APPENDIX C. The mixture proportions affect di rectly the rate of chloride diffusion into concrete. Several factors such as the water-cementitious ratios a nd the types and amounts of cementitious materials used for the mixture will change the rate of chloride diffusion. Figure 5-3 and Figure 5-4 show a comparison of the obtained chloride diffusion coe fficients for 1 and 3 years of exposure for the entire set of mixtures. Table 5-6 shows the relative decrease in diffusion from 1 to 3-years of exposure. Moreover, the effects on the diffusion coeffici ent by the addition of different pozzolans and corrosion inhibitor are compared in Table 5-7. Mixtures having the same water-cementitious ratios, cementitious contents and different pozzo lan combinations and corrosion inhibitor were compared. The chosen mixtures were cast under laboratory conditions with the same source of materials. Mixture 35_752 that did not contain pozzo lan was selected as the control to make the comparisons. The changes in diffusion from 1 to 3-years compared to the control mixture are also presented graphically in Figure 5-5. The results show th at the addition of metakaolin (35_752_10M) decreases the chloride diffusion comp ared to the control mixture by about 70 percent for the 1 and 3 years of exposure re sults. Moreover, the addition of silica fume (35_752_8SF), ground blast furnace slag (35_752_50Slag) and ternary blends of fly-ash with metakaolin (35_752_10M_20F) or silica fume (35_752_8SF_20F) decreases the chloride

PAGE 81

81 diffusion approximately 50 percent for the 1 a nd 3 years of exposure results. The chloride diffusion for samples containing fly-ash (35_752 _20F) and classified fly-ash (35_752_12CF) did not improve for samples exposed for a year. Ho wever, they improved for the longer exposure period of 3 year. These could be related to the slow pozzolanic reaction of the mineral admixture fly ash. Finally, the addition of calcium nitr ite (35_752_4.5CN) did not improve the concrete diffusion coefficient. The addition of calcium nitr ite increased the chloride diffusion compared to the control mixture by about 60 percent for the 1 y ear of exposure result s and 133 percent for the longer exposure of 3 years. Similar chloride diffusion behaviors were reported by previous researches (Berke 1987; Ma, Li and Peng 1998; Kondratova, Mont es and Bremner 2003). They reported that the calcium nitrite tends to increase concrete chloride permeability values. Ma, Li and Peng (1998) found that the addition of calcium nitrite influences the hydration process of cement paste. It appears that calcium nitrite ha s the function of accelera ting and stabilizing the formation of the crystal phase of calcium hydroxide. This leads to an increase in the micropore diameter in the hardened cement paste and thus to an increase in chloride permeability compared to concrete without inhibitor. Comparison of Conductivity and Long-Term Diffusion Tests Rapid Chloride Permeability Test (RCP) The results of the Rapid Chloride Permeability tests (RCP) (AASHTO T277) at ages 14, 28, 56, 91, 182 and 364 days were plotted with th eir respective 1 and 3 years Bulk Diffusion. It was found that a power regres sion provided the best repres entation of the trends (APPENDIX F). Other researchers (Hooton, Thomas and Stanish 2001) have also f ound this to be true in their work. As an example, Figure 5-6 shows the 28-day and 91-day RCP results against the 1-year Bulk Diffusion results for both the labor atory and field samples. Similarly, Figure 5-7 shows the same RCP results plotted against the 3-year Bulk Diffusion results.

PAGE 82

82 Previous research has shown that the RCP te st method presents some limitations when applied to concrete modified with chemical admi xtures as corrosion inhibitors (Shi, Stegemenn and Caldwell 1998). Concrete modified with a corro sion inhibitor such as cal cium nitrite exhibits a higher coulomb value than the same concrete w ithout the corrosion inhib itor when tested with the RCP test. Yet long-term chloride ponding tests have indicated that concrete with calcium nitrite is at least as resistant to chloride ion penetration as th e control mixture. Conversely, the RCP results compared with the 1 and 3 years Bulk Diffusion results tend to follow the same trend as the other concrete mixtures. The calcium nitrite effect, however, is represented by only one mixture on the entire specimen population. C onsequently, there is not enough information to draw a solid final conclusion from the available data results. Therefore, the concrete mixture containing calcium nitrite (35_752_4.5CN) was not included on the general correlations with long-term tests in order to establish a uniform leve l of comparison between a ll the electrical tests. General levels of agreement (R2) to references are presented in Table 5-8. Moreover, detailed graphs with their least-squares line-of-best fit for the complete set of data are presented in APPENDIX G. Surface Resistivity The electrical conductivity derived from the su rface resistivity test was also compared to their respective 1 and 3 years Bulk Diffusion. The surface resistivity test was conducted using two methods of curing, one at 100% humidity (mo ist cured) and the other in a saturated Ca(OH)2 solution (lime cured). Surface resistivity results fr om the two curing regimens at 14, 28, 56, 91, 182, 364, 455 and 546 days of age are compared to their respective diffusion test results. The data were then fit with a curv e to provide an empirical relatio nship between the short and long term tests. Power function was selected because it provided the best fit with the relationship between the two set of test results (APPENDIX F). Concrete modified with a corrosion inhibitor

PAGE 83

83 as calcium nitrite may exhibit misleading results in electrical resistivity tests (Shi, Stegemenn and Caldwell 1998). Consequently, these valu es were excluded from the curve fit. Figure 5-8 and Figure 5-9 show detailed graphs of the test correl ations with their respect ive derived least-square line-of-best fit. The surface resistivity correlation coefficients (R2) for the two curing regimens are compared in Figure 5-12 and Figure 5-13. The figures show the R2 results for the Bulk Diffusion correlation for the two exposure periods, respec tively. The comparison between the two curing procedures shows little difference. A relative gain in correlation, however, was observed for the moist cured regimen at 14 days of age. The differen ce in the number of samples tested at that age (Table 5-9) might explain the relative increase in the correlation. Fewer samples were tested for the moist cured regimen than for the lime cure d specimens. Consequently, the probability of fitting a set of data increases for fewer numbers of records. Therefore, it is concluded that either of the methods will derive on equal surface resist ivity behavior. General levels of agreement (R2) to references for both curing methods are presented in Table 5-9. Moreover, detailed graphs with their least-squares line-of-best fit for the complete set of data are presented in APPENDIX G. Relating Electrical Tests and Bulk Diffusion The standardized RCP test method, ASTM C1 202, is commonly required on construction project specifications for both precast and cast-in-place concrete Pfeifer, McDonald and Krauss (1994) indicate that the engineer or owner usua lly select an arbitrary limit of 1000 coulombs for concrete elements under extremely aggressive en vironments. This RCP coulomb limit for 28-day moist cured concrete is required by the Florid a Department of Transportation (FDOT) when Class V or Class V Special conc rete containing silica fume or metakaolin is specified (FDOT 346 2004). The typical application for this high performance concrete is piling to be installed in salt water.

PAGE 84

84 The commonly used 1000 coulomb limit at 28-da y RCP test has been chosen based on a scale reported in the standa rdized test procedure (Table 2-1). This scale presents a qualitative method that relates the equivalent measured charge in coulombs to the chloride ion permeability of the concrete. The original research program that derived the rating scale (Whiting 1981) was based upon a reduced amount of singl e core concrete samples that did not include pozzolans or corrosion inhibitors. The set of data results were linearly fitted (R2 of 0.83) and five qualitative ranges of chloride permeability were define d based on the long-term chloride ponding test AASHTO T259. These permeability ranges were se lected by grouping concrete mixture with similar AASHTO T259 and RCP results. The applicability of the RCP has been consid ered extensively in the literature (Whiting 1981; Whiting 1988; Whiting and Dziedzic 1989; Oz yildirim and Halstead 1988; Scanlon and Sherman 1996) with samples containing a wide variety of pozzolans a nd corrosion inhibitors. They have demonstrated no consistent correla tion between the RCP results and the rates of chloride permeability presented in standard proc edure. The electrical conductivity of the water saturated concrete depends on part on the chem istry of pore solution. Changes in pore solution chemistry generate considerable alterations in the el ectrical conductivity of the sample. These variations can be produced by th e presence of pozzolans or corro sion inhibitors that were not included on the original research th at developed the rating table. Ther efore, this indicates that the RCP test was never intended as a quantitative pred ictor of chloride permea bility into any given concrete (Pfeifer, McDonald and Krauss 1994). The test was designed as a quality control procedure that should be calibrate d with long-term tests. As st ated in the scope of the RCP standard method, the rapid test pr ocedure is applicable to types of concrete in which correlations have been established between this rapid test procedure and long-term chloride ponding tests.

PAGE 85

85 It has been argued by the industry that a RCP limit of 1000 coulombs to categorize very low chloride permeability concrete on a 28-day sample is unreasonably low. The original RCP coulomb limits were derived from correlations between 90-day RCP samples and 90-day AASHTO T259 ponding test. Therefore, the use of these restrictions on lower testing ages, as 28 days, represents a conservative approach to quality control. The el ectrical conductivity of concrete decreases with time as the process of hy dration takes place. This is particularly true of fly ash or other slower reacting pozzolans. Conversel y, silica fume is rather fast acting resulting in low apparently age RCP values. Figure 5-15 shows these effects on the electrical conductivity by the addition of fly ash and silica fume. Moreover, Figure 5-16 illustrate s the changes on RCP results for the complete set of mixtures. Results show a higher rate of RCP coulombs decrease for the first 91 days of curing, followed by a rela tive stable flat trend in most of the cases. Furthermore, the chloride ponding test used as a benchmark to derive the original RCP coulomb limits, AASHTO T259, presents several limitations. Chloride profiles obtained from the long-term chloride ponding test were analyzed us ing the total integral chloride method. This method calculates the total quantity of chloride s that has penetrated the samples during the exposure period of exposure. It is obtained by integrating the area under the chloride profile curve from the surface of exposure to the point where the chloride background is reached (Figure 5-14). Previous research findings (Hooton, Thom as and Stanish 2001; Vivas, Hamilton and Boyd 2007) have indicated that this chloride conten t measurement method is not a good indicator of diffusion of chlorides in concrete The method only takes into c onsideration the total amount of soluble chlorides for a particular depth. Significant information such as the shape of the chloride penetration curve is not reflected in this result.

PAGE 86

86 Diffusion mechanism is considered the principal mechanism that drives chloride ions into the pore structure of concrete (Tuutti 1982; Stanish and Thomas 2003). However, the AASHTO T259 test set up induces a combined effect of diffusion, adsorption and vapor conduction (wicking) mechanisms. Previous research (McG rath and Hooton 1999) has suggested that the relative importance of the abso rption effect is overestimated by the AASHTO T259 test set up. Hooton, Thomas and Stanish (2001) have indicated that the relative amounts of chloride ions drawn into the concrete by the absorption eff ect compared to the amount entering by diffusion will be greater when the test is run only for a short period of time compared to the relative amounts during the lifetime of a stru cture. Moreover, they exposed th at the wicking effect is also overestimated by the test procedure. The actual stru cture humidity gradient will likely be less, at least for part of the time, than the exposed duri ng the test. Therefore, th e use of a well-controlled diffusion only ponding test as Bu lk Diffusion test will improve the precision of the chloride penetration profile and may more accurately refl ect the extent of longterm penetration of chloride into concrete than the AASHTO T259 test. Consequently, a method to relate the equivalent measured charge in coulombs to th e chloride ion permeability of the concrete based on the Bulk Diffusion test is needed. Curve fitting of the relationship between RCP or SR and the 1 and 3-year Bulk Diffusion test results were previously presented. Figure 5-17 and Figure 5-18 shows the correlation coefficients (R2) of those fits as a function of the time at which the respective RCP test was conducted. The plots are for 1 and 3year Bulk Diffusion results. The R2 values for both Bulk Diffusion ages increase dramatically for approximately the first 91-days. The RCP R2 reaches plateau at 91 days when compared to those of 1-year Bulk Diffusion. This is believed to be related to the high variability on the different pozzolan internal re actions at early age concretes.

PAGE 87

87 Concrete mixtures containing highly reactive poz zolans as silica fume will react faster than mixtures containing slower reactin g pozzolans as fly ash. Howeve r, as the concrete internal hydration takes place, these reactio ns will be reduced. Consequently the short-term test results obtained from these more stable mixtures will correlate better to the long-term specimens. RCP samples compared to those of 3-year Bulk Diffusion achieve a maximum R2 value at 1 year of testing. R2 values from correlations of Surface Resistivity tests (Table 5-9) to the references were also included in the comparison with similar results. Even duo the maximum R2 value for the 3year Bulk Diffusion results is re ached at 1-year RCP, the 91-day R2 is considered also a reasonable correlation level. Therefore based on the reduced variability reached at 91-days, it is concluded that the earliest effective age at whic h the RCP and SR will correlate with the 1 or 3 year Bulk Diffusion test is 91 days. Furtherm ore, the relationship between the 91-day RCP results and the BD tests can be used to derive a target Bulk Diffusion coefficient for Florida concretes. This target is based on the 1000 c oulomb requirement that is commonly used to characterize durable concrete. The ultimate goal is to be able to predict a 1 or 3-year Bulk Diffusion from a test conducted at 91-days. The diffusion coefficient related to a given coulomb value can be obtained from the trend line e quation of the test correlations as shown in Figure 5-19 and Figure 5-20. Table 5-10 shows a complete scale for categorizing 91 day RCP results related to the chloride permeability measured by a 1 and 3 year Bulk Diffusion test. Refinement of the Long-Term Diffusion Co efficient Prediction Using Monte Carlo Simulation Closed form statistical solutions were used to develop the scale pres ented in the previous section. 91-days was found to be the earliest effec tive testing age to predic t the chloride diffusion penetration of a 1 and 3 year Bulk Diffusion te st when using either SR or RCP. The proposed diffusion coefficients related to a given coulomb value were obtained from a fit of the available

PAGE 88

88 experimental data (Figure 5-19 and Figure 5-20). Each of the data values used in the test correlations was a product of an average of three experimental results. Some of these results had high coefficient of variation with up to 15% on the RCP results (APPENDIX E) and 30% on the Bulk Diffusion (Table 5-2 and Table 5-4). To ensure that the variability in the data was accounted for appr opriately Monte Carlo simulation was conducted. This simulation wa s focused on obtain the respective diffusion coefficient results related to the standard RCP limits. The available RCP data and Bulk Diffusion test results at 1 and 3 years of chloride exposure were included in the analysis. Each of the Bulk Diffusion coefficients and RCP test results were simulated with separate independent random variables using a normal distributi on. The parameters required to define the shape of the normal distribution, mean and standard deviation, were calcu lated from the three available data points from each set of mixture test results. A comple te set of Bulk Diffusion and RCP results were randomly generated from the different normal dist ribution models. In some of the cases due to the high coefficient of variation of the variables, the RCP or Bulk Diffusion randomly generated values resulted on negative values, which was in correct. Therefore, these negative simulated results were replaced with new positive random results. The respective be st-fit-equation was then calculated based on the power func tion model. The diffusion coeffici ents related to the standard coulomb limit values were then obtained from the new trend line equation. This process was repeated many times and different diffusion co efficient results for each RCP limits were obtained. Finally, the average and standard devi ation of the obtained group of diffusion results were assembled in a histogram. Figure 5-21 shows a schematic of the corr elation process using the Monte Carlo simulation. Initially 100 simulations were run an d the average and standard deviation of each

PAGE 89

89 group was recorded. The coefficient of variation (C OV) of the obtained set of results for each of the number of samples was then calculated (Figure 5-22 and Figure 5-23). To ensure a low COV the selected number of intera ction was increased from 100 to 50000 samples which reduced the COV to less than 1%. The average and standard deviati on of the correlation coefficient (R2) obtained for each of RCP and Surface Resistivity curve-fitting using the simulation (Table 5-11) are compared in Figure 5-24 and Figure 5-25. The obtained results corrobor ated previous findings. The average of RCP and Surface Resistivity trend of agreem ent reaches a maximum value on samples tested at 91 days when compared to those of 1 and 3 y ear Bulk Diffusion. Therefore, it is concluded that the most effective RCP and Surface Resistivit y testing age to predict the chloride diffusion penetration of a 1 or 3 year Bulk Diffusion test is 91 days. More realistic diffusion coefficients associated with these test results can be deri ved. The average and sta ndard deviation of the chloride permeability measured by a 1 and 3 year Bulk Diffusion test related to 91 day RCP results including the grade of variability from the experimental data is presented in Table 5-12.

PAGE 90

90 Table 5-1. Fresh Concrete Properties. Mixture Name Slump (in) Air Content (%) Concrete Temperature (oF) Air Temperature (oF) Unit Weight (pcf) 49_564 7.5 3.5 76 72 140.62 35_752 3 2 79 72 144.62 45_752 9.75 2.5 80 75 140.40 28_900_8SF_20F 9 3 81 75 142.32 35_752_20F 2.25 1.5 80 72 144.32 35_752_12CF 6 4.5 80 73 140.52 35_752_8SF 3 2.5 76 72 143.72 35_752_8SF_20F 4 4.5 78 70 139.72 35_752_10M 5.5 4.5 76 78 145.22 35_752_10M_20F 8 1.25 80 80 144.02 35_752_50Slag 6 2 74 72 142.82 Lab. Mixes 35_752_4.5CN 9 6 76 72 140.49 45_570 0.5 4 94 81 140.49 29_450_20F 3 1.5 92 96 148.64 33_658_18F 7 3.5 88 98 145.01 34_686_18F 7 2 90 89 143.08 30_673_20F 6.5 1.7 96 99 148.77 28_800_20F 7.75 2.8 98 93 142.16 Field Mixes 29_770_18F 5.5 2 93 96 147.39

PAGE 91

91 Table 5-2. 1-Year Bulk Diffusion Coefficients. 1-Year Bulk Diffusion (x10-12) (m2/sec) Mixture Name Sample A Sample B Sample C Average Standard Deviation Coefficient of Variation (%) 49_564 22.451 16.607 17.347 18.801 3.182 17 35_752 4.050 4.433 4.863 4.449 0.407 9 45_752 10.645 9.738 9.440 9.941 0.627 6 28_900_8SF_20F 1.345 1.175 1.254 1.258 0.085 7 35_752_20F 4.222 5.255 5.948 5.142 0.869 17 35_752_12CF 5.374 4.637 4.378 4.796 0.516 11 35_752_8SF 2.299 2.255 1.656 2.070 0.360 17 35_752_8SF_20F 2.351 2.729 3.562 2.881 0.619 21 35_752_10M 0.877 1.206 1.232 1.105 0.198 18 35_752_10M_20F 2.251 2.425 2.587 2.421 0.168 7 35_752_50Slag 2.994 2.100 3.151 2.748 0.567 21 35_752_4.5CN 6.644 8.406 6.622 7.224 1.024 14 45_570 11.703 9.155 9.404 10.087 1.405 14 29_450_20F 6.306 4.452 4.656 5.138 1.017 20 33_658_18F 5.829 5.723 5.851 5.801 0.068 1 34_686_18F 3.027 5.729 4.526 4.427 1.354 31 30_673_20F 2.231 2.169 2.366 2.255 0.101 4 28_800_20F 3.330 2.490 1.662 2.494 0.834 33 29_770_18F 2.212 3.361 1.756 2.443 0.827 34

PAGE 92

92 Table 5-3. 1-Year Bulk Diffusion Surface Concentration. 1-Year Bulk Diffusion Surface Concentration (lb/yd3) Mixture Name Sample A Sample B Sample C Average Standard Deviation Coefficient of Variation (%) 49_564 34.385 39.102 35.500 36.329 2.465 7 35_752 46.835 49.390 45.930 47.385 1.794 4 45_752 47.345 51.026 49.637 49.336 1.859 4 28_900_8SF_20F 53.651 59.521 49.262 54.145 5.147 10 35_752_20F 46.474 47.442 44.192 46.036 1.669 4 35_752_12CF 54.147 60.405 60.744 58.432 3.715 6 35_752_8SF 54.787 55.418 60.326 56.843 3.032 5 35_752_8SF_20F 55.771 66.298 57.763 59.944 5.592 9 35_752_10M 71.946 62.979 78.792 71.239 7.930 11 35_752_10M_20F 57.641 47.788 54.601 53.343 5.045 9 35_752_50Slag 55.913 75.667 61.852 64.477 10.135 16 35_752_4.5CN 73.541 53.329 60.400 62.424 10.257 16 45_570 47.348 53.144 56.449 52.314 4.607 9 29_450_20F 59.443 67.260 63.426 63.376 3.909 6 33_658_18F 58.558 51.562 44.124 51.415 7.218 14 34_686_18F 30.835 27.014 26.301 28.050 2.438 9 30_673_20F 31.105 30.618 33.343 31.688 1.453 5 28_800_20F 25.791 28.249 28.176 27.405 1.398 5 29_770_18F 43.569 31.820 34.043 36.477 6.242 17

PAGE 93

93 Table 5-4. 3-Year Bulk Diffusion Coefficients. 3-Year Bulk Diffusion (x10-12) (m2/sec) Mixture Name Sample A Sample B Sample C Average Standard Deviation Coefficient of Variation (%) 49_564 29.829 25.367 24.146 26.448 2.991 11 35_752 5.371 4.383 5.034 4.929 0.502 10 45_752 9.706 8.962 13.232 10.633 2.281 21 28_900_8SF_20F 1.212 0.850 0.600 0.887 0.308 35 35_752_20F 2.160 2.240 2.224 2.208 0.042 2 35_752_12CF 3.806 3.711 3.606 3.708 0.100 3 35_752_8SF 1.796 2.126 1.951 1.958 0.165 8 35_752_8SF_20F 2.850 2.683 2.402 2.645 0.226 9 35_752_10M 1.601 1.227 1.392 1.407 0.187 13 35_752_10M_20F 2.168 2.108 2.172 2.149 0.036 2 35_752_50Slag 2.346 2.785 1.776 2.303 0.506 22 35_752_4.5CN 8.174 15.054 11.208 11.479 3.448 30 45_570 31.792 26.808 17.648 25.416 7.174 28 29_450_20F 10.036 10.012 11.394 10.481 0.791 8 33_658_18F 3.426 2.527 3.570 3.174 0.565 18 34_686_18F 2.305 2.265 3.013 2.528 0.421 17 30_673_20F 2.165 2.412 1.459 2.012 0.495 25 28_800_20F 3.004 1.891 1.730 2.208 0.694 31 29_770_18F 1.517 1.384 1.246 1.382 0.135 10

PAGE 94

94 Table 5-5. 3-Year Bulk Diffusion Surface Concentration. 3-Year Bulk Diffusion Surface Concentration (lb/yd3) Mixture Name Sample A Sample B Sample C Average Standard Deviation Coefficient of Variation (%) 49_564 42.142 37.922 35.642 38.569 3.298 9 35_752 38.149 42.069 45.607 41.942 3.730 9 45_752 32.424 42.464 36.961 37.283 5.028 13 28_900_8SF_20F 43.308 51.303 45.051 46.554 4.204 9 35_752_20F 48.987 49.661 47.854 48.834 0.913 2 35_752_12CF 44.462 47.510 49.098 47.023 2.356 5 35_752_8SF 43.873 41.652 40.450 41.991 1.737 4 35_752_8SF_20F 44.198 41.879 43.106 43.061 1.160 3 35_752_10M 48.341 58.918 53.198 53.486 5.295 10 35_752_10M_20F 54.117 48.665 51.317 51.367 2.726 5 35_752_50Slag 58.649 54.684 62.573 58.635 3.944 7 35_752_4.5CN 43.146 32.824 41.576 39.182 5.562 14 45_570 32.031 31.344 35.485 32.953 2.219 7 29_450_20F 28.404 38.815 38.552 35.257 5.936 17 33_658_18F 50.868 46.620 45.735 47.741 2.744 6 34_686_18F 52.297 55.521 60.245 56.021 3.998 7 30_673_20F 47.266 39.726 54.786 47.259 7.530 16 28_800_20F 48.184 58.766 68.012 58.320 9.922 17 29_770_18F 46.782 65.549 49.553 53.961 10.130 19

PAGE 95

95 Table 5-6. Bulk Diffusion Ratio of Change from 3-Years to 1-Year of Exposure. Bulk Diffusion (x10-12) (m2/sec) Mixture Name 1-Year Samples 3-Year Samples Bulk Diffusion Ratios (3-Years/1-Year) 49_564 18.801 26.448 1.41 35_752 4.449 4.929 1.11 45_752 9.941 10.633 1.07 28_900_8SF_20F 1.258 0.887 0.71 35_752_20F 5.142 2.208 0.43 35_752_12CF 4.796 3.708 0.77 35_752_8SF 2.070 1.958 0.95 35_752_8SF_20F 2.881 2.645 0.92 35_752_10M 1.105 1.407 1.27 35_752_10M_20F 2.421 2.149 0.89 35_752_50Slag 2.748 2.303 0.84 35_752_4.5CN 7.224 11.479 1.59 45_570 10.087 25.416 2.52 29_450_20F 5.138 10.481 2.04 33_658_18F 5.801 3.174 0.55 34_686_18F 4.427 2.528 0.57 30_673_20F 2.255 2.012 0.89 28_800_20F 2.494 2.208 0.89 29_770_18F 2.443 1.382 0.57 Table 5-7. Pozzolans and Corrosion Inhibito r Effects on Bulk Diffusion Coefficients. 1-Year Samples 3-Year Samples Mixture Name (a) Bulk Diff. (x10-12) (m2/sec) Ratio of Diff. to Control Mixture(c) Bulk Diff. (x10-12) (m2/sec) Ratio of Diff. to Control Mixture(c) 35_752(b) 4.449 1.00 4.929 1.00 35_752_20F 5.142 1.16 2.208 0.45 35_752_12CF 4.796 1.08 3.708 0.75 35_752_8SF 2.070 0.47 1.958 0.40 35_752_8SF_20F 2.881 0.65 2.645 0.54 35_752_10M 1.105 0.25 1.407 0.29 35_752_10M_20F 2.421 0.54 2.149 0.44 35_752_50Slag 2.748 0.62 2.303 0.47 35_752_4.5CN 7.224 1.62 11.479 2.33 (a) These mixtures were cast at the laborato ry with the same source of materials. (b) 35_752 is defined as the Control Mixture.

