<%BANNER%>

Vegetative Filter Strips to Reduce Surface Runoff Phosphorus Transport from Mining Sand Tailings in the Upper Peace Rive...

Permanent Link: http://ufdc.ufl.edu/UFE0021212/00001

Material Information

Title: Vegetative Filter Strips to Reduce Surface Runoff Phosphorus Transport from Mining Sand Tailings in the Upper Peace River Basin of Central Florida
Physical Description: 1 online resource (243 p.)
Language: english
Creator: Kuo, Yi-Ming
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: apatite, dissolution, peace, phosphate, phosphorus, runoff, sediment, simulation, vegetative, vfsmod
Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Runoff non-point source pollution from phosphate mining areas is a potential risk to ecosystems in many parts of the world. Mining sand tailings that still contain apatite (phosphate rock) shape the landscapes in reclaimed lands at the upper Peace River basin of Central Florida. The objectives of this research were to assess the surface runoff pollution loads from the mining sand tailings in Central Florida and to evaluate and model the efficiency of vegetative filter strips to control phosphorus (P) from these areas. Field experimental data were collected from two sites with different slopes, source-to-filter ratios, and soil properties representative of the surrounding area. The numerical model VFSMOD-W was used to predict overland flow and sediment trapping within the filter and was linked to a simplified P transport algorithm based on experimental data to predict TP, PP, and DP fractions in the filter outflow. An advanced global inverse optimization technique is used for the model calibration process, and consideration to the uncertainty of the measured data is given. Phosphorus in soils of the area was in the form of apatite, as indicated by x-ray diffraction (XRD). TP concentrations were about 17.0-25.7 g/kg and Ca- and Mg-bound P accounted for about 95% of TP. DP concentrations were about 0.4 - 3.0 mg/L in surface runoff collected from the experimental sites. Release of P from the soils was primarily from apatite dissolution rather than desorption from metal oxides that is more typical of soils of the region. Runoff volume, sediment, TP, and DP were reduced by at least 62%, 97%, 96%, and 66%, respectively, within the vegetative filters. The VFSMOD-W can predict hydrology transport well (Nash and Sutcliffe efficiency (Ceff), 0.60 < Ceff < 0.99) for all but small events (peak runoff flow rate in the VFS < 0.4 L/s) due likely to large measurement uncertainty in the small events. The good predictions in runoff and sediment outflow from the filter result in good predictions of PP transport since apatite is a main component of sediment. A good prediction of DP filter outflow was found when considering rainfall impact on DP dissolved from apatite in surface soil. The inclusion of the uncertainty of measured data in the goodness-of-fit indicators provides us more realistic information to evaluate model performance and data sets. VFSMOD-W successfully predicts runoff, sediment, and P transport from phosphate mining sand tailings, which provides management agencies with a design tool for controlling runoff and P transport.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yi-Ming Kuo.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Munoz-Carpena, Rafael.
Local: Co-adviser: Li, Yuncong.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021212:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021212/00001

