<%BANNER%>

Modeling Land Surface Fluxes and Microwave Signatures of Growing Vegetation

Permanent Link: http://ufdc.ufl.edu/UFE0021535/00001

Material Information

Title: Modeling Land Surface Fluxes and Microwave Signatures of Growing Vegetation
Physical Description: 1 online resource (105 p.)
Language: english
Creator: Casanova, Joaquin Jesu
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, M.E.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Soil moisture in the root zone is an important component of the global waterand energy balance, governing moisture and heat fluxes at the land surface and at the vadose-saturated zone interface. Typically, soil moisture estimates are obtained using Soil-Vegetation-Atmosphere Transfer (SVAT) models. However, two main challenges remain in SVAT modeling. First, most models often oversimplify the coupling between vegetation growth and surface fluxes, and second, model errors accumulate due to uncertainty in parameters and forcings, and numerical computation. The ultimate goal of this research is to improve estimates of root-zone soil moisture and ET by linking an SVAT model with a crop growth model, and assimilating remotely-sensed observations sensitive to soil moisture, such as microwave brightness (MB). Toward that goal, a coupled SVAT-Crop model will be developed, calibrated, and linked to an MB model, to comprise the forward model for data assimilation. The models will use observations from three season-long field experiments monitoring growing sweet corn.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Joaquin Jesu Casanova.
Thesis: Thesis (M.E.)--University of Florida, 2007.
Local: Adviser: Judge, Jasmeet.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021535:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021535/00001

Material Information

Title: Modeling Land Surface Fluxes and Microwave Signatures of Growing Vegetation
Physical Description: 1 online resource (105 p.)
Language: english
Creator: Casanova, Joaquin Jesu
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, M.E.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Soil moisture in the root zone is an important component of the global waterand energy balance, governing moisture and heat fluxes at the land surface and at the vadose-saturated zone interface. Typically, soil moisture estimates are obtained using Soil-Vegetation-Atmosphere Transfer (SVAT) models. However, two main challenges remain in SVAT modeling. First, most models often oversimplify the coupling between vegetation growth and surface fluxes, and second, model errors accumulate due to uncertainty in parameters and forcings, and numerical computation. The ultimate goal of this research is to improve estimates of root-zone soil moisture and ET by linking an SVAT model with a crop growth model, and assimilating remotely-sensed observations sensitive to soil moisture, such as microwave brightness (MB). Toward that goal, a coupled SVAT-Crop model will be developed, calibrated, and linked to an MB model, to comprise the forward model for data assimilation. The models will use observations from three season-long field experiments monitoring growing sweet corn.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Joaquin Jesu Casanova.
Thesis: Thesis (M.E.)--University of Florida, 2007.
Local: Adviser: Judge, Jasmeet.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021535:00001


This item has the following downloads:


Full Text





MODELING LAND SURFACE FLUXES AND MICROWAVE SIGNATURES OF
GROWING VEGETATION


















By

JOAQUIN J. CASANOVA


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

2007




































S2007 Joaquin J. Casanova



































I dedicate this to my cats.









ACKENOWLED GMENTS

This research was supported by the NSF Earth Science Directorate (EAR-0337277)

and the NASA New Investigator Program (NASA-NIP-00050655). I would like to thank

Mr. Orlando Lanni and AMr. Larry Miller for providing engineering support during the

MicroWEXs and patiently tolerating my idiocy; Mr. .Jint Bci- r and his team at PSREIT

for land and crop nianagenient; Dr. Roger De Roo at the University of Michigan for

radionieters and tech support; Mr. K~ai-.Jen Tien, Mr. Tzu-Yun Lin, his. Mi-Young .Jang,

and AMr. Fei Yan for their help in data collection during the MicroWEXs; and to the

University of Florida High-Perforniance Computing Center for providing computational

resources and support that have contributed to the research results reported within this

thesis.










TABLE OF CONTENTS


page


ACKNOWLEDGMENTS

LIST OF TABLES.

LIST OF FIGURES

ABSTRACT

CHAPTER

1 INTRODUCTION

1.1 Thesis Objectives.
1.2 Thesis Format .......... .......

2 MICROWAVE WATER AND ENERGY BALANCE EXPERIMENTS

3 CALIBRATION OF A CROP GROWTH MODEL FOR SWEET CORN ...

3.1 Introduction.
3.2 CERES-Maize Model .......... .....
3.3 Model Calibration .......... ......
3.3.1 Initialization.
3.3.2 Inputs
3.3.3 Methodology. .......... .....
3.4 Results and Discussion.
3.4.1 Crop Growth and Development
3.4.2 Evapotranspiration
3.4.3 Soil Moisture and Temperature
3.5 Summary


4 CALIBRATION OF AN SVAT MODEL AND
MODEL FOR SWEET CORN

4.1 Introduction .........
4.2 LSP Model
4.2.1 Energy and Moisture Transport at
4.2.1.1 Energy Balance .. .
4.2.1.2 Moisture Balance ...
4.2.2 Soil Processes
4.3 Coupling of LSP and DSSAT models .
4.4 Methodology
4.4.1 Inputs and Initial Conditions ..
4.4.2 Calibration. .......
4.5 Results and Discussion.


COUPLING WITH A




the Land Surface ..


CROPD










4.5.1 Calibration ...
4.5.1.1 DSSAT
4.5.1.2 LSP
4.5.2 Model Simulation.
4.5.2.1 DSSAT
4.5.2.2 LSP-DSSAT
4.6 Conclusion. .. ...


Model.


5 CANOPY MICROWAVE MODEL

5.1 Introduction.
5.2 Methodology
5.2.1 Moisture Distribution Measurements
5.2.2 Canopy Opacity.
5.2.3 Microwave Brightness Model.
5.2.4 Model Comparison and Evaluation
5.3 Results and Discussion.
5.3.1 Moisture Distribution Function
5.3.2 Canopy Opacity.
5.3.3 Microwave Brightness.
5.4 Summary

6 CONCLUSION.


Summary
Contributions.
Recommendations for Future Research


REFERENCES ...... .........

BIOGRAPHICAL SKETCH ...........










LIST OF TABLES


Table page

3-1 Cultivar coefficient values in the calibrated CERES-Maize model. .. .. .. 29

3-2 Error statistics for crop growth and ET between CERES-Maize estimates and
MicroWEX-2 field observations. ......... ... 32

3-3 model performance statistics for soil moisture and temperature between CERES-Maize
estimates and MicroWEX-2 field observations. ..... .. 37

4-1 Values for soil properties in the LSP model. .... .. .. 49

4-2 Sampling ranges from [24] and calibrated values for parameters in the LSP model. 50

4-3 Comparison of LAI, dry biomass (kg/m2), and ET (mm) for stand-alone DSSAT
and coupled LSP-DSSAT simulations. . .... .. 53

4-4 Comparison of surface fluxes (W/m2), foT Stand-alone LSP and coupled LSP-DSSAT
simulations. ......... ... .. 55

4-5 Comparison of volumetric soil moisture (m3 m3), foT Stand-alone LSP and coupled
LSP-DSSAT simulations. ......... . .. 55

4-6 Comparison of soil temperature (K(), for stand-alone LSP and coupled LSP-DSSAT
simulations. ......... ... .. 55

4-7 Measurement uncertaintities during MicroWEX-2. ... ... .. 56

5-1 Values of the Coefficients in equations 5-6 and 5-7 ... .. .. .. 88

5-2 RMS differences between observed Tg during MicroWEX-5 and those estimated
by the MB model ........... ...... ..... 91

5-3 RMS differences between observed H-pol Tg during MicroWEX-2 and those estimated
by the MB model. ......... . .. 94










LIST OF FIGURES


Figure page

1-1 Outline of the data assimilation scheme and the forward model. .. .. .. .. 15

1-2 Contributions to microwave brightness Tg from sky, soil, and < Ilr 0-i. .. .. 15

2-1 The University of Florida C-band Microwave Radiometer. .. .. .. 19

2-2 The University of Florida L-hand Microwave Radiometer. .. .. .. 19

2-3 The Eddy Covariance System. .. ... ... 20

2-4 The net radiometer used during the MicroWEXs. .... .. 20

2-5 Map of the field site during MicroWEX-2. ...... .. 22

2-6 Map of the field site during MicroWEX-4. ...... .. 2:3

2-7 Map of the field site during MicroWEX-5. ...... .. 24

:3-1 (a) Comparison of the CERES-Maize estimates and the observations of biomass
during MicroWEX-2, (b) scatter plot of estimated and observed biomass, (c)
comparison of the CERES-Maize estimates and the observations of LAI during
MicroWEX-2, and (d) scatter plot of estimated and observed LAI. .. .. .. :31

:3-2 Comparison of the latent heat flux estimates front CERES-Maize model using
four methods with the observations during MicroWEX-2 by (a) daily heat flux
and (b) cumulative ET. .. ... . 3:3

:3-3 Comparison of the CERES-Maize soil moisture estimates with MicroWEX-2
observations at depths of (a) 0-5 cm, (b) 5-15 cm, (c) 15-:30 cm, (d) :30-45 mi,
(e) 45-60 cm, and (f) 60-90 cm. . .. ... .. :35

:3-4 Comparison of the CERES-Maize soil temperature estimates with MicroWEX-2
observations at depths of (a) 0-5 cm, (b) 5-15 cm, (c) 15-:30 cm, (d) :30-45 mi,
(e) 45-60 cm, and (f) 60-90 cm. . .. ... .. :36

4-1 Surface resistance network to estimate sensible and latent heat fluxes in the LSP
model ........ .... . .... 42

4-2 Algorithm for the coupling of the LSP and DSSAT models. .. .. .. 47

4-3 Pareto fronts front calibration of the stand-alone LSP model. The asterisk represents
the point on the Pareto front where the total seasonal R MSD for 2 ent VSM is
0.04nt3/nt ............ ............ 51

4-4 Comparison of estimations by the coupled LSP-DSSAT and stand-alone DSSAT
model simulation and those observed during MicroWEX-2: (a) dry biomass, (b)
LAI, (c) 5 cm soil moisture, and (d) ET. ...... .. 54










4-5 Comparison of net radiation, between DoY 78 to 105, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 56

4-6 Comparison of latent heat flux, between DoY 78 to 105, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 57

4-7 Comparison of sensible heat flux, between DoY 78 to 105, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 58

4-8 Comparison of soil heat flux, between DoY 78 to 105, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 59

4-9 Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during MicroWEX-2,
between DoY 78 to 105: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f) 100 cm. ............ .......... 60

4-10 Comparison of soil temperature estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2, between DoY
78 to 105: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. .61

4-11 Comparison of net radiation, between DoY 105 to 125, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 62

4-12 Comparison of latent heat flux, between DoY 105 to 125, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 63

4-13 Comparison of sensible heat flux, between DoY 105 to 125, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those observed
during MicroWEX-2: (a) values and (b) residuals ... ... .. 64

4-14 Comparison of soil heat flux, between DoY 105 to 125, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 65

4-15 Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during MicroWEX-2,
between DoY 105 to 125: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f) 100 cm. ............ .......... 66









4-16 Comparison of soil temperature estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2, between DoY
105 to 125: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. 67

4-17 Comparison of net radiation, between DoY 125 to 135, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 68

4-18 Comparison of latent heat flux, between DoY 125 to 135, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ..... .. . 69

4-19 Comparison of sensible heat flux, between DoY 125 to 135, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those observed
during MicroWEX-2: (a) values and (b) residuals .... .. 70

4-20 Comparison of soil heat flux, between DoY 125 to 135, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ...... .. 71

4-21 Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during MicroWEX-2,
between DoY 125 to 135: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f) 100 cm. ......... .. . 72

4-22 Comparison of soil temperature estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2, between DoY
125 to 135: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. 73

4-23 Comparison of net radiation, between DoY 135 to 154, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ...... .. 74

4-24 Comparison of soil heat flux, between DoY 135 to 154, estimated by the coupled
LSP-DSSAT and stand-alone DSSAT model simulation and those observed during
MicroWEX-2: (a) values and (b) residuals ...... .. 75

4-25 Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during MicroWEX-2,
between DoY 135 to 154: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f) 100 cm. ......... .. . 76

4-26 Comparison of soil temperature estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2, between DoY
135 to 154: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. 77










4-27 Comparison of fluxes estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2: (a) net radiation,
(b) latent heat flux, (c) sensible heat flux, and 2 cm soil heat flux. .. .. .. 78

4-28 Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during MicroWEX-2:
(a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. .. .. .. 79

4-29 Comparison of soil temperature estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during MicroWEX-2: (a) 2 cm, (b) 4
cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm. ... .. .. .. 80

5-1 Observations of total and ear wet biomass during (a) MicroWEX-4 in 2005 and
(b) MicroWEX-5 in 2006. ......... .. .. 83

5-2 Observations oft Il cpi- height during (a) MicroWEX-4 in 2005 and (b) MicroWEX-5
in 2006. ... ......... .............. 84

5-3 Cloud densities measured during (a) MicroWEX-4 in 2005 and (b) MicroWEX-5
in 2006. The symbols and the lines represent the measurements and the best
curve-fits, respectively. ......... . .. 85

5-4 Moisture mixing ratios measured during (a) MicroWEX-4 in 2005 and (b) MicroWEX-5
in 2006. ... ......... .............. 86

5-5 Comparison of -r calculated using the biophysical -r model (with and without
the gaussian term) and that using the Jackson model during (a) MicroWEX-4
in 2005, and (b) MicroWEX-5 and 2006. ...... .. . 89

5-6 Comparison of the observed Tg at H-pol during MW5 those simulated by the
MB model using -r from the biophysical model and from the Jackson model during
late-season MicroWEX-5. ......... .. .. 90

5-7 Comparison of microwave brightness, estimated by the LSP-DSSAT-MB model
with specular surface (a) and Wegmilller and Matzler (b), and C-band microwave
brightness observed during MicroWEX-2, before DoY 125. .. .. .. .. 92

5-8 Comparison of microwave brightness, estimated by the LSP-DSSAT-MB model
with specular surface (a) and Wegmilller and Miltzler (b), and C-band microwave
brightness observed during MicroWEX-2, after DoY 125. .. .. .. 93










Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

MODELING LAND SITRFACE FLITXES AND MICROWAVE SIGNATURES OF
GROWING VEGETATION

By

.Joaquin .J. Casanova

December 2007

CI. ur~: .Jasmeet .Judge
Major: Agricultural and Biological Engineering

Soil moisture in the root zone is an important component of the global water and

energy balance, governing moisture and heat fluxes at the land surface and at the

vadose-saturated zone interface. Typically, soil moisture estimates are obtained using

Soil-Vegetation-Atmosphere Transfer (SVAT) models. However, two main challenges

remain in SVAT modeling. First, most models often oversintplify the coupling between

vegetation growth and surface fluxes, and second, model errors accumulate due to

uncertainty in parameters and forcing, and numerical computation. The ultimate goal

of this research is to improve estimates of root-zone soil moisture and ET by linking an

SVAT model with a crop growth model, and assimilating remotely-sensed observations

sensitive to soil moisture, such as microwave brightness (ill:). Toward that goal, a coupled

SVAT-Crop model will be developed, calibrated, and linked to an MB model, to comprise

the forward model for data assimilation. The models will use observations front three

season-long field experiments monitoring growing sweet corn.









CHAPTER 1
INTRODUCTION

Soil moisture in the root zone is an important component of the global water and

energy balance, governing moisture and heat fluxes at the land surface and at the

vadose-saturated zone interface. Typically, soil moisture estimates are obtained using

Soil-Vegetation-Atmosphere Transfer (SVAT) models. SVAT models simulate energy

and moisture transport in soil and vegetation and estimate the fluxes at the land surface

and in the root zone. Some widely-used SVAT models include the Common Land Model

(CLM) [10], the model developed by the National Centers for Environmental Prediction at

Oregon State University, Air Force, and Hydrologic Research Laboratory at the National

Weather Service (NOAH) [46], and the University of Michigan Microwave Geophysics

Group Land Surface Process (LSP) model [38]. However, two main challenges remain in

modeling energy and moisture fluxes using SVAT models.

First, most models often oversimplify the coupling between vegetation growth and

surface fluxes. The interactions between vegetation and the fluxes become increasingly

important as these fluxes affect plant growth and development. Vegetation canopies

impact latent and sensible heat fluxes, precipitation interception, and radiative transfer

at the land-atmosphere interface, affecting soil moisture and temperature profiles in the

vadose zone. These changing interactions during the growing season need to be included

in the SVAT models, in order to provide realistic estimates of the fluxes. Typically, SVAT

models employ observations or empirical functions for vegetation conditions to model

the effects of growing vegetation. For example, CLM uses vegetated grid spaces defined

by patches of pI 10.0 functional types," with parameters for physiological and structural

properties associated with each type, and most of the vegetation parameters are empirical

to meet computational constraints [10]. NOAH simulates soil moisture and temperature

profiles with a sub-daily timestep, and with vegetation properties such as LAI, stomatal

resistance, and roughness length defined by vegetation type classes [46]. Such methods










ignore the interaction between surface fluxes and vegetation growth. Second, SVAT model

estimates of fluxes, soil moisture, and soil temperature diverge from observations due to

uncertainty in parameters, forcing, and initial conditions, and due to accumulated errors

from numerical computation.

SVAT models can be coupled with crop growth models to include dynamic interactions

between the vegetation growth and flux estimates. For example, [23] used a sub-daily

biochemical vegetation model with a land surface hydrology model. They modeled

canopy transpiration and its influence on soil moisture and carbon fluxes. [41] linked

daily process-based crop models for summer maize and winter wheat with an hourly

land surface flux model and a three-lbu;r soil moisture model. Such coupling allows for

inclusion of vegetation effects without in situ observations or empirical growth functions.

Periodic in situ observations of vegetation could be incorporated in the coupled models to

reduce the divergence of model prediction from reality.

Remotely-sensed observations sensitive to soil moisture, such as low frequency (< 10

GHz) microwave brightness (TB) [15, 26, 43, 52] could also be incorporated periodically

to improve model flux estimates. To incorporate or assimilate microwave brightness,

the coupled SVAT-crop model has to be linked to a microwave emission model that

estimates microwave brightness using moisture and temperature profiles in soil and

vegetation estimated by the SVAT-Crop model as shown in Figure 1-1. Simple versions of

SVAT models linked with MB models include the Land Surface Process/Radiobrightness

(LSP/R) [30] and Simple Soil-Plant-Atmosphere Transfer Remote Sensing (SiSPAT-RS)

[12] models.

The total Tg of a terrain is dependent on sky Tg, reflected by the soil (TB,sky),

thermal emission from the soil (TB,soil, and thermal emission from the vegetation canopy

(TB,canopy, all three components are shown in Figure 1-2). Since soil microwave emissions

(dependent on soil moisture and temperature profiles) are attenuated by transmission


































*This thesis focuses on the
vegetation component of the
MB model


Figure 1-1. Outline of the data assimilation scheme and the forward model.


Tb = Tb,sail + Tb,canopy + Tb,sky











Figure 1-2. Contributions to microwave brightness Tg from sky, soil, and c Ilrspi.










through the canopy, a microwave transmission model for growing vegetation is an

important component of the MB model.

Microwave emission models for dynamic vegetation during the growing season require

accurate estimation of canopy emission and attenuation. Non-scattering attenuation is

described by canopy optical depth (-r) that primarily depends upon the distribution of

moisture in the < Ilr.).i- Several methods have been investigated for determining canopy

optical depth. For example, Ulaby and Wilson[58] modeled -r of the wheat canopy as

a uniform cloud of wet biomass with leaves and stems treated separately. In addition,

polarization dependence was included for stem attenuation. Eom [21] developed a model

for -r applicable to row structured canopies such wheat or corn. The model accounts for

azimuthal anisotropy in -r by modeling the < Ilr..i- as a random collection of dielectric

spheroids. This method matched well with observations but requires a computationally

intensive solution of the radiative transfer equation. Jackson and Sclbnan -~- [51], used

the results of many studies and developed an empirical model for -r. In their model, -r is

estimated as the product of a fre. g. n. s -i-dependent constant b and water column density

(kg/m2) in the can..).li-. The Jackson model is flexible but has little physical basis, with

b often used as a fitting parameter in emission models or estimated empirically [61].

England and Galantowicz [19] developed a refractive model for estimating optical depth of

grass based upon vertical profiles of moisture content within the grass canopy.

In this thesis, an SVAT model, viz. the LSP model, is coupled with a widely-used and

well-tested crop growth model, the Decision Support System for Agrotechnology Transfer

Cropping System Model (DSSAT-CSM) [29]. The models are calibrated using observations

from the Microwave Water and Energy Balance Experiment 2 (11seroWEX-2), one of three

season-long experiments monitoring growing sweet corn (11seroWEXs 2, 4, and 5). A

hiophysically-based canopy transmission model is developed for growing sweet corn, using

data from MicroWEXs 4 and 5. This -r model is included in a simple MB model that is

linked with the LSP-DSSAT model.









1.1 Thesis Ob jectives

This thesis answers the following research questions:

1. What values for the six corn cultivar coefficients give the best DSSAT model

performance for both biomass and LAI for the MicroWEX-2 growing season?



2. How do the model estimates for biomass and LAI compare with MicroWEX-2

observations? (C'h! Ilter 3)

3. What values of the twelve calibrated parameters give the best LSP model performance

for both latent heat flux and near surface soil moisture for the MicroWEX-2 growing

season? (C'!s Ilter 4)

4. How do the model estimates of soil moisture, temperature, and surface fluxes

compare with MicroWEX-2 observations? (C'h! Ilter 4)

5. What is the impact of coupling on both LSP and DSSAT model estimates of LAI,

biomass, soil moisture, temperature, and surface fluxes? (C'h! Ilter 4)

6. How does a physically-based -r model compare to Jackson's widely-used empirical

model? (C'h! Ilter 5)

7. How do the brightness estimates predicted by the linked LSP-DSSAT-MB model

compare to observations during MicroWEX-2? (C'!s Ilter 5)

1.2 Thesis Format

The C'!s Ilter 2 of this thesis describes the field experiments, MicroWEXs 2, 4, and

5. In C'!s Ilter 3, the DSSAT model's corn submodel, CERES-Maize, is calibrated for the

MicroWEX-2 growing season. In C'!s Ilter 4, the LSP model is calibrated and coupled

with DSSAT model. In ('! .pter 5, a calrpli- transmission model for growing sweet corn is

developed and tested in a simple MB model, linked with the LSP-DSSAT model.









CHAPTER 2
MICROWAVE WATER AND ENERGY BALANCE EXPERIMENTS

The MicroWEXs are a series of experiments conducted by the Center for Remote

Sensing at the University of Florida during growing seasons of corn and cotton [6, 8, 33,

37, 55, 67]. The objective of the experiments are to understand microwave signatures of

agricultural crops during different stages of growth. MicroWEX-2 was conducted during

the sweet corn growing season, from March 18 through June 2 in 2004 [33]. MicroWEX-4

was conducted during the sweet corn growing season, from March 10 through June 2 in

2005 [6]. MicroWEX-5 was conducted during the subsequent corn season from March 9

through May 26 in 2006 [8]. All experiments were conducted at the same 37,000 m2 Site

in UF/IFAS Plant Science Research and Education Uni in Citra, FL (29.41 N, 82.18

W). The soils at the site are Lake Fine Sand with about 90 .~ sand and a bulk density of

1.55 g/cm3. ROW Spacing was 76 cm, with approximately eight plants per square meter.

Irrigation and fertigation were conducted via a linear move system.

Data collected during the MicroWEXs included soil moisture, temperature and

heat flux, latent and sensible heat flux, wind speed and direction, upwelling and

downwellingf short and longfwave radiation, precipitation, irrigation, water table depth,

and vertically and horizontally polarized microwave brightness at 6.7 GHz (A = 4.47 cm),

every fifteen minutes using the tower-mounted University of Florida C-band Microwave

Radiometer (UFC11Rl, Figure 2-1). Additional horizontally polarized microwave brightness

observations at 1.4 GHz (A = 21.4 cm) were conducted during MicroWEX-5 using the

UF L-Band Microwave Radiometer (UFLMR, Figure 2-2). The radiometer frequencies, at

6.7 GHz and at 1.4 GHz, correspond to the lowest frequency of the Advanced Scanning

Microwave Radiometer (AMSR-E) [22], and the frequency of the planned Soil Moisture

and Ocean Salinity (SMOS) mission [34], respectively.

The soil moisture, heat fluxes, and temperatures were observed at three locations

in the field. Soil moisture and soil temperature were observed at 2, 4, 8, 16, 32, 64,
































Figure 2-1. The University of Florida C-band Microwave Radiometer.


Figure 2-2. The University of Florida L-band Microwave Radiometer.




















Figure 2-3. The Eddy Covariance System.










Figure 2-4. The net radiometer used during the MicroWEXs.


and 120 cm (100 cm during MicroWEX-2) using Campbell Scientific Water Content

Reflectometers and Vitel Hydra- probes, and thermistors and thermocouples, respectively.

An Eddy Covariance System (Figure 2-3) measured wind speed, direction, and latent and

sensible heat fluxes. REBS CNR net radiometer (Figure 2-4)measured up- and down-

welling short- and longf- wave radiation. Everest Interscience infrared sensor measured

thermal infrared temperature. Four tipping-bucket rain gauges Ic------ 4 precipitation at

four locations East and West of the footprint, and at the East and West sides of the field.

Water table depth was measured using Solinst Level L?-~-;- s in a monitoring well in each

quadrant .

In addition to continuously 1- -- 4 data, there were also weekly vegetation and

twice-weekly soil samplings (during MicroWEX-2 only). Vegetation sampling was

conducted in four areas, one in each quadrant of the field. Samples were selected by

placing a meter stick half-way between two plants and ending the sample at least 1 m

from the starting point and half-way between two plants. The actual row length of the

sample was noted. Stand density, leaf number, canopy height and width, wet and dry










weights of leaves, stems, and ears were measured. Two LAI measurements were taken

in each sampling area using the Licor LAl-2000 Comp~~li- All lli. r ~. Vertical distribution

of moisture in the canopy was measured five times during MicroWEX-4 and three times

during MicroWEX-5 [7]. During soil sampling, soil moisture and temperatures were

observed in-row and in-furrow at depths of 2, 4, and 8 cm along eight transects at ten

to thirteen locations, using the Delta-T ThetaProbe soil moisture sensor and a digital

thermometer to quantify the spatial variability of the field. Vegetation and soil nitrogen

(as NH,+ and NO,) were measured in each of the four sampling areas. Root length density

was measured in the vadose zone at tasseling.


























S100ft(30.48m


200ft (60.96m) ,00H3143 48md


600 ft (182.88m)


O: wells :ctroot(ance2mS1m mousanxsomH x: R,,,&,es

SCR23x, wlth soil molsdure*, sell temperature*, and sell heat flux I .TIR

E E CR23x. wilh Eddy Coveriance System
V.S
S: CR10, with soil molisture*. soril lem~perature*, and soil heat 1ux

*: The sensors are installed at dseph: 2, 4, 8, 16, 32, 64, and 100 cm


a :Aadiemetre


O :CNR

vegetauonl
. -Sampling
Area


Figure 2-5. Map of the field site during MicroWEX-2.


100 ft











Directio~n
of piasnting



























I I 100f(30.48mh 20ft (60.96m) (00ft(30.48m 100 ff


Dlrection
of plerting


600 ft (182.88m)


(3: Wells :Fooltprint(7,62m 9.14m of 251ft30ft) X : Rainguages


S: CR23x, writh soil moisture", soil temperature*, and soil heat flux :TER

S: CR23x, wth ECS
V.S
S: C~Rt, with soil moisture*, soil temperaltue", and soil heat lux

*: The sensors are installed at depth: 2, 4, 8, 16, 32, 64, and 120 em


S:Radlometer


) .CNR

174mlaina
:Samptling?
Areal


Figure 2-6. Map of the field site during MicroWEX-4.





























100ft(30 48m)


P00ft(30A~m 1c00ft~


200ft 60.96m)


Direction
ot planning


600 ft(182 B8m)



O ^" oolpnyt(3m 6 0m (LBaan o X Ralnguages

a CR23x, with solm noisture*,spoil tem perature*, and soil heat Ilux g TIR

E CR23x, with EC5
V.S.A
S: CR10. with soil malsture sail temperature*, and soil heat flux

*: Th e sensors are installed at depth: 1. 4. 8, 16. 3". 64. and 120 crn


~ Radiometer


( CNR

Vegetation
: Sam pilng
Area


Figure 2-7. Map of the field site during MicroWEX-5.









CHAPTER 3
CALIBRATION OF A CROP GROWTH MODEL FOR SWEET CORN

3.1 Introduction

This chapter describes the calibration of a crop growth model for a growing season

of sweet corn in north-central Florida. There are two 1!! lb ~r corn growth models, EPIC

(Erosion Productivity Impact Calculator) [65] and CERES-Maize [28], that simulate

hydrology, nutrient cycling, growth, and development. CER ES-Maize has the advantage

of being part of the well-known Decision Support System for Agrotechnology Transfer

Cropping System Model (DSSAT-CSM). DSSAT has been widely used for a number of

years, with validated models for over 15 crops. It also allows for simulations of multi-year

crop rotations [29].

3.2 CERES-Maize Model

The CERES-Maize model is a part of the crop growth submodule in DSSAT-CSM.

D SSAT-C SM is a modular crop simulation model with modules for soil, soil-plant-atmosphere

crop development and growth, weather, management, etc. A simulation consists of several

stages: season and run initialization, rate calculation, integration, and output generation

[29]. The model determines total dry biomass using the radiation use efficiency method.

Total solar radiation is partitioned into photosynthetically active radiation (PAR), and

the fraction intercepted is calculated from LAI using Beer's law [54]. The dry matter

accumulation rate is a product of radiation use efficiency and a conversion factor. Maize

growth and development is marked by eight events: germination, emergence, end of

juvenile phase, floral induction (tassel initiation), 7 ".' silking, he ginning grain fill,

maturity, and harvest. Transition from one developmental stage to the next is determined

by the growing degree d .n~ (GDD) with a base temperature of 80C. Vegetative growth

stops on '7".' silking, when reproductive growth begins in the form of grain fill. Yield is

the grain fill value at harvest. Threshold GDD for each stage and grain fill parameters are

contained in a cultivar file.










The CER ES-1\aize model determines LAI by tracking the total number of leaves and

calculating a leaf area growth rate, so that the rate of increase of LAI is the product of

leaf area growth and current leaf number. Leaf growth is partly determined by the number

of degree d ex-< between successive leaf tip appearances, called the phyllochron interval. In

addition, a leaf senescence rate is calculated based on water stress.

The soil-plant-atmosphere module estimates ET at the land surface using either

the Ritchie-modified Priestley-Taylor (RPT) method [48] or the Penman-FAO (PFAO)

method [14]. The RPT method depends only on solar radiation and temperature, while

the PFAO method accounts for wind speed and relative humidity as well. Both methods

first determine a total potential ET, which is partitioned into potential soil evaporation

and potential plant transpiration. Potential soil evaporation is based on intercepted solar

radiation reaching the soil surface as a function of temperature, wind speed, radiation,

and humidity. Potential plant transpiration depends on the radiation intercepted by the

canopy and temperature, wind speed, and humidity. Actual evaporation and transpiration

are determined by the minimum of potential ET and the amount of available water. For

soil evaporation, surface soil water is the limiting factor, while for transpiration, root water

uptake is the limiting factor.

The soil is divided into nine l~i-;-rs, each with different constitutive properties.

Soil moisture is calculated using the bucket method [39]. When an upper soil 1 .,-cr is

above the drained upper limit, excess flows to the one below, in addition to computing

estimates for capillary rise. Runoff is calculated using the USDA Soil Conservation Service

runoff number method [53]. Infiltration is equal to excess precipitation after runoff. Soil

temperature is computed using a deep soil boundary condition and an air temperature

boundary condition. The air temperature (oC) is calculated from the average of maximum

and minimum daily temperatures. Soil temperature (ST) varies with soil l.,-;- (L) as [29]:



ST (L) = TAVo + (TWP COS (,LX + ZD) +DT)6Z
2.0










where D T is the difference between the average of the daily average temperatures

during the previous five d .1-< and the yearly average (oC), ZD is depth (cm), T4M/P is

amplitude of yearly temperature (oC), and ALX is the difference in d .1-< from the current

d~i- to the hottest do-- of the year.

3.3 Model Calibration

The CERES-Maize model was ported to the Linux OS and calibrated using data from

MicroWEX-2. This section describes the calibration procedure.

3.3.1 Initialization

CERES is the crop submodule for cereal crops, including maize. CERES-Maize uses

three files for determining growth and development characteristics: the species file, the

ecotype file, and the cultivar file. The species file contains defining characteristics of

corn, including root growth parameters, seed initial conditions, nitrogen and water stress

response coefficients, nitrogen uptake parameters, base and optimum temperatures for

grain fill and photosynthesis, and radiation and CO2 parameterS governing photosynthesis.

The ecotype file specifies thermal time development, radiation use efficiency, and light

extinction coefficients for three main types of corn. The cultivar file specifies the cultivar

coefficients that describe the growth and development characteristics for different maize

cultivars. These are:

Pl: degree d .1-< between emergence and end of juvenile stage.

P2: development dl li- for each hour increase in photoperiod past optimum

photoperiod.

P5: degree d .1-< from silking to maturity.

G2: maximum possible number of kernels per plant.

G3: kernel filling rate during the linear grain filling stage and under optimum

conditions (mg/d~is).

PHINT: phyllochron interval, i.e., the interval in thermal time (degree d .1-<) between

leaf tip appearances.









Soil properties such as hydraulic conductivity and texture were taken as the default

values for the soil type that most closely corresponds with our field site (11illl!iopper fine

sand) and that is included in the DSSAT soil properties file. The drained lower limit

of the top nine soil 1.i;< rs was set to the minimum soil moisture (0.05) observed during

MicroWEX-2. The initial soil moisture for all the 1 ... r~s was set equal to 0.2. The model

calibration was found to be insensitive to the choice of initial moisture conditions because

an irrigation event that occurred at planting reset the soil moisture profile of sandy soil.

3.3.2 Inputs

Most of the inputs for the model calibration were obtained from the MicroWEX-2

dataset. These included daily incoming solar radiation, precipitation, irrigation,

fertigation, and wind speed. Maximum and minimum daily temperature and relative

humidity were obtained from the micrometeorological dataset collected for the Agricultural

Field-Scale Irrigation Requirement Simulation (AFSIRS) study at a nearby site at the

PSREU [16].

3.3.3 Methodology

To calibrate the CERES-Maize model, a broad grid search was emplo ..1l followed by

simulated annealingf in the area of the global minimum using the six cultivar coefficients.

Each coefficient was incrementally changed, so that a grid of possible combinations of

values was tested to minimize the differences between model estimates and observations

from biomass and LAI, the two most important canopy parameters required by the MB

model. The LAI observation on DoY 1:35 was excluded for calibration, due to its high

standard deviation (Figure :$-la). The objective function (R) was computed as the sum of

square residuals, normalized by variance [54]:


SSSN U +SSRL.4I 2
B L 4I
where SSRB is the sum of square residuals from total biomass, SSRL,4I is the sum

of square residuals from LAI, and v2R and ach, are the variances of biomass and LAI









Table 3-1. Cultivar coefficient values in the calibrated CERES-Maize model.
Cultivar Coefficient Value
P1 157.20
P2 1.000
P5 811.20
G1 853.00
G3 10.4
PHINT 40.33


observations, respectively. The optimum combination of parameter values found by the

grid search was then used as the initial guess in a simulated annealingf optimization

algorithm [2]. The root mean square difference (RMSD), relative root mean square

difference (RRMSD), and Willmott d-index [66] were calculated as for LAI and the

biomass of each component, leaves, stems, and grain:


E(P O,)2
RM~SD = ( )1/2(33


RM~SD
RRM~SD = (3-4)



E(P, O,)2
d = 1 (3-5)
E(|P, P| +i |Oi O|)2
where n is the number of observations, Pi and Oi are the predicted and observed

values, and P and O are the predicted and observed means. Table 3-1 shows the values of

the six cultivar coefficients that minimized R in Equation 3-2.

3.4 Results and Discussion

3.4.1 Crop Growth and Development

To evaluate the CERES-Maize model for crop growth and development, model

estimates are compared of emergence and silking dates, biomass, and LAI to the

observations during MicroWEX-2.










The modeled and observed emergence dates were on DoY 90 and DoY 86, respectively.

Modeled anthesis dei (when '7 ".' of the corn has silked) was DoY 1:39, while '7 ".' silking

was observed by DoY 1:35. The model estimated realistic total dry biomass using the

parameters determined by the grid search, as shown in Figure :3-1. The R MSD for

biomass was 0.90 hig/ha with a low RRMSD of 0.2:3 and a correspondingly high Willmott

d-index of 0.99, as shown in Table :3-2. Figure :$-1b shows a scatter plot of estimated

and observed total biomass. The biomass was increasingly underestimated by the model

as the season progressed, with the nmaxiniun difference of 1.41 Mg/ha at the end of the

season. The partitioning of the modeled biomass into leaf and stent biomass did not match

the observations (Figure :$-la), as indicated by the high RMSD and RRMSD in Table

:3-2. Partitioning of total biomass into stent biomass was underestimated by the model

during later vegetative stages of growth (DoY 127 to DoY 1:34). The partitioning into

leaf biomass was more realistic, with a slight overestiniation during later growth stages

(DoY 1:32 to DoY 142). The model's estimate of the beginning of grain fill at DoY 140

matched closely with the observed grain fill at DoY 1:39 (Figure :$-la). The best fit for

LAI and total biomass did not produce the best fit for grain fill. In order to compensate

for the underestimated stent biomass, grain weight must he overestimated. The model

estimated realistic LAI, as seen in Figure 3-1, with a low RMSD and RRMSD of 0.22 and

0.1:3, respectively, and a high Willmott d-index of 0.99, as shown in Table :3-2. Figure :$-id

shows the scatter plot of the model and observed LAI.














k
rCc~
c~ O
cb
m
O
m
O

~3t~
k
01 ~
m
Xe
W o

Or
k
oa
a
A cb
bD"

k
rr
i
-d ~
m m
m
CbH



"Ca
cc~


O "


k
~~cb
m c~
ecc~rb
oo~
~,~cb
~oE
C~ m ~
~~ C~
akm
~cb~'
cb e~cc~
mEO
c~oO

aria
~ V k
c~
m
W
cb
.N E ~
cb O,
H '~ a
C~ e,
via,
W
~4`kCb
W
"01
O "
OX
~aW
c, cb ~
O O
k
O
ag,
fl E
~ bD
a t;.fi
E~"
OCC~~
O
C~H
cb~
v a cl]


Cr3

k

5D


- \I --" I


\*

oo







x o
\*


*C
csd


a)cDb

(ey/6yy) ssewo!g ~a


hi O


x~-o









Table 3-2. Error statistics for crop growth and ET between CERES-Maize estimates and
MicroWEX-2 field observations.
Parameter RMSD RRMSD Willmott d
Total biomass (.\!- /ha) 0.91 0.23 0.99
Stem biomass (.\!g/ha) 0.97 0.52 0.90
Leaf biomass (j\!- /ha) 0.47 0.44 0.93
Grain biomass (.\!g/ha) 0.49 1.17 0.96;
LAI 0.22 0.13 0.99
Latent heat flux (W/m2) 42.07 0.39 0.87


3.4.2 Evapotranspiration

To understand model estimates of energy and moisture fluxes at the land surface, the

modeled daily latent heat flux is compared with the observations during MicroWEX-2.

Four comparisons were conducted [50] using two methods (RPT and PFAO) to estimate

ET and two values (0.85 and 0.5) for the c Ilrpi- light extinction coefficient (K(CAN).

Figure 3-2 shows a comparison of the latent heat flux estimates using the four methods.

Even though the RMSD values were low (~40 W/m2), the temporal distribution of

latent heat fluxes was not estimated realistically during the growing season (Figure

3-2a). The latent heat fluxes were underestimated in the early season and overestimated

(~100 W/m2) during late season. The early season underestimation indicates low

evaporation rates from the modeled soil, and the late season overestimation indicates

higher transpiration rates in the modeled vegetation. The flux estimates were not

as sensitive to K(CAN values as the previous studies had found under water-stressed

conditions [50]. In terms of cumulative ET, individual under- or overestimations by the

model effectively cancel each other, so that the fit for cumulative ET is better than for

daily values (Figure 3-2b).













m



o




LO C LO
I I I LO
/ ai II II z z
o o < o

~~ g 00




dO I














o oo





b Mb






co





0" c













cbo


o










3.4.3 Soil Moisture and Temperature

T> understand the model performance regarding moisture and energy transport

in soil, modeled daily soil moisture and temperature profiles are compared to the

observed average daily values during MicroWEX-2 (Figures :3-3, :3-4, and :3-3). T> compare

observations at 2, 4, 8, 16, :32, 64, and 100 cm to model estimates of the top six 1 .;< rs,

the average of 2 and 4 cm observations are compared to estimates of 0-5 cm, 8 and 16

cm observations to estimates of 5-15 cm, 16 and :32 cm observations to estimates of 15-:30

cm, average of :32 cm observations to estimates of :30-45 cm, :32 and 64 cm observations to

estimates of 45-60 cm, and 64 and 100 cm observations to estimates of 60-90 cm.






























o



Lo

-



d



b)Nor-0 )
c r- 0

000








..












lo






0~lL~0 0


E
a












O


m

a


1




c


L





























0~lL~0 0


a co





Hd
ed a













co



to










O'







cb


00 0


C
C-









,7 _






-r



L. 1




J -- -~

LOhlLO~L00
h10 O0
d d d

(EW/EW) VUSA


X2 X














Ln
O

cb

cc~
O
m
r



cb
m

O


k
m
e
o
or


w E
o
~
oo

d
HC~



'5 a
r
" cb

Cb E
E o
,o
mC~



r
cb


E "
~Ln

d
ocY3
m

.~
cb


uiO
o
Wc~
~4'Ln

o


~E
O O
~Ln

"Ln
'fl
cb ~`

E
o E
O o


C1~3


5D


- )


-j


0

L









N E



o v


o


a










N E

o d
co

a

a

o


comm


commec


3
y





c


?~ F



a so


a~ o


a




a



a


IS
OlDOIDOID
00000 or
MooNNN c


IS I
OlDOIDOI
000000oi
MoooNNN


OLDLDOLDOD
COOWNNN


oncomeo
comme










Table 3-3. model performance statistics for soil moisture and temperature between
CERES-Maize estimates and MicroWEX-2 field observations.
RMSD
L ... ir Soil Moisture Soil Temperature (K()
5-15 cm 0.0204 2.534
15-30 cm 0.0344 1.426
30-45 cm 0.0164 1.485
45-60 cm 0.0117 2.775
6;0-90 cm 0.0083 3.648


The CERES-Maize model simulates moisture at daily timesteps, while the hydrological

changes near the soil surface (0-5 cm) occur at much shorter timesteps, making it

challenging to compare model and observed near-surface soil moisture. In Figure 3-3a, the

daily moisture at 0-5 cm estimated by the CERES-Maize model is compared with daily

averages and 15 min observations of volumetric soil moisture (VSM) during MicroWEX-2.

Deeper soil 1... ris matched the observed values fairly well, as -II_0-r-- -1. by their low

RMSD values in Table 3-3, except for a "' underestimation during the entire growing

season for the 15-30 cm 1 ... r. This is within the experimental error of the observations

made by the TDR probes.

Overall, the model did not capture the changes in soil temperatures realistically

during the growing season. It estimated temperatures at depths of 15-45 cm fairly well,

as indicated by their low RMSD values in Table 3-3. The temperatures at deeper 1... rs

were underestimated throughout the growing season, with increasing differences as the

season progressed. For the upper 1... ris, the model did not capture the strong fluctuations

in temperature closer to the surface.

3.5 Summary

This chapter answers the first two research questions from C'! l oter 1.

Question 1:"What values for the six corn cultivar coefficients give the best

DSSAT model performance for both biomass and LAI for the MicroWEX-2

growing season?"










The calibrated cultivar coefficient values which give the best estimates for biomass

and LAI are given in Table 3-1.

Question 2:"How do the model estimates for biomass and LAI compare with

MicroWEX-2 observations?"

The R MSD for biomass was 0.90 hig/ha. The biomass was increasingly underestimated

by the model as the season progressed, with the maximum difference of 1.41 Mg/ha at the

end of the season. The model estimated realistic LAI with a low R MSD of 0.22.