PAGE 96

96 Table 5-8. Correlation Coefficients (R2) of RCP to Reference Tests. Test Procedure Test Conducted Age (Days) 1-Year Bulk Diffusion (a) 3-Year Bulk Diffusion (a) Number of Sample Sets 14 0.59 0.39 18 28 0.67 0.47 18 56 0.81 0.70 18 91 0.80 0.76 18 182 0.79 0.78 18 RCP (AASHTO T277) 364 0.77 0.81 18 (a) Concrete Mixture Containing Calcium Nitrite (35_752_4.5CN) was not included in the correlation. Table 5-9. Correlation Coefficients (R2) of Surface Resistivity to Reference Tests. Test Procedure Test Conducted Age (Days) 1-Year Bulk Diffusion (a) 3-Year Bulk Diffusion (a) Number of Sample Sets 14 0.48 0.29 18 28 0.77 0.49 18 56 0.80 0.60 18 91 0.84 0.72 18 182 0.81 0.77 18 364 0.70 0.77 18 455 0.70 0.77 18 Surface Resistivity (Lime Cured) 546 0.68 0.73 18 14 0.76 0.50 13(b) 28 0.75 0.53 18 56 0.75 0.60 18 91 0.79 0.72 18 182 0.77 0.79 18 364 0.74 0.76 18 455 0.70 0.78 18 Surface Resistivity (Moist Cured) 546 0.69 0.75 18 (a) Concrete Mixture Containing Calcium Nitrite (35_752_4.5CN) was not included in the correlation. (b) Fewer set of samples were available for this correlation. Table 5-10. 1 and 3 year Bulk Diffusion Relati ve to 91-Day RCP Charge Passed (Coulombs). 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) 3-Year Bulk Diffusion (x10-12) (m2/s) > 4,000 > 8.478 > 10.518 2,000 4,000 4.044 8.478 3.834 10.518 1,000 2,000 1.929 4.044 1.398 3.834 100 1,000 0.165 1.929 0.049 1.398 < 100 < 0.165 < 0.049

PAGE 97

97 Table 5-11. Correlation Coefficients (R2) of RCP and Surface Resistivity to Reference Tests by Monte Carlo Simulation Analysis. 1-Year Bulk Diffusion (a) 3-Year Bulk Diffusion (a) Test Procedure Test Conducted Age (Days) Average Standard Deviation Average Standard Deviation 14 0.54 0.07 0.37 0.04 28 0.61 0.08 0.46 0.05 56 0.75 0.06 0.66 0.05 91 0.74 0.05 0.73 0.04 182 0.73 0.05 0.75 0.04 RCP (AASHTO T277) 364 0.72 0.05 0.78 0.04 14 0.43 0.08 0.28 0.04 28 0.71 0.07 0.48 0.04 56 0.74 0.07 0.58 0.04 91 0.78 0.06 0.69 0.04 182 0.74 0.06 0.73 0.06 364 0.66 0.05 0.75 0.04 455 0.65 0.05 0.74 0.04 Surface Resistivity (Lime Cured) 546 0.64 0.05 0.71 0.04 14 0.73 0.04 0.48 0.03 28 0.69 0.06 0.51 0.04 56 0.69 0.07 0.58 0.05 91 0.73 0.06 0.70 0.04 182 0.72 0.05 0.76 0.04 364 0.70 0.05 0.73 0.04 455 0.65 0.05 0.75 0.04 Surface Resistivity (Moist Cured) 546 0.64 0.05 0.72 0.04 (a) Concrete Mixture Containing Calcium Nitrite (35_752_4.5CN) was not included in the correlation. Table 5-12. 1 and 3 year Bulk Diffusion Relati ve to 91-Day RCP Charge Passed (Coulombs) by Monte Carlo Simulation Analysis. 1-Year Bulk Diffusion (x10-12) (m2/s) 3-Year Bulk Diffusion (x10-12) (m2/s) 91-Day RCP Charge Passed (Coulombs) Average Standard Deviation Average Standard Deviation > 4,000 > 8.924 > 0.676 > 10.866 > 0.969 2,000 4,000 4.020 8.924 0.196 0.676 3.814 10.866 0.204 0.969 1,000 2,000 1.820 4.020 0.170 0.196 1.345 3.814 0.115 0.204 100 1,000 0.162 1.820 0.039 0.170 0.044 1.345 0.013 0.115 < 100 < 0.162 < 0.039 < 0.044 < 0.013

PAGE 98

98 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 35_752_20FA 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 35_752_8SFB 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 35_752_4.5CNC 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 35_752_10MD Figure 5-1. Comparative Compre ssive Strength Development of Laboratory Control Mixture (35_752) and Laboratory Mixt ures Containing: A) Fl y Ash (35_752_20F), B) Silica Fume (35_752_8SF), C) Calcium Nitrite (35_752_4.5CN) and D) Metakaoline (35_752_10M).

PAGE 99

99 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 45_570A 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 34_686_18FB 4000 6000 8000 10000 12000 0100200300400 Age (Days)Strength (psi) 35_752 (Control) 28_800_20FC Figure 5-2. Comparative Compre ssive Strength Development of Laboratory Control Mixture (35_752) and Field Mixtures: A) 45_570, B) 34_686_18F and C) 28_800_20F.

PAGE 100

100 0 10 20 3049_564 45_570 45_752 35_752_4.5CN 33_658_18F 35_752_20F 29_450_20F 35_752_12CF 35_752 34_686_18F 35_752_8SF_20F 35_752_50Slag 28_800_20F 29_770_18F 35_752_10M_20F 30_673_20F 35_752_8SF 28_900_8SF_20F 35_752_10MMixture NameBulk Diff. Coef. (x10-12)(m2/s) 1-Year Samples N ote: Calicium Nitrite (CN), Fly-Ash (F), Classified Fly-Ash (CF), Silica Fume (SF) and Metakaolin (M). Figure 5-3. 1-Year Bulk Diffu sion Coefficient Comparisons. 0 10 20 3049_564 45_570 35_752_4.5CN 45_752 29_450_20F 35_752 35_752_12CF 33_658_18F 35_752_8SF_20F 34_686_18F 35_752_50Slag 28_800_20F 35_752_20F 35_752_10M_20F 30_673_20F 35_752_8SF 35_752_10M 29_770_18F 28_900_8SF_20FMixture NameBulk Diff. Coef. (x10-12)(m2/s) 3-Year Samples N ote: Calicium Nitrite (CN), Fly-Ash (F), Classified Fly-Ash (CF), Silica Fume (SF) and Metakaolin (M). Figure 5-4. 3-Year Bulk Diffu sion Coefficient Comparisons.

PAGE 101

101 0 0.5 1 1.5 2 2.535_752_4.5CN 35_752_20F 35_752_12CF 35_752 35_752_8SF_20F 35_752_50Slag 35_752_10M_20F 35_752_8SF 35_752_10MMixture NameRatio of Diff. Coeff. to Control Mix 1-Year Data 3-Year Data N ote: Calicium Nitrite (CN), Fly-Ash (F), Classified Fly-Ash (CF), Silica Fume (SF) and Metakaolin (M). Control Mixture Figure 5-5. Pozzolans and Corrosion Inhibito rs Effects on Bulk Diffusion Coefficients. y = 1042x0.862R2 = 0.669 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixA y = 541x0.936R2 = 0.802 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixB Figure 5-6. 1-Year Bulk Diffusion vs. RCP (AAS HTO T277) at A) 28 Days and B) 91 Days.

PAGE 102

102 y = 1647x0.549R2 = 0.474 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixA y = 795x0.687R2 = 0.755 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixB Figure 5-7. 3-Year Bulk Diffusion vs. RCP (AAS HTO T277) at A) 28 Days and B) 91 Days. y = 0.037x0.658R2 = 0.770 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixA y = 0.019x0.803R2 = 0.840 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixB Figure 5-8. 1-Year Bulk Diffusion vs. SR (Lim e Cured) Conductivity at: A) 28 Days and B) 91 Days.

PAGE 103

103 y = 0.054x0.397R2 = 0.492 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixA y = 0.027x0.560R2 = 0.715 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixB Figure 5-9. 3-Year Bulk Diffusion vs. SR (Lim e Cured) Conductivity at: A) 28 Days and B) 91 Days. y = 0.028x0.763R2 = 0.747 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixA y = 0.016x0.848R2 = 0.787 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixB Figure 5-10. 1-Year Bulk Diffusi on vs. SR (Moist Cured) Conductiv ity at: A) 28 Days and B) 91 Days.

PAGE 104

104 y = 0.042x0.487R2 = 0.533 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixA y = 0.023x0.615R2 = 0.723 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12) (m2/s)SR Conductivit y (1/(kOhm-cm)) Calcium Nitrite MixB Figure 5-11. 3-Year Bulk Diffusi on vs. SR (Moist Cured) Conductiv ity at: A) 28 Days and B) 91 Days. 0 0.2 0.4 0.6 0.8 1 14285691182364454544 Age (Days)Correlation Coefficient (R2) SR (Lime Cured) SR (Moist Cured) Figure 5-12. Curing Method Comparison of Correlati on Coefficients with 1-Year Bulk Diffusion Test.

PAGE 105

105 0 0.2 0.4 0.6 0.8 1 14285691182364454544 Age (Days)Correlation Coefficient (R2) SR (Lime Cured) SR (Moist Cured) Figure 5-13. Curing Method Comparison of Correlati on Coefficients with 3-Year Bulk Diffusion Test. Depth of Penetration (mm)Chloride Concentratio n (%Concrete)Initial Chloride Background Total Integral Chloride Content Figure 5-14. AASHTO T259 Total Integr al Chloride Content Analysis.

PAGE 106

106 0 2000 4000 6000 8000 0100200300400 Testing Age (Days)RCP (Coulombs) 35_752 (Control) 35_752_20F 35_752_8SF Figure 5-15. RCP Test Coulomb Re sults Change With the Additi on of Fly Ash and Silica Fume.

PAGE 107

107 0 4000 8000 12000 0100200300400 Testing Age (Days)RCP (Coulombs) 49_564 35_752 45_752 28_900_8SF_20F 35_752_20F 35_752_12CFA 0 4000 8000 12000 0100200300400 Testing Age (Days)RCP (Coulombs) 35_752_8SF 35_752_8SF_20F 35_752_10M 35_752_10M_20F 35_752_50Slag 35_752_4.5CNB 0 4000 8000 12000 0100200300400 Testing Age (Days)RCP (Coulombs) 45_570 29_450_20F 33_658_18F 34_686_18FC 0 4000 8000 12000 0100200300400 Testing Age (Days)RCP (Coulombs) 30_673_20F 28_800_20F 29_770_18FD Figure 5-16. RCP Test Coulomb Re sults Change With Age for: A,B) Laboratory Mixtures and C,D) Field Mixtures.

PAGE 108

108 0.2 0.4 0.6 0.8 1 0200400600 Age (Days)Correlation Coefficient (R2) RCP Surface Resistivity (Lime) Surface Resistivity (Moist) 91 Days Figure 5-17. General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 1Year Bulk Diffusion. 0.2 0.4 0.6 0.8 1 0200400600 Age (Days)Correlation Coefficient (R2) RCP Surface Resistivity (Lime) Surface Resistivity (Moist) 91 Days Figure 5-18. General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 3Year Bulk Diffusion.

PAGE 109

109 y = 541x0.936R2 = 0.802 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixA 0 500 1000 1500 2000 01234 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) 1.929x10-12B Figure 5-19. Relating Electrical Tests and Bulk Di ffusion. A) 1-Year Bulk Diffusion vs. RCP at 91 Days and B) 1-Year Bulk Diffusion Co efficient Associated with a 91-Day RCP Test of a 1000 Coulombs. y = 795x0.687R2 = 0.755 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Calcium Nitrite MixA 0 500 1000 1500 2000 01234 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) 1.398x10-12B Figure 5-20. Relating Electrical Tests and Bulk Di ffusion. A) 3-Year Bulk Diffusion vs. RCP at 91 Days and B) 3-Year Bulk Diffusion Co efficient Associated with a 91-Day RCP Test of a 1000 Coulombs.

PAGE 110

110 R C P ( C o u l o m b s ) Bulk Diffusion (m /s) 2 A Bulk Diffusion (m /s)2R C P ( C o u l o m b s ) Best-fit-curve based on Power Function Model B R C P ( C o u l o m b s )Bulk Diffusion (m /s)2 Variables Generated Family of Curves Fitted to the Random C R C P ( C o u l o m b s ) Bulk Diffusion (m2/s) RCP LimitA s s o c i a t e d B u l k D i f f u s i o n C o e f f i c i e n t s D Figure 5-21. Schematic Process of Bulk Di ffusion Correlation to RCP Using Monte Carlo Simulation: A) Generating Data Paramete rs from Normal Random Variables, B) Curve Fitting of Generated Variables Base d on Power Function Model, C) Family of Curves Generated for each Set of Random Variables, D) Associated Bulk Diffusion Coefficients to the RCP Limits of each Fitted Curve and E) Bulk Diffusion Histogram for Simulated Data.

PAGE 111

111 0 200 400 600 3.33.84.24.7 Bulk Diffusion (x10-12)(m2/s)Frequenc y E Figure 5-21. Continued. 0 0.5 1 1.5 2 100100010000100000 Number of SamplesCOV (%) 100 Coulombs 1000 Coulombs 2000 Coulombs 4000 CoulombsA 0 2 4 6 8 10 100100010000100000 Number of SamplesCOV (%) 100 Coulombs 1000 Coulombs 2000 Coulombs 4000 CoulombsB Figure 5-22. 1-Year Bulk Diffusi on Coefficient of Variation Cha nge by the Number of Samples Used in Monte Carlo Simulation for the Diffe rent RCP Standard Limits. A) Mean and B) Standard Deviati on for 28-Day RCP Test.

PAGE 112

112 0 0.5 1 1.5 2 100100010000100000 Number of SamplesCOV (%) 100 Coulombs 1000 Coulombs 2000 Coulombs 4000 CoulombsA 0 2 4 6 8 10 100100010000100000 Number of SamplesCOV (%) 100 Coulombs 1000 Coulombs 2000 Coulombs 4000 CoulombsB Figure 5-23. 1-Year Bulk Diffusi on Coefficient of Variation Cha nge by the Number of Samples Used in Monte Carlo Simulation for the Diffe rent RCP Standard Limits. A) Mean and B) Standard Deviati on for 91-Day RCP Test. 0.20 0.40 0.60 0.80 1.00 0200400600 Age (Days)Correlation Coefficient (R2) RCP Surface Resistivity (Lime) Surface Resistivity (Moist) Figure 5-24. General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 1Year Bulk Diffusion by Monte Carlo Simulation Analysis.

PAGE 113

113 0.20 0.40 0.60 0.80 1.00 0200400600 Age (Days)Correlation Coefficient (R2) RCP Surface Resistivity (Lime) Surface Resistivity (Moist) Figure 5-25. General Correlation Coefficients (R2) of Electrical Tests by Testing Ages with 3Year Bulk Diffusion by Monte Carlo Simulation Analysis.

PAGE 114

114 CHAPTER 6 FIELD CORE SAMPLING Diffusion Coefficients of Cored Samples The chloride diffusion coefficients and surface chloride concentrations of the cored samples were obtained by fitting the obtained con centrations at varying depths and the initial chloride background levels to the non-linear Ficks Second Law of Diffusion solution (Table 6-1). The Ficks Second Law solution assumes that the unique chloride mechanism that transports the chloride ions through the concrete is diffusion. This is a reasonable assumption for tests conducted under controlled la boratory conditions, such as th e Bulk Diffusion test. Elements located in marine environments, however, are inte rmittently subjected to chloride exposure due to tidal fluctuations. Wetting and drying due to ti des encourages absorptio n, which is generated by capillary suction of the conc rete pulling seawater into the concrete. Moreover, the tidal fluctuations also induce leaching of unbonded sha llow surface chlorides. During concrete drying period, shallow surface water evaporates and chlori des are left either as chemically bonded to the pore walls or as unbonded crystal forms. Subsequen tly, when the concrete is again wetted, some of these unbonded crystals are leache d out of the concrete surface. Th erefore, chloride profiles of field cores can differ from that obtained under permanent chloride immersion, such as the laboratory test Bulk Diffusion. The chloride concentration near the exposed surface can be considerably less than deeper in to the concrete. However, previous research (Sags et al. 2001) has shown that diffusion coefficients can be approximately calculated by fitting the Ficks Second Law of Diffusion solution by excludi ng these misleading peaks in the regression analysis. The consequent chloride profile pe netrations, following the initial surface values affected by leaching and absorption, f it the pure diffusion trend behavior. Figure 6-1 shows

PAGE 115

115 some of the diffusion coefficient regression anal ysis of the bridge cored samples. Diffusion analyses for each of the cored sample are summarized in APPENDIX D. The chloride profile obtained from the Granada crash wall (Figure 6-2) was initially puzzling. The flat trend of ch loride ingress showing chloride levels barely above background levels indicated little chloride penetration. This low penetr ation was likely caused by the epoxy coating applied to the surface of the structural elements (Figure 3-12). Correlation of Long-Term Field Data to Laboratory Test Procedures The true aim of both the short and long-term chloride exposure testi ng is to capture the ability of the concrete in the field to resist ch loride intrusion. As the chloride concentration builds up in a concrete member, it approaches the ch loride threshold, which is the point at which the reinforcement begins to corrode. The longer th e chloride penetration is delayed, the longer the service life of the structure. Unfortunately the exposure conditions in the field are quite varied and do not really match those of the standa rd short or long term laboratory tests that have been discussed thus far. Some of the factors include chloride con centration of solution, absolute and variation in temperature, humidity and age of concrete among others. Additionally, mechanisms other than diffusion contribute to th e intrusion of chlorides. Nevertheless, it is common to take cores of field concrete, determin e chloride concentration at varying depths and calculate chloride diffusion coefficients. The diffusion coefficients obtained from a pile exposed to seawater are affected by the sampling locations. The FDOT Structures Desi gn Guidelines (FDOT SDG 2007) defines the splash zone as the vertical distance from 4 f eet below mean low water level (MLW) to 12 feet above mean high water level (MHW) for structural coastal crossings. This defined exposure zone is considered to be too wide for comparison purposes of diffusion coefficients. Previous researchers (Luping 2003; Sags et al. 2001) have shown that chloride sampling is very

PAGE 116

116 sensitive to the position within the splash zone where the concrete core is taken. Small differences in the core position have resulted in significant differences in the chloride profile. A common approach is to measure the location of the core sample in reference to MHW level. Moreover, additional subdivision of chloride exposure zone has been presented in previous literature (Tang and Andersen 2000; Tang, L. 2003; Cannon et al. 2006). Figure 6-3 shows these chloride exposure zones for a typical bridge p iling surrounded by seawater. The tidal zone is the exposed area defined between the MHW and MLW marks that is intermittently subjected to chloride exposure due to changes of water tides. The submerged zone, defined as that portion of the pile below the MLW mark, is continuously exposed to salt soluti on. The splash zone is above the MHW mark and is subjected to wetting and dr ying due to wave action. Finally, the dry zone is above the splash zone and is not directly e xposed to chlorides presen t in seawater but may receive occasional airborne chlorides. There is no general agreement in current literature that defines where the splash zone ends and the dry z one begins. The results pr esented in this section are based on samples obtained in the tidal zone of exposure. Diffusion is believed to be the predominant chloride ingress mechanism for samples obtained from the submerged zone because the conc rete is continuously ex posed to salt solution similar to the laboratory test Bulk Diffusion. The chloride concentration in the seawater surrounding the pile is usually rela tively constant. The chlorides ions will naturally migrate from the high concentration on the outside (high energy ) to the low concentration (low energy) in the inside with a constant moisture present along th e path of migration. When the pile is not continuously submerged, other chloride ingres s mechanisms tend to control the chloride penetration.

PAGE 117

117 Previous research (Tang and Andersen 2000; Tang 2003) that compared samples exposed to the different zones over a 5 year period showed that the diffusion coeffi cients were highest in the submerged zone followed by tidal, splash and dry zone. Tang (2003) showed, however, that when the exposure period was 10 years, the chlo ride ingress in the tid al zone significantly increased during the period from year 5 to year 10. Table 6-2 summarizes the results of this previous research. The table al so includes diffusion coefficients calculated from chloride sampling on 39-year old piles extracted during a bridge demolition (C annon et al., 2006). Diffusion analyses for each of these cored samples are summarized in APPENDIX H. The diffusion coefficients from the 39-year old piles appear to confirm the trend implied by Tangs work. Table 6-2 also includes the ratio of the diffusi on coefficient for the submerged zone to that of the tidal zone. These ratios are plotted in Figure 6-4 and show a decr easing trend over the life of the structure. Indeed the data from the 39year old piles constructed with a completely different mixture appears to confirm the de creasing trend that Tangs work implies. The trend illustrated in Figure 6-4 might be used to relate the results of bulk diffusion test to those of the field cores obtained from the bridges in service. If it is assumed that the environmental conditions of the bulk diffusion te st are similar to thos e of the completely submerged pile in service, then the diffusion coe fficients can be compared to give a reasonable correlation between laboratory tests and field conditions. From this viewpoint, the plot in Figure 6-4 indicates that the bulk diffusion test will likely give the highest diffusion coefficient for concretes less than about ten years old. As the concrete ages, however, the tidal zone diffusion coefficient appears to exceed that of the submer ged zone signifying that the bulk diffusion test might not give the most conservative results.

PAGE 118

118 This connection can be tested by comparing th e results of the 1 a nd 3 year bulk diffusion testing to the diffusion coefficients of the piles from which the samples were collected for this research, as long as the mixtur e proportions and constituents are comparable. The diffusion coefficients from mixture design 35_752_8SF_20F (Table 5-2 and Table 5-4) are compared to diffusion coefficients from extracted cores that were taken from p iles that used a similar mixture design (including the addition of silica fume). Th e comparison is based on the cores taken at the tidal zone. Additionally, available chloride profiles from FDOT research currently in progress (Paredes 2007) were incl uded in this analysis. Table 6-3 shows the summary of the calculated laboratory diffusion coefficients with the statisti cal parameters average and standard deviation. Detailed data on these calculations are presented in APPENDIX H. Figure 6-5 shows the diffusion coefficients of the selected laboratory and field samples plotted on a logarithmic scale. The field samples used in the plot were selected because they were extracted from tidal zone. There is nearly an order of magnitude difference between the diffusion coefficients from the bul k diffusion tests and those from the field-cored samples. This variation can be attributed to the several factors affecting chlori de diffusion under field conditions as the sampling locat ion and the concrete ageing. Assuming that the ratio of the submerged to tidal diffusion coeffi cients is controlled primarily by environment, then the ratios from Table 6-2 can be used to convert the tidal diffusion coefficient to a submer ged diffusion coefficient. Alt hough this assumption is probably not strictly correct since variation in concrete pe rmeability will likely affect the ratio as well, it makes a convenient method by which the laboratory results can be related to field results. Because the piles sampled for this research were approximately ten years in service, the highest calculated ratio of 1.52 for a co mparable age of exposure of 10 years will give the most

PAGE 119

119 conservative result. Applying this ratio to the fi eld results ostensibly converts those diffusion coefficients to a submerged condition as is shown in Figure 6-5. Comparing these diffusion coefficients to the laboratory di ffusion coefficients indicates th at the 1 and 3 year bulk diffusion coefficients are higher than the fi eld values for a ten year period. It is not clear why 1 and 3 year laboratory valu es are higher than the ten-year field values. This analysis considered only the diffusion coefficients and not the chloride content at the level of the steel. The diffusion coefficients are deri ved from fitting a curve to the chloride profile data. It perhaps gives a better indi cation of the shape of the curve rather than a direct indication of the chloride content at a certain depth. Further data are needed to better characterize this time dependency. One suggestion is to obtain shorter and longer exposure periods in the laboratory samples to establish time variations of the di ffusion for the laboratory sa mples. This trend can then be used to establish co rrelation with the longer-term re sults obtained from the field on comparable mixtures. Nevertheless, it appears that the 1 and 3-year bulk diffusion results overestimate the diffusion coefficients from ten-year old concrete in the field.

PAGE 120

120 Table 6-1. Calculated Diffusion Parameters of Cored Samples. Bridge Name Lab. # Exposure (Years) Initial Chloride Content (lb/yd3) Surface Chloride Content (lb/yd3) Diffusion Coefficient (x10-12) (m2/sec) Water Chloride Content (ppm) 5016 0.547(a) 20.336 0.050 5017 0.533 41.112 0.149 Hurricane Pass (HPB) 5018 15 0.561 44.904 0.151 19284 5054 0.467 33.012 0.585 Broadway Replacement (BRB) 5081 5 0.858(b) 32.401 0.358 14864(c)5082 0.467 42.497 0.628 Seabreeze West Bound (SWB) 5083 9 0.432 49.660 0.329 14864(c)Granada (GRB) 5084 9 0.637 0.942 0.051 14864(c)5078 0.556 26.791 0.185 5079 0.423 30.269 0.132 Turkey Creek (TCB) 5080 7 0.417 33.237 0.155 9608 5075 0.614 27.046 0.361 5076 0.432 28.700 0.540 New Roosevelt (NRB) 5077 9 0.382 29.696 0.373 31072 (a) Initial Chlorides were not tested for this sample. An average between Lab sample# 5017 and 5018 was reported. (b) Initial Chloride value was considered an erroneous valu e (too high). The value of initial chlorides from Lab sample# 5054 was used. (c) The Bridge Structures are exposed to the same body of water.

PAGE 121

121 Table 6-2. Time Dependent Changes in Diffusion Coefficients from Submerged and Tidal Zones. Diffusion Coefficient (x10-12) (m2/sec) Mixture Chloride Exposure Zone Exposed for 0.6-1.3 years Exposed for 5.1-5.4 years Exposed for 10.1-10.5 years Exposed for ~39 years Submerged 4.55 2.51 1.95 Tidal 1.98 1.31 1.43 1-40(a)(c) Ratio (Sub./Tidal) 2.30 1.92 1.36 Submerged 2.35 1.93 1.67 Tidal 0.54 0.91 1.10 2-40 (a) (c) Ratio (Sub./Tidal) 4.35 2.12 1.52 Submerged 3.78 1.26 1.25 Tidal 1.49 0.41 1.33 3-40(a) (d) Ratio (Sub./Tidal) 2.54 3.07 0.94 Submerged 11.48 Tidal 18.27 Pile 44-2(b) (c) Ratio (Sub./Tidal) 0.63(a) Tang, L. 2003. (b) Cannon et al. 2006. (c) Plain cement concrete mixture. No a dditional cementitious materials were added. (d) Concrete mixture containing silica fume. Table 6-3. Laboratory Bulk Diffusion Coefficients for Comparable Mixtures with an Expected Low Chloride Permeability Design. 1-Year Bulk Diffusion Coefficient (x10-12) (m2/sec) 3-Year Bulk Diffusion Coefficient (x10-12) (m2/sec) Mixture(a) Sample ID Results Average Standard Deviation Results Average Standard Deviation A 2.351 2.850 B 2.729 2.683 35_752 _8SF_20F C 3.562 2.402 2.645 0.226 A 1.691 -HRP3(b) B 1.782 -A 2.071 -HRP4(b) B 1.355 2.220 0.744 --(a) Mixture design: w/c: 0.35, Cementitious:752 pcy, 20% Fly Ash and 8% Silica Fume. (b) Samples obtained from FDOT research currently in progress (Paredes 2007).

PAGE 122

122 0 10 20 30 40 50 00.511.5 2 Mid-Layer from Surface (in)Chloride Content ( lb/yd3 ) Include in the Regression Not Include in the Regression Fitted RegressionA 0 10 20 30 40 50 00.511.52 Mid-Layer from Surface (in)Chloride Content ( lb/yd3 ) Include in the Regression Not Include in the Regression Fitted RegressionB Figure 6-1. Diffusion Regression Analysis for Cored Samples: A) NRB (Lab #5075) and B) HPB (Lab# 5017). 0 10 20 30 40 50 00.511.52 Mid-Layer from Surface (in)Chloride Content ( lb/yd3 ) Include in the Regression Fitted Regression Figure 6-2. Diffusion Regr ession Analysis for Cored Sample GRB (Lab #5084).

PAGE 123

123 Superstructure SubstructureWater Level MHW MLW Tidal Zone Submerged Zone Splash Zone Dry Zone Figure 6-3. Chloride Exposure Zones of a Typical Bridge Structure. 0 1 2 3 4 5 010203040 Cl Exposure Period (Years)Ratio of Cl Diffusion (Submerged/Tidal) 1-40(a) 2-40(a) 3-40(a) Pile 44-2(b)(a) Tang, L. 2003. (b) Cannon et al. 2006. Figure 6-4. Time Dependent Changes in Diffu sion Coefficients from Submerged and Tidal Zones.

PAGE 124

124 0.01 0.1 1 10 100100010000 Cl Exposure Period (Days)Diffusion Coefficients (x10-12) (m2/s) 35_752_8SF_20F (Sample A) 35_752_8SF_20F (Sample B) 35_752_8SF_20F (Sample C) HRP3 (Sample A) HRP3 (Sample B) HRP4 (Sample A) HRP4 (Sample B) HPB(LAB#5017) HPB(LAB#5018) BRB(LAB #5054) BRB(LAB #5081) SWB(LAB#5082) SWB(LAB#5083) TCB(LAB#5078) TCB(LAB#5079) TCB(LAB#5080) NRB(LAB#5075) NRB(LAB#5076) NRB(LAB#5077) Field Data Average 1-Year Laboratory Data Field Data Average x 1.52 (a) (b) (c) (a) Submerged Exposure (b) Tidal Exposure (c) Estimated Submerged Exposure Figure 6-5. Time Dependent Laboratory and Fi eld Diffusion Coefficien t Trend of Change.