Material Information

Title: Vegetative Filter Strips to Reduce Surface Runoff Phosphorus Transport from Mining Sand Tailings in the Upper Peace River Basin of Central Florida
Physical Description: 1 online resource (243 p.)
Language: english
Creator: Kuo, Yi-Ming
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: apatite, dissolution, peace, phosphate, phosphorus, runoff, sediment, simulation, vegetative, vfsmod
Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Runoff non-point source pollution from phosphate mining areas is a potential risk to ecosystems in many parts of the world. Mining sand tailings that still contain apatite (phosphate rock) shape the landscapes in reclaimed lands at the upper Peace River basin of Central Florida. The objectives of this research were to assess the surface runoff pollution loads from the mining sand tailings in Central Florida and to evaluate and model the efficiency of vegetative filter strips to control phosphorus (P) from these areas. Field experimental data were collected from two sites with different slopes, source-to-filter ratios, and soil properties representative of the surrounding area. The numerical model VFSMOD-W was used to predict overland flow and sediment trapping within the filter and was linked to a simplified P transport algorithm based on experimental data to predict TP, PP, and DP fractions in the filter outflow. An advanced global inverse optimization technique is used for the model calibration process, and consideration to the uncertainty of the measured data is given. Phosphorus in soils of the area was in the form of apatite, as indicated by x-ray diffraction (XRD). TP concentrations were about 17.0-25.7 g/kg and Ca- and Mg-bound P accounted for about 95% of TP. DP concentrations were about 0.4 - 3.0 mg/L in surface runoff collected from the experimental sites. Release of P from the soils was primarily from apatite dissolution rather than desorption from metal oxides that is more typical of soils of the region. Runoff volume, sediment, TP, and DP were reduced by at least 62%, 97%, 96%, and 66%, respectively, within the vegetative filters. The VFSMOD-W can predict hydrology transport well (Nash and Sutcliffe efficiency (Ceff), 0.60 < Ceff < 0.99) for all but small events (peak runoff flow rate in the VFS < 0.4 L/s) due likely to large measurement uncertainty in the small events. The good predictions in runoff and sediment outflow from the filter result in good predictions of PP transport since apatite is a main component of sediment. A good prediction of DP filter outflow was found when considering rainfall impact on DP dissolved from apatite in surface soil. The inclusion of the uncertainty of measured data in the goodness-of-fit indicators provides us more realistic information to evaluate model performance and data sets. VFSMOD-W successfully predicts runoff, sediment, and P transport from phosphate mining sand tailings, which provides management agencies with a design tool for controlling runoff and P transport.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yi-Ming Kuo.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Munoz-Carpena, Rafael.
Local: Co-adviser: Li, Yuncong.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021212:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101115_AAAAAO INGEST_TIME 2010-11-15T06:06:39Z PACKAGE UFE0021212_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 2943 DFID F20101115_AAAEZW ORIGIN DEPOSITOR PATH kuo_y_Page_194thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
ae7558a75e45af0046fab75203bd1cfc
SHA-1
a3b61598959ff3e7bca1aa5d120299680c9a269b
14951 F20101115_AAACSY kuo_y_Page_003.jpg
0aab9dd3e7e9d1d79047db5be6c91c09
234a783eddf93dd7fcb20316709af325c7c32f2b
1054428 F20101115_AAADPS kuo_y_Page_150.tif
83bab4a86e1e9307fa74fc6ec5ef54f3
1906681c491315f08d8953a93f9ecc10727f16d2
8060 F20101115_AAAEML kuo_y_Page_213.QC.jpg
e817df377a49bec4f7e56b91dd8a9282
e6a83cbfce13938b8259854a82619e289fe1bd0d
4172 F20101115_AAAEZX kuo_y_Page_196.QC.jpg
e4af3b1846a8894e56e96b3d53380ad8
e0ad4375520148c87087464660428cba2f274370
81246 F20101115_AAACSZ kuo_y_Page_004.jpg
04c3fbc289e37464f9313c826d3ab482
87532d20b9e7ff07fb04001099d57101e86019df
F20101115_AAADPT kuo_y_Page_151.tif
9154513d9caafdab52a2e6c857cc4d5f
91514529ad6a09b7672c0eff16ef093d2291e954
17247 F20101115_AAAEMM kuo_y_Page_089.QC.jpg
318e468a320cf15451cdf394d61b2bfc
f7191a90c6cb32eebd3268271cd52ed3c64de6df
1051977 F20101115_AAADCH kuo_y_Page_016.jp2
31999780f8bb3c0355d6a667a1a72b29
09832d2e78b7ce33058ad5335b1bff6cb851a3cd
9220 F20101115_AAAEZY kuo_y_Page_197.QC.jpg
3148f441fd8f4238354074d9c85e55a8
17b163650cd23f6b68d7c86a3e4617a8e3dcd2ea
6398 F20101115_AAAEMN kuo_y_Page_057thm.jpg
db54e542cbbbb91ff417df4fcae4c8bd
7c44dd7b03d4dc5ffc34f1b2a66e24f5cf61a30d
872115 F20101115_AAADCI kuo_y_Page_017.jp2
f55a7d39b2b892e6a372350485255264
4e23bf501c04595f5e25ec86f3cd41c88a785616
4706 F20101115_AAAEZZ kuo_y_Page_198.QC.jpg
2fbc4a7614f8aec6f6591957013a2452
5d56e2dd2035c07f82a5fbd6540f4efc6d8a8688
F20101115_AAADPU kuo_y_Page_154.tif
f186043ec4baf26ca49cac2bbdb00ced
a086bfb43ccd7d0c8d9cf228bac1d7ce0e0b27cb
3999 F20101115_AAAEMO kuo_y_Page_105thm.jpg
3837f91bfc4da59515eeb4b9ab52294c
4640903bb720aed526b193414d41a6158e2b58f0
70776 F20101115_AAADCJ kuo_y_Page_019.jp2
72a217a5c63381335dd7ef0ef8efccc6
d3ebe57c03a1b1e99e828027356675f37ae71e4f
F20101115_AAADPV kuo_y_Page_155.tif
3d239cdb291e4d74b28b95ca2b709b6a
04cd3a8b2af3ea6f6f3b0bf51ccf37d690dc34dc
22871 F20101115_AAAEMP kuo_y_Page_108.QC.jpg
5c3b1f6e4d99f4e3b1119211c3634c1f
58ce3967d651fa0947325367d02677231e956b90
116536 F20101115_AAADCK kuo_y_Page_020.jp2
a777ecf9cf34cfcc5b4506e1e1929334
acdb1537b295d7b0d9155a9480903286b476e270
F20101115_AAADPW kuo_y_Page_156.tif
fa51bb8980e1e8cbd4f7b5da19269013
0fe18a7e585a1f6399bdb6faeff4e9f08ca607a8
116174 F20101115_AAADCL kuo_y_Page_021.jp2
2ea55f09790ab02367f94246d9ec25eb
895b7f2d5dc1179e89db652be57e6133388e32ae
F20101115_AAADPX kuo_y_Page_157.tif
481142e25e8eb0cc895773c1ec87f57d
1b68954add4812ea8ce1099f84780074d1ed6329
22692 F20101115_AAAEMQ kuo_y_Page_006.QC.jpg
3fbda065be44059d7f6e1abd28e0026a
f9a1de6b4ee5f11daf5680d8df7f0e9594571e43
114729 F20101115_AAADCM kuo_y_Page_022.jp2
37d5b4eade5d2c276680136dd5284c9d
212044544f91328019dcfb5c965093ccae0bba71
F20101115_AAADPY kuo_y_Page_158.tif
7dd6a17ce8ab71e1adbe540f999b1597
38bfe0b2c81fe09e767ac821e17b6bf306da696a
7060 F20101115_AAAEMR kuo_y_Page_026thm.jpg
522ebe0225b5d923c7fe51f82fba52d3
f3eb69a60b66950e3b18a4f7ab59661e3c990a71
117509 F20101115_AAADCN kuo_y_Page_023.jp2
55b1a9de55ae8bb3edcf284b6e879694
8e80d6f0aaf3d969a778b77da4b5d289414437e0
F20101115_AAADPZ kuo_y_Page_159.tif
114b5831fbbe716fcacbf83f35f54503
91b8d986b55c0876b8f6b9666b6d3db6201a87f7
3280 F20101115_AAAEMS kuo_y_Page_131thm.jpg
99b8de1a1671276b29513d14ef163472
ef715afdb85524b682da60f91a1f25226770cce4
104489 F20101115_AAADCO kuo_y_Page_024.jp2
0b10e5243304f65d8c79585e134f5b59
2d632ef461a3de8c6113970220765ad7c132b6c1
7002 F20101115_AAAEMT kuo_y_Page_091thm.jpg
ca74c370362c655b02bb81a3c6f18ec2
8a3ea10148293f7255f7bdf2c10bd88a3dd56721
29370 F20101115_AAADCP kuo_y_Page_025.jp2
de930af8e95dc5d646558eea78a63e43
c316cf27e441b590c920389796bd5dbc2057b357
24353 F20101115_AAAEMU kuo_y_Page_078.QC.jpg
fa83ffebac371e8f9fe651d44483e82e
acbe53bcd47ec54d3e9f353d1cc1c74ad18b515b
45304 F20101115_AAACYA kuo_y_Page_141.jpg
6cfceb1bfc14aecb23ed34cb1c643e74
3ea24a1efc04f9b291fe0ca945c992ea5d11ecba
115996 F20101115_AAADCQ kuo_y_Page_026.jp2
145cb89274c58b2fdb74ab044870325e
76918379b6637992d2ee56a99a8d5f594c16e1fd
4467 F20101115_AAAEMV kuo_y_Page_135thm.jpg
2eaf59da971c7a4b1a364e9f96c6d9fa
a7079c0cadbf3a96a86f71613c3214a9ae3443dd
46020 F20101115_AAACYB kuo_y_Page_142.jpg
567d1d08a8e6108aa45a68b3265855bf
3159b12a48fb3cbbb6596ba8e942c58b2441951a
117413 F20101115_AAADCR kuo_y_Page_027.jp2
0ae3226e76ecff778033580569a00079
3712dc4c8267b45a6ba0516b159f9f53a8f192a9
11210 F20101115_AAAEMW kuo_y_Page_146.QC.jpg
2e474d137bcec76b3a082216a4832061
89fbfe9f9903e5238492b316e494aeb4b1bb6777
40639 F20101115_AAACYC kuo_y_Page_143.jpg
90752de2b89fcb126dc4e7dab899bcbf
d26562c65e957dca7fdbad5a90d08e993d18e1a5
123089 F20101115_AAADCS kuo_y_Page_029.jp2
f63ba537438488fd8b88867c9b9b6912
72df8658c616363464cc3ed0bbbc2b6590b991c1
2804 F20101115_AAAEMX kuo_y_Page_176thm.jpg
908b94e1b40b7435d828ea93e6f8103b
e6cd3c6f20625a75972e7385a0f8eaede959a036
41320 F20101115_AAACYD kuo_y_Page_144.jpg
7fd1e21a6ca9a8fc1e88d4df23ac0c54
694f724c59328353af9ebb142b6a4d5e5b35839b
114559 F20101115_AAADCT kuo_y_Page_031.jp2
90d9797894479f367d2afe772a94833f
505f4235bcb2c2b0805146ceacc7fefb23b9207f
23165 F20101115_AAAEMY kuo_y_Page_024.QC.jpg
89724d85b3c96957ebb0f7ad65713523
b0e03380045c248c74eea0cd9ce205d1e36d4be8
65397 F20101115_AAACYE kuo_y_Page_145.jpg
699e23cedfeaed4f2cc332a52add4592
bc1f814b0296fcb136390a51d6249ccfee4d02c2
106543 F20101115_AAADCU kuo_y_Page_032.jp2
75c9ed3ffe7a4c9fb732deadf5d292d2
f5f4f525a64cca3c8fa77170aa29e04772578b55
4601 F20101115_AAAEMZ kuo_y_Page_069thm.jpg
9dc04bf1f26b1dfb32ed62c6ea2eef41
43f1927353529bebcc4cf3b92de891fff64404d7
40467 F20101115_AAACYF kuo_y_Page_146.jpg
6943ddce554acadf7d977f3f8475e9a9
3de4a21994c51d6c898062e1d04601a62d12c4a7
113028 F20101115_AAADCV kuo_y_Page_034.jp2
9ee82f86d8e5e01d86792cbcda3bcd96
fc12501cbb440bdca05dfbd9ccec6c0e09940d52
37108 F20101115_AAACYG kuo_y_Page_147.jpg
765ee77d7047283350dd2c2a5c0efbb6
c3529cbd8dfc82558597d896baa6fcb28cf9b00f
95343 F20101115_AAADCW kuo_y_Page_035.jp2
e448d63f2d3434b7fc7821626c7bd046
cfad217cf8bb23cd39b69592f11ea4c6d4dcfe4b
42815 F20101115_AAADVA kuo_y_Page_060.pro
1892df9914b8428fecee07786c0abed1
23f20b28ab41c766ad4262cf6753a9a1b199d735
19392 F20101115_AAACYH kuo_y_Page_148.jpg
a6325c0f68892d18522266b97bf09cdc
31c13cdbd95aa708c6aa1059ffa8e6297b008e78
93909 F20101115_AAADCX kuo_y_Page_036.jp2
3a4851b35fd2681f1ff95ca3f24aa451
22e65b32908a805cf2ef41bf07074ce04e55de25
45696 F20101115_AAADVB kuo_y_Page_061.pro
53778f0ea7d9910b8bed25c7815bf3cb
da54afe6e0ae9db64ba81369bb8f088ac47af48e
30488 F20101115_AAACYI kuo_y_Page_149.jpg
2a42bb4366b8addbbcccf9045716b7f0
b6f8b4788037fb9a95379e145d71b0f6190cd43b
1051971 F20101115_AAADCY kuo_y_Page_037.jp2
c037cd05aa5ce221acf29720c14407c0
74d08ca957b4cce3898aa7a4391e4292170f8e1e
41935 F20101115_AAADVC kuo_y_Page_062.pro
9c492c28c1e1d801380ab904e89f8c3f
759486f2235229dbef91c4e9d3bb9bb5fc56070d
33086 F20101115_AAACYJ kuo_y_Page_150.jpg
f1d01b9bcee90f917422b4d9b7fed3b9
72a1537db81c67cf3a53277a5ef8dca52e138825
116188 F20101115_AAADCZ kuo_y_Page_038.jp2
ea89126d484a6eec95ef894a8d415ee0
4f2b17a0b1dc7c782e18b733fe82264acd0f8b4b
53887 F20101115_AAADVD kuo_y_Page_064.pro
f8d9a90617e20a1d272f244e7e627e51
13f1c7fc57407e0a1a398392e9428b6d05ba34ac
29785 F20101115_AAACYK kuo_y_Page_151.jpg
4416bbc918875b561b37ea191adaadb2
0ee28e028524bc39fbf3debaa1b7decb9a61109e
52139 F20101115_AAADVE kuo_y_Page_065.pro
9412aca2d3f8f3268f5e477e2580fd46
2dd452dc50ebcc782a85d5b79f72d17c8ac6763d
25436 F20101115_AAACYL kuo_y_Page_152.jpg
8c16d2655b828987146a51b323468de5
799181e5da021f85e45faea6f0c8978b82caa6b0
54050 F20101115_AAADVF kuo_y_Page_066.pro
11097db06ba09136f0682814da4f5ab2
e4cc2fba6023197d2a266e96eee436f9815cf19b
28112 F20101115_AAACYM kuo_y_Page_154.jpg
5a844a5320d57d22dd46c79b38c37bb9
029911f4d3bf4cffb635f96a0b0ed23c273cb6ea
48068 F20101115_AAADVG kuo_y_Page_067.pro
f167bf9153d61aaa446f6f9acfc7a040
634626ef60790ca9fbc8442124c62f019ed52383
34763 F20101115_AAACYN kuo_y_Page_155.jpg
eea9e627034a42bc8c5fb21bef01396e
e8b1f51d655a6036df8e7aa3ae1a8f815687ea3e
50043 F20101115_AAADVH kuo_y_Page_068.pro
5fa1b28715674c330b8db49462b0a39b
cfb88376630251993213f0cee5cdcee7a1b37872
6819 F20101115_AAAESA kuo_y_Page_014thm.jpg
061dce54102523581cd9fbe071c84350
2f86ff12320394a0686cbcf93cd1076aee0d8d9b
24292 F20101115_AAACYO kuo_y_Page_156.jpg
9967a90dc2d5630e2cd47f53a1432f7b
60990aa75bd875ff3551f4220aaaaaa33e92b8e9
34951 F20101115_AAADVI kuo_y_Page_069.pro
f085941bbe958a293dcb2ad421013cf9
71cd60cd32bf907d2e456b36542ec2b8d813b6d7
7600 F20101115_AAAESB kuo_y_Page_015thm.jpg
1bdcf2496bf95fbe1e3d93736976b71a
d971a160a70cea6c177680d9d4d2292b5f1e9162
34369 F20101115_AAACYP kuo_y_Page_157.jpg
9b96698be062d567c53f894a23887fa7
6fc37afe0febd3eab52a9c87e64878555e972c87
25886 F20101115_AAADVJ kuo_y_Page_070.pro
dff2bad8e440338b6ab83f7ea0796c6c
fc7a5f6e0d4b35b76e5e0adc2d57e121f910c015
7636 F20101115_AAAESC kuo_y_Page_016thm.jpg
18f2670b22fcd33a16e87ef0e91f718b
bb9c13eb78f96622ad46350fddd0d756adc9026e
24589 F20101115_AAACYQ kuo_y_Page_158.jpg
2765836b20b6ff8a5f8541ff5685a523
b3b750974d168c54ec7f61f337cb442a095c2c61
16246 F20101115_AAADVK kuo_y_Page_071.pro
444e5cbe67d78cca0d7485986d36e6cb
500680b6ca9d03f96b5436b8d5fc40ca317643b0
10820 F20101115_AAAESD kuo_y_Page_017.QC.jpg
dfe0601f363996d6c64a392944861a92
c9390517cfe8d8e48658b12a2eae9b9f47b2696d
32844 F20101115_AAACYR kuo_y_Page_159.jpg
f3fba529b78256bf78bfc18da9834d69
8559067b87d9761bcafdb014691a447c9a159c9b
14650 F20101115_AAADVL kuo_y_Page_072.pro
ec014d222d27d59c75cfecf97c758cf8
5579a09f0471e81cd689a4681bc30fd64b42437c
3233 F20101115_AAAESE kuo_y_Page_017thm.jpg
f4065bb1346a6c7708183122bfe00100
e9b738c11ee6141e539599169beb91604a4c6bff
69594 F20101115_AAADIA kuo_y_Page_179.jp2
aa679bc0e4022dd8cf668afc3ecf5a23
b4acfeb266e2d49fc49b3e08d3d317b435085a8a
23338 F20101115_AAACYS kuo_y_Page_160.jpg
4db55613cb854e2f7e1246f8065b2368
2a6e8bdd936d0458b771e86e0d74f575f339c260
12904 F20101115_AAADVM kuo_y_Page_074.pro
35230477cd8c3509ae0dcd970dcf13a8
f1c33c9e07e4164927f18ad1468ab15efed9169a
22482 F20101115_AAAESF kuo_y_Page_018.QC.jpg
102e26643f68a926609569462ecd0f09
0cef6d758335950fd1658b9a2e74121045297fdc
109555 F20101115_AAADIB kuo_y_Page_180.jp2
19965e1850f81449d7fefe8d03debea1
9a4cd42e3c2fb72dea4fb0dbc02bb4d0141d3685
31115 F20101115_AAACYT kuo_y_Page_161.jpg
1b85b76cd833116d29702b46f342b7aa
9d10e549baa6a65b8acc12083fcc7c183508ad8f
55288 F20101115_AAADVN kuo_y_Page_076.pro
5d77f552b5f94204ba2d8203f96c2fc3
225e54590d70231062b0d0d5c7f713afdb6752af
16122 F20101115_AAAESG kuo_y_Page_019.QC.jpg
91b4851846db6288fb56ae5c98615c0c
1423783125ef4798cf9bc9005eb1916d8f8c7578
60816 F20101115_AAADIC kuo_y_Page_181.jp2
7f55b5a2ebac43a066414093676c76aa
600f6e596e16758e588def3348ed7ef055dbe433
32779 F20101115_AAACYU kuo_y_Page_162.jpg
7ed89603bb6a6b3d2a5167f04488db8a
9e7bfd6c124d73dac6691b289d05a319d82705e4
55240 F20101115_AAADVO kuo_y_Page_077.pro
bbe7ba99e4ad9e49b0bddd42d8a776c2
ca6e93d0570629ff81bb00c798ed694ff0c0cae8
6952 F20101115_AAAESH kuo_y_Page_020thm.jpg
1aebb0d8325072ba9885e8e969d5ca94
95c5d10c8c51dda7cc6598a9b4975b0a6b6ad95e
87811 F20101115_AAADID kuo_y_Page_182.jp2
fc028ffb2cc1bae1e2f6f9b400c2e37a
3c5f70702d6cbeb56941b04ec347f5140c1840c2
14457 F20101115_AAACYV kuo_y_Page_163.jpg
cee3fa8a68078a7a949b26a1bc097054
066cde56626c7f15bcbb3d59bee91829ad131f90
51685 F20101115_AAADVP kuo_y_Page_078.pro
a27a0c0fb319900acd4b64ccbddbd0c9
76624ef034e8c3df3f6dbc3586e6964240b0a626
25784 F20101115_AAAESI kuo_y_Page_021.QC.jpg
6ad8559d32acbca15d3e9b8fe8044b54
e9c0c7245409e7f964af38e47ce058de6f5044d5
69437 F20101115_AAADIE kuo_y_Page_183.jp2
efc206f9cb34a016b04c75ce0c372ebe
b8e2f477d4a127de69536360db9fb12833d11ad0
33836 F20101115_AAACYW kuo_y_Page_164.jpg
65bf74d68fa067a22ec5cf0f35523fae
f0695d86bf14e6f9676d4167de9649f13a6dc6af
54391 F20101115_AAADVQ kuo_y_Page_079.pro
e6e7bd7b6c335b1b61534bbcd02cca98
d14a8adae022658676c0f4b527933ccad50e12e0
7009 F20101115_AAAESJ kuo_y_Page_021thm.jpg
5d448f5d5eb06082336b3ffde09db0b6
d494fd3c4f2fb0235ddac27b3279bb841a9aa9d6
88889 F20101115_AAADIF kuo_y_Page_184.jp2
5187c05490f3b0b90653d01e6aaf7e50
7f5dbbf1dc1f098ac741cc47de03e8d1a26af098
24535 F20101115_AAACYX kuo_y_Page_165.jpg
83585eb00bb0aeb8d2385e53b2e06e20
324e841ea54394d273bbe3ad2fd7c5dcff719105
52682 F20101115_AAADVR kuo_y_Page_080.pro
38685a6098db031e8bc47d3d37836d9e
3ad2892b57f7f3f49c0954c1e2a3f465cf035ec5
24755 F20101115_AAAESK kuo_y_Page_022.QC.jpg
4e9ca91b41ff46c6b2c5e06c6f37f734
a8355bd0cb041469b66d69195b17bae69bb7310f
71227 F20101115_AAADIG kuo_y_Page_185.jp2
b832e89a22986af044c30e78c76b94e2
4a9da30b2a95f888828ae3043052c4e334de4321
32787 F20101115_AAACYY kuo_y_Page_166.jpg
17850d78ab4bff1b4d618804cce11591
b8893a669529a8fd6ad71128a14c7ab284092bd4
46701 F20101115_AAADVS kuo_y_Page_081.pro
9e31b5c482c0ad65710c44547a7a0fc7
fb570037c4f0f970edb02130397af5653b8d1f01
6549 F20101115_AAAESL kuo_y_Page_022thm.jpg
a0d4eb52cd8dc01a2bd335f8a9185a5c
8caf426d5df169befaf6a90d37c8e2838c9ac2fe
85704 F20101115_AAADIH kuo_y_Page_186.jp2
48d4b926881c04a945b8928c50f277f9
e8956988d41f4748043bc7d764e691c418e2e374
28798 F20101115_AAACYZ kuo_y_Page_167.jpg
71b50af40647052d5a281d689b56e870
13ef54c6a43bd09c832f1302af9767bc033af2ce
3667 F20101115_AAAEFA kuo_y_Page_097.txt
b712fdbd41fe3354ccb902e2ff08a0c4
d2cfb640b7a1e6e15ea6e8a6a64f4796b78e708b
34960 F20101115_AAADVT kuo_y_Page_082.pro
3d88c330b9b29d71dd0abcc7b85d59a2
468c7f8e24e6ffc291129f45a89ca3b7d21328e8
25344 F20101115_AAAESM kuo_y_Page_023.QC.jpg
94b08ce2cb4fe7a04ee6b74590db6071
06eaa2bb1056f7ffc70d0ab5c390d328369261e7
71007 F20101115_AAADII kuo_y_Page_187.jp2
c31e1403870b586c9b1f433b911aab27
cb01ddafc23d64b8fb844998d49828e5d90479e0
3230 F20101115_AAAEFB kuo_y_Page_098.txt
1696271cc1efc502d33fc4798594edb9
9d7392521eb95567f45bb8441da463f5404d3386
28145 F20101115_AAADVU kuo_y_Page_083.pro
1d9932eedd9ec38c68b9d7a93131c9b0
4b5fb128399a9ac6b392804168058991147fd650
7054 F20101115_AAAESN kuo_y_Page_023thm.jpg
3fa972d5dd613a59db5b554fc5453d68
a31bfa33a7d0c5ccb3b52eb999618a8f8a29fd90
61811 F20101115_AAADIJ kuo_y_Page_189.jp2
826dcb38eca6984af72f5269d4b03267
12a256ff09bb126e4b33facccd4165225a44819b
1277 F20101115_AAAEFC kuo_y_Page_099.txt
5beb5d4a6110ad66ae4d0ff762d44128
123aafdbb6a6e455e877cb83d3e2e982347aa265
41608 F20101115_AAADVV kuo_y_Page_085.pro
5ec01070931a64b0f8d83d37b1467dbf
ef6a95c36a2fec496a2b2f465abaf8115e1dde62
26066 F20101115_AAAESO kuo_y_Page_026.QC.jpg
c17da1b43b74760ec33d33d18c81f545
51ce72ec724e946701e5c9f41005461378fe1382
107134 F20101115_AAADIK kuo_y_Page_190.jp2
b5702037234c3e95ef3ad2108d186f4d
d4ef6f21c79e246ebaed66c6d50a48a9ff70a89f
1097 F20101115_AAAEFD kuo_y_Page_100.txt
671e0901729f97da8fd61bdba557c7cd
d705a46e85be41c9cf054c68828eaadeaf2048a8
50584 F20101115_AAADVW kuo_y_Page_086.pro
485dce9c3f82c0dd41a580dd73835bea
1a0b7c7708642dfb40f845d7209a29f2430ed6d0
7174 F20101115_AAAESP kuo_y_Page_027thm.jpg
f980b8ea9511c21d34cae450e721cac7
0f899b6ef92c55de18fd8844c7f58afc256beb28
88542 F20101115_AAADIL kuo_y_Page_191.jp2
39a8205acbef957471346d68b09b5253
15524c7afc2878b48046214bbd6abc0efb3fa1ba
939 F20101115_AAAEFE kuo_y_Page_101.txt
b4658ba74f6d8247f3010c369d3c98e4
760f23febb651c388d844ce173b89c6a3a94028d
46412 F20101115_AAADVX kuo_y_Page_087.pro
1835070ac477c55d9ffcd5f63336bbbd
25c04a3f4ca75a28f81599e35b725d192fdf9ffb
27514 F20101115_AAAESQ kuo_y_Page_028.QC.jpg
debbdc4a12ec86a115d5c4c7b34d6b24
c28217587f8af6a2ae1c526bf16acfe8de279a98
88807 F20101115_AAADIM kuo_y_Page_192.jp2
d892b65ff0d84a1603aafad7e48a1394
d2a99770ab54e29546b14fcd77f1957a7f1db9a7
680 F20101115_AAAEFF kuo_y_Page_103.txt
181ad682449c0579e5242314e8442414
1ff2ddf8d725c7f646120d5e1e91449ae5531cba
49133 F20101115_AAADVY kuo_y_Page_088.pro
a74ff775b98d1b2f55b655520e076286
1891bf84f7abfcbfaca0578ecb1330d16d0c870b
26186 F20101115_AAAESR kuo_y_Page_029.QC.jpg
666c5e4c104a7eb1ba11e1712eafc60a
961a4353ed1c95dfd5dd3992fc2eef089b565401
889 F20101115_AAAEFG kuo_y_Page_104.txt
37252e8399e746afc3169c331a209fe7
319abb8a258742e64e6f023d0670737012a49284
9687 F20101115_AAAFCA kuo_y_Page_243.QC.jpg
7daf7c50d56d7905bbc4449a619ee819
f5b798f2ccdb15ec13efa6ab2b38c54785b17631
33554 F20101115_AAADVZ kuo_y_Page_089.pro
3c6b72913dd5f3b11e7d5b1638463cf5
b5b32d642d3c2934d26b064b5e8832357546c8ad
7376 F20101115_AAAESS kuo_y_Page_030thm.jpg
890477a7f1457acfd3f7b38ba72e93cb
c8ef02db46a1b04abf6c12e52c8c9fd0ba28a563
96228 F20101115_AAADIN kuo_y_Page_193.jp2
e5f09b3c20adad9d2dcfa01b68716e68
1d95375183dc9b6197f2a338dd09c6cf6bea6850
852 F20101115_AAAEFH kuo_y_Page_105.txt
dd79b882fa0d0de5fde8382d858968e4
15bc2fb91b40a8c303f10bef26e244ac75ade154
3016 F20101115_AAAFCB kuo_y_Page_243thm.jpg
2b9b0245360b603a94b7df4e36a2dac9
58abdc0568855989e37e2e59c1d9d84cf0c01b16
24622 F20101115_AAAEST kuo_y_Page_031.QC.jpg
a8c2fa524cc524531b0d9d3e9f8b4905
23f51a27d864b0019f6ca985a93f224455aa7de4
97838 F20101115_AAADIO kuo_y_Page_194.jp2
ec9680df75a9bef828ca92d4e6d32dea
335c24b9920a4cf3cfb0b3ad8b8dc6e53b95b11a
1102 F20101115_AAAEFI kuo_y_Page_106.txt
c2fcd63159743481039e5b48a312a779
36b31df252a282dc732a6fa5e5373bae2cec5f50
6913 F20101115_AAAESU kuo_y_Page_031thm.jpg
87d51e623eea1543565f2daaa86c9763
8db16a2edaeca4fd43a263b8eb296cea74df6014
106431 F20101115_AAADIP kuo_y_Page_195.jp2
5ad539d6923469abc9f596826eac94ea
193ed35475774d89908356fb522d77097bd492ec
6601 F20101115_AAAESV kuo_y_Page_032thm.jpg
637739315d90b2daf1630a4675885858
5826e079690eaddab3bfe91da4c687d5d72e120a
25258 F20101115_AAADIQ kuo_y_Page_196.jp2
4d973ed37fb4b95f0d1f83044a37ec7d
551747feb35381b4ec501d6c8ff9b926500acad1
2129 F20101115_AAAEFJ kuo_y_Page_107.txt
520ed206ee08da76089519731ff29bae
0c72b06424b520f4135d6d79380b1faac4c4f32b
88779 F20101115_AAADIR kuo_y_Page_197.jp2
9fa55f60b41c1461d2e2cb0e21c8991b
08fe08978d08bed0e1b4fad51ff8d65e03076367
1925 F20101115_AAAEFK kuo_y_Page_108.txt
2dba81025190341e0b4d26a99a9c58f8
0c86a30b50b19c647d5ca37b455ea3ee5538309f
26380 F20101115_AAAESW kuo_y_Page_033.QC.jpg
46a20cc6d50c2134dc9c0fa25dd6ffd1
9dbbe39331bb645ae9ead090edd54630128b238b
28019 F20101115_AAADIS kuo_y_Page_198.jp2
6003b81411b1e8fad8b2c239f1e1bceb
faaaf62857b616de71f9b932395324c9bcf8de10
1546 F20101115_AAAEFL kuo_y_Page_109.txt
289e518362f3b94145acfe0bb9d61f8a
7edfc87e450e44688a0043ee2c5d2a2fc929adec
7429 F20101115_AAAESX kuo_y_Page_033thm.jpg
2883b68d8b66ad97fc09847227bafda9
f26dfeaa1904d432b1c86f261dd3b2876efaeac5
91263 F20101115_AAADIT kuo_y_Page_199.jp2
a5ba78e64f86e127c6c90eb5ab693875
1774c0e7bc0677c950166225191cdef7ae88ac11
1853 F20101115_AAAEFM kuo_y_Page_110.txt
79f4cc5ee43ca4bfc3317c607e263fda
6b656a27cdb7c9074abb521316dfcc4e0dc364d7
20426 F20101115_AAAESY kuo_y_Page_035.QC.jpg
d0e628dfa5f795dd6b98c375b502903a
a2b8d023bd9120dcca5bd009ff7cb9806030c34e
29303 F20101115_AAADIU kuo_y_Page_200.jp2
ae50513bdca350b82d9e5239d92d059c
25b20ecbfc2694e989b27089fc4a307eff0c49b2
1797 F20101115_AAAEFN kuo_y_Page_111.txt
3b74e372593aedbd31d3f9b23345b1fa
27d78e6430c6cda3be44d690b3bf363d5a6448c6
19721 F20101115_AAAESZ kuo_y_Page_036.QC.jpg
87c6b3adb4e9f440a9b8e92d5ac0a061
4bb6273298f9f0f09f9017e5b1dfa09c600e8859
86357 F20101115_AAADIV kuo_y_Page_202.jp2
5ec7902942d8eba42f5ef36a06ff75e5
591ccf521e02a3dcbd05d77ee4d1e1d4319c8d02
1549 F20101115_AAAEFO kuo_y_Page_112.txt
a41beca9cefd8d57d37222b465dd6fa0
1f4adad0ad14f9db786aecc444e347445c0bb27c
70413 F20101115_AAADIW kuo_y_Page_203.jp2
45722b778387eaf171e00cead447fac8
61e8e83edd73b9f63c485579d612f9b7e8457d68
1597 F20101115_AAAEFP kuo_y_Page_113.txt
fabc27e803ffa1723a3c41695e03d355
99d240e17c2652d0bb5f0de6c2af5542a8c7c70d
67537 F20101115_AAADIX kuo_y_Page_204.jp2
c3fb9cc4a5b22a5d1daada0b350b2397
c6ed51a4187502888cfefecf12d89d527a78e70e
1875 F20101115_AAAEFQ kuo_y_Page_114.txt
a98cc4a5266645a615bddafaecedcfe0
0bd91b4986c9ae6d4dc6bb1b826bf281723c82fc
72091 F20101115_AAADIY kuo_y_Page_205.jp2
f62b06848931eb4c11a1c3675dceb9ee
67d8e9489efd1390ab250237b57016701daeb49f
1907 F20101115_AAAEFR kuo_y_Page_117.txt
533487598cd0188f6fb5b2f75990036b
2ff169d023dd709971a9ae07ed3ba4b86f163f05
63675 F20101115_AAADIZ kuo_y_Page_206.jp2
720fb694876c867dfc94db65cb121bad
62fa180c662dfd0cb0c1c30bde9025145f5fb446
1751 F20101115_AAAEFS kuo_y_Page_118.txt
84238e0c16a341c8061b7f3e0b242365
7f66d8435edbf46e537850b6daf66224cebc3ab7
1570 F20101115_AAAEFT kuo_y_Page_119.txt
d462c41e1ecb4ed9dce19175c167456e
c8ae26b3e21d40718efcf25ec2244522c0d36b3f
872 F20101115_AAACRA kuo_y_Page_102.txt
f4f843c4849432414194a392b09b0543
6e048e9d4bf0c103f0f39a70541ed67322b644f3
668 F20101115_AAAEFU kuo_y_Page_120.txt
fd5b83cb7cf118ba1111d69719c7d9e2
abbcb6c4461db7761db8c65dae6c3703cf315fdf
19436 F20101115_AAACRB kuo_y_Page_139.pro
d1106f44d522ae7cb35c77a180376d7a
c5a19917be75e9d02694f4ab401b9d2e3785c3b5
935 F20101115_AAAEFV kuo_y_Page_121.txt
eb0c61b86b48d15cc5b15f48ebbf5269
27b76da50fe4039be33e4231026583ce2cc78ee5
2025 F20101115_AAACRC kuo_y_Page_152.txt
1a681433f796f71a0393060e674f0208
745f2029c3b0a1346aacc5a7295e4340ec5c7ca8
1604 F20101115_AAAEFW kuo_y_Page_122.txt
35c247fb71168147d0e50b55c4f53711
4d3a5d557bf2abce87d41797a4d104358d9dea81
5923 F20101115_AAAEYA kuo_y_Page_148.QC.jpg
1d91fc3f0c8e51e9f2ac5e6568e7bfa4
1bf9abdb357f7e4724ba3a64ad8cda3e423a1456
9453 F20101115_AAACRD kuo_y_Page_164.QC.jpg
4d974553451d84991dbf114b61e47acc
5b2cd8706774846672fee2a046cfa196ac551a25
439 F20101115_AAAEFX kuo_y_Page_123.txt
643486997709f81a4c9f09392da6b572
e6ce99d9dd873df577329ad78bd0bbcd2ff8b76f
1933 F20101115_AAAEYB kuo_y_Page_148thm.jpg
7155ba2637cbe2a996d7e7d32f01cbbb
24b57c1fc6519440f0a5ecf8086a05c193662891
72111 F20101115_AAACRE kuo_y_Page_088.jpg
8bfffa9ef821f2183755ed6509d534cc
39530fea743522ec79e19f596db4d3a067e9258b
1552 F20101115_AAAEFY kuo_y_Page_124.txt
8233e7485ec5d11226eecbcf5c07168e
cd3bef443c4bc3f5474d067ff905ed62cb2a0c6b
2536 F20101115_AAAEYC kuo_y_Page_149thm.jpg
ef7f80fc40ced9ebae1cd47ac51ec893
b659d100e834b07c7824b2de942488e8835a2440
1053954 F20101115_AAACRF kuo_y_Page_057.tif
3779a7bce0b35da9637b13af22287d33
edbae8e569c7f305737ef5c43b5c8025b59f5f4b
693 F20101115_AAAEFZ kuo_y_Page_125.txt
50059bc16cda4dfa116aabf9f22596ba
17579c4c9938a34d18f14626c6a6647890aac78d
9460 F20101115_AAAEYD kuo_y_Page_150.QC.jpg
3612919e0b3d3c45f21673de6d5d39d3
fb6b56d07295aca996c9c8300b1b298cfb0a7eb0
10391 F20101115_AAACRG kuo_y_Page_147.QC.jpg
865c8ac4f292db3679f2ae608101a237
21670f63093926b325f244eed1dcf1c4a13877c3
2687 F20101115_AAAEYE kuo_y_Page_150thm.jpg
4555234953a3ddfb2c0b193fdb9da492
fdf271bfbd9e22411ea42730f9a1b0b30ef45530
37150 F20101115_AAACRH kuo_y_Page_063.pro
6b631bc807e1a9baaf3f69f6b052f90a
9e3b0431c5e01a6a6ec9dd1dade4cc09bb8afa7a
8423998 F20101115_AAADOA kuo_y_Page_101.tif
b1829ec00e57fa871f15b3dc3867ce5e
c2d12d1ac6e9a109f7d0e5f17cc687cf8092ca4a
8322 F20101115_AAAEYF kuo_y_Page_151.QC.jpg
9be99bed3f2ed171fcc8664f0bd1f351
6193baf9182a3d629e49879487bf9820cf893f1e
104935 F20101115_AAACRI kuo_y_Page_096.jp2
c2551f3631b5a32019a54db57adae409
f30059416707cc3ec292f27e47999b0dabdc55bc
F20101115_AAADOB kuo_y_Page_103.tif
cf7aa305f7d77b56c986ffa97c799aca
a356c1236eace0d1eaf213c6ac4be457b0c76ef4
2471 F20101115_AAAEYG kuo_y_Page_151thm.jpg
cf490c023e21bb5055ad4359c9f78960
8d0d755948b101cb26130395232aeb998db1100b
53562 F20101115_AAACRJ kuo_y_Page_037.pro
457d2dd90e844e2659072ea49634a162
4a7bcf7afe06dabecc4c27f9f888fb70e8d80c84
F20101115_AAADOC kuo_y_Page_104.tif
1c474cb5701536725c1fabc834921121
a0336c8478445d5dcab43c7c6e24f61d126a3b49
2606 F20101115_AAAEYH kuo_y_Page_154thm.jpg
dfe470724d32dc57096898ca59cd3151
2f678adf8a48e57bc8ce4061500c72f9e7d4fbaa
56194 F20101115_AAACRK kuo_y_Page_070.jp2
476364683bce9896ce21ee63f93bcf26
037cbf76cb6fe46e38296b73ee74c83a5f6658f4
F20101115_AAADOD kuo_y_Page_105.tif
ad8b6ef4d37b08c6d30efc97e8303c55
ee565814d17dd5b87d2c481008fd0cf449aa0f6a
2855 F20101115_AAAEYI kuo_y_Page_155thm.jpg
7589d853f3acf0b27c04e6698f3fa726
7f85b307338ad402578d21bd01c0b8c7a2da693f
69049 F20101115_AAACRL kuo_y_Page_239.pro
050a3de9a710d5c52ebddd0e46f5d7e1
4729cd7b1568301e7396cc0eda1683a46c7b1d1d
F20101115_AAADOE kuo_y_Page_106.tif
9d71d93a7c2d67abbac383be8795e60f
778d6f1e6e083bb8bfed3d4bc9b3f7475bcd3df1
6877 F20101115_AAAEYJ kuo_y_Page_156.QC.jpg
e26aca3de8333399e6ede471e4ddcc3a
47cd8c2fab1e89a783a531e0a378f5b411ef27d8
703881 F20101115_AAACRM kuo_y_Page_137.jp2
9d26ee9d2bb6a53e81739d4095d635bd
d71cd1d345afdb591da33be349d21ecb2df6ee9c
F20101115_AAADOF kuo_y_Page_107.tif
70961be8d7e9b7ad1dc67b5a1d7846aa
a4f3f3e8174bdfe77b61acd5eb74b45e5443f0d1
2203 F20101115_AAAEYK kuo_y_Page_156thm.jpg
919a79e29a45fccb799c39cc86cbd853
7cbcfccfbb03e70d5797ae1ee6b025ea6d8d26d0
F20101115_AAACRN kuo_y_Page_210.tif
6c5de0aafa62ac6c9715e117a840ab51
78421a4be0ad75be6e0b30a15d5e810ffe1f87ff
F20101115_AAADOG kuo_y_Page_108.tif
8274faca215bf206dbfcc857744f2279
70920dac6b782e3f2804a53da676252895b39a96
7205 F20101115_AAAEYL kuo_y_Page_158.QC.jpg
7e3d3de76b4a226a979cd3a9d096c2ac
1a7fa5ccb1bb844e8c6809835af050c5d9f29a0e
63253 F20101115_AAACRO kuo_y_Page_241.pro
033e530fc7578d76894af3b307a9e10d
0f5451cfcd44c73237e52d037a455774ad468ef3
F20101115_AAADOH kuo_y_Page_109.tif
c62120cb3c182c0b8cdcdbced82c30fc
43dee827404e1fe1d890698811497cc996943560
29180 F20101115_AAAELA kuo_y_Page_012.QC.jpg
dcc786b88df10a5d8720ba524e7fc4b2
d1620509f80a1c3c336ed2f22b24273862076523
2330 F20101115_AAAEYM kuo_y_Page_158thm.jpg
7c507705f8916bc73aece5434c1ce922
f2fc9071c4995ecd28a62108462abbb3b763f852
35917 F20101115_AAACRP kuo_y_Page_073.jpg
91b2fce60ab175163c84cac33ba84205
64310d22a89c5bfcc96631ae54198107aba55eaf
F20101115_AAADOI kuo_y_Page_110.tif
2c555985135534c1167e035753250cb9
708a67f01b32644c9372c2c9b57ba134c57bf67e
4894 F20101115_AAAELB kuo_y_Page_043thm.jpg
2016e841c0742415386679246ad42e78
4dd9e0c6070b6ca51d72dcdeda08b08b2ce52e7b
9206 F20101115_AAAEYN kuo_y_Page_159.QC.jpg
102610870c691d1274a4d1fa1d2468e6
7233a7bb915c6fb3a63153a3c3fa0fe6c8e51b7b
46380 F20101115_AAACRQ kuo_y_Page_153.pro
f9f5d3b847c99c4534ba4641a43f0559
d3f8b3cce541aa44de40508e4282cb2a10a462bf
F20101115_AAADOJ kuo_y_Page_111.tif
82714130d1f2f5ed9124b5e6472ffc4f
c4ea64e5310fbd653bfec082d41a60fc09aa648a
5766 F20101115_AAAELC kuo_y_Page_242thm.jpg
011dd89468d0944cbf645ba91bb028e1
e2ed582a70a2c4d2bea26e2b7f794959882f0069
2627 F20101115_AAAEYO kuo_y_Page_159thm.jpg
e4ebb5ec1e9337487e3732ccfd86f71c
cee4cb58c92d8b15681f78a3cbd7c087bea3076d
F20101115_AAACRR kuo_y_Page_093.tif
94febbb3d5883cbd21fc625703b0b1fb
286924dba5717d789700b0b72b1cc754460d78fe
F20101115_AAADOK kuo_y_Page_113.tif
ac6edd8745d1d60245d18489a14e8936
fa65867ee9eb4d4f5d7af176574b23e8a97eede9
25068 F20101115_AAAELD kuo_y_Page_093.QC.jpg
3c2853cefe0787f4f9c6c5def24ae3b4
3248f3f27fad00caaf74e014208c0aa7ba3fe973
31837 F20101115_AAADBA kuo_y_Page_224.jpg
4ba76e8c9d13d6e57d7345ae4f4bab80
6707c194540cc82f2a719a9fc24cb79c263f364f
2970 F20101115_AAAEYP kuo_y_Page_161thm.jpg
9d4a48690d99191373f280f65212e91d
d1353f47529e0021bfdf8c99f1bac161d42c3890
13350 F20101115_AAACRS kuo_y_Page_143.QC.jpg
94e45f6cf34430f663c1707e89a21659
1dde45d1aca578f8a7c094f6f23dae8ca883539f
F20101115_AAADOL kuo_y_Page_114.tif
33404129c37b82c53ef8c93bde5821b3
c72e6ca1c9be69c0b28120e365ba9c6fa2de8612
10618 F20101115_AAAELE kuo_y_Page_190.QC.jpg
93be44c5b07ec72bc19013604a2b3cca
ba0700863be99e566c033dcd136a869f94bc20c8
18080 F20101115_AAADBB kuo_y_Page_225.jpg
cde8f8fa5c2ef203314fd69d26754c61
bfbc2682ec3ccf3b7caa936927ef04fae2bbed03
2792 F20101115_AAAEYQ kuo_y_Page_164thm.jpg
a6d04292194fc198343a393b64379f0d
a26e3282340641d568b6bed36854f4d2f2957d1f
36439 F20101115_AAACRT kuo_y_Page_054.jpg
8d123335dfca02d550c9ce7829785196
192ab7be90f326a9b6755f01ecd27518f50d982c
F20101115_AAADOM kuo_y_Page_115.tif
482f3c46cc5113a5f47df4b7b849174f
1cab87980c2cca1e54073e911bedad6051ad431c
4586 F20101115_AAAELF kuo_y_Page_019thm.jpg
cee4f7c12d9e3992c4834a63cca8b570
0b07a2a98abae2c07f7afd640e16a2f84c45e322
33668 F20101115_AAADBC kuo_y_Page_226.jpg
824a07457a87e8468ee1c6a6f7c091d0
4aa769b9a1f8a3d3c35af0a346687df3a2ee9868
7303 F20101115_AAAEYR kuo_y_Page_165.QC.jpg
dcf298b702e72faec486101c751a0983
392803c49885cf14e714b0070cc173a7d75e77ec
472227 F20101115_AAACRU kuo_y_Page_074.jp2
55efb29be0e156f4b32b5304f8d5a669
1f4ce76f214b3ff72095f8780a4e185bbaee2788
F20101115_AAADON kuo_y_Page_116.tif
58e4f7769db56494d3faf276e6d71676
c37947f7d4dc49e8fa65a81450ee81260bf3f828
26769 F20101115_AAAELG kuo_y_Page_076.QC.jpg
33ee84136b84d5550177a74a5e0132f7
26833e85cd82364101ead7497e2cc7ec6d775659
32067 F20101115_AAADBD kuo_y_Page_227.jpg
70bda4cf3bd424df934ce747bab2c2ab
2f737dea4198b3f03a8fcdcc870a8fa844a5386e
2653 F20101115_AAAEYS kuo_y_Page_166thm.jpg
e9fe95919504b3eb86c6b058ddbaa92e
ffed87ad7bba6e301dcd5a66ef8fa9554d541c5b
F20101115_AAACRV kuo_y_Page_181.txt
4f0cfa111af5eb84176e12faa633d464
22f64b2dbad7bedf5c798faf8b1bbcf1fa5cc62c
F20101115_AAADOO kuo_y_Page_117.tif
f73a8fe7ad309171d9990ed54343291e
01ec5a842bc2072a32eca0dbac8aa7d6f6a4cffe
2335 F20101115_AAAELH kuo_y_Page_217thm.jpg
268b3e54d346a96d50ad8239a793dcb1
f0d807fb4e999108c52735ba07de83d2e7d0bef5
20255 F20101115_AAADBE kuo_y_Page_228.jpg
33ce2d15353cc47e0dec1e21831a3b05
3bf0fad4aa1cb4805efdf397ea4e7546d4226d24
8019 F20101115_AAAEYT kuo_y_Page_168.QC.jpg
8c9826f3d2babb4b7abcfa62830fecd0
a560bb3ab4082c027f1a8537349a2009ce3031d8
3039 F20101115_AAACRW kuo_y_Page_010.txt
007226af03cb2489d7b73074831859ac
3282b8a2fa40f196865dd6b1996e35ff0bbacb8d
F20101115_AAADOP kuo_y_Page_118.tif
1d774cf81b1df86bff631511be7e7703
be7c78272062e052c37f4b06016abc9c14d1075e
2734 F20101115_AAAELI kuo_y_Page_218thm.jpg
bf1893ad6d5bd80b7c004f850940da7e
0fee069653f6f2a0188fc1831760fb3111cede6c
33899 F20101115_AAADBF kuo_y_Page_229.jpg
d4a44019e37b3028d3565b1f504806d7
b4c99fb3a4936c4ee22d4a05d4bf2c853cf8d0ed
2332 F20101115_AAAEYU kuo_y_Page_168thm.jpg
dd71da8e9c7dd37140bc384821b37499
89cd5da4bb15d844d035ad8dbad0f152d3af12d5
F20101115_AAADOQ kuo_y_Page_119.tif
221927755ec967bcc8f49fc7543323a0
04308c07f1d89f8c096530fc9bf5dc56f1e84f7b
6098 F20101115_AAAELJ kuo_y_Page_007thm.jpg
20f2db7af9ed30b7cca235ac9ac4abc7
c40b277138bbb1fecf277f72daa685e053aa30ab
7494 F20101115_AAAEYV kuo_y_Page_169.QC.jpg
054aaa16adc56a3229e2f36dcc5b60ef
a21a8d2a170be761ef565e20b4d38d9d19982af8
1051969 F20101115_AAACRX kuo_y_Page_009.jp2
da4bfe0f2d304769f83abc9b356f9096
f684607080208351d1a6e972b0278d5324f1ed13
25271604 F20101115_AAADOR kuo_y_Page_120.tif
04875a54547a6c6917df749bb71b0189
68beb9ca9874c21579e0a3130326bf6974469b2c
10864 F20101115_AAAELK kuo_y_Page_094.QC.jpg
cbfc457b203e08a56e5e2667e89900ce
afdb2c13b372620b86a74036854be17dbed827f6
2360 F20101115_AAAEYW kuo_y_Page_169thm.jpg
e6ed2dbe293f9526e48e9966fa8f03d5
4602d775d5613d62647d61845e842b49e640cfca
F20101115_AAACRY kuo_y_Page_035.tif
9fec74710804f8a1f69074fb70e55e8a
d1307d07946c22ff1dbbc5e884f80a388a2f33c3
F20101115_AAADOS kuo_y_Page_121.tif
139b5871bfe1e5749cd6f9e75068d355
30ec731704f2c15316ca04f366699a851e0966a7
6369 F20101115_AAAELL kuo_y_Page_059thm.jpg
211c033cd16c020079a8d87a3a34dbb0
d886b2c5f1b93fe4867954484665490be3c8eb7c
32503 F20101115_AAADBG kuo_y_Page_230.jpg
3d91ef83c53099c9dc049cd55815e97a
b0e2061a12d60580b5181cef0273d3cb94a4b154
F20101115_AAAEYX kuo_y_Page_170thm.jpg
4b3990775669fef1e1084d40917575a2
bca5c9a01615d7222e000d324b808a3e5def7a61
70815 F20101115_AAACRZ kuo_y_Page_190.pro
7586fac19d2f68d6df23077eceb34b54
47356f775bf1d07b321883579238951a17c5b6f5
25302 F20101115_AAAELM kuo_y_Page_020.QC.jpg
a27f5a50d27326cccdb3fefb7fa4d7aa
b1c1897158a47a3cd6bc716223fa097a63366bd0
27860 F20101115_AAADBH kuo_y_Page_231.jpg
42615efaa980400e9044fa69ed046e27
9ee4b72b068882fe3e826979b80892e8120e6e5a
2683 F20101115_AAAEYY kuo_y_Page_171thm.jpg
c887a6aa78a60b5067e37f134965ad30
cb1ebbf36c053a987a69d3daf5185f955760fbd7
F20101115_AAADOT kuo_y_Page_122.tif
d85fd389d0dcb787bd92f67b20b269d3
1be8093490c749275db87f1ac93367c6e2e41453
24791 F20101115_AAAELN kuo_y_Page_126.QC.jpg
3cadee0f3df3d12b5b8a4d6fd378a677
2c8c590c7ef9ce57f95785407f6766c12bd16321
26999 F20101115_AAADBI kuo_y_Page_232.jpg
ec4dd986d3030027bee0e47e4734c01a
e67f9cdf872b9aa8443fb0dd75e98d12df6923b6
8626 F20101115_AAAEYZ kuo_y_Page_172.QC.jpg
bf29dc6976a809675ebd2eeee38db80a
77512140f68222001f52fa92f65334e7d7a6bb9d
F20101115_AAADOU kuo_y_Page_123.tif
706e67e22e5f5b44e093fd96615b68c7
ca8a3ad4ab5fb518fbae052d3fcc38b0ed5eab8e
3050 F20101115_AAAELO kuo_y_Page_229thm.jpg
d3cdd219bae9ebfb913e81bd89a3d221
a018b56147c6cdca0260bc4655605756bd372e09
26548 F20101115_AAADBJ kuo_y_Page_233.jpg
a6ff6a8e1224f78a825e261ad441120b
79306bf81ec0ed86c4874e68c76eb4416d52c557
F20101115_AAADOV kuo_y_Page_124.tif
7f025df75575e4c2ec610f2496c38761
7d26f5eef33a1e3642e8fccdb0bd0fea9a74b50b
29268 F20101115_AAADBK kuo_y_Page_234.jpg
3c16f00420f4ea0c28ad1dc127630d40
7b8ae58cc35ad1d2fbed6caae9dbe29b80c51d7f
F20101115_AAADOW kuo_y_Page_125.tif
345f13265afcd5f428915fd480589abb
aef6888fb0a37a84497c030d893b57dbfd822d57
9980 F20101115_AAAELP kuo_y_Page_226.QC.jpg
c2aaad2411b8f7690f53abefa6a242da
1b65cc08ad8538ea2735876bb749d42315d698ce
30340 F20101115_AAADBL kuo_y_Page_235.jpg
1a98553b36282f88ebcda8f67d5b253a
3f05cd77c3972de1dd92a3f5d66de9fe1549fe9d
F20101115_AAADOX kuo_y_Page_126.tif
3e16a8c1e722c2349eec100db0ee7619
e4329c384c63209487bd95a98f5ee3efb9586e56
9625 F20101115_AAAELQ kuo_y_Page_201.QC.jpg
071df5ac151da723fb0f489eefda23a1
01815031af84a708f1f30c76b2f3e02cd66d6568
86267 F20101115_AAADBM kuo_y_Page_236.jpg
495f22bbba460336a60017cddf11d5ae
ca6506ec176a1f06caf4eeb31d0f09287d70c7b8
F20101115_AAADOY kuo_y_Page_127.tif
d5f46ed0252210e7f5711b3e89849cc1
6e6a778375621cef9b7c6671f12070c83bc68504
11855 F20101115_AAAELR kuo_y_Page_101.QC.jpg
9b895afad2b98e7cc7151fef7a939754
8a09d6f6dce9e83dba4c98e935846615a01a71c3
90004 F20101115_AAADBN kuo_y_Page_237.jpg
1d58d10bc6d5b5bf1b5c72c84c708e11
b7ef7cefa4627b467f05a92f0ecd94747425e7a6
F20101115_AAADOZ kuo_y_Page_128.tif
1f8436a0bc6378a992f5f5ef571e6584
c54cea8525a2255d3c5ee1e10f7a67e7410a53b4
8702 F20101115_AAAELS kuo_y_Page_177.QC.jpg
601510741a7551b970e50e6dd0a61792
091f69d3f6b55d6e34913e5f648236700fd47786
94279 F20101115_AAADBO kuo_y_Page_238.jpg
9771f97932886e80d9b86714cf38c3c7
cb0050acdda1d17deaaecf15026313e21890c184
3418 F20101115_AAAELT kuo_y_Page_094thm.jpg
b482cf479c865803edc3c3add1c06a97
e05b287ad780a7ac3f8e3ffebfee3293bef207c1
102730 F20101115_AAADBP kuo_y_Page_239.jpg
5e323c8b1387a529f2d594bd85684240
1ba1f85a0f2d587f8109825bd6f13d41ee4c5ba6
2999 F20101115_AAAELU kuo_y_Page_157thm.jpg
e086e9b00eb892a53dded81cb8114e7b
a1b85fa3ad3c1699bf91e139131c64f37bc19323
67691 F20101115_AAACXA kuo_y_Page_114.jpg
abfb1ab7b614120b5ecbae0f16a6fbe8
d3358d0a0da60d3f16049212af07bd1213c5a074
97216 F20101115_AAADBQ kuo_y_Page_240.jpg
d15f63450cba3101ee1b52868af716b1
ad1dac2ea1ec110b544f9fd23fd32f4fea08f415
8141 F20101115_AAAELV kuo_y_Page_217.QC.jpg
dfba056c55854d07580f24f614590ecb
b91d1b3b6982e1345d0e2918c4039b2111c18875
89831 F20101115_AAACXB kuo_y_Page_115.jpg
36b78147fd8c3b26ed51e1edc0bb0105
62191ea0e21f324522842f91f7f4573592f87081
95339 F20101115_AAADBR kuo_y_Page_241.jpg
52ad7c8e1f786dde729ff54a9230a994
2ac2a8f8a0e8dad88345c14691aec174bbb44525
23252 F20101115_AAAELW kuo_y_Page_059.QC.jpg
f4719bea00a18c88cfb7adf19b8d958d
debb2d16107d27a3f97149e46f8c582e9a9032a9
103285 F20101115_AAACXC kuo_y_Page_116.jpg
1efede1bce187d4989a34ef0e3aa6271
0a96b392f1c60a40f3003d223749ef12bbb7c91e
74534 F20101115_AAADBS kuo_y_Page_242.jpg
076c67a737fe92dc46b170dde4b86c4e
b7a153df4d7fe13aa3c35a37dc201bba9c959e6c
2709 F20101115_AAAELX kuo_y_Page_227thm.jpg
c4e17e8543e2a4a6f1e9b81f1cbcfce3
18c8c2246dec699a8fc6c5abde144b0e83a295a2
61804 F20101115_AAACXD kuo_y_Page_117.jpg
95cf18883d1ec30e4a09401d30a13a72
b52545d0a82563ec5c64f90dad14e027d0bb3e72
30593 F20101115_AAADBT kuo_y_Page_243.jpg
67952d0786fcda0a6d94041d5780915d
2574b3c1ec00d48ec6df98bc34d9e2cf9a9d1d73
17713 F20101115_AAAELY kuo_y_Page_137.QC.jpg
7664a8122c98957197f3661a4eba5038
c105c835367dde88b66749df80e71aa9745ef6e5
56649 F20101115_AAACXE kuo_y_Page_118.jpg
0dcbb7a3daedbf3929e8ac77ec5fbc70
df7753504bcc1d6424bb066090de38ded593c03b
4856 F20101115_AAADBU kuo_y_Page_002.jp2
ccfed0e6d0047f79033a4c83bc9f301e
bbbe056b9be437dd12fc7b53a7c95109d6ce361f
13895 F20101115_AAAELZ kuo_y_Page_141.QC.jpg
e73d096d21dcee1d7f65e6b02e5086be
b5c1a10b4456266f67d14e4bd6ab2df88559bc75
60371 F20101115_AAACXF kuo_y_Page_119.jpg
c197e4e7a54f64245f13bb2626c45dd6
6ba4b21e712ccc23e1361fbab1c3663244eb9555
12462 F20101115_AAADBV kuo_y_Page_003.jp2
cb40a16c993e00613245907909d4895a
998dc27ad90025a9aa9d2915db021ba964e858e7
49180 F20101115_AAACXG kuo_y_Page_120.jpg
36424122e431c32eaae70b97dde9e956
5b115aaca18d3f924f73f3733cf91ff20c54cdd1
119882 F20101115_AAADBW kuo_y_Page_004.jp2
9c2acfc137e735287a88da0cb7a94233
ff82897bb274f8319a60384b1f9258249e0e48dd
56267 F20101115_AAADUA kuo_y_Page_029.pro
e8b9fb8b68b4d37e7e37b2f42025fc29
93b5909b56cb68533bbd03cdf8debe0825328ac9
42006 F20101115_AAACXH kuo_y_Page_121.jpg
7a403d106bd21759bd55785667811721
82e0595baf18030702beea9865cbc52b97eb45ee
69625 F20101115_AAADBX kuo_y_Page_005.jp2
14ced8da719b4c7662fedd77c9f97e76
fbf5c24e7c4413f58eee768a33387e68c7e6e29c
51611 F20101115_AAADUB kuo_y_Page_031.pro
82c973baae91a6114197888b0e06191f
6d58091db7fbc06ec13ade2d6dc3d55e95698d60
35194 F20101115_AAACXI kuo_y_Page_122.jpg
5cfd2b2ba7453407c4e3cbd2232369ec
1019462719825ae91f172706ff1da1e9f474c1cb
1051958 F20101115_AAADBY kuo_y_Page_006.jp2
ed1307d540594dcbecc3cdc3b99fbcb6
b92fef2a4ed79b8cead86f16b6cadf4a8c977223
49816 F20101115_AAADUC kuo_y_Page_032.pro
6f9cb5d2f6fc66df8a3cc0e5f8b35d05
b4a61d243d0edd7a1885bf37dbc49deee30ba755
20401 F20101115_AAACXJ kuo_y_Page_123.jpg
10b6c98d19d773a4cf74d901d2f386e8
b67bc7d8f9a2dddecd68cb1284fc0698dda94c23
1051984 F20101115_AAADBZ kuo_y_Page_007.jp2
5c0b3fd47a37ba4b8a77802bb35232c2
f084013727fc5d5967145129661ebf166367a260
56836 F20101115_AAADUD kuo_y_Page_033.pro
9061eb88e3247a1cc5b2636f2c88e203
f8fc05d648456793ce8a0fb98875663dbf43144e
54107 F20101115_AAACXK kuo_y_Page_124.jpg
e423a975b3ef64a9995a98be0bce3b69
6df1ab7e325c235853bae1363af1460d21af6438
53734 F20101115_AAADUE kuo_y_Page_034.pro
db6eb3973a737bc7eee30ea2029761d6
0f9a6abfc1b281aa045203719098d86985324619
29434 F20101115_AAACXL kuo_y_Page_125.jpg
a1792df5a3dd29d40260a2e47521183d
7efe13bb6087162aa44647bf3daa6cd4b8b8a367
43166 F20101115_AAADUF kuo_y_Page_035.pro
528c3abc1cc817f83b10bca859aa55ec
5b4bac6b40074ea2a96136ad2a3cf1333ecdb6cd
74196 F20101115_AAACXM kuo_y_Page_126.jpg
bca6deb6db2d552108b4440fa692cc47
7d2e280b2674048fbc1f992e6feaef80be5834e2
45175 F20101115_AAADUG kuo_y_Page_036.pro
ae45bff86cf73a49b7407fd5beee3fd3
fb3eb538d13edfe8c091629dd9c419bd7ae9c640
55641 F20101115_AAACXN kuo_y_Page_127.jpg
ab5feef21ec5ae21b9ccc9c49d281a64
212e6b10d4560fa521fc35731202729d4f0ee46f
54883 F20101115_AAADUH kuo_y_Page_038.pro
907ff052853f2b664872de1e48dbdf1f
6ca5c5fe63a52a9942c8438325eeef9954347402
5239 F20101115_AAAERA kuo_y_Page_127thm.jpg
580dcf9a06df1dbc8d66ef369d7f2443
76eb7841612b8572d87450deba6957e6319034d4
64200 F20101115_AAACXO kuo_y_Page_128.jpg
8ed264295b8a4076412a998e1eb5267a
cdb1756890fabc9f63ed3402076be8689509c3f0
11151 F20101115_AAADUI kuo_y_Page_039.pro
38980b4462b12139446cf4b23459e5e8
91a844008f5a57679ab70eddacedd6ae699e6d17
2355 F20101115_AAAERB kuo_y_Page_213thm.jpg
edb0974f47275d75be1fb25f7b222326
9fc42e42c83dda3fd5f1cc626dbf34c65b993e2c
44938 F20101115_AAACXP kuo_y_Page_129.jpg
b6d579021446b6673905ceec8fe59d2f
209eb4e052e3388d3d63dafd5acdaf47bf3dd889
17167 F20101115_AAADUJ kuo_y_Page_040.pro
a12560705f46cd831fa2227888e98f0c
4ac50ad51b89f8e6ea4de0f90277c76e8d617a67
26547 F20101115_AAAERC kuo_y_Page_237.QC.jpg
b38080a7bc1b1b8cf7a2ece48c23f2dd
00e7b88c7685f80979d8384f5aa577846d09e01c
46259 F20101115_AAACXQ kuo_y_Page_130.jpg
73ac16b7f7ba32582b59d1d7b88fd500
bb52c3a1d899b981f647bd3dd0d9013ddb1206bb
126480 F20101115_AAADUK kuo_y_Page_041.pro
f7317c871886ff49502718182655de00
e131930e7558800350930932bc95840372129597
5391 F20101115_AAAERD kuo_y_Page_109thm.jpg
662082c7abab54073ec02f6938eea6d5
afcb4443909d586f809410fe067b164ce5a30922
32810 F20101115_AAACXR kuo_y_Page_131.jpg
169fbb3c760828eb502f19485fa1704a
a54698688949edb4d0033bd1b0d853260cb95684
125685 F20101115_AAADUL kuo_y_Page_042.pro
be83b8767eb2d7619b5fbeeabb5b72f3
2aedfc2568681f5274ad3fcaa6745f0521d96f14
2831 F20101115_AAAERE kuo_y_Page_191thm.jpg
9c298a068b41e7cc08aef990d00728b1
396850e24abe59d80631cfcb10020ab1f82bfcb7
71369 F20101115_AAADHA kuo_y_Page_153.jp2
0ed8514d5fde8848be54daedc176c5b3
dd3e4c3990ba5aa470972ab7afc2627b8d40c559
44259 F20101115_AAACXS kuo_y_Page_132.jpg
e5cc127b2935e5714a63e3338b8674cc
4ac91c3dd9a114d38a05b0040a10ab96d48418c2
135097 F20101115_AAADUM kuo_y_Page_043.pro
8c7cc1e55e3d25f25e53321f8d1d5ae5
2ba9eebc939a4bb4209a0f901577ecc608277c3a
19027 F20101115_AAAERF kuo_y_Page_063.QC.jpg
0c8055e6c34c16eef61ce1cb7ca4115b
7aa09134576972fb58f06a011f2809a54b070ecf
79338 F20101115_AAADHB kuo_y_Page_154.jp2
31bc92627f099fc195bcccfed390391b
94c17b8a803828637201c3a6e8e48c4fbfff2f6e
46778 F20101115_AAACXT kuo_y_Page_134.jpg
42a4b8c742c5cd2a8239bc05e92e2a08
bc0c2831b7d5282e77ec3f053474745a008d2560
89414 F20101115_AAADUN kuo_y_Page_044.pro
15a7956ee33a5c1c0ca99c84e73435fb
ca1838940db3892796a19f2b27158acb4c292184
7529 F20101115_AAAERG kuo_y_Page_232.QC.jpg
6d1c6c14250f555f1da5bd11c3971036
aa99f935280da8eecc005479382720913753aaef
95826 F20101115_AAADHC kuo_y_Page_155.jp2
e97473c496a86bfba96bbef6344e156c
bfec0fa2bf584addff68f2ec10676a13d52299f3
44306 F20101115_AAACXU kuo_y_Page_135.jpg
6b1c70a1ffc5245997fc976a8c700e1e
249b048acd47d0d6a8265abf1ad0709b12c82d5f
15960 F20101115_AAADUO kuo_y_Page_047.pro
57be11816db06a64be945de20094ab46
49fd05af9811cb8b30e60287b09996957b038832
7005 F20101115_AAAERH kuo_y_Page_064thm.jpg
689e6289ae7d45fecdded1d71c7f7430
cd921fddd6a4f25a48f4c0b82413f93f5972b43a
61070 F20101115_AAADHD kuo_y_Page_156.jp2
6d3183cf5da368080a8ad49c50aad1e1
e45a29ddf368e84ec629025cf5a32b65622b3430
52224 F20101115_AAACXV kuo_y_Page_136.jpg
a4e1c0882c48e6feb71c3a248ffe491b
2bd1c48692552cfb1ae2f424d62c2392259d60d8
14130 F20101115_AAADUP kuo_y_Page_048.pro
9cb8d7238ae88242b112d10ff894f4c5
4534a1f75f7554b4ec80c52f2a527a75762d95ba
4750 F20101115_AAAERI kuo_y_Page_138thm.jpg
c2858eca873de6a0054c1d64f894a096
55376fc01f2e5f30f2cb7dd23045b9c2ba8fc64f
91617 F20101115_AAADHE kuo_y_Page_157.jp2
453159cee081af3dce5084c1deeb034c
c7cbf30d6de26b2ab01d20f7f4bbd78d3237abf0
55382 F20101115_AAACXW kuo_y_Page_137.jpg
0403c55b8ebf745b703130c5f3ae338f
7796d84dfc30c2c09f3d10ca05074e3397b76027
21222 F20101115_AAADUQ kuo_y_Page_049.pro
e122409cbd09717d5562134dfa624350
ac33c913f6f38eb0684155d5937f16ed1af13657
16695 F20101115_AAAERJ kuo_y_Page_083.QC.jpg
9c79635fc977fe2573b288644ce99088
2055ff061edc07224187473879407d42355f36ee
62189 F20101115_AAADHF kuo_y_Page_158.jp2
fd254c78f76a060c9a1a7eb2858a0bac
03002d95e6d79e85990a90cd23267774d484dfb2
47518 F20101115_AAACXX kuo_y_Page_138.jpg
69a353e8bfd6652eca1c04f27b1da03b
2884eacf4fe9362762b166ed20951222d79ff0de
11872 F20101115_AAADUR kuo_y_Page_050.pro
27415ea8028e6485e491e691c645bbf3
ca3a67ccaeebf0e140fe6b648e1b0588b9e8bde6
6917 F20101115_AAAERK kuo_y_Page_079thm.jpg
36b0d4dc5a0a2cdf08e63d95f87a5aed
4d5ca34b8245bb2de8671ae3b2fdebbb66132461
91638 F20101115_AAADHG kuo_y_Page_159.jp2
f0bcfce6e55fcd55596d5a22a55890da
d76468ecaaaa73f8202a49b253ed190ca0b645b2
45555 F20101115_AAACXY kuo_y_Page_139.jpg
1ad2217bc239b41c62d9d3b7d485d948
d21439963d4364fc5784fc0aa15ad665b33cffa9
785 F20101115_AAAEEA kuo_y_Page_071.txt
2867c37e6977616b27f002859d0434a2
d4c05b5a497fd7e960a520acd7e252af2eb743be
10295 F20101115_AAADUS kuo_y_Page_051.pro
85248d8af63d2ced5c49e6dab8eaf8ba
f493225b7e136b20934e1881b9bcd1f9ce7677d4
355862 F20101115_AAAERL UFE0021212_00001.xml FULL
b03b84086bb202e8dd5814e02b56d946
a5b5bd5829d26e96530f93963d3b51fec98d5739
59246 F20101115_AAADHH kuo_y_Page_160.jp2
1a5b3758794ec6e5ddbe023bac066295
25eddd9a449248a2a248ab715a828936aa64547c
42218 F20101115_AAACXZ kuo_y_Page_140.jpg
17b6649ef5c5ed71552a031869e5b547
1e48ed7dfef48a1f3e96d04b093f1a6ea507c67f
743 F20101115_AAAEEB kuo_y_Page_072.txt
1dc54296ab5f1c8dd1a29dd4645eb2e9
d317a9e6ea4584468936e9431c55a47c448b5654
15191 F20101115_AAADUT kuo_y_Page_052.pro
15c66ceb5d4270c9b548991cb1769ce5
54164e3b75c870c10a755afc2fd5c272a301ea60
F20101115_AAAERM kuo_y_Page_001.QC.jpg
56f46c7762b0a16d48b39f7dfc16b352
af6716b4df60b82781cd049b84773337d4d1603b
97219 F20101115_AAADHI kuo_y_Page_161.jp2
52a912ec22a2d7c05e3ac3a2e250ba85
7ae580e5b7f2084c187fe04245c31fd6d83d8323
637 F20101115_AAAEEC kuo_y_Page_073.txt
e6b6cf05b50c7d0946a6babe3beeab13
cd15d8c6711cffdc378eae5cbfd076c26e2f7343
9407 F20101115_AAADUU kuo_y_Page_053.pro
6191ff4a38a6ec911e69b5256adb1461
d6be806f02a5d764e9d153cccf7aa97bb9669c16
1311 F20101115_AAAERN kuo_y_Page_002thm.jpg
b16abe80f6066744d114b4ba457032bf
be4b7a765a0355f7876f78053c153ca706757287
96384 F20101115_AAADHJ kuo_y_Page_162.jp2
f89a33c7c504a9dc1761c5632069b23f
912fd932de99202a7ad3ce4e36b90568b997c781
946 F20101115_AAAEED kuo_y_Page_074.txt
280bd89f69bde974fd3bb2de65cf8d09
30dc42acd3e31687de99e01c2010bc8464fdcc2e
10915 F20101115_AAADUV kuo_y_Page_054.pro
39098417e0f8821f210f5beed6e94dfa
0e23f801e401c6382b08bac0f3042ee74cad52c0
4336 F20101115_AAAERO kuo_y_Page_003.QC.jpg
5474bab36e31c4020fc827d716a45005
b481f7587fc4f0ee2b7b9d1aa00eaa70bdf43b98
29429 F20101115_AAADHK kuo_y_Page_163.jp2
707d7610481dd56ca87c5be42a5a04ac
026ee751e8632739d604fed42974a6e19021c6da
457 F20101115_AAAEEE kuo_y_Page_075.txt
a986e9363bb66843599933763dc6452c
b55dbafea2c070e37fb915cbd038210255b219b4
51473 F20101115_AAADUW kuo_y_Page_055.pro
a0d681b0696e34656e2852dfd975d415
624e8d4ff306b74a140f4f0dc89cc5821491fd43
1808 F20101115_AAAERP kuo_y_Page_003thm.jpg
790580e078038115911a84834d357213
3fa8dc63fce884a79dfe5525122ad9ef26ed226e
95678 F20101115_AAADHL kuo_y_Page_164.jp2
29a92d4a17ee631060a8a426caeaf07c
9f5a8fb6096ffefbaf41766c78f18ecb28d4fdd5
2247 F20101115_AAAEEF kuo_y_Page_076.txt
5ec0052efd50cd49f6646eb5d24716e7
0db99f5c2e16816e63496f52a4a38d6df5218e16
49396 F20101115_AAADUX kuo_y_Page_056.pro
66fce94dcb1b2eb4f4daf9995fce543b
6f69d1bc6b2eeef29f403240f5f8d73f4063d7f3
16913 F20101115_AAAERQ kuo_y_Page_005.QC.jpg
41099e58837e76854d019e8d9fa6509b
5b277a694bdb2d797a3c1aad71bf0d63c0d1e741
2171 F20101115_AAAEEG kuo_y_Page_077.txt
4dececd2afdb88181ef1cedf0106ce77
466ae6a08e47550f5c4e3dc6b8059de48503c8f4
48176 F20101115_AAADUY kuo_y_Page_057.pro
0c2cb401cd716a9269092af21a6d8829
c5be3e280eb05c94eb84dd0df76252d304de4467
5908 F20101115_AAAERR kuo_y_Page_006thm.jpg
09f82b74b1ac3f6bbe8e8c91d75567ac
1593f67eb55b6923d5a4f3a7c9febf44ca4ce935
66769 F20101115_AAADHM kuo_y_Page_165.jp2
e54720a21a36da2cbbdf96812955132b
3ae62be34edf49324a8998a5f22c1c4d43673b48
2044 F20101115_AAAEEH kuo_y_Page_078.txt
662f3315c31270f37e6e76d3091ff803
ae79b113e3e2bdbbe45cbc1cee956dfb117f8fff
8936 F20101115_AAAFBA kuo_y_Page_218.QC.jpg
787893a34f11a971b671de271d8b1a0e
126997366b4c5f361c8fcca3542c569c6836aae7
24306 F20101115_AAAERS kuo_y_Page_007.QC.jpg
75af544f21664572f590af05ff01b062
a32a379efb48e215857ef744acd20aca2bb6e20f
89844 F20101115_AAADHN kuo_y_Page_166.jp2
a14d306412d05966863c7a2d860bde7e
b2bd33f43430274cad93ad0c2c33a3dec9e5877e
45368 F20101115_AAADUZ kuo_y_Page_058.pro
8374fbb2caa5d5f6de35ee2a78916f62
955eb09c9a7f4b362a62415e5042a0c54de642c3
11009 F20101115_AAAFBB kuo_y_Page_220.QC.jpg
eb6d2c1a4c873a5d64d9f2310e0f9246
892de773baf0eaf92efc0773a371208948fd4a29
5946 F20101115_AAAERT kuo_y_Page_008.QC.jpg
f3575cae9d674162264a6c9a65b31b21
5e3b52e389e9ec1dd13e7c788a90a7e7febf3056
71962 F20101115_AAADHO kuo_y_Page_167.jp2
ad66ba36cb05e3a4498ff94343701769
ffb608269a760fc22e259740a8fa5bbe537643ac
2947 F20101115_AAAFBC kuo_y_Page_220thm.jpg
75432749938d26792e3f3232484641b1
4551ffbeca7bd1269ca614511da7b35f145908cc
6466 F20101115_AAAERU kuo_y_Page_009thm.jpg
c5ba0b0d68997c6fd3eb459524d3feb4
d1d9bf0e18fd9951d121cfba4c3566c2c7e0390b
74594 F20101115_AAADHP kuo_y_Page_168.jp2
8fa25c799f4a604a032f471873139753
f2aa322ad417480a45aa32001d54133e1ba10083
2168 F20101115_AAAEEI kuo_y_Page_079.txt
85d333c45d19861317ae0ade94ca1872
9b1876ba7f4efc48ff9b058668010be0d712dcd7
6159 F20101115_AAAFBD kuo_y_Page_221.QC.jpg
04d2c3e538526187e3bd2a84d05b4ac6
e30395ab88e212bcf88332949b0fd073904efd0e
68901 F20101115_AAADHQ kuo_y_Page_169.jp2
e7fcad152ac9f5b08c403995287c1033
d77a362f051d7ba50fff315648b8f082b4d24e45
2076 F20101115_AAAEEJ kuo_y_Page_080.txt
b7572a903a6420b0a58c4922d82f5e4b
355a66dae620b02658f8d27ca23eddac52b6dbb4
26973 F20101115_AAAERV kuo_y_Page_010.QC.jpg
dc2240347da18d1fd667820df6efaf4d
32fa700540f83d888bd46750afb18da9b616bcdd
114722 F20101115_AAADHR kuo_y_Page_170.jp2
a795f21f4e9b49192e2ef61c1a23104e
f6262677f9465ad216864521b588d9ca56ac3ec9
1851 F20101115_AAAEEK kuo_y_Page_081.txt
dd0d62887a72aaf0fc7dba22183cf1c5
94c363e9d527e398d25b313c2a2ebf3781fbd89a
2041 F20101115_AAAFBE kuo_y_Page_221thm.jpg
89a486aa5c1291e0d4b028770eb0aaa8
83fb942fbd7fe07e45312b60b2b575e0a8946394
28902 F20101115_AAAERW kuo_y_Page_011.QC.jpg
6ee660ef0f8de5c6e279f5ab3326122c
35b31cae4bf2a01468dec90d01a40034d07e5824
83700 F20101115_AAADHS kuo_y_Page_171.jp2
c296710585626e072d94f720016f6835
a94e8d758b323f5bb53d3fdf85cd23be49abe566
1463 F20101115_AAAEEL kuo_y_Page_082.txt
3201d432d37ea89e99827930dbf94322
97db12e724125f62bf6526b8ffbd5a2ad418c863
8415 F20101115_AAAFBF kuo_y_Page_222.QC.jpg
a0889e6a59fb64fcfdf1391f829c80af
7703647c4100253572bd20d838ddfeb76a053ed0
7277 F20101115_AAAERX kuo_y_Page_012thm.jpg
b00b5921cf2d9f7138c6397cb3225463
a85d5fdff5b1893a505a6e74ca4efbbd8dc40026
98592 F20101115_AAADHT kuo_y_Page_172.jp2
a84bf221a7d2f6d3cd390bec6f997564
cf5fb00f4e20e3466827cd20ab026fb00f3ba03b
1241 F20101115_AAAEEM kuo_y_Page_083.txt
2922981aa891782cc75018353e78190b
0db37191c67e1e4043768f4bf305f8afd7594e10
2717 F20101115_AAAFBG kuo_y_Page_222thm.jpg
3f2f84236663348eb6a273a3b21468ec
d3fce8664351e9305f9ac9af091c8474875be259
16532 F20101115_AAAERY kuo_y_Page_013.QC.jpg
0a2432339bc272fc73b4054163e413ba
6830e351247c640b75e8f62ba2dd573a29af61ac
79135 F20101115_AAADHU kuo_y_Page_173.jp2
2cd47e68b35371cd5ef5b7a0f76488c0
359861c9bf2147633ff28eda2623fbcb025aff05
1498 F20101115_AAAEEN kuo_y_Page_084.txt
024177d9cbf2fdbedfbc142572681174
a560f2c0a35130cba92fc4b2df3f1803c62bf7ed
1974 F20101115_AAAFBH kuo_y_Page_223thm.jpg
24e246f2474c0d78a2e7fe21d360038f
a5b26cf8dbf18c26e6967ea7a0f5e5dedcdc35bd
F20101115_AAAERZ kuo_y_Page_014.QC.jpg
4f966ab4754354e5861b99af8911efd4
16f8189eb39124c07d162400441223aa9a09c593
97223 F20101115_AAADHV kuo_y_Page_174.jp2
d308ac97c205741e537cfe44b3f9ba40
3afb08323e39b73100e731006de6de906023ba4d
1653 F20101115_AAAEEO kuo_y_Page_085.txt
dd72f7783d656837d891bd4a96564596
bdf1200a5d2c269946539f1d5def6acea2df2558
9005 F20101115_AAAFBI kuo_y_Page_224.QC.jpg
cf82cab403da13b3e9957781645e103d
e9ed445680aafa8168bf2da3874ca60580c969fd
84326 F20101115_AAADHW kuo_y_Page_175.jp2
1726a61a04321cec02eebddd87564423
a72929fb3e8c817163973672cfa5d3bcb1e02db9
1993 F20101115_AAAEEP kuo_y_Page_086.txt
88f9b69b35b5c60b97e65729c705efb3
981977228ec37816488f9603616176cea30c5060
5682 F20101115_AAAFBJ kuo_y_Page_225.QC.jpg
5169486c478e9dd96e41484dafaa0db8
1bc02a3d2672508d7c028c2f4983b19381bad132
83859 F20101115_AAADHX kuo_y_Page_176.jp2
ebfe7235bde6d15b438fc5a1399898ae
16bc3b1a20e4c56e21466aa6961d5d652cc85810
1836 F20101115_AAAEEQ kuo_y_Page_087.txt
b9abd8260648e9c35f8f87e57c50fa66
fc6cdc83236bc093f6fabe7cbbecae5a1d7d8ad6
2912 F20101115_AAAFBK kuo_y_Page_226thm.jpg
4e2dea80e0e046ea0da336711a3e252a
605e62438ca50ec189a91b392374fd4ae83af930
74103 F20101115_AAADHY kuo_y_Page_177.jp2
8aeade6d85d56605567417baea88ece0
bf6a851a3ba2fdea9b12e90f45bbcb260117ec02
1945 F20101115_AAAEER kuo_y_Page_088.txt
86832ff8db215e917686c6e6dab7d9e4
326a4787c9a862f47bd796a82a72686e854e3dcc
1982 F20101115_AAAFBL kuo_y_Page_228thm.jpg
ded87f72585bdc34305c706ae8ff4d35
f90ff8ccf04d70eee583d1a056afa0af941ca36f
64487 F20101115_AAADHZ kuo_y_Page_178.jp2
d00ca160eb4ba091e0bbecdc024616db
733947497d2a1f5f1dffecec9528b39c4fd79e67
1409 F20101115_AAAEES kuo_y_Page_089.txt
030cb3a315f2a4ff08eed893cc3c8131
0269c46babc7922cd93b25a526f07bc42b3159ec
9620 F20101115_AAAFBM kuo_y_Page_229.QC.jpg
e66ec19cfd3adedc129ed7132b85566c
8758decfc656d381a37a7d72615a35980453f363
2103 F20101115_AAAEET kuo_y_Page_090.txt
f8ce78426968382d421c9d5daa599923
8c2887d793c728282e7775ad88ea9ce0179b12d7
2725 F20101115_AAAFBN kuo_y_Page_230thm.jpg
de33ffd8adb78273331bcab7a5bcb82b
4b5d69753c7e2ada4bdccaa7cda0c9560c2bb916
96127 F20101115_AAACQA kuo_y_Page_201.jp2
bfe8a4edb5f7d3c1833eb6012a1a02b4
bf4b1d112c8858db2aa6dd773b23dcb05a08a0ef
2118 F20101115_AAAEEU kuo_y_Page_091.txt
dad8516734ce4fcba1bdde5faf6cb66e
fc91793071e3e2257d55eb7f40647cd988c0dfd6
7560 F20101115_AAAFBO kuo_y_Page_231.QC.jpg
3c71d6640c63745615760050ee3c3826
68b2fe62f69eda6db2c07312364d030742b62860
2737 F20101115_AAACQB kuo_y_Page_016.txt
853f81067fe04416d9b087518a9d5e87
17f0673f2f448fb4338f31284f6ec76ffea67418
2090 F20101115_AAAEEV kuo_y_Page_092.txt
eb423f86bfdb3238889a82cd442a1c02
5d8f0dfe40932176afee49ac6f9c066eaf4f0f66
2476 F20101115_AAAFBP kuo_y_Page_231thm.jpg
7af655351d22e956edf88356856982d4
f8a0c144997c81523b3a851b8721c82ebda075ee
53289 F20101115_AAACQC kuo_y_Page_021.pro
e80740e738f126c656f7a00c1ae92241
0b0fd8adb2d47b0ae29441ac881715fd3c48a9b1
2174 F20101115_AAAEEW kuo_y_Page_093.txt
de46e5f0efda80d5ce812dca44de224f
138b92f854580000dbd481ba9df584e9e82210aa
9730 F20101115_AAAEXA kuo_y_Page_125.QC.jpg
6e4bb864057c2c519b00c490df8702a0
b1b7babeeaf38b9c18ac0345758b781ccb94bd44
7850 F20101115_AAAFBQ kuo_y_Page_233.QC.jpg
7eac2f037dbc231a5f87fafc0576f13e
4e43efff3e7ca6af15dba16fced235333bd0465e
181697 F20101115_AAACQD kuo_y_Page_042.jp2
3ba761e2c7ecb6d20abffb9ebe6ef00d
7d6c6b8bc4824ecbeae4d148c1a9ceb3e0214dea
775 F20101115_AAAEEX kuo_y_Page_094.txt
e43280f0e2e5aeefb1405244b7cd6a1f
54516dc0bcacf9cc543e1b00478f5f83448b1921
3301 F20101115_AAAEXB kuo_y_Page_125thm.jpg
092486b03b6b7646964546c6b5d57af1
2e695eac86558cc01bc89c5ce79c57317d90b86f
8768 F20101115_AAAFBR kuo_y_Page_234.QC.jpg
6198d190e0b737cfd460d67377428ba7
9186c518754e1cdc54aab3a1a27270425417c38d
2572 F20101115_AAACQE kuo_y_Page_226.txt
c9955524f347a65824909499b1388d52
8146c3ac2032ec8dcd5dad2cf4b9d4efe0ea2f0f
2303 F20101115_AAAEEY kuo_y_Page_095.txt
1d9debc5c3ed84aa6d570765f158af4e
a6b26231faf943b303a4d0133589bb5da98d0066
6764 F20101115_AAAEXC kuo_y_Page_126thm.jpg
78d96c416013d5b94fcba2864b13432c
fd5b1d9d8e10c1715c858b98dbc7d452a0f6591b
2607 F20101115_AAAFBS kuo_y_Page_234thm.jpg
fa2ec5eab53225515ee6ae0c766eb18e
aefa6c96ba005036d6b405d8e964bed196728955
12102 F20101115_AAACQF kuo_y_Page_103.pro
e35f4129015d29d09df95c76b24e7bc2
3bc245b6dfb611f11b129f37cd33d1162283dcf9
2553 F20101115_AAAEEZ kuo_y_Page_096.txt
ed7966e1670e677f817dda9211e70eef
a44a3a39d4cceb54360dbb3c624ffdbb09155681
5075 F20101115_AAAEXD kuo_y_Page_128thm.jpg
67c3597ba0be9bc8eadc80c7aa211c51
3694516ed464a8c220508ea67b9b2af6d41bc10f
26554 F20101115_AAAFBT kuo_y_Page_236.QC.jpg
f2450ea84c5a536ea6bd195af495b578
d1f560d13f20b10ce0e3f7f372de2a7538d7a111
6234 F20101115_AAACQG kuo_y_Page_087thm.jpg
8d308f5e6f003290833b541d42c54385
fbe0d663c4cd304a871982aa69c148e55b8be4f1
7069 F20101115_AAAFBU kuo_y_Page_236thm.jpg
a04b15b0ba8e1828081499fd21a5e90b
927eb0299641052c540b7d8562c4909dac87661e
15208 F20101115_AAAEXE kuo_y_Page_129.QC.jpg
df3d0688349e039e7d1285df681060fe
a8efb39f8826fd435d2f1a0d22acfcd3606de203
2618 F20101115_AAACQH kuo_y_Page_167thm.jpg
c93f20907de30c53f22834121253eb75
7e872c937515c5ebd030aa826dc01672eea3e532
F20101115_AAADNA kuo_y_Page_073.tif
0de02ece375e8ed8739def6a3e800403
9092bfde88050a25dd934618546d0b1d8ee67ede
7144 F20101115_AAAFBV kuo_y_Page_237thm.jpg
614b67988afc4e923eda3e5f9ec43558
31c9bb4d43f902336960ebde8d5316c006817854
4516 F20101115_AAAEXF kuo_y_Page_129thm.jpg
538d61936090b1b418077a127ada51f4
118780ebec88dc371c569b1381ae5f8e2545954d
F20101115_AAACQI kuo_y_Page_169.tif
ccf63d7d24780f2ba095b8635d9f982c
09ce48009feeac17f06d8a23443ef2a105b2084d
F20101115_AAADNB kuo_y_Page_074.tif
53a4229c19c183022ed6737eb5843bc8
05c206ecb1268ef3dd19aa42783d858805b395d3
27035 F20101115_AAAFBW kuo_y_Page_238.QC.jpg
9294dd888717ab3b5fc74c9c4f709e30
56e5bed97b736ef9bb7657730d6a6c26be2565e7
10354 F20101115_AAAEXG kuo_y_Page_131.QC.jpg
e135f63a7efa9b809e856b1ca43d08f9
f9a56f0e5d5b539fdb12202f6e986f4e0b668d2a
8874 F20101115_AAACQJ kuo_y_Page_199.QC.jpg
ccf6fc90757b298e87bf9dc203e2df2f
d434a96cf16bd6b200b7dc08b43d6c312a8a78cb
F20101115_AAADNC kuo_y_Page_075.tif
44998d9e2d4fc02ecd53b59932348a79
59d190f3689bdbb616fca0f4164ec423172903df
7469 F20101115_AAAFBX kuo_y_Page_239thm.jpg
5775825f08d44f8f02b85dfb3a03f94f
d1b4e97b552c11d01a4fba1e2ea67c16894b0b06
4272 F20101115_AAAEXH kuo_y_Page_132thm.jpg
95f2b77028083f99926294a08283a3a9
da8c54375d54fbe043798177bcc8c732349d2f5c
3268 F20101115_AAACQK kuo_y_Page_180.txt
1fc74f7dd6628ffe5c4d17af30f927b2
6a9bc9607bf061092833319cdf59a84e3f76c1c8
F20101115_AAADND kuo_y_Page_076.tif
d9141ea4d391eed188ff5087b25cfbe2
e85486fa2580636673fad9a1c0302704bd484ab6
7422 F20101115_AAAFBY kuo_y_Page_240thm.jpg
497008389d73a4fcc27651e06eb9a30a
3ca8bffa694ca1bc525dbc58c119ba29efa1dc58
14882 F20101115_AAAEXI kuo_y_Page_133.QC.jpg
afab78f8a02ab323b43e524df8bbac63
6a5f23849ae1a73707f652df982db24177d8eec5
50392 F20101115_AAACQL kuo_y_Page_126.pro
a8271af9291b330e69f840451d0a77b0
f06e1675ed765cbea66065cca3eb3c2c9a78ba88
F20101115_AAADNE kuo_y_Page_077.tif
1c88e0505212b73649c47c6025e61375
06a8e6101147b75235829febceebfae383af15df
7253 F20101115_AAAFBZ kuo_y_Page_241thm.jpg
74de9634b84f62c722733b52641e86f4
92234432bd11b6037b2fdd07127ee5216cc69b64
4347 F20101115_AAAEXJ kuo_y_Page_133thm.jpg
6e6908929a2e1f7b4134da902eb5bffa
b491f23c7fb5ecc9273d732bf1903f7af6904067
3554 F20101115_AAACQM kuo_y_Page_116.txt
3404c54921bcc767b7bc4fc81856e235
f677fdfe8997ec85af91707c380c844d4237003f
F20101115_AAADNF kuo_y_Page_078.tif
cbbd7ba98fabc932d224278d738f56af
697788c2e0907137adfee4d58d96c928fc609b23
15640 F20101115_AAAEXK kuo_y_Page_134.QC.jpg
d4d86a7bd33b85fc6b267685285338f9
3afaaa0439da7d18c294a1890aa4b341dc18e4ba
2262 F20101115_AAACQN kuo_y_Page_199.txt
0606a676e79db007781e61c253f2b72d
a7210e96b1ef46b77e4bbc870d851cd778989e4c
F20101115_AAADNG kuo_y_Page_079.tif
7c2c07f0952a32962ce2402929a9e5e1
2290e01fadd03d90165e2496cb229e26458c6be2
4588 F20101115_AAAEXL kuo_y_Page_134thm.jpg
eb161d7c51e69bfa5375f0425a19cacd
226c7d4c41cf6e9109fe364f7b750a909b5f25a8
35356 F20101115_AAACQO kuo_y_Page_119.pro
1c0f84698b0d63809c9b85031ecdc09d
16775a57477946611872903425e2a09d9e40acd8
F20101115_AAADNH kuo_y_Page_080.tif
e75d0642e57ca159784d3920ed71f667
0c99b6ebdda6425766c1b7b627e714ba934d450b
2629 F20101115_AAAEKA kuo_y_Page_238.txt
af2e225043cc158309582133c82b604e
aa1a95855dfea3dd453d1701126a90eead2a7660
14482 F20101115_AAAEXM kuo_y_Page_135.QC.jpg
35ef7a82193bc98fff4bff3c56a90d14
3b9adcce4a1fa72746108d8eecc0f9065264095e
93573 F20101115_AAACQP kuo_y_Page_188.jp2
4643cd53ba9d4d24d56a2c69740ba4ac
200213a935a5b7d67b8ca81260bb26c1367661f8
F20101115_AAADNI kuo_y_Page_081.tif
4ec5901053d7b109a29a6c8ecce1314f
1a8ecaff9635ad23c6eb0b84c69b1469ef57bc1c
2774 F20101115_AAAEKB kuo_y_Page_239.txt
02ed500ea223ab2d0135c9bfae651b4a
22bcb505f9ba138bb089da0de134134fd324093a
16963 F20101115_AAAEXN kuo_y_Page_136.QC.jpg
198316fbd3097aa4a2e8454f77f44ed9
c2842ac751b88dd0fadedce5f6ee920227e9a368
5732 F20101115_AAACQQ kuo_y_Page_075.pro
359b2a3a35b188d372717f8e854b2328
f2e312e2dc6690d90647ef37d8069eff309963ae
F20101115_AAADNJ kuo_y_Page_082.tif
411cae248e283f6d7931bae20a2dae2a
b3409534af9c937f8aa02399a333e47ea27192ce
2749 F20101115_AAAEKC kuo_y_Page_240.txt
316de1446c78f96a4e8dc14b0177d5fe
d5edebb49c670c5cf45ab0d6f144776dc3692575
5128 F20101115_AAAEXO kuo_y_Page_137thm.jpg
a9f75fcade7e0ca9d081dbe696f72caa
2fb2fc914844698d8a898b0b4d4ea0f667fe3b5f
4331 F20101115_AAACQR kuo_y_Page_013thm.jpg
bcb2f7f9e1b555b8c83c7fd66f8ab1b3
76d55bf51d97a97edfd514addf322f1f94989529
F20101115_AAADNK kuo_y_Page_083.tif
3c50c4efd2f57a297ab4a5e8d1b477a4
57d66b7142397398d4bf903cd10a42ab216770a1
2552 F20101115_AAAEKD kuo_y_Page_241.txt
fe602b4b2ee8e93acc6251cb532c9096
5bed99bed21b42b05866b83eb934524eb8cd036a
37749 F20101115_AAADAA kuo_y_Page_195.jpg
832d8dcf893dacfa3dd23a79e1a78daa
805ca0b11d2dbbbc1d52f2f1ab8748b2e21eccb9
15108 F20101115_AAAEXP kuo_y_Page_138.QC.jpg
6df7d95d768b817700883042c81c88d0
018c7058624e6b7ee5aa78bd0a5c9330b2ed18a5
F20101115_AAACQS kuo_y_Page_102.tif
ad1f5b37fb4ec2f9ebde0662edb15ce8
bbb66687cadfd276f179402e78d2172f4dffd727
F20101115_AAADNL kuo_y_Page_084.tif
6d07e1ee0a8d3a3c2623af63599eb1a0
1555a2d886c21148a634e917f8f20511817fcc47
2039 F20101115_AAAEKE kuo_y_Page_242.txt
c02da771526d8fbe03a16efce3b8051d
0e19e511ba1a18cbcdb60358140a2c2e9ceacbdf
13787 F20101115_AAADAB kuo_y_Page_196.jpg
a273afc8e896ca9d4e1b17622621b64e
43904462eb759e072578cca33d1afbb877b37fde
14252 F20101115_AAAEXQ kuo_y_Page_139.QC.jpg
827a81675a8dd30c26fee6ec8c68e94c
e73255c993649313951b66ccec364c96a1afd64b
F20101115_AAACQT kuo_y_Page_153.tif
cef8b0794dbca65d7f12a4da983d8471
4cc6f24492c674eb792565524ec596db65f35fb9
F20101115_AAADNM kuo_y_Page_085.tif
3154064679dd86cd1a9539d76fec6725
ae87e300fe92449502e3c4ce7a04c501ac33897f
687 F20101115_AAAEKF kuo_y_Page_243.txt
2470a5585e591c18f998603d4d3c52bf
7463e09949adb445e245f7030502a0cfeebb58fb
32585 F20101115_AAADAC kuo_y_Page_197.jpg
a3f3d17572de4d5f3e7c546c79f85bd7
6389fb7f89f5e198dcac09f32982ec711b43034b
14057 F20101115_AAAEXR kuo_y_Page_140.QC.jpg
4f27e3c90184c544357cc1a326642db2
7d39883f9a6cb6c42ed33fa46a0b3abe438716c4
12600 F20101115_AAACQU kuo_y_Page_072.QC.jpg
3eec1422403abb38d9dfdd997472c662
1930c7bd3dbb98aa2d7a8d608379406ffcf01850
F20101115_AAADNN kuo_y_Page_086.tif
e91e785073a0fa0c473ae1ce9fe7f564
9db42728be243fc0d93f0047f56a8715580f7d09
2407 F20101115_AAAEKG kuo_y_Page_001thm.jpg
3a47c3d0055e891b7e7c6af0b2bb4539
98dd2ae37235352bd93c70701e7041e613d5658e
14303 F20101115_AAADAD kuo_y_Page_198.jpg
5035893a926e4a7fd7d230614f8bd462
ec5125d62f5ee9a18837ff2531e1d018e65182e5
4456 F20101115_AAAEXS kuo_y_Page_141thm.jpg
23243c6d6fb338c542b4a22b8e6c4a7c
741a5e0102bc0867ea349fa29ce69aa929b25f9b
589099 F20101115_AAACQV kuo_y_Page_072.jp2
8c1302bfc3b096fec42f92c6bc8eb835
46937167f6d7044344b4dcf24f85a000822c0a86
F20101115_AAADNO kuo_y_Page_087.tif
dfd0cdc7ef7c0927f944fa3f782f1154
5ff84da93f04f97565d31283872cdc3855d5c63c
2838924 F20101115_AAAEKH kuo_y.pdf
523471bca0f3f9c0d6739c769c0602c2
3a940c6b534273a7c524fc8841b63b411cef0609
32222 F20101115_AAADAE kuo_y_Page_199.jpg
80ff9fa4941b378069821811bc1043ba
87608703524c6da97469bb89ee3dfc0bcd00ae6b
14911 F20101115_AAAEXT kuo_y_Page_142.QC.jpg
ede1b552da559b6d36441dad5ea00a07
3606417e87ad5118496523081666c15bf974af88
F20101115_AAADNP kuo_y_Page_088.tif
2a451220c53ca745c1c8bcd6bf413582
8230308e4f748a7ec4805b7ad35d8b667690db61
5230 F20101115_AAAEKI kuo_y_Page_119thm.jpg
2bde261d3116ba96504589321b22f1ef
8c2db0819dcf3b03f4bf094fc9e3bfa9f9c14f4c
4108 F20101115_AAAEXU kuo_y_Page_143thm.jpg
015f0e1ebb1bfe607fda6a80a1efc13b
88562947823d651cb79fe2ae9c76c9fec9645a2b
F20101115_AAACQW kuo_y_Page_146.tif
854c01957390bc7d157d22f4f699a742
7dc5614cfc097cb4d2f49a30bf766af3961290a3
F20101115_AAADNQ kuo_y_Page_089.tif
01c2db3ae3119cb4861ac36d3aad28ca
43644d0b6390b0492c9fde42e7f122a74e6b9192
10385 F20101115_AAAEKJ kuo_y_Page_170.QC.jpg
567d88a9d94e85f2fe791823a8a4521a
800c4434cf84446a554b9834ecfec00d076e872b
14538 F20101115_AAADAF kuo_y_Page_200.jpg
8f04d1b19c4dc228a98dc6514a22f51a
50f5a5f7cbe6b86b521b82df3e70ec4e28c7609b
13481 F20101115_AAAEXV kuo_y_Page_144.QC.jpg
6072f2575898811b8e75310048bdd550
8fc561f5f554a9cf6e662b834c8d723f36ca6894
18769 F20101115_AAACQX kuo_y_Page_117.QC.jpg
cdc54167dcd8a9ed9ab1854d029f2fe0
e6d7fad541fbbc5a226e3d498ebac3767ca44320
F20101115_AAADNR kuo_y_Page_091.tif
02e89fc952cdb791708b9cf501c66a2f
5fcf036b92a4b2d341856d962d2dca3b08520021
11840 F20101115_AAAEKK kuo_y_Page_102.QC.jpg
21dd1c7937837bf5339cc69f406ecefb
6e56b587cc6e805640e5aa24df08ee0899eebf98
32952 F20101115_AAADAG kuo_y_Page_201.jpg
bbf67d5dd62b67b8badfc4314ef20236
8a63cd6033e046e10ce10b1b8cf9716ce4dbd33d
4195 F20101115_AAAEXW kuo_y_Page_144thm.jpg
a9a9287268537af35541d54c1bfeb40e
fd3ed3cf3b600fcc4dd1ed2d6f4d821581915b3c
33255 F20101115_AAACQY kuo_y_Page_193.jpg
346809f8787a0bbb6f3198dc39c6a7a2
f979a809a62e6779e3a20a37cb0e6b8cc5e7c116
8493 F20101115_AAAEKL kuo_y_Page_154.QC.jpg
4373960c7f5008d05c7c778576cdfc78
9701afa32bf2e2329735dd7bb483a48c67faaa22
31496 F20101115_AAADAH kuo_y_Page_202.jpg
65377fbcf3953c6938a74027a5809cea
3db0e5ed68170932cfb345f490ad81961b2e3980
21543 F20101115_AAAEXX kuo_y_Page_145.QC.jpg
616470658a8400ce53d711ef5c46e133
3c2c9b76bbc818db368c0ddb2702af182b8b0131
81481 F20101115_AAACQZ kuo_y_Page_041.jpg
591f0194547234a39b6638736620b544
c25dfd3fdd21269923d984ea6c1a0f49dd90af7f
F20101115_AAADNS kuo_y_Page_092.tif
c85193c217fa1fbcc11c55e3702a557c
fcf6742fc60f10da688d93e4dc2d6e906da06bf8
7135 F20101115_AAAEKM kuo_y_Page_238thm.jpg
cc6f7f1b8b998017eb2c63e074b2bfb3
c1f314182b9a6dd0ae6401cb2f5daea2a5f07863
26527 F20101115_AAADAI kuo_y_Page_203.jpg
48ed7e7ee25d0c400943f7fe3170b733
573502152e447df8a9525b791d1fa9d191312213
5938 F20101115_AAAEXY kuo_y_Page_145thm.jpg
a736a2d6ba3e3fe8072da6544b1c68ba
4ba9e7b49a1ff2a28f799993e0a510178668b7e8
F20101115_AAADNT kuo_y_Page_094.tif
cb6f4e03f79ef432ee6184b36fa13e5e
abd6197f5da01179b7197e8e2b0dfa19ef06164e
5960 F20101115_AAAEKN kuo_y_Page_058thm.jpg
931805e08b790cd1c06ad2f036729700
029403cee805058695e49c4f010dfab5ec58c02f
27254 F20101115_AAADAJ kuo_y_Page_204.jpg
87473a7c5316275752214d30d2840407
4da540dd1a61638f2fd2f3894cfc36b6e349ab96
3169 F20101115_AAAEXZ kuo_y_Page_146thm.jpg
8071bf011bb79a1ffb357ae8f81c0cfe
8374e2da03ce0b81a99dd3ebd6a662d8ad0a13b6
F20101115_AAADNU kuo_y_Page_095.tif
5ccaf12c683595c81b7ce9bcbf18c60e
da76e8882777c90857cea0f2b2dc385e32885d4a
27679 F20101115_AAADAK kuo_y_Page_205.jpg
d971c7ac6e9b6562143cf298d17964fd
5fd90e70a5b8367eda5f073648ffab895609b0ff
F20101115_AAADNV kuo_y_Page_096.tif
02e565507a3529a7a286bbc43ae9c294
6cd6a4e646552396495bcc2b2902406bfd4e06fa
2968 F20101115_AAAEKO kuo_y_Page_195thm.jpg
4bc79bf1fd05628a4d07588928ee0bc3
cbb931f18f895577f4072f6b7562a6a8aaf2d6a9
24305 F20101115_AAADAL kuo_y_Page_206.jpg
390706820da69dddc134cf5ddc456686
bc442b046fb5de6741fb8bf8c0f71a7132cebff9
F20101115_AAADNW kuo_y_Page_097.tif
d3f0b6f0f041d818375ed32dc53b16f3
5dff7e66ff6b28bfbf3f90943397ffff095f5212
3076 F20101115_AAAEKP kuo_y_Page_040thm.jpg
8e812b7c3ea49d4fbe43386f1b5620d1
4369f13205b1a28e1d4a13d9d161c41c2614926c
40353 F20101115_AAADAM kuo_y_Page_208.jpg
f91263777f8c279ab4ef42a46dc29c99
203458c79a1e936841a857b068087c228e446632
F20101115_AAADNX kuo_y_Page_098.tif
6cbcf2d6d95bdd040063a744fe12ab69
442800ee47ceafc79d287817da147a18499335f5
2643 F20101115_AAAEKQ kuo_y_Page_197thm.jpg
de73fa202cf40e87e6a535342feeba13
e1eb698f09534f9dfa358c8d5a7cce4e03bed7d2
33545 F20101115_AAADAN kuo_y_Page_209.jpg
24dcee1698ef56bc5bce58f5dc20b8c2
fc9c2cb311ed12fe1bd503d8e66b11a57cada518
F20101115_AAADNY kuo_y_Page_099.tif
c9d140f070d15c0c651f16e5d2565c2e
d2bcf9a18413c37273cef7ceb3d6749db144c8cc
2286 F20101115_AAAEKR kuo_y_Page_025thm.jpg
db0625f2ba7d06b5d698fddd28ef9e3b
d68a98d4033cc683f1deef3d2a0ccb25d9ebd719
24093 F20101115_AAADAO kuo_y_Page_211.jpg
a2a2ba049bf1fef9de6305610dbbfabe
dd3a6fa55ae702031353be77f0d0603e6517ff33
F20101115_AAADNZ kuo_y_Page_100.tif
6e409696125558f5d48d2e4e31f55fc9
ae33902a814033e5217b27c36b9b1d0c516f8813
3551 F20101115_AAAEKS kuo_y_Page_045thm.jpg
4696831e45eef002e9b16a3b43c23f38
5b4748bfcdf5ac34f790461fc8da79c9b9fc73cf
33735 F20101115_AAADAP kuo_y_Page_212.jpg
ddcdfdaa72eed1805a321c4611c5242d
6191355a66f712b0f3c523d36e29ed2ad2650cae
2738 F20101115_AAAEKT kuo_y_Page_235thm.jpg
8e82f58c7043d7c7b293451e33504169
6bc227574d4a67b009a3a283586a03ffcf8eb7d5
28274 F20101115_AAADAQ kuo_y_Page_213.jpg
9612e3201865fa5ac7761621d84ee736
e9855f08c9cd745533cbe96a7eca70ecd954eaa9
7728 F20101115_AAAEKU kuo_y_Page_187.QC.jpg
d648c8f16bd3fb9723c33a31ebe0e059
781b5d52f495335d05611d28e4a7a1f44a9ecfb5
67300 F20101115_AAACWA kuo_y_Page_087.jpg
9f97e90f1fc9519a364824fea1151edf
7d549f8032e63f57ce16888aac2e27d088b85f6d
33784 F20101115_AAADAR kuo_y_Page_214.jpg
393d56d98fd1c1b804796ef71dfd135f
d087720dead68f08dc2a91d454c689f32f5a45db
F20101115_AAAEKV kuo_y_Page_153thm.jpg
36bee1f8c8464d7ab3e9aecc429c6cad
1c8c880def67878b88e74282b37f43965cc7bf0e
51888 F20101115_AAACWB kuo_y_Page_089.jpg
bceea1ba5473c5e2be064f1de0eaf42e
41236fb2d1673dad96861ade9945360d845122e8
10063 F20101115_AAAEKW kuo_y_Page_193.QC.jpg
b1ae07b0332eb5dc8a3a8bfcf911471a
6585105e869a4877e5cfe51437f345a8513b09aa
75992 F20101115_AAACWC kuo_y_Page_090.jpg
b2c8efebda58ddc21cdfd272fe5505eb
714d3fbe3297993cb6e5b26b5e8151f1675a4f80
26169 F20101115_AAADAS kuo_y_Page_215.jpg
7e22866e28a53db6d81456558c36b308
a26626533b40438c8ccc0eddeec9108a6495afec
24193 F20101115_AAAEKX kuo_y_Page_032.QC.jpg
6799211ce62aa44da9f4b09c9e1a29b0
8f4d54be8b58e31084a9b524fb1a6c567eaffc94
76628 F20101115_AAACWD kuo_y_Page_091.jpg
68b3821cddfc736da92dde35a9435186
2fadbeb3ba394685f480e5b2fc84d99febac4cd5
34693 F20101115_AAADAT kuo_y_Page_216.jpg
44bf2e61ba099d3b7f2972a411c9d7e4
aebc3313feccfc6655ba161078406b121eb1f67d
4813 F20101115_AAAEKY kuo_y_Page_130thm.jpg
bcececc7feff425d39559453fc74f26a
221ed41ebc6371ca1b99facb2e7892eafa3be720
76810 F20101115_AAACWE kuo_y_Page_092.jpg
878f3b082eacb3aca6ca957a56511c2e
50335ef1265420e073865f89e766020b1906b1c7
32563 F20101115_AAADAU kuo_y_Page_218.jpg
85dce9a8a703ded3e3bc09fa88df82a8
5083ceec6709fb2a6be043d196975e117b141295
29182 F20101115_AAAEKZ kuo_y_Page_116.QC.jpg
ba7890264c60b20b43f10d04a396ff00
5abf92e2959cb4f3fae9080db1b24d0e21130899
77003 F20101115_AAACWF kuo_y_Page_093.jpg
1758702e121974990d54b3c487dbb475
9b85e9bf8d6865d44883ee1adcbe592c80e345f8
26537 F20101115_AAADAV kuo_y_Page_219.jpg
4161ebeef9caedc66295490f1e1c8530
a85a5bda11cd92f9b7b892d7c3b5160fb5d55159
33385 F20101115_AAACWG kuo_y_Page_094.jpg
cb7c706cc2f1c5c64032672c0c1f7c9d
135fdbe5800aad03710909a03403e08ceec4ddc1
40762 F20101115_AAADAW kuo_y_Page_220.jpg
c85c91c7a53e194e6a9e4feb595b7a51
32c2ef9da45c21a47f9c4922819f806ab339f97a
F20101115_AAADTA kuo_y_Page_242.tif
9caea64642050ce204b866230c9bdc17
89933746bc37e21a6f4623264ad274c5965eab1a
76173 F20101115_AAACWH kuo_y_Page_095.jpg
9c7eaac2273c732abc79c6d971632e4f
011caf0d9958c96b17664bf1402dab87438fe7c3
20894 F20101115_AAADAX kuo_y_Page_221.jpg
9e9be666b823756d64a956ce6dc9d689
c649ec3f539fec18f51708999414d30fd115aea4
F20101115_AAADTB kuo_y_Page_243.tif
eb540c664cb60b1987d725aeb8500dab
6b53ac0283b9b352d0362770ada7e19fa7888c8b
76896 F20101115_AAACWI kuo_y_Page_096.jpg
e470b97772f3562f2931319c401b6e9c
7aaae905c97f441caa47acf406048c6ce21b3f3c
32309 F20101115_AAADAY kuo_y_Page_222.jpg
138581b87e6d0f3a3891f62db9f890ae
9bc19197e4b58f72da32c390ae87893bc51daf58
749 F20101115_AAADTC kuo_y_Page_002.pro
8be55f9e791c0c77957a97e32308a0c0
3e9a06b49f0c239c8ad5d2d98e9258b146146ca9
58627 F20101115_AAACWJ kuo_y_Page_097.jpg
f0b5256356947e82b890a07126cdc699
b62b1ab3c1b2e1f888522a81851b1cc0e0f416b0
17950 F20101115_AAADAZ kuo_y_Page_223.jpg
2e4446382f7aed2964dda9fe71f650ee
9dbf7b4063ea9cc6f3affd01bbb969c5e796dc45
4378 F20101115_AAADTD kuo_y_Page_003.pro
17d7a047ff8d1a8c1db74e22324aadab
96eaefa15ed7c31a6767a1b95e7c790929b04c2f
93262 F20101115_AAACWK kuo_y_Page_098.jpg
095e2a67947489789ab3e2a7ee08cd5f
d284bb16a0f63a19ee3605342021e21f154e3f64
56210 F20101115_AAADTE kuo_y_Page_004.pro
73bda8c7497ee9d0cc1a8725e85c3f2f
bb11321b0992c74c2bb20b3e99732066171f9e30
27438 F20101115_AAACWL kuo_y_Page_099.jpg
fca26ebddececc7706c576aca6a9a14a
28f347e5190928c583ca1831dd52d1ad96935328
30614 F20101115_AAADTF kuo_y_Page_005.pro
895599c5889f3ee001067b2f176fa281
acd04cfc2d600f8f283b2299f0bb2accb58ba991
38027 F20101115_AAACWM kuo_y_Page_100.jpg
4966b85a4c637843477bb11f6e44c764
421a6bcd5199d65594b7ab0a08a9712af8f803bb
77658 F20101115_AAADTG kuo_y_Page_006.pro
e7a77343fcb6db445886abb84aded424
7c32d190a6c336af388d265df011523552644293
36994 F20101115_AAACWN kuo_y_Page_101.jpg
09cce112e24cd30017da58cf184249df
e26cac0f7f022f10eb0da47ece295133d5502784
79615 F20101115_AAADTH kuo_y_Page_007.pro
a8ad8ce5dc1a1908328df9194771236d
5901160061776bc71f8f0c7510d3b1910e196665
25294 F20101115_AAAEQA kuo_y_Page_092.QC.jpg
85e96b230b192f3a5cf090fcb6f50865
b84411e832c29563e4ac5821aed5e53528f8d075
37345 F20101115_AAACWO kuo_y_Page_102.jpg
73ebfc3828319bb6ed74cde6e23b6e57
3996d39392788ad0af92144c803cfaaceeda2c1c
8064 F20101115_AAADTI kuo_y_Page_008.pro
b0888cbec8bd39bede965c9eb4c5ae3d
bf8a1ee6e821cf0fccc396f3cd5a54241ac99d9a
25465 F20101115_AAAEQB kuo_y_Page_034.QC.jpg
73dcc0b01e267c4ed69850cd33a1b060
efd36f43ea9c055201bab2e63c5e9c13b9e09d65
33235 F20101115_AAACWP kuo_y_Page_103.jpg
069954cb0405eddf59f122331641f6d8
308118402c8e0c40258c4658c5ef50ef7078217c
62771 F20101115_AAADTJ kuo_y_Page_009.pro
65afef19fe2921362ceb5fb8bdb3bff8
d38975d94d65c5b8b29f2bbf3bf292b63698fe02
3701 F20101115_AAAEQC kuo_y_Page_073thm.jpg
860e0c3d3a6193aac90994ccb51d44d7
e74089f85d108f8d744b751b87d26b72a3513b65
39059 F20101115_AAACWQ kuo_y_Page_104.jpg
a08905cf2832988ed09cc88d6a539894
27cbe94fe0d914132379dba9a1a9398c1f1f2fef
72871 F20101115_AAADTK kuo_y_Page_011.pro
83ad3e84a9732b2c2695c0af920aa2e3
b926ca9d6ee1cd811141a40101c86c32e779e64f
5052 F20101115_AAAEQD kuo_y_Page_005thm.jpg
cc8e87b6b66daac6882170eee0569b9c
59bf769b5f451de07ebf3d6e2a9c76bced7f0c9e
42182 F20101115_AAACWR kuo_y_Page_105.jpg
18ccb178c867ada447689a26c9a23572
24ec1a11bfbe135b85966aab76a92804ccc416af
76303 F20101115_AAADTL kuo_y_Page_012.pro
83cec770610abfc259c2fdb8397fde8e
48e6c9e26fe50dd621b23914d509c3c23b32a553
6771 F20101115_AAAEQE kuo_y_Page_123.QC.jpg
7d5b8a0a4ab444469c74910ad3a65a81
35aef6cb1aeaea5fbb439afecd8b6aa4a6baa5d6
38942 F20101115_AAADGA kuo_y_Page_125.jp2
3d36aea004e417605b2572f20b3540c1
a161f8852eb1ab4af2035eacef1578f6617a9d18
36872 F20101115_AAACWS kuo_y_Page_106.jpg
60c76989a9caf9f710dea2f57d2bf192
4de9f90dcb621f11234f9518d4474d6f29dc8f45
38762 F20101115_AAADTM kuo_y_Page_013.pro
c268c110fe05e99f2cd277c4f4b53bd1
b123def3e72ca8947199b2020b8af23d937718b6
10085 F20101115_AAAEQF kuo_y_Page_210.QC.jpg
ef78942e12f2ece35864d372bcaf8a45
5c351c85bf7ec9a754d42dfbe44b570e7d1accb6
111137 F20101115_AAADGB kuo_y_Page_126.jp2
4ace735af38accb94dc428d0efe0944f
8f113f741eef6075427696ded2f4ab8d64c31795
74852 F20101115_AAACWT kuo_y_Page_107.jpg
20e8a791157b613abd61e4bc957e1faa
54306c56a7ddc899d8ed530ab90ff73ba731cefe
64058 F20101115_AAADTN kuo_y_Page_014.pro
593e12d0e853ce428b76caceeaed85c0
981e9e453e0e8913266b793b5fef263866b16242
8001 F20101115_AAAEQG kuo_y_Page_039.QC.jpg
0f04f6bf0c02e782e277b7fc5b03679b
26cb279d2faf46b7de316724a1e9040c2d9e999d
80690 F20101115_AAADGC kuo_y_Page_127.jp2
7c68fc561aab3dcfd4b669bfaf94dd5e
28d424adf9d6b915a59fb3583a817c955825356d
69817 F20101115_AAACWU kuo_y_Page_108.jpg
971935560bb2f3ab908a0b55061ab495
56f5896ce11832fe907deb4c23177a6965f3eb4d
76561 F20101115_AAADTO kuo_y_Page_015.pro
3f681aa5733947649075d6da5f67cdcc
7ffb74e5b4094759b3d3f2e80cf82f9b611e7596
6957 F20101115_AAAEQH kuo_y_Page_189.QC.jpg
ea163642f3c0ee4819fef7dc81833789
0d7f92852bd6f4e0aa0eb65edbb0f1f9f67d3ee3
87033 F20101115_AAADGD kuo_y_Page_128.jp2
bbba570551854d4f5e6b36585c646e51
a12ef0ce15cf02b435e312e065cac71d95d3f98a
58057 F20101115_AAACWV kuo_y_Page_109.jpg
1a6957862adcebfd662d04e426b52dcd
ee2a7348518e0a56da0b5555950d293a4ea29578
69255 F20101115_AAADTP kuo_y_Page_016.pro
6860e7afa4528226c859b353fa7de187
84d135a71ede2aa5866ae886215dd4c2d71c7beb
10626 F20101115_AAAEQI kuo_y_Page_195.QC.jpg
44f563f150f2dabde7f9f187e26f4ecb
cbf03c581597a0879b58402dd121635a98702a2a
522372 F20101115_AAADGE kuo_y_Page_129.jp2
5c64e30fb145337a8e7fea2cc78ae45b
e9f5691bd257b3e387a0e49a737e1de1cb758ea8
69044 F20101115_AAACWW kuo_y_Page_110.jpg
44c64f907ef5ae7d9b488f4f00ef4445
90629c505a00844c83037235add4f066982cac90
18954 F20101115_AAADTQ kuo_y_Page_017.pro
de0678a42656efc5e78f4c73ac8ad7ec
b41c96534cea67218ab7293e4936527e2af48ef8
5663 F20101115_AAAEQJ kuo_y_Page_113thm.jpg
7ad79454c243904a80eefabfd654383a
9eaa1a6da6c092b77a35724b6a392d7934f72886
573286 F20101115_AAADGF kuo_y_Page_130.jp2
0111f92a932bcb47332a9f68fe9606b0
93f778a55fc173dc374f152b071f0b61c933f3e0
65023 F20101115_AAACWX kuo_y_Page_111.jpg
e7eb3428bdbfcf0351950cc7e46c7b3a
4c7791d85c177f228f2ba13ad213e976a4aa7528
48290 F20101115_AAADTR kuo_y_Page_018.pro
023d0645dd8a361fa52dfd35e9d1cc58
091ae9896d3b2abfa9fa1a25b45c87b5f92c1336
2092 F20101115_AAAEQK kuo_y_Page_160thm.jpg
8d62fb64721028cb01a49f367ed057d1
ebade922ee6a269a861d2cfbdf22c228e252088a
42794 F20101115_AAADGG kuo_y_Page_131.jp2
5e617ac4e3ec95fbb41b47217df53b21
19b35a3905a38966a37d064f144491ac7397a96a
54654 F20101115_AAACWY kuo_y_Page_112.jpg
b1fff6e20e8d7b0c8b73aaad5a73348e
a6eda0da1e7d5e4421a1509e9ab651e720afbc9d
3719 F20101115_AAAEDA kuo_y_Page_044.txt
8e189f7660f31b773f951c3eb769d334
61bf1e819b2a74ad7333f3928ade6b9902cf7186
31712 F20101115_AAADTS kuo_y_Page_019.pro
b4734cb5eabc49c055398e971d9db538
e268185fe98800513d9db1736793d8a601fba2ea
2301 F20101115_AAAEQL kuo_y_Page_189thm.jpg
074739805f26c15b0b0a034e6259e80b
cc440caf9f180c6f33ec81ea788a06159322cbf9
528457 F20101115_AAADGH kuo_y_Page_132.jp2
c134159f38f66e854c3c48a136c87740
5d2637a3e1e2a8bcb7d5a11e2f9b66d4a64acdd7
56326 F20101115_AAACWZ kuo_y_Page_113.jpg
055308f5c9cf128157e2201cdb594c16
a8ddf4a03411ede0b358d717e903a9f1945cbf1f
1301 F20101115_AAAEDB kuo_y_Page_045.txt
266c2f9e3b8c1f10dfcbbd79a7ddd60b
6a26076026b943cf953d75bcc7251ddc6778f215
53814 F20101115_AAADTT kuo_y_Page_020.pro
95292d91d50b10a46135f6de589b04c2
189490bdce3aebc4c9f7c5c377817011f0876bec
19476 F20101115_AAAEQM kuo_y_Page_109.QC.jpg
6f74e595fc1d8266f239a5d4c78afdf4
7defa738243972323ad2b1d74aa6004a6c5ebef3
546867 F20101115_AAADGI kuo_y_Page_133.jp2
7d23a43aa8b8792fef59ba1f07e8090e
6343fee7aa4acc9cf77e588f9455a8ba1ad57ef7
218 F20101115_AAAEDC kuo_y_Page_046.txt
04896ed093c36ce05fa89d183ca6126c
a362bea7591152bb53c38f4c643bb0aed1b61083
52583 F20101115_AAADTU kuo_y_Page_022.pro
ecfd08c96142576ab023edda1dc92775
eb4d65bd85b6a065aaa12e688b92f2b89d3aac4a
2438 F20101115_AAAEQN kuo_y_Page_232thm.jpg
efd6bb8ecc6fc6ec968d5ac15355f33b
1a4b870422f227da51b5455cafbe99114223a72e
550046 F20101115_AAADGJ kuo_y_Page_134.jp2
b5fed7794c0dcb5031645ca6be93b538
ead5bed4b27411738e84542caced8c2a3f5836af
1024 F20101115_AAAEDD kuo_y_Page_047.txt
5545037fdbb0750f74256918b74086c4
680831193bcfadfa26b5d7d0b1b4a8619ca066f6
52523 F20101115_AAADTV kuo_y_Page_023.pro
135f419cdb36ca8149decb72eabf0d06
1946da113d56cfe4e66d5b775503e3da69459286
15296 F20101115_AAAEQO kuo_y_Page_097.QC.jpg
26f15f5016fc5a25da7a22f44e6f2e50
05de524f85ccf81d63e7d30f881e46048b51653f
550900 F20101115_AAADGK kuo_y_Page_135.jp2
0e3d41e32e076eb3eeddc50074a350b1
ea0e539b336ed36f1d35ebebb2bbd8260fd89284
930 F20101115_AAAEDE kuo_y_Page_048.txt
726167fa19815e99140bfb2f30246a9d
5d5ff2b2b629f1902fb65004d8ae6ceefd18cd70
47084 F20101115_AAADTW kuo_y_Page_024.pro
c6cdd7ac3461102ef67fa1012bceb586
b1f030337b48a1399e320ddc9d7053226d8d10b3
26985 F20101115_AAAEQP kuo_y_Page_030.QC.jpg
6aa6f6921f706f0742ceee466276a547
81009ed5c1ef127041e46148fb84bedd5c66e037
2116 F20101115_AAAEDF kuo_y_Page_049.txt
a36a38d44086f65186d3d0f11ac65e81
03621441658bd20cf6a8e0eab16e4a37204f7046
12264 F20101115_AAADTX kuo_y_Page_025.pro
add742a55cd494e130770795a291e9fd
4f154c0c5e0386116fc38831c795cb6e401627df
8268 F20101115_AAAEQQ kuo_y_Page_176.QC.jpg
847386c4bff34081b5fdb6260c0a7f76
673725ea599c7124a0b068a95baf12fa6568ea61
654038 F20101115_AAADGL kuo_y_Page_136.jp2
27dd4467bdd3937129f4e4fbcb705d3a
0dcf8d674e950bde73510069c8d8f460647ad6d7
752 F20101115_AAAEDG kuo_y_Page_050.txt
36fa3d08289660546b98845aa264dc19
10edad0cc191128d891ed90371d91840368d33c9
4695 F20101115_AAAEQR kuo_y_Page_120thm.jpg
d4f4e6d597007f81f03eecd1a6a5adbf
a1625c74ba8d28b55c4df89fe80940945db568dd
565237 F20101115_AAADGM kuo_y_Page_138.jp2
287c82b9570a005d17d5b7f042c7335a
13134e2847057b1c5dba8ec39a9dbd321502536b
53057 F20101115_AAADTY kuo_y_Page_026.pro
b2c787f8c93a01e906e1fffc0bf5352d
d65555f77cf1002a750f910b4d371fed96d2f74d
1754 F20101115_AAAFAA kuo_y_Page_198thm.jpg
adf8d35605739cdc990228e20534aad9
3782396f20cc75627abb4dbb9f441755f488378c
22831 F20101115_AAAEQS kuo_y_Page_242.QC.jpg
259c5eb8420c416eb84b5e7bb2d1e29f
c0a1d8b5c8d43cfb6df60a6de8f52d2709f71144
553419 F20101115_AAADGN kuo_y_Page_139.jp2
5227aa603a6bab73a9690385f069dac7
2a1986c12e67d6023312092ee81dfefcfec9f9ea
706 F20101115_AAAEDH kuo_y_Page_051.txt
96dfb66addb0f26a62ef502789b95b45
aaed6aa292cacdafd27153d744f13efc1796b4de
60088 F20101115_AAADTZ kuo_y_Page_028.pro
675e918c0f385303bc9c94f9e3e19e07
39b2f78751f45508a80b6874ad897eee3957fc1b
2685 F20101115_AAAFAB kuo_y_Page_199thm.jpg
ee2ba7593ef335864e4068ffbb341c50
4f9e4e856a345dcb436f2a84d3351fe0343c5d40
8796 F20101115_AAAEQT kuo_y_Page_166.QC.jpg
ff338f05b7291fff4d72371765c85905
f4292be0568a2e0107b0b9ce1ccca8bdf59c990d
481561 F20101115_AAADGO kuo_y_Page_140.jp2
f753a191a66feb6231bfac5fd4d2c587
9e35290c9c77079a9f9640b696d7976997070576
1052 F20101115_AAAEDI kuo_y_Page_052.txt
d5ffaa07ce77666be65c83c6dec292bc
c0e5ebff447c8c23526c90e068eb6c09f965785c
2882 F20101115_AAAFAC kuo_y_Page_201thm.jpg
2cdbe5cdf7d1a01e9d99f4a8547383d8
bd8fc7ecbb43c8f39ccd5c0336bda433e508c5b7
521906 F20101115_AAADGP kuo_y_Page_141.jp2
60dfbfe08dca990685ff9d04cf1e353e
52366ae7a296ef68bdb6a615eb31ba9cce839238
765 F20101115_AAAEDJ kuo_y_Page_053.txt
f3773592825a886ea742267814a060af
d76f340b7e4e89a8c0ff018879c560e1920158e0
2185 F20101115_AAAEQU kuo_y_Page_165thm.jpg
9eac0f3be9c0a49365d1ea67c87ad643
c6ae42d227a505d79e53feb75aa5dfa8de2a06c2
552722 F20101115_AAADGQ kuo_y_Page_142.jp2
70028cb89079a54c23b074d0165212f4
d0df5152930f858716c75cf1113e905bcf39e3df
642 F20101115_AAAEDK kuo_y_Page_054.txt
a9a77d6bd5a2edbdb3eb5e5a7240f3a1
8f6f5fd7f1c8d897cad8c13a172bf1520452665b
9296 F20101115_AAAFAD kuo_y_Page_202.QC.jpg
78eef95e200997b9d5890c606f367d40
05dab100e8b42d5e8221e1fbfd7ebce168bfd3bf
6462 F20101115_AAAEQV kuo_y_Page_018thm.jpg
de55bd019ba161c11e857ac3fd0fd0b0
069af0e2e5c357906dfed56455e91b8bb212a058
491098 F20101115_AAADGR kuo_y_Page_143.jp2
001649819af0372565d6ed23ba9055cf
6835b73c14fe885cadfd7cd754fe2fc4f82482da
2114 F20101115_AAAEDL kuo_y_Page_055.txt
7c30fe4a7cbc46aa508b3e340e7188ad
686521142a0cabda46884a3563aa7d3372c60e32
2786 F20101115_AAAFAE kuo_y_Page_202thm.jpg
1a4c9005a0e79cfa2893772d6c4eae12
2c8ef40e37b171dad86bbb0b9a87205159610181
3101 F20101115_AAAEQW kuo_y_Page_049thm.jpg
8f0b84a8ea4858d92ce461ef3258b568
c655a4f1713396168a2386d6570d44b4bba94aaf
488200 F20101115_AAADGS kuo_y_Page_144.jp2
5a626f41bfe9d67263630010cc602e4f
f80c99555f6c3befaf2afd20c77ee66ac9eb8c64
1987 F20101115_AAAEDM kuo_y_Page_056.txt
f0bb9535f6fd615d18fba1d775bb0b58
450ebff94e4c6c778b7b0a47147893ac27857bba
7509 F20101115_AAAFAF kuo_y_Page_203.QC.jpg
7386e3161b08a2485decabf88d1b3627
0dff8b31c242d7733460edee706db862a25eef09
9505 F20101115_AAAEQX kuo_y_Page_155.QC.jpg
95740bce5bb7dd114fb42f1285342cf1
e73b5ad4a935d18369bd414f51fb133dff19cf68
110101 F20101115_AAADGT kuo_y_Page_146.jp2
0c185b1ed8b043ffa8695738330acf3d
b73f51d1dea4a4f71cf28baf797ed50194a96367
1906 F20101115_AAAEDN kuo_y_Page_057.txt
d00c0d07c5da168c96e96666c2801aed
f311595dbaa2d2ff4a38be37e616e449d6073cc1
F20101115_AAAFAG kuo_y_Page_203thm.jpg
c5ef8ad4f50b3c6183e0f52dfead5e93
777441bcfed3c8c088a658a55b4560d80ac867ad
3654 F20101115_AAAEQY kuo_y_Page_104thm.jpg
1939f4acbc5c3c3129b63f0ad66624c2
7f089c00dc779a669e7baa42646630b77d886a27
107153 F20101115_AAADGU kuo_y_Page_147.jp2
692a665abb7658ddfd0c358e1e5e5cf3
e0ac8557e38dc35b037e37623170474cc1f5f379
F20101115_AAAEDO kuo_y_Page_058.txt
5ae567ef2033a0fed07b816ffd6a8389
42b7dc1b80fd94f90294ea4b5e8dab8a0f4b6140
7465 F20101115_AAAFAH kuo_y_Page_204.QC.jpg
43b780733c28ea8cbccdf82769a04220
b7035c264713362259ba3d8bf9bed04989ef683a
7116 F20101115_AAAEQZ kuo_y_Page_038thm.jpg
a63fd4cae85275523a442ac64f74c301
7ae93458d349b5242490006a8e6e9f7c477f2dcf
44795 F20101115_AAADGV kuo_y_Page_148.jp2
9ecdc58bde2edef508a5740863d525ba
50b230c1ef94f5ef1e4108bd0ddaab00b0bf8b4c
1943 F20101115_AAAEDP kuo_y_Page_059.txt
218501f27ba94e2b60a245b544c02eea
6ecac6ce4996126e27b3c70970f6048f6d26092a
2292 F20101115_AAAFAI kuo_y_Page_204thm.jpg
47cfea071056d9a38acb26f5999fe31b
3c2bc8e830731565517d123979dbf6b0246e840d
78930 F20101115_AAADGW kuo_y_Page_149.jp2
9feeb370114648e65bf9fa92e82c597a
eeb6523a8dcef5408aa9ab7f2f6d03bc8d2364bf
41172 F20101115_AAADZA kuo_y_Page_178.pro
84042f846ed77f90fe14856390d40954
d057f78d7fedada8fd755f42fbadc0505d054bc1
1801 F20101115_AAAEDQ kuo_y_Page_060.txt
aa8f77d11052d58cfcd6dc58d4adf716
9583346e68c1109671b6913ecbe87b7a68e4c569
F20101115_AAAFAJ kuo_y_Page_205.QC.jpg
2d6cfcf15871bdb16c42ba07d2d7ac8d
e6c435823c93f6a091b4bf884acca2d61297833e
92189 F20101115_AAADGX kuo_y_Page_150.jp2
9b674d69fa75a2e2584779fb350af345
17b9309c594f7fe877fd405f9ee78af3357b7f2d
44418 F20101115_AAADZB kuo_y_Page_179.pro
a0cf4ff74db718713582f585298f82c4
2defaaf8b8a197aa101b659cb53bf899c7a218ea
1844 F20101115_AAAEDR kuo_y_Page_061.txt
d61fcc62879f5b0d67db3d29263f0eda
af43fe5944382d6c96547add6fd1a124f27754c7
2302 F20101115_AAAFAK kuo_y_Page_205thm.jpg
5dbabd77b48d42d7f25cb7c2f562c0eb
7128e0f5463b4d7098310a2fc3ab6535241ecf6e
87972 F20101115_AAADGY kuo_y_Page_151.jp2
3f65cf2382110193ea5535715774114e
a484b5713ac61f09100b631e86f6f0da59436afe
1752 F20101115_AAAEDS kuo_y_Page_062.txt
b4b6ade29c9bb7ddbd00bfe712ec0090
5bf86269fc5fc95683d5e6f3e294ac7f33ca850d
7535 F20101115_AAAFAL kuo_y_Page_206.QC.jpg
56da962bff325a7ed296b43f5d3d078a
5ca463fe280e994945cf607208ffa44aadce266f
64395 F20101115_AAADGZ kuo_y_Page_152.jp2
4ca5caa22bd7700872f75f83f3e630d3
7421b7e673b812dc0b2f338d11ea8a8a31ed933f
73055 F20101115_AAADZC kuo_y_Page_180.pro
000e2725ccf3b075eaad5d320f9c556e
bf7c1e0246acdde226d377d0bd4190c3fc7984f1
1814 F20101115_AAAEDT kuo_y_Page_063.txt
26b523db199582c368790e04704cacdc
336c5808a640ab78a64015a6a435fe2741e00a7d
2420 F20101115_AAAFAM kuo_y_Page_206thm.jpg
657d265661d7fc82e8bd71778c7e97f1
4ff586fc5bbc0a0f322304f02aa0714a4c4fdac4
39643 F20101115_AAADZD kuo_y_Page_181.pro
2c32ab7ceb5ac42567c1e683b7a31470
72af673592cd94af1131023001f6f1cafd5535a5
7847 F20101115_AAAFAN kuo_y_Page_207.QC.jpg
0e2197fa1dbf4b8c82d36ac171a69f8f
c5221801f027ee34be752832822d28eb2e9d21ff
2123 F20101115_AAACPA kuo_y_Page_066.txt
c053a67afc45cb63c0fc25c0723c0337
4447220bc644b1fd8aeb82a229c358a50dd0250d
55106 F20101115_AAADZE kuo_y_Page_182.pro
819858f1730566cb5ef5359183a7ff75
ac8eedf1a6e8f8f10d5f28c6fcdbb8f89ce33610
2113 F20101115_AAAEDU kuo_y_Page_064.txt
209b325ccde980e606601147e992f0d2
696150de087e89a1f2173677e7d5bb25c9bba656
2499 F20101115_AAAFAO kuo_y_Page_207thm.jpg
c9a394d839396b678dd5b95d15a2cbba
2cb0b438f61ce9def67da890f049c093aa71e9cb
48963 F20101115_AAACPB kuo_y_Page_059.pro
fa1764ddc062177d3112044aa9428391
6b94b43ceaceeda5ba255c62b982eb9dc2d70302
44207 F20101115_AAADZF kuo_y_Page_183.pro
3b73ac845f7707e2d005ca9aca28f9b8
b913613ba636bb615b25669429da1cd35d9419b0
2056 F20101115_AAAEDV kuo_y_Page_065.txt
89e718ae3437f62d26cdaf972a59884b
e517b66060ef3666cafcab52a6197c0a2ea8cb55
8967 F20101115_AAAFAP kuo_y_Page_209.QC.jpg
0796b97e641abd61426bf477838abbc7
48fcccd44973eb44e0caf1981f32d6c9fd1e64a4
5652 F20101115_AAACPC kuo_y_Page_124thm.jpg
712ac3fc9ec4f30fc49639fef1d0a5f5
6588876e331ecec7aa9f9a5fca65d869c2185d76
56456 F20101115_AAADZG kuo_y_Page_184.pro
7a76ea9561e898165c629d2257ff8934
c1599305065bbdcaa29955bfce9aef5cb79ebf05
1941 F20101115_AAAEDW kuo_y_Page_067.txt
f0aa4cbf645c923feab65d0d4f61cf2f
bca43abdf28307df5e0bd09d8b25430ba61bc7a0
3808 F20101115_AAAEWA kuo_y_Page_097thm.jpg
2e6c87b5109757e1185c9bdd6926f2e0
66cedd06dd9d06808f52a9e8afc58555fa01c278
2562 F20101115_AAAFAQ kuo_y_Page_209thm.jpg
3df0cedf16e46d97551d6c37fe39ac97
91b20fdacf80367617d1c26865c0d21e4e6f86a6
2314 F20101115_AAACPD kuo_y_Page_185.txt
29bd3ac4c3ebb9e97d07a4f410b1aa7a
cc1eaf148991085da6be0ce002c47a04b0e3dcc5
45483 F20101115_AAADZH kuo_y_Page_185.pro
c7c0269e46e239f9360d1d0454fc393e
890e81704915de1280e80a1830f6d39d1beb059b
2246 F20101115_AAAEDX kuo_y_Page_068.txt
3a0cfe024fc790d91157ccbff665a61d
8f98a45a8c7cf6bd7b60f9820b635fda3d060014
6141 F20101115_AAAEWB kuo_y_Page_098thm.jpg
91828d503be2db4ea5b30c7131f2874b
e3da7b620e4789ccaefe165304083550aa14a0bd
2853 F20101115_AAAFAR kuo_y_Page_210thm.jpg
94a58b14900e023d9a75dd82fc7b6f1a
663a7d5855da74853e965ca5ffedce2bd60a7778
23543 F20101115_AAACPE kuo_y_Page_081.QC.jpg
0438c38e14b263bb2c3d093aad5d279e
ab44a2c5a6bb5f4db25d506910639b912d0826f0
53911 F20101115_AAADZI kuo_y_Page_186.pro
697904c755439ed2b7733599959ca9a0
fbb5d5729d3d7628478c184beea08bf124b65515
F20101115_AAAEDY kuo_y_Page_069.txt
0c371e3b3ec706d3bc47080ee3fe67cb
3a5561b648109a0c84aa8d89535bfbd3cd29afd5
12066 F20101115_AAAEWC kuo_y_Page_100.QC.jpg
1583a96d86812dd59305b443655c0d77
48a3bad8a5019949de08f48d974f0071fa9befc8
2294 F20101115_AAAFAS kuo_y_Page_211thm.jpg
f9c4a889b41397ea68d0b9ae2152e35f
291d4f28b739bb2765c8f38c4667cce66d678a63
28506 F20101115_AAACPF kuo_y_Page_001.jp2
a27b7669debf607dc82d9c223b915d9f
b1cf5ac9038e282bb9733106c7e6117faa23afb9
46736 F20101115_AAADZJ kuo_y_Page_187.pro
39ea3b18ee3f8e2ce4d13cd810b9c2e2
f32d6a4143e7a2cf6ebfe6c340a7da48084a0002
1088 F20101115_AAAEDZ kuo_y_Page_070.txt
29300e832fe4cd42eea3f13dd96b10a4
6f2e91c19ad88bd94f2725d484cc5732405d66c5
3791 F20101115_AAAEWD kuo_y_Page_101thm.jpg
18474e7f014476f54bf8cae5485639d7
f8e50e6008c172dbfd826afb8dc343407c61a147
2793 F20101115_AAAFAT kuo_y_Page_212thm.jpg
d37c8984ad45d74fae83568df38799ec
1c571dceec5fcbcd3f21e32f423422671f5e8cd8
55193 F20101115_AAACPG kuo_y_Page_030.pro
c08d2dc5e14943d57b21519909d74fc6
f56dde9743f13d43e61bfa427e20d9241165ab05
57468 F20101115_AAADZK kuo_y_Page_188.pro
5de3c624f5a198bf63064827e6395323
7ae9e316b41cecc43f46c7d0afe3928fa784cc90
10872 F20101115_AAAEWE kuo_y_Page_103.QC.jpg
be826c9fec295d079da7af5bcca1ada7
34d54e4e77782cc0dfcbc4e9cb718b550301404e
9290 F20101115_AAAFAU kuo_y_Page_214.QC.jpg
62ca84a14d4effd15590222a8c0eca62
44377bf13a5e5210eb204b3bf03941662a1c698d
133887 F20101115_AAACPH kuo_y_Page_241.jp2
f9e9b49c54811533442f31106e818c4f
21957da1e34ca6a30ded94266005f2d9119fc011
F20101115_AAADMA kuo_y_Page_045.tif
a262ab2ac35395d0492ce8a46533dfbf
a39ed71f596a57bbbf5dfaf0ff88879095a6b1a9
39762 F20101115_AAADZL kuo_y_Page_189.pro
237244617e82407090033d117875ece9
bad726eeb50a2a308103cb7a819c4fd20432d937
3499 F20101115_AAAEWF kuo_y_Page_103thm.jpg
cfd643e46c2bd71099762ef0208b2257
909b22b2118b9a111ce8f8eaf033932d0e355cca
2740 F20101115_AAAFAV kuo_y_Page_214thm.jpg
030b0273f7acaeab494b29036f88d0e2
9d42b4ad5705dfb742099218573c394e1214789d
94065 F20101115_AAACPI kuo_y_Page_145.jp2
55483dff3a4c384bb86ead7096076c78
a12c8a904e32e4bd156d5f6cac60b1e05880613a
F20101115_AAADMB kuo_y_Page_046.tif
5ed696ca1190886c213fa0e8a6fc4b72
c1abcd84ec3ea4138df0e45987c87804479d848a
57182 F20101115_AAADZM kuo_y_Page_191.pro
730e9a956a9b6ede9cc14cf098be7c5f
b9f77efa6846797cdaff2bd42cecb34effd4107e
11567 F20101115_AAAEWG kuo_y_Page_106.QC.jpg
dda2fe04e06c033bac0cfa2b27e06944
916f0cbf88653806334c7a5409a85e247eb9aabe
7637 F20101115_AAAFAW kuo_y_Page_215.QC.jpg
d531ab948814e8b16f050eb68dbe78cb
aecab9e875b81cfc3244c602c6133b9d3a6657e3
96578 F20101115_AAACPJ kuo_y_Page_226.jp2
5e0d732142119b086ceb59425849442a
98f312188599ad696931b8fb587c7d114203fa23
F20101115_AAADMC kuo_y_Page_047.tif
fe3c501173030a4892a64d81fc47c978
50b8348bac440b06614f29f9b905182b5aea4190
58750 F20101115_AAADZN kuo_y_Page_192.pro
9a0682c4c7592a41749054eea9f476e9
a87b419065f4f11b82142ef764a6dbb356b6504e
3703 F20101115_AAAEWH kuo_y_Page_106thm.jpg
58a1e9a629ac6de10d6480932e5bb5d0
2e119d2f77b28079daa974a56e0ff98f4bbed7fe
2400 F20101115_AAAFAX kuo_y_Page_215thm.jpg
004b47e75191a5920f9d5218b8149a1e
9ff7ec2c011d347adab0c71c097a19c201b5d7ab
54412 F20101115_AAACPK kuo_y_Page_027.pro
02fdb4a8058101f2fee467367ee47372
cd28fa666b823f517c1e43f3773626e9e8a70d73
F20101115_AAADMD kuo_y_Page_048.tif
e6e464c9bc7d9e0e493e1dab854ff9b1
903f44acac7ad54dfbceb32f97ea26e6c65618cc
62857 F20101115_AAADZO kuo_y_Page_193.pro
91ef94aa1e8844c471c05c8c2ac94fb2
ba07417920c2cf4a90e4470bb1f4a22e0c3ae3d7
6828 F20101115_AAAEWI kuo_y_Page_107thm.jpg
19f815158aacae700c54ad53650afbaf
f982fc210f49b808f82063dde37dd2fafafe943c
10178 F20101115_AAAFAY kuo_y_Page_216.QC.jpg
ea66ab7a726cb7dd67cb6103c20093d9
096ae8ddc866bab9ebfe92914e3d95d6a9683398
23147 F20101115_AAACPL kuo_y_Page_100.pro
2feb363411ee5cc6a6d34d636ddf09db
414a084224c6f2a9f7450e181e94357179edcd68
F20101115_AAADME kuo_y_Page_049.tif
8fd47543eae6453b9dc4b05a8a90da48
1e807b956855a48fa88bb9ee71f698d52d9cf65c
64147 F20101115_AAADZP kuo_y_Page_194.pro
92f1f71c74e4cfd9eadad9bba807d1f5
a483d1f94b8e335a7d6497c06afd757b76d79703
6486 F20101115_AAAEWJ kuo_y_Page_108thm.jpg
aea51f4e32fb8f819f04bafef9b92e6a
2d45205c78e919168263a479914f5c4c9b4e153c
2806 F20101115_AAAFAZ kuo_y_Page_216thm.jpg
22154da11e9b28705ddbe21d4e89a0f6
0e9b8b94d6e94c95e921ca2706d466035d0596d4
19234 F20101115_AAACPM kuo_y_Page_128.QC.jpg
05c36359a2e75aee97a486b7a2f7a723
8bde5d77351fb09207df3dbdb8d026a9915ff143
F20101115_AAADMF kuo_y_Page_050.tif
b3b363d6d3c776ec0fb965b5ce89f068
8608b74da59d28542b134f3c8ff246f106e8e246
69641 F20101115_AAADZQ kuo_y_Page_195.pro
9ccacf870410e61c62effac9b685044c
6357e365cb9031d7966459c49ba0504e88b155ca
21829 F20101115_AAAEWK kuo_y_Page_110.QC.jpg
a92ac442e68ca3b2c97c68bdc822a409
840d33b8c67818887ba9addccc1d56297608bcb4
44476 F20101115_AAACPN kuo_y_Page_117.pro
661e714d176de12771e6023948975408
ea45f7976b23921ce7083b081a75aa19d83c2ce3
F20101115_AAADMG kuo_y_Page_052.tif
49f19fdb9cca1c9c62e5a45c73460017
e6682970a73425982cf27668f4219570666d77cd
13851 F20101115_AAADZR kuo_y_Page_196.pro
cd20954b9ae5fb65458b0af8ba59bfcf
dc84ab933e8b199a1e0f3ab2501ad9d87f496508
6378 F20101115_AAAEWL kuo_y_Page_110thm.jpg
69eba336f1cfb0cf182eee187aeb04b5
033a8efb56082b9a47ab8d1f9ace9bebe0965628
F20101115_AAACPO kuo_y_Page_051.tif
f8837a1c66db9e762478b09ba3bc1675
6084cf4e967072d3eb2fa68741aa837382acef46
F20101115_AAADMH kuo_y_Page_053.tif
2ca31e7d9a8e188d155bb8db9c60c956
9c95fb987e831c063aadb08ea6e579610bcfdc11
1888 F20101115_AAAEJA kuo_y_Page_211.txt
32971f88491f8717b1d339db610cde31
67ad19770333f16535d047d72bab9ca4f48cc2a8
52024 F20101115_AAADZS kuo_y_Page_197.pro
4896c33f3c66effd33a0bcd425b1c5df
946ac05014a715a64fd40b04921dd8955fb9eada
6222 F20101115_AAAEWM kuo_y_Page_111thm.jpg
47ba570ab39638547b4ff0719800a946
a279b3117e40adc607ffcba03cf15c5a2482adcf
25837 F20101115_AAACPP kuo_y_Page_153.jpg
56da6b24727502cb3fd4f7daa8fa47f0
790f14ab7d0ec4902fa5786c552733ca3fb3cae5
F20101115_AAADMI kuo_y_Page_054.tif
b1e9e704fe8347f5e352156b955ade72
7a14dde34342ef078c075ec30a0fafc3f5535c66
2649 F20101115_AAAEJB kuo_y_Page_212.txt
f7e2bd976c40950759a064b67d2e5e03
74f553a653bd00fc4722491658a417ecc16cdf8a
15552 F20101115_AAADZT kuo_y_Page_198.pro
fda74c6d72364ebad41ffd6938720bb0
db687ed860320b6ded287aeefddc035b9ffc8017
17946 F20101115_AAAEWN kuo_y_Page_112.QC.jpg
4c7cebd1065a738d34b6e9e80e5b9465
a17a24e9e2a5599a29ba052e8eb1ea7003f522fc
714 F20101115_AAACPQ kuo_y_Page_163.txt
a2cf5acf76c48b998191a50366c14fb7
ebf4dbb13807deb102dffaa30de9ea6e8e501619
F20101115_AAADMJ kuo_y_Page_055.tif
764ad67296dd01cb838030c987ed144d
b64d73b8762a698064034a5b2394ea4a7a8721bb
2120 F20101115_AAAEJC kuo_y_Page_213.txt
cacd637fb9e2e87d2efa8944969f20d2
9aa7517ffaaf9a1192ee17923f627a0951486462
53877 F20101115_AAADZU kuo_y_Page_199.pro
ffe3f6fe0553732da6327c2c5c6feea1
981eca1e7ca3bd9bc0cb777036f584acd3c611ef
5506 F20101115_AAAEWO kuo_y_Page_112thm.jpg
0c27f4a75f30f53c3dc423dce43f3807
f353f105763cb28fce759e979ef5266db4aaa08d
5463 F20101115_AAACPR kuo_y_Page_082thm.jpg
f073b7b05d1793c3ed674a86ef6b5dcd
2e26d60b6d3bf70806932baebdb674cabcba529c
F20101115_AAADMK kuo_y_Page_056.tif
e82b0f69d36adfbbad9d73a444c6cd7c
37c3aaa256da9fee1f72a56f18ce392ea31b84fb
2369 F20101115_AAAEJD kuo_y_Page_214.txt
5e7c1ed006904fe74c6c9fe7e48e486d
7fb1231ecda4ef27557c28acc3d6821c729975ac
16646 F20101115_AAADZV kuo_y_Page_200.pro
63c231d4813abfd7568c9de60ef9413f
da25cdc0c672134ae37877f0f3a85880370e8720
19450 F20101115_AAAEWP kuo_y_Page_113.QC.jpg
48dd990ce6dd17f3f6cf4ca38649c56f
2d8de8f9cdb6464606a876a456dd0964c4d205ac
F20101115_AAACPS kuo_y_Page_090.tif
219697ed73485e7c23fb9719843d6e88
2dd1feebd26967263ab91be324964a94bf2dae53
F20101115_AAADML kuo_y_Page_058.tif
5e4e2e67e86baab4b3461a09f0a1ab57
960d58dc289f59f0c27e0f6dc4e7c7b595a1ea02
1910 F20101115_AAAEJE kuo_y_Page_215.txt
39f65c6b9eaafe4480487cadbc4b86bc
42018c15f068aaa34a2cd00c5f8736025ee369bd
67578 F20101115_AAADZW kuo_y_Page_201.pro
9296e91dad4a7ada45176a48156bf006
66ea27210d6229819770659bbeede379edf87040
22039 F20101115_AAAEWQ kuo_y_Page_114.QC.jpg
179fc1155544a3c101e040463f88874e
218cadd04a0647113e4ab1d08a00d3095c25d9d8
45022 F20101115_AAACPT kuo_y_Page_133.jpg
ea03b9c0eeaca2b81149ff445772e8e4
b0e5a55b318c8aa74a7fa21596ff0818f490efd2
F20101115_AAADMM kuo_y_Page_059.tif
e73abd53fc7d929583b095c938d49d84
5bce54edcd15919606206a444a11b3acec913947
2959 F20101115_AAAEJF kuo_y_Page_216.txt
366652a2f28f75baf57a13783da3f246
2b396a3df42be3341b3e24dda68bbf5de1a38f86
54627 F20101115_AAADZX kuo_y_Page_202.pro
7349f80679dd796ecd40881229276e7b
c1c3130324ab8246cebc7a95652e5a2d5bcbfc78
7105 F20101115_AAAEWR kuo_y_Page_115thm.jpg
4caaae15ac2d27010a57c886f09d79d4
e7b92b9b9f11ce364024ee4e0364aba21ad131d2
7543 F20101115_AAACPU kuo_y_Page_219.QC.jpg
3e6879d2ce0563861eacf4933db5954c
ba24ea1eea25a434ac82710a4dbea81c2c3dfb4a