CHAPTER 4
CALIBRATION OF AN SVAT MODEL AND COUPLING WITH A CROP MODEL
FOR SWEET CORN

4.1 Introduction

This chapter describes the coupling of an SVAT model with a crop growth simulation

model to estimate land surface fluxes in growing vegetation and evaluate the performance

of the coupled model for estimating root-zone soil moisture and ET observations from

an extensive field experiment. Both categories of models benefit from two decades of

development and testing by their respective research communities. The SVAT model,

viz. Land Surface Process (LSP) model, simulates one-dimensional energy and moisture

transport as well as radiative, sensible and latent heat fluxes at the land surface. The

cropping system model, viz. the Decision Support System for Agrotechnology Transfer

(DSSAT), is a widely-used and tested modular suite of crop models that simulate crop

growth biomasss accumulation) and development (vegetative and reproductive growth

stages). Neither model is structurally changed and an interface is created to link the two

models. In the coupled LSP-DSSAT model, the DSSAT model provides the LSP model

with vegetation characteristics that influence heat, moisture, and radiation transfer at the

land surface and in the vadose zone and the LSP model provides the DSSAT model with

estimates of soil moisture and temperature profiles and evapotranspiration (ET).

4.2 LSP Model

The LSP model was originally developed by the Microwave Geophysics Group at

the University of Michigan [:38]. The model simulates 1-d coupled energy and moisture

transport in soil and vegetation, and estimates energy and moisture fluxes at the land

surface and in the vadose zone. It is forced with micrometeorologfical parameters

such as air temperature, relative humidity, downwelling solar and longwave radiation,

irrigation/precipitation, and windspeed. The original version has been rigorously tested

[:31] and extended to wheat stubble [:30] and brome-grass [:32], prairie wetlands in Florida

[64], and tundra in the Arctic [9].










A new version of the LSP model was used with a modified radiation flux parameterization

at the land surface. Specifically, the shortwave radiative transfer was altered to a more

physically-based formulation, including both diffuse and direct radiation, and c .Ir-pli

transmissivity described by Camp~bell and Norman [4]. The original version of the LSP

model followed a more empirically-based formulation by V/erseghy et al. [62]. In addition,

the aerodymanic resistances and the surface vapor resistances were changed in the new

version to extend it to tall vegetation and to partially-vegetated terrain [24]. The original

version was developed for homogeneous land cover, such as bare soil or short grass. The

new version of the model also includes adaptive timesteps for computational efficiency and

to allow sudden changes or large fluxes in the sandy soils with high thermal and hydraulic

conductivities. The following section provides a detailed description of the modified LSP

model used in this study. Some fundamental governing equations are also included in the

section for completeness even though they remain unchanged from the original version.

4.2.1 Energy and Moisture Transport at the Land Surface

4.2.1.1 Energy Balance

Combining the radiation and heat flux boundary conditions, the net energy flux into

the canopy (Que,,c), and soil (Qnet,s) (W/m2):


Quet,c = Hse + Rs,c + Rz,c Hea LEtr LEev (4-1)


Quet,s = -Hse + Rs,s + Rz,s Hsa LE, (4-2)

where Hse, Hea, and H,, are the sensible heat fluxes between soil and calrs..pi-, ( .Ir-pli- and

air, and soil and air, respectively; LEtr, LEe,, and LE, are the latent heat fluxes from

transpiration, canopy evaporation, and soil evaporation, respectively; and Rs,c, Rs,s, Rz,c,

Rz,s, are the net solar radiation intercepted by the c Ilr.pi-, intercepted solar radiation by

the soil, net longwave radiation at the canopy, and net longwave at the soil, respectively.

Solar Radiation (Rs,c and Rs,s)









Downwelling solar radiation is partitioned between the soil and canopy by first

dividing total solar radiation into direct and diffuse components, as an empirical function

of clearness index and apparent solar time [1]. The direct fraction is either transmitted,

reflected, or absorbed. The net solar radiation absorbed by the c lis..pi- and soil are


Rs,c = [(1 fd) (1 Tc,air) (1 pe,dir) + (fd) (1 Tc,dit/) (1 pe,dit/)]Rs,down (4-3)


Rs,s = (1 p,) [(1 fd) (Tc,dir) (1 pe,dir) + (fd) (Tc,dit/) (1 pe,diff)]Rs,down (4-4)

where fd is the diffuse fraction, -e,>d, is the direct c I s..pi- transmissivity, Tr,~diff is the

diffuse canopy transmissivity, pe,adi is the direct c Il ..pi- reflectance, pe,diff is the diffuse

canopy reflectance, p, is the soil reflectance, and Rs,aown is the downwelling solar radiation.

The direct calrs..pi- transmissivity is Tc,dir, given by Camp~bell and Norman [4]:


Tc,dir 6-e m8 2LA _5)


where K(x, 8) is the c lis..pi- extinction coefficient for canopy with an ellipsoidal leaf

angle distribution, o- is the reflectance of a single leaf, x is the leaf angle distribution

parameter, 8 is the solar zenith angle, LAI is the leaf area index of the c lis..pi-, and R is

the clumping factor which accounts for incomplete calr pli- cover.

The c lis..pi- reflectance is calculated as

2K(x, 8) 1- -/-
pear=1 + K(x, 8) 1 + (4-6)

The diffuse c .Ilr-pi- transmissivity, Tr,~diff, is found by integrating Te,dir over all solar zenith

angles. Diffuse canopy reflectance pe,,iff is given by Goudrican [24]:

1- /-
pe,dit/ = 1+(4-7)


Radiation transmitted by the canopy is either reflected or absorbed by the soil according

to the soil albedo, p,, an empirical function of soil moisture, derived from MicroWEX-2










Sensible Heat Flux


LatenRt Heat Flux


T, 9s


rallyJ r i;lf..X L) E- a


r ...7 rdfX)r(i-) r~dfv







Figure 4-1. Surface resistance network to estimate sensible and latent heat fluxes in the
LSP model.


bare-soil data:

p, = 0.0854e[-maz(0s,-0.0532,0) /n.003i7] + 0.146i50 (4-8)

where Os is the surface volumetric soil moisture (m3 m3)

Longwave Radiation (Rz,c and Rz,s)

The net longwave radiation abosrbed by the c Ilrpi- (Rz,c) and soil (Rz,s) are given by

Kustas and Norman [35]:


Rz,c = (1 nI)Rl,aown + (1 nl)es~sbTs4 2(1 nl)Ec~sbTc4 (4-9)


Rzs=(I) Rl,aown Es~sb? s4 ( 8l) c~sbT)(-0

where asb is the Stefan-Boltzmann constant, Rl,down is the downwelling longwave radiation,

as is the soil emissivity, ec is the canopy emissivity, and T, and T, are the soil and c Ilr1.lii

temperatures in K~elvin. nr is the longwave c lis..pi- transmissivity, the integral over the

hemisphere of direct transmissivity with a as zero.

Sensible Heat Flux~es

Figure 4-1(a) shows the resistance network model used to estimate sensible heat flux

(H) at the surface.The sensible heat fluxes between the soil and air (Hse), soil and canopy










(Hse), and c Ilr1.ipi and air (Hea), are calculated as:


T, T
Hsa =, pcp, s fs (4-11)

T, T
H,, = pacp, fy (4-12)
rse + Tbh

Hm, = pacp, fy (4-13)
rc + Tbh

where T,, T,,and T, are the air, soil, and canopy temperatures (K(), respectively, p, is the

air density (kg/m3 Cp, is the specific heat (J/kg K(), fy and fs are the vegetation and

bare soil cover fractions, respectively.

The aerodynamic resistances rs (soil-air) and rc (canopi-- .Ir~) are determined

assuming a log wind profile above the c lis..pi- or bare soil [24]:


ras =(4-14)
ku*


rac =(4-15)
ku*
kU(z)
U* (4-16)
In (z-a qMz

where u* is the friction velocity, W is the Businger-Dyer stability function [17], k is von

K~arman's constant (0.4), z is the measurement height, d is the vegetation displacement

height (taken as 0.63he, he is the plant canopy height), zov is the vegetation roughness

length (0.160), and zob is the bare soil roughness length.

For the aerodynamic resistance between the soil and the calrs..pi-, the log profile is not

valid due to momentum absorption by the c Il .pi- elements, so an exponential wind profile

in the calrs..pi- is used [24], with the under-c Il .pi- resistance, rse, from Nin and Yang [42]:


rs =he[ea(1-zoblhc) ea(1-zon/Ac)] 47
a~ch









where a and Ku are the canopy damping coefficient and the aerodynamic conductance for

heat at the top of the canopy [24], given by:

cdLAIlh
a =(4-18)

where

Im = 2 (4-19)
xrLAI

Ku = k~u*(he d) (4-20)

where, Im is the c lis..pi- momentum length, i, is the wind intensity factor, ca is the drag

coefficient, and I, is c Ilr1.ipi width. The leaf boundary 1... -r resistances for heat transport,

Tbh, iS calculated as:

Tbh = (180)11 (4-21)


ac = k~u*ln he d (4-22)

Latent Heat Flux:

Latent heat flux is based upon the resistance network (see Figure 4-1(b)). Three

sources that contribute to the flux are: soil evaporation (LE,), ( Ilr.ipi- transpiration

(LEtr), and evaporation of intercepted precipitation (LEer).


LE, = p s-9)(4-23)


fy(1 XI)1 4 )
LEr=, aq~at-G)(-4


L~ev= Ap~qc~at -Ga)(4-25)

where go, q,, and qc,sat are the specific humidities of the air, soil surface 1... r, and

saturated canopy, respectively, A is the latent heat of vaporization of water, and xl is

the fraction of vegetation covered in intercepted precipitation, calculated by

W,
xl (4-26)










wr,max = 0.2LAI


(4-27)


where Wr,max is the maximum possible interception, and W, is the intercepted moisture by

the canopy [62]. rby is the leaf boundary 1.v. -r moisture resistance. rl, and r, are surface

vapor transport resistances for the leaves and soil, respectively, where 1,, is leaf width. The

leaf resistance is based on calrs..pi- assimilation [24]:


Tby = 0.93Tbh (4-28)

a Coo
ri = 783Tbh (4-29)
1.66F,

F, = (1 eRS,ctphotolFm)(Fm Fd) + Fd (4-30)

where ACoo, is the concentration difference of CO2 between the leaf and air, in kg/m3,

photo is the photosynthetic efficiency, F, is the net assimilation (kg CO2 m2S), Fd is the

base assimilation rate, determined by a Qio relationship from parameter Fb, and Fm, the

maximum assimilation rate, is estimated as 10Fd.

Soil surface resistance is a linear function of surface moisture deficit [3],


r, = so-9 AD + soilb 41


where moisture deficit (aO) is the difference between saturated moisture content and

actual moisture content.

4.2.1.2 Moisture Balance

The net infiltration of moisture at the soil surface (Iet~,s) is given by:


Inet~s = PfB + D R E, (4-32)


where P is the precipitation, D is the canopy drainage from the c lis..pi- to the soil, R is

the runoff, and E, is the soil evaporation. D given by W, Wr,max. The rate of change in

moisture intercepted by the c lis..pi- is given by











dW,
r=P fy D Eev (4-33)

4.2.2 Soil Processes

Heat and moisture transport in the soil is determined as the numerical solution to

[47]:
i80
= -Vqm (4-34)
iBT
C,, -Vqh (4-35)

4m = 97 + q, (4-36)

qi = -Do~lV8 DT,IVT + K + S (4-37)

q, = -D~,V8 DT,,VT (4-38)

qh = -KVT + p~q, + CV,,(T To)qm (4-39)

where gi, q,, and ga are liquid, vapor, and heat fluxes, respectively; T and 8 are temperature

and volumetric soil moisture, respectively. Do,l is the diffusivity of liquid under a moisture

gradient; DT,I is the diffusivity of liquid under a temperature gradient; D~,v is the

diffusivity of vapor under a moisture gradient; DT,v is the diffusivity of vapor under a

temperature gradient, from [47]; K is hydraulic conductivity, from [49]; a is thermal

conductivity of soil from [11], S is a sink term (root water uptake), and C,~, is the

volumetric heat capacity of soil. C,~,, p, and A are the heat capacity, density, and heat of

vaporization of water.

The soil profile is defined with lI- rs of different constitutive properties, divided into

computational blocks, with the thickness of blocks increasing exponentially with depth.

The coupled heat and moisture transport equations are solved using a block-centered,

foward-time finite difference scheme. The upper boundary condition is a heat and moisture

flux determined by the meteorological forcing, while the lower boundary condition

assumes free flow of heat and moisture.





































Figure 4-2. Algforithm for the couplingf of the LSP and DSSAT models.


4.3 Coupling of LSP and DSSAT models

Both the LSP and the DSSAT models are forced with micrometeorological conditions

provided in each model's required format. A flowchart of the model coupling is shown

in Figure 4-2. The soil moisture and temperature profiles are initialized in both models.

The LSP model simulates energy and moisture fluxes using an adaptive timestep. At the

last timestep of each d is-, the daily averages of ET, soil moisture and soil temperature

are calculated and passed on to the DSSAT model. The DSSAT uses these values in

calculating growth rates to obtain the crop variables such as biomass, LAI, etc. using a

daily timestep. The estimates of biomass, root-length densities, LAI, height, and width are

provided to the LSP model for flux estimation on the next d is-.

The main challenge in coupling an SVAT model such as the LSP and a crop model

such as the DSSAT arises from the difference in timestep and thickness of soil nodes









between the two models. The LSP model uses short timesteps (on the order of seconds)

and a user-defined number of nodes (35 in the top 1.8 m for this study). DSSAT uses

daily timesteps, with 9 nodes in the top 1.8 m. In the coupling, the LSP model essentially

replaces the soil and soil-plant-atmosphere modules of the DSSAT model. To account for

the timestep difference, the soil moisture and temperature profiles estimated by the LSP

model are averaged daily. The latent heat fluxes are accumulated daily and converted from

W/m2 to mm/d or-, treating soil and vegetation latent heat fluxes separately so that it can

match the DSSAT requirements. To account for the difference in thickness of soil nodes,

the daily averages of soil moisture and temperature profiles from the LSP were spatially

averaged to match the soil nodes in the DSSAT. In addition, the root length density for

the 9 DSSAT nodes are interpolated/extrapolated to match the LSP nodes. Because the

LSP model does not include nitrogen transport in c Ilr~li- and soil, the DSSAT model

is run assuming there is no nitrogen stress. This is a reasonable assumption for heavily

fertigated soils, such as those during MicroWEX-2.

4.4 Methodology

In this study, the model simulations were conducted using two scenarios. First,

using a stand-alone LSP simulation forced with vegetation parameters observed during

MicroWEX-2 and second, using the coupled LSP-DSSAT model.

4.4.1 Inputs and Initial Conditions

Both the LSP and LSP-DSSAT models were run from planting on DoY 78, to

harvest on DoY 154, 2004. Micrometeorologfical forcingfs were obtained from observations

during MicroWEX-2, and from a nearby weather station, installed as part of the Florida

Automated Weather Network (FAWN). The precipitation/irrigation observations exhibited

most variability between the four raingauges (Figure 2-5). To obtain forcing for the model

simulations, we confirmed that raingauge data coincided with the observed soil moisture

increases. The data were scaled such that the daily accumulated observations from the









Table 4-1. Values for soil properties in the LSP model.
Parameter Description 0-1.7 ni 1.7-2.7 ni
X Pore-size index 0.27 0.05
,, ~Air entry pressure (ni H2()) 0.076 0.019
K.,a Saturated hydraulic conductivity (nt/s) 2.06 x10-4 8.9:3x 10-5
Or Volumetric wilting point moisture (nt"/nt) 0.0051 0.0040
8,,, H>1unletric saturation moisture (ni /ni) 0.34 0.41
.so H>1unletric sand fraction (ni /ni) 0.894 0.512
.si H>1unletric silt fraction (ni /ni) 0.034 0.08:3
,. Volumetric clay fraction (ni /n ) 0.071 0.405
,, Volumetric organic fraction (ni /n ) 0.000 0.000
Porosity 0.34 0.41


raingauges matched those observed independently at the same field site using collection

cans [16].

Initial conditions were not known during MicroWEX-2 because the sensor installation

was completed 7 d on~ after planting. The first values observed by the soil moisture and

temperature sensors were used as the initial moisture and temperature values for the

simulations.

Soil physical properties were based on texture and retention curve measurements

taken from soil samples in the field at different depths, and are listed in Table 4-1.

4.4.2 Calibration

The DSSAT and the LSP models were calibrated separately for the entire growing

season. In the DSSAT model, six corn cultivar coefficients governing the growth and

development, as described in Cl. .pter :3, were calibrated using Simulated Annealing to

nxinintize the root mean square difference (R MSD) between modeled and observed LAI

and biomass during MicroWEX-2.

In the LSP model, 12 parameters were calibrated using repeated Latin Hypercube

Sampling of the parameter space [40]. Four of these parameters were related to radiation

balance: leaf reflectance, o-, leaf angle distribution, .r, soil entissivity, es, and calr gol

entissivity, e,.. The remaining eight parameters were related to sensible and latent

heat fluxes: canopy base assimilation rate, Fb, photosynthetic efficiency, Frix,,,,, hare










Table 4-2. Sampling ranges from [24] and calibrated values for parameters in the LSP
model.
Parameter Description |Sampling Range Calibrated value


zob







is

Fb
photo
soil
soilb


Bare soil roughness length (m)
Leaf angle distribution parameter
Leaf reflectance
Calrse-pi- emissivity
Soil emissivity
Calrse-pi- drag coefficient
Canopy wind intensity factor
Leaf width (m)
Base assimilation rate (kg CO2 m2S)
Photosynthetic efficiency (kg CO2/J)
Slope parameter for r, (m2S/kg H20)
Intercept parameter for r, (m2S/kg H20)


10-4 10-
10-2 2.0
10-2 0.5
0.95 0.995
0.95 0.995
10-5 1.0
10-3 102
10-3 10-1
-10-s -10-10
10-' 10-s
0.0 5x103
0.0 --6 x 102


0.004
0.819
0.474
0.973
0.953
0.328
67.90
0.0531
-8.20 x 10-9
8.97x 10-7
3700.0
-531.0


soil aerodynamic roughness, zob, leaf Width, i,, wind intensity factor, i,, ( Ilrpi- drag

coefficient, cd, and soil evaporation resistance parameters, soil, and soilb. The calibration

of these parameters was conducted to minimize RMSDs between the modeled and

observed volumetric soil moisture (VSM) at 2 cm and latent heat flux (LE) for the

overall growing season. These two objectives were chosen because VSM is one of the most

important factors governing the moisture and energy fluxes, and in the calibration VSM

and LE were found to be competing objectives.

During the calibration, five thousand points were sampled in the form of twenty

250-point Latin Hypercube Samples within the ranges from Goudrican [24], specified in

Table 4-2, using the University of Florida's High-Performance Computing Center. These

sampled points were ordered by Pareto ranking and the set of points with the lowest

Pareto rank were considered as the optimal parameter set [25].














-Total season
---Almost Bare soil
~ Partially Vegetated
- ~Full Vegetation Cover


1201-


I


~1





1
1~~


"1-~
, 1 \-


100|-


0 01


0.03


0.06


0.07


0.04 0.05
2 cm VSM RMSD


0.08


Figure 4-3. Pareto fronts from calibration of the stand-alone LSP model. The asterisk
represents the point on the Pareto front where the total seasonal RMSD for 2
cm VSM is 0.04 m3 m3


4.5 Results and Discussion

4.5.1 Calibration

4.5.1.1 DSSAT

Table 3-1 provides the calibrated values of the six cultivar coefficients in the DSSAT

model. These values were used for simulations using both stand-alone DSSAT and coupled

LSP-DSSAT models.

4.5.1.2 LSP

The result of the multiobjective calibration was a Pareto front [25]. Figure 4-3

shows the Pareto fronts for the overall growing season with RMSDs between the model










estimates and observations of the two objectives, VSM at 2 cm and LE. Even though the

calibrated parameters were obtained for the whole growing season, the growing season was

divided into four periods to understand the differences in Pareto fronts during different

growth stages (Figure 4-:3). These four stages include: almost bare soil (DoY 78-105),

intermediate vegetation cover (DoY 105-125), full vegetation cover (DoY 125-1:35),

and reproductive stage (DoY 1:35-154). A Pareto front could not he generated for the

reproductive stage due to lack of LE observations during this stage. In general, the

fronts show that the model performs best during the intermediate cover stage, with the

front closest to the origin, and worst during the almost bare soil stage, with the front

farthest front the origin. The worst performance during the bare soil stage is primarily

due to fewer observations (<2000) from MicroWEX-2 during this stage compared to the

>4000 observations during vegetated stages, resulting in calibrated parameters biased

towards nxinintizing differences during the vegetated stages. For the stand-alone LSP and

LSP-DSSAT simulations in this study, the Pareto front for the overall season in Figure

4-:3 was used to choose the 12 parameter values corresponding to an R MSD in VSM at

2 cm of 0.04 ni /n noted by an asterisk in the Figure. This choice was based upon the

sensitivity of SVAT models to VSM for hydronieteorological applications [20, :34, :36]. With

the RMSD in VSM of 0.04 ni^/nit there is an expected RMSD in latent heat flux of about

45 W/ni2 for the overall season and about 55, 40, and 50 W/ni2 for the first three stages,

respectively (see Figure 4-3). Table 4-2 lists the calibrated parameter values used in the

LSP and LSP-DSSAT model simulations.

4.5.2 Model Simulation

4.5.2.1 DSSAT

The DSSAT model provided realistic estimates of growth and development of sweet

corn. Both the stand-alone DSSAT and LSP-DSSAT models estimated the emergence date

on DoY 90, compared to DoY 86 observed during MicroWEX-2. Modeled anthesis d #-,









Table 4-3. Comparison of LAI, dry biomass (kg/m2), and ET (mm) for stand-alone
DSSAT and coupled LSP-DSSAT simulations.
Stand-Alone DSSAT Coupled LSP-DSSAT
RMSD MAD Bias RMSD MAD Bias
LAI (-) 0.38 0.26; 0.06; 0.43 0.39 0.29
Total Biomass (kg/m2) 0.90 0.63 -0.59 0.52 0.40 0.05
ET (mm) 1.63 1.36 0.31 1.64 1.25 0.62


when '7 "' of the corn has silked, was DoY 139, while '7 "' silkingf was observed on DoY

135.

Figure 4-4 and Table 4-3 show the comparison of estimates of LAI and dry biomass

by the stand-alone DSSAT model, by the LSP-DSSAT model, and those observed

during MicroWEX-2. Estimates from both model simulations compared well with the

observations with RMSDs of <0.5 for LAI and <1.0 kg/m2 for dry biomass.

The estimates from the two models differed by <0.2 for LAI and <0.6 kg/m2 foT

dry biomass, with the coupled LSP-DSSAT model estimating higher values than the

stand-alone DSSAT. These relatively small differences could be due to higher daily

averages of soil moisture in the LSP-DSSAT than those in the stand-alone DSSAT's

bucket model, by > 0.02 m3 m3 (Figure 4-4(c)). The higher soil moisture values would

permit increased growth resulting in higher LAI and dry biomass in the coupled model.

The high moisture estimates also result in higher daily ET in the coupled model compared

to the DSSAT (Figure 4-4(d)). The LSP-DSSAT predicts <0.5 mm/day higher ET than

DSSAT alone, with the RMSD between the daily estimates of ET by the LSP-DSSAT and

observations of 1.69 mm.

4.5.2.2 LSP-DSSAT Model

The performance of the coupled LSP-DSSAT model was evaluated by comparing

its estimates of surface fluxes, soil moisture, and temperature profiles to those observed

during MicroWEX-2, and to those estimated by the stand-alone simulation of the LSP

model. These comparisons are discussed for the four growth stages and during the entire

growing season separately to provide detailed insight into modeled fluxes during different



































(b)


,-O a


r 10

m
E
O 5
m
P
o


DoY 2004


0



0.3



E 0.2

m 0.




0


80 90 100


110 120
DoY 2004


130 140 150


80 90 100 110 120 130 140 150
DoY 2004


80 90 100 110 120 130 140 150
DoY 2004


Comparison of estimations by the coupled LSP-DSSAT and stand-alone
DSSAT model simulation and those observed during MicroWEX-2: (a) dry
biomass, (b) LAI, (c) 5 cm soil moisture, and (d) ET.


Figure 4-4.














Flux RMSD MAD Bias RMSD MAD Bias


Depth (cm) RMSD MAD Bias RMSD MAD Bias


Depth (cm) RMSD MAD Bias RMSD MAD Bias


Comparison of surface fluxes (W/m2), foT Stand-alone LSP and coupled
LSP-DSSAT simulations.


Table 4-4.


Stand-Alone LSP


Coupled LSP-DSSAT


Net Radiation
Latent Heat Flux
Sensible Heat Flux
Soil Heat Flux


23.86
46.34
34.48
47.68


16.11
32.03
24.07
26.24


10.38
14.96
15.69
-1.54


25.62
50.69
37. 19
46.54


18.12
35.28
24.79
25.02


12.65
18.84
14.88
-1.83


Table 4-5. Comparison of volumetric soil moisture (m3 m3), foT Stand-alone LSP and
coupled LSP-DSSAT simulations.


Stand-Alone LSP


Coupled LSP-DSSAT


0.047
0.035
0.036
0.032
0.062
0.060


0.044
0.029
0.030
0.031
0.061
0.057


0.044
0.029
0.028
0.031
0.061
0.057


0.046
0.034
0.036
0.032
0.062
0.060


0.043
0.028
0.030
0.031
0.061
0.057


0.043
0.028
0.028
0.030
0.061
0.057


growing stages. The model simulations were conducted using calibrated parameter values

given in Table 4-2. This section discusses statistics for coupled LSP-DSSAT model

simulation, but Tables 4-4-4-6 provide detailed statistics for both the coupled LSP-DSSAT

and the stand-alone LSP model simulation.

Early Season Almost Bare Soil

This period included the first 27 d on oOf the growing season (DoY 78-105), when

it was ,In1bare soil with low vegetation. The canopy height was < 17 cm, LAI

was < 0.2, and vegetation cover was < 0.22. Figures 4-5(a) and (b) show the estimated


Table 4-6. Comparison of soil temperature (K(), for stand-alone LSP and coupled
LSP-DSSAT simulations.


Stand-Alone LSP


Coupled LSP-DSSAT


2.80
2.88
2.6;0
2.03
1.70
1.26


2.22
2.21
2.03
1.56
1.24
0.91


1.90
1.73
1.73
1.40
1.09
0.44


2.43
2.56
2.27
1.76
1.45
1.12


1.91
2.00
1.77
1.41
1.15
0.90


1.37
1.21
1.22
0.93
0.67
0.09





























(b)







80 85 90 95 100 1C
DoY 2004 (EST)


80 85 90 95 100


-300


Figure 4-5.


Comparison of net radiation, between DoY 78 to 105, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


Table 4-7. Measurement uncertaintities during MicroWEX-2.


Sensor
Raingauge
TDR
Thermistor
Soil heat flux
Net radiation
Latent heat flux
Sensible heat flux


Uncertainty
12 mm/h
0.025 VSM
0.1 K(
15 W/m2
22 W/m2
17-36 W/m2
21 W/m2


Reference














E 600-(a

S400-

S200


-200
80 85 90 95 100 105



300-
(b)
200-
100 -1


~ -100 -*
-200
-300-
80 85 90 95 100 105
DoY 2004 (EST)

Figure 4-6. Comparison of latent heat flux, between DoY 78 to 105, estimated hv the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


and observed net radiation as well as residuals (LSP-DSSAT minus observed) during

this period, respectively. Overall, both the coupled and the stand alone models capture

the phases of the diurnal variation in net radiation. The R MSDs between the model

estimates and observations are similar for both models' simulations (coupled LSP-DSSAT

and stand-alone LSP) at ~:32 W/ni2. However, the peak d .vtinle differences are as high

as 100 W/nl2 on DoY 9:3, 95, 96, and 97. This corresponds to d .va when the model

estimates of VSM at 2 cm were higher than observed, with R MSD of 0.0374 ni /ni and

hias of 0.0:36 ni /ni (Figure 4-9). This overestiniation in VSM, possibly due to improper

initial conditions and/or improper precipitation inputs (see Sections 4.4.1 and 4.5.2.2),

would lead to lower estimates of soil albedo using Equation 4-8. The overestiniation also

results in higher LE estimates (Figures 4-6(a) and (b)) due to underestimated soil surface












*MicroWEX-2 LSP -- -LSP-DSSAT


S200 II -5 I fl ~ t t 1 ,



-200
80 85 90 95 100 105



300-
(b)
200-

100

1~ 1 00 *
-200
-300-
80 85 90 95 100 105
DoY 2004 (EST)

Figure 4-7. Comparison of sensible heat flux, between DoY 78 to 105, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


resistance using Equation 4-31. In both the coupled and the standalone models, LE is

overestimated with RMSDs of ~54 W/m2 and biases of ~18 W/m2. These RMSDs are

higher than the sensor uncertainty of 17-36 W/m2 (Table 4-7) but are comparable with

those expected from Figure 4-3 using the Pareto front from the early season (see Section

4.5.1.2).

Both the coupled and stand-alone models estimate similar sensible heat fluxes, with

RMSDs of ~40 W/m2 and biases of ~16 W/m2 (Figure 4-7). These RMSDs are lower

than those obtained for LE. For the d we~ when LE is positively biased (e.g. DoY 97, 98,

101, 102, and 103), the sensible heat flux is biased negatively, and vice versa. The overall

RMSD for sensible heat fluxes could be due to slightly lower aerodynamic resistance

and/or due to overestimation of soil temperature in both the models (Figure 4-10). The


1000

800-

E 600-














E 600-

S400-

S200-


-200
80 85 90 95 100 105



300-
(b)
200-





i -300-


80 85 90 95 100 105
DoY 2004 (EST)

Figure 4-8. Comparison of soil heat flux, between DoY 78 to 105, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


RMSDs between the models and observations for soil temperature are <2.22 K(. This

positive bias (<1.7 K() in soil temperature in the beginning of the simulation could be due

to improper initial conditions (see Section 4.4.1).

The estimated soil heat flux (Figure 4-8) is overestimated during the dwi and

underestimated at night. The net effect of which is 2 cm soil heat flux is slightly

underestimated with RMSDs of ~48 W/m2 and biases of ~-3 W/m2, because the

magnitude of the latent and sensible heat flux biases exceeds that of the net radiation

overestimation.

M~id-Season Intermediate V/egetation Cover

This period included the next 20 dai~ of the growing season, when the vegetation is

partially covering the terrain (DoY 105-125). The c Ilr~li- height was 17-73 cm, LAI was






















































(e)




80 85 90 95 100 1


MicroWEX-2 LSP LSP-DSSAT





80 85 90 95 100 1
DoY 2004 (EST)


E 0.2
E 0.15
0.1
0.05



E 0.
E 0.15
S0.15




S01

0.05








mE 0.2
E 0.15


0 05



E 0.2
E 0.15
0.1

0.05


80 85 90 95 100 105


80 85 90 95 100 105


(d)


Figure 4-9.


Comparison of volumetric soil moisture estimated by the coupled LSP-DSSAT
and stand-alone LSP model simulation and those observed during
1\icroWEX-2, between DoY 78 to 105: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32
cm, (e) 64 cm, and (f) 100 cm.

















S300

280
80 85 90 95 100 105

320


S300

280
80 85 90 95 100 105

320


S300

280-
80 85 90 95 100 105

320


S300

280-(d
80 85 90 95 100 105

320


S300

280 -(e)

80 85 90 95 100 105

320
MicroWEX-2 LSP LSP-DSSAT

S300-

280-
80 85 90 95 100 105
DoY 2004 (EST)


Figure 4-10. Comparison of soil temperature estimated by the coupled LSP-DSSAT and
stand-alone LSP model simulation and those observed during 1\icroWEX-2,
between DoY 78 to 105: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f) 100 cm.













Ec 800
600-
S400 I
rr200


-200
105 110 115 120 125



300-

E^ 200 -(b)



B 100

S-200
-300-
105 110 115 120 125
DoY 2004 (EST)

Figure 4-11. Comparison of net radiation, between DoY 105 to 125, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


0.2-1.82, and fractional vegetation cover was 0.22-1.00. Overall, the model performance

is better during this growth stage compared to the previous stage, as expected from the

Pareto fronts (Figure 4-3 and Section 4.5.1.2).

As the vegetation cover increased during this period, the residuals in net radiation

decrease significantly, indicating the decreasing influence of soil albedo on radiation

balance. The dwitime residuals decrease from ~80 W/m2 before DoY 115 to <30 W/m2

after DoY 115 (Figure 4-11). Due to the improved net radiation estimates (RMSD ~27

W/m2), and the decreasing influence of soil surface resistance, RMSDs in LE are lower

during this stage than during the bare soil stage (compare Figures 4-6 and 4-12) even

though VSM remains overestimated by similar amounts (compare Figures 4-9 and 4-15).














E 600- a

S400-.


S200


-200
105 110 115 120 125



300-
(b)
200-




~ -100
-200
-300-
105 110 115 120 125
DoY 2004 (EST)

Figure 4-12. Comparison of latent heat flux, between DoY 105 to 125, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


The RMSD of ~40 W/m2 COTTOSpond to those expected from the Pareto front in Figure

4-3.

Similarly low RMSDs and biases are found in sensible heat flux, soil heat flux, and

soil temperature. Sensible heat flux is overestimated, but matches more closely with

observations during this stage than during the bare soil stage (Figure 4-13), with RMSDs

of ~30 W/m2 and biases of ~12 W/m2. Soil heat flux remains overestimated during

the dwi and underestimated at night, similar to the previous stage (Figures 4-14(a) and

(b)). Overall, the 2 cm soil heat flux is underestimated with RMSD of ~39 W/m2 and

biases of ~-6 W/m2 and This is reflected in the soil temperature (Figure 4-16) as a lower

overestimation (RMSD < 1.67 K( and bias < 0.67 K() than in the previous stage for the











*MicroWEX-2 LSP -- -LSP-DSSAT


1000
800-
E 600- a

S400 -


S200-


-200
105 110 115 120 125



300-
(b)
200-

100

1~ -100
-200
-300-
105 110 115 120 125
DoY 2004 (EST)

Figure 4-13. Comparison of sensible heat flux, between DoY 105 to 125, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


stand-alone LSP, and an underestimation (RMSD < 1.47 K( and a negative bias > -0.91

K() in the case of the LSP-DSSAT model.

Late Season V/egetative Stage

This period included the next ten d we~ Of the growing season, when the corn was

in the vegetative growth stage and at full vegetation cover (DoY 125-135). The calrpli

height was 73-162 cm, LAI was 1.82-2.49, and vegetation cover was 1.00.

In the previous stage, as vegetation cover increased, residuals for net radiation

decreased. Because of full vegetation cover during this stage, net radiation (Figure 4-17)

matches very closely with observations, with RMSDs of ~16 W/m2 and biases of ~8

W/m2, leSS than the estimated sensor uncertainty (Table 4-7). LE is overestimated with

RMSD of ~49 W/m2 and bias of ~16 W/m2 (Figure 4-18). The RMSD of ~49 W/m2














E 600 (a)

S400-

S200-


-200
105 110 115 120 125



300-
(b)
200-
100 -


i -100 *
-200
-300-
105 110 115 120 125
DoY 2004 (EST)

Figure 4-14. Comparison of soil heat flux, between DoY 105 to 125, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


correspond to the RMSD expected from the Pareto front in Figure 4-3. Though the net

radiation matches well, it is still biased high, which would permit lower leaf surface vapor

resistance by Equations 4-29 and 4-30, resulting in overestimated LE from increased

canopy transpiration. Overestimated VSM, shown in Figure 4-21, (RMSD 0.0492 m3 m3

and positive bias 0.0472 m3 m3) COuld also lead to overestimation of LE by increasing soil

evaporation.

Sensible heat flux (Figure 4-19) is overestimated with RMSDs of ~43 W/m2 biases of

~22 W/m2. This overestimation could be due to overestimated vegetation aerodynamic

roughness length.

The 2 cm soil heat flux (Figure 4-20) is slightly overestimated with RMSD of ~44

W/m2 and bias of ~0.70 W/m2. Since during full cover, the net flux going into the soil














































MicroWEX-2 LSP LSP-DSSAT
(f)
_ _


E 0.2-
E 0.15
0.1
0.05 -
105

E 0.2-
E 0.15-

0.05 -
105


mE 0.2
E 0.15-
0.
0.05 -
105

S0.2
S0.15

0.05 -
105


mE 0.2
E 0.15 -
0. -
0.05 -
105

E 0.2
E 0.15 -
0 1,
0.05 -
105


110 115 120 125


110 115 120 125


110 115 120 125



( -


(e)
'Y


115
DoY 2004 (EST)


Figure 4-15. Comparison of volumetric soil moisture estimated by the coupled
LSP-DSSAT and stand-alone LSP model simulation and those observed
during 1\icroWEX-2, between DoY 105 to 125: (a) 2 cm, (b) 4 cm, (c) 8 cm,
(d) 32 cm, (e) 64 cm, and (f) 100 cm.





























































- MicroWEX-2 LSP LSP-DSSAT


~____________ __ __ __ _


-i

-s



5

-s


)5 110 115 120 1:


S300
E

280
10

320


S300
E

280
10

320


S300

280
10


110 115 120


110 115 120


125


320


S300 ~ ,

280-(d
105 110 115 120 1:


300


280
105


300-


280-
105


115
DoY 2004 (EST)


Figure 4-16. Comparison of soil temperature estimated by the coupled LSP-DSSAT and
stand-alone LSP model simulation and those observed during 1\icroWEX-2,
between DoY 105 to 125: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f ) 100 cm.














Ec 800
600-

S400

rr200


-200
125 126 127 128 129 130 131 132 133 134 135



300-

E^ 200 -(b)
100-


S-100
S-200
-300-
125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)

Figure 4-17. Comparison of net radiation, between DoY 125 to 1:35, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


is dominated by the flux between the soil and the canopy, the overestimation of soil heat

flux indicates that soil-canopy flux is underestimated. This overestimation in soil heat flux

leads to overestimation in soil temperature (Figure 4-22), moreso than during intermediate

vegetation cover, with a positive bias < 2.68 K( and R MSD < :3.32 K(.

Reproductive Stage

The last 19 d on oOf the growing season, DoY 1:35 154, comprised the reproductive

stage, beginning with silk formation. During this period, the < Il 4 e- height was 162-200

cm, LAI was 2.49-2.75, and vegetation cover was 1.00. The biomass growth during this

stage was primarily due to ear growth.














E 600 (a)

S400-

200~ **. i
0)rI L;-~i

-200
125 126 127 128 129 130 131 132 133 134 135



300-
(b)
200-


-100 -


~ -300-


125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)

Figure 4-18. Comparison of latent heat flux, between DoY 125 to 135, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


Similar to the previous stage, net radiation (Figure 4-23) matches very closely with

observations, with RMSDs of ~17 W/m2 and biases of ~2.6 W/m2. The LE and H

comparison could not be presented due to missing observations during this period.

The 2 cm soil heat flux (Figures 4-24) is slightly overestimated with RMSDs of ~55

W/m2 and biases of ~2.3 W/m2, foT Similar reasons as during the non-reproductive

full cover period. The overestimation in soil heat flux leads to overestimation in soil

temperature (Figure 4-26), with RMSD < 3.39 K( and a positive bias < 3.39 K(.

VSM (Figure 4-25) is overestimated with RMSD 0.0632 m3 m3 and a positive bias

0.0623. The overestimation could be due to incorrect precipitation inputs, or accumulated

moisture because of underestimated hydraulic conductivity in the bottom clay 1 in T.

Growing Season Planting to Harvest












*MicroWEX-2 LSP -- -LSP-DSSAT


1000

800-

E 600- a

S400-


S200t, r b


-200
125 126 127 128 129 130 131 132 133 134 135



300-
(b)
200-
100 .


iti -100
-200
-300-
125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)

Figure 4-19. Comparison of sensible heat flux, between DoY 125 to 135, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


The coupled LSP-DSSAT model estimates radiation, fluxes, and soil moisture and

temperature profiles that are very similar to those estimated by the stand-alone LSP

model with observed vegetation parameters for the growing season, as shown in Figures

4-27-4-29 and Tables 4-4-4-6. The RMSDs for the fluxes from the LSP-DSSAT model

are slightly higher (by ~3 W/m2) than those from the LSP model, primarily because

modeled c .Ilr-pi- characteristics used in the LSP-DSSAT model rather than observations.

For instance, LSP-DSSAT overestimates LAI by 0.29, compared to the stand-alone DSSAT

which overestimates by 0.06 (Figure 4-4(c)), increasing calrs..pi- interception and net

radiation.

Overall, both the LSP and LSP-DSSAT models capture the diurnal variations and

phases for net radiation (Figure 4-27(a)) throughout the growing season. The RMSDs














E 600 (a)

S400-
S200-


-200
125 126 127 128 129 130 131 132 133 134 135



300-
(b)
200-





i -300 -~'


125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)

Figure 4-20. Comparison of soil heat flux, between DoY 125 to 135, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


between the LSP-DSSAT and observed net radiation are ~ 24 W/m2. These differences

are close to the sensor uncertainty of 22 W/m2 in Table 4-7. The biases are ~ 17 W/m2

indicate an overestimation. LE RMSDs of ~48 W/m2 arT What can be expected from

the Pareto front in Figure 4-3. Sudden increases in LE on DoY 93, 109, 119, and 127,

as shown in Figure 4-27(b), are due to high evaporation after rainfall or irrigation. The

RMSDs of ~ 36 W/m2 foT SenSible heat flux (Figure 4-27(c)) are lower than those for LE.

The model overestimates the diurnal amplitude for 2 cm soil heat flux (Figure 4-27(d)),

which has LSP-DSSAT RMSDs of ~ 47 W/m2, due to dwitime overestimation of net

radiation and nighttime overestimation of latent and sensible heat fluxes.

The RMSD for VSM at 2 cm (Figure 4-28 and Table 4-5) is similar to our choice

of 0.04 m3 m3 on the overall season Pareto front (Figure 4-3). For both the LSP and



































































MicroWEX-2 LSP LSP-DSSAT
-f
--

-- I


01




S012

0 0.5-






0 05-
125 126 127 128 129 130 131 132 133 134 135



E 0.2
m(d
S0.15


0 05-
125 126 127 128 129 130 131 132 133 134 135



mE 0.2
E 0.15


0 05-
125 126 127 128 129 130 131 132 133 134 135


E 0.2
E 0.15
0.1


0.05 tI I III lll
125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)


Figure 4-21. Comparison of volumetric soil moisture estimated by the coupled
LSP-DSSAT and stand-alone LSP model simulation and those observed

during 1\icroWEX-2, between DoY 125 to 135: (a) 2 cm, (b) 4 cm, (c) 8 cm,

(d) 32 cm, (e) 64 cm, and (f) 100 cm.






































































280~ -
125 126 127 128 129 130 131 132 133 134 135
DoY 2004 (EST)


Figure 4-22. Comparison of soil temperature estimated by the coupled LSP-DSSAT and
stand-alone LSP model simulation and those observed during 1\icroWEX-2,
between DoY 125 to 135: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,

and (f ) 100 cm.


- MicroWEX-2 LSP LSP-DSSAT


___ ~_ _ ___ ___ _______


320


,300~ 1


280 (a

125 126 127 128 129 130 131 132 133 134 135


125 126 127 128 129 130 131 132 133 134 135

320


I


UL


()(


S300


280 ~ 1
125 126 127 128 129 130 131 132 133 134 135


I


320


S300


-' -=-i I----~--p~ ~


280~ i :
125 126 127 128 129 130 131 132 133 134 135

320


S300

280 -(e)

125 126 127 128 129 130 131 132 133 134 135


320


S300













Ec 800
600-
m 400
rr200


-200
135 140 145 150 155



300-

E^ 200 -(b)
10 -~


S-100
S-200
-300-
135 140 145 150 155
DoY 2004 (EST)

Figure 4-23. Comparison of net radiation, between DoY 135 to 154, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


LSP-DSSAT model simulations, the VSMs at all 111-;- rs exhibit positive bias that increases

during the season. A bias of ~0.02 m3 m3 COuld be introduced at the beginning of the

simulation due to improper initial conditions (Section 4.4.1) and significant uncertainty in

raingauge observations. During MicroWEX-2, the differences between daily accumulations

from the four raingauge observations and those observed independently by using

collection cans were up to 10s of mm/d?-,. Previous studies have also found similarly

high uncertainties in precipitation, at 12 mm/h, using such raingauges [44].

The VSM bias of ~ 0.06 m3 m3 for the lIn-;-rs 0.64 m and below (Figures 4-28 (e) and

(f)) could be due to the improper retention curve parameters in the clay lIn-;-r (below 1.7

m). The parameters were based only on one soil sample from that lIn-;-r and could have

resulted in lower flux estimates at the lower boundary and higher biases for the deeper














E 600- a

S400-

S200-



-200
135 140 145 150 155



300-
(b)
200-


E~ -100


-200
-300-
135 140 145 150 155
DoY 2004 (EST)

Figure 4-24. Comparison of soil heat flux, between DoY 135 to 154, estimated by the
coupled LSP-DSSAT and stand-alone DSSAT model simulation and those
observed during MicroWEX-2: (a) values and (b) residuals


1.v. -r The decrease in drainage could also cause positive bias in VSM for the upper

1.>.r-is, closer to the land surface.