PAGE 125

125 CHAPTER 7 RECOMMENDED APPROACH FOR DETERMINI NG LIMITS OF CONDUCTIVITY TESTS In the previous section, it was concluded th at 91 days was the earliest age at which the RCP and Surface Resistivity testing age correlated well with the ch loride diffusion penetration of a 1 or 3 year Bulk Diffusion test. More realistic diffusion coefficients associated with these test results can be derived. However, the pres ent FDOT specifications (FDOT 346 2004) require shorter time period of 28 days to predicted diffu sion rates for a specific mix design. Therefore, the following recommendations present a met hod by which RCP and Surface Resistivity rapid electrical tests can be calibrated so that, with reasonable conf idence, diffusion coefficients can be predicted from 28 days samples. It is anticipated that this approach would be used for quality control purpose and not for service life prediction. The original RCP coulomb limit standards (Table 2-1) are the staring point for the new recommendations. These coulomb limits were derive d in the original research from 91-day RCP samples. Therefore, to maintain consistency with the original method and because this age appears to be optimal for predicting the long-t erm chloride diffusion, the diffusion coefficient associated with the coulombs limits for a 91-day test were selected as the standards for which the allowable limits would be set when the RCP or SR test is conducted at 28 days after casting. The 1-year Bulk Diffusion results derived from th e Monte Carlo analysis were selected as the standard benchmark coefficients (Table 5-12) for the analysis. The fundamental assumption is that the selected diffusion coeffi cient is sufficiently low to give the desired service life with the associated concrete cover. RCP and Bulk Diffusion The coulomb limits associated with the standard diffusion coefficients (Table 5-12) are calculated from the trend line equation derived on the 28-day RCP correlation to the 1-year Bulk

PAGE 126

126 Diffusion test. A statistical study is included to ensure the vali dity of this new RCP limit. A confidence interval for the mean response of the test correlations was em ployed. This confidence interval represents the statistical probability that the next set of samples tested will fall within the specified acceptance range. It was found that a modified linear regressi on trend presented as a power function (APPENDIX F) provided the best represen tation of the relationship between the RCP and Bulk Diffusion test resu lts. Therefore, the confidence interval was calculated according to the analytical derivation presented as followed: ) (Y o o xy yo (7-1) xx o oS x x n s t y21 ) ( (7-2) 2 n bS S sxy yy (7-3) n i i xxx x S1 2 (7-4) n i i yyy y S1 2 (7-5) n i i i xyy y x x S1 (7-6) where ox Y is the mean confidence limit res ponse for an independent variable xo; yo: dependent variable from regression analysis equation;(yo) is the standard error of dependent variable; t: one-tailed Students t-distributi on value with n-2 degrees of fr eedom for an specific confidence level; yi: experimental dependent variables; y : mean of experimental dependent variables; xi: experimental independent variables; x : mean of experimental inde pendent variables; b: slope value from regression analysis; n: number of samples. Figure 7-1 shows the 90% confidence limit for the mean response of the 28-day RCP test correlation to the 1-year Bulk Diffusion referenc e test. The 28-day RCP test coulomb limit for concrete elements with very low chloride pe rmeability with 90% confidence on the correlated data is derived as shown in Figure 7-2. Moreover, several coulom b limits for concrete elements under extremely aggressive enviro nments at different levels of confidence are presented in Table

PAGE 127

127 7-1. The RCP coulomb limits were rounded to reflect the variability in th e data and for a more practical utilization. The different levels of confidence are provided to offer some flexibility to the Florida Department of Transportation to make a final decision specifically suitable to their standards. It is important to recognize th at the limits presented in Table 7-1 and in the following sections are based on the relatively limited data ga thered from the laboratory specimens prepared and tested as a part of this research project. For example, consider the 90% confidence level in the table. This indicates that if a random samp le is selected from the tests reported in this research that has an RCP value less than 1,422 c oulombs, then, with 90% confidence, that same concrete would have a 1-year bulk diffu sion coefficient that is less than 1.820x10-12 m2/s. Recall that this diffusion coefficient standard was established in the previous chapter to represent concrete that will have RCP test results of 1000 coulombs when tested at 91 days. In addition, the recommended RCP limits are ev aluated to corroborate their applicability to the standard FDOT specifications. These more fl exible proposed RCP limits still need to meet the basic rating criteria of the current FDOT sp ecification. Therefore, the recommended limits must discriminate between concrete samples that were designed as low chloride permeable and samples with higher permeability. FDOT categorizes Class V and Class V Special containing silica fume or metakaolin as a pozzolan as lo w permeable mixtures. The higher RCP associated with the lower confidence level showed in Table 7-1 is selected as the more representative limit for the evaluation. The project concrete mixtur es were divided into two groups. The first group included mixtures that were not design to meet FDOT standard specifications and the second group included samples designed to meet the minimum requirements. Table 7-2 shows the 28day RCP pass rates by FDOT standard specifications for the two groups of samples. All the RCP

PAGE 128

128 coulomb results from the first group of samp les exceed the current FDOT standard of 1000 coulombs as well as the limit of 1400 coulombs In the second group, less than half of the samples passed the current FDOT RCP limit. Data from field mixtures were also used to evaluate various RCP limits (Chini, Muszynski, and Hick s 2003). Data from the 491 samples collected on construction projects were included in the analysis (Table 7-2). The samples were collected from actual job sites of concrete pour s in the state of Florida. The diffusion coefficients presented in Table 7-1 were also used to derive the entire equivalent charges in coulombs for the differe nt chloride permeability ranges. The allowable coulomb limits for a 28-day RCP test response w ith a 90% of confidence on the correlated data are derived in Figure 7-3 to Figure 7-5. Coulomb limits for conc rete elements with different chloride permeability at different levels of confidence are summarized in Table 7-3 to Table 7-5. Moreover, the RCP coulomb limits were r ounded for a more practical utilization. SR and Bulk Diffusion Chini, Muszynski and Hicks (2003) evaluated the possible replacement of the widely used electrical RCP test (AASHTO T277, ASTM C1202) by the simple non-destructive Surface Resistivity test. A permeability rating table to aid the categorization of the equivalent Surface Resistivity results to the chloride pe rmeability of the concrete was proposed (Table 2-3). A minimum resistivity value of 37 KOhm-cm was repor ted to represent concrete with low chloride ion permeability. However, the pe rmeability interpretati on of the Surface Resis tivity test results was entirely based on correlations to the previ ous ranges provided in the standard RCP test (Table 2-1). As it was indicated in the previous sec tion, incorrect interpretation of electrical test results can be made when relying entirely on these RCP standard ranges. Therefore, a more rational approach to setting the limits of the Surface Resistivity results is needed.

PAGE 129

129 The Surface Resistivity test was conducted using two methods of curing, one at 100% humidity (moist cured) and th e other in a saturated Ca(OH)2 solution (lime cured). It was previously concluded that either of the met hods will derive an equal resistivity behavior. Consequently, Surface Resistivity results from the most commonly used curing method, moist cured, are used in this section. The long-term diffusion coefficients de rived in the previous section are also used as a benchmark for the interpretation of the Su rface Resistivity results (Table 5-12). These coefficients are believed to repr esent a realistic interpretation of low chloride permeability concrete. The 28-day Surface Resistivity limits associated with the standard diffusion are calculated from the trend line equa tion of correlation to the reference test. A statistical study is included to ensure the va lidity of these new Surface Resistivity limits. A confidence interval for the mean response of the test correlations was included. Figure 7-6 shows the 90% confidence interval for the mean re sponse of the 28-day Surface Resistivity test correlation to the 1-year Bulk Diffusion referenc e test. The allowable 28-day Surface Resistivity limit for concrete elements with very low chlo ride permeability with a 90% of confidence on the correlated data is derived in Figure 7-7. Moreover, several Surface Resistivity limits for concrete elements under extremely aggressive environmen ts at different levels of confidence are presented in Table 7-6. The limits were rounded for a mo re practical utilization. The different levels of confidence are provide d to offer some flexibility to the Florida Department of Transportation to make a final decision sp ecifically suitable to their standards. Additionally, the recommended Surface Resistivity limits are evaluated to corroborate their applicability to evaluate low chloride pe rmeability concrete. A low chloride permeability concrete is assumed as the FDOT standard to be a Class V or Cla ss V Special concrete containing silica fume or metakaolin as a pozzolan. Similar anal ysis as shown in Table 7-2 for

PAGE 130

130 the RCP limits evaluation is presented. The lowe r resistivity limit asso ciated with the lower confidence level (Table 7-6) is selected as the more representative for the evaluation. Furthermore, Surface Resistivity results reported by Chini, Muszynski and Hicks (2003) research are also included in the validation (Table 7-7). The diffusion coefficients presented in Table 7-1 were also used to derive the entire equivalent surface resistivity limits for the diffe rent chloride permeability ranges. The allowable Surface Resistivity limits for a 28-day SR te st response with a 90% of confidence on the correlated data are derived in Figure 7-8 to Figure 7-10. Resistivity limits for concrete elements with different chloride permeability at differe nt levels of confidence are summarized in Table 7-8 to Table 7-10. Moreover, the Surface Resistivity limits were rounded for a more practical utilization.

PAGE 131

131 Table 7-1. Allowable RCP Values for a 28-Day Test for Concrete Elements Under Extremely Aggressive Environments (Very Low Chloride Permeability) and Associated Confidence Levels. 28-Day RCP Limits Charge Passed (Coulombs) Charge Passed (Rounded Values) (Coulombs) Confidence Level 1,422 1,400 90% 1,335 1,300 95% 1,174 1,150 99% Table 7-2. 28-Day RCP Pass Rates of Seve ral Concrete Samples by FDOT Standard Specifications (FDOT 346 2004). 28-Day RCP Limits (Coulombs) Without Silica Fume or MK(3) With Silica Fume or MK(3) 1000 11501300140010001150 1300 1400 Total Number of Mixtures 14 1414145(1)5(1) 5(1) 5(1) Number of Passed Mixtures 0 00022 3 4Current Research Percentage of Passed Mixtures 0% 0% 0%0%40%40% 60% 80% Total Number of Mixtures (2) 455 4554554553636 36 36 Number of Passed Mixtures 4 813181518 21 23Chini, Muszynski, an d Hicks 2003Percentage of Passed Mixtures <1% 2%3%4%42%50% 58% 64%(1) All Mixtures were cast at the FDOT laboratory. (2) All Mixtures were coll ected from actual job sites. (3) Metakaolin.

PAGE 132

132 Table 7-3. Allowable RCP Values for a 28-Day Te st with a 90% Confiden ce Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable RCP Limits 90% Confidence Level 28-Day RCP Chloride Permeability 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Charge Passed (Coulombs) Charge Passed (Rounded Values) (Coulombs) High > 4,000 > 8.924 > 5,473> 5,450 Moderate 2,000 4,000 4.020 8.924 2,991 5,4732,950 5,450 Low 1,000 2,000 1.820 4.020 1,422 2,9911,400 2,950 Very Low 100 1,000 0.162 1.820 113 1,422110 1,400 Negligible < 100 < 0.162 < 113< 110 Table 7-4. Allowable RCP Values for a 28-Day Te st with a 95% Confiden ce Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable RCP Limits 95% Confidence Level 28-Day RCP Chloride Permeability 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Charge Passed (Coulombs) Charge Passed (Rounded Values) (Coulombs) High > 4,000 > 8.924 > 5,105> 5,100 Moderate 2,000 4,000 4.020 8.924 2,861 5,1052,850 5,100 Low 1,000 2,000 1.820 4.020 1,335 2,8611,300 2,850 Very Low 100 1,000 0.162 1.820 93 1,33590 1,300 Negligible < 100 < 0.162 < 93< 90 Table 7-5. Allowable RCP Values for a 28-Day Te st with a 99% Confiden ce Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable RCP Limits 99% Confidence Level 28-Day RCP Chloride Permeability 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Charge Passed (Coulombs) Charge Passed (Rounded Values) (Coulombs) High > 4,000 > 8.924 > 4,427> 4,400 Moderate 2,000 4,000 4.020 8.924 2,614 4,4272,600 4,400 Low 1,000 2,000 1.820 4.020 1,174 2,6141,150 2,600 Very Low 100 1,000 0.162 1.820 61 1,17460 1,150 Negligible < 100 < 0.162 < 61< 60

PAGE 133

133 Table 7-6. Allowable Surface Resistivity Values for a 28-Day Test for Concrete Elements Under Extremely Aggressive Environments. 28-Day Surface Resistivity (Moist Cured) Conductivity (1/(kOhm-cm)) Resistivity (kOhm-cm) Resistivity (Rounded Values) (kOhm-cm) Confidence Level 0.0377 26.52 27 90% 0.0360 27.76 28 95% 0.0328 30.50 31 99% Table 7-7. 28-Day Surface Resistivity Pass Ra tes of Several Concrete Samples by FDOT Standard Specifica tions (FDOT 346 2004). 28-Day Surface Resistivity Limits (KOhm-cm) Without Silica Fume or MK(3) With Silica Fume or MK(3) 37 3128273731 28 27 Total Number of Mixtures 14 1414145(1)5(1) 5(1) 5(1) Number of Passed Mixtures 0 00013 4 4Current Research Percentage of Passed Mixtures 0% 0% 0%0%20%60% 80% 80% Total Number of Mixtures (2) 462 4624624624040 40 40 Number of Passed Mixtures 7 162528818 19 20Chini, Muszynski, an d Hicks 2003Percentage of Passed Mixtures 2% 4%5%6%20%45% 48% 50%(1) All Mixtures were cast at the FDOT laboratory. (2) All Mixtures were coll ected from actual job sites. (3) Metakaolin.

PAGE 134

134 Table 7-8. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 90% Confidence Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable SR Limits 90% Confidence Level 28-Day Surface Resistivity Chloride Permeabilit y 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Conductivity (1/(kOhm-cm)) Resistivity (kOhm-cm) Resistivity (Rounded Values) (kOhm-cm) High > 4,000 > 8.924 > 0.1248< 8.01 < 8 Moderate 2,000-4,000 4.020 8.924 0.0722-0.12488.01-13.86 8 14 Low 1,000-2,000 1.820 4.020 0.0377-0.072213.86-26.52 14 27 Very Low 100-1,000 0.162 1.820 0.0043-0.037726.52-232.93 27 233 Negligible < 100 < 0.162 < 0.0043> 232.93 > 233 Table 7-9. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 95% Confidence Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable SR Limits 95% Confidence Level 28-Day Surface Resistivity Chloride Permeabilit y 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Conductivity (1/(kOhm-cm)) Resistivity (kOhm-cm) Resistivity (Rounded Values) (kOhm-cm) High > 4,000 > 8.924 > 0.1186< 8.43 < 9 Moderate 2,000-4,000 4.020 8.924 0.0699-0.11868.43-14.31 9 15 Low 1,000-2,000 1.820 4.020 0.0360-0.069914.31-27.76 15 28 Very Low 100-1,000 0.162 1.820 0.0037-0.036027.76-269.58 28 270 Negligible < 100 < 0.162 < 0.0037> 269.58 > 270 Table 7-10. Allowable Surface Resistivity (Moist Cured) Values for a 28-Day Test with a 99% Confidence Levels for Concrete Elements with Different Chloride Permeability. AASHTO T277 Standard Limits Current Research Allowable SR Limits 99% Confidence Level 28-Day Surface Resistivity Chloride Permeabilit y 91-Day RCP Charge Passed (Coulombs) 1-Year Bulk Diffusion (x10-12) (m2/s) Conductivity (1/(kOhm-cm)) Resistivity (kOhm-cm) Resistivity (Rounded Values) (kOhm-cm) High > 4,000 > 8.924 > 0.1069< 9.36 < 10 Moderate 2,000-4,000 4.020 8.924 0.0654-0.10699.36-15.29 10 16 Low 1,000-2,000 1.820 4.020 0.0328-0.065415.29-30.50 16 31 Very Low 100-1,000 0.162 1.820 0.0028-0.032830.50-363.58 31 364 Negligible < 100 < 0.162 < 0.0028> 363.58 > 364

PAGE 135

135 y = 1042x0.862R2 = 0.669 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12)(m2/s)RCP (Coulombs) 90% Confidence Limit Fitted Correlation Figure 7-1. 90% Confidence Limit for Mean Re sponse of 28-Day RCP Test vs. 1-Year Bulk Diffusion Test Correlation. 500 1000 1500 2000 2500 11.41.82.2 Bulk Diffusion (x10-12)(m2/s)RCP (Coulombs) Fitted Correlation 90% Confidence Limit 1.820x10-12 1422 Figure 7-2. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Very Low Chloride Permeability.

PAGE 136

136 0 2000 4000 6000 8000 10000 024681012 Bulk Diffusion (x10-12)(m2/s)RCP (Coulombs) Fitted Correlation 90% Confidence Limit 8.924x10-12 5473 Figure 7-3. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Moderate Chloride Permeability. 0 2000 4000 6000 23456 Bulk Diffusion (x10-12)(m2/s)RCP (Coulombs) Fitted Correlation 90% Confidence Limit 4.020x10-12 2991 Figure 7-4. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Low Chloride Permeability.

PAGE 137

137 0 100 200 300 400 00.10.20.30.4 Bulk Diffusion (x10-12)(m2/s)RCP (Coulombs) Fitted Correlation 90% Confidence Limit 0.162x10-12 113 Figure 7-5. 28-Day RCP Coulombs Limit with a 90% Confidence Level for Concrete Elements with a Negligible Chloride Permeability. y = 0.028x0.763R2 = 0.747 0 0.1 0.2 0.3 0102030 Bulk Diffusion (x10-12)(m2/s)SR Conductivity (1/(kOhm-cm) 90% Confidence Limit Fitted Correlation Figure 7-6. 90% Confidence Limit for Mean Res ponse of 28-Day Surface Resistivity Test (Moist Cured) vs. 1-Year Bulk Diffusion Test Correlation.

PAGE 138

138 0 0.02 0.04 0.06 11.52 Bulk Diffusion (x10-12)(m2/s)SR Conductivity (1/(kOhm-cm) Fitted Correlation 90% Confidence Limit 1.820x10-12 0.0377 Figure 7-7. 28-Day Surface Resis tivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Very Low Chloride Permeability. 0 0.05 0.1 0.15 0.2 0.25 024681012 Bulk Diffusion (x10-12)(m2/s)SR Conductivity (1/(kOhm-cm) Fitted Correlation 90% Confidence Limit 8.924x10-12 0.1248 Figure 7-8. 28-Day Surface Resis tivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Moderate Chloride Permeability.

PAGE 139

139 0 0.05 0.1 0.15 23456 Bulk Diffusion (x10-12)(m2/s)SR Conductivity (1/(kOhm-cm) Fitted Correlation 90% Confidence Limit 4.020x10-12 0.0722 Figure 7-9. 28-Day Surface Resis tivity (Moist Cured) Limit with a 90% Confidence Level for Concrete Elements with a Low Chloride Permeability. 0 0.005 0.01 0.015 00.10.20.30.4 Bulk Diffusion (x10-12)(m2/s)SR Conductivity (1/(kOhm-cm) Fitted Correlation 90% Confidence Limit 0.162x10-12 0.0043 Figure 7-10. 28-Day Surface Resistivity (Moist Cu red) Limit with a 90% Confidence Level for Concrete Elements with a Negligible Chloride Permeability.

PAGE 140

140 CHAPTER 8 SUMMARY AND CONCLUSIONS This work details results of a research pr oject aimed at evaluating currently available conductivity tests and compar e the results of these tests to th ose from long-term diffusion tests. Rapid Chloride Permeability (RCP) and Surface Resi stivity (SR) were evaluated. The long-term test Bulk Diffusion was selected as a benchmark to evaluate c onductivity tests. This test was conducted using 1 and 3 years chloride exposure. Diffusion coefficients fr om Bulk Diffusion test results were determined by fitting the data obtained in the chloride profiles analysis to Ficks Diffusion Second Law equation. The electrical results from the s hort-term tests RCP and SR at 14, 28, 56, 91, 182 and 364 days of continuous mo ist curing were then compared to the longterm diffusion reference test. Moreover, cored sa mples obtained at the tidal zone of marine exposure from several bridge structures around the st ate of Florida were obtained to be compared to the laboratory diffusion results. Conclusions were as follows: The SR test was conducted usi ng two methods of curing, one at 100% humidity (moist cured) and the other in a saturated Ca(OH)2 solution (lime cured). The comparison of results of the SR tests between the tw o curing procedures showed no significant differences. Therefore, it is concluded that either of the methods will provide similar results. The mixture proportions affected directly the rate of chloride diffusion into concrete. The mixture designs with the higher water-cementitious ratios, lower cementitious contents and without the presence of pozzolans showed significantl y higher diffusion coefficients compared with the rest of the samples. Furt hermore, the addition of metakaolin decreased the chloride diffusion compared to the cont rol mixture about 70 pe rcent for the 1 and 3 years of exposure results. Moreover, the a ddition of silica fume, ground blast furnace slag

PAGE 141

141 and ternary blends of fly-ash with metakao lin or silica fume decreased the chloride diffusion approximately 50 percent for the 1 a nd 3 years of exposure results. The chloride diffusion for samples containing fly-ash and classified fly-ash did not improve for samples exposed for a year. However, they improved for the longer exposure period of 3 year. These could be related to the slow po zzolanic reaction of the mineral admixture fly ash. Finally, the addition of calcium nitr ite did not improve the concrete diffusion coefficient. The calcium nitrite admixture re duces the tendency for reinforcing steel to undergo corrosion but not the penetra tion of chlorides through concrete. The correlation coefficients (R2) obtained for the short-term tests showed that the best testing age for an RCP and SR test to pred ict a 1 and 3 years Bulk Diffusion test was 91 days. Moreover, this finding was corroborated by the use of a Monte Carlo simulation. A simulation was used to obtain the re spective correlation coefficients (R2) for respective tests including the grade of variabi lity from the experimental data. A calibrated scale relating the equivalent RCP measured charge in coulombs to the chloride ion permeability of the concrete was developed. The proposed scale was based on the correlation of the 91-day RCP result s related to the chloride permeability measured by a 1-year Bulk Diffusion test. A method by which RCP and SR can be calibra ted so that, with reasonable confidence, diffusion coefficients can be predicted from 28 days samples was presented. The diffusion results obtained from the bridge cored samples obtained at the tidal zone with an average of ten-year of exposure showed considerable lower chloride penetration than the 1 and 3 year laboratory results. It appears that the laboratory methods overestimate the chloride ingress from concrete exposed in the field.

PAGE 142

142 APPENDIX A CONCRETE MIXTURE LABELING SYSTEM CONVERSION The names of the concrete mixtures in the pr evious main body sections are different than the presented in the followi ng Appendix sections. Therefore Table A-1 shows the respective mixture labeling conversions. Table A-1. Appendix C oncrete Mixture Labeling System Conversion. Main Body Mixture Name Labels Appendix Mixture Name Labels 49_564 CPR1 35_752 CPR2 45_752 CPR3 28_900_8SF_20F CPR4 35_752_20F CPR5 35_752_12CF CPR6 35_752_8SF CPR7 35_752_8SF_20F CPR8 35_752_10M CPR9 35_752_10M_20F CPR10 35_752_50Slag CPR11 35_752_4.5CN CPR12 45_570 CPR13 29_450_20F CPR15 33_658_18F CPR16 34_686_18F CPR17 30_673_20F CPR18 28_800_20F CPR20 29_770_18F CPR21

PAGE 143

143 APPENDIX B CONCRETE COMPRESSIVE STRENGTHS Table B-1. Concrete Compressi ve Strength Data Results MIXCPR1Testing Age (Days)ABCAVG. 145442550257325559 285710574556905715 566214599263216176 916400620865106373 1826638624762176367 3646594614563146351 COMPRESSIVE STRENGTH (psi) MIXCPR2Testing Age (Days)ABCAVG. 147952791481047990 288462785780308116 568814857677038364 918681860881948494 1828371876887388626 3648842881788428834 COMPRESSIVE STRENGTH (psi) MIXCPR3Testing Age (Days)ABCAVG. 145869586657825839 286352628462196285 566293643164426389 916300641163906367 1827185699070237066 3646768729567796947 COMPRESSIVE STRENGTH (psi) MIXCPR4Testing Age (Days)ABCAVG. 148382843485318449 289122905887978992 569261919891739211 919475962094999531 1829406941690739298 3649077941699089467 COMPRESSIVE STRENGTH (psi) MIXCPR5Testing Age (Days)ABCAVG. 146797668670796854 287441735470237273 568376839379428237 918482839084718448 1829016860185338717 3649212932390899208 COMPRESSIVE STRENGTH (psi) MIXCPR6Testing Age (Days)ABCAVG. 145784605357225853 286163638663276292 566682700468896858 917505725172957350 1827745744474057531 3647670808676007785 COMPRESSIVE STRENGTH (psi) MIXCPR7Sample not included in Average Testing Age (Days)ABCAVG. 147709785070267528 288082834388618429 568995889681588683 918161941089248832 1829483842488918933 3648951911173799031 COMPRESSIVE STRENGTH (psi) MIXCPR8Testing Age (Days)ABCAVG. 146533653663426470 287106696971537076 566936749975157317 917072522474756590 1827535796980047836 3648007719877697658 COMPRESSIVE STRENGTH (psi) MIXCPR9Testing Age (Days)ABCAVG. 148493895787958748 288681854184438555 568792941889969069 918352811782258231 1829239902893359201 3649520901899629500 COMPRESSIVE STRENGTH (psi) MIXCPR10Testing Age (Days)ABCAVG. 147768772781957897 288098859881698288 568582893985938705 918964885990788967 1829573927793439398 3649050948992709270 COMPRESSIVE STRENGTH (psi)

PAGE 144

144 Table B-1. Continued. MIXCPR11Testing Age (Days)ABCAVG. 177251685880077372 287647810981017952 568021788384608121 917940801682368064 1828629803583238329 3648547875286498649 COMPRESSIVE STRENGTH (psi) MIXCPR12Testing Age (Days)ABCAVG. 145257589352645471 285824503556335497 566573637553736107 916323659856896203 1826351607258716098 3646562532077326538 COMPRESSIVE STRENGTH (psi) MIXCPR13Testing Age (Days)ABCAVG. 145710606559275901 286425643267056521 567550739867257224 917625739268627293 1827940731474217558 3648258799678798044 COMPRESSIVE STRENGTH (psi) MIXCPR15Testing Age (Days)ABCAVG. 144036327539043738 285069463337684490 565826498249615256 916208530958715796 1826070615167096310 3646094661466736460 COMPRESSIVE STRENGTH (psi) MIXCPR16Testing Age (Days)ABCAVG. 145926644857926055 286388562963036107 566942764567617116 917658642776877257 1827674823478547921 3647533790486838040 COMPRESSIVE STRENGTH (psi) MIXCPR17Testing Age (Days)ABCAVG. 146241552571986321 287052705676127240 567926798679797964 918024828483458218 1829808967884099298 36410314103081042510349 COMPRESSIVE STRENGTH (psi) MIXCPR18Testing Age (Days)ABCAVG. 145835612667926251 286709693469626868 567163695480767398 918112819682118173 1829137863487478839 3648644936693709127 COMPRESSIVE STRENGTH (psi) MIXCPR20Testing Age (Days)ABCAVG. 148889897689878951 2810125952195109719 5610116113091003610487 9111368107081169611257 18212044111591138311529 36412337116341122111731 COMPRESSIVE STRENGTH (psi) MIXCPR21Testing Age (Days)ABCAVG. 145298569756015532 285940625261126101 567138770772097351 917396869175127866 1828910833382948512 3648689927086918883 COMPRESSIVE STRENGTH (psi)

PAGE 145

145 CPR1-W/C=0.49, Plain 564 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR2-W/C=0.35, Plain 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR3-W/C=0.45, Plain 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR4-W/C=0.28, 20%FA, 8%SF 900 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR5-W/C=0.35, 20%FA 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR6-W/C=0.35, 12%CFA 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR7-W/C=0.35, 8%SF 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR8-W/C=0.35, 20%FA, 8%SF 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) Figure B-1. Concrete Comp ression Strength Graphs.

