<%BANNER%>

Selective Mechanisms for Benthic Water Flux Generation in Coastal Waters

Permanent Link: http://ufdc.ufl.edu/UFE0021567/00001

Material Information

Title: Selective Mechanisms for Benthic Water Flux Generation in Coastal Waters
Physical Description: 1 online resource (231 p.)
Language: english
Creator: King, Jeffrey N
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: atlantic, bay, benthic, bight, discharge, estuary, exchange, flux, gradient, great, ground, groundwater, hydraulic, indian, island, lagoon, lake, long, pore, pressure, prism, recharge, river, sallie, seepage, south, submarine, terrestrial, tidal, water, wave
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Coastal and Oceanographic Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Benthic water flux (q_bf) is the rate of water flow across the bed of a water body, per unit area of bed. It is a component of the hydrologic cycle and a surface water-ground water interaction process. Benthic water flux is an important component of water, pollutant, and other constituent budgets. Several physical, chemical, and biological gradients drive q_bf. This work has two objectives: (1) to develop analytical equations for q_bf driven by: terrestrial hydraulic gradient (i), with Schwarz-Christoffel mapping and the Poisson integral formula for the half plane (compared with Bokuniewicz 1992); pressure gradient forced by the ground water tidal prism (V_gwtp), with a perturbation solution to a Darcy-based diffusion equation by Nielsen (1990) (compared with Li et al. 1999); and pressure gradient forced by surface gravity wave, with extension of a boundary value solution by Reid and Kajiura 1957; and (2) to use these equations to characterize q_bf in four case studies: the Indian River Lagoon (IRL), Florida; Great South Bay (GSB), New York; Lake Sallie, Minnesota; and the South Atlantic Bight (SAB). The solution forced by i generates estimates that are between 27% and 323% of Bokuniewicz's 1980 observations in the GSB; between 40% and 127% of the observations of Martin et al. 2007 in the IRL; and bounds Lee's 1977 observations in Lake Sallie. The solution forced by V_gwtp explains 26% of Moore's 1996 observations in the SAB; and between 16% and 29% of the observations of Martin et al. 2007 in the IRL, assuming observations were taken during the discharge phase of the V_gwtp cycle. The solution forced by surface gravity wave explains between 50% and 75% of the observations of Martin et al. 2002,2004 in the IRL, assuming the Lee-type seepage meter is an asymmetrical device. Deviation of the percent of an observation that is explained by an analytical equation is a function of statistical error in the observational process, abstraction error in the generalization of a physical problem to a soluble mathematical form, and use of a single-process equation in a multi-process application.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Jeffrey N King.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Mehta, Ashish J.
Local: Co-adviser: Dean, Robert G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021567:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021567/00001