Overall, soil temperatures (Figure 4-29) for both model simulations match closely

with the MicroWEX-2 observations. During the bare soil period, soil temperature exhibits

positive bias of < 1.40 K( and this bias is reduced during the intermediate vegetation cover

period to < 0.91 K( due to a net reduction of soil heat flux estimates. As the soil heat flux

bias increases, the temperature bias increases to < 2.7 K( after DoY 125. The seasonal

RMSDs decrease with depth with a maximum of 2.43 K( (Table 4-6).

4.6 Conclusion

This chapter answers research questions 3, 4, and 5 given in Chapter 1.


















S0.~1 ~ a




S0.1 =

0 05-
135 140 145 150 155




S0.1


0 05-
135 140 145 150 155




m 0.2~1 ~


0 05-
135 140 145 150 155



mE 0.2 (e)
S0.15

5j 0.1
0 05-
135 140 145 150 155



E 0.2 -(f

0 .15 -- -M co E S S S A

0.05
135 140 145 150 155

Do 2004 (EST


LSP-DSSAT an stn-aln LS moe simulation and ths observedDS
duin MirWX2 ewe oY15t 5:()2cm b m c m





(d)rn 3 irWX2 ewe DY15t 5:(2 cm, (e) 64 cm, and (f 0 cm.
















S300

280 (a
135 140 145 150 15
320


S300

280 (b


(c)

35 140 145 150 li





(d)


MicroWEX-2 LSP - LSP-DSSAT

300 _ -


135


140


145


150


320


280
135


280
135


145
DoY 2004 (EST)


Figure 4-26. Comparison of soil temperature estimated by the coupled LSP-DSSAT and
stand-alone LSP model simulation and those observed during 1\icroWEX-2,
between DoY 135 to 154: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm,
and (f ) 100 cm.



























































*MicroWEX-2 LSP -- -LSP-DSSAT


1000~


500o




80



1000
800
600 (b)






-200
809


1000
800-

E600 (c)
400

S200


-200
809


1000
800 -
600 (d


30 100 110 120 130 140 150


30 100 110 120 130 140 150


30 100 110 120 130 140 150


S400

S200


-200
80 90 100 110 120 130 140 150

Figure 4-27. Comparison of fluxes estimated by the coupled LSP-DSSAT and stand-alone
LSP model simulation and those observed during 1\icroWEX-2: (a) net
radiation, (b) latent heat flux, (c) sensible heat flux, and 2 cm soil heat flux.




















80 90 100 110 120 130 140 150


80 90 100 110 120 130 140 150


80 90 100 110 120 130 140 150







80 90 100 110 120 130 140 150







80 90 100 110 120 130 140 150

MicroWEX-2 LSP LSP-DSSAT
(f)


130 140 150


80 90 100 110 120
DoY 2004 (EST)


Figure 4-28. Comparison of volumetric soil moisture estimated by the coupled
LSP-DSSAT and stand-alone LSP model simulation and those observed
during MicroWEX-2: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and
(f) 100 cm.































































- MicroWEX-2 LSP - LSP-DSSAT


S300
E

280


320


S300
E

280


320


S300


80 90 100 110 120 130 140 150


80 90 100 110 120 130 140 150








80 90 100 110 120 130 140 150






(d)

80 90 100 110 120 130 140 150


S300


80 90 100 110 120 130 140 150


JLU ~


300


280


130 140 150


80 90 100 110 120
DoY 2004 (EST)


Figure 4-29. Comparison of soil temperature estimated by the coupled LSP-DSSAT and
stand-alone LSP model simulation and those observed during 1\icroWEX-2:
(a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 32 cm, (e) 64 cm, and (f) 100 cm.










Question 3:"What values of the twelve calibrated parameters give the

best LSP model performance for both latent heat flux and near surface soil

moisture for the MicroWEX-2 growing season?"

The calibrated values of the twelve parameters are given in Table 4-2.

Question 4:"How do the model estimates of soil moisture, temperature, and

surface fluxes compare with MicroWEX-2 observations?"

The RMSD for VSM at 2 cm is ~ 0.04 m3 m3. For both the LSP and LSP-DSSAT

model simulations, the VSMs at all 1 e. ris exhibit positive bias that increases during the

season. The seasonal RMSDs for temperature decrease with depth with a maximum of

2.43 K(.

The RMSDs between the modeled and observed net radiation were ~ 24 W/m2. LE

estimates had an RMSD of ~ 48 W/m2, the sensible heat flux estimates had an RMSD of

~ 36 W/m2, and the 2 cm soil heat flux estimates had RMSD of ~ 47 W/m2

Question 5:"What is the impact of coupling on both LSP and DSSAT model

estimates of LAI, biomass, soil moisture, temperature, and surface fluxes"

The estimates from the DSSAT and LSP-DSSAT differed by <0.2 for LAI and <0.6

kg/m2 for dry biomass, with the coupled LSP-DSSAT model estimating higher values than
the stand-alone DSSAT. The differences between the LSP and LSP-DSSAT estimates of

soil moisture, soil temperature, and surface fluxes are all small.









CHAPTER 5
CANOPY MICROWAVE MODEL

5.1 Introduction

In this chapter a refractive model is developed for vegetation opacity of growing

sweet corn based upon moisture distribution in the < my .li- and incorporated into a

simple microwave brightness model linked with the coupled LSP-DSSAT model. The

refractive model developed by England and Galantowicz [19] was extended for sweet corn

using observed moisture distribution during the Fourth and Fifth Microwave Water and

Energy Balance Experiments (11ul coWEX-4 and -5). The -r estimated by the model is

compared with that estimated using the Jackson model. The -r values obtained from the

two approximations were used in a microwave emission model at C-band and the model

estimates of brightness were compared with field observations.

5.2 Methodology

5.2.1 Moisture Distribution Measurements

Five measurements of moisture distribution were conducted during MicroWEX-4:

May 12 (Day After Planting (DAP) 6:3), 31 li- 17 (DAP 68), May 26 (DAP 77), June 2

(DAP 84), and June 6 (DAP 88). The samples collected on DAP 6:3 and 88 consisted of

plants in vegetative stage, i.e., before ear formation, while those collected on other d .n~

consisted of plants at various reproductive stages. Additional plant sample was obtained

on DAP 88 to determine the density of wet vegetation (solid). Three measurements of

moisture distribution were conducted during MicroWEX-5: April 10 (DAP :32), ?l li- 1

(DAP 5:3), and May 15 (DAP 67). The samples collected on DAP 5:3 and 67 consisted of

plants in reproductive stages.

All representative plant samples were cut every 10 cm and weighed wet. The samples

were dried at 70" C for at least 48 hours and weighed to obtain dry biomass. The samples

on DAP 6:3, 2005 were cut every 5 cm to ensure that finer samples were not needed to






















10 20 30 40 50 60 70 80 90










(b)

10 2d0 30 40 50 60 70 80 90
Days After Planting



Figure 5-1. Observations of total and ear wet biomass during (a) MicroWEX-4 in 2005
and (b) MicroWEX-5 in 2006.


obtain accurate moisture distribution. The density of vegetation material for each lI .,-c

was measured by volume displacement in a graduated cylinder.

Density of wet vegetation and air, p(x), called the cloud density, was calculated for

each lI.-< c as a ratio of wet biomass of each lI gs. r and the thickness of the 1... -r (10 cm).

The mass of air is negligible. To obtain seasonal pattern, the cloud density of each lI .,-c

was plotted as a function of height of the 1.,-< r, shown in Figure 5-3.

5.2.2 Canopy Opacity

The < Iln, pi- opacity (-r) is estimated as [59, 60]:


o r)d (5-1)





















10 20 30 40 50 60 70 80 90





(b)


10 20 30 40 50
Days After Planting



Figure 5-2. Observations of canopy height during (a)
MicroWEX-5 in 2006.


60 70 80 90



MicroWEX-4 in 2005 and (b)


where & is canopy height (m), ko is vacuum wavenumber (m l), and s(z) = -Im~nt(z)}

(Np/m) is the absorption coefficient of the canopy. Im~nt(z)} is the imaginary part of the

complex refractive index, estimated as the sum of volume fraction of components,


p(z)


nt(z) = 1 + vense


(5-2)


where, ve is the volume fraction of the wet vegetation (m3 m3) n, wcis the refractive

index of the wet vegetation and p, is the density of wet vegetation (697.72 kg/m3 for this

study [7]). Ulaby and El-R li-o -' model [57] estimates nc as a function of frequency (6.7

GHz for this study) and moisture mixing ratio (11(,). ii i, is defined as the ratio of weight

of water in the c Ilrei- to the weight of wet canopy. Figure 5-4 shows the mixing ratio

during MicroWEX-4 and -5. In this model, an isothermal canopy is assumed, so that the












is(z) profiles can be integrated over the height of the canopy to obtain -r. The isothermal

assumption was appropriate for a short sweet corn c lis..pi- of 1.5m. The absolute difference

between the temperatures at the top and at the bottom of the c lis..pi- was < 4 K( during

the simulation period.

5.2.3 Microwave Brightness Model

The microwave brightness (\!11) model is a widely-used -r-co model [59], in which the

total brightness temperature of a terrain (TB) is a sum of three contributions: Tes,p (from

the soil), TBc,p (frOm the c lis..pi-), and TBsky,p (frOm the sky).


DAP 63
DAP 68
DAP 77-
-A 8
DAP 84


32 04 06 08


I~ I


O DAP 32
o DAP 53
SDAP 67


32 04 06 08 1 12 14 16 18 2
Canopy Helght (m)


Figure 5-3. Cloud densities measured during (a) MicroWEX-4 in 2005 and (b)
MicroWEX-5 in 2006. The symbols and the lines represent the measurements
and the best curve-fits, respectively.





















10 20 30 40 50 60 70 80 90










(b)

10 20 30 40 50 60 70 80 90
Days After Planting



Figure 5-4. Moisture mixing ratios measured during (a) MicroWEX-4 in 2005 and (b)
MicroWEX-5 in 2006.




Tas,p = (1 r,3)Teggexp(-7/p)l

TBcs p Tc 1 eXp(-r/p)](1 w)
(5-3)
x [1 + rpexp(--7/p)]



where p is polarization, r, is the reflectivity of the rough soil surface, Te;; is the

effective radiating temperature of the soil calculated using the first order approximation

from [18] (K(), p = cos(0) where 8 is the look angle (500 for MicroWEX-5), To is the

physical temperature of the isothermal canopy (K(), measured during the experiments, w is

the single scattering albedo, and Tsky IS the sky brightness (assumed 5 K( at C-band). In

this model, r, is based upon the semi-empirical model of Wegmilller and Miltzler [63]:











TH = TH 26-(ko)M~
(5-4)
Ty = THCOS 80.655

where CH is the H-polarized Fr-esnel coefficient, ko is the vacuum wavenumber, 8 is

the look angle, and o- is the surface roughness height, set to 0.0005 m [27]. Soil dielectric

properties are determined using a four component mixing model following Dobson et al

[13].

5.2.4 Model Comparison and Evaluation

Using the p(z), -r is obtained for the MicroWEX-4 and -5 growing seasons. The

estimates for -r are compared with those obtained using the Jackson model [51] as:


-r = b We (5-5)


where, b is an empirical parameter and We is the water content in the calrs..pi- (kg/m2>

The -r from the biophysical model and from the Jackson model are evaluated in the

MB model during the latter part of the MicroWEX-5 season. The MB model simulated

Tg for ten d on~ (DAP 42-52), with DAP 42-47 during vegetative growth and DAP 47-52

during ear formation. The c Ilr.pi- cover was 100I' during the period of simulation. The

MB model was driven with observed canopy and soil temperatures and moisture values.

The MB model was linked to the LSP-DSSAT model, which provides it with soil

temperature and moisture profiles as well as canopy properties used for calculating canopy

transmission and scattering, such as height, vegetation cover, and vegetative and ear

biomass. Using the same initial conditions, inputs, and parameters obtained for the

calibrated LSP-DSSAT model in OsI Ilpter 4, the LSP-DSSAT-MB model simulated H-pol

Tg for the MicroWEX-2 growing season.









Table 5-1. Values of the Coefficients in equations 5-6 and 5-7
Coefficients Values
a 2.054
b -2.054
a~c -114.32
asc 5.87
a~e -1.23
Pc 25.69
Pd -1.37
Pe 0.34
70 8.41
Yd 0.29
TYe -0.07


5.3 Results and Discussion

5.3.1 Moisture Distribution Function

As shown in Figure 5-3, the cloud density function consists of two terms, a linear

term representing the vegetative stage of the plant and a gaussian term representing the

moisture in the ear during the reproductive stages, as:


(5-6)


where a, b, c, d, and e are fitted parameters, h, = z/h is the normalized height, and B,

and Be are the wet biomass of vegetation (stem and leaves) and ear (kg/m2), TOSpectively.

Figure 5-3 also shows the best curve-fits obtained for each sample. The parameters c, d,

and e, governing the gaussian term, were estimated as quadratic functions of dry biomass

of the ear (Dear) as:


c = ac, + PcDear +7cD ear

d = as + PdDear + TaD ar (5

e = ae, + PeDear + 7eD ar

he a and b parameters and the coefficients in equation 5-7.


7)


Table 5-1 gives the values of tl


B, B ep 1 &, -d)"
p(z) = (a + bb,,) + c eep"
h & 2 e




















model (with ears)
rmodel (without ears)
rson model
10 20 30 40 50 60 70 80 90













10 20 30 40 50 60 70 80 90
Days After Planting



Figure 5-5. Comparison of -r calculated using the 'I;.1.10 i--; I1 model (with and without
the gaussian term) and that using the Jackson model during (a) MicroWEX-4
in 2005, and (b) MicroWEX-5 and 2006.


5.3.2 Canopy Opacity

Figure 5-5 shows the -r estimated using the '.I;nt.1si--;I I1 model and the Jackson model

with b = 0.25. The Jackson model estimates lower opacities throughout the growing

season compared to those obtained using the '.I;nt.1si--;I I1 model with root mean square

differences (RMSD) between the two models of 0.16 Np during MicroWEX-4 and 0.23 Np

during MicroWEX-5. However, the Jackson model matched better when the change in

the moisture distribution due to ear formation was not included, with RMSDs of 0.10 Np

during MicroWEX-4 and 0.11 Np during MicroWEX-5. The contribution of moisture in

the ears to the optical depth is significant because they comprise a significant portion of

the total biomass (see Figure 5-1), with the increase in biomass primarily due to growth










in ears once corn reaches the reproductive stage. As a result, Figure 5-5 shows a sharp

increase in optical depth at the onset of ear development, at DAP 62 for MicroWEX-4 and

DAP 47 for MicroWEX-5. By the end of the seasons, the optical depth is doubled when

ears are included.

5.3.3 Microwave Brightness

Figure 5-6 shows the comparison of the horizontally polarized (H-pol) Tg observed

during MicroWEX-5 with those simulated by the MB model at C-band, with -r estimates

using the 'l;.1!i--1 1. 1 model and the Jackson model. Only H-pol brightness is examined

here because H-pol brightness is more sensitive to changes in soil moisture than V-pol, at

the incidence angle of 500, that is close to the Brewster angle at microwave frequencies

[59]. The observed Tg increased during the drydown from DAP 42 to DAP 46.7 and then













