UFDC Home  myUFDC Home  Help 



Full Text  
xml version 1.0 encoding UTF8 REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchemainstance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd INGEST IEID E20101110_AAAAIS INGEST_TIME 20101110T22:07:29Z PACKAGE UFE0021671_00001 AGREEMENT_INFO ACCOUNT UF PROJECT UFDC FILES FILE SIZE 11744 DFID F20101110_AABSOO ORIGIN DEPOSITOR PATH little_j_Page_112.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5 4fb52f6e5c9fee82324dda54dc02df69 SHA1 def4ea76117d9a4ca2d049eac9c049d57d577909 1051981 F20101110_AABSPC little_j_Page_005.jp2 8e3f3a6737e56111fed001a79c9f2da6 22f18264807db67eb10e928b7d1bc7aa82a4f860 87738 F20101110_AABSOP little_j_Page_113.jpg 3bf5c735556ae650fd127e618bb717ab b3abe64be99a4fd209bb8624cac890a51d2ff3d4 369320 F20101110_AABSPD little_j_Page_007.jp2 29d3ce1d4cc98869aa4b121308b9f516 a481f11bac8eec9d7ac421d243a40ea9d3a316f0 84504 F20101110_AABSOQ little_j_Page_114.jpg 0f6353106d42a44291a1aae077be2227 48d96080be3f57da61776cdeaf2c4353e9c21b56 105008 F20101110_AABSPE little_j_Page_008.jp2 72d5e9ffb185b1069b42e966cab511d4 179da5c56431f847f5833cbe6db9c3457c75bf1a 53517 F20101110_AABSOR little_j_Page_115.jpg 927fc98991e76fe204ca41c149a73a63 e31116acb7313f411a6ee8a4d861f9fe49847283 31345 F20101110_AABSPF little_j_Page_009.jp2 2d04be931f6be846bafa3838a6383939 3f514e421ec2c4ec802ec0469bc7fd12d55ca51f 11982 F20101110_AABSOS little_j_Page_117.jpg 977c85bb184128f3ad01a70c60ce2f55 4991737276da8cc4aed1507109c75307308398fb 1051942 F20101110_AABSPG little_j_Page_010.jp2 10709d8e0e17656b2853140fd0b6cb39 b11124705a55629f67e5c33a007919864537d203 84718 F20101110_AABSOT little_j_Page_118.jpg 5bd8b7afdd59b4d04c8abd8def9dc9d3 cdee28f7406e7b13831b973303772aaabcb804b9 1051965 F20101110_AABSPH little_j_Page_011.jp2 5d5a9a2bf507188cfd187702e58d51e5 7473e06fede1017f024a0f351d2750794c5fe82c 89783 F20101110_AABSOU little_j_Page_119.jpg c3378ed4208ae194f8ade66a5af28b13 daebaebdf780e7a4b4240a32e2894fc2f0ef7a15 297343 F20101110_AABSPI little_j_Page_013.jp2 e27d49b1c9bcaffc6a355df9fc5fd730 5d30d560aadabd42a38401e2306378709a637f96 94211 F20101110_AABSOV little_j_Page_120.jpg e22b2f12bb7be6e9846dfdd6ac58ce70 27d916eaa042361b911a260381b8fc47418d737a 778068 F20101110_AABSPJ little_j_Page_014.jp2 dba301cbab87309270750958f9116647 067ab805f82680b8e2e6578d444226af1da97315 42434 F20101110_AABSOW little_j_Page_121.jpg 99e2a833e21ce62758c2ebf4c1ebee9c 5a495f159824d175fb7315ad6e7da1c3e41a9640 851657 F20101110_AABSPK little_j_Page_015.jp2 2e853f028c72803e737e780491382518 b64af39a26914f7537fbc7f3fb4bfa215f1cfa05 83898 F20101110_AABSOX little_j_Page_122.jpg 2e4f9430c0491e9f81fbd6472ad4ec3e 44764ed10eb04f90e5dc60903407ef3430f9579e 918432 F20101110_AABSQA little_j_Page_036.jp2 43129fc944ba1afa1d4337b76b299229 f49a77dc8c670cbaf62117e689390d42335e12cc 877038 F20101110_AABSPL little_j_Page_016.jp2 d5dfed2ff5ad2cbba0fd2ff780768e23 df554645da8723b407e4670c9820cda107f6309e 23348 F20101110_AABSOY little_j_Page_001.jp2 7167daf87cf1f09a372bd32f40d471dc eb466d2c7d41fec2494e34ec0fcc2fea7275dff2 952152 F20101110_AABSQB little_j_Page_037.jp2 7b8b44a8ac0649a4aebcc9d132813d4e 4d0c7966fcd6e035aeeed6356738b8c825fcf701 782425 F20101110_AABSPM little_j_Page_017.jp2 b5eb8757f5454fe129eff2ddf134cdea 8f796df6009d4621225c057c95250ff63a10638c 5471 F20101110_AABSOZ little_j_Page_002.jp2 ad434cfcb6b0e2aae6c6820cccde050c 30f393d6345eeae289a58aa811170b3542f4d115 1000423 F20101110_AABSPN little_j_Page_018.jp2 2f682d5d485e10bd342110e9793e3e5a 09cca57c7e8aed09eba539e126ceae646793eacc 1051944 F20101110_AABSQC little_j_Page_038.jp2 ff293f4c7d991f435065f71a94919d84 14c5cdd1a84df69f632a13bebd9a574db47e3610 F20101110_AABSPO little_j_Page_020.jp2 1875e1462362b4d9bcb410857c7e1536 2a87738b0a5e8c52664c626afbc57f8a4c255d58 965676 F20101110_AABSQD little_j_Page_039.jp2 1715ee0ee41a93d073fd505ed2b47412 2119e518cef6f13595eaf94b81febee52dac05fe 1051964 F20101110_AABSPP little_j_Page_021.jp2 f021834c1f170523076d54c4e3404aa0 1ae3ce64389bf4bbc7341fd48de631a319d3b941 1004356 F20101110_AABSQE little_j_Page_040.jp2 7ab5d982e356ffef40f5fd07f125c83c 2edddec23a297c7311634f7c3584a965f55377dc 1033539 F20101110_AABSPQ little_j_Page_022.jp2 014af4eb887cdbb83866829801a1fc0d 44527edb7aa63de137d72691a8d4955e243604a7 1051972 F20101110_AABSQF little_j_Page_041.jp2 383db3ee161b7b0fbf262dfdb71dc75f 0c28641ed7945e6f325bedc7a2682b73b957b659 978785 F20101110_AABSPR little_j_Page_023.jp2 7ae71a8074c15bbb35079660e8ba2dab 858d74064704cc015631bb9e49bdaaca878f397a 26942 F20101110_AABSQG little_j_Page_042.jp2 c9e1c8239534dcd3921fa6e87a381621 5fb99ee4aa20932703b79a723b237cc439096878 900347 F20101110_AABSPS little_j_Page_024.jp2 e1bd591d71289ea041158f431cb1f1ca c142014f3a87dd566ccf004d64d4995f6965f153 1026583 F20101110_AABSQH little_j_Page_043.jp2 3829955148ec263b128eb19e2241ab84 9838b638158f2cfbc2fd4e147ca26ccfe46e9113 1051936 F20101110_AABSPT little_j_Page_025.jp2 2c6ee84b4aaa6cf9143d3f199eb28ee1 f33f0c42e5d8fffaed68d2716e9507b50f2678a6 782120 F20101110_AABSQI little_j_Page_044.jp2 fd3e43f55fa36355e1bcf17a384b7036 5d2703c8fa909e823cb0fce97de6b532bd78634a 83237 F20101110_AABSPU little_j_Page_026.jp2 a783b3ce7c648cfb84030d338dc4d5f0 d0b711cca25091d505df901c1ab28387b4b4c36d 981433 F20101110_AABSQJ little_j_Page_045.jp2 e1aa4efcb3c0b6b6c68604b74c190e1a f30c947c9fe4974c2ff40d7096b0a3be2397cf08 1041693 F20101110_AABSPV little_j_Page_029.jp2 3d118911f90d63e7adac8be24a895d22 de7c0742caef9270dc78d3afc1df005f374d59af 972346 F20101110_AABSQK little_j_Page_047.jp2 37ecfe93007121c7b08ef5cb9d950e46 57bda6c69c5951cbeb842f6b45c4feb7b7b6f5d6 1003595 F20101110_AABSPW little_j_Page_032.jp2 80aac75b29fe14df35209b622e96ef48 1d3760047d8dde8139f67f43094132ee5c2bf7c5 870123 F20101110_AABSRA little_j_Page_067.jp2 e78d8021400789e544f6023fa33baea1 43e2c0e735aa06f293a53ed9786de3c94a2aeb99 883220 F20101110_AABSQL little_j_Page_048.jp2 a283cb5f0b306097e8aa7011ad67387b e97dd457da76628294c81da40c376386fc71e1ae 859984 F20101110_AABSPX little_j_Page_033.jp2 9c613a36fc6ef3b0a33962e971cb870f b02f0656acfc0bbe8a4d3e820dc1889f15ed898b 899780 F20101110_AABSRB little_j_Page_069.jp2 8c0ba928f4bc1b32173e3599d3cb203e 81a5fdb0f6454b078d0f430d1063a56ccdb378d6 893413 F20101110_AABSQM little_j_Page_049.jp2 21fffe4c7f4fc5b42d968827c2a7f1b0 26a76aa08e77c3aa99fc02f5ac44a27a78b090bd 1051941 F20101110_AABSPY little_j_Page_034.jp2 42db1458b44702bf8763d0caf6a9c58d 2811d3aa7820d0e9d948207b117b2d19d504c74b 895280 F20101110_AABSRC little_j_Page_070.jp2 026ad98c1ffb78b03a7cc090ea81d6ed c810275c931eba38fb880441ce87f640cd74d2f6 792321 F20101110_AABSQN little_j_Page_050.jp2 e93e65741452552f745f4a20ba83054e 2324e3f323d79804e059d71e6bc0018da448761b 1015666 F20101110_AABSPZ little_j_Page_035.jp2 7a2fe8f1434c3c0f64dd9a1a0c743a82 82fb806e274d3d2090493953dd95d39d08e79c3a 737662 F20101110_AABSQO little_j_Page_053.jp2 40bddc4d37b17f0904639f39872e5780 f01812e59ff4db045ae047d61fef09f8b90018b8 725899 F20101110_AABSRD little_j_Page_071.jp2 954424a961cf662be3042a4515fe3501 7b584f3c7f8b7db856b51626130db800b552fc66 686566 F20101110_AABSQP little_j_Page_054.jp2 b2bf35b149b8935a0f643466b7b7b1b1 f964262a494fa74d08264dd156565d4130d964ec 983345 F20101110_AABSRE little_j_Page_072.jp2 7134701ec9803fceac4deed9f007e228 709dd8a51d7d3488b18963b46405d1b02f1f90f5 754778 F20101110_AABSQQ little_j_Page_055.jp2 a8f1e916f15633a354edc5cb5f72328e 93c1a1a39b8e89a0a44bed215b489b9ad7555826 848152 F20101110_AABSRF little_j_Page_073.jp2 24574c737cb40656c1e99256b225fdfc 6c04da0499cb817aaf561462796d3dbeeabbcaa3 692193 F20101110_AABSQR little_j_Page_056.jp2 cfd8f31c68656a9bd3fbbf1eec2e548e 6312667225cb8291f8b0b8b728b71a2ee2584ad2 942326 F20101110_AABSRG little_j_Page_074.jp2 c0cc062f4963f14052fcec78ac707dd7 98b4484a8b2d9f6486a3711f37b0a947dbefc12b 85184 F20101110_AABSQS little_j_Page_057.jp2 040ee5ec60ed6baa7f41d981e01efdaf 7be502195e281cdd0439415b44a4a795f5412155 845990 F20101110_AABSRH little_j_Page_075.jp2 fdad5543648033fca438f3eb6882e4ad 9d82001e1b45e6c17dbe8200dc6ec41d2aee28f7 51132 F20101110_AABSQT little_j_Page_058.jp2 b8b8d7a40a6d92a9ad2cd6a71c8502c6 1fc48e4b93353c5c1f5bc7f37ef0da96e59bfd21 1051967 F20101110_AABSRI little_j_Page_076.jp2 cab5910899e58fc4301a7c6f6f2b0db7 581f82f3a7192ce4037537ec957fe10180c80b7a 947952 F20101110_AABSQU little_j_Page_059.jp2 f957e1f9742b2736b4554c34215094fa 8e2b47f415d23a5bb4592f5314beefd18baa7e26 1051975 F20101110_AABSRJ little_j_Page_077.jp2 23d6120e5a357691502aef47c6c5e2ce caadf7cf02573de507c43e10c7c99f6c2d8f6834 821219 F20101110_AABSQV little_j_Page_061.jp2 e1e521c1ba60f376447c79b9db4f5ce2 addfc40351132792d64e41df1a67f716a21a494c 72320 F20101110_AABSQW little_j_Page_062.jp2 762da7dccc86ff84dd6e93786a73fd9d 1e10b413ddd0866be8a2f87ad8b01a291aab9dce 92243 F20101110_AABSRK little_j_Page_078.jp2 035e9b696796a221d5eddd58e3b86ff3 ac89c1b4cca33972879944c9346fa1da549eb573 904173 F20101110_AABSQX little_j_Page_063.jp2 3236c0010a2cb9000ab4af406cbc9fa5 f85c5ec2c31d522d9adafc6a813554648b47af88 1051955 F20101110_AABSSA little_j_Page_098.jp2 a4bfa4f71dfebaa441c4c4d0ae0b1dd5 aaa17d3d0321ccc3c4c3c3d689e26415706aab2e 1050311 F20101110_AABSRL little_j_Page_079.jp2 ccd45ac7df217314228a55918fb5b6c2 007a14fccaef1c5bcade37496c6b5746221b4210 65702 F20101110_AABSQY little_j_Page_064.jp2 6b3db5c16e4679450168545aac488437 877fada8e875703284b332fbec5c0e7b1b9e9625 1017677 F20101110_AABSSB little_j_Page_099.jp2 54eb582116cd028e69330ca74c36d522 9f2db9103f5ef72618ac5b845f1751f549b3993c 836995 F20101110_AABSRM little_j_Page_080.jp2 c345553af7e7ea2cbb77f5a4687a3e30 05d783f2439438ae0e8b148264fa128f18c6fb5d 81202 F20101110_AABSQZ little_j_Page_065.jp2 02aa2056f18d7fcb225d6b947b298364 d7d32c3bbccf3a0d40d8097a98a7201af167dcd7 866981 F20101110_AABSSC little_j_Page_103.jp2 c1a7216db3b1e897393976ce63e105fc e119b749ac7c6f0fe2eeddba58c618d4a5aaadaa 1051979 F20101110_AABSRN little_j_Page_081.jp2 0cfaeb740ac5cd6734f878ad9688346d 2c7ade06e2fa42a226e91d7a8ad8c5b81f48f3d9 966397 F20101110_AABSSD little_j_Page_106.jp2 0cf178d7f8992611be896e6227704890 ed18358b5d036e950c1fa0682de28bec8027f431 982698 F20101110_AABSRO little_j_Page_084.jp2 57027ba815281dd629bbe045d753a51f 5883db34de5cff7f511efd50c14ab6c6af886f2b 1051977 F20101110_AABSRP little_j_Page_085.jp2 caa6757e2e737cac3f47d35aad78f7b1 d4708b6b9621d6bad4bb03c24d600f9cc3a9eb62 841480 F20101110_AABSSE little_j_Page_107.jp2 a3c070d1a14ade9f9c93cc06426b8b9f 37ad00ed26f332e41627ede2ca0dde843f95152f 878247 F20101110_AABSRQ little_j_Page_086.jp2 a965884bc4398e6e6a94f7d87babe92c 2a2fc15177c636d443d4918fa641ba26f2d69fd6 1020258 F20101110_AABSSF little_j_Page_111.jp2 ce79f8070dfe9e6087993a004f52e255 b416b70ccda544698ec6b6ea6071b9610750aac0 824406 F20101110_AABSRR little_j_Page_087.jp2 c8a715c31e95f5b08e67280338d6682d 5b77d0c09ca71f73d4e9948019f95a2e5c5dee63 17881 F20101110_AABSSG little_j_Page_112.jp2 81490657e795b3d5ac86083283f3fe76 61e4a42d68d835c3d5a4b82c2bb5ed0c28a950cc 797322 F20101110_AABSRS little_j_Page_089.jp2 e0a0a529008ecc5e143c564ba8f4ba18 0aafbb6445729f91e64838e6836fa9290d9232b7 1051962 F20101110_AABSSH little_j_Page_114.jp2 fd1e50d8b984649cc13152484a73b863 a5cff1d7ce1472dd1cca5d728f9672bde48edb9c 1051956 F20101110_AABSRT little_j_Page_090.jp2 32164539eed62b26024b817391e2ba17 77f6c70ea732226155f53d33f377b39c13373db2 71368 F20101110_AABSSI little_j_Page_115.jp2 c58a058f9114c90ffb80035569105173 0f1ff35a463800d05c2a565c89724cf2d7ee862c 44685 F20101110_AABSRU little_j_Page_091.jp2 a8b40699248ba926f983ae09f2ee87ba 4b2e9c3d0216464db51dd698f18d1ee9a7902e73 558705 F20101110_AABSSJ little_j_Page_116.jp2 62c2dc4bd5bce4fcc41307fcdf7932c2 fe03a07f3ae87ab4e62812505f93864493ac9198 1051980 F20101110_AABSRV little_j_Page_092.jp2 40e6252de549cea8d6de68044b407d49 2864f78dc5981278325f994fa84412957370bc82 16883 F20101110_AABSSK little_j_Page_117.jp2 533968665b90bc6e0f9dc9218219483c eadd4556198e7aec90827fe7f1aa6fc9f71c4e43 868291 F20101110_AABSRW little_j_Page_094.jp2 e8854eb024883ce872ef6f60dcad6778 e0fbab6569b81c59b27a8331974b0b5f0c7b6f40 25271604 F20101110_AABSTA little_j_Page_015.tif 52e1de85fa2957aa68cedbca96a6a937 bb5aa3da1ec7a08b4610d5937c969e5656a77d7b F20101110_AABSSL little_j_Page_120.jp2 1203d6ed45a52f7dd3dd636bcd7806d4 5b0c9fb2781599590cdc8f85eecda8d448c404ea 775286 F20101110_AABSRX little_j_Page_095.jp2 5e7174c30df09b6a5838f939089d91c0 147b442712c41451d0ecc23372cd13997f6bee41 F20101110_AABSTB little_j_Page_016.tif da2f4970049e79d7e10b3a5cb15da949 63c2e588ee91f2259556ae8ad06172db9c610827 601303 F20101110_AABSSM little_j_Page_121.jp2 87c0e112664f2580c4fa900d74ca3c9e 1d308980dd6cfb08708e6c0f8b45cb375f3c9f65 1022100 F20101110_AABSRY little_j_Page_096.jp2 15bbca31a2a7fb0cfe4c996164fb1be8 c0d8b76313bb5bec5f4fc11aeb628fc99576feb8 F20101110_AABSTC little_j_Page_018.tif c79a066cb744d4e3ce3342ed185a38f6 63ec01d69670ac4031d758680456441fdaeb78a0 110035 F20101110_AABSSN little_j_Page_122.jp2 efe0a7985115dbfe9eb0dcf8e6fbad8f f5e8544e24fb328179cccf114e43e4c00779dd29 791027 F20101110_AABSRZ little_j_Page_097.jp2 220308a4770a892b0d2c8f633a648c94 e82952c81532b8985bed40e70d7583a2db980c87 F20101110_AABSTD little_j_Page_019.tif 421dcc1dad4ddad413763f1af2a2f1c1 47b5481a6cb66f4de2a79a9a9b48bf30e0815f4c 1053954 F20101110_AABSSO little_j_Page_001.tif 9cbdeef5c0d8dc568a9578fca2e96f51 30f3e03dfad7944fa160cc5f6dcc5cee13c95971 F20101110_AABSTE little_j_Page_021.tif ce16893c4edd4033aa9bc836e6ac86e2 4a718b63e0561818c420de451bc4e895a4e6df2d F20101110_AABSSP little_j_Page_003.tif 6d41ec28d70b81bd5fe3fc8bef933937 703694b4272e03b99658441d9f1d1ae18c758b8d F20101110_AABSSQ little_j_Page_004.tif 2a2b64a17bada40232ed3bae13624c30 9cd480722e3db6d037b8788b9773e5d83abf6081 F20101110_AABSTF little_j_Page_022.tif 5e976351d7660b617501c93a4f038cfb a2f33bb2932f855c391cfb044f0ab119cd8ab57c F20101110_AABSSR little_j_Page_005.tif 121185915547c76e4313246d15bbd013 081a9faca374e25b59bf8af668923471b6c06335 F20101110_AABSTG little_j_Page_024.tif 7c8a3f8508263695cf3acdd7dcb97205 5722424ddddcda513dfef0c58f30c1529828f479 F20101110_AABSSS little_j_Page_006.tif 999b752fe28e9324ce491db7c06cc050 1d916e658fb0217bbd775c9ef4aae9dff210e61b F20101110_AABSTH little_j_Page_025.tif 9c52e2e13f6a72ac4e23fca7f1ac2dfe e8cc7897474708aa9423d1ff0ba97a3800eb2675 F20101110_AABSST little_j_Page_007.tif 3cddb0655ac1f03f6172b1f78f47ee10 6f40e8bc572dcac43f8505da30f149851dd26d46 F20101110_AABSTI little_j_Page_026.tif a708a10271609fcb42e3f2e428f76d61 dfad9b1ef9c0c53d3a0938e23a732f7153b1626d F20101110_AABSSU little_j_Page_009.tif 0f593f957c1af658cb31d1ed8232cbf9 7fdcae0f16a4b97c7d0af22da2ba66e5d4f4fd0a F20101110_AABSTJ little_j_Page_027.tif 134f6e4f70a77f50d49504d1ecc47033 33cf117791ef4ecb38bc0b4f9f353fc2cc47961a F20101110_AABSSV little_j_Page_010.tif 6e27129c55245cb7b1d0ac1bee67bef4 61a290e29cb4cd97524c6e30e86ecd29391e4b16 F20101110_AABSTK little_j_Page_028.tif 210b5fb5394bb7ed11b46156958f2ed8 c8aa359b6257caba0e92ecbe71d503f74520c700 F20101110_AABSSW little_j_Page_011.tif 2fc30fd8b726210fc6249e4d18027a90 2f7a6f557c615862fe37c051c948e305ac4e1089 F20101110_AABSTL little_j_Page_029.tif 4cf0732f075db686055f803d31911f59 a96da58b7b7aa5f97adc9cc675c70db4e37f0125 F20101110_AABSSX little_j_Page_012.tif 94ccfcd5e988c03be1db04399e94b778 ca5458d20e5de982fde2cc590f542130e95d86ae F20101110_AABSUA little_j_Page_051.tif 6c9343fa48e010b154dc5b15ce02992e 40969a791422e992cb065260cef19610c016d3a1 F20101110_AABSTM little_j_Page_031.tif b4d479232a6db2b817aa2faf04cedbd2 a8112e14177d8dfe693fde13957f08c9f26ceefb F20101110_AABSSY little_j_Page_013.tif 42889b60e3bf704d637890a4f189cf06 335a07289338210765c9774ac4dc5723d8758e49 F20101110_AABSUB little_j_Page_052.tif 26c87f7bd1039f9ee5c8d9bcfc64ddd1 3e0db3cd4278247bf97b83e73b6741f05e5fd6ef F20101110_AABSTN little_j_Page_032.tif d0b6e569f279874e6cbfae66b34dd7c4 4e88cfe335afc24066ff43d3e82eb6e31bcd8a91 F20101110_AABSSZ little_j_Page_014.tif a40687148b0087588ba7776392894bc0 3cbaa879932922f22e5efbb496c7d4a8a76a412a F20101110_AABSUC little_j_Page_054.tif f702bf2a0bcd9eee5d01897759e5a1a5 c34220c928d66eae2ccbd521156d53c246e568c8 F20101110_AABSTO little_j_Page_033.tif 6c77897625c6718fc1cbe1ba77a52e09 d85c543f9089cf66de4d74faf9616e36abea51d9 F20101110_AABSUD little_j_Page_055.tif 917e6946b70e112497425b2cfd7ad1c9 85095dfb084240300cd82a5fc5eccb3df2fcd142 F20101110_AABSTP little_j_Page_035.tif 362868924dba5206a07a3d8b9b2d894a d2a81a0f10553376e2c84bfb8e32103a0a3b1407 F20101110_AABSUE little_j_Page_056.tif 4e63d0af020ea406ef6cd613083a372f 436db44621507ba6310646db4e7f6b0ae37bd9b2 F20101110_AABSTQ little_j_Page_036.tif 524595af6d4154eb877fb84224a13912 939b9c81a8d76bcebcc6c3aeac2f117b1019166f F20101110_AABSUF little_j_Page_057.tif 05b6426a69d4d9d5c9e2b9322b77e71d d662a8431311a7849e3950e151cca259eab6bae7 F20101110_AABSTR little_j_Page_038.tif 0a4682caac1b2793fa2a04554b339bcc acc60c499ddc34e4529c1477cd92444cfde6951e 2318 F20101110_AABTAA little_j_Page_005.txt 6ba5399541888cf06664f80e5c0e14ab 96e2b91d41711f33f2a37f50ee3a4ae21cb652ca F20101110_AABSTS little_j_Page_039.tif a834461628225456d4c56c7b72da6d38 f371836847e75e1525ee0cf94b01e49486e3d6d7 2309 F20101110_AABTAB little_j_Page_006.txt 6c1c80e7f46b592e41189d2c5938a649 6d5b16a3de26e5f8790574cb2fa7727bc74d8ba3 F20101110_AABSUG little_j_Page_058.tif 2153c097b605de6caba50e6477d115de 2553e2b3a90681c3cb6d93df43392ff47e0b0d7c F20101110_AABSTT little_j_Page_040.tif e0756d5e099ed05f343eed94a87a7a69 e1e946d7776e260cbfee8aa61bdf2d4b69080737 527 F20101110_AABTAC little_j_Page_007.txt 9240763c942b358be9a21af1e9dd7cf9 ea58b9e9346761bac86b374e5f45bb2d59ca3bce F20101110_AABSUH little_j_Page_059.tif 77347d42df228f18a698314d6beec8f6 46ae1c2b08b4d962d8af6899013cb903273a3dcb F20101110_AABSTU little_j_Page_042.tif f19eb6c3cb9bc3853ec8bf6c79ff341d f911d06a04cc477d52321cda96a50d960f9711c7 532 F20101110_AABTAD little_j_Page_009.txt 3bcef84c9c356f6f1b7d41f44aef55f7 c5d80f734ba420e67e39ac5c72161445c7948a71 F20101110_AABSUI little_j_Page_062.tif 3e33f63c85aa85b68ace3ad5d6709a0d 656a310950eb5facd9c7b1f828b89ed04615dcf2 F20101110_AABSTV little_j_Page_044.tif 5740bfaaf299f0b3527ceb3ffac99886 bf0087920428bbf4b636d7b637d60dd8c30565b8 F20101110_AABTAE little_j_Page_010.txt d26e9a3a7573c993138bf0cdac1026e1 fd898705656c119942bca134b51514aad0d6d953 F20101110_AABSUJ little_j_Page_064.tif 0215d0c0ad67b237e6b418523a6a6523 cf64c2ce2559fd83d5510c95f1f1c36ea5aae751 F20101110_AABSTW little_j_Page_045.tif ad3082c73d10389043051d49f35a2308 1d9f365d412c4ac5d281c9d8231c2dbb9ca7b450 1966 F20101110_AABTAF little_j_Page_011.txt 63fbf9037660605c8c57ca6c5ae7fe65 2a5e7b2999237322145d6e2a5a46949e3c3fce84 F20101110_AABSUK little_j_Page_065.tif ef85cc818580d8983f02567fbaec1316 777991bb7d73ed827720a14f8c3af33d676a3cb9 F20101110_AABSTX little_j_Page_046.tif 2a3d0a8bb19eda1d68ed815e46807825 a0f70bcd5885664e20bbfe5c6882a10e2b43067e 2292 F20101110_AABTAG little_j_Page_012.txt 2bc68766b16f29371eda886f026d1ae6 a655fd6e12135def49e5f5e47dd561b349343058 F20101110_AABSVA little_j_Page_085.tif 3ef1c0675e3341dd5b511fd641f02330 d7c8c6da795dd88349c6d303c62165ef4d023234 F20101110_AABSUL little_j_Page_066.tif b70ef2afc2e3af64cac2c9f17dcf65dc 2ec73d6579cf85144ac7abfb7d36bbc29cca4e5a F20101110_AABSTY little_j_Page_048.tif 9f1abd26e97b5073d3e36c62b19180da 295c113d262052a1cf232119f51abca3efa1647e 524 F20101110_AABTAH little_j_Page_013.txt 9dc86642e9187e8794402ba35e232822 213de91c9f328a49552f531360137f1a2a36c7e5 F20101110_AABSVB little_j_Page_086.tif 6232af70e61360b0e9292cdec3c54e5e 15181a276dacf8a3dd376c05148866d5e4ca8676 F20101110_AABSUM little_j_Page_067.tif c9a6179aa5b4b5c38bc4c4854ffafb88 d929460d4e61536a9f7dbfa294edc1f6f234bc37 F20101110_AABSTZ little_j_Page_049.tif 3c1753e0cedf77b34089aaebf5e2a610 e2ab7380cd9f040a7ba73848d185386db4144f65 2131 F20101110_AABTAI little_j_Page_015.txt 7ce1570c48c7703b6b4708ae5fce3c12 4b9722ff6e7fb57a6ea026855dbd0c5a92648e20 F20101110_AABSVC little_j_Page_087.tif 2a11a3a53953ef11bf590b97e7eb4738 eccd755d5917b06cb87925eb81fac5b65024ef09 F20101110_AABSUN little_j_Page_068.tif e53881b9ca9a8b1b6a377f449f52a121 f5f5c956877788c1b087fe64fd8a19e551db2ee1 1716 F20101110_AABTAJ little_j_Page_017.txt 9362f9a6b8ae3495fe22cb1f007db32e 91751c543bdf8b2d771b7572f49c610ff0d0446a F20101110_AABSVD little_j_Page_089.tif 021c80120eef13c3ae57ed88cca4c79b d55de67c153741b83f34ca1546a8d395bcb19b3f F20101110_AABSUO little_j_Page_069.tif 58b3bc98024cf949ad361cb5fc997f8c ea6ea83dc2e4d6be44df30559d259577bbc017b8 1951 F20101110_AABTAK little_j_Page_018.txt 820701c5829629445a53b6e9b083da05 b0a70ae47de81cf5b4f79850d41c0cf8bf966e10 F20101110_AABSVE little_j_Page_090.tif d37db39601be65736457fd5a997304b9 2c4835a320bdd4c58437f81ce7bc410aa2adb1de F20101110_AABSUP little_j_Page_070.tif 6b79a8de06c9d2cbc401f572ca8224be 99d79124a3a049fa08453f5d9e3e5197b450633f 2003 F20101110_AABTAL little_j_Page_019.txt 1f599092ffc4ce1ca692d4a6cb765ae0 56d232d2b80c6bbf04df99bac7d59003043b7085 F20101110_AABSVF little_j_Page_091.tif bb67d07b660f2513d89614cdf57613f8 6affc1e93381ca984ea08d892c3e4e7acec61d8d F20101110_AABSUQ little_j_Page_071.tif 82fca63fcddb53866e71f0d35e22e7bf 5ecc1aa96b14b9b8cbf292e4fc83fe63670684e3 2107 F20101110_AABTAM little_j_Page_020.txt 3c0c4b17dd4ddda1dd8bd8bb933f892f 385f608b1a2306f18463fadaacbdcc51837d1092 F20101110_AABSVG little_j_Page_093.tif f1cf05ac6d8bdc6666e5eb5b27241ad6 f65c1417fa55c81fafda150619a9782f43663f82 F20101110_AABSUR little_j_Page_072.tif fd2dac4671624e36dd073e01401a4414 c8aa73ed75e28cbfbf8a315739984df87ce1e320 1934 F20101110_AABTBA little_j_Page_037.txt b15393190d0cead774129591c75aba65 6c9c4ce055094f70f62af61f189ef808003efd00 2006 F20101110_AABTAN little_j_Page_021.txt 002c4113377ad0a6b977829d00b2a48c 36dfa0d37758639dd2563a1a46a04debd603ada7 F20101110_AABSUS little_j_Page_075.tif c69934393e64245a9c8f0828b28a5e90 8b1e6fbed192b80dc6d12a2a4b45a8c5589dacf1 2155 F20101110_AABTBB little_j_Page_038.txt 06643ea578ba0378cb7e24baee3abff7 68f13a4892fe97af9a312b1209126214c34e05bf 2040 F20101110_AABTAO little_j_Page_022.txt 00d443473b3216e8654936ebd1e0be72 95a8e7d248d0dad65aa73cab952892aa8feb6e84 F20101110_AABSVH little_j_Page_096.tif eb183b171267e177e8e91a7909540a83 bbb8dbb281335ab475cabdcb53ba5746bfd51802 F20101110_AABSUT little_j_Page_077.tif 3cfd69b706eac731ba9cb7598d2238e2 cb65f46b69fed88eb0f7fd448492cdd77d682c49 1913 F20101110_AABTBC little_j_Page_039.txt 6bc987e38640bd4787df0d45e7527c8c 452611c3f3a5368978835e4da5c1e58a8d92d1b4 1980 F20101110_AABTAP little_j_Page_023.txt 1c238bea2632a5bb044f1e5af6a6a06d 39a7c53d158705eaeb88ee210e33c87132caf636 F20101110_AABSVI little_j_Page_097.tif 31f90fade4b303e2353c58471cbbccd9 90f38489fabe483dcb6cab9c8f33eef0de29175b F20101110_AABSUU little_j_Page_078.tif 04eb7a39f2d17629a5a89233e7e2b152 1d53b70d940cddddcb223fd0920475ee39c17073 2041 F20101110_AABTBD little_j_Page_040.txt d9fb960ade34d14b355bb01b842d0cf2 6691caac879fa20df61f6ace4cd65ecaaf5bb6d8 1727 F20101110_AABTAQ little_j_Page_024.txt d1545dbde5bb03347a66c3f3be276ef7 78e7771d09ad38d41d753607d0196aeb3a7d213c F20101110_AABSVJ little_j_Page_099.tif 00038a6fd46c3aae644b1bcc6cc61081 7fb371f79f2100dc37e43838ff05ff34eed16f23 F20101110_AABSUV little_j_Page_079.tif 71c0d97d33e3c68d17246b3fe1f2b690 ab2ef0ac712aeba26e0377e354c3b07e80f8ad8f 2080 F20101110_AABTBE little_j_Page_041.txt 53c18843902ddb37c36647c79fad6e78 687fe0468d31844dc6e3b1b1c74acaf2b2e5bd6e F20101110_AABSVK little_j_Page_100.tif 806d948011d400eab07cf396ac7dbd21 42d4c3158f43a49dbba5af8353469a1185f32ca7 F20101110_AABSUW little_j_Page_081.tif 92303a853858b26e8ed5d2259da1a982 372d5d4b5c8c5c3f7e12070060cbf05495cffd94 486 F20101110_AABTBF little_j_Page_042.txt 5d63aebb9f11620985ccd7116b90c851 4f8a2397a9a096a9be49dba86be681cace990a19 F20101110_AABSWA little_j_Page_118.tif 4771841a0655f7bf67e3d08ac36a03e8 4151805293d5e60bad5cbb7ca48c352c8b2836f5 2062 F20101110_AABTAR little_j_Page_025.txt 9078383bc8bf95e4f1f0892b3ff8d208 7f9a399e063dec3d811c3d4c7d4dc4f080ecaaae F20101110_AABSVL little_j_Page_101.tif 61cdbb064785dac82ec48ad8fa6109c1 5327069891b894af0a59f3f8952a04dd2dabe7b0 F20101110_AABSUX little_j_Page_082.tif 6d5dd21f2c4e96d261702fb043718c7c c3382d4f84480a50dbd0bb3df66db6d7d1d12b09 1976 F20101110_AABTBG little_j_Page_043.txt 92294ce10cf96a9d500d69e7c3597b5d 83d408cd4293faa9c238627527ccaed438706a6d F20101110_AABSWB little_j_Page_119.tif 4d97fdcfed63551ecfb1325b51ed1be2 5700b3736611134e5d090dbcbacda75c74d7bbf7 142 F20101110_AABTAS little_j_Page_026.txt 290ae8328fbf0e06a7b87ee09d0665ad c84034be8dfbe53d68979fe19f7eb27e23ecc14b F20101110_AABSVM little_j_Page_102.tif ab0cd9201f02a4cf2b17a502a0497155 4b786d8041ec16a41eab827856d49440654af1e1 F20101110_AABSUY little_j_Page_083.tif 9b52916e0dd5d06ca7b00d90c3b1396e 5cdf57206ec5d3c450d9a62c4398218e1348d8f9 1933 F20101110_AABTBH little_j_Page_044.txt 0602d6c19cf8c38d709955e051e69653 bb3321ae00e40a2e849d9408de0fa2d649fb148a F20101110_AABSWC little_j_Page_121.tif 40095609f359858b75d78a21c501fceb 0a008b84f365f278a0709bc4ee8b8a0709e8074f F20101110_AABTAT little_j_Page_027.txt 95e9a7b63f3b1703a16d9ba2f81ef9dd b2b5a48c7bfe389376cc73f2863f08a2c136282e F20101110_AABSVN little_j_Page_103.tif 629cdc161b1eb58b284be23bbb55e659 88216b84973aa88ec3b0cbe9edd07373959b4a8b F20101110_AABSUZ little_j_Page_084.tif 907d23a797cfc6bda1caf3b0243c7414 fed3fa60885336753413ce6d5d611bd9f083fa1e 1743 F20101110_AABTBI little_j_Page_045.txt 58726c4084c9c8eea5266c77e3fdd63c a83bddbc6471e836c75f256f61d1e4d4e9a219a6 F20101110_AABSWD little_j_Page_122.tif 95f57764abcbeda6b401b0a0891e3348 6b8acf11dc650c20aa8ee3c035088e665c18b110 2050 F20101110_AABTAU little_j_Page_028.txt 981a2f1be537da51fc8852705809922e 77aea914d33d51ae700f8fa7742c5d937b5127e2 F20101110_AABSVO little_j_Page_104.tif 7a44af99f6122e93b4149acb0e23507e 13a3f88ab0d1f53cc23d0c129e2a44ecbfd4402b 846 F20101110_AABTBJ little_j_Page_046.txt 512bc24b0f154f8465a275458dbacbc6 22d337b76884ff6270f2a85660bf815ffcae6a6e 7697 F20101110_AABSWE little_j_Page_001.pro 6643935efda939c62321c5532c88a5b5 323dd4c9887c6c5c7db0d90805f569f1cb798b64 1548 F20101110_AABTAV little_j_Page_030.txt 747b2159e82db3789a47d5963ec6855e f74627b248a4f4549512d1a705fc00eaa928d497 F20101110_AABSVP little_j_Page_105.tif bb0426c2de46c6a464fac579e7e9b31e a8ead00fa2b491f0d3b38b6b8f01a1b369d1958c 1854 F20101110_AABTBK little_j_Page_048.txt 82ffdaa9fb461f5258edba88ce42145c a9b0b23675b22ebc89e6ceee96b815d4154f4eb4 991 F20101110_AABSWF little_j_Page_002.pro ab9285238a92922d5edee0887035f6dd b8c560cb67312a3bf655af5c40fbabb4270c8363 2278 F20101110_AABTAW little_j_Page_031.txt 4dcd489ebcf7ebc0076d5e024212ac41 b682cd42b5da9a95f40ed2bc3b4fae33efb607c6 F20101110_AABSVQ little_j_Page_106.tif 6b7e91ee1333c15d0c36aab519e98a84 ef5069344b9d82c154068ebeff40922b000cefe2 1891 F20101110_AABTBL little_j_Page_049.txt ed528c060ea953a44178bb799633d280 7eb4479e5752b2f26c67cd545d874e8472b8ea25 1379 F20101110_AABSWG little_j_Page_003.pro 91f3587e4a544bf1e1716d6a2aea135c 8967c3626c0eb0e45bc34b324be84d45f91fdb43 1679 F20101110_AABTAX little_j_Page_033.txt d9e6a4125ecf0bd60b061f9ce7e99e32 67b8b2932a7c7a82b1181ed156ab3d750ee46ace F20101110_AABSVR little_j_Page_107.tif e4d772a27d23f39cb551cc105ec7fff2 0242596513aea0889490c4a73ae9bbaf2058ea85 2061 F20101110_AABTCA little_j_Page_069.txt ad07f0922a6b32498db876930c08cc51 ba49f848052b1aa3f73adbee47cc9fcc4f992b62 1737 F20101110_AABTBM little_j_Page_050.txt 39fc4b30907db77fbe6727b1a3f60302 a23958b1bf3cf9ebf06f175e9329460415f6c46b 56635 F20101110_AABSWH little_j_Page_004.pro 1f89f1ad90b643b210c18c30e34ee669 2a46c22c62dacf46e95883f5bfd08c09a19b6770 2060 F20101110_AABTAY little_j_Page_034.txt afbed9f0ccc2b80fa072ff0007a98b47 aeb40e385aaea5fa779e88f8ac795c36ce0748d9 F20101110_AABSVS little_j_Page_108.tif babe3dbf8e28cbe7481c94f7c956192f 154193a05639ec5a287a885123e3f6bcb7888c05 1421 F20101110_AABTCB little_j_Page_071.txt 5b5a21d690dc007f418f1c9464afb410 24d59555dd92d5b5ba3496c08a9079c873ab8a62 2022 F20101110_AABTBN little_j_Page_051.txt 55a2be5f9c2ea153f9cd45c3cc73bb78 6139d2ddd72da22acbaceb2577dfd1babff337c3 1971 F20101110_AABTAZ little_j_Page_035.txt c37dd9dc6966ea88ab5e599118c144f4 2f3a2d5b74e5a2745e0870abf627bc395424c66f F20101110_AABSVT little_j_Page_109.tif 66011f480b9ac4e9b0ae7d71905a55d3 27e65048df9d90dfc1607a69cd2c185d12f0bc40 2004 F20101110_AABTCC little_j_Page_072.txt 12c03734a23b5f28e9f10ce838049c4c 77a5cb4205dc45607857549156aeff1516812548 1515 F20101110_AABTBO little_j_Page_053.txt 60a40076ccc4f5ce016e5227bc399337 0da4f69c6678b6ec9bad2bfc58f9f67546ea1417 F20101110_AABSVU little_j_Page_111.tif fa4ae4567c778160b6da0ca3243125e3 53ff47038bdfc6659e3f2f8953bd1654e4f6f64f 1713 F20101110_AABTCD little_j_Page_073.txt 4c0241ed02b82432ff4c49efec7f49c6 0b75f7444f8c71d9464e81aa67e7b74190e7923f 1771 F20101110_AABTBP little_j_Page_054.txt 6b91d716a0da3bdbba5b6b7409cba90a a5fc40f8a124c63fd8bf88cfa62f6078498e5005 49867 F20101110_AABSWI little_j_Page_008.pro 690fc43756dc2bd19f764983e8a2cc8a 4c99c9ceb5dae10e0802b44085f37aa9839a4659 F20101110_AABSVV little_j_Page_112.tif 5c33711abb8d7b9594830f2d80b24985 d6ec4dfe5590d5d40857d2e8d9363c51dec429d0 F20101110_AABTCE little_j_Page_074.txt 2fad99fa47f2bb3f3235f5a5c90a2edc fd5e60879df16b79852053801b104d8e9781da3c 1588 F20101110_AABTBQ little_j_Page_055.txt ae1b36c3a25b4c406d8e7f55e8826622 3fafeb0ea4ad5282bc3f3b499c062879f2601df7 13195 F20101110_AABSWJ little_j_Page_009.pro 79f567033a4b4cc5e8dce8257e0ffd73 c0a6596710e18f7578fcf0cf88101dc8b2cb8a26 F20101110_AABSVW little_j_Page_113.tif 6fa2bf42bea3eb1878d0e1f08045c2c5 156eb62218c12e0c0e10a93b6ab49a20bada08a5 1704 F20101110_AABTCF little_j_Page_075.txt c33b50e5647650b204472b165dbf76fb e441b2799457b4ef16d34929f65cf74feaee7841 1673 F20101110_AABTBR little_j_Page_056.txt 5a42f1aef72428a57c2b057aa4c436e1 7b7f77df67ea8268e9d03cdf471aa90bcb56a1f4 56092 F20101110_AABSWK little_j_Page_010.pro 7ce71015b187b710581d7fda59e51585 ee166f4ef4ef666f2e92558ba78516905a416339 F20101110_AABSVX little_j_Page_114.tif 7475672cc8a820fb6aadbd6ee6fb8145 27fe032c11ca88997833727f7e004e948ac683d8 2294 F20101110_AABTCG little_j_Page_076.txt 08469a0cfc341d8ec2c6d4791cc0da0b ff1a2b9996d83e877d6ca0981e8b6133192f9de4 46692 F20101110_AABSXA little_j_Page_032.pro 6eccb962d31d3839dcbc7c3e9843aaba 634f2f5243aa1b9120cd447403b646c786c94ee8 57725 F20101110_AABSWL little_j_Page_012.pro bf71645bb54d17e0f980f37f31cb1ed3 cf8501850c2e70645355ea5a1653521ec6dadf15 F20101110_AABSVY little_j_Page_115.tif 71b1a88721ebd378cb9599fe0329aeed 2e92e3346ff1ffa1a3d6f4f98c22d12a40c9a8cf F20101110_AABTCH little_j_Page_077.txt 381fb14e2e97b050c2933fae1efd1120 77e5877c397eb20d3e6e4d6588561d29cb51190f 39447 F20101110_AABSXB little_j_Page_033.pro a103ae5d4aa106dec0f3b576d48f3a7b 63c56fbd90ccdacc8fb33f6f7a9b46f84319d4d1 1210 F20101110_AABTBS little_j_Page_058.txt d7e5b086ecb6a553b2caa468d07fdfac ae3abef795539d3dc322afc5a812706f7964f4cf 13154 F20101110_AABSWM little_j_Page_013.pro 0fdbb8766602899dedcdbeb0b5db1cdd a211d7839ba1cf0dd3e727fad7ea10eeaa0c088e F20101110_AABSVZ little_j_Page_117.tif 9a28246f4fbe305f239dab905663d3d6 6eb315f0df7e1ac5abfd14f1851ecbd65adbd4d9 2023 F20101110_AABTCI little_j_Page_078.txt 15f3ed56400327251188a88ceecaa053 93f0693485c2a3925bd17f5f6a0726bc82e051a2 51429 F20101110_AABSXC little_j_Page_034.pro 8ef3bd187ff31bdc88240be9470bc89f b76ddc77b44bdf054992b2618a92e692412a854f 1993 F20101110_AABTBT little_j_Page_059.txt fe33d7ef8113f36a366a47fab114fbf9 1e1fbcde25fe5160842b9f782e7540bf379dc26a 35349 F20101110_AABSWN little_j_Page_014.pro 91ca60430cab028afecdda0f9cbbe868 5bd6dd86ceeb3de5b77ad8c7aba2597085024c11 1311 F20101110_AABTCJ little_j_Page_082.txt 3a94b6c27adc2fea9bc930c54c47f772 3378495f39c5516c0ce3cf5479a0ceb5f85b955e 46576 F20101110_AABSXD little_j_Page_035.pro a44fe923614b8e38f47ef055d259096f a99c7efd01ced027b6cce87b75439ba3f316ba2b 1821 F20101110_AABTBU little_j_Page_060.txt 423c439be13159a89e9672f11d692cdb 16cf8fa76a624121bed87feca256e691d6c39fa3 40962 F20101110_AABSWO little_j_Page_016.pro 13be49ff6c0a2bae403c5dd5686d1752 aa06c842d7195441de97c00c84698bcc9dffb4ea F20101110_AABTCK little_j_Page_083.txt 240c8075050a9739af494e182ac15a52 d3bca896e55657f2f1810d10ee591b5759a63bf7 42904 F20101110_AABSXE little_j_Page_036.pro ae75499e55540ec004826b8bd906e746 7186bd921605203e8f2a6c148b1d72d74653c257 1752 F20101110_AABTBV little_j_Page_061.txt 76e47ad6299a0a6211c1d327e4f90d62 6e8af40fce2e424f91bf13811d9d0035e2d9aae2 36229 F20101110_AABSWP little_j_Page_017.pro b48516fbc4c7b4c98e134a40ab465e08 664fd7b1099a905ce79a040c291e57c0884b3dce 2130 F20101110_AABTCL little_j_Page_084.txt 72babda00febc165508ba738439d20ed 357a78d68effd1ab462738a9fc89df015a247d1b 43902 F20101110_AABSXF little_j_Page_037.pro a0d0e59b3804d770a27d9ae3a84aa65e d7c542a3a63e7ba84413a6d393e9387d11deb355 1590 F20101110_AABTBW little_j_Page_062.txt a0e527a79dc305189445d64942c168e4 e58be534ec3691edbc8553c0eebacdf5f76e8ad0 45330 F20101110_AABSWQ little_j_Page_018.pro f3535b016d790fa32871e43b49e27635 76175cb7a60a9b37a54580e95e340cb2fb716174 1810 F20101110_AABTDA little_j_Page_102.txt 4a96aa85a1c8eac999265d332f9fd53a c6f1927053c4efc7280fd2d511431837fd8cd556 1852 F20101110_AABTCM little_j_Page_086.txt d58a00ceabb8ef195eb573c23ba7c3b7 1d8292fb1b06e88f30eaddc97d86ad0fc9f6934f 49670 F20101110_AABSXG little_j_Page_038.pro fb9c5dc2db3a9e9af3661b7896434731 5f2372e57f810da701410a12111e5ee169a1c571 1996 F20101110_AABTBX little_j_Page_063.txt b4726e9a23302a4ac10622cefb44c57a a38222fbfb6a6a8e641bb715549e343de2a72ff5 52690 F20101110_AABSWR little_j_Page_020.pro 23c2dbf433e4972dcb5da2694fafb70d 599ae8371ece3651a3adabe66ce1d3013d529f00 1970 F20101110_AABTDB little_j_Page_103.txt 8eec6e573bebbb2622e2413de9ae0351 e08e1eb7efefe62edde49552ce33e39ca4c882d5 2106 F20101110_AABTCN little_j_Page_087.txt 87ff01d35d3c531de2f9cf6e745f4d01 f5d3679c5dad841e608dfe4fdba9dd0e08ca4076 44357 F20101110_AABSXH little_j_Page_039.pro 7aaf5728323c724eeb6ff616436f95e2 54bd673544d4409c4f66f7ac2a4db4d852950f58 1712 F20101110_AABTBY little_j_Page_064.txt 25b0b244cf49f7453819ac18f0647f0c 44a5d711fb7fafa560a46f9a0ff2666b2af337a7 49486 F20101110_AABSWS little_j_Page_021.pro d65e8e00b1c462500678bcaa5a313d58 1492d34067efeeb6cb922c20562a68b764057075 1559 F20101110_AABTDC little_j_Page_104.txt badf575b06fcd192de914cd638c3c784 986af89e16561309b0dd53202c37af49e3262360 1920 F20101110_AABTCO little_j_Page_088.txt a59826d0db9268285073737cbfbf8d4a 9c04169beb0888f67137199cd5810853923be3a6 45434 F20101110_AABSXI little_j_Page_040.pro 4debb3e6f88373989af00dbada1b222b 3050c34173750b0cf2e96f077914f0e863d1c03b 1765 F20101110_AABTBZ little_j_Page_066.txt a21ac67b02ee31d4c681c33c53f4a7a2 c07da2592523652456097ae2c4feb7add99d63f0 46770 F20101110_AABSWT little_j_Page_022.pro d205626e34aa4de0606a699f58b8b61a 0433657bff38d314265b0149ac720b5126e95806 1785 F20101110_AABTDD little_j_Page_107.txt 9ad932d2777a31f783584a5c1fb4a318 b666f0287f2c46cb99b2b3f42d410153dfa28953 1782 F20101110_AABTCP little_j_Page_089.txt d59a0926a42b4ca1376fda4534086de9 06a754c6c12d452f0de1828b912399e5640c2a56 44531 F20101110_AABSWU little_j_Page_023.pro 9c312896526e896745ff5adffebd8cc8 34bdd70ed5267e180b4f2c732ac6a6d30bf68b81 1701 F20101110_AABTDE little_j_Page_108.txt cd14ccc085912aa57c20372fa4a50c12 e51e65af640fa4cd137bce16039ec0cd60d010a6 2176 F20101110_AABTCQ little_j_Page_090.txt 562991d63ad209faa6e5440b518f6d45 b27ddfe2b2ed1ba1b992fab7b846ac6fd05841f9 52568 F20101110_AABSXJ little_j_Page_041.pro d8a536798cda2510734bd325addfaa7b d56a8a5b04ac99f97ada4c687d4f7cae98d3f931 41267 F20101110_AABSWV little_j_Page_024.pro 6a7e773cb108c3937d8572f818f6c6c4 3c1893379c30cabd55eff0f3150ff5a057077768 2341 F20101110_AABTCR little_j_Page_092.txt de3bc643db280738f1721b6cbddf1f7b be10b24f1f74ab0a09e1cc73b164f41660b98311 11178 F20101110_AABSXK little_j_Page_042.pro b5b18ff5ac2a7320df1bbf3c626e26db e34e45cf1afef6f7a464d48fb97ab9f1f0f580c7 44761 F20101110_AABSWW little_j_Page_027.pro f3043a63081b4b13dd81afb412ea06f3 c96829b1ccd6c22a6e7890ff27a3235c66a66154 1968 F20101110_AABTDF little_j_Page_109.txt c7471db85b8706ceecb900600bd1f929 c5af6fe6d0df1e1aa39b08d82eb9c1e8f13d50b2 42284 F20101110_AABSYA little_j_Page_063.pro 945b03bd9e625bc15caa204c39b3bbbb 4a70eeed4cc772670f8ee8c4b2eac63c4aee1ff1 1724 F20101110_AABTCS little_j_Page_093.txt e338d2dff337619b4fe911910f65ee1a 76281408a8bb635be076215487ccdd12c8062828 46064 F20101110_AABSXL little_j_Page_043.pro 66ea75ef5f6321a5502ae8ee416fa98b 37e914acd1cd84c3a2a21d8e96ac5d728245c59d 50539 F20101110_AABSWX little_j_Page_028.pro d9c9fcebbc2a1026da5c8fd99be4f8f4 5148580e30c72ca5faa7e29537b427d96718634b 2066 F20101110_AABTDG little_j_Page_110.txt bceae2ed4d988a18bc959b06b5d71cff 59fb6987d2e31e3b12305deb71921c93e8c7dc1e 31631 F20101110_AABSYB little_j_Page_064.pro f0167a57ea5f2c441b7e2141d1fee6dc 88a241f878a332ca052972f2087b3d986a42feeb 36576 F20101110_AABSXM little_j_Page_044.pro 270716818dff3d56c875fc4ad836e018 cf08e34bb977bd1aa2ae0d8648077e9b6e106dab 33099 F20101110_AABSWY little_j_Page_030.pro 912a9f72e706fcd72dbf953f81ae7dcf cd5a6b27b96ccd12d99567004c88d7a15924f8ef 1981 F20101110_AABTDH little_j_Page_111.txt 1ac1944e6a9a77ca1fb761d9dc7bebaf 389012c8a7ff84289916c521f5f8a8aa8a31b023 40692 F20101110_AABSYC little_j_Page_065.pro f853d72b01822c2c3e06a1a4447728c2 fad03d4c16c56ebba5f623f944aca86511366454 F20101110_AABTCT little_j_Page_094.txt 6c4750af22a8af9357fe3b4492186483 f319eb89ebd8f68783c28975efd840f9fb4868fa 21545 F20101110_AABSXN little_j_Page_046.pro 85eef85dd49072c8b9a63936dc650b05 7f49c582aa8073661e8508c1375e08e2296689cb 56205 F20101110_AABSWZ little_j_Page_031.pro 37987ddf7621b494a32fe2e61d056c7f cfe8def26fba254a92eaafc5c4106149499ad81c 2308 F20101110_AABTDI little_j_Page_113.txt d4719735db48315369e60ab495119f48 4f9caee957114a6613a5304aada63bc88da9bdaa 40919 F20101110_AABSYD little_j_Page_067.pro fc98b491e46836ba194723837e82cbc8 936b63ac64bf98a697664ddd549f1f9dbb6b0716 2108 F20101110_AABTCU little_j_Page_095.txt f985f98c5d82dd9f71627a2e08ce5fd9 9d57708bac4f3034a25f77a94df8b5c194cf9749 43990 F20101110_AABSXO little_j_Page_047.pro 08f12cc594e463f974d893f3806cbcac c4c94d346fc330693539871a1c75d92817bb8b8b 2067 F20101110_AABTDJ little_j_Page_114.txt 6b244076f311c96f4f619397a93fb9de 57e4dfc0425a296f00a670265e6ba53ce1149e35 42208 F20101110_AABSYE little_j_Page_070.pro aa8fb18a72c6ec256d7c6761ca24bcab 26b38d0fcb4b544ed90850de24c3588c2931f9f6 2226 F20101110_AABTCV little_j_Page_096.txt fc7fce3b756d286a4870c1d893fee656 d213d8e9cbc078e8e47c32856865f21b9f0cf940 41144 F20101110_AABSXP little_j_Page_048.pro 5b2d1ce465dac11119fd01503cfb1af0 8f5885a1f990be22ef1c58b9c5b0b2cb5ac08243 1340 F20101110_AABTDK little_j_Page_115.txt 956a5ce92f1d59ec058a68a4f8bd3633 b9ffd569446842b5e6f406381639384c1a2c9080 34174 F20101110_AABSYF little_j_Page_071.pro 5102164dbfb7af9f63f47f77ee30d901 b1e631cdc24831e8a4091f6d17de7a0397cc805a 1847 F20101110_AABTCW little_j_Page_097.txt 2ebd6406302e95c8da7dcf2a3efea3ad a299133395f763bda0102ca0e7bcf8ae3e13306b 37423 F20101110_AABSXQ little_j_Page_050.pro 0b7eeffde51bb24e187c9202cc91cb49 84afb7cbb6f347069d0fbb9e352862171413a0a4 1909 F20101110_AABTDL little_j_Page_116.txt 1797b1676b85a997a4e9696fb18717c8 801fbb2a421c1db6876207756dd0c8fd4a93ba49 39438 F20101110_AABSYG little_j_Page_073.pro 997cd3cbac369d799983d92ed44392d9 6e8516eb982d2662c2171518681dd545b3704ecc 2228 F20101110_AABTCX little_j_Page_098.txt c6711c30897fb9bf39e04aa99bf5fbfc 11dc97c4e581a311653f8aa1b129383c85b9da2f 44251 F20101110_AABSXR little_j_Page_051.pro d7168d45286bebc4ebc7dd14531aecfc 5a40e8130c0a823a60342c9d510bfff78d6ed64a 4564 F20101110_AABTEA little_j_Page_050thm.jpg 73bc02a3694a534c9d11d4a966d03507 8833bf1985ac84a0ca6f8ad651924f78f468b0f4 268 F20101110_AABTDM little_j_Page_117.txt 47a1b40e48788233f5936c8e69013dea 9913e5982510a96966928fc0c8d8f6a575f922da 43484 F20101110_AABSYH little_j_Page_074.pro 2252ca68782025ed9a69d964d27097d2 f5ed43a50bb1c8a575b3f595e2397b42a2fc19e5 1991 F20101110_AABTCY little_j_Page_099.txt e5d200dfcdc31bd5393b8cc4ad8127e6 978e5387a7823171fb7338d43f1c8bba69454d4e 33935 F20101110_AABSXS little_j_Page_053.pro 1912317a44d8a0a503014f0ad8b442b4 19f1194d24950a3ed9f4af2499b49206e13f4fbc 4523 F20101110_AABTEB little_j_Page_104thm.jpg d651dc51adbe931db6ed3125d95b3cc6 6db98c9e405f791130134ca3e70553f426eb340e 1995 F20101110_AABTDN little_j_Page_118.txt 174e53237f417686e95cc8dfe20d8162 edfa395984f6c42e63308905aca4ba13cb403989 36741 F20101110_AABSYI little_j_Page_075.pro 162cd7d987707f419663bfbe70076b89 1fdc478ebd6d1e202c7cc11a33d631bbefce556a 2354 F20101110_AABTCZ little_j_Page_100.txt 62a3d8a877ace6e1ec440608a5bd63fb aaa7e6c064c515c9810e16e482d2c5364815c1fb 31684 F20101110_AABSXT little_j_Page_054.pro a2558bd3d7339a6b88878d24a01ef189 87b8089138e61de5b189996bbb6ca0b18568cab0 27007 F20101110_AABTEC little_j_Page_012.QC.jpg f7ba4ab259b2e07df7716dae1bcd49bc bd1b1a57c000fd9cb326ac3489caeb6e35b17764 2307 F20101110_AABTDO little_j_Page_120.txt 967a572a13c2c0c5afa215800a2d6d20 3b9e9c801f9e888c618d44add624ae0522b4b3fd 52184 F20101110_AABSYJ little_j_Page_077.pro dddbbe0f8b6c1e45cca00321e5f3ffa8 79dc166eb550b1aae3a83a99656f4aeb7e7abefd 35410 F20101110_AABSXU little_j_Page_055.pro 98622d2e6d37a013a2e07a2d479cb937 42f7945381c4d8a97b503fc0a59b56016f05d86f 20786 F20101110_AABTED little_j_Page_051.QC.jpg b4aec7197b6116f1376832764a371fdb 459607657820da7b2087c06ec9b712427279cb6c 2092 F20101110_AABTDP little_j_Page_122.txt 60c0ac46d34a93414d9ade8ccf11e5b6 505538fb2d5f30df413f0eb4628a12277d39717a 34113 F20101110_AABSXV little_j_Page_056.pro 10119797d5b59bdd0ae9edd5759734ec c8007c16319a78f7d1302d83cca0803593dec0ef 20617 F20101110_AABTEE little_j_Page_074.QC.jpg 4e7b08257ac75e17bf94fe38474a00cc 75a77e2ddaa4e6cf657c59e69b4988ad53197681 1746 F20101110_AABTDQ little_j_Page_009thm.jpg 1db04642abd8f260a271bd7dd9b91068 db11199a4e4eb11a716a50a5367145b8be106e26 44553 F20101110_AABSYK little_j_Page_078.pro f0731e2b7626adb9ac31ef889b6d81e6 7579886e7fa5806e016312d15482d8cd10b843d3 42522 F20101110_AABSXW little_j_Page_057.pro 397013d878aa1aa0ba1545bedee47236 367a4ae3d896702fb4b2f2032939d52551154131 16935 F20101110_AABTEF little_j_Page_104.QC.jpg 7277544b3995bb7f636d700daab0d1bf a4508a83430050b3216ff62182520aa0e5cf67e2 18066 F20101110_AABTDR little_j_Page_097.QC.jpg 188356c6d430923e3c9cfc732f52d199 846a886c08eee42514cec20df15792ff7b846735 41048 F20101110_AABSYL little_j_Page_080.pro 8b6cf17c180f7ff038da557e984291e2 dc222abf11eab0299758b739bd5029c3099b7404 24166 F20101110_AABSXX little_j_Page_058.pro dae8d373c0b1526d5cc862ce0d019197 1c6884b93052e236b43345709df833ecf15ef654 607 F20101110_AABTEG little_j_Page_003thm.jpg 75d8d0e014641c05a4064e8621272d02 d373acb238f89276a28e3e6ff7d702b2d17c0b61 47518 F20101110_AABSZA little_j_Page_096.pro 3ede95e4e60df400a92c4199c13cffda 3e2f135c8f0f8c7c76695a584294888ee8993786 20318 F20101110_AABTDS little_j_Page_110.QC.jpg 406d4ba401fa000396010b0be18c03d7 a5ae9328f4fb8bb72ec217c54e300e4f034b8101 49269 F20101110_AABSYM little_j_Page_081.pro e04e455cb821d828dabe04eab472d6c7 ff907391b3f094cea39b7649f9dacc72e918c271 38728 F20101110_AABSXY little_j_Page_061.pro 28c9789cb8975523ca678ca4446f653f c76c9a02ec73bb649c20709d363be04492c06e71 4583 F20101110_AABTEH little_j_Page_061thm.jpg c337b9cb05ca8192ffaf724a5db79071 5c560835d9de00988b8424893d07d61f38b2d568 54978 F20101110_AABSZB little_j_Page_098.pro 5d1e350e4652d2e77c2c7a07866bd54b 84d19eed013c0d8991574a6d984f7faa06a25335 21888 F20101110_AABTDT little_j_Page_096.QC.jpg e10d694edc67fd2646eef14f639194f2 d1ec1e3046b4080fdf94e2960c1df58c86df2f42 28642 F20101110_AABSYN little_j_Page_082.pro 02fee3f9e012398d9c2ad9e1d166128f 10f5ce0ac158db7c0ee44ed29079efc23971b62c 33968 F20101110_AABSXZ little_j_Page_062.pro 8f938091e6717271ff98ae6402e827f5 94cece89a30305623c3562a4c3b0739147b89082 22181 F20101110_AABTEI little_j_Page_032.QC.jpg d487d8cd0a5ae90549cd149e63b27d6d 28d38346f904c037c903e7e65e53ff600f9fd206 46242 F20101110_AABSZC little_j_Page_099.pro 2e8be8d48ec245268c83eb07d9d2f554 98bea055340e4b726b0170d9ee854ad3d6790963 35042 F20101110_AABSYO little_j_Page_083.pro 5983f1954d1ceef511ac292290190278 933675bbe1a4d451cd45b86e5a6fb20611d4c3ac 5935 F20101110_AABTEJ little_j_Page_090thm.jpg e9ebddf2b5f02121d5d95c68b4b65eba fcbb15da9723903706de0fde9edf0fc44e56ae53 50598 F20101110_AABSZD little_j_Page_100.pro a6279720cdcdd213e7be08746dda59c8 826b0b447d54b7efc69407786698adcf501e366b 441 F20101110_AABTDU little_j_Page_002thm.jpg 70a6c11ac260389bbba457f50307cb46 41262e6eb5b2fee0c6711dea6deea0fe805ac6e1 45883 F20101110_AABSYP little_j_Page_084.pro 746cde365e35239caf4c5fb9d4b475c3 ac4e5ae4be824d0f719669e14c94bdda31bc6054 20309 F20101110_AABTEK little_j_Page_070.QC.jpg aa4e64bb4f8bbe1672312dd16451a683 8051eda6b5932c9c38b4bc5d19b709c29177ee1b 50569 F20101110_AABSZE little_j_Page_101.pro 2436eb7df4338bee2d15df50f1ea8f4c 57574ea9283a9872f55075da2050147e2c797ca1 26225 F20101110_AABTDV little_j_Page_004.QC.jpg 81a0bd1795b411fbfc103a865d4314be 23823fb9c359ea95a652cc7e8715b4801ff3089f 48865 F20101110_AABSYQ little_j_Page_085.pro ad3a71bc36a2663a2d462f882718da1a 8d2fdba35784d1bff4a92d8a1fca7cd2be1c7bad 5215 F20101110_AABTEL little_j_Page_069thm.jpg 01054ca5ad734f71578abac3360f7496 1502455377f593d199629c3f11ad3a72f1f17476 40193 F20101110_AABSZF little_j_Page_102.pro 4f8e56d5ea536398ae0f505262f50d50 58a8f5941513192c05a588fc30fe2a2bfdba59db 4962 F20101110_AABTDW little_j_Page_078thm.jpg f698137ea7daaf211415b7be6b5901f3 9883cf5180d1e75e0898c41587e579d8c2ac05c2 40705 F20101110_AABSYR little_j_Page_086.pro 756a869ff87dedef91b4d9521aec1aba e384fa17d7a2811a14225b2f52585fa9130e363e 6006 F20101110_AABTFA little_j_Page_092thm.jpg 98226d960d2c20838701797f8eff38eb acc9762e8aceacd04adf37ea3c25ef62507cafba 5917 F20101110_AABTEM little_j_Page_098thm.jpg 03e1297082838ae5aadbfa5c8aa16f23 415a0835b1d5cfee9c96b2d470732736340e2081 40263 F20101110_AABSZG little_j_Page_103.pro 2cfb6b53d49283fa8e481f3755d4160f 66a388dda6c20a9bcc0a4743d5ca448ac3009e1f 16513 F20101110_AABTDX little_j_Page_056.QC.jpg e96d64b1ac6df446de36a5fde68230ed 08b1c57c55fce854ed7c08d74040ae56a9edabf0 39531 F20101110_AABSYS little_j_Page_087.pro 272f4e01b056c9565f0e8d9bf6a6411d a59aa04ba808595adaa78b54fb582e520914ce49 17600 F20101110_AABTFB little_j_Page_065.QC.jpg 292605cc9027e2820749ad3d20f563ca ececbe86699d0f29212ef4049480b848820c9fe5 F20101110_AABTEN little_j_Page_013thm.jpg 3b31d443b4856099632a94b422b02672 207d34501606d1dcdff48d6c6f257d4808f8ff3a 31493 F20101110_AABSZH little_j_Page_104.pro e3faa396912583fd8aba711f229cff1b 27ae5b292da8263afda810841dec0bd24889df7a 17372 F20101110_AABTDY little_j_Page_017.QC.jpg ca586ce4470f0a9a2913108a3f4ce31c 0c58eb32c955c1f0b1e85af3e5f92587e30b9ad3 42836 F20101110_AABSYT little_j_Page_088.pro 22426d33e76473f03b5af02ef31c6a3b 9a5d7d8b8367610e1fef98c57ebd7233ed0ad623 23082 F20101110_AABTFC little_j_Page_100.QC.jpg 23f8eb144d3c91dd28b426d24ef7ed8a 1aa0860069a635868e8a873754cec9aaa270400d 6130 F20101110_AABTEO little_j_Page_113thm.jpg 7d879d673cf7930d9fb0da642de708bb 6acc49f3bc6b68597fce6aff1dcca04382ddd780 20989 F20101110_AABSZI little_j_Page_105.pro edac39f74655011569af0efcad2673c5 3628d8e4b02e472e04b07e0bd31a376402ac64b4 24249 F20101110_AABTDZ little_j_Page_118.QC.jpg 0699d9480f99d696baf99c7da911189c 451765068f3055b61567e4b43fd017d0aab06470 53665 F20101110_AABSYU little_j_Page_090.pro 3e87bd7a87ccfb6b291f40daa5c131e2 c2cdf0260c99a46b625a499527dc8d0534dd6ad7 21609 F20101110_AABTFD little_j_Page_018.QC.jpg 126f34132eb2590b8358af3cfd654243 