Material Information

Title: Selective Mechanisms for Benthic Water Flux Generation in Coastal Waters
Physical Description: 1 online resource (231 p.)
Language: english
Creator: King, Jeffrey N
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: atlantic, bay, benthic, bight, discharge, estuary, exchange, flux, gradient, great, ground, groundwater, hydraulic, indian, island, lagoon, lake, long, pore, pressure, prism, recharge, river, sallie, seepage, south, submarine, terrestrial, tidal, water, wave
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Coastal and Oceanographic Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Benthic water flux (q_bf) is the rate of water flow across the bed of a water body, per unit area of bed. It is a component of the hydrologic cycle and a surface water-ground water interaction process. Benthic water flux is an important component of water, pollutant, and other constituent budgets. Several physical, chemical, and biological gradients drive q_bf. This work has two objectives: (1) to develop analytical equations for q_bf driven by: terrestrial hydraulic gradient (i), with Schwarz-Christoffel mapping and the Poisson integral formula for the half plane (compared with Bokuniewicz 1992); pressure gradient forced by the ground water tidal prism (V_gwtp), with a perturbation solution to a Darcy-based diffusion equation by Nielsen (1990) (compared with Li et al. 1999); and pressure gradient forced by surface gravity wave, with extension of a boundary value solution by Reid and Kajiura 1957; and (2) to use these equations to characterize q_bf in four case studies: the Indian River Lagoon (IRL), Florida; Great South Bay (GSB), New York; Lake Sallie, Minnesota; and the South Atlantic Bight (SAB). The solution forced by i generates estimates that are between 27% and 323% of Bokuniewicz's 1980 observations in the GSB; between 40% and 127% of the observations of Martin et al. 2007 in the IRL; and bounds Lee's 1977 observations in Lake Sallie. The solution forced by V_gwtp explains 26% of Moore's 1996 observations in the SAB; and between 16% and 29% of the observations of Martin et al. 2007 in the IRL, assuming observations were taken during the discharge phase of the V_gwtp cycle. The solution forced by surface gravity wave explains between 50% and 75% of the observations of Martin et al. 2002,2004 in the IRL, assuming the Lee-type seepage meter is an asymmetrical device. Deviation of the percent of an observation that is explained by an analytical equation is a function of statistical error in the observational process, abstraction error in the generalization of a physical problem to a soluble mathematical form, and use of a single-process equation in a multi-process application.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Jeffrey N King.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Mehta, Ashish J.
Local: Co-adviser: Dean, Robert G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021567:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101118_AAAAAM INGEST_TIME 2010-11-18T08:58:11Z PACKAGE UFE0021567_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 1053954 DFID F20101118_AAAITI ORIGIN DEPOSITOR PATH king_j_Page_003.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
395b0ff2bc8ad213f7d0ae72e688e89f
SHA-1
b15d5357435a88f1ddc665590eb7e487c224ab96
1146 F20101118_AAAJQB king_j_Page_177.txt
2b622bbf7137c950eb8f5f2bb19bd772
3753e70d04703d51273a0b14a5e0fc7339a2f12f
F20101118_AAAITJ king_j_Page_004.tif
9360d4db143b78403f9b7cf747266ac1
6a7a5fcc3757e60a5a03c2ed0930d0b6aa692a70
1850 F20101118_AAAJQC king_j_Page_178.txt
52b0eaa59ffeb704106ea0e6e1cc7578
f67a0d4b1553b90d8d68f4d425c798bddc51994a
25271604 F20101118_AAAITK king_j_Page_005.tif
933f9523076c437f5cf8167e52c8796b
dd9bbff32cc5cf9ef31beceec10882a3694b2952
253 F20101118_AAAJQD king_j_Page_179.txt
efd434799bfd11d48c45c008237f2741
1287d68bbbc4d5551ffbdf9371fb7cd93d08451c
F20101118_AAAITL king_j_Page_006.tif
bffdeb8fcf84ee633b8359a552db5347
cfa819eff0ad899d719ffe697993cfa841f54d06
476 F20101118_AAAJQE king_j_Page_180.txt
2ddae2b224224c10a9e2bd76d51bcc0a
db39f7c25da13e418675afb11bc2a1c81195b794
115113 F20101118_AAAIGA king_j_Page_102.jpg
8e02c2852614fae9f01dadfb9aa6a1c0
33a79888699f2272ba3defcd781ee22decd47280
F20101118_AAAITM king_j_Page_007.tif
75fff46356003d3bea3796840f4ca124
49372ec8508146a2a5507fcdde2d6a1cf240e241
764 F20101118_AAAJQF king_j_Page_181.txt
e545f80104e1daf0edcd69d79d356916
207ef66cb086b4cbdf377f5671706d6dcd2189e0
96643 F20101118_AAAIGB king_j_Page_103.jpg
f64fecf3ded10350f6845055158c70f4
87a6dec5bc423ddfa29cfdacb3b3978c42df5125
F20101118_AAAITN king_j_Page_008.tif
fd95ead2e55d7ee5f985f0b437d2ed16
0acfd9700c052c53b8aadae2729a68b10060bdf2
495 F20101118_AAAJQG king_j_Page_182.txt
57509b27114a1c76a702c75ecfac143d
691b85ada30155b9eb807b9dd97a92854c69b6fe
97290 F20101118_AAAIGC king_j_Page_104.jpg
94e3699e2bcd0c03d3d5cacd4c71042e
c555afb9d4ddcede0ce9fa9b5f980887e7c0a87a
F20101118_AAAITO king_j_Page_009.tif
2a2aad0284c6e6c22e00f14f4a2f41a4
0d3bc19befd67796204b9e61c58f8039bdbcfb29
1308 F20101118_AAAJQH king_j_Page_183.txt
56b38a881c17fc2ce83b573e5ff8f9f1
4734cd4f4ebc7099d20dfbb28ea336956560f24a
85826 F20101118_AAAIGD king_j_Page_105.jpg
6b95011a8e619a3b5eb797d1d6ea817a
ce6570c9e0d4953ba2e019336c2b8b4963af5e5c
F20101118_AAAITP king_j_Page_010.tif
a4c2c7238ff230a3a8f4c389870aecff
6605421b4c4a202c146ce1bf34418fd192e60f4c
540 F20101118_AAAJQI king_j_Page_185.txt
95777a60297f51660a358bfc9209c188
001e143e355b06e1bdea99cf2d15b27e468eba00
93461 F20101118_AAAIGE king_j_Page_106.jpg
6a90e683dadb2521f5b77e4413ff896d
c8123b325f4f71897829557678a33800de723a83
F20101118_AAAITQ king_j_Page_011.tif
f0eff39d4176b6d08fd81d9756db4ba2
930119c2fa3ff259ada642ea2570c3bd4b48f2b7
612 F20101118_AAAJQJ king_j_Page_187.txt
15acbffc646a45b4963f8a183ebf401d
6078465ef8d6f6995662fe2142a5aa8c27d16df0
110557 F20101118_AAAIGF king_j_Page_107.jpg
e0bb0016af43a5820029b3ebb12bc00c
0908bde806b3dbbf99c3da7a3de01160b340f8dc
F20101118_AAAITR king_j_Page_012.tif
87ea474445b329e824d4ab71ceda3d1e
26f5ddd552c70c888a52ec5d525bdc508d53e9a7
700 F20101118_AAAJQK king_j_Page_188.txt
2053cb4a1e8f91d9f22fcb1878247cfb
cb3827f8024e989875c1a6bf909ae25f55d1f21e
71698 F20101118_AAAIGG king_j_Page_108.jpg
b164f761804f25b7c375a758db361113
b81a74d69752bcba66211a2d80e2bbf14b3848f5
43427 F20101118_AAAJDA king_j_Page_040.pro
cd356f1b9581a3b39b3d013015a81179
12150a23aef55da01ecb432945408a6204bbdc44
F20101118_AAAITS king_j_Page_013.tif
25f2c1d5562b627da28f7bbea00848c0
233291212e058b99c561658b642d91d60d2669fd
1093 F20101118_AAAJQL king_j_Page_189.txt
b37e28406818fa2516bda509d0937f66
f30f96e39a2c49ea1b2206b5f16b86e3e89b94b7
95301 F20101118_AAAIGH king_j_Page_109.jpg
0e0b2aa806b650c0f94b1581428ff6c8
496a033828b9fcb8d7e9ca0fff226e50a4dcbcb0
48680 F20101118_AAAJDB king_j_Page_041.pro
7662b43d3e38b1da182f05488ca17e0a
dea548c7f4a8806062073e149c819211e1fdce25
F20101118_AAAITT king_j_Page_014.tif
7e040fc45ca6baefce1b6b7b23901f73
656d014a33ef9182ecb0f0beb28f771ea43edb00
1938 F20101118_AAAJQM king_j_Page_190.txt
07ce1e1f39965f59676bc7bc318e2a75
60a7501028362a0891da463705a8817a5df087a9
67240 F20101118_AAAIGI king_j_Page_110.jpg
797b5e62accdf12b26d2119087339756
60e7eb17a4cd4ef7dfe5b2f0bdd5b1796fb8c0c9
43168 F20101118_AAAJDC king_j_Page_042.pro
ff3d1329970d2004a2be5d58b3086d11
1726990ed7a3269f066e15dd7f0531fc2d2367ee
F20101118_AAAITU king_j_Page_015.tif
c35994e2b847675c0a532d13d7fea1bf
f137a49332d2f4a0d7a172289dcdba40ea01b6de
1365 F20101118_AAAJQN king_j_Page_191.txt
c90ffa928f9da8d469f9e516fe875368
d7795be48e0b51b6893a1b16e8531193a64809bb
52557 F20101118_AAAJDD king_j_Page_043.pro
efbc8d68208313527f95ed3897dfc47f
d28df4fec012f96a2e7d405e843fd06507910fd9
F20101118_AAAITV king_j_Page_016.tif
ae02e6cf39bd2cb8411e506131e4b511
4f082ace67e9f50c242ecc6504c9e8d321a5a6a3
1657 F20101118_AAAJQO king_j_Page_192.txt
56a3b606549e2c76d6e61713cabfadba
d883d66b233047c626786b5eae92914c2a6831d1
51170 F20101118_AAAIGJ king_j_Page_111.jpg
2202d125ff94872589550059ffb40dd3
3331ee63207a052ee932c8cdf6e8d3f97863a9ba
60222 F20101118_AAAJDE king_j_Page_044.pro
ba8db0bd135808da68253eb5f32a13e9
a69bc859db7c1e67516007f3c15a2123e2c107a4
1902 F20101118_AAAJQP king_j_Page_193.txt
3a48f48a8ddd36ce9a3cb2b2e5f2564a
6950588f05b9d395ebfacf5bcd7defd739990454
73293 F20101118_AAAIGK king_j_Page_112.jpg
8422a1cba9864c37cda0201e95f0c9f3
a033819e52706527176870867001561760c2aa3d
F20101118_AAAITW king_j_Page_017.tif
593891b8af88162bcf86ac0195c70390
fb85c3e5773b76d1dfceafe07340bedb890eb9f8
1110 F20101118_AAAJQQ king_j_Page_194.txt
30d188e7f4c81a9309ea3c0b2c95680d
194fba0039dfb8796e2e58a59029dbfe61e089b4
65174 F20101118_AAAIGL king_j_Page_113.jpg
aa408b542ab8489f447deae3332e4151
4c7035af490580cda958dfd9cd69484e4f1c5f54
54403 F20101118_AAAJDF king_j_Page_045.pro
35e20d97d2bc6836660de0fa74e15029
8941d50f22f952d4419d60008bb81878c1c98c9d
F20101118_AAAITX king_j_Page_018.tif
53fea39861eb13bf1a5d47ee46a5ff38
daea7748032ab0bf3abe0ceebc4ee87763997f7b
2022 F20101118_AAAJQR king_j_Page_195.txt
f0a5a8364d557496dd1d531b949aae77
fb0d268b803d75c3216612c888ebd800974ee9a3
59344 F20101118_AAAIGM king_j_Page_114.jpg
514cce98c6e9e7b661cd8581932d405f
788aa95e4410badb0cb7dab92de836d3224cb2c4
61919 F20101118_AAAJDG king_j_Page_046.pro
59ff3bf0aaf2c65657ea71170cc5c60f
7ee5802f857ee25f5ba73aafebc4a5864e6b8cd9
F20101118_AAAITY king_j_Page_019.tif
94250f2f14dbfd1e40a0baee0c50d5db
dfc777b292cf027b6989f4f31beab3c6d8b00bb4
3635 F20101118_AAAKAA king_j_Page_096thm.jpg
a2c66965d0b4b3b2231d4393c3c4a30d
b6bcd1eb03f47826d83dc3e8df92469677d33f2b
57646 F20101118_AAAIGN king_j_Page_115.jpg
73ee0146014b211a50835ca2152a8f47
d3e69a99697412d2842cda4241db9bd98f5e5f08
54350 F20101118_AAAJDH king_j_Page_047.pro
685ff33fb59c50c4a4fda20255658052
d92665450ba15173509aa04a7fac9031ca2c8297
F20101118_AAAITZ king_j_Page_020.tif
d8a9d98fc2465e9ef21dfa9374a42ca0
683b7cd7b98ee28f55bc0689c8d1ea01ae9edc61
738 F20101118_AAAJQS king_j_Page_196.txt
aa9a937728a4ffb483aa6eaf420dd9e6
736c139df9011af75027e87ad9f85495ffdaa14f
63377 F20101118_AAAIGO king_j_Page_116.jpg
8802256277da781f2c0b24e80d368f54
ce3d509619b7945e3351497750fee64c2bf12c2a
50907 F20101118_AAAJDI king_j_Page_048.pro
9e289f84ad713d4e3bc6a41f1d1817c1
040ab8cbe42bd69846bc3a63ac5bf82402d05c21
12902 F20101118_AAAKAB king_j_Page_096.QC.jpg
31f396b39457cadd3002df3d05573a72
a69868a951dca4a9388c2bb51b6d621b28256011
1630 F20101118_AAAJQT king_j_Page_197.txt
07b2cfecf3d441d408cf07df55acbc94
642bf548ed79665b8f5cc2191190dad4d57ee059
51364 F20101118_AAAIGP king_j_Page_117.jpg
4042250f5d944e861e4476ab955acccd
08d48332dfc92c222299baa22c8c8f1ceca8d840
77899 F20101118_AAAJDJ king_j_Page_049.pro
78eab50cabd49b1dae0adb8cba698b95
174d08b079edf10ce62b0ecd37fcc973497d6a73
11968 F20101118_AAAKAC king_j_Page_097.QC.jpg
7eba57ebe05664e0a8f4e2b21ac6ba04
7b5f9518900e9358508e2ca87905baf085f90174
1417 F20101118_AAAJQU king_j_Page_198.txt
2326bd4ef8c62601be1c18fcbc6ea523
50b56a6577edfb24ce24f02bf11465f8b2b28df1
63250 F20101118_AAAIGQ king_j_Page_118.jpg
e0121f7985efb10a6df528a0c42dfc6f
65191a082e6fa80e9e2fc4f9271135c0e4d97721
46456 F20101118_AAAJDK king_j_Page_050.pro
ba929d940f07fd3fea3d2cd794c9a38c
34333bd7a8797fda084763ef39d4c5cacfe463cb
7931 F20101118_AAAKAD king_j_Page_098thm.jpg
8ed9ae84843176f3c4196c3e48464592
a3b06b084917effaf0e35d092a81d5ebf7f1ba35
1887 F20101118_AAAJQV king_j_Page_199.txt
8b5d98917fc8a77d51903d3e9570b564
2728cdd4cbaf8fe7a0bd5233c98c83560b898dd6
86626 F20101118_AAAIGR king_j_Page_119.jpg
e502cb7fee04ee260196436861cd5435
ceee46eb3d83d1822d0e4e9cbfad108b6238ad6e
32154 F20101118_AAAJDL king_j_Page_051.pro
4bd314c3cd2d310b05ff725aa1deb181
5a5f2fb7dea9465105d3a0eb7e3a0818f825d74a
7092 F20101118_AAAKAE king_j_Page_099thm.jpg
1ef27b2b23c2850a208d3336fbef8da5
b1d99959a01f2ab05849b5904e7bfd1339161e9a
1950 F20101118_AAAJQW king_j_Page_200.txt
f1f4bfe4252b816ae363cd24b656c983
7cadb8d33d985af2008831a5a48a5512aadbef6f
41726 F20101118_AAAIGS king_j_Page_120.jpg
4c937aee482bfe530cd2fb2a38977c68
c0ee9011377de69253419b0c76210304a54e0f13
50855 F20101118_AAAJDM king_j_Page_052.pro
e35a3fda26b48826877d29812f45366d
811d31d90ad411948bedcbaf669aee64056fec23
25553 F20101118_AAAKAF king_j_Page_099.QC.jpg
a045df1ab32a86a04e57f7adbf791750
72532f48f19abc8e5a6f8a9e5448301ee5482021
F20101118_AAAJQX king_j_Page_201.txt
331d745389ce89e2bbd5be57a33bfc19
4f0406a3e12440e46108fa97f06779412a80588e
59062 F20101118_AAAIGT king_j_Page_121.jpg
fdb78bae018cc61183e531c821ce840b
632d76cdfbb1c014ea460e6708e698a518871765
54570 F20101118_AAAJDN king_j_Page_054.pro
fd7cb5bfb7746b2d9e16c01b92eaae07
be8cb2104fafade0cf9efee624e39699e6998e5d
7243 F20101118_AAAKAG king_j_Page_100thm.jpg
d87e84489ecd25169163e478faedd53c
85b4bba6809bd15e3a9151b2b1116e3c7158c17c
1336 F20101118_AAAJQY king_j_Page_202.txt
00c241f12a8f9277d471028e1f0e8bbb
6a310745505a5561b9e8e10d210309ff9442ceb5
47672 F20101118_AAAIGU king_j_Page_122.jpg
77f91bda1ece915528570bb9900bf6e1
b657f890147b7be44aee9cdccb5a1aedcb968615
17484 F20101118_AAAJDO king_j_Page_055.pro
d571bb5e6a9726529e18441c84b0095a
861f854b58e912f2f54c1802089ab63e017e901b
30332 F20101118_AAAKAH king_j_Page_100.QC.jpg
8e076553cbb78373c712765fa71cce30
5ca0ad164b2d04958cea6a6a6838a4e18d2f7a6e
1939 F20101118_AAAJQZ king_j_Page_203.txt
0964053e5965213c600dc65ee126b88d
05035ad14d3d5ccb300bd31a3067944faa100e6d
67854 F20101118_AAAIGV king_j_Page_123.jpg
8eac9cb30fce9807fe4393d6c54a864f
dcc8a8cf354053b2c7f926e6aecdcf8551625d97
49902 F20101118_AAAJDP king_j_Page_056.pro
34e7b93221b5c8237eb431deec79fc5d
b09120d23b6f29bf58e2aa6d895aa535b650504b
6366 F20101118_AAAKAI king_j_Page_101thm.jpg
c6466f5d1b78f225cc76b8c713a98372
2b33ef25d17f8cac6b6376fd71d6b2234b3c435f
78219 F20101118_AAAIGW king_j_Page_124.jpg
81ee650cbbacfc6e43d010b092b0587f
622127ec07a5e11fda1e12d478d6d0de323178c1
F20101118_AAAIZA king_j_Page_159.tif
4aefa439292e78f9972dbf228d8170bd
68aeb0b70c5195f5704a6f0d5f9cb82e6a18f658
27718 F20101118_AAAJDQ king_j_Page_057.pro
a40655504c78d3e9915c5de10b9b1832
2f6600bf316460192cd967f5f5ba95d51518dbd2
25111 F20101118_AAAKAJ king_j_Page_101.QC.jpg
12b61fed57d36837e136c62c4e6ea35f
9def549c8b879ad69f3ae1bede4506eabd02e644
74797 F20101118_AAAIGX king_j_Page_125.jpg
2acf9b59ce3c768b1faf2f0c98a62c1e
9c815539d680b43035e07b71b6833c6129251ef4
F20101118_AAAIZB king_j_Page_160.tif
ff11ba9c5db4d826afd93d40325d0859
9e9894524eba8b57fe80702192777692a1b3666f
30175 F20101118_AAAJDR king_j_Page_058.pro
2d0da4cd799d92d98209c4924c98ebcf
1fa52ac8e803e954024bc86f1a06200a63c3a670
8617 F20101118_AAAKAK king_j_Page_102thm.jpg
763adc1a93ac2430fe8f8c6516399e9f
638d30864edcb5c28ea5cfb603ef75ce4d2f4200
116402 F20101118_AAAIGY king_j_Page_126.jpg
663df97a7d66e02b07937c91550bb556
bfa56efeac36a4c1f2943d4e175427b7b315731b
F20101118_AAAIZC king_j_Page_161.tif
19a8218b227a4d2c075c38f7c064e791
8f13cf8cac08c05ebd1121c015825ed7703ecf9f
8842 F20101118_AAAJDS king_j_Page_059.pro
8f569e88def5825fc2e9cf7cac59e04e
e24df30779421e1681230dcf375e1776c316ac45
35867 F20101118_AAAKAL king_j_Page_102.QC.jpg
fa419f11ed6b2f033df0210b996d56af
9160d1d44a37cde50dcb939657efaa2571f8051f
69231 F20101118_AAAIGZ king_j_Page_127.jpg
0727e1a754bd850bfa30064296225f9e
ec88c88e39d722c88a7d47aa7835a09d11d070c6
8423998 F20101118_AAAIZD king_j_Page_162.tif
4113d5300e419bbb2b830f255d82bc5a
71256c3f0a865d1f8aff32d83ef29f0f3fec8c10
55176 F20101118_AAAJDT king_j_Page_060.pro
cf59fa74fbc5ed1ea08bda0e5ae5b695
9ac130140e41fcc7e8c1ce02007e778085f7a205
8074 F20101118_AAAKAM king_j_Page_103thm.jpg
d5cb6817cd13a75899c37f6fa87fba43
e5a50a2f3a8395e13b45216da3a332ffa78352ad
F20101118_AAAIZE king_j_Page_163.tif
00abc19be3a0986307995851eab7530d
bb1c618d16ed6e3605471c0b77a1d020b923798c
9954 F20101118_AAAJDU king_j_Page_061.pro
bb38b5c5e8246c5bcdc53f18bb671c10
7578669d0cf9b7041fac7240e28726120d1b76da
7224 F20101118_AAAKAN king_j_Page_104thm.jpg
5df789e521baacbe8b477d1eacc6aae0
4b361a0997c3f35c0243c8b0afc3ae9ea84e0e60
F20101118_AAAIZF king_j_Page_164.tif
05bf8863045241f0b36c19b4975c23b6
987d70b32d725c7d225eb4e7b6c76031ea5c7e05
24314 F20101118_AAAJDV king_j_Page_062.pro
41544a7f2641a8c09c277bac82c10040
e67ee68e63ea3f1ed70aaff96f227e4b448ed302
28664 F20101118_AAAKAO king_j_Page_104.QC.jpg
74eb574e982046e37eeac809d96ca371
3bb3f4599bbd448c3bbc1c3409b81385f6c7f439
F20101118_AAAIZG king_j_Page_165.tif
36353a2907df2f58546910759f375bf1
b391cfcd8b3e1447f77d1cc01c087e76f4961a0c
24217 F20101118_AAAJDW king_j_Page_063.pro
fbcab7396909e10d141f3a4b3b914df6
9bb7037b33d321935181c73179c22bb0b5e425d7
6870 F20101118_AAAKAP king_j_Page_105thm.jpg
d2ae52821d3206e2d498a6c89003bbac
17f5fab730e84752327b8168413d4eb03a88fd7a
F20101118_AAAIZH king_j_Page_166.tif
c444530fadca22ade0547f19564b8818
071427fb7e3ecc4a424ff670521f838ee8f962b6
11252 F20101118_AAAJDX king_j_Page_064.pro
8bfcefebd0e7bf66584510c5b47b582a
ec62a5eaaf33f2f86c2073b8547dd302bb185799
7950 F20101118_AAAJWA king_j_Page_033thm.jpg
15b3840b56ed45fd28bca5e5d88a95ae
a58108d398b937bca8d5e2abd8a50129f7392a48
29471 F20101118_AAAKAQ king_j_Page_106.QC.jpg
08be1dd54030eb108510a92509ba7c98
d1d9a9dcc6623f5b9f57f40b3eacb5b84a4b4f20
F20101118_AAAIZI king_j_Page_167.tif
96f6141847416dd79472e6fcaee3a43f
77cb04914730d6f143832d3b7e98f9b22b7b7724
47166 F20101118_AAAJDY king_j_Page_065.pro
4cb55f49e24d74621e509eb60a6f0fa2
1d36e322b936a6822357dc0f4267c4dfddcbd572
32902 F20101118_AAAJWB king_j_Page_033.QC.jpg
426800354d941b3dc89b3fec228c8f53
88fc970ebc815d5d20b22e84b1b023c9dd4df44b
8161 F20101118_AAAKAR king_j_Page_107thm.jpg
09e51e14e27bc2a2282124a8912f5678
d4bb09b2da62e6b69e145a8a6a46de6849341422
F20101118_AAAIZJ king_j_Page_169.tif
d4e17eb0dbd3c05bf2c98b35fa3cc6fc
77665f72d6295055934cda605c1d2ddaa01f0896
17906 F20101118_AAAJDZ king_j_Page_066.pro
773ab814fba16d9e32eb0a0eaf3feeda
a37b0908502e1b5b91ee37baaa747fe9452d3f38
7002 F20101118_AAAJWC king_j_Page_034thm.jpg
2b112cb82a1c3acc9151fffb800b1bce
5b9b1f926f0610ab9ca0ec322ecc1ad822aa4cee
35169 F20101118_AAAKAS king_j_Page_107.QC.jpg
21f8ecd5ed267e8ebdaec0546ba845bd
be0b3850fe689e1458b6233fb1f8b9570d8f0a16
F20101118_AAAIZK king_j_Page_170.tif
9b1ef62ef5dafd2f39aa510a52376d62
481b880e1b86bcf5ac9f7b81907e43e0ee42d757
7006 F20101118_AAAJWD king_j_Page_035thm.jpg
3c7749c930ca25c715557a6f0ea04f72
4778c5a0ab07ec067edb1d1060701d1e8415c0b2
6507 F20101118_AAAKAT king_j_Page_108thm.jpg
8fe99ff21ba5a157a7c7b94bf04b2c7a
5a25a107823c89e3020e9bd03a8eb4f94414276d
F20101118_AAAIZL king_j_Page_171.tif
b630b97aebd4bfffcb937df7903175d3
256686f02378f3cc1bbd0e311bb62006a49f3360
6495 F20101118_AAAJWE king_j_Page_036thm.jpg
59f16f35721b516040f60c9d9d545a5e
84442a92d8b7462c50990eb9d7b101bbd61f20a5
22212 F20101118_AAAKAU king_j_Page_108.QC.jpg
89272daed8987f2992d213ed99d95fe5
71d0b4739faa6a129b86057942764d20cfe81d00
1051985 F20101118_AAAIMA king_j_Page_032.jp2
4d21c9eb61c4cff7e6da5cb65d51562e
248fbbcd06ce603bd04fc9044e704e4704797e69
F20101118_AAAIZM king_j_Page_172.tif
f4327849d538e9a62d2575ace8481caa
d08206fce7ea279b41a686606535eecc1fc4ebde
25367 F20101118_AAAJWF king_j_Page_036.QC.jpg
ad49a5a2649ae700ddc90525894d32de
8a1f74bd4723ff87bcdc441755ba792e14ced38f
7562 F20101118_AAAKAV king_j_Page_109thm.jpg
ba208cce7af05e865ce5b68bedec3018
51d8cc130932f1f68fa381d9111e35b211c063b0
1051980 F20101118_AAAIMB king_j_Page_033.jp2
f561f8b0e9fc58f183da1febee90509b
5d7a42d0550fd38bf4f9ac00a3bc9db6aa9a377c
F20101118_AAAIZN king_j_Page_173.tif
433a2d08810a2879872da7b0105fc256
701dc5aa8a3b15af7fed4f7b24f1e4d4ed052479
5593 F20101118_AAAJWG king_j_Page_037thm.jpg
f03045fbf1d58c01ffb0063b3669dfb1
cf6ea762e7e5c33704e763fd03b41a1fc82a5f59
29173 F20101118_AAAKAW king_j_Page_109.QC.jpg
16b49517a72ca979608c61279e6d7314
40e5c413001ef52891111e0208b8b13016868a87
934959 F20101118_AAAIMC king_j_Page_034.jp2
6c26e18df76ae5b9f132b98098730eef
05696e7c7be108cf02d716de4be3123e5c718ca5
F20101118_AAAIZO king_j_Page_174.tif
c921adca37f8c2fee8671febec489511
ef62598317eef0bc11156523651969e49237a736
21908 F20101118_AAAJWH king_j_Page_037.QC.jpg
a1f7b0daea451cde569291a31ab423f4
c523bd108aa75fd669962db0bcd386fab7eef3b4
6377 F20101118_AAAKAX king_j_Page_110thm.jpg
b655e5837e2b1be57aa037a4a9b6da90
5e018bbb043c7d51f3a4dced8fdfcb9b9df8d903
963238 F20101118_AAAIMD king_j_Page_035.jp2
5f072a88eccf495029e0ba28a932ef4b
996bd31e2d4c9209016f7c818065cbff42cb888e
F20101118_AAAIZP king_j_Page_175.tif
6090e74ac672e20dc7a594c7905c3817
0384ad3d49317af4482d13d841e8f7b88438ca12
8508 F20101118_AAAJWI king_j_Page_038thm.jpg
f4232b2d7cf6c6f659064f802fbb17f7
3c9cc1f4b8299077a74aedcc84b4dcefe4071db4
21517 F20101118_AAAKAY king_j_Page_110.QC.jpg
ee23be099b7e0401a763be4658a61fc2
8c50c0a0d0e1f6e4c6fcbfdd779343f74084c3ea
72725 F20101118_AAAIME king_j_Page_037.jp2
e1fb0e89eebfbae6717d926dddd697d0
1777fb8df381e086cdcf0112525aa41c86df90fb
F20101118_AAAIZQ king_j_Page_176.tif
b47e859ef5d1e31493288249b7a189bd
cc7463fc06f4c20d0e7afab2e4e37b8eafe0106e
35798 F20101118_AAAJWJ king_j_Page_038.QC.jpg
7cca20f00e7326b95dde96677ef432dc
9c18a25dbceefb4d2b6c94b444bc5dacb8189d7f
4251 F20101118_AAAKAZ king_j_Page_111thm.jpg
3b101ce32f4a44a047b2bc783378c999
31d7d448edcfc09d037a0efe3129f373e5d5db8b
F20101118_AAAIMF king_j_Page_038.jp2
3e56ba0949eb7f1d2d12f045a67a08fa
51748cfb8bc5bc668990f64f95891247da372e13
F20101118_AAAIZR king_j_Page_177.tif
a2e9f3f28234d7351ee49cff492be33f
0dd4bb0fd2b012d25e2cd278a40f9d77782c03e0
5351 F20101118_AAAJWK king_j_Page_039thm.jpg
3305e17b4313ff1cfc8ae0dca5f90ea1
680ad670dc681d3a23f3b62873982edf48984f61
810777 F20101118_AAAIMG king_j_Page_039.jp2
be471d86c832aa2ee11ec4f4d89f90a7
e92630240ff747ac6f518c9e8793fe7ee429b190
F20101118_AAAIZS king_j_Page_178.tif
16b3474649ed01572e066fa89994d67e
a2f8304947016a36d4cc99f35e1df42fec0553ef
18367 F20101118_AAAJWL king_j_Page_039.QC.jpg
c8ad53c0f8fe2b0d98a856ccfdea67fb
8e4865eaa733f6fdd320a3361ff990eb503cdfff
915713 F20101118_AAAIMH king_j_Page_040.jp2
304bc85960457f59bbbffa749fd98dc9
8f6423333a1fb0f7a066ac4b92efdf9a9b30ba72
29160 F20101118_AAAJJA king_j_Page_203.pro
b700e2ad40e65d2bac99400ea838d03d
441aaf0f08ae6281f8776b21c8acd0b4c9657eff
F20101118_AAAIZT king_j_Page_179.tif
24a24a7a4679344feb35f06eb2c7d3de
a583d67277ad1615f5d55d420e4bed567de9d2bb
27019 F20101118_AAAJWM king_j_Page_040.QC.jpg
eb57d0ea2f40f60853b7ce38a4ab8aab
515bfa6380a2851b12100180ae19c07723ec8f3c
1051962 F20101118_AAAIMI king_j_Page_041.jp2
2ac4f75dfd0b82917b565ee8db3136b4
7fd21ae9618bfff38bef330983a3efdf23190cfa
22322 F20101118_AAAJJB king_j_Page_205.pro
0a2c928513216c422a95b68b18357ccf
378809ab80785c6e8a7a5378f44b878a947080d5
F20101118_AAAIZU king_j_Page_181.tif
27e9e7361038845bfdbf213a1405cc38
1c1950d596cb5b838c196e7a1715ed1a47f14743
7381 F20101118_AAAJWN king_j_Page_041thm.jpg
2473f691d3786e10edd23f3ecf4618d8
925f3c43cd98a719ca61d097a670b8a30f685c39
1050406 F20101118_AAAIMJ king_j_Page_042.jp2
59aa7f3a3fd64a2ca93ed520968a4c77
07aa8f15ccce07750b5be009e8e784ab62d06be1
25136 F20101118_AAAJJC king_j_Page_206.pro
a848d463ee91bc0ae9c2d6958b1c139a
163486585260ab08b62a009f8606a68f9a63ced4
F20101118_AAAIZV king_j_Page_182.tif
9824d3e27ea7906ca63332c298e403c9
887951f2df2f51f59c2a1367f7506c9b67ab3d79
29840 F20101118_AAAJWO king_j_Page_041.QC.jpg
b77a07a516a10135aeca95f150bfc72d
415c710e3d16d8f7ac01bc6ba267ddf57dbf3340
111115 F20101118_AAAIMK king_j_Page_043.jp2
02d700072e19bfa99bf9f67798b14427
739af23c2bbcd38e7eb7c0e1977670e70fd75a6d
28300 F20101118_AAAJJD king_j_Page_207.pro
6862f13448f7f9226df92a39be925b7d
2f183dd331b76063d229a60e6c0f312bb6f14138
F20101118_AAAIZW king_j_Page_183.tif
d4ee184990e9e1f95700deb4ae27980e
11b7611f0213e1d23342eed56929acc4f6ab2bee
7041 F20101118_AAAJWP king_j_Page_042thm.jpg
5a91e3ae190b418f541c3fd0a8d495b3
b66aef1709cda670ff25a9223961679f70bb5d0f
129706 F20101118_AAAIML king_j_Page_044.jp2
3ae5957e5f4903ff6b6bb4bf5d4cd489
c3e4e1ad853a1c976a45548bab3820f9a2203481
28356 F20101118_AAAJJE king_j_Page_208.pro
7f0cd56544fa298372c37d99584e7daf
8315dae858255e6c9e92fc6dbcdecb46ee362947
F20101118_AAAIZX king_j_Page_184.tif
be00177613c2a74fd8da0475fe7145d7
895efa1bdf69c4e25b18df2a756565d02a515c00
29622 F20101118_AAAJWQ king_j_Page_042.QC.jpg
cbbb297110a06744f04900fddbdd4c55
3a6b0021f6bf7437f6248e275d97187ff785f4ee
1051976 F20101118_AAAIMM king_j_Page_045.jp2
2267752a0e26ed2e66dad679904c5e06
d242a3179579c27b25ebfd42fbf2bbf3e9bec13d
11055 F20101118_AAAJJF king_j_Page_209.pro
36c71cf89d5e8b23b14aa7fef648e704
8155827d04b858140da33e12f1c52fd4bb9c6c5b
F20101118_AAAIZY king_j_Page_185.tif
b5d56fddbd36be26bde66fa423ce8c05
8c3dea56e7d65c264858e0c1f75f761f25f603c4
7465 F20101118_AAAJWR king_j_Page_043thm.jpg
0455ad0c301f07f89ba10f47020bff12
fe2cf16001f34e2a1900a5ba487a8a82e0d78f41
1051888 F20101118_AAAIMN king_j_Page_047.jp2
f6e1b236c20e1a915761300c6813aee1
8b577a36b36e515e4b94715501723fffd40aff9e
26132 F20101118_AAAJJG king_j_Page_210.pro
9ac0d53118e39dbd380b43ae262d3b8d
3980565f699be22e3b4b65516516d7b9abeda79f
F20101118_AAAIZZ king_j_Page_186.tif
0e33233036962740db04bcf25c889e6e
ce0985490a08671085d7e629a0cafcf773320d71
6117 F20101118_AAAKGA king_j_Page_193thm.jpg
d2d114d32566a4d3563ecea67ff18440
9de28f4509b07d57a789b0a3760e1233da29f54a
32134 F20101118_AAAJWS king_j_Page_043.QC.jpg
a564f50b69f919620d33594d67b48fb2
a4735a761e5b44a883b56797dd747a27beaaa35b
1051981 F20101118_AAAIMO king_j_Page_048.jp2
dd4f631c0e697dec75e01b25c4310902
a7e5378757e5ce4aa9afd4ad758666b5cd8ca2eb
25324 F20101118_AAAJJH king_j_Page_211.pro
5770a3e600474d21e7774488a43243a6
9ccc4cb2bde332e0165994376c9f751b25cee3e8
23112 F20101118_AAAKGB king_j_Page_193.QC.jpg
49deb427667633e977b3f04458f4c358
f8c2c3ac24ed0ff19675513f1481a936aefe4cef
8173 F20101118_AAAJWT king_j_Page_044thm.jpg
17c0a567a092e7845b1f176a3581ad4f
30a20d621ede4e3b39563bf90cf451b1b40193f7
29756 F20101118_AAAJJI king_j_Page_212.pro
dfc3b03cb188646d2ea9be4ef656fe63
74b49805a5b7f44e329f0118c876ba27485b3ad4
4994 F20101118_AAAKGC king_j_Page_194thm.jpg
22ff4e9ca5cf7dfa727460b9779e2d07
aae14eb5d12f2e254331f2d650bc94f120b6fcfc
36992 F20101118_AAAJWU king_j_Page_044.QC.jpg
b5a63073006ae279e5a4393931c22a3c
41c67cf95aade1af72138134e7c7557d32c1e6aa
F20101118_AAAIMP king_j_Page_049.jp2
c3e57b658148bf1b85d5c3a93bb30841
42f889b7a0cc9a8073c94a67120e21d17b69461f
30230 F20101118_AAAJJJ king_j_Page_213.pro
07a5d0eddbbd2ea2795bba5086d61942
0042c74abb8b0306b57710613c97957e7d52784b
6354 F20101118_AAAKGD king_j_Page_195thm.jpg
1af3cbcaa74997528fa8f285f8d1ed15
a788788c12ee397d3ba5e04caa6859b039389817
7962 F20101118_AAAJWV king_j_Page_045thm.jpg
7b1a4b90acf4df4bbbc81100ba59ecaa
544a0ad2837e1a8e8981178ecc01eba20471e39a
986465 F20101118_AAAIMQ king_j_Page_050.jp2
db17c22b08673f4f95ea0cb3ebf6b9ad
4b1cb81d26063ad716a7383c91cf43bbffa2fab9
29592 F20101118_AAAJJK king_j_Page_215.pro
e676bfad9c313215883a0ce625a09760
7083baae8adcf3a3b105ede8d02e080de614fc1d
25766 F20101118_AAAKGE king_j_Page_195.QC.jpg
c9515bf763dbd9489626d62de1867a21
814aa2a49ba40c8ed23c195b377ba3b563f2757c
33624 F20101118_AAAJWW king_j_Page_045.QC.jpg
53474f2f41367367cc480baa772725ac
7228598453d992e561e63d2530758aff4b7b72fb
734532 F20101118_AAAIMR king_j_Page_051.jp2
a089a8922c3eb898301d5b6086ac7376
79b27af2b49934688ae02559c0d28555160b6bf6
2049 F20101118_AAAKGF king_j_Page_196thm.jpg
181900cfbb845703ac718d3564e66f0f
1944b9b7074a2fd3d13ecc6cfcc05477c5226074
8502 F20101118_AAAJWX king_j_Page_046thm.jpg
6dfd28c43bcdfadcb1d6ff379dd99c6e
315b77c4b16880c8eed4780678f3decc43441247
1051949 F20101118_AAAIMS king_j_Page_052.jp2
38b616a50f00ff716d9d10c504e09b83
42e2b5a6cf489f65d597130a7872111cf6ca87fa
30323 F20101118_AAAJJL king_j_Page_216.pro
c2a9e849da8f16b54241722d2a4df5e7
55f58c01410af822e4800ba49890a6a574b0fdd8
6014 F20101118_AAAKGG king_j_Page_196.QC.jpg
2876080bbb45708371154b2b158167ed
5fe26c02c66abfc2d71bbc42704de6921ae731be
417493 F20101118_AAAIMT king_j_Page_053.jp2
fe0fd333ab246e0a2c5e445ac2d8ee4b
f3da447fb32a7626f14f3caa35f609b1831a4418
38589 F20101118_AAAJJM king_j_Page_217.pro
cf4b4efeca5ba932e771be84e42bd6d4
1346657e9fc4c4b8eed9dcf70f7ffe71c3ffb3e7
8030 F20101118_AAAJWY king_j_Page_047thm.jpg
78b718f86b3876c82940b780d3bbb64e
01e597881a83f6019742691ff9ccb771c3ed34ae
1051967 F20101118_AAAIMU king_j_Page_054.jp2
048bc59d324034a33f51329ed933af59
469ea5e70f0eaf075ea8e790e81db818ed4fdb17
40629 F20101118_AAAJJN king_j_Page_218.pro
f4b2a5e9b44890ff6bb6f755ee0a8a25
bb5efba9cf60cba554969c38bb4f49d358ff7ff3
4794 F20101118_AAAKGH king_j_Page_197thm.jpg
ed1caade8d1fae1921504b9fa4af281e
8ab79231528a40d7a94ecf2e15491ee1aa48c33b
33168 F20101118_AAAJWZ king_j_Page_047.QC.jpg
09ada58f616d2986b06ca918be09ae96
33dc05de690933879cb28549d658048deffd5025
565448 F20101118_AAAIMV king_j_Page_055.jp2
868f30a68d2ed869e899ceb083b4cdaa
fe8740b5db78986ada8c5088719a4704efe38a65
49438 F20101118_AAAJJO king_j_Page_219.pro
b4a1b5947160b9f4f9300ef20bf05ad5
78d49c88757fa92f0854f8d5c74e62e2a3fbe744
16633 F20101118_AAAKGI king_j_Page_197.QC.jpg
23ade27839c1a707002df093af38fac8
2e8a078b286aeb3a569cebcfa82b918644eaf948
1051974 F20101118_AAAIMW king_j_Page_056.jp2
cf903c865126babba91225104a894941
676d86a014d3e370be0bb5e2eca68a9d40c02062
8079 F20101118_AAAJJP king_j_Page_220.pro
ad952c7f54fe51f78474970819305cae
45343aa4d0bc514f3785f06938655f8e7e464ca1
5336 F20101118_AAAKGJ king_j_Page_198thm.jpg
6b3a146628e14a40c9fca3e51be97300
346556cbe6f3817e3c8d181b7d35b588248f3aff
696370 F20101118_AAAIMX king_j_Page_057.jp2
7116e9244e896b5fb864c2577cff0718
f3e356697ff0616702d7f421fb277d0a5ab56d7a
59287 F20101118_AAAJJQ king_j_Page_221.pro
310d0c0a52f51e2ce98b7287bc0ff392
3f616c97df16f0e0283fc553f2b3ce83b29da131
17960 F20101118_AAAKGK king_j_Page_198.QC.jpg
10063b2c59124ff67aac832bc1f3e9a7
2af0dfb38426647bb2edb74884c5d42fba059f94
579156 F20101118_AAAIMY king_j_Page_058.jp2
854a9411bd3be05863b62075d8142d8b
d9e17377228671f8b2a0709e8527f106847b2c6a
63567 F20101118_AAAJJR king_j_Page_222.pro
30ce4e4dfa0017c3876794235610eb4c
e2ce5649fb5fa31b7631bd4b8ba30d08b97f3f54
5611 F20101118_AAAKGL king_j_Page_199thm.jpg
af89dd23d3962167840994e95ee0f317
4b15def566457675281db1cfd668afa4af819dd9
1051978 F20101118_AAAIMZ king_j_Page_059.jp2
3850db5b1763fb007f645a38be85fed2
ec61ef75819f5efba4c144f7105e134430ee8657
62969 F20101118_AAAJJS king_j_Page_223.pro
63344ae466269b97e6283970dd78c751
0f33fde407577e08747bb2af78faa6b1ce30f6b9
18992 F20101118_AAAKGM king_j_Page_199.QC.jpg
0b103f0a80f2f1f3af49458877f41289
5daa2a5a746a990d50c702061568869960186dc0
64389 F20101118_AAAJJT king_j_Page_224.pro
aaaa084c587a39fc5a80a5906731bca0
73546317421db14b8107fddb418f56200425bf62
5209 F20101118_AAAKGN king_j_Page_200thm.jpg
2bdab2a01952ba4de3f5c2e8b243c2dc
21e2b3c8be63968a0114402bdeca62e93cfe5008
68062 F20101118_AAAJJU king_j_Page_225.pro
2dcc9ff52c9bcac3adfba187bd2df5f3
17200c12cd352febf5d9cfcba801330527336b83
19364 F20101118_AAAKGO king_j_Page_200.QC.jpg
3c0c407a5aed0198b27e77af31428b1c
bb0c501cb59362995a0023d20d57a9c3d8626563
63426 F20101118_AAAJJV king_j_Page_226.pro
3f87ca94bf5c4a33094b0e4c1e9007a4
d9a11b2a1879d354a0f32ce954f622d70854aa47
5081 F20101118_AAAKGP king_j_Page_201thm.jpg
c9e880054f0c35f54df449624a500b25
ef95af16f0ed57f0b3ce3b205da43a8f495ad68d
64415 F20101118_AAAJJW king_j_Page_227.pro
3b583f202f95e363883562cd193e8926
11e260a5e69c18900fb03d755ee0940732dd4047
18699 F20101118_AAAKGQ king_j_Page_201.QC.jpg
94d904d7cbfb9e12bb18c0dda1533bdb
d76126a3c421684669b856b0f248e115eb57fd65
65699 F20101118_AAAJJX king_j_Page_228.pro
1a1ab9c4a4b55a6c0a6e5a7945a40de7
8c8b9aaabb2e57b6a31b73dac81c6d5473d7c1a7
5799 F20101118_AAAKGR king_j_Page_202thm.jpg
222ab338d5b8502865eeee402a17b56a
3915fbdd1c8762431e4e30460f4ab26335d29eca
65732 F20101118_AAAJJY king_j_Page_229.pro
e33b6025e4ded6b5e47a160b41722c29
e9a91ecce93350add2a5290d1951f8fd5c1a345b
20984 F20101118_AAAKGS king_j_Page_202.QC.jpg
72cc308298974d40a5063a537eb864dd
86bae02d9123b36b7fbde79ab05b0ebad39616e8
22316 F20101118_AAAJJZ king_j_Page_230.pro
417e4f174c04ea5384955246f4426407
eac6a59c86d5ca2725cf99dc446eb9a261415cf1
22010 F20101118_AAAKGT king_j_Page_203.QC.jpg
9916b051a2a919f1dccbd8dc0c9eccf9
1ddfd81dc398c69e836b3210d2746acd10ea7e8f
2416 F20101118_AAAKGU king_j_Page_204thm.jpg
92cc539610fc08aada028b43e401392b
0bd81a8dacb2ee381f4ada1e5dac37f65d3bcf5a
591099 F20101118_AAAISA king_j_Page_198.jp2
4433b97f26abc3a230e7d26a8fcad11c
b66b083b058fec3ece0c1bbfd9ac60c986a12960
7948 F20101118_AAAKGV king_j_Page_204.QC.jpg
ae4f1c028f5340f3487c2603606ad67e
d20ebcdef12b73d5c676c848fae0babd3daa7f71
577982 F20101118_AAAISB king_j_Page_199.jp2
1f2e560aba5dc10408b165f88e7fcb03
917e2494864dd69fa3361a141ea6ecb210ee5e65
14790 F20101118_AAAKGW king_j_Page_205.QC.jpg
1ee8754a28b2a95c7ee040b036ebdc2f
e1b6e44d9b74885a9b8b6c3fdd5f0db462602a8d
618465 F20101118_AAAISC king_j_Page_200.jp2
c835909dda09f1a05c799c99af8ebf59
159e77efe4bde23d229b2bd290eec4e1855847cd
4918 F20101118_AAAKGX king_j_Page_206thm.jpg
5f3d35b4b24eb44b45460ec78c953257
93715601a827c4f5d0acf8b564f053f1fc1347bf
581929 F20101118_AAAISD king_j_Page_201.jp2
1f7b51428cf005aace91c00848537e79
2bd9790e3e1c6f90876a5a8a2c95e1ae17c1ee27
18451 F20101118_AAAKGY king_j_Page_206.QC.jpg
db56230c66649e6a06c07b546ca5bf51
bc337dfda9db68823fd8045de80b260f45b85d8b
663809 F20101118_AAAISE king_j_Page_202.jp2
61b836f2ae55bb9ade0e0503b31a9020
c53e77fa9efd04880538a785d31381e9ba1cff20
5061 F20101118_AAAKGZ king_j_Page_207thm.jpg
5f313b79bdddcc6304cbe70197d4bc80
933d21d5e73a46b1121754f7dd7a104a6125e2e8
688565 F20101118_AAAISF king_j_Page_203.jp2
7611f431facf6855ec434b90d614bb07
8c1739015b982616651ccbb4e81b6d75da114667
26463 F20101118_AAAISG king_j_Page_204.jp2
6a98cc5d083326a510a27e49a483060c
4e646b142bdf9ba19e735cd198b0932a315eee20
47083 F20101118_AAAISH king_j_Page_205.jp2
0793f878c710cb1102c37c5ce7e3a49a
4a1e6d08a47851bd8169d196188b12b6ac4232ea
3140 F20101118_AAAJPA king_j_Page_149.txt
2c0869816faaa91594467a97c8950a68
d429fc198eea7e7398ae5d6b577e687b408f5236
564934 F20101118_AAAISI king_j_Page_206.jp2
a25ebe9079a5ee7d28f548a70735da57
4608dd322eb7784c3a0b931b650f6e24940e962f
2280 F20101118_AAAJPB king_j_Page_150.txt
a7c3132ba6c28953f563279a3b70958c
f5447e4750827f36f2a254c994850ba8c2be11cc
663436 F20101118_AAAISJ king_j_Page_207.jp2
980a4e50d3b693aec516ebde86591645
789d797f1a3042f12ba8ef50bba7d3ed91844941
2424 F20101118_AAAJPC king_j_Page_151.txt
4a2ac3014045e15a036c57eee0e484e4
d193a80fdc5d3828c802ed1a82594344f1491577
705360 F20101118_AAAISK king_j_Page_208.jp2
390a0e451b7fdb82713dea51fc979370
07007eb93a0c7b587c3e8fdb7f44b37a5f0e55bf
2421 F20101118_AAAJPD king_j_Page_153.txt
81cf54dba53c822c51d3317d01b23a89
222916cff6904f7d0a3de31487cd71d36dc5f8ae
31018 F20101118_AAAISL king_j_Page_209.jp2
9899488edf19219f6b832a4e011d0239
7be01280c154ec3985406b8a5ba3397b6c8b11f4
2305 F20101118_AAAJPE king_j_Page_154.txt
5a8e189cd4bbed4dc689cfd60783c11b
f7254a3b4627245068bcc76a42ed00bfea29857f
61171 F20101118_AAAIFA king_j_Page_073.jpg
82bcdccd683451422abbc75c9acf1fd6
c10f30fea5bcf11a61c73a4d5c5022332b7a26a8
660858 F20101118_AAAISM king_j_Page_210.jp2
1a55d786c51258d798fd51c0e2061c89
59f8224e13b2ab98b0593cdbbdf35e5e06ef36b6
671 F20101118_AAAJPF king_j_Page_155.txt
24c144f7aebff27335b1b64dd3b737ac
07560b0b84a4923dbd604336747e23aca75db426
103612 F20101118_AAAIFB king_j_Page_074.jpg
b1c3a00565fa9163bdffa902e58a95f4
c215f62a311d094cd5c5ad65dd33ebc9474524e0
544722 F20101118_AAAISN king_j_Page_211.jp2
532495fee10a279a41061624c711a160
5ffaaf09e540d25e73cc2e3e342b0c752021af32
1204 F20101118_AAAJPG king_j_Page_156.txt
641b7919000845e926bf42222d00e652
09c56dfcdfd8115bb5575510f91b46b0df8fdc0b
92006 F20101118_AAAIFC king_j_Page_075.jpg
5267b68910c72f09706f69fc4271447e
efc3eadff62ec7c2d83d4ee4a575718d191482b1
761372 F20101118_AAAISO king_j_Page_212.jp2
7db13181b89165c74764f5da3d8baebd
0c3540e8823342c50f1569348dbad3e3abf74a7e
1068 F20101118_AAAJPH king_j_Page_157.txt
34cfddaa898612a04d04b53d8071707e
79c6178fc9c60056d7a52cdddd624239a9de4363
87792 F20101118_AAAIFD king_j_Page_076.jpg
1eebc43bb34ec6e6025411de59846a8d
c5ef7431294054f590e0d4ab84388d7cc826037e
731376 F20101118_AAAISP king_j_Page_213.jp2
2d226ff2c9ede4b5a76adb250a54c035
a49826e60ed43a9d83108b4a0cd5ab3f1157127c
614 F20101118_AAAJPI king_j_Page_158.txt
47def387aa5e327a07665c3298cce820
61725a72f91ee3f76b87e5a8706338b09984508c
117788 F20101118_AAAIFE king_j_Page_077.jpg
4ea478806a7797661f900dc4fbd9b245
26dc766d927cbf107cbc5e613ee2dc9fb2b07315
710967 F20101118_AAAISQ king_j_Page_214.jp2
01acd08c9b5d70f24db6ef802b7f08a2
2f1c078a5aeb858a50b733c59f31669ff79cb9cc
2247 F20101118_AAAJPJ king_j_Page_159.txt
a4e51ffe974edff43f05e3e18b002f35
173749d07fca797dfe28202f2515fee2c10a1bd6
56647 F20101118_AAAIFF king_j_Page_078.jpg
3a451ed63816cede5dcc5c394791c44e
99900b38520121f384d063959e0ef552cb02de4e
744066 F20101118_AAAISR king_j_Page_215.jp2
b027b0be5ca7e6bb39507295c92ee4c7
622b70968a910b44ba6981860da556954cb45b87
1061 F20101118_AAAJPK king_j_Page_160.txt
6a205a2ebf740e061c08ac337998e946
8c5f5cd4af54270ddd3e4f9733a7f419b5355fe9
98418 F20101118_AAAIFG king_j_Page_079.jpg
74c67672b4f4b742aca67ad3ccb7d4d7
a2b42978ea7edaa9d5161543500d545c2f3235b1
74350 F20101118_AAAJCA king_j_Page_012.pro
fb89201cbbbeb46fdff91c71567c3dd8
958cb95fedb0dcde31c0a3471bef41a3d5f713ad
735929 F20101118_AAAISS king_j_Page_216.jp2
c9e9c55e5ebdc60f90791b0b0ee2b011
6579d528071340ecfd19affe12e796c0e81e11a7
259 F20101118_AAAJPL king_j_Page_161.txt
99738ade87a28121db31a677f441290e
1dd48ade6df64bdf62939ac4971c006a1bb80ec5
90159 F20101118_AAAIFH king_j_Page_080.jpg
e4ce79b0c723e40eaf97f4883cccad10
b1acef1b2b7187f3f72ec7e512b008c807563ede
72344 F20101118_AAAJCB king_j_Page_014.pro
bbaa11db2b732fb5e9f0493f599df163
a45f7a4f49f3ad0637c2d7db4bd3235519c433ce
80755 F20101118_AAAIST king_j_Page_217.jp2
c1a3a659b535a65e22f2985968f82771
6152c50b0a4ef13073e17b698338a6ff38fbdd6d
390 F20101118_AAAJPM king_j_Page_162.txt
74ca524246daa89d68de01acc4cde2dc
a202baa5366910d4f4d6d8d7b8b05779cd6a3efc
27100 F20101118_AAAJCC king_j_Page_015.pro
a22966f88f1531d283f885d7110e3949
e8c212aa3677af5126659f11cb55ec4b10a6c7f3
1040422 F20101118_AAAISU king_j_Page_219.jp2
2cb006c8bac84e2ecce5767ec41a36c8
4ba41ace975ffbdbc196f70292b25f93787d043f
1591 F20101118_AAAJPN king_j_Page_163.txt
68fdb3f1f8cebda2af0da7d765c2f8a3
c17d48b252001737b103025737aa83771e5e769c
66752 F20101118_AAAIFI king_j_Page_081.jpg
ab269ce7a01163b60ce041bbb5ff9116
f076225503b9aecd48e50902a99b674083f141d2
35837 F20101118_AAAJCD king_j_Page_016.pro
4fd4c6ed6afef90362f6077b8124b39d
b25b9fa508a11923fdc8a9bb3d6b3fc883d6100d
3909 F20101118_AAAJPO king_j_Page_164.txt
e68b3d6ef9fae3ab709300693dd2cb59
3b1f1f9dfa398e392a07a06f2ab0a1251e2f5c23
85808 F20101118_AAAIFJ king_j_Page_082.jpg
982564a54c2b53cb28229ea01f47ec68
66b63bbcef2958cab17e344f8b68a7d640e30f6b
187861 F20101118_AAAISV king_j_Page_220.jp2
fd4530bdc8b651c68fa6c3a9e76a3d5c
b03b27b03258bfdbea94e6769452521b7b8da129
1159 F20101118_AAAJPP king_j_Page_165.txt
3131a814c75ddf476f4f19ddb0d0b4e0
b53ace3b6551832feae700dbc90eb9d8f09fba06
29433 F20101118_AAAIFK king_j_Page_084.jpg
202499c876ac6ba1c9aea722bf8e5baf
6653465be0eee3560aa1d03b09d0fca9f633ec78
37739 F20101118_AAAJCE king_j_Page_018.pro
ae0e7664b100db6fc8cc4b7e9074f94e
8527826526921b200894c3fa96941acc7b7a2b32
125525 F20101118_AAAISW king_j_Page_221.jp2
9ebbf090bf1ec8f4c6e89a8664683f93
da5919303aa4b38ff986d5f2874d57af1e58eb0e
2303 F20101118_AAAJPQ king_j_Page_166.txt
96ef5b79ec739d0d8f48efea2f104dab
87cf1efbd90802f1b13f4904b988c5e9f4a37475
24583 F20101118_AAAIFL king_j_Page_085.jpg
b49669d86e029eb89836cc907d7aee57
b3e7436a9eba7a109cd2c84c1b455964e6e950f8
34147 F20101118_AAAJCF king_j_Page_019.pro
fa0ad1987c67c7f9b8f22fc3b3c655e9
d128b1a74a187e370e3f72a79d746c76e9abeea9
133063 F20101118_AAAISX king_j_Page_223.jp2
9501d0975cb92f75f553db5aa206203c
64e9abe84ef8491d038d925063a455f8d2e7b908
93229 F20101118_AAAIFM king_j_Page_086.jpg
c8a5ca409a18916dcc946b440da44084
4f7d577d50b04e257c8bc6f2f6b2bd92d688fbd9
35036 F20101118_AAAJCG king_j_Page_020.pro
97629e79b4d7c4a7b3d4950ba66df848
0cfa3425b4088f40d6ca7fdbd245d2ed3585feba
137337 F20101118_AAAISY king_j_Page_224.jp2
6fb14503b87ab3c144f8066b01075cac
a18809547427aa3a3b382458c3ba6dcf8ac11323
2072 F20101118_AAAJPR king_j_Page_167.txt
040b2d3c6a3be576b5826595a17f4c0b
007ecbc8a194d0346503898d78e98b676c99152c
78156 F20101118_AAAIFN king_j_Page_087.jpg
91643e1604c8dd95fa01c0dc0933ac33
057f12de16460ffea9d332e6730a9c3958e0f63a
36796 F20101118_AAAJCH king_j_Page_021.pro
9118dd111a68aeeffc74c5939ca90809
4de60630c51a16e7926bbeee796ebb6c675fe53b
143336 F20101118_AAAISZ king_j_Page_225.jp2
9f34b77f813d02f35fc448ba48533c0f
c5b527b018bfc1b40f573b954b568745c08055df
1282 F20101118_AAAJPS king_j_Page_168.txt
25e6c12a378aed292de01779ba944b1d
0ef0eda3c4bb235b4524752139b08ac0efa6cce5
61425 F20101118_AAAIFO king_j_Page_088.jpg
6687b6e434ef8e6d8feb98f4e74882ee
877d00fd7e35a0c5e264f8693a4deeb431b5fbde
38078 F20101118_AAAJCI king_j_Page_022.pro
18b97f9d1331cecd0a0bae715e3319a9
425d1768e9c5b43a32d490d55a7b8d10c0adab8a
1264 F20101118_AAAJPT king_j_Page_169.txt
8ff1d157bb504f8475d58209a43bf96a
6a1cd0adc9d13582950b7fc1f3eb3f5b39344048
83514 F20101118_AAAIFP king_j_Page_089.jpg
91cffec85cefd5f6dd0c1a18a4d82af7
cc026e6cf60debaa080678031a49a3c0b2f9a713
28215 F20101118_AAAJCJ king_j_Page_023.pro
390c0b5b2cdde741639b4b532107c647
095b68ee9bb7e2a54b8feef87bd269cae9a76273
2165 F20101118_AAAJPU king_j_Page_170.txt
4d746a8708632fb4661951ac9100393a
4d0d327094a3e710bf422cbe3e95922f667770c8
66711 F20101118_AAAIFQ king_j_Page_090.jpg
0f7b39a9df12a243303e81dfd22dfb18
423cbc0100c443991cc301f4ab36f05ac605c94c
14667 F20101118_AAAJCK king_j_Page_024.pro
419957b947e7507ae83840dd15590323
0955705d9d260858512c92e141ca53ab36dfa569
2714 F20101118_AAAJPV king_j_Page_171.txt
d83241e5574df2b46b3beec0d2184e68
40765d46643e5263db600fa3e0a8b14e30369f6f
66825 F20101118_AAAIFR king_j_Page_091.jpg
8bc763e94962316874a5c044181f78a2
ef488a6a1a4fc9a9275407ee1a526e1c0fdd5cd8
52040 F20101118_AAAJCL king_j_Page_025.pro
1951aff9527227d7eea519645729f9e7
8689ad2164cf34f194445a2730fa9deda436b892
F20101118_AAAJPW king_j_Page_172.txt
badc2f7864ab77d4d43fb3754dac9fe0
c000fcd99ad429444024e9e4f229ffe2b51a769f
63381 F20101118_AAAIFS king_j_Page_092.jpg
500632ccb320cdb85af83ed3d84b13d8
c36da335786085dc28eb2a66cc727a4365618917
15662 F20101118_AAAJCM king_j_Page_026.pro
8f39ce421781ffaa1b3fe4c713210444
94eee0e9a2dd98b3c22453149b9013b5f991e608
2367 F20101118_AAAJPX king_j_Page_173.txt
1a29eddee5918ea6caec60a4276055df
e4e98ba5d94fc8ee8dd6a135d9aee2c1d66d1295
78444 F20101118_AAAIFT king_j_Page_093.jpg
a2827e5708178ce64ffd9916a58f6569
4bb26f321a49e8e3894b264b947efc998b3f1669
55382 F20101118_AAAJCN king_j_Page_027.pro
57fcff148d954ee2ec3890add51b39dc
dca75dc499d9af1d1ccd7bfcdc0fe2d501aedd53
1186 F20101118_AAAJPY king_j_Page_174.txt
404e24fc56decb3839bad0588571447d
6cd48f27637026402f27c97564da892df4bef203
75896 F20101118_AAAIFU king_j_Page_094.jpg
7bfef64b5db2a7530ae94eb02797f5d6
951528e53881bdcea39f6497fea7b86bffaaf209
36926 F20101118_AAAJCO king_j_Page_028.pro
61649d69d01a128f328ce14e6c9b0044
d7aab329632efd5242a706037dc0453a6b5e095a
797 F20101118_AAAJPZ king_j_Page_175.txt
c621dbbaea786883db58041b852f481a
e8406d21d6b7fbd124138b692a2eb7371cd0eb79
78454 F20101118_AAAIFV king_j_Page_095.jpg
595d329ba66c904194ac7b3f768f910a
19fb709fdc1b63be55c04e7124be90667685b9e9
61005 F20101118_AAAJCP king_j_Page_029.pro
bc8d4bf4aad4715d08b749026af7a3eb
cee5624a025d549eaa707b222ed3beb06fe05119
101974 F20101118_AAAIFW king_j_Page_098.jpg
2e81ac396fc55921582bae107e5b5d6a
fbd9e21dc64b1d72afc825fde8cd550ee878c130
F20101118_AAAIYA king_j_Page_130.tif
3807a44475c818420aef6258e0457007
465d440ceba392736b97359cd28d703c2e5f4a7d
62354 F20101118_AAAJCQ king_j_Page_030.pro
43ef9da0a660297de88383732bbcfd85
df9ae32db962d5505328d0befb69470f6f35d380
78641 F20101118_AAAIFX king_j_Page_099.jpg
3580c76bedff6691d3b6faa32d776c1e
071600378ff870174ae2e17dfedc53808fbce4dc
F20101118_AAAIYB king_j_Page_131.tif
4a15182cb1a1be3699dd09e0e20430e6
ffae453e9481cc86cf86259d7feb77420cb0ce22
44417 F20101118_AAAJCR king_j_Page_031.pro
7afc6f8ead88f27721676aa2e0be69c7
19c19ac1775af48760dd76053f3674fac1757205
93346 F20101118_AAAIFY king_j_Page_100.jpg
c76877cd95ba3739ca3fc0bf6067cf1a
e5fd4c89d9e4fcac30002cdbcb9efa87809cc018
F20101118_AAAIYC king_j_Page_132.tif
09ed32c5347e35aecd631f88e162703d
02036a6c7a36b56212b31827cf9fda4681d94187
20273 F20101118_AAAJCS king_j_Page_032.pro
91ce11f83164f9a0eb81e71d581b3973
3cdf5b0ec56f8e4cd88f5ced649784c89786e426
79373 F20101118_AAAIFZ king_j_Page_101.jpg
77062213740b6c2bcf3b90811f2d7857
2ffca35c98b58570bc816ff64d7fe33102e9ed45
F20101118_AAAIYD king_j_Page_134.tif
366403df2b09d3ac8fbbc323d2944bf6
324ba7f2f6f48a9182378b9f74867c36616a8ae9
52675 F20101118_AAAJCT king_j_Page_033.pro
970e6c04f84b700d574bb9d757f7c8cb
77d1318dc5b111f4886fcfca820daf79cdbd5170
F20101118_AAAIYE king_j_Page_135.tif
c51710a081f078b091644abc68149a4c
cf3eff0a75f6d8f6ed255f2ee4c672a8229faf2f
44225 F20101118_AAAJCU king_j_Page_034.pro
742a935468f9541208e7e1c7e3d4016a
cd0ccee92aa58a4aff64bafad1946b8cfd3387c3
F20101118_AAAIYF king_j_Page_136.tif
0189bbaec6cafaf817223738be1425de
911783a84039b34de1650c9cb22dbc3945a07040
44833 F20101118_AAAJCV king_j_Page_035.pro
6665a664372f44ec155b85728e23915d
8afba79da54789d457152b7321fd58beef575c10
F20101118_AAAIYG king_j_Page_137.tif
aa188dda3244767193c73fea093e5b48
041fd2d166820abba998c9f1f1698798a2006f5c
39431 F20101118_AAAJCW king_j_Page_036.pro
f65dca725e39215d838a5520362f2b92
383fd93666fc8c41176ad21820f67b8ad2b8f740
F20101118_AAAIYH king_j_Page_139.tif
48ce5f4a7d888b352b291d009a7140a2
e963e14f479ac8d56837281e65f66ee93fbe3023
35546 F20101118_AAAJCX king_j_Page_037.pro
51f4d5b839ede1c056a31e9c80b97306
44bccf3bd9feb24a3fa9dbcccb8b0df6a404e4e4
6073 F20101118_AAAJVA king_j_Page_018thm.jpg
ca17955ed888703e500355e27e7b37c0
c8943d9cfdb80f2555200dfff8d90cb4e685ccc7
F20101118_AAAIYI king_j_Page_140.tif
4f978dbe3b775165549d08bf4acf9ce2
029edc025c8f412a7a974220647ecd181595cba1
57888 F20101118_AAAJCY king_j_Page_038.pro
ef913c8a79d25651c20a01523cb93a7c
348e4f7408662cf64930080e6a5a651689b9f175
24223 F20101118_AAAJVB king_j_Page_018.QC.jpg
385d04be4de57dded687204639836010
459133cd0451a3276bf5aaedd32f4a8856755fb5
F20101118_AAAIYJ king_j_Page_141.tif
86cfc1c025f330e22117e0ac8103047b
fba6c80eaa3e4a573d30619f956642ee03dacdcf
9470 F20101118_AAAJCZ king_j_Page_039.pro
34ad399410e66921480c1e141216d615
d9ea3aa1ade1b79a1bbfd89e15707e157cd05df6
21229 F20101118_AAAJVC king_j_Page_019.QC.jpg
3255ac46777a413db57305d71ea76410
a0fc0e65f81b73af68e324e51c58ac1f35dca8e9
F20101118_AAAIYK king_j_Page_142.tif
417c10b02815986a57eed7cc0736f07f
a03450e44319e0d7a4d2d88af635c23b1e16192f
5642 F20101118_AAAJVD king_j_Page_020thm.jpg
fbbfc68e8fef8e3845c025158b653322
3753369d6118973ffcf36f67afdfdec224b6e4ee
F20101118_AAAIYL king_j_Page_143.tif
b65c3ae4e22763a5d00e4c1aca73af00
9a3d7ed4de1719fdca2ded10f5a04d29b4a84630
23254 F20101118_AAAJVE king_j_Page_020.QC.jpg
f63d6d90e803339e2e1d2750f35cf471
43a135b4b034ed33a6e5d669258bc46f80e5db3e
1051943 F20101118_AAAILA king_j_Page_005.jp2
6f3e979de9765023ec82d0741afe7f45
6b963ff3a8aceebef2edc4a675c6af6e9103aa14
F20101118_AAAIYM king_j_Page_144.tif
eb2462703fe883709c6bd2947cac6864
92e93e49a0f526a046348ccec7ec95783aa6683c
5801 F20101118_AAAJVF king_j_Page_021thm.jpg
576fd5b2708a45ef60e50e065bd645f7
4be13da93134557e1926affb0d357770428b52d1
1051906 F20101118_AAAILB king_j_Page_006.jp2
1d2e996ecde0dfddbe41b97742bc2af6
702d74817c548022a2d07265ebccf44629a8b30d
F20101118_AAAIYN king_j_Page_145.tif
d0c002e7f21ff1d95bfe7b955e0e4344
74f6de20d04fc60c2b3d797aa13a67bd053c0e94
23155 F20101118_AAAJVG king_j_Page_021.QC.jpg
ac922131d702fb1cc63f31249e8421cf
a799a06a669b4a6a83e5c9f12c75a06571660aec
412482 F20101118_AAAILC king_j_Page_007.jp2
f18435ab1ebd56daec5632d407a5e46b
053105c853b0f91dc7d39be31abf78610da22982
F20101118_AAAIYO king_j_Page_146.tif
4d391f6efcae0b532a7aeae61410daad
64e2cca916d3962a4875eed4060aa90e4a51a88b
6206 F20101118_AAAJVH king_j_Page_022thm.jpg
704acadb97d278776800f5607ccd8fb5
b2185d614ade6f3c6a15570f052cfdbdef979a98
F20101118_AAAILD king_j_Page_008.jp2
f376f6b73678968178f18dc53cc283b4
d16f0feceb317782dc0a1a68a58adeb759ff5404
F20101118_AAAIYP king_j_Page_147.tif
556e0e482ebce1797b975143e362ad49
d7c7febabbdf818da08ac1f2d9cad0567e350bc8
23571 F20101118_AAAJVI king_j_Page_022.QC.jpg
4e6f88b9bcaee48636d684bab49217c0
0c79eb3738f952d9cb2bfb605c75f77b6fef6303
F20101118_AAAILE king_j_Page_009.jp2
c6b336c3f0b7ec9a86c78f5016075c05
1809ebb9d0bad7167e47dd7a2d3677146af872f8
F20101118_AAAIYQ king_j_Page_148.tif
fd41641e04d6351a4cf4a7e1d41c1c15
f4cb0c728243114b359796edadcc74c621fc5fd2
4401 F20101118_AAAJVJ king_j_Page_023thm.jpg
af17839bc322f40ebacdbc3edd49024b
93d0efd89c064f5db5eaf4eff7ca9ea0f3884290
F20101118_AAAILF king_j_Page_010.jp2
af035116d8180d825475671107444c30
6a453b6e6ab1d780aff15d7625f651730e2cd460
F20101118_AAAIYR king_j_Page_149.tif
90e532bbdecdd37acbfb0df2033104d4
6889cd3ddee15175c412c0e2039c77dbbf4794da
17672 F20101118_AAAJVK king_j_Page_023.QC.jpg
7726b2b7b59ff59959ffff0c223075f7
0ee4cf8806de086dcb46fc4b0b7089f190ae31c1
F20101118_AAAILG king_j_Page_011.jp2
d1f46d89f8de72d3b238310b5cdd27af
cfe82150b53a9f282a3dd869403183ed9ae6eaf2
F20101118_AAAIYS king_j_Page_150.tif
7cb9c9274447ec771a9489ed29deb6fa
c836a85278dac544c27fa4a3cc03779967cce9c9
2495 F20101118_AAAJVL king_j_Page_024thm.jpg
0feb4aea526480673049c41cef9fa9e5
564dfcb69ca8df93c7029642221cc44811175bba
1051944 F20101118_AAAILH king_j_Page_012.jp2
b34a68e43d67752167781e1472e1d8fc
e80ded07895eda9bd43e25dab53fabb63bb42b2b
24125 F20101118_AAAJIA king_j_Page_177.pro
b579f1246c9ef11be868931f271cf63d
2a0a5b12ce8f2a23bbf5d9759fcbc928a9ab0b9f
F20101118_AAAIYT king_j_Page_151.tif
2e7d2194d3131f50b1335cce3ffbbbcd
ff21937fd5c4460112bf872ade7fe3ddad543a66
9923 F20101118_AAAJVM king_j_Page_024.QC.jpg
04767021b318db98255899807b582fe4
7f2321db3284157c4008c75443e910a4f899bf67
F20101118_AAAILI king_j_Page_013.jp2
9564834f6814e0664ac74b12e730dcce
1f8faee026d097c7099e7c5f2c96d1f6d5706f08
45533 F20101118_AAAJIB king_j_Page_178.pro
31c33e8c8261c09de585d5c27aeb12e4
1528bacadc6270bee763b0029448129e80c7e6a4
F20101118_AAAIYU king_j_Page_152.tif
f0a00c101568902c8ccbd147fa41c634
f0eb3227cd6588d458213bec34535a5ee3c7134d
7369 F20101118_AAAJVN king_j_Page_025thm.jpg
b4ea4c58cd0b4d74b57a1506423be6b0
e7ed7a275c44c322c77d6ebd4b7f931ab39d2a88
1051931 F20101118_AAAILJ king_j_Page_014.jp2
25be595ba18508939b810854f310e5b6
87ef995646cb6dd53b258c6d6e064412b4a818dd
4122 F20101118_AAAJIC king_j_Page_179.pro
777d8579a7dbf148e7938355a08505a0
f0a6adaec5598a88da158018bcd43c8bf6fbc71e
F20101118_AAAIYV king_j_Page_153.tif
5c60f68fd4c153f138e1c12bde0f7dd4
77454f5361c3d66e538a130f27e9b4c819acf76e
31771 F20101118_AAAJVO king_j_Page_025.QC.jpg
e6522b5499397486aab3664d27bf9c56
52ef7b942320bf22e719ed17061921f8cbee5299
F20101118_AAAILK king_j_Page_015.jp2
f93964c8a6816989110cf29eefe15866
508b6579d009be815a8dbe1b37043b7853a47375
5884 F20101118_AAAJID king_j_Page_180.pro
f5ec3729e9de59e8b5c62d3da5952559
bdcfddeaded10a9e5cee8b5092e65a3895611c43
F20101118_AAAIYW king_j_Page_154.tif
576d7e64902cf9b7d967cceda0324945
e7360d1b864601b7f1be75cdd389783dcd852f0f
2469 F20101118_AAAJVP king_j_Page_026thm.jpg
e5ad67257dcbb8a99c567c479cba3b64
b7dc649e7b59601fe1f48ff9c2dbabcfa0da1325
72229 F20101118_AAAILL king_j_Page_016.jp2
ee1af0f0b22b2dad2f352e2739edfca0
8513935de5a68d2cbcaa937d5e6295e17a1d740f
18267 F20101118_AAAJIE king_j_Page_181.pro
a286ea3b491f5dc4aefb48309c5537e8
2390b8e1617971973dd7306462658f370283adbb
F20101118_AAAIYX king_j_Page_156.tif
7856a5dcb4f6aa77e54d579dc5663df7
9be09e3af435693a7091dde599d49d5bc5d1cbcd
10262 F20101118_AAAJVQ king_j_Page_026.QC.jpg
67670a6e74279d15088c28af0f2e932d
3c789c3637cf3f4f9465d17f1cedfdbcca41ba29
69265 F20101118_AAAILM king_j_Page_017.jp2
e0753bf1f486959f1959fd7c46b1b6ce
bee29c39b460309f4947606900e80097cdb4f776
6802 F20101118_AAAJIF king_j_Page_182.pro
c51c8f45846f73e87634c532af140b26
b3b7ebc652e6b7a07f5ae2d9e6279daf88ed213b
F20101118_AAAIYY king_j_Page_157.tif
22e9790dc5c184801c2af21a303399a2
67c13f89d6612a1f8260c2639031d4f4b872e79c
33774 F20101118_AAAJVR king_j_Page_027.QC.jpg
f783f38b7d43bcf71dc464229f789215
2dac77d69727b43273fb4a628aa0927d56b409fa
76545 F20101118_AAAILN king_j_Page_018.jp2
52677b6c67df47e912e1e7ba8e8875a8
a22b5851414f23f7107e064bbbbe743ede0dcd46
27423 F20101118_AAAJIG king_j_Page_183.pro
442bceef32e3229cc3380785fc7feb95
6876a8138a0992e6c6d885cb9e0674efb28da495
F20101118_AAAIYZ king_j_Page_158.tif
46669e7eacc0cfdcc5bd26a6566d384b
df1cb420b354448cdef506fd6d56e4e5f12a0608
15227 F20101118_AAAKFA king_j_Page_175.QC.jpg
a5b734b5d5e0a0515b2f1936baa8c7b5
05e14f7e8f51b03988d212cf5e57cbfc79fde517
31950 F20101118_AAAJVS king_j_Page_028.QC.jpg
7a04fcd06cf37770a33d8d51971c84ad
1e02fcf28145fc24054d5208a5851634a564c481
18881 F20101118_AAAJIH king_j_Page_184.pro
f0588379fc4ba10ca79ed75bd126c135
47d050a0c21f3be0528dbde9c9de5eafc75a39e9
F20101118_AAAKFB king_j_Page_176thm.jpg
a831ea9400c5fed9383a148d2d961269
6e45e82208d561f8ba33f4289a1554131f235e5e
8277 F20101118_AAAJVT king_j_Page_029thm.jpg
fa09c87b6bfef5724606c41071d092be
62cffe84e75626346842fe883e5171297dab7934
69232 F20101118_AAAILO king_j_Page_019.jp2
40d6a0e43179c5aefb81b4aae97fe2b1
e48c4e118c22f1db39efb0f2dc97fc098e874e0c
11528 F20101118_AAAJII king_j_Page_185.pro
74422e8f17afd24eb7a4f0608b7b0a2a
84058fbaee849995a00775236a491f9cb012c523
33231 F20101118_AAAKFC king_j_Page_176.QC.jpg
b749d0ed941e415ea3a56247e9db01c7
5c5f84c3f25a196f89f0e5a2656549dd7fb308ba
36281 F20101118_AAAJVU king_j_Page_029.QC.jpg
d871f8fd57b94e6d58e151d8116e8194
edf290da9d11a27901aa23088c1e6e40ec5cf2e6
71493 F20101118_AAAILP king_j_Page_020.jp2
9c2a51f3f4cbb33ac3c445e871bc1250
78ee90bcbf84f3a0c3c69d80dc72808cc62a0b16
10184 F20101118_AAAJIJ king_j_Page_186.pro
995e74c2248366857b31bf99f976766d
bfa071f8b364a926ddfd0b1addf89da66cfdb690
13180 F20101118_AAAKFD king_j_Page_177.QC.jpg
12153417a27c5b09d56550e75dae954b
4f5b1a1dd893347cf28d2e92de4f5203670057ec
8666 F20101118_AAAJVV king_j_Page_030thm.jpg
698e8f87fdfeb0b1445fc8e74b774a30
4e6ce6a3d44054cfd6a864ce4dabec75b2cf2104
75875 F20101118_AAAILQ king_j_Page_021.jp2
745971c6b7b208530fd28bf8c7c4d04a
c15df865c9ce3fceaf5c06c4c591bf792b00e09e
6944 F20101118_AAAKFE king_j_Page_178thm.jpg
d4c2082b08b4e3cc943ed10c3db1e204
3c08d4f2132a275cb8fcd790c75f55321b591c21
37804 F20101118_AAAJVW king_j_Page_030.QC.jpg
ad01ecfb419dbe14b38f184bb5d699b3
09782119991878198139d7470159967879ee9aa3
79956 F20101118_AAAILR king_j_Page_022.jp2
761badd4b64d392b688727ab75dc7ae2
0d9b7a75d75e31a1caced04701a8abf62fe68af4
10830 F20101118_AAAJIK king_j_Page_187.pro
d08a8d3f4b7b4bb91d5117f60f92dda4
826d83686d9fb5548645538f6886e5a4536c69be
3346 F20101118_AAAKFF king_j_Page_179thm.jpg
ae034d37dbe39a93a2ef471268037bd2
13fcfddae15d06a61f3368a3ce16310753d4237c
56354 F20101118_AAAILS king_j_Page_023.jp2
56ffed3b0d7c0dee09e576fd7be12c91
657bdc76158dbde22018c9925e0a3a2cf5fb2214
12037 F20101118_AAAJIL king_j_Page_188.pro
8f739d2b83cd6c85d7620ca92789b9e1
ca26d342b5ee0a015365881e28fc219c94fdf664
6873 F20101118_AAAJVX king_j_Page_031thm.jpg
72eee0b256506eb849d8d9b00fa4832c
3cb68b3d9681b6ef5ba1526677bbb2a39aa7f7a5
31138 F20101118_AAAILT king_j_Page_024.jp2
dc1940540de919a1a6c3de3fb6ff0c0a
cefeae0759ad6ef662b678e7de594067ed9266a6
24197 F20101118_AAAJIM king_j_Page_189.pro
fccdfa6b23f1e791a7541807306ddab8
bbcab35b90bb62ef558626236e1321915b10b883
12453 F20101118_AAAKFG king_j_Page_179.QC.jpg
1bdd1c95fd54c5490c1bda1ab55a1f6a
35216477cdc59270402133f8979ba46e0ea290be
28913 F20101118_AAAJVY king_j_Page_031.QC.jpg
0c8301f66f5ce32d0cc585c4c202a396
3e0d9676612ecc49e7df668fa5a10c14a7f900ea
35689 F20101118_AAAILU king_j_Page_026.jp2
feb097638488f981bbda6498105c5f6f
9b282695fc663d4d4b9ce0bb4a5fe0646503102d
35826 F20101118_AAAJIN king_j_Page_190.pro
c274226c74ec02cdfbf78c5ad7814a41
73061da4ae5d4aa7efbe613dbbf094e798104e22
6194 F20101118_AAAKFH king_j_Page_180thm.jpg
c86dd081bd5775786df9d61e4d06182e
7535b633c040688082058c9fb9f7084b1bf98a79
36225 F20101118_AAAJVZ king_j_Page_032.QC.jpg
f4488c89b85ba69896718186d356ba1d
bef52dc0c0fd719b425b5967e58952bb09373968
F20101118_AAAILV king_j_Page_027.jp2
02b1309d3dc4d160e297f3cd8cc6321b
0a1fd8f7f7a42a4a82b68d3c0a3545264eef49d0
27476 F20101118_AAAJIO king_j_Page_191.pro
2b0b33cdbffc83bdbff2241f97009e8c
1e0a694a476d42099dddc4db311d55b2554c35cd
24833 F20101118_AAAKFI king_j_Page_180.QC.jpg
93d258b98c34ef0bee6bbc206314b95a
1874bf0a1e3d2e8a08f148b60de1ee7180e98c2b
F20101118_AAAILW king_j_Page_028.jp2
58fd43074f4c04bcf5c480974f4ebd92
69861cff4e6387791caabf818d76d0537d953c3e
31413 F20101118_AAAJIP king_j_Page_192.pro
03e8026aaa66b577b4c3e8ca46287edc
ec2558d77841ebe8b9fe10bb618a6fc90bc01831
3232 F20101118_AAAKFJ king_j_Page_181thm.jpg
120396ab522e9068a6b2de8715ed07b3
54b370769aed90e4a2cab415939a2df06fa2ae3f
128829 F20101118_AAAILX king_j_Page_029.jp2
3ddbb12b95c68de95c3d4bc00b3d92c2
257742226aa9528128f15791fc027c27607c8e67
35631 F20101118_AAAJIQ king_j_Page_193.pro
dae432c8dfcde5d89edee8160c04359f
ddac3d1fda0abe40c786db5807487c831e7bd38f
6868 F20101118_AAAKFK king_j_Page_182thm.jpg
137910a729c319be76ac120344c02970
5cefaf4985b376b50d4a49b09d88702457da6a42
1051957 F20101118_AAAILY king_j_Page_030.jp2
ee8d6b0cf94b965a78d1d6ef54fac32d
e435ebde64f960986894371c8f4979c101da7614
25140 F20101118_AAAJIR king_j_Page_194.pro
99012ea99848e837450ca2887e8196f5
1831cd42ecc7bbd9c54a97b7aa1e8af61c467b64
24551 F20101118_AAAKFL king_j_Page_182.QC.jpg
d90c3c4d0a83b2b32608d208c35bd344
cd384bc3bf00b6c19132285edb89b1435926691e
958299 F20101118_AAAILZ king_j_Page_031.jp2
1836ecdb36dbae6c143b117c26061c62
0e9375d6b0529a74b683fe07e8390eb5c0c39139
38597 F20101118_AAAJIS king_j_Page_195.pro
6da1136dd7d785ef0b096bd0e92bfa5a
d3d99f97b3d6bb48f8470e7d056958efb474fb7f
8087 F20101118_AAAKFM king_j_Page_183thm.jpg
02ec19644806822b023e9d6de49d86e5
79196056e2dc2da81393b190434aba4e0d5cbc74
9091 F20101118_AAAJIT king_j_Page_196.pro
1e7b5cf3b016c68959dbda2361ad6c43
544139e7a2ab60c6bc6020730c914f7f6cb3ddd6
28084 F20101118_AAAKFN king_j_Page_183.QC.jpg
93af7ab034e8ea4554e4941351fe5f7a
64e95f33784564c3434758609c87ab5e6f87ad11
24903 F20101118_AAAJIU king_j_Page_197.pro
4a335cef3f458cd1b8a54525ecce56a7
420aac49ff57fe0c2aa7b0db6a4fb18d67b69da7
7986 F20101118_AAAKFO king_j_Page_184thm.jpg
97077680e8ce4da9f49a27b3dbce60e3
adfe0ef9d1f06055440896125de26b97fb5b469c
25450 F20101118_AAAJIV king_j_Page_198.pro
73ed3d00f6ea0823fff4167d0cfb593b
2de53e861aed9310f11792c0682f61d1985eadcd
18340 F20101118_AAAKFP king_j_Page_185.QC.jpg
c4e69ab10707fc00f34f3f73720f4ebb
a59149da5325ddb37063db2c759731d3df6f0d65
28452 F20101118_AAAJIW king_j_Page_199.pro
fe4edbe258794c4397ed7212ab3d3c54
9fa9315e57f6c804fca1111e7c7e32fd13f6c3aa
16073 F20101118_AAAKFQ king_j_Page_186.QC.jpg
e92e0b7308dfd613aca9faec5fd27600
f951079399ff7c39e0bea397068a908f2f52f693
29918 F20101118_AAAJIX king_j_Page_200.pro
2fb8261415c37772f8390afee591cad3
c7c8fe8b61192734c674a7cd09cb0b1fedfa05a9
4379 F20101118_AAAKFR king_j_Page_187thm.jpg
465dd08e0503e84a67bac1dbaedfecfb
14606185c72ede78073aa7d7cf048347a7a2efe6
29630 F20101118_AAAJIY king_j_Page_201.pro
3be0a1546223bbf05d75a30c1faaa8e9
932d30d238eb322272bd1ec669411358d70b04d9
15840 F20101118_AAAKFS king_j_Page_187.QC.jpg
500298550e88a4b2be6e57cce21e6cd8
5b85f47d4a8096aa4130a996de57cb5fba2595ed
28866 F20101118_AAAJIZ king_j_Page_202.pro
d77a5df1c9cff8305e0f3d1dad817862
f7fac16165539cd902011119e41ac57fac1e7424
14924 F20101118_AAAKFT king_j_Page_188.QC.jpg
1e3b8e02301d4968ed2fa24a05d25a7c
e3f3173e3565595906737248ded756ad0f39b85b
5921 F20101118_AAAKFU king_j_Page_189thm.jpg
58cf3e6f18d1c39ef5704a7d7cafd9f8
e5f48a5e02557586bafdc04da91748a3eb8b40fb
884488 F20101118_AAAIRA king_j_Page_172.jp2
18681ed462711bbb622f1aaa08379419
e6b8fe26d2e6a2b6482b2d32c8f29d3edc9f66a1
22501 F20101118_AAAKFV king_j_Page_189.QC.jpg
6f263ca2787a67a5313e9e1be4479487
81ce8c0d0c126bb3d3d84b1d7e0acfbe85c20df9
F20101118_AAAIRB king_j_Page_173.jp2
88229bc9f8288bfd9475ccefc747ea44
6770c2b15cea8a3048c2f093e3f261be95144b77
6283 F20101118_AAAKFW king_j_Page_190thm.jpg
f129312fdf6d6bda3f808a5af1840b71
81f2631d40d34e39d94d6104f769fee430dad646
506994 F20101118_AAAIRC king_j_Page_174.jp2
6fd136c8310335674222815ecd4d6542
0b4c045a79c4da138d4886d24bb353a2b30c98b5
24391 F20101118_AAAKFX king_j_Page_190.QC.jpg
71d261e0d287533cd09dac7ec48337dc
f8c7a24b4b89a114059e9a6d6939cf2f4ea8da6c
45900 F20101118_AAAIRD king_j_Page_175.jp2
248b62babae358e63ff5fb9db7880cab
85488959bf7c31a150fd03025788013953d47367
F20101118_AAAKFY king_j_Page_191thm.jpg
a0f49abda38e2b55c37d7705f0a517be
bedbbd04377986d546187d8cdd0dbcbedbe0ea07
F20101118_AAAIRE king_j_Page_176.jp2
dc641ee310a75a33f5570046ccd2e63e
019b8a28c5cc3dcb3554095a7eeac94e038228b4
21273 F20101118_AAAKFZ king_j_Page_192.QC.jpg
a46c13dcae1f7fd3c8da6b9f41c057b3
f52257df15d3f1d0d3f57640797647aae5d9f60f
550576 F20101118_AAAIRF king_j_Page_177.jp2
f3c23ca8766300018eb023c849485773
581008e0c2ac5a48e40cca7b1b09dd01dcf45f3b
1051977 F20101118_AAAIRG king_j_Page_178.jp2
6abf98eebaaec9189198846966ce15a4
ae82ecadfd54e6aae2750fea87a133535e4cc705
621648 F20101118_AAAIRH king_j_Page_179.jp2
4ff316b6d6110f73e79c3f971d2c9895
59db177f0cf841ac85391ab85ec02bcb5f435caa
1713 F20101118_AAAJOA king_j_Page_121.txt
bd74722867d37abf29895b1625e3db25
1624a3eaccbada7e2b19a6725393f8d9e9009116
102309 F20101118_AAAIRI king_j_Page_180.jp2
587748e9d03875a04c98617cd2b76ffe
211707335b6968229702736dc892de3833ae51fb
481 F20101118_AAAJOB king_j_Page_122.txt
e57a0127535747c4b37bbeedffc40e0f
deb9b5126ef0f86e7b32c6c2fd16c64ee7c8a26c
437357 F20101118_AAAIRJ king_j_Page_181.jp2
738d8629fbbe94362eb5dac7cb924d23
f5f7a361d1e0c368a948500d6ad360994efe7e0f
1896 F20101118_AAAJOC king_j_Page_123.txt
cf677d3ff4c3a1e7af5066a0be0d7b75
d6d9e68025763703bc755036925df061d081f549
912930 F20101118_AAAIRK king_j_Page_182.jp2
e2a26fa0bd4898176632517416de6e11
a65f8a34a34db0679270217f2bb90780d84dfc4c
2240 F20101118_AAAJOD king_j_Page_124.txt
32ef4caef56e5422df879d9f7e1bf4f6
dfd2f8f3548b464c02bddcf16e5dc64776289a22
1051983 F20101118_AAAIRL king_j_Page_183.jp2
67bfa1b10bda4f471784c5982fc66e8f
06c1207eb7cabb6f8529cf1db30854a56aa8e5ce
1622 F20101118_AAAJOE king_j_Page_125.txt
bc776c81d8e986ef7f42585fe84103eb
b45cc91f616e8fa900be9936cc41253897e7879e
107182 F20101118_AAAIEA king_j_Page_045.jpg
f4d34053bed19c55e1ed95566ad2bbce
0334d16569195d8f96d052f68e22871f26d6c993
F20101118_AAAIRM king_j_Page_184.jp2
63a0a2d2f8465f665b59289f6981d74b
bc0beb5a11e6d480344aba79295c21259702ac0a
2274 F20101118_AAAJOF king_j_Page_126.txt
721d1cbc2249959c77c967246a7e5a30
66e8d5763890479ff96e66615d6162d138f37e9a
121911 F20101118_AAAIEB king_j_Page_046.jpg
d929ccf32f36459e7c2c7571b177a5ef
a2db94916ba6c02fd5b4a75c580d4b7a2ededab6
748602 F20101118_AAAIRN king_j_Page_185.jp2
414c0284da88460538107ba9e8624388
f1f9b1b1f1e6b1b4c2dd3aec9e1c120d80d97e74
870 F20101118_AAAJOG king_j_Page_127.txt
79b7cc6099266d69b36df977304bcb0b
8a84217d272c67d2ec8f80a2c75be91b6eead4c6
105529 F20101118_AAAIEC king_j_Page_047.jpg
c7eba590500ffa31f082d87ae98a02e6
30cb87d0094701958ea04cd522b21a002f734c18
657373 F20101118_AAAIRO king_j_Page_186.jp2
85065a18bee49d2e1384545994245d8a
71c3ecfd57fd55394a5d56161dfcdc5f14be308f
1133 F20101118_AAAJOH king_j_Page_128.txt
bb6f76a531f2ca2dde53a96309d84c85
2427a035ae5339562cd460788660bf0536e33934
100536 F20101118_AAAIED king_j_Page_048.jpg
815ddddf88a65a9d2e31968fa6ab4c5a
23afdcc68652430a63fa37c2dcc5f8de13b17e18
672438 F20101118_AAAIRP king_j_Page_187.jp2
f87cebc7c678429f35e6adf88f0ed822
face72c15ded83c9cdbdfe87fdcf09d841ed5c5e
2262 F20101118_AAAJOI king_j_Page_129.txt
56abcd01a018ac526248f4265cbe99ab
cba77c5af3e90f26c00dc248d07d1cad6d8bb0a6
145304 F20101118_AAAIEE king_j_Page_049.jpg
f36b3012950117536c9f64ea231e764d
13b8ec0379593537529579b49314575af68eafdd
563079 F20101118_AAAIRQ king_j_Page_188.jp2
44ef6b9c45eba6df7953d7280ef70ab1
9f8340756d7a63ca3513bc5210420bbe3eeb3964
2124 F20101118_AAAJOJ king_j_Page_130.txt
0da498239415f52b8e4c3c23a7ec36e1
a3b40028f47dff2fde2d4ef08e9e9279d1a5d016
88673 F20101118_AAAIEF king_j_Page_050.jpg
6066cb2ceab30184fd707236659a3415
3556ab26a96793d0090a81d9a7ac40d982e3a511
802543 F20101118_AAAIRR king_j_Page_189.jp2
a9dcf52dbc29d288823f02df0924f993
59da8b1ce92f6cc624015e45d915d95cd7a1b27a
2218 F20101118_AAAJOK king_j_Page_131.txt
93bbe12aabe098d80048680b3e552dc0
23740dd39e9aabff77848db4ada19cfb56a4be00
67147 F20101118_AAAIEG king_j_Page_051.jpg
c18ce1a32dcda79fcc8e9d7043885ed3
0f84c2d9bb6dcb09609cd3fbab68be04433b8c2b
F20101118_AAAJBA king_j_Page_215.tif
bdba68e28a16e233443ce3e8ed5c5ede
0b5777d1c52512f05cf1162126cc4c4a818ffabb
804463 F20101118_AAAIRS king_j_Page_190.jp2
3c05a91f01f975f5cb274a31d612a818
a16a843d6dfca6fa6bccc6a2d9cee02657c9fc3f
2179 F20101118_AAAJOL king_j_Page_132.txt
49c0dada5d2707d311a182423bf4d0d7
1224808f922fba6f9cd7aa722dc95e25d5f785d9
F20101118_AAAJBB king_j_Page_216.tif
8743ae68d0d0e68c3216e1d8d08bb35a
ff877eebd3a48b45220237b376ff3dc599b0ea89
592348 F20101118_AAAIRT king_j_Page_191.jp2
31793018e76271d1ed6d90f1ee13a2cb
1e52f933dccacb287bc760d3a072980cf86c37d4
2215 F20101118_AAAJOM king_j_Page_133.txt
54f7861e0904b04ed5cc95cbed4e4303
9b1fa8871262185d0bdbba8c73fd4ec172305837
99255 F20101118_AAAIEH king_j_Page_052.jpg
927937b2a19d52677aed372a96d915f5
f4d82278323f04ded483bee4be5768af1a85c77f
F20101118_AAAJBC king_j_Page_217.tif
d03e3e75f8ba661bc2618798bdff7e12
e875b13b6e6796cd3da3e9ab8ba62b2e1991e57e
1497 F20101118_AAAJON king_j_Page_134.txt
cd00dd94fb9ee0e7d5fffe53599a51f0
419feee21a9a777679b8dc35bfc1132522b4d223
39014 F20101118_AAAIEI king_j_Page_053.jpg
179d843625b16aa1553053efb2d98648
0b04d59bd9aea6dd8531547887bc6908304cb01c
743542 F20101118_AAAIRU king_j_Page_192.jp2
b0e921a8a78f60fad74a2e561692ccf7
d28f827dd457676a436a100b97a806ef9e20a3a3
1917 F20101118_AAAJOO king_j_Page_135.txt
937680e6f9cf27833bf757470fb319c4
d529e820112868756ecdd342903254bd0dca5b57
106366 F20101118_AAAIEJ king_j_Page_054.jpg
fac65703d6458792210f4c1a47c04f44
bb3068384264fe06a8d3463315a2a2f273dfe8c7
F20101118_AAAJBD king_j_Page_218.tif
f8679e46482f0173749fb74ef182db67
84290f6365f775de7c4167b6c340d34bc65af665
772645 F20101118_AAAIRV king_j_Page_193.jp2
2ed196fc72d438f2415b94bfc5865265
22a150d77e1357e702451a2d27e44785bbd10e20
422 F20101118_AAAJOP king_j_Page_136.txt
e2cee69cf91ffae5ca39378094d82f22
2f7adf3ebc81a4b6e84bda3b379d3a153a983dc7
50444 F20101118_AAAIEK king_j_Page_055.jpg
29b40022db3555df661e3f7705958cfe
4ef43ab6d5bdc25e239aee71a394a89b8dda0681
F20101118_AAAJBE king_j_Page_219.tif
01b13796c159c8ff243ad9e119eb7105
bd7743793ffe144345270f8d3882ce2b9a2c07ac
591765 F20101118_AAAIRW king_j_Page_194.jp2
35d59cf95b9a02e3668bf2cdb1dc2a19
efb910138e7bc6b40328699f209551abe5485f52
100272 F20101118_AAAIEL king_j_Page_056.jpg
81fc283bb20902ce97585898cc9b8860
39d3732e8da46b6323b2d7b2b30e271c94203839
F20101118_AAAJBF king_j_Page_221.tif
ec762b4962e896480c622edf198d4891
62c760b817398298bdc9d2280eb2c068be9a67ce
908171 F20101118_AAAIRX king_j_Page_195.jp2
08f21c758f275817ee0fefb83055e55e
1d813935f4240f5fbb486f8e45454172019bb87e
724 F20101118_AAAJOQ king_j_Page_137.txt
7801d347362a88a24fc0b0561721ba79
26a41d31871d672684f9094b0b818ca51204e8e2
63446 F20101118_AAAIEM king_j_Page_057.jpg
7286f256401d3b93be189c88f53251e4
9ae5a42a0c565c9c6c10994f8adfae928cdd6c5c
F20101118_AAAJBG king_j_Page_222.tif
c14beaeb60b55cf32b7cba55a3eb0079
cc757a7be1b921023e710b2b92357018145f4c85
169627 F20101118_AAAIRY king_j_Page_196.jp2
e4f2bab647e2ed2a933ef0af0def2bd7
e79e566eff5ebd08aa11026acfab6c4d997879d1
524 F20101118_AAAJOR king_j_Page_138.txt
57c2ad85df1b90c566f8385e39090afb
43997bd42b479da7f6d98f928926c584265c4637
56081 F20101118_AAAIEN king_j_Page_058.jpg
aac0a38797ac9e3ab548ecadaefa519e
e7a2938d09c138717de11bfe1c0d92903d2b768b
F20101118_AAAJBH king_j_Page_223.tif
00bad872180112b91d697b04ad18e6b3
8e3b90b6d9acf5fb23684fddfcf1eaa259af873d
517259 F20101118_AAAIRZ king_j_Page_197.jp2
bf3273a446bb239cdfbea2cc0a9d3bf7
e45a54f0d5ee032caf35fb332a078ad3b09a524b
1056 F20101118_AAAJOS king_j_Page_139.txt
40be3f4f876d02d5149e550ea8179c3d
70fb575f883f135ff43beaf7363a0dc717c1b87d
69500 F20101118_AAAIEO king_j_Page_059.jpg
2b2735dea548fa24bcc3e39440356046
b94c1a6cb7958bb8c7fa713ad37708c0fe140280
F20101118_AAAJBI king_j_Page_224.tif
b358461b952118617c83a5ae12b1b776
5b83de5d4402084fe0045b66f6908921c1b1d071
1447 F20101118_AAAJOT king_j_Page_140.txt
ef0524d2185584bb13f89dcd3af93146
ee561fc7ad811eb9a6c6068fa1115139aa966340
37575 F20101118_AAAIEP king_j_Page_061.jpg
3ffd13626fa9d321e1ed137777ea6986
3172731fd6ca4ce9db9469133072fbd89e2fff7a
F20101118_AAAJBJ king_j_Page_225.tif
f11295be7bd76f29bb89c1ae3ed7e37d
129b9f2932638bb92d7d79015e6d35694858efde
1037 F20101118_AAAJOU king_j_Page_141.txt
4f0a8fea8f504d5b125ed69c1c3e1fa1
9bd9cce4a5f502732b0e53b4fffffd5cc5475a3b
65429 F20101118_AAAIEQ king_j_Page_062.jpg
38deb0a8e0f3faab3193b2079db7e835
e9e0ae00ea6bb65637dd745365c0e7e9ba1a6db4
F20101118_AAAJBK king_j_Page_226.tif
709608b1f1dc6894e9960ad9cc021985
f1d2521ac9b5488b39fa7e73c1e0815c785017c1
2364 F20101118_AAAJOV king_j_Page_143.txt
d84135e7ffcd0a4b12bbed8d56eaa0e6
311a18db2162f872ed3d920bb332e755893d0f3d
50803 F20101118_AAAIER king_j_Page_063.jpg
49fa77df22593cc04e8e9dfb4dd4cb7a
5ec4396eba7684445cae8386decac0f69d39efe8
F20101118_AAAJBL king_j_Page_227.tif
af084d1d03ea7d17cd2dc61c38129664
aa23544162913d197fe60af947ef019d783a1dda
478 F20101118_AAAJOW king_j_Page_144.txt
6c82009411a35edcae8cabe2028555ba
43cff59a71948b42c71b8b0ee5b1d39ddf42562d
80847 F20101118_AAAIES king_j_Page_064.jpg
0f92674d4fb7edfccf051b40d5671358
b07a25a0335a40dc497c9a7b7e55ca4b2ccfc283
F20101118_AAAJBM king_j_Page_228.tif
8a604620629f5eb371af75c376e3effa
0e8931247c5986f6c73e2a0a86cddb27a54f8167
2361 F20101118_AAAJOX king_j_Page_146.txt
8dbea30c9c9c258b679a041aaf130789
6a107f63e41fe8a7148cf3da9cc7a190b845bdab
96988 F20101118_AAAIET king_j_Page_065.jpg
4000e8c78d756f67360f7c9b9b0e77b8
623ba21574be040e49e94c4fec9ab79970d187b6
F20101118_AAAJBN king_j_Page_230.tif
58a73eac64bc498df9599253af0b5829
dcaf1fee777da9f82b54112c8f04f4dc39d5f5ad
2912 F20101118_AAAJOY king_j_Page_147.txt
fd3e6c93c9e47c4eb0da0e39d3ae3060
16caa2150e4ea1f69721afcd4962ed1a13b52a07
69144 F20101118_AAAIEU king_j_Page_066.jpg
7c3ec1e7142c7cf7d83786790121952c
4dc3b3db5941258e17ac7f0418ebbed543852974
F20101118_AAAJBO king_j_Page_231.tif
738988b9afb163143940dc9d4596dfc7
17d64d1f596cb6c6593736fe496a457c6ec4de6b
3422 F20101118_AAAJOZ king_j_Page_148.txt
630d6eadcf5d95997de4bcbfd744df81
96c3692451331097e845d3c7e3a2c41ae6cfed7d
67429 F20101118_AAAIEV king_j_Page_068.jpg
f0592c7e20c31b81334f14646b2104ca
56b4874f48816c50a040b8a4dd80186b82c31263
8356 F20101118_AAAJBP king_j_Page_001.pro
b9e8407064fa50bdb2b45d966f2bd600
d2c570631b2411085e7bf65556a07a9fd240757f
104995 F20101118_AAAIEW king_j_Page_069.jpg
8591d091b5aaec4baa6fc68c959bd42a
d2481a6555c71b952dfb7a8fad4d352cc6c18353
F20101118_AAAIXA king_j_Page_103.tif
1a2042a42c123bd8b9d220c388279536
b1bee3bb5b5d97fd2ae75d315a6311b3b8419d39
1015 F20101118_AAAJBQ king_j_Page_002.pro
f26014707c80aa443ee85aa322a5d9b6
d8b47f23249f2f820e061c94bf0ae7b970148fcc
45859 F20101118_AAAIEX king_j_Page_070.jpg
557b8922195004cb00c9b8dc2b7e451a
ead6773f339af20d81b8ed9dd3788821ad6d5eb8
F20101118_AAAIXB king_j_Page_104.tif
4842aa1285d658b38c3293325a4db5ba
6618b2f2a70b7743fc08567bf92ab655aa74ad4d
1496 F20101118_AAAJBR king_j_Page_003.pro
954d46f300d7f892981f5c9648402409
b071260d85b74281f786be281f196dda39ddf37f
104198 F20101118_AAAIEY king_j_Page_071.jpg
4431cd53e428c82b6675326d90aa9ba6
3dd2777b70249e2271226a2595fc9d8daca32e06
F20101118_AAAIXC king_j_Page_105.tif
28377515dca6aa18abfdf6a3fd306f3e
2f269d6e7ffe218ae1254d93384d1090dc7f1b09
19509 F20101118_AAAJBS king_j_Page_004.pro
843c06d23e4c8e97e5f10e5af5f8125c
e3cbced8015f358e8cb263e406d60a9c7764c87c
63623 F20101118_AAAIEZ king_j_Page_072.jpg
6cf5a2ddffac9a339c153f2955c3f130
4ddc2daa651417245331e16821162de884334609
F20101118_AAAIXD king_j_Page_106.tif
d7db2720f8b29454dbe0774376bac007
e469a02d6058454622be2b83a4968dc26a9be033
64227 F20101118_AAAJBT king_j_Page_005.pro
2486b63341eb79f5423950236874b136
5940e4195a7ed882eb9fa37f9741e1559860dc39
F20101118_AAAIXE king_j_Page_107.tif
e1d758e91dbd370b74d5df6af4ce538d
e14af3bbb304c3a5bc400c4e05e0731fc4fc43f4
62754 F20101118_AAAJBU king_j_Page_006.pro
22d95c3bb8e751e7f128a1c7be6c6504
d09af9b5b3f6e498901f0e8252df64a8a74fbd64
F20101118_AAAIXF king_j_Page_108.tif
91f53b932029e0c3dee87db7df309f3c
5da96b1275c1c375ba6c460bf69c253e765c4742
12215 F20101118_AAAJBV king_j_Page_007.pro
f9afe69f04e1f6f27cbaff9429ff82a3
f42f0a091bc8d7bee45ed1c89c1106d324e74420
F20101118_AAAIXG king_j_Page_109.tif
a918320c68d576c5e686516ea4777bf4
64af92ca5fa116a1b622e631944232265c45a2e9
57626 F20101118_AAAJBW king_j_Page_008.pro
22e6a8e55935bd408ea280614712d3ea
43ed6f750a32102e0cefd15f98721acc6efc0e75
F20101118_AAAIXH king_j_Page_110.tif
3c2e094bb120bc2ef49e71b5cf015675
6b64ee53d5308491d32f5b99b39b27095c0a8589
29798 F20101118_AAAJBX king_j_Page_009.pro
4a985355d416692ec853c04150e81b41
f806da750852bc36c1b79dbb3118075fbad3961d
637 F20101118_AAAJUA king_j_Page_003thm.jpg
b336556a6fc4ca64720973ded8475da6
043f471467bebc776e08616a23ea84ded79e210f
F20101118_AAAIXI king_j_Page_111.tif
69f2bdbb65d16840a4441845e71dcaa3
1c5b779f76115d861c2ba25f6e32db7a9aa46190
67715 F20101118_AAAJBY king_j_Page_010.pro
eee2539b57c9aff82dbb8a63fcda2ea5
521bf5f57499b2bdf6ae2c89cfd45429206cc844
1623 F20101118_AAAJUB king_j_Page_003.QC.jpg
8beaadd8a9cf9ddce011db308b4a3697
c3a09df306ad02c87abc3e3c57e5d1d59d4559bd
F20101118_AAAIXJ king_j_Page_112.tif
682a9f1ef4ff5890e695a43ea5b3c5b3
f3d9cfe890e333a8975846ee5f13d20379bddd37
72527 F20101118_AAAJBZ king_j_Page_011.pro
474621b45eff500df7c576c55b8d79b6
90657fd537cc120e3e8d05bc2849119478311bd4
3471 F20101118_AAAJUC king_j_Page_004thm.jpg
59656d9568e426af0c28997ba29be25e
19ce3a31c4734c1f937cb43fdda1b886795829ea
F20101118_AAAIXK king_j_Page_113.tif
6839832072a890a25eb208461f842ff9
540b01bdc3dcaeb9d46a7cb7986d986a1c135a9a
13203 F20101118_AAAJUD king_j_Page_004.QC.jpg
6acde35bef5df06e437e15e9112beedf
d4a3953ad12115475621d5833e6d4a6d355e1e8d
F20101118_AAAIXL king_j_Page_114.tif
4b98c1d5234ca5782b5c3288cd582506
dba861d95acb418e51410f9892095834996f40b0
6914 F20101118_AAAJUE king_j_Page_005thm.jpg
1a90118af4c6b834408b8c0fb27e62ce
bd24d4dbd172bc96350c5e6a370b76c6cc72f89f
62891 F20101118_AAAIKA king_j_Page_208.jpg
60233b53b4c27769264ee702d9b06930
e82eb54cbe01d415b3c67582aab2257789f47397
F20101118_AAAIXM king_j_Page_115.tif
1d7e070f29bb045d9f7a06866b77bf9a
96d3952b94b65bc7f01ae561d32c79291bfb0da2
32576 F20101118_AAAJUF king_j_Page_005.QC.jpg
edd4ab95c970f303dea37fe7f7ee76fd
619b169b157e062dbc3543264024e2b8f19511cd
62324 F20101118_AAAIKB king_j_Page_210.jpg
cc23e7b6f82bd2b4dd7fa9a1b6cee5f6
69004a744aebc426811f4e863202ff57ef4f5b03
F20101118_AAAIXN king_j_Page_116.tif
17d9204ac7a00be0c486beda5816c800
029fdd1491f0498a5fcc02038bcd6221cb0a5289
7422 F20101118_AAAJUG king_j_Page_006thm.jpg
d8089c56adb312a964ac23b9170648ea
2f72b7ab56a61f742570d7683a0cf23a41559e2a
50006 F20101118_AAAIKC king_j_Page_211.jpg
41aae02cda01573803ff8aa5e40a4c19
ce5a0dca9698aa400e686ccee207856309f102b9
F20101118_AAAIXO king_j_Page_117.tif
4e64f8f1831ff6da3fe87d1cc1694329
69ff9c59dbbe0839f35ae6e442aa003e6368d115
35610 F20101118_AAAJUH king_j_Page_006.QC.jpg
43aba23c20a7b734c7d5627d8062ac11
5c48816bb5a9d7a099be24fb79420b00dd661bf6
65045 F20101118_AAAIKD king_j_Page_213.jpg
734e081f6d885a7238fcb1922a1a1996
ab789f1eb23d0ca623b9ed9a1746a06660cdd1ef
F20101118_AAAIXP king_j_Page_118.tif
c7dd1700ff4f68134c5b1be53319ea6f
2c58917116eec49b771458bf5c995768965c8cd9
2216 F20101118_AAAJUI king_j_Page_007thm.jpg
f0f9691d9bfeed439130ed2163399eeb
00780907822d0556bd0555435157db43f9bd9793
63597 F20101118_AAAIKE king_j_Page_214.jpg
f57b44bfd306a8c451cd6e38e05e9664
5650078e054360be4d98dfa542238e42e260f5fd
F20101118_AAAIXQ king_j_Page_119.tif
9323fc0ed2bcead935414626f145df56
0fe4c3968fec06f1707c79c128d83ad38c124718
9523 F20101118_AAAJUJ king_j_Page_007.QC.jpg
98403d2f2fcb0c4747fa64e45855a9c8
6b5d77b4b8986168f88f235a9f8b39a13cbb30f4
65192 F20101118_AAAIKF king_j_Page_215.jpg
9d9d93ef7c1b8f847b287067fb1d5e06
22eca8f3dfcbad5b4e292fc9da60bf2d99bf23e1
F20101118_AAAIXR king_j_Page_121.tif
33f3b82a553542c4d5b56b449981f75b
fbbb499a9311e8b7ab05fbf690c93eb5b2b7e906
8349 F20101118_AAAJUK king_j_Page_008thm.jpg
c739dd27ca91dea90ca23b3df4bbed3b
468ce6e3ef3cc9c647914435ff490ed8c1272085
63878 F20101118_AAAIKG king_j_Page_216.jpg
9c2324ac987932c1014a9e434cf06ddc
7f9908a19a7a5151b251155d793deacde963cfe2
F20101118_AAAIXS king_j_Page_122.tif
8a5f5b44e93a8cac795c53014c0d53f7
bf333dcc975b953f5909702f0a7365e131e550a9
4059 F20101118_AAAJUL king_j_Page_009thm.jpg
abbf4635accc5fa0bd8e7d7e1886204a
4579c7dee50fcfd3bc7ec4eb802570303f11755a
75444 F20101118_AAAIKH king_j_Page_217.jpg
ff28e7af50981532fc47f7dc851a3405
2c74ba5ca08a75cd5e9ceec8c57273b2f14ab6aa
61671 F20101118_AAAJHA king_j_Page_151.pro
28587e20871a17650e2b8b4fa786bcc7
270117f1783785ca6aa38d304e19bbf9e2f119ff
F20101118_AAAIXT king_j_Page_123.tif
693595e12fae5caf91bf215baf6f5458
b5d27334b9322f8a281ee77c0eac21e4caac49ba
17928 F20101118_AAAJUM king_j_Page_009.QC.jpg
fc6bd8be04aa6adfd7d6c7f941441f48
d7e370afc0f27d28845770e2b50929269b067946
78853 F20101118_AAAIKI king_j_Page_218.jpg
64b50ec6870e0520ce71a8183561e581
b416f119c0650622d880059de852ca812cf0cccc
58770 F20101118_AAAJHB king_j_Page_152.pro
b4142bd4879b188b63f4c42bb88c26af
a8b40850cd99b2acaad8ff9151350adc26e6963e
F20101118_AAAIXU king_j_Page_124.tif
dd669de16e32f94cfd0ebaabc5cdfe3d
140942b516b161614489808861ae146830ec3201
8532 F20101118_AAAJUN king_j_Page_010thm.jpg
b8f6195b12e1a6900c9265f4ed91c0c3
83d6e32f57433c1ca88e0c5fef46c5ebd5624f38
96001 F20101118_AAAIKJ king_j_Page_219.jpg
f264d3077edee134c6aa2aff0803c2ea
9ca38461e34553a822eda49fa568d7fe98ba7a75
61937 F20101118_AAAJHC king_j_Page_153.pro
59283094d6e2d09f1c104862388a8c64
19898106ded8c8ddf94cb04f322ae9322ea5ac96
F20101118_AAAIXV king_j_Page_125.tif
17841da6c75948f4bfe80eb172522865
391f7f3039b9620419722270f8c703e532950b08
39488 F20101118_AAAJUO king_j_Page_010.QC.jpg
78a8fd0ef2672d4ac4f47d933f2f8e15
99d07452e52715083aed6c9d3ed61458010181a8
19622 F20101118_AAAIKK king_j_Page_220.jpg
abcff87c9882bb0cb6c03076a486f2fc
8c00b3bf7d91ff8995050297f8d3db9a26539858
58663 F20101118_AAAJHD king_j_Page_154.pro
841ec31af765dd403164fc3e38f61516
5533ef1d869139854a107dade32fe6b5a8790d2b
F20101118_AAAIXW king_j_Page_126.tif
b13bd5e5682f612c855d80f5deefc64a
30f4be101dbf22115ea134b12b3d9cf950714cd9
9043 F20101118_AAAJUP king_j_Page_011thm.jpg
1aecb39c78b4609e6699f02cbe374c3a
8310bfcdfae7a8fc03e1ea58aadeafa42c9032db
116283 F20101118_AAAIKL king_j_Page_221.jpg
4d3f5c919b0b7697e418db579a245ff3
2eab3c1f56133552d6ce590548022a83664ecce1
16791 F20101118_AAAJHE king_j_Page_155.pro
b2fdb8740b02e25167fb40a62b166168
dd41c9dff55149ac1a26acbcf0547ce2d4bb8238
F20101118_AAAIXX king_j_Page_127.tif
791fad1b5bcec9de2ef5fce0459303e5
abb601aab286a3cb8742037afb3525ef395d96dd
42241 F20101118_AAAJUQ king_j_Page_011.QC.jpg
c7758424ccd0ef6f698e00c1ee481274
b2219fa06194c699bbaf5714186094e39fc94958
125605 F20101118_AAAIKM king_j_Page_222.jpg
4016d1adb4f7d92cdcd20e71bf317650
53cd598c22b03b03291bd1789b6dc6d5d446a8d7
24164 F20101118_AAAJHF king_j_Page_156.pro
eac5fcd882bcd44e3e730f0fb6a1ded5
202c6c054cb1fe357f57ea573c374efdd177c00b
F20101118_AAAIXY king_j_Page_128.tif
9bf8665292b501b783c71b3529ea034b
4ae833cf8ad0d29db20e7c97ec78b2a1cd2f7d0a
8897 F20101118_AAAJUR king_j_Page_012thm.jpg
fb99d53fffed0a4a5185025a8bd1e9f1
c4e827603ecc942297a8a3c9dd6f2c53d946e17f
19497 F20101118_AAAJHG king_j_Page_157.pro
78bac841f2e3f3ed13987f423285b27d
5e2a5397909d0acd93a9b02110b2f4f082b5b71e
F20101118_AAAIXZ king_j_Page_129.tif
cdf506985e286dcae64c89ade687638e
5e15c9efe29b4a1ac7ab27ccc46b8fbafbdeb53e
35916 F20101118_AAAKEA king_j_Page_159.QC.jpg
d5a5e516bad33daf2828be5aa6d404bf
2aac698b4e4d1925eb2f6254eb42775794fe437a
41490 F20101118_AAAJUS king_j_Page_012.QC.jpg
af42e0cf28baead1f625a6d7c158d1e9
4c2bc4ff1ad00240c434190fea6c3c27126b565f
122661 F20101118_AAAIKN king_j_Page_223.jpg
b1e5949a029ba65f5f683babf691a346
0b2e203dfa3518cbec36f03fab183b25e2f0ea7d
12652 F20101118_AAAJHH king_j_Page_158.pro
aded5f4e1f2e77672d0f99c2a06f2531
970702c7d0a05273093237387f9e3a1905543048
4607 F20101118_AAAKEB king_j_Page_160thm.jpg
48e0470c36dee1345fc7785bf4a57831
4eef1e7cf0bef2af370dc31f32b9cc14deab20b0
40524 F20101118_AAAJUT king_j_Page_013.QC.jpg
a093acd656eb576705d7a72502440b15
cc661a1d1b79b1996fbfe4e00b7fbecfa21130ee
123734 F20101118_AAAIKO king_j_Page_224.jpg
6fb41a1c2ba09c866fd8ada2915f47d1
7032ac40c0711499a3af781a88d8d70efa6674ce
55260 F20101118_AAAJHI king_j_Page_159.pro
c84e91f4e0141a1dac84c5272fad4f44
900eb46e887a4657c7649e8c84988a6097304698
17918 F20101118_AAAKEC king_j_Page_160.QC.jpg
e990f2355e7564bf6a016aa1b127e1ea
f2a2d8df1b01787eff504d0d6d765b8a7c3e82a5
8969 F20101118_AAAJUU king_j_Page_014thm.jpg
a03d3362e8e611df52be0251d03d1329
f1417d7ae47b1233c90562d64725c882fb13072e
129912 F20101118_AAAIKP king_j_Page_225.jpg
2c2d5b5c949d358d2c44d5d6eea34aae
4c4d9f69118d89b208e02e20c79a247afb83d845
5448 F20101118_AAAKED king_j_Page_161thm.jpg
e6d2b56fc7ed159f1eda7f55a6fded80
799adca5184139bbf05ac83f41e10570844e0570
41691 F20101118_AAAJUV king_j_Page_014.QC.jpg
3f60dc4b8b6ef68c6fe9a8e2a8ce4311
c1781308adc1f636caab0c4cbe925af9dcd285cd
122626 F20101118_AAAIKQ king_j_Page_226.jpg
a7353892c0a3c9987a9eaad2b5dce31d
7f27e8e049ea13294f6cc9033fdccd29df0a9c34
25572 F20101118_AAAJHJ king_j_Page_160.pro
b4831f8cd8125c32045ca8b0d344b37a
81f424bf32234d613c39fda7750687448c5ee2df
F20101118_AAAKEE king_j_Page_162thm.jpg
da4e2520ad4db8ee5250380800f821d5
3d59a996d3e7b440a36dd572b4e9d844765b5f7d
124815 F20101118_AAAIKR king_j_Page_227.jpg
60158142a0789e7feb610e7b21718b09
2b4a492103e12af5e50606b21150828ba7f19b9c
4306 F20101118_AAAJHK king_j_Page_161.pro
9d1ff850a80f9591d38576a7ba8f3be6
e7c60bf448aa19468f851a39d5acf01f76c8655b
18719 F20101118_AAAJUW king_j_Page_015.QC.jpg
085d235f6191cba3622a1e605a461c5f
8939216a46405a6d54431dedd2120566e82b09f7
127491 F20101118_AAAIKS king_j_Page_228.jpg
1c22489621447f549fb679bc532b680c
6f4db008fc2469c2714d2f874171864c55e6ed06
9093 F20101118_AAAJHL king_j_Page_162.pro
d7017fbcccbe6730d2cbc0c851e4affc
0dca156e6dfdccfbf174c0f1a982295f0aa177fa
13244 F20101118_AAAKEF king_j_Page_162.QC.jpg
3371e6c1032591a5083993909c503ab0
0b510da6542a56c7fb392e7a0d3d3817a39bc729
5755 F20101118_AAAJUX king_j_Page_016thm.jpg
8e4aaddc8fd72425dc9a49a5bd8d8b06
6c310c76b1c5cf982f9ed6ebc9ddb30df54a7cbc
126971 F20101118_AAAIKT king_j_Page_229.jpg
d0836d9955376dfd3694c475eab6b811
defa95b89f882c5efac0eb5342403e01617959e2
26344 F20101118_AAAJHM king_j_Page_163.pro
9e2db6f382d281e5434bd4edea41d47e
7ce53efca12f471a98c6acbc19f780fe2a428fce
7577 F20101118_AAAKEG king_j_Page_163thm.jpg
778959de2d70f8958a4ef32ae5cf2107
f17c4078a687b172f95c802bc0a67308f73482a3
22113 F20101118_AAAJUY king_j_Page_016.QC.jpg
2594aa825f67efeb263f9cf6d6377b62
823da94b8d84ed367e54d2d2ae0f7cb86bfbe34e
48866 F20101118_AAAIKU king_j_Page_230.jpg
ec087589c041568944cc68ab90f57f11
ee88fd34be10d91b74a8f100f58dec12c67995d3
95017 F20101118_AAAJHN king_j_Page_164.pro
0543319ef5530ce8c1ea35b6d6924785
97a42dfec9a5f3ef0ee55e944ac83cb459db07a9
27647 F20101118_AAAKEH king_j_Page_163.QC.jpg
86fd201fd649939bd942be9d623c134e
1417aa388a741b2dcedac605835fdeaa970b33ed
5410 F20101118_AAAJUZ king_j_Page_017thm.jpg
9905566dda75f4c5a492aa1e7383d0d2
043e0fe1bb9c8fa36c7eaa9335c3adaa3aa39623
48516 F20101118_AAAIKV king_j_Page_231.jpg
996b15ea29991689e3fceed6453bcf5e
8d3b58ea16497bf53799852129c7c9e6e39d81a5
22595 F20101118_AAAJHO king_j_Page_165.pro
69f6629f71186636bb6338ea80342077
42e857d82f3229c5a897fb8648d9c674f7c5abb1
26161 F20101118_AAAKEI king_j_Page_164.QC.jpg
7eb5e43691ce204e7b881ee773d3309a
bf7d9842e2f7f2b30ea4d9c72705e020f22efd4a
25099 F20101118_AAAIKW king_j_Page_001.jp2
6d911dd695e6b80759a4aca11a447aa7
cf461f3f052c51b4a8dc2bb2728aaf2d67d95ac3
58466 F20101118_AAAJHP king_j_Page_166.pro
6ce881f655e1f02cdbc3570f0e6e4573
7186c64e2237337162d0d416262f3cf1dd302807
16699 F20101118_AAAKEJ king_j_Page_165.QC.jpg
7f5acb9e768685b4e9eba3dc2bd0d2d7
f74f1c29d6fe34fbaee8a937b219976f798bb64a
5655 F20101118_AAAIKX king_j_Page_002.jp2
e5c3e64e28855d68e0ccb1d24031698a
ce4e5f899ca6db0bf71f577c457d086810fc0419
48033 F20101118_AAAJHQ king_j_Page_167.pro
98c15d3daddeb76c0e16cf978a435a3e
61c8edc5f152880414dba146a0fa443921743015
8359 F20101118_AAAKEK king_j_Page_166thm.jpg
0e72d83868677714c5a1c5c7fd1959f7
6a38df9d2e5cad1345cff67825728122b42d1e1b
6849 F20101118_AAAIKY king_j_Page_003.jp2
8240e7b9ef49ffb239b38b08022f844a
52eda64201679f6062342ca70348de6070c498c7
23742 F20101118_AAAJHR king_j_Page_168.pro
c6f8a260e95331c75e0d58eab01d54b5
e72d4ffb9f0f04c63607a35ebfe6fd7132d5f1aa
36869 F20101118_AAAKEL king_j_Page_166.QC.jpg
84b14669931165559f0db928603785f9
d0263a387f3eeef11166187a14e73cd32decffc0
44606 F20101118_AAAIKZ king_j_Page_004.jp2
13adbdc646cfaf5760100b7a93e1b396
e980d04a780fb7630ca06fba4c55cbb08fbed585
25551 F20101118_AAAJHS king_j_Page_169.pro
310ea18f4e367e4f480bda7785b4da9b
c0ee1ab1ae63d5f41f105eb7c916148bd9495e13
5670 F20101118_AAAKEM king_j_Page_168thm.jpg
cb595d0a69de02a68d0fb225af5da956
5119eac6d115c66210f1c947abd3b0ad44d96604
42272 F20101118_AAAJHT king_j_Page_170.pro
c1fcd28a2923b9cbab26af73c4c962e2
1afa3e4f32c0a5228a2d53cbcaa524ce26b0b6d1
19025 F20101118_AAAKEN king_j_Page_168.QC.jpg
a5ad89b4c3aee762b03a75f66e7d2aa2
fc066a301a9fc0399f0c7325c25bf343e7792aac
60164 F20101118_AAAJHU king_j_Page_171.pro
4c7e6c26d506d48e19b867c448c50a20
a3d21cb6c7ff0fad35f9b33070d85dd6a24f4ca9
6363 F20101118_AAAKEO king_j_Page_169thm.jpg
4fa802f0331c845687e80d4784fcf058
d62a844d40f379e95d317f97f9a7a439aed805e4
38405 F20101118_AAAJHV king_j_Page_172.pro
a8f334ab37ae8b2e68fa6649db82598c
dd5cb0e9f2b457de462e9358ee538600a25d3e1e
22910 F20101118_AAAKEP king_j_Page_169.QC.jpg
ffba2a8a97d20ce1fcf1c6584fed2970
bc4dc1f7697a7f7b5294eb76395e119c6e6ac505
58078 F20101118_AAAJHW king_j_Page_173.pro
e4b46a003d511386dfa78ef8e07dc3dc
57bd9eebd4207966da38ea4cbc9b680dd4a26dd9
6845 F20101118_AAAKEQ king_j_Page_170thm.jpg
c5af97e29c2453d4622795716e0bdba3
3988c4c2ac023a7193dd368bc6d7e4dd9528c6e1
20646 F20101118_AAAJHX king_j_Page_174.pro
fccfa5d07acc5f6f84a71032f1440c6b
ea1c1f890cb36e36f4ceb16342ba7103d4675ccb
26774 F20101118_AAAKER king_j_Page_170.QC.jpg
06ef2053995e8a1baec16e5bb70ab204
93ee6c5c20199b030173e3554208fc1b659221ee
16434 F20101118_AAAJHY king_j_Page_175.pro
1961bfdf858fc208cd8adabc224275b4
fdd98b6bceb2947bfd460be9d30219f759344245
7482 F20101118_AAAKES king_j_Page_171thm.jpg
b8f610dbac15b3fb6c43a91a7ef4b5b7
bab86f59d0b065094b5974545ba32a87d72c8451
52403 F20101118_AAAJHZ king_j_Page_176.pro
497e3d8eb9cdd289bc4a0ba5eae75bef
fa2aae6b8cb7a63e7feedbbea74aeb870eb0b079
30351 F20101118_AAAKET king_j_Page_171.QC.jpg
8a885a5da5f1ef23b4f2221251028ba4
a6cdd30d526709f0e9e85a6762b03d61b8e619b4
6423 F20101118_AAAKEU king_j_Page_172thm.jpg
f47a68f6bad194bea074c87e30693a57
42095e2cb75556504f42f7a25a8d7cddb56cafa5
283885 F20101118_AAAIQA king_j_Page_144.jp2
91f0dd471283621544095ba1ff2ef916
b31b5583d6b640cc98aca339a86af1e8cb4a5769
25357 F20101118_AAAKEV king_j_Page_172.QC.jpg
9a4805e1b39cde1c65347369de53b165
fa692eaf86736a3ff56821cbc5f82d76fd387b74
109771 F20101118_AAAIQB king_j_Page_145.jp2
825ff31806952b8885b09c0ac8cbe130
bfb55c8258622053103e5f40ab015b0acb6efafc
35998 F20101118_AAAKEW king_j_Page_173.QC.jpg
838df2f0cb09c6a5a847e04143e03bf9
161efcc2d03f2d17f5f971b211dc453d0d6b18bb
1051979 F20101118_AAAIQC king_j_Page_146.jp2
1ef3b9b00dbcc377b2133c6d33d84f41
7ce77468d22f1f8ff9ab20135816eedb35da86a2
4879 F20101118_AAAKEX king_j_Page_174thm.jpg
3cae7e1614a2ebd2298da22717ca7371
6495d73b3b665aa835ac6b0688c794a032692965
1051952 F20101118_AAAIQD king_j_Page_147.jp2
b9b21592e08b2730b6b1eeb563a4bd84
f933caedd8376817c621ae3e8698f006a94636a9
15905 F20101118_AAAKEY king_j_Page_174.QC.jpg
f2c32d6f7afb1892843461454355cc88
7414b29b41c236f2c684403b4fae8b0879b4b4c0
1051982 F20101118_AAAIQE king_j_Page_148.jp2
8590934118c14c54f97b3fd6a05fe498
ad3f37156e6147b1d14b3873ef06642cab88f8db
4526 F20101118_AAAKEZ king_j_Page_175thm.jpg
45ae56306bc63587b4f3eb06708fd5f1
24fe4b2202d6319296ae4f7b13df7eb27865a871
F20101118_AAAIQF king_j_Page_150.jp2
1f3611dd882d23ff483b44cd4717f574
0c25bbaf1bb23f95ce46073f695e19e271b88bc0
1051961 F20101118_AAAIQG king_j_Page_151.jp2
297aa7efca1c58ad094c139b10c5cd42
e6ead53fb9932149ba2d80aaa49380a8f3d9022b
1051956 F20101118_AAAIQH king_j_Page_152.jp2
9ba3b9dbd38d0ec472340977c53f7004
3ee97be1cf7c06faf2496bfb31101386889a7e75
1548 F20101118_AAAJNA king_j_Page_091.txt
61b93030a00a9dabbcc8588fe30177e2
9dbb176d19e09d23344562213ba3275ac14e56cc
1051968 F20101118_AAAIQI king_j_Page_153.jp2
2a3ba96970abf5efd690d4c2dabd8f08
837e01c3c0c007a9a34a28a469d612179a2458ef
321 F20101118_AAAJNB king_j_Page_092.txt
19bde20c449f242c89b115f0df7f3fd5
f604cd11d0ee69b5fab97b75d5c8840a6d16b1a9
1051954 F20101118_AAAIQJ king_j_Page_154.jp2
6fb6555462e84c98171f3301e95ddb0c
a7317900ad4324738b0394ff34b8e8eaadd6b6c3
2285 F20101118_AAAJNC king_j_Page_093.txt
470ace3b7a7056244417b3b9c7035e13
44fd74bd522ee456b8e7bf5becef8f84fbd38d7c
376028 F20101118_AAAIQK king_j_Page_155.jp2
3f2c66e304032ca551764fbba000a172
a547d1148117d511d12b58b8b361d79036377cc9
1694 F20101118_AAAJND king_j_Page_094.txt
a0e48a4fe68fb3082ac71c5e6437da2f
a63c5c8ff043dde0b1e756965197ff1689022174
65018 F20101118_AAAIDA king_j_Page_019.jpg
c5bc6703c73ea1dce107d0ee13f50908
7a652b2fec635e11665ba198a395b0576de1eab1
805867 F20101118_AAAIQL king_j_Page_156.jp2
8b669bb8c8b8f437a8c9293bd79e6845
39cb858400353e53fb7c3577440b9a6fc2cc1795
936 F20101118_AAAJNE king_j_Page_095.txt
d8e1007aee9f65920827a147287fcb65
a8e93689b344c8dfaa24be7aa389b1c05df69fa3
68661 F20101118_AAAIDB king_j_Page_020.jpg
8ed321b1c8a7632003d1993eb6b72d6b
a0803e1ad8005aba47c448aeeb2b878d48a5050c
1041833 F20101118_AAAIQM king_j_Page_157.jp2
ffa7b4236e3732a35544ffb3c63156d1
90c9a84b72119d469387664c526f085d623027fc
535 F20101118_AAAJNF king_j_Page_097.txt
92cbc8e581bd5610114b968b9f69033c
d4aa8911c7cd019c197fb67106ee0b3a74c66fe6
71809 F20101118_AAAIDC king_j_Page_021.jpg
8f15d1a8dfa3c9eaada02d4556d5cee3
35dcacc22dbfc266675e099275a71ac36afe68d1
54724 F20101118_AAAIQN king_j_Page_158.jp2
2df7c16d053b7866fc3ec01be61b9c7d
9addf94f65141a5d7b9b6c2739fe540fe4d17e02
2392 F20101118_AAAJNG king_j_Page_098.txt
a1ffec054b34f3d534614556ada564da
edb2ba60833c4c9128607df7844dd116ac8f6e9b
73170 F20101118_AAAIDD king_j_Page_022.jpg
37f7ebd48fab1d892f31dda7724a5e62
2ce124c0a3be51037490f1e70a731b945d14abc3
1051951 F20101118_AAAIQO king_j_Page_159.jp2
1f50449b509ceff450b2bf957cf12724
558ae5fdc47283df4e30c6209299229c87c74a6f
1795 F20101118_AAAJNH king_j_Page_099.txt
91420419d04851302ca4f8a2986d8285
707ea2e250fe2f043cb370e2ae1e32bbaa18c3f0
54831 F20101118_AAAIDE king_j_Page_023.jpg
1936a8985bb96b1ae7645cf461f3a86f
2b45e9eaeb51ff88614150e755ffb31983943a57
614335 F20101118_AAAIQP king_j_Page_160.jp2
37bfb73341b271dea750494df84a254f
eaa4b9b1c43cbd9a7ce4ab553c47941d7539b47b
2160 F20101118_AAAJNI king_j_Page_100.txt
9b45f01ee5163b51ef72ae47dfaa5357
94575a8a008ff6be13a2438b71ee21d1e3c43bb4
29227 F20101118_AAAIDF king_j_Page_024.jpg
b88f6db5bead6fe1a2e85d8bda7da12d
4fe05fe22bf27a1fa74375a51529f391c55b35a7
976401 F20101118_AAAIQQ king_j_Page_161.jp2
9b8c1a5b35fc69b588fc78fe3632c6cb
2d6c77d317b063351787331c43abb10efcc1d1e2
2083 F20101118_AAAJNJ king_j_Page_101.txt
e4d87b617e3605e0a0e345edc1398d50
5934dcbaa61f26f38b725474662bc60bd3252ae7
487288 F20101118_AAAIQR king_j_Page_162.jp2
deea4a7af79443de0c5f54fbe701b5ea
cf6a831f6952d71066fa61927a2f473ff8aeae58
2467 F20101118_AAAJNK king_j_Page_102.txt
acfe41980615f33e45e908329e016b81
c127b15c5c0b87780f85949a06d4f93cc8333313
F20101118_AAAJAA king_j_Page_187.tif
6fe5aa6f5ac3fc8672b87667ed36878e
be42583d9776e374d8014e31f886d0c98c25b7eb
F20101118_AAAIQS king_j_Page_163.jp2
5da52b4e4c6262baf9a3fde6a5601e68
6f54c17e547a60b8692f8e11811fbc9946bbe982
2341 F20101118_AAAJNL king_j_Page_104.txt
20b35142b7c47ca4a50e162b39901dc1
3b0e39ae94f82f732f2c53351e625211cc4c5d3c
103885 F20101118_AAAIDG king_j_Page_025.jpg
9a79ff661d44da715a9ab062c9463daa
28ccbee8996600b35346be2501255d3c386f8b87
F20101118_AAAJAB king_j_Page_188.tif
4f9634f0bd5c23c6ad3a0ba7b1713948
4a591fd4a2f3736e24415de9482b410b895817b8
1967 F20101118_AAAJNM king_j_Page_105.txt
00a0344e2abba6f7b1cbc91e6cb0de04
edfdf1d4bb649895affd5516a27d952af19ef7f1
32561 F20101118_AAAIDH king_j_Page_026.jpg
d427bcbc90e88f0b75d0ef83f2970b7a
433dcb21bbccc389dd89cdb782bc26e3813abe53
772112 F20101118_AAAIQT king_j_Page_165.jp2
9c65efb2b271aed4f8cbb17aa06296be
df00a2e4e4f9e5eacfc8b852fae0a8e8b9ba8567
2125 F20101118_AAAJNN king_j_Page_107.txt
2fd3e3552833fdb1705088f8e498a28c
3945f3a00a0a27fc399fbac14cc797873bb3c794
106934 F20101118_AAAIDI king_j_Page_027.jpg
d39e2e107cb59b4650c00b042249636f
0b3840295f420afd17bbe1777566e7ac50ac0419
F20101118_AAAJAC king_j_Page_189.tif
d033c52f576622b5c5e274283e9f05e2
d1f526e9ff48f3b044d20f95764b858cb3f5788f
1051969 F20101118_AAAIQU king_j_Page_166.jp2
480c817260492917896e885463235b25
1d890e0288e29501a29232375872c35ba95ef504
1171 F20101118_AAAJNO king_j_Page_108.txt
9bbf41eb41a144d14fcc970cb2bbe4f1
6c79abe747d6754006449d93c556d92b73df0d92
100479 F20101118_AAAIDJ king_j_Page_028.jpg
0ac678173b27ff8eabe9b531d831760e
f278072a17a16f92056e3f82c8c617e407bfbf55
F20101118_AAAJAD king_j_Page_190.tif
f33ddcc25b0cd910e5b4073f326a7166
324e0549ec8e394e9cf9360ffd72e90986eafd34
F20101118_AAAIQV king_j_Page_167.jp2
aea940d4a3970e007cfa0297ef53321d
bd1da69c504c633104ad53d18dbc68a57ffc1c7d
115860 F20101118_AAAIDK king_j_Page_029.jpg
e7323efccde6963e050e026592656bc7
980746a6a78e961c6fd7f545448b0724687e9997
F20101118_AAAJAE king_j_Page_191.tif
708cc8045481b6ce0e3132c24656dc38
c457a43573d8a7c3c00e9bd76502dbb829436ca5
563681 F20101118_AAAIQW king_j_Page_168.jp2
2022379e8e54c25f3f3ad6607b8a2333
6db6ef2bae18800491c23b1e33804698cfb64f3c
2349 F20101118_AAAJNP king_j_Page_109.txt
e189093f6c84eb17fda025910f41157c
1b6bfe277f7946ca4725531b690a07102f15133c
122143 F20101118_AAAIDL king_j_Page_030.jpg
e2a94cc8d18ae7b2d2fb3dbd15ae0a4a
cf8d892d56a044e568c2acff62597dedd95dff6c
F20101118_AAAJAF king_j_Page_192.tif
05625e9cb628c017b85bc6d2c6eadd39
57a9de13d19db967d03f35bd8d8f2e1b00a6323b
818586 F20101118_AAAIQX king_j_Page_169.jp2
1faeb0b90748df178d6d380b1fcfe4ef
05dc6c1ceb5f046bada847b8a11ab57c19b1ae43
2172 F20101118_AAAJNQ king_j_Page_110.txt
fd225a38759e1903e26b7e21c2345b71
7278a4596844636807e8d07b261a69adec7e40f6
90955 F20101118_AAAIDM king_j_Page_031.jpg
7fca92baabf1669a24186f5619f46ea1
a030d3bbdc40ff1451cc74d86de89aaabe330580
F20101118_AAAJAG king_j_Page_193.tif
237e1eec4928fd7158a7a246f0e44c85
f248bd1fdd13514c6179a23a0cd6e3fd9d80f623
913198 F20101118_AAAIQY king_j_Page_170.jp2
c6e59322271fb66ea0e83ea61d5b77ac
c82ab80fedde0fd744c59e7a2ca23e49c6d045ba
1006 F20101118_AAAJNR king_j_Page_111.txt
1775aafaf54bee772715f0950349a999
a60616ea25b948d4522b16af98957f73dd999e4a
123837 F20101118_AAAIDN king_j_Page_032.jpg
1a7c411ec9034b178edcc6c1e56610e2
d6cf830ba5db40ca34a6dac04584cd61ee0c3449
F20101118_AAAJAH king_j_Page_194.tif
1a62bd6258619a71ac3470351bb75c22
faef185d3da988e5520c7e6120bc91ea52d1e2a0
1051966 F20101118_AAAIQZ king_j_Page_171.jp2
eb88034ff3f17032965b596132ceb9aa
4bdd80a8c48f1dd1d2ec14e6d0e02f962b0c3396
1897 F20101118_AAAJNS king_j_Page_112.txt
7432ab95b8e2b16ed1cf06b6dcc13242
f456ec4674a6cccdcdb7f8ef954b72b1448c8d7f
103043 F20101118_AAAIDO king_j_Page_033.jpg
470d8f83ac48ef39c680dbd0726a1112
730c2211330a1b2d768c68352700b0b6bbe63292
F20101118_AAAJAI king_j_Page_195.tif
651a70d57e418807573984698db6a0be
38f01263c49abe76b48ce4e6dead8216bb00ffe3
1479 F20101118_AAAJNT king_j_Page_113.txt
625d105c0f05bdef00ab8c72607affca
734daedb77e46a9d89515ee344dc734e2c38db3b
86069 F20101118_AAAIDP king_j_Page_034.jpg
cecb921e1d16d25eedb8459b6967f7bb
0c384ae9838bdb414e2b4d22ae1cae4f8df1bdac
F20101118_AAAJAJ king_j_Page_196.tif
5c149174e3b28f99e51ab18705f666cd
33044d155764dfceee9310056f687804321a011d
1851 F20101118_AAAJNU king_j_Page_114.txt
35da67c425974c0b2017aef1fc18b34a
c119a1c4e30e2731c1675e3f841ffe589d85d3d7
20455 F20101118_AAAHZA king_j_Page_088.QC.jpg
f37e1b48be937dd2c3ed399c46bf27e8
dc0e9d8d167bf3cffe6b867f5792f3f428853082
90026 F20101118_AAAIDQ king_j_Page_035.jpg
90feba9123225fa9767792d80bb20365
619cd2eca6efda9506472c05eb8300dc67fbf270
F20101118_AAAJAK king_j_Page_198.tif
0d3e3acb7498fdfb7901cfcba010ba6e
95a6f122c9dfe521cc110c084f054a68fc7d4e44
1721 F20101118_AAAJNV king_j_Page_116.txt
ed780b7d311e95b9538e8a4f1724fd82
040399a677a384d6c370b519906ddca7425649f5
20901 F20101118_AAAHZB king_j_Page_017.QC.jpg
01d46ac3d261fe8328e52b9600894779
