<%BANNER%>

Gamma Background Studies for the Xenon Experiment Using a High-Purity Germanium Detector

Permanent Link: http://ufdc.ufl.edu/UFE0021574/00001

Material Information

Title: Gamma Background Studies for the Xenon Experiment Using a High-Purity Germanium Detector
Physical Description: 1 online resource (97 p.)
Language: english
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: dark, germanium, material, matter, screening, wimp, xenon
Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The XENON Dark Matter Experiment, deployed at the Gran Sasso National Laboratory in Italy on March 2006, is a liquid noble gas detector designed to directly detect dark matter. The detector uses a dual-phase (gas/liquid) Xenon target to search for nuclear recoils associated with nucleus-WIMP interactions. Due to the high sensitivity needed in such an experiment, it is vital to not only reduce the background but to also understand the remaining background so as to aid in the understanding of the data as well as to facilitate upgrades beyond the early Research and Development phases. Many of the components of the XENON10 detector have been screened using a High Purity Germanium Detector known as the GATOR detector. Full analysis of the screening data requires Monte Carlo simulations of the GATOR detector and the sample. Results from this screening will be presented. Using the information obtained from the screening operation, Monte Carlo simulations of the XENON10 electron recoil background will be examined and compared to the actual detector data. The success of this simulation to data comparison indicates that we have a good understanding of the XENON10 gamma background and will be able to make more informed decisions regarding the next stage of detector development. This type of analysis has aided in the selection and design of many of the materials and components being incorporated into the new XENON100 detector, the next generation detector which will be capable of improving the limit set by XENON10 by at least an order of magnitude.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Yelton, John M.
Local: Co-adviser: Baudis, Laura.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021574:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021574/00001

Material Information

Title: Gamma Background Studies for the Xenon Experiment Using a High-Purity Germanium Detector
Physical Description: 1 online resource (97 p.)
Language: english
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: dark, germanium, material, matter, screening, wimp, xenon
Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The XENON Dark Matter Experiment, deployed at the Gran Sasso National Laboratory in Italy on March 2006, is a liquid noble gas detector designed to directly detect dark matter. The detector uses a dual-phase (gas/liquid) Xenon target to search for nuclear recoils associated with nucleus-WIMP interactions. Due to the high sensitivity needed in such an experiment, it is vital to not only reduce the background but to also understand the remaining background so as to aid in the understanding of the data as well as to facilitate upgrades beyond the early Research and Development phases. Many of the components of the XENON10 detector have been screened using a High Purity Germanium Detector known as the GATOR detector. Full analysis of the screening data requires Monte Carlo simulations of the GATOR detector and the sample. Results from this screening will be presented. Using the information obtained from the screening operation, Monte Carlo simulations of the XENON10 electron recoil background will be examined and compared to the actual detector data. The success of this simulation to data comparison indicates that we have a good understanding of the XENON10 gamma background and will be able to make more informed decisions regarding the next stage of detector development. This type of analysis has aided in the selection and design of many of the materials and components being incorporated into the new XENON100 detector, the next generation detector which will be capable of improving the limit set by XENON10 by at least an order of magnitude.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Yelton, John M.
Local: Co-adviser: Baudis, Laura.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021574:00001


This item has the following downloads:


Full Text





GAMMA BACKGROUND STUDIES FOR THE XENON EXPERIMENT USING A
HIGH PURITY GERMANIUM DETECTOR


















By
JESSE ISAAC ANGLE


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2008



































S2008 Jesse Isaac Angle




































To everyone who stood by me when times got rough.









ACKENOWLED GMENTS

I would like to thank my advisor Laura Baudis (currently at the University of Zurich)

for providing me with the opportunity to work on such an exciting and cutting-edge

experiment. I would like to express my gratitude to all of my fellow graduate students at

the University of Florida for helping me to maintain my sanity through this thing we call

graduate school. And lastly I would like to thank my wife Wendi Angle for standing by me

and helping me to get where I am.











TABLE OF CONTENTS


page

ACK(NOWLEDGMENTS ......... . .. .. 4

LIST OF TABLES ......... .... .. 7

LIST OF FIGURES ......... .. . 9

ABSTRACT ......... ..... . 12

CHAPTER

1 INTRODUCTION ......... .. .. 1:3

1.1 Overview ......... . .. 1:3
1.2 Evidence for Dark Matter ......... ... 14
1.3 Composition of Dark Matter ........ .. 17
1.4 Methods of Dark Matter Detection . ..... .. 19
1.5 The XENON Experiment ......... ... 20

2 GATOR DETECTOR ......... ... 24

2.1 High Purity Gernianiunt Detectors ...... ... 24
2.2 Details of the GATOR Detector . ..... .. 25
2.3 Pre Shield Rebuild: GATOR Background .... .. 26
2.4 Post Shield Rebuild: GATOR Background .... .. 28
2.5 One Year Underground: GATOR Background ... .. 29
2.6 LNGS: GATOR Background ....... .. :30
2.7 Simulations and Analysis: GATOR Background ... ... .. :31
2.8 Radon Contamination ......... ... :37
2.9 Data Acquisition Failure ......... ... :39

:3 GATOR MATERIAL SCREENING . ..... .. 41

:3.1 Analysis Procedures ......... .. .. 41
:3.2 Overview of Screened Materials ... . .. .. .. .. 4:3
:3.3 Stainless Steel-:304, Sample Taken Front the ITF XENON Outer Cryostat .4:3
:3.4 Hanianatsu PMTs, R8520 ........ ... .. 47
:3.5 Cirlex PMT Bases . ...... .. .. .. 50
:3.6 Stainless Steel-:304 Sample Front XENON10 Spare Inner Cryostat .. .. 5:3
:3.7 Poly Bricks from K(MAC Plastics, IUsed in the XENON10 Inner Shield .. 56
:3.8 Teflon Arcs Used in the XENON10 Inner Detector ... .. .. 59
:3.9 Sample Z: Stainless Steel and Ceramic Feedthroughs .. .. .. .. 62
:3.10 Sample H: Stainless Steel IUsed to Create the PMT Electrodes .. .. .. 65
:3.11 Suninary of Screening Operation ...... ... . 67











4 XENON10 BACKGROUND .. .......


4.1 The XENON10 Detector ......... .. .. 69
4.2 Analysis of Individual Components . .... .. 72
4.2.1 Monte Carlo Simulations for XENON10 ... .. .. 72
4.2.2 Outer Cryostat ......... .. 74
4.2.3 Inner Cryostat ......... ... 75
4.2.4 PMTs and Bases ......... ... 75
4.2.5 Teflon ........ . .. 78
4.2.6 Poly Shield ........ ... .. 78
4.3 Comparison of Simulations to Data . ... .. 79

5 FURTHER WORK( FOR XENON . ...... .. 83

5.1 The UF XENON Prototype ....... ... .. 83
5.2 Gas System for UF XENON Prototype .... .... .. 86
5.3 Electric Field Simulations for UF XENON Prototype .. .. .. .. 89

6 CONCLUSIONS ........ .. .. 92

REFERENCES ............. ........... 94

BIOGRAPHICAL SK(ETCH ......... . .. 97










LIST OF TABLES


Table page

2-1 Data selected to determine the location of the hot spot within the Lead shield .27

2-2 Background activity data using the fitting method ... .. .. .. 35

3-1 Summary of results for all samples screened thus far at SOLO in Soudan .. 43

3-2 First stainless steel sample activities using the background comparison method 45

3-3 First stainless steel sample activities using the fitting method .. .. .. .. 46

3-4 Four PMT activities using the background comparison method .. .. .. .. 48

3-5 Four PMT activities using the fittingf method ... .. .. 49

3-6 Cirlex PMT base activities using the background comparison method .. .. 51

3-7 Cirlex PMT base activities using the fitting method .. .. .. .. 52

3-8 Second stainless steel sample activities using the background comparison method 54

3-9 Stainless steel sample activities using the fittingf method .. .. .. 55

3-10 Poly sample activities using the background comparison method .. .. .. .. 57

3-11 Poly sample activities using the fitting method ... .. .. .. 58

3-12 Teflon sample activities using the background comparison method .. .. .. 60

3-13 Teflon sample activities using the fitting method ... .. .. 61

3-14 Sample Z, the two feedthroughs, activities using the background comparison
method ..... .................... 63

3-15 Sample Z, the two feedthroughs, activities using the fittingf method .. .. .. 64

3-16 Electrode material sample activities using the background comparison method .66

3-17 Sample H, the electrode material sample, activities using the fittingf method 67

4-1 0-3000 keV Outer Cryostat contribution to the detector background .. .. .. 75

4-2 0-50 keV Outer Cryostat contribution to the detector background .. .. .. 75

4-3 0 3000 keV Inner Cryostat contribution to the detector background .. .. 76

4-4 0 50 keV Inner Cryostat contribution to the detector background .. .. .. 76

4-5 0 3000 keV PMT and cirlex PMT base contribution to the detector background 77

4-6 0 50 keV PMT and cirlex PMT base contribution to the detector background 77










4-7 0 3000 keV Teflon contribution to the detector background .. .. .. 77

4-8 0 50 keV Teflon contribution to the detector background .. .. .. 77

4-9 0 3000 keV Poly shield contribution to the detector background .. .. .. 78

4-10 0 50 keV Poly shield contribution to the detector background .. .. .. .. 79

4-11 Initial activities used prior to the running the fittingf program, acting as starting
values for to code. ........ ... .. 81

4-12 Final activity values as determined by fitting the simulations to data. .. .. 81










LIST OF FIGURES


Figure page

1-1 Velocity curve for the nearby spiral galaxy NGC2403 .. .. .. 15

1-2 Composite image of cluster 1EO657-56 . ..... 17

1-3 Example of the progress of a typical N-body simulation ... .. .. 18

1-4 Dark matter limit plot ......... .. 21

2-1 Outer Copper cryostat resting in the original Lead shield .. .. .. 26

2-2 Original GATOR Background ......... .. 27

2-3 New GATOR Background ......... . 29

2-4 Comparison of old and new background ...... .. 30

2-5 Comparison of the background post shield rebuild and one year later .. .. 31

2-6 Comparison of the background at SOLO and the background at LNGS .. .. 32

2-7 Side view of the GATOR geometry located at SOLO .. .. .. 33

2-8 Background simulations for the GATOR Detector ... ... .. 34

2-9 More advanced GATOR Background simulations .... .. 35

2-10 Copper and crystal portions of the GATOR Background simulation .. .. .. 36

2-11 Lead portion of the GATOR Background simulation .. .. .. 36

2-12 Data from the poly screening showing radon contamination .. .. .. 38

2-13 The Radon purge in action, showing counts per hour versus time .. .. .. 38

2-14 Counts per hour versus time during the middle of the run .. .. 39

2-15 When Radon was introduced, showing counts and counts per hour .. .. .. 40

3-1 Image created using the Geant4 simulation, showing a top down view of the
detector cavity and the steel sample . ..... .. 44

3-2 Background data and steel sample data, normalized to DRU .. .. .. .. 45

3-3 Steel data with background subtracted compared to simulation .. .. .. .. 46

3-4 Photomultiplier tube sample placement within the Monte Carlo simulation .. 47

3-5 Photomultiplier tube sample data and background data, normalized to DRU 48

3-6 Photomultiplier tube data with background subtracted compared to simulation 49










:3-7

:3-8

:3-9

:3-10

:3-11

:3-12


Cirlex PMT base sample placement within the Monte Carlo simulation

Cirlex sample data and background data, normalized to DRIT

Cirlex data with background subtracted compared to simulation.

Second stainless steel sample placement within the Monte Carlo simulation.

Second stainless steel sample data and background data, normalized to DRIT

Second steel sample data with background subtracted compared to simulation


:3-13 Poly brick sample placement within the Monte Carlo simulation.

:3-14 Poly sample data and background data, normalized to DRIT

:3-15 Poly data with background subtracted compared to simulation.

:3-16 Teflon are sample placement within the Monte Carlo simulation

:3-17 Teflon sample data and background data, normalized to DRIT

:3-18 Teflon data with background subtracted compared to simulation.

:3-19 Sample Z placement within the Monte Carlo simulation.

:3-20 Feedthrough data and background data, normalized to DRIT

:3-21 Feedthrough data with background subtracted compared to simulation

:3-22 Breakdown of all of the PMT samples supplied by Hamamatsu.

:3-2:3 Electrode material data and background data, normalized to DRIT

:3-24 Sample H placement within the Monte Carlo simulation

:3-25 Electrode material data with background subtracted compared to simulation.

4-1 Photograph of the XENON10 Detector.

4-2 Cross-sectional drawing of the XENON10 Detector

4-3 Cross-sectional image of the XENON10 simulation

4-4 Example of successive cuts being applied to simulation data

4-5 Initial simulation scaling using the screening values from GATOR, DIODE-M
and other XENON screening operations.

4-6 Comparison of a background simulation to data.

4-7 Breakdown of the Monte Carlo Simulation that was fit to the data .











5-1 Some views of the ITF XENON Prototype ..... .. . 84

5-2 Side view of the ITF XENON Prototype ...... .. . 85

5-3 Gas System schentatic ......... . .. 87

5-4 Early image of the gas system front panel ..... .. 88

5-5 Geometrical layout of the electric field simulation ... ... .. 90

5-6 Electric field plots within the inner detector ..... .. . 90

5-7 Electric potential plots within the inner detector ... .. .. .. 91

5-8 Simulated electron drift tracks through the liquid Xenon .. .. .. 91

6-1 Artistic renditions of the XENON100 Detector .... .. .. 93









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

GAMMA BACKGROUND STUDIES FOR THE XENON EXPERIMENT USING A
HIGH PURITY GERMANIUM DETECTOR

By

Jesse Isaac Angle

May 2008

C'I !.v: John Yelton
Major: Physics

The XENON Dark Matter Experiment, deploi- 4 at the Gran Sasso National

Laboratory in Italy on March 2006, is a liquid noble gas detector designed to directly

detect dark matter. The detector uses a dual-phase (gas/liquid) Xenon target to search

for nuclear recoils associated with nucleus-WIMP interactions. Due to the high sensitivity

needed in such an experiment, it is vital to not only reduce the background but to also

understand the remaining background so as to aid in the understanding of the data as well

as to facilitate upgrades beyond the early Research and Development phases.

M1 I.ny of the components of the XENON10 detector have been screened using a High

Purity Germanium Detector known as the GATOR detector. Full analysis of the screening

data requires Monte Carlo simulations of the GATOR detector and the sample. Results

from this screening will be presented. Using the information obtained from the screening

operation, Monte Carlo simulations of the XENON10 electron recoil background will be

examined and compared to the actual detector data. The success of this simulation to

data comparison indicates that we have a good understanding of the XENON10 gamma

background and will be able to make more informed decisions regarding the next stage

of detector development. This type of analysis has aided in the selection and design of

many of the materials and components being incorporated into the new XENON100

detector, the next generation detector which will be capable of improving the limit set by

XENON10 by at least an order of magnitude.









CHAPTER 1
INTRODUCTION

1.1 Overview

This thesis will attempt to summarize my work within the University of Florida (UF)

group of the XENON collaboration over the last three and a half years. This chapter will

offer a brief introduction to dark matter and the ongoing search for it. Section 1.2, will be

devoted to a brief historical overview of dark matter in general and the evidence for its

existence. Section 1.3 will go into some of the physical attributes of dark matter, section

1.4 will overview some of the detection methods being used in the hunt for dark matter

and section 1.5 will detail some of the specifics of the XENON experiment.

C'!s Ilter 2 is devoted to the GATOR detector, the solid-state high purity Germanium

crystal detector that was used to perform most of the measurements detailed herein.

Section 2.1 provides an overview of GATOR and its operation in the Soudan Low

Background Counting Facility (SOLO). Sections 2.2 through 2.6 discuss the GATOR

background through various rebuilds. Sections 2.7 and 2.8 briefly covers several failures

the GATOR detector experienced whilst installed at SOLO. These background analysis

and calculations as well as the analysis regarding the detector interruptions were

completed by me.

C'!s Ilter :3 will be centered around the material screening for which the GATOR

detector was designed. The first section will summarize the analysis procedures I used for

analyzing the screening data, followed by a section summarizing all of these results. Each

material I screened will be given it's own section following that.

C'!s Ilter 4 will apply the screening results to the XENON10 detector. Section 4.1

will be devoted to the specifics of the XENON10 detector while section 4.2 will detail the

individual analysis I completed for the various components. Section 4.3 will go into the

work done on the full XENON10 background simulations.










C'!s Ilter 5 contains all of the other work I accomplished for the XENON collaboration

abroad and at ITF. Section 5.1 focuses on the XENON prototype built at ITF. Section 5.2

details the gas system constructed at ITF for said prototype and section 5.3 will discuss

the electric field simulations done for the ITF Prototype Inner Detector.

1.2 Evidence for Dark Matter

The existence of dark matter was first hypothesized hv Swiss 0I-1 in phi--;cist Fritz

Zwicky working at Caltech in 19:33. The "missing mass pInhhI~ ill as it became known,

was discovered when Zwicky estimated the mass of the Coma cluster using two different

techniques. By comparing the mass as determined hv the motion of galaxies in the cluster

to the mass obtained by looking at the number of galaxies and the brightness of the

cluster, Zwicky found that the Coma cluster contained approximately 400 times as much

mass as would be expected from just the visible matter. Zwicky hypothesized that some

sort of invisible matter (what we now refer to as dark matter) must he present for the

Coma cluster to behave as observed [1-3].

It wasn't until almost 40 years later when corroborating evidence for Zwicky's missing

mass was found. Vera Rubin, working at the Department of Terrestrial 1\agfnetism at the

Carnegfie Institution of Washington measured the rotational velocities of stars within edge

on spiral galaxies to a higher degree of precision than had ever been done before. Her

results, first presented at a meeting of the American Astronomical Society in 1975, show

that at higher radii the velocity of stars is relatively flat even at large distances instead

of the declining velocity curve that had been predicted[4]. See Figure 1-1 for an example

of this behavior. Rotation curves of this kind are often considered the most common

example for dark matter's existence [5]. Even though these results were originally met

with skepticism, more data kept coming in that agreed with this hypothesis. One of the

typical attempts to explain this missing mass resulted in the proposal that a large portion

of the mass in a galaxy is stored within a halo of Zwicky's dark matter. While the original

measurements that led to the "








150


100 '









0J 5 10 15
Radius [kpe]

Figure 1-1. Velocity curve for the nearby spiral galaxy NGC2403. The blue line is the
behavior one would expect from a 1/r2 decline. The red is the supposed dark
matter halo that is needed to combine with the disk fit in order to match the
data, shown in black. Image courtesy of
http: //burro.cwru.edu/JavaLab/RotcurveWeb/mainBChtl


of stars within galaxies and galaxies within clusters, other types of measurements also

postulate the existence of some sort of dark matter.

Studies of the Cosmic Microwave Background (Cijll:) provide an accurate means of

probing cosmological parameters. Data from the Wilkinson Microwave Anisotropy Probe

(WMAP) alone is able to put constraints on both the matter content in the universe as

well as the baryonic content in the univ. H.~ [i-8].


Ob 2 = 0.024 & 0.001 (1-1)


SOM r2 = 0.14 + 0.02 (1-2)

The value R is the matter density of a substance averaged across the Universe in relation

to the critical density, that density for which the Universe would be Euclidean, or flat

(see Equation 1-3). RnM iS the density of all gravitation matter while S2b is the density of

baryonic matter. A represents the uncertainty in the Hubble Constant (Ho = 100 h -










km2 -1) and takes on values ranging from 0.4 to 1.


Ox= x (1-3)
Critical

This value for the baryonic content in the universe is in agreement with that as determined

by Big Bang Nucleosynthesis. To agree with the measured abundances of light elements,

namely helium, lithium and deuterium, the baryonic content must be in the following

range:

0.018 < Ob 2 < 0.023 (1-4)

These numbers strongly indicate that the inl Go ik~~y of matter in the universe is non-baryonic

and poorly understood. Note that the a variable represents the ratio of the density of the

substance in discussion to the critical density, that density for which the universe is flat.

WMAP measurements further indicate that the universe is flat and Ototal is equal to unity.

This implies additionally that dark matter and baryonic matter make up only a small

portion of the total density in the universe.

In 2006, the National Aeronautics and Space Administration (NASA) published

evidence for what they termed "direct proof of dark 1 Is. I11 1 A team led by Doug Clowe

of the University of Arizona at Tucson spent over 100 hours observing the galaxy cluster

1EO657-56 with the C'I 1audi .. Telescope. The x-ray image produced with this telescope

gives an idea of the distribution of mass due to ordinary baryonic matter, believed to

be mostly hot gas within the cluster. Gravitational lensing done with the Hubble Space

Telescope, the European Southern Observatory's Very Large Telescope and the Magellan

optical telescopes provide a measurement of the distribution of total mass within the

cluster due to ordinary matter as well as dark matter. It seems quite clear that the total

mass and the mass due to regular matter are drastically different. The ordinary matter

appears to have experienced drag forces during a past collision with a smaller cluster.

The dark matter did not experience such a drag force since it is largely collisionless and

thus became separated from the regular matter. This is shown in the data by a significant










separation between the location of the ordinary matter and the total mass of the cluster.

See Figure 1-2[9]. Dark matter's existence is also a big aid to those who study structure
















Figure 1-2. Composite image of cluster 1E0657-56. The red x-ray image represents the
location of the 1 in .1..l~y of the regular matter (hot gas in this case) within the
cluster. The blue, taken from gravitational lensing, represents the total mass
within the cluster, strongly indicating the presence of dark matter separated
from the regular matter. Image courtesy of
http://chandra.harvard.edu/photo/2006/1e67/


formation, where the inclusion of dark matter into some of the theories provides very

accurate results that compare quite well to observations of the current structure of the

universe. Numerous N-hody simulations seeking to replicate the observed structures have

met with remarkable success integrating dark matter into the simulations. Figure 1-3 is

one example of such an N-hody simulation[10-12]. Measurements taken from intracluster

gas within clusters and interstellar gas at the edges of galaxies indicate that dark matter

makes up roughly 95 percent of all gravitating matter. Gravitational lensing can provide

a density profile of dark matter within clusters and has led to the discovery of what is

believed to be dark matter galaxies[13, 14].

1.3 Composition of Dark Matter

One theory of dark matter proposed that the uslI i ur component of the unseen mass

was composed of Massive Compact Halo Objects (jL1ACHOs). Included in this category

are brown dwarfs, white dwarfs, neutron stars and black holes. All are massive objects



















Figure 1-3. Example of the progress of a typical N-hody simulation. The images here
represent evolution of structure within a 140 million light year box from a
redshift of 30 to a redshift of 0. Image courtesy of
http: //cosmicweb.uchicago.edu/index.html.


which are very difficult to detect through normal observational techniques, making

them a possible dark matter candidate [15]. Unfortunately, it is believed that a high

production rate of any of these objects would have observable side effects that we do not

see (the amount of 'l ll0.10!- needed would change the elemental abundances, especially

deuterium) [16]. The EROS-2 project observed the Magellanic Clouds for microlensing

events, looking for stars gaining brightness as a MACHO passed in front of it via

gravitational lensing. Their findings indicate that MACHOs can make up approximately

only >' of the Milky Way's dark matter halo[17]. So while a small percentage of dark

matter may be composed of MACHOs, the main component is likely composed of

something more complicated.

On the extreme other end of the mass scale, weighing between 10-6 and 10-2 eV is

the axion. The axion's existence was postulated in 1977 hv Robrt Peeei and-- HelenT--.

Quinn to solve the strong CP problem of Quantum Chromodynamics (QCD). Such a

particle would have a very small mass but if it existed its properties would be inline

with the expected properties of dark matter. Detection schemes for axions are vastly

different than those for other dark matter candidates. Resonant microwave cavities

are used to attempt to enhance the axions coupling to the electromagnetic field. If the

cavity's frequency is tuned to the axion mass a peak will be visible in the frequency

spectrum. Experiments such as the Axion Dark Matter eXperiment (ADAIX) are using










such cavities to search for axions and place upper limits of the axion density in local

discrete flows [18-20].

One of the most promising candidates for dark matter is the Weakly Interacting

Massive Particle (WHIP). Such a particle would interact via the weak force, thus its

name, and gravity but not the electromagnetic force, rendering thent virtually invisible

to normal detection. One of the more promising WIMP candidates is the neutralino.

The promising theory of supersyninetry predicts that all Standard Model particles will

have a supersyninetric partner with the same quantum number but with a spin that

differs by 1/2. Since the super-partners to the photon, the Z hoson and the neutral higgs

(known as the photino, the zino and the higgsino respectively) all have the same quantum

number, they can nmix into different eigenstates of the mass operator to form four different

neutralinos. In some Super-Syninetry models the lightest of the neutralinos, with a mass

around 100 GeV to 1 TeV is called the lightest supersyninetric particle (LSP) [21, 22].

This LSP is believed to be stable, couple with other particles via the weak interaction,

and some calculations show that it can he formed in the early universe in the correct

abundance to account for the expected amount of dark matter 'b nli w. Such an abundance

in the early universe also helps to explain structure formation, in which the basic

structures within the galaxy are initially created by a gravitational accumulation of

dark matter with ordinary matter following later to form stars, galaxies and clusters. All

in all a quite promising particle indeed. It is the neutralino which the XENON experiment

is built to search for.

1.4 Methods of Dark Matter Detection

There are two hasic schemes for detecting WIMP dark matter; indirect detection and

direct detection. Indirect detection operates under the theory that in a dark matter dark

matter collision annihilation can occur, releasing particles that can create an observable

signal. Indirect searches of this nature probe the galactic center and the center of the

sun due to the possible accumulation of dark matter in these gravity wells. Alany of the










searches now operating are looking for the tell tale gamma ray signal, a mono energetic

line with mean energy equal to that of the dark matter particle mass. It is believed that

such experiments like the Very Energetic Radiation Imaging Telescope Array System

(VERITAS) and the Gamma-ray Large Area Space Telescope (GLAST) will be able to

search the entire range of energies where the neutralino is thought to reside, namely :30

GeV to :3 TeV[2:3].

In contrast, direct detection schemes rely on the assumption that dark matter is

composed of WIMPs and thus can interact via the weak interaction allowing the WIMP

to collide with the nucleus of the detector material. The two hasic types of interactions

that can occur are spin-independent and spin dependent. Spin dependent interactions

occur when the spin of the WIMP couples with the spin of the nucleon. Spin independent

interactions occur when the WIMP couples to the mass of the nucleon. It is believed that

spin independent interactions dominate for nuclei with A>30, however searching for both

types will be important to insuring detection of dark matter.

There are many different direct detection experiments using a wide vai'. iv of

materials. The Cryogenic Dark Matter Search (CDMS) looks for a phonon signal within

the Germanium and Silicon detectors. The Dark Matter (DAMA) collaboration found

their controversial result using a Sodium Iodine detector that looked for photons. The

XENON experiment uses liquid Xenon as its sensitive material.

1.5 The XENON Experiment

Figure 1-4 shows the results from a handful of the direct detection experiments

throughout the world. CDMS-II's data from their Germanium Silicon detectors, WARP s

(Wimp AR gon Programme) data from their liquid argon detector, data from Edelweiss's

germanium holometers, and the limit from Zeplin's liquid Xenon detector are all shown

with the current limit from XENON10's liquid xenon detector. All of these experiments

operate under the same basic phir-uphrlr i trying to measure the interaction between

a passing WIMP and the detector material[24]. The XENON experiment is a direct


















II 2
10 10 10n-
HTPMs GVc
Fiue14 Dr atr ii lt hwn h lmt aedo aafrmXN N0


detectionD 1 exeimn tha plans to meaur thed iner ctionbetenaWM n eo
nules itinth dteto vlu e.Hoevrote palrtce can alo nerctwthXeo
maigfnigteWM sga o ssrih fra d a toiial ons htn
and lecron fo intane iterct ia lecronc r ci ihteX nnao scetn
a~~ signa thtcnb n a ob sprtdfo h ularrci inlcetdb
WIM~s nd netrons
There ar w rmr neatoncanl htocri helqi eoinzto
and xcittion Bot chnnesbgnwt neeti rnula eoladedwt 8

nmo gamm ra en mitd2

8Excitatio
Xe + RECOI e

Xe X e
Xe Xe+GMM












Ionization

Xe +RECOIL Xe+ + e

Xe+ + Xe Xef

Xef + e- Xe** + Xe

Xe** Xe* + HEAT

Xe* + Xe Xeir

Xeir 2Xe + GAMMIA


The XENON detector is a dual phase (mostly liquid with a small gas 1 on -r) time

projection chamber (TPC). When a Xenon atom undergoes a electronic or nuclear recoil,

UV scintillation photons are released and collected by a photomultiplier tube (PMT) array

via the above interaction channels. This signal is referred to as the primary light or S1.

In the recoil, the ionization electrons that are released will drift upwards due to the high

electric field placed on the liquid volume. When these electrons are extracted into the gas

phase they are accelerated by a different electric field and will interact with the gaseous

Xenon, creating a secondary signal referred to as proportional scintillation light or S2.

This setup provides us with information regarding the event with very little

analysis. X and Y position can be determined based on the number of photons that

strike individual PMTs. A simple center of mass calculation can determine the X and Y

position within an accuracy of a few millimeters. Using the temporal separation between

S1 and S2 as well as a knowledge of the drift velocity of electrons in liquid Xenon, the Z

position of the event can be calculated to an accuracy of less than one millimeter. A good

3D localization allows multiple scatters to be eliminated as well as allowing fiducial volume

cuts to be made.










One of the largest advantages to this particular TPC is its very strong ability

to discriminate electron recoils from nuclear recoils. It has been shown earlier by

the XENON collaboration that the number of electrons released in an electron recoil

interaction is significantly higher than the number released in a nuclear recoil. Each type

of recoil interaction will undergo different amounts of the two channels allowing simple

discrimination. Thus comparing the S1 signal to the S2 signal can provide a means of

discriminating many background events from the events of interest.









CHAPTER 2
GATOR DETECTOR~

2.1 High Purity Germanium Detectors

Gamma ray spectroscopy is a very well established science so only a brief summary

of high purity Germanium detectors towards this application will be discussed. The basic

principle of gamma ray spectroscopy is to transfer the energy of the incident photon into

something more detectable, electron-hole pairs in the case of a Germanium detector.

As a photon enters the Germanium crystal its energy is transferred to the electrons via

photoelectric absorption, compton scattering, and pair production One of the largest

advantages to using a semiconductor detector is that the ionization energy, the energy

required to release an electron to the conduction band, is very small, on the order of 3 eV.

This means that an incident photon will be able to create many electron-hole pairs which

enables semiconductor detectors to achieve a better energy resolution than other gamma

ray detectors.

In order to manufacture ~ li--r II14 large enough to create an effective gamma ray

detector, the current method is to reduce the level of impurities within the semiconductor

crystal so as increase the depletion depth. Impurity levels on the order of 1 part in 1012

can be reached with Germanium, making it one of the most highly purified materials

available at the commercial level. To reach these levels, first the stock material is purified

by a technique referred to as zone refining. The material is heated locally and the heated

regions are passed from one end of the crystal to the other. Since the impurities are more

soluble in the molten Germanium, they are thus passed out of the < s i--r I1 This purified

stock is then used to grow the



1 At the energies relevant for the XENON material screening, photoelectric absorption
and compton scattering will be the dominant sources of energy transfer.









Once the < si--r I1 has been grown into whatever shape and size is desired, the main

thing left is to modify the
commonly done by doping the two surfaces that are to become the contacts (Lithium and

Boron doping are quite common for this purpose). Doping the two surfaces can drastically

increase the conductivity in that region of the < !i--r I1 making an ideal electrical contact.

Applying a voltage across these two contacts around 3-5 kV is enough to reach the electric

field value for electron drift velocity saturation. Cool the crystal with liquid nitrogen to

reduce thermal current, apply the necessary voltage and we have got the basis for a very

powerful gamma ray detector.[26]
2.2 Details of the GATOR Detector

Purchased from the Canberra Company, the GATOR detector consists primarily of

a 2.2 kg high purity Germanium crystal installed as an ionization detector. The
is a p-type Germanium semiconductor crystal that was grown in a cylindrical orientation

measuring 82 mm in diameter and 81.5 mm in height. The outer electrode comprised of

Germanium doped with Lithium along the outer radial surface and the inner electrode

comprised of Germanium doped with Boron along the surface of a 10.5 mm diameter, 67

mm deep hole in the center of the crystal provide the strong electric field (on the order of

1.65 keV/cm) along the
are all composed of ultra-low background Copper to minimize the intrinsic background of

the detector. GATOR was installed inside a thick Lead shield (roughly 9" of newer Lead

and 2" of ancient Lead) deep in the Soudan Underground Laboratory in Minnesota. It

was initially installed into SOLO (Soudan Low Background Counting Facility), which was

constructed by the XENON group at Brown and is currently operated by Brown.2 The

excellent energy resolution of this detector (approximately 1.89 keV at 1173 keV and 2.17




2 For additional information about the SOLO facility, please see Brown's website at
http: //particleastro.brown.edu/SOLO/.


























Figure 2-1. Outer Copper cryostat resting in the original Lead shield in the SOLO facility
at the Soudan Underground Laboratory in 1\innesota.


keV at 1332 keV) allow for the various decays present, usually 238U 232Th, 40K(, 13Cs and

GoCo,to be identified. It is mainly these five decays that will be searched for hv GATOR in

the various samples provided.

2.3 Pre Shield Rebuild: GATOR Background

Before sample analysis can he discussed, we must first examine the background

intrinsic to the GATOR detector. The original GATOR background can he seen in

Figure 2-2. In the background we can see low energy Ph x-rays (around 80 keV), the

511 keV electron positron annihilation line, the 1460 keV 40K( line, and many lines from

the 194Au and 207Bi decays, as well as the continuum from 210Ph bremsstrahlung and

compton scattering. The strong Gold and Bismuth lines visible were believed to originate

from a single "hot spot" within one of the newer Lead bricks immediately next to the

GATOR detector. One of our collaborators, Brown University again, had seen similar

data before in their detector which was determined to come from a Lead brick that had

been previously activated during an accelerator experiment. Under this assumption we

can therefore calculate how much Lead is between the detector and the supposed hot spot.

The lower energy lines will be attenuated more by the intervening Lead, so by comparing



















S10 Cs-137

K-40

10-2


0 500 1000 1500 2000 2500
Energy (keV)

Figure 2-2. Original GATOR Background over a total of 44 kg d .1-< (2.2 kg crystal, 21.877
d .1-<), from 7-12-2005 to 8-3-2005. Many of the lines visible originate from
194Au and 207Bi indicating a strong localized contamination near the detector.

Table 2-1. Data selected to determine the location of the hot spot within the Lead shield.
Line Energy (keV) Mass Atten. Coeff. (cm2/g) Amplitude (counts) B.R.
Au Low Energy 1468 0.0519 34.5 6. !' .
Au High Energy 2042 0.0459 24.83.'
Bi Low Energy 569 0.1361 33.7 97.7!' .
Bi High Energy 1064 0.0679 172.1 74.5'


the heights of the low energy lines and the high energy lines to what we would expect

allows us to determine the depth of Lead.

The National Institute of Standards and Technology (NIST http://physics.nist.gov)

provides tables and graphs of the photon mass attenuation coefficient for many elements

and compounds, including elemental Lead. Branching ratios for the various lines visible

are also readily available. Two lines from each decay (194Au and 207Bi) were chosen and

the subsequent data found are summarized in Table 2-1 The intensity of radiation as a

function of thickness is determined by Equation 2-1.


I = Ioe-M'AC-p~ (2-1)










where I is the measured intensity, Io is the emitted intensity, M~AC is the mass attenuation

coefficient, p is the material density and x is the thickness. Since we don't know the actual

intensities, we must take the ratios using the number of counts for the measured intensities

and the branching ratios for the emitted intensities as we know these ratios.

Il o~le-MAC1-p-z
(2-2)
J2 lo26-MAC2-p-z

Solving for the thickness of Lead, x, yields

II1,o2
x = -In( ) (2-3)


Placing the actual numbers into the equation (density of Lead = 11,340 kg/m3) yields 3.60

cm of Lead as determined by the 194Au lines and 2.50 cm as determined by the 207Bi lines.

The actual value is probably closer to 2.50 cm as 1011' detector efficiency is assumed and

attenuation due to any Copper in the path has been ignored. Regardless, given that the

Lead bricks are 5 cm thick (a standard Lead brick in this shield is 2" x 4" x 8") next to

the detector, the hot spot appears to be within one of the two newer bricks lying directly

beside the detector.

2.4 Post Shield Rebuild: GATOR Background

With so much of the background coming from an activated brick right next to the

GATOR detector, the SOLO shield was rebuilt around November 9th, 2005 in order to

remove said brick. The newer Lead bricks next to the GATOR detector were replaced

with older, lower radioactivity bricks. During this rebuild, approximately 140 bricks were

found with markings indicating that they were used by the DOE prior to their inclusion

in SOLO. These bricks, assumed to be of higher radioactivity than normal bricks, were

replaced with non-DOE marked bricks. The background spectrum after the shield rebuild

can be seen in Figure 2-3. After the rebuild, the observed background was much lower,

reduced from 200 total counts per hour to 63 total counts per hour (integrated from

roughly 30 keV to 2550 keV, which is almost the entire spectrum range). Figure 2-4










TI-208


Cs-137

10-2~ Zn-65


0 500 1000 1500 2000 2500
Energy (keV)

Figure 2-3. New GATOR Background. The above background was taken over 57 kg d .1-<
from 11-11-2005 to 12-8-2005. It is clear that the background is improved,
simply noting the reduced number of visible lines.


directly compares the two background spectrum (post and pre shield rebuild) after

rescaling them both to DRU (events / kg / d~i- / keV). The many Gold and Bismuth lines

were no longer seen as well, indicating that the hot spot had been successfully removed.

The remaining lines that can be seen are the Pb x-rays, a 661.6 keV 137CS line, 840.8 keV

54Mn line, 1125 keV 65Zn line, 1460 keV 40K( line, and the 2615 keV 20811 lille. 137CS 1S

a man made radionuclide with a half-life of 30.25 yearS. 54Mn and 65Zn are cosmogenics

thought to be primarily in the Germanium (the Cr and Cu x-rays, respectively, are added

to the gamma line energy, indicating that the decay occurs in the Germanium (a i-- I1 and

not in the surrounding materials) with half-lives of 312.3 and 244.3 d ex-< respectively. 40K(

and 208TI are most likely contaminants in the detector cryostat, probably in the Copper.

2.5 One Year Underground: GATOR Background

Two of the contaminations seen in the background after the shield rebuild, 54MI1

and 65Zn, have half lives that are less than a year. Thus after one year underground,

assuming these are from cosmogenics and thus not replenished in any way, it should

be possible to see a marked decrease in the strength of the associated lines. The other





















S102




0 500 1000 1500 2000 2500
Energy (keV)

Figure 2-4. Comparison of old and new background. It is easy to see the dramatic
intprovenient in the background after the shield rebuild. Fewer lines are
apparent and the continuum spectrum is significantly lower. The old
background measurement is the aforementioned 44 kg d .1-< front 7-12-2005 to
8-3-2005 while the new background run was over 57 kg d .1-< from 11-11-2005
to 12-8-2005.


sources of background are not expected to noticeably change due to much larger half-lives.

Figure 2-5 shows the post shield rebuild background along with the background one year

later. A decrease in both lines can in fact he seen. A full 1\onte Carlo simulation of the

background will be presented and actual activities will be calculated in the Section 2.7.

2.6 LNGS: GATOR Background

Although all of the data obtained for this thesis was from GATOR installed in the

SOLO facility, it is of passing interest how the background compares after GATOR is

installed in a new shield in LNGS (Lhaoratori Nazionali del Gran Sasso or Gran Sasso

National Laboratory). As opposed to sharing a shield with another detector, the LNGS

shield system was built and designed solely for the GATOR detector. Fundamentally the

shield structure is the same as the one in SOLO, the innermost Lead being of a lower

activity than the bulk of the Lead shield. Since the Lead for this shield was purchased

specifically for this application it is easier to insure that the Lead is of the lowest activity











-- Post-rebuild
- One year later


10-2


0 500 1000 1500 2000 2500
Energy (keV)


Figure 2-5. Comparison of the background post shield rebuild and one year later. The
newest background run was taken from 11-14-2006 to 12-20-2006 for a total of
run time of 35.7063 dli


possible. The main difference and improvement for the LNGS shield was the addition of

an ultra pure, low activity Copper shield 111-; r between the detector and the innermost

Lead 111-;- r. This should have the effect of cutting down the lower energy continuum that

dominated the SOLO background.

Figure 2-6 shows a comparison of the most recent SOLO background with the new

background at LNGS. Although a full analysis of this new background is beyond is

not presented here, it is quite clear that the new shield is far superior to the old one.

Additionally, even though the GATOR detector spent several months above ground during

the transport from Minnesota to Italy, the cosmogenic background does not seem to be

problematic. Further screening with the GATOR detector will be much benefited from this

new installation.

