<%BANNER%>

Geometric Under-Constraints

Permanent Link: http://ufdc.ufl.edu/UFE0021690/00001

Material Information

Title: Geometric Under-Constraints
Physical Description: 1 online resource (131 p.)
Language: english
Creator: Gao, Heping
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: algebraic, configuration, connected, convex, distance, edge, extreme, framework, graph, helix, henneberg, linkage, minor, sampling, triangle, underconstraint, zeolite
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: We define and study exact, efficient representations of realization spaces Euclidean Distance Constraint Systems (EDCS). These are graphs with distance assignments on the edges (frameworks) or graphs with distance interval assignments on the edges. Each representation corresponds to a choice of non-edges or Cayley parameters. The set of realizable distance assignments to the chosen parameters yields a parametrized configuration space. We initialize a systematic and graded program of combinatorially characterizing graphs with configuration spaces of different geometry and algebraic complexity. Our notion of efficiency is based on the convexity and connectedness of the configuration space, as well as algebraic complexity of sampling realizations: that is, sampling the configuration space and obtaining a realization from the sample (parametrized) configuration. Significantly, we give purely graph-theoretic, forbidden minor characterizations that capture the class of graphs that always admit efficient configuration spaces and the possible choices of representation parameters that yield efficient configuration spaces for a given graph. We completely characterize EDCS that have connected, convex and efficient configuration spaces, based on precise and formal measures of efficiency. It should be noted that our results do not rely on genericity of the EDCS. Some of our proofs employ an unusual interplay of classical analytic and algebraic results related to positive semi-definiteness of Euclidean distance matrices, and Cayley-Menger conditions, with recent forbidden minor characterizations and algorithms related to realizability of EDCS. We further introduce a novel type of restricted edge contraction or reduction to a graph minor, a strategy that we anticipate will be useful in other situations. We study the class of 1-dof Henneberg-I graphs in order to take the next step in a systematic and graded program of combinatorial characterizations of efficient configuration spaces. We prove an algebraic theorem that makes combinatorial classification meaningful. We give the graph characterization according to the classification. We prove our results are tight and our definitions are robust. Our results have immediate CAD applications. We give preliminary results and conjectures for two natural extensions: which 2D EDCS have configuration space with at most two connected components and which 3D EDCS have connected configuration space. Finally, we discuss two application problems: characterizing configuration space of packing Zeolite and Helix. We give a surprising configuration space description theorem for Zeolite problem. We show that our novel simulation of Helix packing via geometric constraint solving provides quality and efficiency guarantees that other methods do not.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Heping Gao.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Sitharam, Meera.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-12-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021690:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021690/00001

Material Information

Title: Geometric Under-Constraints
Physical Description: 1 online resource (131 p.)
Language: english
Creator: Gao, Heping
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: algebraic, configuration, connected, convex, distance, edge, extreme, framework, graph, helix, henneberg, linkage, minor, sampling, triangle, underconstraint, zeolite
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: We define and study exact, efficient representations of realization spaces Euclidean Distance Constraint Systems (EDCS). These are graphs with distance assignments on the edges (frameworks) or graphs with distance interval assignments on the edges. Each representation corresponds to a choice of non-edges or Cayley parameters. The set of realizable distance assignments to the chosen parameters yields a parametrized configuration space. We initialize a systematic and graded program of combinatorially characterizing graphs with configuration spaces of different geometry and algebraic complexity. Our notion of efficiency is based on the convexity and connectedness of the configuration space, as well as algebraic complexity of sampling realizations: that is, sampling the configuration space and obtaining a realization from the sample (parametrized) configuration. Significantly, we give purely graph-theoretic, forbidden minor characterizations that capture the class of graphs that always admit efficient configuration spaces and the possible choices of representation parameters that yield efficient configuration spaces for a given graph. We completely characterize EDCS that have connected, convex and efficient configuration spaces, based on precise and formal measures of efficiency. It should be noted that our results do not rely on genericity of the EDCS. Some of our proofs employ an unusual interplay of classical analytic and algebraic results related to positive semi-definiteness of Euclidean distance matrices, and Cayley-Menger conditions, with recent forbidden minor characterizations and algorithms related to realizability of EDCS. We further introduce a novel type of restricted edge contraction or reduction to a graph minor, a strategy that we anticipate will be useful in other situations. We study the class of 1-dof Henneberg-I graphs in order to take the next step in a systematic and graded program of combinatorial characterizations of efficient configuration spaces. We prove an algebraic theorem that makes combinatorial classification meaningful. We give the graph characterization according to the classification. We prove our results are tight and our definitions are robust. Our results have immediate CAD applications. We give preliminary results and conjectures for two natural extensions: which 2D EDCS have configuration space with at most two connected components and which 3D EDCS have connected configuration space. Finally, we discuss two application problems: characterizing configuration space of packing Zeolite and Helix. We give a surprising configuration space description theorem for Zeolite problem. We show that our novel simulation of Helix packing via geometric constraint solving provides quality and efficiency guarantees that other methods do not.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Heping Gao.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Sitharam, Meera.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-12-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021690:00001


This item has the following downloads:


Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

IamgratefulforthehelpIreceivedinwritingthisdissertation.Firstofall,Ithankmyadvisor(Prof.MeeraSitharam)forherguidanceandsupport.Withoutnumerousdiscussionsandbrainstormswithher,theresultspresentedinthisdissertationwouldneverhaveexisted.IamgratefultoAlperUngor,MavisA.Mckenna,NeilWhite,SartajSahniandTimDavisfortheirguidanceandencouragementduringmyyearsattheUniversityofFlorida(UF).IamthankfultoallmycolleaguesinProf.Sitharam'sgroup,includingAndrewLomonosov,MohamadTari,SenthilNathanGandhiandYongZhou.Theyprovidedvaluablefeedbackformyresearch.IthankthehelpfulpeopleintheComputerandInformationScienceandEngineering(CISE)Departmentfortheirhelpinmyresearchwork.Lastbutnotleast,Iamgratefultomyfamiliesfortheirlove,encouragement,andunderstanding.Itwouldbeimpossibleformetoexpressmygratitudetotheminmerewords. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 12 CHAPTER 1INTRODUCTION .................................. 14 1.1Introduction ................................... 14 1.2Motivation .................................... 15 1.3Problems .................................... 20 2GRAPHSWITH2DCONNECTEDCONFIGURATIONSPACES ....... 22 2.1QuestionsandContributions .......................... 22 2.2NoveltyandRelatedWork ........................... 23 2.3Theorems .................................... 24 2.3.1Basics .................................. 24 2.3.2GraphswithConnected,Convex,LinearPolytope2DCongurationSpace ................................... 25 2.3.2.1Graphsandtheir\single-interval"non-edges ........ 27 2.3.2.2Graphswithgenericallycompletelinearpolytopecongurationspaces ............................. 35 2.3.2.3FullcharacterizationofCayleyparametersthatyieldalinearpolytope2Dcongurationspace ........... 36 2.3.2.4CharacterizationofEDCSwithdistanceintervals ..... 36 2.4ConclusionsandFutureWork ......................... 37 3UNIVERSALLYINHERENTSQUARECONVEXCONFIGURATIONSPACES 40 3.1Question ..................................... 40 3.2NoveltyandRelatedWork ........................... 41 3.3GraphRealizabilityImpliesSquareConvexCongurationSpaces ...... 42 3.4UniversallyInherentConnectedCongurationSpaceImplies2-Realizabilityand3-Realizability ............................... 44 3.5ConclusionsandFutureWork ......................... 48 5

PAGE 6

............................ 51 4.1QuestionsandContributions .......................... 51 4.1.1Question1:GraphswithEcientCongurationSpaces ....... 51 4.1.2Question2:ParametersthatYieldEcientCongurationSpacesforaGivenGraph ............................ 53 4.2NoveltyandRelatedWork ........................... 53 4.3Results ...................................... 55 4.3.1DenitionandBasicPropertiesofSimple1-DofHenneberg-IGraphs 55 4.3.2Simple1-DofHenneberg-IGraphswithEcientCongurationSpaces 59 4.3.2.1Combinatorialmeaningofcongurationspaceboundary 60 4.3.2.2Forbiddenminorcharacterizationfor1-PathTriangle-FreeSimple1-DofHenneberg-Igraphs .............. 67 4.3.2.3Tightnessoftheforbiddenminorcharacterization ..... 78 4.3.2.4Graphcharacterizationfor1-PathSimple1-DofHenneberg-Igraph ............................. 82 4.3.3CharacterizingParameterChoices:AllBaseEdgesYieldEquallyEcientCongurationSpaces ..................... 84 4.4ConclusionsandFutureWork ......................... 92 5FUTURETHEORETICALWORK ......................... 93 5.1CongurationSpacewithTwoConnectedComponents ........... 93 5.1.1QuestionsandContributions ...................... 93 5.1.2Dierencebetween2D2CCSand2DConnectedCongurationSpaces 94 5.1.3GraphCharacterizationforaSubclassofGraphs ........... 96 5.1.4ExtensionofGraphCharacterizationandObstacles ......... 102 5.2GraphsWith3DConnectedCongurationSpace .............. 106 5.2.1QuestionsandContributions ...................... 106 5.2.2Extensionof2DConnectedCongurationSpaceDoesNotHoldfor3D .................................... 107 5.2.2.1Lemmasstandforboth2Dand3D ............. 107 5.2.2.2Modiedconjecturein3D .................. 109 5.2.3PromisingWaytoCharacterize3DConnectedCongurationSpaces 114 6APPLICATIONS ................................... 118 6.1CompletionandCongurationSpaceforZeoliteGraphs ........... 118 6.1.1DenitionofZeoliteGraphsandConstraintSystems ......... 119 6.1.2CongurationSpaceDescriptionforZeoliteGraphs ......... 120 6.2HelixPackingviaConstraintSolving ..................... 122 6.2.1IntroductionandMotivation ...................... 122 6.2.2Denitions ................................ 122 6.2.3ACompleteListofExtremeCongurationTypes .......... 125 6.3Conclusion .................................... 125 6

PAGE 7

................................... 127 REFERENCES ....................................... 128 BIOGRAPHICALSKETCH ................................ 131 7

PAGE 8

Figure page 1-1WhenparametersfortheEDCSin(a)arechosentobethetwodashednon-edges,wegetaconvex2Dcongurationspaceshownin(b).Thehorizontalaxisdenotes(v2;v4)andtheverticalaxisdenotes(v1;v4). ................. 16 1-2WhenparameterfortheEDCSin(a)ischosentobethedashednon-edge,wegetadisconnected2Dcongurationspaceshownin(b):therealizationp(v1)canlieineitherofthetwosolidarcsegmentsofthecirclelabeledp(v1),yieldingtwodisconnectedintervalsforthecongurationspaceonthenon-edge(v1;v3)asshownin(c).Theaxisin(c)denotes(v1;v3). ................ 16 1-3Figure(left)isa1-DofHenneberg-Igraphwhosecongurationspaceonthebasenon-edgehasintervalendpointsthatarenotalwaysquadraticallysolvable.Figure(right)ontheotherhandhasquadraticallysolvableendpoints.Fortheedgedistancesshow,theintervalsare[1 8p 8p 5p 5p ...................... 19 2-1Thegraphofonlysolidedgesisanunderconstrainedpartial2-treewhilethegraphofbothsolidanddashededgesiswellconstrainedandisa2-tree. ..... 26 2-2A2-Sumofveminimal2-Sumcomponents(markedbydashedcircles).The2-Sumcomponentinthemiddleisapartial2-treebuttheentiregraphisnotapartial2-tree.Theunionofthemiddlecomponentwithanyothercomponentisalsoa2-Sumcomponentbutnotminimal. ..................... 26 2-3Nonon-edgefexistssuchthat2f(G;)isalwaysconnected. ........... 27 2-4BaseCase1ofTheorem 2 .............................. 27 2-5BaseCase2ofTheorem 2 :Theverticesui:i=1;;mwherem1aretheonlyverticesotherthanv1andv2withdegreetwoandtheyareadjacenttobothv1andv2;f=(v1;v2)isnotanedgeofthegraph. .............. 28 2-6GraphGhasaconnected2Dcongurationspaceonf=(v1;v2)ifandonlyifforall1ik,thegraphGihasaconnected2Dcongurationspaceonf. .. 29 2-7Vertexv3isanarticulationvertexforv1andv2. .................. 29 2-8Casek=1,Subcasel2inproofofTheorem 2 .Thereareatleasttwodisjointpathsfromv1tov2;G[fisaminimal2-Sumcomponentcontainingbothv1andv2;andG[fisnotapartial2-tree. ...................... 30 2-9ForObservation 10 ,G's3Dcongurationspaceonnon-edgefisoneinterval,althoughG[ffghasaK5minor. ......................... 34 8

PAGE 9

10 .GraphGhasconnected3Dcongurationspaceonnon-edgef;GdoesnothaveK5minororK2;2;2minor;G[fhasaK2;2;2minorbutdoesnothaveaK5minor;inparticular,withoutcontractingedgefinG[fwecannotgetaK2;2;2minor. .............................. 34 2-11ForObservation 1 .Alltheminimal2-SumcomponentsofG[fcontainingfarepartial2-treesbut2f(G;[l(E);r(E)])isnotalwaysconnected. ...... 37 2-12Genericallygloballyrigidgraphin2D. ....................... 38 3-1DistanceassignmentforK2;2;3withoneedgeremoved:(a)K2;2;2withoneedgefremoved;(b)seeproofofLemma 6 :adistanceassignmenttoK222nfsuchthatthe3Dcongurationspaceonfisnotconnected. .............. 46 4-1Tree-DecomposableGraph:agraphGisTree-DecomposableifitcanbedividedintothreeTree-DecomposablesubgraphsG1,G2andG3suchthatG=G1[G2[G3,G1\G2=(fv3g;;),G2\G3=(fv2g;;)andG1\G3=(fv1g;;)wherev1,v2andv3arethreedierentvertices;asbasecases,apureedgeandatrianglearedenedtobeTree-Decomposable. .................. 55 4-2Henneberg-Igraph,Simple1-DofHenneberg-Igraphandextremegraph.(a)Henneberg-Igraph:(v1;v2)isthebaseedge;(b)Simple1-DofHenneberg-Igraph:(v1;v2)isthebasenon-edge;(c)Theextremegraphof(b)thatcorrespondstov7/(v5;v6);itisalsoaK3;3graph.Forboth(a)and(b),theHenneberg-Iconstructionscontain(v3/(v1;v2);v4/(v1;v2);v5/(v1;v3);v6/(v2;v4);v7/(v5;v6)). ..... 56 4-3SimpleHenneberg-Igraph:(a)Henneberg-Igraphwith(v1;v2)asbaseedge;(b)Simple1-DofHenneberg-Igraphwith(v1;v2)asbasenon-edge;(c)extremegraphof(b)thatcorrespondstov7/(v5;v6);itisalsoaC3C2graph.Forboth(a)and(b),theHenneberg-Iconstructionscontain(v3/(v1;v2);v4/(v1;v2);v5/(v3;v4);v6/(v1;v2);v7/(v5;v6)). .......................... 56 4-4Whenp(v7)andp(v8)arecoincident,distance(v5;v9)isnotafunctionof(v1;v2). 61 4-5ForLemma 7 .Newconstrainton(uk;wk)changestheintervalendpointsin2f(Gk;). ....................................... 63 4-6ForObservation 2 .(Left)showsextremeEDCScongurationsinE(G;)thatareinsomeproperintervalofI,butnotendpoints;(Middle)showsextremeEDCScongurationsthatareendpointsofintervalsinofI;and(Right)showsextremeEDCScongurationsthatareisolatedpointsinI.Thehorizontalaxisdenotes(f),theverticalaxisdenotesfunctionpuk;vk((f))=puk;vk((f)). ............................................. 66 4-7Allthe1-PathTriangle-FreeSimple1-DofHenneberg-Igraphswithlessthen8vertices;neither(d)nor(h)haslowsamplingcomplexityonbasenon-edge(v1;v2)whilealltheotherhave;both(d)and(h)haveaK3;3minorwhilealltheothersdonothave. ................................ 68 9

PAGE 10

8 ................. 70 4-9ProofofLemma 8 (2b). ............................... 71 4-10ForproofofLemma 9 ................................ 72 4-11Casesthatmustbedistinguishedindeterminingthedistanceintervalforf,giventhedistanceinterval[l(e);r(e)]fore.Thehorizontalaxisdenotes(f);theverticalaxisdenotes(e).Themeaningofthesymbolsare:min:l(e);max:r(e);1:rl(f);2:rr(f);3:ll(f);4:lr(f);5:min(f);6:max(f);e:(e);f:(f). ......................................... 76 4-12ForObservation 4 .ASimple1-DofHenneberg-IgraphGonbasenon-edge(v1;v2)whichisnotTriangle-FreebuthasasingleHenneberg-Iconstructionpathforv14onbasenon-edge(v1;v2);Ghascongurationspaceoflowsamplingcomplexityon(v1;v2);butG1hasaK3;3minorandG2hasaC3C2minor. ........ 79 4-13ForObservation 5 .ASimple1-DofHenneberg-Igraphonbasenon-edge(v1;v2)thathasoneHenneberg-Iconstructionpathonbasenon-edge(v1;v2);ithasacongurationspaceoflowsamplingcomplexityon(v1;v2)butithasaK5minorshownintheleftcircledsubgraph;ingeneral,itcanhaveaarbitrarycliqueasaminor. ....................................... 81 4-14ForObservation 6 .ASimple1-DofHenneberg-Igraphonbasenon-edge(v1;v2)thathasmorethanoneHenneberg-Iconstructionpathsonbasenon-edge(v1;v2);ithasacongurationspaceoflowsamplingcomplexityon(v1;v2);butithasbothK3;3andC3C2minors.Aside:(v3;v4),(v5;v6),(v1;v5)and(v2;v6)arealsobasenon-edgesandallofthemyieldcongurationspacesoflowsamplingcomplexity. ...................................... 81 4-15A1-Path1-DofHenneberg-Igraphthathaslowsamplingcomplexityonbasenon-edge(v1;v2);exactly1vertexnamelyv3isconstructedonv1andv2.SeeproofofTheorem 12 andObservation 7 ...................... 82 4-16ProofsofClaim 4 andinClaim 5 .Simple1-DofHenneberg-IgraphGhaslowsamplingcomplexityonbasenon-edge(v1;v2)whileGdoesnothavelowsamplingcomplexityonbasenon-edge(v3;v4);vertexv9istheonlyvertexdirectlyconstructedonv1andv2;triangle4(v9;v10;v1)correspondstothesecondHenneberg-Iconstructionfrom(v1;v2);in(a),(v1;v2)and(v3;v4)donotshareanyvertex;in(b)and(c),(v1;v2)and(v3;v4)shareavertex. ......................... 87 4-17ProofofClaim 5 :v1iscoincidentwithv3. ..................... 89 4-18ForproofofClaim 5 :v1isdierentfromv3andv4. ................ 90 5-1ProofforLemma 10 ................................. 95 10

PAGE 11

................... 96 5-3Case4:Gdoesnothave2D2CCSonnon-edgef. ................. 97 5-4ProofforTheorem 14 ................................ 100 5-5GraphGdoesnotadmit2D2CCSonnon-edgef=(v1;v2). ........... 102 5-6Proofforcase(f)inTheorem 15 .......................... 104 5-7Overconstraintsresultincongurationspaceof2connectedcomponents. .... 105 5-8ForproofofObservation 11 ............................. 111 5-9Threebasicsum-componentsofmaximally3-Realizablegraphs:(a)K4;(b)C5C2;(c)V8. ....................................... 113 5-10Giventwodierentvaluesfor(v3;v4),wecanndappropriatedistanceassignmenttothefouredgesofquadrilateral(v1;v2;v3;v4)suchthat(v1;v2)hastwodierentvalues. ......................................... 115 5-11Basecasesthatdonothold3Dconnectedcongurationspaces. ......... 115 5-12ProofforLemma 23 case(c)(Figure 5-11 (c)). .................. 116 6-1ZeolitegraphG6;7andone2Dcompletion. ..................... 119 6-2FirstrowandrstcolumnsubgraphofG6;7;itisapartial2-tree. ........ 120 6-3AnothercompletionforG6;7. ............................ 122 6-4Thealphahelixisatightlycoiled,rodlikestructurewhichhasanaverageof3.6aminoacidsperturn.ThehelixisstabilizedbyhydrogenbondingbetweenthebackbonecarbonylofoneaminoacidandthebackboneNHoftheaminoacidfourresiduesaway.Allmainchainaminoandcarboxylgroupsarehydrogenbonded,andtheRgroupsstickoutfromthestructureinaspiralarrangement.[Fromwiz2.pharm.wayne.edu/biochem/prot.html] ................. 123 6-5Twohelices ...................................... 123 6-6Bi-incidence ..................................... 124 6-7Eachtagrepresentsabipartitegraphwith(left,right)partshaving(i;j)verticesrespectively,wherei+1j6;i3:Thereshouldbe6edgesinthebipartitegraphandEachvertexcanhaveatmost3edgesincidentuponit. ....... 126 11

PAGE 12

Wedeneandstudyexact,ecientrepresentationsofrealizationspacesEuclideanDistanceConstraintSystems(EDCS).Thesearegraphswithdistanceassignmentsontheedges(frameworks)orgraphswithdistanceintervalassignmentsontheedges.Eachrepresentationcorrespondstoachoiceofnon-edgesorCayleyparameters.Thesetofrealizabledistanceassignmentstothechosenparametersyieldsaparametrizedcongurationspace.Weinitializeasystematicandgradedprogramofcombinatoriallycharacterizinggraphswithcongurationspacesofdierentgeometryandalgebraiccomplexity. Ournotionofeciencyisbasedontheconvexityandconnectednessofthecongurationspace,aswellasalgebraiccomplexityofsamplingrealizations,i.e.,samplingthecongurationspaceandobtainingarealizationfromthesample(parametrized)conguration.Signicantly,wegivepurelygraph-theoretic,forbiddenminorcharacterizationsthatcapturetheclassofgraphsthatalwaysadmitecientcongurationspacesandthepossiblechoicesofrepresentationparametersthatyieldecientcongurationspacesforagivengraph. WecompletelycharacterizeEDCSthathaveconnected,convexandecientcongurationspaces,basedonpreciseandformalmeasuresofeciency.ItshouldbenotedthatourresultsdonotrelyongenericityoftheEDCS.Someofourproofsemployanunusualinterplayofclassicalanalyticandalgebraicresultsrelatedtopositive 12