F20101115_AAADMN kuo_y_Page_060.tif
16ecca82b3da281fe3b9a6c536851086
a019cee71b1e1f6a58325420f7dc9edda11ca1e5
2989 F20101115_AAAEJG kuo_y_Page_217.txt
6e1eeba629f5be3c387dca898dadf62d
26b649958f61b3b1b1f2b29359ee30cd735f66bd
44423 F20101115_AAADZY kuo_y_Page_203.pro
19f668beb03d4bd56cc5a87e4df54290
89e32c9777fc36a341698facc098d433f2032d73
7298 F20101115_AAAEWS kuo_y_Page_116thm.jpg
1787b1bf84cc77575589c59c501d941d
9d5dddd54e381549e4a667ac2be300280d33c42f
F20101115_AAADMO kuo_y_Page_061.tif
d1ba4e1fbb9e5473418360c74872c9e1
a1f1a021ddf0c33c37a8bfda8d08ea1edc82a887
2149 F20101115_AAAEJH kuo_y_Page_218.txt
50ce11914890ee45484a123daec8c362
212da938b9c40607ded054f83b2fe572a907ac40
42254 F20101115_AAADZZ kuo_y_Page_204.pro
21e2f1a908e2131e32415f8ad56f9669
0ca0976e42b0f0ec0173a200215b1a6e7925b2a0
16161 F20101115_AAAEWT kuo_y_Page_118.QC.jpg
baf891e198b04d6b216839d7946bba7f
50d6dde48619e0fa0391fd0c3812e9089550edec
105362 F20101115_AAACPV kuo_y_Page_018.jp2
d8993c7747e6e96f03b449342d36f0f3
b6dbf73b88059f44626fdeca5611105ad35bbca8
F20101115_AAADMP kuo_y_Page_062.tif
6c66731f973f54a440cb2103b62c192d
f5bdc244f07237cb7d5866d87265e6824b5b1df2
2105 F20101115_AAAEJI kuo_y_Page_219.txt
3b25a818ddb990c52dc2dbdb40a3b0c8
4d8872c74aa57e1dc659c4800b43c669bfc5f102
15494 F20101115_AAAEWU kuo_y_Page_120.QC.jpg
8aba5d36353ee30e4ab45c6fc24b6096
1653dbe0a4553e86d871a25b16483aa262fd6437
27999 F20101115_AAACPW kuo_y_Page_045.pro
770bf1b0543f2da99ce277d1702ab287
b742a9deb6fd7e06b57a6a822a01fe830ca5706c
F20101115_AAADMQ kuo_y_Page_063.tif
1121c3bee079e0038428ab776bf3d995
57f4cfe4bf81f73164b3626f312b5ad27beecc67
3162 F20101115_AAAEJJ kuo_y_Page_220.txt
b54f911aa800452cd3f5cb13a286a14e
394e3d0a43385a40b67f744fbd6a3444db2dc35c
13246 F20101115_AAAEWV kuo_y_Page_121.QC.jpg
5f436516d21698aa7b9da463e758bceb
830caaca9e31fbb0392b3a91aa9fc9c8961ed24e
118947 F20101115_AAACPX kuo_y_Page_033.jp2
25b657867919b74b26bb7102bf7c60c6
1b98ec61f9f457971837d2340abee00b0f5a087c
1419 F20101115_AAAEJK kuo_y_Page_221.txt
4183bf1aca5aa146c5dd0368312b423f
3e8ad58a70c7c491e1733e7a7f961d35963306ce
4299 F20101115_AAAEWW kuo_y_Page_121thm.jpg
984835df47b4937c2cc339b38f8c44cf
2b3c81ff8ea5854f8a528bece4dae6c5e1ce7d50
F20101115_AAACPY kuo_y_Page_136.tif
9a68984c7db6a435b9498c25a3951f53
d3ace5ed20bc7a579252a553a51154c263a9db5c
F20101115_AAADMR kuo_y_Page_064.tif
0e3dccc5743614506fbf9b13be34a403
6e756573ff004eb2a25329a645e7403bd675e66f
F20101115_AAAEJL kuo_y_Page_222.txt
d8886122697865659376a19eae20c2f2
9757bb4963b12c25171bd35c0c58abc4f56d42c4
10878 F20101115_AAAEWX kuo_y_Page_122.QC.jpg
92598c4348b9ee12919547237c337dc5
f19d1d494f6555454e025c383ea5440d053c1540
11993 F20101115_AAACPZ kuo_y_Page_050.QC.jpg
3bbac8296c46e42b4f31bbbf717c830c
1df1d0af41a2dd3c516f60665c3080ecfb37c4b7
F20101115_AAADMS kuo_y_Page_065.tif
bb5644f3a123c9b14b2483954c9084e2
a7bada65dcfd10f0b795bf925816d0446731c647
1135 F20101115_AAAEJM kuo_y_Page_223.txt
e315842f9244ce6e0e3527bccc8effe6
9e0a1a13adcaa5fa7c17f1948d5275273177eeab
3759 F20101115_AAAEWY kuo_y_Page_122thm.jpg
eeeb09a476b018d7a83a09c5f8ba7c50
610687c44eaa5c350543236886e78170a7d26a49
F20101115_AAADMT kuo_y_Page_066.tif
97e890facbfbdc35f549ae3324bae2c9
0f8f941b6e388c1ec58ed818fd5ae3ac76678bd4
16795 F20101115_AAAEWZ kuo_y_Page_124.QC.jpg
a281bdb9a59b4e3d57124809c8dac564
fd458c9b3de2ad633c33b6cc3bfc2835eb4936a0
F20101115_AAADMU kuo_y_Page_067.tif
b718fb2aff752bdaca079a4db825d404
37cdcb2bd43dbbfd060fd9c9c87d12c24e398b26
2611 F20101115_AAAEJN kuo_y_Page_224.txt
190dc37419f53cc19d6b06eed2b27d1c
8434bbd8e637d6b8d970458092815d545fba0c05
F20101115_AAADMV kuo_y_Page_068.tif
d4cc810a05a64db94c4919e30ac66f17
8c708f8a444542b7ba56d7808517e5c11c1fbe6a
1055 F20101115_AAAEJO kuo_y_Page_225.txt
b65b97f57689993184f8f490ee0a3258
c7e05e79541635ddbd6eb0b4f520824f3559e3c1
F20101115_AAADMW kuo_y_Page_069.tif
5f0204ab8e8d714f89b734864b48c9c3
8533e0b18a81f9907ef7417cef29a45bc4dfb6a3
F20101115_AAAEJP kuo_y_Page_227.txt
c24ca275c68267d95e6ae803d2516cbb
cb713efbb73a162f57d866526fc329f90a545d73
1090462 F20101115_AAADMX kuo_y_Page_070.tif
89b4f9d8aa90838d652338eb5b0f480a
4ce39a890cd9f22c9daf5916cd9dc03464fa6ddd
1385 F20101115_AAAEJQ kuo_y_Page_228.txt
dd66b577eb020377c8c494ec957c67f0
285afe5422a65a9831c4e1988fb89594cfa62bd6
F20101115_AAADMY kuo_y_Page_071.tif
985540fc160b4b7a208bef34e712def1
b4be3efa3e8d80bae515344d52c94c57b745104d
2913 F20101115_AAAEJR kuo_y_Page_229.txt
4058f2f25e72387a50fad84aca063b84
0cdad893df1fb31451486784ecfb415d0182e9cb
F20101115_AAADMZ kuo_y_Page_072.tif
de48351c49d392c3b20f879b7b255365
4cfc28eec5d06478045f694dbe077f52196466b9
2485 F20101115_AAAEJS kuo_y_Page_230.txt
0335528b1152faa139b51467fe5f2c4a
3c3b09882b59c5652158b65643b454e18f31b7e6
F20101115_AAAEJT kuo_y_Page_231.txt
680428caf3efec2fb02b0e6de645609a
92a3c4a821ff7a8e20f2d36dd6ac7b0f4cc91755
65662 F20101115_AAACVA kuo_y_Page_060.jpg
d0b597b2f2816a974f3404a5412c57f0
4847334568f59d2e1944edeadaafe8d0cb7a9626
1996 F20101115_AAAEJU kuo_y_Page_232.txt
ac0c28359878c2e4a87a3b340533b35e
bbfd6f1996a1f318b188a601256d59625078371d
67767 F20101115_AAACVB kuo_y_Page_061.jpg
e7412f520ecc6a60072be78b67cb6a57
f12aa273ba2ef0312f79bc7fddbb4f9d3a11654f
1958 F20101115_AAAEJV kuo_y_Page_233.txt
d925545f892df074088693b63f563c78
b429046e704aad75bbf5e2800b18e85b828a7554
62072 F20101115_AAACVC kuo_y_Page_062.jpg
f9288de635c29e410ffbec532a37d1f3
da434db41925d8f0498e6dc16f1a2f498050f6b0
2482 F20101115_AAAEJW kuo_y_Page_234.txt
aeaa634cdb3ce07dc49002afb80c8a88
2f55eb0bef4e5def98bac4b1bf92727fca41ff5c
55133 F20101115_AAACVD kuo_y_Page_063.jpg
a7f3472c2fa9b6f2175b4cfad9d948fe
3c41e2e866d5304889b034ed4fa072d0e5d657fe
2255 F20101115_AAAEJX kuo_y_Page_235.txt
4271062f5e42f19b1c80911f7c15c8fe
a1e6e6f38b841b26bcfabb4c4998881909a1b680
77767 F20101115_AAACVE kuo_y_Page_064.jpg
a6587c6e333e8f3b5d0053cf264431cb
1fbe584b8a38f59429c572fc881ff7e5cb6ca6ca
2612 F20101115_AAAEJY kuo_y_Page_236.txt
02cf8800657fc21462960aa7dda4aa7d
28eeec01b694535c2cabaf6982bad67b0cbf6d27
75480 F20101115_AAACVF kuo_y_Page_065.jpg
50b9f65bd86a77fdbeb37af1cf07c53a
a933ff4fceb106d18e169ebd1e42dfebf1e26543
2626 F20101115_AAAEJZ kuo_y_Page_237.txt
3df1320b671a44fc5f7889b81cc08164
2a3b67739ec52dde474d01777fed91887f728aba
76657 F20101115_AAACVG kuo_y_Page_066.jpg
579d54670407ba72cd4ec2d953ebef44
f6e7ba6b5ef1bf96732062cb8fa65d9960a1d811
77962 F20101115_AAACVH kuo_y_Page_067.jpg
1e14a3a7db03e015ec9f65d3e16a30f5
701a0aa81d1e28e1d914ba77f1b25e65e615e8ac
F20101115_AAADSA kuo_y_Page_215.tif
b39ff4424949cd123076cb8e562a04f4
73e9ee12ea01a55e654abe462527ef6db16b7be6
71409 F20101115_AAACVI kuo_y_Page_068.jpg
c04f685740de2da581f235c988ce5be3
6b50faa8f75430e555bab7609ac380bbedf9d73f
F20101115_AAADSB kuo_y_Page_216.tif
c4ce2cab5acbc1e4d95c9eba66230272
553474ebb9a700ae3a5d572a04f639c4a252fe5a
56349 F20101115_AAACVJ kuo_y_Page_069.jpg
ddfb07f0966b10ec92e23409dd1caa17
7f59b211d67e91ba39c26e4b2f2e9fbd605cd45f
F20101115_AAADSC kuo_y_Page_217.tif
68604fcf575c8aa6faee8777984af2b0
37ae5fb34bc7ce43849a6f15bba1194de510ef7b
26472 F20101115_AAACVK kuo_y_Page_070.jpg
db6ea8010670b1542a855db136dfb1d4
8e17149f85f0fb94903c171a6c9fcb08ecfcdc5d
F20101115_AAADSD kuo_y_Page_218.tif
ef1b0f886dc21c9ec3a4b200d6d1779b
4f125c1f5548a53fee0b370120a15bae88f8a57d
27405 F20101115_AAACVL kuo_y_Page_071.jpg
7f6e7d1258aa5c2b41a7f2a6100b41b5
a9a1fedfbcb1a092cae71c33ddd6a342de455d8d
F20101115_AAADSE kuo_y_Page_219.tif
b0ef4757c46ca3b7ba90651fe4fb26eb
f53cd75202ba74a437d96e393457c5aebe682100
F20101115_AAADSF kuo_y_Page_220.tif
b47ed4097f438b480a556b83d6fe097d
ca341e48e7b0ac9f50553c35692dd82634820ded
41248 F20101115_AAACVM kuo_y_Page_072.jpg
b1bf3aa3f3e9eb2f2f6d9afdbcc41b5a
3e0891fb70b72609fd695e29dc8d1daa52d41a0c
F20101115_AAADSG kuo_y_Page_221.tif
fc7f71da1a898da994ba2eb1c88d02d5
8bf0c7e060d097d6f4c2eaba83d7cd656c7ec816
34490 F20101115_AAACVN kuo_y_Page_074.jpg
e751a9c457603737324d5216b30fa8f6
fe1a890ee9dc6ca6cf73fe2944a56e85b0307d98
F20101115_AAADSH kuo_y_Page_222.tif
1fb6292bfc7bb6c1251d7b06155410b8
35e3caad4a030a6c332426eff69c4d77a2ac585c
15205 F20101115_AAAEPA kuo_y_Page_130.QC.jpg
6ec51bd8d1c101357b90f1359dcd8c8e
5822212d46c34a07137dcd30f674c6f9f1fa788e
18983 F20101115_AAACVO kuo_y_Page_075.jpg
f3dd4b499ab0ca2aa535166ccd29ece1
c1cd5ff100c1572ba37afbad457980e872a47e29
F20101115_AAADSI kuo_y_Page_223.tif
89688cb6134741aa793eac6126f308b7
31459f27c03bc1c34859b71ce2463d259b58c64a
7206 F20101115_AAAEPB kuo_y_Page_004thm.jpg
b020d0e6a6fb957e72c59e23b322d0e1
1e4f6f15c05f592bdea91190495cb2c9b474ebe8
80787 F20101115_AAACVP kuo_y_Page_076.jpg
f00cc385e2065638795c091fe5ada594
7ea5204b1487cc4601cd6e88369cdb49124c5307
F20101115_AAADSJ kuo_y_Page_224.tif
2322afe10f205759f133e361eec08740
4ea23bb91ed403bee4f0801eabe4a3a3a801a30c
25032 F20101115_AAAEPC kuo_y_Page_080.QC.jpg
e658c8d980475977412f942c782066ee
555d0a6fa61dcadf142847e235fa18ad0b631db4
78534 F20101115_AAACVQ kuo_y_Page_077.jpg
e02c52f6a6bc03a59f31bbc1b292acf5
f73ca8aae76c456206b5ed2bd7c0c20ea046e942
F20101115_AAADSK kuo_y_Page_225.tif
4c434e86a1f72aad4ecce9813b7dbd0a
c4ecb7d1846b06d32dd03a56f30fcebc9441bb01
6082 F20101115_AAAEPD kuo_y_Page_228.QC.jpg
8910fbfa7ce9f098bef22905b0d53819
73ab8df48312e64cb6b070290d298b8f850dc68f
74434 F20101115_AAACVR kuo_y_Page_078.jpg
4544e80db874a6b04974526ab1c4b771
ec4b64de3fa8c11dd84a76225d7e3cadd246ad70
F20101115_AAADSL kuo_y_Page_226.tif
ff2d7472ea09c823ac3f4522f26f1046
c9135fc706fa5f66055ec45e7da4fa32619a8cd9
25959 F20101115_AAAEPE kuo_y_Page_027.QC.jpg
a04a6683c52ce58ffc87363cf38c9087
46be336568135143ca8fa37191a262dd161dad9e
141505 F20101115_AAADFA kuo_y_Page_098.jp2
a7a25dcaa89a07563aa3deea34b289fe
fb27f7cae9a0744ab71bd456c93fbc09c0df3903
76247 F20101115_AAACVS kuo_y_Page_079.jpg
504b83066072a39b0a6fb875e8eabbbf
c3ddc5fd0be70a664c1fbecd9d46546deba1740e
F20101115_AAADSM kuo_y_Page_227.tif
4a3d66f78943b937521c68df7848c02b
ffa1125a430735e04801fddc9a2326cbbcdb3140
29902 F20101115_AAAEPF kuo_y_Page_015.QC.jpg
f2f258bd5b735315467f73b389447292
5f4b2daf0ce801d4aa256065759ec303c4967e6a
58661 F20101115_AAADFB kuo_y_Page_099.jp2
c91d5dd25970efaff20147ec5f7eb28b
c74c9178cb1975a61b6cd74c21d94fe2cd1b4831
76197 F20101115_AAACVT kuo_y_Page_080.jpg
ad20357b1890a5a3f8145b1fe80065d1
913b788a696abfe4341a8ce1040c535c46acfe00
F20101115_AAADSN kuo_y_Page_228.tif
4af8ec46a416ee2d229464604db4e1f7
a102b7083b2b46e265522085e70988486c22c390
12447 F20101115_AAAEPG kuo_y_Page_104.QC.jpg
1958f3c2d460e35f41f1865045458425
c53b39edfbf9ef989d87b3e11e3e66b812b04880
47569 F20101115_AAADFC kuo_y_Page_100.jp2
c91c4ffcdf951a817a013d2eda79bd00
06f43692b5c9de87510dcfaa60dedabb098fdf3f
70169 F20101115_AAACVU kuo_y_Page_081.jpg
6fab9c5fec599dc88737033eedb39a56
e561d2facfb89349cd7ae0efac0394922896880a
F20101115_AAADSO kuo_y_Page_229.tif
11f3a8974f665cb08ca4744d42515075
2094dba7c37f904337e21b341c5a544158d6e824
6517 F20101115_AAAEPH kuo_y_Page_088thm.jpg
cfa6d2a8f83460fdcf3601188ea09e71
f82689f009e3b938452702069143866a403d2083
445735 F20101115_AAADFD kuo_y_Page_101.jp2
576a0502ce19503eb3c2e8643eeb14dc
33784f6f7ccbed2ec8f8abd6e6c2cae2ab409102
53350 F20101115_AAACVV kuo_y_Page_082.jpg
a029e8713f0df32b43670a92c28e8d7b
f5d486fe12a55c8fe5acf6d3e3cd42dd42865187
F20101115_AAADSP kuo_y_Page_230.tif
1c60c93cbc3e48585eaf1a8cfbe00c3d
ce533a0e7e5cf296610c4e5a4f55282954c49201
25857 F20101115_AAAEPI kuo_y_Page_098.QC.jpg
bf2b6552e4b10773d665426e3a94c368
e53b914acb2dc35456430846ee5e37f6431c4651
420199 F20101115_AAADFE kuo_y_Page_102.jp2
d93ae63b4d2b4862e00034343dc89f6b
6a374e9c2739687ec78cafe34b044b53ba4ef36d
47342 F20101115_AAACVW kuo_y_Page_083.jpg
8ca3a850c3c2c1b9e8462ff0bcc58589
be0fa632b5289fa93297d1c2da888fb0c29ee5f9
F20101115_AAADSQ kuo_y_Page_231.tif
1ff3f8759f0dabe87383086322e90aa2
11e518b93bf3aca5bc21cb60b928f07ae618d2a3
2409 F20101115_AAAEPJ kuo_y_Page_185thm.jpg
d3dfbc6a05105317867fc499b817af48
04cfbc863016ffeafa068b51130db69fb8c6a3b3
40291 F20101115_AAADFF kuo_y_Page_103.jp2
a2a15d0608a8314c733fb26502713272
bef0aef21539e71e977e971c25df43a75dbc7f79
56465 F20101115_AAACVX kuo_y_Page_084.jpg
9891f2c04ef23f55e2c953277d30ce97
96a3f8224de90bb40ea8eca03e79c73e81c6115b
F20101115_AAADSR kuo_y_Page_232.tif
15694e032547f5ca7b3d02e423f77869
4707e712666171ae81b8c047a6d3b4cce9aff5fa
8829 F20101115_AAAEPK kuo_y_Page_171.QC.jpg
b3b76acb99602f162b3d9f39b6541682
1cc9d17419fecf6ad9d7a27e9eb96da619bd6e24
48858 F20101115_AAADFG kuo_y_Page_104.jp2
a98c8ccf33addc174710d3aa3301c2c5
96810ec95b29605df95e0d3ff0548ba5c14806da
63679 F20101115_AAACVY kuo_y_Page_085.jpg
aa8503a7da5db86dd2ec6ce7fea7ca7f
12a6bb37c1aa4de2e5ab9c2c972bbe0c15cfe227
F20101115_AAAECA kuo_y_Page_018.txt
22bbcdc5d66f381d1e6e53a9529a9f1e
ab74f5b03a95573c1b6ab78b57aeed6e7cc6eb1c
F20101115_AAADSS kuo_y_Page_233.tif
95839fbe74fdbc518518bbb1fded8014
44dcdf6cba35ee3709b4dfec1f8fef6fcf6c3c5c
18873 F20101115_AAAEPL kuo_y_Page_084.QC.jpg
4e759bfa9e3831e0f7362a08b6bf5f4b
3e9f4a66a73865ff7fe80e7fc1cd4bb23ca3e996
53044 F20101115_AAADFH kuo_y_Page_105.jp2
eefb8f3be454d795aeaccc978b7541fa
f8affcec6faed615288a46076c299d69327a5be6
74680 F20101115_AAACVZ kuo_y_Page_086.jpg
437d7579ec58a82755c63bf8ab4aaad6
5ac6c951ab970ed07f7cb88e498cd327164390c5
1255 F20101115_AAAECB kuo_y_Page_019.txt
138c0d301ea7e05f4d33c68157497acc
1d497935eaf5d7f0892b23c4be64a54fbeb851a6
F20101115_AAADST kuo_y_Page_234.tif
eb140e99b0eec0d4ee4e03acbb5748bd
e03b3802ad87a558fb4997e9b0db18fcb365ca73
3020 F20101115_AAAEPM kuo_y_Page_208thm.jpg
af544c5562f96b639452f671921f34b5
028091f81f7d6be4af42934fc316970a48201ecd
47949 F20101115_AAADFI kuo_y_Page_106.jp2
3bb665a3077ed50c05fb7d0c00ee4bc4
8d2914fe17050f779b70523c01b79ba2180de351
2187 F20101115_AAAECC kuo_y_Page_020.txt
dbed7668c851eb8c242d9a5fcdcc52cf
2884ffedcb920e4e2e3acfe7cd42a2c056f40d15
F20101115_AAADSU kuo_y_Page_235.tif
2aad05dabb75dba5272f984bcaaee68a
5784e37da214a6e621716f034d630c3bfb1a5bf9
6216 F20101115_AAAEPN kuo_y_Page_035thm.jpg
a836d653bdceebc58277dd4b997a9af8
6cdd06c0244066a36af5ede947a3f2a33dad56d0
111491 F20101115_AAADFJ kuo_y_Page_107.jp2
c54f1b41cf677996714ae0c9902b274c
5b846750e4cd4ab1e0f790881191fca99cf6eca5
2095 F20101115_AAAECD kuo_y_Page_021.txt
28318304549933973dc6d2b9bcbd2726
432f831211465f1409efc703033343e145cf8ba3
F20101115_AAADSV kuo_y_Page_236.tif
112277b2b688812eb344042a164e837d
9bda2f741ca600890397aa76ad171ade603b9aa9
2320 F20101115_AAAEPO kuo_y_Page_183thm.jpg
f35a6b439682dd37585f8b94b41a730d
032f9a0656de0a01b2541ce0962a5f88da3e3da0
2067 F20101115_AAAECE kuo_y_Page_022.txt
f9e94263f2cf2fb6cb1a774b798aceb0
8972f0cd19c4464d664861487c057cdddef75bc1
F20101115_AAADSW kuo_y_Page_237.tif
5f64d7c311d84f770a5cd03e17f3b963
f2bc6ff0c744860a947599b8e1db212a45233352
2256 F20101115_AAAEPP kuo_y_Page_219thm.jpg
871fa78a56b4a345e15c652bf04a3690
e7ab87c54f33d8bc2b64b901d35b420e81575cd1
105994 F20101115_AAADFK kuo_y_Page_108.jp2
faf3aa961d19a9da4ec45ee2ba077f47
72993eaae29d20a26e990a88c97c27b16c80c030
2063 F20101115_AAAECF kuo_y_Page_023.txt
d8ad6723451f2bfdc7b609a873ed79af
5c2c36682031f329de60b662057de4295e9b06cc
9347 F20101115_AAAEPQ kuo_y_Page_212.QC.jpg
29a2d32a7d74c2f0a5cba2a52a67e7b2
506f7c7c815958fa2bc210a533d658fa605a69db
86310 F20101115_AAADFL kuo_y_Page_109.jp2
863e0bfe1825e93f9e13c4b4f4ad6947
2928900367ce1b85b6ac8c20f835cea530ed9f22
F20101115_AAADSX kuo_y_Page_238.tif
27695f0b74fb159e72723c26108a9ce3
a8043f4bcd8fa031fd05977ba85760853bc621cd
21885 F20101115_AAAEPR kuo_y_Page_111.QC.jpg
1d6728b86c991b8ca5c2d528bc63421f
8501030f11c550585a3241abee8876d71b9b7808
100947 F20101115_AAADFM kuo_y_Page_110.jp2
dd57c5d932aa1d0f2869f1c87c1a37e6
2d0d7c871a1ab719353498df00a877ee81a1ed67
1873 F20101115_AAAECG kuo_y_Page_024.txt
070e00efa554f4a43d0a65aef09cd2aa
8d9715c2101d13da10170d8ee0e1ecf4621a3ea6
F20101115_AAADSY kuo_y_Page_239.tif
f3e59de731b09b6e54c6b564015c0add
ffa92b1953957c874a1dea145b9475997e35a4b0
7439 F20101115_AAAEPS kuo_y_Page_028thm.jpg
4d307f84b71e49476112526b24c1bd64
58049a395eb2ac4bc71295ccfe96755aa8dd9435
98867 F20101115_AAADFN kuo_y_Page_111.jp2
811dcef4ed4cb61e670193cd3bd67212
cfa352cb997e7ddb09c35c4ef77901b1f0bbf62a
498 F20101115_AAAECH kuo_y_Page_025.txt
d533e434fa7b81c13457d30a00171aec
587f2d25b3d506cc80584053c4aba77ec4df3ee1
F20101115_AAADSZ kuo_y_Page_240.tif
cbee3d728171518c071e18cf7f9e7499
98286457d967a5ee39f4fa6ae017f304b11dcdae
80084 F20101115_AAADFO kuo_y_Page_112.jp2
687216ca2c8e0816852af98d0bf2e7dc
d8523a6510575e450868dd51bd046a58fa18d7ac
2189 F20101115_AAAECI kuo_y_Page_026.txt
e467b2b472ddee54716349e52d538ca1
141208cf2f591ebaa51c7746cb824ad01422b2f9
17622 F20101115_AAAEPT kuo_y_Page_119.QC.jpg
226dfb5732db186fda2f796d3bf3eb12
12930be4929aae886dfc4696fee3275788784b46
85680 F20101115_AAADFP kuo_y_Page_113.jp2
c961c9bb56f528a8edf6941b44bea64c
3db0d2fda9dac0b1717fe81411121ae83188e2de
2188 F20101115_AAAECJ kuo_y_Page_027.txt
75d91db7135fded257d709c5ea82b7cf
507dba4b1fd13928921240f18d2cb054cc20985c
7340 F20101115_AAAEPU kuo_y_Page_034thm.jpg
bb7149ed2dfef9d885bad3ee0f9473a5
11bd9ff9439181bf8261f77277eaf1f18f4cea52
101090 F20101115_AAADFQ kuo_y_Page_114.jp2
a62c087ee2c0e23f13d18ee836b04473
70d5f923235ab5603a746d49c685e94b12506f6a
2350 F20101115_AAAECK kuo_y_Page_028.txt
2d32b29c8513d055556a0e74c4507473
9282f4286f87deebbc7b8fafd102818fbd59c7a1
10796 F20101115_AAAEPV kuo_y_Page_208.QC.jpg
7bbefee956cc8c1a39b0056643add221
7c84019098262911b0c431f5628c0b9ab3d8329f
137752 F20101115_AAADFR kuo_y_Page_115.jp2
dcfe3d72147acc3b6309651d56111d06
f36cd744aa50d357345306c3c7a2cb44fe59453e
2206 F20101115_AAAECL kuo_y_Page_029.txt
7f22c62cc7c69ee8278fa3cc77e1aa80
0e3140f0de46eb047dfee33414679a446dfee1f0
7202 F20101115_AAAEPW kuo_y_Page_010thm.jpg
9a8c0e1cc6deff857ddb1435e7cea413
f5d114de19b6b8561a70a1cef8c1f7f1f9ca0f5e
162608 F20101115_AAADFS kuo_y_Page_116.jp2
9bad92664ab617d855fe1df9e4d817f4
ed2a8fdb9112ac7e5b470fd1c423f6f5ae2e7e8c
2165 F20101115_AAAECM kuo_y_Page_030.txt
8a83bcd3092534bcbcbc4fcc23fc2d11
18a78323e23dd27f1637ecabd601c4b1f7947b3f
2377 F20101115_AAAEPX kuo_y_Page_123thm.jpg
6676fc9f6ad436694378050fe862dfbc
cc117d4d06a06e8a44b167970428b815f20e008d
90283 F20101115_AAADFT kuo_y_Page_117.jp2
951d3804ff4455e9ef828672ea224ac7
4999d630ada24e3e10ad3817e2211618f81bef16
2073 F20101115_AAAECN kuo_y_Page_031.txt
a401c57fb12f18835fe62c7aa3a922c9
876631426761b3e0d2ce61e7a02a1fac474eec15
7803 F20101115_AAAEPY kuo_y_Page_025.QC.jpg
3d12436950c2a1ec894f7a0c58980473
b51e7ee8b14d8578d40a3489c25cfe983f1f7daa
92039 F20101115_AAADFU kuo_y_Page_118.jp2
d0cfc838a1bde7dc53b878a79736f6a6
c66e907310a09e06288f665e2e106d0670daaa41
1968 F20101115_AAAECO kuo_y_Page_032.txt
60a597d94b22ef2de050132cc9b8b790
0a837b43cf45bbb939f91af8082b7e882c5fc644
10002 F20101115_AAAEPZ kuo_y_Page_188.QC.jpg
1074d22349c518767d5a6cb68326ea77
74a6462ba3ccb947515537827dacca30731aa1c2
842705 F20101115_AAADFV kuo_y_Page_120.jp2
84c425f9c8564c15276f066a78a170ca
0885866653bc1b617988b0e0bf121afcbc28892d
2228 F20101115_AAAECP kuo_y_Page_033.txt
55c14decad09bb7e0d8256aa30cc205b
55670f956a6eca8d83b07520c9b1017d9e4896eb
712072 F20101115_AAADFW kuo_y_Page_121.jp2
fdcf30fa64811217d165f038b90fadcd
04efb5fe5c9293dd48ba2b04c9031c4f69d4a014
58097 F20101115_AAADYA kuo_y_Page_151.pro
e813cbdf9a2c8caa38d11817e3c0228a
c2b34461111c9d85af00b0050a071288de273303
F20101115_AAAECQ kuo_y_Page_034.txt
0ab82e57b3a49dadeed1bc1590ab7b3c
3f8f8d5e88ae651d48429999c02fe667e470289a
750445 F20101115_AAADFX kuo_y_Page_122.jp2
5ccb8ec0d06bd4db6c43e7ad4208eda2
153376ae2ea1f1c96d74013944d72e5da17af01c
40839 F20101115_AAADYB kuo_y_Page_152.pro
5e0da675dda3034f0185d635bc752e7e
14ee8b920eb01a712c08ada252d821427496fdd0
F20101115_AAAECR kuo_y_Page_035.txt
878478d4e34c76393b472e7b7303a15c
bd2ab38bf7a11d86002129657c3c9c9b857963ed
192403 F20101115_AAADFY kuo_y_Page_123.jp2
04f3a4654dce0003bd3372c10fc2490b
670fd25137633075fd364eaa8fd975a6699b50ba
51827 F20101115_AAADYC kuo_y_Page_154.pro
bcbea0523af38d4c89690be5e02b5a84
32a38fd04802d34f204945443cb6214668c56c17
1895 F20101115_AAAECS kuo_y_Page_036.txt
eb41065e253749248021ea0a0774d6ad
68c51a324ee59a7e60cce4068533454e24708775
81350 F20101115_AAADFZ kuo_y_Page_124.jp2
f225db5718a7f8ae5f150b611baed19e
f5239e9fdfd0a0f5816cba986be85435aba2c006
61091 F20101115_AAADYD kuo_y_Page_155.pro
baab8e5cb2b0c26b3b9b7b047f3ed9e0
2def0fc5ab8f541da4482642bf95c8abbe6b5d05
2108 F20101115_AAAECT kuo_y_Page_037.txt
90e25eebf3b10dc0a5fbb2ce5ff95404
2b565199b0b34e05df173dffa9f8d3fc6c599ae9
36268 F20101115_AAADYE kuo_y_Page_156.pro
410731923d2a58c85e0c02046655e85e
4a262b6f7f7b019a49b08c4d722286b3a01a6023
2197 F20101115_AAAECU kuo_y_Page_038.txt
0cc51a285e22d067d0c3a66ccb36044c
ed8c8029b6a5648a66e8fe22359b44aed998439f
58325 F20101115_AAADYF kuo_y_Page_157.pro
895091e4bb76181e90670fd564847003
fc3eaee571b349131dc48af0b8c9ce75afb0a007
451 F20101115_AAAECV kuo_y_Page_039.txt
3ad64a8a40cf0a80a0a4679882ff5dad
e67ec7a52f68c524b686f5e06098aef67a10bfeb
38605 F20101115_AAADYG kuo_y_Page_158.pro
ea4bce88990ec68b518585e1187c1cea
8139a7efa7dddfe29cb13a8ba83fe3fef5376b6c
812 F20101115_AAAECW kuo_y_Page_040.txt
460870c39931f0c2790c4934b901d38d
ec19ab2ddcd9c0251f2c2078bb6b519d31de3c47
58305 F20101115_AAADYH kuo_y_Page_159.pro
df69ca51040601687badebb1b69808a2
c995b1fa216d70ceac1ffa08fb5cf7b963881759
5306 F20101115_AAAECX kuo_y_Page_041.txt
45e379e8635bca9fa604508642f557a8
5d87bcfadc5f05f291d5ac23bbe4c99c569789b8
4221 F20101115_AAAEVA kuo_y_Page_072thm.jpg
240ad1308a45e6148a81bc852ecd8557
6c932d9170716fcb104de4e05f8bd04fcf5711bf
37186 F20101115_AAADYI kuo_y_Page_160.pro
86ec33f2d9c3a81fe76419c81b54c948
a6dc6d309aca446ca3f95f5d6210055ae7f222c7
5270 F20101115_AAAECY kuo_y_Page_042.txt
1c8dd9f5387c509336be1aad7392802b
bafa95e335a69a6dccd2e7cd26da3636db307aa5
12268 F20101115_AAAEVB kuo_y_Page_073.QC.jpg
dcd323b97351b9e6134c7382249f9308
9f47f1b2f83d5b6f3a8aefabef3a644f960cfe3e
62057 F20101115_AAADYJ kuo_y_Page_161.pro
8026674167cc19bd97df72009d5dbf75
46d13da2e79dbbd3cf941bbfab9697a2d3c98362
5708 F20101115_AAAECZ kuo_y_Page_043.txt
16316529071b301a560856396c876cc7
084fb153fbfb07f1f294ee7d05937cd32df4621c
11634 F20101115_AAAEVC kuo_y_Page_074.QC.jpg
c4b7418f304f43e7730fea9163fff829
1364d223aaeeff337dee01b93265f662bdb6f9a3
62664 F20101115_AAADYK kuo_y_Page_162.pro
9ae8edff24db2bf941f9cf8d045eaa22
eee989a5335adacdf09c0f13157dcef3b228d802
3859 F20101115_AAAEVD kuo_y_Page_074thm.jpg
42450afa7c6d766fb06a72ed82187590
55ec8dcc628133eec35cb0a543f52f428fb7ed5d
16807 F20101115_AAADYL kuo_y_Page_163.pro
f02f08a7c443ee673652e8e700e2e497
d0810e6cba27ba135f8640b06ed584feb5d9abc0
5956 F20101115_AAAEVE kuo_y_Page_075.QC.jpg
64907d5972822849672ae559d1b23d0c
8fffec9657c1bb100a20ea2fb4e84ca87d1c57b3
F20101115_AAADLA kuo_y_Page_018.tif
650a61b07d8f498126710c8d94de84d7
27d7810b8b969ec24bffe954ff6f75a7243ebf5e
59771 F20101115_AAADYM kuo_y_Page_164.pro
8526b764bd6b877f8a0a6f9d05049547
6e54d0471a1b2e8a584b0a6b90e80544d50b10ca
7274 F20101115_AAAEVF kuo_y_Page_076thm.jpg
83a58ef4432995117f326c9dd0022130
13040146b80bb102caf9e037b9a02f91beb35768
F20101115_AAADLB kuo_y_Page_019.tif
3891dfcd8d878006de3460d35823d527
46a8065adf8c16d409960d1d77e41386ce394d5f
44853 F20101115_AAADYN kuo_y_Page_165.pro
65b5eaf3b714b265dc85bc23ad7adc70
132d4a62d96b84e42aa21b28843c314a4681de80
7154 F20101115_AAAEVG kuo_y_Page_077thm.jpg
72b9aea9c491227e00b53704e29737aa
7ef5469eda1bda4dab93356c95206c25ce9c4d52
F20101115_AAADLC kuo_y_Page_020.tif
64a33a0e3bfb948ea19cedd91db4c565
9ce4f16532305695c6f2512fd0bf28e3ea36bb67
6799 F20101115_AAAEVH kuo_y_Page_078thm.jpg
409ab8da68dd0ecae21fea55647cd9ba
2c847bfced1a479038dcc6dfd9ceceab5e0e96eb
F20101115_AAADLD kuo_y_Page_021.tif
1cc666532abb2a0b61ae7eec0c5eebb9
cfdfaa165fedaff3248b4c3fcb88f1a7c7d2548e
57600 F20101115_AAADYO kuo_y_Page_166.pro
6d8eb648ad5318176940669240ea0ef9
04310e396ccbe9fc39d4be84476444bc40686cf7
25765 F20101115_AAAEVI kuo_y_Page_079.QC.jpg
ff43a4597cc7d6296c0ef9c75257247b
9adeb5b3dafbd564a68d0dc528c1b4a59fc26096
F20101115_AAADLE kuo_y_Page_022.tif
e3b12bee324fd06edda900b78588e3c5
c32c22f06352c69c822459ca6e586930688e9ea5
44856 F20101115_AAADYP kuo_y_Page_167.pro
c78ad51007eff93f382baf25927117c1
3a22d67c5e584aa6b182c33c93b2909679c46db7
17441 F20101115_AAAEVJ kuo_y_Page_082.QC.jpg
b4e9186db223e37fe1649b99008807b8
5012631e715f473488b556b4a820a40416528554
106851 F20101115_AAACOM kuo_y_Page_059.jp2
fb263b8ee39821cc37920795c8b1b586
24a01b71ce97af6804c6fa8e05d4ef7cea054289
F20101115_AAADLF kuo_y_Page_023.tif
95e2389dda693b9647607a199cce91f0
31d88d643cff17202e5851c3b9447da6ca2f527d
47065 F20101115_AAADYQ kuo_y_Page_168.pro
382cf25a3da8ff2a303f7a88b68ea830
058ce5a283d26f9b068f14b4509fd3bfa856f277
5346 F20101115_AAAEVK kuo_y_Page_084thm.jpg
6421e75857fac117246df61866f5eac5
f5767b339fb5fb337bfe7ec499cf09f9a52c5868
2483 F20101115_AAACON kuo_y_Page_099thm.jpg
210cd76b001381e1ed371d9ac36546a7
8acf6f9da06c18c9846bb5d692801bec63738df3
F20101115_AAADLG kuo_y_Page_024.tif
c82929280a21b5d54a8399d81bcf70e7
43e9ea1e2e8dde08fde4618488e0dbb5f2216b59
45407 F20101115_AAADYR kuo_y_Page_169.pro
ca9bc504c7fbfb218f4b15bf8a1ac3df
43e23ccae593e564f172616e10be7a4ed6b876e1
20287 F20101115_AAAEVL kuo_y_Page_085.QC.jpg
d88156869fb2eb5a9df712f24780ee5f
80c1be3ede973a01eeec54fefcddfe3d2c213ddd
41114 F20101115_AAACOO kuo_y_Page_118.pro
b7fd9216a0eef8c9918ac4d9bf7b310a
581b59243881083c97124b08543e5f8fd9db1cfb
F20101115_AAADLH kuo_y_Page_025.tif
f682ba503eac974520076765840be983
eb2ddbb52d48bf5711adaac7ddabd4d242a5571f
2657 F20101115_AAAEIA kuo_y_Page_182.txt
6a7192c7c4955eb1546a7295b258b648
7079c597bda907865fb593f3d26495e5bfba733c
F20101115_AAADYS kuo_y_Page_170.pro
ff5d120d87d64a169cb8761e8b6e5f13
371610bb4df308f0d53ecef71a0f1f4d150b4752
6017 F20101115_AAAEVM kuo_y_Page_085thm.jpg
d4d596f68eccc9bafbfbf7df9247831d
43ca840336ce8f9eb95193fadc8003cb2091f2b3
26609 F20101115_AAACOP kuo_y_Page_207.jpg
ed91cf691013be94d53cef8ee0478cc8
a386f0f20d4943366428d2853007e7bf0547109a
F20101115_AAADLI kuo_y_Page_026.tif
f1e2646c7e73361aec02b5ebc4237223
20d1381962fb7be4c5636c19d0b3672a1fb64fe9
2089 F20101115_AAAEIB kuo_y_Page_183.txt
532209d791c613074b4aa472f750c327
07a70a3cb72b5d6daa660208248ecd8062711629
53130 F20101115_AAADYT kuo_y_Page_171.pro
edd83578807f79c03848a62d4dd65694
059454b2defcd924fa4965bc2504f91f3b237f00
24478 F20101115_AAAEVN kuo_y_Page_086.QC.jpg
d9310872f366252a779510d4dcd3fe6d
66c7f5ee6f18ffef4f6a83daf84b48cf31c1ee6a
71225 F20101115_AAACOQ kuo_y_Page_010.pro
d334ad1a3238fd306ac4bbefbce2c795
20ada8e977ef8075428ede7763723d3c809b78c7
F20101115_AAADLJ kuo_y_Page_027.tif
725491a742cf872830703fe7eff61f79
5e5621fa32932f6d952b2d143492b00f76ba7772
2441 F20101115_AAAEIC kuo_y_Page_184.txt
5d9c5906399d57fd5065422c6bedce96
4ff66436ab28a564494347818d3c4146e7fb6851
68358 F20101115_AAADYU kuo_y_Page_172.pro
a9bd5256d0a1daa138fe92add1b92b87
c02fb1e004c1a9ce856d55206189143298b6fbe0
22943 F20101115_AAAEVO kuo_y_Page_087.QC.jpg
50c492c01db4ebcf6122f8c3ec0e31d5
fd4d12abeba11892b5e6e18df165be3f38c32650
2992 F20101115_AAACOR kuo_y_Page_115.txt
13959561c03a764bc1e6fdc1ee5cc70e
b2b27bf51e8aa6e274f50beec15b04975bcc39a9
F20101115_AAADLK kuo_y_Page_028.tif
ed20d0399f7783f4d0baaf7d2bb7bfc0
072373263d1b4adfd7e37ddba056cae707868dc4
2597 F20101115_AAAEID kuo_y_Page_186.txt
8de380715c7a0e59f31b3c7644657e9f
1b24f5c9d43b5be6b61dc6084a5086c661a22171
50891 F20101115_AAADYV kuo_y_Page_173.pro
818f3559e09187b6b819afb495c244ab
ab297ad084a29bcc161b72d0ab3191b440db75ad
23749 F20101115_AAAEVP kuo_y_Page_088.QC.jpg
405111f6d775702f1f40701b50028479
6736f1c6ff1bccb2877e82f9168e6271cff7532e
F20101115_AAACOS kuo_y_Page_152.tif
d98f92d4418de9d462457cad254efeea
2044c3fc35cbf6125529330a0d0fa6037e10ef1c
F20101115_AAADLL kuo_y_Page_029.tif
70b805ec73d4f2e9c1e96bf4a7390703
f7804ebcbf01eedb29695d0953e9f12dac0a82a3
2053 F20101115_AAAEIE kuo_y_Page_187.txt
269169c3691d3aa19f5eef4aab26ea63
c080ccca2c45ce25ba7bd58c2191d67ea64ba633
64774 F20101115_AAADYW kuo_y_Page_174.pro
3011fb873be035d19be0b92ff13d38be
d3e65afdd0fa7a06cf61e975676a7fc719acbd9e
5192 F20101115_AAAEVQ kuo_y_Page_089thm.jpg
a0a2a01686b25f81b3d19466cd39ec62
e49894350b59f187e4a43f23a2929660f59259b0
F20101115_AAACOT kuo_y_Page_241.tif
ca2bc1cfba63341e6ccf6ae397614625
094ea85c0bb6817b02f8ddf205f25e82f4426d8e
F20101115_AAADLM kuo_y_Page_030.tif
b3e9f916ffd444226efb8c6b82ce5062
26f06e0668852a7be1aa745360cfbc6fa7d19d42
2470 F20101115_AAAEIF kuo_y_Page_188.txt
75db762b0bd28d83172e06cc2e163b7c
309118ae6791538656ea92d3478fe1d10a53d820
54515 F20101115_AAADYX kuo_y_Page_175.pro
f3b18a33b54ce1143fdcc975ec618d43
7afcb6549e2e9e3495db2c167332154b27a3f663
24949 F20101115_AAAEVR kuo_y_Page_090.QC.jpg
7ac6ef6dc437111941dbb04fe39afcf5
5047fde8fb7e1a4e93dbdd230485f3413b3c5474
F20101115_AAADLN kuo_y_Page_031.tif
f697b554c0c6427b4e59be20c717a42e
9d4359ab6c7ef4c8d4a01774a20d9643a988681c
1980 F20101115_AAAEIG kuo_y_Page_189.txt
2f89d779f890526ef6dff0c5eb14e12d
e1b3eaaa9341ee7f1f8d42bdf321a2c4b24ae485
54112 F20101115_AAADYY kuo_y_Page_176.pro
3ce086e6f1d59c17d18dc9cda095a19c
4f5961fbe1bc58a03266d9eaa7777f3c41790e01
6623 F20101115_AAAEVS kuo_y_Page_090thm.jpg
5125088b60c0898dd375dda48dff82ff
fcb737a65202909a98ac4cb4200daeb1edae6af9
1648 F20101115_AAACOU kuo_y_Page_200thm.jpg
38388289034e5cf56aa3d7b886e10cd8
0b7ee0fe25b9b98f214557a0faccd1b453101822
F20101115_AAADLO kuo_y_Page_032.tif
27dfc5416f52e891032db4c686f26fa2
07f98bb04a53c782f1c0fd880f2a867bd4637b8d
2594 F20101115_AAAEIH kuo_y_Page_191.txt
af033d7de3e2ae2daace6dec063faa6b
27ddabf6c5f620371518543594d212a04e87d261
48925 F20101115_AAADYZ kuo_y_Page_177.pro
5411b8b4f1ffc37633b96817b8151555
6153ac0915ab993ab67dd6e3081c042886ea6262
25289 F20101115_AAAEVT kuo_y_Page_091.QC.jpg
34571cae15169f09f0c3d2d2e2469c38
d8e10974e43e7f905ab5c4f10b8c103cdb482c1f
35719 F20101115_AAACOV kuo_y_Page_084.pro
de072cd074fe0d1497fdc792e2d522f3
5487af16dbfa0486602244e8e01d471460fcfd2b
F20101115_AAADLP kuo_y_Page_033.tif
2ae71affcb5a52c4c97d24406b0f7eb6
98fda43f0aaddb249033efb8e4e848fb783317ba
2763 F20101115_AAAEII kuo_y_Page_192.txt
9cbf20b597a7658098788f57c9c218ed
a30d6854812c9831b71a997f54572401bc302935
6991 F20101115_AAAEVU kuo_y_Page_092thm.jpg
c3ea70075f868a1c2d56b4dc4c567eb6
8f20806e5ab4ca2c1ae5a29f02e4594fb60b9749
4669 F20101115_AAACOW kuo_y_Page_041thm.jpg
93cbc1e42d9776548aaa9faabe089594
17e99c1c73be5441d88dd47a49e09c7008dfc8b5
2555 F20101115_AAAEIJ kuo_y_Page_193.txt
ce0c0fd9e933b1e16a8dc957f2751f8d
c3d9b32482c46ebc2b781232b7a00c78bc067d15
7045 F20101115_AAAEVV kuo_y_Page_093thm.jpg
0f1249d45fc9db7c18d5176dad192efb
381f8cdb2d3d7a79c50ae524939a8f40e668e1fa
13388 F20101115_AAACOX kuo_y_Page_105.QC.jpg
1677b4eb8369f8d07e22be17ca300f6d
8ca38569fa983448ac79eda6f2311c7b3416935a
F20101115_AAADLQ kuo_y_Page_034.tif
e9bb3d76383558fda2c469054446882d
6577fcc21e926e3f3cf4b8d570b9eecfb5bb5088
3251 F20101115_AAAEIK kuo_y_Page_194.txt
63bb9e8098b3ad24639d42650579f11d
529044375db770d0775ca4b5896117d29dc169fa
23505 F20101115_AAAEVW kuo_y_Page_095.QC.jpg
f0fdbfd155fa8d5c99cee9a2c8736cd2
e5c6cf5bf1c46ebf28db8212bb5eba0d732fcaaa
126279 F20101115_AAACOY kuo_y_Page_028.jp2
7f729d69e6f24861aaae45e67edf3a2e
661c71415e780d550f95cd74ea9a64dd2c203348
F20101115_AAADLR kuo_y_Page_036.tif
4c11f19358f61bfacb637dbd2acb6464
1b51fa0ab427474678c71f016ee80fa44d7dd3a6
3589 F20101115_AAAEIL kuo_y_Page_195.txt
ab42fe589677bff81487495776090811
0649a6c9a4f0125baf8d1e4624a08a699770aa65
6558 F20101115_AAAEVX kuo_y_Page_095thm.jpg
30244bf50ce09ad138b1b0984432c24f
b634ee2cd142a6676bfe99197885ceb9e498fd23
F20101115_AAACOZ kuo_y_Page_145.tif
afdb11d62775062d65c4bede7c9b4ad7
b6cf3f82dd1e79a1acef32f661efe00d6f046b5b
F20101115_AAADLS kuo_y_Page_037.tif
db7dea6b4c2db412b6902ac8e3672170
28c087e3b46976d65a72abfe5f56a4325b2ca2d3
23399 F20101115_AAAEVY kuo_y_Page_096.QC.jpg
97388560751bb3e45cd3533aada77c3c
1dd45bb3919a3829c6a5ee73fd90d10277f769bf
F20101115_AAADLT kuo_y_Page_038.tif
a665412dcdfdcf64ac4150aee1790b47
15b7288cbec469106aabd9eb359c30358c556822
669 F20101115_AAAEIM kuo_y_Page_196.txt
315f916f27aad8bb89258840ba304812
cb2d691125e813baccea84e090312826e41fc6e2
F20101115_AAADLU kuo_y_Page_039.tif
094bca76d87b1d4ea17591434eaa1aaf
62daf5b58ce279eeaaf18390e21140877e205339
F20101115_AAAEIN kuo_y_Page_197.txt
c47d5927747ff376e9593ee20585a545
41e63b51c9aa600ac71ec8134a273de14dca5fe2
6096 F20101115_AAAEVZ kuo_y_Page_096thm.jpg
5181abb4b45085046c468d9f94b22d53
d47339e6b20a01496e14c81d7a8466200fc4e832
F20101115_AAADLV kuo_y_Page_040.tif
32e25a2ec03ffbc0709e12fcb3cf110a
56eba3cc2a984490b8fa1f0efd6620895442adb7
819 F20101115_AAAEIO kuo_y_Page_198.txt
eba3ddbab96aa436089747065365514f
5231d3c3e13197a9a5883ed8e214a8991becb539
F20101115_AAADLW kuo_y_Page_041.tif
0997a4f97aeb507a5338e4e368e7fd8d
a80ec484d1c7581831d485b87e0eff825d0c145d
703 F20101115_AAAEIP kuo_y_Page_200.txt
1676b576a943fd36602e86f0d97c1ba1
79be20d38eaf93775e24129dcd5774600cd9f834
F20101115_AAADLX kuo_y_Page_042.tif
218337c3ae7cdd40513ffcf4859b8c51
594b3b7afde370c48caca85f81d99ef3708e8b43
F20101115_AAAEIQ kuo_y_Page_201.txt
6a3d289f8dc073f62b084764a044eeb4
1f415b393e5dda97b54148982042219983c27589
F20101115_AAADLY kuo_y_Page_043.tif
4605f85287ba367127969757e0d818e9
704ab0a00b1b55e2473d41de9219a7550adf716d
2453 F20101115_AAAEIR kuo_y_Page_202.txt
27b3d965c5763d52457781d8de7301e5
e57c5fd49c9cdbbfb5c3ccd526a4747b17d742af
F20101115_AAADLZ kuo_y_Page_044.tif
fc87754a8e5b360735bd8b7793fa3537
228d1a229dd0544b9b6259b24a9907ce3268063e
2002 F20101115_AAAEIS kuo_y_Page_203.txt
416fda323790433a5fb1612d589c300f
83c53b866d57f83ded00dfb70c81c0db276a58ba
1809 F20101115_AAAEIT kuo_y_Page_204.txt
792ee1147a820766a13739e98bb67989
3de9c28fe95c8568f177b033766b907631f76b52
75106 F20101115_AAACUA kuo_y_Page_031.jpg
f88a865444922beb6f4b09a189e92868
ef4c49e999ddb910273465f6c656167a5b0895e1
2104 F20101115_AAAEIU kuo_y_Page_205.txt
ef2854a1e42db78f9a5c05cedd9c6dc8
9a185f94a43c34135a7f5ad588c5c8133b811a81
72214 F20101115_AAACUB kuo_y_Page_032.jpg
b453a883b7247e3eb8a4f59fb6d73b38
72d2dff3638fddff184e7fee904df1a30de3414c
1744 F20101115_AAAEIV kuo_y_Page_206.txt
945095bb5daca61eac0f731baf04aedd
61b755cdd581b2e2a910b0af1de113a3599f1373
81197 F20101115_AAACUC kuo_y_Page_033.jpg
6e4d7f086f910ce21864d16432d2c895
d2366881c185ae7dee824f07c48b60bc9a1afc5e
2009 F20101115_AAAEIW kuo_y_Page_207.txt
7c5b39293effa57b8d4595cdd89756f8
ec7ca96bc54d0544e5eefad4a9a6e99002ed9219
77166 F20101115_AAACUD kuo_y_Page_034.jpg
3020c4e37e8bd46766ce25c707994ec9
565a625723253fdf0aa364a0d4c6f59b4c7819bb
3447 F20101115_AAAEIX kuo_y_Page_208.txt
7c098ba6aceff781e50c3ad96dacba85
bce872fda32002ac926e64a20ebf94c334551ed7
63444 F20101115_AAACUE kuo_y_Page_035.jpg
1a7bce909977ac15f0870bcf889c1b22
2fc8cfdb6a8e9e158bdebb3518f466929628f8f4
2662 F20101115_AAAEIY kuo_y_Page_209.txt
19a6fde82e1460236610429eb6665c17
e9bdaab29fe8d24bcc92c7119dbaf505eb77a2f5
63303 F20101115_AAACUF kuo_y_Page_036.jpg
c05de07d7b9027e8c3a37a46e4074305
5639a30a4d28877e3c9b15f53c350e7fdb4b4549
2347 F20101115_AAAEIZ kuo_y_Page_210.txt
97ca861d08e839471e821bbaf18a702e
6c8c1631698f411050c2d3d6644e9fa39ce152c9
84378 F20101115_AAACUG kuo_y_Page_037.jpg
0b868919fbef0897a31d542fd1543e52
778ee2e9f5f29d714fa801bb60986d71276fdb42
78761 F20101115_AAACUH kuo_y_Page_038.jpg
d179ace31be12317ae1e746539529d5a
3054647db4e1abfb74c4eaec6a71c9739d4c008e
F20101115_AAADRA kuo_y_Page_188.tif
1179e017fdaacdca97d4b2fb5b0ff3e6
aab9e18e3d2753d35e9e67f679bd704df74444b3
23121 F20101115_AAACUI kuo_y_Page_039.jpg
e6441cf2bc3a27819ebccd1af0e69f0a
c4fe3373594ab5691148dacdb93214d2451def26
F20101115_AAADRB kuo_y_Page_189.tif
c2948811602ad763f7194d928d1feb25
1d4ae68e64a0e173cbe3831fa9113658b3ceebd6
31544 F20101115_AAACUJ kuo_y_Page_040.jpg
14b27c5d32ec24ceecd79131433975bf
e241ba1bbfbcbd307ce6bc6431aa07098205f867
F20101115_AAADRC kuo_y_Page_190.tif
130c03a94519ee5f0102f845255323a2
60ee8a868eed4d9efe024fcecb34bf24e2c973d2
74234 F20101115_AAACUK kuo_y_Page_042.jpg
19adef2b314b09bda58dddb0edc18e4e
5068e055e07e84241eef81b9a29c67fb7276f78b
F20101115_AAADRD kuo_y_Page_191.tif
e0c3407cb24a9104d53192e00db7d061
ff47637037fe0ab32529fcc879fcc64bb6db77ed
83724 F20101115_AAACUL kuo_y_Page_043.jpg
28a6fb91c4927ffae97fb42a05c3b07a
05ce76eab7ebace806cded8d34745e4efd930f70
F20101115_AAADRE kuo_y_Page_192.tif
2c4e0b5a605861ecc8ed340277b5bb52
4a92970c6247987a8fef8ab5580d268ccfa60e26
54152 F20101115_AAACUM kuo_y_Page_044.jpg
214644fe94b657409caa6afdd4af558d
89acba3c06c4d3e5a72df75219c62213f340675e
F20101115_AAADRF kuo_y_Page_193.tif
a051425a06aea209ec3926231467e2fa
bb2583f72d841ce5937cdb38266d2ada2ebeab70
35335 F20101115_AAACUN kuo_y_Page_046.jpg
9b33479a528cd99e97f36c68c3ee7577
5ab778adac802fdad7d4add620ee04d73777d6b7
F20101115_AAADRG kuo_y_Page_194.tif
3792005782ca08a54a1c215f035d4f32
672950dfca4b8f55f8c748d5c7b5218cacb0d6bb
58132 F20101115_AAACUO kuo_y_Page_047.jpg
7230f73a6de6be82c71f8b64bce93647
c39d4c9e5c8bc164e333b78321c9a9e7e1bdc52c
F20101115_AAADRH kuo_y_Page_195.tif
ffc26c3703a9da679de9977a5f7aa66b
7570c5a422a06555d6a7b6d9bfc0080e6b6347b0
2708 F20101115_AAAEOA kuo_y_Page_162thm.jpg
76c54b75dda2ff316e7f6ed15296968e
0d3078ea0e2118684e060516ad2fca378fdcc7cd
33601 F20101115_AAACUP kuo_y_Page_048.jpg
2c7312cd35b228f77b3913ef671100a7
2854370f62b32e66d67fc73adafb2462e5ee33be
F20101115_AAADRI kuo_y_Page_196.tif
801947e28f694f4f457e63aca7e4b474
dceec26980b651d333c374252991c90fd0ac1ee6
24181 F20101115_AAAEOB kuo_y_Page_107.QC.jpg
aaf5f51e952e959519d93b321c467f87
af698c73ecafb456f0f360788ff63719341ef2d7
36265 F20101115_AAACUQ kuo_y_Page_049.jpg
27970521869a9be9e4765115d18d9196
078582d59f4eaa5e82813e217df637c8764c2c89
F20101115_AAADRJ kuo_y_Page_197.tif
b0e0f9fa2f975ef1689a33d2bfef64b8
8e1c7373186a1986950a49a86c8ac97db5c9729f
8216 F20101115_AAAEOC kuo_y_Page_167.QC.jpg
6df95f56f1b51a71d798ccdab979ea75
1b8d4b547b3598db7312b8f60aaa2af6866ba03d
35954 F20101115_AAACUR kuo_y_Page_050.jpg
ca70b3486c0611242c8891f0990150f1
4ae68acecb6f88483631abc6261a4e00cfbec640
F20101115_AAADRK kuo_y_Page_198.tif
37594354b6a89be90041477ef4f3205a
c1d3a403e55288fa7df8ce000822aab3a768c73f
29053 F20101115_AAAEOD kuo_y_Page_240.QC.jpg
37244851fde56f84f162244286ab94fa
9b596f67f0d81121cbe538e4b51931b2c12d7a46
36492 F20101115_AAACUS kuo_y_Page_051.jpg
ebd155e27282e76c66058807d0745542
76f295a4e758a5f96c010d3fe1da64ec6aa1888b
F20101115_AAADRL kuo_y_Page_199.tif
1f73f6ec956ec8bb57f2bf83772aa37d
87db4ac2026448dc8e0229c930355e3a3960a05b
9750 F20101115_AAAEOE kuo_y_Page_157.QC.jpg
09be5fd6688bcbdd2b4dcc2f60e746fc
ff6a96377926eedbe085fcbf3cb6f69ce5550fac
1051978 F20101115_AAADEA kuo_y_Page_067.jp2
dbf904ff2ea17a0313f4d83791323a4d
ddfae680dbcf6ce406cce000c8485688ace4788a
38158 F20101115_AAACUT kuo_y_Page_052.jpg
1086fcfa42f0b27ac5c2de2328909d03
c8aa59e7846712206cdc8858c0228ca2d09fa485
F20101115_AAADRM kuo_y_Page_200.tif
7520dab1c2794ff6590b7bba74beae09
d00a6608455996ae4029c75af082ec26c6dd10f6
9638 F20101115_AAAEOF kuo_y_Page_161.QC.jpg
a2de0b406842ccc9c08b82530e513d8e
1be1b214eb284f3534778355a31ef86b535f2be7
98274 F20101115_AAADEB kuo_y_Page_068.jp2
30df47b9491d7b04c97a8b7e0bfeb15b
a73adad4be1f8527b5aa411d5f283ea02f4c1a6b
22891 F20101115_AAACUU kuo_y_Page_053.jpg
3b8a89aff22feb4daa4c803bd0b787c5
1380fe9ee250a234d05bb3dc45429c97aad461a9
F20101115_AAADRN kuo_y_Page_201.tif
5258a79091c0715a3287eaf3856da0ea
a967928a13b129a985cad0503b57e513258277f5
9155 F20101115_AAAEOG kuo_y_Page_192.QC.jpg
1830c3f0451f8a0cfe5af057f5232705
cda1ca9475659d59077d81edf4057a02991c9591
34441 F20101115_AAADEC kuo_y_Page_071.jp2
c842daa3bbfa0b065c1c680663d0254d
c226d0f6af22d7c4a7ea640f14acb95fad935459
76847 F20101115_AAACUV kuo_y_Page_055.jpg
cd7a8be19d4517851b452882a18efe10
0439ca190766b0800014629c20a6d2a6371abaa5
F20101115_AAADRO kuo_y_Page_202.tif
457a9773618062ab19d29eba2cfb454c
697d939e1e5cc8eed47581ef0a0ff18137ba4fc3
31099 F20101115_AAAEOH kuo_y_Page_016.QC.jpg
b2373d7e618762b57215cde5a0983274
71e5b1fc729427fe7cdbd47d0d2a434ca1445031
557921 F20101115_AAADED kuo_y_Page_073.jp2
6a6791f189a3cd9aafb9c441fdc153bf
1101611c4efdc0c89ea56a17d53a16c5b798666f
70456 F20101115_AAACUW kuo_y_Page_056.jpg
25c422c8154700a76b01023194b09447
4f5d1830296553683313cc768b5822bbc5781dff
F20101115_AAADRP kuo_y_Page_203.tif
eeb5f53ed2967b1ecfb4a2438873bf41
57e97708bfafe509551575fbdcbad3093b2763d3
7570 F20101115_AAAEOI kuo_y_Page_211.QC.jpg
0da3f2d2598a51fc554a54822533f2e9
9e6c1dd5e2abb578ef26ffb803b2e3449035d061
256219 F20101115_AAADEE kuo_y_Page_075.jp2
5cfc10f777d5ebddca752fcc769aefb2
bab1ea2aba702e3211c32962e6c7844b9d1f1c21
69710 F20101115_AAACUX kuo_y_Page_057.jpg
0e6b2500700c21bfec851441090bb034
56c10825f2f9560c01b015899d92da0046a20f7d
F20101115_AAADRQ kuo_y_Page_204.tif
495686430f2b0f0c8fb0b79488062b05
0fb3d6302a21c1adce774c0b24a81c173ebca96c
4587 F20101115_AAAEOJ kuo_y_Page_200.QC.jpg
0afa8ccc40ae631372530b698de08b8d
1a9ee6f6c78c862771285820b7ab724cb5a9e5ab
120234 F20101115_AAADEF kuo_y_Page_076.jp2
6443f7be5596bda6e22c68e4bd1222d8
aebff6535532523b01fcd48d6b711e61d51d5e81
F20101115_AAADRR kuo_y_Page_205.tif
86b4c6abb9bc6ece85739adcf8e77901
cc4c8a71992a82bec62caa740d2d0b0497fa9405
2253 F20101115_AAAEOK kuo_y_Page_075thm.jpg
9f7bbb1ea32f3dd5c55aac353c28bf66
04d4948cfcf91e8b2568e7b3f3d412bf8fd01479
120934 F20101115_AAADEG kuo_y_Page_077.jp2
b6012382766df3c60018652bcfbb7919
0c91f83c8a127eec7483871856b209b22fb46f14
67024 F20101115_AAACUY kuo_y_Page_058.jpg
e1c2578ddcb53cbc2c2a90bd8157259b
5fe632c621d4cd814a22f016f520b324f09286b7
48688 F20101115_AAAEBA kuo_y_Page_231.pro
6d6003f533153a447919a5b389e72a03
ffedfb005807b82ee60e639eabf7f9f71b6f7d0d
F20101115_AAADRS kuo_y_Page_206.tif
a94acddea24c604bbf6abdf70729759a
9836dda54c8cfa7488542fe8f0fea081fb70fcc2
8227 F20101115_AAAEOL kuo_y_Page_149.QC.jpg
0867b978607ba4d545134ca47283bb1c
3485b7a435e2b46d495f25944a12a3e0204b53de
112560 F20101115_AAADEH kuo_y_Page_078.jp2
13a8e26885cd29e7676591b522af29c0
3cba9019271f05eb1a5a5988be4f297c6cd96a0f
70896 F20101115_AAACUZ kuo_y_Page_059.jpg
37c40a713533f87526bbfa18bdf32e71
528c342e9b0ea5913cf4906f8531b881522cdf80
45142 F20101115_AAAEBB kuo_y_Page_232.pro
6fa6ba1b84a6b83575ad375946c7f781
8e973933e893e16b065be3dd2eee2f878e1719ae
F20101115_AAADRT kuo_y_Page_207.tif
29be731e103274acc451498d1ee50945
487ca160f330b753fcc39982c71b03e903ef4e75
7998 F20101115_AAAEOM kuo_y_Page_179.QC.jpg
787e7f13abf5d8631d98d30101d8cecb
aca3fc158995dc9f693cd9a27329a783dcdc338a
114640 F20101115_AAADEI kuo_y_Page_079.jp2
bc2259fda28181023afa18682e724835
f1b1f7bfc784dcf860f1622eac9651aace909a76
44277 F20101115_AAAEBC kuo_y_Page_233.pro
03fcb5978d544f61cb4ae8aae134b011
3e1ef3e7ad0c3eb3c2728c617f95297697e813d2
F20101115_AAADRU kuo_y_Page_208.tif
a0252e22c5f7749ab2b8fcf53caa8c24
378108bf465fe46600e8aa29401e692a212f6c95
4318 F20101115_AAAEON kuo_y_Page_142thm.jpg
d5268a2b8c5abf78dfe1944343e044f0
bab4dd665b433b9ec8199a795025c97ab0d22b9b
52540 F20101115_AAAEBD kuo_y_Page_234.pro
de593855ad7d3442ae6273a315cbe655
15cc94b8171d187216679cb2652da3c68d2de1e4
F20101115_AAADRV kuo_y_Page_209.tif
95ca3db65c18f66b3b7cb7dc458f6f9f
d2286b42769762ee9699da01e35c857803c13615
1609 F20101115_AAAEOO kuo_y_Page_196thm.jpg
485ec2cbcd10b4959639819c8507a34c
47714fd7648adfe067690b93071fb880f2f071f8
115006 F20101115_AAADEJ kuo_y_Page_080.jp2
8f8a02af77e1804ee2d391cf32faaf9c
85a456454f61eaf8e10e1ea222d08913becd6b47
52628 F20101115_AAAEBE kuo_y_Page_235.pro
dc0d3df2fa811f37aae39fd3b91f71bb
526b7f390b5af437fa40c10276906ee2991bc391
9145 F20101115_AAAEOP kuo_y_Page_230.QC.jpg
c6b023d07cfbe0af9345eb0b142fa48a
f9c5b81dbf71857230f1ff4670fc30e835dcc246
104019 F20101115_AAADEK kuo_y_Page_081.jp2
6f6f80a19a391fd3e16b5b054137ff65
7871c408a7624fc5337679d2a8aeb8cc865100a9
F20101115_AAADRW kuo_y_Page_211.tif
af0adfb48f5ae9a938450786d1b24046
da60a9acd155c07f8e1ad44d2c2b1d3cccdce10e
2385 F20101115_AAAEOQ kuo_y_Page_233thm.jpg
34b22371948cdc879d08ca3441e8877d
2ba64e21f0ea7a9beccd35e973b5d8849ec70d76
77668 F20101115_AAADEL kuo_y_Page_082.jp2
cb1dccd9bee6d3cfee110e523a956549
0e285b67293ce5c0b60cc96900aa81c1064fe7df
64484 F20101115_AAAEBF kuo_y_Page_236.pro
7d77adc070b74061e55cdd5f6fe07967
77205bbc11210f5f6be66842be6f93b5b415e6a2
F20101115_AAADRX kuo_y_Page_212.tif
f4099de01b5c0925ecd155ce4bd26d6d
b2700aed10639eda63ebe7d57785003ef9932009
5126 F20101115_AAAEOR kuo_y_Page_083thm.jpg
5bcfde29b4381af90e55d68e8a2fdc45
337be609ae1d00ee583e09e158957e1a199566de
70836 F20101115_AAADEM kuo_y_Page_083.jp2
c346f7625f18cf5979ed8b3e87b8b10d
d52877996dcbaa8d42909cba98c186a473fb12db
64974 F20101115_AAAEBG kuo_y_Page_237.pro
64a2f9598e031acbec9f2e18a3a4fa94
f27d2b8314f5b633587672e2f7e01e53e5a56b6c
F20101115_AAADRY kuo_y_Page_213.tif
c39321550a1fc59edb16d401fe169ecb
b9f93a86531cdbd2b40b7a175e6f06974093e8cd
82857 F20101115_AAADEN kuo_y_Page_084.jp2
7c0d9af653cd7b6025467b51627b50c1
3b4c1f14c6ec7f0e3b405ba98db0b933e881e677
64961 F20101115_AAAEBH kuo_y_Page_238.pro
11df3754c0b619dfdc3f7b643aa3925a
5f7fb1f91f16f3075553b3142f3e127018ebdb13
F20101115_AAADRZ kuo_y_Page_214.tif
41c74eae39895eec130d47705881f426
7d25060403d000f8baaea8572e5096dc94e37520
4932 F20101115_AAAEOS kuo_y_Page_136thm.jpg
fffea4bc951a9e97576c7fcedb97baba
bdd376a412c3086aa281752f2ea0d59b3886573d
93715 F20101115_AAADEO kuo_y_Page_085.jp2
284be3889b0966b6217a3c1901e3f5d9
16da7ea0259c8f306ebb9adac18ede97d1129503
68041 F20101115_AAAEBI kuo_y_Page_240.pro
aa2318da95fc28fb5c29295e18befe7b
ec43ee0ee8db603a485ec19ccc9d1126ce3bb385
5500 F20101115_AAAEOT kuo_y_Page_223.QC.jpg
00f4f44cfb1a5ce619e67ca9758507cd
9bd1abf4c6c9307fd4ee7b1370189d9f93272d89
110152 F20101115_AAADEP kuo_y_Page_086.jp2
f5a051e874b3c980c58c675842cf0d94
5d16ea62320839e4610bf49266968f7168636191
50056 F20101115_AAAEBJ kuo_y_Page_242.pro
e7d7bde04ea5dcbb13effd13c2858f7c
ea786a8ab9c8bb233dae1bb0fa0d85ce0af94e58
27125 F20101115_AAAEOU kuo_y_Page_241.QC.jpg
2842a5a3d9ff8a0721ecf875d2182734
d03ef38feaa19ae6425af816fbb14fb1636a2b88
102173 F20101115_AAADEQ kuo_y_Page_087.jp2
96d29700ab21afd4f0a68a0974060fdb
8724235d7a48d8a8c721743b8c250e22df886f72
16322 F20101115_AAAEBK kuo_y_Page_243.pro
112225330f46976873d6dd3bbdb1af51
a530943dc2aa3e39fb1e31094fa799a3697a1d70
27526 F20101115_AAAEOV kuo_y_Page_037.QC.jpg
2237a8a37ec6f4ff4901beee5cf8d874
5d488127f3b6a0e2ad80d804f1c7bacb41fcdda1
108839 F20101115_AAADER kuo_y_Page_088.jp2
dcf8c8d0c1d0b811ebcc97c9b4f3743b
2f97c966cf6be4660d7915d43b321aa46260c1b8
555 F20101115_AAAEBL kuo_y_Page_001.txt
08b57b558898d80aa59173be1daf488a
3ba02820c366a877017b8d888249c713fc5a7ec4
4342 F20101115_AAAEOW kuo_y_Page_163.QC.jpg
1bd1f49a9ea72a50d68b0d49b0cb0ba7
db1cac214975938c71f8fbcb8ce283f5356e0355
74703 F20101115_AAADES kuo_y_Page_089.jp2
fa95324191d1696e2d138157857e8c73
64babf0a2dff9da0106585599791d3bbffffdfac
81 F20101115_AAAEBM kuo_y_Page_002.txt
95245437ae2e25d9cde2f2aeb1fa2b3f
0a5b7442d16308a209dce0c5dd0a1ed9a64c1c41
4524 F20101115_AAAEOX kuo_y_Page_139thm.jpg
0dccd712ece8453ec3e719e8c362caa1
e6dc1573663dc42225b794f9ef09ed42528edef1
114639 F20101115_AAADET kuo_y_Page_090.jp2
289ed14aa2012786e214051ae6c681c3
9dd71f2b7541a58623b27af261145c5bdad215f9
238 F20101115_AAAEBN kuo_y_Page_003.txt
dd3e401c15c7b4bf19aff16e34af6746
841efbfb75957ae542a3063f7206510feb56e997
3537 F20101115_AAAEOY kuo_y_Page_100thm.jpg
b028619d13e1d3d4aedd686088ba21bf
4c697e9025de9465ca235bd3ce00e5cdb0d783d5
114761 F20101115_AAADEU kuo_y_Page_091.jp2
cc36626a1e955afaaadcb3eb89d6723a
b1804b964cbb912ab1b9d9a51c949d8cf1587e10
2240 F20101115_AAAEBO kuo_y_Page_004.txt
4c3f46822d6689b31e89ac33dc751653
95ef76cbf146205f592c518d5559a4cc590ad20c
11428 F20101115_AAAEOZ kuo_y_Page_048.QC.jpg
35514a28feb1a9f42d773731fc72dce3
36b673da032e7875d1623460515a91e5462e9479
117035 F20101115_AAADEV kuo_y_Page_092.jp2
2fad5216ab96ebac06b73d1defcd3ac6
e9ad1911720ee501f9325aab6b143ec44212da49
1237 F20101115_AAAEBP kuo_y_Page_005.txt
7736932719872f745aabd5f306559b6c
dcfa7ae1cdedac15435a1d95396c777444817dab
117378 F20101115_AAADEW kuo_y_Page_093.jp2
e477a5e034a2b55cbd349d68a912bb8b
e7fd9857c050d832accd5fd5a05462139bd85cb9
12070 F20101115_AAADXA kuo_y_Page_121.pro
410aa9bd33f44b3e1935bfd1ebf6c63e
a8726bbd0a02e9eb3798d3cd3d15e17910a2aab8
3356 F20101115_AAAEBQ kuo_y_Page_006.txt
047f2553854e5f41d589c9fe403dc07c
5afa64c80b6e3f799f7e6cd98aa2881ba281d2d6
45079 F20101115_AAADEX kuo_y_Page_094.jp2
1b26aac1a327620c83b79ac07b451da9
cb4807e9abec4ace05d02b74a1c5afccb2efd078
17559 F20101115_AAADXB kuo_y_Page_122.pro
dc4e564204330b0917225b181299ca57
0b1038fc9d5d1daf4b5fb55e2b40bef1ca9d7b24
3472 F20101115_AAAEBR kuo_y_Page_007.txt
f2b470bfcce13a734736f3cbcb362b79
729122c0c360347edc6bd73114e5d1cf26d660d7
102621 F20101115_AAADEY kuo_y_Page_095.jp2
ffddcb074aa2262fc6dc7a6bc389b28f
260ffb3c34e77dc44ba9af7fe55741f137c2db70
5088 F20101115_AAADXC kuo_y_Page_123.pro
a394cfef151dfd26f8156ed3789f1f98
6ab1131db5b33631a4adfedb3aaf32d21168eaf7
345 F20101115_AAAEBS kuo_y_Page_008.txt
a3e6bd1d83c599ddfce55a6484504c45
e293c0e303c7b78312af874a309fa7a88f1d144e
144403 F20101115_AAADEZ kuo_y_Page_097.jp2
3ade4887878fc5f061fe884a0e2d7a6a
4cdba3152a66497b145319a72126baf508e3f041
15456 F20101115_AAADXD kuo_y_Page_125.pro
2966ffe8449f4f4c336f36a7e159e346
690afec642aac2f5556b2f9420a558e3f6bf34e2
2545 F20101115_AAAEBT kuo_y_Page_009.txt
b26f5b21605d8bb0d3806245def51e1e
54e6879546987eefd480bdd5b3894b790ceaab1e
36048 F20101115_AAADXE kuo_y_Page_127.pro
a181c657dc20ee73f88b7717a7ae6596
d021cf1083b2d3c30ded9bdc722a0217939b7cbe
2847 F20101115_AAAEBU kuo_y_Page_011.txt
d3e02377446914429edcdff539eb237b
67b58b6cdced8a1187c45962334237d974325107
38941 F20101115_AAADXF kuo_y_Page_128.pro
26beb8a26419c46ed34bf4a03739f3dd
edf7b55cd322edf1ed5c827433187c2bb8700152
3040 F20101115_AAAEBV kuo_y_Page_012.txt
2a969d6690210d0d96d730be54c528bc
dae7c748439042585c55d539d1c420696ce0850f
17558 F20101115_AAADXG kuo_y_Page_129.pro
7c1d5824c1ff9d32f84498d95693fec8
ac0973066b63fa346550f66fb6466b6652aad6c4
1559 F20101115_AAAEBW kuo_y_Page_013.txt
ae6b0d79948042d3be2fd1554aa2b68c
7f2b191c9b5b7136ee81be97fddbddbb495bfdd0
18198 F20101115_AAADXH kuo_y_Page_131.pro
545b3f21f8d7804635dddc76de1c327b
8c379d451cb5e613a7546f8c27d97e0cc8b81a37
2596 F20101115_AAAEBX kuo_y_Page_014.txt
d4320580d4356ef8f8fb28e8dc4dd435
26ed0f6f7810daa360035a48164ee02f4c5d9084
6792 F20101115_AAAEUA kuo_y_Page_055thm.jpg
ee80c2a162426bdccd65d7d0594127fe
31adb418a944709cb2e4c73b2b6e5a91cdffc132
14076 F20101115_AAADXI kuo_y_Page_132.pro
639848d9d3edff88c35fb2bef7d8d446
1db1b71f3f75e6ae5b2aba8e286dd808bce30e8d
3175 F20101115_AAAEBY kuo_y_Page_015.txt
849a2089d39469f4f6f392f39ea09ffc
427978055ce53fc669b83c235a175d87bf14690a
23520 F20101115_AAAEUB kuo_y_Page_056.QC.jpg
ab57727deff395e99df213847f70bdce
b43ed663c4c1fc3996996dfc79937d1af31a598e
14141 F20101115_AAADXJ kuo_y_Page_133.pro
b1d2d3eb58732c9d48b6d68768b49a53
2f30d886d5241791fb3ee7130dc7a2c8b807cf4c
F20101115_AAAEBZ kuo_y_Page_017.txt
03d71b07954945c7f078f377886801cd
9a6a8bcdf078d411b01652c7b90a89f2f7da854a
6617 F20101115_AAAEUC kuo_y_Page_056thm.jpg
98f48b10969c6693ee43b8c96816db63
92c2c8c464644301fec1f79442bbe735e444ee5f
17333 F20101115_AAADXK kuo_y_Page_134.pro
8afd73e68994e7655ce77cb2aa1b5410
473f0d1f86779ee52ec6a79c6b9fa5c1b91ced21
23044 F20101115_AAAEUD kuo_y_Page_057.QC.jpg
af327cde25dd3c48c6ea84dd83a703af
75fb159b2b02e366e79899cc67138ac3a433775e
14421 F20101115_AAADXL kuo_y_Page_135.pro
8cfcb01cfdb8636ea6bf6b82ecfd220c
c503d7713532d22fa9583bf909a33ade2d5e4ce8
21904 F20101115_AAAEUE kuo_y_Page_058.QC.jpg
11e2ca4414b0d709fc46ec15247ce3c6
1da2531f7bed2c4c4a62e11a43f7cd124fbf7e4a
79328 F20101115_AAADKA kuo_y_Page_234.jp2
b18201f9769df1aafa3123f6ff7c088b
a690e7ccff7915272c535388a98b9296eacbffd9
16378 F20101115_AAADXM kuo_y_Page_136.pro
26e2b51069d8558514f03a0035a7b5f7
ba73926160c380ca6dd91a63102438297e4c7648
20461 F20101115_AAAEUF kuo_y_Page_060.QC.jpg
61ee9166abfe01b0d44c83e49c2f2bd4
2014bdd39c8d5ac8d909ebd22618725aa8337105
81601 F20101115_AAADKB kuo_y_Page_235.jp2
5aa5534258a5b1515eda55dbc0786294
c2dd35ba42e8918edcca4bf6abee1bf2dd89dd28
20691 F20101115_AAADXN kuo_y_Page_137.pro
ba1fbe8fcaecebf818817a1a35c7b46d
c838c22a5fcbf75771f2dad4afaf83fe628d1796
6172 F20101115_AAAEUG kuo_y_Page_060thm.jpg
75dc905e711ee7c91dc52fc26ece6225
fbec75696f935c01281058fc94c26c041f9b6a6b
133521 F20101115_AAADKC kuo_y_Page_236.jp2
f5a1a29dd6495d7649c3f4b328a8cc96
b523506497ed33d4b61d5ab2b1fa4cfcd8c1824d
16063 F20101115_AAADXO kuo_y_Page_138.pro
b7adc9e2f282e2fe8541f04f04f03244
53768a8b0d2fdf4933867a7ff9601bbee606766d
23231 F20101115_AAAEUH kuo_y_Page_061.QC.jpg
5439bd2a46aaebb508d34ed9f706c36c
7c49dee2f39f05f61cdb528fb852407eb05c7615
135985 F20101115_AAADKD kuo_y_Page_237.jp2
9af21ab0118e05bde50200d0f421cbe7
bca73a4fe66fd23309793654f7e7569a1d11d684
13742 F20101115_AAADXP kuo_y_Page_140.pro
0423a1133c4d1b438bc5bfd3f9c1126d
82cbfa5b53ed2d4763c46869f0056a5c1ca54bb9
6527 F20101115_AAAEUI kuo_y_Page_061thm.jpg
6018072052795a9b4fb7b1f263ac27f0
04639d3ae10ce4d63eb489572ccb6b48e2562c8e
134014 F20101115_AAADKE kuo_y_Page_238.jp2
128e3c5efe630ca69a05cec397c11947
12518355b8305973f0c430df60c79084c7c53241
24444 F20101115_AAADXQ kuo_y_Page_141.pro
3fdc218c8e6d6f7da60c8c1b92575aeb
d678163c64e0c28cbb1ac9367ca6ca267bf35a0e
22889 F20101115_AAAEUJ kuo_y_Page_062.QC.jpg
5334382d65e647e98d7a29d545f9c2de
eef0e1d5ab780975f18710f8c571f3be9b9cb81a
144182 F20101115_AAADKF kuo_y_Page_239.jp2
635f8c227a48658b12996b8a329892ce
fbd1f54ba1d4762735539fb887ad55ed23eebca8
23620 F20101115_AAADXR kuo_y_Page_142.pro
66840212c3876675568b82ba0b2d0048
7ad16fb30d15e1737b8bc3035fad47795d6fedc0
5846 F20101115_AAAEUK kuo_y_Page_062thm.jpg
a7647e8783503cdfa8c85307ee87abfb
051531dcb52a49d0e1e73e070e919646d5bb97d9
139554 F20101115_AAADKG kuo_y_Page_240.jp2
a86b66a31eb821c8be6462f11cc26315
d0d8ca8e1f3a797c16d4d10f6fdf4000f4bd291a
13473 F20101115_AAADXS kuo_y_Page_143.pro
69a2db98756fa2f3b0fa222c97f738ec
d1d95aba41fb6a2d61a91064f262d2cfa367e571
5437 F20101115_AAAEUL kuo_y_Page_063thm.jpg
24fbd04f3eff73f3a6175906a32af654
a805a786d2a110708689d974487d44bb7c0c6102
109507 F20101115_AAADKH kuo_y_Page_242.jp2
37322ca78ea45af1020d5818e65053dd
d4c0c644adb60c53f306d2c284b9f705243163e3
2298 F20101115_AAAEHA kuo_y_Page_153.txt
88492c8d0f1047c144d35199ce59489d
db9a41c34ec7653970b9f4d4b6ce2ebafa4f2fa9
14178 F20101115_AAADXT kuo_y_Page_144.pro
58c23e1d137df6e2f63cb8b8c6cfe603
13c2b3d48120230f2ca1a5db57a7aa6a4e430690
25826 F20101115_AAAEUM kuo_y_Page_064.QC.jpg
b71bcc3a9e5b707e6aa4d8f04218e5e9
6912752c294a076a6b11df8265299a7cd2cd4069
38982 F20101115_AAADKI kuo_y_Page_243.jp2
11926e5d1ebaba47d31a9e16fec5f826
8408273ae633384fee1bd948d99eed5855185ff0
2587 F20101115_AAAEHB kuo_y_Page_154.txt
d1bad80a590520807bd1fd8042d1a361
6c73dc062f945c019194144292f59e15d2c437ea
43041 F20101115_AAADXU kuo_y_Page_145.pro
95bbef46a043af585d4bc01e07c9d6dc
958161fe699e9d2eb1fda80f06d209b48d1142fb
26015 F20101115_AAAEUN kuo_y_Page_065.QC.jpg
9b7e7915ad0834ef2cfa2ce468d61596
beea7c58eeb0674444b9b8287dff90562ba00556
F20101115_AAADKJ kuo_y_Page_001.tif
e7437f5ec39b14490c209d203933f4c7
b11d5e90b793e8de8398f405df9973150fe31328
3298 F20101115_AAAEHC kuo_y_Page_155.txt
bdd2dadf765244c9d2bc2b41446ef540
45766badd23d253e7d8a44dbcdf67f3dab4692b2
75571 F20101115_AAADXV kuo_y_Page_146.pro
a726969b95b86ab5c293f73775e4cae0
120d1c81309487b4bb5061dae5e80248d6b8f9bd
7189 F20101115_AAAEUO kuo_y_Page_065thm.jpg
bf4807bdf11b57002fb5aa8399514583
a6255065cbd805785bb1aaf0bb36f29d6026df5a
F20101115_AAADKK kuo_y_Page_002.tif
7a406b2e0397bc3c7f0dba2dffb81d81
87a1df37be23d350af44d9315f9b6ef48e9a5986
1742 F20101115_AAAEHD kuo_y_Page_156.txt
602c61fe6e4843ac7f790c35dbfde491
757a26829c077cdb909b45b853a81afe4f049e95
70454 F20101115_AAADXW kuo_y_Page_147.pro
508424dfdbbb31e08cc4f5ef5ee84c19
9ae9f63f67488461e80ab43ca37117125e1199f6
24989 F20101115_AAAEUP kuo_y_Page_066.QC.jpg
477ecb960b5aea19016ff53045141d02
0884769fe350cd17e1fe94a65c770c8f4db2a0c2
F20101115_AAADKL kuo_y_Page_003.tif
2677199130810d617bd47aee7f27fc8a
1d3e54dde4e07dd2dc93640415e698a3cd1ac608
2775 F20101115_AAAEHE kuo_y_Page_157.txt
e1775d7e48d18a078321f13fc745b979
1d6475063a4d2816195107f95bf8b46cd835d3c4
26667 F20101115_AAADXX kuo_y_Page_148.pro
f7fb1b06f8a9ccda3d8bcabb9f6be156
e0e0de0ae90a7cfa9d48b387d80541d3490ef7e1
7089 F20101115_AAAEUQ kuo_y_Page_066thm.jpg
164934e6f496ad27da01ce3e21e62b20
f8989bd15242d0582310c452a8591d51664a980c
F20101115_AAADKM kuo_y_Page_004.tif
eb8ecead0ec8b2b60fc7a9a88708b274
272ff408320663f074834a82705c79992eb8e4b7
F20101115_AAAEHF kuo_y_Page_158.txt
e0eb346df398a892394e16d6f89d9b33
ffb29aa7d20a792c67c43e11a0f4799524975ff8
49608 F20101115_AAADXY kuo_y_Page_149.pro
8613c76d842ffd3422aab279354de8db
36fc1d421f678507406d5b79a37d263b14275a41
24811 F20101115_AAAEUR kuo_y_Page_067.QC.jpg
7bc5229aa45b61e9c29d44b3b40e5cef
32c7bc84a708993eb6a0bcfc49d1b18cc2319e83
F20101115_AAADKN kuo_y_Page_005.tif
0dff364796a36e3164bc3bfb413ea608
397d82fbec8b88bbfc9965e32fbf34e6af904a0e
2909 F20101115_AAAEHG kuo_y_Page_159.txt
14fdc2e0caadaee0e9d35dddb07ad1db
dbef7bb4cdae57b48ffdb9288924411e4c355083
59660 F20101115_AAADXZ kuo_y_Page_150.pro
6751d300aa49fa0aaefe9a2727eeed6a
b1db5b5462525635d7685df250ba9bcbfc5d583f
6653 F20101115_AAAEUS kuo_y_Page_067thm.jpg
726854068baf20a37d31500630d30cac
86f656cf936509126c3ff65cce700e4744ec70fa
F20101115_AAADKO kuo_y_Page_006.tif
e8052cc2e5f076cafecd29a3748fd9fa
6ebf40f3939c02a5cd9bdc669a18c7f52ae068a3
1977 F20101115_AAAEHH kuo_y_Page_160.txt
9bcfb12e8a550784d75eff8ae805d69b
3cc911f9b6a70af69a055a6cec125b9fa0cb4bf0
20597 F20101115_AAAEUT kuo_y_Page_068.QC.jpg
6b181ff1efb8f53c0e32e45f4efed998
aff10de97a5d8bd962052ccba1393eeba16b76d6
2520 F20101115_AAAEHI kuo_y_Page_161.txt
1569a2966a26349f6a1b78c1f44e5712
bdbc80e2e63f4795c527c37fe178c73bf293503a
5543 F20101115_AAAEUU kuo_y_Page_068thm.jpg
5e74e8910cdd5234fad8628c91235944
6138bff683c140c98a67ac97a5f8349fa4ea6131
F20101115_AAADKP kuo_y_Page_007.tif
fc5ef45c2ca914e17a401062bc7c12f5
a9bb457cdf75e7274a18ad1882d0318f5b717bcf
2898 F20101115_AAAEHJ kuo_y_Page_162.txt
3120d3aa01ff5a2858e8c964124e3dc9
7e3489c50e04db06b831457d09f7bbd1a065ba4c
16493 F20101115_AAAEUV kuo_y_Page_069.QC.jpg
b2691718b0c02d3f255f7353378943ba
d7f5ad1f39edf908ceed1103e79ace9fa15648b1
F20101115_AAADKQ kuo_y_Page_008.tif
5e67c1f4e31ed936482a8edd29a0577f
bc7c5f3c2862e15911325addcdc9522a50d6a96f
F20101115_AAAEHK kuo_y_Page_164.txt
54dbdbf233a2d2f714b39aa46107f8db
d36d42de7f7151f7a2ec82fb7a9b04622562f1f3
7528 F20101115_AAAEUW kuo_y_Page_070.QC.jpg
2ef8383d5a380ddfeaa5c3aa80ed1184
0606d10b95edcb803b87a9e7f2e912b4d97d1018
F20101115_AAADKR kuo_y_Page_009.tif
a1b9ead6142fbd2ee5955681554e8c19
038fb73983636c34c9babe38b29b9362180e3676
2436 F20101115_AAAEUX kuo_y_Page_070thm.jpg
f6b1a115de1464d8150ebfaa541a1f39
4724b67fe5f942e78f833b5108d10e36f7d01321
F20101115_AAADKS kuo_y_Page_010.tif
bbab3cdd2d6cc34af9556cb103250b1a
590fa67c47036703616e1d9daac443405ad83ad0
1961 F20101115_AAAEHL kuo_y_Page_165.txt
4bb3a4edd64fa8f8b0c93c27d26f5a86
faf0e26e63c7c770df271c2c71bd74f031587cfd
F20101115_AAADKT kuo_y_Page_011.tif
251c11f18635a9f4033ae288f1ab8e83
261df361092a33af210fa2065e95a1a0e75dfda7
2700 F20101115_AAAEHM kuo_y_Page_166.txt
8db606d4fe6b460eab35cd79c51ab9ba
bff5c89f37e88d010fb7f7d345627ef5ecdedbc2
8632 F20101115_AAAEUY kuo_y_Page_071.QC.jpg
f47ae5c8162d1fed0119960ecc0b69a4
16c24d4a614e1766cb736742274f9006746811c9
F20101115_AAADKU kuo_y_Page_012.tif
dd4a9075974643ba621ba5142b3a5ef5
3702c2d2ec9e39b422406ad4324b3decab3ada2d
1990 F20101115_AAAEHN kuo_y_Page_167.txt
31d5651bf0d3fff209dcd1c7417a7809
7c8c5b1c394349e0b26275437183cc2393de6f88
2705 F20101115_AAAEUZ kuo_y_Page_071thm.jpg
7dcbf6bcf45241aad916371ad9213e1a
3f70483d5e64829713fe702b0491f1695af11d2e
F20101115_AAADKV kuo_y_Page_013.tif
bde5f53482e2eb37fea2421c68eb3e5e
f45f4a910a4e57d3435995844eb2c62dc43196af
2306 F20101115_AAAEHO kuo_y_Page_168.txt
24d838a937e59951f180dfd96b4095d5
0d5d31e5f5626295e6d6d409c27eebee82d7095c
F20101115_AAADKW kuo_y_Page_014.tif
ed3da17194ab9b4df4a754718dcd2ec7
3faf61cf63a476b3d0c79839854709eb0d8cd9ce
F20101115_AAAEHP kuo_y_Page_169.txt
ac38954f6ddb87d87a9a5a9de8d9471c
b602fd21ad0e985918d94191f98ee769a39b4ade
F20101115_AAADKX kuo_y_Page_015.tif
e570cada1243f4f1ee2c7706c92fa565
6c0b44e7912737feef7c792efd2d4d9a791b5e8c
3665 F20101115_AAAEHQ kuo_y_Page_170.txt
272146afb39e90ad3341b6097d0de4a0
2c7bc05bdbf24fb6a5422e5b8eed10106f422b2d
F20101115_AAADKY kuo_y_Page_016.tif
754298804da3eb3a21732d14e3c946b1
1c6b2a03e7ad101bc2e7ec1d96c98681cc2fff20
2404 F20101115_AAAEHR kuo_y_Page_171.txt
41b4b79fb1ebf68040bce963b0122749
4c5c72a61dae0267d18962e3c97b43de61a550fb
F20101115_AAADKZ kuo_y_Page_017.tif
790e035b0aee04dfd91ba87a7c9da8bc
164c4344e3be5344c03f6a3c24a77499b470bf50
3382 F20101115_AAAEHS kuo_y_Page_172.txt
ecbcb860656d64d8f0ddd36a3dee5e41
0d4e14b4db08ac47c94029b4e51c006556602044
2388 F20101115_AAAEHT kuo_y_Page_173.txt
8a6a4bcd4521dd6a509d6ab13d8409c5
c8704341055466d07deed5721df32d8a58969215
48398 F20101115_AAACTA kuo_y_Page_005.jpg
d47b1430f0cfc4a28af0cd9915c079e9
64c142332eabad8a3b6f1db9ea0d4044ca82e177
3396 F20101115_AAAEHU kuo_y_Page_174.txt
71ffad6b6b2fd6b2ed6ff21e6c1a5540
7b74151c0086d32f3db2672b08c5bceefa699c4b
91101 F20101115_AAACTB kuo_y_Page_006.jpg
f90d65e7d69c850db853a88d2c964727
2399605503a5f40b263c71b6af98c53648218ef2
2894 F20101115_AAAEHV kuo_y_Page_175.txt
7abe3b745ead48b04811b5ce588e3449
8af96510d46069a7b8eca19605ec5f12018335b1
98298 F20101115_AAACTC kuo_y_Page_007.jpg
04e3870472eb6f73afb67901e5504bab
af9da612d11ffa282b3df50625b3ca7c67829b0c
2728 F20101115_AAAEHW kuo_y_Page_176.txt
957b2bff1a4869ff944950851fddde44
30ed62a45d95ad4e5ec261b0ebb01c97fb0e449b
18963 F20101115_AAACTD kuo_y_Page_008.jpg
158426eef60598f9b9b3d1204e95e293
6fcfd69fcfec59b1d8ce8039f5fcb218818fac86
F20101115_AAAEHX kuo_y_Page_177.txt
223130efc62a43fb25e33b4b8a9a7719
75492115c4a440819b2fda34e4b7265ed997183a
86625 F20101115_AAACTE kuo_y_Page_009.jpg
fe4d60a915b84ae8255436a67be2fd00
5b41dd3b4a89948900497040dc42e690cc2bfee0
F20101115_AAAEHY kuo_y_Page_178.txt
b9d485b374aee38745a5d578b249c6db
8c915cdce4539268b352c3b08af5c1fe6cf3428f
94137 F20101115_AAACTF kuo_y_Page_010.jpg
a9c37cd0b5c6839468f615e71ace10cf
1f9feb822c13eca30fe6a132238d4349b2627837
F20101115_AAAEHZ kuo_y_Page_179.txt
1cd6d38f7accf8c50076a12b6326a524
997d5c7efab9e7af422dbc016814abd1b066ea9e
96532 F20101115_AAACTG kuo_y_Page_011.jpg
4666e677885945b784dc9cc720afedd5
5956f78b02b49cc2f58d92e19df1894b36bf3aeb
97110 F20101115_AAACTH kuo_y_Page_012.jpg
31b1fca6c862de44d703c23bae0ac637
ba32427d22e45ff1561d0d9c876165cc33504544
F20101115_AAADQA kuo_y_Page_160.tif
8d4ff232720746e1c5fb7e13fe10cc46
64c9a45162bdc57237ae008d6c2ce078ab15dc80
54623 F20101115_AAACTI kuo_y_Page_013.jpg
31cbfa03d7c5b9ab9bbe7a406752a8f6
90c411696c0cc28f68a046a9f66bb2e3c939cdb3
F20101115_AAADQB kuo_y_Page_161.tif
b46ba6b16a3b54352ff43420f7633c94
bd2fa4b591d9cb9bd34f945974691748c03f4998
91620 F20101115_AAACTJ kuo_y_Page_014.jpg
0d096eacdefee840e0cff6a34cae4456
9f770328a211ca226a87d807ba17ec9cec607ed9
F20101115_AAADQC kuo_y_Page_162.tif
35f708176c2c530d7564db870da9757b
f3b7dbfb6680b4eaa1b402979e0204ecd6fd13b1
111067 F20101115_AAACTK kuo_y_Page_015.jpg
3cafa383a9945bd57d1c9996834e0fc6
29b12196ef8360e790ee678671d7f5dfcf8deae0
F20101115_AAADQD kuo_y_Page_163.tif
7fd707694a6c11e1003fe4021fdcb0e8
07eec33eab2b91ef85639690b4172329a53d6e87
105577 F20101115_AAACTL kuo_y_Page_016.jpg
e535a6b3edb8c4c8f936d44e383e4681
49a1f7b92f1aa5b8d348c27e53fae632b2de7f8b
F20101115_AAADQE kuo_y_Page_164.tif
c3fc4f4e1ce1c4343720398067dfc330
f5c8e7b0352046946a2a87b92fc58f93777e40d1
35374 F20101115_AAACTM kuo_y_Page_017.jpg
80e0afeed8fbd0b6652d94ddb35cc9b2
7c2f88e82909f2443c7580b93b39e289434d72fd
F20101115_AAADQF kuo_y_Page_165.tif
a0d2a04a7fa8ead44bed3ff68c1d7760
3080e947c289024eb31614b2c4ba708e1eabbc65
73426 F20101115_AAACTN kuo_y_Page_018.jpg
308907526c5d1cbe9ebb41318b6f85fb
69eca8f7e0a77f74e1c2e44e847c19101af5e79a
F20101115_AAADQG kuo_y_Page_166.tif
1d93ae7c13c94b4c8a707332e1ccf080
4e95a5f52642427b4e0fb087d386a7c4571cfb17
49357 F20101115_AAACTO kuo_y_Page_019.jpg
182d9413c8f0a0c10c52fe8bb327c956
814cb387a5e49e2935ea0976b6f3513eb8045b1f
F20101115_AAADQH kuo_y_Page_167.tif
0cc6ddb792bdafae7c3a87820d36f05c
9ed9853301c2252cc9dd66a51f99842c3fcb81ab
2848 F20101115_AAAENA kuo_y_Page_192thm.jpg
db22f824ef6f5923adfeaeba96726ca0
6871918310ad65e2f8e1be003aca67801a3aa324
77493 F20101115_AAACTP kuo_y_Page_020.jpg
57627fa47c5ac6c0306111340da29355
1eba5af5b3b1c9aa259e73855576fa24f37385cb
F20101115_AAADQI kuo_y_Page_168.tif
2113bfe2257842f20fec9d116a9b96ba
abb2626309cb2c5f9ff84cafc2b6e5a4cf1952ac
2825 F20101115_AAAENB kuo_y_Page_147thm.jpg
2b5ef8d5db960ba79882d76fdd56b6e2
c6ce63c60d0a331ac79908fc9f017fd84bf2abbb
78371 F20101115_AAACTQ kuo_y_Page_021.jpg
2afedaa11f391de06036a6e090b44840
097f626d4b8a6bb9f3c089a44384ddb671f6b7e0
F20101115_AAADQJ kuo_y_Page_170.tif
28eab77baaa7690c908f161800b4ff7e
ef6f12c023c09e0b39c36938e80aa437106eeece
1635 F20101115_AAAENC kuo_y_Page_163thm.jpg
7ba5f6e6c112ced4c94b537d70208964
d2138a02fe3ecd44ed1244cecfd44bb4a86b0d4a
75641 F20101115_AAACTR kuo_y_Page_022.jpg
86078a8b7e0535bbcb47d3c7fc764baf
a30c65206cc238b77e6dd3a6ebb894026fde7ee3
F20101115_AAADQK kuo_y_Page_171.tif
e7011ba83ab7392ea73c9a184b867aa1
d9f6e61030634d2da2b482245342b953faadcb8f
7286 F20101115_AAAEND kuo_y_Page_029thm.jpg
6c300d604891a8c29c240f27ea9fa3cc
9f750e8efc1bcff0b3abd88a559c7e7697c1a95d
77989 F20101115_AAACTS kuo_y_Page_023.jpg
b0e654171fa46c1f105a2757777ecd8d
efb01f06526c8ea2f66da108665fd06e91407f53
F20101115_AAADQL kuo_y_Page_172.tif
203e694a0eb63e36e2f2eea2bd7a0cff
95613279906d285fd0ab2e6290bb4d4a58b16fed
6770 F20101115_AAAENE kuo_y_Page_086thm.jpg
5c0d98728b27a356ab5219bd0ffd0ba5
1dea51c7472fa7e26a579e316cf5f4c66d52bd12
27718 F20101115_AAADDA kuo_y_Page_039.jp2
b78c739d2abee4c83bc76c426de9bd15
0554ef7f3b9b0cf00e0fbc1ae9911cb24c8d7448
70944 F20101115_AAACTT kuo_y_Page_024.jpg
387697d1f13cc7f0448fff59e4c0147a
d6f1ce1ff037c25c26422b6c58d123fce0898cfd
F20101115_AAADQM kuo_y_Page_173.tif
79c0a51f017c6becc05abc4db206fd51
e0ef02a349b3e055d5aadb3bee478fe8d7a98e5f
17984 F20101115_AAAENF kuo_y_Page_127.QC.jpg
0d11ae59c408978ca81c759d70ff1a7e
876684ba9d697b00885a1a9c49a13a7a371ab1de
37808 F20101115_AAADDB kuo_y_Page_040.jp2
e6a15879110738b9a05e4f7e16138559
94a108c290a640fee9a4333120a20ae519625440
24558 F20101115_AAACTU kuo_y_Page_025.jpg
59bf2dcef1e975e52227874ebb626933
4fdb1ebfbe564ab3b2ae0649016b8ac3b992ffe1
F20101115_AAADQN kuo_y_Page_174.tif
4c0003d89544ee4f3c1ff667ffd7372a
248c86f8d1d439461d90461c3094b8b9ed8ab092
9538 F20101115_AAAENG kuo_y_Page_227.QC.jpg
8d87d3e70c4b579f85ecbe72b893d471
1a119c20fedb8a7f9dcf14ac50a215f3bdae636f
202632 F20101115_AAADDC kuo_y_Page_041.jp2
33734e264f0a0d1b8d58d2156a026eef
23799b7822cc7d9f2af99ee2165082efd06a482c
79321 F20101115_AAACTV kuo_y_Page_026.jpg
13300f6a579bd94563c3790421164cc0
4c13ed2f44734f2f76c609c54d1dded806677d56
F20101115_AAADQO kuo_y_Page_175.tif
2535300cd40c6d3188431f71490ef66c
d46dcd3095df7b3f01ae638dd7430574c5b7ce40
6465 F20101115_AAAENH kuo_y_Page_024thm.jpg
4eed26557aaf9296021ea130fb1f15a5
8cec9f338795a2b751a4a9befbf6196e5db3363f
208498 F20101115_AAADDD kuo_y_Page_043.jp2
dd18ffcdd5e75abe2f61857ee2475d4b
70df62add0fa3a42c409f079bc859b6f4a4e2173
78720 F20101115_AAACTW kuo_y_Page_027.jpg
a037d0e3e9fc8b39512a8dd46bde14c9
d721dc1f483df1246a9dcf44d0f8ff3e56354472
F20101115_AAADQP kuo_y_Page_176.tif
6c62a480394ad3613d447ebae683c649
bf44f99b40ea2b623ad98a6e18c8ff7c9b340e9b
8316 F20101115_AAAENI kuo_y_Page_099.QC.jpg
89bbb1c16c2d34c22729cc8b23a4404a
008690bb78ba5c6f7788ac262a3503a914f80d73
125329 F20101115_AAADDE kuo_y_Page_044.jp2
233e2ad792ea0c1e106b1b0e64414f5a
5b69a5f7bf1f184ab431ea46c37c3a7d1b1e2642
84025 F20101115_AAACTX kuo_y_Page_028.jpg
b643957d84a1ac359be53ba47ece7768
740cc058fae516fa1d114e4c6e89ab73d308bf29
F20101115_AAADQQ kuo_y_Page_177.tif
f2340f7a5fc8b479fb83aee9d2a76b7f
166e5d53bb2394df91ce59f23272a38c7935d9d0
2751 F20101115_AAAENJ kuo_y_Page_224thm.jpg
c5e52681fe80682d30637e12e377e839
78016fc1f485420518e8e49b61a7f4b52d8f0373
55636 F20101115_AAADDF kuo_y_Page_045.jp2
56cc08094066fe77aac416491325fdb5
c7d6ee809d233e756e528480f1fcd2e0fbd4196d
80086 F20101115_AAACTY kuo_y_Page_029.jpg
ca3d1d73d6f5fb4011992c050077f9f7
ae982000b2f3b57ce82acb7d573f36d295bb2572
F20101115_AAADQR kuo_y_Page_178.tif
5527aa04d91ea189cec12b77bd91444b
78e0a2f14a652e370767874cb9f55530c40a22da
6908 F20101115_AAAENK kuo_y_Page_080thm.jpg
7c02281d602ab5c5dcc9cab5d2453543
d3e5b2d5ada924534ce5648ea86f0a43c7250889
470877 F20101115_AAADDG kuo_y_Page_046.jp2
32102bea6f6498f499e1403b40dcd0d7
ab093bcdf948b581d737bd736814faaa81dced8e
47043 F20101115_AAAEAA kuo_y_Page_205.pro
40ad292c87440f5fc1a732b5c8044fb0
8d629ac5b57f5980dcb90ee035e16284c60e3f4d
F20101115_AAADQS kuo_y_Page_179.tif
d75db3b03fb66afe97bc5698b73afd5d
1132710e7cf25e557bcb9c4e0655fe5361499fd4
2823 F20101115_AAAENL kuo_y_Page_184thm.jpg
8e527f56d9761010df311442e56fd0d7
98268c9e862effaa380998bb17a3fe31ddd6009b
803165 F20101115_AAADDH kuo_y_Page_047.jp2
87e0bd4971bca9fd48869aea7f4c946a
1f884e5227e70b91b32d6e76890a0ed5246c0ffe
79605 F20101115_AAACTZ kuo_y_Page_030.jpg
5046d85be2ee50ffbfb341540a3d466c
1f55cf6933342a9f368f798acc2582b39c0c1c1c
39946 F20101115_AAAEAB kuo_y_Page_206.pro
7422f5937ed7774cd41f3711bb5f8a1d
e210eb74d7815fb0d1cd064fcf452f5d2d257a57
F20101115_AAADQT kuo_y_Page_181.tif
5c1cb0b74e2b3b2efa9d1f1235ff3d52
975f0ae3e84b7e66fe5e177a48ba2fcdfcaec9a9
10146 F20101115_AAAENM kuo_y_Page_180.QC.jpg
246e916cf91aa36a94a12d05f1eee44b
9590eb7be3983f255aa032124d3f66c563bc3f83
44255 F20101115_AAAEAC kuo_y_Page_207.pro
33baf92e606968565c71660b0c436ee6
d46ec1757382f28cfd0d8793a53b0b1543e19420
F20101115_AAADQU kuo_y_Page_182.tif
187aff9b64b505a369dedc67d9c16f8f
04c3762cb59a8d1bc3f6f1c84898d2c80a54a32a
4207 F20101115_AAAENN kuo_y_Page_140thm.jpg
51e21906226251a512eab3f320da6e7a
36aa7f6fa92ca83e646dc6e5f61179a7c796d269
413128 F20101115_AAADDI kuo_y_Page_048.jp2
ba07aafd02ecd1e0096a8842fbbe6e83
437e44b3881a289c847704516eba579bb6d172ca
81254 F20101115_AAAEAD kuo_y_Page_208.pro
6a8b90a73ca35b710f4bd48ab75b892c
f8398e980c9830c9f80b67c5a218a9f72d0954d3
2580 F20101115_AAAENO kuo_y_Page_177thm.jpg
456e7db4a149a3d316256792d1851f85
c6411c5bbe6a1642e4ce43dd81e02d6311f2770c
466581 F20101115_AAADDJ kuo_y_Page_049.jp2
cff315e7232ee3083b55361eb3ee0700
73df808561b6368db635d5b7ae8afbb70aa969f8
F20101115_AAADQV kuo_y_Page_183.tif
1116a5a750d2815fe353091360398133
bec1c7cb1d4e7d0ce6105851c4e069cd5731a284
4494 F20101115_AAAENP kuo_y_Page_118thm.jpg
2ba2e5569b2b96ba586c718e1d90e192
1278578097a69636859b790b17cdf4f02132504e
428403 F20101115_AAADDK kuo_y_Page_050.jp2
25a707e065c312e591303829f068df57
60800b96b60ab733241d8641731b5d374ac87ff1
62991 F20101115_AAAEAE kuo_y_Page_209.pro
e21b6a04a2458a938a311b3f36a49393
46d489dcb5e9c50c925e38a725efa4cc75acc537
F20101115_AAADQW kuo_y_Page_184.tif
1f5c2e4085ab9abf7db09619ecc3722c
9efedb9e83afd0a0b3d6e38ed1fd78327ba3a032
3837 F20101115_AAAENQ kuo_y_Page_102thm.jpg
e9bc7dd61870b969c349959f34587078
ead312344ceff3952771d0e8feb27f55bb65cd25
587177 F20101115_AAADDL kuo_y_Page_051.jp2
657fce5398a73ff19661ea8383f3000e
365e4212ba62f8370e8db24c8ea156028bb3d4c8
56032 F20101115_AAAEAF kuo_y_Page_210.pro
811815f750bef38e314110641eedd5d3
04f6cfe49fdf53fe7b1df5939f39d83315e56316
F20101115_AAADQX kuo_y_Page_185.tif
8e76abf0656a3c60ba73ce3d93f1ecc2
32f4fa18142c9fc6f77ebfde03bee41adcf94657
46779 F20101115_AAADDM kuo_y_Page_052.jp2
4196032e8c0fc30832af9baf58a8e335
a46065e1315681f06d12453b86d58b8e1dd536a0
42141 F20101115_AAAEAG kuo_y_Page_211.pro
f0e682674dd69de0ceeceb348f732356
7b9945c3043a1735c00f60549917e87d3836fe71
F20101115_AAADQY kuo_y_Page_186.tif
c9925e0355fe7b366399c65fd6b51930
892ccc3c1efe7eeacc806889bb22724440d11a3a
5199 F20101115_AAAENR kuo_y_Page_117thm.jpg
df596ee9c2a8ba3ba9bd580e2a7f6810
6985a1310cc549ab70a580c5dd851910e7093382
26178 F20101115_AAADDN kuo_y_Page_053.jp2
742047e0fe60795e40a358652c0e2f71
ea760d1cc4b8f1c5d64a9ded35b06e1c68b4a313
58845 F20101115_AAAEAH kuo_y_Page_212.pro
51be5f188cbf02cd775aac707c011a15
ed3276643287126ac2b9f5c63192f7f826c0a1b5
F20101115_AAADQZ kuo_y_Page_187.tif
1466d5d7c78353a020306ef685ea6c13
284d36861f2ceaf79378ae70737a29a3d9da74fe
F20101115_AAAENS kuo_y_Page_225thm.jpg
f0ed250b7caecf79c821eb22f29680a9
c2136434430a9d86b4cf2b478b34be6e0e257747
402899 F20101115_AAADDO kuo_y_Page_054.jp2
3e31635c389f6f655156a11dff833cb7
fed9bfc37ab92878600bb43d0da0a17c404161be
47523 F20101115_AAAEAI kuo_y_Page_213.pro
b35a311c635b699a5dd765f63c5500d8
888e37b3740a6bf231a99a49492662be75d535a6
1915 F20101115_AAAENT kuo_y_Page_008thm.jpg
c771291bd251eea803100a801da2261c
e246262f8a7e06ad6d2cc661614f5390583af0fc
112147 F20101115_AAADDP kuo_y_Page_055.jp2
506ac78ddd1a7664a7791483255bf8cf
bb43e5b445704a382e6700883a148a5491fd943b
54581 F20101115_AAAEAJ kuo_y_Page_214.pro
a893c1bf253e92258e35612131a59ab7
5112393b2f09e1d5756c137027fd80ea9d9b36ef
2311 F20101115_AAAENU kuo_y_Page_181thm.jpg
dab479fab3cf6139c147c18b67ddadef
a5abc23bec4875ae6d23833db28411620c530a4f
28323 F20101115_AAACZA kuo_y_Page_168.jpg
166df5a4c3653a4d7d724cf593cd6ca6
09606799abeffe01f861d0b0de4bf1643f8981c6
106386 F20101115_AAADDQ kuo_y_Page_056.jp2
80a1fdf18bd20e132232ac01a9b84554
92b4deea3ce5d31befabb4e12f9715969ac505f1
44310 F20101115_AAAEAK kuo_y_Page_215.pro
695e8a74a0aaf651be6ca2560831c623
ed35a04aefd977c699f3cc783eafcaf79630f3dc
5773 F20101115_AAAENV kuo_y_Page_047thm.jpg
903dbba4373806684983d5319aa9a6d8
c1831823a1db5c1c7d29982f8faf02ceb7a49cc1
27107 F20101115_AAACZB kuo_y_Page_169.jpg
0421e9c87a3bd30646463af96521b1c0
aacf687a9ce4688df8587bb3b69e956987e8b426
105103 F20101115_AAADDR kuo_y_Page_057.jp2
28e8ac9b86524ae5452d312786171261
2e427a166311f4ac2fe73112e953ee6e9d38aa15
66420 F20101115_AAAEAL kuo_y_Page_216.pro
3a3a2ee353b8bfa96d7b2705c5749287
a1097bed495537e9efc1f31f893fa2d85cc9da27
2439 F20101115_AAAENW kuo_y_Page_152thm.jpg
05d0ee6be5a80b78112f58393c1eab1c
a2f8ad0c03dab6d23bf30d09c4c0427004059d8e
38161 F20101115_AAACZC kuo_y_Page_170.jpg
8890f2200f3d1c66f8828e1a168400ab
e014b10300c5746ba1579bf65f91457988f94b52
97318 F20101115_AAADDS kuo_y_Page_058.jp2
1689b620c539a831a700f4d0f793b2d9
6d95f8bec8b231071a5276cca11cae0f53f8447e
57341 F20101115_AAAEAM kuo_y_Page_217.pro
481b674fc75ee9b189eb8c8aac8b1913
24f67facbdccb8fe460aca1d016ed7e36f40f418
26415 F20101115_AAAENX kuo_y_Page_115.QC.jpg
3d9f6601e6ed456e881d81ab7a226816
45b75a95ee0040487124eba7547c7e37f8878789
31033 F20101115_AAACZD kuo_y_Page_171.jpg
6875a6cb53813349e94a238252ef1536
a8faaa7219fd44e3dd0cbe2193639c933696144e
95340 F20101115_AAADDT kuo_y_Page_060.jp2
c69f851f7539de9853ed8e2c32ade026
c9d0aef039f920c927bc91611d02b3a7bf7553c4
50907 F20101115_AAAEAN kuo_y_Page_218.pro
11c7f9009152c7ce03e5c1a113f99566
8f7fb7e432f97e0a3f37d9a3a0549524d5915b32
25311 F20101115_AAAENY kuo_y_Page_009.QC.jpg
6720e0f4970475c4cb2df63a1dd95cc7
0089a992fcf67eb9d0d3f341d774e037f02f3153
31938 F20101115_AAACZE kuo_y_Page_172.jpg
7a6777faca5b6582f96cce985e24c7c9
15c61eeab1d0a64bd1b83982dae5eae1180a1510
101656 F20101115_AAADDU kuo_y_Page_061.jp2
e2b02ce60d87be0785855d72b6a7effe
0ee58d3db94385e9e8a504c8d5c418bc48e978cb
46475 F20101115_AAAEAO kuo_y_Page_219.pro
cf86260d8eb75d372754c303792060e6
7aeadb0f4562b53360a4f5a4fccc0ab539590cba
8423 F20101115_AAAENZ kuo_y_Page_235.QC.jpg
63cebda9f694d28c40f15b11d11ce4d8
ad1bfc4f1ba349b2a5b7027e6c99fba417da23b8
30305 F20101115_AAACZF kuo_y_Page_173.jpg
8a17f7f3c9c9e25a534f12d782c93f31
d0c951bdf1799eb09daf261f9a5036c462914df3
91185 F20101115_AAADDV kuo_y_Page_062.jp2
83ba56a67b79a69517615818add7889b
ad2f2bbe7940ee71b9aee7054612ca89df3dfea4
75226 F20101115_AAAEAP kuo_y_Page_220.pro
c13830fe24dba40651704112cfbb353b
c60213e3b55f1f75f9810b14032eab79a7f290f7
32870 F20101115_AAACZG kuo_y_Page_174.jpg
3fdaf3cbaab1a7e24ddfb81794cb507a
50e60fe16b1b89689e6d0cfa872d00b6cb88c8bf
83077 F20101115_AAADDW kuo_y_Page_063.jp2
cb7231f301f5b50aaf8ca2f4af7ebff7
71d1a9eaff7b4b197c9ccf6d83e196d41a57fc69
52316 F20101115_AAADWA kuo_y_Page_090.pro
912a3c054d4df0b7e6b838b68fcdfd0a
3d6ba2cb3f28386507dc52d1b00522ae2bb01af1
32166 F20101115_AAAEAQ kuo_y_Page_221.pro
db3872b88a5ca52d72e21dd4e0e996c2
4b85548f54bd634eda603265622c62277cb4d5e2
30414 F20101115_AAACZH kuo_y_Page_175.jpg
646a3451e16be9972efe44a9287db711
6cc3fc27f47e8853cdcd519ffda6eb838c181eec
115618 F20101115_AAADDX kuo_y_Page_064.jp2
f0f3320863dec88c9e8583f8277716e6
99173a055835cac8f2c073c40655f8f238336f8c
53921 F20101115_AAADWB kuo_y_Page_091.pro
68005eff02587caa15e1d7e73423eb81
b43a755cf84dfda9553f293cd2261e23a9895c50
56834 F20101115_AAAEAR kuo_y_Page_222.pro
85f9617c307e063bea0bb8804a4d0242
1aaa85dd78497f4fc292dbaaa333c2740d8a9a59
30356 F20101115_AAACZI kuo_y_Page_176.jpg
eac9960a343eee50ee0a299ba55d8568
4ce62ebbd79062a29dfe8665a1917b4976f59a30
110614 F20101115_AAADDY kuo_y_Page_065.jp2
0c5606bdc7a3afe167f93899716d829c
ec933de69c4a4e762dabd1c0fabc284da8c44004
53082 F20101115_AAADWC kuo_y_Page_092.pro
be7a7d539552146f2b9da8cdd70afea6
5ac446102bae2ff0d78815725a8a5d56764338f9
25455 F20101115_AAAEAS kuo_y_Page_223.pro
32b7434148b6a465a57ddba4bcda05eb
4547a9dda11e85c51bd4d6cd387804837d6fee5c
29040 F20101115_AAACZJ kuo_y_Page_177.jpg
3289a7c0a2774c6850037aa100fdbb62
eef4119aa8aed5df1fc5d56d450c0f4ab7889962
114600 F20101115_AAADDZ kuo_y_Page_066.jp2
59ddc01d7200d980b8222d9382039db7
f58f564263ab036ffe50e1c3ea8c56db6d660c6c
54243 F20101115_AAADWD kuo_y_Page_093.pro
ea182563fbb7189e22424f6b43cf3e9a
08b803cb7f33c9f7c2a2c91dbdc6e094470c33a8
60200 F20101115_AAAEAT kuo_y_Page_224.pro
7a4bcf9aee28d5dadf12e00c3a22784f
16f24fc8ed8501414530017de4fee611ed7e004e
25523 F20101115_AAACZK kuo_y_Page_178.jpg
847e73b3af1d40e7697d980cfacd9281
0b3b5d217e887ae93a6af5ec50fc2657ff3daae8
19350 F20101115_AAADWE kuo_y_Page_094.pro
e3a5961ecd0b8f62cda51ff706d6783a
115153305b62cc5a3fc35915520a34d644ba12b0
24250 F20101115_AAAEAU kuo_y_Page_225.pro
d700614a6036a7e7422e356801e6d76f
b235f77dec314d3bf0c15ce91f1eb40b360afbbe
26980 F20101115_AAACZL kuo_y_Page_179.jpg
355eb3edd40cd559b38e49bc1192676e
d26d76869b7aec8e6d0c16912e07eab0bd5ae4f9
46345 F20101115_AAADWF kuo_y_Page_095.pro
4f75498bcbfccfdb8f9c69666c5e2e23
e0ae4eea51ca1f347e429de565f0f77d30d7a090
63446 F20101115_AAAEAV kuo_y_Page_226.pro
fe31704f7700fe583726a2a11724930a
2e5a9780e824c5654b18df0eb567ee4f3e4a843e
39285 F20101115_AAACZM kuo_y_Page_180.jpg
5abc535e679e7beb2b47e660982e8284
101a9d7c1fea30cffee74f759f9f7ac0588bf42f
54518 F20101115_AAADWG kuo_y_Page_096.pro
49af9e7d9acb77b13c8973a9c5f11d56
28f514a96fe850584cd03769bf59836bfaf2a946
61607 F20101115_AAAEAW kuo_y_Page_227.pro
04f1ba81040eea6b4d10e2b3ed387da8
84dca9b8e44fa71e8d95d356987aac3bd3fcc09d
24258 F20101115_AAACZN kuo_y_Page_181.jpg
05faca4468013de015cdfc14a98f3f5c
58d2fa6f08ece91997fed65eb1f9f2d5e7bac4a6
86104 F20101115_AAADWH kuo_y_Page_097.pro
b55116267657d066a2c1ddfe14819769
fa7c1ea05f682a3e5506fa5431a7ce3e5f2b4091
30186 F20101115_AAAEAX kuo_y_Page_228.pro
25e2e9d91098fed2dedadc5fa8466a9c
7dc410311eb08d40d6fea7fd7e3935f771888bb4
6365 F20101115_AAAETA kuo_y_Page_036thm.jpg
59796aa78bea2f6f237777ef06854602
e89e1d53188cfa72dbdc2ad4b4f78e5b688055f8
32452 F20101115_AAACZO kuo_y_Page_182.jpg
bedbbf51e9d3143ed7c709b673fb818d
169cce5ac48bc311750080e9f7da541abc486ee6
76346 F20101115_AAADWI kuo_y_Page_098.pro
ebbdf57bf6ab1299f4736063ca0b13c0
76c0b3922427e9ae7f5d2f2c79fc0d65562270b9
65603 F20101115_AAAEAY kuo_y_Page_229.pro
86b34a1665cb8d2a965c5fd1687f257a
153fdb7ae92d310bba21aed3846324e5a3c31226
F20101115_AAAETB kuo_y_Page_037thm.jpg
57ce42fd2c9b095f80ff1779dfbb1278
55df5271dad18fd4622d1ca0e038460e3628c4c8
27409 F20101115_AAACZP kuo_y_Page_183.jpg
4d03e9cf9c750181ba38a3d78c764a03
d44b8584242c69f535f29d2904adbda71b4170d8
28610 F20101115_AAADWJ kuo_y_Page_099.pro
9ab6b604e2e1f37d2ae70b752ac2d80e
4698ec77ab5c8df8653001fc9033e8776ae66aa9
56705 F20101115_AAAEAZ kuo_y_Page_230.pro
d38ff4bf76470c0b538d5623072dbfc9
3cc525a8a56f53235f4f9870e9a79b2d0e00e025
24955 F20101115_AAAETC kuo_y_Page_038.QC.jpg
21c6abae250515b99e430616596c7913
6db5749194e7d7056b30a1142db776411bf5ca49
32475 F20101115_AAACZQ kuo_y_Page_184.jpg
60d8f4dfa8bc895a941fcbcb5d73246b
5dacb4f2e05c41671fbfeceedf1bc90042ae0131
14916 F20101115_AAADWK kuo_y_Page_101.pro
bbb173bc30d00aa787c262d136e8c3af
0bceee7d754c3cc1928e3ac24d43a1519c2f26f7
2524 F20101115_AAAETD kuo_y_Page_039thm.jpg
f0a0d7a01eec0c0760e651bb1eab16d2
f80396caa54cb10e9af577cbc645d32b56b311a3
27560 F20101115_AAACZR kuo_y_Page_185.jpg
eb26c4b9b58c7085348d88d31f5272c5
d4f55a8ae8093fad24411125a1b45645b4e9be34
13542 F20101115_AAADWL kuo_y_Page_102.pro
201ab03f852327eb0ca35a11f92b8440
4497827e0446067ac291c21245fed9a3aff16fc6
20101 F20101115_AAAETE kuo_y_Page_041.QC.jpg
ec4823d19924ed6192758b3ef9b06300
533dc492f336e5f27e29801ec9cd40f70c224be9
67865 F20101115_AAADJA kuo_y_Page_207.jp2
4a75e3ec278de1d46f25ca8473d34d8a
870ddd68383a6418c1f8acf86ca1c766451fd820
31855 F20101115_AAACZS kuo_y_Page_186.jpg
1279bff3754ccb8778d90f382d143776
958b72944e155db481872ba31db583691aacc40e
16071 F20101115_AAADWM kuo_y_Page_104.pro
d20a1482114702583935c4174f2ee322
209ef65c38413dfb31c1d9d0b6e7699e4bfdce14
18395 F20101115_AAAETF kuo_y_Page_042.QC.jpg
a2e5a64d439abc31a0813a12cb9368bb
8f50837d765870e41769fdbdbc4f467d3ef2f888
118210 F20101115_AAADJB kuo_y_Page_208.jp2
2e4147d4382814169b5ffcef43c23da3
63abb6dd03837cb9d44fc6b3281345d99940f983
27014 F20101115_AAACZT kuo_y_Page_187.jpg
8ae02a162d1b51a3fbd61f7562718de7
03095a8767e6bc8ef484f7cd6ea163b10ed1a7f7
18070 F20101115_AAADWN kuo_y_Page_105.pro
fffd234d38ca52d2a174e708e225dfba
44fb6e0bb738c350370747e16e3eb0e3ddc38494
4645 F20101115_AAAETG kuo_y_Page_042thm.jpg
ae584b1734e21ec88c9fc0c7bb16eb6c
a1f83a9e833ce0b3041f9641b8db4104d86e1f4e
95091 F20101115_AAADJC kuo_y_Page_209.jp2
e2b6b9f6220cd1a723bc4cd98cde2daa
c53f4380ba078a7f0d0c58e8481dc3f548e14ab0
33663 F20101115_AAACZU kuo_y_Page_188.jpg
5096783e85273da2a6efd22162329651
ac3f7373958f99e4aa4fb0c6b3a41851c4801659
15689 F20101115_AAADWO kuo_y_Page_106.pro
422a4bc13830621550167e2beac5eba3
0c1e933125778ff2890cc5e77e04ad3596b9adc0
20270 F20101115_AAAETH kuo_y_Page_043.QC.jpg
d79e586f16f5cad5dd4316ee5a2bab07
3e3f0d01a6f681bdedb7697451357d6c16c9621f
92905 F20101115_AAADJD kuo_y_Page_210.jp2
ecf9844c528f9fbb30a89b0d708101c6
9464a362baa06f2525ddf3d5e9c89fff12d98cda
23991 F20101115_AAACZV kuo_y_Page_189.jpg
a00955389c0e133c6a13b62a0a4e4c52
9e636fa546940e3b5195905bbf25bceee4f84dbc
52221 F20101115_AAADWP kuo_y_Page_107.pro
c008f9faf08ac506ff96c10af68327d3
b8171a1c2585b428ed03ca592b9c40bb832fb308
15478 F20101115_AAAETI kuo_y_Page_044.QC.jpg
1af3ec9d52d5124b011808a2987f0002
ff28bea0bdc8a4e9ab6bc89bcd65168b1aff48e2
64833 F20101115_AAADJE kuo_y_Page_211.jp2
a97c0a93661fa93f30bc67202e6ddc32
6e73e1e12b9e89de3c77d7cb1b087146eace2ec5
38580 F20101115_AAACZW kuo_y_Page_190.jpg
2943a10a08154f9e348595f1fc19b084
7947ba5f5fb934aab1e4776188cc4a63fa07a3c1
48633 F20101115_AAADWQ kuo_y_Page_108.pro
b80aaadb2877e115a1edab531b92a6f3
58160ab2f04e23ee08b747d2aaed220b9da3b9e1
4043 F20101115_AAAETJ kuo_y_Page_044thm.jpg
4beae733f4fcfd053c9937893072babc
d595ac7d65115392a6f4c77a46d884141a681019
94684 F20101115_AAADJF kuo_y_Page_212.jp2
a8a4bf4c0b2ee118d98c7ca21c8557d9
311e3c6ae1cce0b00b83dd205c9904aca3a66a7b
31856 F20101115_AAACZX kuo_y_Page_191.jpg
84d9cb231b9dee9d99489b1c27acefb7
0438ce89e8fc88eecaa560a45999f30283282a69
38753 F20101115_AAADWR kuo_y_Page_109.pro
7537a390de29afff36d286e1b4cf6736
d3ec5a2a2c0d47e3b4c1dfb63b014e5f6bd31a71
12858 F20101115_AAAETK kuo_y_Page_045.QC.jpg
23a862bd2de6250d2a8c1bf1fa671e70
56c4c17ebb817e77ea12da0110982994a1d1e247
72788 F20101115_AAADJG kuo_y_Page_213.jp2
40a24d53bcb80f059642a1cf89c35387
d979739b717fffc581b2b00532420387d48136fc
32099 F20101115_AAACZY kuo_y_Page_192.jpg
159c5521b26642b2bfee2efee0da97f8
9c1732affecfa9ca05cf76bae56d83b945cdd8c8
45451 F20101115_AAADWS kuo_y_Page_110.pro
392ed55bc8cc5438a803b471aacfc203
74bc7a1b615ed90ccfe28f666c166c1c3648cbf0
12148 F20101115_AAAETL kuo_y_Page_046.QC.jpg
e691cf9c84639aa0e63c5da5f6584526
d88c0c57309ead8ac03be533ad2172716eb59f0a
92023 F20101115_AAADJH kuo_y_Page_214.jp2
32712ec7faf67cc19a46021442ce0d48
2d0ca8e76ef44a7f6c19cfa282d970fb0e039e45
34613 F20101115_AAACZZ kuo_y_Page_194.jpg
426b71b9b4b736aa704f2a684d35cff9
6833e4015e6e4146114bbbf6d0077bc91f9f76f8
F20101115_AAAEGA kuo_y_Page_126.txt
feb5b8f0ec1884f9caea54343090aa81
81593998e0ddd7b32eaaf24f0fb665bcf19cfdeb
45441 F20101115_AAADWT kuo_y_Page_111.pro
3d22447c324a1f67114371f7b8af31b7
48ac9770de8ef86dfd28c772b10e4f4b4e5f1d9a
4157 F20101115_AAAETM kuo_y_Page_046thm.jpg
c7d34abf242367be2929e33abfcd6aa5
c5eaa1e82268a5e18cf2c0e0b66a9e159da83e96
68706 F20101115_AAADJI kuo_y_Page_215.jp2
ecf2e7461edde03cade1aad53023801e
da0566a3107b912e77cc315ff56e221ea21def03
1441 F20101115_AAAEGB kuo_y_Page_127.txt
22a4a9f1530dd3c13d764c9c6a816a2d
47b7ddb3aa024f3cbf1c8f1baa37339baf71051b
34965 F20101115_AAADWU kuo_y_Page_112.pro
4009490e9700f9062c2b0e471c406f03
81f8bb4f288039d9d114d45d66297a095256ca54
19458 F20101115_AAAETN kuo_y_Page_047.QC.jpg
1e5faf5c6d8e7aafae1dfa4a9826d112
7178561cb64e69799b26d7aba7e9d13cc242339a
98516 F20101115_AAADJJ kuo_y_Page_216.jp2
eae575e4339a6ce66a76ade42dd5844f
c46c9a88b50ebabb45f6a18b2d94f84687b7735f
F20101115_AAAEGC kuo_y_Page_128.txt
79e1c33f33258d8f3aa0f651acba6d2b
4e739ce3d278e2d1f840123390a2c3f9adf3e2bd
38465 F20101115_AAADWV kuo_y_Page_113.pro
eb5b49f64ee5efb84b2e5d87f819ba5c
79008e24b3df22f735cb86318cb6d5b523d2879d
3674 F20101115_AAAETO kuo_y_Page_048thm.jpg
3cc900e30d4e1216b77d34bfa979e1d4
5ac12fbebfe00d49e4fdb860e2149d6c181e186c
84668 F20101115_AAADJK kuo_y_Page_217.jp2
8152a37d440e1607a8bccce3a1b57ba0
751e8306260fe1dcda90eef94442e89564aaccb7
1041 F20101115_AAAEGD kuo_y_Page_129.txt
5bf06a5537b8f3bf43d8d6b64626a944
8cf1ea343aa42bc9925f74efe0591ca24fd31b3e
47309 F20101115_AAADWW kuo_y_Page_114.pro
10ec35bebdda05597c72f250e315deae
ea2eef9034515a2be812eb3f187be610469c5138
10136 F20101115_AAAETP kuo_y_Page_049.QC.jpg
6a410e4962206d229caa9c25493eb626
6536fd3eb023719492a036eb67971de446b681f9
92253 F20101115_AAADJL kuo_y_Page_218.jp2
029c8871478c879ca8fe3cf8faf4cbec
6b684bbdaebbad692a82479b0000f31cbc85e994
1454 F20101115_AAAEGE kuo_y_Page_130.txt
614f0c49632fa2d29489993b5faaca71
1bc21b56148066beec72fc2730363640b139244d
76948 F20101115_AAADWX kuo_y_Page_115.pro
cfc5a5fd05e3ef80cf8bd4c3c0325fb3
10e3fb4806427f331730a7c11487ada0366a0ccc
4357 F20101115_AAAETQ kuo_y_Page_050thm.jpg
c706d85d978be9cc1a3c2f2abbd0a238
4e0cbd37cd039beb002f96d0f9ffb846e958fd03
68598 F20101115_AAADJM kuo_y_Page_219.jp2
eda1ee22ba995086325fbec07a78906e
f760d98222429fb7b5532b154a847a25d66b3d89
797 F20101115_AAAEGF kuo_y_Page_131.txt
dd9d40be1ecc81c9484bf54ee03cf49c
40374e28bf9cccaff4ff0e932f99ebe76253740d
88185 F20101115_AAADWY kuo_y_Page_116.pro
7fc12215a69acdbd6a64cef469de4990
8aaa2a5581d52babd9b9a24c31afaa7d0baa1b9b
11611 F20101115_AAAETR kuo_y_Page_051.QC.jpg
0c8073a80c45dd6108caf637b5a7af5b
df238dae46d6c52833771de3f75a71c6bd9f5db0
116841 F20101115_AAADJN kuo_y_Page_220.jp2
5a9a1b6b233f94c51e6a58fea5fb9afb
8dfc211a93dc64897277149d1d782349fd22f141
818 F20101115_AAAEGG kuo_y_Page_132.txt
e9ffdbfaf4c3b99c147d4b2fcbad17c3
2bc0ef9c97b922a4e73fba9842b6390cc52ec69e
13175 F20101115_AAADWZ kuo_y_Page_120.pro
be635025ad9071e909eb34ec4d75a6e2
60a11137dc9b80a2ffca8cc1a70fd9f0ddaf760b
4083 F20101115_AAAETS kuo_y_Page_051thm.jpg
4f15356e0c35f02e93b53db3146ee765
db1e890ea74fa433b9bf59b42e85b00de8f724f8
829 F20101115_AAAEGH kuo_y_Page_133.txt
03122229b87a7315830aa3acd5a30bcc
7923380250d4f48a54d7a43a6ba5745d23dfd968
12640 F20101115_AAAETT kuo_y_Page_052.QC.jpg
3cf534eb28b544314844070caa97d54b
1fb354bfadce5499ddf89b1fc89be9e1f6e0ca2c
48793 F20101115_AAADJO kuo_y_Page_221.jp2
008fd2693f46b000ed23fa18a17df7f7
a5e954ae239fd84722c12dcacfa748bcad5b324d
1274 F20101115_AAAEGI kuo_y_Page_134.txt
2d9258f5cb10edb9c60b282d7050e294
5be590cd963c0cb25c12c7aabff25ff9307ed405
3647 F20101115_AAAETU kuo_y_Page_052thm.jpg
7b098712569f1b08843a7e6083c05975
511615d2ec22e7afe66e59b9f5042f3196df3e6b
91793 F20101115_AAADJP kuo_y_Page_222.jp2
ddd6878c3ba6517dde0cf680d92c5ba8
cd4ff5cc8482d92cea37f2759ec5af476ca536d3
839 F20101115_AAAEGJ kuo_y_Page_135.txt
55465648824eaec57734e7da4ea2c146
39268e05d394636df153be138b2b127965ac0f10
7038 F20101115_AAAETV kuo_y_Page_053.QC.jpg
e8da94492686101d949f1a77864cc46e
c6d11c11fabd8dced18f4dcd9c228f03163ab66e
39977 F20101115_AAADJQ kuo_y_Page_223.jp2
aa6e8d0d3f802538a671e2b78cea9118
2252cc4a68415a104ea5288f270cbad8f0be2e25
2522 F20101115_AAAETW kuo_y_Page_053thm.jpg
a1e56106fecf7ca06ea278ce377b6bfd
803e15d0948fb3b26df14a72aa168621bd08dac8
89398 F20101115_AAADJR kuo_y_Page_224.jp2
ee400dad23a85c09d482d87d3cc3ab6c
5f38c9a1e6169fdeeffa0b49aaf601dd7910f029
1174 F20101115_AAAEGK kuo_y_Page_136.txt
8ad3852869b456da4c53b4d2c6d15124
af46f4420c880a70b4cbbafa2dbc7c201952d5fe
39879 F20101115_AAADJS kuo_y_Page_225.jp2
c8a43f80413614d58ff099909e1e9a92
fde19b1b7b9639f793772f90eb9007ebfe769788
1446 F20101115_AAAEGL kuo_y_Page_137.txt
5a8fada06b5d5f4b97c0a9fa2046b1ef
91348533ef1d03e2a2af89a4983cb0a1c397311a
11954 F20101115_AAAETX kuo_y_Page_054.QC.jpg
bc9dd4db1c5048a71fbfb04bfab217a3
44045d722d75a2c55a05e0de86830f49aa02aec9
94707 F20101115_AAADJT kuo_y_Page_227.jp2
863cddae3f6e66845c04c0062b29de59
31a048554f3d407d2b20c489e63c6a0e8d9c88cf
1184 F20101115_AAAEGM kuo_y_Page_138.txt
f6e47204f376c85b229aa3d49d87cf96
b7b3c3572476e9191f0eaa004d1191470de69565
4167 F20101115_AAAETY kuo_y_Page_054thm.jpg
cb1a40f68650e210cefd431a87ba801a
3f9b479bdfe5d8f4368832655a2dd484232e5b4b
48687 F20101115_AAADJU kuo_y_Page_228.jp2
2128ee3a3332f50d384ded2e4f4f2ac0
e8b1d7149649c9121c6361b72ea669f540304f44
F20101115_AAAEGN kuo_y_Page_139.txt
dadd5d12c14f2eebf63eceb387ccfe1e
e9302ab259839bd02eed47c0a59098c9145a1ceb
25554 F20101115_AAAETZ kuo_y_Page_055.QC.jpg
26be13afc41eef54d8230f478f352e0e
b1b3a80ec6785755e9a8fc48f61ab136da7c7dc8
98314 F20101115_AAADJV kuo_y_Page_229.jp2
2660f4222302efcca6144149ba04bac6
b1a30e196133b43123eb06dced79cc0eae717247
806 F20101115_AAAEGO kuo_y_Page_140.txt
105abdfdd578c8324e37cd49b56c5266
5d2765a3af31dc0bc0ddefb17657dcc9378e7b64
85385 F20101115_AAADJW kuo_y_Page_230.jp2
97ef3fcb490f30a01d41ac2003200886
b8961c59c987a1a16097b97cd6193fa81ec62c40
1675 F20101115_AAAEGP kuo_y_Page_141.txt
be673f247ca2700b425a129abb1b8309
3d8eb385b0454a51983671a42b6aef15ec39d748
75034 F20101115_AAADJX kuo_y_Page_231.jp2
861a1f168cf35b95b04453160d98fd64
c4d4b15afce0909f5071d83a8a380c312533ee8d
1743 F20101115_AAAEGQ kuo_y_Page_142.txt
aa103b19b7ff2f78db30fe1403a1d0ef
fb24ed30bf35b45129986cee871aee011726309d
68754 F20101115_AAADJY kuo_y_Page_232.jp2
0cff29fc00bc8d6fc4dc66fbc8c0f5c0
1e085cc9ace9b1963b1d5f84c655d5226a283974
769 F20101115_AAAEGR kuo_y_Page_143.txt
7c57a55f1c8cc982a965a61c28fe01f0
dbdc34742ee0fb09415c2b7d19b59870367080b0
68083 F20101115_AAADJZ kuo_y_Page_233.jp2
dd332c449ddadab4ec52b87f9e4c8ce0
8429289ef72a50e9abe0434771d7e9c4aea66ca5
767 F20101115_AAAEGS kuo_y_Page_144.txt
820e78e7eea0506959f72f568b308045
f67782c936325ca22eabe034ebf375bf0483470a
1784 F20101115_AAAEGT kuo_y_Page_145.txt
99b79ac9d5c394b17933a4f1e7f76401
cf91b731d7dc5a3c98c8b69dbb0e1940302ec399
34614 F20101115_AAACSA kuo_y_Page_210.jpg
3e2b8f65c64e132ebb41346d50b7082a
f08c9283fc2958ad82a18c51c1a6e1351b188ca7
3342 F20101115_AAAEGU kuo_y_Page_146.txt
c32b8617222538f1e27ad85b7b61c3fe
3299f4e950ae4290753f69ffde8c140ea87bd165
7316 F20101115_AAACSB kuo_y_Page_152.QC.jpg
666553232086fb03e8fbfdc2a8a885ce
6b84679787268d2b73bae2bf7756ad19dff7a7ed
2977 F20101115_AAAEGV kuo_y_Page_147.txt
582492b2bf5152b85b59b9dc6f3fc5c2
1b5085ba3e4a22dfd638be23bb0a207e9ca129f8
29309 F20101115_AAACSC kuo_y_Page_217.jpg
0deb230a27c06c9931d1fe87c0a8ed6a
8c77e53e5e322cd33867830402dcac98688d6ffb
1220 F20101115_AAAEGW kuo_y_Page_148.txt
676c1c5783b2e4e3e4bfb0a43ca7d89e
8ff3bbbe3d5e5f40281df74e66eb2978a5b8016c
8534 F20101115_AAAEZA kuo_y_Page_173.QC.jpg
7acca6a5c71efe55b763fe01bb54855e
878e9179d7d65773ecc5b83828d795c753c2e767
19904 F20101115_AAACSD kuo_y_Page_130.pro
8c315dc650d2725f99be438b0d84dfd8
b93767898b4602c8a5d4ca173cc026415946f379
2236 F20101115_AAAEGX kuo_y_Page_149.txt
7c8b548fa3a7e232df1f90170c5e625a
ccb4883fce29f77fdaac9e82a3eb706335d6cddf
2727 F20101115_AAAEZB kuo_y_Page_173thm.jpg
d916caa7eac440341ed77b9f25b46c38
5e12164c8c91e647743ed0b79a1c3251bac7d0f6
28925 F20101115_AAACSE kuo_y_Page_239.QC.jpg
9edfc5feb6600eec2be4682c56467e59
45ef8b4c85db781f29a254df362fceac00feec82
2991 F20101115_AAAEGY kuo_y_Page_150.txt
6f112b97c40ba03335157d2e7a4d4883
3a44c64fe277a56ce7290acec7b778604bfa7d4f
8947 F20101115_AAAEZC kuo_y_Page_174.QC.jpg
e779b50f2b11c0cc84eeab5b5acbcae2
e09bede5c76237d9288237b0b1586855a843b4cf
42295 F20101115_AAACSF kuo_y_Page_045.jpg
ae25d0f4ba43c6e4a1849116f999cffc
48476bfe1b3b078f1edd02cbfbb66b6a469e72bd
2633 F20101115_AAAEGZ kuo_y_Page_151.txt
71b9b929553c8c90b8d4f0fff1c35c66
0f39c3a3f248adf374baf6d476ca6a0c4823ecfa
2791 F20101115_AAAEZD kuo_y_Page_174thm.jpg
cdbd7308b9c2b3c9fab71fb4867e644b
751daff704fbd2466884f24c486ea4fb2ce41813
76278 F20101115_AAACSG kuo_y_Page_069.jp2
49de27bbb472fb5bc9858506988cd18e
81e110237d7ecaf128a29b5dcd9533d60eefffc9
8725 F20101115_AAAEZE kuo_y_Page_175.QC.jpg
bead7ec8f1034eed935e56488b5ce4d3
b453009dec1a87f54c27999671e8134e4159a151
3194 F20101115_AAACSH kuo_y_Page_190.txt
2e2ff21ea41c85d9bf49383a6fe843d4
230e5bedadae389ddda6de36c096ee980d5659da
F20101115_AAADPA kuo_y_Page_129.tif
c7793ca4316b323db547014989aa2693
2eccbdc2c4db9f37f648a02482f3546271144afc
7676 F20101115_AAAEZF kuo_y_Page_178.QC.jpg
933be3f210164e839fca9e233d14d245
bc6e35f87bff4c3a2e421ab28519b2d2abe90465
4338 F20101115_AAACSI kuo_y_Page_046.pro
5cb007c8473649dc153e06bf9427ae75
38a724729791ee1795ea8c05bf3e80b16da15441
F20101115_AAADPB kuo_y_Page_130.tif
ea4dbaa0115f1bd2d095ea8a3da532c3
e4d1ba6bfae74cce6c92e9d217e0b309ab89bf78
2331 F20101115_AAAEZG kuo_y_Page_178thm.jpg
8f0c337529cd7e68ea4048cb0cfbb5ee
3a24179dd9d38395238c8aeca93a216a57d5dc33
F20101115_AAACSJ kuo_y_Page_112.tif
673a0d8df7412229fb9cc5e3b955f3d4
46f47ea64807f2b95022ba43668e3275b2df0292
F20101115_AAADPC kuo_y_Page_131.tif
ea8ca35965261dbdcb03fcc670274228
a15089342fbb7248298c00a16abcb61a6f98a383
2396 F20101115_AAAEZH kuo_y_Page_179thm.jpg
46f1d650e65ff2b0f34331750b04d20b
236d7ff8792d3e835c1d99256fe42fc25107d962
83712 F20101115_AAACSK kuo_y_Page_119.jp2
d7aae5db19a2e61cd47c9fa5c408f677
d088de2919f9fc23fd9b3248730953985dd05e35
F20101115_AAADPD kuo_y_Page_132.tif
fd3380e27e63aa2f24258518c228a6b4
c9364f006a1040aa587c97ecaed57656ae4a3346
6868 F20101115_AAAEZI kuo_y_Page_181.QC.jpg
628af724418369d8bf7c944038a7858f
aab89b08a1e535fba539643ad306943f811015e6
120259 F20101115_AAACSL kuo_y_Page_030.jp2
536c1af2229638787e27ec5797edf18e
4a6acae7689721cc43a9b8f1ecb063cb60b302f2
F20101115_AAADPE kuo_y_Page_133.tif
46d894a010346fc6e842b67402b6b0ff
a9cba3dc5d6cb5713af2f1562ecd819ce8399495
8603 F20101115_AAAEZJ kuo_y_Page_182.QC.jpg
32bd2681411f8ec59ce75b3ec497babe
13582f52cb42ab3bc79477e6f8ea8a63e176a85a
26736 F20101115_AAACSM kuo_y_Page_004.QC.jpg
81ae2d10075faee42a499dc00bed4590
f106e958f1a64747fe14686b95cfb5e9b549354f
F20101115_AAADPF kuo_y_Page_134.tif
ec31eab8c709a2deb3865bca79980f64
8e88023055bd338cfd27ce6aa167ceee9eb2f81a
2566 F20101115_AAAEZK kuo_y_Page_182thm.jpg
4362e91f562e0ab72e3ac39ef99965d8
4f37be6896a06bccb8e3a84555030f930014c94b
9840 F20101115_AAACSN kuo_y_Page_001.pro
dfa96e9eca979650c87d6a7305687f66
87b346dc74d8d03eeb222be2cdd5a4c9d959fc3a
F20101115_AAADPG kuo_y_Page_135.tif
e5d63e1ec13e0f031af9fd3a180d4713
8f028b9c0414ddd8f081150496200f43005f385f
7531 F20101115_AAAEZL kuo_y_Page_183.QC.jpg
2bbd534af5995945ed98c3c87d69ea3d
2743a4768ab57d3d8e8e99ee3214598cf7fcfbfc
35430 F20101115_AAACSO kuo_y_Page_124.pro
a24b717c5e8df4690f41461d3dafae01
f5d54a1af6c78f80e30e53a15e10c2d18490d681
F20101115_AAADPH kuo_y_Page_137.tif
948653c68e9018fc56b4030cbf0bb43d
e5c25c3fe09a0824d9f83f4ebb23f292049b312d
7377 F20101115_AAAEMA kuo_y_Page_011thm.jpg
3bad6950130e40264a585e71ac8b9133
f02ed989cbf1d91bd1d75e37521195cc2b54a859
9660 F20101115_AAAEZM kuo_y_Page_184.QC.jpg
b3527325b2bcf7f622962173514ee8f0
16eaf199a3964575de28440c756ad2895b7ab442
9037 F20101115_AAACSP kuo_y_Page_073.pro
23daa3ed21bc05208892ad758b1f3115
00bf481690ba023b267d19604cbd0971f06221c5
F20101115_AAADPI kuo_y_Page_138.tif
1406c01e11096157e30741060127ab75
ab5e06012718efe4f3ea9afcf775617c1657f43e
6394 F20101115_AAAEMB kuo_y_Page_114thm.jpg
d3b089db38b08a3fed1a4ecb8c1175d5
71eb2eaed5c315ab5d9188053fb28acf19492335
7735 F20101115_AAAEZN kuo_y_Page_185.QC.jpg
48bbcdd2de563fdd7b2214ec4a5c5151
1ae9d2a16554aa50cf0737672d9b412a48913b59
F20101115_AAACSQ kuo_y_Page_180.tif
88b38b0e9e2458adea39f12846bb56d6
2687df23dc0f7e874913f896ac9fd986a5c4761a
F20101115_AAADPJ kuo_y_Page_139.tif
54381c5671db8eefa2b21bdf1d767424
67215d88ce13ec285f3e95a80072e55198b71efa
7416 F20101115_AAAEMC kuo_y_Page_153.QC.jpg
2a4410d343b5b830572ff8ef2fc5d70a
159ebbcec9e682b606170307b2022c993444fa8d
9222 F20101115_AAAEZO kuo_y_Page_186.QC.jpg
17c3cb6705f5d28d5cd002c2f8614564
9a73842343d4348128832d41dbe6fa79cfba33dd
F20101115_AAACSR kuo_y_Page_175thm.jpg
783e5bb5da8efdd1ea8742d89012c4fd
93ca983b433e2bec2279c4953d9019d43b932916
F20101115_AAADPK kuo_y_Page_140.tif
c3820fc46469ce1a39ba20014a478fba
7a1d94799640c7d1c2c6fc3336d22742f3e02d9e
14098 F20101115_AAAEMD kuo_y_Page_132.QC.jpg
afa65860ef121d4c8dc41b58208b6126
4ae9362027ace2d3f9aa204c8fe2adc3a55241f7
2835 F20101115_AAAEZP kuo_y_Page_186thm.jpg
ba2f5d33993da734c5b97fe73ff925f1
9be93bb4b920ccd1e4f5fe7c8e3acfb69b07b087
3014 F20101115_AAACSS kuo_y_Page_180thm.jpg
00fd4dd3c9f22f23cf33ce47e7ada765
b47a6147c33133ed7f512da59168b7b60863d526
F20101115_AAADPL kuo_y_Page_141.tif
0946da594d05130fe4b78b883f87b64c
a05f2b080db42d67e7729a6b9321692549b194c2
6547 F20101115_AAAEME kuo_y_Page_081thm.jpg
2915b91475cafeffca37e066712551d4
8349c75e429a16925ea4a03ffddcb2d6da535ef2
331749 F20101115_AAADCA kuo_y_Page_008.jp2
7b0de4c292ece109f628b4cf41e27cb5
f577fb8837d6a244d8ab54b0118a041befb61c59
2491 F20101115_AAAEZQ kuo_y_Page_187thm.jpg
b217491632ce8f8fae107c935e8fcc40
c5dc1601df47552442756816d2b3bfef088babd6
274995 F20101115_AAACST UFE0021212_00001.mets
d82e781dc3a39aa6c84f77b69aaec430
d63ad1b232242a52d13f9ca030514c87c126349b
F20101115_AAADPM kuo_y_Page_142.tif
a68c28513b4df76bfc08133da4dfeff0
24a9d89bcc22ce67854dc8f3fafd7e73e0ad9f26
26488 F20101115_AAAEMF kuo_y_Page_077.QC.jpg
7caa5e4b03fdedc55149aa3d51e2d95a
773138d1d7b7b00ef900a4de1d93aa524e23b064
1051983 F20101115_AAADCB kuo_y_Page_010.jp2
d10dcb4684eacb23ae1372912c3a7a61
c77ee5770723fe46832f2c5fe6b6d7ec3648b8a9
2955 F20101115_AAAEZR kuo_y_Page_188thm.jpg
17122d71fe482cc43eac3cd034312aa2
87e9346e5bfa1e77fca54666ac4a3df96298e2cc
F20101115_AAADPN kuo_y_Page_143.tif
9a6ec4b8abcde09a75bcb029072f7518
5eb4db1c586ea813e6d9e8a84425b83316336a11
3033 F20101115_AAAEMG kuo_y_Page_002.QC.jpg
138e5f295e2ea7be3959c2a9db94a68f
eeb94078a815f6ba2e2245521ce18550c0a0af2d
1051962 F20101115_AAADCC kuo_y_Page_011.jp2
0118105e5700867fd9b38e0501911222
f18f83048edc72752c2cb6f00105370ab45390aa
3060 F20101115_AAAEZS kuo_y_Page_190thm.jpg
cc8694db60693e4306e190d36c9c3f4c
0a0a52b9b08c568e55b1a44c4538a83fd9c172a9
F20101115_AAADPO kuo_y_Page_144.tif
1d0e1bd4b9e2f08f140fa2fb483b2088
138cb210efeb97536c9beaa963d26600cff04764
10082 F20101115_AAAEMH kuo_y_Page_040.QC.jpg
67e114af25065390b9ecb6282e2bc4e5
c34e705fed7990c56aa816baeab9a5e7bccd2b42
1051980 F20101115_AAADCD kuo_y_Page_012.jp2
a7a37a439d2aa6984c1c40ac46e2e44e
77d663ebda4ead132a47aedaf53811796ed7f958
9440 F20101115_AAAEZT kuo_y_Page_191.QC.jpg
06ef15028081406fb0e0919776b14324
c3fd688ddd6cd0ae33de1d8261bad82f7e665808
26241 F20101115_AAACSW kuo_y_Page_001.jpg
f2eeafe33fba5dcaf9dbd63322052fa4
365d759c65468562b566440f17fd129b7ee370fb
F20101115_AAADPP kuo_y_Page_147.tif
2e0c4717356f3fffb35a20cb227c4505
d62f42683004700b5c3a4cba81e0c6b2a5b8a793
9176 F20101115_AAAEMI kuo_y_Page_162.QC.jpg
eb48fd65855f9d678bd90521dbab5170
e86d867317f077d1f5d557f82847802cf73bebde
1051963 F20101115_AAADCE kuo_y_Page_013.jp2
8757d58052230b09c967de1e1b8ae350
3aba8b9a7604b074c98f2ee724f8a05e6c064a3e
2858 F20101115_AAAEZU kuo_y_Page_193thm.jpg
11c0a58985d4bb148c2eba93347b5484
46c20f447bb394ad063038a1acca2dbcefa7f0fa
F20101115_AAACSX kuo_y_Page_002.jpg
e00489a9363f3d5f66e57920c6ce7a80
2315d41ab418d9515412627529c27b5a3235f474
F20101115_AAADPQ kuo_y_Page_148.tif
25876f12d8365ef8005dbdb106db82e5
981ad6c8a37e16dc43489c1d66a1e56a2548fef1
6201 F20101115_AAAEMJ kuo_y_Page_160.QC.jpg
b7cd92f66af586c3e4a5092f36ea6e10
1b8616ddca30a6526844e72c0eadd07dddd6bca7
1051970 F20101115_AAADCF kuo_y_Page_014.jp2
7aad465b224310a1f621340fbcfc5cad
cfde68c6e58d2bc39fcdb8d791c8a6af99a86c28
9934 F20101115_AAAEZV kuo_y_Page_194.QC.jpg
18f50d23f43cb5b0068e03ab4fee4757
69b13af31d7afbfad7b7332ed177cab29105965c
F20101115_AAADPR kuo_y_Page_149.tif
8cb18d9565a5bab084be784d28f857fc
5f7b6266e40d13b0c391a9b8ecd021b7d0eb52b5
2956 F20101115_AAAEMK kuo_y_Page_172thm.jpg
6cf32b610daf6db62782ea41dddc24a5
b67d6dabf038c8ad4e8c3c3d886daf9ba378221d
1051975 F20101115_AAADCG kuo_y_Page_015.jp2
7f1d39dad543d97e114f9d8b2355d587
50a13cd4fe6002fdf80b9fb9475ee7a18f4e6610