2.7 Simulations and Analysis: GATOR Background

All of the simulations created for the GATOR detector and various XENON detectors

were created using the Geant4 simulation package created and supported by the Geant4











-- SOLO Background
- LIJGS Backgjround


10n





0 500 1000 1500 2000 2500 3000
Energy (keV)


Figure 2-6. Comparison of the background at SOLO and the background at LNGS. The
LNGS background was taken in the Fall of 2007 with a total run time of
14.897 dli


group primarily located at CERN3 The Geant4 package, in use by such collaborations

as ATLAS, LISA, C \!S and others, allows for very tight control over the geometry

implemented, the accuracy desired and the physics processes implemented. With the

different simulations needed by the XENON collaboration, the Geant4 simulation package

is the perfect application. Most of the significant components that comprise the GATOR

detector were simulated within a Geant4 geometry. The Germanium crystal including

a dead 1... -r from the electrodes, all of the Copper structures, several teflon pieces, and

both types of Lead within the shield form the majority of the components included in

the simulation. Figure 2-7 shows a side view of this detector geometry implementation.

The detector is symmetric along the axis not di;1 phi- 4I. Note that the DIODE-M detector

operated by Brown is not simulated. Simulations of a high activity sample within the

DIODE-M cavity indicate that only a decently high activity within the other chamber




3 MOTO infOrmation regarding this software package can be found at
http: //geant4.web.cern.ch/geant4/


I


























Figure 2-7. Side view of the GATOR geometry located at SOLO. The purple lines
delineate the newer, higher background Lead. The blue lines indicate the
older, lower background Lead. Note that the diagonal lines are merely artifacts
of the :3D viewer. The red squares are the two inner cavities, one for GATOR
and one for DIODE-M.


will be seen within the GATOR detector. Due to this, the regular components of the

DIODE-M detector, themselves fairly low in activity, are not simulated. A standard

background simulation will include decays within the Copper, the innermost 1.,-cr~ of

Lead as well as the < si--r I1 itself. It is believed the other components do not contribute

significantly to the background. After the shield rebuild a brief effort was made to

breakdown the 1 in &ill~y of the GATOR backgrounds. 210Bi was simulated originating from

a thin l o,-;r of Lead surrounding the detector (total mass 41.36 kg). The brehmstrahlung

radiation from the 210Bi is responsible for a large portion of the low energy background

continuum seen. 238U, 232Th, 40K(, and 6oCo were simulated originating from the Copper

portions of the detector (total mass 5.76 kg). The second analysis procedure described in

Section :3.1 was used to determine the activities of the various decays. The Lead bricks

were found to have an activity of :3.01:3 Bq/kg of 210Bi. The activity of the Copper was

determined to be approximately :3.018 / 1.709 / 15.50 / 0.4:31 mBq/kg (U / Th / K( / Co).

See Figure 2-8 for the fittingf plots.












-- Data
- Background


S102


101


100
0




Figure 2-8.


500 1000 1500 2000 2500
Energy (keV)

(a)


)1500
Energy (keV)

(b)


Background simulations for the GATOR Detector.
A) Background data, normalized to DRIT, and the corresponding fitted
simulation of radiation within the Lead and the Copper. The amount by which
the individual decays have to be scaled to allow for the best fit gives an
estimate on the activity of the decays in the material.
B) Shown here are the five individual decays that make up most of the
GATOR background. The Bismuth was simulated within a small 1., ;-r of Lead
on the inside of the cavity while the Uranium, Thorium, Potassium and Cobalt
are simulated within all of the Copper used in the detector's construction.


The same procedure was done on the background data taken one year after the shield

rebuild as well. The numbers were not significantly changed, nor were they expected to.

210Bi in the Lead was calculated to :3.10:3 Bq/kg, very similar to before. The activity of the

Copper was determined to be approximately 2.81:3 / 1.4:34 / 15.45 / 0.285 mBq/kg (IT /

Th / K( / Co), again not to much different from the previous analysis.

A more complete analysis was done to additionally determine the activity of the

13Cs, 54hin, and 65Zn contaminations. 23811 and 232Th were additionally simulated within

the Lead 1.w-;r, m3Cs, 54hin and 65Zn were simulated within the Copper and 65Zn and

54Mn1 Were Simulated within the outermost (ni- I1 surface (0.1:34026 kg mass). Again, the

values as determined before are little changed. Table 2-2 shows the calculated activities.

For most of the the runs listed here, 10 simulations of le6 events were added together

for a total of le7 events for each decay. The 210Bi simulation required le8 total events





















Energy (keV)


Energy (keV)


Figure 2-9.


More advanced GATOR Background simulations.
A) Data from the GATOR Background (in red) compared to the Monte Carlo
simulation (in black).
B) Histograms of the summed Copper, Lead and crystal activities used to
create the total Monte Carlo approximation. The crystal values at around
10-2 have no visible effect on the total simulation.


for decent statistics. The 238U and 232Th values from the Lead are so small as to be

totally negligible. The 54Mn and 65Zn values are somewhat entangled and it is difficult to

determine how much is from the Copper and how much is from the (ni-- I1 making these

values somewhat suspect.


Table 2-2. Background activity data using the fitting method.
Line Scale Factor Activity (mBq/kg)
238U 2.20e-6 2.20
232Th 1.32e-6 1.32
40K( 8.76e-6 8.76
60Co 1.88e-7 0.188
137CS 2.75e-7 0.276
65Zn 7.46e-8 0.0746
54Mn 7.38e-11 7. 38e-5
210Bi (Pb) 1.67e-2 23.3 Bq/kg
238U (Pb) 7.48e-12 1.04e-6
232Th (Pb) 5.64e-12 7.86e-7
65Zn (Ge) 5.17e-10 6.77e-4
54Mn (Ge) 1.36e-8 .0179


















- Summed
- U238
- Th232
- Csi37
Co60
K40


- Summed


1000 1500 2000
Energy (keV)


Figure 2-10.


Copper and crystal portions of the GATOR Background simulation.
A) The individual decays that comprise the Copper simulation. Due to the
tiny contribution from 1\n54, to fully display all of the decays the y axis has
a different scaling than the plots above.

B) The individual decays that comprise the (ni- I1 simulation. Given how
small the contribution from the crystal simulation is, note the different
scaling on the y axis.


1000 1500
Energy (keV)


Figure 2-11. Lead portion of the GATOR Backgfround simulation, showing individual
decays that comprise the Lead 1 ., -r simulation. Due to the wide range of
activities calculated within the Lead simulation, again note the y scaling is
different than the other plots.









2.8 Radon Contamination

One of the highest background sources that we have to deal with is Radon gas in the

air. It is important to understand the influence of a Radon contamination on the data.

Even though keeping the detector chamber filled with a positive pressure of nitrogen gas

can eliminate most of this Radon, it is possible for the Radon purge to slow down or turn

off completely during a given run.

A large Radon contamination was introduced into the GATOR chamber between

5/2/2006 8:31 AM and 5/4/2006 8:35 AM whilst sampling the 6 poly bricks that will be

discussed in greater detail later. It is also possible that a small Radon contamination may

have been present from the beginning of the run, but the data is not conclusive until 233

hours into the run.

The first and simplest way to discover a Radon contamination is to look for the

presence of any strong Radon lines in the spectrum. The blue line di;1l-p Ixd in Figure 2-12

is the data after 185 hours of live time while the red line is the data after 233 hours,

a mere 48 hours later. Notice that there are now several very strong lines visible, all

of which can be attributed to Radon decay. To more carefully analyze this Radon

contamination we'll focus on three different time periods. The first is from the beginning

of the run, 4/14/2006 4/19/2006. Figure 2-13 shows the one Radon line (351.9 keV) and

the 1460 keV Potassium line with time on the x axis and counts per hour on the y axis.

A decrease in the counts per hour for the Radon line can be observed, possibly indicating

that a small amount of Radon was present in the cavity at the start of the run but was

subsequently purged by the nitrogen. The second region of time occurs immediately

following the first one, from 4/19/2006 4/24/2006. Figure 2-14 shows the same type of

information as Figure 2-13, but there again is nothing definitive. The Radon line shows

a slight increase in the counts per hour, however since the change is so small, roughly 0.1

counts per hour, it is not possible to w?, whether this increase comes from a small increase

in the Radon level or a random statistical fluctuation. The most interesting period of

















































__


-- 233 hours
- 185 hours


)1500
Energy (keV)


Figure 2-12. Data from the poly shield bricks after 185 hours (blue line) and after 23:3
hours (red line). The many strong peaks visible originate from Radon decay
in the air surrounding the detector. And their presence appearing within a 48
hour time period during the middle of the run strongly indicates a Radon
leak during that time.


+351.9 keV Rn222 line
2 -+K0ln


.5-


40 60 80
Time (Hours)


100 120 140


Figure 2-1:3. The Radon purge in action, showing counts per hour versus time, displaying
one line originating from Radon (red) and the one line originating from
Potassium (blue). Note how the Radon line shows a decline in the early hours
while the Potassium line holds steady. This data comes from the first 5 d we~
of data taking.


li~,l











-* 351.9 keV Rn222 line
2C e K40 line




E1.-





0.5 -


020 40 60 80 100 120 1<.0
Time (Hours)


Figure 2-14. Counts per hour versus time during the middle of the run, showing one line
originating from Radon (red) and the one line originating from Potassium
(blue). The slight increase in frequency for the Radon line could be indicative
of Radon present in the cavity but due to how small it is nothing can be said
with any certainty. This data comes from the 6th through 10th d .rs Of
operation.


time is from 4/24/2006 5/19/2006. It is in this region that a large influx of Radon shown

in Figure 2-12 can be seen. Figure 2-15 di pl .va- six of the Radon lines and the Potassium

line, showing counts as a function of time. It is readily apparent that between 185 hours

and 233 hours the strength of the Radon lines dramatically increases while the Potassium

line does not. Looking at the counts per hour as a function of time, shown in Figure 2-15,

confirms this. It is very apparent that the counts per hour for the Radon line greatly

increases while the counts per hour for the 40K( line remains relatively constant.

2.9 Data Acquisition Failure

The apparent fall off in Figure 2-15 cannot be solely explained by the Radon being

purged from the chamber. Between 258h and 401.2h the data acquisition seems to have

halted. Although the live time recorded by the software continues to increase, the number

of counts in the entire spectrum remains constant. This can also be seen in Figure 2-15 as

a plateau in the data. This false drop off comes from the fact that the time is increasing












1500
+ 242.6 keV Rn222 line
295.2 keV Rn222 line
351.9 keV Rn222 line
+ 609.3 keV Rn222 line
-e 1124 keV Rn222 line
-e 1764.5 keV Rn222 line
1000 + K40 line



S500


+ 351.9 keV Rn222 line
+ K40 line


0
0 100 200 300 400 500 600 700
Time (Hours)

(b)


200 300 400 500 600 700
Time (Hours)

(a)


Figure 2-15.


When Radon was introduced, showing counts and counts per hour.
A) Number of counts versus time, showing six lines originating from Radon
and one line originating from Potassium (purple). The dramatic increase in
the number of counts from Radon while the Potassium remains unaffected is
clear indication of a Radon contamination.

B) Number of counts per hour versus time, showing one line originating from
Radon (red) and the one line originating from Potassium (blue). The
decrease in counts per hour arises not from a lessening in the Radon level but
instead from a hardware issue that resulted in a loss of data.


while the data does not, thereby lowering the number of counts per hour. This loss of

data acquisition occurred some time between 5/5/2006 9:30 AM and 5/11/2006 9:00 AM.

The above analysis detailing the data acquisition failure and the Radon contamination

serve to demonstrate the other types of information that can he obtained from GATOR

data. While it is true that the main information of interest is the activities of the screened

materials (CI Ilpter 3) it can occasionally be important to use the data to determine

something in regards to the operation of the detector itself.










CHAPTER 3
GATOR MATERIAL SCREENING

3.1 Analysis Procedures

There are two methods that are used to calculate the activity of a decay chain. The

first method which will be used to determine the activities of the samples looks at the

number of counts in a representative photopeak and compares that to the background.

Combining the counts due solely to the radioactive decay with the peak detection

efficiency will translate directly into an activity.

The activity of a given line is calculated using Equation 3-1.

D-B
A 1.: .:I;(Becquerrel kg- )= (3-1)
E msaple

where D is the number of counts per second due to the data, B is the number of counts

per second due to the background, E is the efficiency determined from Monte Carlo

simulations and msample is the mass of the sample (or the number of PMTs for example).

The efficiency of a given line is calculated via a Monte Carlo simulation, by randomly

starting the chosen decay within the sample volume and observing the photons that react

with the sensitive detector volume.

Counts in photopeak
E efficiency = (3-2)
Events simulated

To determine the number of counts from a given line, a 3-sigma region, roughly 9 bins or

approximately 6 keV, centered on the line was used. This range was determined by fitting

a gaussian to the 60Co peaks and the 40K( peaks and calculating the sigma. To determine

the 3-sigma region at lower energies, lines originating from radon decay (351.9 keV and

609.3 keV) were also fitted with a gaussian, confirming that a 9 bin spread will be an

adequate range at these energies.

As mentioned before, calculating the efficiency of a given line requires Monte Carlo

simulation (method 2 described below also requires the use of simulations). Using Geant4,










the various samples are modeled and the complete decay chains simulated from within the

appropriate volumes.

The value reported for a given activity is usually an average of two activities obtained

from two different lines. For the Uranium decay the 214Pb and 214Bi decays are used, for

the Thorium decay the 224Ac and low energy 212Po decays are used. These four decays

provide the strongest and by far the most prominent gamma lines for these two decays

making them the easiest and sometimes the only detectable lines present. Only the one

40K( line is used for the Potassium decay while both main lines from 60C0 arT used for the

Cobalt decay. The single 137CS 1S used for the Cesium decay.

Calculating the error for the activities calculated using the above method is fairly

straight forward. We define the error in the number of counts in a given peak using

Equation 3-3.

Error(Bq/kg)= (3-3)
sample E
where D1 is the number of counts per second in a given peak from the data run, msample

is again the mass or number of the sample, and E is the efficiency calculated as described

above. Note that calculating the error in this fashion only works when there's enough

statistics above the background. When not enough statistics are present to determine

an actual value for the activity (indicated by a negative value for the activity) the value

calculated via the following method is used.

The second method used is to take the Monte Carlo simulations for each decay chain

and scale the spectra such that they fit the data. When the data is scaled such that the

y-axis is in differential count rate (DRU: events -kg-l lo,11-1 keV-l) the activity can be

calculated via Equation 3-4.


A l.:i.:lii(events kg-l L,1-1) = N-me biid cae(3-4)
sample

where, N is the number of events simulated, mdetector and msample are the mass of the

detector and sample respectively, binwidth is the size of the bins in keV, and scale is









the factor by which the simulation needs to be scaled in order to best fit the data. This

scaling factor is calculated by attempting to minimize the chi-squared value for different

fits, determined bin by bin. This fit is done over the relevant energy range, roughly 200

keV to 1500 keV (the lowest and highest energies show an ignorable discrepancy between

simulation and data). To facilitate the fitting of multiple decays, a simple program was

written that varies one of the spectra while keeping the others constant.]

For all samples, both of these methods will be used to calculate the activities. Please

refer to the individual sections for specifics.

3.2 Overview of Screened Materials

Table 3-1 is provided to allow for easy reference for all screened items. Each of the

followingf sections will include the appropriate values from Table 3-1, as well as the data

and plots used to calculate these values.

Table 3-1. Summary of results for all samples screened thus far at SOLO in Soudan.
Sample Activity (U / Th / K( / Co / Cs)
SS from UF OC mBq/kg (NA / NA / 7.13+3.11 / 67.57+1.59 / NA)
R8520 PMTs mBq/PMT (15.79+5.34 / 11.3 / 110.3+41.4 / 2.13 / 1.46)
Cirlex PMT Bases mBq/Base (1.21+0.293 / 1.07 / 6.68+1.24 / 0.0712 / 0.126)
SS from Xe-10 spare IC mBq/kg (13.43+5.22 / 44.07+6.66 / 116.94+24.3 / 7.30 / 5.98)
Poly shield bricks mBq/kg (22.3+3.10 / 2.53+2.08 / 53.2+14.53 / 1.06 / 0.663)
Teflon from Xe-10 ID mBq/kg (15.0 / 5.54 / 60.69+24.12 / 1.67 / 1.21)
Sample Z, 2 large FT's mBq/FT (55.6 / 0.28 / 157 / 9.12+1.48 / 9.33)
Sample H, SS for elecrodes mBq/kg (772 / 342 / 1070 / 12.1 / 2.90+6.24)


3.3 Stainless Steel-304, Sample Taken From the UF XENON Outer Cryostat

The first stainless steel sample measured was a remnant from the UF's XENON

Prototype Outer Cryostat, originally purchased from the A+N Corporation. The

activity in this sample was completely dominated by the two high energy 60C0 linOS.

In Figure 3-2, it can be seen that all lines of lower energy than the 60C0 linOS are buried in



1 This fitting code can be found at www.phys.ufl.edu/xenon/Fitting_Code.doc









the continuum originating from the compton scattering of these lines. The activity of the

sample was calculated to be

mBq/kg (NA / NA / 7.13+3.11 / 67.57+1.59 / NA) (U /Th / K / Co /

Cs)

Table 3-2 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The live time for this sample was 12.5945 d .1-< and the sample mass

was 3.407 kg. Table 3-3 shows the numbers used to calculate the activities using the

fitting method discussed above. Given how the 238U and 232Th lines are subsumed by the

60C0 Spectrum, the calculated activities are likely inaccurate. However cobalt is typically

the dominant source of radiation from steel so these decays can safely be ignored in this

case anyr- .1-<. The comparison of fit to data and the individual decays can be seen in

Figure 3-3.




















Figure 3-1. Image created using the Geant4 simulation, showing a top down view of the
detector cavity and the steel sample. The green track is one simulated Csl37
decay originating from within the sample volume.








































500 1000 1500 2000 2500
Energy (keV)


Figure 3-2. Background data and steel sample data, normalized to DRU. The background
used is the new background taken over 25.8511 d .-- The spectrum for the
steel sample was taken over 12.4945 d .--s from 1-3-2006 to 1-13-2006.


Table 3-2. First stai


nless steel sample activities usingf the
Bkg (cnts) Data(cnts) Efficiency
115 76 7.56e-4
30 1900 7.49e-3
25 1747 6.95e-4


background comparison method.
Activity (mBq/kg)
7. 13+3.11
67.9+8.7
67.3 +8.5


Line Energy (keV)
40K( (1460.8)
60Co (1173.2)
60Co (1332.5)



101








100





S101


- Data
- Background












Table :3-:3. First stainless steel sample activities usingf the fittingf method.

Line Scale Factor Events Simulated Activity (mBq/kg)
23811 1.59e-11 1.00el2 2.70
232Th 1.59e-11 5.00e10 0.14
40K( 2.72e-8 5.00e8 2.30
6oCo :3.88e-5 1.00e7 65.7


-Data
-Background


Summed
U238
10 -- Th232


zo Ill1 il I II
0 500 1000 1500
Energy (keV)


500 1000 1500
Energy (keV)


2000 2500


2000 2500


Figure :3-:3.


Steel data with background subtracted compared to simulation.
A) Background subtracted steel data from ITF's XENON Prototype Outer
Cryostat remnant compared to the 1\onte Carlo simulation. In this simulation,
the two 6oCo gamma rays were assumed to be emitted with 100 percent
efficiency, with the origin of the decay and the direction of the two gammas
randomly placed within the steel sample geometry.
B) Histograms of the various decays used to create the summed spectrum used
in the left plot.









3.4 Hamamatsu PMTs, R8520

Four of the one inch square PMTs from Hanianatsu were placed in a senli-circular

arrangement around the detector. Hanianatsu has also provided all of the materials used

to make the PMTs which will be screened in the future, possibly allowing Hanianatsu

to understand the material that provides the dominant background and facilitating the

design of newer, lower background PMTs. Because of the location of the PMTs within the
inner detector, they appear to be the dominant source of background in the XENON10

detector. The activity of the sample was calculated to be

mBq/PMT (15.79+5.34 / 11.3 / 110.3+41.4 / 2.13 / 1.46) (U /Th / K /

Co / Cs)
Table :3-4 shows the numbers used to calculate the activity via the first analysis

procedure discussed. Table :3-5 shows the numbers used to calculate the activities using
the fitting method discussed above. Figure :3-6 shows the fit to data and the individual

decals.






O












Figure :3-4. Photoniultiplier tube sample placement within the Monte Carlo simulation.







Table 3-4. Four PMT activities using the background comparison method.
Line Energy (keV) Bkg (cnts) Data(cnts) Efficiency Activity (mBq
UJ (214Pb)(351.9) 388 439 3.15e-4 18.43+7.46
UJ (214Bi)(609.3) 82 128 3.94e-4 13.14+3.2:
40K( (1460.8) 115 147 3.29e-5 110.3+41.i
137CS (661.6) 118 112 6.94e-4 1.01+1.76


/kg)


- Data
- Background


1


,.1


1 I


500 1000 1500 2000
Energy (keV)


2500


Figure 3-5. Photomultiplier tube sample data and background data, normalized to DRU.
The background used is the new background taken over 25.8511 d .-- The
spectrum for the pmt sample was taken over 25.798 d .--s from 12-8-2005 to
1-2-2006.


,1.











Table 3-5. Four PMT activities usingf the fittingf method.

Line Scale Factor Events Simulated Activity (mBq/kg)
238U 1.50e-4 le6 21.7
232Th 7.85e-5 le6 11.3
40K( 5.84e-5 le7 84. 1
60Co 1.48e-6 le7 2.1
137CS 1.01e-6 le7 1.5


-- Summed
- U238
- Th232
- K40
Co60
Cs137


Figure 3-6.


Photomultiplier tube data with background subtracted compared to
simulation.
A) Background subtracted data from the four R8520 Hamamatsu PMTs
compared to the Monte Carlo simulation.
B) Histograms of the various decays used to create the summed spectrum used
in the left plot.









3.5 Cirlex PMT Bases

Each PMT is attached to an approximately one inch square circuit board at the

base. 45 of these Cirlex hases (C22HloN205), weighing approximately 8:3 grams were

placed within the detector sealed within a plastic hag. At some point in the past, our

collaborators at Brown measured a large pile of such plastic hags and were unable to

detect any intrinsic radiation within them, thus the data in this case should solely be from

the Cirlex. The activity of the sample was calculated to be

mBq/Base (1.21+0.293 / 1.07 / 6.68+1.24 / 0.0712 / 0.126) (U /Th / K /

Co / Cs)

Table :3-6 shows the numbers used to calculate the activity via the first analysis

procedure discussed. Table :3-7 shows the numbers used to calculate the activities using

the fittingf method discussed above. Figure :3-9 shows the fit to data along with the

individual decays for the Cirlex simulation.























Figure :3-7. Cirlex PMT base sample placement within the Monte Carlo simulation.








Table 3-6. Cirlex PMT base activities using the background comparison method.
Line Energy (keV) Bkg (cnts) Data(cnts) Efficiency Activity (mBq/kg)
UJ (214Pb)(351.9) 388 358 6.41e-4 2.06+0.442
UJ (214Bi)(609.3) 82 82 7.94e-4 0.471+0.171
40K( (1460.8) 115 145 1.39e-4 6.99+1.29
137CS (661.6) 105 112 1.38e-3 0.282+0.106


$. .r


I'''


~I


500 1000


S1500
Energy (keV)


2000


2500


Figure 3-8. Cirlex sample data and background data, normalized to DRU. The background
used is the new background taken over 25.8511 d .~ The spectrum for the
Ccirlex sample was taken over 17.979 d we~ from 1-17-2006 to 2-14-2006.


- Data
- Background


ILL II











Table :3-7. Cirlex PMT base activities usingf the fittingf method.

Line Scale Factor Events Simulated Activity (mBq/kg)
238U 1 46e-4 186 1.9
232Th 8.35e-5 le6 1.1
40K( 6.11e-5 le7 7.8
6oCo 5.56e-7 le7 0.071
13Cs 9.86e-7 le7 0.1:3


-- Summed
- U238
- Th232
- K40
Co60
Cs137


Figure :3-9.


Cirlex data with background subtracted compared to simulation.
A) Background subtracted data from the 45 Cirlex PMT bases (8:3g in total)
compared to the Monte Carlo simulation.
B) Histograms of the various decays used to create the summed spectrum used
in the left plot.









3.6 Stainless Steel-304 Sample From XENON10 Spare Inner Cryostat

Due to the extremely high background from a piece of steel not being used within

the detector, a piece of steel from the spare XENON10 Inner Cryostat was also measured.

The Co6o was not totally dominant in this sample making it possible to estimate all of the

decals. The activity from this sample is the one that is used in the XENON simulations

as opposed to the previous steel numbers. The activity of the sample was calculated to be

mBq/kg (13.43+5.22 / 44.07+6.66 / 116.94+24.3 / 7.30/ 5.98) (U /Th /

K / Co / Cs)

Table :3-8 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The mass of this sample was 0.4819 kg. Table :3-9 shows the numbers

used to calculate the activities using the fittingf method discussed above. Figure :3-12

shows the fit and the individual components.


Figure :3-10. Second stainless steel sample placement within the Monte Carlo simulation.









Table 3-8. Second stainless steel sample activities usingf the background comparison


method.
Line Energy (keV)
UJ (214Pb)(351.9)
UJ (214Bi)(609.3)
Th (212Po)(583.2)
Th (228 Ac)(911.2)
40K( (1460.8)
137CS (661.6)


Bkg (cnts)
388
82
79
28
115
126


Data(cnts)
345
112
155
74
153
112


Efficiency
3.21e-3
3.16e-3
2.15e-3
1.47e-3
5.81e-4
6.04e-3


Activity (mBq/kg)
10.48+6.62
16.38+3.83
48.2+6.62
39.9+6.70
116.9+24.3
6.60+2.12


10o




-1
10





10-2


O


.1 1


I I


I 'I


1000 1500
Energy (keV)


2000


2500


Figure 3-11. Second stainless steel sample data and background data, normalized to DRU.
The background used is the new background taken over 25.8511 d .-- The
spectrum for the steel sample was taken over 21.063 d .--s from 2-14-2006 to
3-8-2006.


-Data
-Background


usr I I










Table :3-9. Stainless steel sample activities usingf the fittingf method.
Line Scale Factor Events Simulated Activity (mBq/kg)
23811 2.72e-5 le6 :32.5
232Th :3.52e-5 le6 42.1
40K( 4.06e-5 le7 485
6oCo 6.10e-7 le7 7.3
13Cs 5.00e-7 le7 6.0


Figure :3-12. Second steel sample data with background subtracted compared to
simulation.
A) Background subtracted data from the stainless steel sample compared to
the 1\onte Carlo simulation.
B) Histograms of the various decals used to create the summed spectrum
used in the left plot.









3.7 Poly Bricks from KMAC Plastics, Used in the XENON10 Inner Shield

The innermost shield surrounding the XENON10 Detector is composed of polyethylene

(C2H4) bricks that act to shield from incoming neutrons. Nothing was known of this

shields activity, so six of these bricks were screened. Originally two were screened but

the statistics were low enough that the time was taken to add four more bricks. At one

point a radon leak occurred during the screening of these bricks, further necessitating more

screening time. The activity of the sample was calculated to be

mBq/kg (22.3+3.10 / 2.53+2.08 / 53.2+14.53 / 1.06 / 0.663) (U /Th / K

/ Co / Cs)

Table :3-10 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The mass of this sample was 1.375 kg. Table :3-11 shows the numbers

used to calculate the activities using the fittingf method discussed above. Figure :3-15

shows the fit and the individual components. It appears that the code overestiniates the

amount of 40K( present. This effect is shown in the numbers in Table :3-11 and in the fitted

simulations in Figure :3-15. Attempts to redesign the code to fit only the peaks have thus

far yielded results not as accurate than currently seen.















Figure :3-1:3. Poly brick sample placement within the Monte Carlo simulation.








Table 3-10. Poly sample activities
Line Energy (keV) Bkg (cnts)
UJ (214Pb)(351.9) 388
UJ (214Bi)(609.3) 82
Th (212Po)(583.2) 79
Th (228 Ac) (91 1 .2) 28
40K( (1460.8) 115


usingf the background comparison method.
Data(cnts) Efficiency Activity (mBq/kg)
496 2.10e-3 27.45+4.77
170 2.12e-3 17. 15+2.66
77 1.16e-3 2.47+2.67
32 1.07e-3 2.59+2.65
145 3.08e-4 53.21+13.56


..1 11.I


rl


,,,,1,


1


2000


500 1000 1500
Energy (keV)


2500


Figure 3-14. Poly sample data and background data, normalized to DRU. The background
used is the new background taken over 25.8511 d .T; The spectrum for the
poly sample was taken over 22.6786 dai~ from 7-17-2006 to 7-25-2006 and
9-21-2006 to 10-5-2006. This is actually a recount of data taken in March
through M .i- of 2006, however a radon contamination made the data
unusable.


- Data
- Background











Table 3-11. Poly sample activities using the fitting method.

Line Scale Factor Events Simulated Activity (mBq/kg)
238U 6.14e-6 le7 25.8
232Th 4.96e-7 le7 2.1
40K( 2.54e-5 le7 107
60Co 2.54e-7 le7 1.06
137CS 1.58e-7 le7 0.66


-- Summed
- U238
- Th232
- K40
Co60
Cs137


Figure 3-15. Poly data with background subtracted compared to simulation.
A) Background subtracted data from the poly sample compared to the Monte
Carlo simulation.

B) Histograms of the various decays used to create the summed spectrum
used in the left plot.










3.8 Teflon Arcs Used in the XENON10 Inner Detector

Since the innermost detector structure is composed of teflon it is vitally important to

insure that the teflon used is very clean of radioactive impurities. Fortunately, it turns out

that this teflon is a subdonlinant source of background. The activity of the sample was

calculated to be

mBq/kg (15.0 / 5.54 / 60.69+24.12 / 1.67 / 1.21) (U /Th / K / Co / Cs)

Table :3-12 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The mass of this sample was 0.68 kg. Table :3-13 shows the numbers

used to calculate the activities using the fitting method discussed above. Figure :3-18

shows the fit and the individual components. It appears that, just like the poly fit, the

code overestiniates the amount of 40K( present, as well as the amount of 238IT. This effect

can he seen in both the numbers in Table :3-13 as well as the fitted simulations shown in

Figure :3-18.


Figure :3-16. Teflon are sample placement within the Monte Carlo simulation.









Table 3-12. Teflon sample activities using the
Line Energy (keV) Bkg (cnts) Data(cnts)
40K( (1460.8) 115 196



101




10o




10




10


0 500 1000


background
Efficiency
2.73e-4


comparison method.
Activity (mBq/kg)
60.69+24. 12


I i


.1


I r


.I I


AllI
2000


Energy (KeV)


1500


2500


Figure 3-17. Teflon sample data and background data, normalized to DRU. The
background used is the new background taken over 25.8511 d .T; The
spectrum for the teflon sample was taken over 36.1403 d we~ from 5-24-2006 to
7-10-2006 and 10-10-2006 to 11-2-2006. A DAQ failure during the first
counting session necessitated the subsequent recount.


- Data
- Background











Table :3-1:3. Teflon sample activities usingf the fittingf method.

Line Scale Factor Events Simulated Activity (mBq/kg)
23811 1.77e-5 le6 15.0
232Th 6.54e-6 le6 5.5
40K( 2.52e-5 le7 214
6oCo 1.98e-7 le7 1.7
13Cs 1.4:3e-7 le7 1.2


-- Summed
- U238
- Th232
- K40
Co60
Cs137


Figure :3-18. Teflon data with background subtracted compared to simulation.
A) Background subtracted data from the teflon sample compared to the
1\onte Carlo simulation.

B) Histograms of the various decals used to create the summed spectrum
used in the left plot.










3.9 Sample Z: Stainless Steel and Ceramic Feedthroughs

To be confident in the activities of the various feedthroughs present, others besides

the ceramic pieces screened previously by DIODE-M must also be measured. These two

are the largest of the feedthrough samples provided, containing a stainless steel body

with a ceramic center. The large activities determined via the fitting method yet not

seen in the actual data as noticeable peaks is indicative of the results being dominated by

low statistics. As such these samples will have to be re-screened at the LNGS where the

improved background will aid in obtaining higher statistics. The activity of the sample

was calculated to be

mBq/FT (55.6 / 0.28 / 157 / 9.12+1.48 / 9.33) (U /Th / K / Co / Cs)

Table :3-14 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The mass of the two feedthroughs is 0.654 kg. While 6oCo is

obviously present, all of the other decays are however limited by statistics. Table :3-15

shows the numbers used to calculate the activities using the fitting method discussed

above. Figure :3-21 shows the fit and the individual components.


Figure :3-19. Sample Z placement within the Monte Carlo simulation.







Table :3-14. Sample Z, the two feedthroughs, activities using the background comparison
method.
Line Energy (keV) Bkg (ents) Data(cnts) Efficiency Activity (mBq/kg)
6Colo (117:3.2) 29 78 1.65e-3 <1.51
6oC'o (1:332.5) 27 70 1.05e-3 <0.870


101



10o



0 101




-


~111.1


Ilul I )


500 1000


S1500
Energy (keV)


2000


2500


Figure :3-20. Sample Z data and background data, normalized to DRU. The background
used is the latest background taken over :35.706:3 d .1- The spectrum for
sample Z was taken over 26.1:378 d ex-< from approximately 2-2:3-2007 to
:3-29-2007.










Table :3-15. Sample Z, the two feedthrougfhs, activities usingf the fittingf method.
Line Scale Factor Events Simulated Activity (mBq/kg)
23811 1.95e-5 le7 55.6
232Th 9.70e-8 le7 0.280
40K( 5.45e-5 le7 157
6oCo 4.80e-7 le7 1.38
13Cs 3.24e-6 le7 9.3:3


Figure :3-21. Feedthrough data with background subtracted compared to simulation.
A) Background subtracted data from sample Z compared to the 1\onte Carlo
simulation.
B) Histograms of the various decals used to create the summed spectrum
used in the left plot.












3.10 Sample H: Stainless Steel Used to Create the PMT Electrodes

As previously mentioned, Hamamatsu has provided ]rn lw: of the component materials

used in the construction of their PMTs. The first of these samples measured was two

sheets of the steel used to create the electrodes. The activities reported below are even

more strongly dominated by low statistics than the feedthrough activities. This is a fairly

low activity sample which will greatly benefit from a re-screening at LNGS. As such the

calculated activities can not be trusted and only indicate the need for more data. The

activity of the sample was calculated to be

mBq/kg (772 / 342 / 1070 / 12.1 / 2.90+6.24) (U /Th / K / Co / Cs)

Table 3-16 shows the numbers used to calculate the activity via the first analysis

procedure discussed. The mass of the two sheets is 0.118 kg. Table 3-17 shows the

numbers used to calculate the activities using the fittingf method discussed above.

Figure 3-25 shows the fit and the individual components.


SAWP1F E.~.*,l 1ELBctrcde marerral and ~~PPorfing crramle
B (KovFr metal ior Iten
51IHPL~ 3 [Her~-:6tic-aiass)
S~MpLE E iSten pin

.t.... .......
SIMPLE I.M (Other avRode narer
Rode 1 II J~ E;~MPLE J (stems
rtron I IL I S~IP'E H, i(, i [S~ainlePs sfeei by
msnuf~cturins Lor:


Ov
PO


121C)
dif fEiei~


SanPLE.Fi.C1 for iec-e-ajte sestenal


Figure 3-22. Breakdown of all of the PMT samples supplied by Hamamatsu. Sample H
was screened in the SOLO facility, the remaining samples will be screened at
LNGS.










Table 3-16. Electrode material sample activities using the

Line Energy (keV) Bkg (cnts) Data(cnts) Efficiency
137CS (661.6) 95 180 8.53e-3




-- Dai



S101


102


background comparison method.
Activity (mBq/kg)
2.90+6.24


Figure 3-23. Sample H data and background data, normalized to DRU. The background
used is the latest background taken over 35.7063 d .-- The spectrum for
sample H was taken over 17.9465 d .--s from approximately 3-29-2007 to
4-20-2007.


Figure 3-24. Sample H placement within the Monte Carlo simulation.










Table :3-17. Sample H, the electrode material sample, activities usingf the fittingf method.
Line Scale Factor Events Simulated Activity (mBq/kg)
23811 1.58e-5 le7 772
232Th 7.00e-6 le7 :342
40K( 2.19e-5 le7 1070
6oCo 2.48e-7 le7 12.1
13Cs 1.6:3e-7 le7 7.99


500 1000 1500 2000 2500
Energy (keV)

(a)


500 1000 1500 2000 2500
Energy (keV)

(b)


Figure :3-25.


Electrode material data with background subtracted compared to simulation.
A) Background subtracted data from sample H compared to the Monte Carlo
simulation.
B) Histograms of the various decals used to create the summed spectrum
used in the left plot.


3.11 Summary of Screening Operation

The GATOR detector is a very powerful tool for the very accurate measurement

of material activities. This material screening is a crucial step in the proper selection

of materials for a next generation Dark Matter detector. Proper selection of materials

can help ensure that the background of a new detector is as minimized as possible,

which is a necessity in these types of low background experiments. However, certain

ultra low background samples require a sensitivity that is difficult to reach with the

GATOR located in the SOLO facility. The improved background observed at the LNGS

installation will increase the GATOR detector's sensitivity, decreasing the time required










to achieve satisfactory statistics for low activity samples. While currently some of the

screened samples discussed in this C'!s Ilter are very clearly dominated by low statistics

(the feedthroughs and the electrode material are the prime example), the new incarnation

in Italy will be able to more accurately measure the activities of these samples.









CHAPTER 4
XENON10 BACKGROUND

4.1 The XENON10 Detector

The active Xenon volume is defined by a Teflon cylinder with an inner diameter of

20 cm and a height of 15 cm. Teflon was chosen due to it reflecting UV light (the

scintillation light in liquid Xenon is at 182 nm) and as an electrical insulator. Teflon

also has a very low intrinsic background which makes it ideal for the innermost detector

material, not counting Xenon of course. Four stainless steel mesh grids are used to define

the electric field within the liquid and gaseous Xenon. Two of these grids are within the

liquid and two are within the gas with appropriate voltages to drift the electrons within

the liquid, extract them to the gas and then accelerate them within the gas.

T> detect the photons released from interactions in the liquid and gas, two arrays of

2.5 cm square photomultiplier tubes (PMTs) are placed on top and bottom of the detector

volume. The bottom array of 41 PMTs is placed in the liquid below the cathode grid, and

collects most of the direct light released during an interaction due to a strong reflection at

the liquid gas interface. The top array of 49 PMTs is located in the gas and collects most

of the proportional light released by the accelerating electrons through the gas.

The entire inner detector is encased in a stainless steel inner cryostat which itself is

contained and vacuum insulated within a stainless steel outer cryostat. The total mass of

these two stainless steel containers is roughly 180 kg and comprises the largest amount

of material within the detector. A pulse tube refrigerator is used to reach and maintain

the 180 K~elvin temperature required for Xenon liquification. Constant purification of the

Xenon is achieved by circulating the Xenon out of the inner detector and through a high

temperature getter.

T> lower the number of background events seen the XENON10 detector is placed

within the Gran Sasso mine (3100 meters water equivalent) thereby reducing the muon

flux by a factor of 106 making a muon veto unnecessary. T> combat stray neutrons a










20 cm polyethylene shield was placed around the detector. Surround the polyethylene is a

further 20 cm of lead to reduce the flux of incoming gamma rays. However, even though

much care is taken to reduce the intrinsic background of the detector, the shield materials

and the detector materials will have some intrinsic radiation and these will need to be

determined to better understand the data we receive. Current measurements indicate that

the steel and the PlMTs are the main contributors to the detector background.


Figure 4-1. Photograph of the XENON10 Detector and the shield that surrounds it.























































Figure 4-2. Cross-sectional drawing of the XENON10 Detector drawn using AutoCAD
2004. The outer green structure is the outer cryostat, the inner blue structure
is the inner cryostat, the innermost grey structure is the teflon inner chamber.
Also shown in red are the two PlMT arrays.










4.2 Analysis of Individual Components

4.2.1 Monte Carlo Simulations for XENON10

The Monte Carlo simulation put together for the XENON10 detector was the

combined work of several people within the XENON collaboration. Almost all of the

components were added into the geometry based off of the mechanical drawings used

to construct the detector. The inner and outer stainless steel cryostats were coded with

as many of the flanges and connections as possible, based off of the drawings as well

as photographs that show additional flanges not present in said drawings. Inside the

cryostats, the teflon inner detector and PMT arrays were also created as accurately as

possible. The wire grids within the Xenon were approximated as a thin steel disk with a

reduced density so that the final mass of the grid is equal to the real mass. The poly and

lead shields as well as the steel support structure outside of the cryostats are also present.

Figure 4-3 shows a 3-dimensional cross-sectional drawing of the simulation, although

due to the many components making out the finer details is understandably difficult.