2c02c94a3aff2534bf63e3560602c873a8d6f89e 22279 F20101110_AABTEP little_j_Page_027.QC.jpg dd4b1bbbbdeb250b74151494ee83df84 53144ffda0a7307b2315521f35347cc5b38f7ad1 40118 F20101110_AABSZJ little_j_Page_107.pro 9e9d08860ad14091ca6cf4ced11a5d9f c553b6af684dcffefd6f1176ddd280da723a834c 19855 F20101110_AABSYV little_j_Page_091.pro 33389eb65be986daa246cdb4fb80307f d527b5b03069d599bea0cfe85871e04a1282645d 20038 F20101110_AABTFE little_j_Page_067.QC.jpg 2a4967ec4365bec5c49a69562a1cd6cb 1e91fe91002d0a90eb039d60881a3300fb0a90f7 4119 F20101110_AABTEQ little_j_Page_062thm.jpg 753248e4ed9405777b83ac8c5e24a39d 95c62e24c5480e4d7b6329416ab002dd35aaa41a 31231 F20101110_AABSZK little_j_Page_108.pro b3ae8c7b29767be88acff8345772dfda cd13e769c511b6525c9cb18dcd79620373894bd0 57067 F20101110_AABSYW little_j_Page_092.pro 2da142df9a59be2812cca31d0527c68c 01e2ed1f2a99b10c669f6043c3ae05d1fe7fa0f1 13208 F20101110_AABTFF little_j_Page_116.QC.jpg e122c519e086de767a6f319535d18233 f1c5e9193c556420dd16dc5978724cc9d22d9de1 17725 F20101110_AABTER little_j_Page_089.QC.jpg 212e6c04fa5ac520bbf0b8a41dcf46a1 53b3e3fe60e176fd0dc7b1ec09182906bb612173 42593 F20101110_AABSYX little_j_Page_093.pro 5008ac562ff28fd505d1138b984e5a9c 34cdbccc7ac81eff419e385738cd751e9bda5db1 19736 F20101110_AABTFG little_j_Page_063.QC.jpg 1efd716b0dfd5f5fb97dd7f2605fa5c7 a1c0b224d66387e5dc7000cd920553881d2ea821 6297 F20101110_AABTES little_j_Page_042.QC.jpg ec8af6d6a25b54d81e40ba5b7a1d34a0 12dfe9231496a31da60382d3b6eaaecb5d7b3bce 46696 F20101110_AABSZL little_j_Page_111.pro 0b765ab09a098d1c846146a8bdfc1184 d95dc7288eb26a034b2a6c0e6e01b4abee456126 39587 F20101110_AABSYY little_j_Page_094.pro 8ffb56c0eafcc9ced91d9f9a8251cd7a c1deda899460e9c403c59fe74893cc4e066df3c7 23346 F20101110_AABTFH little_j_Page_079.QC.jpg 73465f9cc8a4395394d4c2abc26f226c 3547828db30bceddc2d1385c80dd6b7ad8aa47f4 4788 F20101110_AABTET little_j_Page_107thm.jpg c13c2437c0bf48cadc6a79e3ff80d2de ce69fd2dadced22b0f77d0dbd9262d7f38050ea4 6791 F20101110_AABSZM little_j_Page_112.pro 44b92b8e039c5e87023b368b3a774b7f eb0ffe047bd22bd89dc731d25c12f1fc309d3582 39023 F20101110_AABSYZ little_j_Page_095.pro cc109f4129a498e48904c0d171954990 454096fbda55ac59bb616bd36a557fcc336d1d1c 18836 F20101110_AABTFI little_j_Page_019.QC.jpg 5129d05b93d3c8d9dc7125e8b3900e4b 401649a3237cded463035a1653e556aae4dc1a6b 19795 F20101110_AABTEU little_j_Page_102.QC.jpg 64ee4bdcf94b36281a4c34dc3c6ae96b e9fa47a7b5a11be712bf6b09e62c05daf794e451 55947 F20101110_AABSZN little_j_Page_113.pro eef6b1f16e278296054e2a52f8ddfa97 e002196233b4e9f1839f4480df5b67cea00687e6 16928 F20101110_AABTFJ little_j_Page_071.QC.jpg ff3e8a4d5183d26c12b2915143a3450a a71952a0a3f513147f1038495d73b39226d50ae4 52231 F20101110_AABSZO little_j_Page_114.pro 0b27cce8a650bf2e83b0e86084f198e2 42b4130acc0a3924244b3deda8362ce4b6a5d451 5329 F20101110_AABTFK little_j_Page_122thm.jpg 65d1e0a6b19833c8cf41a8ffb74449d5 2b9bbce3dcf08be98cb7be0a4b74c1056ab46400 4912 F20101110_AABTEV little_j_Page_066thm.jpg 5d36aff076c1211e57776f88849bddbd d83c5e00381f246d05fa0a92d028efafac538e68 32987 F20101110_AABSZP little_j_Page_115.pro 91dd71a7ffb52125e0125152fa8fab53 6377f193a6654f0248e295d19f1eae6a4b93dc06 3776 F20101110_AABTFL little_j_Page_112.QC.jpg a9522e3b8bc7705c8984dc48f34ce9b0 c3e34b54c9306a788fb7afa4f7900ef4afe851f1 12306 F20101110_AABTEW little_j_Page_121.QC.jpg a297ff808590322c4c9859a52f1bac48 6e91153b9a81585f831d66fcafff21ecd8b1524d 27210 F20101110_AABSZQ little_j_Page_116.pro 3c6fd40aa927fcd004b31d63c9cd7213 cc91fddc17373e7dda7d6946de7bc69fa01adf34 4931 F20101110_AABTFM little_j_Page_049thm.jpg 086ebc1e882fe7c3a8ef1ba2af237946 cd36c2f511aaccd50d7afb4abe8e588f552a3956 5020 F20101110_AABTEX little_j_Page_070thm.jpg ad072964b150613bf9c5f386d139b605 196b1c9c29d5d34b0c6755b8c1d184ae27d8efb8 6213 F20101110_AABSZR little_j_Page_117.pro f6b675a9a31efc2ecb0e66a58cb56655 0bd3bc16d9776f8c8adbf2b1dc59f9728482926d 19095 F20101110_AABTGA little_j_Page_103.QC.jpg 81d64c15d19ba1864c02cba6a4a10969 aa6b3dde465deda79c2af6e663a6ba4fa8166cba 2985 F20101110_AABTFN little_j_Page_121thm.jpg e109e1d453b001e961a4140636166046 d4f4aa340e02e7b08276fe140494793b4e5f7c79 5418 F20101110_AABTEY little_j_Page_025thm.jpg 10d2126f4224c15c27601860715607fe 7ab2ad33a598b58ed149895e1a01b355898a76cc 48377 F20101110_AABSZS little_j_Page_118.pro 3005e081d14d72ca5694043184c14564 4219f227d36cd7b808e5e41e9742d600d28e6803 24967 F20101110_AABTGB little_j_Page_020.QC.jpg deb43b5cf519a47b5a3abfee79e362d2 4a5551586df70a9bc9ac3e7eef850668f3171df1 26227 F20101110_AABTFO little_j_Page_006.QC.jpg 07c7e47f0ca533be2a5c6f8801c42d2c 3385aa19aae0cd50ced40933af0784760a7dc107 21531 F20101110_AABTEZ little_j_Page_045.QC.jpg 154fe2c941ac2bb6f95a7477ea804ddd e87e11739e62b42a0846910f2bc0a7f1e063bd07 52744 F20101110_AABSZT little_j_Page_119.pro b01bb2082e978e12fd016c04ed742eb9 ce9441d34f320055bdcd9a7a3d0dba5988a7d2a1 20392 F20101110_AABTGC little_j_Page_037.QC.jpg c88166d6454166f2abb3a33677b955b1 c604cfe5e002e41172c65204b91ca25b9725c897 14973 F20101110_AABTFP little_j_Page_082.QC.jpg b5ae02776cef9b958486401d2d2634ce 8ba8ef72c666f4dea5a5ec8490482ae1418ca749 56325 F20101110_AABSZU little_j_Page_120.pro ace19c35e242b2d092b45b31b0fedb48 06ffedd1e9f16aeacaafbb243af0684ed06a0293 25316 F20101110_AABTGD little_j_Page_090.QC.jpg 8c397ff288195600edba346142b207f0 4fd703e9d166b2a596f1ae10820b16477d541745 4243 F20101110_AABTFQ little_j_Page_060thm.jpg 044103854a61d8de6e7c06d460ccd062 24d707b691462518331017e74747942938862273 52038 F20101110_AABSZV little_j_Page_122.pro 082066abe5c669ce54ccc5a7651ed25b d5ac48408173c36551625c959fb04bd4d747ee4d 5050 F20101110_AABTGE little_j_Page_036thm.jpg 5aeae6951e9c06a7054f07c81fd268e1 2974c07aebffc47cb5a97008ead3f21222417f6e 22493 F20101110_AABTFR little_j_Page_099.QC.jpg 8f48c7abaad94db1c80053a4be9af84a e43e6d994d831379afad8e911e49c093e8b04017 412 F20101110_AABSZW little_j_Page_001.txt ef9e51be8effb5ed4a713ab3f5a41407 b4aaf119d6ffa478c5dfcda56ea60af7eb34f307 1683 F20101110_AABTGF little_j_Page_007thm.jpg 4123f940ee3f992ed76f76b573244519 62c9334ee480b1b03d3ea1dc979a7ee050ca7148 19250 F20101110_AABTFS little_j_Page_094.QC.jpg 15d5d68038e9ef95bb28536eeb1a3b14 e5482f9d0c8f6d0041ebd281c04179abd73f1df6 92 F20101110_AABSZX little_j_Page_002.txt dec96f57ed75c0fa66aad2e4cb683c5b 6c3b5d618124646cdabeb1522af1b531f87e3684 26437 F20101110_AABTGG little_j_Page_092.QC.jpg ffaab17e85c4e652a78199e2a5032b48 ce881043241c8363ef9ff08a8a116fa5e2b79a99 5128 F20101110_AABTFT little_j_Page_088thm.jpg 8f497f7896a8769daf99245cf906acfc c6d70aa2b3dc9b87e891de0bdaa43350adad6986 109 F20101110_AABSZY little_j_Page_003.txt 05b6a438d9f2c291d240ca394de18f7a cef50078a5f5cf4d8b96e833f83adeb7b886ef4a 5315 F20101110_AABTGH little_j_Page_096thm.jpg 8e77b85aea827f425aa8f79b50ef62e5 53280a32666e8f538df9b876a221dd9aff0ffa33 4424 F20101110_AABTFU little_j_Page_017thm.jpg 240063c69819b458957e2cbe6fcfc00f 179364498dbba5569bdd5b5b177ae5cb32e512ac 2268 F20101110_AABSZZ little_j_Page_004.txt 0baaf55a1e952caacd34328b8b9362d3 cc0c29ef69f8d4a13cefbc47ba8645c3230534b0 18140 F20101110_AABTGI little_j_Page_052.QC.jpg 2ef4abecec1877ac08613d1d50f9c1c1 5ab7ad1b1c1d7b13ef8c3a27f85cd05cd0788c87 18728 F20101110_AABTFV little_j_Page_061.QC.jpg a82aaf2c2f545d44a8198f07d2135f78 89c7fe66aa975b7593de817a567ba26603a351e4 7502 F20101110_AABTGJ little_j_Page_013.QC.jpg f4e0ce775cb0b695b623e2c7abf7292b db40b446631449efa8c422f789ff9d6b41b64dfe 6290 F20101110_AABTGK little_j_Page_120thm.jpg 6f623b7853afd4fa74ae675330ecc844 d5fc7999aa612a4ff7376d0634d27c8524580402 1060 F20101110_AABTFW little_j_Page_112thm.jpg a9af0da87c4cdac6c1459a29c200f32f 35bd5a2c048343a6d04f29cba28b08f9617bac99 4822 F20101110_AABTGL little_j_Page_033thm.jpg b64628d3c1b95af14e8a938eab561adf b596ab7f679f90d045f4eb15827bfd5ab0111e2a 3742 F20101110_AABTFX little_j_Page_108thm.jpg 536e8fa8c03c0ec2e7ab556bbdfd6bdb 0bd8ff0c17d8c1d9ae2d35c77f1c16c442bccea8 4990 F20101110_AABTHA little_j_Page_008thm.jpg d1053b33f7ea144ba36845a0b048affc c906ebbd7bb762dee58d203af273c152026a4a48 17191 F20101110_AABTGM little_j_Page_083.QC.jpg c7266c4c0c58f4ba765ccbdfb5b82b28 c4bcc76f605a45f815a86f66094178f786974a94 5716 F20101110_AABTFY little_j_Page_100thm.jpg 955adc2d732975387418005dc915a0e8 800da724ce56a4f955df8f25ac2783f16e0029e6 7111 F20101110_AABTHB little_j_Page_009.QC.jpg 56e1e1f3a2a457961b7923a454501407 5db4ad2e4dfb1573d57fe829a44681c09a3fe31c 20210 F20101110_AABTGN little_j_Page_069.QC.jpg b2bee4c344f98a1ac356cd78dc06bdf2 52df1f1e48fab4db707a2716e6b1ecf76ed23c7c 11330 F20101110_AABTFZ little_j_Page_105.QC.jpg 49528a59d34e5366d5d32d0dbd4ab525 e7e8e07ad1628474a523772719988270c9a91f92 23374 F20101110_AABTHC little_j_Page_011.QC.jpg 2befffcb6f652b38c4780f278d1e6156 3fef8f4de29e5a841c5e29dd54d09c7092a81151 22866 F20101110_AABTGO little_j_Page_025.QC.jpg 45d3f1630f9ab7faf298463d348849c5 6c1e322bb9b879fa3a08959ebd7f07b099fc4b3c F20101110_AABTHD little_j_Page_012thm.jpg 89655fb5124f3594fefb79d83d66a3ca ca79bd3831db18d092ab579608e0a567e050bdfc 24895 F20101110_AABTGP little_j_Page_077.QC.jpg d6801ef6489c35df9d207437e2d0073f 6e0b82245f649fc7b3865455c378d7dc887aec63 17528 F20101110_AABTHE little_j_Page_014.QC.jpg 948fb91831d71b20016f67c6887eb90a c6db8ff85797de6dbeed2af85710204b7aa579d0 1305 F20101110_AABTGQ little_j_Page_117thm.jpg abc8f6ce10c6e2fc197f76f1d6dbe804 ca8e9507d916e0e4d916f1ce56cb36f135db0af7 4327 F20101110_AABTHF little_j_Page_014thm.jpg a5f22a5ee0a792cd859ca3d32553d0ce d2143673beef4d7744ed8d2cd90d0c5e1baa7e9b 1271 F20101110_AABTGR little_j_Page_002.QC.jpg 73b2f1ed6c17d9ed1e1beea80f3aef1d d57ea7b453679e1b0d7604bb452d51716ad5a7f9 17389 F20101110_AABTHG little_j_Page_015.QC.jpg 81b4ec5a3e53ea9e1c51b6a7a5384af5 93bca0d334789beba47ffdc5cb017b60a0844796 21115 F20101110_AABTGS little_j_Page_040.QC.jpg 82b8e55da965260ffd31af94399e10f2 c8904b113f906b4fc1b820a6275f6eaf50258409 4525 F20101110_AABTHH little_j_Page_015thm.jpg e06e53947c72924ce32f90068d527d55 752f59219e4c4e494e59481698b4244465826bb1 183053 F20101110_AABTGT UFE0021671_00001.xml FULL abdfbe9d084c026dd1549c8bc731ce1f a31108161d18829bbf49b1ed3e6048828792f134 19117 F20101110_AABTHI little_j_Page_016.QC.jpg 31aa2e0fc446ef7640d10fb730e0945b 4e7c2929a6d92f34a1da92dd823e6d0bf7e1c4ad 6055 F20101110_AABTGU little_j_Page_001.QC.jpg 81ce788dda66110370a0aa2198f66cc6 9fef64b26c31f14430c85b7745d9997da5a38b5e 4719 F20101110_AABTHJ little_j_Page_016thm.jpg c5b036f466907f207dc8936a055e0b04 1f9c1dc0aff79435ecabdafab5cf69c75c6360ff 1363 F20101110_AABTGV little_j_Page_003.QC.jpg 09d849b7b5b43782e00478b31213dd4b f99582f98550db26b791efe050864283ef456bf1 4899 F20101110_AABTHK little_j_Page_018thm.jpg 123a7700acd0b88ed7daf7d196162e9d fbe97b208782f533916aae2d1098d2d18a4a25dd 5603 F20101110_AABTGW little_j_Page_004thm.jpg af05050447bd0c409b0597b096777dee b382516459d9b7ae4bbfad5fc5dfb7bd38983ef3 5824 F20101110_AABTHL little_j_Page_020thm.jpg e581db12431bb59ce002d0d483ff1ba8 5b45e9fbb2e4e5e23265c8ffc72c042190bdd0c9 5978 F20101110_AABTIA little_j_Page_031thm.jpg 71627c80d2db61d165c214e971cf1eb4 989efe19ee29f6f4a358005f7603d47ac0c66eb3 5399 F20101110_AABTHM little_j_Page_021thm.jpg 882ca471d719e43186c1c692937e2e4d fc424edb0d3fe7f2a1d0fe3ded2ea23b17ffee62 22558 F20101110_AABTGX little_j_Page_005.QC.jpg 81a1000b08072cfccdbaa46071320d32 014902373edae63b144f9371990535e3aa82c3cc 24708 F20101110_AABTIB little_j_Page_034.QC.jpg 21520b8b814acf525acf4899cf7fb6ea a7a228c40b6463cc668ee2cd57db3d3c27f78b3e F20101110_AABSEL little_j_Page_030.tif 25eac8e2d4261592d227b46e17d3a94e 44b68e9c3badbb6691c81008919b284302db5771 21745 F20101110_AABTHN little_j_Page_022.QC.jpg c76b426402af1a4d79b2febcdd555748 1fde5baff476f500b0f344c86dc31806aaf32001 4529 F20101110_AABTGY little_j_Page_005thm.jpg 97bf3e006f06c1e20fddc4003640d7b9 e6a6bbf27436661db16d977049ebf2b9fc61f822 76783 F20101110_AABSEM little_j_Page_085.jpg efd5c4e8af64565758790e886643c664 78e1cf8c8038aee38fa527647a86a273f5887eb8 5359 F20101110_AABTHO little_j_Page_022thm.jpg d202573672b3058ff489cc3a181376d2 6b28bff64117849f1e1596b9156d2406bd0da9d6 7010 F20101110_AABTGZ little_j_Page_007.QC.jpg f20fcdd9dcca93bd5dfc1f5634362bd1 2b61662d225695a4a4a96290bd337b11048750bb 36378 F20101110_AABSFA little_j_Page_089.pro e092fbe40b569712b203c770c2f88520 b7742eecc5b23ef4430796b8ab9a42b39f77f76c 5670 F20101110_AABTIC little_j_Page_034thm.jpg b086a117d70db843c2d7b30b37fabf9a d872ed1e07430e42bd75e6f25f6145c8eb517af3 36287 F20101110_AABSEN little_j_Page_097.pro e9964fe31235553b8b85ce9c363ee2af ca47fc165f62ca93e06c9b69f01a3457cb5bb37e 21453 F20101110_AABTHP little_j_Page_023.QC.jpg 64e172ee77748caa99ef171fff239645 8974f9da50fb488152c75fb1db59607941d9e9e1 F20101110_AABSFB little_j_Page_073.tif 40f75c572d3f46ffc5206eaa27c5c69a b1bbf9d8e9bd8acee16a0cf7faa14a0d4b0514a5 21613 F20101110_AABTID little_j_Page_035.QC.jpg 3c18ca096cf9b9c652810e33b685943b 79355f7ccb12f5b84ff2c125ca2042fb01d273da 736951 F20101110_AABSEO little_j_Page_030.jp2 786a40f77cd242ab2bbc748e1625d54b 9c3919094dda3c984ea686c1f2c781d2fc8fd6bc 5040 F20101110_AABTHQ little_j_Page_023thm.jpg d3738945b7aab10fc852a026316ccc55 9957a2f5af143ead33c2df33ab2bc88e21b1b560 F20101110_AABSFC little_j_Page_034.tif deb00408bcce2712ef53c02f8e874789 099a12953fa9e7f9456d7e0c32318d179ba4973a 5014 F20101110_AABTIE little_j_Page_037thm.jpg c8be60e942c94a3a41fa72c645da326f a74dd5dca8ebdcb8caacae5898664fad6aba3fd5 22537 F20101110_AABSEP little_j_Page_008.QC.jpg 3af25e91326217cd2cc3a970ada0fe00 f6d6661c38cdd82706f999c2cfd838cf5d5a8b15 20101 F20101110_AABTHR little_j_Page_024.QC.jpg 451cdc46d9a1ef54c4b4ece6942fa61f fa868f43bcaf293540153c60b88b9e4bd2fe32a7 65459 F20101110_AABSFD little_j_Page_086.jpg bcd873fe5f8bf592cc9008fcdc9752b9 8d986086a2f0ba3c7820b6befc3466977c9f40cd 23331 F20101110_AABTIF little_j_Page_038.QC.jpg 9bc1adea086fdb8cdadd978beac4fa24 7ee316661006c858921a79a86b4f136310f9fc1d 23810 F20101110_AABSEQ little_j_Page_021.QC.jpg 03299f604b5eeeee1f74d2bbfc87aeec ef3455dcce3130dbf7d1bd4703d5632d37108f01 F20101110_AABTHS little_j_Page_024thm.jpg 72735440078cda2147576e0188456d71 586255748649313c5dda3f8c0bd0fd87fb3ff353 718145 F20101110_AABSFE little_j_Page_104.jp2 e5f206f18f795f995a0d15f12faadc4d afa65eaff287d411a27771992a1a4feeafdfd5b9 5413 F20101110_AABTIG little_j_Page_038thm.jpg 9352f0f4571e0ad95954f387f2a5326e 78a28665ec9b37284b7dd8bf8e97ec77ddeae83d 39189 F20101110_AABSER little_j_Page_066.pro 4aa18fb37b2cfc9009d7c3a78535acd3 1ba51a6f26b7c23eebdabd1dc69553526d5f59a4 2746 F20101110_AABTHT little_j_Page_026.QC.jpg bec1b7b2aa72674e5dc802eda336af4c 2cb999b6d2ada9a9c31520b95aff91f8adf1cce1 1916 F20101110_AABSFF little_j_Page_070.txt 3553fb4717f1bb6c14ef2c37ff5b9198 97e44ddee1180c381e28a97c860c97c1e831c186 5127 F20101110_AABTIH little_j_Page_039thm.jpg dced585238316776ed5e7eeb26820406 972baa9ef9280f09b6fbd8465d5070b8afde1592 77857 F20101110_AABSES little_j_Page_081.jpg 7c78cee459153c54da377363640236d2 21888ef0dd4cd7814cfd83c87bea58fb8ec3127e 926 F20101110_AABTHU little_j_Page_026thm.jpg c3dd054275f934ca8bc2250b7425b6f2 b70db8e585f141561f57c94c412f68230e3913c1 23051 F20101110_AABSFG little_j_Page_121.pro a8341c26320d4572b812d9ba98e0e0ab 9e9b54a1a2b68eb0388cece7e7c94a36f5e34677 5065 F20101110_AABTII little_j_Page_040thm.jpg c15e60a61a79963087f0c692333b547d b8f48d6e81cd95c85a89dfd5205fdee4fa1896c3 4491 F20101110_AABSET little_j_Page_065thm.jpg ca6a53d2faa757e9fe6cae5b5bf6c627 01eeddb7b899c709cf6abb20e6484124654fe894 5225 F20101110_AABTHV little_j_Page_027thm.jpg 87fc42839499c622aefd83490c9cc6d6 b05f83657dc54b8ca7339a679ef8b6ddc801d8d4 885377 F20101110_AABSFH little_j_Page_019.jp2 eeac09f8d31bcb4c4cac56e506e199a6 47062f5cbd635542708b671c443fb9169126fe78 24349 F20101110_AABTIJ little_j_Page_041.QC.jpg e5feefd1ff4d20ac5e677d5b8b1ae5aa 72c21397c9535c3013d1b0f973482537391c9056 21163 F20101110_AABSEU little_j_Page_047.QC.jpg bb99b3c324f8ed0cc4aee5f7390b2f5d 0aa45a32cba514663ea97b0283821f67fce185a9 23420 F20101110_AABTHW little_j_Page_028.QC.jpg 6abad80896f647e2dbb2727439f2007e de108185a1793f87eb86d1e85862727ff921f031 17181 F20101110_AABSFI little_j_Page_055.QC.jpg d2a7bdfe8ce2f23764c862db3f59ca6f 105f383d1d2c68b51e9c4560430bb7e758724baa 1551 F20101110_AABTIK little_j_Page_042thm.jpg 00d9108e5e849b8d735afa1b4a7dd40f 65fe6805722ee47caccd8dfa4ec670d05c24b46d 1884 F20101110_AABSEV little_j_Page_016.txt 287a87eb459dde0fe8b980d562ba0863 94776ee2585f39a1740121513610ad27c7ede1b1 5454 F20101110_AABTHX little_j_Page_028thm.jpg 71bb1614566d30479c5c382eb30ffba6 2cc8867b117b69828f857f231d983c08d1b20308 55975 F20101110_AABSFJ little_j_Page_076.pro 7f70da66f935e513954112c9a5344dc3 ce90241bf0f863bb803a9d605f112b4cee65d7e6 5354 F20101110_AABTIL little_j_Page_043thm.jpg 4f2facaa77f0570d017ed86447536718 0d076c46cfd7f45695cc44db9278517f7667dd2e 4083 F20101110_AABTJA little_j_Page_054thm.jpg b22f52c16ce19aa7ac17a0777cef7cfe d75d5a161a4a230f206059d3539865e0f703788b 839 F20101110_AABSFK little_j_Page_105.txt ab970efb9f2a006f50e2aad623eba2ae 844ddd127612237a8efc9a1001671115f3f1d49b 17640 F20101110_AABTIM little_j_Page_044.QC.jpg e6cb8b36eb4f19ecfcfa420b98122ec0 dd9bb0ea3ee3eba07b8150b36fd9550175fcfb43 4111 F20101110_AABTJB little_j_Page_056thm.jpg 7ade9f92455ce5c76d3373f46073f80a 115b13dea11a1f3d22534e0880966d3e703b1040 26601 F20101110_AABSEW little_j_Page_010.QC.jpg d34eb701ca60757bc1c6fc61aa276687 3932b4f9ff4547e928620565f339b21d5df4d4e2 21819 F20101110_AABTHY little_j_Page_029.QC.jpg 9f0d5ee4fcd7028fc7b335c6194b22a3 11ff6b4babda4a1dab98e9bb8906f88f02b76607 F20101110_AABSFL little_j_Page_029.txt 5f60d0db1ca96296314f37585258a5ab f57b96a440efc25938ba5071bb11a5a547bf8fab 4944 F20101110_AABTIN little_j_Page_044thm.jpg 9a5d85a28d9799f37ebeca6e40d86a83 46f9c8f4a5845267452b330f7d5471aae6ba44f5 19794 F20101110_AABTJC little_j_Page_057.QC.jpg 9169fa21f5e8aa2ad050c9a24c713d37 4388f063fb0c678874f6d777c4d8d19674b6a1bc 48406 F20101110_AABSEX little_j_Page_011.pro 553af12da2ce283233bf8bb4e1683e98 401249a3cfda815e375f3e5e747ebce7e7e1196e 5307 F20101110_AABTHZ little_j_Page_029thm.jpg 8afce18f67e740d58d81d7fc9469caa1 5fa3dfcd19b49fa9a381357ebcb207da8f1d5acf 19723 F20101110_AABSGA little_j_Page_078.QC.jpg 60472426df100ee1f6064779407d1d45 427dc00dcfb1c4a72ec097fc44fa7d7e8041ba1d 2119 F20101110_AABSFM little_j_Page_085.txt c45e03d47cb5775486542d27ee1ca79a a7c4842567156d1b71c27c68d17b5c49ee419699 5032 F20101110_AABTIO little_j_Page_045thm.jpg a42aaba53e0ab8b36e28f49191fc8bb4 765d607f76c029535dde1e1c37f95ce9e5fc29e2 4592 F20101110_AABTJD little_j_Page_057thm.jpg 2bde51328c3631438860f0fe20c6beec 03cef51e72da86974e3c4a4d15df31e7cd14b4ea 76968 F20101110_AABSEY little_j_Page_100.jpg d1aa6031f862d62ddce9e62c997a4d12 9924410859b8427c62b54d9be6f9316e30bb0b04 1732 F20101110_AABSGB little_j_Page_052.txt e2ecb5949db6301d36c59d554d73e5f4 bdc2252071c56dc6f32bfd56c80f317805e5fdf7 3692 F20101110_AABSFN little_j_Page_064thm.jpg 972ec3fbc58f3ad1a2c0144759679d00 1fa22ce0c19abc8223c72bc7990e4cd175aaa9cd 11598 F20101110_AABTIP little_j_Page_046.QC.jpg f8c788d437c68c205682f7828a9cb671 249d09f71e53322abbc74dfaa061191b93392619 11901 F20101110_AABTJE little_j_Page_058.QC.jpg 1218004150b9b4429ddf3ddf09494f78 ad72ac1cd6a430d9bd79086efe6c6266e7e96fad 1051974 F20101110_AABSEZ little_j_Page_113.jp2 a8bbca20b7145856f1a910b405604940 8fecbe850d2cb8a8f8dfe8b9e133b2a320552bfc 3474 F20101110_AABSGC little_j_Page_026.pro 46ae5a2260d8826526d7eb5d27889d65 fb04fd5633a0090e83c52908b537fcb4188764a0 47318 F20101110_AABSFO little_j_Page_106.pro ff6b237787fd45d55ae3ed4324d5606b 2f109901fda4dbc3e6cc456a11ebe8474560febb 3206 F20101110_AABTIQ little_j_Page_046thm.jpg bc63b3232e7a447efd5fa3ae50b0be52 3024d4989531d0cb529bdf2ff4dac0693b215d33 2922 F20101110_AABTJF little_j_Page_058thm.jpg 0d16bbc7b65278ea8174c6adf8d4216e 1ae32a811a3f8eef4b0cf96f8ea277d3d24dfffd 5118 F20101110_AABTIR little_j_Page_047thm.jpg 4d3ad4fe27178d6835e7e737db36c916 94a0eb7655e7097e1a070b0c2f43586a333b8088 F20101110_AABSGD little_j_Page_060.tif d7b67149c904483d8e3145dbbd68505a 84fdb21482967a3609dfd59893803aca3d567f4f 41820 F20101110_AABSFP little_j_Page_116.jpg 96523b7f85bd6e4b23bb64fca8fced7a 81a446a629057d9c25344b34d94e3c424fc4ae58 4896 F20101110_AABTJG little_j_Page_059thm.jpg 87e466b659e9ecdb6ffca6af9e6c112d 52dc9655b354023b9cebbe79471d2bf7e13399aa 20278 F20101110_AABTIS little_j_Page_048.QC.jpg 37de4d24506f28d5dc2d175a8d4679be 5ea28e84dded5d3227ab009e0b779062caf185aa 1918 F20101110_AABSGE little_j_Page_032.txt 66ebae4c1b0125312471d3d71b0d639b 767e183eec06d5da4ffab4554e53373eb0237240 46441 F20101110_AABSFQ little_j_Page_029.pro 7e1b0ea289b9b76f7c1804680b0b9c74 95310817da081b3b45eec38eb31a7928d821bd0d 17313 F20101110_AABTJH little_j_Page_060.QC.jpg 06af341226ae7d509320983304ae7173 30b064d131587e5d78d1ab368c804f34d6452c3e 5033 F20101110_AABTIT little_j_Page_048thm.jpg 44e8095631dba0878e1092ca7b51ba88 7681d369e9bdefd3b38adfb9f05a45950ced1919 F20101110_AABSGF little_j_Page_092.tif c678b2231fdc57df032160729bb377d6 d8dc1f836305e8a9919f79dc1a11dbb49bb91dfa 898283 F20101110_AABSFR little_j_Page_109.jp2 0085150c1670c117e9689d16b20f0fdf 0062b8f2d61faa0fb7fc7cf022237321294e5a18 16537 F20101110_AABTJI little_j_Page_062.QC.jpg 2a7f13fcbb5f1efe4e1c5fa3e420cc3a 06777f1226c1156572fe6960ab8b5cd9b22fd457 20451 F20101110_AABTIU little_j_Page_049.QC.jpg 28a6bc0b04ff1d25be9be8388cfe76e0 16f4d5176aa7ef8b6e4395d0f7fb43eb693545b0 2173 F20101110_AABSGG little_j_Page_101.txt 5d65648b059f8027ef2d724dbcfd7b07 ed95c837d834f5fe190788b6c7c2d9a39c1a8a7b 824165 F20101110_AABSFS little_j_Page_052.jp2 d517780898b47872d28b9d4befa3fc7c c2ad283af87a33256449913c056d6d03fd102b85 14664 F20101110_AABTJJ little_j_Page_064.QC.jpg ed1caf0596616771e06011b8ce1bf354 51212bd351bde9cb6641eed70fb76d578bf37518 18168 F20101110_AABTIV little_j_Page_050.QC.jpg 3eb503abed34317799fe4fca4e261131 91b89c66de8bd0b001a4de1bbf66e3f0a859ccd6 22362 F20101110_AABSGH little_j_Page_043.QC.jpg edc8f64c16b6bbba7fda9db705ce124a c2986873f2694fd8cd940146d95671d4d926fb8e 1051969 F20101110_AABSFT little_j_Page_012.jp2 5f434dad1f025ce4c736b5b7b06225e6 ad2dc7f441eb90b98adb2ae51ca4037ae21786e8 4734 F20101110_AABTJK little_j_Page_067thm.jpg a16be2290d341d4d282f10d5490f998a cbadfd7f9fe0afec26b3c86e1d6bdc6db9ec720c 4847 F20101110_AABTIW little_j_Page_052thm.jpg cd91a259e2f1ad2761277f3071eb4211 9881c73086f5f6ea35e006d73568ea2e7c180098 938 F20101110_AABSGI little_j_Page_121.txt d1c2b5ee98aa6c1b319a3b654410a04f 57e78fbabaff30c924be8120ef035fc4de843cdc F20101110_AABSFU little_j_Page_088.tif 5a6cca3a8611caa5059d880c8fb9c990 a2fe9c9b1f002c595c7c789562332cf9a96cecfc 16033 F20101110_AABTJL little_j_Page_068.QC.jpg 7b2f79d1c9e3369a12bec03011ae10cf 831deb9d1b7f42e6438fb65a3a96245c736ebc52 16137 F20101110_AABTIX little_j_Page_053.QC.jpg 61d4ac827b74e58d45bc17c387a35c16 ceee25e58c2a9131fe5adf3316dd94521cda0a89 5705 F20101110_AABSGJ little_j_Page_077thm.jpg 616819246b60c04c4aa8dedab1e797fe 4e6afbe490c1535d2a8d7cf332b0845727032d2c 47633 F20101110_AABSFV little_j_Page_079.pro 526eef98fef4ceb51fdf04c462f68157 4a1e090a342c56b0a1b56f4486d4ea7a48a3ac95 F20101110_AABTKA little_j_Page_085thm.jpg 60cf35f978c3bd8b63c5d7c33aa72b8d 95271f12f3c9b9294bafdb70c300bf8a129e5a39 4133 F20101110_AABTJM little_j_Page_068thm.jpg 65b631d2b5014aa55c115bb57d0449ec e58c43727bf57692bd34f39af5b5f0a131279a48 4325 F20101110_AABTIY little_j_Page_053thm.jpg 67d201f8d2ca22efe5da59785d1a725b a459bd6d1eb3472b6963b2c8dc403b79e5cdac6a 33367 F20101110_AABSGK little_j_Page_068.pro 891663637b82acfc0b77d59098b18547 8cf2a57845742b6f7f2409a9912a810f48511609 1388 F20101110_AABSFW little_j_Page_001thm.jpg 98cb0f6f7eef5009c9bc1972ccfab317 40779b8edb68940eef7469006d58d41652e093aa 20085 F20101110_AABTKB little_j_Page_086.QC.jpg 67e12e82c0b45e19fb2575ee56fc6d65 e23da522f1625fc2a991b8908922303023782da1 4376 F20101110_AABTJN little_j_Page_071thm.jpg 6dd064f3cf7f585c2767d0154ab66de9 6934389fd26927c69efd145ff200a49e76eb68ec 1827 F20101110_AABSGL little_j_Page_067.txt 5b2115325ced186ae84d7310f7f4e40b 2cdd76b024bcb83082cecf545b98cb477535a81c 4922 F20101110_AABTKC little_j_Page_086thm.jpg 0725f31395ea951a4113461b7aabbed2 00a188cd0b5f679d287b1199acad33280dee41c4 21423 F20101110_AABTJO little_j_Page_072.QC.jpg 00bb95747008ad562e69d8590fe2101d f302f59897f76c30c4d53598daebc0e9ec7c8a0b 16221 F20101110_AABTIZ little_j_Page_054.QC.jpg 853d4c920640ef51ab06e0716d3366cc 0c2d75461c0144469e4e01f23c35655f9eb99fa4 4715 F20101110_AABSHA little_j_Page_019thm.jpg c69c7077a530093e96c777a74e6499c8 ee6a7676392e4b70cc42f70d655e3acce6f3bcba F20101110_AABSGM little_j_Page_080.tif 5b7786f750426e5aede61b0e4479b7bc 61a582d395c718caf0f05c5f19c724b0e8b9f1bb F20101110_AABSFX little_j_Page_120.tif a2212fad77973fe3ad4d6572a3e37ef4 490d041ceea4cda71682b946f7505fd703b2893f 18489 F20101110_AABTKD little_j_Page_087.QC.jpg 0af3213a27a9e353dcde19c566ea0785 c2dd09073a214e4557855ca82026525821b959cb 5274 F20101110_AABTJP little_j_Page_072thm.jpg 923cdce63e2200f5bf025c5020e91eee 67d047e10b57edae1e3c30f35401c10548b074cd 5422 F20101110_AABSHB little_j_Page_101thm.jpg fc714f8e97caa04e8167d73cf9ab52c3 e06dced16ad9075692047342c5921a2504e75291 856624 F20101110_AABSGN little_j_Page_102.jp2 184b312e13694ccbca399635cf8269c9 82e2600fca5e7fba2de1f898ec0ded406beb14f4 45599 F20101110_AABSFY little_j_Page_072.pro 5f2a275f8a2f43dc530c1a6502fc68b1 77f1481ee83d2eecb64b41be4a0a91a2a3ccfa86 4589 F20101110_AABTKE little_j_Page_087thm.jpg b6a222c0cf17939898b826f9e8a7f051 2845f43270a6eb4491ac5507acec64e955acfaa3 18808 F20101110_AABTJQ little_j_Page_073.QC.jpg 3206e59e5f2212b2e86619ad0d984237 659eb39c39f4d870b151f8560ed4544899e17747 3901 F20101110_AABSHC little_j_Page_082thm.jpg 9ccd6a95291852ac061be01efe2e1d73 143855f4f24422a6ec362ed3bf010e8cd6c0f34d 19741 F20101110_AABSGO little_j_Page_033.QC.jpg 5cba531071e5fa857bfea5717347582e dc9f97332ff0c84b75f2d3159259f6594478d16a F20101110_AABSFZ little_j_Page_050.tif f21e06aef431d4615e36c387cd5357bd 1d4c2d957411e77a2db388b9c06b33d8a2116f8f 20823 F20101110_AABTKF little_j_Page_088.QC.jpg 3ffa788d19626507ed4e0adc71d80499 e40c64cd837bf27dc94a6b2fcabef8e482200fa8 19018 F20101110_AABTJR little_j_Page_075.QC.jpg f0750c422fa6ba682b80175b84ddefa1 710b8a49aa5a45d95701f3b0f2b4b42d641ccaae F20101110_AABSHD little_j_Page_037.tif 61f35908c68e71ba5d8c14d29d019c36 6178288d608303ce300610f95008941b8b9768b5 1890 F20101110_AABSGP little_j_Page_057.txt 940e0b8b159fa47bc093ab7bccc672fa 52a9908440396cd4539f13b2e4cd36200c022d82 4772 F20101110_AABTKG little_j_Page_089thm.jpg 73f2243b8d3b8ce5c49f6ae334326470 f28a5c6488a9e2aadc4c2235226eaf51a7eb6568 4867 F20101110_AABTJS little_j_Page_075thm.jpg d5e05e56529fe4eab9e7b0098ade2a3d 3e35c3c4060ebdfe0d7b4de1a7451428232b1440 F20101110_AABSHE little_j_Page_002.tif 4cda02ef98212ba9a417d092d8d110f0 8b05008cdfb237be32817510adf3892080e753d3 1051892 F20101110_AABSGQ little_j_Page_100.jp2 e1ff29f7f1ed5793d022a9ccf0007830 7cee6648982b5d9ba922f55f86f8b42a538a4a10 10056 F20101110_AABTKH little_j_Page_091.QC.jpg 177bab178c7827f955cc0e3bfa8beb93 f61ee331fa154193bcca078d564e40a9a36e3457 5865 F20101110_AABTJT little_j_Page_076thm.jpg bf72c2230453feb10bed48b9cffd6483 d7565d882a3233a5ca8e696e1f9a96c013e577ec F20101110_AABSHF little_j_Page_020.tif ded3bb770c69a9bee601ff51a0e3dcbb e6947c2a1c2b3e721169a7b1a62a2dd748a4b790 757771 F20101110_AABSGR little_j_Page_083.jp2 d15bd3f7171667fdfcc4ce2913cf4e03 55e6f9f81945eef03fd65b77363ae933fbef0576 F20101110_AABTKI little_j_Page_091thm.jpg 61b4d6bf31378da05545f5d09376d17e b5b024c04af471a85741ee664e96f019ad630c6d 5517 F20101110_AABTJU little_j_Page_079thm.jpg 4da37334722df498e25f60ee1e2d2619 1e7f8bd7bbda2b6116c7f65a375bc17a0e77aa6e 22170 F20101110_AABSHG little_j_Page_111.QC.jpg 8d9e11dad157c261167bc27dbce0df5a f1fb8cfcf213077c8a0e640b162a331c64b64e91 272 F20101110_AABSGS little_j_Page_112.txt dc1603c7552e27dd91d09506fae9b68e 297dfbc0846ccebaea49428cfa031b1b078f330e 20792 F20101110_AABTKJ little_j_Page_093.QC.jpg 39107a20bf147e41f18d750fde6c84e5 a93b8ea737baa69b280603a0a3a06029ab4044b6 23079 F20101110_AABTJV little_j_Page_081.QC.jpg 3653d4bef0695d4b64c4a04bec642f4d a303d7e9e482e28d8b067059c76bd45678f48b1d F20101110_AABSHH little_j_Page_074.tif a13bbde6f2b0d84665f4838f0f970181 3edd72183bb840d67c85dd17f22620d70f8b3776 75971 F20101110_AABSGT little_j_Page_099.jpg 6c387e0d0ca26887e6cf59ce4e188a63 3c637d413e3418007f7e8b7a14517b6faaf6a1d3 4794 F20101110_AABTKK little_j_Page_093thm.jpg 4a5c53382f5cdff98714b68d4587db5b 538c3e9569217df0a04d0b7e261efb335cf0c62b 5562 F20101110_AABTJW little_j_Page_081thm.jpg d17733d8085505e268a865fa8d70a402 5b1762c77c92cc0f83f3f327740ce8a838bba8d4 2110 F20101110_AABSHI little_j_Page_106.txt 64eee9be5a1dcba5bdc3d200b220031f e6605e8b11e69da25ab05557ff030f9cedb23c53 F20101110_AABSGU little_j_Page_031.jp2 79b786cba1988c77ca90f69db5c8d51d 2705b07499f2e56a4c9e85ef74775b4fd5f1a060 4540 F20101110_AABTKL little_j_Page_094thm.jpg 2ffab5cc4417b4f57e706244d22d5a04 5537632a48c9f0c7df08f8871894036da6740d9a 4393 F20101110_AABTJX little_j_Page_083thm.jpg 2021fa56d153995e3687993e0cbfcb8e 5c172c8a459d947ee10f86728d630af9142bdec9 5120 F20101110_AABSHJ little_j_Page_032thm.jpg 7c753d47cb168b6f171ae1260314e9cc f7cb8336c7b06292c9fb2b34ffb5b1c4adb656a0 2124 F20101110_AABSGV little_j_Page_119.txt e4795ba79cb126d011889324d272301f 206083d0e1ff16de85ac7b41c32e9fc77b19bdc7 4978 F20101110_AABTLA little_j_Page_110thm.jpg bfe51e5209f297b9ce9743faba1f8b23 8fcb483c6ca0050d9b72ab0ea163b20e84a0b726 17005 F20101110_AABTKM little_j_Page_095.QC.jpg af30eb042ee5e698744716b28b56bb27 dca6f45c7cc36fe0cbc209ff8ed3ec67a95820df 5438 F20101110_AABTJY little_j_Page_084thm.jpg 2e70e5b24fbd4c43230bc9b38b31ec6b a3434cd2e9763b8f7fb8bd1d5a5a5621987979ed 43465 F20101110_AABSHK little_j_Page_045.pro ba48af5f17ed9e7fd1efa86e4c2762da 9b010bb3bed39747ee6f378f06220bb74a417d0c 83744 F20101110_AABSGW little_j_Page_020.jpg 3ceb4f34ebfc209c87c2d7ac2b4033d4 6954ada31eacee6ae4cdedee4de7187dff5ec5dc 5256 F20101110_AABTLB little_j_Page_111thm.jpg 838b49e352667d64a14363d1f3b2a622 e8d39a68c554cc11c94f7f9fb5c9547a45865798 4500 F20101110_AABTKN little_j_Page_095thm.jpg 244e06cc19fc807dbe581115dfe99a0a 7154715cad0d0b3a2c3a4405d216ee1c3c3c9168 23161 F20101110_AABTJZ little_j_Page_085.QC.jpg 6dd181bd3666684d0f4b65380357d408 cfaa5c4f42b69ddcfa148362d6f9d5fce485ac79 21876 F20101110_AABSHL little_j_Page_084.QC.jpg 7430d3ccc4b0e32ecb74164bd51947fa 453f561241c855fb7814edc7957a4a22607e7985 1349 F20101110_AABSGX little_j_Page_068.txt 9357abe795a7e4ac913cfaf7fb5864cb 3794ce26812463b42940faa5cbde733ce931ff58 26629 F20101110_AABTLC little_j_Page_113.QC.jpg 1a4578eea1b43d2423361c26e302d4d3 92b1b7d021609a08c010917f256e159790feeb85 4549 F20101110_AABTKO little_j_Page_097thm.jpg 4f95ebf58834e5643b64d1d1f645842b cc0e28693d11bf04457f14cb17b6a31067639dc0 16725 F20101110_AABSHM little_j_Page_030.QC.jpg 1e5dd9b0852a359f101c7911daec2b64 43781d552d9fa26781397892fd2ff389e7d9f207 69736 F20101110_AABSIA little_j_Page_088.jpg df8bf5f382b1fa4d3bd3e0d47d493114 ba7cc529f8e3321298590e3203c5bae8498ac658 24780 F20101110_AABTLD little_j_Page_114.QC.jpg 7bcc1a98f64b5a708a3ee55abf4880c4 9795a0b51453d1b433ec19bfdca54155d9e4769d 25473 F20101110_AABTKP little_j_Page_098.QC.jpg 467bcde90e3bc63e2988451e3770bc2b eb951abc47c11799f7c0258fb8aa80a96e110eb6 F20101110_AABSHN little_j_Page_116.tif 85d60fafbc82152916bc984d8a8e5331 4809ae649027f58922cda566ad9e8763e8aea127 471687 F20101110_AABSGY little_j_Page_046.jp2 c447fcfc5c6677e49f6bf9ffc0a90431 d9d67c936b0ca62b0b4e9182d4eea512d4cc7762 925953 F20101110_AABSIB little_j_Page_088.jp2 a3bdf9e0694c8ee760c63369678115c5 dbc658dce6a1cd44bc86650cab74a0dd69fb3b71 5621 F20101110_AABTLE little_j_Page_114thm.jpg 2bc570c2c0ec091caf0e5d1aee10ce4d 3b85cd272dea8595629bccf166a1ac3217faf02b 5445 F20101110_AABTKQ little_j_Page_099thm.jpg 354b027534812838472801535fb917a6 c6a4c3af0156837865d6523d984ce79d99790620 F20101110_AABSHO little_j_Page_023.tif ccfaa42dcd246889ae43e9fc94118e63 81f7ef72dd67471d2a7b58f73feef0fb95d1e1a9 5985 F20101110_AABSGZ little_j_Page_010thm.jpg 8220878d0965bf414e7798485d6b466e f44f00a94b906f588c7dfc3894ee020fc123507e 1051983 F20101110_AABSIC little_j_Page_101.jp2 edf84cd3b70559eb764f15e0c8e9a783 e7565a5415e5c13df030a409790942c7cacd30dc 16341 F20101110_AABTLF little_j_Page_115.QC.jpg 79ef703d7e3c1a6af642e6b6163321e4 2f174b5406487d9a56239d5911a0946c3c840432 4654 F20101110_AABTKR little_j_Page_102thm.jpg a26e96a29ee78ef02214250a97ea16c6 5814cf3154281bc4821641c12402083b764b5468 F20101110_AABSHP little_j_Page_059.QC.jpg 80bad710d08a9bcfcb4b36e803f9abf0 caa15f79040ecac9ab62ca011bb4f32590e8ebea F20101110_AABSID little_j_Page_074thm.jpg 6180b5bc3c550363e6f146861d35025a 6a6793ca914a30e9db4af586bc038c065f2bd793 3534 F20101110_AABTLG little_j_Page_115thm.jpg ca3fb4faf145feba6246ece51856f973 a5e2a72c9ae59bfcf7fcc899aaaf145baaa5bdde 4910 F20101110_AABTKS little_j_Page_103thm.jpg 92da197eadd2d77f4ee222e277d9f6ba f8df8a773416724036c07d284158a1df747e0690 66492 F20101110_AABSIE little_j_Page_024.jpg 783f6b15dcd029a0c7caead322036f6e be5eb8c63a59a17c1d59f38ceb8d46bd663eb2f1 60434 F20101110_AABSHQ little_j_Page_095.jpg 0d1e297870b75dbe35eded31bf115cef d8338d94e5108fbb9098e8013fc4ca880c3a410d 3629 F20101110_AABTLH little_j_Page_116thm.jpg 06384311274354cea2243070f33b6fcb a0c6427f7a147cc3329480e958b6d3be259b70ad 2720 F20101110_AABTKT little_j_Page_105thm.jpg 5116b6612479d8ce003812bfcfbe21a7 ff81f2c23e42fa8e5a0a3fde17c4af11d25b73d9 20349 F20101110_AABSIF little_j_Page_036.QC.jpg c3b0e07b1ddc7c8a36e59968bafb9a12 88d55d3681be1ed6503fc3e69f2c3caa4b12d2f6 42191 F20101110_AABSHR little_j_Page_109.pro 0c152b0ca7d356ac5dea8f443cdc1184 f4dd3f26d883adb445cbe29b1c29c6f68369d0df 3657 F20101110_AABTLI little_j_Page_117.QC.jpg 09e23d78f9da182259fb1ab1ff526ecd dfce1db7e1f3a1dffc66c72df4c7d92d0f55657c 20968 F20101110_AABTKU little_j_Page_106.QC.jpg 9ae13e2aa2b7edc5a501c0cd1d374d44 1c6d818dc94aff45a124accc90ed96c709c7ed8a 63027 F20101110_AABSIG little_j_Page_103.jpg b37cdc59626c3ebb0ce0fc48b44bc94f f840cb64096bfdee6138474ec00a1ad08dbc8961 2030 F20101110_AABSHS little_j_Page_036.txt dcbb118a21e6ab808c10a8fbe5084d11 5c349d4e7c66dcb8ff02985262b1c99f7c248ec8 5840 F20101110_AABTLJ little_j_Page_118thm.jpg a567d744ed5d191ad8696d4cd3fbeaff ee476e72af8b72819ae29c6e6096a955a13297f0 5026 F20101110_AABTKV little_j_Page_106thm.jpg 3b05dd3398ca3a3da0f86ae8fdf4cacd e2a4d5b09253a3e03f497d45cddf0f049f01bd97 941116 F20101110_AABSIH little_j_Page_051.jp2 d9a74ff23b4f74fdff5fd9627f01636d 3168735cc5090c32570050dc885991c520a6da0d 42057 F20101110_AABSHT little_j_Page_015.pro 0dffef1072416f52395ad68adec65435 6c3b81fc4ccbb1bd1589edc70b1eb4bef2f8aff6 26039 F20101110_AABTLK little_j_Page_120.QC.jpg b56e95195b411a0080650e94221c50da 8a83ccdacfec63b97a6434d5a7649a88c9d8923b 19473 F20101110_AABTKW little_j_Page_107.QC.jpg bb270fed180762181904ab37b786647f a64f0809eb0992a4fe01a91714b76d61cf4f842a 59614 F20101110_AABSII little_j_Page_061.jpg b415101e6cd8e7b3a54aa861ed4abcdb f394f940cc8200ade1713f9c5a5311fa6a2e540e 1650 F20101110_AABSHU little_j_Page_014.txt 3dbb64d1fb7afcff5de9de828db3806a 2aced17c39a0b9991b649ea2822d1e55e50d92de 24969 F20101110_AABTLL little_j_Page_122.QC.jpg 2d08610248fc85372254bf85a8357b32 78111a6aaf8e13f8142bf75cb3498381766f08f9 14637 F20101110_AABTKX little_j_Page_108.QC.jpg c808ddc9fc1e0b13e4d305daa257da36 a494586940c5a690b6fd905518294f9d57b68154 840827 F20101110_AABSIJ little_j_Page_066.jp2 cc8bc2996ab7e3f6ea0b2a8fbbd77e40 1a2471e66694f0e19a233e360f9501728f97fa8f 4343 F20101110_AABSHV little_j_Page_073thm.jpg 8841380cbe58a26f0dc0b60bbb407062 cbd7410a78d4712e29253c782b2d2669c9c2797d 19864 F20101110_AABTKY little_j_Page_109.QC.jpg 7fe3eb3f8d3c02139dc4c67baaffcdf1 c64b2f6bbcc2676bdba38ce11eeba584ce1f3657 F20101110_AABSIK little_j_Page_063.tif 06ca7bf26c3ed434693fd97bf8105cc8 165cb440295b7ddbe5080f48f52c507f52454ec9 38445 F20101110_AABSHW little_j_Page_052.pro dd7c2381e8ed34f3a452752617f715ee d0ea4de473bc238dcc966550f859fee43de66103 4773 F20101110_AABTKZ little_j_Page_109thm.jpg 7ef735c95e8ea4e3959c710d011e3deb 5b3f278562793ce1485a4e5632e6f657bc37993e 2056 F20101110_AABSIL little_j_Page_081.txt 0ef2021026c5496fba8ed80b070023ad 95a4310e0303d37050363f621f50c06817be7ac6 43562 F20101110_AABSHX little_j_Page_110.pro d7a2705b715cea6f8dbd40c4ee71966c fd64daf90681c7cbe38812bc4cd300fdb4faa8f0 26725 F20101110_AABSJA little_j_Page_076.QC.jpg 39846f575efbbac1da0bcc12ee9b9849 c7f089c36cb7af3bc294500dad543fbb1df59220 F20101110_AABSIM little_j_Page_076.tif a5dca22271b5f2c68f0f9df11a1a21e1 a0d2bb2243c0a5b62594c833bdbad7c3602c99ce 63047 F20101110_AABSHY little_j_Page_073.jpg 0371976e8dcb2a6463df136a0c25948c f9e58df711f58bd0255ff9f3e964955b7e17bf81 F20101110_AABSJB little_j_Page_006.jp2 8e440c67032c19378df7771188199e32 b9008a96e4ef26360a55783c2886a557f18393d9 1051934 F20101110_AABSIN little_j_Page_118.jp2 3e8609156d1e4d11ba4cca4bfb5d5fb1 4575a9cc4b0c984dbfcfb8bda0b50652b90c69b2 48540 F20101110_AABSJC little_j_Page_025.pro f00ed3cbeacafa378d3fc49fb56650ce 0f8677ad4995e0e69b0f658459104c6e7db43b41 4502 F20101110_AABSIO little_j_Page_030thm.jpg 6f99d93edcdf7aef853562b2520c0584 b0b7aedb2f95f536afaf289ce4134bfe78effa12 F20101110_AABSHZ little_j_Page_098.tif dcaeb24396ff6da46985c4a0d613eaed 5fc1851614cdb323081c8d86911560175043ba5b 909074 F20101110_AABSJD little_j_Page_110.jp2 21d5916e864e41f7849d42fe1bae59b9 8485ac9dfe2bfb6d71f6d23c286975a37058318f 5144 F20101110_AABSIP little_j_Page_035thm.jpg 7f389e2019918f2cd4d6bcdf8eef8963 e9be928cf7e55620d2d12747f47cf9c304b2f04e F20101110_AABSJE little_j_Page_047.tif 6cd1700ebbc5dcfa7ebc2782e95be5eb cd6616f7788136a2a5c8e074ac54baace5b77def 42316 F20101110_AABSIQ little_j_Page_069.pro 5cd60a0ce88626980fb71ad4504b14b6 de6c4f0c5742818a31651de34c114e5d74dd7c75 5345 F20101110_AABSJF little_j_Page_051thm.jpg d54e92d86e35b1b96a0a4aec0cadf30b 82b49362c1290013f3393b93de75ff04c0a00da2 478962 F20101110_AABSIR little_j_Page_105.jp2 355f4b8d1e8a9e17a7d9f89d20eb3d2b 2dfd4dd0c6e318eaa6e3e8f3420a6fde390174ec 18750 F20101110_AABSJG little_j_Page_066.QC.jpg 8c68d541e72f2ce2ab5388d8bd795a13 9d0276b9e748a94b3e702937d1330077d0c655d2 72756 F20101110_AABSIS little_j_Page_025.jpg 38c916a54ed8a97e2e91eca3edf4c3f9 188db05cd9e41c0d8faa862d4854702f2b2c47bf 789 F20101110_AABSJH little_j_Page_091.txt 1f27dba63d3debbfd53f465fbe6bcc25 6b84934435f127342d216162b8d6732911251bf4 18673 F20101110_AABSIT little_j_Page_080.QC.jpg 4c7f27b4bc0322ca709c72a870b0db99 e2c80a8b06dbadd0e5d7c6f27aac57326a19a3b3 4337 F20101110_AABSJI little_j_Page_055thm.jpg 11a4f71660590eb54c3ad7fed83ff703 6675172aa3c509b3ad49ea0a1a3b51f6e240c6eb 942783 F20101110_AABSIU little_j_Page_093.jp2 d277af9520455ced4374f768b951c726 0f7fbb1bdcb48849bb2adbf63c434d201047b5e5 64102 F20101110_AABSJJ little_j_Page_019.jpg 99e26b29f95be249e3a7e124aff425cd 7ed83451af1df38d9c40f97f619773f60a69c279 79274 F20101110_AABSIV little_j_Page_038.jpg f66a74ae3d39c392cba9939ca5bd3375 ea2be4fbd5ed7729c6b52793f09ed1e1f0b4b117 26740 F20101110_AABSJK little_j_Page_031.QC.jpg 158f3b2c62989c775b6a285936bd4430 da8b564ea13f2ca50cc114ec42227ed13d9f2613 F20101110_AABSIW little_j_Page_041.tif 2e9fb1797f2308672c3ceecb45de7c2c 19e10ea4ea3a8c74e0542226b01c46eebd4e8534 1051915 F20101110_AABSJL little_j_Page_028.jp2 6aac65d64f6ed51960a94308aea9e7fd c32db61cb6252423020174545f4189142ccd2db7 1807 F20101110_AABSIX little_j_Page_047.txt 21153306672795dcb42f5abbf7b71d9e 8588a5848aa70bd69e96bc94a97710329e9b35f0 1948 F20101110_AABSJM little_j_Page_065.txt 290a7a9ec160f32b58ff61884095710d 98c5cf01852dcb8face11e52407f4595e35eccd8 F20101110_AABSIY little_j_Page_017.tif 7bd29a8e59dad4abb60f1bd0e5b796bd 7c2e6e664dabe0f30ce4f0524d10e6d36a9fa726 F20101110_AABSKA little_j_Page_008.tif 30253db89ab598a1ed7493349a587e69 62ba2a565408191f75b11c8e5a9ecf33a106b2e3 13010 F20101110_AABSJN little_j_Page_007.pro 28e62e30b808e4ebd789936c9ff5042c e3dbf813e73cafa5b86eec4a7fece236b669e002 42481 F20101110_AABSIZ little_j_Page_019.pro 528fdc0774f164480db67841e1a944f8 9cfb4016d72d687fefe6d59bff360330287b8367 1999 F20101110_AABSKB little_j_Page_079.txt f6e1b7f6997656d70619f710bf395b67 3aa02b97803814f73c5d95ba4fb3b2b4505a495e F20101110_AABSJO little_j_Page_043.tif 530ccd7ff23850824b7e116bff22ffcc a84551dd35e1bbae2681a6d36a5ff188f1e43405 1839 F20101110_AABSKC little_j_Page_080.txt 0503189c5b3d67ba2c20e46d1a02e809 ffa4fddaa9078e8e60803fc1bdd7529226423ae0 21365 F20101110_AABSJP little_j_Page_039.QC.jpg 2eeddd470d2d05f513cda9f44ba46e61 49cc4fa195bf3f9fc76a447da7733e7d33991fc9 F20101110_AABSKD little_j_Page_094.tif 5d2240233f5cfb44531ff29174586664 5226a86a715e9ec095889d12ea7a8259a4e7bde9 6182 F20101110_AABSJQ little_j_Page_119thm.jpg 4de5dd97811be12991bf10d1a2c56988 522751fa10c6d6eb5be7fe2d7f6bf24bab6f5ce8 25562 F20101110_AABSKE little_j_Page_119.QC.jpg 8a847ec7d22f99ca98873cb9d3e648b7 13d9ff643215473374fd37b22c1de2c5909ec60e 5613 F20101110_AABSJR little_j_Page_041thm.jpg 87bd4e1ba39811a48376b28377d0183e 4128f7a67f464230dede74c97459831ed1e940d0 23783 F20101110_AABSKF little_j_Page_101.QC.jpg e1a5bf9757c529a6d2b07b8db8358b85 862f68b3215f75c9f5de8faa06456e5bb4fb238e 44021 F20101110_AABSJS little_j_Page_059.pro 8b2af46179f7f55a9f9e70cc39d40dcb 68cec9fc1db4c0740b7fd20aae192b8e48ec74d9 40772 F20101110_AABSKG little_j_Page_049.pro 9f9c73115d6ad8cbc65a9c5c8b039359 1f60663a6378a95a422c16fd5051c78e13f49d6c 38576 F20101110_AABSJT little_j_Page_060.pro 4cc6c45de3af0837a670cd33f9e5cea9 5635b8f80f4444e70a75604882875942963d19f5 5078 F20101110_AABSKH little_j_Page_006thm.jpg c0acb196d118b7563fa63863fe1197ad aaac7b24114106519e6f3a7fa418ac4805eb35d9 F20101110_AABSJU little_j_Page_061.tif 3463c24d9308c036b9b57eb2164c8c5d 70beb0d7cbfa61047885e6c5ea5bd53e6c448e4b 661594 F20101110_AABSKI little_j_Page_082.jp2 c371474e516067f567c23e1361f6ad5f 47f61824e3641fc8d4c3d0d275c771c9abdb2a18 F20101110_AABSJV little_j_Page_110.tif 255e9115b8fc4c63a93c8ca392377249 1112b5799a7f2c97da26c7525ddf5cb8a3ac44d8 71407 F20101110_AABSKJ little_j_Page_068.jp2 3314cecd9f1114497901b553f3d7266b 7938963768a12b6b84760aa549a82df2d7155e64 4653 F20101110_AABSJW little_j_Page_063thm.jpg 2f5cffb647782d8fb9be5b36c41fc2bc 015c89c2f76a6d6f178f4e53c054a9434c611bcd F20101110_AABSKK little_j_Page_053.tif 5e3a305bb52cc4cc541f361b858a4bb0 fbfb2a6220d4fd86b95cf4535ca853d13fbf1527 5131 F20101110_AABSJX little_j_Page_011thm.jpg 10b829ab9e9b383f545e67408e604523 53ed08efa6ba24d26a02f2dc611c4b2aa17e81cd 623500 F20101110_AABSKL little_j.pdf b5e5e5e74dc8185776b3a45c2a5c8efc d505c57fe8755f71d2160ab1de524857fb4089f9 628838 F20101110_AABSJY little_j_Page_108.jp2 11616c4765693b39561cfe9e8409658f 83e8dfa8575af7ede61b198b483d8853c5cc9434 87941 F20101110_AABSLA little_j_Page_004.jpg 6ed7bffe488a48a981d1655308087990 f553bf59ed0f49f3e109db945f1ef715930040b5 F20101110_AABSKM little_j_Page_095.tif 1c52f92b78b83a3ac154d12079480505 62853a4bdc3bf4b4fc7f9461c66e9aca4ca83046 58311 F20101110_AABSJZ little_j_Page_017.jpg 928738bb8baf7aaaae94e45b948b6fd9 bd1bb939e924019e947842bc201f1a32ff0b5add 86434 F20101110_AABSLB little_j_Page_005.jpg 3979efef147aaa1fa4e2c70d813c0018 7ca053c116489817605c96460bf6165ee728b2e8 1051978 F20101110_AABSKN little_j_Page_119.jp2 b07cc9ad58950aa8aea0b66334635c83 0a470454c769df147f865c4753cb12fb4f10e7c8 100025 F20101110_AABSLC little_j_Page_006.jpg de9059e8d5dd1674325de81e6e5bc3e3 9bc15346b16c039333b23951464b4c8ca477adaa 989551 F20101110_AABSKO little_j_Page_027.jp2 f7ff4295574d8e1f63f1af41801f410e 0335a11562d4ae2e163a7f48fe09e989f26f18ba 23491 F20101110_AABSLD little_j_Page_007.jpg fae8ab405af92ccc77f60ee5c42507fe e22014609ad209eafd54e5fb1c32977362fb9898 F20101110_AABSKP little_j_Page_080thm.jpg 0715eef9a6fbda532da5e9757bd7f72a 88a6520e92193399953a1813ffde86b5ce32f845 76182 F20101110_AABSLE little_j_Page_008.jpg c9d96d84f13209603c49aff84dce2d20 189edbb4d261647d5b1e67616396ec556775a31b 53688 F20101110_AABSKQ little_j_Page_005.pro 316e7266cf9e99f04b6f6f3d5d7c6006 cd1eb8005a8e653a188a6c5fecb7c463a3f6d356 23751 F20101110_AABSLF little_j_Page_009.jpg b8400f3ca5b5efed8244384a4f03a19e 12638ee19bcf5d0d742c06b91197b182f0233c04 2172 F20101110_AABSKR little_j_Page_008.txt 57143d419608b7e1f8b1a8e73ea8353e c7f7011403a3704c94e62ba4407431011d9887e9 90433 F20101110_AABSLG little_j_Page_010.jpg 60714f2b32526134931d49ed6edbf04d 69d76266d10b4739810ad7dd318e39c87ae51f8c 52639 F20101110_AABSKS little_j_Page_006.pro d4780cb08c395eeed1e9ec1906c6a540 57809b5f7a50514c3ba0b170e45e94254e6e167e 78991 F20101110_AABSLH little_j_Page_011.jpg acbe266530eb350234ade92f5158f660 715e1e89623f07b6ab35a0efb0281327f56ff2d1 800029 F20101110_AABSKT little_j_Page_060.jp2 56d065092566ff32413b4d8aac21115e 9e20279efdf5752314207a1bceabc1f5087167e2 91635 F20101110_AABSLI little_j_Page_012.jpg 64744fbb5c224059326459181053e069 04c6e78b5b0d6bb791baa95ac9b50485c9a13093 141419 F20101110_AABSKU UFE0021671_00001.mets e469ddf7949dff0ee18284c8e2e6bb92 3f1fb22744411b859880d0da593a930492b4bc7b 23550 F20101110_AABSLJ little_j_Page_013.jpg 6ad7d9e31b87ffd5bd85a3fedbd73f2b 994710cf5ed0018745ad874ececd6600812c7277 56641 F20101110_AABSLK little_j_Page_014.jpg 8b0daccc1959bd7e9836878b23cd710e 1afb2f26e5fd713bd475039b36a365b766ee05ff 60515 F20101110_AABSLL little_j_Page_015.jpg 556cdc4b5e38d7ff9003e0acc617a3dd 50c5c74e2dcfbbc0457f601c6860bbb2bc154fd0 21380 F20101110_AABSKX little_j_Page_001.jpg 0e567252756ba178d2187fac706c9e4d de31dbcce6f753b7d705d09423fef884dc9561b8 76054 F20101110_AABSMA little_j_Page_035.jpg 97c6dd4742456d99ab7a217e1a488367 ab9926768dd84940473b0120cd0eacb29690ffae 64045 F20101110_AABSLM little_j_Page_016.jpg 49a6447e8b78e2021b45fb521307b908 9389dbeb91324767bf9ddfcc54c786271d6dab5d 3740 F20101110_AABSKY little_j_Page_002.jpg b72ef032572c07f02decab5584d9f355 a09847ed366d2c639ac21ba38615c2da3069a456 66275 F20101110_AABSMB little_j_Page_036.jpg e4355bec31a57ae934926031585822bf 1a4884b82575424efa5271b2786dda3d0da105e7 71341 F20101110_AABSLN little_j_Page_018.jpg 5fdcf03c92f05a1ef9b1c51f3c8c6bf4 ee7ec83012d752559866e59c9f3b3bcb24185185 4020 F20101110_AABSKZ little_j_Page_003.jpg 2919e5dd6516f383d2237fe93a04ed07 4679378321deabe6d8978b40c656343cd5636fc9 69096 F20101110_AABSMC little_j_Page_037.jpg ed75df8d6dbea4fe35d0721ce05627e1 167cbb8485e641d7bbc2a22b02e55be47e520f3a 78861 F20101110_AABSLO little_j_Page_021.jpg c660340c086b87330e45b7686f9eed6d 0dab789ba20ba0e21411cfbf45e4eeae797dd660 71424 F20101110_AABSMD little_j_Page_039.jpg ee4cc7df9cef8ff8716af2d66151509c bb624dcc73617ff1fbee197c0e86467d5484e239 74843 F20101110_AABSLP little_j_Page_022.jpg 975448d66d80674f01244d898fdcd8c9 6a39384106f3a5c308c0fa1070d1d51e52a8a03c 70120 F20101110_AABSME little_j_Page_040.jpg 1ef120008a2c8c86870bc05e99e6c70a 7ef2bf9053271223bda225c153cb23aa0b97cb76 69821 F20101110_AABSLQ little_j_Page_023.jpg cfeccdab01531c52d9ebc4124b669fb1 c395ed71dc1a1340f0de7d3751c0f415c169b5ae 82058 F20101110_AABSMF little_j_Page_041.jpg 1d59447712d996cc0bee6763178b1a3e d87045519c2453522288ad48b2be732f1f6c4296 8229 F20101110_AABSLR little_j_Page_026.jpg d3262cd039d8178b22b19eff4131cffe b81d1a57f2bbc7329709ad88eb1c061d0235dca9 20654 F20101110_AABSMG little_j_Page_042.jpg 0a202918e2f9ca5a3796fc5780dd4252 c2f545b4d624e44194c35cf104f62d1c9c518dcd 73678 F20101110_AABSLS little_j_Page_027.jpg 022467dc49e500a7583367b599553506 a395f42b21a4e2f8756a5d6e5d9ae187a5a05958 73471 F20101110_AABSMH little_j_Page_043.jpg a98b2da619ce6ad8281cbbb23fe45289 f9c11e45d72e70827285a2d057a0a9f834216df5 