<%BANNER%>

N- and O- Acylation of Peptides and Sugars in Partially Aqueous Media

Permanent Link: http://ufdc.ufl.edu/UFE0021642/00001

Material Information

Title: N- and O- Acylation of Peptides and Sugars in Partially Aqueous Media
Physical Description: 1 online resource (67 p.)
Language: english
Creator: Cusido, Yanet
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: benzotriazole, carbohydrates, dipeptides, fluorescent, sugars, tripeptides
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The convenient preparation of N-(Fmoc- or Z-alpha-aminoacyl)benzotriazoles and N-protected peptidoylbenzotriazoles from aspartic and glutamic amino acids is discussed. Additionally, diverse N-protected di- and tripeptides are synthesized under mild reaction conditions in good to excellent yields by acylation with N-(Z- and Fmoc-alpha-aminoacyl)benzotriazoles of the amino groups of free aspartic and glutamic acids. Examples of peptide coupling utilizing free amino acids in partially aqueous solution are reported and the products are obtained without the use of chromatography. Evidence of maintained chirality was supported by NMR and HPLC. In addition, we present the suitable and efficient fluorescent labeling of sugars by O-acylation of diisopropylidene protected sugars and N-acylation of pivaloyl protected aminosugar with N-(coumarin-3-carbonyl)benzotriazole and benzotriazole derivatives of N-epsilon-coumarin-labeled N-alpha-protected-L-lysines under microwave irradiation or/and at room temperature. Monosaccharide containing Fmoc-lysine fluorescent building blocks can be useful as water soluble organic fluorophores for peptide labeling at the C-terminus in solid-phase peptide synthesis (SPPS).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yanet Cusido.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Katritzky, Alan R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021642:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021642/00001

Material Information

Title: N- and O- Acylation of Peptides and Sugars in Partially Aqueous Media
Physical Description: 1 online resource (67 p.)
Language: english
Creator: Cusido, Yanet
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: benzotriazole, carbohydrates, dipeptides, fluorescent, sugars, tripeptides
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The convenient preparation of N-(Fmoc- or Z-alpha-aminoacyl)benzotriazoles and N-protected peptidoylbenzotriazoles from aspartic and glutamic amino acids is discussed. Additionally, diverse N-protected di- and tripeptides are synthesized under mild reaction conditions in good to excellent yields by acylation with N-(Z- and Fmoc-alpha-aminoacyl)benzotriazoles of the amino groups of free aspartic and glutamic acids. Examples of peptide coupling utilizing free amino acids in partially aqueous solution are reported and the products are obtained without the use of chromatography. Evidence of maintained chirality was supported by NMR and HPLC. In addition, we present the suitable and efficient fluorescent labeling of sugars by O-acylation of diisopropylidene protected sugars and N-acylation of pivaloyl protected aminosugar with N-(coumarin-3-carbonyl)benzotriazole and benzotriazole derivatives of N-epsilon-coumarin-labeled N-alpha-protected-L-lysines under microwave irradiation or/and at room temperature. Monosaccharide containing Fmoc-lysine fluorescent building blocks can be useful as water soluble organic fluorophores for peptide labeling at the C-terminus in solid-phase peptide synthesis (SPPS).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yanet Cusido.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Katritzky, Alan R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021642:00001


This item has the following downloads:


Full Text





N- AND O- ACYLATION OF PEPTIDES AND SUGARS IN PARTIALLY AQUEOUS
MEDIA



















By

JANET CUSIDO


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2007



































O 2007 Janet Cusido





























To my family, friends and everyone who always believed in me









ACKNOWLEDGMENTS

I thank my family, my teachers, and my colleagues. I am greatly indebted to Dr.

Encarnacion Lopez for my fascination with organic chemistry. I am grateful to Prof. Alan R.

Katritzky for giving me the opportunity to experience the j oys and the trials of being a true

scientist and to my committee members for their assistance and care. Very special thanks to

Valerie Rodriguez-Garcia for setting me on the right path. My thanks for the invaluable help and

suggestions in the preparation of this thesis go to Boris Grinkot, Adam Vincek, and Danniebelle

Haase. I also wish to thank all my friends and colleagues for their company, team spirit, and

international food!











TABLE OF CONTENTS


page

ACKNOWLEDGMENTS .............. ...............4.....

LIST OF TABLES ........._.___..... .__. ...............7....

LIST OF FIGURES .............. ...............8.....

AB S TRAC T ..... ._ ................. ............_........9

CHAPTER

1 GENERAL INTRODUCTION .............. ...............10....

2 SELECTIVE PEPTIDE CHAIN EXTENSION AT THE C- AND N-TERMINI OF
ASPARTIC AND GLUTAMIC ACIDS UTILIZING N-PROTECTED (ALPHA-
AMINOACY L) BENZ OTRIAZOLE S .............. ............... 14....

2.1 Introducti on .........._...... ...............14......__......
2.2 Results and Discussion .........._....._ ... .. ....... .. ......._...._ ... ...........1
2.2. 1 Extensions of a-Amino Acids with P and y-CO2H Protected.............__ ............ 17
2.2.2 Extensions of y-acids with a-CO2H Protected. ............... ....... ...............1
2.2.3 Preparation of Dipeptides 2.7a-e from Unprotected Glutamic or Aspartic
Acids and N-(a-Aminoacyl)benzotriazoles 2.1la,b,d and e ................... ................20
2.2.4 Peptide Chain Extension at the Alpha C-Terminus to Give Natural Dipeptides
2. 10a-c .................. .............. .. ........ ... .......................2
2.2.5 Peptide Chain Extension at the P or y C-Terminus to Give Unnatural
Dipeptides 2. 12a-d ................... .. ............. ... ......... .... .. .. .........2
2.2.6 Preparation of N"-Protected-Dipeptidoylbenzotriazoles 2. 13a-c and 2. 13a+a'
from N"-Protected Dipeptides 2.3 a,b,d and 2.3 a+a' ................. ......................24
2.2.7 Preparation of F-Protected Tripeptides 2.14a,b,a' and Diastereomeric
Mixture 2.14a+a" from Dipeptidoylbenzotriazoles 2.13a,b, 2.13a+a' and Free
Amino Acids 2.9c,e and f ................ ...... ... .. ...... ...............2
2.2.8 Preparation of Novel Tripeptides 2.16a,b Containing Glu and Asp Fragments....27
2.3 Conclusion ............ _...... ._ ...............28....
2.4 Experim ental Section................ .. ... ... ... .. .. .......................2
2.4.1 General Procedure for the Preparation of Dipeptides 2.3a-c, 2.3a+a', 2.5a-c,
2.5c+c' and 2.7a-e ................ ....... ........... .. .......2
2.4.2 General Procedure for the Preparation ofN-(Z- and Fmoc-
Aminoacyl)benzotriazoles 2.8 a,b and 2.11 a,b. .............. ... .......... ............3
2.4.3 General Procedure for the Preparation of Dipeptides 2.10a-c, 2.12a,b and
2.12b+b'....... .. ... .. ... .................... ...............3
2.4.4 General Procedure for the Preparation offa-Protected-
Dipeptidoylbenzotriazoles 2.13a-c and 2.13a+a' .............. ....................3











2.4.5 General Procedure for the Preparation of Tripeptides 2. 14a,b, 2. 14a' and
2.14a+a" .............. ... .. ......... .. .... .. .............4
2.4.6 General Procedure for the Preparation of Tripeptides 16 a,b. ...........................43

3 EFFICIENT LABELING OF SUGARS TO PROVIDE WATER SOLUBLE
F LUORE SCENT T AGS ................. ...............46.......... ......

3.1 Introducti on ................. ...............46........... ....
3.2 Results and Discussion ............... ....................... ... .........4
3.2.1 Preparation of F~-Coumarin-Labeled N"-Fmoc-L-lysine Benzotriazolide 3.8......49
3.2.2 Preparation of Coumarin-O-Tagged Monosaccharides: O-(Coumarin-3-
carbonyl)diisopropylidene Sugars 3.12, 3.13, 3.14. ............. .. ..... ...............4
3.2.3.Preparation of Coumarin-N-Tagged Monosaccharide: N-(Coumarin-3-
carbonyl)tetrapivaloyl Sugar 3.16............... ...... ............ ... .......5
3.2.4 Preparati on of O- and N-(N"-C oumarin-3 -C arb onyl-N"(Fmoc or Z -L-
lys)protected Sugars 3.17a,b, 3.18, 3.19, 3.20. ................... ...............5
3.2.5 Deprotection of the Diisopropylidene Groups of O-(Coumarin
Labeled)diisopropylidene Protected Sugars 3.13, 3.17b and 3.18.........................51
3.3 Conclusion ................. ...............52........ .....
3.4 Experimental Section................. ..... ..... .. .........5
3.4.1 General Procedure for the Preparation of Compound 3.4. ................. ...............53
3.4.2 General Procedure for the Preparation of Compounds 3.5 and 3.6. ................... ...54
3.4.3 General Procedure for the Preparation of Compound 3.7 and 3.8. .......................55
3.4.4 General Procedure for the Preparation of O-(Coumarin)diacetonide Sugars
3.12, 3.13, 3.14 Under Microwave Irradiation. ......................._. ........._.....56

LI ST OF REFERENCE S ............_ ..... ..__ ...............61...

BIOGRAPHICAL SKETCH .............. ...............67....










LIST OF TABLES


Table page

2-1. Preparation of novel natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a' ............18

2-2. Preparation of novel unnatural dipeptides 2.5a-c and mixture 2.5c+c' ................ ...............19

2-3. Preparation of novel dipeptides 2.7a-e .........__. .......... ...............21...

2-4. Preparation of novel dipeptides 2.10a-c ........._._. ......_.._ ....._ ...........2

2-5. Preparation of novel dipeptides 2.12a,b and the diastereomeric mixture 2.12b+b' .............23

2-6. Conversion of novel N"-Z-dipeptides 2.3a,b,d and the diastereomeric mixture 2.3a+a'
into N"-Z-dipeptidoylbenzotriazoles 2.13a-c, 2.13a+a' ........._._... ......__. ........._...25

2-7. Preparation of novel tripeptides 2.14a,b,a' and mixture 2.14a+a" .........__ .... .............. ..26

2-8. Preparation of novel tripeptides 2.16a,b containing Glu and Asp fragments .................. .....28










LIST OF FIGURES


Figure page

1-1. Properties of N-Substituted benzotriazoles as electron donors or electron acceptors ...........1 1

1-2. N-Acylbenzotriazoles from sulfonylbenzotriazoles ................. .............. ......... .....11

1-3. N-Acylbenzotriazoles from carboxylic acids, excess BtH and thionyl chloride ................... 12

1-4. Structure of N-(coumarin-3-carbonyl) benzotriazole .............. ...............13....

2-1. Structures of Aspartic (Asp) and Glutamic (Glu) Amino Acids ................. ............... .....14

2-2. Preparation of novel dipeptides 2.3a-c and diastereomeric mixture 2.3a+a'............._._... .....18

2-3. Preparation of novel unnatural dipeptides 2.5a-c and diastereomeric mixture 2.5c+c' ........19

2-4. Preparation of novel dipeptides 2.7a-e ........._._.. .. ...............21_._.. ....

2-5. Preparation of novel dipeptides 2.10a-c .........._.... ...............22.._._.. ...

2-6. Preparation of novel dipeptides 2.12a,b and diastereomeric mixture 2.12b+b' ..................23

2-7. Preparation of novel dipeptidoylbenzotriazoles 2.13a-c and diastereomeric mixture
2.13a+a' ............. ...............25.....

2-8. Preparation of novel tripeptides 2.14a,b,a', and 2.14a+a" ........._... ........_..........._26

2-9. Preparation of novel tripeptides 2.16a,b .............. ...............28....

3-1. Fluorescent labeling of saccharides by reductive amination ................. .......................47

3-2. Structures of N-(coumarin-3 -carbonyl) benzotriazole and N"-coumarin-labeled N"
protected-L-lysines............... ..........4

3-3. Syntheses of O-(coumarin-3-carbonyl)diisopropylidene sugars 3.12, 3.13, 3.14 and N-
(coumarin-3-carbonyl)tetrapivaloyl sugar 3.16. ............. ...............50.....

3 -4. Preparati on of O- and N-(N"-coumarin-3 -carb onyl-N"(Fmoc or Z -L-ly s)protected
sugars 3.17a,b, 3.18, 3.19, 3.20. ............. ...............51.....

3-5. Deprotection of diacetonide groups for compound 3.13 ................... ...............5

3-6. Deprotection of diacetonide groups for 3.17b............... ...............52.

3-7. Deprotection of diacetonide groups for 3.18 ........_........_...__ ........__ .........5









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

N- AND O- ACYLATION OF PEPTIDES AND SUGARS INT PARTIALLY AQUEOUS
MEDIA

By

Janet Cusido

December 2007

Chair: Alan R. Katritzky
Major: Chemistry

The convenient preparation of N-(Fmoc- or Z-a -aminoacyl)benzotriazoles and N-protected

peptidoylbenzotriazoles from aspartic and glutamic amino acids is discussed. Additionally,

diverse N-protected di- and tripeptides are synthesized under mild reaction conditions in good to

excellent yi elds by acyl ati on with N-(Z and Fmoc-a-aminoacyl)b enzotri azol es of the amino

groups of free aspartic and glutamic acids. Examples of peptide coupling utilizing free -amino

acids in partially aqueous solution are reported and the products are obtained without the use of

chromatography. Evidence of maintained chirality was supported by NMR and HPLC.

In addition, we present the suitable and efficient fluorescent labeling of sugars by O-

acylation of diisopropylidene protected sugars and N-acylation of pivaloyl protected aminosugar

with N-(coumarin-3 -carbonyl)benzotriazole and benzotriazole derivatives of N"-coumarin-

labeled N"-protected-L-lysines under microwave irradiation or/and at room temperature.

Monosaccharide containing Fmoc-lysine fluorescent building blocks can be useful as water

soluble organic fluorophores for peptide labeling at the C-terminus in solid-phase peptide

synthesis (SPPS).









CHAPTER 1
GENERAL INTRODUCTION

Over the last 25 years, Katritzky and colleagues have studied the design of new synthetic

approaches that can produce scientifically attractive compounds in good quantities and with easy

purification methods. The development of better methods for the preparation of useful

compounds in our research group is based on the versatility of a well known synthetic auxiliary,

benzotriazole.

A useful synthetic auxiliary must possess several characteristics. First, benzotriazole can

be introduced readily at the beginning of a sequence. Second, benzotriazole is easily removed at

the end of the synthetic sequence so that it can be recovered and reused. Last, benzotriazole is

inexpensive and stable during various chemical reactions and, to some extent, activates groups

on other parts of the molecule that is attached to.'

1H Benzotriazole strongly exhibits all of the above characteristics. Benzotriazole (Bt)

offers many advantages as a resourceful synthetic auxiliary because it is soluble in many

solvents, such as benzene, toluene, chloroform, ethanol, tetrahydrofuran (THF), ethyl acetate

(EtOAc), diethyl ether, and dimethyl formamide (DIVF).2 Moreover, benzotriazole is partially

soluble in water, but extremely soluble in basic solutions because of its acidic pKa of 8.2.

N-Substituted derivates of benzotriazole with an a heteroatom (usually nitrogen, oxygen

and sulfur) attached to a benzotriazole nitrogen can ionize in two ways due to the electron

donating and electron accepting properties of benzotriazole.3 The benzotriazole anion and an

immonium, oxonium, or thionium cation 1.2 can be formed or it can ionize off the heteroatom

substituent to produce 1.3 (Figure 1-1). Generally, benzotriazole is considered to be comparable

with other activating groups because it shows good leaving ability 1.2 and activates the a-CH

toward proton loss 1.1. This type of activation to proton loss and leaving ability can be









compared to other activating groups such as cyano, phenylsulfonyl and halogen analogues;

however, Bt offers intermediates that are more stable, nonvolatile and less physiologically

hazardous to prepare.




N N



R H
1.2 acidic proton 1.3
prone to deprotonation
typically for typically for
X= NR2, OR, SR 1.1 X= Halogen, OH

Figure 1-1. Properties of N-Substituted benzotriazoles as electron donors or electron acceptors

Benzotriazole methodology has become a fundamental synthetic tool for many chemical

processes, such as multi step preparations of drugs, biologically active compounds and synthetic

analogs of natural products. Our group has focused some of its research on the preparation of N-

acylbenzotriazoles. Two methods were utilized in our laboratory to prepare N-

acylbenzotriazoles directly from carboxylic acids. The first method employs

sulfonylbenzotriazoles as a counter attack reagent.4,5 In the presence of triethylamine, carboxylic

acids were converted into the desired acylbenzotriazoles, probably through intermediate

formation of the mixed carboxylic sulfonic anhydride and benzotriazole anion, which was then

acylated by the mixed anhydride (Figure 1-2).



.jiOHBtSO2R2
R OH Et3N R O-S M2 + Bt + Et3NHR B



Figure 1-2. N-Acylbenzotriazoles from sulfonylbenzotriazoles









The second method involves the treatment of a carboxylic acid with thionyl chloride in the

presence of excess of benzotriazole (Figure 1-3). This method was further applied in the field of

peptides to prepare N-protected aminoacylbenzotriazoles from N-(Z- and Fmoc-a) amino acids.

These N-protected aminoacylbenzotriazoles are stable enough to participate in amino acid

coupling at ambient temperature under mild conditions to produce di- and tripeptides with

complete retention of chirality.6-1


O O O O
S3 BtH II and/or RI 'O
/S aS S
Cl Cl Bt Cl Bt BtRt

Figure 1 -3. N-Acylb enzotriazoles from carboxylic acids, excess BtH and thionyl chloride

Chapter 2 describes the preparation of N-(Z- or Fmoc-a-aminoacyl)benzotriazoles derived

from L-Asp and L-Glu amino acid, as well as peptide coupling of these acylbenzotriazoles with

unprotected a-amino acids/dipeptides yielding the corresponding natural and unnatural di- and

tripeptides. Such reactions were carried out with diverse N-(protected aminoacyl)benzotriazoles

on Asp and Glu residues, in which the CO2H groups were free or partially protected.l0.11

Recently, our group reported the straightforward syntheses of coumarin-labeled amino

acids and dipeptides which afforded enantiomerically pure fluorescent building blocks suitable

for solid phase peptide synthesis (SPPS). The two-step synthetic route converted coumarin-3-

carboxylic acid into its active benzotriazolide 1.4 (Figure 1-4), which was coupled with Z- and

Fmoc-N-protected lysines. The N-terminus of free amino acids, as well as dipeptides, provided

diverse optically pure fluorescent probes in good to excellent yields.12

Helpful water soluble fluorescent building blocks for peptide labeling at the C-terminus in

solid-phase peptide synthesis (SPPS) are described in Chapter 3.13 The same benzotriazole









derivative 1.4 was coupled with Fmoc-protected lysine to give lf-coumarin-labeled N"-

protected-L-lysines. The Lysines were coupled with protected sugars by O- and N-acylation at

free OH and NH2 grOups to yield water soluble fluorescent markers in 40-90% yields.


Figure 1-4. Structure of N-(coumarin-3-carbonyl) benzotriazole









CHAPTER 2
SELECTIVE PEPTIDE CHAIN EXTENSION AT THE C- AND N-TERMINI OF ASPARTIC
AND GLUTAMIC ACIDS UTILIZINGN-PROTECTED (ALPHA-AMINOACYL)
BENZOTRIAZOLES

2.1 Introduction


Recently many short, long, and cyclic biologically active peptides have been isolated from

bacterial, fungal, plant, animal, and other sources. Peptides play pivotal roles as taste additives,

neuroactive or enzyme regulators, and as antibiotics. They also influence cell-cell

communication upon interaction with receptors and are involved in a number of biochemical

processes such as metabolism, pain, reproduction and immune response; such diverse roles have

driven intensive peptide research.14-2 Among the 20 naturally occurring peptide amino acids,

glutamic and aspartic acids are the representatives of dicarboxylic acids (Figure 2-1), often found

in peptides with sensory properties including sweetness, bitterness, bitterness-masking, and

flavor enhancements.14-25 The dipeptides aspartame (L-Asp-L-Phe-OMe) and alitame (L-Asp-D-

Ala-NH2) exemplify non calorific sweeteners and are used worldwide.14,17 Small peptides are

important biomolecules and many have therapeutic value. Unlike large peptides that are

commonly isolated from natural sources or produced through recombinant techniques, small

peptides are usually prepared using organic synthetic methods.

HO ,





OH
Aspartic Acid Glutamic Acid

Figure 2-1. Structures of Aspartic (Asp) and Glutamic (Glu) Amino Acids









Glutamic and aspartic acids are important elements for the biological activity of diverse

naturally occurring and synthetic peptides and their analogs.14 The side-chain carboxylic acid

group of both of these amino acids enables specific recognition by various receptors through

ionic interactions; hence numerous biologically active peptidomimetics incorporate glutamic and

aspartic acid fragments in their structures.26

Glutamic acid plays a pivotal important role as the main excitatory neurotransmitter of the

central nervous system (CNS), operating through four different classes of receptors. Therefore,

glutamic acid has received much attention in the design of glutamate receptor ligands for drugs.27

Numerous small peptides and peptidomimetics, containing Asp and Glu residues have been

suggested as prodrugs to enhance CNS effects.27-31

In peptide coupling incorporating aspartic and glutamic acids could involve either of the

two carboxylic acids.35 Especially in the case of Asp, the two isomeric forms frequently

interconvert during coupling or subsequently. Procedures developed previously for peptide

coupling incorporating Asp and Glu include: (i) carbodiimides in combination with additives

such as 1 -hydroxybenzotriazole (HOBt),36,37 1 -hydroxy-7-azabenzotriazole (HOAt) and

analogs38 Or N-hydroxysuccinimide (HOSu),39 (ii) phosphonium,40,41 and uronium saltS42,43 Of

HOBt or HOAt; (iii) N-acylazoles such as 1,1'-carbonylbis(1H-imidazole) (CDI);44 (iv) mixed

anhydrides;45 Or (V) carboxylic acid fluorides.46,47 The most common procedures for the

preparation of peptides containing glutamic and aspartic acids are based on solid-phase

methodology .28,32-34

A commonly encountered problem in peptide synthesis is epimerization of the amino acid

chiral center during activation of the carboxylic acid group. Many of the coupling reagents

require prior protection and subsequent deprotection of various amino acid functional groups.48










Coupling reactions with such reagents are frequently moisture sensitive. Furthermore, isolation

and purification processes often involve column chromatography due to the formation of by-

products from the coupling reagents.

In Katritzky's group, researchers have applied N-acylbenzotriazoles for N-acylation,49-52 C

acyl ati on53-58 and O-acyl ati on.59,60 Recently, the synthesi s of N-(Z -aminoacyl)b enzotri azole s was

achieved in our laboratory and such were found to be efficient coupling reagents for N- and O-

aminoacylation. N-(Z-aminoacyl)benzotriazoles compounds are isolable, stable and storable at

room temperature for months, and easy to handle without special procedures to exclude air or

moisture. The reagents used in the preparation of aminoacylbenzotriazoles are inexpensive,

thereby offering at the same time an overall cost effective methodology. Additionally, these N-

(Z-aminoacyl)b enzotri azoles can b e used in aqueous soluti ons to effi ciently allow the coupling

of several non-derivatized amino acids. Thus, these coupling reagents enable fast synthesis of

peptides and peptoids in high yields, and purity under mild conditions with full retention of the

original chirality.

We now rep ort (i) the prep arati on of N-(Z or Fm oc -a-ami noacyl)b enz otri azol es derived

from L-Asp and L-Glu amino aci ds, and (ii) pepti de coupling of the se aminoacylb enzotri azol es

with unprotected a-amino acids and dipeptides yielding the corresponding natural and unnatural

di- and tri-peptides. Additionally, a new and convenient procedure for the selective stepwise

elaboration of peptide chains incorporating aspartic and glutamic acids by utilizing N-(protected

aminoacyl)benzotriazoles as coupling reagents is described. We show components of Asp and

Glu are elongated from the N-terminus by acylation at the free amino group of glutamic or

aspartic acids in which the -CO2H groups are unprotected or partially protected.









2.2 Results and Discussion

2.2.1 Extensions of ot-Amino Acids with P and y-CO2H PrOtected.

The preparation of natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a' from 7-

benzyl-L-glutamate 2.2a or P-benzyl-L-aspartate 2.2b and N-(Z-a-aminoacyl)benzotriazoles

2.1a,b and 2.1a+a' was carried out by using as one component 2.1a or 2.1b and as the second

component equimolar amounts of L-Glu(OBzl)-OH (2.2a) or L-Asp(OBzl)-OH (2.2b). Each

coupling took place in acetonitrile-water mixture (2: 1 in volume) in the presence of triethylamine

(2 equiv.) at room temperature for 2 hours. The crude products were washed with 4N HCI to

remove the by-product (BtH) to yield the three LL-dipeptides 2.3a-c (94-97%) (Figure 2-2 and

Table 2-1). Diastereomeric mixture 2.3a+a' was prepared from N-(Z-DL-Ala)acylbenzotriazole

(2.1a+a') and y-benzyl-L-glutamate 2.2a in 94% yield using the same procedure as mentioned

for the enantiopure dipeptides 2.3a-c.


NMR analysis showed no detectable racemization for the three enantiopure LL-dipeptides

2.3a-c. No signals from their corresponding diastereomers were observed in the NMR spectra of

2.3a-c suggesting the enantiopurity of the N-protected dipeptides. Each dipeptide revealed two

sets of doublets for the two -NH protons ranging from 7.40 to 8.60 ppm. However, for the

diastereomeric mixture 2.3a+a' one of the two -NH protons appeared as two pairs of equal

doublets. In addition, the 1H NMR spectrum of 2.3a gave a clear doublet for the methyl protons

present in compound at 1.26 ppm (DMSO-d6), whereas a multiple was observed for the

corresponding diastereomeric mixture 2.3a+a' ranging from 1.34 to 1.38 ppm (CDCl3). The 13C

NMR spectrum displayed a singlet for each carbonyl carbon for compound 2.3a. However, for

2.3a+a' NMR analysis displayed doublets for most of the aliphatic and carbonyl carbons,

although no significant difference was observed for the aromatic carbons.











RN N O Ph Z' \N COOH
CH3CNO / H20 H
Z'NH N ` ~ +(H) OHCN (CH2 O CH
HO j\Et3N, r.t., 2h. Oi
H2N COOH Oq
2.1a, b, 2.1a+a' 2.2a,b Ph

O$Gu22 2.3a-c, 2.3a+a'



n= 1, 2.
Amino acids with R: a, Ala; b, Phe; a+a', DL-Ala.
Figure 2-2. Preparation of novel dipeptides 2.3a-c and diastereomeric mixture 2.3a+a'

Table 2-1. Preparation of novel natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a'
Entry N-(Z-a-aminoacyl) Yield ,.25
benzotriazoles rlUCL(%)u U
Z -L -Al a-L -Glu(OB zl)-OH
1 Z-L-Ala-Bt (2.1a) 94 +1.0 89-91
(2.3a)
Z-L-Phe-L-Glu(OBzl)-OH
2 Z-L-Phe-Bt (2.1b) 97 -10.3 139-142
(2.3b)
Z-L-Phe-L-Asp(OBzl)-OH
3 Z-L-Phe-Bt (2.1b) 95 -14.0 102-105
(2.3c)
Z-DIL-Ala-Bt Z -DLL-Al a-L -Gl u(OB zl)-OH
S(2.1a+a') (2.3a+a') +. 18
a Isolated yield


The dipeptide 2.3a and the diastereomeric mixture 2.3a+a' were further subjected to HPLC

analysis using Chirobiotic T column (detection at 254 nm, flow rate 0.5 mL/min, and 100%

MeOH as solvent). As expected, HPLC analysis of the enantiopure LL- dipeptide (2.3a) showed

a single peak at 6.3 min. In contrast, two peaks of equal intensity at 6.3 and 6.7 min were

observed for the corresponding diastereomeric mixture 2.3a+a'.

2.2.2 Extensions of y-acids with ot-CO2H Protected.

The preparation of unnatural dipeptides 2.5a-c and mixture 2.5c+c' from a-benzyl L-

glutamate 2.4a and N-(a-aminoacyl)benzotriazoles 2.1b-d and 2.1d+d' were prepared using the

same procedure as mentioned for the natural dipeptides 2.3a-c. The two LL-dipeptides 2.5a,c










and the mixture 2.5c+c' were obtained in 87-92% yields (Figure 2-3 and Table 2-2) and were

further recrystallized from CH2C 2/hexanes for further characterization.

The natural dipeptide 2.3b was obtained in higher yields than the unnatural dipeptide 2.5a.

For example, the reaction of 7-benzyl L-glutamate (2.2a) with Z-L-Phe-Bt (2.1b) gave dipeptide

2.3b in 97% yield, whereas the reaction of a-benzyl L-glutamate (2.4a) with Z-L-Phe-Bt (2.1b)

gave product 2.5a in 87% yield.

Z-O OH RN H O~P
R N--N Z'N N O P
I CH3CN /H20
N O H2NO Ph Et3N, r.t., 2h.
O O O
2.1b-d, 2.1d+d' 2.4a 2.5a-c, 2.5c+c'

Amino acids with R: Ala, Phe, Met, DL-Met.
Figure 2-3. Preparation of novel unnatural dipeptides 2.5a-c and diastereomeric mixture 2.5c+c'

Table 2-2. Preparation of novel unnatural dipeptides 2.5a-c and mixture 2.5c+c'
Entry N~-(Z-a-amninoacyl) Yield Rento
benzotriazoles Product a[a]2 D time Mp (oC)
(min)
Z-L-Phe-L-
1 Z-L-Phe-Bt (2.1b) 87 -10.7 6.4 140-141
Glu(OBzl)-OH (2.5a)
Z-D-Phe-L-
2 Z-D-Phe-Bt (2.1c) 91 -5.4 7.6 119-120
Glu(Obzl)-OH (2.5b)
Z-L-Met-L-
3 Z-L-Met-Bt (2.1d) 87 -7.1 6.3 98-99
Glu(Obzl)-OH (2.5c)
Z-DL-Met-L-
Z-DL-Met-Bt
4 Glu(OBzl) -OH 92 -5.3 6.3,7.5 72-73
(2.1d+d')
(2.5c+c')
alsolated yield



Dipeptides 2.5a-c were obtained with no detectable racemization evidenced by their NMR

analyses. The enantiopure LL- dipeptides (2.5a,c) gave doublets for the two -NH protons.

However, for the diastereomeric mixture (2.5c+c'), each of the two -NH protons appeared as two

pairs of equal doublets. 1H NMR spectrum of 2.5c displayed a singlet for the methyl protons









(SMe) from Z-L-Met fragment. 13C NMR displayed a singlet for each carbonyl carbon for

compounds 2.5a,c whereas for the diastereomeric mixture 2.5c+c', most of the aliphatic and

carbonyl carbons were observed as doublets, but no significant changes were observed for the

aromatic carbons. In addition, the formation of rotamers was observed for the DL-dipeptide

(2.5b), showing complicated 1H and 13C NMR spectra, e.g. 13C analysis gave a second set of

signals for all aliphatic, carbonyl and aromatic carbons.

The enantiopurity of the dipeptides 2.5a-c was further confirmed by the HPLC analysis

using a Chirobiotic T column (detection at 254 nm, flow rate 0.5mL/min, and MeOH as solvent).

As expected, HPLC analysis of the enantiopure LL (2.5a,c) and DL (2.5b) dipeptides gave a

single peak for each compound (Table 2-2).

2.2.3 Preparation of Dipeptides 2.7a-e from Unprotected Glutamic or Aspartic Acids and
N-(a-Aminoacyl)benzotriazoles 2.1a,b,d and e.

Dipeptides 2.7a-e were obtained from unprotected glutamic (2.6a) and aspartic acids

(2.6b) (1 equiv.), N-(Z-a-aminoacyl)benzotriazoles 2.1a,b,d and e (1 equiv.), and triethylamine

(2 equiv.) in acetonitrile-water mixture (2:1 by volume) at room temperature for 2 hours (Figure

2-4 and Table 2-3). The crude products were washed with 4N HCI to remove the by-product,

BtH. Compounds 2.7a-e were obtained in 65-94% yields and were further recrystallized from

CH2 2z/hexanes for further characterization.

NMR analysis of 2.7a-e showed no detectable racemization: each compound revealed two

doublets for each of the two -NH protons in the range of 7.40-8.50 ppm. The methyl protons

from the Z-L-Ala fragment showed a clear doublet in the 1H NMR of 2.7a. The 1H NMR spectra

also displayed a singlet for the methyl protons (SMe) from Z-L-Met fragment for compounds

2.7c. In addition, 13C NMR displayed a singlet for each carbonyl carbon for dipeptides 2.7a-e.






















Yield

65
86
94
90
85


Mp
(oC)
121-123
154-156
119-120
69-71
179-181


[L25

+0.7
-12.8
-8.2
-24.0
-1.7


In addition, it was also found that the dipeptides 2.7a,b were obtained in lower yields as

compared to the natural dipeptides 2.3a,b and the unnatural dipeptides 2.5a. For example, the

reaction of L-glutamic acid (2.6a) with Z-L-Phe-Bt (2.1b) gave a dipeptide 2.7b in 86% yield,

whereas the reaction of 7-benzyl L-glutamate (2.2a) with Z-L-Phe-Bt (2.1b) gave compound 2.3b

in 97% yield and a-benzyl L-glutamate (2.4a) with L-Phe-Bt (2.1b) gave dipeptide 2.5a in 87%

yield. As expected, these three compounds gave different melting points: the dipeptide 2.7b

(with unprotected side chain) melted at 154-1560C, while the unnatural dipeptide 2.5a had

melting point 140-1410C and the natural dipeptide 2.3b had 139-1420C. Also, the compound

2.7a had a higher melting point (121-1230C) than the dipeptides 2.3a.

2.2.4 Peptide Chain Extension at the Alpha C-Terminus to Give Natural Dipeptides
2.10a-c.

Peptide coupling was carried out by reacting P or y-monobenzylesters (2.8a, Asp) and

(2.8b, Glu) of the N-(Fmoc-a-aminoacyl)b enzotriazoles with equimolar amounts of unprotected


I


OH
R O' .(CH2 n CH3CN / H20 ZN

,Ho O H2 Et3N, r.t., 2h.

2.1a,b,d,e 2.6a,b
n=1, 2.
Amino acids with R: Ala, Phe, Trp. Met
Figure 2-4. Preparation of novel dipeptides 2.7a-e

Table 2-3. Preparation of novel dipeptides 2.7a-e
Et N-(Z-an-amninoacyl) Prdc
benzotriazoles
1 Z-L-Ala-Bt (2.1a) Z-L-Ala-L-Glu-OH (2.7a)
2 Z-L-Phe-Bt (2.1b) Z-L-Phe-L-Glu-OH (2.7b)
3 Z-L-Met-Bt (2.1d) Z-L-Met-L-Glu-OH (2.7c)
4 Z-L-Trp-Bt (2.1e) Z-L-Trp-L-Glu-OH (2.7d)
5 Z-L-Phe-Bt (2.1b) Z-L-Phe-L-Asp-OH (2.7e)
a Isolated yield


OH
O (CH2)n
OH
2.7a-e









amino acids Trp 2.9a and Met 2.9b in acetonitrile-water mixture (2:1 v/v) in the presence of

triethylamine (2 equiv.) at room temperature for 2 hours (Figure 2-5 and Table 2-4). The crude

products were washed with 4N HCI to remove the by-product BtH, yielding compounds 2.10a-c

in 91-94%, which were further recrystallized from CH2 2z/hexanes before 1H and 13C M

spectroscopy, elemental analysis, and optical rotatory power (ORP).

The Katritzky group researchers have previously found that coupling reactions utilizing N-

(Z or Fmoc-a-aminoacyl)benzotriazoles gave dipeptide products with no detectable racemization

as demonstrated by their 1H NMR and HPLC analyses.61-63 Likewise, NMR analysis of the

enantiopure LL-dipeptides 2.10a-c showed no detectable racemization: each compound revealed

two doublets for each of the two -NH protons in the range of 7.80 8.40 ppm. The NMR

spectra also displayed a singlet for the methyl protons (SMe) for compounds 2.10c. In addition,

13C NMR displayed a singlet for each carbonyl carbon for the dipeptides 2.10a-c.

O O

Ph `O. (CH2)n CH3CN /H2,O Ph O (CH2)nH
Fmoc, 2 CO Bt Et3N, r.t., 2h. Fmoc, rN ~COOH
N N
HO HO R
2.8a,b 2.9a, R =-CH2(3-indolyl NH) (Trp) 2.10a-c
a: n= 1; b: n =2 2.9b, R= -(CH2)2-S-CH3 (Met)
Bt = benzotriazol-1-yl







Figure 2-5. Preparation of novel dipeptides 2.10a-c

Table 2-4. Preparation of novel dipeptides 2.10a-c
Amino Yield [a]25D Mp (oC)
Entry Acid Product (%)a
1 L-Trp (2.9a) Fmoc-L-Glu(OBzl)-L-Trp-OH (2.10a) 93 +11.5 165-167
2 L-Trp (2.9a) Fmoc-L-Asp(OBzl)-L-Trp-OH (2.10b) 94 -4.6 136-137
3 L-Met (2.9b) Fmoc-L-Glu(OBzl)-L-Met-OH (2.10c) 91 -7.6 96-97
alsolated yield










2.2.5 Peptide Chain Extension at the (3 or y C-Terminus to Give Unnatural Dipeptides
2.12a-d

Peptide coupling reactions were carried out using equimolar amounts of the ot-monobenzyl

ester N-(Z-a-aminoacyl)b enzotri azoles (Asp) 2.11a and (Glu) 2.11b and unprotected amino aci ds

(L-Trp, L-Phe, DL-Phe,) 2.9a,c,d in partially aqueous solution (CH3CN/H20, 2:1 v/v) in the

presence of triethylamine (2 equiv.) at room temperature for 2 hours (Figure 2-6). The crude

products were washed with 4N HCI to remove the by-product, BtH. The dipeptides 2.12a,b were

obtained in 91-92% yields (Table 2-5) and were further recrystallized from CH2 2z/hexane for

NMR, elemental analysis, and ORP. Diastereomeric mixture 2.12b+b' was prepared from N-(Z-

L-Asp)benzotriazole and DL-Phe-OH using the same procedure as for the enantiopure dipeptides

2.10a-c. Dipeptide mixture 2.12b+b' was obtained in 95% yield and was recrystallized from

diethyl ether/hexanes.

Btz O Oh NZ~OH E,~rth COOH

CH3CN / H20 R
H2 COO
HO HOPh
2.11a,b 2.9a,c,d
Bt = benzotriazol-1-yl. 21abbb
Amino acids with R: Trp, Phe, DL-Phe

Figure 2-6. Preparation of novel dipeptides 2.12a,b and diastereomeric mixture 2.12b+b'

Table 2-5. Preparation of novel dipeptides 2.12a,b and the diastereomeric mixture 2.12b+b'
Yie
Retention Melting
Amino Id [(25 tm on
Entry Product []D tm on
Acid (%).
a (min) (oC

L-Trp Z-L-Asp-OBzl-L-Trp-OH
1 92 -7.1 7.5 98-100
(2.9a) (2.12a)
L-Phe Z-L-Asp-OBzl-L-Phe-OH
2 91 +0.07 7.6 138-140
(2.9c) (2.12b)
DL-Phe Z-L-Asp-OBzl-DL-Phe-OH 9 1. .,1. 1-1
(2.9d) (2.12b+b')
alsolated yield









NMR analysis of the enantiopure LL-dipeptides 2.12a,b revealed no detectable

racemization. Signals arising from diastereomers were not observed in the NMR spectra of

compounds 2.12a,b. Thus, each dipeptide revealed two sets of doublets for the two -NH proton

signals. However, for the diastereomeric mixture 2.12b+b' one of the two -NH protons

appeared as two pairs of equal doublets. 13C NMR displayed a singlet for each carbonyl carbon

for compounds 2.12a,b whereas for the diastereomeric mixture 2.12b+b', most of the aliphatic

and carbonyl and aromatic carbons were observed as doublets.

The dipeptides 2.12a,b were further characterized by HPLC analysis using a Chirobiotic T

column (detection at 254nm, flow rate 0.5mL/min, and MeOH as solvent). As expected, HPLC

analysis of enantiopure LL (2.12a,b) dipeptides showed a single peak for each compound. In

contrast, two peaks were observed for the corresponding diastereomeric mixture 2.12b+b'.

2.2.6 Preparation of F-Protected-Dipeptidoylbenzotriazoles 2.13a-c and 2.13a+a' from N"-
Protected Dipeptides 2.3a,b,d and 2.3a+a'

N"-Z-Dipeptides 2.3a,b,d and 2.3a+a' were successfully converted into the corresponding

benzotriazole derivatives 2.13a-c and 2.13a+a' (Figure 2-7 and Table 2-6). The reactions were

carried out at -15 oC following the same simple procedure as in references 62 and 63. The

reaction was continued until the starting materials 2.3a,b,d and 2.3a+a' were completely

consumed as observed under TLC and NMR analyses. Compounds 2.13a-c, 2.13a+a' were

isolated after acid (4N HC1) workup in good yields (89-93%) and were recrystallized using

CH2 2z/hexanes for 1H and 13C NMR spectroscopy, elemental analysis, and ORP.

Compounds 2.13a-c were obtained with no detectable racemization as evidenced by NMR.

Compounds 2.13a-c gave two doublets for the two -NH protons. 1H NMR spectrum of 2.13a

indicated doublet for the methyl proton of L-Ala fragment. In contrast, the same signal of the

methyl group showed two sets of doublets for the diastereomeric mixture 2.13a+a'. 13C NMR










analysis displayed a singlet for each carbonyl carbon for compounds 2.13a-c, whereas in the

mixture 2.13a+a' most of the carbonyl, aliphatic and aromatic carbons appeared as doublets.


Z' N COOH Z N, O H22 N O
O1 Cl '`CI -1 50C O


Ph Ph

2.3a,b,d, 2.3a+a' 2.13a-c, 2.13a+a'

n= 1, 2.
Bt =benzotriazol-1 -yl
Figure 2-7. Preparation of novel dipeptidoylbenzotriazoles 2.13a-c and diastereomeric mixture
2.13a+a'

Table 2-6. Conversion of novel N"-Z-dipeptides 2.3a,b,d and the diastereomeric mixture
2.3a+a' into Na-Z -dipepti doylb enzotri azoles 2.13a-c, 2.13a+a'
Yield [a25oM(C
Entry Reagent Product (o/)a[]DMp(C
Z-L-Ala-L- Z-L-Ala-L-
1 93 -17 9 133-135
Glu(OBzl)-OH (2.3a) Glu(OBzl)-Bt (2.13a)
Z-L-Phe-L- Z-L-Phe-L-
2 92 -24.7 90-92
Glu(OBzl)-OH (2.3b) Glu(OBzl)-Bt (2.13b)
Z- L-Phe-L- Z-L-Phe-L-
3 89 -20.7 110-113
Asp(OBzl)-OH (2.3d) Asp(OBzl)-Bt (2.13c)
Z -DL -Al a-L- Glu(OB zl) Z -DL -Al a-L -Glu(OB zl)
4 91 -22.4 79-81
-OH (2.3a+a') -Bt (2.13a+a')
alsolated yield


2.2.7 Preparation of N"-Protected Tripeptides 2.14a,b,a' and Diastereomeric Mixture
2.14a+a" from Dipeptidoylbenzotriazoles 2.13a,b, 2.13a+a' and Free Amino Acids
2.9c,e and f

Tripeptides 2.14a,b and a' were prepared by peptide coupling reactions between N"-

protected-dipeptidoylbenzotriazoles 2.13a,b (1 equiv.) with unprotected amino acids 2.9c,e,f (1

equiv.) in acetonitrile-water mixture (2: 1 v/v) in the presence of triethylamine (2 equiv.) at -15

oC for 2 hours. The mixture 2.14a+a" was prepared using the same procedure. The crude

products were washed with 4N HCI to remove the by-product, BtH. Compounds 2.14a,b, 2.14a'










and 2.14a+a" were obtained in 73-95% yields (Figure 2-8 and Table 2-7) and were further

recrystallized from CH2 2z/hexanes for NMR spectroscopy, elemental analysis, and ORP.

R' BN t R' ` O R"
Z' N CH3CN / H20 ZN N N CO
O (CH2)n H2N COOH H O (CH2) n
O~ Et3N, -150C, 2h. O~
O 2.9c,e ,f O
2.13a,b, 2.13a+a~hP

n = 2.2.14a,b,a',a+a"
Bt = benzotriazol-1-yl.
Amino acids with R': Ala, DL-Ala, Phe
Amino acids with R": Ala, Phe, D-Phe
Figure 2-8. Preparation of novel tripeptides 2.14a,b,a', and 2.14a+a"

Table 2-7. Preparation of novel tripeptides 2.14a,b,a' and mixture 2.14a+a"
Amino Yield 25~S M~C
Entry Acd Reactant Product o @ p(C
L-Phe Z-L-Al a-L-Glu(OBzl)- Z -L-Al a-L -Glu(OB zl)-
1 73 -2.9 74-76
(2.9c) Bt(2.13a) L-Phe-OH (2.14a)
D-Phe Z-L-Al a-L-Glu(OBzl)- Z -L-Al a-L -Glu(OB zl)-
2 83 +5.5 153-155
(2.9e) Bt (2.13a) D-Phe-OH (2.14a')
Z-L-Phe-L-Glu(OBzl)-
L-Ala Z-L-Phe-L-Glu(OBzl)- 9 1. 6-6
3 L-Ala-OH (2.14b) 9 1. 6-6
(2.9f) Bt (2.13b)
Z-DL-Ala-L-
L-Phe Z-DL-Ala-L-Glu(OBzl)-
4 Glu(OBzl)-Bt 92 -5.5 123-125
(2.9c) L-Phe-OH (2.14a+a")
(2.13a+a')
alsolated yield


NMR analysis showed no racemization for the tripeptides 2.14a and 2.14a' when the

reaction was carried out -15 OC, however when the same reaction was carried out at room

temperature, extensive racemization of the desired products was observed. H NMR showed a

clear doublet for all -NH protons and the methyl protons of the L-Ala fragment, while NMR

spectra of the mixture 2.14a+a" gave complicated multiplets for -NH groups. 13C NMR

displayed a singlet for each carbonyl carbon for compounds 2.14a and 2.14a' whereas the









diastereomeric mixture 2.14a+a" showed most of the aliphatic and carbonyl and aromatic

carbons as doublets.

To confirm the ab sence of racemizati on, the compounds Z -L-Al a-L-Glu(OBzl)-L-Phe-OH

(2.14a), Z-L-Ala-L-Glu(OBzl)-D-Phe-OH (2.14a') and the mixture Z-DL-Al a-L-Glu(OBzl)-L-

Phe-OH (2.14a+a") were analyzed by HPLC. Single peaks were obtained for tripeptides 2.14a

at 6.4 min and 2.14a' at 7.3 min whereas the diastereomeric mixture 2.14a+a" gave two peaks at

6.4 and 7.3 min.

2.2.8 Preparation of Novel Tripeptides 2.16a,b Containing Glu and Asp Fragments.

The general applicability of our coupling method was demonstrated by the preparation of

tripeptides 2.16a,b containing glutamate or aspartate moieties. This was achieved by the

elongation of Asp and Glu fragments from the N-terminus, utilizing the free amino group of

unprotected dipeptides 2.15a,b and N-(Z-a-aminoacyl)benzotriazoles 2.1a,b.

Synthesis of tripeptides 2.16a,b was achieved in two steps without purification of the

dipeptides intermediates 2.15a,b. First, the Fmoc- group in compounds 2.10a,b was removed

with piperidine utilizing a literature method;65 thereafter the remaining piperidine was removed,

the dipeptides obtained 2.15a,b were then coupled with N-(Z-a-aminoacyl)benzotriazoles 2.1a,b

yielding the desired tripeptides 2.16a,b. The procedure does not require purification of

compounds 2.15a,b; however, care must be taken to remove all remaining piperidine, as it can

compete with free amino acids and peptides in their reactions with N-protected(a-

aminoacyl)benzotriazoles. Crystalline tripeptides 2.16a,b were purified by washing with diethyl

ether-hexanes mixture giving desired product in the yields of 83-84% (Table 2-8). Novel

compounds 2.16a,b were characterized by 1H and 13C MR Spectroscopy, elemental and ORP

analyses.










Ph Ph R 'H P

Fmoc Z' BtH R""~ O
HN Opiperidine H2N, O H21aO HN O
($-CH2)n .(C2)n > (CH2)
O ~r.t., 2h O~ CH3CN / H20O
R> NH R> NH Et3N, -150C, 2h. R't* NH
COOH COOH COOH

2.10a,b 2.15a,b 2.16a,b
n =1, 2.
Amino acids with R': Trp
Amino acids with R": Ala, Phe

Figure 2-9. Preparation of novel tripeptides 2.16a,b

Table 2-8. Preparation of novel tripeptides 2.16a,b containing Glu and Asp fragments
Product Yield (%) a 25D Mp (oC)
Z-L-Phe-L-Glu(OBzl)-L-Trp-OH (2.16a) 84 -3.2 109-111
Z-L-Ala-L-Asp(OBzl)-L-Trp-OH (2.16b) 83 -1.7 134-137
a Isolated yield


NMR analysis demonstrated no detectable racemization for the tripeptides 2.16a,b. No

signals arising from the diastereomers were observed in the NMR spectra of compounds 2.16a,b.