f2e4afc9350d50cc8d4be95c887b1d1d27d9fb87
78996 F20101118_AAAIDR king_j_Page_036.jpg
78a537fdfe81bf26c24cf0972d7e73fe
86165917f55fa8bf10bd75662ad47e2c82c15bd4
F20101118_AAAJAL king_j_Page_199.tif
cdf3b4ab3584dfdcb99ed2f6c97edebd
0afee6d4895858ee67f7011fab381d0f88dcff38
974 F20101118_AAAJNW king_j_Page_117.txt
30576a44e6e392036150e16f9f7f2457
4fcb529de0cae7ff65f9c3b73f836b353d55675b
3014 F20101118_AAAHZC king_j_Page_012.txt
438611579da10f15a62a918814f8b085
f067307ef7e2ef4037906fee7703ec0408cfe4c4
65884 F20101118_AAAIDS king_j_Page_037.jpg
a88eb4cafc34c6da686b96051a4a4d8b
e8e5c2d36db5068ecd3db100ddab86f1ded0f60d
F20101118_AAAJAM king_j_Page_200.tif
fe5f8294b23a85d9aeedc0645ed63520
4fc8b18a929b57ec8a3835b6a7eaf6f0a1e38921
1390 F20101118_AAAJNX king_j_Page_118.txt
d153d697c065fd3d8ff99a703f4c6ea5
b8ef4a9f82fc01e2800aec8ea30e254f6df68a5a
F20101118_AAAHZD king_j_Page_168.tif
5ceacdcbd14fc30f6c56b3572569b997
01ff3bdd4acff62c82a1e242d163c0fe10e83812
113296 F20101118_AAAIDT king_j_Page_038.jpg
70cf6614bf596e8bed9a2358c4345c29
4493aca538137da52b6d06d37ebf6a1ee8307ca0
F20101118_AAAJAN king_j_Page_201.tif
c76ede8e046d69b6589d5cf89d06934d
d4062c09f53e3815e5dcb2ffa405486b1ce6d7c6
1859 F20101118_AAAJNY king_j_Page_119.txt
6392fab4e9f7ffd6a4a9fccd3a480117
5b8c0da91363f7fecfbcd65c1ff6697c6772a220
5408 F20101118_AAAHZE king_j_Page_019thm.jpg
a61e6c9d3c3b2142f78a16c8e161fec5
bda184988838ca1002904fac15a0c1dfe301a3de
61802 F20101118_AAAIDU king_j_Page_039.jpg
a29a3b87958666e56689b026f939e6f1
4d83e1a1235113aaa29aa59116738dc98ccc4b53
F20101118_AAAJAO king_j_Page_202.tif
8efbf491cbd979b1e6c904a75d280e45
2bd41068297efdeda3821497599f60b8c84ca563
907 F20101118_AAAJNZ king_j_Page_120.txt
cbf4105ccf87daf27f9bc55adc98f26a
b6a440963ec071192c74c6b07d82695d03e1d7dc
12268 F20101118_AAAHZF king_j_Page_053.pro
8ba261f5303a3f09272239e2eaec89da
b17da960bd883f0d551e31bc85839e501837274f
82578 F20101118_AAAIDV king_j_Page_040.jpg
6c6b048eaa7723aa5fbd9d32d6c89057
a7cb7cda5d531a59ec70c9e718e3cfd5b0e9b999
F20101118_AAAJAP king_j_Page_203.tif
d9c16d78558067438f3ae35329a3204b
af078e607876e12ca27af21f4cf9b2c159865a72
629204 F20101118_AAAHZG king_j_Page_115.jp2
b4d880010c2c42b3465b59510f2baf8a
aaae0c56ee15e19431a3228f2935912503caa037
94087 F20101118_AAAIDW king_j_Page_041.jpg
1cb77e2af1b614591471a8c37ad71180
cc419c42aee5062e3bfaf48ffa990e5cd8388645
F20101118_AAAIWA king_j_Page_075.tif
65694d424870b4741e0a6f5b0b1854f8
9dd30c7399f52add9efbd77182fb818878b07b28
F20101118_AAAJAQ king_j_Page_204.tif
3f02b1d495bbebaa2fe9a48e841132f6
1c371db4cd80c80c6d6e46c3cde1bc9419292719
6810 F20101118_AAAHZH king_j_Page_090thm.jpg
8f8077d32037653c97bf3d54565af581
01e3a2d50e7716b209ff1877ca0fbc28dc9cfc8d
96532 F20101118_AAAIDX king_j_Page_042.jpg
58bd3959f016c268d3133f7037b06b63
e1e14e3bc761371c6370f44865fbd8eccdc10da7
F20101118_AAAIWB king_j_Page_076.tif
c7ac202369c708887ba9c65cbdb9af83
3d83e155b0aa9b16ef504c03b807dff0f8581410
F20101118_AAAJAR king_j_Page_205.tif
4558a1e247eeb7fa543100e41583ac0a
484d2b3074165bffbbb8418171c2fd936a07397a
8175 F20101118_AAAHZI king_j_Page_060thm.jpg
ba5d46cd14a7b04a53a263c324b749c0
2b0051e842e575b3111a0227e46040485177aa79
102714 F20101118_AAAIDY king_j_Page_043.jpg
661fc3bbfac3c172276f39c9ccb447a3
d2003c8010e39216ef936fec7a1cab6ac94cd903
F20101118_AAAIWC king_j_Page_077.tif
51127224d13fc75f6c2a7d0819a79f8c
7c8a858fa93aaf4b25d638fae034c09e1f94957d
F20101118_AAAJAS king_j_Page_207.tif
73ab2d3dc38a3cc883ccc8e9524dcff8
7d4d012444485bc8134373263e686ec4356142d2
74834 F20101118_AAAHZJ king_j_Page_013.pro
7047176a91640cdeda260a65477003dc
daedaaf8f2a90fa4d78133ce9331cf2aa89c0de3
117667 F20101118_AAAIDZ king_j_Page_044.jpg
7be2a273eab0cb6e37fa6b2f0c64570a
35d9f26ea2ca15e7f9d11a04148e2fb2146397ea
F20101118_AAAIWD king_j_Page_078.tif
691512189a5b5def4f7787e7cad33d18
ec934333279bc39ea83185b76fa1564bf38840d2
F20101118_AAAJAT king_j_Page_208.tif
e71f7799b13c29ec03231f64f53599d8
31b04597588560417913f4e9f5f44231e56a0b01
18509 F20101118_AAAHZK king_j_Page_073.pro
38b0a6d6b308030a0ffdbfcf0c178f89
5a51b0d7050f9eefd09beac02857fad790444d50
F20101118_AAAIWE king_j_Page_079.tif
0a9bd33d0f38e5ca42a8545549db73b4
9a4b60b9738760f2d92d1c22c4ccdd987ba46885
F20101118_AAAJAU king_j_Page_209.tif
5272f6199193179262f89c8a139fbc2b
57fd799c5d42e479116cd9b40604bf627ee4d613
869 F20101118_AAAHZL king_j_Page_090.txt
83f9b98e4d1cef4f4212260f24758ba2
3ef165a234c0b7cffe8798ba1eee067160e2166e
F20101118_AAAIWF king_j_Page_080.tif
c26a72218b5e3d82bcda9db28f2884bc
86d3e5a688950a77535789727627c3af16cd22be
F20101118_AAAJAV king_j_Page_210.tif
e514ce8b9a8e7568a25d7f599af57398
b655ce5399888dbe7e7960f40a58ea854e6a960c
42948 F20101118_AAAHZM king_j_Page_096.jpg
c0f6a95e8cede24fda98625775c056e3
13efa378bbd5b605b55ff7ff658c41605747c176
F20101118_AAAIWG king_j_Page_081.tif
56e426749551fd335e6b7e74526fef77
81c0b55e6866a81228cb055b763faf025a44d00c
F20101118_AAAJAW king_j_Page_211.tif
929cffb9c5535351ad68e4e84f282494
6209777390d79ee3793cae172e53d5f3ae0695c3
2318 F20101118_AAAHZN king_j_Page_152.txt
63dd29512b8003e8d11e3212229511fa
12fd5d134dc1a82542316842427f16a79364319b
F20101118_AAAIWH king_j_Page_082.tif
8a8f272a3101f5a8649da7ad30412522
e796e9075d55fbdb1b6fd295f4708534ed61527a
F20101118_AAAJAX king_j_Page_212.tif
c531c5507f586f115e52f285f31cc04f
b33f67460f5959ac0d33579a8daa78a62c0649a4
36463 F20101118_AAAJTA king_j_Page_126.QC.jpg
f76fb1e75c2445cc0839a46f8b9f147a
81e0efced6eb9afa35b9becf302f307b34616b3f
6443 F20101118_AAAHZO king_j_Page_040thm.jpg
19167918d1be8c50e547fe443f3b0644
3e97f7f079ccd514d3e09f37a45d34ff7c322eb6
F20101118_AAAIWI king_j_Page_083.tif
f4309a4f69f5d02951f2f89ee163e4eb
71126ae768be72ce5553cab73630c7cf18086ccb
F20101118_AAAJAY king_j_Page_213.tif
497617cf95e4eefbd6b36301b9931e88
df93a3aab7b046be293240cfb70cbf6345931f2f
4546 F20101118_AAAJTB king_j_Page_186thm.jpg
f2865d9e87feb4fa33a304eccd07f546
b4e9ffcff7b84cd7b16b2ad153e23c82648f21a7
1545 F20101118_AAAHZP king_j_Page_021.txt
7fc63f8b2c53b1774979e59dbb80890d
f19a9ef69dc2a43e5f84828ce94bfa92aa61834e
F20101118_AAAIWJ king_j_Page_084.tif
fed4962e5ca23ae20232df53144f7152
d6092148adf1400b6a400f8e8b53215e99bcaff6
F20101118_AAAJAZ king_j_Page_214.tif
729e1249f81ae81fe9f4daf5d31f00c2
9cb06eaf977b2c5bfd23bc8dfb84c628fda661c8
20778 F20101118_AAAJTC king_j_Page_156.QC.jpg
45d8e90f1fa00c93213b2e228a59524d
6d4dbddf5039cd15746390ad97ee08a49e36ddd6
F20101118_AAAHZQ king_j_Page_138.tif
5a60840d547c84bed001e734658fb97f
0a0dc9e1bbde07e1d81bca4def57683b08a5c0f5
F20101118_AAAIWK king_j_Page_085.tif
063325f5575d25adc9eb18529a574ba1
41cb921487022783d712e09afbb73322e9eb770f
5758 F20101118_AAAJTD king_j_Page_192thm.jpg
534abb7b8d0c0d94ab0cdef1841f9045
637ec820ef427924b926e09f986d05a7080755b9
5605 F20101118_AAAHZR king_j_Page_081thm.jpg
303cb15c26e77e79169241a4f6e1696f
dde9197a534f68f24c4468fb16ebbc369be6e11c
F20101118_AAAIWL king_j_Page_086.tif
0f17ebc643749fe2c2df84c2f41ec2e9
1d56dd2de74bc85dc9b6dd2d005ea59656fc198d
5378 F20101118_AAAJTE king_j_Page_137thm.jpg
a9e86472153f6af165b2732a035963b2
fb70f80285bbe7eb75cf081ad048b0dc42baa633
43252 F20101118_AAAIJA king_j_Page_181.jpg
ac562a498c11c5dadecfbe31bb8c1b21
ae908e56c8fde48b2a193909ff45b7b1f4c75e10
20224 F20101118_AAAHZS king_j_Page_207.QC.jpg
8dbed4c45c41a6a938b99182dd2e781a
d766f9f6aae3db1d0c0671a91d8a529d5ad58425
F20101118_AAAIWM king_j_Page_087.tif
1344785442719d10c94e6c48dd209fc5
1ebf2d507876268ef009664c3d1f23975ab644dc
37835 F20101118_AAAJTF king_j_Page_008.QC.jpg
f8f40085de0d66ade4a59107ad882865
254d3cc0091c7ee6570f7b5ae8127402e7285f59
79891 F20101118_AAAIJB king_j_Page_182.jpg
bd4298fa042d45efb715a909db8c4e0c
00c0024a4238dadb84677248097c0f8f6a424f29
35069 F20101118_AAAHZT king_j_Page_222.QC.jpg
b00baf98c0b37431b42b28a2483a09f4
e8f75e93a2027ee06f92a34e9451e2e14b33ac57
F20101118_AAAIWN king_j_Page_088.tif
0e241dea158254dc3ce80e89f078a08a
e8ae030b45cc464a6814619a32a938dbad26ba07
18315 F20101118_AAAJTG king_j_Page_191.QC.jpg
a41acbb727cd5300dcc6b93e6e40c68b
c8081968f4923c2f669d68f4224bd538c076c02b
86960 F20101118_AAAIJC king_j_Page_183.jpg
be0351a5ca5e6d269620e24acc835c79
e477d61ad9e45c2c1f6d3fc44a0a0fe088248cda
29896 F20101118_AAAHZU king_j_Page_209.jpg
f335ba953ae1bee2519e44c1d779cdce
c077b63fe314cb6bbe8a0ce4e9b41bf65b0cad56
F20101118_AAAIWO king_j_Page_089.tif
b8c9508283657df1d17251eba3b6da36
f25ea356d8d83fe98cd6fc860648a4f8bb8f021e
8524 F20101118_AAAJTH king_j_Page_229thm.jpg
ab16a08f15bc29a8ddb9e660263452be
0c05b76041930a014bdde8082477f2003a537c8c
79565 F20101118_AAAIJD king_j_Page_184.jpg
35ae07e73326eeca98084217c1a3800e
a4e6433f3e277520af6bece2cd01ab73ec8013ab
7922 F20101118_AAAHZV king_j_Page_132thm.jpg
3642771a873157368a4e8235a2ce93a5
5638f4fa6d2afd909f4558b96d83a4c661f864b0
F20101118_AAAIWP king_j_Page_091.tif
41e5cf41e0ce697b3a68bf081f3b7f3b
91b4225e0b05da3467bbd261e8f2c6030ff80cf5
25524 F20101118_AAAJTI king_j_Page_125.QC.jpg
011179043d75748952702c383dbc2c10
cfc86cdb15c1b55c802dc57f1f0a85da1556f5b8
59769 F20101118_AAAIJE king_j_Page_185.jpg
1190b17273d9412c5df2a80058636388
d0b2f6254d55d764b4d568a84d468727ebc481cb
F20101118_AAAHZW king_j_Page_180.tif
4b6054fb5c309d766bd6bc2a94f1f65c
0f5a5686d09d904587d0153982f320425b86fdcf
F20101118_AAAIWQ king_j_Page_092.tif
b917597c490ee30b8898378a7a3ae73b
3ee81414bdb5ba3f88fc0c3a36ba2dd4163b38af
3992 F20101118_AAAJTJ king_j_Page_205thm.jpg
7c2cf6b5ceb4897dd53fe9fac7ba2f12
b841fbbf0b15c9cee8889efd7eed345d97a6906a
49638 F20101118_AAAIJF king_j_Page_186.jpg
8b16faa78cf57236caa9a8aab8acd759
8576e553aea08a5e90fedebc78944943a71a47c2
1775 F20101118_AAAHZX king_j_Page_082.txt
b6ed455f654237a12205d7eb33d8d37a
a55acbb4fe0669b16e2fe4579630993cac1f45e7
F20101118_AAAIWR king_j_Page_093.tif
daf9f21c2711db2ca0b8755fb8b46d4e
23e8d67ab37ae7e5881c0e2e742075d2af6e68b8
8608 F20101118_AAAJTK king_j_Page_013thm.jpg
5fe38505911b5b3dd848bcf6b0c0321a
51c7a6cbe6f0607b7d7c4da4d4aed1bbe656dac1
48740 F20101118_AAAIJG king_j_Page_187.jpg
452eb1a82f0a7e7e68044f38df2a057a
5eae1f9611a36f13c57909b109b21c8434fbb1a8
F20101118_AAAHZY king_j_Page_046.jp2
a50f398f5f42f2f847da13572eb2b81f
959eaed5e3a0c4cd477bf8a7ba24cfc3378f79e8
37848 F20101118_AAAJGA king_j_Page_124.pro
2bf2a36be5d3c84dcc1390f0e2195533
27a0e0c454da55faa741964c360adf569f1a92c7
F20101118_AAAIWS king_j_Page_094.tif
8a7062f06ffe3ec300cb19503af2c82e
336797e434f84219997c5d3a3afb603276b0bb5f
26301 F20101118_AAAJTL king_j_Page_034.QC.jpg
1027317b5928b3e4b95a08be47942ff1
a081dc6cb3fb678f32aca8a8d5d1a71f18176e3b
45793 F20101118_AAAIJH king_j_Page_188.jpg
8be7a1209a77fb5ac039c23c2c9f603d
5677c363236adb5f94507d552b3dc82819e23c92
41472 F20101118_AAAHZZ king_j_Page_093.pro
9c51da2840c84610f13198165edc3450
5ad4960fe92c39088b9cc476943efe780f620387
27939 F20101118_AAAJGB king_j_Page_125.pro
182abac550be34074b5e1ccbf56d5317
832cef824d964dcef7539b25fb796f9edf691f70
F20101118_AAAIWT king_j_Page_095.tif
8170247ecb1e6bdefbc52c4330b7deda
1fd74877140b6876a39d939e94dd4e16f6df1429
37240 F20101118_AAAJTM king_j_Page_046.QC.jpg
6f94276b71f144bf36b9e2ac5f611916
b6435d390775ca89bf971b117c92ae67f188dfcd
71941 F20101118_AAAIJI king_j_Page_189.jpg
45b5a72add42ac8f118e606ce53e96c7
38cdb27ce658b571a65266091f56d79e838ddf79
57120 F20101118_AAAJGC king_j_Page_126.pro
ac33a3c49b6bf3e35b2aede934ba18c9
bce0b30310ab39b455d197dc49fa48d7235080d9
F20101118_AAAIWU king_j_Page_097.tif
a4fce957f986aa55ba47be598251c4cb
954ee066d92fe0b19bebd108801238a0c9ec6482
7890 F20101118_AAAJTN king_j_Page_028thm.jpg
dace0c9814d68ba9a7cbc4fbc1ee7385
7083ee16c5fc27916348f5770e979a5f6d3c7710
73247 F20101118_AAAIJJ king_j_Page_190.jpg
9977eead8f8af503ab4b938e3fafa69c
6b31e8da79c32db5d1e22a9b3955f8f3a3a82e4c
20474 F20101118_AAAJGD king_j_Page_127.pro
387ea337c789cac0f2e39e7bf4587485
f66333f31c386131521bcecc7ed4be61f7953768
F20101118_AAAIWV king_j_Page_098.tif
50b91135356cbc3817fc72df1b9387c2
8c4d4262ddd74da109a8b1da53e5968690c1dba7
7591 F20101118_AAAJTO king_j_Page_106thm.jpg
6d615dededbc977ec6cdbbe8a024de18
18f86ea447d4287b5f2a39d83a18598e1a93feba
57284 F20101118_AAAIJK king_j_Page_191.jpg
39f4001cd8095e2cc668fe8ec3291e9a
1eccef8c97f4468c2fac9463a29e50751232334b
23335 F20101118_AAAJGE king_j_Page_128.pro
ec6d929ee08dd3bfdd0057954c760f42
1b01b90f106bf3813ecc75ea74aac9a7a59e2708
F20101118_AAAIWW king_j_Page_099.tif
060fdacd35727e7b893459e4ae3b35e7
e1a4f7a65afcdb0559e512d176059e382f19c097
3293 F20101118_AAAJTP king_j_Page_097thm.jpg
6118d19741a3ac313bc6bde1a8d26013
8a6f7e087a590f6b1f524d538be24cac6be7c41f
65804 F20101118_AAAIJL king_j_Page_192.jpg
4069c6e785495a620b04a3a7d16b79a3
42d3888faadc5d88ebd79bbfeaa12f50424f7f5c
54988 F20101118_AAAJGF king_j_Page_129.pro
ea7520b2ee7651728cc6a2ee5d98ddd4
17fd5381b14f128d731607daadd1be355e426058
F20101118_AAAIWX king_j_Page_100.tif
4fd9a629059b0aa25185190c90a5e9b0
940b0560608e88dfe9848059bdcb9b6ecaa38875
30982 F20101118_AAAJTQ king_j_Page_103.QC.jpg
8c9fe4e378e7cc7ac1b2c7c90610590d
f94384404c97442d70d72ddfad33441e6f8f3794
42224 F20101118_AAAJGG king_j_Page_130.pro
f3cd9dd2989717a31db671a0363ae8e7
fe8fa424dc9bba1e1ae10ab415448b6b44f50500
F20101118_AAAIWY king_j_Page_101.tif
a6edca6d98eea873427474e4dc2effa5
24a1a8ae43a079cb314c8ff69ec47e6d904ae02d
2737 F20101118_AAAJTR king_j_Page_155thm.jpg
bfece812556610d20aadcc0ee99a6a44
0e96ac8d32cb81e66994dbf8be29deed0634f869
70072 F20101118_AAAIJM king_j_Page_193.jpg
298a5c1a6c8f89d1ff7447ab335b0f03
4bbdda4974b197e29b985baccd98d995dd9587ad
47424 F20101118_AAAJGH king_j_Page_131.pro
81e3c444005d7d14567cb2afacdd7075
553c127da036516499fc5481c84f1ff555a45471
7088 F20101118_AAAKDA king_j_Page_145thm.jpg
3df9b7048002aec8ccbfbbaf46b44c44
3625bbd5cbca962456149acfa3c449e517d84637
7926 F20101118_AAAJTS king_j_Page_085.QC.jpg
6dfd20f4e355c0fb650fdee761646cc0
a3c277ff514091ef06e92490cad89ee2d1da5b4b
57717 F20101118_AAAIJN king_j_Page_194.jpg
f382d76ae6be4aaac0e377414eb50c54
1008838c1dca9e83e17aef057d5d89de2a1d7f35
F20101118_AAAIWZ king_j_Page_102.tif
036a1e24eade97801e5872a4a0545d25
66a9c4721321fa7a31d752e152b17ef31c501d5e
32009 F20101118_AAAKDB king_j_Page_145.QC.jpg
58455db8a88c01482d1db4cd713c7b51
513598e3e9bf6118bc22981b3a509d4f23a7f5d0
18238 F20101118_AAAJTT king_j_Page_058.QC.jpg
876486c327c30fb5beac19f03a570616
311364e3aca8c588b1d2bb2c5b9149e4850c577c
79814 F20101118_AAAIJO king_j_Page_195.jpg
1b70beb7db89505e37b97884cefd5709
0d3c27a14bd7041739cec425e4c86fb92f465803
8430 F20101118_AAAKDC king_j_Page_146thm.jpg
9bbface11544fa0f5ef9eab7f644334c
2848aed69bd7a13837c5ed736bfdb1dadb1d1529
8321 F20101118_AAAJTU king_j_Page_222thm.jpg
61eb681952988294ca156400caf67b85
a5b2e15cb5b37164f6f675c453e05cad6351a771
18248 F20101118_AAAIJP king_j_Page_196.jpg
1b16695ad0ce6e08dae3ae92688a4a76
eff6475ee76fcf47a271ec37f83cce0128f3b338
50101 F20101118_AAAJGI king_j_Page_132.pro
c8e44dd6cab1bab628ca5f02a7d169b5
e76f76a61e66e294d48473a8c725817959c9c258
36798 F20101118_AAAKDD king_j_Page_146.QC.jpg
7cc48e8769f42f7540f186097008a884
24421a8dfbc410bc6be46e94f133cd9b6a017283
50181 F20101118_AAAIJQ king_j_Page_197.jpg
13568c120d4163d6c66d5facde43763a
2dd91b32fd3f2604d27836204767c55cda35097b
49617 F20101118_AAAJGJ king_j_Page_133.pro
6f179f9daf504b68ad5e7bd16c5cae12
1a0bc596256501d9693370a5df33091c7fbdb17c
5582 F20101118_AAAJTV king_j_Page_058thm.jpg
d48160f517717fbeff9a8e45df0f575e
979a6082a0ee77273d5bf907bb4907d4c8175df6
54937 F20101118_AAAIJR king_j_Page_198.jpg
9d304173ee49540c2bb09a1ce52622d5
ef807f9108e05a71bd9574faa0e4b69e4a4fd230
36642 F20101118_AAAJGK king_j_Page_134.pro
30e8b5716a0882980d37ade70ad7ab96
f06e42605258669d0c5ccc509000eee4d5ee7968
8253 F20101118_AAAKDE king_j_Page_147thm.jpg
9195c510f8fea229aedb9adf7f716ff3
62d7f1e6d5ec24ab3b110624d6ec044ea33c1a42
6023 F20101118_AAAJTW king_j_Page_164thm.jpg
632665853ce947345e0f7190d9f50781
69483fc93df35ce50b38c3ca8ab218dadd08b2bc
56884 F20101118_AAAIJS king_j_Page_199.jpg
f0825a08cc2b881d85acf3a39f9d605b
eefed96d402bcfb2eba718032bd13091b28385f5
38622 F20101118_AAAJGL king_j_Page_135.pro
a6edbceda02528e920eda319c2f826e8
4f44a97dd9631464f6271ec729c4949cf91fbef4
36546 F20101118_AAAKDF king_j_Page_147.QC.jpg
499437cb7a868424d84b33ebf33a5c09
6c146b171accc5613dcf13639467628d65d30705
340233 F20101118_AAAJTX UFE0021567_00001.xml FULL
0dfaeed98f0bae5e9a0385311d514339
005ac1715188e1204502cf31171beeebc67cbcef
60597 F20101118_AAAIJT king_j_Page_200.jpg
afd76b48109545c9a9d20eb5e5909f88
7b820e672092943430a27185839ccba6c81042e6
8337 F20101118_AAAJGM king_j_Page_136.pro
6084b1cba97dff37ef91a1d7dc495521
891195e4019ebe2abde7e28d59f310d1cde58a7b
38834 F20101118_AAAKDG king_j_Page_148.QC.jpg
eb57f21ba208a19bee5ab4596d80401e
168bc86cb1fa229a20f5d70d7e7f319a69d77cc5
8403 F20101118_AAAJTY king_j_Page_001.QC.jpg
7e441ab8bd363811189b8ffa19c297b1
f77af7a88507962eb190b548fe3fe622378f0c1e
58448 F20101118_AAAIJU king_j_Page_201.jpg
9cf2e5dc77ddf68b3c01409c7d565aed
1d52643eb07dbff6b55c022bb003b222c9c9a426
13133 F20101118_AAAJGN king_j_Page_137.pro
20fd2c07877b6bb5971e3f45593c0f3f
c7373090f9f97a569b22c0ef5d2bc427a3f8a84b
8558 F20101118_AAAKDH king_j_Page_149thm.jpg
c0f991b976cfc1c9f58d0c4a817b8f4e
bba13fbb53074e00903cfc479dfbebabde773188
504 F20101118_AAAJTZ king_j_Page_002thm.jpg
1d31be81781c796385f7eeab0da79c0b
e38ce0009e68e9cc73d8bf7d2d18f3f4862a3530
65440 F20101118_AAAIJV king_j_Page_202.jpg
9f5097d14177a88cf2b515860e1112f6
9c50dc935e1da7d4b66fd2588cca05d052f7129a
9607 F20101118_AAAJGO king_j_Page_138.pro
17492f0dbe2c5d258f4aa6cafc2fc6cc
91c975c09094a32fa72a509e476fb0571dcc3d1a
36764 F20101118_AAAKDI king_j_Page_149.QC.jpg
b09eb11f7b17eea76a4a337995e9b315
360a899289ec9a2774d6b31bba21ff5658c5a3ae
65142 F20101118_AAAIJW king_j_Page_203.jpg
3c8f84f981a0cdb06d9247b70be2515d
0967e61b82289bd2f58d27ccf447e56d9b12ed04
24786 F20101118_AAAJGP king_j_Page_140.pro
c90535243970d5dfec0566071ad90d3d
a3c085ccd584f838d51c54b4c994360c0b55872e
7999 F20101118_AAAKDJ king_j_Page_150thm.jpg
2687805012157834337e0e414b4964dd
fb8e5db69e2b48f1e20217f9995c460ecf736471
43515 F20101118_AAAIJX king_j_Page_205.jpg
0b087d6fd74b7eddad42d357a8d74c2a
80bb06edd642e6a0872fb5d0fcc3ab130ed803ba
17766 F20101118_AAAJGQ king_j_Page_141.pro
823ede46065e44242149db0fbc7cd004
fa3e4c0ab1bfa8140e128bc550081b57f2c8799e
34395 F20101118_AAAKDK king_j_Page_150.QC.jpg
3c7e46a1f6fef6c11413bbdb9b54abf0
377ad9e1072771d52e322e6d7e9ce83650ce5782
54821 F20101118_AAAIJY king_j_Page_206.jpg
da5ea82c706b6d1f0be0ba7071354e97
92043acc64c58a7e5f30fbdc8cefeb1eac018520
61925 F20101118_AAAJGR king_j_Page_142.pro
7600aaae887956374caf532fe737264b
8102568a921f4d5d558b387fc816f8fcfb856956
8621 F20101118_AAAKDL king_j_Page_151thm.jpg
9122b85aec9683ef33ecdc71f104f844
96f8bd5fd89d19840ca777a4bcfddfba2827b66a
62193 F20101118_AAAIJZ king_j_Page_207.jpg
bce860d6c0406687b76c67a76221f6ce
2efce0fcd03154d420b4bc9839e9539e65919290
60106 F20101118_AAAJGS king_j_Page_143.pro
04241c7c03ef61a3e0342c5f7dce8237
aa464adc6e438a9fdd41422e5f5d9e36c2658522
37961 F20101118_AAAKDM king_j_Page_151.QC.jpg
a77a9de253da0794e64708e6e63263fe
a5b63d43f2699ce0cc90f21ef05fe3a9fce50d90
11951 F20101118_AAAJGT king_j_Page_144.pro
9ac8bd7091d0e0fec10571a47ec8be07
44e0e01b992df91f54820d1f10130652e1ba9c73
8416 F20101118_AAAKDN king_j_Page_152thm.jpg
8d75e053f9d6b5ade6618c2cef05fa5d
183745bc30a9f3daf8f4dbd013744021e3a3f9d5
51742 F20101118_AAAJGU king_j_Page_145.pro
4e73c3413faa4de962449b133d3f8483
d4de08354fbab1a7b49befed4ee7c9ecb9d64a45
35634 F20101118_AAAKDO king_j_Page_152.QC.jpg
69c7105de5c101afd5baf9e0cdf563c8
059ea6d403f7f64d828a8c75991c4e739d82b6b4
59405 F20101118_AAAJGV king_j_Page_146.pro
a345cd263caf5d2fef366e68fce1d0a8
6031386b6928889a07d98dc9367888d51a71a1b1
F20101118_AAAKDP king_j_Page_153thm.jpg
4d9448d72ccf0fc157b1bc1f62c28352
f015dbb9baa35d927a8404b2309df49dcabcf352
69528 F20101118_AAAJGW king_j_Page_147.pro
ad0df3c8f82f516af094ecccb82e3915
7d9f4bbed62704a70051ca74224bea5cebcb9796
28683 F20101118_AAAJZA king_j_Page_080.QC.jpg
7e4a653de3f2b26986f2d04f35da470e
522b55023179ba47454ec3ac9a1b30e5055b08ae
37984 F20101118_AAAKDQ king_j_Page_153.QC.jpg
3de9b01bf62c8859100c1f40533991f8
b10dfea2ccca91cb31347aad79f5c63767e0ba0d
82435 F20101118_AAAJGX king_j_Page_148.pro
2f03a7f644b9411e12c16c312a22c388
0f96b75435412c49430cea0077ce5f6e2aa824a4
19814 F20101118_AAAJZB king_j_Page_081.QC.jpg
dd2d402939c6bf595309b6d73ef024ba
4883735676c7a332ed478438bca33f443d3af47f
8424 F20101118_AAAKDR king_j_Page_154thm.jpg
cd4ece7e01a3989cfce80e658aef28b0
54a6c88f970807f17c98afcf7dd701dc89c9bd8f
71993 F20101118_AAAJGY king_j_Page_149.pro
40ea1454076ba5d754e40a15c53b0d65
87950b6e92a98bc3c063323064cf55894f53d4fe
6260 F20101118_AAAJZC king_j_Page_082thm.jpg
7662859042749074420e55a21556a153
a7441de54082820cd59bf28153abc054f15c50d9
35688 F20101118_AAAKDS king_j_Page_154.QC.jpg
4e0682c6e9689d1b3a793412e0a5812c
346572b8fa228931edf944398af618ff747f67b2
56386 F20101118_AAAJGZ king_j_Page_150.pro
8a5d52b616d318e6ea85972aee81b3d1
3faea334cca3567ec74b23a189ff1523c6c2a1b9
27161 F20101118_AAAJZD king_j_Page_082.QC.jpg
54997a5b4262beadbafea1b21657aa8f
81b587e81badd3e739c789910b4ed88f06b2ef2b
11336 F20101118_AAAKDT king_j_Page_155.QC.jpg
2c6cea8dd77445e668d209a0e428ab5e
67d9682e93034ae742e871a6f810b5ead9cfe4e0
8891 F20101118_AAAJZE king_j_Page_083thm.jpg
4beda251944fbae6ca2ded3c10d7eb79
1106e35a56d3d78c6722c5ce9f4f384ef3b97e85
5876 F20101118_AAAKDU king_j_Page_156thm.jpg
e8942bc18d9954aef8c079f1b677d0a4
23a6e17dc3298f8a3764169791b4ebec1aa37ef8
669613 F20101118_AAAIPA king_j_Page_113.jp2
c39ca7a4393c6ef790e86487aafbfa6a
88d0723880dec6c383daba0b903ce0c96cc63b7b
33120 F20101118_AAAJZF king_j_Page_083.QC.jpg
ce1e804f2bcf9eda1428c5bea7c17453
ccb431692a32395805bc76b65468ab3c0a3cabb9
7767 F20101118_AAAKDV king_j_Page_157thm.jpg
f0f70c27933401591f98d6b96dfeb55b
b2b61ff3e1dc367011b8dc8de9bd9585c0eb4476
660440 F20101118_AAAIPB king_j_Page_114.jp2
cc4fe7b69d3452019ceb6a8239688df6
62a2b751a7cd0dbfd8bcead9c4d8d3449a50e9b9
3127 F20101118_AAAJZG king_j_Page_084thm.jpg
59185efc2fb04c1f6c631ba744f46471
723c4d0c6b2418fd91480e374b4736083a2a9382
27331 F20101118_AAAKDW king_j_Page_157.QC.jpg
f7a2aec1456092ca8bc9d2ad39242a45
01dc7fc5a124aa16945dc1cd024758f2eb7a73c9
558775 F20101118_AAAIPC king_j_Page_117.jp2
06445a82abdfc993f90d858b04e2541e
e272f383f48c743fef5cf2f42e27664fc37feb96
10002 F20101118_AAAJZH king_j_Page_084.QC.jpg
5017c5b4900a30127648787722c1c07d
0c640e1c59d1b9121fe1f03dd1ae0dc291edc947
3075 F20101118_AAAKDX king_j_Page_158thm.jpg
97bd63ff86169fda2b389c84da6fc3ab
20992f32cd17efada63bda56dcd9f4d288509420
691168 F20101118_AAAIPD king_j_Page_118.jp2
cfdcb7de863de45da91db3a43ed8b4f8
128e78e6d5631e3a64dc856042c68e81fc86b622
2434 F20101118_AAAJZI king_j_Page_085thm.jpg
72ff64c9be1914fb3da47bdffabc5d8c
159271d801b6e74cb65464051a240092de87e3f2
11381 F20101118_AAAKDY king_j_Page_158.QC.jpg
c6f1e08d77792166b78e198aeef735f5
e7d63ef12887b7546d5448a5dea3914c8cfb6292
419641 F20101118_AAAIPE king_j_Page_120.jp2
be2be6ca91808402ab88476df3de7167
3cf355e41920a8306852ae08ea63486d7653c2b2
7153 F20101118_AAAJZJ king_j_Page_086thm.jpg
1a658c9a2bf5018a81b83d77a389f150
a11a45637c3c16076073e05b288b08fd998ecc7f
8162 F20101118_AAAKDZ king_j_Page_159thm.jpg
61001a18af26ba6f49d46c81fabf1d67
5275fdcf06d9f863414edb27fa1bde8d7f36beac
655072 F20101118_AAAIPF king_j_Page_121.jp2
be40dd75fdd28d8e0a6c49615d6f5db2
7b81636cf48eb9344dda5d8f8d2353b4943482f6
29633 F20101118_AAAJZK king_j_Page_086.QC.jpg
43c33e0ef6a9e90de09793b638ac4f50
26ab357fe9ef9c50758eb89dde7e638c65433503
568934 F20101118_AAAIPG king_j_Page_122.jp2
e6dc51023fc513ad224a98a462288940
42832b889a11298ee4c4905dad1291cf8b16447c
7747 F20101118_AAAJZL king_j_Page_087thm.jpg
40bee8f7f555d7559687b8d00e37d0c7
4060f756cce7c66acda53bd2f51f9c101112a22b
804513 F20101118_AAAIPH king_j_Page_123.jp2
01f79ae670544bc108da13a318ffc9ca
b50475a6cef1f9c6b8e48dfd0aad040b501a17ab
2324 F20101118_AAAJMA king_j_Page_060.txt
206d9aa83f2e79e49af7a1c2111ef2c7
d8ab9f843dd44bc91e8df19ae4392d6b8bb7c294
5652 F20101118_AAAJZM king_j_Page_088thm.jpg
9fe4872f53e3bac302e5b57897fd3c87
7d69338ddf605b1027b790f045659a99b605d998
868411 F20101118_AAAIPI king_j_Page_125.jp2
21ccdc8684f2e0e6bb20b0904d365d1c
8b927548730a05e93eec6a1e435818d5154aaf46
506 F20101118_AAAJMB king_j_Page_061.txt
34fcd0e3cc675aaa5b0d3fe147f07070
7508d35ae0eac9cd3dfffcdc51b9d049f7a0912e
6704 F20101118_AAAJZN king_j_Page_089thm.jpg
e27253c79fa2ab1959f20f47fbab1a9e
75fd832aff0d5385041334e2497894ad46a01ee6
F20101118_AAAIPJ king_j_Page_126.jp2
85cd68239ed686f1994f5a3b273813cb
6c142a743a6ca5a2954f4828b7084ae6e3bcfd1a
1122 F20101118_AAAJMC king_j_Page_062.txt
0c3fafde62c6d2e56d54107547068116
4726cf8c387c2d26f32f778b5b9d0f911164e01c
26608 F20101118_AAAJZO king_j_Page_089.QC.jpg
525819ac00d7fff2e82ca2e9e55133af
26c2c40b6d38c2d1596f47cb7cdb5f55734c02f6
949476 F20101118_AAAIPK king_j_Page_127.jp2
43f0f829bd4b67600dd1baff761a14b3
93fe8d0ffc18585809c2093232b1dbe4670030af
1304 F20101118_AAAJMD king_j_Page_063.txt
a2c59f7dd05ac1ca6a35342f02fa1f9e
fb4d8364d2bb77e62854ba7c725eccfee5b97ddc
953 F20101118_AAAICA king_j_Page_184.txt
9aaa8cf72ca9d7235edd463272cb0775
ceef87d3e1453cd844524e7eec5f5a298ae2c91b
23501 F20101118_AAAJZP king_j_Page_090.QC.jpg
5bc6f94936ea92d5d88b4c9a0e1796af
11d1bfcfe437455c0406d0770d84b2a07d6d8f70
998243 F20101118_AAAIPL king_j_Page_128.jp2
4f8fafff264124e0182f1983c463da95
9f5b4ca2d7e6aa5b6f5db6aee5652c33e5a0d49f
F20101118_AAAJME king_j_Page_064.txt
7dea4d3477d733c25adb30001331827b
0f60bee2a6890785133d073409aa4bafe33e178d
5279 F20101118_AAAICB king_j_Page_134thm.jpg
2b2aa4a04d790a98fba92935d7659965
bb264aa4f3ceb3ff09f19075a312621351b90898
6135 F20101118_AAAJZQ king_j_Page_091thm.jpg
043bc1675e6d4b06a5aab85ec0e8e281
3cc3829161f3bdd326c96fa797d2adbc51a2b39a
F20101118_AAAIPM king_j_Page_129.jp2
7552f604132132356274a81de2aff338
ecd10a2276aa8fa796c884295127cea90418e335
2090 F20101118_AAAJMF king_j_Page_065.txt
24ace3a593346f2f82445cea45e30022
4eb1a860c0bb01faba47264c47a4817ca1fffd91
7313 F20101118_AAAICC king_j_Page_125thm.jpg
982facd2341e9b8d15cba5f8a432cc0b
7dadd363179ebde255596d9deaa6b2ebdce5dc1e
23150 F20101118_AAAJZR king_j_Page_091.QC.jpg
1dbb55846cfed70f8414453f28f600b3
143a9e1a6f9ea91ca1787953ef6ddc5a8f085857
926227 F20101118_AAAIPN king_j_Page_130.jp2
2b845bcfd297a5f79c8dd5740e986993
8eef1b19453839f8d6e7cadd1178ce877cb8e206
1071 F20101118_AAAJMG king_j_Page_066.txt
7c8563edfa9944afa34fa747d0971f3c
b736be9520a386943e013a4553e91e7ad1bb2098
1691 F20101118_AAAICD king_j_Page_115.txt
507522f9c7c5c048f233344d37d9b163
bb58d9f57e6075c91bd7a6d48f384e62c53de135
5213 F20101118_AAAJZS king_j_Page_092thm.jpg
9846783b12bf569b84b0175080fab9f5
a3220130b9dc9b0e2d3e754775d5c8fb523f8ea9
1051945 F20101118_AAAIPO king_j_Page_131.jp2
d477ea9463f65e188885fc3c8394acda
67f547bc6a611f25e6392c64a0643956a6a0c4c5
2347 F20101118_AAAJMH king_j_Page_067.txt
e552aefcedad983db4d7d3396cfd1d1d
4f1e031e9bbb3186970cbc23c50f4a7e7750743f
13223 F20101118_AAAICE king_j_Page_181.QC.jpg
8298312db10c7286230a9c3537e042f8
4bb5fe90005a9d9dc228bdc0e9e7aae7a61ac4ce
18497 F20101118_AAAJZT king_j_Page_092.QC.jpg
09f5f8f64c56cab672e7699a9923c2e6
2edf5014bafb2f5d703ee5dc9135439554ca0781
F20101118_AAAIPP king_j_Page_132.jp2
5984181652f8adc64e1c9626a2e5aeb7
f936b1b7765f23b2e482366d86d0ec1187286b67
2596 F20101118_AAAJMI king_j_Page_069.txt
5f5034002e0c502ce63cb21aeaabd3e7
a10e217aa7a5a1427ecd1cc375f4663105796fc2
6713 F20101118_AAAJZU king_j_Page_093thm.jpg
b5bc88f05ee45e86235ae798d657e12f
fb556a3d693d24a1c38527bd30b4124cfc237774
1051923 F20101118_AAAIPQ king_j_Page_133.jp2
12c8764b9688cc95aa71129ea7ca5035
7b900d7944ba6254c3a91b6afbdf5242b3963da5
F20101118_AAAJMJ king_j_Page_070.txt
6f6642f44b161122a76b076acd7241e1
adccc90b70f4fcc027af37d4ef46fb8500d44690
41901 F20101118_AAAICF king_j_Page_158.jpg
64bd2ea29505aaded032eb7ff9462b16
ffb7102c122e56228779acdcc2bde75bf63429db
25770 F20101118_AAAJZV king_j_Page_093.QC.jpg
fe14d7ccad9285054b4786e010af3adc
8b6e465d0298458746fb4da193cba14ed4da465a
793815 F20101118_AAAIPR king_j_Page_134.jp2
ac7bdd9654e3dd9ce50e7efa40e943fe
46cc05c96cdb08cff848991ddbb40c6f08065a57
1029 F20101118_AAAJMK king_j_Page_072.txt
d1ed74f48c5d88c7be54f0a9942ae9b2
72446a4ea837735ecb101e98cef5ffee6430e3d2
323 F20101118_AAAICG king_j_Page_068.txt
8645ca1a621541dbd39a2c537d14fb43
6ee0c89cc2859808005777d7f05fc785f0f3e37c
6165 F20101118_AAAJZW king_j_Page_094thm.jpg
bec308f1b31a62a69fcc664586501fff
f8d6c0ba65bee74bd2e2d8228cf0f9cd00eb6b88
1325 F20101118_AAAJML king_j_Page_073.txt
8ac65a2d00b71050589b34bec8a6aad1
5dd0a5a0513f771b0d0c59fee478437f045fd12d
262788 F20101118_AAAICH UFE0021567_00001.mets
df3c3a254f2952e15a2ca54fa9f96928
2718250a3ecad630da24d57db835b07ae581da23
24806 F20101118_AAAJZX king_j_Page_094.QC.jpg
b42304583df004439768e16ac4a08fde
3a8473fd1b7633699a4345a74e2d501d53b9b26d
641045 F20101118_AAAIPS king_j_Page_135.jp2
086fcdcfe1842a3c63291f478ed2a810
59c48c8e7ef90479e7e31e16cd5412595cd3b953
2348 F20101118_AAAJMM king_j_Page_074.txt
2c7b20a91f977511ce2656c29517e976
3510b5e046b3b49390f21855ee6a7963c37196b8
F20101118_AAAJZY king_j_Page_095thm.jpg
699e69b63445cbad5d0a032b4a4f2400
faf9464e2f1c7e16d8921429f03aba824a50786b
311906 F20101118_AAAIPT king_j_Page_136.jp2
01ea330d992cb3ec2af6b075be06334b
aef8d399278bdf013eb3bf93f7e97407ff075e9f
785 F20101118_AAAJMN king_j_Page_075.txt
52736dd488d53fbf7afd3ee94f488472
f8e9a61140e4115d3191a0d52c4dd13254d3bc83
22947 F20101118_AAAJZZ king_j_Page_095.QC.jpg
ba34729711c0c4cc586f484de09439dd
6ddb3a97b3d38fc0240e20aa31a21247c3998e7e
643300 F20101118_AAAIPU king_j_Page_137.jp2
7c2b952c1d5c2bf3a9543911aab6a0c5
4a5a7397c69051b98a8d22ee5d1f1204408458fb
27082 F20101118_AAAICK king_j_Page_001.jpg
b526c2c1dab22c60c7ca0c5d1d499c27
2533b1d1dd67b8b6d891e0b86cc3055cc739feee
433667 F20101118_AAAIPV king_j_Page_138.jp2
dbd723031e8fa9f44b820b716f06a64a
122f39b689969a73700a7810bd995f4553df2661
1866 F20101118_AAAJMO king_j_Page_076.txt
f58641c70a102d2c828cda47715ca08e
84fdfa61813fc2298bbff499315920c59adea3a9
4292 F20101118_AAAICL king_j_Page_002.jpg
b16491aece2dd1a188985bd1d3ef0f56
ae9b5d8590577b5b7a2958ead0318e9ec45bea8b
852751 F20101118_AAAIPW king_j_Page_140.jp2
ea01cac06ef2159db29f3e827d0230f9
c367a6c03e77e9b50ac2a6d48b7f1cba8965ac56
2295 F20101118_AAAJMP king_j_Page_077.txt
12ea4aeb7dce311dcc00caa973f51512
0e9de540372fc234373653b4af91688e08699fb4
5462 F20101118_AAAICM king_j_Page_003.jpg
f5e7779112cc706fceb773c871cbc53b
0feb1450ff29c8e2df8eda0c22f39dd0f37dc85e
710164 F20101118_AAAIPX king_j_Page_141.jp2
fd27ceda1fb840a436caed764b3adf6c
c0bd2f3ba20dc1b699c5a7f7c209ff9a2aa966ba
803 F20101118_AAAJMQ king_j_Page_078.txt
0bf278b0015d36a032783eebfaa6b362
110785274fa08228deedbd4269fe7d810caa3032
43412 F20101118_AAAICN king_j_Page_004.jpg
2c26e9ae1d94533a2bf0effa3218095d
6dd49766ca2461c2c905a4c47188a62d3eb7cb02
F20101118_AAAIPY king_j_Page_142.jp2
d05dae7453db5ec821a52ea8a5f6dfdf
4d22e0c005d89b8ae402e0240dc43873c91c773b
2605 F20101118_AAAJMR king_j_Page_079.txt
ea3e0c5d056347a5983a5e8a0cb8e308
ffc3bd70ea320a0407435ceca42197ae7206130d
117745 F20101118_AAAICO king_j_Page_005.jpg
cdf0b69d68e14990eaa2a9d0866dd5da
59caa2de484ef39f1d5f5f076497a54510237e87
1051986 F20101118_AAAIPZ king_j_Page_143.jp2
2db13c84e1ba9f1dfc2f638ce4f91fe3
773d7853f0537ed88a9b1c0031108a523f2b51bc
2425 F20101118_AAAJMS king_j_Page_080.txt
b82cfe32d19de4ed2b78fd92bafd718d
bb6baa98b79aa6e70099574a268cab3ce126326e
126295 F20101118_AAAICP king_j_Page_006.jpg
8e6086147fb8536a37e0b2fd799abab7
6e17fe11482862723f1bc8a69b26b4c149460a81
315 F20101118_AAAJMT king_j_Page_081.txt
b50ac7162c5ce8c4d5d9254353506bfe
7c4d1294b82a40126a828f0d75de6bcc2dd246b1
30673 F20101118_AAAICQ king_j_Page_007.jpg
6b6dd815b6c5644d797e6ace58517f61
67d9465660febdb3c7780a455ac56def7c20610f
1108 F20101118_AAAJMU king_j_Page_083.txt
aa220a78c8339ba84f7d2cc4c7889f34
cee6f0ae52153fc5e523b3d0939c612ff00a7fc4
130142 F20101118_AAAICR king_j_Page_008.jpg
5b7beb92c966ce91625ec1ed45165aed
d0d44374fa60f57f62cf7cc81dde7da8b2a64679
752 F20101118_AAAJMV king_j_Page_084.txt
688dd26b1762b63de95c3301226eb1a6
28b06dc55c3adeb027ae06972cf9f7a091b57830
515 F20101118_AAAJMW king_j_Page_085.txt
0111d8edec37b02d9976015b62cbc98d
5cc6828545c7f20515f7a207a80633947b62a298
59767 F20101118_AAAICS king_j_Page_009.jpg
13516c0a4d93078d365d64e496d38d5c
52868fbc7e8bb7ab83d8688f269880669256de15
2075 F20101118_AAAJMX king_j_Page_086.txt
137b541194af4f8ed8d904dc1ef24c10
30ed50f0ca4457774c33b63c7829021a33d96467
32667 F20101118_AAAHYD king_j_Page_069.QC.jpg
80bfc0a406fd82f0786a4b290da95c63
dc5471c70aa8cdf4b5e2c5b7f78966033e1bd7f9
142632 F20101118_AAAICT king_j_Page_010.jpg
c433336cf7e69e58c87688f87a874eaa
b7c3f1981502c8392e7780153f902ddf57be8dcb
601 F20101118_AAAJMY king_j_Page_087.txt
2618f2d61bbeba675e1e4ec08232bcbd
dfc8d1e00901cd80641a7639b4f6b5b3e660be7f
5965 F20101118_AAAHYE king_j_Page_214thm.jpg
72218c2fc375f534782b0300185c25b3
a2e626f1a7c3a748682c2de081d63a3b38d9d030
151084 F20101118_AAAICU king_j_Page_011.jpg
7a44764fc181170aed4122518368e8b1
bfc56074402ee7c79fa98f582af925d112796f5e
1906 F20101118_AAAJMZ king_j_Page_089.txt
928b2f81a0b7c118a0bab14831dc069c
cb36b784a0a2424505411902abe4c38dc9406fc7
852326 F20101118_AAAHYF king_j_Page_099.jp2
319ceb4ede46818e06f6ed22876053fe
24830b705b6764922faab5f7b9c9f8c5a31205b1
154261 F20101118_AAAICV king_j_Page_012.jpg
717c7c03f39ca3a24b4bd96618a50ca4
465da50b7f358ad68ef56faf9ea805ae12a14ec9
1725 F20101118_AAAHYG king_j_Page_088.txt
f7eb9b7a24688f8576d0dd70f7f80eb4
5d7076642a03bad00b284504e1960faad363c4b0
158064 F20101118_AAAICW king_j_Page_013.jpg
b4b79d69dacc7ac878fa8946f7475b94
e59c5135d685570c8c76c4c2dec7e9ee3cf93668
F20101118_AAAIVA king_j_Page_049.tif
97167ddf2a926bd97dafb91d22d6c59e
4e5a43907392cfb20a6afbc54c478ca375f8e6e9
65428 F20101118_AAAHYH king_j_Page_212.jpg
8ddff494b4f83e710888c457c242a88e
4b38859e33201461213d99fe36006f765e662db7
149370 F20101118_AAAICX king_j_Page_014.jpg
03747e2b0be99f166c3ad38afacf073d
b69d79a42b0935cf9ab11796454bc348ecb76710
F20101118_AAAIVB king_j_Page_050.tif
ca35cadf91073c88f73d015639a07ea0
c7b85d5e23f5aaa4b6224f6cd7272dd65f2e18dc
1932 F20101118_AAAHYI king_j_Page_031.txt
fcced56e386baa5e1db1b84eb7256be6
4166611f5afcfb40389b6c3293cb824736ba9f53
68784 F20101118_AAAICY king_j_Page_016.jpg
e7f9155633056520c1d9e1703fe6f121
076af1b592902b7acefa37076b8179775f130d8b
F20101118_AAAIVC king_j_Page_051.tif
353f73eb8e9b9e16ea00a5df772a1c4d
0ce669f7c7a6a304b4c40a98b55f28fcead3986a
27077 F20101118_AAAHYJ king_j_Page_076.QC.jpg
d990ed4b0197fb67bcd93a7b98af3878
9216e8d4b019d93739842deb1dd981ecfeb4e2af
66453 F20101118_AAAICZ king_j_Page_017.jpg
6794f7d4f0eec245eca0e29cb63ff659
e4a71e2b903a9476f94844c3fa5e763dee23ed20
F20101118_AAAIVD king_j_Page_052.tif
b5b79c0d39b125214de024a37d4ac11b
306edb7ef7fa90729f5ac5864d0c7655302ecc49
2288 F20101118_AAAHYK king_j_Page_041.txt
a622c9df37a6e7ed5eae4b0758092629
d877d638041bf39e1d56d64a5929332bd3770c39
F20101118_AAAIVE king_j_Page_053.tif
80aa721ca2ee08256dad696f08cf6e60
029b0f26f2188950bbcd0ae18aeaffb4d27c1605
29849 F20101118_AAAHYL king_j_Page_178.QC.jpg
3e80694537ed45fef63730bdb049994c
b45c5d6c682e1982daf458bf79f0b71a31f4b03d
F20101118_AAAIVF king_j_Page_054.tif
a17e13c602d9476e055448eca33df916
8b6ded31deb29bac055d697efcf87c4cf6be136b
F20101118_AAAHYM king_j_Page_106.txt
2a4f9fdd647c182e84f6fdf2ac191327
0f4977e2f1020eea57ae36e77b8f33487f75a82f
F20101118_AAAIVG king_j_Page_055.tif
ea42aa8c808dbfc29901ff30c9f72b77
96d9368db75d9427f489c3304b3ebb000c902487
2419 F20101118_AAAHYN king_j_Page_046.txt
ee723e074f94320b40a3720081e54317
4656509bd24363a869c8e3f05b01c6624ae8a712
F20101118_AAAIVH king_j_Page_056.tif
5549a692e68034ddb44e10e8e3a8dc10
df5dbd2bdfc057d458f84edc733d4e3000dd6653
6169318 F20101118_AAAJSA king_j.pdf
296009201f7b186fde7b90dff784a193
04500126f2f36038fa22127b148ddc7647028580
29463 F20101118_AAAHYO king_j_Page_214.pro
9440e29d224f70aab91ad6b3a6d2f0a6
1ee990e6fcc07b7873c40455a74b672091a169c3
F20101118_AAAIVI king_j_Page_057.tif
65c5ca86023f91f89dd82568e9f441e4
896b54d15c04ca0dc18177fb593f8f16e2bfaec5
24840 F20101118_AAAJSB king_j_Page_087.QC.jpg
690b9b74d846a8099e1f901bea5ebca9
88eedff7427453bd33a672c621b3f4bf27d0473a
F20101118_AAAHYP king_j_Page_120.tif
a2da71e08d2c09d0d42b339ceae07e04
e5094c779365a00eb54578691df8fd789b35669c
F20101118_AAAIVJ king_j_Page_058.tif
9f1883f3f9f26e19d138acd6d7d422cc
2910386c89533683aca158c8c726c78fab637a25
18271 F20101118_AAAJSC king_j_Page_115.QC.jpg
03ed63b5a90cc7837c27965658bba87b
b7b150ea06b129cf4415ca166f6536cfc257694f
13156 F20101118_AAAHYQ king_j_Page_122.QC.jpg
6808f8a71308430d86d4ae3bd5ff3909
cebfe73a206eaaa41598d0f6f4032e040b82fabd
F20101118_AAAIVK king_j_Page_059.tif
81c34363c6765f67870802ba9456a992
8c80996049a9e884d15f9b59efb72b10c7286e45
27634 F20101118_AAAJSD king_j_Page_035.QC.jpg
fcdc3dc21b976560e1e0ca920150ba8a
5de34d2fc3281f40e44d0ba92fbc6e7bda1292ee
667863 F20101118_AAAHYR king_j_Page_116.jp2
55b8850f99b25420a91153627874caa3
a5d9031ca48c7ac4b37b4fcc4826c1bb7c2c957b
F20101118_AAAIVL king_j_Page_060.tif
61d24ab392f647bf5d455049248b5463
ccfa08d972eb15b222a72cdc2053931d65e95b9f
20837 F20101118_AAAJSE king_j_Page_116.QC.jpg
edd4f2559109c1a4bb41eb72a900c883
a862b7f2d7980c5ddfca943015f76cc5132e0a8d
115664 F20101118_AAAIIA king_j_Page_154.jpg
3fa32274bb7e3349c404eeb26605abbb
84a8f28c90f934ab45bae25e5b39495d50c8a767
F20101118_AAAHYS king_j_Page_096.tif
e4296f1e4f9decf9e010baf7e9749cd5
c0c4905eb9822b90de58cca8d6cf44f4de19bbd7
F20101118_AAAIVM king_j_Page_061.tif
d8c6e6eeea5a7dd1410c01487b1c7f60
25cfb80ce609c7d217cab77bdb01408412865542
4036 F20101118_AAAJSF king_j_Page_061thm.jpg
bfa4083f786e3b94edb94581edfbd3ae
5733eec255cf4f674291fc499d486e1489198ada
35898 F20101118_AAAIIB king_j_Page_155.jpg
b2f3dbf0458b7c006045baff203f2cd1
90ac2b678ac5154fd400f903de606cc77b12dbd4
5541 F20101118_AAAHYT king_j_Page_185thm.jpg
b372263cc58f3522d193ef5434d9bb1e
523980f384d95dc69e12f0d1ef5d0acb609ea776
F20101118_AAAIVN king_j_Page_062.tif
b525a31cd101e31a65143bf25c7b82d3
91a6446c7a0b73510bd25e7a5a9d4998f8b2f76f
5591 F20101118_AAAJSG king_j_Page_213thm.jpg
ebe4094bfc5b7401db679c5f690d0197
10125b331180d1babfee60fdcd42aee7fd9f76c8
66359 F20101118_AAAIIC king_j_Page_156.jpg
0d72a72c4669230fb9088b50fe18bfcf
ecf1b781167585aa770a17f5a4174ac11d3f0adc
6879 F20101118_AAAHYU king_j_Page_076thm.jpg
2675c5b6ca8d565d171915e9616d400c
8a0310c80585edd5f06ed2ddf1900deae2720297
F20101118_AAAIVO king_j_Page_063.tif
f3a1c8c0dc441741dc00abfbecd45435
06286ca89a60ce42f9bdcabf309e6812ef167784
9099 F20101118_AAAJSH king_j_Page_032thm.jpg
fc24e7a08fb8d8001a140367fea02951
c30d6f63076da05b5bea179fa195e9e89f8664c4
85856 F20101118_AAAIID king_j_Page_157.jpg
a4e1603765e6abe5f486c81c9291ad74
a6f6c1db73a90d7154045866ad0322a410574102
33961 F20101118_AAAHYV king_j_Page_017.pro
b359d5952f92659e2bee00904ab4dce0
d2f58316c61490002f917bc504d3a80353510636
F20101118_AAAIVP king_j_Page_064.tif
c63486db00c194de24ce82ae2a05614b
d02d014c931899ef638bf0a031f4076133ce0376
20891 F20101118_AAAJSI king_j_Page_208.QC.jpg
6f0150a8ef4f5461969c013c2913b0f6
95cc6c9fca1656112cbcbf025303b2d4679e5dd7
113233 F20101118_AAAIIE king_j_Page_159.jpg
49d7558ab9a248d1c11b2f784cae2363
3c23fe421ea0bc2c5ec949a19b330f3e622d6037
F20101118_AAAHYW king_j_Page_164.jp2
5e88f9e33632d632c2cfe9dab856014a
7391960fcdbeb415273d7d270b0070b003b0e0e0
F20101118_AAAIVQ king_j_Page_065.tif
fc6748c1c596a6d812529bec53cb6f7d
12528d46c53fd1eabffdb7fcd825a3e3a143baec
5456 F20101118_AAAJSJ king_j_Page_216thm.jpg
7f7a8e47bc2588ddd5adeebf1df0958e
a8dd2d2b80c40d05a20fc85b6fe6ef83487ea7ad
55602 F20101118_AAAIIF king_j_Page_160.jpg
25f664f1797744d080f63645cc468a97
a5004a564704f38bd4bd667902c6862f8920e331
F20101118_AAAHYX king_j_Page_229.tif
ade6e1ffef798667521a66ad825389b9
2577edccf913e48b7ee572fea3d9dfb4d8cfd806
F20101118_AAAIVR king_j_Page_066.tif
52a1c288f77d342813d9f4b75adb9ac2
aa34e3666e0490fcf918a8d530ddb12180b56e77
7231 F20101118_AAAJSK king_j_Page_065thm.jpg
9fa92ceca47f0055cee7338af105da8e
64c6bce23c8ad31ddf49b19c4781e01fbc60dcad
61623 F20101118_AAAIIG king_j_Page_161.jpg
f66fddc6d8b75195a3368d7b60b2c8f1
cacc57a7307cf28dc269c153d1e01c9ebaedf8c8
F20101118_AAAHYY king_j_Page_206.tif
148bef20e965783a88ab9a2e87a50ea0
07a24194d45d1dcf04099b69b4c2b266c4001043
4640 F20101118_AAAJFA king_j_Page_097.pro
c189826d63f199ce7aebfbd1c56ddfde
6b525b847f0f1d6b24419511655ec40f867d8b53
F20101118_AAAIVS king_j_Page_067.tif
fbaad466d96dfab6def1ad8354823d46
f72fda2b8adabb6cb8536ae381cecfb80366b14d
26395 F20101118_AAAJSL king_j_Page_184.QC.jpg
024f4bfbcace40e7860cad40e5e338ad
88831c1585bbb14cd46e06ec7c29293c3de6ea76
42338 F20101118_AAAIIH king_j_Page_162.jpg
7d4f8adf10a81217fc9abe2c871ff8f7
a75f21f9a9ae61748ab101b1e9fe63c34e79c40f
40416 F20101118_AAAHYZ king_j_Page_097.jpg
e08e56705b238a70fd129400ef8ff7c8
8887bc338008b0e0090b492df7e2c0d3c88e89ab
52081 F20101118_AAAJFB king_j_Page_098.pro
817aa928051fd62234d3a5a0d33d51a2
7d2006e34ea6e2f425455381d7b63307fc331ffc
F20101118_AAAIVT king_j_Page_068.tif
69eefa7482ec53a817a727c3df9f2fb1
ca5d0887f7bf20ec2aecd601514bf07913fb325e
F20101118_AAAJSM king_j_Page_203thm.jpg
3f82e78825327b637586e5f897d160b1
adf77738ef03e786c1e01ae42eba00a52c5279e4
94385 F20101118_AAAIII king_j_Page_163.jpg
a4aee9f0a72505486b83a5bd49dc2272
b07edbffdb7e5a58191a282cd9ba01aca33415c5
48168 F20101118_AAAJFC king_j_Page_100.pro
b18f667dfa715644229524d1bf328a78
c0152d9eefa3292f5ecaf6a7e538eae18f5af498
F20101118_AAAIVU king_j_Page_069.tif
a817597c526511e517c10fd06b2ba07a
964eb065721c1d027709c360ea45d8b6dd7b2a1d
5760 F20101118_AAAJSN king_j_Page_140thm.jpg
00c15f2038ab1a2cf6e8f5821a7faab6
b1d7c1d334afd3644d8c073c44537f6af07b457f
107465 F20101118_AAAIIJ king_j_Page_164.jpg
717373003edea2d42c60ad3a52529316
37468476fd492b549bf6f5496d6221ff13e96050
41314 F20101118_AAAJFD king_j_Page_101.pro
069cf40ece547379f5c19781ec8b4e87
3321de470cf622d72bcc91e0f4faca43c77b2ec7
F20101118_AAAIVV king_j_Page_070.tif
051067ef2467c9f837eee0de4d076e8c
25363f488bb1087234bce288928ac5565a5a20c9
12867 F20101118_AAAJSO king_j_Page_230.QC.jpg
a443c998832d99f7c36d634287f99c71
3322044a83a429a3f47d6a3e0f43a28833625218
61834 F20101118_AAAIIK king_j_Page_165.jpg
87da4954ad0ce81c5e70862564031484
041c55cc89a777a9fb663a49ee91ece2d1888bdd
57671 F20101118_AAAJFE king_j_Page_102.pro
76eaf6c6cefd72ea3481c15fdddc4fe2
f6ee3d8d64df8f3b8ed6f4954d50124a364f9e61
F20101118_AAAIVW king_j_Page_071.tif
199caba8a07a118516b99158ea9f6d71
66932dcf690e4d2f2d239d5d1cbef40a12952a3d
7969 F20101118_AAAJSP king_j_Page_129thm.jpg
f583351400a4df9f9260b7686b0e0d23
4ab43773e02c595b53cffb8beca9250161ac2d5e
44679 F20101118_AAAJFF king_j_Page_103.pro
ccb5dfe5e5d0cd0f45c35f2718517439
379b018f7efa538a6324a6017fd8de72f1ede378
F20101118_AAAIVX king_j_Page_072.tif
f47029fa9ff768cfe7c90f937e11c982
cba971d43b56492ec168aa95d136f2e004902ebd
7852 F20101118_AAAJSQ king_j_Page_027thm.jpg
a1ec6aa9e38cf3abe3db49b66b6d1143
ec6c2cc80b49bdd17de86c9d12db85f4fa983dab
117752 F20101118_AAAIIL king_j_Page_166.jpg
152163a67eca375a54e8a038be1b2911
ae5390c387a789bd64d9e43fa4c7165dddba8c73
48664 F20101118_AAAJFG king_j_Page_104.pro
ed131dd106fbc3eb6a8dc64f36976929
093a64197a09b12f70883699233e1cdbdf6b6381
8866 F20101118_AAAJSR king_j_Page_148thm.jpg
9bf3ab152d650108bf235cd9b8960368
bc1997d53d06930f4e1188dc871265406a1427e6
97089 F20101118_AAAIIM king_j_Page_167.jpg
e5d28829c4f0c1c29201b639a3db6e59
7212a10c4c108800f388d5e7d3372ad26267df39
F20101118_AAAIVY king_j_Page_073.tif
47daa24833eadc880bcbc71b2a122f4b
15ada5d96cfec1dc08bd0e1b71f3fce2270bf469
32814 F20101118_AAAKCA king_j_Page_129.QC.jpg
3626e6be998ffe36de4d16f44c4925fa
11faa182c73997c011e5dd7b96160cb7d3cda781
4096 F20101118_AAAJSS king_j_Page_188thm.jpg
51ca6a711020619efda667c176b3e7b2
f474e31008a694b2da9eea56c81e1a36d4e5001f
56518 F20101118_AAAIIN king_j_Page_168.jpg
b0d5ea79a7bcd34f74a5cd81b2f4c07a
93a6ce124085b397ec664502a3a3b5d3018aff99
39161 F20101118_AAAJFH king_j_Page_105.pro
a25d6b25724634d6ecbd6d3056b8f6e0
4b726ec7af113cfd8924ae9cddb07bb94d31edb7
F20101118_AAAIVZ king_j_Page_074.tif
9bd30211d37fdf94d1b7acb7200bdcbe
b7e9963288c96f00745861e02fa186657549fdf7
6633 F20101118_AAAKCB king_j_Page_130thm.jpg
1e49f1045ba8906c4aec11ebc6a89d3f
62b77443ec7649958aea89a0293a58addea5510b
18540 F20101118_AAAJST king_j_Page_161.QC.jpg
59c6d5be234e93fb82913ce2e265ca19
d9b56cf24b82a362ab7df0aac660af58089a1c37
76760 F20101118_AAAIIO king_j_Page_169.jpg
aa7f7cee5039d4aba1135fe0e5530080
f48475d7e08160f26fc2c7dd54694da05460230b
45998 F20101118_AAAJFI king_j_Page_106.pro
7fdf37dec167d221e587f1759bd28f14
9b4d04046071919d2d67b7b25ae69b62cf1e9242
25200 F20101118_AAAKCC king_j_Page_130.QC.jpg
b4066aab5608241148e9d3e418903c1e
09c996db289bacdeeb5af7db6184720ddf9e471d
82725 F20101118_AAAIIP king_j_Page_170.jpg
22a83c6ddbe31d10ded2c41bccb449d5
351ddcd43d117ed9405dcf685e7981ff486dcfee
52488 F20101118_AAAJFJ king_j_Page_107.pro
7ada9a65e7ea233067c9c22fe372ff3c
060dcd2c81955625204ee9f7b1a8e6ea9925b7a0
6061 F20101118_AAAJSU king_j_Page_212thm.jpg
5e3ba5542843394e8d81229ee7a5b714
c2748a3de8d8c984bbf824e13375b8c9d3ded392
99377 F20101118_AAAIIQ king_j_Page_171.jpg
a1952f0c68189b50fc5ff77d97d27a3f
19d82790cd45cd4eacd23b9d9bd785daec911fd9
24114 F20101118_AAAJFK king_j_Page_108.pro
be5b8d20551e299bf621d67bc2521ca1
5222c116fe0f97c2fb9bd2ed49753537f93e34c4
F20101118_AAAKCD king_j_Page_131thm.jpg
c1d6dec8ea6bfa97eb421a38abba4150
50b7968954fdf2b67785b202269eab55aa4212c8
22024 F20101118_AAAJSV king_j_Page_051.QC.jpg
ec5e83507bf5840ba373db9c9b60dd84
21b64a1978f9ad629406c37b0ae9fc2890104b01
81384 F20101118_AAAIIR king_j_Page_172.jpg
1133707a0c0e92dbb772b8a1ada79e23
1a211debcd49fff235f4a9f744f90872fcbc42c1
47301 F20101118_AAAJFL king_j_Page_109.pro
b325ffd2b3370306f883bcbfd1c8e7bf
8bf0fc1da99983e40c367b9967ab2e52b476ff4e
30221 F20101118_AAAKCE king_j_Page_131.QC.jpg
d6da54487e06664071e9e21aec2ca811
c1e0475c48b917716a5e74fce3271c0247340e63
6257 F20101118_AAAJSW king_j_Page_057thm.jpg
9f136c8b6e7859fb08b860980cca4975
13589982536493d5968a393a17dee1a6d7289b99
114456 F20101118_AAAIIS king_j_Page_173.jpg
03970b76c1a76daedb5010f353dfce42
35a67db8f37d70a5e64e517b808b521b46133387
36074 F20101118_AAAJFM king_j_Page_110.pro
be0c44f44586c8e8c5cbccb70dd99c7b
7a9012470bd3338cccd7f85003aa6de7c50a0000
32764 F20101118_AAAKCF king_j_Page_132.QC.jpg
d40552774f1ede86aee2715330b7c3c1
2d74f55094c28bcc0e6e9b0c9e8ff1dc6bf885a7
17782 F20101118_AAAJSX king_j_Page_194.QC.jpg
2aed978356e9bea6711e236a8b136946
32638df179469d8c38ce634ad9636201745287ba
53500 F20101118_AAAIIT king_j_Page_174.jpg
1e29caa2c15ee7c80c3d0ea178a6bce3
57cc0649dd78fd4064180888f6de9dd81fe9d8c3
23309 F20101118_AAAJFN king_j_Page_111.pro
641403d4299577ce4bd076d680793082
9734f977511a0171e6a7dfeef691f9e6b9c47103
7775 F20101118_AAAKCG king_j_Page_133thm.jpg
bfe5faf674022d86d4e2660b00c025bf
71c342dade9ba1ba18b7afc14565303470bed694
8851 F20101118_AAAJSY king_j_Page_049thm.jpg
30bcd773717451af5bc8903872391db2
7c6fd233383d6829195bc36f809b0fd1d1d94b23
48671 F20101118_AAAIIU king_j_Page_175.jpg
6f691375c35d19d8a4528ebf810e5551
cc05a9a515ee90a487af1a117613904f83bb5ee2
37335 F20101118_AAAJFO king_j_Page_112.pro
c73e09c66924f0d7b417ea88df9eb10b
70a607fb75d1d56dcc813c16527f089e21785d4d
32068 F20101118_AAAKCH king_j_Page_133.QC.jpg
09b141fdf90148b1e6d49f6194add698
673a183ccbeaebd9ded16ca934b622c2991b8f73
6317 F20101118_AAAJSZ king_j_Page_124thm.jpg
f6ffee743506641c656d1178edc7a5ea
95f7e4ad26d8562715e521fb728b61fd9ce2e7da
108364 F20101118_AAAIIV king_j_Page_176.jpg
431c945f57050f6d3657fb0f4e6634a1
17553a63ae2397302d2e777c205b0232cd76f13b
27537 F20101118_AAAJFP king_j_Page_113.pro
b8fdd18b2547a00e58d3a3f661a7c4e3
086b5a8e2dccec12955bc4f00e9888cb3fc43308
21216 F20101118_AAAKCI king_j_Page_134.QC.jpg
85d3f206d19a02c225f3aefe71b0de58
cfd49c3fcb2be0d76ef8ba8ac979e88706214cfe
44777 F20101118_AAAIIW king_j_Page_177.jpg
d9759e9339fd9eea8ec4ef8bb72312f8
5780c2e93602510fd20f7838fea86bcf0d94b7f6
31145 F20101118_AAAJFQ king_j_Page_114.pro
307581ae76124dbdd883f255e6889e22
40f6e826c15adf1a06feb2a263a69e1c428f4ae8
F20101118_AAAKCJ king_j_Page_135thm.jpg
273957af493f172082c7f30062765ed1
feb52c64210d8ddbf1d8f8724af563779e12fbed
96271 F20101118_AAAIIX king_j_Page_178.jpg
d4e26717fbe912ae818a14078753e3fa
6ff63933be1507ca015e1a5f5e6e9539f050229f
28851 F20101118_AAAJFR king_j_Page_115.pro
789f0d72e7de1a59bd05e8f757d6f785
e62b9925d25477fe817b89105a2bd6d4177d2b47
15799 F20101118_AAAKCK king_j_Page_135.QC.jpg
768c48ae15308663e7164247c297e931
dc5c367f26af6e6eff091982ae9ec2d27e95a7ab
40716 F20101118_AAAIIY king_j_Page_179.jpg
517f99273ee7cc4c5730819413b02898
9f0f7bff48525848e530a3d417e8b26e43d119c0
29921 F20101118_AAAJFS king_j_Page_116.pro
6f03307784efb40162c6a4381ddc549d
b65a8565ddc3a70b312a134683b29c3b27c8e0da
2843 F20101118_AAAKCL king_j_Page_136thm.jpg
4b19691e009d0ff8907978a278c31459
5dba8c39b9ff0c8507325091ea3708178d32b8ab
91098 F20101118_AAAIIZ king_j_Page_180.jpg
2cfc0ab299e63c8da5ff3ab223def6f7
3d0cd3beea77c1898f8e2c14eee8156147dc21a9
19227 F20101118_AAAJFT king_j_Page_117.pro
20abc6a41facedb75180b413c8703f34
1151252c40b122c16925eacee347c3f84b2597c8
18116 F20101118_AAAKCM king_j_Page_137.QC.jpg
1f4c265c115a5bcbc938c58fcc0c3857
9ddc0d395de7a76f2c5b5aebd73039b26bac7c98
3943 F20101118_AAAKCN king_j_Page_138thm.jpg
6b06c03808a399e6cf0275de91e14853
55d7e6a38910b4395304b3789860b01299d9a651
29041 F20101118_AAAJFU king_j_Page_118.pro
3e6ac10d957afb2dfc03fde1148e6ec9
d97c4671a882296b8f3b641fdb4a365b28be54f1
12857 F20101118_AAAKCO king_j_Page_138.QC.jpg
b7cf159a820430919f0eaf6cbe3ead06
e7011417814e05d472708e295a9ec96d5752d16f
42908 F20101118_AAAJFV king_j_Page_119.pro
019c92c49e74232f7c5f11a4c9a9e2c0
e5b9ac521129db7b85286a7f581e1b78c3b373f6
8183 F20101118_AAAKCP king_j_Page_139thm.jpg
cf6f2c141d57b1bf1c6614f84ef0a11b
63cf7df59b5c0846ebd5647557661541718ead4b
13396 F20101118_AAAJFW king_j_Page_120.pro
527f82d0422d0561f6b7700ac1a069d5
858cd4e050cb779e7d0185f7f770f24cce836f12
31084 F20101118_AAAJYA king_j_Page_065.QC.jpg
cb8eb1a4dd2022dfd339f5b9c4a6d745
df89e129128ead217bbbc5d91720892f90478b05
30313 F20101118_AAAKCQ king_j_Page_139.QC.jpg
e4f05d0d9e1549dbf4f19d66856e6b21
164ad80a73211fa5199ffd340748abd54164a8ce
27786 F20101118_AAAJFX king_j_Page_121.pro
bbcf9a27ac60983a4e6263dc57b9be74
61c6deeff7614849e8c4a4ee3da0a0ed708f5595
7266 F20101118_AAAJYB king_j_Page_066thm.jpg
fee3140cbcccfaa5ff3bd7f2c76748a1
1fe83387c6a62089a1000cbca2b446b3381fe3d9
20809 F20101118_AAAKCR king_j_Page_140.QC.jpg
7f1b95f0f42ce1b8050acd2be8db6ce2
c41757d1a8177a8241ff6ec7ea15dbeb50b39e3f
10458 F20101118_AAAJFY king_j_Page_122.pro
c1979552d273765a542ec44d756b4dec
e8ffdf330029baefbfab2536cbe8856872d02b25
22633 F20101118_AAAJYC king_j_Page_066.QC.jpg
781d77aadabb2c38c8b2d1ff2b0d1bc8
315ddf5aa3e326b16dc7c6d6e3c1d6d198581249
5431 F20101118_AAAKCS king_j_Page_141thm.jpg
35ecce2981ed85901af6648d98682c02
1531c06742d7a5dca5e982ad7a1d4a1c3e21fa06
34201 F20101118_AAAJFZ king_j_Page_123.pro
066d614b219594621ee2c1c29d8e623f
51d3bc65615919cfbe4a1594d6d95f6df0c06406
4906 F20101118_AAAJYD king_j_Page_067thm.jpg
c6b1c6598c9d3c11071c8c77821a0655
9e67ea5cd8c73e8ab7a993790c1c8d512fd8263e
20361 F20101118_AAAKCT king_j_Page_141.QC.jpg
cd7ced8a6930070872e7850a154f41e0
1f17511bd7f1cbdae66a0ed7a8c50c5275165ec6
15268 F20101118_AAAJYE king_j_Page_067.QC.jpg
f42b2dea812ab9fc61f8a3e343c1a233
646074be97f0ebe304e0efec353e99baf72b8c6f
8627 F20101118_AAAKCU king_j_Page_142thm.jpg
7961cbc84c504c20405f816f92b25a74
1abb6b7e6ec5f1ece9749a195afceb3dc539b500
1013325 F20101118_AAAIOA king_j_Page_086.jp2
d89fd028b4e0b2345fa23053eec5e785
b54f4be74801913a168b5716c61f0b4253b968e0
5506 F20101118_AAAJYF king_j_Page_068thm.jpg
2a287e2357e1d51cfe7494e4fe8da69e
28d53b279f7f34d61fed8b87cd62220df63997df
37148 F20101118_AAAKCV king_j_Page_142.QC.jpg
907060a16c4cff6980f7839d9ad482a2
a6c428c302a503bf292afb320d01448f6011c5c0
1011551 F20101118_AAAIOB king_j_Page_087.jp2
85e842d4be23d14e524ff267b23cca46
b8b9381a7abf84143990baf11130a2bb889eacf2
21336 F20101118_AAAJYG king_j_Page_068.QC.jpg
944a65c14acb44c546b8ca7d2517b874
07110c599002ea7fe337bd6d47fb5bd6e2376a82
8528 F20101118_AAAKCW king_j_Page_143thm.jpg
f09cfd48716fb341e3b870ff8fe5f077
51856915c32a8e50ba4290e47f68c73092a15f98
658275 F20101118_AAAIOC king_j_Page_088.jp2
a961549a1780385fb40316c573a36d46
eab8176dc27ff8baa6d58682284692ca75603f10
8185 F20101118_AAAJYH king_j_Page_069thm.jpg
8a6599ad44476e78b062158c07bd7907
cd0ebfa9c0afe94e0f29b47df9b8ca63315f93b6
37112 F20101118_AAAKCX king_j_Page_143.QC.jpg
e4b7f1c59c4c999f82b431ab6c78fb76
40aa697297ff1be6cfd7d4cc91bf4a91cde40a9f
913846 F20101118_AAAIOD king_j_Page_089.jp2
a531a9784d21b9e442a0aef0b709bf8b
f287ee02026045bb8b357095499c83c9be33e50f
4597 F20101118_AAAJYI king_j_Page_070thm.jpg
6a911c70c500588453b00eed43c36fc1
42f5cdc6df7f1477f4ccb1e805ad8b77b36b3819
2317 F20101118_AAAKCY king_j_Page_144thm.jpg
ca21c5baf190118ad4aa7d4d3e8a2f18
9de7e5f0a42ef6d3d2f4f7ffa97138bc0939e6fc
822550 F20101118_AAAIOE king_j_Page_090.jp2
f0f93feec10dd6156ec0386b84d667d3
84d6d151199641c9817a13b3f579d094d52fc99f
14957 F20101118_AAAJYJ king_j_Page_070.QC.jpg
3eeecb2a982cd715e2e8343bc8364125
ab9a264a3e223ff6ffe474a0625ed35a8e26e3a0
8911 F20101118_AAAKCZ king_j_Page_144.QC.jpg
bd91414032f0bcd2b19789311eb75583
90d30a2553255db5f2377d931ed46a29870edbc5
728115 F20101118_AAAIOF king_j_Page_091.jp2
a75a782bf8a2c71f249c667c1be15923
654b99a1beab6bf6f741c02d03169d028e15ec7b
F20101118_AAAJYK king_j_Page_071thm.jpg
3503134882eed8e9869e1ae5518aba11
37fe66c70e12cd5742ff04e5e47787510c5a9295
748849 F20101118_AAAIOG king_j_Page_092.jp2
68ddff8b7b9a19f8a3c605468f14872a
22afdfb1ca5e3615bb8bc5852e54bb928098419c
6544 F20101118_AAAJYL king_j_Page_072thm.jpg
1247c07e2213ac41c2fd29cc6218a881
b5138f2dd3592b925268bd27e3331a1d8cfc0bbf
875013 F20101118_AAAIOH king_j_Page_093.jp2
dd38b65f29ada5e485942b5460868501
09859d81f21a1bc934891ad19fbba6c73679d282
2389 F20101118_AAAJLA king_j_Page_029.txt
f04b50d1d57e64fa403b47857426e978
14d2ef91ec99dcd183b2d5fac8a72ae003e930af
21462 F20101118_AAAJYM king_j_Page_072.QC.jpg
8ec0c567c0f3e2e84fc09cfb52da9e8d
d1ae306a35a30f42a831ffed8208aa7fe941507b
876291 F20101118_AAAIOI king_j_Page_094.jp2
842360a19664ac08a8a08070aec33c17
40881fc402d5ab098440550b9d810d8ad0a05667
2448 F20101118_AAAJLB king_j_Page_030.txt
c3c650b0a2e031cb03f49de9ce699074
31abbc0e5516997979ba41cb088a64cd89c02948
6043 F20101118_AAAJYN king_j_Page_073thm.jpg
266406585c313ce0ecbbaef4a5d362b6
17fddf53d2a194562b75a19eb494737117acf15a
1015170 F20101118_AAAIOJ king_j_Page_095.jp2
c98db502883f695ff17f6a00af0b2c49
23ec411d072a842ce3e896312411c1d857eee3c9
892 F20101118_AAAJLC king_j_Page_032.txt
27117bf58ee8e38c69a141787da7d71b
6c1787cb1da7726e5f459d10aa4c6eb2628662fd
19630 F20101118_AAAJYO king_j_Page_073.QC.jpg
5be933005aefddb3e7e8859710fc9bad
35004e884753bbc4fe9f9e7ac38317c59f1c14fd
505971 F20101118_AAAIOK king_j_Page_096.jp2
2c05a30c4abc856fe9873399f57db2e7
440a86bef225be6ca98b5f38ccd73d1a301b0fdb
2236 F20101118_AAAJLD king_j_Page_033.txt
417625f7a66194dc84cb7682e220895a
3b4d824cc9f2914dd7ba2c7ac3d609a6ed7c07bb
1232 F20101118_AAAIBA king_j_Page_207.txt
4aabae61df9ee5d7acba0e8b78f6ee1c
b569077c1e0cb2730351f133e7f19a5fc2469568
7733 F20101118_AAAJYP king_j_Page_074thm.jpg
e6f97057b3c741367f9d9d8aa044145f
4b4c764ba07fe497516e1ebd481dcc57792c2543
387576 F20101118_AAAIOL king_j_Page_097.jp2
2556114e3932795a6f623a6656b44cc1
45919ad4368bbb19b382b703425d702b213f2793
2141 F20101118_AAAJLE king_j_Page_034.txt
26af4da3e09894b82698a94234defaf0
cc152ae15f7ce1a8b925cd1fdf8378740b676e75
4137 F20101118_AAAIBB king_j_Page_165thm.jpg
d3a1e3c9386cb083ba862db972314ea7
9ddd081f5c1d7454ffc5e7cab282071f039905b4
32625 F20101118_AAAJYQ king_j_Page_074.QC.jpg
fc682ec0aa2e58f5e766cd1250a51cd1
0962fc91402d99ee1670821162af56a6178806b4
F20101118_AAAIOM king_j_Page_098.jp2
54e4cb381afad2d3d2d159a8a44f60af
d01a0bcf6f9b9bd7c88ed9ef10d8017289b417e0
F20101118_AAAJLF king_j_Page_036.txt
af21c1b10912f5ccebac743fd1397090
afdae192b77c56089e56ae9b404fa25ef9ce7177
48399 F20101118_AAAIBC king_j_Page_067.jpg
7825e07a0d37bf24d1e2cc819afcd723
60267ddedc2e0e7bd835301258fd230ce9e270da
8963 F20101118_AAAJYR king_j_Page_075thm.jpg
0e60c9e44da2b6298a44d55c91c007c8
76e7fbfaa0de907aec8262c134531c5ccbd1b941
1051947 F20101118_AAAION king_j_Page_100.jp2
a126b79813a283a9a2fda01dcdbe979f
f0bf8746cd7005da652210f23099789ebfff479b
1756 F20101118_AAAJLG king_j_Page_037.txt
3daf657c96f0d55d38f62724e6b6e77c
48717e86fdc9c090ce9fdf9503665be6c93c0f0c
34424 F20101118_AAAKIA king_j_Page_224.QC.jpg
9232fb8ae947d8bef2eaccdb982711be
64bf5103a489489fbc50cd7cd79503db5d9f1f5a
952902 F20101118_AAAIBD king_j_Page_119.jp2
3381e76735cd0b9613a1fcfed6e68005
66454476203280c74067b1f3d2c28218b953e46d
30235 F20101118_AAAJYS king_j_Page_075.QC.jpg
6cdbade333e4b40af760edef8bbbce99
fd481421084a5cd8864f861be6c18f7706fa3e64
878503 F20101118_AAAIOO king_j_Page_101.jp2
5f989d7de097a40d46414a71efec7a78
490de78cc9ca2ab8f6ee3dd1025a8e6498dd4327
2298 F20101118_AAAJLH king_j_Page_038.txt
b7a884aaf6a4a7447ee53e760b7779e9
58b9d50cbc74d0a31741889749143a5a788cd630
8254 F20101118_AAAKIB king_j_Page_225thm.jpg
08e70457818efb223d48040169735a98
755aa14a63761e2ed4f08ab61f46e406a9ce8518
9334 F20101118_AAAJYT king_j_Page_077thm.jpg
6fb5a037b535076506f5b59666c5272c
e3766d6da73ed25e5da42ac67501c1811d1a0882
1051946 F20101118_AAAIOP king_j_Page_102.jp2
8ac015aec60baf2d71fcf8c0278a3f77
95e01d5bf2541ac14f83dec176c04518e62a9c94
435 F20101118_AAAJLI king_j_Page_039.txt
4ace046a1f2ddf2aa746852fe9b5b4fb
3f8b16a7caa68922456444696a7665a54bd3a590
35961 F20101118_AAAKIC king_j_Page_225.QC.jpg
1842777df63d1b29cd20abf568822ed4
9f3eee3337bb8c74d2a90fc42aff9bacde1e90aa
34050 F20101118_AAAIBE king_j_Page_099.pro
2772e23f717bb5a7e4c5e2f317d5dd55
bf9d18ed202fb9b064c8c7ac31fafac9ec6c74bd
36970 F20101118_AAAJYU king_j_Page_077.QC.jpg
9370da92d1cfeb1d1f61a79fbb685ed5
4d289f1ce0d66d707455e23a02c176668b7072df
1051984 F20101118_AAAIOQ king_j_Page_103.jp2
1d0fbc0789e1108659a21f5f5b0418fc
ef3346ea46bb44edc28c581ccd9128e0ae411711
2168 F20101118_AAAJLJ king_j_Page_040.txt
54ddb56aa41ea4a62470a68c9e6ffc92
7e835d8440148cf3cbf103c3e996439d0affb048
8394 F20101118_AAAKID king_j_Page_226thm.jpg
888d1ef64bc40d0923fc123644aa4e3f
68dca66280ad375d6da635443f478f936b3626b1
3712 F20101118_AAAIBF king_j_Page_177thm.jpg
740a0897b039c4839c80dcc374dc7e06
e20aed08c0bd6a31b746909719b7e15ff9141879
6519 F20101118_AAAJYV king_j_Page_078thm.jpg
725fcb1c0706f24887cee6b7c47ee53a
7c58756877913eabe296ec94015b83a2b8936522
1925 F20101118_AAAJLK king_j_Page_042.txt
324b01a5b5686f1350c1efe154eb7c9c
9911addf506350c8eeff4819ab8f2f77c35516a6
35539 F20101118_AAAKIE king_j_Page_226.QC.jpg
173b46cfc4445d260bd0c11ca6ae0d71
cf6c466cd26cdf777788e36c2dbcbd32a5df3b05
8449 F20101118_AAAIBG king_j_Page_173thm.jpg
0076d886fa50b61395003b3215e8185f
7151b84b3cbc828ff26bf1e1cc689bf903ce5ee0
20298 F20101118_AAAJYW king_j_Page_078.QC.jpg
04d06a19bcd9b813c2cb2fe3224332b2
f125e8bc5cc8a48aa18ecd65f48ec6620bf7b538
F20101118_AAAIOR king_j_Page_104.jp2
a684c520bc3de54d0939c153d2ae2825
3f48ab1e0424274892739daa7c2504c06611e092
2082 F20101118_AAAJLL king_j_Page_043.txt
74f2f1d1edcdbdf5f79341ed360113ea
78906b29e807004c0d2c7e250a5c1824af0f2069
F20101118_AAAKIF king_j_Page_227thm.jpg
7d610a780edbeccec0cf1deff4534244
ada9fdcc1566a9c2685664d6091b2d245184e0a8
2527 F20101118_AAAIBH king_j_Page_071.txt
4a91b61d9a0bf126f2d89f5a36ae02bc
e84d889d85d3d2acafbefa0d7dfc14d09751a80a
7889 F20101118_AAAJYX king_j_Page_079thm.jpg
4fe93f86e302a73866604c7daa8f1d4e
8b621ba322b1bf2c1c829e81846402068e2f672b
952092 F20101118_AAAIOS king_j_Page_105.jp2
1c8d4a30a3b1729672aab35e54311529
47a468f41a7e4bb49f7c090d2aecadeb33467d9d
2150 F20101118_AAAJLM king_j_Page_045.txt
ba7f449102cf76310fb9132509b78ff0
d3cd1042964f09c7cc201dfbd06b23781c11ce73
35040 F20101118_AAAKIG king_j_Page_227.QC.jpg
a286e1e7d5fc41e683a3ebe5b67e9484
68a61a08eecc811a73caf9619ba2feec309196d7
2683 F20101118_AAAIBI king_j_Page_225.txt
bba467edd8aaaaac7b4a1e386e88b745
d5fff90e3a41001823ea2fd53e26d71a1d424cb7
31103 F20101118_AAAJYY king_j_Page_079.QC.jpg
4863b25388e57adf79f852b093605354
a6e11f7821c6fbcbb8ecc57d7b0fb632e24fc72f
F20101118_AAAIOT king_j_Page_106.jp2
3504190a1a5c624e49f37471c9ef42cf
d3cf41a9e1de0dde0ea6bdf80cecfbfc764bc9f8
8236 F20101118_AAAKIH king_j_Page_228thm.jpg
874fca54bb544c24a9829874055243fa
c6891a44a9e3018f1b2596fcfde21f16fdc93d4f
3956 F20101118_AAAIBJ king_j_Page_055thm.jpg
21376ce8633e9e50601263afe1d56f10
c133ac765ca4dab488d237c9db7cfb052add7196
7148 F20101118_AAAJYZ king_j_Page_080thm.jpg
f876c87cf877f1ddbece65b3bb3350e8
c59c3aa424d09ff89534571ef9609567c9c79108
F20101118_AAAIOU king_j_Page_107.jp2
4e2ccf6e59ccfe1677bb53d1de51efd5
20562f6963ebe9ec37291749143b9a9f5ba78ce9
2291 F20101118_AAAJLN king_j_Page_047.txt
2c23af75c051d10d37aa7acf42ec3ffc
f7c2655f1e19fde2eef08087b4deb4eb062ce59e
35392 F20101118_AAAKII king_j_Page_228.QC.jpg
3947fbb2432a27ef5ff3249b6a052435
7ed15ecaaf11522445210bd9cb20c4d693816c6d
61226 F20101118_AAAIBK king_j_Page_015.jpg
1fd3c2180a7d6ca18cc0ec8133a26916
5b6d6841fad2f0074fe553c34e48474edd29e3ce
794268 F20101118_AAAIOV king_j_Page_108.jp2
1a2b53cd9c82e4ec9bf4ef1b3b7d4cf4
f5134df80fe2c1df76b912618b572ef2e6e70e65
F20101118_AAAJLO king_j_Page_048.txt
8594604a3d28cfa493e04b320974fbc1
c1c295da74c8e24535b2574b1a48dd704e09828d
109111 F20101118_AAAIBL king_j_Page_060.jpg
7e7b9c6fca21aa8a0d75c1423ef8c28b
4e70dd4989031e9ec075c27e90138e1d47165c76
F20101118_AAAIOW king_j_Page_109.jp2
2d94947fd13bffa6f092b3186d9c6e22
6c6ab908cdbb47c4dfbd50bda4d6f65f29b199f9
3154 F20101118_AAAJLP king_j_Page_049.txt
29bc811fcaa1165847c95179c6bd4734
6009e6f3f1e59df897d4c94d29419018d922068d
35476 F20101118_AAAKIJ king_j_Page_229.QC.jpg
bbf2114030d77f88ff8732f9ee6e6a07
b14ef84b281808c935c79156f2b8ee437ef3599f
2027 F20101118_AAAIBM king_j_Page_103.txt
880a8cf3d70203a4d173309954f66532
7a46710dfa694a67d75d75be832a14b8d8a5d7dc
747812 F20101118_AAAIOX king_j_Page_110.jp2
4bd4033215757a76527681db0a51f118
4524187db3fc0e217461db75ccf1e622859bc074
1959 F20101118_AAAJLQ king_j_Page_050.txt
edb052826b689f0865d575aef4c14906
4ccae98cc2201cd181ecad13e96e41f32454bda5
2945 F20101118_AAAKIK king_j_Page_230thm.jpg
7002bb656d4f3aa37d3da4eab21609a8
f05bcf2901aceb98a96e75fdcbfe15347e10cfa0
7552 F20101118_AAAIBN king_j_Page_167thm.jpg
90043fea955c096bac3b7ebf3faa1ac7
b7a6fe2730feb51c7e0d475b8146277c4cf96767
561758 F20101118_AAAIOY king_j_Page_111.jp2
f794250d71eaf640a029337cff9d2d9d
433a8e5f58d860cbbc50398de280f31f0f79b676
1781 F20101118_AAAJLR king_j_Page_051.txt
736c7eb5dee96ef762f5f4ced412b708
cffb28db7c35db79f6dfd3bdec24ebd58282f18c
3728 F20101118_AAAKIL king_j_Page_231thm.jpg
6b043037eae19abb7578ce83fe289ef2
46fb75e42c6ff93ea23d3774bbc7a48a017c8878
F20101118_AAAIBO king_j_Page_090.tif
b41f90239b370364b93b17ebd20bfe63
c1202e7a24f354b35466ddfdf093a5c51ec9acd5
825030 F20101118_AAAIOZ king_j_Page_112.jp2
c985ef1c2e0163095781d2ca69eaabff
cacce4c2109caf9b12d56560327abbbe9b9be890
2156 F20101118_AAAJLS king_j_Page_052.txt
c4ba61462dff7610977d9fdd0668c85e
8efd92d8560d136b711296e799f27997636be3b1
15159 F20101118_AAAKIM king_j_Page_231.QC.jpg
d1c5401cc5e192322ac68a11c17fbb35
80d1e26b8c4459654403d1666c1e3f11fd21543c
1051975 F20101118_AAAIBP king_j_Page_139.jp2
33e67864aaa9ed5dbb01c853538540db
e4b0742955a3adbcbebba702d2b766c6119f5416
741 F20101118_AAAJLT king_j_Page_053.txt
2384142b7bf9e2be2450bcb5c7cc930a
6af6e430eb7c7e137594a100e6111050dc458bfd
41553 F20101118_AAAIBQ king_j_Page_082.pro
4ae13700b3eb5ac224c78eca8e523a15
5531b500eaa298d706e90fc7342baa64a514be6c
2206 F20101118_AAAJLU king_j_Page_054.txt
68a78f62b6d202eee61f7732dc6f7a17
c948a996d4db57b9dfbb2fd911a52ee136d963e1
4338 F20101118_AAAIBR king_j_Page_015thm.jpg
63b42f2d15126e9e6779a1db9d988249
7b0ca8b32fed6b7837e161886a1eed9b7e69e6f4
1048 F20101118_AAAJLV king_j_Page_055.txt
a2240622ff296a713b46e8f45b84d06f
1d55ba3805aaa2c47dafaa27666dc7fe44629eef
112338 F20101118_AAAIBS king_j_Page_025.jp2
df7c82d224817fdb6762f024e115ce15
eaf85471b0bce71d4d8fc8b53edd3feab7625a75
2180 F20101118_AAAJLW king_j_Page_056.txt
c60e597145ed4b95a9c5069feaa6cb75
6d3be9d000a44f4168efc91d2bf6473000a8e51c
29018 F20101118_AAAIBT king_j_Page_098.QC.jpg
32e855fc7070080321322fa65b296159
392f54a0ee05998387775ecf4e2ea7d6558f5a81
1711 F20101118_AAAJLX king_j_Page_057.txt
214cfe36b4fbc949ed087df72855454b
5af00331334571ad3af8dd60d6f91ebe7cf9b6b7
F20101118_AAAIBU king_j_Page_155.tif
1f463052b4dd97d9ba449c7113b3ae5a
1946c2def31280d6f4cc1b3ce0f178ebe5406346
1948 F20101118_AAAJLY king_j_Page_058.txt
18ec32f76df12475a96c1ce608639d37
22030be5e15ee9ea4e2bf5be58591caff54eb63f
871419 F20101118_AAAIBV king_j_Page_218.jp2
d16acc3daa17caa76a4c726676f8a577
053451473b21125bb0913782c2057cf046627989
472 F20101118_AAAJLZ king_j_Page_059.txt
7e203874ef946531c91e96ed2e678c51
45a5fc503754606f40b4001c3a56330e61ce291a
12259 F20101118_AAAIBW king_j_Page_204.pro
d2ae38dd05d831e567cdc3de1eae61ac
49cbe4e5b49219fcde265f79053eb7543d8edbb8
F20101118_AAAIBX king_j_Page_142.txt
d800674268cbe45b18b0252c38be6066
fe353cb6231f8eaf73569a32fdff9d69d2978278
F20101118_AAAIUA king_j_Page_021.tif
a9e7caf424f47c15830c7d8c10e1bd4f
7a02832c767d3a116d36ad13f7777a9e22bd9ea1
F20101118_AAAIBY king_j_Page_149.jp2
040169888d4e51a3ab5b7749e4c372e4
6ab70ce7ed61f827cd7b0bd4205afea51986d534
F20101118_AAAIUB king_j_Page_023.tif
18b2011db76b1aa7f783074cf88f0d68
b587c6a603a9e462d1e8672bcb2ef58e55396392
493 F20101118_AAAIBZ king_j_Page_186.txt
afd01c664a9c6d435d1442907868a9a5
52e860d7a2fe84248a2d89e9a1c74b2932b2d0d9
F20101118_AAAIUC king_j_Page_024.tif
d756b323511bb118229d34c25254dadc
8081f34624210d79f3e9ef07cce664102cecc024
F20101118_AAAIUD king_j_Page_026.tif
3fbdee6ca549e606b9fc38bd43978f94
b829eb9b5ef83e8760edc43a6a3911552a6165d6
F20101118_AAAIUE king_j_Page_027.tif
8491fe07783677ffbc54d78d3ed08966
e2389197658b4b2a40b0821a9833e84c034bbb29
F20101118_AAAIUF king_j_Page_028.tif
0bfc7c7053d0a143f3fc52c70938f399
e7c6273fdd5463650a63515e1bd448d359a74fc8
F20101118_AAAIUG king_j_Page_029.tif
6777b117235228b798e7e23797a80390
bfb62d5c05130b2ffe1cfe68ded229161cb98b45
F20101118_AAAIUH king_j_Page_030.tif
897b7b55517b00181480aaf8322e2b31
6b31e0d5d053253efaab1a2c3bc2fb3ff0e0b518
1030 F20101118_AAAJRA king_j_Page_204.txt
d703b7793bebd5dbda7cdadb06ce717f
ca07ffaffb62c2985c4cef494e4654332f7f4e73
F20101118_AAAIUI king_j_Page_031.tif
e1907e04d1d27a01557f2dae38939690
ec91b3246dc5907d4e93fb24ccfdf044efda2053
1321 F20101118_AAAJRB king_j_Page_205.txt
50ef3e001d71809a0ad20abd514fae5a
1c68f9654bbb4150e3d7185561bf9b69006f9ca1
F20101118_AAAIUJ king_j_Page_032.tif
c0c16995a14a8ca58d6e8fc0ae7ba265
7306c02179b26fa15b44db21cb4ea8e61ea70362
1468 F20101118_AAAJRC king_j_Page_206.txt
3c786c2690623d5fdd54e787147bf11c
dc576dba1534c59a53634c20f9716184f9f6f6dc
F20101118_AAAIUK king_j_Page_033.tif
6975006de3a2b84b91b7b0095f161871
4bdf7df52f5371fde560b6236ddbe822a6680594
1422 F20101118_AAAJRD king_j_Page_208.txt
d842e8f9bc1377e18053449ccd29775f
8cec4ee178e535a9e23ca1a09ce30bbd12ad9e7d
F20101118_AAAIUL king_j_Page_034.tif
edd2c716fabee06fc0effd5ae4b68426
1f1cad7043c7c92757793abc313d347e0c3d1f42
677 F20101118_AAAJRE king_j_Page_209.txt
fdc2334eaa03538b31c6494e06495bd5
03c00b7bf6a07407c83adf7592040af8532f4190
69990 F20101118_AAAIHA king_j_Page_128.jpg
a1d5f3f65267dba54816d30bd4b02eca
ef449cc3d249cb78dc19681c810ef89c670e682c
F20101118_AAAIUM king_j_Page_035.tif
37f2015bbc7831cec84f79b8f5289d6f
108ee78ff89f5b56a964a66018276a68822ac279
1244 F20101118_AAAJRF king_j_Page_210.txt
71339f0b7da694de11891e4d0c88812c
7dc8a7d06ec77914d0f534dd38aa2e09f7f52b2d
108219 F20101118_AAAIHB king_j_Page_129.jpg
075a47f699edf10b4f97b0a181b02b2f
5094f0b79f67d34a0174c8ca12b2fac3bd652b23
F20101118_AAAIUN king_j_Page_036.tif
0264e8e86f7c5e42064205ce7eb3deb0
583fd15b4d45a2febaa920195fe8dc61e499c688
1635 F20101118_AAAJRG king_j_Page_211.txt
51576a952d3275fefd86ff8f637f7205
0f1266dceee3c27bf1efbfc3deef0acdfd505d32
82198 F20101118_AAAIHC king_j_Page_130.jpg
45ef23a0d015e4ede769c903ab33f21f
55ead94c71ebf6a26c45a8a150f69fcb8bc74033
F20101118_AAAIUO king_j_Page_037.tif
b975aeb53f61532502d99ce1e19766c6
f64f438f3479a4692af12dcd4052aba8ba9432bb
1392 F20101118_AAAJRH king_j_Page_212.txt
46a1ee38c3fddd712cc69091ae28790e
fcd9c1eaa67551fa91be72879ebdbeba350a8915
97044 F20101118_AAAIHD king_j_Page_131.jpg
b9dccc524b1e049c409072b71d21b0f6
534db9d6a3c2a37e8d65fa39e269c188556837cf
F20101118_AAAIUP king_j_Page_038.tif
aeb70388acff14dd0b02d6a2c433ef35
00c0580d21f82b80dfeb4da2343d858527cd89f3
1567 F20101118_AAAJRI king_j_Page_213.txt
ca61a7000c6432ab03410bf4be014bab
6e0381353143ba8a0c7ad3d58cb1bf41cc0b5579
104079 F20101118_AAAIHE king_j_Page_132.jpg
2d39fcb4779bc2177fa0335930af0359
cddc4ef541cc6296280a3ca25b0c46334dad537b
F20101118_AAAIUQ king_j_Page_039.tif
856498c3fe1c31d66d6efe65c72e737f
7eb10a40e9d4b7efacdc9471ef8542624c915a1f
1596 F20101118_AAAJRJ king_j_Page_214.txt
c522e2ec20b0fa3f9f8be861c7cfee5d
062de227d77f0191b5d9b7346e9950e9e0a55627
101136 F20101118_AAAIHF king_j_Page_133.jpg
2d987868f6a4c9075bf003f3f5b47c88
8bbac755dbe73a9643deca52aedc70f127756c8f
F20101118_AAAIUR king_j_Page_040.tif
91bde8687249188fec439b5ac7d8927e
1d223191a0e737e3b3f9b572896271bdb1fa1968
1311 F20101118_AAAJRK king_j_Page_215.txt
60ffb86a6091f5d5d71623fe30e10853
fa2e971bd2da8b61226aca6bba17130ad3185e87
71718 F20101118_AAAIHG king_j_Page_134.jpg
9ed6f6cb99664cf3867d641073899ae9
d4af6b42ec36ca6d0bd39991ed2864fdf08256b2
25979 F20101118_AAAJEA king_j_Page_067.pro
04239e4a421bab5c3eea4079e4eb168b
ac53d3f9f5af76f19708e1eb32af0fac78a9c7c3
F20101118_AAAIUS king_j_Page_041.tif
a5811a11f1cce621add3f255dbf44a6c
1c957648909280147df1494490fe591b97556a33
1526 F20101118_AAAJRL king_j_Page_216.txt
51f7ebd4186814fb8fb915da4ea13ff0
7edcacf13f46880548c738f148c592539ac57f5e
54587 F20101118_AAAIHH king_j_Page_135.jpg
b8bf0e26ba9c344c7c9dccf4eb4eada8
7269599940a3e85b1976b58b7d586ef1af3e7f81
4834 F20101118_AAAJEB king_j_Page_068.pro
739093aabb5c572aa687979054e5a5ef
94d3347f4e5cf3ef2350acc2a8180331f5df7b80
F20101118_AAAIUT king_j_Page_042.tif
89338919be02624aafdb718f5bee6a9c
771f286f93d5562e384ceae6ac39118006c3597d
2005 F20101118_AAAJRM king_j_Page_217.txt
d3617474a703adf5404d3a279543666e
de9d2f7d968cf6dcc196aa5dc0c14ad7767a87a5
30556 F20101118_AAAIHI king_j_Page_136.jpg
fc170587d992e9f9c26d5b8c23afd42a
da069d7724efcc57814bd9457dfc93bcddf9c14c
56462 F20101118_AAAJEC king_j_Page_069.pro
7bf483ea3b0f803b27b5520957ffd911
56e8c0a4f70be39669d4e5644570493a54d06295
F20101118_AAAIUU king_j_Page_043.tif
48ee64869255404c8aea41ec21dbc2aa
b97e9ca437fa4ce9088b408d4776ba53c6963ee5
2092 F20101118_AAAJRN king_j_Page_218.txt
c63c07595e1412dbbd7400738f25ead0
53971095cb8305e4e785367bcbd1056b1f45c7b9
55422 F20101118_AAAIHJ king_j_Page_137.jpg
04e1cf0dedcea2f8f44b76196dd37ce8
6c72360f02bc7d36bf858884b1ac9804ee60d185
13866 F20101118_AAAJED king_j_Page_070.pro
6784627ccee896ca0ffd696239cd109b
2c6153b31329fd089f0e016df6b7216d4088bce7
F20101118_AAAIUV king_j_Page_044.tif
f227366967fdfc09f1471ba77ff2a146
50575178975cfc07bc50108c46f90867bb9e4579
2508 F20101118_AAAJRO king_j_Page_219.txt
c66fa838e825a866c62ddb5c80518b76
91c0ee1b01c706f2a6d10a16f2fe428158d6292b
53267 F20101118_AAAJEE king_j_Page_071.pro
39677efe1da9a4df70e58d22c5ba80be
0e8ad5c3cf73496fa61fabf49c9cc9bc72d83266
F20101118_AAAIUW king_j_Page_045.tif
00f92654259351dfbe460ef3bcb373e7
62e86c0a14ce46ea407a82f522220d0f684045f4
329 F20101118_AAAJRP king_j_Page_220.txt
7db1cf2ae88ce4664a4fd81f7aa34fe0
3353a38ed6f303cc949f99a46046ac55bd961e75
39885 F20101118_AAAIHK king_j_Page_138.jpg
9755ff0329cc0e52999b456e593748bd
69ef1570420e3042cdcb304276d57eb7064e8561
21051 F20101118_AAAJEF king_j_Page_072.pro
61df48636a2346e504319bb98542dfb8
f248a93264dd51e8703e0b94e9d70910f0cc3eac
2505 F20101118_AAAJRQ king_j_Page_222.txt
cb385baf179840220e8c8268d20f77df
3bec824bc4ae2e7b96055d847436ae201d338c72
95665 F20101118_AAAIHL king_j_Page_139.jpg
c1425d561f3b0b9634e223d35c95d2d2
6b9792bf32edea8885f3396475eca401667eb188
F20101118_AAAIUX king_j_Page_046.tif
384f4775a822ddbb48e495c4e1762d43
97c88879e3d0bfdcde00ae84d34f0c8959fcbc44
2480 F20101118_AAAJRR king_j_Page_223.txt
8d35d55b6bc39efeda75b7fed1c65953
2a1a9caeb578746ce8b5b6825a4abb6c9be39812
67859 F20101118_AAAIHM king_j_Page_140.jpg
a0668572aaebe03ac788a018bd8cb22e
44e11f01773b6d9469cddae7efadc475db4a5f95
50322 F20101118_AAAJEG king_j_Page_074.pro
263bbef88c63db9e3778132124c53135
02514e414cd493b5ea7957a848f825ff61e060ed
F20101118_AAAIUY king_j_Page_047.tif
34222fe7c11ec35a8c92f7e8a57c03ef
8e5d5803d748d498357fa0e6f15e84cbda6417e1
16274 F20101118_AAAKBA king_j_Page_111.QC.jpg
b286ab3c5f78a759a05765df9b31f97e
775fbd67102ff8e6f65efb859007e759ecd427b9
2534 F20101118_AAAJRS king_j_Page_224.txt
9df1cfde99f01e8106829bc772ae75fd
3be49fda6fa2326f20041b32e847e834455bc532
63465 F20101118_AAAIHN king_j_Page_141.jpg
333c3c49be6cd06c58542315c53e49fa
a135fb0d7dc740b1478367089fa825f9ee743164
17060 F20101118_AAAJEH king_j_Page_075.pro
3b3a4a6f5918f8a264752dd8a0fb255b
ea9067df8aed9851444e6fb26f1ea513615b93b8
F20101118_AAAIUZ king_j_Page_048.tif
545d0a03caf6d451245c73a688b9528f
73edd21bb23ccb17654d7b4509f0286ea33e2163
6230 F20101118_AAAKBB king_j_Page_112thm.jpg
f28347d679a49576612c90a54cb7cbd8
db5e85a588031599a13372ad0b829ece8a6a524e
122394 F20101118_AAAIHO king_j_Page_142.jpg
73942dfe6dab7c5020948cad0ad0a409
9e1e8999e8be30c08b24a031512a9a775c5a9214
49835 F20101118_AAAJEI king_j_Page_077.pro
edb821551538edbd25cd0382be228727
e393c946ab3582154b26aea2f694f5afd533bba9
2493 F20101118_AAAJRT king_j_Page_226.txt
aea190d68cd983ec3f4b1c53ed8d15bd
1fb2c4d67f2ccda6d95495b0a2eb7a56bbf5640a
118003 F20101118_AAAIHP king_j_Page_143.jpg
815ee5cc36d785f2e5b7127dc621f2b6
908f2fa1f76d4378875028fcb2bd663f9ea92145
13973 F20101118_AAAJEJ king_j_Page_078.pro
f7e660946964b8332b32e3b4485655e8
b56f7910f9f7808997d94346097ecc967519f1df
23768 F20101118_AAAKBC king_j_Page_112.QC.jpg
56243aa41429eb55f7f08da053ecd3a6
5d403edc6cceaa6cf181030e21b9db62038757a1
2539 F20101118_AAAJRU king_j_Page_227.txt
7eddcb829c39090984db4291e0df5768
32d557eab8ac3383c496b649048d6eeee4bda0a5
27449 F20101118_AAAIHQ king_j_Page_144.jpg
dad26feb444ebd69986ff4a7e8a29bb9
c0aa5fdddf94a047cd36abe8b419ce03d6c3749f
52438 F20101118_AAAJEK king_j_Page_079.pro
ba787009a0e2f33cb7e9104baba8d492
cd3b6b2e1f6460acbe028674a3f18ced9cb50727
6068 F20101118_AAAKBD king_j_Page_113thm.jpg
1659a630aad0b25a263434d7a11c4d0c
036bfad7d823a55980d607f1f83efb38c37e4c19
2585 F20101118_AAAJRV king_j_Page_228.txt
9d2caefdea931102d374c8d8d92d7025
25916971fe8d66327c3063db79d985564fdf455f
103726 F20101118_AAAIHR king_j_Page_145.jpg
78ffd468c4b35ef890bfa677821d12f9
1da98b4880cd47b9f45e9f7d659e951269c6a277
46914 F20101118_AAAJEL king_j_Page_080.pro
806438e21757260a656e726b44291e77
0f913d124e36bc189f7406b602ad0859d6e54a4f
21291 F20101118_AAAKBE king_j_Page_113.QC.jpg
c716b803fbbbd957dcd204a8ab84dafc
0f224796a5b527b7b900967215e6c4fe8ba63cce
2588 F20101118_AAAJRW king_j_Page_229.txt
a0beda40729ef0b6164273cdc3f0f9d6
2799cb71cd29b78e247e83e7665b796c6dc5444a
117401 F20101118_AAAIHS king_j_Page_146.jpg
12347e4f2bd6b600d9c42b6fe47dd023
9acaabb7cd6b4a7edc193416012e9d389e1ebb2c
5749 F20101118_AAAJEM king_j_Page_081.pro
7cf78fd9c1b50b5aefd64a343376b292
f8ef2c29be31f10c47be9edfbbaff3ee5bbb2ebb
6038 F20101118_AAAKBF king_j_Page_114thm.jpg
bbe3e87d920718aef3dda78a3ef7acf5
7012a003e22610206a1f48a3f95d8c8e48696f5d
889 F20101118_AAAJRX king_j_Page_230.txt
f3570e488e1244314d570a463c5b3240
7de7feae325ac0b1ebf09452a12579b2c22348d0
134618 F20101118_AAAIHT king_j_Page_147.jpg
59ad9c1a6d92bf1e2799f53575223f5a
aed548de7d160f4c64af60219cfe66b435319c56
20996 F20101118_AAAJEN king_j_Page_083.pro
d8c07412f02cb591b3b9b3f08f89e351
5a5ebd6b57fdbd282d0c3bec57085d4a4b4e2730
19953 F20101118_AAAKBG king_j_Page_114.QC.jpg
264daf3c7b327aad865ab54f93ccb040
c55023e3e16b91ad7c0dd13a41dbe18fed12ea76
928 F20101118_AAAJRY king_j_Page_231.txt
28a3e2d375fb0ecd3735bf18370b26c6
0e7bb3ec853277c1e196749e088968196e9eeaad
152007 F20101118_AAAIHU king_j_Page_148.jpg
e8a9a4ae66bf8aa40c65f1fbb0a95526
4af912daee8ad488461c4675525c211e6a60c41d
8518 F20101118_AAAJEO king_j_Page_084.pro
8c0ce949a5412603fe5efad5724aa48f
b5bfa14b1febb010a4f5ee76cf05a3d412725f92
5182 F20101118_AAAKBH king_j_Page_115thm.jpg
f658835e67be2927a8978c8f69241472
23906074b98cef3428436d2e505a3c1fc7ecd4ec
1916 F20101118_AAAJRZ king_j_Page_001thm.jpg
4c889146bfa44dbed9ec2656f64040cd
20a3c59959ddf5807f7feee6769b63bb42737b07
136953 F20101118_AAAIHV king_j_Page_149.jpg
0ad126ffbc274110cb767fbfb4c1cf92
fd9814f5319fa3fc77272bd1f40e10bf89fc3497
9918 F20101118_AAAJEP king_j_Page_085.pro
95c332074b5cb241d570f00d65f023ac
5cad854407bbbefb560dd36f5b4c78c1689b07b4
5666 F20101118_AAAKBI king_j_Page_116thm.jpg
0a8473298adc84b3aaaae47c6eed3b65
9a2a7539ecb3234d3c758f043d6c79f8d27fe63f
110378 F20101118_AAAIHW king_j_Page_150.jpg
4dc42398ec04d255e0cd5d6e400c6b8d
00516a0ce5c7a92cf0a52904db0c1c78b3539ae1
46545 F20101118_AAAJEQ king_j_Page_086.pro
b28f33a0abfe66dfc6d4e0340ca4d938
25137ec17a3100e864b95881cbf71cd1030587f2
5508 F20101118_AAAKBJ king_j_Page_117thm.jpg
02f1172615a0f4ffd508a77c0955e002
75e582be355870e36c9838bc5ca142669e4cdcd6
121957 F20101118_AAAIHX king_j_Page_151.jpg
13389602f648acc48670b186b74f8fc9
072c108bb42a7f9bebd1333de7681e5156506b85
13999 F20101118_AAAJER king_j_Page_087.pro
80263c5f9d5215dd1403f3f4199f0bfb
94012be3cf9cf695c64a14b2f01ecaf4f993c553
5343 F20101118_AAAKBK king_j_Page_118thm.jpg
c2e98da6d10d90bcd1c6c3eb55e8fdb5
94523eeba64d391be703e085fea598849083a48b
115946 F20101118_AAAIHY king_j_Page_152.jpg
ead2c6e4764153e7ecd4a0686a5b5368
b06c115fad88f0e433930bcaa783da0a4628e909
29996 F20101118_AAAJES king_j_Page_088.pro
9c6695f2e88d6fad70d3840ecfed210e
08a97010a4851496e45cbea58c6d21ce81be2e0a
19597 F20101118_AAAKBL king_j_Page_118.QC.jpg
d48495fd3eb1e63f6f8a07e77224d9f6
afb8c78e255ae5a7e2db2ccc40f352393d496d0f
122476 F20101118_AAAIHZ king_j_Page_153.jpg
5028d54c6569bcf99653c69d2200e675
2ef2d299fc2072f3091c43b93ba4f87662579c9f
41549 F20101118_AAAJET king_j_Page_089.pro
3ad7a65bdaaa80d8fdba9dd4d05f2fb6
383b4657d8bf1fe33f5608e9098bba0653790b63
7236 F20101118_AAAKBM king_j_Page_119thm.jpg
58e007d88145e7002036892b09ae90d3
f5efd970a34dfc3ac2a7a0558a1ddf83b0d104f5
17148 F20101118_AAAJEU king_j_Page_090.pro
ff704aafba4bc94999652ce76fd981ee
3ecb281a08ee450a38bffe378f868d87ccc62412
26982 F20101118_AAAKBN king_j_Page_119.QC.jpg
b36d6810e7fa86639fb583281f17046b
224d6595e065bd5b62717b13b4a9db2cacfb531c
30988 F20101118_AAAJEV king_j_Page_091.pro
5e97e9aa0508097dcacf48f5db7a24d0
3008d045785e3f777195fe55b0d671086e3ea879
4170 F20101118_AAAKBO king_j_Page_120thm.jpg
8987012a51f49a78f01fe41316969401
594cbec2dc671cf5a4c66959b7021eb79813b3a7
7697 F20101118_AAAJEW king_j_Page_092.pro
d7e115b3b005aa6dc4481acffb0644a9
ee6c19623c48c9e872b6efa2a9e81acf1d0356a6
13773 F20101118_AAAKBP king_j_Page_120.QC.jpg
379f7c115b8c7a435781e212aa71c03b
bffa39299cdffe7543fc44f1decb7d86f59b6adb
37542 F20101118_AAAJEX king_j_Page_094.pro
bedc9b206cf035821e7b1c45e6469e07
8e369fa1338bbefe3675684454ccb2c917878f9f
7453 F20101118_AAAJXA king_j_Page_048thm.jpg
2bbd38ca326b809b6edb5a9ce921bf9f
af3391bc21e85051b7b7ed912ed9ef66e73d2a5f
5715 F20101118_AAAKBQ king_j_Page_121thm.jpg
54f0bddf25e754e1c5cce640cacd258f
ac9e49bffd3d1e33e35f6c4ab63ab842dc5b4010
19485 F20101118_AAAJEY king_j_Page_095.pro
2af4049b1cfe7281770807afb42b6eec
3913c1b0791a3a46d3f1d0760d0140c3e490b168
31231 F20101118_AAAJXB king_j_Page_048.QC.jpg
921d6a5d54b512caf12fa7aa0cbfce31
751b366dcfacc62bd117d09ab686f569f8f10d68
3574 F20101118_AAAKBR king_j_Page_122thm.jpg
e84d6860b868883243098032fc619310
368cb42ed22f76cae259fc0f75dfecbda82608d8
10745 F20101118_AAAJEZ king_j_Page_096.pro
aded7231677896ecd78476a776c1ddd2
4089538f9cacd4d5ab97c826f40ba2ba05e90b89
39465 F20101118_AAAJXC king_j_Page_049.QC.jpg
17c60c6e8a66c91ed9fd89889e0f0e6b
eec53aa3d0157039f30fabcdf7575a4659395fc7
5899 F20101118_AAAKBS king_j_Page_123thm.jpg
77be4ad693e1449c6d3d7bd6bc9e3c67
975ba727fb84504287b9614ec25f9321df763205
7229 F20101118_AAAJXD king_j_Page_050thm.jpg
0a161296c520e4d59e207c60bfb7e716
2cf20d9766d4f522ae61745c306939b775d5d588
21149 F20101118_AAAKBT king_j_Page_123.QC.jpg
88df41c25a7929a82d57b9e3595af62e
6cb6a685a0f0502222eeee39cc759e8da814bd52
27894 F20101118_AAAJXE king_j_Page_050.QC.jpg
f60b7788c7488687e6cef7dc1da86d73
6838749eaf6fce82e87bfcd6a51df3a2cb0524c5
23385 F20101118_AAAKBU king_j_Page_124.QC.jpg
59bdb24ec5acd65ad25bae67ae8ac4f8
837c07e186d7cc9be09fbf948c40a27e1b46561f
F20101118_AAAINA king_j_Page_060.jp2
06cedb103cdd5763e8623cae6ea66654
58b9d29e2f3c514548cf93e8fa6518c856d12433
6407 F20101118_AAAJXF king_j_Page_051thm.jpg
5acae538a15803577a1f83b8ac641c1d
9caea86ed4f1a2dd9e76e4326d07444792fbb51e
8626 F20101118_AAAKBV king_j_Page_126thm.jpg
c060a721e85584173e73885c052861c7
c0d48c792316e675f6e808d501a75be7fcd32d68
355615 F20101118_AAAINB king_j_Page_061.jp2
996ce3a0c5c28f750126cbff7414437f
4cf4a3f47b6ac7cc98877eb732f14cfa2ef90aaa
7597 F20101118_AAAJXG king_j_Page_052thm.jpg
8fac068aebe343597f386c95649aa040
3e88e8969a59da9d08f8dbf679a5e1a90507a5c7
5635 F20101118_AAAKBW king_j_Page_127thm.jpg
1f642fa59b383ed1d84cd83b8e53ec76
979f367e08fc2e34ac49c7abf41b5ac2e082987b
760213 F20101118_AAAINC king_j_Page_062.jp2
4355142e2b7ca5a84774992c9b517f35
9736c8787403db90d6aacd950190548a6259a824
31710 F20101118_AAAJXH king_j_Page_052.QC.jpg
68646164d16007b4e34480e84d5b2e8f
06d6cb051d8f3e79b2673ccba39f9f22136ef4ff
20874 F20101118_AAAKBX king_j_Page_127.QC.jpg
855a3a4923999ace739902840667fa6e
de67c4a2969826b7bc621ce84e27bf68e77a2ba0
502646 F20101118_AAAIND king_j_Page_063.jp2
d1b02d01b0390a4bb569f5fa2707d9d7
dba039ec8219cbb9d6fc9a74d82306c35497ffd3
3590 F20101118_AAAJXI king_j_Page_053thm.jpg
0bbb3802b6e16367d91f792e8d53f102
958f8323ba0fcc8f75b4ec5e8972bcef35c0b062
5825 F20101118_AAAKBY king_j_Page_128thm.jpg
918ca1dd5225717003f3e6417ab726dd
0f116fc8f3d06e811129f8c08d28aaf039f0961e
F20101118_AAAINE king_j_Page_064.jp2
a8db79f0bbbcc36c936c10e62c98bc77
b7f30d5a7b0b579e985d5219e059bc1f60365959
12490 F20101118_AAAJXJ king_j_Page_053.QC.jpg
49b247dfd2ab9ebb26f78ad3942db32a
2a4762a60d84ade46f401ab416060806aa7db01d
20818 F20101118_AAAKBZ king_j_Page_128.QC.jpg
669225a37e0b0e67168106c0fb50018a
24eb02253e510e7fb84e6650fc72f3ae9769e522
1034012 F20101118_AAAINF king_j_Page_065.jp2
4e04e2b442bbea0dbf8e71248fc8c4c5
3f84201ad62999e39dec1c7f6f6c5b28526706e9
F20101118_AAAJXK king_j_Page_054thm.jpg
eeaf0f538a620894b0e03b42a822e9db
5dfe0b1785b6f7dab9353a5ad114c3a93f80a6e8
773085 F20101118_AAAING king_j_Page_066.jp2
cf468b815eec453e2f1bc9703508c490
800337689ff38d56fc769edce906c14c2f7bd44a
32759 F20101118_AAAJXL king_j_Page_054.QC.jpg
47c1135ebbf32d9a9efb9cf7eb458cd0
924c5d5f141faa6e9baffa298d0599fa14e62771
478409 F20101118_AAAINH king_j_Page_067.jp2
8c57830c842ed41a492bd8aff7d7751c
99ef9932aaa896077fc7a4d12070997885ca6f7e
22213 F20101118_AAAJKA king_j_Page_231.pro
01729def9131fa2d5d8cf97eafb7f964
4c41d0b15cde098c9bbf0a7614a81b5b8232120f
14964 F20101118_AAAJXM king_j_Page_055.QC.jpg
5e0a0a49a9add82110ef97f659a3e856
572b4275c455aafb9537ae5de055be0a1d15ed46
1025852 F20101118_AAAINI king_j_Page_068.jp2
7e19066e5614862f6c075d49c98981b1
b7bf753f6f5f1da12401c0a3adbd19db82a13273
F20101118_AAAJKB king_j_Page_001.txt
d0602f365fb9f73f0224be840f4b2627
e42bec20185109f6f75adbb651372fc5c5c2d77e
7567 F20101118_AAAJXN king_j_Page_056thm.jpg
5c349c7122783e082d6fe0558897fa8b
ee12bae9e7cbe60a93aa459016a2d182948ac566
1051948 F20101118_AAAINJ king_j_Page_069.jp2
ca1d7eac7838ca342c07e4adc39ef3e0
60a0a9665838ec746ddc7f1f1ff9b462eead42f9
95 F20101118_AAAJKC king_j_Page_002.txt
e95f683da532f87a776788f4ca5f7dfb
e49d110073cbf471d552c2d1fd5f938d7e908e1d
31291 F20101118_AAAJXO king_j_Page_056.QC.jpg
93e2255f2e06f58bd540342a0efe96d4
1b8fcd45681c990addaa09a116f8a3b88c91c84a
468211 F20101118_AAAINK king_j_Page_070.jp2
48ecd16fda053d9cdb4b762a51c9f929
a606fa975e6ad7e9e6f1b64a3f3ceb8694e15b7f
829 F20101118_AAAJKD king_j_Page_004.txt
0fb9e51fa4cf7a3927059ea9bececf27
281edf27411670a55c8de9590846fa906ebc19d9
23967 F20101118_AAAIAA king_j_Page_139.pro
c7cce83cfd894bc1681fde9869b0be27
cf64936a5d8bf99f1af3a3876cf3a94b8c6b8689
20657 F20101118_AAAJXP king_j_Page_057.QC.jpg
690d6aa144dc114d759a08a5e2c7d2f0
c5f025732612b231945a5035fa796f4308dd638f
F20101118_AAAINL king_j_Page_071.jp2
9d4dc3b0f26f6e2da30bb3dff19d0a15
f2ee1482d167b134bdbf4e43690cd85e469003f2
2849 F20101118_AAAJKE king_j_Page_005.txt
c84b625b596a3d617f09be7cfce389e5
be697bed226d5488f187fdb4a7e2e8de24612982
25637 F20101118_AAAIAB king_j_Page_105.QC.jpg
036211144e890a0e7d907aa1e8414856
eda8947193a5620d828022270ff64e1e1a448d17
5459 F20101118_AAAJXQ king_j_Page_059thm.jpg
960954b43a771bbf1331fd9e3e5a1751
ac911828e3e638bf7d74b668336d4f8d95008de5
717031 F20101118_AAAINM king_j_Page_072.jp2
7d8a8d096c63f1d010075558931b3de4
fcab0c6a9ce1adb92137dc976829c306ef26f17f
2378 F20101118_AAAJKF king_j_Page_006.txt
b9780d063e9bda7e875e6e83537067f4
b9561750c50ad59846671c4dafaf7cc8bd8f9eb7
622 F20101118_AAAIAC king_j_Page_096.txt
f880d36ff2a6bf3cc6f8dd4384ac4e5f
f52e50cbdc089819f41190815875800a1b8cf905
22074 F20101118_AAAJXR king_j_Page_059.QC.jpg
8cb7ad01776e99bb3c11cd02c57dada6
ceaef617395e0ef6100b967b8477f0cf4a7fafd1
714404 F20101118_AAAINN king_j_Page_073.jp2
57815996e8703e6223632a0ee9e809c4
dafaf625360536ee46ecd92197362bea3aad5374
503 F20101118_AAAJKG king_j_Page_007.txt
57b38111bdffbd2899d0c78b405ec9a4
1f2e1979ec0d4f22bd1aa753448c049a0803cd55
5837 F20101118_AAAKHA king_j_Page_208thm.jpg
fba0e9685f2d8f5420ee879ab51bee06
d14d7bd0c49cf78f3913900dc3fa15558b2a4ae7
33770 F20101118_AAAJXS king_j_Page_060.QC.jpg
1cf5351130e4e6d22307c4b2ab6a7a11
4c328035968e10a66b4a55622db7e42563a0f040
F20101118_AAAINO king_j_Page_074.jp2
a3f7b7ba884dd3f7e46108a5a81c0d3f
2562b2f6a9d6fae25c29bb9f2cc2987ca78a0d12
2340 F20101118_AAAJKH king_j_Page_008.txt
504aed92ad1c90c7f2d34a6c3df4380b
ca61bd2e2d14c556efa2f45e35c570ec7575bebe
2911 F20101118_AAAKHB king_j_Page_209thm.jpg
59ef1ee667fb73719b07911525fd994e
c0b3cdec89db2da7752bfda3d5b80ed407a2343d
23331 F20101118_AAAIAD king_j_Page_204.jpg
b5dfe58e26f24ac030d2469e05cb138d
8b3ccfd7755800f80320294d5597d997a05c856f
12395 F20101118_AAAJXT king_j_Page_061.QC.jpg
f3a8ebf1ff3c6098b5c2c51004fd8fd7
cea19e37746d44897056e208700890010335ccdf
F20101118_AAAINP king_j_Page_075.jp2
4362a90e09d8f9936104bb77693b43a5
e46673dada85ca0e6924d3954367ea4c602d518f
1222 F20101118_AAAJKI king_j_Page_009.txt
8546456601c2beed0225fa7c98ddc05c
b58d21ec4c3a95ae0a61dd6592c6169ecc03833d
10429 F20101118_AAAKHC king_j_Page_209.QC.jpg
09b553f68915a9f42697cea7d66fc12b
36446cc760ac94715999060096a3fc556a5ddd50
73961 F20101118_AAAIAE king_j_Page_018.jpg
ce5269523fee40a735963abba5c02828
88009217a71d8d638b260c9e5bccb18bafacab25
6431 F20101118_AAAJXU king_j_Page_062thm.jpg
1c0264912d6f492adc995c03f88a7dd9
1030686b3b79f1d56fff90436c6f3ffdc6f62a7d
2775 F20101118_AAAJKJ king_j_Page_010.txt
36d41f38ac8d398ac7964e94c6e5434c
344c73ada532464fde4631da5692a44eb64983bb
5831 F20101118_AAAKHD king_j_Page_210thm.jpg
08901894736e1f23edd5a526f0318554
f0704d95ad7dc9ea549938d2aeda04a836ba3e42
107381 F20101118_AAAIAF king_j_Page_083.jpg
7444019e367aeb89a7ac7ec904c87b56
3fe3caae27620a9ab3c50a050862f64b833be72b
21960 F20101118_AAAJXV king_j_Page_062.QC.jpg
c1cc7bb4850cc6ad4f33ba4d322a0cda
7b4afcf0a0a65b16e7b153d886ebe11f2502b74c
1051913 F20101118_AAAINQ king_j_Page_076.jp2
a41a6c0d36a2746efbc110bd76536b33
e60551ef11a1fb89a273a45e1554174f74b5862a
2900 F20101118_AAAJKK king_j_Page_011.txt
dd2da74cb9e9d00c78f4f78cb8c32938
226e5f288e2cf176e7e79652e5d18ed730967d9d
21265 F20101118_AAAKHE king_j_Page_210.QC.jpg
ff70a43bab1f9e2f815c87007e0ac4ed
1e36307e41a83bd7e15eec7ca5735773101fc02b
29383 F20101118_AAAIAG king_j_Page_167.QC.jpg
f162d8f3df5093b70c69cd564a9e1855
2bbaba78ce8f36e0eb4ef83644734d7b696c2830
4920 F20101118_AAAJXW king_j_Page_063thm.jpg
6b0aa08c2ed4aaf71bd3ef4a7af51578
510c0a8e19410c43060eaefddd54d40874b459c3
F20101118_AAAINR king_j_Page_077.jp2
2b81842f639664f40021fe453df23b66
d4bb729a58a38caa561ba7dfd5be0152f0129809
3026 F20101118_AAAJKL king_j_Page_013.txt
f2a2c82f4bb97c543fac695ace5ea230
76739712ebc1c8e8b924c895d7181ae1e274ab5f
4796 F20101118_AAAKHF king_j_Page_211thm.jpg
3f0e8ecfeafd1f4e4627c517ffe1f4da
2ad3d19c1e10df57c7da392a92511f0ecb69dc7a
1543 F20101118_AAAIAH king_j_Page_002.QC.jpg
4fd221b9a187d7eda28aaef2956c311a
f6398030f9bd86cbb493a5f410ad3e7db6a11ce2
16559 F20101118_AAAJXX king_j_Page_063.QC.jpg
4b41487c12c59c83169811e411f73b42
726aa4759000eff0690fcddcd81ad957f846f774
595696 F20101118_AAAINS king_j_Page_078.jp2
d9da2ac5a4747b22d6d5e9800252d52e
933c0e6ca129dad9a618e2b33a8f8dc0aeee62ad
16978 F20101118_AAAKHG king_j_Page_211.QC.jpg
a82cf3960c9a67e0a68d77e28ce19073
a765a65418e138000315191e1238b8c7a553c981
F20101118_AAAIAI king_j_Page_220.tif
db64182cb59b63a7fde8e30ebe83c51d
63a2df1da2c380531618d790b5dbab393bd6946e
5765 F20101118_AAAJXY king_j_Page_064thm.jpg
9d84f43f122ce70e8c5d375c924cc6fc
b90ba0660bb32b88267c27cb892907f23dd9cd9d
F20101118_AAAINT king_j_Page_079.jp2
15915f27a3cd6d0fafdce9d9f45e3d33
01760927221c1fdab39ed243025d9cd070746c24
2902 F20101118_AAAJKM king_j_Page_014.txt
d7e7e641228159eb0784d1f455b0a12c
6bb5fb0987a6f2712133496dda1b344cba803ef0
21286 F20101118_AAAKHH king_j_Page_212.QC.jpg
f12c9d009fe972c6969bc718cfef2d16
ed771e3c0803fb509427fb1fa911eaf386f729f3
2113 F20101118_AAAIAJ king_j_Page_035.txt
486455a040c2664a2cc6198937e85aac
22ad386ca1eadb294a3c96715d039d0ce9c8d352
1029044 F20101118_AAAINU king_j_Page_080.jp2
a8b36ed8bc57590c8a96cac0063b246e
791155b5496abaae1e0d0948056de946b89e489f
1082 F20101118_AAAJKN king_j_Page_015.txt
89241c6ff54d0b8bb4e090dd36f2dabf
bfcc8c56da4a0986bdf92a3f4c701c73b60a3068
F20101118_AAAIAK king_j_Page_022.tif
cbe91579b31a024fc9b5a8c8c9032b91
65a045c7afdd25fa3051674509dedf6fd063bea2
23622 F20101118_AAAJXZ king_j_Page_064.QC.jpg
6b3ad8fcc941680379cb9b7a0bcadb44
1b6c3463b9f58f6be5471d80a04de281a71224e6
F20101118_AAAINV king_j_Page_081.jp2
a029695b1cb45d3cb949c836b48e9696
966ee0bd3d23ec2f4c89b714a7b6eb7cd833a3f3
1501 F20101118_AAAJKO king_j_Page_016.txt
833598792fa96c0dfef5fe3210522c20
a125a86134b953954b5001c17e9a6da5224c67a3
20579 F20101118_AAAKHI king_j_Page_213.QC.jpg
23c48fe147a9a868f811184e2922ab79
1b8e42fea780a6befe2f6dda54baa6ee3b6ffd11
43177 F20101118_AAAIAL king_j_Page_076.pro
d4a5aadf6bdda1da077224bf58edc715
8c6e084084ec58e0483b0060b24e063b65c2e59e
965075 F20101118_AAAINW king_j_Page_082.jp2
e5cf7e73039f139ccf2d34350cb4a8f4
61584a920f4f5faa36e5fe60a8f8d7b7468e4c59
1460 F20101118_AAAJKP king_j_Page_017.txt
1dc7fc73f663fbf670cc72c6ff3fb4e2
8e0a802919734d7d5cc2ed05b274b9727f1cb2df
21770 F20101118_AAAKHJ king_j_Page_214.QC.jpg
a89f4e5fd8b0ab9e0fe4545c80108f8b
b1fe3794796d3d5397816c8b5af39ec3a9bfc44c
2145 F20101118_AAAIAM king_j_Page_145.txt
3800609b1fedd1b40779c20d0751aa8c
2b690dc323b18cb944557dd5c26c13d5a375dcc5
F20101118_AAAINX king_j_Page_083.jp2
7d7ec10e28df6653c99d12ae2b989226
8bfff87dfb9ecf06f5d4754a3b361082abc7eb99
1614 F20101118_AAAJKQ king_j_Page_018.txt
9049d62bc97a3a66a6552499846a23d2
ea43c3966e7771760e592b0648769ffc585a5225
5957 F20101118_AAAKHK king_j_Page_215thm.jpg
a611c048973b49070412861775945b44
aea4ec28423b25d05da6056aff2b02e2761c3f15
783870 F20101118_AAAIAN king_j_Page_124.jp2
a294c726b03de1ca0a2f9b1e2f3a4eaa
bcc76ffa3e5310602e1e3e03a1866f8a59dcb517
281727 F20101118_AAAINY king_j_Page_084.jp2
77ff55cfff8dfce77d85fdaa3034e4eb
a743c3352f22ce694039bfabf0954c51d49c3e03
1469 F20101118_AAAJKR king_j_Page_019.txt
5fa8a6b616adb18cae504bd49a4176af
7112ba32aafa76e73f2a4caef1d77f0b9ae14171
21180 F20101118_AAAKHL king_j_Page_215.QC.jpg
247bcf0cda23d7df3d53715573619f96
4f5a7fbb177e313c231aa4231e4bcf594e4a6c50
19159 F20101118_AAAIAO king_j_Page_121.QC.jpg
f784431caee3c990183282e55624b00f
ab8bbeec97dcd1aa0062ed2c0eac8024af77ba76
221593 F20101118_AAAINZ king_j_Page_085.jp2
dfad78d9bb781f6b0f033ae204d9afa6
c6d0de73e6f5deaa0645cb2e35250455246a5ca5
1484 F20101118_AAAJKS king_j_Page_020.txt
b4b06020ff1142a564b7c3a3a70d1c08
abf10f6e30fc491d65b7dad9913edc8a2f472cb7
20267 F20101118_AAAKHM king_j_Page_216.QC.jpg
d688ea524f4c83bb8895906c3215c3a7
9b00954bce381b8265dfd6f3ba39fc36d769f8d8
117 F20101118_AAAIAP king_j_Page_003.txt
714ff501316d73a366722cef46902ae3
fa081fbdfea94be74db8e23aec9ed99096f48e47
1598 F20101118_AAAJKT king_j_Page_022.txt
af4f314d15e28f9c2ddd40760c6fec5c
deedb6454de15736295fe9db6bca2b987aa8e97e
6381 F20101118_AAAKHN king_j_Page_217thm.jpg
f0d5a2c3009b1cdca8a4e2aa53e15824
ec9e8d5af25caa9747f9cbcdddee6333bec9060e
F20101118_AAAIAQ king_j_Page_133.tif
716925b59ca2f89a061f82e2d1feb22d
b7cdd03f02b13ce795704812ac7401df3b788e58
1257 F20101118_AAAJKU king_j_Page_023.txt
4586d9fa9494b1a3a22a2bc2f87dafae
a31ca9f72465e97ba0e1ab1467092da92ff549de
24401 F20101118_AAAKHO king_j_Page_217.QC.jpg
e19cede9176fee65650344d84268e0be
d7804c39a1d15e0c7965fedcc0135c27df089e1b
17862 F20101118_AAAIAR king_j_Page_117.QC.jpg
fc5812b1ae48baadb1dc87b45a10d147
47b11afb6bd6a14462c619467b64b767033002fd
663 F20101118_AAAJKV king_j_Page_024.txt
14526c66d8c992136486b1064cf0ce81
1f039ae34d905ddcea459463c3a289a6f64ed8b3
6687 F20101118_AAAKHP king_j_Page_218thm.jpg
46aa4929692e765674a32ee44bed8b96
1639ed6faaccceaee9d2131c0c1478e30aa4ad5f
F20101118_AAAIAS king_j_Page_025.tif
61fd60e03eca9de404cf9a740bedf95a
cfbfc8dc5ec2c53a5de4f2e8982ecc167d8c4151
2231 F20101118_AAAJKW king_j_Page_025.txt
e463e90818ae9b252ed7194927db06a9
a4b97785bbfb207f9b76a725cacf8762e8e927cc
25428 F20101118_AAAKHQ king_j_Page_218.QC.jpg
7a1638c1b90a2b894e4fb0cf08431261
5bd5bd4c94929c9f5a10f95c14626f9b673d03fb
9984 F20101118_AAAIAT king_j_Page_136.QC.jpg
f390dc5d42187d27109485376f350d2c
baa97f52dd13e382ec061c953d18184870f14296
623 F20101118_AAAJKX king_j_Page_026.txt
b16954fd43532bafe9914ca417be0658
bec130c87f6bc744d687af36bad5dace91acc523
7054 F20101118_AAAKHR king_j_Page_219thm.jpg
75f8ad928dbc3cda15e91c285d3587e6
a98bae5aa157b1de12a6bfcb226e9e3f86c7da28
861017 F20101118_AAAIAU king_j_Page_036.jp2
3d01095d3a31052a2d58db97cc7ac035
6d0810815cf4833ffe6b81368464f8aff4fa7ff5
2259 F20101118_AAAJKY king_j_Page_027.txt
5f49c5cfc7a028f563097da94898edd4
b4d5a7c8316c45f37f0e3fbaa66db2e3f628854d
30006 F20101118_AAAKHS king_j_Page_219.QC.jpg
4b6033a64bd3144234a7e71f005ed96b
5610b1ac487973ce4e8076c0ac4ae044dd231119
134628 F20101118_AAAIAV king_j_Page_222.jp2
4ca14b5fb22f0f56ff929f9545707b9d
8ab18d2e03f64912f83a6cd5c04c90667b7f2032
1482 F20101118_AAAJKZ king_j_Page_028.txt
b8155169eb17aac9e611b4d561ac3549
839c131c8937429426387963cafd6e731e6a5a7e
1829 F20101118_AAAKHT king_j_Page_220thm.jpg
8dbe461e5e2aabd32c898ce892300ad1
019c065db0ccf91cbf30e6349be3406cbf479016
F20101118_AAAIAW king_j_Page_197.tif
5ff5eea1946414e2a772bcf82aef7380
cecb1c2c5ff897e979306ad60e5f8f5c17b27239
6676 F20101118_AAAKHU king_j_Page_220.QC.jpg
5b5c247b8a05e8dc9f2b7bbd481c6677
781ca0f8b731d4309f979ede0bb586361f93ea5d
F20101118_AAAIAX king_j_Page_044.txt
a7f3bcb09068e2b150d87d376133afc8
01309cd9ea1f113ee8d9a42e549fd4fb1ae3f8a7
133252 F20101118_AAAITA king_j_Page_226.jp2
0f4e76f894ab00633781777552f76a39
0daffba26feacfa9dd7f909630aa5f7f28cd26ac
7833 F20101118_AAAKHV king_j_Page_221thm.jpg
4b6ad6cbdb4e1ca096d9588193c203b8
197f849bd7df23d39039c7eac298f3ea97edc941
33613 F20101118_AAAIAY king_j_Page_071.QC.jpg
34b517c84e5645c6f3ac65f1df2a7533
504d1b15ce8e27913f1c85de2b059fe3969744ce
135316 F20101118_AAAITB king_j_Page_227.jp2
c4777868a0cff8f402dbf6566a07d85f
510ac97aad00d1017bce2ae1f61087d04a564009
32731 F20101118_AAAKHW king_j_Page_221.QC.jpg
c080d9e9496c414b4b09ef28728c072c
f07654e40acc6692e6bdac959401523f5466b7bf
F20101118_AAAIAZ king_j_Page_221.txt
879f2883b8c115f41f31da4b9045e74a
70876f9a4708cd30eb67c90cf0599017d7251229
138087 F20101118_AAAITC king_j_Page_228.jp2
7b3b8067101dc312008d058169a876d6
a551b6242e152ada359b52bbedfaf93eacdf340a
8390 F20101118_AAAKHX king_j_Page_223thm.jpg
ec9c7854b6a3cd26b985f22e4a68f448
0047e34cdfa2021b1b8c46f32428c1789ebffc8b
140242 F20101118_AAAITD king_j_Page_229.jp2
a2adce85b36468737995c10be103fb48
4745446fc985bf4e096082272f159fbd7167a20a
34398 F20101118_AAAKHY king_j_Page_223.QC.jpg
df60e702c321948d069b0218be0af0c1
297263e2ae0dcf7b82c6449bd94668948499c1ee
51224 F20101118_AAAITE king_j_Page_230.jp2
99c8bcca15c6bfda711f8a776637339a
176746a9b94ca905488e71e6f748dea967d57a50
8100 F20101118_AAAKHZ king_j_Page_224thm.jpg
8ad7557ddad3d40ca0425eeab1eb63cd
6174994efd462021da9b473650390d2e47b04b9d
50609 F20101118_AAAITF king_j_Page_231.jp2
b1288aa4f5cd9a51955d3354f8c3e5f6
15558f36de38473ab8a331e0f9adad7677388e62
F20101118_AAAITG king_j_Page_001.tif
05994b349988be7501ee35cf1ebcf6c3
05fe7c3de63e90eeb5e8ee92b0cef70264b18eda
F20101118_AAAITH king_j_Page_002.tif
fb2aeba9c49fd543d5b9e0e74bc86717
1f3d68d455822f804d1a8a6306c58d05dc5eb19d
2167 F20101118_AAAJQA king_j_Page_176.txt
9fd8561f951d8d0329f0e0e57bc92614
33db18cae729f32e6378c5714c8551501047cfcc