PAGE 13

Westudytheclassof1-dofHenneberg-Igraphsinordertotakethenextstepinasystematicandgradedprogramofcombinatorialcharacterizationsofecientcongurationspaces.Weproveanalgebraictheoremthatmakescombinatorialclassicationmeaningful.Wegivethegraphcharacterizationaccordingtotheclassication.Weproveourresultsaretightandourdenitionsarerobust.OurresultshaveimmediateCADapplications. Wegivepreliminaryresultsandconjecturesfortwonaturalextensions:which2DEDCShavecongurationspacewithatmosttwoconnectedcomponentsandwhich3DEDCShaveconnectedcongurationspace. Finally,wediscusstwoapplicationproblems:characterizingcongurationspaceofpackingZeoliteandHelix.WegiveasurprisingcongurationspacedescriptiontheoremforZeoliteproblem.WeshowthatournovelsimulationofHelixpackingviageometricconstraintsolvingprovidesqualityandeciencyguaranteesthatothermethodsdonot. 13

PAGE 14

WeseekecientrepresentationsoftherealizationspaceofanEDCS.Wedenearepresentationtobe(i)achoiceofparameterset,specicallyachoiceofasetFofnon-edgesofG,and(ii)asetdF(G;)ofpossibledistancevalues(f)thatthenon-edgesf2F 6 ; 25 ; 7 ).ThisisalsothesetofddimensionaljVjjVjEuclideandistancematrixcompletionsofthepartialdistancematrixspeciedby(G;)( 1 ). WerefertotherepresentationdF(G;)(resp.dF(G;[l;r]))asthecongurationspaceoftheEDCS(G;)(resp.(G;[l;r]))ontheparametersetFofnon-edgesofG. 14

PAGE 15

ThisdissertationformulatestheconceptofecientcongurationspacedescriptionforEDCSbyemphasizingtheexactchoiceofparametersusedtorepresenttherealizationspace.Thissetsthestageforamostlycombinatorial,andcomplexity-gradedprogramofinvestigation.Aninitialsketchofthisprogramwaspresentedin( 12 ). ExistingmethodsforsamplingEDCSrealizationspacesoftenuseCartesianrepresentations,factoringouttheEuclideangroupbyarbitrarily\pinning"or\grounding"someofthepoints'coordinatevalues.Evenwhenthemethodsuse\internal"representationparameterssuchasCayleyparameters(non-edges)oranglesbetweenunconstrainedobjects,thechoiceoftheseparametersisadhoc.WhileEuclideanmotionsmaybeautomaticallyfactoredoutintheresultingparametrizedcongurationspace,formostsuchparameterchoices,thecongurationspaceisstillatopologicallycomplexsemi-algebraicset,sometimesofreducedmeasureinhighdimensions. Aftertherepresentationparametersarechosen,themethodofsamplingthecongurationspaceoftenreducesto\takeauniformgridsamplingandthrowawaysamplecongurationsthatdonotsatisfygivenconstraints."Sinceevencongurationspacesoffullmeasure(representationusinglowestpossiblenumberofparametersordimensions)oftenhavecomplexboundaries,potentiallywithcuspsandlargeholes,thistypeofsampling 15

PAGE 16

WhenparametersfortheEDCSin(a)arechosentobethetwodashednon-edges,wegetaconvex2Dcongurationspaceshownin(b).Thehorizontalaxisdenotes(v2;v4)andtheverticalaxisdenotes(v1;v4). Figure1-2. WhenparameterfortheEDCSin(a)ischosentobethedashednon-edge,wegetadisconnected2Dcongurationspaceshownin(b):therealizationp(v1)canlieineitherofthetwosolidarcsegmentsofthecirclelabeledp(v1),yieldingtwodisconnectedintervalsforthecongurationspaceonthenon-edge(v1;v3)asshownin(c).Theaxisin(c)denotes(v1;v3). islikelytomissextremeandboundarycongurationsandismoreovercomputationallyinecient.Todealwiththis,numerical,iterativemethodsaregenerallyusedwhentheconstraintsareequalities,andinthecaseofinequalities,probabilistic\roadmaps"andothergeneralcollisionavoidancemethodsareused.Theyareapproximatemethods.Ifthecongurationspaceisrelativelylowdimensional,theninitialsamplingisusedtoprovideanapproximateandrenablerepresentationofthecongurationspace,usingtraditional 16

PAGE 17

TworelatedproblemsadditionallyoccurinNMRmolecularstructuredeterminationandwirelesssensornetworklocalization:completingapartiallyspeciedEuclideanDistanceMatrixinagivendimension;andndingaEuclideanDistanceMatrixinagivendimensionthatcloselyapproximatesagivenMetricMatrix(representingpairwisedistancesinametricspace)( 5 ; 9 ).ThelatterproblemalsoarisesinthestudyofalgorithmsforlowdistortionembeddingofmetricspacesintoEuclideanspacesofxeddimension( 2 ).BothofthesecanbeviewedassearchingoveracongurationspaceofanEDCS.Butthecommonmethodsfortheseproblemsaredierentfromthoseusedforexploringcongurationspaces.Onereasonforthisisthatusuallyonlyonerealizationisusuallysought,whichoptimizessomeappropriatelychosenfunction;thegoalisnotsamplingordescriptionoftheentirecongurationspace.Commonmethodsfortheseproblemsare:(i)eitherusesemi-deniteprogramming,sinceEuclideanDistanceMatricesinaspecieddimensionaredirectlyrelatedtoGrammatriceswhicharepositivesemidenitematricesofaspeciedrank;(ii)oriterativelyenforcetheCayley-MengerdeterminantalconditionsthatcharacterizeEuclideanDistanceMatricesinaspecieddimension. Motivatedbytheseapplications,ouremphasisisonexact,ecientdescriptionofthecongurationspaceofunderconstrainedorindependentandnotrigidEDCS.(i)Anexactalgebraicdescriptionguaranteesthatboundaryandextremecongurationsarenotmissedduringsampling,whichisimportantformanyapplications.(ii)Anecientdescription(i.e,lowdimensional,fullmeasure,convex,usingfewpolynomialorevenlinearinequalities,whosecoecientsareobtainedecientlyfromthegivenEDCS)isimportantfortractabilityofthesamplingalgorithm. 17

PAGE 18

Concerning(ia),itisimportanttonotethatmostchoicesofCayleyparameters(non-edges)torepresenttherealizationspaceof(G;)giveinecientdescriptionsoftheresultingparametrizedcongurationspace(seeforexampleFigures 1-1 1-2 ).Henceweplaceastrongemphasisisonasystematic,combinatorialchoiceoftheCayleyparametersthatguaranteeacongurationspacewithalltheeciencyrequirementslistedhere.Further,weareinterestedincombinatoriallycharacterizingforwhichgraphsGsuchachoiceevenexists. Thesecondeciencyfactoristherealizationcomplexity.NotethatthepricewepayforinsistingonexactandecientcongurationspacesisthatthemapfromthetraditionalCartesianrealizationspacetotheparametrizedcongurationspaceismany-one.I.e,eachparametrizedcongurationcouldcorrespondtomany(butatleastone)Cartesianrealizations. However,wecircumventthisdicultybydeningandstudyingrealizationcomplexityasoneoftherequirementsonecientcongurationspacesi.e.,wetakeintoaccountthattherealizationsteptypicallyfollowsthesamplingstep,andensurethatoneorallofthecorrespondingCartesianrealizationscanbeobtainedecientlyfromaparametrizedsampleconguration. Beforeourworkin( 12 )andthisdissertation,thedierentiationbetweenthesamplingcomplexityandtherealizationcomplexityisnotaddressed.RefertoFigure 1-3 ,distance 18

PAGE 19

Figure(left)isa1-DofHenneberg-Igraphwhosecongurationspaceonthebasenon-edgehasintervalendpointsthatarenotalwaysquadraticallysolvable.Figure(right)ontheotherhandhasquadraticallysolvableendpoints.Fortheedgedistancesshow,theintervalsare[1 8p 8p 5p 5p betweenv1andv2ischosenastheparameterinboth(a)and(b).Ineithercase,therealizationcomplexityisquadraticallysolvable;however,in(a)thesamplingcomplexityisnotquadraticallysolvablewhilein(b)thesamplingcomplexityisquadraticallysolvable. Athirdeciencyfactorisgenericcompleteness,i.e,wewouldlike(a)eachcongurationinourparametrizedcongurationspacetogenericallycorrespondtoatmostnitelymanyCartesianrealizationsand(b)wewouldlikethecongurationspacetobeoffullmeasure,andinparticular,theyuseatmostasmanyparametersordimensionsastheinternaldegreesoffreedomofG.Specically(a)meansG[Fisrigidand(b)meansG[Fisnotoverconstrained,i.e,itisindependent.ThisgenericcompletenessmeansthatthegraphG[Fiswellconstrainedi.e.,minimallyrigid. Afourthandfthimportanteciencyfactorsaretopologicalandgeometriccom-plexityforexample,numberofconnectedcomponents,andconvexity.Convexityandconnectednessarenaturalpropertiestostudysincetheyfacilitateconvexprogrammingandotherecientmethodsforsampling.Anothercrucialreasonforstudyingconvexityisthatresults(suchasthosepresentedhere)aboutconvexcongurationspacesreadily 19

PAGE 20

2 ,wecharacterizegraphandnon-edgesetpair(G;F)suchthatforalldistanceassignment(E)(distanceintervalassignment[l;r]),the2Dcongurationspace2f(G;(E))(2f(G;[l;r]))isalwaysconnected(aconvexoralinearpolytope). 3 ,wecharacterizegraphHsuchthatforallpartitionG[FofH(GisasubgraphofHandFisasetofedgesofH;thusFisasetofnon-edgesofG),foralldistanceassignment(E)(ordistanceintervalassignment[l;r]),the3Dcongurationspace3F(G;)(3F(G;[l;r]))isalwaysconnected.Wealsocharacterizethegraphswithsuchapropertyin2D.Inaddition,weprovethataknownclassofgraphshavethisproperty. 4 ,westudythecongurationspacesofanimportantclassofgraphs,1-DofHenneberg-Igraphs.Wenaturallychoosenon-edgefthatguaranteesthattherealizationcomplexityisquadraticallysolvable.Weproveanalgebraictheoremthatdescribeshowthecongurationspacesonthespeciednon-edgesareexactlydetermined.Thistheoremalsomakesthecombinatorialclassicationonsamplingcomplexitymeaningful.Weshowthesamplingcomplexityvaries(quadraticallysolvableornot)althoughtherealizationisalwaysquadraticallysolvable.Basedontheseresults,weformalizetheproblemtocharacterize1-DofHenneberg-Igraphswithecientcongurationspaceswhere\ecient"ispreciselydened.Wegiveagraphminorcharacterizationtheoremforasubclassof1-DofHenneberg-Igraphsandprovethatthetheoremistight.Wegiveanalgorithmiccharacterizationforgeneral1-DofHenneberg-Igraphs.Weproveaquantierexchangetheoremthatshowsthechoiceoffdoesnotmakedierencewithrespecttoourclassication. 5 ,wediscusstwoopenproblemsextendedfromtheresultsinChapter 2 .Therstproblemaimstocharacterizepair(G;f)suchthatforalldistanceassignment(E),the2Dcongurationspace2f(G;(E))alwayshasatmosttwoconnectedcomponents;thesecondproblemaimstocharacterizepair(G;f)suchthatforalldistanceassignment(E),the3Dcongurationspace3f(G;(E))isalwaysconnected.Webuildframworksforbothproblemsandreducebothofthemtospecicsubproblems. 6 ,twoapplicationproblems(ZeoliteandHelixpacking)arestudied.FortheZeoliteproblem,weproveatheoremthatshowsthecongurationspacesoncertainsetsofnon-edgesareextremelysimple.Wealsocharacterizethenon-edgesetsuchthatthecongurationspaceshassuchasimpleproperty.FortheHelixpacking 20

PAGE 21

21

PAGE 22

Inthischapterwegive4naturalquestionsconcerningecientcongurationspacesandthecontributionofthismanuscripttowardansweringthem. (1) InTheorem 3 ,wegiveanexactcharacterizationoftheclassofgraphsGallofwhosecorrespondingEDCS(G;)admita2D(genericallycomplete),linearpolytopecongurationspace.Thetheoremalsoshowsthatthecharacterizationremainsunchangedifthecongurationspaceismerelyrequiredtobeconvex,andfurtherifitismerelyrequiredtobeconnected. (2) Foragraphintheaboveclass,inTheorem 4 wegiveanexactcombinatorialcharacterizationofthechoicesofCayleyparameters(non-edges)thatensurea(genericallycomplete),linearpolytopecongurationspace. (3) BothaboveresultsrelyonkeyTheorem 1 (inturnbasedonTheorem 2 )thatcharacterizesagraphGalongwithanon-edgefsuchthatforalldistanceassignments(E),the2Dcongurationspace2f(G;),isasingleinterval.WeadditionallyshowinObservation 10 (deferredtoChapter 5 )thatthisresultistightinthattheobviousanalogofthisresultfailsin3D. (4) Observation 1 showsthatwhiletheforwarddirectionofTheorem 3 ,Theorem 4 ,andTheorem 1 forpuredistanceconstraintsholdsdirectlyforintervalconstraints(G;[l;r]),thereversedirectionfails.However,inTheorem 5 ,wegiveanex-actcharacterizationoftheclassofgraphsGallofwhosecorrespondingEDCS(G;[l;r])admita2D(genericallycomplete),linearpolytope,convexorconnectedcongurationspace. Forwarddirectionoftheabovetheorems(thatthegraph-theoreticpropertyalwaysadmitsaconvex,connected,linearpolytopecongurationspace)isstraightforward.It 22

PAGE 23

2.2 ). Conceptually,theresultsonglobalrigidity( 17 ; 18 )(resp.globallylinkedpairs( 19 ))arerelated,sincetheycombinatoriallycharacterizewhenthecongurationspaceonall(resp.specic)Cayleyparameters(non-edges)isasinglepoint.However,thesecharacterizationsholdonlygenerically( 8 ; 15 )asiscustomaryformanycombinatorialpropertiesrelatedtorigidity.Incontrast,ourcharacterizationsapplytoallEDCS'(frameworks)andnotjustgenericframeworks.Thisisacrucialdistinctionthatisneededtoreconcileapparentdiscrepanciesofthetwotypesofresults,asweelaborateinSection 2.4 Ourresultsadditionallyyieldacombinatorialcharacterizationofsamplingcomplexity.Thisincorporatesthecomplexityof(i)obtainingthechosensetofparametersand(ii)thealgebraiccomplexityofobtainingthedescriptionofthecongurationspacefromthegivengraph.Thisinturnincludesthedescriptivecomplexityofthecongurationspaceasasemi-algebraicset,suchasthenumberanddegreeofthepolynomials.Thecharacterizationsmoreoverincorporaterealizationcomplexity,i.e,thecomplexityofobtainingarealizationfromaparametrizedconguration. Tothebestofourknowledge,theonlyresultsofasimilaravorare:theresultof( 27 )thatshowstheequivalenceofTree-orTriangle-decomposability( 26 )andQuadraticorRadicalrealizabilityforplanargraphs. ConcerningtheuseofCayleyparametersornon-edgesforparametrizingagenericallycompletecongurationspace:( 30 )aswellas( 21 ; 32 )studyhowtoobtain\completions"ofunderconstrainedgraphsG,i.e,asetofnon-edgesFwhoseadditionmakesG

PAGE 24

21 )alsoguaranteesthatthecompletionensuresTree-orTriangle-decomposability,therebyensuringlowrealizationcomplexity.However,theydonotaddressthegeometric,topologicaloralgebraiccomplexityofthesetofdistancevaluesthatthesecompletionnon-edgescantake,northecomplexityofobtainingadescriptionofthiscongurationspace,giventheEDCS(G;)andthenon-edgesF.Thelatterishoweverthemainfactorinuencingthetractabilityofsamplingthesecongurationspacesbeforeobtainingthecorrespondingrealizations.Theproblemhasgenerallybeenconsideredtoomessy,andbarringeectiveheuristicsforcertaincases,forexamplein( 24 ),therehasbeennosystematic,formalprogramtostudythisproblem. Someoftheproofs,e.g.Theorem 2 ,useanoveltypeofrestrictededge-contractionreductiontoagraphminorwhichdisallowsedgeremovalsaspeciedpairofverticestoremaindistinctandtoremainanon-edge.Weanticipatethatthisnewstrategycouldbeusefulinothersituations. 2.3.1Basics 3 ).Agraphisak-treeifitisak-sumofKk+1's.Givenagraph,wecanruntheinverseoperationsofk-sumtogetasetofk-sumcomponents.Ifwecannotruntheinverseoperationsofk-sumforacomponent,wesaythatcomponentisaminimal(k-sum)component.Givenanon-edgef,aminimalk-sumcomponentcontainingfisaminimalsubgraphthatisbothak-sumcomponent 24

PAGE 25

Agraphisapartialk-treeifitisasubgraphofak-tree.PleaserefertoFigure 2-1 for2-treesandpartial2-treesandFigure 2-2 for2-Sumand2-Sumcomponent.Itisnothardtoseethatpartial2-treesareexactlythe2-realizablegraphs.Whilepartial3-treesareinfact3-realizable,theclassof3-realizablegraphsincludenonpartial3-treesaswell. In( 3 ; 4 )ausefulforbidden-minorcharacterizationofsuchgraphsisgiven.AgraphGhasagraphKasaminorifthereisavertexinducedsubgraphofGthatcanbereducedtoKviaedgeremovalsandedgecontractions(coalescingoridentifyingthe2verticesofanedge).Itisnothardtoseethatpartial2-treesareexactlythegraphsthatavoidK4minors. Nextwegivebasic2DcombinatorialrigiditydenitionsbasedonLaman'stheorem( 22 ).For3D,nocombinatorialdenitionsexist.Forthecorrespondingalgebraicdenitions,pleaseseeforexample( 16 )(combinatorialrigidityterminology)( 13 )(geometricconstraintsolvingterminology). In2D,agraphG=(V;E)iswellconstrainedorminimallyrigidifitsatisestheLamanconditions( 22 );i.e.,jEj=2jVj3andjEsj2jVsj3forallsubgraphsGs=(Vs;Es)ofG;GisunderconstrainedorindependentandnotrigidifwehavejEj<2jVj3andjEsj2jVsj3forallsubgraphsGs.AgraphGisoverconstrainedordependentifthereisasubgraphGs=(Vs;Es)withjEsj>2jVsj3.GiswelloverconstrainedorrigidifthereexistsasubsetofitsedgesE0suchthatthegraphG0=(V;E0)iswellconstrainedorminimallyrigid.Agraphisexibleifitisnotrigid. 25

PAGE 26

Thegraphofonlysolidedgesisanunderconstrainedpartial2-treewhilethegraphofbothsolidanddashededgesiswellconstrainedandisa2-tree. Figure2-2. A2-Sumofveminimal2-Sumcomponents(markedbydashedcircles).The2-Sumcomponentinthemiddleisapartial2-treebuttheentiregraphisnotapartial2-tree.Theunionofthemiddlecomponentwithanyothercomponentisalsoa2-Sumcomponentbutnotminimal. Furthemore,givenGinthischaracterizedclass,wewouldliketocharacterizethecorrespondingsetsFofnon-edges.Theseareexactlytheparameterchoicesthatyieldwell-behavedcongurationspaces. Figure 2-1 givesanexamplegraphthatadmitsaconnected,convexandlinearpolytope2Dcongurationspaceonthespeciednon-edges;andviceversa,inFigure 2-3 ,weprovideanexampleinwhichthegraphdoesnotadmitsuchacongurationspaceonanynon-edge.ThegraphcharacterizationofTheorem 1 canbeeasilyveriedforbothexamples. 26

PAGE 27

Nonon-edgefexistssuchthat2f(G;)isalwaysconnected. Figure2-4. BaseCase1ofTheorem 2 1 .Toproveone(harder)directionofTheorem 1 ,weneedthefollowingpurelygraph-theoretictheoremandthefollowingLemma 1 .Theother(easy)directionfollowsfromLemma 4 whichisinturnprovengraduallyusingLemma 2 andLemma 3 2-4 orFigure 2-5 byasequenceofedgecontractions(noedgeremovals)ifandonlyifthereexistsaminimal2-SumcomponentofG[fcontainingfthatisnotapartial2-tree.