1H NMR showed a clear doublet for all -NH protons of 2.16a,b and for the methyl protons from

L-Ala fragment for compound 2.16b. 13C NMR also gave a singlet for each carbonyl carbon in

2.16a,b.

2.3 Conclusion

The convenient preparation under mild conditions of N-(Fmoc- or Z-oc-

aminoacyl)benzotriazoles, N-protected peptidoylbenzotriazoles and diastereomeric mixtures

prepared from aspartic and glutamic amino acid has been demonstrated. Additionally, the

preparation of di- and tri-peptides starting from C- and N-termini of glutamic and aspartic acids

has been demonstrated under mild reaction conditions. Products were obtained without the use

of column chromatography. Evidence of maintained chirality was supported by NMR and HPLC

analyses.









2.4 Experimental Section

Melting points were determined on a capillary point apparatus equipped with a digital

thermometer. NMR spectra were recorded in CDCl3 Or DMSO-d6 with TMS for 1H (300 MHz)

and 13C (75 MHz) as an internal reference. N-Z- and Fmoc-amino acids were purchased from

Fluka and Acros and were used without further purification. Elemental analyses were performed

on a Carlo Erba-1 106 instrument. Optical rotation values were measured with the use of the

sodium D line. HPLC analyses were performed on Beckman system gold programmable solvent

module 126, using Chirobiotic T column (4.6 x 250 mm), detection at 254 nm, flow rate of 0.5

mL/min and 100% MeOH as eluting solvent.

2.4.1 General Procedure for the Preparation of Dipeptides 2.3a-c, 2.3a+a', 2.5a-c, 2.5c+c'
and 2.7a-e

Benzyl protected (2.2a,b and 2.4a) or unprotected (2.6a,b) aspartic or glutamic acids (5

mmol) were added to a solution of Et3N (10 mmol) in CH3CN (15 mL) and H20 (7 mL) at 25 oC,

and the reaction mixture was stirred for 15 min at 25 oC. N-(Protected-a-

aminoacyl)benzotriazoles (2.1a-e and 2.1a+a') (for characterization and preparation refer to

references 51, 61, and 63) (5 mmol) were added to the mixture with continued stirring for 2 h at

25 oC. About 4N HCI (5 mL) was added to the reaction mixture and CH3CN was evaporated

under reduced pressure. The residue was dissolved in EtOAc (50 mL), the organic extract was

then washed with 4 N HCI (3x15 mL), saturated NaCl (20 mL), and dried over MgSO4.

Evaporation of the solvent gave the desired products (2.3a-c, 2.3a+a', 2.5a-c, 2.5c+c', 2.7a-e),

which were further recrystallized from CH2C 2-hexane, unless specified otherwise.

5-Benzyl (LS)-2-((S)-2-benzyloxycarbonylamino-propoymioennot (Z-L-Ala-

L-Glu(OBzl)-OH, 2.3a): White microcrystals (94%); mp 89-91 oC, [a]D23 = +1.0 (c 1.66, DMF).

1HNMR (DMSO-d6): 6 1.26 (d, J = 7.1 Hz, 3H), 1.80-1.96 (m, 1H), 2.00-2.18 (m, 1H), 2.30-









2.54 (m, 2H), 4.09-4.19 (m, 1H), 4.27-4.34 (m, 1H), 5.00-5.10 (m, 2H), 5.14 (s, 2H), 7.30-7.41

(m, 10H), 7.52 (d, J = 7.6 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 12.70 (s, 1H). 13C NMR (DMSO-

d6): 6 18.1, 26.3, 30.0, 49.9, 51.0, 65.4, 65.6, 127.8, 128.0, 128.1, 128.4, 128.5, 136.2, 137.1,

149.7 155.7, 172.2, 172.8, 173.2. Anal. called for C23H26N207: C, 62.43; H, 5.92; N, 6.33. Found:

C, 62.05; H, 5.95; N, 6.01.

5-Benzyl (LS)-2-((S)-2-benzyloxycarbonylamino-3-phnlrpoymioetnoe

(Z-L-Phe-L-Glu(OBzl)-OH, 2.3b): White microcrystals (97%); mp 139-142 oC, [a]D23 = -10.3

(c 1.66, DMF). 1H NMR (DMSO-d6): 6 1.88-1.95 (m, 1H), 2.08-2. 14 (m, 1H), 2.32-2.55 (m,

2H), 2.72-2.82 (m, 1H), 2.99-3.09 (m, 1H), 4.30-4.37 (m, 2H), 4.95 (s, 2H), 5.13 (s, 2H),

7. 16-7.41 (m, 15H), 7.57 (d, J= 8.7 Hz, 1H), 8.39 (d, J= 7.8 Hz, 1H), 12.73 (s, 1H). 13C NMR

(DMSO-d6): 6 26.3, 30.1, 37.4, 51.2, 56.1, 65.3, 65.6, 126.3, 127.5, 127.7, 128.0, 128.1, 128.2,

128.3, 128.5, 129.3, 136.2, 137.0, 138.2, 155.9, 171.9, 172.2, 173.1. Anal. called for C29H30N207:

C, 67.17; H, 5.83; N, 5.40. Found: C, 66.88; H, 5.87; N, 5.31.

4-Benzyl (LS)-2-((S)-2-benzyloxycarbonylamino-3-pheypoinlmn~uaot

(Z-L-Phe-L-Asp(OBzl)-OH, 2.3c): White microcrystals (95%); mp 102-105 oC, [a]D23 = -14.0

(c 1.66, DMF). 1H NMR (DMSO-d6): 6 2.65-3.07 (m, 4H), 4.29-4.35 (m, 1H), 4.65-4.73 (m,

1H), 4.89-4.98 (m, 2H), 5.13 (s, 2H), 7. 14-7.37 (m, 15H), 7.56 (d, J= 8.4 Hz, 1H), 8.52 (d, J=

7.7 Hz, 1H), 12.9 (s, 1H). 13C NMR (DMSO-d6): 6 36.0, 37.4, 48.6, 56.0, 65.2, 65.9, 126.3,

127.4, 127.7, 127.9, 128.0, 128.3, 128.4, 128.5, 129.2, 135.9, 137.0, 138.1, 155.8, 170.1, 171.6,

172.5. Anal. called for C28H28N207: C, 66.66; H, 5.59; N, 5.55. Found: C, 66.33; H, 5.68; N, 5.60.

5-Benzyl (LS)-2-(2-benzyloxycarbonylaminopropionylaiopnaot (Z-DL-Ala-L-

Glu(OBzl)-OH, 2.3a+a'): White microcrystals (94%); mp 81-83 oC, [a]D23 = +0.6 (c 1.66,

DMF). 1H NMR (CDCl3): 6 1.34-1.38 (m, 3H), 2.04-2. 11 (m, 1H), 2.27-2.30 (m, 1H), 2.30-2.50










(m, 2H), 4.30-4.43 (m, 1H), 4.63-4.65 (m, 1H), 5.05-5.13 (m, 4H), 5.97 (d, J= 7.4 Hz, 0.5H),

6.06 (d, J= 7.5 Hz, 0.5H), 7.26-7.46 (m, 11H), 10.27 (s, 1H). 13C NMR (CDCl3): 6 18.0, 18.3,

26.5, 30.0, 50.2, 51.3, 66.3, 66.8, 127.7, 127.8, 127.8, 128.0. 128.2, 128.3, 135.3, 135.8, 156.1,

156.2, 172.7, 172.8, 173.4, 173.7. Anal. called for C23H26N207: C, 62.43; H, 5.92; N, 6.33.

Found: C, 62.12; H, 5.93; N, 6.23.

1-Benzyl (LS)-2-((S)-2-benzyloxycarbonylamino-3-phnlrpoymioetnoe

(Z-L-Phe-L-Glu(OBzl)-OH, 2.5a): White microcrystals (87%); mp 140-141 oC, [a]D23 = -10.7

(c 2.00, DMF). 1H NMR (CDCl3): 6 1.99 (quintet, J = 7. 1 Hz, 1H), 2. 15-2.20 (m, 1H), 2.35-2.49

(m, 2H), 3.05 (d, J = 6.3 Hz, 2H), 4.48-4.55 (m, 2H), 5.02 (d, J= 12.9 Hz, 1H, A part of AB

system), 5.06 (d, J = 12.6 Hz, 1H, B part of AB system), 5.08 (s, 2H), 5.47 (d, J = 8.0 Hz, 1H),

6.97 (d, J= 6.9 Hz, 1H), 7. 12-7.36 (m, 15H), 12.85 (br s, 1H). 13C NMR (CDCl3): 6 26.6, 30.1i,

38.3, 51.8, 56.0, 66.6, 67.1, 127.0, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 129.3,

135.5, 136.0, 156.2, 171.7, 173.0, 174.0. Anal. called for C29H30N207: C, 67.17; H, 5.83; N, 5.40.

Found: C, 66.83; H, 5.81; N, 5.22.

1-Benzyl (,S)-2-((R)-2-benzyloxycarbonylamino-3-phnlrpoymioetnoe

(Z-D-Phe-L-Glu(OBzl)-OH, 2.5b): White microcrystals (91%); mp 119-120 oC, [a]D23 = -5.4 (c

1.66, DMF). 1H NMR (DMSO-d6) (two rotameric forms): 6 1.82-1.91 (m, 1H), 1.96-2.09 (m,

1H), 2.30 (t, J= 7.2 Hz, 1H), 2.43-2.46 (m, 1H), 2.69-2.79 (m, 1H), 2.92-3.04 (m, 1H), 4.26-4.35

(m, 2H), 4.99 (d, J = 12.4 Hz, 1H, A part of AB system), 5.02 (d, J= 12.6 Hz, 1H, B part of AB

system), 5.08 (d, J = 12.4 Hz, 1H, A part of AB system), 5.11 (d, J = 12.4 Hz, 1H, B part of AB

system), 7.12-7.36 (m, 15H), 7.51 (d, J= 8.8 Hz, 1H), 8.31-8.37 (m, 1H), 12.83 (br s, 1H). 13C

NMR (CDCl3) (two rotameric forms): 6 26.3, 26.4, 29.8, 30.0, 37.3, 51.0, 51.1, 56.0, 65.2, 65.5,

126.3, 127.4, 127.5, 127.7, 127.9, 128.0, 128.3, 128.4, 129.2, 136.1, 136.9, 137.0, 137.9, 138.1,










155.7, 155.9, 171.5, 171.8, 172.0, 172.1, 172.9, 173.0. Anal. called for C29H30N207: C, 67.17; H,

5.83; N, 5.40. Found: C, 66.86; H, 5.83; N, 5.21.

1-Benzyl (LS)-2-((S)-2-benzyloxycarbonylamino-4-

methylsulfanylbutyrylamino)pentanoate (Z-L-Met-L-Glu(OBzl)-OH, 2.5c): White

microcrystals (87%); mp 98-99 oC, [a]D23 = -7.1 (c 2.0, DMF). 1H NMR (CDCl3): 6 1.92-1.97

(m, 2H), 2.06 (s, 3H), 2.22-2.27 (m, 2H), 2.46-2.57 (m, 4H), 4.41 (q, J= 7.4 Hz, 1H), 4.54-4.58

(m, 1H), 5.07-5.13 (m, 4H), 5.64 (d, J= 7.9 Hz, 1H), 7. 17 (d, J= 7.4 Hz, 1H), 7.26-7.33 (m,

10H), 10.10 (br s, 1H). 13C NMR (CDCl3): 6 15.1, 26.5, 29.7, 30.2, 31.5, 51.8, 53.6, 66.7, 67.2,

128.0, 128.2, 128.3, 128.4, 128.5, 128.6, 135.5, 136.0, 156.2, 172.0, 173.0, 174.2. Anal. called for

C25H30N207S: C, 59.75; H, 6.02; N, 5.57. Found: C, 59.38; H, 6.02; N, 5.34.

1-Benzyl (LS)-2-(2-benzyloxycarbonylamino-4-

methylsulfanylbutyrylamino)pentanoate (Z-DL-Met-L-Glu(OBzl)-OH, 2.5c+c'): White

microcrystals (92%); mp 72-73 oC, [a]D23 = -5.3 (c 1.66, DMF). 1H NMR (CDCl3): 6 1.88-1.97

(m, 2H), 2.03 (s, 3H), 2.10-2.23 (m, 2H), 2.46-2.54 (m, 4H), 4.40-4.45 (m, 1H), 4.54-4.59 (m,

1H), 5.02-5.13 (m, 4H), 5.82 (d, J= 8.5 Hz, 0.5H), 5.95 (d, J= 8.5 Hz, 0.5H), 7.30-7.32 (m,

10H), 7.36 (d, J= 8.0 Hz, 1H), 8.40 (br s, 1H). 13C NMR (CDCl3): 6 14.9, 15.1, 26.4, 29.6, 29.7,

29.8, 30.1, 31.4, 31.7, 51.5, 52.8, 53.5, 53.7, 66.5, 66.9, 126.9, 127.8, 128.0, 128.1, 128.3, 128.4,

135.4, 135.9, 156.1, 156.2, 156.5, 172.1, 172.7, 172.8, 173.8, 174.9. Anal. called for

C25H30N207S: C, 59.75; H, 6.02; N, 5.57. Found: C, 59.36; H, 6.00; N, 5.19.

(LS)-2-((LS)-2-Benzyloxycarbonylaminopropoymioenndoi acid (Z-L-Ala-L-

Glu-OH, 2.7a): White microcrystals (65%); mp 121-123 oC, [a]D23 = +0.7 (c 1.66, DMF). 1H

NMR (DMSO-d6): 6 1.20 (d, J= 6.9 Hz, 3H), 1.71-1.84 (m, 1H), 1.95-2.01 (m, 1H), 2.30 (t, J=

7.6 Hz, 2H), 4.07 (q, J= 7.1 Hz, 1H), 4.17-4.25 (m, 1H), 5.01 (s, 2H), 7.30-7.36 (m, 5H), 7.45










(d, J = 7.7 Hz, 1H), 8.10 (d, J = 7.7 Hz, 1H), 12.41 (s, 2H). 13C NMR (DMSO-d6): 6 8.1, 26.4,

30.0, 49.8, 51.1, 65.4, 127.3, 127.8, 128.4, 137.0, 155.7, 172.7, 173.3, 173.8. Anal. called for

C16H20N207: C, 54.54; H, 5.72; N, 7.95. Found: C, 54.21; H, 5.69; N, 7.81.

(LS)-2-((LS)-2-Benzyloxycarbonylamino-3-phnlrpoyaino)pentanedioic acid (Z-

L-Phe-L-Glu-OH, 2.7b): White microcrystals (86%); mp 154-156 oC, [a]D23 = -12.8 (c 1.66,

DMF). 1H NMR (DMSO-d6): 6 1.76-1.88 (m, 1H), 1.99-2.06 (m, 1H), 2.28-2.36 (m, 2H), 2.68-

2.77 (m, 1H), 2.99-3.04 (m, 1H), 4.22-4.32 (m, 2 H), 4.94 (s, 2H), 7.05-7.32 (m, 10H), 7.52 (d, J

= 8.8 Hz, 1H), 8.33 (d, J= 7.7 Hz, 1H), 12.47 (s, 2H). 13C NMR (DMSO-d6): 6 26.6, 30.2, 37.6,

51.5, 56.2, 65.5, 126.5, 127.7, 127, 9, 128.3, 128.5, 129.4, 137.2, 138.3, 156.1, 172.1, 173.5,

174.1. Anal. called for C22H24N207: C, 61.67; H, 5.65; N, 6.54. Found: C, 61.76; H, 5.57; N, 6.56.

(LS)-2-((LS)-2-Benzyloxycarbonylam ino-4-methylsulfanylbutyrylamino)pentanedii

acid (Z-L-Met-L-Glu-OH, 2.7c): White microcrystals (94%); mp 119-120 oC, [a]D23 = -8.2 (c

1.66, DMF). 1H NMR (DMSO-d6): 6 1.75-1.99 (m, 4H), 2.02 (s, 3H), 2.30 (t, J= 7.2 Hz, 2H),

2.39-2.47 (m, 2H), 4.01-4.24 (m, 2H), 5.02 (s, 2H), 7.30-7.36 (m, 5H), 7.51 (d, J= 8.0, 1H), 8.20

(d, J= 7.7 Hz, 1H), 12.42 (br s, 2H). 13C NMR (DMSO-d6): 6 14.8, 26.3, 29.7, 30.1i, 31.9, 51.3,

53.8, 65.6, 127.9, 128.0, 128.5, 137.1, 156.1, 171.8, 173.3, 173.9. Anal. called for C18H24N207S:

C, 52.42; H, 5.86; N, 6.79. Found: C, 52.47; H, 5.89; N, 6.69.

(LS)-2-((LS)-2-Benzyloxycarbonylamino-3-(Hidl3ypriolmnoetndoi

acid (Z-L-Trp-L-Glu-OH, 2.7d): Yellow microcrystals (90%); mp 69-71 oC, [a]D23 = -24.0 (c

1.66, DMF). 1H NMR (DMSO-d6): 6 1.81-1.91 (m, 1H), 1.98-2.06 (m,1H), 2.33 (t, J= 7.1 Hz, 2

H), 2.87-2.95 (m, 1H), 3.10-3.15 (m, 1H), 4.26-4.38 (m, 2H), 5.01 (s, 2H), 7.00 (t, J= 7.4 Hz, 1

H), 7.07 (t, J= 7.4 Hz, 1H), 7.18-7.41 (m, 8H) 7.68 (d, J= 7.7 Hz, 1H), 8.35 (d, J= 7.4 Hz,

1H), 10.82 (s, 1H), 12.44 ( br s, 2H) 13C NMR (DMSO-d6): 6 26.4, 27.8, 30.1, 51.3, 55.3, 65.3,









110.2, 111.4, 118.2, 118.6, 120.9, 124.0, 127.3, 127.6, 127.7, 128.4, 136.1, 137.0, 155.9, 172.2,

173.3, 173.9 Anal. called for C2 H25N307: C, 61.66; H, 5.39; N, 8.99. Found: C, 61.72; H, 5.73;

N, 8.41.

(LS)-2-((LS)-2-Benzyloxycarbonylamino-3-phnlrpoyaioscii acid (Z-L-

Phe-L-Asp-OH, 2.7e): White microcrystals (85%); mp 179-181 oC, [a]D23 = -1.66 (c 1.66,

DMF). 1H NMR (DMSO-d6): 6 2.60-2.71 (m, 3H), 2.99-3.03 (m, 1H), 4.30 (apparent t, J= 7.6

Hz, 1H), 4.55-459 (m, 1H), 4.93 (s, 2H), 7.14-7.31 (m, 10 H), 7.53 (d, J= 8.5 Hz, 1H), 8.42 (d, J

= 8.0 Hz, 1H), 12.64 (br s, 2H). 13C NMR (DMSO-d6): 6 36.0, 37.5, 48.7, 56.0, 65.2, 126.3,

127.4, 127.7, 128.1, 128.3, 129.3, 137.0, 138.2, 155.9, 171.6, 171.7, 172.4. Anal. called for

C21H22N207: C, 60.86; H, 5.35; N, 6.76. Found: C, 61.07; H, 5.75; N, 6.53.

2.4.2 General Procedure for the Preparation ofN-(Z- and Fmoc-Aminoacyl)benzotriazoles
2.8 a,b and 2.11 a,b.

Thionyl chloride (5 mmol) was added to a solution of 1H-benzotriazole (20 mmol) in dry

CH2 12 (15 mL) at 20 oC, and the reaction mixture was stirred for 20 min at 40-50 oC. To the

reaction mixture at 0 oC, the N-protected amino acid (5 mmol) dissolved in dry CH2 12 (5 mL)

was added dropwise, and was then stirred for 2 hours at 20 oC. The white precipitate formed

during the reaction was filtered off, and the filtrate was concentrated under reduced pressure. The

residue was diluted with ethyl acetate (100 mL) and the solution was washed with 4N HCI

solution (50 mLx3) or saturated Na2CO3 Solution (50 mLx3), saturated NaCl solution (50 mL),

and dried over anhydrous MgSO4. Removing solvents under reduced pressure gave products

2.8a,b and 2.11a,b which were recrystallized from CHCl3/hexanes, unless specified otherwise.

Compounds 2.8a,b and 2.11a,b are novel and fully characterized by NMR and elemental

analy si s.










(LS)-Benzyl-3-(((9H-fluoren-9-yl)methoxy)croymi)-(1123beztiol-

yl)-4-oxobutanoate (Fmoc-L-Asp(OBzl)-Bt, 2.8a): White microcrystals (87%); mp 91-92 oC,

[a]D23 = -26.5 (c 2.58, DMF). 1H NMR (DMSO-d6): 6 3.03 (dd, J= 16.8, 8.8 Hz, 1H), 3.30 (dd, J

= 16.8, 5.1 Hz, 1H), 4.24 (t, J= 6.3 Hz, 1H), 4.37 (d, J= 6.9 Hz, 2H), 5.14 (s, 2H), 5.87-5.92 (m,

1H), 7.29-7.44 (m, 9H), 7.65 (t, J= 7.5 Hz, 1H) 7.71 (d, J= 7.4 Hz, 2H), 7.81 (t, J= 7.5 Hz,

1H), 7.90 (d, J= 7.4 Hz, 2H), 8.23 (d, J= 8. 1 Hz, 1H), 8.30 (d, J= 8.2 Hz, 1H), 8.46 (d, J= 7. 1

Hz, 1H). 13C NMR (DMSO-d6): 6 35.3, 46.6, 51.0, 66.0, 66.2, 114.0, 120.2, 120.3, 125.2, 126.8,

127.1, 127.7, 128.0, 128.1, 128.4, 130.7, 131.2, 135.7, 140.8, 143.7, 145.4, 156.0, 169.5, 170.3.

Anal. called for C32H26N405: C, 70.32; H, 4.79; N, 10.25. Found: C, 70.08; H, 5.14; N, 9.47.

(LS)-Benzyl-4-(((9H-fluoren-9-yl)methoxy)croymi)-(1123beztiol-

yl)-5-oxopentanoate (Fmoc-L-Glu(OBzl)-Bt, 2.8b): White microcrystals (83%); mp 96-97 oC,

[a]D23 = -22.5 (c 2.08, DMF). 1H NMR (DMSO-d6): 6 2. 15-2.27 (m, 1H), 2.32-2.40 (m, 1H),

2.68 (t, J= 7. 1 Hz, 2H), 4.27 (t, J= 6.5 Hz, 1H), 4.37 (d, J= 6.9 Hz 2H), 5.03-5.13 (m, 2H),

5.54-5.63 (m, 1H), 7.30-7.47 (m, 9H), 7.66 (t, J= 7.7 Hz, 1H), 7.75 (d, J= 7.3 Hz, 2H), 7.84 (t, J

= 7.4 Hz, 1H), 7.92 (d, J= 7.3 Hz, 2H), 8.26 (d, J = 8.2 Hz, 1H), 8.32 (d, J = 8.2 Hz, 1H), 8.39

(d, J= 7.0 Hz, 1H). 13C NMR (DMSO-d6): 6 25.9, 29.9, 46.6, 53.6, 65.6, 65.9, 114.1i, 120.1i,

120.2, 125.2, 126.8, 127.1, 127.7, 127.9, 128.0, 128.4, 130.7, 131.1, 136.0, 140.8, 143.7, 145.4,

156.3, 171.5, 171.9. Anal. called for C33H28N405: C, 70.70; H, 5.03; N, 9.99. Found: C, 70.35; H,

5.09; N, 9.91.

Benzyl (S)-4-benzotriazol-1-yl-2-benzyloxycarbonyaio4oouaot (Z-L-Asp-

OBzl-Bt, 2.11a): White microcrystals (91%), mp 97-99 oC, [a]D23 = -22.5 (c 2.08, DMF). 1H

NMR (CDCl3): 6 4.01 (dd, J= 18.1i, 4.7 Hz, 1H), 4. 14 (dd, J= 18.1i, 4.6 Hz, 1H), 4.96-5.03 (m,

1H), 5.11 (s, 2H), 5.20 (s, 2H), 5.90 (d, J= 8.2 Hz, 1H), 7.21-7.32 (m, 10H), 7.52 (t, J= 7.5 Hz,










1H), 7.65 (t, J= 7.7 Hz, 1H), 8.12 (d, J= 8.2 Hz, 1H), 8. 16 (d, J= 8.2 Hz, 1H). 13C M

(CDCl3): 6 38.3, 50.2, 67.3, 67.9, 114.2, 120.4, 126.5, 128.2, 128.3, 128.5, 128.5, 128.6, 130.6,

130.7, 134.8, 135.9, 146.1, 155.9, 169.8, 170.3. Anal. called for C25H22N405: C, 65.49; H, 4.84;

N, 12.12. Found: C, 65.71; H, 4.80; N, 12.15.

Benzyl (S)-5-Benzotriazol-1-yl-2-benzyloxycarbonlmo-oxptnoe (Z-L-

Glu-OBzl-Bt, 2.11b): White microcrystals (81%), mp 50.0-52.0 oC, [a]D23 = -20.7 (c 1.66,

DMF). 1H NMR (CDCl3): 6 2.23-2.30 (m, 1H), 2.45-2.50 (m, 1H), 3.37-3.60 (m, 2H), 4.60-4.70

(m, 1H), 5.01-5.20 (m, 4H), 5.79 (d, J= 8.0 Hz, 1H), 7.22-7.31 (m, 10 H), 7.46 (t, J= 7.9 Hz,

1H), 7.60 (t, J= 7.6 Hz, 1H), 8.06 (d, J= 8.2 Hz, 1H), 8.20 (d, J= 8. 1 Hz, 1H). 13C M

(CDCl3): 21.7, 31.0, 58.8, 67.5, 68.3, 114.3, 120.2, 126.2, 128.2, 128.3, 128.4, 128.5, 128.6,

128.7, 130.5, 131.0, 135.0, 136.1, 146.1, 156.1, 171.4, 171.7. Anal. called for C26H24N405: C,

66.09; H, 5.12; N, 11.86. Found: C, 65.99; H, 5.14; N, 11.65.

2.4.3 General Procedure for the Preparation of Dipeptides 2.10a-c, 2.12a,b and 2.12b+b'

Free amino acids (2.9a-f) (5 mmol) were added to a solution of Et3N (10 mmol) in CH3CN

(15 mL) and H20 (7 mL) at 25 oC, and the reaction mixture was stirred for 15 min at 25 oC. N-

(Protected-a-aminoacyl)benzotriazoles (2.8a,b and 2.11a,b; 5 mmol) were added to the mixture

with continued stirring for 2 h at 25 oC. About 4N HCI (5 mL) was added to the reaction mixture

and CH3CN was removed under reduced pressure. The residue was dissolved in EtOAc (50 mL),

and the organic extract was washed with 4N HCI (3x15 mL), saturated NaCl (20 mL) and dried

over MgSO4. Evaporation of the solvent gave the desired products (2.10a-c, 2.12a,b, 2.12b+b'),

which were further recrystallized from CH2 2z-hexanes (2.10a-c) and ether-hexanes (2.12a,b,

2.12b+b').

(LS)-2-((LS)-2-(((9H-Fluoren-9-yl)mI1ethoxy)carbonylam ino)-5-(benzyloxy)-5-

oxopentanamido)-3-(1H-indol-3-yl)propanoi acid (Fmoc-L-Glu(OBzl)-L-Trp-OH, 2.10a):










White microcrystals (93%); mp 165-167 oC, [a]D23 = +11.5 (c 2. 16, DMF). 1H NMR (DMSO-

d6): 6 1.81-1.89 (m, 1H), 1.95-2.03 (m, 1H), 2.44 (t, J= 7.7 Hz, 2H), 3.10 (dd, J= 14.6, 8.0 Hz,

1H), 3.21 (dd, J= 14.7, 5.0 Hz, 1H), 4. 10-4.30 (m, 4H), 4.48-4.55 (m, 1H), 5.11 (s, 2H), 6.99 (t,

J= 7.5 Hz, 1H), 7.08 (t, J= 7. 1 Hz, 1H), 7.20 (s, 1H), 7.28-7.43 (m, 10H), 7.55 (d, J= 7.7 Hz,

1H), 7.60 (d, J= 8.2 Hz, 1H), 7.74 (t, J= 6.9 Hz, 2H), 7.88 (d, J= 7.4 Hz, 2H), 8.23 (d, J= 7.4

Hz, 1H), 10.90 (s, 1H), 12.75 (s, 1H). 13C NMR (DMSO-d6): 6 27.0, 27.5, 30.2, 46.7, 53.0, 53.6,

65.5, 65.7, 109.6, 111.4, 118.2, 118.4, 120.1, 121.0, 123.7, 125.4, 127.1, 127.3, 127.7, 128.0,

128.1, 128.5, 136.1, 136.3, 140.8, 143.8, 144.0, 155.9, 171.5, 172.3, 173.3. Anal. called for

C38H35N307: C, 70.68; H, 5.46; N, 6.51. Found: C, 70.43; H, 5.48; N, 6.47.

(LS)-2-((LS)-2-(((9H-Fluoren-9-yl)mI1ethoxy)carbonylam ino)-4-(benzyloxy)-4-

oxobutanamido)-3-(1H-indol-3-yl)propanoic acid (Fmoc-L-Asp(OBzl)-L-Trp-OH, 2.10b):

White microcrystals (94%); mp 136-137 oC, [a]D23 = -4.6 (c 2.16, DMF). 1H NMR (DMSO-d6):

6 2.66 (dd, J= 16.3, 9.6 Hz, 1H), 2.84 (dd, J= 16.5, 4.2 Hz, 1H), 3.10 (dd, J= 15.0, 8.1 Hz, 1H),

3.20 (dd, J= 14.8, 4.8 Hz, 1H), 4.21-4.30 (m, 3H), 4.45-4.57 (m, 2H), 5.11 (s, 2H), 6.99 (t, J=

7.0 Hz, 1H), 7.07 (t, J= 7. 1 Hz, 1H), 7. 18 (s, 1H), 7.28-7.45 (m, 10H), 7.54 (d, J= 7.7 Hz, 1H),

7.70-7.77 (m, 3H), 7.89 (d, J= 7.6 Hz, 2H), 8.18 (d, J= 7.4 H, 1H), 10.91 (s, 1H), 12.75 (s, 1H).

13C NMR (DMSO-d6): 6 26.9, 36.3, 46.6, 51.1, 53.1, 65.7, 65.8, 109.5, 111.4, 118.2, 118.5,

120.2, 121.0, 123.7, 125.4, 127.1, 127.2, 127.7, 127.9, 128.0, 128.4, 136.0, 136.1, 140.8, 143.9,

155.9, 170.1, 170.8, 173.2. Anal. called for C37H33N307: C, 70.35; H, 5.27; N, 6.65. Found: C,

70.02; H, 5.29; N, 6.65.

(S)-2- [(S)-4-Benzyl oxycarbo nyl-2-(9H-fluo ren-9-

ylm ethoxycarbonylam ino)butyrylam ino] -4-m ethyls ulfanylbutyric acid (Fm oc-L-

Glu(OBzl)-L-Met-OH, 2.10c): White microcrystals (91%); mp 96-97 oC, [a]D23 = -7.6 (c 2.16,










DMF). 1H NMR (DMSO-d6): 6 1.87-2.10 (m, 7H), 2.47-2.53 (m, 4H), 4. 10-4.46 (m, 5H), 5.13

(s, 2H), 7.30-7.46 (m, 9H), 7.66 (d, J= 8. 1 Hz, 1H), 7.76 (t, J= 6.9 Hz, 1H), 7.89 (d, J= 7.4 Hz,

2H), 8.32 (d, J= 7.6 Hz, 1H), 12.76 (s, 1H). 13C NMR (DMSO-d6): 8 14.6, 27.4, 29.7, 30.2, 30.7,

46.8, 51.1, 53.7, 65.6, 65.8, 120.2, 125.4, 127.1, 127.7, 128.0, 128.1, 128.5, 136.3, 140.8, 143.8,

144.0, 156.0, 171.6, 172.4, 173.3. Anal. called for C32H34N207S: C, 65.07; H, 5.80; N, 4.74.

Found: C, 65.25; H, 5.80; N, 4.89.

Benzyl (S)-2-benzyloxycarbonylamino-N- [(S)-1-carboxy-2-(1H-indol-3-

yl)ethylamino]-4-oxobutanoate (Z-L-Asp-OBzl-L-Trp-OH, 2.12a): White microcrystals

(92%); mp 98-100 oC, [a]D23 = -7.1 (c 2.08, DMF). 1H NMR (DMSO-d6): 6 2.58-2.71 (m, 3H),

3.01 (dd, J= 18.1i, 8.1 Hz, 1H), 3.14 (dd, J= 18.1, 4.6 Hz, 1H), 4.42-4.54 (m, 2H), 5.03 (s, 2H),

5.10 (s, 2H), 6.98 (t, J= 7.4 Hz, 1H), 7.06 (t, J= 7.4 Hz, 1H), 7.14 (s, 1H), 7.26-7.38 (m, 10H),

7.52 (d, J= 7.8 Hz, 1H), 7.63 (d, J= 8.2 Hz, 1H), 8.33 (d, J= 7.7 Hz, 1H), 10.04 (s, 1H), 10.85

(br s, 1H). 13C NMR (DMSO-d6): 6 27.2, 36.6, 50.7, 53.2, 65.6, 66.1, 109.7, 111.4, 118.2, 118.4,

120.9, 123.6, 127.2, 127.7, 127.8, 127.9, 128.0, 128.3, 128.4, 135.9, 136.1, 136.8, 155.8, 168.8,

171.4, 173.3. Anal. called for C30H29N307: C, 66.29; H, 5.38; N, 7.73. Found: C, 65.96; H, 5.36;

N, 7.51.

Benzyl (S)-2-benzyloxycarbonylamino-N-((S)-1-caroy2pelthlmn)4

oxobutanoate (Z-L-Asp-OBzl-L-Phe-OH, 2.12b): White microcrystals (91%); mp 138-140 oC,

[a]D23 = +0.08 (c 2.08, DMF). 1H NMR (DMSO-d6): 6 2.58-2.90 (m, 3H), 3.01 (dd, J= 15.4, 4.6

Hz, 1H), 4.43- (quintet, J= 8.0 Hz, 2H), 5.03 (s, 2H), 5.11 (s, 2H), 7.16-7.34 (m, 15H), 7.60 (d, J

= 8.2 Hz, 1H), 8.33 (d, J= 8.0 Hz, 1H), 12.78 (br s, 1H). 13C NMR (DMSO-d6): 6 30.7, 36.8,

50.7, 53.7, 65.6, 66.1, 126.4, 127.7. 127.8, 127.9, 128.0, 128.2, 128.4, 128.5, 129.1, 135.9, 136.8,










137.5, 155.9, 168.9, 171.4, 172.9. Anal. called for C28H28N207: C, 66.66; H, 5.59; N, 5.55.

Found: C, 66.67; H, 5.58; N, 5.48.

Benzyl (S)-2-benzyloxycarbonylamino-N-(1-carboxy2pelthlmn)4

oxobutanoate (Z-L-Asp-OBzl-DL-Phe-OH, 2.12b+b'): White microcrystals (91%); mp 116-

118 oC, [a]D23 = -18.6 (c 2.08, DMF). 1H NMR (DMSO-d6): 6 2.58-2.88 (m, 3H), 3.01 (dd, J =

17.4, 5.2 Hz, 1H), 4.47 (quintet, J = 6.9 Hz, 2H), 5.03 (d, J = 12.6 Hz, 1H, A part of AB system),

5.08 (d, J= 12.6 Hz, 1H, B part of AB system), 5.13 (s, 2H), 7. 17-7.35 (m, 15H), 7.60 (d, J = 8.1

Hz, 0.5H), 7.85 (d, J= 8.2 Hz, 0.5H), 8.35 (d, J= 8.0 Hz, 1H), 12.78 (br s, 1H). 13C NMR

(DMSO-d6): 8 30.7, 35,9, 36.6, 36.9, 50.6, 53.7, 65.6, 66.1, 66.3, 126.5, 127.6, 127.7, 127.8,

127.9, 128.0, 128.1, 128.2, 128.4, 135.8, 135.9, 136.9, 137.5, 155.9, 156.0, 168.8, 171.1, 171.4,

171.5, 172.9. Anal. called for C28H28N207: C, 66.66; H, 5.59; N, 5.55. Found: C, 66.31; H, 5.53;

N, 5.58.

2.4.4 General Procedure for the Preparation of N"-Protected-Dipeptidoylbenzotriazoles
2.13a-c and 2.13a+a'

The preparation of 2.13a-c, 2.13a+a' was performed at -15 OC under similar conditions as

those described for 2.8 and 2.11.

(LS)-Benzyl 5-(1H-1,2,3-benzotriazol-1-yl)-4-((S)-2-

(benzyloxycarbonylamino)propanamido)-5-oxpnnot (Z-L-Ala-L-Glu(OBzl)-Bt,

2.13a): White microcrystals (93%); mp 133-135 oC, [a]D23 = -17.9 (c 2.08, DMF). 1H NMR

(DMSO-d6): 8 1.26 (d, J= 7.0 Hz, 3H), 1.83-2.42 (m, 2H), 2.47-2.52 (m, 1H), 2.68 (t, J= 7.4

Hz, 1H), 4. 17 (dt, J= 19.6, 7.4 Hz, 1H), 4.98-5.12 (m, 4H), 5.66-5.72 (m, 1H), 7.28-7.42 (m,

10H), 7.50-7.57 (m, 1H), 7.64 (t, J= 7.9 Hz, 1H), 7.80 (t, J= 7.5 Hz, 1H), 8.22 (d, J= 7.9 Hz,

1H), 8.29 (d, J= 8.2 Hz, 1H), 8.85 (d, J= 6.3 Hz, 1H). 13C NMR (DMSO-d6): 8 17.9, 25.8, 29.7,

49.6, 52.0, 65.4, 65.6, 114.1, 120.2, 126.7, 127.8, 127.9, 128.0, 128.3, 128.4, 128.5, 130.7, 131.0,










136.0, 137.0, 145.3, 155.7, 170.8, 171.9, 173.2. Anal. called for C29H29N5O6: C, 64.08; H, 5.38;

N, 12.88. Found: C, 63.80; H, 5.38; N, 12.29.

(LS)-Benzyl 5-(1H-1,2,3-benzotriazol-1-yl)-4-((LS)-2-bnyoyroylmo)3

phenylpropanamido)-5-oxopentanoate (Z-L-Phe-L-Glu(OBzl)-Bt, 2.13b): White

microcrystals (92%); mp 90-92 oC, [a]D23 = -24.7 (c 1.91, DMF). 1H NMR (DMSO-d6): 6 2.20-

2.40 (m, 2H), 2.63-2.80 (m, 3H), 3 .00-306 (m, 1H), 4.30-4.44 (m, 1H), 4.94 (s, 2H), 5.05 (d, J=

14.6 Hz, 1H, A part of AB system), 5.10 (d, J = 14.9 Hz, 1H, B part of AB system), 5.67-5.74

(m, 1H), 7. 17-7.40 (m, 15H), 7.54-7.67 (m, 2H), 7.82 (t, J= 7.5 Hz, 1H), 8.22 (d, J= 8.0 Hz,

1H), 8.30 (d, J= 8.2 Hz, 1H), 9.00 (d, J= 6.3 Hz, 1H). 13C NMR (DMSO-d6): 6 25.9, 29.8, 37.3,

52.1, 55.8, 65.3, 65.7, 114.1, 120.2, 126.3, 126.7, 127.5, 127.7, 128.0, 128.1, 128.3, 128.4, 129.2,

130.7, 131.1, 136.0, 136.9, 137.9, 145.4, 155.9, 170.8, 172.0, 172.4, 173.1. Anal. called for

C35H33N5O6: C, 67.84; H, 5.37; N, 11.30. Found: C, 67.72; H, 5.43; N, 11.09.

(LS)-Benzyl 4-(1H-1,2,3-benzotriazol-1-yl)-3-((LS)--bnylxcroylmn)3

phenylpropanamido)-4-oxobutanoate (Z-L-Phe-L-Asp(OBzl)-Bt, 2.13c): White microcrystals

(89%); mp 110-113 oC, [a]D23 = -20.7 (c 2.75, DMF). 1H NMR (DMSO-d6): 6 2.71-2.84 (m, 1H),

2.97-3.10 (m, 2H), 3.34 (dd, J= 17.0, 5.9 Hz, 1H), 4.32-4.40 (m, 1H), 4.90 (d, J= 6.7 Hz, 1H, A

part of AB system), 5.10 (d, J= 10.6 Hz, 1H, B part of AB system), 5.15 (s, 2H), 6.03 (dd, J=

13.5, 6.6 Hz, 1H), 7.14-7.39 (m, 15H), 7.56-7.67 (m, 2H), 7.82 (t, J= 8.1 Hz, 1H), 8.22 (d, J=

8.2 Hz, 1H), 8.30 (d, J= 8.2 Hz, 1H), 9.17 (d, J= 6.6 Hz, 1H). 13C NMR (DMSO-d6): 6 35.3,

37.4, 49.6, 55.9, 65.3, 66.3, 114.0, 120.3, 126.3, 126.8, 127.4, 127.5, 127.7, 128.0, 128.1, 128.2,

128.3, 128.4, 129.2, 130.7, 131.1, 135.6, 136.0, 137.0, 137.9, 145.4, 155.9, 169.5, 169.7, 172.1.

Anal. called for C34H31N5O6: C, 67.43; H, 5.16; N, 11.56. Found: C, 67.21; H, 5.16; N, 11.53.










Benzyl (S)-5-Benzotriazol-1-yl-4-(2-benzyloxycaroymipopn id)5

oxopentanoate (Z-DL-Ala-L-Glu(OBzl)-Bt, 2.13a+a'): White microcrystals (91%); mp 79-81

oC, [a]D23 = -22.4 (c 1.66, DMF). 1H NMR (CDCl3): 6 1.40 (d, J= 6.9 Hz, 3H), 2.27-2.34 (m,

1H), 2.47-2.68 (m, 3 H), 4.30-4.40 (m, 1H), 5.07 (s, 2H), 5.12 (s, 2H), 5.31 (d, J= 6.6 Hz, 1H)

5.93 (br s, 1H), 7.25-7.42 (m, 11H), 7.52 (t, J= 7.6 Hz, 1H), 7.65 (t, J= 6.9 Hz, 1H), 8.13 (d, J=

8.2 Hz, 1H), 8.19-8.24 (m, 1H). 13C NMR (CDCl3): 6 18.4, 18.6, 26.7, 27.0, 30.2, 30.3, 50.3,

51.6, 52.7, 66.5, 66.8, 67.1, 114.3, 120.3, 125.8, 126.5, 127.9, 128.0, 128.1, 128.2, 128.3, 128.5,

128.6, 128.7, 130.7, 131.0, 135.3, 135.5, 136.0, 145.9, 156.0, 156.1, 170.3, 170.4, 172.8, 173.6,

173.7. Anal. called for C29H29N5O6: C, 64.08; H, 5.38; N, 12.88. Found: C, 64.37; H, 5.28; N,

12.49.

2.4.5 General Procedure for the Preparation of Tripeptides 2.14a,b, 2.14a' and 2.14a+a"

Unprotected amino acids (2.9c,e and f; 1 mmol) were dissolved in a mixture of acetonitrile

(10 mL), water (5 mL), and triethylamine (2.5 mmol). N"-protected-dipeptidoylbenzotriazoles

2.13a,b, 2.13a+a' (1 mmol) were added to the reaction mixture at -15oC and the stirring

continued for additional 2 hours. Resulting solution was acidified with (1 mL) 4N HCI and

acetonitrile was removed under reduced pressure at room temperature. The residue was dissolved

in EtOAc (50 mL) and was then washed 3 times with 4N HCI (3 x 15 mL) followed by saturated

NaCl (20 mL). The organic layer was dried over magnesium sulfate and the solvent was removed

under reduced pressure yielding the tripeptides 2.14a,b, 2.14a' and 2.14a+a". Further

purification was performed by recrystallization from CH2 2z-hexanes for elemental analysis.

Benzyl (S)-4-((S)-2-benzyloxycarbonylaminopropanaio--()1croy2

phenylethylamino)-5-oxopentanoate (Z-L-Ala-Glu(OBzl)-L-Phe-OH, 2.14a): White

microcrystals (73%); mp 74-76 oC, [a]D23 = -2.9 (c 1.91, DMF.). 1H NMR (DMSO-d6): 6 1.15 (d,

J= 6.3 Hz, 3H), 1.70-2.00 (m, 2H), 2.32-2.45 (m, 2H), 2.86-2.93 (m, 1H), 3.05 (dd, J= 13.4, 4.2










Hz, 1H), 4.00-4.10 (m, 1H), 4.25-4.45 (m, 2H), 4.94-5.08 (m, 4H), 7.06-7.35 (m, 15H), 7.48 (d, J

= 7.7 Hz, 1H), 7.92 (d, J= 7.7 Hz, 1H), 8. 17 (d, J= 7.7 Hz, 1H), 12.75 (br s, 1H). 13C NMR

(DMSO-d6): 8 18.1, 26.3, 30.1, 36.5, 49.8, 51.0, 53.5, 65.4, 65.5, 126.5, 127.8, 127.9, 128.0,

128.2, 128.3, 128.4, 128.5, 129.1, 136.2, 137.0, 137.4, 155.7, 172.2, 172.7, 172.8, 173.1. Anal.

called for C32H35N30s: C, 65.18; H, 5.98; N, 7.13. Found: C, 64.86; H, 6.03; N, 7.18.

Benzyl (S)-4-((LS)-2-benzyloxycarbonylaminopropnmio-(R)1crxy2

phenylethylamino)-5-oxopentanoate (Z-L-Ala-L-Glu(OBzl)-D-Phe-OH, 2.14a'): White

microcrystals (83%); mp 153-155 oC, [a]D23 = +5.5 (c 1.91, DMF.). 1H NMR (DMSO-d6): 8 1.15

(d, J= 6.6 Hz, 3H), 1.59-1.65 (m, 1H), 1.70-1.78 (m, 1H), 1.93-2.18 (m, 2H), 2.29-2.34 (m, 1H),

2.81 (dd, J= 13.3, 10.5 Hz, 1H) 4.04 (quintet, J= 7.4 Hz, 1H), 4.28-4.35 (m, 1H), 4.43-4.50 (m,

1H), 4.96 (d, J= 13.3 Hz, 1H, A part of AB system), 5.01 (d, J= 13.3 Hz, 1H, B part of AB

system), 5.06 (s, 2H), 7.06-7.08 (m, 1H), 7. 13-7.36 (m, 14H), 7.49 (d, J= 7.0 Hz, 1H), 7.84 (d, J

= 8.4 Hz, 1H), 8.31 (d, J= 8.4 Hz, 1H), 12.81 (br s, 1H). 13C NMR (DMSO-d6): 8 18.0, 27.6,

29.4, 36.9, 50.1, 51.2, 53.3, 65.4, 65.5, 126.4, 127.7, 127.8, 127.9, 128.0, 128.1, 128.4, 128.5,

129.1, 136.2, 137.0, 137.4, 155.7, 170.5, 172.1, 172.3, 172.8. Anal. called for C32H35N30s: C,

65.18; H, 5.98; N, 7. 13. Found: C, 64.88; H, 6. 11; N, 7.04.

Benzyl (S)-4-((LS)-2-benzyloxycarbonylamino-3-pheypoaaio--()1

carboxyethylamino)-5-oxopentanoate (Z-L-Phe-L-Glu(OBzl)-L-Ala-OH, 2.14b): White

microcrystals (95%); mp 163-165 oC, [a]D23 = -13.0 (c 2.33, DMF). 1H NMR (DMSO-d6): 8 1.15

(d, J= 7.0 Hz, 3H), 1.79-2.00 (m, 2H), 2.40-2.48 (m, 2H), 2.67-2.75 (m, 1H), 2.98 (d, J= 12.0

Hz, 1H), 4.91 (s, 2H), 5.09 (s, 2H), 7.06-7.35 (m, 15H), 7.52 (d, J= 8.4 Hz, 1H), 8. 14 (d, J= 7.0

Hz, 1H), 8.28 (d, J= 6.3 Hz, 1H), 12.51 (br s, 1H). 13C NMR (DMSO-d6): 8 17.0, 27.6, 29.8,

37.3, 47.6, 51.4, 56.1, 65.2, 65.5, 126.3, 127.5, 127.7, 127.9, 128.1, 128.3, 128.4, 128.5, 129.2,










136.2, 137.0, 138.1, 155.9, 170.6, 171.5, 172.4, 174.1. Anal. called for C32H35N30s: C, 65.18; H,

5.78; N, 7.30. Found: C, 64.88; H, 6.26; N, 7.04.