SELECTIVE MECHANISMS


FOR BENTHIC WATER FLUX GENERATION IN
COASTAL WATERS


By

JEFFREY NICHOLAS KING


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007

































2007 Jeffrey Nicholas King




























To Corey,

for Eamon Nicholas & Megan Elizabeth









ACKNOWLEDGMENTS

I am indebted to my wife, Corey, for her grace during an extremely difficult time

in our life. This work and my interest in this subject would not be possible without her

generosity.

I appreciate the unconditional emotional and financial support of my parents

Patricia and Gregory.

I am grateful to Professors AJ Mehta and RG Dean for their wisdom and constructive

mentoring. I am thankful for the insight of Professors LH Motz, K Hatfield, and

JB Martin; and for helpful communications with HJ Bokuniewicz, WC Burnett, SL Krupa,

CD Langevin, L Li, and WS Moore.

Numerous individuals contributed directly and indirectly to the development of this

work; Ms. Kimberly Hunt deserves special recognition for her kindness.









TABLE OF CONTENTS
page

ACKNOW LEDGMENTS ................................. 4

LIST OF TABLES ....................... ............. 8

LIST OF FIGURES ....................... ........... 10

LIST OF SYMBOLS ....................... ........... 16

ABSTRACT . . . . . . . . . . 25

CHAPTER

1 INTRODUCTION ................................ 27

1.1 Magnitude and Relevance of Benthic Flux ........ .......... 28
1.2 Theoretical Basis for Analytical Methods ....... .......... 31
1.2.1 Darcy's Law ................... ........ 31
1.2.2 Tidal Dynamics in an Unconfined Hydrogeologic Unit . ... 33
1.2.3 Li et al. Benthic Discharge Model .............. .. .. 37
1.2.4 Bokuniewicz's Benthic Discharge Model . . ...... 40
1.3 Selected Observational Techniques ................ .... .. 41
1.3.1 Seepage Meter .................. ........... .. 41
1.3.1.1 Manual seepage meter .............. .. .. 42
1.3.1.2 Automated seepage meter ................. 43
1.3.1.3 Bedform effect ................ .. .. 45
1.3.1.4 Summary remarks ................ .. .. 48
1.3.2 Tracer Technique . . ...... ........ 49
1.4 Comparison of Techniques to ('!Ch i :terize Benthic Flux . ... 52
1.5 Tasks ..................................... .... 54

2 TERRESTRIAL HYDRAULIC GRADIENT ......... . . 56

2.1 Case Ia: Infinite Depth Unconfined Hydrogeologic Unit . .... 56
2.2 Case Ib: Infinite Depth Unconfined Hydrogeologic Unit, Solved with Image
Method ..... . .......... ..... 60
2.3 Case II: Finite Depth Unconfined Hydrogeologic Unit, without Leakage .65
2.4 Application to Great South Bay, Long Island, New York . ... 74
2.5 Application to Indian River Lagoon, Florida ... . . 77
2.6 Application to Lake Sallie, Minnesota ............. .. .. 80

3 GROUND WATER TIDAL PRISM . ............ ... 86

3.1 Generalized Form ............. . . .. 86
3.2 Application to Indian River Lagoon, Florida .... . . 94
3.3 Application to South Atlantic Bight ................ 104










3.4 Comparison with Li et al ......... . .......... 106
3.5 Dependence of Ground Water Tidal Prism on Ch'!i ,, in Various Parametersl07

4 SURFACE GRAVITY WAVE .................. ......... .. 112


Case I: Infinite Depth Porous Medium . .
Case II: Finite Depth Porous Medium . .
Case III: Finite Depth Porous Medium over Infin
Generalized Form . ...........
Benthic Flux Amplification . ......
Benthic Flux Damping . ........
Benthic Flux Amplitude . . .....
Application to Indian River Lagoon, Florida .


. . . . 112
. . . . 116
ite Depth Porous Medium 118
. . . . 12 3
. . . . 125
. . . . 129
. . . . 13 2
. . . . 133


5 SUMMARY AND CONCLUSIONS .. .........

5.1 Sum m ary . . . . . .
5.2 Conclusions . . . . . .
5.3 Recommendations for Future Work .. ......


APPENDIX


A SUMMARY OF INVESTIGATIONS IN THE INDIAN RIVER LAGOON


General Description .. ..............
Benthic Flux . . . . .
Ground W ater .. .................
Surface W ater .. .................


B DERIVATION RELATED TO TERRESTRIAL HYDRAULIC GRADIENT .


B.1
B.2
B.3


Case Ia: Infinite Depth Unconfined Aquifer . . . .
Case Ib: Infinite Depth Unconfined Aquifer, Solved with Image Method .
Case II: Finite Depth Unconfined Aquifer, without Leakage . . .


C DERIVATION RELATED TO GROUND WATER TIDAL PRISM .......


C.1
C.2
C.3


Volume of Water in Hydrogeologic Unit . . .....
Benthic Flux Integrated across Exchange Face . . .
Ground Water Tidal Prism ............... . . .....


D DERIVATION RELATED TO SURFACE GRAVITY WAVE .. .........


D.1
D.2
D.3


Case I: Infinite Depth Porous Medium . . .....
Case II: Finite Depth Porous Medium . . . . .
Case III: Finite Depth Porous Medium over Infinite Depth Porous Medium


190

190
192
193

197

197
200
202

208

208
212
214









E GOVERNING EQUATIONS FOR A BENTHIC FLUX NUMERICAL MODEL 217

E.1 Ground Water Flow and Transport ........ .............. 217
E.2 Inter-Domain Exchange ................... ...... 218
E.3 Surface Water Circulation ................... ....... 218
E.4 Model Summary .................. ............. .. 219

REFERENCES .................. ................ .. .. 221

BIOGRAPHICAL SKETCH ........... ........ . ... 231









LIST OF TABLES


Table

1-1 Model inputs used by Li et al. for the application of Equation 1
Atlantic Bight . . ...... . . .

2-1 Finite vertices and associated interior angles for Case Ia...

2-2 Finite vertices and associated interior angles for Case Ib...

2-3 Finite vertices and associated interior angles for Case II.....

2-4 Model inputs for application of Bokuniewicz's solution, and Case
South Bay . ........................

2-5 Curve fitting and Case II outputs for application to Great South

2-6 Depth to water table near the Eau Gallie Transect .. .....

2-7 Model inputs for application of Case II to the seepage face of the
Transect . . . . . . . .

2-8 Average lake elevations for selected Minnesota lakes .. ....

2-9 Model inputs for application of Case II to Lake Sallie .. ....

3-1 Model inputs for hypothetical application of Equation 3-12. .


page


16 to the South


II to Great


Bay. .......


Eau


Gallie


3-2 Tidal frequency and amplitude by Fast Fourier Transform of tidal signal at the
Melbourne Causeway. ................... ............ 97

3-3 Model inputs for application of Equations 3-8 and 3-13 to the seepage face of
the Eau Gallie Transect. ................... ...... 98

3-4 Volume of the ground water tidal prism, temporally averaged over the discharge
phase of one prism cycle, for selected tidal harmonics at the Melbourne Causeway. 105

3-5 Model inputs for application of Equations 3-8 and 3-13 to the South Atlantic
Bight. ..... . . ............. ... .... 105

4-1 Coefficients for the determination of benthic flux driven by linear, surface-gravity
waves, which propagate over a permeable bed of one or two li r.. . ... ..124

4-2 Model inputs for the application of Cases I, II, and III to the Eau Gallie Transect.135

4-3 Application of Cases I, II, and III to the Eau Gallie Transect. . ... 141

5-1 Summary of key input parameters, and results of the application of analytical
equations to selected locations. .................. .... .... 156









5-2 Summary of observations, and results of the application of analytical equations
to selected locations. ............... ............. 157

5-3 Numerical models of benthic flux. .................. ....... 158

A-i Benthic flux estimates for the Eau Gallie Transect made with Lee-type seepage
m eters . . . . . . . . . .. 164

A-2 Benthic flux estimates for the Eau Gallie Transect, made with methods other
than Lee-type seepage meters. .................. ......... 165

A-3 Hydrogeologic parameters for the Indian River Lagoon. . . ..... 180

A-4 Amplitude (A) and local phase angle (r) tidal constituents for water surface
elevation and current in the Atlantic Intra-coastal Waterway near the Eau Gallie
Transect . .............. .............. .. .. 189

B-l Finite nodes and associated interior angles for Case II, when the distance from
shore to the ground watershed divide and depth of the unconfined hydrogeologic
unit are unity .................. .................. .. 195









LIST OF FIGURES


Figure page

1-1 Benthic flux forced by terrestrial hydraulic gradient, ground water tidal prism,
and surface gravity wave ................... ........... .. 28

1-2 Streamlines, velocity vectors, lines of constant head, and salinity contours for a
Henry-type problem .................. ... ......... 32

1-3 A vertically-oriented cross section of the Bi-' ili, aquifer, in south Florida. ... .32

1-4 A two-dimensional, vertically oriented hydrogeologic unit forced by a sinusoidal
oscillatory tide .................. ................. .. 39

1-5 226Ra distribution in South Atlantic Bight surface waters between July 8 and
July 11, 1994 .................. .................. .. 39

1-6 Manual seepage meter cross section. .................. .... 42

1-7 222Rn fluxes associated with a control volume. ................. 51

1-8 An example of a lower-bound assumption for mixing flux, from September 28 to
October 3, 2001, in the Gulf of Mexico near Turkey Point, Florida. ...... ..53

1-9 Benthic discharge measured with dye-dilution-type automated seepage meters
and a 222Rn tracer technique at Ubatuba, Brazil. ............... ..55

2-1 Benthic discharge forced by a linear terrestrial hydraulic gradient, over an infinite-depth,
hydrogeologic unit (Case Ia). .................. ..... 57

2-2 Velocity vectors and streamlines for Case Ia. .................. 59

2-3 Dimensionless benthic discharge versus dimensionless distance (Case a). . 61

2-4 Dimensionless head gradient versus dimensionless depth at the watershed divide
(Case Ia) ............... .............. . .. 61

2-5 Benthic discharge forced by a linear terrestrial hydraulic gradient over an infinite-depth,
hydrogeologic unit (Case Ib), solved with the method of images. . ... 62

2-6 Velocity vectors and streamlines for Case Ib. .................. 64

2-7 Dimensionless benthic discharge versus dimensionless distance, solved without
(Case la) and with (Case Ib) the method of images. .. . . ..... 66

2-8 Benthic discharge forced by a linear terrestrial hydraulic gradient, over a finite-depth,
hydrogeologic unit, with no leakage (Case II). ................. .66

2-9 Velocity vectors and streamlines for Case II. .................. 68

2-10 Dimensionless benthic discharge versus dimensionless distance (Case II). .... ..69









2-11 Dimensionless benthic discharge versus dimensionless distance, for Case Ia, and
for Case II where aspect ratio is 0.01. .................. .... 69

2-12 Example of Case II breakdown and articulation of the breakdown point. . 72

2-13 Dimensionless benthic discharge versus dimensionless distance, for an unconfined
unit of finite depth, based on Bokuniewicz's model. .............. .. 73

2-14 Dimensionless benthic discharge versus dimensionless distance, solved under Case II
constraints, and with Bokuniewicz's model. ................... 73

2-15 Cumulative dimensionless volumetric benthic discharge per unit longshore distance
versus dimensionless distance, for Case II and Bokuniewicz's model. ...... ..75

2-16 Location of benthic discharge observations in Great South Bay, Long Island,
New York .................. .............. .. . .. 75

2-17 Observed and calculated benthic discharge versus distance for Great South Bay. 77

2-18 Observed, fit, and calculated benthic discharge versus distance at four locations
in Great South Bay. ............... ........... ..... 78

2-19 The freshwater seepage face of the Eau Gallie Transect, looking west, June 7,
2007. ....................................... ..81

2-20 Observed and calculated benthic freshwater discharge versus distance for the
freshwater seepage face of the Eau Gallie Transect. .. . . ...... 81

2-21 Lake Sallie, M innesota. .................. ... ....... 83

2-22 Elevation versus date for Lake Sallie, Lake Muskrat, and Detroit Lake. . 83

2-23 Observed and calculated benthic discharge versus distance for Lake Sallie, Minnesota. 84

3-1 Surface of the coastal water table versus distance from shore at mean-tide, for a
typical section between Cape Fear and Savannah River. ............. ..87

3-2 Shoreline, base of the surficial hydrogeologic unit, and surface of a coastal water
table at two points in time. .................. .. ...... 87

3-3 Dimensionless tide elevation and dimensionless benthic flux, integrated across
the exchange face, versus dimensionless time. ................. .90

3-4 Conceptualized inland and offshore extents of the benthic flux exchange face,
with high and low tide, streamlines, and lines of constant head potential. . 90

3-5 Dimensionless volume forced by the ground water tidal prism, between two arbitrary
points in time, versus dimensionless time, for three perturbation parameters .92

3-6 Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between August 22, 2000 and December 31, 2000. .95









3-7 Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between May 1, 2003 and September 11, 2003. 95

3-8 Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between July 23, 2005 and October 1, 2005. . 96

3-9 Bed elevation versus distance from shore, on the freshwater seepage face of the
Eau Gallie Transect, on June 7, 2007. .................. ..... 99

3-10 Tide elevation, and benthic flux integrated across the exchange face, versus dimensionless
time for the freshwater seepage face of the Eau Gallie Transect. . ... 99

3-11 Benthic discharge of re-circulated lagoon water as a function of distance from
shore on the freshwater seepage face of the Eau Gallie Transect. . ... 102

3-12 Tide elevation, and benthic flux integrated across the exchange face, versus dimensionless
time for a typical shoreline section between Cape Fear and Savannah River. 104

3-13 Benthic flux, integrated across the exchange face, versus dimensionless time for
tidal amplitudes that range from 0.4m to 1.6m; and the ground water tidal prism
versus tidal amplitude. .................. ....... ..... 108

3-14 Benthic flux, integrated across the exchange face, versus dimensionless time for
hydraulic conductivity that ranges from 5x10-5m/s to 5x10-3m/s; and the ground
water tidal prism versus hydraulic conductivity. ................ 108

3-15 Benthic flux, integrated across the exchange face, versus dimensionless time for
hydrogeologic unit depth that ranges from 10m to 100m; and the ground water
tidal prism versus hydrogeologic-unit depth. ................ . 109

3-16 Benthic flux, integrated across the exchange face, versus dimensionless time for
porosity that ranges from 0.45 to 0.65; and the ground water tidal prism versus
porosity ............... ................ ... .. 110

3-17 Benthic flux, integrated across the exchange face, versus dimensionless time for
beach slope that ranges from i'. to i:i'. ; and the ground water tidal prism versus
beach slope . ................... ................ 110

4-1 Case I: Reid and Kajiura's boundary value problem for a linear surface gravity
wave propagating over a porous medium of infinite depth. . .... 113

4-2 Case II: A boundary value representation of a linear surface gravity wave propagating
over a porous medium of finite depth. ............... .... 117

4-3 Case III: A boundary value representation of a linear surface gravity wave propagating
over a two-liv r, porous medium: the top 1., r is finite depth, the bottom 1il r
is infinite depth ............... .............. .. 120









4-4 Stratigraphy that represents a low permeability hydrogeologic unit over a high
permeability hydrogeologic unit, and a high permeability hydrogeologic unit
over a low permeability hydrogeologic unit. ............. ... 122

4-5 Dimensionless benthic flux and dimensionless surface water displacement versus
dimensionless phase position, for benthic flux amplification parameter between
0 and 1. .... ................ .. ...... ..... .... 125

4-6 Benthic flux amplification parameter and components under Case I constraints,
versus dimensionless depth for fundamental dimensionless permeability modulus
between 10-7 and 10-3. .................. ........... 127

4-7 Benthic flux amplification parameter and components under Case II constraints,
versus dimensionless depth for fundamental dimensionless permeability modulus
of 10-5, over dimensionless hydrogeologic unit depth from 0.01 to oo. ..... .127

4-8 Benthic flux amplification parameter and components under Case III constraints,
versus dimensionless depth for fundamental dimensionless permeability modulus
of 10-5, over dimensionless hydrogeologic unit depth from 0.01 to oo, for four
permeability ratios. .................. ............... .. 128

4-9 Dimensionless benthic flux damping coefficient versus dimensionless depth for
dimensionless hydrogeologic unit depths from 0.01 to oo, for Case I, where dimensionless
hydrogeologic unit depth approaches oo, and for Case II . . 136

4-10 Dimensionless benthic flux damping coefficient versus dimensionless depth for
dimensionless hydrogeologic unit depths from 0.01 to oo, for Case I, where dimensionless
hydrogeologic unit depth approaches oo, and for Case III . . 137

4-11 Dimensionless decay parameter versus relative depth for depth ratios between
0.1 and oo, where depth ratio approaching oo represents Case I and depth ratio
less than oo represents Case II. .................. ........ 138

4-12 Dimensionless decay parameter versus relative depth for depth ratios that range
from 0.1 to oo, for four permeability ratios. ................... 139

4-13 Dimensionless benthic flux amplitude parameter versus dimensionless depth for
dimensionless hydrogeologic unit depths from 0.01 to oo, where dimensionless
hydrogeologic unit depth approaching oo represents Case I and dimensionless
hydrogeologic unit depth less than oo represents Case II. . . 139

4-14 Dimensionless benthic flux amplitude parameter versus dimensionless depth for
dimensionless hydrogeologic unit depths from 0.01 to oo, for four permeability
ratios, where dimensionless hydrogeologic unit depth approaching oo represents
Case I and dimensionless hydrogeologic unit depth less than oo represents Case III. 140









A-i The freshwater seepage face, and western terminus of the offshore portion, of
the Eau Gallie Transect, located in the Indian River Lagoon, in Brevard County,
Florida .................. ................... .. 161

A-2 Indian River Lagoon bathymetry near the Eau Gallie Transect. . ... 162

A-3 Hydrogeologic stratigraphy underlying the Indian River Lagoon . .... 163

A-4 Elevation of the regional and a local watershed divide, and distance to the regional
watershed divide on the freshwater seepage face of the Eau Gallie Transect. .. 163

A-5 Benthic flux versus station for the offshore portion of the Eau Gallie Transect,
and benthic flux versus time for two .,.li ',.ent seepage meters. . ... 167

A-6 Monthly and annual precipitation, from December 1998 to December 2004 for
Melbourne; and benthic discharge and precipitation at two locations in the Indian
River Lagoon . ............... ............... .. 168

A-7 Total and benthic freshwater discharge versus distance from shore; Cl- concentration
in Lee-type seepage meters, in the water column, and percent fresh water in the
benthic chamber versus distance from shore; and depth versus Cl- concentration. 169

A-8 Depth versus Cl- concentration along the freshwater seepage face of the Eau
Gallie Transect in September 2005; and depth versus observed and modeled Cl-
concentration at a point on the Eau Gallie Transect. ............. ..171

A-9 Benthic discharge versus distance from shore along the freshwater seepage face
of the Eau Gallie Transect, modeled with Equation A-7. ........... ..172

A-10 Depth versus Cl- concentration along the freshwater seepage face of the Eau
Gallie Transect in November 2004 and February, May, and September 2005. 174

A-11 Depth versus Cl- concentration at a point on the Eau Gallie Transect between
May 2003 and May 2004, and depth versus Cl- concentration at a point on the
Eau Gallie Transect over a 46hr period between September 26, 2003 and September
28, 2003. .................. ................ . .. 175

A-12 Simulated benthic freshwater discharge as a function of distance from the shoreline. 176

A-13 Depth versus excess 222Rn activity at a point on the Eau Gallie Transect between
May 2003 and May 2004. .................. .. ........... 177

A-14 An X-ray radiograph negative of a sediment core at a point on the Eau Gallie
Transect .................. ................ . .. 179

A-15 Potentiometric surface of the Floridian Aquifer in May 1999. . .... 182

A-16 Interpolated porosity and mass percent mud at a point on the Eau Gallie Transect. 183









A-17 Modeled and interpolated gamma ray attenuation porosity at a point on the
Eau Gallie Transect. .................. .. .......... 183

A-18 Grain size and modeled hydraulic conductivity at a point on the Eau Gallie Transect. 184

A-19 A boundary value representation of the surficial aquifer near Port St. Lucie. 185

A-20 May 2000 water level versus d v at the Melbourne Causeway. . ... 185

A-21 August 2000 water level versus div at the Melbourne Causeway. . ... 186

A-22 December 2000 water level versus div at the Melbourne Causeway. ...... ..186

A-23 May 2003 water level versus div at the Melbourne Causeway. . ... 187

A-24 June 2003 water level versus dv at the Melbourne Causeway. . ... 187

A-25 July 2003 water level versus div at the Melbourne Causeway. . ... 188

A-26 September 2003 water level versus dv at the Melbourne Causeway. ...... .188

A-27 September 2005 water level versus div at the Melbourne Causeway. ...... .189









LIST OF SYMBOLS


21 Po Polonium 218 isotope.
222Rn Radon 222 isotope.

226Ra Radium 226 isotope.

A Tidal amplitude [L].

A Area [L2].

A Curve fitting parameter [LT-1].

A Unknown in boundary value problem [L2T-1].

a Wave amplitude [L].

a Dummy variable, with application specific units.

AH Horizontal turbulent eddy coefficient [L2T-1].

AICW Atlantic Intra-coastal Waterway.

a First coordinate, in a coordinate system aligned with the principal axes of

anisotropy [L].

aH Oscillatory semi-amplitude [L].

aj Clockwise angles at vertices in Y.

Apa.w 226Ra radioactivity of water in the water column, per unit volume [T-1L- ].

ARn.a 222Rn radioactivity of air above the water column, per unit volume [T-1L- ].

ARn.adv 222Rn radioactivity of .,Ii i.ent waters, per unit volume, where .,.i ,i:ent waters

are offshore during flood and nearshore during ebb [T-1L-3].

ARn.bd 222Rn radioactivity of benthic discharge flux water, per unit volume [T-1L- ].

ARn.w 222Rn radioactivity of water in the water column, per unit volume [T-1L-3].

Av Vertical turbulent eddy coefficient [L2T-1].

axs Horizontally-oriented, unit cross-sectional area [L2].

B Unknown in boundary value problem [L2T-1].

qbf.wave Representative benthic flux forced by waves over a porous media [LT-1].









3 Slope.

3 Benthic flux amplification parameter [-].

3 Second coordinate, in a coordinate system aligned with the principal axes of

anisotropy [L].

01 Component of benthic flux amplification parameter [-].

32 Component of benthic flux amplification parameter [-].
Bq Becquerel, SI Unit for radioactivity; atomic disintegrations per second [T-l].

c Depth from the still-water elevation to the phreatic surface, at the ground

watershed divide [L].

c Curve fitting parameter [L-1].

C Unknown in boundary value problem [ML-1T-2].

C Concentration [ML-3].

Co Ground water solute mass concentration [ML-3].
CH4 Methane.

X2 Objective function used to test goodness of fit of model data to observed data
[LT-1].

CL Lift coefficient [-].

CL Lower boundary condition for C- concentration [mol L-3].
Cl- Chloride ion.

Clagoon Cl- concentration in lagoon water [mol L-3].
C, Surface water solute mass concentration [ML-3].

Cm Cl- concentration in the benthic chamber of the seepage meter [mol L-3].

Cu Upper boundary condition for Cl- concentration [mol L-3].
D Diffusivity [L2T-1].

d Depth of unconfined hydrogeologic unit [L].

D Unknown in boundary value problem [ML-1T-2].

d Depth [L].









Do Discharge per unit width of hydrogeologic unit [L2T-1].

Ah Change in depth within the control volume during the time step, such that

Ah > 0 during flood and Ah < 0 during ebb [L].

AV,, Difference between the volumes of the surficial hydrogeologic unit, between two

arbitrary points in time [L3], or per unit longshore distance [L3L-1 = L2].

AVgwtp Volume of ground water tidal prism [L3], or per unit longshore distance
[L3L-1 L2].

AP Pressure drop across a bed form [FL-2].

At Duration of time [T].

Az Depth from the topographic surface to the phreatic surface [L].

DH Horizontal turbulent eddy diffusivity coefficient [L2T-1].

Ds Dispersion coefficient [L2T-1].

Dt Discharge rate per unit length of shoreline due to tidal pumping [L3T-1L-1].

dts Tidal surcharge depth [L].

Dv Vertical turbulent eddy diffusivity coefficient [L2T-1].

D, Benthic discharge flux per unit length of shoreline due to wave setup [L2T-1].

E Unknown in boundary value problem [ML-1T-2].

EGT Eau Gallie Transect.

EGTo Offshore portion of the Eau Gallie Transect.

EGTf Seepage face portion of the Eau Gallie Transect.

e Magnitude of a small perturbation.

TI Porosity [-].

TI Amplitude of water surface displacement about a mean elevation, forced by a

surface gravity wave [L].

f Coriolis component [T-l].
FFT Fast Fourier Transform.

FL Lift force [F].









Aspect ratio, the ratio of distance to the ground watershed divide, to depth of

the surficial hydrogeologic unit [-].

g Gravitational acceleration [LT-2].

7 Specific weight of the fluid [ML-2T-2].

7 Third coordinate, in a coordinate system aligned with the principal axes of
anisotropy [L].

GSB Great South Bay.

h Head [L].

H Mean elevation in the reservoir [L].

H Water wave height [L].

H Hydrogeologic Unit thickness [L].

h Mean depth of water [L].

h Hydrogeologic Unit depth [L].

P Generalized benthic flux component [-].

Q Generalized benthic flux component [-].

V/, Volume of water in the surficial hydrogeologic unit at an arbitrary point in time
[L3], or per unit longshore distance [L3L1 = L2].

hf Equivalent freshwater head [L].

i Hydraulic gradient = [-].

IAEA International Atomic Energy Agency.

z Imaginary number, = -/-1.

IRL Indian River Lagoon.

Jadv.aong-s 222Rn flux forced by surface water advection in the longshore direction
[L-2T-2].

Jadv.s-norm 222Rn flux forced by surface water advection in the shore-normal direction[L-2T-2].

Jatm 222Rn flux forced by evasion across the air-sea interface [L-2T-2].

Jbd 222Rn flux forced by benthic discharge flux [L-2T-2].









Jbd.adv 222Rn flux forced by advective benthic discharge flux [L-2T-2].

Jbd.diff 222Rn flux forced by diffusive benthic discharge flux [L-2T2].

Jdecay 222Rn flux forced by decay to 218Po [L-2T-2].

Jmix 222Rn flux forced by diffusion or mixing [L-2T2].

Jnet Net 222Rn flux [T-].
Jprod 222Rn flux forced by production from 226Ra [L-2T-2].

Jresus 222Rn flux forced by sediment resuspension [L-2T2].
K Hydraulic conductivity, or Darcy's proportionality constant [LT-1].

k Intrinsic permeability [L2].

k Square root of the ratio of vertical to horizontal hydraulic conductivities ( II)

[-].
Kh Horizontal hydraulic conductivity [LT-1].

K, Vertical hydraulic conductivity [LT-1].

K, Hydraulic conductivity in the horizontal dimension [LT-1].

1 Length [L].

A Wave number [L-1].

A, Wave number, imaginary component [L-1]; benthic flux damping coefficient.

A, Wave number, real component [L-1].

ARa 226Ra decay constant (4.33x10-4yr-1) [T-1].

ARn 222Rn decay constant (0.1824d-1) [T-1].

Lb Distance between the run-up line and the breaker line [L].

Ifa Lower Floridian aquifer.

Lo Deep water wave length [L].

A Complex constant.

B Complex constant.

V Complex computational space (V = u + Zw).

Y Complex physical space (Y = x + zz).









P Dimensionless volume of the ground water tidal prism [-].

mcu Middle confining unit: a geologic unit that separates the Upper and Lower

Floridian aquifers.

p Dynamic viscosity [ML-1T-1 = FTL-2].
n Number of nodes in Y.

NOAA National Oceanic & Atmospheric Administration.

v Kinematic viscosity [L2T-1].

a Coefficient of solute volume expansion [-].

p Pressure [ML-T-2].
SHead [L].

SDimensionless benthic flux, forced by the ground water tidal prism and

integrated across the exchange face [-].

Velocity potential [L2T-1].

q Specific discharge [LT-1].

Q Volumetric flow rate [L3T-1].
qbd Benthic discharge flux [LT-1].

Qbd Benthic discharge flux, across a specified area of bed [L3T-1].

qbd.fresh Benthic freshwater discharge [LT-1].

qbd.gwtp Benthic discharge flux forced by the ground water tidal prism [LT-1].

qbd.lagoon Benthic lagoon-water discharge [LT-1].

qbd.land Benthic discharge flux of fresh, terrestrially sourced ground water, forced by a
terrestrial hydraulic gradient [LT-1].

Qbd.land Benthic discharge flux of fresh, terrestrially sourced ground water, forced by a
terrestrial hydraulic gradient, across a specified area of bed [L3T-1].

qbd.model Benthic discharge flux estimated with a model [LT-1].

qbd.obs Benthic discharge flux recorded with some observational device or method
[LT-1].









qbd.tide Benthic discharge flux forced by tidal pumping [LT-1].

Qbd.tide Benthic discharge flux forced by tidal pumping, across a specified area of bed
[L3T-1].

qbd.total Benthic discharge flux [LT-1].

qbd.wave Benthic discharge flux forced by wave-setup [LT-1].

Qbd.wave Benthic discharge flux forced by wave-setup, across a specified area of
bed[L3T-1].

qbf Benthic flux [LT-1].

qbf.gwtp Benthic flux forced by the ground water tidal prism [LT-1].

qbf.nd Non-dimensional benthic flux [-].

qbf.obs Benthic flux recorded with some observational device or method [LT-1].

qbf.water Benthic water flux [LT-1].

qbf.wave Benthic flux, forced by surface gravity waves propagating over a rigid, porous
bed [LT-1].

qbf.wave.i Benthic flux, imaginary component, forced by surface gravity waves propagating
over a rigid, porous bed [LT-1].

qbf.wave.r Benthic flux, real component, forced by surface gravity waves propagating over
a rigid, porous bed [LT-1].

qbr Benthic recharge flux [LT-1].

qs Volumetric flow rate per unit volume of hydrogeologic unit representing sources
and sinks [T-1].

R Fundamental dimensionless permeability modulus of the Reid and Kajiura

[1957] boundary value problem (R = ) [-].

p Density [ML-3].

pf Density of freshwater [ML-3].
s Distance from shore to ground watershed divide [L].

s Subscript that denotes the value of the variable in the porous matrix.









sa Surficial aquifer.

SAB South Atlantic Bight.

Sb Slope of the beach face [-].

Sf Specific storage in terms of freshwater head [L-l].
SGD Submarine Ground Water Discharge.

a Frequency (o = 2r/T, where T is period) [T-l].

SJRWMD St. Johns River Water Management District.

Sp Specific storage in terms of pressure [M-1LT2].

S8 Specific storage [L-l].

s, Slope of wave setup [-].

Sy Specific yield (or porosity) [-].
t Time [T].

T Period [T].

T Transmissivity [L2T-1].

T Temperature [].

t1 Time [T].

t2 Time [T].

Tt Tidal period [T].

Tw Water temperature [o].

u Velocity [LT-1].

u Non-dimensional, real component of V [-].

ucu Upper confining unit: a geologic unit that separates the Upper Floridian

aquifer from the surficial aquifer.

ufa Upper Floridian aquifer.

UNESCO United N i. o,,-: Educational, Scientific and Cultural Organization.

T Non-dimensional benthic discharge flux [-] forced by terrestrial hydraulic

gradient, where T = qd
Ki"









v Velocity [LT-1].

Vwind Wind speed [LT-1].
w Velocity [LT-1].

w Non-dimensional, imaginary component of V [-].

x Cartesian x-direction [L].

xl X-coordinate [L].

a2 X-coordinate [L].

Xgwtp.xf X-coordinate of the offshore extent of the exchange face associated with qbf.gwtp

[L].

Xh X-coordinate at high tide [L].

xi X-coordinate at low tide [L].

y Cartesian y-direction [L].
z Head in an unconfined hydrogeologic unit[L].

z Cartesian z-direction [L].

( Free water surface elevation [L].









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SELECTIVE MECHANISMS FOR BENTHIC WATER FLUX GENERATION IN
COASTAL WATERS

By

Jeffrey Nicholas King

December 2007

('!C ,i: Ashish J. Mehta
Cochair: Robert G. Dean
Major: Coastal & Oceanographic Engineering

Benthic water flux (qbf) is the rate of water flow across the bed of a water body, per

unit area of bed. It is a component of the hydrologic cycle and a surface water-ground

water interaction process. Benthic water flux is an important component of water,

pollutant, and other constituent budgets. Several physical, chemical, and biological

gradients drive qbf. This work has two objectives: (1) to develop analytical equations for

qbf driven by: terrestrial hydraulic gradient (i), with Schwarz-C'!n i-i .11, I mapping and the

Poisson integral formula for the half plane (compared with Bokuniewicz [1992]); pressure

gradient forced by the ground water tidal prism (AVtp), with a perturbation solution

to a Darcy-based diffusion equation by Nielsen [1990] (compared with Li et al. [1999]);

and pressure gradient forced by surface gravity waves, with extension of a boundary value

solution by Reid and Kajiura [1957]; and (2) to use these equations to characterize qbf in

four case studies: the Indian River Lagoon (IRL), Florida; Great South Bay (GSB), New

York; Lake Sallie, Minnesota; and the South Atlantic Bight (SAB).

The solution forced by i generates estimates that are between 27'. and :2' of Boku-

niewicz's [1980] observations in the GSB; between !i'., and 127'. of the observations of

Martin et al. [2007] in the IRL; and bounds Lee's [1977] observations in Lake Sallie. The

solution forced by AlVg, explains 21.'- of Moore's [1996] observations in the SAB; and

between 1.'-. and 2' i'.- of the observations of Martin et al. [2007] in the IRL, assuming









observations were taken during the discharge phase of the AVgIt, cycle. The solution

forced by surface gravity waves explains between 50' and 7.'-. of the observations of

Martin et al. [2002] in the IRL, assuming the Lee-type seepage meter is an .i-ii ., Ii i cal

device. Deviation of the percent of an observation that is explained by an analytical

equation is a function of statistical error in the observational process, abstraction error

in the generalization of a physical problem to a soluble mathematical form, and use of a

single-process equation in a multi-process application.









CHAPTER 1
INTRODUCTION

Benthic water flux (qbf.water) is the rate of water flow across the bed of a water body,

per unit area of bed. The units of qbf.water are [L3 T-1 L2 = LT-1]. Benthic water flux

is forced by a pressure gradient at the bed. This work investigates three physical factors

[terrestrial hydraulic gradient, tide, and surface gravity wave (Figure 1-1)] that generate

benthic pressure gradients, and force benthic water flux.

Benthic water flux is a proper'v- -pecific example of the more general benthic flux

phenomenon, where benthic flux is the flow rate of some property across the bed of a

water body, per unit area of bed. (The units of benthic flux are a function of the property

under consideration; for example, [L3 T-1 L-2 = LT-1] for a benthic volume flux or

[M T-1 L-2] for a benthic mass flux.)

Benthic water flux is a component of the hydrologic cycle; qbf.water drives a surface

water -ground water interaction process, which forces the benthic flux of constituents,

such as pollutants, carbon, oxygen, nutrients, heat, and radioactivity. Benthic water flux

affects numerous physical, chemical, and biological processes in aquatic systems. These

include the intrusion of saline surface waters into surficial aquifers, in response to coastal

puvri'I-ir-'. the exchange of nutrients, metals, and other pollutants between surface waters

and surficial aquifers; the relationship between the delivery of these pollutants and biotic

vitality; and the stability of both natural geologic formations and man-made structures.

Benthic water flux is a vector quantity, where the vector is oriented normal to the

bed of the water body. A benthic water discharge flux vector is oriented from the geologic

domain to the surface water domain; a benthic water recharge flux vector is oriented from

the surface water domain to the geologic domain. [For efficiency, the term benthic water

flux is abbreviated throughout the remainder of this work as benthic flux, and the .water

subscript is dropped, such that qbf qbf.water. Also benthic water 1.:. h.i,,.- flux and










surface gravity wave
propagating over a rigid
porous medium


Figure 1-1. Benthic flux forced by terrestrial hydraulic gradient, ground water tidal prism,
and surface gravity wave.


benthic water ,. hi.r,,.- flux are abbreviated in this work as benthic V,. -I,.rr- (qbd) and

benthic /.r,,/,. (qb).]

Benthic flux is a function of geography: specific geologic and oceanographic

characteristics at different locations may require different treatment. Related terms

exist in the literature. For example, submarine groundwater discharge (SGD) [Burnett

et al., 2003] is qbd to a marine water body.

The objectives of this chapter are to introduce fundamental physical concepts and

review work by others. The efforts of numerous investigators to quantify qbf, with various

techniques, are detailed. The following fundamental physical concepts are introduced:

Darcy's Law, work that culminates in Nielsen's [1990] model for water table tidal

dynamics in beaches, and qbf models by Li et al. [1999] and Bokuniewicz [1992]. Selected

observational techniques are reviewed. The chapter concludes with a statement of tasks

and an outline of the remaining Chapters.

1.1 Magnitude and Relevance of Benthic Flux

Numerous investigators -.- -1 that qbd to the coastal shelf can be of the same

order of magnitude as discharges from large rivers [Moore, 1996; Schwartz, 2003]. Moore









[1996] -1L'-"- -1. '. that qbd is approximately !1I'. of river discharge to the South Atlantic

Bight (SAB), off the coast of South Carolina. Fluxes of this magnitude are significant

contributors of major water quality constituents [Moore and Shaw, 1998; Hu et al., 2006].

For example, Finkl and Ch'li.., r [2003] identified qbf as a potential transport mechanism

for the delivery of 5, 727 and 414tons/yr of terrestrially-sourced phosphorus and nitrogen

to coastal waters of Palm Beach County, Florida. For comparison, the investigators

cited 197 and 2, 471tons/yr contribution of phosphorus and nitrogen to the area by

surface water sources. In some locations, qbf correlates with biotic vitality. Kohout [1964]

correlated biological zonation and qbf in Biscayne Bay, Florida. Naim [1993], Lapointe

[1997], and Yang et al. [2002] offered similar observations.

Numerous investigators have shown that qbf is chemically unique, when compared to

the chemistry of the overlying surface waters [Simmons, 1992; Cai and Wang, 1998]; the

chemical composition of qbd and qbr are not ahv-- equivalent. Moore [1999] explained that

some coastal-aquifer mixing processes are analogous to estuarine mixing processes. For

this reason, he -it-'-i -1.I that these coastal aquifers should be considered subterranean

estuaries. He -,t-'- -1. that both laminarr) diffusion and (turbulent) dispersion at the

saltwater-freshwater interface of a subterranean saltwater wedge cause mixing and enhance

the desorption process. Adsorbed ions desorb in the presence of saltwater -during an

intrusion event -and produce a benthic, desorbed-constituent, discharge flux. This

theory ti-'-i -1 a link between qbf and saltwater intrusion, and a link between coastal

surface water quality and anthropogenic impacts caused by water withdrawals from

surficial aquifers.

Processes that force qbf exist over a wide range of time and space scales. For example,

sea-level rise may occur on a time scale of 100yr, and surface gravity waves have periods

on the order of seconds; tides influence coastlines on space scales greater than 1km, and

benthic organisms bio-irrigate on a cm scale. The sum of the forces that generate benthic

pressure gradients is a composite force, which spans both the surface water and ground









water domains. Robinson et al. [1998], U I,.:,ri,,,,, et al. [2000], T,..:,ji. 1i. and Iwakawa

[2001], and Tn,.:I;,. 1,.i [2002] discuss qbf forcing factors.

Where a pressure gradient spans the bed of a water body, a potential exists to drive

some property by qbf. For example, salt fingering is a convective mixing phenomenon,

where more dense surface water passes over less dense pore water, which causes the lighter

pore water to float [Schmitt, 2003]. Adams and Rhodes [1960] and Simms [1984] detail

the localized evaporation of seawater in isolated coastal systems; the density of seawater

increased, and was mixed with lighter water in underlying surficial aquifer by qbf. Kohout

[1965] and Kohout [1967] detailed geothermal heating as a forcing mechanism for the

convective transport of ground water through preferential flow paths.

H. n ,,; [1964] developed an analytical solution for the flow of fresh ground water,

toward a constant concentration seawater boundary (Figure 1-2 is a solution to a problem,

which is conceptually similar to H. ;','s problem, as implemented by Guo and I,.,'. .:,

[2002]). H. n, ,; drove fresh ground water with a constant flux, toward a seawater boundary

with a constant concentration. This resulted in the discharge of less dense, fresh, ground

water over a region of more dense, recirculating seawater -as shown in Figure 1-2 -in

which both the freshwater and seawater are discharged as qbd. The resulting flow structure

and density distribution are similar to the saltwater wedge geometry, observed by Kohout

[1964] in Biscayne Bay (Figure 1-3). Kohout [1964] determined with a flow net analysis of

the Bi-, ,i,-. aquifer, that the ratio of benthic, recirculated, '-i--v--Itr discharge to qbd was

1. L,,.,:, 11. [2001] used SEAWAT [Guo and Li,,y, :,. 2002] a computer program that

solves for variable-density flow and transport in porous media -to estimate an average

2m3/d benthic freshwater discharge to Bi-, line Bay, Florida, per meter of shoreline,

between 1989 and 1998. Using Kohout's ratio, benthic (recirculated) 'i1--i Itr discharge

and qbd to Biscayne Bay are then approximately 0.3 and 2.3m3/d m, respectively.

Domenico and Schwartz [1990, Section 10.3] stated that "dispersion creates a zone

of mixing between the displacing fluid and the fluid being d-pI .... by advection.









Kohout [1964] identified a zone of dispersion along the freshwater-saltwater interface

of a subterranean saltwater wedge, in the Bi- ivne aquifer, Florida (Figure 1-3). Fresh,

terrestrial sourced, ground water undergoes dispersive mixing along the freshwater-saltwater

interface, as it is forced toward the Bay by a terrestrial hydraulic gradient. The discharge

of this water to the Bay is qbf.

Bio-turbation and bio-irrigation might be important qbf forcing mechanisms in some

systems. Bio-turbation is the re-structuring of the sediment matrix due to the borrowing

action of benthic organisms, such as worms or plants '7.:il. i,, 1993]. Bio-irrigation is the

flushing or ventilation of burrows by benthic organisms [Meysman et al., 2006].

1.2 Theoretical Basis for Analytical Methods

1.2.1 Darcy's Law

Darcy [1856] experimentally determined that

Q O86)
S -K -Ki (11)

where q is specific discharge, Q is volumetric flow rate, h is head, I is a linear dimension,

K is a proportionality constant (hydraulic conductivity), and i is hydraulic gradient.

The minus sign guarantees that a negative differential head generates a positive specific

discharge. Darcy's Law states that the average velocity of the flow through the porous

medium is proportional to i driving the flow. Specific discharge is a function of the entire

cross sectional area through which the flow is (. i. -1 including area occupied by the

grains that constitute the medium. The velocity that the fluid obtains in the pore space

(v) is

v q (12)

where rl is porosity. Darcy's Law is valid for laminar flow, where the Reynolds Number is

less than order 102.
















M- i

:Ua





zE




Figure 1-2.


///. /i
I I


i/ I / /


Ih-

a,
Sre!
Itw
*a,8


10 m/d


Streamlines (continuous solid lines with arrowheads), velocity vectors (array of
vectors), lines of constant head (dashed lines), and salinity distribution (color
contours) for a vertically-oriented, H. ,In : [1964]-type problem, conceptually
similar to Guo and Lini., ;.,:'s [2002] Figure 12.


-- - Base of Biscayne aquifer
-600 -500 -400 -300 -200 -100
DISTANCE FROM SHORE, IN METERS


100 200


Figure 1-3. Kohout's [1964] flow-net analysis of a vertically-oriented cross section of the
Bi- l ii,. aquifer, in south Florida, as presented by L .inr.' ;:,, [2001, Figure 8].
Public Domain.









Hubbert [1956] determined that K is a function of both the fluid and the porous

medium

K kpg (1-3)
P-
where k is intrinsic permeability, p is density of the fluid, g is gravitational acceleration,

and p is dynamic viscosity. Conceptually, K is the rate of flow through a box of one

square unit cross sectional area, under a unit i. Permeability -a function of the porous

medium -is proportional to the square of the characteristic dimension of the grains that

make up the porous domain. Because p and p are functions of temperature and salinity,

K is also a function of temperature and salinity. It is possible to derive Equations 1-1 and

1-3 with the Navier-Stokes Equations applied to steady, one-dimensional, laminar flow

between two fixed, parallel surfaces, which represent an inter-granular flow tube between

two grains in the porous matrix.

1.2.2 Tidal Dynamics in an Unconfined Hydrogeologic Unit

Let i;,/Ji. '/. ,'i.: unit or simply unit -be a zone of rock or soil that impedes,

permits, or affects the flow of ground water, and can be described with uniform parameters

typically used to quantify the flow of ground water, such as K or Tl. Consider the shallow

unit shown in Figure 1-4. Adopt the Dupuit-Forchheimer assumption, which requires

that that vertical flow be negligible. Consider the porous domain to be homogeneous,

incompressible, isotropic, undeformable, and overlying a horizontal, impermeable base.

Require a homogeneous, incompressible fluid. Require that the system does not gain or

loose fluid at the soil surface.

Define hydraulic head (h)

h= +z (1-4)

where p is pressure, 7 is specific weight of the fluid, and z is elevation above the horizontal

base. Recognize that h(x, t) = z(x,t) at the free surface, where p(x, t) = 0.

Force the system with a sinusoidal, vertical oscillation in a reservoir located in

negative x-space. Orient the interface between the reservoir and the unit along the z-axis.









Define the oscillation by


z(x < 0, t) = H(1 + a cos(at)) (1-5)

where H is mean elevation in the reservoir, above a horizontal, impermeable base; aH

is oscillatory semi-amplitude; a is oscillatory frequency; and t is time. Require that the

right, vertical boundary be located at x -- o, and that the right boundary and horizontal,

impermeable base form no flow boundaries. High and low tides occur at t = 0 and t = T

respectively.

Knight [1981] observed that if z(x -- o, t) = H then the unit must exhibit a higher

transmissivity during the peak of the oscillation than during the trough. This discrepancy

in transmissivity requires that qbr during high tide would be greater than qbd during low

tide. Of course, in a closed system such as exists in Figure 1-4, mass would then not be

conserved. To balance mass, the mean inland water surface must be elevated above the

mean oscillation in the boundary system, such that the absolute value of i at the trough of

the oscillation is greater than the absolute value of i at the peak of the oscillation. Define

this inland over-height above the still-water elevation (z = 0) as the tidal surcharge depth

(dts): the additional head required would be


dt = z(x o) H (1-6)

where dst is a setup: an increase in mean water level, above the still water level, required

to achieve momentum balance.

Define q in Figure 1-4 with Darcy's Law (Equation 1-1). The continuity equation

requires that
Ah 1 0(hq)
(1-7)
at Sy ax
where Sy is specific yield. Combine Equations 1-1 and 1-7 to form the following nonlinear

diffusion equation:
ah a a
At a(D ) (1-8)
at ax ax









where D is a diffusivity described by


Kh
D (1-9)
SI

[Da.q.. 1967; Pr /,,l,, et al., 1984; Nielsen, 1990].

Philip [1973] developed an analytical, integral solution to Equation 1-8. A consequence

of the solution is that the equilibrium elevation of the ground water table at a point far

inland, and away from the oscillating tide, .,-,,iii!il,)tically approaches a constant value,

described by
a2
z(x --- o) = H (1-10)

where a < 1. Note that Equation 1-10 is independent of time. If a = 1, z = 1.2247H;

if a = 0.5, z = 1.0607H. Also note that z(x -+ oc) > H is solely the result of the

interaction of the oscillating boundary reservoir and the hydrogeologic unit; the unit may

not be under the influence of ground water recharge from other sources, such as rainfall or

terrestrially-sourced i.

Smiles and Stokes [1976] developed a laboratory experiment using a Hele-Shaw

device to confirm Equation 1-10. Knight [1981] duplicated Philip's results with a slightly

different approach, which relied on a purely vertical flow system, and proved that the

Dupuit-Forchheimer assumption is not necessary to arrive at Equation 1-10.

P IrI,.i,:l : et al. [1984] used a small perturbation expansion of magnitude c, and

showed that the solution to Equation 1-8 is


([z(x)]2) (1 + 2)H2 + 3ae-2x2 (-)
2 3K

when ([z(x)]2) is a time average of [z(x, t)]2. Note that Equation 1-11 conforms to

Equation 1-10 as x -- oo. Equation 1-11 is first order accurate in e.

Nielsen [1990] allowed the interface between the reservoir and unit to assume a

positive slope, p. This created a moving boundary along the interface. The investigator









used a small perturbation of magnitude


S= AAcot 3 aH(1-12)
Sb

to match a prescribed series solution to a moving boundary condition, which produced the

following solution to Equation 1-8

z(x, t) H + aH cos(at Ax)e- x

+ A(aH)2 cot(O3)[ v + 2 cos(27t + 2-x)ee-"x] (1-13)

+ A2(aH)3 cot2 (3)( )[sin(ut x)e- ) + sin(3Ut v3Ax)- ]

where A is a wave number, defined by


A (1-14)
S2KH

Note that Equation 1-13 is second order accurate in c. Nielsen required that a < 1;

and that z match tide at the beach face, such that the water surface in both domains

remains coupled. He stated that where decouplingg occurs, analytical solution is probably

impractical," such that Equation 1-13 is not a solution to the problem of an oscillating

wetted beach face, which is detached from the water surface that forces the oscillation.

The solution procedure approximately matched the moving boundary.

Nielsen also provided an approximation of the time averaged elevation of the water

table
a2H
z(x) = H + [1 e-2 (115)

for the criteria posed by Philip [1973]. Note that Philip's z only applies at points far from

the oscillating boundary condition; Nielsen's z is valid throughout the positive-x domain.

Finally, Nielsen showed that 3 is inversely related to the height of the water table: shallow

beaches require larger i to compensate for the transmissive difference between low and

high tide than steeper beaches.









1.2.3 Li et al. Benthic Discharge Model

Li et al. [1999] -iL-'. -I, '


Qbd Qbd.land + Qbd.wave + Qbd.tide (1-16)

where


Qbd = A qbd(x)dx (1 17)

Qbd.land A AY qbd.lan(x)dx (1 18)

Qbd.wave A J qbd.wave(x)dx (1-19)

Qbd.tide AY qbd.tide (x)dx (1-20)

Ay is some longshore distance; x is offshore distance; qbd.land is benthic discharge of fresh,

terrestrially-sourced ground water, forced by i; qbd.wave is benthic discharge forced by

wave-setup; and qbd.tide is benthic discharge forced by nearshore tidal pumping. Qbd,

Qbd.land, Qbd.wave, and Qbd.tide are volumetric discharge rates forced by an associated qbd
across an area defined by Ay and the limits of integration. (Note that Qbd, Qbd.land,

Qbd.wave, and Qbd.tide have units of [L3T-1]; while qbd, qbd.land, qbd.wave, and qbd.tide have units
of [LT-1].)

Li et al. quantified Qbd.wave with


Qbd.wave = DAy = KsLbL, (1-21)

where Dw is Qbd.wave per unit shoreline length, s, is slope of wave setup, and Lb is

distance between the run-up line and the breaker line.

The volumetric rate of water exchanged between the hydrogeologic unit and the tidal

water body (Dt), per unit longshore distance, between two arbitrary points in time, t2 and

ti, is

Dt = AV (1-22)
At









in discrete form, where AVg,, is the volume of water exchanged between the hydrogeologic

unit and the tidal water body over At t2 t (L. Li, personnel communication). Li et al.

determine that

Qb.t De = -(cose sin ) + viA2 ot 3)e- cos 2V ) A2 cot 3 (1-23)
Ay Tt s Tt Tt

where tan3 = Sb by il' ii i i5g the difference between the highest water table and the

mean water table" with Equations 1-13 and 1-22. They stated that Qbd.land is difficult to

measure, and cited Young, i 's [1996] estimate that Qbd.land is equivalent to between 0.1.

and 10' ~ of surface water discharged to the oceans through rivers.

Moore [1996] described the delivery of 226Ra to the inner shelf of the SAB (from

shore to a point 20km from shore) between Savannah River and Cape Fear (a distance of

320km), as shown in Figure 1-5. Moore quantified the flux of 226Ra into and out of the

study area by numerous pathr--,i-. In a method similar to the 222Rn balance described

in Section 1.3.2, Moore deduced that a gross qbd of 3x107m3/d (350m3/s) must exist to

balance other 226Ra fluxes to the study area. Benthic recharge of 226Ra is assumed to

make a negligible contribution to the 226Ra balance because the concentration of 226Ra in

surface waters is much less than the concentration in ground waters, (WS Moore & WC

Burnett, personnel communication, 2007).

Li et al. [1999] applied Equation 1-16 to the SAB with the inputs in Table 1-1. They

concluded that Qbd.wave = 1.65x107m3/d (Equation 1-21) and Qbd.tide = 1.11x107m3/d; or

55'. and ;7'. of Moore's [1999] Qbd = 3x107m3/d estimate. They stated that the forces

that drive qbd might be more complicated than those implied by Equation 1-16.

The investigators sl-.-,- -1. I. that the chemical composition of qbf changes during

the recharge-discharge cycle. While this does not appreciably impact the net water mass

balance, it is significant with respect to cycling various constituents, which are transported

with qbf, between the geologic and surface water domains. For example, qbr, with a higher

salinity than qbd, might encounter terrestrially-sourced constituents -such as 22Ra,























H


z


0


x


no flow


Figure 1-4. A two-dimensional, vertically oriented hydrogeologic unit forced by a
sinusoidal oscillatory tide at the left boundary.


31
81


Figure 1-5. 226Ra distribution in SAB surface waters between July 8 and July 11, 1994.
Reprinted from Moore [1999, Figure 2]. 01999 Elsevier, used with permission.









ammonia, or phosphate -adsorbed onto the geologic matrix. These constituents then

desorb in the presence of a more saline pore fluid, and are flushed to the surface water

body with qbd. If a saltwater wedge continues to advance shoreward, such that adsorbed

constituents remain available for desorption, high constituent concentrations may be

sustained in qbd.

1.2.4 Bokuniewicz's Benthic Discharge Model

Bokuniewicz [1992] developed an analytical solution to the problem of qbd forced by

a linear, steady-state, terrestrially-sourced i into a shallow, fresh water body. He assumed

that the hydrogeologic unit is unconfined with a flat bottom, homogeneous, anisotropic,

of a constant thickness (d), and covered by a wide, shallow, fresh water body. Terrestrial

hydraulic gradient is forced by an elevated water table (z =c; i = c) that coincides with

a topographic divide located some distance, x = -s from shore, where shore is located at

x = 0. c is small. A constant density fluid is required. He assumed the following boundary

conditions: h is zero at shore and under the lake, and increases linearly to the topographic

divide; qbf is finite offshore as x -- o; no flux exists across the topographic divide; and no

flux exists through the bed of the unit. He identified Richard's Equation

+ k2 a 0 (1-24)
Ox2 Oz2

Table 1-1. Model inputs used by Li et al. [1999] for the application of Equation 1-16 to
the SAB.
Parameter Value Units
Ay 320 km
Have 1.5 m
Tt 8 s
Sb 0.05
K 0.001 m/s
rl 0.45
Haquifer 30 m
Atide 1.5 m
tide 7.27x10-5 rad/s









as the governing differential equation, where Q is the head potential, x and z are Cartesian

dimensions, K, and Kh are the vertical and horizontal K, and k= .
V/ Khs
He solved Equation 1-24 with a Fourier cosine transform in x, to define a, such that

Kz coth Iik coth w(x+2s)k
qbd n- [ 4d 4d (1-25)
7k coth2 4(d+s)k
4d
with Darcy's Law (Equation 1-1). Equation 1-25 approaches oo at x = 0. However, the

solution decreases rapidly in the offshore (x > 0) direction. If 7sk/41 > 3, the offshore

solution simplifies to
Ki wxk
qbd = In [coth ] (1-26)
x7k 4d
Where x > 4d/k, coth 7xk/4d t 1 and qbd -- 0.

1.3 Selected Observational Techniques

Lindenberg [2001], Tw,'.:,i, ,.1 et al. [2002], Burnett et al. [2003], and Burnett et al.

[2006] summarized numerous attempts to quantify qbf with various observational methods.

Manual and automated seepage meters, and tracers techniques -two common methods

-are detailed in this section.

1.3.1 Seepage Meter

A seepage meter (Figure 1-6) is typically a chamber opened at one end. Water and

various constituents of interest move through the open end of the chamber and then across

the bed of the water body, allowing some type of measurement device attached to the side

or end of the seepage meter to record qbf. Seepage meters can be divided into categories,

based on the measurement device (manual and automated), or the presence or absence

of an impermeable barrier between the fluid inside the seepage chamber and the fluid in

the surface water (open si,'l- I- and closed s.;-/. ii-) [S'Itll..,vitz et al., 2003]. Seepage

meters are the only observational method capable of measuring qbf directly; all other

measurement techniques require that various assumptions be made to obtain an indirect

estimate [T1i:,: i;, et al., 2006].









water surface



Measurement bag



end of
.-. 208-/drum
= 15cm ";:." ..: :
;^ ..^ .. .=57cm --" ..'. ". "


Figure 1-6. A vertically-oriented cross section of a manual seepage meter. Modified
from Lee [1977, Figure 1]. @1977 American Society of Limnology and
Oceanography, Inc., used with permission.


1.3.1.1 Manual seepage meter

Lee [1977] reported that Israelsen and Reeve [1944] developed a seepage meter

to measure water loss from irrigation canals. (Lee [1977] is credited with the design

most commonly used tod iv.) The Lee-type seepage meter (Figure 1-6) consists of three

components: the end of a 2081 drum, a valve, and a plastic measurement bag. The 2081

drum is cut, such that the flat end and approximately 15cm of the side are retained. He

mounted a valve to the flat end of the drum, and attached a threaded couple to a plastic

measurement bag.

To deploy a manual seepage meter, the open end of the meter is forced into the bed

of a water body. The meter is then permitted an appropriate period -such as one d4i,

[Cable et al., 2006] or several dv4 [Shlollovitz et al., 2003] to equilibrate, with the valve

open. The investigator then pre-loads a measurement bag with water, such that the bag

is partially full and devoid of air. The investigator attaches the bag to the valve with the

threaded couple. Benthic discharge pushes water in the chamber through the valve and

into the measurement '1 -. qbr pulls water from the measurement bag through the valve

and into the chamber. The time-integrated volumetric rate of qbf is then calculated as









the change in the volume of water in the '. divided by the length of time between the

beginning and end of the measurement period.

1.3.1.2 Automated seepage meter

Automation of the measurement technique evolved to reduce the labor associated

with measurement bags, to reduce error associated with manual techniques, and to

allow qbf estimation at short time scales. Four techniques are described below: heat, dye

dilution, ultrasonic, and electro-magnetic.

Ti.. 1t. I,. and Fukuo [1993] used a heat-pulse technology based on thermistors

arranged in series to measure the travel time of a heat pulse. Because heat is conserved,

they showed that qbf to a seepage meter can be modeled by the travel time of this

heat-pulse through a control volume attached to the valve. S'I..i...' .; ./. et al. [2003] stated

that without modification, Tiq.:i,. IS. and Fukuo's [1996] heat-pulse method is not capable

of recording qb,. Ti,.:'il,. i;,. and Iwakawa [2001] developed a variant on the heat-pulse

seepage meter -the continuous-heat seepage meter.

S'I,'ll..Ivitz et al. [2003] used a 1;/.- dilution method, based on the timed injection

of dye into a mixing chamber, which is located in series with a seepage chamber. The

dye is a conservative species. Benthic flux is a function of the rate at which the dyed

solution in the mixing chamber is diluted by fluid in the chamber. They deploy, -1 the

device in Waquoit Bay, Massachusetts over one spring-neap tidal cycle. They captured an

anticipated, iir. negative correlation with tide, and showed that at the lowest high tide

within the spring-neap tidal cycle, the device did not record qbr, -Ii": -iir-; that neap tide

did not exceed the terrestrial water table elevation. They acknowledged error associated

with reversal of flow, such that the build-up of dye in the mixing chamber corrupted

the flux calculation. Finally, because the dye-dilution system is an open system, some

bio-fouling may occur, which can compromise estimates.









Paulsen et al. [2001] used an ultrasonic acoustic technology to estimate qbf based on

properties of sound waves in a fluid under motion. The ultrasonic seepage meter measures

the perturbation of sound waves as a function of time, inside a cylindrical flow tube.

Rosenberry and Morin [2004] used two different electromagnetic flow measuring

devices to measure qbf in two lakes: Mirror Lake, New Hampshire and Ashumet Pond,

Massachusetts. The electromagnetic seepage meter has no moving parts or protruding

components to disrupt flow or impose additional head loss. The device operates using

Faraday's law of induction: the translational velocity of a conducting medium (water)

is proportional to the voltage induced by the moving conducting medium. Swarzen-

ski et al. [2004b] and Swarzenski et al. [2004a] applied an electromagnetic automated

seepage meter in three saline water bodies in Florida: Sarasota Bay, Biscayne Bay, and

Bottle Creek -a tributary to Shark River Slough in the Everglades National Park.

The electromagnetic automated seepage meter generated an average qbf of 2.3cm/d at

Bottle Creek, as compared with an average qbf of 2.4cm/d with a co-deplov, -1 dye-dilution

automated seepage meter ['S /..'It.vitz et al., 2003].

Rosenberry and Morin [2004] conducted a number of experiments to test the

sensitivity of the seepage meter to human induced disturbance. The electromagnetic

device showed that natural qbf resumed approximately one hour after installation of

the seepage meter, at a background qbr of between 70 and 130cm/d at Mirror Lake.

Estimation of qbr prior to the re-establishment of equilibrium caused overestimations that

ranged from 45'. to 111 They showed that head loss through the electromagnetic device

was undetectable with a 0 to 34.5kPa strain-gauge pressure transducer, and that head

loss through the traditional Lee-type device ranged from 4 to 19mm, as a function of

measurement-bag tubing diameter at a qbr of 259cm/d. Head loss through the Lee-type

device was undetectable at a qbr of 2cm/d. They showed that disturbance of the seepage

meter can cause spikes in the per second estimation of qbr. For example, walking within

0.25m of the seepage meter induced qbr that ranged from 2.8 to 39.5cm/d at a background









"undisturbed" qbr of 19.8cm/d. However, the walk-by experiment had minor impact on the

minute-averaged qbf at this location, causing a change in minute-averaged qbf of 0.6cm/d.

They showed that disturbance with a rake of a thin low permeability 1~-,-r of sediment at

the surface of the bed caused qbr to increase from 86 to 129cm/d at a location 2m from the

shore, 175 to 369cm/d at a location 3m from the shore, and 31 to 45cm/d at a location

4m from the shore.

1.3.1.3 Bedform effect

Shinn et al. [2002] investigated 50 seepage meters permanently deploy, .1 in Florida

Bay, the Atlantic Ocean east of the Florida Keys, Tampa Bay, and in an experimental test

pool. These meters employ various designs, including Lee's [1977] design. They questioned

the effectiveness of seepage meters in quantifying qbf based on the observation that qbr

did not occur where piezometers showed sufficient head gradients to generate qbr. They

also .-.i:, -1. I that pressure gradients caused by waves and currents may generate an

artificial flux into seepage meters. The pressure gradient generates a lift force due to the

Bernoulli effect. They -i -.-.- -1. I that the lift force will advect fluid into a seepage meter

that appears as a bathymetric feature, with respect to the current. They cited experiments

[Huettel and Gust, 1992; Huettel et al., 1996, 1998], in which dye injected into sediment

below a bathymetric feature (a 2.5cm high sand mound) was advected by a lift force,

at a rate in excess of 70cm/d, into surface waters. The 70cm/d flux was generated by a

current with a 0lcm/s velocity 8cm above the bed .

In response to Shinn et al. [2002], Corbett and Cable [2003] acknowledged that

qbf estimates must alv--i,- be interpreted with caution, and stated that significant

experimental issues existed the work of Shinn et al.. For example, Corbett and Cable

stated that Shinn et al. did not pre-load measurement bags, as recommended by Shaw and



1 Huettel et al. [1996] Experiment 2; 3.3cm/hr maximum vertical velocity for the solute
tracer front









Prepas [1989] and Cable et al. [1997]; used measurement bags of various sizes; and used

a 24-hour sampling interval that was too coarse to accurately capture the behavior of qbf

over a tidal cycle. They pointed out that the 1.5cm/d seepage meter estimate of qbf to

Florida Bay by Shinn et al. was similar to the 1.7cm/d estimate of Corbett et al. [2000],

which was based on three independent observational techniques: seepage meters, and
222Rn and CH4 tracers. Finally, Corbett and Cable cited observations by ('li,.in et al.

[2003], in which qbf was strongly correlated with Atlantic Ocean tidal elevation2 C(/,i.I.'

et al. [2003] observed that for approximately 211 '- of the tidal cycle, seepage meters in the

Atlantic Ocean recorded qbr at a rate of less than 5cm/d. The period during which qbr

was observed coincided with a period in which the differential head between the Atlantic

Ocean and Florida Bay sl--:.- -I. .1 qbr should occur. For the remaining ,II'. of the tidal

cycle, the maximum observed qbd was approximately 12cm/d.

Shinn et al. [2003] responded by encouraging the community of scientists who use

seepage meters to conduct controlled laboratory experiments, in which the hydrodynamics

of flow around a seepage meter is characterized, including the rate at which various

currents and wave climates advect fluid into a seepage meter mounted in a sandy bed3

In a laboratory test, Lee [1977, Figure 3] showed a linear relationship between qbd (or

qbr) measured with a Lee-type seepage meter, and variable i imposed on the tank. Darcy's

Law (Equation 1-1) predicts such a linear relationship. However, he did not comment on

the relationship between the slope of the linear relationship and properties of the porous

medium and fluid in the tank, such as K. He showed that the linear slope differed during



2 Corbett and Cable [2003] did not acknowledge the possibility that Atlantic Ocean tidal
dynamics might have generated a sufficient bottom current to drive qbf into the seepage
meter via the pressure gradient effect described by Shinn et al. [2002]. The relevant
correlation could have been bottom current and qbf; tidal elevation in their argument may
have been a surrogate for bottom current.

3 Such laboratory experiments do not appear in the widely-cited peer-reviewed
published literature.









qbd and qbr, possibly due to the existence of a thin l-r of low permeability clay, which is

on the bed during qr and suspended during qbd4 Finally, he showed that the linear slope

was a function of the deployment location in the test tank.

With controlled laboratory tests, B. lariu,. and Montgomery [1992] replicated Lee's

[1977] observation of a linear relationship between qbf and i. They showed that the ratio

of qbd measured with a Lee-type seepage meter to qbd in the remaining un-metered portion

of the tank was consistently less than unity, ranging from 0.3 to 0.8, depending on the

specific circumstances of the test. This -i --. -I that field observations of qbf might be

scaled by some unknown inefficiency coefficient.

Cable et al. [2006] concluded that seepage meters should only be used in quiescent

water bodies. They argued that pressure gradients generated by < 5cm/s currents

around a Lee-type seepage meters in the Indian River Lagoon (IRL) did not influence

qbf estimates because observed wind speed, wave height, and current velocity did not

correlate with qbf estimates in the IRL. They stated that 95'. of the observed current

measurements in the IRL were less than 5cm/s, and therefore less than half the current

velocity used in Huettel et al. [1996]. They reinforced a conclusion of Huettel et al.

[1996] that "bottom currents are important to pore water advection," and clarified that

"bottom currents must be of a greater magnitude than typically occur in the [IRL] to be

a significant contribution to flow from seepage meters."

Darcy velocity q can be obtained as follows [Huettel et al., 1996]: differential pressure

across bed forms is
FL pU2
AP CL( (1-27)
A 2

where AP is the pressure drop along the bed form, FL is the lift force, A is the area of the

bed form perpendicular to the velocity field, CL is the lift coefficient, p is the fluid density,



4 In Lee's static-head test, the Lee-type seepage meter is an ,-ii,, i"Iric observational
device, because qbd(i) -qbr(-i)









and u is the velocity. Cable et al. calculated q with


kAP k pU2
q kAP k CL p (1-28)
til pil 2

where 1 is the path length. (Recall that k is permeability.) They stated that the adopted

path length can vary from a minuscule distance to the diameter of the seepage meter

(0.57m). They showed that with a path 1. il!i" of 0.403m, and a range of lift coefficients

between 0.1 and 2.0, qbd was less than lcm/d at velocities of 5cm/s, and ranged from less

than lcm/d to approximately 6cm/d for velocities of 20cm/s.

Cable et al. described a control experiment, in which they placed a children's

swimming pool at the bed of the IRL, filled the pool with sediment, and then deploy, ,1

a seepage meter in the pool. The pool was a qbf barrier. They observed a qbf of 1 to

1.5cm/d, which they attributed to flux forced by current induced pressure gradients on

the seepage meter. They concluded that the agreement of observed qbf in the control

experiment and the differential pressure calculation, at comparable 5cm/s velocities,

-ii.-., -1, 1 that qbf generated by current induced pressure gradients on seepage meters was

real, but acceptably small in quiescent waters, where observed qbf was on the order of

lOcm/d.

1.3.1.4 Summary remarks

Ti,.:i;,.. 1,.i et al. [2006] and Burnett et al. [2006] summarized a number of conclusions,

by others, concerning the use of seepage meters. These conclusions are presented here

to -I.-.-1 -I that qbf measurement with seepage meters has improved to address various

acknowledged difficulties in measurement. These conclusions, with additions, follow:


1. Natural spatial and temporal variability of qbf requires that numerous seepage
meters be deploy, -l to characterize a given location [Shaw and Prepas, 1990a,b].



5 ('!i ..i of a shorter path length will produce lower qbf estimates; choice of a longer
path length will produce higher qbf estimates.









2. Benthic flux estimates with manual seepage meters may be inaccurate due to
pressure gradients generated by flow through and around the collection bag, the
seepage chamber, and across the connection port [Fellows and Brezonik, 1980; Shaw
and Prepas, 1989; B. rib. and Montgomery, 1992; Shinn et al., 2002; Murdoch and
K. 1// 2003].
3. Manual seepage meters are not accurate below a 0.4 to 0.7cm/d detection limit;
qbf observations near or below the detection limit must be interpreted with caution
[Cable et al., 1997].
4. Benthic organisms, such as Arenicola crusata lugwormm), Callianassa sp. (burrowing
ghost shrimp), Upogebia sp. (burrowing mud shrimp), and Diopatra cuprea (plumed
worm) may pump fluid into seepage meters, in response to the anoxic environment
created where the meter is placed over the organism's nest [Martin et al., 2004;
Cable et al., 2006].
5. Benthic flux estimates with seepage meters do not ah--iv- agree with qbf estimates by
other methods, as detailed in Section 1.4, and in Burnett et al. [2006].
6. Existing literature details numerous qbd-only observations, in which Lee-type manual
seepage meters record qbd (or SGD) at all locations within a study domain, and
do not record qbr at any location. Consider a control volume about the surficial
hydrogeologic unit, such that water volume discharged (outflow) from the control
volume balances water volume recharged (inflow) into the control volume, and
the change in water storage, within the control volume is negligible. This balance
requires that a recharge process exist, to balance observed qbd. For some qbd-only
field studies, recharge to the control volume, forced by terrestrially-sourced i, can not
balance observed qbd. For example, B. la.g. and Montgomery [1992] used Lee-type
manual seepage meters to observe a 0 to 132cm/d qbd to the IRL at Jensen Beach,
Florida; and Pandit and El-Khazen [1990] used the numerical model GROSEEP
[Pandit, 1982] to estimate a 0.06 to 0.15cm/d freshwater qbd, forced by i to the same
location. Three conclusions are possible: (1) recharge is forced by some process,
other than qbr; (2) recharge is forced by qbr at some location outside the study
domain; or (3) qbd observations are erroneously large.

1.3.2 Tracer Technique

Investigators have used a variety of natural and artificial tracers to estimate qbf [Bur-

nett et al., 2006]. In general, the method is based on an accounting of tracer inputs into,

outputs from, and changes within a specified control volume. The degree of uncertainty

associated with the estimation of these inputs, outputs, and changes in tracer makeup

within the specified control volume can be significant.

Corbett et al. [2000] and Burnett and Dulaiova [2003] detailed methods to estimate

qbd from observed 222Rn fluxes. (Figure 1-7 is a conceptual model of the 222Rn flux into

a surface water control volume.) The following equation represents conservation of 222Rn









fluxes into and out of the control volume defined in Figure 1-7:


Jbd.adv + Jbd.diff + Jadv.s-norm + Jprod + Jresus Jadv.along-s

Smix atm decay 0 (1 29)

where Jbd.adv is benthic 222Rn discharge, entering the control volume with advective

qbd; Jbd.diff is benthic 222Rn discharge, entering the control volume with diffusive qbd;

Jadv.s-norm is 222Rn flux, entering or exiting the control volume via surface water advection
in the shore-normal direction; Jadv.along- is 222Rn flux, entering or exiting the control

volume via surface water advection in the along-shore direction; Jmix is 222Rn discharge,

leaving the control volume due to diffusion or mixing; Jatm is 222Rn discharge, leaving the

control volume due to evasion across the air-sea interface; Jprod 222Rn flux entering the

control volume due to production from 226Ra; Jdecay 222Rn flux leaving the control volume

due to decay to 218Po; and Jresus is benthic 222Rn recharge entering the control volume

due to sediment resuspension6

Note that in Equation 1-29, benthic 222Rn flux (Jbd) is broken into advective (Jbd.adv),

and diffusive components (Jbd.diff), such that:


bd = Jbd.adv + Jbd.diff (1 30)

Burnett and Dulaiova [2003] -i- :. -i. l that Jbd.diff is negligible. They stated that in most

field settings, Jbd.adv is 20 to 100 times greater than Jbd.diff- Methods detailed in Cable

et al. [1996] may be used where Jbd.diff is important. They also stated that Jadv.azng-s,

Jprod, Jdecay, and Jresu are negligible. Corbett et al. [2000] included Jprod and Jdecay-



6 The SI unit for radioactivity is becquerel (Bq), in which 1Bq=1 atomic disintegration
per second [T-1]. A benthic radioactivity flux has the units of B in SI units, or
[M-2T-2] in generalized units.











atm




F decay IFmix

Sadv.along-s adv.s-norm



bd.adv

Fbd.diff resus


Figure 1-7. 222Rn fluxes associated with a control volume.


Retaining Jprod and Jdecay, an estimate of qbd is generated with the remaining

component flux terms:


bd = Jbd.adv = qbdasARn.bd (131)
Ah
Jadv = axsARn.adv At (132)

Jatm = f (V, ax, ARn., Tw,ARn.a,V) (1-33)

Jprod = axshXRaAa.w (1 34)

Jdecay = axshAXRAn n. (1 35)


where axs is a horizontally-oriented, unit cross-sectional area; ARn.bd is the 222Rn

radioactivity of qbd water, per unit volume; At is length of the time step in the continuous

time series of observations; APR.adv is 222Rn radioactivity of .,.i i:ent waters, per unit

volume, where .,.li i:ent waters are offshore during flood and nearshore during ebb; Ah

is change in depth within the control volume during the time step, such that Ah> 0

during flood and Ah< 0 during ebb; Vwind is wind speed; ARn.w is 222Rn radioactivity

of water in the water column, per unit volume; T, is water temperature; ARn.a is 222Rn

radioactivity of air above the water column, per unit volume; v is kinematic viscosity;









ARa is 226Ra decay constant (4.33x10-4yr-1); Aa.w is 226Ra radioactivity of water in the

water column, per unit volume; and AR, is 222Rn decay constant (0.1824d-1). Burnett

and Dulaiova [2003] stated that Equation 1-33 is detailed in Maclntyre et al. [1995] and

Turner et al. [1996]; W.C. Burnett detailed the components of Equation 1-33 via personal

communication.

Burnett and Dulaiova [2003] -1i--.- -1. that Jmix be approximated as a reasonable

lower bound of a time series of net 222Rn flux, Jnt, where


Jnet = adv Jatm (1-36)

Figure 1-8 is an example of the estimation of Jmix as a function of time.

Equations 1-29 to 1-36 can be rearranged to obtain qbd for the time step:

Jmix + Jatm- (a8xsARn.adv R ) ts xshARaAna.w + axshAslRnAn.w (37)
bd (137)
axsARn.bd

Tracer estimates of qbf are integrated over a defined control volume, while seepage

meters measure qbf at a point in space. With tracer methods, variations in qbf are

smoothed across the control volume.

1.4 Comparison of Techniques to Characterize Benthic Flux

Numerous investigators have conducted method inter-comparison studies to attempt

to rectify qbf estimates made with different techniques [Burnett et al., 2006]. One

general conclusion is that the 1i 1,1 i;,i ii ,' of [observed] SGD strongly depends on the

measurement technique" [Cable et al., 2006]. For example, Ti,'.:,,. I,. et al. [2003a]

concluded that seepage meters agree to within S I' and Smith and Zawadzki [2003]

identified a "discrepancy between [numerical] model-based predictions of SGD ... and that

estimated by seepage meters or chemical tracers."

Five inter-comparisons were conducted on five continents, in association with a

joint project sponsored by the International Atomic Energy Agency (IAEA), the United

N li.,i: Educational, Scientific and Cultural Organization (UNESCO) [Burnett et al.,




















0.012 -

0,010


E
N 0.006


0.004

0.002

0.000
z J ------ -----
-0.002 etl. mixing Itses,

-0.004 1
28-Sep 29-Sep 30-Sep 01-Oct 02-Oct 03-Oct 04-Oct
Time/Date 2001

Figure 1-8. An example of a lower-bound assumption for mixing flux, from September
28 to October 3, 2001, in the Gulf of Mexico near Turkey Point, Florida.
Reprinted from Burnett and Dulaiova [2003, Figure 4]. @2003 Elsevier, used
with permission.









2006]. Method inter-comparisons at the IAEA-UNESCO test locations were successful at

some locations and not successful at others. For example, on Cockburn Sound, Tiw.:'.1i. ,.

et al. [2003b] observed a six-di, average qbd of 13.7cm/d with Lee-type manual seepage

meters, 16.3cm/d with continuous-heat-type automatic seepage meters, and 3.6cm/d with

a heat tracer method.

As shown in Figure 1-9, continuous 222Rn tracer data and dye-dilution seepage meter

data collected at Ubatuba, Brazil during the same time period qualitatively match. Peaks

in qbd coincide with low tide. Note that both continuous 222Rn and seepage meter data

peak on every other tidal trough; Burnett et al. [2006] -1--.- -I, 1 that both devices are

responding identically to similar forcing mechanisms.

Near Donnalucata, Sicily, T i.:.I;,. it. et al. [2006] observed daily average qbd of 35.3,

37.2, and 23.8cm/d, on three successive d4iva with an automated seepage meter. For

comparison, he observed 17.2, 28.1, and 35.7cm/d daily average qbd with manual seepage

meters, located approximately 40m away. Burnett and Dulaiova [2006] estimated qbd with
222Rn tracer methods near Donnalucata. They collected 222Rn concentrations at numerous

locations throughout a boat basin and noted non-uniform distributions. They calculated a

volumetric qbd rate of between 1200 and 7400m3/d to the boat basin. For comparison, the

above-mentioned seepage meter observations detailed in TiU.:;. I,. c, et al. [2006] generate

qbd to the boat basin of 300 to 1000m3/d.

1.5 Tasks

The following tasks define this work:


1. To develop an analytical model for bd forced by terrestrially-sourced i (C'! Ilpter 2)
2. To develop an analytical model for qbf forced by the ground water tidal prism
(C'!i Ipter 3)
3. To develop an analytical model for qbf forced by surface gravity waves (C'!h Ipter 4)
4. To characterize qbf in the IRL at the Eau Gallie Transect (EGT) of Martin et al.
[2002, 2007] described in Appendix A -and at other select locations, with these
models (C'!i plters 2, 3, 4)










8 -120

=1) 01000






S-QO

^W r^ If W AI

1S-Nov 19NQW 20aNov 21-Nov
Daie 2filRI -C- Hatnr
Oepth
WHOI Ba p Meter

Figure 1-9. Benthic discharge measured with dye-dilution-type automated seepage meters
and a 222Rn tracer technique at Ubatuba, Brazil. Reprinted from Burnett
et al. [2006, Figure 27]. @2006 Elsevier, used with permission.


C'! lpter 5 contains a summary, conclusions, and recommendations for future work.

The IRL and data -collected by others -are described in Appendix A. Appendices

B, C, and D detail mathematical developments introduced in C'! lpters 2, 3, and 4.

Appendix E introduces governing equations for a proposed model.









CHAPTER 2
TERRESTRIAL HYDRAULIC GRADIENT

This chapter details three analytical solutions for the determination of qbd forced by a

linear terrestrially-sourced i in an homogeneous, isotropic, unconfined hydrogeologic unit.

Sections 2.1 and 2.2 detail qbd associated with an infinite-depth unit; and Section 2.3 a

finite-depth unit, without leakage from the underlying (confined) unit. Solutions employ

the well-known Schwarz-C'l i-I. .11, mapping technique -from two-dimensional, x-z

oriented prototype transects to the abscissa of a complex half-plane solution space -and

solution with the Poisson integral formula for the upper half plane.

2.1 Case Ia: Infinite Depth Unconfined Hydrogeologic Unit

Consider the prototype x-z transect shown in Figure 2-1A, where s is the distance

from shore [at point (0, 0)] to the ground watershed divide [at point (-s, 0)]; and c is the

depth from the still-water elevation (the x axis) to the surface of the unconfined unit at

the ground watershed divide [at point (-s, c)]. The linear terrestrial hydraulic gradient

(i= ) between (-s,c) and (0,0) forces ground water in the infinite-depth unit to an

infinitely wide, shallow, fresh water body, located in positive-x space. There is no flow

across the ground watershed divide, along the line that extends from (-s, c) to (-s, -oo).

The free-surface in the water body is fixed at z = 0.

The prototype x-z transect is abstracted (Figure 2-1B), such that the clockwise angle

of the phreatic surface is 7 and at (0, 0) and (-s, 0), respectively. This abstracted

prototype space defines a complex domain, such that Y= x + zz. The abstracted prototype

space is mapped to a half-plane, complex model space V= u + iw (Figure 2-1C) with

the Schwarz-C'!i :-I 1!. I transform for the half-plane [Driscoll and Trefethen, 2002,

Equation 2.2]:
a n-1
f(a)Y= B+A (s- ,u) -lds (2-1)
0 j=1









A) 0-s,0
C +' ~+z
: --- )o.o( 0) +x +y
(--_ 0) ----------- +o



-00

+B)Z
B) (-s,O) (0, o) +Ix
)c 5 =(+00,0)






C) -C
04_ -- =--X "--pop--



0s 2
(-s,-00) \ )


S+w
^ ^--------- I = (u+1) ------ = 0
Sw
Figure 2-1. Benthic discharge forced by a linear terrestrial hydraulic gradient, over an
infinite-depth, hydrogeologic unit (Case Ia). (A) Prototype, (B) abstracted
prototype, and (C) modeled schematic.

where n is the number of vertices in Y, ordered in a counter-clockwise direction; A and B
are complex constants referred to as a( ..- ', ;/ parameters; aj are clockwise angles at each
vertex; and a and s are dummy variables. Note that the nth vertex occurs at oo.
Generate the V -+ Y mapping by substituting finite vertices and interior angles for
Case Ia (Table 2-1) into Equation 2-1 (see Appendix B.1)

S= -s(l + ) (2-2)

Invert to obtain the Y -+ V mapping

V 2( + 1)2 (2-3)
S









Table 2-1. Finite vertices and associated interior angles for Case Ia.
Y a V
0+z0 rT -1+z0
-s+t 0 1 +l+0


or in component form


u = 2[( )2- 2X 2]- (2-4)
xz z
w = -4( 2 -) (2-5)
s s

where x is dimensionless offshore distance.
S
It can be shown (Appendix B.1) with the Poisson integral formula for the upper half

plane [Saff et al., 1993, page 176]


0(u,w) w= ( da (2-6)
7 J (u 3)2 + w2

and the driving head potential on 3 = (-1,0) -- 32= (+1, 0) in model (V) space

(Figure 2-1C; Table 2-1)

f(3) (3 + 1) (2-7)

that


(u, ) U 3 2 + da (2-8)
7T 7_i (u- 3)2 + W2
cw (- 1)2 + 2 C( + ) 1 2w
In + tan- (2-9)
47 (u + 1)2 + 2 27T w22 + 2 1

and
Tx 1 U 4
az o (- +)[ln( ()2+ ] (2-10)
Oz 7T s l+u u-

[31 (-1,0) 32 = (+1, 0) corresponds with (0, 0) (-s, c) in prototype space
(Figure 2-1A), and (0, 0) (-s, 0) in abstracted prototype (Y) space (Figure 2-1B;

Table 2-1).] Velocity vectors and streamlines are shown in Figure 2-2.



























10 7q/Kc


Figure 2-2. (A) Velocity vectors and (B) streamlines for Case la.


-

-. -,-


--, - r .




/ -~ A' .

,- r -. -


I L


0.0



-0.2



-0.4



-0.6



-0.8



-1.0


0.0



-0.2



-0.4



-0.6



-0.8



-1.0









Recall Darcy's Law (Equation 1-1). Dimensionless benthic discharge (T) forced by a

linear terrestrially-sourced i through an infinite-depth unit is then (Figure 2-3)

Tr x+ ) [ln( )2 + ] (2-11)
K+ 7 S U + t U t
Ki ( s u+l u-1

where u is defined by Equation 2-4.

Singularities exist at the vertices defined in Table 2-1; these singularities are a

consequence of the Schwarz-C'l i-Il. I11 method. The solution becomes undefined at

these singularities, with error propagating into the solution space near the singularity

and diminishing with distance from the singularity. For example, the no-flux boundary

condition at the watershed divide (x = -s, u > 1) is violated near the singularity at

u 1 (Figure 2-4). Note that the dimensionless head gradient ( ) .,-iiii .lntes to zero

as u -- oc. While this violation of the no-flux condition at the watershed divide, near

the singularity, is less than ideal, it will be shown in Section 2.2 that the impact on T is

negligible.

2.2 Case Ib: Infinite Depth Unconfined Hydrogeologic Unit, Solved with
Image Method

Consider the prototype x-z transect shown in Figure 2-1A. Define an image axis along

the watershed divide (x = -s), and reflect the region defined by x > -s onto the region

defined by x < -s (Figure 2-5A). The linear i (i= ) between (-s,c) and (0,0) forces

ground water in the infinite-depth unit to an infinitely wide, shallow, fresh water body,

located in the positive-x space. The linear i (i= ) between (-s, c) and (-2s, 0) forces

ground water in the infinite-depth, image-space unit to an infinitely wide, shallow fresh

image-space water body, located in the region defined by x < -2s. Imposition of the

image prohibits flow across the ground watershed divide, along the line that extends from

(-s, c) to (-s, -oo). The real-space and image-space water surfaces are fixed at z = 0.
The prototype x-z transect is abstracted (Figure 2-5B), such that the clockwise

angle of the phreatic surface is 7 at all three vertices: (0, 0), (-s, 0), and (-2s, 0). This










0.8
0.6
0.4
0.2
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xls
Figure 2-3. Dimensionless benthic discharge versus dimensionless distance (Case Ia).


100
80


af
C 0W


60
40
20


u
Figure 2-4. Dimensionless head gradient (in the computational domain) versus
dimensionless depth at the watershed divide (Case la).


L I









A)


(-2s,0)


S +x +
'^--s--^-jh


(-2s,0)
C
q)-o qb=-x+2c


I A+w
C)+ (+1,0)7 +u (0,0) (-1,0) -oo
.- d=0 =c(l-u) 4 (=c(l+u) d=0 -


Figure 2-5.


Benthic discharge forced by a linear terrestrial hydraulic gradient over an
infinite-depth, hydrogeologic unit (Case Ib), solved with the method of images.
(A) Prototype, (B) abstracted prototype, and (C) modeled schematics.


abstracted prototype space defines a complex domain, such that Y= x+zz. The abstracted

prototype space is mapped to a half-plane, complex model space V= u + iw (Figure 2-5C)

with Equation 2-1.

The V -+ Y mapping is generated by substituting finite vertices and interior angles for

Case Ib (Table 2-2) into Equation 2-1 (see Appendix B.2)


Y -s(1 + V)


(2-12)


The Y -- V mapping is obtained by inverting the V -- Y mapping


V -1


(-oo)


C
S


q)-oDo


(2-13)









Table 2-2. Finite vertices and associated interior angles for Case Ib.
Y a V
0+ 0 7T -1+z0
-s+t0 0+t0
-2s + 0 T + + 20


or in component form


(2-14)

(2-15)


It can be shown (Appendix B.2) with

image-space (i) driving head potentials


f (3)

f (3)


Equation 2-6 and the real-space (r) and


c(1 3)

c(1+ 3)


that


w c(1 3)
S]o (u 3)2 + w2
cw 2 + w2 c(1 )
SIn + tan-
2~ (u 1)2 W2
w fo c(1 + 3)
T i(U- 3)2+ W2a
cw u2 2 c(1 +) 1
wIn + tan-
27 (u + 1)2 +w2


w
w2 + u2 u



2
w2 + u2 + u


(2-18)

(2-19)

(2-20)

(2-21)


where


(2-22)


The method of images ensures that x=-s = 0, a condition not satisfied in Case la

(Figure 2-4). Velocity vectors and streamlines are shown in Figure 2-6.

Note that


2i (U


(2-16)

(2-17)


0r (u, w)




Oi(u, w)


(2-23)


0 = 0r + Oi


'g z= 0
Oz


u4
1)2(U + )2,


















A
10 7q/Kc
o .o ,------- 1 1 1 ii i ,i ;-------

-0.0 / tttttt





-0.8 -.
-0.4 .' "" "" ". \\ \ I" ,..........
V \\T//







-1.0 1
-4 -3 -2 -1 0 1
xls


B
0.0


-0.2


-0.4


-0.6 -


-0.8


10-4 -3 -2 -1 0 1
xls
X/S

Figure 2-6. (A) Velocity vectors and (B) streamlines for Case Ib.