M m d l ou
Bm dl(Jcsn1
-" MirW X- berain



43 44 45 46 47 48 49 50 51 5
Day Afte PlnigET





~~~~~~~~~~~~~MB model usn rmtebohsia oe n rmteJackson mode




during late-season MicroWEX-5.










Table 5-2. RMS differences between observed Tg during MicroWEX-5 and those estimated
by the MB model
RMSD (K)
-r model DAP < 47 DAP > 47 DAP 42-52
Jackson (w = 0.00) 5.84 12.50 9.74
Jackson (w = 0.06 for DAP > 47) 5.84 3.635 4.88
Biophysical w = 0.05 for 42 Bio hsical w = 0.075 for DAP > 47 5.00 5.22 5.13


decreased by 30 K( due to an irrigation event. The Tg at 6.7 GHz were sensitive to soil

moisture changes even when the c Ilr..pi- cover was 100' .~ and biomass was 2.7 kg/m2 (SeO

Figure 5-1).

A small value for single-scattering albedo (w) was included in the MB model when

using the '1;i nphi--;1 11 -r estimates. The value of 0.05 before ear formation (DAP 47) and

0.075 after DAP 47 provided the least RMSD (see Table 5-2).

In the Jackson model, b = 0.25, similar to the literature-based values for corn [61],

provided the lowest RMSD. Typically w is set to zero in the Jackson model [51], but it was

found that the Tg using the Jackson model was overestimated after ear formation, with an

RMSD of 12.50 K(. Including w = 0.06 after ear formation in the Jackson model reduced

the RMSD to 3.65 K(,as shown in Table 5-2. The values of w needed to provide the least

RMSD for both -r models were small, < 0.1, implying that single scattering is sufficient to

provide realistic Tg estimates for the mature sweet corn ( Ilr1.ipi and multiple scattering is

not needed. The overall RMSD between observed Tg and the modeled Tg using the two

-r models were similar, with 5.13 K( for the biophysical model and 4.88 K( for the Jackson

model (see Table 5-2).


















ca





a

LO ~O








oo
1-1


oa
08 O


LO dCO
bt


crb



o







OO
O


o ad


000000
a)cgbhloa)
) hi hi hi hi hi
()1) .dwalssau~y6!la lod-H


~1) .dwalssau~y6!la lod-H


















~oQ









LOO






mo













SO

O









co


~1) 'dwalssau~y6!la lod-H


~1) 'dwalssau~y6!la lod-H









Table 5-3. RMS differences between observed H-pol Tg during MicroWEX-2 and those
estimated by the MB model.
r, model RMSD (K) MAD (K) Bias (K)
Specular soil (DoY < 125) 35.87 28.94 -25.70
Wegmiiller and Matzler (DoY < 125) 32.18 23.78 14.43
Secular soil (DoY > 125) 10.06 8.15 63.58
We miller and Matzler (DoY > 125) 12.43 10.83 9.97


During less than full vegetation cover (before DoY 125), the soil reflectivity strongly

affects the estimation of brightness. This leads to a wide disparity between the specular

and Wegfmiller and Miltzler rough surface model estimates, as can be seen in Figure 5-7.

The lower reflectivity of the rough surface model leads to higher brightness values than

the specular model. Sudden drops in brightness (DoY 98, 100, 104, 107, 109, 112, 114,

119, 122, 123, and 124) due to irrigation or precipitation events are only reached with

the specular model. As vegetation cover increases, the canopy contribution to brightness

increases so the specular and rough surface models' estimates of brightness approach

eachother. Overall, the performance when ve < 1 is poor, as seen by the high RMSDs

Table 5-3. Neither reflectivity model matched sudden drops in brightness, and there is also

an underestimation due to the overestimation of soil moisture by the LSP model (C'h! Ilter

4).

During full vegetation cover (after DoY 125), model estimates of brightness are

dominated by the c Ilnopi- contribution and thus by -r and w. Both surface reflectivity

models give similar results and overestimate brightness, seen in Figure 5-8 and the RMSDs

in Table 5-3. This could be an indication that the w values found for MicroWEX-5 are

not correct for MicroWEX-2. After modeled ear formation on DoY 139 brightness is less

overestimated as w is increased to 0.075. This late in the season, there is almost no effect

from the soil, and as the -r model is biophysically based, the only way to improve model

estimates here would be to calibrate w before and after ear formation.

5.4 Summary

This chapter answers the research question 6 and 7 outlined in ('! .pter 1.










Question 6:"How does a physically-based -r model compare to Jackson's

widely-used empirical model?".

The -r obtained from the biophysical model estimated higher values than the Jackson,

with an RMSD between the two of up to 0.23 Np. The -r values obtained from the two

approximations were used in a microwave emission model at C-band, the model estimates

of Tg matched well with observations using both -r values when w is included, with similar

RMSDs of ~ 5 K(.

Question 7~:"How do the brightness estimates predicted by the linked LSP-

DSSAT-MB model compare to observations during MicroWEX-2?"

Preliminary results indicate the MB model is lacking in two main areas, the roughness

model and the w model. For the first half of the season, where bare soil brightness is more

important, the constant roughness or specular surface models over- and under-estimate

brightness, respectively, both with RMSDs ~ 33 K(. During the later half of MicroWEX-2,

brightness is overestimated with RMSD of ~ 11 K(.









CHAPTER 6
CONCLUSION

In this chapter, the results and contributions from this thesis are summarized and

recommendations for future research are provided.

6.1 Summary

This thesis provides important insights into crop, SVAT, and microwave brightness

modeling for growing vegetation. Three season-long extensive field experiments (1becroWEX-2,

4, and 5) were conducted, monitoring radiobrightness, soil moisture, soil temperature,

surface fluxes, and crop growth for sweet corn. These experiments provided the datasets

used in forcing, d. i.; I~l .ph and calibrating the models.

First, a crop model and SVAT model were calibrated and coupled. The crop model

(CERES-Maize) was calibrated with simulated annealing using field observations for the

MicroWEX-2 site. The calibration was performed by minimizing the residuals for LAI

and biomass, the two most important canopy parameters in determining the microwave

signature of a vegetation < Ilnupi- The SVAT model (LSP) was calibrated with Latin

Hypercube Sampling to provide the least R MSD in LE with an R MSD in VSM at 2 cm of

~0.04 m"/m", using observations during MicroWEX-2. The LSP and DSSAT models were

coupled such that the LSP replaced the DSSAT soil and soil-plant-atmosphere modules

while DSSAT provides LSP with LAI, biomass, height, width, and root length density.

Model estimates of surface fluxes, VSM, and soil temperature were very similar using both

the coupled LSP-DSSAT and stand-alone LSP that used observed vegetation parameters.

Second, a microwave transmission model was developed and compared with the

widely-used empirical Jackson model, and with observations of of microwave brightness

for a period during MicroWEX-5. This -r model was incorporated in a MB linked with

the coupled LSP-DSSAT model, and tested for the MicroWEX-2 growing season.

The -r obtained from the biophysical model estimated higher values than the Jackson,

with an R MSD between the two of up to 0.23 Np. The -r values obtained from the two










approximations were used in a microwave emission model at C-band, the model estimates

of Tg matched well with observations during MicroWEX-5, using both -r values when w is

included, with similar R MSDs.

The brightness temperatures predicted by the linked LSP-DSSAT-MB model

during the first half of the MicroWEX-2tested for MicroWEX-2, for the first half of

the MicroWEX-2 season were higher than those observed when the Wegfmiller and

Maitzler reflectivity model was used and were significantly lower than observations when

a specular model was used. In addition, overestiniation of moisture hv the LSP model

lead to underestimation of brightness. Later in the MicroWEX-2 season, brightness is

overestimated when using the w values found for MicroWEX-5, -II---- -r l.-:: they are too

low.

6.2 Contributions

One of the 1 in .ini contributions of this thesis is the development and calibration of

the coupled SVAT-Crop model as well as the development of the physically-based canopy

transmission model for sweet corn. The techniques used to couple the LSP and DSSAT

models can he extended to other SVAT-Crop combinations; likewise, the methodology for

developing the optical depth model for sweet corn can he extended to other plant types, as

has been done for cotton during MicroWEX-6 [67].

Other significant contributions are the extensive datasets of soil temperature, soil

moisture, vegetation, surface fluxes, and radiobrightness collected during MicroWEX-2,

4, and 5. They provide season-long and high temporal resolution observations to allow

interdisciplinary studies.

6.3 Recommendations for Future Research

As seen in (I Ilpter 4, the LSP-DSSAT model overestiniates soil moisture, largely

due to uncertainty in soil hydrologic properties and in precipitation. This indicates that

the model estimates would improve with a calibration of the soil hydrologic parameters

in addition to the twelve parameters calibrated in OsI Ilpter 4. In addition, since a in lin t-










source of uncertainty in the model is the precipitation input, model estimates of soil

moisture are likely to improve from a data assimilation method which takes into account

the uncertainty in inputs and parameters, such as K~alman filtering.

Before the LSP-DSSAT-MB model can he used in a data assimilation scheme, the

rough soil reflectivity model in the MB model needs to be improved. As is shown in

Section 5.3.3, from the high brightness R MSDs during the first half of the season, either

the specular (Fresnel) reflectivity or the rough surface reflectivity alone are insufficient

to match the sudden drops in brightness associated with precipitation events. This is a

challenge because of the extremely limited bare soil brightness data during MicroWEXs

2, 4, and 5. To fill the dearth of hare soil data, hare soil tests were conducted during

May and June 2007 in which extensive soil roughness measurements were taken along

with brightness measurements, before, during, and after irrigation events. This data

would be useful in the future for the development of a more rigorous rough surface

reflectivity model. A moisture-dependent roughness model could capture the sudden drops

in brightness associated with precipitation events but needs to be refined.

In addition, the LSP-DSSAT-MB model overestimated brightness in the later

half of the MicroWEX-2 season, indicating that the w values need to be higher for the

MicroWEX-2, and that they should be calibrated. The optimal w values for MicroWEX-2

and MicroWEX-5 are apparently different, indicating that there is some difference between

the canopies of the two seasons that would produce a difference in w. Future research

could find some physical relationship between canopy characteristics such as leaf or stem

biomass and w, similar to the physical relationship found for -r.









REFERENCES


[1] Boland, J., L. Scott, and M. Luther (2001), Modelling the diffuse fraction of global
solar radiation on a horizontal surface, Environmetrics, 12, 103-116.

[2] Busetti, F. (2004), Simulated annealing overview, Tech. rep., Available at
www.geocities.com/francorbusetti/saweb.pdf

[3] Camillo, P., and R. J. Gurney (1986), A resistance parameter for bare soil
evaporation models, Soil Science, 141, 95-105.

[4] Campbell, G. S., and J. M. Norman (1998), An Introduction to Environmental
B.:u 'iInI; -.: 2nd ed., 286 pp., Springer Science+Business Media, New York.

[5] Campbell Scientific (2006), CS616 and CS625 Water Content Reflectometers, Tech.
rep., Available at http://www.campbellsci.com/documents/manuasc66pf
Logan, Utah.

[6] Casanova, J., T. Lin, M. Jang, K(. Tien, J. Judge, O. Lanni, and L. Miller (2005),
Field observations during the fourth microwave water and energy balance experiment
(11.. coWEX-4): From March 10-June 14, 2005, Tech. Rep. Circular No 1482, Center
for Remote Sensing, University of Florida, Available at UF/IFAS EDIS website at
http://edis.ifas.ufl.edu/AE>.21~

[7] Casanova, J., M. Jang, and J. Judge (2006), Vertical distribution of moisture
in a sweet corn c me-pli-, Tech. Rep. Circular No 1492, Center for Remote
Sensing, University of Florida, Available at UF/IFAS EDIS website at
http://edis.ifas.ufl.edu/AE395.

[8] Casanova, J., F. Yan, K(. Tien, J. Judge, O. Lanni, and L. Miller (2006), Field
observations during the fifth microwave water and energy balance experiment
(11.. coWEX-5): From march 9-may 26, 2006, Tech. Rep. Circular No 1514, Center
for Remote Sensing, University of Florida, Available at UF/IFAS EDIS website at
http://edis.ifas.ufl.edu/AE407.

[9] Changlb, Y. (2007), A snow-soil-vegetation-atmosphere-transfer/aibghns model
for wet snow, Ph.D. thesis, University of Michigan.

[10] Dai, Y., et al. (2003), The Common Land Model (CLM), Bull. Amer. Meteor Soc.,
84 (8), 1013-1023.

[11] de Vries, D. A. (1963), Thermal properties of soils, in Ph ;,;-: ; of Plant Environ-
ment, edited by W. R. van Wijk, North-Holland Publishing Company, Amsterdam,
Netherlands .

[12] Demarty, J., C. Ottle, I. Braud, and J. Frangi (2002), Comparison of measured and
SISPAT-RS simulated brightness temperatures and reflectances at field scale during
ReSeDA experiment, Proceedings of SPIE, the International S -. .:. I r for Op~tical










EngineeringProceedings of SPIE, the International S8... .:. I r for Op~tical Engineering,
4542.

[13] Dobson, M., F. Ulaby, M. Hallikainen, and M. El-R .v. a~ (1985), Microwave dielectric
behavior of wet soil-part II: Dielectric mixing models, IEEE Trans. Geosci. Remote
Sensing, GE-2S, 35-46.

[14] Doorenbos, J., and W. Pruitt (1977), Guidelines for predicting crop water
requirements, Tech. Rep. Irrigation and drainage paper No. 24, United N li;. a~-
FAO .

[15] Du, Y., F. Ulaby, and M. Dobson (2000), Sensitivity to soil moisture by active and
passive microwave sensors, IEEE Trans. Geosci. Remote Sensing, 88(1), 105-114.

[16] Dukes, M. (2004), Update of the AFSIRS crop water use simulation model.
Micrometeorological dataset, Tech. rep., Available at http://afsirs.ifas.edu.

[17] Dyer, A. J. N. (1974), A review of flux-profile relationships, Bo;,,../.;<;;-Ltr;;. Meteo-
e. J..,t;, 7(S), 363-372.

[18] England, A. (1990), Radiobrightness of diurnally heated, freezing soil, IEEE Trans.
Geosci. Remote Sensing, _'\(4), 464-76.

[19] England, A., and J. Galantowicz (1995), Moisture in a grass canopy from SSM/I
radiobrightness, in Proc. .'st./ Tropical Symp~osium on Combined Op~tical-M~icrowave
Earth and Almos. Sensing, vol. Atlanta, GA, pp. 12-14.

[20] Enthekabi, D., et al. (2004), The Hydrosphere (HYDROS) Satellite Mission: an Earth
system pathfinder for global mapping of soil moisture and land freeze thaw, IEEE
Transactions on Geoscience and Remote Sensing, 42(10), 2184-2195.

[21] Eom, H.J. (1992), A thermal microwave emission model for row-structured vegetation,
Int. J. Remote Sensing, 18(16), 2975-2982.

[22] EOS (2003), Advanced microwave scanning radiometer for cos, overview, sensor, and
orbit, Tech. rep., Available at http: //www.ghcc.msfe.nasa.gov-/AMSR/.

[23] Garcia-Oniii Ilo,, J. F., and A. P. Barros (2005), Incorporating physiology into a
hydrological model: photosynthesis, dynamic respiration, and stomatal sensitivity,
E, JI ~.:y.. l Modeling, 185, 29-49.

[24] Goudriaan, J. (1977), Crop M~icromete. .J,~it~~;, A Simulation Sits.;;, 1st ed., 249 pp.,
Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands.

[25] Gupta, H. V., L. A. Bastidas, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang
(1999), Parameter estimation of a land surface scheme using multieriteria methods,
Journal of G II.**ri ..l Research, 1 04(D16), 19,491-19,503.










[26] Jackson, T., and T. Schma i- -~ (1989), Passive microwave remote sensing system for
soil moisture: Some supporting research, IEEE Trans. Geosci. Remote Sensing, 27(2),
225-235.

[27] Jang, M.Y., K(. Tien, J.Casanova, and J.Judge (2005), Measurements of soil
surface roughness during during the fourth microwave water and energy balance
experiment: From April 18-June 13, 2005, Tech. Rep. Circular No 1488, Center
for Remote Sensing, University of Florida, Available at UF/IFAS EDIS website at
http://edis.ifas.ufl.edu/AE393.

[28] Jones, C., and J. K~iniry (Eds.) (1986), CERES-M~aize: A Simulation M~odel of M~aize
Growth and Development, Texas A&M University Press, College Station, Texas.

[29] Jones, J. W., G. Hoogenboom, C. Porter, K(. Boote, W. B. L. Hunt, P. Wilkens,
U. Singh, A. Clii-nar lr and J. Ritchie (2003), The DSSAT cropping system model,
European J. Agror:.-tera 18(S-4), 235-265.

[30] Judge, J., A. England, C. L. W. Crosson, B. Hornbuckle, D. Boprie, E. K~im, and
Y. Lion (1999), A growing season land surface process/radiobrightness model for
wheat-stubble in the southern great plains, IEEE Trans. Geosci. Remote Sensing,
87(5), 2152-2158.

[31] Judge, J., L. Abriola, and A. England (2003), Development and numerical validation
of a summertime land surface processand radiobrigfhtness model, Advances in Water
Resources, 26(7), 733-746.

[32] Judge, J., A. W. England, J. R. Metcalfe, D. McNichol, and B. E. Goodison (2007),
Calibration of an integrated land surface process and radiobrightness (LSP/R) model
during summertime, Advances in Water Resources, In Press.

[33] Judge, Jasmeet, J. Casanove, T. Lin, K(. Tien, M. Jang, J. Judge, O. Lanni, and
L. Miller (2004), Field observations during the second microwave water and energy
balance experiment (11.croWEX-2): From March 17-June 3, 2004, Tech. Rep.
Circular No 1480, Center for Remote Sensing, University of Florida, Available at
UJF/IFAS EDIS website at http://edis.ifas.ufl.edu/AE360.

[34] K~err, Y. H., P. Waldteufel, J. Wigneron, J. Martinuzzi, J. Font, and M. Berger (),
Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS)
mission, IEEE Transactions on Geoscience and Remote Sensing, 89.

[35] K~ustas, W. P., and J. M. Norman (2000), A two-source energy balance approach
using directional radiometric temperature observations for sparse canopy covered
surfaces, Agron. J., 92, 847-854.

[36] Leese, J., T. Jackson, A. Pitman, and P. Dirmeyer (2001), GEWEX/BAHC
international workshop on soil moisture monitoring, analysis, and prediction for
hydrometeorological and hydroclimatological applications, Bull. Amer. M~eteorol. Soc.,
\ '(7), 1423-1430.










[37] Lin, Tzu-yun, J. Judge, K(. Tien, J. C. andM.Y. Jang, O. Lanni, and L. Miller
(2004), Field observations during the third microwave water and energy balance
experiment (11.croWEX-3): From july 16-december 21, 2004, Tech. Rep. Circular No
1488, Center for Remote Sensing, University of Florida, Available at UF/IFAS EDIS
website at http: //edis.ifas.ufl .edu/AE361.

[38] Liou, Y., J. Galantowicz, and A. England (1998), A land surface
process/radiobrightness model with coupled heat and moisture transport for freezing
soils, IEEE Trans. Geosci. Remote Sennsong, 86(2), 669-677.

[39] Manabe, S. (1969), Clain! II1. and the ocean circulation. 1. The atmosphere circulation
and the hydrology of the earth's surface, M~onth. Weat. Rev., 97(11), 739-774.

[40] McE~ay, M. D., R. J. Beckman, and W. J. Conover (2000), A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 4 (1), 55-61.

[41] Mo, X., S. Liu, Z. Lin, Y. Xu, Y. Xiang, and T. McVicar (2005), Prediction of crop
yield, water consumption and water use efficiency with a svat-crop growth model
using remotely sensed data from the North Chat.~ I plain, E, J.. y..: al M~odelling, 188,
301-322.

[42] Niu, G.-Y., and Z.-L. Yang (2004), Effects of vegetation c Ilr~pi-i processes on snow
surface energy and mass balances, J. Ge -cl reI,, Res., 109, D23,111, doi:10.1029/
2004JD00 L.

[43] Njoku, E.G., and J. K~ong (1977), Theory for passive microwave remote sensing of
near-surface soil moisture, J. Gc *'Ili t; Res., E (20), 3108-18.

[44] Nyusten, J. A., J. R. Front, P. G. Black, and J. C. Wilkerson (1996), A comparison of
automatic rain gauges, Journal of Atmospheric and Oceanic T ..,: ~In..J.i;, 18(1), 62-73.

[45] Omega (2006), Thermistor elements and compatible
instrumentation, Tech. rep., Available at
http: //www.omega. com/Temperature/pdf/44000_THERMIS_ELEMENTS.pdf.

[46] Pan, H.-L., and L. Mahrt (1987), Interaction between soil hydrology and boundary
1.. rde elo me tBo;it1.~t Lt;.? .1..rJ.,i; 8, 185-202.

[47] Philip, J. R., and D. A. de Vries (1957), Moisture movement in porous material under
temperature--- gradients,, Transactions- of America__n G*'lt-.r Union, 88, 222-232.

[48] Ritchie, J. (1972), Model for predicting evaporation from a row crop with incomplete
cover, Water Resources Res., 8, 1204-1213.

[49] Rossi, C., and J. R. Nimmo (1994), Modeling of soil water retention from saturation
to oven dryness, Water Resources Research, SO, 701-708.










[50] Sau, F., K(. Boote, W. M. Bostick, J. Jones, and M. I. Minguez (2004), Testing and
improving evapotranspiration and soil water balance of the DSSAT crop models,
Agror:. ,;, J., 96(5), 1243-1257.

[51] Sch~n~iic~ T., and T. Jackson (1992), A dielectric model of the vegetation effects
on the microwave emission from soils, IEEE Trans. Geosci. Remote Sensing, 80 (4),
757-760.

[52] Sch~n~iic~ T., and P. O'Neill (1986), Passive microwave soil moisture research, IEEE
Trans. Geosci. Remote Sensing, GE-24 (1) 12-22.

[53] Soil Conservation Service (1972), National engineering handbook: Section 4:
Hydrology, Tech. rep., USDA.

[54] Thornley, J., and I. Johnson (1990), Plant and Crop M~odeling., Oxford: Oxford
University Press.

[55] Tien, K~ai-Jen, J. Judge, O. Lanni, and L. Miller (2003), Field observations during
the second microwave water and energy balance experiment ( ~lo roWEX-1):
From July 17 December 16, 2003, Tech. Rep. Circular No 1470, Center for
Remote Sensing, University of Florida, Available at UF/IFAS EDIS website at
http://edis.ifas.ufl.edu/AE280.

[56] Twine, T., W. P. K~ustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. M~ i.' rs,
J. H. Prueger, P. J. Starks, and M. L. Wesely (2000), Correcting eddy-covariance flux
underestimates over a grassland, Age..: ;,lletral and Forest M. /..,al..,;;; 108, 279-300.

[57] Ulaby, F., and M. El-R wes;- (1987), Microwave dielectric spectrum of
vegetation-Partll: Dual- dispersion model, IEEE Trans. Geosci. Remote Sensing,
GE-25, 550-557.

[58] Ulaby, F., and E. Wilson (1985), Microwave attenuation properties of vegetation
canopies, IEEE Trans. Geosci. Remote Sensing, GE-2S, 746-753.

[59] Ulaby, F., R. Moore, and A. Fung (1981), M~icrowave Remote Sensing Active and
Passive, V/ol I, Artech House Inc.: Norwood, MA.

[60] Ulaby, F., R. Moore, and A. Fung (1986), M~icrowave Remote Sensing Active and
Passive, V/ol III, Artech House Inc.: Nn o .--n o~d, MA.

[61] Van de Griend, A. A., and J. Wigneron (2004), The b-factor as a function of
frequency and calre~li type at H-polarization, IEEE Trans. Geosci. Remote Sens-
ing, 4 (4), 786-794.

[62] Verseghy, D. L., N. A. McFarlane, and M. Lazare (1993), Class a Canadian land
surface scheme for GC'jL- II. Vegetation model and coupled runs, Int. J. of C'I::,,.;i. .1-
ogy, 18, 347-370.










[63] Wegmilller, U., and C. Miltzler (1999), Rough bare soil reflectivity model, IEEE
Trans. Geosci. Remote Sensing, 87(3), 1391-1396.

[64] Whitfield, B., J. Jacobs, and J. Judge (2006), Intercomparison study of the land
surface process model and the common land model for a prairie wetland in Florida,
Jouna o H./..;;./..rJ.,i; (6), 1247-1258.

[65] Williams, J., P. Dyke, and C. Jones (1983), EPIC: A model for assessing the effects of
erosion on soil pr ..1;,. 1.;.:It; Elsevier, Amsterdam.

[66] Willmott, C. J. (1982), Some comments on the evaluation of model performance,
Bulletin of the American M.~ I..r J..y.~~ .: arl 8... ..~ it; 68, 1309-1313.

[67] Yan, Fei, J. Casanova, K(. Tien, J. Judge, O. Lanni, and L. Miller (2006), Field
observations during the sixth microwave water and energy balance experiment
(11u, coWEX-6): From June 19-October 31, 2006, Tech. Rep. Circular No 1515,
Center for Remote Sensing, University of Florida, Available at UF/IFAS EDIS
website at http://edis.ifas.ufl.edu/AE409.









BIOGRAPHICAL SKETCH

Joaquin Casanova was born on December 25, 1984, in Gainesville, Florida. Some stuff

happened, then in 2006 he got his BS in Agricultural and Biological Engineering from UF.





PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

ThisresearchwassupportedbytheNSFEarthScienceDirectorate(EAR-0337277)andtheNASANewInvestigatorProgram(NASA-NIP-00050655).IwouldliketothankMr.OrlandoLanniandMr.LarryMillerforprovidingengineeringsupportduringtheMicroWEXsandpatientlytoleratingmyidiocy;Mr.JimBoyerandhisteamatPSREUforlandandcropmanagement;Dr.RogerDeRooattheUniversityofMichiganforradiometersandtechsupport;Mr.Kai-JenTien,Mr.Tzu-YunLin,Ms.Mi-YoungJang,andMr.FeiYanfortheirhelpindatacollectionduringtheMicroWEXs;andtotheUniversityofFloridaHigh-PerformanceComputingCenterforprovidingcomputationalresourcesandsupportthathavecontributedtotheresearchresultsreportedwithinthisthesis. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 12 CHAPTER 1INTRODUCTION .................................. 13 1.1ThesisObjectives ................................ 17 1.2ThesisFormat .................................. 17 2MICROWAVEWATERANDENERGYBALANCEEXPERIMENTS ..... 18 3CALIBRATIONOFACROPGROWTHMODELFORSWEETCORN .... 25 3.1Introduction ................................... 25 3.2CERES-MaizeModel .............................. 25 3.3ModelCalibration ................................ 27 3.3.1Initialization ............................... 27 3.3.2Inputs .................................. 28 3.3.3Methodology ............................... 28 3.4ResultsandDiscussion ............................. 29 3.4.1CropGrowthandDevelopment .................... 29 3.4.2Evapotranspiration ........................... 32 3.4.3SoilMoistureandTemperature .................... 34 3.5Summary .................................... 37 4CALIBRATIONOFANSVATMODELANDCOUPLINGWITHACROPMODELFORSWEETCORN ........................... 39 4.1Introduction ................................... 39 4.2LSPModel ................................... 39 4.2.1EnergyandMoistureTransportattheLandSurface ......... 40 4.2.1.1EnergyBalance ........................ 40 4.2.1.2MoistureBalance ....................... 45 4.2.2SoilProcesses .............................. 46 4.3CouplingofLSPandDSSATmodels ..................... 47 4.4Methodology .................................. 48 4.4.1InputsandInitialConditions ...................... 48 4.4.2Calibration ................................ 49 4.5ResultsandDiscussion ............................. 51 5

PAGE 6

................................ 51 4.5.1.1DSSAT ............................ 51 4.5.1.2LSP .............................. 51 4.5.2ModelSimulation ............................ 52 4.5.2.1DSSAT ............................ 52 4.5.2.2LSP-DSSATModel ...................... 53 4.6Conclusion .................................... 75 5CANOPYMICROWAVEMODEL ......................... 82 5.1Introduction ................................... 82 5.2Methodology .................................. 82 5.2.1MoistureDistributionMeasurements ................. 82 5.2.2CanopyOpacity ............................. 83 5.2.3MicrowaveBrightnessModel ...................... 85 5.2.4ModelComparisonandEvaluation .................. 87 5.3ResultsandDiscussion ............................. 88 5.3.1MoistureDistributionFunction .................... 88 5.3.2CanopyOpacity ............................. 89 5.3.3MicrowaveBrightness .......................... 90 5.4Summary .................................... 94 6CONCLUSION .................................... 96 6.1Summary .................................... 96 6.2Contributions .................................. 97 6.3RecommendationsforFutureResearch .................... 97 REFERENCES ....................................... 99 BIOGRAPHICALSKETCH ................................ 105 6

PAGE 7

Table page 3-1CultivarcoecientvaluesinthecalibratedCERES-Maizemodel. ........ 29 3-2ErrorstatisticsforcropgrowthandETbetweenCERES-MaizeestimatesandMicroWEX-2eldobservations. ........................... 32 3-3modelperformancestatisticsforsoilmoistureandtemperaturebetweenCERES-MaizeestimatesandMicroWEX-2eldobservations. ................... 37 4-1ValuesforsoilpropertiesintheLSPmodel. .................... 49 4-2Samplingrangesfrom[ 24 ]andcalibratedvaluesforparametersintheLSPmodel. 50 4-3ComparisonofLAI,drybiomass(kg/m2),andET(mm)forstand-aloneDSSATandcoupledLSP-DSSATsimulations. ........................ 53 4-4Comparisonofsurfaceuxes(W/m2),forstand-aloneLSPandcoupledLSP-DSSATsimulations. ...................................... 55 4-5Comparisonofvolumetricsoilmoisture(m3/m3),forstand-aloneLSPandcoupledLSP-DSSATsimulations. ............................... 55 4-6Comparisonofsoiltemperature(K),forstand-aloneLSPandcoupledLSP-DSSATsimulations. ...................................... 55 4-7MeasurementuncertaintitiesduringMicroWEX-2. ................. 56 5-1ValuesoftheCoecientsinequations 5{6 and 5{7 ................ 88 5-2RMSdierencesbetweenobservedTBduringMicroWEX-5andthoseestimatedbytheMBmodel ................................... 91 5-3RMSdierencesbetweenobservedH-polTBduringMicroWEX-2andthoseestimatedbytheMBmodel. .................................. 94 7

PAGE 8

Figure page 1-1Outlineofthedataassimilationschemeandtheforwardmodel. ......... 15 1-2ContributionstomicrowavebrightnessTBfromsky,soil,andcanopy. ...... 15 2-1TheUniversityofFloridaC-bandMicrowaveRadiometer. ............ 19 2-2TheUniversityofFloridaL-bandMicrowaveRadiometer. ............. 19 2-3TheEddyCovarianceSystem. ............................ 20 2-4ThenetradiometerusedduringtheMicroWEXs. ................. 20 2-5MapoftheeldsiteduringMicroWEX-2. ..................... 22 2-6MapoftheeldsiteduringMicroWEX-4. ..................... 23 2-7MapoftheeldsiteduringMicroWEX-5. ..................... 24 3-1(a)ComparisonoftheCERES-MaizeestimatesandtheobservationsofbiomassduringMicroWEX-2,(b)scatterplotofestimatedandobservedbiomass,(c)comparisonoftheCERES-MaizeestimatesandtheobservationsofLAIduringMicroWEX-2,and(d)scatterplotofestimatedandobservedLAI. ........ 31 3-2ComparisonofthelatentheatuxestimatesfromCERES-MaizemodelusingfourmethodswiththeobservationsduringMicroWEX-2by(a)dailyheatuxand(b)cumulativeET. ............................... 33 3-3ComparisonoftheCERES-MaizesoilmoistureestimateswithMicroWEX-2observationsatdepthsof(a)0-5cm,(b)5-15cm,(c)15-30cm,(d)30-45cm,(e)45-60cm,and(f)60-90cm. ........................... 35 3-4ComparisonoftheCERES-MaizesoiltemperatureestimateswithMicroWEX-2observationsatdepthsof(a)0-5cm,(b)5-15cm,(c)15-30cm,(d)30-45cm,(e)45-60cm,and(f)60-90cm. ........................... 36 4-1SurfaceresistancenetworktoestimatesensibleandlatentheatuxesintheLSPmodel. ......................................... 42 4-2AlgorithmforthecouplingoftheLSPandDSSATmodels. ............ 47 4-3Paretofrontsfromcalibrationofthestand-aloneLSPmodel.TheasteriskrepresentsthepointontheParetofrontwherethetotalseasonalRMSDfor2cmVSMis0.04m3/m3. ...................................... 51 4-4ComparisonofestimationsbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)drybiomass,(b)LAI,(c)5cmsoilmoisture,and(d)ET. ...................... 54 8

PAGE 9

..................... 56 4-6Comparisonoflatentheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 57 4-7Comparisonofsensibleheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 58 4-8Comparisonofsoilheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 59 4-9ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY78to105:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. .................................... 60 4-10ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY78to105:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 61 4-11Comparisonofnetradiation,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 62 4-12Comparisonoflatentheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 63 4-13Comparisonofsensibleheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ................. 64 4-14Comparisonofsoilheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 65 4-15ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY105to125:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. .................................... 66 9

PAGE 10

67 4-17Comparisonofnetradiation,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 68 4-18Comparisonoflatentheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 69 4-19Comparisonofsensibleheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ................. 70 4-20Comparisonofsoilheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 71 4-21ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY125to135:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. .................................... 72 4-22ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY125to135:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 73 4-23Comparisonofnetradiation,betweenDoY135to154,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 74 4-24Comparisonofsoilheatux,betweenDoY135to154,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ..................... 75 4-25ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY135to154:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. .................................... 76 4-26ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY135to154:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 77 10

PAGE 11

........ 78 4-28ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. ....... 79 4-29ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. ................ 80 5-1Observationsoftotalandearwetbiomassduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. .............................. 83 5-2Observationsofcanopyheightduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. ........................................ 84 5-3Clouddensitiesmeasuredduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006.Thesymbolsandthelinesrepresentthemeasurementsandthebestcurve-ts,respectively. ................................ 85 5-4Moisturemixingratiosmeasuredduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. ........................................ 86 5-5Comparisonofcalculatedusingthebiophysicalmodel(withandwithoutthegaussianterm)andthatusingtheJacksonmodelduring(a)MicroWEX-4in2005,and(b)MicroWEX-5and2006. ...................... 89 5-6ComparisonoftheobservedTBatH-polduringMW5thosesimulatedbytheMBmodelusingfromthebiophysicalmodelandfromtheJacksonmodelduringlate-seasonMicroWEX-5. .............................. 90 5-7Comparisonofmicrowavebrightness,estimatedbytheLSP-DSSAT-MBmodelwithspecularsurface(a)andWegmullerandMatzler(b),andC-bandmicrowavebrightnessobservedduringMicroWEX-2,beforeDoY125. ............ 92 5-8Comparisonofmicrowavebrightness,estimatedbytheLSP-DSSAT-MBmodelwithspecularsurface(a)andWegmullerandMatzler(b),andC-bandmicrowavebrightnessobservedduringMicroWEX-2,afterDoY125. ............. 93 11

PAGE 12

12

PAGE 13

10 ],themodeldevelopedbytheNationalCentersforEnvironmentalPredictionatOregonStateUniversity,AirForce,andHydrologicResearchLaboratoryattheNationalWeatherService(NOAH)[ 46 ],andtheUniversityofMichiganMicrowaveGeophysicsGroupLandSurfaceProcess(LSP)model[ 38 ].However,twomainchallengesremaininmodelingenergyandmoistureuxesusingSVATmodels.First,mostmodelsoftenoversimplifythecouplingbetweenvegetationgrowthandsurfaceuxes.Theinteractionsbetweenvegetationandtheuxesbecomeincreasinglyimportantastheseuxesaectplantgrowthanddevelopment.Vegetationcanopiesimpactlatentandsensibleheatuxes,precipitationinterception,andradiativetransferattheland-atmosphereinterface,aectingsoilmoistureandtemperatureprolesinthevadosezone.ThesechanginginteractionsduringthegrowingseasonneedtobeincludedintheSVATmodels,inordertoproviderealisticestimatesoftheuxes.Typically,SVATmodelsemployobservationsorempiricalfunctionsforvegetationconditionstomodeltheeectsofgrowingvegetation.Forexample,CLMusesvegetatedgridspacesdenedbypatchesof\plantfunctionaltypes,"withparametersforphysiologicalandstructuralpropertiesassociatedwitheachtype,andmostofthevegetationparametersareempiricaltomeetcomputationalconstraints[ 10 ].NOAHsimulatessoilmoistureandtemperatureproleswithasub-dailytimestep,andwithvegetationpropertiessuchasLAI,stomatalresistance,androughnesslengthdenedbyvegetationtypeclasses[ 46 ].Suchmethods 13

PAGE 14