Benzyl (S)-4-(2-benzyloxycarbonylaminopropanamido--()1croy2

phenylethylamino)-4-oxopentanoate (Z-DL-Ala-L-Glu(OBzl)-L-Phe-OH, 2.14a+a"): White

microcrystals (92%); mp 123-125 oC, [a]D23 = -5.5 (c 1.66, DMF). 1H NMR (DMSO-d6): 6 1.17

(m, 3H), 1.61-2. 10 (m, 2H), 2.29-2.45 (m, 2H), 2.82-2.95 (m, 1H), 3 .04-3.11 (m, 1H), 4.06

(quintet, J= 6.9 Hz, 1H), 4.20-4.31 (m, 1H), 4.39-4.42 (m, 1H), 4.94-5.07 (m, 4H), 7.06-7.51

(m, 15H), 7.45 (d, J= 7. 1 Hz, 0.5H), 7.50 (d, J= 6.3 Hz, 0.5H) 7.86-8.01 (m, 1H), 8.13-8.32 (m,

1H), 12.75 (br s, 1H). 13C NMR (DMSO-d6): 18.2, 18.3, 18.7, 26.4, 26.5, 27.6, 27.7, 29.9, 30.0.

30.1, 36.7, 50.0, 50.1, 50.3, 51.1, 51.4, 51.5, 53.6, 53.7, 65.5, 65.6, 126.6, 127.9, 128.1, 128.2,

128.2, 128.3, 128.5, 128.6, 129.2, 136.3, 137.1, 137.2, 137.5, 137.6, 155.8, 155.9, 171.0, 171.1,

172.2, 172.3, 172.4, 172.5, 172.6, 172.8, 172.9, 173.1, 173.2. Anal. called for C32H35N30s: C,

65.18; H, 5.98; N, 7.13. Found: C, 65.23; H, 6.14; N, 7.22.

2.4.6 General Procedure for the Preparation of Tripeptides 16 a,b.

N-Protected dipeptides 2.10a,b were treated with piperidine at room temperature for 2

hours to deprotect Fmoc group according to the reported procedures to provide the free

dipeptides 2.15a,b. Free dipeptides (without significant purification) (1 mmol) were dissolved in

a mixture of acetonitrile (10 mL), water (5 mL), and triethylamine (2.5 mmol). N-(Protected-a-

aminoacyl)benzotriazoles 2.1a,b (1 mmol) were added to the reaction mixture at -15oC and the

stirring continued for additional 2 hours. Resulting solution was acidified with (1 mL) 4N HCI

and acetonitrile was evaporated under reduced pressure at room temperature. The residue was

dissolved in EtOAc (50 mL) and was then washed 3 times with 4N HCI (3 x 15 mL) followed by

saturated NaCl (20 mL). The organic layer was dried over magnesium sulfate and the solvent










was removed under reduced pressure affording the tripeptides 2.16a,b. Further purification was

performed by recrystallization from ether-hexanes for elemental analysis.

Benzyl (S)-4-((LS)-2-benzyloxycarbonylamino-3-pheypoanmd)4[(S)-1-

carb oxy-2-( 1H- in dol-3-yl)ethyl amin o]-5- oxo pentano ate (Z-L-P he-L-Gl u(OBzl)-L-T rp- OH,

2.16a): White microcrystals (84%); mp 109-111 oC, [a]D23 = -3.2 (c 1.66, DMF). 1H NMR

(DMSO-d6): 8 1.80-2.10 (m, 2H), 2.44 (t, J= 8. 1 Hz, 2H), 2.66-2.83 (m, 2H), 2.95-3.12 (m, 2H),

3.21 (dd, J= 14.7, 4.9 Hz, 1H), 4.30-4.51 (m, 3H), 4.93 (s, 2H), 5.10 (s, 2H), 6.96-7.10 (m, 2H),

6.99 (t, J= 7.6 Hz, 1H), 7.07 (t, J= 6.9 Hz, 1H), 7. 16-7.36 (m, 15H), 7.54 (t, J= 7.2 Hz, 2H),

8. 17 (d, J= 7.7 Hz, 1H), 8.28 (d, J= 7. 1 Hz, 1H), 10.89 (br s, 1H). 13C NMR (DMSO-d6): 8

26.9, 27.7, 29.9, 37.3, 51.6, 53.1, 56.1, 65.3, 65.6, 109.6, 111.4, 118.2, 118.5, 121.0, 123.7,

126.3, 127.3, 127.5, 127.6, 127.7 128.0, 128.1, 128.3, 128.5, 129.3, 136.1, 136.3, 137.0, 138.1,

155.9, 171.0, 171.5, 172.4, 173.3. Anal. called for C40H40N40s: C, 68.17; H, 5.72; N, 7.95.

Found: C, 67.84; H, 5.79; N, 7.68.

Benzyl (S)-3-((,S)-2-benzyloxycarbonylam inopropionylam ino)-N-[(S)-1 -carboxy-2-

(1H-indol-3-yl)ethyl] butanoate (Z-L-Ala-L-Asp(OBzl)-L-Trp-OH, 2.16b): White

microcrystals (83%); mp 134-137 oC, [a]D23 = -1.7 (c 1.66, DMF). 1H NMR (DMSO-d6): 8 1.15

(d, J= 7. 1 Hz, 3H), 2.60-2.71 (m, 1H), 2.82 (dd, J= 14.7, 5.2 Hz, 1H), 3.07-3.14 (m, 2H), 4.03

(quintet, J= 7. 1 Hz, 1H), 4.45 (q, J= 6.3 Hz, 1H), 4.70 (q, J= 6.3 Hz, 1H), 4.92-5.10 (m, 4H),

6.97 (t, J= 7.1 Hz, 1H), 7.06 (t, J= 8.0 Hz, 1H), 7.15 (apparent s, 1H), 7.31-7.35 (m, 11H), 7.48-

7.54 (m, 2H), 7.94 (d, J= 7.4 Hz, 1H), 8.26 (d, J= 7.0 Hz, 1H), 10.85 (s, 1H), 12.85 (br s, 1H).

13C NMR (DMSO-d6): 8 18.2, 27.1, 36.3, 49.4, 50.3, 53.2, 65.6, 65.9, 109.6, 111.5, 118.3, 118.6,

121.1, 123.9, 127.7, 127.9, 128.0, 128.1, 128.2, 128.5, 128.6, 136.1, 136.2, 137.1, 155.9, 170.2,










170.3, 172.7, 173.1. Anal. called for C33H34N40s: C, 64.48; H, 5.58; N, 9.12. Found: C, 64.13; H,


5.70; N, 8.78.









CHAPTER 3
EFFICIENT LABELING OF SUGARS TO PROVIDE WATER SOLUBLE FLUORESCENT
TAGS

3.1 Introduction

Carbohydrate moieties have pivotal roles in numerous biological processes including cell-

cell communication,66-68 cell adhesion,69,70 fertilization, protein folding, and microbial

infections.7-7 Glycosylation is the process of adding saccharides to proteins and lipids. Over

50% of all protein sequences in eukaryotic systems sequences are glycosylated.77 Glycosylated

lipids constitute up to 5-10 % of the membrane content in animal cells, and are involved in a

wide array of pathological disorders.'

Oligosaccharides are present in the form of glycoconjugates glycoproteinss and

glycolipids) in all cell walls mediating a variety of events such as inflammation, immunological

response, and metastasis. Separation of glycoproteins has been achieved with modern

chromatographic and electrophoretic methodologies. However, glycoproteins, once isolated are

difficult to study structurally because glycoproteins usually destroy when analyzed with X-ray

crystallography.79 Also, the amount of glycoproteins obtained from biological materials is too

small to study their structures. Therefore, glycoproteins are often cleaved to smaller fragments

such as their glycopeptides or glycans, which are easier to analyze.so Glycopeptides and glycans

are frequently labeled to increase detection sensitivity.8

Fluorescent tagging with organic fluorophores82 Or green fluorescent protein is the

visualization tool most commonly used for analyzing carbohydrate structures in biological

systems.83 Highly sensitive fluorescence derivatization techniques are gaining an increasing

share of the analytical world market, becoming competitive with, for example,

radioimmunoassay. Derivatives of rhodamin, fluorescein, and coumarin are widely used as

fluorescent markers for peptides and other biomolecules.84,85 Derivates of coumarins










(benzopyranones), the largest class of laser dyes for the "blue-green" region, are highly

sensitive.8-9 They have provided the most commercially accepted categories of fluorescent

derivatives with the advantages of an extended spectral range, high emission quantum yield,

photostability, and good solubility in many solvents.

Primary amine-containing fluorescence-tags can be introduced by reductive amination at

the reducing end of sugar chains. The saccharide reacts with 3.2 containing 2-aminopyridine and

sodium cyanoborohydrate, or sodium borohydride to give glycamine 3.3 (Figure 3-1).76,96-100

However, using these methods cleave the cyclic structure at the reducing end changing the

properties of the sugar moieties.


OR Fluorescent

RO OFT NBH3C /OH FT
| RO NH
NHCOCH3 NH2
3.1 3.2 3.3

Figure 3-1. Fluorescent labeling of saccharides by reductive amination

Classical labeling procedures applied to proteins, based on acylation of -NH2 grOups are

not useful for many sugars because of the absence of the free amino groups in the saccharide

structure. However, mono- and disaccharides with amino groups have been labeled with

fluorescent mass tags as an alternative method for measuring a special class of enzymes that are

responsible for the synthesis of carbohydrates (glycosyltransferases).101-103 The coupling of 7-

hydroxycoumarin-3-carboxylic acid, a fluorescent tag, to glycosylamine has been performed

with HBTU/HOBT/DIEA in DMF.101 Also, amino-rich polysaccharides have been labeled with

the fluorescein derivative 5-([4, 6-dichlorotriazine-2-yl] amino)-fluorescein (DTAF).102,103

Fluorescence detection depends on the physical characteristics of the dyes employed.

Many dyes with high extinction coefficients and high quantum yields are of limited utility due to









poor photostability and crucially poor aqueous solubility. Solubility characteristics affects the

degree of self interaction in solution of chromophores conjugated to substrates and therefore

light absorption and emission propertieS.104 Bright fluorescent reagents, with good aqueous

solubility and low non-specific staining, are needed. Incorporating sugar units to fluorescent

reagents confers useful water solubility to organic fluorophores without significant change in

absorption and fluorescent propertieS.105,106

Researchers in the Katritzky group have recently uncovered N-(coumarin-3 -carbonyl)

benzotriazole 3.4,12 as a useful starting material, for convenient and reliable fluorescent labeling

of amino acids and dipeptides. Such coumarin-labeled lysines, including N"-coumarin-labeled

N"-protected-L-lysines 3.5, 3.6 are of considerable interest for the design and synthesis of

fluorogenic substrates to analyze matrix metalloproteinases (MMP).107-110 Their successful

labeling of amino acids and peptides in solution utilized 3.7, and a benzotriazole activated 3.5

(Figure 3-2).12
















Figure 3 -2. Structures of N-(coumarin-3 -carbonyl) benzotriazole and N"-coumarin-labeled N"-
protected-L-lysines

They also recently reported efficient O-acylation of diacetonide protected sugars with

readily available N-(Z-a-aminoacyl)benzotriazoles under microwave irradiation.97 We now










present the convenient and efficient fluorescent labeling by O-acylation, of diisopropylidene

protected sugars 3.9-3.11, and N-acylation of pivaloyl protected aminosugar 3.15 with (i) N-

(coumarin-3-carbonyl)benzotriazole 3.4 and (ii) the benzotriazole derivatives 3.7, 3.8 of F-

coumarin-labeled N"-protected-L-lysines 3.5, 3.6 under microwave irradiation or at room

temperature. Monosaccharide containing Fmoc-lysine fluorescent building blocks can be useful

as water soluble organic fluorophores for peptide labeling at the C-terminus in solid-phase

peptide synthesis (SPPS).

3.2 Results and Discussion

3.2.1 Preparation of M-Coumarin-Labeled N"-Fmoc-L-lysine Benzotriazolide 3.8.

N"-Coumarin-3 -carbonyl-N"-Fmoc-L-lysine benzotriazole 3.8 (Figure 3-3) was prepared

(87%) from coumarin-labeled N-Fmoc-protected lysine 3.6 utilizing benzotriazole methodology

optimized in our laboratories, by reacting 1H-benzotriazole with thionyl chloride in CH2 12 at

200C for 2 hourS.10,11,49,61-63

3.2.2 Preparation of Coumarin-O-Tagged Monosaccharides: O-(Coumarin-3-
carbonyl)diisopropylidene Sugars 3.12, 3.13, 3.14.

O-Coumarin labeled diisopropylidene sugars 3.12, 3.13, 3.14 were prepared by coupling of

3.4 with the 6-OH of 1 ,2:3,4-Di-O-isopropylidene-a-D-galactopyrns 3.9, 3-OH of 1,2:5,6-Di-

O-i sopropylidene-a-D-glucose 3.10, and 1-OH of 2,3:5,6-Di-O-i sopropylidene-a-D-

mannofuranose 3.11, respectively in dichloromethane, utilizing equivalent of 4-

Dimethylaminopyridine (DMAP) under 100W microwave irradiation at 500C for 45 min (Figure

3-3). Products were isolated after simple acid work up without chromatography in 60-90%

yields.










3.2.3. Preparation of Coumarin-N-Tagged Monosaccharide: N-(Coumarin-3-
carbonyl)tetrapivaloyl Sugar 3.16.

2,3,4,6-tetra-O-pivaloyl-P-D-galactopyranslme 3.15 was coupled with N-(coumarin-

3-carbonyl) benzotriazole 3.4 in dry dichloromethane in the presence of 1 equivalent of DMAP

in 24 hours at 20oC. After silica-gel column chromatography using ethyl acetate/hexane (1:3) as

eluent, product 3.16 was isolated in 60% yield.


OOO



03.13 Bt

Oij~H 3.4OPiO
3.11 PivNH


X


Y


3.12


~~o o /


3 16


3.14 O u.I


Figure 3-3. Syntheses of O-(coumarin-3 -carbonyl)diisopropylidene sugars 3.12, 3.13, 3.14 and N-
(coumarin-3-carbonyl)tetrapivaloyl sugar 3.16.

3.2.4 Preparation of O- and N-(N"-Coumarin-3-Carbonyl-N"(Fmoc or Z-L-lys)protected
Sugars 3.17a,b, 3.18, 3.19, 3.20.

L-Lysine scaffold based coumarin labeled sugars 3.17a,b, 3.18, 3.19, 3.20 were

synthesized by O-acylation of the free -OH groups present in diacetonide protected sugars 3.9,

3.10, 3.11 and N-acylation of the amino group of 3.15 by AP-coumarin-3-carbonyl-N"-Z or

Fmoc-L-lysine benzotriazole 3.7, 3.8 (Figure 3-4).

Coupling reactions were carried out in dry DCM, in the presence of 1 eq. of DMAP, at

room temperature for 18-24 hrs. Under microwave irradiation at 600C, the preparation of










compounds 3.17a,b, 3.18, 3.19 needed 45 minutes. After washing with 4N HC1, products

3.17a,b, 3.18 were obtained without chromatography in 85-89% yields. The crude products were

estimated to be >95% pure. Compounds 3.19 and 3.20 were isolated using column

chromatography in 74% and 40% yields respectively.


HN-Pg \WFo--


N O O .1


SO OO NH 8~



3.18
Pg =Cbz 3.7, 3.17a 31
Pg =Fmoc 3.8, 3.17b HN


OHN PivOO HNN O O7

O O OPiv NH-Fmoc

X~o;Y O NH-Fmoc
O 3.20

3.19

Figure 3 -4.Preparation of O- and N-(AP-coumarin-3 -carbonyl-N"(Fmoc or Z-L-lys)protected
sugars 3.17a,b, 3.18, 3.19, 3.20.

3.2.5 Deprotection of the Diisopropylidene Groups of O-(Coumarin
Labeled)diisopropylidene Protected Sugars 3.13, 3.17b and 3.18.

Deprotection of diacetonide groups of 3.13, 3.17b and 3.18 were performed by TFA/H20

(9:1, v/v; 5mL) mixture at 20 oC for 3-5 minutes. The unprotected coumarin-sugar conjugate

3.21 (Figure 3-5) and coumarin-L-lysine-free sugar conjugates 3.22 and 3.23 (Figures 3-6, 3-7)

were obtained in quantitative yields and characterized by 1H NMR and 13C NMR spectroscopy,

elemental analysis, melting point, Mass Spec. and ORP.













O H





,- 3.21


TFA-H20
9:1i, 5mL


Figure 3-5. Deprotection of diacetonide groups for compound 3.13


TFA-H20

9:1, 5mL


'L OH
OH


3.17b


Figure 3-6. Deprotection of diacetonide groups for 3.17b


3.22






OH


HHO OH
,N OH
Fmoc O


TFA-H20

9:1i, 5mL


3.18 3.23


Figure 3-7. Deprotection of diacetonide groups for 3.18

3.3 Conclusion

In conclusion, we have demonstrated a convenient and efficient O-fluorescence labeling of

diisopropylidene protected sugars 3.12-3.14 and N-labeling of pivaloyl protected aminosugar

3.15 in yields of 55-87%. Fmoc and Z-protected L-Lysine scaffold based coumarin labeled









protected sugars 3.17a,b, 3.18, 3.19, and 3.20 were obtained from 3.7 and 3.8. Deprotection of

diisopropylidene groups from 3.13, 3.17b and 3.18 provided water soluble conjugates 3.21-3.23

in quantitative yields. Fluorescent building blocks 3.17a,b, and 3.18 can be considered to be

useful markers for labeling C-terminus of peptides in solid phase peptide synthesis (SPPS) and

after deprotection of diisopropylidene groups, the free sugar will provide the water solubility of

organic fluorophores for coumarin labeled protein molecules.

3.4 Experimental Section

Melting points were determined on a capillary point apparatus equipped with a digital

thermometer. NMR spectra were recorded in CDCl3 Or DMSO-d6 with TMS for 1H (300 MHz)

and 13C (75 MHz) as an internal reference. Coumarin-3 carboxylic acid was purchased from

Acros. Sugars and N-Fmoc-amino acids were purchased from Fluka, Acros and Aldrich and were

used without further purification. Most of the reactions were carried out under microwave

irradiation with a single mode cavity Discover Microwave Synthesizer (CEM Corporation, NC)

producing a continuous irradiation at 2450 MHz. Elemental analyses were performed on a Carlo

Erba-1106 instrument. Optical rotation values were measured with the use of sodium D line.

Column chromatography was performed on silica gel (200-425 mesh). HPLC analyses were

performed on Beckman system gold programmable solvent module 126 using Chirobiotic T

column (4.6 x 250 mm), detection at 254 nm, flow rate 1.0 mL/min, and methanol as solvent.

3.4.1 General Procedure for the Preparation of Compound 3.4.

Thionyl chloride (7.5 mmol) was added to a solution of 1H-benzotriazole (25 mmol) in dry

CH2C 2 Or THF (30 mL) at room temperature, and the reaction mixture was stirred for 20 min.

To the reaction mixture, coumarin-3-carboxylic acid (5 mmol) was added and stirred for 4 h at

250C. The white precipitate formed during the reaction was filtered off, and the filtrate was

concentrated under reduced pressure. The residue was diluted with EtOAc (150 mL) and the










solution was washed with sat. Na2CO3 Soln. (3 x 50mL), sat. NaCl soln. (50mL), and dried over

MgSO4. Removal of the solvent under reduced pressure gave 3 -(Benzotriazole-1 -carbonyl)-

chromen-2-one 3.4, which was recrystallized from CH2 2z-hexanes for elemental analysis.

3-(Benzotriazole-1-carbonyl)chromen-2-one (Coum-Bt, 3.4): White microcrystals

(87%); mp 186-187 OC, 1H NMR (CDCl3): 6 7.41 (t, J= 7.6 Hz, 1H), 7.46 (d, J= 8.2 Hz, 1H),

7.58 (t, J= 8.2 Hz, 1H), 7.64-7.80 (m, 3H), 8. 16 (d, J= 8.2 Hz, 1H), 8.34 (s, 1H), 8.36 (d, J=

8.4 Hz, 1H). 13C NMR (CDCl3): 114.4, 117.2, 117.6, 120.5, 121.9, 125.3, 126.8, 129.6, 130.9,

131.2, 134.5, 146.2, 147.0, 154.9, 157.4, 162.6. Anal. Called for C16H9N303: C, 65.98; H, 3.11;

N, 14.43. Found: C, 65.67; H, 3.10; N, 14.22.

3.4.2 General Procedure for the Preparation of Compounds 3.5 and 3.6.

3-(Benzotriazole-1 -carbonyl)chromen-2-one 3.4 (1 mmol) was added to a solution of 1

mmol of N"-Fmoc- or Z-L-lysine in MeCN-H20 (10mL/5mL) mixture, in the presence of Et3N

(1 mmol). The reaction mixture was stirred at 20 OC for about 1h (until TLC shows absence of

3.4). Aqueous 4N HCI (1mL) was then added and MeCN was removed under reduced pressure.

The residue obtained was dissolved in EtOAc (150 mL), and washed with 4N HCI soln. (3 x 50

mL), sat. NaCl soln. (50 mL) and dried over MgSO4. After evaporation of solvent, the residue

was recrystallized from EtOAc-hexanes or CH2 2z-hexanes.

(LS)-2-Benzyloxycarbonylamino-6- [(2-oxo-2H-chromene-3-carbonyl)amino] hexa noic

acid (N"-Z-N"-Coumoyl-L-Lys-OH, 3.5): White microcrystals (89%); mp 144-145 OC, [a]23D

-8.54 (c 1.68, DMF). 1H NMR (CDCl3): 6 1.37-1.56 (m, 2H), 1.58-1.74 (m, 2H), 1.75-2.40 (m,

2H), 3.33-3.58 (m, 2H), 4.34-4.45 (m, 1H), 5.09 (s, 2H), 5.75 (d, J= 8.0 Hz, 1H), 7.27-7.42 (m,

7H), 7.52-7.72 (m, 2H), 8.92 (s, 1H), 8.95-9.04 (m, 1H). 13C NMR (CDCl3): 22.3, 28.9, 31.5,

39.3, 53.6, 66.9, 116.5, 117.9, 118.5, 125.3, 128.0, 128.1, 128.4, 130.0, 134.1, 136.2, 148.8,









154.3, 156.3, 161.3, 162.1, 175.3. Anal. Called for C2 H24N207: C, 63.71; H, 5.35; N, 6.19.

Found: C, 63.82; H, 5.09; N, 6.04.

(LS)-2-(9H-Fluoren-9-ylmethoxycarbonylam in)6[(2-oxo-2H-chromene-3-carbo

nyl)amino]hexanoic acid (N"-Fmoc-N"-Coumoyl-L-Lys-OH, 3.6): White microcrystals (87%);

mp 110.0-111.0 oC, [a]23D = -1.62 (c 1.85, DMF), 1H NMR (DMSO-d6): 6 1.32-1.50 (m, 2H),

1.50-1.62 (m, 2H), 1.62-1.85 (m, 2H), 3.26-3.38 (m, 2H), 3.92-4.01(m, 1H), 4.17-4.36 (m,

3H), 7.22-7.54 (m, 6H), 7.60-7.80 (m, 4H), 7.87 (d, J= 7.4 Hz, 2H), 7.96 (d, J= 7.4 Hz, 1H),

8.73 (t, J= 5.5 Hz, 1H), 8.84 (s, 1H). 12.62 (s, 1H). 13C NMR (DMSO-d6): 23.2, 28.6, 30.5,

46.7, 53.8, 65.6, 116.1, 118.5, 119.0, 120.1, 125.1, 125.3, 127.1, 127.7, 130.2, 134.0, 140.7,

143.8, 147.3, 153.8, 156.2, 160.4, 161.0, 174.0. Anal. Called for C31H28N207: C, 68.88; H, 5.22;

N, 5.18. Found: C, 68.59; H, 5.11; N, 5.16.

3.4.3 General Procedure for the Preparation of Compound 3.7 and 3.8.

Thionyl chloride (1.2 mmol) was added to a solution of 1H-Benzotriazole (5 mmol) in

anhydrous CH2 12 (15 mL) at room temperature, and the reaction mixture was stirred for 20 min.

Either compound 3.7 or 3.8 (1 mmol) was added to the reaction mixture and stirred for 2 hours at

room temperature. The white precipitate formed during the reaction was filtered off, the filtrate

was diluted with additional CH2 12 (80 mL) and the solution was washed with sat. Na2CO3 SOln

(3x50mL), sat. NaCl soln (50mL), and dried over MgSO4. Removing solvent under reduced

pressure gave product in 79% or 85 % yields, which was recrystallized from CH2 2z-hexanes for

elemental analysis.

{(S)-1-(Benzotriazole-1-carbonyl)-5- [(2-oxo-2H-chromene-3-carbonyl)-amino]-

pentyl}-carbamic acid benzyl ester (N"-Z-N"-Coumoyl-L-Lys-Bt, 3.7): White microcrystals

(79%); mp 156-1570C, 1H NMR (CDCl3): 6 1.50-1.80 (m, 4H), 1.96-2,12 (m, 1H), 2.13-2.28










(m, 1H), 3.36-3.48 (m, 1H), 3.48-3.64 (m, 1H), 5.13 (s, 2H), 5.69-5.83 (m, 1H), 6.12 (d, J= 7.8

Hz, 1H), 7.26-7.47 (m, 7H), 7.52 (t, J= 7.6 Hz, 1H), 7.60-7.74 (m, 2H), 8. 13 (d, J= 8.2 Hz,

1H), 8.27 (d, J= 8.2 Hz, 1H), 8.86 (s, 1H), 8.82-8.97 (m, 1H). 13C NMR (CDCl3): 22.3, 28.9,

31.6, 38.5, 54.6, 67.1, 114.4, 116.5, 118.2, 118.6, 120.3, 125.2, 126.4, 128.0, 128.1, 128.5, 129.8,

130.6, 131.1, 134.0, 136.2, 145.9, 148.6, 154.3, 156.2, 161.4, 162.0, 171.7. Anal. Called for

C30H27N5O6: C, 65.09; H, 4.92; N, 12.65. Found: C, 64.91; H, 4.76; N, 12.59.


{(S)-1-(Benzotriazole-1-carbonyl)-5-[(2-ox-Hcrmn--abnl-mn]

pentyl}-carbamic acid 9H-fluoren-9-ylmethyl ester acid (N"-Fmoc-Ne-Coumoyl-L-Lys-Bt,

3.8): White microcrystals from CH2 2z-hexanes (85%); mp 113.0 115.0 oC. 1H NMR (CDCl3):

6 1.40 -1.90 (m, 4H), 1.95 -2.15 (m, 1H), 2.15 -2.23 (m, 1H), 3.40 -3.68 (m, 2H), 4.20 -4.35

(m, 2H), 4.36 4.48 (m, 1H), 6.20 (d, J = 7.7 Hz, 1H), 7.20 7.45 (m, 7H), 7.50 7.80 (m, 7H),

8.13 (d, J = 8.2 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 8.20 8.97 (m, 2H). 13C NMR (CDCl3): 6 22.4,

28.9, 31.6, 38.5, 47.1, 54.6, 67.1, 114.4, 116.4, 118.0, 118.5, 119.9, 120.2, 125.2, 126.4, 127.0,

127.6, 129.7, 130.6, 131.1, 134.0, 141.2, 143.6, 143.9, 146.0, 148.6, 154.3, 156.2, 161.4, 162.1,

171.7. Anal. called for C37H31N5O6: C, 69.26; H, 6.87; N, 10.91. Found: C, 69.01; H, 4.76; N,

11.03.

3.4.4 General Procedure for the Preparation of O-(Coumarin)diacetonide Sugars 3.12,
3.13, 3.14 Under Microwave Irradiation.

A dried heavy walled Pyrex tube containing a small stir bar was charged with 3-

(Benzotriazole-1 -carbonyl)chromen-2-one 3.4 (1.0 mmol), sugars 3.9, 3.10, 3.11 (1 mmol),

DMAP (1 mmol), and CH2 12 (1 mL). The reaction mixture was exposed to microwave

irradiation (100 W) for 45 minutes to obtain 3.12, 3.13 and 3.14 at a temperature of 600C. After

the irradiation, the reaction mixture was allowed to cool through an inbuilt system in the

instrument until the temperature had fallen below 300C (ca. 10 min). To the reaction mixture 20










mL of CH2 12 WAS added, washed with 4N HCI soln (3 x 15 mL), sat. NaCl soln (10 mL) and

dried over MgSO4. After evaporation of solvent, the residue was recrystallized from CH2 12-

hexanes.

6-O-Coumarin-3-carbonyl-1,2:3,4-di-O-isopoyie--Dgltprnse 3.12:

White microcrystals (90%), mp 146.2 148.0 oC, 1H NMR (CDCl3): 6 1.34 (s, 3H), 1.36 (s, 3H),

1.48 (s, 3H), 1.54 (s, 3H), 4. 16 4.23 (m, 1H), 4.33 4.40 (m, 2H), 4.47 (dd, J= 11.4, 7.6 Hz,

1H), 4.55 (dd, J= 11.5, 4.9 Hz, 1H), 4.66 (dd, J= 7.8, 2.3 Hz, 1H), 5.56 (d, J= 4.9 Hz, 1H), 7.30

- 7.38 (m, 2H ), 7.58 7.70 (m, 2H), 8.53 (s, 1H). 13C NMR (CDCl3): 6 24.4, 24.9, 25.9, 26.0,

54.5, 64.4, 65.9, 70.6, 70.9, 96.2, 108.9, 109.6, 116.8, 117.8, 117.9, 124.8, 129.5, 134.4, 148.8,

155.1, 156.5, 162.6. Anal. called for C22H2409: C, 61.11; H, 5.59; N, 0.00. Found: C, 61.06; H,

5.71; N, 0.19.

3-O-Coumarin-3-carbonyl- 1,2: 5,6-Di-O-isopropylidene-a-D-glucose, 3.13: White

microcrystals (89%), mp 65.1 66.7 oC 1H NMR (CDCl3): 6 1.32 (s, 3H), 1.33 (s, 3H), 1.43 (s,

3H), 1.56 (s, 3H), 4.07 (dd, J= 8.8, 4.7 Hz, 1H), 4.15 (dd, J= 8.7, 5.9 Hz, 1H), 4.29 (dd, J =

8.5, 3.0 Hz, 1H), 4.45 4.51 (m, 1H), 4.68 (d, J= 3.8 Hz, 1H), 5.48 (d, J= 3.0 Hz, 1H), 5.97 (d,

J= 3.8 Hz, 1H), 7.32 7.40 (m, 2H), 7.60 7.72 (m, 2H), 8.53 (s, 1H). 13C NMR (CDCl3): 6

25.2, 26.1, 26.7, 26.9, 67.4, 72.4, 77.6, 79.9, 83.1, 105.1, 109.4, 112.3, 116.8, 117.6, 124.9,

129.6, 134.7, 149.3, 155.2, 156.2, 162.1i. Anal. called for C22H2409: C, 61.11; H, 5.59; N, 0.00.

Found: C, 60.91; H, 5.72; N, 0.03.

1-O-Coumarin-3 carbonyl-2,3:5,6-Di-O-isopropylidene-a-D-mnouaoe 3.14:

White microcrystals (65%), mp 158.2 160.0 oC, 1H NMR (CDCl3): 6 1.35 1.40 (m, 6H), 1.46

(s, 3H), 1.52 (s, 3H), 4.06 (dd, J= 9.07, 4.4 Hz, 1H), 4.08 4.15 (m, 1H), 4.19 (dd, J= 7.8, 3.4

Hz, 1H), 4.40 -4.48 (m, 1H), 4.89 -4.98 (m, 2H), 6.36 (s, 1H), 7.32 -7.40 (m, 2H), 7.62 -7.71










(m, 2H), 8.54 (s, 1H). 13C NMR (CDCl3): 6 24.6, 25.1, 25.9, 26.9, 66.8, 72.8, 79.2, 82.6, 85.0,

101.9, 109.4, 113.3, 116.8, 117.7, 124.9, 129.7, 134.8, 149.6, 155.3, 155.6, 162.0. Anal. called

for C22H2409: C, 61.11; H, 5.59; N, 0.00. Found: C, 61.02;H, 5.54; N, 0.03

2,2-Dimethyl-propionic acid (3S,5S,6R)-3,4,5-tris-(2,2-dimethyl-propioyox)6[(2-

oxo-2H-chromene-3-carbonyl)-amino] -tetrahydro-pyran-2-ylmethyl ester, 3.16: Clear solid

(60%), 1H NMR (CDCl3): 6 1.00 (s, 9H), 1.06 (s, 9H), 1.10 (s, 9H), 1.23 (s, 9H), 3.91 3.99 (m,

1H), 4.06 -4.16 (m, 2H), 5.20 5.35 (m, 2H), 7.30 -7.39 (m, 2H), 7.60 -7.68 (m, 2H), 8.83 (s,

1H), 9.29 (d, J=9.1Hz, 1H). 13C NMR (CDCl3): 6 26.7, 27.0, 27.1, 29.6, 38.6, 38.6, 38.7, 39.0,

60.7, 66.7, 67.7, 71.1, 72.7, 78.5, 116.7, 117.2, 118.3, 125.3, 130.0, 134.6, 149.5, 154.6, 160.6,

162.0, 176.8, 177.0, 177.1, 177.7. Anal. called for C22H2409: C, 62.87; H, 7.18; N, 2.04. Found:

C, 62.69; H, 7.68; N, 2.07.

(LS)-2-Benzyloxycarbonylamino-6- [(2-oxo-2H-chromene-3-carbonyl)

-amino]-hexanoic acid 5-(2,2- dimethyl-[1,3] dioxolan-4-yl)-2,2 -dimethyl-tetrahydro-

furo[2,3-d] [1,3]dioxol-6-yl ester, 3.17a: White microcrystals (82%), mp 123.0 124.0oC. 1H

NMR (CDCl3): 6 1.29 (s, 3H), 1.31 (s, 3H), 1.38 (s, 3), 1.41-1.48 (m, 2H), 1.51 (s, 3H), 1.58 -

1.98 (m, 4H), 3.38 3.58 (m, 2H), 3.97 (dd, J = 8.6, 4.2 Hz, 1H), 4.07 (dd, J = 8.6, 5.1 Hz, 1H),

4.1 4-4.25 (m, 2H), 4.29-4.40 (m, 1H), 4.48 (d, J = 3.4 Hz, 1H), 5.07(d. J = 12.2 Hz, 1H, B part

of AB system), 5.13 (d, J = 12.2 Hz, 1H, A part of AB system), 5.40-5.52 (m, 1H), 5.65 (d, J =

7.4 Hz, 1H), 5.82 (d, J = 3.4 Hz, 1H), 7.28-7.43 (m, 7H), 7.50 (d, J = 7.1 Hz, 1H), 7.62-7.72 (m,

1H), 8.82-8.96 (m, 2H). 13C NMR (CDCl3): 6 22.2, 25.2, 26.2, 26.7, 26.8, 29.1, 31.3, 38.7, 54.0,

66.9, 67.2, 72.4, 76.9, 79.7, 83.0, 105.0, 109.3, 112.4, 116.5, 116.5, 118.2, 118.6, 125.3, 128.0,

128.2, 128.5, 129.8, 134.1, 136.2, 148.6, 154.3, 156.0, 161.5, 161.9, 171.0. Anal. called for

C36H42N2012: C, 62.24; H, 6.09; N, 4.03. Found: C, 62.34; H, 6. 11; N, 4.09.










(LS)-2-(9H-Fluoren-9-ylmethoxycarbonylam in)6[(2-oxo-2H-chromene-3-

carbonyl)-amino]-hexanoic acid 2,2,7,7-tetramethyl-tetrahydro-bis [1,3]dioxolo [4,5-b; 4',5'-

d]pyran-5-ylmethyl ester, 3.17b: White microcrystals (85%), mp 122.3 124.1 oC. 1H NMR

(CDCl3): 6 1.33 (s, 6H), 1.46 (s, 3H), 1.52 (s, 3H), 1.63 -2.30 (m, 4H), 3.40 -3.57 (m, 2H), 4.01

- 4.08 (m, 1H), 4.20 4.29 (m, 3H), 4.30 4.46 (m, 6H), 4.62 (dd, J = 7.8, 2.3 Hz, 1H), 5.54 (d, J

= 4.9Hz, 1H), 5.60 (d, J = 8.0 Hz, 1H), 7.29 7.43 (m, 7H), 7.54 (d, J = 7.7Hz, 1H), 7.60 7.67

(m, 3H), 7.72 7.78 (m, 2H), 8.82 8.88 (m, 1H), 8.90 (s, 1H). 13C NMR (CDCl3): 6 22.3, 24.4,

24.9, 25.9, 26.0, 29.0, 31.9, 37.3, 39.2, 47.1, 53.8, 64.2, 66.0, 67.0, 68.8, 70.3, 70.7, 70.9, 96.2,

108.8, 109.7, 116.5, 118.3, 118.6, 119.9, 125.2, 127.0, 127.6, 129.7, 133.9, 141.2, 143.8, 148.3,

154.3, 155.9, 161.4, 161.7, 172.3. Anal. called for C43H46N2012: C, 65.97; H, 5.92; N, 3.58.

Found: C, 65.63; H, 6.04; N, 3.62.

(LS)-2-(9H-Fluoren-9-ylmethoxycarbonylam in)6[(2-oxo-2H-chromene-3-

carbonyl)-amino]-hexanoic acid 5-(2,2-dimethyl-[1 ,3] dioxolan-4-yl)-2,2-dimethyl-

tetrahydro-furo [2,3-dj [1,3]dioxol-6-yl ester, 3.18: White microcrystals (67%), mp 118.2 -

120.4. 1H NMR (CDCl3): 6 1.29 (s,3H), 1.31 (s, 3H), 1.38 (s, 3H), 1.51 (s, 3H), 1.60 2.00 (m,

4H), 3.40 -3.52 (m, 2H), 3.97 -4.1 I(m, 3H), 4. 19 -4.27 (m, 3H), 4.30 -4.45 (m, 3H), 4.51 (d,

J= 3.4 Hz, 1H), 5.30 (s, 1H), 5.77 (d, J = 7.6 Hz, 1H), 5.86 (d, J = 3.6 Hz, 1H), 7.25 7.46 (m,

8H), 7.60 7.67 (m, 3H), 7.72 7.79 (m, 2H), 8.84 8.96 (m, 2H). 13C NMR (CDCl3): 6 22.2,

25.1, 26.2, 26.7, 26.8, 29.0, 31.3, 38.7, 47.1, 53.9, 60.4, 67.0, 67.2, 72.3, 79.7, 83.1, 105.0,

109.4, 112.4, 116.5, 118.1, 118.5, 120.0, 125.0, 125.1, 125.2, 127.1, 127.7, 129.7, 134.0, 141.2,

143.6, 143.8, 148.6, 154.3, 156.0, 161.5, 162.0, 171.1. Anal. called for C43H46N2012: C, 65.97;

H, 5.92; N, 3.58. Found: C, 65.68; H, 6.07; N, 3.60.










(LS)-2-(9H-Fluoren-9-ylmethoxycarbonylam in)6[(2-oxo-2H-chromene-3-

carbonyl)-amino]-hexanoic acid 6-(2,2-dimethyl- [1,3] dioxolan-4-yl)-2,2-dimethyl-

tetrahydro-furo [3,4-d] [1,3]dioxol-4-yl ester, 3.19: White microcrystals (74%), mp 87.0-88.0

1H NMR (CDCl3): 6 1.22-1.30 (m, 2H), 1.33 (s, 3H), 1.37 (s, 3H), 1.43 (s, 3H), 1.48 (s, 3H),

1.52-1.98 (m, 4H), 3.46-3.60 (m, 2H), 3.98-4.12 (m, 3H), 4.22 (t, J= 7.1 Hz, 1H), 4.30-4.48 (m,

3H), 4.73 (d, J = 5.9 Hz, 1H), 4.80-4.90 (m, 1H), 5.65 (d, J = 7.8 Hz, 1H), 6.17 (s, 1H), 7.25-7.42

(m, 7H), 7.50 (d, J = 7.8 Hz, 1H), 7.58-6.67 (m, 3H), 7.74 (dd, J = 7.3, 2.8,Hz, 2H), 8.82-8.88

(m, 2H). 13C NMR (CDCl3): 6 22.3, 22.6, 24.6, 25.1, 25.9, 26.9, 29.0, 31.5, 38.9, 47.1, 53.7,

66.8, 67.0, 72.7, 79.2, 82.5, 85.0, 101.6, 109.3, 113.3, 116.5, 118.2, 118.5, 119.9, 125.2, 127.0,

127.6, 129.7, 134.0, 141.2, 143.7, 143.8, 148.4, 154.3, 155.8, 161.4, 161.8, 171.1. Anal. called

for C43H46N2012: C, 65.97; H, 5.92; N, 3.58. Found: C, 65.57; H, 6.06; N, 3.40.

{(S)-1l-Formyl-5- [(2-oxo-2H-chrom ene-3-carbonyl)-am ino] -pentyl}-carbam ic acid

9H-fluoren-9-ylmethyl ester; compound with 2,2-dimethyl-propionic acid (3S,5S,6R)-3,4,5-

tris-(2,2-dimethyl-propionyloxy)-6-methylmn-erhdopr-2yetl ester, 3.20:

2-Oxo-2H-chromene-3-carboxylic acid (3S,5R)-2,3,5-trihydroxy-6-hydroxymethyl-

tetrahydro-pyran-4-yl ester, 3.21:

(LS)-2-(9H-Fluoren-9-ylmethoxycarbonylam in)6[(2-oxo-2H-chromene-3-

carbonyl)-amino]-hexanoic acid 3,4,5,6-tetrahydroxy-tetrahydro-pyran-2-ymtl ester,

3.22:

(R)-2-(9H-Fluoren-9-ylmethoxycarbonylamino-6[(2-oxo-2H-chromene-3-

carbonyl)-amino]-hexanoic acid (3S,5R)-2,3,5-trihydroxy-6-hydroxymethyl-erhdo

pyran-4-yl ester, 3.23:










LIST OF REFERENCES

1. Katritzky, A. R.; Rogovoy, Boris V. Chem. Eur. J. 2003, 9, 4586.

2. Katritzky, A. R.; Lan, X.; Yang, J.; Denisko, O. Chem. Rev. 1998, 98, 409.

3. Katritzky, A. R.; Belyakov, S. Aldchim. Act. 1998, 31, 35.

4. Katritzky, A. R.; Shobana, N.; Pernak, J.; Afridi, A. S.; Fan, W. Q. Tetr~rt~rt~raheron~rt~t~rt 1992, 48,
7817.

5. Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210.

6. Katritzky, A. R.; Zhang, Y.; Singh, S. K. Synthesis 2003, 2795.

7. Katritzky, A. R., Suzuki, K.; Singh, S.K. Syinhesis\i 2004, 2645.

8. Katritzky, A. R.; Angrish, P.; Hiir, D.; Suzuki, K. Syinhesis\i 2005, 3, 397.

9. Katritzky, A. R.; Angrish, P.; Suzuki, K. Sy inhes~i\ 2006, 3, 411.

10. Katritzky, A. R.; Todadze, E.; Cusido, J. Angrish, P.; Shestopalov A. Chem. Biol.
Drug Des. 2006, 68, 42.

11. Katritzky, A. R.; Todadze, E.; Shestopalov A.; Cusido, J. Angrish, P. Chem. Biol. Drug
Des. 2006, 68, 37.

12. Katritzky, A. R.; Narindoshvili, T, Angrish, P. Manuscript submitted to Synlett

13. Katritzky, A. R.; Cusido, J.; Narindoshvili, T. Manuscript in progress

14. Gill, I.; L6pez-Fandifio, R.; Jorba, X.; Vulfson, E. N. Enzym. M~icro. Tech. 1996, 18, 162.

15. Nishimura, T.; Kato, H. FoodRev Int. 1988, 4, 39.

16. Sturtevant, Frank M. J. Environ. Sci. Health Part A Environ. Sci. Eng. 1985, 20, 863.

17. Grenby, T. H. Trends Food Sci. Technol. 1991, 2, 2.

18. Nosho, Y.; Seki, T.; Kondo, M.; Ohfuji, T.; Tamura, M.; Okai, H. J. Agric. Biol. Chem.
1990, 38, 1368.

19. Arai, S. A. Anal. Control Less Desirable Flavor Foods Beverages, (Proc Symp).
Academic, New York, 1980, 133.

20. Matoba, T.; Hayashi, R.; Hata, T. Agric. Biol. Chem. 1988, 34, 1235.










21. Mojarro-Guerra, S.H.; Amado, R.; Arrigoni, E.; Solms, J. J. FoodSci. 1991, 56, 943.

22. Kirimura, J.; Shimizu, A.; Kimizura, A.; Ninomiya, T.; Katsuya, N. J. Agric. Food Chem.
1969, 17, 689.

23. Ohyama, S.; Ishibashi, N.; Tamura, M.; Nishizaki, H.; Okai, H. Agric. Biol. Chem. 1988,
52, 871.

24. Tada, M.; Shinoda, I.; Okai, H. JAgric. Food Chem. 1984, 32, 992.

25. Kawasaki, Y.; Seki, T.; Tamura, M.; Kikuchi, E.; Tada, M.; Okai, H. Agric. Biol. Chem.
1988, 52, 2679.

26. Stefanic, P.; Dolenc, M. S. Current Med. Chem. 2004, 11, 945.

27. Braiuner-Osborne, H.; Egebj erg, J.; Nielsen, E. O.; Madsen, U.; Krogsgaard-Larsen, P. J.
M~ed. Chem. 2000, 43, 2609.

28. Prokai-Tatrai, K.; Nguyen, V.; Zharikova, A. D.; Braddy, A. C.; Stevens, S. M. Jr.;
Prokai, L. Biorg. M~ed. Chem. Lett. 2003, 13, 1011.

29. Mann, E.; Kessler, H. Org. Lett. 2003, 5, 4567.

30. Dauban, P.; De Saint-Fuscien, C.; Acher, F.; Prezeau, L.; Brabet, I.; Pin, J. -P.; Dodd, R.
H. Biorg. M~ed. Chem. Lett. 2000, 10, 129.

31. Bessis, A. S.; Bolte, J.; Pin, J. P.; Acher, F. Biorg. M~ed. Chem. Lett. 2001, 11, 1569.

32. Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.

33. Schnolzer, M., Alewood, D.; Kent, S. B.1Int. J. Peptide andProtein Research, 1992, 40,
180.

34. Dorwald, F.Z. Organ2ic Sywhelrlri\ in Solid Support. Wiley-VCH, Weinheim, Germany,
2000.

35. Capecchi, J. T.; Miller, M. J.; Loudon, G. M. J. Org. Chem. 1983, 48, 2014.

36. Konda-Yamada, Y.; Okada, C.; Yoshida, K.; Umeda, Y.; Arima, S.; Sato, N.; Kai, T.;
Takayanagi, H.; Harigaya, Y. Tetrahedron 2002, 58, 7851.

37. Baek, B. -H.; Lee, M. -R.; Kim, K. -Y.; Cho, U. -I.; Boo, D. W.; Shin, I. Org. Lett. 2003,
5, 97 1.

38. Carpino, L. A.; Ferrer, F. J. Org. Lett. 2001; 3, 2793.










39. Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. Am. Chem. Soc. 1964, 86, 1839.

40. Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron Lett. 1975, 14, 1219.

41. Coste, J.; Le-Nguyen, D.; Castro, B. Tetrttrrtrrtraheron~r~rtrt Lett. 1990, 31, 205.

42. Dourtoglou, V.; Gross, B. Synthesis, 1984, 7, 572.

43. Kienhoifer, A. Synlett, 2001, 26, 1811.

44. Wasserman, H. H.; Chen, J. -H.; Xia, M. Hely. Chim. Acta, 2000, 83, 2607.

45. Vaughan, J. R., Jr.; Osato, R. L. J. Am. Chem. Soc. 1951, 73, 5553.

46. Carpino, L. A.; Sadat-Aalace, D.; Chao, H. G.; DeSelms, R. H. J. Am. Chem. Soc. 1990,
112, 9651.

47. Carpino, L. A.; Mansour, E. -S. M. E.; Sadat-Aalace, D. J. Org. Chem. 1991, 56, 2611.

48. Jones, J. The Chemical Synthesr~i\ ofPeptides; Clarendon Press: Oxford, UK, 1991.

49. Katritzky, A. R.; Yang, H.; Zhang, S.; Wang, M. Arkivoc, 2002, xi, 39.

50. Katritzky, A. R.; Yang, B.; Semenzin, D. J. Org. Chem. 1997, 62, 726.

51. Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N. G. Arkivoc, 2002, viii,
134.

52. Katritzky, A. R.; Wang, M.; Zhang, S. Arkivoc, 2001, ix, 19.

53. Katritzky, A. R., Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 4932.

54. Katritzky, A. R.; Pastor, A. J. Org. Chem. 2002, 65, 3679.

55. Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 1443.

56. Katritzky, A. R.; Suzuki, K.; Singh, S. K.; He, H. -Y. J. Org. Chem. 2003, 68, 5720.

57. Katritzky, A. R.; He, H. -Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210.

58. Katritzky, A. R.; Suzuki, K.; Singh, S. K. Croat. Chem. Acta 2004, 77, 175.

59. Katritzky, A. R.; Pastor, A.; Voronkov, M. V.; J. Heterocyclic Chem. 1999, 36, 777.

60. Katritzky, A. R.; Denisko, O. V.; Fang, Y.; Zhang, L.; Wang, Z. Arkivoc 2001, xi, 41.










61. Katritzky, A. R.; Suzuki, K.; Singh, S. K. Synthes~i\ 2004, 16, 2645.

62. Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesr~i\ 2006, 3, 411.