PAGE 146

146 CPR9-W/C=0.35, 10%Meta 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR10-W/C=0.35, 10%Meta, 20%FA 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR11-W/C=0.35, 50%Slag 752 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR12-W/C=0.35, 4.5CN 752 lb Cementitious 3000 6000 9000 12000 14285691182364Age (Days)Strength (psi) CPR13-W/C=0.45, Plain 569.7 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR15-W/C=0.29, 20%FA 565 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR16-W/C=0.33, 18%FA 807.4 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR17-W/C=0.34, 18%FA 840 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) Figure B-1. Continued.

PAGE 147

147 CPR18-W/C=0.30, 20%FA 842 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR20-W/C=0.28, 20%FA 1000 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) CPR21-W/C=0.29, 18%FA 935 lb Cementitious 3000 6000 9000 12000 14285691182364 Age (Days)Strength (psi) Figure B-1. Continued.

PAGE 148

148 APPENDIX C LABORATORY LONG-TERM CHLORIDE PENETRATION TEST (BULK DIFFUSION) DATA AND ANALYSIS RESULTS Table C-1. Initial Chloride Backgr ound Level of Concrete Mixtures. Initial Chloride Background Level (lb/yd3) Mixture Name Sample A Sample B Sample C Average Standard Deviation Coefficient of Variation (%) CPR1 0.112 0.149 0.137 0.133 0.019 14 CPR2 0.097 0.053 0.087 0.079 0.023 29 CPR3 0.093 0.136 0.145 0.125 0.028 22 CPR4 0.192 0.130 0.130 0.151 0.036 24 CPR5 0.181 0.112 0.126 0.140 0.036 26 CPR6 0.097 0.114 0.110 0.107 0.009 8 CPR7 0.284 0.204 0.212 0.233 0.044 19 CPR8 0.077 0.111 0.101 0.096 0.017 18 CPR9 0.070 0.076 0.080 0.075 0.005 7 CPR10 0.087 0.070 0.066 0.074 0.011 15 CPR11 0.146 0.209 0.200 0.185 0.034 18 CPR12 0.147 0.139 0.136 0.141 0.006 4 CPR13 0.181 0.174 0.178 0.178 0.004 2 CPR15 0.467 0.546 0.533 0.515 0.042 8 CPR16 0.124 0.130 0.125 0.126 0.003 3 CPR17 0.187 0.212 0.139 0.179 0.037 21 CPR18 0.221 0.274 0.281 0.259 0.033 13 CPR20 0.146 0.100 0.112 0.119 0.024 20 CPR21 0.323 0.286 0.338 0.316 0.027 8

PAGE 149

149 Table C-2. 1-Year Bulk Diffusion Chloride Profile Testing Results. MIX CPR1 Depth (in.)ABCAVG 0.0 0.2534.54538.94136.22936.572 0.25 0.5026.32129.10523.78926.405 0.50 0.7523.14421.45221.00721.868 0.75 1.017.01018.18318.61017.934 1.0 1.2514.09014.49113.56714.049 1.25 1.512.54311.2610.12811.310 1.5 1.759.3949.1198.5199.011 1.75 2.06.8836.7686.2856.645 2.0 2.255.7414.5124.1694.807 2.25 2.54.9623.3462.7833.697 2.5 2.754.4172.2061.6932.772 2.75 3.03.8581.3510.9922.067 NaCl (lb/yd3) MIX CPR2 Depth (in.)ABCAVG 0.0 0.2539.65842.39739.40840.488 0.25 0.5024.82627.06427.00426.298 0.50 0.7516.31217.00415.94416.420 0.75 1.08.23010.62210.4229.758 1.0 1.252.4573.7325.0923.760 1.25 1.50.5971.1491.5751.107 1.5 1.750.2030.4490.4060.353 1.75 2.00.2080.4420.2610.304 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR3 Depth (in.)ABCAVG 0.0 0.2546.10648.04046.61546.920 0.25 0.5030.35035.38733.33833.025 0.50 0.7523.41922.51822.25922.732 0.75 1.018.89817.60418.46418.322 1.0 1.2512.99214.95113.15113.698 1.25 1.59.4839.7378.8009.340 1.5 1.756.7245.8645.6116.066 1.75 2.04.3263.5023.0113.613 2.0 2.252.1882.0981.2141.833 2.25 2.51.0051.2250.5060.912 2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR4 Depth (in.)ABCAVG 0.0 0.2538.98542.38735.51038.961 0.25 0.5017.06616.19814.25115.838 0.50 0.753.5533.7013.3633.539 0.75 1.00.8610.9661.1951.007 1.0 1.250.5240.4750.5540.518 1.25 1.50.3380.3690.3480.352 1.5 1.750.3650.3800.3140.353 1.75 2.00.2970.3060.2850.296 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR5 Depth (in.)ABCAVG 0.0 0.2538.78040.82741.40140.336 0.25 0.5027.84329.10724.51727.156 0.50 0.7513.99918.21515.87316.029 0.75 1.07.2209.06010.5958.958 1.0 1.253.9555.2107.2675.477 1.25 1.52.6443.2875.6093.847 1.5 1.752.4753.2244.1413.280 1.75 2.02.1312.8884.2023.074 2.0 2.252.6163.2674.3753.419 2.25 2.52.4202.9524.1313.168 2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR6 Depth (in.)ABCAVG 0.0 0.2546.15050.75252.24049.714 0.25 0.5033.31935.78533.16634.090 0.50 0.7521.56622.17020.22821.321 0.75 1.012.98511.79012.54312.439 1.0 1.255.9934.7135.5475.418 1.25 1.52.0601.4801.6231.721 1.5 1.750.6070.5510.5130.557 1.75 2.00.4230.3410.3500.371 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3)

PAGE 150

150 Table C-2. Continued. MIX CPR7 Depth (in.)ABCAVG 0.0 0.2543.89943.25045.91544.355 0.25 0.5022.23825.09120.44122.590 0.50 0.7511.4189.7918.0959.768 0.75 1.04.1542.4052.6533.071 1.0 1.251.0830.9950.5400.873 1.25 1.50.4360.5200.3220.426 1.5 1.750.2960.4180.2760.330 1.75 2.00.3210.3500.2570.309 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR8 Depth (in.)ABCAVG 0.0 0.2543.41152.65447.41047.825 0.25 0.5026.43633.02331.47730.312 0.50 0.7510.18915.29317.02614.169 0.75 1.02.0724.1427.7354.650 1.0 1.250.4440.7802.2011.142 1.25 1.50.2850.2770.4850.349 1.5 1.750.2610.3280.3230.304 1.75 2.00.2300.2460.2540.243 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR9 Depth (in.)ABCAVG 0.0 0.2548.11345.02356.62749.921 0.25 0.5014.63517.55322.05818.082 0.50 0.751.9204.0085.6003.843 0.75 1.00.3090.7571.2580.775 1.0 1.250.1730.2950.3180.262 1.25 1.50.1560.2520.2640.224 1.5 1.750.2260.2550.2600.247 1.75 2.00.1930.2330.2870.238 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR10 Depth (in.)ABCAVG 0.0 0.2545.22437.53341.90741.555 0.25 0.5025.40322.54029.94725.963 0.50 0.759.6559.0299.3199.334 0.75 1.03.6482.5562.3182.841 1.0 1.251.0010.6970.5690.756 1.25 1.50.6290.3320.2390.400 1.5 1.750.3960.3430.2670.335 1.75 2.00.2970.1970.2520.249 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR11 Depth (in.)ABCAVG 0.0 0.2544.07658.04348.73250.284 0.25 0.5030.68434.26636.17033.707 0.50 0.7514.20110.89513.38512.827 0.75 1.03.5122.2166.4594.062 1.0 1.250.5090.7771.6210.969 1.25 1.50.2540.2570.8880.466 1.5 1.750.2620.2240.3210.269 1.75 2.00.2420.2730.2440.253 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR12 Depth (in.)ABCAVG 0.0 0.2569.23349.49457.56958.765 0.25 0.5040.86932.61831.39334.960 0.50 0.7529.82526.07125.37327.090 0.75 1.020.95418.91419.06619.645 1.0 1.2515.92513.83812.72014.161 1.25 1.58.2918.1496.4507.630 1.5 1.754.3411.5842.1192.681 1.75 2.01.8010.2790.4220.834 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3)

PAGE 151

151 Table C-2. Continued. MIX CPR13 Depth (in.)ABCAVG 0.0 0.2543.62550.51853.27349.139 0.25 0.5032.30735.40535.10434.272 0.50 0.7525.69222.10428.52125.439 0.75 1.023.62818.67022.45721.585 1.0 1.2514.02215.14213.77314.312 1.25 1.59.5329.3689.1829.361 1.5 1.755.2036.0375.7505.663 1.75 2.02.8393.3412.9153.032 2.0 2.251.1501.2660.7401.052 2.25 2.50.7470.9530.6600.787 2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR15 Depth (in.)ABCAVG 0.0 0.2546.51153.90753.38551.268 0.25 0.5037.70447.27541.11542.031 0.50 0.7532.42317.38916.61022.141 0.75 1.024.99911.27512.84516.373 1.0 1.2510.0277.6569.5609.081 1.25 1.55.2433.8894.2104.447 1.5 1.751.9562.1852.9292.357 1.75 2.00.8531.3791.2101.147 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR16 Depth (in.)ABCAVG 0.0 0.2551.16644.49237.76344.474 0.25 0.5033.77031.68227.84931.100 0.50 0.7526.83121.83218.55622.406 0.75 1.017.01112.56312.23113.935 1.0 1.255.3726.0334.4435.283 1.25 1.52.5263.3602.3432.743 1.5 1.750.7301.4381.1631.110 1.75 2.00.5520.8831.1110.849 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR17 Depth (in.)ABCAVG 0.0 0.2525.27123.57922.05023.633 0.25 0.5014.68516.79115.53915.672 0.50 0.759.35710.4929.7829.877 0.75 1.02.3956.1134.6344.381 1.0 1.250.8185.1942.3142.775 1.25 1.50.3181.7860.7400.948 1.5 1.750.3150.5850.3680.423 1.75 2.00.2720.3600.4780.370 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR18 Depth (in.)ABCAVG 0.0 0.2523.17523.33725.51524.009 0.25 0.5017.43815.20117.45616.698 0.50 0.752.4443.5565.0273.676 0.75 1.01.4711.7281.3531.517 1.0 1.250.5540.5250.5460.542 1.25 1.50.5370.5130.4890.513 1.5 1.750.5000.5140.4530.489 1.75 2.00.4750.4860.4510.471 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3) MIX CPR20 Depth (in.)ABCAVG 0.0 0.2521.32122.30721.28821.639 0.25 0.5013.29913.69310.15812.383 0.50 0.756.9564.6683.2364.953 0.75 1.03.5112.8891.0522.484 1.0 1.251.1430.4320.2700.615 1.25 1.50.6830.2770.8720.611 1.5 1.750.3900.3050.2780.324 1.75 2.00.3860.2330.3170.312 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3)

PAGE 152

152 Table C-2. Continued. MIX CPR21 Depth (in.)ABCAVG 0.0 0.2532.78224.57625.69827.685 0.25 0.5022.95320.16813.71718.946 0.50 0.755.2698.6193.7015.863 0.75 1.00.9372.4351.2341.535 1.0 1.250.4010.4670.3690.412 1.25 1.50.4160.3280.3040.349 1.5 1.750.3180.3130.3350.322 1.75 2.00.4550.3450.3260.375 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---NaCl (lb/yd3)

PAGE 153

153 01234 0 20 40 60 80 CPR1 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.245E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 34.385 Sum(Error)^2 22.047 01234 0 20 40 60 80 CPR1 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.661E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 39.102 Sum(Error)^2 23.577 01234 0 20 40 60 80 CPR1 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.735E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 35.500 Sum(Error)^2 29.996 01234 0 20 40 60 80 CPR2 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.050E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 46.835 Sum(Error)^2 4.801 01234 0 20 40 60 80 CPR2 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.433E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 49.390 Sum(Error)^2 4.615 01234 0 20 40 60 80 CPR2 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.863E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 45.930 Sum(Error)^2 2.434 Figure C-1. 1-Year Bu lk Diffusion Coefficient Regression Analysis.

PAGE 154

154 01234 0 20 40 60 80 CPR3 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.064E-11 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 47.345 Sum(Error)^2 32.245 01234 0 20 40 60 80 CPR3 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 9.738E-12 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 51.026 Sum(Error)^2 32.624 01234 0 20 40 60 80 CPR3 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 9.440E-12 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 49.637 Sum(Error)^2 21.269 01234 0 20 40 60 80 CPR4 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.345E-12 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 53.651 Sum(Error)^2 2.183 01234 0 20 40 60 80 CPR4 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.175E-12 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 59.521 Sum(Error)^2 0.362 01234 0 20 40 60 80 CPR4 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.254E-12 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 49.262 Sum(Error)^2 0.594 Figure C-1. Continued.

PAGE 155

155 01234 0 20 40 60 80 CPR5 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.222E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 46.474 Sum(Error)^2 25.196 01234 0 20 40 60 80 CPR5 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.255E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 47.442 Sum(Error)^2 29.211 01234 0 20 40 60 80 CPR5 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.948E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 44.192 Sum(Error)^2 80.317 01234 0 20 40 60 80 CPR6 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.374E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 54.147 Sum(Error)^2 3.729 01234 0 20 40 60 80 CPR6 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.637E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 60.405 Sum(Error)^2 4.615 01234 0 20 40 60 80 CPR6 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.378E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 60.744 Sum(Error)^2 5.089 Figure C-1. Continued.

PAGE 156

156 01234 0 20 40 60 80 CPR7 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.299E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 54.787 Sum(Error)^2 3.243 01234 0 20 40 60 80 CPR7 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.255E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 55.418 Sum(Error)^2 4.376 01234 0 20 40 60 80 CPR7 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.656E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 60.326 Sum(Error)^2 1.686 01234 0 20 40 60 80 CPR8 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.351E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 55.771 Sum(Error)^2 9.722 01234 0 20 40 60 80 CPR8 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.729E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 66.298 Sum(Error)^2 10.296 01234 0 20 40 60 80 CPR8 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.562E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 57.763 Sum(Error)^2 3.753 Figure C-1. Continued.

PAGE 157

157 01234 0 20 40 60 80 CPR9 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 8.766E-13 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 71.946 Sum(Error)^2 0.343 01234 0 20 40 60 80 CPR9 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.206E-12 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 62.979 Sum(Error)^2 0.304 01234 0 20 40 60 80 CPR9 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.232E-12 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 78.792 Sum(Error)^2 0.217 01234 0 20 40 60 80 CPR10 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.251E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 57.641 Sum(Error)^2 2.087 01234 0 20 40 60 80 CPR10 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.425E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 47.788 Sum(Error)^2 3.795 01234 0 20 40 60 80 CPR10 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.587E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 54.601 Sum(Error)^2 40.766 Figure C-1. Continued.

PAGE 158

158 01234 0 20 40 60 80 CPR11 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.994E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 55.913 Sum(Error)^2 23.644 01234 0 20 40 60 80 CPR11 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.100E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 75.667 Sum(Error)^2 20.332 01234 0 20 40 60 80 CPR11 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.151E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 61.852 Sum(Error)^2 41.728 01234 0 20 40 60 80 CPR12 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 6.644E-12 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 73.541 Sum(Error)^2 87.970 01234 0 20 40 60 80 CPR12 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 8.406E-12 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 53.329 Sum(Error)^2 34.381 01234 0 20 40 60 80 CPR12 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 6.622E-12 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 60.400 Sum(Error)^2 92.280 Figure C-1. Continued.

PAGE 159

159 020406080100 0 20 40 60 80 CPR13 (Sample A) 364-Day Bulk DiffusionDepth (mm)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.170E-11 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 47.348 Sum(Error)^2 25.547 01234 0 20 40 60 80 CPR13 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 9.155E-12 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 53.144 Sum(Error)^2 46.819 01234 0 20 40 60 80 CPR13 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 9.404E-12 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 56.449 Sum(Error)^2 30.478 01234 0 20 40 60 80 CPR15 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 6.306E-12 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 59.443 Sum(Error)^2 1.443 01234 0 20 40 60 80 CPR15 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.452E-12 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 67.260 Sum(Error)^2 129.612 01234 0 20 40 60 80 CPR15 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.656E-12 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 63.426 Sum(Error)^2 69.269 Figure C-1. Continued.

PAGE 160

160 01234 0 20 40 60 80 CPR16 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.829E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 58.558 Sum(Error)^2 32.588 01234 0 20 40 60 80 CPR16 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.723E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 51.562 Sum(Error)^2 1.914 01234 0 20 40 60 80 CPR16 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.851E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 44.124 Sum(Error)^2 6.116 01234 0 20 40 60 80 CPR17 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.027E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 30.835 Sum(Error)^2 4.053 01234 0 20 40 60 80 CPR17 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.729E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 27.014 Sum(Error)^2 2.928 01234 0 20 40 60 80 CPR17 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.526E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 26.301 Sum(Error)^2 1.103 Figure C-1. Continued.

PAGE 161

161 01234 0 20 40 60 80 CPR18 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.231E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 31.105 Sum(Error)^2 31.462 01234 0 20 40 60 80 CPR18 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.169E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 30.618 Sum(Error)^2 10.314 01234 0 20 40 60 80 CPR18 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.366E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 33.343 Sum(Error)^2 13.152 01234 0 20 40 60 80 CPR20 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.330E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 25.791 Sum(Error)^2 0.225 01234 0 20 40 60 80 CPR20 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.490E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 28.249 Sum(Error)^2 3.121 01234 0 20 40 60 80 CPR20 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.662E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 28.176 Sum(Error)^2 0.717 Figure C-1. Continued.

PAGE 162

162 01234 0 20 40 60 80 CPR21 (Sample A) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.212E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 43.569 Sum(Error)^2 34.620 01234 0 20 40 60 80 CPR21 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.361E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 31.820 Sum(Error)^2 22.834 01234 0 20 40 60 80 CPR21 (Sample C) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.756E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 34.043 Sum(Error)^2 2.471 Figure C-1. Continued.

PAGE 163

163 Table C-3. 3-Year Bulk Diffusion Chloride Profile Testing Results. MIX CPR1 Depth (in.)ABCAVG 0.0 0.2545.27833.45234.58837.773 0.25 0.5038.01735.22634.82836.024 0.50 0.7537.82533.21428.13833.059 0.75 1.026.81827.24328.07727.379 1.0 1.2527.61626.47422.32725.472 1.25 1.524.40125.65814.60921.556 1.5 1.7524.72822.33920.01222.360 1.75 2.021.51317.23519.11619.288 2.0 2.2519.50114.14614.47716.041 2.25 2.517.30813.99412.99414.765 2.5 2.7517.81212.69612.88014.463 2.75 3.010.40111.25811.35811.006 3.0 3.2513.90510.2528.38610.848 3.25 3.512.9478.3066.8499.367 3.5 4.012.709-8.00610.358 NaCl (lb/yd3) MIX CPR2 Depth (in.)ABCAVG 0.0 0.2537.15439.35742.33939.617 0.25 0.5027.53729.15534.62130.438 0.50 0.7523.16025.10727.15025.139 0.75 1.016.86219.34920.44018.884 1.0 1.2514.38712.61015.92714.308 1.25 1.59.82910.45913.71011.333 1.5 1.7510.3405.8638.5758.259 1.75 2.0-5.6974.8665.282 2.0 2.254.1301.298-2.714 2.25 2.51.9810.844-1.413 2.5 2.751.1460.917-1.032 2.75 3.00.6070.773-0.690 3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR3 Depth (in.)ABCAVG 0.0 0.2530.18041.42936.77936.129 0.25 0.5028.31234.03830.97331.108 0.50 0.7521.31629.45325.80925.526 0.75 1.020.95025.21222.98023.047 1.0 1.2513.41118.94421.05517.803 1.25 1.515.24515.55019.72916.841 1.5 1.7511.00313.63114.76213.132 1.75 2.09.06311.47713.92711.489 2.0 2.258.2658.16510.2568.895 2.25 2.55.5237.7069.1207.450 2.5 2.753.9165.4317.4375.595 2.75 3.01.5313.1565.4363.374 3.0 3.251.3512.5843.4252.453 3.25 3.51.1751.6972.3631.745 3.5 4.01.2141.3191.4741.336 NaCl (lb/yd3) MIX CPR4 Depth (in.)ABCAVG 0.0 0.2536.04641.03234.36137.146 0.25 0.5022.62923.51517.39921.181 0.50 0.7514.12111.2955.29210.236 0.75 1.05.9753.1722.3863.844 1.0 1.251.3171.3710.4821.057 1.25 1.5-1.3570.5760.967 1.5 1.750.3850.3710.4660.407 1.75 2.00.3680.8560.3720.532 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR5 Depth (in.)ABCAVG 0.0 0.2542.96039.26642.14941.458 0.25 0.5028.96238.66629.56332.397 0.50 0.7524.60422.81123.24423.553 0.75 1.015.36512.89612.38713.549 1.0 1.255.2005.7118.1406.350 1.25 1.52.0832.5373.2222.614 1.5 1.751.5342.1131.7911.813 1.75 2.01.1682.0391.7561.654 2.0 2.251.2951.3601.6211.425 2.25 2.51.4521.2061.5461.401 2.5 2.751.7891.5311.7911.704 2.75 3.01.8771.6422.0411.853 3.0 3.252.0592.7301.7192.169 3.25 3.51.8842.4702.0302.128 3.5 4.0---NaCl (lb/yd3) MIX CPR6 Depth (in.)ABCAVG 0.0 0.2538.23239.90343.05340.396 0.25 0.5033.88634.92534.93234.581 0.50 0.7527.43429.75928.63428.609 0.75 1.015.26721.66321.05119.327 1.0 1.2513.72013.35513.40813.494 1.25 1.59.6218.0288.8318.827 1.5 1.755.2102.9324.4164.186 1.75 2.02.3091.3671.6811.786 2.0 2.250.6560.2740.5980.509 2.25 2.50.3490.2850.6120.415 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3)

PAGE 164

164 Table C-3. Continued. MIX CPR7 Depth (in.)ABCAVG 0.0 0.2537.60235.22136.54536.456 0.25 0.5025.02026.58022.89124.830 0.50 0.7521.45720.61515.84919.307 0.75 1.09.61212.82311.79011.408 1.0 1.254.0645.0547.0545.391 1.25 1.50.8860.9752.7021.521 1.5 1.750.4660.2680.4400.391 1.75 2.00.2910.2540.2020.249 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR8 Depth (in.)ABCAVG 0.0 0.2536.68135.87237.24336.599 0.25 0.5031.88726.63028.03728.851 0.50 0.7524.10425.11321.11023.442 0.75 1.017.64715.45514.30015.801 1.0 1.259.1097.6728.6218.467 1.25 1.53.1622.0941.6982.318 1.5 1.750.6150.4800.4060.500 1.75 2.00.2400.2550.2960.264 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR9 Depth (in.)ABCAVG 0.0 0.2539.43449.43945.28744.720 0.25 0.5030.80030.57928.55729.979 0.50 0.7518.88118.32518.28818.498 0.75 1.09.9138.5289.8349.425 1.0 1.251.9033.1193.7352.919 1.25 1.50.7611.5510.7221.011 1.5 1.750.3160.7590.4220.499 1.75 2.00.2940.2120.3950.300 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR10 Depth (in.)ABCAVG 0.0 0.2543.99439.01941.45641.490 0.25 0.5038.62635.12635.99336.582 0.50 0.7522.47222.84726.47023.930 0.75 1.022.92213.24114.80016.988 1.0 1.252.2515.5916.1174.653 1.25 1.50.5520.6041.3370.831 1.5 1.750.2630.3030.2040.257 1.75 2.00.1730.7200.3100.401 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR11 Depth (in.)ABCAVG 0.0 0.2550.26142.96653.80049.009 0.25 0.5038.14944.93838.00340.363 0.50 0.7529.26426.98923.56326.605 0.75 1.019.07119.62616.03218.243 1.0 1.2510.17611.1567.7559.696 1.25 1.52.5324.7701.9613.088 1.5 1.750.6030.9900.4500.681 1.75 2.00.2350.1620.3900.262 2.0 2.25---2.25 2.5---2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR12 Depth (in.)ABCAVG 0.0 0.2547.51936.71644.52642.920 0.25 0.5030.46724.30733.42829.401 0.50 0.7526.04922.35425.77824.727 0.75 1.024.14118.09724.90722.382 1.0 1.2520.60419.30921.90020.604 1.25 1.511.86019.18318.65416.566 1.5 1.7511.79017.11613.32014.075 1.75 2.012.30116.03613.35113.896 2.0 2.257.34011.69312.55510.529 2.25 2.59.6988.21110.1709.360 2.5 2.756.6665.5727.1736.470 2.75 3.05.3684.4475.2005.005 3.0 3.251.8203.6614.1533.211 3.25 3.50.7401.8651.7521.452 3.5 4.00.5082.5600.9361.335 NaCl (lb/yd3)

PAGE 165

165 Table C-3. Continued. MIX CPR13 Depth (in.)ABCAVG 0.0 0.2534.93033.65936.59735.062 0.25 0.5029.76430.21332.68730.888 0.50 0.7528.12826.01126.82626.988 0.75 1.023.02522.11323.23022.789 1.0 1.2520.79818.83320.67020.100 1.25 1.518.27516.90316.82917.336 1.5 1.7516.27314.01215.17315.153 1.75 2.014.50813.16212.89113.520 2.0 2.2514.76413.85912.88913.837 2.25 2.514.57913.89012.09913.523 2.5 2.7514.28714.66410.59713.183 2.75 3.012.31911.3829.22710.976 3.0 3.2511.4939.5325.9528.992 3.25 3.510.3037.9976.5588.286 3.5 4.09.0786.7005.0176.932 NaCl (lb/yd3) MIX CPR15 Depth (in.)ABCAVG 0.0 0.2525.83034.63536.06232.176 0.25 0.5022.79930.03131.16928.000 0.50 0.7520.58829.28429.64026.504 0.75 1.020.33728.95924.30424.533 1.0 1.2515.97819.97422.32619.426 1.25 1.512.25618.06019.88216.733 1.5 1.758.53413.63014.74012.301 1.75 2.06.89611.75511.0209.890 2.0 2.25-5.8617.4556.658 2.25 2.5-3.8896.5945.242 2.5 2.75-3.5364.4573.997 2.75 3.0-3.0874.6083.848 3.0 3.25-3.5224.4844.003 3.25 3.5-3.4594.7314.095 3.5 4.0-4.6885.8515.270 NaCl (lb/yd3) MIX CPR16 Depth (in.)ABCAVG 0.0 0.2546.39439.54240.10442.013 0.25 0.5033.45932.95533.20333.206 0.50 0.7528.50623.56825.58525.886 0.75 1.021.67813.28419.10818.023 1.0 1.2513.5467.70613.50611.586 1.25 1.58.6324.9687.1046.901 1.5 1.754.0263.0913.7733.630 1.75 2.01.3871.3202.3241.677 2.0 2.25--1.3221.322 2.25 2.5--0.8820.882 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR17 Depth (in.)ABCAVG 0.0 0.2543.95145.94451.95147.282 0.25 0.5035.44037.45544.94239.279 0.50 0.7525.86728.42928.55827.618 0.75 1.016.00318.82521.20918.679 1.0 1.258.0105.83817.92210.590 1.25 1.52.8131.5847.8984.098 1.5 1.750.7700.4692.6251.288 1.75 2.00.4420.2931.2090.648 2.0 2.250.3090.3060.4530.356 2.25 2.50.3590.3170.3270.334 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR18 Depth (in.)ABCAVG 0.0 0.2534.94429.51943.41435.959 0.25 0.5036.96630.59135.49834.352 0.50 0.7528.34626.11921.90625.457 0.75 1.09.75911.0176.7819.186 1.0 1.253.0102.7131.7312.485 1.25 1.50.5570.6240.5260.569 1.5 1.750.4250.4850.4090.440 1.75 2.00.5350.6440.6590.613 2.0 2.250.6440.4260.3290.466 2.25 2.50.5290.4580.3870.458 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3) MIX CPR20 Depth (in.)ABCAVG 0.0 0.2541.52549.32058.42049.755 0.25 0.5033.76037.40139.89437.018 0.50 0.7526.66426.42127.46926.851 0.75 1.017.16713.62415.99915.597 1.0 1.2511.9776.0436.8538.291 1.25 1.56.4022.0832.0793.521 1.5 1.751.7750.8780.5641.072 1.75 2.00.9130.8480.5000.754 2.0 2.250.2210.1800.2090.203 2.25 2.50.1430.1710.1640.159 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3)

PAGE 166

166 Table C-3. Continued. MIX CPR21 Depth (in.)ABCAVG 0.0 0.2536.26551.99538.73842.333 0.25 0.5032.55141.47631.85835.295 0.50 0.7518.98125.40015.37719.919 0.75 1.05.2636.4564.5305.416 1.0 1.252.0842.4111.5132.003 1.25 1.50.7290.5540.7220.668 1.5 1.750.4710.5600.5820.538 1.75 2.00.5540.8890.5960.680 2.0 2.250.4590.3790.4630.434 2.25 2.50.4730.4280.4140.438 2.5 2.75---2.75 3.0---3.0 3.25---3.25 3.5---3.5 4.0---NaCl (lb/yd3)

PAGE 167

167 01234 0 20 40 60 80 CPR1 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.983E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 42.142 Sum(Error)^2 111.39 01234 0 20 40 60 80 CPR1 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.537E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 37.922 Sum(Error)^2 34.265 01234 0 20 40 60 80 CPR1 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.415E-11 Background(lb/yd^3) 0.133 Surface(lb/yd^3) 35.642 Sum(Error)^2 78.827 01234 0 20 40 60 80 CPR2 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.371E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 38.149 Sum(Error)^2 19.129 01234 0 20 40 60 80 CPR2 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.383E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 42.069 Sum(Error)^2 12.811 01234 0 20 40 60 80 CPR2 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.034E-12 Background(lb/yd^3) 0.079 Surface(lb/yd^3) 45.607 Sum(Error)^2 6.129 Figure C-2. 3-Year Bu lk Diffusion Coefficient Regression Analysis.