VEGETATIVE FILTER STRIPS TO REDUCE SURFACE RUNOFF PHOSPHORUS
TRANSPORT FROM MINING SAND TAILINGS IN THE UPPER PEACE RIVER BASIN
OF CENTRAL FLORIDA





















By

YI-MING KUO


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007
































O 2007 Yi-Ming Kuo


































To my parents, Mao-Ching Kuo and Li-Yin Huang, my wife, Anli Chen, and my son, Air Kuo.
None of this would have been possible without their love and support.









ACKNOWLEDGMENTS

I acknowledge several individuals for their assistance and contributions in the completion

of this dissertation. First, I gratefully thank my parents, Mao-Ching Kuo and Li-Yin Huang for

their constant support and encouragement. I want to acknowledge my wife Anli Chen (Celine)

for being my best friend and for her unsurpassable patience, encouragement, and understanding

during this phase of our lives. It would not have been possible, or as much fun, without her.

I want to thank my advisor, Dr. Rafael Mufioz-Carpena, for giving me the opportunity to

pursue my degree and for helping to direct the scope of this work. His advice and critiques will

remain with me always. For his guidance and encouragement in my academic career, I thank

Dr. Yuncong Li. I also thank Dr. Willie Harris for his patience in discussing my research with

me, and his hard work in advising my research. I thank Dr. Dean Rhue for his patience in

teaching soil chemistry and for his belief in me which helped develop confidence in my abilities

as a scientist. I thank Dr. Kenneth Campbell for his encouragement and patience since my

arrival at UF. For giving me a comprehensive approach to thinking about my research, I thank

Dr. Kirk Hatfield. I truly appreciate everyone's time and energy that was spent to improve my

research. I have learned a great deal from them and I will never forget the valuable lessons they

taught me. Thanks are also given to Dr. Axel Ritter and Bin Gao for their precious comments

on my research. I especially thank Dr. Huaguo Wang for sharing with me his seemingly

endless knowledge and experience while pursuing my doctoral degree.

I thank the Bureau of Mine Reclamation, and the FDEP for supporting this work. I also

thank the following individuals and institutions for their kindness, support, and assistance in

installing and maintaining experimental sites: Paul Lane, Larry Miller, Jimmy Rummel, Daniel

Preston, Zuzanna Zaj ac, Stuart Muller, David Kaplan, Jonathan Schroder, Oscar Perez Ovilla

(UF-ABE); Tina Dispenza and Harry Trafford (UF-TREC, Homestead, FL); Kevin Claridge,










Michelle Harmeling, Marisa Rhian, Charles Cook, David Arnold, and Michael Elswick (Bureau

of Mine Reclamation, FDEP). Thanks are also given to Ginqin Yu, Laura Rosado, and Newton

Campbell (UF-TREC), Bill Reve, Lisa Stanley, and Aja Stoppe (UF-SWS) for laboratory

technical assistance.

I also thank Dr. Jim Jawitz, Dr. Jim Jones, Dr. Kenneth Campbell, Dr. Rafael

Mufioz-Carpena, Dr. Dean Rhue, and Dr. Overman for offering the wonderful courses that they

taught. Their responsible attitudes toward students and wonderfully prepared lectures will

always stay in my mind.

I give thanks to George Triebel and Stephen Flocks for improving my writing skills and for

their prompt revisions of my manuscripts. For assisting me in writing MALTAB codes, I thank

Fei Yan.

The friendliness of all of the faculty, staff, and students in this department made

completing this research as enj oyable as possible. They all gave me the motivation and

inspiration to make all of my achievements possible. My experience at UF has been enriched

by all these people and many more who I have not listed. I have learned a great deal, and I am

grateful for having had this time here.












TABLE OF CONTENTS


Page

ACKNOWLEDGMENTS .............. ...............4.....


LIST OF TABLES ................. ...............9..._. .....


LIST OF FIGURES .............. ...............14....


AB S TRAC T ............._. .......... ..............._ 18...


CHAPTER


1 INTRODUCTION ................. ...............20.......... ......


2 RUNOFF WATER QUALITY POLLUTION FROM PHOSPHATE MINING AREAS
AND CONTROL BY VEGETATIVE FILTER STRIPS .............. ...............26....


Introducti on ................. ...............26.................
Methods and Materials .............. ...............27....
Field Experiments ................. .... ......... ...............27.......
Characterization of Experimental Sites ................ .......... .... ............... 30....
Characterization of Soil and Runoff Water Chemistry ................. ........................3 1
Re sults and Di scussi ons ................... ... .......... ...............31.....
Overland flow modification by the grass filters ................. ...............33........... ..
Trapping Efficiencies of Sediment and Phosphorus Fraction ................ ................ ...33
Sediment Delivery Capacity in Runoff ................. ...............34........... ...
Estimations of Curve Number and Runoff Volume ................ .......... ................3 5
Estimated Yearly Pollutant Yields .............. ...............37....
Conclusions............... ..............3


3 EVIDENCE FOR APATITE CONTROL OF PHOSPHORUS RELEASE TO RUNOFF
FROM SOILS OF PHOSPHATE MINE RECLAMATION AREAS ................. ...............55


Introducti on .........._....__. ......_.. ...............55......
Materials and Methods .............. ...............56....
Field Experiments .........._...._ ......... ...............56......
Soil Chemical Properties .............. ...............57....
Mehlich-1 extraction .............. ............ .............5

Degree of phosphorus saturation (DPS) .....__ ................ .......................58
Phosphorus sorption isotherms (PSI) .............. ...............58....
Phosphorus fractionation................. .. ...........5
Total phosphorus in each particle fraction ................. .........____ ...... 59_.__...
Phosphate Solubility Equilibria............... ...............6
Approach for Modeling Phosphorus Release ........._.._. ......_. ......_.. .........6
Results and Discussion .............. ...............64....
Soil Properties .............. ...............64....












Phosphate Solubility Equilibria............... ...............6
Results of Modeling Phosphorus Release ................. ...............66........... ...
Conclusions............... ..............6

4 SIMPLIFIED MODELING OF PHOSPHORUS REMOVAL BY VEGETATIVE
FILTER STRIPS TO CONTROL RUNOFF POLLUTION FROM PHOSPHATE
MINING AREAS .............. ...............76....


Introducti on ................. ...............76.................
M ethods and M materials .............. ...............79....
Field Experiments ................. .... ......... ...............79.......
Characterization of Experimental Sites ................. ...............80................
Simplified Phosphorus Modeling ................. ......... ...............81......
Particulate phosphorus transport ................. ...............81......._. ....
Dissolved phosphorus transport ................. ...............82........... ....
Inverse Calibration Methodology ................. ...............85........... ....
Calibration procedure ................. ..... ....... .......... .............8
Selected input parameters and model outputs ................ ................ ......... .85
Goodness-of-Fit Indicators ............... ... .. ......... ........... ..... ......... ........8
Consideration of Measured Data Uncertainty in the Model Evaluation ................... ......87
Results and Discussion .............. ...............90....
Conclusions............... ..............9


5 CONCLUSIONS .............. ...............107....

APPENDIX


A SOIL PHYSICAL PROPERTIES AND SIMULATION PARAMETERS .......................110


Soil Texture (or called particle size distribution) ....._____ .......___ ................110
Saturated Hydraulic Conductivity (Ks) ......__....._.__._ ......._._. ...........10
Soil Moisture Retention Curve (6(h)) ......__....._.__._ ......._._. ............1
Soil Bulk Density (db) and Porosity (rl)................. ...............111
Calibration of a Capacitance Probe (ECH20 probe) ................. ....__ ...............1 12
Topographical Survey ................. ...............112__ .......
Grass Spacing (Ss) ................. ...............113................
Grass Height (H) ................. ...............113................
Re sults ................ ...............113................


B GOODNES S-OF-FIT INDICATORS ................ ...............124...............


Nash and Sutcliffe Coefficient of Efficiency ( Ce, ) ................. ...............124........... .

Modified Form of Cyf(Cey ,,,)................. ...............124.......... ..

Root Mean Square Error (RM~SE) ............ ........... ...............125..

C VERIFICATION OF THE INVERSE MODELING ALGORITHM .............. ...............126












D SIMULATION RESULTS OF CHAPTER 3 .....__.....___ ..........__ ..........13


E SUMMARY OF FIELD DATA ............ ..... ._ ...............145..


LIST OF REFERENCES ............ ..... ._ ...............236...


BIOGRAPHICAL SKETCH .............. ...............243....










LIST OF TABLES


Table page

2-1. Characteristics of the experimental sites A and B. ................ ............ ...................40

2-2. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow
rate, and initial water moisture in site A. .............. ...............41....

2-3. The loads of sediment, TP, and DP of selected events in site A. ................ .....................42

2-4. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow
rate, and initial water moisture in site B. ............. ...............43.....

2-5. The loads of sediment, TP, and DP of selected events in site B. ............. .....................4

2-6. Trapping efficiencies of runoff volume, peak flow rate, sediment, TP, and DP in the
sites A and B ................ ...............45................

3-1. Results of organic carbon (OC), soil texture, hydraulic conductivity (Ks), and pH. .............68

3-2. Main compounds in soil samples of both sites examined by X-ray fluorescence (XRF). .....68

3-3. Average concentration of each soil phosphorus fraction among all samples. ................... .....68

3-4. The results of Mehlich-1 P extraction, degree of P saturation (DPS), ratio of P/Ca............_..68

3-5. P concentrations in different particle size classes. ............. ...............69.....

3-6. Weight of CFA per gram soil sample. .............. ...............69....

3-7. Surface area of CFA per gram soil. ............. ...............69.....

3-8. Concentrations of ions, pH, EC, and ionic strength of runoff samples collected in June
2006............... ...............70..

3-9. Input parameters and simulations results of the CFA dissolution model compared to
the DP of batch experiments. .............. ...............71....

4-1. Simulation parameters for the VFSMOD-W model ................. .....__ ........._ ...9

4-2. Selected quantities of hydrology, sediment, and phosphorus transport. ........._.... .............95

4-3. The range of selected parameters used in calibration and measured data of each
parameter at sites A and B. ................ ...............96...............

4-4. Measured data uncertainty of DP, TP, sediment, and flow for each category. ......................96











4-5. Calibrated parameters of hydrology and sediment and measured and predicted selected
quantities. .............. ...............97....

4-6. Results of hydrology and sediment simulations in selected goodness-of-fit indicators
with and without including measurement uncertainty (PER=+20% for hydrology,
PER=+29% for sediment). .............. ...............98....

4-7. The calibrated range of parameters compared with the measured value of parameters in
different plots. .............. ...............99....

4-8. The selected goodness-of-fit indicators for each quantity with/without including PER......100

A-1. Soil properties at site A. ................. ...............115......... .

A-2. Soil properties at site B ...........__..... .___ ...............115..

A-3. Suction pressure head (cm) versus water content (%) for soil cores extracted from site
A ............... ...............116...

A-4. Suction pressure head (cm) versus water content (%) for soil cores extracted from site
B .............. ...............116...

A-5. Cumulative percentages for specific particle size ranges of soil samples collected at
sites A and B ........._.__...... ._ __ ...............117...

A-6. Average slope at each point in VFS and source areas at site A (X=0 m is in the edge of
rain gutter) ........... __..... ._ ...............117....

A-7. Average slope at each point in VFS and source areas at site B (X=0 m is in the edge of
rain gutter) ........... __..... ._ ...............118....

A-8. Grass spacing parameters at site A (06/18/06) ................. ...............119........... .

A-9. Grass spacing parameters at site B (06/18/06) ........... .....__ ...............119

A-10. The averaged grass height at site A and site B measured at different period in year
2006............... ...............119.

C-1. The measured value, calibration range, and optimized value of each parameter used in
the verification of inverse modeling algorithm ................. ...............128..............

C-2. Results of hydrology and sediment simulations in selected goodness-of-fit indicators
with and without including measured data uncertainty (PER=0.20 for hydrology,
PER=0.29 for sediment). ............. ...............128....

C-3. Measured and predicted outputs of perfect data set and ARP. ...........__.. ........_........128

E-1. Field data of event AO20306S2 (site: A, plot: S2, date: 02/03/06). .............. ....................146










E-2. Field data of event AO20306V2 (site: A, plot: V2, date: 02/03/06). .............. ...............149

E-3. Field data of event AO20306S3 (site: A, plot: S3, date: 02/03/06). .............. ...............150

E-4. Field data of event AO20306V3 (site: A, plot: V3, date: 02/03/06). .............. ................1 52

E-5. Field data of event AO20306V1 (site: A, plot: Vl, date: 02/03/06) ................. ................1 53

E-6. Field data of event AO20306V4 (site: A, plot: V4, date: 02/03/06) ................. ................1 54

E-7. Field data of event AO61306S2 (site: A, plot: S2, date: 06/13/06)............... ...... .........__ 155

E-8. Field data of event AO61306V/2 (site: A, plot: V2, date: 06/13/06) ................. ................1 57

E-9. Field data of event AO61306S3 (site: A, plot: S3, date: 06/13/06). .................. ............... 159

E-10. Field data of event AO61306V/3 (site: A, plot: V3, date: 06/13/06). .............. ...............161

E-11. Field data of event AO61306V1 (site: A, plot: Vl, date: 06/13/06). ........._..... ..............162

E-12. Field data of event AO61306V/4 (site: A, plot: V4, date: 06/13/06). .............. ... .............164

E-13. Field data of event AO70706S2 (site: A, plot: S2, date: 07/07/06). ................. ...............166

E-14. Field data of event AO70706V2 (site: A, plot: V2, date: 07/07/06)..........._.... .........._....167

E-15. Field data of event AO70706S3 (site: A, plot: S3, date: 07/07/06). ................. ...............168

E-16. Field data of event AO70706V3 (site: A, plot: V3, date: 07/07/06).............__ ...............169

E-17. Field data of event AO91006S2 (site: A, plot: S2, date: 09/10/06) ................. ................170

E-18. Field data of event AO91006V2 (site: A, plot: V2, date: 09/10/06). .............. ..............171

E-19. Field data of event AO91006S3 (site: A, plot: S3, date: 09/10/06) ................. ................172

E-20. Field data of event AO91006V3 (site: A, plot: V3, date: 09/10/06).............___ ...............173

E-21. Field data of event AO9106V4 (site: A, plot: V4, date: 09/10/06) ................. ................1 74

E-22. Field data of event BO61306S2 (site: B, plot: S2, date: 06/13/06). ................. ...............175

E-23. Field data of event BO61306V2 (site: B, plot: V2, date: 06/13/06). .............. .... ........._..176

E-24. Field data of event BO61306S3 (site: B, plot: S3, date: 06/13/06). ................. ...............177

E-25. Field data of event BO61306V3 (site: B, plot: V3, date: 06/13/06). ................ ...............178

E-26. Field data of event BO61306V 1 (site: B, plot: Vl, date: 06/13/06). ................ ...............179










E-27. Field data of event BO71406S2 (site: B, plot: S2, date: 07/14/06). ................. ...............180

E-28. Field data of event BO71406V2 (site: B, plot: V2, date: 07/14/06). ................ ...............182

E-29. Field data of event BO71406S3 (site: B, plot: S3, date: 07/14/06). ................. ...............184

E-30. Field data of event BO71406V3 (site: B, plot: V3, date: 07/14/06). ................ ...............186

E-31. Field data of event BO71406V 1 (site: B, plot: Vl, date: 07/14/06). ................ ............... 188

E-32. Field data of event BO72006S2 (site: B, plot: S2, date: 07/20/06). ................. ...............190

E-33. Field data of event BO72006V2 (site: B, plot: V2, date: 07/20/06). ................ ...............191

E-34. Field data of event BO72006S3 (site: B, plot: S3, date: 07/20/06). ................. ...............192

E-35. Field data of event BO72006V3 (site: B, plot: V3, date: 07/20/06). ................ ...............193

E-36. Field data of event BO72006V 1 (site: B, plot: Vl, date: 07/20/06). ................ ...............194

E-37. Field data of event BO72806S2 (site: B, plot: S2, date: 07/20/06). ................. ...............195

E-3 8. Field data of event BO72806V2 (site: B, plot: V2, date: 07/28/06). ............... .. ........._....197

E-39. Field data of event BO72806S3 (site: B, plot: S3, date: 07/28/06). ................. ...............199

E-40. Field data of event BO72806V3 (site: B, plot: V3, date: 07/28/06). ................ ...............201

E-41. Field data of event BO72806V 1 (site: B, plot: Vl, date: 07/28/06). ................ ...............202

E-42. Field data of event BO90606S2 (site: B, plot: S2, date: 09/06/06). ................. ...............203

E-43. Field data of event BO90606V2 (site: B, plot: V2, date: 09/06/06). ................ ...............204

E-44. Field data of event BO90606S3 (site: B, plot: S3, date: 09/06/06). ................. ...............205

E-45. Field data of event BO90606V3 (site: B, plot: V3, date: 09/06/06). ................ ...............206

E-46. Field data of event BO90606V 1 (site: B, plot: Vl, date: 09/06/06). ................ ...............207

E-47. Field data of event BO90906S2 (site: B, plot: S2, date: 09/09/06). ................. ...............208

E-48. Field data of event BO90906V2 (site: B, plot: V2, date: 09/09/06). ................ ...............210

E-49. Field data of event BO90906S3 (site: B, plot: S3, date: 09/09/06). ................. ...............212

E-50. Field data of event BO90906V3 (site: B, plot: V3, date: 09/09/06). ................ ...............214

E-51. Field data of event BO90906V 1 (site: B, plot: Vl, date: 09/09/06). ................ ...............216










E-52. Field data of event BO90906V4 (site: B, plot: V4, date: 09/09/06). ................ ...............218

E-53. Field data of event BO91006S2 (site: B, plot: S2, date: 09/10/06). ................. ...............220

E-54. Field data of event BO91006V2 (site: B, plot: V2, date: 09/10/06). ................ ...............222

E-55. Field data of event BO91006S3 (site: B, plot: S3, date: 09/10/06). ................. ...............224

E-56. Field data of event BO91006V3 (site: B, plot: V3, date: 09/10/06). ................ ...............226

E-57. Field data of event BO91006V 1 (site: B, plot: Vl, date: 09/10/06). ................ ...............227

E-58. Field data of event BO91006V4 (site: B, plot: V4, date: 09/10/06). ................ ...............229

E-59. Field data of event B101206S2 (site: B, plot: S2, date: 10/12/06). ................. ...............230

E-60. Field data of event B101206V2 (site: B, plot: V2, date: 10/12/06). ................ ...............231

E-61. Field data of event B101206S3 (site: B, plot: S3, date: 10/12/06). ............. ..................232

E-62. Field data of event B101206V3 (site: B, plot: V3, date: 10/12/06). ................ ...............233

E-63. Field data of event B101206V 1 (site: B, plot: Vl, date: 10/12/06). ................ ...............234

E-64. Field data of event B101206V4 (site: B, plot: V4, date: 10/12/06). ................ ...............235










LIST OF FIGURES


Figure page

2-1. Locations of the experimental sites, phosphate mining areas, and Peace River basin in
U.S.A............... ...............46.

2-2. Schematic diagram of the experimental sites (sites A and B) in Bartow, FL. ................... .....47

2-3. Depth of capacitance probe submersion into water column versus capacitance probe
output voltage (mV). .............. ...............48....

2-4. Relationship between output voltage of capacitance probe and flow rate. ............................48

2-5. Hydrographs, sedimentographs, and hyetograph of Site B on event of July 28, 2006...........49

2-6. Trapping efficiencies of runoff volume (Q), peak flow rate (Qp), sediment, TP, and DP
versus source/VF S area ratio. ............. ...............50.....

2-7. The TE ratio of selected variables versus length of VFS. ................... ...............5

2-8. Relationship between mean DP concentration ooutput from the VFS and source areas. ........51

2-9. Relationships between sediment yield, Q, and Q, in the VFS and source areas. ...................51

2-10. Relationships between PP and sediment in water samples collected from VFS and
source areas ................. ...............52.................

2-11. Curve numbers of different antecedent soil moisture conditions and relationships
between runoff and rainfall in site A. ............. ...............52.....

2-12. Curve numbers of different antecedent soil moisture conditions and relationships
between runoff and rainfall in site B............... ...............53...

2-13. Yearly outflows (runoffvolume, sediment, DP, TP) collected from VFS and source
areas in mining areas ................. ...............54................

3-1. Scheme of phosphorus fractionation of phosphate mining soils ................ .....................72

3-2. Apatite was found in soil samples of sites A and B observed by X-Ray diffraction. ............72

3-3. P sorption isotherm of soil samples in site A (2 hours shaken) ................. ......................73

3-4. P sorption isotherm of soil samples in site B (2 hours shaken). .............. ....................7

3-5. Phosphate-mineral solubility diagram relating the log H2PO42- to pH in soil solutions of
runoff water samples collected from phosphate mining areas............_._. ........._._. ....74










3-6. The measured value versus predicted value using k, =6.91x10-s moles m-2 S-1 and
n =-0.67 in Eq. (3.9). ............. ...............74.....

4-1. Graphical representation to calculate modified deviation between paired observed and
predicted data based on the probable measured error range. ............. .....................0

4-2. Hydrographs of event BO71406V/3 ........... ..... .___ ...............101.

4-3. Sedimentographs of event BO71406V/3 ................ ...............102.............

4-4. Comparison of measured filter strip peak flow measured on the experimental site vs.
goodness of fit VF SMOD runoff predictions. ................ ...............102........... ..

4-5. Cf of sediment versus C,f of Q for all simulated events. ............... ....................0

4-6. Scatterplot of measured and predicted TRF including measurement uncertainty for each
measured value plotted as an error bar (PER=+20%, number in brackets is Cf
considering the PER). ............. ...............103....

4-7. Scatterplot of measured and predicted CSF including measurement uncertainty for each
measured value plotted as an error bar (PER=+29%, number in brackets is Cf
considering the PER). ............. ...............104....

4-8. Scatterplot of measured and predicted MSF including measurement uncertainty for each
measured value plotted as an error bar (PER=+29%, number in brackets is Cf
considering the PER). ............. ...............104....

4-9. Scatterplot of measured and predicted DP diluted from rainfall including measurement
uncertainty for each measured value plotted as an error bar (PER=+50%, number in
brackets is Cyfconsidering the PER). ............. ...............105....

4-10. Scatterplot of measured and predicted DP without dilution from rainfall including
measurement uncertainty for each measured value plotted as an error bar
(PER=+50%, number in brackets is Cyfconsidering the PER). .................. ...............105

4-11. Scatterplot of measured and predicted PP including measurement uncertainty for each
measured value plotted as an error bar (PER=+30O%, number in brackets is Cf
considering the PER). ............. ...............106....

4-12. Scatterplot of measured and predicted TP including measurement uncertainty for each
measured value plotted as an error bar (PER=+30O%, number in brackets is Cf
considering the PER). ............. ...............106....

A-2. Suction curves of soil cores extracted from VFS areas at site B ................ ................ ...120

A-3. Suction curves of lower-layer soil cores extracted from source areas at site B ................121

A-4. Suction curves of upper-layer soil cores extracted from source areas at site B ..................121










A-5. Cumulative particle size distributions of soil samples collected from site A. ................... ..122

A-6. Cumulative particle size distributions of soil samples collected from site B. .....................122

C-1. The target and predicted hydrographs of sample proj ect (perfect data set). ................... ..... 129

C-3. The target and predicted hydrographs of the ARP condition (adding random noise to
the perfect data set). ............. ...............130....

C-4. The target and predicted sedimentographs of the ARP condition (adding random noise
to the perfect data set). .........._ _......_ ...............130..

D-1. Hydrograph of plot 2 (length=6.8 m) in VFS area at site B on date 07/14/06 .................. .. 132

D-2. Sedimentograph of plot 2 (length=6.8 m) in VFS area at site B on date 07/14/06 .............132

D-3. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/14/06 ................. 133

D-4. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/14/06 ..........133

D-5. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 07/20/06 ................... 134

D-6. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 07/20/06 ................... 134

D-7. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/20/06 ................. 135

D-8. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/20/06 ..........135

D-9. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/09/06 ................... 136

D-10. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/09/06 ..........136

D-11i. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/09/06 ...............137

D-12. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/09/06 ........137

D-13. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/10/06 .................13 8

D-14. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/10/06 ..........13 8

D-15. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/10/06 ...............139

D-16. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/10/06 ........139

D-17. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 10/12/06 ...............140

D-18. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 10/12/06 ........140

D-19. Hydrograph of plot 2 (length= 4. 1 m) in VF S area at site A on date 07/07/06 ................. 141










D-20. Sedimentograph of plot 2 (length= 4. 1 m) in VFS area at site A on date 07/07/06 ..........141

D-21. Hydrograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/07/06 ................. 142

D-22. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/07/06 ..........142

D-23. Hydrograph of plot 2 (length= 4. 1 m) in VFS area at site A on date 07/28/06 ................. 143

D-24. Sedimentograph of plot 2 (length= 4. 1 m) in VFS area at site A on date 07/28/06 ..........143

D-25. Hydrograph of plot 3 (length= 5.8 m) in VF S area at site A on date 07/28/06 ................. 144

D-26. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/28/06 ..........144









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

VEGETATIVE FILTER STRIPS TO REDUCE SURFACE RUNOFF PHOSPHORUS
TRANSPORT FROM MINING SAND TAILINGS IN THE UPPER PEACE RIVER BASIN
OF CENTRAL FLORIDA

By

Yi-Ming Kuo

December 2007

Chair: Rafael Mufioz-Carpena
Cochair: Yuncong Li
Maj or: Agricultural and Biological Engineering

Runoff non-point source pollution from phosphate mining areas is a potential risk to

ecosystems in many parts of the world. Mining sand tailings that still contain apatite

(phosphate rock) shape the landscapes in reclaimed lands at the upper Peace River basin of

Central Florida. The obj ectives of this research were to assess the surface runoff pollution

loads from the mining sand tailings in Central Florida and to evaluate and model the efficiency

of vegetative filter strips to control phosphorus (P) from these areas. Field experimental data

were collected from two sites with different slopes, source-to-filter ratios, and soil properties

representative of the surrounding area. The numerical model VFSMOD-W was used to predict

overland flow and sediment trapping within the filter and was linked to a simplified P transport

algorithm based on experimental data to predict TP, PP, and DP fractions in the filter outflow.

An advanced global inverse optimization technique is used for the model calibration process, and

consideration to the uncertainty of the measured data is given.

Phosphorus in soils of the area was in the form of apatite, as indicated by x-ray diffraction

(XRD). TP concentrations were about 17.0-25.7 g/kg and Ca- and Mg-bound P accounted for

about 95% of TP. DP concentrations were about 0.4 3.0 mg/L in surface runoff collected









from the experimental sites. Release of P from the soils was primarily from apatite dissolution

rather than desorption from metal oxides that is more typical of soils of the region. Runoff

volume, sediment, TP, and DP were reduced by at least 62%, 97%, 96%, and 66%, respectively,

within the vegetative filters. The VFSMOD-W can predict hydrology transport well (Nash and

Sutcliffe efficiency (Cyf), 0.60 < Cyf< 0.99) for all but small events (peak runoff flow rate in the

VFS < 0.4 L/s) due likely to large measurement uncertainty in the small events. The good

predictions in runoff and sediment outflow from the filter result in good predictions of PP

transport since apatite is a main component of sediment. A good prediction of DP filter outflow

was found when considering rainfall impact on DP dissolved from apatite in surface soil. The

inclusion of the uncertainty of measured data in the goodness-of-fit indicators provides us more

realistic information to evaluate model performance and data sets. VFSMOD-W successfully

predicts runoff, sediment, and P transport from phosphate mining sand tailings, which provides

management agencies with a design tool for controlling runoff and P transport.









CHAPTER 1
INTTRODUCTION

Florida is rich in phosphate rock formed millions of years ago in the late Miocene era

under ocean waters. Phosphate rock (PR) is usually found about 7.6-12.2 m beneath the ground

in a mixture of phosphate pebbles, sand and clay known as phosphate matrix. Phosphate is a

key ingredient in fertilizer and cannot be synthesized; so natural phosphate mining is the only

supply and for the last 120 years has been one of the main economic activities of Central Florida

region. The extraction and beneficiation of phosphate rock to produce fertilizer has the

potential to adversely impact the environment. These impacts can be the landscape, water

quality, excessive water consumption, and air pollution (UNEP, 2001). The landscape may be

disturbed through removing topsoil and vegetation, excavating ore, depositing overburden, and

inducing surface subsidence due to underground mining. The water resources may be adversely

affected by the release of processing water, the erosion of sediments, and leaching of toxic

minerals from overburden and processing wastes. The quality of the air can be affected by

emissions such as dust and exhaust gases. The continued mining activities in central Florida

has degraded water quality in the upper Peace River basin and has left behind large refuse sand

tailings that now shape the landscape surrounding the river. The mound material is essentially

homogenous clean sand (>94% in weight) with a high concentration in apatite, the phosphorus

(P) mineral ore, and mixed with small pockets of clay in some points.

Hanna and Anaziz (1990) found that the main mineral in Florida' s PR is

carbonate-fluorapatite (CFA, Ca9.62Na0.273Mg~ls(04.106(PO4)104.96C310424, alSo named as

francolite), the P fraction per unit weight of CFA is 0. 158.). Decreasing particle size or

increasing soil moisture content increases the percentage dissolution rate of PR (He et al., 2005).

Guidry and Mackenzie (2003) reported that the dissolution rates of fluorapatite (FAP) and CFA









are highly dependent on pH. Apatite can be dissolved immediately with runoff water. Thus,

once runoff occurs in mining lands, there can be potential pollution sources contributing

dissolved P (DP) into water bodies.

The Peace River is 190 km in length. Peace River watershed is approximately 5,670 km2 in

size. The largest land uses in the watershed are agricultural and mining. The agricultural

lands account for nearly 50 % when pastureland is included (DEP, 2006a). Undeveloped

lands consisting of forest, water, and wetlands account for 30 % of the land use. Urban or

built-up land makes up 10 % of the land use. The actively mined lands are increased from 0.5%

to 10.3% (from 30.4 km2 to 589.7 km2) Of the watershed area during 1940-1999 (SFWMD,

2004). The agricultural and mining lands are potential pollution sources that can contribute

high amounts of DP into water bodies. The average DP concentration in the Peace River at the

Bartow sub-basin has declined from 18 mg/L to 1.2311.93 mg/L from 1965 to 2005 due to the

changes in mining practices (DEP, 2006b). The average concentration of total P (TP) was

1.3811.93 mg/L from 1990 to 1995. However, the TP concentration was still higher than the

U. S. Environmental Protection Agency (USEPA) criterion of maximum TP concentration (0. 1

mg/L) discharging into a river (USEPA, 1986; Mueller et al., 1995).

Phosphorus carried in surface runoff from agricultural lands has been studied extensively.

Phosphorus in runoff is generally divided into particulate and dissolved fraction by filtration

through a 0.45 pum filter. Particulate forms include sorbed P, organic P, and mineral P phases.

Dissolved forms are normally considered to be orthophosphate, inorganic polyphosphates, and

organic P compounds (Nelson and Logan, 1983; McDowell and Sharpley, 2001a). These P

compounds exist in dynamic equilibrium between their dissolved and particulate forms and are

heavily influenced by soil properties and land management practices (He et al, 2003).









Therefore, the factors that affect the mechanism of runoff transport will also govern the P

transport.

Runoff easily occurs during rainfall events in disturbed bare lands resulting from mining

activities where no vegetation exists to resist flow transport. Thus, the reclamation activities

must be conducted to avoid high environmental impacts in the disturbed mining areas. The

reclamation activities in mining areas generally involve landscaping, revegetation, and

maintenance of disturbed areas (United Nations Environment Programme (UNEP), 2001).

Revegetation is an economical and less labor intensive method. Vegetation can increase

surface roughness and infiltration, and decrease runoff volume that can reduce particles and

sediment-bound pollutant transport. Vegetative fi1ter strips (VFS) are defined as areas of

vegetation designed to reduce transport of sediment and pollutants from surface runoff by

deposition, infiltration, adsorption, and absorption (Dillaha et al., 1989). VFS has been

recommended as a best management practice (BMP) in controlling non-point source pollution

from agricultural lands (USDA, 1976; Barfield et al., 1979).

Mathematical models that can simulate water and/or sediment transport in VFS would be

good tools for assessing the impact of human activities and natural processes on water resources

and for designing BMPs to reduce these impacts. Particularly, the VFS model (VFSMOD-W,

Mufioz-Carpena and Parsons, 1999) enables prediction of water and contaminant transport

through VFS. VFSMOD-W is a field scale, mechanistic, storm-based model developed to route

incoming hydrographs and sedimentographs from an adj acent field through VFS. VF SMOD

consists of a series of modules: a time-dependent Green-Ampt infiltration module for calculating

the water balance in the soil surface, a kinematic wave overland flow module for determining

flow rate and depth on the infiltrating soil surface, and a sedimentation module for simulating









transport and deposition of the incoming sediment along the VFS. The model uses time

dependent hyetographs and field (inflow) runoff hydrographs, space distributed filter parameters

(vegetation roughness or density, slope, infiltration characteristics), and various characteristics of

incoming sediment. Model outputs include the infiltration, surface runoff hydrograph, and

sedimentograph from the VFS, and its sediment and runoff trapping efficiencies.

USEPA (2005) listed VFSMOD-W as one of models to evaluate the efficiency of the BMP

in VFS for protecting watershed environments. VFSMOD-W was successfully tested with

natural events data from the Coastal Plain (Mufioz-Carpena, 1993) and the North Carolina

Piedmont (Mufioz-Carpena et al, 1999a). Researchers in Canada (Abu-Zreig et al., 2001;

Gharabaghi et al., 2001) reported a good agreement (R2=0.9) with a highly significant (p<0.01)

linear relationship between model predictions and measured values in infiltration, outflow and

sediment trapping efficiency. Abu-Zreig (2001) and Abu-Zreig et al., (2003) also investigated

the principal factors that affect trapping performance of VFS using VFSMOD-W. Rudra et al.,

(2002) incorporated an empirical phosphorus component to the VFSMOD-W to estimate the

phosphorus yield. VFSMOD-W has also been used to model the effect of VFS on a small

watershed (72 ha) (Kizil and Disrud, 2002), as well as a component to simulate fecal pathogen

filtering from runoff (Zhang et al., 2001). VFSMOD-W was conjugated with the AnnAGNPS

model to simulate the pollution trapping efficiencies of VFS and to examine cost-effective

targeting of land retirement for establishing riparian buffers in an agricultural watershed in

Ontario, Canada (Yang and Weersink, 2004). VFSMOD-W was successfully simulated the

total suspended sediment removal from an experimental VFS treating highway runoff (Han et al.,

2005). Therefore, the VFSMOD-W has been identified as a potential BMP design tool used to









reduce surface phosphorus runoff from the reclaimed phosphate mines in Florida (specifically in

Polk County) and other similar areas elsewhere.

The success in modeling such processes heavily depends on the quality of the model

parameters, i.e. if they are representative of the hydraulic properties of the soil and the vegetated

filter. Thus, the first step in applying VFSMOD-W to predict outflows from VFS is to find

these optimal parameters. A popular method for parameter estimation is manual calibration by

a "trial and error" procedure comparing simulated values with measured values. However, this

method is time consuming, subjective, and cannot ensure that the best parameter set is found.

A more elaborate, complex and increasingly attractive form of parameter estimation is automatic

inverse modeling. This procedure provides effective parameters in the range of envisaged

model applications and overcomes the drawbacks of manual calibration. The GMCS-NMS

(Global Multilevel Coordinate Search combined with a Nelder Mead Simplex) is a powerful

optimization algorithm to numerically solve inverse problems (Ritter et al., 2003).

GMCS-NMS has been integrated within the VFSMOD-W (Ritter et al., 2007) graphical user

interface to allow the model users to perform inverse optimization of the parameters of

VF SMOD-W.

Uncertainty of measured data can result from field measurement, water sample collection

and storage, and water quality analysis (Harmel et al., 2006). The hydrologic/water quality

models are increasingly applied to guide decision-making in water resource management. The

consideration of uncertainty in measured data can allow decision makers/modelers to more

realistically evaluate model performance.

The main objectives of this dissertation were to:









1 Assess the surface runoff P pollution from mining sand tailings in the upper Peace River
basin and investigate the efficiency of VFS in reducing P and sediment transports from the
surface runoff of reclaimed mining areas.

2 Study the relationship between apatite and DP concentration in runoff water.

3 Model VFS P transport reduction from mining sand tailings using the VFSMOD-W.

These three obj ectives are developed in Chapters 2-4 of this dissertation.









CHAPTER 2
RUNOFF WATER QUALITY POLLUTION FROM PHOSPHATE MINING AREAS AND
CONTROL BY VEGETATIVE FILTER STRIPS

Introduction

Florida is rich in phosphate rock formed millions of years ago under ocean waters. Phosphate

Rock was discovered in the late 1880's in central Florida, Polk County. Phosphate is a key

ingredient in fertilizer and cannot be synthesized; so phosphate mining is the only supply.

Phosphate mining in the Peace River watershed (Polk County, Florida) has disturbed the land and

affected water quality. The Peace River is 193 km in length. The Peace River watershed is

approximately 5,670 km2 in Size. The largest land uses are agricultural and mining. Agricultural

lands account for nearly 50 % including pastureland (SFWMD, 2004). The actively mined lands

increased from 0.5 % to 10.3 % (from 30.4 km2 to 580.7 km2) Of watershed during 1940-1999.

Urban or built-up lands account for about 10 %. Undeveloped lands consisting of forest, water, and

wetlands make up the remaining 30 % of the land uses.

Hanna and Anazia (1990), He et al. (2003), and Guidry and Mackenzie (2003) investigated the

dissolution of Florida' s phosphate rock. The dissolution rate of phosphate rock in soil solution is

mainly affected by soil pH, moisture content, P and Ca concentrations (Chien and Menon, 1995;

Babare et al., 1997). Phosphorus in runoff is generally divided into particulate phosphorus (PP) and

dissolved phosphorus (DP) by filtration through a 0.45 Cpm filter. Surface runoff carries DP in

organic and inorganic P forms, while PP is carried in sorbed P, organic P, and mineral P forms

(McDowell and Sharpley, 2001a). Loading of P in runoff is heavily influenced by soil properties

and land management practices (He et al., 2003). The soil properties such as fractions of clay and

silt, organic matter, pH, ion and aluminum oxides affect the desorption of DP from PP and adsorption

of DP onto sediment (Sharpley et al., 1981; Vadas and Sims 2002). In addition, rainfall intensity,









runoff duration, and a water/soil ratio also dominate the desorption of soil P for a runoff event in

agricultural lands (McDowell and Sharpley, 2001b; Storm et al., 1988).

Hanna and Anaziz (1990) found that the main mineral in Florida' s PR is carbonate-fluorapatite

(CFA, also called francolite). Decreasing particle size or increasing soil moisture content increases

the percentage dissolution rate of PR (He et al., 2003). Guidry and Mackenzie (2003) reported that

the dissolution rates of fluorapatite (FAP) and CFA are highly dependent on pH. Apatite can be

partially dissolved immediately with contacting runoff water. Thus, once runoff occurs in the

mining lands, these can be potential sources of DP into surface water bodies. The average DP

concentration in the Peace River at the Bartow sub-basin has declined from 18 mg/L to 1.2311.93

mg/L from 1965 to 2005 due to the changes in mining practices (DEP, 2006 and SFWMD, 2001).

Concentration of TP was 1.3811.93 mg/L from 1990 to 1995. However, the DP concentration was

still higher than U.S. Environmental Protection Agency (USEPA) criterion of TP concentration (0. 1

mg/L) discharging into a river (USEPA, 1986; Mueller et al., 1995).

The VFS studies have been widely applied in agricultural lands since the late 1970s; however,

the VFS studies have not been applied in phosphate mine areas. The primary objectives of this study

were to assess the surface runoff P pollution from the mining sand tailings (bare source areas) in the

upper Peace River basin and investigate the efficiency of VFS in reducing phosphorus and sediment

transports from the surface runoff of reclaimed mining areas under varied lengths, source areas,

slopes, incoming flow rates, runoffvolumes, rainfall intensities, soil properties, and densities of

vegetation cover in experimental sites.

Methods and Materials

Field Experiments

Two field experiments were conducted in the property of the Bureau of Mine Reclamation,

Florida Departmaent of Environmental Protection (FDEP), Bartow, FL (Figure 2-1). The land was










originally used for phosphate mining. The phosphate mine company ceased to excavate PR and

donated the land to the Bureau of Mine Reclamation in the 1980's. Two experimental sites (site A

and site B) 3 km apart were chosen to represent the bare disturbed mining lands in the upper Peace

River watershed. Each experimental site contained a set of runoff plots including bare source areas

with down slope grass filter of different dimensions (four plots in both VFS and source areas). The

bare source areas were kept with no vegetation by gently pulling weeds to avoid disturbing areas.

The dimensions of the plots for sites A and B are shown in Figure 2-2. The average slopes of

site A and site B are 2.0 %, and 4.3 %, respectively. The lengths of the source areas at site A and

site B are 14.4 m and 40.0 m, respectively. The lengths of the filters were 4. 1 m and 5.8 m at site A

and 6.8 m and 13.4 m at site B, respectively. Thus, two different source area-to-VFS area ratios of

2.5 and 3.5 in site A and 3.0 and 6.0 in site B were used to determine their effects on performances of

VFS. The width of each plot was 3.3 m. Each plot was separated by boards consisting of plastic

plates inserted vertically a minimum of 10 cm to avoid lateral runoff losses. Locations of

instruments installed in the field to convey runoff, collect water samples, and record data (i.e. flow

rate, soil moisture, and rainfall intensity) are shown in Figure 2-2. Runoff was collected in a rain

gutter buried at the outlet of each plot from where it flowed into a flume and sampling trough. Then,

runoff from the source area was redistributed through a runoff spreader into the filter. The runoff

spreaders were made of perforated PVC pipes installed at the entry of the VFS. A cover was

installed to avoid direct rain falling into the runoff gutter. Six-inch (15.24 cm) HS flumes were used

to measure the flow rate. To automatically record flow rate the stage of each flume was recorded

using a capacitance probe (ECH20, model EC-20, Decagon Devices, WA) inserted vertically in the

throat of each flume. The probes were tested in the laboratory and were found to give an excellent

relationship (R2 = 0.996 Figure 2-3) between depth of submersion into a water column and output









voltage. The Ca m, and RM~SE of measured depth and predicted depth obtained from equation in

Figure 2-3 are 0.942 and 0.402. The output voltage-flow rate relationship for the HS-flume was

obtained and fitted to an exponential relationship (R2 = 0.997, Figure 2-4). The Ca m and RM~SE of

measured flow rate and predicted flow rate obtained from equation in Figure 2-4 are 0.959 and

0.00012. The detailed description about Ca m, and RM~SE are presented in Appendix B.

A field datalogger (CR-10X, Campbell Scientific, UT) was programmed to record flow rate

from the capacitance probe in each flume every minute. To avoid changing the measurement of

flow rate in the flume, runoff water samples were collected at each trough positioned below the flume

outlet by an automatic water sampler containing 24 plastic sampling bottles (ISCO 6712, ISCO, Inc.).