79165 F20101110_AABSLT little_j_Page_028.jpg 1a04c0589616b48b1bd8feca0b59135f a35102a7184940bd709d18e994aa483416253c5d 58754 F20101110_AABSMI little_j_Page_044.jpg f251beaa4d556f34ce5af6e85a378a9c 5680ec6869ad9255b156778f245b753539d8d064 74841 F20101110_AABSLU little_j_Page_029.jpg d6cd05d5df10fe18039b4d40d083340c 5bda5567f19cdd4a4233751634e215b6cd5cce2a 69755 F20101110_AABSMJ little_j_Page_045.jpg f5b210f3c2fa8bf966d48e146e342788 8c2d911f66f478c60ca8a5ee9c83037358932913 55568 F20101110_AABSLV little_j_Page_030.jpg 5d96331496adf2806785a380c8750dd9 a8b79c92a8668018e181971f0b866ad5d4270b7c 38646 F20101110_AABSMK little_j_Page_046.jpg 4f8b5218ab6f16e1ff5ca8279f285d46 e2f79e7ba2aaa271a9437c1dbd6924af3a25779d 90428 F20101110_AABSLW little_j_Page_031.jpg d135807f2e67826e11bfcdc5a2b04c29 3692a5ce4edc3a32747694c55b84d0ce43abbc13 69300 F20101110_AABSML little_j_Page_047.jpg 066f62eb389395bbcd2953e7684b3492 e850de55b6baae8ec663b9319f47e378f49c4d03 75207 F20101110_AABSLX little_j_Page_032.jpg 6c1d6798ff288463748893485b669f97 6c6527c408bf68783fcd96b481609b87e3e5f878 67311 F20101110_AABSMM little_j_Page_048.jpg c9c639cea071fe887c81f0fb3009d01e 5c78c08682f6ef22c39ed734aeebd159d3dc94cc 62074 F20101110_AABSLY little_j_Page_033.jpg 6465582c5d938579b946f75f6464a235 ac2dbae8309fbe3d1eada1e8d658d4c963ba671a 65540 F20101110_AABSNA little_j_Page_063.jpg 77a40313cb724117e9237eccaba9fe67 7ca597ef200d00cdd7d30abd969cde26df648439 81524 F20101110_AABSLZ little_j_Page_034.jpg 261f4f9dda9081970cb9ddb572dfadae 88e8d24dc109bfdf07df6eb08efa75342dd12c82 49388 F20101110_AABSNB little_j_Page_064.jpg 08190d675140cea1d5782736ae4670b9 c03f79abfa30f8f8a3dfe58c6fb9e69742a90835 66963 F20101110_AABSMN little_j_Page_049.jpg e59f2921ef7a57a1ac6ab3c338f68fd6 56ed2c92daa575506207e34dd9ec7bb5c6fd4612 59104 F20101110_AABSNC little_j_Page_065.jpg 9979ed60ca8f5840a8a130dbb648f17a 88641adae4f90259a8b08b57974211cee16ebd4f 60825 F20101110_AABSMO little_j_Page_050.jpg 960d793b07821c32bd0fdab2fa778719 9e1f58170b219e19294ae401317d17201b1105b2 62094 F20101110_AABSND little_j_Page_066.jpg 9eb3622b6bc55bbbb693ae06cb10d957 c2c08bafcafc041ec151912b3dc083f0f9c83acc 69297 F20101110_AABSMP little_j_Page_051.jpg 041be94ccf8bd0f8aa6d4e7f8bbbcba8 32b2e556f36bf45706ed9999bd3b45a95464cfb9 64472 F20101110_AABSNE little_j_Page_067.jpg b03ae4a85a8c2ec27d180a03e6a236f4 2fc91a2d4fc504ac550d5f66346c2cb46f70b243 59152 F20101110_AABSMQ little_j_Page_052.jpg 71ba3074da18a779d9503eb71b46c243 8093ac3cc0804e8c9b26640c7979b078a7f038ce 51400 F20101110_AABSNF little_j_Page_068.jpg 777c77f37b470ccf31f061806c512a99 79b6992a022986dd5f4f4478d140155a64630ddf 52251 F20101110_AABSMR little_j_Page_053.jpg dff3150ad101612ba9b7f733530ed14f a767b2a552def9bc1b6583d98df21646d0b33380 67509 F20101110_AABSNG little_j_Page_069.jpg ec9a441e166988e5a29e22c78ccee5cc 82f4a2f1dbdd31100c77c031d3bcaf97e0807fce 53439 F20101110_AABSMS little_j_Page_054.jpg bff40c381c129687199744d64acbb81f 0b7edebf6981ed755bb4f697c8ef2bfab5ad3cd7 67460 F20101110_AABSNH little_j_Page_070.jpg 8d81a116e44aac119243d33e149c7771 1cfd7f1932e9cfd0878be6b93566f3e0fa33c28e 56480 F20101110_AABSMT little_j_Page_055.jpg 158a64dbf6e4fada268202af455f4f7c ced7c00fe1d492c6ec40a7c23822aa140f64d3de 55031 F20101110_AABSNI little_j_Page_071.jpg 0e282923ac76f825ca3306b58335c76e 97c122bd605c3b737982e7ea948e130fb6e040b6 51197 F20101110_AABSMU little_j_Page_056.jpg 1b156dc39cdaa857329d32bcb2de0cff d8bb8315f7db230e9ca154763cc369b429cc1f98 72128 F20101110_AABSNJ little_j_Page_072.jpg e114e3068f59c435d44ab094e32f42e4 13fc51f83107a57153eca0eb84b39c3a516fceac 65571 F20101110_AABSMV little_j_Page_057.jpg 8aecfa8dec58d1b127c947ce472560ec 2e72da70542801697ff7ffb4919d2ad7b6c38d96 69051 F20101110_AABSNK little_j_Page_074.jpg 04c4ff2b623f149b847e81b8bbfbe290 b2f96280016bc61d4dcc148ff897cb6c6d13db6e 39018 F20101110_AABSMW little_j_Page_058.jpg 023ec05dc537a40a4556d8843bb963b9 e67525094302174b26dc19b682599b046d7b1f91 61525 F20101110_AABSNL little_j_Page_075.jpg 068336b3d2a4eb5142c448d46b2b6936 e18f452914f6a91cfbc51574b375f39a23c1879a 66803 F20101110_AABSMX little_j_Page_059.jpg f7dc7ea521ec488bcf449d1daf7acea5 38cb1870c8e2c9e57710665b0fe3854ef88f02e8 63650 F20101110_AABSOA little_j_Page_094.jpg 38e187a01b411fdcfe55e300907bbf76 b390f78d68bf92b99d779a16d52a1f69dcf8d040 91035 F20101110_AABSNM little_j_Page_076.jpg cef0a8f4c4dab12952eb922f3764247a f9f7b9248126321d4c8fe9fa961af18d51d9d024 58648 F20101110_AABSMY little_j_Page_060.jpg 93b4a231f61317ef48a77338b286dbb5 6a3f79228705c78569a01fa3632d41747fbf56a6 73492 F20101110_AABSOB little_j_Page_096.jpg 039016e1c3f46d7a7238f4358bb7170d cf104fb2230193756db153b3b25ee64f67bd432e 83859 F20101110_AABSNN little_j_Page_077.jpg fcb94ae740a492efbcb2c65461702518 21c9bb39c7e209fb647ccf6252fbb2898edb1417 51822 F20101110_AABSMZ little_j_Page_062.jpg 931249c3987cfe4c8d33dd14077fda87 e2436930cf5108a7560e306f91886f208df20e6a 61567 F20101110_AABSOC little_j_Page_097.jpg f0d74227c1a54acb2b558f104c6de661 e2c4566439acc3b03e9d3216b0efa0c5d1046a5d 67148 F20101110_AABSNO little_j_Page_078.jpg 29d18c4d16d3bc10b34450555a72acc9 b0a259cff8f5c373147e6f54cfb631d30b5cfd47 85992 F20101110_AABSOD little_j_Page_098.jpg d1d2721ad84c288b26f280e76223dfe1 671e8b65d0529b67d712de4e2c108b82e0841e10 76593 F20101110_AABSNP little_j_Page_079.jpg 6b35137a120aeae468cd6ec24eb40068 31b6a089ff5ebfd83b483990ca649384b01de1d2 78504 F20101110_AABSOE little_j_Page_101.jpg 6636fb66a9711670d0eb35c2bbc9155b 4e3099e5bed2fc7b55d4c1bc75e4e74fbe6d7f76 63074 F20101110_AABSNQ little_j_Page_080.jpg 6f37613b22ec05bd72f982fc196e58d2 dc4473338aa8aba948aad636b8a88c5a7bd01b24 62810 F20101110_AABSOF little_j_Page_102.jpg 325f40cba45bdd192ef836319ba153d3 81cd3a247703cb058be17ea727cacd1733f846b8 48253 F20101110_AABSNR little_j_Page_082.jpg 5587c039ed2781479e8e746e4320462a 8bd7f8837d41f978c8ae30307e78b1a03815e65b 52409 F20101110_AABSOG little_j_Page_104.jpg 6c012d8e4518ff8526d6f2d6c05c37de 3380fadafc6049ea11ff1a0d0de0edfdf70eb24d 56566 F20101110_AABSNS little_j_Page_083.jpg ce56eb91b1aa1de55c52743d0a12da61 360dbb53378f6635be4d3a1017f24a3ffae0fbcb 38194 F20101110_AABSOH little_j_Page_105.jpg dfe6faadb3d5fe4b9c02d0147ec38ec5 118b106b6c542f9ce0d49f40fe2924256700714d 71293 F20101110_AABSNT little_j_Page_084.jpg defe3e3cd16bbf2685b1053420a0b995 9027126c667b3e04701a3047865f2f805f7bcb7f 69855 F20101110_AABSOI little_j_Page_106.jpg c02155f45fb739a734f77e208e66f597 e5fb36de3b8e127b6c076c2b82921fd424deb9cd 61716 F20101110_AABSNU little_j_Page_087.jpg f2006f74d6b268750b8f9a2a7d722dd2 0f83d592729025b27e887c1c614014f167447ca0 64579 F20101110_AABSOJ little_j_Page_107.jpg 1433bacc632a08c35caac1a00e9e92e9 ce61416b705ca0bf78adae2053eee733c3c66354 57539 F20101110_AABSNV little_j_Page_089.jpg 6ae9c3eed19a75f29141aee75f848ecb beec2c8249eeadbc1d5c519cae2c983ee208adcd 51052 F20101110_AABSOK little_j_Page_108.jpg a9574e43773df31f01939b4d95119abc 3df95a84cc24fe10e5f554c4d5a37fa0387e05f3 83648 F20101110_AABSNW little_j_Page_090.jpg 37fa66990d2d7858281b6c121b4939d7 5b239e0a5ab11d53604bdcb12afd54a2dd2c056d 65039 F20101110_AABSOL little_j_Page_109.jpg 9b112b90b98d8ee2865af315058e04d1 c92aa58e94144fb35d5bc2e9b2a05e6a7cde102d 33612 F20101110_AABSNX little_j_Page_091.jpg deac3d37808beef5197b60a20384e3d8 8659ac77a5e0a36ab014af605dab2f6b198c6fd4 6356 F20101110_AABSPA little_j_Page_003.jp2 32258238c63acbdd7aa72a2d7d36997e e75a69c16bf25abf5d8327610897c1fc6a0fa5e1 67705 F20101110_AABSOM little_j_Page_110.jpg ccfcb04b38185e6c604d2ac18f38faf2 420d5cacb96af1a01f5a01b82e745ea8828de490 90327 F20101110_AABSNY little_j_Page_092.jpg e69c527d15365b420be68ee6fb50c4b8 db7262e92763a138f4d19ef0100bcc6fedfe9541 75221 F20101110_AABSON little_j_Page_111.jpg e82ca2b22a023145dee09f95fb61df33 0e11e2b6c509b3cb25ce362923c513af3d081b12 68633 F20101110_AABSNZ little_j_Page_093.jpg a426fa192db40ab4ef46e67a6483040a 9fa754b1f55aec9e2e1e4add77539a1b289dcc68 116334 F20101110_AABSPB little_j_Page_004.jp2 ffc676ff9f779ef87d480458f599e4e9 4df229d35793b4a0aedb8b13b915d6b1dbc65937 PROJECTION OPERATOR FORMALISM FOR QUANTUM CONSTRAINTS By JEFFREY SCOTT LITTLE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 2007 Jeffrey Scott Little To my wonderful wife and soul mate, Megan. ACKNOWLEDGMENTS Obtaining a Ph.D. in any field is never a complete individual effort, I owe many thanks to many people that helped me pursue this lifelong goal. First of all, I would like to thank my advisor John Klauder, for giving me the chance to study quantization of constraints systems. I am indebted to him for all the patience, time, and encouragement that he has afforded me over the years that I spent under his tutelage at the University of Florida. His passion for the course of study has helped me obtain a broader view of physics, as well as a more developed palate for various topics in physics. In fact I am grateful to the entire physics department for allowing me the opportunity to study theoretical physics. I gratefully acknowledge the Alumni Fellowship Association, which allowed me to attend the University without an overwhelming teaching responsibility. I would also like to thank my grandparents, Ruby, Granville, Hazel, and Veral, who instilled in me from an extremely early age that I could accomplish anything if I set my mind to it. Thanks go to my dad, Jeff, who gave me a sense of scientific curiosity and to my mom, Linda, who was my wonderful math instructor from fractions to calculus, not to mention all of their love and support, and to my sisters, Lisa and Sierra, whose constant encouragement aided me through my early college and graduate career. I am assuredly indebted to my dear Aunt Brenda, who carefully edited several chapters of this manuscript, even though she is not a physics person. I would also like to thank my wife's family for all of their support these past 2 years. Thanks go to my friends at the University of Florida Larry, Ethan, Wayne, Ian, Lester, Jen, and Garret, whose compassion and conversations about a wide variety of topics are unmeasurable. Saving the best for last, I thank the love of my life, my darling wife, Megan. Without whom I would have never completed this dissertation. I thank her for all of the love, support, and encouragement that she has given me; she is the source of my inspiration to achieve, more than I ever dreamed could be achieved. TABLE OF CONTENTS page ACKNOW LEDGMENTS ................................. A B ST R A C T . . . . . . . . . . CHAPTER 1 INTRODUCTION .................................. 1.1 Philosophy .................. ................ 1.2 Outline of the Remaining C'!i lpters ...................... 2 CONSTRAINTS AND THE DIRAC PROCEDURE .............. 2.1 Classical Picture . . . . . . ..... . 2.1.1 Geometric Pl a round ......................... 2.1.2 Constraints Appear ........................... 2.1.3 Another Geometric Interlude ................. ..... 2.1.4 O bservables . . . . . . . . 2.2 Q uantization . . . . . . . . . 2.2.1 Canonical Quantization Program .. ............... 2.2.2 What About Constraints? The Dirac Method .. ......... 3 OTHER M ETHODS .. . ........................... 3.1 FaddeevPopov Method .. ................ 3.1.1 Yet Another Geometric Interlude from the Constraint 3.1.2 Basic Description .. ................ 3.1.3 Comments and Criticisms .. ............ 3.2 Refined Algebraic Quantization ....... 3.2.1 Basic Outline of Procedure .. ............ 3.2.2 Comments and Criticisms .. ............ 3.3 Master Constraint Program .. ............... 3.3.1 Classical Description .. ............... 3.3.2 Quantization . . . . . . 3.3.3 MCP Constraint Example .. ............ 3.3.4 Comments and Criticisms .. ............ 3.4 Conclusions . . . . . . . 4 PROJECTION OPERATOR FORMALISM .. .......... 4.1 Method and Motivation .. ................ 4.1.1 Squaring the Constraints .. ............. 4.1.2 Classical Consideration .. .............. 4.1.2.1 Quantum Consideration .. ......... 4.1.2.2 Projection Operator Justification ...... SubManifold 4.2 Tools of the Projection Operator Formalism . 4.2.1 Coherent States .. ........... 4.2.2 Reproducing Kernel Hilbert Spaces . 4.3 Constraint Examples .. ............ 4.3.1 Constraint with a Zero in the Continuous 4.3.2 Closed, FirstClass Constrant .. .... 4.3.3 Open, First Class constraint ....... 4.4 Conclusions . . . . . 5 HIGHLY IRREGULAR CONSTRAINTS ....... Spectrum Classification .. .......... Toy M odel .. ............ Observables .. ........... Observation and Conclusions . 6 ASHTEKARHOROWITZBOULWARE MODEL . 6.1 Introduction . . . . . 6.2 Classical Theory .. .............. 6.3 Quantum Dynamics .. ............. 6.4 The Physical Hilbert Space via the Reproducing 6.4.1 The Torus T2 ........ 6.5 Superselection Sectors? .. .......... 6.6 Classical Lim it . .. .. .. .. .. ... . 6.7 Refined Algebraic Quantization Approach . 6.8 Commentary and Discussion .. ......... Kernel 7 PROBLEM W ITH TIME .. . ........................ 8 TIME DEPENDENT CONSTRAINTS ..... 8.1 Classical Consideration . ... 8.1.1 Basic M odel . ...... 8.1.2 Commentary and Discussion . 8.2 Quantum Considerations . .. 8.2.1 Gitman and Tyutin Prescription Constraints . ...... 8.2.2 Canonical Quantization . . 8.2.3 D irac . . . . 8.2.4 Projection Operator Formalism 8.2.5 8.2.6 TimeDependent Quantum Const Observations and Comparisons . for TimeDependent raints ......... . .. . . . . SecondClass . . . . . . 9 TIMEDEPENDENT MODELS .............. . . ... 9.1 FirstClass Constraint ........... . . . 9.2 Second Class Constraint .......... . . . 94 94 97 99 99 101 102 102 103 105 106 106 110 9.3 Conclusions . . . . . . . . 111 10 CONCLUSIONS AND OUTLOOK. ................ ... .. .. 113 10.1 Summary ................. ............... 113 10.2 Ending on a Personal Note .... ........... ...... .. 115 APPENDIX A REPARAMETERIZATION INVARIANT THEORIES . . ..... 116 REFERENCES .................. ................ .. .. 118 BIOGRAPHICAL SKETCH .................. ............. 122 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy PROJECTION OPERATOR FORMALISM FOR QUANTUM CONSTRAINTS By Jeffrey Scott Little December 2007 ('C! i': John Klauder Major: Physics Motivated by several theoretical issues surrounding quantum gravity, a course of study has been implemented to gain insight into the quantization of constrained systems utilizing the Projection Operator Formalism. Throughout this dissertation we will address several models and techniques used in an attempt to illuminate the subject. We also attempt to illustrate the utility of the Projection Operator Formalism in dealing with any type of quantum constraint. Quantum gravity is made more difficult in part by its constraint structure. The constraints are classically firstclass; however, upon quantization they become partially secondclass. To study such behavior, we will focus on a simple problem with finitely many degrees of freedom and will demonstrate how the Projection Operator Formalism is well suited to deal with this type of constraint. Typically, when one discusses constraints, one imposes regularity conditions on these constraints. We introduce the "r i, classification of constraints called "highly .i,, II., l,, constraints, due to the fact these constraints contain both regular and irregular solutions. Quantization of irregular constraints is normally not considered; however, using the Projection Operator Formalism we provide a satisfactory quantization. It is noteworthy that irregular constraints change the observable aspects of a theory as compared to strictly regular constraints. More specifically, we will attempt to use the tools of the Projection Operator Formalism to study another gravitationally inspired model, namely the AshtekarHorowitzBoulware model. We will also offer a comparison of the results obtained from the Projection Operator Formalism with that of the Refined Algebraic Quantization scheme. Finally, we will use the Projection Operator Method to discuss timedependent quantum constraints. In doing so, we will develop the formalism and study a few key timedependent models to help us obtain a larger picture on how to deal with reparameterization invariant theories such as General Relativity. CHAPTER 1 INTRODUCTION "It is very important that we do not all follow the same fashion... Its necessary to increase the amount of variety .... the only n,. to do it is to implore ;,. c; few guys to take a risk ." Richard Feynman The Standard Model is the archetype of the kind of success physics has had in describing the physical universe. The theory provides an explanation of the interactions of matter with the electroweak and strong forces on a fundamental level. The way these forces enter into the theory is based on YangMills theory, a generalization of Maxwell's theory of electromagnetism. As is the case with electromagnetism, the equations of motion for a YangMills field contain constraints that reduce the number of degrees of freedom [1]. This is a key characteristic of constrained systems. The process of converting a classical theory to a quantum theory is made more difficult by the presence of these constraints. Commonly used techniques to deal with these systems have been inadequate in providing a description of the low momentum behavior of the strong force, which is associated with the massgap conjecture [2]. General relativity, like the Standard Model, is another example of a constrained system. The quantization of gravity has presented theoretical physics a cornucopia of problems to solve for the past 50 years. To answer these deep theoretical questions, physicists have employ, ,1 several and seemingly conflicting viewpoints. These perspectives, range from Superstrings [3], the main goal is the unification of all forces in one quantum mechanical description, Loop Quantum Gravity [4], in which the main objective of this is a consistent background independent description of quantum gravity, to Causal Sets [5] in which the approach preassumes that spacetime is discretized, and the Affine Quantum Gravity Program [6], in which the aim of this approach is to solve quantum constraint problems with the Projection operator formalism. There are several deep underlying theoretical issues surrounding the quantization of gravity, one of which is that gravity is nonrenormalizable. Therefore traditional quantum field theory techniques [1], appear to be useless when approaching this subject. Canonical quantization schemes of gravity are also made difficult by the theory's constraint classification [7]. Classically, gravity's constraints are one algebraic class, but upon quantization the constraints morph into another type1 Conventional techniques are unsuited for this type of quantum system. The construction of these techniques does not assume a change from one type of constraint to another when the system is quantized. The projection operator method is well suited to handle this situation since all constraints are treated in the same theoretical framework. Both the YangMills and quantum gravity serve as the primary motivation for this dissertation. It is hoped that studying simpler models will eventually aid us in studying more realistic quantum theories. 1.1 Philosophy When faced with a particular theoretical problem, it has been our approach to follow the preceding philosophy to obtain an appropriate physical answer. In our analysis we have followed the timehonored principles that: (1.) Mathematics will give all possible solutions with no regard to the physics; (2.) When the mathematics leads to a choice, physics should be the guide in choosing the next step. We will not deviate from this longstanding point of view in this dissertation. We also approach problems with the point of view that a "( i'pl!, I. description of the universe must be a quantum mechanical one. Therefore, a quantum mechanical description of a particular model will alvi:, supercede the classical description. This is the primary reason that we cite the mantra, quantize first, reduce second over and over in this dissertation. 1 This will be discussed further in C'!i pters 2 and 4 1.2 Outline of the Remaining Chapters C'!I ipters 2, 3 and 4 serve as the background for the dissertation. The main topic of discussion in C'! iplter 2 is the introduction of constraint dynamics as well as the description of the Dirac procedure to deal with quantum constraints. The primary goal of ('!C lpter 3 is to introduce the reader to three other alternative programs to deal with the problem of quantum constraints. These methods are the FadeevPopov procedure, the Refined Algebraic Quantization Program, and the Master Constraint Program, each of which has its own distinct strengths and weaknesses. The goal of Chapter 4 is to examine the projection operator formalism. In this chapter we will also exam three distinct constraint examples in this formalism. One of the constraint models is a system where the constraints are classically first class; however, upon quantization they become partially second class, similar to the constraints of gravity. This particular model served as the basis of [8]. Whenever encountered in the dissertation, repeated indices are to be summed. The primary goal of C'!i lpter 5 is to introduce a i, v." classification of constraints called highly ., ,. glr, constraints and also illustrate techniques used to deal with quantum versions of these constraints. The basis of this chapter comes from [9] and [10]. Using the techniques gained from C'!i lpter 5, in C'!i lpter 6 we offer a complete discussion of the quantization of the AshtekarHorowitzBoulware Model [11]. The AshtekarHorowitzBoulware model is a mathematical model also inspired by the constraints of gravity. This chapter is based on the results obtained in [9]. We also compare the results obtained by the Refined Algebraic Quantization program with the Projection Operator formalism. This comparison leads to the conclusion that the two methods are not compatible dealing with all constraints. The remaining chapters are devoted to the topic of timedependent quantum constraints. Until now, the methods used to delve into this topic [12] have been unsatisfactory due to the fact that these methods avoid solving for the quantum constraints. The aim of this chapter is to use the Projection Operator Formalism to give a more complete description of the topics by solving for the constraints. C'! lpter 8 is devoted to the development of the timedependent formalism and the comparison of the approach found in [12] with the Projection Operator. In ('!i lpter 9, we will examine two timedependent constraints, one firstclass and one secondclass. We will conclude with a brief summary and a possible look forward to future research problems. CHAPTER 2 CONSTRAINTS AND THE DIRAC PROCEDURE The primary goal of this chapter is to introduce the reader to the concept of constraints in classical physics. We will discuss the quantization of these classical systems in the framework proposed by Dirac, [7], as well as, discuss deficiencies in the method, which will help motivate the development of the projection operator formalism in C! Ilpter 4. 2.1 Classical Picture A natural starting point for the discussion of constraints is from a classical perspective. We will begin in the Lagrangian formulation of classical mechanics. In this formulation, we begin with the action functional t2 I j dtL(qa, qa,t) (21) where L is the Lagrangian, t is a continuous parameter (often associated with time), q, E Q, where Q is some configuration space, a E {1, 2,...N},' denotes the derivative with respect to t, and q, is an element of a fiber of the tangent bundle Q, T7Q. Formally, we can write the Lagrangian functional as L : TQ R. (22) Later in the discussion we will define the configuration space, but for now it is just some C"manifold. The goal' of classical mechanics is to determine the equations of motion. The equations of motion are determined by varying the action (21) and determining its 1 This of course is from our point of view. stationary points. The result, which is wellknown, is the EulerLagrange equations 2 6S = 0 (23) d BL A L t 0 (2 4) dt 9dq dq0 While this formulation is useful in determining a wide variety of physical quantities [15], it is not as sensitive to particular features of a given classical theory as we need.3 In order to illuminate these features we must first pass to an equivalent formulation of classical mechanics, namely the Hamiltonian formulation. In making the transition from Lagrangian to the Hamiltonian, we must first identify the conjugate momentum, dL pa = (25) Pa This can be recognized as the fiber derivative from the tangent bundle of Q to the cotangent bundle of Q [15] (otherwise known as the tangent bundle's dual) a : TQ T* Q. (26) The next step in the procedure is to identify the Hamiltonian, which follows from a Legendre transformation of the Lagrangian H =paq L (p,q) (27) 2 This result can be generalized if L is a functional of (qa, q, g,... qa ) where k is a finite number. The variation, which is determined by the functional derivative, of this 6L i(t L i" L itL equation is given by 6, (t t) + (t t') + + 6(k) (t t') L [14]. Integrating this equation with respect to t' and setting the result to zero will yield the stationary points of the corresponding action. 3 Obviously, if we express 24 in terms of a second order differential equation, the subtle point we are about to make becomes clearer. [16] which can be accomplished as long as the conjugate momentum (25) is invertible in terms of q. This condition is satisfied by the Hessian condition a2L det / 0. (28) We will return to the case when (28) fails shortly. Until then we will discuss the Hamiltonian formalism in more detail. For a more complete account see [17] and [15]. At this point we will no longer mention the cotangent bundle, but rather we will note that this space is symplectomorphic to the more familiar space, phase space AM, i.e., T*Q .M (29) The geometric framework of the Hamiltonian framework is a rich and beautiful subject. However, for the sake of brevity we will only recount the most crucial elements to the development of the constraint picture. For a more complete description, we point the readers to [17], [15], and [18]. 2.1.1 Geometric Playground The natural geometric framework for Hamiltonian dynamics is a 2 n dimensional, real, symplectic manifold called phase space, where n is the number of degrees of freedom for a system.4 The coordinates on the manifold are determined by the equations of motion. As is well known, the equations of motion for an unconstrained Hamiltonian (27) are given by q = {,H}, (210) pj {pj, H}, (211) 4 This definition of the phasespace manifold is true when the system has a finite number of degrees of freedom. Extra care must be taken in the definition when dealing with a case with an infinite number of degrees of freedom. where H is the Hamiltonian and {., .} are the classical Poisson brackets. The Poisson brackets are defined by the following: {f,g} f g f (212) Oq Oi pi i Oqi' where f, g e C2(M). The Poisson brackets have the following properties for any f, g, and hE C2 (M): {f,g} = {g, f}, (2 13) {f,gh} = {f,g}h+ {f,h}g, (214) {{f,g},h} + {{h, f},g} +{{g,h}, f} 0. (215) Equation (213) illustrates that the Poisson brackets are antisymmetric in respect to its arguments. Equation (214) serves as the connection of the Poisson bracket with pointwise multiplication of the functions over the phase space. Finally, (215) demonstrates that the Poisson bracket obeys the famous Jacobi identity. With these three properties it is possible to show that the classical functions over phase space form a Lie algebra with respect to the Poisson bracket.[14]5 The closed, nondegenerate, symplectic twoform is defined by the Poisson brackets of the dynamical variables, S {q,pj} = 6>. (216) The symplectic form is a crucial element when we move from a classical discussion of a system to its quantum analogue. 5 Technically, a Lie algebra would only require the first and the third properties. One must also show that the functions in C" form a vector space, in order to be classified an algebra. 2.1.2 Constraints Appear Now let us move to the case in which (28) fails6 that is a2L det 0. (217) If (217) occurs, then it arises because the conjugate moment are not all independent [14], since there exist redundant variables in the dynamical variables. In other words, there exist relations that are associated with the definition of the conjugate momentum (27) O~(p, q) 0 (218) where a E {1,... A}. These relations (218) are known as primary constraints [14]. It is an important to note that the primary constraints are not determined by the equations of motion. The set of equations (218) define a subspace of the phase space called a primary constraint submanifold, whose dimension are 2N A. Technically, we are assuming that the constraints obey a regularity condition [14]. We will examine this regularity condition, and instances when it fails in C'! lpter 5. Until then, we will assume and only consider examples in which these conditions are satisfied. We can also relate the presence of constraints by considering the Noether theorem. When a global transformation exists that leaves the action invariant, the result is a conserved quantity. However, when this is a local transformation, the result is a constraint. See [19] for details. It is clear that Hamilton's equations (210) and (211) are no longer valid if primary constraints are present. All the dynamics should take place on the primary constraint surface. We can achieve this by making the following modification to the Hamiltonian, 6 While Dirac may have not been the first to consider this case, his seminal work on the topic [7] serves as the modern inspiration of the topic which is defined on all of M HE(p, q)= H(p, q) + A (219) where A" are Lagrange multipliers, that enforces the dynamics of the system to occur only on the submanifold. Therefore the equations of motion are given by the following q = {qH} + A"{q', 0}, (220) j pj, H} + A'{pj, 0}, (221) S= 0. (222) Since the set of primary constraints must be satisfied for all t, it follows that a = { H} + {, bAb A 0. (223) where w is defined as weakly equal to, or equal to on the constraint submanifold. A direct consequence of (2.1.2) is that the solutions to (2.1.2) may not be independent of the set of primary constraints (218). If this is the case, we define a set of new constraints (Xb), b E {1,... B} which also satisfies (2.1.2). This set of constraints is called secondary constraints. We repeat the process of solving the consistency equation (2.1.2) to uncover all the constraints. With that being said we will ahv, assume that all constraints have been uncovered. This statement is often referred to as the set of constraints is complete [14]. Now assuming that the set of constraints is complete, equation (2.1.2) also serves as the starting point of the discussion of the classification. [7] One possibility for (222) to be valid on the constraint surface is to allow each Poisson bracket to be separately zero by being proportional to a constraint. This hypothesis leads to our first classification: when {0, H} hQbb, (224) {1a, Ob = Ccab c, (225) hold true, we categorize this type of constraint as first class. We can make a further refinement of this class by considering the nature of the structure coefficients, hb and cab. If the coefficients are constants, then the constraints are closed first class. If they are functions over phase space, then the constraints are open first class. As one can deduce from (), the Lagrange multipliers are undetermined by the equations of motion and thus can be arbitrarily chosen, a phenomenon called "choosing a g ,, ; Therefore, firstclass systems are said to be gauge systems. Based upon this definition of a firstclass system, we can assert that once the dynamics are restricted to the constraint surface, initially, they will alv,v remain on the surface. Well known examples of firstclass systems include YangMills theories and General Relativity, with the former being closed and the latter being open. If det{( Ob} / 0 the constraints are classified as second class [16]. No longer having the availability of the preceding criteria of (224) and (225), it follows that the Lagrange multipliers are determined by the equations of motion so that (222) is satisfied. The Lagrange multipliers force the dynamics to remain on the constraint surface for a secondclass system. Namely the Lagrange multipliers can be determined by the following equations A b _[{a(p, ),Ob(p, q)}1{0(p, q), H(p, q)}. (226) 2.1.3 Another Geometric Interlude When the dynamics are restricted to a submanifold in the phase space, some of the mathematical structures present in the entire phase space are no longer present. Most notably is the symplectic 2form w. One could imagine looking at a particular coordinate patch of the submanifold and determining the symplectic form for that particular patch. However, if we attempt to repeat this process for the entire submanifold, we would find that there exist some regions in which the 2form is degenerate. Often this degenerate 2form is referred to as a presymplectic form. Consequently, it is impossible7 to define the Poisson brackets for the constraint submanifold. This particular issue is one of the reasons why the quantization procedure becomes extremely l iv when working with these systems. We refer the reader to [14] for a more detailed account of the presymplectic form. A more in depth discussion of the geometry of constraint surface will occur in the following chapter. 2.1.4 Observables Before proceeding to the quantization of these classical systems, we will offer a brief discussion of observables, a topic which will be revisited for a more complete discussion in subsequent chapters. A Dirac observable is defined as a function over phase space that has a weakly vanishing Poisson bracket with every constraint {o, a} M 0 for all a (227) where o E C (AM). In the context of firstclass constraints (227) is a sufficient condition that guarantees a gauge invariant function [14]. If o is an observable, it is clear by the definition of an observable function (227) that o + A'O" is also an observable. Using this observation it is possible to partition the set of functions C"(MA) by virtue of this equivalence relation into observable functions and nonobservable functions. In taking the discussion further, if we were to consider the vector space of C"(AM) equipped with the Poisson brackets, which defines a Lie algebra, along with pointwise multiplication, we can then identify the functions that vanish on the constraint submanifold (i.e. the constraints) as the ideal A, in C"(.M) We can classify algebra of observable functions as the quotient algebra C'(AM)/AN. [14] This identification of the algebraic structure of the observables 7 It is possible to write a symplectic form if the constraints are all classical secondclass. [14] will not guarantee the Poisson bracket structure over the constraint submanifold for the reasons stated in the preceding section. 2.2 Quantization 2.2.1 Canonical Quantization Program We proceed now with the standard canonical quantization procedure, described by Dirac [20]. The goal of the canonical quantization procedure is to find a rule that associates phase space functions with selfadjoint operators. Knowing the goal of the program, let's begin the implementation. First, with we must insist that the coordinates of phase space be flat coordinates, which implies there must be a global Cartesian coordinate patch for the entire phase space manifold.8 The key ingredient to the quantization scheme is the so called quantization map. This map takes real, phase space functions and maps them to selfadjoint operators acting on an abstract, separable complex Hilbert space. More precisely, we require a rule that intertwines the Poisson algebra of the observe I!. ' with the algebra defined by the commutator bracket and the selfadjoint operators [22] and [23]. Q : C (M) SA () (228) Q({f, 9}) = [Q(f),Q(g)] (229) (230) where SA({) is the set of selfadjoint operators acting on the Hilbert space R and f,g E C'(M). The selfadjoint operator Q(f) should be recognized as the quantum 8 Even though classical mechanics requires no such structure on phase space, quantum mechanics requires it. This was first pointed to by Dirac [20], and more recently by Klauder [21]. According to Klauder [21], this metric structure comes in the form of a ~! I. ,.v metric which is proportional to h. Without the presence of constraints observables refer to any differentiable function over phase space. observable corresponding to the classical observable f. An immediate consequence of (229), is the following 1 Q({[(pj) [Q q), Q(pj)] S[Q(q),Q(pj)] ih6t (231) where (qJ,pj) are the phase space canonical coordinates and 1 is the identity operator on the Hilbert space Ri. We should note that there is not a definitive method by which to pick the quantization map since the quantization map is not a homomorphism between the two algebra. Ambiguity exists in the process because that there are some phase space functions (e.g. p4q) that would correspond to multiple selfadjoint operators (e.g. P2Qp2 or (p4Q + QP4)/2). It has also shown by [50] there does not exist a quantization map that can be defined for all elements from the full algebra of the classical observables. Despite these difficulties we will proceed, noting potential problems due to these ambiguities in the procedure as necessary. Thus, for the remaining sections in this work we will assume that we have a quantization map and are free to use it. The notation that we will use is as follows: (pj, qt) represent the real cnumber of phase space coordinates, while (Pj, Q,) represent the set of irreducible, selfadjoint operators in which the canonical coordinates are mapped. The commutator of the (Pj, QJ) follows directly (231) [Qi, P1] ih6J1. (232) Secondly, we promote quantizable phase space observables (f) to selfadjoint operators F: f(pj,q') v F(Pj, Q). (233) If there exists factor order ambiguity, we will appeal to experiment to select the proper definition of F. However, as mathematically precise as the quantization procedure is for unconstrained systems, we must note that, if our system contains constraints, we cannot apply the standard quantization techniques. [12]. 2.2.2 What About Constraints? The Dirac Method An important point to make is that the procedure described in the preceding subsection is done so without the presence of constraints. If we have constraints in a particular classical system that we are now attempting to quantize, we may not have all of the mathematical structures required to give us a quantization rule. To address this important issue Dirac proposed the following procedure. Quantize the entire classical theory first, then reduce the Hilbert space to the physically relevant ,IIp 1.. '" The pertinent question in this method is, "What is the quantum analog to the constraint equation (218)?" In response to this query, we will use Dirac's procedure [7]. To initiate this procedure, we begin by promoting the constraints to selfadjoint operators, Qa(p, q) (P, Q). (234) The next step is to determine the kernel of o,, known as the physical Hilbert space [25] Fp = l)p )>)p =0, V a}. (235) If the constraint possesses a zero in continuum of the spectrum, (i.e. suppose that the constraint = PI), then we immediately encounter a potential difficulty in implementing this procedure. Based solely on the construction of the physical Hilbert space we cannot guarantee that Ip(Ql )pl < 00. 10 The philosophy of quantize first reduce second serves as a in i' '. motivation to the rest of the dissertation. One should also check the quantum equivalent to the consistency equation (2.1.2). In essence this means we must consider [Ka(P, Q),H(P,Q)] )p = 0, (236) [Ka(P, Q), Q b(P,Q)] 1 )p 0, (237) where H(P, Q) is the unconstrained, selfadjoint Hamiltonian operator. Once again, we are faced with a possible deficiency of the Dirac procedure. In general, we cannot attest to the validity of these equations, but if we restrict our arguments to considering only closed, firstclass systems (236) and (237) will hold true. In the case of closed, firstclass systems, the Poisson brackets transforms into the commutator brackets, which are expressed in the following form: [ a(P, Q),H(P,Q)] = ihh Kb(P,Q), (238) [ta(P, Q), b(P, Q)] hcbc(P, Q). (239) If Equation (236) or (237) fails and the classical system is classified as first class, the quantum system is said to have an anomaly. We will examine such a system in C'!i lpter 4. Furthermore, we find that our definition for the physical Hilbert space may be vacuous when considering classically open, firstclass or secondclass systems since there may not be a zero in the spectrum [13]. Dirac attempts to remedy the problem of secondclass constraints by redefining the Poisson bracket [7]. Therefore, the standard approach in the Dirac procedure prefers closed, firstclass systems. We will return to a discussion of the Dirac bracket in ('!i lpter 8. Another deficiency to note is the fact the Dirac procedure does not offer a definition of the inner product of the physical Hilbert space. This, along with some of the other deficiencies that are illustrated in this chapter, will serve as the primary motivation for the discussion of the more modern methods to quantize constraint systems discussed in C'!i ipter 3, as well as, the motivation behind the development of the projection operator formalism [13] in C'!i ipter 4. CHAPTER 3 OTHER METHODS The primary objective of this chapter is to examine three distinct methods to deal with quantum constraints. These methods are the FaddeevPopov procedure, the Refined Algebraic Quantization Program, and the Master Constraint Program, each of which has its own distinct strengths and weaknesses. During this chapter we will use the notation that is standard in literature, while also noting deficiencies of the methods in order to offer more motivation for the study of the projection operator method, which is the topic of ('! ipter 4. 3.1 FaddeevPopov Method 3.1.1 Yet Another Geometric Interlude from the Constraint SubManifold Before discussing the FaddeevPopov method, it is important to discuss some properties of the constraint submanifold that were neglected in the previous chapter. Let us begin with the following classical action, I = dt(pj H(p, q) Aa), (31) where j E {1,..., N}, a E {1,..., A}, and A" are Lagrange mulipliers which enforce the constraints Qa1 We will consider the situation when the constraints that are present in a classical system are closed, firstclass. The constraint submanifold can also be identified as the space of gauge orbits [14]. A gauge orbit is defined by the following: consider that F defines a particular physical configuration,2 and the gauge orbit of F consists of all gaugeequivalent configurations to F. [12] A gauge transformation is defined as 6,F F= v{F,Oa}, (32) 1 We are still under the assumption from C'!i lpter 2 that the constraints are regular (which will be defined in ('! Ilpter 5) and complete. 2 One could consider F to be a dynamical variable. where v" represents an arbitrary function. It is clear that these transformations, actually define an equivalence relation which implies that the set of gauge orbits can be identified as a quotient space [14]. If one defines a set of surface forming vectors, the gauge orbits would correspond with the null vectors. [14] To avoid this rather complicated situation of the quotient, it is often si, . 1. I that one must impose a gauge choice to eliminate the redundancy. A gauge choice (Xa) has the following property Xa(p, q) 0, (33) where a E {1,..., A} [14]. We must also choose such a function that intersects the gauge orbits once and only once. A word of warningOne can guarantee this is the case locally; however, it may not be guaranteed globally, (i.e. for the entire constraint surface). This is known as the Gribov problem [16]. However, we are considering the ideal case for this discussion. With this mathematical description established, we can now properly discuss the FadeevPopov procedure. [27] 3.1.2 Basic Description This method requires us to depart from the canonical quantization scheme as described in ('! Ilpter 2. The philosophy of this method is to reduce the classical theory first, and quantize second, which is yet another departure from the Dirac procedure from C'!i lpter 2. For a firstclass system, the formal path integral is given by Jf (i/h) J H(p,q)Ab]dpq (3 4) To solve the constraint problem in this framework, we assert the constraints are satisfied classically within the functional integral by imposing a 6functional of the constraints. Since the resulting integral may be divergent, we suppress this possibility, by requiring a choice of an auxiliary condition called a gauge fixing term of the form x (p, q) = 0, a {1,.., J}. With this choice we have lost canonical covariance, which can be restored formally with the aid of the FaddeevPopov determinant, det({xb, 0c}) By determining a particular gauge fixing term, the hope is to integrate overall gauge orbits. The ensuing path integral becomes I ) H(p,'q))dt bI jXb b} det({xb, c0})DpDq. (35) Expression (34) serves as a motivation to the introduction of (35), but they are not to be viewed as equivalent statements. The result of (35) could then be expressed as a path integral over the reduced phase space, J exp{ [pq* H*(p* q*)]dtDpDq (36) where p* and q* are reduced phase coordinates and H*(p*, q*) is the Hamiltonian of the reduced phase space. Since we have satisfied the constraints classically, we are no longer confident that our formal path integral is defined over Euclidean space. This presents a dilemma since the formal path integral is illdefined over nonEuclidean spaces [13]. As with the Dirac Procedure, the Faddeev method can be modified to accommodate secondclass constraints [28]. 