The various decays of interest are simulated originating from within a given geometrical



















Figure 4-3. Cross-sectional image of the XENON10 simulation, showing primarily the
shield and the outer cryostat.


volume and the energy deposition within the liquid Xenon is recorded. One thing that









is of interest is an estimate on the number of background events that will be seen in the

detector from a given material or decay. This estimate is carried out by plotting DRU

versus energy and integrating. A typical simulation will yield counts versus energy so the

Y-axis will have to be scaled appropriately, using Equation 4-1.

A 1.:l .:I;(Bq Unit-l) Unitl~umber 86400
DRU(events kg-l Let-' keV-l) = (4-1)
N Mxenm BinWidth

Where NV is the number of events simulated, 86400 represents the number of seconds per

dwi, Bq Unit-l is the activity as measured by GATOR in whatever units are required

(Bq/kg, Bq/PMT et cetera), M~xenm is the mass of the active Xenon target, BinWidth is

the width of each histogfram bin in keV and Unitl~umber is the amount of whichever piece

is being analyzed (inner cryostat mass, number of PMTs et cetera).

To increase the accuracy of this estimate, two data cuts will be implemented similar

to the quality cuts done on the actual XENON10 data. The first is a simple fiducial

volume (FV) cut. Most of the events will occur in the outer regions of the liquid Xenon,

so by making a geometrical cut and only considering events that occur within the central

regions, we can use this self-shielding to reduce the background by a substantial amount.

This central region consists of a cylinder 160 mm in diameter and 93 mm tall for an

approximate fiducial mass of 5.4 kg.l

The other cut uses the resolution of the detector to cut out multiple scatters since the

probability of a WIMP undergoing multiple scatters in a detector of this size is vanishingly

small. First all events that occur within a 150 ps window are grouped together as one

event. This is mostly a required criteria for the Uranium and Thorium decay chains which

have daughter decays with half-lives above 150 ps. Decays such as Cobalt and Potassium

occur at one time and since the gamma rays travel at the speed of light, all depositions



1 For comparison the full volume is 200 mm in diameter and 150 mm tall with an
approximate total mass of 15 kg










will be seen at the same point in time. Once all of the depositions have been lumped

together as one event, only events within :3 nin of each other in Z are considered to be a

single scatter. Events with energy depositions further apart than :3 nin can he seen as a

multiple scatter and discarded. Figure 4-4 shows the results front these successive cuts.

The first cut applied is the fiducial volume cut (FV) while the multiple scatter cut (\!SC)

is applied second. The following subsections will detail the application of this method


-- Full Spectrum
10o After FV Cut
-- After FV+MISC Cut



S101







102


0 500 1000 1500 2000 2500 3000
Energy (keV)


Figure 4-4. Example of successive cuts being applied to simulation data. This simulation
represents the decay of IUraniuni-2:38 from within the Inner Cryostat. Note
that the y-axis is scaled almost in DRIT, missing only the sample mass and
thus merely represents raw simulation data, not actual data. The black line is
front all events with no cuts, the red line is the data after the Fiducial Volume
cut and the blue line is the data after the 1\ultiple Scatter cut as well.


to the inl I iG~~y of the detector components to approximate the background level within

the detector. Each analysis utilizes the results front the material screening to generate the

listed numbers, both for the full energy spectrum and the low energy region defined as 0 to

50 keV.

4.2.2 Outer Cryostat

The outer cryostat represents the largest structures in close proximity to the active

Xenon volume. The high background values we would expect front this large mass of









steel is moderated slightly by the intervening steel of the Inner Cryostat. Regardless, it

is expected that a ill I i0 R~y of the background will be due to the nearby stainless steel

components. Future versions of the XENON detector will have to take this into account,

either by replacing the steel with a cleaner material such as ultra-low background Copper,

reducing the steel mass or some other such mechanism.

Table 4-1. 0-3000 keV Cryostat contribution to the detector background. The lower
activity steel from Section 3.6 is assumed for this analysis.
Decay No Cuts (mDRU) FV Cut (mDRU) MS Cut (mDRU)
60Co 216 65 17
137CS 73 14
40K( 209 59 15
232Th 1426 308 81
238U 365 75 20
Total 2288 521 137


Table 4-2. 0-50 keV Outer Cryostat contribution to the detector background.
Decay No Cuts (mDRU) FV Cut (mDRU) MS Cut (mDRU)
60Co 56 15 13
137CS 19 4 3
40K( 61 12 11
232Th 348 74 66
238U 94 17 15
Total 578 121 109


4.2.3 Inner Cryostat

The Inner Cryostat, while only roughly a quarter the mass of the Outer Cryostat,

has almost no shielding between the steel and the active Xenon volume. Thus if the steel

that comprises the Inner Cryostat has an appreciable activity it will definitely have a

noticeable effect on the background. Given the lack of shielding, it is even more important

that future renditions of the detector take special care with the Inner Cryostat to insure

the lowest background possible.

4.2.4 PMTs and Bases

The PMTs and the associated cirlex bases reside within the Xenon itself making it

vitally important that these be of the lowest activity possible. Current estimates indicate









Table 4-3. O 3000 keV Inner Cryostat contribution to the detector background. The
lower activity steel from Section 3.6 is assumed for this analysis.
Decay No Cuts (mDRU) FV Cut (mDRU) MS Cut (mDRU)
60Co 278 101 27
137CS 124 25 7
40K( 409 91 27
232Th 1841 485 126
238UJ 518 124 34
Total 3170 826 221

Table 4-4. O 50 keV Inner Cryostat contribution to the detector background.
Decay No Cuts (mDRU) FV Cut (mDRU) MS Cut (mDRU)
60Co 39 26 22
137CS 30 8 7
40K( 176 12 11
232Th 241 120 103
238U 77 33 30
Total 562 197 174


that the PMTs are one of the dominant sources of background radiation, implying that

the steel used in the XENON10 detector may be of a lower activity than the UF steel that

was screened by GATOR. The numbers in Table 4-5 are dominant in comparison to those

in Table 4-7 or Table 4-9 however they are much lower than the Cryostat numbers. The

aforementioned screening of the PMT components that is planned for the LNGS GATOR

detector will be very important in aiding Hamamatsu in constructing lower activity PMTs

and reducing a dominant source of background radiation.

The PMTs and bases are simulated as a single unit in the Monte Carlo simulation.

For the analysis the activities of the two components are added together.









Table 4-5. O 3000 keVPMT and cirlex PMT base contribution to the detector
background.
Decay No Cuts (mDRU) FV Cut (mDRU) MS Cut (mDRU)
60Co 0.3 0.2 0.04
137CS 0.1 0.05 0.01
40K( 2.2 0.5 0.1
232Th 1.6j 0.8 0.2
238UJ 2.3 1.0 0.3
Total 6.4 2.5 0.7


Table 4-6. O 50 keV PMT and cirlex PMT base contribution to the detector background.


Decay
60Co
137CS
40K
232Th
238U
Total


No Cuts (mDRU)
0.07
0.07
5.7
0.7
1.5
8.1


FV Cut (mDRU)
0.03
0.02
0.1
0.2
0.2
0.6


MS Cut (mDRU)
0.03
0.01
0.1
0.2
0.2
0.5


Table 4-7. O 3000 keV Teflon contribution to the detector background.
Decay No Cuts (pDRU) FV Cut (pDRU) MS Cut (pDRU)
60Co 16 11 3
137CS 9 3 1
40K( 73 23 6;
232Th 61 34 8
238 U 168 81 20
Total 327 152 38


Table 4-8. O 50 keV Teflon contribution to the detector background.


Decay No Cuts (pDRU) FV Cut (pDRU)
60Co 2 2
137CS 7 1
40K( 82 4
232Th 11 8
238U 36 18
Total 139 33


MS Cut (pDRU)
2
0.8
3
7
16
29









4.2.5 Teflon

The Teflon Inner Detector defines the liquid Xenon volume, thus again there is no

shielding to block any radiation. Unlike the PMTs however, Teflon is very easy to obtain

in a very clean form. Additionally, the Teflon structure plI li-< several very important roles

and is basically irreplaceable so again it becomes important to minimize the background

however possible. In the case of Teflon, future designs will not be able to replace the

material and will instead have to rely on obtaining the cleanest Teflon available. The

numbers shown Table 4-7 indicate that the background contribution from Teflon is

subdominant and as long as appropriate care is taken in the selection and manufacture of

future Teflon pieces the background contribution should remain subdominant for future

incarnations.

4.2.6 Poly Shield

The p..Ili-, r bylene shield surrounding the XENON10 detector is the second most

massive piece of the detector, the first being the Lead shield. Fortunately the poly is

shielded from the active Xenon by two lI-;- rs of stainless steel which should moderate

any activity by an appreciable amount. Additionally, clean" poly is relatively easy to

obtain. As expected, the background contributions, shown in Table refPolytable, will be

far below other contributions. The values seen here indicate that the current poly shield in

use should suffice, assuming it is large enough, for future detectors.

Table 4-9. O 3000 keV Poly shield contribution to the detector background.
Decay No Cuts (pDRU) FV Cut (pDRU) MS Cut (pDRU)
60Co 21 5 1
137CS 5 0.7 0.2
40K( 57 14 4
232Th 51 93
238U 358 63 17
Total 490 92 25









Table 4-10. O 50 keV Poly shield contribution to the detector background.
Decay No Cuts (pDRU) FV Cut (pDRU) MS Cut (pDRU)
60Co 5 1 1
137CS 1 0.1 0.1
40K( 17 5 4
232Th 12 3 2
238U 87 14 13
Total 123 23 20


4.3 Comparison of Simulations to Data

Another important analysis to consider is comparing these simulations to the actual

XENON10 background data. Several people within the collaboration have been making an

effort to compare simulations ranging from simplistic models using nothing but cylinders

to the more complex model previously discussed that attempts to emulate the actual

detector as closely as possible. Such comparisons try to approximate the actual data

collection techniques and analysis cuts and use the screening values as a starting point

for fitting the simulations to the data. The prior analysis also indicates which samples

should be dominating the background, providing an idea which activities to scale to best

fit the data. Other sample activities have been obtained from Brown's screening operation

from the DIODE-M detector operated at SOLO and almost every detector volume is

approximated.

Figure 4-6 shows the results of one such set of simulations completed using the

aforementioned full simulation. The main activities included in this comparison are the

PMTs (with bases included), the Inner and Outer Cryostat, the Poly shield, three sets of

Feedthroughs and K~rs decay within the liquid Xenon.2 Using the screening values will

provide a starting point with which to begin the fit, as shown in Figure 4-5.



2 The feedthroughs are metal and ceramic pieces that allow electronic connections to
be made through the cryostats. A set of 3 is in the bottom of the inner cryostat, 4 are
located in the side of the outer cryostat and 4 are located in the top of the outer cryostat.











Using the same fitting program used in the GATOR sample analysis presented in

C'!s Ilter 3, the 41 histograms used to generate Figure 4-5 were varied and cycled over to

generate the starting fits. This initial fitting, done from 1 to 750 keV, led to unreasonable

results. Specifically the activities as determined by the fit for the PMTs and the Teflon

were amazingly high when it has been well established that these components are fairly

clean. To compensate for this and thereby produce a more realistic fit, several changes

were made to the fittingf code. The PMTs and Teflon were removed from the fittingf

rotation and their starting values maintained throughout the process. Additionally, almost

all of the PMTs located in the XENON10 detector were screened by a separate screening

operation within the collaboration and the results used to create a more accurate average

PMT activity (listed below in Table 4-11). Furthermore, the 15 histograms that make

up the three feedthrough simulations were locked together such that the different sets of

feedthroughs will have the same activities throughout the fitting process. Taking all of

this into consideration, the starting activities for the fit shown in Figure 4-5 are shown in

Table 4-11.



-- Data Total Sum
Simulation IC
OC
10' 101 -- PMTs
t Poly
Xenon
Teflon
IC bot. FTs
OC side FTs
S100 ~ ,lo 10 'LLY J OC top FTs




10' 10~ %

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Energy (keV) Energy (keV)

(a) (b)


Figure 4-5. Initial simulation scaling using the screening values from GATOR and
DIODE-M.
A) The summed spectrum compared to the actual Xenonl0 data.
B) The breakdown of the various histograms used to create the summed
histogfram.









Table 4-11. Initial activities used prior to the running the fittingf program, acting as
starting values for to code.
Sample Activity (IT / Th / K( / Co / Cs) (niBq / unit)
IC and OC 1:3.4:3 / 44.07 / 116.94 / 7.30 / 5.98
PMTs 0.145 / 0.1:36 / 8.29 / 1.68 / 0.0367
Teflon 15 / 5.54 / 60.7 / 1.67 / 1.21
Poly Shield 22.3 / 25.3 / 5:3.2 / 1.06 / 0.66:3
Feedthroughs 55.6 / 0.28 / 157 / 9.12 / 9.3:3
Xenon 2.52


The fittingf program was operated from 1 to 750 keV, which covers the main areas

of interest, including the low energy region, several IUraniunt and Thorium peaks and

the very prominent Cesium peak. Figure 4-6 shows this final fit while Figure 4-7 shows

the individual histograms used in the comparison. Exactly as presented in OsI Ilpter :3,

the scaling factors used to create the shown fit can he transformed into an activity for

the various samples, the results of which are shown in Table 4-12, recalling that the

PMT and Teflon activities were not allowed to change during this process. All of the

activities determined by this method are within the bounds of believability. As expected

the Steel front the Inner and Outer Crvostats comprises the main bulk of the activity

and the Feedthroughs seem particularly active while the Poly Shield doesn't appear

to contribute much to the background. Since the main features and contaminants are

reasonably understood with this kind of information, informed decisions regarding material

selection and detector design can he made for the next phase of the XENON experiment,

XENON100 (note that these decisions will be discussed in (I Ilpter 6).

Table 4-12. Final activity values as determined by fitting the simulations to data.
Sample Activity (IT / Th / K( / Co / Cs) (niBq / unit)
IC :3.31 / 128 / 159 / 125 / 269
OC 0.041 / 0.085 / 9.48 / 125
PMTs 0.145 / 0.1:36 / 8.29 / 1.68 / 0.0367
Teflon 15 / 5.54 / 60.7 / 1.67 / 1.21
Poly Shield 0.067 / 0.07:3 / 0.096 / 0.068 / 0.090
Feedthroughs 6.1 / 1.27e-3 / 1107 / 5:3.8 / :359
Xenon 1.02e-4














-- Data
- Simulation


0 500 1000 1500 2000 2500 3000
Energy (keV)


Figure 4-6. Comparison of a background simulation to data, including all of the samples
screened by GATOR as well as several samples screened by the DIODE-M
detector operated by the Xenon group at Brown and the PMT screening
operation run by another collaborator in LNGS.


Figure 4-7. Breakdown of the Monte Carlo Simulation that was fit to the data, showing
the individual sample histogfram breakdowns as well as the summed spectrum
that is shown in comparison with a data spectrum in Figfure 4-6.










CHAPTER 5
FITRTHER WORK( FOR XENON

5.1 The UF XENON Prototype

The prototype detector briefly operated at ITF, Aachen and now Zurich is in effect

a smaller version of that searching for dark matter in Italy. The original purpose of this

small prototype was to study the response to neutrons. Located in the basement of the

ITF Physics Building is a small proton accelerator that can he focused onto a sample

known to generate monoenergetic neutrons, thereby creating a neutron beam that can

he sent towards the detector. A neutron detector was also obtained that can he placed

at various angles around the detector with respect to the neutron beam. Coincidence

between an event in the prototype detector and the neutron detector would indicate the

angle of the nuclear recoil which, coupled with the energy of the beam would determine

the energy of the recoil. As the desire is to have the information front this experiment

apply to the larger detector, all of the main detector features must he included in the

smaller prototype. It is unfortunate that this detector was relocated to Aachen before this

experiment could be successfully completed.

The inner detector volume is defined by a teflon structure that creates a Xenon

volume 2.3" square by 1.8" high. The entire teflon structure is contained within a 6"

stainless steel can that has been electro-polished for purity reasons. This inner cryostat

is termed the ITltra-High Vacuum (ITHV) can. Surrounding the ITHV can is a thin

Aluntinunt tube, called the radiation can, designed to block thermal radiation front the

outer cryostat can. The outermost can, termed the outer cryostat can, is a 10" diameter

stainless steel shell that serves as the outer limits of the vacuum chamber.

All of the connections front outside to the inner portions of the detector; wiring, gas

flow, vacuum, and a liquid Nitrogen cooling loop, are attached to the radiation can come

through the outer cryostat top flange. The cold stick which provides the cooling power

is connected through the bottom of the outer cryostat to the radiation can. Four of the





Figure 5-1. Some views of the UF XENON Prototype.
A)The Inner Cryostat can, still attached to the Outer Cryostat top flange can
be seen here resting on the table.
B) The entire Outer Cryostat can is shown within its supporting frame and
resting on top of the liquid nitrogen dewar. Not shown is the cold finger which
penetrates down into the liquid, providing the cooling power necessary to
maintain liquid Xenon temperatures.


square PMTs view the detector volume from above, 2 of which can be seen in the sideview

drawing of Figure 5-1.















cryostat can &


radiation can IP


cooling loop

PMT
UHV carn



detr


cold finger

cold finger
vacuurn tube~4


Figure 5-2.


Side view of the UF XENON Prototype. Shown in green is the Outer
Cryostat, in blue the Inner Cryostat, in yellow the Inner Detector and in
brown the Cold Finger.










5.2 Gas System for UF XENON Prototype

The gas system at UF for the aforementioned prototype is similar in design to the

one originally in operation at Columbia for the 3 kg Xe-Baby detector. Xenon costs an

appreciable amount so it is important to maintain a storage and delivery system for the

gas. Two four-gallon cylinders from Hoke are used to store the Xenon supply when not

in use. The Xenon is trapped in these cylinders initially by submerging them in liquid

Nitrogen. Once trapped, the Xenon is kept in one of the cylinders at approximately 1500

PSI. The 1 in 4 Gry of the rest of the gas system is designed to deliver the Xenon into the

detector.

At the beginning of normal operating conditions, Xenon flows from one of the

cylinders, through a pressure regulator which brings the pressure down from the 1500 PSI

to roughly 40 PSI. It will then flow through the getter for purification, through a metering

valve used to more accurately control the flow rate, and through a gauge to monitor the

flow before heading out to the chamber.

During a typical data run, Xenon will flow with the aid of a diaphragm pump from

the bottom of the inner chamber, through the getter to be repurified, and back out to the

chamber. The gas system also has extra connections to allow for the initial high pressure

transfer of Xenon after it was shipped to UF, a spark purifier, a vacuum pump, and an

argon flush. The spark purifier is currently not being used nor is there a plan for one to

be used. The argon flush also will be rarely used, allowing a positive pressure to be placed

on the system when it is open, hindering the flow of water and other impurities into the

chamber. The line to the vacuum pump only needs to be used when evacuating all of the

tubing which should only be necessary when the system was initially created.

At the end of a run, Xenon can he returned to the cylinders via a direct high pressure

line or recirculated through the getter. All of the 1/4" tubing, fittings, and valves were

purchased from Swagfelok. The getter is a SAES Mono Torr Heated Getter, designed for

Argon, Helium and other rare gasses, which includes Xenon. It's designed to remove H20,












()2, H2, CO, CO2, 2~, THC and other particles to generally below 1 pph. As the gas

passes through the heated getter material, impurities are irreversibly trapped within the

material and not released during changes in pressure or temperature. [27]

The Aluminum frame was built by the UF Physics 1\achine Shop and based off of a

design for a balloon based gas system operated from Columbia. The valves are mounted to

a thin aluminum plate on the attached to the front of the frame. All of the 1/4" stainless

steel, electro polished tubing was hent and cut hv hand using standard pipe hand tools.

To deal with separate motions of the gas system and the detector during any transport,

all connections from the side of the gas system to any external object are done via high

pressure 3 foot long flex tubes. Differences in Japanese pipe fittingfs and British pipe

fittingfs forced us to weld two of these fittingfs into the diaphragfm pump.

T, To
Cytimier 2 Cytlncir 1
VCR Tees

Pr C-~Esse

RegulatDP



From transfer
Get-ter

Valve


CPL Vocuul~ Port VGlv





To To Ibtton of
Getter Cla~rber and
Redlredutlon
Punp


Figure 5-3. Gas System schematic, showing all tubing connections including all valves,
storage cylinders, the UF XENON Detector, and all optional external
connections .






















































Figure 5-4. Early image of the gas system front panel. The blue object on the bottom is
the getter. Not shown are the two mass readouts for the storage cylinders on
top, the flow meter in the left hand hole and the black lines indicating tubing
connections between valves.










88










5.3 Electric Field Simulations for UF XENON Prototype

Before the UF Prototype was put into operation the electric field that we would

expect within the detector was modeled. While we were confident that the applied

voltages would create the field values that were desired, it was unclear if problems could

arise due to these voltages. Sharp corners, the liquid Xenon circulation tube, the high

voltage wires and proper electron capture were all issues that were in question. Of the

issues in question, only the recirculation tube was believed to be of a concern. This

stainless steel tube is at ground and lies very close to the steel grid structures. T> insure

arcing does not occur within the chamber, a thin teflon sheath was created to go around

the tube. The simulations shown here already include this teflon cover, see the left portion

of both Figure 5-6(a) and Figure 5-6(b) to see the strong field value that caused this

concern.

These electric field simulations were created in Ansoft's Maxwell Student Version,

available for download from www.ansoft.com. Further analysis was done using Garfield

provi de d by Rob Veenhof at C ERN, see consult.cern.ch /wri teup /garfiel d/ to si mul at e t he

movement of electrons within the liquid.

The simulations seem to ell----- -1 that for the original 3-grid design, almost all of the

electrons are collected at the anode, while a simple expansion to a 4-grid design insures

that all of the electrons are collected at the anode. Adding in the electric field due to the

PMTs achieves the same effect as the 4-grid design, -II__- -th.;~! that the current 3-grid

design plus PMTs will be sufficient. The simulations used the following voltages:


-3175V on the Cathode in both simulations and the Top Grid in the 4-grid
simulation
-1587.5V on the Bottom Grid in both cases and
OV on the Anode, the Inner Can, and the Recirculation Tube in both cases.

These potentials create a 5kV/cm drift field between the Anode and both the Top

Grid (only in 4-grid simulation) and the Bottom Grid, and a little less than 1kV/cm drift










field between the Cathode and the Bottom Grid. In vacuum, the drift field would be

1kV/cm, but the presence of the liquid Xenon lowers this value by a small amount.













(a) (b)

Figure 5-5. Geometrical layout of the electric field simulation. ed structures are stainless
steel, grey structures are teflon, the blue is liquid Xenon and the background is
vacuum.
A) Three grid geometry.
B) Four grid geometry.


Figure 5-6.


Electric field plots within the inner detector. The coloring is a temperature
based scheme, so blue represents lower values and red higher values of the
electric field. For an idea of the scale, the field in the lower part of the
detector is 1 kV/cm and in the top part of the detector is 5 kV/cm.
A) Three grid geometry.
B) Four grid geometry.






















































(b)


Electric potential plots within the inner detector. What should be noted is
how straight and parallel the potential lines are within the drift region,
indicating a fairly uniform electric field.
A) Three grid geometry.
B) Four grid geometry.


Figure 5-7.


Paddae. 300 squalyspaced paints


Packin' 300 squealyspcead points


(Gas' CD


Gas' CD


I


(a)


Figure 5-8.


Simulated electron drift tracks through the liquid Xenon. The electrons were
created with zero velocity near the bottom of the chamber. In the three grid
design only a small percentage of electrons escape past the anode while in the
four grid design all electrons are captured at the anode.
A) Three grid geometry.
B) Four grid geometry.


' (b)









CHAPTER 6
CONCLUSIONS

f The XENON collaboration announced the results from the operation of the Xenonl0

detector at the April meeting of the American Physical Society. At that time and further

at the time of the writing of this paper, the limit set by the Xenonl0 detector for the

WIMP mass (see Figure 1-4) was the best in the world [24]. However, so far only upper

limits to WIMP-nucleon cross sections can he given, thus improvements to the design and

size of the detector are key to further push the limits of the field. As the detector design

changes to increase the fiducial mass, the opportunity exists to improve the background

of the detector. One of the key improvements that can he made for a larger detector is

constructed is to improve the background via a more careful selection of materials.

Thus the importance of the Gator detector and its screening operation. Understanding

where the primary sources of background arise from can make it possible to remove them

or at the very least minimize them for future detectors. The screening done with the

Gator detector has helped show things such as the teflon being low enough in activity

to be in the inner detector, that the steel is one of the largest contributors to the

background, and future screenings will hopefully reveal what portion of the PMTs

contributes most to the background allowing Hamamtsu to design and create lower

activity PMTs for future experiments. These PMT screenings will occur during the

operation of XENON100 and will allow for the creation of vastly superior PMTs by the

time the scaling up to XENON1T is underway.

XENON100 is already in construction and planned to start taking data in the

Spring of 2008 and is expected to improve the limit set by XENON10 by at least an

order of magnitude. The design of the cryostat was made in such a way so as to reduce

the steel mass below that of the XENON10 detector (down to approximately 60 kg in

total compared to the 180 kg stainless steel cryostat system implemented in XENON10).

Additionally an ultra-pure steel has been selected to be used in the XENON100 detector










which should further help to reduce the background. Hamamatsu has designed lower

background PMTs for this detector as well that are promised to be superior to those used

in XENON10. Fundamental design changes have also been implemented such as relocating

the feedthroughs and Pulse Tube Refrigerator (PTR) outside of the Lead shields It

has also been decided to construct the XENON100 Inner Detector from an ultra low

background Teflon using a custom designed mold built specifically for this application. All

of these modifications and design decisions would not he possible without an advanced

material screening operation like that done with the GATOR detector.


~s Cr
Cr


Figure 6-1.


Artistic renditions of the XENON100 Detector.
A) Graphic of the XENON100 Outer Cryostat placed in the current
XENON10 shield, with a cut out showing the Inner Detector.
B) Image of the XENON100 Inner Detector, showing the PMT arrays, the
Teflon structure, and the field shaping rings. The approximate size of the full
Xenon volume will have a 15 cm radius and a 15 cm drift length. Images
courtesy of Laura Baudis.


1 The screening for these items was done by DIODE-M operated by Brown University,
not GATOR. However the goals and methods of these separate screening operations are
identical and the different detectors are operated in parallel.









REFER ENCES

[1] Bradley W. Carroll and Dale A. Ostlie, "An Introduction to Modern Astroph3-! in ,
Addison- W. I1 ;; New York, (1996).

[2] F. Zwicky, "On the Masses of Nebulae and of Clusters of Nebll t! A. Journal, 86, 217, (19:37).

[:3] S.M. Faber and J.S. Gallagher, \! I-- Reviews, 17, 1:35-187, (1979).

[4] V. Rubin, "Rotation of the Andromeda Nebula from a Spectroscopic Survey of
Emission Regions", A.-l* In~im;,.:. rl Journal, 159, :379, (1970).

[5] 31. Persic, P. Salucci and F. Stel, "The Universal Rotation Curve of Spiral Galaxies: I.
The Dark Matter Connection", M~on.Not.Roy.Astron.Soc., 281, 27, (1996).

[6] G. Bertone et A, in'rIeI;,... rl Journal, 405, 279-390, (2005).

[7] G. Jungman et (1996).

[8] D.N. Spergel et Results: Implications for C<.-in.!.~~~.g ) A.-l**'rinim..rllr Journal, 170, :377, (2007).

[9] D. Clowe et I J;;;-... rl Journal, arXiv:astro-ph/0608407v1 (2006).

[10] J. Primack, "Dark Matter and Structure Formation in the Unii.- 1-, A;I-l***i'7.: /---'
Journal, arXiv:astro-ph/9707285v2 (2007).

[11] Andrey K~ravtsov, "Center for Cosmological Phy-!l-
http://co~smieweb. uchicago. edu/indexr. html, (2007).

[12] 31. Davis et Cold Dark 31 .111. I A; In'rIeI;,... rl Journal, 292, :371-394, (1985).

[1:3] R. Minchin et Journal, 622, L21, (2005).

[14] J. Fukumoto, "Relative Abundances of Galaxies, Intracluster Gas, and Dark Matter
in X-ray C'llu-I. i of C; Il I::s. PASJ: Publications of the Astronomical S8... .:. Iri of
Jasprn, 44, L2:35-L240, (1992).

[15] C. Alcock et Observations", The Aslh-'clice... rl Journal, 542, 281, (2000).

[16] Arnon Dar, "Dark Matter and Big Bang Nucleosyrills.~ -!- A.-l* In~im;,.:. rl Journal,
449, 550, (1995).









[17] P. Tisserand et al, "Limits on the Macho Content of the Galactic Halo from the
EROS-2 Survey of the Magellanic Clouds", Ash-'r~ine;,... rl Journal, 469, 387-404,
(2007).

[18] L. Duffy et al, "A High Resolution Search for Dark-Matter Axions", Ash-i,'7~,, /-- -'
Journal, arXiv:astro-ph/0603108, (2006).

[19] L. Duffy, "High Resolution Search for Dark Matter Axions in Milky Way Halo
S- il -I 1 ill II. University of Florida PhD Thesis, (2006).

[20] T.C. Yang "Gauge C'I) II U (1) Symmetry and CP Invariance in the Presence of
Instantons", Ph ;;i- Review Letters, 41, 523-526, (1978).

[21] B.R. Martin & G. Shaw, "Particle Ph3- s. W 1 ;, New York, (1997).

[22] U. Lindstrom, "Supersymmetry, a Biased Rers.-! i- arXiv:hep-th/0204016v2,
(2002).

[23] L. Bergstrom et al, "Observability of Gamma Rays from Dark Matter Neutralino
Annihilations in the Milky Way Halo", Astropart. Phys, 9, 137-162, (1998).

[24] J. Angle et al, "First Results from the XENON10 Dark Matter Experiment at the
Gran Sasso National Laboratory", Ach 'IneII,,... rl Journal, arXiv:0706.0039v1, (2007).

[25] E. April et al, "Simultaneous Measurement of Ionization and Scintillation from
Nuclear Recoils in Liquid Xenon for a Dark Matter Exp. i n... 1.1 Ph,;;-.. arl Review
Letters, 97, 081302, (2006).

[26] Glenn F. Knoll, "Radiation Detection and Measue is.. !I W1. ;, New York, (2000).

[27] SAES Getters, htt~p://www.l~,~lrueg~l.. In..J..9.: com, (2007).

[28] E. April et al, "Observation of Anticorrelation Between Scintillation and Ionization
for MeV Gamma Rays in Liquid Xenon", Ph,;;-.. arl Review B (C'ondensed M~atter and
Materials Ph;, -), 76, 014115, (2007).

[29] D. S. Akerib et al, "Deep Underground Science and Engineering Lab: S1 Dark Matter
Working Group", arXiv.org:astro-ph/0605719, (2006).

[30] E. April et al, "Scintillation Response of Liquid Xenon to Low Energy Nuclear
Recoils", Phi,;,.:. l Review D (Particles and Fields), 72, 072006, (2005).

[31] E. April et al, "Detection of Gamma-Rays with a 3.5 1 Liquid Xenon Ionization
C'I lInl~er T1;__- red by the Primary Scintillation L!,1ht Nucl. Inst. M~eth. A, 480, 636,
(2002).

[32] E. April et al, "A Liquid Xenon Time Projection C'I I>..1>er for Gamma-Ray Imaging
in A-r~lllg.i--;l- Present Status and Future Directions", Nucl. Inst. M~eth. A, 461, 256,
(2001).









[33] S. Asztalos et al, "Experimental Constraints on the Axion Dark Matter Halo
D. allyI, Ash'ine...r.~~l Journal, 571, L27, (2002).

[34] P. Belli et al, "Effect of the Galactic Halo Modeling on the DAMA-Nal Annual
Modulation Result: An Extended Analysis of the Data for Weakly Interacting Massive
Particles with a Purely Spin-Independent Couplingt Phys. Rev. D, 66, 043503, (2002).

[35] Andreas Birkedal-Hansen and Jay G. Wacker, "Scalar Dark Matter from Theory
Sp. .I Ph,;;-..a l Review D (Particles, Fields, Gravitation, and C -st.J,izi),l~,69,
065022, (2004).

[36] R. Catena et al, "Dark Matter Relic Abundance and Scalar-Tensor Dark E1!. 1Isy ,
Ph,;;-..a l Review D (Particles, Fields, Gravitation, and C --stJ,izi),l;~ 70, 063519, (2004).

[37] R. Abusaidi et al, "Exclusion Limits on the WIMP-Nucleon Cross Section from the
Cryogenic Dark Matter S. .1. I. Phys. Rev. Lett., 84, 5699-5703, (2000).

[38] K(. Ni, "Development of a Liquid Xenon Time Projection C'I I>..1>er for the XENON
Dark Matter Search", Columbia University PhD Thesis, (2006).

[39] M. Yamashita, "Dark Matter Search Experiment with Double Phase Xe Detector",
Waseda University PhD Thesis, Japan, (2003).

[40] J. D. Vergados, "Theoretical Directional and Modulated Rates for Direct
Supersymmetric Dark Matter Detection", Phys. Rev. D, 67, 103003, (2003).

[41] T. Takahashi et al, "Average Energy Expended per lon Pair in Liquid Xenon", Phys.
Rev. A, 12, 1771-1775, (1975).

[42] G.M. Seidel et al, "Rayleigh Scattering in Rare-Gas Liquids", Nucl. Inst. M~eth. A,
489, 189-194, (2002).

[43] R. D. Peccei et al, "CP Conservation in the Presence of Pseudopar- !I !. Phys. Rev.
L/ett., 38, 1440-1443, (1977).










BIOGRAPHICAL SKETCH

.Jesse Angle was born in 1980 in Seattle, Washington. He and his family lived in

the Puget Sound area for all of his formative years. Graduating front Suniner High

School in 1998, .Jesse went on to receive the bachelor of science degree in both physics

and astronomy front the University of Washington in Seattle. On completing his

undergraduate studies, .Jesse moved to Florida to study graduate physics at the University

of Florida in Gainesville.

During the course of his studies he earned a master's degree in physics and married

his wonderful wife, Wendi Angle. His graduate studies were made more complicated with

the birth of his twin sons, K~asintir and Lucian. Nearing the end of his graduate work,

.Jesse and Wendi welcomed their third son, Aurelius, to the family. After completing his

doctorate, .Jesse intends to continue researching astronomy and el-r10 phli--les possibly also

applying his skills to teach the next generation.





PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

IwouldliketothankmyadvisorLauraBaudis(currentlyattheUniversityofZurich)forprovidingmewiththeopportunitytoworkonsuchanexcitingandcutting-edgeexperiment.IwouldliketoexpressmygratitudetoallofmyfellowgraduatestudentsattheUniversityofFloridaforhelpingmetomaintainmysanitythroughthisthingwecallgraduateschool.AndlastlyIwouldliketothankmywifeWendiAngleforstandingbymeandhelpingmetogetwhereIam. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 9 ABSTRACT ........................................ 12 CHAPTER 1INTRODUCTION .................................. 13 1.1Overview .................................... 13 1.2EvidenceforDarkMatter ........................... 14 1.3CompositionofDarkMatter .......................... 17 1.4MethodsofDarkMatterDetection ...................... 19 1.5TheXENONExperiment ........................... 20 2GATORDETECTOR ................................ 24 2.1HighPurityGermaniumDetectors ...................... 24 2.2DetailsoftheGATORDetector ........................ 25 2.3PreShieldRebuild:GATORBackground ................... 26 2.4PostShieldRebuild:GATORBackground .................. 28 2.5OneYearUnderground:GATORBackground ................ 29 2.6LNGS:GATORBackground .......................... 30 2.7SimulationsandAnalysis:GATORBackground ............... 31 2.8RadonContamination ............................. 37 2.9DataAcquisitionFailure ............................ 39 3GATORMATERIALSCREENING ......................... 41 3.1AnalysisProcedures .............................. 41 3.2OverviewofScreenedMaterials ........................ 43 3.3StainlessSteel-304,SampleTakenFromtheUFXENONOuterCryostat 43 3.4HamamatsuPMTs,R8520 ........................... 47 3.5CirlexPMTBases ............................... 50 3.6StainlessSteel-304SampleFromXENON10SpareInnerCryostat ..... 53 3.7PolyBricksfromKMACPlastics,UsedintheXENON10InnerShield ... 56 3.8TeonArcsUsedintheXENON10InnerDetector .............. 59 3.9SampleZ:StainlessSteelandCeramicFeedthroughs ............ 62 3.10SampleH:StainlessSteelUsedtoCreatethePMTElectrodes ....... 65 3.11SummaryofScreeningOperation ....................... 67 5

PAGE 6

............................. 69 4.1TheXENON10Detector ............................ 69 4.2AnalysisofIndividualComponents ...................... 72 4.2.1MonteCarloSimulationsforXENON10 ............... 72 4.2.2OuterCryostat ............................. 74 4.2.3InnerCryostat .............................. 75 4.2.4PMTsandBases ............................ 75 4.2.5Teon .................................. 78 4.2.6PolyShield ................................ 78 4.3ComparisonofSimulationstoData ...................... 79 5FURTHERWORKFORXENON ......................... 83 5.1TheUFXENONPrototype .......................... 83 5.2GasSystemforUFXENONPrototype .................... 86 5.3ElectricFieldSimulationsforUFXENONPrototype ............ 89 6CONCLUSIONS ................................... 92 REFERENCES ....................................... 94 BIOGRAPHICALSKETCH ................................ 97 6

PAGE 7

Table page 2-1DataselectedtodeterminethelocationofthehotspotwithintheLeadshield 27 2-2Backgroundactivitydatausingthettingmethod ................. 35 3-1SummaryofresultsforallsamplesscreenedthusfaratSOLOinSoudan .... 43 3-2Firststainlesssteelsampleactivitiesusingthebackgroundcomparisonmethod 45 3-3Firststainlesssteelsampleactivitiesusingthettingmethod .......... 46 3-4FourPMTactivitiesusingthebackgroundcomparisonmethod .......... 48 3-5FourPMTactivitiesusingthettingmethod ................... 49 3-6CirlexPMTbaseactivitiesusingthebackgroundcomparisonmethod ...... 51 3-7CirlexPMTbaseactivitiesusingthettingmethod ................ 52 3-8Secondstainlesssteelsampleactivitiesusingthebackgroundcomparisonmethod 54 3-9Stainlesssteelsampleactivitiesusingthettingmethod ............. 55 3-10Polysampleactivitiesusingthebackgroundcomparisonmethod ......... 57 3-11Polysampleactivitiesusingthettingmethod ................... 58 3-12Teonsampleactivitiesusingthebackgroundcomparisonmethod ........ 60 3-13Teonsampleactivitiesusingthettingmethod .................. 61 3-14SampleZ,thetwofeedthroughs,activitiesusingthebackgroundcomparisonmethod ........................................ 63 3-15SampleZ,thetwofeedthroughs,activitiesusingthettingmethod ....... 64 3-16Electrodematerialsampleactivitiesusingthebackgroundcomparisonmethod 66 3-17SampleH,theelectrodematerialsample,activitiesusingthettingmethod .. 67 4-10-3000keVOuterCryostatcontributiontothedetectorbackground ....... 75 4-20-50keVOuterCryostatcontributiontothedetectorbackground ........ 75 4-30-3000keVInnerCryostatcontributiontothedetectorbackground ...... 76 4-40-50keVInnerCryostatcontributiontothedetectorbackground ........ 76 4-50-3000keVPMTandcirlexPMTbasecontributiontothedetectorbackground 77 4-60-50keVPMTandcirlexPMTbasecontributiontothedetectorbackground 77 7

PAGE 8

........... 77 4-80-50keVTeoncontributiontothedetectorbackground ............ 77 4-90-3000keVPolyshieldcontributiontothedetectorbackground ........ 78 4-100-50keVPolyshieldcontributiontothedetectorbackground .......... 79 4-11Initialactivitiesusedpriortotherunningthettingprogram,actingasstartingvaluesfortocode. .................................. 81 4-12Finalactivityvaluesasdeterminedbyttingthesimulationstodata. ...... 81 8

PAGE 9

Figure page 1-1VelocitycurveforthenearbyspiralgalaxyNGC2403 ............... 15 1-2Compositeimageofcluster1E0657-56 ....................... 17 1-3ExampleoftheprogressofatypicalN-bodysimulation .............. 18 1-4Darkmatterlimitplot ................................ 21 2-1OuterCoppercryostatrestingintheoriginalLeadshield ............. 26 2-2OriginalGATORBackground ............................ 27 2-3NewGATORBackground .............................. 29 2-4Comparisonofoldandnewbackground ...................... 30 2-5Comparisonofthebackgroundpostshieldrebuildandoneyearlater ...... 31 2-6ComparisonofthebackgroundatSOLOandthebackgroundatLNGS ..... 32 2-7SideviewoftheGATORgeometrylocatedatSOLO ............... 33 2-8BackgroundsimulationsfortheGATORDetector ................. 34 2-9MoreadvancedGATORBackgroundsimulations ................. 35 2-10CopperandcrystalportionsoftheGATORBackgroundsimulation ....... 36 2-11LeadportionoftheGATORBackgroundsimulation ............... 36 2-12Datafromthepolyscreeningshowingradoncontamination ............ 38 2-13TheRadonpurgeinaction,showingcountsperhourversustime ........ 38 2-14Countsperhourversustimeduringthemiddleoftherun ............ 39 2-15WhenRadonwasintroduced,showingcountsandcountsperhour ........ 40 3-1ImagecreatedusingtheGeant4simulation,showingatopdownviewofthedetectorcavityandthesteelsample ......................... 44 3-2Backgrounddataandsteelsampledata,normalizedtoDRU ........... 45 3-3Steeldatawithbackgroundsubtractedcomparedtosimulation .......... 46 3-4PhotomultipliertubesampleplacementwithintheMonteCarlosimulation ... 47 3-5Photomultipliertubesampledataandbackgrounddata,normalizedtoDRU .. 48 3-6Photomultipliertubedatawithbackgroundsubtractedcomparedtosimulation 49 9