23 ]usedasub-dailybiochemicalvegetationmodelwithalandsurfacehydrologymodel.Theymodeledcanopytranspirationanditsinuenceonsoilmoistureandcarbonuxes.[ 41 ]linkeddailyprocess-basedcropmodelsforsummermaizeandwinterwheatwithanhourlylandsurfaceuxmodelandathree-layersoilmoisturemodel.Suchcouplingallowsforinclusionofvegetationeectswithoutinsituobservationsorempiricalgrowthfunctions.Periodicinsituobservationsofvegetationcouldbeincorporatedinthecoupledmodelstoreducethedivergenceofmodelpredictionfromreality.Remotely-sensedobservationssensitivetosoilmoisture,suchaslowfrequency(<10GHz)microwavebrightness(TB)[ 15 26 43 52 ]couldalsobeincorporatedperiodicallytoimprovemodeluxestimates.Toincorporateorassimilatemicrowavebrightness,thecoupledSVAT-cropmodelhastobelinkedtoamicrowaveemissionmodelthatestimatesmicrowavebrightnessusingmoistureandtemperatureprolesinsoilandvegetationestimatedbytheSVAT-CropmodelasshowninFigure 1-1 .SimpleversionsofSVATmodelslinkedwithMBmodelsincludetheLandSurfaceProcess/Radiobrightness(LSP/R)[ 30 ]andSimpleSoil-Plant-AtmosphereTransfer-RemoteSensing(SiSPAT-RS)[ 12 ]models.ThetotalTBofaterrainisdependentonskyTB,reectedbythesoil(TB;sky),thermalemissionfromthesoil(TB;soil,andthermalemissionfromthevegetationcanopy(TB;canopy,allthreecomponentsareshowninFigure 1-2 ).Sincesoilmicrowaveemissions(dependentonsoilmoistureandtemperatureproles)areattenuatedbytransmission 14

PAGE 15

Outlineofthedataassimilationschemeandtheforwardmodel. Figure1-2. ContributionstomicrowavebrightnessTBfromsky,soil,andcanopy. 15

PAGE 16

58 ]modeledofthewheatcanopyasauniformcloudofwetbiomasswithleavesandstemstreatedseparately.Inaddition,polarizationdependencewasincludedforstemattenuation.Eom[ 21 ]developedamodelforapplicabletorowstructuredcanopiessuchwheatorcorn.Themodelaccountsforazimuthalanisotropyinbymodelingthecanopyasarandomcollectionofdielectricspheroids.Thismethodmatchedwellwithobservationsbutrequiresacomputationallyintensivesolutionoftheradiativetransferequation.JacksonandSchmugge[ 51 ],usedtheresultsofmanystudiesanddevelopedanempiricalmodelfor.Intheirmodel,isestimatedastheproductofafrequency-dependentconstantbandwatercolumndensity(kg/m2)inthecanopy.TheJacksonmodelisexiblebuthaslittlephysicalbasis,withboftenusedasattingparameterinemissionmodelsorestimatedempirically[ 61 ].EnglandandGalantowicz[ 19 ]developedarefractivemodelforestimatingopticaldepthofgrassbaseduponverticalprolesofmoisturecontentwithinthegrasscanopy.Inthisthesis,anSVATmodel,viz.theLSPmodel,iscoupledwithawidely-usedandwell-testedcropgrowthmodel,theDecisionSupportSystemforAgrotechnologyTransferCroppingSystemModel(DSSAT-CSM)[ 29 ].ThemodelsarecalibratedusingobserationsfromtheMicrowaveWaterandEnergyBalanceExperiment2(MicroWEX-2),oneofthreeseason-longexperimentsmonitoringgrowingsweetcorn(MicroWEXs2,4,and5).Abiophysically-basedcanopytransmissionmodelisdevelopedforgrowingsweetcorn,usingdatafromMicroWEXs4and5.ThismodelisincludedinasimpleMBmodelthatislinkedwiththeLSP-DSSATmodel. 16

PAGE 17

1. WhatvaluesforthesixcorncultivarcoecientsgivethebestDSSATmodelperformanceforbothbiomassandLAIfortheMicroWEX-2growingseason?(Chapter 3 ) 2. HowdothemodelestimatesforbiomassandLAIcomparewithMicroWEX-2observations?(Chapter 3 ) 3. WhatvaluesofthetwelvecalibratedparametersgivethebestLSPmodelperformanceforbothlatentheatuxandnearsurfacesoilmoisturefortheMicroWEX-2growingseason?(Chapter 4 ) 4. Howdothemodelestimatesofsoilmoisture,temperature,andsurfaceuxescomparewithMicroWEX-2observations?(Chapter 4 ) 5. WhatistheimpactofcouplingonbothLSPandDSSATmodelestimatesofLAI,biomass,soilmoisture,temperature,andsurfaceuxes?(Chapter 4 ) 6. Howdoesaphysically-basedmodelcomparetoJackson'swidely-usedempiricalmodel?(Chapter 5 ) 7. HowdothebrightnessestimatespredictedbythelinkedLSP-DSSAT-MBmodelcomparetoobservationsduringMicroWEX-2?(Chapter 5 ) 2 ofthisthesisdescribestheeldexperiments,MicroWEXs2,4,and5.InChapter 3 ,theDSSATmodel'scornsubmodel,CERES-Maize,iscalibratedfortheMicroWEX-2growingseason.InChapter 4 ,theLSPmodeliscalibratedandcoupledwithDSSATmodel.InChapter 5 ,acanopytransmissionmodelforgrowingsweetcornisdevelopedandtestedinasimpledMBmodel,linkedwiththeLSP-DSSATmodel. 17

PAGE 18

6 8 33 37 55 67 ].Theobjectiveoftheexperimentsaretounderstandmicrowavesignaturesofagriculturalcropsduringdierentstagesofgrowth.MicroWEX-2wasconductedduringthesweetcorngrowingseason,fromMarch18throughJune2in2004[ 33 ].MicroWEX-4wasconductedduringthesweetcorngrowingseason,fromMarch10throughJune2in2005[ 6 ].MicroWEX-5wasconductedduringthesubsequentcornseasonfromMarch9throughMay26in2006[ 8 ].Allexperimentswereconductedatthesame37,000m2siteinUF/IFASPlantScienceResearchandEducationUnitinCitra,FL(29.41N,82.18W).ThesoilsatthesiteareLakeFineSandwithabout90%sandandabulkdensityof1.55g/cm3.Rowspacingwas76cm,withapproximatelyeightplantspersquaremeter.Irrigationandfertigationwereconductedviaalinearmovesystem.DatacollectedduringtheMicroWEXsincludedsoilmoisture,temperatureandheatux,latentandsensibleheatux,windspeedanddirection,upwellinganddownwellingshortandlongwaveradiation,precipitation,irrigation,watertabledepth,andverticallyandhorizontallypolarizedmicrowavebrightnessat6.7GHz(=4.47cm),everyfteenminutesusingthetower-mountedUniversityofFloridaC-bandMicrowaveRadiometer(UFCMR,Figure 2-1 ).Additionalhorizontallypolarizedmicrowavebrightnessobservationsat1.4GHz(=21.4cm)wereconductedduringMicroWEX-5usingtheUFL-BandMicrowaveRadiometer(UFLMR,Figure 2-2 ).Theradiometerfrequencies,at6.7GHzandat1.4GHz,correspondtothelowestfrequencyoftheAdvancedScanningMicrowaveRadiometer(AMSR-E)[ 22 ],andthefrequencyoftheplannedSoilMoistureandOceanSalinity(SMOS)mission[ 34 ],respectively.Thesoilmoisture,heatuxes,andtemperatureswereobservedatthreelocationsintheeld.Soilmoistureandsoiltemperaturewereobservedat2,4,8,16,32,64, 18

PAGE 19

TheUniversityofFloridaC-bandMicrowaveRadiometer. Figure2-2. TheUniversityofFloridaL-bandMicrowaveRadiometer. 19

PAGE 20

TheEddyCovarianceSystem. Figure2-4. ThenetradiometerusedduringtheMicroWEXs. and120cm(100cmduringMicroWEX-2)usingCampbellScienticWaterContentReectometersandVitelHydra-probes;andthermistorsandthermocouples,respectively.AnEddyCovarianceSystem(Figure 2-3 )measuredwindspeed,direction,andlatentandsensibleheatuxes.REBSCNRnetradiometer(Figure 2-4 )measuredup-anddown-wellingshort-andlong-waveradiation.EverestInterscienceinfraredsensormeasuredthermalinfraredtemperature.Fourtipping-bucketraingaugesloggedprecipitationatfourlocationsEastandWestofthefootprint,andattheEastandWestsidesoftheeld.WatertabledepthwasmeasuredusingSolinstLevelLoggersinamonitoringwellineachquadrant.Inadditiontocontinuouslyloggeddata,therewerealsoweeklyvegetationandtwice-weeklysoilsamplings(duringMicroWEX-2only).Vegetationsamplingwasconductedinfourareas,oneineachquadrantoftheeld.Sampleswereselectedbyplacingameterstickhalf-waybetweentwoplantsandendingthesampleatleast1mfromthestartingpointandhalf-waybetweentwoplants.Theactualrowlengthofthesamplewasnoted.Standdensity,leafnumber,canopyheightandwidth,wetanddry 20

PAGE 21

7 ].Duringsoilsampling,soilmoistureandtemperatureswereobservedin-rowandin-furrowatdepthsof2,4,and8cmalongeighttransectsattentothirteenlocations,usingtheDelta-TThetaProbesoilmoisturesensorandadigitalthermometertoquantifythespatialvariabilityoftheeld.Vegetationandsoilnitrogen(asNH+4andNO3)weremeasuredineachofthefoursamplingareas.Rootlengthdensitywasmeasuredinthevadosezoneattasseling. 21

PAGE 22

MapoftheeldsiteduringMicroWEX-2. 22

PAGE 23

MapoftheeldsiteduringMicroWEX-4. 23

PAGE 24

MapoftheeldsiteduringMicroWEX-5. 24

PAGE 25

65 ]andCERES-Maize[ 28 ],thatsimulatehydrology,nutrientcycling,growth,anddevelopment.CERES-Maizehastheadvantageofbeingpartofthewell-knownDecisionSupportSystemforAgrotechnologyTransferCroppingSystemModel(DSSAT-CSM).DSSAThasbeenwidelyusedforanumberofyears,withvalidatedmodelsforover15crops.Italsoallowsforsimulationsofmulti-yearcroprotations[ 29 ]. 29 ].Themodeldeterminestotaldrybiomassusingtheradiationuseeciencymethod.Totalsolarradiationispartitionedintophotosyntheticallyactiveradiation(PAR),andthefractioninterceptediscalculatedfromLAIusingBeer'slaw[ 54 ].Thedrymatteraccumulationrateisaproductofradiationuseeciencyandaconversionfactor.Maizegrowthanddevelopmentismarkedbyeightevents:germination,emergence,endofjuvenilephase,oralinduction(tasselinitiation),75%silking,beginninggrainll,maturity,andharvest.Transitionfromonedevelopmentalstagetothenextisdeterminedbythegrowingdegreedays(GDD)withabasetemperatureof8C.Vegetativegrowthstopson75%silking,whenreproductivegrowthbeginsintheformofgrainll.Yieldisthegrainllvalueatharvest.ThresholdGDDforeachstageandgrainllparametersarecontainedinacultivarle. 25

PAGE 26

48 ]orthePenman-FAO(PFAO)method[ 14 ].TheRPTmethoddependsonlyonsolarradiationandtemperature,whilethePFAOmethodaccountsforwindspeedandrelativehumidityaswell.BothmethodsrstdetermineatotalpotentialET,whichispartitionedintopotentialsoilevaporationandpotentialplanttranspiration.Potentialsoilevaporationisbasedoninterceptedsolarradiationreachingthesoilsurfaceasafunctionoftemperature,windspeed,radiation,andhumidity.Potentialplanttranspirationdependsontheradiationinterceptedbythecanopyandtemperature,windspeed,andhumidity.ActualevaporationandtranspirationaredeterminedbytheminimumofpotentialETandtheamountofavailablewater.Forsoilevaporation,surfacesoilwateristhelimitingfactor,whilefortranspiration,rootwateruptakeisthelimitingfactor.Thesoilisdividedintoninelayers,eachwithdierentconstitutiveproperties.Soilmoistureiscalculatedusingthebucketmethod[ 39 ].Whenanuppersoillayerisabovethedrainedupperlimit,excessowstotheonebelow,inadditiontocomputingestimatesforcapillaryrise.RunoiscalculatedusingtheUSDASoilConservationServicerunonumbermethod[ 53 ].Inltrationisequaltoexcessprecipitationafterruno.Soiltemperatureiscomputedusingadeepsoilboundaryconditionandanairtemperatureboundarycondition.Theairtemperature(C)iscalculatedfromtheaverageofmaximumandminimumdailytemperatures.Soiltemperature(ST)varieswithsoillayer(L)as[ 29 ]: 26

PAGE 27

27

PAGE 28

16 ]. 3-1 a).Theobjectivefunction(R)wascomputedasthesumofsquareresiduals,normalizedbyvariance[ 54 ]: 28

PAGE 29

CultivarcoecientvaluesinthecalibratedCERES-Maizemodel.CultivarCoecient Value P1 157.20P2 1.000P5 811.20G1 853.00G3 10.4PHINT 40.33 observations,respectively.Theoptimumcombinationofparametervaluesfoundbythegridsearchwasthenusedastheinitialguessinasimulatedannealingoptimizationalgorithm[ 2 ].Therootmeansquaredierence(RMSD),relativerootmeansquaredierence(RRMSD),andWillmottd-index[ 66 ]werecalculatedasforLAIandthebiomassofeachcomponent,leaves,stems,andgrain: 3-1 showsthevaluesofthesixcultivarcoecientsthatminimizedRinEquation 3{2 3.4.1CropGrowthandDevelopmentToevaluatetheCERES-Maizemodelforcropgrowthanddevelopment,modelestimatesarecomparedofemergenceandsilkingdates,biomass,andLAItotheobservationsduringMicroWEX-2. 29

PAGE 30

3-1 .TheRMSDforbiomasswas0.90Mg/hawithalowRRMSDof0.23andacorrespondinglyhighWillmottd-indexof0.99,asshowninTable 3-2 .Figure 3-1 bshowsascatterplotofestimatedandobservedtotalbiomass.Thebiomasswasincreasinglyunderestimatedbythemodelastheseasonprogressed,withthemaximumdierenceof1.41Mg/haattheendoftheseason.Thepartitioningofthemodeledbiomassintoleafandstembiomassdidnotmatchtheobservations(Figure 3-1 a),asindicatedbythehighRMSDandRRMSDinTable 3-2 .Partitioningoftotalbiomassintostembiomasswasunderestimatedbythemodelduringlatervegetativestagesofgrowth(DoY127toDoY134).Thepartitioningintoleafbiomasswasmorerealistic,withaslightoverestimationduringlatergrowthstages(DoY132toDoY142).Themodel'sestimateofthebeginningofgrainllatDoY140matchedcloselywiththeobservedgrainllatDoY139(Figure 3-1 a).ThebesttforLAIandtotalbiomassdidnotproducethebesttforgrainll.Inordertocompensatefortheunderestimatedstembiomass,grainweightmustbeoverestimated.ThemodelestimatedrealisticLAI,asseeninFigure 3-1 ,withalowRMSDandRRMSDof0.22and0.13,respectively,andahighWillmottd-indexof0.99,asshowninTable 3-2 .Figure 3-1 dshowsthescatterplotofthemodelandobservedLAI. 30

PAGE 31

(a)ComparisonoftheCERES-MaizeestimatesandtheobservationsofbiomassduringMicroWEX-2,(b)scatterplotofestimatedandobservedbiomass,(c)comparisonoftheCERES-MaizeestimatesandtheobservationsofLAIduringMicroWEX-2,and(d)scatterplotofestimatedandobservedLAI.

PAGE 32

ErrorstatisticsforcropgrowthandETbetweenCERES-MaizeestimatesandMicroWEX-2eldobservations.Parameter RMSD RRMSD Willmottd 0.91 0.23 0.99Stembiomass(Mg/ha) 0.97 0.52 0.90Leafbiomass(Mg/ha) 0.47 0.44 0.93Grainbiomass(Mg/ha) 0.49 1.17 0.96LAI 0.22 0.13 0.99Latentheatux(W/m2) 42.07 0.39 0.87 50 ]usingtwomethods(RPTandPFAO)toestimateETandtwovalues(0.85and0.5)forthecanopylightextinctioncoecient(KCAN).Figure 3-2 showsacomparisonofthelatentheatuxestimatesusingthefourmethods.EventhoughtheRMSDvalueswerelow(40W/m2),thetemporaldistributionoflatentheatuxeswasnotestimatedrealisticallyduringthegrowingseason(Figure 3-2 a).Thelatentheatuxeswereunderestimatedintheearlyseasonandoverestimated(100W/m2)duringlateseason.Theearlyseasonunderestimationindicateslowevaporationratesfromthemodeledsoil,andthelateseasonoverestimationindicateshighertranspirationratesinthemodeledvegetation.TheuxestimateswerenotassensitivetoKCANvaluesasthepreviousstudieshadfoundunderwater-stressedconditions[ 50 ].IntermsofcumulativeET,individualunder-oroverestimationsbythemodeleectivelycanceleachother,sothatthetforcumulativeETisbetterthanfordailyvalues(Figure 3-2 b). 32

PAGE 33

ComparisonofthelatentheatuxestimatesfromCERES-MaizemodelusingfourmethodswiththeobservationsduringMicroWEX-2by(a)dailyheatuxand(b)cumulativeET.

PAGE 34

3-3 3-4 ,and 3-3 ).Tocompareobservationsat2,4,8,16,32,64,and100cmtomodelestimatesofthetopsixlayers,theaverageof2and4cmobservationsarecomparedtoestimatesof0-5cm,8and16cmobservationstoestimatesof5-15cm,16and32cmobservationstoestimatesof15-30cm,averageof32cmobservationstoestimatesof30-45cm,32and64cmobservationstoestimatesof45-60cm,and64and100cmobservationstoestimatesof60-90cm. 34

PAGE 35

ComparisonoftheCERES-MaizesoilmoistureestimateswithMicroWEX-2observationsatdepthsof(a)0-5cm,(b)5-15cm,(c)15-30cm,(d)30-45cm,(e)45-60cm,and(f)60-90cm.

PAGE 36

ComparisonoftheCERES-MaizesoiltemperatureestimateswithMicroWEX-2observationsatdepthsof(a)0-5cm,(b)5-15cm,(c)15-30cm,(d)30-45cm,(e)45-60cm,and(f)60-90cm.

PAGE 37

modelperformancestatisticsforsoilmoistureandtemperaturebetweenCERES-MaizeestimatesandMicroWEX-2eldobservations.RMSD Layer SoilMoisture SoilTemperature(K) 5-15cm 0.0204 2.53415-30cm 0.0344 1.42630-45cm 0.0164 1.48545-60cm 0.0117 2.77560-90cm 0.0083 3.648 TheCERES-Maizemodelsimulatesmoistureatdailytimesteps,whilethehydrologicalchangesnearthesoilsurface(0-5cm)occuratmuchshortertimesteps,makingitchallengingtocomparemodelandobservednear-surfacesoilmoisture.InFigure 3-3 a,thedailymoistureat0-5cmestimatedbytheCERES-Maizemodeliscomparedwithdailyaveragesand15minobservationsofvolumetricsoilmoisture(VSM)duringMicroWEX-2.Deepersoillayersmatchedtheobservedvaluesfairlywell,assuggestedbytheirlowRMSDvaluesinTable 3-3 ,exceptfora2%underestimationduringtheentiregrowingseasonforthe15-30cmlayer.ThisiswithintheexperimentalerroroftheobservationsmadebytheTDRprobes.Overall,themodeldidnotcapturethechangesinsoiltemperaturesrealisticallyduringthegrowingseason.Itestimatedtemperaturesatdepthsof15-45cmfairlywell,asindicatedbytheirlowRMSDvaluesinTable 3-3 .Thetemperaturesatdeeperlayerswereunderestimatedthroughoutthegrowingseason,withincreasingdierencesastheseasonprogressed.Fortheupperlayers,themodeldidnotcapturethestronguctuationsintemperatureclosertothesurface. 1 .Question1:"WhatvaluesforthesixcorncultivarcoecientsgivethebestDSSATmodelperformanceforbothbiomassandLAIfortheMicroWEX-2growingseason?"

PAGE 38

3-1 .Question2:"HowdothemodelestimatesforbiomassandLAIcomparewithMicroWEX-2observations?"TheRMSDforbiomasswas0.90Mg/ha.Thebiomasswasincreasinglyunderestimatedbythemodelastheseasonprogressed,withthemaximumdierenceof1.41Mg/haattheendoftheseason.ThemodelestimatedrealisticLAIwithalowRMSDof0.22. 38

PAGE 39

38 ].Themodelsimulates1-dcoupledenergyandmoisturetransportinsoilandvegetation,andestimatesenergyandmoistureuxesatthelandsurfaceandinthevadosezone.Itisforcedwithmicrometeorologicalparameterssuchasairtemperature,relativehumidity,downwellingsolarandlongwaveradiation,irrigation/precipitation,andwindspeed.Theoriginalversionhasbeenrigorouslytested[ 31 ]andextendedtowheatstubble[ 30 ]andbrome-grass[ 32 ],prairiewetlandsinFlorida[ 64 ],andtundraintheArctic[ 9 ]. 39

PAGE 40

4 ].TheoriginalversionoftheLSPmodelfollowedamoreempirically-basedformulationbyVerseghyetal.[ 62 ].Inaddition,theaerodymanicresistancesandthesurfacevaporresistanceswerechangedinthenewversiontoextendittotallvegetationandtopartially-vegetatedterrain[ 24 ].Theoriginalversionwasdevelopedforhomogeneouslandcover,suchasbaresoilorshortgrass.Thenewversionofthemodelalsoincludesadaptivetimestepsforcomputationaleciencyandtoallowsuddenchangesorlargeuxesinthesandysoilswithhighthermalandhydraulicconductivities.ThefollowingsectionprovidesadetaileddescriptionofthemodiedLSPmodelusedinthisstudy.Somefundamentalgoverningequationsarealsoincludedinthesectionforcompletenesseventhoughtheyremainunchangedfromtheoriginalversion. 4.2.1.1EnergyBalanceCombiningtheradiationandheatuxboundaryconditions,thenetenergyuxintothecanopy(Qnet;c)andsoil(Qnet;s)(W/m2):

PAGE 41

1 ].Thedirectfractioniseithertransmitted,reected,orabsorbed.Thenetsolarradiationabsorbedbythecanopyandsoilare 4 ]: 1+K(x;)1p 24 ]: 41

PAGE 42

SurfaceresistancenetworktoestimatesensibleandlatentheatuxesintheLSPmodel. bare-soildata: 35 ]: 4-1 (a)showstheresistancenetworkmodelusedtoestimatesensibleheatux(H)atthesurface.Thesensibleheatuxesbetweenthesoilandair(Hsa),soilandcanopy 42

PAGE 43

24 ]: zob+H zov+H zo+M(4{16)whereuisthefrictionvelocity,istheBusinger-Dyerstabilityfunction[ 17 ],kisvonKarman'sconstant(0.4),zisthemeasurementheight,disthevegetationdisplacementheight(takenas0:63hc,hcistheplantcanopyheight),zovisthevegetationroughnesslength(0:1hc),andzobisthebaresoilroughnesslength.Fortheaerodynamicresistancebetweenthesoilandthecanopy,thelogproleisnotvalidduetomomentumabsorptionbythecanopyelements,soanexponentialwindproleinthecanopyisused[ 24 ],withtheunder-canopyresistance,rsc,fromNiuandYang[ 42 ]: 43

PAGE 44

24 ],givenby: 2(180)r zov(4{22)LatentHeatFluxLatentheatuxisbasedupontheresistancenetwork(seeFigure 4-1 (b)).Threesourcesthatcontributetotheuxare:soilevaporation(LEs),canopytranspiration(LEtr),andevaporationofinterceptedprecipitation(LEev). 44

PAGE 45

62 ].rbvistheleafboundarylayermoistureresistance.rlvandrsaresurfacevaportransportresistancesfortheleavesandsoil,repectively,wherelwisleafwidth.Theleafresistanceisbasedoncanopyassimilation[ 24 ]: 3 ], 45

PAGE 46

47 ]: @t=rqm(4{34) @t=rqh(4{35) 47 ];Kishydraulicconductivity,from[ 49 ];isthermalconductivityofsoilfrom[ 11 ],Sisasinkterm(rootwateruptake),andCv;sisthevolumetricheatcapacityofsoil.Cv;w,,andaretheheatcapacity,density,andheatofvaporizationofwater.Thesoilproleisdenedwithlayersofdierentconstitutiveproperties,dividedintocomputationalblocks,withthethicknessofblocksincreasingexponentiallywithdepth.Thecoupledheatandmoisturetransportequationsaresolvedusingablock-centered,foward-timenitedierencescheme.Theupperboundaryconditionisaheatandmoistureuxdeterminedbythemeteorologicalforcings,whilethelowerboundaryconditionassumesfreeowofheatandmoisture. 46

PAGE 47

AlgorithmforthecouplingoftheLSPandDSSATmodels. 4-2 .Thesoilmoistureandtemperatureprolesareinitializedinbothmodels.TheLSPmodelsimulatesenergyandmoistureuxesusinganadaptivetimestep.Atthelasttimestepofeachday,thedailyaveragesofET,soilmoistureandsoiltemperaturearecalculatedandpassedontotheDSSATmodel.TheDSSATusesthesevaluesincalculatinggrowthratestoobtainthecropvariablessuchasbiomass,LAI,etc.usingadailytimestep.Theestimatesofbiomass,root-lengthdensities,LAI,height,andwidthareprovidedtotheLSPmodelforuxestimationonthenextday.ThemainchallengeincouplinganSVATmodelsuchastheLSPandacropmodelsuchastheDSSATarisesfromthedierenceintimestepandthicknessofsoilnodes 47

PAGE 48

2-5 ).Toobtainforcingsforthemodelsimulations,weconrmedthatraingaugedatacoincidedwiththeobservedsoilmoistureincreases.Thedatawerescaledsuchthatthedailyaccumulatedobservationsfromthe 48

PAGE 49

ValuesforsoilpropertiesintheLSPmodel.Parameter Description 0-1.7m 1.7-2.7m 0.27 0.050 0.076 0.019Ksat 2.06104 0.0051 0.0040sat 0.34 0.41sa 0.894 0.512si 0.034 0.083c 0.071 0.405o 0.000 0.000 0.34 0.41 raingaugesmatchedthoseobservedindependentlyatthesameeldsiteusingcollectioncans[ 16 ].InitialconditionswerenotknownduringMicroWEX-2becausethesensorinstallationwascompleted7daysafterplanting.Therstvaluesobservedbythesoilmoistureandtemperaturesensorswereusedastheinitialmoistureandtemperaturevaluesforthesimulations.Soilphysicalpropertieswerebasedontextureandretentioncurvemeasurementstakenfromsoilsamplesintheeldatdierentdepths,andarelistedinTable 4-1 3 ,werecalibratedusingSimulatedAnnealingtominimizetherootmeansquaredierence(RMSD)betweenmodeledandobservedLAIandbiomassduringMicroWEX-2.IntheLSPmodel,12parameterswerecalibratedusingrepeatedLatinHypercubeSamplingoftheparameterspace[ 40 ].Fouroftheseparameterswererelatedtoradiationbalance:leafreectance,,leafangledistribution,x,soilemissivity,s,andcanopyemissivity,c.Theremainingeightparameterswererelatedtosensibleandlatentheatuxes:canopybaseassimilationrate,Fb,photosyntheticeciency,photo,bare 49

PAGE 50

Samplingrangesfrom[ 24 ]andcalibratedvaluesforparametersintheLSPmodel.Parameter Description SamplingRange Calibratedvalue 104-102 102-2.0 0.819 102-0.5 0.474c 0.95-0.995 0.973s 0.95-0.995 0.953cd 105-1.0 0.328iw 103-102 103-101 -108--1010 107-105 0.0-5103 0.0--6102 soilaerodynamicroughness,zob,leafwidth,lw,windintensityfactor,iw,canopydragcoecient,cd,andsoilevaporationresistanceparameters,soilaandsoilb.ThecalibrationoftheseparameterswasconductedtominimizeRMSDsbetweenthemodeledandobservedvolumetricsoilmoisture(VSM)at2cmandlatentheatux(LE)fortheoverallgrowingseason.ThesetwoobjectiveswerechosenbecauseVSMisoneofthemostimportantfactorsgoverningthemoistureandenergyuxes,andinthecalibrationVSMandLEwerefoundtobecompetingobjectives.Duringthecalibration,vethousandpointsweresampledintheformoftwenty250-pointLatinHypercubeSampleswithintherangesfromGoudriaan[ 24 ],speciedinTable 4-2 ,usingtheUniversityofFlorida'sHigh-PerformanceComputingCenter.ThesesampledpointswereorderedbyParetorankingandthesetofpointswiththelowestParetorankwereconsideredastheoptimalparameterset[ 25 ]. 50

PAGE 51

Paretofrontsfromcalibrationofthestand-aloneLSPmodel.TheasteriskrepresentsthepointontheParetofrontwherethetotalseasonalRMSDfor2cmVSMis0.04m3/m3. 4.5.1Calibration 4.5.1.1DSSATTable 3-1 providesthecalibratedvaluesofthesixcultivarcoecientsintheDSSATmodel.Thesevalueswereusedforsimulationsusingbothstand-aloneDSSATandcoupledLSP-DSSATmodels. 25 ].Figure 4-3 showstheParetofrontsfortheoverallgrowingseasonwithRMSDsbetweenthemodel 51

PAGE 52

4-3 ).Thesefourstagesinclude:almostbaresoil(DoY78-105),intermediatevegetationcover(DoY105-125),fullvegetationcover(DoY125-135),andreproductivestage(DoY135-154).AParetofrontcouldnotbegeneratedforthereproductivestageduetolackofLEobservationsduringthisstage.Ingeneral,thefrontsshowthatthemodelperformsbestduringtheintermediatecoverstage,withthefrontclosesttotheorigin,andworstduringthealmostbaresoilstage,withthefrontfarthestfromtheorigin.Theworstperformanceduringthebaresoilstageisprimarilyduetofewerobservations(<2000)fromMicroWEX-2duringthisstagecomparedtothe>4000observationsduringvegetatedstages,resultingincalibratedparametersbiasedtowardsminimizingdierencesduringthevegetatedstages.Forthestand-aloneLSPandLSP-DSSATsimulationsinthisstudy,theParetofrontfortheoverallseasoninFigure 4-3 wasusedtochoosethe12parametervaluescorrespondingtoanRMSDinVSMat2cmof0.04m3/m3,notedbyanasteriskintheFigure.ThischoicewasbaseduponthesensitivityofSVATmodelstoVSMforhydrometeorologicalapplications[ 20 34 36 ].WiththeRMSDinVSMof0.04m3/m3,thereisanexpectedRMSDinlatentheatuxofabout45W/m2fortheoverallseasonandabout55,40,and50W/m2fortherstthreestages,respectively(seeFigure 4-3 ).Table 4-2 liststhecalibratedparametervaluesusedintheLSPandLSP-DSSATmodelsimulations. 4.5.2.1DSSATTheDSSATmodelprovidedrealisticestimatesofgrowthanddevelopmentofsweetcorn.Boththestand-aloneDSSATandLSP-DSSATmodelsestimatedtheemergencedateonDoY90,comparedtoDoY86observedduringMicroWEX-2.Modeledanthesisday, 52

PAGE 53

ComparisonofLAI,drybiomass(kg/m2),andET(mm)forstand-aloneDSSATandcoupledLSP-DSSATsimulations. Stand-AloneDSSAT CoupledLSP-DSSAT RMSDMADBias RMSDMADBias LAI(-) 0.380.260.06 0.430.390.29TotalBiomass(kg/m2) 0.900.63-0.59 0.520.400.05ET(mm) 1.631.360.31 1.641.250.62 when75%ofthecornhassilked,wasDoY139,while75%silkingwasobservedonDoY135.Figure 4-4 andTable 4-3 showthecomparisonofestimatesofLAIanddrybiomassbythestand-aloneDSSATmodel,bytheLSP-DSSATmodel,andthoseobservedduringMicroWEX-2.EstimatesfrombothmodelsimulationscomparedwellwiththeobservationswithRMSDsof<0.5forLAIand<1.0kg/m2fordrybiomass.Theestimatesfromthetwomodelsdieredby<0.2forLAIand<0.6kg/m2fordrybiomass,withthecoupledLSP-DSSATmodelestimatinghighervaluesthanthestand-aloneDSSAT.TheserelativelysmalldierencescouldbeduetohigherdailyaveragesofsoilmoistureintheLSP-DSSATthanthoseinthestand-aloneDSSAT'sbucketmodel,by>0.02m3/m3(Figure 4-4 (c)).ThehighersoilmoisturevalueswouldpermitincreasedgrowthresultinginhigherLAIanddrybiomassinthecoupledmodel.ThehighmoistureestimatesalsoresultinhigherdailyETinthecoupledmodelcomparedtotheDSSAT(Figure 4-4 (d)).TheLSP-DSSATpredicts<0.5mm/dayhigherETthanDSSATalone,withtheRMSDbetweenthedailyestimatesofETbytheLSP-DSSATandobservationsof1.69mm. 53

PAGE 54

ComparisonofestimationsbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)drybiomass,(b)LAI,(c)5cmsoilmoisture,and(d)ET. 54

PAGE 55

Comparisonofsurfaceuxes(W/m2),forstand-aloneLSPandcoupledLSP-DSSATsimulations. Stand-AloneLSP CoupledLSP-DSSAT Flux RMSDMADBias RMSDMADBias NetRadiation 23.8616.1110.38 25.6218.1212.65LatentHeatFlux 46.3432.0314.96 50.6935.2818.84SensibleHeatFlux 34.4824.0715.69 37.1924.7914.88SoilHeatFlux 47.6826.24-1.54 46.5425.02-1.83 Table4-5. Comparisonofvolumetricsoilmoisture(m3/m3),forstand-aloneLSPandcoupledLSP-DSSATsimulations. Stand-AloneLSP CoupledLSP-DSSAT Depth(cm) RMSDMADBias RMSDMADBias 2 0.0470.0440.044 0.0460.0430.0434 0.0350.0290.029 0.0340.0280.0288 0.0360.0300.028 0.0360.0300.02832 0.0320.0310.031 0.0320.0310.03064 0.0620.0610.061 0.0620.0610.061100 0.0600.0570.057 0.0600.0570.057 growingstages.ThemodelsimulationswereconductedusingcalibratedparametervaluesgiveninTable 4-2 .ThissectiondiscussesstatisticsforcoupledLSP-DSSATmodelsimulation,butTables 4-4 4-6 providedetailedstatisticsforboththecoupledLSP-DSSATandthestand-aloneLSPmodelsimulation.EarlySeason-AlmostBareSoilThisperiodincludedtherst27daysofthegrowingseason(DoY78-105),whenitwas\almost"baresoilwithlowvegetation.Thecanopyheightwas<17cm,LAIwas<0.2,andvegetationcoverwas<0.22.Figures 4-5 (a)and(b)showtheestimated Table4-6. Comparisonofsoiltemperature(K),forstand-aloneLSPandcoupledLSP-DSSATsimulations. Stand-AloneLSP CoupledLSP-DSSAT Depth(cm) RMSDMADBias RMSDMADBias 2 2.802.221.90 2.431.911.374 2.882.211.73 2.562.001.218 2.602.031.73 2.271.771.2232 2.031.561.40 1.761.410.9364 1.701.241.09 1.451.150.67100 1.260.910.44 1.120.900.09 55

PAGE 56

Comparisonofnetradiation,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals Table4-7. MeasurementuncertaintitiesduringMicroWEX-2.Sensor Uncertainty Reference Raingauge 12mm/h [ 44 ]TDR 0.025VSM [ 5 ]Thermistor 0.1K [ 45 ]Soilheatux 15W/m2 56 ]Netradiation 22W/m2 56 ]Latentheatux 17-36W/m2 56 ]Sensibleheatux 21W/m2 56 ] 56

PAGE 57

Comparisonoflatentheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals andobservednetradiationaswellasresiduals(LSP-DSSATminusobserved)duringthisperiod,respectively.Overall,boththecoupledandthestandalonemodelscapturethephasesofthediurnalvariationinnetradiation.TheRMSDsbetweenthemodelestimatesandobservationsaresimilarforbothmodels'simulations(coupledLSP-DSSATandstand-aloneLSP)at32W/m2.However,thepeakdaytimedierencesareashighas100W/m2onDoY93,95,96,and97.ThiscorrespondstodayswhenthemodelestimatesofVSMat2cmwerehigherthanobserved,withRMSDof0.0374m3/m3andbiasof0.036m3/m3(Figure 4-9 ).ThisoverestimationinVSM,possiblyduetoimproperinitialconditionsand/orimproperprecipitationinputs(seeSections 4.4.1 and 4.5.2.2 ),wouldleadtolowerestimatesofsoilalbedousingEquation 4{8 .TheoverestimationalsoresultsinhigherLEestimates(Figures 4-6 (a)and(b))duetounderestimatedsoilsurface 57

PAGE 58

Comparisonofsensibleheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals resistanceusingEquation 4{31 .Inboththecoupledandthestandalonemodels,LEisoverestimatedwithRMSDsof54W/m2andbiasesof18W/m2.TheseRMSDsarehigherthanthesensoruncertaintyof17-36W/m2(Table 4-7 )butarecomparablewiththoseexpectedfromFigure 4-3 usingtheParetofrontfromtheearlyseason(seeSection 4.5.1.2 ).Boththecoupledandstand-alonemodelsestimatesimilarsensibleheatuxes,withRMSDsof40W/m2andbiasesof16W/m2(Figure 4-7 ).TheseRMSDsarelowerthanthoseobtainedforLE.ForthedayswhenLEispositivelybiased(e.g.DoY97,98,101,102,and103),thesensibleheatuxisbiasednegatively,andviceversa.TheoverallRMSDforsensibleheatuxescouldbeduetoslightlyloweraerodynamicresistanceand/orduetooverestimationofsoiltemperatureinboththemodels(Figure 4-10 ).The 58

PAGE 59

Comparisonofsoilheatux,betweenDoY78to105,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals RMSDsbetweenthemodelsandobservationsforsoiltemperatureare<2.22K.Thispositivebias(<1.7K)insoiltemperatureinthebeginningofthesimulationcouldbeduetoimproperinitialconditions(seeSection 4.4.1 ).Theestimatedsoilheatux(Figure 4-8 )isoverestimatedduringthedayandunderestimatedatnight.Theneteectofwhichis2cmsoilheatuxisslightlyunderestimatedwithRMSDsof48W/m2andbiasesof-3W/m2,becausethemagnitudeofthelatentandsensibleheatuxbiasesexceedsthatofthenetradiationoverestimation.Mid-Season-IntermediateVegetationCoverThisperiodincludedthenext20daysofthegrowingseason,whenthevegetationispartiallycoveringtheterrain(DoY105-125).Thecanopyheightwas17-73cm,LAIwas 59

PAGE 60

ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY78to105:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 60

PAGE 61

ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY78to105:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 61

PAGE 62

Comparisonofnetradiation,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals 0.2-1.82,andfractionalvegetationcoverwas0.22-1.00.Overall,themodelperformanceisbetterduringthisgrowthstagecomparedtothepreviousstage,asexpectedfromtheParetofronts(Figure 4-3 andSection 4.5.1.2 ).Asthevegetationcoverincreasedduringthisperiod,theresidualsinnetradiationdecreasesignicantly,indicatingthedecreasinginuenceofsoilalbedoonradiationbalance.Thedaytimeresidualsdecreasefrom80W/m2beforeDoY115to<30W/m2afterDoY115(Figure 4-11 ).Duetotheimprovednetradiationestimates(RMSD27W/m2),andthedecreasinginuenceofsoilsurfaceresistance,RMSDsinLEarelowerduringthisstagethanduringthebaresoilstage(compareFigures 4-6 and 4-12 )eventhoughVSMremainsoverestimatedbysimilaramounts(compareFigures 4-9 and 4-15 ). 62

PAGE 63

Comparisonoflatentheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals TheRMSDof40W/m2correspondtothoseexpectedfromtheParetofrontinFigure 4-3 .SimilarlylowRMSDsandbiasesarefoundinsensibleheatux,soilheatux,andsoiltemperature.Sensibleheatuxisoverestimated,butmatchesmorecloselywithobservationsduringthisstagethanduringthebaresoilstage(Figure 4-13 ),withRMSDsof30W/m2andbiasesof12W/m2.Soilheatuxremainsoverestimatedduringthedayandunderestimatedatnight,similartothepreviousstage(Figures 4-14 (a)and(b)).Overall,the2cmsoilheatuxisunderestimatedwithRMSDof39W/m2andbiasesof-6W/m2and.Thisisreectedinthesoiltemperature(Figure 4-16 )asaloweroverestimation(RMSD<1.67Kandbias<0.67K)thaninthepreviousstageforthe 63

PAGE 64

Comparisonofsensibleheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals stand-aloneLSP,andanunderestimation(RMSD<1.47Kandanegativebias>-0.91K)inthecaseoftheLSP-DSSATmodel.LateSeason-VegetativeStageThisperiodincludedthenexttendaysofthegrowingseason,whenthecornwasinthevegetativegrowthstageandatfullvegetationcover(DoY125-135).Thecanopyheightwas73-162cm,LAIwas1.82-2.49,andvegetationcoverwas1.00.Inthepreviousstage,asvegetationcoverincreased,residualsfornetradiationdecreased.Becauseoffullvegetationcoverduringthisstage,netradiation(Figure 4-17 )matchesverycloselywithobservations,withRMSDsof16W/m2andbiasesof8W/m2,lessthantheestimatedsensoruncertainty(Table 4-7 ).LEisoverestimatedwithRMSDof49W/m2andbiasof16W/m2(Figure 4-18 ).TheRMSDof49W/m2

PAGE 65

Comparisonofsoilheatux,betweenDoY105to125,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals correspondtotheRMSDexpectedfromtheParetofrontinFigure 4-3 .Thoughthenetradiationmatcheswell,itisstillbiasedhigh,whichwouldpermitlowerleafsurfacevaporresistancebyEquations 4{29 and 4{30 ,resultinginoverestimatedLEfromincreasedcanopytranspiration.OverestimatedVSM,showninFigure 4-21 ,(RMSD0.0492m3/m3andpositivebias0.0472m3/m3)couldalsoleadtooverestimationofLEbyincreasingsoilevaporation.Sensibleheatux(Figure 4-19 )isoverestimatedwithRMSDsof43W/m2biasesof22W/m2.Thisoverestimationcouldbeduetooverestimatedvegetationaerodynamicroughnesslength.The2cmsoilheatux(Figure 4-20 )isslightlyoverestimatedwithRMSDof44W/m2andbiasof0.70W/m2.Sinceduringfullcover,thenetuxgoingintothesoil 65

PAGE 66

ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY105to125:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 66

PAGE 67

ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY105to125:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 67

PAGE 68

Comparisonofnetradiation,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals isdominatedbytheuxbetweenthesoilandthecanopy,theoverestimationofsoilheatuxindicatesthatsoil-canopyuxisunderestimated.Thisoverestimationinsoilheatuxleadstooverestimationinsoiltemperature(Figure 4-22 ),moresothanduringintermediatevegetationcover,withapositivebias<2.68KandRMSD<3.32K.ReproductiveStageThelast19daysofthegrowingseason,DoY135-154,comprisedthereproductivestage,beginningwithsilkformation.Duringthisperiod,thecanopyheightwas162-200cm,LAIwas2.49-2.75,andvegetationcoverwas1.00.Thebiomassgrowthduringthisstagewasprimarilyduetoeargrowth. 68

PAGE 69

Comparisonoflatentheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals Similartothepreviousstage,netradiation(Figure 4-23 )matchesverycloselywithobservations,withRMSDsof17W/m2andbiasesof2.6W/m2.TheLEandHcomparisoncouldnotbepresentedduetomissingobservationsduringthisperiod.The2cmsoilheatux(Figures 4-24 )isslightlyoverestimatedwithRMSDsof55W/m2andbiasesof2.3W/m2,forsimilarreasonsasduringthenon-reproductivefullcoverperiod.Theoverestimationinsoilheatuxleadstooverestimationinsoiltemperature(Figure 4-26 ),withRMSD<3.39Kandapositivebias<3.39K.VSM(Figure 4-25 )isoverestimatedwithRMSD0.0632m3/m3andapositivebias0.0623.Theoverestimationcouldbeduetoincorrectprecipitationinputs,oraccumulatedmoisturebecauseofunderestimatedhydraulicconductivityinthebottomclaylayer.GrowingSeason-PlantingtoHarvest

PAGE 70

Comparisonofsensibleheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals ThecoupledLSP-DSSATmodelestimatesradiation,uxes,andsoilmoistureandtemperatureprolesthatareverysimilartothoseestimatedbythestand-aloneLSPmodelwithobservedvegetationparametersforthegrowingseason,asshowninFigures 4-27 4-29 andTables 4-4 4-6 .TheRMSDsfortheuxesfromtheLSP-DSSATmodelareslightlyhigher(by3W/m2)thanthosefromtheLSPmodel,primarilybecausemodeledcanopycharacteristicsusedintheLSP-DSSATmodelratherthanobservations.Forinstance,LSP-DSSAToverestimatesLAIby0.29,comparedtothestand-aloneDSSATwhichoverestimatesby0.06(Figure 4-4 (c)),increasingcanopyinterceptionandnetradiation.Overall,boththeLSPandLSP-DSSATmodelscapturethediurnalvariationsandphasesfornetradiation(Figure 4-27 (a))throughoutthegrowingseason.TheRMSDs 70

PAGE 71

Comparisonofsoilheatux,betweenDoY125to135,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals betweentheLSP-DSSATandobservednetradiationare24W/m2.Thesedierencesareclosetothesensoruncertaintyof22W/m2inTable 4-7 .Thebiasesare17W/m2indicateanoverestimation.LERMSDsof48W/m2arewhatcanbeexpectedfromtheParetofrontinFigure 4-3 .SuddenincreasesinLEonDoY93,109,119,and127,asshowninFigure 4-27 (b),areduetohighevaporationafterrainfallorirrigation.TheRMSDsof36W/m2forsensibleheatux(Figure 4-27 (c))arelowerthanthoseforLE.Themodeloverestimatesthediurnalamplitudefor2cmsoilheatux(Figure 4-27 (d)),whichhasLSP-DSSATRMSDsof47W/m2,duetodaytimeoverestimationofnetradiationandnighttimeoverestimationoflatentandsensibleheatuxes.TheRMSDforVSMat2cm(Figure 4-28 andTable 4-5 )issimilartoourchoiceof0.04m3/m3ontheoverallseasonParetofront(Figure 4-3 ).ForboththeLSPand 71

PAGE 72

ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY125to135:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 72

PAGE 73

ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY125to135:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 73

PAGE 74

Comparisonofnetradiation,betweenDoY135to154,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals LSP-DSSATmodelsimulations,theVSMsatalllayersexhibitpositivebiasthatincreasesduringtheseason.Abiasof0.02m3/m3couldbeintroducedatthebeginningofthesimulationduetoimproperinitialconditions(Section 4.4.1 )andsignicantuncertaintyinraingaugeobservations.DuringMicroWEX-2,thedierencesbetweendailyaccumulationsfromthefourraingaugeobservationsandthoseobservedindependentlybyusingcollectioncanswereupto10sofmm/day.Previousstudieshavealsofoundsimilarlyhighuncertaintiesinprecipitation,at12mm/h,usingsuchraingauges[ 44 ].TheVSMbiasof0.06m3/m3forthelayers0.64mandbelow(Figures 4-28 (e)and(f))couldbeduetotheimproperretentioncurveparametersintheclaylayer(below1.7m).Theparameterswerebasedonlyononesoilsamplefromthatlayerandcouldhaveresultedinloweruxestimatesatthelowerboundaryandhigherbiasesforthedeeper 74

PAGE 75