PAGE 168

168 01234 0 20 40 60 80 CPR3 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 9.706E-12 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 32.424 Sum(Error)^2 24.778 01234 0 20 40 60 80 CPR3 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 8.962E-12 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 42.464 Sum(Error)^2 12.215 01234 0 20 40 60 80 CPR3 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.323E-11 Background(lb/yd^3) 0.125 Surface(lb/yd^3) 36.961 Sum(Error)^2 16.389 01234 0 20 40 60 80 CPR4 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.212E-12 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 43.308 Sum(Error)^2 3.777 01234 0 20 40 60 80 CPR4 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 8.501E-13 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 51.303 Sum(Error)^2 2.647 01234 0 20 40 60 80 CPR4 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.998E-13 Background(lb/yd^3) 0.151 Surface(lb/yd^3) 45.051 Sum(Error)^2 1.928 Figure C-2. Continued.

PAGE 169

169 01234 0 20 40 60 80 CPR5 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.160E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 48.987 Sum(Error)^2 46.661 01234 0 20 40 60 80 CPR5 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.240E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 49.661 Sum(Error)^2 94.298 01234 0 20 40 60 80 CPR5 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.224E-12 Background(lb/yd^3) 0.140 Surface(lb/yd^3) 47.854 Sum(Error)^2 24.127 01234 0 20 40 60 80 CPR6 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.806E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 44.462 Sum(Error)^2 29.179 01234 0 20 40 60 80 CPR6 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.711E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 47.510 Sum(Error)^2 47.238 01234 0 20 40 60 80 CPR6 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.606E-12 Background(lb/yd^3) 0.107 Surface(lb/yd^3) 49.098 Sum(Error)^2 15.013 Figure C-2. Continued.

PAGE 170

170 01234 0 20 40 60 80 CPR7 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.796E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 43.873 Sum(Error)^2 27.617 01234 0 20 40 60 80 CPR7 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.126E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 41.652 Sum(Error)^2 23.136 01234 0 20 40 60 80 CPR7 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.951E-12 Background(lb/yd^3) 0.233 Surface(lb/yd^3) 40.450 Sum(Error)^2 13.613 01234 0 20 40 60 80 CPR8 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.850E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 44.198 Sum(Error)^2 40.838 01234 0 20 40 60 80 CPR8 (Sample B) 364-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.683E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 41.879 Sum(Error)^2 49.509 01234 0 20 40 60 80 CPR8 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.402E-12 Background(lb/yd^3) 0.096 Surface(lb/yd^3) 43.106 Sum(Error)^2 17.445 Figure C-2. Continued.

PAGE 171

171 01234 0 20 40 60 80 CPR9 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.601E-12 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 48.341 Sum(Error)^2 23.642 01234 0 20 40 60 80 CPR9 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.227E-12 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 58.918 Sum(Error)^2 1.641 01234 0 20 40 60 80 CPR9 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.392E-12 Background(lb/yd^3) 0.075 Surface(lb/yd^3) 53.198 Sum(Error)^2 3.818 01234 0 20 40 60 80 CPR10 (Sample A) 1092-Day Bulk DiffusionDepth (mm)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.168E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 54.117 Sum(Error)^2 157.50 01234 0 20 40 60 80 CPR10 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.108E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 48.665 Sum(Error)^2 52.531 01234 0 20 40 60 80 CPR10 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.172E-12 Background(lb/yd^3) 0.074 Surface(lb/yd^3) 51.317 Sum(Error)^2 67.296 Figure C-2. Continued.

PAGE 172

172 01234 0 20 40 60 80 CPR11 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.346E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 58.649 Sum(Error)^2 31.993 01234 0 20 40 60 80 CPR11 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.785E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 54.684 Sum(Error)^2 115.51 01234 0 20 40 60 80 CPR11 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.776E-12 Background(lb/yd^3) 0.185 Surface(lb/yd^3) 62.573 Sum(Error)^2 8.648 01234 0 20 40 60 80 CPR12 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 8.174E-12 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 43.146 Sum(Error)^2 141.87 01234 0 20 40 60 80 CPR12 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.505E-11 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 32.824 Sum(Error)^2 106.19 01234 0 20 40 60 80 CPR12 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.121E-11 Background(lb/yd^3) 0.141 Surface(lb/yd^3) 41.576 Sum(Error)^2 70.944 Figure C-2. Continued.

PAGE 173

173 01234 0 20 40 60 80 CPR13 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.179E-11 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 32.031 Sum(Error)^2 62.519 01234 0 20 40 60 80 CPR13 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.681E-11 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 31.344 Sum(Error)^2 75.405 01234 0 20 40 60 80 CPR13 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.765E-11 Background(lb/yd^3) 0.178 Surface(lb/yd^3) 35.485 Sum(Error)^2 41.517 01234 0 20 40 60 80 CPR15 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.004E-11 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 28.404 Sum(Error)^2 14.883 01234 0 20 40 60 80 CPR15 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.001E-11 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 38.815 Sum(Error)^2 70.888 01234 0 20 40 60 80 CPR15 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.139E-11 Background(lb/yd^3) 0.515 Surface(lb/yd^3) 38.552 Sum(Error)^2 39.657 Figure C-2. Continued.

PAGE 174

174 01234 0 20 40 60 80 CPR16 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.426E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 50.868 Sum(Error)^2 18.967 01234 0 20 40 60 80 CPR16 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.527E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 46.620 Sum(Error)^2 13.162 01234 0 20 40 60 80 CPR16 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.570E-12 Background(lb/yd^3) 0.126 Surface(lb/yd^3) 45.735 Sum(Error)^2 9.054 01234 0 20 40 60 80 CPR17 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.305E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 52.297 Sum(Error)^2 23.848 01234 0 20 40 60 80 CPR17 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.265E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 55.521 Sum(Error)^2 66.084 01234 0 20 40 60 80 CPR17 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.013E-12 Background(lb/yd^3) 0.179 Surface(lb/yd^3) 60.245 Sum(Error)^2 45.841 Figure C-2. Continued.

PAGE 175

175 01234 0 20 40 60 80 CPR18 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.165E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 47.266 Sum(Error)^2 196.58 01234 0 20 40 60 80 CPR18 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.412E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 39.726 Sum(Error)^2 151.98 01234 0 20 40 60 80 CPR18 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.459E-12 Background(lb/yd^3) 0.259 Surface(lb/yd^3) 54.786 Sum(Error)^2 62.999 01234 0 20 40 60 80 CPR20 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.004E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 48.184 Sum(Error)^2 17.569 01234 0 20 40 60 80 CPR20 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.891E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 58.766 Sum(Error)^2 19.541 01234 0 20 40 60 80 CPR20 (Sample C) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.730E-12 Background(lb/yd^3) 0.119 Surface(lb/yd^3) 68.012 Sum(Error)^2 9.173 Figure C-2. Continued.

PAGE 176

176 01234 0 20 40 60 80 CPR21 (Sample A) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.517E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 46.782 Sum(Error)^2 73.470 01234 0 20 40 60 80 CPR21 (Sample B) 1092-Day Bulk DiffusionDepth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.384E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 65.549 Sum(Error)^2 86.231 01234 0 20 40 60 80 CPR21 (Sample C) 1092-Day Bulk DiffusionDepth (mm)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.246E-12 Background(lb/yd^3) 0.316 Surface(lb/yd^3) 49.553 Sum(Error)^2 48.177 Figure C-2. Continued.

PAGE 177

177 APPENDIX D FIELD CORE SAMPLING DATA AND ANALYSIS RESULTS Table D-1. Initial Chloride Background Level of Cored Samples. Initial Chloride Samples (lb/yd3) Bridge Name Lab. # A B C Average 5016 0.547(a) 5017 0.515 0.514 0.570 0.533 Hurricane Pass (HPB) 5018 0.529 0.594 0.560 0.561 5054 0.426 0.483 0.492 0.467 Broadway Replacement (BRB) 5081 0.843 0.904 0.828 0.858(b) 5082 0.435 0.508 0.458 0.467 Seabreeze West Bound (SWB) 5083 0.390 0.441 0.465 0.432 Granada (GRB) 5084 0.669 0.649 0.594 0.637 5078 0.550 0.574 0.544 0.556 5079 0.423 0.420 0.427 0.423 Turkey Creek (TCB) 5080 0.414 0.415 0.423 0.417 5075 0.623 0.609 0.609 0.614 5076 0.445 0.423 0.427 0.432 New Roosevelt (NRB) 5077 0.332 0.407 0.408 0.382 (a) Initial Chlorides were not tested for this sample. An average between Lab sample# 5017 and 5018 was reported. (b) Initial Chloride value was considered an erroneous valu e (too high). The value of initial chlorides from Lab sample# 5054 was used.

PAGE 178

178 Table D-2. Chloride Profile Test ing Results of Cored Samples. Brid g e Hurricane (HPB) Lab # 5016 Depth (in)ABCAVG 0.0 0.2513.32713.28513.45213.355 0.25 0.503.1103.5123.5553.392 0.50 0.752.1552.2012.1762.177 0.75 1.00.6770.6880.6870.684 1.0 1.250.5640.4900.4950.516 1.25 1.500.4400.4410.4220.434 1.50 1.750.3570.3410.3490.349 1.75 2.00.3730.4350.3600.389 2.0 2.250.3490.3500.3450.348 NaCl (lb/yd3) Brid g e Hurricane (HPB) Lab # 5017 Depth (in)ABCAVG 0.0 0.0832.32932.18631.93632.150 0.08 0.1633.48533.62932.96933.361 0.16 0.2426.49926.95226.84426.765 0.24 0.3222.56122.30122.30522.389 0.32 0.4020.41220.57520.58520.524 0.40 0.4815.27515.26015.25915.265 0.48 0.727.9108.0058.1498.021 0.72 0.972.7662.7372.7742.759 0.97 1.220.7730.7950.8020.790 1.22 1.470.3170.3660.3590.347 NaCl (lb/yd3) Brid g e Hurricane (HPB) Lab # 5018 Depth (in)ABCAVG 0.0 0.0837.61837.62738.20137.815 0.08 0.1634.59934.44034.80434.614 0.16 0.2430.44030.43130.55630.476 0.24 0.3225.69625.93626.04625.893 0.32 0.4022.94223.07322.98022.998 0.40 0.4819.04217.17917.25217.824 0.48 0.727.7288.2637.9447.978 0.72 0.971.7441.7721.7831.766 0.97 1.220.4540.5040.4690.476 1.22 1.470.5920.6030.5480.581 NaCl (lb/yd3) Brid g e Broadway Replacement (BRB) Lab # 5054 Depth (in)ABCAVG 0.0 0.0820.12820.78520.92020.611 0.08 0.1626.40725.67426.31126.131 0.16 0.2423.06322.69922.62422.795 0.24 0.3219.44520.02619.30219.591 0.32 0.4019.56119.90619.90619.791 0.40 0.4816.88116.90417.25417.013 0.48 0.727.4978.0017.8577.785 0.72 0.971.1751.2221.2171.205 0.97 1.220.5530.5890.5960.579 1.22 1.470.4530.4750.5010.476 NaCl (lb/yd3) Brid g e Broadway Replacement (BRB) Lab # 5081 Depth (in)ABCAVG 0.0 0.0830.61430.39930.52130.511 0.08 0.1624.60824.69324.62824.643 0.16 0.2420.43820.16619.77320.126 0.24 0.3216.36016.01615.94916.108 0.32 0.4014.17713.89514.07914.050 0.40 0.4812.66512.31812.65712.547 0.48 0.723.6493.7113.5863.649 0.72 0.970.2480.2640.2360.249 0.97 1.220.2520.2650.2680.262 1.22 1.470.2880.3000.2660.285 NaCl (lb/yd3) Brid g e Seabreeze (SWB) Lab # 5082 Depth (in)ABCAVG 0.0 0.0840.65840.64540.06240.455 0.08 0.1638.18737.86338.17538.075 0.16 0.2431.93731.98031.83631.918 0.24 0.3229.02628.97829.29729.100 0.32 0.4027.54127.76027.11427.472 0.40 0.4826.47026.29026.27826.346 0.48 0.7220.98020.70120.33020.670 0.72 0.977.6247.3768.1237.708 0.97 1.22---1.22 1.47---NaCl (lb/yd3)

PAGE 179

179 Table D-2. Continued. Brid g e Seabreeze (SWB) Lab # 5083 Depth (in)ABCAVG 0.0 0.0839.84139.84139.86839.850 0.08 0.1638.94839.14838.48838.861 0.16 0.2434.42635.01534.54534.662 0.24 0.3232.31532.97232.72032.669 0.32 0.4026.69726.80127.00926.836 0.40 0.4822.87123.33023.32723.176 0.48 0.7213.86914.01114.20114.027 0.72 0.971.6231.9902.3821.998 0.97 1.220.4590.4590.4360.451 1.22 1.470.4660.4950.4520.471 NaCl (lb/yd3) Brid g e Granada Crashwall (GRB) Lab # 5084 Depth (in)ABCAVG 0.0 0.080.9180.8690.8580.882 0.08 0.160.6710.6760.6940.680 0.16 0.240.5600.5950.6160.590 0.24 0.320.4780.5010.4900.490 0.32 0.400.4500.4720.4840.469 0.40 0.480.5040.4430.4370.461 0.48 0.720.4450.4590.4080.437 0.72 0.970.3850.4020.3810.389 0.97 1.220.4530.3980.3770.409 1.22 1.470.3540.3970.4040.385 NaCl (lb/yd3) Brid g e Turkey Creek (TCB) Lab # 5078 Depth (in)ABCAVG 0.0 0.0826.03825.61825.96525.874 0.08 0.1619.10119.20519.27719.194 0.16 0.2414.34114.27514.24214.286 0.24 0.3211.83812.02811.49011.785 0.32 0.409.3819.3819.3039.355 0.40 0.486.4696.4476.3636.426 0.48 0.724.4104.3284.3384.359 0.72 0.971.6051.6161.5991.607 0.97 1.222.257--2.257 1.22 1.470.7700.8160.7430.776 NaCl (lb/yd3) Brid g e Turkey Creek (TCB) Lab # 5079 Depth (in)ABCAVG 0.0 0.0828.19427.83727.90827.980 0.08 0.1621.14321.02321.02321.063 0.16 0.2414.08914.08913.96214.047 0.24 0.3210.70710.48910.43010.542 0.32 0.408.3368.1227.7898.082 0.40 0.485.8695.7485.9865.868 0.48 0.722.6992.6812.7142.698 0.72 0.970.7480.7730.7360.752 0.97 1.220.3990.4070.4040.403 1.22 1.470.3590.3880.4110.386 NaCl (lb/yd3) Brid g e Turkey Creek (TCB) Lab # 5080 Depth (in)ABCAVG 0.0 0.0830.19430.47430.03930.236 0.08 0.1624.93934.46425.21928.207 0.16 0.2416.42516.25716.66316.448 0.24 0.3213.37813.39813.06013.279 0.32 0.409.99010.33110.37210.231 0.40 0.486.6996.7906.7466.745 0.48 0.722.8932.9302.9022.908 0.72 0.970.6650.6730.6790.672 0.97 1.220.3050.3460.3290.327 1.22 1.470.2760.2600.2630.266 NaCl (lb/yd3) Brid g e New Roosevelt (NRB) Lab # 5075 Depth (in)ABCAVG 0.0 0.0815.41014.87214.67414.985 0.08 0.1621.57022.26221.92621.919 0.16 0.2419.27919.27919.57519.378 0.24 0.3216.98917.21317.14417.115 0.32 0.4015.69415.59315.78415.690 0.40 0.4813.35313.48113.53013.455 0.48 0.728.3308.4658.4978.431 0.72 0.972.9732.8563.1723.000 0.97 1.220.4670.4200.4900.459 1.22 1.470.3150.3270.3430.328 NaCl (lb/yd3)

PAGE 180

180 Table D-2. Continued. Brid g e New Roosevelt (NRB) Lab # 5076 Depth (in)ABCAVG 0.0 0.0814.95414.83315.16114.983 0.08 0.1614.04914.16514.16214.125 0.16 0.2413.67613.81413.71213.734 0.24 0.3214.50414.61214.60314.573 0.32 0.4016.21316.18616.35816.252 0.40 0.4815.56215.59515.43815.532 0.48 0.7213.96013.93414.24014.045 0.72 0.975.1975.8765.9865.686 0.97 1.223.2653.2883.2523.268 1.22 1.470.4010.4160.4170.411 NaCl (lb/yd3) Brid g e New Roosevelt (NRB) Lab # 5077 Depth (in)ABCAVG 0.0 0.0817.90317.90317.81617.874 0.08 0.1623.95923.88824.03523.961 0.16 0.2421.33421.87221.37421.527 0.24 0.3219.25719.14019.13419.177 0.32 0.4016.46316.65216.57616.564 0.40 0.4814.47414.92614.78914.730 0.48 0.7210.24310.3989.95510.199 0.72 0.972.5282.5762.5882.564 0.97 1.220.5130.5260.5070.515 1.22 1.470.2460.2700.2560.257 NaCl (lb/yd3)

PAGE 181

181 0123 0 20 40 60 Hurricane Bay Bridge #120089 LAB#5016Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 4.994E-14 Back g round(lb/ y d^3 ) 0.547 Surface(lb/yd^3) 20.336 Sum(Error)^2 1.803 0123 0 20 40 60 Hurricane Bay Bridge #120089 LAB#5017Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.487E-13 Back g round(lb/ y d^3 ) 0.533 Surface(lb/yd^3) 41.112 Sum(Error)^2 6.3507 0123 0 20 40 60 Hurricane Bay Bridge #120089 LAB#5018Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.511E-13 Back g round(lb/ y d^3 ) 0.561 Surface(lb/yd^3) 44.904 Sum(Error)^2 16.542 0123 0 20 40 60 Broadway Replac. Bridge #790187 LAB#5054Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.854E-13 Back g round(lb/ y d^3 ) 0.467 Surface(lb/yd^3) 33.012 Sum(Error)^2 30.891 0123 0 20 40 60 Broadway Replac. Bridge #790187 LAB#5081Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.578E-13 Back g round(lb/ y d^3 ) 0.467 Surface(lb/yd^3) 32.401 Sum(Error)^2 14.315 0123 0 20 40 60 Seabreeze Bridge #790174 LAB#5082Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 6.280E-13 Back g round(lb/ y d^3 ) 0.467 Surface(lb/yd^3) 42.497 Sum(Error)^2 29.283 Figure D-1. Cored Samples Chloride Diffusion Coefficient Regression Analysis.

PAGE 182

182 0123 0 20 40 60 Seabreeze Bridge #790174 LAB#5083Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.291E-13 Back g round(lb/ y d^3 ) 0.432 Surface(lb/yd^3) 49.660 Sum(Error)^2 38.365 0123 0 20 40 60 Granada Crashwall #790132 LAB#5084Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.077E-14 Back g round(lb/ y d^3 ) 0.400 Surface(lb/yd^3) 0.942 Sum(Error)^2 0.005 0123 0 20 40 60 Turkey Creek Bridge #700203 LAB#5078Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.854E-13 Back g round(lb/ y d^3 ) 0.556 Surface(lb/yd^3) 26.791 Sum(Error)^2 9.983 0123 0 20 40 60 Turkey Creek Bridge #700203 LAB#5079Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.316E-13 Back g round(lb/ y d^3 ) 0.423 Surface(lb/yd^3) 30.269 Sum(Error)^2 5.892 0123 0 20 40 60 Turkey Creek Bridge #700203 LAB#5080Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.553E-13 Back g round(lb/ y d^3 ) 0.417 Surface(lb/yd^3) 33.237 Sum(Error)^2 5.199 0123 0 20 40 60 New Roosevelt Bridge #890152 LAB#5075Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.606E-13 Back g round(lb/ y d^3 ) 0.614 Surface(lb/yd^3) 27.046 Sum(Error)^2 7.356 Figure D-1. Continued.

PAGE 183

183 0123 0 20 40 60 New Roosevelt Bridge #890152 LAB#5076Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 5.404E-13 Back g round(lb/ y d^3 ) 0.432 Surface(lb/yd^3) 28.700 Sum(Error)^2 12.185 0123 0 20 40 60 New Roosevelt Bridge #890152 LAB#5077Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 3.727E-13 Back g round(lb/ y d^3 ) 0.382 Surface(lb/yd^3) 29.696 Sum(Error)^2 10.147 Figure D-1. Continued.

PAGE 184

184 APPENDIX E SHORT-TERM ELECTRICA L TEST DATA RESULTS Table E-1. RCP Coulombs Testing Results. Sample ASample BSample CAverageStd CPR1 8719896587808821128.101.45 CPR2 5054500152915115154.423.02 CPR3 11689125681353512597923.357.33 CPR4 1450124813801359102.577.55 CPR5 7348726988777831906.4311.57 CPR6 8244803367857687788.5310.26 CPR7 2065194221452051102.264.99 CPR8 237324082426240226.951.12 CPR9 109011698961052140.4813.36 CPR10 136213621318134725.401.89 CPR11 2610298829792859215.697.54 CPR12 12217138871274412949853.726.59 CPR13 8288705874277591631.198.31 CPR15 91417761-8451975.8111.55 CPR16 3964570450014890875.3317.90 CPR17 50105423-5217292.045.60 CPR18 66807277-6979422.146.05 CPR20 42014904-4553497.1010.92 CPR21 74277708-7568198.702.63 MIX COV (%) 14-Day RCP Data (Coulomb) Sample ASample BSample CAverageStd CPR1 6917664468476803141.802.08 CPR2 3753433337793955327.628.28 CPR3 9580914191139278261.912.82 CPR4 78180675778124.503.14 CPR5 5537568654145546136.212.46 CPR6 65488648769976321051.6213.78 CPR7 1371148512481368118.538.66 CPR8 158213971468148293.336.30 CPR9 1063821949944121.0712.82 CPR10 117813621213125197.717.81 CPR11 2215249619692227263.6911.84 CPR12 51866363863167271751.0626.03 CPR13 5669583668206108621.9510.18 CPR15 70148156-7585807.5210.65 CPR16 3894426337273961274.276.92 CPR17 5036354232343937963.8624.48 CPR18 32523032-3142155.564.95 CPR20 3173369129973287360.7710.98 CPR21 43775502-4940795.5016.10 MIX COV (%) 28-Day RCP Data (Coulomb) Sample ASample BSample CAverageStd CPR1 6952841172077523779.2410.36 CPR2 3779385842633967259.656.55 CPR3 864010107697885751565.5118.26 CPR4 54051444850147.439.47 CPR5 2645264524262572126.444.92 CPR6 4184436843954316114.822.66 CPR7 98410551055103140.993.97 CPR8 101110021090103448.424.68 CPR9 83483088885132.393.81 CPR10 92390583888944.795.04 CPR11 167917401723171431.481.84 CPR12 5871591560645950101.151.70 CPR13 5098571355375449316.735.81 CPR15 57745115282145701550.1033.92 CPR16 3261274226102871344.1411.99 CPR17 230322682162224473.423.27 CPR18 159117401652166174.914.51 CPR20 2250186319602024201.369.95 CPR21 2347257524612461114.004.63 56-Day RCP Data (Coulomb) MIX COV (%) Sample ASample BSample CAverageStd CPR1 4676505455995110464.019.08 CPR2 3076377041313659536.1914.65 CPR3 8042718171107444518.816.97 CPR4 40846038841937.178.88 CPR5 177517231749174926.001.49 CPR6 2979312029003000111.453.72 CPR7 858719976851128.6415.12 CPR8 96710371099103466.046.38 CPR9 81978692384371.508.49 CPR10 80587894987772.008.21 CPR11 1564163518541684151.168.97 CPR12 5655448452075115590.8611.55 CPR13 4421491347204685247.905.29 CPR15 3568414844124043431.7510.68 CPR16 209222062224217471.583.29 CPR17 1793234721182086278.3813.35 CPR18 11601134984109395.008.69 CPR20 1477130115471442126.758.79 CPR21 151016461529156273.654.72 91-Day RCP Data (Coulomb) MIX COV (%) Sample ASample BSample CAverageStd CPR1 6047580160565968144.702.42 CPR2 2883288325842783172.636.20 CPR3 6759600359336232458.027.35 CPR4 38635939638019.145.03 CPR5 121311951283123046.493.78 CPR6 4400299243343909794.5420.33 CPR7 1027887-95798.9910.34 CPR8 814989-902123.7413.73 CPR9 719738-72913.441.84 CPR10 577657-61756.579.17 CPR11 12221325-127472.835.72 CPR12 46044436-4520118.792.63 CPR13 4166418439554102127.343.10 CPR15 2769232925662555220.228.62 CPR16 1538119510901274234.3018.39 CPR17 1644128316261518203.4313.40 CPR18 54462158858438.636.61 CPR20 86792391490130.073.34 CPR21 712914888838109.8913.11 182-day RCP Data (Coulomb) MIX COV (%) Sample ASample BSample CAverageStd CPR1 49224660-4791185.263.87 CPR2 2684301130602918204.417.00 CPR3 4627511140504596531.1811.56 CPR4 30930026829221.557.37 CPR5 86279275380255.236.88 CPR6 1371152015641485101.156.81 CPR7 791721-75649.506.55 CPR8 863797-83046.675.62 CPR9 490533-51230.415.94 CPR10 349393-37131.118.39 CPR11 1103983-104384.858.14 CPR12 36183727-367377.072.10 CPR13 41924488-4340209.304.82 CPR15 181417941839181622.551.24 CPR16 11801031-1106105.369.53 CPR17 1175157915081421215.7015.18 CPR18 32935730633125.547.72 CPR20 89173288283589.3110.70 CPR21 39043245342532.087.55 364-day RCP Data (Coulomb) MIX COV (%)