63. Katritzky, A. R.; Angrish, P.; Hiir, D.; Suzuki, K. Synthes~i\ 2005, 3, 397.

64. Katritzky, A. R.; Todadze, E.; Shestopalov, A. A.; Cusido, J.; Angrish, P. Chens. Biol.
Drug Des. 2006, 68, 42.

65. Carpino, L. A.; Han, G. Y. J. Org. Chent. 1972, 37, 3404.

66. Boons, G. J. Recent advances. Drug Discov. Today 1996, 1, 33 1.

67. Karlsson, K. A. Trends Pharnt. Sci. 1991,1~2, 265.

68. Sharon, N.; Lis, H. Sci. Am. 1993, 268, 82.

69. Dwek, R. A. Chens. Rev. 1996, 96, 683.

70. Varki, A. Glycobiology 1993, 3, 97.

71. Barkley, A.; Arya, P. Chens. Eur. J. 2001, 7, 555.

72. Fukuda, M. Biochina. Biophy. Acta 2002, 1573, 394.

73. Ohyama, C.; Tsuboi, S.; Fukuda, M. Enabo. J. 1999, 18, 1516.

74. Macmillan, D.; Daines, A. M. Curr. M~ed. Chent. 2003, 10, 2733.

75. Feizi, T.; Childs, R. A. Trends Biochent. Sci. 1985, 10, 24.

76. Park, J.; Lee, H. Y.; Cho, M. H.; Park, S. B. Angew. Chens. Int. Ed. 2007, 46, 2018.

77. Apweiler, R.; Hermjakob, H.; Sharon, N. Biochina. Biophys. Acta 1999, 1473, 4.

78. Kolter, K.; Sandhoff, K. Angew.Chens. Int. Ed. 1999, 38, 1532.

79. a) Dell, A.; Morris, H. R.; Science 2001, 291, 2351. b) Shriver, Z.; Raguram, S.;
Sasisekharan, R. Nat. Rev. Drug Discovely 2004, 3, 863. c) Morelle, W.; Michalski, J. C.
Curr. Anal. Chent. 2005, 1, 29.

80. Mechrev, Y.; Novotny, M. Chens. Rev. 2002, 102, 321.

81. Tinnefeld, P.; Sauer, Markus. Angew. Chenz. hIt. Ed. 2005, 44, 2642.

82. Swedlow, J. R.; Platani, M. Cell Sruct. Funct. 2002, 27, 335.











83. Ehrhart, D. Curr. Opin. Plant Biol. 2003, 6, 622.

84. Faure, M. P.; Gaurdeau, P.; Shaw, I.; Cashman, N. R.; Beaudet, A. J. Histochent.
Cytochent. 1994, 42, 755.

85. Fernandez-Carneado, J.; Kogan, M. J.; Castel, S.; Giralt, E. Angew. Chens. Int. Ed. 2004,
43, 1811.

86. Ammar, H.; Fery-Forgues, S.; Gharbi, R. E. Dyes andPignzents 2003, 57, 259.

87. Gikas, E.; Parissi-Poulou, M.; Kazanis, M.; Vavagianis, A. Anal. China. Acta 2003, 489,
153.

88. Sastry, S. Biophys. Chent. 2001, 91, 191.

89. Malkar, N. B.; Fields, G. B. Lett. Pept. Sci. 2000, 7, 263.

90. Berthelot, T.; Lain, G.; Latxague, L.; Deleris, G. J. Fluoresc. 2004, 14, 671.

91. Bennett, F. A.; Barlow, D. J.; Dodoo, A. N. O.; Hider, R. C.; Lansley, A. B.; Lawrence,
M. J.; Marriott, C.; Bansal, S. S. Tetrahedron Lett. 1997, 38, 7449.

92. Wang, J.; Xie, J.; Schultz, P. G. J. Am. Chent. Soc. 2006, 128, 8738.

93. Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliviera-Campos, A. M. F.;
Machalicky, O.; Mendonca, A. J. Tetrahed~rtrt~t~ ron~r~rtrt 2005, 61, 8625.

94. Heiner, S.; Detert, H.; Kuhn, A.; Kunz, H. Bioorg. M~ed. Chent. 2006, 14, 6149.

95. Malsch, R.; Guerrini, M.; Torri, G.; Lohr, G.; Casu, B.; Harenberg, J. Anal. Biochent.
1994, 217, 255.

96. Uozumi, N.; Teshima, T.; Yamamoto, T.; Nishikawa, A.; Gao, Y. E.; Miyoshi, E.; Gao,
C. X.; Noda, K.; Islam, K. N.; Ihara, Y.; Fujii, S.; Shiba, T.; Taniguchi, N. J. Biochent.
1996, 120, 385.

97. Hase, S.; Ibuki, T.; Ikenaka, T. J. Biochent. 1984, 95, 197.

98. Tomiya, N.; Kurono, M.; Ishihara, H.; Tejima, S.; Endo, S.; Arata, Y.; Takahashi, N.
Anal. Biochent. 1987, 163, 489.

99. Gross, H. J.; Sticher, U.; Brossmer, R. Anal. Biochent. 1990, 186, 127.

100. Taniguchi, N. Nishikawa, A.; Fujii, S.; Gu, J. Methods in Enzyntology 1989, 1 79, 397.










101. Higai, K.; Masuda, D.; Matsuzawa, Y., Satoh, T.; Matsumoto, K. Biol. Pharm. Bull.
1999, 22, 333.

102. Prigent-Richard, S.; Cansell, M.; Vassy, J.; Puvion, E.; Jozefonvicz, J. Letourneur, D.
Journal ofBiomedical Mat. Research 1998, 40, 275.

103. Blakeslee, D.; Baines, M. G. J. Immun. Methods 1976, 13, 305.

104. Brelj e, T. C.; Wessendorf, M. W.; Sorenson, R. L. Methods in Cell Biology 1993, 38, 97.


105. Reddington, Mark V. J. Chem. Soc. Perkin Trans. 1, 1998, 143.

106. Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliveira-Campos, A. M. F.;
Machalicky, O.; Mendonga, A. J. Tetrahed~t~t~t~ ron~rt~t~rt 2005, 61, 8625.

107. Shi, Y.; Xiang R.; Horvath, C.; Wilkins, J. A. Journal ofSep. Science 2005, 28, 1812.

108. Lauer-Fields, J. L.; Kele, P.; Sui, G.; Nagase, H.; Leblanc, R. M.; Fields, G. B. Anal.
Biochem. 2003, 321, 105.

109. Lauer-Fields, J. L.; Broder, T.; Sritharan, T.; Chung, L.; Nagase, H.; Fields, G. B.
Biochemistry 2001, 40, 5795.

110. Johansson, A.; Akerblom, E.; Ersmark, K.; Lindeberg, G.; Hallberg, A. J. Comb. Chem.
2000, 2, 496.









BIOGRAPHICAL SKETCH

Janet Cusido grew up in Miami, Florida, with her parents Ramon and Oneida, and brother

Ramon Alej andro. In high school, she developed a love for the sciences, especially for math and

chemistry. She graduated from Coral Gables Senior High and enrolled at the University of

Florida in order to pursue a degree in chemical engineering. During her junior year at the

University of Florida, she took organic chemistry lab led by teaching assistant Valerie

Rodriguez-Garcia, where Janet discovered her passion for laboratory experimentation. Thanks to

Valerie, Janet decided to switch maj ors from chemical engineering to chemistry. Janet started to

perform research with Professor Alan R. Katritzky under the supervision of Valerie and learned

how important organic chemistry was in everyday life. Janet graduated with High Honors from

the University of Florida in April 2005 and then enrolled in the graduate program at UF,

continuing her research with Dr. Katritzky in the field of Benzotriazole Chemistry. After Janet

graduates from the University of Florida in December 2007, she plans to continue her graduate

studies at another institution to expand her knowledge and experience.





PAGE 1

1 NAND OACYLATION OF PEPTIDES AND SUGARS IN PARTIALLY AQUEOUS MEDIA By JANET CUSIDO A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Janet Cusido

PAGE 3

3 To my family, friends and everyone who always believed in me

PAGE 4

4 ACKNOWLEDGMENTS I thank my family, my teachers, and my co lleagues. I am greatly indebted to Dr. Encarnacion Lopez for my fascination with organi c chemistry. I am grateful to Prof. Alan R. Katritzky for giving me the opportunity to experi ence the joys and the trials of being a true scientist and to my committee members for their a ssistance and care. Very special thanks to Valerie Rodriguez-Garcia for setting me on the right path. My thanks for the invaluable help and suggestions in the preparation of this thesis go to Boris Grinkot, Adam Vincek, and Danniebelle Haase. I also wish to thank all my friends and colleagues for their company, team spirit, and international food!

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES................................................................................................................ .........8 ABSTRACT....................................................................................................................... ..............9 CHAPTER 1 GENERAL INTRODUCTION..............................................................................................10 2 SELECTIVE PEPTIDE CHAIN EXTENSION AT THE C AND N -TERMINI OF ASPARTIC AND GLUTAMIC ACIDS UTILIZING N -PROTECTED (ALPHAAMINOACYL) BE NZOTRIAZOLES..................................................................................14 2.1 Introduction.............................................................................................................. ........14 2.2 Results and Discussion.....................................................................................................17 2.2.1 Extensions of -Amino Acids with and -CO2H Protected...............................17 2.2.2 Extensions of -acids with -CO2H Protected......................................................18 2.2.3 Preparation of Dipeptides 2.7a-e from Unprotected Glutamic or Aspartic Acids and N-( -Aminoacyl)benzotriazoles 2.1a,b,d and e....................................20 2.2.4 Peptide Chain Extension at the Alpha C-Te rminus to Give Natural Dipeptides 2.10a-c....................................................................................................................21 2.2.5 Peptide Chain Extension at the or C-Terminus to Give Unnatural Dipeptides 2.12a-d.................................................................................................23 2.2.6 Preparation of N-Protected-Dipeptidoylbenzot riazoles 2.13a-c and 2.13a+a' from N-Protected Dipeptides 2.3a,b,d and 2.3a+a'...............................................24 2.2.7 Preparation of N-Protected Tripeptides 2.14a,b,a' and Diastereomeric Mixture 2.14a+a'' from Dipeptidoylb enzotriazoles 2.13a,b, 2.13a+a' and Free Amino Acids 2.9c,e and f......................................................................................25 2.2.8 Preparation of Novel Tripeptides 2.16a ,b Containing Glu and Asp Fragments....27 2.3 Conclusion................................................................................................................. .......28 2.4 Experimental Section....................................................................................................... .29 2.4.1 General Procedure for the Preparation of Dipeptides 2.3a-c, 2.3a+a', 2.5a-c, 2.5c+c' and 2.7a-e..................................................................................................29 2.4.2 General Procedure for the Preparation of N -(Zand FmocAminoacyl)benzotriazoles 2.8 a,b and 2.11 a,b....................................................34 2.4.3 General Procedure for the Prepara tion of Dipeptides 2.10a-c, 2.12a,b and 2.12b+b'..................................................................................................................36 2.4.4 General Procedure for the Preparation of N-ProtectedDipeptidoylbenzotriazo les 2.13a-c and 2.13a+a'...................................................39

PAGE 6

62.4.5 General Procedure for the Prepara tion of Tripeptides 2.14a,b, 2.14a' and 2.14a+a''.................................................................................................................41 2.4.6 General Procedure for the Prepar ation of Tripeptides 16 a,b............................43 3 EFFICIENT LABELING OF SUGARS TO PROVIDE WATER SOLUBLE FLUORESCENT TAGS.........................................................................................................46 3.1 Introduction.............................................................................................................. ........46 3.2 Results and Discussion....................................................................................................49 3.2.1 Preparation of N-Coumarin-Labeled N-FmocL -lysine Benzotriazolide 3.8......49 3.2.2 Preparation of Coumarin-O-Tagged Monosaccharides : O-(Coumarin-3carbonyl)diisopropylidene Sugars 3.12, 3.13, 3.14...............................................49 3.2.3. Preparation of CoumarinN -Tagged Monosaccharide: N -(Coumarin-3carbonyl)tetrapivaloyl Sugar 3.16..........................................................................50 3.2.4 Preparation of O and N -( N-Coumarin-3-CarbonylN(Fmoc or ZL lys)protected Sugars 3.17a,b, 3.18, 3.19, 3.20.......................................................50 3.2.5 Deprotection of the D iisopropylidene Groups of O -(Coumarin Labeled)diisopropylid ene Protected Sugars 3.13, 3.17b and 3.18.........................51 3.3 Conclusion................................................................................................................. .......52 3.4 Experimental Section...................................................................................................... .53 3.4.1 General Procedure for the Preparation of Compound 3.4.....................................53 3.4.2 General Procedure for the Preparation of Compounds 3.5 and 3.6.......................54 3.4.3 General Procedure for the Pr eparation of Compound 3.7 and 3.8........................55 3.4.4 General Procedure for the Preparation of O -(Coumarin)diacetonide Sugars 3.12, 3.13, 3.14 Under Microwave Irradiation......................................................56 LIST OF REFERENCES............................................................................................................. ..61 BIOGRAPHICAL SKETCH.........................................................................................................67

PAGE 7

7 LIST OF TABLES Table page 2-1. Preparation of novel natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a' ............18 2-2. Preparation of nov el unnatural dipeptides 2.5a-c and mixture 2.5c+c' .................................19 2-3. Preparation of novel dipeptides 2.7a-e ..................................................................................21 2-4. Preparation of novel dipeptides 2.10a-c ................................................................................22 2-5. Preparation of novel dipeptides 2.12a,b and the diastereomeric mixture 2.12b+b' .............23 2-6. Conversion of novel N-Z-dipeptides 2.3a,b,d and the diastereomeric mixture 2.3a+a' into N-Z-dipeptidoylbenzotriazoles 2.13a-c, 2.13a+a' ....................................................25 2-7. Preparation of novel tripeptides 2.14a,b,a' and mixture 2.14a+a'' .......................................26 2-8. Preparation of novel tripeptides 2.16a,b containing Glu a nd Asp fragments.......................28

PAGE 8

8 LIST OF FIGURES Figure page 1-1. Properties of N -Substituted benzotriazoles as electr on donors or electron acceptors...........11 1-2. N -Acylbenzotriazoles from sulfonylbenzotriazoles..............................................................11 1-3. N -Acylbenzotriazoles from carboxylic acid s, excess BtH and thionyl chloride...................12 1-4. Structure of N -(coumarin-3-carbonyl) benzotriazole............................................................13 2-1. Structures of Aspartic (Asp ) and Glutamic (Glu) Amino Acids...........................................14 2-2. Preparation of novel dipeptides 2 3a-c and diastereomeric mixture 2 3a+a' ........................18 2-3. Preparation of nov el unnatural dipeptides 2.5a-c and diastereomeric mixture 2.5c+c' ........19 2-4. Preparation of novel dipeptides 2.7a-e ..................................................................................21 2-5. Preparation of novel dipeptides 2.10a-c ................................................................................22 2-6. Preparation of novel dipeptides 2.12a,b and diastereomeric mixture 2.12b+b' ...................23 2-7. Preparation of novel dipeptidoylbenzotriazoles 2.13a-c and diastereomeric mixture 2.13a + a' .............................................................................................................................25 2-8. Preparation of novel tripeptides 2.14a,b a', and 2.14a+a'' ...................................................26 2-9. Preparation of novel tripeptides 2.16a,b ...............................................................................28 3-1. Fluorescent labeling of saccharides by reductive amination.................................................47 3-2. Structures of N -(coumarin-3-carbonyl) benzotriazole and N-coumarin-labeled N protectedL -lysines.............................................................................................................48 3-3. Syntheses of O -(coumarin-3-carbonyl)diisopropylidene sugars 3.12, 3.13, 3.14 and N (coumarin-3-carbonyl)te trapivaloyl sugar 3.16 .................................................................50 3-4. Preparation of O and N -( N-coumarin-3-carbonylN(Fmoc or ZL -lys)protected sugars 3.17a,b, 3.18, 3.19, 3.20 .........................................................................................51 3-5. Deprotection of diacetonide groups for compound 3.13 .......................................................52 3-6. Deprotection of diacetonide groups for 3.17b .......................................................................52 3-7. Deprotection of diacetonide groups for 3.18 .........................................................................52

PAGE 9

9 Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science NAND OACYLATION OF PEPTIDES AND SUGARS IN PARTIALLY AQUEOUS MEDIA By Janet Cusido December 2007 Chair: Alan R. Katritzky Major: Chemistry The convenient preparation of N -(Fmocor Z-aminoacyl)benzotriazoles and N -protected peptidoylbenzotriazoles from aspartic and glut amic amino acids is discussed. Additionally, diverse N -protected diand tripeptides are synthesi zed under mild reaction conditions in good to excellent yields by acylation with N(Zand Fmoc-aminoacyl)benzotriazoles of the amino groups of free aspartic and glutamic acids. Exam ples of peptide coupling utilizing free -amino acids in partially aqueous solution are reported and the products are obtai ned without the use of chromatography. Evidence of maintained chirality was supported by NMR and HPLC. In addition, we present the suitable and e fficient fluorescent la beling of sugars by O acylation of diisopropylidene protected sugars and N -acylation of pivaloyl protected aminosugar with N -(coumarin-3-carbonyl)benzotriazole a nd benzotriazole derivatives of N-coumarinlabeled N-protectedL -lysines under microwave irradia tion or/and at room temperature Monosaccharide containing Fmoc-lysine fluorescent building blocks can be useful as water soluble organic fluorophores for peptide labeling at the C -terminus in solid-phase peptide synthesis (SPPS).

PAGE 10

10 CHAPTER 1 GENERAL INTRODUCTION Over the last 25 years, Katritzky and colleague s have studied the design of new synthetic approaches that can produce scientifically attr active compounds in good quantities and with easy purification methods. The development of be tter methods for the preparation of useful compounds in our research group is based on the versatility of a well known synthetic auxiliary, benzotriazole. A useful synthetic auxiliary must possess severa l characteristics. First, benzotriazole can be introduced readily at the beginni ng of a sequence. Second, benz otriazole is easily removed at the end of the synthetic sequence so that it can be recovered and reused. Last, benzotriazole is inexpensive and stable during various chemical r eactions and, to some extent, activates groups on other parts of the molecu le that is attached to.1 1 H Benzotriazole strongly exhib its all of the above characteristics. Benzotriazole (Bt) offers many advantages as a resourceful synt hetic auxiliary because it is soluble in many solvents, such as benzene, toluene, chloroform ethanol, tetrahydrofuran (THF), ethyl acetate (EtOAc), diethyl ether, and dimethyl formamide (DMF).2 Moreover, benzotri azole is partially soluble in water, but extremely soluble in basic solutions because of its acidic p Ka of 8.2. N -Substituted derivates of benzotriazole with an heteroatom (usua lly nitrogen, oxygen and sulfur) attached to a benz otriazole nitrogen can ionize in two ways due to the electron donating and electron accepting pr operties of benzotriazole.3 The benzotriazole anion and an immonium, oxonium, or thionium cation 1.2 can be formed or it can ionize off the heteroatom substituent to produce 1.3 (Figure 1-1). Generally, benzotriazol e is considered to be comparable with other activating groups becau se it shows good leaving ability 1.2 and activates the -CH toward proton loss 1.1. This type of activation to proton loss and leaving ability can be

PAGE 11

11 compared to other activating groups such as cyano, phenylsulfonyl and halogen analogues; however, Bt offers intermediates that are mo re stable, nonvolatile and less physiologically hazardous to prepare. N N N H R X N N N H R N N N X H R X typicallyfor X=NR2,OR,SR1.2typicallyfor X=Halogen,OH1.3 1.1acidicproton pronetodeprotonation Figure 1-1. Properties of N -Substituted benzotriazoles as electron donors or electron acceptors Benzotriazole methodology has become a fundame ntal synthetic tool for many chemical processes, such as multi step preparations of drugs, biologically active compounds and synthetic analogs of natural products. Our group has focuse d some of its research on the preparation of N acylbenzotriazoles. Two methods were utilized in our laboratory to prepare Nacylbenzotriazoles directly from carboxy lic acids. The first method employs sulfonylbenzotriazoles as a counter attack reagent.4,5 In the presence of triethylamine, carboxylic acids were converted into the desired acylben zotriazoles, probably through intermediate formation of the mixed carboxylic sulfonic anhydride and benzot riazole anion, which was then acylated by the mixed anhydride (Figure 1-2). R1OH O Et3N R1O O S O O R2 Bt Et3NH R1Bt O BtSO2R2 Figure 1-2. N -Acylbenzotriazoles from sulfonylbenzotriazoles

PAGE 12

12 The second method involves the tr eatment of a carboxylic acid w ith thionyl chloride in the presence of excess of benzotriazole (Figure 1-3). This method was further applied in the field of peptides to prepare Nprotected aminoacylbenzotriazoles from N -(Zand Fmoc) amino acids. These N -protected aminoacylbenzotr iazoles are stable enough to participate in amino acid coupling at ambient temperature under mild c onditions to produce diand tripeptides with complete retention of chirality.6-11 Cl S Cl O 3BtH Bt S Cl O Bt S Bt O R1OH O R1Bt O and/or Figure 1-3. N -Acylbenzotriazoles from carboxylic acids, excess BtH and thionyl chloride Chapter 2 describes the preparation of N -(Zor Fmoc-aminoacyl)benzotriazoles derived from L -Asp and L -Glu amino acid, as well as peptide coup ling of these acylbenzotriazoles with unprotected -amino acids/dipeptides yielding the corr esponding natural and unnatural diand tripeptides. Such reactions we re carried out with diverse N -(protected aminoacyl)benzotriazoles on Asp and Glu residues, in which the CO2H groups were free or partially protected.10,11 Recently, our group reported the straightforw ard syntheses of coumarin-labeled amino acids and dipeptides which afforded enantiomeri cally pure fluorescent building blocks suitable for solid phase peptide synthesis (SPPS). The tw o-step synthetic route converted coumarin-3carboxylic acid into its actived benzotriazolide 1.4 (Figure 1-4), which was coupled with Zand FmocNprotected lysines. The N -terminus of free amino acids, as well as dipeptides, provided diverse optically pure fluorescent probes in good to excellent yields.12 Helpful water soluble fluorescent building blocks for peptide labeling at the Cterminus in solid-phase peptide synthesis ( SPPS) are described in Chapter 3.13 The same benzotriazole

PAGE 13

13 derivative 1.4 was coupled with Fmoc-protected lysine to give N-coumarin-labeled NprotectedL -lysines. The Lysines were c oupled with protected sugars by O and N -acylation at free OH and NH2 groups to yield water soluble fl uorescent markers in 40-90% yields. OO N N N O 1.4 Figure 1-4. Structure of N -(coumarin-3-carbonyl) benzotriazole

PAGE 14

14 CHAPTER 2 SELECTIVE PEPTIDE CHAIN EXTENSION AT THE C AND N -TERMINI OF ASPARTIC AND GLUTAMIC ACIDS UTILIZING N -PROTECTED (ALPHA-AMINOACYL) BENZOTRIAZOLES 2.1 Introduction Recently many short, long, and cyclic biologically active peptides have been isolated from bacterial, fungal, plant, animal, a nd other sources. Peptides play pivotal roles as taste additives, neuroactive or enzyme regulators, and as an tibiotics. They also influence cell-cell communication upon interaction with receptors and are involved in a number of biochemical processes such as metabolism, pain, reproduction and immune response; such diverse roles have driven intensive peptide research.14-25 Among the 20 naturally occurring peptide amino acids, glutamic and aspartic acids are the representatives of dicarboxylic acids (Figure 2-1), often found in peptides with sensory properties including sweetness, bitterness, bitterness-masking, and flavor enhancements.14-25 The dipeptides aspartame ( L -AspL -Phe-OMe) and alitame ( L -AspD Ala-NH2) exemplify non calorif ic sweeteners and are used worldwide.14,17 Small peptides are important biomolecules and many have therapeu tic value. Unlike large peptides that are commonly isolated from natural sources or produced through recombinant techniques, small peptides are usually prepared using organic synthetic methods. Figure 2-1. Structures of Aspartic (Asp) and Glutamic (Glu) Amino Acids

PAGE 15

15 Glutamic and aspartic acids are important el ements for the biological activity of diverse naturally occurring and syntheti c peptides and their analogs.14 The side-chain carboxylic acid group of both of these amino acids enables sp ecific recognition by various receptors through ionic interactions; hence numer ous biologically active peptidomimetics incorporate glutamic and aspartic acid fragments in their structures.26 Glutamic acid plays a pivotal important role as the main excitatory neurotransmitter of the central nervous system (CNS), operating through f our different classes of receptors. Therefore, glutamic acid has received much attention in th e design of glutamate rece ptor ligands for drugs.27 Numerous small peptides and peptidomimetics, containing Asp and Glu residues have been suggested as prodrugs to enhance CNS effects.27-31 In peptide coupling inco rporating aspartic and glutamic ac ids could involve either of the two carboxylic acids.35 Especially in the case of Asp, the two isomeric forms frequently interconvert during coupling or s ubsequently. Procedures developed previously for peptide coupling incorporating Asp and Glu include: (i) carbodiimides in combination with additives such as 1-hydroxybenzotriazole (HOBt),36,37 1-hydroxy-7-azabenzotriazole (HOAt) and analogs38 or N -hydroxysuccinimide (HOSu),39 (ii) phosphonium,40,41 and uronium salts42,43 of HOBt or HOAt; (iii) N -acylazoles such as 1,1'-carbonylbis(1 H -imidazole) (CDI);44 (iv) mixed anhydrides;45 or (v) carboxylic acid fluorides.46,47 The most common procedures for the preparation of peptides containing glutamic and aspartic acids are based on solid-phase methodology.28,32-34 A commonly encountered problem in peptide synt hesis is epimerizati on of the amino acid chiral center during activation of the carboxylic acid group. Ma ny of the coupling reagents require prior protection and s ubsequent deprotection of vari ous amino acid functional groups.48

PAGE 16

16 Coupling reactions with such reagents are frequen tly moisture sensitive. Furthermore, isolation and purification processes ofte n involve column chromatography due to the formation of byproducts from the coupling reagents. In Katritzkys group, res earchers have applied N -acylbenzotriazoles for N -acylation,49-52 C acylation53-58 and O -acylation.59,60 Recently, the synthesis of N -(Z-aminoacyl)benzotriazoles was achieved in our laboratory and such were found to be efficient coupling reagents for N and O aminoacylation. N -(Z-aminoacyl)benzotriazoles compounds are isolable, stable and storable at room temperature for months, and easy to handle without special procedures to exclude air or moisture. The reagents used in the preparati on of aminoacylbenzotriazoles are inexpensive, thereby offering at the same time an overall cost effective methodology. Additionally, these N (Z-aminoacyl)benzotriazoles can be used in aque ous solutions to efficiently allow the coupling of several non-derivatized amino acids. Thus, th ese coupling reagents enable fast synthesis of peptides and peptoids in high yi elds, and purity under mild conditions with full retention of the original chirality. We now report (i) the preparation of N -(Zor Fmoc-aminoacyl)benzotriazoles derived from L -Asp and L -Glu amino acids, and (ii) peptide coupl ing of these aminoacylbenzotriazoles with unprotected -amino acids and dipeptides yielding the corresponding na tural and unnatural diand tri-peptides. Additionally, a new and c onvenient procedure for the selective stepwise elaboration of peptide chains incorporating aspartic and glutamic acids by utilizing N -(protected aminoacyl)benzotriazoles as coupl ing reagents is described. We show components of Asp and Glu are elongated from the N -terminus by acylation at the free amino group of glutamic or aspartic acids in which the -CO2H groups are unprotected or partially protected.

PAGE 17

17 2.2 Results and Discussion 2.2.1 Extensions of -Amino Acids with and -CO2H Protected. The preparation of natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a' from benzylL -glutamate 2.2a or -benzylL -aspartate 2.2b and N -(Z-aminoacyl)benzotriazoles 2.1a,b and 2.1a+a' was carried out by using as one component 2.1a or 2.1b and as the second component equimolar amounts of L -Glu(OBzl)-OH ( 2.2a ) or L -Asp(OBzl)-OH ( 2.2b ). Each coupling took place in ac etonitrile-water mixture (2:1 in volum e) in the presence of triethylamine (2 equiv.) at room temperature for 2 hours. Th e crude products were washed with 4N HCl to remove the by-product (BtH) to yield the three LL -dipeptides 2.3a-c (94 97%) (Figure 2-2 and Table 2-1). Diastereomeric mixture 2.3a+a was prepared from N -(ZDL -Ala)acylbenzotriazole ( 2.1a+a' ) and -benzylL -glutamate 2.2a in 94% yield using the same procedure as mentioned for the enantiopure dipeptides 2.3a-c NMR analysis showed no detectable racemization for the three enantiopure LL -dipeptides 2.3a-c No signals from their corresponding diastere omers were observed in the NMR spectra of 2.3a-c suggesting the enantiopurity of the N -protected dipeptides. E ach dipeptide revealed two sets of doublets for the two NH protons rang ing from 7.40 to 8.60 ppm. However, for the diastereomeric mixture 2.3a+a' one of the two NH protons a ppeared as two pairs of equal doublets. In addition, the 1H NMR spectrum of 2.3a gave a clear doublet for the methyl protons present in compound at 1.26 ppm (DMSOd6), whereas a multiplet was observed for the corresponding diastereomeric mixture 2.3a+a' ranging from 1.34 to 1.38 ppm (CDCl3). The 13C NMR spectrum displayed a singlet for each carbonyl carbon for compound 2.3a However, for 2.3a+a' NMR analysis displayed doublets for most of the al iphatic and carbonyl carbons, although no significant difference was obs erved for the aromatic carbons.

PAGE 18

18 Figure 2-2. Preparati on of novel dipeptides 2 3a-c and diastereomeric mixture 2 3a+a' Table 2-1. Preparation of novel natural dipeptides 2.3a-c and diastereomeric mixture 2.3a+a' Entry N -(Z-aminoacyl) benzotriazoles Product Yield (%)a [ ]25 D Mp (oC) 1 ZL -Ala-Bt ( 2.1a ) ZL -AlaL -Glu(OBzl)-OH ( 2.3a ) 94 +1.0 89-91 2 ZL -Phe-Bt ( 2.1b ) ZL -PheL -Glu(OBzl)-OH ( 2.3b ) 97 -10.3 139-142 3 ZL -Phe-Bt ( 2.1b ) ZL -PheL -Asp(OBzl)-OH ( 2.3c ) 95 -14.0 102-105 4 ZDL -Ala-Bt ( 2.1a+a' ) ZDL -AlaL -Glu(OBzl)-OH ( 2.3a+a' ) 94 +0.6 81-83 a Isolated yield The dipeptide 2.3a and the diastereomeric mixture 2.3a+a' were further subjected to HPLC analysis using Chirobiotic T column (detec tion at 254 nm, flow rate 0.5 mL/min, and 100% MeOH as solvent). As expected, HPLC analysis of the enantiopure LLdipeptide ( 2.3a ) showed a single peak at 6.3 min. In contrast, two p eaks of equal intensity at 6.3 and 6.7 min were observed for the corresponding diastereomeric mixture 2.3a+a' 2.2.2 Extensions of -acids with -CO2H Protected. The preparation of unnatural dipeptides 2.5a-c and mixture 2.5c+c' from -benzyl L glutamate 2.4a and N -( -aminoacyl)benzotriazoles 2.1b-d and 2.1d+d' were prepared using the same procedure as mentioned for the natural dipeptides 2.3a-c. The two LL -dipeptides 2.5a,c N H Z R N O N N H2NCOOH (CH2)nO O Ph N H Z R H N O COOH (CH2)nO O Ph 2.1a,b,2.1a+a' CH3CN/H2O Et3N,r.t.,2h. 2.2a,b n=1,2. AminoacidswithR: a ,Ala; b ,Phe; a+a' DL -Ala. 2.3a-c,2.3a+a' Z= O O Glu= 2.2a Asp= 2.2b

PAGE 19

19 and the mixture 2.5c+c' were obtained in 87-92% yields (Fi gure 2-3 and Table 2-2) and were further recrystallized from CH2Cl2/hexanes for further characterization. The natural dipeptide 2.3b was obtained in higher yields than the unnatural dipeptide 2.5a For example, the reaction of -benzyl L -glutamate ( 2.2a ) with ZL -Phe-Bt ( 2.1b ) gave dipeptide 2.3b in 97% yield, whereas the reaction of -benzyl L -glutamate ( 2.4a ) with Z L -Phe-Bt ( 2.1b ) gave product 2.5a in 87% yield. N H Z R N O N N H2N O O Ph OH O N H Z R H N O O O Ph OH O 2.1b-d, 2.1d+d' CH3CN / H2O Et3N, r.t., 2h. 2.5a-c, 2.5c+c' Amino acids with R: Ala, Phe, Met, DL -Met. 2.4a Figure 2-3. Preparation of novel unnatural dipeptides 2.5a-c and diastereomeric mixture 2.5c+c' Table 2-2. Preparation of novel unnatural dipeptides 2.5a-c and mixture 2.5c+c' Entry N -(Z-aminoacyl) benzotriazoles Product Yield (%)a [ ]25 DRetention time (min) Mp (oC) 1 ZL -Phe-Bt ( 2.1b ) ZL -PheL Glu(OBzl)-OH ( 2.5a ) 87 -10.7 6.4 140-141 2 ZD -Phe-Bt ( 2.1c ) ZD -PheL Glu(Obzl)-OH ( 2.5b ) 91 -5.4 7.6 119-120 3 ZL -Met-Bt ( 2.1d ) ZL -MetL Glu(Obzl)-OH ( 2.5c ) 87 -7.1 6.3 98-99 4 ZDL -Met-Bt ( 2.1d+d' ) ZDL -MetL Glu(OBzl) -OH ( 2.5c+c' ) 92 -5.3 6.3,7.5 72-73 aIsolated yield Dipeptides 2.5a-c were obtained with no detectable racemization evidenced by their NMR analyses. The enantiopure LLdipeptides ( 2.5a,c ) gave doublets for the two NH protons. However, for the diastereomeric mixture ( 2.5c+c' ), each of the two NH protons appeared as two pairs of equal doublets. 1H NMR spectrum of 2.5c displayed a singlet for the methyl protons

PAGE 20

20 (SMe) from ZL -Met fragment. 13C NMR displayed a singlet for each carbonyl carbon for compounds 2.5a,c whereas for the diastereomeric mixture 2.5c+c' most of the aliphatic and carbonyl carbons were observed as doublets, but no significant changes were observed for the aromatic carbons. In addition, the formation of rotamers was observed for the DL -dipeptide ( 2.5b ), showing complicated 1H and 13C NMR spectra, e.g. 13C analysis gave a second set of signals for all aliphatic, car bonyl and aromatic carbons. The enantiopurity of the dipeptides 2.5a-c was further confirmed by the HPLC analysis using a Chirobiotic T column (detection at 254 nm flow rate 0.5mL/min, and MeOH as solvent). As expected, HPLC analysis of the enantiopure LL ( 2.5a,c) and DL ( 2.5b ) dipeptides gave a single peak for each compound (Table 2-2). 2.2.3 Preparation of Dipeptides 2.7a-e from U nprotected Glutamic or Aspartic Acids and N-( -Aminoacyl)benzotriazoles 2.1a,b,d and e. Dipeptides 2.7a-e were obtained from unprotected glutamic ( 2.6a ) and aspartic acids ( 2.6b ) (1 equiv.), N -(Z-aminoacyl)benzotriazoles 2.1a,b,d and e (1 equiv.), and triethylamine (2 equiv.) in acetonitrile-water mixture (2:1 by volume) at room temperature for 2 hours (Figure 2-4 and Table 2-3). The crude products were wa shed with 4N HCl to remove the by-product, BtH. Compounds 2.7a-e were obtained in 65-94% yields and were further recrystallized from CH2Cl2/hexanes for further characterization. NMR analysis of 2.7a-e showed no detectable racemizati on: each compound revealed two doublets for each of the two NH protons in th e range of 7.40-8.50 ppm. The methyl protons from the ZL -Ala fragment showed a clear doublet in the 1H NMR of 2.7a The 1H NMR spectra also displayed a singlet for th e methyl protons (SMe) from ZL -Met fragment for compounds 2.7c In addition, 13C NMR displayed a singlet for each carbonyl carbon for dipeptides 2.7a-e

PAGE 21

21 N H Z R N O N N H2N (CH2)nOH O N H Z R H N O(CH2)nOH O 2.1a,b,d,e CH3CN/H2O Et3N,r.t.,2h. 2.7a-e n=1,2. AminoacidswithR:Ala,Phe,Trp.Met OH O OH O 2.6a,b Figure 2-4. Preparati on of novel dipeptides 2.7a-e Table 2-3. Preparati on of novel dipeptides 2.7a-e Entry N -(Z-aminoacyl) benzotriazoles Product Yield (%)a [ ]25 D Mp (oC) 1 ZL -Ala-Bt ( 2.1a ) ZL -AlaL -Glu-OH ( 2.7a ) 65 +0.7 121 123 2 ZL -Phe-Bt ( 2.1b ) ZL -PheL -Glu-OH ( 2.7b ) 86 -12.8 154 156 3 ZL -Met-Bt ( 2.1d ) ZL -MetL -Glu-OH ( 2.7c ) 94 -8.2 119-120 4 ZL -Trp-Bt ( 2.1e ) ZL -TrpL -Glu-OH ( 2.7d ) 90 -24.0 69 71 5 ZL -Phe-Bt ( 2.1b ) ZL -PheL -Asp-OH ( 2.7e ) 85 -1.7 179 181 a Isolated yield In addition, it was also f ound that the dipeptides 2.7a,b were obtained in lower yields as compared to the natural dipeptides 2.3a,b and the unnatural dipeptides 2.5a For example, the reaction of L -glutamic acid ( 2.6a ) with ZL -Phe-Bt ( 2.1b ) gave a dipeptide 2.7b in 86% yield, whereas the reaction of -benzyl L -glutamate ( 2.2a ) with ZL -Phe-Bt ( 2.1b ) gave compound 2.3b in 97% yield and -benzyl L -glutamate ( 2.4a ) with L -Phe-Bt ( 2.1b ) gave dipeptide 2.5a in 87% yield. As expected, these th ree compounds gave different me lting points: the dipeptide 2.7b (with unprotected side chain) melted at 154-156 C, while the unnatural dipeptide 2.5a had melting point 140-141 C and the natural dipeptide 2.3b had 139-142 C. Also, the compound 2.7a had a higher melting point (121-123 C) than the dipeptides 2.3a 2.2.4 Peptide Chain Extension at the Alpha CTerminus to Give Natural Dipeptides 2.10a-c. Peptide coupling was carried out by reacting or -monobenzylesters ( 2.8a Asp) and ( 2.8b Glu) of the N -(Fmoc-aminoacyl)benzotriazoles with equimolar amounts of unprotected

PAGE 22

22 amino acids Trp 2.9a and Met 2.9b in acetonitrile-water mixture (2:1 v/v) in the presence of triethylamine (2 equiv.) at room temperature for 2 hours (Figure 2-5 and Table 2-4). The crude products were washed with 4N HCl to re move the by-product BtH, yielding compounds 2.10a-c in 91-94%, which were furthe r recrystallized from CH2Cl2/hexanes before 1H and 13C NMR spectroscopy, elemental analysis, and optical rotatory power (ORP). The Katritzky group researchers have previous ly found that coupling reactions utilizing N (Z or Fmoc-aminoacyl)benzotriazoles gave dipeptide products with no detectable racemization as demonstrated by their 1H NMR and HPLC analyses.61-63 Likewise, NMR analysis of the enantiopure LL -dipeptides 2.10a-c showed no detectable racemization : each compound revealed two doublets for each of the two NH protons in the range of 7.80 8.40 ppm. The NMR spectra also displayed a singlet for th e methyl protons (SMe) for compounds 2.10c. In addition, 13C NMR displayed a singlet for each carbonyl carbon for the dipeptides 2.10a-c (CH2)nN H FmocBt O O O Ph H2NCOOH R O O (CH2)nN H Fmoc O O O Ph H N COOH R 2.10a-c a : n = 1; b : n = 2 Bt = benzotriazol-1-yl 2.8a,b CH3CN / H2O Et3N, r.t., 2h. 2.9a R = -CH2(3-indolyl NH) (Trp) 2.9b R = -(CH2)2-S-CH3 (Met) Fmoc = Figure 2-5. Preparati on of novel dipeptides 2.10a-c Table 2-4. Preparati on of novel dipeptides 2.10a-c Entry Amino Acid Product Yield (%)a [ ]25 D Mp (oC) 1 L -Trp (2.9a) FmocL -Glu(OBzl)L -Trp-OH ( 2.10a ) 93 +11.5 165-167 2 L -Trp (2.9a) FmocL -Asp(OBzl)L -Trp-OH ( 2.10b )94 -4.6 136-137 3 L -Met (2.9b) FmocL -Glu(OBzl)L -Met-OH ( 2.10c ) 91 -7.6 96-97 aIsolated yield

PAGE 23

23 2.2.5 Peptide Chain Extension at the or C-Terminus to Give Unnatural Dipeptides 2.12a-d Peptide coupling reactions were carried out using equimolar amounts of the -monobenzyl ester N -(Z-aminoacyl)benzotriazoles (Asp) 2.11a and (Glu) 2.11b and unprotected amino acids ( L -Trp, L -Phe, DL -Phe,) 2.9a c,d in partially aqueous solution (CH3CN/H2O, 2:1 v/v) in the presence of triethylamine (2 equiv.) at room temperature for 2 hours (Figure 2-6). The crude products were washed with 4N HCl to remove the by-product, BtH. The dipeptides 2.12a,b were obtained in 91-92% yields (T able 2-5) and were furthe r recrystallized from CH2Cl2/hexane for NMR, elemental analysis, and OR P. Diastereomeric mixture 2.12b+b' was prepared from N -(ZL -Asp)benzotriazole and DL -Phe-OH using the same procedure as for the enantiopure dipeptides 2.10a-c Dipeptide mixture 2.12b+b' was obtained in 95% yield a nd was recrystallized from diethyl ether/hexanes. N H ZO O Ph BtO H2NCOOH R N H ZO OPh H N OCOOH R 2.12a,b,b+b' Bt=benzotriazol-1-yl. AminoacidswithR:Trp,Phe, DL -Phe 2.11a,b CH3CN/H2O Et3N,r.t.,2h. 2.9a,c,d Figure 2-6. Preparati on of novel dipeptides 2.12a,b and diastereomeric mixture 2.12b+b' Table 2-5. Preparati on of novel dipeptides 2.12a,b and the diastereomeric mixture 2.12b+b' Entry Amino Acid Product Yie ld (%)a [ ]25 D Retention time (min) Melting point (oC) 1 L -Trp (2.9a) ZL -Asp-OBzlL -Trp-OH (2.12a) 92 -7.1 7.5 98-100 2 L -Phe (2.9c) ZL -Asp-OBzlL -Phe-OH (2.12b) 91 +0.07 7.6 138-140 3 DL -Phe (2.9d) ZL -Asp-OBzlDL -Phe-OH (2.12b+b') 95 -18.6 7.6, 10.1 116-118 aIsolated yield

PAGE 24

24 NMR analysis of the enantiopure LL -dipeptides 2.12a b revealed no detectable racemization. Signals arising from diastereom ers were not observed in the NMR spectra of compounds 2.12a,b. Thus, each dipeptide revealed two se ts of doublets for the two NH proton signals. However, for the diastereomeric mixture 2.12b+b' one of the two NH protons appeared as two pairs of equal doublets. 13C NMR displayed a singlet for each carbonyl carbon for compounds 2.12a,b whereas for the diastereomeric mixture 2.12b+b' most of the aliphatic and carbonyl and aromatic carbons were observed as doublets. The dipeptides 2.12a,b were further characterized by HPLC analysis using a Chirobiotic T column (detection at 254nm, flow rate 0.5mL/mi n, and MeOH as solvent). As expected, HPLC analysis of enantiopure LL ( 2.12a,b ) dipeptides showed a single peak for each compound. In contrast, two peaks were observed for the corresponding diastereomeric mixture 2.12b+b' 2.2.6 Preparation of N-Protected-Dipeptidoylbenzotriazoles 2.13a-c and 2.13a+a' from NProtected Dipeptides 2.3a,b,d and 2.3a+a' N-Z-Dipeptides 2.3a,b,d and 2.3a+a' were successfully converted into the corresponding benzotriazole derivatives 2.13a-c and 2.13a+a' (Figure 2-7 and Table 26). The reactions were carried out at C following the same simple procedure as in references 62 and 63. The reaction was continued until the starting materials 2.3a,b,d and 2.3a+a' were completely consumed as observed under TLC and NMR analyses. Compounds 2.13a-c 2.13a+a' were isolated after acid (4N HCl) workup in good yields (89-93%) and were recrystallized using CH2Cl2/hexanes for 1H and 13C NMR spectroscopy, elemental analysis, and ORP. Compounds 2.13a-c were obtained with no detectable racemization as evidenced by NMR. Compounds 2.13a-c gave two doublets for the two NH protons. 1H NMR spectrum of 2.13a indicated doublet for the methyl proton of L -Ala fragment. In contrast, the same signal of the methyl group showed two sets of doubl ets for the diastereomeric mixture 2.13a + a' 13C NMR

PAGE 25

25 analysis displayed a singlet fo r each carbonyl carbon for compounds 2.13a-c whereas in the mixture 2.13a + a' most of the carbonyl, aliphatic and ar omatic carbons appeared as doublets. N H Z R H N O COOH (CH2)nO O Ph N H N N Cl S Cl O CH2Cl2N H Z R H N O(CH2)nO O Ph O Bt -150C 2.3a,b,d,2.3a+a' 2.13a-c,2.13a+a' n=1,2. Bt=benzotriazol-1-yl Figure 2-7. Preparation of nove l dipeptidoylbenzotriazoles 2.13a-c and diastereomeric mixture 2.13a + a' Table 2-6. Conversion of novel N-Z-dipeptides 2.3a,b,d and the diastereomeric mixture 2.3a+a' into N-Z-dipeptidoylbenzotriazoles 2.13a-c, 2.13a+a' Entry Reagent Product Yield (%)a [ ]25 D Mp (oC) 1 ZL -AlaL Glu(OBzl)-OH ( 2.3a ) ZL -AlaL Glu(OBzl)-Bt ( 2.13a ) 93 -17.9 133-135 2 ZL -PheL Glu(OBzl)-OH ( 2.3b ) ZL -PheL Glu(OBzl)-Bt ( 2.13b ) 92 -24.7 90-92 3 ZL -PheL Asp(OBzl)-OH ( 2.3d ) ZL -PheL Asp(OBzl)-Bt ( 2.13c ) 89 -20.7 110-113 4 ZDL -AlaL -Glu(OBzl) -OH ( 2.3a+a' ) ZDL -AlaL -Glu(OBzl) Bt ( 2.13a+a' ) 91 -22.4 79-81 aIsolated yield 2.2.7 Preparation of N-Protected Tripeptides 2.14a,b,a' and Diastereomeric Mixture 2.14a+a'' from Dipeptidoylbenzotriazoles 2.13a,b, 2.13a+a' and Free Amino Acids 2.9c,e and f Tripeptides 2.14a,b and a' were prepared by peptide coupling reactions between Nprotected-dipeptidoylbenzotriazoles 2.13a,b (1 equiv.) with unprotected amino acids 2.9c e f (1 equiv.) in acetonitrile-water mixture (2 :1 v/v) in the presence of tr iethylamine (2 equiv.) at C for 2 hours. The mixture 2.14a+a'' was prepared using the same procedure. The crude products were washed with 4N HCl to remove the by-product, BtH. Compounds 2.14a,b 2.14a'

PAGE 26

26 and 2.14a+a'' were obtained in 73-95% yields (Figur e 2-8 and Table 2-7) and were further recrystallized from CH2Cl2/hexanes for NMR spectroscopy, el emental analysis, and ORP. N H Z R' H N O(CH2)nO O Ph O Bt H2NCOOH R'' N H Z R' H N O(CH2)nO O Ph N H O 2.14a,b,a',a+a'' n=1,2. Bt=benzotriazol-1-yl. AminoacidswithR':Ala,DL-Ala,Phe AminoacidswithR'':Ala,Phe,D-Phe 2.13a,b,2.13a+a' CH3CN/H2O Et3N,-150C,2h. 2.9c,e,f COOH R'' Figure 2-8. Preparati on of novel tripeptides 2.14a,b a', and 2.14a+a'' Table 2-7. Preparati on of novel tripeptides 2.14a,b,a' and mixture 2.14a+a'' Entry Amino Acid Reactant Product Yield (%)a [ ]25 D Mp (oC) 1 L -Phe (2.9c) ZL -AlaL -Glu(OBzl)Bt (2.13a) ZL -AlaL -Glu(OBzl)L -Phe-OH ( 2.14a ) 73 -2.9 74-76 2 D -Phe (2.9e) ZL -AlaL -Glu(OBzl)Bt (2.13a) ZL -AlaL -Glu(OBzl)D -Phe-OH ( 2.14a' ) 83 +5.5 153-155 3 L -Ala (2.9f) ZL -PheL -Glu(OBzl)Bt (2.13b) ZL -PheLGlu(OBzl)L -Ala-OH ( 2.14b ) 95 -13.0 163-165 4 L -Phe (2.9c) ZDL -AlaL Glu(OBzl)-Bt (2.13a+a') ZDL -AlaLGlu(OBzl)L -Phe-OH (2.14a+a'') 92 -5.5 123-125 aIsolated yield NMR analysis showed no racemization for the tripeptides 2.14a and 2.14a' when the reaction was carried out -15 0C, however when the same reaction was carried out at room temperature, extensive racemization of the desired products was observed. 1 H NMR showed a clear doublet for all NH protons and the methyl protons of the L -Ala fragment, while NMR spectra of the mixture 2.14a+a'' gave complicated multiplets for -NH groups. 13C NMR displayed a singlet for e ach carbonyl carbon for compounds 2.14a and 2.14a' whereas the

PAGE 27

27 diastereomeric mixture 2.14a+a'' showed most of the aliphatic and carbonyl and aromatic carbons as doublets. To confirm the absence of racemization, the compounds ZL -AlaL -Glu(OBzl)L -Phe-OH ( 2.14a ) ZL -AlaL -Glu(OBzl)D -Phe-OH ( 2.14a' ) and the mixture ZDL -AlaLGlu(OBzl)L Phe-OH ( 2.14a+a'' ) were analyzed by HPLC. Single peaks were obtained for tripeptides 2.14a at 6.4 min and 2.14a' at 7.3 min whereas the diastereomeric mixture 2.14a+a'' gave two peaks at 6.4 and 7.3 min. 2.2.8 Preparation of Novel Tripeptides 2.16a,b Containing Glu and Asp Fragments. The general applicabil ity of our coupling method was dem onstrated by the preparation of tripeptides 2.16a,b containing glutamate or aspartate moieties. This was achieved by the elongation of Asp and Glu fragments from the N -terminus, utilizing the free amino group of unprotected dipeptides 2.15a,b and N -(Z-aminoacyl)benzotriazoles 2.1a b Synthesis of tripeptides 2.16a,b was achieved in two steps wi thout purification of the dipeptides intermediates 2.15a,b. First, the Fmocgroup in compounds 2.10a,b was removed with piperidine utilizi ng a literature method;65 thereafter the remaining piperidine was removed, the dipeptides obtained 2.15a,b were then coupled with N -(Z-aminoacyl)benzotriazoles 2.1a b yielding the desired tripeptides 2.16a,b The procedure does not require purification of compounds 2.15a,b ; however, care must be taken to remove all remaining piperidine, as it can compete with free amino acids and peptides in their reactions with N -protected( aminoacyl)benzotriazoles. Crystalline tripeptides 2.16a,b were purified by washing with diethyl ether-hexanes mixture giving de sired product in the yields of 83-84% (Table 2-8). Novel compounds 2.16a,b were characterized by 1H and 13C NMR spectroscopy, elemental and ORP analyses.