PAGE 10

..... 50 3-8Cirlexsampledataandbackgrounddata,normalizedtoDRU .......... 51 3-9Cirlexdatawithbackgroundsubtractedcomparedtosimulation ......... 52 3-10SecondstainlesssteelsampleplacementwithintheMonteCarlosimulation ... 53 3-11Secondstainlesssteelsampledataandbackgrounddata,normalizedtoDRU .. 54 3-12Secondsteelsampledatawithbackgroundsubtractedcomparedtosimulation 55 3-13PolybricksampleplacementwithintheMonteCarlosimulation ......... 56 3-14Polysampledataandbackgrounddata,normalizedtoDRU ........... 57 3-15Polydatawithbackgroundsubtractedcomparedtosimulation .......... 58 3-16TeonarcsampleplacementwithintheMonteCarlosimulation ......... 59 3-17Teonsampledataandbackgrounddata,normalizedtoDRU .......... 60 3-18Teondatawithbackgroundsubtractedcomparedtosimulation ......... 61 3-19SampleZplacementwithintheMonteCarlosimulation .............. 62 3-20Feedthroughdataandbackgrounddata,normalizedtoDRU ........... 63 3-21Feedthroughdatawithbackgroundsubtractedcomparedtosimulation ..... 64 3-22BreakdownofallofthePMTsamplessuppliedbyHamamatsu .......... 65 3-23Electrodematerialdataandbackgrounddata,normalizedtoDRU ........ 66 3-24SampleHplacementwithintheMonteCarlosimulation ............. 66 3-25Electrodematerialdatawithbackgroundsubtractedcomparedtosimulation .. 67 4-1PhotographoftheXENON10Detector ....................... 70 4-2Cross-sectionaldrawingoftheXENON10Detector ................ 71 4-3Cross-sectionalimageoftheXENON10simulation ................ 72 4-4Exampleofsuccessivecutsbeingappliedtosimulationdata ........... 74 4-5InitialsimulationscalingusingthescreeningvaluesfromGATOR,DIODE-MandotherXENONscreeningoperations. ...................... 80 4-6Comparisonofabackgroundsimulationtodata .................. 82 4-7BreakdownoftheMonteCarloSimulationthatwasttothedata ........ 82 10

PAGE 11

..................... 84 5-2SideviewoftheUFXENONPrototype ...................... 85 5-3GasSystemschematic ................................ 87 5-4Earlyimageofthegassystemfrontpanel ..................... 88 5-5Geometricallayoutoftheelectriceldsimulation ................. 90 5-6Electriceldplotswithintheinnerdetector .................... 90 5-7Electricpotentialplotswithintheinnerdetector .................. 91 5-8SimulatedelectrondrifttracksthroughtheliquidXenon ............. 91 6-1ArtisticrenditionsoftheXENON100Detector ................... 93 11

PAGE 12

TheXENONDarkMatterExperiment,deployedattheGranSassoNationalLaboratoryinItalyonMarch2006,isaliquidnoblegasdetectordesignedtodirectlydetectdarkmatter.Thedetectorusesadual-phase(gas/liquid)Xenontargettosearchfornuclearrecoilsassociatedwithnucleus-WIMPinteractions.Duetothehighsensitivityneededinsuchanexperiment,itisvitaltonotonlyreducethebackgroundbuttoalsounderstandtheremainingbackgroundsoastoaidintheunderstandingofthedataaswellastofacilitateupgradesbeyondtheearlyResearchandDevelopmentphases. ManyofthecomponentsoftheXENON10detectorhavebeenscreenedusingaHighPurityGermaniumDetectorknownastheGATORdetector.FullanalysisofthescreeningdatarequiresMonteCarlosimulationsoftheGATORdetectorandthesample.Resultsfromthisscreeningwillbepresented.Usingtheinformationobtainedfromthescreeningoperation,MonteCarlosimulationsoftheXENON10electronrecoilbackgroundwillbeexaminedandcomparedtotheactualdetectordata.ThesuccessofthissimulationtodatacomparisonindicatesthatwehaveagoodunderstandingoftheXENON10gammabackgroundandwillbeabletomakemoreinformeddecisionsregardingthenextstageofdetectordevelopment.ThistypeofanalysishasaidedintheselectionanddesignofmanyofthematerialsandcomponentsbeingincorporatedintothenewXENON100detector,thenextgenerationdetectorwhichwillbecapableofimprovingthelimitsetbyXENON10byatleastanorderofmagnitude. 12

PAGE 13

Chapter2isdevotedtotheGATORdetector,thesolid-statehighpurityGermaniumcrystaldetectorthatwasusedtoperformmostofthemeasurementsdetailedherein.Section2.1providesanoverviewofGATORanditsoperationintheSoudanLowBackgroundCountingFacility(SOLO).Sections2.2through2.6discusstheGATORbackgroundthroughvariousrebuilds.Sections2.7and2.8brieycoversseveralfailurestheGATORdetectorexperiencedwhilstinstalledatSOLO.Thesebackgroundanalysisandcalculationsaswellastheanalysisregardingthedetectorinterruptionswerecompletedbyme. Chapter3willbecenteredaroundthematerialscreeningforwhichtheGATORdetectorwasdesigned.TherstsectionwillsummarizetheanalysisproceduresIusedforanalyzingthescreeningdata,followedbyasectionsummarizingalloftheseresults.EachmaterialIscreenedwillbegivenit'sownsectionfollowingthat. Chapter4willapplythescreeningresultstotheXENON10detector.Section4.1willbedevotedtothespecicsoftheXENON10detectorwhilesection4.2willdetailtheindividualanalysisIcompletedforthevariouscomponents.Section4.3willgointotheworkdoneonthefullXENON10backgroundsimulations. 13

PAGE 14

1 { 3 ]. Itwasn'tuntilalmost40yearslaterwhencorroboratingevidenceforZwicky'smissingmasswasfound.VeraRubin,workingattheDepartmentofTerrestrialMagnetismattheCarnegieInstitutionofWashingtonmeasuredtherotationalvelocitiesofstarswithinedgeonspiralgalaxiestoahigherdegreeofprecisionthanhadeverbeendonebefore.Herresults,rstpresentedatameetingoftheAmericanAstronomicalSocietyin1975,showthatathigherradiithevelocityofstarsisrelativelyatevenatlargedistancesinsteadofthedecliningvelocitycurvethathadbeenpredicted[ 4 ].SeeFigure 1-1 foranexampleofthisbehavior.Rotationcurvesofthiskindareoftenconsideredthemostcommonexamplefordarkmatter'sexistence[ 5 ].Eventhoughtheseresultswereoriginallymetwithskepticism,moredatakeptcominginthatagreedwiththishypothesis.OneofthetypicalattemptstoexplainthismissingmassresultedintheproposalthatalargeportionofthemassinagalaxyisstoredwithinahaloofZwicky'sdarkmatter.Whiletheoriginalmeasurementsthatledtothe"discovery"ofdarkmatterarebasedaroundthemotion 14

PAGE 15

VelocitycurveforthenearbyspiralgalaxyNGC2403.Thebluelineisthebehavioronewouldexpectfroma1/r2decline.Theredisthesupposeddarkmatterhalothatisneededtocombinewiththedisktinordertomatchthedata,showninblack.Imagecourtesyofhttp://burro.cwru.edu/JavaLab/RotcurveWeb/main BACK.html. ofstarswithingalaxiesandgalaxieswithinclusters,othertypesofmeasurementsalsopostulatetheexistenceofsomesortofdarkmatter. StudiesoftheCosmicMicrowaveBackground(CMB)provideanaccuratemeansofprobingcosmologicalparameters.DatafromtheWilkinsonMicrowaveAnisotropyProbe(WMAP)aloneisabletoputconstraintsonboththemattercontentintheuniverseaswellasthebaryoniccontentintheuniverse[ 6 { 8 ]. bh2=0:0240:001(1{1) Mh2=0:140:02(1{2) ThevalueisthematterdensityofasubstanceaveragedacrosstheUniverseinrelationtothecriticaldensity,thatdensityforwhichtheUniversewouldbeEuclidean,orat(seeEquation 1{3 ).Misthedensityofallgravitationmatterwhilebisthedensityofbaryonicmatter.hrepresentstheuncertaintyintheHubbleConstant(Ho=100h

PAGE 16

X=X ThisvalueforthebaryoniccontentintheuniverseisinagreementwiththatasdeterminedbyBigBangNucleosynthesis.Toagreewiththemeasuredabundancesoflightelements,namelyhelium,lithiumanddeuterium,thebaryoniccontentmustbeinthefollowingrange: 0:018
PAGE 17

1-2 [ 9 ].Darkmatter'sexistenceisalsoabigaidtothosewhostudystructure Figure1-2. Compositeimageofcluster1E0657-56.Theredx-rayimagerepresentsthelocationofthemajorityoftheregularmatter(hotgasinthiscase)withinthecluster.Theblue,takenfromgravitationallensing,representsthetotalmasswithinthecluster,stronglyindicatingthepresenceofdarkmatterseparatedfromtheregularmatter.Imagecourtesyofhttp://chandra.harvard.edu/photo/2006/1e0657/. formation,wheretheinclusionofdarkmatterintosomeofthetheoriesprovidesveryaccurateresultsthatcomparequitewelltoobservationsofthecurrentstructureoftheuniverse.NumerousN-bodysimulationsseekingtoreplicatetheobservedstructureshavemetwithremarkablesuccessintegratingdarkmatterintothesimulations.Figure 1-3 isoneexampleofsuchanN-bodysimulation[ 10 { 12 ].Measurementstakenfromintraclustergaswithinclustersandinterstellargasattheedgesofgalaxiesindicatethatdarkmattermakesuproughly95percentofallgravitatingmatter.Gravitationallensingcanprovideadensityproleofdarkmatterwithinclustersandhasledtothediscoveryofwhatisbelievedtobedarkmattergalaxies[ 13 14 ]. 17

PAGE 18

ExampleoftheprogressofatypicalN-bodysimulation.Theimageshererepresentevolutionofstructurewithina140millionlightyearboxfromaredshiftof30toaredshiftof0.Imagecourtesyofhttp://cosmicweb.uchicago.edu/index.html. whichareverydiculttodetectthroughnormalobservationaltechniques,makingthemapossibledarkmattercandidate[ 15 ].Unfortunately,itisbelievedthatahighproductionrateofanyoftheseobjectswouldhaveobservablesideeectsthatwedonotsee(theamountofbaryonsneededwouldchangetheelementalabundances,especiallydeuterium)[ 16 ].TheEROS-2projectobservedtheMagellanicCloudsformicrolensingevents,lookingforstarsgainingbrightnessasaMACHOpassedinfrontofitviagravitationallensing.TheirndingsindicatethatMACHOscanmakeupapproximatelyonly8%oftheMilkyWay'sdarkmatterhalo[ 17 ].SowhileasmallpercentageofdarkmattermaybecomposedofMACHOs,themaincomponentislikelycomposedofsomethingmorecomplicated. Ontheextremeotherendofthemassscale,weighingbetween106and102eVistheaxion.Theaxion'sexistencewaspostulatedin1977byRobertoPecceiandHelenQuinntosolvethestrongCPproblemofQuantumChromodynamics(QCD).Suchaparticlewouldhaveaverysmallmassbutifitexisteditspropertieswouldbeinlinewiththeexpectedpropertiesofdarkmatter.Detectionschemesforaxionsarevastlydierentthanthoseforotherdarkmattercandidates.Resonantmicrowavecavitiesareusedtoattempttoenhancetheaxionscouplingtotheelectromagneticeld.Ifthecavity'sfrequencyistunedtotheaxionmassapeakwillbevisibleinthefrequencyspectrum.ExperimentssuchastheAxionDarkMattereXperiment(ADMX)areusing 18

PAGE 19

18 { 20 ]. OneofthemostpromisingcandidatesfordarkmatteristheWeaklyInteractingMassiveParticle(WIMP).Suchaparticlewouldinteractviatheweakforce,thusitsname,andgravitybutnottheelectromagneticforce,renderingthemvirtuallyinvisibletonormaldetection.OneofthemorepromisingWIMPcandidatesistheneutralino.ThepromisingtheoryofsupersymmetrypredictsthatallStandardModelparticleswillhaveasupersymmetricpartnerwiththesamequantumnumberbutwithaspinthatdiersby1/2.Sincethesuper-partnerstothephoton,theZbosonandtheneutralhiggs(knownasthephotino,thezinoandthehiggsinorespectively)allhavethesamequantumnumber,theycanmixintodierenteigenstatesofthemassoperatortoformfourdierentneutralinos.InsomeSuper-Symmetrymodelsthelightestoftheneutralinos,withamassaround100GeVto1TeViscalledthelightestsupersymmetricparticle(LSP)[ 21 22 ]. ThisLSPisbelievedtobestable,couplewithotherparticlesviatheweakinteraction,andsomecalculationsshowthatitcanbeformedintheearlyuniverseinthecorrectabundancetoaccountfortheexpectedamountofdarkmattertoday.Suchanabundanceintheearlyuniversealsohelpstoexplainstructureformation,inwhichthebasicstructureswithinthegalaxyareinitiallycreatedbyagravitationalaccumulationofdarkmatterwithordinarymatterfollowinglatertoformstars,galaxiesandclusters.Allinallaquitepromisingparticleindeed.ItistheneutralinowhichtheXENONexperimentisbuilttosearchfor. 19

PAGE 20

23 ]. Incontrast,directdetectionschemesrelyontheassumptionthatdarkmatteriscomposedofWIMPsandthuscaninteractviatheweakinteractionallowingtheWIMPtocollidewiththenucleusofthedetectormaterial.Thetwobasictypesofinteractionsthatcanoccurarespin-independentandspindependent.SpindependentinteractionsoccurwhenthespinoftheWIMPcoupleswiththespinofthenucleon.SpinindependentinteractionsoccurwhentheWIMPcouplestothemassofthenucleon.ItisbelievedthatspinindependentinteractionsdominatefornucleiwithA>30,howeversearchingforbothtypeswillbeimportanttoinsuringdetectionofdarkmatter. Therearemanydierentdirectdetectionexperimentsusingawidevarietyofmaterials.TheCryogenicDarkMatterSearch(CDMS)looksforaphononsignalwithintheGermaniumandSilicondetectors.TheDarkMatter(DAMA)collaborationfoundtheircontroversialresultusingaSodiumIodinedetectorthatlookedforphotons.TheXENONexperimentusesliquidXenonasitssensitivematerial. 1-4 showstheresultsfromahandfulofthedirectdetectionexperimentsthroughouttheworld.CDMS-II'sdatafromtheirGermanium-Silicondetectors,WARP's(WimpARgonProgramme)datafromtheirliquidargondetector,datafromEdelweiss'sgermaniumbolometers,andthelimitfromZeplin'sliquidXenondetectorareallshownwiththecurrentlimitfromXENON10'sliquidxenondetector.Alloftheseexperimentsoperateunderthesamebasicphilosophy,tryingtomeasuretheinteractionbetweenapassingWIMPandthedetectormaterial[ 24 ].TheXENONexperimentisadirect 20

PAGE 21

DarkmatterlimitplotshowingthelimitsbasedondatafromXENON10,CDMS-II,WARP,Edelweiss,Zeplin1andZeplin2aswellasonepredictionbyRuizetal.Imagecourtesyofhttp://xenon.astro.columbia.edu/. detectionexperimentthatplanstomeasuretheinteractionbetweenaWIMPandaXenonnucleuswithinthedetectorvolume.However,otherparticlescanalsointeractwithXenonmakingndingtheWIMPsignalnotasstraightforwardasitoriginallysounds.PhotonsandelectronsforinstanceinteractviaelectronicrecoilwiththeXenonatomscreatingasignalthatcanbeandhastobeseparatedfromthenuclearrecoilsignalcreatedbyWIMPsandneutrons. TherearetwoprimaryinteractionchannelsthatoccurintheliquidXenon,ionizationandexcitation.Bothchannelsbeginwithanelectricornuclearrecoilandendwitha182nmgammaraybeingemitted[ 25 ].ExcitationXe+RECOIL!XeXe+Xe!Xe2Xe2!2Xe+GAMMA

PAGE 22

Thissetupprovidesuswithinformationregardingtheeventwithverylittleanalysis.XandYpositioncanbedeterminedbasedonthenumberofphotonsthatstrikeindividualPMTs.AsimplecenterofmasscalculationcandeterminetheXandYpositionwithinanaccuracyofafewmillimeters.UsingthetemporalseparationbetweenS1andS2aswellasaknowledgeofthedriftvelocityofelectronsinliquidXenon,theZpositionoftheeventcanbecalculatedtoanaccuracyoflessthanonemillimeter.Agood3Dlocalizationallowsmultiplescatterstobeeliminatedaswellasallowingducialvolumecutstobemade. 22

PAGE 23

23

PAGE 24

Inordertomanufacturecrystalslargeenoughtocreateaneectivegammaraydetector,thecurrentmethodistoreducethelevelofimpuritieswithinthesemiconductorcrystalsoasincreasethedepletiondepth.Impuritylevelsontheorderof1partin1012canbereachedwithGermanium,makingitoneofthemosthighlypuriedmaterialsavailableatthecommerciallevel.Toreachtheselevels,rstthestockmaterialispuriedbyatechniquereferredtoaszonerening.Thematerialisheatedlocallyandtheheatedregionsarepassedfromoneendofthecrystaltotheother.SincetheimpuritiesaremoresolubleinthemoltenGermanium,theyarethuspassedoutofthecrystal.Thispuriedstockisthenusedtogrowthecrystaldetectors. 24

PAGE 25

26 ] 25

PAGE 26

OuterCoppercryostatrestingintheoriginalLeadshieldintheSOLOfacilityattheSoudanUndergroundLaboratoryinMinnesota. keVat1332keV)allowforthevariousdecayspresent,usually238U,232Th,40K,137Csand60Co,tobeidentied.ItismainlythesevedecaysthatwillbesearchedforbyGATORinthevarioussamplesprovided. 2-2 .InthebackgroundwecanseelowenergyPbx-rays(around80keV),the511keVelectron-positronannihilationline,the1460keV40Kline,andmanylinesfromthe194Auand207Bidecays,aswellasthecontinuumfrom210Pbbremsstrahlungandcomptonscattering.ThestrongGoldandBismuthlinesvisiblewerebelievedtooriginatefromasingle"hotspot"withinoneofthenewerLeadbricksimmediatelynexttotheGATORdetector.Oneofourcollaborators,BrownUniversityagain,hadseensimilardatabeforeintheirdetectorwhichwasdeterminedtocomefromaLeadbrickthathadbeenpreviouslyactivatedduringanacceleratorexperiment.UnderthisassumptionwecanthereforecalculatehowmuchLeadisbetweenthedetectorandthesupposedhotspot.ThelowerenergylineswillbeattenuatedmorebytheinterveningLead,sobycomparing 26

PAGE 27

OriginalGATORBackgroundoveratotalof44kgdays(2.2kgcrystal,21.877days),from7-12-2005to8-3-2005.Manyofthelinesvisibleoriginatefrom194Auand207Biindicatingastronglocalizedcontaminationnearthedetector. Table2-1. DataselectedtodeterminethelocationofthehotspotwithintheLeadshield. LineEnergy(keV)MassAtten.Coe.(cm2/g)Amplitude(counts)B.R.AuLowEnergy-14680.051934.56.4%AuHighEnergy-20420.045924.83.6%BiLowEnergy-5690.136133.797.74%BiHighEnergy-10640.0679172.174.5% theheightsofthelowenergylinesandthehighenergylinestowhatwewouldexpectallowsustodeterminethedepthofLead. TheNationalInstituteofStandardsandTechnology(NIST-http://physics.nist.gov)providestablesandgraphsofthephotonmassattenuationcoecientformanyelementsandcompounds,includingelementalLead.Branchingratiosforthevariouslinesvisiblearealsoreadilyavailable.Twolinesfromeachdecay(194Auand207Bi)werechosenandthesubsequentdatafoundaresummarizedinTable 2-1 TheintensityofradiationasafunctionofthicknessisdeterminedbyEquation 2{1 27

PAGE 28

SolvingforthethicknessofLead,x,yields Placingtheactualnumbersintotheequation(densityofLead=11,340kg/m3)yields3.60cmofLeadasdeterminedbythe194Aulinesand2.50cmasdeterminedbythe207Bilines.Theactualvalueisprobablycloserto2.50cmas100%detectoreciencyisassumedandattenuationduetoanyCopperinthepathhasbeenignored.Regardless,giventhattheLeadbricksare5cmthick(astandardLeadbrickinthisshieldis2"x4"x8")nexttothedetector,thehotspotappearstobewithinoneofthetwonewerbrickslyingdirectlybesidethedetector. 2-3 .Aftertherebuild,theobservedbackgroundwasmuchlower,reducedfrom200totalcountsperhourto63totalcountsperhour(integratedfromroughly30keVto2550keV,whichisalmosttheentirespectrumrange).Figure 2-4 28

PAGE 29

NewGATORBackground.Theabovebackgroundwastakenover57kgdaysfrom11-11-2005to12-8-2005.Itisclearthatthebackgroundisimproved,simplynotingthereducednumberofvisiblelines. directlycomparesthetwobackgroundspectrum(postandpreshieldrebuild)afterrescalingthembothtoDRU(events/kg/day/keV).ThemanyGoldandBismuthlineswerenolongerseenaswell,indicatingthatthehotspothadbeensuccessfullyremoved.TheremaininglinesthatcanbeseenarethePbx-rays,a661.6keV137Csline,840.8keV54Mnline,1125keV65Znline,1460keV40Kline,andthe2615keV208Tlline.137Csisamanmaderadionuclidewithahalf-lifeof30.25years.54Mnand65ZnarecosmogenicsthoughttobeprimarilyintheGermanium(theCrandCux-rays,respectively,areaddedtothegammalineenergy,indicatingthatthedecayoccursintheGermaniumcrystalandnotinthesurroundingmaterials)withhalf-livesof312.3and244.3daysrespectively.40Kand208Tlaremostlikelycontaminantsinthedetectorcryostat,probablyintheCopper. 29

PAGE 30

Comparisonofoldandnewbackground.Itiseasytoseethedramaticimprovementinthebackgroundaftertheshieldrebuild.Fewerlinesareapparentandthecontinuumspectrumissignicantlylower.Theoldbackgroundmeasurementistheaforementioned44kgdaysfrom7-12-2005to8-3-2005whilethenewbackgroundrunwasover57kgdaysfrom11-11-2005to12-8-2005. sourcesofbackgroundarenotexpectedtonoticeablychangeduetomuchlargerhalf-lives.Figure 2-5 showsthepostshieldrebuildbackgroundalongwiththebackgroundoneyearlater.Adecreaseinbothlinescaninfactbeseen.AfullMonteCarlosimulationofthebackgroundwillbepresentedandactualactivitieswillbecalculatedintheSection2.7. 30

PAGE 31

Comparisonofthebackgroundpostshieldrebuildandoneyearlater.Thenewestbackgroundrunwastakenfrom11-14-2006to12-20-2006foratotalofruntimeof35.7063days. possible.ThemaindierenceandimprovementfortheLNGSshieldwastheadditionofanultrapure,lowactivityCoppershieldlayerbetweenthedetectorandtheinnermostLeadlayer.ThisshouldhavetheeectofcuttingdownthelowerenergycontinuumthatdominatedtheSOLObackground. Figure 2-6 showsacomparisonofthemostrecentSOLObackgroundwiththenewbackgroundatLNGS.Althoughafullanalysisofthisnewbackgroundisbeyondisnotpresentedhere,itisquiteclearthatthenewshieldisfarsuperiortotheoldone.Additionally,eventhoughtheGATORdetectorspentseveralmonthsabovegroundduringthetransportfromMinnesotatoItaly,thecosmogenicbackgrounddoesnotseemtobeproblematic.FurtherscreeningwiththeGATORdetectorwillbemuchbenetedfromthisnewinstallation. 31

PAGE 32

ComparisonofthebackgroundatSOLOandthebackgroundatLNGS.TheLNGSbackgroundwastakenintheFallof2007withatotalruntimeof14.897days. groupprimarilylocatedatCERN 2-7 showsasideviewofthisdetectorgeometryimplementation.Thedetectorissymmetricalongtheaxisnotdisplayed.NotethattheDIODE-MdetectoroperatedbyBrownisnotsimulated.SimulationsofahighactivitysamplewithintheDIODE-Mcavityindicatethatonlyadecentlyhighactivitywithintheotherchamber 32

PAGE 33

SideviewoftheGATORgeometrylocatedatSOLO.Thepurplelinesdelineatethenewer,higherbackgroundLead.Thebluelinesindicatetheolder,lowerbackgroundLead.Notethatthediagonallinesaremerelyartifactsofthe3Dviewer.Theredsquaresarethetwoinnercavities,oneforGATORandoneforDIODE-M. willbeseenwithintheGATORdetector.Duetothis,theregularcomponentsoftheDIODE-Mdetector,themselvesfairlylowinactivity,arenotsimulated.AstandardbackgroundsimulationwillincludedecayswithintheCopper,theinnermostlayerofLeadaswellasthecrystalitself.Itisbelievedtheothercomponentsdonotcontributesignicantlytothebackground.AftertheshieldrebuildabriefeortwasmadetobreakdownthemajorityoftheGATORbackgrounds.210BiwassimulatedoriginatingfromathinlayerofLeadsurroundingthedetector(totalmass41.36kg).Thebrehmstrahlungradiationfromthe210Biisresponsibleforalargeportionofthelowenergybackgroundcontinuumseen.238U,232Th,40K,and60CoweresimulatedoriginatingfromtheCopperportionsofthedetector(totalmass5.76kg).ThesecondanalysisproceduredescribedinSection3.1wasusedtodeterminetheactivitiesofthevariousdecays.TheLeadbrickswerefoundtohaveanactivityof3.013Bq/kgof210Bi.TheactivityoftheCopperwasdeterminedtobeapproximately3.018/1.709/15.50/0.431mBq/kg(U/Th/K/Co).SeeFigure 2-8 forthettingplots. 33

PAGE 34

(b) BackgroundsimulationsfortheGATORDetector.A)Backgrounddata,normalizedtoDRU,andthecorrespondingttedsimulationofradiationwithintheLeadandtheCopper.Theamountbywhichtheindividualdecayshavetobescaledtoallowforthebesttgivesanestimateontheactivityofthedecaysinthematerial.B)ShownherearetheveindividualdecaysthatmakeupmostoftheGATORbackground.TheBismuthwassimulatedwithinasmalllayerofLeadontheinsideofthecavitywhiletheUranium,Thorium,PotassiumandCobaltaresimulatedwithinalloftheCopperusedinthedetector'sconstruction. Thesameprocedurewasdoneonthebackgrounddatatakenoneyearaftertheshieldrebuildaswell.Thenumberswerenotsignicantlychanged,norweretheyexpectedto.210BiintheLeadwascalculatedto3.103Bq/kg,verysimilartobefore.TheactivityoftheCopperwasdeterminedtobeapproximately2.813/1.434/15.45/0.285mBq/kg(U/Th/K/Co),againnottomuchdierentfromthepreviousanalysis. Amorecompleteanalysiswasdonetoadditionallydeterminetheactivityofthe137Cs,54Mn,and65Zncontaminations.238Uand232ThwereadditionallysimulatedwithintheLeadlayer,137Cs,54Mnand65ZnweresimulatedwithintheCopperand65Znand54Mnweresimulatedwithintheoutermostcrystalsurface(0.134026kgmass).Again,thevaluesasdeterminedbeforearelittlechanged.Table 2-2 showsthecalculatedactivities.Formostofthetherunslistedhere,10simulationsof1e6eventswereaddedtogetherforatotalof1e7eventsforeachdecay.The210Bisimulationrequired1e8totalevents 34

PAGE 35

(b) MoreadvancedGATORBackgroundsimulations.A)DatafromtheGATORBackground(inred)comparedtotheMonteCarlosimulation(inblack).B)HistogramsofthesummedCopper,LeadandcrystalactivitiesusedtocreatethetotalMonteCarloapproximation.Thecrystalvaluesataround102havenovisibleeectonthetotalsimulation. fordecentstatistics.The238Uand232ThvaluesfromtheLeadaresosmallastobetotallynegligible.The54Mnand65ZnvaluesaresomewhatentangledanditisdiculttodeterminehowmuchisfromtheCopperandhowmuchisfromthecrystal,makingthesevaluessomewhatsuspect. Table2-2. Backgroundactivitydatausingthettingmethod. LineScaleFactorActivity(mBq/kg)238U2.20e-62.20232Th1.32e-61.3240K8.76e-68.7660Co1.88e-70.188137Cs2.75e-70.27665Zn7.46e-80.074654Mn7.38e-117.38e-5210Bi(Pb)1.67e-223.3Bq/kg238U(Pb)7.48e-121.04e-6232Th(Pb)5.64e-127.86e-765Zn(Ge)5.17e-106.77e-454Mn(Ge)1.36e-8.0179 35

PAGE 36

(b) CopperandcrystalportionsoftheGATORBackgroundsimulation.A)TheindividualdecaysthatcomprisetheCoppersimulation.DuetothetinycontributionfromMn54,tofullydisplayallofthedecaystheyaxishasadierentscalingthantheplotsabove.B)Theindividualdecaysthatcomprisethecrystalsimulation.Givenhowsmallthecontributionfromthecrystalsimulationis,notethedierentscalingontheyaxis. Figure2-11. LeadportionoftheGATORBackgroundsimulation,showingindividualdecaysthatcomprisetheLeadlayersimulation.DuetothewiderangeofactivitiescalculatedwithintheLeadsimulation,againnotetheyscalingisdierentthantheotherplots. 36

PAGE 37

AlargeRadoncontaminationwasintroducedintotheGATORchamberbetween5/2/20068:31AMand5/4/20068:35AMwhilstsamplingthe6polybricksthatwillbediscussedingreaterdetaillater.ItisalsopossiblethatasmallRadoncontaminationmayhavebeenpresentfromthebeginningoftherun,butthedataisnotconclusiveuntil233hoursintotherun. TherstandsimplestwaytodiscoveraRadoncontaminationistolookforthepresenceofanystrongRadonlinesinthespectrum.ThebluelinedisplayedinFigure 2-12 isthedataafter185hoursoflivetimewhiletheredlineisthedataafter233hours,amere48hourslater.Noticethattherearenowseveralverystronglinesvisible,allofwhichcanbeattributedtoRadondecay.TomorecarefullyanalyzethisRadoncontaminationwe'llfocusonthreedierenttimeperiods.Therstisfromthebeginningoftherun,4/14/2006-4/19/2006.Figure 2-13 showstheoneRadonline(351.9keV)andthe1460keVPotassiumlinewithtimeonthexaxisandcountsperhourontheyaxis.AdecreaseinthecountsperhourfortheRadonlinecanbeobserved,possiblyindicatingthatasmallamountofRadonwaspresentinthecavityatthestartoftherunbutwassubsequentlypurgedbythenitrogen.Thesecondregionoftimeoccursimmediatelyfollowingtherstone,from4/19/2006-4/24/2006.Figure 2-14 showsthesametypeofinformationasFigure 2-13 ,butthereagainisnothingdenitive.TheRadonlineshowsaslightincreaseinthecountsperhour,howeversincethechangeissosmall,roughly0.1countsperhour,itisnotpossibletosaywhetherthisincreasecomesfromasmallincreaseintheRadonlevelorarandomstatisticaluctuation.Themostinterestingperiodof 37

PAGE 38

Datafromthepolyshieldbricksafter185hours(blueline)andafter233hours(redline).ThemanystrongpeaksvisibleoriginatefromRadondecayintheairsurroundingthedetector.Andtheirpresenceappearingwithina48hourtimeperiodduringthemiddleoftherunstronglyindicatesaRadonleakduringthattime. Figure2-13. TheRadonpurgeinaction,showingcountsperhourversustime,displayingonelineoriginatingfromRadon(red)andtheonelineoriginatingfromPotassium(blue).NotehowtheRadonlineshowsadeclineintheearlyhourswhilethePotassiumlineholdssteady.Thisdatacomesfromtherst5daysofdatataking. 38

PAGE 39

Countsperhourversustimeduringthemiddleoftherun,showingonelineoriginatingfromRadon(red)andtheonelineoriginatingfromPotassium(blue).TheslightincreaseinfrequencyfortheRadonlinecouldbeindicativeofRadonpresentinthecavitybutduetohowsmallitisnothingcanbesaidwithanycertainty.Thisdatacomesfromthe6ththrough10thdaysofoperation. timeisfrom4/24/2006-5/19/2006.ItisinthisregionthatalargeinuxofRadonshowninFigure 2-12 canbeseen.Figure 2-15 displayssixoftheRadonlinesandthePotassiumline,showingcountsasafunctionoftime.Itisreadilyapparentthatbetween185hoursand233hoursthestrengthoftheRadonlinesdramaticallyincreaseswhilethePotassiumlinedoesnot.Lookingatthecountsperhourasafunctionoftime,showninFigure 2-15 ,conrmsthis.ItisveryapparentthatthecountsperhourfortheRadonlinegreatlyincreaseswhilethecountsperhourforthe40Klineremainsrelativelyconstant. 2-15 cannotbesolelyexplainedbytheRadonbeingpurgedfromthechamber.Between258hand401.2hthedataacquisitionseemstohavehalted.Althoughthelivetimerecordedbythesoftwarecontinuestoincrease,thenumberofcountsintheentirespectrumremainsconstant.ThiscanalsobeseeninFigure 2-15 asaplateauinthedata.Thisfalsedropocomesfromthefactthatthetimeisincreasing 39

PAGE 40

(b) WhenRadonwasintroduced,showingcountsandcountsperhour.A)Numberofcountsversustime,showingsixlinesoriginatingfromRadonandonelineoriginatingfromPotassium(purple).ThedramaticincreaseinthenumberofcountsfromRadonwhilethePotassiumremainsunaectedisclearindicationofaRadoncontamination.B)Numberofcountsperhourversustime,showingonelineoriginatingfromRadon(red)andtheonelineoriginatingfromPotassium(blue).ThedecreaseincountsperhourarisesnotfromalesseningintheRadonlevelbutinsteadfromahardwareissuethatresultedinalossofdata. whilethedatadoesnot,therebyloweringthenumberofcountsperhour.Thislossofdataacquisitionoccurredsometimebetween5/5/20069:30AMand5/11/20069:00AM.TheaboveanalysisdetailingthedataacquisitionfailureandtheRadoncontaminationservetodemonstratetheothertypesofinformationthatcanbeobtainedfromGATORdata.Whileitistruethatthemaininformationofinterestistheactivitiesofthescreenedmaterials(Chapter3)itcanoccasionallybeimportanttousethedatatodeterminesomethinginregardstotheoperationofthedetectoritself. 40

PAGE 41

TheactivityofagivenlineiscalculatedusingEquation 3{1 Emsample(3{1) whereDisthenumberofcountspersecondduetothedata,Bisthenumberofcountspersecondduetothebackground,EistheeciencydeterminedfromMonteCarlosimulationsandmsampleisthemassofthesample(orthenumberofPMTsforexample).TheeciencyofagivenlineiscalculatedviaaMonteCarlosimulation,byrandomlystartingthechosendecaywithinthesamplevolumeandobservingthephotonsthatreactwiththesensitivedetectorvolume. Eventssimulated(3{2) Todeterminethenumberofcountsfromagivenline,a3-sigmaregion,roughly9binsorapproximately6keV,centeredonthelinewasused.Thisrangewasdeterminedbyttingagaussiantothe60Copeaksandthe40Kpeaksandcalculatingthesigma.Todeterminethe3-sigmaregionatlowerenergies,linesoriginatingfromradondecay(351.9keVand609.3keV)werealsottedwithagaussian,conrmingthata9binspreadwillbeanadequaterangeattheseenergies. Asmentionedbefore,calculatingtheeciencyofagivenlinerequiresMonteCarlosimulation(method2describedbelowalsorequirestheuseofsimulations).UsingGeant4, 41

PAGE 42

Thevaluereportedforagivenactivityisusuallyanaverageoftwoactivitiesobtainedfromtwodierentlines.FortheUraniumdecaythe214Pband214Bidecaysareused,fortheThoriumdecaythe224Acandlowenergy212Podecaysareused.Thesefourdecaysprovidethestrongestandbyfarthemostprominentgammalinesforthesetwodecaysmakingthemtheeasiestandsometimestheonlydetectablelinespresent.Onlytheone40KlineisusedforthePotassiumdecaywhilebothmainlinesfrom60CoareusedfortheCobaltdecay.Thesingle137CsisusedfortheCesiumdecay. Calculatingtheerrorfortheactivitiescalculatedusingtheabovemethodisfairlystraightforward.WedenetheerrorinthenumberofcountsinagivenpeakusingEquation 3{3 whereD1isthenumberofcountspersecondinagivenpeakfromthedatarun,msampleisagainthemassornumberofthesample,andEistheeciencycalculatedasdescribedabove.Notethatcalculatingtheerrorinthisfashiononlyworkswhenthere'senoughstatisticsabovethebackground.Whennotenoughstatisticsarepresenttodetermineanactualvaluefortheactivity(indicatedbyanegativevaluefortheactivity)thevaluecalculatedviathefollowingmethodisused. ThesecondmethodusedistotaketheMonteCarlosimulationsforeachdecaychainandscalethespectrasuchthattheytthedata.Whenthedataisscaledsuchthatthey-axisisindierentialcountrate(DRU:eventskg1day1keV1)theactivitycanbecalculatedviaEquation 3{4 msample(3{4) where,Nisthenumberofeventssimulated,mdetectorandmsamplearethemassofthedetectorandsamplerespectively,binwidthisthesizeofthebinsinkeV,andscaleis 42

PAGE 43

3-1 isprovidedtoallowforeasyreferenceforallscreeneditems.EachofthefollowingsectionswillincludetheappropriatevaluesfromTable 3-1 ,aswellasthedataandplotsusedtocalculatethesevalues. Table3-1. SummaryofresultsforallsamplesscreenedthusfaratSOLOinSoudan. SampleActivity(U/Th/K/Co/Cs)SSfromUFOCmBq/kg(NA/NA/7.133.11/67.571.59/NA)R8520PMTsmBq/PMT(15.795.34/11.3/110.341.4/2.13/1.46)CirlexPMTBasesmBq/Base(1.210.293/1.07/6.681.24/0.0712/0.126)SSfromXe-10spareICmBq/kg(13.435.22/44.076.66/116.9424.3/7.30/5.98)PolyshieldbricksmBq/kg(22.33.10/2.532.08/53.214.53/1.06/0.663)TeonfromXe-10IDmBq/kg(15.0/5.54/60.6924.12/1.67/1.21)SampleZ,2largeFT'smBq/FT(55.6/0.28/157/9.121.48/9.33)SampleH,SSforelecrodesmBq/kg(772/342/1070/12.1/2.906.24) 3-2 ,itcanbeseenthatalllinesoflowerenergythanthe60Colinesareburiedin Code.doc 43

PAGE 44

3-2 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Thelivetimeforthissamplewas12.5945daysandthesamplemasswas3.407kg.Table 3-3 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Givenhowthe238Uand232Thlinesaresubsumedbythe60Cospectrum,thecalculatedactivitiesarelikelyinaccurate.Howevercobaltistypicallythedominantsourceofradiationfromsteelsothesedecayscansafelybeignoredinthiscaseanyways.ThecomparisonofttodataandtheindividualdecayscanbeseeninFigure 3-3 Figure3-1. ImagecreatedusingtheGeant4simulation,showingatopdownviewofthedetectorcavityandthesteelsample.ThegreentrackisonesimulatedCs137decayoriginatingfromwithinthesamplevolume. 44

PAGE 45

Firststainlesssteelsampleactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)40K(1460.8)115767.56e-47.133.1160Co(1173.2)3019007.49e-367.98.760Co(1332.5)2517476.95e-467.38.5 Figure3-2. Backgrounddataandsteelsampledata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.Thespectrumforthesteelsamplewastakenover12.4945daysfrom1-3-2006to1-13-2006. 45