PAGE 185

185 Table E-2. SR (Lime Cured) Testing Results. 090180270090180270 A5.45.95.45.65.35.65.45.75.54 B5.155.35.155.15.35.15.13 C4.65.35.45.44.65.25.55.45.18 A7.87.78.37.97.77.88.787.99 B7.77.66.877.77.66.87.17.29 C77.86.16.57.16.566.46.68 A55.25.15.655.15.35.55.23 B54.64.64.64.84.54.64.84.69 C5.64.94.84.75.64.64.64.74.94 A1917.119.519.717.317.719.119.618.6 B19.517.617.319.819.517.719.71918.8 C17.520.415.517.117.319.115.917.417.5 A5.76.36.25.85.56.26.25.65.94 B6.16.26.55.86.166.35.56.06 C5.45.86.25.65.25.75.85.75.68 A65.65.76.25.95.75.965.88 B6.46.36.35.95.866.266.11 C6.665.86.76.75.75.76.66.23 A10.89.91010.510.210.49.610.610.3 B9.710.210.611.89.810.410.511.810.6 C9.610.210.511.810.510.810.411.810.7 A8.498.28.27.89.18.38.38.41 B8.58.97.97.98.68.88.17.88.31 C8.49.18.7888.68.688.43 A31.228.427.627.131.628.428.327.528.8 B27.724.127.926.827.724.828.227.226.8 C26.528.229.929.626.628.230.429.628.6 A21.824.424.219.922.321.320.622.722.2 B21.823.623.121.721.623.823.421.922.6 C24.219.923.724.924.421.324.322.523.2 5.30.23 CPR1 0.66 28.11.10 CPR8 14-Day Surface Resistivity (Lime Cured) (k .cm) Sample MIX COV (%) Std. Dev. Reading Locations (Deg.) Average 4.26 5.00.275.43 18.30.683.71 7.3 8.40.060.74 8.98 5.90.203.36 6.10.182.94 CPR10 CPR9 3.90 22.60.502.21 CPR6 CPR7 2.25 10.50.24 CPR2 CPR3 CPR4 CPR5 090180270090180270 A12.211.11111.111.310.910.912.111.3 B10.71011.110.110.89.810.910.110.4 C11.710.210.910.611.69.89.810.910.7 A8.28.31010.18.58.49.99.89.15 B8.78.79.610.39.29.810.19.99.54 C8.18.78.18.58.28.28.58.58.35 A6.57.16.76.76.86.96.67.26.81 B6.36.46.26.36.46.46.16.46.31 C6.577.16.86.96.86.66.66.79 A4.544.34.64.644.34.74.38 B3.24.33.83.93.74.143.83.85 C2.73.73.34.63.33.74.55.13.86 A6.46.8776.56.56.976.76 B6.27.26.37.56.57.36.27.56.84 C6.77.17.57.86.76.77.57.87.23 A6.26.16.76.166.26.36.66.28 B55.65.75.55.25.765.25.49 C5.55.35.76.16.35.455.75.63 A8.27.67887.57.28.17.7 B7.27.47.47.17.37.77.26.97.28 C6.56.46.87.86.477.37.66.98 A5.16.34.86.1564.86.65.59 B5.44.35.16.25.46.46.15.35.53 C7.77.16.96.677.26.86.36.95 A5.7555.25.24.94.84.95.09 B5.455.355.44.95.455.18 C5.24.84.75.25.25.14.55.24.99 MIXSample 14-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average CPR20 CPR21 10.80.464.23 9.00.616.72 6.60.284.24 4.00.307.43 6.90.253.58 5.80.427.26 7.30.364.98 6.00.8113.38 5.10.091.85 CPR11 CPR12 CPR13 CPR15 CPR16 CPR17 CPR18 090180270090180270 A5.66.366.55.75.95.76.15.98 B5.75.865.665.865.95.85 C5.45.96.26.15.55.76.26.15.89 A8.78.89.88.87.68.89.78.88.88 B8.98.888.28.99.17.68.18.45 C88.36.878.17.46.87.17.44 A5.65.66.16.25.45.55.66.45.8 B5.655.255.555.25.25.21 C6.35.35.25.165.65.25.15.48 A3330.834.234.635.431.934.532.433.4 B36.233.131.435.435.832.131.740.234.5 C33.637.527.827.133.934.729.327.731.5 A7.57.87.67.57.28.187.17.6 B7.67.88.67.57.58.48.48.17.99 C6.87.37.676.66.97.57.17.1 A7.17.76.87.277.17.16.77.09 B7.17.57.37.17.27.37.37.17.24 C7.96.97.17.77.76.877.87.36 A21.220.91920.420.319.219.420.220.1 B18.419.520.320.918.219.72020.619.7 C20.621.120.122.51922.120.622.721.1 A14.716.116.317.115.816.815.815.916.1 B15.617.41515.815.817.515.715.316 C16.116.716.516.216.317.216.716.116.5 A34.629.427.928.233.430.728.729.630.3 B27.927.931.427.530.427.230.32628.6 C2828.43134.928.127.730.634.730.4 A21.322.71923.220.621.319.420.821 B21.624.124.322.221.823.923.522.523 C24.122.126.125.125.12025.923.824 CPR10 22.71.526.69 CPR9 29.81.043.48 CPR8 16.20.251.57 CPR7 20.30.723.54 CPR6 7.20.141.90 CPR5 7.60.445.88 CPR4 33.11.534.64 CPR3 5.50.295.36 CPR2 8.30.748.95 CPR1 5.90.061.09 COV (%) Reading Locations (Deg.) Std. Dev. Average MIXSample 28-Day Surface Resistivity (Lime Cured) (k .cm) 090180270090180270 A16.315.415.416.117.117.115.415.216 B14.713.815.314.714.613.915.313.914.5 C15.713.314.314.215.813.414.114.314.4 A9.59.811.410.79.69.610.611.210.3 B1111.51011.310.711.69.911.210.9 C9.49.69.59.69.59.89.79.49.56 A7.37.57.27.17.37.47.17.17.25 B6.86.66.66.66.86.66.56.66.64 C7.17.577.17.17.47.577.21 A8.69.27.688.99.27.98.68.5 B7.88.89.698.88.89.19.38.9 C8.68.810.37.18.69.29.87.28.7 A7.27.37.27.377.27.27.47.23 B7.27.76.88.27.87.86.987.55 C7.27.98.47.778.88.37.77.88 A8.18.59.69.58.28.49.68.98.85 B8.37.99.28.6989.48.28.58 C8.48.58.98.697.99.18.78.64 A13.110.410.110.812.410.39.910.611 B11.110.91110.910.912.911.61111.3 C1011.410.711.810.111.310.511.310.9 A10.412.610.910.910.910.51010.110.8 B11.412.611.812.711.411.411.412.211.9 C12.911.911.215.514.712.612.315.313.3 A9.79.18.89.4109.19.710.19.49 B9.69.7109.810.19.39.39.59.66 C8.99.78.411.310.59.69.610.79.84 MIXSample 28-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average CPR21 9.70.181.81 CPR20 12.01.2610.52 CPR18 11.00.221.95 CPR17 8.70.141.66 CPR16 7.60.334.30 CPR15 8.70.202.30 CPR13 7.00.344.88 CPR12 10.30.676.53 CPR11 15.00.895.97

PAGE 186

186 Table E-2. Continued. 090180270090180270 A6.576.77.16.47.26.47.16.8 B6.86.47.16.56.56.36.86.56.61 C6.16.97.2766.97.26.96.78 A9.61010.99.9109.610.810.310.1 B9.89.79.399.79.198.99.31 C8.98.87.788.39.37.988.36 A6.26.56.36.86.666.36.56.4 B6.25.85.85.85.95.75.75.85.84 C7.36.36.15.86.765.95.66.21 A48.244.45253.44744.952.650.449.1 B55.953.350.548.157.449.552.148.551.9 C44.648.441.742.544.947.543.840.744.3 A10.511.111.610.610.712.711.41011.1 B11.811.712.310.911.312.312.210.611.6 C10.410.710.110.610.211.110.410.310.5 A9.49.28.89.99.58.88.79.69.24 B9.69.49.49.19.29.69.49.89.44 C10.28.89.310.210.39.19.410.49.71 A36.737.934.934.136.336.235.135.135.8 B35.335.136.436.7343736.337.636.1 C36.43737.140.935.738.33739.137.7 A24.129.22927.527.32927.827.327.7 B26.828.926.527.226.429.426.927.127.4 C29.130.42927.328.328.629.32728.6 A39.83735.934.640.637.13335.136.6 B37.233.839.232.836.43438.734.635.8 C34.83541.545.336.336.541.445.139.5 A28.531.727.430.230.632.225.730.929.7 B29.132.229.729.625.230.631.730.629.8 C35.231.43331.134.130.534.531.732.7 CPR4 CPR5 0.585.26 CPR10 CPR6 CPR7 CPR8 CPR9 30.71.705.54 37.3 27.90.652.32 9.58 1.51 0.10 11.1 1.925.14 9.50.242.52 36.51.032.82 4.66 48.43.877.99 CPR1 6.7 6.20.29 9.30.89 CPR2 CPR3 MIXSample 56-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average 090180270090180270 A20.72020.120.321.519.719.82120.4 B1817.719.618.118.917.819.418.418.5 C20.117.418.918.320.417.217.818.118.5 A10.510.211.711.21010.211.611.210.8 B12.212.912.212.211.712.711.112.212.2 C11.51110.610.210.511.110.79.810.7 A8.18.28.18.48.17.97.98.68.16 B7.57.67.47.57.67.57.37.77.51 C7.78.38.37.87.78.38.67.88.06 A8.68.77.98.48.28.489.18.41 B8.18.39.18.58.588.98.88.53 C8.48.29.37.88.68.58.87.98.44 A8.99.18.99.78.89.19.110.19.21 B9.39.78.610.49.89.88.510.69.59 C8.81010.39.68.81010.49.99.73 A12.112.313.113.41212.412.812.612.6 B12.21212.611.912.812.512.512.112.3 C11.811.712.212.112.112.211.91212 A19.818.217.618.419.918.617.718.618.6 B19.918.619.719.219.119.717.419.419.1 C18.519.118.619.818.719.218.819.819.1 A14.616.215.814.814.715.715.31515.3 B13.815.916.516.214.615.315.815.715.5 C1616.1151516.115.915.515.315.6 A1614.814.715.516.214.715.31615.4 B15.31415.414.114.81414.91414.6 C13.313.713.61513.113.91314.913.8 CPR17 CPR18 CPR12 CPR13 CPR20 CPR21 14.60.79 2.39 5.44 18.90.291.51 15.50.181.14 12.30.29 0.70 9.50.272.79 7.24 7.90.354.42 11.20.81 8.50.06 CPR15 CPR16 CPR11 19.11.095.68 MIXSample 56-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average 090180270090180270 A7.38.37.78.37.28.27.68.57.89 B7.17.37.57.67.17.47.97.57.43 C7.17.37.87.66.67.37.87.67.39 A11.210.911.210.511.210.811.61111.1 B10.1109.99.810.21010.89.210 C10.49.79.712.210.19.89.711.510.4 A8.77.17.68.27.17.16.97.77.55 B6.475.96.76.46.55.56.26.33 C7.57.47.25.86.96.86.85.76.76 A63.85263.261.458.55659.164.659.8 B64.959.46662.756.562.971.960.863.1 C55.760.855.349.754.154.757.151.954.9 A14.916.114.613.71416.315.813.814.9 B16.315.716.114.615.316.215.714.215.5 C13.413.71614.613.314.215.613.614.3 A11.611.610.811.611.710.911.611.411.4 B12.311.510.711.611.611.511.211.311.5 C11.410.511.512.312.510.711.512.811.7 A37.843.138.338.140.240.136.839.739.3 B36.640.142.441.337.441.640.841.540.2 C37.743.24347.443.443.244.64743.7 A35.23833.633.433.736.933.633.834.8 B34.83833.835.135.636.432.63334.9 C34.433.535.133.334.333.535.633.234.1 A42.236.935.836.344.539.338.935.538.7 B35.836.241.236.435.334.741.735.837.1 C36.640.641.44938.440.742.746.642 A31.233.228.43130.732.727.430.730.7 B3030.831.831.530.629.931.931.931.1 C3628.536.335.136.833.736.934.334.7 CPR2 CPR3 CPR4 CPR5 59.34.146.98 10.5 CPR6 CPR7 CPR8 3.68 0.28 7.6 CPR1 6.90.629.02 CPR10 CPR9 0.131.13 32.12.236.93 39.32.496.33 41.12.335.67 34.6 0.535.07 0.431.24 14.90.614.07 11.5 Average MIXSample 91-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. 090180270090180270 A23.422.621.82322.821.821.122.722.4 B19.518.722.12018.618.620.819.819.8 C21.419.220.419.822.120.220.619.820.4 A11.11112.612.110.810.512.712.411.7 B12.413.111.513.311.911.611.512.912.3 C111111.110.911.110.91110.911 A8.99.18.99.38.99.18.78.68.94 B8.28.28.38.78.28.58.48.38.35 C8.69.19.18.58.49.48.98.68.83 A9.810.19.610.110.410.39.810.510.1 B9.810.510.79.810.710.310.39.810.2 C10.7101110.310.610.111.610.110.6 A12.913.812.214.412.413.21314.513.3 B14.213.913.615.915.614.514.214.614.6 C12.514.114.211.212.314.113.512.813.1 A15.116.317.71715.816.817.716.416.6 B17.616.617.515.817.216.415.914.916.5 C15.616.316.215.916.715.816.11616.1 A31.228.528.73031.429.329.529.429.8 B31.532.230.929.229.330.229.728.930.2 C25.528.228.529.326.628.92729.127.9 A20.420.320.62020.92019.420.320.2 B19.220.619.221.520.819.621.421.120.4 C20.12221.718.920.620.820.220.420.6 A24.725.322.921.922.525.223.222.923.6 B22.222.522.921.422.322.923.42122.3 C25.226.323.524.425.925.923.622.724.7 CPR21 CPR15 CPR16 CPR17 CPR18 11.60.645.53 CPR20 CPR12 CPR13 8.70.313.58 10.30.242.35 13.70.805.84 16.40.281.69 23.51.185.02 29.31.244.23 20.40.180.86 20.91.376.57 MIX CPR11 Sample 91-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average

PAGE 187

187 Table E-2. Continued. 090180270090180270 A8.89.48.69.5119.78.59.29.34 B8.78.59.28.48.68.59.48.58.73 C8.98.510.310.28.68.1109.89.3 A13.416.713.512.312.112.714.312.713.5 B14.412.912.712.312.814.413.212.213.1 C11.415.510.612.412.611.410.910.611.9 A910.18.29.18.38.48.38.58.74 B8.69.28.87.99.399.27.78.71 C8.110.68.56.999.28.47.28.49 A72.575.579.785.670.376.378.679.277.2 B79.278.477.683.488.476.285.88281.4 C82.679.761.862.671.782.567.169.472.2 A25.426.531.325.626.226.127.923.526.6 B23.627.327.631.124.326.628.523.726.6 C21.522.324.222.323.323.123.822.222.8 A16.315.815.11616.315.515.115.315.7 B14.715.415.41514.315.515.415.815.2 C17.614.715.516.91815.315.716.916.3 A41.647.244.244.743.651.640.14144.3 B42.74550.247.743.444.144.747.345.6 C48.747.746.450.245.544.747.651.647.8 A43.644.5443942.348.143.239.443 B44.644.440.241.241.844.141.141.642.4 C41.145.245.443.741.249.743.644.144.3 A45.643.642.642.347.344.641.742.443.8 B42.840.544.23940.839.645.740.341.6 C41.640.945.848.442.844.845.348.644.8 A4041.934.54139.440.735.531.538.1 B37.94041.737.842.242.542.340.240.6 C44.442.547.345.446.942.545.946.545.2 Average 1.613.72 41.33.618.74 CPR2 CPR1 3.76 0.34 9.1 CPR3 CPR4 CPR5 43.4 45.9 8.6 76.9 CPR7 CPR8 CPR9 1.793.90 43.20.952.21 0.141.59 12.80.816.28 5.99 CPR6 25.32.168.52 15.70.573.63 CPR10 MIXSample 182-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) 4.61 Std. Dev. 090180270090180270 A2826.526.125.62925.925.42526.4 B24.322.425.923.623.422.325.623.923.9 C26.322.722.623.726.222.522.923.123.8 A12.111.913.413.511.811.613.713.412.7 B13.315.413.913.614.113.414.214.114 C12.613.311.812.113.412.211.812.112.4 A11.112.110.510.810.41110.210.810.9 B10.611.410.110.710.79.910.110.410.5 C11.112.811.310.61111.210.310.711.1 A14.815.514.115.213.215.28.515.214 B16.516.116.916.116.515.415.916.516.2 C13.415.615.81515.415.416.715.815.4 A20.721.521.224.320.120.620.724.621.7 B24.123.721.426.724.823.320.426.923.9 C20.725.222.121.41822.622.420.721.6 A22.523.924.924.622.424.425.32424 B25.225.123.424.826.725.223.924.324.8 C24.522.823.423.324.523.923.622.723.6 A59.851.159.261.458.355.755.55757.3 B565755.656.355.162.258.255.657 C51.25352.852.650.45451.755.852.7 A34.831.729.330.731.531.9312931.2 B31.132.529.433.332.229.229.631.531.1 C29.63430.127.832.129.731.928.130.4 A42.724.414.123.72112.215.713.420.9 B10.740.340.239.742.143.142.137.637 C46.942.640.242.845.441.340.941.742.7 Average 24.1 CPR13 CPR15 CPR16 CPR17 CPR18 0.44 CPR20 CPR21 0.632.61 33.511.3133.73 55.62.574.61 30.91.43 1.157.56 22.41.295.76 15.2 0.856.53 10.80.322.96 13.0 24.71.506.09 CPR11 CPR12 MIXSample 182-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. 090180270090180270 A14.313.4109.71211.710.110.311.4 B9.713.412.611.414.29.815.510.712.2 C12.513.29.914.69.31610.414.312.5 A14.714.414.814.313.316.214.514.414.6 B14.712.716.212.113.713.114.212.413.6 C13.412.610.212.313.313.49.912.912.3 A11.238.311.11198.39.78.95 B9.112.39.279.28.76.86.88.64 C9.19.29.87.98.810.310.67.69.16 A83.592.996.310487.182.699.110093.3 B97.98592.882.510290.896.78591.6 C85.295.874.67688.892.475.877.483.3 A34.141.842.430.73640.840.43437.5 B4443.638.243.639.536.735.641.440.3 C36.443.635.734.537.832.838.334.636.7 A22.421.821.323.122.622.421.223.822.3 B20.623.221.52222.522.122.422.122.1 C23.419.922.822.124.521.222.222.222.3 A47.341.933.643.540.743.641.944.542.1 B55.442.340.547.246.54245.647.345.9 C43.346.544.250.140.646.943.852.346 A48.453.443.847.545.95145.146.647.7 B48.251.448.143.639.844.745.741.145.3 C47.849.339.746.450.149.648.747.347.4 A51.855.745.74854.547.353.14650.3 B70.242.550.645.447.746.150.945.349.8 C5259.754.346.848.950.451.153.352.1 A55.856.451.353.255.255.252.653.554.2 B51.852.356.552.351.652.753.452.552.9 C61.455.25763.158.357.257.457.258.4 Average CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 38.2 CPR9 50.71.18 CPR10 CPR1 89.45.36 2.96 13.51.178.67 8.90.26 1.90 22.20.150.67 6.00 4.60 0.55 12.0 2.33 55.12.865.19 46.81.292.75 4.96 44.62.184.89 Reading Locations (Deg.) Std. Dev. MIXSample 364-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) 090180270090180270 A32.830.626.932.729.229.427.72829.7 B26.227.330.529.825.82531.127.827.9 C37.227.226.126.932.428.525.128.229 A12.612.515.614.112.912.215.314.713.7 B15.816.71616.415.216.315.316.316 C15.515.913.613.414.215.61313.314.3 A10.411.61111.410.511.210.611.311 B1010.610.210.210.510.910.110.110.3 C11.411.810.810.810.811.211.311.111.2 A20.520.720.320.420.220.42120.420.5 B22.723.723.62224.722.325.922.523.4 C20.321.822.922.62723.725.323.723.4 A29.229.526.735.731.329.728.63330.5 B3834.74640.347.445.735.738.140.7 C34.438.749.843.632.63945.136.940 A29.532.732.931.531.131.329.831.231.3 B35.434.432.432.338.432.734.831.534 C37.939.932.735.734.337.637.333.336.1 A10190.387.792.397.694.989.589.992.9 B87.210284.291.795.288.888.289.590.8 C82.786.284.885.280.283.782.382.483.4 A54.844.644.143.639.141.539.842.243.7 B41.642.444.244.237.342.644.245.242.7 C4846.845.550.247.553.646.244.347.8 A64.169.763.861.567.969.56365.865.7 B64.162.363.862.264.862.767.561.263.6 C73.16863.665.27167.563.965.167.2 Average CPR21 CPR15 CPR16 CPR17 CPR18 14.71.188.01 CPR20 CPR12 CPR13 10.80.444.06 22.41.697.54 37.15.7315.47 33.82.437.18 65.51.812.76 89.14.975.58 44.72.675.98 CPR11 28.90.873.00 Reading Locations (Deg.) MIXSample 364-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Std. Dev.

PAGE 188

188 Table E-2. Continued. 090180270090180270 A10.812.210.810.513.211.410.510.311.2 B12.112.215.312.211.211.113.311.912.4 C14.810.714.413.81014.111.817.813.4 A18.515.514.114.514.222.114.513.315.8 B13.326.916.414.115.427.517.912.718 C14.31721.520.714.215.712.512.216 A15.89.810.59.28.98.58.49.410.1 B8.17.414.69.211.587.78.69.39 C9.58.410.28.41011.17.78.39.2 A10710895.31219612292.1115107 B104100135109130111112121115 C10910896.896.310510810293.1102 A47.345.868.434.147.841.246.83345.6 B38.752.847.140.937.443.244.54143.2 C39.334.839.837.733.937.937.635.237 A23.622.820.722.223.222.421.224.522.6 B21.222.422.321.822.821.921.923.822.3 C23.724.822.920.923.524.123.220.823 A39.53938.846.638.739.139.445.940.9 B39.542.342.340.738.441.942.241.941.2 C41.745.739.942.740.14540.242.242.2 A46.947.249.851.346.545.849.449.948.4 B47.448.444.651.248.544.745.151.947.7 C47.245.151.451.148.743.54950.748.3 A46.542.744.643.545.245.244.643.244.4 B40.942.845.638.140.841.347.239.642 C41.750.155.545.848.95651.845.849.5 A5557.850.257.255.655.950.856.154.8 B50.354.453.453.651.753.35555.753.4 C55.860.160.857.460.964.863.756.660 CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 CPR9 108.26.596.09 7.31 9.60.454.75 8.35 56.13.476.19 1.67 48.10.360.74 22.60.361.61 41.9 8.97 1.11 12.4 10.50 CPR10 16.61.22 4.40 41.40.69 45.33.78 CPR1 MIXSample 455-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average 090180270090180270 A31.333.53228.532.133.329.527.631 B26.826.830.426.326.727.430.725.327.6 C33.928.728.727.431.626.828.425.728.9 A1315.514.813.313.115.214.813.614.2 B14.515.715.116.514.316.415.316.315.5 C14.213.213.815.614.213.314.815.814.4 A11.613.31312.312.412.311.211.512.2 B10.910.911.610.710.510.911.110.810.9 C11.612.110.111.610.912.11110.411.2 A24.423.423.624.223.722.723.722.923.6 B25.326.624.325.226.626.123.224.125.2 C25.825.427.524.125.724.528.126.425.9 A27.231.128.233.231.432.827.133.230.5 B35.144.534.738.143.837.933.138.638.2 C27.333.939.632.530.830.137.834.433.3 A31.434.333.533.233.233.834.83233.3 B34.933.133.333.536.433.33334.134 C33.633.231.933.7343331.933.233.1 A10791.198.29998.192.394.310097.5 B91.198.697.592.610097.192.391.595.1 C83.289.690.797.793.188.992.492.391 A46.646.745.545.146.548.245.644.646.1 B43.446.648.345.846.349.448.344.346.6 C42.746.242.94241.645.744.843.343.7 A69.269.172.170.468.971.866.973.270.2 B59.664.264.262.566.16070.164.463.9 C71.366.564.471.472.362.970.168.868.5 1.39 67.53.264.83 94.53.313.50 45.4 24.91.214.84 1.563.44 34.03.9011.46 33.40.46 4.96 11.50.675.82 CPR12 CPR13 14.70.73 CPR20 CPR21 CPR15 CPR16 CPR17 CPR18 1.735.92 29.1 CPR11 MIXSample 455-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average 090180270090180270 A12.211.810.511.39.711.29.512.411.1 B9.77.21211.99.29.611.111.610.3 C9.210.110.610.38.810.11010.69.96 A12.113.41413.31312.914.613.213.3 B14.712.615.818.312.712.314.816.214.7 C14.614.611.812.818.311.512.711.913.5 A8.88.28.78.88.78.58.78.98.66 B9.28.27.17.28.87.86.87.37.8 C8.79.487.58.3107.77.88.43 A83.711598.785.284.710192.586.993.5 B95.49710390.299.110210989.298.1 C87.886.673.994.190.186.383.694.687.1 A36.932.940.637.937.734.641.838.837.7 B37.935.640.440.838.539.8464240.1 C33.636.232.837.234.536.835.23535.2 A25.626.823.223.525.527.122.324.624.8 B22.324.424.923.922.624.223.124.423.7 C26.42624.121.926.526.424.722.324.8 A39.743.338.939.340.142.839.938.840.4 B38.641.442.640.541.942.139.339.540.7 C39.541.337.839.836.144.241.14941.1 A5151.651.94749.452.95349.550.8 B54.2524750.353.754.446.449.450.9 C50.552.754.249.849.752.253.148.651.4 A45.651.24849.853.350.447.945.348.9 B44.645.248.345.345.144.951.448.846.7 C51.951.355.758.64950.254.658.553.7 A60.360.151.957.561.563.5546158.7 B60.159.960.26058.360.164.569.461.6 C70.668.671.869.170.561.564.166.867.9 CPR10 CPR6 CPR7 CPR8 CPR9 CPR2 CPR3 5.37 CPR4 CPR5 13.80.73 2.48 92.95.49 0.622.55 37.6 CPR1 5.48 0.57 10.4 5.30 8.30.45 4.687.47 0.380.92 0.290.57 3.597.21 62.7 5.91 40.7 51.0 49.8 6.59 24.4 MIXSample 546-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average 090180270090180270 A33.830.23031.431.232.531.134.331.8 B2827.33031.127.926.231.929.229 C372930.634.331.629.324.430.930.9 A13.212.515.915.613.112.71514.414.1 B14.916.114.816.214.616.314.216.215.4 C14.313.51312.814.414.414.410.313.4 A16.215.913.313.91416.411.511.214.1 B14.413.213.512.211.310.710.112.312.2 C11.618.314.312.811.212.712.311.213.1 A26.523.724.626.626.52424.42324.9 B27.329.628.629.329.227.53025.428.4 C26.725.225.626.726.228.125.524.726.1 A32.13833.339.835.638.133.53735.9 B38.542.254.148.445.254.850.745.947.5 C34.743.54937.836.544.152.133.241.4 A31.132.53331.533.234.332.63132.4 B35.735.634.133.739.135.633.837.235.6 C32.64133.934.736.233.833.131.634.6 A11498.799.6109114104106106106 B96.892.410293.310211298.497.999.3 C10899.594.210310310893.697.1101 A47.448.543.142.546.345.148.44645.9 B44.741.943.247.144.644.346.248.545.1 C47.541.840.338.842.449.143.144.243.4 A81.183.574.879.576.378.772.573.877.5 B72.569.574.171.472.370.573.467.271.4 C84.977.275.375.279.379.772.678.777.9 CPR13 CPR20 CPR21 CPR15 CPR16 CPR17 CPR18 14.31.037.23 CPR12 13.10.927.02 26.51.756.63 41.65.7813.89 34.21.644.79 4.84 102.13.753.67 44.81.282.85 CPR11 75.63.66 30.61.464.78 MIXSample 546-Day Surface Resistivity (Lime Cured) (k .cm) COV (%) Reading Locations (Deg.) Std. Dev. Average