PAGE 28

28 (CH2)nHN O O O Ph NH COOH R' Fmoc (CH2)nH2N O O O Ph NH COOH R' N H Z R'' Bt O (CH2)nHN O O O Ph NH COOH R' O NH Z R'' n=1,2. AminoacidswithR':Trp AminoacidswithR'':Ala,Phe 2.1a,b 2.10a,b piperidine r.t.,2h CH3CN/H2O Et3N,-150C,2h. 2.15a,b2.16a,b Figure 2-9. Preparati on of novel tripeptides 2.16a,b Table 2-8. Preparati on of novel tripeptides 2.16a,b containing Glu and Asp fragments Product Yield (%)a[ ]25 D Mp (oC) ZL -PheL -Glu(OBzl)L -Trp-OH ( 2.16a ) 84 -3.2 109 111 ZL -AlaL -Asp(OBzl)L -Trp-OH ( 2.16b ) 83 -1.7 134-137 a Isolated yield NMR analysis demonstrated no detectable racemization for the tripeptides 2.16a,b No signals arising from the diastereomers were observed in the NMR spectra of compounds 2.16a,b 1H NMR showed a clear doublet for all NH protons of 2.16a,b and for the methyl protons from L -Ala fragment for compound 2.16b 13C NMR also gave a singlet for each carbonyl carbon in 2.16a,b 2.3 Conclusion The convenient preparation under mild conditions of N -(Fmocor Zaminoacyl)benzotriazoles, N -protected peptidoylbenzotriazole s and diastereomeric mixtures prepared from aspartic and glutamic amino acid has been demonstrat ed. Additionally, the preparation of diand tr i-peptides starting from Cand N -termini of glutamic and aspartic acids has been demonstrated under mild reaction conditi ons. Products were obtained without the use of column chromatography. Evidence of main tained chirality was supported by NMR and HPLC analyses.

PAGE 29

29 2.4 Experimental Section Melting points were determined on a capillary point apparatus equi pped with a digital thermometer. NMR spectra were recorded in CDCl3 or DMSOd6 with TMS for 1H (300 MHz) and 13C (75 MHz) as an internal reference. N -Zand Fmoc-amino acids were purchased from Fluka and Acros and were used without further purification. Elemental an alyses were performed on a Carlo Erba-1106 instrument. Optical rotation values were measured with the use of the sodium D line. HPLC analyses were performe d on Beckman system gold programmable solvent module 126, using Chirobiotic T column (4.6 250 mm ), detection at 254 nm, flow rate of 0.5 mL/min and 100% MeOH as eluting solvent. 2.4.1 General Procedure for the Preparation of Dipeptides 2.3a-c, 2.3a+a', 2.5a-c, 2.5c+c' and 2.7a-e Benzyl protected ( 2.2a,b and 2.4a ) or unprotected ( 2.6a,b ) aspartic or glutamic acids (5 mmol) were added to a solution of Et3N (10 mmol) in CH3CN (15 mL) and H2O (7 mL) at 25 oC, and the reaction mixture was stirred for 15 min at 25 oC. N -(Protectedaminoacyl)benzotriazoles ( 2.1a e and 2.1a+a' ) (for characterization and preparation refer to references 51, 61, and 63) (5 mmol) were added to the mixture with continued stirring for 2 h at 25 oC. About 4N HCl (5 mL) was added to the reaction mixture and CH3CN was evaporated under reduced pressure. The residu e was dissolved in EtOAc (50 mL), the organic extract was then washed with 4 N HCl (3x15 mL), saturated NaCl (20 mL), and dried over MgSO4. Evaporation of the solvent ga ve the desired products ( 2.3a c 2.3a+a' 2.5a c, 2.5c+c' 2.7a-e ), which were further recrystallized from CH2Cl2hexane, unless specified otherwise. 5-Benzyl ( S )-2-(( S )-2-benzyloxycarbonylamino-pro pionylamino)pentanoate (ZL -AlaL -Glu(OBzl)-OH, 2.3a): White microcrystals (94%); mp 89-91 oC, [ ]D 23 = +1.0 (c 1.66, DMF). 1H NMR (DMSOd6): 1.26 (d, J = 7.1 Hz, 3H), 1.80-1.96 (m, 1H), 2.00-2.18 (m, 1H), 2.30-

PAGE 30

30 2.54 (m, 2H), 4.09-4.19 (m, 1H), 4.27-4.34 (m, 1H ), 5.00-5.10 (m, 2H), 5.14 (s, 2H), 7.30-7.41 (m, 10H), 7.52 (d, J = 7.6 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 12.70 (s, 1H). 13C NMR (DMSOd6): 18.1, 26.3, 30.0, 49.9, 51.0, 65.4, 65.6, 127.8, 128.0, 128.1, 128.4, 128.5, 136.2, 137.1, 149.7 155.7, 172.2, 172.8, 173.2. Anal. calcd for C23H26N2O7: C, 62.43; H, 5.92; N, 6.33. Found: C, 62.05; H, 5.95; N, 6.01. 5-Benzyl ( S )-2-(( S )-2-benzyloxycarbonylamino-3-phe nylpropionylamino)pentanoate (ZL -PheL -Glu(OBzl)-OH, 2.3b): White microcrystals (97%); mp 139-142 oC, [ ]D 23 = -10.3 (c 1.66, DMF). 1H NMR (DMSOd6): 1.88 1.95 (m, 1H), 2.08 2.14 (m, 1H), 2.32 2.55 (m, 2H), 2.72 2.82 (m, 1H), 2.99 3.09 (m, 1H), 4.30 4.37 (m, 2H), 4.95 (s, 2H), 5.13 (s, 2H), 7.16 7.41 (m, 15H), 7.57 (d, J = 8.7 Hz, 1H), 8.39 (d, J = 7.8 Hz, 1H), 12.73 (s, 1H). 13C NMR (DMSOd6): 26.3, 30.1, 37.4, 51.2, 56.1, 65.3, 65.6, 126.3, 127.5, 127.7, 128.0, 128.1, 128.2, 128.3, 128.5, 129.3, 136.2, 137.0, 138.2, 155.9, 171.9, 172.2, 173.1. Anal. calcd for C29H30N2O7: C, 67.17; H, 5.83; N, 5.40. Found: C, 66.88; H, 5.87; N, 5.31. 4-Benzyl ( S )-2-(( S )-2-benzyloxycarbonylamino-3phenylpropionylamino)butanoate (ZL -PheL -Asp(OBzl)-OH, 2.3c): White microcrystals (95%); mp 102-105 oC, [ ]D 23 = -14.0 (c 1.66, DMF). 1H NMR (DMSOd6): 2.65 3.07 (m, 4H), 4.29 4.35 (m, 1H), 4.65 4.73 (m, 1H), 4.89 4.98 (m, 2H), 5.13 (s, 2H), 7.14 7.37 (m, 15H), 7.56 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 7.7 Hz, 1H), 12.9 (s, 1H). 13C NMR (DMSOd6): 36.0, 37.4, 48.6, 56.0, 65.2, 65.9, 126.3, 127.4, 127.7, 127.9, 128.0, 128.3, 128.4, 128.5, 129.2, 135.9, 137.0, 138.1, 155.8, 170.1, 171.6, 172.5. Anal. calcd for C28H28N2O7: C, 66.66; H, 5.59; N, 5.55. Found: C, 66.33; H, 5.68; N, 5.60. 5-Benzyl ( S )-2-(2-benzyloxycarbonylaminopr opionylamino)pentanoate (ZDL -AlaL Glu(OBzl)-OH, 2.3a+a'): White microcrystals (94%); mp 81-83 oC, [ ]D 23 = +0.6 (c 1.66, DMF). 1H NMR (CDCl3): 1.34-1.38 (m, 3H), 2.04-2.11 (m, 1H), 2.27-2.30 (m, 1H), 2.30-2.50

PAGE 31

31 (m, 2H), 4.30-4.43 (m, 1H), 4.63-4.65 (m, 1H), 5.05-5.13 (m, 4H), 5.97 (d, J = 7.4 Hz, 0.5H), 6.06 (d, J = 7.5 Hz, 0.5H), 7.26-7.46 (m, 11H), 10.27 (s, 1H). 13C NMR (CDCl3): 18.0, 18.3, 26.5, 30.0, 50.2, 51.3, 66.3, 66.8, 127.7, 127.8, 127.8, 128.0. 128.2, 128.3, 135.3, 135.8, 156.1, 156.2, 172.7, 172.8, 173.4, 173.7. Anal. calcd for C23H26N2O7: C, 62.43; H, 5.92; N, 6.33. Found: C, 62.12; H, 5.93; N, 6.23. 1-Benzyl ( S )-2-(( S )-2-benzyloxycarbonylamino-3-phe nylpropionylamino)pentanoate (ZL -PheL -Glu(OBzl)-OH, 2.5a): White microcrystals (87%); mp 140-141 oC, [ ]D 23 = -10.7 (c 2.00, DMF). 1H NMR (CDCl3): 1.99 (quintet, J = 7.1 Hz, 1H), 2.15-2.20 (m, 1H), 2.35-2.49 (m, 2H), 3.05 (d, J = 6.3 Hz, 2H), 4.48-4.55 (m, 2H), 5.02 (d, J = 12.9 Hz, 1H, A part of AB system), 5.06 (d, J = 12.6 Hz, 1H, B part of AB system), 5.08 (s, 2H), 5.47 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 6.9 Hz, 1H), 7.12-7.36 (m, 15H), 12.85 (br s, 1H). 13C NMR (CDCl3): 26.6, 30.1, 38.3, 51.8, 56.0, 66.6, 67.1, 127.0, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.6, 129.3, 135.5, 136.0, 156.2, 171.7, 173.0, 174.0. Anal. calcd for C29H30N2O7: C, 67.17; H, 5.83; N, 5.40. Found: C, 66.83; H, 5.81; N, 5.22. 1-Benzyl ( S )-2-(( R )-2-benzyloxycarbonylamino-3-phe nylpropionylamino)pentanoate (ZD -PheL -Glu(OBzl)-OH, 2.5b): White microcrystals (91%); mp 119-120 oC, [ ]D 23 = -5.4 (c 1.66, DMF). 1H NMR (DMSOd6) (two rotameric forms): 1.82-1.91 (m, 1H), 1.96-2.09 (m, 1H), 2.30 (t, J = 7.2 Hz, 1H), 2.43-2.46 (m, 1H), 2.69-2.79 (m, 1H), 2.92-3.04 (m, 1H), 4.26-4.35 (m, 2H), 4.99 (d, J = 12.4 Hz, 1H, A part of AB system), 5.02 (d, J = 12.6 Hz, 1H, B part of AB system), 5.08 (d, J = 12.4 Hz, 1H, A part of AB system), 5.11 (d, J = 12.4 Hz, 1H, B part of AB system), 7.12-7.36 (m, 15H), 7.51 (d, J = 8.8 Hz, 1H), 8.31-8.37 (m, 1H), 12.83 (br s, 1H). 13C NMR (CDCl3) (two rotameric forms): 26.3, 26.4, 29.8, 30.0, 37.3, 51.0, 51.1, 56.0, 65.2, 65.5, 126.3, 127.4, 127.5, 127.7, 127.9, 128.0, 128.3, 128.4, 129.2, 136.1, 136.9, 137.0, 137.9, 138.1,

PAGE 32

32 155.7, 155.9, 171.5, 171.8, 172.0, 172.1, 172.9, 173.0. Anal. calcd for C29H30N2O7: C, 67.17; H, 5.83; N, 5.40. Found: C, 66.86; H, 5.83; N, 5.21. 1-Benzyl ( S )-2-(( S )-2-benzyloxycarbonylamino-4methylsulfanylbutyrylamino)pentanoate (ZL -MetL -Glu(OBzl)-OH, 2.5c): White microcrystals (87%); mp 98-99 oC, [ ]D 23 = -7.1 (c 2.0, DMF). 1H NMR (CDCl3): 1.92-1.97 (m, 2H), 2.06 (s, 3H), 2.22-2.27 (m 2H), 2.46-2.57 (m, 4H), 4.41 (q, J = 7.4 Hz, 1H), 4.54-4.58 (m, 1H), 5.07-5.13 (m, 4H), 5.64 (d, J = 7.9 Hz, 1H), 7.17 (d, J = 7.4 Hz, 1H), 7.26-7.33 (m, 10H), 10.10 (br s, 1H). 13C NMR (CDCl3): 15.1, 26.5, 29.7, 30.2, 31.5, 51.8, 53.6, 66.7, 67.2, 128.0, 128.2, 128.3, 128.4, 128.5, 128.6, 135.5, 136.0, 156.2, 172.0, 173.0, 174.2. Anal. calcd for C25H30N2O7S: C, 59.75; H, 6.02; N, 5.57. Found: C, 59.38; H, 6.02; N, 5.34. 1-Benzyl ( S )-2-(2-benzyloxycarbonylamino-4methylsulfanylbutyrylamino)pentanoate (ZDL -MetL -Glu(OBzl)-OH, 2.5c+c ): White microcrystals (92%); mp 72-73 oC, [ ]D 23 = -5.3 (c 1.66, DMF). 1H NMR (CDCl3): 1.88-1.97 (m, 2H), 2.03 (s, 3H), 2.10.23 (m, 2H), 2.462.54 (m, 4H), 4.40-4.45 (m, 1H), 4.54-4.59 (m, 1H), 5.02-5.13 (m, 4H), 5.82 (d, J = 8.5 Hz, 0.5H), 5.95 (d, J = 8.5 Hz, 0.5H), 7.30-7.32 (m, 10H), 7.36 (d, J = 8.0 Hz, 1H), 8.40 (br s, 1H). 13C NMR (CDCl3): 14.9, 15.1, 26.4, 29.6, 29.7, 29.8, 30.1, 31.4, 31.7, 51.5, 52.8, 53.5, 53.7, 66.5, 66.9, 126.9, 127.8, 128.0, 128.1, 128.3, 128.4, 135.4, 135.9, 156.1, 156.2, 156.5, 172.1, 172.7, 172.8, 173.8, 174.9. Anal. calcd for C25H30N2O7S: C, 59.75; H, 6.02; N, 5.57. Found: C, 59.36; H, 6.00; N, 5.19. ( S )-2-(( S )-2-Benzyloxycarbonylaminopropionylamino)pentanedioic acid (ZL -AlaL Glu-OH, 2.7a): White microcrystals (65%); mp 121-123 oC, [ ]D 23 = +0.7 (c 1.66, DMF). 1H NMR (DMSOd6): 1.20 (d, J = 6.9 Hz, 3H), 1.71-1.84 (m, 1H), 1.95-2.01 (m, 1H), 2.30 (t, J = 7.6 Hz, 2H), 4.07 (q, J = 7.1 Hz, 1H), 4.17-4.25 (m, 1H), 5.01 (s, 2H), 7.30-7.36 (m, 5H), 7.45

PAGE 33

33 (d, J = 7.7 Hz, 1H), 8.10 (d, J = 7.7 Hz, 1H), 12.41 (s, 2H). 13C NMR (DMSOd6): 8.1, 26.4, 30.0, 49.8, 51.1, 65.4, 127.3, 127.8, 128.4, 137.0, 155.7, 172.7, 173.3, 173.8. Anal. calcd for C16H20N2O7: C, 54.54; H, 5.72; N, 7.95. Found: C, 54.21; H, 5.69; N, 7.81. ( S )-2-(( S )-2-Benzyloxycarbonylamino-3-phenylpro pionylamino)pentanedioic acid (ZL -PheL -Glu-OH, 2.7b): White microcrystals (86%); mp 154-156 oC, [ ]D 23 = -12.8 (c 1.66, DMF). 1H NMR (DMSOd6): 1.76-1.88 (m, 1H), 1.99-2.06 (m, 1H), 2.28-2.36 (m, 2H), 2.682.77 (m, 1H), 2.99-3.04 (m, 1H), 4.22-4.32 (m, 2 H), 4.94 (s, 2H), 7.05-7.32 (m, 10H), 7.52 (d, J = 8.8 Hz, 1H), 8.33 (d, J = 7.7 Hz, 1H), 12.47 (s, 2H). 13C NMR (DMSOd6): 26.6, 30.2, 37.6, 51.5, 56.2, 65.5, 126.5, 127.7, 127, 9, 128.3, 128.5, 129.4, 137.2, 138.3, 156.1, 172.1, 173.5, 174.1. Anal. calcd for C22H24N2O7: C, 61.67; H, 5.65; N, 6.54. Found: C, 61.76; H, 5.57; N, 6.56. ( S )-2-(( S )-2-Benzyloxycarbonylamino-4-methylsu lfanylbutyrylamino)pentanedioic acid (ZL -MetL -Glu-OH, 2.7c): White microcrystals (94%); mp 119-120 oC, [ ]D 23 = -8.2 (c 1.66, DMF). 1H NMR (DMSOd6): 1.75-1.99 (m, 4H), 2.02 (s, 3H), 2.30 (t, J = 7.2 Hz, 2H), 2.39-2.47 (m, 2H), 4.01-4.24 (m, 2H), 5.02 (s, 2H), 7.30-7.36 (m, 5H), 7.51 (d, J = 8.0, 1H), 8.20 (d, J = 7.7 Hz, 1H), 12.42 (br s, 2H). 13C NMR (DMSOd6): 14.8, 26.3, 29.7, 30.1, 31.9, 51.3, 53.8, 65.6, 127.9, 128.0, 128.5, 137.1, 156.1, 171.8, 173.3, 173.9. Anal. calcd for C18H24N2O7S: C, 52.42; H, 5.86; N, 6.79. Found: C, 52.47; H, 5.89; N, 6.69. ( S )-2-(( S )-2-Benzyloxycarbonylamino-3-(1 H -indol-3-yl)propionylamino)pentanedioic acid (ZL -TrpL -Glu-OH, 2.7d): Yellow microcrystals (90%); mp 69-71 oC, [ ]D 23 = -24.0 (c 1.66, DMF). 1H NMR (DMSOd6): 1.81-1.91 (m, 1H), 1.98-2.06 (m,1H), 2.33 (t, J = 7.1 Hz, 2 H), 2.87-2.95 (m, 1H), 3.10-3.15 (m, 1H), 4.26-4.38 (m, 2H), 5.01 (s, 2H), 7.00 (t, J = 7.4 Hz, 1 H), 7.07 (t, J = 7.4 Hz, 1H), 7.18-7.41 (m, 8H) 7.68 (d, J = 7.7 Hz, 1H), 8.35 (d, J = 7.4 Hz, 1H), 10.82 (s, 1H), 12.44 ( br s, 2H) 13C NMR (DMSOd6): 26.4, 27.8, 30.1, 51.3, 55.3, 65.3,

PAGE 34

34 110.2, 111.4, 118.2, 118.6, 120.9, 124.0, 127.3, 127.6, 127.7, 128.4, 136.1, 137.0, 155.9, 172.2, 173.3, 173.9 Anal. calcd for C24H25N3O7: C, 61.66; H, 5.39; N, 8.99. Found: C, 61.72; H, 5.73; N, 8.41. ( S )-2-(( S )-2-Benzyloxycarbonylamino-3-phenylpropionylamino)succinic acid (ZL PheL -Asp-OH, 2.7e): White microcrystals (85%); mp 179-181 oC, [ ]D 23 = -1.66 (c 1.66, DMF). 1H NMR (DMSOd6): 2.60-2.71 (m, 3H), 2.99-3.03 (m, 1H), 4.30 (apparent t, J = 7.6 Hz, 1H), 4.55-459 (m, 1H), 4.93 (s, 2H), 7.14-7.31 (m, 10 H), 7.53 (d, J = 8.5 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 12.64 (br s, 2H). 13C NMR (DMSOd6): 36.0, 37.5, 48.7, 56.0, 65.2, 126.3, 127.4, 127.7, 128.1, 128.3, 129.3, 137.0, 138.2, 155.9, 171.6, 171.7, 172.4. Anal. calcd for C21H22N2O7: C, 60.86; H, 5.35; N, 6.76. Found: C, 61.07; H, 5.75; N, 6.53. 2.4.2 General Procedure for the Preparation of N -(Zand Fmoc-Aminoacyl)benzotriazoles 2.8 a,b and 2.11 a,b. Thionyl chloride (5 mmol) was added to a solution of 1 H -benzotriazole (20 mmol) in dry CH2Cl2 (15 mL) at 20 oC, and the reaction mixture was stirred for 20 min at 40 50 oC. To the reaction mixture at 0 oC, the N -protected amino acid (5 mmol) dissolved in dry CH2Cl2 (5 mL) was added dropwise, and was then stirred for 2 hours at 20 oC. The white precipitate formed during the reaction was filtered off, and the filtrate was concentrated under reduced pressure. The residue was diluted with ethyl acetate (100 mL) and the solution was washed with 4N HCl solution (50 mL 3) or saturated Na2CO3 solution (50 mL 3), saturated NaCl solution (50 mL), and dried over anhydrous MgSO4. Removing solvents under reduced pressure gave products 2.8a,b and 2.11a,b which were recrystallized from CHCl3/hexanes, unless specified otherwise. Compounds 2.8a,b and 2.11a,b are novel and fully characterized by NMR and elemental analysis.

PAGE 35

35 ( S )-Benzyl-3-(((9 H -fluoren-9-yl)methoxy) carbonylamino)-4-(1 H -1,2,3-benzotriazol-1yl)-4-oxobutanoate (FmocL -Asp(OBzl)-Bt, 2.8a): White microcrystals (87%); mp 91-92 oC, [ ]D 23 = -26.5 (c 2.58, DMF). 1H NMR (DMSOd6): 3.03 (dd, J = 16.8, 8.8 Hz, 1H), 3.30 (dd, J = 16.8, 5.1 Hz, 1H), 4.24 (t, J = 6.3 Hz, 1H), 4.37 (d, J = 6.9 Hz, 2H), 5.14 (s, 2H), 5.87-5.92 (m, 1H), 7.29-7.44 (m, 9H), 7.65 (t, J = 7.5 Hz, 1H) 7.71 (d, J = 7.4 Hz, 2H), 7.81 (t, J = 7.5 Hz, 1H), 7.90 (d, J = 7.4 Hz, 2H), 8.23 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 8.2 Hz, 1H), 8.46 (d, J = 7.1 Hz, 1H). 13C NMR (DMSOd6): 35.3, 46.6, 51.0, 66.0, 66.2, 114.0, 120.2, 120.3, 125.2, 126.8, 127.1, 127.7, 128.0, 128.1, 128.4, 130.7, 131.2, 135.7, 140.8, 143.7, 145.4, 156.0, 169.5, 170.3. Anal. calcd for C32H26N4O5: C, 70.32; H, 4.79; N, 10.25. Found: C, 70.08; H, 5.14; N, 9.47. ( S )-Benzyl-4-(((9 H -fluoren-9-yl)methoxy) carbonylamino)-5-(1 H -1,2,3-benzotriazol-1yl)-5-oxopentanoate (FmocL -Glu(OBzl)-Bt, 2.8b): White microcrystals (83%); mp 96-97 oC, [ ]D 23 = -22.5 (c 2.08, DMF). 1H NMR (DMSOd6): 2.15-2.27 (m, 1H), 2.32-2.40 (m, 1H), 2.68 (t, J = 7.1 Hz, 2H), 4.27 (t, J = 6.5 Hz, 1H), 4.37 (d, J = 6.9 Hz 2H), 5.03-5.13 (m, 2H), 5.54-5.63 (m, 1H), 7.30-7.47 (m, 9H), 7.66 (t, J = 7.7 Hz, 1H), 7.75 (d, J = 7.3 Hz, 2H), 7.84 (t, J = 7.4 Hz, 1H), 7.92 (d, J = 7.3 Hz, 2H), 8.26 (d, J = 8.2 Hz, 1H), 8.32 (d, J = 8.2 Hz, 1H), 8.39 (d, J = 7.0 Hz, 1H). 13C NMR (DMSOd6): 25.9, 29.9, 46.6, 53.6, 65.6, 65.9, 114.1, 120.1, 120.2, 125.2, 126.8, 127.1, 127.7, 127.9, 128.0, 128.4, 130.7, 131.1, 136.0, 140.8, 143.7, 145.4, 156.3, 171.5, 171.9. Anal. calcd for C33H28N4O5: C, 70.70; H, 5.03; N, 9.99. Found: C, 70.35; H, 5.09; N, 9.91. Benzyl ( S )-4-benzotriazol-1-yl-2-benzyloxyc arbonylamino-4-oxobutanoate (ZL -AspOBzl-Bt, 2.11a): White microcrystals (91%), mp 97-99 oC, [ ]D 23 = -22.5 (c 2.08, DMF). 1H NMR (CDCl3): 4.01 (dd, J = 18.1, 4.7 Hz, 1H), 4.14 (dd, J = 18.1, 4.6 Hz, 1H), 4.96-5.03 (m, 1H), 5.11 (s, 2H), 5.20 (s, 2H), 5.90 (d, J = 8.2 Hz, 1H), 7.21-7.32 (m, 10H), 7.52 (t, J = 7.5 Hz,

PAGE 36

36 1H), 7.65 (t, J = 7.7 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H). 13C NMR (CDCl3): 38.3, 50.2, 67.3, 67.9, 114.2, 120.4, 126.5, 128.2, 128.3, 128.5, 128.5, 128.6, 130.6, 130.7, 134.8, 135.9, 146.1, 155.9, 169.8, 170.3. Anal. calcd for C25H22N4O5: C, 65.49; H, 4.84; N, 12.12. Found: C, 65.71; H, 4.80; N, 12.15. Benzyl ( S )-5-Benzotriazol-1-yl-2-benzyloxyc arbonylamino-5-oxopentanoate (ZL Glu-OBzl-Bt, 2.11b): White microcrystals (81%), mp 50.0-52.0 oC, [ ]D 23 = -20.7 (c 1.66, DMF). 1H NMR (CDCl3): 2.23-2.30 (m, 1H), 2.45-2.50 (m, 1H), 3.37-3.60 (m, 2H), 4.60-4.70 (m, 1H), 5.01-5.20 (m, 4H), 5.79 (d, J = 8.0 Hz, 1H), 7.22-7.31 (m, 10 H), 7.46 (t, J = 7.9 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.1 Hz, 1H). 13C NMR (CDCl3): 21.7, 31.0, 58.8, 67.5, 68.3, 114.3, 120.2, 126.2, 128.2, 128.3, 128.4, 128.5, 128.6, 128.7, 130.5, 131.0, 135.0, 136.1, 146.1, 156.1, 171.4, 171.7. Anal. calcd for C26H24N4O5: C, 66.09; H, 5.12; N, 11.86. Found: C, 65.99; H, 5.14; N, 11.65. 2.4.3 General Procedure for the Preparation of Dipeptides 2.10a-c, 2.12a,b and 2.12b+b' Free amino acids ( 2.9a-f ) (5 mmol) were added to a solution of Et3N (10 mmol) in CH3CN (15 mL) and H2O (7 mL) at 25 oC, and the reaction mixture was stirred for 15 min at 25 oC. N (Protected-aminoacyl)benzotriazoles ( 2.8a,b and 2.11a,b ; 5 mmol) were added to the mixture with continued stirring for 2 h at 25 oC. About 4N HCl (5 mL) was added to the reaction mixture and CH3CN was removed under reduced pressure. The residue was dissolved in EtOAc (50 mL), and the organic extract was washed with 4N HC l (3x15 mL), saturated NaCl (20 mL) and dried over MgSO4. Evaporation of the solvent gave the desired products ( 2.10a c 2.12a,b, 2.12b+b' ), which were further recrystallized from CH2Cl2hexanes ( 2.10a-c ) and ether-hexanes ( 2.12a,b, 2.12b+b' ). ( S )-2-(( S )-2-(((9 H -Fluoren-9-yl)methoxy)carbon ylamino)-5-(benzyloxy)-5oxopentanamido)-3-(1 H -indol-3-yl)propanoic acid (FmocL -Glu(OBzl)L -Trp-OH, 2.10a):

PAGE 37

37 White microcrystals (93%); mp 165-167 oC, [ ]D 23 = +11.5 (c 2.16, DMF). 1H NMR (DMSOd6): 1.81-1.89 (m, 1H), 1.95-2.03 (m, 1H), 2.44 (t, J = 7.7 Hz, 2H), 3.10 (dd, J = 14.6, 8.0 Hz, 1H), 3.21 (dd, J = 14.7, 5.0 Hz, 1H), 4.10-4.30 (m, 4H), 4.48-4.55 (m, 1H), 5.11 (s, 2H), 6.99 (t, J = 7.5 Hz, 1H), 7.08 (t, J = 7.1 Hz, 1H), 7.20 (s, 1H), 7.28-7.43 (m, 10H), 7.55 (d, J = 7.7 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.74 (t, J = 6.9 Hz, 2H), 7.88 (d, J = 7.4 Hz, 2H), 8.23 (d, J = 7.4 Hz, 1H), 10.90 (s, 1H), 12.75 (s, 1H). 13C NMR (DMSOd6): 27.0, 27.5, 30.2, 46.7, 53.0, 53.6, 65.5, 65.7, 109.6, 111.4, 118.2, 118.4, 120.1, 121.0, 123.7, 125.4, 127.1, 127.3, 127.7, 128.0, 128.1, 128.5, 136.1, 136.3, 140.8, 143.8, 144.0, 155.9, 171.5, 172.3, 173.3. Anal. calcd for C38H35N3O7: C, 70.68; H, 5.46; N, 6.51. Found: C, 70.43; H, 5.48; N, 6.47. ( S )-2-(( S )-2-(((9 H -Fluoren-9-yl)methoxy)carbon ylamino)-4-(benzyloxy)-4oxobutanamido)-3-(1 H -indol-3-yl)propanoic acid (FmocL -Asp(OBzl)L -Trp-OH, 2.10b): White microcrystals (94%); mp 136-137 oC, [ ]D 23 = -4.6 (c 2.16, DMF). 1H NMR (DMSOd6): 2.66 (dd, J = 16.3, 9.6 Hz, 1H), 2.84 (dd, J = 16.5, 4.2 Hz, 1H), 3.10 (dd, J = 15.0, 8.1 Hz, 1H), 3.20 (dd, J = 14.8, 4.8 Hz, 1H), 4.21-4.30 (m, 3H), 4.454.57 (m, 2H), 5.11 (s, 2H), 6.99 (t, J = 7.0 Hz, 1H), 7.07 (t, J = 7.1 Hz, 1H), 7.18 (s, 1H), 7.28-7.45 (m, 10H), 7.54 (d, J = 7.7 Hz, 1H), 7.70-7.77 (m, 3H), 7.89 (d, J = 7.6 Hz, 2H), 8.18 (d, J = 7.4 H, 1H), 10.91 (s, 1H), 12.75 (s, 1H). 13C NMR (DMSOd6): 26.9, 36.3, 46.6, 51.1, 53.1, 65.7, 65.8, 109.5, 111.4, 118.2, 118.5, 120.2, 121.0, 123.7, 125.4, 127.1, 127.2, 127.7, 127.9, 128.0, 128.4, 136.0, 136.1, 140.8, 143.9, 155.9, 170.1, 170.8, 173.2. Anal. calcd for C37H33N3O7: C, 70.35; H, 5.27; N, 6.65. Found: C, 70.02; H, 5.29; N, 6.65. ( S )-2-[( S )-4-Benzyloxycarbonyl-2-(9 H -fluoren-9ylmethoxycarbonylamino)butyrylamino]-4 -methylsulfanylbutyric acid (FmocL Glu(OBzl)L -Met-OH, 2.10c): White microcrystals (91%); mp 96-97 oC, [ ]D 23 = -7.6 (c 2.16,

PAGE 38

38 DMF). 1H NMR (DMSOd6): 1.87-2.10 (m, 7H), 2.47-2.53 (m, 4H), 4.10-4.46 (m, 5H), 5.13 (s, 2H), 7.30-7.46 (m, 9H), 7.66 (d, J = 8.1 Hz, 1H), 7.76 (t, J = 6.9 Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 8.32 (d, J = 7.6 Hz, 1H), 12.76 (s, 1H). 13C NMR (DMSOd6): 14.6, 27.4, 29.7, 30.2, 30.7, 46.8, 51.1, 53.7, 65.6, 65.8, 120.2, 125.4, 127.1, 127.7, 128.0, 128.1, 128.5, 136.3, 140.8, 143.8, 144.0, 156.0, 171.6, 172.4, 173.3. Anal. calcd for C32H34N2O7S: C, 65.07; H, 5.80; N, 4.74. Found: C, 65.25; H, 5.80; N, 4.89. Benzyl ( S )-2-benzyloxycarbonylaminoN -[( S )-1-carboxy-2-(1 H -indol-3yl)ethylamino]-4-oxobutanoate (ZL -Asp-OBzlL -Trp-OH, 2.12a) : White microcrystals (92%); mp 98-100 oC, [ ]D 23 = -7.1 (c 2.08, DMF). 1H NMR (DMSOd6): 2.58-2.71 (m, 3H), 3.01 (dd, J = 18.1, 8.1 Hz, 1H), 3.14 (dd, J = 18.1, 4.6 Hz, 1H), 4.42-4.54 (m, 2H), 5.03 (s, 2H), 5.10 (s, 2H), 6.98 (t, J = 7.4 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 7.14 (s, 1H), 7.26-7.38 (m, 10H), 7.52 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 7.7 Hz, 1H), 10.04 (s, 1H), 10.85 (br s, 1H). 13C NMR (DMSOd6): 27.2, 36.6, 50.7, 53.2, 65.6, 66.1, 109.7, 111.4, 118.2, 118.4, 120.9, 123.6, 127.2, 127.7, 127.8, 127.9, 128.0, 128.3, 128.4, 135.9, 136.1, 136.8, 155.8, 168.8, 171.4, 173.3. Anal. calcd for C30H29N3O7: C, 66.29; H, 5.38; N, 7.73. Found: C, 65.96; H, 5.36; N, 7.51. Benzyl ( S )-2-benzyloxycarbonylaminoN -(( S )-1-carboxy-2-pheny lethylamino)-4oxobutanoate (ZL -Asp-OBzlL -Phe-OH, 2.12b) : White microcrystals (91%); mp 138-140 oC, [ ]D 23 = +0.08 (c 2.08, DMF). 1H NMR (DMSOd6): 2.58-2.90 (m, 3H), 3.01 (dd, J = 15.4, 4.6 Hz, 1H), 4.43(quintet, J = 8.0 Hz, 2H), 5.03 (s, 2H), 5.11 (s, 2H), 7.16-7.34 (m, 15H), 7.60 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 12.78 (br s, 1H). 13C NMR (DMSOd6): 30.7, 36.8, 50.7, 53.7, 65.6, 66.1, 126.4, 127.7. 127.8, 127.9, 128.0, 128.2, 128.4, 128.5, 129.1, 135.9, 136.8,

PAGE 39

39 137.5, 155.9, 168.9, 171.4, 172.9. Anal. calcd for C28H28N2O7: C, 66.66; H, 5.59; N, 5.55. Found: C, 66.67; H, 5.58; N, 5.48. Benzyl ( S )-2-benzyloxycarbonylaminoN -(1-carboxy-2-phenylethylamino)-4oxobutanoate (ZL -Asp-OBzlDL -Phe-OH, 2.12b+b') : White microcrystals (91%); mp 116118 oC, [ ]D 23 = -18.6 (c 2.08, DMF). 1H NMR (DMSOd6): 2.58-2.88 (m, 3H), 3.01 (dd, J = 17.4, 5.2 Hz, 1H), 4.47 (quintet, J = 6.9 Hz, 2H), 5.03 (d, J = 12.6 Hz, 1H, A part of AB system), 5.08 (d, J = 12.6 Hz, 1H, B part of AB system), 5.13 (s, 2H), 7.17-7.35 (m, 15H), 7.60 (d, J = 8.1 Hz, 0.5H), 7.85 (d, J = 8.2 Hz, 0.5H), 8.35 (d, J = 8.0 Hz, 1H), 12.78 (br s, 1H). 13C NMR (DMSOd6): 30.7, 35,9, 36.6, 36.9, 50.6, 53.7, 65.6, 66.1, 66.3, 126.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.4, 135.8, 135.9, 136.9, 137.5, 155.9, 156.0, 168.8, 171.1, 171.4, 171.5, 172.9. Anal. calcd for C28H28N2O7: C, 66.66; H, 5.59; N, 5.55. Found: C, 66.31; H, 5.53; N, 5.58. 2.4.4 General Procedure for the Preparation of N-Protected-Dipeptidoylbenzotriazoles 2.13a-c and 2.13a+a' The preparation of 2.13a-c 2.13a+a' was performed at -15 0C under similar conditions as those described for 2.8 and 2.11 ( S )-Benzyl 5-(1 H -1,2,3-benzotriaz ol-1-yl)-4-(( S )-2(benzyloxycarbonylamino)propanamido)-5-oxopentanoate (ZL -AlaL -Glu(OBzl)-Bt, 2.13a): White microcrystals (93%); mp 133-135 oC, [ ]D 23 = -17.9 (c 2.08, DMF). 1H NMR (DMSOd6): 1.26 (d, J = 7.0 Hz, 3H), 1.83-2.42 (m, 2H), 2.47-2.52 (m, 1H), 2.68 (t, J = 7.4 Hz, 1H), 4.17 (dt, J = 19.6, 7.4 Hz, 1H), 4.98-5.12 (m, 4H), 5.66-5.72 (m, 1H), 7.28-7.42 (m, 10H), 7.50-7.57 (m, 1H), 7.64 (t, J = 7.9 Hz, 1H), 7.80 (t, J = 7.5 Hz, 1H), 8.22 (d, J = 7.9 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 8.85 (d, J = 6.3 Hz, 1H). 13C NMR (DMSOd6): 17.9, 25.8, 29.7, 49.6, 52.0, 65.4, 65.6, 114.1, 120.2, 126.7, 127.8, 127.9, 128.0, 128.3, 128.4, 128.5, 130.7, 131.0,

PAGE 40

40 136.0, 137.0, 145.3, 155.7, 170.8, 171.9, 173.2. Anal. calcd for C29H29N5O6: C, 64.08; H, 5.38; N, 12.88. Found: C, 63.80; H, 5.38; N, 12.29. ( S )-Benzyl 5-(1 H -1,2,3-benzotriaz ol-1-yl)-4-(( S )-2-(benzyloxycarbonylamino)-3phenylpropanamido)-5-oxopentanoate (ZL -PheL -Glu(OBzl)-Bt, 2.13b): White microcrystals (92%); mp 90-92 oC, [ ]D 23 = -24.7 (c 1.91, DMF). 1H NMR (DMSOd6): 2.202.40 (m, 2H), 2.63-2.80 (m, 3H), 3.00-306 (m, 1H ), 4.30-4.44 (m, 1H), 4.94 (s, 2H), 5.05 (d, J = 14.6 Hz, 1H, A part of AB system), 5.10 (d, J = 14.9 Hz, 1H, B part of AB system), 5.67-5.74 (m, 1H), 7.17-7.40 (m, 15H), 7.54-7.67 (m, 2H), 7.82 (t, J = 7.5 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.30 (d, J = 8.2 Hz, 1H), 9.00 (d, J = 6.3 Hz, 1H). 13C NMR (DMSOd6): 25.9, 29.8, 37.3, 52.1, 55.8, 65.3, 65.7, 114.1, 120.2, 126.3, 126.7, 127.5, 127.7, 128.0, 128.1, 128.3, 128.4, 129.2, 130.7, 131.1, 136.0, 136.9, 137.9, 145.4, 155.9, 170.8, 172.0, 172.4, 173.1. Anal. calcd for C35H33N5O6: C, 67.84; H, 5.37; N, 11.30. Found: C, 67.72; H, 5.43; N, 11.09. ( S )-Benzyl 4-(1 H -1,2,3-benzotriaz ol-1-yl)-3-(( S )-2-(benzyloxycarbonylamino)-3phenylpropanamido)-4-oxobutanoate (ZL -PheL -Asp(OBzl)-Bt, 2.13c): White microcrystals (89%); mp 110-113 oC, [ ]D 23 = -20.7 (c 2.75, DMF). 1H NMR (DMSOd6): 2.71-2.84 (m, 1H), 2.97-3.10 (m, 2H), 3.34 (dd, J = 17.0, 5.9 Hz, 1H), 4.32-4.40 (m, 1H), 4.90 (d, J = 6.7 Hz, 1H, A part of AB system), 5.10 (d, J = 10.6 Hz, 1H, B part of AB system), 5.15 (s, 2H), 6.03 (dd, J = 13.5, 6.6 Hz, 1H), 7.14-7.39 (m, 15H), 7.56-7.67 (m, 2H), 7.82 (t, J = 8.1 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.30 (d, J = 8.2 Hz, 1H), 9.17 (d, J = 6.6 Hz, 1H). 13C NMR (DMSOd6): 35.3, 37.4, 49.6, 55.9, 65.3, 66.3, 114.0, 120.3, 126.3, 126.8, 127.4, 127.5, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 129.2, 130.7, 131.1, 135.6, 136.0, 137.0, 137.9, 145.4, 155.9, 169.5, 169.7, 172.1. Anal. calcd for C34H31N5O6: C, 67.43; H, 5.16; N, 11.56. Found: C, 67.21; H, 5.16; N, 11.53.