PAGE 28

BaseCase2ofTheorem 2 :Theverticesui:i=1;;mwherem1aretheonlyverticesotherthanv1andv2withdegreetwoandtheyareadjacenttobothv1andv2;f=(v1;v2)isnotanedgeofthegraph. 2-4 andFigure 2-5 arebasedonK4.Basedonthefactthatpartial2-treesdonothaveK4minorsandpropertiesof2-Sum,wecanproveonedirectionofTheorem 2 .FortheotherdirectiontheexistenceofaK4minoraloneisinsucient.Werequireaspecialtypeofpureedge-contractionreductionwithoutedgeremovals,whichadditionallypreserveselectednon-edges:i.e,preventthemfrombecomingedgesorfromcollapsingtoasinglevertex. Proof. 2 .WerstprovethatGcannotbereducedtoFigure 2-4 orFigure 2-5 byedgecontractionsifalltheminimal2-SumcomponentsofG[fcontainingfarepartial2-trees.Becausepartial2-treesdonothaveK4minors,andsinceK4existsasaminorinbothFigure 2-4 andFigure 2-5 ,wecannotreduceGtoeitherofthetwobasecasesbyedgecontractions(noedgeremovals).Infact,incasethereexistsa2-SumcomponentG[fthatdoesnotcontainf,ourproofwillnotchangesinceedgecontractionseitherpreserve2-Sumrelationshiportransforma2-Sumtoa1-sum. WeprovetheotherdirectionbyinductiononthenumbernofverticesofG.Thestatementistrueforthe2basecases.AssumethestatementistrueforjVjn1;weproveitforjVj=n.First,weremovev1andv2togetasetofconnectedcomponentsH1;;Hk(Figure 2-6 ).WeuseGitodenotethesubgraphofGwhichisinducedbyverticesofHitogetherwithv1andv2,wheref=(v1;v2).NotethateachGi[fisa 28

PAGE 29

GraphGhasaconnected2Dcongurationspaceonf=(v1;v2)ifandonlyifforall1ik,thegraphGihasaconnected2Dcongurationspaceonf. Figure2-7. Vertexv3isanarticulationvertexforv1andv2. 2-SumcomponentofG[f.Withoutlossofgenerality,weassumeG1[fisoneofthese2-SumcomponentsofG[fbutnotapartial2-tree. 2-5 2-7 for 29

PAGE 30

Casek=1,Subcasel2inproofofTheorem 2 .Thereareatleasttwodisjointpathsfromv1tov2;G[fisaminimal2-Sumcomponentcontainingbothv1andv2;andG[fisnotapartial2-tree. thiscase).SinceG[fisaminimal2-Sumcomponentcontainingbothv1andv2,both(v1;v3)and(v2;v3)havetobenon-edges.Inaddition,atleastoneofG1[(v1;v3)andG2[(v2;v3)isnotapartial2-tree,otherwiseG[fwillalsobeapartial2-tree.Withoutlossofgenerality,supposeG1[(v1;v3)isnotapartial2-tree.Bytheinductionhypothesis,wecanreduceG1tooneofthetwobasecases.BycontractingalltheedgesinG2wecanalsoreduceGtooneofthetwobasecases(v3isidentiedwithv2). 2-8 ).Ifwefurtherremovev1,v2,t1andz1,wegetnewconnectedcomponents.Thenwecontractalltheedgesinsidethesenewconnectedcomponentssuchthateachofthembecomesasinglevertexthatwedenotebyq1;;qm.Beforewecontractpaths(t1;;ts)and(z1;;zn),ifweremovev1andv2,theremaininggraphisstillconnected(k=1),soatleastoneofq1;;qmisconnectedtobotht1andz1. Fortheremainingproof,weonlyneedtocontractedgesinacertainwaysuchthatwedonotoverlapthenon-edgesbetweenv1andv2.Nowwecontractedgesasfollows(refertoFigure 2-8 ). 30

PAGE 31

Ifqiconnectstobotht1andz1,wecanidentifyqiwitht1byedgecontraction; (2) Ifqiconnectstoonlyv1andv2(nottot1orz1),weleaveitunchanged; (3) Ifqiconnectstoonlyoneofv1,v2,t1andz1,weidentifyitwiththecorrespondingvertexinv1,v2,t1andz1; (4) Ifqiconnectstov1,v2,t1,wecanidentifyqiwitht1; (5) Ifqiconnectstov1,v2,z1,wecanidentifyqiwithz1. Weenumerateallthepossiblecasesforqi'sconnectivitytotheothervertices.Thatcoversallthecasesandcompletestheproofoftheinductionstep. Theorem 2 givesusthefollowingindependentlyinterestingcorollary.Thiscorollarydirectlygivesusanalgorithmtocheckwhetheragraphandspeciednon-edgearesatisedwiththeconditionsprescribedinTheorem 2 2-4 orFigure 2-5 byasequenceofedgecontractionsprovidedthefollowinghold. (1) (2) Foranyvertexviotherthanv1andv2,eitherdeg(vi)is2andviisadjacenttobothv1andv2,ordeg(vi)isatleastthree. (3) Atleastonevertexviotherthanv1andv2hasdegreeofthreeormore. Proof. 2 ,alltheminimal2-SumcomponentsofthegraphG[fcontainingv1andv2arepartial2-trees.Notethatatleastonevertexviotherthanv1andv2hasdegreeofthreeormore.Weconsiderthe2-SumcomponentCcontainingvi.NotealsothatChasmorethan3vertices,andwithinC,since(2)holds,therecanbenoverticesotherthanv1andv2thathavedegreeoftwoorless.By(2),anyothervertexofdegreetwoorlesswouldbeadjacenttobothv1andv2andwouldformitsown2-Sumcomponents. 31

PAGE 32

UsingCorollary 1 ,weseethatthegraphinFigure 2-3 canbereducedtooneofthetwobasecasesnomatterwhichnon-edgewechoose. 2-4 andFigure 2-5 ,thereexistsadistanceassignments.t.2f(G;)isnotconnected. Proof. Asnotedearlier,Theorem 2 andLemma 1 haveprovedthedicultdirectionforTheorem 1 .Thefollowinglemmasprovetheeasydirection. Proof. 2 ]Simplyhingeallthe2-Sumcomponents'realizationsalongthe2-Sumedgestogetarealizationof(G;),withanyoneoftworeectionchoicesacrossthe2-Sumedge.Theotherdirectionisimmediate. Proof. 2

PAGE 33

IfaGhasa2-SumcomponentG0=(V0;E0)thatisanunderconstrainedpartial2-tree,thenthereexistsanonemptynon-edgesetFentirelyinG0suchthatforany,2F(G;)isalinearpolytope.Moreover,thereissuchasetFsuchthat2F(G0;)isgenericallycompleteforG0. (b) IfaGisanunderconstrainedpartial2-tree,thenforanynonemptynon-edgesetF0thatpreserves(V;E[F0)asapartial2-tree,andforall,2F0(G;)isalinearpolytope. Proof. NotethatG0isanunderconstrainedpartial2-tree,sowecanndanonemptysubsetofnon-edgesofG0byaddingwhichwegeta2-tree.WeletFbethisnonemptyset.NotethatsuchanFisacompletionforG0,i.e.,makesG0minimallyrigid.Henceweknowthat2F(G0;)isoffull-measureandgenericallycomplete,provingthelastsentenceofthetheorem. Togetthelinearpolytope,notethata2-treecanbewrittenasthe2-Sumoftriangles.Forexample,let(vi;vj),(vj;vk)and(vk;vi)denotethelengthofthethreeedgesofthetriangle4vivjvk,thenthetriangleinequalitiesare(vi;vj)(vi;vk)+(vj;vk),(vi;vk)(vj;vk)+(vi;vj)and(vj;vk)(vi;vk)+(vi;vj). Thus,forall,2F(G0;)isalinearpolytope.NowsinceFisentirelyinG0,Lemma 3 appliesandforall,2F(G;)=2F(G0;)or2F(G0;)isempty.Thus,forall,2F(G;)isalsoalinearpolytope. Forproving(b):foranyunderconstrainedpartial2-treeG=(V;E),wecanndanonemptynon-edgesetFthatmakes(V;E[F)a2-tree;andweshowedthatforany,2F(G;)isagenericallycompletelinearpolytope2Dcongurationspace.TakeanynonemptysubsetofF0ofsuchaF-theseareexactlythesubsetsofnon-edgeswhoseadditionwouldpreservethepartial2-treepropertyofG.Then2F0(G;)istheprojectionof2F(G;)onF0andsincethelatterisalinearpolytope,theformerisalinearpolytopeaswell. 33

PAGE 34

ForObservation 10 ,G's3Dcongurationspaceonnon-edgefisoneinterval,althoughG[ffghasaK5minor. Figure2-10. ForObservation 10 .GraphGhasconnected3Dcongurationspaceonnon-edgef;GdoesnothaveK5minororK2;2;2minor;G[fhasaK2;2;2minorbutdoesnothaveaK5minor;inparticular,withoutcontractingedgefinG[fwecannotgetaK2;2;2minor. 1 .Theproofofone(harder)directionfollowsdirectlyfromTheorem 2 andtheLemma 1 .Specically,topickadistanceassignmentforGthatyieldsadisconnectedcongurationspaceonf,wesetallthecontractededgesduringtheprocedureofTheorem 2 to0.Theuncontractededgesarenowmappedbythereductiontoedgesofoneofthebasecases.Lemma 1 tellsushowtochoosethosedistancevaluestoensuredisconnectednessofthecongurationspaceonf.Theother(easy)directionisimmediatefromLemma 4 NextweshowthatTheorem 1 istightinthatneitherofthetwostraightforwardextensionsto3Dhold. 34

PAGE 35

2-9 andpartial3-tree's(resp.3-realizablegraphs)G=(V;E)andnon-edgefsuchthatG[fisnotapartial3-tree(resp.3-realizablegraph)andyet3f(G;)isalwaysconnected.WedefertheprooftoChapter 5 Observation 10 3 ,wegiveanexactcharacterizationoftheclassofgraphsG,allofwhosecorrespondingEDCS(G;)admita2D(genericallycomplete),linearpolytopecongurationspace.Thetheoremalsoshowsthatthecharacterizationremainsunchangedifthecongurationspaceismerelyrequiredtobeconvex,andfurtherifitismerelyrequiredtobeconnected. (a) thefollowingfourstatementsareequivalent: (a.1) thereexistsanon-emptysetofnon-edgesFsuchthatforall2F(G;E)isconnected; (a.2) thereexistsanon-emptysetofnon-edgesFsuchthatforall,2F(G;E)isconvex; (a.3) thereexistsanon-emptysetofnon-edgesFsuchthatforall2F(G;E)isalinearpolytope. (a.4) (b) AnunderconstrainedgraphGalwaysadmitsagenericallycompletelinearpolytope,connectedorconvexcongurationspaceifandonlyifeveryunderconstrained2-SumcomponentofGisapartial2-tree. Proof. 4 .Alinearpolytopeisconvex,so(3))(2)follows.Convexityimpliesconnectedness,so(2))(1)follows.Theorem 1 andtheproofofLemma 4 proves (4)) Foronedirectionof(b):ifeveryunderconstrained2-SumcomponentofGisanunderconstrainedpartial2-tree,thenbyLemma 4 ,Galwaysadmitsagenericallycompletelinearpolytope,connectedorconvexcongurationspace.Thereversedirectionof(b)followsfrom(a)(1,2,3)4):ifGalwaysadmitsagenericallycompletelinearpolytope, 35

PAGE 36

Theorem4. Proof. 1 andtheproofofLemma 4 Proof. 2-11 However,givenapathoflength2withdistanceconstraintoneachedge,saypath(v1;v2;v3)anddistanceconstraints(v1;v2)and(v2;v3),wecangetanequivalentdistanceintervalconstraint[l(v1;v3);r(v1;v3)].Thissimpleobservationgivesusacharacterizationtheoremfordistanceintervalconstraints. 36

PAGE 37

ForObservation 1 .Alltheminimal2-SumcomponentsofG[fcontainingfarepartial2-treesbut2f(G;[l(E);r(E)])isnotalwaysconnected. 2suchthatthedistanceconstraintsonthesubdivision,namely(u1;u)and(u;u2)togetherimposetheoriginaldistanceintervalconstraintontheedge(u1;u2).ThenbyTheorem 4 ,2F(G0;)isalinearpolytope,connectedorconvexforallifandonlyifalltheminimal2-SumcomponentsofG0FcontainingasubsetofFarepartial2-Trees. 1 )includingcomplexityofsamplingandrealization.Thisistherststepinasystematicandgradedprogram-forthecombinatorialcharacterizationsofecientcongurationspaces.Inparticular,theresultspresentedherecharacterizegraphsandtheirCayleyparameters 37

PAGE 38

Genericallygloballyrigidgraphin2D. thatyield2Dcongurationspacesthatareconnected,convex,linearpolytopes,andecientalgorithmsforsamplingrealizations. Ourresultscharacterize(forthecaseofdistanceequalitiesandframeworks)congurationspacepropertiesthatholdforalldistanceassignments,andarehenceincorrectifwerequirethepropertiestoholdonlyingenericsituations.Forexample,Figure 2-12 showsagenericallygloballyrigidgraphG:thegeneric2Dcongurationspaceofthisgraphonthenon-edgefisasinglepoint.However,byourTheorem 1 ,sinceaminimal2-Sumcomponentcontainingfisnot2-realizable,thecongurationspaceonfisdisconnected.TheapparentdiscrepancyarisesbecausetheproofoftheLemma 2 usesnon-genericspecializationsoftheedgedistancesintheprocessofreductiontoaminorwhichthenshowsthatthecongurationspaceonfisdisconnectedforthat,whichissucienttoprovethestatementofLemma 2 andTheorem 1 .Webelieve,howeverthatboththeseresultsstillholdunderagenericityassumption,providedthegraphGisnotoverconstrained(independent,inrigidityterminology)andthenon-edgefisnotglobally-linked.

PAGE 39

8 ; 15 ; 17 ; 18 )and( 19 ). 39

PAGE 40

Inthischapter,wedeneagraphpropertynameduniversallyinherentsquareconvexcongurationspaces.Weprovethatifagraphisd-realizablethenitadmitsuniversallyinherentsquareconvexcongurationspacesind-Dimension.Wealsoprovethatin2Dand3Dagraphis3-realizable(2-realizable)ifandonlyifitadmitsuniversallyinherentsquareconvexcongurationspacesin3D(2D). 2 ,wecharacterizepairs(G;F)suchthatGalwaysadmitsaconnectedorconvexcongurationspaceonF.Sometimes,itismoreconvenienttoinsteadcharacterizethegraphsH=G[F:Inparticular,wesaythatagraphHalwaysadmitsanin-herentconnectedorconvexcongurationspace,ifthereexistsapartitionoftheedgesofHintoE[FsothatthegraphG=(V;E)alwaysadmitsaconnectedorconvexcongurationspaceonF.Inotherwords,foralldistanceassignments(E)(resp.intervals[l(E);r(E)])forthethegraphG=(V;E),thed-Dimensionalcongurationspacedf(G;)(resp.df(G;[l;r])),isconnectedorconvex.Weadditionallyconsiderthefollowingstrongproperty.WesaythatagraphHalwaysadmitsuniversallyinherentconnectedorconvexcongurationspaces,ifforeverypartitionoftheedgesofHintoE[F,thegraphG=(V;E)alwaysadmitsaconnectedorconvexcongurationspaceonF.WeareinterestedincombinatoriallycharacterizinggraphsHthatalwaysadmituniversallyinherentconnectedorconvexcongurationspaces. (1) Agraphisd-realizableifforeveryforwhichtheEDCS(G;)hasaEuclideanrealizationinanydimension,italsohasarealizationinRd.Thisusefulnotionofd-realizabilitywasintroducedby( 3 ; 4 ),whichalsoshowedaforbiddenminorcharacterizationofsuchgraphsford3.Foranydimensiond,weshowinTheorem 6 thattheclassofd-realizablegraphsalwaysadmituniversallyinherentconnectedcongurationspaces,thatareinfactconvexoversquaredCayleyparameters.Werefertothoseassquareconvexcongurationspaces.ThisresultholdsalsowhenthecorrespondingEDCSusedistanceintervals. 40

PAGE 41

Theorem 7 showsthereversedirectionof(5)for3D,andthusshowsthat3-realizablegraphsHareexactlytheonesthatalwaysadmituniversallyinherentconnectedandsquareconvex3Dcongurationspaces,alsowhenthecorrespondingEDCSusedistanceintervals.Thus,by( 3 ; 4 ),thisclassalsohasforbiddenminorcharacterization.InObservation 10 (deferredtoChapter 5 ),weobservethatbothTheorem 6 andTheorems 7 areweakstatementsfor2D{muchstrongerstatementsfollowdirectlyfrom(2)above.Forexample,itfollowsfrom(2)thatifagraphisnot2-realizable,thenthereisanaturalcomponentofthegraphthatdoesnotevenadmitaninherentconnectedcongurationspacedescription,leavealoneauniversallyinherentone. Conceptually,theresultsonglobalrigidity( 17 ; 18 )(resp.globallylinkedpairs( 19 ))arerelated,sincetheycombinatoriallycharacterizewhenthecongurationspaceonall(resp.specic)Cayleyparameters(non-edges)isasinglepoint.However,thesecharacterizationsholdonlygenerically( 8 ; 15 )asiscustomaryformanycombinatorialpropertiesrelatedtorigidity.Incontrast,ourcharacterizationsapplytoallEDCS'(frameworks)andnotjustgenericframeworks.Thisisacrucialdistinctionthatisneededtoreconcileapparentdiscrepanciesofthetwotypesofresults,asweelaborateinSection 2.4 Ourresultsadditionallyyieldacombinatorialcharacterizationofsamplingcomplexity.Thisincorporatesthecomplexityof(i)obtainingthechosensetofparametersand(ii)thealgebraiccomplexityofobtainingthedescriptionofthecongurationspacefromthegivengraph.Thisinturnincludesthedescriptivecomplexityofthecongurationspaceasasemi-algebraicset,suchasthenumberanddegreeofthepolynomials.Thecharacterizationsmoreoverincorporaterealizationcomplexity,i.e,thecomplexityofobtainingarealizationfromaparametrizedconguration. 41

PAGE 42

27 )thatshowstheequivalenceofTree-orTriangle-decomposability( 26 )andQuadraticorRadicalrealizabilityforplanargraphs. ConcerningtheuseofCayleyparametersornon-edgesforparametrizingagenericallycompletecongurationspace:( 30 )aswellas( 21 ; 32 )studyhowtoobtain\completions"ofunderconstrainedgraphsG,i.e,asetofnon-edgesFwhoseadditionmakesGminimallyrigidorwell-constrained.BotharemotivatedbyrealizationcomplexityofunderconstrainedEDCS:i.e,ecientlyobtainingarealizationgiventheparametersvaluesofaconguration,i.e,oncethedistancevaluesofthecompletionedgesinFaregiven.Inparticular( 21 )alsoguaranteesthatthecompletionensuresTree-orTriangle-decomposability,therebyensuringlowrealizationcomplexity.However,theydonotaddressthegeometric,topologicaloralgebraiccomplexityofthesetofdistancevaluesthatthesecompletionnon-edgescantake,northecomplexityofobtainingadescriptionofthiscongurationspace,giventheEDCS(G;)andthenon-edgesF.Thelatterishoweverthemainfactorinuencingthetractabilityofsamplingthesecongurationspacesbeforeobtainingthecorrespondingrealizations.Theproblemhasgenerallybeenconsideredtoomessy,andbarringeectiveheuristicsforcertaincases,forexamplein( 24 ),therehasbeennosystematic,formalprogramtostudythisproblem. Theproofs(e.g.Theorem 6 )relatedtouniversallyinherentCCSemployanunusualinterplayof(i)classicalanalyticresultsrelatedto(squared)Euclideandistancematrices,suchaspositivesemi-denitenessthatdatebackto( 29 ),with(ii)recentgraph-theroreticcharacterizations( 3 ; 4 )relatedtod-realizability.Thisfurtherpermitsustodirectlyapplyarecentresultaboutecientrealizationof3-realizableEDCS( 31 ). 6 thatd-realizablegraphsadmituniversallyinherentconnectedandsquareconvexd-Dimensionalcongurationspaces.Beforethat,werstshowinLemma 5 thatsquareconvexityimpliesconnectedness. 42

PAGE 43

Proof. Nowwearereadytogivethetheoremthatd-realizablegraphsadmituniversallyinherentconnectedandsquareconvexd-Dimensionalcongurationspaces. Proof. 5 ,weonlyneedtoprovead-realizablegraphadmitsuniversallyinherentsquareconvexcongurationspaces. AnnmatrixMisaEuclideansquaredistancematrix(EDM)if9p1;:::;pn2Rdforsomedsuchthatjjpipjjj2=M(i;j).Aclassicalresult( 29 )thatfollowsfrompositivesemidenitenessofGrammatricesisthatthesetofallEDM'sisaconvexcone(notethatd,andhencetherankofthesematricesisnotxed).TheprojectionofthisconeonanysetE[Fofpairs(i;j)isalsoconvex.Bythedenitionofd-realizabilityofagraphH=(V;E[F),withjVj=n,thisprojectionisexactlythesetofallsquareddistanceassignments()2tothepairsinE[Fforwhich(H;)hasarealizationinRd.Wedenotethis(dE[F)2((V;);).Sinceconvexityispreservedbybothsectionsandprojections,the 43

PAGE 44

Theorem 6 givesonedirectionforalldimensions.WeconjectureinSection 3.5 thereversedirectionisalsotrue.Inthenextsection,wewillprovethatthereversedirectionistrueford3. Theorem7. (1) (2) (3) 4 showsthatifagraphHisnot2-realizable,thenithasaminimal2-Sumcomponentthatisnot2-realizable(notapartial2-tree).Andthiscomponentdoesnotadmitanyinherentcongurationspace,leavealoneuniversallyinherentones.Inotherwords,inthisnon2-realizableminimal2-SumcomponentHC,onavertexsetVCforeverypartitionofedgesintoEC[FC,thecongurationspace2FC(GC;)ofgraphGC=(VC;EC)isdisconnected.Ford=3,ontheotherhandnosuchstrongstatementholdsasshowninthecounterexampleofObservation 10 .Toshowtheabovetheorem,wemerelyshowthatifagraphHisnot3-realizable,thenthereexistsapartitionoftheedgesofHintoE[F,suchthatthecongurationspace3F(G;)ofthegraphG=(V;E)isdisconnected.