Comparisonofsoilheatux,betweenDoY135to154,estimatedbythecoupledLSP-DSSATandstand-aloneDSSATmodelsimulationandthoseobservedduringMicroWEX-2:(a)valuesand(b)residuals layers.ThedecreaseindrainagecouldalsocausepositivebiasinVSMfortheupperlayers,closertothelandsurface.Overall,soiltemperatures(Figure 4-29 )forbothmodelsimulationsmatchcloselywiththeMicroWEX-2observations.Duringthebaresoilperiod,soiltemperatureexhibitspositivebiasof<1.40Kandthisbiasisreducedduringtheintermediatevegetationcoverperiodto<0.91Kduetoanetreductionofsoilheatuxestimates.Asthesoilheatuxbiasincreases,thetemperaturebiasincreasesto<2.7KafterDoY125.TheseasonalRMSDsdecreasewithdepthwithamaximumof2.43K(Table 4-6 ). 1 75

PAGE 76

ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY135to154:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 76

PAGE 77

ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2,betweenDoY135to154:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 77

PAGE 78

ComparisonofuxesestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2:(a)netradiation,(b)latentheatux,(c)sensibleheatux,and2cmsoilheatux. 78

PAGE 79

ComparisonofvolumetricsoilmoistureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 79

PAGE 80

ComparisonofsoiltemperatureestimatedbythecoupledLSP-DSSATandstand-aloneLSPmodelsimulationandthoseobservedduringMicroWEX-2:(a)2cm,(b)4cm,(c)8cm,(d)32cm,(e)64cm,and(f)100cm. 80

PAGE 81

4-2 .Question4:"Howdothemodelestimatesofsoilmoisture,temperature,andsurfaceuxescomparewithMicroWEX-2observations?"TheRMSDforVSMat2cmis0.04m3/m3.ForboththeLSPandLSP-DSSATmodelsimulations,theVSMsatalllayersexhibitpositivebiasthatincreasesduringtheseason.TheseasonalRMSDsfortemperaturedecreasewithdepthwithamaximumof2.43K.TheRMSDsbetweenthemodeledandobservednetradiationwere24W/m2.LEestimateshadanRMSDof48W/m2,thesensibleheatuxestimateshadanRMSDof36W/m2,andthe2cmsoilheatuxestimateshadRMSDof47W/m2.Question5:"WhatistheimpactofcouplingonbothLSPandDSSATmodelestimatesofLAI,biomass,soilmoisture,temperature,andsurfaceuxes"TheestimatesfromtheDSSATandLSP-DSSATdieredby<0.2forLAIand<0.6kg/m2fordrybiomass,withthecoupledLSP-DSSATmodelestimatinghighervaluesthanthestand-aloneDSSAT.ThedierencesbetweentheLSPandLSP-DSSATestimatesofsoilmoisture,soiltemperature,andsurfaceuxesareallsmall. 81

PAGE 82

19 ]wasextendedforsweetcornusingobservedmoisturedistributionduringtheFourthandFifthMicrowaveWaterandEnergyBalanceExperiments(MicroWEX-4and-5).TheestimatedbythemodeliscomparedwiththatestimatedusingtheJacksonmodel.ThevaluesobtainedfromthetwoapproximationswereusedinamicrowaveemissionmodelatC-bandandthemodelestimatesofbrightnesswerecomparedwitheldobservations. 5.2.1MoistureDistributionMeasurementsFivemeasurementsofmoisturedistributionwereconductedduringMicroWEX-4:May12(DayAfterPlanting(DAP)63),May17(DAP68),May26(DAP77),June2(DAP84),andJune6(DAP88).ThesamplescollectedonDAP63and88consistedofplantsinvegetativestage,i.e.,beforeearformation,whilethosecollectedonotherdaysconsistedofplantsatvariousreproductivestages.AdditionalplantsamplewasobtainedonDAP88todeterminethedensityofwetvegetation(solid).ThreemeasurementsofmoisturedistributionwereconductedduringMicroWEX-5:April10(DAP32),May1(DAP53),andMay15(DAP67).ThesamplescollectedonDAP53and67consistedofplantsinreproductivestages.Allrepresentativeplantsampleswerecutevery10cmandweighedwet.Thesamplesweredriedat70oCforatleast48hoursandweighedtoobtaindrybiomass.ThesamplesonDAP63,2005werecutevery5cmtoensurethatnersampleswerenotneededto 82

PAGE 83

Observationsoftotalandearwetbiomassduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. obtainaccuratemoisturedistribution.Thedensityofvegetationmaterialforeachlayerwasmeasuredbyvolumedisplacementinagraduatedcylinder.Densityofwetvegetationandair,(z),calledtheclouddensity,wascalculatedforeachlayerasaratioofwetbiomassofeachlayerandthethicknessofthelayer(10cm).Themassofairisnegligible.Toobtainseasonalpattern,theclouddensityofeachlayerwasplottedasafunctionofheightofthelayer,showninFigure 5-3 59 60 ]: 83

PAGE 84

Observationsofcanopyheightduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. wherehiscanopyheight(m),k0isvacuumwavenumber(m1),and(z)=Imfnt(z)g(Np/m)istheabsorptioncoecientofthecanopy.Imfnt(z)gistheimaginarypartofthecomplexrefractiveindex,estimatedasthesumofvolumefractionofcomponents,nt(z)=1+vwcnwcvwc=(z) 7 ]).UlabyandEl-Rayes'model[ 57 ]estimatesnwcasafunctionoffrequency(6.7GHzforthisstudy)andmoisturemixingratio(Mg).Mgisdenedastheratioofweightofwaterinthecanopytotheweightofwetcanopy.Figure 5-4 showsthemixingratioduringMicroWEX-4and-5.Inthismodel,anisothermalcanopyisassumed,sothatthe 84

PAGE 85

59 ],inwhichthetotalbrightnesstemperatureofaterrain(TB)isasumofthreecontributions:TBs;p(fromthesoil),TBc;p(fromthecanopy),andTBsky;p(fromthesky). Figure5-3. Clouddensitiesmeasuredduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006.Thesymbolsandthelinesrepresentthemeasurementsandthebestcurve-ts,respectively. 85

PAGE 86

Moisturemixingratiosmeasuredduring(a)MicroWEX-4in2005and(b)MicroWEX-5in2006. 18 ](K),=cos()whereisthelookangle(50oforMicroWEX-5),Tcisthephysicaltemperatureoftheisothermalcanopy(K),measuredduringtheexperiments,!isthesinglescatteringalbedo,andTskyistheskybrightness(assumed5KatC-band).Inthismodel,rpisbaseduponthesemi-empiricalmodelofWegmullerandMatzler[ 63 ]: 86

PAGE 87

27 ].SoildielectricpropertiesaredeterminedusingafourcomponentmixingmodelfollowingDobsonetal[ 13 ]. 51 ]as: 4 ,theLSP-DSSAT-MBmodelsimulatedH-polTBfortheMicroWEX-2growingseason. 87

PAGE 88

ValuesoftheCoecientsinequations 5{6 and 5{7 Coecients Values 5.3.1MoistureDistributionFunctionAsshowninFigure 5-3 ,theclouddensityfunctionconsistsoftwoterms,alineartermrepresentingthevegetativestageoftheplantandagaussiantermrepresentingthemoistureintheearduringthereproductivestages,as: 2hnd e2i(5{6)wherea,b,c,d,andearettedparameters,hn=z/histhenormalizedheight,andBvandBearethewetbiomassofvegetation(stemandleaves)andear(kg/m2),respectively.Figure 5-3 alsoshowsthebestcurve-tsobtainedforeachsample.Theparametersc,d,ande,governingthegaussianterm,wereestimatedasquadraticfunctionsofdrybiomassoftheear(Dear)as: 5-1 givesthevaluesoftheaandbparametersandthecoecientsinequation 5{7 88

PAGE 89

Comparisonofcalculatedusingthebiophysicalmodel(withandwithoutthegaussianterm)andthatusingtheJacksonmodelduring(a)MicroWEX-4in2005,and(b)MicroWEX-5and2006. 5-5 showstheestimatedusingthebiophysicalmodelandtheJacksonmodelwithb=0:25.TheJacksonmodelestimatesloweropacitiesthroughoutthegrowingseasoncomparedtothoseobtainedusingthebiophysicalmodelwithrootmeansquaredierences(RMSD)betweenthetwomodelsof0.16NpduringMicroWEX-4and0.23NpduringMicroWEX-5.However,theJacksonmodelmatchedbetterwhenthechangeinthemoisturedistributionduetoearformationwasnotincluded,withRMSDsof0.10NpduringMicroWEX-4and0.11NpduringMicroWEX-5.Thecontributionofmoistureintheearstotheopticaldepthissignicantbecausetheycompriseasignicantportionofthetotalbiomass(seeFigure 5-1 ),withtheincreaseinbiomassprimarilyduetogrowth 89

PAGE 90

5-5 showsasharpincreaseinopticaldepthattheonsetofeardevelopment,atDAP62forMicroWEX-4andDAP47forMicroWEX-5.Bytheendoftheseasons,theopticaldepthisdoubledwhenearsareincluded. 5-6 showsthecomparisonofthehorizontallypolarized(H-pol)TBobservedduringMicroWEX-5withthosesimulatedbytheMBmodelatC-band,withestimatesusingthebiophysicalmodelandtheJacksonmodel.OnlyH-polbrightnessisexaminedherebecauseH-polbrightnessismoresensitivetochangesinsoilmoisturethanV-pol,attheincidenceangleof50o,thatisclosetotheBrewsterangleatmicrowavefrequencies[ 59 ].TheobservedTBincreasedduringthedrydownfromDAP42toDAP46.7andthen Figure5-6. ComparisonoftheobservedTBatH-polduringMW5thosesimulatedbytheMBmodelusingfromthebiophysicalmodelandfromtheJacksonmodelduringlate-seasonMicroWEX-5. 90

PAGE 91

RMSdierencesbetweenobservedTBduringMicroWEX-5andthoseestimatedbytheMBmodel DAP<47 DAP47 DAP42-52 Jackson(!=0.00) 5.84 12.50 9.74 Jackson(!=0.06forDAP47) 5.84 3.65 4.88 Biophysical!=0.05for42
PAGE 92

Comparisonofmicrowavebrightness,estimatedbytheLSP-DSSAT-MBmodelwithspecularsurface(a)andWegmullerandMatzler(b),andC-bandmicrowavebrightnessobservedduringMicroWEX-2,beforeDoY125.

PAGE 93

Comparisonofmicrowavebrightness,estimatedbytheLSP-DSSAT-MBmodelwithspecularsurface(a)andWegmullerandMatzler(b),andC-bandmicrowavebrightnessobservedduringMicroWEX-2,afterDoY125.

PAGE 94

RMSdierencesbetweenobservedH-polTBduringMicroWEX-2andthoseestimatedbytheMBmodel. RMSD(K) MAD(K) Bias(K) 35.87 28.94 -25.70 WegmullerandMatzler(DoY<125) 32.18 23.78 14.43 Specularsoil(DoY125) 10.06 8.15 6.58 WegmullerandMatzler(DoY125) 12.43 10.83 9.97 Duringlessthanfullvegetationcover(beforeDoY125),thesoilreectivitystronglyaectstheestimationofbrightness.ThisleadstoawidedisparitybetweenthespecularandWegmullerandMatzlerroughsurfacemodelestimates,ascanbeseeninFigure 5-7 .Thelowerreectivityoftheroughsurfacemodelleadstohigherbrightnessvaluesthanthespecularmodel.Suddendropsinbrightness(DoY98,100,104,107,109,112,114,119,122,123,and124)duetoirrigationorprecipitationeventsareonlyreachedwiththespecularmodel.Asvegetationcoverincreases,thecanopycontributiontobrightnessincreasessothespecularandroughsurfacemodels'estimatesofbrightnessapproacheachother.Overall,theperformancewhenvc<1ispoor,asseenbythehighRMSDsTable 5-3 .Neitherreectivitymodelmatchedsuddendropsinbrightness,andthereisalsoanunderestimationduetotheoverestimationofsoilmoisturebytheLSPmodel(Chapter 4 ).Duringfullvegetationcover(afterDoY125),modelestimatesofbrightnessaredominatedbythecanopycontributionandthusbyand!.Bothsurfacereectivitymodelsgivesimilarresultsandoverestimatebrightness,seeninFigure 5-8 andtheRMSDsinTable 5-3 .Thiscouldbeanindicationthatthe!valuesfoundforMicroWEX-5arenotcorrectforMicroWEX-2.AftermodeledearformationonDoY139brightnessislessoverestimatedas!isincreasedto0.075.Thislateintheseason,thereisalmostnoeectfromthesoil,andasthemodelisbiophysicallybased,theonlywaytoimprovemodelestimatesherewouldbetocalibrate!beforeandafterearformation. 1 94

PAGE 95

95

PAGE 96

96

PAGE 97

67 ].Othersignicantcontributionsaretheextensivedatasetsofsoiltemperature,soilmoisture,vegetation,surfaceuxes,andradiobrightnesscollectedduringMicroWEX-2,4,and5.Theyprovideseason-longandhightemporalresolutionobservationstoallowinterdisciplinarystudies. 4 ,theLSP-DSSATmodeloverestimatessoilmoisture,largelyduetouncertaintyinsoilhydrologicpropertiesandinprecipitation.ThisindicatesthatthemodelestimateswouldimprovewithacalibrationofthesoilhydrologicparametersinadditiontothetwelveparameterscalibratedinChapter 4 .Inaddition,sinceamajor 97

PAGE 98

5.3.3 ,fromthehighbrightnessRMSDsduringthersthalfoftheseason,eitherthespecular(Fresnel)reectivityortheroughsurfacereectivityaloneareinsucienttomatchthesuddendropsinbrightnessassociatedwithprecipitationevents.ThisisachallengebecauseoftheextremelylimitedbaresoilbrightnessdataduringMicroWEXs2,4,and5.Tollthedearthofbaresoildata,baresoiltestswereconductedduringMayandJune2007inwhichextensivesoilroughnessmeasurementsweretakenalongwithbrightnessmeasurements,before,during,andafterirrigationevents.Thisdatawouldbeusefulinthefutureforthedevelopmentofamorerigorousroughsurfacereectivitymodel.Amoisture-dependentroughnessmodelcouldcapturethesuddendropsinbrightnessassociatedwithprecipitationeventsbutneedstoberened.Inaddition,theLSP-DSSAT-MBmodeloverestimatedbrightnessinthelaterhalfoftheMicroWEX-2season,indicatingthatthe!valuesneedtobehigherfortheMicroWEX-2,andthattheyshouldbecalibrated.Theoptimal!valuesforMicroWEX-2andMicroWEX-5areapparentlydierent,indicatingthatthereissomedierencebetweenthecanopiesofthetwoseasonsthatwouldproduceadierencein!.Futureresearchcouldndsomephysicalrelationshipbetweencanopycharacteristicssuchasleaforstembiomassand!,similartothephysicalrelationshipfoundfor. 98

PAGE 99

[1] Boland,J.,L.Scott,andM.Luther(2001),Modellingthediusefractionofglobalsolarradiationonahorizontalsurface,Environmetrics,12,103{116. [2] Busetti,F.(2004),Simulatedannealingoverview,Tech.rep.,Availableatwww.geocities.com/francorbusetti/saweb.pdf. [3] Camillo,P.,andR.J.Gurney(1986),Aresistanceparameterforbaresoilevaporationmodels,SoilScience,141,95{105. [4] Campbell,G.S.,andJ.M.Norman(1998),AnIntroductiontoEnvironmentalBiophysics,2nded.,286pp.,SpringerScience+BusinessMedia,NewYork. [5] CampbellScientic(2006),CS616andCS625WaterContentReectometers,Tech.rep.,Availableathttp://www.campbellsci.com/documents/manuals/cs616.pdf,Logan,Utah. [6] Casanova,J.,T.Lin,M.Jang,K.Tien,J.Judge,O.Lanni,andL.Miller(2005),Fieldobservationsduringthefourthmicrowavewaterandenergybalanceexperiment(MicroWEX-4):FromMarch10-June14,2005,Tech.Rep.CircularNo1482,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE362. [7] Casanova,J.,M.Jang,andJ.Judge(2006),Verticaldistributionofmoistureinasweetcorncanopy,Tech.Rep.CircularNo1492,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE395. [8] Casanova,J.,F.Yan,K.Tien,J.Judge,O.Lanni,andL.Miller(2006),Fieldobservationsduringthefthmicrowavewaterandenergybalanceexperiment(MicroWEX-5):Frommarch9-may26,2006,Tech.Rep.CircularNo1514,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE407. [9] Chung,Y.(2007),Asnow-soil-vegetation-atmosphere-transfer/radiobrightnessmodelforwetsnow,Ph.D.thesis,UniversityofMichigan. [10] Dai,Y.,etal.(2003),TheCommonLandModel(CLM),Bull.Amer.MeteorSoc.,84(8),1013{1023. [11] deVries,D.A.(1963),Thermalpropertiesofsoils,inPhysicsofPlantEnviron-ment,editedbyW.R.vanWijk,North-HollandPublishingCompany,Amsterdam,Netherlands. [12] Demarty,J.,C.Ottle,I.Braud,andJ.Frangi(2002),ComparisonofmeasuredandSISPAT-RSsimulatedbrightnesstemperaturesandreectancesateldscaleduringReSeDAexperiment,ProceedingsofSPIE,theInternationalSocietyforOptical

PAGE 100

[13] Dobson,M.,F.Ulaby,M.Hallikainen,andM.El-Rayes(1985),Microwavedielectricbehaviorofwetsoil-partII:Dielectricmixingmodels,IEEETrans.Geosci.RemoteSensing,GE-23,35{46. [14] Doorenbos,J.,andW.Pruitt(1977),Guidelinesforpredictingcropwaterrequirements,Tech.Rep.IrrigationanddrainagepaperNo.24,UnitedNationsFAO. [15] Du,Y.,F.Ulaby,andM.Dobson(2000),Sensitivitytosoilmoisturebyactiveandpassivemicrowavesensors,IEEETrans.Geosci.RemoteSensing,38(1),105{114. [16] Dukes,M.(2004),UpdateoftheAFSIRScropwaterusesimulationmodel.Micrometeorologicaldataset,Tech.rep.,Availableathttp://afsirs.ifas.edu. [17] Dyer,A.J.N.(1974),Areviewofux-prolerelationships,Boundary-LayerMeteo-rology,7(3),363{372. [18] England,A.(1990),Radiobrightnessofdiurnallyheated,freezingsoil,IEEETrans.Geosci.RemoteSensing,28(4),464{76. [19] England,A.,andJ.Galantowicz(1995),MoistureinagrasscanopyfromSSM/Iradiobrightness,inProc.2ndTropicalSymposiumonCombinedOptical-MicrowaveEarthandAtmos.Sensing,vol.Atlanta,GA,pp.12{14. [20] Enthekabi,D.,etal.(2004),TheHydrosphere(HYDROS)SatelliteMission:anEarthsystempathnderforglobalmappingofsoilmoistureandlandfreezethaw,IEEETransactionsonGeoscienceandRemoteSensing,42(10),2184{2195. [21] Eom,H.J.(1992),Athermalmicrowaveemissionmodelforrow-structuredvegetation,Int.J.RemoteSensing,13(16),2975{2982. [22] EOS(2003),Advancedmicrowavescanningradiometerforeos,overview,sensor,andorbit,Tech.rep.,Availableathttp://www.ghcc.msfc.nasa.gov-/AMSR/. [23] Garcia-Quijano,J.F.,andA.P.Barros(2005),Incorporatingphysiologyintoahydrologicalmodel:photosynthesis,dynamicrespiration,andstomatalsensitivity,EcologicalModeling,185,29{49. [24] Goudriaan,J.(1977),CropMicrometeorology:ASimulationStudy,1sted.,249pp.,CentreforAgriculturalPublishingandDocumentation,Wageningen,theNetherlands. [25] Gupta,H.V.,L.A.Bastidas,S.Sorooshian,W.J.Shuttleworth,andZ.L.Yang(1999),Parameterestimationofalandsurfaceschemeusingmulticriteriamethods,JournalofGeophysicalResearch,104(D16),19,491{19,503. 100

PAGE 101

Jackson,T.,andT.Schmugge(1989),Passivemicrowaveremotesensingsystemforsoilmoisture:Somesupportingresearch,IEEETrans.Geosci.RemoteSensing,27(2),225{235. [27] Jang,M.Y.,K.Tien,J.Casanova,andJ.Judge(2005),Measurementsofsoilsurfaceroughnessduringduringthefourthmicrowavewaterandenergybalanceexperiment:FromApril18-June13,2005,Tech.Rep.CircularNo1483,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE393. [28] Jones,C.,andJ.Kiniry(Eds.)(1986),CERES-Maize:ASimulationModelofMaizeGrowthandDevelopment,TexasA&MUniversityPress,CollegeStation,Texas. [29] Jones,J.W.,G.Hoogenboom,C.Porter,K.Boote,W.B.L.Hunt,P.Wilkens,U.Singh,A.Gijsman,andJ.Ritchie(2003),TheDSSATcroppingsystemmodel,EuropeanJ.Agronomy,18(3-4),235{265. [30] Judge,J.,A.England,C.L.W.Crosson,B.Hornbuckle,D.Boprie,E.Kim,andY.Liou(1999),Agrowingseasonlandsurfaceprocess/radiobrightnessmodelforwheat-stubbleinthesoutherngreatplains,IEEETrans.Geosci.RemoteSensing,37(5),2152{2158. [31] Judge,J.,L.Abriola,andA.England(2003),Developmentandnumericalvalidationofasummertimelandsurfaceprocessandradiobrightnessmodel,AdvancesinWaterResources,26(7),733{746. [32] Judge,J.,A.W.England,J.R.Metcalfe,D.McNichol,andB.E.Goodison(2007),Calibrationofanintegratedlandsurfaceprocessandradiobrightness(LSP/R)modelduringsummertime,AdvancesinWaterResources,InPress. [33] Judge,Jasmeet,J.Casanove,T.Lin,K.Tien,M.Jang,J.Judge,O.Lanni,andL.Miller(2004),Fieldobservationsduringthesecondmicrowavewaterandenergybalanceexperiment(MicroWEX-2):FromMarch17-June3,2004,Tech.Rep.CircularNo1480,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE360. [34] Kerr,Y.H.,P.Waldteufel,J.Wigneron,J.Martinuzzi,J.Font,andM.Berger(),Soilmoistureretrievalfromspace:theSoilMoistureandOceanSalinity(SMOS)mission,IEEETransactionsonGeoscienceandRemoteSensing,39. [35] Kustas,W.P.,andJ.M.Norman(2000),Atwo-sourceenergybalanceapproachusingdirectionalradiometrictemperatureobservationsforsparsecanopycoveredsurfaces,Agron.J.,92,847{854. [36] Leese,J.,T.Jackson,A.Pitman,andP.Dirmeyer(2001),GEWEX/BAHCinternationalworkshoponsoilmoisturemonitoring,analysis,andpredictionforhydrometeorologicalandhydroclimatologicalapplications,Bull.Amer.Meteorol.Soc.,82(7),1423{1430. 101

PAGE 102

Lin,Tzu-yun,J.Judge,K.Tien,,J.C.andM.Y.Jang,O.Lanni,andL.Miller(2004),Fieldobservationsduringthethirdmicrowavewaterandenergybalanceexperiment(MicroWEX-3):Fromjuly16-december21,2004,Tech.Rep.CircularNo1483,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE361. [38] Liou,Y.,J.Galantowicz,andA.England(1998),Alandsurfaceprocess/radiobrightnessmodelwithcoupledheatandmoisturetransportforfreezingsoils,IEEETrans.Geosci.RemoteSennsong,36(2),669{677. [39] Manabe,S.(1969),Climateandtheoceancirculation.1.Theatmospherecirculationandthehydrologyoftheearth'ssurface,Month.Weat.Rev.,97(11),739{774. [40] McKay,M.D.,R.J.Beckman,andW.J.Conover(2000),Acomparisonofthreemethodsforselectingvaluesofinputvariablesintheananlysisofoutputfromacomputercode,Technometrics,42(1),55{61. [41] Mo,X.,S.Liu,Z.Lin,Y.Xu,Y.Xiang,andT.McVicar(2005),Predictionofcropyield,waterconsumptionandwateruseeciencywithasvat-cropgrowthmodelusingremotelysenseddatafromtheNorthChinaplain,EcologicalModelling,183,301{322. [42] Niu,G.-Y.,andZ.-L.Yang(2004),Eectsofvegetationcanopyprocessesonsnowsurfaceenergyandmassbalances,J.Geophys.Res.,109,D23,111,doi:10.1029/2004JD004884. [43] Njoku,E.G.,andJ.Kong(1977),Theoryforpassivemicrowaveremotesensingofnear-surfacesoilmoisture,J.Geophys.Res.,82(20),3108{18. [44] Nyusten,J.A.,J.R.Front,P.G.Black,andJ.C.Wilkerson(1996),Acomparisonofautomaticraingauges,JournalofAtmosphericandOceanicTechnology,13(1),62{73. [45] Omega(2006),Thermistorelementsandcompatibleinstrumentation,Tech.rep.,Availableathttp://www.omega.com/Temperature/pdf/44000 THERMIS ELEMENTS.pdf. [46] Pan,H.-L.,andL.Mahrt(1987),Interactionbetweensoilhydrologyandboundarylayerdevelopment,BoundaryLayerMeteorology,38,185{202. [47] Philip,J.R.,andD.A.deVries(1957),Moisturemovementinporousmaterialundertemperaturegradients,TransactionsofAmericanGeophysicalUnion,38,222{232. [48] Ritchie,J.(1972),Modelforpredictingevaporationfromarowcropwithincompletecover,WaterResourcesRes.,8,1204{1213. [49] Rossi,C.,andJ.R.Nimmo(1994),Modelingofsoilwaterretentionfromsaturationtoovendryness,WaterResourcesResearch,30,701{708. 102

PAGE 103

Sau,F.,K.Boote,W.M.Bostick,J.Jones,,andM.I.Minguez(2004),TestingandimprovingevapotranspirationandsoilwaterbalanceoftheDSSATcropmodels,AgronomyJ.,96(5),1243{1257. [51] Schmugge,T.,andT.Jackson(1992),Adielectricmodelofthevegetationeectsonthemicrowaveemissionfromsoils,IEEETrans.Geosci.RemoteSensing,30(4),757{760. [52] Schmugge,T.,andP.O'Neill(1986),Passivemicrowavesoilmoistureresearch,IEEETrans.Geosci.RemoteSensing,GE-24(1),12{22. [53] SoilConservationService(1972),Nationalengineeringhandbook:Section4:Hydrology,Tech.rep.,USDA. [54] Thornley,J.,andI.Johnson(1990),PlantandCropModeling.,Oxford:OxfordUniversityPress. [55] Tien,Kai-Jen,J.Judge,O.Lanni,andL.Miller(2003),Fieldobservationsduringthesecondmicrowavewaterandenergybalanceexperiment(MicroWEX-1):FromJuly17-December16,2003,Tech.Rep.CircularNo1470,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE280. [56] Twine,T.,W.P.Kustas,J.M.Norman,D.R.Cook,P.R.Houser,T.P.Meyers,J.H.Prueger,P.J.Starks,andM.L.Wesely(2000),Correctingeddy-covarianceuxunderestimatesoveragrassland,AgriculturalandForestMeteorology,103,279{300. [57] Ulaby,F.,andM.El-Rayes(1987),Microwavedielectricspectrumofvegetation-PartII:Dual-dispersionmodel,IEEETrans.Geosci.RemoteSensing,GE-25,550{557. [58] Ulaby,F.,andE.Wilson(1985),Microwaveattenuationpropertiesofvegetationcanopies,IEEETrans.Geosci.RemoteSensing,GE-23,746{753. [59] Ulaby,F.,R.Moore,andA.Fung(1981),MicrowaveRemoteSensingActiveandPassive,VolI,ArtechHouseInc.:Norwood,MA. [60] Ulaby,F.,R.Moore,andA.Fung(1986),MicrowaveRemoteSensingActiveandPassive,VolIII,ArtechHouseInc.:Norwood,MA. [61] VandeGriend,A.A.,andJ.Wigneron(2004),Theb-factorasafunctionoffrequencyandcanopytypeatH-polarization,IEEETrans.Geosci.RemoteSens-ing,42(4),786{794. [62] Verseghy,D.L.,N.A.McFarlane,andM.Lazare(1993),Class-aCanadianlandsurfaceschemeforGCMsII.Vegetationmodelandcoupledruns,Int.J.ofClimatol-ogy,13,347{370. 103

PAGE 104

Wegmuller,U.,andC.Matzler(1999),Roughbaresoilreectivitymodel,IEEETrans.Geosci.RemoteSensing,37(3),1391{1396. [64] Whiteld,B.,J.Jacobs,andJ.Judge(2006),IntercomparisonstudyofthelandsurfaceprocessmodelandthecommonlandmodelforaprairiewetlandinFlorida,JournalofHydrometeorology,7(6),1247{1258. [65] Williams,J.,P.Dyke,andC.Jones(1983),EPIC:Amodelforassessingtheeectsoferosiononsoilproductivity,Elsevier,Amsterdam. [66] Willmott,C.J.(1982),Somecommentsontheevaluationofmodelperformance,BulletinoftheAmericanMeteorologicalSociety,63,1309{1313. [67] Yan,Fei,J.Casanova,K.Tien,J.Judge,O.Lanni,andL.Miller(2006),Fieldobservationsduringthesixthmicrowavewaterandenergybalanceexperiment(MicroWEX-6):FromJune19-October31,2006,Tech.Rep.CircularNo1515,CenterforRemoteSensing,UniversityofFlorida,AvailableatUF/IFASEDISwebsiteathttp://edis.ifas.u.edu/AE409. 104

PAGE 105

JoaquinCasanovawasbornonDecember25,1984,inGainesville,Florida.Somestuhappened,thenin2006hegothisBSinAgriculturalandBiologicalEngineeringfromUF. 105


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101211_AAAABU INGEST_TIME 2010-12-12T00:33:35Z PACKAGE UFE0021535_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 7270 DFID F20101211_AABSQN ORIGIN DEPOSITOR PATH casanova_j_Page_015.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
4b8f5f7d7724d52cafe14ec5e6f416d0
SHA-1
0060b047b8efffeb69b610396132c9e755c224d7
1053954 F20101211_AABSPZ casanova_j_Page_100.tif
752935fde72239b7fc0925f855e08fa7
b49f1ae11792f6ff7b54110189156ee7053d85e9
11732 F20101211_AABSRC casanova_j_Page_031.pro
a6e6525cfa8d3276d6125c87ffb7a6e1
ed5cf1389251728863080c530b6de559c89f9d09
59436 F20101211_AABSQO casanova_j_Page_016.pro
af97248c2e0c22776d4df851134ea251
5e48d7cc6d5e8580ffce3970940b497f35a248e4
42310 F20101211_AABSRD casanova_j_Page_032.pro
ff53bfd5b5fb69cf732c087d65c6c8ee
6497c5a02398db408bcd39e71211806eefaf71ce
39736 F20101211_AABSQP casanova_j_Page_017.pro
eff0697d7d7056f95670d29aa5ea21b0
3914412ef69e1f69f147b520f1466786bb380c9e
2919 F20101211_AABSRE casanova_j_Page_033.pro
1790d017ff91a6a9faccfdd102086048
02b2dcc0988a607c238cdf8142aba16a1e5ec0bd
56540 F20101211_AABSQQ casanova_j_Page_018.pro
0f21377c9a3d404c4ec3a9d6ba806d33
0237382e99d6091cf1b1d232b35a783644aed9ac
3956 F20101211_AABSQR casanova_j_Page_019.pro
e68cadd1a55518f0ff9c7c4f666df43d
e235d5a9c49411977bd162efa6af2524b285f05c
19254 F20101211_AABSRF casanova_j_Page_034.pro
23ed01ec0409c71a58dc600aaafa7356
c7d371976a854826fd7518aef53b25da7a9bc532
5659 F20101211_AABSRG casanova_j_Page_035.pro
2abe72126cd224540d0752ee7632535b
f4700e413bbb82230d677a8312dd3b35ca73e598
35238 F20101211_AABSQS casanova_j_Page_020.pro
3a2bd1ec54f7c90c34014e9f530e065d
10fd000b1a16dffd86c751f68decf2aa2bac2424
11425 F20101211_AABSRH casanova_j_Page_036.pro
002871c2309ee087e982853aba43508f
fb13eee3e70246882b4bb7533f4bf46bad7a96bc
19593 F20101211_AABSQT casanova_j_Page_021.pro
175f8aba7ae30658d8818e37dea1e7e9
da2cbc5efcc7a5a247899ab7accf6045e8e31b15
12439 F20101211_AABSRI casanova_j_Page_038.pro
82660b95959edcd2377d2a2ff63902fa
d203dc080d44918379c43ae85c425ee143849362
13885 F20101211_AABSQU casanova_j_Page_022.pro
3409033ec2b953c01c4215c95f5de940
b64e9773d3ef7f2165a3ba0e9880b108496f1572
54161 F20101211_AABSRJ casanova_j_Page_039.pro
ece157ee7f57a8858b1fe153eac7a3b7
481ba9b083118a7c74a915e4df7794e8f2dc71e3
13401 F20101211_AABSQV casanova_j_Page_023.pro
005904d39bca7cc6fc316d6eb18cee8b
cc5352d3cbfc1dc20d42fae61ec08e3efed0ed44
52295 F20101211_AABSRK casanova_j_Page_040.pro
e319612d95c2feb28b4bf943d763d513
ad32a17cd5f644fda24abf6836161165ee4d18f7
52662 F20101211_AABSQW casanova_j_Page_025.pro
398baaf270b0ee59d78c9e5c0d58c958
0f206d5f667d0ab8c33d4a41e8058074bffaab9e
34849 F20101211_AABSSA casanova_j_Page_057.pro
28fdae97f3da72738b879aac9c691716
96dc928975016652e7ab5ea0baead75a1487522e
47162 F20101211_AABSRL casanova_j_Page_041.pro
639a134f719353dc0aacd770e46c4ef6
420c6a093288912b937bd7f4a297505ac89057fa
57607 F20101211_AABSQX casanova_j_Page_026.pro
1e897f715be8fc583307f07468bea06a
ef0df453cb06e42e011a588077a067c667584cfd
29533 F20101211_AABSSB casanova_j_Page_059.pro
30a9c269a7375c942ea71a69152a5ae0
578c38dc04845ed9588113463a3e896b998a5ce3
31094 F20101211_AABSRM casanova_j_Page_042.pro
93900297ce95177ce498d8b57b57977c
9d3b39aca642e4a1634069251a36b8e4fa394dd1
47008 F20101211_AABSQY casanova_j_Page_027.pro
28faa8d5b72433604aa899cf3f2016d6
eb75b0481012ca29cbef0a9147ba303883c3d928
13977 F20101211_AABSSC casanova_j_Page_060.pro
29b569d64b3c7720a2297616fecfba24
b29ddc1cf23a1643377d149f3c4c9179a914e819
29787 F20101211_AABSRN casanova_j_Page_044.pro
917c87f76c8778487bf6f3d935d79f16
b44536e7bca26b2747a0c2c9c173234391c9c862
51730 F20101211_AABSQZ casanova_j_Page_028.pro
603012b3994a1414b3d5f751d89410b1
44427bbdd1f6164cdaba06d0392dad720223b274
14356 F20101211_AABSSD casanova_j_Page_061.pro
8a8bf691e0b3e7f36d4b9a2d46bd2349
e06a6550d2510d647dc36539098ba798e9b0ce83
37239 F20101211_AABSRO casanova_j_Page_045.pro
b5da70f1345bd79398aa3b0b3955b6c5
2006bcdd514383fda52709d71ac0b2b911a68c00
30946 F20101211_AABSSE casanova_j_Page_062.pro
7855c539fa2263ba887a32cac4127ada
2d1d9103eca3b87d1e2f1312ffad83dc9a4bb6fb
38894 F20101211_AABSRP casanova_j_Page_046.pro
f296e045706b90c292ea574fdcfe5c16
47ac94955220205b2c7df56204320ae9c069ed48
29922 F20101211_AABSSF casanova_j_Page_063.pro
17469791b99ed5dde2b7b4d9046d8de5
56c284d2cdb10b770f5928aad1ed962b2f1cb657
28046 F20101211_AABSRQ casanova_j_Page_047.pro
6250ce94097743f44c656e96e61f9da5
4f6edd32e73afd7c6b88812d31c0f8666fcc4be5
55025 F20101211_AABSRR casanova_j_Page_048.pro
a069c08d0ed94b3631a882182f726b5e
63295366f85d9c2227a7eec9333310890844a92f
32670 F20101211_AABSSG casanova_j_Page_064.pro
a67a130c6f4018bed6962d5f2765654c
b7b8a7b1c083bfefd9981f7ff236425017fd433d
51940 F20101211_AABSRS casanova_j_Page_049.pro
870df81365211f10ecb3e1384793e8b5
9f0ee4890e5dfd6bd0cda9550dd958e7885c5955
30758 F20101211_AABSSH casanova_j_Page_065.pro
bec5a293dc53221444fd6ae72b4a20b8
ccc53226ae89a800a5ca6fd5ef852ede585449d9
45839 F20101211_AABSRT casanova_j_Page_050.pro
2e92246bb50e52d17ca10556366c60f7
5dcfa9f16f4d4877a4455800cab3e5d11cf5662b
16313 F20101211_AABSSI casanova_j_Page_066.pro
f917f697c0a10d8e745d048a88a8f389
a4dd3139af15a2055aa0c03ff30c57f895aa8d8e
22156 F20101211_AABSRU casanova_j_Page_051.pro
c5b4d012c8ca8086fb2f58afa95336f3
63c2d6f1067c5f55602f4d74ba2a195beb3c199b
15115 F20101211_AABSSJ casanova_j_Page_067.pro
20c60f5e8115f4986430925cd7fa9111
f204cb06fcd18e47746df6190a19284598731c64
54945 F20101211_AABSRV casanova_j_Page_052.pro
10df5f609f8867e17f47c13abadbad20
b3dd6692c874aa836fb9197f5a5a102584d70384
28012 F20101211_AABSSK casanova_j_Page_068.pro
819ecacb1d8e08ec9a6d8a80de25838a
0d706e289a39a432815a95a7bbbe0a3f86156757
51993 F20101211_AABSRW casanova_j_Page_053.pro
810c4f29be3f2cff4b841f9643d4335f
06d3ab47c58f1837700e6188dc5423aafdb5f8e5
35434 F20101211_AABSSL casanova_j_Page_070.pro
2a40ef447c2075d61aefee151270c269
56ccf9175f78303fad1ac4cf1459ddbdb918037d
11079 F20101211_AABSRX casanova_j_Page_054.pro
fe2b6df6fbb041231742b5f55ef6f81f
3fc2fc3cd755ae9dcf79a9d893cf5ff055fcbf9c
29958 F20101211_AABSTA casanova_j_Page_088.pro
3ddbbb5b2b161d25ddfbcc2e6d005552
a44c65d401e3d34da88b1c4dc2ecd4c8fd9fa327
34637 F20101211_AABSSM casanova_j_Page_071.pro
f09e6ec80635792f63d6b538f4a9359f
f145be62f7fffd03cc140bc6d6c226528c3db2b7
49183 F20101211_AABSRY casanova_j_Page_055.pro
30bb705dcc0792a4e41911d587c34c6e
6dca4bfe3f5e32378cb9e773c04ce2ebe42ba863
30555 F20101211_AABSTB casanova_j_Page_089.pro
ce5ba869af3154c1ac86a69928ced9fb
5fcfe50daab701ec77def85329baab4bdefa84b7
17431 F20101211_AABSSN casanova_j_Page_072.pro
1f961425d4e80079a1126bf677df2924
135b1d9784c681c8698f88f357e0ccb7c26c1576
14366 F20101211_AABSRZ casanova_j_Page_056.pro
cceda9b61f276eff61a7112951c2c0e3
e7ef13afb62dba3296cee8aa6d9a31952cf594b0
4221 F20101211_AABSTC casanova_j_Page_092.pro
6ccfddd9b32a069c57ed7e5913a34d37
2732bd0b2781368fe21d6268e1dd277fd5e91620
21685 F20101211_AABSSO casanova_j_Page_073.pro
846aea25d841d06d9c6a1566ef1358a4
0ee6233f10968b086382cac7b6234f624cd5fa5d
2321 F20101211_AABSTD casanova_j_Page_093.pro
2544c1b54a8f3fbfeb33d863340d6edd
8b7490c27992432c56b2073884b49bca5c9a76c1
28453 F20101211_AABSSP casanova_j_Page_075.pro
5b763c250620962ad0cb52432b5a36f0
8815a768179741a02215c9c251e213fe2d7b9286
55390 F20101211_AABSTE casanova_j_Page_094.pro
55c7ece14a208d4f2cdc99553eb707f2
88747b2312a481ca4a3629a2b6915581977f1f49
13992 F20101211_AABSSQ casanova_j_Page_077.pro
0e872d18700f40fcc6d14ea02c4f0068
487b935eedd4c6a58e7d2f178b4d4fb9d934a7a0
26403 F20101211_AABSTF casanova_j_Page_095.pro
23bb98076e482f5112c4fa6eddc4fcb2
b0c8e960dab8c02f6d111d8e8d90643e18168ef7
14132 F20101211_AABSSR casanova_j_Page_078.pro
1537b1e996eff0cf769664952fa963a3
9ed70e199be2e49f843f8e70ea4ffa6fa8e41033
53037 F20101211_AABSTG casanova_j_Page_096.pro
51a1a3e0948c02aab55413e842da8c0f
afdebc7e74fcca8a630e1c7c79cfc98abdff0beb
13274 F20101211_AABSSS casanova_j_Page_079.pro
1d2403d552f3abc19e9419416822bc9b
ad64c2524c6405161e96b6fc3986a268de7dbc41
15029 F20101211_AABSST casanova_j_Page_080.pro
df7803c2fab8ea281be4dc20c40ca434
961f3c221cb2eaba0d2fb00370937ef946ff099e
52765 F20101211_AABSTH casanova_j_Page_097.pro
3d690adc3b4379ad045f81311a76222c
1799efb2c7b4fd453d290bccef2267fdf88a4970
35152 F20101211_AABSSU casanova_j_Page_081.pro
e924217e70aac31a1319e0c2aeb1823a
b3fe99d87b68b83e1fd2bcace1b891281954b986
48440 F20101211_AABSTI casanova_j_Page_098.pro
b308254ff20d8a714e2a42cb76c724ac
d87b600ebc9d449c14220d430ddfa0ab70a53d96
21458 F20101211_AABSSV casanova_j_Page_083.pro
3f4746e65c71047f21620970ec5533e1
9a2228ea481651a37310303b10f3b0bb996d5b96
63764 F20101211_AABSTJ casanova_j_Page_099.pro
8f8b56cd2edfdc4a2fcd64259b7ec77f
4dcc97f799c161c6aabeefccea656b694afe9a59
27785 F20101211_AABSSW casanova_j_Page_084.pro
039cd4b593e665cd3e23e7ea0bf43088
98f929172648b30a83acf12f1b8ebd1fee887e10
64042 F20101211_AABSTK casanova_j_Page_100.pro
93102fa4d7e2fff049c7672587bc3b1f
e3921b09feceabb8a91d24c0c98790a1845b69df
24214 F20101211_AABSSX casanova_j_Page_085.pro
f382ffa6eaa56840073bb23202802237
ea4d7c668e3d43f558047e65d256a63709c5e29b
201 F20101211_AABSUA casanova_j_Page_019.txt
a9a13d28fecc7056634cff9bd2ae424a
dde4f0f4bf6217935b934ccc9d59b468fb035be2
70943 F20101211_AABSTL casanova_j_Page_101.pro
562c10643f8fcc6ed4b70053b9ba877b
4be2e798785b44ad9a918fce215e61f09bd2add2
22105 F20101211_AABSSY casanova_j_Page_086.pro
458f8f6bd73522ff7db8ffda5d305a3a
ddae090c0bce6e46e9b1bce07b7984a8343bacbb
1416 F20101211_AABSUB casanova_j_Page_020.txt
ff6a6bf1949ab932d12d36d6f6881e29
c585d5ae3ec68af64ffe246dd60b49c207955455
26713 F20101211_AABSTM casanova_j_Page_104.pro
61f0f61506a97882431dbb532cbc63b0
8ec8ec1afb81329fea3bc7e547991630a095de31
39581 F20101211_AABSSZ casanova_j_Page_087.pro
e60c9629ac49784cdf68af6bb8fff5bf
9cc13b23faa0fb82351fa1c78bdec60d42269ce6
734 F20101211_AABSUC casanova_j_Page_022.txt
2823df9eb2b73df856b11f0290ed2d1b
fbb927d53dd1e1307c00d11523ee7522962ab826
470 F20101211_AABSTN casanova_j_Page_001.txt
0796cda848b0b1bcc3a026198e6615dc
1fcc4b3a1abdc152789564da519105bf670b49c1
680 F20101211_AABSUD casanova_j_Page_023.txt
c5eb8eb66e636def217fecb1ebd79973
ee9dc8cd7c4c05e8a6e30393dc8a1842ee9d64c7
96 F20101211_AABSTO casanova_j_Page_002.txt
575090c6e2b9eb454b989be50b9a5e37
9d30491c26f5456ddbb4b5050ac16be1427312f2
698 F20101211_AABSUE casanova_j_Page_024.txt
019571381932db9e23f2e0fedda958b0
5b6a21e2de49a366eaedd8e426d938b68859fdda
F20101211_AABSTP casanova_j_Page_003.txt
7ba7ad6c9a731165c74112c33d3fa350
8a0531e368965ea2e4fc3fe2b183446e806d4f48
2179 F20101211_AABSUF casanova_j_Page_025.txt
a9258e8330c8531b8bb2b0962141d282
a94da9ae27eaa3b9af01a370848024822bdb0d9c
800 F20101211_AABSTQ casanova_j_Page_006.txt
c396f049ee1724252a4c52305bbc0288
51f4bc1ef5e8e4bae0f7240f88ebbc24c210cdd6
1926 F20101211_AABSUG casanova_j_Page_027.txt
3eeda4f687cd6513794f50adaa18c21f
3bd5dc84cd996b6a79289b5bea290d2da462fd04
1800 F20101211_AABSTR casanova_j_Page_007.txt
f0e055131bf57fd1a2bf6fd56e891290
203556ecf7b37d385de719c7c20bd76842ecbc9d
17205 F20101211_AABTAA casanova_j_Page_042.QC.jpg
fc8d1ddb86093a2d080d22efa424690e
08b22ded1a46324cc0ea2df2d03580310220597a
2150 F20101211_AABSUH casanova_j_Page_028.txt
94aa1fc52c2386d74ab01d205b38c9eb
522e4c412d569f63711e9a9c697a0cbe0d3f85a7
2667 F20101211_AABSTS casanova_j_Page_008.txt
66a561c9ee3ba158547d023a4bd353b5
696761cab189078510af8ff40d6624c11bcc25b1
4411 F20101211_AABTAB casanova_j_Page_043thm.jpg
fac2fe4767e22b62b01977b93fbc8ed0
64fc085ea3de36856251546aa54f0721b09ac930
2939 F20101211_AABSTT casanova_j_Page_010.txt
5c12f90a8369e25258e091937fce53ae
be85d5230883903e7bb2988e81afd6cb38ce1c78
16712 F20101211_AABTAC casanova_j_Page_043.QC.jpg
ed6c1e9c6daad1c429183a731127b2dc
7f8bf8757e9b51163b2d097b32c4bf61a1031d4d
1735 F20101211_AABSUI casanova_j_Page_029.txt
c884f39f1d3da5d4d3134e759325b248
d5c07f9f406ef0320cd1971286d0a9a8b2bb1c3b
1702 F20101211_AABSTU casanova_j_Page_012.txt
7be721bf75085aea95ce20545aabafa7
7ac47cf456290c2f5680e9c5e0be82ddef7b575d
4318 F20101211_AABTAD casanova_j_Page_044thm.jpg
b2f94a689e577cd000df8a00f2fd5b7c
3dc0b9b481e0c27221da8ac445f9217e339df9d4
1797 F20101211_AABSUJ casanova_j_Page_032.txt
07777c75902cccb4479d8d53a61ad180
ef630977b10be8606f7cc7c4cf464261b066cc41
2311 F20101211_AABSTV casanova_j_Page_013.txt
1d650ac5fcd2ecf34ee6c68c526315e1
17f43502243bd457967838577cfb7a36d7d17a33
15944 F20101211_AABTAE casanova_j_Page_044.QC.jpg
f9073d030692372ab70bc1a83af5c6b2
eb4178ecb3aa14101ea06c3c333c727d6328f77c
772 F20101211_AABSUK casanova_j_Page_034.txt
3ccde7099e31008e223078d37202ca87
df641a7e4d78761be490b7c5edfaea28d65d0975
2176 F20101211_AABSTW casanova_j_Page_014.txt
cb9580bdf80f630c0952e3f88f24aab6
4c76da2acd72bc45f3067b693fbf334ff65e2c84
17926 F20101211_AABTAF casanova_j_Page_045.QC.jpg
cbb12e45951aee0ff0aa99c3e7559b47
5ecc9cc187a12f708ca66fb53041cf3ed59049c0
1596 F20101211_AABSVA casanova_j_Page_057.txt
d96a5752eed0d357ab544992d663b180
98b1c7eff8ee8f5323ee165d9815a0f2b9bd81ae
686 F20101211_AABSUL casanova_j_Page_036.txt
50e6e0b00ecffaccf3ccf18203b1b5e3
0e0efee457de86ab995a139175d4474f4ad6e8bc
2337 F20101211_AABSTX casanova_j_Page_016.txt
ff1256684864c162a8f1297e9cc843ff
6daba58db9793b1485f34a181544665d5d05fb6e
22153 F20101211_AABTAG casanova_j_Page_047.QC.jpg
9cff75a12c97df8b76df78024ceb4f68
5e9121f8a5f666aba0b251bda73e7a90e55dbe5a
1670 F20101211_AABSVB casanova_j_Page_058.txt
14f622c1bd746c13d3b15a7df3fa78f4
6548b8124481508be0704069162d12b06f071bc3
2047 F20101211_AABSUM casanova_j_Page_037.txt
00740ce070515f36ecbde9ebad9b77eb
01fd1030133ca73416bd596e45985b990cf4c8b0
1708 F20101211_AABSTY casanova_j_Page_017.txt
ed0fdd2c383265c32ae8f938faba4367
c73e92e9ca3b90bfdf65ad52133d61a1836c2ac9
5871 F20101211_AABTAH casanova_j_Page_048thm.jpg
acf6fca7bf2cc64fae87a5e4acb887ab
af54d2aaa7c03cb7890c2664910f82694a04fd91
1394 F20101211_AABSVC casanova_j_Page_059.txt
52812285ec802927f4d14478f216f883
37b8a9ce310b79b36c22651a7dd9ce089d0416d9
513 F20101211_AABSUN casanova_j_Page_038.txt
283fc3465990ae2b00f2c9fa00a3ffce
06da44cb78291181faded2973d47b6a6596b5c9b
2271 F20101211_AABSTZ casanova_j_Page_018.txt
6c44d106b9c2ebf65fa4b733c8c8642d
76bca60c5b51e5ddb768392aea89320fed71def8
27031 F20101211_AABTAI casanova_j_Page_048.QC.jpg
f3ef23fca98122048086acf88eb84dab
9ed06236051a62b8a4328fde22167bfee888d643
992 F20101211_AABSVD casanova_j_Page_061.txt
57b608b486ed210ec2f5757a04d57a90
51fbd757969828f953a8f8d563032ebd6c0d0597
2264 F20101211_AABSUO casanova_j_Page_039.txt
533ea5332614698fdd9526c061fcc95b
bb7d5bb16aa8d43179605ffc4e01129455aafa37
21562 F20101211_AABTAJ casanova_j_Page_050.QC.jpg
4a7f12e111033178ac3fd5e62ccb24c7