PAGE 41

41 Benzyl (S)-5-Benzotriazol-1-yl-4-(2benzyloxycarbonylaminopropanamido)-5oxopentanoate (ZDL -AlaL -Glu(OBzl)-Bt, 2.13a+a'): White microcrystals (91%); mp 79-81 oC, [ ]D 23 = -22.4 (c 1.66, DMF). 1H NMR (CDCl3): 1.40 (d, J = 6.9 Hz, 3H), 2.27-2.34 (m, 1H), 2.47-2.68 (m, 3 H), 4.30-4.40 (m, 1H), 5.07 (s, 2H), 5.12 (s, 2H), 5.31 (d, J = 6.6 Hz, 1H) 5.93 (br s, 1H), 7.25-7.42 (m, 11H), 7.52 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 6.9 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.19-8.24 (m, 1H). 13C NMR (CDCl3): 18.4, 18.6, 26.7, 27.0, 30.2, 30.3, 50.3, 51.6, 52.7, 66.5, 66.8, 67.1, 114.3, 120.3, 125.8, 126.5, 127.9, 128.0, 128.1, 128.2, 128.3, 128.5, 128.6, 128.7, 130.7, 131.0, 135.3, 135.5, 136.0, 145.9, 156.0, 156.1, 170.3, 170.4, 172.8, 173.6, 173.7. Anal. calcd for C29H29N5O6: C, 64.08; H, 5.38; N, 12.88. Found: C, 64.37; H, 5.28; N, 12.49. 2.4.5 General Procedure for the Preparation of Tripeptides 2.14a,b, 2.14a' and 2.14a+a'' Unprotected amino acids ( 2.9c,e and f ; 1 mmol) were dissolved in a mixture of acetonitrile (10 mL), water (5 mL), and triethylamine (2.5 mmol). N-protected-dipepti doylbenzotriazoles 2.13a,b, 2.13a+a' (1 mmol) were added to the reacti on mixture at -15C and the stirring continued for additional 2 hours. Resulting solu tion was acidified with (1 mL) 4N HCl and acetonitrile was removed under reduced pressure at room temperature. The residue was dissolved in EtOAc (50 mL) and was then washed 3 times with 4N HCl (3 mL) followed by saturated NaCl (20 mL). The organic layer was dried over magnesium sulfate and the solvent was removed under reduced pressure yi elding the tripeptides 2.14a,b 2.14a' and 2.14a+a'' Further purification was performed by recrystallization from CH2Cl2-hexanes for elemental analysis. Benzyl (S)-4-((S)-2-benzyloxycarbonyla minopropanamido)-4-((S)-1-carboxy-2phenylethylamino)-5 -oxopentanoate (ZL -Ala-Glu(OBzl)L -Phe-OH, 2.14a): White microcrystals (73%); mp 74-76 oC, [ ]D 23 = -2.9 (c 1.91, DMF.). 1H NMR (DMSOd6): 1.15 (d, J = 6.3 Hz, 3H), 1.70-2.00 (m, 2H), 2.32-2.45 (m, 2H), 2.86-2.93 (m, 1H), 3.05 (dd, J = 13.4, 4.2

PAGE 42

42 Hz, 1H), 4.00-4.10 (m, 1H), 4.25-4.45 (m, 2H), 4.94-5.08 (m, 4H), 7.06-7.35 (m, 15H), 7.48 (d, J = 7.7 Hz, 1H), 7.92 (d, J = 7.7 Hz, 1H), 8.17 (d, J = 7.7 Hz, 1H), 12.75 (br s, 1H). 13C NMR (DMSOd6): 18.1, 26.3, 30.1, 36.5, 49.8, 51.0, 53.5, 65.4, 65.5, 126.5, 127.8, 127.9, 128.0, 128.2, 128.3, 128.4, 128.5, 129.1, 136.2, 137.0, 137.4, 155.7, 172.2, 172.7, 172.8, 173.1. Anal. calcd for C32H35N3O8: C, 65.18; H, 5.98; N, 7.13. Found: C, 64.86; H, 6.03; N, 7.18. Benzyl ( S )-4-(( S )-2-benzyloxycarbonylaminopropanamido)-4-(( R )-1-carboxy-2phenylethylamino)-5 -oxopentanoate (ZL -AlaL -Glu(OBzl)D -Phe-OH, 2.14a'): White microcrystals (83%); mp 153-155 oC, [ ]D 23 = +5.5 (c 1.91, DMF.). 1H NMR (DMSOd6): 1.15 (d, J = 6.6 Hz, 3H), 1.59-1.65 (m, 1H), 1.70-1.78 (m, 1H), 1.93-2.18 (m, 2H), 2.29-2.34 (m, 1H), 2.81 (dd, J = 13.3, 10.5 Hz, 1H) 4.04 (quintet, J = 7.4 Hz, 1H), 4.28-4.35 (m, 1H), 4.43-4.50 (m, 1H), 4.96 (d, J = 13.3 Hz, 1H, A part of AB system), 5.01 (d, J = 13.3 Hz, 1H, B part of AB system), 5.06 (s, 2H), 7.06-7.08 (m, 1H), 7.13-7.36 (m, 14H), 7.49 (d, J = 7.0 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H), 12.81 (br s, 1H). 13C NMR (DMSOd6): 18.0, 27.6, 29.4, 36.9, 50.1, 51.2, 53.3, 65.4, 65.5, 126.4, 127.7, 127.8, 127.9, 128.0, 128.1, 128.4, 128.5, 129.1, 136.2, 137.0, 137.4, 155.7, 170.5, 172.1, 172.3, 172.8. Anal. calcd for C32H35N3O8: C, 65.18; H, 5.98; N, 7.13. Found: C, 64.88; H, 6.11; N, 7.04. Benzyl ( S )-4-(( S )-2-benzyloxycarbonylamino-3 -phenylpropanamido)-4-(( S )-1carboxyethylamino)-5-oxopentanoate (ZL -PheL -Glu(OBzl)L -Ala-OH, 2.14b): White microcrystals (95%); mp 163-165 oC, [ ]D 23 = -13.0 (c 2.33, DMF). 1H NMR (DMSOd6): 1.15 (d, J = 7.0 Hz, 3H), 1.79-2.00 (m, 2H), 2.40-2.48 (m, 2H), 2.67-2.75 (m, 1H), 2.98 (d, J = 12.0 Hz, 1H), 4.91 (s, 2H), 5.09 (s, 2H), 7.06-7.35 (m, 15H), 7.52 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.0 Hz, 1H), 8.28 (d, J = 6.3 Hz, 1H), 12.51 (br s, 1H). 13C NMR (DMSOd6): 17.0, 27.6, 29.8, 37.3, 47.6, 51.4, 56.1, 65.2, 65.5, 126.3, 127.5, 127.7, 127.9, 128.1, 128.3, 128.4, 128.5, 129.2,

PAGE 43

43 136.2, 137.0, 138.1, 155.9, 170.6, 171.5, 172.4, 174.1. Anal. calcd for C32H35N3O8: C, 65.18; H, 5.78; N, 7.30. Found: C, 64.88; H, 6.26; N, 7.04. Benzyl ( S )-4-(2-benzyloxycarbonylaminopropanamido)-4-(( S )-1-carboxy-2phenylethylamino)-4 -oxopentanoate (ZDL -AlaL -Glu(OBzl)L -Phe-OH, 2.14a+a''): White microcrystals (92%); mp 123-125 oC, [ ]D 23 = -5.5 (c 1.66, DMF). 1H NMR (DMSOd6): 1.17 (m, 3H), 1.61-2.10 (m, 2H), 2.29-2.45 (m, 2H), 2.82-2.95 (m, 1H), 3.04-3.11 (m, 1H), 4.06 (quintet, J = 6.9 Hz, 1H), 4.20-4.31 (m, 1H), 4.39-4.42 (m, 1H), 4.94-5.07 (m, 4H), 7.06-7.51 (m, 15H), 7.45 (d, J = 7.1 Hz, 0.5H), 7.50 (d, J = 6.3 Hz, 0.5H) 7.86-8.01 (m, 1H), 8.13-8.32 (m, 1H), 12.75 (br s, 1H). 13C NMR (DMSOd6): 18.2, 18.3, 18.7, 26.4, 26.5, 27.6, 27.7, 29.9, 30.0. 30.1, 36.7, 50.0, 50.1, 50.3, 51.1, 51.4, 51.5, 53.6, 53.7, 65.5, 65.6, 126.6, 127.9, 128.1, 128.2, 128.2, 128.3, 128.5, 128.6, 129.2, 136.3, 137.1, 137.2, 137.5, 137.6, 155.8, 155.9, 171.0, 171.1, 172.2, 172.3, 172.4, 172.5, 172.6, 172.8, 172.9, 173.1, 173.2. Anal. calcd for C32H35N3O8: C, 65.18; H, 5.98; N, 7.13. Found: C, 65.23; H, 6.14; N, 7.22. 2.4.6 General Procedure for the Prep aration of Tripeptides 16 a,b. N -Protected dipeptides 2.10a,b were treated with piperidine at room temperature for 2 hours to deprotect Fmoc group according to the reported procedure65 to provide the free dipeptides 2.15a,b. Free dipeptides (without significant purification) (1 mmol) were dissolved in a mixture of acetonitrile (10 mL), water (5 mL), and triethylamine (2.5 mmol). N -(Protectedaminoacyl)benzotriazoles 2.1a b (1 mmol) were added to the reaction mixture at -15C and the stirring continued for additional 2 hours. Result ing solution was acidified with (1 mL) 4N HCl and acetonitrile was evaporated under reduced pr essure at room temperature. The residue was dissolved in EtOAc (50 mL) and was then wash ed 3 times with 4N HCl (3 mL) followed by saturated NaCl (20 mL). The organic layer wa s dried over magnesium sulfate and the solvent

PAGE 44

44 was removed under reduced pressure affording the tripeptides 2.16a,b Further purification was performed by recrystallization from et her-hexanes for elemental analysis. Benzyl ( S )-4-(( S )-2-benzyloxycarbonylamino-3 -phenylpropanamido)-4-[( S )-1carboxy-2-(1 H -indol-3-yl)ethylamino]-5-oxopentanoate (ZL -PheL -Glu(OBzl)L -Trp-OH, 2.16a): White microcrystals (84%); mp 109-111 oC, [ ]D 23 = -3.2 (c 1.66, DMF). 1H NMR (DMSOd6): 1.80-2.10 (m, 2H), 2.44 (t, J = 8.1 Hz, 2H), 2.66-2.83 (m, 2H), 2.95-3.12 (m, 2H), 3.21 (dd, J = 14.7, 4.9 Hz, 1H), 4.30-4.51 (m, 3H), 4.93 (s, 2H), 5.10 (s, 2H), 6.96-7.10 (m, 2H), 6.99 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 6.9 Hz, 1H), 7.16-7.36 (m, 15H), 7.54 (t, J = 7.2 Hz, 2H), 8.17 (d, J = 7.7 Hz, 1H), 8.28 (d, J = 7.1 Hz, 1H), 10.89 (br s, 1H). 13C NMR (DMSOd6): 26.9, 27.7, 29.9, 37.3, 51.6, 53.1, 56.1, 65.3, 65.6, 109.6, 111.4, 118.2, 118.5, 121.0, 123.7, 126.3, 127.3, 127.5, 127.6, 127.7 128.0, 128.1, 128.3, 128.5, 129.3, 136.1, 136.3, 137.0, 138.1, 155.9, 171.0, 171.5, 172.4, 173.3. Anal. calcd for C40H40N4O8: C, 68.17; H, 5.72; N, 7.95. Found: C, 67.84; H, 5.79; N, 7.68. Benzyl ( S )-3-(( S )-2-benzyloxycarbonylaminopropionylamino)N -[( S )-1-carboxy-2(1 H -indol-3-yl)ethyl]butanoate (ZL -AlaL -Asp(OBzl)L -Trp-OH, 2.16b): White microcrystals (83%); mp 134-137 oC, [ ]D 23 = -1.7 (c 1.66, DMF). 1H NMR (DMSOd6): 1.15 (d, J = 7.1 Hz, 3H), 2.60-2.71 (m, 1H), 2.82 (dd, J = 14.7, 5.2 Hz, 1H), 3.07-3.14 (m, 2H), 4.03 (quintet, J = 7.1 Hz, 1H), 4.45 (q, J = 6.3 Hz, 1H), 4.70 (q, J = 6.3 Hz, 1H), 4.92-5.10 (m, 4H), 6.97 (t, J = 7.1 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 7.15 (apparent s, 1H), 7.31-7.35 (m, 11H), 7.487.54 (m, 2H), 7.94 (d, J = 7.4 Hz, 1H), 8.26 (d, J = 7.0 Hz, 1H), 10.85 (s, 1H), 12.85 (br s, 1H). 13C NMR (DMSOd6): 18.2, 27.1, 36.3, 49.4, 50.3, 53.2, 65.6, 65.9, 109.6, 111.5, 118.3, 118.6, 121.1, 123.9, 127.7, 127.9, 128.0, 128.1, 128.2, 128.5, 128.6, 136.1, 136.2, 137.1, 155.9, 170.2,

PAGE 45

45 170.3, 172.7, 173.1. Anal. calcd for C33H34N4O8: C, 64.48; H, 5.58; N, 9.12. Found: C, 64.13; H, 5.70; N, 8.78.

PAGE 46

46 CHAPTER 3 EFFICIENT LABELING OF SUGARS TO PROVIDE WATER SOLU BLE FLUORESCENT TAGS 3.1 Introduction Carbohydrate moieties have pivotal roles in num erous biological processes including cellcell communication,66-68 cell adhesion,69,70 fertilization, protein folding, and microbial infections.72-76 Glycosylation is the process of adding saccharides to proteins and lipids. Over 50% of all protein sequences in eukaryotic systems sequences are glycosylated.77 Glycosylated lipids constitute up to 5 % of the membrane c ontent in animal cells, and are involved in a wide array of pathological disorders.78 Oligosaccharides are present in the form of glycoconjugates (glycoproteins and glycolipids) in all cell walls me diating a variety of events su ch as inflammation, immunological response, and metastasis. Separation of gl ycoproteins has been achieved with modern chromatographic and electrophoret ic methodologies. However, gl ycoproteins, once isolated are difficult to study structurally because glycoprotei ns usually destroy when analyzed with X-ray crystallography.79 Also, the amount of glycoproteins obt ained from biological materials is too small to study their structures. Therefore, glycoproteins are of ten cleaved to smaller fragments such as their glycopeptides or gl ycans, which are easier to analyze.80 Glycopeptides and glycans are frequently labeled to in crease detection sensitivity.81 Fluorescent tagging with organic fluorophores82 or green fluorescent protein is the visualization tool most commonly used for anal yzing carbohydrate struct ures in biological systems.83 Highly sensitive fluorescence derivatizati on techniques are gain ing an increasing share of the analytical world market, becoming competitive with, for example, radioimmunoassay. Derivatives of rhodamin, fluorescein, and coumarin are widely used as fluorescent markers for peptides and other biomolecules.84,85 Derivates of coumarins

PAGE 47

47 (benzopyranones), the largest cl ass of laser dyes for the "b lue-green" region, are highly sensitive.86-94 They have provided the most commerci ally accepted categories of fluorescent derivatives with the advantages of an exte nded spectral range, high emission quantum yield, photostability, and good solubility in many solvents. Primary amine-containing fluorescence-tags can be introduced by reductive amination at the reducing end of sugar chains. The saccharide reacts with 3.2 containing 2-aminopyridine and sodium cyanoborohydrate, or sodium borohydride to give glycamine 3.3 (Figure 3-1).76,96-100 However, using these methods cleave the cyclic structure at the reduc ing end changing the properties of the sugar moieties. Figure 3-1. Fluorescent labeling of s accharides by reductive amination Classical labeling procedures applied to proteins, based on acylation of -NH2 groups are not useful for many sugars because of the abse nce of the free amino groups in the saccharide structure. However, monoand disaccharides with amino groups have been labeled with fluorescent mass tags as an alternative method for measuring a special class of enzymes that are responsible for the synthesis of car bohydrates (glycosyltransferases).101-103 The coupling of 7hydroxycoumarin-3-carboxylic acid, a fluorescent tag, to glycosylamine has been performed with HBTU/HOBT/DIEA in DMF.101 Also, amino-rich polysaccharides have been labeled with the fluorescein derivative 5-([4, 6-dichloro triazine-2-yl] amino )-fluorescein (DTAF).102,103 Fluorescence detection depends on the physical characteristics of the dyes employed. Many dyes with high extinction coef ficients and high quantum yields are of limited utility due to O RO RO NHCOCH3OR OH OH RO RO NHCOCH3OR NH NH2NaBH3CNFluorescent tag+3.1 3.2 3.3 FT FT

PAGE 48

48 poor photostability and crucially poor aqueous solubi lity. Solubility char acteristics affects the degree of self interaction in solution of chrom ophores conjugated to s ubstrates and therefore light absorption and emission properties.104 Bright fluorescent reagents, with good aqueous solubility and low non-specific st aining, are needed. Incorporati ng sugar units to fluorescent reagents confers useful water solubility to organic fluorophores without significant change in absorption and fluorescent properties.105,106 Researchers in the Katritzky group have recently uncovered N -(coumarin-3-carbonyl) benzotriazole 3.4 ,12 as a useful starting material, for c onvenient and reliable fluorescent labeling of amino acids and dipeptides. Such coumarin-labeled lysines, including N-coumarin-labeled N-protectedL -lysines 3.5 3.6 are of considerable interest for the design and synthesis of fluorogenic substrates to analyze matrix metalloproteinases (MMP).107-110 Their successful labeling of amino acids and peptides in solution utilized 3.7 and a benzotriazole activated 3 5 (Figure 3-2).12 Figure 3-2. Structures of N -(coumarin-3-carbonyl ) benzotriazole and N-coumarin-labeled NprotectedL -lysines They also recently reported efficient O -acylation of diacetonide protected sugars with readily available N -(Z-aminoacyl)benzotriazoles under microwave irradiation.97 We now

PAGE 49

49 present the convenient and e fficient fluorescent labeling by O -acylation, of diisopropylidene protected sugars 3.9-3.11, and N -acylation of pivaloyl protected aminosugar 3.15 with (i) N (coumarin-3-carbonyl)benzotriazole 3.4 and (ii) the benzotriazole derivatives 3.7, 3.8 of Ncoumarin-labeled N-protectedL -lysines 3.5, 3.6 under microwave irradiation or at room temperature Monosaccharide containing Fmoc-lysine fluor escent building blocks can be useful as water soluble organic fluorophor es for peptide labeling at the C -terminus in solid-phase peptide synthesis (SPPS). 3.2 Results and Discussion 3.2.1 Preparation of N-Coumarin-Labeled N-FmocL -lysine Benzotriazolide 3.8. N-Coumarin-3-carbonylN-FmocL -lysine benzotriazole 3.8 (Figure 3-3) was prepared (87%) from coumarin-labeled N -Fmoc-protected lysine 3.6 utilizing benzotriazole methodology optimized in our laboratories, by reacting 1 H -benzotriazole with thionyl chloride in CH2Cl2 at 20C for 2 hours.10,11,49,61-63 3.2.2 Preparation of Coumarin-O-Tagged Monosaccharides : O-(Coumarin-3carbonyl)diisopropylidene Sugars 3.12, 3.13, 3.14. O -Coumarin labeled diisopropylidene sugars 3.12, 3.13, 3.14 were prepared by coupling of 3.4 with the 6-OH of 1,2:3,4-DiO -isopropylidene-D-galactopyranose 3.9, 3-OH of 1,2:5,6-DiO -isopropylidene-D-glucose 3.10, and 1-OH of 2,3:5,6-DiO -isopropylidene-Dmannofuranose 3.11 respectively in dichloromethane, utilizing 1equivalent of 4Dimethylaminopyridine (DMAP) under 100W microwave irradiation at 50C for 45 min (Figure 3-3). Products were isolated after simple acid work up without chromatography in 60-90% yields.

PAGE 50

50 3.2.3. Preparation of CoumarinN -Tagged Monosaccharide: N -(Coumarin-3carbonyl)tetrapivaloyl Sugar 3.16. 2,3,4,6-tetraO -pivaloyl-D-galactopyranosylamine 3.15 was coupled with N -(coumarin3-carbonyl) benzotriazole 3.4 in dry dichloromethane in the pres ence of 1 equivalent of DMAP in 24 hours at 20C. Afte r silica-gel column chromatography us ing ethyl acetate/hexane (1:3) as eluent, product 3.16 was isolated in 60% yield. O PivO PivO OPiv NH2OPiv O O O O O OH O O O O O O O O O OO O Bt PivO OPiv H N OPiv O O O PivO O O O O O O O O O O O O O OH O O 3.10 3.133 1 63.4 3.14 3.9 3.12 3.11 3.15 OH O O O O O O O O O O O O O O Figure 3-3. Syntheses of O -(coumarin-3-carbonyl)diisopropylidene sugars 3.12, 3.13, 3.14 and N (coumarin-3-carbonyl)te trapivaloyl sugar 3.16 3.2.4 Preparation of O and N -( N-Coumarin-3-CarbonylN(Fmoc or ZL -lys)protected Sugars 3.17a,b, 3.18, 3.19, 3.20. L -Lysine scaffold based coumarin labeled sugars 3.17a,b, 3.18, 3.19, 3.20 were synthesized by O -acylation of the free -OH groups pres ent in diacetonide protected sugars 3.9, 3.10 3.11 and N -acylation of the amino group of 3.15 by N-coumarin-3-carbonylN-Z or FmocL -lysine benzotriazole 3.7 3.8 (Figure 3-4). Coupling reactions were carried out in dry DC M, in the presence of 1 eq. of DMAP, at room temperature for 18-24 hrs. Under microwave irradiation at 60 C, the preparation of

PAGE 51

51 compounds 3.17a,b 3.18, 3.19 needed 45 minutes. After washing with 4N HCl, products 3.17a,b 3.18 were obtained without chromatography in 85-89% yields. The crude products were estimated to be >95% pure. Compounds 3.19 and 3.20 were isolated using column chromatography in 74% and 40% yields respectively. O OO O O O O NH O O O HN Fmoc O O O HN O N H Pg O O O O O O O O O O O O O O O O NH Fmoc NH PivO OPiv H N OPiv O OPiv Pg = Cbz 3.7, 3.17a Pg = Fmoc 3.8, 3.17b3 2 03.7, 3.8 3.9 3.10 3.11 3.17a, 3.17b 3.18 3.19 3.15 O NH O O O HN Fmoc Figure 3-4. Preparation of O and N -( N-coumarin-3-carbonylN(Fmoc or ZL -lys)protected sugars 3.17a,b, 3.18, 3.19, 3.20 3.2.5 Deprotection of the Diisopropylidene Groups of O -(Coumarin Labeled)diisopropylidene Protected Sugars 3.13, 3.17b and 3.18. Deprotection of diacetonide groups of 3.13 3.17b and 3.18 were performed by TFA/H2O (9:1, v/v; 5mL) mixture at 20 C for 3-5 minutes. The unprotected coumarin-sugar conjugate 3.21 (Figure 3-5) and coumarinL -lysine-free sugar conjugates 3.22 and 3.23 (Figures 3-6, 3-7) were obtained in quantitative yields and characterized by 1H NMR and 13C NMR spectroscopy, elemental analysis, melting point, Mass Spec. and ORP.

PAGE 52

52 O O O O O O O O O 3.13 TFA-H2O 9:1,5mL O HO O OH OH OH O O O 3.21 Figure 3-5. Deprotection of diacetonide groups for compound 3.13 O O O HN O N H Fmoc O O O O O O 3.17bO O O HN O N H Fmoc O HO HO OH O 3.22TFA-H2O 9:1,5mL OH Figure 3-6. Deprotection of diacetonide groups for 3.17b O O O O O O O O O O NH Fmoc NH 3.18O HO O OH OH OH 3.23 O O O H N Fmoc NH O TFA-H2O 9:1,5mL Figure 3-7. Deprotection of diacetonide groups for 3.18 3.3 Conclusion In conclusion, we have demonstr ated a convenient and efficient O -fluorescence labeling of diisopropylidene protected sugars 3 12-3.14 and N -labeling of pivaloyl protected aminosugar 3.15 in yields of 55-87%. Fmoc and Z-protected L -Lysine scaffold based coumarin labeled

PAGE 53

53 protected sugars 3 17a,b, 3.18, 3.19, and 3.20 were obtained from 3.7 and 3.8. Deprotection of diisopropylidene groups from 3.13, 3.17b and 3 18 provided water soluble conjugates 3.21-3.23 in quantitative yields. Fluorescent building blocks 3 17a,b, and 3 18 can be considered to be useful markers for labeling C -terminus of peptides in solid phase peptide synthesis (SPPS) and after deprotection of diisopropylidene groups, the fr ee sugar will provide the water solubility of organic fluorophores for coumar in labeled protein molecules. 3.4 Experimental Section Melting points were determined on a capilla ry point apparatus e quipped with a digital thermometer. NMR spectra were recorded in CDCl3 or DMSOd6 with TMS for 1H (300 MHz) and 13C (75 MHz) as an internal reference. Coum arin-3 carboxylic acid was purchased from Acros. Sugars and N -Fmoc-amino acids were purchased from Fluka, Acros and Aldrich and were used without further purificati on. Most of the reactions were carried out under microwave irradiation with a sing le mode cavity Discover Microwave Synthesizer (CEM Corporation, NC) producing a continuous irradiati on at 2450 MHz. Elemental analyses were performed on a Carlo Erba-1106 instrument. Optical rota tion values were measured with the use of sodium D line. Column chromatography was performed on sili ca gel (200-425 mesh). HPLC analyses were performed on Beckman system gold programma ble solvent module 126 using Chirobiotic T column (4.6 x 250 mm), detection at 254 nm, flow rate 1.0 mL/min, and methanol as solvent. 3.4.1 General Procedure for the Preparation of Compound 3.4. Thionyl chloride (7.5 mmol) was added to a solution of 1 H -benzotriazole (25 mmol) in dry CH2Cl2 or THF (30 mL) at room temperature, an d the reaction mixture was stirred for 20 min. To the reaction mixture, coumarin-3-carboxylic ac id (5 mmol) was added and stirred for 4 h at 25 C. The white precipitate formed during the reac tion was filtered off, and the filtrate was concentrated under reduced pre ssure. The residue was diluted with EtOAc (150 mL) and the

PAGE 54

54 solution was washed with sat. Na2CO3 soln. (3 50mL), sat. NaCl soln. (50mL), and dried over MgSO4. Removal of the solvent under reduced pr essure gave 3-(Benzotriazole-1-carbonyl)chromen-2-one 3.4 which was recrystallized from CH2Cl2-hexanes for elemental analysis. 3-(Benzotriazole-1-carbonyl) chromen-2-one (Coum-Bt, 3.4) : White microcrystals (87%); mp 186 187 C, 1H NMR (CDCl3): 7.41 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.58 (t, J = 8.2 Hz, 1H), 7.64 7.80 (m, 3H), 8.16 (d, J = 8.2 Hz, 1H), 8.34 (s, 1H), 8.36 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3): 114.4, 117.2, 117.6, 120.5, 121.9, 125.3, 126.8, 129.6, 130.9, 131.2, 134.5, 146.2, 147.0, 154.9, 157.4, 162.6. Anal. Calcd for C16H9N3O3: C, 65.98; H, 3.11; N, 14.43. Found: C, 65.67; H, 3.10; N, 14.22. 3.4.2 General Procedure for the P reparation of Compounds 3.5 and 3.6. 3-(Benzotriazole-1-carbonyl)chromen-2-one 3.4 (1 mmol) was added to a solution of 1 mmol of N-Fmocor ZL -lysine in MeCN H2O (10mL/5mL) mixture, in the presence of Et3N (1 mmol). The reaction mixture was stirred at 20 C for about 1h (until TLC shows absence of 3.4 ). Aqueous 4N HCl (1mL) was then added an d MeCN was removed under reduced pressure. The residue obtained was dissolved in EtOAc ( 150 mL), and washed with 4N HCl soln. (3 50 mL), sat. NaCl soln. (50 mL) and dried over MgSO4. After evaporation of solvent, the residue was recrystallized from EtOAc-hexanes or CH2Cl2-hexanes. ( S )-2-Benzyloxycarbonylamino-6-[(2-oxo-2 H -chromene-3-carbonyl)amino]hexa noic acid ( N-ZN-CoumoylL -Lys-OH, 3.5): White microcrystals (89%); mp 144 145 C, [ ]23 D = 8.54 (c 1.68, DMF). 1H NMR (CDCl3): 1.37 1.56 (m, 2H), 1.58 1.74 (m, 2H), 1.75 2.40 (m, 2H), 3.33 3.58 (m, 2H), 4.34 4.45 (m, 1H), 5.09 (s, 2H), 5.75 (d, J = 8.0 Hz, 1H), 7.27 7.42 (m, 7H), 7.52 7.72 (m, 2H), 8.92 (s, 1H), 8.95 9.04 (m, 1H). 13C NMR (CDCl3): 22.3, 28.9, 31.5, 39.3, 53.6, 66.9, 116.5, 117.9, 118.5, 125.3, 128.0, 128.1, 128.4, 130.0, 134.1, 136.2, 148.8,

PAGE 55

55 154.3, 156.3, 161.3, 162.1, 175.3. Anal. Calcd for C24H24N2O7: C, 63.71; H, 5.35; N, 6.19. Found: C, 63.82; H, 5.09; N, 6.04. ( S )-2-(9 H -Fluoren-9-ylmethoxycar bonylamino)-6-[(2-oxo-2 H -chromene-3-carbo nyl)amino]hexanoic acid ( N-FmocN-CoumoylL -Lys-OH, 3.6): White microcrystals (87%); mp 110.0 111.0 C, [ ]23 D = 1.62 (c 1.85, DMF), 1H NMR (DMSO-d6): 1.32 1.50 (m, 2H), 1.50 1.62 (m, 2H), 1.62 1.85 (m, 2H), 3.26 3.38 (m, 2H), 3.92 4.01(m, 1H), 4.17 4.36 (m, 3H), 7.22 7.54 (m, 6H), 7.60 7.80 (m, 4H), 7.87 (d, J = 7.4 Hz, 2H), 7.96 (d, J = 7.4 Hz, 1H), 8.73 (t, J = 5.5 Hz, 1H), 8.84 (s, 1H). 12.62 (s, 1H). 13C NMR (DMSOd6): 23.2, 28.6, 30.5, 46.7, 53.8, 65.6, 116.1, 118.5, 119.0, 120.1, 125.1, 125.3, 127.1, 127.7, 130.2, 134.0, 140.7, 143.8, 147.3, 153.8, 156.2, 160.4, 161.0, 174.0. Anal. Calcd for C31H28N2O7: C, 68.88; H, 5.22; N, 5.18. Found: C, 68.59; H, 5.11; N, 5.16. 3.4.3 General Procedure for the P reparation of Compound 3.7 and 3.8. Thionyl chloride (1.2 mmol) was added to a solution of 1H-Benzotr iazole (5 mmol) in anhydrous CH2Cl2 (15 mL) at room temperature, and the reaction mixture was stirred for 20 min. Either compound 3.7 or 3.8 (1 mmol) was added to the reaction mixture and stirred for 2 hours at room temperature. The white precipitate formed during the reaction was filtered off, the filtrate was diluted with additional CH2Cl2 (80 mL) and the solution was washed with sat. Na2CO3 soln (3x50mL), sat. NaCl soln (50mL), and drie d over MgSO4. Removing solvent under reduced pressure gave product in 79% or 85 % yields, which was recrystallized from CH2Cl2-hexanes for elemental analysis. {( S )-1-(Benzotriazole-1-carbonyl)-5-[(2-oxo-2 H -chromene-3-carbonyl)-amino]pentyl}-carbamic acid benzyl ester ( N-ZN-CoumoylL -Lys-Bt, 3.7) : White microcrystals (79%); mp 156 157C, 1H NMR (CDCl3): 1.50 1.80 (m, 4H), 1.96 2,12 (m, 1H), 2.13 2.28

PAGE 56

56 (m, 1H), 3.36 3.48 (m, 1H), 3.48 3.64 (m, 1H), 5.13 (s, 2H), 5.69 5.83 (m, 1H), 6.12 (d, J = 7.8 Hz, 1H), 7.26 7.47 (m, 7H), 7.52 (t, J = 7.6 Hz, 1H), 7.60 7.74 (m, 2H), 8.13 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H), 8.86 (s, 1H), 8.82 8.97 (m, 1H). 13C NMR (CDCl3): 22.3, 28.9, 31.6, 38.5, 54.6, 67.1, 114.4, 116.5, 118.2, 118.6, 120.3, 125.2, 126.4, 128.0, 128.1, 128.5, 129.8, 130.6, 131.1, 134.0, 136.2, 145.9, 148.6, 154.3, 156.2, 161.4, 162.0, 171.7. Anal. Calcd for C30H27N5O6: C, 65.09; H, 4.92; N, 12.65. Found: C, 64.91; H, 4.76; N, 12.59. {(S)-1-(Benzotriazole-1-carbonyl)-5-[(2-oxo-2H-chromene-3-carbonyl)-amino]pentyl}-carbamic acid 9H-flu oren-9-ylmethyl ester acid ( N-FmocN-CoumoylL -Lys-Bt, 3.8): White microcrystals from CH2Cl2-hexanes (85%); mp 113.0 115.0 oC. 1H NMR (CDCl3): 1.40 1.90 (m, 4H), 1.95 2.15 (m, 1H), 2.15 2.23 (m, 1H), 3.40 3.68 (m, 2H), 4.20 4.35 (m, 2H), 4.36 4.48 (m, 1H), 6.20 (d, J = 7.7 Hz, 1H), 7.20 7.45 (m, 7H), 7.50 7.80 (m, 7H), 8.13 (d, J = 8.2 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 8.20 8.97 (m, 2H). 13C NMR (CDCl3): 22.4, 28.9, 31.6, 38.5, 47.1, 54.6, 67.1, 114.4, 116.4, 118.0, 118.5, 119.9, 120.2, 125.2, 126.4, 127.0, 127.6, 129.7, 130.6, 131.1, 134.0, 141.2, 143.6, 143.9, 146.0, 148.6, 154.3, 156.2, 161.4, 162.1, 171.7. Anal. calcd for C37H31N5O6: C, 69.26; H, 6.87; N, 10.91. Found: C, 69.01; H, 4.76; N, 11.03. 3.4.4 General Procedure for the Preparation of O -(Coumarin)diacetonide Sugars 3.12, 3.13, 3.14 Under Microwave Irradiation. A dried heavy walled Pyrex t ube containing a small stir bar was charged with 3(Benzotriazole-1-carbonyl)chromen-2-one 3.4 (1.0 mmol), sugars 3.9 3.10 3.11 (1 mmol), DMAP (1 mmol), and CH2Cl2 (1 mL). The reaction mixture was exposed to microwave irradiation (100 W) fo r 45 minutes to obtain 3.12, 3.13 and 3.14 at a temperature of 60 C. After the irradiation, the reaction mixture was allowe d to cool through an inbuilt system in the instrument until the temperature had fallen below 30 C (ca. 10 min). To the reaction mixture 20

PAGE 57

57 mL of CH2Cl2 was added, washed with 4N HCl soln (3 15 mL), sat. NaCl soln (10 mL) and dried over MgSO4. After evaporation of solvent, the residue was recrystallized from CH2Cl2hexanes. 6O -Coumarin-3-carbonyl-1,2:3,4-di-O-isopropylidene-D-galactopyranose, 3.12: White microcrystals (90%), mp 146.2 148.0 oC, 1H NMR (CDCl3): 1.34 (s, 3H), 1.36 (s, 3H), 1.48 (s, 3H), 1.54 (s, 3H), 4.16 4.23 (m, 1H), 4.33 4.40 (m, 2H), 4.47 (dd, J = 11.4, 7.6 Hz, 1H), 4.55 (dd, J = 11.5, 4.9 Hz, 1H), 4.66 (dd, J = 7.8, 2.3 Hz, 1H), 5.56 (d, J = 4.9 Hz, 1H), 7.30 7.38 (m, 2H ), 7.58 7.70 (m, 2H), 8.53 (s, 1H). 13C NMR (CDCl3): 24.4, 24.9, 25.9, 26.0, 54.5, 64.4, 65.9, 70.6, 70.9, 96.2, 108.9, 109.6, 116.8, 117.8, 117.9, 124.8, 129.5, 134.4, 148.8, 155.1, 156.5, 162.6. Anal. calcd for C22H24O9: C, 61.11; H, 5.59; N, 0.00. Found: C, 61.06; H, 5.71; N, 0.19. 3O -Coumarin-3-carbonyl-1,2:5,6-Di-O-isopropylidene-D-glucose, 3.13: White microcrystals (89%), mp 65.1 66.7 oC 1H NMR (CDCl3): 1.32 (s, 3H), 1.33 (s, 3H), 1.43 (s, 3H), 1.56 (s, 3H), 4.07 (dd, J = 8.8, 4.7 Hz, 1H), 4.15 (dd, J = 8.7, 5.9 Hz, 1H), 4.29 (dd, J = 8.5, 3.0 Hz, 1H), 4.45 4.51 (m, 1H), 4.68 (d, J = 3.8 Hz, 1H), 5.48 (d, J = 3.0 Hz, 1H), 5.97 (d, J = 3.8 Hz, 1H), 7.32 7.40 (m, 2H), 7.60 7.72 (m, 2H), 8.53 (s, 1H). 13C NMR (CDCl3): 25.2, 26.1, 26.7, 26.9, 67.4, 72.4, 77.6, 79.9, 83.1, 105.1, 109.4, 112.3, 116.8, 117.6, 124.9, 129.6, 134.7, 149.3, 155.2, 156.2, 162.1. Anal. calcd for C22H24O9: C, 61.11; H, 5.59; N, 0.00. Found: C, 60.91; H, 5.72; N, 0.03. 1O -Coumarin-3 carbonyl-2,3:5,6-Di-O-isopropylidene-D-mannofuranose, 3.14: White microcrystals (65%), mp 158.2 160.0 oC, 1H NMR (CDCl3): 1.35 1.40 (m, 6H), 1.46 (s, 3H), 1.52 (s, 3H), 4.06 (dd, J = 9.07, 4.4 Hz, 1H), 4.08 4.15 (m, 1H), 4.19 (dd, J = 7.8, 3.4 Hz, 1H), 4.40 4.48 (m, 1H), 4.89 4.98 (m, 2H), 6.36 (s, 1H), 7.32 7.40 (m, 2H), 7.62 7.71

PAGE 58

58 (m, 2H), 8.54 (s, 1H). 13C NMR (CDCl3): 24.6, 25.1, 25.9, 26.9, 66.8, 72.8, 79.2, 82.6, 85.0, 101.9, 109.4, 113.3, 116.8, 117.7, 124.9, 129.7, 134.8, 149.6, 155.3, 155.6, 162.0. Anal. calcd for C22H24O9: C, 61.11; H, 5.59; N, 0.00. Found: C, 61.02;H, 5.54; N, 0.03 2,2-Dimethyl-propionic acid (3 S ,5 S ,6 R )-3,4,5-tris-(2,2-dimethyl-propionyloxy)-6-[(2oxo-2H-chromene-3-carbonyl)-amino]-tetrah ydro-pyran-2-ylmethyl ester, 3.16: Clear solid (60%), 1H NMR (CDCl3): 1.00 (s, 9H), 1.06 (s, 9H), 1.10 (s, 9H), 1.23 (s, 9H), 3.91 3.99 (m, 1H), 4.06 4.16 (m, 2H), 5.20 5.35 (m, 2H), 7.30 7.39 (m, 2H), 7.60 7.68 (m, 2H), 8.83 (s, 1H), 9.29 (d, J=9.1Hz, 1H). 13C NMR (CDCl3): 26.7, 27.0, 27.1, 29.6, 38.6, 38.6, 38.7, 39.0, 60.7, 66.7, 67.7, 71.1, 72.7, 78.5, 116.7, 117.2, 118.3, 125.3, 130.0, 134.6, 149.5, 154.6, 160.6, 162.0, 176.8, 177.0, 177.1, 177.7. Anal. calcd for C22H24O9: C, 62.87; H, 7.18; N, 2.04. Found: C, 62.69; H, 7.68; N, 2.07. ( S )-2-Benzyloxycarbonylamino-6-[(2 -oxo-2H-chromene-3-carbonyl) -amino]-hexanoic acid 5-(2,2dimethyl-[1,3 ] dioxolan-4-yl)-2,2 -dimethyl-tetrahydrofuro[2,3-d][1,3]dioxol-6 -yl ester, 3.17a: White microcrystals (82%), mp 123.0 124.0oC. 1H NMR (CDCl3): 1.29 (s, 3H), 1.31 (s, 3H), 1.38 (s, 3), 1.41-1.48 (m, 2H), 1.51 (s, 3H), 1.58 1.98 (m, 4H), 3.38 3.58 (m, 2H), 3.97 (dd, J = 8.6, 4.2 Hz, 1H), 4.07 (dd, J = 8.6, 5.1 Hz, 1H), 4.1 4-4.25 (m, 2H), 4.29-4.40 (m, 1H), 4.48 (d, J = 3.4 Hz, 1H), 5.07(d. J = 12.2 Hz, 1H, B part of AB system), 5.13 (d, J = 12.2 Hz, 1H, A part of AB system), 5.40-5.52 (m, 1H), 5.65 (d, J = 7.4 Hz, 1H), 5.82 (d, J = 3.4 Hz, 1H), 7.28-7.43 (m 7H), 7.50 (d, J = 7.1 Hz, 1H), 7.62-7.72 (m, 1H), 8.82-8.96 (m, 2H). 13C NMR (CDCl3): 22.2, 25.2, 26.2, 26.7, 26.8, 29.1, 31.3, 38.7, 54.0, 66.9, 67.2, 72.4, 76.9, 79.7, 83.0, 105.0, 109.3, 112.4, 116.5, 116.5, 118.2, 118.6, 125.3, 128.0, 128.2, 128.5, 129.8, 134.1, 136.2, 148.6, 154.3, 156.0, 161.5, 161.9, 171.0. Anal. calcd for C36H42N2O12: C, 62.24; H, 6.09; N, 4.03. Found: C, 62.34; H, 6.11; N, 4.09.

PAGE 59

59 ( S )-2-(9 H -Fluoren-9-ylmethoxycar bonylamino)-6-[(2-oxo-2 H -chromene-3carbonyl)-amino]-hexanoic acid 2,2,7,7-te tramethyl-tetrahydro-bis[1,3]dioxolo[4,5b ;4',5'd ]pyran-5-ylmethyl ester, 3.17b : White microcrystals (85%), mp 122.3 124.1 oC. 1H NMR (CDCl3): 1.33 (s, 6H), 1.46 (s, 3H), 1.52 (s, 3H), 1.63 2.30 (m, 4H), 3.40 3.57 (m, 2H), 4.01 4.08 (m, 1H), 4.20 4.29 (m, 3H), 4.30 4.46 (m, 6H), 4.62 (dd, J = 7.8, 2.3 Hz, 1H), 5.54 (d, J = 4.9Hz, 1H), 5.60 (d, J = 8.0 Hz, 1H), 7.29 7.43 (m, 7H), 7.54 (d, J = 7.7Hz, 1H), 7.60 7.67 (m, 3H), 7.72 7.78 (m, 2H), 8.82 8.88 (m, 1H), 8.90 (s, 1H). 13C NMR (CDCl3): 22.3, 24.4, 24.9, 25.9, 26.0, 29.0, 31.9, 37.3, 39.2, 47.1, 53.8, 64.2, 66.0, 67.0, 68.8, 70.3, 70.7, 70.9, 96.2, 108.8, 109.7, 116.5, 118.3, 118.6, 119.9, 125.2, 127.0, 127.6, 129.7, 133.9, 141.2, 143.8, 148.3, 154.3, 155.9, 161.4, 161.7, 172.3. Anal. calcd for C43H46N2O12: C, 65.97; H, 5.92; N, 3.58. Found: C, 65.63; H, 6.04; N, 3.62. ( S )-2-(9 H -Fluoren-9-ylmethoxycar bonylamino)-6-[(2-oxo-2 H -chromene-3carbonyl)-amino]-hexanoic acid 5-(2,2-di methyl-[1,3]dioxolan4-yl)-2,2-dimethyltetrahydro-furo[2,3d ][1,3]dioxol-6-yl ester, 3.18: White microcrystals (67%), mp 118.2 120.4. 1H NMR (CDCl3): 1.29 (s,3H), 1.31 (s, 3H), 1.38 (s, 3H), 1.51 (s, 3H), 1.60 2.00 (m, 4H), 3.40 3.52 (m, 2H), 3.97 4.11 (m, 3H), 4.19 4.27 (m, 3H), 4.30 4.45 (m, 3H), 4.51 (d, J= 3.4 Hz, 1H), 5.30 (s, 1H), 5.77 (d, J = 7.6 Hz, 1H), 5.86 (d, J = 3.6 Hz, 1H), 7.25 7.46 (m, 8H), 7.60 7.67 (m, 3H), 7.72 7.79 (m, 2H), 8.84 8.96 (m, 2H). 13C NMR (CDCl3): 22.2, 25.1, 26.2, 26.7, 26.8, 29.0, 31.3, 38.7, 47.1, 53.9, 60.4, 67.0, 67.2, 72.3, 79.7, 83.1, 105.0, 109.4, 112.4, 116.5, 118.1, 118.5, 120.0, 125.0, 125.1, 125.2, 127.1, 127.7, 129.7, 134.0, 141.2, 143.6, 143.8, 148.6, 154.3, 156.0, 161.5, 162.0, 171.1. Anal. calcd for C43H46N2O12: C, 65.97; H, 5.92; N, 3.58. Found: C, 65.68; H, 6.07; N, 3.60.

PAGE 60

60 ( S )-2-(9H-Fluoren-9-ylmethoxycarbony lamino)-6-[(2-oxo-2H-chromene-3carbonyl)-amino]-hexanoic acid 6-(2,2-dime thyl[1,3]dioxolan4-yl)-2,2-dimethyltetrahydro-furo[3,4-d][1,3] dioxol-4-yl ester, 3.19: White microcrystals (74%), mp 87.0-88.0 1H NMR (CDCl3): 1.22-1.30 (m, 2H), 1.33 (s, 3H), 1.37 (s 3H), 1.43 (s, 3H), 1.48 (s, 3H), 1.52-1.98 (m, 4H), 3.46-3.60 (m, 2H), 3.98-4.12 (m, 3H ), 4.22 (t, J = 7.1 Hz, 1H), 4.30-4.48 (m, 3H), 4.73 (d, J = 5.9 Hz, 1H), 4.80-4.90 (m, 1H), 5.65 (d, J = 7.8 Hz, 1H), 6.17 (s, 1H), 7.25-7.42 (m, 7H), 7.50 (d, J = 7.8 Hz, 1H), 7.58-6.67 (m, 3H), 7.74 (dd, J = 7.3, 2.8,Hz, 2H), 8.82-8.88 (m, 2H). 13C NMR (CDCl3): 22.3, 22.6, 24.6, 25.1, 25.9, 26.9, 29.0, 31.5, 38.9, 47.1, 53.7, 66.8, 67.0, 72.7, 79.2, 82.5, 85.0, 101.6, 109.3, 113.3, 116.5, 118.2, 118.5, 119.9, 125.2, 127.0, 127.6, 129.7, 134.0, 141.2, 143.7, 143.8, 148.4, 154.3, 155.8, 161.4, 161.8, 171.1. Anal. calcd for C43H46N2O12: C, 65.97; H, 5.92; N, 3.58. Found: C, 65.57; H, 6.06; N, 3.40. {( S )-1-Formyl-5-[(2-oxo-2 H -chromene-3-carbonyl)-amino]-pentyl}-carbamic acid 9 H -fluoren-9-ylmethyl ester; compound with 2,2-dimethyl-propionic acid (3S,5S,6R)-3,4,5tris-(2,2-dimethyl-propionyloxy) -6-methylamino-tetrahydro-pyr an-2-ylmethyl ester, 3.20: 2-Oxo-2 H -chromene-3-carboxylic acid (3S ,5R)-2,3,5-trihydroxy-6-hydroxymethyltetrahydro-pyran-4-yl ester, 3.21: ( S )-2-(9 H -Fluoren-9-ylmethoxycar bonylamino)-6-[(2-oxo-2 H -chromene-3carbonyl)-amino]-hexanoic acid 3,4,5,6-tetrahyd roxy-tetrahydro-pyran-2-ylmethyl ester, 3.22: ( R )-2-(9 H -Fluoren-9-ylmethoxycar bonylamino)-6-[(2-oxo-2 H -chromene-3carbonyl)-amino]-hexanoic ac id (3S,5R)-2,3,5-trihydroxy-6hydroxymethyl-tetrahydropyran-4-yl ester, 3.23:

PAGE 61

61 LIST OF REFERENCES 1. Katritzky, A. R.; Rogovoy, Boris V. Chem. Eur. J. 2003 9 4586. 2. Katritzky, A. R.; Lan, X.; Yang, J.; Denisko, O. Chem. Rev. 1998 98 409. 3. Katritzky, A. R.; Belyakov, S. Aldchim. Act. 1998 31 35. 4. Katritzky, A. R.; Shobana, N.; Pernak, J.; Afridi, A. S.; Fan, W. Q. Tetrahedron 1992 48 7817. 5. Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000 65 8210. 6. Katritzky, A. R.; Zhang, Y.; Singh, S. K. Synthesis 2003 2795. 7. Katritzky, A. R., Suzuki, K.; Singh, S.K. Synthesis 2004 2645. 8. Katritzky, A. R.; Angrish, P.; Hr, D.; Suzuki, K. Synthesis 2005 3, 397. 9. Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesis 2006 3, 411. 10. Katritzky, A. R.; Todadze, E.; Cusido, J. Angrish, P.; Shestopalov A. Chem. Biol. Drug Des. 2006 68 42. 11. Katritzky, A. R.; Todadze, E.; Shestopalov A.; Cusido, J. Angrish, P. Chem. Biol. Drug Des. 2006 68 37. 12. Katritzky, A. R.; Narindoshvili, T, Angrish, P. Manuscript submitted to Synlett 13. Katritzky, A. R.; Cusido, J.; Narindoshvili, T. Manuscript in progress 14. Gill, I.; Lpez-Fandio, R.; Jorba, X.; Vulfson, E. N. Enzym. Micro. Tech. 1996, 18 162. 15. Nishimura, T.; Kato, H. Food Rev Int. 1988, 4, 39. 16. Sturtevant, Frank M. J. Environ. Sci. Health Part A Environ. Sci. Eng 1985 20, 863. 17. Grenby, T. H. Trends Food Sci. Technol. 1991 2 2. 18. Nosho, Y.; Seki, T.; Kondo, M.; Ohfuji, T.; Tamura, M.; Okai, H. J. Agric. Biol. Chem 1990 38 1368. 19. Arai, S. A. Anal. Control Less Desirable Flavor Foods Beverages (Proc Symp). Academic, New York, 1980 133. 20. Matoba, T.; Hayashi, R.; Hata, T. Agric. Biol. Chem 1988 34 1235.

PAGE 62

62 21. Mojarro-Guerra, S.H.; Amado, R.; Arrigoni, E.; Solms, J J. Food Sci 1991 56 943. 22. Kirimura, J.; Shimizu, A.; Kimizura, A.; Ninomiya, T.; Katsuya, N. J. Agric. Food Chem 1969 17 689. 23. Ohyama, S.; Ishibashi, N.; Tamura, M.; Nishizaki, H.; Okai, H. Agric. Biol. Chem 1988, 52 871. 24. Tada, M.; Shinoda, I.; Okai, H. J Agric. Food Chem 1984 32, 992. 25. Kawasaki, Y.; Seki, T.; Tamura, M. ; Kikuchi, E.; Tada, M.; Okai, H. Agric. Biol. Chem 1988, 52 2679. 26. Stefanic, P.; Dolenc, M. S. Current Med. Chem 2004 11 945. 27. Bruner-Osborne, H.; Egebjerg, J.; Nielsen, E. O.; Madsen, U.; Krogsgaard-Larsen, P. J. Med. Chem 2000, 43 2609. 28. Prokai-Tatrai, K.; Nguyen, V.; Zharikova, A. D.; Braddy, A. C.; Stevens, S. M. Jr.; Prokai, L. Biorg. Med. Chem. Lett. 2003, 13 1011. 29. Mann, E.; Kessler, H. Org. Lett 2003 5 4567. 30. Dauban, P.; De Saint-Fuscien, C.; Acher, F.; Prezeau, L.; Brabet, I.; Pin, J. -P.; Dodd, R. H. Biorg. Med. Chem. Lett 2000 10 129. 31. Bessis, A. S.; Bolte, J.; Pin, J. P.; Acher, F. Biorg. Med. Chem. Lett 2001 11 1569. 32. Merrifield, R. B. J. Am. Chem. Soc. 1963 85 2149. 33. Schnolzer, M., Alewood, D.; Kent, S. B. Int. J. Peptide and Protein Research 1992 40 180. 34. Dorwald, F.Z. Organic Synthesis in Solid Support Wiley-VCH, Weinheim, Germany, 2000. 35. Capecchi, J. T.; Miller, M. J.; Loudon, G. M. J. Org. Chem 1983 48 2014. 36. Konda-Yamada, Y.; Okada, C.; Yoshida, K.; Umeda, Y.; Arima, S.; Sato, N.; Kai, T.; Takayanagi, H.; Harigaya, Y. Tetrahedron 2002 58 7851. 37. Baek, B. -H.; Lee, M. -R.; Kim, K. -Y.; Cho, U. -I.; Boo, D. W.; Shin, I. Org. Lett 2003 5 971. 38. Carpino, L. A.; Ferrer, F. J. Org. Lett 2001 ; 3, 2793.