3.1.3 Comments and Criticisms While the FaddeevPopov procedure has yielded some of the most fruitful results in physics [1], it is not without its flaws. One of the most glaring flaws is the fact that one must first reduce the classical theory and then quantize it. The universe3 is quantum mechanical; therefore, there may be some quantum mechanical correction to the classical theory. Let us consider the following simple model to illustrate this fact. Consider the 3 At least up to the GUT energy scales [3]. We are not so bold to iv that quantum mechanics may be superceded by a more complete description of nature. Of course, we assume however quantum mechanics is the proper route to look at nature until more evidence is discovered. following classical action I J/dt(p AaO), (3 7) where j E {1,...,N} and a E {1,...,N}. This system is purely constraint4 The definition of the constraints are a = f(p, q)a(p, q), (38) where f is a nonvanishing function over the phase space and {(a} defines a closedfirst class constraint, i.e. {Oa, b} ,.' (39) where Cab is a constant. It is clear while (38) defines the same constraint submanifold as the case in which ,a are constraint, the constraints ,a are an open, firstclass ' 111 . We realize that the arbitrary function can be classically absorbed into the definition of the Lagrange multipliers; however, we are ignoring this to emphasize the quantum mechanical behavior. The FadeevPopov method for this model begins with the following expression: J (i/f) 'J a]dlpDqDA, (310) is replaced with the gaugefixed expression Se(i/) f t b det{b, f}DpDq, (3 11) where xb(p, q) is some appropriate gauge choice. A simple identity leads to (/hp) fadt r xb 6b} det({xb, f}c + { b, O}f)DpDq. (312) 4 Gravity is such a system [8] 5 This system is similar to the one discussed in [8], which we will return to in the next chapter. The first term in the determinant is zero by the 6 functional of the O's. The second term is an N x N matrix multiplied by a scalar f, and therefore becomes. f e() J adt b Xb ntfdet xb, ODpDq. (313) 7j Htfn We observe that all the factors of f completely cancel. As one can see, the Faddeev method is insensitive to the definition of f, as long as it be nonzero. Hence, this method considers the Q,'s and Q,'s as identical constraints. We will examine a similar model in C'!I Ipter 4 [8], which demonstrates that in order to understand the entire theory, one must also consider the quantum mechanical corrections. Another difficulty in this method derives from the selection of gauge choice X,. As we noted in the previous subsection, the choice of gauge is only guaranteed locally. In more complicated gauge theories, such as YangMills it is well known [29] that there does not exist a gauge choice that slices the gauge orbits once and only once, a fact which limits the effectiveness to probe the nonperturbative regime of these gauge theories. [26] 3.2 Refined Algebraic Quantization The Refined Algebraic Quantization Program (RAQ) is in stark contrast to the FadeevPopov method mentioned in the previous section. RAQ attempts to quantize the entire classical theory first including the constraints, then attempts to impose the quantum constraints in order to determine a Physical Hilbert space. In this respect, the RAQ attempts to extend and resolve some of the ambiguities of the Dirac Procedure namely, "How is the the inner product imposed on the physical Hilbert space?" and "Which linear space do the linear constraints act on?". [30] Refined Algebraic Quantization comes in two main varieties, Group Averaging and a more rigorous version that is based on the theory of 1i... Hilbert spaces. In this chapter we will focus on the former rather than the latter because most experts will agree that there does not exist a group averaging technique for all constraints in this formalism. See [30] and [31] for more complete discussions on the failures of group averaging. 3.2.1 Basic Outline of Procedure The prescription that RAQ follows begins with the basic treatment of canonical quantization that was described in C'! lpter 2, although, in general, this prescription generally relaxes the Cartesian coordinate requirement. First, one must represent the constraints Ci as selfadjoint operators (or their exponential action, as Unitary operators) that act on an auxiliary Hilbert space,Hanx, which in turn is the prerequisite linear space. Since, in general, the constraints, C, have continuous spectrum, it follows that the solutions of the constraints could be generalized vectors. Thus, we will consider a dense, subspace of Haux (4 C 'Ha,) which can be equipped with a topology finer than that of the regular auxiliary Hilbert space. The distributional solutions of the constraints are contained in the algebraic dual V*, (space of all linear maps  C). The topology of V* is that of point wise convergence, which is to v a sequence f, E 4* converges to f E 4* if and only if fQn() f(0) for all Q GE 4. This concept, as we mentioned in the introduction of the section, is based on the theory of Ri... l Hilbert spaces. The subspace 4 is chosen based upon the condition that it is left invariant by the constraints Ci or the exponentiated action, or that it can be determined based on physical choices. [31] Another technical requirement is that for every A E Aobs,(i.e. the algebra6 of observables), which commutes with Ci, A as well as its adjoint At, are defined on 4 and map 4 to itself. We will attempt to describe this particular requirement briefly. The final stage of the RAQ procedure entails constructing an antilinear map called a rigging map, I : 4 *, (314) 6 This is a *algebra on the Haux. that satisifies the following condition: For every Q01, 2 E then qr(01) is a solution of the constraint equation, (Ct(rlT0))[2 = ( )[C ] =0. (315) In addition to (315) the rigging map (314) must also satisfy the following two conditions, which are true for every 01, 02 E : 1. The rigging map Tr is real and positive semidefinite (Tl/)[021] (92)[]11,* (r101)[Oi] > 0. 2. The rigging map inteterwines with the representations of the obervable algebra O(TI01) I(01), where O E Aobs Once the rigging map has been determined, the vectors rl that span the solution space are C 1 r,, completed with respect to the following innerproduct (011u 2) (01)[02], (316) for every 01, 02 E ) and (.) is the inner product of the auxiliary Hilbert space. Thus, we define the physical Hilbert space derived by the techniques of the RAQ. We will revisit the Refined Algebraic Quantization program in C'i plter 6 in the context of the AshtekarHorowitzBoulware model [32]. 3.2.2 Comments and Criticisms While the RAQ does resolve some of the ambiguities of the Dirac procedure, the resolution is not without cost. One of the prices that we must 1p is that we must also have an additional mathematical structure on particular subspaces on the Hilbert space. Namely, we require that the invariant subspace must also be equipped with a topology that is finer than the one inherited by the auxiliary Hilbert space. As is well known, this choice of the invariant subspace can lead to nonphysical results, such as, superselection sectors7 in a variety of constraint models where these structures are not motivated.[32] For this primary reason the RAQ procedure has difficultys when dealing with constraints that have zeroes in the continuum. The RAQ method also has difficulty when the constraint algebra produces a quantum anomaly, as well as cases in which an infinite number of constraints are present. This leads us to the third and final method that we will discuss in this chapter the Master Constraint Program. 3.3 Master Constraint Program The third and final method that is discussed in this chapter is known as the Master Constraint Program (\!CP). Like the RAQ, MCP follows the mantra of the Dirac procedure in that one must quantize first and reduce second. We notice the same basic philosophy in the next chapter when we discuss the Projection operator formalism. The Master Constraint Program was developed by Thiemann, et al. [33], in an attempt to overcome situations in which the RAQ procedure fails. These I !liures" include, but are not limited to, cases in which an infinite number of constraints are present, as well as when the structure functions are not constants, but rather are functions over the phase space. This program also attempts to eliminate other ambiguity from the RAQ procedure, namely the requirement of additional input into the physical theory. As mentioned before, this additional input is a dense and invariant subspace which is equipped with a finer topology than that of the Hilbert space in which it is embedded. [34] During this section, since we only intend to give a heuristic account of the Master Constraint Program, we will 7 See chapter 6 for further details. 8 When we ; difficulty, we mean conventional approaches such as group averaging techniques fail. Extra mathematical constructs must be implemented. [31] eliminate the many technical details surrounding the mathematical machinery ,'' We will motivate this quantum constraint program in much the same manner the original authors did, [33]. Particularly, we will describe the classical analog and then discuss the quantization of the classical theory. 3.3.1 Classical Description Given a phase space M and a set of constraints functions Cj(p, q)jil, where I is some countable index set and (p, q) E R2N and 2N is the dimensionality of the phase space, the master constraint replaces this set of constraints with a single expression, which is sum of the square of the constraint operators in a strictly positive semidefinite form, as shown in the following expressions: M CJ(pq)gJkCk(pq) (3 17) j,kel where gi is chosen to be positive definite.o1 We will attempt to justify this act of adding the squares of constraint functions in the next chapter, as well as discuss some of the potential pitfalls of this procedure. The set of constraint equations Cj = 0 for all j E I has now been reduced to a single equation, M = 0. Despite being a great simplification another difficulty immediately presents itself. Namely, how can we recognize observables in the theory? As we noted in C'i plter 2, observables are functions over the phase space that commute weakly with all the constraint functions {O, C (p,q)} 0 (318) 9 For a technical account of this program we refer the reader to the seminal works on this program namely [33] and [34] 10 We should also note we can make a further modification on (317) if the constraints are actually fields. If this is the case, we must smear them over some set of test functions. For more details on this procedure see [33]. where 0 E C0('M). However, after eliminating the need to deal with each constraint separately, it is immediately apparent that {f,M} 0 (319) is not valid for just observable functions but any general function, f, over the phase space. Thiemann amended this deficit in [33] by offering the following modification of the identification of an observable to the previous known scheme, {O, {O,M }}M =o 0 (320) where O is a twice differentiable function. In fact with the scheme, [34], all observables in a given theory can aslo be identified in the following manner. Suppose, using Thiemann's notation, we let a^ denote the oneparameter group of automorphisms over the phase space M, which is defined as the time evolution of the master constraint, it follows that we can define the ergodic mean [33] of any 0 E C"(M)), 1 fT O = lim dt a^(0). (321) Too 2T JT lim dt eit{M}'O(p, q) Too 2T J_ 1 'T (t" = lirm E odt {O, {O, {O, o ,M}...}} (322) T 2T f m If we assume that we can commute the integral with the Poisson brackets, then it is easy to see that(321) will satisfy (320). We will end the discussion with the classical considerations of the master constraint program on that particular note and address the issue of quantum observables later in C'! lpter 5 in the context of the Projection Operator Formalism. 3.3.2 Quantization The modus operandi of the Master Constraint program is to use well known and wellestablished theorems of selfadjoint operators in Operator theory to construct the physical Hilbert space on a wide variety of constraint systems. This program has been "tested" in systems that included, but are not limited to, simple quantum mechanical constraints that form a noncompact algebra (like sl(2, R)) [36] to a fully interacting quantum field theory [37]. Therefore, in order to proceed with the quantization of the MCP, one must first promote the master constraint (317) to a selfadjoint operator that acts on an auxiliary Hilbert space M fMf. (323) The main difference, at this point in the discussion, between the auxiliary Hilbert space of MCP and that of RAQ, is that MCP requires the Hilbert space to be separable. At first glance it may appear that one has eliminated the possible quantum anomaly because a commutator of any operator with the same operator is zero, [Af, f] = 0. While this is a true statement, the quantum anomaly has only been reformulated in another manner, videlicet the spectrum of fM may not contain zero. An example that illustrates this point more clearly is as follows: Consider a classical system with a classical phases space, R, with two constraints, C1i pi C2 ql. Using the classification system we described in C!i lpter 2, we can identify this system as a secondclass system. We should note that this system will not have a quantum anomaly as defined by C!i lpter 2 and [8]. However, it will provide a distinct property that we are attempting to illustrate, which is the quantum master constraint need not posses a 0 in the spectrum. The corresponding master constraint of this system can be written as the following, M = +q2 (3 24) We can quickly quantize this system by promoting the p's and q's as irreducible self adjoint operators. As noted before [1, M1] = 0. However, as mentioned before, 0 is not in the spectrum of M since the least eigenvalue of M is Thiemann [33] offered a means to rectify this by . ii,.; a modification of the quantum master constraint by the following: M = M AI (325) where A = inf{spectrum(M) and I is the identity operator on the auxiliary or a kinematical Hilbert space. According to Thiemann, [[33]], (325) will still have the same classical limit of the master constraint because A oc h. In general, if a system contains a constraint that is classically an open, firstclass constraint, like gravity or the system that we will discuss in C'!i lpter 4, where A would be proportional to h2. Assuming the operator M is a densely defined selfadjoint operator, we can now proceed with the quantization by first addressing the auxiliary Hilbert space. Using the fact that M is a selfadjoint operator with a positive semidefinite spectrum, the auxiliary Hilbert space can be written as the following direct integral [34]; Hagx = dJ(x)Ha,(x) (326) a+ where d4(x) is the spectral measure [33] of the master constraint operator (325). Each addend contribution to the sum, 'H'f(x), in (326) is a separable Hilbert space with the inner product induced by the auxiliary Hilbert space, Haux. Using this particular construction we are now able to address the task of solving the quantum master constraint equation M = 0. By the mathematical description of the auxiliary Hilbert space (326), it follows that the action of M on H5,x(x) is simply multiplication of x. We can solve the quantum master constraint equation by identifying the physical Hilbert space by the following 9phys (0). (327) Notice the inner product of the physical Hilbert space is inherited based upon the properties of the auxiliary Hilbert space. This will conclude our basic description of the Master Constraint Program. We now attempt to implement a simple quantum mechanical constraint, namely, we will consider a system whose constraints form the Lie algebra of so(3), which will allow us to properly compare the results we obtain with the MCP and the projection operator formalism in C'! lpter 4. 3.3.3 MCP Constraint Example Consider a classical systemn1 where the phase space is R6 and is subject to the following three constraints: Ji = cijkqiPk (328) where i E {1, 2, 3} qi and pi are the canonical position and canonical momentum respectively12 We can clearly recognize that the Poisson brackets of the constraints defined in (328) form a closed Lie Algebra that we can identify with the algebra of so(3): { JJj}i = jk k. (329) The classical master constraint (317), corresponds to the Casmir operator of the group M = JJe. (330) The quantization of this model is straightforward. The auxiliary Hilbert space is the set of all square integrable functions over R3, also known as L2(IR3). The canonical position qi is promoted to a selfadjoint operator Qi in which the action on the auxiliary Hilbert space is multiplication by qi. The conjugate momentum pi is promoted to a selfadjoint operator Pi in which the action on L2(IR3) is differentiation, Pi ih. The 11 We should note that the example covered in this subsection was first considered in [35]. 12 Einstein summation convention is used, as ah ii. Poisson brackets are replaced with the familiar commutator brackets defined in C'!i pter 2. The classical master constraint (330) is promoted to a corresponding selfadjoint operator MI = J (331) Since there is no ordering ambiguity in (331), one does not need to subtract A to obtain a zero in the spectrum of (331). Using the techniques that are well known in quantum mechanics [38], we will use spherical coordinates to determine the eigenvalues of the quantum master constraint (331)13 1 2 1 M h sin2 0 (sin0 )) (3 32) sin2 2 2 sin 8 00 00 where 0 E [0, 7] and Q E [0, 27). The eigenvalues and eigenfunctions of (332) are well known [38]. The eigenvalues of (332) are h21(1 + 1) where 1 E N and the eigenfunctions are the sphercial harmonic functions Yim(O, 0), where 1 < m < 1. [38] A generalized eigenfunction could be written as the the product of a general element in L2(IR+, r2dr), which we will denote by R(r) with the spherical harmonic functions Yim(0, 0). Using this fact we can proceed to the next step of the MCP, which is to rewrite the auxiliary Hilbert space in terms of a direct integral decomposition OO Hax = > cl{span{R(r)Yem(0, ) I < m < l} (333) l=0 where cl donotes the closure of the set, and span is the linear span of the set of vectors defined in the brackets. The physical Hilbert space and the induced inner product come directly from selecting the subspace that corresponds with the 1= 0 eigenvalue. 13 We should note this conversion to spherical coordinates is done after quantization not before, as we noted the previous chapter of the potential difficulties that arises from the reverse [38]. 9Hphys = cl{span {R(r)Yoo(0, Q)}}. The inner product of this physical Hilbert space is inherited from the L2(R+, r2dr). Thus completes the quantization of this simple constraint model in the Master Constraint Program 14 We will return to this model in the next chapter, when we will discuss it in the context of the projection operator formalism. 3.3.4 Comments and Criticisms Despite the many successes [35], [36], and [37] that the program has had in resolving several of the ambiguities associated with the Refined Algebraic Quantization, it still may not be the perfect choice to use for all constraints. If the constraint's spectrum contains a zero in the continuum, then particular care, in the form of rather cumbersome mathematical machinery, must be used. Not that this yields an incorrect result, however it almost appears to be extraneous to the material. This is somewhat of a biased opinion because as we will see in the next chapter the projection operator formalism's answer to this seems more satisfactory. Again though, we emphasize the fact that the results have been shown to be equivalent to the results found in [13]. Another possible criticism of this program is not a criticism of the program, but instead, a criticism of its implementation. That is to iv that authors tend to diplivi a heavy reliance on the classical analysis of groups to solve constraints [35]. The main critique of this point comes from the fact that most of the work done with groups such as sl(2, C) neglect the zero representation [41], which should be the representation corresponding to physical Hilbert space. However, just as the authors pointed out in [35], this particular constraint is not physically realizable, and therefore not subject to experiment. 14 Actually, it is not the very end of this discussion. We must also include a discussion of the quantum observables in the theory. We will simply point the reader to [35] for a discourse on that topic. (334) 3.4 Conclusions In this chapter, we have examined three distinct constraint quantization programs. All of these programs have their distinct advantages and disadvantages depending on the particular constraint under consideration. In the following chapter we will examine the projection operator method and examine the tools of that formalism and how it attempts to overcome the difficulties of the preceding methods. CHAPTER 4 PROJECTION OPERATOR FORMALISM The primary goal of this chapter is to introduce and motivate the Projection Operator Formalism (POF). The projection operator method is a relatively new procedure for dealing with quantum constraints [13] [26].The ]lhi ... l.hi, of this formalism is to first quantize the entire theory, and then reduce the quantum theory by using the constraints. We will attempt to illustrate how the POF attempts to remedy some of the deficiencies of the methods discussed in C'! lpter 3. In the final section of the chapter we will examine three constraint models. The first is a constraint that has a zero in the continuum, whereas the second and the third are models that were examined in [8]. They help illustrate the power of the projection operator formalism in dealing with all classifications of constraints. In this chapter it is understood that h = 1 unless stated elsewise. 4.1 Method and Motivation Following the Dirac procedure's initial footsteps, we canonically quantize the unconstrained classical theory as described in the preceding section. We then deviate from the Dirac method by introducing a projection operator, E, which takes vectors from the unconstrained Hilbert space to the constraint subspace (i.e. the physical Hilbert space or even better the regularized1 physical Hilbert space) [13] Hp = E (41) We require E to be Hermitian which satisfies the relation E2 = E (idempotent), these are basic properties of a projection operator. More precisely, suppose that B1 and B2 denote measurable2 sets on the Hilbert space. The product of two operators yields a projection 1 We will explain this more clearly a little later in the chapter. 2 Borel measurable [33] operator that projects onto the intersection of the two sets, lim (E(B)E(B2))n = E(BI n B2). (42) n 0oo If B1 n B2 = 0, then E(0) = 0. We will use this property in ('!C ipters 5, 6 and 8. Reverting to the Dirac prescription of the physical Hilbert space it is defined as A NFp { ))p )p = 0, Va} Q{ker4} (43) a where Ka is the quantum analogue to the classical constraint a,, and a E {1,..., A}. In an ideal situation3 (4 3) is equivalent to the following A Np {kert a} {ker ac,}. (44) a The fact that (44) will not ahivi lead to a nontrival result, is a clue on how to arrive at the true answer. Assuming that a~K, is selfadjoint acting on a Hilbert space, we can use the following result from spectral theory to obtain our desired projection operator, E. Namely, the operator 4Kaa can be written in the following representation [39] a@a= J AdE (45) where dE is the socalled projection valued measure [33] on the spectrum of 4a4a, which was denoted by A which contained a spectral range of 0 to oc4 The projection operator that was used in (41) can be introduced based on the result of (45) pS(h)2 E(aa < 6(h)2) = AdE (46) 3 Which is generally not the case for reasons mentioned in ('!, plter 3 and later in this chapter. 4 This range may or may have not included 0. where 6(h)2 is a regularization5 parameter. As it is often emphasized by Klauder, 6(h)2 is only a small parameter, not a Dirac 6functional [40]. Equation (46) projects onto a subspace of the Hilbert space with a spectral measure of o a from 0 to 6(h)2. The true physical Hilbert space (41) is determined when the limit as 6(h)2  0 will be taken6 in an appropriate7 manner. In the following subsection we will offer functional form of 46. We will now turn our attention to further motivating the process of squaring the constraint. 4.1.1 Squaring the Constraints Much like the Master Constraint Program (\ICP), the Projection Operator Formalism (POF) also relies on the summing of the square of constraints to replace a set of constraints {a}0 ,, with a single term. Unlike the MCP, the POF offers further justification for only dealing with the sum of the squares instead of appealing to simplicity arguments. By simplicity arguments we mean, why stop at a secondorder polynomial expression of the constraints, why not consider fourthorder or higher? The authors of [34] only mention that second order was chosen because it is the simplest expression. Instead, we attempt to offer some mathematical arguments that indicate that the sum of the squares of the quantum mechanical constraints is sufficient. 4.1.2 Classical Consideration Before moving to the quantum mechanical description of the constraint story, it is important for us to be able to motivate the tale classically first. Let us consider a set of A 5 Hence a regularized physical Hilbert space!! 6 Or taken depending on the type of constraint. [13] 7 More on this later. constraints which satisfy the following A equations: 1 0 02 0 OA = 0. (47) In order to determine the constraint subspace in the phase space, all A equations must be satisfied simultaneously. This set of equations would be at least classically equivalent to the following set: (48) Finally, if we add all of the preceding equations together, we arrive at the conclusion that S= 0o (49) is equivalent to the set of A equations (47). As we stated before, this is classically equivalent, but are we certain that this will be justified quantum mechanically? 4.1.2.1 Quantum Consideration When moving to operators, the next point of concern is whether or not the procedure of summing the squares of operators is well defined. Since we are assuming (I is selfadjoint, it follows that E V is a symmetric operator with a lower bound, and, therefore, it has a well defined selfadjoint extension. This statement assumes that we only have a finite number of degrees of freedom.8 4.1.2.2 Projection Operator Justification All of the preceding arguments could have been the same as those emploiy 1 by practitioners of the MCP for squaring the constraints. We will now depart from this line of thinking to employ an argument used by Klauder in [40]. The formal path integral form of the projection operator is the following expression. E f Te' 1) 1 a)dtDR(A), (410) where T is the timeordered product and R(A) is the formal measure over the cnumber Lagrange multipliers {A(t)}. As shown in [40] the projection operator (410), is constructed in two main steps. The time interval is defined as a positive real value equal to t2 t1. The first step is to construct a Gaussian measure that would cause the oddmoments of the Lagrange multipliers to vanish (i.e. f Aa(t)DA(t) = 0), while keeping the even moments (i.e f Aa(t)Ab(t)DA = Mab, where (c') is a small parameter corresponding to a time step, Mab is a positive matrix, and 7 is a real, positive integration parameter.) AJ Tei' f A(t)b T J(A(t)2dt) f7 DA a C gitaMa^U^b(tti) (4 11) where N is the formal normalization of the path integral (411). The final step is to integrate (411) over 7. To accomplish this feat we will introduce a conditionally 8 If we were to move to a problem with an infinite number of degrees of freedom, per se a quantum field theory, extra caution must be emploiy l to establish a proper definition [33]. convergent integral namely, IE(, ab < 6(h)2) liM sin[(6(h)2 + (t2 t)] t) (4 12) Co+ _^ 7r7 where the conditionally convergent integral is defined by the following [40]; i sin[(6(h)2+ ()7] if II< 6, lim / ed7 J 7 '0 if XI > 6. Equation (412) is true assuming that the constraints are not explicitly dependent on time. We examine that case in ('! lpters 7 and 8. The matrix Mab is the most general case, but for our current purposes, we are free to select Mab ab, which would yield the desired form of squaring the constraints. Having illustrated the motivation behind considering squaring the constraints, we will divert our attentions to some of the mathematical tools that are required in implementing the POF. 4.2 Tools of the Projection Operator Formalism 4.2.1 Coherent States As one may recall from C'! Ilpter 2, one of the limitations of the Dirac procedure is the lack of assurance of a normalizable state. To address this concern using the projection operator method, let us consider the coherent state as a suitable Hilbert space representation. Let P' and Qj denote the standard Heisenberg selfadjoint operators that obey the commutation relation [QP,P] ibiln. (413) The Weyl (canonical) coherent state may be defined as Ip, q) = e( '' P e(/ '' 0) (414) for a finite number of degrees of freedom, (p, q) E R2N, and the states are strongly continuous in the labels (p, q), 0) is some fiducial vector often taken to be the ground state of a harmonic oscillator9 The additional requirement that (414) truly are coherent states is that they possess a resolution of unity [41]: = p,q)(p, q (415) We will offer (415) as an accepted truth without proof [41]. These coherent states also offer a connection to the classical limit of quantum operators. This property is known as the I. Il: correspondence principle". [41] We exploit, and also state more carefully, this property of coherent states in a subsequent chapter. The coherent states are convenient because they form an overcomplete basis of the Hilbert space. Using this representation, we can express a dense set of vectors in the functional Hilbert space in terms of the coherent state overlap, N {(p,q)= (p, q ) aa(p, q p, q, N < oo, (416) n=i where a, E C. The inner product of such vectors can be expressed as the following, N,M (QqT) a*M.(pq.Pn,.n1pm, q), (417) n,m=l where rT is an element of the dense set. The completion of such a set of vectors leads to the unconstrained Hilbert space, which leads us to the topic of the Reproducing Kernel Hilbert space. 4.2.2 Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert space is well established, yet it is an under utilized mathematical technique to describe functional Hilbert spaces. If a reproducing kernel can be defined, it will completely define the space. One such example of reproducing kernel 9 However, one could select another fiducial vector depending on the situation. is that which is defined by the coherent states overlap (p', q'lp, q) which also defines the inner product of the Hilbert space it defines. Using the fact that (p', q' lEp, q) is a function of positive type1' so it can be used as a reproducing kernel,11 C4(p',q'; p,q) (p', q'IEp, q). (418) As in the case of the unconstrained Hilbert space, we can express a dense set of vectors in the functional constraint subspace as N p (p, q) = a (p, q;Pn, n) N < oc. (419) n=l The inner product for these vectors is given by N N (Q, TI)p a* i /C3, (pm., qm; pn, qn), (4 20) m= in= 1 where r] is also an element of the dense set of vectors. Using basic properties of the reproducing kernel and coherent states, we know that the norm defined by the inner product of these vectors will be finite [13]. This guarantees that the norm of vectors in the completion will also be finite. If we multiply a reproducing kernel KC by a constant, the reproducing kernel KC still corresponds to the same functional space. This is a key point and one that we exploit in the next section when we deal with a constraint that possesses a zero in the continuum. 10 That is that Ek QQ1'ak(pF' 'ElK,, q) > 0, for all N < oo and arbitrary complex numbers {aj} and label sets {pj,qj}. 1 If the projection operator is equal to unity, then we are left with the unconstrained Hilbert space. 4.3 Constraint Examples 4.3.1 Constraint with a Zero in the Continuous Spectrum Consider a quantum system whose unreduced space correpsonds to N = 1 degrees of freedom, such as the quantum constraint of the system of the following form I) = P 2, (421) where 4i is the only constraint present. It is clear that the spectrum of ti is the real line and that it possesses a zero in that continuum. This implies that lim6o0 E 0, which is an unacceptable result. To resolve this quandary one should look at the projection operator overlap with a set of coherent states of the form of (416), which follows (p", q"E(6 < P2 < )p', q') (422) Using the Taylor series by expanding (422) as a function of 6, utilizing the resolution of unity and functional coherent states overlap we find that, (p", q"lE(6 < P 2 < 6) lp, q') o 26. (423) As ,.. 1.' 1 in [13], we will multiply (4 22) by to extract the germ of the reproducing kernel. We must emphasize that this is still the same functional space described by (422). The functional form of the reproducing kernel is expressed by the following: 1 _+2 S(p", q" E(6 < P 2 < 6) p', q') = dk e(k ")22+ik(q"q')(kp')/2 (4 24) 26 J6+2 At this juncture we will not discuss how to evaluate this integral, since the topic is discussed in depth in subsequent chapters. However, we will state the result: limKC e ((p2)+(p'2)+2i(qq) (425) 6O A characteristic of this reduced reproducing kernel (425) is that it does not define the same functional space as the unreduced reproducing kernel (422). This reproducing kernel defines a one dimensional Hilbert space. We should note that (425) is gaussian peaked at the classical solution p' = p" = p = 2. As stated we will return to several more examples of constraints with zeros in the continuum when we delve into this topic during ('! Ilpters 5 and 6. 4.3.2 Closed, FirstClass Constrant The next constraint system under consideration is a set of constraints that force the angular momentum ji, i E {1, 2, 3} to vanish. With the angular momentum ji = ijkqJpk, the action integral we choose is I, = (pa A bb) dt, (426) where Ab denotes the Lagrange multipliers to enforce the constraints. Note that the Hamiltonian has been chosen to be zero for simplicity, so we can focus directly on the issues surrounding the constraints. From the definition of the ji's, one can immediately determine the Poisson algebra, given as usual by {Jji, Jj} = ijk k. (427) Since this bracket yields a Lie algebra, our system is clearly a closed firstclass constraint system [14]. The quantization of this model is straight forward and we promote the dynamical variables (pj, qi) to the set of irreducible self adjoint operators (Pj, Q'), which obey the standard Heisenberg relation. The constraint ji are promoted to selfadjoint operators Ji ji J = CijkQjPk. (428) The projection operator of these constraints (428) takes the form of E(JiJi < 6(h)2). (429) Unlike the previous case considered in the subsection, 6 can be taken to zero to yield a nontrivial result. We will still utilize the reproducing kernel to discover the functional nature of the physical Hilbert space. Before proceeding it will be convenient to introduce the equivalent form of the canonical coherent states; I = e(QiP) (Q+iP) 0) (4 30) where z' (q+ ip)/V2h and denotes the standard Euclidean dot product [41]. A coherent state path integral can also be used to calculate the matrix elements of the projector as shown in previous works [13]. Let us begin with a preliminary equation, namely, (,",i Te(i1) f A' Jdtl 5,,') M Jexp{(i/h) ((pa&' q a))/2 A"ja)dt}DpDq N"N' exp{//* e(i/h)o ', ) where M, N", and N' are normalization factors, (q+ ip)/V2h, j is a 3 x 3 matrix representation of the rotation algebra, T denotes time ordering, and J is a suitable functional of {A0Q)}. Following [13], we could integrate over X with respect to a suitable measure R(A) to create the desired projection operator. However, it is equivalent and simpler to proceed as follows, ICe(r;) (ea E(2 _< h2) e) where d) is the normalized Haar measure of S(3). Consequentlyd, where dp(0) is the normalized Haar measure of SO(3). Consequently, ICj(Q;; N) (NN exp{f /2v o 2cos }dcos sinh v/22 (4 3) /*2 2 2 22 z.*252 (zu,'* 2)2 N"N[1 + + + ...] (432) 3! 5! (433) From (432) we can deduce that the physical Hilbert space for every even particle sector is onedimensional. The Hilbert space found using this method is unitarily equivalent to the one determined by the Master Constraint Program. 4.3.3 Open, First Class constraint The next constraint model's inspiration is that of gravity (General Relativity). It is well known that the constraint algebra of gravity, {Ha(x),Hb(Y)} = 6x,y)Hb(x) b(x,y)Ha(x), (434) {Ha(x),H(y)} = 6,a(x,y)H(x), (435) {H(x),H(y)} = 6,(x,y)gab(x)Hb(x), (436) is classically firstclass; however, upon quantization the constraints transmute to partially second class. [8] The analysis of the model we are about to examine served as the primary motivation behind [8]. This model is also a type of constraint that that we considered in C'!I pter 3, in terms of the FadeevPopov procedure. The action for our choice of the modified system is very similar in form, i.e., I2 / (pa Abl) dt (4 37) 17 where the essential change resides in the definition of the variables li. For some smooth, nonvanishing function, f, we define (note: q = q1, etc.) 1 f(pi,p2, qq29, (4 38) for all i, and choose for further study the particular example for which f(Pi, 2, q, q2) a + (P3/A)(p + q1) + (7/ )(p + q2). (439) The symbol h is a fixed constant equal in value to the physical value of Planck's constant h, namely 1.06 x 1027 ergsec. When the classical limit is called for, and thus Planck's constant h  0, we emphasize that h retains its original numerical value. The reason for such a small divisor is to emphasize the quantum corrections; different divisors can be considered by rescaling 3 and 7. We recognize, in this simple case, that we could absorb the factor f by a redefinition of the Lagrange multipliers in (437). In more complicated systems (e.g., gravity) this simplification is either extremely difficult or perhaps even impossible. Therefore, as a further analog, we retain f as a part of la. A straight forward analysis leads to {li, lj} = { fj, fjj } f2{ji,jj} + f{ji, f},jj + f{f, jjji + {f, f}jijj fijklk + {jj, f}lj + {f, jj}lt f ijklk + Ciab[qaOf /aqb + PbOf /ll' ]l jab[ qaOf /aqb +pbOf /lj'']i . Since f > 0, our modified set of constraints is classified as open, firstclass. The quantization of this model proceeds much like that of the case with Ji, namely we promote 1i to a suitable selfadjoint quantum operator Li SH L, = aJ + (j3/2h) [(P12 + Q2) Ji + J, (P2 + Q2)1 (y/2h) [(p2 + Q2) Ji + Ji (p2 + Q2)], (4 40) + (7/2) [(P22 P22 (440) where a + p + 7 1. In dealing with the quantum theory, we drop the distinction between h and h. A quick calculation shows that any other factorordering of the definition of (440) will yield an equivalent result. The commutation of the Li yields a surprising result, namely [Li, Lk] Cijk(ihFLk h2 (Okll(aka + alak))) 2iii((QaQl + aP1l)F +... (441) where F = a + (p/h)(P2 + Q) + (/)(P22 + Q2). The second, third, fourth, etc. terms in (441) represent the anomaly in the quantum theory. This anomaly corresponds to a transmutation to a partially second class system. With this being noted we will continue the quantum analysis of the system. Let us introduce conventional annihilation and creation operators represented by a, (Qj + iPj)/ 2, (442) a = (Qj iPj)/2 (443) If we define N = aai + ata2 + aa3 (444) as the total number operator, it is evident that [Jj, N] =0, [Lj,N]= 0, (445) for all j, and thus both sets {Js} and {Li} are number conserving. We will revisit this particular technique in C'! ipter 9. This conservation implies that we can study the fulfillment of both sets of constraints in each of the numberoperator subspaces independently of one another. We observe that the subspace for which N = 0 consists of just a single state, and this state is an eigenvector of each Ji as well as each Li, i {1, 2, 3}, all with eigenvalue zero. In the interest of simplicity in this paper, we restrict our attention to the lowest nontrivial subspace in which the constraints Ji = 0 are satisfied on a nonvanishing subspace. In particular, we confine our attention to a subspace of the entire Hilbert space corresponding to an eigenvalue of the total number operator of two. Note that the subspace of interest is sixdimensional and that it is spanned by the six vectors given by the two representatives 1, 1,0) a a 0), etc., (446) 12,0,0) (1/v) (a{)2 0), etc., (447) where as usual 10) (= 0, 0, 0)) denotes the no particle state for which aj0) = 0 for all j. The first nonempty subspace that produces a nontrival result is the 2particle subspace. With the additional simplification that 7 /3/2, we can express the eigenevector that corresponds to least eigenvalue in this 6dimensional subspace as, OL) 1 OL) ( (12 d2, 0,0) + d' 10,2, 0) + 00,0,2), (448) 1 + d2+ dlI where d = 1 23 + O(32) and d' = 1 + O(02). The projection operator of this subspace is constructed as the following; E2 =OL) (OL (449) We can also construct the fundamental kernel for the modified case using these results. Specifically, ICL( ii; 5/) = (I//O)(O I) + ('11OL)(OL I) )+... (450) N"N' (dzi 2 + d'/z2*2 + z3f*2)(dzl2 + d'z 2 + z32) = VN"N'[1 + + ... ]. 2!(d2+ d'2 + 1) (451) One final note regarding this particular model, as with the case for other partially or fully quantum mechanical second class constraint systems, the limit as 6  0 is not taken. The Hilbert space is determined by the space corresponding to the least eigenvalue. 4.4 Conclusions In this chapter, we have discussed the Projection operator method to deal with quantum constraints. We have also discussed the quantization models of 3 distinctly different constraint models. For the remaining chapters of this dissertation, we will be using the Projection Operator to analyze various quantum constraint situations. CHAPTER 5 HIGHLY IRREGULAR CONSTRAINTS The primary goal of this chapter is to introduce regularity conditions on constraints, as well as present a i, " classification of constraints called highly .:,. i'l.n constraints and also illustrate techniques used to deal with quantum versions of these constraints. The basis of this chapter comes from [9] and [10]. 5.1 Classification In constrained dynamics one typically places regularity conditions on the constraint to insure linear independence. If we consider A classical constraints, ,a, a {1, .., A} the regularity condition can be stated in terms of the rank of the Jacobian matrix of the constraints [16] Rank( A, (51) f(p",q,) r ' where n {1, ..., M}, 2M is the dimensionality of phase space, and F is the constraint hypersurface (0a 0). If this condition fails, then the constraint (or set of constraints) is called irregular [16]. Irregular constraints can appear in following form a, (52) where Qa is a regular constraint and r is an exponent r > 1 In the literature [16] the measure of irregularity is based on the order of the zero on the constraint surface. For example, (52) is an rth order irregular constraint. We should note that while the constraints Oa and or are equivalent (i.e. the constraints generate the same constraint hypersurface), the dynamics and set of observables associated with each given system are not necessarily equivalent. The term highly .:, ,/;,. l, constraint refers to a constraint function that involves both regular and irregular constraints or two or more constraints of varying order [9]. For example, let us consider the following two constraints: 1 = q(1 q)2, (53) S q 3)(q 4)3. (54) The first constraint is regular at q = 0 and irregular at q = 1 of order 2. The second coinstraint is irregular at both q = 3, of order 2, and at q = 4, of order 3. Both of these constraints are representative of the class of highly irregular constraints. Since the dynamics as well as observability [9] of a given system are potentially not the same for regular and irregular constraints, careful consideration must be observed when quantizing such systems. The projection operator formalism [13] seems to provide an appropriate framework to deal with systems with irregular constraints [9]. The usual form of the projection operator is given by E(Za+d < 62(h)), (55) where EYa( is the sum of the squares of the constraint operators and 6(h) is a small regularization factor. The projection operator is then used to extract a subspace of the unconstrained Hilbert space, R. If ZEK has a discrete isolated 0 then 6 can be chosen to be an extremely small number. However, if ZEK has a 0 in the continuum, we can not choose an appropriate 6 to select the proper subspace. We will discuss this distinct possibility shortly. In the limit as 6  0 if appropriate, this subspace becomes the Physical Hilbert space, limEl ) = I)hys, (56) lim E Phpys. (57) &>0 However, if the constraint's spectrum contains a zero in the continuum then the projection operator vanishes as 6 0 [13], which is unacceptable. To overcome this obstacle, this limit must be evaluated as a rescaled form limit. To accomplish this, we will need to introduce suitable bras and kets in the unconstrained Hilbert space. For this discussion it will be convenient to choose canonical coherent states (1p, q)) to fulfill this choice. We regard the following expression as the rescaled form S(6)(p', q' IEp, q), (58) where S(6) is the appropriate coefficient needed to extract the leading contribution of (p',q' Ep, q), for 0 < 6 < 1. For example, if (p',q' El' q) oc 6 to leading order, then S(6) oc 61, for small 6. The limit 6  0 can now be taken in a suitable' fashion. The expression (58) is a function of positive semidefinite type and this means that it meets the following criteria limrn j azS()(p,q E,':,qi) >0, (59) 6O j' Cla aIS(6) (pj, qj E0(5 for all finite N, arbitrary complex numbers {ac} and coherent state labels {pi, qi}. A consequence of the previous statement is that (58) can lead to a reduced reproducing kernel for the physical Hilbert space IC(p', q';p, q) limS(6)(p',q' Elp, q). (510) 6O The reproducing kernel completely defines the physical Hilbert space [13]. The reproducing kernel makes it possible to express a dense set of vectors in the functional 1 nontrivial constraint subspace as p(p, q) = IE /,K (p, q; p, qn), N < o0. (511) The inner product for these vectors is given by N,M (Qqj)p > where rT is also an element of the dense set of vectors. The completion of these vectors in the sense of Cn 1.r! sequences with the relevant inner product will yield the physical Hilbert space. Without explicitly calculating the reproducing kernel, we will consider the following highly irregular quantum constraint + = Q2(1 Q), (513) where Q acts as a multiplication operator. Clearly this constraint vanishes when Q = 0 and Q = 1. Assuming, 0 < 6 < 1, the projection operator for this constraint can be written in the following form E(6 < K < 6) = E(6 < Q2 < 6) + E(6 < (1 Q) < 6). (514) Since the zeros of this operator fall in the continuum, it is clear from the previous discussion we cannot take the limit 6  0 in its present naked form. The reproducing kernel can be expressed as the following Co (p ', q'E(6 < Q2 < 6)p,q) + (p',q'IE(6 < Q 1 < 6)p,q). (515) By construction these projection operators E(6 < Q2 < 6) and E(6 < Q 1 < 6) project onto orthogonal spaces. To leading order in 6(h) the reproducing kernel can be approximated by ICK ~ 61/2CQo + 6Q=i, (516) where 1Cqo and IQ 1 are leading order contributions to the reproducing kernels around the two solutions to the constraint equation. See [9] for further details. Unlike expression (58) there does not exist a single S(6) to extract the leading order dependency for the entire Hilbert space. To address this difficulty we will consider the following argument [9]. Our previous example had constraint solutions around Q = 0 and Q = 1, we will now address this in a more general setting. We begin by determining the reproducing kernel for each solution in the constraint equation. Recall that the sum of reproducing kernels will produce a direct sum of the corresponding reproducing kernel Hilbert spaces if the spaces are mutually orthogonal. This will be the case for highly irregular constraints. So let /C represent the (6 > 0) reproducing kernel for the reproducing kernel Hilbert space H K= IK/C,, (517) where K,C is the determined reproducing kernel for each unique solution of the constraint. The Hilbert space generated has the following form, N H H, (518) n=l where 9, corresponds to the IK, for each n. However, we have not taken the limit as 6  0, and since the leading order 6 dependency is potentially different for each reproducing kernel IC,, there does not exist a single S(6) that can be used to extract the leading order 6 contribution of each reproducing kernel. To accomplish this task we define a (similarity) transformation S, S C, / KIn, /Cn = S,.