Recall Darcy's Law (Equation 1-1). Dimensionless qbd forced by a linear terrestrially-sourced

i through an infinite-depth unit is then (Figure 2-7)

qbd 1 U4
T r=qbd In( ) (2-24)
Ki 27 (u 1)2(U + )2

where the method of images is employ, l1 and u is defined by Equation 2-14.

Note that the maximum difference in T, between solutions with and without the

method of images, is AT,,x 0.051 (at = 0.58) over > 0.2 (Figure 2-7). Over

x < 0.2, ATma, increases near the shoreline. For example ATa,, = -0.45 at = 0.02.

Elimination of non-T angles from the abstracted prototype causes the Case Ib (method

of images) relationship for T to contain less terms than Case Ia. The method of images,

however, leads to more cumbersome solutions for Cases II and III. The near equivalence

of Cases Ia and Ib is invoked as justification for pursuing the less cumbersome non-image

solution to Cases II and III.

2.3 Case II: Finite Depth Unconfined Hydrogeologic Unit, without Leakage

Case Ia is adapted, such that the unconfined unit has a finite depth, d (Figure 2-8A).

Leakage is prohibited between the horizontal base of the unconfined unit and the

underlying confined unit. An additional vertex is included in the prototype (-s, -d)

to define the intersection of the horizontal base and the ground watershed divide. The

prototype transect is abstracted (Figure 2-8B) such that the clockwise angle at (-s, -d) is
7'
2'
The abstracted prototype space is mapped to a half-plane, complex, model space

(Figure 2-8C) with Equation 2-1. Generate the V -- Y mapping by substituting finite

vertices and interior angles for Case II (Table 2-3) into Equation 2-1 (see Appendix B.3)

2d 7s V 1
sinh-l [cosh( ) ] s-d (2 25)
7r 2d 2V













0.8
image
no image
0.6


0.4


0.2


0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xls

Figure 2-7. Dimensionless benthic discharge versus dimensionless distance, solved without
(Case Ia) and with (Case Ib) the method of images.


A)


C
d >> c
d>c
d~h
d
v


+00oo



+00


(-s,-d)


+w


+o 00-(+1,0)
+ 08(/8w=0


A61 1,0))
I" 4(_ .00

c (u+i)
s+I


Figure 2-8. Benthic discharge forced by a linear terrestrial hydraulic gradient, over a
finite-depth, hydrogeologic unit, with no leakage (Case II). (A) Prototype, (B)
abstracted prototype, and (C) modeled schematics.


(-s,O)


0 x a qplaz= 0









Table 2-3. Finite vertices and associated interior angles for Case II.
Y a V
0+ 0 T l+z 0

-s d +1 + 20
s -i
S [1 2
2 d

Invert to obtain the Y V ri lliiiI. in component form

cos cosh( s) +1
u 1 (2-26)
cosh2 ,s
2d
sin sinh( (X+))
w = d (2-27)
cosh2 2rs

It can be shown (Appendix B.3) with Equation 2-6 and the linear terrestrial

hydraulic gradient on (-s, c) (0, 0)

c
f(3) (3 + 1) (2-28)
S+1

where

S =1 2 (2-29)
cosh2 Ts
2d
that

w ws c (3 + t)
(u, w) s+1 ~ d (2-30)
1 -1 n (( ) 2 + W2
1 cw (u- S)2 + w2
In
27( +1 ) (u+1)2 + 2
c(u+1) I w(S+1)
+ tan- (2-31)
7T(+1) w2+(U -S)(+1)

Velocity vectors and streamlines are shown in Figure 2-9.

Note that

s ,sinh["('+ 1)][ 1 S 1
z= i d s In( )2 + 1 (2-32)
Oz d cosh2 2(S +1) u+1 u S

































-0.5


0.0
x/s


xls

Figure 2-9. (A) Velocity vectors and (B) streamlines for Case II.


10 tq/Kc


j~------- i


/ 1 I~~---


-0.6


-0.8


-1.0


-0.6


-0.8


-1.0









Recall Darcy's Law (Equation 1-1). Dimensionless qbd forced by a linear terrestrially-sourced

i through a finite-depth unit is then (Figure 2-10)

qbd s inh[7"( + )1 1 u S 1
T d cosh" [ In( )2 + ] (2-33)
Ki d cosh2 2(S + 1) u + u S

where u is defined in Equation 2-26. Case II reduces to Case Ia where d -- o

(Figure 2-11).

Close to shore, T for larger aspect ratios (-) is greater than T for smaller where S

is the ratio of the distance between the shoreline and the ground-watershed divide, and the

depth of the hydrogeologic unit. Away from shore, T for larger is less than T for smaller

S(comparison of = 10 to = 0.1 in Figure 2-10), such that

S S S x
T( 10o) > ( 1) > ( 0.1) over < 0.05 (2-34)
d d d s
S S S x
T( 10) < ( 1) < ( = 0.1) over > 0.75 (2-35)
d d d s

This characteristic might be referred to as inversion, where the inequality becomes

inverted with distance from shore. Inversion is caused by a relatively more constricted

geometry in a unit with high ', near the discharge point at shore. Over -s < x < 0, i

forces flow toward shore; i -i 0 at the analytical discontinuity at the shoreline (x = 0,

S -1, In o, T -- oc). On x > 0 near this location, (Equation 2-32) is

greater for larger than for smaller '. Subsequently, qbd for a larger is greater than qbd

for a smaller for the same K and i, close to shore. It follows then that T for a larger -

is greater than T for a smaller ', for the same K and i, close to shore.

Note, however, that the volume of water transported by qbd the area under each

curve in Figure 2-10, between a point close to shore and a point far from shore -is

ultimately smaller for larger because the cross sectional area over which a common

hydraulic gradient acts at the shoreline is smaller for larger .

Equation 2-33 fails to report plausible estimates for large on 0 < < o0, due

to u -oo (Figure 2-12A and 2-12B). For 100, = -10136 at 1. Consider
ci 8





















sld=10
s/d=1
0.01

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xls

Figure 2-10. Dimensionless benthic discharge versus dimensionless distance (Case II).


1.0 t \


- -
-- -- -- -- -- ---- ---


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xls

Figure 2-11. Dimensionless benthic discharge versus dimensionless distance, for Case Ia
(solid black line), and for Case II where aspect ratio is 0.01 (dashed yellow
line).









that -by design -the shoreline is located at u = -1. The failure of Equation 2-33 is

a failure to calculate plausible results at relatively remote locations (u = -10136 <

u = -1). Define the breakdown point as the smallest t at which T < 0 (Figure 2-12C).

Plausible, small T are predicted by Equation 2-33 as u approaches the breakdown point

(Figure 2-12B). For example, for = 10, T 7.4x10- at x = 0.5 -a plausible result;
d 8
while T < 0 at = 0.6, and T = at x = 1.1. Equation 2-33 is therefore not considered

valid from the breakdown point to -- oo.
2
Failure is more pronounced for large r. For example, where = 10, T on > 2

(dashed blue line in Figure 2-12A). The at which Equation 2-33 fails is a function of .
S
For =- 1, T on > 15, (dashed red line in Figure 2-12A); for = 0.1, T / on

S< 100, (dashed black line in Figure 2-12A).

Bokuniewicz [1992, Equation 7] solved Case II with Fourier cosine transform of the

Richard's Equation (Section 1.2.4). Recast Equation 1-25 in isotropic, non-dimensional

form (Figure 2-13)
qbd 1 coth s coth + 2)
T In T d s Td s (2-36)
Ki coth2 ( ) (236)

Equation 2-36 is similar to Equation 2-33 (Figure 2-14) in the offshore region, where

S> 0.15, as T decreases with distance from shore. Both relationships are undefined at the

shoreline discontinuity in i. Close to shore, however, behavior differs, with Equation 2-33

rising faster than 2-36, such that

T | Equation 2-33 0 T Equation 2-36
a' l 0.05 > a -0.05 (237)
s s

For 0.01 < < 10, over 0 < x < 0.7, Equation 2-36 does not exhibit the pronounced

inversion with distance from the shoreline. Instead, at any given dimensionless distance

from shore over 0.05 < x < 0.7, Equation 2-36 increases with decreasing for 1 < < 10;

but decreases with decreasing ', for 0.01 < < 1, such that a local maxima exists

(Figure 2-13). Equation 2-36 does exhibit inversion -albeit a much less pronounced















1E+300


1E+250 .**- -

1E+200-

3 1E+150

1E+100-

1E+50 -



0 10


0.3
0.2 -
4 0.1
0- 0 0

-10


-u Y
--- -- x/s=0.1
........... x/s=1
S -- x/s=10


0

-10

-20 4

-30

-40


7 T -50
20 30 40 50 60 70 80 90 100
sld


0.5 1
0.5 11


5, 2


20 40 60 80


Figure 2-12. Example of Case II breakdown and articulation of the breakdown point. (A)
Model space u coordinate, expressed as a positive number, and dimensionless
benthic discharge versus aspect ratio at three dimensionless distances from
shore, for Case II; (B) dimensionless benthic discharge versus dimensionless
distance for an aspect ratio of 10; and (C) Case II breakdown point versus
aspect ratio.
















0.8 -



0.6 .
s/d=10
\ s/d=1
0.4 \ 0.01


0.2



0.0
0.0 0.2 0.4 0.6 0.8 1.0

X/S

Figure 2-13. Dimensionless benthic discharge versus dimensionless distance, for an
unconfined unit of finite depth, based on Bokuniewicz [1992].





4.0
Case II
s/d=10
3.0 -s/d=l
s/ld=0.1

Bokuniewicz
> 2.0 s/d=1
s/ld=0.1
sld=10

1.0 --



0.0 -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xls


Figure 2-14.


Dimensionless benthic discharge versus dimensionless
Case II constraints, and with Bokuniewicz [1992].


distance, solved under









one than the nearshore inversion exhibited by Equation 2-33 -for 0.01 < < 1, over

0.7 < x < 1.
S
For 0.1 and = 1, over 0.02 < x < 0.7 and 0.02 < x < 0.8 respectively,

x0.02 Tdy, where T is from Equation 2-33, is up to 1.4 and 1.8 times larger than T
from Equation 2-36 (Figure 2-15, volume calculation with a trapezoidal approximation).
x
(The inequality becomes inverted over x > 0.7 and x > 0.8). For = 10, =0.02 dy

where T is from Equation 2-33, is between 3.5 and 6.2 times larger than T from

Equation 2-36, for 0.02 < x < 1 (Figure 2-15).

2.4 Application to Great South Bay, Long Island, New York

Bokuniewicz and Zeitlin [1980]; Bokuniewicz [1980, 1992] detailed over 300 summer-season,

qbd measurements in Great South Bay, New York. They used Lee-type seepage meters

at six locations on 18 dates, between August 1978 and August 1979 (Figure 2-16).

Bokuniewicz [1992] cited Getzen's [1977] observation of anisotropy in the surficial unit

(0.13 < k < 0.18). He used Equation 1-25 and ranges of regionally averaged literature

parameters (Table 2-4) to bound these 300 observations (Figure 2-17). He stated that

the scatter in these observations i- p.i -, ii [-] the range of natural spatial and temporal

variation" in Great South Bay. He acknowledged density differences between fresh pore

water at O(lcm) depths, and Bay water; and that Equation 1-25 does not account for the

influence of density gradient on qbd.

Equations 1-25 and 2-33 are applied to the Great South Bay with variables

in Table 2-4. Benthic discharge is assumed vertically oriented and K is modeled in

Table 2-4. Model inputs -literature values referenced by Bokuniewicz [1992] for
application of Bokuniewicz's [1992] solution, and Case II to Great South Bay.
Parameter Value Units
d 250 m
s 5000 m
k 0.13 0.18
K, 3.3 8 m/d
i 0.0003 0.001
i 20
d













0.9 Case II
0.8 sld=10
s/d=1 .





0.6
0.5 sd=



0


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


Figure 2-15.


Cumulative dimensionless volumetric benthic discharge per unit longshore
distance versus dimensionless distance, for Case II (solid lines) and Boku-
niewicz [1992] (dashed lines).


0 5 10 20 Kilometers
I I I I


Figure 2-16. Location of benthic discharge observations in Great South Bay, Long Island,
New York. Observation locations from Bokuniewicz and Zeitlin [1980].


-4000'0"N









Equation 2-33 as K, in Table 2-4. A comparison of Bokuniewicz's [1992] 300 observations

and modeled qbd versus distance shows that qbd modeled by Equation 1-25 .,-iii..ll -; to

zero at larger x than Equation 2-33. The family of curves generated with Equation 1-25

differ from those generated by Equation 2-33 for two reasons:


Equation 1-25 is anisotropic; Equation 2-33 is isotropic. Anisotropy in Equation 1-25
accounts for horizontal flows that distribute qbd further offshore.
With identical inputs under isotropic conditions, Equations 1-25 and 2-33
differ in the nearshore (Figure 2-14). The point at which nearshore variation
in Equations 1-25 and 2-33 diminishes (x > 0.15, as shown in Figure 2-14),
corresponds with x > 750m in this application.

Bokuniewicz [1980] detailed 19 measurements of qbd (symbols in Figure 2-18) to

Great South Bay at four of the locations shown in Figure 2-16. He used the curve-fitting

equation of McBride and Pfannkuch [1975]


qbd = Ae-c (2-38)

where A and c are curve fitting parameters, to describe qbd to the Great South Bay

(Table 2-5, dashed lines in Figure 2-18). Adopt d and s shown in Table 2-4, assume an

isotropic medium, let K = K,, and systematically vary i and K within identified ranges to

minimize the objective function (X2)

2 V [(qbd.model qbd.obs) (239)
qbd.obs

where qbd.model is generated with Equation 2-33, and qbd.obs was reported by Bokuniewicz

[1980]. Equation 2-33 generates lower X2 than the McBride and Pfannkuch [1975]

curve-fitting equation applied by Bokuniewicz [1980] at three of four locations (Table 2-5,

solid lines in Figure 2-18).









130 ase 2 Bokuniewicz
120 K=8000 Ild-m2; i=0.001 k=0.13; K,=8000 l/d-m2; i
110- /K=3300 I/d-m2; i=0.001 k=0.13; K,=3300 l/d-m2; i
100 -K =3300 I/d-m2; i=0.0003 k=0.18; K,=3300 I/d-m2; i
100
90

80 B


60 i i

0


0 10 20 30 40 50 60 70 80 90 100
x [m]

Figure 2-17. Observed (D) and calculated benthic discharge versus distance for Great
South Bay.

Table 2-5. Curve fitting and Case II outputs for application to Great South Bay.


Curve fitting Case II
Location A c X2 K i X2
[1/d m2] [m-1x10-4] [ _/d- m2] [/d m2] [10-5] [1/d m2]
Islipl 80.1 386 9.4 3310 35 5.1
Islip2 35.9 333 82.1 3030 30 19.7
Heckscher SP 47.6 56 1.8 7460 38 17.2
Bayport 105.2 272 59.8 6060 50 56.3


2.5 Application to Indian River Lagoon, Florida

Martin et al. [2007] described freshwater qbd along the freshwater seepage face

portion of the EGT (EGTsf) (Appendix A, Figure A-7). Martin et al. [2004] modeled

K = lxl0-4m/s at CIRL39, approximately iSi,,, from the EGTsf. Motz and Gordu

[2001] reported that McGurk and P,. -/. ,/ [2000] estimated K = 2x10-4m/s. Adopt the

mean of the above-cited values for K (1.5x10-4m/s) as representative on the EGTsf.

Toth [1963] showed that the phreatic-surface shape is similar to land-surface shape,

such that the phreatic surface on a local scale is nearly a uniform depth (Az) below the

land surface. (Haitjema and Mitchell-Bruker [2005] identify the phreatic surface under

this theory as a "subdued relpl! of the land surface.) Recognize that a pronounced

ridge exists approximately 50m west of the EGTsf, at elevation 7.62m (Figure A-4,


=0.001
=0.001
=0.0003


110












B. Islip 2
50 -



1
40






~30 \

--20 -


tO


--f


0 20 40 60 80 100
x [m]


0 20 40 60
x [m]


D. Bayport
150 -


100
b"
6
T3

I


U


0 20 40 60 80 100
x [m]


0 20 40 60
x [m]


Figure 2-18. Observed (symbols), fit (dashed lines), and calculated (solid lines) benthic
discharge versus distance at four locations in Great South Bay.


A. Islip 1
20





15



E,
510





5


S


C. Heckscher State Park
60 -


50 m


80 100


40


E
S30



20



10


80 100









Appendix A.1). The east face of this ridge defines an embankment, to the west of the

EGTf (Figure 2-19). Motz and Gordu [2001] reported that Williams [1995] estimated the

8.5m depth of the hydrogeologic unit (d = 8.5m) for this area of the IRL. Define a set of

local-scale parameters with Az m 0.8m (Table 2-6), such that

s 7.62m 0.8m
local -- = 1.4x-1 (2-40)
c 50m
50m
local l 5.9 (2 41)
d 8.5m

The Atlantic Coastal Ridge is 3700m west of the EGTsf, at elevation 10.1m (Figure A-4,

Appendix A.1). Define a set of regional-scale parameters with Az m 0.8m, such that

s 10.1m 0.8m
regional 3700m 2.5x10-3 (242)
c 3700m

S)gional 3700 435 (243)
d 8.5m

Because local > regional, apply Equation 2-33 to the EGTsf with the local-scale inputs

detailed in Table 2-7.

A comparison of observed [Martin et al., 2007] and modeled freshwater qbd (Figure 2-20)

on the EGTsf shows that both distributions approach zero at x = 22.5m. Also note that

the modeled distribution fails to capture the observed character close to shore, on x < 5m.

Recall that the isotropic nature of Equation 2-33 causes the distribution to approach zero

at a smaller x than Bokuniewicz's [1992] anisotropic solution (Figure 2-17); anisotropy

Table 2-6. Depth to water table near the EGT. (T. Mirti, St. Johns River Water
Management District (SJRWMD), personnel communication.) Is is one
standard deviation.

Location Latitude [N] [km] to EGT Az [m] Agency
Station number Longitude [W] Is [m] Period of record
Roseland Transfer Station 27.83 34.3 0.57 SJRWMD
09232511-232 80.49 0.18 1982- 1992
Orchid Island 27.75 43.9 0.77 SJRWMD
10382507-232 80.44 0.22 1989- 1994
Cocoa High School at Cocoa 28.38 33.1 1.04 SJRWMD & USGS
01700791-232 80.77 0.18 1997- 2007










might account for some of the difference between observed and modeled distributions in

Figure 2-20. However, if anisotropy were included, the similarity between modeled and

observed distributions approaching x = 22.5m might not hold (compare Figures 2-17 and

2-20).

Table 2-7. Model inputs for application of Case II to the EGTSf.
Parameter Value Units Reference
K 1x10-4 m/s Figure A-18
K 2x10-4 m/s Table A-3
K 1.5x10-4 m/s
d 8.5 m Table A-3
Az 0.8 m Table 2-6
LOCAL SCALE
s 50 m Figure A-4
c 7.62 m Figure A-4
i 1.4x10-1 =-A
S
d 5.9
d
REGIONAL SCALE
s 3700 m Figure A-4
c 10.1 m Figure A-4
i 2.5x10-3 c-An
J 435
d


2.6 Application to Lake Sallie, Minnesota

Between 1970 and 1972, Lee [1977, Figure 7] made 34 observations of qbd along an

Sil,,, segment of Lake Sallie shoreline, between 5 and 160m from shore, with the Lee-type

seepage meter. Lake Sallie is located 4.7km southwest of Detroit Lakes, Minnesota

(Figure 2-21). He identified Lake Muskrat, approximately 50m .'. :-, as the source of a

i that forces flow toward Lake Sallie, with 1.6m of head, such that iMuskrat 5O= T

3.2x10-2. [Assume that Lee's [1977] 1.6m observation is more representative of the

observation period (Figure 2-22) than the 1.430m, 70yr-average-elevation difference

between Lakes Sallie and Muskrat (Table 2-8).] The 6 1,n -average-elevation difference

between Detroit Lake -located 1400m east-northeast of Lake Sallie -and Lake Muskrat

is 5.5cm (Table 2-8), such that CDetroit J 1.6m + 0.055m = 1.655m during the observation

period, and iDetroit 655 1.2x10-3. Lee [1977] stated that 10m of "clean sand and


































Figure 2-19. The EGT8f, looking west, June 7, 2007.


5 10 15 20
x [m]


Figure 2-20. Observed (D)
the EGTsf.


and calculated benthic freshwater discharge versus distance for









, i,. overlies an impermeable, clay aquitard at a location in the center of the Siii,,,

segment. He also cited sources that identify k = 0.24 for this glacial outwash terrain.

Freeze and Cherry [1979] identify 3pm/s < K < 1600pm/s for clean sand.

Because iDetroit << iMuskrat, apply Equation 2-33 to Lake Sallie by adopting

model inputs for Lake Muskrat in Table 2-9. A comparison of observed qbd [Lee, 1977],

and modeled qbd (Equation 2-33) as a function of a range of K and forced by iMuskrat,

versus distance from shore at Lake Sallie (Figure 2-23) shows that modeled qbd for

lOpm/s < K < 1000pm bounds observed qbd on x < 30m, and that observed qbd

exceeds modeled qbd on x > 30 for all K. Because s = 50m, observations over x > s = 50m

are likely forced by a regional hydraulic gradient with a larger, more remote s (comparison

of Figures 2-14 and 2-23). While Detroit Lake is more remote, (D)Detroit 140 causes

Equation 2-33 to report implausible results (Figure 2-12).

Recall that isotropic Equation 2-33 causes the distribution to approach zero at

a smaller x than Bokuniewicz's [1992] anisotropic solution; anisotropy referenced by

Lee [1977] (k = 0.24) will skew the distribution lakeward, and account for some of the

difference between observed and modeled qbd distributions on x > 30m in Figure 2-23.

Table 2-8. Average lake elevations for selected Minnesota lakes [Minnesota Department of
Natural Resources, 2007].
Lake Elevation Units Period of record
Sallie 405.1 m 1935 2007
Muskrat 406.6 m 1937 2007
Detroit 406.6 m 1943 2007




































0 2,500 5,000 Meters
I I I I I I I I I I I


Figure 2-21. Lake Sallie, Minnesota. Lee's [1977] observations were made at the red star
icon. Average lake elevation data from Minnesota Department of Natural
Resources [2007].




407.0


406.0
4060 10/13/64

g 405.5 o Lake Sallie

405.0 4- - Lake Muskrat
a Detroit Lake
404.5
Jan-69 Jul-69 Jan-70 Jul-70 Jan-71 Jul-71 Jan-72 Jul-72 Jan-73 Jul-73 Jan-74
date

Figure 2-22. Elevation versus date for Lake Sallie, Lake Muskrat, and Detroit Lake.
Icons are observations; dashed lines are average over the period of record in
Table 2-8. Elevation data from Minnesota Department of Natural Resources
[2007].
























1.0


K=1 0 / m/s
0.8 I /K=100umO/s
SK=1000/ m/s


0.6







0 0
n. 0.4



0.2 \o\ o


o o
0.0 ,
0 50 100 150
x [m]

Figure 2-23. Observed [Lee, 1977, o] and calculated benthic discharge versus distance for
Lake Sallie, Minnesota.





























Table 2-9. Model inputs for application of Case II to Lake Sallie.
Parameter Value Units Reference
K 3-1600 pm/s Freeze and Cherry [1979]
k 0.24 Lee [1977]
d 10 m Lee [1977]


MUSKRAT
S
C

i
s
d
DETROIT

c

i
s
7i


50
1.6
3.2x10-2
5

1400
1.655
1.2x10-3
140


Lee [1977]
Lee [1977]




Figure 2-21
Lee [1977], Table 2-8









CHAPTER 3
GROUND WATER TIDAL PRISM

3.1 Generalized Form

The ground water tidal prism is the volume of water (AVgtp) exchanged between a

tidal water body and geologic media, in response to tidal oscillation.

Nielsen [1990] developed a relationship for the water surface in a coastal hydrogeologic

unit (z(x, t)), in response to an oscillating tide on a sloping beach (Equation 1-13, Section

1.2.2). Relocate Nielsen's origin from the intersection of the sloping beach face and the

base of the unit, to the intersection of the sloping beach face and the still-water elevation

(as shown in Figure 3-1 for a typical section between Cape Fear and Savannah River), and
truncate terms of c2 and higher, such that


z(x, t) = z(X,t)Nielsen H (3-1)

A cos(at Ax)e-A

+ cA[ + cos(2at + x v )e- ] (3-2)
2 2 4

High and low tides in Figure 3-1 occur at t 0 and t T. Note that the shape of the

surface at mean ebb tide is different than at mean flood tide. The surface ..i-mptotes to

a constant elevation (z = dt, at x -i o), which is greater than the still water elevation

(z = 0) by dt,. Nielsen [1990] assumed that the water surface and tide are coupled at
the beach face, and stated that if decouplingg occurs, analytical solution [for z(x, t)] is

probably impractical."

Let tl and t2 be two arbitrary points in time within the same ebb tide cycle of Tt,

described by Equation 1-5, such that T > tI > t2 > 0. Let x2 and xl be the x-coordinates

of the intersection of the free-water surface and the sloping beach face at t2 and ti, such

that X2 > x1 (Figure 3-2). With respect to Figure 3-1, if t1 = and t2 0, then

xl = xi = -8m and x2 Xh 8m, where xi and Xh are the x-coordinates at low and high

tides.

















n---0- a 3


-10 0 10 20 30
distance from shore at mean tide [m]


Figure 3-1.


40 50 100 200 300 400 500


Surface of the coastal water table versus distance from shore at mean-tide, for
a typical section between Cape Fear and Savannah River.


Figure 3-2. Shoreline; base of the surficial hydrogeologic unit; (A) surface of a coastal
water table at time t2, and reference volumes; and (B) surfaces of a coastal
water table at times t1 and t2, and reference volumes.









With respect to Figure 3-2A, the volume of water in the hydrogeologic unit (Vgw) at

t2 is


S- Vw.I + Vw.2 + Vgw.3 (3 3)

Sr z(x, t2)dx + T (sbx +H)dx+ H(oo X) (3 4)
,2 J b

where rT is porosity. Substitute Equation 3-2 into Equation 3-4 and solve in non-dimensional

form (Appendix C.1)

2A AH2 2H
2V 2(1 + a cos ,t)2 + Xx2) + (oo Ac2)
TrA SbA A
+ eX"2 [sin at(sin Ax2 + cos Ax2) cos 7t(sin Ax2 cos Ax2)]
(3-5)
+ e-!X2' [sin(27t + -)(sin X2AX2 + cos /2A2)
2 4
cos(2,t + 7)(sin 2Ax2 Cos V2Ax)1
4
Note Equation 3-5 can not be calculated due to oo terms; however it is possible to

differentiate Equation 3-5 with respect to time (Appendix C.2)

2A V sin ti 1+ 2e (sin(2t + T) sin vAx2
jTlA Ot 4
+ cos(2t + 7) cos vAa2)]

+ C [2 sin at cos at 2e-A2 sin iat(sin at sin Ax2 + cos at cos Ax2)

-2A cos(27t + 4)(sin VAx2Ax + cos VAx2)

+ sin(2jt + (sin vAx2 os v22)
4
e-X2 [cos at(sin Ax2 + cos A 2) + sin at(sin A 2 cos A2)]

as shown in Figure 3-3. Because

Ax 2 --cos Ct2 = cos t2 (3 7)
Sb Sb









Equation 3-6 can be expressed as


arlA 9t

where 4 is dimensionless qbf integrated across the exchange face (Figure 3-3), and tg- is

a continuous form of the Li et al. [1999] Dt (Equation 1-22).

"a is qbf integrated spatially across the exchange face

aV x2
= qbf.gwtp(x)dx (3-9)
S xgwtp.xfl

where the exchange face is the length of the bed over which qbf occurs, between t2 and

tl; Xgwtp.xf is the offshore extent of the exchange face; and qbf.gwtp is tide-forced qbf

(Figure 3-4).

When t2 = 0, Xh X2. Note that 4 > 0 when tl = (Figure 3-3): the ground water

tidal prism is in discharge at low tide. Consider the possibility that Xgwtp.xfl = x = x1.

If this were true, then qbd would exist at a point (xi) at T. Because there is no unique

geologic constraint in a uniform medium to force a head gradient to force qbd at a point

(xi) and prohibit a head gradient from driving qbd on x < xl, qbd can not exist at a single
point, and Xgwtp.xfl < x1 x1 at T. The distribution of qbf.gwtp along the exchange face

is unknown. (The qbf distribution shown in Figure 3-4 is hypothetical, and assumed for

the purpose of conceptualizing the exchange face. An alternate distribution is introduced

following Equation 3-17, in which qbd and qbr both exist along the same exchange face.)

With respect to Figure 3-2B, the volume of water fluxing into or out of the

hydrogeologic unit (AVlg) between tl and t2 is


AVg, Vg.4 + Vw. (3-10)

T 9jX [(xsb)-z(xt)]dx+ [z(xt2) z(x,ti)]dx (3- 11)
Ji x\ ~~ 7a;2._,,,.(31














atl2z


1

0
N
-1


5


' 1


0.1 0.2


e=1
e=0.1
e=0.01


0.5
at/l2


-2 \/
-3

Figure 3-3. (A) Dimensionless tide elevation; and (B) dimensionless benthic flux,
integrated across the exchange face, versus dimensionless time.








X =X
k gwtp.sf2


qbf.gwtp ----


X
Xgwtp.sfl1 4 M

00 01 02 03 04 05 06 07


Figure 3-4.


Conceptualized inland and offshore extents of the
with high and low tide, streamlines ('), and lines
(0).


benthic flux exchange face,
of constant head potential


0.8 0.9 1.0


Vo

A1
'2

V3









Substitute Equation 3-2 into Equation 3-11, and solve in non-dimensional form (Appendix
C.3)

2AAvA (e-'2 (cos 27t2 cos V~Ax2 + sin 2at2 sin 2Ax2)

e-'21 (cos 2-t1 cos /2Ax + sin 27t1 sin 2Axi))

(Ax2 Axi)I
r (3-12)
+ e-C2 sin it2(cos Ax2 + sin Ax2) + cos it2(cos Ax2 sin Ax2))
--A1 (sin rotl(cosAxl + sinAxi) + cos7ti(cosAaxi- sinAxi))]


+ (AX2)2 (A X)2]

where K and rl are homogeneous. Note that where A = 0, x2 x= ; and AV,, 0. Given
the inputs in Table 3-1, Equation 3-12 yields AV,, = 6.7m3 per m longshore distance

(m3/m). Equation 3-12 can be expressed as

2AAV wt P(c, t0.1, It0.2) (3 13)
TrA

where P is the dimensionless volume of the ground water tidal prism, and subscript o
denotes roots of Equation 3-6. (Recall that Equation 3-7 provides a relationship for
Ax as a function of at.) For example, where 0.1, a o= 0 at to-.2 0.12 and
at 27T
to.= -0.63 (Figure 3-3); and P = 2.7. This is shown graphically in Figure 3-5A, such that

AVgwtp 2A
When tj1 and t2 0, such that xI x = b s Equation 3 12
reduces to

= -2 --/ cos(v/2) sinh(V/2) + cos c cosh e + sin c sinh e (3-14)
rlA 2













A e=0.1


B. e=0.4


C. e=0.6


Figure 3-5. Dimensionless volume forced by the ground water tidal prism, between two
arbitrary points in time (tl>t2), versus time t2, expressed in a dimensionless
form, for three perturbation parameters: (A) 0.1, (B) 0.4, (C) 0.6.









It can also be shown that AV,, = 6.7m3/m with Equation 3-14 and the numerical inputs

in Table 3-1. Over 0 < t < E, Equation 1-22 reduces to

AV 2 F 2 1A
gAt T L 2 cos( /2) sinh(/2c) + cos c cosh e + sin c sinh e (3-15)
At TI A 2

When t = Tt and t2 = 0, such that xz = 2 = A Equations 1-22 and 312
sb
)Vreduce to 0 and A 0, such that


avT g qbf.gwtp(x, t)dxdt = 0 (3-16)
t Tt JO gwtp.xfl

This does not imply that qbf.gtp time-integrates to zero at all points on the exchange face


Qbf.gwtpx) j j qbf.gwtp(x,t)dt / 0 (3-17)
t 0

for all x. Benthic discharge time integrated over 0 -- Tt may exceed qbr at one point on

the exchange face, such that a time-integrated net qbd exists at that point. However, to

ensure the mass balance required by Equation 3-16, qb time-integrated over 0 -- Tt, must

exceed qbd at another point on the exchange face. For example, consider that the ground

water tidal prism is in recharge at high tide (Figure 3-3), and water may discharge the

hydrogeologic unit in the region of [xh, z(xh, t = 0, Tt)] (Figure 3-2) during the beginning

of ebb tide. The exchange face may locally be in discharge -near [xh, z(xh, t = 0, Tt)]

and globally in recharge, as required Equation 3-6 (Figure 3-3).

Table 3-1. Model inputs for hypothetical application of Equation 3-12.
Parameter Value Units
H 30 m
Sb 0.1
A 0.8 m
Tt 12 hr
ti 6 hr
t2 0 hr
r1 0.45
K 5x10-4 m/s
A 4.67x10-2 m-1
e 0.37









Equations 3-6 and 3-12 describe qbf.gwtp from a two-dimensional, x-z perspective.

Where input parameters -such as K, T, or H -are not constant in x, qbf.gwtp might be

three dimensional, such that

9 -Vgw~y ) t J Tt rX gwtp. 2- 8
a T qbf.gwtp(x,y,t)dxdt / 0 (3-18)
oit t X gwtp.xfl

for all y, where y is the longshore coordinate. However, mass conservation requires that
gTt oO Zgwtp.xf2
AVgwtp 0 1 qbf.gwtp(x, y, t)dxdydt = 0 (3-19)
J -OO xgwtp.xfl

in three dimensions.

3.2 Application to Indian River Lagoon, Florida

Fast Fourier Transforms (FFT) of three, continuous, 2.778x10-3Hz tidal signals

(Figures 3-6, 3-7, 3-8) yield if_. tidal harmonics (Tt = 12.42hr) of 1.8cm, 1.6cm, and 1.7cm

(Table 3-2) at the Melbourne Causeway (28005'00"N 80035'31.0"W), 4km south-southeast

of the EGT. (Larger amplitude, lower frequency harmonics also exist.) For comparison,

Smith [1987] calculated a 1.6cm amplitude if_. harmonic at the EGT (Table A-4). Adopt

the weighted mean of the above-cited, FFT amplitudes (1.7cm), calculated with period

lengths shown in Table 3-2, as representative of the i f. harmonic on the EGTfj.

Plot for the EGTf with Equation 3-6 and the inputs in Figure 3-9 and

Table 3-3 (Figure 3-10). Graphically identify roots for Equation 3-6, shown in Figure 3-10
('O 0.626 and 0 -2 0.124). Calculate AVgt at the EGTj (0.07m3/m) with

Equation 3-8.













S40-
o
o 20

0-

P -20

m -40
3.675


3.68 3.685
t [Julian day]


Figure 3-6.


-60
3.774


0.5 1 1.5 2 2.5 3 3.5 4
f[1/d]

Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between August 22, 2000 (Julian Day 36759) and
December 31, 2000 (Julian Day 36890).


3.776 3.778 3.78 3.782 3.784 3.786
t [Julian day]


3.788
x 104


0.5 1 1.5 2 2.5 3 3.5 4
f[1/d]


Figure 3-7. Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between May 1, 2003 (Julian Day 37741) and
September 11, 2003 (Julian Day 37874).


3.69
x 104









































3.856 3.857 3.858 3.859
t [Julian day]


0.5 1 1.5 2
f[1/d]


3.86 3.861 3.862 3.863
x 104


2.5 3 3.5


Figure 3-8. Water surface elevation versus time and harmonic amplitude versus frequency
at the Melbourne Causeway between July 23, 2005 (Julian Day ;:* ".',) and
October 1, 2005 (Julian Day 38625).


S40
o
o 20



I -20
0
P -20

3 -40
3.


355


I

















2 8



O





















O o e
C I

C o O









CA0 00




C I C C C CI








Cr C 1 c0 O 0
0







c3 a
S 00



0 O
GO















0
o C C
^ -g









O 0 00 10









H | .
cb ^ !









Table 3-3. Model inputs for application of Equations 3-8 and 3-13 to the EGT.f.


Parameter
H
Sb
A
Tt
27T
(t2
27r
'7
K
K
K
A


Units Reference
m Williams [1995] via Motz and Gordu [2001]
Figure 3-9
cm Figures 3-6, 3-7, 3-8
hr Tt for i..
Figure 3-10
Figure 3-10
Martin et al. [2004]
m/s Martin et al. [2004]
m/s McGurk and P,. -/. [2000] via Motz and Gordu [2001]


Value
8.5
0.15
1.7
12.42
0.626
0.124
0.47
lx0l-4
2x10-4
1.5x10-4
0.16
1.82x10-2


Equation 1-14
Equation 1-12


The following additional conclusions are evident, based on Figure 3-10:


* Equation 3-16 holds: qbf.gwtp spatially integrated over the exchange face and
time-integrated over 0 -i T is zero
* the absolute value of the maximum volumetric rate of recharge exceeds the absolute
value of the maximum volumetric rate of discharge, such that


(t 9
\8 /recharge ma


4.96x10-6m 3/s-m > ( 'av
Discharge
discharge mar


4.90x10-6m3/s-m


(3-20)
where volumetric rate if recharge is expressed per m longshore distance (m3/s m)
* the absolute value of the average volumetric rate of recharge exceeds the absolute
value of the average volumetric rate of discharge, such that


(t 9
\ ) recharge mean


3.20x10-6m3/s-m > (9_av '
t discharge
discharge mean


3.08x10-6m3/s


(3-21)
* the prism is in recharge for 49.>'. of Tt and discharge for 50.2' of Tt; the discharge-recharge
temporal imbalance is due to dts (Section 1.2.2)
* the prism remains in recharge for the first 24.,' of ebb tide
* the prism remains in discharge for the first 25."' of flood tide
* AVgwtp temporally averaged over the discharge phase of one cycle of the ground
water tidal prism (prism cycle) yields = ( 502 12043 r 0.27m3/d m
,t 0.502)(12.42hr)
* AVgtp spatially averaged over a 22m freshwater discharge face [predicted by Martin
et al. [2007], with other methods (Figures A-7B and A-9)] and temporally averaged


m/s
m-1











15
10
5
0



-15
-20
-25
-30
-300 -250 -200 -150 -100 -50 0 50 100

x [cm]

Figure 3-9. Bed elevation versus distance from shore, on the freshwater seepage face of the
Eau Gallie Transect, on June 7, 2007.

A. 0.02
0.01
z [m] 0.00 ----
.010.1 0.2 0.4 0.5 0.6 0.8 0.9 1.0
-0.02
B. 6.E-06
4.E-06 benthic
) 2.E-06 dischargeA
at O.E+00
[m 3 S m 1] 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-2.E-06
_E- benthic o-tl2x
-4.E-06 -
recharge
-6.E-06

Figure 3-10. (A) Tide elevation; (B) benthic flux, integrated across the exchange face,
versus dimensionless time for the freshwater seepage face of the Eau Gallie
Transect.


0.07mn3/ n
over the discharge phase of the prism cycle yields qbd.gwtp (0.502)(12.42h)(22nm)
1.22cm/d

Nielsen [1990] stated that the sloping beach face has -I w'i g nonlinear filtering

eff' I on the tidal signal in the unit. He identified dst and a steeper rise than fall in the

water table as consequences of this filtering effect. The small imbalance in the length of

time that the prism cycle remains in qbd versus qbr (second, third, and fourth bullets) is

also a consequence of this filtering effect.









Items 5 and 6 of Section 1.3, and the static-head laboratory tests of Lee [1977]

and B. lriu,. and Montgomery [1992] -~i--.- -1 that Lee-type seepage meters might not

capture the natural qbd and qbr signal. To address this possibility, consider the following

hypothesis: Lee-type manual seepage meters are i-i,,,,i Irical observation devices, such

that qbd is accurately captured and qbr is not. [Recall that Lee [1977] observed ..--mmetry

in his static-head test (Section 1.3.1.3).] Under this hypothesis, the seepage meter acts to

filter qbf, such that

qbf.obs = 6qbf (3-22)

where qbf.obs is observed qbf (recorded in this case with a Lee-type seepage meter),


J 1 qbf > 0 benthic discharge)
6 (3-23)
C qbf < 0 benthic recharge

and 0 < C < 1. Recall that B. lr,.,. and Montgomery [1992] sl-.-. -I C / 1. (If C = 1,

the seepage meter might be considered a -ii,,iii /i.l, device. Recall that benthic 222Rn

recharge is assumed to make a negligible contribution to the 222Rn balance, because

the concentration of 222Rn in surface waters is much less than the concentration in

ground waters (Section 1.2.3). The 222Rn tracer method described in Section 1.3.2 is then

i- ,1r1,,, I,.:cal, such that C 0 in Equation 3-23.)

Martin et al. [2007] parsed qbd on the EGTsf into portions sourced inland (fresh) and

in the lagoon. The lagoon portion must be introduced to the hydrogeologic unit by qbr.

qbd(x) of re-circulated lagoon water on the EGTsf (Figure 3-11) is the difference between
total and freshwater qbd (Figure A-7). The percentage of the observation in Figure A-7

explained by benthic lagoon-water discharge, forced by AV,,t, is a function of the portion

of the prism cycle, over which the observation was made:

At jan X (3 24)
( At )ob









where subscript an refers to results of the analytical model, and subscript ob refers to
observed values. Martin et al. [2007] reported qbd; they did not report the observation

duration (Atob), volume collected over Atob, or the portion of the tidal phase over which

observations were made. ,t- = 0.502 for the discharge phase of the prism cycle

(t0.1 t0.2, Figure 3-10B). Assume tob is the discharge phase of the prism cycle; recognize
that ( t = 0.27m3/d m (above described penultimate bullet in this Section);

recognize that the area under the third-order, best-fit polynomial regression shown in
Figure 3-11 is


At = j ,Ji, (3-25)

= (910-6x3- 5x10-42 + 5.1xl0-3 + 6.72x10-2)dx (3-26)
JOm
1.63m3/d- m

then
(, an 0.27m3/d -n
td 17'. (3-27)
(Atv ) 1.63m3/d mn
\At job
If the observation is made over the peak of the prism cycle (Figure 3-10B), over

0.33 < (t) < 0.43, such that Atb 1.25hr, then

AV,, = 0.022m3/m (328)

(V 0.022m3 = 0.42m3 d m (3-29)
At ) an (0.1)(12.42hr)
a0.42m3/d 2m (3 29)

( A )an 0.42 /d 2
At 3M Id -m(3-30)
(A )o 1.63m3/d- ) n

The location of the offshore extent of the benthic lagoon-water discharge face is

uncertain; choice of a 30m width in Equation 3-27 is somewhat arbitrary. Martin et al.

[2007] detailed a 22m width of the benthic freshwater discharge face; use of 22m in

place of 30m in Equation 3-27 yields ( ) = 1.47m3/d m. Assuming that the
\ /x roh









observation is made over a whole multiple of the discharge portion of the prism cycle,
= 0.27m3/d m explains 1'., of A 47 3/d m.
The third-order, best-fit polynomial regression of Figure 3-11 does not provide an

x-axis intercept, which can be adopted as a reasonable offshore extent of the benthic
lagoon-water discharge face. The best-fit, linear regression of Figure 3-11 predicts a 40m
width of the benthic lagoon-water discharge face. Adoption of the linear model and the
40m width yields
(AV 40m
vW ) (-2.1xl-3x + 8.5x1-2)dx= 1.71m3/d (3 31)
At- ob JOm

Ato) = 0.27m3/d m explains 1.', of A 1.713/d .
San ob
In summary, ( o w) ranges from 1.47 to 1.71m3/d m, depending on the regression
\ A )ob
model used to describe the distribution of qbd.ob and the width of the exchange face.
l w explains between 11.'. and of assuming that the observation is
S/ an b ob
made over a whole multiple of the discharge portion of the prism cycle. If the observation
is made over a fraction of the discharge portion of the prism cycle, then (A a explains
a larger percentage of (tA)
( Et Job
Note that qbd forced by the AVgwtp, integrated across the exchange face, and
temporally averaged over the discharge phase of the prism cycle [(A. )a =0.27m3/d -
R\ A an
is of the same order of magnitude as benthic, recirculated, b'--i--It, r discharge forced by a
H. ,: ,;-type flow structure, in Bi- i. Bay (0.3m3/d m, detailed in Section 1.1.) Both

processes (AVgtp and the recirculation component of the H. ,:,; -type flow structure) force
water of non-meteoric origin, across the bed of the water body. Recall that the IRL is
micro-tidal (AM = 1.7cm, Table 3-2), with a representative K = 1.5x10-4m/s (Table 3-3);
and recognize that the Biscayne Aquifer is hyper-conductive (K, 1x1l0-4 lxl0-3m/s,
Kh = lx10-2 Ixl0-1m/s, L,.,i. .':, [2001, Table 4]), with a representative A = 20cm
4J',,ll, .:,. 2001, Figure 14]. At locations where the tidal signal is greater and more

typical (A 50cm) than the micro-tidal IRL, and conductivity is less and more typical









data A
0.10 qbd = 9E-06x3 0.0005x2 + 0.0051x + 0.0672 (R2 = 0.9255)
O qbd =-0.0021x + 0.085 (R2 = 0.7517) ----
S0.08
0
'O a 0.06 -

SI 0.04 -

Y 0.02
4-
0.00
-30 -25 -20 -15 -10 -5 0
x [m]

Figure 3-11. Benthic discharge of re-circulated lagoon water as a function of distance from
shore on the freshwater seepage face of the Eau Gallie Transect. Data from
Martin et al. [2007].


[K = (10 -m/s)] than the hyper-conductive Biscayne aquifer, AlVtp may (typically)

force a larger magnitude qbd of water of non-meteoric origin than the H. ,,;, -lype flow

structure.

If C = 1 (Equation 3-23) and the observation is made over a full prism cycle, then

the ground water tidal prism makes no net contribution to qbf, due to Equation 3-19.

Under this full-cycle scenario, the ground water tidal prism can not be used to explain

qbd or benthic lagoon-water discharge observations detailed in Table A-i. However,

qbf.gwtp remains important because it may transport various constituents from one

domain to the other across the exchange face, regardless of Equation 3-19 or the validity

of Equations 3-22 and 3-23 (see Moore's [1999] theory of subterranean estuaries in

Section 1.1).

The FFTs of the tidal signals at the Melbourne Causeway show harmonics with lower

frequencies than the .11 (Figures 3-6, 3-7, and 3-8; Table 3-2). These lower frequency

harmonics result in lower magnitude jtgP than the .. frequency (Table 3-4). Nonlinear

interactions between qbf generated by AlVtp at different frequencies is not investigated in

this work. For example, it is not known whether component qbf signals generated by both









the .11 harmonic, and the harmonic with T = 21.72d, sum to a quasi-observable composite

signal. If interactions (between qbf generated by AVgtp at different frequencies) are linear,

then qbf generated by the composite signal is equivalent to the sum of the component qbf

signals, such that a composite peak composed of two component signals will be greater

than each individual component peak, when the component peaks coincide.

Table 3-4. Volume of the ground water tidal prism (AVgtp), temporally averaged over
the discharge phase of one prism cycle (~ ), for selected tidal harmonics,
with period T at the Melbourne Causeway. Tidal harmonics are detailed in
Table 3-2. T2 = 0.52d.
A T Agtp ZaVgtAp

[cm] '. 1.,,/ [rM3/m] [m/m d]
1.7 0.52 0.07 0.27
4.7 21.72 1.26 0.12
3.0 32.58 0.98 0.060
2.0 19.07 0.50 0.053
3.7 26.07 1.08 0.083
1.4 33.38 0.46 0.028
2.0 44.50 0.77 0.034
1.8 6.95 0.27 0.078
1.7 9.93 0.31 0.062


3.3 Application to South Atlantic Bight

The National Oceanic & Atmospheric Administration (NOAA) predicted a

semi-diurnal tide with A 0.8m at C'! I. -ston, South Carolina, between July 7 and

July 12, 1994. -- to Moore's [1996] study area in response to one tidal cycle, based on

inputs detailed in Table 3-5 and Equation 3-6, is shown in Figure 3-12.

The following conclusions are evident, based on Figure 3-12:


AVgwtp is 10.96m3/m, or 3.5x106m3 over the 320km study area
the volumetric rate of discharge to the 320km study area is 7.0x106m3/d, or
7.0x1091/d
the volumetric rate of discharge per m shoreline is 7.3xlo = 21.9m3/d m
Equation 3-16 holds: qbf.gwtp spatially integrated over the exchange face, and
time-integrated over 0 Tt is zero
a* rec e 7.96x10-4m3/s t dische > 7.25x10-4m3/s -r
t recharge a discharge









1.0
atl2r
z [m] 0.0 04 0 I
0.50 0.1 0.2 03 0.4 0.5 0.6 .7 0.8 0.9 1


atV
at C
[17239 -72]


recharge


0.3 0.4 0.5 0.6
atl2r


-1.E-03


Figure 3-12. (A) Tide elevation; (B) benthic flux, integrated across the exchange face,
versus dimensionless time for a typical shoreline section between Cape Fear
and Savannah River.


the prism is in recharge for 48.;:' of Tt and in discharge for 51.7'. of Tt; the
discharge-recharge temporal imbalance is due to dst (Section 1.2.2)
the prism remains in recharge for the first 24.7'. of ebb tide
the prism remains in discharge for the first 28.1 of flood tide
qbd.gwtp spatially averaged over the (320km)x(20km) shelf and temporally averaged
over the discharge phase of the prism cycle, is (0.5x17d 06k3) ) .-11cmn/d
(0.5l7day) (320km) (2Okm)
The gross volumetric rate of discharge over the study area, generated by the ground

water tidal prism (7.0x1091/d) describes 2 ;'. of Moore's [1996] 3x1010l/d observation

(93.8m3/d m spatially averaged over the 320km-width of the study area).


Table 3-5. Model inputs for application
Parameter Value
H 30
Sb 0.1
A 0.8
Tt 12
rf 0.45
K 5x10-4
A 4.67x10-2
c 0.37


of Equations 3-8 and 3-13 to the SAB.
Units Reference
m Li et al. [1999]
Li et al. [1999]
m NOAA
hr NOAA
Li et al. [1999]
m/s assumed
m-1 Equation 1-14
Equation 1-12









3.4 Comparison with Li et al.

Taking the highest water table as Equation 1-13 at t2 = 0 and the mean water table
on the exchange face as Equation 1-13 at tl = T Equation 3-12 reduces to

AV -TA v2 i)+ 2c 2 + V 2 2
AV rA e-'(cos e sin e) + e e- cos ve + 2 e (3-32)
2A 2 2

e-'(cos e sin e) + r1A26- cos 2V cot 3
2A 4
+ 2rlA2 cot rlAA3 cot2 3- 2 (3-33)
4 2 2A

and Equation 1-22 reduces to

D a = i= = 2 A e-'(cos -sin ) + 2 A2e- cosS 2 cot
At (T) L t A it

+ 12 + 2] A2 cot 3 2AA3 cot2 0 2Al (3-34)

where the bracketed components ([ ]) of Equation 3-34 represent deviations from

Equation 1-23.

Equations 1-23 and 3-34 are not equivalent. It can be shown that Equation 1-23
yields ( ) 1.84x10-43 /s- m with Table 3-5 inputs. By comparison, Equation 3 34
yields D = 7.95x10-6 3/s m. (Over 0 < t < ,T AV+ g AIV, where AVgT

and AV-, are positive and negative volume contributions to Equation 3-12. AV',,

is therefore small. This can be seen graphically in Figure 3-12B, as the positive and

negative areas under the T curve are approximately equal over 0 < < 0.25.)
Equation 1-23 with Table 3-5 inputs (1.84x10-4m3/s m) is also not equivalent to
g 10.96m3/ 4.91x10-4 34/s -
zAt ) (0.517)(12hr) 4 1 i.
Li et al. [1999] did not validate Equation 1-23. Nielsen [1990] validated Equation 1-13
the basis of both Equations 1-23 and 3-12 -with observational data. The mathemat-

ical development that leads from Equation 1-13 to Equation 3-12 is confirmed correct
in Appendix C.3 by a comparison of results generated with both Equation 3-12 and the

trapezoidal rule.









3.5 Dependence of Ground Water Tidal Prism on Changes in Various
Parameters

Figures 3-13 to 3-17 show the dependence of andariation in A K

H, r, and Sb. These dependence plots are variations on a baseline analysis, presented

in Figure 3-12 (shown as the black line, or middle value, of the three cited relationships

in each figure). The perturbation parameter and/or A are noted on each plot, where

appropriate.

Equation 3-6 is increasingly nonlinear with increase in A (Figure 3-13A). The ground

water tidal prism is directly proportional to A (Figure 3-13B). The trend line in Figure

3-13B, a polynomial of the form AVg tp = 2.01A2 + 10.66A + 1.02, explains 99.92', of the

variation between A and AVgtp. Clearly, because AVgtp(A = 0) / 0, the trend line is

only valid on 0.4m < A < 1.6m, and given the variables used to generate Figure 3-13A.

Equation 3-6 is increasingly nonlinear with decrease in K (Figure 3-14A). The ground

water tidal prism is directly proportional to K for K > xlO0-4m/s; and inversely

proportional for K < xl0-4mI/s (Figure 3-13B). A local minimum occurs in the

relationship between AVgItp and K at K = lxl0-4m/s. The ground water tidal prism

increases as K decreases at this local minimum, due to non-linearity in Equation 3-6

in this region. This is graphically evident in Figure 3-13A, by considering the area

between the K = 5x10-5m/s (red) curve, and the neighboring intermediate (gray)

curve, where K = xlO0-4m/s. The trend line in Figure 3-14B, a polynomial of the form

AVgtp = 2x10sK3 2x106K2 + 11972K + 5.4, explains 99.1 .'1, of the variation between K

and AVgtp. The trend line is only valid given the variables used to generate Figure 3-14A,

on 5x10-5m/s < K < 5x10-3m/s.

Equation 3-6 is increasingly nonlinear with decrease in H (Figure 3-15A). The ground

water tidal prism is directly proportional to H (Figure 3-15B). The trend line in Figure

3-15B, a polynomial of the form AVwtp = -0.0008H2 + 0.2339H + 4.487, explains 99.>.',



















av[
at
[m3S 1M 11


0.008

0.006

0.004

0.002

0.000

-0.002

-0.004


E=0.75
E=0.37
E=0.19


A Vgwtp
[m3m-]10

5


0.0 1.0
A [m]


act/2 i


Figure 3-13. For Moore's [1996] study area: (A) benthic flux, integrated across the
exchange face, versus dimensionless time for tidal amplitudes that range from
0.4m to 1.6m and (B) the ground water tidal prism versus tidal amplitude.


A
0.006

0.004

0.002

at 0.000
[m3s 1m 1]
-0.002

-0.004

-0.006


=5x10-ms A=0015m ', e=012
=5x10ms ', =0047m ', e=037
=5x10ms A=015m e=1 18


ct/2 i


40
35
30
25
AVgwtp 20
[m 3 -1 1
15
10
5


T CO CM


K[ms 1]


Figure 3-14. For Moore's [1996] study area: (A) benthic flux, integrated across the
exchange face, versus dimensionless time for hydraulic conductivity that
ranges from 5x10-sm/s to 5x10-3m/s and (B) the ground water tidal prism
versus hydraulic conductivity.


]











H =100m, A=0 026m e=O 20
0.004 -- H=30m, A=0 047m e=0 37 22
H=10m, A=0 081m e=0 65 20
18
0.002 16
16
dgw AVgwtp 14
at 0.000o-- [m37 1] 12
[m3sm1] (m 0.2 0.4 0.611 10 -
8 -

-0.002 6
0 .0 0 4 -c o o cC
o-t/2 H[m]

Figure 3-15. For Moore's [1996] study area: (A) benthic flux, integrated across the
exchange face, versus dimensionless time for hydrogeologic unit depth that
ranges from 10m to 100m and (B) the ground water tidal prism versus
hydrogeologic-unit depth.


of the variation H and AVg-tp. The trend line is only valid given the variables used to

generate Figure 3-15A, on 10m < H < 100m.

Equation 3-6 is increasingly nonlinear with increase in q (Figure 3-16A). The

ground water tidal prism is directly proportional to T1 (Figure 3-16B). The trend line

in Figure 3-16B, a polynomial of the form AVgtp = -7.02r2 + 18.879 + 3.89, explains

99.9' of the variation between r and AVg,,p. The trend line is only valid given the

variables used to generate Figure 3-16A, on 0.45 < Tr < 0.65.

Equation 3-6 is increasingly nonlinear with decrease in Sb (Figure 3-17A). The ground

water tidal prism is inversely proportional to Sb (Figure 3-17B).

Consider the more nonlinear examples of each dependence test of Equation 3-6:

A = 1.6m (Figure 3-13A), K = 5x10-m/s (Figure 3-14A), H = 10m (Figure 3-15A),

T = 0.65 (Figure 3-16A), and Sb = 0.06 (Figure 3-17A). Three of these variables (low K,

shallow H, and high 9) cause increases in A (Equation 1-14). Larger A, and the behavior

of the remaining two variables -higher A and more shallow cause increases in e













A B
0.003 14

0.002 13

0.001p 12
V A Vgwtp11
St 0.000 [m3m m1]
[m3s 1m] 0 0.2 0.4 0.6 0.8 1 10
-0.001
9-
-0.002- q=0.65; A=0.056m -; e=0.45
i7=0.45; A=0.047m-'; e=0.37 8
q=0.25; A=0.035m '; e=0.28
-0.003 0.0 0.5 1.0
ot/2 r l -1

Figure 3-16. For Moore's [1996] study area: (A) benthic flux, integrated across the
exchange face, versus dimensionless time for porosity that ranges from 0.45 to
0.65 and (B) the ground water tidal prism versus porosity.







A B
S,=0 06, e=0 62
0.003 -- Sb=o 10, E=O 37 11.2
s,=0 30, e=0 12

0.002
11.1
91 0.001 Vw t
at 3 -1
[m3s 1m 1] [ ]
0.000 11.0 *
0.2 0.4 0.6 0.8 1
-0.001
10.9-
-0.002 o0 0 0
at/2 r Sb

Figure 3-17. For Moore's [1996] study area: (A) benthic flux, integrated across the
exchange face, versus dimensionless time for beach slope that ranges from
I'. to ;I '. and (B) the ground water tidal prism versus beach slope.









(Equation 1-12). Therefore, non-linearity in Equation 3-6 is a function of e: larger e

enhances non-linearity, smaller e damps non-linearity.

Where Equation 3-6 is nonlinear, it is more nonlinear near low tide, and less

nonlinear near high tide. For K = 5x10 m/s (Figure 3-14A), a constant on

0.15 > Tt > 0.8; changes rapidly on 0.15 < Tt < 0.8, with four sign changes.

The attribute of bi-modal non-linearity in Equation 3-6 -with low tide more nonlinear

than high tide -is also evident for the remaining variables: A = 1.6m (Figure 3-13A),

H = 10m (Figure 3-15A), r 0.65 (Figure 3-16A), and Sb 0.06 (Figure 3-17A).

Recognize that non-linearity in Equation 3-6 is forced by quick changes in AV,,.

Therefore, for higher e

a2V,, a2 V
2-9(0.15 < T < 0.8) > 2-(0.15 > Tt > 0.8) (3-35)


which is evident by visual inspection of Figures 3-13A through 3-17A.









CHAPTER 4
SURFACE GRAVITY WAVE

This section details three analytical methods for the determination of qbf forced by a

surface gravity wave propagating over a rigid, porous, homogeneous medium. Section 4.1

details qbf associated with an infinite-depth, porous medium; Section 4.2 a finite-depth,

porous medium; and Section 4.3 a finite-depth, porous medium over an infinite-depth,

porous medium of differing permeability.

4.1 Case I: Infinite Depth Porous Medium

Reid and Kajiura [1957] investigated the role that a rigid, porous bed pl ',- in

damping a propagating surface gravity wave. The porous medium is homogeneous and

of infinite depth; the wave is low-amplitude and linear. They found that the porous bed

results in a loss of energy from the wave, due to viscous percolation of fluid across the

sediment-water interface, forced by the pressure gradient at the bed. This percolation is

qbf.

Reid and Kajiura solved a boundary value problem (Case I; Figure 4-1; details

in Appendix D.1), in which the governing equations are the Laplacian of the velocity

potential (Q) in the surface water domain and total pressure (p) in the ground water

domain


V20 = 0 (4-1)

V2p, 0 (4-2)

They used four boundary conditions: a dynamic free surface boundary condition

1 a
I = (4-3)
g at

a kinematic free surface boundary condition


w T (44)









1_= (DFSBC)
g 8t


Z.- z=O



V2- -= 0


p,(x,z=-h,t)=p(x,z=-h,t) (DBBC)
w,(x,z=-h,t)=w(x,z=-h,t) (KBBC)"
Sz=-h

V2 p,=

w,(x, z=-oo, t)=0

Figure 4-1. Case I: Reid and Kajiura's [1957] boundary value problem for a linear surface
gravity wave propagating over a porous medium of infinite depth.

a dynamic bottom boundary condition


ps(x, z -h, t) p(x,z = -h, t) (4-5)

and a kinematic bottom boundary condition

Ws(x,z = -h, t) = w(x,z = -h, t) (4-6)

where subscript s denotes the value of the variable in the porous medium, the absence of

a subscript denotes the value of the variable in the surface water domain, Tr is the water

surface displacement about a mean elevation, t is time, w is vertical velocity, x is the

Cartesian horizontal direction, and h is the mean depth of water in the surface water

domain. They assumed the following forms of the solution


(x, z, t) = [A cosh(Ah + Az) + B sinh(Ah + Az)] e(Ix-xt) (4-7)

ps(x, z, t) = CeX+ACe AX-at) (4-8)









which satisfy Equations 4-1, 4-2, and ws(x,z -- -oo,t) 0. Their solution uses four

equations (Equations 4-3 through 4-6) and four unknowns (A, B, C, and A), where A has

real (A,) and imaginary components (A,), such that


A = A, + zA (4-9)


and z is the imaginary number. With Equation 4-5 and the Bernoulli equation at the bed


p(x, z = -h,t) = p (x, z = -h, t) (4-10)


show that
-C
A (4-11)
tap

With Equation 4-6, the definition of the velocity potential at the bed


w(x, z = -h, t)= (x,x = -h, t) (4-12)


and Darcy's Law (Section 1.2.1) at the bed


ws(x, z = -h, t) = 0p,(x, z = -h, t) (4-13)
p Oz

show that

B =C- (4-14)

where p is dynamic viscosity and k is permeability. Note that p is a function of the fluid

in the porous matrix, k is a function of the solids in the porous matrix, and k is isotropic.

Recall Equation 1-3 and note that K is a function of both the fluid and the solids within

the porous matrix. Use Equations 4-11 and 4-14, linearize Equation 4-3 at the surface

such that
18a
T g az=0 (415)
g d
and use the definition of r]

r = ae"(x -t) (4-16)









to show that


C pga (4-17)
cosh(Ah)(1 R tanh(Ah))
where a is the wave amplitude and
ak
R k (4-18)

is identified by Reid and Kajiura [1957] as the fundamental dimensionless permeability

modulus. Finally, linearize Equation 4-4 at the surface such that

WU = = ae a -'at) (4-19)
at at

and linearize the definition of ( at the surface such that


w-= lz= (4-20)

to show that

a2 gAtanh(Ah) = -R(gA 2tanh(Ah)) (4-21)

Incorporate Equation 4-9 into Equation 4-21; to show that

a2 gA, tanh(Ah) (4-22)
2RAr
A, (4-23)
2Ah + sinh(2Arh)

where Equation 4-22 is the dispersion equation for the classic, impermeable-bottom,

two-dimensional, periodic water-wave boundary value problem [Dean and Dal,;, I,'l.

2000, Equation 3.34]; and A, is the qbf damping coefficient due to the porous medium,

where damping is described by e-AXx. Note that Equations 4-11, 4-14, 4-17, 4-22, and

4-23 conform to results presented in Dean and Dal ,;,/,'m, [2000, Section 9.4]. Finally, use









Equations 4-13, and 4-17, to show that


-kag Are- x
'r = qbf.wave.r ---1/\ [cos(A x at)
v cosh(A,h)

-(tanh(Ah)(R Ah) + A) sin(Ax at)] (4-24)

-kagAre- x
.. = qbf.wave.z = ------- [sin(Ar at)
v cosh(A,h)

+(tanh(Ah)(R Ah) + ') cos(Ax at)] (4-25)
A,

where qbf.wave.r and qbf.wave.i are real and imaginary components of qbf, forced by a surface

gravity wave propagating over a rigid, porous medium (qbf.wave), such that


qbf.wave qbf.wave.r + lqbf.wave.z (4-26)

4.2 Case II: Finite Depth Porous Medium

Replace Equation 4-8 with


p,s(x, z, t)= C cosh(Ah + A + Az) + D sinh(Ah + Ah + Az) Iec- (4-27)

and w,(x, z -oo, t) = 0 with a no flow boundary condition


w,(x, z = -h h, t) = 0 (4-28)


to adapt Case I to a finite depth (h) porous medium (Case II; Figure 4-2; details in

Appendix D.2).

The solution uses five equations (Equations 4-3 through 4-6 and Equation 4-28) and

five unknowns (A, B, C, D, and A), where A has real (A,) and imaginary (A,) components.

Show that D = 0 with Equation 4-28 and Darcy's Law

-k a
Ws(x, z = -h h, t) = ps(x, z = -h h, t) (4-29)
P Oz









1 (DFSBC)
g 8t
_- (KFSBC)
t57


(DBBC)
(KBBC)


V2p =
w,(x,z=-h-h,t)=O
\\


z=O
7-







Sz=-h




A
z=-h-h


Figure 4-2. Case II: A boundary value representation of a linear
propagating over a porous medium of finite depth.


surface gravity wave


In a fashion similar to Case I, Equations 4-5, 4-6, 4-10, 4-12, and 4-13 yield


cosh(Ah)


Ck
B = sinh(Ah])


Equations 4-15, 4-16, 4-30, and 4-31 yield


pga
cosh(Ah) cosh(Ah) ( iRtanh(Ah) tanh(Ah))


Use Equations 4-19 and 4-20 to show that


a2 gAtanh(Ah)


(4 32)


(4-33)


where


Pfinite = tanh(Ah)


- -


(4-30)

(4-3)


0 t


p,(x, z=-h, t)= p(x,z=-h, t)
w,(x, z=-h,t)=w(x,z=-h,t)


-1RPinite(gA -2 tanh(Ah))


(4-34)


V2 (= 0









Equation 4-9 and the Case I small-term arguments yield Equation 4-22 and


2RAX
A, 2 R P1finite
2Ah + sinh(2Arh)

Finally, use Equations 4-13 and 4-32 to show that


('1 ..


-kagAXe -_
qbf.wave.r = Pf inite COSA, -
v cosh(Arh)

-(tanh(Arh)(RPjinite Ah) + A + Qfinite) sin(Ax

-kagAre-x
qbf.wave.Iz COSh(,h Pfinite[sin(Arx t)
vcosh(Arh)


at)]


+(tanh(A,h)(RPfinite Ah) + A + Qfinite) cos(ArX at)]


(4-35)


(4-36)




(4-37)


where


S2Ah
Q finit e s
sinh(2Arh)


(4-38)


Note that as h oo


* P finite 1
* sinh(2Ah) -e 2Axh >> 2A,h
* Qfinite 0
* the dispersion equation for Case II (Equation 4-33) reduces to the dispersion
equation for Case I (Equation 4-21)
* A, for Case II (Equation 4-35) reduces to A, for Case I (Equation 4-23)
* the real (Equation 4-36) and imaginary (Equation 4-37) components of qbf for
Case II reduce to the components for Case I (Equations 4-24 and 4-25)

4.3 Case III: Finite Depth Porous Medium over Infinite Depth Porous
Medium

Parse the governing equation for p (Equation 4-2) into two Il., r?


V2 Ps

V2p2


(4-39)

(4-40)









replace the assumed solution form for p (Equation 4-27) with


p(x, z, t) = C cosh(Ah + Ah + Az) + D sinh(Ah + Ah + Az)] ei-(xt) (4-41)

ps2(x,z,t) = EeXA+AhAz e(Ax-at) (4-42)

such that ps2 satisfies w,(x, z -oo, t) = 0, update the dynamic (Equation 4-5) and

kinematic bottom boundary conditions (Equation 4-6)


psi(x,z = -h, t) = p(x, z -h, t) (4-43)

ws8(x, z = -h, t) = w(x, z = -h,t) (4-44)

and institute additional dynamic and kinematic boundary conditions at the interface of

Layers 1 and 2


ps2(x,z -- h,t) sl(x,z = -h- h,t) (4-45)

"'._.(X, z = -h h,t) = wi(x, z = -h h,t) (4-46)

to adapt Case II to a two--iv r system -a finite-depth porous medium (denoted with

subscript 1) over an infinite-depth porous medium (denoted with subscript 2) where

each hydrogeologic unit is homogeneous but of different isotropic k (Case III; Figure 4-3;

details in Appendix D.3).

The solution uses six equations (Equations 4-3, 4-4, and 4-43 through 4-46)

and six unknowns (A, B, C, D, E, and A), where A has real (A,) and imaginary (A,)

components. Show that C = E with Equations 4-41, 4-42, and 4-45; and D = E

with Equations 4-29 and 4-46; where k2 is k ratio, or the ratio of k in the underlying

hydrogeologic unit to k in the surficial hydrogeologic unit. Where k > 1, the underlying

unit has a higher k than the surficial unit, such as might occur where a high conductivity,

karst aquifer is confined by a low conductivity clay unit at the surface (Figure 4-4A).

Where 2 < 1, the underlying unit has a lower k than the surficial unit, such as might


















S (DFSBC)
g 8t


z=O



V2 s]=o


p,, (x, z =-h, t)=p(x, z= -h, t) (DBBC)
w,,(x,z=-h,t)=w(x,z=-h,t) (KBBC) J -



p,(x,z=-h-,t)= p,(x,z=-h-h,t) (DBC)\
w,(x, z=-h-, t)=w(x, z=-h-h, t) (KBC) A
z=-h-h


V2ps2=o0
w,(x, z=-oo, t)=0

Figure 4-3. Case III: A boundary value representation of a linear surface gravity wave
propagating over two-i .vr, porous medium: the top 1-v-r is finite depth, the
bottom l.,--r is infinite depth. Both l., -ir are homogeneous and of different
isotropic permeability.









occur where a porous sand lies over a bedrock formation with little or no fractures

(Figure 4-4B).

Use Equations 4-10, 4-12, 4-13, 4-43, and 4-44 to show that

A -C cosh(Ah) D sinh(Ah) (447)

B ki (Csinh(Ah)+ Dcosh(Ah) (4-48)

With Equations 4-15, 4-16, 4-47, 4-48, show that

pga
E = (4-49)
cosh(Ah) cosh(Ah) (i + k tanh(Ah) zRtanh(Ah)(tanh(AA) + 2))

The dispersion relationship is then developed (see Appendix D.3) with Equations 4-19,

and 4-20
a2 gAtanh(Ah) -RP2iayer(gA 2 tanh(Ah)) (4-50)

where
tanh(Ah) + k
P2layer -tanh(4-51)
Stanh(Ah) + 1
Equation 4-9 and the Case I small-term arguments yield Equation 4-22 and

2RA
A, 2R P21ayer (4-52)
2A,h + sinh(2Ar,) laer

Finally

-kjagAre-x t
t'. = qbf.wave.r = P c A r rt)
v cosh(Ah)
-(tanh(Arh)( P2layer Ah) + 2layer) sin(Ax at)] (4-53)

-kiagXre-A X
'. q= bf.wave. P.,. I-r o h(h,r aIt)
Scosh (Ah)
+(tanh(A,h)( P2layer + +Q2layer) COs(Ax at)] (4-54)



































Figure 4-4.


z=-h



A
z=-h-h


k


k2
m

sand over rock


Stratigraphy that represents (A) a low permeability hydrogeologic unit over
a high permeability hydrogeologic unit (permeability ratio greater than
unity), and (B) a high permeability hydrogeologic unit over a low permeability
hydrogeologic unit (permeability ratio less than unity).


confined aquifer


k2
k,









where


SAh(-1 ))(1 tanh2(A ))
Q21ayer k (4-55)
(k tanh(A h) + 1)(tanh(A h) + )

Note that as h 0


k t
o 1
cosh(Ah) 1
tanh(A h) 0
Player 1
Q2layer 0
Case III E (Equation 4-49) reduces to Case I C (Equation 4-17)
the dispersion equation for Case III (Equation 4-50) reduces to the dispersion
equation for Case I (Equation 4-21)
A, for Case III (Equation 4-52) reduces to A, for Case I (Equation 4-23)
the real and imaginary portions of qbf for Case III (Equations 4-53 and 4-54) reduce
to the components for Case I (Equations 4-24 and 4-25)

4.4 Generalized Form

Close examination of each respective complex dispersion equation (Equations 4-21,

4-33, and 4-50), A, (Equations 4-23, 4-35, and 4-52), and real and imaginary components

of qbf (Equations 4-24, 4-25, 4-36, 4-37, 4-53, and 4-54) show a common form.

Specifically,

a2 gA tanh(Ah) = -tRP(gA a2 tanh(Ah)) (4-56)

is the dispersion equation,
2RA,
A, 2R P (4-57)
2Ah + sinh(2Arh)

and


qbf.nd.r bf.wave.r cos(Arx at) + sin(rx at) (4-58)
A
qbf.nd. b f.wave. sin(Ar at) 3 cos(Ax at) (4-59)
A

are the real and imaginary components of dimensionless qbf (qbf.nd), where

A agAe-h( p (4-60)
v cosh(A,h)










is the amplitude of qbf,


= tanh(Ah)(RP- Ah) + + Q (4-61)
A,

is a qbf amplification parameter (Figure 4-5), and P and Q are detailed in Table 4-1.

Let qbf.wave be a representative qbf forced by surface gravity waves propagating over a

porous medium, such that
3T
b f.wave -T I q bf.wave.rdt
3'
1
t 2 -Acos(A,x at)d(Ax -at)
2
2A (462)
7[

where 3 0. (It will be shown in the next section that where 3 < 0.1, 3 has a negligible

effect on qbf.nd; and that 3 is usually less than 0.1) The volumetric flux generated by the

positive side of the qbf sinusoid, over half a wave period, is equivalent to the volumetric

flux generated by a constant and uniform, positive-valued representative qbf generated over

the same half wave period.

Benthic flux generated by surface gravity waves propagating over a porous medium

will time average to zero over one wave period, such that

i [oT
qbf.wave qbf.wave.rdt 0 (4-63)


Table 4-1. Coefficients for the determination of benthic flux driven by linear,
surface-gravity waves, which propagate over a permeable bed of one or two

Aquifer depth
Case Section Surficial Underlying P Q
I 4.1 infinite 1 0
II 4.2 finite tanh(Ah) 2Xih
sinh(2A,h)
,,,, I Aih(1- 2)(1-tanh2 (A, /))
III 4.3 finite infinite tanh(Ai kl tanh(A+l)(-
Stanh(,h)+1 ( tanh(Ah)+)(- )













1.0


0.5
qbf wave =0
A~ p=0.1
0.0- P=1


-0.5
a

-1.0


-1.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(XrX- ot)/27

Figure 4-5. Dimensionless benthic flux and dimensionless surface water displacement
versus dimensionless phase position, for benthic flux amplification parameter
between 0 and 1.


This is evident with visual inspection of Figure 4-5; analytical analysis; and an intuitive

mass-conservation argument that if Equation 4-63 were not correct, water bodies forced

by surface gravity waves would either gain or loose mass over long time scales.

4.5 Benthic Flux Amplification

Examination of Figure 4-5 shows that 3 amplifies qbf.nd ([qf:e^ =13],nx =m 1.41 >

[qb ae =o]10max = 1.00), and causes the time of peak to lag qbf.nd at 3 0 (Tpeak =1

0.375 < Tpeak,=o3 = 0.500). 3 is negligible where 3 < 0.1.

For discussion purposes, re-cast Equation 4-61 as


3 = 1 + 32 + (4-64)


where


3i tanh(Ah)(RP Ah) (4-65)

A,
/32 (4 66)
X,k









Note that for Case I, II, and III, for most dimensionless depths (Arh), dimensionless

hydrogeologic unit depths (Arh), and permeability ratios (), f < 0.1 (Figures 4-6,

4-7, and 4-8) such that I cos(Ax at) >> I sin(Ax at) and I sin(Ax at)| >>

I3cos(Arx at) The Psin(Ax at) and cos(Ax at) terms of Equations 4-58 and

4-59 can therefore be neglected where f < 0.1 (Figure 4-5). Typically, a < 0(10s-1),

k < O(10-10m2), and v = (10-6m2s-1), such that R < 0(10-3) and for Case I, f < 0.1

on Ah > 0.01. Under unique circumstances, such as where R > 10-3 and Ah < 0.01,

3 > 0.1 and the f terms of Equations 4-58 and 4-59 might be retained.

Where f terms are retained, f3 ~ for deep water conditions (Ah > 7r), and 3 /32
for shallow water conditions (Ah < 0), for Case I (Figure 4-6). For Case II (Figure 4-7)

and Case III (Figure 4-8), f3 PR( s3i) for deep water conditions and f3 f32 + Q for

shallow water conditions. Clearly for Case I, f is more strongly influenced in deep water

by hydrogeologic parameters present in R than in shallow water.

Finite Arh (Arh -- 0.01) causes decreases in f (3|lA&0.01 < 3l, -oo), and deviation

from R (0la =0.01 / R) in the deep water condition, for Case II (Figures 4-7), and for

Case III where 2 < 1 (Figures 4-8A and 4-8B) The sand-over-rock hydrogeologic unit

orientation of Figure 4-4B approaches Case II (Case III-II congruence) where 2 << 1

(Figures 4-7 and 4-8A). Finite Ah causes increases in /, and deviation from R in the

deep water condition, for Case III where k > 1 (Figures 4-8C and 4-8D). The confined

hydrogeologic unit orientation of Figure 4-4A causes amplification of qbf where k >> 1

and Ah 0.

4.6 Benthic Flux Damping

Reid and Kajiura [1957] identify the imaginary component of the wave number (A,) as

a damping coefficient, because it modifies wave amplitude in the term e-A". Conceptually,

as a surface gravity wave propagates across a porous medium, wave energy is lost to qbf.

Because wave amplitude at one point in space will decay by e-/xX over the distance x, the

qbf generated by this wave will also decay. For example, if A, 10-5m-1, over a distance













1.E-01


1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08
0.01


0.1 1


Figure 4-6. Benthic flux amplification parameter and components (/31 and /32), under
Case I constraints, versus dimensionless depth for Reid and Kajiura's [1957]
fundamental dimensionless permeability modulus between 10-7 and 10-3.


1.E-02
1.E-03
1.E-04
1.E-05
- 1.E-06
1.E-07
1.E-08
1.E-09
1.E-10
0.01


Figure 4-7.


P:

Ar/=1
rh =0.1
r6 =0.01


0.1 1 10


Benthic flux amplification parameter and components (/31 and /32), under
Case II constraints, versus dimensionless depth for Reid and Kajiura's [1957]
fundamental dimensionless permeability modulus of 10-5, over dimensionless
hydrogeologic unit depth from 0.01 to oc.






























A.1 E-03


1 E-04


/rin=l
A rh=1
.A rh= 1
Anh= 01
A/i =001


rX 1 0 10
Ax k=0.01
Arx A __


1 E-05

1 E-06

1 E-07

1 E-08,
001



D.1 E-01


1 k 10
A X k= 0.1


p:
,Af=001
,AA=01
'/i=1
'AA1=
I A nt=


1 10
Ax r 10
k


1 E-02

1 E-03

1 E-04

1 E-05


1 E-06
001


An i=001

Ani=01
nlrh=O 1
,A r =1
) A^=-


1 10
Arx =100
1__


Figure 4-8.


Benthic flux amplification parameter and components (1, /32, and Q), under

Case III constraints, versus dimensionless depth for Reid and Kajiura's [1957]

fundamental dimensionless permeability modulus of 10-5, over dimensionless

hydrogeologic unit depth from 0.01 to oo, for four permeability ratios (A) 0.01,

(B) 0.1, (C) 10, (D) 100.


1 E-04

1 E-05

1 E-06

1 E-07

1 E-08
001



C1 E-01


.An=1
r)=0 01
i 0=01


1 E-02

1 E-03

1 E-04

1 E-05

1 E-06
001


"1 E-03









of 10km, the wave amplitude will decay by e-(10 5m 1)(10,000 ) = 0.9, from a to 0.9a; and

the amplitude of qbf generated by this wave (under Case I constraints) will decay from A

to 0.9A.

Figure 4-9 shows qbf.nd damping coefficient (Nf) versus dimensionless surface water
depth (Ah) for 0.01 < Ah < oo, for Case I and II constraints. Note that Case I

(Equation 4-23) is represented in Figure 4-9 as Arh oc, which conforms to Dean and
Dih ,;,l,,*.- [2000, Figure 9.6]. The following conclusions are evident:


shallow hydrogeologic units damp qbf less significantly than deep units, for the same
R and h (^A h ,=0.01 < for A,h constant)
qbf damping in shallow water (Ah < 0) is more significant than qbf damping in deep
water (Arh > 7), for the same R and h ( I Ah< 0 > A l,-h> for Ah constant)
for the same h, and h:
o qbf damping increases with increased wave frequency (A, oc o)
o qbf damping increases with decreased wave period (A, oc -)
o qbf damping increases with increased permeability (A, oc k)
o qbf damping increases with decreased kinematic viscosity (A, oc )
Figure 4-10 shows qbf.nd damping coefficient (^1) versus dimensionless surface water

depth (Arh) for 0.01 < Arh < oo and 0.01 < 2 < 100, for Case I and III constraints. Note

that Case I (Equation 4-23) is represented in Figure 4-10A through 4-10D as Arh oo,
which conforms to Dean and D,1i ,;nlmpl,- [2000, Figure 9.6]. The following conclusions are

evident:


qbf damping in shallow water (Ah < 0) is more significant than qbf damping in deep
water (Arh > 7), for the same R and h (- Ax,h< > IAh> for Arh constant)
regardless of k2
where k2 < 1 (Figures 4-10A and 4-10B), which occurs with the sand-over-rock
hydrogeologic unit orientation (Figure 4-4B)
o shallow surficial units damp qbf less significantly than deep surficial units, for
the same h and R (^Ah|, h0.01 < h Ah- o ^ for Arh constant)
o Case III-II congruence occurs where k << 1 (Figures 4-9 and 4-10A)
o decreases in k2 decrease qbf damping (Ah2 0.01 < lk2 o.1) for the same h, R,
h, and A,









where k > 1 (Figures 4-10C and 4-10D), which occurs with the confined
hydrogeologic unit orientation (Figure 4-4A)
o shallow surficial units damp qbf more significantly than deep units, for the same
R and h ( ,h 0,.01 > lh I oo for A,h constant)
o increases in k increase qbf damping (Ah 2,100 > 1 ,10) for the same h, R,
h, and A,
for the same A,, h, and h:
o qbf damping increases with increased wave frequency (A, oc )
o qbf damping increases with decreased wave period (A oc -)
o qbf damping increases with increased permeability (A, o k)
o qbf damping increases with decreased kinematic viscosity (A, oc )

Reid and Kajiura [1957] re-arranged Equation 4-23, such that the right-hand side

is a function of h, where Lo is the deep water wave length. They used Equation 4-18,

expressed Ah = h, and


27g h (4-67)

T h (4-68)
(7 9Lo

to obtain
vh3/2 47 ( h )3/2
A To h (4-69)
k 2A-wg 4F f0 + sinh(47x) ( )
where the left-hand side is Reid and Kajiura's [1957] dimensionless decay parameter.

Multiply the right-hand side by P to generalize Equation 4-69 to address both Case II

and Case III, where

A,h = 2h-- (4-70)
Lo h
h is relative depth and is the depth ratio. Plots of the dimensionless decay parameter
h
versus are shown in Figure 4-11 for Cases I and II, and Figure 4-12 for Cases I and III.


Reid and Kajiura [1957] point out that under Case I constraints for a given h, k,

and v a specific wave period exists in which the dimensionless decay parameter reaches









a maximum. This maximum can be determined with


9 4( h)3/2
a [ 4 ) = 0 (4-71)
(i) 4 + sinh(4 )
h 3 (47 + sinh(4 ))
S(4-72)
Lo 87 1 + cosh(47) ) 7

such that 0.13560 for Case I, and the dimensionless decay parameter takes the value

0.14389. Graphically, this point corresponds to the peak of the Case I curve (h -- o0) in

Figures 4-11 and 4-12. (Reid and Kajiura report this maximum as 0.123 at h 0.13.)
Under Case I constraints, for h = 3m, maximum damping occurs for a wave with a

period of
S 27(3m) 37
(0.13560)(9.806ms-2)
by Equation 4-68; and if k 10-4s, the maximum damping is

(lo-4s) V 27T(9 -,- 2
0.14389(10 ) 2(9S'"'-2) 2.174x10t-5m
(3m)3/2

Under Cases I, II, and III, the decay parameter is bounded, such that a maximum
exists over 0.1 < < o (Figures 4-11 and 4-12) Under Case II constraints, the

dimensionless decay parameter decreases as the ratio of hydrogeologic unit depth to

surface water depth (h) decreases from oo (Figure 4-11), such that deep hydrogeologic
units damp qbf more significantly than shallow units. Under Case III constraints, where

k < 1, which occurs with the sand-over-rock hydrogeologic unit orientation (Figure 4-4B),
the decay parameter decreases as the ratio of surficial hydrogeologic unit depth to surface
water depth (h) goes finite (Figures 4-12A and 4-12B); and Case III-II congruence occurs

where k2 << 1 (Figures 4-11 and 4-12A). Where k2 > 1, which occurs with the confined
hydrogeologic unit orientation (Figure 4-4A), the decay parameter increases as the ratio

of surficial hydrogeologic unit depth to surface water depth (h) goes finite (Figures 4-12C
and 4-12D). The larger the deviation in k from unity, the more significant the change in









the decay parameter (Figure 4-12A (larger change) versus 4-12B (smaller change), and

4-12D (larger change) versus 4-12C (smaller change)).

4.7 Benthic Flux Amplitude

Reid and Kajiura's [1957] observation of a maximum in the dimensionless decay

parameter is also seen in a dimensionless amplitude of qbf parameter. Neglect damping,

and re-cast Equation 4-60
hA P (4-73)
kag cosh(Ah)
where the left-hand side is the dimensionless qbf amplitude parameter, and the right-hand

side is a function of dimensionless depth (AAh), Ah, and k2

For Case I, where P = 1,

1 Arh 1 Ar sinh(Ah)
9(Ah) cosh(A,h)] cosh(Ah) cosh2(A h)
Arh = coth(Ah) (4-75)

It can be shown -for a given h, v, k, and H -that a maximum amplitude of qbf exists

at Arh = 1.1997, which is an intermediate depth. This conclusion is graphically evident in

Figure 4-13 for Cases I and II, and in Figure 4-14 for Cases I and III.

For Case II, finite dimensionless surficial hydrogeologic unit depth (Ah -- 0.01)

causes the amplitude of qbf parameter to decrease from a Case I maximum of 0.663 at

ArX -- o (Figure 4-13). For Case III, where 2 < 1, which occurs with the sand-over-rock

hydrogeologic unit orientation (Figure 4-4B), finite dimensionless surficial hydrogeologic

unit depth (Ah -- 0.01) causes the amplitude of qbf parameter to decrease from a

maximum of 0.663 at Ah -- oo (Figures 4-14A and 4-14B); and Case III-II congruence

occurs where k << 1 (Figures 4-13 and 4-14A). Where k > 1, which occurs with

the confined hydrogeologic unit orientation (Figure 4-4A), finite dimensionless surficial

hydrogeologic unit depth (Ah -- 0.01) causes the amplitude parameter to increase

(Figures 4-14C and 4-14D). Note that Case I is represented in Figures 4-13 and 4-14 with

Arh -- oo. The larger the deviation in k2 from unity, the more significant the change in









the amplitude parameter (Figure 4-14A (larger change) versus 4-14B (smaller change), and

4-14D (larger change) versus 4-14C (smaller change)).

Reid and Kajiura [1957] explain that maximum decay occurs at intermediate relative

depth because the pressure gradient, which creates the damping and forces qbf, reaches a

maximum value at intermediate depth. Recall Equation 4-13, and note that

Ops -pqbf.wave (7
(4-76)
Oz k

By Equations 4-58 and 4-59


Sbf.wave.r A A (cos(Arx at) sin(Arx at)) (477)
Oz r k k
qbf.wave. A- (sin(Arx at) + 3cos(Ax at)) (4-78)
Oz i k k

where the pressure gradient has real and imaginary components. The maximum in the

pressure gradient then clearly follow the maximum in the amplitude parameter, outlined in

Equations 4-74 and 4-75.

4.8 Application to Indian River Lagoon, Florida

Martin et al. [2004] observed H = 12cm (a = 6cm), with seven observations at

CIRL39, on the EGT. Martin et al. [2004, Appendix B-7] observed T < Is at CIRL39; the

author observed T I1s on June 7, 2007 for similar H at the EGTf. T = Is is assumed

for this analysis. Model input, and the results of an application of Cases I, II, and III to

the EGT at CIRL39 are detailed in Tables 4-2 and 4-3.

The hydrogeologic framework under the EGT consists of a surficial aquifer (sa)

separated from a two-liv, r Floridian aquifer (ufa and Ifa) by an upper confining unit

(ucu). The two lv. -i~ that make up the Floridian aquifer are separated by a middle

confining unit (mcu) (Figure A-3). Dimension and hydraulic conductivity estimates

for these units are detailed in Tables 4-2 and A-3. Martin et al. [2004] modeled the

hydraulic conductivity as a function of depth for the upper 2.8m of the surficial aquifer

(Figure A-18) on the EGT at CIRL39. Three distinct zones of constant hydraulic









conductivity are evident (denoted in Tables 4-2 and 4-3 with the subscripts ,, b, and ,

where a is the surface zone).

Various assumptions are required to fit the multi-i i t, 1 I prototype hydrogeologic

system to the models described in Cases I, II, and III. Use the harmonic mean ( xi ) to

lump k of each prototype l-v1-r into a single model term [Domenico and Schwartz, 1990,

Equation 3.22]. The following scenarios are detailed in Table 4-3:


Case IA: k and h are a function of the full depth of the hydrogeologic system
Case IB: k and h are a function of the surficial aquifer and upper confining unit
Case IC: k and h are a function of the surficial aquifer
Case ID: k and h are a function of the upper-most generalized l V.-r from the Martin
et al. [2004] field observations
Case IE: k and h are a function of the full depth of the Martin et al. [2004] field
observations
Case IIA: k and h are a function of the full depth of the hydrogeologic system
Case IIB: k and h are a function of the surficial aquifer
Case IIIA: kl and h are a function of the surficial aquifer, and k2 is a function of the
remaining portion of the full hydrogeologic system
Case IIIB: kl and h are a function of the upper-most generalized liv.-r from the
Martin et al. [2004] field observations, and k2 is a function of the remaining portion
of the Martin et al. [2004] field observations
























Table 4-2. Model inputs for the application of Cases I, II, and III to the EGT (CIRL39).


g
P

T
Lo
h
h/Lo
a
ha
hb
hem


h- cu



1lfa
Ka
Kb
Kc
Ka
Kucu
Kufa
Km c
Klfa
ka
kb
kc
]ksa

kufa
km cu
klfa
V
(T

A,
A,rh

k(] k' ])

k(f[kb, kc])

k(J [I I k, ksa, k cu, kufa, kmnc, klif])

k(f[kucu, kufa, km n, k. fu])

k(f[ksa, kucu])


conversion mM Cl to kg/m :
lmM 0- 00r ,
lite,3..
lOOOppt C1 I .* ... I ."
lO30kg/m3 i i


Value
9.806
1017.3
1.167A10-3
1.00
1.56
0.9
0.58
0.06
1.0
1.4
0.4
8.5
30
130
150
500
1.Ox10-4
3.0x10-4
1.0x10 4
1.12l10-4
1.0210-8
7.7x10-4
1.0x10 6
1.3x10-4
1.1710-11
3.51x1011
1.1710-11
1.31x1011
1 I- I, ''
9.1510-11
1.19x10-13
1.5510-11
1.15x10-6
6.28
4.032
3.628
1.8210-11

2.410-11

3.1x10-14

3.0x10-14

1.5x10-15


Units

kg/m3
Ns m2
s
m
m

m
m
m
S








m
m
m
m
m


m/s
m/gs
m/gs

m/gs
m/gs

m/ s
m/ s
m s

m
m 2


m
m
mT2
T2
Tm2
m2
9 /

1/s
1/m
z2




m2
Tz2




m
T2/






z2
Tn
Tn

Tn
Tn


Reference


aFigure A-8
Munson et al. [1990, Table 1.5]
assumed
SgT2/27r
Section A.1

Martin et al. [2004]
Figure A-18
Figure A-18
Figure A-18
Table A-3
Figure A-3, Table A-3
Table A-3
Table A-3
Table A-3
Figure A-18
Figure A-18
Figure A-18

T(h K)
Table A-3
Table A-3
Table A-3
Table A-3
Equation 1-3
Equation 1-3
Equation 1-3
Equation 1-3
Equation 1-3
Equation 1-3
Equation 1-3
Equation 1-3


T
Equations 4-22


E(h/k)
Eh
E(f/k)

T7(h/ k)
Eh
E(f/k)
Eh
=(h/k)


+- 1000kg W m3
. ''. + 1000kg/r3
11'








































0.1 1


Figure 4-9.


Dimensionless benthic flux damping coefficient versus dimensionless depth
for dimensionless hydrogeologic unit depths from 0.01 to oo, for Case I
(Figure 4-1) -where dimensionless hydrogeologic unit depth approaches
oo and for Case II (Figure 4-2).


0.1



0.01



0.001
0.01






































1 rk 1 10
Xh =0.01
k1


1 10
,h =10
_k,


0.1


0.01

0.01


0.001
0.01


10

1

0.1

0.01

0.001
0.01


1 k 10
,h k, 0.1
khf, __


1 k,1 10

k,


Figure 4-10.


Dimensionless benthic flux damping coefficient versus dimensionless depth
for dimensionless hydrogeologic unit depths from 0.01 to oo, for Case I
(Figure 4-2) -where dimensionless hydrogeologic unit depth approaches
oo and for Case III (Figure 4-3).


1


0.1


0.01


0.001
0.01


0.001
0.01






























0.1
vh3/ 2


0.01




0.001
0.001


0.01 0.1


hi/L


Figure 4-11. Reid and Kajiura's [1957] dimensionless decay parameter versus relative
depth for depth ratios between 0.1 and oo, where depth ratio approaching oo
represents Case I and depth ratio less than oo represents Case II. Note that
Case I conforms to Reid and Kajiura [1957, Figure 2].
















kh3/2
k,12rg


k,[2)rg
vh3 /2
k -


001 --
0000


Figure 4-12.


001 01 k2 10


)h3/2
k, 2rg


vh3/2



01 0

0001


001 01 2 1
hILo Ic


Reid and Kajiura's [1957] dimensionless decay parameter versus relative
depth for depth ratios that range from 0.1 to oo, for four permeability
ratios (A) 0.01, (B) 0.1, (C) 10, (D) 100, where depth ratio approaching
oo represents Case I and depth ratio less than oo represents Case III. Note
that Case I conforms to Reid and Kajiura [1957, Figure 2].


hv
A
kag
0.01


0.001 '-
0.01


0.1 1


Figure 4-13. Dimensionless benthic flux amplitude parameter versus dimensionless
depth for dimensionless hydrogeologic unit depths from 0.01 to oo, where
dimensionless hydrogeologic unit depth approaching oo represents Case I and
dimensionless hydrogeologic unit depth less than oo represents Case II.


1






























0.1 0.1 =
hv h
A A
kag kag
0.01 0.01


0.001 0.001
0.01 0.1 1 k 10 0.01 0.1 1 10
Arh /Arh

C. D.
100 100 -





0.1 0.1






kag H A 7 ka
0.01 0.01

0.001 0.001 ,
0.01 0.1 h 1 k10 0.01 0.1 1 k10




Figure 4-14. Dimensionless benthic flux amplitude parameter versus dimensionless
depth for dimensionless hydrogeologic unit depths from 0.01 to 00, for four
permeability ratios (A) 0.01, (B) 0.1, (C) 10, (D) 100, where dimensionless
hydrogeologic unit depth approaching oc represents Case I and dimensionless
hydrogeologic unit depth less than oo represents Case III.






























c= o=)
o a 3
I bO OH 0
t-







SHOH O tH














-o a F- 0 0
-- CO-H C 0 01 O








O c=) OO0 OaO c t
o ) ,
t-10 t-- .D 10 z .



o -0 00a 0 0 0 0
O-0Lt o 0- 0




^^ q 0
0 1 H 0 0- co


I C 0 tC O 0 00 t0





oc 0
-0 00 0 0 0 0 01


3u
0] 00













-" -
I' a 0i C ^ a ^
c A .W 6 o


S- F l 0 00


&^ 10 010

F- 0- 0 0 0 00




-- i i-







~ -~ i -i ~ 0 1 1 u 7 "
^ ~ ~ t5i 8 S o| y t5 ^ g8 l
dim co d- o i o m o '-H CO O ~~ c


11 11



" ^ "ea ^ ^-<

~ 1 4-






141


-a -a
a a ay a
Y ^^ -iYi a Y ay
g- ^^ a g^^
g ~ YaiTa ai' ''




"I dM"aaa3
000000000
,0 00000000 m a









A number of conclusions are evident in Tables 4-2 and 4-3.


deep dimensionless hydrogeologic-unit depths (Ahr, > 34, Arhhll > 4) yield P = 1.00
under Case II and III constraints
the deep water wave (Arh 3.628 > 7r) ensures that 3 p R < 0.1 for Case I
A, < 0(10-6) < A, 0(1) for all cases
A h < 0(10-6) for all cases, such that Q 0
the deep water wave (rh = 3.628 > 7r) and deep dimensionless hydrogeologic-unit
depth (Ahi, > 34, Arhill > 4), coupled with the previous two items, ensure that
p R < 0.1 for Cases II and III
small-term assumptions are valid for all Cases: A2 < 0(10-12) < r = 0(1),
,R < 0(10-11) << A,A- O(1)
<< 1 for Case IIIA, which yields Case IIIA--Case IIB numerical congruence
> 1 for Case IIIB

Adoption of the full depth of the hydrogeologic system as active (Cases IA, IB, and

IIA) yields lower representative qbf (Table 4-3) because the harmonic mean weighs the low

k hydrogeologic units heavily. For this reason, these scenarios are not conceptually valid.