PAGE 63

63 39. Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. Am. Chem. Soc 1964 86, 1839. 40. Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron Lett. 1975 14 1219. 41. Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett 1990 31 205. 42. Dourtoglou, V.; Gross, B. Synthesis 1984 7 572. 43. Kienhfer, A. Synlett 2001, 26 1811. 44. Wasserman, H. H.; Chen, J. -H.; Xia, M. Helv. Chim. Acta 2000 83 2607. 45. Vaughan, J. R., Jr.; Osato, R. L. J. Am. Chem. Soc 1951 73 5553. 46. Carpino, L. A.; Sadat-Aalaee, D.; Chao, H. G.; DeSelms, R. H. J. Am. Chem. Soc 1990 112 9651. 47. Carpino, L. A.; Mansour, E. -S. M. E.; Sadat-Aalaee, D. J. Org. Chem 1991 56 2611. 48. Jones, J. The Chemical Synthesis of Peptides ; Clarendon Press: Oxford, UK, 1991 49. Katritzky, A. R.; Yang, H.; Zhang, S.; Wang, M. Arkivoc 2002 xi 39. 50. Katritzky, A. R.; Yang, B.; Semenzin, D. J. Org. Chem 1997 62 726. 51. Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N. G. Arkivoc 2002 viii 134. 52. Katritzky, A. R.; Wang, M.; Zhang, S. Arkivoc 2001 ix 19. 53. Katritzky, A. R., Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003 68 4932. 54. Katritzky, A. R.; Pastor, A. J. Org. Chem 2002 65 3679. 55. Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003 68 1443. 56. Katritzky, A. R.; Suzuki, K.; Singh, S. K.; He, H. -Y. J. Org. Chem 2003 68 5720. 57. Katritzky, A. R.; He, H. -Y.; Suzuki, K. J. Org. Chem 2000 65 8210. 58. Katritzky, A. R.; Suzuki, K.; Singh, S. K. Croat. Chem. Acta 2004 77 175. 59. Katritzky, A. R.; Pastor, A.; Voronkov, M. V.; J. Heterocyclic Chem 1999 36 777. 60. Katritzky, A. R.; Denisko, O. V.; Fang, Y.; Zhang, L.; Wang, Z. Arkivoc 2001 xi 41.

PAGE 64

64 61. Katritzky, A. R.; Suzuki, K.; Singh, S. K. Synthesis 2004 16 2645. 62. Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesis 2006 3 411. 63. Katritzky, A. R.; Angrish, P.; Hr, D.; Suzuki, K. Synthesis 2005 3 397. 64. Katritzky, A. R.; Todadze, E.; Shestopalov, A. A.; Cusido, J.; Angrish, P. Chem. Biol. Drug Des 2006 68 42. 65. Carpino, L. A.; Han, G. Y. J. Org. Chem 1972 37 3404. 66. Boons, G. J. Recent advances Drug Discov. Today 1996 1 331. 67. Karlsson, K. A. Trends Pharm. Sci. 1991 ,12 265. 68. Sharon, N.; Lis, H. Sci. Am. 1993 268 82. 69. Dwek, R. A. Chem. Rev. 1996 96 683. 70. Varki, A. Glycobiology 1993 3 97. 71. Barkley, A.; Arya, P. Chem. Eur. J. 2001 7 555. 72. Fukuda, M. Biochim. Biophy. Acta 2002 1573 394. 73. Ohyama, C.; Tsuboi, S.; Fukuda, M. Embo. J. 1999 18 1516. 74. Macmillan, D.; Daines, A. M. Curr. Med. Chem. 2003 10 2733. 75. Feizi, T.; Childs, R. A. Trends Biochem. Sci. 1985 10, 24. 76. Park, J.; Lee, H. Y.; Cho, M. H.; Park, S. B. Angew. Chem. Int. Ed 2007 46 2018. 77. Apweiler, R.; Hermjakob, H.; Sharon, N. Biochim. Biophys. Acta 1999 1473, 4. 78. Kolter, K.; Sandhoff, K Angew.Chem. Int. Ed 1999 38 1532. 79. a) Dell, A.; Morris, H. R.; Science 2001 291 2351. b) Shriver, Z.; Raguram, S.; Sasisekharan, R. Nat. Rev. Drug Discovery 2004 3 863. c) Morelle, W.; Michalski, J. C. Curr. Anal. Chem. 2005 1 29. 80. Mechrev, Y.; Novotny, M. Chem. Rev 2002 102 321. 81. Tinnefeld, P.; Sauer, Markus. Angew. Chem. Int. Ed. 2005 44 2642. 82. Swedlow, J. R.; Platani, M. Cell Sruct. Funct. 2002 27 335.

PAGE 65

65 83. Ehrhart, D. Curr. Opin. Plant Biol. 2003 6 622. 84. Faure, M. P.; Gaurdeau, P.; Shaw, I.; Cashman, N. R.; Beaudet, A. J. Histochem. Cytochem. 1994 42 755. 85. Fernandez-Carneado, J.; Kogan, M. J.; Castel, S.; Giralt, E. Angew. Chem. Int. Ed. 2004 43 1811. 86. Ammar, H.; Fery-Forgues, S.; Gharbi, R. E. Dyes and Pigments 2003 57 259. 87. Gikas, E.; Parissi-Poulou, M.; Kazanis, M.; Vavagianis, A. Anal. Chim. Acta 2003 489 153. 88. Sastry, S. Biophys. Chem. 2001 91 191. 89. Malkar, N. B.; Fields, G. B. Lett. Pept. Sci. 2000 7 263. 90. Berthelot, T.; Lain, G.; Latxague, L.; Deleris, G. J. Fluoresc. 2004 14 671. 91. Bennett, F. A.; Barlow, D. J.; Dodoo, A. N. O.; Hider, R. C.; Lansley, A. B.; Lawrence, M. J.; Marriott, C.; Bansal, S. S. Tetrahedron Lett 1997 38 7449. 92. Wang, J.; Xie, J.; Schultz, P. G. J. Am. Chem. Soc. 2006 128 8738. 93. Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliviera-Campos, A. M. F.; Machalicky, O.; Mendonca, A. J. Tetrahedron 2005 61 8625. 94. Heiner, S.; Detert, H.; Kuhn, A.; Kunz, H. Bioorg. Med. Chem. 2006 14 6149. 95. Malsch, R.; Guerrini, M.; Torri, G.; Lohr, G.; Casu, B.; Harenberg, J. Anal. Biochem. 1994 217, 255. 96. Uozumi, N.; Teshima, T.; Yamamoto, T.; Nish ikawa, A.; Gao, Y. E.; Miyoshi, E.; Gao, C. X.; Noda, K.; Islam, K. N.; Ihara, Y.; Fujii, S.; Shiba, T.; Taniguchi, N. J. Biochem. 1996 120 385. 97. Hase, S.; Ibuki, T.; Ikenaka, T. J. Biochem 1984 95 197. 98. Tomiya, N.; Kurono, M.; Ishihara, H.; Tejima, S.; Endo, S.; Arata, Y.; Takahashi, N. Anal. Biochem 1987 163 489. 99. Gross, H. J.; Sticher, U.; Brossmer, R. Anal. Biochem 1990 186 127. 100. Taniguchi, N. Nishikawa, A.; Fujii, S.; Gu, J. Methods in Enzymology 1989 179 397.

PAGE 66

66 101. Higai, K.; Masuda, D.; Matsuzaw a, Y., Satoh, T.; Matsumoto, K. Biol. Pharm. Bull. 1999 22 333. 102. Prigent-Richard, S.; Cansell, M.; Vassy, J. ; Puvion, E.; Jozefonvicz, J. Letourneur, D. Journal of Biomedical Mat. Research 1998 40 275. 103. Blakeslee, D.; Baines, M. G. J. Immun. Methods 1976 13 305. 104. Brelje, T. C.; Wessendorf, M. W.; Sorenson, R. L. Methods in Cell Biology 1993 38 97. 105. Reddington, Mark V. J. Chem. Soc. Perkin Trans. 1 1998 143. 106. Esteves, A. P.; Rodrigues, L. M.; Silva, M. E.; Gupta, S.; Oliveira-Campos, A. M. F.; Machalicky, O.; Mendona, A. J. Tetrahedron 2005 61 8625. 107. Shi, Y.; Xiang R.; Horvath, C.; Wilkins, J. A. Journal of Sep. Science 2005 28 1812. 108. Lauer-Fields, J. L.; Kele, P.; Sui, G.; Na gase, H.; Leblanc, R. M.; Fields, G. B. Anal. Biochem 2003 321 105. 109. Lauer-Fields, J. L.; Broder, T.; Sritharan, T.; Chung, L.; Nagase, H.; Fields, G. B. Biochemistry 2001 40 5795. 110. Johansson, A.; Akerblom, E.; Ersm ark, K.; Lindeberg, G.; Hallberg, A. J. Comb. Chem. 2000 2 496.

PAGE 67

67 BIOGRAPHICAL SKETCH Janet Cusido grew up in Miami, Florida, w ith her parents Ramon and Oneida, and brother Ramon Alejandro. In high school, she developed a l ove for the sciences, especially for math and chemistry. She graduated from Coral Gables Seni or High and enrolled at the University of Florida in order to pursue a de gree in chemical engineering. During her junior year at the University of Florida, she took organic ch emistry lab led by teaching assistant Valerie Rodriguez-Garcia, where Janet discovered her passi on for laboratory experimentation. Thanks to Valerie, Janet decided to switch majors from chem ical engineering to chemistry. Janet started to perform research with Professor Alan R. Katritz ky under the supervision of Valerie and learned how important organic chemistry was in everyday life. Janet graduated with High Honors from the University of Florida in April 2005 and th en enrolled in the gr aduate program at UF, continuing her research with Dr. Katritzky in th e field of Benzotriazole Chemistry. After Janet graduates from the University of Florida in D ecember 2007, she plans to continue her graduate studies at another institution to expand her knowledge and experience.