PAGE 46

Firststainlesssteelsampleactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.59e-111.00e122.70232Th1.59e-115.00e100.1440K2.72e-85.00e82.3060Co3.88e-51.00e765.7 (b) Steeldatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtractedsteeldatafromUF'sXENONPrototypeOuterCryostatremnantcomparedtotheMonteCarlosimulation.Inthissimulation,thetwo60Cogammarayswereassumedtobeemittedwith100percenteciency,withtheoriginofthedecayandthedirectionofthetwogammasrandomlyplacedwithinthesteelsamplegeometry.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 46

PAGE 47

3-4 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Table 3-5 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-6 showsthettodataandtheindividualdecays. Figure3-4. PhotomultipliertubesampleplacementwithintheMonteCarlosimulation. 47

PAGE 48

FourPMTactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)U(214Pb)(351.9)3884393.15e-418.437.46U(214Bi)(609.3)821283.94e-413.143.2240K(1460.8)1151473.29e-5110.341.4137Cs(661.6)1181126.94e-41.011.76 Figure3-5. Photomultipliertubesampledataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.Thespectrumforthepmtsamplewastakenover25.798daysfrom12-8-2005to1-2-2006. 48

PAGE 49

FourPMTactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.50e-41e621.7232Th7.85e-51e611.340K5.84e-51e784.160Co1.48e-61e72.1137Cs1.01e-61e71.5 (b) Photomultipliertubedatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromthefourR8520HamamatsuPMTscomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 49

PAGE 50

3-6 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Table 3-7 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-9 showsthettodataalongwiththeindividualdecaysfortheCirlexsimulation. Figure3-7. CirlexPMTbasesampleplacementwithintheMonteCarlosimulation. 50

PAGE 51

CirlexPMTbaseactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)U(214Pb)(351.9)3883586.41e-42.060.442U(214Bi)(609.3)82827.94e-40.4710.17140K(1460.8)1151451.39e-46.991.29137Cs(661.6)1051121.38e-30.2820.106 Figure3-8. Cirlexsampledataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.ThespectrumfortheCcirlexsamplewastakenover17.979daysfrom1-17-2006to2-14-2006. 51

PAGE 52

CirlexPMTbaseactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.46e-41e61.9232Th8.35e-51e61.140K6.11e-51e77.860Co5.56e-71e70.071137Cs9.86e-71e70.13 (b) Cirlexdatawithbackgroundsubtractedcomparedtosimulation.A)Backgroundsubtracteddatafromthe45CirlexPMTbases(83gintotal)comparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 52

PAGE 53

3-8 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Themassofthissamplewas0.4819kg.Table 3-9 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-12 showsthetandtheindividualcomponents. Figure3-10. SecondstainlesssteelsampleplacementwithintheMonteCarlosimulation. 53

PAGE 54

Secondstainlesssteelsampleactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)U(214Pb)(351.9)3883453.21e-310.486.62U(214Bi)(609.3)821123.16e-316.383.83Th(212Po)(583.2)791552.15e-348.26.62Th(228Ac)(911.2)28741.47e-339.96.7040K(1460.8)1151535.81e-4116.924.3137Cs(661.6)1261126.04e-36.602.12 Figure3-11. Secondstainlesssteelsampledataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.Thespectrumforthesteelsamplewastakenover21.063daysfrom2-14-2006to3-8-2006. 54

PAGE 55

Stainlesssteelsampleactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U2.72e-51e632.5232Th3.52e-51e642.140K4.06e-51e748560Co6.10e-71e77.3137Cs5.00e-71e76.0 (b) Secondsteelsampledatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromthestainlesssteelsamplecomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 55

PAGE 56

3-10 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Themassofthissamplewas1.375kg.Table 3-11 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-15 showsthetandtheindividualcomponents.Itappearsthatthecodeoverestimatestheamountof40Kpresent.ThiseectisshowninthenumbersinTable 3-11 andinthettedsimulationsinFigure 3-15 .Attemptstoredesignthecodetotonlythepeakshavethusfaryieldedresultsnotasaccuratethancurrentlyseen. Figure3-13. PolybricksampleplacementwithintheMonteCarlosimulation. 56

PAGE 57

Polysampleactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)U(214Pb)(351.9)3884962.10e-327.454.77U(214Bi)(609.3)821702.12e-317.152.66Th(212Po)(583.2)79771.16e-32.472.67Th(228Ac)(911.2)28321.07e-32.592.6540K(1460.8)1151453.08e-453.2113.56 Figure3-14. Polysampledataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.Thespectrumforthepolysamplewastakenover22.6786daysfrom7-17-2006to7-25-2006and9-21-2006to10-5-2006.ThisisactuallyarecountofdatatakeninMarchthroughMayof2006,howeveraradoncontaminationmadethedataunusable. 57

PAGE 58

Polysampleactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U6.14e-61e725.8232Th4.96e-71e72.140K2.54e-51e710760Co2.54e-71e71.06137Cs1.58e-71e70.66 (b) Polydatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromthepolysamplecomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 58

PAGE 59

3-12 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Themassofthissamplewas0.68kg.Table 3-13 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-18 showsthetandtheindividualcomponents.Itappearsthat,justlikethepolyt,thecodeoverestimatestheamountof40Kpresent,aswellastheamountof238U.ThiseectcanbeseeninboththenumbersinTable 3-13 aswellasthettedsimulationsshowninFigure 3-18 Figure3-16. TeonarcsampleplacementwithintheMonteCarlosimulation. 59

PAGE 60

Teonsampleactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)40K(1460.8)1151962.73e-460.6924.12 Figure3-17. Teonsampledataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthenewbackgroundtakenover25.8511days.Thespectrumfortheteonsamplewastakenover36.1403daysfrom5-24-2006to7-10-2006and10-10-2006to11-2-2006.ADAQfailureduringtherstcountingsessionnecessitatedthesubsequentrecount. 60

PAGE 61

Teonsampleactivitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.77e-51e615.0232Th6.54e-61e65.540K2.52e-51e721460Co1.98e-71e71.7137Cs1.43e-71e71.2 (b) Teondatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromtheteonsamplecomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 61

PAGE 62

3-14 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Themassofthetwofeedthroughsis0.654kg.While60Coisobviouslypresent,alloftheotherdecaysarehoweverlimitedbystatistics.Table 3-15 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-21 showsthetandtheindividualcomponents. Figure3-19. SampleZplacementwithintheMonteCarlosimulation. 62

PAGE 63

SampleZ,thetwofeedthroughs,activitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)60Co(1173.2)29781.65e-3<1.5160Co(1332.5)27701.05e-3<0.870 Figure3-20. SampleZdataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthelatestbackgroundtakenover35.7063days.ThespectrumforsampleZwastakenover26.1378daysfromapproximately2-23-2007to3-29-2007. 63

PAGE 64

SampleZ,thetwofeedthroughs,activitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.95e-51e755.6232Th9.70e-81e70.28040K5.45e-51e715760Co4.80e-71e71.38137Cs3.24e-61e79.33 (b) Feedthroughdatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromsampleZcomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 64

PAGE 65

3-16 showsthenumbersusedtocalculatetheactivityviatherstanalysisprocedurediscussed.Themassofthetwosheetsis0.118kg.Table 3-17 showsthenumbersusedtocalculatetheactivitiesusingthettingmethoddiscussedabove.Figure 3-25 showsthetandtheindividualcomponents. Figure3-22. BreakdownofallofthePMTsamplessuppliedbyHamamatsu.SampleHwasscreenedintheSOLOfacility,theremainingsampleswillbescreenedatLNGS. 65

PAGE 66

Electrodematerialsampleactivitiesusingthebackgroundcomparisonmethod. LineEnergy(keV)Bkg(cnts)Data(cnts)EciencyActivity(mBq/kg)137Cs(661.6)951808.53e-32.906.24 Figure3-23. SampleHdataandbackgrounddata,normalizedtoDRU.Thebackgroundusedisthelatestbackgroundtakenover35.7063days.ThespectrumforsampleHwastakenover17.9465daysfromapproximately3-29-2007to4-20-2007. Figure3-24. SampleHplacementwithintheMonteCarlosimulation. 66

PAGE 67

SampleH,theelectrodematerialsample,activitiesusingthettingmethod. LineScaleFactorEventsSimulatedActivity(mBq/kg)238U1.58e-51e7772232Th7.00e-61e734240K2.19e-51e7107060Co2.48e-71e712.1137Cs1.63e-71e77.99 (b) Electrodematerialdatawithbackgroundsubtractedcomparedtosimulation.A)BackgroundsubtracteddatafromsampleHcomparedtotheMonteCarlosimulation.B)Histogramsofthevariousdecaysusedtocreatethesummedspectrumusedintheleftplot. 67

PAGE 68

68

PAGE 69

20cmandaheightof15cm.TeonwaschosenduetoitreectingUVlight(thescintillationlightinliquidXenonisat182nm)andasanelectricalinsulator.Teonalsohasaverylowintrinsicbackgroundwhichmakesitidealfortheinnermostdetectormaterial,notcountingXenonofcourse.FourstainlesssteelmeshgridsareusedtodenetheelectriceldwithintheliquidandgaseousXenon.Twoofthesegridsarewithintheliquidandtwoarewithinthegaswithappropriatevoltagestodrifttheelectronswithintheliquid,extractthemtothegasandthenacceleratethemwithinthegas. Todetectthephotonsreleasedfrominteractionsintheliquidandgas,twoarraysof2.5cmsquarephotomultipliertubes(PMTs)areplacedontopandbottomofthedetectorvolume.Thebottomarrayof41PMTsisplacedintheliquidbelowthecathodegrid,andcollectsmostofthedirectlightreleasedduringaninteractionduetoastrongreectionattheliquidgasinterface.Thetoparrayof49PMTsislocatedinthegasandcollectsmostoftheproportionallightreleasedbytheacceleratingelectronsthroughthegas. Theentireinnerdetectorisencasedinastainlesssteelinnercryostatwhichitselfiscontainedandvacuuminsulatedwithinastainlesssteeloutercryostat.Thetotalmassofthesetwostainlesssteelcontainersisroughly180kgandcomprisesthelargestamountofmaterialwithinthedetector.Apulsetuberefrigeratorisusedtoreachandmaintainthe180KelvintemperaturerequiredforXenonliquication.ConstantpuricationoftheXenonisachievedbycirculatingtheXenonoutoftheinnerdetectorandthroughahightemperaturegetter. TolowerthenumberofbackgroundeventsseentheXENON10detectorisplacedwithintheGranSassomine(3100meterswaterequivalent)therebyreducingthemuonuxbyafactorof106makingamuonvetounnecessary.Tocombatstrayneutronsa 69

PAGE 70

Figure4-1. PhotographoftheXENON10Detectorandtheshieldthatsurroundsit. 70

PAGE 71

Cross-sectionaldrawingoftheXENON10DetectordrawnusingAutoCAD2004.Theoutergreenstructureistheoutercryostat,theinnerbluestructureistheinnercryostat,theinnermostgreystructureistheteoninnerchamber.AlsoshowninredarethetwoPMTarrays. 71

PAGE 72

4.2.1MonteCarloSimulationsforXENON10 4-3 showsa3-dimensionalcross-sectionaldrawingofthesimulation,althoughduetothemanycomponentsmakingoutthenerdetailsisunderstandablydicult.Thevariousdecaysofinterestaresimulatedoriginatingfromwithinagivengeometrical Figure4-3. Cross-sectionalimageoftheXENON10simulation,showingprimarilytheshieldandtheoutercryostat. volumeandtheenergydepositionwithintheliquidXenonisrecorded.Onethingthat 72

PAGE 73

4{1 WhereNisthenumberofeventssimulated,86400representsthenumberofsecondsperday,BqUnit1istheactivityasmeasuredbyGATORinwhateverunitsarerequired(Bq/kg,Bq/PMTetcetera),MXenonisthemassoftheactiveXenontarget,BinWidthisthewidthofeachhistogrambininkeVandUnitNumberistheamountofwhicheverpieceisbeinganalyzed(innercryostatmass,numberofPMTsetcetera). Toincreasetheaccuracyofthisestimate,twodatacutswillbeimplementedsimilartothequalitycutsdoneontheactualXENON10data.Therstisasimpleducialvolume(FV)cut.MostoftheeventswilloccurintheouterregionsoftheliquidXenon,sobymakingageometricalcutandonlyconsideringeventsthatoccurwithinthecentralregions,wecanusethisself-shieldingtoreducethebackgroundbyasubstantialamount.Thiscentralregionconsistsofacylinder160mmindiameterand93mmtallforanapproximateducialmassof5.4kg. 73

PAGE 74

4-4 showstheresultsfromthesesuccessivecuts.Therstcutappliedistheducialvolumecut(FV)whilethemultiplescattercut(MSC)isappliedsecond.Thefollowingsubsectionswilldetailtheapplicationofthismethod Figure4-4. Exampleofsuccessivecutsbeingappliedtosimulationdata.ThissimulationrepresentsthedecayofUranium-238fromwithintheInnerCryostat.Notethatthey-axisisscaledalmostinDRU,missingonlythesamplemassandthusmerelyrepresentsrawsimulationdata,notactualdata.Theblacklineisfromalleventswithnocuts,theredlineisthedataaftertheFiducialVolumecutandthebluelineisthedataaftertheMultipleScattercutaswell. tothemajorityofthedetectorcomponentstoapproximatethebackgroundlevelwithinthedetector.Eachanalysisutilizestheresultsfromthematerialscreeningtogeneratethelistednumbers,bothforthefullenergyspectrumandthelowenergyregiondenedas0to50keV. 74

PAGE 75

Table4-1. 0-3000keVCryostatcontributiontothedetectorbackground.TheloweractivitysteelfromSection3.6isassumedforthisanalysis. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co2166517137Cs7314440K2095915232Th142630881238U3657520Total2288521137 Table4-2. 0-50keVOuterCryostatcontributiontothedetectorbackground. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co561513137Cs194340K611211232Th3487466238U941715Total578121109 75

PAGE 76

0-3000keVInnerCryostatcontributiontothedetectorbackground.TheloweractivitysteelfromSection3.6isassumedforthisanalysis. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co27810127137Cs12425740K4099127232Th1841485126238U51812434Total3170826221 Table4-4. 0-50keVInnerCryostatcontributiontothedetectorbackground. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co392622137Cs308740K1761211232Th241120103238U773330Total562197174 thatthePMTsareoneofthedominantsourcesofbackgroundradiation,implyingthatthesteelusedintheXENON10detectormaybeofaloweractivitythantheUFsteelthatwasscreenedbyGATOR.ThenumbersinTable 4-5 aredominantincomparisontothoseinTable 4-7 orTable 4-9 howevertheyaremuchlowerthantheCryostatnumbers.TheaforementionedscreeningofthePMTcomponentsthatisplannedfortheLNGSGATORdetectorwillbeveryimportantinaidingHamamatsuinconstructingloweractivityPMTsandreducingadominantsourceofbackgroundradiation. ThePMTsandbasesaresimulatedasasingleunitintheMonteCarlosimulation.Fortheanalysistheactivitiesofthetwocomponentsareaddedtogether. 76

PAGE 77

0-3000keVPMTandcirlexPMTbasecontributiontothedetectorbackground. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co0.30.20.04137Cs0.10.050.0140K2.20.50.1232Th1.60.80.2238U2.31.00.3Total6.42.50.7 Table4-6. 0-50keVPMTandcirlexPMTbasecontributiontothedetectorbackground. DecayNoCuts(mDRU)FVCut(mDRU)MSCut(mDRU)60Co0.070.030.03137Cs0.070.020.0140K5.70.10.1232Th0.70.20.2238U1.50.20.2Total8.10.60.5 Table4-7. 0-3000keVTeoncontributiontothedetectorbackground. DecayNoCuts(DRU)FVCut(DRU)MSCut(DRU)60Co16113137Cs93140K73236232Th61348238U1688120Total32715238 Table4-8. 0-50keVTeoncontributiontothedetectorbackground. DecayNoCuts(DRU)FVCut(DRU)MSCut(DRU)60Co222137Cs710.840K8243232Th1187238U361816Total1393329 77

PAGE 78

4-7 indicatethatthebackgroundcontributionfromTeonissubdominantandaslongasappropriatecareistakenintheselectionandmanufactureoffutureTeonpiecesthebackgroundcontributionshouldremainsubdominantforfutureincarnations. Table4-9. 0-3000keVPolyshieldcontributiontothedetectorbackground. DecayNoCuts(DRU)FVCut(DRU)MSCut(DRU)60Co2151137Cs50.70.240K57144232Th5193238U3586317Total4909225 78

PAGE 79

0-50keVPolyshieldcontributiontothedetectorbackground. DecayNoCuts(DRU)FVCut(DRU)MSCut(DRU)60Co511137Cs10.10.140K1754232Th1232238U871413Total1232320 Figure 4-6 showstheresultsofonesuchsetofsimulationscompletedusingtheaforementionedfullsimulation.ThemainactivitiesincludedinthiscomparisonarethePMTs(withbasesincluded),theInnerandOuterCryostat,thePolyshield,threesetsofFeedthroughsandKr85decaywithintheliquidXenon. 4-5 79

PAGE 80

4-5 werevariedandcycledovertogeneratethestartingts.Thisinitialtting,donefrom1to750keV,ledtounreasonableresults.SpecicallytheactivitiesasdeterminedbythetforthePMTsandtheTeonwereamazinglyhighwhenithasbeenwellestablishedthatthesecomponentsarefairlyclean.Tocompensateforthisandtherebyproduceamorerealistict,severalchangesweremadetothettingcode.ThePMTsandTeonwereremovedfromthettingrotationandtheirstartingvaluesmaintainedthroughouttheprocess.Additionally,almostallofthePMTslocatedintheXENON10detectorwerescreenedbyaseparatescreeningoperationwithinthecollaborationandtheresultsusedtocreateamoreaccurateaveragePMTactivity(listedbelowinTable 4-11 ).Furthermore,the15histogramsthatmakeupthethreefeedthroughsimulationswerelockedtogethersuchthatthedierentsetsoffeedthroughswillhavethesameactivitiesthroughoutthettingprocess.Takingallofthisintoconsideration,thestartingactivitiesforthetshowninFigure 4-5 areshowninTable 4-11 (b) InitialsimulationscalingusingthescreeningvaluesfromGATORandDIODE-M.A)ThesummedspectrumcomparedtotheactualXenon10data.B)Thebreakdownofthevarioushistogramsusedtocreatethesummedhistogram. 80

PAGE 81

Initialactivitiesusedpriortotherunningthettingprogram,actingasstartingvaluesfortocode. Sample Activity(U/Th/K/Co/Cs)(mBq/unit)ICandOC 13.43/44.07/116.94/7.30/5.98PMTs 0.145/0.136/8.29/1.68/0.0367Teon 15/5.54/60.7/1.67/1.21PolyShield 22.3/25.3/53.2/1.06/0.663Feedthroughs 55.6/0.28/157/9.12/9.33Xenon 2.52 Thettingprogramwasoperatedfrom1to750keV,whichcoversthemainareasofinterest,includingthelowenergyregion,severalUraniumandThoriumpeaksandtheveryprominentCesiumpeak.Figure 4-6 showsthisnaltwhileFigure 4-7 showstheindividualhistogramsusedinthecomparison.ExactlyaspresentedinChapter3,thescalingfactorsusedtocreatetheshowntcanbetransformedintoanactivityforthevarioussamples,theresultsofwhichareshowninTable 4-12 ,recallingthatthePMTandTeonactivitieswerenotallowedtochangeduringthisprocess.Alloftheactivitiesdeterminedbythismethodarewithintheboundsofbelievability.AsexpectedtheSteelfromtheInnerandOuterCryostatscomprisesthemainbulkoftheactivityandtheFeedthroughsseemparticularlyactivewhilethePolyShielddoesn'tappeartocontributemuchtothebackground.Sincethemainfeaturesandcontaminantsarereasonablyunderstoodwiththiskindofinformation,informeddecisionsregardingmaterialselectionanddetectordesigncanbemadeforthenextphaseoftheXENONexperiment,XENON100(notethatthesedecisionswillbediscussedinChapter6). Table4-12. Finalactivityvaluesasdeterminedbyttingthesimulationstodata. Sample Activity(U/Th/K/Co/Cs)(mBq/unit)IC 3.31/128/159/125/269OC 0.041/0.085/9.48/125PMTs 0.145/0.136/8.29/1.68/0.0367Teon 15/5.54/60.7/1.67/1.21PolyShield 0.067/0.073/0.096/0.068/0.090Feedthroughs 6.1/1.27e-3/1107/53.8/359Xenon 1.02e-4 81

PAGE 82

Comparisonofabackgroundsimulationtodata,includingallofthesamplesscreenedbyGATORaswellasseveralsamplesscreenedbytheDIODE-MdetectoroperatedbytheXenongroupatBrownandthePMTscreeningoperationrunbyanothercollaboratorinLNGS. Figure4-7. BreakdownoftheMonteCarloSimulationthatwasttothedata,showingtheindividualsamplehistogrambreakdownsaswellasthesummedspectrumthatisshownincomparisonwithadataspectruminFigure 4-6 82

PAGE 83

TheinnerdetectorvolumeisdenedbyateonstructurethatcreatesaXenonvolume2.3"squareby1.8"high.Theentireteonstructureiscontainedwithina6"stainlesssteelcanthathasbeenelectro-polishedforpurityreasons.ThisinnercryostatistermedtheUltra-HighVacuum(UHV)can.SurroundingtheUHVcanisathinAluminumtube,calledtheradiationcan,designedtoblockthermalradiationfromtheoutercryostatcan.Theoutermostcan,termedtheoutercryostatcan,isa10"diameterstainlesssteelshellthatservesastheouterlimitsofthevacuumchamber. Alloftheconnectionsfromoutsidetotheinnerportionsofthedetector;wiring,gasow,vacuum,andaliquidNitrogencoolingloop,areattachedtotheradiationcancomethroughtheoutercryostattopange.Thecoldstickwhichprovidesthecoolingpowerisconnectedthroughthebottomoftheoutercryostattotheradiationcan.Fourofthe 83

PAGE 84

(b) SomeviewsoftheUFXENONPrototype.A)TheInnerCryostatcan,stillattachedtotheOuterCryostattopangecanbeseenhererestingonthetable.B)TheentireOuterCryostatcanisshownwithinitssupportingframeandrestingontopoftheliquidnitrogendewar.Notshownisthecoldngerwhichpenetratesdownintotheliquid,providingthecoolingpowernecessarytomaintainliquidXenontemperatures. squarePMTsviewthedetectorvolumefromabove,2ofwhichcanbeseeninthesideviewdrawingofFigure 5-1 84

PAGE 85

SideviewoftheUFXENONPrototype.ShowningreenistheOuterCryostat,inbluetheInnerCryostat,inyellowtheInnerDetectorandinbrowntheColdFinger. 85

PAGE 86

Atthebeginningofnormaloperatingconditions,Xenonowsfromoneofthecylinders,throughapressureregulatorwhichbringsthepressuredownfromthe1500PSItoroughly40PSI.Itwillthenowthroughthegetterforpurication,throughameteringvalveusedtomoreaccuratelycontroltheowrate,andthroughagaugetomonitortheowbeforeheadingouttothechamber. Duringatypicaldatarun,Xenonwillowwiththeaidofadiaphragmpumpfromthebottomoftheinnerchamber,throughthegettertoberepuried,andbackouttothechamber.ThegassystemalsohasextraconnectionstoallowfortheinitialhighpressuretransferofXenonafteritwasshippedtoUF,asparkpurier,avacuumpump,andanargonush.Thesparkpurieriscurrentlynotbeingusednoristhereaplanforonetobeused.Theargonushalsowillberarelyused,allowingapositivepressuretobeplacedonthesystemwhenitisopen,hinderingtheowofwaterandotherimpuritiesintothechamber.Thelinetothevacuumpumponlyneedstobeusedwhenevacuatingallofthetubingwhichshouldonlybenecessarywhenthesystemwasinitiallycreated. Attheendofarun,Xenoncanbereturnedtothecylindersviaadirecthighpressurelineorrecirculatedthroughthegetter.Allofthe1/4"tubing,ttings,andvalveswerepurchasedfromSwagelok.ThegetterisaSAESMonoTorrHeatedGetter,designedforArgon,Heliumandotherraregasses,whichincludesXenon.It'sdesignedtoremoveH20, 86

PAGE 87

27 ] TheAluminumframewasbuiltbytheUFPhysicsMachineShopandbasedoofadesignforaballoonbasedgassystemoperatedfromColumbia.Thevalvesaremountedtoathinaluminumplateontheattachedtothefrontoftheframe.Allofthe1/4"stainlesssteel,electropolishedtubingwasbentandcutbyhandusingstandardpipehandtools.Todealwithseparatemotionsofthegassystemandthedetectorduringanytransport,allconnectionsfromthesideofthegassystemtoanyexternalobjectaredoneviahighpressure3footlongextubes.DierencesinJapanesepipettingsandBritishpipettingsforcedustoweldtwoofthesettingsintothediaphragmpump. Figure5-3. GasSystemschematic,showingalltubingconnectionsincludingallvalves,storagecylinders,theUFXENONDetector,andalloptionalexternalconnections. 87

PAGE 88

Earlyimageofthegassystemfrontpanel.Theblueobjectonthebottomisthegetter.Notshownarethetwomassreadoutsforthestoragecylindersontop,theowmeterinthelefthandholeandtheblacklinesindicatingtubingconnectionsbetweenvalves. 88

PAGE 89

5-6(a) andFigure 5-6(b) toseethestrongeldvaluethatcausedthisconcern. TheseelectriceldsimulationswerecreatedinAnsoft'sMaxwellStudentVersion,availablefordownloadfromwww.ansoft.com.FurtheranalysiswasdoneusingGareldprovidedbyRobVeenhofatCERN,seeconsult.cern.ch/writeup/gareld/tosimulatethemovementofelectronswithintheliquid. Thesimulationsseemtosuggestthatfortheoriginal3-griddesign,almostalloftheelectronsarecollectedattheanode,whileasimpleexpansiontoa4-griddesigninsuresthatalloftheelectronsarecollectedattheanode.AddingintheelectriceldduetothePMTsachievesthesameeectasthe4-griddesign,suggestingthatthecurrent3-griddesignplusPMTswillbesucient.Thesimulationsusedthefollowingvoltages: Thesepotentialscreatea5kV/cmdrifteldbetweentheAnodeandboththeTopGrid(onlyin4-gridsimulation)andtheBottomGrid,andalittlelessthan1kV/cmdrift 89

PAGE 90

(b) Geometricallayoutoftheelectriceldsimulation.edstructuresarestainlesssteel,greystructuresareteon,theblueisliquidXenonandthebackgroundisvacuum.A)Threegridgeometry.B)Fourgridgeometry. (b) Electriceldplotswithintheinnerdetector.Thecoloringisatemperaturebasedscheme,sobluerepresentslowervaluesandredhighervaluesoftheelectriceld.Foranideaofthescale,theeldinthelowerpartofthedetectoris1kV/cmandinthetoppartofthedetectoris5kV/cm.A)Threegridgeometry.B)Fourgridgeometry. 90

PAGE 91

(b) Electricpotentialplotswithintheinnerdetector.Whatshouldbenotedishowstraightandparallelthepotentiallinesarewithinthedriftregion,indicatingafairlyuniformelectriceld.A)Threegridgeometry.B)Fourgridgeometry. (b) SimulatedelectrondrifttracksthroughtheliquidXenon.Theelectronswerecreatedwithzerovelocitynearthebottomofthechamber.Inthethreegriddesignonlyasmallpercentageofelectronsescapepasttheanodewhileinthefourgriddesignallelectronsarecapturedattheanode.A)Threegridgeometry.B)Fourgridgeometry. 91

PAGE 92

fTheXENONcollaborationannouncedtheresultsfromtheoperationoftheXenon10detectorattheAprilmeetingoftheAmericanPhysicalSociety.Atthattimeandfurtheratthetimeofthewritingofthispaper,thelimitsetbytheXenon10detectorfortheWIMPmass(seeFigure 1-4 )wasthebestintheworld[ 24 ].However,sofaronlyupperlimitstoWIMP-nucleoncrosssectionscanbegiven,thusimprovementstothedesignandsizeofthedetectorarekeytofurtherpushthelimitsoftheeld.Asthedetectordesignchangestoincreasetheducialmass,theopportunityexiststoimprovethebackgroundofthedetector.Oneofthekeyimprovementsthatcanbemadeforalargerdetectorisconstructedistoimprovethebackgroundviaamorecarefulselectionofmaterials. ThustheimportanceoftheGatordetectoranditsscreeningoperation.Understandingwheretheprimarysourcesofbackgroundarisefromcanmakeitpossibletoremovethemorattheveryleastminimizethemforfuturedetectors.ThescreeningdonewiththeGatordetectorhashelpedshowthingssuchastheteonbeinglowenoughinactivitytobeintheinnerdetector,thatthesteelisoneofthelargestcontributorstothebackground,andfuturescreeningswillhopefullyrevealwhatportionofthePMTscontributesmosttothebackgroundallowingHamamtsutodesignandcreateloweractivityPMTsforfutureexperiments.ThesePMTscreeningswilloccurduringtheoperationofXENON100andwillallowforthecreationofvastlysuperiorPMTsbythetimethescalinguptoXENON1Tisunderway. XENON100isalreadyinconstructionandplannedtostarttakingdataintheSpringof2008andisexpectedtoimprovethelimitsetbyXENON10byatleastanorderofmagnitude.ThedesignofthecryostatwasmadeinsuchawaysoastoreducethesteelmassbelowthatoftheXENON10detector(downtoapproximately60kgintotalcomparedtothe180kgstainlesssteelcryostatsystemimplementedinXENON10).Additionallyanultra-puresteelhasbeenselectedtobeusedintheXENON100detector 92

PAGE 93

(b) ArtisticrenditionsoftheXENON100Detector.A)GraphicoftheXENON100OuterCryostatplacedinthecurrentXENON10shield,withacutoutshowingtheInnerDetector.B)ImageoftheXENON100InnerDetector,showingthePMTarrays,theTeonstructure,andtheeldshapingrings.TheapproximatesizeofthefullXenonvolumewillhavea15cmradiusanda15cmdriftlength.ImagescourtesyofLauraBaudis. 93

PAGE 94

[1] BradleyW.CarrollandDaleA.Ostlie,\AnIntroductiontoModernAstrophysics",Addison-Wesley,NewYork,(1996). [2] F.Zwicky,\OntheMassesofNebulaeandofClustersofNebulae",AstrophysicalJournal,86,217,(1937). [3] S.M.FaberandJ.S.Gallagher,\MassesandMass-to-LightRatiosofGalaxies",AnnualReviews,17,135-187,(1979). [4] V.Rubin,\RotationoftheAndromedaNebulafromaSpectroscopicSurveyofEmissionRegions",AstrophysicalJournal,159,379,(1970). [5] M.Persic,P.SalucciandF.Stel,\TheUniversalRotationCurveofSpiralGalaxies:I.TheDarkMatterConnection",Mon.Not.Roy.Astron.Soc.,281,27,(1996). [6] G.Bertoneetal,\ParticleDarkMatter:Evidence,CandidatesandConstraints",AstrophysicalJournal,405,279-390,(2005). [7] G.Jungmanetal,\SupersymmetricDarkMatter",PhysicsReport,267,195-373,(1996). [8] D.N.Spergeletal,\WilkinsonMicrowaveAnisotropyProbe(WMAP)ThreeYearResults:ImplicationsforCosmology",AstrophysicalJournal,170,377,(2007). [9] D.Cloweetal,\ADirectEmpiricalProofoftheExistenceofDarkMatter",Astro-physicalJournal,arXiv:astro-ph/0608407v1,(2006). [10] J.Primack,\DarkMatterandStructureFormationintheUniverse",AstrophysicalJournal,arXiv:astro-ph/9707285v2,(2007). [11] AndreyKravtsov,\CenterforCosmologicalPhysics",http://cosmicweb.uchicago.edu/index.html,(2007). [12] M.Davisetal,\TheEvolutionofLarge-ScaleStructureinaUniverseDominatedbyColdDarkMatter",AstrophysicalJournal,292,371-394,(1985). [13] R.Minchinetal,\ADarkHydrogenCloudintheVirgoCluster",AstrophysicalJournal,622,L21,(2005). [14] J.Fukumoto,\RelativeAbundancesofGalaxies,IntraclusterGas,andDarkMatterinX-rayClustersofGalaxies",PASJ:PublicationsoftheAstronomicalSocietyofJapan,44,L235-L240,(1992). [15] C.Alcocketal,"TheMACHOProject:MicrolensingResultsfrom5.7YearsofLMCObservations",TheAstrophysicalJournal,542,281,(2000). [16] ArnonDar,\DarkMatterandBigBangNucleosynthesis",AstrophysicalJournal,449,550,(1995). 94

PAGE 95

[17] P.Tisserandetal,\LimitsontheMachoContentoftheGalacticHalofromtheEROS-2SurveyoftheMagellanicClouds",AstrophysicalJournal,469,387-404,(2007). [18] L.Duyetal,\AHighResolutionSearchforDark-MatterAxions",AstrophysicalJournal,arXiv:astro-ph/0603108,(2006). [19] L.Duy,\HighResolutionSearchforDarkMatterAxionsinMilkyWayHaloSubstruture",UniversityofFloridaPhDThesis,(2006). [20] T.C.Yang,\GaugeChiralU(1)SymmetryandCPInvarianceinthePresenceofInstantons",PhysicsReviewLetters,41,523-526,(1978). [21] B.R.Martin&G.Shaw,\ParticlePhysics",Wiley,NewYork,(1997). [22] U.Lindstrom,\Supersymmetry,aBiasedReview",arXiv:hep-th/0204016v2,(2002). [23] L.Bergstrometal,\ObservabilityofGammaRaysfromDarkMatterNeutralinoAnnihilationsintheMilkyWayHalo",Astropart.Phys,9,137-162,(1998). [24] J.Angleetal,\FirstResultsfromtheXENON10DarkMatterExperimentattheGranSassoNationalLaboratory",AstrophysicalJournal,arXiv:0706.0039v1,(2007). [25] E.Aprileetal,\SimultaneousMeasurementofIonizationandScintillationfromNuclearRecoilsinLiquidXenonforaDarkMatterExperiment",PhysicalReviewLetters,97,081302,(2006). [26] GlennF.Knoll,\RadiationDetectionandMeasurement",Wiley,NewYork,(2000). [27] SAESGetters,http://www.puregastechnologies.com,(2007). [28] E.Aprileetal,\ObservationofAnticorrelationBetweenScintillationandIonizationforMeVGammaRaysinLiquidXenon",PhysicalReviewB(CondensedMatterandMaterialsPhysics),76,014115,(2007). [29] D.S.Akeribetal,\DeepUndergroundScienceandEngineeringLab:S1DarkMatterWorkingGroup",arXiv.org:astro-ph/0605719,(2006). [30] E.Aprileetal,\ScintillationResponseofLiquidXenontoLowEnergyNuclearRecoils",PhysicalReviewD(ParticlesandFields),72,072006,(2005). [31] E.Aprileetal,\DetectionofGamma-Rayswitha3.5lLiquidXenonIonizationChamberTriggeredbythePrimaryScintillationLight",Nucl.Inst.Meth.A,480,636,(2002). [32] E.Aprileetal,\ALiquidXenonTimeProjectionChamberforGamma-RayImaginginAstrophysics:PresentStatusandFutureDirections",Nucl.Inst.Meth.A,461,256,(2001).

PAGE 96

[33] S.Asztalosetal,\ExperimentalConstraintsontheAxionDarkMatterHaloDensity",AstrophysicalJournal,571,L27,(2002). [34] P.Bellietal,\EectoftheGalacticHaloModelingontheDAMA-NaIAnnualModulationResult:AnExtendedAnalysisoftheDataforWeaklyInteractingMassiveParticleswithaPurelySpin-IndependentCoupling",Phys.Rev.D,66,043503,(2002). [35] AndreasBirkedal-HansenandJayG.Wacker,\ScalarDarkMatterfromTheorySpace",PhysicalReviewD(Particles,Fields,Gravitation,andCosmology),69,065022,(2004). [36] R.Catenaetal,\DarkMatterRelicAbundanceandScalar-TensorDarkEnergy",PhysicalReviewD(Particles,Fields,Gravitation,andCosmology),70,063519,(2004). [37] R.Abusaidietal,\ExclusionLimitsontheWIMP-NucleonCrossSectionfromtheCryogenicDarkMatterSearch",Phys.Rev.Lett.,84,5699-5703,(2000). [38] K.Ni,\DevelopmentofaLiquidXenonTimeProjectionChamberfortheXENONDarkMatterSearch",ColumbiaUniversityPhDThesis,(2006). [39] M.Yamashita,\DarkMatterSearchExperimentwithDoublePhaseXeDetector",WasedaUniversityPhDThesis,Japan,(2003). [40] J.D.Vergados,\TheoreticalDirectionalandModulatedRatesforDirectSupersymmetricDarkMatterDetection",Phys.Rev.D,67,103003,(2003). [41] T.Takahashietal,\AverageEnergyExpendedperIonPairinLiquidXenon",Phys.Rev.A,12,1771-1775,(1975). [42] G.M.Seideletal,\RayleighScatteringinRare-GasLiquids",Nucl.Inst.Meth.A,489,189-194,(2002). [43] R.D.Pecceietal,\CPConservationinthePresenceofPseudoparticles",Phys.Rev.Lett.,38,1440-1443,(1977).