Martin et al. [2004, 2007] found that the Cl- concentration to a depth of approximately

50cm below the sediment-water interface, between May 2003 and MT i- 2004 at CIRL39,

was approximately equivalent to the associated Cl- concentration in the surface water;

and that the Cl- concentration curve .,-vmptotes to a constant value of approximately

325mM at a depth of approximately 1m below the sediment-water interface (Figure A-11A).

The transport of Cl- from surface waters to the underlying porous medium is negligible

below a point 1m below the sediment-water interface, and assumptions about the k of

hydrogeologic units below this point are less important than above this point. Abstraction

of the multi-l i-r, prototype hydrogeologic system to fit Cases I, II, or III should

therefore focus on hydrogeologic parameters in the upper 1m, below the sediment-water

interface. The nine cases posed in the bulleted list and detailed in Table 4-3 represent four

abstraction classes: (1) ka (h = im) is discretely modeled (Cases ID and IIIB), (2) ka,

kb, and kc are lumped (h = 2.8m) (Case IE), (3) ksa (h = 8.5m) is discretely modeled

(Cases IC, IIB, and IIIA), and (4) ka or ksa are lumped with hydrogeologic units that exist

a depths greater than 8.5m (Cases IA, IB, and IIA). These classes are numbered in order









of the degree to which the abstraction honors the Im-asymptote of Martin et al. [2004,

2007], such that Class 1 is preferred to Class 4.

Lee-type seepage meter measurements at CIRL39 are detailed in Section A.2. The

average qbd for all meters and dates at CIRL39 was 7.1cm/d with a standard deviation

of 1.9cm/d (Table A-i, and Figures A-5 and A-7). If seepage meters are .,-viiiii, 1 lic

observational devices [as Lee [1977] observed (Section 1.3.1.3)], such that the discharge

side of the qbf signal is accurately captured and the recharge side of the signal is not, then

the qbf signal might be described by Equations 3-22 and 3-23. Under this hypothesis

(with C = 0), the observed 7.1cm/d average agrees nicely with qbf.wave modeled under

Class I (3.53cm/d; Cases ID and IIIB; model represents 5 = 5(0' of observation), Class

II (5.30cm/d; Case IE; model represents 7.' of observation), and Class III (3.97cm/d;

Cases IC, IIB, and IIIA; model represents .i,.'. of observation), as detailed in Table 4-3.

Note that qbf.wave is representative of one half a wave period; 1qbf.wave is averaged over

the entire wave period. All three Class estimates are reasonable because they do not

over-describe -or describe more than 1011' i of -the observations. Other processes (or

statistical or abstraction error) explain the remaining 25 5(0' of the observation.

If seepage meters are symmetric observational devices, such that both qbd and qbr are

accurately captured, then a seepage meter will measure no net qbf over whole-wave-period

observational increments in a wave-only qbf climate. Under this scenario, qbf forced by

surface gravity waves over a porous medium can not be used to explain qbd and qbd.fresh

observations on the EGT, detailed in Tables A-i and A-2.

Independent of the symmetrical or .,-vmmetrical behavior of the seepage meter, qbf

forced by surface gravity waves is important because this forcing mechanism transports

various constituents from one domain to the other, across the exchange face (see Moore's

[1999] theory of subterranean estuaries in Section 1.1).

Martin et al. [2004] noted that higher qbd observations occurred in 2003 at the end

of the dry season, and lower qbd observations occurred at the end of the wet season at









CIRL39 (Figures A-5B and A-6B). They concluded that qbd at CIRL39 did not correlate

with concurrent monthly precipitation in 2003. They supported their conclusion that qbd

and concurrent monthly precipitation do not correlate with the observation that qbd is

recirculated seawater at CIRL39. Results detailed in Table 4-3 provide a rational basis

by which a process other than terrestrial hydraulic gradient forces a qbf of recirculated

seawater.









CHAPTER 5
SUMMARY AND CONCLUSIONS

5.1 Summary

Selective physical causes of qbf are reviewed. This work details analytical equations

that characterize three physical factors, which influence qbf. Specifically, qbd forced by

terrestrial hydraulic gradient, qbf forced by the ground water tidal prism, and qbf forced by

surface gravity waves.

Analytical equations describe qbd forced by terrestrial hydraulic gradients in: (1) an

infinite depth, unconfined hydrogeologic unit, solved without an image method; (2) an

infinite depth, unconfined hydrogeologic unit, solved with an image method; and (3) a

finite depth, unconfined hydrogeologic unit, without leakage. All solutions employ the

well-known Schwarz-C'! i-1 .l11. I mapping and the Poisson integral formula for the upper

half plane. A dimensionless benthic discharge parameter is introduced. These analytical

equations are applied to Great South Bay, Long Island, New York; Indian River Lagoon,

Florida; and Lake Sallie, Minnesota.

The ground water tidal prism is defined in this work as the volume of water

exchanged between a tidal water body and geologic media, in response to tidal oscillation.

An analytical equation describes qbf forced by the ground water tidal prism. The equation

is shown to differ from the equation of Li et al.. A dimensionless parameter that describes

the volume of the ground water tidal prism is introduced. This analytical equation is

applied to the Indian River Lagoon, Florida; and the South Atlantic Bight.

Analytical equations describe qbf forced by linear surface gravity waves propagating

over: (1) an infinite depth, rigid, porous medium; (2) a finite depth, rigid, porous medium;

and (3) two-liv r geologic system composed of a finite depth, rigid, porous medium over

an infinite depth rigid, porous medium. A generalized form that describes the three-case

system, and provides case congruence, is offered. Benthic flux amplification and damping









are described. A dimensionless benthic flux amplitude parameter is introduced. These

equations are applied to the Indian River Lagoon, Florida.

5.2 Conclusions

The degree to which each mechanism contributes to observation at each site varies

(Tables 5-1 and 5-2). For example, at Lake Sallie, it may be reasonable to invoke

geographic and geometric arguments to hypothesize that terrestrial hydraulic gradient

(i = 0.032) dominates pressure gradient forced by tidal oscillation. This is evident

in Figure 2-23, where the analytical equation for qbd forced by a terrestrial hydraulic

gradient (Equation 2 33) bounds Lee's [1977] near-shore observations (analytical estimate:

O(l)cm/d; observation: O(1)cm/d). In more diverse forcing environments, it may be

reasonable to hypothesize that a combination of forcing mechanisms -such as the

ground water tidal prism, surface gravity wave, the terrestrial hydraulic gradient, wind

pu, Lpiiri bio-turbation, density gradient, etc. -contribute to qbf. For example, in

the South Atlantic Bight, it may be reasonable to expect that terrestrial hydraulic

gradient, the ground water tidal prism, and surface gravity waves force qbf. In Section 3.3,

the analytical equation for qbf forced by the ground water tidal prism (A = 80cm)

(Equation 3-13) is shown to explain 2 ;'. of Moore's [1996] observations (analytical

estimate: 21.9m3/d m; observation: 93.8m3/d m). The 2 ;'. -estimate is reasonable

in that it is of the same order of magnitude as Moore's observations, and it does not

over-describe -or describe more than 101'i of -the observations. Other processes (or

statistical or abstraction error) explain the remaining 77'-. of Moore's observation.

Tidal (A = 1.7cm; Table 3-3) and wave (a = 6c;m Table 4-2) forcing in the IRL is

low, relative to estuarine and oceanic climates at other locations in the world. Along the

EGT, a terrestrial hydraulic gradient of 0.14 generates a freshwater qbd of 2.0cm/d, 15m

from shore, and higher closer to shore (Table 5-2); a 1.7cm-amplitude tide generates a qbd

of 1.2cm/d (averaged over the freshwater seepage face and discharge phase of the ground

water tidal prism -see Section 3.2); and a 6cm-amplitude surface gravity wave generates









2qbf.wave of between 3.5 and 5.3cm/d (Table 5-2). The apparent relatively low-amplitude
wave and tidal environment generate qbf of the same order of magnitude as a relatively

high magnitude terrestrial hydraulic gradient.

The analytical equations introduced in this work are forced by single-process forcing

mechanisms. Nonlinear interactions are not investigated. For example, it is not known

whether single-force time series of qbf forced by terrestrial hydraulic gradient, the ground

water tidal prism, and surface gravity waves linearly sum to generate a multi-force

time series. Given that nonlinear interactions are not investigated, the ideal application

environment is one in which the forcing mechanism in question is the only (or dominant)

mechanism present in the environment. This might only be possible in a laboratory.

Analytical methods detailed in this document yield the following conclusions:


SBenthic discharge forced by a terrestrial hydraulic gradient (C'!i lpter 2):
o It is possible to address Case I both with and without the method of images.
The maximum difference in dimensionless qbd, between solutions with and
without the method of images, is 0.051 (at dimensionless offshore distance 0.58)
over dimensionless offshore distances greater than 0.2 (Figure 2-7).
o The with-the-method-of-images, complex-computational-space guarantee of a
no-flow boundary at the watershed divide fits the prototype better than the
without-the-method-of-images, complex-computational-space representation. If
practicable, solution with the method of images is preferred (Figure 2-7).
o The method-of-images solution for Case I is practicable, with the Poisson
integral formula for the upper half plane;
o The method of images solution for both Case II and Case III is not practicable,
with the Poisson integral formula for the upper half plane. The complex-physical-space
representation does not fit the half-plane geometry required by Poisson in the
complex-computational-space (Section 2.2).
o Case II (Equation 2 33) and Bokuniewicz's [1992] (Equation 2-36) solutions
are in agreement where dimensionless offshore distances are greater than
approximately 0.2 (Figure 2-14).
o Bokuniewicz's [1992] solution (Equation 2-36) exhibits a local maximum where
the aspect ratio is approximately equal to unity. For any given dimensionless
offshore distance, (over dimensionless offshore distances between 0.05 and 0.7)
Equation 2-36 increases with decreasing aspect ratio, for aspect ratios between
1 and 10; but decreases with decreasing aspect ratio, for aspect ratios between
0.01 and 1 (Figure 2-13).









o Case II (Equation 2-33) and Bokuniewicz's [1992] (Equation 2-36) solutions
exhibit inversion. Inversion occurs where the inequality that describes
dimensionless qbd, as a function of specific aspect ratio, changes with increasing
dimensionless distance offshore (Figure 2-10).
o For an aspect ratio equal to 0.1, the sum of dimensionless qbd times unit
longshore width (over dimensionless offshore distance between 0.02 and 0.7)
where qbd is from Equation 2-33, is up to 1.4 times larger than dimensionless qbd
from Equation 2-36. For an aspect ratio equal to 1, the sum of dimensionless
qbd times unit longshore width (over dimensionless offshore distance between
0.02 and 0.8) where qbd is from Equation 2-33, is up to 1.8 times larger than
dimensionless qbd from Equation 2-36 (Figure 2-15).
* Benthic flux forced by the ground water tidal prism (C'i plter 3):
o The analytical equation requires that a two-dimensional x-z oriented qbf,
spatially integrated across the exchange face, time-integrates to zero over
integer multiples of one tidal cycle (Equation 3-16).
o Benthic discharge time-integrated over integer multiples of one tidal cycle
may exceed qbr at one point on the exchange face, such that a time-integrated
net qbd exists at that point. However, to ensure the mass balance required by
Equation 3-16, qbr time-integrated over integer multiples of one tidal cycle,
must exceed qbd at another point on the exchange face (Section 3.1).
o The ground water tidal prism is in discharge at low tide, and recharge at high
tide (Figure 3-3).
o It is not possible to determine the distribution of qbf in the offshore direction
with Equation 3-6 (Section 3.1).
o The imbalance in (1) the length of time that the ground water tidal prism
remains in qbd, versus qb,; and (2) the absolute value of maximum volumetric
rates of discharge and recharge, are both a consequence of a nonlinear filtering
effect on the tidal signal, caused by the sloping beach face (Section 3.2).
o Non-linearity in the equation for qbf, spatially integrated across the exchange
face, is a function of the perturbation parameter (Section 3.5).
* Benthic flux forced by surface gravity waves propagating over a porous medium
(C'!I pter 4):
o The analytical equation requires that benthic flux time-integrates to zero over
integral multiples of one wave period (Section 4.4).
o The amplitude of qbf decays with the exponential of the qbf damping coefficient
times the distance from wave inception (Section 4.6).
o Case II- congruence occurs where dimensionless surficial hydrogeologic unit
depth goes to infinity (Figure 4-13).
o Case III- congruence occurs where dimensionless surficial hydrogeologic unit
depth goes to infinity (Figure 4-14).
o Case III-II congruence occurs where permeability ratio is much less than unity
(Section 4.5, Figures 4-9, 4-10A, 4-11, 4-12A, 4-4B).
o Benthic flux amplifying term is negligible when it is less than 0.1. Typically,
the fundamental dimensionless permeability modulus is less than order of
magnitude 10-3, such that for Case I, the qbf amplifying term is less than









0.1 on dimensionless surficial hydrogeologic unit depth greater than 0.01
(Section 4.5).
o For Case I, where the qbf amplifying term is not negligible, qbf is amplified and
the time of peak qbf lags.
o Benthic flux amplifying term has deep water and shallow water .-i-,!ll. -;
(Section 4.5).
o For Case I, a specific wave period exists in which qbf damping coefficient
reaches a maximum (Section 4.6).
o For Case I, a maximum amplitude of qbf exists at intermediate depth because
the pressure gradient that forces qbf reaches a maximum at intermediate depth
(Section 4.7).
o For Case II and for Case III, when permeability ratio is less than unity, finite
dimensionless surficial hydrogeologic unit depth causes qbf amplifying term to
decrease in the deep water condition (Section 4.5).
o For Case II, shallow dimensionless surficial hydrogeologic unit depth damps
the amplitude of qbf less significantly than deep dimensionless surficial
hydrogeologic unit depth (Section 4.6).
o For Case III, when permeability ratio is greater than unity, finite dimensionless
surficial hydrogeologic unit depth causes qbf amplifying term to increases
in deep water, such that a thin confining unit with permeability ratio much
greater than unity causes amplification of qbf (Section 4.5).
o For Case III, when permeability ratio is less than unity, deep surficial units
damp the amplitude of qbf more significantly than shallow surficial units
(Section 4.6).
o For Case III, when permeability ratio is greater than unity, deep surficial
units damp the amplitude of qbf less significantly than shallow surficial units
(Section 4.6).
o For Case III, damping of the amplitude of qbf is directly proportional to
permeability ratio (Section 4.6).
o For Case III, larger deviations of permeability ratio from unity result in more
significant changes in the damping of the amplitude of qbf and the amplitude of
qbf, then smaller deviations (Sections 4.6 and 4.7).
o For Case III, when permeability ratio is greater than unity, shallow surficial
unit depths generate larger amplitudes of qbf than deeper surficial unit depths
(Section 4.7).
o For Cases II and III, the amplitude of qbf is damped more significantly in
shallow water than in deep water (Section 4.6).
o For Cases II and III, damping of the amplitude of qbf is directly proportional
to frequency and permeability, and inversely proportional to wave period and
kinematic viscosity (Section 4.6).

The 222Rn tracer method described in Section 1.3.2 is an .i-ii". Iiical observation

technique. The concentration of 222Rn in surface waters is much less than the concentration

in ground waters (WS Moore & WC Burnett, personnel communication, 2007). Therefore,









benthic 222Rn recharge makes a negligible contribution to the 222Rn, water-column balance

and qb is not considered in the computation. The computation yields qbd. If the Lee-type

seepage meter is a symmetrical observation device, then (1) observations with this device

yield

bf qbf(t)dt (5-1)

when t1 and t2 are start observation and end observation times; and (2) it is not

appropriate to compare qbd estimates made with the 222Rn tracer method and qbf

estimates made with the Lee-type seepage meters.

Item 6 of Section 1.3 provides a rational basis by which observations of qbf (or qbd

and qb) are explained. Where investigators report qbd, they should provide evidence

of qb necessary to balance fluxes into and out of a control volume about the surficial

hydrogeologic unit. In current practice, this is rare. Martin et al. [2004], Martin et al.

[2006] and Cable et al. [2006] are exceptions, in which bio-irrigation in the IRL is

identified as sufficient to balance observed qbd. The present work offers an alternate

hypothesis to explain observations at CIRL39, at the western terminus of the offshore

portion of the EGT (EGT,): if Lee-type seepage meters are .i- iiiiii, I lical observation

devices, 50'. to 7".'. of observed qbd is forced by surface gravity waves. (Because

CIRL39 is approximately 1Si,, from shore, it is outside the influence of qbf driven

terrestrial hydraulic gradient and the ground water tidal prism, which are shore-proximate

processes.) The remaining ".'. to 50' might be explained by a lower magnitude version

of the bio-irrigation hypothesis of Martin et al. [2004] and Cable et al..

5.3 Recommendations for Future Work

Benthic flux is forced by numerous physical, chemical, and biological forcing

mechanisms. This work characterizes qbf forced by three mechanisms; specifically,

terrestrial hydraulic gradient, tide, and surface-gravity wave. While the general scientific

literature addresses other mechanisms in great detail, the role of many of these other

mechanisms as drivers of qbf is not specifically identified in widely-cited qbf-focused or









SGD-focused literature. (Recall that SGD is a type of qbf.) For example, Boudreau [1997]

details the implementation of analytical models of diagenesis, and includes fluxes forced by

bioturbation. However, recent, detailed overview of SGD fail to include bioturbation as

a potential forcing mechanism [Burnett et al., 2006]. A great opportunity exists to re-cast

or migrate methods that already exist in the general scientific literature to the qbf-specific

literature. Future work should focus on this effort. [Two of the three methods detailed in

this work -surface gravity wave and tide -re-cast well-developed, existing, analytical

methods from Reid and Kajiura [1957] and Nielsen [1990], which were developed to meet

other scientific objectives (A, and h = z = (x,t), respectively).]

The analytical methods detailed in this work assume isotropic hydrogeologic units

an assumption that is also made in the formative works of Reid and Kajiura [1957] and

Nielsen [1990]. At some locations, the isotropic assumption may not be appropriate. For

this reason, future work should focus on generalizing the methods detailed in this work

to include anisotropy. Of course, this will first require that the work of Reid and Kajiura

[1957] and Nielsen [1990] be generalized to include anisotropy.

Reid and Kajiura [1957] assume that the wave is linear and the bed is rigid. Methods

exist to address nonlinear waves [Debnath, 1994], and to address the damping of surface

gravity waves by non-rigid beds [Madsen, 1978; Mei and Foda, 1981; Mu et al., 1999].

Future work should focus on generalizing qbf forced by linear surface gravity waves over a

rigid porous medium to acknowledge a non-rigid bed and a nonlinear wave.

Nielsen [1990] assumes a one-li -r homogeneous medium, and that tide and the water

surface in the porous medium are coupled at the beach face. These assumptions may not

be appropriate at some locations. Future work should focus on generalizing qbf forced by

the ground water tidal prism to include multi- ,i i-, t 1, inclined, hydrogeologic units; and to

decouple tide and the water surface in the porous medium at the beach face.

Benthic discharge forced by a terrestrial hydraulic gradient [Case II, Section 2.3]

exhibit inversion when the inequality that describes dimensionless qbd, as a function of









specific aspect ratio, changes with increasing dimensionless offshore distance (Figure 2-10).

Future work should focus on observing inversion in a controlled laboratory setting, and

then in a field setting.

Bokuniewicz's [1992] solution (Equation 2-36) exhibits a local maximum near an

aspect ratio approximately equivalent to one, such that at any given dimensionless

distance from shore (over dimensionless offshore distance between 0.05 and 0.7),

Equation 2-36 increases with decreasing aspect ratio, for aspect ratios between 1 and

10; but decreases with decreasing aspect ratio, for aspect ratios between 0.01 and 1

(Figure 2-13). Future work should focus on observing this local maximum in a controlled

laboratory setting, and then in a field setting.

The analytical solution for qbf forced by the ground water tidal prism does not yield

a spatial distribution for qbf, in the offshore direction. The solution does reveal that the

ground water tidal prism is in discharge at low tide, such that qbf(x) must exist offshore of

the intersection of low tide and the beach face. Future work should focus on developing an

analytical equation for qbf(x) forced by the ground water tidal prism.

Numerous investigators have attempted to describe qbf or qbd with numerical models

(Table 5-3). While a large number of qbf models recognize terrestrial hydraulic gradient

as a driving force, published attempts to characterize qbf with numerical models tend

to assume that other forcing mechanisms are negligible. As we saw in C'! lpters 3

and 4, and Table 5-2, terrestrial hydraulic gradient might only address a portion of

the forces that drive qbf at any given location. Recall that AVwtp may (typically)

force a larger magnitude qbd of water of non-meteoric origin than the H. .:,;,-type flow

structure (Section 3.2) -a hypothesis worthy of future investigation -and that the

H. vi,;,-type flow structure is typically a component of variable-density ground water flow

and transport investigations with numerical models, while AVg tp is not.

Table 5-3 is a summary of efforts to characterize qbf or qbd with numerical models.

Note that only one model -Swain et al. [2003] -included circulation, variation in









density, and variation in salinity in the surface water domain. Also note that only three

models -Swain et al. [2003], U. l,.:;.ri,. et al. [2000], and Robinson and G.,.llh. r [1999]

-included tide as an qbf forcing mechanism. When numerical models are compared with

data, models do not ah--,i-i agree with observation. For example, Smith and Zawadzki

[2003] stated that consideration of tidal pumping and other transient processes might

"introduce a means of resolving the apparent discrepancy between model-based predictions

of SGD ... and that estimated by seepage meters or chemical ti I i -

It should be possible to use a numerical model to characterize nonlinear coupling. For

example, a numerical model of circulation and transport in a surface water body (such

as the Environmental Fluid Dynamics Code [Hamrick, 1992]) might be used to model

the water surface elevation and density distribution in the surface water body -where

density is a function of salinity and temperature -and circulation is forced by tide,

wind, freshwater inflow, and the Coriolis force. A variable-density ground water model

for flow and transport (such as SEAWAT [Guo and Lir.'tv ;.: 2002]) might be used to

model pressure and a density distribution in the ground water system, where density is a

function of temperature and salinity and flow is forced by recharge, evapotranspiration,

and pressure (or pressure gradients) at domain boundaries. These models might be

coupled at the bed with Darcy's Law and a conservation equation for temperature and

salinity, such that the pressure and density gradients that exist across the bed force

qbf. The temperature and salinity distributions in both the ground and surface water

domains should dynamically interact and update at successive time steps. The elevation

of the water surface and pressure in the ground water domain should also dynamically

interact at successive time steps. (Governing equations for such a model are presented in

Appendix E.) The model can be applied on a regional [0(1 10km)], local [0(1 100m),

or laboratory [O(lm)] scale. The model can be validated with comparison to pressure,

temperature, and salinity data in the ground water domain; and water surface elevation,

velocity, temperature, and salinity data in the surface water domain. This validation data









set can be used to estimate instantaneous benthic flux on the laboratory scale, forced by

component (pressure or density gradient) and coupled (pressure and density gradient)

processes.

Recall that it is not possible to determine the distribution of qbf, forced by the ground

water tidal prism, in the offshore direction, without additional information (Section 3.1).

The model allows for the estimation of a qbf distribution in time and space, in both the

offshore and longshore direction. Various constituents, such as pollutants, nutrients,

carbon, or oxygen, which are transported with qbf, might also be modeled. Inclusion

of kinetics would permit the quantification of constituent cycling and non-point source

pollutant loading.

Dissent exists in the literature as to whether the seepage meter (both Lee-type

and other types) generates reliable results [Shinn et al., 2002; Corbett and Cable,

2003; Shinn et al., 2003; Cable et al., 2006]. T,'.:g;,. 1,t. et al. [2002] detail 45 studies

of direct measurements of SGD on five continents; 17 of these 45 studies employ the

Lee-type seepage meter, or a derivative device. Huettel et al. [1996] describe a laboratory

experiment in which dye injected into sediment below a 2.5cm high sand mound was

advected at a rate in excess of 70cm/d, into surface waters. The 70cm/d flux was forced

by a current with a 10cm/s velocity 8cm above the bed. Surprisingly, a widely-cited paper

does not exist in which the response of the Lee-type seepage meter to uni-directional

and oscillatory flow fields is systematically characterized in a controlled laboratory

environment. Such an experiment should be the focus of future work. The characterization

should employ multiple redundant mechanisms to measure qbf, such as different types of

pressure sensors deploy, l1 along flow paths that lead into and out of the flux chamber. The

Lee-type seepage meter should be exposed to various flow types and magnitudes, and the

characteristics of the porous medium should be systematically varied.

Items 5 and 6 of Section 1.3, and the static-head laboratory tests of Lee [1977]

and B. la.r,. and Montgomery [1992], -~i--.- -1 that Lee-type seepage meters might not









capture the natural qbd and qbr signal. To address this, a hypothesis is posed in this

work that Lee-type seepage meters are .i-,i iii,. ii ical observation devices, such that the

meter captures qbd and does not capture qbr or only captures a fraction of actual

qbr (Equation 3-23). Under the .,i-viiiii i ic assumption, observed and analytically

estimated qbd, forced by surface gravity waves, are of the same order of magnitude

(7.1cm/d 1.9cm/d versus 3.5 to 5.3cm/d; Table 4-3). The above-described trial of the

Lee-type seepage meter should conclude with identification of the device as symmetrical or

. i- iii I i Ical.
























































cc c= c=- 't c co o c = [o cc D 0 cc C C c=oo o c






0000 o o 01010 ^ o C i c I IC c 0100d1000


0 0
01 01


0 0


010101
010101

TIT
111'
01 T T


c0 IC


.r d, o

000

000


0
- 0
0 0


t-0

01 CO
c3 c3
a a
o3 o
00 0

C'CO
4" "
HH


j1 :
-I


0 010















NNN888
01001 Zo
to ot0cc
S^^ T

































rdddmm
-;c~lCQ







































000000

000000








000000
ro ro 0000 c






C^ C^ I CO C? C?










F- Cfl 0 F-H Cf















000000
0101 03 01 01 01
cc -c CO 0 c 1 CO
-uuc ,0C 1 11
CO~b COv0COCOC

COCOCOCOCOC

vQ Q Q _
E E E^ E E E


ooooo
M aa ca
(M ^^o ( (M
1^- t0 i ^- ^- t

XX XX
0 0rrddr










0"(M00 C C (



^0 ^0 ^0^0 ^0 ^


I I I I I














01it Fi- -- -


C0 C0
CO CO
CM CM


CM C0
CC C
11 1


C0 C0
CO CO
CM CM


CDf CD Q CD [ h A O Q -t -t 0C [ [1 h t O O A 0 Q C0 )
C0000 C 01010 0 C C h00 001000


ho ho
cc c C~O [ O- OO cc OO ^O t-O M-l 0 [O [- hO O hO [- 001








mo
aa O ^ O^O^^COC '-CO OCO-^ -^C '-O


-~ 0
0 0


i 0 0R 0& Icy"
- cM -^ cM


01 CO 01 CO 01 CO
CO CO CO CO CO CO
000000
CO C CO O C-



rdrMdrrdr


888888


000000











000000


rc~ [- J`
cc ~ [- o


'tot0
hO ez



cc



cc
Co r






hOr
cc~b

010101


000
0l 0 0


o-2
^ 10 CO-0
;Tho 0,
ci RO


bb
01 0


0 |



CrO
til~






0E 0




05
ccc






-d
CO

Em















^00
"-d;
00i _














CM
2ZZ
It?


*on
0 N H

a ^



















-y- -u-u -@@
" ." ." ." ."
^2 2 2 2 ^2 2

> > > > I > >


m m m



00 00 0
B) e)h)d bb bb (
0 b~0 b-i 0 0- b-i O
S0)0) 0
0 0o 0 0
0000000c ,a ,== ,=


0y
2


N N Z NN~N N NN

C XX CX0110 C 001100


~000000
E 2 2 2


2 ddr

ciE000
$ 222


00r 0d
i22 I


fr fr
000000000000
0100000100000


c=) c=)
00 --


0 01 f
0











g-
q r r >4r
cgsL^5=)
0^~1 aa

^ C c1
"Ilii^c
S -- 3 e T ^ T



^ iS S Si" S
o ga


a g ug
&3 k.)&3 &3^ &


0d
2i









APPENDIX A
SUMMARY OF INVESTIGATIONS IN THE INDIAN RIVER LAGOON

This appendix introduces qbf data collected by investigators other than the author,

along the EGT and in the IRL. The EGT is located approximately 500m south of the

Eau Gallie River and extends perpendicular to the shoreline, from the eastern shore to the

barrier island. This transect encompasses the offshore transect described by Martin et al.

[2002] (EGTo) and the freshwater seepage face transect described by Martin et al. [2007]

(EGTf). This appendix is divided into four sections: (1) a general description of the IRL,

followed by a select review of (2) qbf, (3) ground water, (4) and surface water data. These

data are required to address Objective 4, introduced in Section 1.5.

A.1 General Description

The IRL is located on the east coast of Florida (Figure A-i), bounded on the north

by Ponce de Leon Inlet (Volusia County) and on the south by St. Lucie Inlet (il ,' tin

County). The IRL is approximately 250km long. The region exhibits three distinct

seasons: a dry season from January to aM i,, al iiiwv season from June to September, and

a hurricane season from October to December. Approximate lagoon depths in the vicinity

of the EGT range from less than 1m over the shoals to 5m in the navigation channel near

the middle of the IRL (Figure A-2). The underlying hydrogeologic framework consists of

three units: an approximately 20m thick surficial aquifer, a 10 to 40m thick confining unit,

and the Floridian aquifer (Figure A-3). The transect detailed in Figure A-3 is located

approximately 15km west of, and oriented parallel to, the western shore of the IRL.

The Atlantic Coastal Ridge -a surface watershed divide 3.7km west of the EGTsf at

elevation 10.m separates areas that drain surface water to the IRL from areas that

drain surface water to the St. Johns River. A local ridge with elevation 7.62m is located

approximately 50m west of the EGTsf (Figure A-4); an embankment with an approximate

!iI'. slope on the east side of the local ridge is within 10m of the shoreline, on the EGTsf.









The barrier island is approximately 750m wide near the EGT, with the ini i, ,i iy of this

width draining surface water to the IRL.

Martin ct al. [2002] established the EGT, with four stations. CIRL39 -the

westernmost station -is located at 28006'59.7"N 80037'05.2"W in 0.9m of water. CIRL39

is south of the Eau Gallie boat launch, located approximately 180m from shore [Martin

et al., 2007, 2004]. Martin et al. [2007] detail the EGTsf with eight stations shoreward of

CIRL39 (Figure A-i).

A.2 Benthic Flux

qbf estimates made with seepage meters at the EGT are summarized in Table A-1.

Estimates made by other methods are summarized in Table A-2. Uncertainty associated

with observation error is expressed, where appropriate, in the referenced figures or cited

literature. Data are tabulated by location, from west to east. Reference is made in

these tables to Figures A-5 to A-13. The remainder of Section A.2 details observations

summarized in Tables A-1 and A-2.



















































81PO'O"W 8O"O'O"W


Figure A-i.


The western terminus of the EGTo (CIRL39) and the EGTzf, located in the
IRL, in Brevard County, Florida.












Depth (cm NAVD88)
0 25 50 75 10D 125 150 175 200 225 250 275 300 325 350 375 40D 425 450 475 50D


Horse Cree/


Eau Gallie
Transect


Eau Gallie'
River


Crane Creek


Turkey Creek/


Figure A-2. IRL bathymetry near the EGT. Modified from Sheng and Davis [2003,
Figure 3.4]. @2003 SJRWMD, used with permission.










(Northf (South)
Eau Gallie Transect



Depth c 8 5
im) o o [ Surface
0 I 0I

". -SurfIcla Aqutfer System Poas-Myc-ene
-O Sediments

"-- CConfining
-1 --. Miocene
40 ""Hawthorn
Y Group
H ; rnL. Flld Aquifer stam
-200
Eocene
(kala Group


Figure A-3. Hydrogeologic stratigraphy underlying the IRL. Modified from Martin et al.
[2002, Figure 1-2]. 02002 SJRWMD, used with permission.







7 62m



Diide
.. 7.7m -.


.1:'. i / -- i .:
S .


Figure A-4. Elevation of the regional and a local watershed divide, and distance to the
regional watershed divide on the EGT f. Modified from the United States
Geological United States G ..1, .:. S, i,. [1988, 1990]. Public Domain.

















Table A-i. Benthic flux estimates for the ECT made with Lee-type seepage meters.


Study

Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2007]
Martin et al. [2002, 2006]
Martin et al. [2002, 2006]
Martin et al. [2002, 2006]
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2004, 2006]b
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
Martin et al. [2002]
a freshwater component
b see also Cable et al. [2006]


Benthic flux
[cm/day]
18.4
13.0
10.5
7.4a
13.7
15.3
6.1a
6.9a
7.5
11.2
1.0a
1.6a
7.3
7.6
2.6a
2.7a
7.6
9.6
3.0a
3.8a
9.0
7.2
2.1a
1.6a
5.2
5.1
0.8a
0.8a
2.7
2.9
0.1o
0.1o
1.6
0.0a
4.37
13.58
6.52
7.07
8.11
8.27
8.43
7.39
7.75
4.12
3.56
7.19
5.76
8.31
14.25
1.46
2.39
5.14
4.89
3.97
2.45


Location

EGNO
EGNO
EGNO
EGNO
EGN5
EGN5
EGN5
EGN5
EGN10
EGN10
EGN10
EGN10
EGN15A
EGN15A
EGN15A
EGN15A
EGN15B
EGN15B
EGN15B
EGN15B
EGN17.5
EGN17.5
EGN17.5
EGN17.5
EGN20
EGN20
EGN20
EGN20
EGN22.5
EGN22.5
EGN22.5
EGN22.5
EGN30
EGN30
CIRL39
CIRL39
CIRL39
CIRL39 #1S
CIRL39 #2N
CIRL39 #1S
CIRL39 #2N
CIRL39 #1S
CIRL39 #2N
CIRL39 #1S
CIRL39 #2N
CIRL39 #1S
CIRL39 #2N
CIRL40
CIRL40
CIRL41
CIRL41
CIRL41
CIRL42
CIRL42
CIRL42


Date


Reference


September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
September 2005
May 2000
August 2000
December 2000
May 2003
May 2003
June 2003
June 2003
July 2003
July 2003
September 2003
September 2003
May 2004
May 2004
May 2000
December 2000
May 2000
August 2000
December 2000
May 2000
August 2000
December 2000


Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-7
Figure A-5A
Figure A-5A
Figure A-5A
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figures A-5B and A-6
Figure A-5A
Figure A-5A
Figure A-5A
Figure A-5A
Figure A-5A
Figure A-5A
Figure A-5A
Figure A-5A
























01 01





blO blO bt.









101 11
00 0 0
lo lo








222
FEE
000
0c0ccZ
(M (M (
!^ !^ !
(1) () (1
-Q -Q -Q~
S S
e) e) 0
^-smsms.


01~
0ue ccccm





b~O b~O b~O bt. b~O b~O b~O b~O b~O b~O


ho
10
0
01

0)


0)
0

Zc Z-Z


0oo
00oo



22
C) c=





0
00
(M (M
CD

c=) c=)


0 )

a 0 2o


doI


~~ ~00
00 00 cls
~cs 00~cm
00V 00VI
-~- EE
EE 00IL
00L 0 LQIQ




o E o E 0 0 0



011 u O c 00


000 000 0


000






00000


o it
S0 0 0
-d ~ ~s
d) 3 3 T a

IIIH~~
o
q=! m m m q !
4- l !_ !_ 4-
3 0 0)0)
0 .1 1 .1 0
0) 0) 0
0) *- *-= -= 0
(-]TJTJTJ (-


ccre
acc F~- Flb~-hOhO -
~i 000010000~


a
C0


-d-
00
FE




FE




3 :



EZ 0
-0~"
00 )
000 hO


Ig0000000000000000c
- - - 0
S. . . .

dddddd dd d01 4

'f f f f f f f f f f f f f f f f f
a aa aa aa aa aa aa
^^^^^^^^^^^^^^^^^0









Martin et al. [2004] presented a conceptual model of qbf in the IRL, which detailed

freshwater fluxes driven by terrestrial hydraulic gradient on both the mainland and the

barrier island sides of the IRL, an advective mixing zone underneath the IRL, distinct

mixed zones .,.li i:ent to the mainland and within the surficial aquifer, a freshwater

lens underneath the barrier island, seawater and lagoon-water fluxes driven by tidal

pumping under the barrier island, and leakage from the Floridian aquifer. Martin et al.

incorporated many of the concepts introduced by Moore [1999] for the subterranean

estuary into this model (see Section 1.1).

Martin et al. [2002, 2004, 2006, 2007] and Cable et al. [2006] estimated qbd with

Lee-type seepage meters (Figures A-5 and A-7, and Table A-i). (The Lee-type seepage

meter is described in Section 1.3.1.) Observations were made across both the EGTo

and EGTsf. The average qbd for all meters and dates at CIRL39 was 7.1cm/d with a

standard deviation of 1.9cm/d. Martin et al. [2004] noted that in 2003 at CIRL39, higher

qbd observations occurred at the end of the dry season, and lower qbd at the end of the

wet season (Figures A-5B and A-6B; data in Figure A-6B are organized in groups of

three bars: precipitation data from Melbourne, qbd data from a station to the north of

the EGT (B2), and qbd data from Station CIRL39 (C39) (see Figure A-5B). Where only

one bar appears, data are precipitation.). They concluded that in 2003, qbd at CIRL39

did not correlate with concurrent monthly precipitation, and stated that a relationship

between qbd and monthly precipitation may exist with some phase lag. They supported

their conclusion that qbd and precipitation do not correlate with the observation that qbd is

recirculated seawater at CIRL39.

B. l.u,. and Montgomery [1992] measured qbd with Lee-type seepage meters in a

similar setting across the Indian River Lagoon near Jensen Beach, approximately 110km

south of the EGT. They observed that qbd ranged from 0 to 132cm/d.

Martin et al. [2007] measured the Cl- concentration of waters both inside the benthic

chamber and in the surface waters (Figure A-7C). Because Cl- is a conservative tracer,










-0-May 2000
S -B-August 2000
--- December 2000

p


^^\001


18
16
14
! 12
2 10
-
x 8
o 6
1 4
n 2


-O-CIRL39 #1S
-B-CIRL39 #2N


10) 0 (\I 01 01
2 0 0 -4 O
-4 ," c C4 IT
station time

(A) Benthic flux versus station for the EGTo, and (B) benthic flux versus
time for two seepage meters co-located at Station CIRL39. Dashed
lines represent error associated with one standard deviation of triplicate
measurements from a single meter at each location. Data from Martin et al.
[2002] and Martin et al. [2004].


they estimated percent freshwater and percent lagoon water in the benthic chamber with

the following balances:


qbd.total = qbd.fresh + qbd.lagoon (A-1)


C
qbd.fresh = qbd.total (- c, )1
Lagoon


(A-2)


where qbd.total is qbd, qbd.fresh is benthic freshwater discharge, qbd.lagoon is benthic lagoon-water

discharge, Cagoo, is Cl- concentration in lagoon water, and Csm is Cl- concentration in

the benthic chamber of the seepage meter. They showed that the Cl- concentration in the

benthic chamber should be equivalent to the Cl- concentration at the penetration depth

of the seepage meter (Figure A-7D).

They plotted qbd.fresh versus distance from shore along the EGTsf (Figure A-7B).

They estimated the width of the freshwater seepage face (22.1m) on the EGTsf as the

distance that corresponds with zero qbd.fresh-

Martin et al. [2004, 2007] fit an advection-diffusion model to a Cl- distribution,

to estimate qbd.fresh along the EGTsf (Figure A-8). They -i -.i: -1. I that the mixing of

salt in pore water is governed by two processes: advective qbd.fresh and diffusive benthic

saline-water recharge. (This model assumes that Cl- is not transported by advective


Figure A-5.


















Melbourne WSO, Florida


ri th,


UI:BD 12/1/09 1? 00 12./ DC M1l01


4/1/03


7/1/03


-1530- -



199 20D 2DD1 2002 2003 20[M 1971-200r


rn[ flflnn


12f 111 f61D2 1231.2 B11MG3 12J~13 f1VD4


10/1/03


1/1/04


4/1/04


7/1/04


Date


Figure A-6.


(A) Monthly and annual precipitation, from December 1998 to December 2004
for Melbourne; and (B) benthic discharge (seepage) and precipitation at two
locations in the IRL. From Martin et al. [2004, Figures 2-2 and 5-4]. @2004
SJRWMD, used with permission.


E
E
c

30D-
t-
*5. 3n-


. 1-
'p1.


n4


12/1/98


0 -3
1/1/03


S Melbourne P
II B2 seep
I Cl39 seep






, ,I I,,


- 30
Cr
-25

- 20

-15

- 10

5

-0
oB


F On


j2 1
12M.-I A


LII4'


. . T P 0, 61 ; ; ..,


rd


I:1 I1 1.1KJI I JI d


I I I Idl Ld Inr 4 I I 14 I hll


Inon.0ll


































5 10 15 20 25
Distance offshore (m)


Water column
-CSeepage meter

300

30 20 -----------


20o-----!- --^----
" 250



| 200 -







100
100 I------


910


o



0






30
-o







30


-- yy=7.95-0.36x R=0.89








- -


0 5 10 15 20 25 30
Distance offshore (m) f -


Fresh water (%)

80




I IT
-- 6 0


cn



S20



-- -----
-- -------------_ 20


10 15 20 25
Distance offshore (m)


Figure A-7.


(A) Total and (B) Benthic freshwater discharge versus distance from shore;
(C) Cl- concentration in Lee-type seepage meters, in the water column,
and percent fresh water in the benthic chamber versus distance from shore;
and (D) depth versus Cl- concentration -obtained with sippers, along the
EGTf -plotted .,.i I' ent to seepage meter penetration depth. Data were
collected in September 2005. From Martin et al. [2007, Figures 3, 4, and 9].
@2007 American Geophysical Union, reproduced with permission.









recirculation of lagoon waters. Equations for qbf forced by AVgt and surface gravity

waves show that Cl- is transported by advective benthic lagoon-water recharge.) They

-ii..._ I.1 that the conservation of constituent equation

aC (D a C ac (A-3)
at az Dz az

describes the distribution of the concentration of the constituent Cl- in time and vertical

space, where C is the concentration of Cl-, T is time, z is the vertical dimension, D8 is

the diffusion coefficient for Cl-, and v is freshwater velocity. They assumed a steady state

and that D8 is independent of z, such that

d2C dC
0 = D v (A4)


They assigned boundary conditions based on inflection points in the distribution of

Cl- with depth (Figure A-8A & A-8B): one boundary condition near the surface, where

the concave down trend approaches horizontal

dC
Cu a 0 (A-5)


and one at depth where the concave down trend approaches vertical

8C
CL c 0z (A-6)


where Cu and CL are the upper and lower boundary conditions for Cl- concentration.

Where the upper boundary does not correspond with the surface, they assumed that other

physics governed, such as bio-irrigation. The solution to the boundary value problem is

CL[1 eC] + CT[e e]7
C =d (A 7)
1 eD,

where d is the depth of the lower boundary. The vertical velocities in Figure A-8

were generated by fitting Equation A-7 to observed Cl- concentration distributions

(Figure A-8A). [The O(0.lcm/d) qbd is one order of magnitude lower than qbd observed













A.
A. Cr Cr Cl
(mM) (mM) (mM) (mM)
0 100 200 300 0 100 200 3000 100 200 3000 100 200 300

20 -- -- - - - - - - - - --- .- ^ --- -








100 EGN 0 EGN 5 i EGN 10 .EGN 15
120 --- ------G ------- ------ i i --- ----- ------- -E5-----------
120


CI CI cr CI
(mM) (mM) (mM) (mM)
00 100 200 300 0 100 200 300 0 100 200 300 0 100 200 A 300 400
B o
60 o









80 *

100 00
3 ; EGN 17.5 EGN 205 EGN 22.5 EGN 3
120 2 5









Model
40 Spper
100- -- -- -
E
60 --------- ------)---------- 0
0 150 -
80-------1~ ------ ----- 0 ---r------- ---
o Sipper


MultlampIer
SSipper


Chlorinity
B. (%o)
0 2 4 6 8 10 12 14 16
0




v=0.19 cm/day /


-----4 ------- ---
40




/ V=0.14 cm/day
80 7


(A) Depth versus Cl concentration along the EGTsf in September 2005;
and (B) depth versus observed and modeled Cl- concentration at CIRL39.
Vertical velocities (v) are modeled with Equation A-7. Modified from Mar-
tin et al. [2004, Figures 6-5] and Martin et al. [2007, Figure 6]. @2004, 2007
SJRWMD, used with permission. @2007 American Geophysical Union,
reproduced and modified with permission.


with seepage meters (Figure A-7B), and predicted with equations developed in the present


study (Table 5-2).]


Martin et al. [2007] regressed qbd.fresh against distance from shore (Figure A-9) and


calculated the width of the freshwater seepage face (21.4m) on the west side of the EGT


as the distance that corresponds with zero qbd.fresh. Note that while the width of the


freshwater seepage face estimate made with the Equation A-7 (21.4m) compares with the


estimate made by seepage meters (22.1m), and the shapes of the distributions are similar


(Figures A-7B and A-9), the estimated qbd.fresh by Equation A-7 are approximately one


order of magnitude lower.


Figure A-8.












0.8
E
D 0.6

T 0.4



0
0.2


0 5 10 15 20 25 30
Distance offshore (m)


Figure A-9. Benthic discharge versus distance from shore along the EGTsf. Benthic
discharge is modeled with Equation A-7. Modfied from Martin et al. [2007,
Figure 7]. @2007 American Geophysical Union, reproduced with permission.


Smith and Turner [2001] reported that Glover [1959] showed, with a sharp freshwater-saltwater

interface model, that

y2 2D0x ( D (A8)
Kxa Kxa

where y is vertical depth to the saltwater interface; x is onshore distance from the

saltwater boundary; Do is terrestrial discharge; Kx is horizontal K; and a is coefficient of

solute volume expansion
pC, PCo
a -= (A-9)
pCo

where C, and Co are surface water and ground water solute mass concentrations,

respectively. Glover assumed that the aquifer is isotropic and infinitely thick, and that

the saltwater side of the interface is stationary. This model predicts the position of the

saltwater interface, including the width of the discharge face and the position of the toe.

Martin et al. [2007] used the (22m) width of the freshwater discharge face to estimate

qbd.fresh with Glover's [1959] model. Freshwater qbd ranged linearly from 4.1cm/d at the

shoreline to Ocm/d at a point 22m from the shoreline. Martin et al. [2004] showed that

Cl- concentrations at depths greater than approximately 1m are less than surface water









Cl- concentrations shoreward of a point approximately 30m from shore (Figure A-10);

evidence that the freshwater seepage face is less than 30m wide at the EGT.

Martin et al. [2004, 2007] found that the Cl- concentration to a depth of approximately

50cm below the sediment-water interface, between May 2003 and T ,i- 2004 at CIRL39,

is approximately equivalent to the Cl- concentration in the surface waters; and that

the Cl- concentration curve .,-i-!,ii11i. to a constant value of approximately 325mM

at a depth of approximately 1m below the sediment-water interface (Figure A-11A). A

similar conclusion is evident inside the freshwater seepage face, where a OmM freshwater

.I-i-,iiI1. l. is reached approximately 30cm below the sediment-water interface at the

shoreline (Figure A-10). The position of the .,-i-!', ii..i1, at the shoreline was not a function

of season, between November 2004 and September 2005. Seasonality did affect the

location of the .,-iiii .'.te in the offshore direction (Figure A-10). Martin et al. [2004,

2007] showed that Cl- concentration through the upper depths of the porous matrix

responds very quickly to changes in Cl- concentration at the surface: a 7mM change

in surface Cl- concentration propagated approximately 40cm into the porous matrix in

46hr (Figure A-11B). They proposed that molecular diffusion is not sufficient to transport

surface waters to this depth in this time period, and that a qbr of approximately 20cm/d is

required to mix the upper 40cm with surface water in 46hr.

Martin et al. [2004] applied the numerical model MODFLOW [McDonald and

Harbaugh, 1988] to a generalized section of the IRL to estimate qbd.fresh (Figure A-12).

MODFLOW solves

a/ah9h\ a ( ah\ ah ah
at KXX + K) + K yz + ) s = as (A-10)
9x 9x 9y 9y 9z 8z 9t

with the finite-difference method, where q, is a volumetric source-sink flux, per unit

volume, and Ss is specific storage. They made three assumptions related to K in the

model domain: (1) homogeneity, (2) relatively higher K under the barrier island, and (3)

a low K clay lv.--r underlain by a high K shell-hash liv r near the western seepage face.
































CI-
(mM)
0 100 200 300
0
0 0
*on a :


EGN 0 O


CI
(mM)
0 100 200 300
I I U
: m |


EGN 5


CI
(mM)
S 100 200 300
----------*-
1 mo G
00.


CI
(mM)
0 100 200 300


O-i- CE
CD
ZDQU


EGN 10


EGN 15


CI CI-
(mM) (mM)
0 100 200 300 0 100 200 300
0 0

o i o a
20
e m o 0
50O


*E 0


100 -


CI
(mM)
1 100 200 300 400


M
- -*


o November 2004
* February 2005
o May 2005
* September2005


*OD


EGN 20


m 0 EGN 22.5 EGN 30


Figure A-10. Depth versus Cl- concentration along the EGTSf in November 2004 and

February, May, and September 2005. From Martin et al. [2007, Figure 5].

@2007 American Geophysical Union, reproduced with permission.


80



















Cl
(mM)
250 300 350 400 450 500


C& 0 0C


W> (


B.

240
0 -


Cl
(mM)

250 V 260


Depth
(cmbsf)

10 -A




20




30


CIRL39 W


Figure A-11. (A) Depth versus Cl- concentration at CIRL39 between May 2003 and A ,
2004, and (B) depth versus Cl- concentration at CIRL39 over a 46hr period
between September 26, 2003 and September 28, 2003. From Martin et al.
[2004, Figures 6-2 and 6-3]. @2004 SJRWMD, used with permission.


A.

200
-50
Depth
(cm bsf)
0


50


* May-03
o June-03
* July-03
SAugust-03
SSeptem ber-26-03
SSeptem ber-28-03
+ February-04
* May-04


* 9/26/03
E 9/28/03























Figure A-12. Simulated (\ ODFLOW) benthic freshwater discharge as a function
of distance from the shoreline. The black/red lines correspond with
exclusion/inclusion of clay and shell-hash units. From Martin et al. [2004,
Figure 5-13]. @2004 SJRWMD, used with permission.


The results of the homogeneous model showed qbd.fresh ranging from 0.69cm/d (20m from

shore) to 0.002cm/d (300m from shore) (Table A-2). They converted point estimates to a

cross-section integrated qbd.fresh of 0.05cm/d, which is two orders of magnitude lower than

qbd estimates made with Lee-type seepage meters.

Martin et al. [2007] estimated qbd of 8 to 13cm/d at CIRL39 between May 2003 and

May 2004, with a 222Rn tracer method. Unlike the conservative Cl- tracer, 222Rn is

generated by decay of 226Ra within the sediment column. For this reason, they stated that

the depth versus 222Rn activity profile (Figure A-13) does not exhibit the same vertical

nature in the upper 60cm of the profile, as the Cl- tracer (Figure A-11A). They identified

a strong inflection in the depth versus 222Rn activity profile, at a depth of approximately

40cm below the sediment-water interface. They -i,--.. -1i ,1 that bio-irrigation governs the

profile above this inflection.

Martin et al. [2004] and Cable et al. [2006] detailed the existence of benthic

organisms along the EGT, which are capable of generating a qbd that is of the same

order of magnitude as many of the observations detailed in Table A-i. They si,-l-. -1. I

bio-turbation and bio-irrigation are capable of balancing a conservation of volume

statement (Item 6 of Section 1.3); an accounting exercise that is not typically acknowledged

in the qbf observation literature. As stated in Section 1.1, bio-turbation is the re-structuring


Bowl Shaped ClayUnderlain by Shell Hash
05
-04-
S03 -
O2-
i01 ----

0 500 1000 1500 2000 2500
West Distance From Shore East





























4dpn L'tC
0t 10 .Ol1 hi,) 0
-50 -- 4


'-Rn

idpni L''
iW)t 2( 300


12May 03
-- 16 Jia 03
-U- 13JulD03

V 2tSep 03
50 T '- 0 A tFrb (14
-A 24 May04




I S 4 ,, -
)-





0g- BI
< --- ------b- "


Figure A-13.


S, IL

*, ',


* -C--- '1MayIl3
--- t6 Jun rr3
-r- 13 ul03
I 4 Au 103
26 SQp03
C-- 06 Feb .
.. _4 MayEI14


i- \1 -c
so mill -L-

I- '
*I


Depth versus excess 222Rn activity at CIRL39 between A li- 2003 and May
2004. The figure on the left details the full sampled depth; the figure on the
right details the upper 80cm. Bars signify error associated with one standard
deviation of triplicate measurements. From Martin et al. [2006, Figure 3].
@2006 American Society of Limnology and Oceanography, Inc., used with
permission.









of the sediment matrix due to the borrowing action of benthic organisms, such as worms

or plants 'I:l/. I,,r 1993]. Bio-irrigation is the flushing or ventilation of burrows by

benthic organisms. Bio-irrigation replaces pore water in the burrow with water from the

surface water body [Meysman et al., 2006].

Martin et al. [2004] and Cable et al. [2006] hypothesized that seepage meters created

anoxic conditions, which may have caused benthic organisms to bio-irrigate at increased

rates. They tabulated bio-irrigation rates capable generating observed qbd. The August

2003 photograph shown in Figure A-14 is evidence of benthic organisms at CIRL39. A

denser porous matrix generates a lighter region in the x-ray radiograph negative. Note

burrow tubes from benthic organisms appear as dark channels. They did not detail factors

that influence the mortality of these organisms, such as the time limit over which these

organisms continue to bioirrigate in an anoxic environment.

A.3 Ground Water

Motz and Gordu [2001] summarized hydrogeologic parameters in the vicinity of the

EGT (Table A-3). Martin et al. [2002] presented a potentiometric map of the Floridian

Aquifer in tl ,i 1999 by Bradner and Knowles [1999] (Figure A-15). Martin et al. [2004]

estimated Tr and mass percent mud of 1m2 of the sediment-water interface at CIRL39

(Figure A-16), and the TI of the upper 10cm of the porous matrix under the lm2 area

(Figure A-17). Finally, they modeled hydraulic conductivity and characterized grain size

of the upper 2.8m of the porous matrix at CIRL39 (Figure A-18). Martin et al. [2004]

(Figure A-12) and Pandit and El-Khazen [1990] (Figure A-19) used numerical models to

describe qbd.fresh to generalized sections of the IRL.















































Figure A-14. An X-ray radiograph negative of a sediment core at CIRL39. From Martin
et al. [2004, Figure 3-15]. @2004 SJRWMD, used with permission.


















































LnI


0bDO

. ^.~



~ -~
O ^ ^




3 0
0


00
00
00










tt3 3
o o


se
a 0
00


00
00
00






tt3 t
a a,



e




o o
00


-ic
5s
X






DC
bO



0
0 -
0 r


CO I
01 L







S0




14
o

'- ^-
'3
cTlc^


-0
c~03
0003




~3
"h









A.4 Surface Water

The Florida Department of Environmental Protection maintains water level

records at the Melbourne Causeway, approximately 4km south-southeast of the EGT

(Figures A-20 to A-27). These data inherently include the influence of wind on tide

generation. (Harmonic analyses of these data are detailed in Section 3.2.) Smith [1987,

1990] utilized water level and current observations to analyze the tidal signal in the

Atlantic Intracoastal Waterway (AICW) of the IRL, and derived tidal amplitude and

tidal phase angle constituents for water surface elevation and current (Table A-4). Local

phase angle is relative to Eastern Standard Time, or Universal Time Coordinated -5hr.






















































20 0 20 40
km


Figure A-15. Potentiometric surface of the Floridian Aquifer in t i,, 1999. The EGT is
located in the Southern Study Area. From Martin et al. [2002, Figure 3-3].
@2002 SJRWMD, used with permission.





182











ST 100 1 0 0 1 0 0 00 "1 0 0* 100


a ;b 00 30 40 S0 60 70 80

A. porosity 027-038 i
0.38-049
0.49-0.61


Figure A-16. (A)
tin


-40 40


- -0 .

0.61-0.71
0.71-0.81
0.81-0.91


16 20 3.

mass
mud


00 60


0.33%-0.49%
0.49%-0.61%
0.61%-0.68%


0.68%-0.74%
S 0.74%-0.82%
W 0.82%-0.93%


Interpolated porosity and (B) mass percent mud at CIRL39. From Mar-
et al. [2004, Figure 3-11]. @2004 SJRWMD, used with permission.


Porosity


0.3


0.5


i--H- -
E--DO--H


I---IH--- I-h--



-C-H !--




I LJ I i

1-I t--

I C 1 8L _
I L II -- ri
p IH 4


0.6


0.8


I I

H

H
-t
-4



-I







*-- NIRL24
Sv NIRL6
-0 I CIRL39


Figure A-17. Modeled and interpolated gamma ray attenuation porosity at CIRL39. From
Martin et al. [2004, Figure 3-19]. @2004 SJRWMD, used with permission.


2


0.
0 -

1 -

2 -


-- --- ii --- --- I 1 I~I_~


010~P30OSOBOMM


"s


-m r10


0 1 O flO k TOO


H I
















0.0 0.5 1.0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160


--I
170

180

190

200

210

220

230

240

250

260

270

280 .
0.0 0.5 1.0


CIRL39

le-2


Porosity
le-1 04 0.5
04 0.5


i T I t I I ll 00 05 01
le-2 le-10 005 01


Median (()

0.6 3 2 1


In


Figure A-18. Grain size and modeled hydraulic conductivity [cm/s] at CIRL39. From
Martin et al. [2004, Figure 3-20]. @2004 SJRWMD, used with permission.


% Composition Modeled Hydraulic % Silt & Clay
Conductivity
SGravel (Shell) --- Porosity
I I Sand --- Silt & Clay
Silt & Clay


0 1 2
Sorting (r)


Sorting (a)
Median (i)


0

































IMPERMEABLE BOUNDARY


Figure A-19.


A boundary value representation by Pandit and El-Khazen [1990] of the
surficial aquifer near Port St. Lucie. From Martin et al. [2004, Figure 5-8].
@2004 SJRWMD, used with permission.


-0.2

o00
CO
00


z

S-0.3







-0.4


14
day [May 2000]


Figure A-20. A li, 2000 water level versus d-i at the Melbourne Causeway. Data from
SJRWMD (P. Sucsy, personnel communication, 2007).


































day [August 2000]


Figure A-21. August 2000 water level versus di- at the Melbourne Causeway. Data from
SJRWMD (P. Sucsy, personnel communication, 2007).


Co
Co
0


z

E -0.2




-0.3

-0.3


14 21
day [December 2000]


Figure A-22. December 2000 water level versus di,- at the Melbourne Causeway. Data
from SJRWMD (P. Sucsy, personnel communication, 2007).






















E" -0.2





3 -0.3 -



7 14 21 28
day [May 2003]

Figure A-23. _M ',- 2003 water level versus d-- at the Melbourne Causeway. Data from
SJRWMD (P. Sucsy, personnel communication, 2007).


Co
00


z
E

> -0.3

-0.4





-0.4


14
day [June 2003]


Figure A-24. June 2003 water level versus di- at the Melbourne Causeway. Data from
SJRWMD (P. Sucsy, personnel communication, 2007).

















00
00


z

-0.4








-0.5 L
0" 7 14 21 28

day [July 2003]

Figure A-25. July 2003 water level versus rl- at the Melbourne Causeway. Data from
SJRWMD (P. Sucsy, personnel communication, 2007).


0.1


0.0


I I I
7 14 21 28
day [September 2003]


Figure A-26. September 2003 water level versus dl- at the Melbourne Causeway. Data
from SJRWMD (P. Sucsy, personnel communication, 2007).



























14 21
day [September 2005]


Figure A-27.


September 2005 water level versus di, at the Melbourne Causeway. Data
from SJRWMD (P. Sucsy, personnel communication, 2007).


Table A-4. Amplitude (A) and local phase angle (4) tidal constituents for water surface
elevation and current in the AICW near the EGT. Data from Smith [1987,
1990].


Station


Location


water surface elevation
Eau Gallie 28008.0'N

Melbourne 28006.0'N

Palm Bay 28002.5'N

current velocity
99 28010.8'N


28006.8'N

28003.3'N


Constituent
IM. S2 N2 K1 O1 Pi


80037.5'W

80036.7'W

80034.8'W


80038.3'W

80036.4'W

80034.6'W


A [cm]
0 [0]
A [cm]
S[]
A [cm]
0 [0]
<[]

A [cm/s]
0 [0]
A [cmls]
0 [0]
A [cmls]
0 []
S[]


0.2
320
0.2
353
0.2
347

0.4
043
0.3
038
1.0
095


0.4
320
0.2
342
0.1
299

0.1
028
0.4
281
1.5
287


0.5
297
0.3
225
0.4
212

0.6
246
0.9
221
1.4
168









APPENDIX B
DERIVATION RELATED TO TERRESTRIAL HYDRAULIC GRADIENT
B.1 Case Ia: Infinite Depth Unconfined Aquifer

Substitute vertices and interior angles for Case Ia (Table 2-1) into Equation 2-1

(BR, + zi) + (A, + 0Ad) /(V + 1)(V- )-dV (B-1)

S(B, + zBi) + (A, + zA,) /-- dV (B-2)

S(B, + zBB) + (A, + zA)2\ 1 (B-3)

Substitute Y = -s + 20 at V = 1 + 20 into Equation B-3 to yield B, = -s and Bi = 0.
Substitute Y = 0 + 20 at V -1 + 20 into Equation B-3, together with B, to yield A, = 0
and Ai = -2 Substitute A and B into Equation B-3 to yield Equation 2-2. (Solution
of Equation 2-1 is the Schwarz-C('! i .11. I parameter problem, A and B are a .' .-.. ,;
parameters, and u is a prevertex [Driscoll, 1996].) Solve Equation 2-2 for V, to obtain
Equation 2-3. Determine component form (Equations 2-4 and 2-5) with substitution into
Equation 2-3 of Y = x + zz and V = u + iw. (Confirm Equations 2-2 and 2-3 valid with
substitution of the vertices in Table 2-1.)
Substitute a = 3 u and da = d3 into Equation 2-8 to yield the intermediate result

c /-" a cm fl-" ( + 1)
0(u, W) a 2 da+ w + da (B-4)
27 __ a2 + w2 2 2 __ a2 + W2

Note that

j- k
tan-j tan-1k = tan- (B-5)
1+jk
I dm = tan (B6)
m2 + 22

Sp2 p 1 ln(p + q2) (B-7)
p2 +q 2









where j, k, m, n, p, q in the above three equations are dummy variables. It can then be

shown that


, C) 1 cw(U + 1) a
(u, ) [ln(a2 + w2) + [tan-
47 27 w w


(B-8)


where a is the variable of integration. Equation 2-9 is the result of algebraic manipulation

of Equation B-8.

Recall that u and w are functions of x and z (Equations 2-4 and 2-5). Together with

Equation 2-9, it follows that

'0 c w (1 u)2 + w2
In
Oz 4r Oz (1 + u)2 + w2
cw 1
+4 (1-U)2+w2
(1+u)2+w2
[[(1 + u)2 + W[2(1 )(- ~) 2w ] [(1 )2 [2(1 + u)a + 2w ]
[(1 + U)2 W2]2


c ou 2w
+ tan-1 2w
27azx n (1 -w)( + u)
c(u + 1) 12w
27T 1 + [ 2w 12
[w2 (1 u)( + u)] [2 ] [2w][2w + 2u,]-
S(w2 + u2 1)2 I


Calculate T on z = 0. Substitute


U -0


Ou
|z=0
Oz
aw
z


-2(-)2 4 1
S S
0

0


(B-10)

(B-11)

(B-12)

(B-13)


4x
4(x+ 1)
Ss


into Equation B-9 to yield Equation 2-10.

Finally, develop Equation 2-11 with


(B-9)


(B-14)


qbd -Ki |z=0
Oz









B.2 Case Ib: Infinite Depth Unconfined Aquifer, Solved with Image Method

With a development similar to Appendix B.1, substitute finite vertices and interior

angles in Table 2-2 into Equation 2-1, to yield


Y A/ dV+B (B-15)


such that A B -s. The integral does not contain terms of (V uj)I- because

aj = T for all interior angles. Solve Equation 2-12 for V to obtain Equation 2-13.

Substitute Y = x + zz and V = u + iw into Equation 2-13 to obtain the component form

(Equations 2-14 and 2-15). (Confirm Equations 2-13 and 2-12 valid with substitution of

the vertices in Table 2-2.)

In a fashion similar to Appendix B.1, progression from Equations 2-18 and 2-20 to

Equations 2-19 and 2-21 involves the substitutions a = 3 u and da = d3, Equations B-5,

B-6, B-7, and a great deal of algebra.

Substitute


u ,=o = x 1 (B-16)

w=o' = 0 (B-17)

z1=o -= (B-18)
Oz
a 0 (B-19)
Oz s

into

Sz=0 -= o + z= 0 (B-20)

to yield Equation 2-23; where o 0z=o results from Equation 2-19, and |-z=o results from

Equation 2-21.

Finally, develop Equation 2-24 with Equation B-14.









B.3 Case II: Finite Depth Unconfined Aquifer, without Leakage

Solution of Equation 2-1 in domains characterized by two finite prevertices

(Table 2-1), or by special cases of three or more finite prevertices (such as the symmetrical

problem defined in Table 2-2), is a trivial exercise of calculus and algebra (see Appendices

B.1 and B.2). Except for "a few special cases," domains that are characterized by three or

more finite prevertices require the solution of a system of n 3 analytically intractable,

nonlinear equations [Driscoll, 1996], which satisfy

If" +1 f'(a)dal jyj+I yjI
f 1 (B 21)
| 2 f'(a)daL |2 Y

where n, j, f are defined in Equation 2-1, a is a dummy variable, and Y2 and Yi are

Y vertices associated with pre-defined prevertices in V. Equation B-21 attacks the

parameter problem by developing unknowns from lengths between prevertices, starting

with a pre-defined prevertex (for example, at -1 + 0 in Case II), and progressing through

undefined prevertices (S in Case II), to a pre-defined prevertex (+1 + 10).

Note that
n-1
f'(a) = -[B+A ](a u)_ jda] (B-22)
j=1
n-1
AI (a j)-1 (B-23)
j=1

For Case II, n = 4, therefore the system of equations contains one equation and one

unknown. Note
n-1
(a -U 1 u -1 (B-24)
j=1 \a- 1












1i

1:2 f'(a)da


Y7j+1 Yj

Y2 Y1


S+7O 1
A -da
I+-1-+ O a- V/a- 1
+1++o 1
A da
-1+-O Va t'/a- 1
(-s + 20) (0 + 0)

(-s + Zd) (0 + O0)


(B-25)


(B-26)

(B-27)

(B-28)


Substitute Equations B-25 through B-28 into Equation B-21 to yield


fS 1 da

J+1 lda s + zd
Jv-S ^/o-~jJlT


(B-29)


which is a solution to the parameter problem in one unknown: S.

Driscoll and Trefethen [2002] developed the SC Toolbox for MATLAB to solve the

parameter problem. Their solution employs compound Gauss-Jacobi quadrature to solve

the system defined by Equation B-21. This method effectively addresses the role of

singularities near integration intervals.

It can be shown with the SC Toolbox and the vertices defined in Table 2-3 that


7-
-s zd


(B-30)

(B-31)


which then lead to Equations 2-25 and 2-29. For example, the SC Toolbox outputs


(B-32)

(B 33)


0.31 :i,,, '- 10-"17

0.68" ;_':


such that









in response to the inputs in Table B-1, where S is unknown. Note that 0.31 ;:,'Il') =

Substitute vertices and interior angles for Case II (Table B-i) into Equation 2-1


Y (B, + zB) + 1 (V +)(V 0.6- ;.)-(V 1)- dV (B-34)

1 1
(B, + IBi) + dV (B-35)
'V 0.68 _' '. 1 / V- I

S(Br + zBi) + sinh-'[1.77426/V- 1] (B-36)
7-

Substitute Node N in Table B-i into Equation B-36 to yield B -1 2. Substitute B
cosh E
and Node L in Table B-1 into Equation B-36 to yield 1.77426 Substitute B, Node
cosh E. 2 Develop
M, and 1.77426 2- into Equation B-36 to yield 0.682 :: 1 osh2 Develop

Equations 2-29, B-30, and B-31 with the procedure described in this paragraph, and

systematic variation of s and d in Table B-1.

Solve Equation 2-25 for V, and substitute Y = x + zz and V = u + iw to obtain the

component form (Equations 2-26 and 2-27). (Confirm Equations 2-25, 2-26, and 2-27

valid with substitution of the vertices in Table 2-3.)

In a fashion similar to Appendix B.1, progression from Equation 2-30 to Equation 2-31

involves the substitutions a = 3 u and da = d3, Equations B-5, B-6, B-7, and a great

deal of algebra.

Table B-l. Finite nodes and associated interior angles for Case II, when the distance
from shore to the ground watershed divide and depth of the unconfined
hydrogeologic unit are unity.
Node a V
L 0+iO 7 -1 +20
M -1+i0 S+20
N -1 -il + + 0









Find a and substitute

1 1 cosh[7(x+ + 1)] + 1
uz-o = 1 2,, (B-37)
cosh ()
w|=o = 0 (B-38)
z1=o 0 (B-39)
Oz
Ow 7 sinh[s( x + )]
|z= = s (B-40)
Oz 0 d cosh2( T

to yield Equation 2-32.
Finally, develop Equation 2-33 with Equation B-14.









APPENDIX C
DERIVATION RELATED TO GROUND WATER TIDAL PRISM

C.1 Volume of Water in Hydrogeologic Unit

Represent the components of Equation 3-3 individually, from the simplest area

calculation, to the most complex area calculation


Vgw.3 = H(oc -2) (C-)

X2
V9w.2 I (sbx + H)dx (C2)
J-H-
'b

V. = r I z(x, t)dx (C3)

(Note that V, is volume per unit shoreline width; and therefore, has the units for area.)

Vgw.3 is a square. (Strictly, the cross section through Vgw.3 with a shore-parallel vector

oriented normal to the cross section, is a square.) Clearly


Vgw.3 -= (base)(height) (C-4)

base = oo 2 (C-5)

height = H (C-6)


which leads to Equation C-1.

Note that x = H is the intersection of the base of the surficial aquifer at z = -H
sb
and the sloping beach face. Also


Z ) (C-7)
Sb
z(x2) = aH cost (C-8)









Perform the integration in Equation C-2


z((2)
V.2 T ( + Hx) (C-9)


b Z(2 )2 ( )2] + H z(X H (C-10)
(~>-H



2Sb
nH2
(1 + c cos at)2 (C-12)
2Sb

Vgw.2 is a triangle (Figure 3-2A). (Strictly, the cross section through Vgw.2 with a

shore-parallel vector oriented normal to the cross section, is a triangle.) It is also possible

to derive Equation C-12 with


height


(base) (height)
2
-H
X2---
Sb
H + z(x2)


(C-13)

(C-14)

(C 15)


which leads to Equation C-12.

Substitute Equation 3-2 into Equation C-3


I A cos(at Ax)e-'xdx

rl --
+ r] jdx
/00 eA 2 t
+ I7 CAv/ cos(27t + 7
1-2 2 4


V2Ax)e-v2Adx


Integrate each term of Equation C-16 separately, starting with the first term


r A cos(at Ax)e -Xdx
2 C


A j (cos at cos Ax + sin at sin Ax)e xdx (C-17)

TrA cos at e-AX cos Xxdx

+ A sin at e-A sin Axdx (C-18)


(C-16)









Recall that


Se-ax sin axdx

e-ax cos axdx

where a is a dummy variable. Then


A cos at j e-Ac cos Axdx

/A sin at e-Ax sin Axdx
i~~tia'


2a (sin ax + cos ax)
2a

2a
2a (sin ax cos ax)



e-Ax2
-rlA cos at (sin Ax2 cos Ax2)
2A
e-Ax2
TrA sin at (sin Ax2 + cos Ax2)
2A


such that


SI A cos(aot Ax)e-Axdx
J Xii


r1A
lA -AX2 [sin at(sin Ax2 + cos Ax2)
2A
cos ot(sin Ax2 cos AX2)]


Integrate the second term of Equation C-16


I 2A dx (oo x2) (C-24)

Integrate the third term of Equation C-16


jc A cos(2at + v2Ax))e-\dx (C-25)
2 2 4

r= eA \ e-v cos(2Ct + ) cos V2Ax
x2 4
+sin(2t + ) sin vAxl dx (C-26)

/2 7TT Ce- 2A2
-rcA cos(2ot + -)\ (sin v2Ax2a cos v2Axa)
2 4 2v2A
v/2 7T e-2Ax2
+ rcA sin(27t + ) (sin vAx2a
2 4 2/2A
+ cos vAx2) (C-27)
cA e-/AX2 sin(2t + ) sin vAx2 + cos v2AX2

cos(2+ ) (si4An 2 COS (C-28)
cos(27t + Tsin v iAX2 COS v/AX s2,x)
4 7


(C-19)

(C-20)




(C-21)

(C-22)


(C-23)









Sum Equations C1, C-12, C-23, C-24, and C-28, and divide by rl


V,, H2 eA
SH(1 + a cos at)2 + (00 2) + H(oo X2)
TI 2Sb 2

2A
+ ~-~A 2 [sin sin tsin Ax + cos AxC) cos ut(sin Ax2 cos Ax2)]

4A 4
+ \/2AX2 Lsin2at + ^) (sin ^AX2) + cos 2Ax)

cos(2ut + ) sin 2Ax2 cos A)] (C-29)

Multiply both sides of Equation C-29 by 2 to obtain Equation 3-5.

C.2 Benthic Flux Integrated across Exchange Face

Differentiate Equation C-29 with respect to t, term by term

9 V, 1 9V,
av (C-30)
[tr] TI 9 at
a7 H2 H2
( + a cos t)2 --2H a sin at(1 + a cos at) (C-31)
at [2Sb 2Sb

S (o0 2) + H(oo- X2) -(H + A ) (C-32)
Lt 2 2 at


A-- [sin t(sin A 2 + cos A2) cos t(sin Ax2 os AX2)]
at 2A
A _xx [ .92 9x2
'Ae A sin at cos Ax2 sin at sin Ax2 xa
2A a t at
+ a cos(at) (sin Ax2 + cos Ax2)
a, A2 Ax2
A cos at cos Ax2 A cos at sin A2at
at at
+ a sin(,7t)(sin AX2 Cos AX2)I

-A A e-AX2 [sin at(sin Ax2 + cos Ax2)
at 2A
cos 7t(sin Ax2 cos A2)] (C-33)








a A e-X sin(2t + V) sin vAx2A+ cos v2A
at 4A C4 s t
cos(2at +) sin vAx2 os v2AX2
cA \ ax2 F ax2 J
-A e z [A sin(2t + 4) cos vAx2 V2at sin(2at + 4) sin vAx2
4A [ t 4 Ot 4
+ 2 cos(2-t + )(sin vAx + cos v2A2)
4
vAtZ cos(2,t + -) cos V2Ax2 2- vA cos(2,t + -) sin 2vAx2
at 4 dt 4
+ 2j sin(2jt + )(sin vAx2 cos 2A2)

FAA ax2 -2A sin(27t + )(sin 2vA2a + cos v/2AX2)
4A nt + 4
cos(27t + )(sin v2AX2 cos v2Ax2)] (C 34)

Recall Equation C-7 and that A = aH; and note that

Ox2 1 az(X2) jaH
--- --- sin at (C-35)
at Sb t Sb

Rearrange and cancel terms

1 9V,, acH2
---sin at(1 + a cos 7t)
rI at Sb
aA
+ A [e- A2 [cos at(sin AX2 + cos AX2) sin t (sin A2 cos AX2)
2A
+ ee-/2X2 cos(27t + 7L)(sin v/Ax2 + cos vAX2)
4 (C-36)
+sin(2jt + ) (sin v2Ax2- cos v2A2)]
ciH A
+ -- sin at H + [e + 2e-A 2 (sin at sin Ax2 + cos at cos Ax2)
Sb 2
+ vee/- (sin(27t + 4 ) sin v2Ax2 + cos(2(7t + 4 ) cos v2Ax2A)
4 4 J









Multiply both sides of Equation C 36 by 2A to obtain


2AH
Sb


sin at(1 + a cos at)


+ e- 2 [cos at(sin Ax2 + cos Ax2) + sin jt(sin Ax2 cos A2)]

+ Cee-X2 cos(2ut + )(sin VX2X2 + cos 2Ax2)

+ sin(2f t + )(sin vAx2 cos vAx2)
2E A
+ sin at AH + AA + 2e-A2 (sin at sin Ax2 + cos at cos AZ2)
Sb 2
+ vee-Z 2 (sin(2t + 4) sin W2Ax2 + cos(2at + ) cos WAx2)
4 4


(C-37)


To obtain Equation 3-6, recall that = A (Equation 1-12), multiply the right-hand-side
of Equation C-37 by -1 to match the qbd > 1 convention, and group by order of e.

C.3 Ground Water Tidal Prism

Represent Equation 3-11 as


AV, 2[B]dx + [C]dx
2 1^Jx


(C-38)


where B and C are dummy variables.
Address B:


S=A cos(at2 Ax)e- + cA + 2 cos 2t2 + v xAc-x "

Acos(7ti Ax)e- eA + 2 cos 27ti + T vAx -m
2 2 4 1


(C-39)


B = Ae-x Cos(Ax)(cos t2 -cos 1ti)

+ Ae-A sin(Ax) (sin 7t2 sin fti)

+ ~Ae-v"A cos(v/Ax) cos(27t2 +

+ ~Ae-vAx sin(/2Ax) sin(27t2 + )


-cos(27ti + ))

sin(27ti + ))


B1

B2
(C-40)
B3

B4


2iA Vg,,
jTlA Ot









Simplify the last two components


B33 = -e 2 cos(V 2A; ) (cos 2ct2 cos 2atl sin 22 + sin 21ti) (C-41)
2
4 2e- A sin(v2Ax) (cos 2at2 cos 2at, + sin 2at2 sin 2t) (C-42)

Recall Equations C-19 and C-20; and integrate each component of B separately


l Bidx (cos t02 cos jrt)A j e-A cos(Ax)dx

-(cos at2 cos utl) -A 2 (sin Ax2- cosAX2) (C-43)
2A
B2dx (sin t2 sin jti)A e-AX sin(Ax)dx
2 2
S(sin at2 sin tl) -e-A2 (sin Ax2 + cos Ax2) (C44)
2A
Bdx = -(cos 2at2 cos 20t1 sin 2at2

+ sin 27ti) j e-/ 2 cos(2Ax) dx
2
(cos 2at2 cos 21t, sin 2at2

+ si2(s 2-ti) eA / (sin v/2Ax2 os Ax2) (C-45)
8 A

2 2
sin 27ti) j e-a /x sin(2Ax)dx
2 2
= (cos 2at2 cos 2at1 + sin 2at2

sin 2t) eF /2AX (sin v2Ax2+ cos v2Ax2) (C-46)
8 A

Cancel trigonometric expressions in Equations C-45 and C-46 and simplify

SBdx = eAx2 (sin t2 sinl ti)(sin Ax2 + cos Ax2)
Ja2 2A
(cos t2 cosu7ti)(sinAx2 cosAxa2)
(C-47)
+ v4 Ae- A2 [cos(v/2A2)(cos 2t2 cos 20ti)
4 A I
+ sin(A2)Sin 202- sin 2t)
+ sin(v2Aa;2) (sin 2(7^2 -sil n27t)]









Recall that e AA and sb = tan /; and note that when t2 = 0 and ti = ',
Sb

j Bdx = e-'(cos sin ) (C-48)
/"i A

Address C:

C =SbX Ae-A cos(tli Ax)
(C 49)
cA 1 + e-Z cos(2at, + Ax)
2 2 4

C = Sb C1

Ae-X" cos oat cos Ax C2

Ae-X" sin Oat sin Ax C3
(C-50)
A C4
2
(e-2,x cos(v2Ax)(cos 27tl sin 21ti) C5

Ae-2Az sin(v/2Ax)(cos 2atl + sin 2rti) C6








Integrate each component of C separately

j Cldx Sb xdx
Jxi Jix
X22 2
2 2
2 2 x 2

C2dx -A cos o-t1 e-Ax cos Axdx
2A cos at, e-xx2 (sin A2 cos AX2)
2A [
e-A (sin Ax1 cos Axx)] (C-52)

2 C3dx -A sin ot e"-x sin Axdx
1i '1"

2A I
XA sin o 2to-'1 (sinl x20 //cos Ax2)

e-A (sin Ax + cos Axi) (C-53)

/22 eA 1 2 A A
SC4dx -- 1 (x-- x) (C-54)
x 1 2 2i 2
Csdx 2(cos 2t sin 27t1) / e-~j x cos v/2Axdx

v 2A (co 2a t ill 2t)[e (sin Ax2 cos 2Ax2)
S8A (cos 21t, sin 2ti) e- A(sin v/2Ax2 cos V2Ax2)

e- Zl(sin V2Ax, cos v2Axi) (C-55)

SC6dx 2= (cos 2t + sin 2t) / j e-2 x sin V2Axdx

8 eA (cos 2(t, + sin 2(ti) e-VX2 (sin v/Ax2+ cos vA2)
81
e-2'!l (sin V/2Ax, + cos v/2Axi) (C-56)








Cancel trigonometric expressions in Equations C-55 and C-56, and simplify
Cd b (X2 x12) (x x1)
Cdx -(X2X2-XI)
1 2 2
A r
+ A (sin ti -cos it,)(e-A2 sin 2 sin Ax,)
2A L
+ (sin at, + cos atl)(e-A2 cos Ax2 e- cos Axi)]

+ 2eA [sin(2n t )(e- /2AX sin V2Ax2 e-/21 sin v2Ax,)

+ cos(27t)(e- V2AX2 cos v2AX2 /A2 cos v/Axi)]

Note that when t2 = 0 and tI = T
f22 A C2A v/2 eA
SCdx (sin cosh + cos sinh e) 2 cos 2 sinh v2

Combine Equations C-47 and C-57

V b Sh( 22 12) -( x1)

+ [e -AX (sin at2 sin atl)(sin Ax2 + cos Ax2)
2A
e-2 (S cos t2 s )(sin Ax2 cos Ax2)

+ (sin at cos ati)(e-A2 sin Ax2 e- 1 sin Axi)

+ (sin t, + cos 7tl)(e-A2 cos Ax2 e- 1 cos Ax1)]

4 A
+ A- -[v'-x cos( 2A x2)(cos 2ut2 cos 2uti)

+ e- V'/A sin(v Ax2) (sin 2 sin 27ti)

+ sin(2atl)(e- 2AX2 sin v2Ax2X -/2AX sin 2Ax1)

+ cos(27t1)(e- /2AX cos 2A2 cos 'Ax1 cos v Ax1)]


(C-57)








(C-58)











(C-59)









Simplify


V f2 cA A
V9 4 A [e- 2 (cos 2at2 cos vAX2 + sin 2at2 sinl vAx2)

'e-21 (cos 20t1 cos v2Ax, + sin 2at sin vS Axi)]

+ A r- AX2 sin at2(cos Ax2 + sin Ax2) + COS t2(cos Ax2 sin Ax2)) (C-60)

e (-X sin at (cos Ax + sin Axi) + cos at (cos Axi sinAxi))

Sb 2 2 eA
+ 2 rx2 2 Xi

Multiply both sides of Equation C 60 by 2X and group by order of c to obtain Equation 3 12.
Note that when t2 0 and t1 Equation 3-12 reduces to Equation 3-14.
Equations C-48 and C-58 correctly sum to Equation 3-14 with the following identity:

cos a cosh a + sin a sinh a = e-(cos a sin a) + cos a sinh a + sin a cosh a (C-61)

where a is a dummy variable.
The volume between two surfaces defined by Equation 3-2 can be estimated with the
trapezoidal rule, an estimate that confirms the development of Equation 3-12 -detailed
in this Appendix -is free of mathematical errors. For example, application of the inputs
detailed in Table 3-1, to Equation 3-12, and to Equation 3-2 and the trapezoidal rule,
both yield AV,, = 6.7m3 per m longshore distance.









APPENDIX D
DERIVATION RELATED TO SURFACE GRAVITY WAVE

D.1 Case I: Infinite Depth Porous Medium

Use Equations 4-7, 4-8 and 4-10 with Equation 4-5 to yield the intermediate result


Cex'h+eA i(Ax-t) =h = -Ztp [A cosh(Ah + Az) + B sinh(Ah + Az)] e-(AX-t) z_ (D-1)


Execute substitutions and simplify to generate Equation 4-11.

Use Equations 4-7, 4-8, 4-12, and 4-13 with Equation 4-6 to yield the intermediate

result

-k\C
-A [A sinh(Ah + Az) + B cosh(Ah + Az)] e-(Ax t) -h -=- AC Ahz C (Ax-t) (D-2)
P z=-h

Execute substitutions and simplify to generate Equation 4-14.

Equate Equations 4-15 and 4-16, and use Equations 4-7, 4-11, and 4-14 to yield the

intermediate result

ae(A/z-\t) -a [A cosh(Ah + Az) + B sinh(Ah + Az)eI(A/ -t)] (D-3)
9 z=o

Execute substitutions and simplify to generate Equation 4-17.

Equate Equations 4-19 and 4-20, and use Equations 4-7, 4-11, 4-14, and 4-17 to

yield the intermediate result


-auei(A- at) -A [A sinh(Ah + Az) + B cosh(Ah + Az)] ei(A-xt) o (D-4)


Execute substitutions and simplify to generate Equation 4-21.










Recall the following identities


cos U

sin u

eiu


sinh(u + v)

cosh(u + v)

sinh 2u

cosh2 u sinh2 u


cosh tu

-2 sinh tu

cos u + z sin u

sinh u cosh v + cosh u sinh v

cosh u cosh v + sinh u sinh v

2 cosh u sinh u

1


1
1 tanh2 u =
cosh2 u

and note the following small-term approximations


A,

R

AR

R2

(A,)2

sinh u

cosh u


1

1

0

0

0

u for u << 1

1 for << 1


(D

(D

(D

(D

(D

(D

(D

(D









where u and v are dummy variables. Recall Equation 4-9 and note that with the

above-cited identities and small-term approximations


sinh Ah = sinh(Ah + zih)

cosh Ah = cosh(Ah + zih)



tanh Ah = tanh(Ah + zAh)


sinh Ah + ztAh cosh Ah

cosh Ah + zA h sinh Arh

a + 17
tanh A,h [1 + (Ah)2]
1 + (Ah)2 tanh2 Ah

h+ Ah
cosh2 \,h [1 + (A,h)2 tanh2 A,h]
tanh A,h + zIAh (1 tanh2 Ah)


where c, 7, 3 and c are


a = cosh Ah


A h sinh Ah

tanh Ah


e A= h (l tanh2 Ah)

Use Equations 4-9 and D-25 to express Equation 4-21 as

a2 g(+ ic)(A, + i,) -iR [g(A, + iA) 72( + ze)]

0 = 2 + g(cA,- 3A,) + R(Ce2 gAi)

I [g(A,r + 3A,) + R(032 gAr)]


(D-30)



(D-31)


Parse Equation D-31 into real and imaginary parts, substitute Equations D-28 and D-29,

and invoke small-term approximations to generate Equations 4-22 and 4-23, where


R(-2 tanh Ah gA,)
gA,h(tanh2 ,h 1) g tanh A,h

is an intermediate result that leads to Equation 4-23.


(D-32)









Substitute Equations 4-8 and 4-17 into Equation 4-13 to yield the intermediate result



f A...(D-33)
q p cosh Ah(1 ZR tanh Ah)

Multiply the numerator and denominator by the complex conjugate of the parenthetical

complex term in the denominator, introduce Equation 4-9, invoke small-term approximations

defined in Equations D-13 through D-19 and the variables defined by Equations D-26

through D-29 to yield the following intermediate results

qb -kag(A + tAZ)(1 + zRf) (,+iAz-Jat) (D34)
V(a + Y7)
kag [aAr + \(Ar(a3R 7) + cA,)] e(AX+?A,-at) (D-35)
Va2
SG(1 + z)(cos J + sin J) (D-36)


where

-kagA,
G (D-37)
v cosh A h
J = Ax + tAx at (D-38)

S= (R Aih) tanh A,h + A (D-39)

Note that


cos J = cos M cosh N i sin M sinh N (D-40)

sin J = sin M cosh N + cos M sinh N (D-41)


where


M Ax at (D-42)

N A= x (D-43)









Equation D-36 is then expressed as


qbf = G [cos M cosh N ( sin M cosh N + ( sin M sinh N cos M sinh N

+ 2(- sin M sinh N ( cos M sinh N

+ ( cos M cosh N + sin M cosh N)] (D-44)

SG(cos M sin M)e-N + iG(sin M + cos M)e-N (D-45)

which leads to Equations 4-24 and 4-25.

D.2 Case II: Finite Depth Porous Medium

Use Equations 4-13, 4-27, and 4-28 to yield the intermediate result

0 k Ck sinh(Ah + Ah + Az) + Dk cosh(Ah + Ah + Az) e C?-t) (D-46)

which leads to D = 0.

Use Equations 4-7, 4-10, and 4-27 with Equation 4-5 to yield the intermediate result


Cei(Ax- t) cosh(Ah + Ah + Az) I-_ --pAei(AX-at) (D-47)

Execute the substitution and simplify to generate Equation 4-30.

Use Equations 4-7, 4-12, 4-13, 4-27, and D = 0 with Equation 4-6 to yield the

intermediate result

A [A sinh(Ah + Az) + B cosh(Ah + Az)] e(/x- t) l_-h
-kAC sinh(Ah + Ah + Az'. "-at) (D-48)


Execute substitutions and simplify to generate Equation 4-31.

Use Equations 4-30 and 4-31 with Equation D-3 to generate Equation 4-32. Use

Equations 4-30, 4-31, and 4-32 with Equation D-4 to generate Equation 4-33.









Recall Equation D-25 and establish a similar variable substitution for


tanh h = tanh(A, + zAh) tanh Ah + Ah (1 tanh2 Arh) (D 49)

p + ze (D-50)

such that

= tanh Ah (D-51)

e A h(i tanh2 A,h) (D-52)

Use Equations 4-9, D-25, and D-50 to express Equation 4-33 as

2 g(3 + ic)(Ar + iA ) -fR(f + W) [g(Ar + A) a2(o + IC)] (D 53)

Parse Equation D-53 into real and imaginary parts, and substitute Equations D-28, D-29,

D-51, and D-52 to generate Equations 4-22 and 4-35, where

AR(1 tanh2 Arh) tanh Ah
Ai a --(D-54)
A,h(l tanh2 Arh) + tanh ,h

is an intermediate result that leads to Equation 4-35.

Substitute Equations 4-27 and 4-32 into Equation 4-13 to yield the intermediate

result
qf -kA,,..I. :" ,-"t) sinh(Ah + h + Az) (D55)
qbf = (D55)
p cosh Ah cosh Ah(l iR tanh Ah tanh Ah)
Multiply the numerator and denominator by the complex conjugate of the parenthetical

complex term in the denominator, introduce Equation 4-9, use the small-term approximations

defined in Equations D-13 through D-19 and the variables defined by Equations D-26









through D-29, D-51, and D-52 to yield the following intermediate results

-kag(A, + tA) + R(3 + )(3 + )] (13 +) XZ Xt)56)
-qbf (A^+zA^-at) (D56)
V(a + 27)
-kagA, + + Rw + A, (A A t- ) (D 57)

SG(1 + ) (cos J + i sin J) (D-58)

where
A Ash sinh Ah
S=R tanh A,h tanh A,h + A (D-59)
A, cosh Ah
and G and J are defined with Equations D-37 and D-38. Equation D-58 is then expressed

as

qbf = G3(cos M sin M)e-N + zG3(sin M + cos M)e-N (D-60)

which leads to Equations 4-36 and 4-37.

D.3 Case III: Finite Depth Porous Medium over Infinite Depth Porous
Medium

Use Equations 4-41 and 4-42, with Equation 4-45 to yield the intermediate result

C cosh(Ah + A + Az) + D sinh(Ah + Ah + Az) --i Eexh+ Ah+\z zI-h- (D-61)

Execute substitutions and simplify to show that C = E.

Use Equations 4-29, 4-41, and 4-42 with Equation 4-46 to yield the intermediate

result

[Csinh(Ah + Ah + Az) + D cosh(Ah + Ah + Az) eh-A) _--

k2 EAsienAhs+Aha+A(Ax-at) (D 62)
b z=a-h-o

Execute substitutions and simplify to show that D E.









Use Equations 4-7, 4-10, and 4-41 with 4-43 to yield the intermediate result

-Ipa [A cosh(Ah + Az) + B sinh(Ah + Az)] ei(x-it) I,_-h

SC cosh(Ah + Ah + Az) + D sinh(Ah + Ah + Az)] e(1x- t) h (D-63)

Execute substitutions and simplify to generate Equation 4-47.

Use Equations 4-7, 4-12, 4-13, and 4-41 with Equation 4-44 to yield the intermediate

result


A [A sinh(Ah + Az) + B cosh(Ah + Az)] e(I-at) I_-h
-kl [C sinh(Ah + Ah + z)

+ D cosh(Ah + Ah + Az)] ei-(At) \-


(D-64)


Execute substitutions and simplify to generate Equation 4-48.

Use Equations 4-7, 4-15, 4-16, 4-47, 4-48, C = E, and D

intermediate result


ae,(AX-at)


za E cosh Ah + kE sinh Ah
g zpa


E to yield the
kci


cosh Ah


P ki
(E sinh Xh+ cosh Ah) sinh Ahi at) |^ (D 65)
II jc


Execute the substitution and simplify to generate Equation 4-49.

Use Equations 4-47, 4-48, and 4-49 with Equation D-4 to generate Equation 4-50.

Use Equations 4-9, D-25, D-50, and small-term approximations to express Equation 4-50

as


(2_ gOA)(1+ k2
k


S( + k)(gA, + 3gA,) + (lk2 + 1)(R2 RgA,) (D66)
kL )3 ki I3









Parse Equation D-66 into real and imaginary parts, and substitute Equations D-28, D-29,

and D-51 to generate Equations 4-22 and 4-52, where

R(gA, a2 tanh Ah)(2 coth A,h + 1)
A, 1 k (D-67)
g(Ah(1 tanh2 Ah) + tanh A,h)(2 + coth Ah)

is an intermediate result that leads to Equation 4-52.

Substitute Equations 4-41 and 4-49 into Equation 4-13 to yield the intermediate

result

-kA,f i* '-"(sinh Ah+ cosh Ah)
qbf = 71 (D-68)
f cosh Ah cosh Ah 1 + 2 tanh h R tanh Ah(tanh Ah + 2)

Multiply the numerator and denominator by the complex conjugate of the parenthetical

complex term in the denominator, introduce Equation 4-9, use the small-term approximations

defined in Equations D-13 through D-19 and the variables defined by Equations D-26

through D-29, D-51, and D-52 to yield


qbf G(cos M S sin M)e-N + zG(sin M + S cos M)eN- (D-69)

which leads to Equations 4-53 and 4-54 where M and N are defined with Equations D-42

and D-43, and

-gkiaA, k2D 70)
G = ( + ) (D-70)
va k)

S + R ki 2k (D-71)
A, k3+1 pt +2 a









APPENDIX E
GOVERNING EQUATIONS FOR A BENTHIC FLUX NUMERICAL MODEL

E.1 Ground Water Flow and Transport

Equivalent freshwater head, hf [Bear, 1972] is

hf h P- Pz (E-l)
Pf Pf

where p is density of the saline fluid, pf is density of freshwater, h is head in the saline

fluid, and z is elevation.

The governing equation for variable density flow in a porous medium is [Bear, 1972]

a a a Op Op C(
(Px) (p) (q ) + pqs P= pS + q (E-2)
ax dy az at aC at

where qi is specific discharge in the i-direction; p is density of source/sink fluid; q, is

source/sink flow rate per unit volume of aquifer (source> 0, sink< 0); Sp is specific

storage in terms of pressure; p is fluid pore pressure, such that


p = pfg(hf z) = pg(h z) (E-3)

and C is solute concentration.

Guo and Li,,lg ;.,' [2002] cast Darcy's Law in terms of hf, for a coordinate system

where the principal axes of anisotropy are not aligned with the traditional Cartesian

system:

S= a[ hf + P) az (E-4)
K I aa Pf aa

1 00 pf (E-

q7 = -Kfy7 [ +( ) ] (E-6)
107 d-f 07

where qi is not aligned with the traditional x-, y-, and z-oriented Cartesian system; Kfi

is the freshwater hydraulic conductivity in the i-direction; pf is fresh water dynamic

viscosity; p is dynamic viscosity of the saline fluid; and a, 3, and 7 are coordinates









(analogous to the x-, y-, and z-coordinates), rotated such that the Greek system is aligned
with the principal axes of anisotropy.