(6)kC, where S,(6) > 0 for all n which leads to K = Sn(6)/,. (519) The rescaled K serves as the reproducing kernel for the Hilbert space H. Although the inner product of R and H) are different the set of functions are identical. The goal of this little exercise is of course to take a suitable limit 6  0 to yield a function that can serve as a reproducing kernel for the physical Hilbert space. At this point, we can take such a limit. K = lim C, (520) 6O N 'Hphys H (521) n=l where K is the reduced reproducing kernel for the physical Hilbert space 'Hphys. Having discussed the basic theory behind this classification of constraint, in the next section we will consider a simple but robust toy model that demonstrates the strength of the Projecion Operator Formalism to deal with these kinds of constraints. 5.2 Toy Model The model we choose to study involves just one configuration variable q, oo < q < oo, and its conjugate variable p. The classical action is taken to be I f[p AR(q)]dt, (522) where A is a Lagrange multiplier designed to enforce the single constraint R(q)= 0. (523) The classical equations of motion for our simple system are given by S= 0, (524) S= R'(q), (525) R(q) = 0, (526) with solutions q(t) q= q=(0), (527) p(t) = R'(q) A(t')dt' + p(0), (528) where qi is a root of R(q) = 0. If R'(qi) = 0 then the solution becomes q(t) = qi q(0), p(t) p(0). (529) The function A(t) is not fixed by the equations of motion, which is normal for firstclass constrained systems. To explicitly exhibit a solution to the classical equations of motion it is generally necessary to specify the function A(t), and this constitutes a choice of gauge. Gauge dependent quantities are defined to be unobservable, while gauge independent quantities are declared to be observable. In the present example, if R'(qi) / 0, then p(t) is gauge dependent, while if R'(qi) = 0, p(t) is, in fact, gauge independent. This behavior i ... I that the momentum p in the subset of the reduced classical phase space for which {q : R(q) = 0, R'(q) / 0} is unobservable, while the momentum p in the subset of the reduced classical phase space for which {q : R(q) = 0, R'(q) = 0} is observable. We discuss this point further below. The reduced classical phase space is given by R x Z, where Z = {q : R(q) = 0}. (530) Clearly, for the classical theory to be well defined, it is sufficient for R(q) E C1, namely that R(q) and R'(q) are both continuous. (Strictly speaking this continuity is required only in the neighborhood of the zero set {q : R(q) = 0}; however, with an eye toward the Ashtekar Horowitz Boulware model, discussed in Chapter 6, we choose R(q) E C1 for all q.) Our discussion will cover a wide class of R functions, and for convenience of explanation we shall focus on one specific example; generalization to other examples is immediate. The example we have in mind is given by R(q) = q(q 2)3/20(2 q) + (q 3)0(q 3), (531) where 1, x > 0 0(x) (532) 0, x < 0. For this example, the zero set is given by Z q = 0,q 2,q 3, and 2 < q< 3}; (533) only for q = 0 is R'(q) / 0. (Although physically motivated models would typically not include intervals in the zero set of R, we do so to illustrate the versatility of our approach.) In summary, the phase space for the unconstrained classical system is parameterized by (p, q) E R x R, and the phase space for the constrained system is parameterized by the points (p, q) E R x Z. This latter space consists of several onedimensional lines and a twodimensional strip. From the standpoint of this elementary example all elements of R x Z are equally significant. We now turn to the quantization of this elementary example following the precepts of the projection operator formalism [13]. In this approach one quantizes first and reduces second. The ultimate reduction leads to a physical Hilbert space appropriate to the constrained system. Quantization first means that our original variables p and q become conventional selfadjoint operators P and Q subject to the condition that [Q, P] = il (534) in units where h 1. (When we eventually examine the classical limit, we shall restore the parameter h to various expressions as needed.) The projection operator of interest is given by E(R(Q)2 < 62) E(6 < R(Q) < 6) = E(6 < R(Q) < 6) (535) where 6 > 0 is a temporary regularization parameter that will eventually be sent to zero in a suitable manner. Since the limit 6 i 0 will ultimately be taken as a form limit, we need to introduce suitable bras and kets in this original, unconstrained Hilbert space. For that purpose we will again choose canonical coherent states defined, for the present discussion, by Ip,q) epQ eiP0). (536) As usual, we choose 0) to satisfy (Q + iP) 0) = 0; namely, 0) is the normalized ground state of an harmonic oscillator with unit frequency. Thus we are led to consider the complex function (p", q"1E(6 < R(Q) < 6)lp', q') (537) which is continuous (actually C") in the coherent state labels and uniformly bounded by unity since E = Et = E2 < 1. It is important to remark that the function (537) is a function of positive type, a criterion that means Ejk a* k ( qj' k) > 0 (538) for all N < oo and arbitrary complex numbers {ay} and label sets {pj, qj}; this property holds because E is a projection operator. As a consequence of being a continuous function of positive type the function (p", q" Ep', q') (539) serves as a reproducing kernel for a reproducing kernel Hilbert space, a functional representation by continuous functions on the original phase space (IR x R), of the regularized (by 6 > 0) physical Hilbert space. Our goal is to take a suitable limit 6  0 so as to yield a function that can serve as a reproducing kernel for the true physical Hilbert space for the present problem. Clearly the limit 6  0 of the given expression vanishes and that is an unacceptable result. Suppose we assume 0 < 6 < 1, e.g., 6 = 10000. Then it is clear (even for a much larger 6 as well!), for the example at hand, that E(6 < R(Q) < 6) SE(6 < 2Q < 6) + E(6 < (8(2 Q)3/2 < ) + E(2 < Q < 3) + E(6 <8(Q 3)3 < 6)  Ei +E2 +E3 +E4, where E,, 1 < n < 4, corresponds to the terms in the line above in order. By construction, for very small 6, it follows that these projection operators obey ELT, 6, E: (541) i.e., they project onto mutually orthogonal subspaces. In like manner the reproducing kernel decomposes into C(p", q"; p', q') (p", q" IE(6 R(Q) < 6)lp', q) S ,/ (p"l, q"; p' q'), (542) where (543) (540) C (p", q"1; p, q') (p", q" E Ipl, q'). Each function KIC(p", q"; p', q') serves as a reproducing kernel for a reproducing kernel Hilbert space ',, and the full reproducing kernel Hilbert space is given by 4 H @ n. (544) n=l Since E E. = 6, E it follows, from the completeness of the coherent states, that Kn(p", q"; p, q)Cm(p, q; p', q')dpdq/(2w) = S n n(p", q; p', q'). (545) This equation implies that the 'H,, 1 < n < 4, form 4 mutually disjoint (sub) Hilbert spaces within L2(R2). For the present example with 6 > 0, each %, is infinite dimensional. Let us first consider 1C2(p, q";p',q') (p", q"E(6 <8(2 Q)3/2 < 6)lp, q') S 2 (x q")2 /2i(p"p/)Xz (xq)2/2dx V J262 where 62 62/3/2. This expression manifestly leads to a function of positive type. For very small 6 (e.g., 6 102000 ), we can assert that to leading order 2 (,q;p',q') (2q )2/2i(p"p')(2q')2/2 sin 62 (P (5 46) F 62(p" ip) This function is already of positive type and is correct to 0(62) [i.e., to 0(104000)!]. As discussed frequently before [13], we can extract the ;, i i,' from this reproducing kernel by first scaling it by a factor of 0(62/3), , by 7/(262), prior to taking the limit 6  0. Consequently, we first define a new reproducing kernel 2 (p, q; p, q) (p, q; p, q). (547) 262 We remark that the space of functions that make up the reproducing kernel Hilbert space 72 (generated by C2) is identical to the space of functions that make up the reproducing kernel Hilbert space 72 (generated by K2). Next, we take the limit as 6 i 0 of the function /C2, which leads to /C2(p, q";p', q) u lim/C2(p ;p,q') 6>0 C [(2q")2+(2q')2]/2i(p"p) (548) This procedure leads to a new function k2, which, provided it is still continuous which it is leads to a reduced reproducing kernel and thereby also to a new reproducing kernel Hilbert space '72 Generally, the dimensionality of the space as well as the definition of the inner product are different for the new reproducing kernel Hilbert space; however, one inl,. ,; has the standard inner product definition that is appropriate for any reproducing kernel Hilbert space [42]. In the present case, it follows that /2C defines a onedimensional Hilbert space 712 Note that even though the coordinate value for the constrained coordinate Q is now set at Q = 2 as is clear from the special dependence of /12(p", q"; p', q') on p" and p' the range of the values q" and q' is still the whole real line. The only remnant that q" and q' have of their physical significance is that kC2(p", q"; p, q') peaks at q" = q' = 2. It is noteworthy that an example of this type of irregular constraint was considered previously by [40]. A similar procedure is carried out for the remaining components in the original reproducing kernel. Let us next consider IC(p", q"; p', q') (p", qE( < < < 6)p', q') 1 il f (xq")2/2i(p"p')x6(xq')2/2ld where 61 6/2. To leading order C, (p", q"; p', q') = e(q"+q')/2 i (549) V7T 6 p"( p') which is a function of positive type. It is noteworthy to note that this constraint is of regular type. [14] We rescale this function differently so that k (p", q"; p', q') 26i and then take the limit 6  0 leading to l (p", q"; p', q') lim kCi(p", q"; p', q') 6>0 e'q"2+q']/2, (551) a continuous function of positive type that characterizes the onedimensional Hilbert space 71. Our procedure of scaling the separate parts of the original reproducing kernel by qualitatively different factors (i.e., 61 and 62) has not appeared previously in the projection operator formalism. This difference in scaling is motivated by the goal of having each and every element of the reduced classical phase space represented on an equal basis in the quantum theory. It is only by this procedure that we can hope that the classical limit of expressions associated with the physical Hilbert space can faithfully recover the physics in the classical constrained phase space. Scaling of Ci and 2C by finitely different factors has been addressed in [9]. Let us continue to examine the remaining CK, 3 < n < 4. For KC4 we have 4 (p", q"; p', q') (p", q"IE(6 < 8(Q 3)3 < 6)p',q' 1 f3+ ) p e (xq")2 /2i(p"p')x (xq')2/2 dx V/T J3,63 where 63 [6/8]1 3. The now familiar procedure leads to ", q"; ', q) = e[(3q")2+(3q') ]/22i(p"p') (552) (550) corresponding to a onedimensional Hilbert space R73. For /C3 we are led to 3(p", q"; p', q') = (p", q" IE(2 < Q < 3)lp', q') 1 4 J e(xq")2/2i(p"p')xz(xq')2/2dx, (553) In this case, no 6 appears and no infinite rescaling is needed, so we may simply choose 3 (p, q"; p',q') C3(p", q"; p', q'). (554) Although we do not have an explicit analytic expression for /3 we do have a welldefined integral representation in (553). Furthermore, it follows that 73 is infinite dimensional. Finally, we define the reproducing kernel for the physical Hilbert space as IC(p", q"; p', q') ,I1(p", q"; p', q') (555) In turn, the physical Hilbert space 7'ip is defined as the reproducing kernel Hilbert space i uniquely determined by the reproducing kernel /(p", q"; p', q'). Observe, by our procedure, all elements of the reduced classical phase space (R x Z) are represented on an equivalent basis in K This feature has been designed so that the classical limit of the expressions within 'ip correspond to all aspects of the reduced classical phase space. We will now turn to a discussion of observables of this model. 5.3 Observables Let us restrict our discussions of observables to those that are selfadjoint operators 0 in the unconstrained Hilbert space. We also limit to constraints that are both classically and quantum mechanically first class2 We first discuss the situation in the case of a regularized (6 > 0) enforcement of the constraint [('!i plter 4]. In this case, all physical 2 These arguments can be extended to include both quantum mechanical secondclass and first class with an anomaly. The exclusion is made for the sake of the model under consideration. observables must obey the following: [E, O] = 0. (556) We note that even though E is a function of the squares of the constraints we are not bound to the same concerns Thieman faced in the Master Constraint program. The starting points of the discussion of observables in the two frameworks are different. The Master Constraint Program suffers from the fact that multiplication of functions in a classical space is commutative, hence the additional requirement of an observable function. However, in the Projection Operator Formalism we begin in the quantum regime where the multiplication of selfadjoint operators may not be commutative therefore (556) is sufficient. We can take a general operator G(P, Q) in the unconstrainted Hilbert space and define gE(P, Q) EQ(P, QE) (557) as its observable component since clearly [E, gE(P, Q)] = 0. In fact, every observable can be expressed in the preceding form (557). The equation (556) is valid for 6 > 0. However as long as 6 > 0 we have yet to capture the true physical Hilbert space of a given theory. Therefore the limit 6 0 must be taken in a suitable fashion to discuss observables. If quantum constraint3 ) admits a discrete spectrum that includes zero, which is not the case for our particular model, then we can make the following claims. An operator 0 is observable if the following is valid lim[E, O] = 0 < [L, 0] )phys = 0. (558) suppressing the index 3 suppressing the index The first part of the preceding if and only if statement has no classical analog; however, the second statement is related to the following weak classical equation {4, o} 0, (559) where o is the classical analog of 0. We consider (559) to be a weak equation because it needs to vanish on the constraint hypersurface. It is obvious that if (558) is true then 0 is gauge independent in the physical Hilbert space. In the Heisenberg picture the evolution of the operator is given by O ) phys = [HE, O )Phys (560) where HE is the observable part of the Hamiltonian in the form of (557). Therefore all observables will stay in the physical Hilbert space as they evolve with time. The same type statement can also be said in the classical world. However, in our particular model, the limit 6  0 must be taken as a form limit because K has a zero in the continuous spectrum. Observables in these instances must be handled at the level of the reproducing kernel. Recall from the previous section that the physical Hilbert space is isomorphic to an infinite direct sum of complex numbers. In this realization the projection operator is the unit operator, and therefore the observables correspond to general symmetric matrices. We will now direct our attention to a calcuation of the coherent state matrix element of the physical conjugate momentum at the level of the reproducing kernel. Specifically, we first note that (jp" q"PE ', ) (p", q"IEPIEp', q) f dx f dx'(p", q" E ) (x P x')(x'lEp', q') ih dx dx'(p", (" E )6'(x x')(x'lE p',q') /d ih dx p", q"\EI (x IE x ', q'). jd~O"; uE dx We implement the constraints by integrating over the appropriate intervals {I,}. (p", q"PpE p/q) ihE dx(p", q"IL ) [ip'h + (q' x)/h](x IEp',q').(561) Similarly, it follows that (p', q' IipE"p, q ihEn dx(p', q'Ex)}[ip"h+ (q" x)/h](xIEp", q"). (562) Using a similar technique of Araki [43], we now determine the desired matrix elements by adding (561) and (562), and dividing by two leads to, (p", q"PE p ,q'= ((5 61) + (5 62)) (563) 2 n dx(p",q"IEx) [p" +p' + i(q" q')](xEp',q') (564) +p' + i(q" (p", q"; p, q'). (565) 2 Finally, if we so choose, we allow only the gauge independent matrix elements by hand selecting the portions of the reproducing kernel that correspond to the irregular constraints, [" + p' + i(q" q')], (P", q" PE', q')= / "", q"; p', q') (566) where kC' is the reduced reproducing kernel except for the component corresponding to /i1. In chapter 6, we will further discuss the concept of observables and the classical limit of quantum mechanical observables in the AshtekarHorowitzBoulware model. 5.4 Observation and Conclusions In this chapter we have defined and examined the classification of highly .:,i il., constraints. In the following chapter we will examine the AshtekerHorowitzBoulware model and apply the techniques developed here in this more complicated model. CHAPTER 6 ASHTEKARHOROWITZBOULWARE MODEL The primary motivation of this chapter is to analyze the AshtekarHorowitzBoulware model utilizing the Projection Operator Formalism. We will also compare the result obtained by the POF approach with that obtained via methods of the Refined Algebraic Quantization program. The basis of this chapter can be found in [10]. 6.1 Introduction The AshtekarHorowitz model [11] was formulated to mimic a particular property of the Hamiltonian constraint of General Relativity. In this simple model the constraint of the Hamiltonian system was such that the classical constraint subspace did not project down to all of the configuration space. Using the methods described by Dirac [7], the constraint of this simple quantum mechanical system was imposed. It was argued that by requiring the additional condition of normalization of the constraint solutions, there is quantum mechanical tunneling into classically forbidden regions. This model was originally formulated with the configuration space of a sphere [11]. Later, Boulware modified the constraint problem by noting the curvature of the configuration space p1 li' no role in the analysis and altered the configuration space to a torus a compact yet globally flat configuration space [44]. In the quantization of the modified model, the additional requirement of the selfadjoint property was imposed on the canonical momentum. Using this additional criterion, it was shown that no tunneling would occur into the classically forbidden regions for the physical states. Recently, Louko and Molgudo investigated this model using techniques of the refined algebraic quantization program (RAQ) to determine its physical Hilbert space structure [32]. The methods they employ, 1 led to the existence of superselection sectors in the physical Hilbert space. The basic formalism of RAQ is unable to determine a rigging map for a constraint that has both regular and irregular solutions. Modifications were made in definition of the rigging map to accommodate for the variety of solutions, (i.e.r solutions of the constraint equations that are stationary (critical) points of the arbitrary function R(y) in the constraint). These modifications resulted in the advent of superselection sectors in this model. Using the projection operator formalism [13], we are able to ascertain the physical Hilbert space of the AshtekarHorowitzBoulware (AHB) model with techniques which we feel are closer to the essence of the Dirac procedure [7] than those in [32]. The physical Hilbert space of this model is shown not to decompose into superselection sectors. We are inclined to take the point of view that superselection sectors are based on physical principles not pure mathematics. The approach in which we ultimately employ is a similarity transformation. Physics is invariant under similarity transformations. We should also note the two methods (Projection Operator vs. RAQ) are not equivalent. We were able to generalize to a class of functions (i.e. functions that have interval solutions to constraint equation) that the previous work [32] can not analyze without further modifications. The previous work [9] serves as a guide for this present endeavor. This chapter is organized as follows: Section 2 provides a brief introduction to the classical AHB model. Section 3 presents the canonical quantization of the model. Section 4 deals with constructing the physical Hilbert space using the projection operator formalism. Section 5 deals with defining superselection sectors and determining whether or not the Physical Hilbert space obtained in Section 5 contains superselection sectors. Section 6 deals with the classical limit of the constrained quantum theory and establishes that the classical limit is the classical theory of the original model. Section 7 contains an account of the RAQ approach to this model. 6.2 Classical Theory The classical system of the AshtekarHorowitzBoulware model is given by the following action, I J (p + p AC)dt, (61) where A is a Lagrange multiplier corresponding to the constraint C. The configuration space of the AHB model is C = T2 S1 x S1. The constraint has the following form C p R(y), (62) where the function R(y) E C1(S1) is assumed to be positive somewhere. When the constraint equation is satisfied the classical solutions are limited to the regions of the configuration space where R(y) > 0. The constraint region in the 4 dimensional phase space will involve a proper subset of configuration space. Note that the Hamiltonian equals zero in this model to emphasize the role of the constraint. The dynamics of this system are given by the following 5 equations of motion. x = 2Ap1, y = 0, dR(y) Px = 0, P, = A , dy p R(y) = 0. From these equations of motion, we can make some statements on some observability properties of this theory. The dynamical variable x is gauge dependent for all px except for px = 0. The conjugate momentum of y also appears to be gauge dependent if the constraints are regular around a given set of y that satisfies the constraint equation in the phase space. If yo satisfies the constraint equation and R(v) o = 0, then the constraint is an example of irregular constraint about y yo, whereas if () y=o / 0, then the constraint is regular about yo. If there are multiple solutions to the constraint equation p R(y) = 0 then we may have a condition where combinations of regular constraints and irregular constraints, this is the characteristic of a "highly irreg 11i constraint. For the most general analysis, we can then assume that the constraint equation contains solutions that are both regular and irregular. In this general setting we can classify the AHB constraint as a highly irregular constraint. 6.3 Quantum Dynamics We now proceed to canonically quantize the system (61). We will assume our chosen canonical coordinates are Cartesian ones suitable for quantization [20]. We then promote the canonical dynamical variables (x, y,px,Py) to a set of irreducible selfadjoint operators (X, Y, PF, Py). Conjugate pairs corresponding to compact, periodic spatial components will not obey the standard HeisenbergWeyl relationship [45] because the eigenvalues of the conjugate momentum operators are not continuous but discrete. Continuing with the canonical quantization procedure, we promote the constraint to a suitable function of selfadjoint operators C C <= P R(Y). (63) Note, there is no ordering ambiguity for this operator. We assume the constraint operator is a selfadjoint operator in the unconstrained Hilbert space. We can now implement the quantum constraint using the projection operator method. 6.4 The Physical Hilbert Space via the Reproducing Kernel The projection operator for the AshtekarHorowitzBoulware model is chosen to be E(C2 < 62) = E(6 Since the function R(y) is a continuous function, we must introduce an appropriate set of bras and kets to deal with the subtleties described in section 2. 6.4.1 The Torus T2 Before constructing the model with the configuration space of a torus we must determine the correct coherent states to use. We wish to use the coherent states not only for computational ease, but also to determine the classical limit, which will be addressed later in this chapter. The torus is the Cartesian product of 2 circles. It follows that the coherent states for the unconstrained Hilbert space can be written as the direct product of 2 coherent states on different circles. Coherent states on a circle can be generated by coherent states of a line with the use of the WeilBerezinZak (WBZ) transformation [45]. We shall use X and Y to denote the characteristic lengths of the x and y coordinates, respectively. The WBZ transform, T, is a unitary map from L2(IR) to L2(S1 x S1*), where S1* is the dual to S1. The transformation is given by the following (TQ)(x, k) E ,.ifXk (x nX) (65) where ip E L2(R), x E S1, and k E S1* or stated otherwise k E [0, 2). We project a corresponding fiber of L2(S1 x S1*) onto L2(S1) by fixing a value of k. Using the standard canonical coherent states in L2(R), it has been shown the coherent states on a circle have the following form (h = 1) 1 1 1 X T (I') = 7/4exp( p(x + ip)) exp( (x + ip x')2)0(i (x + i x' ik);pl), kx/) F1/4 2 2 2 S(x' x,p,k) (66) where pi = exp(X2) and ((z) = ,,p",22in, (67) p < 1, is the Jacobi theta function. These states are not normalized [45]. For each value of k these states satisfy the minimal axioms of generalized coherent states; i.e., a continuous labeling of the states where the label set has a topology isomorphic to IR2 and a resolution of unity [40]. We can express the coherent states on T2 as the following, x, px, k1; y, py, k,)= \x, px, k) 0 y, py, k,), (68) where x, y e S1 and kx e Sl*,and ky E S'*. For simplification we will choose X, Y = 27. We will make a further simplification by choosing a value for kx and ky. We justify such a choice by noting that the spectrum of the momentum operator is shifted from the expected value by k [45], effectively, we can set the new ground state at k. Therefore, we can safely choose zero for both kx and ky. Thus we will make the following notational change X, P Y, py,)o= X,P, )o 0 \,py)o, (69) The construction of the reproducing kernel is based on properties of the constraint operator as well as the coherent states (69). The constraint operator and the compactness of x restrict the spectrum of its conjugate momentum P, and thereby of R(Y). Allowed values of y are determined by the following equation o(n R(Y)ln)o o (n (n)2 o = n2 n Z. (610) where In)o is the orthonormal basis for L2(S1). We will proceed with the quantization of this model by implementing the method discussed in Section 2 for each n sector of the theory. Since we are not choosing a particular R(y), we will only be discussing the physical Hilbert space in general. We consider the following two types of solutions to the constraint equation. I.) (Point Solutions) The solution y = ym is a point value solution to the equation (610) for a given value of n. The index m corresponds to multiple values of the y that satisfies the equation for a given value of n. II.) (Interval Solutions) The solutions y = ym, satisfy the equation (610) for all elements in an interval I(m'). This classification of solutions also includes a countable union of disjoint intervals. Although physically motivated models exclude such constraint solutions, we include them to illustrate the versatility of our approach {ym'} = {m' IR(ym.)= (n)2 VYm' E Im'}. (611) For simplification, we will only assume that R will only contain the first type of solution. We point the interested reader to the previous chapter or [9] to determine the physical Hilbert space contribution for type II solutions. The calculation of the reproducing kernel can be decomposed into portions corresponding to each value n E Z in the following manner: o(x',p',; ,pyE(6 < R(Y) P2 < 6)lx,p ,py) J= d {o(x',;p'ypE(P, = n)E(6 < R(Y) P2 < x,px; y,py)o n.oo W, p, Y" py I E!(P = E _(x',p' y',py\\E(6 < R(y) n2 6IX, P; y, )o = f o(x', p'y',pE(6 < R(Y) n2 < xp y,py)o.y To determine the point solution contribution, we fix a value for n and proceed as follows m(x ,p' y p,; x, p, ;y, py) Inconstant = f dy' [dyo{x',py',ip[y'}{y'E(6 < R(Y) n2 6)\y}{y\\x,p 9y,py,). S 'dy ldyox',p,'II >'PE(6 < R(y) n2 I6)x, pyP)o6(Y Y) rym +1/Sm(8) = dy"(y',p,y" y"y, p,) (x', p' in,k){n~x,p), Jym1/sm(S) where 1/Sm(6) is the leading S dependency as described in Section 2. For small 1/Sm(6) values, the integral can be approximated as follows Cm(', pp, y', py,; x, p,; py,) constant 2 sin(1/SQ()( y')) Di( ,p'2')/2+/ /2 27(y y') x exp[(Yi y)2/2 iYm(py py) (Y y')2/2] x *(ik(y' + ip, y~; pi)e(i7(y + ip, y2; pi) x exp[n2] exp[in((x' x) + (p p)], (612) where pi = exp[27r2]. Following the prescription set forth in Section 2, we perform the required similarity transformation to extract the leading 6 dependency of the reproducing kernel. 'rmnnconstant Sm() 2 sin(1/Sn(5) (Y y')) ei(pxz'_p')/2+p2/2+p /2 27(y y') x exp[(Y y)2/2 ity(p' py) (Y ')2/2] x *(ix(y' + ip, y; pi)(i7 x(y + ipy y; pi) x exp[n2] exp[in((x' x) + i(p' p)], (613) The limit 6  0 can now be taken in a suitable manner to determine the reduced reproducing kernel for this portion of the physical Hilbert space [13] which then reads 'mnn constant Sei( p'.,x')/2+(p')2/2+(p,)2/2 7T x Zmexp[(y. y)2/2 iy(p py) (y, y')2/2] x e*(i(y' + ipy yT; pl)6(iw(Y + iy Ym; P1) x exp[n2] exp[2in7((x' x) + i(p' px))] for each value of m. Each of these reduced reproducing kernel Hilbert spaces is isomorphic to a onedimensional Hilbert space (i.e. 7i Q C). We continue the procedure for each whole number value of n until the maximum allowed value (of n) is reached. (614) Once this calculation is performed for all values of n, consistent with (610), then we can write the reproducing kernel for the physical Hilbert space in the following manner /C = max mCnm (615) Similarly, the physical Hilbert space can be written as 'nmax 'Hphys= ( m. (6 16) n m The support of the reproducing kernel is only in the classically allowed regions. This implies there is no tunneling into classically forbidden regions as reported by Boulware [44]. 6.5 Superselection Sectors? Before determining whether or not the physical Hilbert space calculated in the preceding section contains superselection sectors, let us first divert the question and discuss what is formally meant by superselection sectors. Suppose a physical Hilbert space is given by the following, 9phys e iN (617) which is to w that the physical Hilbert space is given by the direct sum of individual Hilbert spaces. The physical Hilbert space is said to decompose into superselection sectors if for any two states 1), 102) that belong to two different sectors 7H and Hj, respectively, and for any observable 0 in Aobs, where Aob8 the *algebra of all observables, the following holds, physK(i 0\)phys = 0. (618) In (618), O denotes a generic selfadjoint operator in the unreduced Hilbert space. In previous works using the RAQ procedure [31], superselection sectors arose because each sector had a different degree of divergence. Since O is a selfadjoint operator in the unreduced space, (618) is forced to vanish to avoid a contradiction from the varying degrees of divergency [46]. As we have shown in the proceeding section the physical Hilbert space determined via the projection operator method can be written as the direct sum of nmax onedimensional Hilbert spaces. It follows that the physical Hilbert space is isomorphic to the direct sum of n~ax copies of the complex numbers. There the projection operator is merely the unit matrix on a finite dimensional space and thus observables correspond to general Hermitian matrices. Therefore, (618) will only hold if and only if the operator is proportional to the projection operator. In general (618), does not hold, therefore the physical Hilbert space (617) does not decompose into superselection sectors. We will now discuss the classical limit of the quantized AHB model. 6.6 Classical Limit We must recall the general rule given by diagonal coherent state matrix elements (p, q10lp,q) = (p, q; h), (619) where p, q) are canonical coherent states. This provides the connection between an operator O(P, Q) and an associated function on the classical phase space manifold. In the limit, h  0, we find this function reduces to the classical function that corresponds to the weak correspondence of quantum operator. This statement can easily be seen if 0 is a polynomial, however, this condition is not necessary. This result can be generalized to any number of phase space variables as will be demonstrated below. Before evaluating the classical limit of the model, we must discuss the fundamental difference between quantum mechanics on a compact configuration space and that of an unbounded space. The conjugate momentum operator (PF) has a discrete spectrum if the configuration space is compact. Therefore the standard canonical commutation relation [X, P] = ih, (620) is inappropriate. To alleviate this problem we consider the ,;!,!" operator [45] U1 = exp(ihx). (621) This unitary operator acts to translate the operator P, in the following manner UxPxU = P h. (622) As observed in [9], the observable part of an operator can ahiv be expressed as OE = EOE, (623) where 0 is a selfadjoint operator in the unconstrained Hilbert space. The observable part of the Hermitian combination of U, and Ux is W, = UEUE = EUIEULE. (624) By observation, we note W E(6 < Px R(Y) < 6)E(6 < (P h)2 R(Y) < 6). (625) These projection operators are acting on mutually orthogonal subspaces; therefore, the operator is identically zero. This result informs us that this is a gauge dependent question which is consistent with the classical picture. Recall from Section 3 the x dynamical variable is gauge independent only when px 0. Quantum mechanically, we have posed the question to find a pl.yical" wave function that has support on both a gauge independent sector and gauge dependent sector. This is impossible. If we were to examine the same query for the corresponding Hermitian combination of the in,!, operator for the Y coordinate, we would obtain the unit operator. The classical limit of this operator is again in complete agreement with the classical theory. As we have previously observed the classical dynamical variable y is alvi gauge independent. Now we consider the following quotient to establish the classical limit of the Y i,!. operator" Uy (x,py,;py,p, IEU E, p,;y, py,) (X, P ,; Y,py, IE Ix, ,; Y,py,) a 2(() ;ep( h)2 exp[iy (exp( )) (626) 2r e( (p, h); exp(2h)) As h  0 this expression becomes exp ,2'], (627) where y is subject to the condition R(y) = p2. While this expression is imaginary, we can extract from it the classical reduced phase space coordinate y. Now we direct our attention to the expectation value of the physical conjugate momentum, P, (x, p1; y,py EP. E I p; y,p) (x,px;y,p. ElI' pxy,py) p i +x (6 28)  z dy' dx'(x, px; y,pyIx', y') } (x', y'x, py; Y,py). (628) /C J J Ox' We implement the constraints by integrating over the appropriate intervals as described in Section 5. We can continue this calculation in a similar manner to that which is performed in [9]. (x,p;y,py\EP.,E\, px;y,py) '(4p; exp( 2/(h))) = pX + (629) (x,pX; yp, E P,; y, ;py,) 20( (h); exp(T2/(h)))' where OO O'(z; p) 2i > pfe" eel2inz. (630) SOO As h approaches 0, the second term vanishes which can be seen in the definition of the Jacobi theta function (67) [45], thus recovering this aspect of the classical theory from its quantum analog. Using the same technique, we can also calculate the classical limit of the expectation value of the Py operator. The projection operator formalism is well suited to not only properly impose quantum constraints, but also allow one to return to the proper classical theory in the limit h  0. 6.7 Refined Algebraic Quantization Approach Before proceeding with the Refined Algebraic Quantization (RAQ) of this model, we must first impose some additional technical issues on the constraint (62). First we must assume the constraint (62) contains a finite number of zeros and that all stationary points (i.e. R'(y) = 0, R"(y) = 0, [i.e. the nth dervative of R with respect to y]) only to have a finite order that no zeros of (62) are to be stationary points. As with the analysis in the preceding sections we must also require that R(y) be positive at least somewhere. Following the program described in ('!i lpter 3 we must first choose an auxiliary Hilbert space, 'Hax,. The auxiliary Hilbert space of choice is the Hilbert space of squareintegrable complex functions over the configuration space. The canonical innerproduct is given by the following; (01, 2) aux f ]= lf 11. i11'(x,y,)2(x, y), (6 31) where (.)* denotes complex conjugation. The classical constraint is promoted to an operator that acts on the auxiliary Hilbert space, a2 C 02 R(Y), (632) where R(Y) acts as a multiplication operator namely, R(Y)O(x, y) = R(y)((x, y) for all 0(x, y) cE tax. The operator, C is an essentially selfadjoint operator on Haux, therefore the operator will exponentiate to the one parameter unitary operator via Stone's theorem, U(t)= eitc t e R. (633) Keeping in line with the RAQ program, we must now choose a test space 4 C aux. In this model the convenient choice is the set of functions of the form; f(x, y) = _, f(y), (634) where fm(y) : S1  C, and only a finite number of fm's are different from zero for all f 4E It is clear that this set is a dense set in the space of 7Hau,. By the definition of f cE the action under the unitary operator1 (633) is as follows, U(t)f(x, y) = meeit(m2 ()) eimxfm(y) E 4, (6 35) therefore by this calculation ) is invariant under the action of U(t). One further comment must be made before proceeding with the rest of the procedure, if 0 E Aobs then 0 commutes with U(t) and is densely defined in 4. The final phase of the RAQ procedure is to determine the antilinear rigging map via the group average map, I : Q O*U(t)dt (636) or equivalently we can discuss the map through the matrix elements [30] 7(1) 21 (, U(t) dt. (637) At this point a deviation from the standard RAQ approach is required. [46] Since (637) is not absolutely convergent, this is due to the fact the gauge group generated by U(t) is a noncompact group. Formally, it was established [32] that the rigging map could be written as the following equation, l(f)(x,y) = 27r, _ imx f* (y)6(m2 R(y)) (638) or equivalently, imi f{*(,f l(f)(x,y) 27rEm j i (, j) (639) R'(Yymj where ymjs are solutions to m2 R(y), (640) 1 The operator C, as well as U(t), is densely defined in 4. and the delta functions in (638) and (639) are the delta functions for R and S1, respectively. Assuming that (640) has solutions then it was shown in [32] that (639) does satisfy the axioms of the rigging map. A key component of the verification of the aforementioned axioms is that Tr induces a representation of Aob8 on the physical Hilbert space. This can be stated in terms of the matrix elements rl(A1)[[] 2= rl(l)[At]21, (6 41) for all Q1, 02 c E) and A E Aobs. It can be shown [32] that the representation of Aobs on 9RRAQ is irreducible and is transitive. In the preceding discussion the physical Hilbert space did not decompose into superselection sectors. The advent of superselection sectors appears to be a direct result of relaxing the condition to allow for solutions of (62) to include stationary points. With this relaxed condition, a further modification of the rigging map is required to avoid divergences in (639). This is accomplished by replacing the denominator with fractional powers of higher derivatives, which depends on the order of the stationary point. The replacement of the denominator can be thought of as a renormalization of the averaging procedure. Each of these renormalized rigging maps can be shown [32] to carry a transitive representation of Aobs. The total Hilbert space 'HtAQ can be regarded as the direct sum of individual Hilbert spaces. The representation of Aobs also decomposes into the representation of the summands. Which in turn implies the presence of superselection sectors in tH'OQ. 6.8 Commentary and Discussion As a direct result of the gauge group being noncompact a deviation from the standard RAQ method was required to deal with this particular model. Instead of the standard group averaging approach, the author chose to pursue a formally equivalent rigging map. The rigging map (639) has definitive connection to the reduced phase space method for quantization. The authors of [32] also comment on the close connection to the classical reduced phase space, by noting that the superselection sectors are related to the classical singularities in the classical phase space. This dependence on the classical regime to determine quantum behavior is rather disturbing. This dependency should be reversed. The main difference in the RAQ procedure and the Projection Operator method is when 6(h) is taken to zero. In the Projection Operator method the limit is taken after the evaluation of the matrix elements, while the RAQ method requires the limit to be taken before the evaluation. As we have demonstrated in this chapter, these two methods are related, however their implementation is different and the results obtained in this particular type of model are not the same. CHAPTER 7 PROBLEM WITH TIME "... ,, ;,,,,/ all ,ql.I ,1.li problems in pi.;;. in the p',.f.lund issues of principle that confront us i.,.~n no difficulties are more central than those associated with the concept of time ..." John Archibald Wheeler Time is a crucial element to any dynamical system; it is the evolution parameter of such a system. The nature of time is an extremely popular topic covered by many physicists, as well as, philosophers [22]. While the physical (or metaphysical) nature of time is outside the main focus of this dissertation, timedependency in quantum mechanics offers us an interesting caveat to explore and study. In the methodologies developed and discussed in the previous chapters, the primary goal was to solve quantum mechanical timeindependent constraints. The exclusion of time was made primarily out of simplification. In most of the literature about constraints [12] the topic of timedependent constraints is either briefly covered or it is not covered at all. However, it is clear that for a more complete discussion of constraint dynamics we must also include constraints that are explicitly dependent on time. Time dependence can enter a dynamical system through the Hamilitonian, constraints, or in the most general case or combination of the two. The inclusion of explicitly timedependent constraints offers not only an interesting academic exercise but also gives physicists the tools required to examine more physical theories than those that previously could be discussed. This is not the first occasion on which the projection operator has been used to deal with the case of timedependent constraints. In [47], Klauder derived an expression for evolution operator of timedependent constraint. The construction of this expression was based on modifying the expression for the timeindependent case. Although this expression seemed to be correct the author chose not to pursue this subject matter further. Primarily, he made this choice because the formula did not reduce to a simpler operator expression. While the projection operator will be the primary mode of exploration throughout this project, the expression derived in [47] will not be the starting point for our investigation. We will, however, advocate the use of the reparameterization invariant description to discuss systems with timedependent constraints. We should mention that this starting point is not a new approach to deal with timedependent constraints. We will alter past efforts on this topic by exploring the "nonlocal" point of view. The phrase "nonlocal" point of view was coined by Gitman [48] when describing a physical system in which one assumes a reparameterization invariant form of a theory. However, it is well known, that if an action is a reparameterization invariant then the Hamiltonian vanishes on the constraint surface1 Physics described in a reparameterization invariant form is not dependent on the frame of reference [48]. We should mention that using the reparameterization invariant approach is not new, however, the implementation of this symmetry with the projection operator would seem to be new. In the next two chapters we will discuss some of the facets of the problem with timedependent constraints. In ('!i lpter 8 we will motivate and develop the techniques in which one can study constraints with an explicit timedependent feature. We will also give a brief introduction to an alternative to the projection operator, which is the approach used by Gitman, [12] and compare and contrast the two approaches. The primary goal of ('! Ilpter 9 is to implement the formalism developed in C'!i lpter 8, in a few examples of timedependent constraints. 1 See Appendix for this result. CHAPTER 8 TIME DEPENDENT CONSTRAINTS 8.1 Classical Consideration 8.1.1 Basic Model Our discussion will begin considering a classical regular system with a single degree of freedom, whose canonical variables are named p and q. Such a system can generally be described by the action functional. I / (pq H(p,q))dt (81) J1 where = dq/dt and H(p, q) is the Hamiltonian of the system. The evolution of the system is obtained by varying the functional with respect to the dynamical variables, this reads as, OH 4 = a (82) aH O aH (83) q' subject to the suitable boundary conditions. As stated above, this system is purely dynamical, however, it is well known any action can be converted into an equivalent action that is a reparameterization invariant. [48] Let us begin this conversion by promoting the dependent parameter t to a dynamical variable. This is appealing from a relativist's perspective because the spatial and temporary coordinates are treated symmetrically. We also must introduce the formal momentum pt conjugate to t. The integration variable in (8 1) is now replaced by a new independent parameter 7, which corresponds to proper time or a more general function of time 1 We can express the reparameterization 1 Proper time is the time seen by an observer in the rest frame of a system. [6] However, for our purposes we can consider the Lagrange multiplier are not strictly increasing see Appendix invariant form of the action integral in the following manner. I' = (tt* + pq* A() [pt + H(p, q)])d (84) where (.)