ed7be8903733654f1b887827f093792abf544cf8
1419 F20101211_AABSVE casanova_j_Page_062.txt
3fa079e61d9cbd4e701177cf3026baea
6b12adc6c208c08a0b360d94a39ae665fd0a8cf6
2122 F20101211_AABSUP casanova_j_Page_041.txt
5ed502c3e86a9ef6ee25cf62303ec41c
8722a1755c9ce630b0513d4d448db9be001e4679
5845 F20101211_AABTAK casanova_j_Page_052thm.jpg
06a02da3fc0c907433484ac884bf20d0
9f44218efa207f4690a9e9b4d59e03a48a55d1ed
1441 F20101211_AABSVF casanova_j_Page_065.txt
1e0179b219dbf21cf31ffcf091d78620
096a2cb94ca069cef12cb21010e06cd2671d02bc
1769 F20101211_AABSUQ casanova_j_Page_045.txt
779042ea50401b7caf3a1d36bffcfbe0
4ee0f5a1f6ec0659c1aa3be37acc52b7f1038bf6
6006 F20101211_AABTAL casanova_j_Page_053thm.jpg
feccdf398641fa7dc7f3ca4ec101502c
0186c85e30c0f1aed839e0431bbf1d21177d3525
832 F20101211_AABSVG casanova_j_Page_067.txt
fb24bef24c9a3b929bd54728208e8ec3
f108807d6ea07467b285878b4b09f4a0a27ce32a
1944 F20101211_AABSUR casanova_j_Page_046.txt
54267078a8726b6dac85a656d72a0b49
5df4f327f5d64a98b95e4a42351ced818908559e
23069 F20101211_AABTBA casanova_j_Page_063.QC.jpg
f32b57bf4be64c8791a856c7a66f0ad2
22b6f0c7d61ef85bdc62d89d17391926ae5350c2
26885 F20101211_AABTAM casanova_j_Page_053.QC.jpg
3bd7d7b66b0a78a8ed8cbfa0c370f749
8a3181f3861026a6db46223f31528c871724c08b
1642 F20101211_AABSVH casanova_j_Page_070.txt
b63f8e5b03693e48ef7f606562e0bc23
264238d6cd283c1d46f9d1f67eca927ba20ab37f
1166 F20101211_AABSUS casanova_j_Page_047.txt
b436963ad100819333b83720ea43960b
8ab66370b93775b8b8f39f8816ca072a6bee1ae1
5556 F20101211_AABTBB casanova_j_Page_064thm.jpg
67d08ba1f72db368f469a2e09d755e17
31bed8b7908f1887a205e73a89ae698b5c420eae
4303 F20101211_AABTAN casanova_j_Page_054thm.jpg
1d4f1c2fc2d8da6883d43e0b43c1debd
94a2a10feef0fbd17c52e24bceeb24d3bf1e8bbd
1565 F20101211_AABSVI casanova_j_Page_071.txt
108146b39e1a1cd0fc634ccfef4bd813
c9f60982ff0f387d0741f9fc5abd78ac4ea42e62
2197 F20101211_AABSUT casanova_j_Page_048.txt
e1d9b89387a010e153b01d33684f9164
63dd1ae9deee5bf46a006079b6652498fc6dce84
22393 F20101211_AABTBC casanova_j_Page_064.QC.jpg
ec1fb7fa061b8d0b27a7645ec9b1d5f6
fd4788494bccbbd6d11d307e3170938001ed4f64
15836 F20101211_AABTAO casanova_j_Page_054.QC.jpg
e9b1a0e076ddc5422a488f3417dc69ed
c8da7b31440bb52e53ff70de71b8d25d2e7b05e6
2164 F20101211_AABSUU casanova_j_Page_049.txt
1e05de0db49b2d407e3faf99a4b5d327
abd99f231ae344a5d8e004c09711d91ce4c400c3
5992 F20101211_AABTBD casanova_j_Page_065thm.jpg
dc587b402cd77963b1598abd1ee03735
840f4b752b737a9f5cf26621f62c7e8cee2ff040
24144 F20101211_AABTAP casanova_j_Page_055.QC.jpg
2219756f4e14f20f34db4c7ea6ce69bc
62eb95906042f8f639b3586770e1637600f781dd
1015 F20101211_AABSVJ casanova_j_Page_072.txt
a6065170574b56835416a505c6a50035
578d02730b975dc9f0582ada528318521f646d6b
996 F20101211_AABSUV casanova_j_Page_051.txt
4d2b981f6b5678a8e749d067fa153863
4d945c9623f087acca9dd92b0b147d98678be534
23733 F20101211_AABTBE casanova_j_Page_065.QC.jpg
24f71d14c8e524d31d4de4d5a70960da
808b1c0afa08c1ecf0397505f129c80f674b996c
4482 F20101211_AABTAQ casanova_j_Page_056thm.jpg
83510222c8f12286ab748bf6e0dd56c0
fc0a210f6198caa1a7cd0053e519f75787248404
1557 F20101211_AABSVK casanova_j_Page_074.txt
4ef61611d0c50ec8604aa94dd040381d
93e3f103d9a38e0bb10ee0fc047b6ab1d1a4509f
2157 F20101211_AABSUW casanova_j_Page_053.txt
b6d06caf9e95a73dd72bf6d4040eb788
767eb9a1ee37718937210298c82d27bbe717570d
18527 F20101211_AABTBF casanova_j_Page_066.QC.jpg
ba78d617ce4a849d6b057aee75fffb51
d8e7ea63c9b5f5f3563cb2885d05138d869c7388
5779 F20101211_AABTAR casanova_j_Page_057thm.jpg
e0c643cf498f55bb754d3ee26bf749d7
3e0bb3c8a18aecf53369958076a704b56b45cfd6
1398 F20101211_AABSVL casanova_j_Page_075.txt
2d5b874ab71fe09a703169348ffaa683
ef459b52788caea7a70ea996a0231be9299ab67f
653 F20101211_AABSUX casanova_j_Page_054.txt
a308fe58481b7996d2468d673c9e83bf
35236a0afc779fc2d484802e8cc82b977044c7cd
5080 F20101211_AABTBG casanova_j_Page_067thm.jpg
90f31dd0fc13ff8e4176e8bc59a9e830
ee6fee788b30bbb558a43d79e2154d6eb124ddc8
1780 F20101211_AABSWA casanova_j_Page_091.txt
447ee2ff1b7129af915f0c311c5d4efe
a6b2838351da4a78ff161539377cf3cdcb3c772e
23753 F20101211_AABTAS casanova_j_Page_057.QC.jpg
b7bfdc63a82d9387d1e96b5516fdb116
23d2a024714af9217973abd071ef36d350d84444
631 F20101211_AABSVM casanova_j_Page_076.txt
0bcb175c388b8effab2e67e5e4fdda24
80edc5b6f51b081dff4eb704946fd89cd53ded5c
2042 F20101211_AABSUY casanova_j_Page_055.txt
650505c5f79933b74ecb1282fcd1722b
cebe1acc35f9acd916ba785f3df839617f896305
5416 F20101211_AABTBH casanova_j_Page_068thm.jpg
afb29cc758828870b4e2977eb8bf076c
175a6ddb3e15f1c420d36c9230c7d504c98b4be8
309 F20101211_AABSWB casanova_j_Page_092.txt
8bd0329b553e8ffc0b849696d8308a55
c497a3de9f91779887ae7f356637ab8ca29345ef
727 F20101211_AABSVN casanova_j_Page_077.txt
c6d35316bcc4dfb5ac248ae79550443e
e1cc843bc5dab178d2a9555f1b2bd645ea00294c
706 F20101211_AABSUZ casanova_j_Page_056.txt
898eedc28de207cbd534e42f52447956
45b200fc7a45c59d4979f3890138e6de3cf04491
F20101211_AABTBI casanova_j_Page_069thm.jpg
8784674b6dd06a089ae2fdbe4d099c41
058e7f58a97c45e057c0f3fede9d41195414326c
205 F20101211_AABSWC casanova_j_Page_093.txt
18f780fb16722baa80410c70d7dd17f9
4f6f21da4bb3067c5a581d3320a1a2250f144adc
5644 F20101211_AABTAT casanova_j_Page_058thm.jpg
bba1bfd3ea63d582f6113685dcecf403
dfc1dea243e9019368420cf755d43cbf68b92b23
811 F20101211_AABSVO casanova_j_Page_078.txt
b3865d5d0845c4b6f97c5cbb2c6031dd
67f1b07f3f73f57ef0d680e90a2587fdc400e9c0
23564 F20101211_AABTBJ casanova_j_Page_069.QC.jpg
6c472a122fe0491d455e2743e0c14087
6853f06da4d237947bcf322be9a2014f7b78ace2
2278 F20101211_AABSWD casanova_j_Page_094.txt
60ccb71969a59d40ce484c32ef647bb7
439aa8b3b989545af2cebc5cdeb0ac6606c2d796
5618 F20101211_AABTAU casanova_j_Page_059thm.jpg
6eea33a4a9f459618dea6249eae73d9e
9dcd95cda2e781ecc68b23d309731fb960eab9f7
6195 F20101211_AABTBK casanova_j_Page_071thm.jpg
331b558a4edd8d5a6a65fe77b7d494a9
2e2336c6d53e9ccbf80f20c2817e87729fa629b7
1071 F20101211_AABSWE casanova_j_Page_095.txt
9abcfd123e90e3f17adf2a52d9fc9aae
ee5f4a233d6a20aa362839efd2a009c552ab874f
4632 F20101211_AABTAV casanova_j_Page_060thm.jpg
8cd1f7d8fb0a9c3261a35d2d5423395a
094423cf109259116c3ce6c40c18701ce7725419
659 F20101211_AABSVP casanova_j_Page_079.txt
b52c2f46991314b9a386e91ad5471cb6
8524dc6ec68b612cee2d0ff0a987dfe85502c4c4
25191 F20101211_AABTBL casanova_j_Page_071.QC.jpg
3cb7850f766a4f72f18f6233f598ea22
7623156c5704c0d40e20206d7763d584e7a761f5
2199 F20101211_AABSWF casanova_j_Page_096.txt
11f47f56885f1cbec6a17313860e280a
179d9f35b0800e05010fc45fbf054b1f309b2fdd
5146 F20101211_AABTAW casanova_j_Page_061thm.jpg
7e748bcbb0942a37ac88d55e75a83890
49b1ec50a1a739b225452932c0ec384945182566
893 F20101211_AABSVQ casanova_j_Page_080.txt
df37b413048b160a8156328d6e4c80e8
0482bbea5aea2a35d49af474ed1b0463898b6756
12326 F20101211_AABTCA casanova_j_Page_083.QC.jpg
246b866eea7671e7b604151f76c80730
819bd2cd79d1b53329b5fb3d21fd1f1eef67126f
F20101211_AABTBM casanova_j_Page_073thm.jpg
d30bf367615648b4567c9f351e6f585c
bfc76bb2e9a97004f54da4857a5cc15d6dc06865
2139 F20101211_AABSWG casanova_j_Page_097.txt
070f7b10a23a10ab01ab27a87743422d
17d5ecaf9757199bdae027e457495a9f686c5bfb
5903 F20101211_AABTAX casanova_j_Page_062thm.jpg
f6750b20aa8d932e526c1605a8cdcb27
cb0de2201b44b8d348a32fb2672cdbf5336f4c05
1430 F20101211_AABSVR casanova_j_Page_081.txt
53155144e71c0e1f3547cd9b7c4db4a7
db99e1fef4a4fbeea7a84f31d6f8db8384b6ffbb
3910 F20101211_AABTCB casanova_j_Page_084thm.jpg
d9da7f70f57192d65cc41e8438a9b206
82dd725780b422920f761bd2f71204acab0f245c
20124 F20101211_AABTBN casanova_j_Page_073.QC.jpg
5594e23b28704dfe7a7a9d37030dafd0
d7befab6c9d3e8c0368fc65856cc52a77ebbcdeb
1930 F20101211_AABSWH casanova_j_Page_098.txt
fce742567256a90ef5d6cb429eff3d06
efeff388657207d3891076a4d7a5199128024550
24230 F20101211_AABTAY casanova_j_Page_062.QC.jpg
32f3a2d6a1848722e616b2bc08948217
f955e41c6e3af26e921f9824f1052e4809d635b8
2032 F20101211_AABSVS casanova_j_Page_082.txt
88d8a2f4ecf42815a4283c37e3834e60
7dd8c7f39601132348f4ca0e354f63491cea5705
14662 F20101211_AABTCC casanova_j_Page_084.QC.jpg
7bff70341b94ff562827cbe60263a2a9
cafbbc215f1f9896470b58387486f1536e0cc6e4
25249 F20101211_AABTBO casanova_j_Page_074.QC.jpg
e545df1bfd29c54d00c5911eb38b0506
5035f85bccb827356a2857e1cc36db621a6d6ca5
2567 F20101211_AABSWI casanova_j_Page_100.txt
2520b8c369b6793a1fa6e8796739b8bd
ecc2cdb0e772eb1e25058459eef55b6e60aa1d3f
5803 F20101211_AABTAZ casanova_j_Page_063thm.jpg
f311ab8e382243e6825842086e83d393
e7900b4fd65c84da5b740af0cf64ab27753a8188
1079 F20101211_AABSVT casanova_j_Page_083.txt
7a1ca315a9c61797862df75f7eda4bba
a022f387d073e299ac0355c575c49bc5993942c0
3586 F20101211_AABTCD casanova_j_Page_085thm.jpg
d43c40f1e72947d687c012fabf913bf1
8da2c61831803ac1e435b865f503ba43c68520dc
5778 F20101211_AABTBP casanova_j_Page_075thm.jpg
1768a46d29d1d4e7743f7e046d6cdb21
2eff6c48b722e3108b041d1854f7fc28ab5cf6b6
2845 F20101211_AABSWJ casanova_j_Page_101.txt
fc5306807adfb09875a3febb9196cbf1
cb163b9ea81032119cb77b709cb261ac299bcc61
1195 F20101211_AABSVU casanova_j_Page_084.txt
9b77e1e765bdee9a36fdbff83f9f7e8d
4dd260765fbc7e244af068637760b6d69e019e24
13995 F20101211_AABTCE casanova_j_Page_085.QC.jpg
31c4b6752be049cc373ba8f7a2b917ad
285fddc20c0c2331c2c17948ee3dc94c296d5a41
22698 F20101211_AABTBQ casanova_j_Page_075.QC.jpg
4c332de10fbdc25a6a22ab040095260a
6cfd1b2dbf247e18b16f4e3928ea81516d8a3967
1056 F20101211_AABSVV casanova_j_Page_085.txt
8aefa2101e6a7e0e5d3a2fe680452912
861ab957279f7fedda763086ef14097d4a2dd97e
3487 F20101211_AABTCF casanova_j_Page_086thm.jpg
5e73c06280e8a9c977f89d7f9ca795d1
8207828bae3d87588be01dbc257d1c01f3d466d9
17997 F20101211_AABTBR casanova_j_Page_077.QC.jpg
096d6371fbf01048e6cef68eef8bf4fe
2b0baed97de15fabe0392731b954b23dbb2a9008
2695 F20101211_AABSWK casanova_j_Page_102.txt
8c4cfb7451a3729d3ed9c47deacc63e9
39e6ac86fef802fff20fc4fcf6625818883a549e
1191 F20101211_AABSVW casanova_j_Page_086.txt
64ebc6e97592896f62ac4db8e00106dd
2b86bc2419ef5c150f05b50e9b81d92221b27dd3
4811 F20101211_AABTCG casanova_j_Page_087thm.jpg
e8c1ba5a0ac24cd68b7b336a65bf7fe5
bc73eeccb185619255ff3c17cecac0b9225b925c
5635 F20101211_AABSXA casanova_j_Page_096thm.jpg
d6ba2e21ecebdaca551c292db64b465a
5739fbd65487d90655ed5117b87752db01e5f3e0
5627 F20101211_AABTBS casanova_j_Page_078thm.jpg
3a905d21f5f569cae43fda0d8ff52687
1addb03706230fb57cc9ac2d93e9f39baf7a4203
2482 F20101211_AABSWL casanova_j_Page_103.txt
b37b7e2ddf9673f643b5563213f7ead0
5e6afbc92f2eab05a19dacc2e0b17c7e48f5a66b
1776 F20101211_AABSVX casanova_j_Page_087.txt
e59e6e29a450020b053e340f5d026468
ed09c32aa1ac8347d29eb91561f19a8aa97320b4
19897 F20101211_AABTCH casanova_j_Page_087.QC.jpg
88a7af005c64a70856ba68b8cd80c821
4fcb06e3e51869a5959fcffb99527893884cf23a
2499 F20101211_AABSXB casanova_j_Page_021thm.jpg
1b1e872dc4b7087c4185dbd24140c8b4
b4ec1df023570d783a59fc3b10461b03bfcff754
5390 F20101211_AABTBT casanova_j_Page_079thm.jpg
b7f7893d2387b69ff7d513a5481c0041
47f00ed975c036511ba578f29dd1eabb4d089def
1092 F20101211_AABSWM casanova_j_Page_104.txt
aa694a26f8a227364a125e61a951516f
b7b1dc9605df8dc714a0d8866ff6d9701a28af22
1397 F20101211_AABSVY casanova_j_Page_089.txt
691cfe126d11f222908ddcad5ad8be2b
d6caa2b4ae233bbdeef44ebb9e4bd0ce13124d8d
5005 F20101211_AABTCI casanova_j_Page_091thm.jpg
36d41fd76157d41686c6db47285ffd01
c68a3d19a079b150f40ac689967822fd59627f89
5968 F20101211_AABSXC casanova_j_Page_039thm.jpg
ef3e4c8612b53d74fe2b39baed5e57ab
37ea41aaa5f6f81abc12b3a41613acf3a60295e4
1488 F20101211_AABSWN casanova_j_Page_001thm.jpg
1594eb735cbde5ef0368057847799358
99d19443627b379a1d0d730773d62c12734ed896
1400 F20101211_AABSVZ casanova_j_Page_090.txt
79483f5869b52ae99caacbc3b0358f81
59435ea75058f999ca8fb9d607cea5a99fdd78f7
20841 F20101211_AABTCJ casanova_j_Page_091.QC.jpg
d4907259e3c7529b7eda7d7b17557526
4bd573bd11c8cfc3bd6fbe3a2de1ba56738b168a
21057 F20101211_AABSXD casanova_j_Page_041.QC.jpg
8fb4e3568681675fa0852dad9cc2046c
e1af62db9635b320e75fe00b254a1868c8ab010d
21846 F20101211_AABTBU casanova_j_Page_079.QC.jpg
f9c97fc6e65b464b27504612673d89ab
48359da6e8251ed2e96861dea62f617f56f2c110
6895734 F20101211_AABSWO casanova_j.pdf
afc04fdf175db867fda1c2af0aca8744
8395f854c13968406bce28cface75f3223975c32
4691 F20101211_AABTCK casanova_j_Page_092thm.jpg
a2d8e734c6057074710d0e7591dcefe0
a65e8bf63a5132d56a6036a36ae8138d33ddd620
4638 F20101211_AABSXE casanova_j_Page_076thm.jpg
a432ec95b633c3ba97e86bf938effc97
2cdaf7cd7df5409652109d755c169691531b6cd7
19527 F20101211_AABTBV casanova_j_Page_080.QC.jpg
e3e1fbe06f08014374193ba485e8aeff
a9589865cf418b348dbeece27b951b4e34a8f264
5631 F20101211_AABSWP casanova_j_Page_070thm.jpg
4ea2c250f7c5ff83a25f3d0e013f33c0
8de1c31d6c9484e859142fcffacd81295a5e466f
16640 F20101211_AABTCL casanova_j_Page_092.QC.jpg
7fa911d7263b80ee94423a1a7bc8fadf
334be8b21c405c16c0fdf0879d506d17e22b2e01
5238 F20101211_AABSXF casanova_j_Page_080thm.jpg
c84da445e68221061ed9de9853ca355b
6596e05b71847eeb6104f8193f9fe19f4681bfc7
4899 F20101211_AABTBW casanova_j_Page_081thm.jpg
b75bc5dddbfe287879a78bd5f700294d
5175ec962692b8aa1a17123f3c8b2af80aeb0e22
20191 F20101211_AABSWQ casanova_j_Page_072.QC.jpg
731de0ccb0f4d2455e6ce6a6a1de0b34
932de5dacce2587dbd050ea90f2053a807d41a2d
4766 F20101211_AABTCM casanova_j_Page_093thm.jpg
06d488d7f6c6441ee651d7686334704d
3d73ca5cdd8404d67738efbeb47c24143d6a3e5c
4771 F20101211_AABSXG casanova_j_Page_046thm.jpg
e6ddfaa7d25fb7c66bfc62f67cf9ab02
80d746b8de477986d3efd8a51a7057a547a49753
5443 F20101211_AABTBX casanova_j_Page_082thm.jpg
b0384f9b0694cfde59154f2b38eb199d
4bf08ec1d734ff13e69b999bf933fe79bc5f271e
18923 F20101211_AABSWR casanova_j_Page_061.QC.jpg
7dd45e5449a2740ebe134ad939955bdc
eeed9395d2c55cf3f5b70c63ca1594fbc840a821
19199 F20101211_AABSXH casanova_j_Page_076.QC.jpg
812d338a69b2a04b36626c3c95b79bbc
1b8d55db5c0763de267594e4f61f59e2b10f9328
24788 F20101211_AABTBY casanova_j_Page_082.QC.jpg
b1cb65ab2888e6e4c5b4e76fefa43b9d
188400498cb97bb6aad709a573a6c126709d2f67
4487 F20101211_AABSWS casanova_j_Page_007thm.jpg
1c2b6e0977d924de6fa1680865d7f0bf
e643393ee6aeb04929e20e1649a4f928d774a01f
16667 F20101211_AABTCN casanova_j_Page_093.QC.jpg
5c8a5e96e4dbb610ba35ff301249d6b3
2b469f4c9da8dc088351dd00d09a485106d23ddf
28224 F20101211_AABSXI casanova_j_Page_101.QC.jpg
c905ebc10379782bada611c7ee610117
d3ce42e951e26dad13e9e8f946e3a4d2bfb947bc
3266 F20101211_AABTBZ casanova_j_Page_083thm.jpg
67869611471212b1524f4545dbe56a85
a12999bb18ff9f3d6052e25860517ff7334c5786
14409 F20101211_AABSWT casanova_j_Page_033.QC.jpg
db830998c1cafd81ebb3b1d29e33bd18
15457b78544ad013b1fac41f4ff3c277d62e0fe1
14909 F20101211_AABTCO casanova_j_Page_095.QC.jpg
0d46b43deb3cbf23a892aa88b08c029f
5db5565ffebbe9ae530543d9bb2155f0d5d3c30e
4107 F20101211_AABSXJ casanova_j_Page_012thm.jpg
c1056d53f853fbce9d35bbff99c2c042
d8c2983a3c42f3ace4a0421021117ea4cd8cdd56
25845 F20101211_AABSWU casanova_j_Page_099.QC.jpg
e63373dfbbe7a0f05ca6fdb2495abecd
1820d007fe0107e94c10a23e5754518284ed337e
25819 F20101211_AABTCP casanova_j_Page_096.QC.jpg
7bef9fe4b2432e32ec16aaa2ab54aae3
dd3db2fbc6dbc4e899c633fce85b6a2fb27ee18c
5085 F20101211_AABSXK casanova_j_Page_050thm.jpg
e7ee78cc0e3fd9ce26f97312724a0c77
b87d75149e5b983b8636432ec95f8d26532aed12
17296 F20101211_AABSWV casanova_j_Page_056.QC.jpg
ebda41bbfd05bfa0189dc1d1cde6e1ae
fa079dde0082b60976351df6847a156c907f3c4b
5144 F20101211_AABTCQ casanova_j_Page_098thm.jpg
9d6ce8cddf857182fbe63b4b9f4d990d
4eea8912510f20d810dca4cd4fc9feb08da1a6cd
1082 F20101211_AABSWW casanova_j_Page_003.QC.jpg
66a33080f458aaf3c122ba95187a90c1
404b5f39767b383f467237f22c0a1d0a36704637
5875 F20101211_AABTCR casanova_j_Page_099thm.jpg
d1a5fe3fde56285d5151684f2d60ee43
3bc31add8ff5a0adef88b62f825480bcd54f89ce
9545 F20101211_AABSXL casanova_j_Page_022.QC.jpg
2f8b91e032c4f405ffbba696e8249f16
078a6ad7caeae5a922be2bdac181bb68f2061e78
15893 F20101211_AABSWX casanova_j_Page_006.QC.jpg
13677845de67dc788f565c718036a140
f151363294232afed656a1e76c22517c7f8e5a17
18654 F20101211_AABSYA casanova_j_Page_067.QC.jpg
dd7936058467244b3494ec39c9de3edf
a5a68cd7544a9c3020967d293fdeeac6afa20ed3
26440 F20101211_AABTCS casanova_j_Page_100.QC.jpg
0d4432503f517ea538b1077b402f322c
b50a61f87a964a50e203684ade6cbe1ee1a724b1
4889 F20101211_AABSXM casanova_j_Page_077thm.jpg
71f653691c7fabc940da610be65f485c
221c371c8dc930a1cd60e254f42336399a9d00e8
4032 F20101211_AABSWY casanova_j_Page_088thm.jpg
07a58d813f148fc61e91b5ab610647a9
ef2b82b340494283d86fa823eed5ac4af96dd2b2
159602 F20101211_AABSYB UFE0021535_00001.xml FULL
5937c650f664c525db6a698ced15774c
1f2f7aa55c9ae1c0eba36c1a9ebdb9f16b15da01
6233 F20101211_AABTCT casanova_j_Page_101thm.jpg
e12b7b88ff68a854e6251f245f1030a8
173ccab0a6217ed4832d1ea21a72f4d0d4c76ef7
4670 F20101211_AABSXN casanova_j_Page_005thm.jpg
47ed714e8911f6a16fd7f78286310909
1121f27a0685c32715ecc29a32ffd6dfda201114
4557 F20101211_AABSWZ casanova_j_Page_066thm.jpg
1e5af8e462f483606ebf364639b2b977
f2ca9dabb2fee4fb03df516504ecff64c2ada38e
6583 F20101211_AABSYC casanova_j_Page_001.QC.jpg
eb10514b668b90bb947dd8144b790c60
a0e0b9048cb5db67edeadc0e7cd41927b3521fde
6047 F20101211_AABTCU casanova_j_Page_102thm.jpg
f6d64c37c388c4f0ecd7395bc96eb166
f01adc3f804f115172b5af89811eb2d330e43269
18705 F20101211_AABSXO casanova_j_Page_090.QC.jpg
2c59e10ec631db5662da8003dd2580ae
dc032b170dbba801ca7c0870d1c4544e9eb3ceea
438 F20101211_AABSYD casanova_j_Page_002thm.jpg
f1cae025cf9444a485c909ecfb894d26
bc8d4adea6dcd698a2c2b46579be8c221aeaa48c
5861 F20101211_AABSXP casanova_j_Page_049thm.jpg
3f216d2b833ce85fd1191e6eabab0d89
a43f4cb9c861d24b4037cbe595c75cac3aa482a3
484 F20101211_AABSYE casanova_j_Page_003thm.jpg
5e79caa5d68fab8f96bfaad6f656ae62
fad32b0a7d31855d0c652ad043e3674ff00e10ba
5829 F20101211_AABTCV casanova_j_Page_103thm.jpg
c7d7643f427b88c0f5bf662befd19c0a
a8549a40549ccf572b3d10ab8612d959b6ed4377
30646 F20101211_AABSXQ casanova_j_Page_009.QC.jpg
074c657abc3bdd1fe95b79ce0dbeef01
21ef1768fc08abacba9baa2c20643c8f2508f126
2523 F20101211_AABSYF casanova_j_Page_004thm.jpg
56f956535e1392de65cec30765d48c09
490113c91c819848f6519cc92dca3bc76a2f2094
26054 F20101211_AABTCW casanova_j_Page_103.QC.jpg
f878a939ae19e1cd88dc9b58da844c4a
7e0f662f1ebd1d1700d3771927f4583cf8ebdb7e
27359 F20101211_AABSXR casanova_j_Page_102.QC.jpg
f0e5d4df59912e042d82aab11b1ba7e6
a44bc54a0618578d4c63e54a40917e0594fd9b08
11548 F20101211_AABSYG casanova_j_Page_004.QC.jpg
8f01b157efc7dc0451988a081de14b0b
379654a5b17ebf7ea24fd97bb22f0541612d2f02
2705 F20101211_AABTCX casanova_j_Page_104thm.jpg
d6a0e6539fe366178163a89345acccf3
e4d0992c227862a2bcf20c45bccdbba34564fe43
18872 F20101211_AABSXS casanova_j_Page_060.QC.jpg
490d3105d46f0b524d07004aded25891
4fc850077ce9135061c936f5161588d3c8dcaef0
23092 F20101211_AABSYH casanova_j_Page_005.QC.jpg
84d1afd6988a8e15fef9cd920f6e3196
3320f64bec883cb141b59aa98a1a8a966857fd0f
1008 F20101211_AABTCY casanova_j_Page_105thm.jpg
7b6256d5cb6ddf20b6fbdfa65e9e9305
da88376faed6a6b3fe3ff85b98150cab65c2a216
4825 F20101211_AABSXT casanova_j_Page_072thm.jpg
62467d3917f4eab06e0f2c782661c479
6c62b71c60ef9a41498a92ae764a86137f866125
94954 F20101211_AABSBA casanova_j_Page_018.jpg
9005ea7673186f2092b801e43de788c8
e54f708bac35a9025b46afefa0a75f599de34222
5862 F20101211_AABSYI casanova_j_Page_008thm.jpg
86cbc32e17ba3542e7389cd6b1ba8d6d
eeff75abc33ec914bbfb48dd9b96a46d8c7b4b38
3562 F20101211_AABSXU casanova_j_Page_095thm.jpg
cb6485e2afd25736368e87cd907ebd96
abaf2cf7c6f1809a5bd2471c9ea5c6e140853689
2116 F20101211_AABSBB casanova_j_Page_040.txt
65b69dbeba5e37f221cd8cd507bad28d
307806bc469c0ab401a559062efc02eb7ff4207a
7815 F20101211_AABSAN casanova_j_Page_038.QC.jpg
9b0820ef18b941951a17f78cce6f65db
f51350c80fce097eaf65df550519c4ab38c94710
28000 F20101211_AABSYJ casanova_j_Page_008.QC.jpg
b1902dc0605bebd908c7293484cccc47
976dfbcea614a29c8bbc53f3b45585a6c5c32549
5827 F20101211_AABSXV casanova_j_Page_100thm.jpg
628953626aaea9075faba9686cab9723
5ff3321ff462fee73589ce1ecae633ddf4570431
4616 F20101211_AABSBC casanova_j_Page_045thm.jpg
ba34fe96881cd81f7199da5609a9812d
9a4d7395b861088cfbdc6fb2434d51e9f1cd553c
80576 F20101211_AABSAO casanova_j_Page_057.jpg
28af65c2df9de27bb571fa830286cb9f
babf5207f95095cdbbbd8f730cb8e4de11b1eb75
6237 F20101211_AABSYK casanova_j_Page_009thm.jpg
4aa9511fdd942c38a56d663ae53a9173
ae8f5c18e5ebed02ad5e8eaf689bb9fbe7ddbbd2
4111 F20101211_AABSXW casanova_j_Page_033thm.jpg
691be835d3e42fac75b5ac03274ab5b3
08a2e0d142fd9c88bbf06be6a1acc28e2bca24ce
54293 F20101211_AABSBD casanova_j_Page_035.jpg
209a3f5b099186e13591d9b5b42e6efd
4596f7fb127a26ced303c887cc296c2d1a0fa33b
20873 F20101211_AABSAP casanova_j_Page_004.pro
2dfeb76fdbbfb77b1f290fc4c1c62fda
1a55c729b89aea7250e4a9c7dfca2594338523fc
30903 F20101211_AABSYL casanova_j_Page_010.QC.jpg
45920e949996373873f0caaaacd49214
0509f95af64a498425249677d0b056f44505f24e
3132 F20101211_AABSXX casanova_j_Page_006thm.jpg
c2def48fda13a4fb59aefc075093129e
41ee838ac13bef40adf50fd7ec5fea4abb174055
1306 F20101211_AABSBE casanova_j_Page_005.txt
fcf714229bd5c5391fe456c3684c3525
ceca8a134c327d51960dbf12110e0738a5167a39
6064 F20101211_AABSAQ casanova_j_Page_094thm.jpg
dc2b359cf92df8b2c8806a296ac68f90
84ae4913516ce0c69f5ba4e47bb9854d2a0976af
10519 F20101211_AABSZA casanova_j_Page_021.QC.jpg
8ca026dfed4a5504243da34978779589
e2bfce2f2b06d82d794b54591517564b3d084e4a
4835 F20101211_AABSXY casanova_j_Page_017thm.jpg
e914fcbadf7e1b74f8e0fcec30357ee9
c9306a1620132ee85ea701e27d23f507bc6b7e9d
2166 F20101211_AABSBF casanova_j_Page_052.txt
8246d8590bafffaa630c6bbbaad7cb40
96ecbfdae76d7b4ee3271d7f98bfcd84b60a781d
84110 F20101211_AABSAR casanova_j_Page_012.jp2
2b3ada3c989268ae28d0f04dd51cca38
062d9d6f7f1df5a320804da6130be54b524520d4
2899 F20101211_AABSZB casanova_j_Page_022thm.jpg
fdff2bf7e26bc5c1184ede830793ae2a
b05bd2a0f07f3848b30d8b17a412b4d5f216ef04
5732 F20101211_AABSYM casanova_j_Page_011thm.jpg
fa17d296bb3624a10eb91ae13ea672a7
8cf67758e2032d0486f85238633900efe07f24e0
10672 F20101211_AABSXZ casanova_j_Page_034.QC.jpg
e01b99c76ce0f02f43be3416a9e4501f
1237ac871a2172b52926993da8e0d276f0f8ff15
1051985 F20101211_AABSBG casanova_j_Page_009.jp2
e36268510a1d15705b3ac1ed5da3e0ae
bbbc29200f3e14485b19d2f036d4f2495e2add03
35153 F20101211_AABSAS casanova_j_Page_043.pro
b366f59340cff01cecce8cec88454530
8373c48d1803bb6ed6d188c6074b19c180ccd53c
2828 F20101211_AABSZC casanova_j_Page_023thm.jpg
cd0291dfb3a08b552f600d8c775d2568
2112b1fe1d85f1892d2ffe8950ad02c3d17c31eb
26632 F20101211_AABSYN casanova_j_Page_011.QC.jpg
477f84ee28698bba1bc7e618863a32c2
49db4ed618ddfe2bc0f7f7f9f9df25c0f4bb2710
12652 F20101211_AABSBH casanova_j_Page_076.pro
b8e286f698ccd98aa1500949ebecf8f3
5ea5801fee600cf3e538b33890441f1a27b13de9
59093 F20101211_AABSAT casanova_j_Page_104.jp2
63fff471e961ae471cd61244e936b67c
946b0ecdb34d91dacea3e78213a0a7a640ab48da
8963 F20101211_AABSZD casanova_j_Page_023.QC.jpg
c68f25bb284965b14b8d69f8ff6365c8
2a9349916a82bb9f79a8938413f387528867acda
18140 F20101211_AABSYO casanova_j_Page_012.QC.jpg
0f2fc0232c2129e287bf5d00d3ca5794
fa353f9304eee1868725aca893d269a47ae7656f
41631 F20101211_AABSBI casanova_j_Page_091.pro
dccb5003a0e6597e97187eb83cdb8cdc
9d0ce129022ca423cbf674a86976441b1c1c2c68
2677 F20101211_AABSZE casanova_j_Page_024thm.jpg
8e0732d27d3a2138d3720547da59f781
8558cca54704831651fc0818196e339256c354aa
27278 F20101211_AABSYP casanova_j_Page_013.QC.jpg
23fddf0a9980025299b715d6ecde7146
6ca414373c547951f128cc4c0840727c8e34c095
1051978 F20101211_AABSBJ casanova_j_Page_069.jp2
5bff55685b570cf6ad6ca889e0fc4cc3
a508e1b6324dd47309adff8034d10a2db822f948
5956 F20101211_AABSAU casanova_j_Page_074thm.jpg
0d08038a03789dc5e402bddc93ab7a26
cd47436237326b6d8d6267bdd45546674b3de412
9048 F20101211_AABSZF casanova_j_Page_024.QC.jpg
e35e66daef4ad5a5e82e47bf47815bfa
b89f09f8d7a7071def35d5f12f466eb9fa970c02
5912 F20101211_AABSYQ casanova_j_Page_014thm.jpg
4eba988e59599748b77845c986ff5b14
db9cfea90001a8d3a683baa04ff12a7a34a26fa5
964 F20101211_AABSBK casanova_j_Page_066.txt
ffff59c5a120adad42a7c0ea3b0dd708
fb2fe93e07f5b3b4f8aee1529281f884dc0f38d0
45821 F20101211_AABSAV casanova_j_Page_085.jpg
fb2f42ee4d431fcc0484b1477d679ad2
a5a4d5d00c40aba1be32c5f461585017788d8908
5737 F20101211_AABSZG casanova_j_Page_025thm.jpg
88ec6c9e9404b9e1453ad855cb236116
553b65ce86324aa0e56d6ef797c54feff6d72aac
26466 F20101211_AABSYR casanova_j_Page_014.QC.jpg
53f0a03a0033871263365b8bf1931e4a
530a7c71bce68f93cb893405f611486ba5dcd0df
F20101211_AABSBL casanova_j_Page_095.tif
b496cb2c72ca85c8506476f698e49a1e
782848cb6dc9346cbe2bfe58e8b2b3aa8735a85c
48170 F20101211_AABSAW casanova_j_Page_004.jp2
714985e8a00256488de813c8d66a971a
6868f1e26fa256810d93857ec3012d301a514169
26080 F20101211_AABSZH casanova_j_Page_025.QC.jpg
6de13d83adf941f629de91d6fa678aec
c3effa1f98fd4e6c8ffd664ce186228654441717
3682 F20101211_AABSYS casanova_j_Page_015thm.jpg
ec38208b137ac3a37d95f293358f2a61
cffe29ea2b2f022eb987e1fa893176dc47329e4c
2003 F20101211_AABSBM casanova_j_Page_050.txt
02add6e01248a5d13118ecdc1a7545a4
5b91f4deb5362c0cd5d51c4e0860c7320a19aa13
6023 F20101211_AABSAX casanova_j_Page_013thm.jpg
f0f6257ff4b782bb00c50fbae759310b
2a19d736fc91feb012e7cd5adadf3598b14b9200
6159 F20101211_AABSZI casanova_j_Page_026thm.jpg
e570fc72fb7a4da0d235a84c66aeef07
8d7ba100ed91eccdb005ec3ab786c303b041e2ec
12260 F20101211_AABSYT casanova_j_Page_015.QC.jpg
0b5d38904c7ea8b8610ec40aef7ddb41
283a232ce65f7ad1813b80303a93d96a8738599f
70488 F20101211_AABSCA casanova_j_Page_047.jpg
80ccec00d799bb59ab077be37cc13fab
f9f81edaedb3099d475a4400e236e27ed50b76a9
25271604 F20101211_AABSBN casanova_j_Page_068.tif
910197c4d5b805e03d37ca3cc8a30d55
3b8729e5ba6530076fe9cf9fb27df7e37e9aa2d9
711 F20101211_AABSAY casanova_j_Page_035.txt
53b4bcbe5c2755dd76824caf82ebf552
36390640e7ff15d38407878a524dbb7fa925461c
5038 F20101211_AABSZJ casanova_j_Page_027thm.jpg
9860615f8bb67d0856526edf4ba26833
7a4168b547d3e90f852d0b58d4ee818e47dae876
28324 F20101211_AABSYU casanova_j_Page_016.QC.jpg
4d628fe308a442ac2d0c48cd2492cbe3
2e99090f673a78a956f392a8fd82c9f8c2630a2c
28430 F20101211_AABSCB casanova_j_Page_023.jpg
4b459cb48784c1ee1b0e7b498f683f78
8bc725d8f2a43f60f342114b99dfad03fd9b93c3
74905 F20101211_AABSBO casanova_j_Page_050.jpg
7a261bff4f4f3db6715c43de639941ef
106fb38d78ace5719e7650e92464c7dbc687f1ea
8100 F20101211_AABSAZ casanova_j_Page_001.pro
73c20fb91beffa2bd36a62abfc23e8d4
8e40069a078f21afec71b7f1809c676da391339a
21513 F20101211_AABSZK casanova_j_Page_027.QC.jpg
97a4efd7d2c2f3087dcba53115476f5f
e52c9e61f18777230b3e35487a1486affdb97fc5
6193 F20101211_AABSYV casanova_j_Page_018thm.jpg
c85c40ec3da0746df1d627a6b126a209
ecbe0428c749d5ea5245e8b32cd8e620cbf8bf21
1660 F20101211_AABSCC casanova_j_Page_069.txt
d57c6f8a849f409a87ea18e6e95d9c8f
f9b6e1a030cbe20e79ea562a33a013ab47a87f0b
22128 F20101211_AABSBP casanova_j_Page_078.QC.jpg
d1bad26d59483049cd81000a2185dee3
d5502c7866c7b4ee39fafbb1a70c3219bedd2f86
16431 F20101211_AABSZL casanova_j_Page_029.QC.jpg
ad2bfa8ee37f8108bea526724cc7017e
7aa8f04b4cc37cd4ab87b914bfc412a6a6178e37
F20101211_AABSYW casanova_j_Page_018.QC.jpg
f5c168823de2f5d8510bbcd1cadd5489
e1c36822f5056f00bb2e46c85d7facfd716b8370
F20101211_AABSCD casanova_j_Page_011.tif
fdeef09490b32affa563e578355e8be3
06976b2e83575a33b005650f56ca7b06ea6f3adc
390 F20101211_AABSBQ casanova_j_Page_033.txt
937c4d9c6e7292adf76395c83d0c418d
cf9a80b5a23419ed07492c9d134cc329797af3f1
4942 F20101211_AABSZM casanova_j_Page_030thm.jpg
7e1dbcd1032fc84579752551a8b43d97
d164cf9c8e30ba2dcc5978053942314bdca466d5
4042 F20101211_AABSYX casanova_j_Page_019thm.jpg
d75c2595625566d3a5a5f61e7078afd7
3564114d30c22cfaaa62a66df86f3aa48ec12278
22943 F20101211_AABSCE casanova_j_Page_070.QC.jpg
f5ccaa218382e48c9b064c5aff4ccc51
1e21f309cb329481759c51ff326cf5978a5eb1a9
61609 F20101211_AABSBR casanova_j_Page_103.pro
b0e70abd90456823ed813618d472f31d
1230c17d5b12330b0903ca7b94e07d38fb4fcb14
13122 F20101211_AABSYY casanova_j_Page_019.QC.jpg
38956c0689012d0e18a96ada901dac7f
426e9172a134e45377fba91097fffd830d90db80
18424 F20101211_AABSCF casanova_j_Page_046.QC.jpg
5789b978e6f04bc4eff6c104203ea0eb
894e4673ec9acb14f022be30b31c6b7a736a1ede
16031 F20101211_AABSBS casanova_j_Page_089.QC.jpg
e44d41d16594e921b86d6651277579fb
1521c1503a2f544ac8cafe66a665096a804aa484
22293 F20101211_AABSZN casanova_j_Page_030.QC.jpg
3bda42942d3f64adee4f386c2fa1fdbf
5a80ce055f5130f05a030a66d25b028c5c648358
21290 F20101211_AABSYZ casanova_j_Page_020.QC.jpg
6de6afb239b30c27471fe8f7acc6b7cc
8257aa0983eefd398d604339680bba969dc49df2
27596 F20101211_AABSCG casanova_j_Page_094.QC.jpg
311d4f18bea4efd47c3b9c8d4c591013
0001997085854c92ebfca1a4c5749a84d3852c64
4037 F20101211_AABSBT casanova_j_Page_029thm.jpg
51e6c8c49988dd0ff50b401e77ee760b
6539f116bc13abe67bffbbc741af637cbc62584f
4512 F20101211_AABSZO casanova_j_Page_031thm.jpg
efa5f7e6cb6dfcd872fd7ea34775518b
34cacb7af72f87b2f18aae9d31120f70fe189070
1270 F20101211_AABSCH casanova_j_Page_002.QC.jpg
c222f3e388c3d1ab4124d6692f5ae81e
7b6e6e793479f893675db56d0ab7c7bdfda1ab2f
1440 F20101211_AABSBU casanova_j_Page_042.txt
85f4fcdf21c97c79cfa536aa4cc74d39
e363d9e436540b363669fe97495dae2ff3db58d0
15904 F20101211_AABSZP casanova_j_Page_031.QC.jpg
513510c77f443828c1c34cdbe8a54120
3133bc1d51b5cf3937f9d14949d217371ea88199
F20101211_AABSCI casanova_j_Page_002.tif
bca1d9b66e255e32cc1688930ace1ad4
54b377555058d9813a119ebacd3ba8c94c1653ef
21578 F20101211_AABSZQ casanova_j_Page_032.QC.jpg
ac8b84251c514f7438a6062944f9934a
16f854387f08f342d3720f4b129c4599ddc5f866
5421 F20101211_AABSCJ casanova_j_Page_047thm.jpg
30217328efdfb4c67061eaddae4679be
4213afcbaf9b9028e1d16c00fd28b4dc11bf8598
15776 F20101211_AABSBV casanova_j_Page_051.QC.jpg
90c5f566241310c27a588b77d6bec822
5aef599ebdcf122e602aa926426a2913ed15a478
17264 F20101211_AABSZR casanova_j_Page_035.QC.jpg
0e51c352deb2531fc044e7f50b9e86f7
a58b175b64a459197c03ea9e9eb9e6159cf1e763
6461 F20101211_AABSCK casanova_j_Page_010thm.jpg
c465fe3258d8a77cdbb5cb15cfbaebbc
68a3c69bc1e06e0248519d254c6026d263ceb387
71077 F20101211_AABSBW casanova_j_Page_010.pro
0b5eee75ea4fd1990d6eb09febae6c0d
ce24ac2d763779cfd8088751cb157e1de40a9615
4693 F20101211_AABSZS casanova_j_Page_036thm.jpg
59aeda2e7c5e78891b5bb9e4ffa7e4ca
75c61a47cd80c747b24abc33d54e1f98b720eac5
61615 F20101211_AABSCL casanova_j_Page_056.jpg
417e109cf0ec6fe4adc9858494ccb357
6a6a402b262d8aa808280c71418c1670fd4de5c1
302010 F20101211_AABSBX casanova_j_Page_038.jp2
7f9a1e303ace68cfa08382275ae29d4b
6c2ee98bf1929fb9d531fecf6483fd6cb38023a1
15120 F20101211_AABSZT casanova_j_Page_036.QC.jpg
c09a818135ee3973e5ac47bb7907f49b
712cc693e41a464a36091dcdff7fc02661aff9af
22501 F20101211_AABSDA casanova_j_Page_059.QC.jpg
e0f2b417415d8333adc527658779e9b6
e7861423a393974f38b6ec0cb90a3680d1341be9
24735 F20101211_AABSCM casanova_j_Page_028.QC.jpg
3ef77b6b2b888fd8cbe941a65941d7d8
44d9bbebf6830f7328564c510d7326dde3c8c68b
70051 F20101211_AABSBY casanova_j_Page_080.jpg
ae08a0b8a7ddeef1595a5e1c58504576
ca9085f6473c58b939a1dff889348b32de722094
F20101211_AABSZU casanova_j_Page_037thm.jpg
a8f5c1faaed0382b9fa3ec3025baf523
a69a5d0ececffb400298300b0b3be9b04781f719
66965 F20101211_AABSDB casanova_j_Page_102.pro
2674a0cc4ad8a932855218f3ad5ddfc5
1850dfc095b4f924dcfc1d5bf64c85da8b2d0333
23913 F20101211_AABSCN casanova_j_Page_037.QC.jpg
8e4bfd4fdd413b82868ab45b6419e48c
af4510283a4ace7d8705f638a2869194b9b6a015
3627 F20101211_AABSBZ casanova_j_Page_105.QC.jpg
460cdbf55e0ee6d7156f3ffb209c2efd
cf8a2ec4a2a5a074dc0eb047f3b212925fcc77ea
2080 F20101211_AABSZV casanova_j_Page_038thm.jpg
1cce3a8066719dbb4dc27e115f2993f5
759dbf38e356e47cfd01fbf8942c8eb64c386be3
F20101211_AABSDC casanova_j_Page_066.tif
2e80e830e55e512c98e71ecb52a32f65
6f61863aa992dc599057bf6c1ba5472ec16680a1
F20101211_AABSCO casanova_j_Page_056.tif
323158cd80efe29f828896d3e196f4c1
0d57247a210020ad0c37e81cffe796381e4463ba
27303 F20101211_AABSZW casanova_j_Page_039.QC.jpg
55d9d8279af91cf34dbc84fa30c479cb
df8472b736992137a144027ad75fe85bb1fa3ba3
77463 F20101211_AABSDD casanova_j_Page_079.jpg
26c285c8ffbbfc9414b7b6b41d5d6fbe
5e05d43ee4cb152a4b263ae368982c431a1e6c9c
20333 F20101211_AABSCP casanova_j_Page_081.QC.jpg
dfb95ee7716cea09a33eab2e508c871b
0ab6836b7ed7ef7b37fb75a0cdb3f74f9dc3f55f
5815 F20101211_AABSZX casanova_j_Page_040thm.jpg
4d39a923743d8ac435d365fd686b3d78
2f520e135afa4866ea48eed74de81e2ed4d40647
F20101211_AABSDE casanova_j_Page_029.tif
e64d9ecf2adeede89bba1c5f9d232ea8
3dc20b7444e619dcc84e08de5764f98b7ea58db9
F20101211_AABSCQ casanova_j_Page_007.jp2
f1f5e980ae1b5396795d1429643977e0
e629604430075617550c7ce6ac30287180077f2e
24930 F20101211_AABSZY casanova_j_Page_040.QC.jpg
75e92ee36f2fcbce6ccf7940e0d3bf07
effd7f9339f8e39b170f2a6588be7f97faa28636
5622 F20101211_AABSDF casanova_j_Page_028thm.jpg
7f5427e34beda6a917d3e4d05fd4ec61
1b4f321841d351b6c416ad9c92e9c914ba800e80
26925 F20101211_AABSCR casanova_j_Page_052.QC.jpg
efcd4efb5b1d71f835e377512ef33c7b
e38741991a5e7ef298628764abfaa90f2c7e63c0
5307 F20101211_AABSZZ casanova_j_Page_041thm.jpg
c0307aaa135ea47ac4768ec165ad0c69
8def5a0bfab03014c7dabe411914936bb7d2160d
86669 F20101211_AABSDG casanova_j_Page_005.jpg
58368fe703117ee0a544572ec9172f08
0e0c69cfdd2a57371f3429342a14901da3ba190d
69518 F20101211_AABSCS casanova_j_Page_020.jpg
747edeb6bfbcac3160840d30e0d870b6
ccc13367ca3b02c94f4ed784b70edbf8b1fbdbbc
4922 F20101211_AABSDH casanova_j_Page_032thm.jpg
5e7036b7d7a08518712b355708c6d210
8d3229b8f2305f6c6127ce8f571d4a94ac77934a
5308 F20101211_AABSCT casanova_j_Page_105.pro
b7c3f650dbfa7bbf9a3d8cc721a84cd8
f09b184a816a15faeba561c8f186566b62ac399f
643016 F20101211_AABSDI casanova_j_Page_051.jp2
ea3cf653478269d12634accdf8c43580
e16dd7213d1593607188ed0c96fe820fe8575410
652475 F20101211_AABSCU casanova_j_Page_084.jp2
24daeb8428faee06133a83ee4e0be642
0accc6380b888cbcdc447357e829fd4dd8d8eb62
638 F20101211_AABSDJ casanova_j_Page_031.txt
5ed5bfed65dabc37b0b7e9c58b1b73a9
794503d6232b838ec15d85cfc70da36d6b9ac76d
38336 F20101211_AABSCV casanova_j_Page_004.jpg
3d50f4472e9fae4614af8a3075f71f64
741e07396817754682e21ea6e6467e0cdcc79136
28299 F20101211_AABSDK casanova_j_Page_090.pro
950f2465a8c7b54afa8df85e3e0dd46d
8116dee030a78107a87e42fd7f60334e839287be
1021026 F20101211_AABSDL casanova_j_Page_067.jp2
faad93611b6e41694fbeed4e33c44828
d3d2631b0f62717574b8cefcd2edf8f99a267818
2089 F20101211_AABSCW casanova_j_Page_043.txt
252dcca7d1676b03a810724bbfb7f836
0f8ce11d80837690640eca7c1ddac792c7b64de8
25831 F20101211_AABSDM casanova_j_Page_097.QC.jpg
39a3f3c1eeed1f262c7acc27d063ee09
51745322596e0005bc58581d80758644655165ee
5525 F20101211_AABSCX casanova_j_Page_055thm.jpg
268ff4ac6d2f8431115a50c7286a43ff
bb9711d4cf3d312386de7ff715b25d92dc70f0c4
89035 F20101211_AABSEA casanova_j_Page_052.jpg
de6f28ad853b6de588b595f0fe16952b
da116cc8e5ace7476fe2fdfa0322e560470efac8
84906 F20101211_AABSDN casanova_j_Page_097.jpg
085b8b0ddfdcf5fe473ec232e7602dae
ee6f31193bd70b7d99c3e0a0f18372a61c033071
34999 F20101211_AABSCY casanova_j_Page_069.pro
3f40bd773056a5a789a90af22710f4fd
0858bfe8151924f4d41796293fe5568c0c6fdcef
1512 F20101211_AABSEB casanova_j_Page_064.txt
977d56998560cf730dc13681e2c8f53e
452fcb026ab5c516da3854015717969130f366a6
123593 F20101211_AABSDO casanova_j_Page_009.jpg
0f803bb228c73b6c92b6f810a0e5010f
29fe2c797f812fde45299cf15cda8b6a8241ce14
74608 F20101211_AABSCZ casanova_j_Page_030.jpg
591ebae4649ab06d495db6ab17212ed5
1013dc0caf3166b87d1b122e2d673952f0b86aec
F20101211_AABSEC casanova_j_Page_039.tif
3fcadd7cdd742bcdcfa4879c595ad051
791b1e10dfbaf8db96ac0eb505c3f2d2dbc36784
67631 F20101211_AABSDP casanova_j_Page_066.jpg
8768a813909563715c20403f94ba42d6
910e9a4149546de375d2bd44f74031788a26f913
1051945 F20101211_AABSED casanova_j_Page_098.jp2
3cc0854ebb34be28d283641972400cec
a3d84ec9a0c1d6825597e4d803fa3f041192c5eb
67393 F20101211_AABSDQ casanova_j_Page_073.jpg
5546e80b18ef62c8b87d73461c909598
d6a2160c74cdf77c8ff3ad0550a68f96d0d90a49
95930 F20101211_AABSEE casanova_j_Page_016.jpg
9033a5d616c8ecabd56e372b03b688c1
e5668637b8533b530e6a80121d058bf3515598e6
F20101211_AABSDR casanova_j_Page_063.tif
3410f56e3a7d14e72ead3741febb6210
8d51f7af3a13337e18a4d4dbc93bb747b8ccf56d
50505 F20101211_AABSEF casanova_j_Page_031.jpg
30e5306f102b3adac393b4acc45dc93a
46a4a1204adf29557eb50b42ecb560840312e4e2
1051966 F20101211_AABSDS casanova_j_Page_063.jp2
b7fd8f7168146c47103e60b623a65f61
b40267be5836d7b4b4e8c5cc30fc2f7ffc1ade3f
1646 F20101211_AABSEG casanova_j_Page_088.txt
3704d71b9ca3836384393eaa8cb4cf07
7841535f6fddf4b2a67759710a328465ef7a38ab
48185 F20101211_AABSDT casanova_j_Page_082.pro
a5bd8e77016a39ba95bd77bb4a539889
60e9e1700d5082ac1d064501928ae6b131e5e09c
4128 F20101211_AABSEH casanova_j_Page_089thm.jpg
02658f14e59c7c5a173f820ef51ff644
f5aa120b8c83f4c678d788342fcd3cc592c47395
1051974 F20101211_AABSDU casanova_j_Page_058.jp2
24bb730e12ff87e0a2bc67b363c6fb17
2b3740465aade5acffb797dde796937fb0342645
F20101211_AABSEI casanova_j_Page_035thm.jpg
298fa7c3e9e2c00851b09bf51cdf0b74
bea891b25f2250e5abeb594b7821a6f9dc1bcf45
27369 F20101211_AABSDV casanova_j_Page_026.QC.jpg
8aa0efc3d303661541dd8b9d89157872
9f1355a086506ddcab0792296e59c6d5e46a2de5
36112 F20101211_AABSEJ casanova_j_Page_034.jpg
0c5311ad784c86d2393239092d2826be
79aae5ff1eb99275043f74106d1c760be1aebdea
71740 F20101211_AABSDW casanova_j_Page_027.jpg
ea928e9218a0d8001b969643fbd16c12
08ebeb366bb042302de9ce65c9ebdb1ebced5479
1786 F20101211_AABSEK casanova_j_Page_030.txt
03e7582fe1b3511539c602b4dc00d75b
c6d3e595b24ce7839372af8b23b8b36471a57d89
F20101211_AABSEL casanova_j_Page_028.tif
ccf310b31dfee7f58683d221f99bf362
ba4d320d6b31a14592b05c73d535322499fa5156
F20101211_AABSDX casanova_j_Page_075.tif
74fbafd3fe7dc983600f7b9c2c74688f
2976926e1d373c17dc8e04e8127885a20753362b
147946 F20101211_AABSFA casanova_j_Page_101.jp2
4ec54f3b31fe77a2af91d69cfcf25426
d5dd0af411155249a061d33b16808f329d44d6a4