PAGE 45

5 proves(3))(2),andTheorem 6 proves(1))(3)foralldimensionsd.Basedontheaboveremark,werestrictourselvestod=3,andjustprove(2))(1). Foranynon-3-realizablegraphH=(V;E0),wendapartitionofE0asE[FwhereGisthegraph(V;E)andndadistanceassignmentsuchthatthecongurationspace3F(G;)isdisconnected.HereG:=(V;E)andfisasinglenon-edgeofG,sothisisa1-parametercongurationspaceandweshowthatithas2isolatedpoints.Todothis,westartfromthefollowingtheorem. 3 ; 4 )). 2 ,weshowhowtopickfromHthegraphGanditsnon-edgesFsuchthatbyarestrictedreductionthatusesonlyedgecontractions(noedgeremovals)andpreservingthenon-edgesF,wecanreducethegraphGtoaK5orK2;2;2thatismissingexactlyoneedge,namelyf,ontowhichallthenon-edgesinFhavebeenmappedbythereduction.Finally,weobtainusingLemma 6 thedistanceassignmentforGbysettingthedistancesforthecontractededgesto0;and,similartoLemma 1 wepickdistanceassignmentsfortheun-contractededgesinsuchawaythatthetwobasecasesdonothaveconnected3Dcongurationspacesonf.Werstproveasimplefact. 8

PAGE 46

DistanceassignmentforK2;2;3withoneedgeremoved:(a)K2;2;2withoneedgefremoved;(b)seeproofofLemma 6 :adistanceassignmenttoK222nfsuchthatthe3Dcongurationspaceonfisnotconnected. 8 .IfagraphhasaK5minor,useFact 1 ,itcanbereducedtoK5byedgecontractionsalone,soweonlyneedtoprovethecasethatGhasaK2;2;2asminor.IfGhasaK2;2;2asminor,bydenitionofminorwecangetaK2;2;2byrstcontractingsomeedges,thenremovingsomeedges,andnallyremovingsomeisolatedvertices.Followthisreductionpathbutstopafteredgecontractions,anddenotethenewgraphbyG0.DenotetheK2;2;2subgraphofG0byM. NowwewillshowwecaneithergetMoraK5byedge-contractionsandremovingsomeisolatedverticesifnecessary.Thestrategyisstraightforward:successivelycontractoneedgeatatime,whosetwoverticesarenotbothinMuntilwecannotcontinue.Afterremovinganypossibleisolatedvertices,theremaininggraphhasexactly6vertices(thesameasM)andwedenotedthisgraphbyM0.WeknowthatK2;2;2isasubgraphofM0.NowweuseasimpleobservationthatbyaddingoneormoreedgestoK2;2;2,wecangetaK5byedgecontractionsalone,thusGcanbereducedtoK5orK2;2;2byedgecontractionsalone. Forprovingthenextlemma,wegiveanappropriatedistanceassignmenttoK5andK2;2;2toshowtheydonotadmituniversallyinherent,connectedcongurationspaces. 46

PAGE 47

Proof. ForK5case,wetakeftobe(v1;v2)andassignthesamedistancestoalltheedgesinK5nf.Ifwextetrahedron(v1;v3;v4;v5),thenv4caneitherbecoincidentwithv1oristhereectionofv1aboutplane(v3;v4;v5).Sincev1isnotintheplane(v3;v4;v5),sointhelattercase,(f)isnotzero.Intheformercase,(f)iszero.Thesetwovaluesareallthepossiblevaluesof(f),sowehaveprovedthat3f(K5nf;)isnotconnected. ForK2;2;2case(Figure 3-1 ),wechooseedge(v5;v6)asf.Wechooseadistanceassignmentsothatthefollowingconditionsaresatised:(v1;v2)=(v2;v3)=(v1;v3)=(v1;v4)=(v3;v4)=(v2;v5)=(v3;v6)=(v4;v5),(v1;v4)+(v4;v6)=(v1;v6),(v4;v6)>0,and(v2;v6)willlet\(v2;v1;v6)= Because(v1;v4)+(v4;v6)=(v1;v6),v1,v4andv6arecollinearandthefourverticesv1,v2,v4andv6arecoplanar.Because\(v2;v1;v6)= 47

PAGE 48

7 7 .ByTheorem 6 ,a3-realizablegraphHadmitsuniversallyinherentconnectedandsquareconvex3Dcongurationspaces,soweonlyneedtoprovethereversedirection.IfHisnot3-realizable,byTheorem 9 ,wecangetaK5orK2;2;2byedgecontractionsalone. Asmentionedbefore,ndapartitionoftheedgesetofHintoF[EthatdenesasubgraphG=(V;E)andanon-edgesetFforG.ThenndadistanceassignmentforEsuchthat3F(G;)isdisconnected. SinceHcanbereducedtoK5orK2;2;2byedgecontractionsalone,wepickanedgefromthecorrespondingminoranddenoteitf.WechooseFtobealltheedgesthatwereidentiedwithfbythereduction.ForthedistanceassignmenttotheedgesofG,wewilluseasimilarmethodasintheproofofTheorem 1 .Lemma 6 givesadistanceassignmentforK2;2;2andK5thatensuresthatthecongurationspaceontheedgefisdisconnected.SetthedistancesofeachuncontractededgeeduringthereductionofGtothedistanceassignmentoftheedgeinK5orK2;2;2thatewasidentiedwith.SetthedistancesofallthecontractededgesofGtobe0.Thisensuresthat3F(G;)isdisconnected. 48

PAGE 49

5 .OurrstconjectureisthereversedirectionofTheorem 6 8 ; 15 )aboutconnectedcomponentsofthed-Dimensionalrealizationspacesofagraphbasedonitshigher,d0-Dimensionalrealizationspaces,whered0>d. NotethatwhileweknowfromTheorem 7 that3-realizablegraphsalwaysadmituniversallyinherentsquare-convex3Dcongurationspaces,wedonotyetknowanecientalgorithmtodeterminetheirdescription.Thisisnecessarytodeterminethesamplingcomplexity.Thisisinstarkcontrasttothelineartimealgorithmforobtainingsuchdescriptionsinthecaseof2D(Theorem 4 ). OnestraightforwardalgorithmforobtainingthedescriptionofthecongurationspacedF(G;)asasemi-algebraicsetistostartwiththeCayley-Menger( 7 ; 6 ; 25 )determinantalequalitiesandinequalitiesforEuclideandistancematricesind-Dimensions.ThesearepolynomialrelationshipsbetweenallthejVj2Cayleyparameters,includingthoseinE,Fandthosein Viewedinthismanner,itappearsremarkablethatin2D,forthegraphsGandnon-edgesetsFsatisfyingtheconditionsofTheorem 4 ,thisabove-describedeliminationleavesonlythetriangleinequalitiesrelatingtheCayleyparametersinEandF(notethatthesewerepartoftheoriginalCayley-Mengersetofinequalities)andhencewegetalinearpolytopedescriptionof2F(G;).Notehoweverthatwedidnotusesuchaneliminationforourproof!.Ourproofthatthesetriangleinequalitiesgiveadescriptionof2F(G;)wasthroughamoredirectroute:wedeterminedforwhatconguration(F)forthe 49

PAGE 50

Wewouldliketoshowasimilarresultin3DeitherbyusingeliminationorusingEuclideandistancematrixcompletionforxedrank( 1 ; 5 )byamoredirectrouteofdeterminingwhen3Drealizationscanbeconstructed. 4 .Forthispurpose,itmakessensetostudycomplete2-treesHonasetofverticesV.Inparticular,afterpartitioningtheedgesofHintoE[FandeliminatingallexceptthesetofCayleyparametersinEweobtainasystemoflinearinequalitiesinthoseparameters,whichwecallthe2DadmissibledistancepolytopeofG=(V;E).I.e,itspeciesthedistanceassignmentsforwhich(G;)hasa2Drealization.Notethatthisistheprojectionofthe2DadmissibledistancepolytopeforH,ontotheparametersinE.Furthermore,thecongurationspace2F(G;)isasectionorabreofthispolytope.Itisfutureworktostudythedetailedstructureofthesepolytopes. 50

PAGE 51

InChapter 2 ,wehavecharacterizedthegraphthatalwaysadmits2Dconnectedcongurationspaces.Thatclassofgraphsistightlyrelatedtopartial2-Tree.Inthischapter,wegobeyond2Dconnectedcongurationspacesintopologycomplexity.Thegraphofinterestis1-DofHenneberg-Igraph,whichisaccordinglybeyondpartial2-Tree. Thisquestionreferstofoureciencyfactors(samplingcomplexity,realizationcomplexity,genericcompletenessandtopologicalcomplexity)aswellasanadditionalimportanteciencyfactor:geometriccomplexity,e.g.,convexity.InChapter 2 andChapter 3 ,aseriesofexactcombinatorialcharacterizationsaregivenforconnected,convexandcompletecongurationspacesoflowsamplingandrealizationcomplexityforgeneral2Dand3DEDCSs(includingdistanceinequalities),andasomewhatweakercharacterizationisgivenforarbitrarydimensionalEDCSs. Inthischapter,wetaketherststepinoneoftwonaturaldirectionstomovebeyondChapter 2 andChapter 3 whichcharacterizesgraphswhoseEDCSalwaysadmitconvexand/orconnected2Dcongurationspaces.Onepossibleextensiondirectionistoaskwhichgraphsalwaysadmit2Dcongurationspaceswithatmost2connectedcomponents.Asecondpossibledirection,istotakethesimplestnaturalclassofgraphswith1-Dof(genericmechanismswith1-degree-of-freedom)thatdonothaveconnectedcongurationspaces,andcombinatoriallyclassifythembasedontheirsamplingcomplexity.Thisisthedirectionwetakehere. 51

PAGE 52

22 ).WecallthemSimple1-DofHenneberg-Igraphs(formallydenedinSection 4.3.1 ). ForthisclassofgraphsG,werstobservethatthenaturalchoiceofcongurationspaceparameteristhebaseedgefthathasbeendeleted,i.e,thebasenon-edge.Thischoiceyieldstheoptimalrealizationcomplexityforobtainingarealization,givenaparameterizedcongurationin2f(G;).FixingthisparameterchoicereducestheabovequestiontowhensuchacongurationspacehaslowsamplingcomplexitysincetherealizationproblemforHenneberg-Igraphsisknowntobeeasy.Specically,thisisa1-parametercongurationspace,andhenceitconsistsofaunionofintervals.Thesamplingcomplexityisthusthecomplexityofcomputingtheendpoints(orboundaries)oftheseintervals,startingwiththeEDCS(G;)asinput.OurmaincontributionstoQuestion1atthebeginningofthesectionarethefollowing. (1) InordertoquantifysamplingcomplexityweprovethecrucialTheorem 10 thatassociatesacombinatorialmeaningtotheendpointsoftheintervalsinthecongurationspace2f(G;)foraSimple1-DofHenneberg-IgraphGwithbasenon-edgef.Specically,weshowthattheendpointsareassociatedwithcongurationsofextremegraphsobtainedfrom(G;f).TheseareformallydenedinSection 4.3.1 areareusedprominentlyinTheorem 10 .TheproofofthislemmarequiresbasicalgebraandrealanalysisandalsoyieldsObservation 2 thatensureslinearrealizationcomplexityfor2f(G;). Basedonthecombinatorialdescriptionofthecongurationspaces2f(G;)giveninTheorem 10 ,anaturaldenitionoflowsamplingcomplexityisobtainedbyrequiringalltheextremegraphsobtainedfrom(G;f)tobelonginaclassofgraphscalledTree-orTriangle-decomposablegraphswhoseEDCS(G;)areknown( 27 )tohaverelativelylowalgebraiccomplexityofrealization.Hencethecorrespondingcongurationscanberelativelyeasilyobtained.ByTheorem 10 ,thisimpliesalowcomplexityforcomputingtheendpointsoftheintervalsofthe1-parametercongurationspace2f(G;). (2) Basedontheabovedenitionoflowsamplingcomplexity,Theorem 11 givesasurprisingandexactforbidden-minorcharacterizationoflowsamplingcomplexity 52

PAGE 53

3 notesthattheintervalendpointsofthe1parametercongurationspacesofsuchgraphsGcanbeobtaineddirectly,withoutrealizingtheTriangle-decomposableextremegraphscorrespondingtoG.Thisissomewhatcounterintuitiveforthefollowingreasons:asmentionedabove,thecharacterizationinTheorem 11 reliesontheTriangle-decomposablilityofalltheextremegraphsofG;additionally,byTheorem 10 ,theintervalendpointsofthecongurationspacecorrespondtocongurationsofextremegraphs;andthisinturnwasourmotivationforequatinglowsamplingcomplexitywithpurelyTriangle-decomposableextremegraphs,sincetheircongurationscanbeeasilyobtained. (3) Next,thetightnessofTheorem 11 isillustratedbyObservation 4 ,Observation 5 andObservation 6 ,whichgivesseveralexamplesofgraphsthatindicateobstructionstoobtainingforbiddenminorcharacterizationswhenanyoftherestrictionsofTheorem 11 areremoved.Whensomeofthemareremoved,however,Theorem 12 givesacharacterizationofmoregeneralSimple1-DofHenneberggraphswithlowsamplingcomplexity,withTriangle-decomposableextremegraphs.Observation 7 howevergivesexamplesfromthismoregeneralclassforwhichitisnotposibletousethedirectmethodofObservation 3 forobtainingtheintervalendpointsinthecongurationspace. (4) WeshowinTheorem 13 thatforHenneberg-IgraphsH,allpossiblebaseedgesfyieldequallyecient(orinecient)congurationspacesforthecorrespondingSimple1-DofHenneberg-IgraphG,i.e,whereH=G[f.Thisisaninterestingquantierexchangetheorem.Besidesprovidingacharacterizationofallpossibleparametersthatyieldecientcongurationspaces,thetheoremillustratestherobustnessofourdenitionoflowsamplingcomplexity. 53

PAGE 54

Tothebestofourknowledge,theonlyknownresultinthisareathathasasimilaravorofcombinatoriallycapturingalgebraiccomplexityistheresultof( 27 )thatrelatesquadraticsolvabilityandTree-orTriangle-decomposabilityforplanargraphs. ConcerningtheuseofCayleyparametersornon-edgesforparametrizingthecongurationspace:thepapers( 21 ),( 30 )and( 32 )studyhowtoobtain\completions"ofunderconstrainedgraphsG,i.e,asetofnon-edgesFwhoseadditionmakesGwell-constrainedorminimallyrigid.AllaremotivatedbytheneedtoecientlyobtainrealizationsofunderconstrainedEDCS.Inparticular( 21 )alsoguaranteesthatthecompletionensuresTree-orTriangle-decomposability,therebyensuringlowrealizationcomplexity.However,theydonotevenattempttoaddressthequestionofhowtondrealizabledistancevaluesforthecompletionedges.Nordotheyconcernthemselveswiththegeometric,topologicaloralgebraiccomplexityofthesetofdistancevaluesthatthesecompletionnon-edgescantake,northecomplexityofobtainingadescriptionofthiscongurationspace,giventheEDCS(G;)andthenon-edgesF,noracombinatorialcharacterizationofgraphsforwhichthissamplingcomplexityislow.Thelatterfactorshoweverarecrucialfortractablyanalyzinganddecomposingunderconstrainedsystemsandforsamplingtheircongurationspacesinordertoobtainthecorrespondingrealizations.Theproblemhasgenerallybeenconsideredtoomessy,andtherehasbeennosystematic,formalprogramtostudythisproblem.Ontheotherhand,( 24 )givesacollectionofusefulobservationsandheuristicsforcomputingtheintervalendpointsinthecongurationspacedescriptionsofcertaingraphsthatariseinrealCADapplications. 54

PAGE 55

4.3.1DenitionandBasicPropertiesofSimple1-DofHenneberg-IGraphs 4-2 .Weconsiderthisclassbecauseitisthesmallestnaturalclassthatcontains2-trees(sometimescalledgraphsoftree-width2)whichgureprominentlyinthecombinatorialcharacterizationsofconvexandconnectedcongurationspacesfor2DEDCSinChapter 2 Inotherwords,Henneberg-Igraphsarethesimplestgeneralizationof2-treeswhichdonothaveconvexorconnectedcongurationspaces.Henneberg-IgraphsareanaturalsubclassofLamanorminimallyrigidgraphs,andalsoofanothercommonclassofgraphscalledTree-orTriangle-decomposablegraphs( 10 ),thatareconjecturedtobeexactlyequivalenttoquadraticallysolvablegraphs,aconjecturethathasbeenprovenforplanar( 27 ). Figure4-1. Tree-DecomposableGraph:agraphGisTree-DecomposableifitcanbedividedintothreeTree-DecomposablesubgraphsG1,G2andG3suchthatG=G1[G2[G3,G1\G2=(fv3g;;),G2\G3=(fv2g;;)andG1\G3=(fv1g;;)wherev1,v2andv3arethreedierentvertices;asbasecases,apureedgeandatrianglearedenedtobeTree-Decomposable. AgraphGisTriangle-DecomposableorTree-Decomposable,if: 55

PAGE 56

4-1 )( 10 ). WealsosayG1,G2andG3areclustersandv1,v2andv3aresharedvertices. Figure4-2. Henneberg-Igraph,Simple1-DofHenneberg-Igraphandextremegraph.(a)Henneberg-Igraph:(v1;v2)isthebaseedge;(b)Simple1-DofHenneberg-Igraph:(v1;v2)isthebasenon-edge;(c)Theextremegraphof(b)thatcorrespondstov7/(v5;v6);itisalsoaK3;3graph.Forboth(a)and(b),theHenneberg-Iconstructionscontain(v3/(v1;v2);v4/(v1;v2);v5/(v1;v3);v6/(v2;v4);v7/(v5;v6)). ASimple1-DofHenneberg-IgraphGisobtainedbyremovingabaseedgeffromaHenneberg-Igraph(notethattherecanbemorethan1possiblebaseedgeforagivenHenneberg-Igraph,refertoFigure 4-14 ).Suchanedgefiscalledabasenon-edgeofG.TheEDCSs(G;)basedonsuchgraphsgenericallyhaveoneinternaldegreeoffreedomandhenceacomplete,1-parametercongurationspace. Figure4-3. SimpleHenneberg-Igraph:(a)Henneberg-Igraphwith(v1;v2)asbaseedge;(b)Simple1-DofHenneberg-Igraphwith(v1;v2)asbasenon-edge;(c)extremegraphof(b)thatcorrespondstov7/(v5;v6);itisalsoaC3C2graph.Forboth(a)and(b),theHenneberg-Iconstructionscontain(v3/(v1;v2);v4/(v1;v2);v5/(v3;v4);v6/(v1;v2);v7/(v5;v6)). 56

PAGE 57

22 );i.e.,jEj=2jVj3andjEsj2jVsj3forallsubgraphsGs=(Vs;Es)ofG;GisunderconstrainedorindependentandnotrigidifwehavejEj<2jVj3andjEsj2jVsj3forallsubgraphsGs.AgraphGisoverconstrainedordependentifthereisasubgraphGs=(Vs;Es)withjEsj>2jVsj3.GiswelloverconstrainedorrigidifthereexistsasubsetofitsedgesE0suchthatthegraphG0=(V;E0)iswellconstrainedorminimallyrigid.Agraphisexibleifitisnotrigid. ThenotionofanextremegraphofaSimple1-DofHenneberg-IgraphGwithbasenon-edgefwillbeusedprominentlyinourresults.ThekthextremegraphXkbasedonGandfisobtainedfromGbyaddinganewedge(u;w)betweenthebasepairofverticesuandwofthekthHennebergconstructionstepvk/u;w,providedu;wdonotbelongtoanywell-constrainedsubgraphofG(otherwise,thekthextremegraphisoverconstrainedandirrelevant-dependingonthecontextitcouldbeleftundened).FortheEDCS(G;)andthenon-edgef,thekthextremeEDCSXk;j;j=1;2is(Xk;j),wherethej=1;2representstwopossibleextensionsoftothenewedge(u;w):1(u;w):=(u;vk)+(vk;w),and2(u;w):=j(u;vk)(vk;w)j. Nextweproveaseriesoffactsgivingbasicpropertiesof1-DofHenneberg-Igraphsthatwillbeusedinourmainresultsandareadditionallyofindependentinterestsincethesegraphsarecommonlyoccuring. Proof. 22 ):i.e,thenumberofedgesofanysubgraphisatmosttwicethenumberofverticesminus3.First,weconsiderthelistofverticesofGobtainedfromaHenneberg-IconstructionsequencesforGwithbasenon-edgef.Thatis,sisaHenneberg-I 57

PAGE 58

ThenweprovethatasubgraphG0ofaSimple1-DofHenneberg-Igraphiswellconstrained(minimallyrigid)ifandonlyifG0isaHenneberg-Igraph.OnedirectionisclearsinceanyHenneberg-Igraphiswellconstrained. Fortheotherdirection,byLaman'stheorem( 22 ),thenumberofedgeofG0hastobe2n3ifG0iswellconstrained.WehavejustprovedthatthenumberofedgeinG0doesnotexceed2n3.Fortheequalitytobetrue,theremustbeoneedgebetweenthersttwoverticesinthesublistandanyvertexinthethirdorhigherslotinthesublistmustbeadjacenttoexactlytwoverticesbeforeitinthesublist.BythedenitionofHenneberg-Igraph,thisimpliesG0hastobeaHenneberg-Igraph. Proof. 2 anditsproof.ThatlemmastatesthatG0mustbeaHenneberg-IgraphifitiswellconstrainedanditsproofpointsoutthatifG0containsv1andv2,theremustbeanedgethersttwoverticesinthesublistwhicharev1andv2here.Thiscontradicts(v1;v2)beingthebasenon-edgeofG. 58

PAGE 59

(1) foranym,theextremegraphcorrespondingtovm/(um;wm),i.e.,thegraphobtainedbyaddingtheedge(um;wm)iswellconstrainedifandonlyifthereisnowellconstrainedsubgraphinGthatcontainsbothumandwm. (2) IfthereexistsasubgraphG0containingumandwmthatiswellconstrained,thenwecansaythefollowing.TakingGm1tobethegraphconstructedbeforevmandletGm=Gm1[vmNowforanydistanceassignmentwehave2f(Gm;)=2f(Gm1;)or2f(Gm;)=;. Proof. 22 )).Thisprovestheotherdirection. For(2),byFact 2 ,G0isaHenneberg-Igraphwithabaseedge,say(vi;vj).IfweremovealltheverticesofG0otherthanviandvj.wecangetasubgraphG.NowGisa2-sumofG0andG,i.eG0andGhingedtogetheratanedge,soforany(G;)hasarealizationifandonlyif(G;)hasarealizationand(G0;)hasrealization.Furthermore,either2f(G;)=2f(G;)or2f(G;)=;.NotethispropertyholdsifweaddmoreverticestoG0byHenneberg-Isteps.Thus,wehave2f(Gm;)=2f(Gm1;)or2f(Gm;)=;. 59