* denotes the derivative with respect to r. The price paid in promoting t to a dynamical variable is that the Hamiltonian vanishes weakly in the extended phase space. We have identified the primary unexpressable velocity t* as the Lagrange multiplier that enforces the (firstclass) constraint pt + H(p, q) = 0. Therefore, we have turned a theory that was a dynamical system into one that is purely gauge. Effectively, we have recast the original theory in such a manner that it can be related in any temporary reference frame[48]. The equations of motion of (84) are as follows: dq A H dp H(8 7 AO (85) dr p dr 6q dt dpt dt A (), 0 (86) dr dr pt + H(p,q) = 0 (87) As the equation of motion appear above q, momentum p, and the physical time t, measured are gauge dependent quantities. However, pt is gauge independent and therefore an observable quantity in this theory. By identifying the usual time as the gauge dependent quantity dt = A(r)dr (88) we can quickly reduce the preceding equations of motion (84) to the familiar parameterized form. H (89) Op OH (810) Oq' The dynamics of this system arises from imposing the constraints. We can use the preceding discussion as motivation in the discussion of systems in which the Hamiltonian and the constraints are time dependent. Consider the classical action functional, I = dt[pj H(p,q,t) % l(p, q,t) (811) t1 where j {1, ..., N} and a E {1,..., A}. The dynamics this system is given by the familiar Hamiltonian's equations dqj {qH}+A (812) dt dpt S{pi,H} + A{p ,~)} (813) Oa(p,q,t) = 0 for all a {1,..,A} (814) At this point, the equations of motion are identical to those that appear in the time independent case. The distinction appears when we force the dynamics to lie on the constraint surface (i.e. subspace in the phase space defined by = 0) for all time t. d a + {a, H} + Ab{ a,} b 0 (815) dt at where a 0 implies (815) vanishes on the constraint surface. For simplicity, we will assume that the set of constraints are complete to all orders (e.g. secondary, tertiary, etc.) of constraints have been uncovered using the Dirac procedure [14]. The distinction between first and second class constraints is made based on the algebra of the Poisson brackets. However, we forgo this distinction for the moment for the sake of generality. The cost of explicit time dependence in the constraints in (814) is the presence of the partial time derivative in equation (815). Despite the additional term in equation (815), we can maintain the usual structure of timeindependent constraints, by following the procedure described in the proceeding subsection. As before we will promote t to a dynamical variable, and introduce its formal conjugate momentum pt. By introducing additional dynamical variables and conjugate pairs to the phasespace, we also have extended, in a natural manner, the symplectic twoform S= u +dt A dpt (816) where w is the symplectic form of the original parameterized space ([17]), defined in C!i lpter 2. The Poisson bracket {., .} which is defined by the symplectic form, should be understood unless otherwise specified to be that of the extended space. The equivalent action can be written in the following manner: I' = 2dr[pj* + p* (pt + H(p, q, t)) A'] (817) where A" = A(r)A which is merely a redefinition of the Lagrange multiplier. Notice once again the canonical Hamiltonian vanishes. As in the previous section the dynamics of the system arises from implementing the constraints. dqJ A{qJ,pt + H} + {qJ, 0} (818) dr A{pd, p + H} + A {py, ,} (819) dr e (p,q,t) = 0 for all a { 1,..,A (820) =d A{Qpt + HJ+ Ab0, b} M 0 (821) dr (822) 8.1.2 Commentary and Discussion Inspired by reparameterization invariant theories [48] along with other models proposed by other authors [49], [50], we have arrived at a starting position to deal with timedependent constraints. This was done by changing the dimension of the entire unconstrained phasespace from R2N to R2N+2, which was accomplished by promoting t to a dynamical variable, and introducing its conjugate momentum pt. The consequence of this change of space2 is that the new Hamiltonian vanishes, and we have one additional constraint. However, constraints with explicit time dependence now pose the same mathematical structure of timeindependent constraints in the Dirac procedure [12] with the aid of the extended symplectic form. We should also note that we have refrained from introducing a temporal gauge fixing term such as a chronological fixing gauge in our action. This is a point of divergence from the previous authors on the subject. As is well known, a gaugefixing term has the potential to introduce topological obstructions that can cause difficulty in the analysis of the quantum system. This technique of introducing a gauge is used in quantization schemes such as FaddeevPopov [27] which advocates reduction before quantization. Since one of the main philosophies of the projection operator formalism is to quantize the entire dynamical space and reduce second (i.e. eliminate the redundant variables), there is no need to introduce such a term in the action. Dirac observables are phasespace functions that commute weakly with all of the constraints. An extensive amount of literature has been devoted to the task of identifying observables in systems such as General Relativity and other generally covariant systems [51]. If o is a classical observable in a system with timedependent constraint then the following must be true: do S A{o,p, + H} + A{o, ,} O 0 (823) where {., .} are understood to be the Poisson brackets for the extended space. Therefore, o is a constant of motion on the constraint surface in the extended phasespace, which implies that an observable is independent of a choice of reference frame or gauge. Since we will not make any further use of the concept of an observable in the discussion of systems with timedependent constraints, we will defer this discussion to a future project. We 2 An additional requirement of a global Cartesian coordinate system must be imposed when we proceed to the quantization of the described system ala Dirac will now turn our attention to discussion of the quantum analysis of the afformentioned system. 8.2 Quantum Considerations 8.2.1 Gitman and Tyutin Prescription for TimeDependent SecondClass Constraints Before proceeding with the discussion of the projection operator formalism, we will briefly describe the method Gitman and Tyutin prescribed for dealing with timedependent secondclass constraints. [12] For simplicity, we will limit this discussion to include bosonic variables, however, one could extend any of the following arguments to include fermionic degrees of freedom as well. Also, for convenience we will use the notation used by the original authors, namely, = (q,p) which can explicitly depend on time, as well as, {., *}D(6) represents the Dirac bracket with respect to a set of secondclass constraints Qa(q], t). The Dirac brackets are defined in the following manner {f, 9}D(6) {f, 9} {f, }Ca{ bg9} (824) where {., .} is the Poisson brackets, Qa is a constraint, and Cab is an invertible matrix [12]. Whenever encountered the Dirac bracket is taken assumed to be defined for the extended space, (I; t, pt), as described in the preceding section. Consider a classical Hamiltonian system with a set of secondclass constraints Qa(I, t) and with a Hamiltonian H(p, q, t). The Dirac brackets [7] are used to avoid having to solve the constraints. Therefore, the evolution of the canonical variables is given by dt d ri' = {, H + pL)D(p) Qa(T, t = 0.(825) The quantization of the classical system, follows in the Schrodinger picture, in which the canonical variables Tr are assigned to operators rTs that satisfy the equitime commutation relations; [s' T1, D(6), La(l ) 0. (826) In the Schr6dinger picture it is stated vectors evolve in time, where the time evolution is generated by a unitary operator. Operators in this picture are stationary, which implies the operators are timeindependent. However, in this system the canonical operators r]s carry over an explicit timedependence from their classical analogues, therefore these operators evolve in time. This is a departure from the traditional Schr6dinger picture. In a later work, the authors recognize this distinction by calling this picture "rule" exist.. At this juncture we realize this current picture is unable to illustrate the full time evolution of the system. In order to fully obtain the time evolution we will move to a unitarily equivalent picture, the Heisenberg picture. In the Heisenberg picture of quantum mechanics, the state vectors remains fixed while the operators evolve in time. [38] In the Heisenberg picture the operators rIH are related to the operators rTs by IH U= 1'IsU, where U is the time evolution operator. The operator U is related to the Hamiltonian Hs by the differential equation, 0U i SHs (827) at h We can evaluate the total time derivative of TlH by the following dUlH d(U1UsU) (828) dt dt i U1( [ Hs, Hs] + {, pt}D())U I 4 ~Us (829) Equation (829) establishes the connection between the quantum equations of motion and the classical equations of motion namely, = d {, H + pt)D() 'H (830) In the most general setting, the above described evolution is not considered "unitary", because in general no "Il Ii!illin ,,, exists whose commutator would result in the total derivative. The principal agent for this nonunitary character is the second term in the lefthand side of equation (829), which is time variation of ls. Therefore, the dynamics are evolving, as well as the constraint surface. 8.2.2 Canonical Quantization As mentioned in C'!i pter 2, the canonical quantization program requires the space to be a globally flat space. Therefore, we will state that the extended phase manifold not only has the topology of R2N+2 but is endowed with a globally flat Cartesian metric to ensure proper quantized results as described by Dirac [20]. Following the conventional program we "promote" the phasespace (qj, p; qo = t,po = Pt) coordinates to irreducible, selfadjoint operators (Qj, Pj; Qo = T, P0 = Pt). The nonvanishing commutation bracket follows the structure of the classical extended Poisson bracket i.e. [iPVI h h (831) [Q,, P"] {q,,p"} 6" (831) A possible objection that the reader may have is to question the self adjoint nature of the T operator. If the spectrum of T is equal to the entire real line, as expected, this would imply that the spectrum of Pt would also be unbounded. However, as is well known, if we identify Pt with the energy E then Pt must be bounded from below, which would imply T is not a selfadjoint operator. [52]. This, however, assumes that Pt has identified or forced to become the negative Hamiltonian, which is a constraint. The contradiction is averted because we have not imposed the constraints, only quantized the entire classical system. We follow the belief that abstract operator formulation of quantum mechanics is fundamental, as well as correct [53] Therefore, proceeding with the canonical quantization of the classical theory, by promoting the classical constraints to selfadjoint functions of the irreducible operators. a (p,q,t) t,(P,Q,T) (832) o = Pt + H(p, q,t) + Pt + R(P,Q,T) = o (833) One possible objection at this juncture is there exist many vi of quantizing a given classical system. While this is certainly true, we will assert that we can appeal to experiment to obtain the true result. Therefore we will not dwell on this ambiguity and assume that we have the correct realization of the quantum system. 8.2.3 Dirac We will now follow the Dirac procedure as described in C'! Ilpter 2. The physical subspace of Hilbert space is selected to include only the elements of the original space that are annihilated by the constraints i.e. Sa )phys = 0 (834) 'i' )phs = 0 (835) for all a + 1 constraints. However, this procedure will only work for a select type of firstclass constraints. In fact, if one adheres strictly to the Dirac procedure (835) will result in a trivial solution since the constraint o) is linear in Pt which implies that its spectrum will contain a zero in the continuum, thereby causing the physical Hilbert space to be comprised of only the 0 element, which is undesirable and unacceptable. We will therefore appeal to the use of the projection operator formalism [13] to circumvent these possible dilemmas. 8.2.4 Projection Operator Formalism The Projection Operator Formalism [13] deviates from the Dirac method by introducing a projection operator E, which takes vectors from the unconstrained Hilbert space (R1) to the constraint subspace (i.e. the physical Hilbert space or even better the regularized physical Hilbert space which will be described shortly.) Hphys E (836) The general form of the projection operator is the following: E TE(,a4) < 62(h)) (837) where 6(h) is a regularization parameter. We require the projection operator to possess the properties of all projection operators namely Hermitian Et = E and idempotent E2 = E. The relation (837), implies that the operator projects onto the spectral interval [0, 62(h)]. The projection operator formalism allows us to deal with all constraints simultaneously and to place all types of constraints on equal footing. 8.2.5 TimeDependent Quantum Constraints The projection operator of the timedependent quantum constraints, follows the same form ii. 1. 1 by Klauder in [13], namely, ,, 2+)sin[62(h) + ]1A E lim lim jr dAe a (8 38) Loo &O++ L To obtain further insight it will be convenient to use the canonical coherent states of the unconstrained Hilbert space. qpt, t) = exp[ia (p, q, pt, t)]ei PjiQ3 eitPt T I rT) (839) where ITr) is a normalized fiducial vector in R. These coherent states admit a resolution of unity given as / _,dpjdy dtdpt 1= P qiPt,t) ,qPt,t dp dtd (840) 27 27 where the domain of integration is the entire extended phase space. The overlap of these vectors are given by the following: p t'j I pt, t) !\, q (p', t' pt, t) exp{ [ p2 1 q2 p'2 2 pq } x exp( 1 Pt2 t2 + tl ttl} (841) 4h t 2ht Expression (841) defines a positive definite functional which can be chosen as the reproducing kernel and used to define a reproducing kernel Hilbert space R. Let us examine the extendedcoherent state overlap of an equivalent form of the projection operator [13] E T e ""d (842) where f({) is some function chosen to insure (842) converges absolutely and T is the time ordered product. (p", q", p, t"Ep',q',p', t') = (p", q"\ (p, t"p', t') 0 p', q SN N1 = lim(p", q" p Ptk+1lEt) tk(t) 0 l~k q') (8 43) kO k=o We can generalize the result from [54] namely lim 6+ 0(p",q", p", t" E(6 < (P, Q + Pt) < 6)p', q', p, t') S(p", q1" 0, 0e' "+(Q))/2(t"t')e(p+(PQ))/2 p' q', 0, 0) (844) to include time dependent Hamiltonians. (p", q", p, t" IE( < R(P, Q, T) + Pt) < )p', q', p', t') T(p", q", 0, 0e "+l(P,Q),T) 2e ( 1), dte (p'+ (P,Q,T))/2 lp, q', 0, ) (8 45) As in (844), we observe the variables pt and t are not needed to span the reduced Hilbert space, therefore we can integrate p"' and p' without altering the physics. Therefore, the most general statement we can make about a system with time dependent constraint is encapsulated in the following lim Tei N 1), (t)dtEN_leij(N 2) N2 e i "I E, (846) where E,= Te f( tDR(A) (847) and DR(A) is the weak measure defined in C'i ipter 4. This result agrees with the result obtained in [47]. This of course is assuming that the constraints are continuous in t. This statement is also applicable if ,a are secondclass constraints. 8.2.6 Observations and Comparisons Despite the fact that the Projection Operator Formalism and the approach used by Gitman [12] start on very similar grounds, the approaches end on very different grounds. The Gitman approach advocates the use of Dirac Brackets, which is a method used to avoid solving for secondclass systems, while the Projection Operator Formalism treats all constraints on equal theoretical footing. In the proceeding chapter we will examine two different constraint models with the aid of the projection operator formalism. CHAPTER 9 TIMEDEPENDENT MODELS In the preceding chapter, we have developed an approach to contend with explicit timedependency in constraints within the projection operator formalism. Despite this development, some looming questions persist. The primary purpose of this chapter is to elucidate these unresolved questions by considering some simple quantum mechanical models. One of the most pressing questions is whether or not the physical Hilbert space of a timedependent constraint is trivial 1 As shown in the previous chapter, (846), the I. ,!, Ii i, i operator" for timedependent constraints can be written as an infinite product of projection operators. However, as we will illustrate in our first model, even with the requirement of a stringent polarization of the states from the total Hilbert space, the physical Hilbert space is nontrivial. The second model is designed to demonstrate how a secondclass system should be considered within this context. 9.1 FirstClass Constraint We deviate from the prescription described in the previous chapter by not pursuing the reparameterization invariant form of the model discussed briefly. The primary motivation of this model is stated above. Let us begin with the simple 3 degreeoffreedom classical extended Hamiltonian. 1 12 ) HE (P +P + ) + (q + q + q32 + (t)(ji sin(jt)+ j3 costt) (91) 2 2 2 2 where jl = q2p3 q3p2 and j3 = p2ql q2p and A(t) is the Lagrange multiplier that enforces the single firstclass constraint 0(p, q) = j sin( t) + jcos(t). (92) 1 Which is to that the physical Hilbert space contains only the zero vector. 1 Which is to I that the physical Hilbert space contains only the zero vector. The constraint will clearly commute with the Hamiltonian, H = (p + p + p) + (q + q2 + q3) therefore this truly is a firstclass system. For the case of this analysis we will restrict the allowable values of t to a compact subspace of R namely, [0, 1]. It is easy to observe that the constraint surface initially is defined by j3 = 0 but evolves in a smooth fashion into the vanishing loci of ji. Moving to to quantum analog of this system2 the issue surrounding the alternating constraints is potentially very interesting since J3 and Jl are examples of incompatible observables, therefore it is impossible to diagonalize them simultaneously. Utilizing the technique in which we established the physical Hilbert space for the Casmir operator of su(2) in C'! lpter 4, Section 3.2, we will use a similar technique to analyze this model. As before, let us introduce conventional annihilation and creation operators given by a (Q + iPj)/ (93) a = Qj iPj)/v2h. (94) If we define the number operator N = aa + a a2 + aa3 (95) it is obvious that [J, N] 0 =[J3, N]. (96) Based on this conservation, we can study the fulfillment of the timedependent constraints in each of the numberoperator subspaces independently of one another. Based on this information we can proceed with the following analysis: 2 Since this model is similar to the example discussed in C'! lpter 4, we will forgo the formal arguments of the quantization scheme. 0particle subspace3 T pi E(6 < J sin( t) + j3 cos(tt) < 6) = 10, 0, 0) (0, 0, 01 (97) 2 2 1particle subspace E (6 < Ji sin(t) +3 cos( t) < 6) 2 2 1 S (sintl, 0,0) + cos t0,0,1))((1,0, 0 sint + (0,0, 1 cost) (98) 2particle subspace E2(6 < J sin(t) +j3cos( t) < 6) 2 2 1 S(12, 0, 0) + 0, 2, 0) + 0, 0, 2))((2, 0, 0 + (0, 2, 0 + (0, 0, 21) 3 + ((sin(t) + 1)12,0, 0) + 10,2,0)+ 1 + cos(t) 10, 0, 2)) 3 2 2 x (sin( t)+ 1)(2,0,01 + (0,2,01 + (1 +cos(t))(0, 0, 2) (99) 2 2 The construction of the higher numbered projection operators continues in a similar fashion. The key observation at this juncture is that the projection operator decomposes into a timedependent part and a timeindependent portion. The timeindependent part is associated with the Casmir operator from the full su(2) algebra, while the timedependent portion is attributed to the remainder of the constraint modulo contribution from EsiL 0. Therfore we can write the full projection operator as the following: 3 The superscript on the lefthand side of the equations designates the number subspace E(6 < J sin(t) + 3 cos(t) < 6) 2 2 S E(iL < 62(h)) + Et(6 < J sin( t) + J3cos( t) < 6 /L262) (910) 2 2 where Et represents the explicit timedependent nature of the second operator on the righthand side of equation (910). Having discovered the full nature of the projection operator let us digress a bit to briefly discuss simplifications to equation (846), with the given description of the model. As we can easily observe, the Hamiltonian H commutes strongly with the constraint Q(p, q), it follows that; [En, H] = 0. (911) This equation holds for all timeslices and therefore all n. Equation (846) then reduces in the following manner; (.e i /6 E 1 ... E) ) (. {I/TEN 1N1,0 I) (912) where E, is defined in equation (847). As we can determine from (912), the infinite product of projection operators will merge into one projection operator. In turn this will project onto the set which is the intersection of the initial projected space (i.e. J = 0) and the final (i.e. J = 0). This operator will of course project onto the subspace that carries the trivial representation of this algebra, which is the timeindependent portion of the projection operator. The conclusion that we can draw from (912) is that the physical Hilbert space for this model is not trivial. While this model may not be conclusive proof that the physical Hilbert space for a general timedependent constraint is not trivial. It with the help of various generalizations of this model assist in answering the full query. 9.2 Second Class Constraint The second and final model we will consider in this chapter is inspired by the work of J. Antonio Garcia, J. David Vergara and Luis F. Urrutia [49]. In this work, the authors extend the BRSTBFV method [14], to deal with nonstationary systems (i.e. timedependent systems). For this dissertation, we chose not to discuss the BRSTBFV method, however for a description of the method see [14] and [49]. The model used to illustrate the author's technique was a twodimensional rotor with a timedependent radius. However, for this discussion we abate the model in [49], by reducing the number of degrees of freedom from 3 to 2, as well as, setting the Hamiltonian equal to zero to emphasize the constraints. Consider the following timedependent classical constraints: 1 = ct, (913) 2 = p c, (914) 03 Pt, (915) where c is a positive constant and q, p, pt, are the canonical position, its corresponding conjugate momentum and conjugate momentum corresponding to the temporal coordinate. Based on the the Poisson bracket of the constraints, this constraint system is a secondclass system. The canonical quantization of this model is straight forward. We simply follow the same procedure as stated in the preceding chapter, which implies that we promote all of the canonical coordinates (p, q; pt, t) to irreducible selfadjoint operators(P, Q; Pt, T). We promote the constraints to selfadjoint operators as indicated by the following: p1 I 1 = Q cT, (916) 2 2 = P c, (917) '3 3 = Pt (918) The coherent states, that will be again useful in this analysis, satisfy lp, q, pt, t) = P, q) 0 lpt, t). In order to determine our projection operator E we need to determine a set of normalized vector states I) to minimize the following relationship (l(P2 + (Q cT)2 + (P c)) 2 o h (919) Using the logic emploiv 1 by Klauder in [13], the state that minimized (919) would be the following state Ict, c) 0 10, t) Using the theory of Weyl operators we can construct a representation of the desired projection E, given by c,ct) 0 0,t)(0 (c,ct =t iA(Pt) i(QcT)(Pc)(A2 /4dAd .(920) We should observe that in this case f e("2 22)/4 dA 2, rather than one as would be the case for normalized measure. The consequences of this projection operator can immediately be discerned following the procedure described in [13]. 9.3 Conclusions In this chapter, we successfully dealt with two systems that have explicit time dependence. It is hoped that techniques that we developed in the past two chapters will help us have a better understanding on how to deal with quantization of theories that are reparameterization invariant, such as General Relativity. The methods discussed and developed in the last two chapters can be extended to include field theories. It is well known that a field theory that is not reparameterization invariant can be transmuted into one reparameterization invariant by a similar technique to that emploiv, 1 in ('! i lter 8 [55]. Namely this can be accomplished by changing the spacetime coordinates (x" where pe {1..., N}, and N is the number of space time dimensions) to functions over spacetime,which in essence introduces N scalar fields to the field theory, xP" y (x). (921) This step corresponds, in the preceding chapter, to promoting t to a dynamical variable. Using these techniques we will be able to discuss the quantization of gauge field theories with a nonstationary dynamical source, to name only one possibility. CHAPTER 10 CONCLUSIONS AND OUTLOOK _11illi, mi,,.l. .,l study and research are very suggestive of mountaineering. Wi,,i i'/ made several efforts before he climbed the Matterhorn in the 1860's even then it cost the life of four of his ',,I/;/ Now, however, ,i,.; tourist can be hauled up for a small cost, and perhaps does not appreciate the diff;. ;,ll; of the c,:':,,rl1 ascent. So in mathematics, it i,,ini be found hard to realize the great initial difficulty of i,,.;. :,.j a little step which now seems so natural and obvious, and it i,,ii; not be surprising if such a step has been found and lost again." Louis Joel Mordell (18881972; Three Lectures on Fermat's Last Theorem, p.4) 10.1 Summary In C'!i pters 2, 3 and 4 we gave modest account of the background information needed for the remaining chapters of the dissertation. In chapter 4, we successfully analyzed a constraint that mimicked the aspect of the gravitational constraint, that it was classically a firstclass system; however, upon quantization it became a partially secondclass system. In the same chapter we also analyzed a closed, firstclass quantum system, as well as a firstclass system with a zero in the continuum. C'! lpter 5 introduces the classification of constraints called "highly irreg 11l I constraints. During this chapter, we described a general procedure to solve the quantum analog to the "highly irreg 11 o constraints utilizing the Projection Operator Formalism. We also successfully analyzed a simple example of this type of constraint using only the Projection Operator Formalism. In C'! lpter 6, we used the mathematical tools established in C'i lpter 5 to give a complete account of the quantization of the AshtekarHorowitzBoulware model.[11] This model was inspired by the Hamilitonian constraint of General Relativity to answer whether or not there could be quantum mechanical tunneling into classically forbidden regions of phase space. During the course of this chapter we compare the results obtained by the Projection Operator Method with that of the Refined Algebraic Quantization Scheme. This comparison has left us with the conclusion that these methods are different and incompatible with each other. To the author's knowledge, this is the first time the Projection Operator Formalism has been used when the configuration space has a nontrival topology. The remaining chapters were devoted to the topic of timedependent quantum constraints. We developed the formalism in which the topic can be approached in the context of the Projection Operator. This was accomplished by extending the classical phase space of the timedependent system, thereby elevating the time parameter to a dynamical variable. In the same chapter, we compared the Projection Operator Formalism to the approach that was first discussed in[12]. While these methods start from the same point (i.e. an extended phase space) the conclusions reached are very different. In the following chapter we were successful in analyzing two examples of timedependent constraints. The story of classical and quantum constraints that we have presented within this dissertation is by no means a complete account. In fact it is impossible to give a complete account of any research. By researching we merely point the direction to new research, leading to new questions to ask and to attempt to answer. The topics in physics are alv i. bigger than the individual physicist. However, this is the beauty of the subject, that things we leave unresolved can be picked up in the future generations. There are several unresolved issues left from this dissertation that can be addressed by the author or future researchers. These include but are not limited to, "How do the methods of the Projection Operator generalize to a full quantum field theory?", "What lessons learned from the simple models that we analyzed in this dissertaion can be applied in more realistic theories such as Quantum Gravity?", "Can we use the formalism obtained in C'!i lpter 8 to examine more realistic theories?" 10.2 Ending on a Personal Note Becoming a physicist has been a dream of mine since I was fourteen years old. I would read about these famous men and women who tackled these deep theoretical problems and actually made progress and ultimately furthered our understanding on how the universe operated. I was completely determined to pursue this goal; however, no one from my high school had ever pursued a career in physics. When I was a junior in high school, there was a pull from external forces trying to persuade me to pursue the "more traditional" route of becoming an engineer. I decided to end this dissertation by mentioning the poem by Robert Frost that aided me in cementing my decision of becoming a physicist, "Two Roads Diverged in a Yellow Wood." No matter how difficult this journey has been, I have enjoy, 1 every step of it. This poem is also fitting because each new problem is like the fork in the road described by Frost, "should I pursue this problem with the same approach as everyone else or should I choose the problem nobody knows how to solve?" I cannot wait to see what new problems and new approaches will appear a little further down the road. I feel like I took the road less traveled, and it has made all the difference. APPENDIX A REPARAMETERIZATION INVARIANT THEORIES What are the consequences if an action I[q(t)] is invariant under an infinitesimal temporal transformation, which is the characteristic of a reparametrization invariant theory, i.e. I[q(t)] = I[q(t + c(t))]for c < 1? (Al) Given the infinitesimal transformation1 S t + tc(t), (t) = c(t2) = 0, (A2) = t = (A3) dq S6q = e t (A 4) dt By our assumption that I[q(t)] = I[q(t + e(t))] it follows that 6I = (6L)dt 0 (A5) J1 J' 'LL 9L L d t + sq + 6q)dt (A 6) t2 L &+L C+ L d + +)dt (A7) at t aq 9q dt /2 (dL+ Oqd)dt (A8) Integrating by parts, /( de 9L .de t2 QLd )dt, (A9) Jt'i dt 9L dt t2 q L) )dt. (A10) (All) 1 In general, we do not have to assume that > 0, we point the reader to [6], for a discussion on this matter, however, we must insist that A / 0 almost everywhere. We can conclude based on our assumption that A / 0, a.e., that the statement following must be true, OL aq = H 0 O. D Therefore, in all reparameterization invariant theories the Hamiltonian vanishes. (A12) (A13) REFERENCES [1] S. Weinberg, The Quantum Theory of Fields Vol. 2, Cambridge University Press, Cambridge, 1998. [2] A. Jaffe and E. Witten, "Quantum YangMills Theory" http://www.esi2.us.es/ mbilbao/pdffiles/yangmills.pdf, 04/19/2007. [3] P. Deligne, et al., Quantum Fields and Strings: A Course for Mathematicians Vol. 12, American Mathematical Society, Providence, 1999. [4] A. Ashtekar, J. Lewandowski, "Background Independent Quantum Gravity: A Status Report, Class. Quant. Gray., 21 (2004) R53 . [5] J. Henson, "The Causal Set Approach to Quantum Gravity," http://arxiv.org/ abs/grqc/0601121 (2006). [6] J. Klauder, "Affine Quantum Gravity," Int. J. Mod. Phys. D12 (2003) 1769. [7] P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York, 1964. [8] J. S. Little, J. Klauder, Elementary Model of Constraint Quantization with an Anomaly ," Phys.Rev. D, D71 (2005) 085014. [9] J. Klauder, J. S. Little, "Highly Irregular Quantum Constraints ," Class. Quant. Gray, 23 (2006) 3641. [10] J. S. Little, "The Projection Operator Method and the AshtekarHorowitzBoulware Model" http://arxiv.org/abs/grqc/0608009, (2006). [11] A. Ashtekar, G. T. Horowitz, "On the Canonical Approach to Quantum Gravity", in Phys. Rev. D, 26 (1982), 3342. [12] D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, SpringerV, 1 1 Berlin 1990. [13] J. Klauder, "Quantization of Constrained Systems," Lect. Notes Phys., 572, (2001) 143. [14] M. Henneaux, C. Teitelboim, Quantization of Gauge S, / i' Princeton University Press, Princeton, NJ, 1992. [15] J. Jose, E. Saletan, Classical D.i iii. A Contemprary Approach, Cambridge University Press 1998. [16] J. Govaerts, Hamiltonian Quantisation and Constrained D.i.,..nn Leuven University Press, Belgium, 1991. [17] V. I. Arnold, Mathematical Methods of Classical Mechanics, Singer V i1 . 3rd ed. New York, New York (1989). [18] L. Castellani, "Symmetries in Constrained Hamiltonian systems," Ann. Phys, 143, (1982), 357. [19] A. A Deriglazov, K. E. Evdokimov. "Local Symmetries in the Hamiltonian Framework. 1. Hamiltonian Form of the Symmetries and the Noether identities," Int. J. Mod. Phys. A15 (2000) 4045. [20] P.A.M Dirac, The Principles of Quantum Mechanics, 4th ed., Oxford Science Publications, 1998. [21] J. Klauder, \. l i cal Quantization" http://arxiv. org/abs/quantph/9804009 (1998). [22] J. Simon, C'l,'.ri, Without Time Relationalism and Field Quantization, Dissertation, Universitat Regensburg, Naturwissenschaftliche Fakultat II Physik, 2004. [23] N.P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics SpringerVerlag New York, 1998. [50] D. Giulini, "That Strange Procedure Called Quantisation", http://arxiv.org/ abs/quantph/0304202 (2003). [25] A. Ashtekar, R. S. Tate, "An Algebraic Extension of Dirac Quantization: Examples," http://arxiv.org/abs/grqc/9405073 (1994). [26] S.V. Shabanov, "Geometry of the Physical Phase Space in Quantum Gauge Models," Ph;,: Reports 326 1 (2000), hepth/0002043. [27] L.D. Faddeev, "Feynman Integral for Singular Lagrangians," in Theor. Math. Phys. 1, (1969), 1. [28] P. S(li in.,vic, "Path Integral Quantization of Field Theories with SecondClass Constraints," Ann. Phys. 100, (1976), 227. [29] Adriano Di Giacomo, "Confinement of Color: Open Problems and Perspectives," http: //arxiv. org/abs/heplat/0602011, (2006). [30] D. Giulini, D. Marolf, "On the Generality of Refined Algebraic Quantization," Class. Quant. Gray., 16, (1999), 247. [31] D. Marolf, "Refined Algebraic Quantization: Systems with a Single Constraint," http: //arxiv. org/abs/grqc/9508015, (1995). [32] J. Louko, A. Molgado, "Superselection sectors in the AshtekarHorowitzBoulware Model", Class. Quantum Grav. 22, (2005) 4007. [33] B. Dittrich, T. Thiemann, "Testing the Master Constraint Programme for Loop Quantum Gravity I. General Framework," Class. Quant. Gray. 23, (2006), 1025. [34] T. Thiemann, "The Phoenix Project: Master Constraint Programme for Loop Quantum Gravity," Class. Quant. Gray. 23, (2006), 2211. [35] B. Dittrich, T. Thiemann, "Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems," in Class. Quant. Gray. 23, (2006), 1067. [36] B. Dittrich, T. Thiemann, "Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models," in Class. Quant. Gray., 23, (2006) 1089. [37] B. Dittrich, T. Thiemann, "Testing the Master Constraint Programme for Loop Quantum Gravity V. Interacting Field Theories, in Class. Quant. Gray. 23, (2006), 1143. [38] R. Shankar, Principles of Quantum Mechanics, Plenum Press, 2nd ed., New York, New York, 1994. [39] J. Klauder, "Path Integrals, and Classical and Quantum Constraints" http: //arxiv. org/abs/quantph/0507222 (2005). [40] J. Klauder, "Coherent State Quantization of Constraint Systems," Ann. Phys. 245 (1997) 419. [41] J. R. Klauder, B. Skagerstam, Coherent States, World Scientific Publishing, Singapore, 1985. [42] N. Aronszajn, Proc. C.,n,,1, l1.:,: Phil. Soc., 39 (1943), 133; Trans. Amer. Math Soc. 68 337 (1950); H. Meschkowski, Hilbertsche Raum mit Kernfunktion,' SpringerV i1 : Berlin, 1962 [43] H. Araki, "Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory," J. Math. Phys 1 (1960), 492. [44] D. G. Boulware, "Comment on 'On the Canonical Approach to Quantum Gravity', " Phys. Rev. D 28 (1983), 414. [45] J. A Gonzlez, M. A. del Olmo, "Coherent States on the Circle," J. Phys. A: Math. Gen. 31 (1998),8841. [46] J. Louko, "Group Averaging,Positive Definiteness and Duperselection Sectors," J. Phys. Conf. Ser. 33 (2006), 142. [47] J. Klauder, Universal Procedure for Enforcing Quantum Constraints ", Nucl. Phys. B547 (1999), 397. [48] G. Fulop, D. M. Gitman, I.V. Tyutin. "Reparametrization Invariance as Gauge Symmetry," Int. J. Theor. Phys. 38 (1999) 1941. 120 [49] A. Garcia D. Vergara, L. F. Urrutia, "BRSTBFV Method for Nonstationary Systems," Pb.i; ..: i Review D 51 (1995), 5806. [50] C. Rovelli, "Partial observables," Phys. Rev. D 65 (2002), 124013. [51] B. Dittric, "Partial and Complete Observables for Hamiltonian Constrained Systems," http: //arxiv. org/abs/grqc/0411013, (2004). [52] W. Pauli. "Die allgemeinen Prinzipien der Wellenmechanik," in Handbuch der Physik 1 Springer, Berlin, 1926. [53] J. Klauder, "Attractions of Affine Quantum Gravity," http://arxiv. org/abs/ grqc/0411055, (2004). [54] J. Klauder, "Ultralocal Fields and Their Relevance for Reparametrization Invariant Quantum Field Theory, J. Phys. A 34 (2001), 3277. [55] S.P. Gavrilov, D.M. Gitman, "Quantization of Systems with TimeDependent Constraints. Example of Relativistic Particle in Plane Wave," in Class. Quant. Gray. 10 (1993), 57. BIOGRAPHICAL SKETCH Jeffrey Scott Little was born Janurary 10, 1980, in the small eastern Kentucky town of Pikeville. He is the eldest of three children and the only son of Jeff and Linda Little. His strong interest in science was evident at a very early age. When Scott was 14, he discovered his passion for quantum physics and read nearly everything he could find on the subject. Scott graduated from Shelby Valley High School in 1998, as class valedictorian. After high school, Scott set off to matriculate at Western Kentucky University in Bowling Green, Kentucky. While at Western he became extremely interested in the study of formal mathematics. During his senior year he entertained the idea of attending graduate school in mathematics; however, he realized that it would be possible to pursue both passions through a physics career. Scott graduated from Western Kentucky with a double bachelors degree in physics and mathematics in the Spring of 2002. After finishing his undergraduate career he accepted an Alumni Fellowship from the University of Florida to continue his studies of physics. Though moving from a relatively small department at Western to the much larger Physics Department at Florida was initially daunting, Scott overcame his fears and succeeded in his course work. In the Spring of 2004, Scott became a student of John Klauder. Dr. Klauder allowed Scott to not only study physics but also allowed him to stay connected to the formal mathematics that he had grown fond of during his stay at Western. Under Dr. Klauder's tutelage, Scott was able to research and publish three papers on quantum constraints. In June of 2006, at the age of 26, Scott married the love of his life Megan (Carty) Little. Scott obtained his Ph.D. in Physics in the Fall of 2007. Scott and Megan currently reside in Louisville, KY, where Scott is continuing to research a wide variety of theoretical problems and is an instructor at the University of Louisville. PAGE 1 1 PAGE 2 2 PAGE 3 3 PAGE 4 ObtainingaPh.D.inanyeldisneveracompleteindividualeort,Iowemanythankstomanypeoplethathelpedmepursuethislifelonggoal.Firstofall,IwouldliketothankmyadvisorJohnKlauder,forgivingmethechancetostudyquantizationofconstraintssystems.Iamindebtedtohimforallthepatience,time,andencouragementthathehasaordedmeovertheyearsthatIspentunderhistutelageattheUniversityofFlorida.Hispassionforthecourseofstudyhashelpedmeobtainabroaderviewofphysics,aswellasamoredevelopedpalateforvarioustopicsinphysics.InfactIamgratefultotheentirephysicsdepartmentforallowingmetheopportunitytostudytheoreticalphysics.IgratefullyacknowledgetheAlumniFellowshipAssociation,whichallowedmetoattendtheUniversitywithoutanoverwhelmingteachingresponsibility.Iwouldalsoliketothankmygrandparents,Ruby,Granville,Hazel,andVeral,whoinstilledinmefromanextremelyearlyagethatIcouldaccomplishanythingifIsetmymindtoit.Thanksgotomydad,Je,whogavemeasenseofscienticcuriosityandtomymom,Linda,whowasmywonderfulmathinstructorfromfractionstocalculus,nottomentionalloftheirloveandsupport,andtomysisters,LisaandSierra,whoseconstantencouragementaidedmethroughmyearlycollegeandgraduatecareer.IamassuredlyindebtedtomydearAuntBrenda,whocarefullyeditedseveralchaptersofthismanuscript,eventhoughsheisnotaphysicsperson.Iwouldalsoliketothankmywife'sfamilyforalloftheirsupportthesepast2years.ThanksgotomyfriendsattheUniversityofFloridaLarry,Ethan,Wayne,Ian,Lester,Jen,andGarret,whosecompassionandconversationsaboutawidevarietyoftopicsareunmeasurable.Savingthebestforlast,Ithanktheloveofmylife,mydarlingwife,Megan.WithoutwhomIwouldhavenevercompletedthisdissertation.Ithankherforallofthelove,support,andencouragementthatshehasgivenme;sheisthesourceofmyinspirationtoachieve,morethanIeverdreamedcouldbeachieved. 4 PAGE 5 page ACKNOWLEDGMENTS ................................. 4 ABSTRACT ........................................ 8 CHAPTER 1INTRODUCTION .................................. 10 1.1Philosophy .................................... 11 1.2OutlineoftheRemainingChapters ...................... 12 2CONSTRAINTSANDTHEDIRACPROCEDURE ............... 14 2.1ClassicalPicture ................................ 14 2.1.1GeometricPlayground ......................... 16 2.1.2ConstraintsAppear ........................... 18 2.1.3AnotherGeometricInterlude ...................... 20 2.1.4Observables ............................... 21 2.2Quantization .................................. 22 2.2.1CanonicalQuantizationProgram ................... 22 2.2.2WhatAboutConstraints?TheDiracMethod ............ 24 3OTHERMETHODS ................................. 27 3.1FaddeevPopovMethod ............................ 27 3.1.1YetAnotherGeometricInterludefromtheConstraintSubManifold 27 3.1.2BasicDescription ............................ 28 3.1.3CommentsandCriticisms ....................... 29 3.2RenedAlgebraicQuantization ........................ 31 3.2.1BasicOutlineofProcedure ....................... 32 3.2.2CommentsandCriticisms ....................... 33 3.3MasterConstraintProgram .......................... 34 3.3.1ClassicalDescription .......................... 35 3.3.2Quantization ............................... 36 3.3.3MCPConstraintExample ....................... 39 3.3.4CommentsandCriticisms ....................... 41 3.4Conclusions ................................... 42 4PROJECTIONOPERATORFORMALISM .................... 43 4.1MethodandMotivation ............................ 43 4.1.1SquaringtheConstraints ........................ 45 4.1.2ClassicalConsideration ......................... 45 4.1.2.1QuantumConsideration ................... 46 4.1.2.2ProjectionOperatorJustication .............. 47 5 PAGE 6 ................. 48 4.2.1CoherentStates ............................. 48 4.2.2ReproducingKernelHilbertSpaces .................. 49 4.3ConstraintExamples .............................. 51 4.3.1ConstraintwithaZerointheContinuousSpectrum ......... 51 4.3.2Closed,FirstClassConstrant ..................... 52 4.3.3Open,FirstClassconstraint ...................... 54 4.4Conclusions ................................... 58 5HIGHLYIRREGULARCONSTRAINTS ...................... 59 5.1Classication .................................. 59 5.2ToyModel .................................... 64 5.3Observables ................................... 72 5.4ObservationandConclusions .......................... 75 6ASHTEKARHOROWITZBOULWAREMODEL ................. 76 6.1Introduction ................................... 76 6.2ClassicalTheory ................................ 77 6.3QuantumDynamics ............................... 79 6.4ThePhysicalHilbertSpaceviatheReproducingKernel ........... 79 6.4.1TheTorusT2 79 6.5SuperselectionSectors? ............................ 84 6.6ClassicalLimit ................................. 85 6.7RenedAlgebraicQuantizationApproach .................. 88 6.8CommentaryandDiscussion .......................... 90 7PROBLEMWITHTIME .............................. 92 8TIMEDEPENDENTCONSTRAINTS ....................... 94 8.1ClassicalConsideration ............................. 94 8.1.1BasicModel ............................... 94 8.1.2CommentaryandDiscussion ...................... 97 8.2QuantumConsiderations ............................ 99 8.2.1GitmanandTyutinPrescriptionforTimeDependentSecondClassConstraints ............................... 99 8.2.2CanonicalQuantization ......................... 101 8.2.3Dirac ................................... 102 8.2.4ProjectionOperatorFormalism .................... 102 8.2.5TimeDependentQuantumConstraints ................ 103 8.2.6ObservationsandComparisons ..................... 105 9TIMEDEPENDENTMODELS ........................... 106 9.1FirstClassConstraint ............................. 106 9.2SecondClassConstraint ............................ 110 6 PAGE 7 ................................... 111 10CONCLUSIONSANDOUTLOOK ......................... 113 10.1Summary .................................... 113 10.2EndingonaPersonalNote ........................... 115 APPENDIX AREPARAMETERIZATIONINVARIANTTHEORIES .............. 116 REFERENCES ....................................... 118 BIOGRAPHICALSKETCH ................................ 