The datalogger sent pulses to the ISCO 6712 automatic water sampler based on changes of

accumulated runoff volume recorded at each flume in an effect to distribute the 24 samples

throughout the runoff event. After activation, the sampler purged the suction hose and then collected

runoff water samples from the trough into the 500 mL bottles. Runoff samples were analyzed for

concentrations of sediment, TP, and DP. Loads and flow-weighted mean concentration were

computed for each collected event.

Another capacitance probe was used to measure soil moisture in each of the plots (Fig 2-2).

The soil moisture was measured every minute and the averaged data for every 30 minutes was

recorded in the CR-10X datalogger. The capacitance probe was calibrated in a PVC cylinder

containing soil with a bulk density similar to the field condition. The soil was saturated and weight

and voltage measurements were taken periodically as the water drained and evaporated (Appendix A).

To measure rainfall intensity, a rain gauge (Texas Electronics, Inc TR-525M tipping bucket rain

gauge) was installed between the source and the filter area. The rainfall data were recorded in the

datalogger every minute. All outputs from the sensors were delivered to the CR-10X datalogger









through a relay multiplexer (AM416, Campbell Scientific, UT). Two groundwater observation wells

with a pressure sensor and a barometric atmosphere sensor were installed to observe groundwater

level since the water table in the cannel ever raised a height of three meters during the hurricane

season in 2004.

A solar panel was installed to charge the batteries to supply the electric power for the CR-10X

and water samplers. In order to download data remotely and audit the field instruments, wireless

serial communication equipment using long distance bluetooth (Promi-SD, Initium, Korea) was

installed to access each of the sites CR10Xs from a computer at the experimental station office (about

2 km away from the sites). The computer at the experimental station office was then accessed

through the internet from the University of Florida main campus in Gainesville (277 km away).

Daily remote monitoring of the sites allowed for quick collection of samples after maj or events.

Characterization of Experimental Sites

Saturated hydraulic conductivity (Ks ), soil texture, porosity, grass spacing, and slope were

measured to investigate the surface runoff movement and infiltration. Core cylinders made of brass

with 5.4 cm diameter and 6.0 cm height (Soilmoisture Equipment Corp, CA) were used to collect

undisturbed soil samples. The soil cores were then saturated with 0.005 M CaSO4-thymol solution

and the Ks was measured based on the application of Darcy's Law with a constant head

permeameter (Klute and Dirksen, 1986). Saturated and final weights of the soil was measured and

used to calculate bulk density and soil porosity. The average suction at the wetting front (Say) was

also estimated as the area under the unsaturated hydraulic conductivity (Km (h)) curve applying

SoilPrep model (Workman and Skaggs, 1990). The Km (h) was obtained from the Millington and

Quirk (1960) procedure. Equipment employing the "Polarization Intensity Differential Scattering"

technique (Beckman-Coulter, Inc.) was used to analyze particle size distribution of soil and sediment









samples. For this analysis soil samples needed to be pretreated to remove organic matter (Day,

1965). A 0.5 by 0.5 m frame was used to determine the grass spacing by counting the amount of

grass stems within the frame area (Appendix A). The main grass in filter areas is Bahia grass which

accounts for about 90 %, and the remaining grasses are Hairy Indigo, Cogon grass, and Smutgrass.

The detailed description of measured soil physical and field properties (topographical survey and

grass height) are presented in Appendix A.

Characterization of Soil and Runoff Water Chemistry

Soil chemical properties were analyzed to provide the information on the dynamics of surface

runoff phosphorus transport. Soil samples were collected from the top 2 cm depths of each site since

this is the zone of greatest interaction between soil and runoff water. All samples were air-dried and

then sieved using a 2.0 mm mesh sieve. Soil pH was measured in a 1:1 mixture of soil:water using a

pH meter (pH/Cond 340i/Set, WTW, Germany). TP was determined by ignition method: One

gram of dry soil was ashed at 350.C for 3-hour, 550.C for 2-hour, and then digested with 6M HCI

(Anderson, 1976). The water soluble phosphorus (WSP) of soil samples was measured by 2-hour

extraction with deionized water at a solution/soil ratio of 10:1i. Soil organic carbon (OC) was

measured by the Walkley-Black oxidation procedure (Nelson and Sommers, 1982). TP in water

samples was determined by persulfate digestion according to USEPA Method 365.3 (USEPA, 1982).

DP in the water sample was determined by filtering through the 0.45 Cpm membrane filter. The

concentrations of DP and TP and WSP were determined by the molybdate blue method (Murphy and

Riley, 1962).

Results and Discussions

Table 2-1 shows the characteristics of experimental sites. USDA soil texture is sandy, where

clay and silt fractions are 4.2 % and 5.6 % in sites A and B, respectively. The saturated hydraulic









conductivities agree with that of sandy soils, ranging between 20 to 31 cm/h and 1.6 to 6.4 cm/h for

sites A and B, respectively. The mean concentration of WSP in site B is 25.6 mg/kg which is higher

than 16.2 mg/kg in site A. The TP concentrations of soil in both sites are in the range 19,600 -

27,900 mg/kg. The mean grass spacing was found to be 4.5 cm in site A and 3.7 cm in site B. The

pH in both sites ranges from 6.09 to 6.32 with OC ranges of 0.27 to 0.76 % in site A and of 1.1 1 to

1.70 % in site B.

The field data at site A were collected during 2006 (total rainfall 722 mm), while at site B were

collected from June to December during the rainy season (rainfall 506 mm). An approximate annual

rainfall of 682 mm was recorded at a weather station near site A (1 km apart). During the rainy

season of year 2006, the goundwater tables ranged from 1.9 m to 2.4 m and from 1.5 m to 2.0 m in

observation wells 1 and 2, respectively. The runoff was only driven by the excess rainfall instead of

the shallow groundwater table. Runoff events recorded in year 2006 at sites A and B are shown in

Table 2-2 and Table 2-4, respectively. The recorded runoff events from sources are 21 events in site

A and 19 events in site B. The recorded runoff events from VFS are 14 events in site A and 11

events in site B. A higher slope, longer length, and lower Ks source area contributes a higher

runoff volume. Consequently, larger runoff events in site B were collected compared to site A

during the same monitoring period. The corresponding outflows of pollutants in site A and site B

are shown in Table 2-3 and Table 2-5, respectively. As an example, observed hydrographs,

pollutographs, and hyetographs of a runoff event that occurred on July 28th, 2006 in site B are shown

in Figure 2-5 with the amounts of runoff volume, sediment, TP, and DP also shown in each

corresponding sub-figure.









Overland flow modification by the grass filters

The trapping efficiency (TE) of the filter is defined as the ratio of the difference between inflow

and outflow from the fi1ter divided by the inflow of the fi1ter. This concept is applied to overland

flow changes happening at the fi1ter expressed both in terms of flow volume (Q) and peak flow rate

( QP) Of the incoming and outgoing hydrographs. at the fi1ter. Figure 2-6(a) and 2-6(b) show that the

smaller area ratio of source/VFS has a higher runoff volume TE (QTE) and peak flow rate TE (QPTE)

compared to the larger ratio in both sites. The mean Ks in fi1ters in sites A and B are 20 and 6.4

cm/h, respectively. Figure 2-6(a) shows that QTE at site A is more variable with area ratio than at

site B due to the larger Ks value at site B (mean Ks in VFS in sites A and B are 20 and 6.4 cm.h,

respectively). The same results are found in QPTE (Figure 2-6(b)). For each event, the small or

negative QTE values occurred in the small rainfall intensity with the lower 8i in source areas and the

higher 8i in fi1ters. This is because the lower 8i in source area resulted in the lower incoming runoff

volume to VFS, and the higher 8i in VFS resulted in the higher outflow volume. Figure 2-7 shows

that the slope of QTE/QPTE is near zero which means the same factors control Q and QP in VFS.

Thus, the area ratio, Ks in VFS, rainfall intensity, and difference in initial soil moisture between

source and fi1ters affect the QTE and QPTE in VFS.

Trapping Efficiencies of Sediment and Phosphorus Fraction

Based on the hydrological and pollutant transport data, the TE of Q, QP and pollution loads in

filters of sites A and B were calculated as shown in the Table 2-6 and Figure 2-6. As results, the

sediment TE (STE) and TP TE (TPTE) in both sites are both greater than 0.96 as shown in Figure

2-6(c) and 2-6(d), respectively. Although the QTEs in the VFS areas at both sites are between 0.62

and 0.86, the STEs and TPTEs are higher than 0.96 with small standard deviation error. This is

because the high amounts of incoming coarse particles are mostly deposited in the first meter of the









filter (Mufioz-Carpena and Parsons, 2004) and apatite (one kind of phosphate rock) was found in

experimental sites and distributed in particle sizes from clay to coarse sand (Chapter 3). The TPTEs

are smaller than STEs in both sites, since the TP consists of DP and PP, and although PP depends

directly on the STE, the DP is related to the flow changes in the filter. In addition, lower QTE in the

higher area ratio of site A contributes to the smaller STE and TPTE than in the smaller area ratio.

The shorter length in site A should be enlarged to increase STE and TPTE. Figure 2-7 shows that

the slope of the TPTE/STE line is approximately zero, and thus their movements in VFS are

dominated by the same factors. TP in water samples contain a high fraction of PP (mineral P,

apatite), thus STE and TPTE are very close.

The smaller area ratio in site A has a higher DP TE (DPTE) than larger area ratio, but in site B

has a lower DPTE than the larger area ratio (Figure 2-6(e)). This resulted from the higher QTE and

the mean DP concentrations of collected events from VFS being lower than those from source areas at

site A (Figure (2-8)). At site B, the longer filters (smaller area ratio) may increase the runoff travel

time, and thus increase the amount of DP released to runoff water. Thus, the mean DP

concentrations of collected events from VFS are higher than those from source areas at site B (Figure

(2-8)).

Sediment Delivery Capacity in Runoff

In the source areas, the sediment yields can be estimated from equations (2.1) and (2.2) as

shown in Figure 2-9. Eq. (2.1) can be applied in areas within the study region with higher saturated

hydraulic conductivity and shorter bare source areas. Eq. (2.2) can be applied in areas with lower

saturated hydraulic conductivity and longer source areas. The lower slope and higher Ks in site A

increase infiltration and decrease QP and Q. Thus, even a longer duration rainfall event

accumulates higher Q, but QP iS still lower resulting in the lower sediment capacity.









Site A (slo e 2.0%, 14.4m*694m : Sed = 5,609(Q*Q )o62o RZ = 0.955 (2.1)


Site B (slope 4.3%, 40m*"250m): Sedl =87,344()*Q,)0.929 R2 = 0.937

(2.2)

where Sed is sediment yield (kg/ha); Q is flow volume (m3); P is peak flow rate (m3/S). The

power equations similar to the one proposed by Foster et al. (1982) were used to describe the

relationships among sediment yields, runoff volume, and peak flow rate for each runoff event.

P concentration in each particle size class of soil was determined in Chapter 3. The P

concentration in finer particles is significantly greater than that in coarser particles as shown in Table

3-5. Linear equations were used to describe the relationships between outflows of PP and sediment

from VFS and source areas (Figure 2-10).

VFS: PP = 0.02606 *" Sed R2 = 0.988

(2.3)

Source: PP = 0.02270 Sed R2 = 0.977

(2.4)

where Sed is weight of sediment (g); PP is weight of particulate P (g). Sediment from VFS, after

filtering through, contains a high fraction of fine particles and thus contains a high amount of PP

based on the same weight from source areas. Thus, the slope coefficient of the linear equation of

VFS is higher than that of the source area.

Estimations of Curve Number and Runoff Volume

The USDA Natural Resource Conservation Services (Formerly Soil Conservation Services)

curve number (SCS, 1986) method is a simple and widely used method for determining the amount of

runoff from a rainfall event in a particular area. The curve number (CN) value is determined from

land use, treatment and hydrologic condition. For a rainfall event, when soil and depression area










storage approach ultimate saturation, storage will approach the potential soil water retention (S) and

infiltration rate approaches zero. Three antecedent soil moisture conditions have been defined for

both sites. Based on the recorded data in site A, condition I, II, and III represent initial soil moisture

(8,; units: m3m-3) at 0-0.04, 0.04-0.08, and 0.08-0.12, respectively. Condition I, II, and III represent

initial soil moisture (9,) at 0.10-0.20, 0.20-0.30, and 0.30-0.40, respectively, in site B.

Curve number can be obtained from the empirical Eqs. (2.5) and (2.6) as follows:

(P -0.2S )2
Q = m"P > 0.2S
(P + 0.8Sm ) max

(2.5)

25400
Sm= = 254, (Q, P, Smax: mm)
CN

(2.6)

Smax of each antecedent condition in both sites were obtained from Eq. (2.5) based on the

measured Q and P. In site A, Smax volumes are 60.5 mm, 58.4 mm, and 45.0 mm, in condition I, II,

and III, respectively. In site B, Smax volumes are 38.5 mm, 29.4 mm, and 13.2 mm, in condition I,


II, and III, respectively. Once Smax was obtained, curve number can be calculated from Eq. (2.6).

In site A, curve numbers are 81, 82, and 83, in condition I, II, and III, respectively. In site B, curve

numbers are 87, 90, and 95, in condition I, II, and III, respectively. The higher slope and higher 8i

in site B resulted that the curve numbers in site B are greater than those in site A. With known Smax

of each antecedent condition in both sites and the total rainfall, the runoff volume can be estimated

from Eq. (2.5) as shown in Figures 2-11 and 2-12. The Nash and Sutcliff coefficient of efficiency

(Ceyf, shown in Appendix B) of estimated and observed runoff volume in sites A and B are 0.87 and

0.92, respectively.









The second antecedent soil moisture condition (9,=0.04-0.08 in site A, and 9, =0.20-0.30 in site

B) was applied to estimate curve numbers for antecedent conditions I and III using the standard

TR-55 correction equations based on antecedent condition II (SCS, 1986). The curve number in

antecedent conditions I and III are 66 and 91, respectively, in site A, and are 78 and 95, respectively,

in site B. However, the definition of antecedent condition II is total 5-day antecedent rainfall in

range of 1.27 2.79 cm (Chow et al., 1988). The antecedent conditions in site A can be one

antecedent condition since initial soil moisture only ranges from 0.02 to 0.10 and the three fitted

equations are very close as shown in Figure 2-11.

Estimated Yearly Pollutant Yields

For runoff events in plots where insignificant flow was available to collect water samples, the

concentrations of pollutants were calculated from regression equations obtained for the appropriate

flow rate ranges as presented above. The missing events during year 2006 at site B were assumed to

have the same rainfall intensity as site A. The outputs of sediment, Q, TP, and DP for missing

events at site B were estimated from the outputs of the approximate rainfall intensity at site B.

Consequently, the yearly outflows of sediment, TP, DP, and Q from source and VFS areas are

illustrated in Figure 2-13. In the lands with 4.3 % slope, 1.6 cm/h Ks, and runoff lengths of 40 m,

yearly outflows of Q, sediment, TP, and DP were 1,300 m3/ha, 4,550 kg/ha, 104 kg/ha, and 2.21

kg/ha, respectively. In the landscape with 2.0% slope, 31.0 cm/h Ks, and runoff lengths of 14.4 m,

yearly outflows of Q, sediment, TP, and DP were 615 m3/ha, 240 kg/ha, 6.12 kg/ha, and 0.27 kg/ha,

respectively. Higher QP and Q has a higher transport capacity to deliver sediment and pollutants

(Foster et al., 1982). The length of filter should be enlarged to reduce runoff and pollutants transport

in higher slope and lower Ks lands, which contribute to the higher Q and QP -









Conclusions

A value of 2.3 % of TP was found in soil samples of the reclaimed mining areas in the upper

Peace River basin. DP concentrations from source and VFS areas range from 0.4 to 3.0 mg/L, which

exceeds EPA criterion of P concentration (0.1 mg/L) discharging into a river. A range of field

conditions were studied and it was found that a significant amount of runoff volume and sediment

transport capacity occurred in the exposed surface lands. In the lands with 4.3% slope, 1.6 cm/h

Ks, and runoff lengths of 40 m, yearly outflows of Q, sediment, TP, and DP were 1300 m3/ha, 4550

kg/ha, 104 kg/ha, and 2.21 kg/ha, respectively. In the landscape with 2.0 % slope, 31.0 cm/h Ks,

and runoff lengths of 14.4 m, yearly outflows of Q, sediment, TP, and DP were 615 m3/ha, 240 kg/ha,

6.12 kg/ha, and 0.27 kg/ha, respectively. Vegetative filter strips (grass buffers) adj acent downstream

from these source areas considerly reduce runoff and DP (>60%) and also transports of sediment and

TP (>96%).

The length of filters, soil saturated hydraulic conductivity (Ks ) in filters, rainfall intensity, and

initial soil moisture were the main factors controlling the changes of runoff volume and peak flow

rate in filters. TP in water samples contained a high fraction of PP (apatite), thus STE and TPTE

were closely related in both sites and were controlled by the same factors. Since phosphate rock

exists in soil, movement of PP and sediment in VFS are highly correlated (R2=0.97-0.98). In site A,

lower Q obtained in the 4. 1 m filters (larger area ratio) resulted in lower STE compared to the 5.8 m

filters (smaller area ratio). In site B, there were no significant differences in the STE and TPTE of

6.8 m and 13.4 m filters. The shorter filters (larger area ratio) were almost as effective as the longer

filters (smaller area ratio) in trapping sediment and TP since in both cases the removal efficiency was

very large. The longer filters with lower Ks at site B increased the runoff travel time, and thus

seemed to increase the DP mass released from apatite.









Power equations were found to describe well (R2=0.93-0.96) the relationships between sediment

yields and product of runoff volume and peak flow rate (Q* QP ), for each runoff event. To aid in

future BMP design efforts, the source areas curve numbers from the Soil Conservation Service TR-55

methods (SCS, 1986) were fitted to the experimental data collected on-site. This will be useful in

future VFS design efforts.











Table 2-1. Characteristics of the experimental sites A and B.
Length Slope Width Grass Soil
Site Plot Spacing Texture* K, WSP# TP OC
(m) (%) (m) pH
: ~(cm) (%) (cm/h) (mg/kg) (mg/kg) (%/)
Source 14.4 1.9 3.3 -- (1.4,1.7,96.9) 31+8 15.2+3.3 19,600+5,000 6.09+0.15 0.27+0.23
A 5.8
VFS 2.2 3.3 4.49+0.25 (2.5,2.9,94.6) 20+10 17. 3+6.2 27,900+4,100 6.37+0.19 0.76+0.40
4.1

Source 40 4.3 3.3 -- (1.8,3.5,94.7) 1.6+6.8 25.0+3.0 25,700+6,800 6.18+0.13 1.70+0.31
B 13.4
VFS 4.3 3.3 3.73+0.48 (2.5,3.4,94.1) 6.4+6.9 28.6+6.6 20,300+4,300 6.32+0.21 1.11+0.48
6.8
*: % (clay, silt, sand) where clay: <2Cpm, silt: 2-37Cpm, sand: >37Cpm.

#: WSP: water soluble phosphorus.














A-Source-2

Q Qp a,
0.000 0.000 0.03
0.969 1.035 0.09
0.014 0.017 0.04
0.008 0.007 0.02
0.000 0.000 0.05
0.007 0.008 0.05
0.000 0.000 0.04
0.464 0.425 0.04
0.441 0.702 0.09
0.000 0.000 0.05
0.000 0.000 0.04
0.130 0.305 0.05
0.077 0.129 0.07
0.036 0.037 0.07
0.000 0.000 0.06
0.292 0.929 0.05
0.001 0.003 0.05
0.000 0.000 0.05
0.000 0.000 0.05
0.003 0.005 0.05
0.000 0.000 0.08
0.000 0.000 0.07
0.000 0.000 0.07
0.000 0.000 0.07
0.042 0.017 0.09
0.158 0.644 0.10
0.000 0.000 0.08
0.021 0.019 0.06
0.000 0.000 0.04
0.015 0.059 0.04
0.064 0.239 0.04
0.000 0.000 0.05
0.202 0.994 0.05


A-Source-3

Q Qp a,
0.000 0.000 0.03
1.083 1.107 0.11
0.000 0.000 0.04
0.000 0.000 0.03
0.000 0.000 0.05
0.012 0.013 0.05
0.000 0.000 0.04
0.493 0.411 0.04
0.752 1.110 0.08
0.000 0.000 0.07
0.000 0.000 0.04
0.182 0.485 0.05
0.055 0.148 0.07
0.037 0.051 0.07
0.007 0.010 0.06
0.322 1.184 0.05
0.000 0.000 0.05
0.000 0.000 0.05
0.007 0.008 0.05
0.015 0.014 0.05
0.012 0.010 0.08
0.013 0.010 0.07
0.000 0.000 0.06
0.006 0.012 0.07
0.010 0.011 0.08
0.180 0.665 0.08
0.000 0.000 0.07
0.007 0.017 0.06
0.000 0.000 0.04
0.024 0.100 0.04
0.103 0.356 0.04
0.000 0.000 0.06
0.165 0.679 0.06


A-Source-4

Q Qp a,
0.000 0.000 0.02
1.048 1.073 0.11
0.027 0.024 0.03
0.000 0.000 0.02
0.000 0.000 0.05
0.013 0.010 0.05
0.000 0.000 0.03
0.394 0.241 0.05
0.424 0.700 0.08
0.000 0.000 0.07
0.000 0.000 0.04
0.132 0.285 0.04
0.073 0.047 0.06
0.027 0.038 0.06
0.000 0.000 0.06
0.128 0.389 0.05
0.000 0.000 0.04
0.000 0.000 0.04
0.000 0.000 0.05
0.006 0.004 0.04
0.000 0.000 0.07
0.000 0.000 0.06
0.000 0.000 0.06
0.000 0.000 0.06
0.091 0.031 0.07
0.103 0.404 0.07
0.000 0.000 0.06
0.024 0.015 0.05
0.000 0.000 0.03
0.014 0.046 0.03
0.036 0.151 0.04
0.000 0.000 0.05
0.074 0.431 0.05


A-VFS-1

Q Q,
0.000 0.000
0.051 0.090
0.000 0.000
0.000 0.000
0.000 0.000
0.007 0.009
0.000 0.000
0.007 0.010
0.235 0.545
0.000 0.000
0.000 0.000
0.034 0.056
0.014 0.015
0.013 0.008
0.000 0.000
0.032 0.079
0.000 0.000
0.000 0.000
0.007 0.012
0.000 0.000
0.017 0.027
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.013 0.006
0.000 0.000
0.008 0.013
0.004 0.007
0.009 0.020
0.000 0.000
0.000 0.000


A-VFS-2

Q Q,
0.000 0.000 I
0.053 0.090 I
0.006 0.011 I
0.000 0.000 I
0.000 0.000 I
0.012 0.010 I
0.000 0.000 I
0.028 0.012 I
0.075 0.060 I
0.000 0.000 I
0.000 0.000 I
0.048 0.107 I
0.041 0.035 I
0.013 0.008 I
0.006 0.008 I
0.028 0.077 I
0.000 0.000 I
0.000 0.000 I
0.000 0.000 I
0.000 0.000 I
0.000 0.000 I
0.021 0.022 I
0.000 0.000 I
0.008 0.006 I
0.061 0.014 I
0.038 0.051 I
0.010 0.008 I
0.013 0.012 I
0.010 0.013 I
0.009 0.011 I
0.030 0.023 I
0.000 0.000 I
0.051 0.033 I


Q"'
0.000
0.867
0.012
0.000
0.000
0.013
0.000
0.172
0.312
0.000
0.000
0.100
0.038
0.028
0.007
0.155
0.000
0.000
0.000
0.014
0.009
0.004
0.020
0.009
0.000
0.157
0.050
0.026
0.000
0.012
0.114
0.000
0.351


(ninth)
5.6
32.2
12.4
6.2
4.6
26.6
8.4
26.8
51.2
9.6
12.0
47.4
29.2
37.2
10.4
60.2
11.4
7.8
12.2
16.2
12.6
26.6
13.6
10.6
42.2
57.6
12.2
14.2
12.6
14.0
22.2
4.6
25


Q,
0.000
1.053
0.010
0.000
0.000
0.010
0.000
0.131
0.735
0.000
0.000
0.203
0.063
0.029
0.010
0.462
0.000
0.000
0.000
0.006
0.006
0.003
0.006
0.005
0.000
0.554
0.031
0.020
0.000
0.013
0.408
0.000
0.692


Q
0.000
0.018
0.000
0.000
0.000
0.000
0.000
0.006
0.381
0.000
0.000
0.057
0.030
0.016
0.000
0.132
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.039
0.000
0.000
0.000
0.011
0.026
0.000
0.000


Q,
0.000
0.024
0.000
0.000
0.000
0.000
0.000
0.004
0.892
0.000
0.000
0.123
0.037
0.010
0.000
0.402
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.063
0.000
0.000
0.000
0.020
0.110
0.000
0.000


Q
0.000
0.056
0.004
0.000
0.000
0.000
0.000
0.025
0.166
0.000
0.000
0.045
0.029
0.017
0.003
0.053
0.000
0.000
0.000
0.003
0.021
0.053
0.006
0.009
0.075
0.068
0.012
0.011
0.006
0.015
0.068
0.000
0.042


number is plot ID: (3) Q: runoff volume (m ), Q,: peak flow rate (L/s), 9, initial soil moisture (%).


(1) I3,: maximum 30-minute rainfall intensity: (2) A: site A:


Table 2-2. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow rate, and initial water moisture in
site A.


A-VFS-3 A-VFS-4


Qp ,


8,


8,


8,


I .. A-Source-1'


8,


Event Rain Time

Date (nin) (nmin)
01 18 6.9 110
02 3 33.4 430
02 26 7.7 42
03 23 5.8 120
06 02 2.3 46
06 02 16.3 38
06 11 4.2 30
06 12 64.3 840
06 13 43.0 610
06 25 10.9 230
07 02 6.3 44
07 07 24.4 44
07 14 26.3 56
07 20 20.6 50
07 23 5.2 14
07 28 31.4 54
08 6 5.7 14
08 14 3.9 12
08 15 6.9 115
08 23 11.6 38
08 27 8.3 77
09 02 19.2 155
09 04 11.2 226
09 06 5.3 28
09 09 39.1 89.0
09 10 35.1 81.0
09 15 8.1 47
09 19 10.5 212
10 12 6.4 34
10 28 19.1 262
12 14 18.5 172
12 24 2.3 25
12 25 23.8 219



















U.UU
0.00
0.00
0.00
0.00
0.02
1.36
0.00
0.000
2.24
0.21
0.12
0.00
8.99
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.12
0.00
0.00
0.00
0.16
0.00
0.83
0.00
0.00


(1) A: site A: last number is plot ID: (2):Sed: sediment load.


Event A-Source-l"') A-Source-2 A-Source-3 A-Source-4 A-1 FS-1 A-1 FS-2 A-1 FS-3 A-1 FS-4


DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g)
0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000
0.462 2.21 0.072 0.016 2.42 0.075 0.014 0.19 0.010 0.005 2.49 0.080 0.017


Date Sed(2 (g) TP(g) DP(g) Sed(g) TP(g)


Table 2-3. The loads of sediment, TP, and DP of selected events in site A.


DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g)
0.000 0.0 0.00 0.000 0.0 0.00
0.478 421 11.664 0.526 296 9.856
0.006 0.0 0.00 0.000 2.4 0.08
0.003 0.0 0.00 0.000 0.0 0.00
0.000 0.0 0.00 0.000 0.0 0.00
0.003 6.1 0.15 0.005 5.4 0.16
0.000 0.0 0.00 0.000 0.0 0.00
0.194 87.7 2.44 0.218 46.0 1.06
0.169 303 7.28 0.327 108.0 3.40
0.000 0.0 0.00 0.000 0.0 0.00
0.000 0.000 0.00 0.000 0.000 0.00
0.059 62.9 1.92 0.102 36.0 1.02
0.041 13.9 0.36 0.024 12.6 0.35
0.017 4.0 0.11 0.016 2.5 0.07
0.000 0.4 0.01 0.003 0.0 0.00
0.140 210.6 5.37 0.158 61.3 1.68
0.000 0.0 0.00 0.000 0.0 0.00
0.000 0.0 0.00 0.000 0.0 0.00
0.000 0.3 0.01 0.003 0.0 0.00
0.001 0.9 0.03 0.006 0.1 0.01
0.000 0.5 0.02 0.005 0.0 0.00
0.000 0.4 0.02 0.006 0.0 0.00
0.000 0.0 0.00 0.000 0.0 0.00
0.000 0.2 0.01 0.003 0.0 0.00
0.018 2.5 0.07 0.004 12.6 0.29
0.083 145.2 3.60 0.087 53.9 1.42
0.000 0.0 0.00 0.000 0.0 0.00
0.008 2.8 0.08 0.009 2.2 0.06
0.000 0.0 0.00 0.000 0.0 0.00
0.006 6.6 0.18 0.010 2.4 0.06
0.000 0.0 0.00 0.000 0.0 0.00
0.030 24.2 0.58 0.048 6.0 0.14
0.000 0.0 0.00 0.000 0.0 0.00
0.099 42.0 1.10 0.079 17.8 0.44


01 18
02/3
02 26
03 23
06 02
06 02
06 11
06 12
06 13
06 25
07 02
07 07
07 14
07 20
07 23
07 28

S08 6
08 14
08 15
08 23
08 27
09 02
09 04
09 06
09 09
09 10
09 15
09 19
10 12
10 28
11 29
12 14
12 24
12 25


0.0
343
0.7
0.0
0.0
12.5
0.0
29.2
130
0.0
0.000
38.9
9.6
2.1
0.4
90.1
0.0
0.0
0.0
0.4
0.3
0.1
0.4
0.3
0.0
138
4.4
5.7
0.0
2.3
0.0
21.4
0.0
67.8


0.00 0.000
7.969 0.409
0.03 0.005
0.00 0.000
0.00 0.000
0.29 0.006
0.00 0.000
0.67 0.061
3.04 0.116
0.00 0.000
0.00 0.000
0.78 0.042
0.20 0.017
0.07 0.012
0.01 0.003
1.94 0.071
0.00 0.000
0.00 0.000
0.00 0.000
0.02 0.005
0.01 0.003
0.00 0.001
0.02 0.007
0.01 0.003
0.00 0.000
2.91 0.084
0.14 0.022
0.12 0.011
0.00 0.000
0.05 0.005
0.00 0.000
0.53 0.050
0.00 0.000
1.77 0.164


0.0
369
1.6
0.4
0.0
5.6
0.0
79
202
0.0
0.000
43.5
24.8
3.6
0.0
148.9
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
8.0
158
0.0
4.4
0.0
2.6
0.0
14.7
0.0
53.2


0.00
8.396
0.05
0.01
0.00
0.13
0.00
2.18
5.00
0.00
0.00
1.00
0.64
0.11
0.00
3.57
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.21
3.92
0.00
0.12
0.00
0.07
0.00
0.34
0.00
1.46


0.011
0.000
0.000
0.005
0.000
0.128
0.147
0.000
0.000
0.052
0.030
0.011
0.000
0.056
0.000
0.000
0.000
0.002
0.000
0.000
0.000
0.000
0.037
0.049
0.000
0.010
0.000
0.005
0.000
0.014
0.000
0.032


0.003 0.001
0.000 0.000
0.000 0.000
0.006 0.003
0.000 0.000
0.011 0.006
0.030 0.016
0.000 0.000
0.000 0.000
0.066 0.018
0.014 0.006
0.006 0.003
0.003 0.001
0.011 0.007
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.011 0.005
0.000 0.000
0.004 0.002
0.015 0.008
0.022 0.012
0.004 0.002
0.005 0.003
0.005 0.003
0.006 0.003
0.000 0.000
0.015 0.007
0.000 0.000
0.025 0.012


0.000 0.000 0.02
0.000 0.000 0.00
0.000 0.000 0.00
0.000 0.000 0.00
0.000 0.000 0.00
0.002 0.001 0.21
0.156 0.116 1.43
0.000 0.000 0.00
0.000 0.000 0.000
0.081 0.030 2.07
0.013 0.006 0.14
0.008 0.004 0.13
0.000 0.000 0.02
0.325 0.058 0.06
0.000 0.000 0.00
0.000 0.000 0.00
0.000 0.000 0.00
0.000 0.000 0.02
0.000 0.000 0.30
0.000 0.000 0.57
0.000 0.000 0.14
0.000 0.000 0.15
0.000 0.000 0.35
0.065 0.017 2.81
0.000 0.000 0.09
0.000 0.000 0.10
0.000 0.000 0.06
0.007 0.003 0.28
0.000 0.000 0.00
0.035 0.009 1.27
0.000 0.000 0.00
0.000 0.000 0.40


0.002 0.001
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.010 0.005
0.080 0.040
0.000 0.000
0.000 0.000
0.067 0.017
0.008 0.005
0.008 0.004
0.001 0.001
0.026 0.013
0.000 0.000
0.000 0.000
0.000 0.000
0.001 0.001
0.013 0.005
0.029 0.012
0.005 0.002
0.007 0.002
0.018 0.009
0.093 0.023
0.005 0.003
0.005 0.002
0.003 0.002
0.012 0.004
0.000 0.000
0.051 0.016
0.000 0.000
0.021 0.010


U.UUU U.UUU
0.000 0.000
0.000 0.000
0.003 0.002
0.000 0.000
0.003 0.002
0.125 0.070
0.000 0.000
0.000 0.000
0.048 0.019
0.008 0.004
0.006 0.003
0.000 0.000
0.016 0.008
0.000 0.000
0.000 0.000
0.004 0.002
0.000 0.000
0.008 0.004
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.006 0.003
0.000 0.000
0.004 0.002
0.003 0.001
0.000 0.000
0.004 0.002
0.000 0.000
0.000 0.000











Table 2-4. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow rate, and initial water moisture in
site B.


I30(1) B-Source-1(2)

(mm/h Q (3) a
18.2 0.563 1.007 0.32
9.2 0.023 0.087 0.38
4.2 0.000 0.000 0.34
8.6 0.000 0.000 0.33
14.4 0.041 0.071 0.35
29.8 1.980 2.229 0.39
33.8 1.650 3.464 0.40
38.4 1.185 2.702 0.35
3.4 0.000 0.000 0.36
12.0 0.275 1.558 0.36
2.8 0.000 0.000 0.34
5.8 0.000 0.000 0.34
16.8 0.500 0.687 0.35
5.2 0.010 0.007 0.36
12.6 0.158 0.386 0.36
6.8 0.148 0.487 0.39
21.6 0.677 1.507 0.37
6.6 0.005 0.009 0.37
3.4 0.000 0.000 0.39
5.6 0.004 0.015 0.38
7.6 0.000 0.000 0.38
14.4 0.000 0.000 0.38
17.4 0.814 2.872 0.38
66.2 6.593 3.324 0.37
47.6 2.512 2.057 0.38
10.2 0.014 0.008 0.37
7.4 0.004 0.006 0.38
13.2 -- -- 0.37
3.6 0.000 0.000 0.40
36 0.966 3.460 0.33
2.2 0.000 0.000 0.32
3.2 0.000 0.000 0.33
3.2 0.003 0.008 0.32
0.2 0.000 0.000 0.32


Even Rain Time

Date (mm (min
06/13 9.7 54
06/14 6.1 128
06/29 2.2 34
07/02 4.6 46
07/11 7.4 48.0
07/14 23.9 70
07/20 18.9 43
07/28 20.1 50
08/05 1.7 18
08/06 6.0 14
08/13 1.4 14
08/14 2.9 15
08/15 11.0 111
08/23 4.6 68
08/26 12.9 136
S08/27 6.7 102
08/28 11.0 33
08/30 7.8 137
08/30 11.2 244
09/01 10.1 149
09/02 5.5 58
09/04 11.8 132
09/06 13.1 21
09/09 62.3 210
09/10 31.0 66
09/14 8.3 132
09/15 4.9 84
09/19 20.1 378
09/20 4.2 143
10/12 18.2 32
11/16 1.8 51
11/16 1.6 25
11/29 2.1 55
12/03 0.2 108


B-Source-2


0.404 0.722 0.16
0.000 0.000 0.29
0.000 0.000 0.21
0.000 0.000 0.21
0.015 0.016 0.22
1.178 1.436 0.25
1.187 2.342 0.27
0.596 1.663 0.22
0.000 0.000 0.22
0.125 0.967 0.22
0.000 0.000 0.21
0.000 0.000 0.22
0.067 0.226 0.22
0.000 0.001 0.23
0.008 0.012 0.22
0.002 0.010 0.29
0.167 0.720 0.25
0.000 0.000 0.26
0.000 0.000 0.29
0.000 0.000 0.25
0.000 0.000 0.26
0.000 0.000 0.24
0.662 2.232 0.25
4.277 2.839 0.24
1.866 1.821 0.27
0.025 0.013 0.24
0.002 0.003 0.25
-- 0.23

0.000 0.000 0.29
0.687 2.573 0.21
0.000 0.000 0.20
0.000 0.000 0.21
0.002 0.007 0.20
0.000 0.000 0.20


B-Source-3


0.191 0.451 0.14
0.000 0.000 0.14
0.000 0.000 0.11
0.000 0.000 0.10
0.000 0.000 0.11
1.413 2.148 0.12
1.422 2.626 0.13
0.925 1.648 0.12
0.002 0.003 0.12
0.132 0.990 0.12
0.000 0.000 0.12
0.000 0.000 0.12
0.084 0.278 0.12
0.000 0.000 0.13
0.000 0.000 0.13
0.000 0.000 0.16
0.089 0.712 0.14
0.000 0.000 0.14
0.000 0.000 0.16
0.000 0.000 0.14
0.000 0.000 0.15
0.000 0.000 0.15
0.507 1.694 0.16
3.919 2.518 0.16
1.694 1.782 0.18
0.000 0.000 0.16
0.000 0.000 0.17
-- 0.15

0.000 0.000 0.19
0.753 2.502 0.13
0.000 0.000 0.14
0.000 0.000 0.14
0.000 0.000 0.15
0.000 0.000 0.15


B-Source-4


0.268 0.365 0.26
0.008 0.013 0.17
0.000 0.000 0.10
0.011 0.010 0.09
0.008 0.011 0.11
0.513 0.676 0.13
0.717 1.197 0.15
0.384 0.796 0.14
0.002 0.003 0.11
0.070 0.559 0.11
0.000 0.000 0.11
0.000 0.000 0.11
0.025 0.063 0.11
0.000 0.000 0.13
0.019 0.003 0.12
0.000 0.000 0.17
0.044 0.222 0.16
0.000 0.000 0.16
0.000 0.000 0.18
0.000 0.000 0.19
0.000 0.000 0.16
0.000 0.000 0.17
0.346 1.225 0.15
3.109 1.981 0.15
1.286 1.622 0.16
0.000 0.000 0.13
0.000 0.000 0.15
-- 0.12

0.000 0.000 0.19
0.616 2.248 0.15
0.000 0.000 0.11
0.000 0.000 0.12
0.000 0.000 0.11
0.000 0.000 0.11


B-VFS-1


0.047 0.112
0.007 0.010
0.000 0.000
0.000 0.000
0.009 0.009
0.917 0.893
0.972 1.624
0.593 1.078
0.003 0.005
0.008 0.020
0.002 0.004
0.007 0.008
0.016 0.020
0.005 0.006
0.008 0.008
0.008 0.010
0.065 0.311
0.007 0.008
0.013 0.004
0.042 0.006
0.012 0.005
0.026 0.008
0.463 1.587
4.842 2.037
1.818 1.762
0.001 0.003
0.001 0.004
0.016 0.007
0.000 0.000
0.612 1.910
0.000 0.000
0.000 0.000
0.003 0.006
0.000 0.000


B-VFS-2


0.024 0.067 (
0.000 0.000 (
0.000 0.000 (
0.000 0.000 (
0.015 0.013 I
0.321 0.590 (
0.649 1.586 I
0.150 0.344 I
0.004 0.006 I
0.010 0.036 I
0.004 0.007 (
0.012 0.016 I
0.025 0.032 (
0.010 0.021 (
0.076 0.026 (
0.026 0.021 (
0.031 0.032 (
0.041 0.016 (
0.015 0.009 (
0.037 0.012 (
0.017 0.012 (
0.032 0.015 (
0.286 1.265 (
3.829 2.364 (
1.162 1.430 (
0.000 0.000 (
0.000 0.000 (
0.009 0.005 (
0.000 0.000 (
0.437 1.863 (
0.000 0.000 (
0.000 0.000 (
0.003 0.005 (
0.000 0.000 (


B-VFS-3


B-VFS-4


0.06
0.002
0.000
0.000
0.003

0.427
0.677
0.262
0.000
0.007
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.014
3.513
0.925
0.000
0.000
0.000
0.000
0.277
0.000
0.000
0.000
0.000


0.09
0.004
0.000
0.000
0.001

0.757
1.061
0.462
0.000
0.020
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.022
2.172
1.060
0.000
0.000
0.000
0.000
0.974
0.000
0.000
0.000
0.000


0.017
0.006
0.000
0.000
0.013
0.061
0.182
0.022
0.000
0.005
0.000
0.003
0.000
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.034
2.879
1.092
0.000
0.000
0.000
0.000
0.227
0.000
0.000
0.002
0.000


0.019
0.009
0.000
0.000
0.013
0.069
0.320
0.043
0.000
0.012
0.000
0.003
0.000
0.004
0.006
0.006
0.000
0.000
0.000
0.000
0.000
0.000
0.185
1.563
1.186
0.000
0.000
0.000
0.000
1.217
0.000
0.000
0.004
0.000


(1) I30: maximum 30-minute rainfall intensity; (2) B: site B; number is plot ID; (3) Q: runoff volume (m3), Q,; peak flOw rate (L/s), 9, initial soil moisture (%).










Table 2-5. The loads of sediment, TP, and DP of selected events in site B.

Event B-Source-1m' B-Source-2 B-Source-3 B-Source-4 B-VFS-1 B-VFS-2 B-VFS-3 B-VFS-4
Date Sed" (g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g) Sed(g) TP(g) DP(g)
06 13 134 3.04 1.06 94.9 2.35 0.67 20.47 0.50 0.30 22.5 0.522 0.305 3.71 0.126 0.062 1.30 0.071 0.041 0.29 0.010 0.006 0.51 0.036 0.021
06 14 4.22 0.13 0.03 0 0 0 0 0 0 0.29 0.015 0.009 0.05 0.007 0.006 0 0 0 0.009 0.002 0.001 0.06 0.010 0.008
06/29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07/02 0 0 0 0 0 0 0 0 0 0.40 0.021 0.012 0 0 0 0 0 0 0 0 0 0 0 0
07 11 7.13 0.22 0.06 0.88 0.04 0.02 0 0 0 0 0 0 0 0 0 0.56 0.03 0.02 0 0 0 0 0 0
07 14 6930 150 4.17 2635 54.1 2.31 4026 100.2 2.64 560 12 0.84 162 5.55 1.81 59.1 1.97 0.60 59.7 2.19 0.80 2.31 0.14 0.09
07 20 7735 186 3.32 4668 110.4 2.24 6815 143 2.29 2099 51 1.16 316 10.1 1.78 202 6.86 1.16 116 4.52 1.17 18.9 0.70 0.27
07 28 5012 121.1 1.49 2140 47.8 0.70 2788 65.3 1.12 724 18 0.39 140 4.46 0.99 9.75 0.46 0.23 34.3 1.33 0.42 0.23 0.04 0.03
08 05 0 0 0 0 0 0 0.036 0.003 0.002 0.04 0.003 0.002 0.029 0.004 0.003 0.11 0.006 0.003 0.000 0.000 0.000 0.000 0.000 0.000
08 06 985 21.4 0.47 343 8.14 0.16 434 10.33 0.21 21 0.49 0.108 0 0 0 0.72 0.03 0.02 0 0 0 0 0 0
08 13 0 0 0 0 0 0 0 0 0 0 0 0 0.018 0.003 0.002 0.13 0.007 0.004 0 0 0 0 0 0
08 14 0 0 0 0 0 0 0 0 0 0 0 0 0.072 0.009 0.006 0.47 0.023 0.013 0 0 0 0.003 0.001 0.001
08 15 1045 22.8 0.77 70.5 1.79 0.11 103.8 2.44 0.15 9.35 0.18 0.028 0 0 0 1.09 0.06 0.04 0 0 0 0 0 0
08/23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 26 103 2.70 0.24 0 0 0 0 0 0 0 0 0 0 0 0 2.91 0.14 0.08 0 0 0 0 0 0
08 27 134 3.44 0.23 0 0 0 0 0 0 0 0 0 0 0 0 1.06 0.05 0.03 0 0 0 0 0 0
08 28 2864 61.3 1.27 548 12.96 0.33 476 11.20 0.31 63.2 1.48 0.103 4.435 0.23 0.10 2.23 0.09 0.04 0 0 0 0 0 0
08 30 0.15 0.01 0.01 0 0 0 0 0 0 0 0 0 0.081 0.010 0.007 1.46 0.07 0.04 0 0 0 0 0 0
S08 30 0 0 0 0 0 0 0 0 0 0 0 0 0.078 0.014 0.011 0.40 0.02 0.01 0 0 0 0 0 0
09 01 0.20 0.01 0.01 0 0 0 0 0 0 0 0 0 0.392 0.052 0.038 1.27 0.06 0.04 0 0 0 0 0 0
09/02 0 0 0 0 0 0 0 0 0 0 0 0 0.105 0.014 0.011 0.58 0.03 0.02 0 0 0 0 0 0
09 04 0 0 0 0 0 0 0 0 0 0 0 0 0.235 0.032 0.024 1.09 0.06 0.03 0 0 0 0 0 0
09 06 6667 144 1.66 3322 78.0 0.99 1991 48.7 0.65 916 22.0 0.478 98 3.33 0.81 49.0 1.81 0.52 1.09 0.04 0.02 2.22 0.09 0.04
09 09 22493 515 11.25 16092 392 6.89 19992 469 6.25 11188 264 4.69 985 35.1 8.98 682 25.9 6.44 545 20.3 5.76 408 22.7 4.56
09 10 8858 192 4.18 5639 138 2.92 5843 146 2.66 3093 72.7 2.15 317 11.9 3.66 139 5.60 2.20 119 4.58 1.44 88.6 3.53 1.19
09 14 0.54 0.03 0.02 1.45 0.06 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
09/15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
09 19 -- -- -- -- -- -- -- -- -- -- -- -- 0 0 0 0 0 0 0 0 0 0 0 0
09/20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 12 4391 95.3 1.34 2245 54.1 0.89 2310 53.7 1.06 1766 41.5 0.76 225 5.33 1.14 68.7 2.69 0.69 30.7 1.23 0.42 30.3 1.19 0.34
11 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11/29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12/03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1) B: site B: last number is plot ID: (2):Sed: sediment load.










Table 2-6. Trapping efficiencies of runoff volume, peak flow rate, sediment, TP, and DP in the
sites A and B.


Flow volume
Area
Plot rtoMean & SE 0)

(range)
A6(2) 2.50.86 & 0.03
(0.14~1.00)
0.67 & 0.06
A4 3.4
(-0.86~1.00)
0.68 & 0.05
Bl3 3.0
(0.02~0.98)
0.62 & 0.07
B7 5.9
(-0.37~1.00)
(1) SE: standard error.


Peak flow rate
Mean & SE
(range)
0.83 & 0.03
(-0.28~1.00)
0.67 & 0.06
(-0.71~1.00)
0.69 & 0.05
(0.14~1.00)
0.60 + 0.08
(-0.33~1.00)


Sediment
Mean & SE
(range)
0.98 & 0.01
(0.96~1.00)
0.97 & 0.03
(0.92~1.00)
0.98 & 0.01
(0.96~1.00)
0.98 & 0.01
(0.96~1.00)


TP
Mean & SE
(range)
0.97 & 0.02
(0.94~1.00)
0.96 & 0.04
(0.87~0.99)
0.97 & 0.02
(0.95~1.00)
0.97 & 0.03
(0.92~1.00)


DP
Mean & SE
(range)
0.76 & 0.04
(0.52~0.98)
0.72 & 0.05
(0.08~0.97)
0.66 & 0.08
(0.09~0.99)
0.70 + 0.08
(0.05~0.97)


(2) A6: includes plots A-VFS-1 and A-VFS-3 (5.8 m long); A4: includes plots A-VFS-2 and A-VFS-4 (4.1 m long);
B13: includes plots B-VFS-1 and B-VFS-3 (13.4 m long); B7: includes plots B-VFS-2 and B-VFS-4 (6.8 m
long).
















80 0


A Experimental Site

Phosphate 1\


Figure 2-1. Locations of the experimental sites, phosphate mining areas, and Peace River basin
in U.S.A.


Ni
WE









13.2 m


A1.BA 042 Source Area

moi sture
CR10X & probe
3.3 m
C > ~Antenna Rnf
lumeain -gtter
A: slope 2.0% aueA:Wel #1
auge Groundwater
B: slope 4.3% observation well

ol ~ ampling
trough
RunoffI
spreader .


V F Area
A=5.8 m A-VFS-1 A-VFS-2 A-VFS-3 A-VFS-4
B=13.4 11B-VFS-1 B-VFS-2 B-VFS-3 B-VFS-4 A=4.1 m'
g I I nB=6.8 mi
3.3 m


Capacitance

Water ""
sampler


A: Well #2
O


Figure 2-2. Schematic diagram of the experimental sites (sites A and B) in Bartow, FL.















* water depth (cm) vs.capacitance probe (mV)

-Poly. (water depth (cm) vs.capacitance probe (mV))

y =3E-05X2- 0.0072x
R2 =0.9955


0 200 400 600
Capacitance probe (mVr)


800 1000


Figure 2-3. Depth of capacitance probe submersion into water column versus capacitance probe
output voltage (mV).



0.008

Q= 5.28E-06*Exp(mV/128.93)
0.007 -R2=0.997

0.006-


0.005


"'0.004


0.003-


0.002-


0.001-


0.000
0 200 400 600 800 1000

Capacitance probe (mV)

Figure 2-4. Relationship between output voltage of capacitance probe and flow rate.















0 500 1000 1500 2000 2500 3000 3500



B-Soure-2 e-5
B-Source-3
------B-VFS-2 4e-5
1 8 B-VFS-3 e5-

1 5 Total runoff Volume (m3) from
B-Source-2: 0.597
E 1 2 B-Source-3: 0.925
0 9 B-VFS-2: 0.153
B-VFS-3: 0.262
~06

00


Y" Sediment Load (kg) from
0 008 B-Source-2: 1.651
.I\ B-Source-3: 2.182
0 006 B-VFS-2: 0.010
P B-VFS-3: 0.034

0 0004


E 0 002




0 00020 TP loads (kg) from:
Y" B-Source-2: 0.007
B-Source-3: 0.0511
0 0015- I B-VFS-2: 0.0005
B-VFS-3: 0.0013

0 00010







S20e-6 DP loads (kg) from:
Y" B-Source-2: 0.0007
d IIB-Source-3: 0.0011
S1 5e-6 i : B-VFS-2: 0.0002
B-VFS-3: 0.0004
~10e-6

S5 0e-7



ll 500 1000 1500 2000 2500 3000 3500

Time (s)


Figure 2-5. Hydrographs, sedimentographs, and hyetograph of Site B on event of July 28, 2006.










-0- Site A -A Site B


Sediment


10-



06-


1-06


S0-
00-


23456234562345623456


234567
(e)


Area Ratio (SourceN/FS)


Figure 2-6. Trapping efficiencies of runoff volume (Q), peak flow rate (Qp), sediment, TP, and
DP versus source/VFS area ratio.


O TPTE/STE
*DPTE/STE
HDPTE/QTE
+ + STE/QTE
v QTE/QPTE


+ +










2 4 6 8 10 12


Length of VFS (m)
Figure 2-7. The TE ratio of selected variables versus length of VFS.


~--i


~--i















d Site B
S21 Site A


> ~Cey-0.863 *
** *








S0.5




0 0.5 1 1 .5 2 2.5

Mean DP concentration from source areas (mg/L)



Figure 2-8. Relationship between mean DP concentration ooutput from the VFS and source areas.


- 300




m10


0.000


0.001


0.002 0.003
Q*Qp (m3*m3 M)


0.004


Figure 2-9. Relationships between sediment yield, Q, and Q, in the VFS and source areas.




































9 =0.00-0.04
o 8 .=0.04-0.08
y ,=0.08-0.12
,=0.00-0.04, CN=81
...... 9 ,=0.04-0.08, CN=82
- 9 =0.08-0.12, CN=83

C =S0.87








0 0 ..


0 20 40


60 80 100


Rainfall (mm)

Figure 2-11. Curve numbers of different antecedent soil moisture conditions and relationships
between runoff and rainfall in site A.


I


LNI~Y~-r'


I


300
*Source
o VFS

S200



100-
Source: PP= 0.02270*sediment
R2=0.977

0 5000 10000 15000 20000
Sediment (g)
Figure 2-10. Relationships between PP and sediment in water samples collected from VFS and
source areas.





9 =0.31-0.40
60 -* 9 :=0.21-0.30
0 9 ,=0.11-0.20
9 ,=0.31-0.40, CN=95
50 -( 9 =0.21-0.30, CN=90*
..... 9 ,=0.11-0.20, CN=87


C 7f0.92

H 0- ."0

20 -,.






0 10 20 30 40 50 60 70

Rainfall (mm)

Figure 2-12. Curve numbers of different antecedent soil moisture conditions and relationships
between runoff and rainfall in site B.





































B-source B-VFS-7 B-VFS-13JA-Source A-VFS-4 A-VFS-6

(8)


1800


1500


3 1200

0 00
E



r 600


300


0



3.0 -


2.5 -


S2.0 -


F 1.5 -


1.0 -


0.5 -


0.0-


*onn


- 1500


- 1200


- 900


- 600


- 300


B-source B-VFS-7 B-VFS-13A-Source A-VFS-4 A-VFS-6


B-source B-VFS-7 B-VFS-13JA-Source A-VFS-4 A-VFS-6


Figure 2-13. Yearly outflows (runoffvolume, sediment, DP, TP) collected from VFS and source
areas in miming areas.









CHAPTER 3
EVIDENCE FOR APATITE CONTROL OF PHOSPHORUS RELEASE TO RUNOFF FROM
SOILS OF PHOSPHATE MINE RECLAMATION AREAS

Introduction

Phosphorus (P) carried in surface runoff from agricultural lands has been studied

extensively and identified as a non-point source pollutant of surface water systems which may

degrade water quality. Loading of P in runoff is heavily influenced by soil properties and land

management practices (He et al., 2003). Soil properties such as particle size distribution,

organic matter, pH, and metal oxides affect P dynamics in soil solution (Sharpley et al., 1981;

Vadas and Sims 2002). In addition, rainfall intensity, runoff duration, and a water/soil ratio

also dominate the desorption/diffusion of soil P in the runoff water in agricultural lands (Storm et

al., 1988; McDowell and Sharpley, 2001b).

Mechanisms controlling P release from soils rich in geologic P (Wang et al., 1989) may

deviate from mechanisms typical for soils enriched with fertilizer P. Geologic P can be

abundant in anthropogenic soils of reclaimed phosphate mining areas. High dissolved P (DP)

has been measured in runoff from two reclaimed phosphate mining sites in Florida (Appendix E)

(0.4 3.0 mg L^)~. The average DP concentration in the upper Peace River at the Bartow

sub-basin has been declining from 18 mg L-1 to 1.23+1.93 mg L-1 due to the changes in mining

practices (DEP, 2006 and Southwest Florida Water Management District, 2001) between 1965

and 2005. Total P (TP) concentration is still higher than the U.S. Environmental Protection

Agency (USEPA) criterion of TP concentration (0. 1 mg L^1) discharging into a river (USEPA,

1986; Mueller et al., 1995). The soils of these sites have very high P concentrations, but very

low clay, Fe, and Al concentrations. These conditions led to the suspicion that dissolution rate

of residual geologic apatite (carbonate fluorapatite, CFA) is controlling P release from these









soils, rather than P adsorption and desorption processes that typically control the fate of P in soils

of the southeastern USA coastal plain (Harris et al., 1996).

The dissolution rate of CFA, the phosphate mineral that dominates "phosphate rock"

(common term used for the phosphate ore), is mainly affected by soil pH, concentrations of P

and Ca (Guidry and Mackenzie, 2003; Babare et al., 1997; Chien and Menon, 1995), moisture

content, and particle size (He et al., 2005). The influence of particle size stems from its inverse

relation to specific surface area (SSA) in conjunction with dissolution being a surface-controlled

process. Dissolution of apatite minerals would ensue immediately upon contact with runoff

water. Thus, once runoff occurred in the mining lands, they would be potential sources

contributing DP into water bodies.

The obj ectives of this study were to (i) confirm the presence and particle size distribution

of apatite via solid-state and chemical analyses, (ii) determine if CFA is undersaturated in runoff

and hence subj ect to dissolution, and (iii) compare P concentrations predicted from reported CFA

dissolution rate constants with observed experimental values.

Materials and Methods

Field Experiments

Water and soil samples analyzed in this study were collected from a phosphate mining

reclamation site near Bartow, FL, where field experiments were conducted to evaluate the

efficiency of vegetative cover strips (VFS) in reducing P concentration in runoff. Two

experimental sites (A and B) were chosen that were 3 km apart. Source areas were

representative of the bare disturbed mining lands in the upper Peace River watershed.

Dimensions of the plots for sites A and B are shown in Figure 2-2. The average slopes of site A

and site B were 2.0 %, and 4.3 %, respectively. The lengths of the source areas at site A and









site B were 14.4 m and 40.0 m, respectively. The lengths of the filters were 4.1 m and 5.8 m at

site A and 6.8 m and 13.4 m at site B.

Runoff was collected by a gutter at the outlet of each plot where it then flowed into a flume

and trough. Then, runoff was redistributed through a PVC spreader into filters. A cover

shield was installed to avoid rain falling into the gutter. Runoff water samples were collected at

each trough by an automatic water sampler. The flow rate was measured from a six-inch (15.24

cm) HS flume from each VFS and source plot. A capacitance probe was inserted vertically in

each flume throat to measure the flow rate. The capacitance probe detected the flow rate in the

flume every minute and stored this data in a datalogger. The datalogger then sent sampling

pulses to the ISCO 6712 automatic water sampler (ISCO, Inc.) based on changes in accumulated

runoff volume. After activation, the sampler purged the suction hose and then collected runoff

water samples from the trough into 500 mL bottles. Runoff samples were analyzed for

concentrations of sediment, TP, and DP.

Soil Chemical Properties

Soil samples were collected from the top 2 cm depths of each site since this zone has the

greatest interaction between soil and runoff water. All samples were air-dried and then sieved

using a 2.0 mm mesh sieve. Soil pH was measured in a 1:1 mixture of soil:water using a pH

meter (pH/Cond 340i/Set, WTW, Germany). Soil organic carbon (OC) was measured by the

Walkley-Black oxidation procedure (Nelson and Sommers, 1982). Mehlich-1 extraction,

degree of phosphorus saturation (DPS), phosphorus sorption isotherms (PSI), phosphorus

fractionation, and TP in each particle size class were conducted to investigate the P dynamics in

the soil and soil solution. Details of these analyses follow:









Mehlich-1 extraction

A combination of HCI and H2SO4 acids (Mehlich, 1953) with a 1:4 soil: extractant ratio

was used to extract P from soils. The extraction was shaken for 5 minutes and filtered through

Whatman # 42 filter paper. Mehlich-1 extraction can dissolve Al- and Fe-phosphates as well as

P adsorbed on colloidal surfaces in soils. Mehlich-1 extraction works well for acidic, low

cation exchange capacity soils, which are prevalent in the SE USA.

Degree of phosphorus saturation (DPS)

The degree of phosphorus saturation (DPS), which relates soil extractable P to extractable

Fe and Al, has been introduced as an environmental index of soil adsorbed P available to be

released through runoff (Nair et al., 1998, Beck et al. 2004). DPS calculated from Mehlich-1

extraction has been shown to be a valid indicator of P release potential (Nair and Graetz, 2002).

Thus, values of Mehlich-1 extractable Fe, Al, and P were used for DPS determination in this

study. The following method of calculation was applied:

P~ebh
DPS = Mehh- 100 (3.1)
(FeMehhch-1 + AIMehhch-1)

where Mehlich-1 extractable P and metal concentrations are expressed as mole kg-l

Phosphorus sorption isotherms (PSI)

Phosphate sorption was measured by using two grams of soil sample with 20 mL of 0.05

M KCl solution containing 0, 1.5, 4.5, 8.5, 15, and 50 mg[P] L^1 in a 50 mL centrifuge tube,

respectively. Each tube with suspension was shaken for a 2-hour period. After centrifugation

at 5000 rpm for 15 minutes, the supernatant was filtered through a 0.45 Cpm membrane filter.

The amount of P adsorbed by soil was determined by the difference between the initial and final

concentration of P in the solution.










Phosphorus fractionation

The sequential extraction procedure, following the method of Nair et al. (1995),

distinguishes six forms of P (Figure 3-1). After the supernatant of one extraction was removed,

the tube and soil were re-weighed, and the next extracting solution was added to the tube. All

of the supernatants were filtered through 0.45 Clm membrane filters and refrigerated at 4 OC until

analy si s.

Total phosphorus in each particle fraction

Particle size fractionation was conducted by sieving and centrifugation using a procedure

based on one described by Whittling and Allardice (1989). Samples were initially saturated with

Na to promote dispersion. This was accomplished by placing 20 g of soil in a 250 mL

centrifuge bottle, adding IN NaCl to 250 mL volume, shaking, centrifuging, and decanting

supernatant. These steps were repeated twice more, after which samples were rinsed free of salt

using repeated washings with de-ionized water until the supernatant appeared turbid.

Sand (> 37 Cpm) was then separated from silt and clay particles by wet sieving. The soil

in the bottle was washed into a 37 Cpm mesh sieve using pH=10 water. The < 37 Cpm material

was collected into centrifuge bottles to separate silt (2-37 Cpm) and clay (< 2 Cpm) by

centrifugation using time and gravity forces based on principles of Stokes law (Jackson, 1969).

Sand was further fractionated by sieving into particle sizes of 37 to 106 Cpm and 106 to 250 pm.

The soil in each particle class was measured for TP. TP is analyzed by ashing and HCI (6N)

digestion (Anderson, 1976). All extractions of P were determined by the molybdate blue

method of Murphy and Riley (1962). Samples were examined by x-ray diffraction (XRD) for

mineral identification, and by X-ray fluorescence (XRF) spectrometry to determine the relative

concentrations of elements.









Phosphate Solubility Equilibria

Runoff water samples collected from both sites in June 2006 were used for chemical

speciation modeling and evaluation with respect to CFA solubility. Each water sample was

extracted through a 0.45 Clm membrane filter. The concentrations of Ca2+, Fe2+, Mg2+, Al3+, K ,

Na Cu Mn2+, and Zn2+ were measured by means of atomic absorption spectrometry (Varian

220FS, Varian Australia Pty Ltd, Mulgrave Victoria, Australia). The concentrations of F-,

NO2-, NO3-, H2PO43-, SO42-, and Cl- were analyzed using ion chromatography (Dionex LC20

Chromatography Enclosure, Dionex, CA). Ionic strength of solution components were

calculated from equation, I=0.013 EC (Griffin and Jurinak, 1973), where EC is expressed in CLS

cm- The pH was measured directly from a pH electrode (pH/Cond 340i/Set, WTW,

Germany). Ionic activities of solution components were calculated using the Visual MINTTEQ

equilibrium speciation program (Department of Land and Water Resources Engineering. 2006).

The thermodynamic solubility product (K p) was computed for HAP, FAP, and CFA,

respectively, using the following equilibrium formulas:

Calo (PO4 60H, ++ 10Ca 2+ 6PO43- + 20H

(3.2)

Calo(PO4 6F, ++ 10Ca 2+ 6PO43- +2F

(3.3)

Calo (PO4 5.83-0.57x (CO3 xF2.52-0.3x + H20++~10Ca 2+
(3.4)
(5.83 0.57x)PO43- + (x)CO32- + (2.52 0.3x)F-

TheK~ for HAP was determined to be 10-116. by McDowell et al. (1977). In most natural

systems, apatite contains F^1 (FAP or CFA) instead of OH-1 (HAP), resulting in lower solubility.

TheKs for FAP has been reported as 10-121.2 (Driessens, 1982). Calcium apatite is often









found in a non-stoichiometric form which may explain the range in K, values reported in the


literature (e.g. K I= O-10-114-0-119 forHAP, and Kp= 10-12-10-122 for FAP) (McConnell,

1973; Elliott, 1994). The Ks of CFA varies depending on the degree of CO3 Substitution from


FAP (Jahnke, 1985). FAP was found to have the lowest solubility (K, =10-2) CFA with

the maximum CO3 Substitution (~ 6.5 wt. %) has the highest solubility (Ks =10-17.) among

CFA specimens evaluated. With known K, of HAP and FAP, phosphate-mineral solubility

diagram was plotted to show the relationships between logH2PO42- and pH. This solubility

diagram is particular useful for determining relative stability of phosphate compounds and

minerals in soils at various pH values (Olsen and Khasawneh, 1980).

Approach for Modeling Phosphorus Release

A number of studies have addressed kinetic dissolution of geologically natural FAP and

CFA (Lane and Mackenzie, 1990 and 1991; Valsami-Jones et al., 1998; Guidry and Mackenzie,

2000 and 2003, and Welch et al., 2002). The equation applied to simulate FAP and CFA

dissolution rates was adopted from the results of Guidry and Mackenzie (2003). They

investigated dissolution rates over a range of pH, solution saturation state, temperature, and on

FAP and CFA by using both a fluidized-bed and stirred-tank reactor. In their study two of five

apatite samples were CFA and obtained from the central Florida. Their results from dissolution

rates versus pH experiments showed that all of the experimental solutions were found to be

undersaturated with respect to the CFA or FAP. Dissolution rates of apatite dependent on pH

can be described using following equation (Blum and Lasaga, 1988)

R, = ka [H ]"

(3.5)









where Re, is dissolution rate (moles m-2 S-1), k, is rate constant (moles m-2 S-1), [H ] is

hydrogen ion activity, and n is reaction order.

In the study of Guidry and Mackenzie (2003), at pH between 4 and 7, a linear regression

yielded a k, = 6.91 x 10-s moles m-2 S-1 and n= -0.67 with R2 = 0.79 for CFA compositions. The

ka changed inversely with pH. Welch et al. (2002) studied the effect of pH on the rate of

inorganic FAP dissolution from 2.0< pH< 7.0. From 2.0< pH< 5.5, the regression line of

experiments fitted well with the overlapping fluidized-bed and stirred-tank reactor data of Guidry

and Mackenzie.

To model P release from CFA, the units of dissolution rate of CFA (Rc, ) are converted

from moles m-2 S-1 to mg L^1 s^l when considering the ratio of soil/water and SSA of CFA per

gram soil. Each particle is assigned a sphere of influence radius, thus SSA can be expressed as:

surface area of sphere(m ) 4xi(d 2)" 6x 106
SSA = (3.6)
weight of pmI i" d JO (4 3)ri(d 2)3 x106 x PCAy PCFA x d

where SSA is the specific surface area of a particle (m2 -1)~, d is the particle diameter (m), and

PCFA is particle density of CFA (g cm-3), which can be calculated from following equation:


(Adolecular Weight)x Z
P =(Cell Volume x 0. 60225)


(3.7)

where PenA is particle density of CFA (g cm-3), CB/ F/ll? voeis in Angstroms3, Z is in formula

units per cell, Mlolecular Weight is in g mole l, and 0.60225 is the Avogadro constant/(1.0 x 1024)

If a uniform distribution between d, and d, is assumed, the average SSA (SSAc, ) can

be calculated as (Storm et al., 1988):









6x10-6 d
SSA CFA
PCFA jd2 d) d;d

(3.8)

where SSAcm is the average value of SSA between d, and d2 (2 -1), d, and d2 are the

particle diameter (m).

Thus, the equation used to describe the CFA dissolution is shown as follows:


Kcm = Rcm molae m -2 S-1 SAcm m 2 -1 soilweight gl ]-31 gmole'
water volume Icm 3
(3.9)
soil weight [n1 lii
= 31-Ka[ ]T+ n -SSAcm [gL
water volume


Kc, = 31-Ka[H ]n -SSAcm pb -volume = 31- Ka[H+ ]n -SSACFA b mlg L-' s] (3.10)
9 -volume r

where 77 : porosity (cm3 Cm-3, p : bulk density (g cm-3), and SSAcm : the SSA of CFA per

gram soil (m2 -1l) can be calculated from Eq. (3.11).

nSA Particle size (i) P concentrate ion (i) "Sii(.1


where ParticlePPP~~~~PPP~~~PPP size (i: mass fraction of particles representing a given size range (i); P

concentration (i: P concentration within a given particle size range (i) (mg/kg) (Table 3-5);

SSAcm (i: specific surface area for a given particle size range (i) (m2/g) (Table 3-7); can be

calculated from Eq. (3.8); 0. 158: P fraction per unit weight of CFA calculated from the formula

of CFA (Ca9.62Na0.273Mg 0.106(P O4)4.976(C O3)1.24F.41 Hanna and Anazia, 1990).

Eq. (3.9) can be used to calculate DP concentration in batch experiments. Eq. (3.10) can

be applied to simulate P release of CFA from the soil profie per unit depth with consideration

bulk density and porosity of soil profie under Hield conditions.









Results and Discussion


Soil Properties

Physical and chemical properties did not vary appreciably between sites or between source

and VFS areas for most properties, with slightly acid pH and relatively low OC (Tables 3-1). A

higher fraction of fine particles was found in site B compared to site A. Chemical extractions

and P fractionation confirms very high TP concentration and a dominance of Ca-P. A form of

apatite in the samples was confirmed by XRD (Figure 3-2). We infer that this apatite is CFA

since that is the form that has been well documented in phosphoritic deposits from which the

material used to construct the remediated soils was derived (Hanna and Anazia, 1990; Guidry

and Mackenzie, 2003). Results of XRF (Table 3-2) showed the main elements to be Si, Ca, Al,

P, K, and Fe. Quartz is the main mineral in soil, accounting for the dominance of Si. The

second most abundant element is Ca, a maj or component of CFA. Phosphorus content of 3.7 %

as determined by XRF was slightly higher than TP as determined chemically (ranging from 1.7

% to 2.3 %; Table 3-3). These very high P concentrations result from the residual CFA. The

P sequential fractionation of soils (Table 3-3) from the two sites is also consistent with a

dominance of Ca- (and/or Mg-) bound P (approximately 95 % of TP). Water soluble P is in the

range from 15.5 to 24. 1 mg kg- which represented 0. 10 % of TP. Water soluble and

exchangeable P fractions are considered available forms of P to crop growth. The sum of these

two forms ranged from 29.3 to 35.0 mg kg-l (around 0. 16%).

Mehlich-1 P (Table 3-4) P concentration ranges from 740 to 1 192 mg kg- The maj or

Mehlich-1 -extractable element was Ca, whose mean concentration ranges from 1804 to 3490 mg

kg- The concentration ratio of P/Ca ranges from 33 % to 45 %. The element ratio of P/Ca

(0.40) in the formula of CFA is in this range. The DPS values were very high, ranging from

630 to 1620 %, consistent with apatite dissolution from Mehlich-1 extraction. Results of P









sorption isotherms (Figures 3-3 and 3-4) confirm a high equilibrium P concentration at zero net P

sorption (EPCo ) for soils from both sites (approximately 10-16 mg L^)~. If the P concentration

of runoff is less than the EPCo, then there would be a net release from the soil. Thus, only

runoff DP concentration greater than 10 mg L-1 would result in net P sorption to soil particles.

Total P concentrations were higher in the finer particle-size ranges (Table 3-5). Particles

smaller than 37 Cpm contain about 3.1% P. The concentrations between classes 0 < 2 Cpm and

2-37 Cpm were not significantly different. Coarser particles (250-2000 Cpm) contain about 1.6 %

P. The higher P concentration found in finer size fractions relates to a greater abundance of CFA

in these fractions, possibly reflecting the predominant particle size of CFA in the ore body.

Alternatively, CFA may have been sorted via elutriation or comminuted (being softer that quartz)

during the mining process.

Based on the formula of CFA (Ca9.62Na0.273Mg0.106s(PO4)4.976(CO3)1.024F2.41), the P fraction

per unit weight of CFA is 0. 158. The weight fraction of CFA in each size fraction was

calculated using this value in conjunction with TP for that size fraction (Table 3-6). The weight

fraction of CFA in each size fraction (Table 3-6) multiplied by SSA of CFA in each size fraction

of CFA (as Eq. (3.8)) equals the CFA SSA contribution of each particle size class of soil sample

as shown in Table 3-7.

Phosphate Solubility Equilibria

Concentrations of cations and anions, along with pH, EC, and ionic strength of runoff

samples (Table 3-8) were used to model chemical speciation for runoff samples. Figure 3-5

presents the soil solution composition in relation to the stability of phosphate minerals in soils.

The mean activity of Ca2+ 2+aZ= 4.7) was used to develop the diagrams. Since K, of CFA

is varied based on the CO3 Substitution and the line of higher K, in phosphate-mineral









solubility diagram is far away from the intersection of x axis and y axis, the relations between

logH2PO42- and pH of CFA are not plotted in figure. A solution point plotted above a certain

solubility line represents a solution that is supersaturated relative to the phosphate phase

represented by the line, which indicates that the solution and that phase could form and be stable.

Any solution point plotted below a mineral solubility line is undersaturated. The results from

Visual MINTEQ and Figure 3-5 show the soil solution is undersaturated. In addition, we found

low Al and Fe bound P in P fractionation data and low Al and Fe concentrations in Mehlich-1

extraction. Ca and Mg concentrations were higher in both extractions. Thus, we determined

that the high DP concentration in runoff water was P releasing from CFA.

Results of Modeling Phosphorus Release

Linear equation from Guidry and Mackenzie study (2003) was adopted to simulate the

dissolution of CFA (ka =6.91 x10-s moles m-2 S-1 and n =-0.67, at 4 < pH <7). To simulate

dissolution of apatite, 2 grams soil with 20 mL deionized water in a 50 mL centrifuge tube were

shaken for 15 minutes (soil-water contact time). The pH was measured after batch experiments.

After centrifugation at 5000 rpm for 5 minutes, the supernatant was filtered through a 0.45 Cpm

membrane filter. After that, soil samples were analyzed for particle size distribution. Once

we know particle size distribution, P concentration in each particle size class (as Table 3-5), P

fraction per unit weight of CFA (0. 158), and average SSA in each size class, we can calculate the

total SSAca of soil samples based on Eq. (3.11).

Results of the simulation (Table 3-9) were calculated based on Eq. (3.9). The modified

Nash-Sutcliffe efficiency (C,f;;;) was used to evaluate the model predictions. The detailed

description about C,7;;; is presented in Appendix B. Using k, = 6.91x10-s moles m-2 S-1 and

n = -0.67 (Guidry and Mackenzie, 2003) to predict DP in batch experiments, C,7;;; is -0.78 and










predicted DP is underestimated for all samples as shown in Figure 3-6. The underestimation

relates either to the rate equation or constant not being applicable or to an underestimation of

actual CFA SSA. There could be differences in the nature of the CFA of this study and the

specimens analyzed by Guidry and Mackenzie (2003) (e.g.,crystallinity) that would result in a

different dissolution rate constant. Also, the narrow pH range may have limited the sensitivity

of the rate equation used. The calculation of SSA of CFA was based on the Eqs. (3.8) and

(3.11) assuming that each particle is a sphere and uniform distribution is assigned in the each

particle size class. These two assumptions may result in an underestimation of CFA SSA,

which would in turn produce an underestimation of DP release. Despite the underestimation,

however, a strong relationship between calculated SSA of CFA and measured DP concentration

(R2=0.93; Figure. 3-7) is supportive of other evidence that CFA dissolution is a major factor

controlling P release from these soils.

Conclusions

Phosphorus in soils at the remediation was in the form of apatite, as indicated by XRD and

corroborated by XRF elemental analysis and chemical fractionation. Results of this study

supported the hypothesis that release of P from the soils was primarily from apatite dissolution

rather than desorption from metal oxides that is more typical of soils of the region. The P

release behavior in a batch experiment closely related to the modeled SSA of CFA. The

absolute prediction of DP release based on modeled CFA surface area and a CFA rate constant

from the literature underestimated observed release, suggesting that the rate equation or constant

were not applicable to the CFA of the soils studied or that SSA of CFA was underestimated, or

both.

















ASource 8 0.2710.23 (1.4,1.7,96.9) 6.0910.15
VFS 8 0.7610.4 (2.5,2.9,94.6) 6.3710.19

BSource 8 1.70+0.31 (1.8,3.5,94.7) 6.1810.13
VFS 8 1.1110.48 (2.5,3.4,94.1) 6.3210.21


Table 3-1. Results of organic carbon (OC), soil texture, hydraulic conductivity (Ks), and pH.


Site Plot N OC
MeaniSD'


Texture*
(%)


pH
MeaniSD


silt, sand), where clay: <2Cpm, silt: 2-37Cpm, sand: >37Cpm.


#: SD: standard deviation.


*: (clay,


Table 3-2. Main compounds in soil samples of both sites examined by X-ray fluorescence (XRF).
Sit Plt NMain compounds in soil samples (%/)


Si
47.913.3
60.110.13
37.610.6
44.911.02


P
2.7710.04
2.9210.04
3.2610.18
3.0010.05


Ca
8.8211.34
6.2710.29
13.3311.16
11.5510.03


Al K
4.3810.54 1.3310.02
13.011.81 0.5910.03
8.6610.32 0.7110.01
9.8211.83 0.9210.14


Fe
0.5010.09
0.9110.06
1.5810.21
1.4410.38


Mn
0.0210.001
0.1010.1
0.0110.003
0.0310.013


Sr
0.0210.001
0.1510.14
0.0510.002
0.0410.009


Source
A
VFS
Source
B
VFS


Table 3-3. Average concentration of each soil phosphorus fraction among all samples.
Water KCl Fe/Al-Pi Organic-P Mg/Ca-Pi Residual-P TP
Site Plot N
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Source 7 15.512.8 13.811.2 174124 184132 167001378 158122 172671357
VFS 7 19.913.6 11.411.2 291162 401173 2032012960 219152 2126712960
Source 7 23.312.3 8.418.6 358146 4761184 2182012680 177154 2287012880
VFS 7 24.114.2 10.913.1 234183 3981103 184171557 156137 192401490


Table 3-4. The results of Mehlich-1 P extraction, degree of P saturation (DPS), ratio of P/Ca.
Fe Al Ca Mg P DPS P/Ca
Site Plot N
(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) % %
Source 6 4.3010.63 5712.5 2213162 67116.7 989156 552135 4512
VFS 6 4.5810.69 114~111 18041104 123125 738168 211130 4112
Source 8 12.9113.50 140153 3490+191 158163 11851138 2971126 3413
VFS 10 13.7111.49 78128 3640152 124143 1192144 4951147 3311











Table 3-5. P concentrations in different particle size classes.
P concentration (mg/kg) in each particle size class (Cum)
Site plot N
0.45<2 2-37 37-100 100-250 250-2000


Table 3-6. Weight of CFA per gram soil sample.
g[CFA]/g[Soil]
Site plot
0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm
ASource 0.193210.0128 0.183110.0141 0.128310.0169 0.111410.0105 0.098810.0119
VFS 0.202610.0103 0.194410.0091 0.137710.0117 0.123810.0102 0.107610.0079
Source 0.194810.0114 0.187510.0144 0.147210.0122 0.126010.0086 0.104310.0074
VFS 0.204310.0140 0.196910.0100 0.155910.0111 0.124910.0128 0.105910.0092


Table 3-7. Surface area of CFA per gram soil.

Site Plot N m[F]gS
0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm
ASource 4 0.419110.0287 0.058610.0045 0.004 110.0005 0.001410.0001 0.0005310.00006
VFS 4 0.454410.0294 0.062210.0029 0.004410.0004 0.001510.0001 0.0005710.00004
Source 4 0.436810.0255 0.060010.0046 0.0046810.00039 0.0015810.00011 0.0005610.00004
VFS 4 0.458110.0312 0.063010.0320 0.0049610.00036 0.0015610.00016 0.0005610.00005


ASource
VFS

BSource
VFS


2956012030
3205112080
3081311800
3231812200


2897312230
307491430
2966012270
3115811580


2029512670
217801860
2329411920
2466911770


1761811660
1959411610
199371350
1976612020


1563411890
170201240
1650311170
167621450











Table 3-8. Concentrations of ions, pH, EC, and ionic strength of runoff samples collected in June 2006.
Samples EC Ionic F" NO-2 NO-3 PO4-3 SO4-2 -1 a+2 +g2 Fe+2 Al+3 K+ Na+ Cu' Mn+2 Zn+2
pH
ID CIS/cm Strength mg/L
A2-5 5.81 21 0.00027 0.39 0.17 0.43 1.45 2.36 12.83 1.13 0.26 0.01 0.11 0.22 1.17 0.00 0.01 0.01
A2-6 6.01 17 0.00022 0.21 0.16 0.25 1.33 1.91 10.60 0.98 0.24 0.00 0.08 0.24 0.82 0.00 0.01 0.03
A2-8 6.09 13 0.00017 0.65 0.14 0.21 1.43 1.55 8.06 0.69 0.15 0.01 0.01 0.14 1.02 0.01 0.01 0.02
A3-17 5.97 17 0.00022 0.08 0.16 0.20 0.97 1.90 10.86 0.51 0.30 0.01 0.12 1.42 0.91 0.01 0.01 0.09
Bl-5 6.10 28 0.00036 0.36 0.28 0.26 4.92 1.17 9.64 2.01 1.27 0.46 1.23 2.06 1.01 0.03 0.02 0.08
B4-4 6.20 35 0.00046 0.35 0.33 0.39 5.35 1.38 10.29 2.05 1.25 0.39 1.27 2.34 1.13 0.03 0.02 0.08
A3-24 4.86 15 0.00020 0.07 0.11 0.18 1.01 1.67 9.96 0.28 0.17 0.00 0.22 1.42 0.85 0.02 0.02 0.10
A5-17 4.81 14 0.00018 0.06 0.14 0.17 0.95 1.52 10.66 0.26 0.14 0.01 0.19 1.13 0.90 0.02 0.02 0.09











Table 3-9. Input parameters and simulations results of the CFA dissolution model compared to
the DP of batch experiments.


Sample
ID
Al
A2
A4
A5
B1
B2
B4
B5


S SACFA
m [CFA]/g[S]
0.00868
0.01066
0.01047
0.01119
0.01314
0.01321
0.01446
0.01256


Soil/water
pH
g/L
5.96 100
6.10 100
6.05 100
6.14 100
6.20 100
6.19 100
6.05 100
6.17 100


Time
s
900
900
900
900
900
900
900
900


DP
mg/L
0.436
0.424
0.581
0.662
0.779
0.888
0.884
0.668


Measured DP
mg/L
0.744
0.924
0.997
1.060
1.402
1.676
1.798
1.474


* k, =6.91E-8 and n=-0.67 used in Eq. (3.9), C,,,, = -0.78 were obtained.












Residual P [PO]
20 mL, 6M HC1
Digestion at 100oC


Water Soluble P Exchangeable P Inorganic Fe/Al Ca and Mg P [Pi]
20 mL, H20+ 2 g soilW [Pi] P [Pi] L 20 mL 0.5 MHC1
Shake 2 h. I 120 mL 1 M KC1 I 120 mL, 0.1 MNaOH Shake 24 h.
Shake 2 h. Shake 17 h.




Alkali extractable Organic P [PO]
11N H2SO4 and potassium persulfate digestion
[NaOH-TP]- Inorganic Fe/Al P


Figure 3-1. Scheme of phosphorus fractionation of phosphate mining soils.


Two-Thdas (deg)


Figure 3-2. Apatite was found in soil samples of sites A and B observed by X-Ray diffraction.















































-* Plot B4&B3
-m- Plot B5&B6
-Plot Bl&B7
-* Plot B2&B8







5 0O 15 20 25 30 35 40 45 50 5


-10

-15

-20

P concentration (mg/L)


Figure 3-3. P sorption isotherm of soil samples in site A (2 hours shaken).


0


a -10


-20


-30


P concentration (mg/L)


Figure 3-4. P sorption isotherm of soil samples in site B (2 hours shaken).














2 -1 E-luorapatite
-Hyd roxya patite



0-

O
-2 -2



-4-
S0 o
OO OO

-6-


4.5 5.0 5.5 6.0 6.5
pH

Figure 3-5. Phosphate-mineral solubility diagram relating the log H2PO42- to pH in soil solutions
of runoff water samples collected from phosphate mining areas.


~ ~iid PIE-~.n=-dO:
I-I lu~c


L


0.0 0..5 1.0 1..5 2.0


Measured, DP (mgiL)


Figure 3-6. The measured value versus predicted value using k, =6.91x10-s moles m-2 S-1 and
n=--0.67 in Eq. (3.9).





0r.020


y = 0.004x +0.00 5
R'= 0.934

0.015




0.010










0 .00 0.40 0.80 1.20I 1.60 2.00

Measured D)P (mg/L)


Figure 3-7. The relationship between the calculated SSA of CFA and measured DP
concentration.









CHAPTER 4
SIMPLIFIED MODELING OF PHOSPHORUS REMOVAL BY VEGETATIVE FILTER
STRIPS TO CONTROL RUNOFF POLLUTION FROM PHOSPHATE MININ\G AREAS

Introduction

Florida is rich in phosphate rock formed millions of years ago under ocean waters.

Phosphate is a key ingredient in fertilizer and cannot be synthesized; so natural phosphate mining

is the only supply and for the last 120 years has been one of the main economic activities in the

Florida region. The extraction and benefieiation of phosphate rock to produce fertilizer has the

potential to adversely impact the environment. These impacts can be the landscape, water

contamination, excessive water consumption, and air pollution (UNEP, 2001). Specifically, the

water resources may be adversely affected by the release of processed water, the erosion of

sediments, and leaching of toxic minerals from overburden and processing wastes. The

continued mining activities in central Florida have degraded water quality in the upper Peace

River basin and have left behind large refuse sand tailings that now shape the landscape

surrounding the river. The mound material is essentially homogenous clean sand (> 94 % of

weight) with a high concentration of apatite, the phosphorus (P) mineral ore, and is mixed with

small pockets of clay in some areas. The average dissolved P (DP) concentration in the Peace

River at the Bartow sub-basin has declined from 18 mg/L to 1.23 A 1.93 mg/L from 1965 to 2005

due to the changes in mining practices (DEP, 2006). The average concentration of total P (TP)

was 1.3811.93 mg/L from 1990 to 1995. However, the TP concentration was still higher than

the U.S. Environmental Protection Agency (USEPA) criterion of maximum TP concentration

(0.1 mg/L) discharging into a river (USEPA, 1986; Mueller et al., 1995). Thus, reclamation

activities must be conducted to avoid more environmental impacts in the mining areas.

Field experiments of surface runoff P transport from vegetative filter strips (VF S) and

disturbed areas have been conducted in sand tailings (Chapter 3). Fully instrumented runoff










plots were constructed at different locations to represent the range of conditions found in the

region (landscape slope and lengths, soil variability, locally recommended grasses, climate

characteristics, etc.). In 2006, with an annual rainfall of 722 mm about 8.5 % of rainfall volume

was diverted as runoff from the bare sand mounds of Ks = 31.0 cm/h and slope =2.0%.

However, with an approximate annual rainfall of 682 mm about 20.3 % of rainfall volume was

diverted as runoff from the bare sand mounds of Ks = 1.6 cm/h and slope =4.3 %. The runoff

carried 4,550 kg/ha/year of sediment, 104 kg/ha/year of total P (TP), 2.21 kg/ha/year of dissolved

P (DP) from the 4.3 % slope source area (40 m x 250 m).

The reclamation activities in mining areas generally involve landscaping, revegetation, and

maintenance of disturbed areas (UNEP, 2001). Revegetation can be an economical and less

laborious method. Vegetation can increase surface roughness and infiltration, and decrease

runoff volume that can reduce particles and sediment bound pollutant transport. Vegetative

filter strips (VFS) are defined as areas of vegetation designed to reduce transport of sediment and

pollutants from surface runoff by deposition, infiltration, adsorption, and absorption (Dillaha et

al., 1989). VFS has been recommended as best management practice (BMP) in controlling

non-point source pollution from disturbed lands (USDA, 1976; Barfield et al., 1979). However,

VFS also effectively reduce surface pollution transport in phosphate mining areas. Runoff

volume (Q), sediment, TP, and DP were reduced by VF S at least 62 %, 97 %, 96 %, and 66 %

with respect to the amounts measured from the bare sand tailings, respectively (Chapter 2).

Mathematical models that can simulate water and/or sediment transport in VFS can be

good tools for assessing the impacts of human activities and natural processes on water resources

and for designing optimal BMPs to reduce these impacts. VFSMOD-W, developed by

Mufioz-Carpena and Parsons (1999), simulates water and sediment transport in vegetated filter










strips based on overland flow hydraulics (Mufioz-Carpena et al., 1993a), Einstein bed load

sediment transport equation (Bartfield et al., 1978), suspended sediment transport (Tollner et al.,

1976), and infiltration into the soil matrix (Mufioz-Carpena et al., 1993b). The USEPA (2005)

listed VFSMOD-W as one of the models to evaluate the efficiency of the BMP in VFS for

protecting watershed environments.

The success in modeling such processes heavily depends on the quality of the model

parameters, i.e. if they are representative of the hydrologic properties of the soil and the

vegetated filter. Thus, the first step of applying VFSMOD-W in predicting outflows from VFS

is to identify optimal model parameters. A popular method for parameter estimation is manual

calibration by a "trial and error" procedure comparing simulated values with measured values.

However, this method is time consuming, quite subj ective, and cannot ensure that the best

parameter set is found. A more elaborate, complex and increasingly attractive form of

parameter estimation is inverse optimization. This procedure can provide effective parameters

in the range of the envisaged model application, and overcomes the drawbacks of manual

calibration (Ritter et al., 2003).

Uncertainty of measured data can result from field measurements, water sample collection

and storage, and water quality chemical analysis (Harmel et al., 2006). The hydrologic/water

quality models are increasingly applied to guide decision-making in water resource management.

Including the uncertainty of measured data in model goodness-of-fit indicators used during the

model testing process can provide important information for decision makers/modelers to more

realistically evaluate model performance.