PAGE 60

Notethatthisrealizationprocesscouldleadtoanexponentialcombinatorialexplosionbecausethereare2possibleorientationsforeachpointp(v)andonlyoneofthemmaysuccessfullyleadtoarealizationoftheentireEDCS.However,wewillshowinObservation 2 thatwecancircumventthisproblembyencodingalongwitheachparametrizedconguration(f),one(orall)oftheorientations(denedbelow)ofitscorrespondingrealizations.ThustherealizationcomplexityisessentiallylinearinjVj. Withthisinmind,weonlyneedtocharacterizewhichSimple1-DofHenneberg-IgraphsGhavelowsamplingcomplexityfortheircongurationspaceonthebasenon-edgef.Specically,thisisa1-parametercongurationspace,andhenceitconsistsofaunionofintervals.Thesamplingcomplexityisthusthecomplexityofdeterminingtheendpointsoftheseintervals,startingwith(G;)asinput. InordertoquantifyanddenelowsamplingcomplexityweproveacrucialresultTheorem 10 thatgivesacombinatorialmeaningtotheendpointsoftheintervalsinthecongurationspace2f(G;).ThetheoremreliesonatechnicalLemma 7 thatgivescombinatorialdescriptionofthecongurationspace.Theproofrequiresbasicalgebraandrealanalysis. 60

PAGE 61

Infact,observethatthisisa1-1correspondenceprovidedassignsdistinctdistancestotheedgesofH.I.e,foranysuch,thereexistsatmostone2Drealizationpof(H;),whenanorientation(;f)isspecied.Thecoordinatesofp(vk)arenotuniqueonlyifatthekthstepoftheconstructionsequencecthevertexvkisconstructedfromverticesuKandwkforwhichp(uk)andp(wk)arecoincidentand(vk;uk)isequalto(vk;wk).SeeFigure 4-4 NowconsideranEDCS(G;)whereGisaSimple1-DofHenneberg-Igraphwithbasenon-edgef;andassumeassignsdistinctvalues.Foranysuchanddistanceassignment(f)distinctfromthevaluesassignedby,anorientation(;f)(andrealization)for(G[f;;)givesacorrespondingorientation(andrealization)for(G;).Atanyconstructionstep,wecanregard(u;w)forthebasepairofverticesasafunctionof(f).Thenextlemmaanalyzesthisfunctiontogiveacombinatorialdescriptionfor2f(G;). Figure4-4. Whenp(v7)andp(v8)arecoincident,distance(v5;v9)isnotafunctionof(v1;v2). 61

PAGE 62

(1) (2) Foranyintervalendpoint(f)in2f(G;),thereisauniquerealizationfor(G[f;;(f))withtheorientationandthereexistsaHenneberg-Istepv/(u;w)suchthatthethreeverticesv,uandwarecollinearinthisuniquerealization; (3) Foranypairofvertices(u;w)andanyrealizationpof(G[f);;(f))thedistancep(u;w)isacontinuousfunctionof(f)oneachclosedintervalof2f(G;).Furthermore,foranyvertex,v,thecoordinatesofthepointp(v)arecontinuousfunctionsof(f)oneachclosedintervalof2f,ifwepinthecoordinatesofp(v1)tobe(0;0)andthey-coordinateofp(v2)tobe0. 7 .WeprovebyinductiononthelengthofthegivenHenneberg-Iconstructionsequencestartingfromf. Inthebasecase,thelengthofthegivenHenneberg-Iconstructionsequenceis1.Supposev3istheonlyothervertex.Bythetriangleinequality,weknow2f(G;)is[j(v3;v1)(v3;v2)j;j(v3;v1)+(v3;v2)j],so(1)and(2)aresatised.For(3),weonlyneedtoconsiderwhetherthecoordinatesofp(v3)whichwedenoteas(xv3;yv3)areacontinuousfunctionof(f).DenoteR1=(v1;v3),R2=(v3;v2)andR3=(v1;v2)=(f).Wecancompute 62

PAGE 63

2R3:(4{2) NotethatsinceR3isnot0,bothxv3andyv3arecontinuousfuctionsofR3,whichisour(f)now. Byinductionhypothesis,weassumethat(1),(2)and(3)holdforaSimple1-DofHenneberg-IgraphGk1=(V;E)withbasenon-edgefwithlessthankHennebergsteps.SupposewegetanewgraphGkbyonemoreHenneberg-Istepvk/(uk;wk)withbaseverticesuk;wkinGk1.I.e.,Gk=(V[vk;E[(vk;uk)[(vk;wk)).Wewillprove(1),(2)and(3)holdforGk. Figure4-5. ForLemma 7 .Newconstrainton(uk;wk)changestheintervalendpointsin2f(Gk;). AccordingtotheStatement(3)oftheinductionhypothesis,intherealizationpofGk1withaxedorientation,foranypairofvertices(u;w)ofGk1,thedistancevaluep(u;w)isacontinuousfunction,saypu;w,of(f).Weextendtherealizationptothenewlyaddedvertexvk.Nowtheedges(vk;uk)and(vk;wk)willrestrictp(uk;wk)tobein[min;max]wheremin=j(vk;uk)(vk;wk)jandmax=(vk;uk)+(vk;wk).Thisrestrictionwillcreatenewcandidateintervalendpointsin2f(Gk;),namelyp1uk;wk(p(u;v));y2[j(vk;uk)(vk;wk)j;j(vk;uk)+(vk;wk)],asisshowninFigure 4-5 .Sincethesenewcandidateintervalendpointsinf(Gk;)correspondtotherealizationinwhichp(uk),p(vk)andp(uk)arecollinear,(1)and(2)arealsotrueforgraphGk. Toshowtheinductionstepfor(3),takeanynon-edge(u;w).Wehave: 63

PAGE 64

Ifu6=vkandw6=vk,p(u;w)isclearlyacontinuousfunctionof(f),soweonlyneedconsiderthecasethateitheru=vkorw=vk. Forconvenience,rstrotateandtranslatethecoordinatesystemsothatinthetriangle4(uk;wk;vk),ukisattheoriginand~uk;wkisthex-axis.Withoutlossofgenerality,letp(vk)belocatedabovethelinejoiningp(uk)andp(wk),bythegivenorientationinthestatementoftheLemma.DenoteR1=(vk;uk),R2=(vk;wk)andR3=p(uk;wk).Then, and 2R3:(4{5) SincewehaverestrictedR16=R2,wehaveR3>0.Considertherotationandtranslationthatnowputthepointp(v1)attheoriginandp(v2)onthex-axisasinthestatementoftheLemma.Denotetherotationangleas.Thenwehave: cos=xwkxuk sin==ywkyuk Sowecangetthetransformedcoordinatesofp(vk): 64

PAGE 65

4{3 isacontinuousfunctionof(f)evenifu=vkorw=vkandthisprovestheinductionstepofStatement(3)oftheLemma 7 forgraphGk. 7 ,werequirethatthetwodistances(vk;uk)and(vk;wk)arenotequalforthekthHenneberg-Istepvk/(uk;wk).Thisrequirementguaranteesthatthetwopointsp(uk)andp(wk)inarealizationpfor(Gk1;)arenotcoincident,wherebythequantityR3>0andthuswecanuseacontinuityargument. NowwecanstatethetheoremthatinterestsacombinatorialmeaningtothecongurationspaceofaSimple1-DofHenneberg-Igraphusingthenotionofextremegraphsdenedearlier. whereXm;k;j(f)denotesthelengthordistancevalueoffinthemthrealizationpmwithorientationsequenceofthekthextremeEDCSXk;jdeterminedbythepair(G;f). 4 (1)guaranteesthatthegraphcorrespondingtothisextremeEDCSiswellconstrainedprovidedthetwoverticesincidentonthenewedgewerenotpreviouslyinawellconstrainedsubgraph.Iftheywereinawellconstrainedsubgraph,thenthecorrespondingtwoEDCSsXk;1andXk;2canbeleftundened,andthecorrespondingintervalendpointsdonotappearinE(G;)byFact 4 (2). 7 (2). 10 implieslinearrealizationcomplexityofthecongurationspace2f(G;):foreachcandidateorientationsequence,wecanreadoasetofin-tervalsIfromthedescriptionE(G;)asinTheorem 10 ,suchthataconguration

PAGE 66

ForObservation 2 .(Left)showsextremeEDCScongurationsinE(G;)thatareinsomeproperintervalofI,butnotendpoints;(Middle)showsextremeEDCScongurationsthatareendpointsofintervalsinofI;and(Right)showsextremeEDCScongurationsthatareisolatedpointsinI.Thehorizontalaxisdenotes(f),theverticalaxisdenotesfunctionpuk;vk((f))=puk;vk((f)). Proof. 10 theendpointsof2f(G;)formasubsetofthecandidatesetE(G;),whichweviewasaunionovercandidatesetsforeachorientation:SE(G;).Whileeverysuchcandidateconguration(f)isacongurationofanextremeEDCSofG,noteverycandidatecongurationisactuallyanintervalendpointfor2f(G;),norevenanendpointofthesetofintervalsIrequiredinthestatementoftheObservation.Toseethis,recalltheproofforLemma 7 (Figure 4-5 );letvkbethevertexconstructedinthekthstepoftheHennebergconstructionofG[fstartingfromf,andletukandwkbethebaseverticesofthisstep.Considerthecontinuousfunctionpuk;wkinthevariable(f)whichgivesthedistancebetweenukandwkinaparticularrealizationpwithorientation;i.e,thevalueofthiscontinuousfunctionpuk;vkevaluatedat(f)isthedistancep(uk;wk).Figure 4-6 showsthatbasedonthiscontinuousfunction,the2distancevaluesmin=j(v(k);uk)(v(k);wk)jandmax=j(v(k);uk)(vk;wk)j,allthefollowingfourcasesarepossibleforacandidatecongurationXm;k;j(f):neithertheleftnortherightneighborhoodfallsinto2f(G;);boththeleftandtherightneighborhoodfallinto 66

PAGE 67

Basedonsuchadescriptionofthecongurationspace2f(G;),wesayithaslowsamplingcomplexityifalloftheextremeEDCSareTree-orTriangle-decomposable,whichensuresthattheintervalendpointsXki;j(f)intheabovetheoremcanbecomputedessentiallyusingasequenceofsolvingonequadraticequationatatime.ThisensurescomplexitylinearinjVj.IthasadditionallybeenconjecturedthesegraphsexactlycaptureQuadraticSolvabilityandtheconjecturehasbeenprovenforplanargraphs( 27 ). 67

PAGE 68

Allthe1-PathTriangle-FreeSimple1-DofHenneberg-Igraphswithlessthen8vertices;neither(d)nor(h)haslowsamplingcomplexityonbasenon-edge(v1;v2)whilealltheotherhave;both(d)and(h)haveaK3;3minorwhilealltheothersdonothave. ASimple1-DofHenneberg-Igraphwithbasenon-edgefhasthe1-Pathpropertyifexactlyonevertexotherthantheendpointsoffhasdegree2.WesayagraphGisTriangle-FreeifGhasnosubgraphthatisatriangle(seeFigure 4-7 ). (1) (2)

PAGE 69

LetGbea1-PathSimple1-DofHenneberg-Igraphwithbasenon-edgef=(v1;v2).Then (1.a) ifthenumberofverticesdirectlyconstructedwithv1andv2asbaseverticesis3ormore,thenGhasaK3;3minor. (1.b) ifthenumberofverticesdirectlyconstructedwithv1andv2asbaseverticesisexactly2andbothdeg(v1)anddeg(v2)areatleast3,thenGhasaK3;3orC3C2minor. (2) LetGbea1-PathSimple1-DofHenneberg-Igraphwithbasenon-edgef.ThenGdoesnothavelowsamplingcomplexityonfifeitherofthefollowingholds (2.a) thenumberofverticesdirectlyconstructedwithv1andv2asbaseverticesis3ormore,thenGdoesnothavelowsamplingcomplexityonf. (2.b) thenumberofverticesdirectlyconstructedwithv1andv2asbaseverticesisexactly2andbothdeg(v1)anddeg(v2)areatleast3,thenGdoesnothavelowsamplingcomplexityonf. Proof. 4-8 (a)).Sincevnwillbeadjacenttoallui(i=1;;m)inthecontractedgraph,thecontractedgraphhasaK3;3minorwhichisinducedbyv1,v2,vn,u1,u2andu3(v1,v2andvnareasonepartitionandu1,u2andu3astheother. 4-8 (c))orusingabaseedgewhoseverticesareamongv1,v2,u1andu2.Forthelattercase,withoutlossofgenerality,weassumev5isconstructedwithv1andu1(seeFigure 4-8 (b)).Forbothcases,wecontractalltheedgeswhichhaveatleastonevertexotherthanv1,v2,u1,u2,v5andvn.FortheformercaseshowninFigure 4-8 (b), 69

PAGE 70

4-8 (c),thereisaK3;3minorinthecontractedgraphwherev1,v2andv5areinonepartitionandu1,u2andvnareintheother. Figure4-8. EdgecontractionsandgraphminorsforLemma 8 3 thatv1andv2cannotbothbelongtoanywellconstrainedsubgraph,sov1andv2cannotbothbelongtoanyofC1,C2andC3.Vertexu1isadjacenttobothv1andv2,whicharenotbothinacluster,sou1mustbeavertexsharedbytwodierentclustersofC1,C2andC3.Similarly,u2andu3aresharedvertices.Nowu1,u2andu3arethethreesharedvertices(RefertoFigure 4-1 )butv1andv2areadjacenttoallthesethreesharedverticeswhichisimpossible(seeFigure 4-1 ). 3 ,ifC1doesnotcontainedge(u;w),C1willnotbewellconstrained,soC1mustcontainedge(u;w).BecauseGis1-Path,verticesuandwarethetwobaseverticesofthelastconstructedvertexvn,andC1containsv1andv2which 70

PAGE 71

4-9 Figure4-9. ProofofLemma 8 (2b). NextitisnothardtoshowthatGisalsoaSimple1-DofHenneberg-Igraphwithbasenon-edge(u1;u2).ByFact 3 ,nosubgraphofGcontainingbothverticesofabasenon-edgeiswell-constrained.NowC1containsbothu1andu2whicharethetwoverticesofabasenon-edgeforG,soforC1tobewellconstrained,theedge(u;w)hastobelonginC1.ThisimpliesthatbothC2andC3aresubgraphsofG.ByFact 2 ,awell-constrainedsubgraphofa1-DofHenneberg-IgraphhastobeaHenneberg-Igraph,soC2isaHenneberg-Igraph.Further,accordingtotheorderofverticesintheHenneberg-IconstructionsequenceofGstartingfrom(v1;v2)andtheconclusionsofthepreviousparagraph,theedges(u1;v2)and(u2;v2)havetobethebaseedgesforHenneberg-IgraphsC2andC3respectively.ThisrestrictsC2andC3tobepureedges,otherwise,avertexin 71

PAGE 72

(1) ifu1andu2aretheonlyverticesconstructedwithv1andv2asbaseverticesanddeg(v1)is2,then (1.a) (1.b) (2) ifu1andu2aretheonlyverticesconstructedwithv1andv2asbaseverticesandbothdeg(v1)anddeg(v2)are2,then (2.a) ForproofofLemma 9 72

PAGE 73

For(2.a)and(2.b),wecandirectlyextendtheargumentfor(1.a)and(1.b)exceptthatweneedadd/removebothv1andv2thathavedegreeof2. 11 .Onedirectionof(2)inTheorem 11 istrivial:ifthe(extreme)graphG[(uk;wk)isaHenneberg-Igraphwithbaseedge(uk;wk)foranyHenneberg-Iconstructionvk/uk;wkassociatedtoGandthebasenon-edge(v1;v2),thenbythedentionoflowsamplingcomplexity,graphGhaslowsamplingcomplexityon(v1;v2). Weprovethereversedirectionof(1).Considerthenumberofverticeswhicharedirectlyconstructedon(v1;v2).Denoteitbym. 8 (1.a)andLemma 8 (2.a),GhasK3;3orC3C2minorandGdoesnothavelowcomplexityon(v1;v2). 8 (1.b)andLemma 8 (2.b),Gdoesnothavelowsamplingcomplexityon(v1;v2)andhasK3;3orC3C2minor. 73

PAGE 74

8 (2.b),eitherdeg(v1)ordeg(v2)is2.Withoutlossofgenerality,supposedeg(v1)is2andu1,u2arethetwoverticesconstructedwithv1andv2asbasevertices.DenoteGnfv1gbyG0. SinceGhaslowsamplingcomplexityon(v1;v2),byLemma 9 (1.a)and(1.b)soG0haslowsamplingcomplexityon(u1;u2). WecanprovenowbycontradictionthatifGdoesnothavelowsamplingcomplexityon(v1;v2),thenGhasaK3;3orC3C2minor.Assumenot,thenwecanndaGwithminimumnumberofverticessuchthatGdoesnothavelowsamplingcomplexityon(v1;v2)andGdoesnothaveaK3;3orC3C2minor.Considerthenumberofverticesdirectlyconstructedonv1andv2,GcannotbeinCase1,Case2orCase3.So,GcanonlybeinCase4.SinceGdoesnothavelowsamplingcomplexityon(v1;v2),G0doesnothavelowsamplingcomplexityon(u1;u2).GraphGhasnoK3;3orC3C2minorsoG0doesnothaveK3;3orC3C2minoreither.GraphG0haslessnumberofverticesthanGanddoesnothavelowsamplingcomplexityon(u1;u2)anditdoesnothaveK3;3orC3C2minor,sowehaveacontradiction. For(2)andthereversedirectionof(1),wewillproveastrongerargument:ifHenneberg-IgraphGhaslowsamplingcomplexityonbasenon-edge(v1;v2),thenallextremegraph~Gk=G[(uk;wk)isalsoaHenneberg-Igraphwhereukandwkarethetwobaseverticesforthek'thHenneberg-Istepvk/(uk;wk).WeprovethisbyinductiononthenumberofverticesofG. Basecase:ifthenumberofverticesofGis3,Ghaslowsamplingcomplexityon(v1;v2)and~G3isanedge,atrivialHenneberg-Igraph. Assumethat~GkisHenneberg-Iifkn.Fortheinductionstep,wewillprove~Gk+1isalsoHenneberg-I.Recalltheabovefourcases.SinceGhaslowsamplingcomplexityon(v1;v2)andCase1istrivial,soweonlyneedtoconsiderCase4.NowGhaslowsamplingcomplexityon(v1;v2)impliesthatG0haslowsamplingcomplexityonbasenon-edge 74

PAGE 75

NextweshowthatalthoughthelowsamplingcomplexityofthegraphscharacterizedinTheorem 11 havelowsamplingcomplexityresultsfromTriangle-decomposableextremegraphs,theircongurationspacedescription(i.e.,intervalendpoints)canbeobtainedusingadirectmethod,withoutrealizingtheextremegraphs. SeeFigure 4-11 whichillustratesthevariouscasesthatmustbedistinguishedindeterminingthedistanceintervalforf,giventhedistanceinterval[l(e);r(e)]fore.The 75

PAGE 76

Casesthatmustbedistinguishedindeterminingthedistanceintervalforf,giventhedistanceinterval[l(e);r(e)]fore.Thehorizontalaxisdenotes(f);theverticalaxisdenotes(e).Themeaningofthesymbolsare:min:l(e);max:r(e);1:rl(f);2:rr(f);3:ll(f);4:lr(f);5:min(f);6:max(f);e:(e);f:(f). variousquantitiesthatcomeintoplayare:(i)l(e),r(e);(ii)thecorrespondinglengths(iftheyexist)forfll(f),lr(f),andrl(f),rr(f);andmoreover(iii)theoverallmaximumandminimumvaluesforthelengthsofeandfthatarepermittedbythecurve:min(e),max(e),min(f),andmax(f)-asmentionedearlierthesearedeterminedeasilybytriangleinequalitiesusingthe2trianglesbasedontheedgese1;:::;e4ande(resp.f). Inparticular,forFigure 1-3 (right),quadrilateral(v1;v2;v3;v4)has4distanceequalityconstraints:(v1;v3)=7,(v2;v3)=7,(v1;v4)=6and(v2;v4)=8.Boundedbytriangleinequalitiesin4(v3;v4;v5),diagonal(v3;v4)hasanintervalconstraintas[4;5].By 76

PAGE 77

8p 8p 5p 5p Forexample,usingthefollowingstepswecanget2f(G;)(f=(v1;v2))inFigure 4-7 (e): AsimilaralgorithmappliesforFigure 4-7 (f). IntheFigure 4-7 (e)thetwoquadrilateralsforStep(i)andstep(i+1)donotshareanyedgeswhileforFigure 4-7 (f)thetwoquadrilateralsforStep(i)andstep(i+1)maysharetwoedges.GenerallythenumberofthequadrilateraldiagonalintervalmappingstepsisbetweenjVj=2andjVj.NowwegivetheproofforObservation 3 3 .InfacttheobservationissubsumedintheproofofTheorem 11 .Ifthe1-PathTriangle-FreegraphG=(V;E)haslowsamplingcomplexityonbasenon-edgef=(v1;v2),weonlyhavethreepossiblecases.Case1:jVjis3. 77

PAGE 78

4-10 (b)).ForCase3,wecanseethequadrilateralstructurebyanalyzingGnfv1g(seeFigure 4-10 (b)),whichalreadyhasonevertexv2whichisconstructedonbasenon-edge(v3;v4)andweknowdeg(v2)isnot2.Withoutlossofgeneralityweusev5todenotetheothervertexconstructedon(v3;v4)byaHenneberg-Istep.InGnfv1g,ifbothdeg(v3)anddeg(v4)are2(correspondingtoCase2),thenwehavetwoquadrilaterals(v1;v2;v3;v4)and(v2;v3;v4;v5)whichsharetwoedges(v2;v3)and(v2;v4)(refertoFigure 4-7 (c)).InGnfv1g,ifonlydeg(v4)is2(correspondingtoCase1),thenwealsohavetwoquadrilaterals(v1;v2;v3;v4)and(v2;v3;v4;v5)whichalsosharetwoedges(v2;v3)and(v2;v4)(refertoFigure 4-7 (g)).Sincewecanrecursivelyrepeatthisanalysis,ifGhaslowsamplingcomplexityonf,2f(G;)canbecomputedbyanO(jVj)sequenceofquadrilateraldiagonalintervalmappings. 11 istightbyillustratingobstaclestoobtainingaforbidden-minorcharacterizationafterremovingeitheroftherestrictionsofTriangle-Free(Figures 4-12 and 4-13 )and1-Path(Figure 4-14 )usedinthetheorem. Proof. 4-12 .WecanverifythatGisa1-PathSimple1-DofHenneberg-Igraphwithbasenon-edgef=(v1;v2).Amongalltheextreme 78

PAGE 79

Figure4-12. ForObservation 4 .ASimple1-DofHenneberg-IgraphGonbasenon-edge(v1;v2)whichisnotTriangle-FreebuthasasingleHenneberg-Iconstructionpathforv14onbasenon-edge(v1;v2);Ghascongurationspaceoflowsamplingcomplexityon(v1;v2);butG1hasaK3;3minorandG2hasaC3C2minor. ByminormodicationofFigure 4-12 ,wehavethefollowingstrongerobservation.