122 7 PAGE 8 Motivatedbyseveraltheoreticalissuessurroundingquantumgravity,acourseofstudyhasbeenimplementedtogaininsightintothequantizationofconstrainedsystemsutilizingtheProjectionOperatorFormalism.Throughoutthisdissertationwewilladdressseveralmodelsandtechniquesusedinanattempttoilluminatethesubject.WealsoattempttoillustratetheutilityoftheProjectionOperatorFormalismindealingwithanytypeofquantumconstraint. Quantumgravityismademoredicultinpartbyitsconstraintstructure.Theconstraintsareclassicallyrstclass;however,uponquantizationtheybecomepartiallysecondclass.Tostudysuchbehavior,wewillfocusonasimpleproblemwithnitelymanydegreesoffreedomandwilldemonstratehowtheProjectionOperatorFormalismiswellsuitedtodealwiththistypeofconstraint. Typically,whenonediscussesconstraints,oneimposesregularityconditionsontheseconstraints.Weintroducethe\new"classicationofconstraintscalled\highlyirregular"constraints,duetothefacttheseconstraintscontainbothregularandirregularsolutions.Quantizationofirregularconstraintsisnormallynotconsidered;however,usingtheProjectionOperatorFormalismweprovideasatisfactoryquantization.Itisnoteworthythatirregularconstraintschangetheobservableaspectsofatheoryascomparedtostrictlyregularconstraints.Morespecically,wewillattempttousethetoolsoftheProjectionOperatorFormalismtostudyanothergravitationallyinspiredmodel,namely 8 PAGE 9 Finally,wewillusetheProjectionOperatorMethodtodiscusstimedependentquantumconstraints.Indoingso,wewilldeveloptheformalismandstudyafewkeytimedependentmodelstohelpusobtainalargerpictureonhowtodealwithreparameterizationinvarianttheoriessuchasGeneralRelativity. 9 PAGE 10 \Itisveryimportantthatwedonotallfollowthesamefashion...Itsnecessarytoincreasetheamountofvariety....theonlywaytodoitistoimploreyoufewguystotakearisk..."RichardFeynman 1 ].Thisisakeycharacteristicofconstrainedsystems.Theprocessofconvertingaclassicaltheorytoaquantumtheoryismademoredicultbythepresenceoftheseconstraints.Commonlyusedtechniquestodealwiththesesystemshavebeeninadequateinprovidingadescriptionofthelowmomentumbehaviorofthestrongforce,whichisassociatedwiththemassgapconjecture[ 2 ]. Generalrelativity,liketheStandardModel,isanotherexampleofaconstrainedsystem.Thequantizationofgravityhaspresentedtheoreticalphysicsacornucopiaofproblemstosolveforthepast50years.Toanswerthesedeeptheoreticalquestions,physicistshaveemployedseveralandseeminglyconictingviewpoints.Theseperspectives,rangefromSuperstrings[ 3 ],themaingoalistheunicationofallforcesinonequantummechanicaldescription,LoopQuantumGravity[ 4 ],inwhichthemainobjectiveofthisisaconsistentbackgroundindependentdescriptionofquantumgravity,toCausalSets[ 5 ]inwhichtheapproachpreassumesthatspacetimeisdiscretized,andtheAneQuantumGravityProgram[ 6 ],inwhichtheaimofthisapproachistosolvequantumconstraintproblemswiththeProjectionoperatorformalism.Thereareseveraldeepunderlyingtheoreticalissuessurroundingthequantizationofgravity,oneofwhichisthatgravity 10 PAGE 11 1 ],appeartobeuselesswhenapproachingthissubject.Canonicalquantizationschemesofgravityarealsomadedicultbythetheory'sconstraintclassication[ 7 ].Classically,gravity'sconstraintsareonealgebraicclass,butuponquantizationtheconstraintsmorphintoanothertype Wealsoapproachproblemswiththepointofviewthata\complete"descriptionoftheuniversemustbeaquantummechanicalone.Therefore,aquantummechanicaldescriptionofaparticularmodelwillalwayssupercedetheclassicaldescription.Thisistheprimaryreasonthatwecitethemantra,quantizerst,reducesecondoverandoverinthisdissertation. 11 PAGE 12 8 ].Wheneverencounteredinthedissertation,repeatedindicesaretobesummed. TheprimarygoalofChapter5istointroducea\new"classicationofconstraintscalledhighlyirregularconstraintsandalsoillustratetechniquesusedtodealwithquantumversionsoftheseconstraints.Thebasisofthischaptercomesfrom[ 9 ]and[ 10 ].UsingthetechniquesgainedfromChapter5,inChapter6weoeracompletediscussionofthequantizationoftheAshtekarHorowitzBoulwareModel[ 11 ].TheAshtekarHorowitzBoulwaremodelisamathematicalmodelalsoinspiredbytheconstraintsofgravity.Thischapterisbasedontheresultsobtainedin[ 9 ].WealsocomparetheresultsobtainedbytheRenedAlgebraicQuantizationprogramwiththeProjectionOperatorformalism.Thiscomparisonleadstotheconclusionthatthetwomethodsarenotcompatibledealingwithallconstraints. Theremainingchaptersaredevotedtothetopicoftimedependentquantumconstraints.Untilnow,themethodsusedtodelveintothistopic[ 12 ]havebeenunsatisfactoryduetothefactthatthesemethodsavoidsolvingforthequantumconstraints.Theaim 12 PAGE 13 12 ]withtheProjectionOperator.InChapter9,wewillexaminetwotimedependentconstraints,onerstclassandonesecondclass.Wewillconcludewithabriefsummaryandapossiblelookforwardtofutureresearchproblems. 13 PAGE 14 Theprimarygoalofthischapteristointroducethereadertotheconceptofconstraintsinclassicalphysics.WewilldiscussthequantizationoftheseclassicalsystemsintheframeworkproposedbyDirac,[ 7 ],aswellas,discussdecienciesinthemethod,whichwillhelpmotivatethedevelopmentoftheprojectionoperatorformalisminChapter4. whereListheLagrangian,tisacontinuousparameter(oftenassociatedwithtime),qa2Q,whereQissomecongurationspace,a2f1;2;:::Ng,_denotesthederivativewithrespecttot,and_qaisanelementofaberofthetangentbundleQ,TQ.Formally,wecanwritetheLagrangianfunctionalas Laterinthediscussionwewilldenethecongurationspace,butfornowitisjustsomeC1manifold.Thegoal 2{1 )anddeterminingits 14 PAGE 15 (2{3) dt@L @_qa@L @qa=0 (2{4) Whilethisformulationisusefulindeterminingawidevarietyofphysicalquantities[ 15 ],itisnotassensitivetoparticularfeaturesofagivenclassicaltheoryasweneed. @_qa:(2{5) ThiscanberecognizedastheberderivativefromthetangentbundleofQtothecotangentbundleofQ[ 15 ](otherwiseknownasthetangentbundle'sdual) ThenextstepintheprocedureistoidentifytheHamiltonian,whichfollowsfromaLegendretransformationoftheLagrangian qa=(tt0)@L @qa+_(tt0)@L @_qa++(k)(tt0)@L @qka[ 14 ].Integratingthisequationwithrespecttot0andsettingtheresulttozerowillyieldthestationarypointsofthecorrespondingaction.3 2{4 intermsofasecondorderdierentialequation,thesubtlepointweareabouttomakebecomesclearer.[ 16 ] 15 PAGE 16 2{5 )isinvertibleintermsof_qa.ThisconditionissatisedbytheHessiancondition det@2L @_qa@_qb6=0:(2{8) Wewillreturntothecasewhen( 2{8 )failsshortly.UntilthenwewilldiscusstheHamiltonianformalisminmoredetail.Foramorecompleteaccountsee[ 17 ]and[ 15 ].Atthispointwewillnolongermentionthecotangentbundle,butratherwewillnotethatthisspaceissymplectomorphictothemorefamiliarspace,phasespaceM,i.e., ThegeometricframeworkoftheHamiltonianframeworkisarichandbeautifulsubject.However,forthesakeofbrevitywewillonlyrecountthemostcrucialelementstothedevelopmentoftheconstraintpicture.Foramorecompletedescription,wepointthereadersto[ 17 ],[ 15 ],and[ 18 ]. 2{7 )aregivenby _qi=fqi;Hg; _pj=fpj;Hg; 16 PAGE 17 @qi@g @pi@f @pi@g @qi;(2{12) wheref;g2C2(M).ThePoissonbracketshavethefollowingpropertiesforanyf;g,andh2C2(M): Equation( 2{13 )illustratesthatthePoissonbracketsareantisymmetricinrespecttoitsarguments.Equation( 2{14 )servesastheconnectionofthePoissonbracketwithpointwisemultiplicationofthefunctionsoverthephasespace.Finally,( 2{15 )demonstratesthatthePoissonbracketobeysthefamousJacobiidentity.WiththesethreepropertiesitispossibletoshowthattheclassicalfunctionsoverphasespaceformaLiealgebrawithrespecttothePoissonbracket.[ 14 ] Thesymplecticformisacrucialelementwhenwemovefromaclassicaldiscussionofasystemtoitsquantumanalogue. 17 PAGE 18 2{8 )fails det@2L @_qa_qb=0:(2{17) If( 2{17 )occurs,thenitarisesbecausetheconjugatemomentaarenotallindependent[ 14 ],sincethereexistredundantvariablesinthedynamicalvariables.Inotherwords,thereexistrelationsthatareassociatedwiththedenitionoftheconjugatemomemtum( 2{7 ) wherea2f1;:::Ag.Theserelations( 2{18 )areknownasprimaryconstraints[ 14 ].Itisanimportanttonotethattheprimaryconstraintsarenotdeterminedbytheequationsofmotion.Thesetofequations( 2{18 )deneasubspaceofthephasespacecalledaprimaryconstraintsubmanifold,whosedimensionare2NA.Technically,weareassumingthattheconstraintsobeyaregularitycondition[ 14 ].Wewillexaminethisregularitycondition,andinstanceswhenitfailsinChapter5.Untilthen,wewillassumeandonlyconsiderexamplesinwhichtheseconditionsaresatised. WecanalsorelatethepresenceofconstraintsbyconsideringtheNoethertheorem.Whenaglobaltransformationexiststhatleavestheactioninvariant,theresultisaconservedquantity.However,whenthisisalocaltransformation,theresultisaconstraint.See[ 19 ]fordetails. ItisclearthatHamilton'sequations( 2{10 )and( 2{11 )arenolongervalidifprimaryconstraintsarepresent.Allthedynamicsshouldtakeplaceontheprimaryconstraintsurface.WecanachievethisbymakingthefollowingmodicationtotheHamiltonian, 7 ]servesasthemoderninspirationofthetopic 18 PAGE 19 whereaareLagrangemultipliers,thatenforcesthedynamicsofthesystemtooccuronlyonthesubmanifold.Thereforetheequationsofmotionaregivenbythefollowing _qi=fqi;Hg+afqi;ag; _pj=fpj;Hg+afpj;ag; Sincethesetofprimaryconstraintsmustbesatisedforallt,itfollowsthat _a=fa;Hg+fa;bgb0:(2{23) whereisdenedasweaklyequalto,orequaltoontheconstraintsubmanifold.Adirectconsequenceof( 2.1.2 )isthatthesolutionsto( 2.1.2 )maynotbeindependentofthesetofprimaryconstraints( 2{18 ).Ifthisisthecase,wedeneasetofnewconstraints(b),b2f1;:::Bgwhichalsosatises( 2.1.2 ).Thissetofconstraintsiscalledsecondaryconstraints.Werepeattheprocessofsolvingtheconsistencyequation( 2.1.2 )touncoveralltheconstraints.Withthatbeingsaidwewillalwaysassumethatallconstraintshavebeenuncovered.Thisstatementisoftenreferredtoasthesetofconstraintsiscomplete[ 14 ]. Nowassumingthatthesetofconstraintsiscomplete,equation( 2.1.2 )alsoservesasthestartingpointofthediscussionoftheclassication.[ 7 ]Onepossibilityfor( 2{22 )tobevalidontheconstraintsurfaceistoalloweachPoissonbrackettobeseparatelyzerobybeingproportionaltoaconstraint.Thishypothesisleadstoourrstclassication:when 19 PAGE 20 Ifdetfa;bg6=0,theconstraintsareclassiedassecondclass[ 16 ].Nolongerhavingtheavailabilityoftheprecedingcriteriaof( 2{24 )and( 2{25 ),itfollowsthattheLagrangemultipliersaredeterminedbytheequationsofmotionsothat( 2{22 )issatised.TheLagrangemultipliersforcethedynamicstoremainontheconstraintsurfaceforasecondclasssystem.NamelytheLagrangemultiplierscanbedeterminedbythefollowingequations 20 PAGE 21 14 ]foramoredetailedaccountofthepresymplecticform.Amoreindepthdiscussionofthegeometryofconstraintsurfacewilloccurinthefollowingchapter. whereo2C1(M).Inthecontextofrstclassconstraints( 2{27 )isasucientconditionthatguaranteesagaugeinvariantfunction[ 14 ].Ifoisanobservable,itisclearbythedenitionofanobservablefunction( 2{27 )thato+aaisalsoanobservable.UsingthisobservationitispossibletopartitionthesetoffunctionsC1(M)byvirtueofthisequivalencerelationintoobservablefunctionsandnonobservablefunctions.Intakingthediscussionfurther,ifweweretoconsiderthevectorspaceofC1(M)equippedwiththePoissonbrackets,whichdenesaLiealgebra,alongwithpointwisemultiplication,wecanthenidentifythefunctionsthatvanishontheconstraintsubmanifold(i.e.theconstraints)astheidealNinC1(M).WecanclassifyalgebraofobservablefuctionsasthequotientalgebraC1(M)=N.[ 14 ]Thisidenticationofthealgebraicstructureoftheobservables 14 ] 21 PAGE 22 2.2.1CanonicalQuantizationProgram 20 ].Thegoalofthecanonicalquantizationprocedureistondarulethatassociatesphasespacefunctionswithselfadjointoperators.Knowingthegoaloftheprogram,let'sbegintheimplementation.First,withwemustinsistthatthecoordinatesofphasespacebeatcoordinates,whichimpliestheremustbeaglobalCartesiancoordinatepatchfortheentirephasespacemanifold. 22 ]and[ 23 ]. (2{28) (2{29) (2{30) whereSA(H)isthesetofselfadjointoperatorsactingontheHilbertspaceHandf;g2C1(M).TheselfadjointoperatorQ(f)shouldberecognizedasthequantum 20 ],andmorerecentlybyKlauder[ 21 ].AccordingtoKlauder[ 21 ],thismetricstructurecomesintheformofa\shadow"metricwhichisproportionalto~.9 22 PAGE 23 2{29 ),isthefollowing where(qj;pj)arethephasespacecanonicalcoordinatesand1istheidentityoperatorontheHilbertspaceH.Weshouldnotethatthereisnotadenitivemethodbywhichtopickthequantizationmapsincethequantizationmapisnotahomomorphismbetweenthetwoalgebra.Ambiguityexistsintheprocessbecausethattherearesomephasespacefunctions(e.g.p4q)thatwouldcorrespondtomultipleselfadjointoperators(e.g.P2QP2or(P4Q+QP4)=2).Ithasalsoshownby[ 50 ]theredoesnotexistaquantizationmapthatcanbedenedforallelementsfromthefullalgebraoftheclassicalobservables.Despitethesedicultieswewillproceed,notingpotentialproblemsduetotheseambiguitiesintheprocedureasnecessary. Thus,fortheremainingsectionsinthisworkwewillassumethatwehaveaquantizationmapandarefreetouseit.Thenotationthatwewilluseisasfollows:(pj;qi)representtherealcnumberofphasespacecoordinates,while(Pj;Qi)representthesetofirreducible,selfadjointoperatorsinwhichthecanonicalcoordinatesaremapped.Thecommutatorofthe(Pj;Qj)followsdirectly( 2{31 ) [Qi;Pj]=i~ij1:(2{32) Secondly,wepromotequantizablephasespaceobservables(f)toselfadjointoperatorsF: Ifthereexistsfactororderambiguity,wewillappealtoexperimenttoselecttheproperdenitionofF.However,asmathematicallypreciseasthequantizationprocedureisfor 23 PAGE 24 12 ]. 2{18 )?"Inresponsetothisquery,wewilluseDirac'sprocedure[ 7 ].Toinitiatethisprocedure,webeginbypromotingtheconstraintstoselfadjointoperators, Thenextstepistodeterminethekernelofa,knownasthephysicalHilbertspace[ 25 ] Iftheconstraintpossessesazeroincontinuumofthespectrum,(i.e.supposethattheconstraint=P1),thenweimmediatelyencounterapotentialdicultyinimplementingthisprocedure.BasedsolelyontheconstructionofthephysicalHilbertspacewecannotguaranteethatjPhjiPj<1. 24 PAGE 25 2.1.2 ).Inessencethismeanswemustconsider [a(P;Q);H(P;Q)]jiP=0; [a(P;Q);b(P;Q)]jiP=0; whereH(P;Q)istheunconstrained,selfadjointHamiltonianoperator.Onceagain,wearefacedwithapossibledeciencyoftheDiracprocedure.Ingeneral,wecannotattesttothevalidityoftheseequations,butifwerestrictourargumentstoconsideringonlyclosed,rstclasssystems( 2{36 )and( 2{37 )willholdtrue.Inthecaseofclosed,rstclasssystems,thePoissonbracketstransformsintothecommutatorbrackets,whichareexpressedinthefollowingform: [a(P;Q);H(P;Q)]=i~hbab(P;Q); [a(P;Q);b(P;Q)]=i~ccabc(P;Q): IfEquation( 2{36 )or( 2{37 )failsandtheclassicalsystemisclassiedasrstclass,thequantumsystemissaidtohaveananomaly.WewillexaminesuchasysteminChapter4.Furthermore,wendthatourdenitionforthephysicalHilbertspacemaybevacuouswhenconsideringclassicallyopen,rstclassorsecondclasssystemssincetheremaynotbeazerointhespectrum[ 13 ].DiracattemptstoremedytheproblemofsecondclassconstraintsbyredeningthePoissonbracket[ 7 ].Therefore,thestandardapproachintheDiracprocedureprefersclosed,rstclasssystems.WewillreturntoadiscussionoftheDiracbracketinChapter8. AnotherdeciencytonoteisthefacttheDiracproceduredoesnotoeradenitionoftheinnerproductofthephysicalHilbertspace.This,alongwithsomeoftheotherdecienciesthatareillustratedinthischapter,willserveastheprimarymotivationforthediscussionofthemoremodernmethodstoquantizeconstraintsystemsdiscussedin 25 PAGE 26 13 ]inChapter4. 26 PAGE 27 Theprimaryobjectiveofthischapteristoexaminethreedistinctmethodstodealwithquantumconstraints.ThesemethodsaretheFaddeevPopovprocedure,theRenedAlgebraicQuantizationProgram,andtheMasterConstraintProgram,eachofwhichhasitsowndistinctstrengthsandweaknesses.Duringthischapterwewillusethenotationthatisstandardinliterature,whilealsonotingdecienciesofthemethodsinordertooermoremotivationforthestudyoftheprojectionoperatormethod,whichisthetopicofChapter4. 3.1.1YetAnotherGeometricInterludefromtheConstraintSubManifold wherej2f1;:::;Ng,a2f1;:::;Ag,andaareLagrangemuliplierswhichenforcetheconstraintsa 14 ].Agaugeorbitisdenedbythefollowing:considerthatFdenesaparticularphysicalconguration, 12 ]Agaugetransformationisdenedas 27 PAGE 28 14 ].Ifonedenesasetofsurfaceformingvectors,thegaugeorbitswouldcorrespondwiththenullvectors.[ 14 ] Toavoidthisrathercomplicatedsituationofthequotient,itisoftensuggestedthatonemustimposeagaugechoicetoeliminatetheredundancy.Agaugechoice(a)hasthefollowingproperty wherea2f1;:::;Ag[ 14 ].Wemustalsochoosesuchafunctionthatintersectsthegaugeorbitsonceandonlyonce.Awordofwarning{Onecanguaranteethisisthecaselocally;however,itmaynotbeguaranteedglobally,(i.e.fortheentireconstraintsurface).ThisisknownastheGribovproblem[ 16 ].However,weareconsideringtheidealcaseforthisdiscussion. Withthismathematicaldescriptionestablished,wecannowproperlydiscusstheFadeevPopovprocedure.[ 27 ] Tosolvetheconstraintprobleminthisframework,weasserttheconstraintsaresatisedclassicallywithinthefunctionalintegralbyimposingafunctionaloftheconstraints.Sincetheresultingintegralmaybedivergent,wesuppressthispossibility,byrequiringachoiceofanauxiliaryconditioncalledagaugexingtermoftheforma(p;q)=0;a2f1;::;Jg.Withthischoicewehavelostcanonicalcovariance,whichcanberestored 28 PAGE 29 Expression( 3{4 )servesasamotivationtotheintroductionof( 3{5 ),buttheyarenottobeviewedasequivalentstatements.Theresultof( 3{5 )couldthenbeexpressedasapathintegraloverthereducedphasespace, wherepandqarereducedphasecoordinatesandH(p;q)istheHamiltonianofthereducedphasespace.Sincewehavesatisedtheconstraintsclassically,wearenolongercondentthatourformalpathintegralisdenedoverEuclideanspace.ThispresentsadilemmasincetheformalpathintegralisilldenedovernonEuclideanspaces[ 13 ].AswiththeDiracProcedure,theFaddeevmethodcanbemodiedtoaccommodatesecondclassconstraints[ 28 ]. 1 ],itisnotwithoutitsaws.Oneofthemostglaringawsisthefactthatonemustrstreducetheclassicaltheoryandthenquantizeit.Theuniverse 3 ].Wearenotsoboldtosaythatquantummechanicsmaybesupercededbyamorecompletedescriptionofnature.Ofcourse,weassumehoweverquantummechanicsistheproperroutetolookatnatureuntilmoreevidenceisdiscovered. 29 PAGE 30 wherej2f1;:::;Nganda2f1;:::;Ng.Thissystemispurelyconstraint af(p;q)a(p;q);(3{8) wherefisanonvanishingfunctionoverthephasespaceandfagAa=1denesaclosedrstclassconstraint,i.e. whereccabisaconstant.Itisclearwhile( 3{8 )denesthesameconstraintsubmanifoldasthecaseinwhichaareconstraint,theconstraintsaareanopen,rstclasssystem isreplacedwiththegaugexedexpression whereb(p;q)issomeappropriategaugechoice.Asimpleidentityleadsto 8 ]5 8 ],whichwewillreturntointhenextchapter. 30 PAGE 31 Weobservethatallthefactorsoffcompletelycancel.Asonecansee,theFaddeevmethodisinsensitivetothedenitionoff,aslongasitbenonzero.Hence,thismethodconsidersthea'sanda'sasidenticalconstraints.WewillexamineasimilarmodelinChapter4[ 8 ],whichdemonstratesthatinordertounderstandtheentiretheory,onemustalsoconsiderthequantummechanicalcorrections. Anotherdicultyinthismethodderivesfromtheselectionofgaugechoicea.Aswenotedintheprevioussubsection,thechoiceofgaugeisonlyguaranteedlocally.Inmorecomplicatedgaugetheories,suchasYangMillsitiswellknown[ 29 ]thattheredoesnotexistagaugechoicethatslicesthegaugeorbitsonceandonlyonce,afactwhichlimitstheeectivenesstoprobethenonperturbativeregimeofthesegaugetheories.[ 26 ] 30 ]RenedAlgebraicQuantizationcomesintwomainvarieties,GroupAveragingandamorerigorousversionthatisbasedonthetheoryofriggedHilbertspaces.Inthischapterwewillfocusontheformerratherthanthelatterbecausemostexpertswillagreethattheredoesnotexistagroupaveragingtechniqueforallconstraintsinthisformalism.See[ 30 ]and[ 31 ]formorecompletediscussionsonthefailuresofgroupaveraging. 31 PAGE 32 31 ]AnothertechnicalrequirementisthatforeveryA2Aobs,(i.e.thealgebra ThenalstageoftheRAQprocedureentailsconstructinganantilinearmapcalledariggingmap, 32 PAGE 33 (Ci(1))[2]=(1)[Ci2]=0:(3{15) Inadditionto( 3{15 ),theriggingmap( 3{14 )mustalsosatisfythefollowingtwoconditions,whicharetrueforevery1;22:1:Theriggingmapisrealandpositivesemidenite(1)[2]=(2)[1];(1)[1]0:2:TheriggingmapinteterwineswiththerepresentationsoftheobervablealgebraO(1)=(O1); Oncetheriggingmaphasbeendetermined,thevectorsthatspanthesolutionspaceareCauchycompletedwithrespecttothefollowinginnerproduct forevery1;22andhjiistheinnerproductoftheauxiliaryHilbertspace.Thus,wedenethephysicalHilbertspacederivedbythetechniquesoftheRAQ.WewillrevisittheRenedAlgebraicQuantizationprograminChapter6inthecontextoftheAshtekarHorowitzBoulwaremodel[ 32 ]. 33 PAGE 34 32 ]ForthisprimaryreasontheRAQprocedurehasdiculty 33 ],inanattempttoovercomesituationsinwhichtheRAQprocedurefails.These\failures"include,butarenotlimitedto,casesinwhichaninnitenumberofconstraintsarepresent,aswellaswhenthestructurefunctionsarenotconstants,butratherarefunctionsoverthephasespace.ThisprogramalsoattemptstoeliminateotherambiguityfromtheRAQprocedure,namelytherequirementofadditionalinputintothephysicaltheory.Asmentionedbefore,thisadditionalinputisadenseandinvariantsubspacewhichisequippedwithanertopologythanthatoftheHilbertspaceinwhichitisembedded.[ 34 ]Duringthissection,sinceweonlyintendtogiveaheuristicacountoftheMasterConstraintProgram,wewill 31 ] 34 PAGE 35 33 ].Particularly,wewilldescribetheclassicalanalogandthendiscussthequantizationoftheclassicaltheory. 2Xj;k2ICj(p;q)gjkCk(p;q)(3{17) wheregijischosentobepositivedenite. 33 ]and[ 34 ]10 3{17 )iftheconstraintsareactuallyelds.Ifthisisthecase,wemustsmearthemoversomesetoftestfunctions.Formoredetailsonthisproceduresee[ 33 ]. 35 PAGE 36 isnotvalidforjustobservablefunctionsbutanygeneralfunction,f,overthephasespace.Thiemannamendedthisdecitin[ 33 ]byoeringthefollowingmodicationoftheidenticationofanobservabletothepreviousknownscheme, whereOisatwicedierentiablefunction.Infactwiththescheme,[ 34 ],allobservablesinagiventheorycanaslobeidentiedinthefollowingmanner.Suppose,usingThiemann'snotation,weletMtdenotetheoneparametergroupofautomorphismsoverthephasespaceM,whichisdenedasthetimeevolutionofthemasterconstraint,itfollowsthatwecandenetheergodicmean[ 33 ]ofanyO2C1(M), O=limT!11 2TZTTdtMt(O): =limT!11 2TZTTdteitfM;gO(p;q)limT!11 2TZTT1m=0dt(t)m IfweassumethatwecancommutetheintegralwiththePoissonbrackets,thenitiseasytoseethat( 3{21 )willsatisfy( 3{20 ).WewillendthediscussionwiththeclassicalconsiderationsofthemasterconstraintprogramonthatparticularnoteandaddresstheissueofquantumobservableslaterinChapter5inthecontextoftheProjectionOperatorFormalism. 36 PAGE 37 36 ]toafullyinteractingquantumeldtheory[ 37 ].Therefore,inordertoproceedwiththequantizationoftheMCP,onemustrstpromotethemasterconstraint( 3{17 )toaselfadjointoperatorthatactsonanauxiliaryHilbertspace Themaindierence,atthispointinthediscussion,betweentheauxiliaryHilbertspaceofMCPandthatofRAQ,isthatMCPrequirestheHilbertspacetobeseparable. Atrstglanceitmayappearthatonehaseliminatedthepossiblequantumanomalybecauseacommutatorofanyoperatorwiththesameoperatoriszero,[^M;^M]=0.Whilethisisatruestatement,thequantumanomalyhasonlybeenreformulatedinanothermanner,videlicetthespectrumof^Mmaynotcontainzero.Anexamplethatillustratesthispointmoreclearlyisasfollows:Consideraclassicalsystemwithaclassicalphasesspace,R,withtwoconstraints,C1=p1C2=q1: 8 ].However,itwillprovideadistinctpropertythatweareattemptingtoillustrate,whichisthequantummasterconstraintneednotpossesa0inthespectrum.Thecorrespondingmasterconstraintofthissystemcanbewrittenasthefollowing, 37 PAGE 38 33 ]oeredameanstorectifythisbysuggestingamodicationofthequantummasterconstraintbythefollowing: ^~M=^MI(3{25) where=inffspectrum(^M)andIistheidentityoperatorontheauxiliaryorakinematicalHilbertspace.AccordingtoThiemann,[[ 33 ]],( 3{25 )willstillhavethesameclassicallimitofthemasterconstraintbecause/~.Ingeneral,ifasystemcontainsaconstraintthatisclassicallyanopen,rstclassconstraint,likegravityorthesystemthatwewilldisscussinChapter4,wherewouldbeproportionalto~2. Assumingtheoperator^~Misadenselydenedselfadjointoperator,wecannowproceedwiththequantizationbyrstaddressingtheauxiliaryHilbertspace.Usingthefactthat^~Misaselfadjointoperatorwithapositivesemidenitespectrum,theauxiliaryHilbertspacecanbewrittenasthefollowingdirectintegral[ 34 ]; whered(x)isthespectralmeasure[ 33 ]ofthemasterconstraintoperator( 3{25 ).Eachaddendcontributiontothesum,Haux(x),in( 3{26 )isaseparableHilbertspacewiththeinnerproductinducedbytheauxiliaryHilbertspace,Haux. Usingthisparticularconstructionwearenowabletoaddressthetaskofsolvingthequantummasterconstraintequation^~M=0.BythemathematicaldescriptionoftheauxiliaryHilbertspace( 3{26 ),itfollowsthattheactionof^~MonHaux(x)issimplymultiplicationofx.WecansolvethequantummasterconstraintequationbyidentifyingthephysicalHilbertspacebythefollowing 38 PAGE 39 wherei2f1;2;3gqiandpiarethecanonicalpositionandcanonicalmomentumrespectively 3{28 )formaclosedLieAlgebrathatwecanidentifywiththealgebraofso(3): Theclassicalmasterconstraint( 3{17 ),correspondstotheCasmiroperatorofthegroup Thequantizationofthismodelisstraightforward.TheauxiliaryHilbertspaceisthesetofallsquareintegrablefunctionsoverR3,alsoknownasL2(R3).ThecanonicalpositionqiispromotedtoaselfadjointoperatorQiinwhichtheactionontheauxiliaryHilbertspaceismultiplicationbyqi.TheconjugatemomentumpiispromotedtoaselfadjointoperatorPiinwhichtheactiononL2(R3)isdierentiation,Pi=i~@ @qi.The 35 ].12 39 PAGE 40 3{30 )ispromotedtoacorrespondingselfadjointoperator ^M=^Jyi^Ji:(3{31) Sincethereisnoorderingambiguityin( 3{31 ),onedoesnotneedtosubtracttoobtainazerointhespectrumof( 3{31 ).Usingthetechniquesthatarewellknowninquantummechanics[ 38 ],wewillusesphericalcoordinatestodeterminetheeigenvaluesofthequantummasterconstraint( 3{31 ) sin2@2 sin@ @(sin@ @));(3{32) where2[0;]and2[0;2).Theeigenvaluesandeigenfunctionsof( 3{32 )arewellknown[ 38 ].Theeigenvaluesof( 3{32 )are~2l(l+1)wherel2NandtheeigenfunctionsarethesphercialharmonicfunctionsYlm(;),wherelml.[ 38 ]AgeneralizedeigenfunctioncouldbewrittenasthetheproductofageneralelementinL2(R+;r2dr),whichwewilldenotebyR(r)withthesphericalharmonicfunctionsYlm(;).UsingthisfactwecanproceedtothenextstepoftheMCP,whichistorewritetheauxiliaryHilbertspaceintermsofadirectintegraldecomposition wherecldonotestheclosureoftheset,andspanisthelinearspanofthesetofvectorsdenedinthebrackets.ThephysicalHilbertspaceandtheinducedinnerproductcomedirectlyfromselectingthesubspacethatcorrespondswiththel=0eigenvalue. 38 ]. 40 PAGE 41 TheinnerproductofthisphysicalHilbertspaceisinheritedfromtheL2(R+;r2dr).ThuscompletesthequantizationofthissimpleconstraintmodelintheMasterConstraintProgram 35 ],[ 36 ],and[ 37 ]thattheprogramhashadinresolvingseveraloftheambiguitiesassociatedwiththeRenedAlgebraicQuantization,itstillmaynotbetheperfectchoicetouseforallconstraints.Iftheconstraint'sspectrumcontainsazerointhecontinuum,thenparticularcare,intheformofrathercumbersomemathematicalmachinery,mustbeused.Notthatthisyieldsanincorrectresult,howeveritalmostappearstobeextraneoustothematerial.Thisissomewhatofabiasedopinionbecauseaswewillseeinthenextchaptertheprojectionoperatorformalism'sanswertothisseemsmoresatisfactory.Againthough,weemphasizethefactthattheresultshavebeenshowntobeequivalenttotheresultsfoundin[ 13 ].Anotherpossiblecriticismofthisprogramisnotacriticismoftheprogram,butinstead,acriticismofitsimplemetation.Thatistosaythatauthorstendtodisplayaheavyrelianceontheclassicalanalysisofgroupstosolveconstraints[ 35 ].Themaincritiqueofthispointcomesfromthefactthatmostoftheworkdonewithgroupssuchassl(2;C)neglectthezerorepresentation[ 41 ],whichshouldbetherepresentationcorrespondingtophysicalHilbertspace.However,justastheauthorspointedoutin[ 35 ],thisparticularconstraintisnotphysicallyrealizable,andthereforenotsubjecttoexperiment. 35 ]foradiscourseonthattopic. 41 PAGE 42 42 PAGE 43 TheprimarygoalofthischapteristointroduceandmotivatetheProjectionOperatorFormalism(POF).Theprojectionoperatormethodisarelativelynewprocedurefordealingwithquantumconstraints[ 13 ][ 26 ].Thephilosophyofthisformalismistorstquantizetheentiretheory,andthenreducethequantumtheorybyusingtheconstraints.WewillattempttoillustratehowthePOFattemptstoremedysomeofthedecienciesofthemethodsdiscussedinChapter3.Inthenalsectionofthechapterwewillexaminethreeconstraintmodels.Therstisaconstraintthathasazerointhecontinuum,whereasthesecondandthethirdaremodelsthatwereexaminedin[ 8 ].Theyhelpillustratethepoweroftheprojectionoperatorformalismindealingwithallclassicationsofconstraints.Inthischapteritisunderstoodthat~=1unlessstatedelsewise. 13 ] WerequireEtobeHermitianwhichsatisestherelationE2=E(idempotent),thesearebasicpropertiesofaprojectionoperator.Moreprecisely,supposethatB1andB2denotemeasurable 33 ] 43 PAGE 44 limn!1(E(B1)E(B2))n=E(B1\B2):(4{2) IfB1\B2=;,thenE(;)=0.WewillusethispropertyinChapters5,6and8. RevertingtotheDiracprescriptionofthephysicalHilbertspaceitisdenedas whereaisthequantumanaloguetotheclassicalconstrainta,anda2f1;:::;Ag.Inanidealsituation 4{3 )isequivalenttothefollowing Thefactthat( 4{4 )willnotalwaysleadtoanontrivalresult,isaclueonhowtoarriveatthetrueanswer.AssumingthataaisselfadjointactingonaHilbertspace,wecanusethefollowingresultfromspectraltheorytoobtainourdesiredprojectionoperator,E.Namely,theoperatoraacanbewritteninthefollowingrepresentation[ 39 ] aa=Z10dE(4{5) wheredEisthesocalledprojectionvaluedmeasure[ 33 ]onthespectrumofaa,whichwasdenotedbywhichcontainedaspectralrangeof0to1 4{1 )canbeintroducedbasedontheresultof( 4{5 ) 44 PAGE 45 40 ].Equation( 4{6 )projectsontoasubspaceoftheHilbertspacewithaspectralmeasureofaafrom0to(~)2.ThetruephysicalHilbertspace( 4{1 )isdeterminedwhenthelimitas(~)2!0willbetaken 4{6 .Wewillnowturnourattentiontofurthermotivatingtheprocessofsquaringtheconstraint. 34 ]onlymentionthatsecondorderwaschosenbecauseitisthesimplestexpression.Instead,weattempttooersomemathematicalargumentsthatindicatethatthesumofthesquaresofthequantummechanicalconstraintsissucient. 13 ]7 45 PAGE 46 Inordertodeterminetheconstraintsubspaceinthephasespace,allAequationsmustbesatisedsimultaneously.Thissetofequationswouldbeatleastclassicallyequivalenttothefollowingset: Finally,ifweaddalloftheprecedingequationstogether,wearriveattheconclusionthat Aa2a=0(4{9) isequivalenttothesetofAequations( 4{7 ).Aswestatedbefore,thisisclassicallyequivalent,butarewecertainthatthiswillbejustiedquantummechanically? 46 PAGE 47 40 ]. Theformalpathintegralformoftheprojectionoperatoristhefollowingexpression. whereTisthetimeorderedproductandR()istheformalmeasureoverthecnumberLagrangemultipliersf(t)g.Asshownin[ 40 ]theprojectionoperator( 4{10 ),isconstructedintwomainsteps.Thetimeintervalisdenedasapositiverealvalueequaltot2t1.TherststepistoconstructaGaussianmeasurethatwouldcausetheoddmomentsoftheLagrangemultiplierstovanish(i.e.Ra(t)D(t)=0),whilekeepingtheevenmoments(i.eRa(t)b(t0)D=2 0Mab,where(0)isasmallparametercorrespondingtoatimestep,Mabisapositivematrix,andisareal,positiveintegrationparameter.) whereNistheformalnormalizationofthepathintegral( 4{11 ).Thenalstepistointegrate( 4{11 )over.Toaccomplishthisfeatwewillintroduceaconditionally 33 ]. 47 PAGE 48 wheretheconditionallyconvergentintegralisdenedbythefollowing[ 40 ];lim!0+Zeixsin[((~)2+)] Equation( 4{12 )istrueassumingthattheconstraintsarenotexplicitlydependentontime.WeexaminethatcaseinChapters7and8.ThematrixMabisthemostgeneralcase,butforourcurrentpurposes,wearefreetoselectMab=ab,whichwouldyieldthedesiredformofsquaringtheconstraints.Havingillustratedthemotivationbehindconsideringsquaringtheconstraints,wewilldivertourattentionstosomeofthemathematicaltoolsthatarerequiredinimplementingthePOF. 4.2.1CoherentStates [Qi;Pj]=iji1H:(4{13) TheWeyl(canonical)coherentstatemaybedenedas foranitenumberofdegreesoffreedom,(p;q)2R2N,andthestatesarestronglycontinuousinthelabels(p;q),j0iissomeducialvectoroftentakentobetheground 48 PAGE 49 4{14 )trulyarecoherentstatesisthattheypossessaresolutionofunity[ 41 ]: Wewilloer( 4{15 )asanacceptedtruthwithoutproof[ 41 ]. Thesecoherentstatesalsooeraconnectiontotheclassicallimitofquantumoperators.Thispropertyisknownasthe\weakcorrespondenceprinciple".[ 41 ]Weexploit,andalsostatemorecarefully,thispropertyofcoherentstatesinasubsequentchapter. ThecoherentstatesareconvenientbecausetheyformanovercompletebasisoftheHilbertspace.Usingthisrepresentation,wecanexpressadensesetofvectorsinthefunctionalHilbertspaceintermsofthecoherentstateoverlap, wheren2C.Theinnerproductofsuchvectorscanbeexpressedasthefollowing, (;)=N;MXn;m=1nmhpn;qnjpm0;qm0i;(4{17) whereisanelementofthedenseset.ThecompletionofsuchasetofvectorsleadstotheunconstrainedHilbertspace,whichleadsustothetopicoftheReproducingKernelHilbertspace. 49 PAGE 50 AsinthecaseoftheunconstrainedHilbertspace,wecanexpressadensesetofvectorsinthefunctionalconstraintsubspaceas Theinnerproductforthesevectorsisgivenby (;)P=NXm=1NXn=1nnK(pm;qm;pn;qn);(4{20) whereisalsoanelementofthedensesetofvectors.Usingbasicpropertiesofthereproducingkernelandcoherentstates,weknowthatthenormdenedbytheinnerproductofthesevectorswillbenite[ 13 ].Thisguaranteesthatthenormofvectorsinthecompletionwillalsobenite.IfwemultiplyareproducingkernelKbyaconstant,thereproducingkernelKstillcorrespondstothesamefunctionalspace.Thisisakeypointandonethatweexploitinthenextsectionwhenwedealwithaconstraintthatpossessesazerointhecontinuum. 50 PAGE 51 4.3.1ConstraintwithaZerointheContinuousSpectrum 1=P2;(4{21) where1istheonlyconstraintpresent.Itisclearthatthespectrumof1isthereallineandthatitpossessesazerointhatcontinuum.Thisimpliesthatlim!0E0,whichisanunacceptableresult.Toresolvethisquandaryoneshouldlookattheprojectionoperatoroverlapwithasetofcoherentstatesoftheformof( 4{16 ),whichfollows UsingtheTaylorseriesbyexpanding( 4{22 )asafunctionof,utilizingtheresolutionofunityandfunctionalcoherentstatesoverlapwendthat, Assuggestedin[ 13 ],wewillmultiply( 4{22 )by1 2toextractthegermofthereproducingkernel.Wemustemphasizethatthisisstillthesamefunctionalspacedescribedby( 4{22 ).Thefunctionalformofthereproducingkernelisexpressedbythefollowing: 1 2hp00;q00jE(P2)jp0;q0i=Z+2+2dke(kp00)2=2+ik(q00q0)(kp0)2=2(4{24) Atthisjuncturewewillnotdiscusshowtoevaluatethisintegral,sincethetopicisdiscussedindepthinsubsequentchapters.However,wewillstatetheresult: lim!0K=e1 2((p002)2+(p02)2)+2i(q00q0)(4{25) Acharacteristicofthisreducedreproducingkernel( 4{25 )isthatitdoesnotdenethesamefunctionalspaceastheunreducedreproducingkernel( 4{22 ).Thisreproducing 51 PAGE 52 4{25 )isgaussianpeakedattheclassicalsolutionp0=p00=p=2.AsstatedwewillreturntoseveralmoreexamplesofconstraintswithzerosinthecontinuumwhenwedelveintothistopicduringChapters5and6. wherebdenotestheLagrangemultiplierstoenforcetheconstraints.NotethattheHamiltonianhasbeenchosentobezeroforsimplicity,sowecanfocusdirectlyontheissuessurroundingtheconstraints. Fromthedenitionoftheji's,onecanimmediatelydeterminethePoissonalgebra,givenasusualby SincethisbracketyieldsaLiealgebra,oursystemisclearlyaclosedrstclassconstraintsystem[ 14 ]. Thequantizationofthismodelisstraightforwardandwepromotethedynamicalvariables(pj;qi)tothesetofirreducibleselfadjointoperators(Pj;Qi),whichobeythestandardHeisenbergrelation.TheconstraintjiarepromotedtoselfadjointoperatorsJi Theprojectionoperatoroftheseconstraints( 4{28 )takestheformof 52 PAGE 53 2~z(~Qi~P)1 2~z(~Q+i~P)j0i(4{30) where~z(~q+i~p)=p 41 ]. Acoherentstatepathintegralcanalsobeusedtocalculatethematrixelementsoftheprojectorasshowninpreviousworks[ 13 ].Letusbeginwithapreliminaryequation,namely, Following[ 13 ],wecouldintegrateover~withrespecttoasuitablemeasureR(~)tocreatethedesiredprojectionoperator.However,itisequivalentandsimplertoproceedasfollows,KJ(~z00;~z0)h~z00jE(J2~2)j~z0i=Zh~z00je(i=~)~~Jj~z0gd(); 53 PAGE 54 =N00N0[1+~z002~z02 (4{32) (4{33) From( 4{32 )wecandeducethatthephysicalHilbertspaceforeveryevenparticlesectorisonedimensional.TheHilbertspacefoundusingthismethodisunitarilyequivalenttotheonedeterminedbytheMasterConstraintProgram. isclassicallyrstclass;however,uponquantizationtheconstraintstransmutetopartiallysecondclass.[ 8 ]Theanalysisofthemodelweareabouttoexamineservedastheprimarymotivationbehind[ 8 ].ThismodelisalsoatypeofconstraintthatthatweconsideredinChapter3,intermsoftheFadeevPopovprocedure.Theactionforourchoiceofthemodiedsystemisverysimilarinform,i.e., 54 PAGE 55 foralli,andchooseforfurtherstudytheparticularexampleforwhich Thesymbol~~isaxedconstantequalinvaluetothephysicalvalueofPlanck'sconstant~,namely1:061027ergsec.Whentheclassicallimitiscalledfor,andthusPlanck'sconstant~!0,weemphasizethat~~retainsitsoriginalnumericalvalue.Thereasonforsuchasmalldivisoristoemphasizethequantumcorrections;dierentdivisorscanbeconsideredbyrescalingand.Werecognize,inthissimplecase,thatwecouldabsorbthefactorfbyaredenitionoftheLagrangemultipliersin( 4{37 ).Inmorecomplicatedsystems(e.g.,gravity)thissimplicationiseitherextremelydicultorperhapsevenimpossible.Therefore,asafurtheranalog,weretainfasapartofla.Astraightforwardanalysisleadstofli;ljg=ffji;fjjg=f2fji;jjg+ffji;fgjj+fff;jjgji+ff;fgjijj=fijklk+fji;fglj+ff;jjgli=fijklk+iab[qa@f=@qb+pb@f=@pa]ljjab[qa@f=@qb+pb@f=@pa]li: 55 PAGE 56 where++=1.Indealingwiththequantumtheory,wedropthedistinctionbetween~~and~.Aquickcalculationshowsthatanyotherfactororderingofthedenitionof( 4{40 )willyieldanequivalentresult.ThecommutationoftheLiyieldsasurprisingresult,namely [Li;Lk]=ijk(i~FLk~2(k1l(ayka1+ay1ak)))2iia1Ji((QaQ1+PaP1)F+::: whereF=+(=~)(P21+Q21)+(=~)(P22+Q22).Thesecond,third,fourth,etc.termsin( 4{41 )representtheanomalyinthequantumtheory.Thisanomalycorrespondstoatransmutationtoapartiallysecondclasssystem.Withthisbeingnotedwewillcontinuethequantumanalysisofthesystem. Letusintroduceconventionalannihilationandcreationoperatorsrepresentedby Ifwedene asthetotalnumberoperator,itisevidentthat [Jj;N]=0;[Lj;N]=0; 56 PAGE 57 whereasusualj0i(=j0;0;0i)denotesthenoparticlestateforwhichajj0i=0forallj. Therstnonemptysubspacethatproducesanontrivalresultisthe2particlesubspace.Withtheadditionalsimplicationthat=2,wecanexpresstheeigenevectorthatcorrespondstoleasteigenvalueinthis6dimensionalsubspaceas, whered=12+O(2)andd0=1+O(2).Theprojectionoperatorofthissubspaceisconstructedasthefollowing; 57 PAGE 58 =N00N0[1+(dz1002+d0z2002+z3002)(dz102+d0z202+z302) 2!(d2+d02+1)+:::]: Onenalnoteregardingthisparticularmodel,aswiththecaseforotherpartiallyorfullyquantummechanicalsecondclassconstraintsystems,thelimitas!0isnottaken.TheHilbertspaceisdeterminedbythespacecorrespondingtotheleasteigenvalue. 58 PAGE 59 Theprimarygoalofthischapteristointroduceregularityconditionsonconstraints,aswellaspresenta\new"classicationofconstraintscalledhighlyirregularconstraintsandalsoillustratetechniquesusedtodealwithquantumversionsoftheseconstraints.Thebasisofthischaptercomesfrom[ 9 ]and[ 10 ]. 16 ] Rank@a wheren2f1;:::;Mg,2Misthedimensionalityofphasespace,andistheconstrainthypersurface(a=0).Ifthisconditionfails,thentheconstraint(orsetofconstraints)iscalledirregular[ 16 ].Irregularconstraintscanappearinfollowingform whereaisaregularconstraintandrisanexponentr>1.Intheliterature[ 16 ]themeasureofirregularityisbasedontheorderofthezeroontheconstraintsurface.Forexample,( 5{2 )isanrthorderirregularconstraint.Weshouldnotethatwhiletheconstraintsaandraareequivalent(i.e.theconstraintsgeneratethesameconstrainthypersurface),thedynamicsandsetofobservablesassociatedwitheachgivensystemarenotnecessarilyequivalent. Thetermhighlyirregularconstraintreferstoaconstraintfunctionthatinvolvesbothregularandirregularconstraintsortwoormoreconstraintsofvaryingorder[ 9 ].For 59 PAGE 60 Therstconstraintisregularatq=0andirregularatq=1oforder2.Thesecondcoinstraintisirregularatbothq=3,oforder2,andatq=4,oforder3.Bothoftheseconstraintsarerepresentativeoftheclassofhighlyirregularconstraints.Sincethedynamicsaswellasobservability[ 9 ]ofagivensystemarepotentiallynotthesameforregularandirregularconstraints,carefulconsiderationmustbeobservedwhenquantizingsuchsystems.Theprojectionoperatorformalism[ 13 ]seemstoprovideanappropriateframeworktodealwithsystemswithirregularconstraints[ 9 ]. Theusualformoftheprojectionoperatorisgivenby wherea2aisthesumofthesquaresoftheconstraintoperatorsand(~)isasmallregularizationfactor.TheprojectionoperatoristhenusedtoextractasubspaceoftheunconstrainedHilbertspace,H.If2ahasadiscreteisolated0thencanbechosentobeanextremelysmallnumber.However,if2ahasa0inthecontinuum,wecannotchooseanappropriatetoselectthepropersubspace.Wewilldiscussthisdistinctpossibilityshortly.Inthelimitas!0ifappropriate,thissubspacebecomesthePhysicalHilbertspace, lim!0EjijiPhys; lim!0EHHPhys: 60 PAGE 61 13 ],whichisunacceptable.Toovercomethisobstacle,thislimitmustbeevaluatedasarescaledformlimit.Toaccomplishthis,wewillneedtointroducesuitablebrasandketsintheunconstrainedHilbertspace.Forthisdiscussionitwillbeconvenienttochoosecanonicalcoherentstates(jp;qi)tofulllthischoice.Weregardthefollowingexpressionastherescaledform whereS()istheappropriatecoecientneededtoextracttheleadingcontributionofhp0;q0jEjp;qi,for0<1.Forexample,ifhp0;q0jEjp;qi/toleadingorder,thenS()/1,forsmall.Thelimit!0cannowbetakeninasuitable 5{8 )isafunctionofpositivesemidenitetypeandthismeansthatitmeetsthefollowingcriteria lim!0Nj;l=1jlS()hpj;qjjEjpl;qli0;(5{9) forallniteN,arbitrarycomplexnumbersflgandcoherentstatelabelsfpl;qlg.Aconsequenceofthepreviousstatementisthat( 5{8 )canleadtoareducedreproducingkernelforthephysicalHilbertspace ThereproducingkernelcompletelydenesthephysicalHilbertspace[ 13 ].Thereproducingkernelmakesitpossibletoexpressadensesetofvectorsinthefunctional 61 PAGE 62 Theinnerproductforthesevectorsisgivenby (;)P=N;MXn;m=1nmK(pn;qn;pm;qm);(5{12) whereisalsoanelementofthedensesetofvectors.ThecompletionofthesevectorsinthesenseofCauchysequenceswiththerelevantinnerproductwillyieldthephysicalHilbertspace. Withoutexplicitlycalculatingthereproducingkernel,wewillconsiderthefollowinghighlyirregularquantumconstraint =Q2(1Q);(5{13) whereQactsasamultiplicationoperator.ClearlythisconstraintvanisheswhenQ=0andQ=1.Assuming,0<1,theprojectionoperatorforthisconstraintcanbewritteninthefollowingform Sincethezerosofthisoperatorfallinthecontinuum,itisclearfromthepreviousdiscussionwecannottakethelimit!0initspresentnakedform.Thereproducingkernelcanbeexpressedasthefollowing ByconstructiontheseprojectionoperatorsE( PAGE 63 whereKQ=0andKQ=1areleadingordercontributionstothereproducingkernelsaroundthetwosolutionstotheconstraintequation.See[ 9 ]forfurtherdetails.Unlikeexpression( 5{8 )theredoesnotexistasingleS()toextracttheleadingorderdependencyfortheentireHilbertspace.Toaddressthisdicultywewillconsiderthefollowingargument[ 9 ]. OurpreviousexamplehadconstraintsolutionsaroundQ=0andQ=1,wewillnowaddressthisinamoregeneralsetting.Webeginbydeterminingthereproducingkernelforeachsolutionintheconstraintequation.RecallthatthesumofreproducingkernelswillproduceadirectsumofthecorrespondingreproducingkernelHilbertspacesifthespacesaremutuallyorthogonal.Thiswillbethecaseforhighlyirregularconstraints.SoletKrepresentthe(>0)reproducingkernelforthereproducingkernelHilbertspaceH K=Nn=1Kn;(5{17) whereKnisthedeterminedreproducingkernelforeachuniquesolutionoftheconstraint.TheHilbertspacegeneratedhasthefollowingform, whereHncorrespondstotheKnforeachn.However,wehavenottakenthelimitas!0,andsincetheleadingorderdependencyispotentiallydierentforeachreproducingkernelKn,theredoesnotexistasingleS()thatcanbeusedtoextracttheleadingordercontributionofeachreproducingkernel.Toaccomplishthistaskwedenea(similarity)transformationS, PAGE 64 ^K=Nn=1Sn()Kn:(5{19) Therescaled^KservesasthereproducingkernelfortheHilbertspace^H.AlthoughtheinnerproductofHand^Haredierentthesetoffunctionsareidentical.Thegoalofthislittleexerciseisofcoursetotakeasuitablelimit!0toyieldafunctionthatcanserveasareproducingkernelforthephysicalHilbertspace.Atthispoint,wecantakesuchalimit. ~Klim!0^K; where~KisthereducedreproducingkernelforthephysicalHilbertspaceHphys.Havingdiscussedthebasictheorybehindthisclassicationofconstraint,inthenextsectionwewillconsiderasimplebutrobusttoymodelthatdemonstratesthestrengthoftheProjecionOperatorFormalismtodealwiththesekindsofconstraints. whereisaLagrangemultiplierdesignedtoenforcethesingleconstraint 64 PAGE 65 _q=0; _p=R0(q); withsolutions whereqlisarootofR(q)=0.IfR0(ql)=0thenthesolutionbecomes Thefunction(t)isnotxedbytheequationsofmotion,whichisnormalforrstclassconstrainedsystems.Toexplicitlyexhibitasolutiontotheclassicalequationsofmotionitisgenerallynecessarytospecifythefunction(t),andthisconstitutesachoiceofgauge.Gaugedependentquantitiesaredenedtobeunobservable,whilegaugeindependentquantitiesaredeclaredtobeobservable.Inthepresentexample,ifR0(ql)6=0,thenp(t)isgaugedependent,whileifR0(ql)=0,p(t)is,infact,gaugeindependent.Thisbehaviorsuggeststhatthemomentumpinthesubsetofthereducedclassicalphasespaceforwhichfq:R(q)=0;R0(q)6=0gisunobservable,whilethemomentumpinthesubsetofthereducedclassicalphasespaceforwhichfq:R(q)=0;R0(q)=0gisobservable.Wediscussthispointfurtherbelow.ThereducedclassicalphasespaceisgivenbyRZ,where Clearly,fortheclassicaltheorytobewelldened,itissucientforR(q)2C1,namelythatR(q)andR0(q)arebothcontinuous.(Strictlyspeakingthiscontinuityis 65 PAGE 66 OurdiscussionwillcoverawideclassofRfunctions,andforconvenienceofexplanationweshallfocusononespecicexample;generalizationtootherexamplesisimmediate.Theexamplewehaveinmindisgivenby where Forthisexample,thezerosetisgivenby onlyforq=0isR0(q)6=0.(AlthoughphysicallymotivatedmodelswouldtypicallynotincludeintervalsinthezerosetofR,wedosotoillustratetheversatilityofourapproach.) Insummary,thephasespacefortheunconstrainedclassicalsystemisparameterizedby(p;q)2RR,andthephasespacefortheconstrainedsystemisparameterizedbythepoints(p;q)2RZ.Thislatterspaceconsistsofseveralonedimensionallinesandatwodimensionalstrip.FromthestandpointofthiselementaryexampleallelementsofRZareequallysignicant. Wenowturntothequantizationofthiselementaryexamplefollowingthepreceptsoftheprojectionoperatorformalism[ 13 ].Inthisapproachonequantizesrstandreducessecond.TheultimatereductionleadstoaphysicalHilbertspaceappropriatetotheconstrainedsystem. 66 PAGE 67 [Q;P]=i1(5{34) inunitswhere~=1.(Whenweeventuallyexaminetheclassicallimit,weshallrestoretheparameter~tovariousexpressionsasneeded.)Theprojectionoperatorofinterestisgivenby where>0isatemporaryregularizationparameterthatwilleventuallybesenttozeroinasuitablemanner.Sincethelimit!0willultimatelybetakenasaformlimit,weneedtointroducesuitablebrasandketsinthisoriginal,unconstrainedHilbertspace.Forthatpurposewewillagainchoosecanonicalcoherentstatesdened,forthepresentdiscussion,by Asusual,wechoosej0itosatisfy(Q+iP)j0i=0;namely,j0iisthenormalizedgroundstateofanharmonicoscillatorwithunitfrequency.Thusweareledtoconsiderthecomplexfunction whichiscontinuous(actuallyC1)inthecoherentstatelabelsanduniformlyboundedbyunitysinceE=Ey=E21. Itisimportanttoremarkthatthefunction( 5{37 )isafunctionofpositivetype,acriterionthatmeans Nj;k=1jkhpj;qjjEjpk;qki0(5{38) forallN<1andarbitrarycomplexnumbersfjgandlabelsetsfpj;qjg;thispropertyholdsbecauseEisaprojectionoperator.Asaconsequenceofbeingacontinuousfunction 67 PAGE 68 servesasareproducingkernelforareproducingkernelHilbertspace,afunctionalrepresentationbycontinuousfunctionsontheoriginalphasespace(RR),oftheregularized(by>0)physicalHilbertspace.Ourgoalistotakeasuitablelimit!0soastoyieldafunctionthatcanserveasareproducingkernelforthetruephysicalHilbertspaceforthepresentproblem. Clearlythelimit!0ofthegivenexpressionvanishesandthatisanunacceptableresult.Supposeweassume0<1,e.g.,=101000.Thenitisclear(evenforamuchlargeraswell!),fortheexampleathand,that whereEn;1n4,correspondstothetermsinthelineaboveinorder.Byconstruction,forverysmall,itfollowsthattheseprojectionoperatorsobey i.e.,theyprojectontomutuallyorthogonalsubspaces.Inlikemannerthereproducingkerneldecomposesinto where 68 PAGE 69 SinceEnEm=nmEnitfollows,fromthecompletenessofthecoherentstates,that ThisequationimpliesthattheHn,1n4,form4mutuallydisjoint(sub)HilbertspaceswithinL2(R2).Forthepresentexamplewith>0,eachHnisinnitedimensional. LetusrstconsiderK2(p00;q00;p0;q0)hp00;q00jE(<8(2Q)3=2<)jp0;q0i=1 ThisfunctionisalreadyofpositivetypeandiscorrecttoO(2)[i.e.,toO(104000)!]