The main obj ective of this study is to model the efficiency of grass buffers to control

surface runoff pollution from phosphate mining sand tailings. For this, the numerical model









VFSMOD-W is used to predict overland flow and sediment trapping within the filter and is

linked with a simplified phosphorous transport algorithm based on experimental data to predict

total, particulate and dissolved P fractions in the filter outflow. An advanced global inverse

optimization technique is used for the model calibration process, and the uncertainty of the

measured data is considered in goodness-of-fit indicators of the model testing.

Methods and Materials

Field Experiments

Two field experiments were conducted on the property of the Bureau of Mine

Reclamation, Florida Department of Environmental Protection (FDEP), Bartow, FL. The land

was previously used for phosphate mining. Two experimental sites (site A and site B) 3 km

apart were chosen to present the bare disturbed sand tailings in the upper Peace River watershed.

The dimensions of the plots for sites A and B are shown in Figure 2-2. The average slopes of

site A and site B are 2.0 %, and 4.3 %, respectively. The lengths of the source areas at site A

and site B are 14.4 m and 40.0 m, respectively. The lengths of the filters are 4.1 m and 5.8 m at

site A and 6.8 m and 13.4 m at site B, respectively. The width of each plot is 3.3 m. Thus,

two different source area-to-VFS area ratios of 2.5 and 3.5 in site A and 3.0 and 6.0 in site B are

used to determine their effects on performances of VFS.

Locations of instruments installed in the field to convey runoff, collect water samples, and

record data (i.e. flow rate, soil moisture, and rainfall intensity) are shown in Figure 2-2. Runoff

was collected in a rain gutter buried at the outlet of each plot from where it flowed into a flume

and sampling trough. Then, runoff was redistributed through a perforated PVC spreader

installed at the entry of the VFS. A cover was installed to prevent direct rain from falling into

the runoff gutter. Six-inch (15.24 cm) HS flumes were used to measure the flow rate. To

automatically record flow rate the stage of each flume was recorded using a capacitance probe










(ECH20, model EC-20, Decagon Devices, WA) inserted vertically in the throat of each flume.

A field datalogger (CR-10X, Campbell Scientific, UT) was programmed to record flow rate from

the capacitance probe in each flume every minute. To avoid changing the measurement of flow

rate in the flume, runoff water samples were collected at each trough positioned below the flume

outlet by an automatic water sampler containing 24 plastic sampling bottles (ISCO 6712, ISCO,

Inc.). The datalogger sent pulses to the ISCO 6712 automatic water sampler based on changes

of accumulated runoff volume recorded at each flume in an effort to distribute the 24 samples

throughout the runoff event. After activation, the sampler purged the suction hose and then

collected runoff water samples from the trough into the 500 mL bottles. Runoff samples were

analyzed for concentrations of sediment, TP, and DP. Loads and flow-weighted mean

concentration were computed for each collected event.

The field data at site A were collected during the entire 2006 (total rainfall 722 mm), while

at site B were collected from June to December during the rainy season (rainfall 506 mm). An

approximate annual rainfall of 682 mm was recorded at a weather station near site A (1 km

apart). The saturated hydraulic conductivity (VKS) and initial soil moisture significantly

influence the overland flow transport in source and VFS areas. Thus, 16 data sets were

collected from site B and 9 data sets were collected from site A with low VKS to test

VFSMOD-W performances. The hydrographs and pollutographs (sediment, TP, and DP) of

inflow and outflow, and a hyetograph of each event are recorded.

Characterization of Experimental Sites

Saturated hydraulic conductivity (Ks ), soil texture, porosity, grass spacing, and slope were

measured to investigate the surface runoff movement and infiltration. Core cylinders made of

brass with 5.4 cm diameter and 6.0 cm height (Soilmoisture Equipment Corp, CA) were used to









collect undisturbed soil samples. The soil cores were then saturated with 0.005 M CaSO4-thymol

solution and the Ks was measured based on the application of Darcy's Law with a constant

head permeameter (Klute and Dirksen, 1986). Saturated and final weights of the soil was

measured and used to calculate bulk density and soil porosity. The average suction at the

wetting front (Say) was also estimated as the area under the unsaturated hydraulic conductivity

(K,,,, (h)) curve applying SoilPrep model (Workman and Skaggs, 1990). The K,,, (h) was

obtained from the Millington and Quirk (1960) procedure. Equipment employing the

"Polarization Intensity Differential Scattering" technique (Beckman-Coulter, Inc.) was used to

analyze particle size distribution of soil and sediment samples. For this analysis soil samples

needed to be pretreated to remove organic matter (Day, 1965). A 0.5 by 0.5 m frame was used

to determine the grass spacing by counting the amount of grass stems within the frame area

(Appendix A). The main grass in filter areas is Bahia grass which accounts for about 90 %, and

the remaining grasses are Hairy Indigo, Cogon grass, and Smutgrass. The detailed description

of measured soil physical and field properties (topographical survey and grass height) are

presented in Appendix A.

Simplified Phosphorus Modeling

Particulate phosphorus transport

Modeling TP phosphorus transport in VFS can be separated into DP and particulate P (PP)

transports. Modeling PP transport in VFS can be calculated from the outflow of sediment since

the relationship between sediment and PP was obtained from Eq. (4.1) (Chapter 2).

PP= 0. 02606:''\',iinen,,lr with R2 = 0.988s

(4.1)

where: PP= PP concentration (g/L); sediment- sediment concentration (g/L).









The use of this equation is supported by the TP content found in the soil samples (2.3 % of

soil weight), which matches very closely the PP-to-sediment ratio in water samples from VFS

obtained in the experimental equation (slope=0.02606). The finer particles transport through

VFS which contain higher P concentration; thus, the ratio in Eq. (4.1) is higher than TP fraction

in soil.

Dissolved phosphorus transport

(1). Release of DP from apatite into runoff water: Since the measured outflow DP

concentration was found to be similar to the measured inflow DP concentration

(CDP out DP 7,,) (Chapter 2 and Appendix E), the outflow DP loads can be estimated directly

from the accumulation of the product of outflow volume and DP concentration for each time

step,


DP,, = Qi Cl
l=1

(4.2)

where: DP,, = DP outflow mass (g); Qionit = runoff outflow volume at time step 1;

ClDP ;; =inflOw DP concentration at time step 1.

During a rainfall event, the DP mass in the VFS was in a dynamic equilibrium. VF S

receive the input DP loads from a source area and rainfall, and lose the output DP loads by

infiltration into soil and discharging to the down slope. Thus, the Eq. (4.2) can be derived from

the mass balance of cumulative DP loads in the VFS at the end of a runoff event as,

DP,, = DP, DP, +DP, +DP,

(4.3)









where: DP,,, = DP outflow mass (g); DEq, = DP inflow mass (g); DPF =DP mass infiltrated to

soil (g); DPD=DP mass released from apatite (g). DPraln = DP mass from rainfall (g). Eq. (4.3)

can be expressed as Eq. (4.4) assuming that DP concentration of infiltration is the same as inflow

DP concentration and DP mass from rainfall is zero.



D~iout = (0 .c', CI DPin FDP Oul~t DP D ) (4.4)
l=1

where: l= time step (s); Qiour = outflow volume (m3) lzn, = inlOW Volume (m3) I"F =

infiltration volume (m3) IDoP,,n=inflOw DP concentration (mg/L); CIDPD= DP concentration

contributed from apatite dissolution (mg/L). The water volume balance in VFS can be

expressed as follows:

~lourt = Ol rain + lin 01

(4.5)

where: Qirazn = rainfall volume at each time step (m3)

The first term in left-hand side of Eq. (4.4) was substituted from Eq. (4.2) and Qiout in

the last term of right-hand side was substituted from Eq. (4.5), then Eq. (4.4) can be expressed as

follows:






By considering the water volume balance (Eq. (4.5)), we obtain,

I r in
C C
D)P D LJ DP inD


(4.7)









Eq. (4.7) indicates that DP concentration contributed from apatite dissolution is related to

rainfall intensity, inflow concentration, and outflow rate. Thus, DP released from apatite may

result from the impact of rainfall intensity as proposed by Gao et al. (2004).

(2). Inflow DP concentration diluted from rainfall: If the dissolution of apatite was not

considered in DP transport in the VFS in P mining areas and DP,, =0, the last two terms of Eq.

(4.3) can be removed and expressed as,

DP,, = DP, DPF

(4.8)

We assumed that the inflow DP concentration was diluted from rainfall first, and then the

diluted DP concentration was infiltrated into soil. Thus, Eq. (4.8) can be expressed as,






(4.9)

By considering water volume balance (Eq. (4.5)), we obtain,



D it= I te,, CIDP77 d


(4.10)

Eq. (4.2) assumes that the dissolution of apatite results from rainfall impact and

consequently the assumption of cDP, in DP. otis made to predict outflow DP loads. Eq.

(4. 10) does not consider the dissolution of apatite and inflow DP concentration is diluted before

infiltration and discharge. These two simplified DP transport models (Eq. (4.2) and Eq. (4. 10))

in mining refuse sand tailings may give us the information to determine if apatite dissolves DP

into runoff water from the surface soil matrix due to rainfall impact.









Inverse Calibration Methodology

Calibration procedure

The flow or sediment parameters were estimated using inverse modeling by minimizing

the following obj ective function:


OF;b) = wi iO(ti) -P(ti,b)p


(4.11)

where OF(b ) is the objective function of parameter vector b that represents the error between

measured and simulated values; o(t, ) and P(t,)> are observed and predicted values (hydrographs

or sedimentographs) using parameter vector b respectively; t is the time; N is the number

of measurements available; and w, is the weight of a particular measurement (Lambot et al.,

2002). VFSMOD-W was coupled with the Global Multilevel Coordinate Search (GMCS)

algorithm (Huyer and Neumaier, 1999) combined sequentially with the classical Nelder-Mead

Simplex (NMS) algorithm (Nelder and Mead, 1965) (GMCS-NMS) to perform the inverse

calibration of parameter vector b (Ritter et al., 2007). The GMCS can deal with objective

functions with complex topography and has the advantage that initial values of the parameters to

be optimized are not needed. The NMS method (also known as downhill simplex method)

refines the locally optimal solution to a nonlinear problem with several variables when the

obj ective function varies smoothly.

Selected input parameters and model outputs

The main parameters of hydrology and sediment transports that can be used in model

calibration are listed in Table 4-1. These sensitive parameters were chosen based on an initial

sensitivity analysis (Mufioz-Carpena et al., 2007). A global sensitivity analysis was performed









to gain insight in the dependence of the VFSMOD-W outputs on certain model parameters, i.e.

the most important model parameters (Mufioz-Carpena et al., 2007). These authors reported that

for the conditions in the experimental area the saturated hydraulic conductivity (VKS) is a main

factor in dominating the runoff delivery ratio (RDR) whereas the order of parameters controlling

the total infiltration in filter were VKS, width of the vegetative filter strip (FWIDTH), and

wetting front (SAV). The order of important parameters with respect to sediment delivery ratio

and (SDR) were median of sediment particle size (d,), FWIDTH, VKS, and grass modified

Manning's nr., (VN). Variations in the Manning's roughness coefficient (RNA) mainly

controlled the time to peak of the outgoing hydrograph and had little effect on sediment output

(Mufioz-Carpena et al., 1999). The length of the filter (VL) may be changed from the variation

of the FWIDTH. The saturated water content (OS) may result in the variation of the SAV.

Therefore, VKS, FWIDTH, VL, SAV, OS, and RNA were selected to calibrate the optimal

values in hydrology transport. VN, d,, and incoming flow sediment concentration (CI) were

used to calibrate the optimal values in sediment transport.

The values of VKS, FWIDTH, VL, SAV, and OS were measured or calculated from

experimental results. The values of VN and RNA were referred from Hann et al., (1994) and

Foster et al., (1980), respectively. The CI was selected to calibrate the optimal value since

sediment deposited in the runoff gutter and flume was not collected to incorporate with inflow

sediment concentration. The mean and range of measured parameters were listed in Table 4-2

as well as the calibrated range of each parameter. Quantities listed in Table 4-2 (TRF, RDR,

MSF, SDR, CSF, PP, DP, and TP) are used to evaluate the model's performance based on

predicted and measured results.









Goodness-of-Fit Indicators

The goodness-of-fit indicators are used to evaluate the performance of the model

simulation during the calibration and testing processes. The Nash-Sutcliffe coefficient of

efficiency (C,, ,Nash and Sutcliffe, 1970) and root mean square error (RM~SE) are commonly

used goodness-of-fit indicators for hydrologists to evaluate model performance (Legates and

McCabe, 1999). However, the C,f is not very sensitive to systematic model over- or

under-prediction especially during low flow periods (Krause et al., 2005). To reduce the

oversensitivity to extreme values in the Cfs, a modified form of C,f (Krause et al., 2005),

ceff,, was applied to evaluate potential systematic (e.g. over- or under-prediction) and dynamic

(e.g. timing, and falling or rising lamb) model simulation errors. The detailed description of

goodness-of fit indicators is presented in Appendix B. Using a combination of these indicators

(cyf, cefsm, and RMSE), we can appropriately evaluate model performance resulting from

different tyes of observed and predicted data.

Consideration of Measured Data Uncertainty in the Model Evaluation

Common sources of measured errors of hydrologic and water quality data are related to

flow measurement, sample collection, sample storage, and laboratory analysis (Harmel et al.,

2006). The deviation term (el = O, p4) in goodness-of-fit indicators is normally determined

as the difference between observed and predicted data. This deviation term does not account

for uncertainty of measured data in indicators. Therefore, Harmel et al. (2007) modified the

deviation term in goodness-of-fit indicators based on the cumulative probable error to

appropriately compare model predictions and observations (Fig. 4-1).









The probable error range (PER) resulting from the various hydrologic/water quality data

collection procedures can be estimated by propagation of errors method in Eq.(4. 12) (Topping,

1972).


PER = E(j + Ef+ E: tE,)


(4.12)

Where: PER = probable error range (+ %); n = number of potential error sources; and El,

Ez, E3, and E4 are uncertainties (%) associated with flow measurement, sample collection,

sample storage, and laboratory analysis, respectively. In hydrology, this method has been used

for uncertainty estimates related to discharge measurements (Sauer and Meyer, 1992) and water

quality (Cuadros-Rodriquez et al., 2002; Harmel et al., 2007).

The measured data uncertainty of each error category (El to E4) was determined based on

the sample collecting and data analysis procedures (Harmel et al., 2006). The measured data

uncertainty of each category is summarized in Table 4-4. The sampling uncertainty (E2) of TP

was taken as that of sediment since most P in TP comes from mineral apatite in the soil

transported as sediment. Storage uncertainty (E3) of DP was taken as maximum value of the

storage error (Kotlash and Chessman, 1998) but was increased up to 45% to account for potential

dissolution of carbonate-fluorapatite (CFA, also called francolite), since CFA exists in

water/sediment samples. Sediment deposited in the flume can result in errors of measured

flows (El). Thus, flow uncertainty was taken as poor condition (10%) and added up to 20% to

account for sediment effect on measurement. Since DP, TP, and sediment were collected from

the flow, 20% of measured flow error was chosen. Finally, probable error range (Eq. 4.12) are

calculated yielding 50%, 30%, 29%, and 20%, for DP, TP, sediment, and flow, respectively.

This measured data can be incorporated into goodness-of-fit indicators following Harmel and









Smith (2007) to evaluate the prediction performances of VFSMOD-W. The uncertainty

boundaries of the observation were calculated as Eq. (4.13) (Harmel and Smith, 2007).

PER, O PER, O
UO, (u) = O, + UO, (1) = O,-
100 100

(4.13)

where: UO,(u) = upper uncertainty boundary for each observed data point; UO,(1) = lower

uncertainty boundary for each observed data point; PER, = probable error range for each

measured data point.

To include PER in goodness-of-fit indicators the deviation term (el = O, P, ) in Eqs.

(B.1)-(B.3) in Appendix B is replaced by the modified deviation, eml which is defined based

on the PER of the measured value and model predicted value. The calculation of em, is

shown in Eq. (4.14) and graphically in Figure 4-1.

em, = UO, (1) P, if UO, (1) > P

eml = UOI (u) P, if UO, (u) <

(4.14)

em, = 0 if UO, (1) < P, < UO, (u)

where eml is modified deviation between measured and predicted data.

When a predicted value is located outside the uncertainty boundaries, the deviation is

calculated as the difference between the predicted value and the nearest uncertainty boundary;

otherwise, the deviation is equal to 0. In this study, we assume that all measured data of each

category have the same PER during each event.









Results and Discussion

To verify the robustness of the inverse modeling algorithm integrated in the VFSMOD-W,

two conditions, perfect data set and adding random noise to the perfect data set (ARP), were

created. The results show that inverse modeling algorithm integrated in the VFSMOD-W is

robust since it successfully calibrated the parameters even in the presence of random noise

associated with the measured data (Appendix C).

A total of twenty five runoff events were selected to evaluate VF SMOD-W performance in

simulating runoff, sediment, and P transport in VFS from refuse mining sand tailings. An

example (event on 07/14/06) of observed and predicted hydrographs and sedimentographs is

shown in Figures 4-2 and 4-3. Hydrographs and sedimentographs of other remaining events are

presented in Appendix D. The VFS sediment trapping efficiency for this event is about 98% in

VFS. The inflow mass of sediment was two orders larger than outflow, thus inflow sediment

was not included in the sedimentograph (Figure 4-3).

For the 25 events, values of optimal parameters and the quantities of measured QPF (peak

flow measured from VFS), TRS, TRF, CSF, and MSF and predicted TRF, CSF, and MSF are

listed in Table 4-5. Simulation results expressed in different goodness-of-fit indicators with

(PER>0) and without (PER=0) considering measurement uncertainty of hydrology and sediment

transport are shown in Table 4-6. Cgf, sensitive in large volume, is mainly used to evaluate

model performance since large value (peak flow volume) has a significant effect on sediment and

runoff transport.

The relationship between QPF and Cgf of runoff flow simulation was found (Figure 4-4),

such that smaller events (Q, < 0.4 L/s) are not simulated well with the model (Cyf< 0.60), likely

due to limitations of the experimental system to register such small events. The low flow

velocity of the events may have limited energy to flush deposited sediment in the flume. Under









this situation deposited sediment in the flume may raise the water level and consequently

increase the measured flow rate. Thus, in some events with a low QPF, the measured runoffs

from VFS are far greater than simulated runoffs from VFS as shown in Table 4-5.

Once VFSMOD-W is calibrated for runoff, the model offers good sediment transport

predictions, shown in Figure 4-5. For those events (QPF < 0.4 L/s) which were not predicted

well in runoff transport, their measured TRFs are less than 60 L and relative measured MSFs are

less than 3 g. The relative larger measurement error in low runoff events resulted in poor

predictions of VFSMOD-W in runoff and sediment transport. The predicted MSFs are zero in

these low runoff events. Thus, similarly to the runoff case the model performed fairly well

throughout the range of measured data, except for the low values of measured runoff subj ect to

experimental limitations.

The calibrated ranges of parameters for different events and measured mean value or

referred range of parameters in different plots are shown in Table 4-7. The range of calibrated

VKS is within one order of magnitude of the measured value for each plot. This is considered

an acceptable range since VKS field distribution of values is often described by a lognormal

distribution. The minimum calibrated SAV is close to the measured value. The calibrated

range of OS is within + 15 % of measured OS. The minimum calibrated FWIDTH is close to

1.0 which occurred in the highest runoff volume in site B with 6.8 m long filter (BO90906V2).

The concentrated flow path may occur in the event with a high runoff volume. The ranges of

VL are between onefold and twofold of measured length which means the route of runoff

transport is not straight. The event with VL < measured length (Cyf< 0.6 as well) happened in

the small runoff event in the 13.4 m-long filter with a higher initial soil moisture. Calibrated

RNA(I)s are usually between 0. 1 and 0.60, typical of grass with different density, except event









B101206V2. The maximum VN of each plot is slightly greater than the measured range. In

most events d, is greater than 0.0037 Cpm (COARSE > 0.5 as well) since the source area contains

a high fraction of sand (>0.94). The values of d, and COARSE match the experimental

measurements from sediment particle size distribution of water samples.

In Table 4-6 most values of Cyfare higher than Cg m_ for both hydrology and sediment

simulations, which indicates that the model can simulate high volume very well. When

considering measured data uncertainty (PER = + 20 %) in runoff simulation for these 25 events,

Cgfincreased 1 % to 1179 %, Ca m, increased 5 % to 460 %, and RM~SE decreased -20 % to -51

%. For sediment simulation considering measured data uncertainty (PER = + 29 %), Cgf

increased 2% to 1311%, Ca m, increased 7% to 1034%, and RM~SE decreased -24% to -68%.

The highest increase of Cgf occurred in the poor simulation result. The narrow range increased

in Cq m, compared to Cef since weight of each point is the same in calculation of Cq m,.

The goodness-of-fit indicators of hydrology, sediment, and P simulations are shown in

Table 4-8. Again, VFSMOD-W was not able to predict very well in small events due to the

measurement error. In these low runoff events the RM~SEs are less than 0.0006. The small

magnitude did not have a significant effect on goodness-of-fit indicators when bigger events

were included in the comparison. Including the probable error range (PER) in goodness-of-fit

indicators, the predictions of TRF (Cyf= 0.991, Ca m, = 0.888) and MSF (Cyf= 0.976, Ca m,

0.874) are very high for these 25 events.

These good predictions in runoff and sediment also result in good prediction of PP

transport (Cyf= 0.961, Cg fm = 0.838) since apatite exists almost uniformly in sediment. Good

DP predictions (Cyf= 0.965) were found based on the assumption of considering rainfall impact

on P release from apatite. The release of DP from apatite into runoff water maintains the









system equilibrium for the DP loss from infiltration and dilution of DP concentration from

rainfall. The Cgffof TP transport is also as high as PP since DP is a small fraction of TP.

When uncertainty of measured data is included in these 25 events, the Cgfis greater than

0.98 for each output quantity except RDR. This means that VFSMOD-W predicts systematic

and dynamic behaviors of runoff, sediment, and P transport very well considering acceptable

measured data uncertainties. The Ca m of each quantity is also significantly increased. The

paired predicted and measured values with their measured data error of each quantity are shown

from Figures 4-6 to 4-12. Most predicted data including measured data uncertainty cover the



Conclusions

The VFSMOD-W parameters obtained by inverse modeling are within acceptable ranges

of measured values. The smaller events (peak flow, QPF < 0.4 L/s) are not simulated well with

the model (Cyf< 0.60), likely due to limitations of the experimental system to register such small

events. For those events (QPF < 0.4 L/s) which were not predicted well in runoff transport,

their measured TRFs are less than 60 L and relative measured MSFs are less than 3 g. Once

VFSMOD-W is calibrated for runoff, the model offers good sediment transport predictions.

Similarly to the runoff case the model performed fairly well throughout the range of measured

data, except for the low values of measured runoff subj ect to experimental limitations.

When considering uncertainty of measured data in each quantity for 25 events, the Cgfis

greater than 0.98 for each quantity except RDR. The Cg m_ of each quantity is also significantly

increased. The uncertainty of measured data included in the goodness-of-fit indicators is more

realistic to evaluate model performance and data sets. The good predictions of TRF (Cyf=

0.991, Ca m, = 0.888) and MSF (Cy=f 0.976, Ca m, = 0.874) are very high for these 25 events.

These good predictions in runoff and sediment also result in good prediction of PP transport (Cgf









= 0.961, Cg fm = 0.838) since apatite exists almost uniformly in sediment. Good DP predictions

(Cyf= 0.965) were found based on the assumption of considering rainfall impact on P release

from apatite. The release of DP from apatite into runoff water maintains the system equilibrium

for the DP loss from infiltration and dilution of DP concentration from rainfall. The Cgf of TP

transport is also as high as PP since DP is a small fraction of TP.

Based on the successful performance of VFSMOD-W, this tool shows promise for the

management agencies involved in mining permitting in upper Peace River basin. These agencies

could apply VFSMOD-W to design VFS for controlling runoff and P transport in phosphate

mining sand tailings.








Table 4-1. Simulation parameters for the VFSMOD-W model.
# Parameter Units ecito
Hydrology
1 FWIDTH m Effective flow width of the strip
2 VL m Length of the filter (flow direction)
3 RNA(I) s /ml/3 Filter Manning's roughness n for each segment
4 SOA(I) m/m Filter slope for each segment
5 VKS m/s Soil vertical saturated hydraulic conductivity in the VFS, Ks
6 SAV m Green-Ampt' s average suction at wetting front
7 OS m3/m3 Saturated soil water content, 8s
8 OI m3/m3 Initial soil water content, 8i
9 SM m Maximum surface storage
10 SCHK -- Relative distance from the upper filter edge where check for
ponding conditions is made (i.e. 1 end, 0.5 mid point,
O = beginning)
Sediment transport
11 SS cm Average spacing of grass stems
12 VN s /cml/3 Filter media (grass) modified Manning's nm (.012 for
cylindrical media)
13 H cm Filter grass height
14 VN2 s /ml/3 Bare surface Manning's n for sediment inundated area in grass
filter
15 d, cm Sediment particle size diameter (dso)
16 COARSE -- Fraction of incoming sediment with particle diameter >
0.0037 cm (coarse fraction routed through wedge as bed load)
[unit fraction, i.e. 100% 1.0]
17 CI g/cm3 IHCOming flow sediment concentration
18 POR m3/m3 Porosity of deposited sediment
19 SG g/cm3 Sediment particle density


Table 4-2. Selected quantities of hydrology, sediment, and phosphorus transport.
Quantity Units ecito
Hydrology
TRF m3 Total runoff output from filter
RDR -- Runoff delivery ratio
Sediment
MSF kg Mass of sediment output from filter
CSF g/L Concentration of sediment in outflow from filter
SDR -- Sediment delivery ratio
Phosphorus
DP g DP mass output from filter
PP g PP mass output from filter
TP g TP mass output from filter









Table 4-3. The range of selected parameters used in calibration and measured data of each
parameter at sites A and B.
Site B Site A
Component Parameter Measured Calibrated Measured Calibrated
n mean range range n mean range range
VKS 8 1.8E-05 2.8E-6 1.0E-4 1E-6 9E-4 8 5.6E-5 5.9E-5 1.1E-4 1E-6 9E-4
SAV 8 0.23 0.05-32 0.1-1 8 0.17 0.14-0.27 0.1-1
OS 8 0.46 0.40-0.49 0.32-0.56 8 0.40 0.37-0.43 0.32-0.56
Hydrology FWIDTH 1 3.30 -- 1.0-3.3 1 3.30 -- 1.0-3.3
< 1 6.8 -- 6.6-12 1 4.1 -- 4.1-10
VL(
1 13.4 -- 13.4-20 1 5.8 -- 5.8-12
RNA(I)'2 -- -- 0.015-0.4 0.01-0.60 0.01-0.60
VN'3 -- -- 0.008-0.016 0.008-0.025 -- -- 0.008-0.016 0.008-0.025
Sediment CI(4 -- -- -- 0.001-0.05 -- -- -- 0.0005-0.020
dP 20 0.027 0.018-0.041 0.0037-0.045 10 0.025 0.011-0.038 0.0037-0.045
(1): VL has two lengths at each site: (2): Foster et al., 1980; (3); Hann et al., 1994:
(4): measured values were not provided since measured data did not include sediment deposited in flume and runoff
gutter.
--: no value provided.


Table 4-4. Measured data uncertainty of DP, TP, sediment, and flow for each category.

MewalE1=Flow'') E2=Sampling(2 E3=Storagem3 E4=Anal} sis~'"" ) PER
Item Range (%) Used Range (%) Used Range (%) Used Range (%) Used
(Central value) (%) (Central value) (%) (Central value) (%) (Central value) (%) (%)
-5 to 10 0 to 0 -39 to 20 45 -14 to 22
DP 20 0 458 50
(--)(0) (-17) (8)
-5 to 10 0 to 17 20 -64 to 9 -24 to 22
TP 20 2011 2 30
(--)(0 ) (-11) (2)
-5 to 10 14 to 33 0 to 0 -4.9 to -2.5
Sediment 20 20 0 5.0 29
(--)(20) (0) (-
-5 to 10 0 to 0 0 to 0 0 to 0
Flow 20 0 0 0 20
(--)(0) (0) (0 )
*: Sampling error taken as that of sediment since most P in TP comes from mineral apatite in
sediment.
#: Storage taken as max value (39%) but increased 5% (rounded to 45%) to account for potential
dissolution of apatite.
(--): no value provided.
Harmel et al., 2006:
(1): Sauer and Meyer (1992); (2): Martin et al. (1992); (3): Kotlash and Chessman (1998);
(4): Gordon et al. (2000); (5): Mercurio et al. (2002).













Table 4-5. Calibrated parameters of hydroloav and sediment and measured and predicted selected quantities.


Hydrology


Sediment


Measured data


Predicted data


OS
(%~)
0.56
0.56
0.35
0.44
0.52
0.46
0.39
0.46
0.40
0.56
0.52
0.47
0.48
0.46
0.50
0.48
0.37
0.45
0.45
0.45
0.45
0.42
0.49
0.45
0.45


Event ID


BO61306V2*
BO71406V2
BO72006V2
BO72806V2
BO90606V2
BO90906V2
BO91006V2
B101206V2
BO61306V3
BO71406V3
BO72006V3
BO72806V3
iDBO90606V3
BO90906V3
BO91006V3
B101206V3
AO20306V2
AO61306V2
AO70706V2
AO72806V2
AO91006V2
AO20306V3
AO70706V3
AO72806V3
AO91006V3


VN CI d, QPF TRS CSF TRF MSF
(s/ml/3) (g/cm3) (mm) (L/s) (m3) _! II3) (kg)


VKS SAV
(m/s) (m)
0.000007 0.66
0.000007 0.79
0.000021 0.44
0.000044 0.37
0.000025 0.41
0.000015 1.03
0.000027 0.42
0.000008 0.25
0.000005 0.45
0.000007 0.72
0.000004 0.68
0.000031 0.53
0.000077 0.74
0.000007 1.01
0.000009 0.83
0.000021 0.45
0.000050 0.81
0.000026 0.70
0.000026 0.10
0.000044 0.69
0.000100 0.10
0.000012 0.80
0.000008 0.80
0.000014 0.81
0.000031 0.80


FWIDTH VL
(m) (m)
3.11 9.74
3.26 9.23
2.76 8.96
2.23 8.22
2.38 6.89
1.06 8.05
1.74 8.07
2.78 12.0
2.40 8.26
1.50 16.0
1.50 16.6
1.84 7.93
1.30 8.38
2.31 15.6
1.50 13.6
1.56 17.9
2.19 4.34
2.06 8.20
1.50 4.39
2.33 4.39
1.57 4.40
3.30 11.0
2.56 5.98
1.49 5.80
2.49 7.38


RNA
(s/ml/3)
0.23
0.31
0.60
0.33
0.39
0.44
0.58
0.79
0.37
0.09
0.32
0.50
0.15
0.57
0.21
0.17
0.34
0.44
0.05
0.22
0.05
0.11
0.15
0.54
0.17


CSF
-, '
0.06
0.191
0.273
0.037
0.172
0
0.127
0
0.001
0.129
0.174
0.196
0.064
0.13
0.107
0.096
0.068
0.011
0.043
0.013
0.07
0.001
0.029
0.108
0.035


TRF MSF
(m3) (kg)
0.010 0.001
0.239 0.046
0.553 0.151
0.048 0.002
0.242 0.041
3.381 0.544
0.907 0.115
0.431 0.000
0.038 0.000
0.348 0.045
0.742 0.129
0.066 0.013
0.003 0.000
2.627 0.342
0.900 0.096
0.210 0.020
0.017 0.001
0.011 0.000
0.038 0.002
0.008 0.000
0.006 0.000
0.024 0.000
0.043 0.001
0.044 0.005
0.012 0.000


0.009
0.011
0.014
0.008
0.017
0.010
0.019
0.025
0.014
0.025
0.019
0.008
0.022
0.022
0.019
0.020
0.020
0.023
0.013
0.025
0.021
0.008
0.022
0.018
0.008


0.028 0.0048 0.067 0.518 0.059 0.020 0.001
0.019 0.0018 0.590 1.290 0.184 0.323 0.059
0.042 0.0056 1.586 1.181 0.310 0.653 0.202
0.026 0.0031 0.344 0.592 0.063 0.154 0.010
0.025 0.0067 1.265 0.655 0.170 0.287 0.049
0.004 0.0019 2.364 4.261 0.178 3.494 0.623
0.009 0.0038 1.430 1.861 0.124 1.028 0.127
0.001 0.0203 1.863 0.676 0.007 0.440 0.003
0.014 0.0129 0.009 0.189 0.052 0.006 0.000
0.025 0.0042 0.757 1.035 0.136 0.428 0.058
0.025 0.0091 1.061 1.208 0.168 0.887 0.149
0.015 0.0023 0.462 0.917 0.129 0.267 0.034
0.001 0.0044 0.022 0.500 0.076 0.014 0.001
0.015 0.0042 2.133 3.895 0.123 2.681 0.329
0.009 0.0037 1.060 1.688 0.127 0.940 0.119
0.012 0.0037 0.974 0.743 0.106 0.254 0.027
0.012 0.0104 0.090 0.962 0.049 0.050 0.002
0.011 0.0046 0.060 0.436 0.010 0.062 0.001
0.008 0.0022 0.107 0.128 0.041 0.044 0.002
0.021 0.0093 0.077 0.289 0.010 0.027 0.000
0.005 0.0180 0.051 0.139 0.010 0.036 0.000
0.011 0.0198 0.024 1.076 0.010 0.020 0.000
0.018 0.0025 0.892 0.197 0.036 0.062 0.002
0.020 0.0037 0.402 0.317 0.063 0.143 0.009
0.015 0.0035 0.063 0.177 0.039 0.055 0.002


*F In event ID, A: Site A; B: Site B; six numbers succession: Gregorian date; V2: plot number 2 in VFS area.



















7.0E-06 0.422
3.4E-05 0.831
7.1E-05 0.685
5.0E-05 0.591
2.3E-05 0.981
1.5E-04 0.787
7.3E-05 0.946
3.4E-05 0.031
2.9E-06 -1.183
5.2E-05 0.861
1.2E-04 0.948
8.0E-05 0.441
7.8E-06 -0.411
9.9E-05 0.801
1.2E-04 0.739
5.9E-05 0.723
1.7E-05 0.623
1.6E-05 -0.265
1.0E-05 0.707
1.0E-05 0.336
1.1E-05 -0.206
6.9E-06 -0.401
1.3E-05 0.356
6.3E-05 0.600
1.4E-05 0.153


Table 4-6. Results of hydrology and sediment simulations in selected goodness-of-fit indicators
with and without including measurement uncertainty (PER=+20% for hydrology,
PER=+29% for sediment).

Hydrology Sediment
Event ID PER=0 PER=0.2 PER=0 PER=0.29

C,f Cg _m RMSE# C,f Cef _m RMSE C,f Cef _m RMSE# C,f Cey _m RMSE


0.660
0.797
0.922
0.474
0.940
0.866
0.865
0.962
-0.101
0.681
0.842
0.280
0.077
0.907
0.733
0.872
0.429
0.012
0.742
0.256
0.358
0.354
0.788
0.624
0.417


*In event ID, A: Site A; B: Site B; six numbers succession: Gregorian date; V2: plot number 2 in VFS area.
#units of RMSEs in hydrology and sediment are (m3/S) and (g/s), respectively.


0.721
0.867
0.862
0.734
0.969
0.841
0.929
0.576
0.043
0.841
0.950
0.607
0.350
0.832
0.842
0.836
0.729
0.326
0.842
0.386
0.452
0.391
0.678
0.761
0.584


0.628
0.820
0.948
0.315
0.989
0.868
0.908
0.974
-1.286
0.738
0.810
0.033
-0.818
0.925
0.587
0.855
0.131
-0.770
0.733
0.242
-0.277
-0.339
0.723
0.884
-0.201


0.563
0.726
0.740
0.578
0.909
0.660
0.811
0.419
-0.348
0.699
0.863
0.376
0.085
0.647
0.662
0.656
0.592
0.029
0.707
0.120
0.212
0.126
0.462
0.605
0.369


0.0009
0.0110
0.0882
0.0048
0.0093
0.0782
0.0138
0.0781
0.0002
0.0093
0.0193
0.0138
0.0009
0.0434
0.0204
0.0138
0.0009
0.0002
0.0008
0.0001
0.0002
0.0001
0.0012
0.0047
0.0007


0.734
0.935
0.865
0.819
0.998
0.933
0.990
0.442
-0.100
0.948
0.982
0.749
0.289
0.930
0.920
0.923
0.815
0.369
0.897
0.674
0.400
0.307
0.758
0.819
0.598


0.0006
0.0068
0.0578
0.0032
0.0030
0.0438
0.0060
0.0593
0.0001
0.0057
0.0114
0.0093
0.0006
0.0258
0.0113
0.0073
0.0006
0.0001
0.0005
0.0001
0.0001
0.0001
0.0007
0.0032
0.0005


BO61306V2*
BO71406V2
BO72006V2
BO72806V2
BO90606V2
BO90906V2
BO91006V2
B101206V2
BO61306V3
BO71406V3
BO72006V3
BO72806V3
BO90606V3
BO90906V3
BO91006V3
B101206V3
AO20306V2
AO61306V2
'OAO70706V2
AO72806V2
AO91006V2
AO20306V3
AO70706V3
AO72806V3
AO91006V3


0.519
0.681
0.870
0.313
0.894
0.719
0.768
0.888
-0.376
0.529
0.701
0.050
-0.182
0.774
0.553
0.765
0.253
-0.259
0.595
0.062
0.182
0.163
0.660
0.755
0.256


9.4E-06 0.794
4.8E-05 0.910
9.7E-05 0.972
6.4E-05 0.579
3.6E-05 0.996
2.5E-04 0.949
1.0E-04 0.953
6.9E-05 0.994
3.6E-06 -0.463
7.3E-05 0.869
1.9E-04 0.926
1.0E-04 0.422
9.9E-06 -0.140
1.6E-04 0.970
1.7E-04 0.802
8.8E-05 0.934
2.2E-05 0.471
2.0E-05 -0.103
1.5E-05 0.872
1.3E-05 0.517
1.4E-05 0.198
8.7E-06 0.161
1.9E-05 0.866
3.8E-05 0.680
1.8E-05 0.246












Table 4-7. The calibrated range of parameters compared with the measured value of parameters in different plots.
B-VFS-2 B-VFS-3 A-VFS-2 A-VFS-3
Component Parameter
Measured Min Max Measured Min Max Measured Min Max Measured Min Max
VKS 9.08E-06 7.08E-06 4.41E-05 5.13E-05 4.26E-06 7.69E-05 5.76E-05 2.62E-05 9.99E-05 7.78E-05 7.67E-06 3.14E-05
SAV 0.32 0.25 1.03 0.28 0.45 1.01 0.21 0.10 0.81 0.19 0.80 0.81
OS 0.47 0.35 0.56 0.49 0.40 0.56 0.43 0.37 0.45 0.45 0.42 0.49
Hydrology FWIDTH 3.30 1.06 3.26 3.30 1.30 2.40 3.30 1.50 2.33 3.30 1.49 3.30
VL 6.80 6.89 12.02 13.40 7.93 17.92 4.10 4.34 8.20 5.80 5.80 11.00
RNA(I) 0.05-0.4 0.234 0.794 0.05-0.4 0.092 0.567 0.05-0.4 0.050 0.436 0.05-0.4 0.110 0.538
VN 0.008-0.016 0.0083 0.0250 0.008-0.016 0.0081 0.0253 0.008-0.016 0.0129 0.0250 0.008-0.016 0.0080 0.0220
Sediment CI 0.0013 0.0417 0.0014 0.0250 0.0054 0.0207 0.0110 0.0200
dp 0.018-0.041 0.0018 0.0203 0.021-0.039 0.0023 0.0129 0.015-0.038 0.0022 0.0180 0.011-0.036 0.0025 0.0198
*: values not provided, because measured data did not include sediment deposited in flume and runoff gutter.





Table 4-8. The selected goodness-of-fit indicators for each quantity with/without including PER.


Goodness-of-fit indicators


Error
Quantity
range

PER=0
PER=0.2

RDR PER=0
PER=0.2

MSF PER=0
PER=0.29

SDR PER=0
PER=0.29

CSF PER=0
PER=0.29

PPPER=0
PER=0.3

DP* PER=0
PER=0.5

DP e PER=0
PER=0.5
PER=0
PER=0.3

TP n PER=0
PER=0.3


Crf
0.991
0.998

0.706
0.857
0.976
0.998
0.973
0.996

0.901
0.983
0.961
0.994
0.857
0.997
0.965
0.999
0.949
0.994
0.967
0.994


0.888
0.963

0.498
0.721
0.874
0.991
0.810
0.949

0.749
0.936
0.838
0.957
0.661
0.964
0.792
0.976
0.788
0.952
0.825
0.957


RMSE

0.078
0.039

0.127
0.088
0.021
0.002
0.001
0.001

0.023
0.009
0.688
0.301
0.523
0.073
0.260
0.054
1.093
0.401
0.880
0.363


*: DP diluted from rainfall.
#: rainfall induces the DP released from apatite.




















UO, (1) r


Measurement uncertainty range
em,=0


em,= UOi (1) -Pi




Pi


em,= UOi (u) -Pi




(u) Pi


Uo,


A


Figure 4-1. Graphical representation to calculate modified deviation between paired observed
and predicted data based on the probable measured error range.


0.0030uu uu uu u


0.0025-

0 obser
S0.0020_ prd
E I I Rainf





o 0.0010-
L.

0.0005-


0.0000 I
0 1000 2000 3000 4000

Time(s)
Figure 4-2. Hydrographs of event BO71406V/3.


0.0

1.0e-5

2.0e-5

3.0e-5

4.0e-5 .~
5.e-

6.0e-5

7.0e-5


o0 8.0e-5
5000
















-1.0e-5


-2.0e-5 I


-3.0e-5


-4.0e-5 .~


-5.0e-5


-6.0e-5


-7.0e-5


8.0e-5
5000


25 0.16 -"



^0.12-
I I\ I Observe
E I ~ I Predicte
o I Rain(mh
S0.08-



(I) 0.04-



0.00 II1
0 1000 2000 3000 4000

Time(s)
Figure 4-3. Sedimentographs of event BO71406V/3.


0.5 1.0 1.5 2.0 2.5


QPF (L/s)
Figure 4-4. Comparison of measured filter strip peak flow measured on the experimental site vs.
goodness of fit VF SMOD runoff predictions.














*Q vs Sediment e
- Fitted Line

*,








Sediment = 0.144+0.7783*Q
SR2=0.773


-1.0 -0.5 0.0 0.5 1.0


-1.01. -

-1.5


Ce, of Q

Figure 4-5. C,ff of sediment versus Cf of Q for all simulated events.


4.5





g 3.0
L.

1-


1.5 3.0


Observed TRF(m3)
Figure 4-6. Scatterplot of measured and predicted TRF including measurement uncertainty for
each measured value plotted as an error bar (PER=+20%, number in brackets is Cf
considering the PER).




























0.0 0.1 0.2 0.3 0.4

Observed CSF (g/L)


Figure 4-7. Scatterplot of measured and predicted CSF including measurement uncertainty for
each measured value plotted as an error bar (PER=+29%, number in brackets is Cf
considering the PER).


*Predicted vs Observed
-Uncertainty Range


0.75


0.60


0.45 -


0.30


0.15


C,,,0.976 (0.998)


0.00 Pu
0.00 0.15 0.30 0.45 0.60 0.75 0.90

Observed MSF(kg)


Figure 4-8. Scatterplot of measured and predicted MSF including measurement uncertainty for
each measured value plotted as an error bar (PER=+29%, number in brackets is Cf
considering the PER).















*Predicted vs Observed
- Uncertainty Range

Cor=.857 (0.997)


*Predicted vs Observed
- Uncertainty Range

Ce,=0.965 (0.994)


1.5 3.0 4.5 6.0 7.5 9.0


Observed DP (g)


Figure 4-9. Scatterplot of measured and predicted DP diluted from rainfall including
measurement uncertainty for each measured value plotted as an error bar (PER=+
50%, number in brackets is Cyfconsidering the PER).


1.5 3.0 4.5 6.0 7.5 9.0


Observed DP (g)


Figure 4-10. Scatterplot of measured and predicted DP without dilution from rainfall including
measurement uncertainty for each measured value plotted as an error bar (PER=+
50%, number in brackets is Cyfconsidering the PER).















16 -1 I


8s Cert0.961 (0.994)
12











0 4 8 12 16 20

Observed PP (g)


Figure 4-11. Scatterplot of measured and predicted PP including measurement uncertainty for
each measured value plotted as an error bar (PER=+30%, number in brackets is Cf
considering the PER).



28

24 *Predicted vs Observed
-Uncertainty Range
20
rn Cerr0.967 (0.994)
S16










0 4 8 12 16 20 24 28

Observed TP (g)


Figure 4-12. Scatterplot of measured and predicted TP including measurement uncertainty for
each measured value plotted as an error bar (PER=+30%, number in brackets is Cf
considering the PER).









CHAPTER 5
CONCLUSIONS

A value of 2.3 % of TP was found in soil samples of the reclaimed mining areas in the

upper Peace River basin. DP concentrations from source and VFS areas range from 0.4 to 3.0

mg/L, which exceeds EPA criterion of P concentration (0.1 mg/L) discharging into a river. A

range of field conditions were studied and it was found that a significant amount of runoff

volume and sediment transport capacity occurred in the exposed surface lands. In the lands

with 4.3% slope, 1.6 cm/h Ks, and runoff lengths of 40 m, yearly outflows of Q, sediment, TP,

and DP were 1300 m3/ha, 4550 kg/ha, 104 kg/ha, and 2.21 kg/ha, respectively. In the landscape

with 2.0 % slope, 31.0 cm/h Ks, and runoff lengths of 14.4 m, yearly outflows of Q, sediment,

TP, and DP were 615 m3/ha, 240 kg/ha, 6.12 kg/ha, and 0.27 kg/ha, respectively. Vegetative

filter strips (grass buffers) adj acent downstream from these source areas considerly reduce runoff

and DP (60%) and also transports of sediment and TP (>96%).

The length of filters, soil saturated hydraulic conductivity (Ks ) in filters, rainfall intensity,

and initial soil moisture were the main factors controlling the changes of runoff volume and peak

flow rate in filters. TP in water samples contained a high fraction ofPP (apatite), thus STE and

TPTE were closely related in both sites and were controlled by the same factors. Since

phosphate rock exists in soil, movement of PP and sediment in VFS are highly correlated

(R =0.97-0.98). In site A, lower flow volume (Q) obtained in the 4.1 m filters (larger area ratio)

resulted in lower STE compared to the 5.8 m filters (smaller area ratio). In site B, there were no

significant differences in the STE and TPTE of 6.8 m and 13.4 m filters. The shorter filters

(larger area ratio) were almost as effective as the longer filters (smaller area ratio) in trapping

sediment and TP since in both cases the removal efficiency was very large. The longer filters









with lower Ks at site B increased the runofftravel time, and thus seemed to increase the DP

mass released from apatite.

Power equations were found to describe well (R2=0.93-0.96) the relationships between

sediment yields and product of runoff volume and peak flow rate (Q*Qp), for each runoff event.

To aid in future BMP design efforts, the source areas curve numbers from the Soil Conservation

Service TR-55 methods (SCS, 1986) were fitted to the experimental data collected on-site. This

will be useful in future VFS design efforts.

Phosphorus in soils at the remediation was in the form of apatite, as indicated by XRD and

corroborated by XRF elemental analysis and chemical fractionation. Results of this study

supported the hypothesis that release of P from the soils was primarily from apatite dissolution

rather than desorption from metal oxides that is more typical of soils of the region. The P

release behavior in a batch experiment closely related to the modeled SSA of CFA. The

absolute prediction of DP release based on modeled CFA surface area and a CFA rate constant

from the literature underestimated observed release, suggesting that the rate equation or constant

were not applicable to the CFA of the soils studied or that SSA of CFA was underestimated, or

both.

The calibrated parameters of VFSMOD-W are in the acceptable range of measured data by

applying the inverse method. The smaller events (Q, < 0.4 L/s) are not simulated well with the

model (Cyff< 0.60), likely due to limitations of the experimental system to register such small

events. For those events (Q, < 0.4 L/s) which were not predicted well in runoff transport, their

measured TRFs are less than 60 L and relative measured MSFs are less than 3 g. Once

VFSMOD-W is calibrated for runoff, the model offers good sediment transport predictions.









Similarly to the runoff case the model performed fairly well throughout the range of measured

data, except for the low values of measured runoff subj ect to experimental limitations.

When considering uncertainty of measured data in each quantity for 25 events, the Cgfis

greater than 0.98 for each quantity except RDR. The Cg m_ of each quantity is also significantly

increased. The uncertainty of measured data included in the goodness-of-fit indicators is more

realistic to evaluate model performance and data sets. The good predictions of TRF (Cyf=

0.991, Ca m, = 0.888) and MSF (Cy=f 0.976, Ca m, = 0.874) are very high for these 25 events.

These good predictions in runoff and sediment also result in good prediction of PP transport (Cgf

= 0.961, Cg fm = 0.838) since apatite exists almost uniformly in sediment. Good DP predictions

(Cyf=0.965) were found based on the assumption of considering rainfall impact on P release

from apatite. The release of DP from apatite into runoff water maintains the system equilibrium

for the DP loss from inHiltration and dilution of DP concentration from rainfall. The Cgf of TP

transport is also as high as PP since DP is a small fraction of TP.

Based on the successful performance of VFSMOD-W, this tool shows promise for the

management agencies involved in mining permitting in upper Peace River basin. These

agencies could apply VFSMOD-W to design VFS for controlling runoff and P transport in

phosphate mining sand tailings.









APPENDIX A
SOIL PHYSICAL PROPERTIES AND SIMULATION PARAMETERS

Soil physical properties including soil texture, saturated hydraulic conductivity, soil

moisture retention curve, bulk density, and porosity were analyzed to investigate the

water movement in the subsurface. These are important factors for affecting hydrograph

and infiltration. The calibration of soil moisture probe (capacitance probe) is also

included in this Appendix. The surface topography, and grass spacing and height were

also measured to supply the model inputs in the modeling of pollution transport.

Soil Texture (or called particle size distribution)

Equipment employing the "Polarization Intensity Differential Scattering" technique

(Beckman-Coulter, Inc.) was used to analyze particle size distribution (PSD) of a soil

sample. Organic matter was removed using hydrogen peroxide (Day, 1965) before

analyzing PSD.

Saturated Hydraulic Conductivity (K,)

The core cylinder made of brass with 5.4 cm diameter and 6.0 cm height (Soil

moisture Equipment Corp, CA) was used to collect soil samples and then to measure

saturated hydraulic conductivity. The saturated hydraulic conductivity (Ks) of a soil is a

measurement of the soil's ability to transmit water when submitted to a hydraulic head

gradient. The soil cores were slowly wetting with 0.005 M calcium sulfate

(CaSO4)-thymol solution during 2 days to avoid air entrapment. Based on the

application of Darcy's Law, the constant head method was implemented to calculate Ks.

Soil Moisture Retention Curve (0(h))

In the lab, the soil cores (6 cm of height) saturated with 0.005 M CaSO4-thymol

solution were prepared for the soil moisture characteristic curve determination. Soil









moisture characteristic curve is measured in drainage curve using a positive pressure with

porous ceramic plate device and Tempe cell provided with compressed air (Soilmoisture

Equipment Corp., 1995). Ten pressure steps from 0 to 990 cm of water were taken for

each soil core. For each pressure step, weights were measured until the weights were

not change. After the last pressure step the cores were weighted, and dried in the oven

at 105.C for 48 h. After the cores reached the room temperature, the cores were

weighed again to obtain dry soil weight, which was the residual saturation after the last

pressure step. The water density was assumed 1.0 g/cm3 and air entrapment was

considered negligible in this procedure.

The soil water retention property was expressed by the van Genucthen (1980)

function with M~ualem pore-size distribution model. Then, the residual soil water

content, saturated soil water content and saturated hydraulic conductivity can be obtained

from the model. The average suction at the wetting front (Say) was also estimated as

the area under the unsaturated hydraulic conductivity (K,,,, (h)) curve applying SoilPrep

model (Workman and Skaggs, 1990). Soil moisture retention curve is primarily

dependent on the soil texture, and structure or arrangement of the particles (Reeve et al.,

1973).

Soil Bulk Density (d;,) and Porosity ('1)

Soil bulk density is an expression of the mass to volume relationship for a given

material. Soil bulk density measures total soil volume. After running soil moisture

retention curve, the final weight of soil was measured and used to calculate the soil

density and porosity. The initial volume of the soil sample was assumed equal to that of









the core. The total water content of soil samples at saturation is equal to soil porosity.

With these values the following parameters were calculated:


Bulk density ( db) Ms fdy olM
Total volume[V,


volume of pore spacce[,]
Total porosity(r) =


[M, ] d,
Particle density (ds) =
Volume of dryl soigllV ]1- 00


Void ratio (e) -


Calibration of a Capacitance Probe (ECH20 probe)

The capacitance probe was calibrated in a PVC cylinder (16.0 cm diameter and 25

cm height) containing soil with a bulk density similar to the field condition. The soil

was saturated and the whole cylinder was weighed. Voltage measurements were taken

periodically as the water drained and evaporated. After about 20 days (or soil moisture

dried to a limited value), the whole cylinder with soil and the probe was weighed to

determine the initial soil weight, and initial water volume added into the soil column.

The water loss and output voltage of probe were recorded to determine the relationship

between soil moisture content and output voltage of probe.

Topographical Survey

Topographical field survey was conducted to obtain the slopes of plot for

simulation purposes. Four points were measured in each transversal direction in 3.3 m

wide. The transversal values of slope (to the direction of flow) were averaged to obtain










a width averaged set of slopes for each plot. In the flow (longitudinal) direction the

elevation was recorded at every 0.8 m and 1.2 m in VFS and source area, respectively.

Grass Spacing (Ss)

Vegetation cover was collected at the both experimental site to determine the grass

spacing (Ss). Vegetation stems within a 50 cm x 50 cm frame was counted to

determine grass density (GD, stems/m2). The grass spacing was calculated as (Wilson et

al., 1981):


Ss = 1001
GD (stems/m )

Three spots were collected in each plot at site A and 6.8 m long VFS areas at site B.

Four spots were collected in 13.4 m long VFS areas at site B.

Grass Height (H)

Five spots in each plot at site A and site B are randomly selected to determine the

averaged grass height.

Results

Table A-1 and Table A-2 summarized the results from the experiments (K,, db, ds,

e, and rl), values of So, were calculated from the SoilPrep program (Workman and

Skaggs, 1990) based on Green-Ampt model, as well as results of parameters (8r, 8s, n,

and a) were calculated from retention curve program (RETC) based on Ven Genuchten

model. The suction pressure head versus water content for soil cores at site A and site B

were shown in Table A-3 and Table A-4. The suction curves of the soil cores collected

at site A were illustrated in Figure A-1. The suction curves of soil cores extracted from

VFS area at site B are illustrated in Figure A-2. Those of lower-layer and upper-layer










soil cores extracted from source area at site B are shown in Figure A-3 and A-4,

respectively.

In site A, Ks ranges from 14.2 to 40.3 cm/h with an average of 28.9 cm/h for all soil

samples. The average of Ks within VFS area is 26.1 cm/h that is smaller than that within

source area is 30.7 cm/h. The smallest value of Ks is 14.2 cm/h, located near river,

where the soil sample contains high percentage of clay. The porosity ranges from 0.39

to 0.49 with a mean value 0.44. The mean values of bulk density and particle density

are 1.36 g/cm3 and 2.44 g/cm3, TOSpectively. In site B, Ks at upper-layer samples

extracted from source area range from 1.79 to 37.0 cm/h with an average of 13.14 cm/h.

The Ks at lower-layer samples extracted from source area ranges from 0.05 to 40.2 cm/h

with an average of 8.44 cm/h. The average ofKs within VFS area is 11.74 cm/h, which

is smaller than that of upper-layer samples in the source area and greater than that of

lower-layer samples in the source area. The porosity ranges from 0.43 to 0.54 with a

mean value 0.49 for all samples. The mean values of bulk density and particle density

are 1.33 g/cm3 and 2.60 g/cm3, TOSpectively.

The cumulative particle size distributions of site A and site B analyzed by Beckman

coulter are shown in Figure A-5 and Figure A-6, respectively. Cumulative percentages

of volume for a specific particle size range of each soil sample at site A and site B are

shown in Table A-5. The result of the capacitance probe calibration is shown in Figure

A-7. Results of topographical field survey in site A and site B are listed in Table A-6

and Table A-7, respectively. The results of grass spacing at two sites are shown in

Table A-8 and Table A-9. The results of grass height at two sites are shown in Table

A-10.














Sample K, S,, 8, 8s a n db 17 e d,
ID cm/h cm cm'/cm3 cm3/cm3 g/cm3 cm'/cm3 cm'/cm3 g/cm3
AV-1-1* 36.8 9.9 0.269 0.456 0.039 5.03 1.277 0.491 0.964 2.507
AV-1-2 28.6 12.7 0.219 0.483 0.039 2.70 1.343 0.479 0.920 2.579
AV-2-1 20.7 20.5 0.1936 0.434 0.032 2.72 1.413 0.454 0.832 2.587
AV-3-1 28.0 13.2 0.277 0.452 0.058 0.24 1.399 0.455 0.833 2.564
AV-3 -2 14.2 19.1 0.153 0.448 0.032 3.47 1.342 0.480 0.923 2.582
AV-4-1 28.3 13.8 0.266 0.432 0.051 1.92 1.398 0.449 0.815 2.538
AS-1-1* 34.5 13.5 0.198 0.404 0.048 2.79 1.370 0.394 0.651 2.262
AS-1-2 40.3 15.4 0.088 0.37 0.041 6.77 1.356 0.405 0.680 2.277
AS-2-1 38.3 13.5 0.158 0.404 0.036 4.71 1.270 0.444 0.798 2.284
AS-2-2 27.7 26.6 0.077 0.405 0.028 7.13 1.494 0.418 0.718 2.567
AS-3-1 23.0 21.9 0.082 0.402 0.033 6.47 1.321 0.433 0.763 2.330
AS-3-2 40.2 14.5 0.092 0.376 0.046 4.24 1.432 0.389 0.638 2.346
AS-4-1 21.4 15.4 0.119 0.430 0.036 5.59 1.346 0.453 0.828 2.461
AS-4-2 22.4 14.8 0.154 0.407 0.038 2.62 1.284 0.422 0.731 2.223
*A: site A: S: source area: V: VFS: first number is a plot number: second number is a sample number in a plot



Table A-2. Soil properties at site B
Sample K, S,, 8, Bs a n db 17 e d,
ID cm/h cm cm3/cm3 cm3/cm3 g/cm3 cm3/cm3 cm3/cm3 g/cm3
BS-1-8U* 3.54 17.8 0.31 0.51 0.03 1.82 1.18 0.53 1.14 2.52
BS-1-8L 0.21 33.3 0.36 0.44 0.01 1.96 1.43 0.47 0.87 2.69
BS-1-24U 1.29 21.3 0.33 0.50 0.03 1.81 1.26 0.53 1.11 2.67
BS-1-24L 0.05 14.0 0.18 0.53 0.01 1.09 1.22 0.54 1.17 2.65
BS-2-8U 10.40 30.6 0.00 0.47 0.00 4.01 1.29 0.49 0.97 2.54
BS-2-8L 0.25 18.8 0.34 0.53 0.03 1.59 1.22 0.54 1.18 2.66
BS-2-24U 4.41 12.2 0.00 0.43 0.01 6.27 1.39 0.45 0.80 2.50
BS-2-24L 18.50 16.4 0.00 0.42 0.01 2.37 1.40 0.46 0.86 2.61
BS-3-8U 26.04 25.7 0.20 0.45 0.28 4.88 1.41 0.46 0.85 2.62
BS-3-8L 7.49 7.50 0.02 0.48 0.05 1.53 1.34 0.50 0.99 2.67
BS-3-24U 2.49 24.6 0.27 0.49 0.25 3.15 1.32 0.51 1.03 2.69
BS-3-24L 0.24 37.2 0.28 0.43 0.02 1.36 1.42 0.44 0.79 2.54
BS-4-8U 37.00 15.9 0.17 0.51 0.04 2.73 1.17 0.53 1.14 2.51
BS-4-8L 40.20 12.9 0.19 0.47 0.05 3.07 1.26 0.52 1.07 2.61
BS-4-24U 19.98 17.5 0.21 0.48 0.40 3.32 1.34 0.49 0.97 2.63
BS-4-24L 0.57 16.1 0.30 0.48 0.04 2.22 1.34 0.50 0.99 2.68
BV-1-4U* 3.35 5.3 0.31 0.44 0.05 10.25 1.42 0.45 0.83 2.60
BV-1-4L 0.09 25.5 0.29 0.46 0.02 2.53 1.40 0.48 0.91 2.67
BV-1-11U 4.06 18.0 0.34 0.47 0.04 2.68 1.31 0.49 0.95 2.55
BV-1-11L 21.00 18.2 0.13 0.40 0.03 6.18 1.49 0.43 0.76 2.62
BV-2-4U 5.75 28.4 0.22 0.48 0.03 6.60 1.30 0.48 0.92 2.51
BV-2-4L 0.99 32.1 0.36 0.46 0.02 3.25 1.35 0.48 0.91 2.57
BV-3 -4U 18.45 28.4 0.23 0.49 0.03 6.60 1.28 0.50 0.99 2.55
BV-3-11U 37.15 29.3 0.00 0.45 0.02 1.71 1.44 0.44 0.79 2.57
BV-4-4U 14.79 21.2 0.27 0.47 0.03 2.29 1.39 0.49 0.94 2.70
A: site A: S: source area: first number is a plot number: second number is the distance from runoff gutter: U:
upper layer sample: L: lower laver sample


Table A-1. Soil properties at site A











Table A-3. Suction pressure head (cm) versus water content (%) for soil cores extracted from
site A
Sample Suction pressure head (cm)
ID
0.0 6.9 10.9 24.6 50.8 105.5 253.1 492.1 731.1 900
AV-1-1* 0.467 0.451 0.448 0.385 0.278 0.278 0.277 0.273 0.271 0.250
AV-1-2 0.477 0.477 0.477 0.392 0.296 0.241 0.234 0.224 0.218 0.210
AV-2-1 0.430 0.430 0.430 0.385 0.272 0.237 0.202 0.200 0.198 0.179
AV-3-1 0.444 0.443 0.439 0.350 0.316 0.299 0.297 0.294 0.288 0.254
AV-3-2 0.446 0.446 0.446 0.370 0.224 0.162 0.162 0.159 0.155 0.140
AV-4-1 0.425 0.425 0.418 0.369 0.324 0.300 0.295 0.287 0.283 0.241
AS-1-1 0.375 0.366 0.364 0.297 0.223 0.222 0.214 0.198 0.192 0.184
AS-1-2 0.372 0.368 0.368 0.239 0.092 0.091 0.091 0.089 0.089 0.082
AS-2-1 0.413 0.412 0.383 0.328 0.178 0.167 0.162 0.159 0.158 0.150
AS-2-2 0.406 0.406 0.402 0.386 0.111 0.087 0.082 0.078 0.076 0.061
AS-3-1 0.402 0.402 0.402 0.346 0.100 0.100 0.096 0.096 0.079 0.041
AS-3-2 0.376 0.370 0.370 0.227 0.111 0.101 0.096 0.093 0.090 0.079
AS-4-1 0.432 0.430 0.427 0.342 0.138 0.124 0.120 0.118 0.118 0.118
AS-4-2 0.407 0.400 0.394 0.331 0.221 0.190 0.171 0.156 0.155 0.143
*A: site A; S: source area; V: VFS; first number is a plot number; second number is a sample number in a plot



Table A-4. Suction pressure head (cm) versus water content (%) for soil cores extracted from
site B

Sample ID Suction pressure head (cm)
0.0 5.1 14.0 25.4 50.8 105.5 253.1 492.1 731.1 900
BS-1-8U* 0.507 0.504 0.500 0.448 0.437 0.368 0.340 0.328 0.326 0.313
BS-1-24U 0.501 0.500 0.496 0.473 0.443 0.395 0.368 0.354 0.350 0.331
BS-2-8U 0.487 0.487 0.486 0.457 0.446 0.442 0.435 0.419 0.219 0.191
BS-2-24U 0.439 0.438 0.437 0.437 0.435 0.428 0.418 0.416 0.414 0.362
BS-3-8U 0.453 0.452 0.450 0.426 0.257 0.231 0.215 0.205 0.188 0.185
BS-3-24U 0.486 0.485 0.482 0.455 0.370 0.290 0.287 0.279 0.279 0.246
BS-4-8U 0.507 0.499 0.489 0.397 0.263 0.213 0.199 0.177 0.162 0.155
BS-4-24U 0.477 0.472 0.468 0.362 0.259 0.232 0.208 0.207 0.207 0.206
BS-1-8D 0.445 0.440 0.437 0.437 0.431 0.402 0.386 0.373 0.370 0.365
BS-1-24D 0.531 0.526 0.524 0.524 0.515 0.509 0.494 0.482 0.481 0.456
BS-2-8D 0.527 0.527 0.517 0.503 0.454 0.422 0.402 0.388 0.362 0.359
BS-2-24D 0.450 0.442 0.420 0.389 0.365 0.318 0.129 0.044 0.033 0.028
BS-3-8D 0.472 0.469 0.456 0.387 0.293 0.250 0.237 0.219 0.137 0.134
BS-3-24D 0.427 0.426 0.426 0.424 0.410 0.378 0.368 0.357 0.346 0.327
BS-4-8D 0.470 0.461 0.455 0.316 0.245 0.219 0.194 0.188 0.188 0.170
BS-4-24D 0.477 0.477 0.464 0.428 0.382 0.330 0.324 0.313 0.313 0.293
BV-1-11U 0.443 0.443 0.441 0.326 0.319 0.311 0.310 0.308 0.304 0.298
BV-1-11D 0.456 0.451 0.450 0.437 0.389 0.322 0.312 0.298 0.295 0.271
BV-1-11U 0.469 0.469 0.468 0.425 0.374 0.358 0.340 0.338 0.337 0.329
BV-1-11D 0.411 0.401 0.398 0.380 0.168 0.142 0.132 0.126 0.120 0.118
BV-2-11U 0.474 0.474 0.471 0.461 0.389 0.349 0.317 0.293 0.257 0.253
BV-2-11D 0.461 0.461 0.461 0.460 0.419 0.376 0.368 0.362 0.362 0.346
BV-3-11U 0.492 0.491 0.487 0.479 0.278 0.252 0.244 0.233 0.213 0.210
BV-3-11U 0.436 0.436 0.434 0.423 0.252 0.220 0.180 0.080 0.024 0.020
BV-4-11U 0.465 0.464 0.462 0.426 0.330 0.320 0.293 0.279 0.277 0.240
B: site B; S: source area; V: VFS; first number is a plot number; second number is the distance from
runoff gutter; U: upper layer sample; L: lower layer sample










Table A-5. Cumulative percentages for specific particle size ranges of soil samples
collected at sites A and B.


Particle size (Cum)


plot

A-S-1
A-S-2
A-S-3
A-S-4
A-V-1
A-V-2
A-V-3
A-V-4
B-S-1
B-S-2
B-S-3
B-S-4
B-V-1
B-V-2
B-V-3
B-V-4


< 0.45
0.0
0.0
0.0
0.0
0.1
0.1
4.3
0.1
1.2
1.9
1.3
1.4
0.9
0.9
0.8
0.7


< 37
2.6
3.6
3.7
2.6
5.1
5.2
10.3
6.0
8.7
8.4
8.3
9.1
9.8
12.5
9.6
7.5


< 100
3.7
4.8
5.0
3.6
7.6
7.6
17.8
8.5
16.6
12.8
10.8
9.6
10.7
16.1
11.7
10.5


< 250 < 2000
44.1 100
42.1 100
42.6 100
43.9 100
47.8 100
47.8 100
50.5 100
42.5 100
56.2 100
54.3 100
51.3 100
43.7 100
48.1 100
51.4 100
39.7 100
48.2 100


* A: site A; B: site B; S: source area; V: VFS; last number: is the plot number.


Table A-6. Average slope at each point in VFS and source areas at site A (X=0 m is in
the edge of rain gutter)


X (m)
0.0
1.2
2.4
3.7
4.9
5.8
6.7
7.6
8.5
9.5
10.4
11.3
12.2
13.2
14.4


A-S-1*
1.2%
2.6%
2.0%
1.4%
1.4%
0.7%
1.6%
2.2%
3.4%
4.0%
3.3%
3.5%
3.1%
1.3%
1.3%


A-S-2
0.9%
1.7%
2.1%
1.4%
1.5%
0.8%
1.6%
0.4%
2.4%
3.2%
3.0%
5.1%
3.4%
2.2%
2.2%


A-S-3
1.3%
1.3%
1.4%
1.4%
2.4%
1.7%
0.8%
0.3%
0.5%
2.6%
2.2%
0.5%
2.5%
5.9%
1.0%


A-S-4
0.6%
0.8%
1.0%
2.1%
2.6%
0.7%
0.7%
0.2%
0.4%
0.9%
1.4%
0.9%
3.7%
3.1%
3.1%


X (m)
0.0
0.8
1.4
2.3
3.2
4.1
5.0
5.8


A-V-1
0.9%
3.0%
2.4%
4.3%
4.4%
2.8%
1.4%
1.5%


A-V-2
1.3%
1.1%
2.2%
2.8%
1.9%
1.5%


A-V-3
0.8%
0.7%
1.9%
1.9%
3.4%
3.1%
1.4%
1.4%


A-V-4
1.3%
1.1%
2.2%
2.8%
1.9%
1.5%


Mean 2.2% 2.1% 1.7% 1.5% Mean 2.6% 1.8% 1.8% 1.8%
* A: site A; S: source area; V: VFS; last number: is the plot number.










Table A-7. Average slope at each point in VFS and source areas at site B (X=0 m is in the
edge of rain gutter)


X (m)
0.0
1.5
3.1
4.6
6.1
7.6
9.2
10.7
12.2
13.7
14.9
16.2
17.4
18.6
19.8
21.0
22.0
22.9
23.8
24.7
25.6
26.5
27.5
28.4
29.3
30.8
32.3
33.8
35.3
36.8
38.3
40.0


B-S-1
4.0%
5.0%
5.3%
5.0%
7.0%
6.4%
3.8%
5.0%
3.9%
3.4%
4.3%
3.9%
4.3%
4.2%
3.7%
5.6%
3.1%
5.6%
5.1%
3.8%
3.8%
3.8%
3.7%
3.6%
3.7%
3.6%
3.6%
3.4%
3.3%
3.3%
3.2%
3.0%


B-S-2
5.6%
3.6%
5.5%
3.9%
3.6%
3.1%
3.7%
3.7%
5.9%
2.4%
4.0%
3.7%
5.1%
3.3%
3.9%
3.9%
3.8%
3.8%
3.4%
3.4%
3.6%
3.4%
3.2%
3.1%
3.1%
2.7%
2.9%
2.6%
2.8%
2.5%
2.7%
2.5%


B-S-3
3.2%
4.0%
3.7%
2.7%
3.3%
3.7%
5.2%
6.2%
5.5%
4.9%
6.4%
5.3%
4.4%
4.0%
3.1%
3.7%
3.9%
4.5%
4.1%
4.0%
4.0%
2.5%
3.3%
2.8%
2.8%
2.7%
2.6%
2.4%
2.5%
2.6%
2.7%
2.5%


B-S-4
3.8%
4.0%
4.5%
3.6%
3.4%
3.1%
4.0%
4.7%
6.2%
5.3%
5.5%
5.9%
5.5%
6.4%
3.6%
2.6%
3.9%
4.7%
3.8%
3.3%
4.0%
3.9%
2.5%
3.4%
2.8%
3.0%
2.9%
2.6%
2.5%
2.7%
2.6%
2.5%


X (m)
0.0
0.6
1.2
2.1
3.1
4.0
4.9
5.8
6.7
7.6
8.5
9.5
10.4
11.3
12.2
13.4


B-V-1
5.1%
4.7%
3.7%
3.5%
3.7%
3.7%
4.0%
4.4%
4.2%
4.4%
3.7%
3.3%
3.3%
3.0%
1.1%
1.2%


B-V-2
7.0%
4.9%
5.8%
5.3%
4.1%
5.1%
3.4%
3.5%
3.4%


B-V-3
5.2%
5.3%
4.6%
4.9%
5.8%
5.8%
4.4%
4.7%
4.5%
3.8%
2.5%
4.1%
2.8%
4.4%
3.3%
3.3%


B-V-4
5.0%
4.5%
4.1%
4.5%
4.3%
4.5%
3.3%
3.3%
3.3%


mean 4.2% 3.6% 3.7% 3.9%


mean 3.6% 4.7% 4.3% 4.1%


* B: site B; S: source area; V: VFS; last number: is the plot number.










Table A-8. Grass spacing parameters at site A
A-V-1* A-V-3
X (m) X (m)
GD Ss GD Ss
0-2 528.0 4.35 356.0 5.30 1-1.5
2-4 324.0 5.56 340.0 5 .42 2.5-3
4-6 360.0 5.27 288.0 5.89 3-4.1


(06/18/06)
A-V-2
GD Ss
328.0 5.52
384.0 5.10
436.0 4.79


A-V-4
GD Ss
432.0 4.81
440.0 4.77
392.0 5.05


mean 404.0 5.06 328.0 5.54 mean 382.7 5.14 421.3 4.88
* A: site A; V: VFS; last number: is the plot number; GD: grass density; Ss: grass spacing.


Table A-9. Grass spacing parameters at site B
B-V-1* B-V-3
X(m) X(m)
GD Ss GD Ss
0-2 704.0 3.77 472.0 4.60 0-2
2-5 728.0 3.71 620.0 4.02 2-4
5-9 716.0 3.74 632.0 3.98 4-6.8
9-13 640.0 3.95 712.0 3.75


(06/18/06)
B-V-2
GD Ss
484.0 4.55
712.0 3.75
568.0 4.20


B-V-4
GD Ss
480.0 4.56
356.0 5.30
340.0 5.42



348.0 5.36
Ss: grass spacing.


mean 694.7 3.80 654.7 3.91 mean 640.0 3.97
* B: site B; V: VFS; last number: is the plot number; GD: grass density;






Table A-10. The averaged grass height at site A and site B m
year 2006
0602-0621 0622-0704 0705-0720 0721-0805 0806-08.


measured at different period in


24 0825-0920 0921-1017 Average
em emcm


rm


Plots


cm cm
12.1 14.9
12.9 15.7
14.0 16.2
13.5 16.4
15.5 18.5
13.7 16.0
16.9 20.0
16.9 19.7


A-V-1*
A-V-2
A-V-3
A-V-4
B-V-1
B-V-2
B-V-3
B-V-4


*F A: site A; B: site B; V: VFS; last number: is the plot number;






























700 800 900 1000


I


-- ~--x J


-*AS-2-1 -mAS-2-2 AS-3-1 AS-3-2 -x-AV-1-1
-*AV-1-2 tAV-2-1 -*AV-3-1 AV-3-2 AV-4-1
AS-1-1 AS-1-2 AS-4-1 -x-AS-4-2


)VFS


1;


400 500 600
Water Pressure Head (cm)


Figure A-1. Suction curves of soil cores extracted from site A


0.00
0 100 200 300 400 500 600 700 800 900 1000
Water pressure head (cm)





Figure A-2. Suction curves of soil cores extracted from VFS areas at site B


-


1


0.50


~0.40


S0.30


0.20


0.10


0.00


0 100 200 300





























































U.UU
-*BS-1-8U -mBS-1-24U
BS-2-8U BS-2-24U
-aBS-3-8U -*BS-3-24U
0.50 +BS-4-8U -BS-4-24U


0.40











0.10



0.00
0 100 200 300 400 500 600 700 800 900 1000
Water pressure Head (cm)










Figure A-4. Suction curves of upper-layer soil cores extracted from source areas at site B


0.50



0.40



S0.30



S0.20



0.10



0.00


200 400 600 800
Water pressure head (cm)


1000


Figure A-3. Suction curves of lower-layer soil cores extracted from source areas at site B















Cumulateie< Volume


60-



40-


30


20






0 04 0 06 0 1 0 2 0 4 0 6 1 2 4 6 8 10 20 40 60 100 200 400 600 1000 2000
Partice DiOameter {um)
LC= 0%6 <2.011 um UC= 5.306% < 36.24 um (5.306%)


Figure A-5. Cumulative particle size distributions of soil samples collected from site A.






Cumulative < Volume
100-

/ -As-35|s
901 As- sh
-Av-lals
-Av-2a s
80 -Av-3a #s
-Au-4a s























0.04 0.06 0.1 0.2 0 4 0.6 1 2 4 6 8 10 20 40 60 100 200 400 600 1000 2000
Partile Diameter (um)
LC= 1.264%6 <2.011 um UC= 2.543% < 36.24 um {1.278%)


Figure A-6. Cumulative particle size distributions of soil samples collected from site B.















0.5


0.4-


S0.3-


~0.2


0.1



300 400 500 600 700 800 900 1000

Capacitance probe output (mV)



Figure A-7.The relationship between soil moisture content and capacitance probe output voltage









APPENDIX B
GOODNESS-OF-FIT INDICATORS

Nash and Sutcliffe Coefficient of Efficiency (Cyfs)

The Nash and Sutcliffe coefficient of efficiency (Cyfs) (Nash and Sutcliffe, 1970) has been

widely used to evaluate the performance of hydrologic and water quality models (McCuen et al.,

2006, Erpul et al., 2003, Merz and Bloscl 2004). The range of Cf lies between 1.0 and -oo

C,f = 1 implies that the plot of predicted vs. observed values matches the 1:1 line. It is

calculated as following:





-(0r


(B.1)

where o,=0bserved data, P, =predicted data, and a =mean of observed data. The C,f can

be sensitive to sample size, outliers, and magnitude bias and time-offset bias (McCuen et al.,

2006). Since C,f calculated as squared values of the differences between the observations

and simulations it significantly overestimated larger values (sensitive) and underestimated the

lower values (insensitive) (Legates and McCabe, 1999). This calculation results in high values of

C,f even when the fit is relatively poor. Thus, the Nash-Sutcliffe is not very sensitive to

systematic model over- or under-prediction especially during low flow periods (Krause et al.

2005).

Modified Form of Cyff(C, ,)

The Modified forms of Cf were developed by Krause et al. (2005) to reduce the

overestimation of the peak values with j =1 in modified equation (b).













C4~ (u ,, 1 with jeN


(B.2)

The modified forms with j =1 provide boarder range of values for model calibration than the

forms with j >1. The modified forms with lower value of j are more sensitive to over- or

under-prediction than higher value of j To evaluate the model prediction in high values of

flow rates and sediment loads the value of j should be raised to increase the sensitivity to high

values.

Root Mean Square Error (RMSE)

A measure of total error defined as the square root of the sum of the variance and the square of

the bias.


RMSE = \N' (O, -p,)2


(B.3)









APPENDIX C
VERIFICATION OF THE INVERSE MODELING ALGORITHM

To verify the robustness of the inverse modeling algorithm integrated in the VFSMOD-W,

two conditions, perfect data set and data set after adding random noise to the perfect data set

(ARP), were created. The runoff and sediment simulated outflows from the sample proj ect

(sample.prj) in the directory of VFSMOD-W represent the perfect target data sets. Adding

random noise to the runoff and sediment outflows in the sample project can represent the

measured data uncertainty/error of a Hield experiment. The range of random noise added to

runoff and sediment data was determined based on the PER in measuring flow rate and sampling

sediment, respectively (Chapter 4). These two conditions (perfect data set and ARP) were used

to verify the robustness of inverse modeling algorithm based on the calibrated results.

Three sensitive parameters (VKS, SAV, and RNA) in the hydrology component and two in

the sediment component (dp, and VN) were selected to calibrate the optimal values in the sample

proj ect. The measured value, the range used in calibration, and the final calibrated value of

each parameter are shown in Table C-1.

In the hydrology component, calibrated values of VKS for these two conditions were

similar to the target value. RNA was almost the same as target value, and SAV was slightly

higher than the target value. Both C,f and C,_,,, were close to 1 with and without

considering PER in the goodness-of-fit indicators for the perfect data set (Table C-2).

Considering PER, Cf and C,,,, were significantly increased (Cyf=0.975) in the ARP tes

(Table C-2). The predicted runoff ouflow from filters (TRF) was calculated based on using the

optimized value of calibrated parameters in VF SMOD-W. The target and predicted ouflows of

these two conditions are shown in the Table C-3. The predicted TRF was higher than target









value for both conditions since the calibrated value of VKS was slightly smaller than the target

value and VKS was most sensitive parameter in the hydrology component in VFSMOD-W.

In the sediment component, calibrated values of dp in these two conditions were very

similar to the target value. The VN was variable but within the calibrated range. Both Cfs,

and C,_,, were also very close to 1 with and without considering PER in the goodness-of-fit

indicators for the perfect data set (Table C-2). Considering PER, Ces was increased from

0.934 to 0.960 in the ARP condition (Table C-2). The predicted mass of sediment outflow from

filters (MSF) in the perfect data set was very close to the target data set (Table C-3). However,

in the ARP condition the predicted MSF was slightly higher than the target MSF (about 9% of

target MSF). This may result from lower calibrated dp and higher predicted TRF which

increase a higher amount of sediment in runoff. However, these errors are considered small

when compared to the PER and typical errors associated to most field values. The hydrographs

and sedimentographs of these two tests are shown in Figures C-1 to C-4.

The results show that inverse modeling algorithm integrated in the VFSMOD-W is robust

since it successfully calibrated the parameters even in the presence of random noise associated

with the measured data.












Table C-1. The measured value, calibration range, and optimized value of each parameter used in
the verification of inverse modeling algorithm.
Measured Optimized value Optimized value
Component Parameter (units) v Cazlibration range .~lpretaa vllAP

VKS (m/s) 0.000013 0.0009-0.000001 0.000012 0.000009
Hydrology SAV (m) 0.379 0.29-0.45 0.449 0.439
RNA (s/ml/3) 0.400 0.1-0.5 0.400 0.409
VN (s/ml/3) 0.012 0.008-0.018 0.008 0.017
3tUlll~l L Dp (cm) 0.00130 0.0005-0.0020 0.00138 0.00128
*ARP: data set after adding random noise to the pefect data set.






Table C-2. Results of hydrology and sediment simulations in selected goodness-of-fit indicators
with and without including measured data uncertainty (PER=0.20 for hydrology,
PER=0.29 for sediment).
Hydrology Sediment
Event PER=0 PER=0.20 PER=0 PER=0.29
C,f Cg m RALSE# C,f Cg RMSE C,f Cg RMSE C,f Ca RMSE
Perfect data 1 0.993 0.000007 1 1 0 1 0.996 0.0101 1 1 0
ARP* 0.945 0.861 0.000115 0.975 0.924 0.000085 0.934 0.860 0.2900 0.960 0.950 0.2302
*ARP: data set after adding random noise to the pefect data set.
#units of RMSEs in hydrology and sediment are (m3/S) and (g/s), respectively.


Table C-3. Measured and predicted outputs of perfect data set and ARP.
Output Perfect data ARP*
quantity Target Predicted Target Predicted
TRF(m3) 0.732 0.745 0.739 0.871
MSF(kg) 1.111 1.119 1.112 1.216
CSF(g/L) 1.518 1.502 1.505 1.396
*ARP: data set after adding random nosie to the pefect data set













































I I I I I I I I I I I I I I I I I I I I


~h~t~EElfJ;SEEE~E~-


I I ------------<


0.0030



0.0025



0.0020



0.0015



0.0010



0.0005



0.0000


-0.0

-1.0e-5

-2.0e-5

-3.0e-5 .E

.0 -

.0e-5 -c


-6.0e-5

-7.0e-5

-8.0e-5

-9.0e-5



3000


0 500


1000 1500 2000 2500


Time(s)
The target and predicted hydrographs of sample proj ect (perfect data set).


Figure C-1.


S4
0
o




o
-


2-

U) 1 -


-1.0e-5


-2.0e-5 m


-3.0e-5


-4.0e-5 @


-5.0e-5


-6.0e-5


-7.0e-5


8.0e-5
3000


I I


0 Observed
- Predicted

I Rain(m/s)


1000


1500


2000 2500


Time(s)
Figure C-2. The target and predicted sedimentographs of sample proj ect (perfect data set).


-















































































Time(s)
Figure C-4. The target and predicted sedimentographs of the ARP condition (adding random
noise to the perfect data set).


0
- -


o
o


o












""----------
7


0.0030



0.0025



0.0020



0.0015



0.0010



0.0005



0.0000


0.0

-1.0e-5


- Inflow 2.0e-5
Observed
-3.0e-5 .E
Predicted
I Rain (m/s)
-4.0e-5

-5.0e-5

-6.0e-5

-7.0e-5

-8.0e-5

-9.0e-5



2500 3000


500 1000 1500 2000


Time(s)
Figure C-3. The target and predicted hydrographs of the ARP condition (adding random noise to
the perfect data set).


5

4-




o

3-
o

o
-

c~



0-


0.0


- 1.0e-5


- 2.0e-5 mI


- 3.0e-5


- 4.0e-5 .~
co


0 Observed
- Predicted

I Rain(m/s)


-5.0e-5


o 6.0e-5


-7.0e-5


I ==9====8.0e-5
2000 2500 3000


0 500


1000


1500









APPENDIX D
SIMULATION RESULTS OF CHAPTER 3

The observed and predicted hydrographs and sedimentographs of selected events are

shown in this appendix. The alpha-numeric title describes the site and filter area attributes. In

Figures AO70706V2 and BO71406V2 for example, the first letter represents the site location

name (A or B). The following six numbers in succession represents Gregorian date. V

represents the VFS area; the last number represents the plot number within VFS area.

The lengths of plot 2 (V2) and plot 3 (V3) in VFS area at site A are 4. 1 m and 5.8 m,

respectively. The lengths of plot 2 (V2) and plot 3 (V3) in VFS area at site B are 6.8 m and

13.4 m, respectively.