PAGE 80

4-12 suchthatKmisaminorofG1.Ifwecandothis,theprooffollowssincebyusingthesameargumentasproofforObservation 4 ,weadditionallyhave:bothG1andG2areHenneberg-Igraphswithbaseedge(v1;v3)and(v2;v3)respectively;thereareonlytwoextremegraphswhicharebothwellconstrainedandTriangle-decomposablesoGhaslowsamplingcomplexityon(v1;v2). Weprovebyinductionthatwecanconstructa1-PathHenneberg-IgraphG1withbaseedge(v1;v3)suchthatG1canbereducedtoKmbyedgecontractions.Thebasecases(m=1;2;3)havebeenshowninFigure 4-12 .Astheinductionhypothesis,weassumethatwecanconstructa1-PathHenneberg-IgraphGm1withbaseedge(v1;v3)suchthatGm1canbereducedtoKmbyedgecontractions.NowweprovetheinductionstepforKm+1.WestartfromGm1toconstructGm+11.Wepickmverticesu1;;umfromGm1containingthelastconstructedvertexofGm1andadditionallysuchthattheymaptodistinctverticesinthecontractedgraphKm.Weaddavertexw1byaHenneberg-Istepwithu1andu2asbasevertices.Thenweaddavertexw2byaHenneberg-Istepwithw1andu2asbaseverticesandsoon.Finallyweaddwm1byHenneberg-Istepwithwm2andumasbaseverticestogetGm+11(PleaserefertoFigure 4-13 foraK5example).Clearly,Gm+11isaHenneberg-Igraphwithbaseedge(v1;v3).Thenbycontractingalltheedgesthathaveatleastonevertexotherthanu1,,umandwm1,wegetaKm+1.Thus,wehaveprovedthatGm+11isaHenneberg-IgraphandcanbecontractedtoKm+1. Proof. 4-14 .TheSimple1-DofHenneberg-Igraphisconstructedwithbasenon-edge(v1;v2)anditisnota1-Path.WecanverifythatalltheextremegraphsareinfactHenneberg-IgraphssotheyareTriangle-decomposable.ThisshowsthatGhaslowsamplingcomplexityonf.Ifwecontractalltheedgesthathaveat 80

PAGE 81

ForObservation 5 .ASimple1-DofHenneberg-Igraphonbasenon-edge(v1;v2)thathasoneHenneberg-Iconstructionpathonbasenon-edge(v1;v2);ithasacongurationspaceoflowsamplingcomplexityon(v1;v2)butithasaK5minorshownintheleftcircledsubgraph;ingeneral,itcanhaveaarbitrarycliqueasaminor. leastonevertexotherthanv1,v2,v3,v4,v5andv6,wecangetacliqueK6,soGhasbothK3;3andC3C2minors.Ghasalltherequiredpropertiesoftheobservation. Figure4-14. ForObservation 6 .ASimple1-DofHenneberg-Igraphonbasenon-edge(v1;v2)thathasmorethanoneHenneberg-Iconstructionpathsonbasenon-edge(v1;v2);ithasacongurationspaceoflowsamplingcomplexityon(v1;v2);butithasbothK3;3andC3C2minors.Aside:(v3;v4),(v5;v6),(v1;v5)and(v2;v6)arealsobasenon-edgesandallofthemyieldcongurationspacesoflowsamplingcomplexity. 81

PAGE 82

Figure4-15. A1-Path1-DofHenneberg-Igraphthathaslowsamplingcomplexityonbasenon-edge(v1;v2);exactly1vertexnamelyv3isconstructedonv1andv2.SeeproofofTheorem 12 andObservation 7

PAGE 83

Proof. 8 (1.a),m<3.Whenm=2,assumev3andv4areconstructedwithv1andv2asbasevertices.Sincev1andv2areadjacenttobothv3andv4,sobothdeg(v1)anddeg(v2)areatleast2.ByLemma 8 1.b,deg(v1)anddeg(v2)cannotbebothgreaterthan2,soeitherv1orv2hasdegreeoftwo. ByLemma 9 (1.a)and(1.b)wehave(2)andbyLemma 9 (2.a)and(2.b)wehave(3). 12 leavesthecasewherethenumberofverticesdirectlyconstructedusingv1andv2asbaseverticesisexactly1.SuchgraphsoflowsamplingcomplexityarecapturedinFigure 4-15 TheabovetheoremcharacterizestheSimple,1-Dof,1-PathHenneberg-IgraphsthathaveTriangle-decomposableextremegraphsandlowsamplingcomplexity.ItisnaturaltoaskifthecongurationspacedescriptionforthesegraphscanalsobeobtaineddirectlyasinObservation 3 ,withoutactuallyrealizingtheextremegraphs.Thenextobservationgivesanegativeanswer. 4-15 showsanexampleofaSimple,1-Dof,1-PathHenneberg-Igraphwithlowsamplingcomplexity,forwhichtheintervalendpointsinitscongurationspacecannotdirectlybeobtainedbythemethodofquadrilateraldiagonalintervalmapping(inObservation 3 ). Proof. 4-15 ,thegraphisa1-Path1-DofHenneberg-Igraphthathaslowsamplingcomplexityonbasenon-edge(v1;v2).However,wecannotndasequence 83

PAGE 84

4-14 Proof. TheproofrestsonseveralclaimsontheaboveG,f1andf2whichexcludethepossibilityofminimality. Proof. 84

PAGE 85

2 thesubgraphisaHenneberg-Igraphandalsoa2-sumcomponentofG.SoG0willbealsoaHenneberg-Igraphwithtwobasenon-edgesf1andf2andjustlikeG,G0haslowsamplingcomplexityonf1butdoesnothavelowsamplingcomplexityonf2.NowweconsiderthecasethatGdoesnothaveawellconstrainedsubgraphwhichincludebothunandwn.Inthiscase,sinceGhaslowsamplingcomplexityonf1,itfollowsthatG[(un;wn)isTriangle-decomposable.ComparetheextremegraphsassociatedwithGand(v3;v4)andtheextremegraphsassociatedwithG0and(v3;v4),theformerhasonemoreextremegraphG[(v1;v2).Gdoesnothavelowsamplingcomplexityonf2=(v3;v4),sooneextremegraphassociatedwith(G;f2)isnotTriangle-Decomposable.NowG[(vi;vj)isTriangle-Decomposable,sooneextremegraphassociatedwith(G0;f2)mustnotbeTriangle-Decomposable,thus,G0musthaveoneextremegraphwhichisnotTriangle-DecomposablesuchthatG0doesnothavelowsamplingcomplexityonf2.Inbothcases,G0isaHenneberg-Igraphwithbasenon-edgesf1andf2andjustlikeG,G0haslowsamplingcomplexityonf1butdoesnothavelowsamplingcomplexityonf2.ThisviolatestheminimalityofG,soourassumptionisincorrectandnovertexofGotherthanv1,v2,v3andv4canhavedegree2. Proof.

PAGE 86

2 ,weprovedthatatleastoneofdeg(v1)anddeg(v2)istwoweassumethatdeg(v1)is2sothenumberofverticesconstructedwithv1andv2asbaseverticesisatmosttwo.Wecanshowbycontradictionthatthisnumberisnotexactly2.Supposev5andv6arethetwoverticesconstructedwithv1andv2asbasevertices.ByLemma 9 (2.a),(v5;v6)isalsoabasenon-edgeforG.Ghaslowsamplingcomplexityon(v1;v2),sobyLemma 9 (1.bor2.b),Galsohaslowsamplingcomplexityon(v5;v6).Ifv1isdierentfrombothv3andv4,wehave:Gdoesnothavelowsamplingcomplexityon(v3;v4),Ghaslowsamplingcomplexityon(v5;v6),v1hasdegree2,andv1isdierentfromv3,v4,v5andv6.ThiscontradictstoCliam 1 ,soweonlyneedtoconsiderthecasethatv1isthesameasv3orv4.Withoutlossofgenerality,weassumethatv1isthesameasv3.Gisa1-DofHenneberg-Igraphwithbasenon-edge(v3;v4)andGhasatleast3vertices,soatleastonevertexofGotherthanv3andv4hasdegree2.ByCliam 1 ,onlyv1,v2,v3andv4canhavedegree2,sodeg(v2)hastobe2.Now,Ghaslowsamplingcomplexityon(v5;v6),Gdoesnothavelowsamplingcomplexityon(v3;v4),vertexv2hasdegreeof2andv2isdierentfromv3,v4,v5andv6.ThisagaincontradictstoCliam 1 thusprovestheclaim. 13 Continued.ByClaim 3 thereisonlyonevertexconstructedwithv1andv2asbasevertices,withoutlossofgenerality,supposev9issuchavertex.ConsidertheHenneberg-Istepthatimmediatelyfollowsv9/(v1;v2).Sincev9isthevertexconstructedwithv1andv2asbasevertices,thebaseverticesforthenextHenneberg-Istepareeitherv1andv9orv2andv9.Sincewehavelabeledv1asthevertexwhichhasdegreeof2,wehavetodierentiatethesetwocases.InClaim 4 wediscussthecaseinwhichthenextHenneberg-Istepisv10/(v1;v9)andinClaim 5 wediscussthecaseinwhichthenextHenneberg-Istepisv10/(v2;v9).

PAGE 87

ProofsofClaim 4 andinClaim 5 .Simple1-DofHenneberg-IgraphGhaslowsamplingcomplexityonbasenon-edge(v1;v2)whileGdoesnothavelowsamplingcomplexityonbasenon-edge(v3;v4);vertexv9istheonlyvertexdirectlyconstructedonv1andv2;triangle4(v9;v10;v1)correspondstothesecondHenneberg-Iconstructionfrom(v1;v2);in(a),(v1;v2)and(v3;v4)donotshareanyvertex;in(b)and(c),(v1;v2)and(v3;v4)shareavertex. 4-16 ,(v2;v10)isalsoabasenon-edgeforSimple1-DofHenneberg-IgraphG.FurtherGhaslowsamplingcomplexityon(v2;v10)sinceGhaslowsamplingcomplexityon(v1;v2).ThisisaresultwhichissimilartoLemma 9 (1.b)andcanbeprovedbycomparingallthepossibleextremegraphs.Foranyextremegraphcorrespondingto(v2;v10),thereisanextremegraphcorrespondingto(v1;v2)whichhasoneextraHenneberg-Istepv1/(v9;v10).Ghaslowsamplingcomplexityon(v1;v2),soalltheextremegraphscorrespondingto(v1;v2)aretriangledecomposable.Thus,alltheextremegraphscorrespondingto(v2;v10)arealsotriangledecomposablesinceremovingverticesfromatriangledecomposablegraphbyinverseHenneberg-Istepskeepsthegraphstilltriangledecomposable.So,Ghaslowsamplingcomplexityon(v2;v10). NotethatGhasdoesnothavelowsamplingcomplexityon(v3;v4)anddeg(v1)is2.ByClaim 1 ,v1cannotbedierentfrombothv3andv4(Figure 4-16 (a)).Soweonlyneedtoconsiderthecasev1iscoincidentwithv3orv4.Althoughwelabeledv3asthevertexwithdegreeof2butwedonotusethispropertyhere,sowesupposev1iscoincidentwithv4. Since(v3;v4)isabasenon-edgeforGandv4(justlikev1)isonlyadjacenttov9andv10,sov3mustbeadjacenttoeitherv9(Figure 4-16 (b))orv10(Figure 4-16 (c))inordertoguaranteetheHenneberg-Istepwithv3andv4asbaseverticesispossible.ForFigure 4-16 (b),(v3;v10)isabasenon-edgeforGsince(v3;v4)isabasenon-edgeforG. 87

PAGE 88

1 ,sothecaseshowninFigure 4-16 (b)isimpossible.WecanusethesameargumentforthecaseshowninFigure 4-16 (c)andget:Gdoesnothavelowsamplingcomplexityon(v3;v9),Ghaslowsamplingcomplexityon(v1;v2),v1hasdegreeof2andv1isdierentfromv2,v3,v9andv10.ThisagaincontradictstoClaim 1 ,sothecaseshowninFigure 4-16 (c)isalsoimpossible.NowwehaveshownthatwecannothaveaHenneberg-Istepv10/(v1;v9). Proof. 4-17 andFigure 4-18 ). Letv12denotetheothervertexthatv1isadjacent(weknowthatv1isadjacenttov9).Observethat(v1;v2)isabasenon-edgeforG,sov1mustbeoneofthetwobaseverticesforv12'sconstruction.Denotetheothervertexbyv11.Clearly,beforev12isconstructed,wemusthaveconstructeda1-PathHenneberg-Igraphwith(v2;v9)asbaseedgeandv11asthelastvertex.Wedenotethis1-PathHenneberg-IgraphbyG1andmarkitbyadashedcircleinFigure 4-17 Wecanshowthatv1hastobedierentfromv3andv4.SinceGissimple1-DofHenneberg-Igraphwithbasenon-edge(v3;v4),atleastonevertexotherthanv3andv4shouldhavedegree2.ByClaim 1 ,v1andv2aretheonlypossibleverticeswithdegreeof 88

PAGE 89

ProofofClaim 5 :v1iscoincidentwithv3. 2.Ifv1isv3orv4,deg(v2)is2.Butdeg(v2)cannotbe2byClaim 4 ,sowehaveprovedthatv1hastobedierentfromv3andv4anddeg(v2)isnot2(seeFigure 4-17 ). Fortheremainingcases,wewilluseClaim 1 totargettheimpossbilitywhichisstatedinthelaimwewanttoprove.Todothat,wechangetheedgesofGtogetanewgraphGsuchthat:G0haslowsamplingcomplexityonbasenon-edgef3;G0doesnothavelowsamplingcomplexityonbasenon-edge(v3;v4);v1isdierentfromv3,v4andthetwoverticesoff3. IfweconsidertheHenneberg-Isequencestartingfrom(v1;v2),G1isaHenneberg-Igraphwith(v2;v9)asbaseverticeandthelastvertexisv11.ThismeansthatanyvertexinG1otherthanv2,v9andv11donothavedegree2.ConsiderhowwecanconstructG1intheHenneberg-Isequencestartingfrom(v3;v4).RecalleachHenneberg-Istepinvolves1vertexand2edges.ByusingthesamedofcountingmethodthatusedforFact 2 ,theremustbeanedgebetweenthersttwoverticesinG1,withoutlossofgeneralityweassumethattherstvertexisv13andthesecondisv14.So,G1hastobeaHenneberg-Igraph(maynotbe1-Path)withbaseedge(v13;v14). NowwemodifyG1togetG01suchthatwegettheG0thatweexpect.WekeepalltheverticesinG1butremovealltheedges.OurobjectiveistoaddedgestogetanewgraphG01suchthatG01isaHenneberg-Igraphwithboth(v2;v9)and(v13;v14)asbaseedgesandG01containsedges(v2;v11)and(v9;v11).Toachievethis,werstaddedges(v2;v9),(v2;v11)and(v9;v11).Thenweconsideraddingedgesforv13andv14:ifbothv13andv14

PAGE 90

ForproofofClaim 5 :v1isdierentfromv3andv4. areamongv2,v9orv11,wedonotaddanyedge;ifexactlyoneofv13andv14isoneofv2,v9orv11,weaddedges(v13;v14)andanotheredgebetweenv11andwhicheverofv13andv14isnotoneofv2,v9orv11;ifneitherofv13andv14isoneofv2,v9orv11,weaddedges(v13;v2),(v13;v11)(v14;v13)and(v14;v11).FinallyforeachvertexuinG1otherthanv2,v9,v11,v13andv14,weaddoneedgebetweenuandv2andanotheronebetweenuandv9.WeuseG01todenotethisnewsubgraphthatreplacesG1andG0fortheentiregraph.Bythemannerinwhichweaddedges,ourobjectiveisachieved:G01isHenneberg-Igraphwithboth(v2;v9)and(v13;v14)asbaseedgesandalsocontainsedges(v2;v11)and(v9;v11). Nowobservethatboth(v1;v2)and(v3;v4)arestillbasenon-edgesforG0.Further,(v9;v12)isalsoabasenon-edgeforG.NowweconsiderwhetherG0haslowsamplingcomplexityon(v9;v12)and(v3;v4).Todothat,werefertoTheorem1provedin( 11 ):ifagraphisTriangle-decomposable,wecanperformtheclustermerging(inverseoperationoftriangle-decomposition)inanyorder(aChurch-RosserProperty)butnallywegetoneclusterwhichisthesameasthewholegraph.Soforanygivengraph,ifwereplaceoneofitsTriangle-decomposablesubgraphsbyanothertriangledecomposablesubgraphwhilekeepingtheverticesunchanged,thegraphpreservesTriangle-decomposability.Hereinourtransform,bothG1andG01areHenneberg-IgraphsandthusbothareTriangle-decomposable.ComparetheextremegraphscorrespondingtoGandG0forwhichbasenon-edgeischosenas(v1;v2). 90

PAGE 91

4 ,anextremegraphcorrespondingtotheHenneberg-Istepv/(u;w)iswellconstrainedifandonlyifuandwarenotinanywellconstrainedsubgraph.ObservethatthedierencebetweenGandG0isexactlythedierencebetweenG1andG01.BothG1andG01arewellconstrained,sointhecomparisonofextremegraphswedonotneedtoconsiderextremegraphscorrespondingtotheHenneberg-IstepsinsideG1andG01. ForalltheotherHenneberg-IstepsoutsideG1andG01,thedierencebetweentheextremegraphsforGandG0isexactlythedierencebetweenG1andG0.ThisprovesG0haslowsamplingcomplexityon(v1;v2)sinceGhaslowsamplingcomplexityon(v1;v2).Similarly,wecanshowthatG0doesnothavelowsamplingcomplexityon(v3;v4)sinceGdoesnothavelowsamplingcomplexityon(v3;v4).NowverifyingFigure 4-18 again,(v9;v12)isalsoabasenon-edgeforG0.BycomparisonofextremegraphsaswedidinClaim 4 ,G0haslowsamplingcomplexityon(v1;v2)sinceG0haslowsamplingcomplexityon(v9;v12).ThiscontradictstoClaim 1 ,sowehaveprovedwhenv9istheonlyvertexconstructedwithv1andv2asbaseverticesanddeg(v1)is2,thennovertexcanbeconstructedwithv2andv9asbaseverticeseither. 13 Continued.Nowwecanputallthe5claimstogether.WeassumethatGhaslowsamplingcomplexityonbasenon-edge(v1;v2)butdoesnothavelowsamplingcomplexityonbasenon-edge(v3;v4).WealsoassumethatthenumberofverticesinGisminimumamongallthegraphswiththisproperty.InClaim 1 toClaim 5 ,wediscusswhatpropertiessuchaGshouldhaveinordertokeeptheminimalityofthenumberofvertices.InClaim 1 weshowthatanyvertexotherthanv1,v2,v3andv4cannothavedegree2;inClaim 2 ,weshowatleastoneofdeg(v1)anddeg(v2)(resp.atleastoneofdeg(v3)anddegv4)is2andwithoutlossofgeneralityweassumethatdeg(v1)anddeg(v3)are2;inClaim 3 ,weshowthatthereisonlyvertexthatisconstructedwithv1andv2asbaseverticesandwedenotethevertexbyv9;theresultinClaim 3 narrowstheHenneberg-Istepthatfollowsv9/(v1;v2)toeitherv10/(v2;v9)orv10/(v1;v9),so 91

PAGE 92

4 weshowthatv10/(v1;v9)isinfeasible;nallyClaim 5 showsthattheonlyremainingpossibilitynamelyv10/(v2;v9)resultsinaconsequencethatcontradictstoClaim 1 .ThisimpliesnominimalgraphGcanexistthatcontradictstheconditionsofthetheorem,thusprovingTheorem 13 2 andChapter 3 Asimmediatefuturework,itwouldbedesirabletogiveacleanercombinatorialcharacterizationoflowsamplingcomplexityforcongurationspacesof1-PathSimple1-DofHenneberg-Igraphs.I.e,itwouldbedesirabletoimprovethecharacterizationofTheorem 12 .Thenextnaturalcontinuationistostudycongurationspacesofgraphswithkdofs(k>1)obtainedbydeletingkedgesfromHenneberg-IorTree-orTriangle-decomposablegraphs. 92