PAGE 189

189 Table E-3. SR (Moist Cured) Testing Results. 090180270090180270 A66.16.66.866.26.87.16.5 B5.95.25.965.95.45.965.8 C6.45.96.95.76.366.25.66.1 A8.89.29.48.78.19.69.28.89.0 B7.88.17.987.98.18.18.18.0 C7.78.98.78.87.59.38.98.78.6 A5.75.45.35.55.15.45.15.65.4 B5.76.15.96.25.75.95.96.15.9 C5.55.25.54.95.45.15.555.3 A27.724.125.324.627.223.625.124.625.3 B24.225.12526.625.325.824.727.625.5 C24.125.928.828.124.723.629.126.926.4 A6.26.26.16.25.966.56.16.2 B6.36.55.96.56.16.566.86.3 C6.26.366.56.36.26.66.86.4 A5.95.75.76.15.965.26.25.8 B5.85.95.75.75.865.55.95.8 C6.26.65.95.96.26.85.76.26.2 A16.516.114.918.516.515.317.219.416.8 B16.41716.91516.316.515.81716.4 C17.616.616.316.816.916.2161716.7 A1514.414.614.614.814.314.714.214.6 B14.414.813.913.51415.113.613.414.1 C11.813.113.113.312.91313.312.412.9 A38.740.939.336.136.941.339.43538.5 B35.43642.43534.936.642.135.437.2 C41.240.339.238.84343.539.937.640.4 A36.434.136.838.836.435.438.137.436.7 B34.73537.234.434.437.536.133.935.4 C3132.732.830.531.430.733.630.231.6 MIXSample 14-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. CPR1 6.10.345.52 CPR2 8.50.495.75 CPR3 5.50.366.49 CPR4 25.70.592.29 CPR5 6.30.111.81 CPR6 5.90.223.67 CPR7 16.60.231.36 CPR8 13.80.886.37 CPR9 38.71.624.19 CPR10 34.62.637.62 090180270090180270 A13.214.414.113.613.414.41413.513.8 B14.913.51317.114.31414.815.414.6 C11.113.39.911.210.91310.310.911.3 A8.67.97.68.18.57.98.28.28.13 B8.48.79.19.38.67.88.38.98.64 C7.27.67.67.67.47.17.67.57.45 A6.76.66.65.96.46.56.45.66.34 B5.76.36.665.95.96.56.36.15 C5.36.15.95.85.875.96.76.06 A000000000 B000000000 C000000000 A8.28.67.38.188.478.17.96 B7.56.16.66.27.76.46.56.16.64 C7.67.47.66.77.37.46.97.97.35 A000000000 B000000000 C000000000 A000000000 B000000000 C000000000 A000000000 B000000000 C000000000 A000000000 B000000000 C000000000 CPR21 0.00.000.00 CPR20 0.00.000.00 CPR18 0.00.000.00 CPR17 0.00.000.00 CPR16 7.30.669.06 CPR15 0.00.000.00 CPR13 6.20.142.27 CPR12 8.10.607.38 CPR11 13.31.7212.98 MIXSample 14-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A6.37.27.486.16.77.88.17.2 B6.36.276.66.166.96.66.46 C7.46.97.26.56.77.46.86.56.93 A9.39.810.51099.510.610.19.85 B98.99.298.88.79.499 C8.910.39.99.78.910.710.29.79.79 A5.55.85.75.95.45.75.45.85.65 B6.166.86.56.16.26.76.66.38 C5.95.75.85.35.95.65.75.55.68 A46.44444.344.448.44143.744.244.6 B45.647.54447.542.34643.944.945.2 C47.440.146.64641.638.649.347.844.7 A8.27.67.98.37.97.987.87.95 B8.18.27.68.28.38.27.58.48.06 C88.48.39888.28.98.35 A7.47.16.87.27.26.86.77.17.04 B6.87.16.976.77.36.76.86.91 C7.48.27.27.57.28.37.17.27.51 A28.225.429.831.428.628.531.831.629.4 B28.528.628.725.929.828.4282728.1 C31.627.227.629.829.626.527.728.928.6 A25.423.825.625.626.224.525.224.925.2 B24.327.323.623.423.525.423.723.624.4 C24.22323.92323.921.923.823.623.4 A33.436.632.432.13535.533.732.733.9 B27.534.532.633.229.233.934.432.732.3 C36.334.935.532.534.234.634.631.634.3 A35.933.632.733.932.233.531.435.233.6 B33.632.732.934.232.23631.533.133.3 C29.528.730.225.73025.530.826.828.4 33.51.083.23 31.72.909.13 28.70.662.28 24.30.873.58 8.10.212.54 7.20.324.42 44.80.350.79 9.50.474.96 5.90.416.98 5.43 0.37 6.9 CPR5 CPR10 CPR1 CPR8 CPR9 CPR2 CPR3 CPR6 CPR7 CPR4 MIXSample 28-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A19.318.218.520.518.718.517.720.319 B1818.91816.817.819.518.117.118 C15.318.71314.815.217.71314.715.3 A10.18.87.310.19.29.27.910.49.13 B9.48.8109.29.69.18.39.99.29 C8.28.48.57.98.17.98.57.98.18 A6.86.86.566.86.76.56.36.55 B6.76.56.46.56.26.46.86.36.48 C5.96.46.17.35.96.56.37.36.46 A9.37.788.17.67.67.17.97.91 B97.58.27.68.77.28.47.68.03 C87.587.2107.67.67.37.9 A8.59.27.27.58.88.97.47.18.08 B8.16.76.76.38.26.46.96.36.95 C8.88.27.97.98.687.87.98.14 A11.510.81312.911.510.411.512.711.8 B9.69.910.510.89.61010.110.810.2 C12.512.913.612.212.21313.511.712.7 A14.814.814.613.814.614.815.614.814.7 B13.614.613.514.913.813.613.213.713.9 C12.613.713.61412.813.712.913.613.4 A12.312.81414.112.712.913.913.113.2 B14.113.412.611.813.412.913.512.113 C1313.214.112.214.112.813.412.713.2 A12.917.415.71412.713.511.813.814 B13.613.610.711.811.211.711.511.211.9 C14.613.110.912.61512.311.911.712.8 1.048.05 14.00.694.93 13.10.131.03 0.678.66 11.61.2911.13 0.050.73 7.90.070.87 1.9010.92 8.90.606.78 CPR21 CPR17 CPR18 17.4 6.5 7.7 12.9 CPR20 CPR15 CPR16 CPR11 CPR12 CPR13 MIXSample 28-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev.

PAGE 190

190 Table E-3. Continued. 090180270090180270 A7.47.37.98.87.37.588.87.88 B6.66.77.17.36.86.577.26.9 C8.47.58.67.27.97.38.67.37.85 A10.21111.1119.71010.610.810.6 B9.69.69.89.49.79.49.99.69.63 C9.610.810.3109.711.110.110.310.2 A5.75.95.85.85.65.85.765.79 B6.86.6776.46.5776.79 C6.25.96.45.96.366.266.11 A68.358.16263.868.557.163.765.163.3 B62.464.454.86761.265.463.269.263.5 C57.163.770.464.560.359.872.569.764.8 A11.612.812.613.411.912.21212.412.4 B13.512.511.912.7131311.812.612.6 C12.611.612.713.212.213.212.413.712.7 A9.69.49.310.19.89.69.29.69.58 B9.210.199.49.39.39.49.19.35 C9.710.79.99.79.810.79.210.19.98 A38.637.341.242.237.934.945.44340.1 B34.234.34137.837.44039.336.337.5 C4138.637.642.541.234.936.638.938.9 A35.232.633.834.63734.535.633.634.6 B32.734.131.532.332.933.132.132.932.7 C30.932.230.331.332.932.934.831.632.1 A37.741.439.23538.640.940.736.438.7 B35.438.342.737.835.138.539.236.938 C41.239.738.436.739.44649.638.641.2 A37.738.539.638.637.93937.341.638.8 B38.8433939.838.942.238.537.939.8 C36.333.135.831.537.132.434.532.234.1 CPR10 37.63.028.04 CPR9 39.31.684.28 CPR8 33.11.313.94 CPR7 38.81.263.26 CPR6 9.60.323.29 CPR5 12.60.181.41 CPR4 63.80.791.24 CPR3 6.20.518.19 CPR2 10.10.474.64 CPR1 7.50.567.37 MIXSample 56-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A21.522.221.220.522.422.122.619.821.5 B22.523.520.925.723.622.720.226.523.2 C17.620.7151717.821.414.717.317.7 A1010.89.611.110.49.69.111.110.2 B10.29.49.210.810.49.610.910.110.1 C98.49.18.38.98.598.78.74 A7.87.87.58.16.887.78.27.74 B7.37.17.47.17.47.17.77.47.31 C7.47.387.48.37.98.27.67.76 A8.68.98.89.48.69.1898.8 B9.898.899.78.48.88.99.05 C8.88.698.18.88.598.28.63 A8.112.79.811.311.112.610.811.311 B11.18.910.18.711.399.89.19.75 C11.910.211.210.911.710.310.811.111 A16.715.717.317.616.215.817.817.516.8 B13.512.914.213.5131314.113.413.5 C16.917.418.415.616.611.518.41616.4 A1817.414.616.518.213.519.115.716.6 B13.714.813.617.814.317.517.315.715.6 C16.116.81717.218.715.918.116.717.1 A11.416.511.411.315.516.811.216.813.9 B11.816.111.315.211.216.316.913.714.1 C16.916.816.61816.615.716.716.116.7 A15.317.615.516.317.217.815.616.116.4 B16.315.115.614.81515.31614.815.4 C17.717.516.117.416.917.51616.917 20.82.8313.59 9.70.818.42 7.60.253.33 8.80.212.42 10.60.716.76 15.51.8311.76 16.40.764.61 14.91.5710.56 CPR21 16.30.835.11 CPR16 CPR17 CPR18 CPR20 CPR11 CPR12 CPR13 CPR15 MIXSample 56-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A6.47.57.98.48.17.18.48.67.8 B7.37.37.47.77.57.37.37.67.43 C8.97.997.78.87.78.37.68.24 A10.712.111.510.910.311.311.111.711.2 B9.210.81110.410.511.110.810.510.5 C10.410.810.910.410.110.710.610.910.6 A6.36.26.66.26.46.46.26.76.38 B7.17.17.17.56.977.27.27.14 C6.76.26.76.26.55.976.16.41 A79.674.977.7789272.579.978.179.1 B70.377788171.375.576.578.976.1 C65.581.488.179.273.679.587.875.778.9 A17.21718201617.918.718.217.9 B18.72017.417.718.419.817.218.418.5 C1818.31920.818.119.81920.619.2 A1312.212.112.213.11211.612.512.3 B1212.81211.91212.911.711.912.2 C1314.613.313.713.514.412.613.313.6 A43.938.445.645.942.438.642.148.443.2 B41.138.640.836.940.140.638.237.139.2 C43.938.33841.540.837.638.739.839.8 A43.639.642.338.743.541.739.439.241 B38.438.238.137.338.344.635.138.538.6 C36.636.538.537.233.938.438.437.437.1 A38.135.536.137.84145.838.837.138.8 B3741.838.636.834.84039.235.838 C42.142.639.236.84140.339.537.439.9 A4543.847.246.547.145.345.546.145.8 B42.947.141.642.542.648.347.744.944.7 C40.939.441.135.341.241.141.238.839.9 38.90.942.41 43.53.167.26 40.72.145.25 38.91.965.05 18.50.663.59 12.70.765.99 78.01.682.16 10.80.373.39 6.60.436.47 5.20 0.41 7.8 CPR5 CPR10 CPR1 CPR8 CPR9 CPR2 CPR3 CPR6 CPR7 CPR4 MIXSample 91-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A25.823.224.522.324.824.424.923.324.2 B25.422.822.626.524.723.823.625.924.4 C18.321.215.41918.624.115.718.618.9 A11108.410.811.110.18.410.710.1 B10.91111.611.511.110.711.911.111.2 C09.69.29.79.79.699.58.29 A8.58.48.87.78.48.58.27.78.28 B7.88.588.58.487.98.18.15 C7.88.58.47.68.18.48.58.38.2 A12.110.48.99.69.49.87.59.89.69 B11.615.38.78.811.911.39.38.710.7 C9.89.79.39.28.810.110.1109.63 A17.718.213.415.818.118.513.715.516.4 B16.613.113.513.314.913.313.312.313.8 C16.414.413.516.117.116.616.815.415.8 A20.821.423.223.320.821.322.523.222.1 B1818.119.417.618.317.319.617.918.3 C2121.323.120.721.622.324.120.721.9 A36.539.637.136.835.94036.236.437.3 B34.535.235.137.53434.735.137.235.4 C34.335.836.336.934.735.734.936.635.7 A21.421.924.724.222.422.124.92323.1 B24.223.924.820.52423.223.421.923.2 C20.820.722.623.821.821.223.321.922 A2421.120.221.223.120.72221.421.7 B19.618.617.620.520.319.118.419.719.2 C17.519.619.820.118.419.61820.519.2 1.457.22 36.11.042.87 22.80.672.92 1.358.83 20.72.1310.27 0.060.77 10.00.606.03 3.1313.93 9.91.4815.01 CPR21 CPR17 CPR18 22.5 8.2 15.3 20.0 CPR20 CPR15 CPR16 CPR11 CPR12 CPR13 MIXSample 91-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev.

PAGE 191

191 Table E-3. Continued. 090180270090180270 A8.37.89.79.48.18.910.410.39.11 B8.78.58.98.77.78.79.68.38.64 C9.48.910.89.49.49.79.89.79.64 A11.112.612.912.411.312.512.611.812.2 B11.510.411.211.110.910.810.811.111 C1112.711.911.910.612.512.111.911.8 A6.56.76.86.56.36.86.66.76.61 B7.77.87.68.287.57.47.37.69 C777.76.86.777.46.87.05 A89.179.780.277.588.476.181.177.381.2 B75.78479.78771.178.677.486.980.1 C72.970.299.177.278.574.497.687.282.1 A2727.327.626.826.926.329.23027.6 B29.231.227.328.328.830.92828.629 C27.429.829.131.827.127.828.331.929.2 A17.917.516.718.218.417.816.618.517.7 B1717.217.218.616.81817.418.617.6 C19.222.318.218.719.521.619.718.619.7 A45.743.145.64344.83944.439.543.1 B4137.542.139.538.441.142.739.440.2 C4239.240.640.240.639.341.241.240.5 A50.744.947.94845.84748.447.447.5 B4449.643.842.744.255.543.648.546.5 C44.341.448.143.244.146.144.445.344.6 A42.346.941.741.438.748.742.439.242.7 B39.142.247.341.235.642.847.241.242.1 C44.751.444.741.447.654.441.341.345.9 A58.259.260.659.55559.361.16259.4 B55.963575953.362.756.356.958 C55.548.552.851.456.950.456.746.752.4 CPR7 CPR8 CPR9 CPR10 81.11.041.29 CPR6 28.60.842.95 18.31.206.54 CPR1 7.10.547.60 11.70.615.21 5.48 0.50 9.1 41.31.603.88 46.21.473.18 43.52.034.67 56.63.716.56 CPR2 CPR3 CPR4 CPR5 MIXSample 182-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A25.527.627.723.723.926.12724.925.8 B27.927.925.331.227.328.225.132.328.2 C21.825.418.420.821.725.519.120.821.7 A13.410.310.612.311.611.110.412.311.5 B12.310.911.51110.910.611.911.511.3 C10.59.89.69.710.99.4109.49.91 A9.28.69.28.28.99.19.38.28.84 B8.68.38.89.28.38.79.18.88.73 C7.68.88.38.47.88.88.29.48.41 A15.916.614.917.315.516.814.917.316.2 B19.517.117.617.31916.516.816.917.6 C16.516.716.315.717.11616.415.616.3 A25.827.921.222.126.127.719.92224.1 B23.418.619.117.523.218.41917.419.6 C24.221.520.521.823.719.722.822.122 A29.830.929.832.730.627.431.332.230.6 B25.92426.224.823.424.924.724.224.8 C29.93131.430.429.23032.829.430.5 A63.867.965.562.157.861.460.959.862.4 B55.26261.354.85264.86065.659.5 C64.259.660.864.360.361.864.867.462.9 A29.431.234.631.231.529.631.633.431.6 B35.538.332.431.634.73531.32833.4 C33.231.634.136.232.830.835.232.133.3 A45.245.339.441.14240.342.243.942.4 B45.844.641.840.638.73943.341.241.9 C6740.236.437.342.938.23637.642 CPR21 CPR16 CPR17 CPR18 CPR20 CPR11 CPR12 CPR13 CPR15 25.23.2712.97 10.90.877.98 8.70.222.54 16.70.794.76 21.92.2610.32 28.63.3411.68 42.10.300.71 61.61.863.02 32.71.003.07 MIXSample 182-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A108.79.711.88.98.710.911.410 B8.97.59.79.58.88.18.89.78.88 C9.810.310.89.210.39.59.89.39.88 A11.713.613.812.812.513.714.212.813.1 B11.711.31211.312.311.211.611.811.7 C11.614.113.112.711.613.91313.412.9 A698.37.168.97.37.67.53 B7.58.28.66.68.48.76.97.27.76 C8.16.46.18.65.94.95.94.86.34 A95.275.989.292.397.779.792.687.188.7 B91.689.486.395.585.69387.596.490.7 C81.497.695.597.881.284.289.889.689.6 A38.329.125.839.536.934.928.534.233.4 B3531.244.334.638.436.733.63335.9 C34.639.935.43333.233.833.642.335.7 A20.123.722.522.823.721.620.222.222.1 B23.722.821.923.324.424.522.122.923.2 C24.527.826.627.624.625.424.724.125.7 A4439.341.638.246.541.742.148.342.7 B43.349.340.738.740.540.940.24041.7 C43.633.940.842.445.541.242.744.341.8 A66.357.557.858.956.356.960.257.959 B52.558.753.856.458.360.55356.156.2 C53.65757.2515451.356.655.354.5 A57.464.864.251.955.652.550.349.855.8 B6257.462.162.754.959.878.653.461.4 C69.268.963.359.861.358.962.55862.7 A8790.987.18886.588.474.986.786.2 B92.782.360.884.970.510482.299.484.6 C83.8879272.397.682.383.783.585.3 85.30.820.96 3.67 56.52.264.00 6.11 23.71.827.71 1.33 CPR1 89.70.981.09 6.48 0.62 9.6 6.40 7.20.76 CPR10 10.59 12.60.80 35.01.38 42.10.56 60.0 3.94 CPR6 CPR7 CPR8 CPR9 CPR2 CPR3 CPR4 CPR5 MIXSample 364-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A36.734.235.435.632.534.835.230.834.4 B33.131.332.634.732.931.13236.933.1 C28.527.725.225.326.830.524.724.326.6 A13.411.810.713.11311.810.614.212.3 B12.412.61413.512.512.813.714.113.2 C12.71111.41111.11112.211.411.5 A9.99.79.58.61010.19.58.79.5 B99.29.610.19.49.29.79.29.43 C8.29.38.910.18.49.18.810.59.16 A25.923.821.225.925.723.81924.623.7 B26.223.624.521.526.522.724.722.624 C22.822.121.921.621.722.922.821.722.2 A30.139.626.828.834.140.328.230.232.3 B31.334.226.325.828.627.825.524.728 C29.125.228.529.231.928.627.128.328.5 A29.334.240.243.438.636.838.136.837.2 B29.428.733.12827.327.630.728.429.2 C31.836.536.232.733.732.136.532.534 A94.196.310693.998.996.210010198.2 B88.292.490.391.293.890.188.693.191 C90.397.790.592.49695.392.691.893.3 A38.63736.54535.439.841.343.339.6 B44.443.245.536.641.844.442.943.242.8 C47.24344.844.742.642.443.144.144 A82.372.471.870.579.566.46866.172.1 B68.267.164.862.969.162.268.165.165.9 C6259.558.664.760.459.559.164.461 2.265.35 33.44.0412.09 66.45.568.38 94.23.693.92 42.1 23.30.994.26 29.62.327.86 CPR21 31.44.1613.26 12.30.866.99 9.40.181.89 CPR16 CPR17 CPR18 CPR20 CPR11 CPR12 CPR13 CPR15 MIXSample 364-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev.

PAGE 192

192 Table E-3. Continued. 090180270090180270 A11.310.812.512.6111013.312.511.8 B10.19.810.410.29.89.810.410.910.2 C11.911.613.110.812.211.812.510.711.8 A14.61616.21614.416.416.415.915.7 B13.813.313.314.213.113.71413.313.6 C12.85.914.814.613.91615.115.213.5 A8.29.38.79.38.19.59.610.19.1 B9.79.79.710.49.79.810.210.49.95 C9.599.88.99.28.810.199.29 A11698.211910811998.2112113110 B111112106115115122114117114 C96.4103132120105101127113112 A44.444.947.646.34345.647.445.445.6 B47.954.145.644.347.648.846.54447.4 C49.745.450.852.646.346.247.653.849.1 A25.827.525.827.826.929.426.928.627.3 B25.625.225.830.82722.525.830.226.6 C26.326.627.227.12725.827.526.326.7 A50.652.450.647.948.950.349.746.149.6 B45.840.744.747.145.341.74547.844.8 C47.947.744.145.447.547.444.744.546.2 A64.258.861.857.260.657.460.761.260.2 B60.266.567.261.562.767.668.161.864.5 C47.451.65059.855.651.955.761.454.2 A49.547.650.856.851.347.853.356.651.7 B45.548.354.449.847.54954.249.949.8 C54.85052.854.351.450.153.257.253 A82.885.988.284.580.385.684.886.284.8 B76.38584.392.376.785.879.893.784.2 C80.272.383.676.381.577.187.274.979.1 CPR10 8.79 9.40.454.73 82.73.123.77 46.82.475.28 59.65.178.66 1.56 51.51.593.08 1.743.67 26.90.391.45 47.3 CPR8 CPR9 112.11.75 CPR4 CPR5 CPR6 CPR7 CPR2 CPR3 CPR1 8.28 0.93 11.3 14.31.26 Reading Locations (Deg.) Average Std. Dev. MIXSample 455-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) 090180270090180270 A36.434.137.535.735.535.636.737.736.2 B37.54133.135.737.54233.935.737.1 C28.627.324.535.229.827.324.734.529 A13.812.711.213.713.912.212.113.812.9 B13.112.913.714.513.112.714.614.313.6 C12.511.911.712.412.11212.112.512.2 A11.211.611.310.811.911.711.61111.4 B10.610.610.510.610.911.110.511.110.7 C9.911.91110.79.711.310.811.510.9 A29.125.620.927.127.824.918.428.125.2 B32.322.123.822.226.425.625.522.825.1 C26.921.623.223.123.522.624.522.323.5 A42.748.334.640.548.94935.435.341.8 B37.335.832.429.534.835.235.730.833.9 C38.432.935.63640.535.333.834.635.9 A39.833.838.236.533.833.736.235.836 B36.328.529.626.425.23031.42829.4 C3432.333.832.934.834.237.535.134.3 A10811410110492.11151030.191.9 B89.686.788.59391.391.591.794.490.8 C10885.485.710492.998.495.692.995.3 A3742.936.646.936.839.938.742.440.2 B47.539.542.232.542.539.641.232.439.7 C44.641.239.242.537.837.441.841.740.8 A83.271.469.570.476.768.275.570.273.1 B7770.370.569.972.775.269.773.872.4 C71.272.264.466.562.261.861.765.765.7 CPR11 CPR12 CPR13 CPR20 CPR15 CPR16 CPR17 CPR18 34.14.4212.97 12.90.735.67 11.00.353.16 24.60.984.00 37.24.1211.06 33.23.4110.25 92.72.332.51 40.20.551.37 70.44.095.81 CPR21 Average Std. Dev. Reading Locations (Deg.) MIXSample 455-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) 090180270090180270 A10.41211.710.110.311.311.69.410.9 B9.510.310.299.710.6109.49.84 C1110.112.111.211.310.312.110.311.1 A13.814.215.214.913.514.81614.814.7 B13.112.6131313.612.612.812.412.9 C12.913.813.515.413.714.31415.714.2 A7.78.58.18.77.88.88.48.98.36 B9.49.39.69.59.39.29.79.79.46 C8.88.798.68.88.698.58.75 A113107103102117110106102108 B10411410210910211799.6107107 C94.111111993.498.211211895.5105 A44.742.44843.545.443.844.342.144.3 B44.844.844.243.845.146.346.146.545.2 C43.151.246.943.745.452.545.946.146.9 A28.128.531.728.729.330.230.830.529.7 B27.825.227.331.328.626.527.531.628.2 C26.826.527.6292727.127.529.127.6 A47.344.147.248.747.341.745.248.146.2 B43.245.740.337.143.838.841.240.541.3 C44.543.142.843.543.540.243.644.743.2 A64.461.163.462.764.462.561.360.962.6 B66.668.374.76768.169.672.658.168.1 C61.159.259.574.271.372.359.960.564.8 A55.655.95351.955.4645453.755.4 B49.653.657.852.548.75455.554.853.3 C57.56059.553.856.462.559.155.858.1 A91.794.283.892.887.79590.993.791.2 B87.194.193.110786.496.192.110695.3 C89.978.588.987.380.882.981.285.284.3 106.51.231.15 55.62.394.29 90.35.536.13 43.62.465.64 65.22.794.28 1.302.87 28.51.103.87 45.4 CPR1 6.14 0.65 10.6 13.90.916.55 8.90.566.30 CPR2 CPR3 CPR4 CPR5 CPR10 CPR6 CPR7 CPR8 CPR9 MIXSample 546-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev. 090180270090180270 A33.538.343.336.834.535.442.935.337.5 B3829.236.640.737.532.434.839.136 C2935.72827.330.836.426.229.730.4 A11.513.612.812.813.314.911.512.212.8 B12.111.61111.113.61110.611.611.6 C13.413.614.413.814.613.516.314.714.3 A11.311.511.710.610.611.211.710.411.1 B10.610.71111.410.610.710.81110.9 C10.511.410.41110.510.811.310.110.8 A26.727.822.830.526.227.522.930.826.9 B33.331.529.627.433.23130.427.930.5 C26.827.229.328.528.726.728.427.727.9 A46.846.535.736.44549.235.33641.4 B36.732.43637.938.137.235.838.536.6 C3535.332.536.339.734.934.235.135.4 A38.143.145.841.342.74144.545.342.7 B3537.638.136.136.339.140.236.337.3 C41.732.332.938.939.340.244.141.238.8 A127126128121139139126113127 B109114114116109113110118113 C110119125114119114121117117 A44.846.748.751.844.645.250.951.448 B53.555.153.442.356.953.752.444.451.5 C50.147.248.953.250.347.152.552.850.3 A10385.393.487.110288.489.489.392.3 B8786.686.593.286.783.982.490.887.1 C77.387.874.888.277.278.277.283.580.5 86.65.886.79 119.27.436.23 49.91.753.51 37.83.178.39 39.62.787.02 0.191.78 28.51.886.60 3.7610.84 12.91.3610.53 CPR11 CPR12 CPR13 34.6 10.9 CPR21 CPR15 CPR16 CPR17 CPR18 CPR20 MIXSample 546-Day Surface Resistivity (Moist Cured) (k .cm) COV (%) Reading Locations (Deg.) Average Std. Dev.