BO71406V2


0.0020


0.0


1.0e-5


2.0e-5 j


3.0e-5


4.0e-5
5.e-

6.0e-5


7.0e-5


0.0015





0.0010





0.0005


0.0000


H 8.0e-5
5000


0 1000 2000 3000 4000

Time(s)


Figure D-1. Hydrograph of plot 2 (length=6.8 m) in VFS area at site B on date 07/14/06





BO71406V2


0.25




2S 0.20



C?0.15
o

o
S0.10



(D) 0.05



0.00


-0.0


-1.0e-5


-2.0e-5


-3.0e-5


-4.0e-5 .@


-5.0e-5


-6.0e-5


-7.0e-5


-- 8.0e-5
5000


1000 2000 3000 4000

Time(s)


Figure D-2. Sedimentograph of plot 2 (length=6.8 m) in VFS area at site B on date 07/14/06











BO71406V3


0.0030


0.0025


(;`0.0020






o 0.0010

0.00


0.0000


0.0

1.0e-5

2.0e-5


3.0e-5

4.0e-5 .~
5.e-

6.0e-5

7.0e-5


0 8.0e-5
5000


0 1000 2000 3000 4000

Time(s)


Figure D-3. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/14/06




BO71406V3


0.20



S0.16



0.12

o

S0.08



(1) 0.04



0.00


0.0


1.0e-5


2.0e-5


3.0e-5


4.0e-5 .@
5.e-

6.0e-5


7.0e-5


lo0 8.0e-5


0 1000 2000 3000 4000 5000

Time(s)
Figure D-4. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/14/06












BO72006V2


0.0030



0.0025



0.0020



0.0015



0.0010



0.0005



0.0000


quuum.0.0


Inflow -1.0e-5
o Observed
-Predicted -C 2.0e-5
I Rain (m/s) E

-3.0e-5


o 4.0e-5


-5.0e-5


-6.0e-5


a 7.0e-5
Oo
ioo o on s ""- 8.0e-5
1500 2000 2500 3000


0 500 1000


Time(s)
Figure D-5. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 07/20/06



BO72006V2


3Usuu.. .o

-1.0e-5
o Observed
-Predicted 2.0e-5
SRain (m/s) E

-3.0e-5


-4.0e-5


-5.0e-5


-6.0e-5


-7.0e-5


oar- e: -8.0e-5
2500 3000


ea at site B on date 07/20/06


0 500 1000 1500 2000

Time(s)
Irograph of plot 2 (length= 6.8 m) in VFS ar~


Figure D-6. Hyd












BO72006V3


0.0035


0.0030


95 0.0025


Cr0.0020


1~0.0015

.0
LL0.0010


0.0005


0.0000


0.0


1.0e-5


2.0e-5 4
E
3.e-
4.0e-5

5.e-
6.0e-5




7.0e-5


8.0e-5


0 1000 2000 3000

Time(s)


Figure D-7. Hydrograph of plot 3 (length:


13.4 m) in VFS area at site B on date 07/20/06


BO72006V3


0.40


0.35


~0.30


) 0.25

0 0.20


E 0.15


0.10


0.05


0.00


0.0


1.0e-5


2.0e-5 4


3.0e-5
=
4.0e-5


5.0e-5


6.0e-5


7.0e-5


8.0e-5


0 1000 2000 3000

Time(s)
Figure D-8. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/20/06











BO90906V2



1 0e-5


-2.0e-5

o Observed
-Predicted 3.0e-5
I Rain (m/s)
-4.0e-5 -~


o 5.0e-5


o a -6.0e-5

co a o -7.0e-5


I I II "8.0e-5
0 1000 2000 3000 4000 5000 6000


0.004


0.003




0.002


0.001




0.000


Time(s)
6.8 m) in VFS area at site B on date 09/09/06


Figure D-9. Hydrograph of plot 2 (length


BO90906V2


0.0


1.0e-5


2.0e-5 &


3.0e-5


4.0e-5


5.0e-5


6.0e-5


7.0e-5


0.0 -' :4 'B I 2lrr""rrr" 8.0e-5
0 1000 2000 3000 4000 5000 6000

Time(s)
Figure D-10. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/09/06












BO90906V3


0.0040


0.0035


0.0030


E 0.0025


cu0.0020


S0.0015
O

0.0010


0.0005


0.0000


-0.0


-1.0e-5


-2.0e-5


-3.0e-5


-4.0e-5


-5.0e-5


-6.0e-5


-7.0e-5


-8.0e-5


0 1000 2000 3000 4000 5000 6000

Time(s)
Figure D-11. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/09/06






BO90906V3




0.50-

0.45 --2.0e-5 4i
o Observed E
0.40 -1 Predicted
a o C Rain (m/s) 3.0e-5
o 0.35-
ao~o
o 0.30 -o-4.0e-5

a, 0.25-o
E c oI -5.0e-5
o 0.20-

0.15 -1 o o I 6.0e-5

0.10 ooU n oo
o~ oj o ~7.0e-5
0.05-

0.00 =====2C ~ I I I I I 8.0e-5
0 1000 2000 3000 4000 5000 6000


Time(s)
Figure D-12. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/09/06












BO91006V2


0.0030



0.0025



0.0020


0.0015



0.0010



0.0005



0.0000


0.0


1.0e-5


2.0e-5 &


3.0e-5


4.0e-5


5.0e-5


6.0e-5


7.0e-5


8.0e-5


0 1000 2000 3000 4000

Time(s)
Figure D-13. Hydrograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/10/06






BO91006V2



-1.0e-5

0.4-
s; IUqIIII Io Observedl -2.0e-5
I U"U Predicted
I Rain (m/s)l 3.0e-5


0.2


0- 6.0e-5
0.1 -2
E- 7.0e-5
o




0.0 ,-c"~ =9======= o o ""E==== 8.0e-5
0 1000 2000 3000 4000 5000

Time(s)
Figure D-14. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/10/06














BO91006V3

p~uuu0.0

-1.0e-5


Infow -2.0e-5
o Observed
Predicted 3.0e-5
I Rain (m/s)

-4.0e-5


-5.0e-5


0 -6.0e-5


o oc o -7.0e-5
oo
.,oo 8.0e-5
2000 3000 4000

Time(s)
(length= 13.4 m) in VFS area at site B on date 09/10/06


0.0030uuu



0.0025-



m'0.0020 -



a,0.0015 -



o 0.0010-
u-


0.0005 -



0.0000 1
0 1000


Figure D-15. Hydrograph of plot 3


BO91006V3

p~uuu0.0

-1.0e-5


o Observed 2.0e-5 2
o -Predicted E
I Rain(rn/s)l 3.0e-5


-4.0e-5


-5.0e-5


oo 6.0e-5


o a o -7.0e-5


"0 I """8.0e-5
2000 3000 4000 5000

Time(s)

(length= 13.4 m) in VFS area at site B on date 09/10/06


0.30uuu



0.25-



0.20-

o

0 0.15 -


E




0.05 -



0.00 I "
0 1000


Figure D-16. Sedimentograph of plot 3












B101206V3


0.004





0.003





a,0.002


I-

0.001





0.000


0.0

1.0e-5

2.0e-5

3.0e-5E

4.0e-5-

5.0e-5 n

6.0e-5

7.0e-5

8.0e-5

9.0e-5


0 500 1000 1500 2000

Time(s)


2500


Figure D-17. Hydrograph of plot 3 (length= 13.4 m) in VFS area at site B on date 10/12/06





B101206V3


0.4





~0.3


O

0 0.2





C~0.1





0.0


0.0

1.0e-5

2.0e-5

3.0e-5 ,E

4.e5-

5.0e-5 -g

6.e-
7.0e-5




8.0e-5

9.0e-5


0 500 1000 1500

Time(s)


2000


Figure D-18. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 10/12/06












AO70706V2
0.0004 uUUUu 0.0


U U -1.0e-5


0.0003 _1 o Observed 2.0e-5 &
~Si I U Predicted E
m' I I Rain (m/s)
E -3.0e-5


a, 0.0002 -1 \4.0e-5


3 1 I v- 5.0e-5
L.
0.0001 -1 0 6.0e-5

oo


0.0000 lo qq, I 8.0e-5
0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time(s)
Figure D-19. Hydrograph of plot 2 (length= 4.1 m) in VFS area at site A on date 07/07/06





AO70706V2
0.012 uLLIU 0.0


-1.0e-5


0.009 -1 I 2.0e-5

o Observed .0-
o Predicted-
I Rain (rns)
0 0.006 --4.0e-5


E I 5.0e-5

oo



o 7.0e-5
oo
0.000 1 I v- I I -- -- "" "1- I I 8.0e-5
0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time(s)
Figure D-20. Sedimentograph of plot 2 (length= 4.1 m) in VFS area at site A on date 07/07/06












AO70706V3
0.0006 uUUU 0.0


-1.0e-5
0.0005 _1IIIIIIIIIIIIII' o Observed
Predicted
I Rain (m/s) -2.0e-5
S0.0004-
E I I \- 3.0e-5


S0.00031 -4.0e-5


I I \ I- 5.0e-5
o 0.0002-

-6.0e-5

0.0001-o
0 00 7.0e-5


0.0000 I no ooo r 8.0e-5
0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time(s)
Figure D-21. Hydrograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/07/06




AO70706V3
0.008 a--- 0.0


0 Observed -10-
Predicted
0.006 I Rain (m/s) -2.0e-5


I II- 3.0e-5


o 0.004 o-4.0e-5


E o 5.0e-5


oo


-7.0e-5
00 ~oo
0.000 I no ~on": I 8.0e-5
0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time(s)
Figure D-22. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/07/06












AO72806V2


0.0010



0.0008



0.0006



0.0004



0.0002



0.0000


0.0


3.0e-5


6.0e-5 .E


9.0e-5 &
C


1.2e-4


1.5e-4


1.8e-4


0 500 1000 1500 2000 2500 3000

Time(s)
Figure D-23. Hydrograph of plot 2 (length= 4. 1 m) in VFS area at site A on date 07/28/06


AO72806V2


0.0020


0.0


3.0e-5


6.0e-5 E


9.0e-5


1.2e-4


1.5e-4


1.8e-4


0.0015





0.0010





0.0005


0.0000


0 500


1000 1500 2000 2500 3000


Time(s)
Figure D-24. Sedimentograph of plot 2 (length= 4. 1 m) in VFS area at site A on date 07/28/06












AO72806V3


0.0014


0.0012


S0.0010

O .08

0.0006


.~0.00

LL 0.0004


0.0


3.0e-5


6.0e-5 E


9.0e-5 &


1.2e-4


1.5e-4


1.8e-4


0.0002


0.0000


0 500


1000 1500 2000 2500 3000


Time(s)
Figure D-25. Hydrograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/28/06


AO72806V3


0.04





~0.03




o 0.02

a


( 0.01




0.00


0.0


3.0e-5


6.0e-5 .E

=
9.0e-5 &


1.2e-4


1.5e-4


1.8e-4


0 500


1000 1500 2000 2500 3000

Time(s)


Figure D-26. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/28/06









APPENDIX E
SUMMARY OF FIELD DATA


A summary of field data was presented in this appendix. All the data used in Chapter 4

for model simulation were all presented in here. In the event ID, BO71406V2, listed in the

Table 4-5 for example, the data presented in Table E-27 (BO71406S2) and Table E-28

(BO71406V2) were needed for model simulation. Table E-27 was inputs of plot V2 at site B on

date 07/14/2006. Table E-28 was outputs of plot V2 at site B on date 07/14/2006. The rainfall

intensity of each event was only presented in the table which contains field data of plot S2. In

Table E-1 (AO20306S2) and Table E-27 (BO71406S2) for example, the rainfall intensity were

presented in the first two columns of the table. Note that the events on the tables were only

those in which water quality samples were collected.

The table caption contained alpha-numberic describes plot and water samples collected

date attributes. In Table E-1 (AO20306S2) and Table E-27 (BO71406V2) for example, the first

letter represents the site location name (A or B). The following six numbers in succession

represents Gregorian date. S represents source area; V represents the VFS area; the last number

represents the plot number within source or VFS area. The lengths of short filters (plots V2 and

V3) and long filters (plot Vl and V3) at site A are 4.1 m and 5.8 m, respectively. The lengths

of short filters (plots V2 and V3) and long filters (plot Vl and V3) at site B are 6.8 m and 13.4

m, respectively. The length of source area (plots S1, S2, S3, and S4) at site A is 14.4 m. The

length of source area (plots S1, S2, S3, and S4) at site B is 40 m.














Table E-1. Field data of event AO20306S2 (site: A, plot: S2, date: 02/03/06).


Time
(s)

60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
S1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520


Rain
(m s)
0.000E+00
8.333E-07
8.333E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
5.000E-07
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
1.233E-05
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
8.000E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06
6.500E-06


Sed. Cone. Sed. Load


Time Q
(s) (m/s)
780 0.000E+00
840 1.564E-05
900 2.362E-05
960 2.502E-05
1020 3.262E-05
1080 3.566E-05
1140 8.267E-04
1200 9.667E-04
1260 1.008E-03
1320 1.035E-03
1380 6.733E-04
1440 5.950E-04
1500 5.150E-04
1560 5.535E-04
1620 4.091E-04
1680 2.803E-04
1740 2.692E-04
1800 2.248E-04
1860 2.447E-04
1920 2.492E-04
1980 4.113E-04
2040 7.267E-04
2100 6.534E-04
2160 5.512E-04
2220 5.268E-04
2280 4.957E-04
2340 5.823E-04
2400 5.268E-04
2460 4.158E-04
2520 3.291E-04
2580 3.092E-04
2640 2.558E-04
2700 2.336E-04
2760 2.025E-04
2820 1.870E-04
2880 1.759E-04
2940 2.003E-04
3000 1.470E-04
3060 1.226E-04
3120 8.705E-05
3180 6.928E-05
3240 6.928E-05
3300 4.707E-05


TP DP dp >37pm <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm


0. in
0.000
0.002
0.004
0.004
0.006

0.415
0.510
0.538
0.557
0.317
0.270
0.223
0.245
0.165
0.101
0.096
0.075
0.084
0.086
0.166
0.351
0.305
0.244
0.230
0.212
0.262
0.230
0.169
0.124
0.115
0.089
0.079
0.066
0.059
0.055
0.065
0.043
0.034
0.022
0.016
0.016
0.010


(g s)
0.000E+00
3.600E-05
9.322E-05
1.064E-04
1.965E-04
2.413E-04
3.432E-01
4.925E-01
5.429E-01
5.767E-01
2.137E-01
1.606E-01
1.150E-01
1.359E-01
6.760E-02
2.823E-02
2.571E-02
1.695E-02
2.064E-02
2.151E-02
6.845E-02
2.548E-01
1.993E-01
1.346E-01
1.212E-01
1.053E-01
1.528E-01
1.212E-01
7.017E-02
4.091E-02
3.540E-02
2.286E-02
1.854E-02
1.333E-02
1.108E-02
9.623E-03
1.299E-02
6.360E-03
4.180E-03
1.896E-03
1.119E-03
1.119E-03
4.583E-04


(mg L) (mg L)
0.000 0.000
0.417 0.366
0.466 0.380
0.475 0.382
0.521 0.391
0.540 0.394
8.686 0.523
10.504 0.530
11.060 0.533
11.419 0.534
6.791 0.514
5.866 0.508
4.955 0.501
5.389 0.505
3.808 0.491
2.519 0.475
2.414 0.473
2.006 0.465
2.187 0.469
2.228 0.470
3.831 0.491
7.439 0.517
6.553 0.512
5.364 0.504
5.088 0.502
4.741 0.500
5.720 0.507
5.088 0.502
3.878 0.492
2.992 0.482
2.796 0.479
2.289 0.471
2.086 0.467
1.810 0.461
1.675 0.458
1.581 0.455
1.790 0.461
1.343 0.448
1.150 0.441
0.885 0.427
0.760 0.419
0.760 0.419
0.613 0.404


(o o) (o ) (o ) (o ) (o ) (o ) (o )


359.7 92.01


2.72 2.26 3.01


1.80 18.42 71.79














Table E-1. Continued
Time Rain Time Q Sed. Cone.
(s) (m s) (s) (m /s) i
2580 5.000E-07 3360 5.818E-05 0.013
2640 5.000E-07 3420 7.594E-05 0.018
2700 5.000E-07 3480 4.485E-05 0.009
2760 5.000E-07 3540 3.819E-05 0.007
2820 5.000E-07 3600 2.936E-05 0.005
2880 5.000E-07 3660 1.939E-05 0.003
2940 5.000E-07 3720 1.554E-05 0.002
3000 5.000E-07 3780 1.526E-05 0.002
3060 5.000E-07 3840 1.497E-05 0.002
3120 5.000E-07 3900 1.469E-05 0.002
3180 3.333E-07 3960 1.440E-05 0.002
3240 3.333E-07 4020 1.412E-05 0.002
3300 3.333E-07 4080 1.383E-05 0.002
3360 3.333E-07 4140 1.355E-05 0.002
3420 3.333E-07 4200 1.326E-05 0.002
3480 3.333E-07 4260 1.298E-05 0.002
3540 3.333E-07 4320 1.269E-05 0.002
3600 3.333E-07 4380 1.241E-05 0.002
3660 3.333E-07 4440 1.212E-05 0.002
3720 3.333E-07 4500 1.184E-05 0.002
3780 1.500E-06 4560 1.155E-05 0.002
3840 1.500E-06 4620 1.127E-05 0.001
3900 1.500E-06 4680 1.098E-05 0.001
3960 1.500E-06 4740 1.070E-05 0.001
4020 1.500E-06 4800 1.041E-05 0.001
4080 1.500E-06 4860 1.219E-05 0.002
4140 1.500E-06 4920 3.164E-05 0.006
4200 1.500E-06 4980 1.483E-05 0.002
4260 1.500E-06 5040 1.526E-05 0.002
4320 1.500E-06 5100 1.569E-05 0.002
4380 6.667E-07 5160 1.611E-05 0.002
4440 6.667E-07 5220 1.654E-05 0.002
4500 6.667E-07 5280 1.697E-05 0.003
4560 6.667E-07 5340 1.739E-05 0.003
4620 6.667E-07 5400 1.782E-05 0.003
4680 6.667E-07 5460 1.825E-05 0.003
4740 6.667E-07 5520 1.868E-05 0.003
4800 6.667E-07 5580 1.910E-05 0.003
4860 6.667E-07 5640 1.554E-05 0.002
4920 6.667E-07 5700 1.399E-05 0.002
4980 3.000E-06 5760 1.244E-05 0.002
5040 3.000E-06 5820 1.088E-05 0.001
5100 3.000E-06 5880 9.331E-06 0.001


Sed. Load TP


DP dp >37pm <0.45pLm 0.45-2Lm


2-37pLm 37-100pLm 100-250pLm


(g s) (mg L) (mg L) (pLm)
7.475E-04 0.685 0.412
1.383E-03 0.806 0.422
4.099E-04 0.598 0.403
2.827E-04 0.556 0.397
1.541E-04 0.501 0.388
5.909E-05 0.440 0.373
3.546E-05 0.416 0.366
3.398E-05 0.415 0.365
3.253E-05 0.413 0.365
3.112E-05 0.411 0.364
2.974E-05 0.409 0.364
2.840E-05 0.408 0.363
2.709E-05 0.406 0.362
2.582E-05 0.404 0.362
2.459E-05 0.402 0.361
2.338E-05 0.400 0.360
2.221E-05 0.398 0.359
2.108E-05 0.397 0.359
1.998E-05 0.395 0.358
1.891E-05 0.393 0.357
1.788E-05 0.391 0.356
1.687E-05 0.389 0.356
1.591E-05 0.387 0.355
1.497E-05 0.385 0.354
1.406E-05 0.383 0.353
2.025E-05 0.395 0.358
1.831E-04 0.515 0.390
3.182E-05 0.412 0.365
3.398E-05 0.415 0.365
3.622E-05 0.417 0.366
3.854E-05 0.420 0.367
4.094E-05 0.423 0.368
4.342E-05 0.425 0.369
4.599E-05 0.428 0.370
4.864E-05 0.431 0.371
5.138E-05 0.433 0.371
5.420E-05 0.436 0.372
5.711E-05 0.439 0.373
3.546E-05 0.416 0.366
2.781E-05 0.407 0.363
2.119E-05 0.397 0.359
1.557E-05 0.387 0.355
1.091E-05 0.376 0.350


(o o) (o o) (o o) (o o) (oo) (oo)













Table E-1. Continued.
Time Rain Time Q Sed. Cone. Sed. Load TP DP dp
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm)
5160 3.000E-06 5940 7.778E-06 0.001 7.169E-06 0.365 0.344
5220 3.000E-06 6000 6.226E-06 0.001 4.286E-06 0.353 0.337
5280 3.000E-06 6060 4.384E-06 0.000 1.906E-06 0.337 0.327
5340 3.000E-06 6120 3.658E-06 0.000 1.256E-06 0.329 0.322
5400 3.000E-06 6180 2.933E-06 0.000 7.539E-07 0.321 0.315
5460 3.000E-06 6240 2.208E-06 0.000 3.913E-07 0.311 0.307
5520 3.000E-06 6300 1.483E-06 0.000 1.560E-07 0.299 0.296
5580 5.333E-06 6360 7.579E-07 0.000 3.310E-08 0.280 0.279
5640 5.333E-06 6420 3.277E-08 0.000 2.341E-11 0.000 0.000
5700 5.333E-06
5760 5.333E-06
5820 5.333E-06
5880 5.333E-06
5940 5.333E-06
6000 5.333E-06
6060 5.333E-06
6120 5.333E-06
6180 1.667E-06
6240 1.667E-06
S6300 1.667E-06
SNumber of field 6
Total sediment mass 250.434g
Total ninoff volume = 0.969m3
Total phosphonxs mass 5.4296g
Total DP mass = 0.4783g


37pm <0.45pLm 0.45-2Lm
(o o) (o o) (oo)


2-37pLm 37-100pLm 100-250pLm
(o o) (o o) (oo)















Table E-2. Field data of event AO20306V2 (site: A, plot: V2, date: 02/03/06).
Time Q Sed. Cone Sed. Load TP DP dp >37ptm <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm
(s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (o )
1200 0.000E+00 0.000 0.000E+00 0.000 0.000
1260 2.454E-06 0.005 1.329E-05 0.342 0.205
1320 4.099E-05 0.041 1.661E-03 1.280 0.257
1380 8.983E-05 0.071 6.378E-03 2.067 0.273
1440 8.515E-05 0.068 5.819E-03 1.999 0.272
1500 7.609E-05 0.063 4.799E-03 1.863 0.270
1560 4.567E-05 0.044 1.999E-03 1.365 0.259
1620 3.661E-05 0.037 1.368E-03 1.199 0.254 21.71 26.86 1.22 3.59 68.33 20.23 6.44 0.18
1680 2.023E-05 0.024 4.951E-04 0.861 0.243
1740 1.335E-05 0.018 2.426E-04 0.694 0.235
1800 1.324E-05 0.018 2.392E-04 0.691 0.235
1860 1.313E-05 0.018 2.358E-04 0.688 0.235
1920 1.302E-05 0.018 2.324E-04 0.685 0.234
1980 1.291E-05 0.018 2.290E-04 0.682 0.234
2040 1.280E-05 0.018 2.256E-04 0.679 0.234
2100 1.268E-05 0.018 2.223E-04 0.676 0.234
2160 3.161E-05 0.034 1.064E-03 1.102 0.251
2220 4.060E-05 0.040 1.634E-03 1.273 0.256
S2280 5.728E-05 0.051 2.949E-03 1.564 0.264 15.58 13.13 0.00 3.37 83.50 13.13 0.00 0.00
S2340 6.969E-05 0.059 4.128E-03 1.764 0.268
2400 5.156E-05 0.048 2.462E-03 1.468 0.261
2460 3.771E-05 0.038 1.440E-03 1.219 0.255
2520 3.147E-05 0.034 1.056E-03 1.099 0.251
2580 2.694E-05 0.030 8.089E-04 1.007 0.248
2640 1.313E-05 0.018 2.358E-04 0.688 0.235
2700 1.045E-05 0.015 1.594E-04 0.616 0.230
2760 8.420E-06 0.013 1.101E-04 0.557 0.226
2820 7.064E-06 0.012 8.146E-05 0.514 0.223
2880 5.708E-06 0.010 5.653E-05 0.470 0.220
2940 4.353E-06 0.008 3.551E-05 0.421 0.215
3000 2.722E-06 0.006 1.588E-05 0.354 0.207
3060 1.245E-06 0.003 4.150E-06 0.279 0.195
3120 1.226E-07 0.000 7.793E-08 0.000 0.000
Number of field samples = 3
Total sediment mass = 2.42406 g
Total ninoff volume = 0.05329 m
Total phosphonxs mass = 0.07494 g
Total DP mass = 0.01370 g














Table E-3. Field data of event AO20306S3 (site: A, plot: S3, date: 02/03/06).


Time Q Sed. Cone
(s) (m /s) i
1080 0.000E+00 0.000
1140 1.463E-04 0.055
1200 9.576E-04 0.463
1260 1.052E-03 0.515
1320 1.107E-03 0.546
1380 1.058E-03 0.519
1440 1.035E-03 0.506
1500 9.119E-04 0.438
1560 5.576E-04 0.250
1620 4.605E-04 0.201
1680 4.446E-04 0.193
1740 3.995E-04 0.171
1800 4.008E-04 0.172
1860 4.021E-04 0.172
1920 3.628E-04 0.153
1980 6.259E-04 0.285
2040 9.096E-04 0.437
2100 8.048E-04 0.380
2160 7.155E-04 0.332
2220 6.996E-04 0.324
2280 6.768E-04 0.312
Ji 2340 6.961E-04 0.322
2400 6.648E-04 0.306
2460 5.799E-04 0.262
2520 4.546E-04 0.198
2580 3.722E-04 0.158
2640 2.639E-04 0.107
2700 2.005E-04 0.078
2760 1.502E-04 0.056
2820 9.990E-05 0.035
2880 4.960E-05 0.016
2940 4.960E-05 0.016
3000 5.310E-05 0.017
3060 2.171E-05 0.006
3120 2.115E-05 0.006
3180 2.059E-05 0.006
3240 2.002E-05 0.006
3300 1.946E-05 0.005
3360 1.890E-05 0.005
3420 1.876E-05 0.005
3480 1.862E-05 0.005
3540 1.848E-05 0.005
3600 1.834E-05 0.005
3660 1.820E-05 0.005
3720 1.806E-05 0.005
3780 1.792E-05 0.005


Sed. Load TP DP dp >37pm <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pmn
(g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (o )
0.000E+00 0.000 0.000
7.975E-03 1.739 0.360
4.434E-01 12.276 0.508
5.417E-01 13.608 0.512
6.041E-01 14.395 0.514
5.491E-01 13.703 0.512
5.235E-01 13.371 0.511
3.994E-01 11.635 0.505
1.395E-01 6.833 0.485
9.266E-02 5.580 0.477
8.593E-02 5.377 0.475
6.838E-02 4.810 0.471
6.886E-02 4.827 0.471
6.934E-02 4.843 0.471
5.563E-02 4.354 0.467
1.786E-01 7.732 0.489
3.972E-01 11.602 0.505
3.057E-01 10.150 0.500
2.378E-01 8.933 0.495
2.266E-01 8.718 0.494
2.111E-01 8.412 0.493
2.241E-01 8.671 0.494
2.032E-01 8.251 0.492
1.517E-01 7.125 0.486
9.014E-02 5.505 0.476
5.876E-02 4.470 0.468
2.818E-02 3.159 0.455
1.565E-02 2.420 0.444 348.1 91.79 2.87 2.22 3.11 1.80 18.78 71.22
8.441E-03 1.855 0.433
3.529E-03 1.311 0.418
7.896E-04 0.796 0.394
7.896E-04 0.796 0.394
9.135E-04 0.831 0.396
1.349E-04 0. 524 0.367
1.276E-04 0.519 0.366
1.204E-04 0.513 0.366
1.135E-04 0.508 0.365
1.068E-04 0.502 0.364
1.003E-04 0.497 0.363
9.876E-05 0.495 0.363
9.719E-05 0.494 0.363
9.563E-05 0.493 0.362
9.409E-05 0.491 0.362
9.256E-05 0.490 0.362
9.104E-05 0.489 0.362
8.953E-05 0.487 0.361














Table E-3. Continued.
Time 0 Sed. Cone Sed. Load T DP dp 37m 0.5m 0.52m 2-7m 3-10m 1020im 50m
(s) (ms ( ) gs (mg L) (mg L) (plm) (o~ o),.~~:,.~ (o:~~u o) o ) o o ( o ( o) (o o
3840 1.778E-05 0.005 8.804E-05 0.486 0.361
3900 1.764E-05 0.005 8.656E-05 0.484 0.361
3960 1.750E-05 0.005 8.510E-05 0.483 0.361
4020 1.736E-05 0.005 8.364E-05 0.482 0.360
4080 1.722E-05 0.005 8.221E-05 0.480 0.360
4140 1.708E-05 0.005 8.078E-05 0.479 0.360
4200 1.694E-05 0.005 7.937E-05 0.478 0.360
4260 1.680E-05 0.005 7.797E-05 0.476 0.359
4320 1.666E-05 0.005 7.658E-05 0.475 0.359
4380 1.652E-05 0.005 7.521E-05 0.474 0.359
4440 1.638E-05 0.005 7.385E-05 0.472 0.359
4500 1.624E-05 0.004 7.251E-05 0.471 0.358
4560 1.610E-05 0.004 7.117E-05 0.469 0.358
4620 1.596E-05 0.004 6.985E-05 0.468 0.358
4680 1.582E-05 0.004 6.855E-05 0.467 0.357
4740 1.649E-05 0.005 7.494E-05 0.473 0.359
4800 1.454E-05 0.004 5.726E-05 0.454 0.355
4860 1.287E-05 0.003 4.412E-05 0.438 0.351
4920 1.171E-05 0.003 3.602E-05 0.426 0.348
4980 9.883E-06 0.003 2.508E-05 0.407 0.343
5040 7.625E-06 0.002 1.440E-05 0.383 0.336
5100 6.419E-06 0.002 9.964E-06 0.370 0.331
5160 5.030E-06 0.001 5.916E-06 0.354 0.324
ul5220 7.260E-06 0.002 1.297E-05 0.379 0.334
S5280 6.699E-06 0.002 1.092E-05 0.373 0.332
5340 5.998E-06 0.001 8.619E-06 0.365 0.329
5400 5.030E-06 0.001 5.916E-06 0.354 0.324
5460 4.216E-06 0.001 4.057E-06 0.344 0.319
5520 5.311E-06 0.001 6.644E-06 0.357 0.326
5580 2.884E-06 0.001 1.801E-06 0.325 0.309
5640 4.651E-06 0.001 5.004E-06 0.349 0.322
5700 4.483E-06 0.001 4.625E-06 0.347 0.321
5760 7.555E-06 0.002 1.412E-05 0.383 0.336
5820 6.419E-06 0.002 9.964E-06 0.370 0.331
5880 6.138E-06 0.001 9.056E-06 0.367 0.330
5940 5.759E-06 0.001 7.903E-06 0.362 0.328
6000 5.381E-06 0.001 6.833E-06 0.358 0.326
6060 4.776E-06 0.001 5.296E-06 0.351 0.323
6120 4.172E-06 0.001 3.965E-06 0.343 0.319
6180 3.567E-06 0.001 2.837E-06 0.335 0.315
6240 2.962E-06 0.001 1.907E-06 0.326 0.310
6300 1.987E-06 0.000 8.118E-07 0.310 0.299
6360 9.446E-07 0.000 1.655E-07 0.285 0.281
6420 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 6
Total sediment mass 359.731 g
Total ninoff volume = 1.08269 m3
Total phosphonxs mass = 9.66526 g
Total DP mass = 0.52665 g














Table E-4. Field data of event AO20306V3 (site: A, plot: V3, date: 02/03/06).
Time Q Sed. Cone Sed. Load TP DP dp >37pm <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm
(s) (m s,) (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (o )
1200 0.000E+00 0.000 0.000E+00 0.000 0.000
1260 4.287E-06 0.005 2.235E-05 0.325 0.193
1320 7.162E-06 0.007 4.969E-05 0.430 0.254
1380 8.635E-06 0.008 6.647E-05 0.458 0.263
1440 1.455E-05 0.010 1.498E-04 0.551 0.289
1500 2.437E-05 0.014 3.343E-04 0.668 0.318
1560 1.918E-05 0.012 2.303E-04 0.610 0.304 22.05 30.00 1.36 3.17 65.46 17.46 9.94 2.60
1620 1.624E-05 0.011 1.776E-04 0.574 0.295
1680 1.329E-05 0.010 1.301E-04 0.534 0.284
1740 1.011E-05 0.008 8.494E-05 0.484 0.270
1800 1.158E-05 0.009 1.050E-04 0.508 0.277
1860 1.372E-05 0.010 1.366E-04 0.540 0.286
1920 9.761E-06 0.008 8.045E-05 0.478 0.269
1980 9.909E-06 0.008 8.235E-05 0.481 0.269
2040 1.011E-05 0.008 8.494E-05 0.484 0.270
2100 1.158E-05 0.009 1.050E-04 0.508 0.277
2160 1.305E-05 0.010 1.265E-04 0.530 0.283
2220 1.439E-05 0.010 1.471E-04 0.549 0.289
2280 1.692E-05 0.011 1.894E-04 0.583 0.297
2340 2.381E-05 0.014 3.224E-04 0.662 0.316
2400 2.101E-05 0.013 2.652E-04 0.632 0.309
2460 1.610E-05 0.011 1.753E-04 0.572 0.295
03 2520 1.175E-05 0.009 1.074E-04 0.511 0.278
2580 5.715E-06 0.006 3.496E-05 0.399 0.244
2640 8.711E-07 0.002 1.871E-06 0.227 0.173
2700 8.641E-07 0.002 1.848E-06 0.226 0.172
Number of field samples = 3
Total sediment mass 0.1927 g
Total ninoff volume = 0.01854 m
Total phosphonxs mass = 0.01025 g
Total DP mass = 0.00534 g















Table E-5. Field data of event AO20306V1 (site: A, plot: Vl, date: 02/03/06).
Time Q Sed. Cone Sed. Load TP DP dp >37pm <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm


(s) (m /s)
1140 0.000E+00
1200 1.033E-05
1260 1.279E-05
1320 3.154E-05
1380 6.534E-05
1440 8.994E-05
1500 8.758E-05
1560 6.451E-05
1620 5.447E-05
1680 4.806E-05
1740 4.827E-05
1800 4.315E-05
1860 3.674E-05
1920 2.943E-05
1980 3.024E-05
2040 2.852E-05
2100 3.290E-05
2160 2.618E-05
2220 2.489E-05
2280 2.247E-05
Ji 2340 1.653E-05
2400 1.034E-05
2460 8.613E-06
2520 5.557E-06
2580 5.009E-06
2640 3.880E-06
2700 2.750E-06
2760 1.621E-06
2820 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


0.0000
0.0208
0.0231
0.0360
0.0516
0.0604
0.0596
0.0513
0.0472
0.0443
0.0444
0.0420
0.0388
0.0348
0.0353
0.0343
0.0368
0.0329
0.0321
0.0305
0.0262
0.0208
0.0190
0.0153
0.0145
0.0128
0.0108
0.0083
0.0000

2.2051 g
0.0505 m3
0.0715 g
0.0156 g


(g s)
0.000E+00
2.144E-04
2.953E-04
1.136E-03
3.372E-03
5.433E-03
5.222E-03
3.308E-03
2.569E-03
2.131E-03
2.145E-03
1.814E-03
1.427E-03
1.025E-03
1.067E-03
9.779E-04
1.210E-03
8.604E-04
7.980E-04
6.847E-04
4.331E-04
2.149E-04
1.636E-04
8.501E-05
7.280E-05
4.971E-05
2.974E-05
1.351E-05
0.000E+00


(mg L) (mg L) (pLm) (o ) (o )
0.000 0.000
0.717 0.195
0.824 0.243
1.200 0.290
1.645 0.335
1.894 0.356
1.872 0.354 26.42 34.87 1.34
1.635 0.334
1.519 0.323
1.438 0.315
1.441 0.315
1.373 0.309
1.281 0.299
1.165 0.286
1.179 0.288
1.150 0.285
1.222 0.293
1.109 0.280
1.086 0.277
1.040 0.272
0.916 0.256
0.756 0.234
0.703 0.225
0.591 0.207
0.567 0.203
0.514 0.193
0.451 0.180
0.371 0.163
0.000 0.000


(o o) (o ) (o ) (o o) (o )


2.84 60.95 25.85


8.49 0.53














Table E-6. Field data of event AO20306V4 (site: A, plot: V4, date: 02/03/06).


Time Q
(s) (m /s)
1140 0.000E+00
1200 2.775E-06
1260 3.018E-05
1320 5.020E-05
1380 6.152E-05
1440 8.259E-05
1500 8.118E-05
1560 5.981E-05
1620 5.126E-05
1680 2.873E-05
1740 1.170E-05
1800 1.159E-05
1860 1.148E-05
1920 1.137E-05
1980 1.126E-05
2040 1.115E-05
2100 1.229E-05
2160 2.996E-05
2220 5.490E-05
2280 5.472E-05
2340 6.259E-05
Ji 2400 4.900E-05
2460 3.845E-05
2520 3.777E-05
2580 3.476E-05
2640 1.900E-05
2700 1.037E-05
2760 6.775E-06
2820 5.420E-06
2880 4.064E-06
2940 2.708E-06
3000 1.353E-06
3060 2.712E-07
3120 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone


0.0000
0.0136
0.0371
0.0459
0.0500
0.0566
0.0562
0.0494
0.0463
0.0363
0.0249
0.0248
0.0247
0.0246
0.0245
0.0244
0.0254
0.0370
0.0477
0.0476
0.0504
0.0455
0.0411
0.0408
0.0394
0.0305
0.0237
0.0198
0.0180
0.0160
0.0135
0.0101
0.0051
0.0000

2.4853 g
0.0560 m3
0.0795 g
0.0170 g


Sed. Load
(g s)
0.000E+00
3.775E-05
1.120E-03
2.306E-03
3.078E-03
4.677E-03
4.564E-03
2.957E-03
2.376E-03
1.044E-03
2.916E-04
2.877E-04
2.838E-04
2.799E-04
2.760E-04
2.722E-04
3.123E-04
1.108E-03
2.618E-03
2.606E-03
3.154E-03
2.228E-03
1.579E-03
1.540E-03
1.368E-03
5.802E-04
2.454E-04
1.341E-04
9.768E-05
6.490E-05
3.647E-05
1.361E-05
1.388E-06
0.000E+00


TP DP dp >37pm <0.45pmn 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm
(mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (o )
0.000 0.000
0.504 0.163
1.210 0.277
1.467 0.311
1.586 0.325
1.775 0.347
1.764 0.346
1.569 0.323
1.479 0.312
1.187 0.274 14.95 23.04 1.57 4.29 71.10 3.80 13.06 6.17
0.850 0.225
0.847 0.224
0.844 0.224
0.841 0.223
0.838 0.223
0.834 0.222
0.865 0.227
1.206 0.277
1.518 0.317
1.516 0.317
1.596 0.326
1.454 0.309
1.326 0.293
1.317 0.292
1.276 0.286
1.017 0.250
0.812 0.219
0.695 0.199
0.641 0.189
0.578 0.178
0.500 0.162
0.391 0.139
0.225 0.097
0.000 0.000















Table E-7. Field data of event AO61306S2 (site: A, plot: S2, date: 06/13/06)
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o ) (S m)
0 0.000E+00 660 4.886E-07 0.000 8.529E-10 0.000 0.000
300 6.667E-07 720 3.606E-06 0.001 2.801E-06 0.116 0.295
900 4.167E-06 780 3.392E-06 0.001 2.370E-06 0.110 0.294
1500 8.000E-06 840 3.435E-06 0.001 2.452E-06 0.111 0.294
2100 2.217E-05 900 3.392E-06 0.001 2.370E-06 0.110 0.294
2700 1.250E-05 960 3.563E-06 0.001 2.711E-06 0.114 0.294
3300 3.167E-06 1020 3.734E-06 0.001 3.082E-06 0.119 0.295
3900 3.667E-06 1080 4.446E-06 0.001 4.969E-06 0.138 0.298
4500 2.000E-06 1140 4.617E-06 0.001 5.509E-06 0.142 0.299
4800 3.333E-07 1200 4.261E-06 0.001 4.423E-06 0.133 0.298
4860 0.000E+00 1260 4.261E-06 0.001 4.423E-06 0.133 0.298
1320 4.617E-06 0.001 5.509E-06 0.142 0.299
1380 5.159E-06 0.001 7.462E-06 0.156 0.301
1440 6.412E-06 0.002 1.353E-05 0.188 0.305
1500 6.925E-06 0.002 1.670E-05 0.200 0.306
1560 7.210E-06 0.003 1.865E-05 0.207 0.307
1620 2.809E-04 0.108 3.030E-02 4.516 0.379
1680 6.313E-04 0.440 2.777E-01 8.927 0.397 384.4 1.09 1.10 2.00 2.39 21.77 71.65 5.82 0.032
1740 4.828E-04 0.276 1.333E-01 7.124 0.391
1800 6.712E-04 0.489 3.283E-01 9.399 0.398 6.20 0.021
1860 7.017E-04 0.528 3.708E-01 9.757 0.399 6.13 0.017
1920 6.668E-04 0.484 3.226E-01 9.348 0.398
1980 6.008E-04 0.404 2.425E-01 8. 563 0.396
2040 4.042E-04 0.203 8.199E-02 6.134 0.387
2100 2.170E-04 0.069 1.495E-02 3.634 0.373
2160 8.461E-05 0.013 1.136E-03 1.645 0.354
2220 2.090E-04 0.065 1.349E-02 3.521 0.372
2280 3.587E-04 0.165 5.913E-02 5.547 0.384
2340 4.835E-04 0.277 1.339E-01 7.132 0.391 5.89 0.024
2400 4.042E-04 0.203 8.199E-02 6.134 0.387
2460 4.493E-04 0.244 1.095E-01 6.705 0.389
2520 1.512E-04 0.037 5.567E-03 2.682 0.366 368.8 0.53 0.76 3.06 3.66 23.09 68.90 6.00 0.029
2580 5.322E-05 0.006 3.196E-04 1.114 0.344
2640 3.223E-05 0.003 8.099E-05 0.730 0.334
2700 2.418E-05 0.002 3.690E-05 0.573 0.329
2760 1.838E-05 0.001 1.742E-05 0.455 0.324
2820 1.913E-05 0.001 1.945E-05 0.471 0.324
2880 1.913E-05 0.001 1.945E-05 0.471 0.324
2940 2.042E-05 0.001 2.323E-05 0.497 0.326
3000 1.965E-05 0.001 2.091E-05 0.481 0.325
3060 1.939E-05 0.001 2.017E-05 0.476 0.325
3120 1.913E-05 0.001 1.945E-05 0.471 0.324














Table E-7. Continued.
Time Rain Time
(s) (m s) (s)


Q Sed. Cone
(m /s) i
1.814E-05 0.001
1.715E-05 0.001
1.667E-05 0.001
1.596E-05 0.001
1.573E-05 0.001
1.549E-05 0.001
1.537E-05 0.001
1.526E-05 0.001
1.389E-05 0.001
1.252E-05 0.000
1.116E-05 0.000
9.789E-06 0.000
8.848E-06 0.000
7.908E-06 0.000
6.968E-06 0.000
6.170E-06 0.000
5.372E-06 0.000
4.932E-06 0.000
4.492E-06 0.000
4.052E-06 0.000
3.611E-06 0.000
3.171E-06 0.000
2.731E-06 0.000
2.291E-06 0.000
1.241E-06 0.000
0.000E+00 0.000


132.4836 g
0.4410 m3
3.0363 g
0.1699 g


Sed. Load TP
(g s) (mg L)
1.680E-05 0.450
1.443E-05 0.429
1.334E-05 0.419
1.184E-05 0.404
1.138E-05 0.399
1.091E-05 0.394
1.069E-05 0.392
1.047E-05 0.389
8.101E-06 0.360
6.100E-06 0.330
4.446E-06 0.299
3.108E-06 0.268
2.358E-06 0.246
1.734E-06 0.224
1.226E-06 0.201
8.793E-07 0.182
6.020E-07 0.162
4.765E-07 0.150
3.689E-07 0.139
2.782E-07 0.127
2.031E-07 0.116
1.423E-07 0.104
9.455E-08 0.091
5.845E-08 0.079
1.091E-08 0.047
0.000E+00 0.000


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o ) (S m)
0.323
0.322
0.322
0.321
0.321
0.321
0.320
0.320
0.319
0.317
0.315
0.312
0.310
0.308
0.306
0.304
0.302
0.300
0.298
0.297
0.295
0.293
0.290
0.287
0.277
0.000


Number of field samples
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =














Table E-8. Field data of event AO61306V2 (site: A, plot: V2, date: 06/13/06).


Time Q
(s) (m/s)
300 0.000E+00
360 3.775E-06
420 4.132E-06
480 4.392E-06
540 4.474E-06
600 4.844E-06
660 5.749E-06
720 6.653E-06
780 7.558E-06
840 8.462E-06
900 9.367E-06
960 1.027E-05
1020 1.118E-05
1080 1.208E-05
1140 1.298E-05
1200 1.389E-05
1260 1.479E-05
1320 1.570E-05
1380 1.660E-05
S1440 1.751E-05
1500 2.001E-05
1560 2.038E-05
1620 2.134E-05
1680 2.178E-05
1740 2.243E-05
1800 2.303E-05
1860 2.345E-05
1920 2.388E-05
1980 3.116E-05
2040 6.015E-05
2100 5.502E-05
2160 4.402E-05
2220 3.941E-05
2280 3.934E-05
2340 4.199E-05
2400 5.161E-05
2460 5.302E-05
2520 4.631E-05
2580 3.733E-05
2640 3.881E-05
2700 2.565E-05
2760 2.713E-05
2820 2.565E-05


Sed. Cone

0. in
0.000
0.006
0.006
0.006
0.006
0.006
0.006
0.007
0.007
0.007
0.007
0.007
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.009
0.009
0.009
0.009
0.009
0.009
0.009
0.0109
0.010
0.011
0.011
0.011
0.010
0.010
0.010
0.011
0.011
0.011
0.010
0.010
0.009
0.009


Sed. Load
(g s)
0.000E+00
2.168E-05
2.427E-05
2.619E-05
2.680E-05
2.960E-05
3.664E-05
4.397E-05
5.156E-05
5.937E-05
6.739E-05
7.561E-05
8.400E-05
9.257E-05
1.013E-04
1.102E-04
1.192E-04
1.284E-04
1.377E-04
1.471E-04
1.738E-04
1.779E-04
1.884E-04
1.932E-04
2.004E-04
2.071E-04
2.119E-04
2.167E-04
3.020E-04
6.864E-04
6.142E-04
4.649E-04
4.049E-04
4.041E-04
4.382E-04
5.669E-04
5.864E-04
4.952E-04
3.785E-04
3.972E-04
2.369E-04
2.541E-04
2.369E-04


TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000 0.000
0.328 0.200
0.333 0.203
0.337 0.204
0.338 0.205
0.343 0.207
0.353 0.212
0.363 0.216
0.371 0.220
0.379 0.223 25.36 0.98 2.94 60.26 12.35 17.69 5.79 5.77 0.034
0.386 0.226
0.392 0.229
0.398 0.231
0.404 0.234
0.409 0.236
0.414 0.238
0.419 0.240
0.424 0.242
0.428 0.243
0.432 0.245
0.443 0.250 6.12 0.024
0.444 0.250
0.448 0.252
0.450 0.252
0.452 0.253
0.455 0.254
0.456 0.255
0.458 0.255
0.481 0.264
0.543 0.288
0.534 0.285
0.512 0.277 14.52 2.85 4.51 81.89 10.59 0.16 0.00 5.89 0.019
0.502 0.273
0.502 0.273
0.508 0.275
0.528 0.283
0.530 0.284
0.517 0.279
0.497 0.271
0.500 0.272
0.464 0.258
0.468 0.260
0.464 0.258














Table E-8. Continued.
Time Q S
(s) (m /s)
2880 2.570E-05
2940 2.585E-05
3000 2.570E-05
3060 2.684E-05
3120 9.421E-06
3180 8.777E-06
3240 8.818E-06
3300 8.421E-06
3360 8.229E-06
3420 7.983E-06
3480 7.640E-06
3540 7.640E-06
3600 7.448E-06
3660 7.681E-06
3720 7.887E-06
3780 8.476E-06
3840 9.024E-06
3900 6.648E-06
3960 6.717E-06
c 4020 5.867E-06
4080 5.017E-06
4140 4.167E-06
4200 3.318E-06
4260 2.468E-06
4320 1.618E-06
4380 0.000E+00
Number of field samples =
Total sediment mass =
Total runoff volume =
Total phosphorus mass =
Total DP mass =


Sed. Load TP DP dp <0.45p
(g s) (mg L) (mg L) (pLm) (o)
2.375E-04 0.464 0.258
2.393E-04 0.464 0.258
2.375E-04 0.464 0.258
2.507E-04 0.468 0.259
6.788E-05 0.386 0.226
6.214E-05 0.381 0.224
6.250E-05 0.382 0.224
5.901E-05 0.379 0.223
5.734E-05 0.377 0.222
5.520E-05 0.375 0.221
5.226E-05 0.372 0.220
5.226E-05 0.372 0.220
5.063E-05 0.370 0.219
5.261E-05 0.372 0.220
5.437E-05 0.374 0.221
5.949E-05 0.379 0.223
6.433E-05 0.383 0.225
4.393E-05 0.363 0.216
4.450E-05 0.363 0.216
3.759E-05 0.355 0.212
3.092E-05 0.345 0.208
2.453E-05 0.334 0.203
1.845E-05 0.321 0.197
1.275E-05 0.304 0.190
7.529E-06 0.282 0.179
0.000E+00 0.000 0.000


ed. Cone

0. in
0.009
0.009
0.009
0.009
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.006
0.006
0.006
0.006
0.005
0.005


0.6813 g
0.0735 m
0.0341 g
0.0189 g


m 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(oo) (oo) (oo) (oo) (oo) (S m)















Table E-9. Field data of event AO61306S3 (site: A, plot: S3, date: 06/13/06).
Time Q Sed. Cone Sed. Load TP DP dp =0.45pmn 0.45-2pLm 2-37pLm 37-100Lm 100-250mm >250pmn pH EC
(s) (m js) ii (g s) (mg L) (mg L) (pmn) (o o (o ) (o ) (o ) (o ) (o o (S m)
360 3.697E-0 0.000 6.568E-05 0.000 0.000
420 3.922E-0 0.063 2.477E-04 1.647 0.230
480 4.048E-0 0.064 2.580E-04 1.661 0.231
540 4.497E-0 0.066 2.956E-04 1.709 0.234
600 6.741E-0 0.074 4.991E-04 1.909 0.246
660 1.032E-0 0.084 8.658E-04 2.147 0.259 6.21 0.030
720 1.294E-0 0.090 1.161E-03 2.285 0.267
780 1.015E-0 0.084 8.475E-04 2.137 0.259
840 9.547E-0 0.082 7.829E-04 2.101 0.257 6.02 0.028
900 1.228E-0 0.088 1.085E-03 2.252 0.265
960 1.141E-0 0.086 9. 863E-04 2.207 0.263
1020 1.068E-0 0.085 9.055E-04 2.167 0.261
1080 1.457E-0 0.093 1.353E-03 2.361 0.271 348.8 0.63 0.86 4.39 5.50 23.50 65.12 5.98 0.026
1140 1.371E-0 0.091 1.251E-03 2.322 0.269
1200 1.164E-0 0.087 1.012E-03 2.219 0.263
1260 1.042E-0 0.084 8.764E-04 2.152 0.260
1320 1.405E-0 0.092 1.291E-03 2.337 0.270
1380 1.674E-0 0.097 1.619E-03 2.454 0.275
1440 2.233E-0 0.105 2.350E-03 2.658 0.285
1500 2.941E-0 0.114 3.357E-03 2. 870 0.295
Ji 1560 7.011E-0 0.147 1.033E-02 3.660 0.329
iD1620 4.612E-0 0.256 1.182E-01 6.238 0.415
1680 8.955E-0 0.311 2.789E-01 7.539 0.451
1740 7.828E-0 0.299 2.343E-01 7.255 0.444 321.3 0.73 0.98 5.91 7.41 24.23 60.74 5.94 0.024
1800 9.670E-0 0.319 3.080E-01 7.707 0.455
1860 1.110E-0 0.332 3.682E-01 8.018 0.463
1920 1.018E-0 0.323 3.290E-01 7.821 0.458
1980 9.613E-0 0.318 3.057E-01 7.694 0.455
2040 8.050E-0 0.302 2.429E-01 7.313 0.445
2100 5.073E-0 0.264 1.337E-01 6.410 0.420
2160 3.833E-0 0.243 9.303E-02 5.918 0.406
2220 5.617E-0 0.272 1.525E-01 6.598 0.426
2280 6.298E-0 0.281 1.769E-01 6.818 0.432
2340 7.188E-0 0.292 2.098E-01 7.080 0.439
2400 6.910E-0 0.289 1.994E-01 7.001 0.437
2460 5.310E-0 0.267 1.418E-01 6.494 0.423
2520 2.849E-0 0.222 6.337E-02 5.439 0.391
2580 7.836E-0 0.152 1.193E-02 3.776 0.334
2640 2.843E-0 0.113 3.212E-03 2. 843 0.294
2700 2.754E-0 0.112 3.084E-03 2.818 0.293
2760 2.645E-0 0.111 2.926E-03 2.786 0.292
2820 3.088E-0 0.116 3.576E-03 2.909 0.297
2880 2.874E-0 0.113 3.258E-03 2.851 0.295
2940 3.642E-0 0.122 4.427E-03 3.046 0.303
3000 2.725E-0 0.112 3.041E-03 2.809 0.293























































Total DP mass


Table E-9. Continued.
Time Q Sed. Cone
(s) (m /s) i
3060 3.119E-05 0.116
3120 2.813E-05 0.113
3180 2.551E-05 0.109
3240 2.495E-05 0.109
3300 2.488E-05 0.109
3360 2.516E-05 0.109
3420 2.495E-05 0.109
3480 2.467E-05 0.108
3540 2.460E-05 0.108
3600 2.439E-05 0.108
3660 2.439E-05 0.108
3720 2.622E-05 0.110
3780 3.026E-05 0.115
3840 3.433E-05 0.119
3900 6.338E-05 0.143
3960 7.066E-05 0.148
4020 3.151E-05 0.116
4080 2.747E-05 0.112
4140 2.343E-05 0.107
c 4200 1.939E-05 0.101
0 4260 1.535E-05 0.094
4320 1.131E-05 0.086
4380 7.274E-06 0.076
4440 2.355E-06 0.000
4500 0.000E+00 0.000
Number of field samples = 10
Total sediment mass 209.874;
Total ninoff volume = 0.7523
Total phosphonxs mass = 5.0952


Sed. Load TP DP dp
(g s) (mg L) (mg L) (pLm)
3.622E-03 2.917 0.298
3.169E-03 2.834 0.294
2.792E-03 2.758 0.290
2.713E-03 2.741 0.289
2.703E-03 2.739 0.289
2.743E-03 2.748 0.290
2.713E-03 2.741 0.289
2.674E-03 2.733 0.289
2.664E-03 2.730 0.289
2.635E-03 2.724 0.289
2.635E-03 2.724 0.289
2.894E-03 2.780 0.291
3.484E-03 2.893 0.296
4.101E-03 2.996 0.301
9.064E-03 3.557 0.325
1.043E-02 3.668 0.329
3.671E-03 2.926 0.298
3.074E-03 2.816 0.293
2.502E-03 2.694 0.287
1.959E-03 2.556 0.281
1.448E-03 2.396 0.273
9.754E-04 2.202 0.262
5.508E-04 1.950 0.248
1.280E-04 1.434 0.216
0.000E+00 0.000 0.000


:0.45pLm 0.45-2pLm 2-37pLm 37-100Lm 100-250mm >250pmn pH
(oo) (oo) (oo) (oo) (oo) (o)


EC
(S m)


0.3214


7














Table E-10. Field data of event AO61306V3 (site: A, plot: V3, date: 06/13/06).


Number of field samples
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


C
c


13


0.1565 g
0.1164 g


Time O Sed. Cone Sed. Load TP DP do <0.45tim 0.45-2tim 2-37tim 37-100tim 100-250tim >250tim pH EC
(s) (m /s) (g L) (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
660 3.010E-06 0.000 8.660E-09 0.000 0.000
720 3.178E-06 0.000 9.852E-09 0.402 0.399
780 3.178E-06 0.000 9.852E-09 0.402 0.399
840 3.221E-06 0.000 1.016E-08 0.402 0.399
900 3.221E-06 0.000 1.016E-08 0.402 0.399
960 3.361E-06 0.000 1.124E-08 0.401 0.398
1020 3.529E-06 0.000 1.263E-08 0.400 0.397
1080 3.880E-06 0.000 1.580E-08 0.398 0.395
1140 4.048E-06 0.000 1.748E-08 0.397 0.394
1200 4.048E-06 0.000 1.748E-08 0.397 0.394
1260 4.048E-06 0.000 1.748E-08 0.397 0.394
1320 4.230E-06 0.000 1.940E-08 0.396 0.393
1380 4.623E-06 0.000 2.394E-08 0.394 0.391
1440 5.128E-06 0.000 3.061E-08 0.392 0.389
1500 5.128E-06 0.000 3.061E-08 0.392 0.389
1560 5.479E-06 0.000 3.580E-08 0.391 0.388 6.13 0.021
1620 5.479E-06 0.000 3.580E-08 0.391 0.388
1680 5.297E-06 0.000 3.304E-08 0.391 0.388
1740 5.297E-06 0.000 3.304E-08 0.391 0.388
1800 5.479E-06 0.000 3.580E-08 0.391 0.388
1860 4.240E-04 0.003 1.071E-03 0.383 0.306
1920 7.253E-04 0.005 3.824E-03 0.448 0.297 21.56 2.64 4.04 74.26 17.46 1.59 0.00 5.82 0.016
1980 8.917E-04 0.007 6.237E-03 0.491 0.293
2040 7. 592E-04 0.006 4.260E-03 0.457 0.296 5.83 0.021
2100 6.077E-04 0.004 2.514E-03 0.421 0.300
2160 4.942E-04 0.003 1.540E-03 0.397 0.303
2220 3.741E-04 0.002 7.964E-04 0.375 0.308
2280 2.969E-04 0.002 4.606E-04 0.363 0.312 6.04 0.019
2340 2.628E-04 0.001 3.449E-04 0.358 0.314
2400 2.536E-04 0.001 3.170E-04 0.357 0.314 5.59 0.018
2460 2.819E-04 0.001 4.070E-04 0.361 0.312
2520 2.913E-04 0.002 4.399E-04 0.362 0.312
2580 2.486E-04 0.001 3.023E-04 0.356 0.315 24.49 2.84 4.00 63.92 23.69 5.56 0.00 5.81 0.023
2640 1.498E-04 0.001 9.095E-05 0.348 0.323
2700 7.816E-05 0.000 1.948E-05 0.349 0.335
2760 4.291E-05 0.000 4.702E-06 0.355 0.346
2820 2.820E-05 0.000 1.739E-06 0.361 0.354
2880 1.914E-05 0.000 6.941E-07 0.367 0.362
2940 1.217E-05 0.000 2.373E-07 0.375 0.371
3000 8.340E-06 0.000 9.692E-08 0.383 0.379
3060 5.759E-06 0.000 4.030E-08 0.390 0.387
3120 4.399E-06 0.000 2.128E-08 0.395 0.392
3180 1.030E-06 0.000 6.812E-10 0.427 0.425
3240 0.000E+00 0.000 0.000E+00 0.000 0.000














Table E-11i. Field data of event AO61306V1 (site: A, plot: Vl, date: 06/13/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(m3/S)
4.351E-06
4.927E-06
5.379E-06
5.708E-06
6.078E-06
6.681E-06
7.064E-06
7.448E-06
6.818E-06
6.818E-06
6.681E-06
6.640E-06
6.873E-06
7.064E-06
7.256E-06
7.640E-06
7.585E-06
7.681E-06
6.681E-06
6.735E-06
6.873E-06
6.914E-06
6.955E-06
6.996E-06
7.051E-06
7.078E-06
3.337E-04
5.447E-04
4.785E-04
4.384E-04
3.997E-04
3.621E-04
3.241E-04
2.775E-04
2.066E-04
1.173E-04
6.331E-05
3.531E-05
2.811E-05
2.258E-05
1.842E-05
1.553E-05
1.404E-05
1.255E-05
1.105E-05
9.558E-06


It (g/s) (mg/L) (mg/L) (pLm)
0.0000 1.045E-05 0.072 0.000
0.0025 1.232E-05 0.261 0.186
0.0026 1.383E-05 0.265 0.188
0.0026 1.496E-05 0.268 0.189
0.0027 1.626E-05 0.270 0.191
0.0028 1.842E-05 0.275 0.193
0.0028 1.983E-05 0.277 0.194
0.0029 2.127E-05 0.280 0.195
0.0028 1.892E-05 0.276 0.193
0.0028 1.892E-05 0.276 0.193
0.0028 1.842E-05 0.275 0.193
0.0028 1.827E-05 0.274 0.193
0.0028 1.913E-05 0.276 0.193
0.0028 1.983E-05 0.277 0.194
0.0028 2.055E-05 0.278 0.195
0.0029 2.200E-05 0.281 0.196
0.0029 2.179E-05 0.280 0.196
0.0029 2.215E-05 0.281 0.196
0.0028 1.842E-05 0.275 0.193
0.0028 1.862E-05 0.275 0.193
0.0028 1.913E-05 0.276 0.193
0.0028 1.928E-05 0.276 0.194
0.0028 1.943E-05 0.276 0.194
0.0028 1.958E-05 0.277 0.194
0.0028 1.978E-05 0.277 0.194
0.0028 1.989E-05 0.277 0.194
0.0097 3.236E-03 0.549 0.303
0.0114 6.183E-03 0.603 0.321
0.0109 5.210E-03 0.588 0.316
0.0106 4.641E-03 0.578 0.313
0.0103 4.108E-03 0.568 0.310 24.69
0.0100 3.605E-03 0.558 0.306
0.0096 3.113E-03 0.546 0.302
0.0091 2.536E-03 0.530 0.297
0.0083 1.717E-03 0.502 0.287
0.0069 8.126E-04 0.452 0.269
0.0057 3.598E-04 0.404 0.250
0.0047 1.663E-04 0.364 0.234 26.79
0.0044 1.231E-04 0.350 0.228
0.0041 9.210E-05 0.337 0.222
0.0038 7.041E-05 0.326 0.217
0.0036 5.619E-05 0.316 0.213
0.0035 4.916E-05 0.311 0.210
0.0034 4.237E-05 0.305 0.207
0.0032 3.583E-05 0.299 0.204
0.0031 2.958E-05 0.291 0.201


(s)
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
S1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000


(%~) (%) (%) (%) (%~) (%)


(S/m)


1.50 2.48


66.10 21.92


7.88 0.13 5.76 0.018


5.90 0.015


1.57 3.30


64.78 30.36


0.00 5.79 0.021















Table E-11. Continued.
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m3/S) _i (g/s) (mg/L) (mg/L) (pLm)
3060 8.065E-06 0.0029 2.363E-05 0.283 0.197
3120 6.571E-06 0.0027 1.803E-05 0.274 0.192
3180 5.077E-06 0.0025 1.282E-05 0.262 0.187
3240 3.584E-06 0.0023 8.089E-06 0.248 0.179
3300 2.090E-06 0.0019 3.967E-06 0.228 0.169
3360 1.564E-06 0.0017 2.703E-06 0.217 0.163
3420 0.000E+00 0.0000 0.000E+00 0.000 0.000
Number of field samples 6
Total sediment mass = 2.2042 g
Total runoff volume = 0.2348 m3
Total phosphorus mass = 0.1108 g
Total DP mass = 0.0608 g


:0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(%~) (%) (%) (%) (%~) (%) (S/m)















Table E-12. Field data of event AO61306V4 (site: A, plot: V4, date: 06/13/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100Lm 100-250mm >250pLm pH EC
(s) (m /s) i I (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
180 0.000E+00 0.0000 0.000E+00 0.000 0.000
240 5.708E-06 0.0049 2. 806E-05 0.285 0.248
300 6.872E-06 0.0051 3.498E-05 0.325 0.247
360 5.571E-06 0.0049 2.727E-05 0.279 0.248
420 6.872E-06 0.0051 3.498E-05 0.325 0.247
480 6.585E-06 0.0050 3.325E-05 0.317 0.247
540 9.627E-06 0.0054 5.216E-05 0.382 0.246
600 9.833E-06 0.0054 5.349E-05 0.385 0.246
660 1.108E-05 0.0056 6.162E-05 0.400 0.246
720 9.421E-06 0.0054 5.084E-05 0.379 0.246
780 9.216E-06 0.0054 4.953E-05 0.376 0.246
840 1.172E-05 0.0056 6.589E-05 0.407 0.246
900 1.237E-05 0.0057 7.021E-05 0.413 0.246
960 1.024E-05 0.0055 5.615E-05 0.390 0.246
1020 1.067E-05 0.0055 5.892E-05 0.396 0.246
1080 1.135E-05 0.0056 6.343E-05 0.403 0.246
1140 1.087E-05 0.0055 6.027E-05 0.398 0.246
1200 9.833E-06 0.0054 5.349E-05 0.385 0.246
1260 1.113E-05 0.0056 6.198E-05 0.401 0.246
1320 1.204E-05 0.0056 6.800E-05 0.410 0.246
1380 1.467E-05 0.0059 8.596E-05 0.430 0.245
1440 1.308E-05 0.0057 7.503E-05 0.419 0.246
1500 1.237E-05 0.0057 7.021E-05 0.413 0.246
1560 1.393E-05 0.0058 8.084E-05 0.425 0.245
1620 1.589E-05 0.0059 9.450E-05 0.437 0.245
1680 1.292E-05 0.0057 7.391E-05 0.418 0.246
1740 1.444E-05 0.0058 8.434E-05 0.429 0.245
1800 1.571E-05 0.0059 9.324E-05 0.436 0.245 5.69 0.013
1860 2.528E-05 0.0065 1.639E-04 0.468 0.244
1920 2.461E-04 0.0099 2.435E-03 0.511 0.238
1980 4.542E-04 0.0111 5.036E-03 0.512 0.236
2040 4.417E-04 0.0110 4. 872E-03 0.512 0.236 23.46 2.10 3.59 70.32 21.39 2.60 0.00 5.93 0.021
2100 2.987E-04 0.0103 3.063E-03 0.512 0.237
2160 1.983E-04 0.0095 1.884E-03 0.510 0.238
2220 1.164E-04 0.0086 1.002E-03 0.507 0.240
2280 6.383E-05 0.0077 4.915E-04 0.499 0.241 6.03 0.032
2340 4.270E-05 0.0071 3.051E-04 0.489 0.242
2400 3.228E-05 0.0068 2.190E-04 0.479 0.243
2460 2.251E-05 0.0063 1.428E-04 0.462 0.244
2520 1.793E-05 0.0061 1.091E-04 0.447 0.245
2580 1.600E-05 0.0060 9.527E-05 0.438 0.245
2640 1.708E-05 0.0060 1.030E-04 0.443 0.245 12.25 4.87 8.08 57.63 11.23 16.38 1.80 6.09 0.019
2700 1.438E-05 0.0058 8.396E-05 0.428 0.245
2760 1.460E-05 0.0059 8.548E-05 0.430 0.245
2820 1.648E-05 0.0060 9.867E-05 0.440 0.245














Table E-12. Continued.
Time Q Sed. Cone Sed. Load
(s) (m /s) n (g s)
2880 1.837E-05 0.0061 1.122E-04
2940 2.099E-05 0.0063 1.314E-04
3000 1.830E-05 0.0061 1.117E-04
3060 1.818E-05 0.0061 1.108E-04
3120 1.893E-05 0.0061 1.163E-04
3180 1.589E-05 0.0059 9.450E-05
3240 1.415E-05 0.0058 8.235E-05
3300 1.314E-05 0.0057 7.540E-05
3360 1.415E-05 0.0058 8.235E-05
3420 1.303E-05 0.0057 7.465E-05
3480 1.281E-05 0.0057 7.317E-05
3540 1.237E-05 0.0057 7.021E-05
3600 1.286E-05 0.0057 7.354E-05
3660 1.237E-05 0.0057 7.021E-05
3720 2.059E-05 0.0062 1.285E-04
3780 2.085E-05 0.0063 1.304E-04
3840 2.073E-05 0.0062 1.295E-04
3900 1.830E-05 0.0061 1.117E-04
3960 1.932E-05 0.0062 1.191E-04
4020 1.823E-05 0.0061 1.112E-04
4080 1.715E-05 0.0060 1.035E-04
4140 1.544E-05 0.0059 9.132E-05
4200 1.372E-05 0.0058 7.943E-05
4260 1.201E-05 0.0056 6.781E-05
4320 1.030E-05 0.0055 5.650E-05
4380 8.585E-06 0.0053 4.554E-05
4440 6.872E-06 0.0051 3.498E-05
4500 5.160E-06 0.0048 2.490E-05
4560 3.447E-06 0.0045 1.543E-05
4620 0.000E+00 0.0000 0.000E+00
Number of field samples = 5
Total sediment mass = 1.4617 g
Total ninoff volume = 0.1655 m3
Total phosphonxs mass = 0.0799 g
Total DP mass = 0.0397 g


TP
(mg L)
0.448
0.457
0.448
0.448
0.451
0.437
0.427
0.419
0.427
0.419
0.417
0.413
0.417
0.413
0.456
0.457
0.457
0.448
0.452
0.448
0.443
0.435
0.424
0.410
0.391
0.365
0.325
0.259
0.249
0.000


DP
(mg L)
0.245
0.244
0.245
0.245
0.245
0.245
0.245
0.246
0.245
0.246
0.246
0.246
0.246
0.246
0.244
0.244
0.244
0.245
0.245
0.245
0.245
0.245
0.245
0.246
0.246
0.247
0.247
0.248
0.249
0.000


dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH
(pLm) (o ) (o ) (o ) (o ) (o ) (o )


EC
(S m)















Table E-13. Field data of event AO70706S2 (site: A, plot: S2, date: 07/07/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0 0.000E+00 660 9.228E-09 0.000 7.087E-11 0.000 0.000
120 8.333E-07 720 2.327E-05 0.021 4.960E-04 0.994 0.174
240 8.333E-07 780 2.231E-04 0.210 4.685E-02 4.833 0.437
360 0.000E+00 840 2.772E-04 0.262 7.250E-02 5.642 0.477
480 1.667E-06 900 1.995E-04 0.188 3.740E-02 4.463 0.418
600 2.500E-06 960 1.481E-04 0.139 2.054E-02 3.612 0.370
720 5.000E-06 1020 1.542E-04 0.145 2.230E-02 3.718 0.376
840 1.750E-05 1080 2.171E-04 0.204 4.437E-02 4.741 0.432 156.9 6.47 5.62 22.34 9.53 21.73 34.31 6. 0.023
960 2.167E-05 1140 2.126E-04 0.200 4.253E-02 4.670 0.429
1080 2.333E-05 1200 1.877E-04 0.176 3.311E-02 4.275 0.407
1200 2.000E-05 1260 1.988E-04 0.187 3.717E-02 4.453 0.417
1320 1.917E-05 1320 1.002E-04 0.093 9.357E-03 2.741 0.315 5. 0.030
1440 2.000E-05 1380 3.520E-05 0.032 1.140E-03 1.321 0.206
1560 1.750E-05 1440 2.768E-05 0.025 7.029E-04 1.120 0.187
1680 1.333E-05 1500 2.327E-05 0.021 4.960E-04 0.994 0.174
1800 1.167E-05 1560 2.165E-05 0.020 4.289E-04 0.946 0.169
1920 1.167E-05 1620 1.374E-05 0.013 1.718E-04 0.695 0.141
2040 7.500E-06 1680 1.242E-05 0.011 1.403E-04 0.649 0.135
S2160 2.500E-06 1740 1.084E-05 0.010 1.067E-04 0.593 0.128
2280 2.500E-06 1800 1.058E-05 0.010 1.015E-04 0.583 0.126
2400 1.667E-06 1860 1.005E-05 0.009 9.158E-05 0.563 0.124
2520 8.333E-07 1920 9.406E-06 0.009 8.012E-05 0.539 0.120
2640 8.333E-07 1980 8.773E-06 0.008 6.964E-05 0.514 0.117
2760 8.333E-07 2040 8.272E-06 0.007 6.187E-05 0.495 0.114
2820 0.000E+00 2100 7.521E-06 0.007 5.108E-05 0.464 0.110
2160 7.033E-06 0.006 4.464E-05 0.444 0.107
2220 6.545E-06 0.006 3.863E-05 0.424 0.104
2280 3.184E-06 0.003 9.058E-06 0.265 0.077
2340 1.391E-06 0.001 1.711E-06 0.156 0.055
2400 9.294E-07 0.001 7.605E-07 0.122 0.047
2460 6.921E-07 0.001 4.202E-07 0.102 0.042
2520 3.493E-07 0.000 1.062E-07 0.068 0.032
2580 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 5
Total sediment mass = 22.2213 g
Total ninoff volume = 0.1297 m3
Total phosphonxs mass = 0.5298 g
Total DP mass = 0.0504 g














Table E-14. Field data of event AO70706V2 (site: A, plot: V2, date: 07/07/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
900 0.000E+00 0.000 0.000E+00 0.000 0.000
960 8.264E-06 0.005 4.063E-05 0.411 0.330
1020 3.028E-05 0.018 5.438E-04 0.759 0.370
1080 2.850E-05 0.017 4.819E-04 0.730 0.368
1140 7.085E-05 0.042 2.972E-03 1.481 0.398 5.90 0.023
1200 9.346E-05 0.055 5.169E-03 1.920 0.408
1260 1.068E-04 0.063 6.750E-03 2.189 0.413
1320 6.640E-05 0.039 2.611E-03 1.398 0.396
1380 5.892E-05 0.035 2.056E-03 1.259 0.392 8.76 5.1 8 78.4 4.21 4.29 0 5.78 0.032
1440 8.688E-05 0.051 4.467E-03 1.790 0.405
1500 7. 549E-05 0.045 3.373E-03 1.570 0.400
1560 4. 593E-05 0.027 1.250E-03 1.026 0.383
1620 1.561E-05 0.009 1.448E-04 0.524 0.349
1680 1.613E-05 0.010 1.545E-04 0.532 0.350 6.04 0.026
1740 1.092E-05 0.006 7.086E-05 0.452 0.338
1800 1.001E-05 0.006 5.963E-05 0.438 0.336
1860 8.986E-06 0.005 4.803E-05 0.423 0.332
1920 8.736E-06 0.005 4.540E-05 0.419 0.332
1980 8.139E-06 0.005 3.941E-05 0.410 0.330
S2040 5.958E-06 0.004 2.114E-05 0.376 0.321
2100 5.361E-06 0.003 1.712E-05 0.366 0.318
2160 5.250E-06 0.003 1.641E-05 0.364 0.317
2220 5.125E-06 0.003 1.564E-05 0.362 0.317
2280 5.083E-06 0.003 1.539E-05 0.362 0.316
2340 4.944E-06 0.003 1.456E-05 0.359 0.316
2400 3.722E-06 0.002 8.257E-06 0.339 0.308
2460 3.069E-06 0.002 5.617E-06 0.327 0.303
2520 2.417E-06 0.001 3.484E-06 0.315 0.296
2580 1.764E-06 0.000 1.857E-06 0.301 0.288
2640 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 4
Total sediment mass = 1.8238 g
Total ninoff volume = 0.0476 m3
Total phosphonxs mass = 0.0663 g
Total DP mass = 0.0184 g















Table E-15. Field data of event AO70706S3 (site: A, plot: S3, date: 07/07/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pmn 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
840 7.250E-08 0.000 1.016E-06 0.000 0.000
900 6.980E-06 0.071 4.938E-04 1.283 0.206
960 7.652E-06 0.073 5.593E-04 1.336 0.211
1020 4.346E-05 0.135 5.879E-03 2.926 0.322
1080 3.820E-04 0.292 1.116E-01 7.988 0.549
1140 4.510E-04 0.310 1.398E-01 8.632 0.572
1200 2.893E-04 0.265 7.660E-02 7.017 0.513 5.67 0.013
1260 1.785E-04 0.223 3.983E-02 5.607 0.456
1320 2.213E-04 0.241 5.327E-02 6.195 0.480 167.5 4.73 3.96 19.28 12.99 18.21 40. 83 5.96 0.023
1380 3.343E-04 0.279 9.317E-02 7.506 0.531
1440 3.339E-04 0.279 9.302E-02 7.502 0.531
1500 2.821E-04 0.262 7.403E-02 6.935 0.510
1560 2.611E-04 0.255 6.668E-02 6.691 0.500
1620 9.978E-05 0.182 1.812E-02 4.285 0.395
1680 4.601E-05 0.138 6.350E-03 3.003 0.327 5.94 0.019
1740 3.110E-05 0.120 3.737E-03 2.512 0.297
1800 2.145E-05 0.105 2.260E-03 2.123 0.271
1860 1.249E-05 0.087 1.086E-03 1.663 0.238
S1920 9.379E-06 0.079 7.367E-04 1.463 0.222
co 1980 7.204E-06 0.072 5.154E-04 1.301 0.208
2040 5.359E-06 0.064 3.452E-04 1.141 0.193
2100 4.765E-06 0.062 2.945E-04 1.083 0.188
2160 2.590E-06 0.050 1.290E-04 0.829 0.162
2220 2.221E-06 0.047 1.047E-04 0.775 0.156
2280 1.668E-06 0.043 7. 102E-05 0.684 0.145
2340 1.298E-06 0.039 5.061E-05 0.614 0.137
2400 9.426E-07 0.035 3.279E-05 0.536 0.126
2460 3.230E-07 0.024 7.688E-06 0.341 0.097
2520 3.230E-07 0.024 7.688E-06 0.341 0.097
2580 9.887E-08 0.016 1.547E-06 0.210 0.073
2640 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 5
Total sediment mass = 47.3265g
Total ninoff volume = 0.1823m3
Total phosphonxs mass = 1.2577g
Total DP mass = 0.0917g















(site:
DP
(mg L)
0.000
0.440
0.450
0.460
0.478
0.483
0.518
0.526
0.522
0.517
0.516
0.521
0.519
0.514
0.507
0.499
0.491
0.484
0.478
0.472
0.464
0.457
0.451
0.445
0.434
0.409
0.000


A, plot:
dp
( pm)


V3, date: 07/07/06).
=0.45pLm 0.45-2pLm 2-37Lm
(o o) (o ) (o )


Time Q
(s) (m /s)
900 0.000E+00
960 2.143E-06
1020 3.581E-06
1080 5.755E-06
1140 1.402E-05
1200 1.786E-05
1260 8.702E-05
1320 1.228E-04
1380 1.047E-04
1440 8.428E-05
1500 7.969E-05
1560 9.686E-05
1620 8.986E-05
1680 7.248E-05
1740 5.400E-05
1800 3.743E-05
1860 2.546E-05
1920 1.799E-05
S1980 1.394E-05
2040 1.033E-05
2100 7.130E-06
2160 4.893E-06
2220 3.770E-06
2280 2.648E-06
2340 1.526E-06
2400 4.040E-07
2460 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed.
Sin
0.000
0.016
0.018
0.021
0.026
0.027
0.041
0.045
0.043
0.041
0.040
0.042
0.041
0.039
0.036
0.033
0.030
0.028
0.026
0.024
0.022
0.020
0.019
0.017
0.015
0.011
0.000


Sed. Load
(g s)
0.000E+00
3.444E-05
6.553E-05
1.187E-04
3.622E-04
4.907E-04
3.569E-03
5.494E-03
4.502E-03
3.429E-03
3.197E-03
4.082E-03
3.716E-03
2.838E-03
1.963E-03
1.240E-03
7.651E-04
4.951E-04
3.597E-04
2.471E-04
1.553E-04
9.688E-05
6.990E-05
4.490E-05
2.250E-05
4.256E-06
0.000E+00

2.242g
0.058m3
0.081g
0.030g


TP
(mg L)
0.000
0.784
0.846
0.909
1.050
1.094
1.456
1.556
1.509
1.447
1.432
1.486
1.465
1.407
1.332
1.246
1.163
1.096
1.049
0.998
0.941
0.887
0.852
0.809
0.748
0.628
0.000


37-100pLm 100-250Lm
(o o) (o )


250Lm
(oo)


pH EC
(S m)


19.96 0.000











15.87 2.430


2.280 75.520 22.190 0.000











5.250 82.540 8.770 1.000


0.000 5.960 0.034











0.000 6.03 0.023


Table E-16. Field data of event AO70706V3
















(mg L) (pLm) (o)
0.000
0.511
0.543
0.541
0.524
0.500
0.491
0.489
0.488
0.487
0.487
0.487
0.487
0.486
0.486 145.6 5.03
0.486
0.486
0.487
0.486
0.486
0.485
0.485
0.485
0.485
0.485
0.484
0.484
0.484
0.484
0.475
0.475
0.475
0.474
0.470
0.470
0.470
0.464
0.463
0.463
0.454
0.431
0.431
0.427
0.426
0.000


6.03 0.023


4.15 20.6 13.46 18.99


37.78 5.85 0.015


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


(m/s)
) 6.954E-06
) 1.099E-04
) 6.442E-04
) 5.753E-04
) 2.327E-04
) 6.217E-05
) 3.610E-05
) 3.268E-05
) 3.006E-05
) 2.848E-05
) 2.832E-05
) 2.848E-05
) 2.794E-05
) 2.724E-05
) 2.694E-05
) 2.694E-05
) 2.755E-05
) 2.785E-05
) 2.755E-05
) 2.701E-05
) 2.557E-05
) 2.543E-05
) 2.513E-05
) 2.506E-05
) 2.483E-05
) 2.439E-05
) 2.425E-05
) 2.418E-05
) 2.396E-05
) 1.399E-05
) 1.392E-05
) 1.371E-05
) 1.349E-05
) 1.057E-05
) 1.034E-05
) 1.027E-05
) 7.068E-06
) 6.868E-06
) 6.854E-06
) 3.862E-06
) 8.704E-07
) 8.704E-07
) 6.710E-07
) 5.998E-07
) 0.000E+00

105.242 g
0.142 m3
2.689 g
0.074 g


Sed. Cone Sed. Load TP DP do <0.45tim 0.45-2tim 2-37tim 37-100tim 100-250tim >250tim pH EC


(oo) (oo) (oo) (oo) (oo) (S m)


(g L)
0.000
0.261
1.329
1.198
0.521
0.155
0.094
0.085
0.079
0.075
0.075
0.075
0.074
0.072
0.072
0.072
0.073
0.074
0.073
0.072
0.068
0.068
0.067
0.067
0.066
0.065
0.065
0.065
0.064
0.039
0.039
0.038
0.038
0.030
0.030
0.029
0.021
0.020
0.020
0.012
0.003
0.003
0.002
0.002
0.000


Timi
(s)


Table E-17. Field data of event AO91006S2 (site: A, plot: S2, date: 09/10/06).


Time
(s)

60
180
300
420
540
660
780
900
1020
1140
1260
1380
1500
1620
1740
1860
1980
2100
2220
2340
2460
2580
2700
O 2820
2940
3060
3180
3300
3420
3540
3660
3780
3900
4020
4140
4260
4380
4440


Rain
(m s)
0.000E+00
1.667E-06
8.333E-07
1.667E-06
3.333E-06
2.500E-06
6.667E-06
5.833E-06
6.667E-06
2.500E-06
1.667E-06
1.667E-06
1.667E-06
4.167E-06
1.417E-05
2.917E-05
3.500E-05
2.250E-05
1.667E-05
1.500E-05
1.417E-05
1.167E-05
1.083E-05
1.750E-05
1.250E-05
8.333E-06
1.000E-05
8.333E-06
7.500E-06
6.667E-06
4.167E-06
2.500E-06
1.667E-06
8.333E-07
8.333E-07
8.333E-07
8.333E-07
8.333E-07
0.000E+00


(g s) (mg L)
1.431E-04 0.000
2.870E-02 7.429
8.562E-01 33.214
6.892E-01 30.126
1.212E-01 13.891
9.607E-03 4.696
3.382E-03 3.094
2.794E-03 2.875
2.380E-03 2.705
2.145E-03 2.601
2.123E-03 2.591
2.145E-03 2.601
2.068E-03 2.565
1.969E-03 2.519
1.928E-03 2.499
1.928E-03 2.499
2.013E-03 2.540
2.055E-03 2.560
2.013E-03 2.540
1.938E-03 2.504
1.745E-03 2.408
1.726E-03 2.399
1.687E-03 2.379
1.678E-03 2.374
1.649E-03 2.359
1.593E-03 2.329
1.575E-03 2.320
1.566E-03 2.315
1.540E-03 2.301
5.479E-04 1.608
5.425E-04 1.603
5.266E-04 1.587
5.110E-04 1.572
3.199E-04 1.356
3.068E-04 1.339
3.027E-04 1.334
1.476E-04 1.086
1.397E-04 1.070
1.392E-04 1.069
4.625E-05 0.820
2.645E-06 0.530
2.645E-06 0.530
1.605E-06 0.506
1.294E-06 0.497
0.000E+00 0.000














Table E-18. Field data of event AO91006V2 (site: A, plot: V2, date: 09/10/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
1620 1.314E-05 0.000 1.037E-04 0.000 0.000
1680 2.470E-05 0.010 2.447E-04 0.550 0.301
1740 3.172E-05 0.011 3.438E-04 0.584 0.312
1800 3.538E-05 0.011 3.987E-04 0.600 0.317
1860 5.075E-05 0.013 6.512E-04 0.656 0.333
1920 4.357E-05 0.012 5.293E-04 0.632 0.326
1980 2.988E-05 0.011 3.170E-04 0.576 0.310
2040 2.470E-05 0.010 2.447E-04 0.550 0.301
2100 2.973E-05 0.011 3.148E-04 0.575 0.309
2160 2.594E-05 0.010 2.615E-04 0.556 0.303
2220 2.143E-05 0.009 2.017E-04 0.531 0.295
2280 2.266E-05 0.010 2.176E-04 0.539 0.298
2340 2.022E-05 0.009 1.864E-04 0.524 0.293
2400 2.246E-05 0.010 2.150E-04 0.537 0.297 13.25 4.31 7.25 73.68 14.55 0.22 0 5.74 0.012
2460 2.115E-05 0.009 1.982E-04 0.530 0.295
2520 1.969E-05 0.009 1.798E-04 0.521 0.292
2580 1.911E-05 0.009 1.727E-04 0.517 0.291
2640 2.022E-05 0.009 1.864E-04 0.524 0.293
2700 2.102E-05 0.009 1.965E-04 0.529 0.295
S2760 2.280E-05 0.010 2.194E-04 0.539 0.298
S2820 1.956E-05 0.009 1.782E-04 0.520 0.292 5.83 0.025
2880 1.436E-05 0.008 1.170E-04 0.483 0.279
2940 1.403E-05 0.008 1.134E-04 0.481 0.278
3000 1.340E-05 0.008 1.065E-04 0.476 0.277
3060 1.129E-05 0.007 8.439E-05 0.457 0.270
3120 8.272E-06 0.007 5.531E-05 0.426 0.259
3180 8.574E-06 0.007 5.807E-05 0.429 0.260
3240 7.258E-06 0.006 4.630E-05 0.413 0.254
3300 4.641E-06 0.005 2.521E-05 0.374 0.238
3360 4.230E-06 0.005 2.222E-05 0.367 0.235
3420 3.709E-06 0.005 1.859E-05 0.356 0.231
3480 2.859E-06 0.005 1.305E-05 0.337 0.223
3540 2.530E-06 0.004 1.105E-05 0.328 0.219
3600 1.420E-06 0.004 5.043E-06 0.291 0.202
3660 5.571E-07 0.003 1.413E-06 0.240 0.177
3720 2.261E-08 0.001 1.814E-08 0.133 0.113
3780 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 3
Total sediment mass 0.368g
Total ninoff volume = 0.037m3
Total phosphonxs mass = 0.020g
Total DP mass = 0.011g
















(g s)
0.000E+00
3.863E-04
5.432E-04
9.789E-03
3.826E-01
5.176E-01
1.155E-01
2.004E-02
8.964E-03
6.840E-03
5.961E-03
5.743E-03
5.774E-03
5.774E-03
5.524E-03
5.524E-03
5.463E-03
5.681E-03
5.867E-03
5.898E-03
5.403E-03
5.282E-03
5.403E-03
5.403E-03
5.282E-03
5.282E-03
3.463E-03
3.433E-03
3.433E-03
3.495E-03
3.370E-03
2.154E-03
2.103E-03
2.064E-03
1.166E-03
1.136E-03
1.117E-03
1.089E-03
5.848E-04
5.697E-04
5.622E-04
5.411E-04
3.411E-04
3.190E-04
1.479E-06
5.366E-07
3.365E-08
0.000E+00


5.9 0.023


5.12 23.19 13.63


36.91 5.6 0.024


5
70.950 g
0.180 ni
1.894 g
0.086 n


Time O
(s) (nt' s)
1620 0.000E+00
1680 1.029E-05
1740 1.254E-05
1800 6.685E-05
1860 5.581E-04
1920 6.648E-04
1980 2.790E-04
2040 1.012E-04
2100 6.353E-05
2160 5.432E-05
2220 5.017E-05
2280 4.910E-05
2340 4.925E-05
2400 4.925E-05
2460 4.800E-05
2520 4.800E-05
2580 4.770E-05
2640 4.879E-05
2700 4.971E-05
2760 4.986E-05
2820 4.739E-05
2880 4.678E-05
2940 4.739E-05
3000 4.739E-05
S3060 4.678E-05
63 3120 4.678E-05
3180 3.663E-05
3240 3.645E-05
3300 3.645E-05
3360 3.683E-05
3420 3.606E-05
3480 2.783E-05
3540 2.745E-05
3600 2.715E-05
3660 1.951E-05
3720 1.921E-05
3780 1.903E-05
3840 1.875E-05
3900 1.308E-05
3960 1.289E-05
4020 1.279E-05
4080 1.251E-05
4140 9.577E-06
4200 9.212E-06
4260 4.106E-07
4320 2.283E-07
4380 4.595E-08
4440 0.000E+00
Number of field sanicles
Total sediment mass =
Total runoff volume =
Total phosphorus mass =
Total DP mass =


Sed. Cone Sed. Load TP DP do <0.45w


mi 0.45-2uin 2-37uin 37-100uin 100-250umi 250umi DH EC
(oo0) (oo0) (oo0) (oo0) (oo0) (S nt)


Table E-19. Field data of event AO91006S3 (site: A, plot: S3, date: 09/10/06).


(nigL) (nig L) (pint) (o)
0.000 0.000
1.436 0.460
1.586 0.461
4.233 0.473
17.927 0.488
20.283 0.489
11.043 0.483
5.549 0.476
4.097 0.472
3.709 0.471
3.527 0.471
3.480 0.471
3.487 0.471 112.6 6.17
3.487 0.471
3.431 0.470
3.431 0.470
3.418 0.470
3.466 0.471
3.507 0.471
3.514 0.471
3.404 0.470
3.376 0.470
3.404 0.470
3.404 0.470
3.376 0.470
3.376 0.470
2.905 0.469
2.896 0.469
2.896 0.469
2.914 0.469
2.877 0.468
2.465 0.467
2.445 0.467
2.430 0.467
2.011 0.464
1.994 0.464
1.984 0.464
1.967 0.464
1.622 0.462
1.609 0.461
1.603 0.461
1.585 0.461
1.386 0.459
1.361 0.459
0.536 0.439
0.499 0.435
0.445 0.425
0.000 0.000


0.000
0.038
0.043
0.146
0.686
0.779
0.414
0.198
0.141
0.126
0.119
0.117
0.117
0.117
0.115
0.115
0.115
0.116
0.118
0.118
0.114
0.113
0.114
0.114
0.113
0.113
0.095
0.094
0.094
0.095
0.093
0.077
0.077
0.076
0.060
0.059
0.059
0.058
0.045
0.044
0.044
0.043
0.036
0.035
0.004
0.002
0.001
0.000














Table E-20. Field data of event AO91006V3 (site: A, plot: V3, date: 09/10/06).


Time Q Sed. Cone
(s) (m /s) i
1800 0.000E+00 0.000
1860 1.013E-05 0.015
1920 2.951E-05 0.034
1980 4.881E-05 0.050
2040 5.467E-05 0.055
2100 4.667E-05 0.049
2160 5.162E-05 0.052
2220 4.696E-05 0.049
2280 4.044E-05 0.043
2340 3.510E-05 0.039
2400 3.292E-05 0.037
2460 3.093E-05 0.035
2520 3.184E-05 0.036
2580 2.682E-05 0.032
2640 2.467E-05 0.030
2700 2.545E-05 0.031
2760 2.809E-05 0.033
2820 2.969E-05 0.034
2880 2.749E-05 0.032
S2940 2.451E-05 0.030
S3000 2.069E-05 0.026
3060 1.912E-05 0.025
3120 1.597E-05 0.021
3180 1.502E-05 0.020
3240 1.233E-05 0.018
3300 1.003E-05 0.015
3360 8.588E-06 0.013
3420 7.007E-06 0.011
3480 5.016E-06 0.009
3540 3.658E-06 0.007
3600 2.485E-06 0.005
3660 1.562E-06 0.004
3720 8.239E-07 0.002
3780 0.000E+00 0.000
Number of field samples =
Total sediment mass = 1
Total ninoff volume = 0
Total phosphonxs mass = 0
Total DP mass = 0


Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(g s) (mg L) (mg L) ( pm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
0.000E+00 0.000 0.000
1.531E-04 0.664 0.286
1.009E-03 1.186 0.331
2.450E-03 1.611 0.354
2.992E-03 1.730 0.360
2.264E-03 1.566 0.352
2.705E-03 1.668 0.357 5.75 0.023
2.289E-03 1.572 0.352
1.759E-03 1.434 0.345
1.370E-03 1.315 0.339
1.223E-03 1.266 0.336
1.096E-03 1.220 0.333
1.154E-03 1.241 0.334
8.523E-04 1.122 0.326
7.356E-04 1.069 0.323
7.770E-04 1.088 0.324 24.70 2.89 4.98 58.8 32.4 0.93 0 5.79 0.017
9.245E-04 1.152 0.328
1.020E-03 1.191 0.331
8.903E-04 1.138 0.327
7.273E-04 1.065 0.322
5.393E-04 0.967 0.315
4.693E-04 0.926 0.312
3.416E-04 0.839 0.304
3.067E-04 0.812 0.302
2.166E-04 0.733 0.294
1.503E-04 0.661 0.285
1.144E-04 0.613 0.280
7.990E-05 0.557 0.272
4.432E-05 0.481 0.260
2.540E-05 0.423 0.249
1.284E-05 0.365 0.236
5.664E-06 0.312 0.222
1.833E-06 0.259 0.203
0.000E+00 0.000 0.000


.722g
).046m3
).058g
).015g














Table E-21. Field data of event AO9106V4 (site: A, plot: V4, date: 09/10/06).