Guo and Lr,.',; ;.:, offered a governing equation for variable density flow in terms of

hf, in a coordinate system where the principal axes of anisotropy are not aligned with the

traditional Cartesian system:

P(pK [ I+ + a(pKf, [a + P-]Pf (Z
5a aa pf 9a 5\ I 9Pl I pf 9/3\) (E-7)
+ (pKfy + p ) PSfO + O! c pqs

where pf/p / 1, and Sf is specific storage in terms of freshwater head.

Zheng and Wang [1999] offered a governing equation for the fate and transport of

contaminants in a three-dimensional porous medium

a(oc) a aC a
S(oD, ij) (OviC) + q,C, (E-8)
at ax, ax ax,(

where xij are axes; Ds.ij is the dispersion coefficient; vi is pore water velocity, such that

S= q/irl; and C, is species source-sink concentration.

E.2 Inter-Domain Exchange

Recast Equation E-6 such that the principal axes of anisotropy are aligned with the

traditional Cartesian system (7 = z)


qbf -Kf,[hf (P p)] ( E9)
Oz Pf

E.3 Surface Water Circulation

The N ,1i. i-Stokes equations of motion for a free-surface flow, in a three-dimensional

Cartesian coordinate system, and the continuity equation, take the following form,

after application of the Boussinesq approximation, the hydrostatic approximation, and

Reynolds' averaging procedure, [Mellor, 1996]:

au av aw
S+ a y + 0 ( E10)
ox 6y 6z









au auu auv auw 0(
S+ + + az g
at ax ay 6z ax
02U 02U a au
+fv + AH( + ) (A ) (E11)
ax2 ay2 az az
av avu avv avw 0(
-+ + + -g "
at ax ay dz ay
82v 2V a av AU
-fu + AH( + ) + (A ) (E-12)
ax a2 9A2 az 9z

where u(x,y,z,t), v(x,y,z,t), and w(x,y,z,t) are the velocity components in the Cartesian x,

y, and z directions; ((x,y,t) is the free surface elevation; AH and Av are the horizontal and

vertical turbulent eddy coefficients; and f is the Coriolis component.

The conservation of a species is [Mellor, 1996]:

9C BuC 8vC BwC 9 C 9 C 9 C
S+ c + + (DH ) + (DH ) + (D (E-13
at ax ay az ax ax ay ay 9z 1z

where C is some constituent concentration, such as salinity or temperature, and DH and

Dv are horizontal and vertical turbulent eddy diffusivity coefficients for the constituent.

E.4 Model Summary

The solution employs the finite difference method, with s .-I--_ red grids in both the

surface water and ground water domains. Initial conditions are required for T and salinity

(expressed as C in Equation E-13), u, v, w, and rf in the surface water domain; T and
salinity (expressed as C in Equation E-8), and hf in the ground water domain; and qbf

on the interface between the domains. Constant (Dirichlet) or specified flux (N. iii,, ,ii)

boundary conditions are also required for variables detailed in the previous sentence, on

domain boundaries.

Equation E-7 is first solved for hf. Equation E-8 is then solved for salinity and

temperature (C) in the ground water domain. Equations E-10, E-11, and E-12 are solved

for u, v, and w. Equation E-13 is solved for salinity and temperature (C) in the surface

water domain. An Equation of State for density -such as the commonly-used UNESCO









formula provides density as a function of salinity and temperature throughout both

domains. Finally, Equation E-9 is used to calculate qbf.

Domain geometry, Sf, K, Ds, f, AH, Av, DH, and Dv are required inputs. Benthic

flux is the primary output; u, v, w, Tl, hf, C, and T are secondary outputs.









REFERENCES


Adams, J. E., and M. L. Rhodes (1960), Dolomitization by seepage refluxion, AAPG Bull.,
44, 19121920.

Bear, J. (1972), D;,iiKi,. of fluids in porous media, Dover Publications.

Belanger, T. V., and M. T. Montgomery (1992), Seepage meter errors, Limnol. 0. '~W.4'. .,
37, 1787-1795.

Bokuniewicz, H. J. (1980), Groundwater seepage into Great South Bay, New York, Estuar
Coast Mar Sci, 10, 437-444.

Bokuniewicz, H. J. (1992), Analytical descriptions of subaqueous groundwater seepage,
Estuaries, 15, 458-464.

Bokuniewicz, H. J., and M. Zeitlin (1980), C'! i :'teristics of ground-water seepage into
Great South Bay., Special Report 35, State University of New York, Stony Brook Marine
Sciences Research Center.

Boudreau, B. P. (1997), Diagenetic Models and their Implementation, Springer.

Bradner, L. A., and L. Knowles (1999), Potentiometric surface of the Upper Floridian
aquifer in the St. Johns River Water Management District and vicinity, Florida, United
States Geological Survey Map.

Burnett, W. C., and H. Dulaiova (2003), Estimating the dynamics of groundwater input
into the coastal zone via continuous Radon-222 measurements, J. Environ. Radioact.,
69, 21-35.

Burnett, W. C., and H. Dulaiova (2006), Radon as a tracer of submarine groundwater
discharge into a boat basin in Donnalucata, Sicily, Cont. Sr' If Res., 26, 862-873.

Burnett, W. C., H. J. Bokuniewicz, M. Huettel, W. S. Moore, and M. Taniguchi (2003),
Groundwater and pore water inputs to the coastal zone, Biogeochemistry, 66, 3-33.

Burnett, W. C., P. K. Aggarwal, A. Aureli, H. J. Bokuniewicz, J. E. Cable, M. A.
C('! rette, E. Kontar, S. Krupa, K. M. Kulkarni, A. Loveless, W. S. Moore, J. A.
Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A. M. G. Privitera, R. R i I-r, R. T.
Ramassur, J. Scholten, T. Stieglitz, M. Taniguchi, and J. V. Turner (2006), Quantifying
submarine groundwater discharge in the coastal zone via multiple methods, Sci. Total
Environ., 367, 498-543.

Bush, P. W., and R. H. Johnston (1988), Ground-water hydraulics, regional flow, and
ground-water development of the Floridian aquifer system in Florida and in parts of
Georgia, South Carolina, and Alabama, Professional Paper 1403-C, United States
Geological Survey.









Cable, J. E., W. C. Burnett, J. P. C'! .1~ii., and G. L. Weatherly (1996), Estimating
groundwater discharge into the Northeastern Gulf of Mexico using Radon-222, Earth
Planet. Sci. Lett., 144, 591-604.

Cable, J. E., W. C. Burnett, and J. P. C'! ,~,..1, (1997), Magnitude and variations of
groundwater seepage along a Florida marine shoreline, Biogeochemistry, 38, 189-205.

Cable, J. E., J. B. Martin, and J. Jaeger (2006), Exonerating Bernoulli? On evaluating the
physical and biological processes affecting marine seepage meter measurements, Limnol.
O,.,,,.. ,'. M eth., 4, 172-183.

Cai, W. J., and Y. Wang (1998), The chemistry, fluxes, and sources of carbon dioxide in
the estuarine waters of the Satilla and Altamaha Rivers, Georgia, Limnol. 0 .n. y,.,
43, 657-668.

C'! ,il..ii J. P., W. C. Burnett, H. Dulaiova, D. R. Corbett, and M. Taniguchi (2003),
Seepage rate variability in Florida Bay driven by Atlantic tidal height, Biogeochein:i;;,'
66, 187-202.

Corbett, D. R., and J. E. Cable (2003), Seepage meters and advective transport in coastal
environments: Comments on Seepage meters and Bernoulli's revenge by EA Shinn, CD
Reich, and TD Hickey. 2002. Estuaries 25: 126-132., Estuaries, 26, 1383-1387.

Corbett, D. R., K. Dillon, W. Burnett, and J. Chanton (2000), Estimating the
groundwater contribution into Florida Bay via natural tracers, Rn-222 and CH4,
Limnol. O, -,,.p. ./,., 45, 1546-1557.

Dagan, G. (1967), Second-order theory of shallow free-surface flow in porous media, Q. J.
Mech. Appl. Math., 20, 517-527.

Darcy, H. (1856), History of the public fountains of Dijon, Appendix Note D, The public
fountains of the City of Dijon http://1.:.. -;/- I- okstate.edu/ /;. ;-/index.htm.

Dean, R. G., and R. A. Dalrymple (2000), Water Wave Mechanics for Engineers and
Scientists, World Scientific.

Debnath, L. (1994), Nonlinear Water Waves, Academic Press.

Destouni, G., and C. Prieto (2003), On the possibility for generic modeling of submarine
groundwater discharge, Biogeocheiii .-,' 66, 171-186.

Domenico, P. A., and F. W. Schwartz (1990), PI,;,-.. 'l and C', i,,.. ,il H;!1,. ,/., ; John
Wiley and Sons.

Driscoll, T. A. (1996), Algorithm 756: A MATLAB Toolbox for Schwarz-C!:i -1. 1!. !
M111,ip:'- AC(I[ Transactions on Mathematical Software, 22, 168-186.

Driscoll, T. A., and L. N. Trefethen (2002), Schwarz-Ch',,.-. ffel I 'j '.' Cambridge
University Press.









Fellows, C. R., and P. L. Brezonik (1980), Seepage flow into Florida lakes, Water Resour.
Bull., 16, 635-641.

Finkl, C. W., and R. H. C('I I1! r (2003), Sustainability of subtropical coastal zones in
Southeastern Florida: C'!i I11 iiges for urbanized coastal environments threatened by
development, pollution, water supply, and storm hazards, J. Coast. Res., 19, 934-943.

Freeze, R. A., and J. A. C'!, i y (1979), Groundwater.

Getzen, R. T. (1977), Analog-model analysis of regional three dimensional flow in the
ground-water reservoir of Long Island, New York, Professional Paper 9 '\ United States
Geological Survey.

Glover, R. E. (1959), The pattern of fresh-water flow in a coastal aquifer, J Ge '(.it'- Res,
64, 457-459.

Guo, W., and C. D. Langevin (2002), User's guide to SEAWAT: A computer program
for simulation of three-dimensional variable-density ground-water flow, Techniques of
water-resources investigations Book 6, C'lqi'l r A7, United States Geological Survey.

Haitjema, H. M., and S. Mitchell-Bruker (2005), Are water tables a subdued replica of the
topography?, Ground Water, 43, 781-786.

Hamrick, J. M. (1992), A three-dimensional environmental fluid dynamics computer code:
theoretical and computational aspects, Special Report 317, Virginia Institute of Marine
Science.

Henry, H. R. (1964), Effects of dispersion on salt encroachment in coastal aquifers, Water
Sp'liI, Paper 1613-C, United States Geological Survey.

Hu, C. M., F. E. Muller-Karger, and P. W. Swarzenski (2006), Hurricanes, submarine
groundwater discharge, and Florida's red tides, Ge(. .i ,;, Res. Lett., 33.

Hubbert, M. K. (1956), Darcys law and the field equations of the flow of underground
fluids, Tran Amer Inst Min Met Eng, 207, 223-239.

Huettel, M., and G. Gust (1992), Impact of bioroughness on interfacial solute exchange in
permeable sediments, Mar. Ecol. Prog. Ser., 89, 253-267.

Huettel, M., W. Ziebis, and S. Forster (1996), Flow-induced uptake of particulate matter
in permeable sediments, Limnol. 0. .."','., 41, 309-322.

Huettel, M., W. Ziebis, S. Forster, and G. W. Luther (1998), Advective transport affecting
metal and nutrient distributions and interfacial fluxes in permeable sediments, Geochim.
Cosmochim. Acta, 62, 613-631.

Israelsen, O. W., and R. C. Reeve (1944), Canal lining experiments in the Delta Area,
Utah, Utah Agr. Exp. Sta. Tech. Bull., 313.









Kaleris, V., G. Lagas, S. Marczinek, and J. A. Piotrowski (2002), Modelling submarine
groundwater discharge: An example from the Western Baltic Sea, J. H:1,I,. 1., 265,
76-99.

Knight, J. H. (1981), Steady periodic-flow through a rectangular dam, Water Resour.
Res., 17, 1222-1224.

Kohout, F. A. (1964), The flow of fresh water and salt water in the Biscayne aquifer of the
Miami area, Florida, Sea Water in Coastal A.;;,.:. -,4 United States G. .' .y.. l Survey
Water-Sin'il'~ Paper 1613-C, pp. 12-32.

Kohout, F. A. (1965), A hypothesis concerning cyclic flow of salt water related to
geothermal heating in Floridan aquifer, Trans N Y Acad Sci,

Kohout, F. A. (1967), Groundwater flow and the geothermal regime of the Floridian
plateau, Trans. Gulf Coast Ass. Geol. Soc., 17, 339-354.

Langevin, C. D. (2001), Simulation of ground-water discharge to Bi-, line Bay,
Southeastern Florida, Water Resources Investigations Report 00-4251, United States
Geological Survey.

Langevin, C. D. (2003), Simulation of submarine ground water discharge to a marine
estuary: Bi-, li-,n. Bay, Florida, Ground Water, 41, 758-771.

Langevin, C. D., E. D. Swain, and M. A. Wolfert (2003), Flows, stages, and salinities: how
accurate is the SICS integrated surface-water/ground-water flow and transport model,
Joint Conference on the Science and Restoration of the Greater Everglades and Florida
Bay Ecosystem: Florida Bay Pi.ira,, and Abstracts, pp. 23-25.

Lapointe, B. E. (1997), Nutrient thresholds for bottom-up control of macroalgal blooms on
coral reefs in Jamaica and Southeast Florida, Limnol. 0.. .ir..i., 42, 1119-1131.

Lee, D. R. (1977), Device for measuring seepage flux in lakes and estuaries, Limnol.
0. r./i' ., 22, 140-147.

Li, L., D. A. Barry, F. Stagnitti, and J. Y. Parlange (1999), Submarine groundwater
discharge and associated chemical input to a coastal sea, Water Resour. Res., 35,
3253-3259.

Lii 1. I L. (1993), Considerations in modeling the sediment water exchange of
phosphorus, H,.I, '..:.. ..,i.r 253, 219-231.

Lindenberg, M. K. (2001), The quantity, characteristics, source and nutrient input of
groundwater seepage into the Indian River Lagoon, Fl., Master's thesis, University of
Florida.

Linderfelt, W. R., and J. V. Turner (2001), Interaction between shallow groundwater,
saline surface water and nutrient discharge in a seasonal estuary: the Swan-Canning
system, H1.il ,.. Process., 15, 2631-2653.









MacIntyre, S., R. Wanniinkhof, and J. P. C' iiii! ~1i (1995), Biogenic Trace Gases: Measur-
ing Emissions from Soil and Water.

Madsen, O. S. (1978), Wave-induced pore pressures and effective stresses in a porous bed,
Geotechnique, 29, 377-393.

Martin, J. B., J. E. Cable, and P. W. Swarzenski (2002), Quantification of ground water
discharge and nutrient loading to the Indian River Lagoon, St. Johns River Water
Ir,,,r, i,,, ,,/: District Special Publication SJ2002-SP5.

Martin, J. B., J. Jaeger, and J. E. Cable (2004), Quantification of advective benthic
processes contributing nitrogen and phosphorus to surface waters of the Indian River
Lagoon, St. Johns River Water Ma i.. r, 11., i,. District Special Publication.

Martin, J. B., J. E. Cable, J. Jaeger, K. Hartl, and C. G. Smith (2006), Thermal and
chemical evidence for rapid water exchange across the sediment-water interface by
bioirrigation in the Indian River Lagoon, Florida, Limnol. 0 ,. ,..'., 51, 1332-1341.

Martin, J. B., J. E. Cable, C. Smith, M. Roy, and J. C(!. i1 ,, i (2007), Magnitudes of
submarine groundwater discharge from marine and terrestrial sources: Indian River
Lagoon, Florida, Water Resour. Res., 43.

McBride, M. S., and H. O. Pfannkuch (1975), The distribution of seepage within lake
beds, Journal of Research of the United States G. .'J.y..rl Survey, 3, 505-512.

McDonald, M. G., and A. W. Harbaugh (1988), A modular three-dimensional
finite-difference ground-water flow model, Techniques of Water-Resources Investiga-
tions TWI6-A1, United States Geological Survey.

McGurk, B., and P. Presley (2000), Simulation of the effects of groundwater withdrawals on
the Floridian aquifer system in east-central Florida: model expansion and revision, St.
Johns River Water I M .,,.., in, ,., District draft report.

Mei, C. C., and M. Foda (1981), Wave-induced response in a fluid-filled poro-elastic solid
with a free surface: a boundary 1- -r theory, G' .,i,;,- J. Roy. Astrong., 66, 597-631.

Mellor, G. L. (1996), Introduction to Ph,;-.':.,1 O ,.,'..',l,''/r, ; AIP Press.

At, vsman, F. J. R., O. S. Galaktionov, B. Gribsholt, and J. J. Middelburg (2006),
Bio-irrigation in permeable sediments: An assessment of model complexity, J. Mar.
Res., 64, 589-627.

Miller, J. A. (1986), Hydrogeologic framework of the Floridian aquifer system in Florida
and in parts of Georgia, Alabama, and South Carolina, Professional Paper 1403-B,
United States Geological Survey.

Minnesota Department of Natural Resources (2007), Lake Finder Database,
http://www.dnr.state.mn.us/lakefind/index.html.









Moore, W. S. (1996), Large groundwater inputs to coastal waters revealed by Ra-226
enrichments, Nature, 380, 612-614.

Moore, W. S. (1999), The subterranean estuary: a reaction zone of ground water and sea
water, Mar. Ch' I, 65, 111-125.

Moore, W. S., and T. J. Shaw (1998), C('!, m. Id signals from submarine fluid advection
onto the continental shelf, J. Gct.e i~ Res.-Oceans, 103, 21,543-21,552.

Motz, L. H., and F. Gordu (2001), Estimates of ground water discharge and nutrient
loading to the Indian River Lagoon, St. Johns River Water MIr,,'.r.I, ,nI District
Contract Number 99G245.

Mu, Y. K., A. H. D. C'!. i_ M. Badiey, and R. Bennett (1999), Water wave driven seepage
in sediment and parameter inversion based on pore pressure data, Int. J. Numer. Anal.
Methods Geomech., 23, 1655-1674.

Munson, B. R., D. F. Young, and T. H. Okiishi (1990), Fundamentals of Fluid Mechanics,
John Wiley and Sons.

Murdoch, L. C., and S. E. Kelly (2003), Factors affecting the performance of conventional
seepage meters, Water Resour. Res., 39.

Naim, O. (1993), Seasonal responses of a fringing-reef community to eutrophication
(Reunion Island, Western Indian Ocean), Mar. Ecol.-Prog. Ser., 99, 137-151.

Nielsen, P. (1990), Tidal dynamics of the water-table in beaches, Water Resour. Res., 26,
2127-2134.

Pandit, A. (1982), Numerical simulation of contaminant transport problems in
groundwater using the finite element method, Ph.D. thesis, Clemson University.

Pandit, A., and C. C. El-Khazen (1990), Groundwater seepage into the Indian River
Lagoon at Port St. Lucie, Florida Scientist, 53, 169-179.

Parlange, J. Y., F. Stagnitti, J. L. Starr, and R. D. Braddock (1984), Free-surface flow in
porous-media and periodic-solution of the shallow-flow approximation, J. H:, ..l., 70,
251-263.

Paulsen, R. J., C. F. Smith, D. O'Rourke, and T. F. Wong (2001), Development and
evaluation of an ultrasonic ground water seepage meter, Ground Water, 39, 904-911.

Philip, J. R. (1973), Periodic nonlinear diffusion integral relation and its physical
consequences, Aust. J. Phys., 26, 513-519.

Rasmussen, L. L. (1998), Groundwater flow, tidal mixing, and haline convection in coastal
sediments, Master's thesis, The Florida State University.

Reid, R. O., and K. Kajiura (1957), On the damping of gravity waves over a permeable
seabed, Transactions, American Ge(. .l;.:. ,ir Union, 38, 662-666.









Robinson, M., D. Gallagher, and W. Reay (1998), Field observations of tidal and seasonal
variations in ground water discharge to tidal estuarine surface water, Ground Water
Monit. Remediat., 18, 83-92.

Robinson, M. A. (1996), A finite element model of submarine groundwater discharge
to tidal estuarine waters, Ph.D. thesis, Virginia Polytechnic Institute and State
University.

Robinson, M. A., and D. L. Gallagher (1999), A model of ground water discharge from an
unconfined coastal aquifer, Ground Water, 37, 80-87.

Rosenberry, D. O., and R. H. Morin (2004), Use of an electromagnetic seepage meter to
investigate temporal variability in lake seepage, Ground Water, 42, 68-77.

Saff, E. B., A. D. Snider, and L. N. Trefethen (1993), Fundamentals of Complex A,.l.i..:
for Mathematics, Science, and Engineering, Prentice Hall.

Schaffranek, R. W., H. L. Jenter, A. L. Riscassi, C. D. Langevin, E. D. Swain, and
M. A. Wolfert (2003), Applications of a numerical model for simulation of flow and
transport in connected freshwater-wetland and coastal-marine e ... -i--, i -i of the
Southern Everglades, Joint Conference on the Science and Restoration of the Greater
Everglades and Florida Bay Ecosystem: GEER P,..',gin and Abstracts, pp. 467-469.

Schmitt, R. W. (2003), Observational and laboratory insights into salt finger convection,
Prog. O, "w. ../ ., 56, 419-433.

Schwartz, M. C. (2003), Significant groundwater input to a coastal plain estuary:
assessment from excess Radon, Estuar. Coast. S'I, If Sci., 56, 31-42.

Shaw, R. D., and E. E. Prepas (1989), Anomalous, short-term influx of water into seepage
meters, Limnol. 0. .".'., 3'., 4, 13431351.

Shaw, R. D., and E. E. Prepas (1990a), Groundwater lake interactions 1. Accuracy of
seepage meter estimates of lake seepage, J. H, ,..l., 119, 105-120.

Shaw, R. D., and E. E. Prepas (1990b), Groundwater lake interactions 2. N. ,i-1ire
seepage patterns and the contribution of ground-water to lakes in central Alberta, J.
H.I,h..lI., 119, 121-136.

S1, i.- Y. P., and J. R. Davis (2003), A 3-D IRL Hydrodynamics/Salinity Model, St.
Johns River Water M ', m. ,t1. District Report.

Shinn, E. A., C. D. Reich, and T. D. Hickey (2002), Seepage meters and Bernoulli's
revenge, Estuaries, 25, 126-132.

Shinn, E. A., C. D. Reich, and T. D. Hickey (2003), Reply to comments by Corbett and
Cable on our paper, Seepage meters and Bernoulli's revenge, Estuaries, 26, 1388-1389.









Sholkovitz, E., C. Herbold, and M. C'!I irette (2003), An automated dye-dilution based
seepage meter for the time-series measurement of submarine groundwater discharge,
Limnol. ,0. ,,. ..,. Meth., 1, 16-28.

Simmons, G. M. (1992), Importance of submarine groundwater discharge and seawater
cycling to material flux across sediment water interfaces in marine environments, Mar.
Ecol.-Prog. Ser., 84, 173-184.

Simms, M. (1984), Dolomitization by groundwater flow systems in carbonate platforms,
Trans. Gulf Coast Ass. Geol. Soc., 34, 411-420.

Smiles, D. E., and A. N. Stokes (1976), Periodic-solutions of a nonlinear diffusion equation
used in groundwater flow theory examination using a Hele-Shaw model, J. Hydrol., 31,
27-35.

Smith, A. J., and S. P. Nield (2003), Groundwater discharge from the superficial aquifer
into Cockburn Sound Western Australia: Estimation by inshore water balance, Biogeo-
chemistry, 66, 125-144.

Smith, A. J., and J. V. Turner (2001), Density-dependent surface water-groundwater
interaction and nutrient discharge in the Swan-Canning Estuary, H:,. i1, Process., 15,
2595-2616.

Smith, L., and W. Zawadzki (2003), A hydrogeologic model of submarine groundwater
discharge: Florida intercomparison experiment, Biogeochemistry, 66, 95-110.

Smith, N. P. (1987), An introduction to the tides of Florida's Indian River Lagoon: I.
Water Levels, Florida Scientist, 50, 49-61.

Smith, N. P. (1990), An introduction to the tides of Florida's Indian River Lagoon: II.
Currents, Florida Scientist, 53, 216-225.

Swain, E. D., C. D. Langevin, and M. Wolfert (2003), Developing a computational
technique for modeling flow and transport in a density-dependent coastal
wetland/aquifer system, Joint Conference on the Science and Restoration of the
Greater Everglades and Florida Bay Ecosystem: Florida Bay P,.g',i,,, and Abstracts, pp.
65-67.

Swarzenski, P., W. C. Burnett, C. Reich, H. Dulaiova, R. Peterson, and J. Meunier
(2004a), Novel ,. |1.vi, di and geochemical techniques used to study submarine
groundwater discharge in Biscayne Bay, Florida, Fact Sheet 2004-3117, United States
Geological Survey.

Swarzenski, P. W., M. C'!I i'ette, and C. Langevin (2004b), An autonomous,
electromagnetic seepage meter to study coastal groundwater/surface-water exchange,
Open-File Report 2004-1,''i, United States Geological Survey.

Taniguchi, M. (2002), Tidal effects on submarine groundwater discharge into the ocean,
G(..I,,'- Res. Lett., 29, 1561-1563.









Taniguchi, M., and Y. Fukuo (1993), Continuous measurements of groundwater seepage
using an automatic seepage meter, Ground Water, 31, 675-679.

Taniguchi, M., and Y. Fukuo (1996), An effect of seiche on groundwater seepage into Lake
Biwa, Japan, Water Resour. Res., 32, 333-338.

Taniguchi, M., and H. Iwakawa (2001), Measurements of submarine groundwater discharge
rates by a continuous heat-type automated seepage meter in Osaka Bay, Japan, J
Groundw H.I, 1. 4, 43, 271-277.

Taniguchi, M., W. C. Burnett, J. E. Cable, and J. V. Turner (2002), Investigation of
submarine groundwater discharge, Hydrol. Process., 16, 2115-2129.

Taniguchi, M., W. C. Burnett, C. F. Smith, R. J. Paulsen, D. O'Rourke, S. L. Krupa, and
J. L. C'!i 1-I il!' (2003a), Spatial and temporal distributions of submarine groundwater
discharge rates obtained from various types of seepage meters at a site in the
Northeastern Gulf of Mexico, Biogeochemistry, 66, 35-53.

Taniguchi, M., J. V. Turner, and A. J. Smith (2003b), Evaluations of groundwater
discharge rates from subsurface temperature in Cockburn Sound, Western Australia,
Biogeochemistry, 66, 111-124.

Taniguchi, M., W. C. Burnett, H. Dulaiova, E. A. Kontar, P. P. Povinec, and W. S. Moore
(2006), Submarine groundwater discharge measured by seepage meters in Sicilian coastal
waters, Cont. '/,, If Res., 26, 835-842.

Tibbals, C. H. (1981), Computer simulation of the steady-state flow system of the Tertiary
limestone (Floridian) aquifer system in east-central Florida, Open File Report 81-681,
United States Geological Survey.

Tibbals, C. H. (1990), Hydrology of the Floridan aquifer system in east-central Florida,
Professional Paper 1403-E, United States Geological Survey.

Toth, J. (1963), A theoretical analysis of groundwater flow in small drainage basins,
Journal of Ge'(i,.;.-. ,l Research, 68, 4795-4812.

Turner, S. M., G. Malin, P. D. Nightingale, and P. S. Liss (1996), Seasonal variation of
dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere, Mar.
Ch. I, 54, 245-262.

Uchiyama, Y., K. Nadaoka, P. Rolke, K. Adachi, and H. Yagi (2000), Submarine
groundwater discharge into the sea and associated nutrient transport in a sandy beach,
Water Resour. Res., 36, 1467-1479.

United States Geological Survey (1988), Melbourne West, United States Geological Survey
7.5-min Quadrangle Map.

United States Geological Survey (1990), Melbourne East, United States Geological Survey
7.5-min Quadrangle Map.









Williams, S. A. (1995), Regional ground water flow model of the surficial aquifer system in
the Titusville/\Ii s area, Brevard County, Florida, St. Johns River Water M.,ir, i., n,
District Technical Publication SJ95-5.

Yang, H. S., D. W. Hwang, and G. B. Kim (2002), Factors controlling excess Radium in
the Nakdong River Estuary, Korea: submarine groundwater discharge versus desorption
ftom riverine particles, Mar. C'l i, ,, 78, 1-8.

Younger, P. L. (1996), Submarine groundwater discharge, Nature, 382, 121-122.

Z1i. i- C., and P. P. Wang (1999), MT3DMS: a modular three-dimensional multispecies
transport model for simulation of advection, dispersion, and chemical reactions of
contaminants in groundwater systems; documentation and user's guide, United States
A, I,,,, Engineer Research and Development Center Contract Report SERDP-99-1.









BIOGRAPHICAL SKETCH

Jeffrey Nicholas King was born in Boston, Massachusetts in 1969. He moved to

Gainesville, Florida in 1975; he attended public schools. King earned a Bachelor of Science

in civil engineering from the University of Florida in 1993; and a Master of Science in

environmental water resources engineering from the University of California at Berkeley in

1995.

King began graduate studies at the University of Florida in 2001. Prior to this

recent service as a graduate student, he worked as a consultant in the mid-Atlantic and

southeastern United States. King earned the State of Florida Professional Engineer license

in 1999. He currently works for the United States Geological Survey, Florida Integrated

Science Center, in Ft. Lauderdale.

Jeffrey and his wife Corey have two children: Eamon Nicholas and Megan Elizabeth.





PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

Iamindebtedtomywife,Corey,forhergraceduringanextremelydiculttimeinourlife.Thisworkandmyinterestinthissubjectwouldnotbepossiblewithouthergenerosity.Iappreciatetheunconditionalemotionalandnancialsupportofmyparents|PatriciaandGregory.IamgratefultoProfessorsAJMehtaandRGDeanfortheirwisdomandconstructivementoring.IamthankfulfortheinsightofProfessorsLHMotz,KHateld,andJBMartin;andforhelpfulcommunicationswithHJBokuniewicz,WCBurnett,SLKrupa,CDLangevin,LLi,andWSMoore.Numerousindividualscontributeddirectlyandindirectlytothedevelopmentofthiswork;Ms.KimberlyHuntdeservesspecialrecognitionforherkindness. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 8 LISTOFFIGURES .................................... 10 LISTOFSYMBOLS .................................... 16 ABSTRACT ........................................ 25 CHAPTER 1INTRODUCTION .................................. 27 1.1MagnitudeandRelevanceofBenthicFlux .................. 28 1.2TheoreticalBasisforAnalyticalMethods ................... 31 1.2.1Darcy'sLaw ............................... 31 1.2.2TidalDynamicsinanUnconnedHydrogeologicUnit ........ 33 1.2.3Lietal.BenthicDischargeModel ................... 37 1.2.4Bokuniewicz'sBenthicDischargeModel ................ 40 1.3SelectedObservationalTechniques ....................... 41 1.3.1SeepageMeter .............................. 41 1.3.1.1Manualseepagemeter .................... 42 1.3.1.2Automatedseepagemeter .................. 43 1.3.1.3Bedformeect ........................ 45 1.3.1.4Summaryremarks ...................... 48 1.3.2TracerTechnique ............................ 49 1.4ComparisonofTechniquestoCharacterizeBenthicFlux .......... 52 1.5Tasks ....................................... 54 2TERRESTRIALHYDRAULICGRADIENT .................... 56 2.1CaseIa:InniteDepthUnconnedHydrogeologicUnit ........... 56 2.2CaseIb:InniteDepthUnconnedHydrogeologicUnit,SolvedwithImageMethod ..................................... 60 2.3CaseII:FiniteDepthUnconnedHydrogeologicUnit,withoutLeakage .. 65 2.4ApplicationtoGreatSouthBay,LongIsland,NewYork .......... 74 2.5ApplicationtoIndianRiverLagoon,Florida ................. 77 2.6ApplicationtoLakeSallie,Minnesota ..................... 80 3GROUNDWATERTIDALPRISM ......................... 86 3.1GeneralizedForm ................................ 86 3.2ApplicationtoIndianRiverLagoon,Florida ................. 94 3.3ApplicationtoSouthAtlanticBight ...................... 104 5

PAGE 6

........................... 106 3.5DependenceofGroundWaterTidalPrismonChangesinVariousParameters 107 4SURFACEGRAVITYWAVE ............................ 112 4.1CaseI:InniteDepthPorousMedium .................... 112 4.2CaseII:FiniteDepthPorousMedium ..................... 116 4.3CaseIII:FiniteDepthPorousMediumoverInniteDepthPorousMedium 118 4.4GeneralizedForm ................................ 123 4.5BenthicFluxAmplication ........................... 125 4.6BenthicFluxDamping ............................. 129 4.7BenthicFluxAmplitude ............................ 132 4.8ApplicationtoIndianRiverLagoon,Florida ................. 133 5SUMMARYANDCONCLUSIONS ......................... 145 5.1Summary .................................... 145 5.2Conclusions ................................... 146 5.3RecommendationsforFutureWork ...................... 151 APPENDIX ASUMMARYOFINVESTIGATIONSINTHEINDIANRIVERLAGOON ... 159 A.1GeneralDescription ............................... 159 A.2BenthicFlux .................................. 160 A.3GroundWater .................................. 178 A.4SurfaceWater .................................. 181 BDERIVATIONRELATEDTOTERRESTRIALHYDRAULICGRADIENT .. 190 B.1CaseIa:InniteDepthUnconnedAquifer .................. 190 B.2CaseIb:InniteDepthUnconnedAquifer,SolvedwithImageMethod .. 192 B.3CaseII:FiniteDepthUnconnedAquifer,withoutLeakage ......... 193 CDERIVATIONRELATEDTOGROUNDWATERTIDALPRISM ....... 197 C.1VolumeofWaterinHydrogeologicUnit .................... 197 C.2BenthicFluxIntegratedacrossExchangeFace ................ 200 C.3GroundWaterTidalPrism ........................... 202 DDERIVATIONRELATEDTOSURFACEGRAVITYWAVE .......... 208 D.1CaseI:InniteDepthPorousMedium .................... 208 D.2CaseII:FiniteDepthPorousMedium ..................... 212 D.3CaseIII:FiniteDepthPorousMediumoverInniteDepthPorousMedium 214 6

PAGE 7

217 E.1GroundWaterFlowandTransport ...................... 217 E.2Inter-DomainExchange ............................ 218 E.3SurfaceWaterCirculation ........................... 218 E.4ModelSummary ................................ 219 REFERENCES ....................................... 221 BIOGRAPHICALSKETCH ................................ 231 7

PAGE 8

Table page 1-1ModelinputsusedbyLietal.fortheapplicationofEquation 1{16 totheSouthAtlanticBight. .................................... 40 2-1FiniteverticesandassociatedinterioranglesforCaseIa. ............. 58 2-2FiniteverticesandassociatedinterioranglesforCaseIb. ............. 63 2-3FiniteverticesandassociatedinterioranglesforCaseII. ............. 67 2-4ModelinputsforapplicationofBokuniewicz'ssolution,andCaseIItoGreatSouthBay. ....................................... 74 2-5CurvettingandCaseIIoutputsforapplicationtoGreatSouthBay. ...... 76 2-6DepthtowatertableneartheEauGallieTransect. ................ 79 2-7ModelinputsforapplicationofCaseIItotheseepagefaceoftheEauGallieTransect. ....................................... 80 2-8AveragelakeelevationsforselectedMinnesotalakes. ............... 82 2-9ModelinputsforapplicationofCaseIItoLakeSallie. ............... 85 3-1ModelinputsforhypotheticalapplicationofEquation 3{12 ........... 93 3-2TidalfrequencyandamplitudebyFastFourierTransformoftidalsignalattheMelbourneCauseway. ................................. 97 3-3ModelinputsforapplicationofEquations 3{8 and 3{13 totheseepagefaceoftheEauGallieTransect. ............................... 98 3-4Volumeofthegroundwatertidalprism,temporallyaveragedoverthedischargephaseofoneprismcycle,forselectedtidalharmonicsattheMelbourneCauseway. 105 3-5ModelinputsforapplicationofEquations 3{8 and 3{13 totheSouthAtlanticBight. ......................................... 105 4-1Coecientsforthedeterminationofbenthicuxdrivenbylinear,surface-gravitywaves,whichpropagateoverapermeablebedofoneortwolayers. ........ 124 4-2ModelinputsfortheapplicationofCasesI,II,andIIItotheEauGallieTransect. 135 4-3ApplicationofCasesI,II,andIIItotheEauGallieTransect. .......... 141 5-1Summaryofkeyinputparameters,andresultsoftheapplicationofanalyticalequationstoselectedlocations. ........................... 156 8

PAGE 9

................................. 157 5-3Numericalmodelsofbenthicux. .......................... 158 A-1BenthicuxestimatesfortheEauGallieTransectmadewithLee-typeseepagemeters. ......................................... 164 A-2BenthicuxestimatesfortheEauGallieTransect,madewithmethodsotherthanLee-typeseepagemeters. ............................ 165 A-3HydrogeologicparametersfortheIndianRiverLagoon. .............. 180 A-4Amplitude(A)andlocalphaseangle()tidalconstituentsforwatersurfaceelevationandcurrentintheAtlanticIntra-coastalWaterwayneartheEauGallieTransect. ....................................... 189 B-1FinitenodesandassociatedinterioranglesforCaseII,whenthedistancefromshoretothegroundwatersheddivideanddepthoftheunconnedhydrogeologicunitareunity. ..................................... 195 9

PAGE 10

Figure page 1-1Benthicuxforcedbyterrestrialhydraulicgradient,groundwatertidalprism,andsurfacegravitywave. ............................... 28 1-2Streamlines,velocityvectors,linesofconstanthead,andsalinitycontoursforaHenry-typeproblem. ................................. 32 1-3Avertically-orientedcrosssectionoftheBiscayneaquifer,insouthFlorida. ... 32 1-4Atwo-dimensional,verticallyorientedhydrogeologicunitforcedbyasinusoidaloscillatorytide. .................................... 39 1-5 ..................................... 39 1-6Manualseepagemetercrosssection. ......................... 42 1-7 ................... 51 1-8Anexampleofalower-boundassumptionformixingux,fromSeptember28toOctober3,2001,intheGulfofMexiconearTurkeyPoint,Florida. ....... 53 1-9Benthicdischargemeasuredwithdye-dilution-typeautomatedseepagemetersanda ................. 55 2-1Benthicdischargeforcedbyalinearterrestrialhydraulicgradient,overaninnite-depth,hydrogeologicunit(CaseIa). ............................ 57 2-2VelocityvectorsandstreamlinesforCaseIa. .................... 59 2-3Dimensionlessbenthicdischargeversusdimensionlessdistance(CaseIa). .... 61 2-4Dimensionlessheadgradientversusdimensionlessdepthatthewatersheddivide(CaseIa). ....................................... 61 2-5Benthicdischargeforcedbyalinearterrestrialhydraulicgradientoveraninnite-depth,hydrogeologicunit(CaseIb),solvedwiththemethodofimages. ......... 62 2-6VelocityvectorsandstreamlinesforCaseIb. .................... 64 2-7Dimensionlessbenthicdischargeversusdimensionlessdistance,solvedwithout(CaseIa)andwith(CaseIb)themethodofimages. ................ 66 2-8Benthicdischargeforcedbyalinearterrestrialhydraulicgradient,overanite-depth,hydrogeologicunit,withnoleakage(CaseII). ................... 66 2-9VelocityvectorsandstreamlinesforCaseII. .................... 68 2-10Dimensionlessbenthicdischargeversusdimensionlessdistance(CaseII). .... 69 10

PAGE 11

........................ 69 2-12ExampleofCaseIIbreakdownandarticulationofthebreakdownpoint. .... 72 2-13Dimensionlessbenthicdischargeversusdimensionlessdistance,foranunconnedunitofnitedepth,basedonBokuniewicz'smodel. ................ 73 2-14Dimensionlessbenthicdischargeversusdimensionlessdistance,solvedunderCaseIIconstraints,andwithBokuniewicz'smodel. ..................... 73 2-15Cumulativedimensionlessvolumetricbenthicdischargeperunitlongshoredistanceversusdimensionlessdistance,forCaseIIandBokuniewicz'smodel. ....... 75 2-16LocationofbenthicdischargeobservationsinGreatSouthBay,LongIsland,NewYork. ....................................... 75 2-17ObservedandcalculatedbenthicdischargeversusdistanceforGreatSouthBay. 77 2-18Observed,t,andcalculatedbenthicdischargeversusdistanceatfourlocationsinGreatSouthBay. ................................. 78 2-19ThefreshwaterseepagefaceoftheEauGallieTransect,lookingwest,June7,2007. ......................................... 81 2-20ObservedandcalculatedbenthicfreshwaterdischargeversusdistanceforthefreshwaterseepagefaceoftheEauGallieTransect. ................ 81 2-21LakeSallie,Minnesota. ................................ 83 2-22ElevationversusdateforLakeSallie,LakeMuskrat,andDetroitLake. ..... 83 2-23ObservedandcalculatedbenthicdischargeversusdistanceforLakeSallie,Minnesota. 84 3-1Surfaceofthecoastalwatertableversusdistancefromshoreatmean-tide,foratypicalsectionbetweenCapeFearandSavannahRiver. .............. 87 3-2Shoreline,baseofthesurcialhydrogeologicunit,andsurfaceofacoastalwatertableattwopointsintime. ............................. 87 3-3Dimensionlesstideelevationanddimensionlessbenthicux,integratedacrosstheexchangeface,versusdimensionlesstime. ................... 90 3-4Conceptualizedinlandandoshoreextentsofthebenthicuxexchangeface,withhighandlowtide,streamlines,andlinesofconstantheadpotential. .... 90 3-5Dimensionlessvolumeforcedbythegroundwatertidalprism,betweentwoarbitrarypointsintime,versusdimensionlesstime,forthreeperturbationparameters .. 92 3-6WatersurfaceelevationversustimeandharmonicamplitudeversusfrequencyattheMelbourneCausewaybetweenAugust22,2000andDecember31,2000. 95 11

PAGE 12

... 95 3-8WatersurfaceelevationversustimeandharmonicamplitudeversusfrequencyattheMelbourneCausewaybetweenJuly23,2005andOctober1,2005. .... 96 3-9Bedelevationversusdistancefromshore,onthefreshwaterseepagefaceoftheEauGallieTransect,onJune7,2007. ........................ 99 3-10Tideelevation,andbenthicuxintegratedacrosstheexchangeface,versusdimensionlesstimeforthefreshwaterseepagefaceoftheEauGallieTransect. ......... 99 3-11Benthicdischargeofre-circulatedlagoonwaterasafunctionofdistancefromshoreonthefreshwaterseepagefaceoftheEauGallieTransect. ......... 102 3-12Tideelevation,andbenthicuxintegratedacrosstheexchangeface,versusdimensionlesstimeforatypicalshorelinesectionbetweenCapeFearandSavannahRiver. ... 104 3-13Benthicux,integratedacrosstheexchangeface,versusdimensionlesstimefortidalamplitudesthatrangefrom0:4mto1:6m;andthegroundwatertidalprismversustidalamplitude. ................................ 108 3-14Benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforhydraulicconductivitythatrangesfrom5x105m=sto5x103m=s;andthegroundwatertidalprismversushydraulicconductivity. .................. 108 3-15Benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforhydrogeologicunitdepththatrangesfrom10mto100m;andthegroundwatertidalprismversushydrogeologic-unitdepth. .................... 109 3-16Benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforporositythatrangesfrom0:45to0:65;andthegroundwatertidalprismversusporosity. ........................................ 110 3-17Benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforbeachslopethatrangesfrom6%to30%;andthegroundwatertidalprismversusbeachslope. ...................................... 110 4-1CaseI:ReidandKajiura'sboundaryvalueproblemforalinearsurfacegravitywavepropagatingoveraporousmediumofinnitedepth. ............ 113 4-2CaseII:Aboundaryvaluerepresentationofalinearsurfacegravitywavepropagatingoveraporousmediumofnitedepth. ........................ 117 4-3CaseIII:Aboundaryvaluerepresentationofalinearsurfacegravitywavepropagatingoveratwo-layer,porousmedium:thetoplayerisnitedepth,thebottomlayerisinnitedepth. ................................... 120 12

PAGE 13

..................... 122 4-5Dimensionlessbenthicuxanddimensionlesssurfacewaterdisplacementversusdimensionlessphaseposition,forbenthicuxamplicationparameterbetween0and1. ........................................ 125 4-6BenthicuxamplicationparameterandcomponentsunderCaseIconstraints,versusdimensionlessdepthforfundamentaldimensionlesspermeabilitymodulusbetween107and103. ............................... 127 4-7BenthicuxamplicationparameterandcomponentsunderCaseIIconstraints,versusdimensionlessdepthforfundamentaldimensionlesspermeabilitymodulusof105,overdimensionlesshydrogeologicunitdepthfrom0:01to1. ...... 127 4-8BenthicuxamplicationparameterandcomponentsunderCaseIIIconstraints,versusdimensionlessdepthforfundamentaldimensionlesspermeabilitymodulusof105,overdimensionlesshydrogeologicunitdepthfrom0:01to1,forfourpermeabilityratios. .................................. 128 4-9Dimensionlessbenthicuxdampingcoecientversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forCaseI,wheredimensionlesshydrogeologicunitdepthapproaches1,andforCaseII. ............. 136 4-10Dimensionlessbenthicuxdampingcoecientversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forCaseI,wheredimensionlesshydrogeologicunitdepthapproaches1,andforCaseIII. ............. 137 4-11Dimensionlessdecayparameterversusrelativedepthfordepthratiosbetween0:1and1,wheredepthratioapproaching1representsCaseIanddepthratiolessthan1representsCaseII. ........................... 138 4-12Dimensionlessdecayparameterversusrelativedepthfordepthratiosthatrangefrom0:1to1,forfourpermeabilityratios. ..................... 139 4-13Dimensionlessbenthicuxamplitudeparameterversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,wheredimensionlesshydrogeologicunitdepthapproaching1representsCaseIanddimensionlesshydrogeologicunitdepthlessthan1representsCaseII. ............. 139 4-14Dimensionlessbenthicuxamplitudeparameterversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forfourpermeabilityratios,wheredimensionlesshydrogeologicunitdepthapproaching1representsCaseIanddimensionlesshydrogeologicunitdepthlessthan1representsCaseIII. 140 13

PAGE 14

........................................ 161 A-2IndianRiverLagoonbathymetryneartheEauGallieTransect. ......... 162 A-3HydrogeologicstratigraphyunderlyingtheIndianRiverLagoon. ......... 163 A-4Elevationoftheregionalandalocalwatersheddivide,anddistancetotheregionalwatersheddivideonthefreshwaterseepagefaceoftheEauGallieTransect. ... 163 A-5BenthicuxversusstationfortheoshoreportionoftheEauGallieTransect,andbenthicuxversustimefortwoadjacentseepagemeters. .......... 167 A-6Monthlyandannualprecipitation,fromDecember1998toDecember2004forMelbourne;andbenthicdischargeandprecipitationattwolocationsintheIndianRiverLagoon. ..................................... 168 A-7Totalandbenthicfreshwaterdischargeversusdistancefromshore; 169 A-8Depthversus ............... 171 A-9BenthicdischargeversusdistancefromshorealongthefreshwaterseepagefaceoftheEauGallieTransect,modeledwithEquation A{7 ............. 172 A-10Depthversus .. 174 A-11Depthversus ........................................ 175 A-12Simulatedbenthicfreshwaterdischargeasafunctionofdistancefromtheshoreline. 176 A-13Depthversusexcess ............................... 177 A-14AnX-rayradiographnegativeofasedimentcoreatapointontheEauGallieTransect. ....................................... 179 A-15PotentiometricsurfaceoftheFloridianAquiferinMay1999. ........... 182 A-16InterpolatedporosityandmasspercentmudatapointontheEauGallieTransect. 183 14

PAGE 15

................................. 183 A-18GrainsizeandmodeledhydraulicconductivityatapointontheEauGallieTransect. 184 A-19AboundaryvaluerepresentationofthesurcialaquifernearPortSt.Lucie. .. 185 A-20May2000waterlevelversusdayattheMelbourneCauseway. .......... 185 A-21August2000waterlevelversusdayattheMelbourneCauseway. ......... 186 A-22December2000waterlevelversusdayattheMelbourneCauseway. ....... 186 A-23May2003waterlevelversusdayattheMelbourneCauseway. .......... 187 A-24June2003waterlevelversusdayattheMelbourneCauseway. .......... 187 A-25July2003waterlevelversusdayattheMelbourneCauseway. .......... 188 A-26September2003waterlevelversusdayattheMelbourneCauseway. ....... 188 A-27September2005waterlevelversusdayattheMelbourneCauseway. ....... 189 15

PAGE 16

qbf:wave 16

PAGE 17

17

PAGE 18

h ^Vgw ^Vgwtp P t z 18

PAGE 19

d ^h ^P ^Q ^Vgw @l[]. 1. 19

PAGE 20

20

PAGE 21

Dimensionlessbenthicux,forcedbythegroundwatertidalprismandintegratedacrosstheexchangeface[]. 21

PAGE 22

1957 ]boundaryvalueproblem(R=k )[]. 22

PAGE 23

Non-dimensionalbenthicdischargeux[]forcedbyterrestrialhydraulicgradient,where=qbd 23

PAGE 24

24

PAGE 25

1992 ]);pressuregradientforcedbythegroundwatertidalprism( ^Vgwtp 1990 ](comparedwith 1999 ]);andpressuregradientforcedbysurfacegravitywaves,withextensionofaboundaryvaluesolutionby 1957 ];and(2)tousetheseequationstocharacterize 1980 ]observationsinthe 2007 ]inthe 1977 ]observationsinLakeSallie.Thesolutionforcedby ^Vgwtp 1996 ]observationsinthe 2007 ]inthe 25

PAGE 26

^Vgwtp 2002 ]inthe 26

PAGE 27

1-1 )]thatgeneratebenthicpressuregradients,andforcebenthicwaterux.Benthicwateruxisaproperty-specicexampleofthemoregeneralbenthicuxphenomenon,wherebenthicuxistheowrateofsomepropertyacrossthebedofawaterbody,perunitareaofbed.(Theunitsofbenthicuxareafunctionofthepropertyunderconsideration;forexample,[L3T1L2=LT1]forabenthicvolumeuxor[MT1L2]forabenthicmassux.)Benthicwateruxisacomponentofthehydrologiccycle; 27

PAGE 28

Benthicuxforcedbyterrestrialhydraulicgradient,groundwatertidalprism,andsurfacegravitywave. 2003 ]is 1990 ]modelforwatertabletidaldynamicsinbeaches,and 1999 ]and 1992 ].Selectedobservationaltechniquesarereviewed.ThechapterconcludeswithastatementoftasksandanoutlineoftheremainingChapters. 1996 ; 2003 ].

PAGE 29

1996 ]suggestedthat 1998 ; 2006 ].Forexample, 2003 ]identied 1964 ]correlatedbiologicalzonationand 1993 ], 1997 ],and 2002 ]oeredsimilarobservations.Numerousinvestigatorshaveshownthat 1992 ; 1998 ];thechemicalcompositionof 1999 ]explainedthatsomecoastal{aquifermixingprocessesareanalogoustoestuarinemixingprocesses.Forthisreason,hesuggestedthatthesecoastalaquifersshouldbeconsideredsubterraneanestuaries.Hesuggestedthatboth(laminar)diusionand(turbulent)dispersionatthesaltwater{freshwaterinterfaceofasubterraneansaltwaterwedgecausemixingandenhancethedesorptionprocess.Adsorbedionsdesorbinthepresenceofsaltwater|duringanintrusionevent|andproduceabenthic,desorbed-constituent,dischargeux.Thistheorysuggestsalinkbetween 29

PAGE 30

1998 ], 2000 ], 2001 ],and 2002 ]discuss 2003 ]. 1960 ]and 1984 ]detailthelocalizedevaporationofseawaterinisolatedcoastalsystems;thedensityofseawaterincreased,andwasmixedwithlighterwaterinunderlyingsurcialaquiferby 1965 ]and 1967 ]detailedgeothermalheatingasaforcingmechanismfortheconvectivetransportofgroundwaterthroughpreferentialowpaths. 1964 ]developedananalyticalsolutionfortheowoffreshgroundwater,towardaconstantconcentrationseawaterboundary(Figure 1-2 isasolutiontoaproblem,whichisconceptuallysimilarto 2002 ]). 1-2 |inwhichboththefreshwaterandseawateraredischargedas 1964 ]inBiscayneBay(Figure 1-3 ). 1964 ]determinedwithaownetanalysisoftheBiscayneaquifer,thattheratioofbenthic,recirculated,bay-waterdischargeto 8. 2001 ]usedSEAWAT[ 2002 ]|acomputerprogramthatsolvesforvariable-densityowandtransportinporousmedia|toestimateanaverage2m3=dbenthicfreshwaterdischargetoBiscayneBay,Florida,permeterofshoreline,between1989and1998.Using 8ratio,benthic(recirculated)bay-waterdischargeand 1990 ,Section10.3]statedthat\dispersioncreatesazoneofmixingbetweenthedisplacinguidandtheuidbeingdisplaced"byadvection. 30

PAGE 31

1964 ]identiedazoneofdispersionalongthefreshwater-saltwaterinterfaceofasubterraneansaltwaterwedge,intheBiscayneaquifer,Florida(Figure 1-3 ).Fresh,terrestrialsourced,groundwaterundergoesdispersivemixingalongthefreshwater-saltwaterinterface,asitisforcedtowardtheBaybyaterrestrialhydraulicgradient.ThedischargeofthiswatertotheBayis 1993 ].Bio-irrigationistheushingorventilationofburrowsbybenthicorganisms[ 2006 ]. 1.2.1Darcy'sLaw 1856 ]experimentallydeterminedthat A=K@h @l=Ki(1{1)where (1{2)where 31

PAGE 32

Streamlines(continuoussolidlineswitharrowheads),velocityvectors(arrayofvectors),linesofconstanthead(dashedlines),andsalinitydistribution(colorcontours)foravertically-oriented, 1964 ]-typeproblem,conceptuallysimilarto 2002 ]Figure12. Figure1-3. 1964 ]ow-netanalysisofavertically-orientedcrosssectionoftheBiscayneaquifer,insouthFlorida,aspresentedby 2001 ,Figure8].PublicDomain. 32

PAGE 33

1956 ]determinedthat (1{3)where 1{1 and 1{3 withtheNavier-StokesEquationsappliedtosteady,one-dimensional,laminarowbetweentwoxed,parallelsurfaces,whichrepresentaninter-granularowtubebetweentwograinsintheporousmatrix. 1-4 .AdopttheDupuit-Forchheimerassumption,whichrequiresthatthatverticalowbenegligible.Considertheporousdomaintobehomogeneous,incompressible,isotropic,undeformable,andoverlyingahorizontal,impermeablebase.Requireahomogeneous,incompressibleuid.Requirethatthesystemdoesnotgainorlooseuidatthesoilsurface.Denehydraulichead( +z(1{4)where 33

PAGE 34

1981 ]observedthatifz(x!1;t)=Hthentheunitmustexhibitahighertransmissivityduringthepeakoftheoscillationthanduringthetrough.Thisdiscrepancyintransmissivityrequiresthat 1-4 ,masswouldthennotbeconserved.Tobalancemass,themeaninlandwatersurfacemustbeelevatedabovethemeanoscillationintheboundarysystem,suchthattheabsolutevalueof 1-4 withDarcy'sLaw(Equation 1{1 ).Thecontinuityequationrequiresthat @t=1 1{1 and 1{7 toformthefollowingnonlineardiusionequation: @t=@ @x(D@h @x)(1{8) 34

PAGE 35

Sy(1{9)[ 1967 ; 1984 ; 1990 ]. 1973 ]developedananalytical,integralsolutiontoEquation 1{8 .Aconsequenceofthesolutionisthattheequilibriumelevationofthegroundwatertableatapointfarinland,andawayfromtheoscillatingtide,asymptoticallyapproachesaconstantvalue,describedby 1{10 isindependentoftime.If=1,z=1:2247H;if=0:5,z=1:0607H.Alsonotethatz(x!1)>Hissolelytheresultoftheinteractionoftheoscillatingboundaryreservoirandthehydrogeologicunit;theunitmaynotbeundertheinuenceofgroundwaterrechargefromothersources,suchasrainfallorterrestrially-sourced 1976 ]developedalaboratoryexperimentusingaHele-ShawdevicetoconrmEquation 1{10 1981 ]duplicated 1{10 1984 ]usedasmallperturbationexpansionofmagnitude 1{8 is 1{11 conformstoEquation 1{10 asx!1.Equation 1{11 isrstorderaccuratein 1990 ]allowedtheinterfacebetweenthereservoirandunittoassumeapositiveslope, 35

PAGE 36

sb(1{12)tomatchaprescribedseriessolutiontoamovingboundarycondition,whichproducedthefollowingsolutiontoEquation 1{8 2+p 2cos(2t+ 4p 2)[sin(tx)ex+sin(3tp 1{13 issecondorderaccuratein 1{13 isnotasolutiontotheproblemofanoscillatingwettedbeachface,whichisdetachedfromthewatersurfacethatforcestheoscillation.Thesolutionprocedureapproximatelymatchedthemovingboundary. 1973 ].Notethat 36

PAGE 37

1999 ]suggested 37

PAGE 38

^Vgw TtA e(cossin)+p TtA2cot()ep TtA2cot(1{23)wheretan=sbby\integratingthedierencebetweenthehighestwatertableandthemeanwatertable"withEquations 1{13 and 1{22 .Theystatedthat 1996 ]estimatethat 1996 ]describedthedeliveryof 1-5 1.3.2 1999 ]appliedEquation 1{16 tothe 1-1 .TheyconcludedthatQbd:wave=1:65x107m3=d(Equation 1{21 )andQbd:tide=1:11x107m3=d;or55%and37%of 1999 ]Qbd=3x107m3=destimate.Theystatedthattheforcesthatdrive 1{16 .Theinvestigatorssuggestedthatthechemicalcompositionof 38

PAGE 39

Atwo-dimensional,verticallyorientedhydrogeologicunitforcedbyasinusoidaloscillatorytideattheleftboundary. Figure1-5. 1999 ,Figure2].c1999Elsevier,usedwithpermission. 39

PAGE 40

1992 ]developedananalyticalsolutiontotheproblemof s)thatcoincideswithatopographicdividelocatedsomedistance,x= dissmall.Aconstantdensityuidisrequired.Heassumedthefollowingboundaryconditions: @x2+k2@2 @z2=0(1{24) Table1-1. Modelinputsusedby 1999 ]fortheapplicationofEquation 1{16 tothe ParameterValueUnits Tt sb A

PAGE 41

1{24 withaFouriercosinetransforminx,todene@ @z,suchthat kln[cothjxjk 1{1 ).Equation 1{25 approaches1atx=0.However,thesolutiondecreasesrapidlyintheoshore(x>0)direction.Ifsk=4l>3,theoshoresolutionsimpliesto kln[cothxk 2001 ], 2002 ], 2003 ],and 2006 ]summarizednumerousattemptstoquantify 1-6 )istypicallyachamberopenedatoneend.Waterandvariousconstituentsofinterestmovethroughtheopenendofthechamberandthenacrossthebedofthewaterbody,allowingsometypeofmeasurementdeviceattachedtothesideorendoftheseepagemetertorecord 2003 ].Seepagemetersaretheonlyobservationalmethodcapableofmeasuring 2006 ]. 41

PAGE 42

Avertically-orientedcrosssectionofamanualseepagemeter.Modiedfrom 1977 ,Figure1].c1977AmericanSocietyofLimnologyandOceanography,Inc.,usedwithpermission. 1977 ]reportedthat 1944 ]developedaseepagemetertomeasurewaterlossfromirrigationcanals.( 1977 ]iscreditedwiththedesignmostcommonlyusedtoday.)The 1-6 )consistsofthreecomponents:theendofa208ldrum,avalve,andaplasticmeasurementbag.The208ldrumiscut,suchthattheatendandapproximately15cmofthesideareretained.Hemountedavalvetotheatendofthedrum,andattachedathreadedcoupletoaplasticmeasurementbag.Todeployamanualseepagemeter,theopenendofthemeterisforcedintothebedofawaterbody.Themeteristhenpermittedanappropriateperiod|suchasoneday[ 2006 ]orseveraldays[ 2003 ]|toequilibrate,withthevalveopen.Theinvestigatorthenpre-loadsameasurementbagwithwater,suchthatthebagispartiallyfullanddevoidofair.Theinvestigatorattachesthebagtothevalvewiththethreadedcouple.Benthicdischargepusheswaterinthechamberthroughthevalveandintothemeasurementbag; 42

PAGE 43

1993 ]usedaheat-pulsetechnologybasedonthermistorsarrangedinseriestomeasurethetraveltimeofaheatpulse.Becauseheatisconserved,theyshowedthat 2003 ]statedthatwithoutmodication, 1996 ]heat-pulsemethodisnotcapableofrecording 2001 ]developedavariantontheheat-pulseseepagemeter|thecontinuous-heatseepagemeter. 2003 ]usedadyedilutionmethod,basedonthetimedinjectionofdyeintoamixingchamber,whichislocatedinserieswithaseepagechamber.Thedyeisaconservativespecies.Benthicuxisafunctionoftherateatwhichthedyedsolutioninthemixingchamberisdilutedbyuidinthechamber.TheydeployedthedeviceinWaquoitBay,Massachusettsoveronespring{neaptidalcycle.Theycapturedananticipated,strong,negativecorrelationwithtide,andshowedthatatthelowesthightidewithinthespring{neaptidalcycle,thedevicedidnotrecord 43

PAGE 44

2001 ]usedanultrasonicacoustictechnologytoestimate 2004 ]usedtwodierentelectromagneticowmeasuringdevicestomeasure 2004b ]and 2004a ]appliedanelectromagneticautomatedseepagemeterinthreesalinewaterbodiesinFlorida:SarasotaBay,BiscayneBay,andBottleCreek|atributarytoSharkRiverSloughintheEvergladesNationalPark.Theelectromagneticautomatedseepagemetergeneratedanaverage 2003 ]. 2004 ]conductedanumberofexperimentstotestthesensitivityoftheseepagemetertohumaninduceddisturbance.Theelectromagneticdeviceshowedthatnatural 44

PAGE 45

2002 ]investigated50seepagemeterspermanentlydeployedinFloridaBay,theAtlanticOceaneastoftheFloridaKeys,TampaBay,andinanexperimentaltestpool.Thesemetersemployvariousdesigns,including 1977 ]design.Theyquestionedtheeectivenessofseepagemetersinquantifying 1992 ; 1996 1998 ],inwhichdyeinjectedintosedimentbelowabathymetricfeature(a2:5cm-highsandmound)wasadvectedbyaliftforce,atarateinexcessof70cm=d,intosurfacewaters.The70cm=duxwasgeneratedbyacurrentwitha10cm=svelocity8cmabovethebed 2002 ], 2003 ]acknowledgedthat 1996 ]Experiment2;3:3cm=hrmaximumverticalvelocityforthesolutetracerfront 45

PAGE 46

1989 ]and 1997 ];usedmeasurementbagsofvarioussizes;anduseda24-hoursamplingintervalthatwastoocoarsetoaccuratelycapturethebehaviorof 2000 ],whichwasbasedonthreeindependentobservationaltechniques:seepagemeters,and 2003 ],inwhich 2003 ]observedthatforapproximately20%ofthetidalcycle,seepagemetersintheAtlanticOceanrecorded 2003 ]respondedbyencouragingthecommunityofscientistswhouseseepagemeterstoconductcontrolledlaboratoryexperiments,inwhichthehydrodynamicsofowaroundaseepagemeterischaracterized,includingtherateatwhichvariouscurrentsandwaveclimatesadvectuidintoaseepagemetermountedinasandybed 1977 ,Figure3]showedalinearrelationshipbetween 1{1 )predictssuchalinearrelationship.However,hedidnotcommentontherelationshipbetweentheslopeofthelinearrelationshipandpropertiesoftheporousmediumanduidinthetank,suchas 2003 ]didnotacknowledgethepossibilitythatAtlanticOceantidaldynamicsmighthavegeneratedasucientbottomcurrenttodrive 2002 ].Therelevantcorrelationcouldhavebeenbottomcurrentand 46

PAGE 47

1992 ]replicated 1977 ]observationofalinearrelationshipbetween 2006 ]concludedthatseepagemetersshouldonlybeusedinquiescentwaterbodies.Theyarguedthatpressuregradientsgeneratedby<5cm=scurrentsarounda 1996 ].Theyreinforcedaconclusionof 1996 ]that\bottomcurrentsareimportanttoporewateradvection,"andclariedthat\bottomcurrentsmustbeofagreatermagnitudethantypicallyoccurinthe[ 1996 ]:dierentialpressureacrossbedformsis P=FL P 47

PAGE 48

l=k lCLu2 2006 ]and 2006 ]summarizedanumberofconclusions,byothers,concerningtheuseofseepagemeters.Theseconclusionsarepresentedheretosuggestthat 1. Naturalspatialandtemporalvariabilityof 1990a b ]. 48

PAGE 49

Benthicuxestimateswithmanualseepagemetersmaybeinaccurateduetopressuregradientsgeneratedbyowthroughandaroundthecollectionbag,theseepagechamber,andacrosstheconnectionport[ 1980 ; 1989 ; 1992 ; 2002 ; 2003 ]. 3. Manualseepagemetersarenotaccuratebelowa0:4to0:7cm=ddetectionlimit; 1997 ]. 4. Benthicorganisms,suchasArenicolacrusata(lugworm),Callianassasp.(burrowingghostshrimp),Upogebiasp.(burrowingmudshrimp),andDiopatracuprea(plumedworm)maypumpuidintoseepagemeters,inresponsetotheanoxicenvironmentcreatedwherethemeterisplacedovertheorganism'snest[ 2004 ; 2006 ]. 5. Benthicuxestimateswithseepagemetersdonotalwaysagreewith 1.4 ,andin 2006 ]. 6. Existingliteraturedetailsnumerous 1992 ]used qbd 1990 ]usedthenumericalmodelGROSEEP[ 1982 ]toestimatea0:06to0:15cm=dfreshwater 2006 ].Ingeneral,themethodisbasedonanaccountingoftracerinputsinto,outputsfrom,andchangeswithinaspeciedcontrolvolume.Thedegreeofuncertaintyassociatedwiththeestimationoftheseinputs,outputs,andchangesintracermakeupwithinthespeciedcontrolvolumecanbesignicant. 2000 ]and 2003 ]detailedmethodstoestimate 1-7 isaconceptualmodelofthe

PAGE 50

1-7 : (1{29) where 1{29 ,benthic 2003 ]suggestedthat 1996 ]maybeusedwhere 2000 ]included m2sinSIunits,or[M2T2]ingeneralizedunits. 50

PAGE 51

Retaining (1{33) where t h h >0duringoodand h <0duringebb; 51

PAGE 52

2003 ]statedthatEquation 1{33 isdetailedin 1995 ]and 1996 ];W.C.BurnettdetailedthecomponentsofEquation 1{33 viapersonalcommunication. 2003 ]suggestedthat 1-8 isanexampleoftheestimationof 1{29 to 1{36 canberearrangedtoobtain 2006 ].Onegeneralconclusionisthatthe\magnitudeof[observed] 2006 ].Forexample, 2003a ]concludedthatseepagemetersagreetowithin80%,and 2003 ]identieda\discrepancybetween[numerical]model-basedpredictionsof 52

PAGE 53

Anexampleofalower-boundassumptionformixingux,fromSeptember28toOctober3,2001,intheGulfofMexiconearTurkeyPoint,Florida.Reprintedfrom 2003 ,Figure4].c2003Elsevier,usedwithpermission. 53

PAGE 54

].Methodinter-comparisonsatthe 2003b ]observedasix-dayaverage 1-9 ,continuous 2006 ]suggestedthatbothdevicesarerespondingidenticallytosimilarforcingmechanisms.NearDonnalucata,Sicily, 2006 ]observeddailyaverage 2006 ]estimated 2006 ]generate 1. Todevelopananalyticalmodelfor 2 ) 2. Todevelopananalyticalmodelfor 3 ) 3. Todevelopananalyticalmodelfor 4 ) 4. Tocharacterize 2002 2007 ]|describedinAppendix A |andatotherselectlocations,withthesemodels(Chapters 2 3 4 ) 54

PAGE 55

Benthicdischargemeasuredwithdye-dilution-typeautomatedseepagemetersanda 2006 ,Figure27].c2006Elsevier,usedwithpermission. Chapter 5 containsasummary,conclusions,andrecommendationsforfuturework.The A .Appendices B C ,and D detailmathematicaldevelopmentsintroducedinChapters 2 3 ,and 4 .Appendix E introducesgoverningequationsforaproposedmodel. 55

PAGE 56

2.1 and 2.2 detail 2.3 anite-depthunit,withoutleakagefromtheunderlying(conned)unit.Solutionsemploythewell-knownSchwarz-Christoelmappingtechnique|fromtwo-dimensional, 2-1 A,where s)between(s;c)and(0;0)forcesgroundwaterintheinnite-depthunittoaninnitelywide,shallow,freshwaterbody,locatedinpositive2-1 B),suchthattheclockwiseangleofthephreaticsurfaceisand 2-1 C)withtheSchwarz-Christoeltransformforthehalf-plane[ 2002 ,Equation2.2]: 1ds(2{1) 56

PAGE 57

Benthicdischargeforcedbyalinearterrestrialhydraulicgradient,overaninnite-depth,hydrogeologicunit(CaseIa).(A)Prototype,(B)abstractedprototype,and(C)modeledschematic. where 2-1 )intoEquation 2{1 (seeAppendix B.1 ) 2)(2{2)InverttoobtaintheY!Vmapping 57

PAGE 58

FiniteverticesandassociatedinterioranglesforCaseIa. orincomponentform s)22x s(x s)2]1 (2{4) s2+z s) (2{5) wherex sisdimensionlessoshoredistance.Itcanbeshown(Appendix B.1 )withthePoissonintegralformulafortheupperhalfplane[ 1993 ,page176] Zz2z1f(z) (uz)2+w2dz(2{6)andthedrivingheadpotentialonz1=(1;0)!z2=(+1;0)inmodel( 2-1 C;Table 2-1 ) Z11c (uz)2+w2dz =cw 2tan12w w2+u21 (2{9) and @zjz=0=i (x s+1)[ln(1u 2-1 A),and(0;0)!(s;0)inabstractedprototype( 2-1 B;Table 2-1 ).]VelocityvectorsandstreamlinesareshowninFigure 2-2 58

PAGE 59

(A)Velocityvectorsand(B)streamlinesforCaseIa. 59

PAGE 60

1{1 ).Dimensionlessbenthicdischarge( )forcedbyalinearterrestrially-sourced 2-3 ) =qbd s+1)[ln(u1 2{4 .SingularitiesexistattheverticesdenedinTable 2-1 ;thesesingularitiesareaconsequenceoftheSchwarz-Christoelmethod.Thesolutionbecomesundenedatthesesingularities,witherrorpropagatingintothesolutionspacenearthesingularityanddiminishingwithdistancefromthesingularity.Forexample,theno-uxboundaryconditionatthewatersheddivide(x=s,u>1)isviolatednearthesingularityatu=1(Figure 2-4 ).Notethatthedimensionlessheadgradient( c@ @w)asymptotestozeroasu!1.Whilethisviolationoftheno-uxconditionatthewatersheddivide,nearthesingularity,islessthanideal,itwillbeshowninSection 2.2 thattheimpacton isnegligible. 2-1 A.Deneanimageaxisalongthewatersheddivide(x=s),andreecttheregiondenedbyx>sontotheregiondenedbyx
PAGE 61

Dimensionlessbenthicdischargeversusdimensionlessdistance(CaseIa). Figure2-4. Dimensionlessheadgradient(inthecomputationaldomain)versusdimensionlessdepthatthewatersheddivide(CaseIa). 61

PAGE 62

Benthicdischargeforcedbyalinearterrestrialhydraulicgradientoveraninnite-depth,hydrogeologicunit(CaseIb),solvedwiththemethodofimages.(A)Prototype,(B)abstractedprototype,and(C)modeledschematics. abstractedprototypespacedenesacomplexdomain,suchthat 2-5 C)withEquation 2{1 .TheV!YmappingisgeneratedbysubstitutingniteverticesandinterioranglesforCaseIb(Table 2-2 )intoEquation 2{1 (seeAppendix B.2 ) 62

PAGE 63

FiniteverticesandassociatedinterioranglesforCaseIb. orincomponentform s s Itcanbeshown(Appendix B.2 )withEquation 2{6 andthereal-space(r)andimage-space(i)drivingheadpotentials (2{16) (2{17) that Z10c(1z) (uz)2+w2dz =cw w2+u2u Z01c(1+z) (uz)2+w2dz =cw w2+u2+u where @xjx=s=0,aconditionnotsatisedinCaseIa(Figure 2-4 ).VelocityvectorsandstreamlinesareshowninFigure 2-6 .Notethat @zjz=0=i 63

PAGE 64

(A)Velocityvectorsand(B)streamlinesforCaseIb. 64

PAGE 65

1{1 ).Dimensionless 2-7 ) =qbd 2ln(u4 2{14 .Notethatthemaximumdierencein ,betweensolutionswithandwithoutthemethodofimages,ismax=0:051(atx s=0:58)overx s>0:2(Figure 2-7 ).Overx s<0:2,maxincreasesneartheshoreline.Forexamplemax=0:45atx s=0:02.Eliminationofnon-anglesfromtheabstractedprototypecausestheCaseIb(methodofimages)relationshipfor tocontainlesstermsthanCaseIa.Themethodofimages,however,leadstomorecumbersomesolutionsforCasesIIandIII.ThenearequivalenceofCasesIaandIbisinvokedasjusticationforpursuingthelesscumbersomenon-imagesolutiontoCasesIIandIII. 2-8 A).Leakageisprohibitedbetweenthehorizontalbaseoftheunconnedunitandtheunderlyingconnedunit.Anadditionalvertexisincludedintheprototype(s;d)todenetheintersectionofthehorizontalbaseandthegroundwatersheddivide.Theprototypetransectisabstracted(Figure 2-8 B)suchthattheclockwiseangleat(s;d)is 2-8 C)withEquation 2{1 .GeneratetheV!YmappingbysubstitutingniteverticesandinterioranglesforCaseII(Table 2-3 )intoEquation 2{1 (seeAppendix B.3 ) sinh1[cosh(s 2]s{d(2{25) 65

PAGE 66

Dimensionlessbenthicdischargeversusdimensionlessdistance,solvedwithout(CaseIa)andwith(CaseIb)themethodofimages. Figure2-8. Benthicdischargeforcedbyalinearterrestrialhydraulicgradient,overanite-depth,hydrogeologicunit,withnoleakage(CaseII).(A)Prototype,(B)abstractedprototype,and(C)modeledschematics. 66

PAGE 67

FiniteverticesandassociatedinterioranglesforCaseII. ^S=[12 cosh2s InverttoobtaintheY!Vmapping,incomponentform dcosh((x+s) cosh2s dsinh((x+s) cosh2s Itcanbeshown(Appendix B.3 )withEquation 2{6 andthelinearterrestrialhydraulicgradienton(s;c)!(0;0) ^S=12 cosh2s Z^S1c (uz)2+w2dz =1 2cw (^S+1)ln(u^S)2+w2 (2{31) VelocityvectorsandstreamlinesareshowninFigure 2-9 .Notethat @zjz=0=is dsinh[s d(x s+1)] cosh2s 2(^S+1)ln(u^S u+1)2+1 67

PAGE 68

(A)Velocityvectorsand(B)streamlinesforCaseII. 68

PAGE 69

1{1 ).Dimensionless 2-10 ) =qbd dsinh[s d(x s+1)] cosh2s 2(^S+1)ln(u^S u+1)2+1 2{26 .CaseIIreducestoCaseIawhered!1(Figure 2-11 ).Closetoshore, forlargeraspectratios( d forsmaller d d forlarger d forsmaller d d=10tos d=0:1inFigure 2-10 ),suchthat (s d=10)>(s d=1)>(s d=0:1)overx s<0:05 (2{34) (s d=10)<(s d=1)<(s d=0:1)overx s>0:75 (2{35) Thischaracteristicmightbereferredtoasinversion,wheretheinequalitybecomesinvertedwithdistancefromshore.Inversioniscausedbyarelativelymoreconstrictedgeometryinaunitwithhigh d u+12!1,!1).Onx s>0nearthislocation,@ @z(Equation 2{32 )isgreaterforlarger d d d d foralarger d forasmaller d 2-10 ,betweenapointclosetoshoreandapointfarfromshore|isultimatelysmallerforlarger d d 2{33 failstoreportplausibleestimatesforlarge d s<1,duetou!(Figure 2-12 Aand 2-12 B).Fors d=100,u=10136atx s=1.Consider 69

PAGE 70

Dimensionlessbenthicdischargeversusdimensionlessdistance(CaseII). Figure2-11. Dimensionlessbenthicdischargeversusdimensionlessdistance,forCaseIa(solidblackline),andforCaseIIwhereaspectratiois0:01(dashedyellowline). 70

PAGE 71

2{33 isafailuretocalculateplausibleresultsatrelativelyremotelocations(u=10136<<0:15,as decreaseswithdistancefromshore.Bothrelationshipsareundenedattheshorelinediscontinuityin 2{33 risingfasterthan 2{36 ,suchthat 2{33 sjx s=0:05>@jEquation 2{36 sjx s=0:05(2{37)For0:01
PAGE 72

ExampleofCaseIIbreakdownandarticulationofthebreakdownpoint.(A)Modelspace 72

PAGE 73

Dimensionlessbenthicdischargeversusdimensionlessdistance,foranunconnedunitofnitedepth,basedon 1992 ]. Figure2-14. Dimensionlessbenthicdischargeversusdimensionlessdistance,solvedunderCaseIIconstraints,andwith 1992 ]. 73

PAGE 74

2{33 |for0:010:7andx s>0:8).Fors d=10,Px sx s=0:02dy,where isfromEquation 2{33 ,isbetween3:5and6:2timeslargerthan fromEquation 2{36 ,for0:02
PAGE 75

Cumulativedimensionlessvolumetricbenthicdischargeperunitlongshoredistanceversusdimensionlessdistance,forCaseII(solidlines)and 1992 ](dashedlines). Figure2-16. LocationofbenthicdischargeobservationsinGreatSouthBay,LongIsland,NewYork.Observationlocationsfrom 1980 ]. 75

PAGE 76

2{33 as 2-4 .Acomparisonof 1992 ]300observationsandmodeled 1{25 asymptotestozeroatlarger 2{33 .ThefamilyofcurvesgeneratedwithEquation 1{25 dierfromthosegeneratedbyEquation 2{33 fortworeasons: 1{25 isanisotropic;Equation 2{33 isisotropic.AnisotropyinEquation 1{25 accountsforhorizontalowsthatdistribute 1{25 and 2{33 dierinthenearshore(Figure 2-14 ).ThepointatwhichnearshorevariationinEquations 1{25 and 2{33 diminishes(x s>0:15,asshowninFigure 2-14 ),correspondswithx>750minthisapplication. 1980 ]detailed19measurementsof 2-18 )toGreatSouthBayatfourofthelocationsshowninFigure 2-16 .Heusedthecurve-ttingequationof 1975 ] 2-5 ,dashedlinesinFigure 2-18 ).Adopt 2-4 ,assumeanisotropicmedium,letK=Kv,andsystematicallyvary 2{33 ,and 1980 ].Equation 2{33 generateslower 1975 ]curve-ttingequationappliedby 1980 ]atthreeoffourlocations(Table 2-5 ,solidlinesinFigure 2-18 ). 76

PAGE 77

Observed(2)andcalculatedbenthicdischargeversusdistanceforGreatSouthBay. Table2-5. CurvettingandCaseIIoutputsforapplicationtoGreatSouthBay. CurvettingCaseIILocation Islip1 80:13869:4 3310355:1Islip2 35:933382:1 30303019:7HeckscherSP 47:6561:8 74603817:2Bayport 105:227259:8 60605056:3 2007 ]describedfreshwater A ,Figure A-7 ). 2004 ]modeledK=1x104m=satCIRL39,approximately180mfromthe 2001 ]reportedthat 2000 ]estimatedK=2x104m=s.Adoptthemeanoftheabove-citedvaluesfor 1963 ]showedthatthephreatic-surfaceshapeissimilartoland-surfaceshape,suchthatthephreaticsurfaceonalocalscaleisnearlyauniformdepth( z 2005 ]identifythephreaticsurfaceunderthistheoryasa\subduedreplica"ofthelandsurface.)Recognizethatapronouncedridgeexistsapproximately50mwestofthe A-4 77

PAGE 78

Observed(symbols),t(dashedlines),andcalculated(solidlines)benthicdischargeversusdistanceatfourlocationsinGreatSouthBay. 78

PAGE 79

A.1 ).Theeastfaceofthisridgedenesanembankment,tothewestofthe 2-19 ). 2001 ]reportedthat 1995 ]estimatedthe8:5mdepthofthehydrogeologicunit(d=8:5m)forthisareaofthe 2-6 ),suchthat c=7:62m0:8m (s d)local=50m (2{41) TheAtlanticCoastalRidgeis3700mwestofthe A-4 ,Appendix A.1 ).Deneasetofregional-scaleparameterswithz0:8m,suchthat c=10:1m0:8m (s d)regional=3700m (2{43) Becauseilocal>iregional,applyEquation 2{33 tothe 2-7 .Acomparisonofobserved[ 2007 ]andmodeledfreshwater 2-20 )onthe 2{33 causesthedistributiontoapproachzeroatasmaller 1992 ]anisotropicsolution(Figure 2-17 );anisotropy Table2-6. Depthtowatertablenearthe LocationLatitude[N][km]to RoselandTransferStation27.8334.30.57SJRWMD09232511-23280.490.181982-1992OrchidIsland27.7543.90.77SJRWMD10382507-23280.440.221989-1994CocoaHighSchoolatCocoa28.3833.11.04SJRWMD&USGS01700791-23280.770.181997-2007 79

PAGE 80

2-20 .However,ifanisotropywereincluded,thesimilaritybetweenmodeledandobserveddistributionsapproachingx=22:5mmightnothold(compareFigures 2-17 and 2-20 ). Table2-7. ModelinputsforapplicationofCaseIItothe ParameterValueUnitsReference A-18 A-3 K1:5x104m=s d A-3 z 2-6 LOCALSCALE A-4 A-4 s s d A-4 A-4 s s d 1977 ,Figure7]made34observationsof 2-21 ).HeidentiedLakeMuskrat,approximately50maway,asthesourceofa 1977 ]1:6mobservationismorerepresentativeoftheobservationperiod(Figure 2-22 )thanthe1:430m,70yr-average-elevationdierencebetweenLakesSallieandMuskrat(Table 2-8 ).]The64yr-average-elevationdierencebetweenDetroitLake|located1400meast-northeastofLakeSallie|andLakeMuskratis5:5cm(Table 2-8 ),suchthatcDetroit1:6m+0:055m=1:655mduringtheobservationperiod,andiDetroit1:655m 1977 ]statedthat10mof\cleansandand 80

PAGE 81

The Figure2-20. Observed(2)andcalculatedbenthicfreshwaterdischargeversusdistanceforthe 81

PAGE 82

1979 ]identify3m=s
PAGE 83

LakeSallie,Minnesota. 1977 ]observationsweremadeattheredstaricon.Averagelakeelevationdatafrom 2007 ]. Figure2-22. ElevationversusdateforLakeSallie,LakeMuskrat,andDetroitLake.Iconsareobservations;dashedlinesareaverageovertheperiodofrecordinTable 2-8 .Elevationdatafrom 2007 ]. 83

PAGE 84

Observed[ 1977 ,]andcalculatedbenthicdischargeversusdistanceforLakeSallie,Minnesota. 84

PAGE 85

ModelinputsforapplicationofCaseIItoLakeSallie. ParameterValueUnitsReference 1979 ] 1977 ] 1977 ]MUSKRAT 1977 ] 1977 ] s s d 2-21 1977 ],Table 2-8 s s d 85

PAGE 86

^Vgwtp 1990 ]developedarelationshipforthewatersurfaceinacoastalhydrogeologicunit(z(x;t)),inresponsetoanoscillatingtideonaslopingbeach(Equation 1{13 ,Section 1.2.2 ).Relocate 3-1 foratypicalsectionbetweenCapeFearandSavannahRiver),andtruncatetermsof2andhigher,suchthat =Acos(tx)ex+A[1 2+p 2cos(2t+ (3{2) HighandlowtidesinFigure 3-1 occuratt=0andt=Tt 1990 ]assumedthatthewatersurfaceandtidearecoupledatthebeachface,andstatedthatif\decouplingoccurs,analyticalsolution[forz(x;t)]isprobablyimpractical."Let 1{5 ,suchthatTt 3-2 ).WithrespecttoFigure 3-1 ,ift1=Tt 86

PAGE 87

Surfaceofthecoastalwatertableversusdistancefromshoreatmean-tide,foratypicalsectionbetweenCapeFearandSavannahRiver. Figure3-2. Shoreline;baseofthesurcialhydrogeologicunit;(A)surfaceofacoastalwatertableattime 87

PAGE 88

3-2 A,thevolumeofwaterinthehydrogeologicunit( ^Vgw ^Vgw=^Vgw:1+^Vgw:2+^Vgw:3 =Z1x2z(x;t2)dx+Zx2H sb(sbx+H)dx+H(1x2) (3{4) where 3{2 intoEquation 3{4 andsolveinnon-dimensionalform(Appendix C .1) 2 A^Vgw=H2 A(1x2)+(1x2)+ex2[sint(sinx2+cosx2)cost(sinx2cosx2)]+ 3{5 cannotbecalculateddueto1terms;howeveritispossibletodierentiateEquation 3{5 withrespecttotime(Appendix C .2) 2 A@^Vgw 3-3 .Because sbcost2=cost2(3{7) 88

PAGE 89

3{6 canbeexpressedas 2 A@^Vgw isdimensionless 3-3 ),and@^Vgw 1999 ] 1{22 ).@^Vgw 3-4 ).Whent2=0,xh=x2.Notethat>0whent1=Tt 3-3 ):thegroundwatertidalprismisindischargeatlowtide.Considerthepossibilitythatxgwtp:xf1=xl=x1.Ifthisweretrue,then 3-4 ishypothetical,andassumedforthepurposeofconceptualizingtheexchangeface.AnalternatedistributionisintroducedfollowingEquation 3{17 ,inwhich 3-2 B,thevolumeofwateruxingintooroutofthehydrogeologicunit( ^Vgw ^Vgw=^Vgw:4+^Vgw:5 =Zx2x1[(xsb)z(x;t1)]dx+Z1x2[z(x;t2)z(x;t1)]dx 89

PAGE 90

(A)Dimensionlesstideelevation;and(B)dimensionlessbenthicux,integratedacrosstheexchangeface,versusdimensionlesstime. Figure3-4. Conceptualizedinlandandoshoreextentsofthebenthicuxexchangeface,withhighandlowtide,streamlines(),andlinesofconstantheadpotential(). 90

PAGE 91

3{2 intoEquation 3{11 ,andsolveinnon-dimensionalform(Appendix C .3) 2^Vgw 2ep 3-1 ,Equation 3{12 yields^Vgw=6:7m3permlongshoredistance(m3=m).Equation 3{12 canbeexpressedas 2^Vgwtp 3{6 .(RecallthatEquation 3{7 providesarelationshipforxasafunctionoft.)Forexample,where=0:1,@^Vgw 3-3 );andP=2:7.ThisisshowngraphicallyinFigure 3-5 A,suchthat^Vgwtp=2:7A sbandx2=xh=A sb,Equation 3{12 reducesto 2cos(p 91

PAGE 92

Dimensionlessvolumeforcedbythegroundwatertidalprism,betweentwoarbitrarypointsintime( t 92

PAGE 93

3{14 andthenumericalinputsinTable 3-1 .Over0
PAGE 94

3{6 and 3{12 describe ^Vgwtp=ZTt0Z1Zxgwtp:xf2xgwtp:xf1qbf:gwtp(x;y;t)dxdydt=0(3{19)inthreedimensions. 3-6 3-7 3-8 )yieldM2tidalharmonics(Tt=12:42hr)of1:8cm,1:6cm,and1:7cm(Table 3-2 )attheMelbourneCauseway(280500000N8035031:000W),4kmsouth-southeastofthe 1987 ]calculateda1:6cmamplitudeM2harmonicatthe A-4 ).Adopttheweightedmeanoftheabove-cited, 3-2 ,asrepresentativeoftheM2harmoniconthe 3{6 andtheinputsinFigure 3-9 andTable 3-3 (Figure 3-10 ).GraphicallyidentifyrootsforEquation 3{6 ,showninFigure 3-10 (t0:1 ^Vgwtp 3{8 94

PAGE 95

WatersurfaceelevationversustimeandharmonicamplitudeversusfrequencyattheMelbourneCausewaybetweenAugust22,2000(JulianDay36759)andDecember31,2000(JulianDay36890). Figure3-7. WatersurfaceelevationversustimeandharmonicamplitudeversusfrequencyattheMelbourneCausewaybetweenMay1,2003(JulianDay37741)andSeptember11,2003(JulianDay37874). 95

PAGE 96

WatersurfaceelevationversustimeandharmonicamplitudeversusfrequencyattheMelbourneCausewaybetweenJuly23,2005(JulianDay38555)andOctober1,2005(JulianDay38625). 96

PAGE 97

TidalfrequencyandamplitudebyFastFourierTransformoftidalsignalattheMelbourneCauseway. GregoriandateTimeserieslength FrequencyPeriodAmplitudeTidalconstituent FigureJuliandate[days] [1=day][day][cm] 8/22/2000-12/31/2000131 1:9330:521.8M2 3-6 36759-36890 0:04621:724.7 0:03132:583.0 5/1/2003-9/11/2003133 1:9330:521.6M2 3-7 37741-37874 0:05219:072.0 0:03726:703.7 0:03033:381.4 0:02244:502.0 7/23/2005-10/1/200570 1:9290:521.7M2 3-8 38555-38625 0:1446:951.8 0:1019:931.7

PAGE 98

ModelinputsforapplicationofEquations 3{8 and 3{13 tothe ParameterValueUnitsReference 1995 ]via 2001 ] 3-9 3-6 3-7 3-8 Tt 3-10 3-10 2004 ] 2004 ] 2000 ]via 2001 ]K1:5x104m=s 1{14 1{12 Thefollowingadditionalconclusionsareevident,basedonFigure 3-10 : 3{16 holds: 1.2.2 ) 2007 ],withothermethods(Figures A-7 Band A-9 )]andtemporallyaveraged 98

PAGE 99

Bedelevationversusdistancefromshore,onthefreshwaterseepagefaceoftheEauGallieTransect,onJune7,2007. Figure3-10. (A)Tideelevation;(B)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforthefreshwaterseepagefaceoftheEauGallieTransect. overthedischargephaseoftheprismcycleyieldsqbd:gwtp=0:07m3=m 1990 ]statedthattheslopingbeachfacehas\strongnonlinearlteringeects"onthetidalsignalintheunit.Heidentied 99

PAGE 100

5 and 6 ofSection 1.3 ,andthestatic-headlaboratorytestsof 1977 ]and 1992 ]suggestthat 1977 ]observedasymmetryinhisstatic-headtest(Section 1.3.1.3 ).]Underthishypothesis,theseepagemeteractstolter 1992 ]suggestC6=1.(IfC=1,theseepagemetermightbeconsideredasymmetricaldevice.Recallthatbenthic 1.2.3 ).The 1.3.2 isthenasymmetrical,suchthatC0inEquation 3{23 .) 2007 ]parsed 3-11 )isthedierencebetweentotalandfreshwater A-7 ).ThepercentageoftheobservationinFigure A-7 explainedbybenthiclagoon-waterdischarge,forcedby ^Vgwtp (^Vgw 100

PAGE 101

2007 ]reported 3-10 B).Assumetobisthedischargephaseoftheprismcycle;recognizethat^Vgwtp 3-11 is =Z30m0m(9x106x35x104x2+5:1x103x+6:72x102)dx =1:63m3=dmthen (^Vgw 3-10 B),over0:33
PAGE 102

3-11 doesnotprovidean 3-11 predictsa40mwidthofthebenthiclagoon-waterdischargeface.Adoptionofthelinearmodelandthe40mwidthyields :obandthewidthoftheexchangeface.^Vgw ^Vgwtp 1.1 .)Bothprocesses( ^Vgwtp 3-2 ),witharepresentativeK=1:5x104m=s(Table 3-3 );andrecognizethattheBiscayneAquiferishyper-conductive(Kv=1x104!1x103m=s,Kh=1x102!1x101m=s, 2001 ,Table4]),witharepresentativeA=20cm[ 2001 ,Figure14].Atlocationswherethetidalsignalisgreaterandmoretypical(A50cm)thanthemicro-tidal 102

PAGE 103

Benthicdischargeofre-circulatedlagoonwaterasafunctionofdistancefromshoreonthefreshwaterseepagefaceoftheEauGallieTransect.Datafrom 2007 ]. [K=O(105m=s)]thanthehyper-conductiveBiscayneaquifer, ^Vgwtp 3{23 )andtheobservationismadeoverafullprismcycle,thenthegroundwatertidalprismmakesnonetcontributionto 3{19 .Underthisfull-cyclescenario,thegroundwatertidalprismcannotbeusedtoexplain A-1 .However, 3{19 orthevalidityofEquations 3{22 and 3{23 (see 1999 ]theoryofsubterraneanestuariesinSection 1.1 ).The 3-6 3-7 ,and 3-8 ;Table 3-2 ).Theselowerfrequencyharmonicsresultinlowermagnitude^Vgwtp 3-4 ).Nonlinearinteractionsbetween ^Vgwtp 103

PAGE 104

^Vgwtp Table3-4. Volumeofthegroundwatertidalprism( ^Vgwtp 3-2 .TM2=0:52d. 1:70:520:070:274:721:721:260:123:032:580:980:0602:019:070:500:0533:726:071:080:0831:433:380:460:0282:044:500:770:0341:86:950:270:0781:79:930:310:062 1996 ]studyareainresponsetoonetidalcycle,basedoninputsdetailedinTable 3-5 andEquation 3{6 ,isshowninFigure 3-12 .Thefollowingconclusionsareevident,basedonFigure 3-12 : 3{16 holds:

PAGE 105

(A)Tideelevation;(B)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforatypicalshorelinesectionbetweenCapeFearandSavannahRiver. 1.2.2 ) 1996 ]3x1010l=dobservation(93:8m3=dmspatiallyaveragedoverthe320km-widthofthestudyarea). Table3-5. ModelinputsforapplicationofEquations 3{8 and 3{13 tothe ParameterValueUnitsReference 1999 ] 1999 ] NOAA Tt NOAA 1999 ] 1{14 1{12 105

PAGE 106

1{13 att2=0andthemeanwatertableontheexchangefaceasEquation 1{13 att1=Tt 3{12 reducesto ^Vgw=A 2ep 221# =A 4A2ep 4A2cot1 2A3cot2A andEquation 1{22 reducesto TtA e(cossin)+p TtA2ep TtA2cot2 TtA3cot22 TtA wherethebracketedcomponents([])ofEquation 3{34 representdeviationsfromEquation 1{23 .Equations 1{23 and 3{34 arenotequivalent.ItcanbeshownthatEquation 1{23 yields^Vgw 3-5 inputs.Bycomparison,Equation 3{34 yieldsDt=7:95x106m3=sm.(Over0
PAGE 107

3-13 to 3-17 showthedependenceof@^Vgw ^Vgwtp 3-12 (shownastheblackline,ormiddlevalue,ofthethreecitedrelationshipsineachgure).Theperturbationparameterand/or 3{6 isincreasinglynonlinearwithincreasein 3-13 A).Thegroundwatertidalprismisdirectlyproportionalto 3-13 B).ThetrendlineinFigure 3-13 B,apolynomialoftheform^Vgwtp=2:01A2+10:66A+1:02,explains99:92%ofthevariationbetween ^Vgwtp 3-13 A.Equation 3{6 isincreasinglynonlinearwithdecreasein 3-14 A).Thegroundwatertidalprismisdirectlyproportionalto 3-13 B).Alocalminimumoccursintherelationshipbetween ^Vgwtp 3{6 inthisregion.ThisisgraphicallyevidentinFigure 3-13 A,byconsideringtheareabetweentheK=5x105m=s(red)curve,andtheneighboringintermediate(gray)curve,whereK=1x104m=s.ThetrendlineinFigure 3-14 B,apolynomialoftheform^Vgwtp=2x108K32x106K2+11972K+5:4,explains99:66%ofthevariationbetween ^Vgwtp 3-14 A,on5x105m=s
PAGE 108

For 1996 ]studyarea:(A)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimefortidalamplitudesthatrangefrom0:4mto1:6mand(B)thegroundwatertidalprismversustidalamplitude. Figure3-14. For 1996 ]studyarea:(A)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforhydraulicconductivitythatrangesfrom5x105m=sto5x103m=sand(B)thegroundwatertidalprismversushydraulicconductivity. 108

PAGE 109

For 1996 ]studyarea:(A)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforhydrogeologicunitdepththatrangesfrom10mto100mand(B)thegroundwatertidalprismversushydrogeologic-unitdepth. ofthevariation ^Vgwtp 3-15 A,on10m
PAGE 110

For 1996 ]studyarea:(A)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforporositythatrangesfrom0:45to0:65and(B)thegroundwatertidalprismversusporosity. Figure3-17. For 1996 ]studyarea:(A)benthicux,integratedacrosstheexchangeface,versusdimensionlesstimeforbeachslopethatrangesfrom6%to30%and(B)thegroundwatertidalprismversusbeachslope. 110