PAGE 97

JesseAnglewasbornin1980inSeattle,Washington.HeandhisfamilylivedinthePugetSoundareaforallofhisformativeyears.GraduatingfromSumnerHighSchoolin1998,JessewentontoreceivethebachelorofsciencedegreeinbothphysicsandastronomyfromtheUniversityofWashingtoninSeattle.Oncompletinghisundergraduatestudies,JessemovedtoFloridatostudygraduatephysicsattheUniversityofFloridainGainesville.Duringthecourseofhisstudiesheearnedamaster'sdegreeinphysicsandmarriedhiswonderfulwife,WendiAngle.Hisgraduatestudiesweremademorecomplicatedwiththebirthofhistwinsons,KasimirandLucian.Nearingtheendofhisgraduatework,JesseandWendiwelcomedtheirthirdson,Aurelius,tothefamily.Aftercompletinghisdoctorate,Jesseintendstocontinueresearchingastronomyandastrophysics,possiblyalsoapplyinghisskillstoteachthenextgeneration. 97


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101211_AAAACG INGEST_TIME 2010-12-12T04:05:46Z PACKAGE UFE0021574_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 644 DFID F20101211_AACCFE ORIGIN DEPOSITOR PATH angle_j_Page_08.txt GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
8be67b156fc4b278bdbc80b062f7f13e
SHA-1
3c1d971e2ef063d3243660f5f37e80fc77648f38
20401 F20101211_AACCEP angle_j_Page_90.pro
af73b08c7c597679e0081efc712f70f9
60c58536c85bc2e044f030e78f8cd20ae184b9ae
25271604 F20101211_AACBZJ angle_j_Page_48.tif
7f995c8f8d9c4d2cd22dd842a9b5799c
795873ffda3eb596214bf4362f200c515b72f1a1
F20101211_AACBYV angle_j_Page_34.tif
d8c543fd614c32aea0bc4de82c0e86ec
6c437249882f7934caa0d3ae185d00b8d298f942
19722 F20101211_AACCEQ angle_j_Page_91.pro
5213549d9efe0defeead682d98f9b8dd
ea89a848752439ec3aabe592cbfa80318b6a2755
F20101211_AACBZK angle_j_Page_49.tif
7697622b5fa6769bb7aa4e76f36bf6c6
51f417b990435760d413091e5511e2e9232254cc
F20101211_AACBYW angle_j_Page_35.tif
07dc1e7f20a243d727fe17be91a50143
ec6465acdf828d0e810a916ac4149a95b98067fa
2226 F20101211_AACCFF angle_j_Page_09.txt
833e7fa390d9c2ff687c89a7a17177ae
4c708e9b1b9280747fba580165000c4d94a80ebc
56165 F20101211_AACCER angle_j_Page_92.pro
f4fab50d150b8ca3a710cd491a0241ee
64d6bd45eebc0845b046002fa9f4c6253f6179d1
F20101211_AACBZL angle_j_Page_50.tif
ee781d9e1d9d3d01f4014197c71feefe
d4755de5d522d72bdf830d6019f8686b5669ae79
F20101211_AACBYX angle_j_Page_36.tif
30076d23f97a09772fc61b3e4aa3c631
b54fec8de282f813570a3537919cf11377a516d8
1887 F20101211_AACCFG angle_j_Page_10.txt
53f135de8bcdd2ca641cf78a8c7b6872
864e8329dc5509816bb2fe188cc80eb565d5ba11
35906 F20101211_AACCES angle_j_Page_93.pro
b4fd60e279ff632c9539e6611d2a54c3
a42182c142edf8159ec88ef7bb42e776c3f706a4
F20101211_AACBZM angle_j_Page_51.tif
0e06ab89da47f7d3bf5a85bc18731460
0b86f2fe3a3af10a1e045e6a550c5ee464ad6b9a
F20101211_AACBYY angle_j_Page_37.tif
04737a45b3d180704f9ff35a4f5eca2e
9c55b741066a72adb5974d6075babf2e10cc8a22
739 F20101211_AACCFH angle_j_Page_11.txt
f56a0c4ff0db87a8e71092faee03b746
dd5c9b2c9f905df8e5177632ffb10758a7bfb66d
60345 F20101211_AACCET angle_j_Page_94.pro
0d1ec9d9967e5a8eab1d9e92d6ccd6c7
8886c8303e01952d68ea37b22d0db3097a4818b1
F20101211_AACBZN angle_j_Page_52.tif
e4e8d318776f45226f5fe9c9445a65be
029ff114ebf636576ac885ee0ee889f24feb75b2
F20101211_AACBYZ angle_j_Page_38.tif
9cea9a13d2322875740796f9b41d5c66
d6b55ed08612431236dcbc5e687463ac9a0719ec
2171 F20101211_AACCFI angle_j_Page_12.txt
1f5d48219c9b824bbc0f96aab4cf35d4
47ce511bf1475585630a2adaf3c7b5d7e97f9f80
62089 F20101211_AACCEU angle_j_Page_95.pro
4f40657ec2a609364d13addb1d223768
5c1383e7b492a6580f08a498e3622c6becfefee0
F20101211_AACBZO angle_j_Page_53.tif
73a1516ce0978a844a0e543c609885a7
9f76de3574fd306c51aba561c5061799c33a0cc8
2104 F20101211_AACCFJ angle_j_Page_13.txt
206e0675937f4b50fc98286141dd1c7d
77dbf48c3660e29ed9f1117627aae1999bc2526e
44561 F20101211_AACCEV angle_j_Page_96.pro
e58f19a97ea70dccfdfb7cd1304552c5
d8edb384fe54132a9ffb7e480e11357424608c88
F20101211_AACBZP angle_j_Page_54.tif
be5d29290c4ffb1267a1a4e225d01d9a
661981b50ef12df349bf2804ff8f0fc21b60863e
25447 F20101211_AACCEW angle_j_Page_97.pro
716808db2af1a160de28a3ac6685cbd3
bd12a9779ee47334e17c4e3f2426440764a9a7c7
F20101211_AACBZQ angle_j_Page_55.tif
7845f27cd2d39447ecc6d859d53c8a16
72876c72d284bcac603d756a1a063874dad9c4c8
2392 F20101211_AACCFK angle_j_Page_14.txt
998e64638dbcec78e56bdfd389b5bf00
dec30bde6b8df9d66f9acb37013febecc5aa96d5
478 F20101211_AACCEX angle_j_Page_01.txt
6d68f704ba255878d2128752b46b4436
30761e20bb342c82904f1b53cc84ee54c3d6226e
F20101211_AACBZR angle_j_Page_56.tif
9f09a55ec4fee9b745fff37da731e62b
d7ac79d3cfe4258efe73f86593039347d4d285bc
1511 F20101211_AACCGA angle_j_Page_31.txt
faa6b11435a1209b19ed4569ef709705
89b229cbf6b132a87f4e98099090143c78478cf0
1524 F20101211_AACCFL angle_j_Page_15.txt
e8b6696674e901a9cc860dc8362baa03
78a93dfafbcb8ce62e6949bb8f016bf2d097c545
92 F20101211_AACCEY angle_j_Page_02.txt
b2a0cdcad87c931ae1643e52bd0cffb8
caaec577d2218a9fb0f472499773661dbf40796e
F20101211_AACBZS angle_j_Page_57.tif
203f74d6e362e0393218e8ef2eb7bbae
83f436ac6811f705c0eda846f3b6410bfeed75b9
1589 F20101211_AACCGB angle_j_Page_32.txt
d159b63f10b9b4265a688e6df56708b7
615a1aa3b4f99cad476c6e1355e5b13b7c8bcd35
2257 F20101211_AACCFM angle_j_Page_16.txt
f20d6a60bd0b38b2f6ae090110c2d87c
432b678357b258ed000cc1fa929579db6b375e2e
120 F20101211_AACCEZ angle_j_Page_03.txt
617d6789d01e8095c9e0c901e3b7b4d1
1185abbf06ae5006658fe6dd91613e2a388c92e5
F20101211_AACBZT angle_j_Page_58.tif
6fbd6d1b937b36c10143b67f3bd07ce7
764a4d9f0c8f56999aa51eacfb04f69161805e1d
1653 F20101211_AACCGC angle_j_Page_33.txt
ea941c5c441fbd3e0dfb5a57abec7d8e
34617d98e7a85ebed6e6d4c5f2d8972df3ee899e
1814 F20101211_AACCFN angle_j_Page_17.txt
aac33c7c1f14142f39fed8735b329b6d
5b328486ea2202981d38dae2bf2e18e3030f3046
F20101211_AACBZU angle_j_Page_59.tif
1858ef2d1e6cda3740d59446cf88bec8
b8e9e99ba048d3a2d6c9d5861705357923cfbeb3
1928 F20101211_AACCGD angle_j_Page_34.txt
24c39133b772949458ecb8e8b9ff7fc9
ce84e2ed11462466f28de13579e32395a5050dda
1936 F20101211_AACCFO angle_j_Page_18.txt
a96215647bb6b96dace456d7330ddb7e
7f399f182f3aeeb20eb8a8f08d2df07f3dd7fbf9
F20101211_AACBZV angle_j_Page_60.tif
f272a39a80f90d20f94dbea34fcf38bb
73a5d9db3d9e650c6c3d1789459abc2b72918f3d
1160 F20101211_AACCGE angle_j_Page_35.txt
cd5e9d4226a7ead20d57a886bdc1f47f
60c055935d34c81a230938749df9db01155709b7
2312 F20101211_AACCFP angle_j_Page_19.txt
753208f2b2deb5b9d252356cfdbbd61e
58404089936295d0c049693c58144751285bc782
F20101211_AACBZW angle_j_Page_61.tif
f54de9e9955897eaada2e7c7a1ea7b4b
2156ea0c52706e4a5e5aa5eab7889fba4f792693
939 F20101211_AACCGF angle_j_Page_36.txt
571f999dc55e72758ac423b2fccf9733
0afa99cba52b7397bf8c0050617db370518df419
2251 F20101211_AACCFQ angle_j_Page_20.txt
3e5f015d2886c457f1792e071f3b3ccb
fe0471dd6edd6550cd3eda73bbf8340be5396ecc
F20101211_AACBZX angle_j_Page_62.tif
d641802dfad087ea1197abe617da9098
a999a040fc98afb1f73f7ca83f2e91d470a52c8e
2307 F20101211_AACCGG angle_j_Page_37.txt
4ba2fe6b72a80aeabd81edf35b3ede71
04c059ea4654f257bf937bc6782aeb01f4bf4ba6
1820 F20101211_AACCFR angle_j_Page_22.txt
03b339d8737452af5e6dcd58c3f2ab1c
68bc10a1c050f870123b44ab23f1acaa2b6a330e
F20101211_AACBZY angle_j_Page_63.tif
098d697ecfe9b0e5d58351a6f1a7a29a
e89823ab52a5c0f5b929d351ebf37599f6294bb0
1089 F20101211_AACCGH angle_j_Page_38.txt
2fa1b98e195dac952e68c59215600dfd
3c26b9379a67e2f6ace893c8dcc0578b860ed0a5
622 F20101211_AACCFS angle_j_Page_23.txt
f9ef5d19164f336f8de450b6786e18ca
7904c7ed5fb09a5f2364155d9dddb94b8468a026
F20101211_AACBZZ angle_j_Page_64.tif
542a8e5fbe4e6374a24b63abad1aebda
2a4a09d0d2e8a54017584410faa5124056bb8afa
1966 F20101211_AACCGI angle_j_Page_39.txt
5849db2e8b0b9b30cefab01e412e9c52
5b5ffcae61c18b04ab47da5dadbb1ae1c428b7ce
2069 F20101211_AACCFT angle_j_Page_24.txt
4256c618c0552ed3321da45606fa9db5
b08bd88b553aaeda294290d6066c477fa728d786
1669 F20101211_AACCGJ angle_j_Page_40.txt
a9489d6e07ce253a3405ce1cfc4807f1
7b9dd616ffc8af8b72bf4fca5c466d77e757f0ff
2243 F20101211_AACCFU angle_j_Page_25.txt
666df812c5d2412a0f0872084a6bf06a
6e1492c01f2bc74368e85ad6bd7373662742339c
2170 F20101211_AACCGK angle_j_Page_41.txt
05bb53541eb3b36ccef95e99d9d92631
a69f588370a65eb6312de9f627bde9f8ef21d7c9
1547 F20101211_AACCFV angle_j_Page_26.txt
d626585114fd0e120077b56713e33b28
d0ef483de050d35ac6829e1164e72d1c6419dbd8
1603 F20101211_AACCFW angle_j_Page_27.txt
1e421726d44b243f835b6759da5086e4
0ecb366871376cf9e9427abcd4c77dda8d79bd5c
1013 F20101211_AACCHA angle_j_Page_57.txt
5e4fcfcf484f1f865bd73466a14c98bf
cce9d856e5b60412d658ed67ac0d371acc240d51
2190 F20101211_AACCGL angle_j_Page_42.txt
816e347c04baceebd05905d63f83f839
9a8b4edfb4d9951f0dbeaf1dd1cf62faa3fcbd8b
2244 F20101211_AACCFX angle_j_Page_28.txt
48139ffc9a3fffc45423c72cc86b4365
df3fe8d4ae0fedde82474cd01dee6d0d9d5ddaed
638 F20101211_AACCHB angle_j_Page_58.txt
c562581739e1902ee317de774ba22031
96b4f2026e114a21670dd9d5fd64a91b59db3bbb
2258 F20101211_AACCGM angle_j_Page_43.txt
7d56cabd7726d3d2551bcc6bbe236100
177ce942d1c4bd6396987e43b7c8f04cae0f3ca7
1781 F20101211_AACCFY angle_j_Page_29.txt
2d873689503db6569cfbd9954a33c834
dd1687f7b9779013f3f5acf003c4c28dae566739
1117 F20101211_AACCHC angle_j_Page_59.txt
5eac171022c8106277b74f70b34daf8b
f22ff6bfd0d2605d9dbb2b73d0085a8bddf7fbfc
1147 F20101211_AACCGN angle_j_Page_44.txt
60cdb6f79f7cd6c1ebb90354ff71fbdf
c8c9cff27dba3ae8ca5dec8ea43940ab75283c88
1780 F20101211_AACCFZ angle_j_Page_30.txt
f28ebc99b7f0ab7e17175af38db2c982
8abed423ee0ff55fe4c3668a6c8a6c0e592daeb7
874 F20101211_AACCHD angle_j_Page_60.txt
4dd90610840fc2edecc34b577ba28ea0
50af003906984fdbdd4b7a519780f660e4f908c9
847 F20101211_AACCGO angle_j_Page_45.txt
1008c30c1c97377e43c89b54c3dc64a2
9d3711cfbca6f1ae89137189e587ddba99c968ba
655 F20101211_AACCHE angle_j_Page_61.txt
e4b612ddf49fae4f2fcb6ce6aea0e849
55c96006efebd3015b515c7dec05f634cdfc19d2
1075 F20101211_AACCGP angle_j_Page_46.txt
9f720472b49970326c455c4306a49c90
e26061149008a3ac655c2441550d72ac71e92232
1317 F20101211_AACCHF angle_j_Page_62.txt
998fc5aa3d1e9ac43ed76cbbf4022c10
582d02b5349a49d5c401124d292c7ee676514625
1192 F20101211_AACCGQ angle_j_Page_47.txt
eb539ca93c65bf7b1c26f0c78cacfba7
6a05af65dd0247e3b2c473727ff4ffee1f68acec
695 F20101211_AACCHG angle_j_Page_63.txt
095ec343f23ab53373753e8cb8af2ab1
7abe4cdf5393494af2314f98e5eb9ede39e23833
749 F20101211_AACCGR angle_j_Page_48.txt
67b5cdca2c17302ca00266be62d1ac6f
2cf507ca0f13798a13817875e5af5f4e1492920c
605 F20101211_AACCHH angle_j_Page_64.txt
69999d826919f5b59f71063b4357501c
7ea70171f16b77293160773fa042309f74eadcbd
F20101211_AACCGS angle_j_Page_49.txt
d4bf6496f22eece367b96c26c67cf312
40e3c9984038317ff4427e2e53d383d0a28eeba2
1740 F20101211_AACCHI angle_j_Page_65.txt
c8efdcc3d4c1fcc16153d91f9ab7898b
673e3783c530d09b31a407d51bc7d914a84b9951
1112 F20101211_AACCGT angle_j_Page_50.txt
98b7f8b88f9950b1d65b6fb02cac15d0
8b6648e7fa8f3c33b50b39f63cd65537769c973f
721 F20101211_AACCHJ angle_j_Page_66.txt
1a26803da300fbbc9e3ef515f3205a2d
d8d14b50e745576d76c219ccb85444ee5d39174d
F20101211_AACCGU angle_j_Page_51.txt
41897a8cdc83e447bab5d7e599226734
ef2c340895a0019428c781a5b54ddec838e8567b
1477 F20101211_AACCHK angle_j_Page_67.txt
04c3ff85d6d9964b0c9eab296f6a8416
3d73132f4e4fa20bc6de686961d687430a1c6ba5
625 F20101211_AACCGV angle_j_Page_52.txt
023bc3de763c720295609a6abc8c5746
9275ad01f0fe0a84696adab1abf5ed6a7167a735
378 F20101211_AACCHL angle_j_Page_68.txt
97fdbb53a9cadad21a9b9df0c584f2aa
9f49b6368b436e31c6436af3da38aac207fc0352
1049 F20101211_AACCGW angle_j_Page_53.txt
1e3f7e4efec92bb325ac62a7e4bff564
980c2d6194292c456db09103edcd88b968fd60d6
1027 F20101211_AACCGX angle_j_Page_54.txt
a37efe45f9e5594cba9e394a1e6d5f64
28d232db1b12863c43d5e88a0238f908d2d3253b
2285 F20101211_AACCIA angle_j_Page_83.txt
58ac1efeca7106c0b312968697acbdb4
82787c57ec0ffebead7683ed68ae381289c33f8c
2275 F20101211_AACCHM angle_j_Page_69.txt
38fd1b2476a800f9e0863cee144cbfe6
25d4243b86472bbea22d1b16921242b00a65b7b8
631 F20101211_AACCGY angle_j_Page_55.txt
199174317264957a44199cfc83832a4c
a25223c58f48a798343856b944bf594d32155e72
626 F20101211_AACCIB angle_j_Page_84.txt
9a902d4bb417d04d902b7c430ee4743a
f244aeaa24c3f7b18db02f25ca7434364f8c5feb
640 F20101211_AACCHN angle_j_Page_70.txt
d7d15272a823042e85e94c3c682cd7b4
88e4a962cc9be989d09b523d585fa32bb271e0e1
1424 F20101211_AACCGZ angle_j_Page_56.txt
923e7e120d4c6b43f3acd3704ff466b7
06d29b0c8c4558f3397f6818876339da3a6a3765
418 F20101211_AACCIC angle_j_Page_85.txt
1dc05ce96dd3c1d832741a9a06b7343a
b82f22c0ff9590950a7639bd10db5a97ef32feae
428 F20101211_AACCHO angle_j_Page_71.txt
edf1fbc5e95b864ad609caaa3e1eb3b4
355b5e44422f53b17442e1433fe2a49c123c360e
2308 F20101211_AACCID angle_j_Page_86.txt
65e7c9a095c706c50a81a579eae643a0
d37b11bbd19ff5da8289cc04656a7695a0dc0063
1537 F20101211_AACCHP angle_j_Page_72.txt
2c1f697af91ea288309dc98edac0afa1
e40a8705e570c9aa66032c27796665eca3303f53
1981 F20101211_AACCIE angle_j_Page_87.txt
5fbe1be73d98481270ec7d2b18bb09f2
343d4538fcb1a553d52793b0bae248ffe6dfc9d5
2245 F20101211_AACCHQ angle_j_Page_73.txt
07e1f39bcf5fc3bfb7b1809c1e2bdca8
2d058ca6f734be0346652135183619d51fb5c7d3
481 F20101211_AACCIF angle_j_Page_88.txt
930f194654defca03b7be910f3dfe880
475a06fe04e670b858455b96c1dbcec0e0333155
2012 F20101211_AACCHR angle_j_Page_74.txt
e24bf331aff5d6f271666724b89fe284
bec7dabf75855fae3df628b1a9885488730b6c5d
2214 F20101211_AACCIG angle_j_Page_89.txt
3201268a78d12795a42fe5d784fa4dba
9ed84f5f1597bf82acfab166c090afb8a70992e3
1721 F20101211_AACCHS angle_j_Page_75.txt
69293911ae0316df157bb78e56664e38
ceacca17f423da24597fa69385f569da82ce28dc
899 F20101211_AACCIH angle_j_Page_90.txt
0c75bfa9475545c1583e2bed9860e853
01cc4d0e853cdebbfac0105fc633824c0ad31a3d
1338 F20101211_AACCHT angle_j_Page_76.txt
4302322f29fe3a8b15daa63527f57c23
2809f4f61892b9cc3887cb3625a3587054618b17
888 F20101211_AACCII angle_j_Page_91.txt
dca7c2129d77a713b9b38691fb0fff95
c997552eca4d8c798eb1f4352ecd7ec21729c107
1189 F20101211_AACCHU angle_j_Page_77.txt
6606f7c9613dd43d822fde3dc7979673
0a6d7093bd5c176981827b5435bcd83c528fce67
2280 F20101211_AACCIJ angle_j_Page_92.txt
0790a3f69d7f0afb2cb8f9c455e2f823
c6b32641bfdb7e4ba57ec566bb612d54814443e6
1738 F20101211_AACCHV angle_j_Page_78.txt
1f49096e3b05a02fa3915bd6183554ff
88e8b0c2ee5dee90e9df3b766a5cf710be4c14a0
1412 F20101211_AACCIK angle_j_Page_93.txt
20383117c510351cf9eacc2f4fb90942
b948adbed8cf5a26b5e69bbf65eb91fb1ca2d506
1937 F20101211_AACCHW angle_j_Page_79.txt
558cec11807284e9044b5a0bcab44494
fd63aff02353e18cbfc160b78fe772698eb68a1a
2435 F20101211_AACCIL angle_j_Page_94.txt
bee418e1b8cc3cdb1672d2ebd0641769
f76049e8cf6132fccc43cafb26afdecbff9ff897
2647 F20101211_AACCHX angle_j_Page_80.txt
fb6174d10407aff3d3aabeaf879a5677
f6468ecd556ba099742c568bc5028ad156a339c4
12047 F20101211_AACCJA angle_j_Page_06.QC.jpg
3e7f9a678039319ff8f1d5b269223101
26abbf58253544fd36b6893c1298fc255bfe6e65
2472 F20101211_AACCIM angle_j_Page_95.txt
b12110fae74a87f854cf797e12536d26
836f5cd0e549e66945e560bc332ffbb970706740
2145 F20101211_AACCHY angle_j_Page_81.txt
a8bc830eee2e5ca56213b8922c735667
f9c650f2c15beb21a63f1fbf1be7272adeb52538
3524 F20101211_AACCJB angle_j_Page_06thm.jpg
655e20ca81d43c06ced5bc83172565b8
e6e25f4e39465c1be877825a2a850095e796dd3a
729 F20101211_AACCHZ angle_j_Page_82.txt
19757e9bdd980f14985368dfd019fe9d
b894f2bc40ee8e10018f9bfc70e96afd7d8b14f1
26739 F20101211_AACCJC angle_j_Page_07.QC.jpg
3a7360141dbcdea259f423de878bb4b2
83afdfb2d74262b1dbf9cb999fe6c9dede057da4
1792 F20101211_AACCIN angle_j_Page_96.txt
de86d000bae6153fe27d25529f4a3c94
fc6b31dc6728fab0f8975f4feb04b34e10d9d5a2
6319 F20101211_AACCJD angle_j_Page_07thm.jpg
6a337b3506405d10625bc631879e8209
78eb7bb97f0a2be7edca86a6030047af66797f64
1053 F20101211_AACCIO angle_j_Page_97.txt
88331d15dd4d48e0ea787da995fedfc3
5f9e2fd098cb2fc194ededd5ee070437141efbda
8613 F20101211_AACCJE angle_j_Page_08.QC.jpg
d4b9d5ca9b95663a79e974b4b102905b
fce5ddf3f868466e962290e9e8ae99514e0de798
5705868 F20101211_AACCIP angle_j.pdf
eb854fe974439570add5fbb711671390
32e7800ab66f6ffbaeacbf31df470defe8a1eced
2580 F20101211_AACCJF angle_j_Page_08thm.jpg
c054a325b9bd179a40ece913328ebb87
06323c4e7ee747d1c17f80137921ef7f9a75555d
2241 F20101211_AACCIQ angle_j_Page_01thm.jpg
47da17f0b501d65aca546749d3b49cd9
4c402d71bfbf257a8b9e8335942f9a65043361ba
24646 F20101211_AACCJG angle_j_Page_09.QC.jpg
b1d60a1ed4a370b6dd47eb0b549f246f
16f592db033a50cc7a98c30881edd9e9b26936f7
7526 F20101211_AACCIR angle_j_Page_01.QC.jpg
3a3db3619fdfb22e619c80a7557101dd
52c1ac25f9b82fb673475dc44ac678eff784c895
6085 F20101211_AACCJH angle_j_Page_09thm.jpg
3f3cf7eb6b52d67392fad35df93f8c06
f74674b03c12b250910f4c99d6d4293af3d821df
3197 F20101211_AACCIS angle_j_Page_02.QC.jpg
a810afa9dd34f237609d05c6df315ba6
efbd632b95fa1791fe7d815e02c62b6a0fe2a41e
26577 F20101211_AACCJI angle_j_Page_10.QC.jpg
20d4cc69f0f8c447c22a18883592a49e
d5bbe750b2c95c10d3ff6f616d8f49ce65a6ae59
1357 F20101211_AACCIT angle_j_Page_02thm.jpg
fd5966383be220396af90dc924aac7f2
c4931ec3ee32b1b50eb7eff6bc5ba392c01862fb
6471 F20101211_AACCJJ angle_j_Page_10thm.jpg
d903d76712a9591cd8e4b19759310b82
0f20e8cf46ad07db2e198808a7def5fa0650c88a
3312 F20101211_AACCIU angle_j_Page_03.QC.jpg
7b73d60efdc78fff7677b351987fabef
cd5ae1c6cd6973d550409dde1aed265f579f6432
9555 F20101211_AACCJK angle_j_Page_11.QC.jpg
218c45a63238f1a677c40821b539931d
6d3be6c81dae8a8a3d411b445355d7793b7fe950
1500 F20101211_AACCIV angle_j_Page_03thm.jpg
b5783d112274577a3944520ba1e67e60
beb1435ba506f4d5a9a18b783c79972e5b049349
2768 F20101211_AACCJL angle_j_Page_11thm.jpg
06d99261b789c4194ea47fa60a298b44
74aa4de54ae8cb74438d6ccdd50eb406c4ca186a
7851 F20101211_AACCIW angle_j_Page_04.QC.jpg
3453c734aed000ca4d7db8d2d0dc6bdf
291ebfc91e03c26cdd245a2140c949c24a6809d7
27296 F20101211_AACCKA angle_j_Page_19.QC.jpg
f67987a45ec718566dd49e64c29d43d9
d7d26ce1b72e1740d905b3596a665afa3186e869
22237 F20101211_AACCJM angle_j_Page_12.QC.jpg
fb8b98a275098cd8b15adfc8fcb47c16
895231a9c19d91c04e5e4597810e21654c074ebe
2420 F20101211_AACCIX angle_j_Page_04thm.jpg
51b3862b975b973993a31509cac16670
6c1905070a310186029a19a1013d98dd2f9a13ca
7078 F20101211_AACCKB angle_j_Page_19thm.jpg
3f5a136e43233d902e6884e2bee9f823
c06b3e1196dd96956c4bd0b4705fb47a0eab3c6f
5800 F20101211_AACCJN angle_j_Page_12thm.jpg
3a36ccb62c99c307df80f962d6b90463
1b3e1666976a40cce3a8fc28976faed45fab59cc
21530 F20101211_AACCIY angle_j_Page_05.QC.jpg
e004efa9c3870d1182eaab9eb1b79f13
237aea97ed8d7ff41c27c249f08b8a411c68a184
5152 F20101211_AACCIZ angle_j_Page_05thm.jpg
429a1257c5989bc57035a8ddb28bee19
b57a9c8fb0a08666971138dd1cfc5f3b85df4100
27085 F20101211_AACCKC angle_j_Page_20.QC.jpg
4381a47c775856396559187d752c5b47
d3cef16c51b3f199e641adc877953e59990e1bf0
22145 F20101211_AACCJO angle_j_Page_13.QC.jpg
4f1efcf4309b6ed9962e99bde761ceec
a7b4af9d62b88c7a2ce4ecd6d51268141ec59ca3
6827 F20101211_AACCKD angle_j_Page_20thm.jpg
55634076f71785dddd2839bee9701e7d
5890051eb7297d8960f724e04ac09aa06dcbf445
5511 F20101211_AACCJP angle_j_Page_13thm.jpg
2dd79b0f2b98faf2deeaa952c73b95e1
95536a228c346ca81ec7242fa28d1490eeeb2fac
17081 F20101211_AACCKE angle_j_Page_21.QC.jpg
2f174b3a3854291305de6c583293a392
8de875a89f9ba8cda9ec0401c81c1991b4022274
28749 F20101211_AACCJQ angle_j_Page_14.QC.jpg
b3fb99d21a9bf2c3e5b4657a96dc2e6a
c22bc991d1883dda851cd31128575678df11ddfc
4906 F20101211_AACCKF angle_j_Page_21thm.jpg
94676b6c1129c7a985bf4984677c1589
c747c21180471382025ccd46ecbc4978b2ff3695
7067 F20101211_AACCJR angle_j_Page_14thm.jpg
29f0b1f4220e3ac360be4341742029ef
59a7e6bb3c3e4eabab8b53591e9e4834ab7840a2
17658 F20101211_AACCKG angle_j_Page_22.QC.jpg
963441c7da1ece19c84d22d8bee66f72
9b178c3c879d65ee01a61740bb3847386f0aa282
19166 F20101211_AACCJS angle_j_Page_15.QC.jpg
e88622d84ce9edc38f3839b395c11ebf
875f03703f27a69a594792ca83a6dec6388411e7
4683 F20101211_AACCKH angle_j_Page_22thm.jpg
1b9bce03eed6ff8bcb7d7d5ca7007580
fc6178fe715d447f01533d51ec336dbe8aeabdfc
5306 F20101211_AACCJT angle_j_Page_15thm.jpg
f1eadf80e7ec808ead1194ec857cb2c2
4ce953832250b5ec5be61bed49b6cff1003fea60
8427 F20101211_AACCKI angle_j_Page_23.QC.jpg
02a08992dff23af66f063c8058fef658
b875648c02b3f69ca71c12f5779ae10a50ccbea3
23508 F20101211_AACCJU angle_j_Page_16.QC.jpg
766206b54d70f42d987422973259463a
2dd954dcf1427b1b73768fd603864a1bd1e8ac08
2484 F20101211_AACCKJ angle_j_Page_23thm.jpg
cfa721db6219e7a5c896664da9a488a6
854d25db2773a7e016cf4d220125dc3522584d89
5967 F20101211_AACCJV angle_j_Page_16thm.jpg
a5433123b78c6559f82f36c8099d891b
89fdda418f4a4d6108691a06491a44d74b4d3376
24146 F20101211_AACCKK angle_j_Page_24.QC.jpg
b4d343b067709ac544fd5dc3919e0c9e
831cf7cc31126cb5718668077e7b09fd66a812ee
23333 F20101211_AACCJW angle_j_Page_17.QC.jpg
ec5e14838b6c8ec2eeac914df4ec10a2
f9858202b46329a5d1461deb0ddb6fbad74c5b69
6220 F20101211_AACCKL angle_j_Page_24thm.jpg
9e0ba5d40344171ef5d3a8391649660e
d881d630bd85300e0fcbfde95a2fd531530502b6
6227 F20101211_AACCJX angle_j_Page_17thm.jpg
5abe0111b5f4199c86480220a1375da0
a3f88cc6dc0517c91957fd955e5c800ed45e8186
21257 F20101211_AACCLA angle_j_Page_32.QC.jpg
fd2c3a5fdde95479ce21c311df86445d
37434abede1339d7ad377d92b0328b4531262406
27519 F20101211_AACCKM angle_j_Page_25.QC.jpg
61c3473361a7ef8d0da6b4c36aa0108a
21fdbf9639a436f7754242ac7c8ea98dc341c9e3
27836 F20101211_AACCJY angle_j_Page_18.QC.jpg
4d14def00c0c02c4804fc24bca360386
2712fa94c99b1e58e91eef7c07ee0f5f554e62cb
5771 F20101211_AACCLB angle_j_Page_32thm.jpg
dc341fe251ddaf21a5b7aacca3c2ad19
06f753bb3f66eec5cf9c33550e188d1fc85f0604
6968 F20101211_AACCKN angle_j_Page_25thm.jpg
8f81c728055a53609c15389ded45fa0c
fd83d37742cf6e3346268a6633e74792247c2c5f
7178 F20101211_AACCJZ angle_j_Page_18thm.jpg
d1177c183f468e98b1654528801ba060
b94fe34bc6494ebd80be8ac073dbffcf6fda9fcf
21001 F20101211_AACCLC angle_j_Page_33.QC.jpg
673b909a94ad66bfc99f948cab73d185
641c263a9b7663e067bf9ff51f7d35be386b1629
21403 F20101211_AACCKO angle_j_Page_26.QC.jpg
0ed5843199ab33bfe3a6c0bdd0ab552a
e21f7a1ce8b640b5e75aec8350cdf0f31a9dc6b2
5635 F20101211_AACCLD angle_j_Page_33thm.jpg
6de92532c08aeb2e69b54c8aa73d4221
4bee70e7804ce18bc082721a1a1a312f0a0c8a6d
25924 F20101211_AACCLE angle_j_Page_34.QC.jpg
5b7525d510680497d7b89b279808e6c3
c852fd7f048c7aad4230b4b9203ac1702c314515
5603 F20101211_AACCKP angle_j_Page_26thm.jpg
4fbc8c4c6f6c0fa0aa0af5b0129b9ea0
4d5c909bf8e540d2f0d430039cf9a69ee829a438
6816 F20101211_AACCLF angle_j_Page_34thm.jpg
e0656e0046d8589aca99e9aab29aceae
e3ecf17cf9ee0dae860e9ec9a8411ec1925ce1ea
19792 F20101211_AACCKQ angle_j_Page_27.QC.jpg
24e0389cc1d9ddf4367250625c847259
dd40f389d2e36d928a5232a7dfff0069856c8bee
17343 F20101211_AACCLG angle_j_Page_35.QC.jpg
d0b35dc72e2ee877128c644dc8208f65
554c688078fcc0bde6ac7762ce82a21c5d4a8b5a
5479 F20101211_AACCKR angle_j_Page_27thm.jpg
2749f6c16097bd7931e1b6cefd089f94
6e7548fcb40de7a19e23b19a959658723ec7a6f8
4957 F20101211_AACCLH angle_j_Page_35thm.jpg
d344fb0f4133c8832d1036f4fd5cd059
53d3f7147eb7d7cc61c43a84fcabd9ee8ea492b7
25364 F20101211_AACCKS angle_j_Page_28.QC.jpg
85065cc0dae3b361b3589bcde3824fe6
181931a865bbc8332d8144c4cea3d43690acaaf0
14641 F20101211_AACCLI angle_j_Page_36.QC.jpg
46a7b7471a89b86f09ef49670cec3c72
fb39817270185517a733289bf634da0de5e8ba1d
6512 F20101211_AACCKT angle_j_Page_28thm.jpg
908644994a88607596a0f4d7d05d6121
40d423fb74777ee16385b4676e782a3b3941e024
4395 F20101211_AACCLJ angle_j_Page_36thm.jpg
26bba4e5e113a12272ac58e90ca2c182
ea059a1aacb2763e61d33eaf639f9774d8e44304
22942 F20101211_AACCKU angle_j_Page_29.QC.jpg
836c93e825d8543062ba0ea67b17f2aa
4bf8b9ad1a9911118632c1f1326d60b6ddc4cf6f
27557 F20101211_AACCLK angle_j_Page_37.QC.jpg
938c4ca1fcc72c15e2dbd89f91234753
1bbcabe509625c4ce458d4aa2281985f6f31adae
6114 F20101211_AACCKV angle_j_Page_29thm.jpg
5741b97f9e15c3d48034835c2f031440
79823d10ba43f81df2c2bcc70c190bf0893def6d
6953 F20101211_AACCLL angle_j_Page_37thm.jpg
14dbc2ee7e9faf72b715f3d01a065de8
7bf405966eb2a11ce3192627916e8c349cd3f08b
22814 F20101211_AACCKW angle_j_Page_30.QC.jpg
a33a5b707c3ea58bb28678c5d31c5757
fc9923de57ff649e3c71a3274c88db3e2525077f
16163 F20101211_AACCMA angle_j_Page_45.QC.jpg
16c1025a70a1ef58aa000c432f967597
b102fe14a5a4c48550b013c7955d721cec9c9ae9
15264 F20101211_AACCLM angle_j_Page_38.QC.jpg
7be6f905813d85e7f1936a847ccdca43
ea5a1e95800b177d49efbdc1efd2a629ae0a31c1
5943 F20101211_AACCKX angle_j_Page_30thm.jpg
35b14b641ccf94cf68faf4040df882ce
c2cf2f6463f500007ad42172b0cbd01e81adbb4e
4922 F20101211_AACCMB angle_j_Page_45thm.jpg
5caf28307d8c46c5cc379a9f080bdda9
6885d0a81f883fe7bd1f814fb5ac655c1070b8ae
4413 F20101211_AACCLN angle_j_Page_38thm.jpg
6d55cbfff6107071b371a9ed4ee562e2
651f5d604edf90de0b9c3c88b93680e21669675f
19976 F20101211_AACCKY angle_j_Page_31.QC.jpg
80a1c6f10638ce493671318f6c14aa33
3ba35d5a8980af69367806800ed7709958d221e3
15796 F20101211_AACCMC angle_j_Page_46.QC.jpg
3f5fafa72bc67a31c3b624bd03945fc8
5d93e8035aa3dde64ec6485856514a333e0efb2d
20364 F20101211_AACCLO angle_j_Page_39.QC.jpg
1c2bfc5aee861b7c1ddb7b2b3aa22a61
6cc53be24a274b5fe709d0363108e7170972cd4d
5550 F20101211_AACCKZ angle_j_Page_31thm.jpg
a9666261bf28e305b7ad6f4a2bdc8787
ee19c10d3c7744ac2708f23484c68174a08c35f6
4547 F20101211_AACCMD angle_j_Page_46thm.jpg
1d5ee9cc2590daaeead1a7922070ff97
c677333801f8a8529a591a1d7204980b2067a232
5380 F20101211_AACCLP angle_j_Page_39thm.jpg
163bc643323fd68eddd4aaa94c893227
c16efc96208e7f8e3137774038d1cf3368cce8e1
18422 F20101211_AACCME angle_j_Page_47.QC.jpg
dfd25e02e134ca1e7e78cb879838f76b
a077a48f6ac99a2af760e2cce3d9bad6eaa85c2b
5630 F20101211_AACCMF angle_j_Page_47thm.jpg
467b56fda9a46e9eb911f61eaba814c9
67e6e0e7c02b8c39c6ae70a1fc2a1ea2622d42a9
19558 F20101211_AACCLQ angle_j_Page_40.QC.jpg
3422f3265656e09d7e6b5f80fed4aac6
634dc9de66c80fcec8369d81b90ab4aa5e80f5bc
15170 F20101211_AACCMG angle_j_Page_48.QC.jpg
c45d995b98241667205cdfe9973e467c
75b9d7ef41d7b81e02efbf1f669725c2f740d71b
5470 F20101211_AACCLR angle_j_Page_40thm.jpg
1d705638dcd14dcebf7f9ded0b8721a6
4f1c2969e2af1367a6a286faf1b5b9f75a6d5e34
4455 F20101211_AACCMH angle_j_Page_48thm.jpg
07df991bc87298511f4fa5b38de987de
6356159c09c9bd333e19e03bbc6924a41a5f5c70
22928 F20101211_AACCLS angle_j_Page_41.QC.jpg
b026a0d4300b11d01dd959dab795d7d2
3b365a78984a8fefb825386b0282973ba654268d
14470 F20101211_AACCMI angle_j_Page_49.QC.jpg
49e6495d69fffc80bc3d915cec3d25fc
520f2fd3400ddc91e2cca8a71224d1d25b95826a
6054 F20101211_AACCLT angle_j_Page_41thm.jpg
b75b66769148cea3d9120a24f313af09
e37424a35361f0ea8c4fb06cae743e3f270c23f2
4386 F20101211_AACCMJ angle_j_Page_49thm.jpg
13806d67dcf58bd82e29fd8454dc035f
ae81435ad98e8c8d7f7bb7ba95f66d31aa5a3d3c
24821 F20101211_AACCLU angle_j_Page_42.QC.jpg
318880b33bf7348cf6e9a52d7b7d0cc3
bd5596e7d951fe660cd5c98b6334e6af96fc28f6
18776 F20101211_AACCMK angle_j_Page_50.QC.jpg
543685bcadd595167cfed33da2d72e68
683fb70cfb48ab2fa12fb29631ed139cc01ff3dd
6560 F20101211_AACCLV angle_j_Page_42thm.jpg
3f1ca3715f6aab4015f7984856dcda5d
ed87bfc3f47b9047d29abcc3b607760d3b0c51b8
5197 F20101211_AACCML angle_j_Page_50thm.jpg
66a1f43d4872a19231b8255e1b1a8e16
6e7b85927292b5546f995d0f775dd4ddd0093549
26911 F20101211_AACCLW angle_j_Page_43.QC.jpg
8c9bb05dad28a84d36c5d3ee3fe9264b
3741774714b86bb0156092c703f58828054576ce
15438 F20101211_AACCMM angle_j_Page_51.QC.jpg
c86939e5110728136fe01911d1bbd8a2
6bf56bcb7b2728038e219a149339fb75cbf7aeb9