PAGE 93

InChapter 2 wehavecharacterizedtheclassofgraphswhosecorrespondingEDCSadmit2Dconnectedcongurationspace;inChapter 3 ,wehavecharacterizedgraphsthatadmituniversallyinherentsquareconvexcongurationspacesandconnectedcongurationspacein2Dand3D.Asfuturework,weupgradethealgebraiccomplexityandaskthesamecombinatorialgraphcharacterizationquestions.Particularly,inSection 5.1 ,wediscusswhichgraphsadmit2Dcongurationspaceonnon-edgesthatalwayshaveatmost2connectedcomponents;inSection 5.2 ,wediscusswhichgraphsadmit3Dconnectedcongurationspaceonnon-edges. 5.1.1QuestionsandContributions (1) InObservation 8 andObservation 9 ,wegivethemajordierencebetween2Dconnectedcongurationspaceand2D2CCS.Lemma 10 givesagraphcharacterizationthatisbasedonObservation 8 .BasedonObservation 9 ,werestrictthediscussionheretothecasesthatthegraphisconnectedafterthetwoendverticesofthenon-edgeareremoved.LaterinConjecture 4 ,werevisitObservation 9 (2) Givenagraphandnon-edgepair(G;f)whereG=(V;E)andf=(v1;v2),wediscusstheminimumnumberofdisjointpathsbetweenv1andv2inG.Wefurthergetsimplepathsfromthedisjointpaths(simplepathsmeansavertexinducedpath 93

PAGE 94

14 thatisacomplete2D2CCSgraphcharacterizationforthecasethattheminimumnumberofdisjointpathsbetweenv1andv2isexactly2. (3) InTheorem 15 ,wegiveasetofbasecasesinwhichgraphsdonothold2D2CCS.Thissetcancovermostcasesinwhichtheminimumnumberofdisjointpathsbetweenv1andv2is3ormore.Weshowtheexceptionisrelatedtooverconstraints. 2-7 ). Proof. 2-6 ). Proof. 94

PAGE 95

ProofforLemma 10 is[1:5;2],[3;3:5]and[3:8;4].Itisclearwecanndappropriategraphsanddistanceassignmenttoachievetheseintervals. ForObservation 8 ,thefollowinglemmagivesagraphcharacterization.ToovercomethehurdledescribedinObservation 9 ,werstassumeGnfv1;v2gisconnected. 5-1 )andGistheminimumsum-componentthatcontainsbothv1andv2,thenGholds2D2CCSonfifandonlyifthereexistsa1-sumcomponentGisuchthatGiadmits2D2CCSonfiandallGj[fj(j6=i)arepartial2-tree. Proof. 2 ,byedgecontractionsbothGiandGjcanbereducedtothebasecasesshowninFigure 2-4 orFigure 2-5 .Ineithercase,fiandfjarenon-edgesofa2-Sumoftwotriangles,thus,wecanndanappropriatedistanceassignmentiandjforGiandGjsuchthatfi(Gi;i)andfj(Gj;j)aretwodistinctvalues.ByObservation 8 ,Gdoesnothold2D2CCSonf. Fortheotherdirection,refertoFigure 5-1 ,ifG1admits2D2CCSonf1andG1admits2Dconnectedcongurationspaceonf2,G1[G2admits2D2CCSon(v1;v4).Byrepeatingthis,wecanshowthatGadmits2D2CCSon(v1;v2). 95

PAGE 96

GraphGhas2D2CCSonnon-edgef=(v1;v2):thecurverepresentsapartial2-treewhichhasthetwoendpointsasvertices;thetwographsareequivalentwithrespecttowhetherGhas2D2CCSonf. Proof. Proof. Nowweonlyneedtoprove:givenquadrilateralG=(v1;v2;v3;v4)thatcontainsnon-edge(v1;v2)andedges(v1;v3),(v1;v4),(v2;v3),(v2;v4)and(v3;v4)andinterval 96

PAGE 97

Case4:Gdoesnothave2D2CCSonnon-edgef. constrainsonallthe5edges,thecongurationspace(v1;v2)(G)alwayshasatmosttwointervals. Letusxpv3andtheorientationfrompv3topv4.Wehavetwocasesthateitherpv1andpv2areonthesamesideofpv3andpv4ordierentsides.Werstprovethatforbothcasesthespaceofpv1isconnectedandthespaceofpv2isconnected.Becauseofthesymmetry,weonlyneedtoproveonecaseandwithoutlossofgeneralitywewillprovethecasethatpv3andpv4areondierentsideofpv1andpv2.Oncethisisproved,clearlyforeithercase,thepossiblevaluesfor(v1;v2)isconnectedso(v1;v2)hasatmosttwointervals. Giventwodistinctvalues1(v1;v2)and2(v1;v2)for(v1;v2),weprovewecancontinuouslychangethedistancevaluesfor(v1;v3),(v1;v4),(v2;v3),(v2;v4)and(v3;v4)such(v1;v2)iscontinuouslychangedfrom1(v1;v2)to2(v1;v2).Thisisclearsincethecongurationspaceon(v1;v3),(v1;v4),(v2;v3),(v2;v4)and(v3;v4)isalwaysaconvexbyTheorem 4 .Thisargumentalsostandsforthecasepv1andpv2areondierentsideofpv3andpv4. 5-3 ,thenGdoesnotadmit2D2CCSonnon-edgef. Proof. 5-3 (a)byG1.Firstwecontractallthe 97

PAGE 98

Weexcludesuchapossibilitybyenumeratingallthepossiblecases: (a) (b) (c) (c.1) ifziisnotadjacenttov1andv5,wecontract(v4;zi); (c.2) ifziisnotadjacenttov1andv3,wecontract(v4;zi); (c.3) ifziisnotadjacenttov5andv3,welet(v5;v1)=(zi;v1),(v5;v4)=(zi;v4)and(v5;v2)=(zi;v2); (c.4) ifziisnotadjacenttov3andv4,wecontract(v5;zi); (c.5) ifziisnotadjacenttov5andv4,we(v5;v1)=(zi;v1),(v5;v3)=(zi;v3)and(v5;v2)=(zi;v2); (c.6) ifziisnotadjacenttov2andv4,wecontract(v5;zi); (c.7) ifziisnotadjacenttov2andv5,wecontract(v3;zi); (c.8) ifziisnotadjacenttov1andv4,wecontract(v5;zi); (c.9) ifziisnotadjacenttov2andv3,wecontract(v5;zi); (c.10) ifziisnotadjacenttov1andv2,wecontract(v3;zi). (d) (d.1) Ifziisnotadjacenttov1,wecontract(v4;zi); (d.2) ifziisnotconnectedtov2,wecontract(v3;zi); (d.3) ifziisnotadjacenttov5,welet(v5;v1)=(zi;v1),(v5;v3)=(zi;v3),(v5;v4)=(zi;v4)and(v5;v2)=(zi;v2); 98

PAGE 99

ifziisnotadjacenttov3,wecontract(v5;zi); (d.5) ifziisnotadjacenttov4,wecontract(v5;zi). (e) Wewillassigndistancevaluestotheedgesthatremain:weassign(v1;v5)=(v4;v5)=(v3;v5)=(v2;v5)=1;weassignappropriatevaluesto(v1;v3),(v3;v4)and(v2;v4)suchthat\(v1;v5;v3)= Fortheremainingedgesbetweencertainzi(1ik)andverticesofG1,weassignallofthemtobe2suchthatthe4valuesabovefor(v1;v2)allarepreserved. Nowwegivethegraphcharacterizationtheoremforclassofgraphsinwhichthenumberofdisjointpathsbetweenthetwoendverticesofthenon-edgeisexactly2. 5-4 (h)). Proof. 5-4 (h)),byLemma 12 Fortheotherdirection,weprovebycases.Firstwetakethetwodisjointpathsbetweenv1andv2inG,whichwedenoteby(v1;t1;;ts;v2)and(v1;z1;;zs;v2).WetakethesubgraphofGwhichisinducedbytheverticesofpath(v1;t1;;ts;v2)andndtheshortestpathbetweenv1andv2inthissubgraph.Clearly,onepropertyofthisshortestpathisthatthereisnoedgebetweenanytwonon-adjacentverticesinthisshortestpath.Inthesameway,wegetashortestpathbetweenv1andv2inthesubgraph 99

PAGE 100

ProofforTheorem 14 inducedbytheverticesofpath(v1;z1;;zs;v2).Withoutlossofgeneralityweassume(v1;t1;;ts;v2)and(v1;z1;;zs;v2)aresuchshortestpaths. WeremovealltheverticesinthesetwoshortestpathsfromGandgetasetofconnectedcomponents.SinceGnfv1;v2gisconnected,atleastonecomponentsisadjacenttoatleastonevertextiandatleastonevertexzj.WetakesuchacomponentH.WeproveHisadjacenttoexactlyonevertexin(t1;;ts)andexactlyonevertexof(z1;;zs)butneitherv1norv2.Otherwise,therearetwocases: 5-4 (a)and(b)).Then,theunionofHandthetwoshortestpathscanbereducedtoFigure 5-4 (c)byedgecontractions.BythepropertyoftheshortestpathsandthewaywecangetH,thisunionisalsoavertexinducedsubgraph.ByLemma 13 ,Gdoesnotadmit2D2CCSonf.So,thecaseshowninFigure 5-4 (a)and(b)cannothappenwhenGdoesnotadmit2D2CCSonf. 5-4 (d))andeitherv1orv2(withoutlossofgeneralityweasumev2).NotethecaseHisadjacenttobothv1andv2cannothappen,otherwise,there 100

PAGE 101

5-4 (e)byedgecontractions.BythepropertyoftheshortestpathsandthewaywecangetH,thisunionisalsoavertexinducedsubgraph.AlsobyLemma 13 ,Gdoesnotadmit2D2CCSonf.So,thecaseshowninFigure 5-4 (d)cannothappenwhenGdoesnotadmit2D2CCSonf. Next,fortwosuchgraphsHiandHj,bothofthemhavetobeadjacenttothesametiandzj.Otherwise,theunionofHi,HjandthetwoshortestpathscanbereducedtoFigure 5-4 (c).AlsobyLemma 13 ,insuchacaseGdoesnothold2D2CCSonf. ThesubgraphinducedbytheunionofverticesofHandfti;zjghastobeapartial2-Tree.Otherwise,wecanreduceGtoFigure 5-4 (f)thatclearlydoesnothold2D2CCSonf. Finally,refertoFigure 5-4 (g),theunionofv1,v3andthesubgraphofGthatisadjacenttov1andv3isnotapartial2-Tree,wecancontractthegraphFigure 5-4 (g)thatclearlydoesadmit2D2CCSonf.Wehavethesameargumentforfv1;v4g,fv2;v3gandfv2;v4g. ThisprovestheonlypossiblecaseisFigure 5-4 (h)whenGadmits2D2CCSonfundertheconditiongiven. Theorem 14 givesthefollowingcorollarythatisveryusefultoarguethatagraphdoesnothold2D2CCSonnon-edges. Proof. 14 101

PAGE 102

GraphGdoesnotadmit2D2CCSonnon-edgef=(v1;v2). 14 tothecasesinwhichthenumberofdisjointpathsbetweenv1andv2is3ormore.Theorem 15 provesthatinmostcasessuchgraphsdonothold2D2CCSonspeciednon-edges. 5-5 (b)-(f)doesadmit2D2CCSonnon-edgef=(v1;v2). Proof. (1) ProofforcaseinFigure 5-5 (b).ThisdirectlyfollowsLemma 13 case(b). Forthecases(c)-(f),wedirectlyconstructexamples.WecandividethegraphintotwosubgraphsG1thatisinducedbyverticesfv1;v2;v4;v5;v6gandG2thatisinducedbyverticesfv1;v2;v3;v4;v7g.Clearly,foranydistanceassignmentforG(thenthedistanceassignmenttoG1andG2isdenedaccordinglythatwedenoteby1and2),thecongurationspace2f(G;)is2f(G1;1)^2f(G1;2).Foreachcasefrom(c)to(f),wechoosesuchthatboth2f(G1;1)and2f(G1;2)have2intervalsand2f(G1;1)^2f(G1;2)has3intervals. (2) ProofforcaseinFigure 5-5 (c). 102

PAGE 103

Considertheangleconstraintvaluefor\(v1;v4;v5),and\(v2;v4;v3);angleconstraintintervalfor\(v1;v4;v3)and\(v2;v4;v5).Wecarefullypicktheseangleconstraintssuchthat\(v1;v4;v2)hasthreeintervalsand(v1;v2)hasthreeintervalsaccordingly. Wechoosethefollowingangleconstraintvalues:\(v1;v4;v5)=11 18,\(v2;v4;v3)=14 18,2 18\(v2;v4;v5)4 18,1 18\(v1;v4;v3)5 18.Consideringthereectionof4(v2;v3;v4)about(v2;v4),thepossiblevaluesfor\(v1;v4;v2)are[7 18;9 18],13 18and15 18.Thesethreedierentangles(angleintervals)correspondtothreedierentvalues(intervals)for(v1;v2). (3) ProofforcaseinFigure 5-5 (d). Clearly,G1in(d)isequivalenttoG1in(c)andG2in(d)isequivalenttoG1in(c).Sowecanassignthesameangleandangleintervalconstraintsto(d)asthatfor(c).Thentheintersection2f(G1;1)^2f(G1;2)in(d)isthatsameas(c). (4) ProofforcaseinFigure 5-5 (e)follows(c)and(d). (5) ProofforcaseinFigure 5-5 (f). Wechoose(v1;v5)=8,(v2;v5)=10,(v1;v4)=4,(v2;v4)=8,(v1;v3)=8,(v2;v3)=12.WeuseMapletodrawthetwoquadrilateraldiagonalintervalmappingcurveinFigure 5-6 .Theverticalaxisdenotes(v3;v4)and(v4;v5).Wecanadjust(v5;v6)=11:725,(v4;v6)=0:225,(v3;v7)=10:9995and(v4;v7)=0:9995tocontroltheminimumpossibleandthemaximumpossiblevaluefor(v3;v4)and(v4;v5).The 103

PAGE 104

Proofforcase(f)inTheorem 15 fourlineshow(v3;v4)2[10;11:999](v4;v5)2[11:5;11:95].Thenumericalcomputationveriesthattheresultingvaluesfor(v1;v2)fallsin3intervals. OnecasethatisnotcoveredinTheorem 15 is:theunionofthegraphandthenon-edgehaveaK4subgraphthatcontainsbothofthetwoendverticesofthenon-edge.Note2D2CCSisdenedoverallthepossibledistanceassignmentanddistance0isalsoallowed.Weemphasizethatgraphsmaynothave2D2CCSonnon-edgesalthoughthenon-edgeisamissingedgeinaK4.Lemma 14 followingDenition 2 givesanequivalenceresultsforsuchcases.

PAGE 105

Overconstraintsresultincongurationspaceof2connectedcomponents. Proof. Theorem 15 ,Lemma 14 andTheorem 14 coversmostcasesbutnottheexampleshowninFigure 5-7 .Becausethesubgraphinducedbyvertexfv1;v4;v6;v7gisoverconstrained,therealizationforthissubgraphisalwaysuniqueifwefactorouttheEuclideantransformandrotation.Thisessentiallymakesthegraphhold2D2CSSonnon-edge(v1;v2).AgeneralizationofthisexamplewillmakethecharacterizationmoreprecisethantheclassofgraphsprescribedbyTheorem 14 ,Lemma 14 .Inthesameway,dierentiatingthe 105

PAGE 106

5-7 fromwhatisprescribedinTheorem 15 willalsoadvancethegraphcharacterizationfor2D2CCS. NowwecomebacktoObservation 9 foranotherhurdletothegraphcharacterizationto2D2CCS.Thedicultyis:ifweintersectiononetwo-intervalwithanothertwo-interval,thenumberoftheintervalsintheresultdependsontheexactvaluesofalltheinputintervals.Forexample,ifeachtwo-intervalonlycontainstwodistinctvalues,theintersectionwillbealsoatwo-interval.Wedenethisandgiveacharacterizationconjecture. GivengraphGandnon-edgef=(v1;v2),wesayGadmits2Dcongurationspaceoftwovalues(2D2CCSoftwovalues)ifforalldistanceassignment,thecongurationspacef(G;)eitherisconnectedorhaveexacttwovalues. 9 ,supposewegetgraphGbyidentifyingG1andG2onverticesv1andv2.Westudythecongurationspaceonf=(v1;v2).IfeitherG1orG2holds2D2CCSoftwovaluesonf,Gholds2D2CCSoftwovalues;otherwise,ifneitherG1norG2holds2D2CCSoftwovaluesonf,weconjectureGdoesnothold2D2CCSoftwovaluesandtheproofisdirectlyimpliedbythegraphcharacterizationfor2D2CCSoftwovalues. 5.2.1QuestionsandContributions 2 ,wehavegivenanexactcharacterizationoftheclassofgraphsGallofwhosecorrespondingEDCS(G;)admita2Dconnectedcongurationspace.WeareinterestedintheclassofgraphsallofwhosecorrespondingEDCS(G;)admita3Dconnectedcongurationspace.Astherststeptowardansweringthisquestion,werestrictourselvestothecharacterizationofgraphandnon-edgepair(G;f)wherefisan 106

PAGE 107

1 InChapter 3 ,wehaveprovedinTheorem 6 thatifG[fis3-Realizable(havenoK5orK2;2;2minor)thenGadmits3Dconnectedcongurationspace3f(G;).AlsoinChapter 3 ,wehaveprovedinLemma 6 thatGdoesnothold3Dconnectedcongurationspaceonnon-edgefwhenG[fisaK5orK2;2;2.Theseresultsmotivateourworkincharacterizing3Dconnectedcongurationspace.Particularly,wearecuriousabouttherelationshipbetweenK5/K2;2;2and3Dconnectedcongurationspace. 2 Wehavegivenacompletegraphcharacterizationfor2DconnectedcongurationspaceinChapter 2 Theorem 1 .InObservation 10 andObservation 11 weshowadirectextensionofTheorem 1 from2Dto3Ddoesnotstand.WegenerizeObservation 10 asLemma 18 andLemma 19 .InLemma 20 ,weprovethatamaximally3-Realizablegraphdoesnothold3Dconnectedcongurationspaceonanynon-edge.WesummerizethediscussionasConjecture 5 thatmaypotentiallyexplaintheextensionfailurefrom2Dto3DforTheorem 1 3 Weconjecturethestrategyusedfor2Dconnectedcongurationspace(intheproofofTheorem 1 ),edgecontractionspreservingthespeciednon-edge,canbeusedforcharacterizing3Dconnectedcongurationspace.Underthisassumption,wegiveasetofbasecaseswhicharenecessarytoargue-byusingthestrategy-thatagraphGdoesnotadmit3Dconnectedcongurationspaceonnon-edgef.Wegetthisnecessarysetbydecomposinggraphs.ThecompletenessofthissetisconjecturedinConjecture 6 .Theproofforthelistedbasecasesisbasedonconstruction. 5.2.2.1Lemmasstandforboth2Dand3D Proof. 107

PAGE 108

2-6 )bethesetofconnectedcomponentsafterv1andv2areremovedfromGandGibesubgraphofGwhichisinducedbyverticesofHitogetherwithv1andv2,thenGadmits3DconnectedcongurationspaceonfifandonlyifallGiadmit3Dconnectedcongurationspaceonf. Proof. Fortheotherdirection,weprovethecontrapositive:assume(withoutlossofgenerality)thatG1doesnotadmit3DconnectedcongurationspaceonfandproveGdoesnotadmit3Dconnectedcongurationspaceonf.SinceG1doesnotadmit3Dconnectedcongurationspaceonf,sowecanndadistanceassignment1toedgesofG1suchthatf(G1;1)hasmorethanoneinterval(notconnected).Wetaketheminimumandmaximumvalueoff(G1;1)anddenotethembyminandmax.NowweonlyneedtoassigndistancevaluestotheedgesthatarenotinG1whilepreservingthepossiblevaluesfor(f)isthesameasf(G1;1).Todothat,weassigndistancevalue0totheedgesofHi(i>1),orequivalentlycontractalledgesofHi(i>1).Intheresultinggraph,alltheverticesthatarenotinG1havedegreeexactly2andareadjacenttobothv1andv2.WeassigndistancemaxtoalltheedgesthatarenotinG1.Bythetriangleinequality,thedistancesofedgesnotinG1restrict(f)tobe[0;2max].Bytakingtheintersection,f(G)willbethesameasf(G1;1)sowendadistanceassignmentforGsuchthatf(G)isnotconnected. 2-7 ),thenGadmits3DconnectedcongurationspaceonfifandonlyifG1admits

PAGE 109

Proof. Fortheotherdirection,supposeG1admits3Dconnectedcongurationspaceon(v1;v3)(or(v1;v3)isanedgeofG)andG2admits3Dconnectedcongurationspaceon(v2;v3)(or(v2;v3)isanedgeofG).WeconsidertherealizationsofGwitharbitrarygivendistanceconstraints.Ifwexpv3in3D,thepossiblelocationsforbothpv1andpv2areconnected.Meanwhile,pv1andpv2areindependentofeachother,sothepossiblevaluesfor(v1;v2)isconnectedandwehaveprovedGadmits3Dconnectedcongurationspaceonf=(v1;v2). ByLemma 15 ,Lemma 17 andLemma 16 ,tofurtherlydiscusswhetherGadmits3Dconnectedcongurationspaceonf=(v1;v2),wecanassumethatGitselfistheminimumsumcomponentofGcontainingbothv1andv2,Gnfv1;v2gisconnectedandthereisnoarticulationvertexinGthatseparatesv1andv2. 1 ,wehaveprovedthatforagraphGandanon-edgef,thecongurationspace2f(G;)isconnectedifandonlyifalltheminimal2-SumcomponentsofG[fthatcontainsfarepartial2-trees.AlsoinTheorem 6 wehaveprovedthat3f(G;)isconnectedifG[fis3-Realizable.However,thefollowingtwoobservationsshowthatadirectextensionofTheorem 1 to3Ddoesnotstand.