PAGE 111

1{12 ).Therefore,non-linearityinEquation 3{6 isafunctionof 3{6 isnonlinear,itismorenonlinearnearlowtide,andlessnonlinearnearhightide.ForK=5x105m=s(Figure 3-14 A),@^Vgw 3{6 |withlowtidemorenonlinearthanhightide|isalsoevidentfortheremainingvariables:A=1:6m(Figure 3-13 A),H=10m(Figure 3-15 A),=0:65(Figure 3-16 A),andsb=0:06(Figure 3-17 A).Recognizethatnon-linearityinEquation 3{6 isforcedbyquickchangesin ^Vgw 3-13 Athrough 3-17 A. 111

PAGE 112

4.1 details 4.2 anite-depth,porousmedium;andSection 4.3 anite-depth,porousmediumoveraninnite-depth,porousmediumofdieringpermeability. 1957 ]investigatedtherolethatarigid,porousbedplaysindampingapropagatingsurfacegravitywave.Theporousmediumishomogeneousandofinnitedepth;thewaveislow-amplitudeandlinear.Theyfoundthattheporousbedresultsinalossofenergyfromthewave,duetoviscouspercolationofuidacrossthesediment-waterinterface,forcedbythepressuregradientatthebed.Thispercolationis 4-1 ;detailsinAppendix D.1 ),inwhichthegoverningequationsaretheLaplacianofthevelocitypotential( (4{1) (4{2) Theyusedfourboundaryconditions:adynamicfreesurfaceboundarycondition @t(4{3)akinematicfreesurfaceboundarycondition @t(4{4) 112

PAGE 113

CaseI: 1957 ]boundaryvalueproblemforalinearsurfacegravitywavepropagatingoveraporousmediumofinnitedepth. adynamicbottomboundarycondition 113

PAGE 114

4{1 4{2 ,andws(x;z!;t)=0.Theirsolutionusesfourequations(Equations 4{3 through 4{6 )andfourunknowns( 4{5 andtheBernoulliequationatthebed @t(x;z=h;t)(4{10)showthat {(4{11)WithEquation 4{6 ,thedenitionofthevelocitypotentialatthebed @z(x;z=h;t)(4{12)andDarcy'sLaw(Section 1.2.1 )atthebed @ @zps(x;z=h;t)(4{13)showthat (4{14)where 1{3 andnotethat 4{11 and 4{14 ,linearizeEquation 4{3 atthesurfacesuchthat @tjz=0(4{15)andusethedenitionof =ae{(xt)(4{16) 114

PAGE 115

(4{18)isidentiedby 1957 ]asthefundamentaldimensionlesspermeabilitymodulus.Finally,linearizeEquation 4{4 atthesurfacesuchthat @tjz=0=@ @tae{(xt)(4{19)andlinearizethedenitionof @zjz=0(4{20)toshowthat 4{9 intoEquation 4{21 ;toshowthat (4{22) (4{23) whereEquation 4{22 isthedispersionequationfortheclassic,impermeable-bottom,two-dimensional,periodicwater-waveboundaryvalueproblem[ 2000 ,Equation3.34];and 4{11 4{14 4{17 4{22 ,and 4{23 conformtoresultspresentedin 2000 ,Section9.4].Finally,use 115

PAGE 116

4{13 ,and 4{17 ,toshowthat (4{24) (4{25) where 4{8 with ^h 4-2 ;detailsinAppendix D.2 ).Thesolutionusesveequations(Equations 4{3 through 4{6 andEquation 4{28 )andveunknowns( 4{28 andDarcy'sLaw @ @zps(x;z=h^h;t)(4{29) 116

PAGE 117

CaseII:Aboundaryvaluerepresentationofalinearsurfacegravitywavepropagatingoveraporousmediumofnitedepth. InafashionsimilartoCaseI,Equations 4{5 4{6 4{10 4{12 ,and 4{13 yield {cosh(^h) (4{30) sinh(^h) (4{31) Equations 4{15 4{16 4{30 ,and 4{31 yield 4{19 and 4{20 toshowthat ^Pfinite=tanh(r^h)(4{34) 117

PAGE 118

4{9 andtheCaseIsmall-termargumentsyieldEquation 4{22 and 4{13 and 4{32 toshowthat (4{36) (4{37) where ^Qfinite=2{^h 2e2r^h>>2{^h 4{33 )reducestothedispersionequationforCaseI(Equation 4{21 ) 4{35 )reducesto{forCaseI(Equation 4{23 ) 4{36 )andimaginary(Equation 4{37 )componentsof 4{24 and 4{25 ) 4{2 )intotwolayers (4{39) (4{40) 118

PAGE 119

4{27 )with suchthatps2satisesws(x;z!;t)=0,updatethedynamic(Equation 4{5 )andkinematicbottomboundaryconditions(Equation 4{6 ) (4{43) (4{44) andinstituteadditionaldynamicandkinematicboundaryconditionsattheinterfaceofLayers1and2 (4{45) (4{46) toadaptCaseIItoatwo-layersystem|anite-depthporousmedium(denotedwithsubscript1)overaninnite-depthporousmedium(denotedwithsubscript2)|whereeachhydrogeologicunitishomogeneousbutofdierentisotropic 4-3 ;detailsinAppendix D.3 ).Thesolutionusessixequations(Equations 4{3 4{4 ,and 4{43 through 4{46 )andsixunknowns( 4{41 4{42 ,and 4{45 ;andD=k2 4{29 and 4{46 ;wherek2 4-4 A).Wherek2 119

PAGE 120

CaseIII:Aboundaryvaluerepresentationofalinearsurfacegravitywavepropagatingovertwo-layer,porousmedium:thetoplayerisnitedepth,thebottomlayerisinnitedepth.Bothlayersarehomogeneousandofdierentisotropicpermeability. 120

PAGE 121

4-4 B).UseEquations 4{10 4{12 4{13 4{43 ,and 4{44 toshowthat WithEquations 4{15 4{16 4{47 4{48 ,showthat D.3 )withEquations 4{19 ,and 4{20 ^P2layer=tanh(r^h)+k2 4{9 andtheCaseIsmall-termargumentsyieldEquation 4{22 and (4{53) (4{54) 121

PAGE 122

Stratigraphythatrepresents(A)alowpermeabilityhydrogeologicunitoverahighpermeabilityhydrogeologicunit(permeabilityratiogreaterthanunity),and(B)ahighpermeabilityhydrogeologicunitoveralowpermeabilityhydrogeologicunit(permeabilityratiolessthanunity). 122

PAGE 123

^Q2layer={^h(1k2 (k2 (4{55) Notethatas^h!0 4{49 )reducestoCaseI 4{17 ) 4{50 )reducestothedispersionequationforCaseI(Equation 4{21 ) 4{52 )reducesto{forCaseI(Equation 4{23 ) 4{53 and 4{54 )reducetothecomponentsforCaseI(Equations 4{24 and 4{25 ) 4{21 4{33 ,and 4{50 ),{(Equations 4{23 4{35 ,and 4{52 ),andrealandimaginarycomponentsof 4{24 4{25 4{36 4{37 4{53 ,and 4{54 )showacommonform.Specically, (4{58) (4{59) aretherealandimaginarycomponentsofdimensionless ^A=kagre{x^P cosh(rh)(4{60) 123

PAGE 124

4-5 ),and^Pand^QaredetailedinTable 4-1 .Let qbf:wave qbf:wave=1 where=0.(Itwillbeshowninthenextsectionthatwhere<0:1, Table4-1. Coecientsforthedeterminationofbenthicuxdrivenbylinear,surface-gravitywaves,whichpropagateoverapermeablebedofoneortwolayers. AquiferdepthCaseSectionSurcialUnderlying^P^Q 4.1 innite-10II 4.2 nite-tanh(r^h)2i^h 4.3 niteinnitetanh(r^h)+k2 (k2

PAGE 125

Dimensionlessbenthicuxanddimensionlesssurfacewaterdisplacementversusdimensionlessphaseposition,forbenthicuxamplicationparameterbetween0and1. ThisisevidentwithvisualinspectionofFigure 4-5 ;analyticalanalysis;andanintuitivemass-conservationargumentthatifEquation 4{63 werenotcorrect,waterbodiesforcedbysurfacegravitywaveswouldeithergainorloosemassoverlongtimescales. 4-5 showsthat 4{61 as (4{65) 125

PAGE 126

4-6 4-7 ,and 4-8 )suchthatjcos(rxt)j>>jsin(rxt)jandjsin(rxt)j>>jcos(rxt)j.Thesin(rxt)andcos(rxt)termsofEquations 4{58 and 4{59 canthereforebeneglectedwhere<0:1(Figure 4-5 ).Typically,0:01.Underuniquecircumstances,suchaswhereR>103andrh<0:01,>0:1andthe 4{58 and 4{59 mightberetained.Where 4-6 ).ForCaseII(Figure 4-7 )andCaseIII(Figure 4-8 ),^PR(1)fordeepwaterconditionsand2+^Qforshallowwaterconditions.ClearlyforCaseI, 4-7 ),andforCaseIIIwherek2 4-8 Aand 4-8 B).Thesand-over-rockhydrogeologicunitorientationofFigure 4-4 BapproachesCaseII(CaseIII!IIcongruence)wherek2 4-7 and 4-8 A).Finiter^hcausesincreasesin 4-8 Cand 4-8 D).TheconnedhydrogeologicunitorientationofFigure 4-4 Acausesamplicationof 1957 ]identifytheimaginarycomponentofthewavenumber( 126

PAGE 127

Benthicuxamplicationparameterandcomponents( 1957 ]fundamentaldimensionlesspermeabilitymodulusbetween107and103. Figure4-7. Benthicuxamplicationparameterandcomponents( 1957 ]fundamentaldimensionlesspermeabilitymodulusof105,overdimensionlesshydrogeologicunitdepthfrom0:01to1. 127

PAGE 128

Benthicuxamplicationparameterandcomponents( ^Q 1957 ]fundamentaldimensionlesspermeabilitymodulusof105,overdimensionlesshydrogeologicunitdepthfrom0:01to1,forfourpermeabilityratios(A)0.01,(B)0.1,(C)10,(D)100. 128

PAGE 129

4-9 shows R)versusdimensionlesssurfacewaterdepth(rh)for0:01forr^h=constant) ^h 4-10 shows R)versusdimensionlesssurfacewaterdepth(rh)for0:01forr^h=constant)regardlessofk2 4-10 Aand 4-10 B),whichoccurswiththesand-over-rockhydrogeologicunitorientation(Figure 4-4 B) Rjr^h=0:01<{h Rjr^h!1forrh=constant) 4-9 and 4-10 A) Rjk2 Rjk2 ^h

PAGE 130

4-10 Cand 4-10 D),whichoccurswiththeconnedhydrogeologicunitorientation(Figure 4-4 A) Rjr^h=0:01>{h Rjr^h!1forrh=constant) Rjk2 Rjk2 ^h ^h 1957 ]re-arrangedEquation 4{23 ,suchthattheright-handsideisafunctionofh Lo,where 4{18 ,expressedrh=2 Loh,and hr Lo =s gh Lo toobtain Lo)3=2 Lo+sinh(4h Lo)(4{69)wheretheleft-handsideis 1957 ]dimensionlessdecayparameter.Multiplytheright-handsideby ^P 4{69 toaddressbothCaseIIandCaseIII,where Lo^h h(4{70)h Loisrelativedepthand^h histhedepthratio.Plotsofthedimensionlessdecayparameterversush LoareshowninFigure 4-11 forCasesIandII,andFigure 4-12 forCasesIandIII. 1957 ]pointoutthatunderCaseIconstraints|foragiven 130

PAGE 131

@(h Lo)[4(h Lo)3=2 Lo+sinh(4h Lo)]=0 (4{71) Lo=3 84h Lo+sinh(4h Lo) 1+cosh(4h Lo)! suchthath Lo=0:13560forCaseI,andthedimensionlessdecayparametertakesthevalue0:14389.Graphically,thispointcorrespondstothepeakoftheCaseIcurve(^h h!1)inFigures 4-11 and 4-12 .( Lo=0:13.)UnderCaseIconstraints,forh=3m,maximumdampingoccursforawavewithaperiodof (0:13560)(9:806ms2)=3:76sbyEquation 4{68 ;andifk =104s,themaximumdampingis 0:14389(104s)p (3m)3=2=2:174x105m1UnderCasesI,II,andIII,thedecayparameterisbounded,suchthatamaximumexistsover0:1<^h h<1(Figures 4-11 and 4-12 ).UnderCaseIIconstraints,thedimensionlessdecayparameterdecreasesastheratioofhydrogeologicunitdepthtosurfacewaterdepth(^h h)decreasesfrom1(Figure 4-11 ),suchthatdeephydrogeologicunitsdamp 4-4 B),thedecayparameterdecreasesastheratioofsurcialhydrogeologicunitdepthtosurfacewaterdepth(^h h)goesnite(Figures 4-12 Aand 4-12 B);andCaseIII!IIcongruenceoccurswherek2 4-11 and 4-12 A).Wherek2 4-4 A),thedecayparameterincreasesastheratioofsurcialhydrogeologicunitdepthtosurfacewaterdepth(^h h)goesnite(Figures 4-12 Cand 4-12 D).Thelargerthedeviationink2 131

PAGE 132

4-12 A(largerchange)versus 4-12 B(smallerchange),and 4-12 D(largerchange)versus 4-12 C(smallerchange)). 1957 ]observationofamaximuminthedimensionlessdecayparameterisalsoseeninadimensionlessamplitudeof 4{60 kag^A=rh @(rh)rh cosh(rh)rhsinh(rh) cosh2(rh)=0 (4{74) (4{75) Itcanbeshown|foragiven 4-13 forCasesIandII,andinFigure 4-14 forCasesIandIII.ForCaseII,nitedimensionlesssurcialhydrogeologicunitdepth(r^h!0:01)causestheamplitudeof 4-13 ).ForCaseIII,wherek2 4-4 B),nitedimensionlesssurcialhydrogeologicunitdepth(r^h!0:01)causestheamplitudeof 4-14 Aand 4-14 B);andCaseIII!IIcongruenceoccurswherek2 4-13 and 4-14 A).Wherek2 4-4 A),nitedimensionlesssurcialhydrogeologicunitdepth(r^h!0:01)causestheamplitudeparametertoincrease(Figures 4-14 Cand 4-14 D).NotethatCaseIisrepresentedinFigures 4-13 and 4-14 withr^h!1.Thelargerthedeviationink2 132

PAGE 133

4-14 A(largerchange)versus 4-14 B(smallerchange),and 4-14 D(largerchange)versus 4-14 C(smallerchange)). 1957 ]explainthatmaximumdecayoccursatintermediaterelativedepthbecausethepressuregradient,whichcreatesthedampingandforces 4{13 ,andnotethat 4{58 and 4{59 kqbf:wave:r=^A k(cos(rxt)sin(rxt)) (4{77) kqbf:wave:{=^A k(sin(rxt)+cos(rxt)) (4{78) wherethepressuregradienthasrealandimaginarycomponents.Themaximuminthepressuregradientthenclearlyfollowthemaximumintheamplitudeparameter,outlinedinEquations 4{74 and 4{75 2004 ]observedH=12cm(a=6cm),withsevenobservationsatCIRL39,onthe 2004 ,AppendixB-7]observedT<1satCIRL39;theauthorobservedT1sonJune7,2007forsimilar 4-2 and 4-3 .Thehydrogeologicframeworkunderthe A-3 ).DimensionandhydraulicconductivityestimatesfortheseunitsaredetailedinTables 4-2 and A-3 2004 ]modeledthehydraulicconductivityasafunctionofdepthfortheupper2:8mofthesurcialaquifer(Figure A-18 )onthe 133

PAGE 134

4-2 and 4-3 withthesubscriptsa,b,andc,whereaisthesurfacezone).Variousassumptionsarerequiredtotthemulti-layeredprototypehydrogeologicsystemtothemodelsdescribedinCasesI,II,andIII.Usetheharmonicmean(^h 1990 ,Equation3.22].ThefollowingscenariosaredetailedinTable 4-3 : ^h ^h ^h ^h 2004 ]eldobservations ^h 2004 ]eldobservations ^h ^h ^h ^h 2004 ]eldobservations,and 2004 ]eldobservations 134

PAGE 135

ModelinputsfortheapplicationofCasesI,II,andIIItothe A-8 1990 ,Table1.5]T1:00sassumedL01:56m=gT2=2h0:9mSection A.1 2004 ]^ha1:0mFigure A-18 ^hb1:4mFigure A-18 ^hc0:4mFigure A-18 ^hsa8:5mTable A-3 ^hucu30mFigure A-3 ,Table A-3 ^hufa130mTable A-3 ^hmcu150mTable A-3 ^hlfa500mTable A-3 A-18 A-18 A-18 A-3 A-3 A-3 A-3 1{3 1{3 1{3 1{3 1{3 1{3 1{3 1{3 6:281=s=2 Tr4:0321=mEquations 4{22 liter1liter 1000cm335:453g 1pptCl(1030kg=m31000kg=m3) 35pptSa+1000kg=m3

PAGE 136

Dimensionlessbenthicuxdampingcoecientversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forCaseI(Figure 4-1 )|wheredimensionlesshydrogeologicunitdepthapproaches1|andforCaseII(Figure 4-2 ). 136

PAGE 137

Dimensionlessbenthicuxdampingcoecientversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forCaseI(Figure 4-2 )|wheredimensionlesshydrogeologicunitdepthapproaches1|andforCaseIII(Figure 4-3 ). 137

PAGE 138

1957 ]dimensionlessdecayparameterversusrelativedepthfordepthratiosbetween0:1and1,wheredepthratioapproaching1representsCaseIanddepthratiolessthan1representsCaseII.NotethatCaseIconformsto 1957 ,Figure2]. 138

PAGE 139

1957 ]dimensionlessdecayparameterversusrelativedepthfordepthratiosthatrangefrom0:1to1,forfourpermeabilityratios(A)0.01,(B)0.1,(C)10,(D)100,wheredepthratioapproaching1representsCaseIanddepthratiolessthan1representsCaseIII.NotethatCaseIconformsto 1957 ,Figure2]. Figure4-13. Dimensionlessbenthicuxamplitudeparameterversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,wheredimensionlesshydrogeologicunitdepthapproaching1representsCaseIanddimensionlesshydrogeologicunitdepthlessthan1representsCaseII. 139

PAGE 140

Dimensionlessbenthicuxamplitudeparameterversusdimensionlessdepthfordimensionlesshydrogeologicunitdepthsfrom0:01to1,forfourpermeabilityratios(A)0.01,(B)0.1,(C)10,(D)100,wheredimensionlesshydrogeologicunitdepthapproaching1representsCaseIanddimensionlesshydrogeologicunitdepthlessthan1representsCaseIII. 140

PAGE 141

ApplicationofCasesI,II,andIIItothe Units ABCDEABABReference 4-2 4-2 ^h m 8:51:0 Table 4-2 344:0 Table 4-2 R 1:7x1078:3x1097:2x1056:4x1059:6x105 4{18 ^P 1:001:00 Table 4-1 0:00770:00770:00770:00770:0077 0:00770:0077 0:00770:0077 Figures 4-11 and 4-12 0:190:19 0:190:19 Figure 4-13 and 4-14 4{57 Figures 4-9 through 4-12 0:0100:010 0:0100:010 Figures 4-9 and 4-10 4-1 4{61 Figures 4-6 4-7 ,and 4-8 ^A m=s 4{60 Figures 4-13 and 4-14 0:02912:46 12:4611:10 2qbf:wave 0:00923:97 3:973:53 Equation 4{62 CaseIA:k=k(f[ka;kb;kc;ksa;kucu;kufa;kmcu;klfu])CaseIB:k=k(f[ksa;kucu])CaseIC:k=ksaCaseID:k=kaCaseIE:k=k(f[ka;kb;kc])CaseIIA:k=k(f[ka;kb;kc;ksa;kucu;kufa;kmcu;klfu])CaseIIB:k=ksaCaseIIIA:k1=ksak2=k(f[kucu;kufa;kmcu;klfu])CaseIIIB:k1=kak2=k(f[kb;kc])

PAGE 142

4-2 and 4-3 4-3 )becausetheharmonicmeanweighsthelow 2004 2007 ]foundthatthe A-11 A).Thetransportof 4-3 representfourabstractionclasses:(1)ka(^h=1m)isdiscretelymodeled(CasesIDandIIIB),(2)ka,kb,andkcarelumped(^h=2:8m)(CaseIE),(3)ksa(^h=8:5m)isdiscretelymodeled(CasesIC,IIB,andIIIA),and(4)kaorksaarelumpedwithhydrogeologicunitsthatexistadepthsgreaterthan8:5m(CasesIA,IB,andIIA).Theseclassesarenumberedinorder 142

PAGE 143

2004 2007 ],suchthatClass1ispreferredtoClass4. A.2 .Theaverage A-1 ,andFigures A-5 and A-7 ).Ifseepagemetersareasymmetricobservationaldevices[as 1977 ]observed(Section 1.3.1.3 )],suchthatthedischargesideofthe 3{22 and 3{23 .Underthishypothesis(withC=0),theobserved7:1cm=daverageagreesnicelywith1 2qbf:wavemodeledunderClassI(3:53cm=d;CasesIDandIIIB;modelrepresents3:53 7:1=50%ofobservation),ClassII(5:30cm=d;CaseIE;modelrepresents75%ofobservation),andClassIII(3:97cm=d;CasesIC,IIB,andIIIA;modelrepresents56%ofobservation),asdetailedinTable 4-3 .Notethatqbf:waveisrepresentativeofonehalfawaveperiod;1 2qbf:waveisaveragedovertheentirewaveperiod.AllthreeClassestimatesarereasonablebecausetheydonotover-describe|ordescribemorethan100%of|theobservations.Otherprocesses(orstatisticalorabstractionerror)explaintheremaining2550%oftheobservation.Ifseepagemetersaresymmetricobservationaldevices,suchthatboth A-1 and A-2 .Independentofthesymmetricalorasymmetricalbehavioroftheseepagemeter, 1999 ]theoryofsubterraneanestuariesinSection 1.1 ). 2004 ]notedthathigher 143

PAGE 144

A-5 Band A-6 B).Theyconcludedthat 4-3 providearationalbasisbywhichaprocessotherthanterrestrialhydraulicgradientforcesa 144

PAGE 145

145

PAGE 146

5-1 and 5-2 ).Forexample,atLakeSallie,itmaybereasonabletoinvokegeographicandgeometricargumentstohypothesizethatterrestrialhydraulicgradient(i=0:032)dominatespressuregradientforcedbytidaloscillation.ThisisevidentinFigure 2-23 ,wheretheanalyticalequationfor 2{33 )bounds 1977 ]near-shoreobservations(analyticalestimate:O(1)cm=d;observation:O(1)cm=d).Inmorediverseforcingenvironments,itmaybereasonabletohypothesizethatacombinationofforcingmechanisms|suchasthegroundwatertidalprism,surfacegravitywave,theterrestrialhydraulicgradient,windpumping,bio-turbation,densitygradient,etc.|contributeto 3.3 ,theanalyticalequationfor 3{13 )isshowntoexplain23%of 1996 ]observations(analyticalestimate:21:9m3=dm;observation:93:8m3=dm).The23%-estimateisreasonableinthatitisofthesameorderofmagnitudeas 3-3 )andwave(a=6cm;Table 4-2 )forcinginthe 5-2 );a1:7cm-amplitudetidegeneratesa 3.2 );anda6cm-amplitudesurfacegravitywavegenerates 146

PAGE 147

2qbf:waveofbetween3:5and5:3cm=d(Table 5-2 ).Theapparentrelativelylow-amplitudewaveandtidalenvironmentgenerate 2 ): 2-7 ). 2-7 ). 2.2 ). 2{33 )and 1992 ](Equation 2{36 )solutionsareinagreementwheredimensionlessoshoredistancesaregreaterthanapproximately0:2(Figure 2-14 ). 1992 ]solution(Equation 2{36 )exhibitsalocalmaximumwheretheaspectratioisapproximatelyequaltounity.Foranygivendimensionlessoshoredistance,(overdimensionlessoshoredistancesbetween0:05and0:7)Equation 2{36 increaseswithdecreasingaspectratio,foraspectratiosbetween1and10;butdecreaseswithdecreasingaspectratio,foraspectratiosbetween0:01and1(Figure 2-13 ). 147

PAGE 148

2{33 )and 1992 ](Equation 2{36 )solutionsexhibitinversion.Inversionoccurswheretheinequalitythatdescribesdimensionless 2-10 ). 2{33 ,isupto1:4timeslargerthandimensionless 2{36 .Foranaspectratioequalto1,thesumofdimensionless 2{33 ,isupto1:8timeslargerthandimensionless 2{36 (Figure 2-15 ). 3 ): 3{16 ). 3{16 3.1 ). 3-3 ). 3{6 (Section 3.1 ). 3.2 ). 3.5 ). 4 ): 4.4 ). 4.6 ). 4-13 ). 4-14 ). 4.5 ,Figures 4-9 4-10 A, 4-11 4-12 A, 4-4 B). 148

PAGE 149

4.5 ). 4.5 ). 4.6 ). 4.7 ). 4.5 ). 4.6 ). 4.5 ). 4.6 ). 4.6 ). 4.6 ). 4.6 and 4.7 ). 4.7 ). 4.6 ). 4.6 ).The 1.3.2 isanasymmetricalobservationtechnique.Theconcentrationof 149

PAGE 150

qbf=1 tZt2t1qbf(t)dt(5{1)when 6 ofSection 1.3 providesarationalbasisbywhichobservationsof 2004 ], 2006 ]and 2006 ]areexceptions,inwhichbio-irrigationinthe 2004 ]and 150

PAGE 151

1997 ]detailstheimplementationofanalyticalmodelsofdiagenesis,andincludesuxesforcedbybioturbation.However,recent,detailedoverviewsof 2006 ].Agreatopportunityexiststore-castormigratemethodsthatalreadyexistinthegeneralscienticliteraturetothe 1957 ]and 1990 ],whichweredevelopedtomeetotherscienticobjectives( 1957 ]and 1990 ].Atsomelocations,theisotropicassumptionmaynotbeappropriate.Forthisreason,futureworkshouldfocusongeneralizingthemethodsdetailedinthisworktoincludeanisotropy.Ofcourse,thiswillrstrequirethattheworkof 1957 ]and 1990 ]begeneralizedtoincludeanisotropy. 1957 ]assumethatthewaveislinearandthebedisrigid.Methodsexisttoaddressnonlinearwaves[ 1994 ],andtoaddressthedampingofsurfacegravitywavesbynon-rigidbeds[ 1978 ; 1981 ; 1999 ].Futureworkshouldfocusongeneralizing 1990 ]assumesaone-layerhomogeneousmedium,andthattideandthewatersurfaceintheporousmediumarecoupledatthebeachface.Theseassumptionsmaynotbeappropriateatsomelocations.Futureworkshouldfocusongeneralizing 2.3 ]exhibitinversionwhentheinequalitythatdescribesdimensionless 151

PAGE 152

2-10 ).Futureworkshouldfocusonobservinginversioninacontrolledlaboratorysetting,andtheninaeldsetting. 1992 ]solution(Equation 2{36 )exhibitsalocalmaximumnearanaspectratioapproximatelyequivalenttoone,suchthatatanygivendimensionlessdistancefromshore(overdimensionlessoshoredistancebetween0:05and0:7),Equation 2{36 increaseswithdecreasingaspectratio,foraspectratiosbetween1and10;butdecreaseswithdecreasingaspectratio,foraspectratiosbetween0:01and1(Figure 2-13 ).Futureworkshouldfocusonobservingthislocalmaximuminacontrolledlaboratorysetting,andtheninaeldsetting.Theanalyticalsolutionfor 5-3 ).Whilealargenumberof 3 and 4 ,andTable 5-2 ,terrestrialhydraulicgradientmightonlyaddressaportionoftheforcesthatdrive ^Vgwtp 3.2 )|ahypothesisworthyoffutureinvestigation|andthatthe ^Vgwtp 5-3 isasummaryofeortstocharacterize 2003 ]|includedcirculation,variationin 152

PAGE 153

2003 ], 2000 ],and 1999 ]|includedtideasan 2003 ]statedthatconsiderationoftidalpumpingandothertransientprocessesmight\introduceameansofresolvingtheapparentdiscrepancybetweenmodel-basedpredictionsof 1992 ])mightbeusedtomodelthewatersurfaceelevationanddensitydistributioninthesurfacewaterbody|wheredensityisafunctionofsalinityandtemperature|andcirculationisforcedbytide,wind,freshwaterinow,andtheCoriolisforce.Avariable-densitygroundwatermodelforowandtransport(suchasSEAWAT[ 2002 ])mightbeusedtomodelpressureandadensitydistributioninthegroundwatersystem,wheredensityisafunctionoftemperatureandsalinityandowisforcedbyrecharge,evapotranspiration,andpressure(orpressuregradients)atdomainboundaries.ThesemodelsmightbecoupledatthebedwithDarcy'sLawandaconservationequationfortemperatureandsalinity,suchthatthepressureanddensitygradientsthatexistacrossthebedforce E .)Themodelcanbeappliedonaregional[O(110km)],local[O(1100m)],orlaboratory[O(1m)]scale.Themodelcanbevalidatedwithcomparisontopressure,temperature,andsalinitydatainthegroundwaterdomain;andwatersurfaceelevation,velocity,temperature,andsalinitydatainthesurfacewaterdomain.Thisvalidationdata 153

PAGE 154

3.1 ).Themodelallowsfortheestimationofa 2002 ; 2003 ; 2003 ; 2006 ]. 2002 ]detail45studiesofdirectmeasurementsof 1996 ]describealaboratoryexperimentinwhichdyeinjectedintosedimentbelowa2:5cm-highsandmoundwasadvectedatarateinexcessof70cm=d,intosurfacewaters.The70cm=duxwasforcedbyacurrentwitha10cm=svelocity8cmabovethebed.Surprisingly,awidely-citedpaperdoesnotexistinwhichtheresponseofthe 5 and 6 ofSection 1.3 ,andthestatic-headlaboratorytestsof 1977 ]and 1992 ],suggestthat 154

PAGE 155

3{23 ).Undertheasymmetricassumption,observedandanalyticallyestimated 4-3 ).Theabove-describedtrialofthe 155

PAGE 156

Summaryofkeyinputparameters,andresultsoftheapplicationofanalyticalequationstoselectedlocations. inputanalyticalestimate d[]ref. GreatSouthBay 0:000353:8x10520Tab. 2-4 0:846Eqn. 2{33 0:846 0:373 0:197Islip2 0:00033:5x10520Tab. 2-4 4:018Eqn. 2{33 3:026 2:728 2:036 0:387HeckscherStatePark 0:000388:6x10520Tab. 2-4 4:415Eqn. 2{33 4:031 3:746 3:176Bayport 0:00057:0x10520Tab. 2-4 6:120Eqn. 2{33 5:027 5:027 4:036 2:455 0:894IndianRiverLagoon 0:141:5x1046Tab. 2-7 2:015Eqn. 2{33 0:818 0:320 0:123LakeSallie 0:0321:0x1055Tab. 2-9 0!6:72!22Eqn. 2{33 1:0x104Tab. 2-9 0:08646:710!22 1:0x103Tab. 2-9 0:6486:718!22 IndianRiverLagoon 1:71:5x1041:8x1021:6x101Tab. 3-3 0:270!1Eqns. 3{8 and 3{27 0:420!1Eqns. 3{8 and 3{30 SouthAtlanticBight 805:0x1043:7x1014:7x102Tab. 3-5 21:90!1Eqn. 3{13 qbf:wave[cm=d][m]fromshoreref. IndianRiverLagoon 61:3x10117:2x105Tab. 4-3 3:97190CaseIC:Eqns. 4{24 and 4{62 61:2x10116:4x105Tab. 4-3 3:53190CaseID:Eqns. 4{24 and 4{62 61:8x10119:6x105Tab. 4-3 5:30190CaseIE:Eqns. 4{24 and 4{62 61:3x10117:2x105Tab. 4-3 3:97190CaseIIB:Eqns. 4{36 and 4{62 61:3x10113:0x10147:2x105Tab. 4-3 3:97190CaseIIIA:Eqns. 4{53 and 4{62 61:2x10112:4x10116:4x105Tab. 4-3 3:53190CaseIIIB:Eqns. 4{53 and 4{62

PAGE 157

Summaryofobservations,andresultsoftheapplicationofanalyticalequationstoselectedlocations. ObservationAnalyticalestimate qbd:fresh observation[][cm=d][m] [cm=d][m] [%] GreatSouthBay 2-18 A 0:846Eqn. 2{33 79% 1:446 0:846 56% 1:273 0:373 27% 0:297 0:197 66%Islip20:0003a 2-18 B 4:018Eqn. 2{33 91% 1:126 3:026 270% 0:928 2:728 323% 1:136 2:036 185% 0:387 0:387 93%HeckscherStatePark0:00038a 2-18 C 4:415Eqn. 2{33 86% 4:131 4:031 99% 3:446 3:746 108% 3:676 3:176 87%Bayport0:0005a 2-18 D 6:120Eqn. 2{33 44% 3:527 5:027 146% 3:827 5:027 133% 3:236 4:036 125% 1:955 2:455 126% 1:194 0:894 78%IndianRiverLagoon0:14 3:015Fig. 2-20 2:015Eqn. 2{33 67% 1:917:5 0:818 44% 0:820 0:320 40% 0:122:5 0:123 127%LakeSallie0:032 0!6:71!22Fig. 2-23 0!6:7b2!22Eqn. 2{33 N/A 0:0864!6:7c10!22 0:648!6:7d18!22 observation[cm][m3=dm][m] [m3=dm][m] [%] IndianRiverLagoon1:7 1:63e0!30Eqn. 3{26 0:27f0!1Eqns. 3{8 and 3{27 17% 0:42g0!1Eqns. 3{8 and 3{30 26% 1:47e0!22 0:27f0!1Eqns. 3{8 and 3{27 18% 0:42g0!1Eqns. 3{8 and 3{30 29% 1:71h0!40Eqn. 3{31 0:27f0!1Eqns. 3{8 and 3{27 16% 0:42g0!1Eqns. 3{8 and 3{30 25% [m3=dm] SouthAtlanticBight80 93:80!20;000 1996 ] 21:90!1Eqn. 3{13 23% qbf:wavedist.fromshoreref. observation[cm][cm=d][m] [cm=d][m] [%] IndianRiverLagoon6 7:1190Appendix A.2 3:53j190Eqns. 4{24 or 4{53 ;and 4{62 50%n 4{24 and 4{62 75%n 4{24 4{36 ,or 4{53 ;and 4{62 56%n aModeled{seeTable 2-5 3-11 3-11 3{23 ,suchthatqbd=0:5qbf:wave

PAGE 158

Numericalmodelsofbenthicux. 2003 ]aFTLOADDS2Dxyvariablevariabletransient-3Dhomogeneousvariable 2003 ]SEAWAT0Dconstant-constant-3Dhomogeneousvariable 2003 ]FEFLOW0Dconstant-constant-2Dxzheterogeneousvariable 2003 ]SUTRA0Dconstant-constant-2Dxzhomogeneousvariable 2003 ]MODFLOW0D--constant-2Dxyheterogeneous2002 ]MODFLOW/SWIFT2Dxyconstant-constant-3Dheterogeneousvariable 2001 ]FEFLOW0Dconstant-constant-2Dxzand3Dhomogeneousvariable 2001 ]FEFLOW0D--constant-2Dxyheterogeneous2000 ]unnamedcode0Dconstant-transient-2Dxzhomogeneousvariable 1999 ]bunnamedcode0Dconstant-transient-2Dxzhomogeneousvariable 1998 ]MODFLOW0D--constant-2Dxzheterogeneous1990 ]GROSEEP0D--constant-2Dxzheterogeneous2003 ]and 2003 ].balsosee 1996 ].

PAGE 159

2002 ]( 2007 ]( 1.5 A-1 ),boundedonthenorthbyPoncedeLeonInlet(VolusiaCounty)andonthesouthbySt.LucieInlet(MartinCounty).The A-2 ).Theunderlyinghydrogeologicframeworkconsistsofthreeunits:anapproximately20mthicksurcialaquifer,a10to40mthickconningunit,andtheFloridianaquifer(Figure A-3 ).ThetransectdetailedinFigure A-3 islocatedapproximately15kmwestof,andorientedparallelto,thewesternshoreofthe A-4 );anembankmentwithanapproximate40%slopeontheeastsideofthelocalridgeiswithin10moftheshoreline,onthe 159

PAGE 160

2002 ]establishedthe 2007 2004 ]. 2007 ]detailthe A-1 ). A-1 .EstimatesmadebyothermethodsaresummarizedinTable A-2 .Uncertaintyassociatedwithobservationerrorisexpressed,whereappropriate,inthereferencedguresorcitedliterature.Dataaretabulatedbylocation,fromwesttoeast.ReferenceismadeinthesetablestoFigures A-5 to A-13 .TheremainderofSection A.2 detailsobservationssummarizedinTables A-1 and A-2 160

PAGE 161

Thewesternterminusofthe 161

PAGE 162

2003 ,Figure3.4].c2003 162

PAGE 163

Hydrogeologicstratigraphyunderlyingthe 2002 ,Figure1-2].c2002 FigureA-4. Elevationoftheregionalandalocalwatersheddivide,anddistancetotheregionalwatersheddivideonthe 1988 1990 ].PublicDomain.. 163

PAGE 164

Benthicuxestimatesforthe 2007 ]18:4EGN0September2005Figure A-7 2007 ]13:0EGN0September2005Figure A-7 2007 ]10:5aEGN0September2005Figure A-7 2007 ]7:4aEGN0September2005Figure A-7 2007 ]13:7EGN5September2005Figure A-7 2007 ]15:3EGN5September2005Figure A-7 2007 ]6:1aEGN5September2005Figure A-7 2007 ]6:9aEGN5September2005Figure A-7 2007 ]7:5EGN10September2005Figure A-7 2007 ]11:2EGN10September2005Figure A-7 2007 ]1:0aEGN10September2005Figure A-7 2007 ]1:6aEGN10September2005Figure A-7 2007 ]7:3EGN15ASeptember2005Figure A-7 2007 ]7:6EGN15ASeptember2005Figure A-7 2007 ]2:6aEGN15ASeptember2005Figure A-7 2007 ]2:7aEGN15ASeptember2005Figure A-7 2007 ]7:6EGN15BSeptember2005Figure A-7 2007 ]9:6EGN15BSeptember2005Figure A-7 2007 ]3:0aEGN15BSeptember2005Figure A-7 2007 ]3:8aEGN15BSeptember2005Figure A-7 2007 ]9:0EGN17.5September2005Figure A-7 2007 ]7:2EGN17.5September2005Figure A-7 2007 ]2:1aEGN17.5September2005Figure A-7 2007 ]1:6aEGN17.5September2005Figure A-7 2007 ]5:2EGN20September2005Figure A-7 2007 ]5:1EGN20September2005Figure A-7 2007 ]0:8aEGN20September2005Figure A-7 2007 ]0:8aEGN20September2005Figure A-7 2007 ]2:7EGN22.5September2005Figure A-7 2007 ]2:9EGN22.5September2005Figure A-7 2007 ]0:1aEGN22.5September2005Figure A-7 2007 ]0:1aEGN22.5September2005Figure A-7 2007 ]1:6EGN30September2005Figure A-7 2007 ]0:0aEGN30September2005Figure A-7 2002 2006 ]4:37CIRL39May2000Figure A-5 A 2002 2006 ]13:58CIRL39August2000Figure A-5 A 2002 2006 ]6:52CIRL39December2000Figure A-5 A 2004 2006 ]b7:07CIRL39#1SMay2003Figures A-5 Band A-6 2004 2006 ]b8:11CIRL39#2NMay2003Figures A-5 Band A-6 2004 2006 ]b8:27CIRL39#1SJune2003Figures A-5 Band A-6 2004 2006 ]b8:43CIRL39#2NJune2003Figures A-5 Band A-6 2004 2006 ]b7:39CIRL39#1SJuly2003Figures A-5 Band A-6 2004 2006 ]b7:75CIRL39#2NJuly2003Figures A-5 Band A-6 2004 2006 ]b4:12CIRL39#1SSeptember2003Figures A-5 Band A-6 2004 2006 ]b3:56CIRL39#2NSeptember2003Figures A-5 Band A-6 2004 2006 ]b7:19CIRL39#1SMay2004Figures A-5 Band A-6 2004 2006 ]b5:76CIRL39#2NMay2004Figures A-5 Band A-6 2002 ]8:31CIRL40May2000Figure A-5 A 2002 ]14:25CIRL40December2000Figure A-5 A 2002 ]1:46CIRL41May2000Figure A-5 A 2002 ]2:39CIRL41August2000Figure A-5 A 2002 ]5:14CIRL41December2000Figure A-5 A 2002 ]4:89CIRL42May2000Figure A-5 A 2002 ]3:97CIRL42August2000Figure A-5 A 2002 ]2:45CIRL42December2000Figure A-5 A 2006 ]

PAGE 165

Benthicuxestimatesforthe 2007 ]4:1awidthoftheoutowface@shorelineN/A 1959 ] 2007 ]0:96advection-dispersionmodelonClfrontEGN0September2005Figure A-9 2007 ]0:47advection-dispersionmodelonClfrontEGN5September2005Figure A-9 2007 ]0:37advection-dispersionmodelonClfrontEGN10September2005Figure A-9 2007 ]2:05awidthoftheoutowface11mfromwesternshoreN/A 1959 ] 2007 ]0:15advection-dispersionmodelonClfrontEGN15September2005Figure A-9 2007 ]0:14advection-dispersionmodelonClfrontEGN17.5September2005Figure A-9 2007 ]0:17advection-dispersionmodelonClfrontEGN20September2005Figure A-9 2004 ]0:686a;bMODFLOWnumericalmodel20mfromwesternshoreN/AFigure A-12 2007 ]0awidthoftheoutowface22mfromwesternshoreN/A 1959 ] 2007 ]0advection-dispersionmodelonClfrontEGN22.5September2005Figure A-9 2004 ]0:213a;bMODFLOWnumericalmodel30mfromwesternshoreN/AFigure A-12 2004 ]0:085a;bMODFLOWnumericalmodel50mfromwesternshoreN/AFigure A-12 2004 ]0:016a;bMODFLOWnumericalmodel100mfromwesternshoreN/AFigure A-12 2004 ]0:002a;bMODFLOWnumericalmodel300mfromwesternshoreN/AFigure A-12 2007 ]10:6222RntracerCIRL39May2003-May2004Figure A-13 2004 ]and5bio-irrigationCIRL39May2003-May2004Appendix A.2 2006 ]

PAGE 166

2004 ]presentedaconceptualmodelof 1999 ]forthesubterraneanestuaryintothismodel(seeSection 1.1 ). 2002 2004 2006 2007 ]and 2006 ]estimated A-5 and A-7 ,andTable A-1 ).(The 1.3.1 .)Observationsweremadeacrossboththe 2004 ]notedthatin2003atCIRL39,higher A-5 Band A-6 B;datainFigure A-6 Bareorganizedingroupsofthreebars:precipitationdatafromMelbourne, A-5 B).Whereonlyonebarappears,dataareprecipitation.).Theyconcludedthatin2003, 1992 ]measured 2007 ]measuredthe A-7 C).Because 166

PAGE 167

(A)Benthicuxversusstationforthe 2002 ]and 2004 ]. theyestimatedpercentfreshwaterandpercentlagoonwaterinthebenthicchamberwiththefollowingbalances: (A{2) where A-7 D).Theyplotted A-7 B).Theyestimatedthewidthofthefreshwaterseepageface(22:1m)onthe 2004 2007 ]tanadvection-diusionmodeltoa A-8 ).Theysuggestedthatthemixingofsaltinporewaterisgovernedbytwoprocesses:advective 167

PAGE 168

(A)Monthlyandannualprecipitation,fromDecember1998toDecember2004forMelbourne;and(B)benthicdischarge(seepage)andprecipitationattwolocationsinthe 2004 ,Figures2-2and5-4].c2004 168

PAGE 169

(A)Totaland(B)Benthicfreshwaterdischargeversusdistancefromshore;(C) 2007 ,Figures3,4,and9].c2007AmericanGeophysicalUnion,reproducedwithpermission. 169

PAGE 170

^Vgwtp @t=@ @z(Ds@C @z)v@C @z(A{3)describesthedistributionoftheconcentrationoftheconstituent 0=Dsd2C dz2vdC dz(A{4)Theyassignedboundaryconditionsbasedoninectionpointsinthedistributionof A-8 A& A-8 B):oneboundaryconditionnearthesurface,wheretheconcavedowntrendapproacheshorizontal @z!0(A{5)andoneatdepthwheretheconcavedowntrendapproachesvertical @z!1(A{6)where Ds]+CU[evz Dsevd Ds] 1evd Ds(A{7)where A-8 weregeneratedbyttingEquation A{7 toobserved A-8 A).[TheO(0:1cm=d) 170

PAGE 171

(A)Depthversus A{7 .Modiedfrom 2004 ,Figures6-5]and 2007 ,Figure6].c2004,2007 withseepagemeters(Figure A-7 B),andpredictedwithequationsdevelopedinthepresentstudy(Table 5-2 ).] 2007 ]regressed A-9 )andcalculatedthewidthofthefreshwaterseepageface(21:4m)onthewestsideofthe A{7 (21:4m)compareswiththeestimatemadebyseepagemeters(22:1m),andtheshapesofthedistributionsaresimilar(Figures A-7 Band A-9 ),theestimated A{7 areapproximatelyoneorderofmagnitudelower. 171

PAGE 172

Benthicdischargeversusdistancefromshorealongthe A{7 .Modedfrom 2007 ,Figure7].c2007AmericanGeophysicalUnion,reproducedwithpermission. 2001 ]reportedthat 1959 ]showed,withasharpfreshwater-saltwaterinterfacemodel,that Kx 2007 ]usedthe(22m)widthofthefreshwaterdischargefacetoestimate 1959 ]model.Freshwater 2004 ]showedthat 172

PAGE 173

A-10 );evidencethatthefreshwaterseepagefaceislessthan30mwideatthe 2004 2007 ]foundthatthe A-11 A).Asimilarconclusionisevidentinsidethefreshwaterseepageface,wherea0mMfreshwaterasymptoteisreachedapproximately30cmbelowthesediment-waterinterfaceattheshoreline(Figure A-10 ).Thepositionoftheasymptoteattheshorelinewasnotafunctionofseason,betweenNovember2004andSeptember2005.Seasonalitydidaectthelocationoftheasymptoteintheoshoredirection(Figure A-10 ). 2004 2007 ]showedthat A-11 B).Theyproposedthatmoleculardiusionisnotsucienttotransportsurfacewaterstothisdepthinthistimeperiod,andthata 2004 ]appliedthenumericalmodelMODFLOW[ 1988 ]toageneralizedsectionofthe A-12 ).MODFLOWsolves @xKxx@h @x+@ @yKyy@h @y+@ @zKzz@h @z+qs=Ss@h @t(A{10)withthenite-dierencemethod,where 173

PAGE 174

Depthversus 2007 ,Figure5].c2007AmericanGeophysicalUnion,reproducedwithpermission. 174

PAGE 175

(A)Depthversus 2004 ,Figures6-2and6-3].c2004 175

PAGE 176

Simulated(MODFLOW)benthicfreshwaterdischargeasafunctionofdistancefromtheshoreline.Theblack/redlinescorrespondwithexclusion/inclusionofclayandshell-hashunits.From 2004 ,Figure5-13].c2004 Theresultsofthehomogeneousmodelshowed A-2 ).Theyconvertedpointestimatestoacross-sectionintegrated 2007 ]estimated A-13 )doesnotexhibitthesameverticalnatureintheupper60cmoftheprole,asthe A-11 A).Theyidentiedastronginectioninthedepthversus 2004 ]and 2006 ]detailedtheexistenceofbenthicorganismsalongthe A-1 .Theysuggestedbio-turbationandbio-irrigationarecapableofbalancingaconservationofvolumestatement(Item 6 ofSection 1.3 );anaccountingexercisethatisnottypicallyacknowledgedinthe 1.1 ,bio-turbationisthere-structuring 176

PAGE 177

Depthversusexcess 2006 ,Figure3].c2006AmericanSocietyofLimnologyandOceanography,Inc.,usedwithpermission. 177

PAGE 178

1993 ].Bio-irrigationistheushingorventilationofburrowsbybenthicorganisms.Bio-irrigationreplacesporewaterintheburrowwithwaterfromthesurfacewaterbody[ 2006 ]. 2004 ]and 2006 ]hypothesizedthatseepagemeterscreatedanoxicconditions,whichmayhavecausedbenthicorganismstobio-irrigateatincreasedrates.Theytabulatedbio-irrigationratescapablegeneratingobserved A-14 isevidenceofbenthicorganismsatCIRL39.Adenserporousmatrixgeneratesalighterregioninthex-rayradiographnegative.Noteburrowtubesfrombenthicorganismsappearasdarkchannels.Theydidnotdetailfactorsthatinuencethemortalityoftheseorganisms,suchasthetimelimitoverwhichtheseorganismscontinuetobioirrigateinananoxicenvironment. 2001 ]summarizedhydrogeologicparametersinthevicinityofthe A-3 ). 2002 ]presentedapotentiometricmapoftheFloridianAquiferinMay1999by 1999 ](Figure A-15 ). 2004 ]estimated A-16 ),andthe A-17 ).Finally,theymodeledhydraulicconductivityandcharacterizedgrainsizeoftheupper2:8moftheporousmatrixatCIRL39(Figure A-18 ). 2004 ](Figure A-12 )and 1990 ](Figure A-19 )usednumericalmodelstodescribe 178

PAGE 179

AnX-rayradiographnegativeofasedimentcoreatCIRL39.From 2004 ,Figure3-15].c2004 179

PAGE 180

Hydrogeologicparametersforthe 2001 ]. ParameterHydrogeologicunitValueReference Thickness[m]SurcialAquifer8:5 1995 ]UpperConningUnit1545 1986 ]UpperFloridanAquifer90183 1986 ]MiddleSemi-ConningUnit61244 1990 ]LowerFloridanAquifer442610 1986 ]FloridanAquiferSystem625844 1986 ] HorizontalhydraulicSurcialAquifer1:76x1052:82x104 1995 ]conductivity[m=s]5:29x1053:53x104 2000 ]LowerFloridanAquifer3:53x104 2000 ] VerticalhydraulicUpperConningUnit7:10x1097:10x108 2000 ]conductivity[m=s]MiddleSemi-ConningUnit1:80x1071:80x105 2000 ] Transmissivity[m2=s]SurcialAquifer9:70x1050:21 1995 ]UpperFloridanAquifer3:80x1020:21 1981 ]5:40x1020:11 1988 ]LowerFloridanAquifer6:50x102 1981 ] Leakance[1=s]UpperConningUnit2:60x10112:60x109 1988 ]1:20x10116:90x109 1990 ]1:20x10101:20x108 2000 ]MiddleSemi-ConningUnit5:80x1010 1981 ]1:20x1081:20x106 2000 ] Storagecoecient[]UpperFloridanAquifer1:00x103 1990 ]LowerFloridanAquifer1:00x103 1981 ] Annualrecharge[m]UpperFloridanAquifer0:0130:33 1981 ]

PAGE 181

A-20 to A-27 ).Thesedatainherentlyincludetheinuenceofwindontidegeneration.(HarmonicanalysesofthesedataaredetailedinSection 3.2 .) 1987 1990 ]utilizedwaterlevelandcurrentobservationstoanalyzethetidalsignalintheAtlanticIntracoastalWaterway( A-4 ).LocalphaseangleisrelativetoEasternStandardTime,orUniversalTimeCoordinated5hr. 181

PAGE 182

PotentiometricsurfaceoftheFloridianAquiferinMay1999.The 2002 ,Figure3-3].c2002 182

PAGE 183

(A)Interpolatedporosityand(B)masspercentmudatCIRL39.From 2004 ,Figure3-11].c2004 FigureA-17. ModeledandinterpolatedgammarayattenuationporosityatCIRL39.From 2004 ,Figure3-19].c2004 183

PAGE 184

Grainsizeandmodeledhydraulicconductivity[cm=s]atCIRL39.From 2004 ,Figure3-20].c2004 184

PAGE 185

Aboundaryvaluerepresentationby 1990 ]ofthesurcialaquifernearPortSt.Lucie.From 2004 ,Figure5-8].c2004 FigureA-20. May2000waterlevelversusdayattheMelbourneCauseway.Datafrom 185

PAGE 186

August2000waterlevelversusdayattheMelbourneCauseway.Datafrom FigureA-22. December2000waterlevelversusdayattheMelbourneCauseway.Datafrom 186

PAGE 187

May2003waterlevelversusdayattheMelbourneCauseway.Datafrom FigureA-24. June2003waterlevelversusdayattheMelbourneCauseway.Datafrom 187

PAGE 188

July2003waterlevelversusdayattheMelbourneCauseway.Datafrom FigureA-26. September2003waterlevelversusdayattheMelbourneCauseway.Datafrom 188

PAGE 189

September2005waterlevelversusdayattheMelbourneCauseway.Datafrom TableA-4. Amplitude(A)andlocalphaseangle()tidalconstituentsforwatersurfaceelevationandcurrentinthe 1987 1990 ]. StationLocationConstituentM2S2N2K1O1P1 EauGallie2808:00N8037:50WA[cm]1.60.20.41.50.5[]341320320213297Melbourne2806:00N8036:70WA[cm]1.40.20.20.30.3[]345353342285225PalmBay2802:50N8034:80WA[cm]1.60.20.10.20.4[]335347299229212currentvelocity 992810:80N8038:30WA[cm=s]1.00.40.10.40.60.1[]00904302825224625232806:80N8036:40WA[cm=s]2.20.30.41.10.90.4[]33903828122222122292803:30N8034:60WA[cm=s]2.81.01.51.61.40.5[]312095287112168112 189

PAGE 190

2-1 )intoEquation 2{1 2dV =(Br+{Bi)+(Ar+{Ai)Z1 =(Br+{Bi)+(Ar+{Ai)2p (B{3) SubstituteY=s+{0atV=1+{0intoEquation B{3 toyieldBr=sandBi=0.SubstituteY=0+{0atV=1+{0intoEquation B{3 ,togetherwithB,toyieldAr=0andAi=s B{3 toyieldEquation 2{2 .(SolutionofEquation 2{1 istheSchwarz-Christoelparameterproblem,AandBareaccessoryparameters,and 1996 ].)SolveEquation 2{2 forV,toobtainEquation 2{3 .Determinecomponentform(Equations 2{4 and 2{5 )withsubstitutionintoEquation 2{3 ofY=x+{zandV=u+{w.(ConrmEquations 2{2 and 2{3 validwithsubstitutionoftheverticesinTable 2-1 .)Substitutea=zuandda=dzintoEquation 2{8 toyieldtheintermediateresult a2+w2da+cw tan1jtan1k=tan1jk n p2+q2dp=1 2ln(p2+q2) (B{7) 190

PAGE 191

w]j1u1u(B{8)where 2{9 istheresultofalgebraicmanipulationofEquation B{8 .Recallthat 2{4 and 2{5 ).TogetherwithEquation 2{9 ,itfollowsthat @z=c @zln(1u)2+w2 @z)+2w@w @z][(1u)2+w2][2(1+u)@u @z+2w@w @z] [(1+u)2+w2]2#+c @ztan12w w2(1u)(1+u)+c(u+1) 21 1+[2w w2(1u)(1+u)]2"[w2(1u)(1+u)][2@w @z][2w][2w@w @z+2u@u @z] (w2+u21)2# Calculate onz=0.Substitute s)24x s1 (B{10) (B{11) @zjz=0=0 (B{12) @zjz=0=4 s+1) (B{13) intoEquation B{9 toyieldEquation 2{10 .Finally,developEquation 2{11 with @zjz=0(B{14) 191

PAGE 192

B.1 ,substituteniteverticesandinterioranglesinTable 2-2 intoEquation 2{1 ,toyield 1becausej=forallinteriorangles.SolveEquation 2{12 forVtoobtainEquation 2{13 .SubstituteY=x+{zandV=u+{wintoEquation 2{13 toobtainthecomponentform(Equations 2{14 and 2{15 ).(ConrmEquations 2{13 and 2{12 validwithsubstitutionoftheverticesinTable 2-2 .)InafashionsimilartoAppendix B.1 ,progressionfromEquations 2{18 and 2{20 toEquations 2{19 and 2{21 involvesthesubstitutionsa=zuandda=dz,Equations B{5 B{6 B{7 ,andagreatdealofalgebra.Substitute s1 (B{16) (B{17) @zjz=0=0 (B{18) @zjz=0=1 into @zjz=0=@r 2{23 ;where@r 2{19 ,and@i 2{21 .Finally,developEquation 2{24 withEquation B{14 192

PAGE 193

2{1 indomainscharacterizedbytwoniteprevertices(Table 2-1 ),orbyspecialcasesofthreeormoreniteprevertices(suchasthesymmetricalproblemdenedinTable 2-2 ),isatrivialexerciseofcalculusandalgebra(seeAppendices B.1 and B.2 ).Exceptfor\afewspecialcases,"domainsthatarecharacterizedbythreeormorenitepreverticesrequirethesolutionofasystemofn3analyticallyintractable,nonlinearequations[ 1996 ],whichsatisfy jRu2u1f0(a)daj=jYj+1Yjj jY2Y1j(B{21)wheren,j,faredenedinEquation 2{1 B{21 attackstheparameterproblembydevelopingunknownsfromlengthsbetweenprevertices,startingwithapre-denedprevertex(forexample,at1+{0inCaseII),andprogressingthroughundenedprevertices(^SinCaseII),toapre-denedprevertex(+1+{0).Notethat @a[B+AZn1Yj=1(auj)j 1da] (B{22) =An1Yj=1(auj)j 1 ForCaseII,n=4,thereforethesystemofequationscontainsoneequationandoneunknown.Note 1=1 193

PAGE 194

(B{27) (B{28) SubstituteEquations B{25 through B{28 intoEquation B{21 toyield s+{d(B{29)whichisasolutiontotheparameterprobleminoneunknown:^S. 2002 ]developedtheSCToolboxforMATLABtosolvetheparameterproblem.TheirsolutionemployscompoundGauss-JacobiquadraturetosolvethesystemdenedbyEquation B{21 .Thismethodeectivelyaddressestheroleofsingularitiesnearintegrationintervals.ItcanbeshownwiththeSCToolboxandtheverticesdenedinTable 2-3 that whichthenleadtoEquations 2{25 and 2{29 .Forexample,theSCToolboxoutputs ^S=0:6823368 (B{33) 194

PAGE 195

B-1 ,where^Sisunknown.Notethat0:31830989=1 B-1 )intoEquation 2{1 2(V1)1 2dV =(Br+{Bi)+1 =(Br+{Bi)+2 (B{36) SubstituteNodeNinTable B-1 intoEquation B{36 toyieldB=1{.SubstituteBandNodeLinTable B-1 intoEquation B{36 toyield1:77426=cosh B{36 toyield0:6823368=12 cosh2 2{29 B{30 ,and B{31 withtheproceduredescribedinthisparagraph,andsystematicvariationof B-1 .SolveEquation 2{25 forV,andsubstituteY=x+{zandV=u+{wtoobtainthecomponentform(Equations 2{26 and 2{27 ).(ConrmEquations 2{25 2{26 ,and 2{27 validwithsubstitutionoftheverticesinTable 2-3 .)InafashionsimilartoAppendix B.1 ,progressionfromEquation 2{30 toEquation 2{31 involvesthesubstitutionsa=zuandda=dz,Equations B{5 B{6 B{7 ,andagreatdealofalgebra. TableB-1. FinitenodesandassociatedinterioranglesforCaseII,whenthedistancefromshoretothegroundwatersheddivideanddepthoftheunconnedhydrogeologicunitareunity. 195

PAGE 196

@zandsubstitute d(x s+1)]+1 cosh2(s (B{37) (B{38) @zjz=0=0 (B{39) @zjz=0= dsinh[s d(x s+1)] cosh2(s (B{40) toyieldEquation 2{32 .Finally,developEquation 2{33 withEquation B{14 196

PAGE 197

3{3 individually,fromthesimplestareacalculation,tothemostcomplexareacalculation ^Vgw:3=H(1x2) (C{1) ^Vgw:2=Zx2H sb(sbx+H)dx ^Vgw:1=Z1x2z(x;t2)dx (Notethat ^Vgw ^Vgw :3isasquare.(Strictly,thecrosssectionthrough ^Vgw :3withashore-parallelvectororientednormaltothecrosssection,isasquare.)Clearly ^Vgw:3=(base)(height) (C{4) base=1x2 height=H whichleadstoEquation C{1 .Notethatx=H sbistheintersectionofthebaseofthesurcialaquiferatz=Handtheslopingbeachface.Also 197

PAGE 198

C{2 ^Vgw:2=(sbx2 sb =sb sb)2+Hz(x2) sb =H2 (C{11) =H2 ^Vgw :2isatriangle(Figure 3-2 A).(Strictly,thecrosssectionthrough ^Vgw :2withashore-parallelvectororientednormaltothecrosssection,isatriangle.)ItisalsopossibletoderiveEquation C{12 with ^Vgw:2= (C{13) base=x2H sb height=H+z(x2) (C{15) whichleadstoEquation C{12 .SubstituteEquation 3{2 intoEquation C{3 ^Vgw:1=Z1x2Acos(tx)exdx+Z1x2A 2cos(2t+ IntegrateeachtermofEquation C{16 separately,startingwiththerstterm =AcostZ1x2excosxdx+AsintZ1x2exsinxdx 198

PAGE 199

(C{19) (C{20) where (C{21) (C{22) suchthat (C{23) IntegratethesecondtermofEquation C{16 C{16 2cos(2t+ =Ap 2Z1x2ep =Ap 2cos(2t+ 2sin(2t+ (C{27) =A 199

PAGE 200

C{1 C{12 C{23 C{24 ,and C{28 ,anddivideby MultiplybothsidesofEquation C{29 by2 AtoobtainEquation 3{5 C{29 withrespectto @tVgw @tH2 (C{31) @tA @tAex2 (C{33) 200

PAGE 201

@tA RecallEquation C{7 andthatA=H;andnotethat sbsint(C{35)Rearrangeandcancelterms 1 sbsintH+A 201

PAGE 202

C{36 by2 Atoobtain 2 A@^Vgw sbsint(1+cost)+ex2[cost(sinx2+cosx2)+sint(sinx2cosx2)]+ep 3{6 ,recallthat=A sb(Equation 1{12 ),multiplytheright-hand-sideofEquation C{37 by1tomatchtheqbd>1convention,andgroupbyorderof 3{11 as ^Vgw=Z1x2[B]dx+Zx2x1[C]dx(C{38)whereBandCaredummyvariables.AddressB: 2+p 2cos2t2+ 2+p 2cos2t1+ 2Aep 2Aep 202

PAGE 203

(C{41) (C{42) RecallEquations C{19 and C{20 ;andintegrateeachcomponentofBseparately (C{43) (C{44) 8A ep (C{45) 8A ep (C{46) CanceltrigonometricexpressionsinEquations C{45 and C{46 andsimplify 4A ep 203

PAGE 204

sbandsb=tan;andnotethatwhent2=0andt1=Tt e(cossin)(C{48)AddressC: 2+p 2ep 204

PAGE 205

(C{51) (C{54) 8A (cos2t1sin2t1)hep 8A (cos2t1+sin2t1)hep 205

PAGE 206

C{55 and C{56 ,andsimplify 4A hsin(2t1)(ep (sincosh+cossinh)2A p 2A cosp C{47 and C{57 ^Vgw=sb 4A hep 206

PAGE 207

^Vgw=p 4A hep C{60 by2 Aandgroupbyorderof 3{12 .Notethatwhent2=0andt1=Tt 3{12 reducestoEquation 3{14 .Equations C{48 and C{58 correctlysumtoEquation 3{14 withthefollowingidentity: cosacosha+sinasinha=ea(cosasina)+cosasinha+sinacosha(C{61)where 3{2 canbeestimatedwiththetrapezoidalrule,anestimatethatconrmsthedevelopmentofEquation 3{12 |detailedinthisAppendix|isfreeofmathematicalerrors.Forexample,applicationoftheinputsdetailedinTable 3-1 ,toEquation 3{12 ,andtoEquation 3{2 andthetrapezoidalrule,bothyield^Vgw=6:7m3permlongshoredistance. 207

PAGE 208

4{7 4{8 and 4{10 withEquation 4{5 toyieldtheintermediateresult 4{11 .UseEquations 4{7 4{8 4{12 ,and 4{13 withEquation 4{6 toyieldtheintermediateresult eh+ze{(xt)z=h(D{2)ExecutesubstitutionsandsimplifytogenerateEquation 4{14 .EquateEquations 4{15 and 4{16 ,anduseEquations 4{7 4{11 ,and 4{14 toyieldtheintermediateresult gAcosh(h+z)+Bsinh(h+z)e{(xt)z=0(D{3)ExecutesubstitutionsandsimplifytogenerateEquation 4{17 .EquateEquations 4{19 and 4{20 ,anduseEquations 4{7 4{11 4{14 ,and 4{17 toyieldtheintermediateresult 4{21 208

PAGE 209

cosu=cosh{u sinu={sinh{u sinh(u+v)=sinhucoshv+coshusinhv cosh(u+v)=coshucoshv+sinhusinhv sinh2u=2coshusinhu cosh2usinh2u=1 (D{11) 1tanh2u=1 cosh2u andnotethefollowingsmall-termapproximations (D{13) (D{14) (D{15) (D{16) ({)20 (D{17) sinhuuforu<<1 (D{18) coshu1foru<<1 (D{19) 209

PAGE 210

4{9 andnotethatwiththeabove-citedidentitiesandsmall-termapproximations sinhh=sinh(rh+{{h)=sinhrh+{{hcoshrh coshh=cosh(rh+{{h)=coshrh+{{hsinhrh =+{ tanhh=tanh(rh+{{h)=tanhrh[1+({h)2] 1+({h)2tanh2rh+{{h =tanhrh+{{h1tanh2rh =+{ where,,andare UseEquations 4{9 and D{25 toexpressEquation 4{21 as 0=2+g({r)+R(2gi){g(r+{)+R(2gr) ParseEquation D{31 intorealandimaginaryparts,substituteEquations D{28 and D{29 ,andinvokesmall-termapproximationstogenerateEquations 4{22 and 4{23 ,where 4{23 210

PAGE 211

4{8 and 4{17 intoEquation 4{13 toyieldtheintermediateresult 4{9 ,invokesmall-termapproximationsdenedinEquations D{13 through D{19 andthevariablesdenedbyEquations D{26 through D{29 toyieldthefollowingintermediateresults =kag 2[r+{(r(R)+{)]e{(rx+{{xt) =G(1+{)(cosJ+{sinJ) (D{36) where Notethat cosJ=cosMcoshN{sinMsinhN sinJ=sinMcoshN+{cosMsinhN where 211

PAGE 212

D{36 isthenexpressedas (D{44) =G(cosMsinM)eN+{G(sinM+cosM)eN whichleadstoEquations 4{24 and 4{25 4{13 4{27 ,and 4{28 toyieldtheintermediateresult 0=k hCksinh(h+^h+z)+Dkcosh(h+^h+z)ie{(xt)z=h^h(D{46)whichleadstoD=0.UseEquations 4{7 4{10 ,and 4{27 withEquation 4{5 toyieldtheintermediateresult 4{30 .UseEquations 4{7 4{12 4{13 4{27 ,andD=0withEquation 4{6 toyieldtheintermediateresult sinh(h+^h+z)e{(xt)z=h ExecutesubstitutionsandsimplifytogenerateEquation 4{31 .UseEquations 4{30 and 4{31 withEquation D{3 togenerateEquation 4{32 .UseEquations 4{30 4{31 ,and 4{32 withEquation D{4 togenerateEquation 4{33 212

PAGE 213

D{25 andestablishasimilarvariablesubstitutionfor tanh^h=tanh(r^h+{{^h)=tanhr^h+{{^h1tanh2r^h =^+{^ suchthat ^=tanhr^h ^={^h1tanh2r^h UseEquations 4{9 D{25 ,and D{50 toexpressEquation 4{33 as D{53 intorealandimaginaryparts,andsubstituteEquations D{28 D{29 D{51 ,and D{52 togenerateEquations 4{22 and 4{35 ,where rh(1tanh2rh)+tanhrh(D{54)isanintermediateresultthatleadstoEquation 4{35 .SubstituteEquations 4{27 and 4{32 intoEquation 4{13 toyieldtheintermediateresult 4{9 ,usethesmall-termapproximationsdenedinEquations D{13 through D{19 andthevariablesdenedbyEquations D{26 213

PAGE 214

D{29 D{51 ,and D{52 toyieldthefollowingintermediateresults =kagr^ 1+{(^ )e{(rx+{{xt) =G^(1+{^)(cosJ+{sinJ) (D{58) where ^=Rtanhrhtanhr^h+{ D{37 and D{38 .Equation D{58 isthenexpressedas 4{36 and 4{37 4{41 and 4{42 ,withEquation 4{45 toyieldtheintermediateresult 4{29 4{41 ,and 4{42 withEquation 4{46 toyieldtheintermediateresult [Csinh(h+^h+z)+Dcosh(h+^h+z)ie{(xt)z=h^h=k2 ExecutesubstitutionsandsimplifytoshowthatD=k2 214

PAGE 215

4{7 4{10 ,and 4{41 with 4{43 toyieldtheintermediateresult ExecutesubstitutionsandsimplifytogenerateEquation 4{47 .UseEquations 4{7 4{12 4{13 ,and 4{41 withEquation 4{44 toyieldtheintermediateresult hCsinh(h+^h+z)+Dcosh(h+^h+z)ie{(xt)jz=h ExecutesubstitutionsandsimplifytogenerateEquation 4{48 .UseEquations 4{7 4{15 4{16 4{47 4{48 ,C=E,andD=k2 g"Ecosh^h+k2 {coshhk1 ExecutethesubstitutionandsimplifytogenerateEquation 4{49 .UseEquations 4{47 4{48 ,and 4{49 withEquation D{4 togenerateEquation 4{50 .UseEquations 4{9 D{25 D{50 ,andsmall-termapproximationstoexpressEquation 4{50 as (2gr)(1 ^+k2 ^+k2 ^k2 215

PAGE 216

D{66 intorealandimaginaryparts,andsubstituteEquations D{28 D{29 ,and D{51 togenerateEquations 4{22 and 4{52 ,where 4{52 .SubstituteEquations 4{41 and 4{49 intoEquation 4{13 toyieldtheintermediateresult 4{9 ,usethesmall-termapproximationsdenedinEquations D{13 through D{19 andthevariablesdenedbyEquations D{26 through D{29 D{51 ,and D{52 toyield 4{53 and 4{54 whereMandNaredenedwithEquations D{42 and D{43 ,and ^G=gk1ar (D{70) ^S={ ^+k2 216

PAGE 217

1972 ]is fhf 1972 ] @x(qx)@ @y(qy)@ @z(qz)+qs=Sp@p @t+@ @C@C @t(E{2)where 2002 ]castDarcy'sLawintermsof @] (E{4) @] (E{5) @] (E{6) where 217

PAGE 218

@(Kf[@hf @])+@ @(Kf[@hf @])+@ @(Kf[@hf @])=Sf@hf @C@C @tqs(E{7)wheref=1,and 1999 ]oeredagoverningequationforthefateandtransportofcontaminantsinathree-dimensionalporousmedium @xi(Ds:ij@C @xj)@ @xi(viC)+qsCs(E{8)where :ijisthedispersioncoecient; E{6 suchthattheprincipalaxesofanisotropyarealignedwiththetraditionalCartesiansystem(=z) 1996 ]: @x+@v @y+@w @z=0(E{10) 218

PAGE 219

@t+@uu @x+@uv @y+@uw @z=g@ @x+fv+AH(@2u @x2+@2u @y2)+@ @z(AV@u @z) (E{11) @t+@vu @x+@vv @y+@vw @z=g@ @yfu+AH(@2v @x2+@2v @y2)+@ @z(AV@v @z) (E{12) where 1996 ]: @t+@uC @x+@vC @y+@wC @z=@ @x(DH@C @x)+@ @y(DH@C @y)+@ @z(DV@C @z)(E{13)where E{13 ), E{8 ),and E{7 isrstsolvedfor E{8 isthensolvedforsalinityandtemperature( E{10 E{11 ,and E{12 aresolvedfor E{13 issolvedforsalinityandtemperature(

PAGE 220

E{9 isusedtocalculate 220

PAGE 221

Adams,J.E.,andM.L.Rhodes(1960),Dolomitizationbyseepagereuxion,AAPGBull.,44,1912{1920. Bear,J.(1972),Dynamicsofuidsinporousmedia,DoverPublications. Belanger,T.V.,andM.T.Montgomery(1992),Seepagemetererrors,Limnol.Oceanogr.,37,1787{1795. Bokuniewicz,H.J.(1980),GroundwaterseepageintoGreatSouthBay,NewYork,EstuarCoastMarSci,10,437{444. Bokuniewicz,H.J.(1992),Analyticaldescriptionsofsubaqueousgroundwaterseepage,Estuaries,15,458{464. Bokuniewicz,H.J.,andM.Zeitlin(1980),Characteristicsofground-waterseepageintoGreatSouthBay.,SpecialReport35,StateUniversityofNewYork,StonyBrookMarineSciencesResearchCenter. Boudreau,B.P.(1997),DiageneticModelsandtheirImplementation,Springer. Bradner,L.A.,andL.Knowles(1999),PotentiometricsurfaceoftheUpperFloridianaquiferintheSt.JohnsRiverWaterManagementDistrictandvicinity,Florida,UnitedStatesGeologicalSurveyMap. Burnett,W.C.,andH.Dulaiova(2003),EstimatingthedynamicsofgroundwaterinputintothecoastalzoneviacontinuousRadon-222measurements,J.Environ.Radioact.,69,21{35. Burnett,W.C.,andH.Dulaiova(2006),RadonasatracerofsubmarinegroundwaterdischargeintoaboatbasininDonnalucata,Sicily,Cont.ShelfRes.,26,862{873. Burnett,W.C.,H.J.Bokuniewicz,M.Huettel,W.S.Moore,andM.Taniguchi(2003),Groundwaterandporewaterinputstothecoastalzone,Biogeochemistry,66,3{33. Burnett,W.C.,P.K.Aggarwal,A.Aureli,H.J.Bokuniewicz,J.E.Cable,M.A.Charette,E.Kontar,S.Krupa,K.M.Kulkarni,A.Loveless,W.S.Moore,J.A.Oberdorfer,J.Oliveira,N.Ozyurt,P.Povinec,A.M.G.Privitera,R.Rajar,R.T.Ramassur,J.Scholten,T.Stieglitz,M.Taniguchi,andJ.V.Turner(2006),Quantifyingsubmarinegroundwaterdischargeinthecoastalzoneviamultiplemethods,Sci.TotalEnviron.,367,498{543. Bush,P.W.,andR.H.Johnston(1988),Ground-waterhydraulics,regionalow,andground-waterdevelopmentoftheFloridianaquifersysteminFloridaandinpartsofGeorgia,SouthCarolina,andAlabama,ProfessionalPaper1403-C,UnitedStatesGeologicalSurvey. 221

PAGE 222

Cable,J.E.,W.C.Burnett,andJ.P.Chanton(1997),MagnitudeandvariationsofgroundwaterseepagealongaFloridamarineshoreline,Biogeochemistry,38,189{205. Cable,J.E.,J.B.Martin,andJ.Jaeger(2006),ExoneratingBernoulli?Onevaluatingthephysicalandbiologicalprocessesaectingmarineseepagemetermeasurements,Limnol.Oceanogr.Meth.,4,172{183. Cai,W.J.,andY.Wang(1998),Thechemistry,uxes,andsourcesofcarbondioxideintheestuarinewatersoftheSatillaandAltamahaRivers,Georgia,Limnol.Oceanogr.,43,657{668. Chanton,J.P.,W.C.Burnett,H.Dulaiova,D.R.Corbett,andM.Taniguchi(2003),SeepageratevariabilityinFloridaBaydrivenbyAtlantictidalheight,Biogeochemistry,66,187{202. Corbett,D.R.,andJ.E.Cable(2003),Seepagemetersandadvectivetransportincoastalenvironments:CommentsonSeepagemetersandBernoulli'srevengebyEAShinn,CDReich,andTDHickey.2002.Estuaries25:126-132.,Estuaries,26,1383{1387. Corbett,D.R.,K.Dillon,W.Burnett,andJ.Chanton(2000),EstimatingthegroundwatercontributionintoFloridaBayvianaturaltracers,Rn-222andCH4,Limnol.Oceanogr.,45,1546{1557. Dagan,G.(1967),Second-ordertheoryofshallowfree-surfaceowinporousmedia,Q.J.Mech.Appl.Math.,20,517{527. Darcy,H.(1856),HistoryofthepublicfountainsofDijon,AppendixNoteD,ThepublicfountainsoftheCityofDijon http://biosystems.okstate.edu/darcy/index.htm Dean,R.G.,andR.A.Dalrymple(2000),WaterWaveMechanicsforEngineersandScientists,WorldScientic. Debnath,L.(1994),NonlinearWaterWaves,AcademicPress. Destouni,G.,andC.Prieto(2003),Onthepossibilityforgenericmodelingofsubmarinegroundwaterdischarge,Biogeochemistry,66,171{186. Domenico,P.A.,andF.W.Schwartz(1990),PhysicalandChemicalHydrogeology,JohnWileyandSons. Driscoll,T.A.(1996),Algorithm756:AMATLABToolboxforSchwarz-ChristoelMapping,ACMTransactionsonMathematicalSoftware,22,168{186. Driscoll,T.A.,andL.N.Trefethen(2002),Schwarz-ChristoelMapping,CambridgeUniversityPress. 222

PAGE 223

Finkl,C.W.,andR.H.Charlier(2003),SustainabilityofsubtropicalcoastalzonesinSoutheasternFlorida:Challengesforurbanizedcoastalenvironmentsthreatenedbydevelopment,pollution,watersupply,andstormhazards,J.Coast.Res.,19,934{943. Freeze,R.A.,andJ.A.Cherry(1979),Groundwater. Getzen,R.T.(1977),Analog-modelanalysisofregionalthreedimensionalowintheground-waterreservoirofLongIsland,NewYork,ProfessionalPaper928,UnitedStatesGeologicalSurvey. Glover,R.E.(1959),Thepatternoffresh-waterowinacoastalaquifer,JGeophysRes,64,457{459. Guo,W.,andC.D.Langevin(2002),User'sguidetoSEAWAT:Acomputerprogramforsimulationofthree-dimensionalvariable-densityground-waterow,Techniquesofwater-resourcesinvestigationsBook6,ChapterA7,UnitedStatesGeologicalSurvey. Haitjema,H.M.,andS.Mitchell-Bruker(2005),Arewatertablesasubduedreplicaofthetopography?,GroundWater,43,781{786. Hamrick,J.M.(1992),Athree-dimensionalenvironmentaluiddynamicscomputercode:theoreticalandcomputationalaspects,SpecialReport317,VirginiaInstituteofMarineScience. Henry,H.R.(1964),Eectsofdispersiononsaltencroachmentincoastalaquifers,WaterSupplyPaper1613-C,UnitedStatesGeologicalSurvey. Hu,C.M.,F.E.Muller-Karger,andP.W.Swarzenski(2006),Hurricanes,submarinegroundwaterdischarge,andFlorida'sredtides,Geophys.Res.Lett.,33. Hubbert,M.K.(1956),Darcyslawandtheeldequationsoftheowofundergrounduids,TranAmerInstMinMetEng,207,223{239. Huettel,M.,andG.Gust(1992),Impactofbioroughnessoninterfacialsoluteexchangeinpermeablesediments,Mar.Ecol.Prog.Ser.,89,253{267. Huettel,M.,W.Ziebis,andS.Forster(1996),Flow-induceduptakeofparticulatematterinpermeablesediments,Limnol.Oceanogr.,41,309{322. Huettel,M.,W.Ziebis,S.Forster,andG.W.Luther(1998),Advectivetransportaectingmetalandnutrientdistributionsandinterfacialuxesinpermeablesediments,Geochim.Cosmochim.Acta,62,613{631. Israelsen,O.W.,andR.C.Reeve(1944),CanalliningexperimentsintheDeltaArea,Utah,UtahAgr.Exp.Sta.Tech.Bull.,313. 223

PAGE 224

Knight,J.H.(1981),Steadyperiodic-owthrougharectangulardam,WaterResour.Res.,17,1222{1224. Kohout,F.A.(1964),TheowoffreshwaterandsaltwaterintheBiscayneaquiferoftheMiamiarea,Florida,SeaWaterinCoastalAquifers,UnitedStatesGeologicalSurveyWater-SupplyPaper1613-C,pp.12{32. Kohout,F.A.(1965),AhypothesisconcerningcyclicowofsaltwaterrelatedtogeothermalheatinginFloridanaquifer,TransNYAcadSci,28. Kohout,F.A.(1967),GroundwaterowandthegeothermalregimeoftheFloridianplateau,Trans.GulfCoastAss.Geol.Soc.,17,339{354. Langevin,C.D.(2001),Simulationofground-waterdischargetoBiscayneBay,SoutheasternFlorida,WaterResourcesInvestigationsReport00-4251,UnitedStatesGeologicalSurvey. Langevin,C.D.(2003),Simulationofsubmarinegroundwaterdischargetoamarineestuary:BiscayneBay,Florida,GroundWater,41,758{771. Langevin,C.D.,E.D.Swain,andM.A.Wolfert(2003),Flows,stages,andsalinities:howaccurateistheSICSintegratedsurface-water/ground-waterowandtransportmodel,JointConferenceontheScienceandRestorationoftheGreaterEvergladesandFloridaBayEcosystem:FloridaBayProgramandAbstracts,pp.23{25. Lapointe,B.E.(1997),Nutrientthresholdsforbottom-upcontrolofmacroalgalbloomsoncoralreefsinJamaicaandSoutheastFlorida,Limnol.Oceanogr.,42,1119{1131. Lee,D.R.(1977),Deviceformeasuringseepageuxinlakesandestuaries,Limnol.Oceanogr.,22,140{147. Li,L.,D.A.Barry,F.Stagnitti,andJ.Y.Parlange(1999),Submarinegroundwaterdischargeandassociatedchemicalinputtoacoastalsea,WaterResour.Res.,35,3253{3259. Lijklema,L.(1993),Considerationsinmodelingthesedimentwaterexchangeofphosphorus,Hydrobiologia,253,219{231. Lindenberg,M.K.(2001),Thequantity,characteristics,sourceandnutrientinputofgroundwaterseepageintotheIndianRiverLagoon,Fl.,Master'sthesis,UniversityofFlorida. Linderfelt,W.R.,andJ.V.Turner(2001),Interactionbetweenshallowgroundwater,salinesurfacewaterandnutrientdischargeinaseasonalestuary:theSwan-Canningsystem,Hydrol.Process.,15,2631{2653. 224

PAGE 225

Madsen,O.S.(1978),Wave-inducedporepressuresandeectivestressesinaporousbed,Geotechnique,29,377{393. Martin,J.B.,J.E.Cable,andP.W.Swarzenski(2002),QuanticationofgroundwaterdischargeandnutrientloadingtotheIndianRiverLagoon,St.JohnsRiverWaterManagementDistrictSpecialPublicationSJ2002-SP5. Martin,J.B.,J.Jaeger,andJ.E.Cable(2004),QuanticationofadvectivebenthicprocessescontributingnitrogenandphosphorustosurfacewatersoftheIndianRiverLagoon,St.JohnsRiverWaterManagementDistrictSpecialPublication. Martin,J.B.,J.E.Cable,J.Jaeger,K.Hartl,andC.G.Smith(2006),Thermalandchemicalevidenceforrapidwaterexchangeacrossthesediment-waterinterfacebybioirrigationintheIndianRiverLagoon,Florida,Limnol.Oceanogr.,51,1332{1341. Martin,J.B.,J.E.Cable,C.Smith,M.Roy,andJ.Cherrier(2007),Magnitudesofsubmarinegroundwaterdischargefrommarineandterrestrialsources:IndianRiverLagoon,Florida,WaterResour.Res.,43. McBride,M.S.,andH.O.Pfannkuch(1975),Thedistributionofseepagewithinlakebeds,JournalofResearchoftheUnitedStatesGeologicalSurvey,3,505{512. McDonald,M.G.,andA.W.Harbaugh(1988),Amodularthree-dimensionalnite-dierenceground-waterowmodel,TechniquesofWater-ResourcesInvestiga-tionsTWI6-A1,UnitedStatesGeologicalSurvey. McGurk,B.,andP.Presley(2000),SimulationoftheeectsofgroundwaterwithdrawlsontheFloridianaquifersystemineast-centralFlorida:modelexpansionandrevision,St.JohnsRiverWaterManagementDistrictdraftreport. Mei,C.C.,andM.Foda(1981),Wave-inducedresponseinauid-lledporo-elasticsolidwithafreesurface:aboundarylayertheory,Geophys.J.Roy.Astrong.,66,597{631. Mellor,G.L.(1996),IntroductiontoPhysicalOceanography,AIPPress. Meysman,F.J.R.,O.S.Galaktionov,B.Gribsholt,andJ.J.Middelburg(2006),Bio-irrigationinpermeablesediments:Anassessmentofmodelcomplexity,J.Mar.Res.,64,589{627. Miller,J.A.(1986),HydrogeologicframeworkoftheFloridianaquifersysteminFloridaandinpartsofGeorgia,Alabama,andSouthCarolina,ProfessionalPaper1403-B,UnitedStatesGeologicalSurvey. MinnesotaDepartmentofNaturalResources(2007),LakeFinderDatabase, http://www.dnr.state.mn.us/lakend/index.html 225

PAGE 226

Moore,W.S.(1999),Thesubterraneanestuary:areactionzoneofgroundwaterandseawater,Mar.Chem.,65,111{125. Moore,W.S.,andT.J.Shaw(1998),Chemicalsignalsfromsubmarineuidadvectionontothecontinentalshelf,J.Geophys.Res.-Oceans,103,21,543{21,552. Motz,L.H.,andF.Gordu(2001),EstimatesofgroundwaterdischargeandnutrientloadingtotheIndianRiverLagoon,St.JohnsRiverWaterManagementDistrictContractNumber99G245. Mu,Y.K.,A.H.D.Cheng,M.Badiey,andR.Bennett(1999),Waterwavedrivenseepageinsedimentandparameterinversionbasedonporepressuredata,Int.J.Numer.Anal.MethodsGeomech.,23,1655{1674. Munson,B.R.,D.F.Young,andT.H.Okiishi(1990),FundamentalsofFluidMechanics,JohnWileyandSons. Murdoch,L.C.,andS.E.Kelly(2003),Factorsaectingtheperformanceofconventionalseepagemeters,WaterResour.Res.,39. Naim,O.(1993),Seasonalresponsesofafringing-reefcommunitytoeutrophication(ReunionIsland,WesternIndianOcean),Mar.Ecol.-Prog.Ser.,99,137{151. Nielsen,P.(1990),Tidaldynamicsofthewater-tableinbeaches,WaterResour.Res.,26,2127{2134. Pandit,A.(1982),Numericalsimulationofcontaminanttransportproblemsingroundwaterusingtheniteelementmethod,Ph.D.thesis,ClemsonUniversity. Pandit,A.,andC.C.El-Khazen(1990),GroundwaterseepageintotheIndianRiverLagoonatPortSt.Lucie,FloridaScientist,53,169{179. Parlange,J.Y.,F.Stagnitti,J.L.Starr,andR.D.Braddock(1984),Free-surfaceowinporous-mediaandperiodic-solutionoftheshallow-owapproximation,J.Hydrol.,70,251{263. Paulsen,R.J.,C.F.Smith,D.O'Rourke,andT.F.Wong(2001),Developmentandevaluationofanultrasonicgroundwaterseepagemeter,GroundWater,39,904{911. Philip,J.R.(1973),Periodicnonlineardiusion-integralrelationanditsphysicalconsequences,Aust.J.Phys.,26,513{519. Rasmussen,L.L.(1998),Groundwaterow,tidalmixing,andhalineconvectionincoastalsediments,Master'sthesis,TheFloridaStateUniversity. Reid,R.O.,andK.Kajiura(1957),Onthedampingofgravitywavesoverapermeableseabed,Transactions,AmericanGeophysicalUnion,38,662{666. 226

PAGE 227

Robinson,M.A.(1996),Aniteelementmodelofsubmarinegroundwaterdischargetotidalestuarinewaters,Ph.D.thesis,VirginiaPolytechnicInstituteandStateUniversity. Robinson,M.A.,andD.L.Gallagher(1999),Amodelofgroundwaterdischargefromanunconnedcoastalaquifer,GroundWater,37,80{87. Rosenberry,D.O.,andR.H.Morin(2004),Useofanelectromagneticseepagemetertoinvestigatetemporalvariabilityinlakeseepage,GroundWater,42,68{77. Sa,E.B.,A.D.Snider,andL.N.Trefethen(1993),FundamentalsofComplexAnalysisforMathematics,Science,andEngineering,PrenticeHall. Scharanek,R.W.,H.L.Jenter,A.L.Riscassi,C.D.Langevin,E.D.Swain,andM.A.Wolfert(2003),Applicationsofanumericalmodelforsimulationofowandtransportinconnectedfreshwater-wetlandandcoastal-marineecosystemsoftheSouthernEverglades,JointConferenceontheScienceandRestorationoftheGreaterEvergladesandFloridaBayEcosystem:GEERProgramandAbstracts,pp.467{469. Schmitt,R.W.(2003),Observationalandlaboratoryinsightsintosaltngerconvection,Prog.Oceanogr.,56,419{433. Schwartz,M.C.(2003),Signicantgroundwaterinputtoacoastalplainestuary:assessmentfromexcessRadon,Estuar.Coast.ShelfSci.,56,31{42. Shaw,R.D.,andE.E.Prepas(1989),Anomalous,short-terminuxofwaterintoseepagemeters,Limnol.Oceanogr.,34,1343{1351. Shaw,R.D.,andE.E.Prepas(1990a),Groundwaterlakeinteractions1.Accuracyofseepagemeterestimatesoflakeseepage,J.Hydrol.,119,105{120. Shaw,R.D.,andE.E.Prepas(1990b),Groundwaterlakeinteractions2.Nearshoreseepagepatternsandthecontributionofground-watertolakesincentralAlberta,J.Hydrol.,119,121{136. Sheng,Y.P.,andJ.R.Davis(2003),A3-DIRLHydrodynamics/SalinityModel,St.JohnsRiverWaterManagementDistrictReport. Shinn,E.A.,C.D.Reich,andT.D.Hickey(2002),SeepagemetersandBernoulli'srevenge,Estuaries,25,126{132. Shinn,E.A.,C.D.Reich,andT.D.Hickey(2003),ReplytocommentsbyCorbettandCableonourpaper,SeepagemetersandBernoulli'srevenge,Estuaries,26,1388{1389. 227

PAGE 228

Simmons,G.M.(1992),Importanceofsubmarinegroundwaterdischargeandseawatercyclingtomaterialuxacrosssedimentwaterinterfacesinmarineenvironments,Mar.Ecol.-Prog.Ser.,84,173{184. Simms,M.(1984),Dolomitizationbygroundwaterowsystemsincarbonateplatforms,Trans.GulfCoastAss.Geol.Soc.,34,411{420. Smiles,D.E.,andA.N.Stokes(1976),Periodic-solutionsofanonlineardiusionequationusedingroundwaterowtheory-examinationusingaHele-Shawmodel,J.Hydrol.,31,27{35. Smith,A.J.,andS.P.Nield(2003),GroundwaterdischargefromthesupercialaquiferintoCockburnSoundWesternAustralia:Estimationbyinshorewaterbalance,Biogeo-chemistry,66,125{144. Smith,A.J.,andJ.V.Turner(2001),Density-dependentsurfacewater-groundwaterinteractionandnutrientdischargeintheSwan-CanningEstuary,Hydrol.Process.,15,2595{2616. Smith,L.,andW.Zawadzki(2003),Ahydrogeologicmodelofsubmarinegroundwaterdischarge:Floridaintercomparisonexperiment,Biogeochemistry,66,95{110. Smith,N.P.(1987),AnintroductiontothetidesofFlorida'sIndianRiverLagoon:I.WaterLevels,FloridaScientist,50,49{61. Smith,N.P.(1990),AnintroductiontothetidesofFlorida'sIndianRiverLagoon:II.Currents,FloridaScientist,53,216{225. Swain,E.D.,C.D.Langevin,andM.Wolfert(2003),Developingacomputationaltechniqueformodelingowandtransportinadensity-dependentcoastalwetland/aquifersystem,JointConferenceontheScienceandRestorationoftheGreaterEvergladesandFloridaBayEcosystem:FloridaBayProgramandAbstracts,pp.65{67. Swarzenski,P.,W.C.Burnett,C.Reich,H.Dulaiova,R.Peterson,andJ.Meunier(2004a),NovelgeophysicalandgeochemicaltechniquesusedtostudysubmarinegroundwaterdischargeinBiscayneBay,Florida,FactSheet2004-3117,UnitedStatesGeologicalSurvey. Swarzenski,P.W.,M.Charette,andC.Langevin(2004b),Anautonomous,electromagneticseepagemetertostudycoastalgroundwater/surface-waterexchange,Open-FileReport2004-1369,UnitedStatesGeologicalSurvey. Taniguchi,M.(2002),Tidaleectsonsubmarinegroundwaterdischargeintotheocean,Geophys.Res.Lett.,29,1561{1563. 228

PAGE 229

Taniguchi,M.,andY.Fukuo(1996),AneectofseicheongroundwaterseepageintoLakeBiwa,Japan,WaterResour.Res.,32,333{338. Taniguchi,M.,andH.Iwakawa(2001),Measurementsofsubmarinegroundwaterdischargeratesbyacontinuousheat-typeautomatedseepagemeterinOsakaBay,Japan,JGroundwHydrol,43,271{277. Taniguchi,M.,W.C.Burnett,J.E.Cable,andJ.V.Turner(2002),Investigationofsubmarinegroundwaterdischarge,Hydrol.Process.,16,2115{2129. Taniguchi,M.,W.C.Burnett,C.F.Smith,R.J.Paulsen,D.O'Rourke,S.L.Krupa,andJ.L.Christo(2003a),SpatialandtemporaldistributionsofsubmarinegroundwaterdischargeratesobtainedfromvarioustypesofseepagemetersatasiteintheNortheasternGulfofMexico,Biogeochemistry,66,35{53. Taniguchi,M.,J.V.Turner,andA.J.Smith(2003b),EvaluationsofgroundwaterdischargeratesfromsubsurfacetemperatureinCockburnSound,WesternAustralia,Biogeochemistry,66,111{124. Taniguchi,M.,W.C.Burnett,H.Dulaiova,E.A.Kontar,P.P.Povinec,andW.S.Moore(2006),SubmarinegroundwaterdischargemeasuredbyseepagemetersinSiciliancoastalwaters,Cont.ShelfRes.,26,835{842. Tibbals,C.H.(1981),Computersimulationofthesteady-stateowsystemoftheTertiarylimestone(Floridian)aquifersystemineast-centralFlorida,OpenFileReport81-681,UnitedStatesGeologicalSurvey. Tibbals,C.H.(1990),HydrologyoftheFloridanaquifersystemineast-centralFlorida,ProfessionalPaper1403-E,UnitedStatesGeologicalSurvey. Toth,J.(1963),Atheoreticalanalysisofgroundwaterowinsmalldrainagebasins,JournalofGeophysicalResearch,68,4795{4812. Turner,S.M.,G.Malin,P.D.Nightingale,andP.S.Liss(1996),SeasonalvariationofdimethylsulphideintheNorthSeaandanassessmentofuxestotheatmosphere,Mar.Chem.,54,245{262. Uchiyama,Y.,K.Nadaoka,P.Rolke,K.Adachi,andH.Yagi(2000),Submarinegroundwaterdischargeintotheseaandassociatednutrienttransportinasandybeach,WaterResour.Res.,36,1467{1479. UnitedStatesGeologicalSurvey(1988),MelbourneWest,UnitedStatesGeologicalSurvey7.5-minQuadrangleMap. UnitedStatesGeologicalSurvey(1990),MelbourneEast,UnitedStatesGeologicalSurvey7.5-minQuadrangleMap. 229

PAGE 230

Yang,H.S.,D.W.Hwang,andG.B.Kim(2002),FactorscontrollingexcessRadiumintheNakdongRiverEstuary,Korea:submarinegroundwaterdischargeversusdesorptionftomriverineparticles,Mar.Chem.,78,1{8. Younger,P.L.(1996),Submarinegroundwaterdischarge,Nature,382,121{122. Zheng,C.,andP.P.Wang(1999),MT3DMS:amodularthree-dimensionalmultispeciestransportmodelforsimulationofadvection,dispersion,andchemicalreactionsofcontaminantsingroundwatersystems;documentationanduser'sguide,UnitedStatesArmyEngineerResearchandDevelopmentCenterContractReportSERDP-99-1. 230

PAGE 231

JereyNicholasKingwasborninBoston,Massachusettsin1969.HemovedtoGainesville,Floridain1975;heattendedpublicschools.KingearnedaBachelorofScienceincivilengineeringfromtheUniversityofFloridain1993;andaMasterofScienceinenvironmentalwaterresourcesengineeringfromtheUniversityofCaliforniaatBerkeleyin1995.KingbegangraduatestudiesattheUniversityofFloridain2001.Priortothisrecentserviceasagraduatestudent,heworkedasaconsultantinthemid-AtlanticandsoutheasternUnitedStates.KingearnedtheStateofFloridaProfessionalEngineerlicensein1999.HecurrentlyworksfortheUnitedStatesGeologicalSurvey,FloridaIntegratedScienceCenter,inFt.Lauderdale.JereyandhiswifeCoreyhavetwochildren:EamonNicholasandMeganElizabeth. 231