6660 F20101211_AACCLX angle_j_Page_43thm.jpg
4f0a184d5ecd4368f5b29df26cf6c2e1
bc37afd0f743389b3165bf1dc1d7b158474fac6d
4399 F20101211_AACCNA angle_j_Page_58thm.jpg
22788097c7fbc7c379aeadc343900f92
b6d29a4a60d18408730f99f181b9692b3442e32d
4546 F20101211_AACCMN angle_j_Page_51thm.jpg
f5b6482cd304c7243b5a3976cd2a759e
572449b19e2af17a60c78b537a81a570f87435aa
18616 F20101211_AACCLY angle_j_Page_44.QC.jpg
f95214a51bc01da7dd7c2a1f372b125c
200e3af96942d0f11c255225dde80c7976b07272
19851 F20101211_AACCNB angle_j_Page_59.QC.jpg
b19eb9531ef3367f1b3d3c91192dcf29
3d8f244e1b255817e1d078c637f7d4bd5aa26315
14010 F20101211_AACCMO angle_j_Page_52.QC.jpg
b47c7591f974d3979f3eaa394011840b
5ec572d8d58ab1d027d6f7341ebadc91683f72dc
5063 F20101211_AACCLZ angle_j_Page_44thm.jpg
6680c65abdbed270c1fc1f41a368479a
fd3e8cc8c86c8fb8e7d1a8f190d5d86e3be9c257
5246 F20101211_AACCNC angle_j_Page_59thm.jpg
8fd0288a4ece6cdd2e337b3e449acd6b
9816557e20c08dee57aa08f88cc9750a105c9096
4426 F20101211_AACCMP angle_j_Page_52thm.jpg
5ec00039da90f7eb8f5ea648313fe150
893d920dcd15f8203b0e3c73b87f3da654e4d3eb
15717 F20101211_AACCND angle_j_Page_60.QC.jpg
237dbe5bfe531e7ff6d0e29f402d0328
1e4d4c197a3fcacb539990bc53915caa96887ce4
19160 F20101211_AACCMQ angle_j_Page_53.QC.jpg
515c8b55a0af5fac759e3c75bb668e93
59e78424f9c6c1691745ed054c901690f69e1ad5
4574 F20101211_AACCNE angle_j_Page_60thm.jpg
db6c40943a0bb43e0470537ee02c7709
88ec9eeb4123de2771f59b7376057fe02a405fc0
13472 F20101211_AACCNF angle_j_Page_61.QC.jpg
d38bfddcf141c33d5a95f0741fdda436
a5c7026967cc639930a976475309b7d872c49dd6
16836 F20101211_AACCMR angle_j_Page_54.QC.jpg
8efe3a12799dc199d8e02aed077b0196
8c9623de35f21c89ff7f961c5708d6b77ada1a59
4294 F20101211_AACCNG angle_j_Page_61thm.jpg
d0dcfb49b3ae8a1fac70e91e2cdba00b
55d6f253e0d27c3c6c90f753691dc478fc3e8054
5033 F20101211_AACCMS angle_j_Page_54thm.jpg
32ae13f770ff3787936e331509a1ff56
085acdb17f65dd3507325dd53026241f044a151c
21095 F20101211_AACCNH angle_j_Page_62.QC.jpg
707d200b2003c5bdf49fc2b9f02ab26d
bbd11dc2b0fefabafab9cdc59558ab26cbeaec06
14490 F20101211_AACCMT angle_j_Page_55.QC.jpg
bbb65dc1af953c6378db2d071e463c6e
4065db77a527135222ffc9d2d52d428d41fda785
5667 F20101211_AACCNI angle_j_Page_62thm.jpg
5bfb1fc1202f774afcb9a17556eddf4d
39388505560c97326e3acb4e6a8ac947d7f11f0a
4482 F20101211_AACCMU angle_j_Page_55thm.jpg
3ae5d2c50d513b378534cd9ff378e760
9a8b47947b1bdc3ccd923237a89939d7c3621453
15452 F20101211_AACCNJ angle_j_Page_63.QC.jpg
9601c330d25ea22dcf39d4a942126ec1
4ac0781f94bf2dcfad9edc2feed5ea7cd712956c
20938 F20101211_AACCMV angle_j_Page_56.QC.jpg
ebca659b431d4d4d66c77a29da9051e6
38af1a06bf6bd8f6a35e46dee57e09343bb2a76e
4722 F20101211_AACCNK angle_j_Page_63thm.jpg
a4b611a988b717a88874e56d10f8912e
66771d6e7c185b8750705ec920110c7736c1f753
5472 F20101211_AACCMW angle_j_Page_56thm.jpg
f3805bf7d776d514bb7406f4c32d809e
44a5e59e81c20b8e64735fab51c8b4fadbf0f188
13786 F20101211_AACCNL angle_j_Page_64.QC.jpg
21cd5d001ee94bcd455dca95105ffc5a
bf3975f9d803800e5588bf92f1f8df10ecb767d2
16917 F20101211_AACCMX angle_j_Page_57.QC.jpg
420962394221c364f5e5b0c2c8e454a4
671eed1f2d4ff17b40a577cb54921095f2f12864
4969 F20101211_AACCOA angle_j_Page_71thm.jpg
646742cf220eccf69dbf5fbf42537591
36bee5ed5c7ef48060ee8d96a902a590c800b0e7
4387 F20101211_AACCNM angle_j_Page_64thm.jpg
3a7ccc4e7dd90692ceeaa5b9fa9373e9
201061e93f9fdafa90939433a26c08d33629742c
F20101211_AACCMY angle_j_Page_57thm.jpg
7930fb6c1be86af3960112374c6346da
9f142141261d5623a51a83c87689471556a312ee
22807 F20101211_AACCOB angle_j_Page_72.QC.jpg
480793a8b210afb060c5a83fd1941da9
4503635bae8466c8879531ebc1c05ec5f5f31ace
18623 F20101211_AACCNN angle_j_Page_65.QC.jpg
74eb23da6052153c3e614d4bd8089b71
cb13ff15ae23f0ddf8b6f6069d325028794e7605
13626 F20101211_AACCMZ angle_j_Page_58.QC.jpg
dd98a46c4fda76888463760bc4850de0
736200aa81ba76521bf5aeaddc6e6982081ad955
5932 F20101211_AACCOC angle_j_Page_72thm.jpg
6eaa2e5123f3f0e42c88d2accfd6f111
1aa04c88e8f811d5cca51743746f438ba4352005
4845 F20101211_AACCNO angle_j_Page_65thm.jpg
07f29926249224fcbd989cf36b1add7c
824e2c70f054a7a21f7b4058063c231c74cf8612
25411 F20101211_AACCOD angle_j_Page_73.QC.jpg
70c6ebf078380be6ab94b0d6c6de7155
2454c7784048e7bb2219eb89aab37e712a10c71b
13315 F20101211_AACCNP angle_j_Page_66.QC.jpg
8f10e11e4bc912e9b5bb3e24bf042d75
1d6f9c02f65f6d2f3c1dfaa1816c11dbf5b2f8e5
6797 F20101211_AACCOE angle_j_Page_73thm.jpg
3fcfa1b0b39b8551fb921128a638e638
6c824b9fde84c729a09136365beb997ceedd24a7
4209 F20101211_AACCNQ angle_j_Page_66thm.jpg
277c72bfab3b37f2fb5001dc9b7b22e0
d4d0814aae0f3d6e9739fe09f551750f60e68c91
23582 F20101211_AACCOF angle_j_Page_74.QC.jpg
066a7d7d21bd8d4ee75e7ca1fe3c42a5
c575bd319cd20f99a4ae4439ca07215c0a4b8122
22689 F20101211_AACCNR angle_j_Page_67.QC.jpg
9c21793a42c09314b10a5d96c6fa6c86
d66de9e5f07e425983978d21a949dcaf6c783521
6082 F20101211_AACCOG angle_j_Page_74thm.jpg
8bdbc1f8540adcd7beb9a8531985f67d
50e6c0529d839be77e72e096d22dfa442673fd8a
19678 F20101211_AACCOH angle_j_Page_75.QC.jpg
db9af58355d5a5888fd2f42a6fb1c946
d9669550b7e67c27308d312b3d6b4293d10714a2
6333 F20101211_AACCNS angle_j_Page_67thm.jpg
4db6e091d5021c5fabb8181216b210f8
f1d7b851f398f0ae6075e8f35af514ca8ba1e37b
5285 F20101211_AACCOI angle_j_Page_75thm.jpg
fc705278fca3056a0c9a7e5a82cce2dd
4dd70e23fe24b1cf5abcacf90155f9714ac1424e
6238 F20101211_AACCNT angle_j_Page_68.QC.jpg
c14b450435753a24f457932010480d80
c335d1b6a66c247a88f48d97c9fe24b73ca2f4f2
17303 F20101211_AACCOJ angle_j_Page_76.QC.jpg
c8672f6afdce3dccbd63ad5783aff54a
6d9555c8ab029d662de89395535f11c091d51438
2029 F20101211_AACCNU angle_j_Page_68thm.jpg
7f67726cfae627de209046fd3040b6bb
cbfd7a9680851d114f34b6d6d9837e855e2c766c
4863 F20101211_AACCOK angle_j_Page_76thm.jpg
a38831610eedbbd7ce4bde603ba58cb3
7a9295d97431f3f203a7de3771967c372a0729bf
23464 F20101211_AACCNV angle_j_Page_69.QC.jpg
3a71d189d82e3e40325654e2405ff823
07d44da2c05d3a38f8e3576323101dd09132c451
13367 F20101211_AACCOL angle_j_Page_77.QC.jpg
50a6ffe68e8460caefd01c949a1b24af
fd7033bcb4c638cadb1897ee776f225bdc3b538d
6134 F20101211_AACCNW angle_j_Page_69thm.jpg
97191e25928b5a7c33e81d06b7559e5c
3cee5a9831d8b8aa69283c212c2daaca78c38366
4286 F20101211_AACCOM angle_j_Page_77thm.jpg
68688eee73373a83156c520197897625
bb0c6dab3b943aa269d951731dfe5fbce848c1d3
19422 F20101211_AACCNX angle_j_Page_70.QC.jpg
ba62a44071d76cfc58a4bdcb401fda7f
0251dd547f868d89c89f2113c24cc0301fd2b56f
16952 F20101211_AACCPA angle_j_Page_85.QC.jpg
57b93b99440b249b17a9aa0fd5c9795f
c4c7a7579c69ce040d9d999df2ae689b82479132
21125 F20101211_AACCON angle_j_Page_78.QC.jpg
d6ad7726e59934e1d339d4d6f6c4a187
fd1e9bd8faeed2aa983fa1be61f9c490c5fc40c2
5569 F20101211_AACCNY angle_j_Page_70thm.jpg
d4db7cf407c5f86ffbf6ec837637fa38
1e818b3853b118b4f8e985001eb7c8e5d17f5fd4
5335 F20101211_AACCPB angle_j_Page_85thm.jpg
52321cfb3fa7049129237a44e76130ed
12822417a75223ba50b70b51985f4a9fc43cfddd
5625 F20101211_AACCOO angle_j_Page_78thm.jpg
c000cf0682464d1cf879aadc8e39f5f6
66f061fb9aeeeb8594266eb540dfa421f49b8b0b
14210 F20101211_AACCNZ angle_j_Page_71.QC.jpg
bec87b609e3ddd1a7f8466587a1773d7
1d40dbaee6abf8f0ba2bfee8eb18bf913e438834
24885 F20101211_AACCPC angle_j_Page_86.QC.jpg
546854f75b75e86f996fb75da232ceb8
3ab08557f22f1cf8dbce7280bb0ab8a66a7ee341
23189 F20101211_AACCOP angle_j_Page_79.QC.jpg
c2676d875056f4482aab6e62001cd3b6
269639a9b19b468a368cefb4eb377175dcac3859
6258 F20101211_AACCPD angle_j_Page_86thm.jpg
e9ebb97fbdfd627ea1b71b5a5d4ef451
699d44ab17bfd44da0ae184c05f90a48592f3665
6247 F20101211_AACCOQ angle_j_Page_79thm.jpg
a1c424e37b09768dad37b711f1ddd67c
0b0410055d08765dadafd2dc695d430ff16e8f86
19246 F20101211_AACCPE angle_j_Page_87.QC.jpg
e28b07729228bf575a5ab3e65f888473
27dd10e09481f8e5b50d03dac6723e7e48fadb94
24966 F20101211_AACCOR angle_j_Page_80.QC.jpg
4cdb7ba6fccd2c8c5a922133bee1ad29
9bc40ce712df826f55566c51ad8967e4793efd6a
5341 F20101211_AACCPF angle_j_Page_87thm.jpg
154ef8d22d847795c01282caa60a9f8f
a19d1c6a5a64608aa7e3efdc410fa0a86dc1e9f3
24566 F20101211_AACCOS angle_j_Page_81.QC.jpg
dd5e937c002b8cdf43e5b20075c8cf33
414fcc070b56fcac417b444056cfe2c30869db0a
10627 F20101211_AACCPG angle_j_Page_88.QC.jpg
2168ff7594ae8ae5353449cea9662735
2e6eee143c0cc72d6702d8ece5a81beac864118f
3586 F20101211_AACCPH angle_j_Page_88thm.jpg
339fdf3096894d469181ca1d4a18ca64
8d049a08474c8fb021367210594aa25333845064
6337 F20101211_AACCOT angle_j_Page_81thm.jpg
de655e29219213509d3eb62db01906b9
e854b696bc0401dcbcd94c00027bc351070ef8da
26155 F20101211_AACCPI angle_j_Page_89.QC.jpg
14fe1a867a5a246c16dcaf24fe513058
af29f815bf654a26065f3143ef1a46b87796b2d9
14216 F20101211_AACCOU angle_j_Page_82.QC.jpg
840f91ed771717b7fef7b872c841c2d5
8c46d0a6f637b1b3ab43beabfc95a134c9c47bac
6494 F20101211_AACCPJ angle_j_Page_89thm.jpg
7a32478651ef1d92bec620162e825d34
71fa453ba393e6c29d5e5e08c0b567e75c38af1e
4492 F20101211_AACCOV angle_j_Page_82thm.jpg
f18ab292cdf5745638eb370a0ac288e0
7e16db1153b9726513b8a56f972204891968106f
17561 F20101211_AACCPK angle_j_Page_90.QC.jpg
9f894c4c23c9d51a49681604d0c12f73
886e8224f3104e016db045f3725d9b0f186abfbb
23760 F20101211_AACCOW angle_j_Page_83.QC.jpg
e7d3bc3a286e093226c4ee3fa1d4acc8
88cb51c1fbe854cead2ce291e8b774bb1f240fb9
5891 F20101211_AACCPL angle_j_Page_90thm.jpg
f8197ad583ff51ec6196ead6be658de2
ddbfecc9c0f7641c662541415b0e54d90ac6201f
6099 F20101211_AACCOX angle_j_Page_83thm.jpg
bafa4e2b68466805b74a3647d9e5644f
6c4ac8e5bea8697d32f2091cf2ca987bc8bbd610
19668 F20101211_AACCPM angle_j_Page_91.QC.jpg
d62b0a2d963da3a796a9baefbb4c0bc2
3bba7f1f72e7d58bfa6007e73042d5f401063f04
17902 F20101211_AACCOY angle_j_Page_84.QC.jpg
58a3f63729a4aef2eb741d0b5cbb0ee1
4fd1b3a00d58882a58117064df39725442c1b8c3
5492 F20101211_AACCPN angle_j_Page_91thm.jpg
b5c33f7210180cbc2ed41d283da948a5
9de411e33ea33a198a86b0ef99eae83732ce954c
5746 F20101211_AACCOZ angle_j_Page_84thm.jpg
d086188eec39af9eea6e0ba6df30c12d
22e4157fed9745a64580781dd2f7dbfe227305cb
26437 F20101211_AACCPO angle_j_Page_92.QC.jpg
fa34099f256dca9507056278b708406a
d687d98a9178a87a478cd37cf3b25c6ef0ada261
6764 F20101211_AACCPP angle_j_Page_92thm.jpg
2dac09cdc8edcb490d5daba1fbcfab9e
cc682efbe31efbd1e31fffd2b97868d5b61a752e
23565 F20101211_AACCPQ angle_j_Page_93.QC.jpg
a6dad8a1336d30078a36797b98f16b50
0491ab1122f64f9088ad0d42cb6d0ef4a3483e5d
6117 F20101211_AACCPR angle_j_Page_93thm.jpg
a7027704375c4e9a27c74e7a8abd13c5
0e13c43b9af003fafd0ff4f1f5ad88862b654b0e
23458 F20101211_AACCPS angle_j_Page_94.QC.jpg
dbcbf1b28d12198e81ab45473ce5c1b4
156d86e863c6523d311567beb64003de4dcb6a01
24935 F20101211_AACCPT angle_j_Page_95.QC.jpg
55abb2ec8f838c0ee92a85d876ccb237
3087be23d5fe343d3446889c365c9989af208ea5
6411 F20101211_AACCPU angle_j_Page_95thm.jpg
c9d1ff0e93e3da4b07a91a7237b1817c
02219a83ac5e4c97262fba2a8bbb38999bd774f5
18437 F20101211_AACCPV angle_j_Page_96.QC.jpg
009b9619ab356013a867848ef1da701d
ca4eb9afad784cfd4b9e37c9c68f6a844e05ac2c
4956 F20101211_AACCPW angle_j_Page_96thm.jpg
63a4f624670b3a5894cf81c6eece5fc1
cd5d5860fa52105a0b2c8882440c216928b5697b
12723 F20101211_AACCPX angle_j_Page_97.QC.jpg
10a169a6d10b0e01aa1d33d1aea81663
62f24f12b94950ae633ad79bebe2212916696881
3474 F20101211_AACCPY angle_j_Page_97thm.jpg
2ee015f625891ddf9983f2d5fae1b326
6fd5dca639366893265a8af576bf477f6435e716
112227 F20101211_AACCPZ UFE0021574_00001.mets FULL
9c04034a9d55fa4230b9de9b2187d12c
4605c2b8edfccfeab85465d317ec23d60705b629
6316 F20101211_AACBQA angle_j_Page_94thm.jpg
c5ad3f6edd6844450f714bf600ca433f
b596cb98f3ef33bd224350fd2841290bdf1a770e
22789 F20101211_AACBQB angle_j_Page_57.pro
bfdb78aa72feaf3378890add6c40c1ec
1ec89da4fcb2888bce3308ec2c781d357fc9e3d0
44620 F20101211_AACBQC angle_j_Page_52.jpg
9044a2a01e704164333f6b7b142c06fa
e24c575230fb006a9a887f9ed3f1f235e8a2eeb6
145055 F20101211_AACBQD UFE0021574_00001.xml
abc7a703c765ef0acef87286a553b01f
526cbaa69128b8d50ce57e0902a88c88d1193357
24432 F20101211_AACBQG angle_j_Page_01.jpg
599bae3ae2872547af96798979000000
7442b0f76b4b2447bd1ce75f56ae51332a7a9272
1051959 F20101211_AACBPS angle_j_Page_27.jp2
6595400eea8ad8465fd5ca02a6462136
942c70930fd9d8f3abfd0b2f9b31c59af911f22d
9871 F20101211_AACBQH angle_j_Page_02.jpg
bca20dbd2b1855dbe00525a6ae67a7b7
95aadf33fb2266d5561bdebcb5d1435db1631f07
787 F20101211_AACBPT angle_j_Page_21.txt
e350cc339908fa8ddb483754a397ef1f
419d8c9763f434d6546738ce21debc5c257258b2
10234 F20101211_AACBQI angle_j_Page_03.jpg
e3c5b3f947efacf6043876e493881571
bab35a3a850f0ead1708e60dfa20f3d4061ad762
F20101211_AACBPU angle_j_Page_09.tif
d4a209046dddef8c225867611faa80de
f438305e8c53bda0a8dbb4e25f4cb7220ed7944f
24524 F20101211_AACBQJ angle_j_Page_04.jpg
6cce1188ee5cc051ed956f4f60729db9
d98c9cb1fd7e2d1be060ec2178a50472a3f0d2ab
82894 F20101211_AACBQK angle_j_Page_05.jpg
62803049ce1b1a45668211589237f5f6
17050ea26150ed1eaf8c5eee8db1399fb8b0548f
14734 F20101211_AACBPV angle_j_Page_84.pro
a31ff21d5ae6afc78ff0b2a01ed0391d
dbc0850166b0781c8e809e15e22594a0e6d6f665
43163 F20101211_AACBQL angle_j_Page_06.jpg
a74222d19e08e093e896735ac31619de
62a66206a4f6fde8fc7bf0547cbdd0963a70a269
6680 F20101211_AACBPW angle_j_Page_80thm.jpg
c2bcebb2c51e6e5c4beedc8480c18223
dc6ae85850ab358433e8d12c61a563c3b2e1153d
90148 F20101211_AACBQM angle_j_Page_07.jpg
5d1305fa62844e37e8315fcbcd4e479c
ecd67420b5c218bf871b8c9b2a4a47e40f25b82b
5443 F20101211_AACBPX angle_j_Page_53thm.jpg
5a2a4dd21c30e661abe00686b9df6d88
b21c26a6674d12bce324085799aa729621a6bda8
57132 F20101211_AACBRA angle_j_Page_21.jpg
09c47830e3b8fe066bc8ff4e61e24681
a9c6231466a2a63e1567e5da73c219b014b9e8e3
27933 F20101211_AACBQN angle_j_Page_08.jpg
397ebfdceb857f523fb7c6620e9af861
7dd6f960dca8af792eeea64e41732283a39954fc
1053954 F20101211_AACBPY angle_j_Page_02.tif
bfccdb46c201c004eb89ce5a297f63f8
0ba58781f713aed95fde6c43ecebb1f17b841d93
54082 F20101211_AACBRB angle_j_Page_22.jpg
5b1f89bc2eea676d33b9afd8d9354b58
e774a8a9fe47c9bbfb662c8c821b4b7ccab8000e
81970 F20101211_AACBQO angle_j_Page_09.jpg
ddd42761f6032dae0bcc62866db4b15c
11bc640c42150b395940da675e577345a22a375f
55768 F20101211_AACBPZ angle_j_Page_83.pro
5dde2f22c5c56d44ce75ad956947c4e2
8a4e367f4a639fdba8229b1a4c997daf6186fc19
26479 F20101211_AACBRC angle_j_Page_23.jpg
131361cddd3392a866f11045c67e05f0
ad8e92c070493c70d027c58d836a4a466f0c79a0
91556 F20101211_AACBQP angle_j_Page_10.jpg
cf94974216cd0ebc95de62dc1fad012b
66a2a213dda90c6f6f96297674276c3d8a40a381
76820 F20101211_AACBRD angle_j_Page_24.jpg
ab7aa0e97c32a826da4aca5d962e4678
19eb272244feddb916fd446f70c47d8523408fa0
32864 F20101211_AACBQQ angle_j_Page_11.jpg
bd7530f85f0edddfc27c24e801ad731d
afb979e6156eeccc71455e8ae8c3f130239c42db
88187 F20101211_AACBRE angle_j_Page_25.jpg
2c429dee9774ba9c3b7c476c2d630f39
9f36115c234f98270d3fc0a7b7cd646257182f7c
69995 F20101211_AACBQR angle_j_Page_12.jpg
4629569c11509260d24196820369feaf
968dd54d143d0f3775295a7554d782ccdaf94cfd
68538 F20101211_AACBRF angle_j_Page_26.jpg
a985d1303d8a035b56c88ae7365eec69
f56a8c73039935f98c131abce6b1fbf8dc4e4f5d
69989 F20101211_AACBQS angle_j_Page_13.jpg
6ad148975661f993f77c281e0397bfc8
cbd1bf181b4ebbdcea4fd2c926a4753885caa61a
64856 F20101211_AACBRG angle_j_Page_27.jpg
c0bbc7fe2323f69bd163e71832513c47
c1095f04130831df8becb9009d69dd08cd05b519
90767 F20101211_AACBQT angle_j_Page_14.jpg
08aea39d5ceeb28af9080f8a4a23ee61
5d7facf4b49c3465e13a5edfc44ff67473947c48
78719 F20101211_AACBRH angle_j_Page_28.jpg
a5b12ce311e483d8f55d24ff060f5115
75845c1367f1cae9d545714475c8df42b0bd322b
59179 F20101211_AACBQU angle_j_Page_15.jpg
3cd2209f5c9d97aada5392379c4ef0c9
59ec15f2cd84dbd9b5a28d6281f6683a00bac09a
74869 F20101211_AACBRI angle_j_Page_29.jpg
ffd31ae1d1de9254a8ceee83cf7e7c2f
5989421f2061d336f07b4275c6f0dd8774c73287
73558 F20101211_AACBQV angle_j_Page_16.jpg
ef5eadbe46d48efa1c4ae4bb56c2f515
4444ea7218e73e720ac9363e64a438a13f7f3c7a
73499 F20101211_AACBRJ angle_j_Page_30.jpg
621750269a3b67a7d90d0fdee4b9794e
5025136f1842b919c45e6ab2d2ffbc228c88f274
65956 F20101211_AACBRK angle_j_Page_31.jpg
7eecf5780c11de789ec5df17f3e7da41
a8ca9a8dded2a95e96f8322bad178dc0417709df
77556 F20101211_AACBQW angle_j_Page_17.jpg
e3ba57a2a02e62505969651e1d1d427f
6d0676651cfc32db9d053962217a18e1db4fa7a4
68800 F20101211_AACBRL angle_j_Page_32.jpg
b4a2083f12a35a1d2c5177db94f86575
68b9b6a4bae865617fe1290947a948a8727e818c
93333 F20101211_AACBQX angle_j_Page_18.jpg
5cd60b580b44e3eaa7bb2297413eec5a
0c4411d068a8425a4a2aab04b3eaf7b5cb6f9c92
59628 F20101211_AACBSA angle_j_Page_47.jpg
2c1861825ee839b61fc83ae9fb4f7ce2
c9d3ad5e9c1abf9789c177fa0512a361cfceb428
68647 F20101211_AACBRM angle_j_Page_33.jpg
95cdc2d2a6338a552ef6da4e28ab4e5b
b9bb4d5d3a4c67b0fa325ad0eeec8b756850d06f
87095 F20101211_AACBQY angle_j_Page_19.jpg
5a48bd553f1ff5b31fa454479268f75c
7a9bec3232a62b6661cb524f567ef67321bb2fb7
52600 F20101211_AACBSB angle_j_Page_48.jpg
f9fbf2898d279e77bd27b91b88d08075
128596cd4b6ae30af051153a429a98c9db1b46bb
88233 F20101211_AACBRN angle_j_Page_34.jpg
70837632008861772336c1b1b0705e55
8e6e1de108d9f46f9985633667221765bc9b8b6a
86632 F20101211_AACBQZ angle_j_Page_20.jpg
6d06c325fe29303ee1033f7151a462a0
09c7c32f08be7171cb1c59247e0955217d34c931
46684 F20101211_AACBSC angle_j_Page_49.jpg
7570d6d635d5a5b330b3dfccb08e7627
d9a7655c73b08287daeffee01e7dcf6a229163f6
60325 F20101211_AACBRO angle_j_Page_35.jpg
ad9d8ab741734fa6eb7d497f14a480a0
2b789d479c532e12b0ed5b67b7be4b010882ec20
58467 F20101211_AACBSD angle_j_Page_50.jpg
8aff880dba28a5e2e34e0d4ddb17c6a8
3c614cbb66d840f43243924557ca9101d8ed76d9
54119 F20101211_AACBRP angle_j_Page_36.jpg
70aff502c88559114b8761ebc636555f
a381a090c9629e9c80da2db75f870a36aafd9acf
53301 F20101211_AACBSE angle_j_Page_51.jpg
621781f052288d7dfb6d91848ae9bf5f
b3774e8a0e6b6f2562cae26c05cb99699708cd14
88248 F20101211_AACBRQ angle_j_Page_37.jpg
96feb0ab03d95829f01f42dfb5f5d03a
fc5f7628b43961e0bdefc74c8f1036396c356851
61074 F20101211_AACBSF angle_j_Page_53.jpg
44b2d2bf6afa3a338820809ad014a1e9
6851301b8f5224ceeb83ecf83d348368ddf48038
50851 F20101211_AACBRR angle_j_Page_38.jpg
bfd19c1b2f9b646b8f4840f46a64e55f
d291e45ce14f5c21a4644aff209835195727dd38
60565 F20101211_AACBSG angle_j_Page_54.jpg
f7e215437e7d7cb7f9617873ce717687
677a1ebf6d3283dc6a4df28a10840d1e5ca58a43
65775 F20101211_AACBRS angle_j_Page_39.jpg
f175b74d5e2a67847daedee5b3e3f9e8
96f416d64b3ce76f9db3737a400812b429e1087c
F20101211_AACBSH angle_j_Page_55.jpg
c73e674323926d6548b9021601d4a4ab
7f7ea6d296a521a5c4975afe087df7016d68cb12
69131 F20101211_AACBRT angle_j_Page_40.jpg
354452e7188cf5e0bc7d33d93616dc07
bb6d3340b3a1f9e50efc943c03bbefec1784f0fa
62744 F20101211_AACBSI angle_j_Page_56.jpg
394b52c33c5869703a3af68118c3437b
48244313842b6e6b6faa8847ee5c4a5a4f20ee63
74796 F20101211_AACBRU angle_j_Page_41.jpg
b83a73fc750509826c5302543646d75e
f4448c9879d406eaa6d73bba7845a98dbc95bcf0
62118 F20101211_AACBSJ angle_j_Page_57.jpg
cf1917402b3d0c62efab7d2eac987d79
5319415ad6b5aba1504d8f0713a3bf2abae05cec
79739 F20101211_AACBRV angle_j_Page_42.jpg
8e4b2a170f0b0b7b9bb17e9431178dc5
0cd40d7c784200d581c138a56c22e5522e8ca5c6
43185 F20101211_AACBSK angle_j_Page_58.jpg
93ecb7d4590fda68035ee889c2eb8e98
d6027e11e12efc399b220b4d8bfa83943480f7d3
88649 F20101211_AACBRW angle_j_Page_43.jpg
0b6b4f29d522f632cbdfd04c8e18d19f
3e1204682bfe7b2a1d202f2c43c56721a096840e
61198 F20101211_AACBSL angle_j_Page_59.jpg
185673cc13aebcc7320165364ec8f9d6
f66e5e3ea66ab323cf6728836a7cfd8ebccb6e36
77869 F20101211_AACBTA angle_j_Page_74.jpg
81cc6c51f41efe537ab8762f496479a4
6db65ae26cff5079022cac57be247aab065c5177
57352 F20101211_AACBSM angle_j_Page_60.jpg
898555d7c1eff0a3c06786e0ae599f8d
ad7114b35d8a7349c31bd9c6680448aae3ca2bb7
60425 F20101211_AACBRX angle_j_Page_44.jpg
9ad64d93e5efde9b83602eb41251d60c
d1602d8cf19593365fc5dbf0689f0fc5bc7d0a5b
62457 F20101211_AACBTB angle_j_Page_75.jpg
38a57c259affc863549ecc4d2f5b8483
c22c9177640840e6f5585635258396c4661e1ef7
42907 F20101211_AACBSN angle_j_Page_61.jpg
ab3270d5674a024d443c3a9e8e0eefef
bbefe2fc5454ab6ac7a8cab1bcdc345fe9236292
56955 F20101211_AACBRY angle_j_Page_45.jpg
ef8d46b0240ddd5ad82b374d2248b9ab
24bddf6c568a29be19b10cef3b0ac834dc167cbe
58358 F20101211_AACBTC angle_j_Page_76.jpg
754d7c6a05ccecf47a4dfeb07f7e963e
59a7723e31252fb81bec05a738d3b1ffa4483761
64471 F20101211_AACBSO angle_j_Page_62.jpg
5b19790f1749d78b89e74b003696a5f8
bad05dcd3a3cb536b4da31459a5b41a0bc70e98b
52840 F20101211_AACBRZ angle_j_Page_46.jpg
c4bd2b305d2f3db6c93745dd18e379f7
a510f7074d47fe63526a133357f56bef8c7481df
43324 F20101211_AACBTD angle_j_Page_77.jpg
b25d9078adf89f85ef9c85228cd1e4db
0e772005dfaa45769a82b310504180c13c4be508
53803 F20101211_AACBSP angle_j_Page_63.jpg
d8b164b86b35e1477d8907996b35c3b6
f6676864fa5b42d22a00de0ae939f41522f747f6
70649 F20101211_AACBTE angle_j_Page_78.jpg
2fa359b073954a8234310e6a2ae842ff
89111078166c703b57d18ff76fcac09c05c6ace6
43635 F20101211_AACBSQ angle_j_Page_64.jpg
d57d3a6609dae6080e57db7372edf586
e6b1c259b0d39b8f16ea8cb28c0bf89448abf456
77980 F20101211_AACBTF angle_j_Page_79.jpg
7855253bb1c0aa888e7ae07a39936f29
c4c87c3bfac93b18dc2a4d69617ccb047f5f61f8
61246 F20101211_AACBSR angle_j_Page_65.jpg
658e48cc9b5ade8c38038e05117f0a82
bd8977e237b118fa54ffc35ab918b89b6712e129
80225 F20101211_AACBTG angle_j_Page_80.jpg
f1338eddba159e22330c449d413beb44
2e237889a0f3684b80e03392b5310b7dcf034819
44110 F20101211_AACBSS angle_j_Page_66.jpg
badfbc70a9206ea4d32886c0c6739062
6025aa261ef97489b04bdc85fd21220377834621
83697 F20101211_AACBTH angle_j_Page_81.jpg
fd4ef39957a5f761e5fccc61c3b98c74
bc8e38e54302544ce32926c91033ff1ac2a91938
76169 F20101211_AACBST angle_j_Page_67.jpg
f068c605bd7ccfaadf106881ff6c706e
9bb1dcfff8d0dd71866c67d26961e6b13cebd7dd
47269 F20101211_AACBTI angle_j_Page_82.jpg
09fd6b176b24b7c69c14da29fe347749
4538a1423a770ecc55292244b1bb6b4f5a9e98d8
18291 F20101211_AACBSU angle_j_Page_68.jpg
4202c22282e2ba0878bceacc9cb8b100
b9f66cc4ba2071cad5ccd29725457db3edef2f90
75183 F20101211_AACBTJ angle_j_Page_83.jpg
d12d7dfc16de1ecfe6b8bfec37d1bfb5
a1e1c014df00f0c542dcd340bbc6d246c0a953ce
74486 F20101211_AACBSV angle_j_Page_69.jpg
26ef3fb50a8e937475694370a9e41cf5
4fe9f54142b55cce886a6349641bf36d45036c7d
60932 F20101211_AACBSW angle_j_Page_70.jpg
c40cb4c8649bba8bdd62f8ce12960c3e
eae7616c5c1571d386ceab54073c5f7decfddf57
59971 F20101211_AACBTK angle_j_Page_84.jpg
492756bf517f015479bf21f89034eed7
421a8708d5c4ef2d6458f955fa3889c79c2170f2
40828 F20101211_AACBSX angle_j_Page_71.jpg
90b23ddc764e124e12cb2be24a0b09d1
865436821209fa0fc81e75a76e7f4f34d05631c9
48561 F20101211_AACBTL angle_j_Page_85.jpg
a5f862486a8d6db029e7ce7f522c9eae
187bb9fe84b7bb61faccebb18dc9ff7f0ac31630
6859 F20101211_AACBUA angle_j_Page_03.jp2
b519e3066a1d8b77182e21bb3ce9a90f
30d04c5d444bb2cab7a575d5962ea0165ce49d45
78203 F20101211_AACBTM angle_j_Page_86.jpg
01190d1a59a3a7a26ba6f887e66c4f14
8a8cf904906fb2152fa1ac713a9931c0f5cd052d
71926 F20101211_AACBSY angle_j_Page_72.jpg
f23252d7da4a02c78118c0ea8ecf5803
bfd72aeba17ed2592325b3f147eb876b7d678e4a
31025 F20101211_AACBUB angle_j_Page_04.jp2
659f37330910a7d1b579e8657ee95806
e4e4d6beedb310dd379924ced02d13c2d6ad0b08
63521 F20101211_AACBTN angle_j_Page_87.jpg
5c3ca8155ee6a0bdba70304b7ced71c6
d361529b038cb73eae5f7e09ec21ada4f7b2501d
82167 F20101211_AACBSZ angle_j_Page_73.jpg
108bf8c68786e4ba370e0e032bb048e3
c36f3dd056609a0f08b9c70cf198d916dd0ca229
1051985 F20101211_AACBUC angle_j_Page_05.jp2
8e19e4f90d366d0a4c0e9982b041d19f
40987ea29722c026789309df166fe2545f195337
33987 F20101211_AACBTO angle_j_Page_88.jpg
3d771e620e8c0633a1edaded43650f70
3595578a8b2e6f5604e1d7622179b7793cb5f40d
841270 F20101211_AACBUD angle_j_Page_06.jp2
c8f988e2f131380f99f97fa82a2b32c2
5182994ee76a4c6158861dbc6e7d8752c34e3cfe
84061 F20101211_AACBTP angle_j_Page_89.jpg
41d7c4279fa49ba9edc42022a6ffb275
93ee4d3c4f209c1411c96ccb4efe08cb8cd2cbea
1051963 F20101211_AACBUE angle_j_Page_07.jp2
b7c567df2a84fc8a43da57b311e1dc2f
25d3b2346c97c9771a434473ee7b7da764e6150f
52824 F20101211_AACBTQ angle_j_Page_90.jpg
23b10979c6b974eb26716582720d2d34
50e8123e9db8ef2061cf3e29b2c834ab09356584
F20101211_AACCAA angle_j_Page_65.tif
c6ad1bfba58aa2b49a289eb52e3fe16c
21565d12017f7f28b0f00483f7cdee0e3b579fd0
624735 F20101211_AACBUF angle_j_Page_08.jp2
d5c4273875455c509260ba5e95766b35
53b90267cd6640e25a70d5c9986ce5a132af0c41
75712 F20101211_AACBTR angle_j_Page_91.jpg
d3393b0e0859ff4858f81e9bd711b46d
1914cc92cd0bd11981478ae0fba087888cfdae04
F20101211_AACCAB angle_j_Page_66.tif
4993d75c42de6623af5e65aa95f103da
9dba6a5e6e6cf580d3d382536896a1161407b21a
1051978 F20101211_AACBUG angle_j_Page_09.jp2
9f7d7a0124f0c25fde25869147c83693
a997dddeb5a0b31baa0cc1c72f968c15f8a24cb8
87171 F20101211_AACBTS angle_j_Page_92.jpg
e77e8919e3fd68a286dfad0ef244ef7a
a7d370aa3445355fdc416128471ec07b7725926c
F20101211_AACCAC angle_j_Page_67.tif
c0eb29e144254a13ec5d064c6cacf1b8
dda1da5ea21becfbb8750857d1cafedf79c9d4e9
1051970 F20101211_AACBUH angle_j_Page_10.jp2
bb65ed412a72e9b1d34e678906a73663
168153d12f4ab342f93361fa7c0d3ff7d3b6ff72
80948 F20101211_AACBTT angle_j_Page_93.jpg
f5776cdbbeda621c09c3537e6a020317
63501bfe41d382eb2229492e1201bd6130b73b97
F20101211_AACCAD angle_j_Page_68.tif
98dced97f402a1f21d8db37342d01b68
fb58d5c4d7f35b79b08851ebc9b8241dc65495e0
648069 F20101211_AACBUI angle_j_Page_11.jp2
526c8ac596f8ada9cf22ef3bb989f1a9
3d21bd1329338882bfbcba98b445bc35bfadebce
78652 F20101211_AACBTU angle_j_Page_94.jpg
ae368c4fe66b3d422031ef7acd392650
a258df3e0533fa2797d08448ed46cb9f54fc2e2a
F20101211_AACCAE angle_j_Page_69.tif
34f1a7601521ed2ce716d8c1ae553d08
6d5c2a62ff95ecf6e4b51e1b3b3f8ae8e7645d46
110084 F20101211_AACBUJ angle_j_Page_12.jp2
9c69ea19f3dbd78a3086f61c52afa2a9
28a95a96dd386228e0e5ac093ce78269112dedc0
84555 F20101211_AACBTV angle_j_Page_95.jpg
1d57355a16b16eddadc9264d3ede83df
905121a93eb607756f7197055b8ff1410fc57474
106072 F20101211_AACBUK angle_j_Page_13.jp2
1aef7c04be5906e642d1b1b7e005a6bd
8b39bc33f27a391c7dfb7b0b4b4ce910ba2fe810
62554 F20101211_AACBTW angle_j_Page_96.jpg
38fb9d17bec82096073aa8a2e3fa790a
e110a64505d26b570c71cb769f9166c39cdcef9e
F20101211_AACCAF angle_j_Page_70.tif
2bf8fd6054c3d0f6470e25d437e19c8d
2e8ac03de756daaffd4df3cbba03c8bdae166f55
1051969 F20101211_AACBUL angle_j_Page_14.jp2
8a291847bf7136a384f372158dcf40c5
3816eba908b84fa1640e4d67c3a00f2939c44cd2
39759 F20101211_AACBTX angle_j_Page_97.jpg
b00f0a22a1dcf2eec2984a501f9cbdf8
7e19afb2d1aa51b42cbce2d8cef6a985389b5e45
F20101211_AACCAG angle_j_Page_71.tif
6ea3f7b5b53d6c9e078e60e779c8477c
3ac23a79f623f86c3e8e79f9d6e4d1968018ac91
1051967 F20101211_AACBVA angle_j_Page_30.jp2
f98d4f1300b9dc20ad6fb3572f68243f
80230b16e1a07b94a4ba48e2d1372c5db6f7ce9b
858356 F20101211_AACBUM angle_j_Page_15.jp2
e5ef2a10850f2940f21090648ec700dd
e0e19f03aa6893e492a5db9dadeb0a9ea2dae6e7
25501 F20101211_AACBTY angle_j_Page_01.jp2
92f86417dc1df263169637868b7d9493
c9059604954849637b855dd44e952bc5e85f7831
1051940 F20101211_AACBVB angle_j_Page_31.jp2
4fa9f691e29008160a1ac5510aab588d
f4669eebd514cfc83d6a8dee750cd8c03d4f92c3
111080 F20101211_AACBUN angle_j_Page_16.jp2
bb49b3959419bb0a5ad9bc839f6bc8f5
ba9d8bdede83dfd8de6bdb39d9a2e50db1363fa1
F20101211_AACCAH angle_j_Page_72.tif
8b1f43ed26b569a18434b513bf362a67
c02fdc57a32c0c4d67ebe68d388126049080b4cd
1051957 F20101211_AACBVC angle_j_Page_32.jp2
c33f704dc724711301845b71394bf632
e96d8826f09ab83f69b8d688de6443ec374eec45