. Asdiscussedfrequentlybefore[ 13 ],wecanextractthe\germ"fromthisreproducingkernelbyrstscalingitbyafactorofO(2=3),sayby=(22),priortotakingthelimit!0.Consequently,werstdeneanewreproducingkernel ^K2(p00;q00;p0;q0)=p WeremarkthatthespaceoffunctionsthatmakeupthereproducingkernelHilbertspace^H2(generatedby^K2)isidenticaltothespaceoffunctionsthatmakeupthereproducingkernelHilbertspaceH2(generatedbyK2).Next,wetakethelimitas!0ofthe 69 PAGE 70 ~K2(p00;q00;p0;q0)lim!0^K2(p00;q00;p0;q0)=e[(2q00)2+(2q0)2]=2i(p00p): Thisprocedureleadstoanewfunction~K2,which,provideditisstillcontinuous{whichitis{leadstoareducedreproducingkernelandtherebyalsotoanewreproducingkernelHilbertspace~H2.Generally,thedimensionalityofthespaceaswellasthedenitionoftheinnerproductaredierentforthenewreproducingkernelHilbertspace;however,onealwayshasthestandardinnerproductdenitionthatisappropriateforanyreproducingkernelHilbertspace[ 42 ].Inthepresentcase,itfollowsthat~K2denesaonedimensionalHilbertspace~H2.NotethateventhoughthecoordinatevaluefortheconstrainedcoordinateQisnowsetatQ=2{asisclearfromthespecialdependenceof~K2(p00;q00;p0;q0)onp00andp0{therangeofthevaluesq00andq0isstillthewholerealline.Theonlyremnantthatq00andq0haveoftheirphysicalsignicanceisthat~K2(p00;q00;p0;q0)peaksatq00=q0=2.Itisnoteworthythatanexampleofthistypeofirregularconstraintwasconsideredpreviouslyby[ 40 ]. Asimilarprocedureiscarriedoutfortheremainingcomponentsintheoriginalreproducingkernel.LetusnextconsiderK1(p00;q00;p0;q0)=hp00;q00jE(<2Q<)jp0;q0i=1 whichisafunctionofpositivetype.Itisnoteworthytonotethatthisconstraintisofregulartype.[ 14 ] 70 PAGE 71 ^K1(p00;q00;p0;q0)p andthentakethelimit!0leadingto ~K1(p00;q00;p0;q0)lim!0^K1(p00;q00;p0;q0)=e[q002+q02]=2; acontinuousfunctionofpositivetypethatcharacterizestheonedimensionalHilbertspace~H1. Ourprocedureofscalingtheseparatepartsoftheoriginalreproducingkernelbyqualitativelydierentfactors(i.e.,1and2)hasnotappearedpreviouslyintheprojectionoperatorformalism.Thisdierenceinscalingismotivatedbythegoalofhavingeachandeveryelementofthereducedclassicalphasespacerepresentedonanequalbasisinthequantumtheory.ItisonlybythisprocedurethatwecanhopethattheclassicallimitofexpressionsassociatedwiththephysicalHilbertspacecanfaithfullyrecoverthephysicsintheclassicalconstrainedphasespace.Scalingof~K1and~K2bynitelydierentfactorshasbeenaddressedin[ 9 ]. LetuscontinuetoexaminetheremainingKn,3n4.ForK4wehaveK4(p00;q00;p0;q0)=hp00;q00jE(<8(Q3)3<)jp0;q0i=1 ~K3(p00;q00;p0;q0)=e[(3q00)2+(3q0)2]=22i(p00p0)(5{52) 71 PAGE 72 Inthiscase,noappearsandnoinniterescalingisneeded,sowemaysimplychoose ~K3(p00;q00;p0;q0)=K3(p00;q00;p0;q0):(5{54) Althoughwedonothaveanexplicitanalyticexpressionfor~K3,wedohaveawelldenedintegralrepresentationin( 5{53 ).Furthermore,itfollowsthat~H3isinnitedimensional. Finally,wedenethereproducingkernelforthephysicalHilbertspaceas ~K(p00;q00;p0;q0)4n=1~Kn(p00;q00;p0;q0):(5{55) Inturn,thephysicalHilbertspaceHPisdenedasthereproducingkernelHilbertspace~Huniquelydeterminedbythereproducingkernel~K(p00;q00;p0;q0). Observe,byourprocedure,allelementsofthereducedclassicalphasespace(RZ)arerepresentedonanequivalentbasisin~K.ThisfeaturehasbeendesignedsothattheclassicallimitoftheexpressionswithinHPcorrespondtoallaspectsofthereducedclassicalphasespace.Wewillnowturntoadiscussionofobservablesofthismodel. 72 PAGE 73 [E;O]=0:(5{56) WenotethateventhoughEisafunctionofthesquaresoftheconstraintswearenotboundtothesameconcernsThiemanfacedintheMasterConstraintprogram.Thestartingpointsofthediscussionofobservablesinthetwoframeworksaredierent.TheMasterConstraintProgramsuersfromthefactthatmultiplicationoffunctionsinaclassicalspaceiscommutative,hencetheadditionalrequirementofanobservablefunction.However,intheProjectionOperatorFormalismwebegininthequantumregimewherethemultiplicationofselfadjointoperatorsmaynotbecommutativetherefore( 5{56 )issucient.WecantakeageneraloperatorG(P;Q)intheunconstraintedHilbertspaceanddene asitsobservablecomponentsinceclearly[E;GE(P;Q)]=0.Infact,everyobservablecanbeexpressedintheprecedingform( 5{57 ).Theequation( 5{56 )isvalidfor>0.Howerveraslongas>0wehaveyettocapturethetruephysicalHilbertspaceofagiventheory.Thereforethelimit!0mustbetakeninasuitablefashiontodiscussobservables.Ifquantumconstraint lim!0[E;O]=0![;O]jiPhys=0:(5{58) 73 PAGE 74 whereoistheclassicalanalogofO.Weconsider( 5{59 )tobeaweakequationbecauseitneedstovanishontheconstrainthypersurface.Itisobviousthatif( 5{58 )istruethenOisgaugeindependentinthephysicalHilbertspace.IntheHeisenbergpicturetheevolutionoftheoperatorisgivenby _OjiPhys=i whereHEistheobservablepartoftheHamiltonianintheformof( 5{57 ).ThereforeallobservableswillstayinthephysicalHilbertspaceastheyevolvewithtime.Thesametypestatementcanalsobesaidintheclassicalworld.However,inourparticularmodel,thelimit!0mustbetakenasaformlimitbecausehasazerointhecontinuousspectrum.Observablesintheseinstancesmustbehandledatthelevelofthereproducingkernel.RecallfromtheprevioussectionthatthephysicalHilbertspaceisisomorphictoaninnitedirectsumofcomplexnumbers.Inthisrealizationtheprojectionoperatoristheunitoperator,andthereforetheobservablescorrespondtogeneralsymmetricmatrices. Wewillnowdirectourattentiontoacalcuationofthecoherentstatematrixelementofthephysicalconjugatemomentumatthelevelofthereproducingkernel.Specically,werstnotethathp00;q00jPEjp0;q0ihp00;q00jEPEjp0;qi=ZdxZdx0hp00;q00jEjxihxjPjx0ihx0jEjp0;q0i=i~ZdxZdx0hp00;q00jEjxi0(xx0)hx0jEjp0;q0i=i~Zdxhp00;q00jEjxid dxhxjEjp0;q0i: PAGE 75 Similarly,itfollowsthat UsingasimilartechniqueofAraki[ 43 ],wenowdeterminethedesiredmatrixelementsbyadding( 5{61 )and( 5{62 ),anddividingbytwoleadsto, 2(( 561 )+( 562 )) (5{63) =1 2nZIndxhp00;q00jEjjxi[p00+p0+i(q00q0)]hxjEjp0;q0i =[p00+p0+i(q00q0)] 2~K(p00;q00;p0;q0): Finally,ifwesochoose,weallowonlythegaugeindependentmatrixelementsbyhandselectingtheportionsofthereproducingkernelthatcorrespondtotheirregularconstraints, 2~K0(p00;q00;p0;q0)(5{66) where~K0isthereducedreproducingkernelexceptforthecomponentcorrespondingto~K1.Inchapter6,wewillfurtherdiscusstheconceptofobservablesandtheclassicallimitofquantummechanicalobservablesintheAshtekarHorowitzBoulwaremodel. 75 PAGE 76 TheprimarymotivationofthischapteristoanalyzetheAshtekarHorowitzBoulwaremodelutilizingtheProjectionOperatorFormalism.WewillalsocomparetheresultobtainedbythePOFapproachwiththatobtainedviamethodsoftheRenedAlgebraicQuantizationprogram.Thebasisofthischaptercanbefoundin[ 10 ]. 11 ]wasformulatedtomimicaparticularpropertyoftheHamiltonianconstraintofGeneralRelativity.InthissimplemodeltheconstraintoftheHamiltoniansystemwassuchthattheclassicalconstraintsubspacedidnotprojectdowntoallofthecongurationspace.UsingthemethodsdescribedbyDirac[ 7 ],theconstraintofthissimplequantummechanicalsystemwasimposed.Itwasarguedthatbyrequiringtheadditionalconditionofnormalizationoftheconstraintsolutions,thereisquantummechanicaltunnelingintoclassicallyforbiddenregions.Thismodelwasoriginallyformulatedwiththecongurationspaceofasphere[ 11 ]. Later,Boulwaremodiedtheconstraintproblembynotingthecurvatureofthecongurationspaceplaysnoroleintheanalysisandalteredthecongurationspacetoatorusacompactyetgloballyatcongurationspace[ 44 ].Inthequantizationofthemodiedmodel,theadditionalrequirementoftheselfadjointpropertywasimposedonthecanonicalmomentum.Usingthisadditionalcriterion,itwasshownthatnotunnelingwouldoccurintotheclassicallyforbiddenregionsforthephysicalstates. Recently,LoukoandMolgudoinvestigatedthismodelusingtechniquesoftherenedalgebraicquantizationprogram(RAQ)todetermineitsphysicalHilbertspacestructure[ 32 ].ThemethodstheyemployedledtotheexistenceofsuperselectionsectorsinthephysicalHilbertspace.ThebasicformalismofRAQisunabletodetermineariggingmapforaconstraintthathasbothregularandirregularsolutions.Modicationsweremadeindenitionoftheriggingmaptoaccommodateforthevarietyofsolutions,(i.e.rsolutionsof 76 PAGE 77 Usingtheprojectionoperatorformalism[ 13 ],weareabletoascertainthephysicalHilbertspaceoftheAshtekarHorowitzBoulware(AHB)modelwithtechniqueswhichwefeelareclosertotheessenceoftheDiracprocedure[ 7 ]thanthosein[ 32 ].ThephysicalHilbertspaceofthismodelisshownnottodecomposeintosuperselectionsectors.Weareinclinedtotakethepointofviewthatsuperselectionsectorsarebasedonphysicalprinciplesnotpuremathematics.Theapproachinwhichweultimatelyemployisasimilaritytransformation.Physicsisinvariantundersimilaritytransformations.Weshouldalsonotethetwomethods(ProjectionOperatorvs.RAQ)arenotequivalent.Wewereabletogeneralizetoaclassoffunctions(i.e.functionsthathaveintervalsolutionstoconstraintequation)thatthepreviouswork[ 32 ]cannotanalyzewithoutfurthermodications.Thepreviouswork[ 9 ]servesasaguideforthispresentendeavor. Thischapterisorganizedasfollows:Section2providesabriefintroductiontotheclassicalAHBmodel.Section3presentsthecanonicalquantizationofthemodel.Section4dealswithconstructingthephysicalHilbertspaceusingtheprojectionoperatorformalism.Section5dealswithdeningsuperselectionsectorsanddeterminingwhetherornotthePhysicalHilbertspaceobtainedinSection5containssuperselectionsectors.Section6dealswiththeclassicallimitoftheconstrainedquantumtheoryandestablishesthattheclassicallimitistheclassicaltheoryoftheoriginalmodel.Section7containsanaccountoftheRAQapproachtothismodel. 77 PAGE 78 wherethefunctionR(y)2C1(S1)isassumedtobepositivesomewhere.WhentheconstraintequationissatisedtheclassicalsolutionsarelimitedtotheregionsofthecongurationspacewhereR(y)0.Theconstraintregioninthe4dimensionalphasespacewillinvolveapropersubsetofcongurationspace.NotethattheHamiltonianequalszerointhismodeltoemphasizetheroleoftheconstraint. Thedynamicsofthissystemaregivenbythefollowing5equationsofmotion. _x=2px;_y=0;_px=0;_py=dR(y) Ify0satisestheconstraintequationanddR(y) 78 PAGE 79 6{1 ).WewillassumeourchosencanonicalcoordinatesareCartesianonessuitableforquantization[ 20 ].Wethenpromotethecanonicaldynamicalvariables(x;y;px;py)toasetofirreducibleselfadjointoperators(X;Y;Px;Py).Conjugatepairscorrespondingtocompact,periodicspatialcomponentswillnotobeythestandardHeisenbergWeylrelationship[ 45 ]becausetheeigenvaluesoftheconjugatemomentumoperatorsarenotcontinuousbutdiscrete.Continuingwiththecanonicalquantizationprocedure,wepromotetheconstrainttoasuitablefunctionofselfadjointoperators Note,thereisnoorderingambiguityforthisoperator.WeassumetheconstraintoperatorisaselfadjointoperatorintheunconstrainedHilbertspace.Wecannowimplementthequantumconstraintusingtheprojectionoperatormethod. SincethefunctionR(y)isacontinuousfunction,wemustintroduceanappropriatesetofbrasandketstodealwiththesubtletiesdescribedinsection2. 79 PAGE 80 CoherentstatesonacirclecanbegeneratedbycoherentstatesofalinewiththeuseoftheWeilBerezinZak(WBZ)transformation[ 45 ].WeshalluseXandYtodenotethecharacteristiclengthsofthexandycoordinates,respectively.TheWBZtransform,T,isaunitarymapfromL2(R)toL2(S1S1),whereS1isthedualtoS1.Thetransformationisgivenbythefollowing (T)(x;k)n2ZeinXk(xnX)(6{5) where2L2(R),x2S1,andk2S1orstatedotherwisek2[0;2 2p(x+ip))exp(1 2(x+ipx0)2)(iX where1=exp(X2 (z)=n2Zn2e2inz;(6{7)jj<1,istheJacobithetafunction.Thesestatesarenotnormalized[ 45 ].Foreachvalueofkthesestatessatisfytheminimalaxiomsofgeneralizedcoherentstates;i.e.,acontinuouslabelingofthestateswherethelabelsethasatopologyisomorphictoR2andaresolutionofunity[ 40 ]. WecanexpressthecoherentstatesonT2asthefollowing, 80 PAGE 81 45 ],eectively,wecansetthenewgroundstateatk.Therefore,wecansafelychoosezeroforbothkxandky.Thuswewillmakethefollowingnotationalchange Theconstructionofthereproducingkernelisbasedonpropertiesoftheconstraintoperatoraswellasthecoherentstates( 6{9 ).TheconstraintoperatorandthecompactnessofxrestrictthespectrumofitsconjugatemomentumPxandtherebyofR(Y).Allowedvaluesofyaredeterminedbythefollowingequation wherejni0istheorthonormalbasisforL2(S1).WewillproceedwiththequantizationofthismodelbyimplementingthemethoddiscussedinSection2foreachnsectorofthetheory.SincewearenotchoosingaparticularR(y),wewillonlybediscussingthephysicalHilbertspaceingeneral.Weconsiderthefollowingtwotypesofsolutionstotheconstraintequation. I.)(PointSolutions)Thesolutiony=ymisapointvaluesolutiontotheequation( 6{10 )foragivenvalueofn.Theindexmcorrespondstomultiplevaluesoftheythatsatisestheequationforagivenvalueofn. II.)(IntervalSolutions)Thesolutionsy=ym0satisfytheequation( 6{10 )forallelementsinanintervalI(m0).Thisclassicationofsolutionsalsoincludesacountableunionofdisjointintervals.Althoughphysicallymotivatedmodelsexcludesuchconstraintsolutions,weincludethemtoillustratetheversatilityofourapproach 81 PAGE 82 9 ]todeterminethephysicalHilbertspacecontributionfortypeIIsolutions.Thecalculationofthereproducingkernelcanbedecomposedintoportionscorrespondingtoeachvaluen2Zinthefollowingmanner: 82 PAGE 83 2(yy0)ei(pxxp0xx0)=2+p02=2+p2x=2xexp[(ymy)2=2iym(p0ypy)(ymy0)2=2](i(y0+ip0yymn;1)(i(y+ipyymn;1)exp[n2]exp[in((x0x)+i(p0xpx)]; where1=exp[22].FollowingtheprescriptionsetforthinSection2,weperformtherequiredsimilaritytransformationtoextracttheleadingdependencyofthereproducingkernel. ^Kmn=constant=Sm()2sin(1=Sm()(yy0)) 2(yy0)ei(pxxp0xx0)=2+p02x=2+p2x=2exp[(ymy)2=2iym(p0ypy)(ymy0)2=2](i(y0+ip0yymn;1)(i(y+ipyymn;1)exp[n2]exp[in((x0x)+i(p0xpx)]; Thelimit!0cannowbetakeninasuitablemannertodeterminethereducedreproducingkernelforthisportionofthephysicalHilbertspace[ 13 ]whichthenreads ~Kmn=constant=1 (6{14) foreachvalueofm.EachofthesereducedreproducingkernelHilbertspacesisisomorphictoaonedimensionalHilbertspace(i.e.~HC).Wecontinuetheprocedureforeachwholenumbervalueofnuntilthemaximumallowedvalue(ofn)isreached. 83 PAGE 84 6{10 ),thenwecanwritethereproducingkernelforthephysicalHilbertspaceinthefollowingmanner ~K=nmaxnm~Knm(6{15) Similarly,thephysicalHilbertspacecanbewrittenas Thesupportofthereproducingkernelisonlyintheclassicallyallowedregions.ThisimpliesthereisnotunnelingintoclassicallyforbiddenregionsasreportedbyBoulware[ 44 ]. whichistosaythatthephysicalHilbertspaceisgivenbythedirectsumofindividualHilbertspaces.ThephysicalHilbertspaceissaidtodecomposeintosuperselectionsectorsifforanytwostatesj1i;j2ithatbelongtotwodierentsectorsHiandHj,respectively,andforanyobservableOinAobs,whereAobsthe*algebraofallobservables,thefollowingholds, In( 6{18 ),OdenotesagenericselfadjointoperatorintheunreducedHilbertspace.InpreviousworksusingtheRAQprocedure[ 31 ],superselectionsectorsarosebecauseeachsectorhadadierentdegreeofdivergence.SinceOisaselfadjointoperatorintheunreducedspace,( 6{18 )isforcedtovanishtoavoidacontradictionfromthevaryingdegreesofdivergency[ 46 ].Aswehaveshowninthepreceedingsectionthephysical 84 PAGE 85 6{18 )willonlyholdifandonlyiftheoperatorisproportionaltotheprojectionoperator.Ingeneral( 6{18 ),doesnothold,thereforethephyicalHilbertspace( 6{17 )doesnotdecomposeintosuperselectionsectors.WewillnowdiscusstheclassicallimitofthequantizedAHBmodel. wherejp;qiarecanonicalcoherentstates.ThisprovidestheconnectionbetweenanoperatorO(P;Q)andanassociatedfunctionontheclassicalphasespacemanifold.Inthelimit,~!0,wendthisfunctionreducestotheclassicalfunctionthatcorrespondstotheweakcorrespondenceofquantumoperator.ThisstatementcaneasilybeseenifOisapolynomial,however,thisconditionisnotnecessary.Thisresultcanbegeneralizedtoanynumberofphasespacevariablesaswillbedemonstratedbelow. Beforeevaluatingtheclassicallimitofthemodel,wemustdiscussthefundamentaldierencebetweenquantummechanicsonacompactcongurationspaceandthatofanunboundedspace.Theconjugatemomentumoperator(Px)hasadiscretespectrumifthecongurationspaceiscompact.Thereforethestandardcanonicalcommutationrelation [X;Px]=i~;(6{20) isinappropriate.Toalleviatethisproblemweconsiderthe\angle"operator[ 45 ] 85 PAGE 86 Asobservedin[ 9 ],theobservablepartofanoperatorcanalwaysbeexpressedas whereOisaselfadjointoperatorintheunconstrainedHilbertspace. TheobservablepartoftheHermitiancombinationofUxandUyxis Byobservation,wenote Theseprojectionoperatorsareactingonmutuallyorthogonalsubspaces;therefore,theoperatorisidenticallyzero.Thisresultinformsusthatthisisagaugedependentquestionwhichisconsistentwiththeclassicalpicture.RecallfromSection3thexdynamicalvariableisgaugeindependentonlywhenpx=0.Quantummechanically,wehaveposedthequestiontonda\physical"wavefunctionthathassupportonbothagaugeindependentsectorandgaugedependentsector.Thisisimpossible. IfweweretoexaminethesamequeryforthecorrespondingHermitiancombinationofthe\angle"operatorfortheYcoordinate,wewouldobtaintheunitoperator.Theclassicallimitofthisoperatorisagainincompleteagreementwiththeclassicaltheory.Aswehavepreviouslyobservedtheclassicaldynamicalvariableyisalwaysgaugeindependent. NowweconsiderthefollowingquotienttoestablishtheclassicallimitoftheY\angleoperator"Uyhx;px;y;py;jEUyEjx;px;y;pyi hx;px;;y;py;jEjx;px;;y;py;i PAGE 87 ( As~!0thisexpressionbecomes exp[i2y];(6{27) whereyissubjecttotheconditionR(y)=p2x.Whilethisexpressionisimaginary,wecanextractfromittheclassicalreducedphasespacecoordinatey. Nowwedirectourattentiontotheexpectationvalueofthephysicalconjugatemomentum,Px hx;px;y;pyjEjx;px;y;pyi @x0hx0;y0jx;px;y;pyi:(6{28) WeimplementtheconstraintsbyintegratingovertheappropriateintervalsasdescribedinSection5.Wecancontinuethiscalculationinasimilarmannertothatwhichisperformedin[ 9 ]. hx;px;y;pyjEjx;px;;y;py;i=px+0( 2( where 0(z;)=2i1Xn=nn2einze2inz:(6{30) As~approaches0,thesecondtermvanisheswhichcanbeseeninthedenitionoftheJacobithetafunction( 6{7 )[ 45 ],thusrecoveringthisaspectoftheclassicaltheoryfromitsquantumanalog.Usingthesametechnique,wecanalsocalculatetheclassicallimitoftheexpectationvalueofthePyoperator.Theprojectionoperatorformalismiswellsuitedtonotonlyproperlyimposequantumconstraints,butalsoallowonetoreturntotheproperclassicaltheoryinthelimit~!0. 87 PAGE 88 6{2 ).Firstwemustassumetheconstraint( 6{2 )containsanitenumberofzerosandthatallstationarypoints(i.e.R0(y)=0,Rn(y)=0,[i.e.thenthdervativeofRwithrespecttoy])onlytohaveaniteorderthatnozerosof( 6{2 )aretobestationarypoints.AswiththeanalysisintheprecedingsectionswemustalsorequirethatR(y)bepositiveatleastsomewhere. FollowingtheprogramdescribedinChapter3wemustrstchooseanauxiliaryHilbertspace,Haux.TheauxiliaryHilbertspaceofchoiceistheHilbertspaceofsquareintegrablecomplexfunctionsoverthecongurationspace.Thecanonicalinnerproductisgivenbythefollowing; (1;2)aux=ZZdxdy1(x;y)2(x;y);(6{31) where()denotescomplexconjugation.TheclassicalconstraintispromotedtoanoperatorthatactsontheauxiliaryHilbertspace, ^C=@2 whereR(Y)actsasamultiplicationoperatornamely,R(Y)(x;y)=R(y)(x;y)forall(x;y)2Haux.Theoperator,^CisanessentiallyselfadjointoperatoronHaux,thereforetheoperatorwillexponentiatetotheoneparameterunitaryoperatorviaStone'stheorem, KeepinginlinewiththeRAQprogram,wemustnowchooseatestspaceHaux.Inthismodeltheconvenientchoiceisthesetoffunctionsoftheform; 88 PAGE 89 6{33 )isasfollows, thereforebythiscalculationisinvariantundertheactionofU(t).Onefurthercommentmustbemadebeforeproceedingwiththerestoftheprocedure,ifO2AobsthenOcommuteswithU(t)andisdenselydenedin.ThenalphaseoftheRAQprocedureistodeterminetheantilinearriggingmapviathegroupaveragemap, orequivalentlywecandiscussthemapthroughthematrixelements[ 30 ] AtthispointadeviationfromthestandardRAQapproachisrequired.[ 46 ]Since( 6{37 )isnotabsolutelyconvergent,thisisduetothefactthegaugegroupgeneratedbyU(t)isanoncompactgroup.Formally,itwasestablished[ 32 ]thattheriggingmapcouldbewrittenasthefollowingequation, orequivalently, whereymjsaresolutionsto 89 PAGE 90 6{38 )and( 6{39 )arethedeltafunctionsforRandS1,respectively.Assumingthat( 6{40 )hassolutionsthenitwasshownin[ 32 ]that( 6{39 )doessatisfytheaxiomsoftheriggingmap.AkeycomponentofthevericationoftheaforementionedaxiomsisthatinducesarepresentationofAobsonthephysicalHilbertspace.Thiscanbestatedintermsofthematrixelements forall1;22andA2Aobs.Itcanbeshown[ 32 ]thattherepresentationofAobsonHRAQisirreducibleandistransitive. IntheprecedingdiscussionthephysicalHilbertspacedidnotdecomposeintosuperselectionsectors.Theadventofsuperselectionsectorsappearstobeadirectresultofrelaxingtheconditiontoallowforsolutionsof( 6{2 )toincludestationarypoints.Withthisrelaxedcondition,afurthermodicationoftheriggingmapisrequiredtoavoiddivergencesin( 6{39 ).Thisisaccomplishedbyreplacingthedenominatorwithfractionalpowersofhigherderivatives,whichdependsontheorderofthestationarypoint.Thereplacementofthedenominatorcanbethoughtofasarenormalizationoftheaveragingprocedure.Eachoftheserenormalizedriggingmapscanbeshown[ 32 ]tocarryatransitiverepresentationofAobs.ThetotalHilbertspaceHtotRAQcanberegardedasthedirectsumofindividualHilbertspaces.TherepresentationofAobsalsodecomposesintotherepresentationofthesummands.WhichinturnimpliesthepresenceofsuperselectionsectorsinHtotRAQ. 6{39 )hasdenitiveconnectiontothereducedphasespacemethodforquantization.Theauthorsof[ 32 ]alsocommentonthecloseconnectionto 90 PAGE 91 91 PAGE 92 Timeisacrucialelementtoanydynamicalsystem;itistheevolutionparameterofsuchasystem.Thenatureoftimeisanextremelypopulartopiccoveredbymanyphysicists,aswellas,philosophers[ 22 ].Whilethephysical(ormetaphysical)natureoftimeisoutsidethemainfocusofthisdissertation,timedependencyinquantummechanicsoersusaninterestingcaveattoexploreandstudy. Inthemethodologiesdevelopedanddiscussedinthepreviouschapters,theprimarygoalwastosolvequantummechanicaltimeindependentconstraints.Theexclusionoftimewasmadeprimarilyoutofsimplication.Inmostoftheliteratureaboutconstraints[ 12 ]thetopicoftimedependentconstraintsiseitherbrieycoveredoritisnotcoveredatall.However,itisclearthatforamorecompletediscussionofconstraintdynamicswemustalsoincludeconstraintsthatareexplicitlydependentontime.TimedependencecanenteradynamicalsystemthroughtheHamilitonian,constraints,orinthemostgeneralcaseorcombinationofthetwo.Theinclusionofexplicitlytimedependentconstraintsoersnotonlyaninterestingacademicexercisebutalsogivesphysiciststhetoolsrequiredtoexaminemorephysicaltheoriesthanthosethatpreviouslycouldbediscussed. Thisisnottherstoccasiononwhichtheprojectionoperatorhasbeenusedtodealwiththecaseoftimedependentconstraints.In[ 47 ],Klauderderivedanexpressionforevolutionoperatoroftimedependentconstraint.Theconstructionofthisexpressionwasbasedonmodifyingtheexpressionforthetimeindependentcase.Althoughthisexpressionseemedtobecorrecttheauthorchosenottopursuethissubjectmatterfurther.Primarily,hemadethischoicebecausetheformuladidnotreducetoasimpleroperatorexpression.Whiletheprojectionoperatorwillbetheprimarymodeofexploration 92 PAGE 93 47 ]willnotbethestartingpointforourinvestigation. Wewill,however,advocatetheuseofthereparameterizationinvariantdescriptiontodiscusssystemswithtimedependentconstraints.Weshouldmentionthatthisstartingpointisnotanewapproachtodealwithtimedependentconstraints.Wewillalterpasteortsonthistopicbyexploringthe\nonlocal"pointofview.Thephrase\nonlocal"pointofviewwascoinedbyGitman[ 48 ]whendescribingaphysicalsysteminwhichoneassumesareparameterizationinvariantformofatheory.However,itiswellknown,thatifanactionisareparameterizationinvariantthentheHamiltonianvanishesontheconstraintsurface 48 ].Weshouldmentionthatusingthereparameterizationinvariantapproachisnotnew,however,theimplementationofthissymmetrywiththeprojectionoperatorwouldseemtobenew. Inthenexttwochapterswewilldiscusssomeofthefacetsoftheproblemwithtimedependentconstraints.InChapter8wewillmotivateanddevelopthetechniquesinwhichonecanstudyconstraintswithanexplicittimedependentfeature.Wewillalsogiveabriefintroductiontoanalternativetotheprojectionoperator,whichistheapproachusedbyGitman,[ 12 ]andcompareandcontrastthetwoapproaches.TheprimarygoalofChapter9istoimplementtheformalismdevelopedinChapter8,inafewexamplesoftimedependentconstraints. 93 PAGE 94 8.1.1BasicModel where_q=dq=dtandH(p;q)istheHamiltonianofthesystem.Theevolutionofthesystemisobtainedbyvaryingthefunctionalwithrespecttothedynamicalvariables,thisreadsas, _q=@H @p; _p=@H @q; subjecttothesuitableboundaryconditions.Asstatedabove,thissystemispurelydynamical,however,itiswellknownanyactioncanbeconvertedintoanequivalentactionthatisareparameterizationinvariant.[ 48 ]Letusbeginthisconversionbypromotingthedependentparameterttoadynamicalvariable.Thisisappealingfromarelativist'sperspectivebecausethespatialandtemporarycoordinatesaretreatedsymmetrically.Wealsomustintroducetheformalmomentumptconjugatetot.Theintegrationvariablein( 8{1 )isnowreplacedbyanewindependentparameter,whichcorrespondstopropertimeoramoregeneralfunctionoftime 6 ]However,forourpurposeswecanconsidertheLagrangemultiplierarenotstrictlyincreasingseeAppendix 94 PAGE 95 where()denotesthederivativewithrespectto.ThepricepaidinpromotingttoadynamicalvariableisthattheHamiltonianvanishesweaklyintheextendedphasespace.WehaveidentiedtheprimaryunexpressablevelocitytastheLagrangemultiplierthatenforcesthe(rstclass)constraintpt+H(p;q)=0.Therefore,wehaveturnedatheorythatwasadynamicalsystemintoonethatispurelygauge.Eectively,wehaverecasttheoriginaltheoryinsuchamannerthatitcanberelatedinanytemporaryreferenceframe[ 48 ].Theequationsofmotionof( 8{4 )areasfollows: d=@H @p;dp d=@H @q d=();dpt (8{6) (8{7) Astheequationofmotionappearaboveq,momentump,andthephysicaltimet,measuredaregaugedependentquantities.However,ptisgaugeindependentandthereforeanobservablequantityinthistheory.Byidentifyingtheusualtimeasthegaugedependentquantity wecanquicklyreducetheprecedingequationsofmotion( 8{4 )tothefamiliarparameterizedform. _q=@H @p; _p=@H @q; Thedynamicsofthissystemarisesfromimposingtheconstraints. 95 PAGE 96 wherej2f1;:::;Nganda2f1;:::;Ag.ThedynamicsthissystemisgivenbythefamiliarHamiltonian'sequations Atthispoint,theequationsofmotionareidenticaltothosethatappearinthetimeindependentcase.Thedistinctionappearswhenweforcethedynamicstolieontheconstraintsurface(i.e.subspaceinthephasespacedenedbya=0)foralltimet. where0implies( 8{15 )vanishesontheconstraintsurface.Forsimplicity,wewillassumethatthesetofconstraintsarecompletetoallorders(e.g.secondary,tertiary,etc.)ofconstraintshavebeenuncoveredusingtheDiracprocedure[ 14 ].ThedistinctionbetweenrstandsecondclassconstraintsismadebasedonthealgebraofthePoissonbrackets.However,weforgothisdistinctionforthemomentforthesakeofgenerality. Thecostofexplicittimedependenceintheconstraintsin( 8{14 )isthepresenceofthepartialtimederivativeinequation( 8{15 ).Despitetheadditionalterminequation( 8{15 ),wecanmaintaintheusualstructureoftimeindependentconstraints,byfollowingtheproceduredescribedinthepreceedingsubsection.Asbeforewewillpromotettoadynamicalvariable,andintroduceitsformalconjugatemomentumpt.Byintroducingadditionaldynamicalvariablesandconjugatepairstothephasespace,wealsohave 96 PAGE 97 =!+dt^dpt(8{16) where!isthesymplecticformoftheoriginalparameterizedspace([ 17 ]),denedinChapter2.ThePoissonbracketf;gwhichisdenedbythesymplecticform,shouldbeunderstoodunlessotherwisespeciedtobethatoftheextendedspace.Theequivalentactioncanbewritteninthefollowingmanner: where~a=()awhichismerelyaredenitionoftheLagrangemultiplier.NoticeonceagainthecanonicalHamiltonianvanishes.Asintheprevioussectionthedynamicsofthesystemarisesfromimplementingtheconstraints. (8{21) (8{22) 48 ]alongwithothermodelsproposedbyotherauthors[ 49 ],[ 50 ],wehavearrivedatastartingpositiontodealwithtimedependentconstraints.ThiswasdonebychangingthedimensionoftheentireunconstrainedphasespacefromR2NtoR2N+2,whichwasaccomplishedbypromotingttoadynamicalvariable,andintroducingitsconjugatemomentumpt.Theconsequenceof 97 PAGE 98 12 ]withtheaidoftheextendedsymplecticform.Weshouldalsonotethatwehaverefrainedfromintroducingatemporalgaugexingtermsuchasachronologicalxinggaugeinouraction.Thisisapointofdivergencefromthepreviousauthorsonthesubject.Asiswellknown,agaugexingtermhasthepotentialtointroducetopologicalobstructionsthatcancausedicultyintheanalysisofthequantumsystem.ThistechniqueofintroducingagaugeisusedinquantizationschemessuchasFaddeevPopov[ 27 ]whichadvocatesreductionbeforequantization.Sinceoneofthemainphilosophiesoftheprojectionoperatorformalismistoquantizetheentiredynamicalspaceandreducesecond(i.e.eliminatetheredundantvariables),thereisnoneedtointroducesuchatermintheaction.Diracobservablesarephasespacefunctionsthatcommuteweaklywithalloftheconstraints.AnextensiveamountofliteraturehasbeendevotedtothetaskofidentifyingobservablesinsystemssuchasGeneralRelativityandothergenerallycovariantsystems[ 51 ].Ifoisaclassicalobservableinasystemwithtimedependentconstraintthenthefollowingmustbetrue: d=fo;pt+Hg+~afo;ag0(8{23) wheref;gareunderstoodtobethePoissonbracketsfortheextendedspace.Therefore,oisaconstantofmotionontheconstraintsurfaceintheextendedphasespace,whichimpliesthatanobservableisindependentofachoiceofreferenceframeorgauge.Sincewewillnotmakeanyfurtheruseoftheconceptofanobservableinthediscussionofsystemswithtimedependentconstraints,wewilldeferthisdiscussiontoafutureproject.We 98 PAGE 99 8.2.1GitmanandTyutinPrescriptionforTimeDependentSecondClassConstraints 12 ]Forsimplicity,wewilllimitthisdiscussiontoincludebosonicvariables,however,onecouldextendanyofthefollowingargumentstoincludefermionicdegreesoffreedomaswell.Also,forconveniencewewillusethenotationusedbytheoriginalauthors,namely,=(q;p)whichcanexplicitlydependontime,aswellas,f;gD()representstheDiracbracketwithrespecttoasetofsecondclassconstraintsa(;t).TheDiracbracketsaredenedinthefollowingmanner wheref;gisthePoissonbrackets,aisaconstraint,andCabisaninvertiblematrix[ 12 ].WheneverencounteredtheDiracbracketistakenassumedtobedenedfortheextendedspace,(;t;pt),asdescribedintheprecedingsection. ConsideraclassicalHamiltoniansystemwithasetofsecondclassconstraintsa(;t)andwithaHamiltonianH(p;q;t).TheDiracbrackets[ 7 ]areusedtoavoidhavingtosolvetheconstraints.Therefore,theevolutionofthecanonicalvariablesisgivenby dt=_=f;H+ptgD()a(;t)=0:(8{25) Thequantizationoftheclassicalsystem,followsintheSchrodingerpicture,inwhichthecanonicalvariablesareassignedtooperatorsSthatsatisfytheequitimecommutationrelations; [S;0S]=i 99 PAGE 100 Atthisjuncturewerealizethiscurrentpictureisunabletoillustratethefulltimeevolutionofthesystem.Inordertofullyobtainthetimeevolutionwewillmovetoaunitarilyequivalentpicture,theHeisenbergpicture.IntheHeisenbergpictureofquantummechanics,thestatevectorsremainsxedwhiletheoperatorsevolveintime.[ 38 ]IntheHeisenbergpicturetheoperatorsHarerelatedtotheoperatorsSbyH=U1SU,whereUisthetimeevolutionoperator.TheoperatorUisrelatedtotheHamiltonianHSbythedierentialequation, @t=i WecanevaluatethetotaltimederivativeofHbythefollowing =U1(i Equation( 8{29 )establishestheconnectionbetweenthequantumequationsofmotionandtheclassicalequationsofmotionnamely, Inthemostgeneralsetting,theabovedescribedevolutionisnotconsidered\unitary",becauseingeneralno\Hamiltonian"existswhosecommutatorwouldresultinthetotalderivative.Theprincipalagentforthisnonunitarycharacteristhesecondterminthelefthandsideofequation( 8{29 ),whichistimevariationofS.Therefore,thedynamicsareevolving,aswellastheconstraintsurface. 100 PAGE 101 20 ].Followingtheconventionalprogramwe\promote"thephasespace(qj;pj;q0=t;p0=pt)coordinatestoirreducible,selfadjointoperators(Qj;Pj;Q0=T;P0=Pt).ThenonvanishingcommutationbracketfollowsthestructureoftheclassicalextendedPoissonbracketi.e. [Q;P]=~ ApossibleobjectionthatthereadermayhaveistoquestiontheselfadjointnatureoftheToperator.IfthespectrumofTisequaltotheentirerealline,asexpected,thiswouldimplythatthespectrumofPtwouldalsobeunbounded.However,asiswellknown,ifweidentifyPtwiththeenergyEthenPtmustbeboundedfrombelow,whichwouldimplyTisnotaselfadjointoperator.[ 52 ].This,however,assumesthatPthasidentiedorforcedtobecomethenegativeHamiltonian,whichisaconstraint.Thecontradictionisavertedbecausewehavenotimposedtheconstraints,onlyquantizedtheentireclassicalsystem. Wefollowthebeliefthatabstractoperatorformulationofquantummechanicsisfundamental,aswellascorrect[ 53 ].Therefore,preceedingwiththecanonicalquantizationoftheclassicaltheory,bypromotingtheclassicalconstraintstoselfadjointfunctionsoftheirreducibleoperators. (8{32) Onepossibleobjectionatthisjunctureisthereexistmanywaysofquantizingagivenclassicalsystem.Whilethisiscertainlytrue,wewillassertthatwecanappealto 101 PAGE 102 ajiphys=0 (8{34) 0jiphys=0 (8{35) foralla+1constraints.However,thisprocedurewillonlyworkforaselecttypeofrstclassconstraints.Infact,ifoneadheresstrictlytotheDiracprocedure( 8{35 )willresultinatrivialsolutionsincetheconstraint0islinearinPtwhichimpliesthatitsspectrumwillcontainazerointhecontinuum,therebycausingthephysicalHilbertspacetobecomprisedofonlythe0element,whichisundesirableandunacceptable.Wewillthereforeappealtotheuseoftheprojectionoperatorformalism[ 13 ]tocircumventthesepossibledilemmas. 13 ]deviatesfromtheDiracmethodbyintroducingaprojectionoperatorE,whichtakesvectorsfromtheunconstrainedHilbertspace(H)totheconstraintsubspace(i.e.thephysicalHilbertspaceorevenbettertheregularizedphysicalHilbertspacewhichwillbedescribedshortly.) Thegeneralformoftheprojectionoperatoristhefollowing: 102 PAGE 103 8{37 ),impliesthattheoperatorprojectsontothespectralinterval[0;2(~)].Theprojectionoperatorformalismallowsustodealwithallconstraintssimultaneouslyandtoplacealltypesofconstraintsonequalfooting. 13 ],namely, (8{38) ToobtainfurtherinsightitwillbeconvenienttousethecanonicalcoherentstatesoftheunconstrainedHilbertspace. wherejiisanormalizedducialvectorinH.Thesecoherentstatesadmitaresolutionofunitygivenas wherethedomainofintegrationistheentireextendedphasespace.Theoverlapofthesevectorsaregivenbythefollowing: 4~[jp0pj2jq0qj2+i 4~[jp0tptj2jt0tj2+i Expression( 8{41 )denesapositivedenitefunctionalwhichcanbechosenasthereproducingkernelandusedtodeneareproducingkernelHilbertspaceH. 103 PAGE 104 13 ] wheref()issomefunctionchosentoinsure( 8{42 )convergesabsolutelyandTisthetimeorderedproduct. Wecangeneralizetheresultfrom[ 54 ]namelylim!0hp00;q00;p00t;t00jE( PAGE 105 47 ].Thisofcourseisassumingthattheconstraintsarecontinuousint.Thisstatementisalsoapplicableifaaresecondclassconstraints. 12 ]startonverysimilargrounds,theapproachesendonverydierentgrounds.TheGitmanapproachadvocatestheuseofDiracBrackets,whichisamethodusedtoavoidsolvingforsecondclasssystems,whiletheProjectionOperatorFormalismtreatsallconstraintsonequaltheoreticalfooting.Intheproceedingchapterwewillexaminetwodierentconstraintmodelswiththeaidoftheprojectionoperatorformalism. 105 PAGE 106 Intheprecedingchapter,wehavedevelopedanapproachtocontendwithexplicittimedependencyinconstraintswithintheprojectionoperatorformalism.Despitethisdevelopment,someloomingquestionspersist.Theprimarypurposeofthischapteristoelucidatetheseunresolvedquestionsbyconsideringsomesimplequantummechanicalmodels.OneofthemostpressingquestionsiswhetherornotthephysicalHilbertspaceofatimedependentconstraintistrivial 8{46 ),the\evolutionoperator"fortimedependentconstraintscanbewrittenasaninniteproductofprojectionoperators.However,aswewillillustrateinourrstmodel,evenwiththerequirementofastringentpolarizationofthestatesfromthetotalHilbertspace,thephysicalHilbertspaceisnontrivial.Thesecondmodelisdesignedtodemonstratehowasecondclasssystemshouldbeconsideredwithinthiscontext. 2(p21+p22+p23)+1 2(q21+q22+q23)+(t)(j1sin( wherej1=q2p3q3p2andj3=p2q1q2p1and(t)istheLagrangemultiplierthatenforcesthesinglerstclassconstraint 106 PAGE 107 2(p21+p22+p23)+1 2(q21+q22+q23)thereforethistrulyisarstclasssystem.ForthecaseofthisanalysiswewillrestricttheallowablevaluesofttoacompactsubspaceofRnamely,[0;1].Itiseasytoobservethattheconstraintsurfaceinitiallyisdenedbyj3=0butevolvesinasmoothfashionintothevanishinglociofj1.Movingtotoquantumanalogofthissystem Ifwedenethenumberoperator itisobviousthat [J1;N]=0=[J3;N]:(9{6) Basedonthisconservation,wecanstudythefulllmentofthetimedependentconstraintsineachofthenumberoperatorsubspacesindependentlyofoneanother.Basedonthisinformationwecanproceedwiththefollowinganalysis: 107 PAGE 108 1particlesubspaceE1( PAGE 109 =E(iL2i<2(~))+Et( PAGE 110 49 ].Inthiswork,theauthorsextendtheBRSTBFVmethod[ 14 ],todealwithnonstationarysystems(i.e.timedependentsystems).Forthisdissertation,wechosenottodiscusstheBRSTBFVmethod,howeverforadescriptionofthemethodsee[ 14 ]and[ 49 ]. Themodelusedtoillustratetheauthor'stechniquewasatwodimensionalrotorwithatimedependentradius.However,forthisdiscussionweabatethemodelin[ 49 ],byreducingthenumberofdegreesoffreedomfrom3to2,aswellas,settingtheHamiltonianequaltozerotoemphasizetheconstraints.Considerthefollowingtimedependentclassicalconstraints: wherecisapositiveconstantandq,p,pt,arethecanonicalposition,itscorrespondingconjugatemomentumandconjugatemomentumcorrespondingtothetemporalcoordinate.BasedonthethePoissonbracketoftheconstraints,thisconstraintsystemisasecondclasssystem. Thecanonicalquantizationofthismodelisstraightforward.Wesimplyfollowthesameprocedureasstatedintheprecedingchapter,whichimpliesthatwepromoteallofthecanonicalcoordinates(p;q;pt;t)toirreducibleselfadjointoperators(P;Q;Pt;T).Wepromotetheconstraintstoselfadjointoperatorsasindicatedbythefollowing: 110 PAGE 111 UsingthelogicemployedbyKlauderin[ 13 ],thestatethatminimized( 9{19 )wouldbethefollowingstatejct;cij0;tiUsingthetheoryofWeyloperatorswecanconstructarepresentationofthedesiredprojectionE,givenby WeshouldobservethatinthiscaseRe(222)=4ddd 13 ]. ItiswellknownthataeldtheorythatisnotreparameterizationinvariantcanbetransmutedintoonereparameterizationinvariantbyasimilartechniquetothatemployedinChapter8[ 55 ].Namelythiscanbeaccomplishedbychangingthespacetimecoordinates(xwhere2f1:::;Ng,andNisthenumberofspacetimedimensions)tofunctionsoverspacetime,whichinessenceintroducesNscalareldstotheeldtheory, 111 PAGE 112 112 PAGE 113 Chapter5introducestheclassicationofconstraintscalled"highlyirregular"constraints.Duringthischapter,wedescribedageneralproceduretosolvethequantumanalogtothe"highlyirregular"constraintsutilizingtheProjectionOperatorFormalism.WealsosuccessfullyanalyzedasimpleexampleofthistypeofconstraintusingonlytheProjectionOperatorFormalism. InChapter6,weusedthemathematicaltoolsestablishedinChapter5togiveacompleteaccountofthequantizationoftheAshtekarHorowitzBoulwaremodel.[ 11 ]ThismodelwasinspiredbytheHamilitonianconstraintofGeneralRelativitytoanswerwhetherornottherecouldbequantummechanicaltunnelingintoclassicallyforbiddenregionsofphasespace.DuringthecourseofthischapterwecomparetheresultsobtainedbytheProjectionOperatorMethodwiththatoftheRenedAlgebraicQuantization 113 PAGE 114 Theremainingchaptersweredevotedtothetopicoftimedependentquantumconstraints.WedevelopedtheformalisminwhichthetopiccanbeapproachedinthecontextoftheProjectionOperator.Thiswasaccomplishedbyextendingtheclassicalphasespaceofthetimedependentsystem,therebyelevatingthetimeparametertoadynamicalvariable.Inthesamechapter,wecomparedtheProjectionOperatorFormalismtotheapproachthatwasrstdiscussedin[ 12 ].Whilethesemethodsstartfromthesamepoint(i.e.anextendedphasespace)theconclusionsreachedareverydierent.Inthefollowingchapterweweresucessfulinanalyzingtwoexamplesoftimedependentconstraints. Thestoryofclassicalandquantumconstraintsthatwehavepresentedwithinthisdissertationisbynomeansacompleteaccount.Infactitisimpossibletogiveacompleteaccountofanyresearch.Byresearchingwemerelypointthedirectiontonewresearch,leadingtonewquestionstoaskandtoattempttoanswer.Thetopicsinphysicsarealwaysbiggerthantheindividualphysicist.However,thisisthebeautyofthesubject,thatthingsweleaveunresolvedcanbepickedupinthefuturegenerations. Thereareseveralunresolvedissuesleftfromthisdissertationthatcanbeaddressedbytheauthororfutureresearchers.Theseincludebutarenotlimitedto,\HowdothemethodsoftheProjectionOperatorgeneralizetoafullquantumeldtheory?",\WhatlessonslearnedfromthesimplemodelsthatweanalyzedinthisdissertaioncanbeappliedinmorerealistictheoriessuchasQuantumGravity?",\CanweusetheformalismobtainedinChapter8toexaminemorerealistictheories?" 114 PAGE 115 115 PAGE 116 WhataretheconsequencesifanactionI[q(t)]isinvariantunderaninnitesmaltemporaltransformation,whichisthecharacteristicofareparametrizationinvarianttheory,i.e. Giventheinnitesimaltransformation dt=_q ByourassumptionthatI[q(t)]=I[q(t+(t))]itfollowsthat (A{5) =Zt2t1(@L @tt+@L @qq+@L @_q_q)dt =Zt2t1(@L @tt+@L @q_q+@L @_qd dt_q)dt =Zt2t1(dL dt+@L @_q_qd dt)dt Integratingbyparts;=Zt2t1(Ld dt@L @_q_qd dt)dt; =Zt2t1((@L @_q_qL)d dt)dt: (A{11) dt>0,wepointthereaderto[ 6 ],foradiscussiononthismatter,however,wemustinsistthatd dt6=0almosteverywhere. 116 PAGE 117 dt6=0,a.e.,thatthestatementfollowingmustbetrue, @_q_qL=0a.e. (A{12) Therefore,inallreparameterizationinvarianttheoriestheHamiltonianvanishes. 117 PAGE 118 [1] S.Weinberg,TheQuantumTheoryofFieldsVol.2,CambridgeUniversityPress,Cambridge,1998. [2] A.JaeandE.Witten,\QuantumYangMillsTheory" [3] P.Deligne,etal.,QuantumFieldsandStrings:ACourseforMathematiciansVol.12,AmericanMathematicalSociety,Providence,1999. [4] A.Ashtekar,J.Lewandowski,\BackgroundIndependentQuantumGravity:AStatusReport,"Class.Quant.Grav.,21(2004)R53. [5] J.Henson,\TheCausalSetApproachtoQuantumGravity," [6] J.Klauder,\AneQuantumGravity,"Int.J.Mod.Phys.,D12(2003)1769. [7] P.A.M.Dirac,LecturesonQuantumMechanics,BelferGraduateSchoolofScience,YeshivaUniversity,NewYork,1964. [8] J.S.Little,J.Klauder,\ElementaryModelofConstraintQuantizationwithanAnomaly,"Phys.Rev.D,D71(2005)085014. [9] J.Klauder,J.S.Little,\HighlyIrregularQuantumConstraints,"Class.Quant.Grav,23(2006)3641. [10] J.S.Little,\TheProjectionOperatorMethodandtheAshtekarHorowitzBoulwareModel" [11] A.Ashtekar,G.T.Horowitz,\OntheCanonicalApproachtoQuantumGravity",inPhys.Rev.D,26(1982),3342. [12] D.M.Gitman,I.V.Tyutin,QuantizationofFieldswithConstraints,SpringerVerlag,Berlin1990. [13] J.Klauder,\QuantizationofConstrainedSystems,"Lect.NotesPhys.,572,(2001)143. [14] M.Henneaux,C.Teitelboim,QuantizationofGaugeSystems,PrincetonUniversityPress,Princeton,NJ,1992. [15] J.Jose,E.Saletan,ClassicalDynamics:AContempraryApproach,CambridgeUniversityPress1998. [16] J.Govaerts,HamiltonianQuantisationandConstrainedDynamics,LeuvenUniversityPress,Belgium,1991. 118 PAGE 119 V.I.Arnold,MathematicalMethodsofClassicalMechanics,SingerVerlag,3rded.NewYork,NewYork(1989). [18] L.Castellani,\SymmetriesinConstrainedHamiltoniansystems,"Ann.Phys,143,(1982),357. [19] A.ADeriglazov,K.E.Evdokimov.\LocalSymmetriesintheHamiltonianFramework.1.HamiltonianFormoftheSymmetriesandtheNoetheridentities,"Int.J.Mod.Phys.A15(2000)4045. [20] P.A.MDirac,ThePrinciplesofQuantumMechanics,4thed.,OxfordSciencePublications,1998. [21] J.Klauder,\MetricalQuantization" [22] J.Simon,ChangeWithoutTimeRelationalismandFieldQuantization,Dissertation,UniversitatRegensburg,NaturwissenschaftlicheFakultatIIPhysik,2004. [23] N.P.Landsman,MathematicalTopicsBetweenClassicalandQuantumMechanicsSpringerVerlagNewYork,1998. [50] D.Giulini,\ThatStrangeProcedureCalledQuantisation", [25] A.Ashtekar,R.S.Tate,\AnAlgebraicExtensionofDiracQuantization:Examples," [26] S.V.Shabanov,\GeometryofthePhysicalPhaseSpaceinQuantumGaugeModels,"PhysicsReports3261(2000),hepth/0002043. [27] L.D.Faddeev,\FeynmanIntegralforSingularLagrangians,"inTheor.Math.Phys.1,(1969),1. [28] P.Senjanovc,\PathIntegralQuantizationofFieldTheorieswithSecondClassConstraints,"Ann.Phys.100,(1976),227. [29] AdrianoDiGiacomo,\ConnementofColor:OpenProblemsandPerspectives," [30] D.Giulini,D.Marolf,\OntheGeneralityofRenedAlgebraicQuantization,"Class.Quant.Grav.,16,(1999),247. [31] D.Marolf,\RenedAlgebraicQuantization:SystemswithaSingleConstraint," [32] J.Louko,A.Molgado,\SuperselectionsectorsintheAshtekarHorowitzBoulwareModel",Class.QuantumGrav.22,(2005)4007. 119 PAGE 120 B.Dittrich,T.Thiemann,\TestingtheMasterConstraintProgrammeforLoopQuantumGravityI.GeneralFramework,"Class.Quant.Grav.23,(2006),1025. [34] T.Thiemann,\ThePhoenixProject:MasterConstraintProgrammeforLoopQuantumGravity,"Class.Quant.Grav.23,(2006),2211. [35] B.Dittrich,T.Thiemann,\TestingtheMasterConstraintProgrammeforLoopQuantumGravityII.FiniteDimensionalSystems,"inClass.Quant.Grav.23,(2006),1067. [36] B.Dittrich,T.Thiemann,\TestingtheMasterConstraintProgrammeforLoopQuantumGravityIII.SL(2,R)Models,"inClass.Quant.Grav.,23,(2006)1089. [37] B.Dittrich,T.Thiemann,\TestingtheMasterConstraintProgrammeforLoopQuantumGravityV.InteractingFieldTheories,"inClass.Quant.Grav.23,(2006),1143. [38] R.Shankar,PrinciplesofQuantumMechanics,PlenumPress,2nded.,NewYork,NewYork,1994. [39] J.Klauder,\PathIntegrals,andClassicalandQuantumConstraints" [40] J.Klauder,\CoherentStateQuantizationofConstraintSystems,"Ann.Phys.245(1997)419. [41] J.R.Klauder,B.Skagerstam,CoherentStates,WorldScienticPublishing,Singapore,1985. [42] N.Aronszajn,Proc.CambridgePhil.Soc.,39(1943),133;Trans.Amer.MathSoc.68337(1950);H.Meschkowski,HilbertscheRaummitKernfunktion,'SpringerVerlag,Berlin,1962 [43] H.Araki,\HamiltonianFormalismandtheCanonicalCommutationRelationsinQuantumFieldTheory,"J.Math.Phys1(1960),492. [44] D.G.Boulware,\Commenton`OntheCanonicalApproachtoQuantumGravity',"Phys.Rev.D28(1983),414. [45] J.AGonzlez,M.A.delOlmo,\CoherentStatesontheCircle,"J.Phys.A:Math.Gen.31(1998),8841. [46] J.Louko,\GroupAveraging,PositiveDenitenessandDuperselectionSectors,"J.Phys.Conf.Ser.33(2006),142. [47] J.Klauder,\UniversalProcedureforEnforcingQuantumConstraints",Nucl.Phys.B547(1999),397. [48] G.Fulop,D.M.Gitman,I.V.Tyutin.\ReparametrizationInvarianceasGaugeSymmetry,"Int.J.Theor.Phys.38(1999)1941. 120 PAGE 121 A.Garcia,D.Vergara,L.F.Urrutia,\BRSTBFVMethodforNonstationarySystems,"PhysicalReviewD51(1995),5806. [50] C.Rovelli,\Partialobservables,"Phys.Rev.D65(2002),124013. [51] B.Dittric,\PartialandCompleteObservablesforHamiltonianConstrainedSystems," [52] W.Pauli.\DieallgemeinenPrinzipienderWellenmechanik,"inHandbuchderPhysik1Springer,Berlin,1926. [53] J.Klauder,\AttractionsofAneQuantumGravity," [54] J.Klauder,\UltralocalFieldsandTheirRelevanceforReparametrizationInvariantQuantumFieldTheory,"J.Phys.A34(2001),3277. [55] S.P.Gavrilov,D.M.Gitman,\QuantizationofSystemswithTimeDependentConstraints.ExampleofRelativisticParticleinPlaneWave,"inClass.Quant.Grav.10(1993),57. 121 PAGE 122 JereyScottLittlewasbornJanurary10,1980,inthesmalleasternKentuckytownofPikeville.HeistheeldestofthreechildrenandtheonlysonofJeandLindaLittle.Hisstronginterestinsciencewasevidentataveryearlyage.WhenScottwas14,hediscoveredhispassionforquantumphysicsandreadnearlyeverythinghecouldndonthesubject.ScottgraduatedfromShelbyValleyHighSchoolin1998,asclassvaledictorian.Afterhighschool,ScottsetotomatriculateatWesternKentuckyUniversityinBowlingGreen,Kentucky.WhileatWesternhebecameextremelyinterestedinthestudyofformalmathematics.Duringhissenioryearheentertainedtheideaofattendinggraduateschoolinmathematics;however,herealizedthatitwouldbepossibletopursuebothpassionsthroughaphysicscareer.ScottgraduatedfromWesternKentuckywithadoublebachelorsdegreeinphysicsandmathematicsintheSpringof2002.AfternishinghisundergraduatecareerheacceptedanAlumniFellowshipfromtheUniversityofFloridatocontinuehisstudiesofphysics.ThoughmovingfromarelativelysmalldepartmentatWesterntothemuchlargerPhysicsDepartmentatFloridawasinitiallydaunting,Scottovercamehisfearsandsucceededinhiscoursework.IntheSpringof2004,ScottbecameastudentofJohnKlauder.Dr.KlauderallowedScotttonotonlystudyphysicsbutalsoallowedhimtostayconnectedtotheformalmathematicsthathehadgrownfondofduringhisstayatWestern.UnderDr.Klauder'stutelage,Scottwasabletoresearchandpublishthreepapersonquantumconstraints.InJuneof2006,attheageof26,ScottmarriedtheloveofhislifeMegan(Carty)Little.ScottobtainedhisPh.D.inPhysicsintheFallof2007.ScottandMegancurrentlyresideinLouisville,KY,whereScottiscontinuingtoresearchawidevarietyoftheoreticalproblemsandisaninstructorattheUniversityofLouisville. 122 