PAGE 193

193 APPENDIX F REGRESSION FIT OF CONDUCTIVITY AND LONG-TERM DIFFUSION TESTS The results of the short-term test RCP and SR were compared to the Bulk Diffusion test results. Bulk Diffusion test (independent variab le) results after a 1 and 3 years of chloride exposure period were used as a benchmark to evaluate the conductiv ity tests (dependent variable) at different concrete ag es. It was found that a modified linear regression (Equation F-2) expressed as a power function provi ded the best representation of the trends. Other researchers (Hooton, Thomas and Stanish 2001) have also found this to be true in their work. The scatter plots of the data (APPENDIX G) showed that the relationship of the test results followed an increasing rate and variability around the trend as the dependent variable increases. This behavior can be simulated by the use of a power function. Therefore, the dependent (y-axis) and independent (x-axis) variable of the general linear regression equation (Equation F-1) can be modified as followed: b mx y (F-1) b m x y ) log( ) log( b x ym ) log( ) log( b mx y 10 max y (F-2) where: y is the dependent variable (electrical tests); x is the independent variable (diffusion tests); m is the slope of the linear regression analysis; b is the intersect to the y-axis of the linear regression analysis; a is 10b. Figure F-1 and Figure F-2 show the effec tiveness of the modified linear regression model assumption for some of the tests. The modified axis data tend to follow the linear trend. Moreover, the pattern of residuals ( yi-yi_pred ; where: yi are the experimental dependent variables and yi_pred are the dependent variables from the regr ession analysis) showed homogeneous error variances across the independent va riable axis (constant variance).

PAGE 194

194 RCP (91 Days) vs. 364-Day BD y = 0.936x + 2.733 R2 = 0.802 0 1 2 3 4 5 00.511.5 Log(BD(x10-12) (m2/s))Log(RCP (Coul.)) RCP (91 Days) vs. 364-Day BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) SR(Moist) (91 Da y s) vs. 364-Da y BD y = 0.848x 1.787 R2 = 0.787 -2 -1.5 -1 -0.5 0 00.511.5 Log(BD(x10-12) (m2/s))Log(SR (1/(kOhm-cm)) ) SR(Moist) (91 Da y s) vs. 364-Da y BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) SR(Lime) (91 Da y s) vs. 364-Da y BD y = 0.803x 1.725 R2 = 0.840 -2 -1.5 -1 -0.5 0 00.511.5 Log(BD(x10-12) (m2/s))Log(SR (1/(kOhm-cm)) ) SR(Lime) (91 Da y s) vs. 364-Da y BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) Figure F-1. Electrical Test Modifi ed Linear Regression Analysis to 1-Year Bulk Diffusion Data ( Concrete mixture contai ning Calcium Nitrite (CPR12). It was not include in the general correlation calculations).

PAGE 195

195 RCP (91 Days) vs. 1092-Day BD y = 0.687x + 2.900 R2 = 0.755 0 1 2 3 4 5 00.511.5 Log(BD(x10-12) (m2/s))Log(RCP (Coul.)) RCP (91 Days) vs. 1092-Day BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) SR(Moist) (91 Da y s) vs. 1092-Da y BD y = 0.615x 1.632 R2 = 0.723 -2 -1.5 -1 -0.5 0 00.511.5 Log(BD(x10-12) (m2/s))Log(SR (1/(kOhm-cm)) ) SR(Moist) (91 Da y s) vs. 1092-Da y BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) SR(Lime) (91 Da y s) vs. 1092-Da y BD y = 0.560x 1.566 R2 = 0.715 -2 -1.5 -1 -0.5 0 00.511.5 Log(BD(x10-12) (m2/s))Log(SR (1/(kOhm-cm)) ) SR(Lime) (91 Da y s) vs. 1092-Da y BD -0.8 -0.4 0 0.4 0.8 00.511.5 Log(BD(x10-12) (m2/s))Residual (yi-yi_pred) Figure F-2. Electrical Test Modifi ed Linear Regression Analysis to 3-Year Bulk Diffusion Data ( Concrete mixture contai ning Calcium Nitrite (CPR12). It was not include in the general correlation calculations).

PAGE 196

196 APPENDIX G COMPARISON OF CONDUCTIVITY AND LONG-TERM LABORATORY DIFFUSION TESTS RCP (14 Days) vs. 364-Day BD y = 1550.771x0.788R2 = 0.592 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (28 Days) vs. 364-Day BD y = 1041.691x0.862R2 = 0.669 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (56 Days) vs. 364-Day BD y = 619.604x0.985R2 = 0.810 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (91 Days) vs. 364-Day BD y = 540.534x0.936R2 = 0.802 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (182 Days) vs. 364-Day BD y = 382.517x1.012R2 = 0.787 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (364 Days) vs. 364-Day BD y = 259.604x1.081R2 = 0.770 0 5000 10000 15000 05101520 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Figure G-1. RCP Coulombs vs. 1-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 197

197 RCP (14 Days) vs. 1092-Day BD y = 2415.106x0.482R2 = 0.388 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (28 Days) vs. 1092-Day BD y = 1647.192x0.549R2 = 0.474 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (56 Days) vs. 1092-Day BD y = 966.545x0.690R2 = 0.698 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (91 Days) vs. 1092-Day BD y = 794.546x0.687R2 = 0.755 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (182 Days) vs. 1092-Day BD y = 565.798x0.762R2 = 0.782 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) RCP (364 Days) vs. 1092-Day BD y = 382.249x0.839R2 = 0.813 0 5000 10000 15000 0102030 Bulk Diffusion (x10-12) (m2/s)RCP (Coulombs) Figure G-2. RCP Coulombs vs. 3-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 198

198 SR (Lime) (14 Da y s) vs. 364-Da y Bulk Diffusion y = 0.063x0.513R2 = 0.475 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (28 Da y s) vs. 364-Da y Bulk Diffusion y = 0.037x0.658R2 = 0.770 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (56 Da y s) vs. 364-Da y Bulk Diffusion y = 0.024x0.785R2 = 0.799 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (91 Da y s) vs. 364-Da y Bulk Diffusion y = 0.019x0.803R2 = 0.840 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (182 Da y s) vs. 364-Da y Bulk Diffusion y = 0.014x0.792R2 = 0.808 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (364 Da y s) vs. 364-Da y Bulk Diffusion y = 0.011x0.804R2 = 0.702 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-3. SR (Lime Cured) vs. 1-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 199

199 SR (Lime) (455 Da y s) vs. 364-Da y Bulk Diffusion y = 0.011x0.789R2 = 0.695 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (546 Da y s) vs. 364-Da y Bulk Diffusion y = 0.010x0.823R2 = 0.682 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-3. Continued.

PAGE 200

200 SR (Lime) (14 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.086x0.301R2 = 0.286 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (28 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.054x0.397R2 = 0.492 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (56 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.035x0.515R2 = 0.602 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (91 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.027x0.560R2 = 0.715 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (182 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.019x0.586R2 = 0.773 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (364 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.014x0.638R2 = 0.774 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-4. SR (Lime Cured) vs. 3-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 201

201 SR (Lime) (455 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.014x0.626R2 = 0.765 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Lime) (546 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.013x0.644R2 = 0.731 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-4. Continued.

PAGE 202

202 SR (Moist) (14 Da y s) vs. 364-Da y Bulk Diffusion y = 0.032x0.738R2 = 0.757 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (28 Da y s) vs. 364-Da y Bulk Diffusion y = 0.028x0.763R2 = 0.747 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (56 Da y s) vs. 364-Da y Bulk Diffusion y = 0.021x0.807R2 = 0.745 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (91 Da y s) vs. 364-Da y Bulk Diffusion y = 0.016x0.848R2 = 0.787 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (182 Da y s) vs. 364-Da y Bulk Diffusion y = 0.012x0.863R2 = 0.770 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (364 Da y s) vs. 364-Da y Bulk Diffusion y = 0.009x0.945R2 = 0.744 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-5. SR (Moist Cured) vs. 1-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 203

203 SR (Moist) (455 Da y s) vs. 364-Da y Bulk Diffusion y = 0.009x0.857R2 = 0.698 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (546 Da y s) vs. 364-Da y Bulk Diffusion y = 0.008x0.907R2 = 0.685 0 0.1 0.2 0.3 05101520 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-5. Continued.

PAGE 204

204 SR (Moist) (14 Days) vs. 1092Day Bulk Diffusion y = 0.047x0.474R2 = 0.495 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (28 Days) vs. 1092Day Bulk Diffusion y = 0.042x0.487R2 = 0.533 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (56 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.031x0.548R2 = 0.602 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (91 Da y s) vs. 1092-Da y Bulk Diffusion y = 0.023x0.615R2 = 0.723 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (182 Days) vs. 1092Day Bulk Diffusion y = 0.017x0.659R2 = 0.788 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (364 Days) vs. 1092Day Bulk Diffusion y = 0.013x0.723R2 = 0.761 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-6. SR (Moist Cured) vs. 3-Year Bulk Diffusion Coefficients ( Concrete mixture containing Calcium Nitrite (CPR12). It wa s not include in th e general correlation calculations).

PAGE 205

205 SR (Moist) (455 Days) vs. 1092Day Bulk Diffusion y = 0.012x0.683R2 = 0.777 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) SR (Moist) (546 Days) vs. 1092Day Bulk Diffusion y = 0.011x0.717R2 = 0.750 0 0.1 0.2 0.3 0102030 Bulk Diffusion (m2/s)SR Conductivit y (1/(kOhm-cm)) Figure G-6. Continued.

PAGE 206

206 APPENDIX H ANALYSIS OF DATA OBTAINED FROM OTHER PROJECTS Table H-1. HRP Project (Paredes 2007) Concrete Mixture Designs. Materials and Specifications Mixture Name FDOT Class W/C Cementicious (pcy) Pozzolan (%Cement.) Pozzolan (%Cement.) Coarse Aggregate HRP3 V 0.35 752 Fly-Ash (20%) Silica Fume Slurry (8%) 89 Limestone HRP4 V 0.35 752 Fly-Ash (20%) Silica Fume Densified (8%) 89 Limestone Table H-2. Initial Chloride Background Levels from HRP Proj ect (Paredes 2007). TESTInitial Chloride Background Levels ABCAVG HRP30.4260.4260.4350.429 HRP40.3100.3680.3440.341 NaCl (lb/yd3) MIX Table H-3. 1-Year Bulk Diffu sion Chloride Profile Testing from HRP Project (Paredes 2007). MIXHRP3TESTBulk Diffusio n Depth (in)ABCAVG 0.1336.51837.006-36.762 0.3822.11121.579-21.845 0.633.6395.450-4.545 0.881.6651.858-1.762 1.130.3530.346-0.350 1.380.3100.325-0.318 1.630.3260.308-0.317 1.880.3050.329-0.317 NaCl (lb/yd3) MIXHRP4TESTBulk Diffusio n Depth (in)ABCAVG 0.1339.78037.705-38.743 0.3824.55717.593-21.075 0.638.9624.097-6.530 0.881.0521.396-1.224 1.130.3750.404-0.390 1.380.3700.411-0.391 1.630.3680.400-0.384 1.880.3820.397-0.390 NaCl (lb/yd3)

PAGE 207

207 00.511.52 0 20 40 60 HRP3-Sample A(20% Fly-Ash, 8% SF Slurry)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.691E-12 Background(lb/yd^3) 0.429 Surface(lb/yd^3) 49.517 Sum(Error)^2 26.813 00.511.52 0 20 40 60 HRP3-Sample B(20% Fly-Ash, 8% SF Slurry)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.782E-12 Background(lb/yd^3) 0.429 Surface(lb/yd^3) 49.372 Sum(Error)^2 12.318 00.511.52 0 20 40 60 HRP4-Sample A(20% Fly-Ash, 8% SF Densified)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.071E-12 Background(lb/yd^3) 0.429 Surface(lb/yd^3) 52.171 Sum(Error)^2 15.161 00.511.52 0 20 40 60 HRP4-Sample B(20% Fly-Ash, 8% SF Densified)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.355E-12 Background(lb/yd^3) 0.429 Surface(lb/yd^3) 51.815 Sum(Error)^2 2.640 Figure H-1. Diffusion Coefficient Results from HRP Project (Paredes 2007).

PAGE 208

208 Table H-4. St. George Island Br idge Pile Testing Project Chlo ride Profile Testing of Cored Samples (Cannon et al. 2006). Pile44-2LoactionSUBMERGED ZONE (6-ft below MHW)Depth (in)ABCAVG 0.2530.23930.74630.04230.342 0.7524.31024.33924.33924.329 1.5020.43620.04120.26120.246 2.5019.45119.16119.58519.399 3.5014.73214.61014.70314.682 4.5013.60413.63013.77713.670 5.5014.54914.29814.40414.417 NaCl (lb/yd3) Pile44-2LoactionTIDAL ZONE (1-ft below MHW)Depth (in)ABCAVG 0.2518.56918.98518.88418.813 0.7516.49216.92717.01716.812 1.5017.06216.86117.24717.057 2.5014.01814.11114.35514.161 3.5012.43512.63012.79412.620 4.5011.06710.96110.95710.995 5.5010.26010.5969.96310.273 NaCl (lb/yd3) Pile44-2LoactionSPLASH ZONE (3-ft above MHW)Depth (in)ABCAVG 0.2520.06219.93319.80119.932 0.7516.96616.97317.25817.066 1.5013.27713.44713.32013.348 2.508.9798.8799.0268.961 3.505.9995.8665.8665.910 4.503.7393.5503.3743.554 5.501.6521.6481.6551.652 NaCl (lb/yd3) Pile44-2LoactionDRY ZONE (7-ft above MHW)Depth (in)ABCAVG 0.255.1225.1155.1985.145 0.757.3107.2036.7717.095 1.505.2235.1755.1915.196 2.503.5363.4623.4543.484 3.501.6721.7451.6661.694 4.501.0130.9581.0210.997 5.500.3710.3840.3550.370 NaCl (lb/yd3)

PAGE 209

209 05101520 0 10 20 30 PILE 44-2 (6ft below MHW)(SUBMERGED)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.148E-11 Background(lb/yd^3) 0.400 Surface(lb/yd^3) 27.738 Sum(Error)^2 32.192 05101520 0 10 20 30 PILE 44-2 (1ft below MHW))(TIDAL)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.827E-11 Background(lb/yd^3) 0.400 Surface(lb/yd^3) 18.879 Sum(Error)^2 1.849 05101520 0 10 20 30 PILE 44-2 (3ft above MHW)(SPLASH)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 2.495E-12 Background(lb/yd^3) 0.400 Surface(lb/yd^3) 21.163 Sum(Error)^2 0.184 05101520 0 10 20 30 PILE 44-2 (7ft above MHW)(DRY)Depth (in)Chloride Content (lb/yd^3) Diffusion(m^2/sec) 1.646E-12 Background(lb/yd^3) 0.400 Surface(lb/yd^3) 9.219 Sum(Error)^2 0.179 Figure H-2. St. George Island Brid ge Pile Testing Project Diffusion Coefficients (Cannon et al. 2006) (Initial chloride background levels information was not available in this project. It was assumed a minimum value of 0.40 lb/yd3 for all the samples).

PAGE 210

210 LIST OF REFERENCES AASHTO T 23 (1993). Standard Method of Test for Making and Curing Concrete Test Specimens. American Association of Stat es Highway and Transportation Officials. AASHTO T 259-80 (1993). Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration. American Association of St ates Highway and Transportation Officials. AASHTO T 260 (1997). Standard Met hod of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials. Amer ican Association of States Highway and Transportation Officials. AASHTO T 277-86 (1990). Rapid Determination of the Chloride Permeability of Concrete. American Association of States Hi ghway and Transpor tation Officials. ASTM C 39 (1999). Standard Test Method for Compressive Streng th of Cylindrical Concrete Specimens. American Society for Testing and Materials. ASTM C 138 (2001). Standard Test Method for De nsity (Unit Weight), Yi eld, and Air Content (Gravimetric) of Concrete. American Society for Testing and Materials. ASTM C 143 (2000). Standard Test Method fo r Slump of Hydraulic Cement Concrete. American Society for Testing and Materials. ASTM C 173 (2001). Standard Test Method for Ai r Content of Freshly Mixed Concrete by the Volumetric Method. American Soci ety for Testing and Materials. ASTM C 1064 (1999). Standard Test Method fo r Temperature of Freshly Mixed Portland Cement Concrete. American Society for Testing and Materials. ASTM C1152/C1152M (1990). Standa rd Test Method for Acid-Solubl e Chloride in Mortar and Concrete. American Society for Testing and Materials. ASTM C 1202 (1997). Standard Test Method for El ectrical Indication of Concretes Ability to Resist Chloride Ion Penetration. Americ an Society for Testing and Materials. Andrade, C. (1993). Calculation of chloride di ffusion coefficients in concrete from ionic migration measurements. Cement and Concrete Research, 23(3), 724-742. Ann, K.Y., Jung, H.S., Kim, H.S. and Moon,H. Y. (2005). Effect of Calcium Nitrite-Based Corrosion Inhibitor in Preventi ng Corrosion of Embedded Steel in Concrete. Cement and Concrete Research, 36(3), 530-535.

PAGE 211

211 Berke, N.S. (1987). Effect of Calcium Nitrite and Mix Design on the Corrosion Resistance of Steel in Concrete (Part 2 Long-Term Re sults). Proceedings of the Corrosion-87 Symposium on Corrosion of Metals in Conc rete. Houston: National Association of Corrosion Engineers, 134. Broomfield, J. and Millard, S. (2002). Measuring concrete resistiv ity to assess corrosion rates. A report from The Concrete Society/Instit ute of Corrosion liaison committee, Current Practice Sheet (128), 37-39. Boddy, A., Bentz, E., Thomas, M.D.A. and Hoot on, R.D. (1999). An overview and sensitivity study of a multimechanistic chloride transport model. Cement and Concrete Research, 29(6), 827-837. Boddy, A., Hooton, R.D. and Gruber K.A. ( 2001). Long-term Testing of the ChloridePenetration Resistance of Concrete Containi ng High-Reactivity Metakaolin. Cement and Concrete Research, 31(5), 759-765. Cannon, E., Lewinger, C., Abi, C. and Hamilton, H. R. (2006). St. George Island Bridge Pile Testing. Final Report No. BD545, Flor ida Department of Transportation. Chini, A.R, Muszynski, L.C. and Hicks, J. (2003). Determination of Acceptance Permeability Characteristics for Performance-Related Speci fications for Portland Cement Concrete. Final Report No. BC 354-41, Florida Department of Transportation. Dhir, R.K., and Byars, E.A. (1993). PFA conc rete: Chloride diffusion rates. Magazine of Concrete Research, 45(162), 1-9. Feldman, R.F., Chan, G.W., Brousseau, R.J. and Tumidajski, P.J. (1994). Investigation of the Rapid Chloride Permeability Test. AC I Materials Journal, 91(3), 246-255. FDOT 346 (2004). Florida Department of Trans portation Standard Specification for Road and Bridge Construction. Florida Department of Transportation (FDOT). 346-3.1(d). FDOT SDG (2007). Structures Design Guidelines Florida Department of Transportation (FDOT). FM 5-516 (2005). Florida Method of Test For Dete rmining Low-Levels of Chloride in Concrete and Raw Materials. Florida Depart ment of Transportation (FDOT). FM 5-578 (2004). Florida Method of Test for Concre te Resistivity as an Electrical Indicator of its Permeability. Florida Department of Transportation (FDOT).

PAGE 212

212 Glass, G.K., and Buenfeld, N.R. (1995). Chlor ide threshold levels for corrosion induced deterioration of steel in concrete International RILEM Workshop. Gowers, K.R. and Millard, S.G. (1999). Measurem ent of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner T echnique. ACI Material s Journal, 96(5), 536541. Hooton, R.D. (1997). Discussion of the rapid chlori de permeability test and its correlation to the 90-day chloride ponding test. PCI Journal, 42(3), 65-66. Hooton, R.D.,Thomas, M.D.A. and Stanish, K. ( 2001). Prediction of Chloride Penetration in Concrete. Final Report No. FHWA/RD-00/ 142, Federal Highway Administration. Hughes, B.P., Soleit, A.K.O. and Brierly, R. W. (1985). New Technique for Determining the Electrical Resistivity of Conc rete. Magazine of Concre te Research, 37(133), 243-248. Kirkpatricka, T., Weyers, R.E., Anderson-Cook, C.M. and Sprinkel, M.M. (2002). Probabilistic Model for the Chloride-Induced Corrosion Serv ice Life of Bridge Decks. Cement and Concrete Research 32(12), 1943-1960. Kranc, S.C. and Sags, A.A. (2003). Advanced Analysis of Chloride Ion Penetration Profiles in Marine Substructure. Final Report No. BB 880, Florida Department of Transportation. Kondratova, I.L., Montes, P. and Bremner, T.W. (2003). Natural Marine Exposure Results for Reinforced Concrete Slabs with Corrosion In hibitors. Cement and Concrete Composites, 25(4), 483-490. Li, Z., Peng, J., and Ma, B. (1999). Investiga tion of chloride diffusion for high-performance concrete containing fly ash, microsilica, and ch emical admixtures. AC I Materials Journal, 96(3), 391-396. Luping, T. and Nilson, L.O. (1992). Chloride Diff usivity in High-Strength Concrete at Different Ages. Nordic Concrete Research, Publication No. 11. Ma, B., Li, Z. and Peng, J. (1998). Effect of Calcium Nitrite on High Performance Concrete Containing Fly Ash. Supplementary Proceedin gs of the Six CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag a nd Natural Pozzolans in Concrete. Bangkok, 113. Mangat, P.S. and Molloy, B.T. (1994). Predic tion of Long Term Chloride Concentration in Concrete. Materials an d Structures, 27, 338-346.

PAGE 213

213 McGrath, P.F. and Hooton, R.D. (1999). R e-evaluation of the AASHTO T259 90-day salt ponding test. Cement and Concre te Research, 29(8), 1239-1248. Mindess, S., Young, J.F and Darwin, D. (2002). Concrete. Second Edition, Prentice-Hall. Monfore, G.E. (1968). The Electrical Resistivit y of Concrete. Journal of the PCA Research and Development Laboratories, 10(2), 35-48. Morris, W., Moreno, E.I. and Sages, A.A. ( 1996). Practical evaluati on of resistivity of concrete in test cylinders using a Wenner array probe. Cement and Concrete Research, 26(12), 1779-1787. Nokken, M., Boddy, A., Hooton, R.D. and Thom as, M.D.A. (2006). Time Dependent Diffusion in ConcreteThree Laboratory Studies. Ceme nt and Concrete Research, 36(1), 200-207. NT BUILD 443 (1995). Concrete, hardened: Accel erated chloride penetration. Nordtest method. Ozyildirim, C., and Halstead, W.J. (1988). Use of Admixtures to Attain Low Permeability Concretes Final Repor t No. FHWA/VA-88-R11. Page, C.L., Short, N.R., and El Tarras, A. (1981). Diffusion of chloride ions in hardened cement pastes. Cement and Concre te Research, 11(3), 395-406. Paredes, M. (2007). High Reactive Pozzolans Pr oject (HRP). Project in Progress. Florida Department of Transportation. Pfeifer, D.W., McDonald, D.B. and Krauss, P.D. (1994). The rapid chloride permeability test and its correlation to the 90-day chloride ponding test. PCI Journal, 41(4), 82. Sags, A.A. (1994). Corrosion of Epoxy Coated Rebar in Florida Brid ges. Final Report No. 99700-7556-010, WPI 0510603, Florida Depa rtment of Transportation. Sags, A.A., Kranc, S.C., Presuel-Moreno, F., Rey, D., Torres-Acosta, A. and Yao, L. (2001). Corrosion Forecasting for 75-Year Durability Design of Reinforced Concrete. Final Report No. BA 502, Florida Depa rtment of Transportation. Scanlon, J.M. and Sherman, M.R. (1996). Fly ash concrete: An evaluation of chloride penetration testing methods. Conc rete International, 18(6), 57-62.

PAGE 214

214 Shi, C., Stegemenn, J.A. and Caldwell, R. (1998). Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and Its Implications on the Rapid Chloride Permeability Test (AASHTO T277 a nd ASTM C1202) Results. ACI Materials Journal, 95(4), 389-394. Shi, C. (2003). Another look at the Rapid Chloride Permeab ility Test (ASTM C1202 or AASHTO T277). Snyder, K.A., Ferraris, C., Martys, N.S. a nd Garboczi, E.J. (2000). Using Impedance Spectroscopy to Assess the Viability of the Ra pid Chloride Test for determining Concrete Conductivity. Journal of Research of the Na tional Institute of St andars and Technology, 105(4), 497-509. Sohanghpurwala, A.A (2006). Manual on Service Life of Corrosion Damaged Reinforced Concrete Bridge Superstructure Elements. CONCORR, Inc. Stanish, K. and Thomas, M. (2003). The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients. Cement and Concrete Research, 33(1), 55-62. Streicher, P.E and Alexander, M.G. (1995). A Ch loride Conduction Test for Concrete. Cement and Concrete Research, 25(6), 1284-1294. Tang, L. and Andersen, A. (2000) Chloride ingress data from five years field exposure in a Swedish marine environment. Proceedings of the 2nd International RILEM Workshop on Testing and Modelling the Chloride Ingre ss into Concrete, Paris, 11-12, pp. 105-119. Tang, L. (2003). Chloride Ingress in Concrete E xposed to Marine EnvironmentField data up to 10 years exposure. SP Swedish National Testing and Research Institute Building Technology and Mechanics. SP REPORT 2003:16. Thomas, M.D.A., Pantazopoulou, S.J. and Martn-P rez, B. (1995). Service Life Modelling of Reinforced Concrete Structures Exposed to Ch lorides: A Literature Review. Department of Civil Engineering, University of Toronto, 45. Thomas, M.D.A. and Bamforth, P.B. (1999). Modell ing Chloride Diffusion in Concrete Effect of Fly Ash and Slag. Cement and Concrete Research, 29(4), 487-495. Thomas, M.D.A., Shehata, M.H., Shashiprakash, S. G., Hopkins, D.S. and Cail, K. (1999). Use of Ternary Cementitious Systems Containing Silica Fume and Fly Ash in Concrete. Cement and Concrete Re search, 29(8), 1207-1214. Tuutti, K. (1982). Corrosion of steel in concre te. Swedish Cement and Concrete Research Institute, 469.

PAGE 215

215 Vivas, E., Boyd, A. and Hamilton, H. R. ( 2007). Permeability of Concrete Comparison of Conductivity and Diffusion Methods. Final Repo rt No. BD 536, Florida Department of Transportation. Whiting, D. (1981). Rapid determination of the chloride ion permeability of concrete. Federal Highway Administration, Fina l Report No. FHWA/RD-81/119. Whiting, D. (1988). Permeability of Selected Concretes. Permeability of Concrete, SP-108, American Concrete Institute. 195-222. Whiting, D., and Dziedzic, W. (1989). Resistance to Chloride Infiltration of Superplasticized Concrete as Compared With Currently Used Concrete Overlay Systems. Final Report No. FHWA/OH-89/009. Whiting, D. and Mohamad, N. (2003). Electrical Re sistivity of Concrete-A Literature Review. Portland Cement Associati on, R&D Serial No. 2457. Wee, T.H., Suryavanshi, A.K. and Tin, S.S. (2000). Evaluation of Rapid Chloride Permeability Test (RCPT) Results for Concrete Contai ning Mineral Admixtures. ACI Materials Journal, 97(2), 221-232. Yang, C.C., Cho, S.W. and Huang, R. (2002). T he relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride mi gration test. Cement and Concrete Research, 32(2), 217-22.

PAGE 216

216 BIOGRAPHICAL SKETCH Enrique A. Vivas was born in 1976 in Valencia Venezuela, to Yolanda and Pedro Vivas. He graduated from La Salle High School in Valenc ia Venezuela in July of 1993. He received his Bachelor of Science in Civil Engineering in the Fall of 1999 from the University of Carabobo, Venezuela. While attending the University of Carabobo full time, Enrique worked part time for the Department of Civil Engineering, for three year as an Assistant Engineer at the Physical Plant Office. Enrique continued his education by entering graduate school to pursue a Master of Engineering in the Structural Group of the Civ il and Coastal Engineering Department at the University of Florida in the Spring 2002. He recei ved his Master of Engine ering in the Spring of 2004.