F20101211_AACBUO angle_j_Page_17.jp2
03c316315f0196b48ed8660942264211
4841781592774c5dfff3007f26a0cabe911de21d
5456 F20101211_AACBTZ angle_j_Page_02.jp2
be4bc6ce20ed451320f297d76f0a2ea3
a56f4dcf44731d15b66c429d617683d13418a628
F20101211_AACCAI angle_j_Page_73.tif
b8d2069c0fe19cdb83d9092bdaf90a98
2e7f36e92a07138732e58429646579a4c303ebd8
949518 F20101211_AACBVD angle_j_Page_33.jp2
aebcb15f54bdcc0f8f2a029f4e19575d
b452115f29dae022227ba5b329434181a98903be
F20101211_AACBUP angle_j_Page_18.jp2
25951f3cb51e30d91a8f107cd343bf2b
354e2ecef6523492a00bf8afebee38066e272270
F20101211_AACCAJ angle_j_Page_74.tif
922a0b70add9daef2955f012ee9ab037
59895b6118709a7e421fb83cf25d93befb16606f
1051946 F20101211_AACBVE angle_j_Page_34.jp2
5d2c13d856c9c5dd4e00d98f186fddb5
aba304de6e432cf7d8ddd8467c91db59e4f63de6
1051979 F20101211_AACBUQ angle_j_Page_19.jp2
b75439509ffb34bba8e04368b7bdb632
4a427283af20cc2844d9a3e37755e804607e9e86
F20101211_AACCAK angle_j_Page_75.tif
5674cbefd2ccedd97cfd9a4b99490f67
716a0f17985994960355b4654f7a80b4dcb4af39
925163 F20101211_AACBVF angle_j_Page_35.jp2
714d7c8afb7b92e590197336f81ea4b7
0d773aee2b5933519f54a409b4d4683fc624c54c
1051954 F20101211_AACBUR angle_j_Page_20.jp2
30cf3c575c37b67b76f6e265e97d678b
2cbd74e653ebde6f615a55171beeae609948eb55
F20101211_AACCBA angle_j_Page_91.tif
a281e1189563411cce5550a684280e97
acd73e340a5e9f71e17ec3fa0006c6b16f34b93f
F20101211_AACCAL angle_j_Page_76.tif
e792dc692053708cc09ab6571fe90d77
9b76df6a805da746e6644a740ca0c83242eb02ea
920226 F20101211_AACBVG angle_j_Page_36.jp2
b0e7b73e9d7fd7e540ea6460d0a44584
b19080a4276967010081774bf1df3d1c65a0873e
905008 F20101211_AACBUS angle_j_Page_21.jp2
593ba24598d21def3efce5f28a59bf82
2726ca914b7f7ebada5e4154856edab1cc1783e9
F20101211_AACCBB angle_j_Page_92.tif
ff1589cb8e3461ce7fe6fbfbf7ce847e
0f8d2307d2c7758428200cd5d6ca2c250ff7442f
F20101211_AACCAM angle_j_Page_77.tif
6d16bbb2ed9b8886abad99cfbde8a78d
e5485ea55ace1b64f565d1ced731012bab8add77
1051986 F20101211_AACBVH angle_j_Page_37.jp2
f25c080270c7810db942c8204fc2cd3e
419e0e10b5fe5ad4240ccb317b3db594c37d7251
82496 F20101211_AACBUT angle_j_Page_22.jp2
9b009c0b055b152ef53c350fa70049de
82442be1b9cc4029627cfc02da55c55c3e1fb2fb
F20101211_AACCBC angle_j_Page_93.tif
68c48baec7a7c8a6beadfa2ec27aa04b
0c69f93e0ad693490c3767976ad6a74af0322df6
F20101211_AACCAN angle_j_Page_78.tif
4e411d106e111be986654d6b69952989
70c849debbbcc329687dfb54cf071d5fa0d796bb
894605 F20101211_AACBVI angle_j_Page_38.jp2
a694dc1cb41fc434ce3cb9a4416752bc
408755de00c49443d88069ad55eb53ad09822c1b
35153 F20101211_AACBUU angle_j_Page_23.jp2
5e9f850cdd160f97106578ad1c20e96d
c57c48b4966b1715f5d7094f572cc54dbee3e174
F20101211_AACCBD angle_j_Page_94.tif
a5ed6f10ba7d06c0fc2a87a4ade7f679
17f0981e63457efc300926791159d7dc6aeb18f5
F20101211_AACCAO angle_j_Page_79.tif
34c891d5c26a9f57b039dbc928278f0d
ea9b4e741c110479803b22d8c7f549319579f359
982384 F20101211_AACBVJ angle_j_Page_39.jp2
bcd1ee75943aa5bf54174424e84e14df
6f4a4e0e17d9b9d12441f5b692a494bf48358b26
1051936 F20101211_AACBUV angle_j_Page_24.jp2
776b013aa498961733f937ec81e8cc94
665a7f7c803b1c07746cddb1fd6bb3945bfd5ae7
F20101211_AACCBE angle_j_Page_95.tif
6faace0912e040118579cb5d2be94b6c
d3de5958283e2b28aa9d721a397f896583a6770b
F20101211_AACCAP angle_j_Page_80.tif
0112e6b4df1973a57fc8cf81abcf1f95
f0c8953c7de7a3252502794ee68239f3e42443da
1044279 F20101211_AACBVK angle_j_Page_40.jp2
15d63ea7ea95fc007bc96595069646e0
8b2aef074a4868f702e48a482f11292dc7d9c46a
1051943 F20101211_AACBUW angle_j_Page_25.jp2
98f2391d35150614a3aba500f15e0fd2
628a82ad6b02f27429f6c0f84cede1cc43072fea
F20101211_AACCBF angle_j_Page_96.tif
0fcdab419baaea8684a7a20a6c8028e4
26a5fa8fd2d7e990a82b5733256607d95bffd0d3
F20101211_AACCAQ angle_j_Page_81.tif
044408901d4992cf19c5e87c13c9824f
f126b1dd9bfdcce8f1a3cfd531b303467dd72b3b
1043997 F20101211_AACBVL angle_j_Page_41.jp2
095b62015609b97f8eb7c2a9d4e862d4
50763b9e3ee00e435504e99a10ccc3dcf874a174
1051981 F20101211_AACBUX angle_j_Page_26.jp2
3ddd102e440c7d4aa1268ddaf493fdc1
d1a8102c3d1f97abf2508ab380588772f8e667ec
F20101211_AACCAR angle_j_Page_82.tif
c4f5657366ffc29f6c0220c3953d3ca7
8eae39d71450d955f9d6c2e7da7eb2b78cea90b0
F20101211_AACBVM angle_j_Page_42.jp2
06f76a2450e3cb7b3dc26520b6c9e5f1
fec982f9adb4de24cd53d8c800ce02bee83b6a41
F20101211_AACBUY angle_j_Page_28.jp2
3212dcd4bbdc2d09c5dc106dc9a5b578
c8a4201f3c7456b79471b27a483afcf7bf2bb8ef
F20101211_AACCBG angle_j_Page_97.tif
33e093db535f3b813388238eab27b513
1af53c8f5b2131c9d1c78c6c36378c0e9ccbfa34
944052 F20101211_AACBWA angle_j_Page_56.jp2
9eb6694f132bc55d69e6a07e4cf51d38
5e457de0c3382e94c5be17f7a5337e91cb689f06
F20101211_AACCAS angle_j_Page_83.tif
f7198e7e56804416517dc08d5f3f9594
a2ededbe89a0a5e024ba4cfb20422cd95d1be5dc
1051971 F20101211_AACBVN angle_j_Page_43.jp2
b735f50dcfa467196c13e4d8b1e6e7d7
3f544663bcd5c21051290029f81634b409f34a53
1051975 F20101211_AACBUZ angle_j_Page_29.jp2
a7e49399d74a2072366ee6be8042a280
c8bc1148d39880c9a92ae6b611fa9f417af22c9d
8522 F20101211_AACCBH angle_j_Page_01.pro
eb6c380f53ac66d72a2ebae1d551273e
2e797c1c8cb1cfd709e03f6e2de1c1b61c4af031
1049324 F20101211_AACBWB angle_j_Page_57.jp2
e83d792a34d5d7089124f77b1bd09ba4
311e23cc4935574e789b3cb177b2910e6889552c
F20101211_AACCAT angle_j_Page_84.tif
9c71d03d1e619ad7381f5d221ac9a496
5f507ffd80f9636c8636e944e21c0ba6465a1a46
847046 F20101211_AACBVO angle_j_Page_44.jp2
b2b8920169e5dec0452a9cd04d05e5d8
a1dd7340bb2937b380f12f3da78b11460979f78f
880 F20101211_AACCBI angle_j_Page_02.pro
25faf467712c6c84b897bfb8ec331042
20e573b1abcbe313fe5174bde018c4782999b95f
766728 F20101211_AACBWC angle_j_Page_58.jp2
502e16805fae21a8288a46a644ab31c1
6bd1364fe09124847ab63f5b4db42afad4641aba
F20101211_AACCAU angle_j_Page_85.tif
4445f255a120c00665e9e793ef63d7ce
1a0c1d2d5cd3f64b94c7830c66ad577f964ebd6a
951327 F20101211_AACBVP angle_j_Page_45.jp2
5ebb9626c56a09369f8d16fdedf24ddf
b30dacbcca32fae1a8dbccec59c96c4134983286
1556 F20101211_AACCBJ angle_j_Page_03.pro
4890afed7480440d936cb73d4171337b
c643d6692b4cb14cc81e1cf65302dc32a8d88095
922349 F20101211_AACBWD angle_j_Page_59.jp2
3acd37d2830797ffae90c882d1cf979f
27bad9af83c77e76f8aa0484f6fa3665dae53f6c
F20101211_AACCAV angle_j_Page_86.tif
fa6bc90074b00a57c5f736b77e308d96
c1e7c937a288ffe47c209dc31048a2ea417558b3
899908 F20101211_AACBVQ angle_j_Page_46.jp2
98794d8b3936dbef4ae2ebea7385a3f8
0ec2b0a612b389f59f45e657b0e1de9a63342864
13083 F20101211_AACCBK angle_j_Page_04.pro
f703641bad84e0d46afa7e896303f5dd
0d299ff67ac3d58ea62b27b4d56a2397c86f476f
930094 F20101211_AACBWE angle_j_Page_60.jp2
f9775439a46823fe821428c395c0c789
7042119f4c296035d1188d7d9734b44999d876df
F20101211_AACCAW angle_j_Page_87.tif
69a6d1c0308f9880eae0381271f39b87
966a7426b8f8fd4692b1bdd9b4ef4f4d2c34211d
849843 F20101211_AACBVR angle_j_Page_47.jp2
d818a61b51a56aad3f23fc478a9d6015
dad40ba5ee0a89c3b7c5879034fe099dc4500cf6
56524 F20101211_AACCCA angle_j_Page_20.pro
75f297294dfb5dafe5438b73fff58990
5ea5fa759cbabedb1b8cbe44bc64423d66ce2c32
57843 F20101211_AACCBL angle_j_Page_05.pro
cb5b5e47d8770e32cd78b9e7f69e4543
47906fe0a79869f361a7f4821263899b274c668b
758270 F20101211_AACBWF angle_j_Page_61.jp2
03c5b31af723d32e0420bc4f63dbabbd
4b81b19b57b5a6fd6d2079e5e44dc0098e8133cd
F20101211_AACCAX angle_j_Page_88.tif
2f89456ee00a8ab2bb5d9ed1f675f850
44d41447485a1c6757b90f2704c2a1277acb716e
926859 F20101211_AACBVS angle_j_Page_48.jp2
6fc838a82fd99299cf963bbef70364c0
1fee6ecc0e4bd7ed557572030ac403eed733b986
15427 F20101211_AACCCB angle_j_Page_21.pro
a4164b6516babb8fdd9f1361065b3693
3ef6973a92ff670b2d61637eaa7f601e1c165590
24630 F20101211_AACCBM angle_j_Page_06.pro
02fdf3d98d91abee48e20be19dfa0953
eca19b9107aa687f01604047adcc90eee6fe3a22
947868 F20101211_AACBWG angle_j_Page_62.jp2
d4410ffb1f4d9824cafdae8f7ba65122
a46a48ae2111c69cc1bab5d977bd2f05680feaa1
F20101211_AACCAY angle_j_Page_89.tif
ab54130c03dedb51b92e0eb38ffa8564
f835c89236d3c57669c94429df5592c6c29656ac
818802 F20101211_AACBVT angle_j_Page_49.jp2
ec85297d8ca4cd75ec59f1ee1820bebf
db09f96700d7c45ebe9346b58bb5e26c1eb205a2
39022 F20101211_AACCCC angle_j_Page_22.pro
407d29f17da655d58a71e2b075fa246f
f68d8ca50238f9d06a07199d9c4bcc04f984edb4
58199 F20101211_AACCBN angle_j_Page_07.pro
4c8f2618efdfd663e4a7a680ce548251
ab264714338b3d1f7ddb7cfa1f3a97cdbef1c878
886431 F20101211_AACBWH angle_j_Page_63.jp2
a0e91872edf3001d97cb2e6e34d82520
ec1e3b754c6dd7d9f097e08021655ae645f93d5c
F20101211_AACCAZ angle_j_Page_90.tif
527ea74bc5e86bbd39db3bcc4fa394a1
b0bf7f1b797e77975b0ae806a3cd510186f2c200
832518 F20101211_AACBVU angle_j_Page_50.jp2
92afe6908821d4deb28f8660d71dcbe1
4d8811564be0ff3256098086bad35055068bad3b
F20101211_AACCCD angle_j_Page_23.pro
59f262bdf87e5c3bb554c4301a0ea728
7c01512261284f9beeb8e0544225762227181f8b
15415 F20101211_AACCBO angle_j_Page_08.pro
2ff22982a827e1382b20ad6ec23160dd
841e12bfc6dbe72b5da3ffef10f9755b2d3eb298
772779 F20101211_AACBWI angle_j_Page_64.jp2
6bbb58a42caa2a87c9efa5f8422a9234
b8500d1d81f8195b48283d9d5dc32f064b2b4979
944855 F20101211_AACBVV angle_j_Page_51.jp2
d93f1ebccf3f2d6e4a8af30773e72149
9a06f0eda9e54407fa8fb3fceddba8857c8da330
49836 F20101211_AACCCE angle_j_Page_24.pro
38e6a6e5cf1d1115dc0b04e557e0258b
63bae2e88921b75de89967b5e0e4140abaa4bbd1
55698 F20101211_AACCBP angle_j_Page_09.pro
1fa65471f06372693b3faa7711b8c05f
81bdfae4726beececc86390ff7f4d587fd0642d2
916299 F20101211_AACBWJ angle_j_Page_65.jp2
574215f9127fb9df9065d26ab9091f84
cfe3996107cfa76fedcde93ca2823484139a53ae
808308 F20101211_AACBVW angle_j_Page_52.jp2
cbc90fe7d42b2e4f815541be73940b91
d651cdcb6e14df435c6693f88b16d2cfe8da254e
56255 F20101211_AACCCF angle_j_Page_25.pro
2c6d9a2262a8d2e78cf1b7b85d530548
00f483b22add6c6773aaeebca980d09f4cae3561
47376 F20101211_AACCBQ angle_j_Page_10.pro
da1963081feeb02ee3dddd95617281c3
0c2f723f0f40b8415e866097b90d7def01a07329
722403 F20101211_AACBWK angle_j_Page_66.jp2
346563f2f2a986f2af8dd99af5ba07d3
79ef5b31a931b1571dd57240c6f53c80df0c6034
859673 F20101211_AACBVX angle_j_Page_53.jp2
179efde175d9b8f49f78e2b520e6957f
2de9853f9497ed76a48c9de2b4d35fa0aa805d72
37968 F20101211_AACCCG angle_j_Page_26.pro
657ff40e12c5a2e8c6778c48bca5a376
a9583769ed4dd2d815f29977521cd8e2c086c373
17750 F20101211_AACCBR angle_j_Page_11.pro
45be25c25ec4bccba97ce8400419130f
5b9b49f581b7a1a6c78f2c38b4a4eb65e1a71fb3
F20101211_AACBWL angle_j_Page_67.jp2
6fc656df6dea024fa1943d9a57f8c49d
3613e92a2868e6dddaf9e4c95cef48297b3d3ceb
1004694 F20101211_AACBVY angle_j_Page_54.jp2
5674e8fd71a5675fb7e7579960009a59
6800f4e0eec4ae6cef1bb41708aa8955705fd892
897937 F20101211_AACBXA angle_j_Page_82.jp2
9cb3a876e036d779ddda929cda66616a
dd7dc251b64bd3a8c7a27923be8c8691fc774b24
50608 F20101211_AACCBS angle_j_Page_12.pro
ddbabf202d9704cb8aa5ea958bf23d53
6a051f56a8f868a5af550c29463ed0b9151d54ac
23198 F20101211_AACBWM angle_j_Page_68.jp2
7863aa22370d8b880a218ab2912168d8
f270e93b2a6b6fd5b6d3d32949752d29bd61d272
819095 F20101211_AACBVZ angle_j_Page_55.jp2
fed6c351167d3129f1a031911346b024
b6eabb88da0cee6c78beaa5a8ed7ace522eb0383
34088 F20101211_AACCCH angle_j_Page_27.pro
c4fed09ae0fb7c158f932b40c7069ca2
86c65f85a9a10b560a57d1ca5a8d5678ed336667
113882 F20101211_AACBXB angle_j_Page_83.jp2
12ca9488cd91889d2aff4017f9d29d2a
1ec6efc8afe95a065ffec83caf3893b95c829e11
50426 F20101211_AACCBT angle_j_Page_13.pro
656c34f0c52352f61619a47d2e0d3558
4c50cf352cc360c50d7eb80d744e86009fac25d3
114134 F20101211_AACBWN angle_j_Page_69.jp2
9b8a3eb4f1ef14b659e8a0841c99f7a3
044345be583142e774a6c1c1d109b1a8763d332d
51332 F20101211_AACCCI angle_j_Page_28.pro
733b688e1b24a9775f2fa65005079aa3
1940e3e74d7b061069a92fc52dfee0fdd3b4b121
1051906 F20101211_AACBXC angle_j_Page_84.jp2
c06a174b31445ed2b477d8acbe87e2b2
0b854ce54a6909d9499ba5028466d19df3e62a86
60233 F20101211_AACCBU angle_j_Page_14.pro
6c653c774c0408ec5adb84299d63978f
6726ba5ecdaf8a7dc0e2ef5124309b227ff498ab
F20101211_AACBWO angle_j_Page_70.jp2
a881d04d4eb81786acc6568b958fc236
55f19244e0f70a7cc74756629a3c38a5f2d3cfbf
41418 F20101211_AACCCJ angle_j_Page_29.pro
26c9d6e42fecfcba78d43137c5c75c7a
c1e7ac4de0baafd2e38731df546cf56f753dca2c
535718 F20101211_AACBXD angle_j_Page_85.jp2
e2ac79260289735468476d3f9424d7c6
84719ada1d838401b76d875e970e36a5f7fc02e0
33288 F20101211_AACCBV angle_j_Page_15.pro
bb6367ee4b6aa5efc23928eee14f2345
76a2e803ce1ad34bec256034d751bd4d80f16733
678048 F20101211_AACBWP angle_j_Page_71.jp2
9bc909cfa26fe0745efc751367a66b49
db681006f9daaf488cdd072b59f947645d7944e0
40640 F20101211_AACCCK angle_j_Page_30.pro
ea28b59e19adc09f3414239899a4a2e6
4a9a7d455482f026eefa9502783d8572d45d8194
120121 F20101211_AACBXE angle_j_Page_86.jp2
eda55c45bf17b68f3711090f75de38ba
351054a6411710574a40550ce59eef3eb402f647
54214 F20101211_AACCBW angle_j_Page_16.pro
bf2384e7a5243fe8512dd79b3fd7e427
19dd7e204e0328ff4b7f01a7e5eb207169f620c4
1051965 F20101211_AACBWQ angle_j_Page_72.jp2
a71e0187d567996da318cee3fc11b451
97e1cdae491667b7d87aaf6a31266bf80be68694
34816 F20101211_AACCCL angle_j_Page_31.pro
50af45e9a6db9f7e01fe094f35097b6f
43179adf846ef41cac6924820414663cfd349119
942837 F20101211_AACBXF angle_j_Page_87.jp2
03cf0dd26cbb5dd2cf2ee634d9e71cd0
2211c9c1eee6b6300b663eb2ba6fcc9d7fb7c12d
43591 F20101211_AACCBX angle_j_Page_17.pro
36533c1d84740732bcd969b32ac504d5
6a89385c2db2c8f83973c6c78d28aabddaf6335d
F20101211_AACBWR angle_j_Page_73.jp2
599c86ae14e581ad8df750038caf3211
bf46d3d807dd88e2df90827cdb26a7f0aec03f85
24414 F20101211_AACCDA angle_j_Page_46.pro
84bf1f92e3911dec38d129e53e03b0aa
c18111b4aa66ffa85dfe4a6faa171d439c3a0071
37088 F20101211_AACCCM angle_j_Page_32.pro
e4db22ce28e077cb506b57b06399213d
6f095f6465cd026b807efa1dfcf82f7961dd9256
539775 F20101211_AACBXG angle_j_Page_88.jp2
8e66fe585d1914361c51e11c6e2ab9a2
500a8ef55ab03ceda36a651a4b5c11e11f4207dc
48233 F20101211_AACCBY angle_j_Page_18.pro
cfe434cb541461cfdab8ae56110e119b
1b68a828729b97883bbfcaf3ec81e95c9eaa7e35
F20101211_AACBWS angle_j_Page_74.jp2
8e18bf9ef596e1c3af8cbd7cd7640e5b
faa07ef5320f76c13baee7437ed904041713b44d
27385 F20101211_AACCDB angle_j_Page_47.pro
fa85077669a83664a2d42ec666d1ee34
a6f45c5e32536f397fb30e2b480727a6822661f5
40424 F20101211_AACCCN angle_j_Page_33.pro
ce1d9e461854e87f2f4762f4093ca2d2
927b59a06efa5d196140c834e729668942f2ef12
F20101211_AACBXH angle_j_Page_89.jp2
ab956ecba94a1a23212183052dd87d6e
657d5bb2b50831a7a2fc46f934a7857f300d7d6f
58284 F20101211_AACCBZ angle_j_Page_19.pro
3515e193deeaf3e1e5086222fd7d2378
f2a987f5f70916bbba18137c1f52ae6f894e1cd2
93483 F20101211_AACBWT angle_j_Page_75.jp2
380bd8b55ba97b8b1889386382eca220
d219263013fbbe10125578dbe83bc7896aaee752
17322 F20101211_AACCDC angle_j_Page_48.pro
691a93ea8865d0f014b229253b0e56f4
1a52791e8f16dbb36eb84dafac12537a16e57874
47779 F20101211_AACCCO angle_j_Page_34.pro
125c94009419f1ad139a331696155751
002326ec1d640dfabee716261d503c462a2ccbba
983919 F20101211_AACBXI angle_j_Page_90.jp2
2e8ab087f19544b2baa31bda1ce80f44
d4a5f87152a093dee3ef9ce3ca7911039c3ac41e
782767 F20101211_AACBWU angle_j_Page_76.jp2
663d8ffcd644197ed8512a4762957633
d776e972b4e270d4ae9ef7c118daf8dffc879195
15047 F20101211_AACCDD angle_j_Page_49.pro
e361dba01c608a6552540683c6064562
ac294754dc4ccdd57d5f1baf134cc3b41348f97e
27943 F20101211_AACCCP angle_j_Page_35.pro
5d7945804c52a71295b0c02032507040
051f93d51dab159565afb1e89b8ed3b3906c44fa
F20101211_AACBXJ angle_j_Page_91.jp2
0af5bb09e89bcd294991a377063c55ba
03d480959330e5985838978a48dd550d4c68f92d
58494 F20101211_AACBWV angle_j_Page_77.jp2
42c59e4b407054b7aada819d7212920b
4afb2626bb6baf87aaf4118c132b4f8c16f89658
25854 F20101211_AACCDE angle_j_Page_50.pro
e39e82acab5bf416fb9095bda4612d81
459cb89cf2a27d66f60bcd856bdd9c03a02687c0
22491 F20101211_AACCCQ angle_j_Page_36.pro
30c0b748bad744611336bd76a7c67823
9d6fee430df2240cce9ee319a7dbfdd6427e1da2
1051949 F20101211_AACBXK angle_j_Page_92.jp2
c92187cc1a79a618c2b627509de1cd0b
48874c28df166f8ac307c737617196cfdc19d6b3
961279 F20101211_AACBWW angle_j_Page_78.jp2
a448229727c7d3628613f844f4c4d64b
1b0a0ffe69f075d38f8a60349196f5365a55ef82
17454 F20101211_AACCDF angle_j_Page_51.pro
d3aee0aab40c73e6596001c595cb9d73
43ad7792d2235bb0e1dc860802f14fd60d603100
58038 F20101211_AACCCR angle_j_Page_37.pro
88b85aa9b635fd1a74d1debac5cbc141
a1972a63f95194ebb28dbfb86fb14779725e3bf4
1051974 F20101211_AACBXL angle_j_Page_93.jp2
b725f0e46dda2d04ea322a1be8bedbcc
3483651cc87580e9c8400fa29d3008602605c262
1051942 F20101211_AACBWX angle_j_Page_79.jp2
ba6ebc86114f042464f02f17bf54da85
db1ea1682dcd2d13cd6e3b8555ac01222c9551e9
15132 F20101211_AACCDG angle_j_Page_52.pro
6570bcf1f5f3e4e7597b7b9aeedca484
5761120435ea349ee40e0e83a356771652b92f27
F20101211_AACBYA angle_j_Page_13.tif
6d06c08689b889c614f956ff67c1ebf5
a6b6a0ff1728b5e184964887dc35fb3fd0236cd1
22275 F20101211_AACCCS angle_j_Page_38.pro
20cc3f62ea8cf6ba0f155cf24f87b4d0
f084afaa25562b26074cb438436281168263bdc6
125996 F20101211_AACBXM angle_j_Page_94.jp2
a841977b67b1f6c45e40f20ecca50994
ec1a940e736795e1aff92abd6c1c3245ef44482a
1051947 F20101211_AACBWY angle_j_Page_80.jp2
874ecd14e80b9d3c279fc97d41134e44
5d0318e3c77c957c148f9ef0602481f22989ea0c
26131 F20101211_AACCDH angle_j_Page_53.pro
9579736dfc5a5f19ed09f7202b7112be
b6b155ebf1bfc2e1f1fe09977d7e26a1915c86cd
F20101211_AACBYB angle_j_Page_14.tif
66605c35c6bab8bd7358db73bc52a9c5
f27985367d34321a69bdd24288e0d879db581903
42515 F20101211_AACCCT angle_j_Page_39.pro
1029ea3c09e886e22c96fc20601d7f33
f1b9691672c9431c8533b543bcb7230908b568d2
131115 F20101211_AACBXN angle_j_Page_95.jp2
dd0bf210a516f3203443e822ef4c5d92
cab3dfd480440052779d1794f66cf8bf5fd31fab
1051955 F20101211_AACBWZ angle_j_Page_81.jp2
2cff022f63773546c69dc83e0dd9be54
9437dedb681028bb5de945709289f23c1986deb1
F20101211_AACBYC angle_j_Page_15.tif
e13b56e1aa9e7d161901fbd0d130d4f8
9c8f4395bd30eba9b9f527d3f9f32552e13d7246
39776 F20101211_AACCCU angle_j_Page_40.pro
24bc6b9db21ccaa084ff4b1f23f86d04
f62ee9acc8f4d196429500821c235095de5ef1e3
96338 F20101211_AACBXO angle_j_Page_96.jp2
69ed7df7e9e18b851a767e4fba103635
3ac18f5ac0bba902bb3c88c23aacc9f32d417b91
21665 F20101211_AACCDI angle_j_Page_54.pro
3d45d5bd5bd61ac2c7dd1ff024f098e6
a1721efd38cbdf8501b69a7b5db3a003e69f41ee
F20101211_AACBYD angle_j_Page_16.tif
3bba8c765fb140cdbdbf9f384294a82d
b3eecd3a28c0e3f63da77b2889bbc3a4b6de0a00
46690 F20101211_AACCCV angle_j_Page_41.pro
ea008dc6d846140881d3d6e995439af5
572e14319cbb3a4fba8d6b53257a407c8d33cf42
56717 F20101211_AACBXP angle_j_Page_97.jp2
ae3e43cbaae7b0b18f648186bf06af02
3d532e2f46d39a7177d843cb8c26f680be1f17a4
14139 F20101211_AACCDJ angle_j_Page_55.pro
efd71993652cfedf7833c2598c1132c4
7a247a69fbe7bc98ac86484f51c0c479a75c39b7
F20101211_AACBYE angle_j_Page_17.tif
cbfbdf94fde9ceab1124eee6c50d40ad
c2526b32d239afd30870a0d7946b500c9e7d4c33
51349 F20101211_AACCCW angle_j_Page_42.pro
08e3c77505aa8069c1b48ed465743773
545557f0774fccab67ae439786680d9554c309f1
F20101211_AACBXQ angle_j_Page_01.tif
7130968a0d2e0a3b63968671ce406b74
3f68735088d408e0c538d0235ae4fa16c1a0ab2a
34921 F20101211_AACCDK angle_j_Page_56.pro
3643803e210ed25bf2afd2175f68c18e
2b956bb145a95633a1a7041811316042c4922952
F20101211_AACBYF angle_j_Page_18.tif
fee860cb46595a718e1e363ca3dac98d
168be07f6d15b26dcdaed643a51adb17ec50c9ea
55521 F20101211_AACCCX angle_j_Page_43.pro
5cd60febcb3d0f58bdc613578cc7eb29
7f32878e9522ddcd9b800ebe0e0aa3f58d270e36
F20101211_AACBXR angle_j_Page_03.tif
4f2abbb03e12973635d4a8c9beee62c9
9c12ec3f474ab85355b8622aaea1a4a2b9dbdfac
54720 F20101211_AACCEA angle_j_Page_73.pro
1be88657ed093d7c07aacaec7f6950d5
702329db1517a68634422611ef8254997e270593
14228 F20101211_AACCDL angle_j_Page_58.pro
e4d092bb3fac37ee2a0a183bc206cdeb
3f82726658cebe3adae51638d1303fd2e4f2218b
F20101211_AACBYG angle_j_Page_19.tif
5d3dba289de925768645d5029360e602
b51c075384fc63b405b5b86c04247726513aef01
27542 F20101211_AACCCY angle_j_Page_44.pro
3aa69b67401fac6fe000b70992e88e8c
221a908d7c4c547c1464275bf045be74c70c2efd
F20101211_AACBXS angle_j_Page_04.tif
f463e61d53b4e7184551e4eefefa8393
0dbf82e549250c66f60f314ab6e7a86eba1614e6
43003 F20101211_AACCEB angle_j_Page_74.pro
4b58acb99d1aa123c981057644063282
58ef3aa0876f365b4300b25ee90c84713582b691
27525 F20101211_AACCDM angle_j_Page_59.pro
1d23811fcf363efdc7d308a6351d6b79
66e46787da37f2d3f6eaae82a19772fa8f563b26
16117 F20101211_AACCCZ angle_j_Page_45.pro
2c448a759ed72cc271d5eb23f7d2f88d
98374e03868e2d84163569bbd4b5faee130f5182
F20101211_AACBXT angle_j_Page_05.tif
58a51052a2e287ca053d9eca546b98a8
a3deb2891ce992cda71a48f79aebcda8256183f8
43154 F20101211_AACCEC angle_j_Page_75.pro
81b6609e67ba8d31f5bd4c3a0248cc1a
c52b92724ec997d83715115f539923ceddc12049
17757 F20101211_AACCDN angle_j_Page_60.pro
5332bce8be197eea9f741a1c4986fcef
6370ed565701dcdc0dd36e4ab2b79ed52036394e
F20101211_AACBYH angle_j_Page_20.tif
3b6f445f85f14b34f9c97c9741ed59da
2ee24efc1bcc7400275e4d3787863473e4cbe73b
F20101211_AACBXU angle_j_Page_06.tif
8ea0203b60f9e896aa70026a0f15dd44
6bec4fd67f0c59224581e14a2d72aec80de086e3
32978 F20101211_AACCED angle_j_Page_76.pro
aa9e93e1495e8a5cdedfb43eef1d8854
a3e58f840de394dafe6a5c3eb59ef7a0eb68dec6
14520 F20101211_AACCDO angle_j_Page_61.pro
c01bea7a610fd1b3aefabd37b2ef975a
1c5de43a115a8c3373b54cbfc28bfdd863b5f3d5
F20101211_AACBYI angle_j_Page_21.tif
fcff8d5728c475eaa49c93f09e5a3217
7d399461f950f44ac9ac4cf619847974d51d584c
F20101211_AACBXV angle_j_Page_07.tif
0e4be0958be6e778dae9e3d043840641
70224fded609869f7078df3bc2681f56bec8c87b
24984 F20101211_AACCEE angle_j_Page_77.pro
4b2984ec51c5c28b357001460658cd2c
b45bc4eec7739b2e0a15306a547f851963200e63
32609 F20101211_AACCDP angle_j_Page_62.pro
0e9b2e7671e4d2d6f260f5b4a7fcce13
baf1854a109a2c25a9bce3f7af7ffbf4b4debac4
F20101211_AACBYJ angle_j_Page_22.tif
2453c3f74e019b2c4792fc952ad69867
4589469f5d84a60d6e9a2e0e4dc57131ea535b51
F20101211_AACBXW angle_j_Page_08.tif
3e945d20bbfab404f2c1c8f6b91a0d94
80b7e5d9bbfb48159a016ff10621c5f433f984ed
43319 F20101211_AACCEF angle_j_Page_78.pro
0f9ca180769723ff76a83016fc49e7d7
99a5bcdaf36f311abbb1604f63c168029dbda555
15303 F20101211_AACCDQ angle_j_Page_63.pro
d2eac7e269c918f2cd92cb205b074c29
72ee4493b6de1e3ca687eb322f668c8b9883858c
F20101211_AACBYK angle_j_Page_23.tif
ffd34e6ae1dc5e8c679b2df3f7e0424a
ef4d83f502828be420cac6a4d599657b98659226
F20101211_AACBXX angle_j_Page_10.tif
45670358ca3ba145b7a0b08a9923d92d
c682b55aa3fe861bc617051db9b9df49321f6eb9
48340 F20101211_AACCEG angle_j_Page_79.pro
b37d70eb797d5ec849b83434319791b9
7038fb32e914da11e018286228a785597a9f6abd
F20101211_AACCDR angle_j_Page_64.pro
43ec790da0f23c03f1ab51c79f35e49e
e0e4747d64cd574624f20e78fc659a3b7c0352f2
F20101211_AACBYL angle_j_Page_24.tif
7da5b47553e0b74eab88624f4ee6f57b
6a4339afcc1d761c2f20ad8c363909be8f61f5a1
F20101211_AACBXY angle_j_Page_11.tif
7fff640eda9fa5f2bf423ed883a4015c
5078a9fc16deb5d9b3fac244fcdc066d36884090
48063 F20101211_AACCEH angle_j_Page_80.pro
858e5b0f6b9379b35a5c376a62dabc5c
ba7e8d47d1a07b0a1346eb8cd59514fa812bfc57
F20101211_AACBZA angle_j_Page_39.tif
d824c231d995358dc4439c9a81b8747a
d900c38205f0d176daba9120bcd11e9af678dd63
39658 F20101211_AACCDS angle_j_Page_65.pro
6cdd0f3e4462b97495680e1d5bdc432f
97a5261d3c413ef298f5f588bbfdfb2e0722da5a
F20101211_AACBYM angle_j_Page_25.tif
0c5178843d10d4af57c5d9c11b7b265e
f8d563090fd9b9541de4345ea03d95744ac4b727
F20101211_AACBXZ angle_j_Page_12.tif
289f1376fa8e14647e4aeb4c23facfd2
fe97b4781d34938cccbe0b0457eeda48d2e89eea
53211 F20101211_AACCEI angle_j_Page_81.pro
46ddd26c56fdfe345118f23106a464f2
f95ce980c96d434fc5207817ce52436246d15566
F20101211_AACBZB angle_j_Page_40.tif
8551000660eccf427ad0ced357f41afc
1cc75029bfa02a10c75b7066a56f230ffe2a7156
14114 F20101211_AACCDT angle_j_Page_66.pro
ea2f63e9fa73835e9c0030df92b950e6
9fd9e21f1d0970d662dd0412adeadfaa4b39e720
F20101211_AACBYN angle_j_Page_26.tif
892369d8aba9b860f0333539e2a9ffb1
b59c76bd973dd99ca79d6e9f0c34162da68c8206
F20101211_AACBZC angle_j_Page_41.tif
0a33776626e3a4f04142d162956cd75b
1c84d28ff32a195033b0fe8dafc50665b6e3d34a
36187 F20101211_AACCDU angle_j_Page_67.pro
1b28e445f69889b7c580499fea88d623
39794af36ab3a9c6411e7fc53b685a1232415b85
F20101211_AACBYO angle_j_Page_27.tif
235ec59d35cac8f125cb1e57416ae515
12c1386c60162725d43af207512b56bdbd618639
15555 F20101211_AACCEJ angle_j_Page_82.pro
8ae94472c63fea94ff62474db0755bf3
b0d588e9725d52ed5d61db34767bc39a5db6d7e1
F20101211_AACBZD angle_j_Page_42.tif
9f3ded626541283b934d72eab4b50514
7992155131f21cfe5d726bfaa47bbd3dc2620aa6
9426 F20101211_AACCDV angle_j_Page_68.pro
f8660badc92d2569e0088c02cfa1c27c
58897c0451d877bea8dfc95eeb79f9046e9a982b
F20101211_AACBYP angle_j_Page_28.tif
4cdec246eef2b76b4159b1b042ee5ef3
dd267814501ba6538c6cc6ab6f2add6ebf488bdc
7734 F20101211_AACCEK angle_j_Page_85.pro
fcfaf311f2412292af1720371fa1f325
ea4e10694c9451c6cbf600fc0592f1e99ceb3299
F20101211_AACBZE angle_j_Page_43.tif
271db70d0acb669675679cdff189086c
d2addafb4f737468b987858d13ae28c8bc3c09eb
55161 F20101211_AACCDW angle_j_Page_69.pro
f4166310d35db24eed641681c277ecf1
68d46a66b3c2fb44b778bd4a4f3862839c9c8ba7
F20101211_AACBYQ angle_j_Page_29.tif
8f72cfd6e98ffec7f11da46c0ebe66ce
0d770a77fc8c4fe488fac8ede7355c233bd8cd4d
558 F20101211_AACCFA angle_j_Page_04.txt
52c51b4ce29042cade5fef8224f0523d
a4e45ab4946c76f5c32a27204a91b86c5e8cb1ef
58104 F20101211_AACCEL angle_j_Page_86.pro
ee3e1bcaaa58d0f3635e5253af45d0d5
e297a8b94926df9f06ddafdaf6182016fc93dd6b
F20101211_AACBZF angle_j_Page_44.tif
4ce4d3d1717ce903c933b4b3fa8cb74f
d7e8c4e74fdd3ee8f64d7dca5c6222f14eeffb00
16222 F20101211_AACCDX angle_j_Page_70.pro
44c6b123e3d28ba5cd11c3e9d5b808b7
14b179ca68f34febd27c02d2037adbb75ab25258
F20101211_AACBYR angle_j_Page_30.tif
54f86780cd95a5e5ff274de7605b16b7
611bd049d12a76fcfa563e1093bd99574fbead93
2579 F20101211_AACCFB angle_j_Page_05.txt
d3d2553c3b6f5349a5275241104c7310
8083c9c681fa869015376a89eab0319c67033eaa
34257 F20101211_AACCEM angle_j_Page_87.pro
a12365b7532f071de834ec946d49f550
8c9da44cdaf00d705e5537692c06fe1d23d9dea4
F20101211_AACBZG angle_j_Page_45.tif
b1e4c2bf7ed4074bade380b9d726b126
f64577d89851fcfa05de386c1cc907c6babdb686
8255 F20101211_AACCDY angle_j_Page_71.pro
479c38d84856b7fe3413e36b92fc1996
51b78eeba49977daebf1e8ff163d4d3678e4789c
F20101211_AACBYS angle_j_Page_31.tif
8a7c03e032ef50ea0d699d9df01401ad
eac45d08283d6403b576566b5031634a703c2292
1133 F20101211_AACCFC angle_j_Page_06.txt
0846efdd71bde41c231fb7fea74ee7da
877b6e3670c8ba2d26ce7291cdafea6374d729c0
7794 F20101211_AACCEN angle_j_Page_88.pro
6efe3c073debd41e9c405ef475c4fc4f
848bb00a6fa0c64eda5a9ce88abc5cd0c2fd0a64
F20101211_AACBZH angle_j_Page_46.tif
f333e41d862d0af482502732ac12d4b7
1da2cde5b99f250001a2222d354dac60cd044cc4
37206 F20101211_AACCDZ angle_j_Page_72.pro
856664cab652b83bd3ddd5dab1b5e580
cdeede1625c8f0e3916425ac56bc902c43a2f5cc
F20101211_AACBYT angle_j_Page_32.tif
dc9fc8a314e22ae1578095f124002097
45541237c6cc86f46711b409130809adadcb2d8f
2318 F20101211_AACCFD angle_j_Page_07.txt
045a52b0eafca9b0e85671f60f07a664
2a70a809ec7aced533edb2cbc7efb34ade8e412b
55310 F20101211_AACCEO angle_j_Page_89.pro
88f08dc94fa8bad9e47f16ae94a2042b
00a963b0957819d3bd3dac85fcd033d56af915da
F20101211_AACBZI angle_j_Page_47.tif
1c0848b6aac36ecb33fa65d3a54f1f18
d620f5e34a8afca0890e1dded608066b1dfd5261
F20101211_AACBYU angle_j_Page_33.tif
9dd3811d1281740840ebc081a67f1e14
f6acafbda1e094d0e76364e3a68729ab5f05073e