34810 F20101211_AABSEM casanova_j_Page_074.pro
eb94f87aa82f9e1a62003c5ffe811d0b
24bfcd06ee19c7c3ae962c9a065b2f3bbf1e3066
6102 F20101211_AABSDY casanova_j_Page_016thm.jpg
f5985993c506d28240317b85a12ee4f5
943bbe1fd1e0813d4cedc810e713996d2b6eb2e9
F20101211_AABSFB casanova_j_Page_013.jp2
9612fe0afc41f49c96f397b09fe63906
9571a2920ce73e68f3d6e722bd65aea183a78cbe
247 F20101211_AABSEN casanova_j_Page_105.txt
cfbb3613f88c64c192d8e7fcfe56f1cb
24f4466822f4fa5111540f3d40238a623c657f93
843925 F20101211_AABSDZ casanova_j_Page_046.jp2
560421b5562165c50abb0108aadd2016
75f4234d529a6463e4d7879d10f61c4c238fbc81
4449 F20101211_AABSFC casanova_j_Page_090thm.jpg
43b4a754488835ba396bbf39a8c2c817
b548c259f6c91b4f67b37997af7e4bbad5751a20
F20101211_AABSEO casanova_j_Page_070.tif
103a56b63cad5b63b17aa58cad502415
b7d51787138a5fec9cbdf0b736d44d44afb150ff
2484 F20101211_AABSFD casanova_j_Page_034thm.jpg
df5372347815a2328beda9cf529163f3
4bcccb645d62f2685c2fa8cfd69f7e2f8920ddd1
2571 F20101211_AABSEP casanova_j_Page_099.txt
d50fd182a31cd36cdc8fd41310d2f319
e7f204981e24d40b1a5a4fe67361f67d6b1e5b78
F20101211_AABSFE casanova_j_Page_024.tif
3aca1ce0af400efc553fcca3692a8a51
6c06285bec84179477cc946fc222b31cf1d04884
F20101211_AABSEQ casanova_j_Page_105.tif
0bde4de1bd1c2ebb255a0a7ed2139786
443bff64b3f3e8070f0d67c2f9d5edb9a5e87629
21762 F20101211_AABSFF casanova_j_Page_068.QC.jpg
81d48ebff7ad41286ef5b183ff2bcda8
37a049d523cf2de7c2c62e64f0015aa1ea049a47
F20101211_AABSER casanova_j_Page_041.tif
9c96f27f891e9269f4781d72bbe9b46e
2dae30684077d225102c8258114300dd80948053
F20101211_AABSFG casanova_j_Page_020.tif
3bd4b5e311dda48dcdec1a79ee446645
19510ba60db80e181d14ee4f04bb9a3a33bd7fb2
4608 F20101211_AABSES casanova_j_Page_042thm.jpg
4608166423d4ee9241d5550bfa0c9b4d
c7fa78f4305a86e46093e98fb19bc6c296002b05
110580 F20101211_AABSFH casanova_j_Page_101.jpg
b07e04b0ea2f58fb67e65ba26309edfd
39a7bbc9a358e3628b8e039d898de64e8871904e
4422 F20101211_AABSET casanova_j_Page_051thm.jpg
0ac883245b735204b3c80b4a26fb36cf
5cec4e2e1802a305977fad9f2b80be5e4d2620fb
135546 F20101211_AABSFI casanova_j_Page_100.jp2
3866df0dc1ed424b8cbae80977716801
709b64b5e2548e229d42fbab21e5085411450f12
2515 F20101211_AABSEU casanova_j_Page_011.txt
205286fa62a082ba2172a14da1935102
2615eb1a66e9c4c8d9f01d6dc1a252ce7b992270
1715 F20101211_AABSFJ casanova_j_Page_044.txt
0b0fd1195d3b54c980e7c351cec5a773
e7b4d3b8ef3fc3f2132ccc7816caf807b864c9ae
2330 F20101211_AABSEV casanova_j_Page_026.txt
2a8e64098674f1013f70fac31eb6553f
8c8931fd98825d2d9a58203e09d7c98060a9e7ee
24368 F20101211_AABSFK casanova_j_Page_049.QC.jpg
7ce94fd50b96d94af3724dccbf530f4f
a6dffef0b59822753562aebf6ffe9a6c293b2e7a
5866 F20101211_AABSEW casanova_j_Page_097thm.jpg
17fc5817de32c50552dc20c71cdbb6f6
392e3eb83c825a6ca251931777474d36673bcad9
F20101211_AABSFL casanova_j_Page_036.tif
774d6a24238f424cde7fa029be5f494e
5c547348e6c5366108560decc667b9dcd0bbfe0a
392 F20101211_AABSEX casanova_j_Page_015.txt
a5203a56840e28e9add563a3fd5e9b84
ca5a38bfb1d6cbc628e31721c1ddee93ca30e7c6
867 F20101211_AABSGA casanova_j_Page_004.txt
6783b193456e118f61c456111c5c2def
84105231ea2a4f3463544e3e35871351e827e681
12704 F20101211_AABSFM casanova_j_Page_024.pro
0d696f486a10d0b34f37eda9440e9f24
221f29a3ce96a8fd72af809a74b7034b5a46d2c8
F20101211_AABSGB casanova_j_Page_077.tif
6824292e9e36c1479a923a8f8b9e0e3a
f8239bc19bba5f0bb088ade0084c53193f5180c3
35653 F20101211_AABSFN casanova_j_Page_058.pro
fbeb0d2ac1921e94e9e59751f1d0da43
b54348cba57d0d7eaa90538f986b8d48fb680ec0
5094 F20101211_AABSEY casanova_j_Page_020thm.jpg
b56ed9fe5655a042c53b85acb745ee8a
71d5c6aa71b0f530679ecf0b7d6aa40757e46143
2921 F20101211_AABSGC casanova_j_Page_009.txt
84918b2c514f0231343703aeb8b8b568
d47a6946db3bfac178e5ca4ee38bb40eed1544d8
100345 F20101211_AABSFO casanova_j_Page_100.jpg
faced137e60d15d4a29515142cbae32c
9cdef1df77aec3a553b0e6404520a724286a3e42
F20101211_AABSEZ casanova_j_Page_014.tif
4935cfb0cd5a0f6eaed08604e27c4969
2cc698930aa038e26e0031052b6bf4a6a9b782e7
46366 F20101211_AABSGD casanova_j_Page_037.pro
3abb5c6eede898e5557adf9262f99eb7
92fe7c5bcf3dbdbc79d6ce756a2d3c76a40e36bd
15806 F20101211_AABSFP casanova_j_Page_088.QC.jpg
6144bcf23c259e9b2fefb21c32150ef7
ab46b8655bb8182318c86895708fa03a24a99132
1205 F20101211_AABSGE casanova_j_Page_073.txt
fc1db2fd1e08e2e4135731e8723e7f1f
18b8f2159d03802358ac88a8a19f1da6ba788bd1
F20101211_AABSFQ casanova_j_Page_085.tif
ee9ea0559e411e499b09d322b147f3e9
4f4965cd969fe3739df90acded776af6b0112ebf
20914 F20101211_AABSGF casanova_j_Page_017.QC.jpg
4eebbbd4091bf50fcd45df8ced0ab500
0ce584974902c68108cbdd75e223a62e517897a4
22931 F20101211_AABSFR casanova_j_Page_058.QC.jpg
c25e1a06882ab22543ee4ae3d7f0d5ea
82c508590c3a15d409e384840f4439c49941800d
781 F20101211_AABSGG casanova_j_Page_021.txt
42c4830a3f106e7bc836f0b2153f99c4
3d58176f9075c7a6f5345fe8087ee545b8e7ec75
793 F20101211_AABSFS casanova_j_Page_060.txt
0d890be7aa26a891be14f28ceb853983
7bd15078c1c690591f53f61f2261b97cb88d961c
977089 F20101211_AABSGH casanova_j_Page_091.jp2
a36115158c8a7face8f78571e327fa75
03b7355468af6632b993f31d23c432bdb1dfd6cc
12798 F20101211_AABSFT casanova_j_Page_086.QC.jpg
cd5a6df8cd4a7dff4406db52b9359acd
baa5b7ab38ea26ff375a054ad29394e82790b617
11796 F20101211_AABSGI casanova_j_Page_104.QC.jpg
09d9527f4e94f9150a58c938010c8068
ca5088d1526514e9f3334be0c06618f8f285c6c7
F20101211_AABSFU casanova_j_Page_101.tif
f10c3618d9c9e90f94024988a50c52d8
b17c5af603479fa82fc96db4197e06960d282127
988 F20101211_AABSGJ casanova_j_Page_003.pro
7f5ae3f0d2195b15699388813a311c81
a24500ef85f7bfc97d60aa01dfb0509a4257e847
79734 F20101211_AABSFV casanova_j_Page_007.jpg
9183ad1ef76b41d28ac7a10554460f58
2d298d200b3f6f6109cc78869654d467d424a019
1410 F20101211_AABSGK casanova_j_Page_063.txt
0ba4a4cf3c18b877b1b4e7df4d20fecb
ec9d265babf64abd44e6b8c3e85d4ea1d689c10d
F20101211_AABSFW casanova_j_Page_087.tif
099f8a53d86c39027cb5d1b12ddafd90
a016f69a9a95b05d474129ab9f8536975979e358
123276 F20101211_AABSGL UFE0021535_00001.mets
000c754a03b76efd3ab6b43fe74bad38
ebbc5fc4678e3a47059f7072fbcce2d992d13912
23398 F20101211_AABSFX casanova_j_Page_098.QC.jpg
ad5ac331f58093a64f4ec536eef4dd38
851e0ad1c11592be9a33f2474b2d0dc3d8e56bc1
21522 F20101211_AABSFY casanova_j_Page_007.QC.jpg
67f3f995c06c61834a348f24e7c46d1d
2c3260c8e9376493adc028f55e8a8f68cb78acb0
45283 F20101211_AABSHA casanova_j_Page_019.jpg
35eaca54d2a451d0f9fcdb758c24d2d5
4fc76c429e71e29960e09b94c6edacf86b896052
34940 F20101211_AABSHB casanova_j_Page_021.jpg
eab9f4e9a8cfecb66c3ff83703e85b38
979aa636dcf0dbb2e337d7797cb969fa52164514
22385 F20101211_AABSGO casanova_j_Page_001.jpg
e7e9f49512ca54604859269895dd0715
b1e5d875dd2a291838af4edf291ab8a01191fcf3
1335 F20101211_AABSFZ casanova_j_Page_068.txt
d9b42179a44ce8c12e70be69f2ad0964
779f2dae52d886ddd915cad619807c61b48a01c1
29621 F20101211_AABSHC casanova_j_Page_022.jpg
b7b1dfb8941acb52e32e14e97b657288
1004d72dcd755c126e427afaf01bc902a137799a
3793 F20101211_AABSGP casanova_j_Page_002.jpg
48857f5ed8840bcb2e0b008fe37453cb
6516e88dd5ef308894ff5897ae043e3e83013e3a
27437 F20101211_AABSHD casanova_j_Page_024.jpg
3d0a9ef8e2ddea12008fc3aa06df2726
eb19dc40e06ac17994896ac52331a5a3ee7c3458
3286 F20101211_AABSGQ casanova_j_Page_003.jpg
8b938c193f70461b90dabc7e86a09e5e
4052c979d1f6fe2563a9f3d5aca4d67a2b2553ab
87591 F20101211_AABSHE casanova_j_Page_025.jpg
5c3191520063e8bb0f5b2f99f3478c6b
628e16cf1f82ce6e71a41a560b95476c7c51e634
59678 F20101211_AABSGR casanova_j_Page_006.jpg
0069ca2234c73a5d23ebe6a10bb7dffa
e47653a516313216e0721f8b2b20feec8dab6ca7
93296 F20101211_AABSHF casanova_j_Page_026.jpg
ae72de9f7b8b9042a03af54c04426d8a
0425f5a06bf9db3c55148278722f466b1436ad5b
104679 F20101211_AABSGS casanova_j_Page_008.jpg
bafff210fa2581bf8fec59eb284ace12
eeccdce90f5391951df4069572196e41dc208cb6
84914 F20101211_AABSHG casanova_j_Page_028.jpg
a94edd9008daee6e05151cf9d17e9468
bf50f8c0b9575acd6b9d24714d4ffd07bfb1378d
124749 F20101211_AABSGT casanova_j_Page_010.jpg
ae4f0786220d7fba1e009af750c8fa82
5e8fe487f11f42277457d122c1c93d44119338e3
53223 F20101211_AABSHH casanova_j_Page_029.jpg
636d4bfc5bd355585fcda744011e115c
9ed7c54d7851b39ccc0abd153291cb406c982248
105572 F20101211_AABSGU casanova_j_Page_011.jpg
149a9069e0f33154f0b9f237a7fde96c
0a16a6852bd995c60eee512dfc99648132766f38
73814 F20101211_AABSHI casanova_j_Page_032.jpg
48bc16645bce036f856ee6fdb1a18289
60a500efbcd78cbba49c9f6ddf7aa5b8731a7512
63905 F20101211_AABSGV casanova_j_Page_012.jpg
77de3366f5b35f07e12bc989c2be04e7
ffae3c8204c33637f5eb711439713a8025914070
49042 F20101211_AABSHJ casanova_j_Page_033.jpg
921b4367c77c23a8415a7dfa4e04a44a
88b2934949f8a2a54e4088e44439050bc66f301b
92507 F20101211_AABSGW casanova_j_Page_013.jpg
55cd6a89df0a1d2c25eb12d1e18e203e
9b20d7aa3f86c7a12421f54c6142b0e7f4ea3b4c
50117 F20101211_AABSHK casanova_j_Page_036.jpg
d60f8fe377104019e20c7c276f44f25d
fe8a106a5ee0e2c5395fd52ec3532904827f9486
88704 F20101211_AABSGX casanova_j_Page_014.jpg
e59ad66ed808dcf63a25159db9d6fcc9
0fc37022576446e4147528f61dfcd7652d60fc91
78907 F20101211_AABSHL casanova_j_Page_037.jpg
e8883fce0e0ced2430557da7bc59863b
267aae303adfbc58549884cb199f9af0f623b446
85384 F20101211_AABSIA casanova_j_Page_055.jpg
dd61bd85aab44da45247dd098609a6c5
dbb9edec1624e5e697d5d6b11a8cd2581675b8cb
24989 F20101211_AABSHM casanova_j_Page_038.jpg
6e5746e654e47efe51f9774b0d6420c3
1788571be6dfdf06c2e63149d6e174c978a4b19c
37101 F20101211_AABSGY casanova_j_Page_015.jpg
4cadb49ae8d57130b81b2a50e97e2623
45d38c311e4c2c136b120439d49840f3a1cde891
76711 F20101211_AABSIB casanova_j_Page_058.jpg
0e8941fe33dac33651f08c8c4fd06313
1685674bf4949fa041c25d3b5b1cccf5fb0df24c
91052 F20101211_AABSHN casanova_j_Page_039.jpg
c5e83a41c9fe3472f9078c8ff0568200
6870e6c106b3a27bcde91171f45c69d23dd6069f
69128 F20101211_AABSGZ casanova_j_Page_017.jpg
7304c5ba8b49bbab96fef2ccd1c65180
72fb1c2d6f59e13a938bc157227f5aaaa73eabab
76689 F20101211_AABSIC casanova_j_Page_059.jpg
1f39d3e536922c01d9c0b261a8b0835a
d510daa02183c7d1899f3a394c71e9f5bcac145d
84416 F20101211_AABSHO casanova_j_Page_040.jpg
34f3229488252f20edfcc85f3403ffe7
8e0e56555eb65847964ae2eeaa4e80ddc5852461
67607 F20101211_AABSID casanova_j_Page_060.jpg
9d478f8df4b253e6536705d5de65a3a7
3ad45f24a9e421f1dd1bb03059556001b00f841c
70353 F20101211_AABSHP casanova_j_Page_041.jpg
b1a9f5ce10328ce67d9ec9f8350cfd46
31454c4169e8321d390334f597e72baa06515d51
65148 F20101211_AABSIE casanova_j_Page_061.jpg
c74cec6a9e1f4db7bcd3812442914f05
07851a35e8e1034ee8473b1e6ba1e566c87de041
56393 F20101211_AABSHQ casanova_j_Page_042.jpg
d9421707c7b5ce4ba0194f3c556c4d2e
8c002b3362181792485b3c50a276758457b4f035
80993 F20101211_AABSIF casanova_j_Page_062.jpg
ac204e92544211414a7cb220c52df691
82e896d123ed2ad29f5ad2929b8aa3949e61d1cf
52732 F20101211_AABSHR casanova_j_Page_043.jpg
1c57a257d61027f0e4c9cf0d05fe94e3
ee1634789f09e9f43f46680a317c2d1c093413b4
75675 F20101211_AABSIG casanova_j_Page_063.jpg
96558c15e86cfa40999babd1d5de4156
997fb3c9f82cefa6f96cef7332c1e5b44d32b0e8
52327 F20101211_AABSHS casanova_j_Page_044.jpg
62279fbc8a51c2dc0450de540e4507b0
321751568ca44efa5c0cf53999c0d3bca5f3f2d2
75395 F20101211_AABSIH casanova_j_Page_064.jpg
8ee6ecb4f490d58cb934cc39ff2ae21f
6bc9d1b5f4f13a7d693029d0d9fac844099d57cf
57496 F20101211_AABSHT casanova_j_Page_045.jpg
df78681b9c243bf384393c917157212c
46d049a28d3afd1ec3b0faa6877581c820b64e52
79127 F20101211_AABSII casanova_j_Page_065.jpg
f6bc2d65fb25512b378cb5b3dbb276fa
ac8ec703b62ffc5ecf0b11522aa3676f5b35b307
63507 F20101211_AABSHU casanova_j_Page_046.jpg
33af0af0d7f1514a8d5a146427f89c07
6f4eaec331b7103b77007c2024a714b38152213a
62266 F20101211_AABSIJ casanova_j_Page_067.jpg
a4cca26690d3151e7baf22450581556e
3e14a80a9bfeccd7e4abee44b5b40b7c3f0dc736
90359 F20101211_AABSHV casanova_j_Page_048.jpg
e4213ed762eb05b7745430432946a2dd
783bf7ccef18c302ec46a2fbe6d422990c4225f5
72312 F20101211_AABSIK casanova_j_Page_068.jpg
129227626673dcc0011015b85a05f8b2
75d506e216acc0728bfb776f1f38333d0ea27c63
84806 F20101211_AABSHW casanova_j_Page_049.jpg
5c09d2d1e15361fd3437f12940e70149
0489cba40872b169085a5d804ddfabae73b4298d
79400 F20101211_AABSIL casanova_j_Page_069.jpg
21f6901e11d1d3f3542ed32f3ad89b72
4f83aaf28e75aaebc821f8e8c459e8d57ef3a87f
49735 F20101211_AABSHX casanova_j_Page_051.jpg
15a2321a0119374f1d271f8de224de35
4e4ec8afd96b74896b4d7a578b0240e4dd55001b
77255 F20101211_AABSIM casanova_j_Page_070.jpg
181ac4170503e49c625d925bffb905b8
cc07f1624c8dad52da90ac4aa592c3c5d105502b
91797 F20101211_AABSHY casanova_j_Page_053.jpg
afeb40c173ceeb46950e2a06ea153007
60bd0b403d90c3728b03d215b9f7237ff97e3225
52259 F20101211_AABSJA casanova_j_Page_088.jpg
e7d6a159270b85506c2f8f2fe283c5fb
2488447044f15fbcc526a47aa383d5975495e7ee
84181 F20101211_AABSIN casanova_j_Page_071.jpg
9dc98bc25020ac9c38864cc312d0c2e9
610bc75c4c8444687e4e480db89d32adcb672fb9
51653 F20101211_AABSHZ casanova_j_Page_054.jpg
afecdeb2fd9ec5d516d2216b36b9d56c
076b586036efb328fb45ed6587de26230eb3f703
52928 F20101211_AABSJB casanova_j_Page_089.jpg
564700dbe903507ea9712788d638e6b0
9dfda3bc53427ccc9a60f4a31f1a8ed66b042da8
71796 F20101211_AABSIO casanova_j_Page_072.jpg
aba679dfe54ca91e6b0aff70d61f5be3
67718affadce1f886df8ea2607be5e59d2692d40
63316 F20101211_AABSJC casanova_j_Page_090.jpg
4ce1b4d75c53ca0f81b8f881fcf918df
a42e6c7a0ff3453a755fa11c93c103f97e975b30
86226 F20101211_AABSIP casanova_j_Page_074.jpg
2b4dbef85df093d1337110c5a6290da6
0fd33c9a48166fe815d40a6390d3bf969943d619
72392 F20101211_AABSJD casanova_j_Page_091.jpg
f1144d3804f8d8f37d073dfb7322ad12
c800f2a1a425027a0f39bbde986a96e01f0ed689
73987 F20101211_AABSIQ casanova_j_Page_075.jpg
673357a34c436e92f2d115b7db329a06
5715958763b2eaff85c089f6a2110197c68c7255
59663 F20101211_AABSJE casanova_j_Page_092.jpg
a039d743fac8f4427dfa625bd59e569f
ce79e8b83f5315c6c3a63db6d22b144aef77f898
68215 F20101211_AABSIR casanova_j_Page_076.jpg
d44e421f79fde72633bfcf40fea41e99
983d54f190478a25173f2e5c9d74a8d894387c15
56463 F20101211_AABSJF casanova_j_Page_093.jpg
2c27bd8083957d0421326343024ae639
dba78797bb9070965ca7a13f37984b8a99f7dd78
60551 F20101211_AABSIS casanova_j_Page_077.jpg
de4f78a92bd358bde092e52ebd17fc63
02527efcde812be6c29b5ff67d41ae66eee1bc40
94549 F20101211_AABSJG casanova_j_Page_094.jpg
8a647e760734dc75ccab7ea934015179
0e3365d4681904fc4fc240aeb87ca81a7c3eff9b
78124 F20101211_AABSIT casanova_j_Page_078.jpg
a6eba29b5895499d18a5ab79a5a6c814
2b05ef7c41b2f2242f281605eed0386989c47464
47745 F20101211_AABSJH casanova_j_Page_095.jpg
0df25f6187843145798badcc108f2f8e
cdccf8558dda6cfa7b54177f4bc00618a7616710
65777 F20101211_AABSIU casanova_j_Page_081.jpg
5f9674004bda854504a01fafa40654a0
0914ff6f2b829aa09483d4140b94b098ac4c2584
87876 F20101211_AABSJI casanova_j_Page_096.jpg
0e1bfdc67fbc1a9385e284337010d431
328710371dee122512f0dca009234d82c53087e6
83532 F20101211_AABSIV casanova_j_Page_082.jpg
bebc82cc1c4cfe5c7ce4c786ba9dea44
100bac42385254068cdca4fba0e26191d837468a
79470 F20101211_AABSJJ casanova_j_Page_098.jpg
0f1d1d32dd0ebb94008e70fbf26ebfb9
2fd3fade44266913dbb85fffc084c7e462222188
38344 F20101211_AABSIW casanova_j_Page_083.jpg
31f40db23d940581255df003ed0de7ef
f714a093a3496dacd4f861441cfb2a50badf5570
98865 F20101211_AABSJK casanova_j_Page_099.jpg
0946c7b18ed2aa377f8a5106fbf311ed
dbb4563ca1eabe56f7b99cc45f8b7336619ea41c
48239 F20101211_AABSIX casanova_j_Page_084.jpg
d1bcbd640fa6c1a918ae7dbe977c370a
8fcf25b0038b1d00834168c419e2ffc3f02729b5
101572 F20101211_AABSJL casanova_j_Page_102.jpg
2cdf6cd99c32878e5ad2deb42a3dfd3f
91023a23ff1c99fa057dd50f099703f5b4252556
42238 F20101211_AABSIY casanova_j_Page_086.jpg
dca8c0d153c462c5ae3e3447a72fe69f
ff4b1dccbc0c3a63c7b1fca63fbc03a863d332a5
935104 F20101211_AABSKA casanova_j_Page_017.jp2
c9b5e07e0dcf4e463e86957974c4c055
e6535c0b9a2ac91abd037eddb8d9ace5df141e1f
96441 F20101211_AABSJM casanova_j_Page_103.jpg
5af1628548cec8b494790bc110c38761
fe96b06e454f5666be09135e1837c56add4b26a6
66603 F20101211_AABSIZ casanova_j_Page_087.jpg
1124c52128a2d830daea934233b23ed4
0c55cbac3cdfa9ad6fa8665d4a8a8b8e8c99fdcc
1051894 F20101211_AABSKB casanova_j_Page_018.jp2
e87dc2b4ae8d49548cb38dacdc094863
3498d801a9d87b29be0253ff4257dd824a684f8e
45177 F20101211_AABSJN casanova_j_Page_104.jpg
36ef11694b771f94712d6269072b5b50
541a613fc9b976924aeacaa9c422b79e7e00376d
1023833 F20101211_AABSKC casanova_j_Page_019.jp2
f4671aadb779018a3d8eff5cb1ef4ab2
dd40976c01207ae20f5f6da6c3b3f1a49f5810b8
11069 F20101211_AABSJO casanova_j_Page_105.jpg
218d7ca6347a2f81cef6870ae5382caa
fe1c8fdfea494411088435d9ca8c7a9343838e76
990455 F20101211_AABSKD casanova_j_Page_020.jp2
978a7cba0296f364aa7d21ad284a22fa
fb8d52da650380241d45902e20688a07f0fb57dd
25036 F20101211_AABSJP casanova_j_Page_001.jp2
3be462fcf723dc63a75b19e6f2f8937a
40fcb33c65a98bdaac1da4217fd22cf8555cd8d3
440869 F20101211_AABSKE casanova_j_Page_021.jp2
fb3a39e168ee96bba88a0286fd3e508f
57935849279a8660d882cf9a4127833761670c36
5599 F20101211_AABSJQ casanova_j_Page_002.jp2
064b35ad4d53c72c2e7fabf4f66701f1
e17d631af0d73ec9fb28baac1ac45c68c607f907
431199 F20101211_AABSKF casanova_j_Page_022.jp2
e2a5a55e52e562159d75c8286b613b51
6f66c89cce23c35228e6e987b9c5f3ec3e1a0e01
5276 F20101211_AABSJR casanova_j_Page_003.jp2
a515a50417395289ed63796e5754b22c
3519c3dd1aaba0caef8e37e83601a7f6ddc47981
416118 F20101211_AABSKG casanova_j_Page_023.jp2
6712cea1b837f4c6e28c6c70cb8ef309
0b9fe988b568548e67c37a4c93b195b9e3b2b0ef
1051983 F20101211_AABSJS casanova_j_Page_005.jp2
c0d41d38e10f6ea3283d3fb6ad76dde6
52b308774d7293cda1629612c4533b71387ec495
301147 F20101211_AABSKH casanova_j_Page_024.jp2
177d877b938e2f34912ca4619586ed29
8a24a3cb6789cf65b8a3e953f25a060c73e3b564
1034675 F20101211_AABSJT casanova_j_Page_006.jp2
4783e74a41530afb8e782708a94a1257
c53633faabc2825dcf5b701353a90f7685475cb8
1051952 F20101211_AABSKI casanova_j_Page_025.jp2
ca8009585d6dbc049cccb11ee1ccec6f
b95529a82d531febc7d75dfd2ec84f73945e7628
1051979 F20101211_AABSJU casanova_j_Page_008.jp2
894ff86326405f64e7172bb48a9697b1
d3261c64dc3a1928453e089872d373dbf09a73ea
1051938 F20101211_AABSKJ casanova_j_Page_026.jp2
866ed27347fb0bc8bb6cf83f26110566
d240135ee1c18806a2130eb002cae97271882738
1051975 F20101211_AABSJV casanova_j_Page_010.jp2
2f0c62853bd14c8ddeb73615d4108445
b4e00bf7cbe397ace168547f1dcf79da7437f156
100116 F20101211_AABSKK casanova_j_Page_027.jp2
068cbb814d5de0f03dbd55e6736d1919
a3fa8093f6c766b00699800f5bb4c11c5040703e
1051984 F20101211_AABSJW casanova_j_Page_011.jp2
a223e12cddcd7a0ed2065644ac7a5ccc
ed1a6538313cd3efd95fc1061c23f67810b83170
1051908 F20101211_AABSKL casanova_j_Page_028.jp2
04a8a1eaa878392f0577b75755713b67
8ddd3c0692d8f88bc8cba2c985c1917f2d8bce80
1051956 F20101211_AABSJX casanova_j_Page_014.jp2
a8d1004df0e22a428ad9bae7a92bd274
b32113f2d05c5c3e21fdb54e27698dae58ebc0b1
697825 F20101211_AABSLA casanova_j_Page_044.jp2
3f60715767ab870f63bcb40698182b49
19d2d9d1b45684779a7b7958f21de3f10d221c81
712070 F20101211_AABSKM casanova_j_Page_029.jp2
99d748fe050760fd63d2561b5154eefd
0e612d832f1e24abde01714139000b7ba5ae21f8
531544 F20101211_AABSJY casanova_j_Page_015.jp2
c307c953cff6d8dfb0bf1f0b366510b9
1979b76a9ac87c935419a4b02a3c28553a56851b
787553 F20101211_AABSLB casanova_j_Page_045.jp2
38419e063293f4b18a1fff41a92ace80
885c7d15dad348ae4871ba208432c6ded0cd348f
1026424 F20101211_AABSKN casanova_j_Page_030.jp2
6064acf4a2df1b3dcb128188f5e343ae
a8b59c393aab570e81a23079abecf030b3722711
1051977 F20101211_AABSJZ casanova_j_Page_016.jp2
f9d27f20e72bcd3429db882ac956a319
91ed97207f66b203d25279b083b7a65222d30e5b
874686 F20101211_AABSLC casanova_j_Page_047.jp2
83fe7909bc194792574f47f298f9fee0
84e956539720dc09095e4f5b8435e0d643e474ed
724586 F20101211_AABSKO casanova_j_Page_031.jp2
98c0b4030ba506de4291423b79f242cc
903e080e323614b02f9d4d7f42b9b35417d1e6a2
F20101211_AABSLD casanova_j_Page_048.jp2
e011663dd4e6f89ce73cd3cc4dd790c8
946473855ff8aff3bf2fe6ed3bf9d99828c6cfab
989319 F20101211_AABSKP casanova_j_Page_032.jp2
ee412d3a1987784ee0b55f11205c632e
0d79c32c424d593fe2267533f3cb0d698787e5ae
1051949 F20101211_AABSLE casanova_j_Page_049.jp2
33dac13f8b6d94f9eab48491ec2fdfe1
40b75ad1876fb3e0df4b39ce97d7cb5f641c4b99
870636 F20101211_AABSKQ casanova_j_Page_033.jp2
5421600f3109d7b415dfef9b3f6ebc6c
9330f78946bc8b29c58834c6e9b09b897f054ee2
1022147 F20101211_AABSLF casanova_j_Page_050.jp2
9b72f2e0d508ad6ae70ad45b94e8f248
140ae198cab31843cdc4b94fea39554090fe9120
440864 F20101211_AABSKR casanova_j_Page_034.jp2
43051b9a5d7b587225a2d64a22a62aae
d9730c5d2531272f6a0087b5c9a95f5da0d930d3
F20101211_AABSLG casanova_j_Page_052.jp2
72d342d2dd81bdcbad15feb79e3acb28
641590c5807b375db159a1b03837283c4ceefa49
927238 F20101211_AABSKS casanova_j_Page_035.jp2
cc28f04a3f5fad595a3a9c35989093f0
1136f29aa4e0486a71f62d6d6849559a974aef24
F20101211_AABSLH casanova_j_Page_053.jp2
4af38bdb32febecd5ebc0a51448c1b63
1e8c06404aa917adff6784e0778e3e2925f4e2b9
781806 F20101211_AABSKT casanova_j_Page_036.jp2
4cfb4d25ad1caf8d417d16fcc6ce35c9
fd0c51a6ef667088a86011dbc244239dbc17af30
812285 F20101211_AABSLI casanova_j_Page_054.jp2
99ecfe8ce00d3a65cac12fb812be7953
60517c027021bfa9c2323af821e284452a050d75
1051951 F20101211_AABSKU casanova_j_Page_037.jp2
17317445eace1f55695a58d13e4d448f
d586434eec309d7b7abf9db171638c4d6b498fd1
1051970 F20101211_AABSLJ casanova_j_Page_055.jp2
e7d77bc96dedc01c61d6f70d20a60af6
75f1c64160b14c88c267567a4963fe3409180553
1051953 F20101211_AABSKV casanova_j_Page_039.jp2
7e3e304aa432cc7669d1b7730a9a1065
8855bcb95803bb857a1195dd9a3f3eaadb51760f
F20101211_AABSLK casanova_j_Page_056.jp2
3e0cb963998893376cdc52cb479ebfcd
7edc63a38e2f6c6d22a59adb5309d1ddf1f83792
1051963 F20101211_AABSKW casanova_j_Page_040.jp2
813d8416f2d39c62ad86974db99a5cc1
d82a6296cb3d9ee8be2c6e090a0aed6ac0ea2437
F20101211_AABSLL casanova_j_Page_057.jp2
ffdee30d235cc5898f7a988f415e411c
f09543bb60a4a74bfc597b98b507d8e9993cad99
972476 F20101211_AABSKX casanova_j_Page_041.jp2
7eaab48f18dfc3a35083320d47f0ecbc
ac2a52feee4b76c90a8981b82ae7e99b9bb8a47b
1051986 F20101211_AABSLM casanova_j_Page_059.jp2
118e6737b2d6012186a65fefadbfc774
aeccb93f2697ca2de9e2add1dd5843c4789dab5f
725819 F20101211_AABSKY casanova_j_Page_042.jp2
00d519b7505e203e0007247add42de6a
8f89eb3c674ec87f233e9d62fadf27b22d1d391f
1051980 F20101211_AABSMA casanova_j_Page_076.jp2
ab870852ca80330bb9fdb7236a0b4f44
0a67603a96a6a302b42e2024c0081d2604f356c4
1051944 F20101211_AABSLN casanova_j_Page_060.jp2
31952f25e74ebd6887d2bafd4bc474f8
b2ef1ffd894846e1585bab5cbb44c3802e803b40
745484 F20101211_AABSKZ casanova_j_Page_043.jp2
3a647252f64ad5af43bd9a759292fea0
d213826ab91cfcebf1d60a23fe3b5653fa45b84a
972778 F20101211_AABSMB casanova_j_Page_077.jp2
6abd3045c7d676923869462cbb7c1759
b83e96d641ceb8bdf101252d90ed06d90507a231
F20101211_AABSLO casanova_j_Page_061.jp2
8cadd63570dbda3d01e8c68004f736a7
31b5fb5f4fd9fae61e575c942d2c1c1d981d77dd
F20101211_AABSMC casanova_j_Page_078.jp2
a4ddba32ad164f2e546a9e07c3e5705b
f87d23969f6707d2d0e8e0406cb11ea5d00eb007
1051955 F20101211_AABSLP casanova_j_Page_062.jp2
61e94de5cfd49153cb6a7bdec6266282
120021f3aa7ffb6035611a40c9080b538edc6d24
F20101211_AABSMD casanova_j_Page_079.jp2
ba3bbd4539eca0193d325beee4b3840e
18b0de475ecb23d5792816ec49496933658df131
F20101211_AABSLQ casanova_j_Page_064.jp2
94b8f8716c59ce314fc8901f3fcf9629
19e3a35c1aa7f5aedbaa0d333f8028e32db7dfbf
1051976 F20101211_AABSME casanova_j_Page_080.jp2
ec81d96fd42707f5dd7307f6774f4609
46acc29dfb7227fa3b87cf41e4ee975bd1e05cd2
F20101211_AABSLR casanova_j_Page_065.jp2
5b3d02c6be103b443a03b3a7c46c718a
562d731b1a35ec41fdce343301582b9f1d352774
854840 F20101211_AABSMF casanova_j_Page_081.jp2
e4bd1a021594a2d63f5c86f0ecac2f76
87466fe6a40684f19d8d215ca41f302defd708ac
F20101211_AABSLS casanova_j_Page_066.jp2
35e9960a8e17c1a7cee51ad89d93cef8
55bcda0a2cff5617965605ae381778b7a948ee2a
1051971 F20101211_AABSMG casanova_j_Page_082.jp2
2fb2ec3bb40a497b51362f247f65f7ad
e132bf1f937747901d9dd2b9b93e073fa762dd95
F20101211_AABSLT casanova_j_Page_068.jp2
9ce694c2a094047ac30a3128cea1a951
c5fc471fa0e120664c8dd79bd6a58b0050adc025
526097 F20101211_AABSMH casanova_j_Page_083.jp2
bdf9b891bdba3c779a7bba715762d2a1
4b4f04d7998306ef90151fc16dc33db9777b4f1a
F20101211_AABSLU casanova_j_Page_070.jp2
385afe4f969c33cfd471a71a731e2c74
d1196edd08ddf7571c77158d0b9c69a6fe04675f
791054 F20101211_AABSMI casanova_j_Page_085.jp2
72dc0d5c6023c7ef0858d40d49d9ec4d
cc777e22e8fb84688dc2a15b7f93e8c210036a8c
541846 F20101211_AABSMJ casanova_j_Page_086.jp2
5e1f56e93b136e3007951b52f7af00fa
cb4fe44c118a8e939ad8740b0d2ea7663e56a27b
F20101211_AABSLV casanova_j_Page_071.jp2
f82352a4e29dacaf4acb12f16370e309
0afdf10121d16b6762876a7051fc6a222e8db578
910495 F20101211_AABSMK casanova_j_Page_087.jp2
e16ae824f9e984ea0435a4157067aa38
ed1d37e2461f31537acb023056ba4acd8d577877
F20101211_AABSLW casanova_j_Page_072.jp2
050b150757bf29bb40f934fd34c14093
f7a327a11fc15c43ef5d88c7e297399f0d715e97
F20101211_AABSNA casanova_j_Page_004.tif
9b158f69337095698146b35701f6a5ee
72dd49c41fe474be6e038f2bb2773ee733347bc7
670926 F20101211_AABSML casanova_j_Page_088.jp2
2deeb5adf102b741ced61ecfb4ce6c88
59f031ea568505190e6392586d788293ba950cbf
1043162 F20101211_AABSLX casanova_j_Page_073.jp2
6a4b5fc4314e4b316e8c9c788dba9d36
1530eea5a4d6a7cbefe094f4a82112ed891e44c7
784578 F20101211_AABSMM casanova_j_Page_089.jp2
38cb75bfdb74b88098efd349ebc1dcc5
e2464f43f7d38dcb9e19c58413b7726ee9d93e51
1051973 F20101211_AABSLY casanova_j_Page_074.jp2
060bd9c1df31882538c660ec1f4a4ea7
277d5e213b10f6308e4cca718ffa3df6a61c18d2
F20101211_AABSNB casanova_j_Page_005.tif
ed39342264801a1957c74e510a066cfa
fd889c34fcd173b6e47efd3f6d90051e6027261f
1020532 F20101211_AABSMN casanova_j_Page_090.jp2
70395d23614bcb4d400e174bc876fe98
0a8b8ba5cc4a0c6ce0d4d7da6968c6c6105aeb8e
1051957 F20101211_AABSLZ casanova_j_Page_075.jp2
08ca7885d532a38180483a08bcff9dfd
e6bf072b7a93b63c2491b87ac97c92982bb52c5b
F20101211_AABSNC casanova_j_Page_006.tif
d124bb0ed914ae1c2c1a570feaadd20a
3282aceedafd738517d7234276c1670f8625f665
983738 F20101211_AABSMO casanova_j_Page_092.jp2
847dc3b6aceb80f04f433bb3da843782
ad1af78a059561b122750af0e195c87b00fd2fd2
F20101211_AABSND casanova_j_Page_007.tif
704bba9dbf1f8933d7eef94208c949fd
787745b3e61ffe33bb0096308ff917f3b2fbf460
988939 F20101211_AABSMP casanova_j_Page_093.jp2
b8f3d9eda00531c5c7d48713c1f1759e
40a53397f7a2705095e62baface32a2d93c8d872
F20101211_AABSNE casanova_j_Page_008.tif
64b03580685f03c1a0a7617e4186139e
67739cb57167eae316a479655fa644675979c748
1051981 F20101211_AABSMQ casanova_j_Page_094.jp2
e35d5cbe13dfde14f172ec55c0715e4a
0619a2767ea084e82c527e7a5e1560f234606414
F20101211_AABSNF casanova_j_Page_009.tif
70b1d5e18f70f0686e1d93c358f5e5a9
380601705d3da5d180fb06f54ebd84e63bf8da4e
61572 F20101211_AABSMR casanova_j_Page_095.jp2
3409723456367b3e6691a8664e5911b3
7d4898c1ba56205da13fca5c933c8b5459b6b41f
F20101211_AABSNG casanova_j_Page_010.tif
6c344548051cad29a6eaa4d01d3e5465
228e54591512c0ebb3bab971f2f631c9d1b37619
115119 F20101211_AABSMS casanova_j_Page_096.jp2
64652259c0a874bef3227daf22ad9e89
88e716554b74f7602546a711f06698c7369b0e98
F20101211_AABSNH casanova_j_Page_012.tif
5d11ac8c1d1c638f986c79274eb81259
95e9ec644b95108fa27e3deb52624c9e2ae3b1ff
1051969 F20101211_AABSMT casanova_j_Page_097.jp2
1afc4a8b6dafb7a6d029e107b9460d6d
83cf5b756f875976d6cf9e3808d3372929cc0312
F20101211_AABSNI casanova_j_Page_013.tif
e05ba3ec40ae8bd4d823eebfdcc939e1
172e7bcb4194b2c99ab8576a01c9776f86362c0a
134310 F20101211_AABSMU casanova_j_Page_099.jp2
30671965c30dd8612a8db78d68fc6014
8f23e6aea2b3fed4555b46b837e6a18c93aedc27
F20101211_AABSNJ casanova_j_Page_015.tif
92b04e5a160030fc071647cb4a617bb2
3c0e647cebb0ae7635659fa0bae2f0b7f9e2a26f
137731 F20101211_AABSMV casanova_j_Page_102.jp2
2e27f7d7782548e47acda04f1e03fabc
6f67d631aabc0530a7182402677868eb1a3e003f
F20101211_AABSNK casanova_j_Page_016.tif
2e4423e1691e4d860bbd49b11b1ebce6
f874845076cafb4d1a1d474b221e004eccb90e43
128608 F20101211_AABSMW casanova_j_Page_103.jp2
5546c654bb25eb9046f361e368ec27ba
5f87e4cedb4558b81a60864e2d2754998c1c3041
F20101211_AABSNL casanova_j_Page_017.tif
a3f87ba2dbb5a77d31bf988f7233e20e
958201439088fea876bfebd88fe38b9baac64782
15987 F20101211_AABSMX casanova_j_Page_105.jp2
b1a505be1aa860db2122508089fa44e3
221fc2f4a781bfc887aab532ae918aa6e7ccd302
F20101211_AABSOA casanova_j_Page_037.tif
5233b3ed0ffa64f4142b945de588aa5c
13832b9485b01498e7c9e5df5b7ec12ab0afb4da
F20101211_AABSNM casanova_j_Page_018.tif
90fdda266c83d2edbcba9c44b77677cb
a20ef069324cd6425bb7c9fd9383581cc45985d1
F20101211_AABSMY casanova_j_Page_001.tif
1c491a2e2c2e51d2165edff85737df25
26e13125de13d99f3c13ed2ddc66295f355bc3ef
F20101211_AABSOB casanova_j_Page_038.tif
2c56e9f7b1bedf798d0760db85e9e7ee
c390ffc8c63435677f2d36cc055c0780c3a9c638
F20101211_AABSNN casanova_j_Page_019.tif
42bf14449243c0ba448277c2ab7d10e5
416bc93598669c049c29a37bc954b4ee0c22a9da
F20101211_AABSMZ casanova_j_Page_003.tif
cf25d3adbb119c4e20e06d5bfd350534
c661f9471a7a73fb693470665dd72b8ae27dd584
F20101211_AABSNO casanova_j_Page_021.tif
5152e67b88ae3613b974c45e41302cf2
3788c78853c1ce3201b81f49a38f49fc352be49e
F20101211_AABSOC casanova_j_Page_040.tif
f52c1b3f857a5be19c0c703f9bedc940
ea6b060ca762fdc94b41e9329f9c0e7b8c26e60c
F20101211_AABSNP casanova_j_Page_022.tif
d79a4eaefe5484a3071385f2327d66d6
688f47d6a75a571c82fa7cacf5e820c1939394e0
F20101211_AABSOD casanova_j_Page_042.tif
a52961401cbd60032e3b42c2750c2d5f
790d92bf7a2bddfb7d30dcefcdcb74b8bdddaae9
F20101211_AABSNQ casanova_j_Page_023.tif
bd2c5f7042882a8f5657c727dbd9e4ce
f799c0cbd2171a39bf8a1ac8b86945820bc9680f
F20101211_AABSOE casanova_j_Page_043.tif
d364db8251194705fde6f3d9e3023f95
78b8afefbd2087c9af3a5986f57d10c1baad59c0
F20101211_AABSNR casanova_j_Page_025.tif
9fc60e30b00a2aa53c23e89d42553792
21a839b59b0069f72e18c6c25ab2ca51877ae07f
F20101211_AABSOF casanova_j_Page_044.tif
b434fd2bd32d83b227d4b97193e7aa67
aa346000f72a484e2ddd8e7e70eaa0ee4f1d6727
F20101211_AABSNS casanova_j_Page_026.tif
5984b1bf5278144c51d844391b92aff9
46cde8db960ac0d385576c1fd7d4250cc5e3b7ff
F20101211_AABSOG casanova_j_Page_045.tif
694d0f6f48ed1d206e3037169d04f473
b87e24b9570178f72fdf1018deadcffc77ee075e
F20101211_AABSNT casanova_j_Page_027.tif
06292aac5c6ba537409f1d7a3e30193f
a5433ac7099d5faa9923ca0f1dd90e196ffa5762
F20101211_AABSOH casanova_j_Page_046.tif
8adb4d8767e1e9e79cc8610d61b4086d
22801cfbfa46ce54c5de57483d52fa20bac206b8
F20101211_AABSNU casanova_j_Page_030.tif
86c0cc2101942cc0a7e55cb1bc09071a
b9e0e4c3b35f25c6c3369e03bd340f3cbdffebf2
F20101211_AABSOI casanova_j_Page_047.tif
8c9427d0f0cb8dddc42f34bf2f11d163
e07399adb6c41c7cff550ededdd35814a91b0a3e
F20101211_AABSNV casanova_j_Page_031.tif
63ca1ef2eaea1ca9a418bd913c23dd4d
c24e2075dc5a77f394cce80c5b2bea67f92433a7
F20101211_AABSOJ casanova_j_Page_048.tif
f179e1bf1a7e21647c478164e0f6fca3
deb7619ac258146254968d5eedaad81b22882af3
F20101211_AABSNW casanova_j_Page_032.tif
ed5834397ae9d6c8d521d033830af742
e44a885554e37c665f253ac96178b9574adfb0d5
F20101211_AABSOK casanova_j_Page_049.tif
f8aac5d64ba2996e7d895b0ee063069c
034c059303d24d22f29e0c53c9d9f1d5215ce2be
F20101211_AABSNX casanova_j_Page_033.tif
3d939695eb52eba9c52ee4065427ca77
ad79181ba8aeaf03cd1a02b6c705e59621856bca
F20101211_AABSPA casanova_j_Page_069.tif
8a65365f548b7fd21de91d0a86fd408d
53bbebf172845d2d1115007231a6d1bbcaad0079
F20101211_AABSOL casanova_j_Page_050.tif
8206032eb728ab9da7e917968afd26d3
5f163b8ad6247e597d6e030d7187c52e7dcea68a
F20101211_AABSNY casanova_j_Page_034.tif
f04377fe903853f31ab60942e445adfe
037b5e70840163ebfe955cddcb346d2e83a7fb39
F20101211_AABSPB casanova_j_Page_071.tif
7a68185242e4637d1b254b1d2524adf6
4dd26e56ccf57791db4d704311b0d75ceb813239
F20101211_AABSOM casanova_j_Page_051.tif
dec2520d66e52bc405a69baec02869e9
396eb4db3cf22852a8ff6cfb5610507091dd7560
F20101211_AABSNZ casanova_j_Page_035.tif
f4148708828adbd6f9e8cbdaede9200d
bf57b36d183676455f09111cf49a288bbfa67619
F20101211_AABSPC casanova_j_Page_072.tif
69e1b927fcfc14a1004687a602a92187
c19788b7293e76b2e1dcbd2c56f822e92292942e
F20101211_AABSON casanova_j_Page_052.tif
3d34123c8da6be07050d35b42a306138
68a821521fd85d88873797c9f8dfa4748fb9b0d3
F20101211_AABSOO casanova_j_Page_053.tif
9668666368fd13a9fc39f5433ac710e3
f6d1ac7db3264d4b911574ba119a9afbb6651651
F20101211_AABSPD casanova_j_Page_073.tif
f52879453eea7de4b8d219a2c386fd57
c7933d51dd82ef8a40b904fb5738f7af3042a4ea
F20101211_AABSOP casanova_j_Page_054.tif
684fcc8c6643a973e61d5ed5c06de55a
5a368665bf3294c436c44ba61f9f89a6164f9248
F20101211_AABSPE casanova_j_Page_074.tif
0350a6e7b1cad13559ce43e704a93bd1
2b5d05c615f235d5f2752c9d5e49ceae5966dd51
F20101211_AABSOQ casanova_j_Page_055.tif
a6e5aade1aaa3d32876ce3787468adcf
38266034eb0bd44e305fb6610e8addbb6b723e3a
F20101211_AABSPF casanova_j_Page_076.tif
1cb657f1a6fc68f1b07bc54da2522ad4
df7dbef6d3cc9f6f20ef3eb5e448c04aa388a4e5
F20101211_AABSOR casanova_j_Page_057.tif
d86576512bf71dd69e59ebd05c306b49
c5aae0ab19108184d0c912344c72161af64f356f
F20101211_AABSPG casanova_j_Page_078.tif
4030b463f8ed6e97638ee95f536272d2
3dabcf9a9cd03e2c3170c8ec99ddf44de4b235ba
F20101211_AABSOS casanova_j_Page_058.tif
a03ceaa39272693a603a9c79251d1b41
8badf5c1d57819fcd4ca62e9fc31357d4823a8d7
F20101211_AABSPH casanova_j_Page_079.tif
2e45b801763b7fefca4c636dd76d2e38
d129833a8f0be1fb2f58c6aaaa49af86368b96ec
F20101211_AABSOT casanova_j_Page_059.tif
d5e90b1b7b071aa4d96cca3e6108f08f
d3eb3f5d5a86dc78a029060421d9b889383bc336
F20101211_AABSPI casanova_j_Page_080.tif
e9a0209724f21ad380caed546650c462
f6b531d14bea9086956362df011a4bfc6b5d2169
F20101211_AABSOU casanova_j_Page_060.tif
45bcab3b4baed0c97df4f6db3b56fefd
fac1e347a6561a00e524cb9c91ae91ab9b1e7f72
F20101211_AABSPJ casanova_j_Page_081.tif
9680c38b6481961a9d22a3664bfd39ba
fc0c6e51354d10cc8090e9f2e4890d4f0db37f6a
F20101211_AABSOV casanova_j_Page_061.tif
5a9b1ebcdc72aeb6c465aa2ec4fe109c
7916ebe179fa7e71c7bd9bd5b8ef3e713568b218
F20101211_AABSPK casanova_j_Page_082.tif
a76bfd9a7443ee2439f518c993f6125e
cd1a41ec0d03371f908b6cc7043d5c31a7fe5683
F20101211_AABSOW casanova_j_Page_062.tif
00813f5afe8e70c1152de49146cee7c2
bfd5a74e648cfc3d325c9e1049866221e6203884
F20101211_AABSQA casanova_j_Page_102.tif
6ce041d01636613dda87a9234e37f352
6505e740b6a14fbd1e4f0f654b58ceb3f4aa8e2b
F20101211_AABSPL casanova_j_Page_083.tif
b4c910cbdc516578dd5ef5303891d2dc
4ee732bc191e28cf33586e46a9ec081c1ab7f76e
F20101211_AABSOX casanova_j_Page_064.tif
6ef27fe45b161dc2d2a4960335098bff
a49ee70734093a03c81afee79a01df98256cb77e
F20101211_AABSQB casanova_j_Page_103.tif
5f66574ed3e420cc779dc97559ce94df
133052c1fa10e40c270894fe96278aa7ee81d448
F20101211_AABSPM casanova_j_Page_084.tif
725a1983bcd20c06fd5462849cfeae5f
f922fcb4ce16ae2e11201569fd74a4af7a4553b0
F20101211_AABSOY casanova_j_Page_065.tif
455c45ea415fcf33ffd7215300b1ce70
4a886eea65cd4b5d410c69815b94d23ff04d54ca
F20101211_AABSQC casanova_j_Page_104.tif
ed38bbbcd2b663b9e781ce72dfe9d6e3
32b0ba7e471d95de6ce4f6289f98c42e8ed7c56f
F20101211_AABSPN casanova_j_Page_086.tif
7675efe3d183a495db4514428fc4baec
efe1e2497ddf6318f588215bcc855a0fa2ce6aa4
F20101211_AABSOZ casanova_j_Page_067.tif
512a22ae62f5062d81a61b4bd91842e6
4cb15351646c96c8a4e2f03de4263c16cb13aa36
936 F20101211_AABSQD casanova_j_Page_002.pro
c03323f6c22d504d4d0e4340c1c0a476
4e963e7a664a656e02ab0613ce57e4806caf8f51
F20101211_AABSPO casanova_j_Page_088.tif
6df1fe9be05a89b1f175ea551ff45d5b
f66d949974cce169db20cd81b6f213a37304665e
F20101211_AABSPP casanova_j_Page_089.tif
63385a676a9327b0fcb8db643c4357fe
1dd0aa98bb90544cf1f560de8b39710da7c89c02
27429 F20101211_AABSQE casanova_j_Page_005.pro
cc9033c952673835df4005ccb0f6a24a
7499beffed9690c5dc702d5e6fe4f32963cefffe
F20101211_AABSPQ casanova_j_Page_090.tif
288dd54a69535477c58d940879333f98
13fd0661fd8390bc94c456d1f921121873e8ece3
16360 F20101211_AABSQF casanova_j_Page_006.pro
60c31dbd22a26cba3a9ba0851a9a5c30
8b6b6a8665db2444a7243cd2c253bae4e182dcbb
F20101211_AABSPR casanova_j_Page_091.tif
c95dd39700f3ce99e94faec766f5e831
e624ddbb003e9bf9b747cc174e19725c96e0ed2b
42801 F20101211_AABSQG casanova_j_Page_007.pro
6e12d29cfdceda15497f461320044e71
04d510645a13269ed6d0a4c628e2a1b658bf10f8
F20101211_AABSPS casanova_j_Page_092.tif
67cf0843c06c2e6e118adc34a737e705
e5ef3bc9f2f1d179371663408396eba494256e7c
64329 F20101211_AABSQH casanova_j_Page_008.pro
20d0b9b8c717e9ca1cd9585dfad29ae7
0bdff41b806cdfdf93054512cee053755a2b3d7d
F20101211_AABSPT casanova_j_Page_093.tif
1c36e5e8f861abebf4271c550eb4e1f1
19b372c2764ddb32cff03d0e818ec6d2b1a4b906
70118 F20101211_AABSQI casanova_j_Page_009.pro
9da9d6921613f9a3d6ff31d2be4a10f4
99406ba023bc8e86dd120cbf253297d57a38bc53
F20101211_AABSPU casanova_j_Page_094.tif
897155b2922a2c6bf699c443757415a0
b7d5022ac1c69c4f16875c1bc6bd90683d2c6459
59954 F20101211_AABSQJ casanova_j_Page_011.pro
fa14e8b4d51828b81ce2428d70c4c91b
931d761eac8017615af84881189318eb4137fa2d
F20101211_AABSPV casanova_j_Page_096.tif
f33095e056831873a125db8c1d324552
1395d840cfd3f772dceaa121d66413d80467be4f
37794 F20101211_AABSQK casanova_j_Page_012.pro
a85a84df04ffff1fd211f75694f997d1
2a8c5f2a990c5f03830f2176752cc2324ac12f45
F20101211_AABSPW casanova_j_Page_097.tif
097c9d3a27853f171c786bd0ca4aaff8
d9c8cda423514d0677fae9682a39d57488ef96ac
57095 F20101211_AABSQL casanova_j_Page_013.pro
b29b16875084aa30080c8867206ec898
c0c0d179e46bd0035c89f1af2352dd3b95eef41a
F20101211_AABSPX casanova_j_Page_098.tif
c442d57858dac5c18ac9a6e129b22528
1a710a6e293d3101645cdff0ca53b51356da38af
30915 F20101211_AABSRA casanova_j_Page_029.pro
0482d1a8f6b56ee5728bf549a90a120d
63747c673a2615dadea91a7ae176b236d9773a13
55152 F20101211_AABSQM casanova_j_Page_014.pro
6d215d8737e6328f127476f5fc56a8ff
10b13f011923fb3e1959d3f12ecf1836bf8a4715
F20101211_AABSPY casanova_j_Page_099.tif
a9b289f7a0369a3d0da13c0040b82a1c
21c4145901cbd488ba2dffbf407cff0663170fdc
44925 F20101211_AABSRB casanova_j_Page_030.pro
736e22f74c898db480a92d46f52cfd86
0c05f2e550f912f64917424c6b3f0a83fb925677