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101206_AAAABI INGEST_TIME 2010-12-06T08:05:58Z PACKAGE UFE0021642_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 8473 DFID F20101206_AAAKGZ ORIGIN DEPOSITOR PATH cusido_y_Page_46thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
51562a6d4768d9581ae1e76a8c41fe50
SHA-1
55b35b97f4c04ce86c0da1ef234db5130a6f68cc
79443 F20101206_AAAJSG cusido_y_Page_11.jpg
8f1050cf60357b01b31d28bb658212b0
08ae0b645628c40cdd4425e5a127bf75255fefdf
6210 F20101206_AAAKEB cusido_y_Page_06thm.jpg
a8af0d3ae88ec903ecf4082a7d6b2cd0
1260b2b270be38ed716ed56be8082d83f4a67378
1053954 F20101206_AAAJXD cusido_y_Page_18.tif
22fb431a35fdd24806ed4d2cfcbfa195
72b73aa006ffb026f911a697237aee4070a901a8
103326 F20101206_AAAJSH cusido_y_Page_12.jpg
ea21e377ab9eaa8c7e3636d982161003
2c0b23727b8ae4ee23c1107ff6ec69ef892ac1d2
26006 F20101206_AAAKEC cusido_y_Page_06.QC.jpg
dc16e8e0ab2f998db7f95376fd8d2a93
8ba4f533c96eca9e542d2fe59336df97dac1de9e
F20101206_AAAJXE cusido_y_Page_19.tif
6337fddc39026e9f8feab3446e48eb5f
17591e044fdb828e2df992ec700a5a81e9968c30
90592 F20101206_AAAJSI cusido_y_Page_14.jpg
96694e9795b98fa249c485077728d2a8
9a8f18693413289c0deff50bd52f023800bb7d1c
4272 F20101206_AAAKED cusido_y_Page_07thm.jpg
97a3f59a96f90b9a8caaefa1a1a69dc4
db6a7b9d2ff895be117b86453dd4fa72f524a9c0
F20101206_AAAJXF cusido_y_Page_20.tif
fe716839a61db0e91bc13ab070dc1e91
a5c223c3de3b03e61c10cfc886bacde26d8bb283
106701 F20101206_AAAJSJ cusido_y_Page_15.jpg
6810c79980778a1dbf5d3c848dd24da5
f7ee1f44da23c21063fa86bbb649d25607ed4a22
16611 F20101206_AAAKEE cusido_y_Page_07.QC.jpg
dbaff158a2c7f515c4a29cca90f6cb8a
e84b97de0f3e49ccb2dce95f0f2168ae85062066
F20101206_AAAJXG cusido_y_Page_21.tif
ef2ac4c114f18df06633b84ca7c8d02b
3f2db4d57a752d7583f8f6f6a8a68f173f034b45
105846 F20101206_AAAJSK cusido_y_Page_16.jpg
1db684ffa818b0903d49eafc4a15f716
392da58f1d2ef27057976d95d6c2546d69eaa6cb
F20101206_AAAJXH cusido_y_Page_22.tif
c90be6da1b8777c0e38b0e24df35882f
220504e97068b5f77b5e7e5443e84200650d1ae4
8436 F20101206_AAAKEF cusido_y_Page_08thm.jpg
37e00a5cfd084640faddf3d20fd5bdbb
872f99b33ad16c00eac12b6c8fa9fffce8c45b54
F20101206_AAAJXI cusido_y_Page_23.tif
83420b1547318fbb7c5364a763d98c34
cabc31882d6c54a2c2746d2f115d096320591964
111633 F20101206_AAAJSL cusido_y_Page_17.jpg
4b2d26240ff1669944628eb47a04ede8
f9f76d71550c09e2dc16e3a1c90a7acc09d11c20
35464 F20101206_AAAKEG cusido_y_Page_08.QC.jpg
3020e6ab2286119b8d39b5b2518ddd4c
c5043c06c223f262db70174f220a017d0c6f3fe3
F20101206_AAAJXJ cusido_y_Page_24.tif
bf0ee18da37788f43e2ac6780da99a3b
f001c3506f2439b6a17a99cbca3c654191947132
92733 F20101206_AAAJSM cusido_y_Page_18.jpg
32c25a2a8249cb1182034804260cf535
6935b2e629e1b8d4646f9cfd56373fc75dc9d382
7045 F20101206_AAAKEH cusido_y_Page_09thm.jpg
b45b32a6f9b6705809cd1fa1c241b1a0
551d01253bf80b9c54f9618f1a4cd14b34a5656e
F20101206_AAAJXK cusido_y_Page_25.tif
7b7eb7092166e80e93872f45e8d3e9fa
4110c00d183664738c514be1d1e0b8f87ea20160
93693 F20101206_AAAJSN cusido_y_Page_19.jpg
686c6bf3d9a6c5bd1ef2b503d3dc12c7
2e354a8b69c509d62054d3bde5a3bc9631e4d98c
27083 F20101206_AAAKEI cusido_y_Page_09.QC.jpg
f3895f864bdccd5881d94b47f6da60a0
bde8fdd23b57e58a8539ae93b4ab590a50fa2c4a
F20101206_AAAJXL cusido_y_Page_26.tif
80cedf3d3fa34db7804b5d27f4862bdb
50b390b6983e9e7ff690ca19286489a36a6d5517
107965 F20101206_AAAJSO cusido_y_Page_20.jpg
bae88feaefbfb37cb12068ef5d5b35de
6f0a497af2761f544898bf4d3f3c33e3ea166322
34215 F20101206_AAAKEJ cusido_y_Page_10.QC.jpg
84c86d998f5db7a3ae5fa1a0095b7169
0320e101e67065e166c336962d07f42f314d0a89
F20101206_AAAJXM cusido_y_Page_27.tif
34937012385b60f45ee5511308095908
3c5a60b40686b14ac502e2be6d6438e9faedcd25
102055 F20101206_AAAJSP cusido_y_Page_21.jpg
8d91ead47b640dc96f28bfcfa5f3968c
e6d5f6bcc392acf8ac07890cdc1a436094e0db48
7223 F20101206_AAAKEK cusido_y_Page_11thm.jpg
4745d39b78c3100e909a292b53e495c5
886c59d774b0c9e14fe3ca65f34b9c7128360e59
F20101206_AAAJXN cusido_y_Page_28.tif
fd2ce2bd8b11c380aae4d9c3d25d8647
1014f2506bb9987e763fcdf7275b39fa5d6d7830
93583 F20101206_AAAJSQ cusido_y_Page_23.jpg
b9216c4c98d84c453751dcf703c80e7b
9052982c0b25135962bdbb475f151f5e83efaa6f
8471 F20101206_AAAKEL cusido_y_Page_12thm.jpg
c8e1aba7b3ecb8ac21b46368f9ab39af
8d20ad8154e6415c19325c78976ce07c2ca80f44
F20101206_AAAJXO cusido_y_Page_29.tif
559210cbb2c4c5d746e4faf13e017ac7
0813dbc58509165bed38f91a52eefe7751d36e7f
115858 F20101206_AAAJSR cusido_y_Page_24.jpg
29eccacd7e1213573c27290da50a737c
208c391330bd63c242ed7fed14752e33c308b534
33673 F20101206_AAAKEM cusido_y_Page_12.QC.jpg
6970045c2662896022bb6b4107ac0937
7d15016dfba896fb31339153a2bbeb3d95aa8150
F20101206_AAAJXP cusido_y_Page_30.tif
8428cf03bb043e3a13dfd473970d348e
4e9a056702c1667ca5842620f62b9b2ed3bb961e
99643 F20101206_AAAJSS cusido_y_Page_25.jpg
b7de0cbd15bf686ad2bf860de170e0d4
fd8d676e4d8b8acdc67ee0aadf63af669ba73142
2550 F20101206_AAAKEN cusido_y_Page_13thm.jpg
1b46196bc73d2519f1355cada9b939fa
b15159c101b0c333a5f3085e29f3595b18843000
F20101206_AAAJXQ cusido_y_Page_31.tif
62741e85f5f5c19f7173bc642a711f46
4035aff25a3f332b1c9b21f2998bf2081b5a3f7b
97048 F20101206_AAAJST cusido_y_Page_26.jpg
37221349bce2308eb30b8f67f6f244db
a78a0dc2265b375b88a07662c8eeb20949fecea3
9185 F20101206_AAAKEO cusido_y_Page_13.QC.jpg
edd1e8503ce5d8a20e91d7b4d7e14a4e
54db4797efb9bed47cbad5ec2cd7112399b59ed0
F20101206_AAAJXR cusido_y_Page_32.tif
12abec83df9fa8a05ffa42a69f44b830
1089b32a5fcdcdf2b3c7cc69f1251a0010b7cbdf
7446 F20101206_AAAKEP cusido_y_Page_14thm.jpg
739d3d235a8777125bb08682198c464a
10510381653d71b3fccb559440f56f0a1c2fecba
F20101206_AAAJXS cusido_y_Page_33.tif
64d8e0170c47521235ac507027127297
4e51a663957cd2ac6fa63a17e8468d5cf0284cf8
102427 F20101206_AAAJSU cusido_y_Page_27.jpg
13047a1716f417811ce6bbb69a322d63
be32a851d320d2345519ea99ee745375e3ecbe19
29540 F20101206_AAAKEQ cusido_y_Page_14.QC.jpg
dae558239fe41f5a75795630165795f3
2c0046de6a859c3d59b73a69b1fd7214df19aa63
F20101206_AAAJXT cusido_y_Page_34.tif
0db211b886af341f0e3f2ed3bf97f546
3152db4fa403fdfbed3dcc71155920045b73f603
89609 F20101206_AAAJSV cusido_y_Page_28.jpg
b81441b2f324cf60f0486435bdc55e0c
8711bd5b82f969df23e052b5203ac4f3db985c7f
8662 F20101206_AAAKER cusido_y_Page_15thm.jpg
b73d2d0eb92100fc9e1e7e6bbb4bc6ca
86c256a6b56e92dc3f8ecc37583a9259b692391b
F20101206_AAAJXU cusido_y_Page_35.tif
e42a7b609c8bc0690602e4d9f9728c66
848586920f4cf3c69425f1307f193e541a76787a
111042 F20101206_AAAJSW cusido_y_Page_29.jpg
c15085987e4a4e5fbe4fb76b02c84478
356035eb0b5b564df13425fd661015a42a33593d
33893 F20101206_AAAKES cusido_y_Page_15.QC.jpg
118d0bbdb73ee990f3140d608dcd977b
c478d02561c664b38b28a551b2957f3172ca1aec
F20101206_AAAJXV cusido_y_Page_36.tif
6f0d697497caf2dfc0c2babf7bc74962
bf20c8c605e28ff23f01f9521d947b09a4fdfcca
116431 F20101206_AAAJSX cusido_y_Page_30.jpg
2fc32e2856dfc5345758dd60500dd78a
a14bc3d5e83fe47d219bfd2be9616cfaaa0569f4
8372 F20101206_AAAKET cusido_y_Page_16thm.jpg
e0ab5d1cea4057ca0bdd6995e8f98eed
8c3e74cc73a8c61b7ed9c198a44f48edb7894f60
F20101206_AAAJXW cusido_y_Page_37.tif
8833f1cc4fa55af7392198214e1e9c5a
1a707a8f15b603ff96a58025eac867fe62d2af49
116148 F20101206_AAAJSY cusido_y_Page_31.jpg
2c036bb094b332920deb3656316b6b1e
11347c83923227b9dcd7af5c3d5583573588eacf
34448 F20101206_AAAKEU cusido_y_Page_16.QC.jpg
b15b6897d339ca7ddc81ef8b4b1c6a2e
a2e57afb1d124aa663df60a7f6e6e5fe2a9d684e
F20101206_AAAJXX cusido_y_Page_38.tif
83f0cfc432f92c36c5e8ca44042ff72a
a768ee3262fa599554a421d21809c845bab912c6
119852 F20101206_AAAJSZ cusido_y_Page_33.jpg
a5a30e415e768e1a9f54fb7c731af3bb
3494b8df4fef7a5c32826e64e6081540dd2eb55d
9002 F20101206_AAAKEV cusido_y_Page_17thm.jpg
be6df88f1976f80ceb0125fd3c0b4a1d
fca7098d40edb5bc9d9772a1aa83236dea52375e
F20101206_AAAJXY cusido_y_Page_39.tif
55f574967eeb42304da304e107565265
3e8e91bb0b5ecdd72e6b589f308a906e3ab7d678
36986 F20101206_AAAKEW cusido_y_Page_17.QC.jpg
31710e91dc7d482b672d481a2b072123
e79d12515c897bd2de115da0d1b019c10861646e
95271 F20101206_AAAJVA cusido_y_Page_26.jp2
c1dd08062a5b28e1c7713b46827c5007
04048ce3cb090d727b0ae0a9877a7558e6284b5f
7837 F20101206_AAAKEX cusido_y_Page_18thm.jpg
1aac309c6084bb8d6a1b0f515d3b24e8
8ccbdc6641c0190e21d0a2e3b8d39d2351045491
107868 F20101206_AAAJVB cusido_y_Page_27.jp2
e54d42daa376152cde63d583735de7f8
24874ee2ae38ffad2bd41183a0e0436186d27d80
F20101206_AAAJXZ cusido_y_Page_40.tif
5122f53db0b1e376f4d127ac0bd3e488
d78bf39fe0844ebf7c7a1fdb1834e167e27e2844
29834 F20101206_AAAKEY cusido_y_Page_18.QC.jpg
46beb719d735a2cb532a6318ac2d6de6
ccbcdd221ef84d94b1c50bca7c5b5d40cd69ec90
90720 F20101206_AAAJVC cusido_y_Page_28.jp2
6f2c6d5ba7fd9752136744731644e34e
67bbc9ebf996b8c5cb855556f5a11efd0e7d0c8c
2156 F20101206_AAAKCA cusido_y_Page_24.txt
a8a0be7d8f1be7a2d7eb58aa34a45414
b333bb1e76807f035882249107acbb1bd275be9e
8266 F20101206_AAAKEZ cusido_y_Page_19thm.jpg
c2e2e2be44093738711aba947920b1a6
7257e7914a0eeafd5b21d0c3567a3855ba87fb69
113458 F20101206_AAAJVD cusido_y_Page_29.jp2
3e1474922a3f32b7b9fcbdee7420b761
2da974d3c1d98081aed150d344f8d7d03742f4bb
1976 F20101206_AAAKCB cusido_y_Page_25.txt
432f612dc32c196ee6b29ff13865823c
e17db1445718e42f512274c7f664943f4bcdc13e
111725 F20101206_AAAJVE cusido_y_Page_30.jp2
2845d1b6e31c3f95aabf35eb8fd6274b
004716910b365e72c4527f55b7bfce0b27654f14
2189 F20101206_AAAKCC cusido_y_Page_26.txt
9935ff9c2b7cea0168afc518c7c38ee7
4dada3dc82f240f1dffce5aa07d489dacba77326
34540 F20101206_AAAKHA cusido_y_Page_46.QC.jpg
2e91bb93695695a086dca279330abdf2
db1e05148cc8ca5e6c29ae95bb997c681cdb0312
110995 F20101206_AAAJVF cusido_y_Page_31.jp2
156e88988e4b83b0da2da0c60a7603e1
0dbb73b7ddcf52f61dcfbf590b37f4806f29d5fa
8540 F20101206_AAAKHB cusido_y_Page_47thm.jpg
f524ca543caa14c363c3793a80d4e561
ba3cb25a2cfdee40b3a24d360441b5bc5195fa18
113703 F20101206_AAAJVG cusido_y_Page_33.jp2
0dc6b1488b09cbd1c654b1f6c690e756
0d768e7be660c06b51ff4fd0dd9344813577c339
1920 F20101206_AAAKCD cusido_y_Page_27.txt
c349138b2e762bf944d273f04978a464
ea949716aeff0fa04c998c702107b9e33aecc351
34718 F20101206_AAAKHC cusido_y_Page_47.QC.jpg
8665ba75eedbe95c2bd07b1081e8859f
382350d6460622b745de77c1c229d44709fdbe96
8635 F20101206_AAAJQK cusido_y_Page_10thm.jpg
c3d28151bc40569a5a47ef4030cc17cd
c4c062ed7a9a61d85809d4e6e86d2085c41c2d3d
1774 F20101206_AAAKCE cusido_y_Page_28.txt
9d314136b74a22cf6c3946e9d8da8cc5
f98cc1c916e293cd1187e646b62ff37c5d26cb05
104697 F20101206_AAAJVH cusido_y_Page_34.jp2
e066f7d5f9a75feda5e7831278e28de4
3e6a6fa1a518e0e03ccf2b4161df7a37df63cb47
6956 F20101206_AAAKHD cusido_y_Page_48thm.jpg
3b1c681337e2e209e63f50c860404505
41fb9c4b60b8e6c43a86f3ef1a455d0591d6e44f
F20101206_AAAJQL cusido_y_Page_61.tif
f0b92d127d007825594d2753fc41c171
611b6302f64c75dc7137e67d50d1d0f992830e85
2064 F20101206_AAAKCF cusido_y_Page_29.txt
3776296a7a33500790c3a482f76185b7
f8e7aa48ac45af7de1f9fd6242f4bbb35d4b8d07
110715 F20101206_AAAJVI cusido_y_Page_35.jp2
f519c099ab862f2ee08a5c25e2984d7c
80a441204e1d2dd9e9e9ca539cfafde15c3a03db
26687 F20101206_AAAKHE cusido_y_Page_48.QC.jpg
d884f4cb5b5e3cef67b92d17a28bae60
d2ec0c5f31765ad773545f650719b1ff2747657b
27475 F20101206_AAAJQM cusido_y_Page_11.QC.jpg
69fc898270f9f36e3688256ca57a082f
20a2064df2955f385f66478c3749a57125da29bf
2069 F20101206_AAAKCG cusido_y_Page_30.txt
9fce1ff46a3aa2947ea8fce8b4e0d136
1ec5b40f37506f2dad1e2c5b156120f5a98609ec
112905 F20101206_AAAJVJ cusido_y_Page_36.jp2
49cf685fd8f8f115eb076fbb3a3daee1
93d547784787be41c21a46b269ea6dd5667cc4dc
7317 F20101206_AAAKHF cusido_y_Page_49thm.jpg
ada10c8bee714d573547e164ebc962ee
5e4a99ac406c421abccb1a32969aa52132370752
1003461 F20101206_AAAJQN cusido_y_Page_07.jp2
bd5a5ab7bb087b90482d51c768d65e8f
1ed14c2caaa269b636764532dbce7a6aa17a2541
2096 F20101206_AAAKCH cusido_y_Page_31.txt
f0d46d9f063d0c56863bf6908bebc13f
450ee1366b852abc2cb45dffd67f2583a26d80fb
106607 F20101206_AAAJVK cusido_y_Page_37.jp2
418c974b1efb88d7402a05881f8229fc
382be5f116689f7566521f61d73dfd21c42d4d0f
30693 F20101206_AAAKHG cusido_y_Page_49.QC.jpg
0fe0b5befa7241abe4f97baa05e58a15
0733e2c2217187f5c9bb7bcce3614d506fe64bbf
50761 F20101206_AAAJQO cusido_y_Page_20.pro
2d593fd41ce48a8e88672e439b1a32e3
94e0e51e7fe9abf5c6cc88243ca662308bfef814
2148 F20101206_AAAKCI cusido_y_Page_33.txt
ee928d6b34516448cd78a39b75adf26f
0c10abc361657df370253d964a3ca95d97e2a190
103856 F20101206_AAAJVL cusido_y_Page_38.jp2
be5bc6e3b162102b28b6928464927ae6
e6ec94db1fe5dfa52107f2399659d0b81308a89a
8310 F20101206_AAAKHH cusido_y_Page_50thm.jpg
15452ea95294413747500d06fe2b5fad
8230aced9853f1b7d51b47cdf526b74eafc05560
89432 F20101206_AAAJQP cusido_y_Page_64.jpg
ac267d2973784adf83a64e430ba750a4
18c6215fc460032b5573a851cfec6b4c3107858e
1928 F20101206_AAAKCJ cusido_y_Page_34.txt
0f93e6e61f7979a018017ff7f8d8145a
ca5f843337f0929f29c2ff2480ac3e0abbc1339d
104635 F20101206_AAAJVM cusido_y_Page_39.jp2
3d2d25ae856b8272b21e4ff5c7a04ff9
d278a113cf06d82cafcd62a1fcf5c95064f006d3
117219 F20101206_AAAJQQ cusido_y_Page_41.jp2
70fd8e567067e36468fd5f1fb6076807
f7b6fd92558a0c2b8f31326cb15f44fedfeb9dc1
2109 F20101206_AAAKCK cusido_y_Page_35.txt
e71e634f8f120405cbddce78e750e2a7
273cd559c13910ef336cf179f2d0f890cef3b7cc
107097 F20101206_AAAJVN cusido_y_Page_40.jp2
040360fbb64e9ad15444c71f6d70bc64
ce94b1d52d6c0dd91fc12b00352a02387792a2f8
30876 F20101206_AAAKHI cusido_y_Page_50.QC.jpg
9fe548c3bbb10bf4bbbeabd9ecfc261b
2514bd2ef22ab37120ba764d89b0ff817e20cb1e
24959 F20101206_AAAJQR cusido_y_Page_13.jpg
892dc183e6d95c371448f8968dd21ad8
4e2a3a366ac31b2fa4490ee8f6aad90934edfb8d
2106 F20101206_AAAKCL cusido_y_Page_36.txt
58659037a35795b895f55e9f25ce09bf
cd8ea232b576a29cbe7d1bc9ed5b4d2c7aedc94d
112062 F20101206_AAAJVO cusido_y_Page_42.jp2
761ea6e492706757a541f77cb15b9f87
359e9738ea6232c25d35934cf0d9524e1996c959
7366 F20101206_AAAKHJ cusido_y_Page_51thm.jpg
ad69648e3fb146f78cbdb9593c68fec6
77495ffc665fb259697397c581a413edf300d538
2104 F20101206_AAAKCM cusido_y_Page_37.txt
7ad3ea13b6839002b9e9690f8866565b
b1732f9705fec7a6bd3cc2bc8057f71e88fd73d5
112322 F20101206_AAAJVP cusido_y_Page_43.jp2
a3f6e52a78a83865e2a96a163f8d8845
55dd1018afe0b8ba60ff3339a65d1aa9789a2f0e
26356 F20101206_AAAKHK cusido_y_Page_51.QC.jpg
c848f6cc6003ef212d12daf287e140bf
bf1028cc6695d134d9791c0ca586c2bfa0290900
111151 F20101206_AAAJQS cusido_y_Page_40.jpg
299f5fe41d6b50184fab220eb7a30b39
fc74b0fa210070f50e059351b120a4025b916c88
1969 F20101206_AAAKCN cusido_y_Page_38.txt
8f4ce8d050fbc16ec3d4a802b1fe37eb
620e7da79aa9d7f554f4c2016de83a3ebc4d46a9
105147 F20101206_AAAJVQ cusido_y_Page_44.jp2
66148b4f178c5bb00fcbfbbbd0e565f9
dec5e65643bb67861b6e510e868644227d1cd406
5466 F20101206_AAAKHL cusido_y_Page_52thm.jpg
03fe13963b1d149d7c2611a8cbc5a17d
a1e3d8e3930a301d1baaf24e59b14f644e77eaab
39093 F20101206_AAAJQT cusido_y_Page_56.QC.jpg
7beffafe130a90a09c0ff0ab871ad362
4a8234dcbd83cd5e271a40a0ea087a87af13afba
1971 F20101206_AAAKCO cusido_y_Page_39.txt
47b4607f52bd7fdb6a18901a0dff0e24
9324d9336679392b9e936be8e4086d018ca51ba9
9961 F20101206_AAAJVR cusido_y_Page_45.jp2
1de70f487196c7fc43b96249604aefd1
71845888bc7418a069db54bd98bf6ba37976e03c
19787 F20101206_AAAKHM cusido_y_Page_52.QC.jpg
be96ffac247c96968cea3e547f50411b
4b51a565d3de14faf66a779b07994670e6e4b897
39905 F20101206_AAAJQU cusido_y_Page_36.QC.jpg
8c3c80430126ff7ea1f28332d27ba953
eb4e4c60f54f9ff91c4c30fa2905cefbe9acd161
2027 F20101206_AAAKCP cusido_y_Page_40.txt
7d1a92c8de75935f8e5363b9005374f0
a7e520dc1f8da751a307401ec04faf846e37cc66
1051950 F20101206_AAAJVS cusido_y_Page_46.jp2
213e59b6a04adab37bcb63e731902144
57e59e6f6326f74b8ff792a49e013e65944784d9
8910 F20101206_AAAKHN cusido_y_Page_53thm.jpg
413bd880cf8fb1d9c21e3eab554d239c
618bbe1eee1dd1b96ff13bd6d21f4da19a36af10
51830 F20101206_AAAJQV cusido_y_Page_15.pro
f47c7f667090a03c261c044c74e88a92
af15ba574fb749331c8781c51262c68444a304f1
2166 F20101206_AAAKCQ cusido_y_Page_41.txt
17ba93b5b04397007574b4d48c58aaae
5c74d11461c958b07c8a5e7d29ea246b17e1d302
889806 F20101206_AAAJVT cusido_y_Page_48.jp2
c2efb6d65c29123c9bf4db937f920bb1
b47101d8c50079b76ff4cb4cff0103c16ca7edbf
38517 F20101206_AAAKHO cusido_y_Page_53.QC.jpg
e2fe00439fe51ba4c277add4bdbb819e
66b7711a51b33322148ec5d6a122370beae8d291
2162 F20101206_AAAJQW cusido_y_Page_23.txt
4b9ad7d6d140854724e01f8ffaa6be6f
d50001253cc799896139441c56b33a5512b1360b
2137 F20101206_AAAKCR cusido_y_Page_42.txt
ab99701233d8119a1f10a0d940e5ea6c
6c1d342bbd5e784d617597495466c86ad78d4826
98365 F20101206_AAAJVU cusido_y_Page_49.jp2
664ddc39a74617c18ad521483da4b73b
61b7878e7b3e6250ea3cde0744cfee602866e498
9189 F20101206_AAAKHP cusido_y_Page_54thm.jpg
5c8682795b98298231a133c90bf3124c
2a989cdb861914582ecb8ba6c8c6f9bb39a61088
2041 F20101206_AAAJQX cusido_y_Page_16.txt
0f5cd6083cc9a7ba37e66eaf23c1daf6
1d928c78b90d074c905bbac7cdf6651669c22794
2101 F20101206_AAAKCS cusido_y_Page_43.txt
1bc8b14e405bce0bc22424468e14b53a
d69e079c580a973cc3129fce106e926d84ffbff3
970987 F20101206_AAAJVV cusido_y_Page_50.jp2
2baff3922e747d5025b64fae2e5250c3
cd35592307f581cf768c728ce2f89d05cc95a2bc
37057 F20101206_AAAKHQ cusido_y_Page_54.QC.jpg
4f28756cae9be15baa35055847050cc4
6858bd93ac0ea8ae3e729d957ecfe8da3f39b4d5
43129 F20101206_AAAJQY cusido_y_Page_64.pro
a343ff687c74a78475255f5a7858fcbf
25d3238e138b3241eb86d444fc8a8d2244a51327
2042 F20101206_AAAKCT cusido_y_Page_44.txt
b32fecc64bc32dd4b54c4aa0f9473e23
ac709c4da5a089d42d90e786cc2cd1839df23a61
84576 F20101206_AAAJVW cusido_y_Page_51.jp2
2774bbc2df31afdf796ca3a504d42529
1089d1060f43c7203b1198b349198eeabe144a84
8999 F20101206_AAAKHR cusido_y_Page_55thm.jpg
ac8626a31a77143c5189a4543ece48d4
d2ade92af7ce01439aedccfb27b145295ad49d48
42437 F20101206_AAAJQZ cusido_y_Page_04.jp2
73ec3cd7e2dd9e896c870e79052bdee5
63b4770efa7b64be2b262fcafaf3b31f012b03e3
136 F20101206_AAAKCU cusido_y_Page_45.txt
8095817ae810e900a37427adb535a700
2a5fa39d31de0ce676a4ac4e3e6eb595d5f30d80
36795 F20101206_AAAKHS cusido_y_Page_55.QC.jpg
f8622e4b7efc1f46aed05c0725011026
adce23420ea22933d4eca538ed6fdaff1d8b18c1
2136 F20101206_AAAKCV cusido_y_Page_46.txt
9d3be9dc79860f66deb8fe3353c79215
289ce25f45c15871c73153d091889f21baccbffa
62919 F20101206_AAAJVX cusido_y_Page_52.jp2
215663bfd915386c3a8db2970ed332a4
8c7110eb3046dcd9d2f56c34f6c508ca9a7b3b80
9165 F20101206_AAAKHT cusido_y_Page_56thm.jpg
8ffc863eb5313bce340c68ebaa6a508f
70fba1ff124b1c5e9da2c1694620c7b3ac11c63c
1997 F20101206_AAAKCW cusido_y_Page_47.txt
343531620affe33b257ca8d7a43519d5
752743a121987a45eb80cb91dc4e52c231a72029
104802 F20101206_AAAJTA cusido_y_Page_34.jpg
fc09d0ee6e934795c473cafefcf48e6b
774c8f1488ef75863d26f32f450c293b5ced75c4
119717 F20101206_AAAJVY cusido_y_Page_53.jp2
59eba5673947769dba610886d959da0d
f8632109ba33644ee014e089d19e9f758fa8cb48
9097 F20101206_AAAKHU cusido_y_Page_57thm.jpg
3e6c0599cd3558d0ad88dfabd2f06134
c6bc8bf39c2a7527808c04a5572d75139f430058
1498 F20101206_AAAKCX cusido_y_Page_48.txt
0cedb3964603e666732975de2f40c20a
0c94e68ef71e48732efe2c5bc84e91fd3ebb82ae
117855 F20101206_AAAJTB cusido_y_Page_35.jpg
96a709faf9114b667605a72f7e21e77a
8a5922da8c6e46758d0cd3850904208796afc5d4
112284 F20101206_AAAJVZ cusido_y_Page_54.jp2
947e48a037eb48a86110f0457e91960d
079a819edee3b747f253a3f29e21880a687f7857
35343 F20101206_AAAKHV cusido_y_Page_57.QC.jpg
2d2a83f80735ade0941858db59fb8cf2
72d5ab87d7826b3b441dc49591bf33924dc8de13
54497 F20101206_AAAKAA cusido_y_Page_33.pro
b5b4b0bed8243978c57ed7c861e2f1c2
728c9485b87520a7d43843f39c5c1e0b73435a9e
1763 F20101206_AAAKCY cusido_y_Page_49.txt
fac3c3380844ffd688785430e616631a
5baae532133aba39053a1d19e06c847921daa6f3
115251 F20101206_AAAJTC cusido_y_Page_36.jpg
f1d3549512e1cdb1ba0de67fc422b562
651ba33656e19c0f56f2c8deaae940a8cc540410
9433 F20101206_AAAKHW cusido_y_Page_58thm.jpg
35bed30cdbdf0658325f336c150fc645
280fde95d73ed3bdad3eebe427740a876150dc1d
F20101206_AAAJYA cusido_y_Page_42.tif
4e417d9cbb63028a4590ed55495b90d6
ab941b913920d507830002677b9035fe3fd2a17e
1572 F20101206_AAAKCZ cusido_y_Page_50.txt
ba43d4cdcdc6403c0580395fd4fae13a
f1e2e2fbe6ae170b2d6e9991df11532887a9b3f5
113099 F20101206_AAAJTD cusido_y_Page_37.jpg
42bf3fb5ce2bb789c4ff36eb121a7a1c
b36a977c2e0db4e718953e5bc4bcbe42eb25d531
38194 F20101206_AAAKHX cusido_y_Page_58.QC.jpg
671124bbe8f9de14213567ad704970a9
736f3323348e515b5e3a025df3bd4b16b2eb51d5
F20101206_AAAJYB cusido_y_Page_43.tif
4ea45ab187071b135726057828ef15c9
5b362f77de4b5c3c68918cb641377fa1dbd12735
48585 F20101206_AAAKAB cusido_y_Page_34.pro
84f40ab480f71b6f4b5f8ae142d5c25c
5533eb170fe466f51e2d76950a41b6cbbbc70998
108786 F20101206_AAAJTE cusido_y_Page_38.jpg
bad303105f3ac4a2d967d1949794d48c
8c021e8ce83a939b1eeec6650bc6ce4d1d26bf36
8747 F20101206_AAAKHY cusido_y_Page_59thm.jpg
76b01198217992355e615f0c3d2479cb
54980022d685f3f2d1cb96f04880040163bbbe7a
F20101206_AAAJYC cusido_y_Page_44.tif
220e251ba41fd2f26d11a1d8dd2f74df
3952b463e64e596a8fd0563d704e7155ec92bde3
53470 F20101206_AAAKAC cusido_y_Page_35.pro
7c2026db3151d6c308cbdcb802d7c11c
30dd6c8bbedafdd7f4a70c59978c116d69d372a4
108291 F20101206_AAAJTF cusido_y_Page_39.jpg
d9738b24d0f60ccac65be6d0162fb471
13061d56be3fd082262ea41d9ebc8dd3cfdcea1d
30476 F20101206_AAAKFA cusido_y_Page_19.QC.jpg
6e05f89d1e2e27d3d35d0a29fbebe29e
d0db3c9f619b6a2768809f1ff75889acaacb10dd
36385 F20101206_AAAKHZ cusido_y_Page_59.QC.jpg
82c53352a6d252dfe5b517e1acf50bac
6b7029dd75e14fe63885cac4b32d14ded5cded45
53295 F20101206_AAAKAD cusido_y_Page_36.pro
7bd67004f7cb390363ca747ad03599fa
c64817b4d27689ef48d9f079a62d110c62b81b8f
119031 F20101206_AAAJTG cusido_y_Page_41.jpg
48c1ed977cd1d0f514a6036d52a18617
1f99d5abef1c64d503899b863c4db87e62544607
8601 F20101206_AAAKFB cusido_y_Page_20thm.jpg
49414684928126baa078b078e42945b6
636142660d7f9197734bf7cdea4e28d1e8b48641
F20101206_AAAJYD cusido_y_Page_45.tif
3ceae73046bbd2ed6a118af8d63de728
dba86f7c008723e55d3b4483928a93b497220d35
53236 F20101206_AAAKAE cusido_y_Page_37.pro
5a1926675c64fa29822c9a27d0453aed
88a5e0f8fa3e7691564a7c4a1c9202d589c98a2c
118895 F20101206_AAAJTH cusido_y_Page_42.jpg
8effadba15d1212121739c1dac46b184
8fa2ca0c81a598bd94f9c69a546128711f99c24b
35530 F20101206_AAAKFC cusido_y_Page_20.QC.jpg
e4364f2bd22f397a76652b2185050eb9
f8c1af0f37de9dac3f468e6861c57f6475c4d924
8423998 F20101206_AAAJYE cusido_y_Page_46.tif
14e4243652d30b36cdc7e25a6cac7825
11a9268913af3197d6c56b1fb16ee0854c130bf2
49886 F20101206_AAAKAF cusido_y_Page_38.pro
f12229c84851e84dddf1de6d106a9436
9f1195d8f3e34650efe649e94c8ad5f732afd452
113146 F20101206_AAAJTI cusido_y_Page_43.jpg
657726e7c71422eaf2f22cc03eb5f6c0
44880db11d39df1ff36db77d2e746790ee88ff96
8312 F20101206_AAAKFD cusido_y_Page_21thm.jpg
42e1aaf6de51f9422d3e442cf2355157
d5682ca7cf4e963987ffed6d0442c53e7f7462fa
25271604 F20101206_AAAJYF cusido_y_Page_47.tif
6cb55dd35468f56ad14d287a00267519
1ca1f8864552399afbdb7d9da6331d13f6ee2d8f
49843 F20101206_AAAKAG cusido_y_Page_39.pro
b22b06b4cb5acddd14ec0610df8be53c
5b401a25b536bd060fb9376fb6fc5cc8dae356ea
110170 F20101206_AAAJTJ cusido_y_Page_44.jpg
4e140d368065c3135c4819cb888f6bfa
d299c2e53ed07b73a584051d5d8013f4f4bc8a00
31865 F20101206_AAAKFE cusido_y_Page_21.QC.jpg
f75182498614c8ec9aff0e16f01b7092
93feb32db0957f302f277cd8ea881d78ce1d076e
F20101206_AAAJYG cusido_y_Page_48.tif
324dedafac6c15cf0f4e99056033e59f
76f28399ce5f368373748e807bbc4c378cc64176
51389 F20101206_AAAKAH cusido_y_Page_40.pro
bd33d7bb2c7fa768c62c01599acfd9fa
92ab91042ce12d133dbaba3e6a1194463ea25a46
105351 F20101206_AAAJTK cusido_y_Page_46.jpg
7af037c60809306582dac388c8deda3c
504c120e96a62569ba82844049c021984f74a0c3
7794 F20101206_AAAKFF cusido_y_Page_22thm.jpg
9f862f61d65f81413a3aeac4e6adb73e
7149903b7bcc4d991e8287fee1d48475e10fb495
F20101206_AAAJYH cusido_y_Page_49.tif
a403240bda7a4fc8392d67cd4d21a143
94032500ebcb48c76f7dc62c8517a4191970189d
54990 F20101206_AAAKAI cusido_y_Page_41.pro
11b96828614e79a314eb832455db9da3
a53426df99c707c5283a921ed937be60726fb339
103567 F20101206_AAAJTL cusido_y_Page_47.jpg
777ce217e48df47e5142b1810585a4e4
9285d7fa1375b4b67a0523f3faeff11415d0f88b
F20101206_AAAJYI cusido_y_Page_50.tif
a48286167a0530833469586df3442705
b05381a50999762ae01b2ecdad6377b0ebd41955
54372 F20101206_AAAKAJ cusido_y_Page_42.pro
b78c9bf5ef486946509249353d21293e
cffec8a7bb76d7ced8b0af6120d2ae9d103f86db
82817 F20101206_AAAJTM cusido_y_Page_48.jpg
a92bc05b0fb2128f1346147b4f186c54
2aafeef464a912d5f48aa2998b986cd3eefe9ddc
31642 F20101206_AAAKFG cusido_y_Page_22.QC.jpg
c6ab817f8cdcb39d0d7326c04ef8c63c
45cd08218a22b527d240e4ca477a71182e487f96
F20101206_AAAJYJ cusido_y_Page_51.tif
c81047a00712aeb2460d92c645260dca
d1ac8070e349bc2433a50382bd1912b67df82f34
94838 F20101206_AAAJTN cusido_y_Page_49.jpg
53caa4bb74e17c7afed809b302af6563
0135a66aecb725bb273bf6f6baee2de8656b87db
8236 F20101206_AAAKFH cusido_y_Page_23thm.jpg
9ec59ad4a16197e55457143b72d4684f
429b77949bf10ef2613fff6cafb56fb6cc67e6b6
F20101206_AAAJYK cusido_y_Page_52.tif
953d7732e29c8c1ced604d3d1d47f9e5
82949217f8d4d2cd725e7b5412a9da151835e005
53393 F20101206_AAAKAK cusido_y_Page_43.pro
271b82d226223647fad6e4a1bd522f95
d3c5b7841b51a91bf971a9175409321e7e78ffaa
93030 F20101206_AAAJTO cusido_y_Page_50.jpg
b7d4e8ac8fea7f5e8b9fab17423b470d
ad5d62dc96d5fe5e64b82b1d4c9fe46551c53c7d
30774 F20101206_AAAKFI cusido_y_Page_23.QC.jpg
a5a59ec6b06302646560ca12be8b464f
cd1a0002f8bc8964e380075952f33cf825cb563b
F20101206_AAAJYL cusido_y_Page_53.tif
14bb3d39ed106081da1db652ef9a60b1
484782d8c0f4410c209a740688d5441719dd8520
51724 F20101206_AAAKAL cusido_y_Page_44.pro
c12ed03f89ff780a002e55980da833b6
305280528131c4da41b000f7faf4337754949d1e
78812 F20101206_AAAJTP cusido_y_Page_51.jpg
7d9ef5d9c52fb6f848360ef939f9ab6e
9500b1f0e97b5785a74fe9b32f4ac5a5ee0053af
9206 F20101206_AAAKFJ cusido_y_Page_24thm.jpg
146bb526d37b633b1d81ad9126f31995
f12fc775097336548be3655d4c286b2704805472
F20101206_AAAJYM cusido_y_Page_54.tif
b050eaf6ea60867c9c196a38dee3185a
3e77d07a548da90787d387938a97712d29b8c347
3266 F20101206_AAAKAM cusido_y_Page_45.pro
f47df72621fc8817d073b8df4ea0584f
1916632e8d2a18e275e41246dc7313965edbd0c6
56484 F20101206_AAAJTQ cusido_y_Page_52.jpg
4547588367e166fbfdcd4449b426cc9c
8c15ff01450f64afdcb21c667b1f8b4c878dc1f8
38624 F20101206_AAAKFK cusido_y_Page_24.QC.jpg
46eb35bd4236f6e6722ee33152bd05ed
6277ab897558da1462bc7b4c345f71acb3fab07d
F20101206_AAAJYN cusido_y_Page_55.tif
79f14289ac9ee1b9858688a1185f5185
1b9d61ac7c98adf7cd26d1c99f174ecf3bced216
51166 F20101206_AAAKAN cusido_y_Page_46.pro
38ebf1970e96d2c9b601db7c2dd2d70c
450f58d77fa89c300eed862ebcaf9981b0ba1c05
115580 F20101206_AAAJTR cusido_y_Page_53.jpg
df0afab3f0da061f09163a942ff2724d
1408a4bee5ddf1e482b5cdc773649a8a176c0a48
8474 F20101206_AAAKFL cusido_y_Page_25thm.jpg
6f074f9aaaa8c6b2c77b9e8f77ae28cc
fdd2d22f59a56bb31479829fc042a41daf7de360
F20101206_AAAJYO cusido_y_Page_56.tif
36b0ef2c0933df5680b20d72b3006ed7
83ca809e50f8e7ed2f8fef9212e8a13a9b1d2ab0
47956 F20101206_AAAKAO cusido_y_Page_47.pro
cc8ac8e11c851175e60544d00b74d3e6
53192278c3f6950088720f76547c58ed0fe7880e
108144 F20101206_AAAJTS cusido_y_Page_55.jpg
6d8d773d43481f1cf10904a2cbf1202d
190522cdeee940ea9e2928e5f0038e2c355fc810
31536 F20101206_AAAKFM cusido_y_Page_25.QC.jpg
416ee34c1669e7fb0644301248df607f
2707e96f187ff4eba20af20cec513abf0404125b
F20101206_AAAJYP cusido_y_Page_57.tif
da859df4fd736fecd4c021f6babc1d4e
636513d7daf739683ce68874d6fbb7a48d6d8951
37011 F20101206_AAAKAP cusido_y_Page_48.pro
05d970553eeae6b71e5f0141ae4a5dda
4dafd763012375cac8b53dabbaac702495e5a534
113586 F20101206_AAAJTT cusido_y_Page_56.jpg
5b63459f5777f926df6b605b6666ba96
c0e12f6f9c757af3a90ae4bbb685a272fd3c2817
8196 F20101206_AAAKFN cusido_y_Page_26thm.jpg
8922e94e4202306a9f12efac2a6ab3dd
59529a93036ad6278863e2255afe56749be7c8aa
F20101206_AAAJYQ cusido_y_Page_58.tif
a3d3863d60432f0cfe1d9e16ad373aac
cb806454d565dddbfb6320116a24b24685633ff6
43346 F20101206_AAAKAQ cusido_y_Page_49.pro
01b815914854bd8fffcd379afe36505b
35b841abbb4126b60e2a26037fb4a8ec1c1f65c0
107131 F20101206_AAAJTU cusido_y_Page_57.jpg
977b19dda2005319e8d550b18e84a03f
f7d3b46b24c007f30f93cd6786bb8d54e2882315
31589 F20101206_AAAKFO cusido_y_Page_26.QC.jpg
c3033de884b2acb108faa4118ca994a2
bcb34d11ef287ddd1e72097ff585d9280b2ce607
F20101206_AAAJYR cusido_y_Page_59.tif
12a3147e46029fd1358dc7d66741325a
718cec2b5139c247fca805c8995731b02af78415
34886 F20101206_AAAKAR cusido_y_Page_50.pro
2506b3bff557158cbedd7e24b56b92de
25849dacb9be5527cd6cf1eeef17977b237c87b1
8413 F20101206_AAAKFP cusido_y_Page_27thm.jpg
4edd13d60dcc1430149ab08e76e169a0
7925e5b5156af4992a1eb91884f74893c160372d
F20101206_AAAJYS cusido_y_Page_60.tif
b0e2077fb0d483f2ca28f4642d88e6cb
94aace12fad60a0beea773bca69046917b4a8e01
31694 F20101206_AAAKAS cusido_y_Page_51.pro
68b352016d70fc753ea6618229a8c27f
ddba656cd8bdaed2f54b93572d78243fddf3db88
114072 F20101206_AAAJTV cusido_y_Page_58.jpg
d7767b4c4bed1d7526651d3e40254e83
1a1835fb4f3ac22fc6467f7a013be30b58c76fbe
33492 F20101206_AAAKFQ cusido_y_Page_27.QC.jpg
6d244d943ba21588d8b762b14e95ac3c
bc77e888a7d7c2728ac8023732f9c2a74e058730
F20101206_AAAJYT cusido_y_Page_62.tif
d0fa494630c551bd94cc1a006ae14d50
c7b536de98353eff183b2d2838df1ad82685b7f6
16765 F20101206_AAAKAT cusido_y_Page_52.pro
ce389b91781b860abd1f693ecfe297fb
a38b21c44d7814d0698effc6cdf30163ddfb0014
108165 F20101206_AAAJTW cusido_y_Page_59.jpg
861aa48818b137e5b4aed260945b61d1
e17dd64d39b05edc126b737cbf03acb534b70862
7932 F20101206_AAAKFR cusido_y_Page_28thm.jpg
461578b498d5b3ae387c6ccde422b38e
2b4d29fd59ee88846e7b0d0ffb4e1d64f510c268
F20101206_AAAJYU cusido_y_Page_63.tif
962acce905702831f347f76a1398c59e
f11fdc7b7ae2f7b0e95f1b585256b2027a7def3e
54951 F20101206_AAAKAU cusido_y_Page_53.pro
734e548418504fccefd40285d9e84fc1
f95b7217f031e1812b1882378360ed5e0680f80f
100935 F20101206_AAAJTX cusido_y_Page_60.jpg
d4fcd3f42e80ca8120de23d9fe15d05a
43460d68808d748d25cb79ed85f03eee2bb75320
29344 F20101206_AAAKFS cusido_y_Page_28.QC.jpg
97ee916ef9e0bb1abef13972043b5439
3dd122cee09d1dfce20bc0e769c22d187850f04f
F20101206_AAAJYV cusido_y_Page_65.tif
b1f5064563f54f15e749b2273ff131f7
19e052a978b98794e7982e113c1d4e14a7a72c77
52667 F20101206_AAAKAV cusido_y_Page_54.pro
db57a75b44a69b8a7698cee9693ebdbf
8739330817c9814bfcbe04f52f6f2e35a277a61f
91769 F20101206_AAAJTY cusido_y_Page_61.jpg
1e1cbe5c6d23a4f8c1d530fc8f1feb5b
ee5a68ae8eb3f941584c0a65cb5746a8bd28e533
F20101206_AAAKFT cusido_y_Page_29thm.jpg
03523674112df03bb61914eeb93e15f7
d17f9dd1247d04469b94ad547d11961a3bf71b7f
F20101206_AAAJYW cusido_y_Page_66.tif
19d0e7eedb1aba7114cb75ea5b0800f4
7458254c80921de89616cb5944e38a3ffb2423ff
49764 F20101206_AAAKAW cusido_y_Page_55.pro
b4ef97be6002707209579093f7aabaa4
35f0df968ffc5f7614f3619f9e9d8bfd10795437
53317 F20101206_AAAJRA cusido_y_Page_31.pro
55c404bd3774eff6d6f4074b12cadd77
976e171e999b27238e8b67ed807918a9dfc3a07e
95051 F20101206_AAAJTZ cusido_y_Page_62.jpg
af73f9dcc594c1502a97b3092235be4f
1c3d49ed7e405ee82f0b16a8098edf33c6f1473d
36438 F20101206_AAAKFU cusido_y_Page_29.QC.jpg
b2c916b5834e00cfbb0050b85fb22d4d
60db2cf96ba5508c81a4e5e631d7af6554af1496
F20101206_AAAJYX cusido_y_Page_67.tif
a1f6c988051cc22ebfcf275eb0953a31
7be319937a0ae620e89573402e936e6bdcedc50d
54219 F20101206_AAAKAX cusido_y_Page_56.pro
66a2395f23348d7632f0b27135a43256
d064c6489b5d58d5e9be78e894ef7139c5c4a13a
472 F20101206_AAAJRB cusido_y_Page_01.txt
f241f2e7f4852c0f91a5bb42307f0a6e
61ffd4e5f82da139388349513a75467bca260978
9405 F20101206_AAAKFV cusido_y_Page_30thm.jpg
37fde8d0c978733a61843793c26eed10
bc6f667068c351b95dd6dd7de9b2322f6bdd5af6
7605 F20101206_AAAJYY cusido_y_Page_01.pro
a9c0f1f1407c1e43f47d9edb46fc0ca3
838cf4e4429af7619f5878d6d92b26eb288107ad
54415 F20101206_AAAKAY cusido_y_Page_58.pro
df7f8e31feca42f1291490879cc4e0b3
d829abf22c18b8874b488a69053df2dfc02b2e0b
1051983 F20101206_AAAJRC cusido_y_Page_47.jp2
9207a149cbd0c78f9b5a02bbe315b719
f12247da4dce9ee4cbd4840c2a99e90c2dbe5e88
39273 F20101206_AAAKFW cusido_y_Page_30.QC.jpg
a518777769f7347534b3eece3f061065
5e27a878e7bdacaca805a6e5149bad1fd1913dc3
107231 F20101206_AAAJWA cusido_y_Page_55.jp2
600841ebe2b2655caf1608461415a302
c758fe4e53a2c04c79595576b34133e7d68cf80f
777 F20101206_AAAJYZ cusido_y_Page_02.pro
f1b78cb0a18c64d047593ce41e3cf6f6
b39d38869db50ec2a65d80861977538d018ceced
51413 F20101206_AAAKAZ cusido_y_Page_59.pro
f5753ae43e65546ecf64b97459edca09
c323344bddda2e722d26f2455f7eaad5691c3d6f
8851 F20101206_AAAJRD cusido_y_Page_62thm.jpg
3aaf4dd934f935de858b1096c7bf428d
820d7cf8f36ad7849ac22dc3d4a3c61a1a9b8b1d
9302 F20101206_AAAKFX cusido_y_Page_31thm.jpg
077012e5a79690729f43195849bc1fd1
7ffe6508741148c0f0a358401b2ab36b3702b748
111201 F20101206_AAAJWB cusido_y_Page_56.jp2
24ddfdffdf4a71779b777c8efb39b73b
d27e1e19e71eba0a4f762d946935095c22a861b4
F20101206_AAAJRE cusido_y_Page_64.tif
46384fa9433e948de21b8ee519cf5b8a
de4e602ec86c120c4480a64507f85cbf306a201a
38476 F20101206_AAAKFY cusido_y_Page_31.QC.jpg
1cc3ad8842cdc04f0c651df23c2ab740
e2c36559e832a5d636fdb29d3032cf51d6c20e40
1462 F20101206_AAAKDA cusido_y_Page_51.txt
4af372b340a395c03f8339d272944123
d7d17f1d429c23250648ccd010987e8bdf7c44d7
104345 F20101206_AAAJWC cusido_y_Page_57.jp2
45c8a1d8bd2f084fdd64f9e952436e5e
f119235e1fe167914518b83ee3ad63b3bfc24140
107302 F20101206_AAAJRF cusido_y_Page_32.jp2
45b376d5f4a75bf21388cce005225c04
37dd4c87c81caaf133443dc9b50e7c9bcc85384a
9140 F20101206_AAAKFZ cusido_y_Page_32thm.jpg
ab12be96bc0ae6bc6fa728b15a741eef
c66748067351d9652ec02202c0c32df3e02656b6
797 F20101206_AAAKDB cusido_y_Page_52.txt
0a0e8ae28e78e4bcad4755fe22482786
229ea61b6a39d016076d42236fac84d73c26b881
109809 F20101206_AAAJWD cusido_y_Page_58.jp2
b1c6c77a8b8a2c8f227b3719de7e903d
bf55ae83436b43c255489a7076c3c512e965d5be
F20101206_AAAJRG cusido_y_Page_41.tif
5288663b436e7b8d9e109b2ce11fdafd
457c5de481313bf6366b039a57ec85cab592fd2d
2187 F20101206_AAAKDC cusido_y_Page_53.txt
0a0f9aee60b9498678b51bf0496bf765
95295ee33509776b045712a0d55d19ca966624ea
104008 F20101206_AAAJWE cusido_y_Page_59.jp2
e7f4c3e4773b14d7f908c9af16d6bb17
a374812bbba1fded3af0c2897acfb07ebe4acdd1
39837 F20101206_AAAJRH cusido_y_Page_42.QC.jpg
0ea08a6b975150546da3812ae6f8a16e
6ef0b51ff81fb2cd2bd6a0433df88a4bc4bcd3ba
8426 F20101206_AAAKIA cusido_y_Page_60thm.jpg
af3f13b934aaae13d44b56e18a6eeb66
829394f376c03ad77d7bdf53e4030759e37c7db7
2075 F20101206_AAAKDD cusido_y_Page_54.txt
74787bafd8da641827207225a2b90ac8
afd045677c03ffae87089c0fde14f1abbc08f9a6
97086 F20101206_AAAJWF cusido_y_Page_60.jp2
5e0945cdb16770d6c282f43b8f77b815
23e40e61d8d4c8b027c9e9586f82d0f2732ae5ae
38362 F20101206_AAAJRI cusido_y_Page_14.pro
f1ca1d3cfe694fc4a1f6ff6ea7d3faaa
a74d21655a81801e4098f85e76ac98ef62f3013c
34575 F20101206_AAAKIB cusido_y_Page_60.QC.jpg
9edbcf9e1d5d957c9a0684d189b3b577
285f46da2dfd5c203f9824b21c68157d8310ac8a
94884 F20101206_AAAJWG cusido_y_Page_61.jp2
f3bb2a3530d37ac5894d0696a880919a
38c8520aa86612b6366bff9722ea96fa7df55bb0
1918 F20101206_AAAJRJ cusido_y_Page_65.txt
a168a52274b917e2388fb3e38d3e769c
60e884b949843fcbb99f0b2b7f8a40b3c1b3c4cd
8231 F20101206_AAAKIC cusido_y_Page_61thm.jpg
fe2a1cb8b326c2ee8bdbe9ad88e7c097
f82e99012ef1c6384b23e9ef1f1d014b18bd1a56
F20101206_AAAKDE cusido_y_Page_55.txt
231ee6fc111447b1aeba2263299da317
9fcefeafc2beb7622ff3fb5c0c96bbcb409c66ce
97098 F20101206_AAAJWH cusido_y_Page_62.jp2
ef0bb19977c8d587d93d5674c7ee8ac2
c4f00b9cd8b92f04bead9e458d9da676b67eb86b
979464 F20101206_AAAJRK cusido_y_Page_14.jp2
ddbd2fdad72c725329ea816d2c3e6755
8a1f400ea1f8d37270e0bf44e90ff0596c2f89ec
30271 F20101206_AAAKID cusido_y_Page_61.QC.jpg
aa69e7e2e0dfe2e95f9ac73e2a65bbb5
2ee69c72772fa4093287c8d3c5e37952a73f668a
2134 F20101206_AAAKDF cusido_y_Page_56.txt
4b5971f6b464dcc15077d86451a28d31
81fd50ab7e6f03cb1e102edb3eb25f0a8e1b360b
99119 F20101206_AAAJWI cusido_y_Page_63.jp2
0831e92b85576614119d4b5985495436
07d06fd94c81e46b401763e344870cf5a80dc26b
F20101206_AAAJRL cusido_y_Page_08.tif
b3df64ada00f1747ebf6fd3acfc8133f
7820fdda289f01229f9e06156ee1a00f6ff9fa9a
31845 F20101206_AAAKIE cusido_y_Page_62.QC.jpg
dab04a054ca9389cdab80ed1b772456c
686c94c1d7229b640e776daad36249d370fb877e
91583 F20101206_AAAJWJ cusido_y_Page_64.jp2
6250c4ddabcdcd24034a80db598a6571
d1cd98fa6e01c1796da81fd32ddbdbe166521b49
9048 F20101206_AAAJRM cusido_y_Page_45.jpg
109ba4cd533beb855bca7f6b81af000d
69c2724cb636bb6b9ccd622e403244ada893c880
1986 F20101206_AAAKDG cusido_y_Page_57.txt
8ed0a8a1357b64d3feae4774295788a5
3f86c981f0b30ffc7b1b4c13f14f60ca14348988
8927 F20101206_AAAKIF cusido_y_Page_63thm.jpg
2d08ee5b01e45d2f71fd17122b275eba
46d6dcc7dc1363340936ab5cc2fd308e9d290204
97999 F20101206_AAAJWK cusido_y_Page_65.jp2
e4a6b7771ea7f65cda0e97f668b040b5
3c6a5b0facd775e9a05fee2801d0726849304371
2181 F20101206_AAAJRN cusido_y_Page_19.txt
faa2d5f6e02a583d4a3d602c7ccd03ae
c7ff3d0eb9b3190da0249367ba67befb4c20bd50
2140 F20101206_AAAKDH cusido_y_Page_58.txt
d61fbb83eb7ed86cbd84eb70b1e38a77
29f11b12c65d3b752943c56dc34a0c538b0845f2
33236 F20101206_AAAKIG cusido_y_Page_63.QC.jpg
d5827f8dd929c5c9240a3053b3ee6c31
f19f6fba3ffc5a753e15c7c7e8483800b8ab721b
62030 F20101206_AAAJWL cusido_y_Page_66.jp2
508dfc18989f643c09e4d872f4299d2b
cccfbeef076685102902febc9c0c89fb99e09a51
50316 F20101206_AAAJRO cusido_y_Page_57.pro
1f44f266f357b15ecc2cd36947c2ba45
1342dd660b376e74941ae9b280959a448ffa6712
2033 F20101206_AAAKDI cusido_y_Page_59.txt
9fcfb8fc2458c29dfddd638677cf11f6
52499b2c2d66f3434de85d95226498c476a67033
7701 F20101206_AAAKIH cusido_y_Page_64thm.jpg
32e9d57036c3af9b203dfc60bf481736
5a89199f2a5de0843118415a1d8716c0e97502a3
71713 F20101206_AAAJWM cusido_y_Page_67.jp2
63a9d1a00ed2f169928b77bf4869a511
2ae4e73a23796a275679185b77a6203275a1008d
96576 F20101206_AAAJRP cusido_y_Page_22.jpg
0f41ad5ef195cde1de62df526a448646
3adc417a3582c36453cecd3e1682a4cb64fcee6c
1793 F20101206_AAAKDJ cusido_y_Page_60.txt
acbd2b527a17cb7a9fbca3c83b6dc727
ebe5ef8c376d96ac943104d3b209e48b2f16076e
29510 F20101206_AAAKII cusido_y_Page_64.QC.jpg
a1653c80db467548b39adf85cd820c21
f847bb2b369652d1103620e3985e812cb55b856e
F20101206_AAAJWN cusido_y_Page_01.tif
2a3f9b39b52f9c430154a330b5ed4c01
90a854f597b72c48384ac46c66e34519945c8106
112067 F20101206_AAAJRQ cusido_y_Page_32.jpg
56b2d45c155e1af9f7e5ff8e2507b82d
ed7d041eff6565f10d82e1bf06803ec2c80e6da7
1832 F20101206_AAAKDK cusido_y_Page_61.txt
914398f795e4f5ec78dbda3494a8f0c4
64b6aae2b2b74df2b40c1bd4fafcaf4d54d8b391
F20101206_AAAJWO cusido_y_Page_02.tif
4090b2d2eea0c818d367e871ba409360
0504e64e1cdd57095f65d63b76cf959dc3d381ba
114774 F20101206_AAAJRR cusido_y_Page_54.jpg
93b08e2d641929d34873aabd7071e3db
be0176004f81aeab7d5daf37fd4c8e4e1f5e3be5
1860 F20101206_AAAKDL cusido_y_Page_62.txt
1bcc40db333fa6f038bb44d9d72564e9
b489e5e063a8545f8af10eacac2f277890cfa755
8653 F20101206_AAAKIJ cusido_y_Page_65thm.jpg
65ed67a48d8eb762ea99e5e4eefbbe09
5454964c97372745c8f12873a3a6dfe469edf9fc
F20101206_AAAJWP cusido_y_Page_03.tif
266c759f90d7989ef896681e2b3f9c90
3ac41ca1a51ec0a5ec2f3147981efabbb7c55bae
2035 F20101206_AAAJRS cusido_y_Page_32.txt
f1c91e62fd21d00a0cf8e56c3c62240c
23e339e897b85b6f4463638a7bd5a66130e77717
1857 F20101206_AAAKDM cusido_y_Page_63.txt
ba8e378ae70dd4157ef58143ecee7625
5c4c9a9625cbea14390606f7fcdf5716a1ecfb57
31050 F20101206_AAAKIK cusido_y_Page_65.QC.jpg
4c34d5b18a91bf51a8d7946c76708ae8
1baf80b75cb3649702fc1e254a21a5c34480d5ba
F20101206_AAAJWQ cusido_y_Page_04.tif
a5e36dd44127936307897c09f5bd6cb4
8ade19d712a7cfb2c192d4a58146391097ce0361
1711 F20101206_AAAKDN cusido_y_Page_64.txt
bbd99ab82d4f2b72e444e8ef3b462b24
f7ad2645623a078bb83ff6bdf0d7ea9e83388aba
5212 F20101206_AAAKIL cusido_y_Page_66thm.jpg
157ecaa981eabfdde72cfb5ef4e46988
a577ae26daa49df6cab38443423104758e142c56
F20101206_AAAJWR cusido_y_Page_05.tif
4ba22a17ef37870b4b7191b31932a2ee
fd1a1e7e5a75c45db7d5b9da8ce2046b40ad8d94
102268 F20101206_AAAJRT UFE0021642_00001.xml FULL
fab091b4a4c52bfe38069b88e6d87bc4
74d0869cd73684f53ccc4766adf3bd9e72f1bb12
1163 F20101206_AAAKDO cusido_y_Page_66.txt
2ecf88c2859ba9f1309ff6d985bfe9f8
20cec5fff29bccc5d5ccfcc8743a34e623cd8a9a
18881 F20101206_AAAKIM cusido_y_Page_66.QC.jpg
201a0d7632df41c2ccea1c9f0c91d614
c0e09d09189528a7e6209c45a048228170107cd7
F20101206_AAAJWS cusido_y_Page_06.tif
39f9ecc1dd188e1c02824f69d5977e2c
79ef934e810d943a792b78df3b62ebd356ad2f91
1295 F20101206_AAAKDP cusido_y_Page_67.txt
b0e558a42ca9b73cf946d2367c27c01c
79217770d8963d6d54a708aa1be6b2eb38095ce3
5504 F20101206_AAAKIN cusido_y_Page_67thm.jpg
cca2c95bac92beeceda480b399a40ef2
70dd9a2a38c01b8a375cf3a62796934b7ceed1d6
F20101206_AAAJWT cusido_y_Page_07.tif
bdd1ddb78ea1b57cd6500eb6a708ade2
a6b7546716f8092b644477cf8d9d9411248ba6d8
463247 F20101206_AAAKDQ cusido_y.pdf
d66749aaa06678b32fda544cb9c95071
91a1f679970a2dd31e8b46de4ecddfb8809939cf
21918 F20101206_AAAKIO cusido_y_Page_67.QC.jpg
ff35d2d3a4162f29a1c5ee15141f0ed0
d133e38cbbedcf00a7b97f092e06eacf32e92915
F20101206_AAAJWU cusido_y_Page_09.tif
06fe876aed8d65483f4093a2a2418a71
a2f7661431dd0c59837e1f20afa8b7c9d44a6bc4
23227 F20101206_AAAJRW cusido_y_Page_01.jpg
ef16ab3c2c15a852fd2571d0ef0e36c7
831c9c1478ff59befc302ed2916c2551e8f7328a
F20101206_AAAKDR cusido_y_Page_01thm.jpg
16622bb20cb33a9a43c1edcd896ae4ea
529d84855f9bc62ad9a8a393ab4e46ed4e8d3cc1
79297 F20101206_AAAKIP UFE0021642_00001.mets
99a4aaf6b502fa7962f314c7f890e594
5081f86a200b25047ed5bada0906dcc58996b513
F20101206_AAAJWV cusido_y_Page_10.tif
60f1fbdc264c43f89364afc297749d21
32c94e64fa44c4d26e8e45adeaeac35fd89caf6a
3688 F20101206_AAAJRX cusido_y_Page_02.jpg
54027855b2546fc25ae8ef4ba7223424
a73ef8940a8e718a3785e3f2e65061d7ab4d1625
7596 F20101206_AAAKDS cusido_y_Page_01.QC.jpg
162231a095008e9f49fb1fb45d3c58c6
852fb68cf3fc37407ae41121dbb7485eae429012
F20101206_AAAJWW cusido_y_Page_11.tif
6b42a0994ceaefe1df65afce04c83766
a2f5749f05f4b762aefde54a6f1158ed0c5b593c
6149 F20101206_AAAJRY cusido_y_Page_03.jpg
06ef35c509817c24b63d0077898a6d3c
d3934262b58a1df9547e5c4276945a78933c20a7
495 F20101206_AAAKDT cusido_y_Page_02thm.jpg
0a756d93dae3ea45f5f5630d7127d750
f8a7266217ff607af93b7f43b165f6853c0dd98d
F20101206_AAAJWX cusido_y_Page_12.tif
d5290c43a205e3a366aca432dd309e84
96937e15e29ea1fff23c96216443ac409b44c2e9
41149 F20101206_AAAJRZ cusido_y_Page_04.jpg
2d11e4a838ba94bb15e77013f9ee60d4
54260337215979f57c94cd320b5f70431fd0fc4e
1111 F20101206_AAAKDU cusido_y_Page_02.QC.jpg
5f06de428d9fd91436ca7113fb963ffe
6f6921c3d9abe6b5494c677770377edd5f15f817
753 F20101206_AAAKDV cusido_y_Page_03thm.jpg
7037e481e2509704f3b53dc825e4fac9
186effa145508c70bda65630ce3ef2d54b9904b5
F20101206_AAAJWY cusido_y_Page_13.tif
cb738e4f375e1323ae26e1fa1af5fda2
578be345b9081b7da88b907cfe1f799d3f760aea
1907 F20101206_AAAKDW cusido_y_Page_03.QC.jpg
ba9f29689d8c5fe97faa9df40f810c5d
06cdc0e6f779a4782ec671b239b867e1dd5d1483
96924 F20101206_AAAJUA cusido_y_Page_63.jpg
542038a4c92afc2ed649e8f32017a6a3
86f2b8f599939589283f7c682b4e6f0bccc0795a
F20101206_AAAJWZ cusido_y_Page_14.tif
3527f181aaff5950630a8ed058b1d5a4
3e5c4ea6ff3eefb2e36f1fe0092346a32703b03e
3407 F20101206_AAAKDX cusido_y_Page_04thm.jpg
e49b87eeb5e94f975df6dc3aaebac730
7bc11430803da442d5dea4c9a849b4699b98b481
94314 F20101206_AAAJUB cusido_y_Page_65.jpg
ca297ac4676a2d370402c2ca5c9dc3c5
06407a7294be198aed7139c4fc97ffab2523073b
44584 F20101206_AAAKBA cusido_y_Page_60.pro
310907ef2866adb60fc29f4da7ab06d8
4669c2732c49c0a26d6546fbded41deb90ad2420
12992 F20101206_AAAKDY cusido_y_Page_04.QC.jpg
a9aa97bf0e5fac94a92cb86ba290d560
79570ec8b5f6eb4d1ca597fb91d64536086e9fee
59846 F20101206_AAAJUC cusido_y_Page_66.jpg
63a34aae9373ea90a7871de401cba443
aa113a6762f6ed01fef4473926566fb278e3b3ff
1843 F20101206_AAAJZA cusido_y_Page_03.pro
bef1eacc99d7d061320f8d76246073d4
81124b5f894d930bcf3833b909a6b7211c005b68
44911 F20101206_AAAKBB cusido_y_Page_61.pro
a1eaefe0a3021c7de95db396999b40d9
f1111c192f5b54826e9dbcd8c58f46fb1a2b78a4
8174 F20101206_AAAKDZ cusido_y_Page_05thm.jpg
8abd1e8e23f053db438ca116eed827e4
e5946b2f91cf7573306b8938a3757a11a1d5cd79
68628 F20101206_AAAJUD cusido_y_Page_67.jpg
5762e73044a08bdace077846b222d5d0
2d3993fd2450c66155d0a02469e6460b44748182
18108 F20101206_AAAJZB cusido_y_Page_04.pro
9750337888ef88abbc8227afba2e65cc
7043aa60c73b62e9c25f082b5a6935b857bfb8fc
23366 F20101206_AAAJUE cusido_y_Page_01.jp2
a0473b6add5f5e48357d736cdc2eca02
6254f7814c30dcebccc496e1b166ca57ebb0741f
37739 F20101206_AAAKGA cusido_y_Page_32.QC.jpg
12b6e4d191bc041b132ba0de142f85e1
20d7318c1f214a26f8ce7d924ca783c069a75c4c
73208 F20101206_AAAJZC cusido_y_Page_05.pro
4f76a778890c0e1ba48002723af61057
e629f3f49a95d57ef7c0cf4dbf2629b279436d19
45948 F20101206_AAAKBC cusido_y_Page_62.pro
289fa88b20d3c18dc55adb5e53c43d2e
ee9d63cb90cd2e5ee121b98c0e118749b17126e6
4870 F20101206_AAAJUF cusido_y_Page_02.jp2
ad8b2dfbb3cb7f5f458b71f2c1f2408a
eabf5c33e21c0cf505fc39f3e8e459da4338a214
9651 F20101206_AAAKGB cusido_y_Page_33thm.jpg
cc477297f80c82a08d1cae394dcf0292
1dd3fd543b8483bbe5dc8ac9e0ac088e3f8a13b0
54292 F20101206_AAAJZD cusido_y_Page_06.pro
ed1b12fa5dc66d8053b886dd9503bb48
0bc846a9d871afd0ced3332c8306ce5c9f6e7a4e
46908 F20101206_AAAKBD cusido_y_Page_63.pro
474229bd6dffbe81f7eebc69cb1100b9
6bfba2cef14e2a7da17ea49bf80c8693dd1ac38b
7452 F20101206_AAAJUG cusido_y_Page_03.jp2
8390adcab70b37587dfa3986b10c5790
8314e3b0971d813fca2acc77a2dafc8f1edd8a3b
40312 F20101206_AAAKGC cusido_y_Page_33.QC.jpg
aa032af8bb25d7c6250a676a33830215
557b5256c83a6133a47a63b8d8baa13a76ba72fa
24450 F20101206_AAAJZE cusido_y_Page_07.pro
c9ca277f2fd3c7f0b1bcaedea60302ec
b6f9cea56f193c22a776516923c41ca545eb8680
47546 F20101206_AAAKBE cusido_y_Page_65.pro
3e126cdfb7277734438dbb18638bb56c
ee6e2718d76393df847aed4ba46442b1dc7fd5e6
1051978 F20101206_AAAJUH cusido_y_Page_05.jp2
cdb6b97a9451ad278b06c4aacc96f2ed
efed84ebab9f56d4257e151ea789185522ac5ef0
8525 F20101206_AAAKGD cusido_y_Page_34thm.jpg
0c4d3ef08ab0f0af2f769fb6ebb2f469
89f431e4964243a6935e1a92878031c2cb2b3e52
61240 F20101206_AAAJZF cusido_y_Page_08.pro
493be3551c2e6b38a5f26434bd7c39dd
b1ad6ef39161c0c48438817df80a5082cbc84e24
28395 F20101206_AAAKBF cusido_y_Page_66.pro
32fffeaa9098896394722b74702fdce6
844e05eaa54eb947a6ff417117d873f76e52994c
1051985 F20101206_AAAJUI cusido_y_Page_06.jp2
eac97f7275ad483347299b5924068721
e441768905aea4cd4c8330a211d4cc95d94f0df7
35610 F20101206_AAAKGE cusido_y_Page_34.QC.jpg
67c9b9003fbae706081f956c911bac18
744b39116a185bb6204c7f1763f6d37d32a92344
40118 F20101206_AAAJZG cusido_y_Page_09.pro
c558d16681b7e6574403f927e8dfa6f5
eed36adeb71e2a4c2bd6c9a387a04034c540ee4d
31702 F20101206_AAAKBG cusido_y_Page_67.pro
9e026597ebf259202744b4154e3ad918
a947561cdc596f79d7c6dec81a72076d2e140d37
1051970 F20101206_AAAJUJ cusido_y_Page_08.jp2
08421675e4a8035ededd06ece1ed1279
16d0f283b9c6cf4129a10bc678e9001e2978e3a0
9266 F20101206_AAAKGF cusido_y_Page_35thm.jpg
1be0c3b07be2553c8baa6bb0e5869aed
178355a7b48cf137e35e3da22211541ab658bb23
52142 F20101206_AAAJZH cusido_y_Page_10.pro
eaeec66bc572f7218b7e554d1e7c1b0d
793c1911ac15f9849be0c4612ce6c3882df40261
88 F20101206_AAAKBH cusido_y_Page_02.txt
2bd55952ceba29a52f5bf893529b6bc5
7c8ae4a44c8f09cb2c85527e58c437d0bc9cba17
90072 F20101206_AAAJUK cusido_y_Page_09.jp2
23e2c7eb1d1fb4e1e34563b625f84f56
243de5adf00d914ca347800808e9641c9ee23831
39547 F20101206_AAAKGG cusido_y_Page_35.QC.jpg
df60a225a914da708692e289a64dd7a8
df8e924a549c1a3bb6d8115958e5c61291ca734c
34652 F20101206_AAAJZI cusido_y_Page_11.pro
2147fbfe14e3c4fec4bd8b0581672ec9
2e3ef1909c8b9dfaab37811bddec3446ce3e499a
117 F20101206_AAAKBI cusido_y_Page_03.txt
8f8c3d27222fe319aa27ec9059c6e289
5e57900630b9496b0b2bfbde880a19c359506578
112155 F20101206_AAAJUL cusido_y_Page_10.jp2
229016503a283d177123a9809a80febd
7ccd5700f7fdd7537ab3f8032f5b866ac7677090
49620 F20101206_AAAJZJ cusido_y_Page_12.pro
88e0f881c70eb298b677d263e6f4f1e9
a274837e97e3013ab00f878c1e48a18df3853dba
760 F20101206_AAAKBJ cusido_y_Page_04.txt
d2f5646bd03ea4921dced10910e5e192
059324610953d67b22cb2abc114b2a3b2e977368
86673 F20101206_AAAJUM cusido_y_Page_11.jp2
304d55ee52881f2d6d1744ceaee984a0
100d30adc149679d21e980c9a35b3874dd0626f5
9392 F20101206_AAAKGH cusido_y_Page_36thm.jpg
19c444e345f74faa2cc01a65ddcbd3ed
80633858ed395eb44f6499faa62c8727b2244b22
8837 F20101206_AAAJZK cusido_y_Page_13.pro
c767d36ddcbc3c04c81d9082bc2f416b
84248e68373d80ac4cd3b1f312c61f832705eb9c
3248 F20101206_AAAKBK cusido_y_Page_05.txt
78e8fee04d32b15cde60d0a6d61538a7
8aed7d72e07370aaa66f85fac485b68c1809fefe
108109 F20101206_AAAJUN cusido_y_Page_12.jp2
a2948ab99aa825dcf48f83b874db25cc
2220636cfb6b075101aa6c7ba2fcf8e22e55bfd6
9020 F20101206_AAAKGI cusido_y_Page_37thm.jpg
136f61e5fa398e213c048424ddc1852c
53791033cf71ee3bea8f3cb82e5ba54e5093d4e0
51729 F20101206_AAAJZL cusido_y_Page_16.pro
97326124dd63345552092bfd5411b1e8
ce3512ac7aebf2ff3a990f04154d1b1b35d3ad86
2360 F20101206_AAAKBL cusido_y_Page_06.txt
926a0b787db948d417c4029b55b454a9
44fc5d401b05e4642a732d46885807d2262f6a9d
26956 F20101206_AAAJUO cusido_y_Page_13.jp2
ed66b03bccc7268d3fbc4963c0d4ff84
1486dcf4a80c4ee0b3871fad2b7575aba4e05273
38283 F20101206_AAAKGJ cusido_y_Page_37.QC.jpg
7782ae8a8efed701c2fc627d546ad8ad
2485f3494a54a16667ceeb8fe91b629e253b7bdf
51289 F20101206_AAAJZM cusido_y_Page_17.pro
36651934ee888fd0e99c64b59d36701f
f5797fcc939932b7772967f9be0045c0c93d0981
982 F20101206_AAAKBM cusido_y_Page_07.txt
dd0664d92c1196ee1759201863c61d57
3ab9b8a9897d19da47cd52955e322ce3a99ffa99
114603 F20101206_AAAJUP cusido_y_Page_15.jp2
3e283f275bb36ead0b9f3ed93eca555c
843be9b0a185603004316f2c91afaeb7712b188d
8842 F20101206_AAAKGK cusido_y_Page_38thm.jpg
5a022f63519d0b40db91288798d8b4fd
96654a932ee1463b2deea936d76129d0414d0d5e
42294 F20101206_AAAJZN cusido_y_Page_18.pro
1969786df6b0ec4595e0db085fdabef6
14df905ea7d2abb06f0c9f999bddbf63bdef916b
2494 F20101206_AAAKBN cusido_y_Page_08.txt
255c11952f1f04166b2a78eaeedc7f39
6d6827c27ba7a240317fdedbbb2102f9ebfe7c9e
111882 F20101206_AAAJUQ cusido_y_Page_16.jp2
0b9bbfbcf7fed69d0ac5084a3316d19d
2ef188267039f6db11abb55dd0ba86b615a41445
35984 F20101206_AAAKGL cusido_y_Page_38.QC.jpg
65adf39e657ea2c24793489ca73c78c8
6c9eeb87e1aeb438219ff185fcc5538ca5a3c7cf
43957 F20101206_AAAJZO cusido_y_Page_19.pro
2a40c640fc98f1657cc30afe00490c4f
90db68bf0fb3120ab5872ccf178a8b992790224e
1817 F20101206_AAAKBO cusido_y_Page_09.txt
9d29d94ea393acaf478c15c74733a499
6dc1f09fdebe997a77778bd78217f8281e3b7931
113418 F20101206_AAAJUR cusido_y_Page_17.jp2
18cda974f70022bae805c1438edc84e6
a7f4d53287b60e9cafe94d9913d95b095455e07c
8694 F20101206_AAAKGM cusido_y_Page_39thm.jpg
0eaf030118a2ac0bc28aaada60eb8d3e
f6e45c71d8fff90cb9357cb792cb5d6855583da1
46647 F20101206_AAAJZP cusido_y_Page_21.pro
0119f2359fb371c6cebb0f5cd7d66327
480bc94fe62195cff111a4c912745e977fdd156e
2131 F20101206_AAAKBP cusido_y_Page_10.txt
85f54b666ea46070fde3dc4027a8e209
d4fec31488517f08c1dee9d001c2bc342c9009bd
92369 F20101206_AAAJUS cusido_y_Page_18.jp2
4c3894ccc41ea3c530ae227d7f56a871
a14699c164198a57fbe8da6a0958830cf9c51ee7
37128 F20101206_AAAKGN cusido_y_Page_39.QC.jpg
0126a1309eff36d2dd750252b9e7640e
838b97880870f5a6b28d3cc41ed669b7cc396e5c
44131 F20101206_AAAJZQ cusido_y_Page_22.pro
a2624be9adb9045f969f3d0f958ec607
9d9b7a70fbd636094171af59b5b54151080807f1
1469 F20101206_AAAKBQ cusido_y_Page_11.txt
d5ed92191a521cdd3a4da32255187da0
4b33b24cb758065180292d3bb6775f7831e15e01
96774 F20101206_AAAJUT cusido_y_Page_19.jp2
4315f36add3ba44bd94fde82b00c6677
fe85fd46958499150e17b593e6581b3706bef434
8891 F20101206_AAAKGO cusido_y_Page_40thm.jpg
b17ec9ade60a934964cd9163622bd08d
e446f75bce4111c3aa2dfa20b8e09af5e1de5d3b
44616 F20101206_AAAJZR cusido_y_Page_23.pro
d9fae4f476bcfec41164dd90bae25215
80ef7cf707aeae46f2d7ae62975e7bf30f432c7e
2015 F20101206_AAAKBR cusido_y_Page_12.txt
626f77ae743ee8956118b6977a48828e
105565de23f32bd0fe710d37ba7df3c690fba83e
111660 F20101206_AAAJUU cusido_y_Page_20.jp2
8dca470576a94f1a9e20c5bae7af8965
42769676d3b17d14e9f3c67e9a80a11a5415b6bb
37251 F20101206_AAAKGP cusido_y_Page_40.QC.jpg
9a0f660d3c3239c73c34060f3d9f6163
b4004e3a9042baa27314005a3f8c52c96f552b85
54523 F20101206_AAAJZS cusido_y_Page_24.pro
047bf2be2f462b715f000b5db33a1505
35d429966d5731865e160ea11f73842b4bdba566
353 F20101206_AAAKBS cusido_y_Page_13.txt
f9f3b616a934f591ebe8526210a0952e
93ce2ab7de474a4cf5338b5ea73ee9bc9fb7fae8
102275 F20101206_AAAJUV cusido_y_Page_21.jp2
41130b909836a994df983ac8698646c2
d19dd0f94a861e207cb8a4d961d5c17c7f63c897
9448 F20101206_AAAKGQ cusido_y_Page_41thm.jpg
a451e38a083091f544bcacd986aecd0f
1482bf52377733b8078db89d5b69955937a686bd
44378 F20101206_AAAJZT cusido_y_Page_25.pro
0804130965b19c82bc5e9e8d9afbc1b6
597f988966452a0855b2b1e65811113f7ee0d100
1778 F20101206_AAAKBT cusido_y_Page_14.txt
a21d1a53dd72e854e3f02a9abc0e76b7
c98ff58146fdc8d8f6c64f04b28cf85666cf724a
40043 F20101206_AAAKGR cusido_y_Page_41.QC.jpg
e8df0a096c1f59a2d9ad52fd6331cd2b
293741166689b883b6c6b9b67616d2ebb14f49d7
47729 F20101206_AAAJZU cusido_y_Page_26.pro
6f15cae8277af529913c520f8c47da12
52c260ee57390b93285eb7d5d1c20545ff9deb0a
2057 F20101206_AAAKBU cusido_y_Page_15.txt
6b6166fc7bf05df55c300a6193b8cb51
ebe0f42925086bb773aa8882f79d00138b62570f
98724 F20101206_AAAJUW cusido_y_Page_22.jp2
9660ce7a3e47af605b897aee68641a75
e9c0f335ee238864a323e1199d33d961486f7391
9440 F20101206_AAAKGS cusido_y_Page_42thm.jpg
0aa361cf4e6335bb24e6d6ee46f49b83
e1d6e7ddea196605c13b4d9a7302f7f64b4a4af5
48425 F20101206_AAAJZV cusido_y_Page_27.pro
b967e1764354c8bb686cc90c0f9a9e20
60f8de42e9b70e45bf3364488689d6aefdfe9806
2047 F20101206_AAAKBV cusido_y_Page_17.txt
48cfeddb349d7320e97c204967de7451
8e4c3fec66b41b53630799f62afa3579d8345d3a
96171 F20101206_AAAJUX cusido_y_Page_23.jp2
1039bd1955e29aa7d90aa8c770109733
7ec1f59b1aad88fb34a86300c3e07c9c1c390d10
8994 F20101206_AAAKGT cusido_y_Page_43thm.jpg
98be1b8d82d552cd6de4264d873b30c4
414dac3b9d54a0faecf8e082b559b54209c1df95
41438 F20101206_AAAJZW cusido_y_Page_28.pro
210633c83cf434a819ec6e1dcce3b9af
129cf8c08c95a6ffe6379d0c808afd321ab61a2d
2053 F20101206_AAAKBW cusido_y_Page_18.txt
beaaa9733eac2e8378360abf46b265d4
ecacddfd43405152d00d09befa08777ea541a332
140345 F20101206_AAAJSA cusido_y_Page_05.jpg
8f3fa8ffdfac3fb9ce08053ee16fb7b5
76475640f656473561ca11d2529d3687058b829a
120651 F20101206_AAAJUY cusido_y_Page_24.jp2
89dd9b63b541d1905d3f3b868b1dcd6b
e321824714d87ba7d10b3b4498f39103887a89f1
37817 F20101206_AAAKGU cusido_y_Page_43.QC.jpg
6185d7ea422f120e529f8e723cc733b1
214cc60b4b7f3208015263e9642a88ea420628c0
51421 F20101206_AAAJZX cusido_y_Page_29.pro
b7a0d79008faded61daed0df7269577a
6b7ad7ef8c267560bd6a4120885ff946f282dfc8
2011 F20101206_AAAKBX cusido_y_Page_20.txt
1733b83fe0f21d0ccdcacab439b98ccf
e66da0f4f3899852f80f6ee0f70a0e5021ad1d78
107013 F20101206_AAAJSB cusido_y_Page_06.jpg
a8de793acbcf68f0e26a60480830ef04
b71bd966927ddd6085b4bb34d1f4615c0b145cff
97255 F20101206_AAAJUZ cusido_y_Page_25.jp2
cc1ae0acb816c2c5e777c65a94307a26
868b35611efade5d227bf89282ec0b7295c46b89
8772 F20101206_AAAKGV cusido_y_Page_44thm.jpg
fba5bf49d42388674499c236c802876c
0fce5a2a5b1c6bf83b915e2924521b32891bda07
1955 F20101206_AAAKBY cusido_y_Page_21.txt
13d38183c8ecf48c1a3146d5adcb68e9
88f90a7d1866da31d861d42e87ffb2399ddb2f9a
55040 F20101206_AAAJSC cusido_y_Page_07.jpg
3c6058db5706e6f1984539faa0762b5e
f89c9d6aab57ad462a99f8af70ca38af3f990acd
52510 F20101206_AAAJZY cusido_y_Page_30.pro
02515d9246e498d37f873678cbd2765a
dde90146ec063108ce693e4e8b04b3bc65285680
36904 F20101206_AAAKGW cusido_y_Page_44.QC.jpg
466d69ba3bb79b20bd53f3920eeaf129
9d1eea3f1eab253d4174674bce369594a7fc02b7
1871 F20101206_AAAKBZ cusido_y_Page_22.txt
57bdddb4cc71d76722258897540b4797
b932f150cca8f9ecaee0cac59d2063cbf452ebfb
123288 F20101206_AAAJSD cusido_y_Page_08.jpg
60cb02d250ea4574bf41026e737f6828
d99c06c69858f0a510d789af8b77fb3f950c5ba6
F20101206_AAAJXA cusido_y_Page_15.tif
85440bea94225ead63a2a1069921bb26
a2aa764ea53c287c92ef1fb2cbf8097b5f83147c
51539 F20101206_AAAJZZ cusido_y_Page_32.pro
5b437f0ad09df829ad85d3c21acc0e6f
142c309fafdd4667b5668bbcb6491f0b320d5968
1003 F20101206_AAAKGX cusido_y_Page_45thm.jpg
fc5cf72aca795920b59fa08aec3a75ef
40a1d68699f9d53dd1ff6e293f7080fa942cc0ed
86586 F20101206_AAAJSE cusido_y_Page_09.jpg
688d8a90ce5a14216e2417a25c36c0b2
b7f4eebf344fd8d7b9d689eae9b1d3777288359d
F20101206_AAAJXB cusido_y_Page_16.tif
a13a2a71ed2668524e42cb49a26711cc
e7a72f3b9c5f9cfb4e4f949c5dafbd74049481a2
3708 F20101206_AAAKGY cusido_y_Page_45.QC.jpg
e91384327fb820fd656a41f83f6c3440
8a198e9fd16df21d0afdd8f6f2fb1954fe5c7109
106559 F20101206_AAAJSF cusido_y_Page_10.jpg
9995220692917e7e027f98988836778a
66328b59496310782db6b8bb135d66b2eba69b5d
33825 F20101206_AAAKEA cusido_y_Page_05.QC.jpg
336d5bf3773d3e861a5973bd68f1ec62
6c69661ed5f5371762ee4b6edb74dfc6b14ddf35
F20101206_AAAJXC cusido_y_Page_17.tif
2af32fe7ba5848cf366996db1ca688ed
c45ccfb01d41a2741221de5471149851c7498d10