PAGE 110

Proof. 2-9 .Thenon-edgefis(v1;v2).Obviously,GdoesnothaveK5orK2;2;2minorbutG[fhasaK5minor.SinceGnfv1;v2gisacliqueK4,therealizationforGnfv1;v2gisuniqueifwefactoroutthe3Dtranslateandrotation.Thenthepossiblelocationforbothpv1andpv2arecircles.So,thepossiblevaluesfor(v1;v2)isconnected. RefertoFigure 2-10 .Thenon-edgefisalso(v1;v2).Clearly,GdoesnothaveK5orK2;2;2minorbutG[fhasaK2;2;2minor.Firstconsiderthecongurationspaceonf2=(v4;v5)andf3=(v3;v6).NotebothG[f2andG[f3hasnoK5orK2;2;2minor,byTheorem 6 thecongurationspace3f2(G;)and3f3(G;)arebothconnected.Actually3f2;f3(G;)isalsoconnected. Note4(v3;v5;v7)and4(v5;v6;v7)restrict(f3)tobeoneintervalwhosebothendpointscorrespondtothecasesinwhichtetrahedron(v3;v5;v6;v7)isin2Dplane.Inthesameway,4(v3;v4;v7)and4(v4;v6;v7)restrict(f3)tobeoneintervalwhosebothendpointscorrespondtothecasesinwhichtetrahedron(v3;v4;v6;v7)isin2Dplane.So,thebothendpointsof3f3(G;)correspondtothecasesinwhicheithertetrahedron(v3;v4;v6;v7)ortetrahedron(v3;v5;v6;v7)isin2Dplane.Notetheonlypossibilitythat3f2;f3(G;)isnotcontinuousis:givenavaluefor(f3),(f4)hastwopossiblevaluesthatcorrespondtowhetherpv4andpv5areinthesamesideof4(v3;v6;v7).Now,giventwovaluesin3f2;f3(G;),wecanalwaysrstlycontinuouslychange(f2)and(f3)tilleithertetrahedron(v3;v4;v6;v7)ortetrahedron(v3;v5;v6;v7)isin2Dplane,andthencontinuously(f2)and(f3)toanothergivenvalue. Becausepv1canbecontinuouslyrotatedaroundedge(v3;v5)andpv6canbecontinuouslyrotatedaroundedge(v4;v7).So,(f1)isoneinterval. 110

PAGE 111

ForproofofObservation 11 Proof. 5-8 (a)and(b).TheproofisdirectlyimpliedbyObservation 10 andLemma 16 ForthetwoexamplesusedintheproofofObservation 10 ,wegeneralizetheexampleinFigure 2-10 asLemma 18 andFigure 2-9 asLemma 19 Proof. 111

PAGE 112

Proof. 18 .SupposeFisanon-edgesetsuchthatG[Fisa2-SumofK4's.Supposev1andv2arethetwoverticesoff.WeprovethatforalldistanceassignmenttotheedgeofGandanytwovalues1f(G;)and2f(G;)forf,wecanbychangingFsuchthatfischangedfrom1f(G;)to2f(G;).SinceG[Fis2-Sum'sofK4,G[Fispartial3-Treeand3-Realizable,byTheorem 6 ,F(G;)isconnected.SinceforeachK4,acontinuousmovinginthedistancespaceofthe6edgesresultsinthecontinuousmovingofthe6pointsin3DspaceifwefactorouttheEuclideantransformandrotation.Also,forthe2-Sumof2K4,wecancontinuouslyrotatethetwoK4'salongtheedgethatthe2-Sumoperationison.Thisprovesthatfcanbechangedfrom1f(G;)to2f(G;). WedeneagraphGismaximally3-Realizableifforanynon-edgefofG,G[fisnot3-Realizable. 5-9 )where3-sumisonlyallowedbetweenK4'sand2-sumisnotallowedbetweenK4's. Proof. 8 ),ithasbeenprovedthatagraphGis3-Realizableifandonlyifitisasubgraphof2-Sumor3-SumofK4,C5C2andV8(seeFigure 5-9 )where3-SumisonlyallowedbetweenK4's.So,ifGismaximally3-Realizable,Gmustbe2-Sumor3-SumofK4,C5C2andV8where3-sumisonlyallowedbetweenK4's.Toprovethisdirection,weonlyneedtoexcludethepossibilitythat2-Sumoccursbetween 112

PAGE 113

Threebasicsum-componentsofmaximally3-Realizablegraphs:(a)K4;(b)C5C2;(c)V8. Nowweproveitissucient.WetaketheminimumsumcomponentofG,sayG,thatcontainsboththetwoverticesofnon-edgef,sayv1andv2.Notev1andv2areattheendsoftheG.IfGcontainsanyC5C2asasum-component,wecancontracttheedgesthatarenotinthisC5C2suchthat(v1;v2)isannon-edgeofthisC5C2.ByLemma2in( 3 ),theunionofanynon-edgeandC5C2willhaveeitherK5orK2;2;2asminor.IfGcontainsanyV8asasum-component,wecancontracttheedgesthatarenotinthisV8suchthat(v1;v2)isannon-edgeofthisV8.ByLemma1in( 3 ),theunionofanynon-edgeandV8willhaveeitherK5orK2;2;2minor.WhenGdoesnotcontainanyC5C2orV8,ithastobethe3-SumofK4.Bycontractingedges,G[fcanbecomeaK5.Thus,addinganynon-edgewillresultinaK5orK2;2;2minorandthisprovesthesuciency. Proof. 20 ,G[fhaveK5orK2;2;2minor.BycheckingtheedgecontractionsintheproofofLemma 20 (suciencydirection)andthegraphreductionofbothLemma1andLemma2in( 3 ),we 113

PAGE 114

6 ,the3Dcongurationspace3f(G)isnotconnected. 5-10 ),ifwerestrictthedistancevalueofonediagonal(v3;v4)betwoarbitrarydistinctvalues,thenwecanndadistanceassignmenttotheedgesofthequadrilateralsuchthatthepossibledistancevalueoftheotherdiagonal(v1;v2)isalsotwodistinctvalues. Proof. 5-10 .Intheleftsolution,(v1;v2)willbe 4(max+min 4(max+min Itcanbesimpliedtobeq Inthesameway,(v1;v2)willbe 4(max+min 4(max+min Itcanbesimpliedtoq 114

PAGE 115

Giventwodierentvaluesfor(v3;v4),wecanndappropriatedistanceassignmenttothefouredgesofquadrilateral(v1;v2;v3;v4)suchthat(v1;v2)hastwodierentvalues. Figure5-11. Basecasesthatdonothold3Dconnectedcongurationspaces. 115

PAGE 116

ProofforLemma 23 case(c)(Figure 5-11 (c)). 5-11 ,graphGdoesnotadmit3Dconnectedcongurationspaceonnon-edgef=(v1;v2). Proof. 6 wehaveprovedthecases(a)and(b).ByusingLemma 22 ,(e)and(f)havebeenproved.Inthesameway,weonlyneedtoprovecases(c)and(d)since(g)and(h)areimpliedbyandcase(c)and(d)respectivelyalsoaccordingtoLemma 6 Werstprovethecase(c).RefertoFigure 5-11 (c),weassigndistances(v1;v7)=(v1;v4)=(v1;v5)=(v6;v4)=(v6;v5)=(v6;v7)=(v1;v5)=(v3;v5)=(v4;v5)=(v4;v7)=1,(v1;v3)=2,(v3;v7)=p 3,(v2;v3)=1+p 3.RefertoFigure 5-12 .Since(v1;v5)+(v3;v5)=(v1;v3)=2,sopv1,pv5andpv3arecollinear.Accordingtothevaluesof(v1;v7),(v1;v3)and(v3;v7),cos(\(v7;v1;v3))=1 2and\(v7;v1;v3)is 3.(v6;v3)isthedoubleof(v8;v5),so(v6;v3)=2p 3.Because(v2;v6)=1p 3and(v2;v3)=1+p 3,bytriangleinequality,pv2,p3andpv6arecollinear.Wedenotethembypv6andpv6

PAGE 117

Nowweprovecase(d)(seeFigure 5-11 (d)).Werstlyxtriangle4(v1;v6;v5),becauseofthereectionabout4(v1;v6;v5),vertexv3andv4maybeondierentsidesof4(v1;v6;v5)oronthesamesideof4(v1;v6;v5).Weusethiskindofreectiontoconstructourexampletoshowthat(v1;v2)canhavemorethanoneinterval.Weset(v6;v3)?4(v1;v6;v5),(v5;v4)?4(v1;v6;v5),(v6;v3)=(v5;v4)=xand(v6;v5)=y.Withthissetting,v6,v3,v5andv4arealwaysinaplane.Ifv3andv4areonthesamesideof(v6;v5),(v3;v4)willbey;ifv3andv4areonthedierentsidesof(v6;v5),(v3;v4)willbep 2(v6;v3)(v3;v2)=p 5-11 byedgecontractionswhilepreserving(v1;v2)asannon-edge.

PAGE 118

ZeoliteandHelixpackingquestionsarediscussedinthischapter.BothquestionswereintroducedtousbypeersincomputationalChemistryormolecularbiology.Intherstpart,weabstractzeolitesasZ-Graphswhichareunderconstrained.Wegiveacompletionandcongurationspaceonthecompletionaswell.Thecongurationspaceturnsouttobeextremelysimpleandquitesurprising.Inthesecondpart,geometricconstraintproblemsareformalizedforHelixpacking.Theextremecongurationweintroduceisimportantinbothsamplingsolutionspaceandwalkinginsolutionspace. InChapter 2 wehavecharacterizedgraphsthatadmit2Dconnectedcongurationspaces.Thecharacterizationsapplytoalldistanceassignmentsordistanceintervals.Thisplacesstrongrestrictionsonthecharacterizedclassesofgraphswithecientcongurationspaces.However,ifoneassumesspecialdistanceassignments,well-behavedcongurationspacesmayexistformuchlargerclassesofgraphs.Forexample,considerthe2D2-directiongrid(seeFigure 6-1 ),whichisnotapartial2-tree.However,undertherestrictionofunit-distanceedges,wecanshowthatsuchanEDCShasacongurationspacethatisaconvexpolytope,infactarectilinearbox.Wediscussthe2Dversionoftheproblem.Itwouldbedesirabletoobtainsimilarresultsfor3D. 118

PAGE 119

ZeolitegraphG6;7andone2Dcompletion. 6-1 showsZ-GraphG6;7. Aswehaveintroducedearlier,thecorrespondinggeometricconstraintsystemsforZ-Graphsrequiresthatalltheedgelengthsshouldbeequal.ThispropertyfollowstherealphysicalpropertiesofZeolites.Welimitthediscussionhereto2D.Sincedistanceassignment(E)isgiven,azeolitegraphGactuallyrepresentsageometricconstraintsystemandwedonotexplicitlydierentiatethem. Proof. AlsoinFigure 6-1 ,acompletionisgivenasthesetofnon-edges,whichwedenotebyF.Accordingly,wedenotethedistancesonthenon-edgesby(F).WedenethecongurationspaceonF-denotedbyF-as: F(G)=f(F)jthereisa2Drealizationfor(G[F;(E)[(F))g. 119

PAGE 120

FirstrowandrstcolumnsubgraphofG6;7;itisapartial2-tree. Theorem16. 6-1 ,thecongurationspaceonFis[0;2]jFj.(notewepickasetofcellsandpickexactlyonediagonalfromeachcelltoformthecompletion;thereisnodirectionrequirementforthediagonals). Proof. LetustaketherstrowandrstcolumntogetthesubgraphG1ofG.RefertoFigure 6-2 ,obviously,F(G1)is[0;2]jFj. Thenweprovethatgivena2DrealizationforG1wecanalwaysndarealizationforG.Letususepi;jtodenotethecoordinateofvi;jintherealization.Foranyvertexvi;jinGnG1(equivalenttoi>2Vj>2),weplacepi;jto:pij+2;2ifiisgreaterthanj;otherwisep2;ji+2.Anintuitivewaytolookatthisprocedureis:werecursivelyplacepi;j

PAGE 121

Alsonotethat,wecantakeanarbitraryrowandanarbitrarycolumntogetacompletionandthecongurationspaceonsuchacompletionisalways[0;2]jFj.Actually,theone-row-one-columnconditioncanbefurtherlyloosened(seeFigure 6-3 ).Thefollowingtheoremgaveusageneralwaytondsuchcompletion. Proof. 16 .Actually,theprocedureremovingavertex(sayv1)withdegree2canbeviewedasidentifyingv1toanothervertexv4wherev1andv4areinthesamecellandv1andv4arenotadjacent.Sincewecanreducethegraphto2-SumsofthesecellswhichwedenotebyG1,wecanidentifyalltheverticesthatarenotinG1toonevertexinG1bytheremovingprocedure.DistanceconstraintsareclearlysatisedasthatintheproofofTheorem 16 Itwouldbeinterestingtocharacterizethatwhatm+n3cellswouldbethetypeasdescribedinTheorem 17 .Thecompletionwithsuchapropertyisnotunique.Figure 6-3 givesanothercompletion.Thefollowinglemmasgivesanecessarycondition. Proof. 121

PAGE 122

AnothercompletionforG6;7. 6.2.1IntroductionandMotivation 6-4 6-5 ).Thespheresaresometimescalledatomsandrepresentaminoacidsequences.Thespheresofonehelixcanintersectoneanother,butthespheresofdierenthelicesmustnotintersect.Thiscollisionavoidanceiscalledpackingconstraint.

PAGE 123

Thealphahelixisatightlycoiled,rodlikestructurewhichhasanaverageof3.6aminoacidsperturn.ThehelixisstabilizedbyhydrogenbondingbetweenthebackbonecarbonylofoneaminoacidandthebackboneNHoftheaminoacidfourresiduesaway.Allmainchainaminoandcarboxylgroupsarehydrogenbonded,andtheRgroupsstickoutfromthestructureinaspiralarrangement.[Fromwiz2.pharm.wayne.edu/biochem/prot.html] Figure6-5. Twohelices 123

PAGE 124

Bi-incidence 124

PAGE 125

6-7 .Tagsrepresentthecontactsthatmakethecongurationwell-constrained.Thelistofcontactscanbeasupergraphofanytagbutitmustcontainatleastonetagasasubgraph.Thecontactbipartitegraphofaboundarycongurationhasatagandanunder-constrainedtag.OneshouldalsocheckwhethereveryoneofthesetypesisrealizableforSOMEsetofradiiofthespheres(whichtheverticesrepresent).Notethatthesphereswithinasinglehelixcouldinfactintersect. Allcongurationsontheinteriorofthesameboundaryfacethavethesametag.ThepackingcongurationspaceisnonemptyifandonlyifithasanextremecongurationinwhicheachBi-incidence(ai1;ai2),(bj1;bj2)inthespanningsetoccurswithai1,ai2beinginfa1;a2;a3;a4;a5gandbj1,bj2beinginfb1;b2;b3;b4;b5;b6ginoneoftheabovetags. 125

PAGE 126

Eachtagrepresentsabipartitegraphwith(left,right)partshaving(i;j)verticesrespectively,wherei+1j6;i3:Thereshouldbe6edgesinthebipartitegraphandEachvertexcanhaveatmost3edgesincidentuponit. 126

PAGE 127

Weinitializeasystematicandgradedprogramofcombinatoriallycharacterizinggraphswithcongurationspacesofdierentgeometryandalgebraiccomplexity.Ourresultsinclude: 127

PAGE 128

[1] A.Y.Alfakih,A.KhandaniandH.Wolkowicz.SolvingEuclideanDistanceMatrixCompletionProblemsviaSemideniteProgramming.Comput.Optim.Appl.,12:13{30,1999. [2] M.Badoiu,K.Dhamdhere,A.Gupta,Y.Rabinovich,H.Racke,R.RaviandA.Sidiropoulos.Approximationalgorithmsforlow-distortionembeddingsintolow-dimensionalspaces.SODA'05:ProceedingsofthesixteenthannualACM-SIAMsymposiumonDiscretealgorithms,page119{128,2005. [3] MariaBelk(Sloughter)andRobertConnelly.RealizabilityofGraphs.Discrete&ComputationalGeometry,37(2):125{137,2007 [4] MariaBelk.RealizabilityofGraphsinThreeDimensions.Discrete&ComputationalGeometry,37(2):139{162,2007 [5] PratikBiswas,Tzu-ChenLian,Ta-ChungWangandYinyuYe.Semideniteprogrammingbasedalgorithmsforsensornetworklocalization.ACMTrans.Sen.Netw.,2(2):188{220,2006. [6] L.M.Blumenthal.TheoryandApplicationsofDistanceGeometry.OxfordUniver-sity,1953. [7] A.Cayley.Atheoreminthegeometryofposition.CambridgemathematicalJournal.,II:267{271,1841. [8] RobertConnelly.Genericglobalrigidity.Discrete&ComputationalGeometry,33(4):549{563,2005 [9] G.M.CrippenandT.F.Havel.DistanceGeometryandMolecularConformation.Chemometricsseries,15,Taunton,Somerset,England:ResearchStudiesPress,1998. [10] I.FudosandC.M.Homann.Agraph-constructiveapproachtosolvingsystemsofgeometricconstraints.ACMTransactionsonGraphics,16(2):179{216,1997. [11] I.FudosandC.M.Homann.Correctnessproofofageometricconstraintsolver.Int.J.Comput.Geom.Appl.,6:405{420,1996. [12] H.Gao,andM.Sitharam.CombinatorialClassicationof2DUnderconstrainedSytems.ProceedingsoftheSeventhAsianSymposiumonComputerMathematics(ASCM2005),Sung-il.Pae.andHyungju.Park.,Eds.,2005,pp.118{127. [13] ChristophM.Homann,AndrewLomonosovandMeeraSitharam.Decompositionofgeometricconstraintssystems,partI:performancemeasures.JournalofSymbolicComputation,31(4),2001. 128

PAGE 129

ChristophM.Homann,AndrewLomonosovandMeeraSitharam,Decompositionofgeometricconstraintssystems,partII:newalgorithms.JournalofSymbolicComputation,31(4),2001. [15] StevenJ.Gortler,AlexanderD.HealyandDylanP.Thurston.CharacterizingGenericGlobalRigidity.arXiv:0710.0926v3[math.MG]. [16] J.E.Graver,B.Servatius,andH.Servatius.emphCombinatorialRigidity.GraduateStudiesinMath.,AMS,1993. [17] BruceHendrickson.Conditionsforuniquegraphrealizations.SIAMJ.Comput.,21(1):65-84,1992. [18] BillJacksonandTiborJordan,Connectedrigiditymatroidsanduniquerealizationsofgraphs.J.Comb.Theory,Ser.B,94(1):1-29,2005. [19] BillJackson,TiborJordanandZoltanSzabadka.GloballyLinkedPairsofVerticesinEquivalentRealizationsofGraphs.Discrete&ComputationalGeometry,35(3):493-512,2006. [20] DonaldJ.JacobsandBruceHendrickson.Analgorithmfortwodimensionalrigiditypercolation:Thepebblegame.J.ComputationalPhysics,137:346-365,1997. [21] RobertJoan-Arinyo,AntoniSoto-Riera,S.Vila-MartaandJosepVilaplana-Pasto.Transforminganunder-constrainedgeometricconstraintproblemintoawell-constrainedone.SymposiumonSolidModelingandApplications2003,pages33{44,2003. [22] G.Laman.Ongraphsandrigidityofplaneskeletalstructures.J.Engrg.Math.,vol.4,page331{340,1970. [23] AudreyLee,IleanaStreinuandLouisTheran.Findingandmaintainingrigidcomponents.17thCanadianConferenceonComputationalGeometry.,page219{222,2005. [24] HilderickA.vanderMeiden,WillemF.Bronsvoort,Aconstructiveapproachtocalculateparameterrangesforsystemsofgeometricconstraints.Computer-AidedDesign,38(4):275{283,2006 [25] K.Menger.NewfoundationforEuclideangeometry.AmericanJournalofMathe-matics.,53:721{745,1931. [26] JohnC.OwenandSteveC.Power.AlgebraicSolutionforGeometryfromDimensionalConstraints.ACMSymp.Found.ofSolidModeling,Austin,TX,397{407,1991. [27] JohnC.OwenandSteveC.Power.Thenonsolvabilitybyradicalsofgeneric3-connectedplanargraphs.TransactionsofAMS,359(5):2269{2303,2006. 129

PAGE 130

J.B.Saxe.Embeddabilityofweightedgraphsink-spaceisstronglyNP-hard.Proc.17thAllertonConf.inCommunications,Control,andComputing,480-489,1979. [29] I.J.Schoenberg.MetricSpacesandPositiveDeniteFunctions.TransactionsoftheAmericanMathematicalSociety,44(3):522-536,1938. [30] M.Sitharam.Graphbasedgeometricconstraintsolving:problems,progressanddirections.AMS-DIMACSvolumeonComputerAidedDesign,D.Dutta,R.Janardhan,andM.Smid,Eds.,2005. [31] Anthonyman-ChoSoandYinyuYe.Asemideniteprogrammingapproachtotensegritytheoryandrealizabilityofgraphs.SODA,766{775,2006. [32] G.F.ZhangandX.S.Gao.Well-constrainedCompletionandDecompositionforUnder-constrainedGeometricConstraintProblems.InternationalJournalofComputationalGeometryandApplications,pages461{478,2006. 130

PAGE 131

HepingGaowasborninTongzhong,Hanchuan,Hubei,China.HegrewupmostlyinTongzhong,Hanchuan.HereceivedhisB.S.degreeintelecommunicationengineeringin1998fromChongqingUniversityofPostsandTelecommunications(CQUPT)ofChinaandhisM.S.degreeinelectricalengineeringin2003fromShanghaiJiaoTongUniversity(SJTU)ofChina.HewasawardedthePh.D.incomputerandinformationscienceandengineeringfromtheUniversityofFloridain2008. 131