Time O
(s) (m /s)
1560 1.389E-05
1620 5.708E-06
1680 6.872E-06
1740 5.571E-06
1800 6.872E-06
1860 6.585E-06
1920 9.627E-06
1980 9.833E-06
2040 1.108E-05
2100 9.421E-06
2160 9.216E-06
2220 1.172E-05
2280 1.237E-05
2340 1.024E-05
2400 1.067E-05
2460 1.135E-05
2520 1.087E-05
2580 9.833E-06
2640 1.113E-05
2700 1.204E-05
2760 1.467E-05
2820 1.308E-05
2880 1.237E-05
2940 1.393E-05
P 3000 1.589E-05
3060 1.292E-05
3120 1.444E-05
3180 1.571E-05
3240 2.528E-05
3300 2.461E-04
3360 4.542E-04
3420 4.417E-04
3480 2.987E-04
3540 1.983E-04
3600 1.164E-04
3660 6.383E-05
3720 4.270E-05
3780 3.228E-05
3840 2.251E-05
3900 1.793E-05
3960 1.600E-05
4020 1.708E-05
4080 1.438E-05
4140 1.460E-05
4200 0.000E+00
Number of field samples =
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone Sed. Load TP
(g L) (g s) (mg L)
0.0163 2.266E-04 0.000
0.0049 2.806E-05 0.285
0.0051 3.498E-05 0.325
0.0049 2.727E-05 0.279
0.0051 3.498E-05 0.325
0.0050 3.325E-05 0.317
0.0054 5.216E-05 0.382
0.0054 5.349E-05 0.385
0.0056 6.162E-05 0.400
0.0054 5.084E-05 0.379
0.0054 4.953E-05 0.376
0.0056 6.589E-05 0.407
0.0057 7.021E-05 0.413
0.0055 5.615E-05 0.390
0.0055 5.892E-05 0.396
0.0056 6.343E-05 0.403
0.0055 6.027E-05 0.398
0.0054 5.349E-05 0.385
0.0056 6.198E-05 0.401
0.0056 6.800E-05 0.410
0.0059 8.596E-05 0.430
0.0057 7.503E-05 0.419
0.0057 7.021E-05 0.413
0.0058 8.084E-05 0.425
0.0059 9.450E-05 0.437
0.0057 7.391E-05 0.418
0.0058 8.434E-05 0.429
0.0059 9.324E-05 0.436
0.0065 1.639E-04 0.468
0.0099 2.435E-03 0.511
0.0111 5.036E-03 0.512
0.0110 4.872E-03 0.512
0.0103 3.063E-03 0.512
0.0095 1.884E-03 0.510
0.0086 1.002E-03 0.507
0.0077 4.915E-04 0.499
0.0071 3.051E-04 0.489
0.0068 2.190E-04 0.479
0.0063 1.428E-04 0.462
0.0061 1.091E-04 0.447
0.0060 9.527E-05 0.438
0.0060 1.030E-04 0.443
0.0058 8.396E-05 0.428
0.0059 8.548E-05 0.430
0.0000 0.000E+00 0.000

1.3177 g
0.1398 m3
0.0684 g
0.0332 g


DP do
(mg L) (pLm)
0.000
0.248
0.247
0.248
0.247
0.247
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246 21.28
0.246
0.246
0.246
0.246
0.246
0.246
0.245
0.246
0.246
0.245
0.245
0.246
0.245
0.245
0.244
0.238
0.236
0.236
0.237
0.238
0.240
0.241
0.242
0.243
0.244
0.245
0.245
0.245
0.245
0.245
0.000


0.45tim 0.45-2tim 2-37tim 37-100tim 100-250tim >250tim pH EC
ool lool ool lool lool loo (S m)


5.89 0.023


4.39 72.18 17.82


3.61


0 5.94 0.032
















:0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(o o) (o ) (o ) (o ) (o ) (o )


(S m)


Table E-22. Field data of event BO61306S2 (site: B, plot: S2, date: 06/13/06)
Time Rain Time Q Sed. Cone Sed. Load TP DP dp
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm)
0 0.000E+00 900 0.000E+00 0.000 0.000E+00 0.000 0.000
600 2.167E-06 960 1.899E-05 0.080 1.518E-03 3.252 1.955
1200 9.333E-06 1020 1.990E-04 0.114 2.265E-02 4.152 1.722
1800 3.667E-06 1080 9.395E-04 0.144 1.351E-01 4. 879 1.584
2400 5.000E-07 1140 1.005E-03 0.145 1.459E-01 4.913 1.578
2580 1.667E-07 1200 9.243E-04 0.143 1.326E-01 4.871 1.585
2640 0.000E+00 1260 7.575E-04 0.139 1.054E-01 4.771 1.602
1320 6.580E-04 0.136 8.967E-02 4.702 1.615 248.6
1380 5.875E-04 0.134 7.871E-02 4.647 1.624
1440 5.023E-04 0.131 6.573E-02 4.572 1.638
1500 4.130E-04 0.127 5.247E-02 4.479 1.656
1560 3.716E-04 0.125 4.646E-02 4.430 1.665
1620 2.994E-04 0.121 3.624E-02 4.332 1.685
1680 2.674E-04 0.119 3.182E-02 4.281 1.695
1740 2.618E-04 0.119 3.106E-02 4.272 1.697
1800 2.581E-04 0.118 3.055E-02 4.266 1.698
1860 2.323E-04 0.117 2.707E-02 4.219 1.708 256.7
1920 2.279E-04 0.116 2.647E-02 4.211 1.710
1980 1.914E-04 0.113 2.167E-02 4.135 1.726
2040 1.515E-04 0.109 1.655E-02 4.036 1.748
2100 1.148E-04 0.105 1.203E-02 3.921 1.774
2160 7.517E-05 0.098 7.391E-03 3.752 1.815
2220 5.478E-05 0.094 5.136E-03 3.631 1.846
2280 3.825E-05 0.089 3.398E-03 3.497 1.883
2340 3.119E-05 0.086 2.686E-03 3.424 1.903
2400 2.496E-05 0.083 2.079E-03 3.346 1.927
2460 1.987E-05 0.081 1.600E-03 3.267 1.950
2520 1.594E-05 0.078 1.241E-03 3.193 1.974
2580 1.349E-05 0.076 1.025E-03 3.138 1.992
2640 1.150E-05 0.074 8.524E-04 3.086 2.009
2700 1.037E-05 0.073 7.571E-04 3.054 2.020
2760 8.776E-06 0.071 6.247E-04 3.001 2.038
2820 7.365E-06 0.069 5.107E-04 2.947 2.058
2880 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 7
Total sediment mass = 68.220 g
Total ninoff volume = 0.522 m3
Total phosphonxs mass = 2.380 g
Total DP mass = 0.857 g


2.66 2.55 14.68 12.13 19.06 48.92 5.75 0.036










2.26 2.27 13.25 12.12 19.41 50.68 5.93 0.018





5.76 0.032














Table E-23. Field data of event BO61306V2 (site: B, plot: V2, date: 06/13/06).


Time Q
(s) (m /s)
420 0.000E+00
480 5.663E-07
540 2.681E-07
600 1.250E-07
660 1.250E-07
720 2.681E-07
780 3.754E-07
840 4.470E-07
900 1.222E-06
960 2.665E-06
1020 2.057E-06
1080 1.115E-06
1140 1.294E-06
1200 1.520E-06
1260 1.294E-06
1320 9.598E-07
1380 6.683E-05
1440 5.533E-05
1500 4.865E-05
c 1560 3.851E-05
1620 2.498E-05
1680 1.966E-05
1740 1.557E-05
1800 1.113E-05
1860 7.531E-06
1920 5.861E-06
1980 5.265E-06
2040 4.335E-06
2100 4.001E-06
2160 3.595E-06
2220 3.273E-06
2280 2.498E-06
2340 2.224E-06
2400 1.584E-06
2460 1.226E-06
2520 4.000E-07
2580 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone
Sin
0.000
0.013
0.010
0.007
0.007
0.010
0.011
0.012
0.017
0.023
0.021
0.016
0.017
0.019
0.017
0.016
0.079
0.073
0.070
0.064
0.054
0.049
0.045
0.040
0.034
0.031
0.030
0.028
0.027
0.026
0.025
0.022
0.021
0.019
0.017
0.011
0.000
3
1.203


Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o o) (o o) (S m)
0.000E+00 0.000 0.000
7.183E-06 0.050 0.000
2.555E-06 0.027 0.000
8.893E-07 0.015 0.000
8.893E-07 0.015 0.000
2.555E-06 0.027 0.000
4.069E-06 2.935 2.899
5.180E-06 2.880 2.838
2.081E-05 2.606 2.513
6.117E-05 2.460 2.287
4.276E-05 2.501 2.360
1.833E-05 2.627 2.541
2.252E-05 2.593 2.496
2.815E-05 2.558 2.448
2.252E-05 2.593 2.496
1.490E-05 2.664 2.588
5.266E-03 3.857 1.549 18.91 2.27 4.92 77.25 15.56 0 0 5.78 0.023
4.055E-03 3.568 1.584
3.394E-03 3.398 1.609
2.457E-03 3.138 1.655
1.350E-03 2.792 1.744
9.697E-04 2.660 1.796 5.96 0.021
7.023E-04 2.563 1.847
4.417E-04 2.471 1.924
2.573E-04 2.416 2.017
1.819E-04 2.406 2.079
1.568E-04 2.406 2.106
1.199E-04 2.413 2.156
1.073E-04 2.418 2.177
9.255E-05 2.426 2.206
8.129E-05 2.435 2.231
5.594E-05 2.470 2.305
4.763E-05 2.488 2.338
2.978E-05 2.550 2.436
2.090E-05 2.605 2.512
4.442E-06 2.915 2.877
0.000E+00 0.000 0.000


0.020 m3
0.064 g
0.035 g














Table E-24. Field data of event BO61306S3 (site: B, plot: S3, date: 06/13/06).


Time Q
(s) (m /s)
1020 0.000E+00
1080 6.767E-06
1140 4.725E-05
1200 4.509E-04
1260 4.311E-04
1320 3.727E-04
1380 3.249E-04
1440 2.796E-04
1500 2.296E-04
1560 1.783E-04
1620 1.444E-04
1680 1.248E-04
1740 1.166E-04
1800 1.062E-04
1860 8.350E-05
1920 5.933E-05
1980 4.032E-05
2040 3.141E-05
2100 2.576E-05
S2160 2.120E-05
2220 1.754E-05
2280 1.588E-05
2340 1.497E-05
2400 1.404E-05
2460 1.310E-05
2520 1.083E-05
2580 8.562E-06
2640 6.292E-06
2700 4.743E-06
2760 3.195E-06
2820 1.646E-06
2880 0.000E+00
Number of field samples
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone

0. in
0.000

0.013
0.106
0.101
0.088
0.078
0.067
0.056
0.044
0.036
0.031
0.030
0.027
0.022
0.016
0.011
0.009
0.007
0.006
0.005
0.004
0.004
0.004
0.004
0.003
0.003
0.002
0.001
0.001
0.001
0.000


Sed. Load TP
(g s) (mg L)
0.000E+00 0.000
1.358E-05 1.465
5.940E-04 1.799
4.770E-02 3.541
4.372E-02 3.469
3.294E-02 3.251
2.523E-02 3.068
1.884E-02 2.889
1.285E-02 2.684
7.859E-03 2.463
5.210E-03 2.309
3.927E-03 2.216
3.440E-03 2.176
2.866E-03 2.125
1.797E-03 2.007
9.249E-04 1.873
4.364E-04 1.755
2.686E-04 1.693
1.826E-04 1.651
1.250E-04 1.615
8.648E-05 1.583
7.134E-05 1.568
6.360E-05 1.559
5.610E-05 1.550
4.905E-05 1.540
3.389E-05 1.516
2.145E-05 1.489
1.179E-05 1.458
6.805E-06 1.433
3.155E-06 1.402
8.691E-07 1.358
0.000E+00 0.000


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000
1.405
1.501
1.621
1.618 5.86 0.020
1.610
1.603
1.595


1.584
1.571
1.559 231.3 2.48
1.552
1.548
1.543
1.531
1.513
1.493
1.481
1.471
1.461
1.452
1.447
1.444
1.441
1.437
1.428
1.417
1.402
1.388
1.370
1.339
0.000


2.45 14.68 13.07 19.27


48.04 5.87 0.023


4
12.560 g
0.191 m
0.540 g
0.302 g















Table E-25. Field data of event BO61306V3 (site: B, plot: V3, date: 06/13/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
480 1.344E-06 0.048 6.451E-05 1.387 0.941
540 3.644E-06 0.053 1.916E-04 1.827 1.121
600 3.111E-06 0.052 1.612E-04 1.749 1.090
660 3.111E-06 0.052 1.612E-04 1.749 1.090
720 2.929E-06 0.052 1.510E-04 1.720 1.079
780 3.462E-06 0.052 1.812E-04 1.801 1.111
840 3.995E-06 0.053 2.118E-04 1.874 1.139
900 7.263E-06 0.056 4.067E-04 2.210 1.266
960 9.844E-06 0.058 5.667E-04 2.403 1.335 21.27 2.48 4.86 67.31 13.99 10.61 0.76 5.78 0.034
1020 7.011E-06 0.056 3.913E-04 2.188 1.258
1080 5.103E-06 0.054 2.767E-04 2.005 1.190
1140 5.664E-06 0.055 3.100E-04 2.063 1.212
1200 5.846E-06 0.055 3.209E-04 2.081 1.218
1260 5.061E-06 0.054 2.742E-04 2.000 1.188
1320 4.542E-06 0.054 2.437E-04 1.941 1.165
1380 4.360E-06 0.053 2.330E-04 1.919 1.157 5.76 0.024
1440 4.051E-06 0.053 2.151E-04 1.881 1.142
1500 3.812E-06 0.053 2.013E-04 1.850 1.130
c 1560 3.574E-06 0.052 1.876E-04 1.817 1.117
1620 2.991E-06 0.052 1.544E-04 1.730 1.083
1680 2.407E-06 0.051 1.219E-04 1.629 1.042
1740 1.823E-06 0.049 9.001E-05 1.509 0.992
1800 1.240E-06 0.048 5.909E-05 1.357 0.927
1860 6.565E-07 0.045 2.952E-05 1.138 0.829
1920 7.294E-08 0.037 2.685E-06 0.621 0.563
1980 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 3
Total sediment mass = 0.312 g
Total ninoff volume = 0.006 m3
Total phosphonxs mass = 0.011 g
Total DP mass = 0.007 g




































0 5.67 0.023










5.90 0.032


Table E-26. Field data of event BO61306V1 (site: B, plot: Vl, date: 06/13/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o ) (S m)
0.000


(s) (m /s) i
1140 0.000E+00 0.0000
1200 1.366E-05 0.0133
1260 1.432E-05 0.0187
1320 1.439E-05 0.0192
1380 1.439E-05 0.0192
1440 1.448E-05 0.0200
1500 1.461E-05 0.0209
1560 1.539E-05 0.0265
1620 1.908E-05 0.0467
1680 2.474E-05 0.0660
1740 2.446E-05 0.0652
1800 2.292E-05 0.0608
1860 2.265E-05 0.0600
1920 2.292E-05 0.0608
1980 2.265E-05 0.0600
2040 2.193E-05 0.0576
2100 2.648E-05 0.0702
2160 8.380E-05 0.1117
2220 1.118E-04 0.1165
2280 9.422E-05 0.1138
2340 5.939E-05 0.1038
2400 3.869E-05 0.0894
2460 2.807E-05 0.0737
2520 1.745E-05 0.0388
2580 1.366E-05 0.0133
2640 9.878E-06 0.0978
2700 6.092E-06 0.0772
2760 0.000E+00 0.0000
Number of field samples = 4
Total sediment mass = 3.7113
Total ninoff volume = 0.0463
Total phosphonxs mass = 0.1234
Total DP mass = 0.0548


(g s) (mg L)
0.000E+00 0.000
1.818E-04 1.812
2.675E-04 1.840
2.766E-04 1.843
2.766E-04 1.843
2.893E-04 1.847
3.057E-04 1.852
4.078E-04 1.884
8.905E-04 2.022
1.632E-03 2.202
1.596E-03 2.193
1.393E-03 2.147
1.359E-03 2.139
1.393E-03 2.147
1.359E-03 2.139
1.264E-03 2.116
1.860E-03 2.251
9.363E-03 3.285
1.303E-02 3.611
1.073E-02 3.414
6.167E-03 2.934
3.458E-03 2.549
2.067E-03 2.295
6.774E-04 1.963
1.818E-04 1.812
9.656E-04 1.629
4.701E-04 1.390
0.000E+00 0.000


5.58 0.043


1.126
1.125
1.126 18.20 2.24 4.74 79.46 12.81 0.75
1.125
1.122
1.140
1.256
1.287
1.268
1.220
1.177
1.146
1.101
1.078
1.049
1.008
0.000















Table E-27. Field data of event BO71406S2 (site: B, plot: S2, date: 07/14/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pmn 2-37pLm 37-100Lm 100-250pLm 250pLm pH


EC
(S m)


(s) (m /s) i
600 0.000E+00 0.000
660 6.312E-06 0.018
720 5.778E-06 0.017
780 5.364E-06 0.016
840 4.659E-06 0.014
900 8.720E-06 0.025
960 9.518E-06 0.028
1020 1.093E-05 0.031
1080 1.240E-05 0.036
1140 1.261E-05 0.036
1200 3.307E-05 0.092
1260 6.433E-04 1.622
1320 1.436E-03 3.530
1380 1.388E-03 3.416
1440 1.141E-03 2.825
1500 9.338E-04 2.327
1560 8:.689E-04 2.170
1620 8.417E-04 2.104
1680 7.203E-04 1.810
1740 6.012E-04 1.520
1800 4.415E-04 1.127
1860 2.947E-04 0.762
1920 2.046E-04 0.535
1980 1.542E-04 0.407
2040 1.426E-04 0.378
2100 1.099E-04 0.294
2160 1.028E-04 0.275
2220 8.134E-05 0.219
2280 5.918E-05 0.161
2340 6.091E-05 0.166
2400 5.938E-05 0.162
2460 6.010E-05 0.164
2520 4.364E-05 0.120
2580 3.405E-05 0.094
2640 2.385E-05 0.067
2700 1.366E-05 0.039
2760 3.141E-05 0.087
2820 5.132E-05 0.140
2880 6.002E-05 0.163
2940 6.872E-05 0.186
3000 7.742E-05 0.209
3060 8.611E-05 0.232


(mg L)
0.000
2.877
2.870
2.864
2.853
2.902
2.909
2.920
2.929
2.931
3.008
3.259
3.331
3.328
3.310
3.292
3.286
3.283
3.269
3.253
3.226
3.191
3.160
3.136
3.129
3.107
3.102
3.082
3.056
3.058
3.056
3.057
3.031
3.011
2.982
2.937
3.004
3.044
3.057
3.068
3.078
3.087


(s) (m s)
0 0.000E+00
120 1.667E-06
240 1.667E-06
360 1.667E-06
480 8.333E-07
600 1.667E-06
720 1.667E-06
840 2.500E-06
960 6.667E-06
1080 1.250E-05
1200 1.833E-05
1320 1.500E-05
1440 1.417E-05
1560 1.250E-05
1680 1.083E-05
1800 9.167E-06
1920 5.833E-06
2040 4.167E-06
S2160 2.500E-06
2280 1.667E-06
2400 2.500E-06
2520 1.667E-06
2640 2.500E-06
2760 4.167E-06
2820 5.833E-06
2880 8.333E-06
2940 9.167E-06
3000 8:.333E-06
3060 1.000E-05
3120 6.667E-06
3180 5.000E-06
3240 2.500E-06
3300 4.167E-06
3360 1.667E-06
3420 8.333E-07
3480 8.333E-07
3540 0.000E+00


(g s)
0.000E+00
1.167E-04
9.803E-05
8.471E-05
6.420E-05
2.204E-04
2.618E-04
3.436E-04
4.403E-04
4.553E-04
3.035E-03
1.044E+00
5.070E+00
4.743E+00
3.223E+00
2.173E+00
1.886E+00
1.771E+00
1.304E+00
9.137E-01
4.977E-01
2.246E-01
1.096E-01
6.278E-02
5.383E-02
3.227E-02
2.829E-02
1.784E-02
9*.539E-03
1.010E-02
9.603E-03
9.836E-03
5.240E-03
3.215E-03
1.596E-03
5.329E-04
2.744E-03
7.208E-03
9.809E-03
1.280E-02
1.619E-02
1.996E-02


(mg L)
0.000
3.305
3.263
3.230
3.173
3.488
3.546
3.649
3.753
3.768
5.135
40.776
84.920
82.289
68.613
57.093
53.463
51.940
45.122
38.397
29.299
20.823
15.551
12.560
11.867
9.902
9.471
8.160
6.789
6.897
6.801
6.847
5.812
5.198
4.532
3.842
5.028
6.297
6.842
7.382
7.919
8.453


(o o) (o ) (o ) (o ) (o ) (o )


185.8 3.15 16.68 13.36 22.65 41.18 41.18 5.84 0.023














205.6 5.05 16.36 9.07 21.54 42.59 42.59 5.98 0.033














Table E-27. Continued.
Time Rain Time Q Sed. Cone Sed. Load
(s) (m s) (s) (m /s) i I (g s)
3120 1.488E-04 0.393 5.854E-02
3180 2.296E-04 0.599 1.374E-01
3240 3.975E-04 1.018 4.048E-01
3300 6.435E-04 1.623 1.044E+00
3360 7.776E-04 1.949 1.516E+00
3420 7.491E-04 1.880 1.408E+00
3480 6.805E-04 1.713 1.166E+00
3540 4.719E-04 1.202 5.672E-01
3600 2.978E-04 0.770 2.293E-01
3660 2.879E-04 0.745 2.145E-01
3720 5.372E-04 1.363 7.322E-01
3780 6.990E-04 1.758 1.229E+00
3840 8.111E-04 2.030 1.647E+00
3900 7.143E-04 1.796 1.283E+00
3960 4.694E-04 1.196 5.614E-01
4020 2.941E-04 0.761 2.238E-01
4080 1.917E-04 0.503 9.635E-02
4140 1.365E-04 0.362 4.938E-02
4200 7.350E-05 0.199 1.461E-02
c 4260 2.109E-05 0.059 1.252E-03
c 4320 2.271E-05 0.064 1.449E-03
4380 1.748E-05 0.050 8.660E-04
4440 1.240E-05 0.036 4.403E-04
4500 3.079E-06 0.009 2.841E-05
4560 0.000E+00 0.000 0.000E+00
Number of field samples = 10
Total sediment mass = 2151.78 g
Total ninoff volume = 1.1780 m3
Total phosphonxs mass = 34.0331 g
Total DP mass = 1.9730 g


TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100Lm 100-250mm >250pLm pH


EC
(S m)


(mg L)
12.239
17.019
26.771
40.789
48.347
46.744
42.878
31.035
21.005
20.429
34.763
43.921
50.225
44.787
30.893
20.793
14.787
11.500
7.678
4.348
4.456
4.105
3.753
3.036
0.000


(mg L) (pLm)
3.133
3.170
3.217
3.259
3.276
3.273
3.264
3.232
3.192
3.189
3.243
3.266
3.280
3.268
3.232
3.191
3.154
3.125
3.074
2.972
2.978
2.957
2.929
2.821
0.000


(oo) (oo) (oo) (oo) (oo) (o)


5.86 0.026


5.80 0.015















Table E-28. Field data of event BO71406V2 (site: B, plot: V2, date: 07/14/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pmn 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) i I (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
540 2.089E-06 0.000 7.011E-05 0.000 0.000
600 8.221E-06 0.055 4.561E-04 3.508 2.211
660 1.041E-05 0.060 6.294E-04 3.675 2.261
720 1.060E-05 0.061 6.456E-04 3.688 2.265
780 1.060E-05 0.061 6.456E-04 3.688 2.265
840 1.045E-05 0.061 6.329E-04 3.677 2.262
900 1.055E-05 0.061 6.410E-04 3.684 2.264 5.87 0.024
960 1.081E-05 0.061 6.631E-04 3.702 2.269
1020 1.106E-05 0.062 6.842E-04 3.719 2.274
1080 1.163E-05 0.063 7.329E-04 3.757 2.285
1140 1.185E-05 0.063 7.521E-04 3.771 2.289
1200 1.313E-05 0.066 8.653E-04 3.850 2.312
1260 1.570E-05 0.070 1.104E-03 3.993 2.351
1320 1.610E-05 0.071 1.143E-03 4.014 2.357 18.46 2.19 5.43 75.99 14.28 2.11 0 5.98 0.032
1380 1.558E-05 0.070 1.093E-03 3.987 2.350
1440 1.496E-05 0.069 1.034E-03 3.953 2.341
1500 1.468E-05 0.069 1.007E-03 3.938 2.336
1560 5.898E-04 0.266 1.570E-01 9.483 3.326
c 1620 4.915E-04 0.249 1.224E-01 9.029 3.268
00 1680 3.079E-04 0.210 6.457E-02 7.981 3.125
1740 2.871E-04 0.204 5.868E-02 7.838 3.105
1800 2.774E-04 0.202 5.597E-02 7.768 3.094
1860 1.476E-04 0.160 2.363E-02 6.626 2.913
1920 6.178E-05 0.116 7.184E-03 5.383 2.681
1980 3.231E-05 0.092 2.962E-03 4.654 2.520 5.64 0.025
2040 2.208E-05 0.080 1.761E-03 4.288 2.429
2100 1.698E-05 0.072 1.229E-03 4.058 2.369
2160 1.473E-05 0.069 1.013E-03 3.941 2.337
2220 1.323E-05 0.066 8.741E-04 3.856 2.313
2280 1.259E-05 0.065 8.168E-04 3.817 2.302
2340 1.242E-05 0.065 8.020E-04 3.807 2.300
2400 1.201E-05 0.064 7.654E-04 3.781 2.292
2460 1.132E-05 0.062 7.066E-04 3.737 2.279
2520 1.075E-05 0.061 6.584E-04 3.699 2.268
2580 1.018E-05 0.060 6.111E-04 3.659 2.256
2640 9.794E-06 0.059 5.794E-04 3.631 2.248
2700 9.738E-06 0.059 5.749E-04 3.627 2.247
2760 9.585E-06 0.059 5.626E-04 3.615 2.243
2820 1.030E-05 0.060 6.203E-04 3.667 2.259
2880 1.132E-05 0.062 7.066E-04 3.737 2.279
2940 1.286E-05 0.065 8.403E-04 3.833 2.307
3000 1.383E-05 0.067 9.286E-04 3.891 2.323
















Table E-28. Continued.
Time Q Sed. Cone Sed. Load
(s) (m /s) n (g s)
3060 1.483E-05 0.069 1.022E-03
3120 1.615E-05 0.071 1.148E-03
3180 1.927E-05 0.076 1.462E-03
3240 2.187E-05 0.079 1.738E-03
3300 2.393E-05 0.082 1.965E-03
3360 2.373E-05 0.082 1.942E-03
3420 2.155E-05 0.079 1.703E-03
3480 1.970E-05 0.076 1.506E-03
3540 6.599E-05 0.119 7.861E-03
3600 1.660E-04 0.167 2.775E-02
3660 2.112E-04 0.183 3.856E-02
3720 2.379E-04 0.191 4.537E-02
3780 2.112E-04 0.183 3.856E-02
3840 1.530E-04 0.162 2.482E-02
3900 1.849E-04 0.174 3.216E-02
3960 2.409E-04 0.192 4.616E-02
4020 2.695E-04 0.200 5.382E-02
4080 2.602E-04 0.197 5.129E-02
4140 2.324E-04 0.189 4.396E-02
S4200 1.448E-04 0.159 2.301E-02
4260 8.510E-05 0.131 1.113E-02
4320 5.173E-05 0.109 5.636E-03
4380 2.403E-05 0.082 1.976E-03
4440 1.472E-05 0.069 1.011E-03
4500 9.376E-06 0.058 5.459E-04
4560 6.189E-06 0.050 3.094E-04
4620 3.921E-06 0.042 1.657E-04
4680 2.362E-06 0.035 8.290E-05
4740 8.587E-07 0.024 2.079E-05
4800 0.000E+00 0.000 0.000E+00
Number of field samples = 8
Total sediment mass = 59.1528 g
Total ninoff volume = 0.3207 m3
Total phosphonxs mass = 2.3282 g
Total DP mass = 0.9578 g


TP DP
(mg L) (mg L)
3.947 2.339
4.016 2.358
4.166 2.398
4.279 2.427
4.362 2.448
4.353 2.446
4.266 2.424
4.186 2.403
5.465 2.697
6.822 2.946
7.246 3.015
7.468 3.049
7.246 3.015
6.685 2.923
7.007 2.977
7.492 3.053
7.711 3.086
7.642 3.075
7.424 3.042
6.594 2.908
5.801 2.764
5.168 2.635
4.365 2.449
3.941 2.337
3.600 2.238
3.322 2.151
3.052 2.059
2.788 1.962
2.355 1.781
0.000 0.000


dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250Lm
(pLm) (oo) (oo) (oo) (oo) (oo) (o)


pH EC
(S m)





















5.73 0.019


23.28 1.66 3.99 63.98 23.29


6.9 0.18















Table E-29. Field data of event BO71406S3 (site: B, plot: S3, date: 07/14/06).


Time Q
(s) (m/s)
540 0.000E+00
600 6.161E-06
660 9.531E-06
720 9.873E-06
780 9.730E-06
840 9.331E-06
900 9.132E-06
960 9.175E-06
1020 9.531E-06
1080 9.930E-06
1140 1.100E-05
1200 1.393E-05
1260 1.586E-05
1320 2.098E-03
1380 1.902E-03
1440 1.607E-03
1500 1.320E-03
1560 1.283E-03
1620 1.300E-03
1680 1.062E-03
1740 8.935E-04
1800 6.227E-04
1860 3.983E-04
1920 3.311E-04
1980 2.561E-04
2040 2.012E-04
2100 1.220E-04
2160 7.717E-05
2220 5.089E-05
2280 2.079E-05
2340 2.104E-05
2400 1.830E-05
2460 1.386E-05
2520 1.396E-05
2580 1.590E-05
2640 1.783E-05
2700 1.827E-05
2760 1.902E-05
2820 1.978E-05
2880 2.054E-05
2940 2.129E-05
3000 2.458E-05


Sed. Cone

0.000
0.040
0.057
0.058
0.058
0.056
0.055
0.055
0.057
0.059
0.064
0.077
0.085
4.400
4.064
3.547
3.027
2.959
2.990
2.540
2.209
1.651
1.151
0.992
0.806
0.663
0.443
0.306
0.219
0.106
0.107
0.096
0.077
0.077
0.086
0.094
0.096
0.099
0.102
0.105
0.108
0.122


Sed. Load TP DP dp <0.45pu
(g s) (mg L) (mg L) ( pm) (o )
0.000E+00 0.000 0.000
2.454E-04 3.147 2.220
5.397E-04 3.540 2.223
5.752E-04 3.578 2.224
5.603E-04 3.562 2.223
5.195E-04 3.517 2.223
4.996E-04 3.495 2.223
5.038E-04 3.500 2.223
5.397E-04 3.540 2.223
5.812E-04 3.584 2.224
6.991E-04 3.701 2.224
1.072E-03 4.013 2.226
1.354E-03 4.210 2.227
9.232E+00 103.887 2.260
7.728E+00 96.135 2.259
5.699E+00 84.206 2.258
3.995E+00 72.198 2.256
3.797E+00 70.627 2.256
3.887E+00 71.342 2.256 213.0 4.78
2.699E+00 60.964 2.255
1.974E+00 53.318 2.254
1.028E+00 40.419 2.251
4.585E-01 28.876 2.248
3.284E-01 25.191 2.247
2.064E-01 20.895 2.245
1.335E-01 17.601 2.244
5.402E-02 12.499 2.240
2.363E-02 9.332 2.237
1.113E-02 7.307 2.234
2.209E-03 4.695 2.228
2.258E-03 4.719 2.229
1.754E-03 4.454 2.228
1.062E-03 4.006 2.226
1.076E-03 4.016 2.226
1.360E-03 4.214 2.227
1.674E-03 4.408 2.227
1.748E-03 4.450 2.228
1.882E-03 4.524 2.228
2.019E-03 4.598 2.228
2.161E-03 4.671 2.228
2.307E-03 4.744 2.229
2.989E-03 5.052 2.230


m 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(o o) (o ) (o ) (o ) (o ) (S m)


5.14 19.43 8.53


16.58 45.53 5.77 0.013


5.93 0.018














Table E-29. Contil
Time Q
(s) (m /s)
3060 4.562E-05
3120 8.102E-05
3180 1.038E-04
3240 1.461E-04
3300 3.522E-04
3360 7.023E-04
3420 7.413E-04
3480 7.717E-04
3540 5.668E-04
3600 3.488E-04
3660 3.183E-04
3720 4.305E-04
3780 4.843E-04
3840 6.243E-04
3900 6.640E-04
3960 5.168E-04
4020 3.042E-04
4080 2.225E-04
4140 1.223E-04
c 4200 8.352E-05
4260 4.014E-05
4320 2.686E-05
4380 2.270E-05
4440 2.028E-05
4500 1.875E-05
4560 1.513E-05
4620 9.580E-06
4680 4.695E-06
4740 1.524E-06
4800 0.000E+00
Number of field samples =
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone Sed. Load TP DP
i In (g s) (mg L) (mg L)
0.200 9.140E-03 6.879 2.234
0.318 2.580E-02 9.616 2.238
0.389 4.034E-02 11.245 2.239
0.512 7.483E-02 14.104 2.242
1.042 3.670E-01 26.358 2.247
1.819 1.278E+00 44.309 2.252
1.900 1.409E+00 46.182 2.252
1.963 1.515E+00 47.626 2.253
1.530 8.674E-01 37.635 2.251
1.034 3.608E-01 26.174 2.247
0.961 3.058E-01 24.473 2.247
1.226 5.276E-01 30.596 2.249
1.348 6.528E-01 33.421 2.250
1.654 1.033E+00 40.501 2.251
1.739 1.154E+00 42.449 2.252
1.420 7.341E-01 35.096 2.250
0.926 2.817E-01 23.672 2.246
0.720 1.601E-01 18.898 2.244
0.444 5.427E-02 12.520 2.240
0.326 2.726E-02 9.800 2.238
0.181 7.252E-03 6.423 2.233
0.131 3.509E-03 5.262 2.230
0.114 2.588E-03 4.876 2.229
0.104 2.113E-03 4.647 2.228
0.098 1.833E-03 4.498 2.228
0.082 1.245E-03 4.137 2.226
0.057 5.448E-04 3.545 2.223
0.032 1.502E-04 2.963 2.219
0.013 1.966E-05 2.512 2.211
0.000 0.000E+00 0.000 0.000
10
3130.923 g
1.3010 m3
75.2857 g
2.9309 g


dp <0.45pLm 0.45-2Lm


2-37pLm 37-100p 100-250L >250pLm pH EC


(o o) (o ) (o ) (o ) (o ) (o )


(S m)


1.13 2.29


9.8 4.16 24.14 58.48 5.73 0.021


5.73 0.017











5.93 0.024














Table E-30. Field data of event BO71406V3 (site: B, plot: V3, date: 07/14/06).
Time Q Sed. Sed. Load TP DP dp <0.45pLm .45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
540 2.089E-06 0.000 6.756E-05 0.000 0.000
600 6.688E-06 0.046 3.075E-04 3.080 2.011
660 8.890E-06 0.050 4.455E-04 3.156 1.991
720 9.087E-06 0.050 4.583E-04 3.162 1.990
780 9.087E-06 0.050 4.583E-04 3.162 1.990
840 1.019E-05 0.052 5.324E-04 3.196 1.982
900 1.029E-05 0.052 5.391E-04 3.199 1.981
960 1.056E-05 0.053 5.574E-04 3.207 1.979
1020 1.081E-05 0.053 5.748E-04 3.214 1.978
1080 1.139E-05 0.054 6.149E-04 3.230 1.974
1140 1.161E-05 0.054 6.308E-04 3.236 1.973
1200 1.290E-05 0.056 7.236E-04 3.269 1.966
1260 1.548E-05 0.059 9.176E-04 3.331 1.953
1320 3.286E-05 0.074 2.445E-03 3.633 1.902
1380 1.045E-04 0.106 1.103E-02 4.282 1.827
1440 3.331E-04 0.150 4.995E-02 5.242 1.754
1500 6.591E-04 0.184 1.215E-01 6.001 1.713
1560 7.073E-04 0.188 1.332E-01 6.089 1.709 24.26 2.2 4.23 65.3 26.56 1.71 0 5.93 0.023
1620 5.485E-04 0.174 9. 564E-02 5.780 1.724
c 1680 4.181E-04 0.161 6.716E-02 5.477 1.740
1740 3.752E-04 0.155 5.833E-02 5.363 1.747
1800 3.435E-04 0.151 5.199E-02 5.273 1.752
1860 1.909E-04 0.127 2.418E-02 4.736 1.789
1920 8.251E-05 0.098 8.112E-03 4.128 1.842
1980 4.547E-05 0.082 3.733E-03 3.790 1.881
2040 3.328E-05 0.075 2.486E-03 3.638 1.901
2100 2.813E-05 0.071 1.998E-03 3.564 1.913
2160 2.588E-05 0.069 1.791E-03 3.528 1.918 5.58 0.018
2220 2.436E-05 0.068 1.656E-03 3.503 1.922
2280 2.372E-05 0.067 1.599E-03 3.492 1.924
2340 2.355E-05 0.067 1.584E-03 3.489 1.925
2400 2.313E-05 0.067 1.548E-03 3.482 1.926
2460 2.244E-05 0.066 1.488E-03 3.470 1.928
2520 2.187E-05 0.066 1.438E-03 3.459 1.930
2580 2.129E-05 0.065 1.389E-03 3.449 1.931
2640 2.090E-05 0.065 1.356E-03 3.441 1.933 5.84 0.024
2700 2.084E-05 0.065 1.351E-03 3.440 1.933
2760 2.069E-05 0.065 1.338E-03 3.438 1.933
2820 2.140E-05 0.065 1.399E-03 3.451 1.931
2880 2.244E-05 0.066 1.488E-03 3.470 1.928
2940 2.398E-05 0.068 1.623E-03 3.496 1.923
3000 2.496E-05 0.068 1.710E-03 3.513 1.921














Table E-30. Continued.
Time Q Sed. Cone Sed. Load
(s) (m /s) n (g s)
3060 2.597E-05 0.069 1.800E-03
3120 2.731E-05 0.070 1.921E-03
3180 3.045E-05 0.073 2.214E-03
3240 3.307E-05 0.075 2.466E-03
3300 3.515E-05 0.076 2.669E-03
3360 3.494E-05 0.076 2.649E-03
3420 3.275E-05 0.074 2.435E-03
3480 3.088E-05 0.073 2.256E-03
3540 8.676E-05 0.100 8.660E-03
3600 1.436E-04 0.116 1.670E-02
3660 1.893E-04 0.126 2.393E-02
3720 2.162E-04 0.132 2.845E-02
3780 1.762E-04 0.124 2.180E-02
3840 1.526E-04 0.118 1.807E-02
3900 1.848E-04 0.125 2.318E-02
3960 1.974E-04 0.128 2.527E-02
4020 2.482E-04 0.137 3.404E-02
4080 2.169E-04 0.132 2.857E-02
4140 1.977E-04 0.128 2.531E-02
4200 1.443E-04 0.116 1.680E-02
4260 1.060E-04 0.106 1.124E-02
4320 5.052E-05 0.085 4.282E-03
4380 2.823E-05 0.071 2.007E-03
4440 2.025E-05 0.064 1.302E-03
4500 1.346E-05 0.057 7.648E-04
4560 8.848E-06 0.050 4.427E-04
4620 6.562E-06 0.046 2.999E-04
4680 4.991E-06 0.042 2.100E-04
4740 3.476E-06 0.038 1.311E-04
4800 2.059E-06 0.000 6.629E-05
4860 0.00000 0.000 0.00000
Number of field samples = 9
Total sediment mass = 58.276 g
Total ninoff volume = 0.4213 m3
Total phosphonxs mass = 2.1054 g
Total DP mass = 0.7501 g


TP
(mg L)
3.529
3.551
3.598
3.636
3.664
3.661
3.631
3.605
4.160
4.511
4.729
4.841
4.670
4.557
4.709
4.764
4.963
4.844
4.765
4.514
4.292
3.845
3.565
3.429
3.283
3.155
3.075
3.010
2.935
0.000
0.00


DP dp
(mg L) (pLm)
1.918
1.915
1.907
1.902
1.898
1.898
1.902
1.906
1.839
1.807
1.789
1.781
1.794
1.803
1.791
1.787 27.30
1.772
1.781
1.786
1.806
1.826
1.874
1.912
1.935
1.963
1.992
2.013
2.032
2.058
0.000
0.00


0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250Lm
(o o) (o ) (o ) (o ) (o ) (o )


pH EC
(S m)


5.91 0.032


1.67 3.87


58.6 32.51 3.35


5.73 0.026















Q Sed. Cone Sed. Load
(m3/s) i I (g/s)
0.000E+00 0.0000 0.000E+00
6.312E-06 0.0185 1.167E-04
5.778E-06 0.0170 9.803E-05
5.364E-06 0.0158 8.471E-05
4.659E-06 0.0138 6.420E-05
8.720E-06 0.0253 2.204E-04
9.518E-06 0.0275 2.618E-04
1.093E-05 0.0314 3.436E-04
1.240E-05 0.0355 4.403E-04
1.261E-05 0.0361 4.553E-04
3.307E-05 0.0918 3.035E-03
6.433E-04 1.6224 1.044E+00
1.436E-03 3.5297 5.070E+00


TP

(mg/L)
0.000
3.305
3.263
3.230
3.173
3.488
3.546
3.649
3.753
3.768
5.135
40.776
84.920

82.289
68.613
57.093
53.463

51.940
45.122
38.397
29.299
20.823
15.551
12.560

11.867
9.902
9.471
8.160
6.789
6.897
6.801
6.847
5.812
5.198
4.532
3.842
5.028
6.297
6.842
7.382
7.919
8.453
12.239


DP

(mg/L)
0.000
2.877
2.870
2.864
2.853
2.902
2.909
2.920
2.929
2.931
3.008
3.259
3.331

3.328
3.310
3.292
3.286

3.283
3.269
3.253
3.226
3.191
3.160
3.136


dp <0.45pLm 0.45-2Lm
(pLm) (%) (%~)


2-37pLm 37-100pLm 100-250pLm >250Lm pH EC
(%~) (%~) (%~) (%) (S/m)


5.8
1.81 0 3 0.031


1380 1.388E-03
1440 1.141E-03
1500 9.338E-04
1560 8.689E-04

1620 8.417E-04
1680 7.203E-04
1740 6.012E-04
1800 4.415E-04
1860 2.947E-04
1920 2.046E-04
1980 1.542E-04


3.4160
2.8248
2.3271
2.1702

2.1045
1.8100
1.5197
1.1273
0.7621
0.5355
0.4072

0.3775
0.2935
0.2751
0.2193
0.1612
0.1658
0.1617
0.1636
0.1201
0.0944
0.0669
0.0390
0.0873
0.1405
0.1634
0.1863
0.2091
0.2318
0.3935


4.743E+00
3.223E+00
2.173E+00
1.886E+00

1.771E+00
1.304E+00
9.137E-01
4.977E-01
2.246E-01
1.096E-01
6.278E-02

5.383E-02
3.227E-02
2.829E-02
1.784E-02
9.539E-03
1.010E-02
9.603E-03
9.836E-03
5.240E-03
3.215E-03
1.596E-03
5.329E-04
2.744E-03
7.208E-03
9.809E-03
1.280E-02
1.619E-02
1.996E-02
5.854E-02


22.08 2.84 5.39


26.36


5.7
8 0.022


5.8
3 0.016


1.426E-04
1.099E-04
1.028E-04
8.134E-05
5.918E-05
6.091E-05
5.938E-05
6.010E-05
4.364E-05
3.405E-05
2.385E-05
1.366E-05
3.141E-05
5.132E-05
6.002E-05
6.872E-05
7.742E-05
8.611E-05
1.488E-04


3.129
3.107
3.102
3.082
3.056
3.058
3.056
3.057
3.031
3.011
2.982
2.937
3.004
3.044
3.057
3.068
3.078
3.087
3.133 19.47


2.11 4.76


73.33


15.07


3.71 1.02 5.8 0.019


Table E-31. Field data of event BO71406V1 (site: B, plot: Vl, date: 07/14/06).














3180 2.296E-04 0.5986 1.374E-01
3240 3.975E-04 1.0183 4.048E-01
3180 2.296E-04 0.5986 1.374E-01

Table E-31. Continued.
Time Q Sed. Cone Sed. Load TP
(s) (m3 s) i I (g s) (mg L)
3240 3.975E-04 1.0183 4.048E-01 26.771
3300 6.435E-04 1.6230 1.044E+00 40.789
3360 7.776E-04 1.9493 1.516E+00 48.347
3420 7.491E-04 1.8800 1.408E+00 46.744
3480 6.805E-04 1.7131 1.166E+00 42.878
3540 4.719E-04 1.2021 5.672E-01 31.035
3600 2.978E-04 0.7700 2.293E-01 21.005
3660 2.879E-04 0.7452 2.145E-01 20.429
3720 5.372E-04 1.3629 7.322E-01 34.763
3780 6.990E-04 1.7582 1.229E+00 43.921
3840 8.111E-04 2.0304 1.647E+00 50.225
3900 7.143E-04 1.7955 1.283E+00 44.787
3960 4.694E-04 1.1960 5.614E-01 30. 893
4020 2.941E-04 0.7609 2.238E-01 20.793
4080 1.917E-04 0.5027 9.635E-02 14.787
4140 1.365E-04 0.3618 4.938E-02 11.500
4200 7.350E-05 0.1988 1.461E-02 7.678
00 4260 2.109E-05 0.0594 1.252E-03 4.348
iD 4320 2.271E-05 0.0638 1.449E-03 4.456
4380 1.748E-05 0.0495 8.660E-04 4.105
4440 1.240E-05 0.0355 4.403E-04 3.753
4500 3.079E-06 0.0092 2.841E-05 3.036
4560 0.000E+00 0.0000 0.000E+00 0.000
Number of field samples 13
Total sediment mass = 2151.78 g
Total ninoff volume = 1.1780 m3
Total phosphonxs mass = 53.5810 g
Total DP mass = 3.8294 g


17.019 3.170
26.771 3.217
17.019 3.170


DP dp <0.45pmn 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH
(mg L) (pm) (oo) (oo) (oo) (oo) (oo) (o)
3.217
3.259
3.276
3.273
3.264
3.232


EC
(S m)


3.192
3.189
3.243
3.266
3.280
3.268
3.232
3.191
3.154
3.125
3.074
2.972
2.978
2.957
2.929
2.821
0.000


5.52 0.021














Table E-32. Field data of event BO72006S2 (site: B, plot: S2, date: 07/20/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pu
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm) (o)
120 8.333E-06 540 4.363E-05 0.550 2.402E-02 14.769 1.635
180 5.000E-06 600 2.430E-04 1.348 3.274E-01 30.400 1.760
240 3.333E-06 660 4.115E-04 1.774 7.300E-01 38.181 1.800
300 1.667E-06 720 5.663E-04 2.095 1.187E+00 43.881 1.825
360 8.333E-06 780 4.007E-04 1.749 7.009E-01 37.740 1.798
420 1.833E-05 840 2.381E-04 1.333 3.175E-01 30.135 1.758
480 2.000E-05 900 1.377E-04 1.002 1.380E-01 23.848 1.718
540 2.167E-05 960 6.526E-05 0.679 4.432E-02 17.432 1.664
600 1.000E-05 1020 3.265E-05 0.473 1.545E-02 13.130 1.615
660 6.667E-06 1080 1.992E-05 0.366 7.285E-03 10.781 1.581
720 3.333E-06 1140 1.730E-05 0.340 5.877E-03 10.200 1.571
780 3.333E-06 1200 1.658E-05 0.332 5.513E-03 10.034 1.569
840 1.667E-06 1260 1.711E-05 0.338 5.782E-03 10.158 1.571
900 1.667E-06 1320 4.243E-05 0.543 2.302E-02 14.602 1.633
960 1.667E-06 1380 4.107E-04 1.772 7.277E-01 38.146 1.800
1020 1.667E-06 1440 5.965E-04 2.153 1.284E+00 44. 888 1.829
1080 1.667E-06 1500 7.112E-04 2.359 1.678E+00 48.480 1.843
1140 5.000E-06 1560 1.353E-03 3.300 4.466E+00 64.353 1.895
1200 8.333E-06 1620 2.232E-03 4.283 9.558E+00 80.317 1.936
1260 1.167E-05 1680 2.342E-03 4.392 1.028E+01 82.052 1.940
iD1320 1.167E-05 1740 2.202E-03 4.253 9.363E+00 79.835 1.935 342.3
S1380 8.333E-06 1800 1.957E-03 3.999 7.825E+00 75.763 1.925
1440 1.333E-05 1860 1.727E-03 3.747 6.469E+00 71.677 1.914
1500 1.833E-05 1920 1.388E-03 3.344 4.643E+00 65.083 1.897
1560 1.833E-05 1980 1.008E-03 2.830 2.854E+00 56.518 1.871
1620 1.333E-05 2040 5.353E-04 2.034 1.089E+00 42.813 1.821
1680 1.500E-05 2100 3.238E-04 1.565 5.069E-01 34.411 1.782
1740 1.333E-05 2160 2.578E-04 1.390 3.584E-01 31.188 1.765
1800 1.333E-05 2220 1.766E-04 1.141 2.015E-01 26.511 1.736
1860 1.000E-05 2280 1.464E-04 1.035 1.514E-01 24.474 1.722
1920 1.000E-05 2340 6.684E-05 0.688 4. 596E-02 17.605 1.665
1980 5.000E-06 2400 3.761E-05 0.509 1.916E-02 13.903 1.625
2040 5.000E-06 2460 1.496E-05 0.315 4.713E-03 9.641 1.562
2100 1.667E-06 2520 1.183E-05 0.279 3.296E-03 8.807 1.546
2160 3.333E-06 2580 1.111E-05 0.270 2.999E-03 8.601 1.542
2220 1.667E-06 2640 1.054E-05 0.263 2.768E-03 8.431 1.538
2280 1.667E-06 2700 6.046E-06 0.196 1.188E-03 6.857 1.502
2340 1.667E-06 2760 2.930E-06 0.135 3.946E-04 5.310 1.456
2460 8.333E-07 2820 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 7
Total sediment mass = 3904.21 g
Total ninoff volume = 1.187 m'
Total phosphonxs mass = 75.609 g
Total DP mass = 2.234 g


m 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(oo) (oo) (oo) (oo) (o)


(S m)


5.84 0.023


0.47 1.98 11.93 6.47 17.84 61.3 5.81 0.026








5.92 0.031














Table E-33. Field data of event BO72006V2 (site: B, plot: V2, date: 07/20/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45Lm 0.45-2pmm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m s) (s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o ) (S m)
120 8.333E-06 1500 6.495E-06 0.021 1.392E-04 2.402 1.906
180 5.000E-06 1560 5.317E-05 0.066 3.490E-03 3.401 1.885
240 3.333E-06 1620 1.147E-04 0.099 1.134E-02 4.159 1.878
300 1.667E-06 1680 3.698E-04 0.184 6.815E-02 6.117 1.867 5.83 0.027
360 8.333E-06 1740 4.649E-04 0.208 9.674E-02 6.665 1.864
420 1.833E-05 1800 1.010E-03 0.314 3.176E-01 9.109 1.857
480 2.000E-05 1860 1.549E-03 0.395 6.117E-01 10.958 1.853
540 2.167E-05 1920 1.586E-03 0.400 6.342E-01 11.072 1.853 5.49 0.016
600 1.000E-05 1980 1.412E-03 0.376 5.308E-01 10.521 1.854
660 6.667E-06 2040 1.170E-03 0.340 3.982E-01 9.699 1.856
720 3.333E-06 2100 9.341E-04 0.302 2.818E-01 8.815 1.858
780 3.333E-06 2160 6.903E-04 0.257 1.773E-01 7.784 1.861
840 1.667E-06 2220 5.337E-04 0.224 1.195E-01 7.029 1.863 20.03 2.05 3.68 77.12 15.63 1.53 0 5.58 0.023
900 1.667E-06 2280 3.125E-04 0.168 5.265E-02 5.755 1.868
960 1.667E-06 2340 2.112E-04 0.137 2.887E-02 5.027 1.872
1020 1.667E-06 2400 1.487E-04 0.113 1.687E-02 4.494 1.875 5.65 0.018
1080 1.667E-06 2460 8.976E-05 0.087 7.784E-03 3.883 1.880
1140 5.000E-06 2520 5.528E-05 0.067 3.704E-03 3.432 1.885
1200 8:.333E-06 2580 3.241E-05 0.050 1.635E-03 3.055 1.890
1260 1.167E-05 2640 2.284E-05 0.042 9.561E-04 2.861 1.893
S1320 1.167E-05 2700 1.826E-05 0.037 6.786E-04 2.755 1.896
iD1380 8.333E-06 2760 1.411E-05 0.032 4.572E-04 2.647 1.898
1440 1.333E-05 2820 7. 892E-06 0.024 1.877E-04 2.454 1.904
1500 1.833E-05 2880 3.866E-06 0.016 6.289E-05 2.287 1.911
1560 1.833E-05 2940 4.224E-07 0.005 2.115E-06 2.049 1.932
1620 1.333E-05 3000 0.000E+00 0.000 0.000E+00 0.000 0.000
1680 1.500E-05
1740 1.333E-05
1800 1.333E-05
1860 1.000E-05
1920 1.000E-05
1980 5.000E-06
2040 5.000E-06
2100 1.667E-06
2160 3.333E-06
2220 1.667E-06
2280 1.667E-06
2340 1.667E-06
2460 8.333E-07
Number of field samples = 6
Total sediment mass = 201.891g
Total ninoff volume = 0.649 m3
Total phosphonxs mass = 5.861 g
Total DP mass = 1.206 g














Table E-34. Field data of event BO72006S3 (site: B, plot: S3, date: 07/20/06).


Time Q
(s) (m /s)
540 1.815E-05
600 1.903E-04
660 5.011E-04
720 8.515E-04
780 8.033E-04
840 6.396E-04
900 4.704E-04
960 3.067E-04
1020 1.932E-04
1080 1.062E-04
1140 5.969E-05
1200 3.919E-05
1260 3.791E-05
1320 3.688E-05
1380 1.665E-04
1440 5.036E-04
1500 7.827E-04
1560 1.641E-03
1620 2.407E-03
1680 2.626E-03
1740 2.436E-03
S1800 2.287E-03
iD1860 1.798E-03
1920 1.454E-03
1980 1.105E-03
2040 6.175E-04
2100 5.376E-04
2160 3.392E-04
2220 2.414E-04
2280 1.851E-04
2340 1.283E-04
2400 7.128E-05
2460 3.421E-05
2520 2.381E-05
2580 1.925E-05
2640 1.469E-05
2700 1.255E-05
2760 1.027E-05
2820 7.992E-06
2880 2.579E-06
Number of field samples
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone
Sin
0.050
0.515
1.342
2.269
2.141
1.709
1.261
0.826
0.522
0.289
0.163
0.108
0.104
0.101
0.451
1.349
2.087
4.342
6.346
6.916
6.421
6.032
4.753
3.851
2.937
1.650
1.439
0.912
0.651
0.501
0.348
0.195
0.094
0.066
0.053
0.041
0.035
0.029
0.022
0.007


Sed. Load TP DP dp <0.45pmn 0.45-2pLm 2-37tim 37-100pLm 100-250pLm >250pLm pH EC
(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
9.123E-04 2.878 1.342
9.797E-02 14.607 1.478
6.724E-01 33.310 1.538
1.932E+00 53.133 1.572
1.720E+00 50.458 1.568
1.093E+00 41.261 1.554
5.930E-01 31.526 1.534
2.532E-01 21.804 1.507 5.59 0.012
1.010E-01 14.790 1.479
3.066E-02 9.147 1.443
9.749E-03 5.963 1.409
4.220E-03 4.486 1.385
3.951E-03 4.392 1.383
3.741E-03 4.316 1.381
7.511E-02 13.091 1.470
6.791E-01 33.455 1.538
1.633E+00 49.306 1.567
7.124E+00 95.451 1.615
1.527E+01 134.794 1.641
1.816E+01 145.797 1.647
1.564E+01 136.243 1.642 205.4 0.42 1.56 16.22 6.02 37.89 37. 88 5.54 0.024
1.379E+01 128.705 1.637
8.546E+00 103.628 1.621
5.598E+00 85.620 1.607
3.245E+00 67.008 1.589
1.019E+00 40.001 1.551 5.73 0.034
7.734E-01 35.422 1.542
3.094E-01 23.765 1.513
1.572E-01 17.803 1.492
9.270E-02 14.276 1.476
4.468E-02 10.612 1.454
1.388E-02 6.775 1.419 5.85 0.020
3.220E-03 4.116 1.377
1.565E-03 3.324 1.357
1.025E-03 2.965 1.345
5.988E-04 2.596 1.330 5.73 0.024
4.379E-04 2.418 1.321
2.939E-04 2.224 1.310
1.784E-04 2.023 1.297
1.878E-05 1.496 1.238


5922.05 g
1.422 m3
129.083 g
2.270 g














Table E-3 5. Field data of event BO72006V3 (site: B, plot: V3, date: 07/20/06).


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


C
iD
w


7
147.545 g
0.872 m
4.954 g
1.511 g


Time O Sed. Cone Sed. Load TP DP do <0.45tim 0.45-2tim 2-37tim 37-100tim 100-250tim >250tim pH EC
(s) (m /s) (g L) (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
540 6.097E-06 0.024 1.483E-04 2.175 1.602
600 8.734E-06 0.028 2.444E-04 2.269 1.611
660 8.959E-06 0.028 2.532E-04 2.277 1.612
720 7.430E-06 0.026 1.952E-04 2.225 1.607
780 5.466E-06 0.023 1.274E-04 2.148 1.599
840 3.678E-06 0.020 7.344E-05 2.060 1.589
900 2.703E-06 0.018 4.786E-05 1.999 1.581
960 5.410E-06 0.023 1.256E-04 2.145 1.599
1020 7.045E-05 0.063 4.450E-03 3.146 1.666
1080 7.246E-05 0.064 4.628E-03 3.163 1.667 24.56 1.68 3.23 68.85 24.28 1.97 0 5.86 0.025
1140 4.998E-05 0.055 2.761E-03 2.952 1.657
1200 2.874E-05 0.045 1.280E-03 2.687 1.642
1260 2.437E-05 0.042 1.018E-03 2.618 1.638
1320 3.026E-05 0.045 1.375E-03 2.710 1.644
1380 2.499E-05 0.042 1.054E-03 2.629 1.639
1440 2.519E-05 0.042 1.065E-03 2.632 1.639
1500 2.634E-05 0.043 1.134E-03 2.650 1.640
1560 5.288E-05 0.056 2.986E-03 2.983 1.658
1620 4.148E-04 0.126 5.231E-02 4.661 1.714
1680 6.696E-04 0.152 1.018E-01 5.277 1.728
1740 9.729E-04 0.176 1.711E-01 5.842 1.738 18.43 2.26 4.32 78.96 13.2 1.27 0 5.84 0.034
1800 1.184E-03 0.190 2.248E-01 6.173 1.744
1860 1.310E-03 0.197 2.586E-01 6.352 1.746
1920 1.396E-03 0.202 2.827E-01 6.470 1.748
1980 1.328E-03 0.199 2.637E-01 6.378 1.747
2040 1.284E-03 0.196 2.515E-01 6.316 1.746
2100 1.173E-03 0.189 2.219E-01 6.156 1.743 5.73 0.023
2160 1.059E-03 0.182 1.925E-01 5.982 1.740
2220 8.203E-04 0.165 1.350E-01 5.574 1.733
2280 6.307E-04 0.148 9.365E-02 5.193 1.726
2340 4.408E-04 0.129 5.693E-02 4.733 1.716 5.93 0.013
2400 3.484E-04 0.118 4.105E-02 4.463 1.710
2460 2.554E-04 0.104 2.665E-02 4.141 1.701
2520 1.983E-04 0.095 1.875E-02 3.906 1.694
2580 1.401E-04 0.083 1.157E-02 3.618 1.685
2640 1.452E-04 0.084 1.216E-02 3.646 1.686
2700 1.128E-04 0.076 8.561E-03 3.456 1.679
2760 8.233E-05 0.067 5.526E-03 3.243 1.670
2820 5.280E-05 0.056 2.980E-03 2.982 1.658
2880 2.773E-05 0.044 1.217E-03 2.672 1.641
2940 1.838E-05 0.037 6.873E-04 2.509 1.630
3000 1.183E-05 0.031 3.728E-04 2.360 1.619
3060 6.315E-06 0.025 1.557E-04 2.183 1.603
3120 2.072E-06 0.016 3.307E-05 1.951 1.574
3180 0.000E+00 0.000 0.000E+00 0.000 0.000














Table E-36. Field data of event BO72006V1 (site: B, plot: Vl, date: 07/20/06).
Time O Sed. Cone Sed. Load TP DP do <0.45tmi 0.45-2tmi 2-37tim 37-100tim 100-250tmi >250tim nlH EC
(s) (m /s) (g L) (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
480 0.000E+00 0.0000 0.000E+00 0.000 0.000
540 3.191E-05 0.0508 2.941E-02 3.085 1.915
600 3.185E-05 0.0550 3.877E-02 3.177 1.911
660 3.183E-05 0.0563 4.196E-02 3.205 1.910
720 3.185E-05 0.0550 3.870E-02 3.176 1.911
780 3.187E-05 0.0534 3.496E-02 3.142 1.912
840 3.190E-05 0.0518 3.133E-02 3.105 1.914
900 3.192E-05 0.0506 2.894E-02 3.080 1.915
960 3.174E-05 0.0623 5.994E-02 3.339 1.905
1020 3.109E-05 0.1392 9.983E-01 5.069 1.865
1080 3.108E-05 0.1409 1.040E+00 5.106 1.865
1140 3.118E-05 0.1236 6.586E-01 4.716 1.871
1200 3.133E-05 0.1030 3.477E-01 4.250 1.880 5.83 0.024
1260 3.144E-05 0.0904 2.202E-01 3.966 1.886
1320 3.146E-05 0.0879 1.996E-01 3.910 1.888
1380 3.144E-05 0.0902 2.183E-01 3.961 1.886 5.73 0.024
1440 3.143E-05 0.0913 2.284E-01 3.988 1.886
1500 3.141E-05 0.0935 2.477E-01 4.036 1.885
1560 3.117E-05 0.1266 7. 154E-01 4.783 1.870
1620 3.065E-05 0.2416 6.870E+00 7.398 1.839
1680 3.046E-05 0.3057 1.566E+01 8. 863 1.828
1740 3.036E-05 0.3466 2.429E+01 9.797 1.822
1800 3.030E-05 0.3718 3.104E+01 10.373 1.818 5.53 0.023
1860 3.028E-05 0.3849 3.505E+01 10.674 1.817
P 1920 3.026E-05 0.3954 3.853E+01 10.915 1.815
1980 3.028E-05 0.3839 3.475E+01 10.652 1.817 20.21 2.23 4.23 74.52 17.94 1.08 0 5.94 0.018
2040 3.029E-05 0.3774 3.273E+01 10.503 1.818
2100 3.033E-05 0.3610 2.800E+01 10.126 1.820
2160 3.037E-05 0.3430 2.342E+01 9.715 1.822
2220 3.046E-05 0.3059 1.568E+01 8. 866 1.828
2280 3.057E-05 0.2672 9.770E+00 7.982 1.834
2340 3.074E-05 0.2139 4.485E+00 6.766 1.845
2400 3.087E-05 0.1816 2.530E+00 6.031 1.852
2460 3.099E-05 0.1573 1.530E+00 5.479 1.859
2520 3.097E-05 0.1614 1.673E+00 5.571 1.858
2580 3.096E-05 0.1631 1.739E+00 5.612 1.858 26.77 1.74 3.38 61.2 31.23 2.44 0 5.82 0.014
2640 3.102E-05 0.1510 1.328E+00 5.337 1.861
2700 3.114E-05 0.1310 8.066E-01 4. 883 1.868
2760 3.124E-05 0.1160 5.277E-01 4.544 1.874
2820 3.138E-05 0.0973 2.849E-01 4.122 1.883
2880 3.145E-05 0.0888 2.070E-01 3.931 1.887
2940 3.154E-05 0.0802 1.447E-01 3.737 1.892
3000 3.172E-05 0.0645 6.765E-02 3.387 1.903
3060 3.204E-05 0.0435 1.702E-02 2.923 1.923
3120 0.000E+00 0.0000 0.000E+00 0.000 0.000
Number of field samples = 7
Total sediment mass 18978.28 g
Total ninoff volume = 0.0803 m3
Total phosphonxs mass = 0.4582 g
Total DP mass = 0.1501 g














Table E-37. Field data of event BO72806S2 (site: B, plot: S2, date: 07/20/06).


Time Rain Time Q Sed. Cone
(s) (m s) (s) (m /s) i
0 0.000E+00 240 0.000E+00 0.000
120 3.333E-06 300 1.650E-05 0.179
240 6.667E-06 360 7.843E-04 2.753
360 2.583E-05 420 7. 892E-04 2.765
480 1.750E-05 480 8.707E-04 2.964
600 2.167E-05 540 1.123E-03 3.548
720 1.000E-05 600 1.663E-03 4.686
840 1.750E-05 660 7.733E-04 2.725
960 1.250E-05 720 3.758E-04 1.635
1080 1.167E-05 780 4.430E-04 1.837
1200 8.333E-06 840 6.897E-04 2.513
1320 6.667E-06 900 6.923E-04 2.520
1440 5.833E-06 960 4.758E-04 1.933
1560 3.333E-06 1020 2.785E-04 1.323
1680 4.167E-06 1080 1.965E-04 1.034
1800 2.500E-06 1140 1.410E-04 0.817
1920 2.500E-06 1200 9.127E-05 0.601
2040 1.667E-06 1260 6.684E-05 0.482
2160 1.667E-06 1320 4.885E-05 0.386
2280 1.667E-06 1380 4.085E-05 0.340
2520 8.333E-07 1440 3.419E-05 0.300
iD2760 8.333E-07 1500 3.177E-05 0.285
2880 0.000E+00 1560 2.778E-05 0.259
1620 2.650E-05 0.250
1680 2.479E-05 0.239
1740 2.379E-05 0.232
1800 2.251E-05 0.223
1860 2.137E-05 0.215
1920 1.952E-05 0.202
1980 1.881E-05 0.196
2040 1.852E-05 0.194
2100 1.738E-05 0.186
2160 1.710E-05 0.184
2220 1.610E-05 0.176
2280 1.524E-05 0.169
2340 7.694E-06 0.104
2400 7.267E-06 0.100
2460 6.270E-06 0.090
2520 5.557E-06 0.083
2580 5.130E-06 0.078
2640 4.703E-06 0.074
2700 4.275E-06 0.069
2760 3.848E-06 0.064
2820 3.421E-06 0.059
2880 2.993E-06 0.053
2940 2.566E-06 0.048


Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100Lm 100-250mm >250pLm pH EC
(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000E+00 0.000 0.000
2.953E-03 4.931 1.123
2.159E+00 60.969 1.178
2.182E+00 61.231 1.178 5.73 0.023
2.580E+00 65.593 1.179
3.983E+00 78.398 1.183
7.794E+00 103.388 1.189
2.107E+00 60.369 1.178
6.146E-01 36.550 1.167
8.139E-01 40.954 1.170
1.733E+00 55.727 1.176 235.5 2.68 4.24 15.1 5.3 25.8 46. 87 5.83 0.023
1.745E+00 55.877 1.176
9.196E-01 43.036 1.171
3.684E-01 29.737 1.163
2.032E-01 23.444 1.158
1.152E-01 18.741 1.153
5.482E-02 14.044 1.147
3.220E-02 11.470 1.143
1.885E-02 9.396 1.138
1.389E-02 8.406 1.136
1.025E-02 7.537 1.133
9.043E-03 7.209 1.132
7.191E-03 6.653 1.130
6.634E-03 6.469 1.130
5.920E-03 6.220 1.129 374.4 1.3 2.25 2.2 0.83 15.58 77.84 5.73 0.021
5.519E-03 6.073 1.128
5.021E-03 5.880 1.127
4.594E-03 5.707 1.127
3.935E-03 5.419 1.125
3.693E-03 5.306 1.125
3.598E-03 5.260 1.125
3.229E-03 5.076 1.124
3.139E-03 5.030 1.124
2.833E-03 4.865 1.123
2.581E-03 4.722 1.122
8.028E-04 3.323 1.113
7.282E-04 3.234 1.112
5.659E-04 3.020 1.110
4.606E-04 2.861 1.108
4.018E-04 2.763 1.107
3.463E-04 2.662 1.106
2.943E-04 2.558 1.105
2.459E-04 2.452 1.103
2.011E-04 2.342 1.102
1.601E-04 2.227 1.100
1.231E-04 2.108 1.098















Table E-37. Continued.
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m/s) (s) (m3/S) i t (g/s) (mg/L) (mg/L) (pLm) (%) (%) (%) (%) (%) (%) (S/m)
3000 2.138E-06 0.042 9.015E-05 1.982 1.095
3060 1.711E-06 0.036 6.160E-05 1.849 1.092
3120 1.284E-06 0.029 3.771E-05 1.705 1.088
3180 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 8
Total sediment mass = 1651.34 g
Total runoff volume = 0.597 m3
Total phosphorus mass = 36.603 g
Total DP mass = 0.702 g















Table E-3 8. Field data of event BO72806V2 (site: B, plot: V2, date: 07/28/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH


EC
(S/m)


(m3/S) t
0.000E+00 0.000
9.599E-06 0.009
1.270E-05 0.011
2.659E-05 0.018
3.416E-05 0.021
3.258E-05 0.021
3.448E-05 0.021
3.848E-05 0.023
3.626E-05 0.022
4.487E-05 0.026
3.442E-04 0.111
2.936E-04 0.099
1.884E-04 0.072
1.163E-04 0.051
9.986E-05 0.046
2.572E-04 0.090
2.190E-04 0.080
1.623E-04 0.065
1.096E-04 0.049
7.664E-05 0.038
5.399E-05 0.030
3.686E-05 0.023
2.759E-05 0.018
2.208E-05 0.016
1.873E-05 0.014
1.752E-05 0.013
1.657E-05 0.013
1.576E-05 0.012
1.473E-05 0.012
1.412E-05 0.011
1.368E-05 0.011
1.319E-05 0.011
1.287E-05 0.011
1.244E-05 0.010
1.201E-05 0.010
1.148E-05 0.010
1.117E-05 0.010
1.075E-05 0.009
1.014E-05 0.009
9.697E-06 0.009
9.140E-06 0.008
8.903E-06 0.008
8.458E-06 0.008
7.525E-06 0.007
6.593E-06 0.007


(g/s) (mg/L)
0.000E+00 0.000
8.293E-05 1.686
1.340E-04 1.729
4.748E-04 1.896
7.293E-04 1.977
6.722E-04 1.961
7.410E-04 1.980
8.940E-04 2.022
8.075E-04 1.999
1.163E-03 2.085
3.810E-02 4.239
2.902E-02 3.926
1.357E-02 3.230
5.946E-03 2.700
4.577E-03 2.569
2.313E-02 3.692
1.756E-02 3.440
1.052E-02 3.045
5.370E-03 2.647
2.909E-03 2.375
1.597E-03 2.172
8.307E-04 2.005
5.059E-04 1.907
3.454E-04 1.845
2.605E-04 1.805
2.323E-04 1.790
2.113E-04 1.779
1.939E-04 1.768
1.728E-04 1.755
1.606E-04 1.747
1.521E-04 1.742
1.429E-04 1.735
1.370E-04 1.731
1.292E-04 1.725
1.217E-04 1.719
1.126E-04 1.712
1.075E-04 1.708
1.007E-04 1.702
9.112E-05 1.694
8.438E-05 1.687
7.625E-05 1.679
7.290E-05 1.676
6.677E-05 1.669
5.466E-05 1.655
4.358E-05 1.641


(mg/L) (pLm) (%)
0.000
1.516
1.517
1.522
1.523
1.523


(%~) (%~) (%) (%) (%)


5.74 0.013


5.86 0.025


24.30 1.52


4.17 63.14 14.26


8.73 5.85 0.018


1.526
1.524
1.522
1.521
1.520
1.519
1.519
1.519
1.518
1.518
1.518
1.518
1.517
1.517
1.517
1.517
1.517
1.516
1.516
1.516
1.515
1.515
1.515
1.514
1.513


5.65 0.019













Table E-38. Continued.
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pmn 100-250pLm >250pLm pH EC
(s) (m3/S) _i (g/s) (mg/L) (mg/L) (pLm) (%) (%~) (%~) (%) (%) (%~) (S/m)
2820 5.660E-06 0.006 3.357E-05 1.626 1.512
2880 4.728E-06 0.005 2.466E-05 1.610 1.511
2940 3.795E-06 0.004 1.693E-05 1.593 1.510
3000 2.230E-06 0.003 6.808E-06 1.562 1.507
3060 1.262E-06 0.002 2.570E-06 1.539 1.503
3120 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 5
Total sediment mass = 9.750 g
Total runoff volume = 0.153 m3
Total phosphorus mass = 0.465 g
Total DP mass = 0.234 g











OO















Table E-39. Field data of event BO72806S3 (site: B, plot: S3, date: 07/28/06).


Q Sed. Cone
(m /s) i
0.000E+00 0.000
1.312E-05 0.162
9.465E-04 2.740
9.667E-04 2.778
1.094E-03 3.014
1.463E-03 3.653
1.648E-03 3.952
1.016E-03 2.871
5.673E-04 1.954
7.415E-04 2.332
8.160E-04 2.484
8.170E-04 2.486
6.563E-04 2.151
4.935E-04 1.782
3.697E-04 1.472
3.148E-04 1.324
2.955E-04 1.270
2.372E-04 1.098
2.180E-04 1.039
2.103E-04 1.014
1.745E-04 0.897
1.710E-04 0.885
1.688E-04 0.877
1.672E-04 0.872
1.493E-04 0.809
1.482E-04 0.805
1.478E-04 0.804
1.467E-04 0.799
1.463E-04 0.798
1.280E-04 0.731
1.275E-04 0.729
1.183E-04 0.694
8.261E-05 0.547
8.172E-05 0.543
8.150E-05 0.542
7.994E-05 0.535
7.883E-05 0.531
7.683E-05 0.522
4.352E-05 0.358
4.241E-05 0.352
3.634E-05 0.318
3.449E-05 0.307
2.665E-05 0.259
1.882E-05 0.206
1.554E-05 0.182


Sed. Load TP DP dp
(g s) (mg L) (mg L) (pLm)
0.000E+00 0.000 0.000
2.130E-03 4.864 1.221
2.593E+00 63.857 1.209
2.685E+00 64.673 1.209
3.295E+00 69.653 1.209
5.346E+00 83.001 1.208
6.514E+00 89.166 1.208
2.917E+00 66.639 1.209
1.108E+00 46.929 1.211
1.729E+00 55.133 1.210
2.027E+00 58.403 1.210
2.031E+00 58.446 1.210
1.412E+00 51.230 1.210
8.793E-01 43.152 1.211
5.443E-01 36.265 1.212
4.169E-01 32.925 1.212
3.752E-01 31.693 1.212
2.605E-01 27.764 1.213
2.264E-01 26.391 1.213
2.134E-01 25.829 1.213
1.565E-01 23.083 1.214
1.513E-01 22.803 1.214 298.8
1.481E-01 22.629 1.214
1.457E-01 22.494 1.214
1.208E-01 21.018 1.214
1.193E-01 20.919 1.214
1.188E-01 20.891 1.214
1.173E-01 20.791 1.214
1.168E-01 20.763 1.214
9.353E-02 19.156 1.215
9.293E-02 19.111 1.215
8.210E-02 18.272 1.215
4.520E-02 14.718 1.216
4.440E-02 14.622 1.216
4.420E-02 14.598 1.216
4.281E-02 14.430 1.216
4.182E-02 14.309 1.216
4.008E-02 14.090 1.216
1.559E-02 10.007 1.218
1.494E-02 9.853 1.218
1.156E-02 8.979 1.218
1.060E-02 8.701 1.218
6.910E-03 7.451 1.219
3.876E-03 6.043 1.220
2.821E-03 5.386 1.221


:0.45pLm 0.45-2Lm
(oo) (oo)


2-37pLm 37-100pLm 100-250Lm


250pLm pH EC
(oo) (S m)


6.02 0.025





6.10 0.018


28.49


65.17 6.12 0.023


5.97 0.027










5.92 0.040













Table E-39. Continued.
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m3/S) _i (g/s) (mg/L) (mg/L) (pLm)
2940 1.227E-05 0.155 1.904E-03 4.670 1.221
3000 8.989E-06 0.126 1.137E-03 3.874 1.222
3060 5.713E-06 0.094 5.354E-04 2.949 1.223
3120 4.431E-06 0.079 3.511E-04 2.531 1.224
3180 2.935E-06 0.060 1.772E-04 1.975 1.225
3240 1.420E-06 0.037 5.309E-05 1.276 1.227
3300 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 7
Total sediment mass = 2182.04 g
Total runoff volume = 0.925 m3
Total phosphorus mass = 51.060 g
Total DP mass = 1.119 g


:O.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(%~) (%) (%) (%) (%) (%) (S/m)


























5.78 0.021


4.39 59.66 18.71 13.13


2.61 6.03 0.018


6.06 0.021










6.16 0.018


7
32.440 g
0.255 ni
1.286 g
0.404 g


Sed. Cone
(r L)
0.000
0.040
0.045
0.060
0.066
0.065
0.066
0.080
0.081
0.125
0.178
0.169
0.150
0.133
0.145
0.169
0.157
0.149
0.131
0.108
0.098
0.099
0.093
0.090
0.087
0.086
0.094
0.094
0.093
0.091
0.089
0.087
0.085
0.081
0.078
0.071
0.067
0.070
0.059
0.053
0.046
0.036
0.032
0.028
0.011
0.007
0.000


Sed. Load TP DP do <0.45ti


ni 0.45-2uin 2-37uin 37-100uin 100-250uin >250uin DH EC
(o o) (o o) (o o) (o o) (o o) (S nt)


Table E-40. Field data of event BO72806V3 (site: B, plot: V3, date: 07/28/06)


Time O
(s) (nt' s)
120 3.296E-08
180 1.088E-05
240 1.401E-05
300 2.801E-05
360 3.564E-05
420 3.404E-05
480 3.596E-05
540 5.515E-05
600 5.679E-05
660 1.615E-04
720 3.742E-04
780 3.303E-04
840 2.493E-04
900 1.861E-04
960 2.287E-04
1020 3.286E-04
1080 2.761E-04
1140 2.455E-04
1200 1.802E-04
1260 1.133E-04
1320 8.965E-05
1380 9.330E-05
1440 8.064E-05
1500 7.310E-05
1560 6.852E-05
1620 6.687E-05
1680 8.269E-05
1740 8.159E-05
1800 7.955E-05
1860 7.566E-05
1920 7.177E-05
1980 6.789E-05
2040 6.400E-05
2100 5.821E-05
2160 5.242E-05
2220 4.150E-05
2280 3.728E-05
2340 4.051E-05
2400 2.768E-05
2460 2.122E-05
2520 1.476E-05
2580 8.308E-06
2640 6.477E-06
2700 4.646E-06
2760 4.790E-07
2820 2.000E-07
2880 0.000E+00
Number of field samples
Total sediment mass =
Total runoff volume =
Total phosphorus mass =
Total DP mass =


(g s) (nig L)
1.143E-07 0.000
4.363E-04 2.571
6.250E-04 2.696
1.674E-03 3.118
2.358E-03 3.297
2.209E-03 3.262
2.388E-03 3.304
4.387E-03 3.674
4.573E-03 3.702
2.022E-02 4.976
6.677E-02 6.521
5.591E-02 6.254
3.747E-02 5.703
2.474E-02 5.199
3.316E-02 5.547
5.550E-02 6.243
4.333E-02 5.895
3.666E-02 5.675
2.363E-02 5.147
1.221E-02 4.477
8.753E-03 4.188
9.264E-03 4.235
7.528E-03 4.066
6.549E-03 3.959
5.973E-03 3.890
5.769E-03 3.865
7.802E-03 4.094
7.655E-03 4.079
7.384E-03 4.051
6.877E-03 3.996
6.380E-03 3.939
5.894E-03 3.880
5.420E-03 3.820
4.736E-03 3.726
4.081E-03 3.627
2.927E-03 3.421
2.513E-03 3.333
2.829E-03 3.400
1.646E-03 3.110
1.128E-03 2.933
6.734E-04 2.724
2.973E-04 2.451
2.086E-04 2.353
1.301E-04 2.237
5.141E-06 1.760
1.485E-06 1.666
0.000E+00 0.000


(nig L) (pint) (o )
0.000
1.547
1.551
1.560
1.564
1.563
1.564
1.570
1.570
1.585
1.597
1.595
1.591
1.587
1.590
1.595 25.52 1.5
1.593
1.591
1.587
1.580
1.577
1.577
1.575
1.574
1.573
1.573
1.576
1.575
1.575
1.574
1.574
1.573
1.572
1.571
1.569
1.566
1.564
1.565
1.560
1.556
1.551
1.543
1.540
1.535
1.504
1.492
0.000














Table E-41. Field data of event BO72806V1 (site: B, plot: Vl, date: 07/28/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
180 5.280E-06 0.0000 2.063E-04 1.424 0.000
240 8.611E-06 0.0470 4.050E-04 1.690 3.000
300 1.923E-05 0.0638 1.226E-03 2.239 2.707
360 2.604E-05 0.0715 1.862E-03 2.490 2.604
420 2.533E-05 0.0708 1.792E-03 2.466 2.613
480 2.519E-05 0.0706 1.779E-03 2.461 2.615
540 2.574E-05 0.0712 1.833E-03 2.480 2.608
600 6.611E-04 0.2435 1.610E-01 7.728 1.721
660 8.948E-04 0.2731 2.444E-01 8.593 1.656 6.03 0.023
720 1.078E-03 0.2931 3.160E-01 9.172 1.617
780 8.926E-04 0.2728 2.436E-01 8.585 1.656
840 6.446E-04 0.2412 1.555E-01 7.660 1.727
900 5.709E-04 0.2303 1.315E-01 7.341 1.754
960 8.168E-04 0.2638 2.155E-01 8.322 1.675
1020 7.876E-04 0.2602 2.049E-01 8.217 1.683 19.50 1.8 4.76 72.89 13.43 7.02 0.1 6.20 0.016
1080 7.016E-04 0.2491 1.747E-01 7.891 1.708
1140 5.277E-04 0.2236 1.180E-01 7.142 1.772
1200 4.007E-04 0.2014 8.071E-02 6.485 1.835 6.12 0.023
1260 3.476E-04 0.1909 6.635E-02 6.170 1.869
1320 3.130E-04 0.1834 5.741E-02 5.948 1.894
1380 2.915E-04 0.1786 5.206E-02 5.802 1.911
1440 2.317E-04 0.1637 3.792E-02 5.353 1.968
1500 1.773E-04 0.1479 2.623E-02 4.875 2.037 6.03 0.024
1560 1.427E-04 0.1362 1.944E-02 4.518 2.094
1620 1.053E-04 0.1214 1.278E-02 4.061 2.177
1680 5.292E-05 0.0936 4.952E-03 3.192 2.378
1740 2.927E-05 0.0748 2.188E-03 2.594 2.565
1800 1.780E-05 0.0619 1.102E-03 2.179 2.734
1860 1.615E-05 0.0597 9.643E-04 2.107 2.768
1920 1.425E-05 0.0569 8.109E-04 2.016 2.813
1980 1.234E-05 0.0539 6.652E-04 1.917 2.865
2040 1.043E-05 0.0506 5.278E-04 1.808 2.927
2100 8.527E-06 0.0469 3.996E-04 1.684 3.004
2160 6.621E-06 0.0426 2.819E-04 1.541 3.103
2220 4.714E-06 0.0374 1.765E-04 1.369 3.241
2280 2.807E-06 0.0308 8.636E-05 1.141 3.463
2340 9.005E-07 0.0200 1.801E-05 0.766 4.005
2400 0.000E+00 0.0000 0.000E+00 0.000 0.000
Number of field samples = 5
Total sediment mass = 140.35 g
Total ninoff volume = 0.5939 m
Total phosphonxs mass = 4.4561 g
Total DP mass = 1.0490 g















Table E-42. Field data of event BO90606S2 (site: B, plot: S2, date: 09/06/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m s) (s) (m /s) i I (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0 0.000E+00 180 0.000E+00 0.000 0.000E+00 0.000 0.000
60 1.167E-05 240 6.001E-05 0.000 1.434E-02 0.000 0.000
120 1.000E-05 300 1.367E-04 0.488 6.665E-02 13.418 1.360
180 1.667E-05 360 3.995E-04 1.236 4.937E-01 31.129 1.423
240 1.833E-05 420 1.245E-03 3.310 4.120E+00 78.711 1.493
300 2.333E-05 480 2.000E-03 4.991 9.982E+00 116.535 1.523
360 2.333E-05 540 2.232E-03 5.489 1.225E+01 127.641 1.530 5.84 0.021
420 2.500E-05 600 1.937E-03 4.854 9.400E+00 113.464 1.521
480 2.500E-05 660 1.623E-03 4.165 6.762E+00 98.020 1.510
540 2.333E-05 720 8.638E-04 2.411 2.083E+00 58.263 1.470
600 1.667E-05 780 2.905E-04 0.937 2.723E-01 24. 129 1.404 330.5 1.14 2.56 5.25 2.6 22.74 65.72 6.12 0.021
660 1.333E-05 840 6.973E-05 0.272 1.897E-02 8.170 1.322
720 3.333E-06 900 3.291E-05 0.142 4.671E-03 4.924 1.281
780 1.667E-06 960 2.422E-05 0.109 2.635E-03 4.080 1.264 6.09 0.018
840 1.667E-06 1020 2.080E-05 0.095 1.984E-03 3.734 1.256
900 1.667E-06 1080 1.938E-05 0.090 1.738E-03 3.587 1.252
960 1.667E-06 1140 1.795E-05 0.084 1.507E-03 3.438 1.248
1020 0.000E+00 1200 1.667E-05 0.079 1.312E-03 3.302 1.244
1260 1.567E-05 0.075 1.169E-03 3.194 1.241
1320 1.468E-05 0.070 1.034E-03 3.086 1.238
1380 1.083E-05 0.054 5.864E-04 2.653 1.222
1440 6.982E-06 0.037 2.585E-04 2.189 1.200
1500 0.000E+00 0.000 0.000E+00 0.000 0.000


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


4
2728.776 g
0.662 m
64.057 g
0.988 g















Table E-43. Field data of event BO90606V2 (site: B, plot: V2, date: 09/06/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) i I (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
60 0.000E+00 0.000 0.000E+00 0.000 0.000
120 5.690E-06 0.000 1.719E-04 0.000 0.000
180 1.874E-05 0.046 8.658E-04 2.965 1.594
240 2.492E-05 0.051 1.274E-03 3.116 1.611
300 3.258E-05 0.056 1.832E-03 3.269 1.627
360 3.613E-05 0.058 2.108E-03 3.331 1.634
420 3.847E-05 0.060 2.296E-03 3.370 1.638
480 4.285E-05 0.062 2.657E-03 3.438 1.644
540 4.257E-05 0.062 2.634E-03 3.434 1.644
600 1.047E-03 0.194 2.026E-01 6.919 1.855 8.53 7.94 15.24 75 1.82 0 0 6.12 0.023
660 1.265E-03 0.207 2.618E-01 7.253 1.868
720 9.187E-04 0.185 1.697E-01 6.699 1.846
780 6.377E-04 0.162 1.034E-01 6.132 1.820
840 3.309E-04 0.128 4.250E-02 5.260 1.776 6.02 0.012
900 1.539E-04 0.098 1.504E-02 4.443 1.725
960 5.574E-05 0.068 3.796E-03 3.615 1.661
1020 2.586E-05 0.052 1.339E-03 3.136 1.613
1080 1.700E-05 0.045 7.586E-04 2.917 1.588 5.98 0.020
1140 1.302E-05 0.041 5.284E-04 2.791 1.572
1200 1.021E-05 0.037 3.800E-04 2.684 1.558
1260 8.917E-06 0.035 3.162E-04 2.627 1.550
1320 8.235E-06 0.034 2.838E-04 2.595 1.545
1380 7.275E-06 0.033 2.399E-04 2.547 1.538
1440 6.134E-06 0.031 1.903E-04 2.482 1.528
1500 5.062E-06 0.029 1.467E-04 2.414 1.517
1560 5.591E-06 0.030 1.679E-04 2.449 1.523
1620 2.905E-06 0.024 6.907E-05 2.234 1.486
1680 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 4
Total sediment mass = 49.027 g
Total ninoff volume = 0.286 m3
Total phosphonxs mass = 1.812 g
Total DP mass = 0. 520 g















Table E-44. Field data of event BO90606S3 (site: B, plot: S3, date: 09/06/06).


Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


Time


(s) (m3/S)
180 0.000E+00
240 6.206E-05
300 9.906E-05
360 4.144E-04
420 9.305E-04
480 1.466E-03
540 1.694E-03
600 1.407E-03
660 1.278E-03
720 5.778E-04
780 2.012E-04
840 1.025E-04
900 3.480E-05
960 2.804E-05
1020 2.363E-05
1080 2.005E-05
1140 1.771E-05
1200 1.564E-05
1260 1.289E-05
1320 1.192E-05
1380 1.082E-05
1440 1.027E-05
1500 8.613E-06
1560 7.786E-06
1620 6.684E-06
1680 5.581E-06
1740 4.479E-06
1800 3.928E-06
1860 0.000E+00
1920 0.000E+00
Number of field samples
Total sediment mass =
Total runoff volume =
Total phosphorus mass =
Total DP mass =


_ it
0.000

0.371
1.251
2.486
3.658
4.134
3.531
3.256
1.659
0.677
0.382
0.153
0.127
0.110
0.096
0.086
0.077
0.066
0.061
0.057
0.054
0.047
0.043
0.038
0.032
0.027
0.024
0.000
0.000
5


(g/s) (mg/L)
0.000E+00 0.000
1.548E-02 0.000
3.676E-02 11.195
5.184E-01 33.096
2.313E+00 62.582
5.363E+00 89.893
7.001E+00 100.864
4.968E+00 86.976
4.162E+00 80.580
9.585E-01 42.943
1.363E-01 18.966
3.918E-02 11.480
5.311E-03 5.450
3.564E-03 4.757
2.598E-03 4.286
1.917E-03 3.890
1.523E-03 3.624
1.211E-03 3.383
8.461E-04 3.052
7.327E-04 2.932
6.123E-04 2.793
5.559E-04 2.723
4.017E-04 2.506
3.334E-04 2.394
2.514E-04 2.241
1.801E-04 2.083
1.199E-04 1.918
9.405E-05 1.831
0.000E+00 0.000
0.000E+00 0.000


(mg/L) (pm) (%)
0.000
0.000
1.199
1.246
1.273
1.289 292.8 0.14
1.294
1.287
1.284
1.257
1.222
1.200
1.165
1.159
1.153
1.148
1.144
1.141
1.135
1.132
1.129
1.128
1.122
1.119
1.115
1.109
1.103
1.099
0.000
0.000


(%~) (%) (%) (%) (%~)


(S/m)


0.65


1.13 0.93 30.06


67.08 6.12 0.034

6.20 0.038







6.01 0.027


1531.94 g
0.507 m3
37.903 g
0.642 g














Table E-45. Field data of event BO90606V3 (site: B, plot: V3, date:
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m /s) n(g s) (mg L) (mg L) (pLm)
240 0.000E+00 0.000 0.000E+00 0.000 0.000
300 5.338E-06 0.000 2.042E-04 0.000 0.000
360 1.475E-05 0.079 1.162E-03 3.160 1.473
420 1.566E-05 0.082 1.287E-03 3.230 1.487
480 1.988E-05 0.097 1.935E-03 3.532 1.547
540 2.148E-05 0.103 2.209E-03 3.638 1.567
600 2.246E-05 0.106 2.385E-03 3.701 1.579
660 2.134E-05 0.102 2.186E-03 3.629 1.565
720 1.779E-05 0.090 1.600E-03 3.387 1.519 19.87
780 1.218E-05 0.069 8.377E-04 2.947 1.427
840 1.128E-05 0.065 7.340E-04 2. 866 1.409
900 1.106E-05 0.064 7.103E-04 2. 846 1.404
960 9.483E-06 0.058 5.457E-04 2.694 1.369
1020 9.443E-06 0.057 5.418E-04 2.690 1.368
1080 9.390E-06 0.057 5.366E-04 2.685 1.367
1140 8.022E-06 0.051 4.099E-04 2.541 1.332
1200 8.155E-06 0.052 4.215E-04 2.556 1.335
1260 5.365E-06 0.038 2.059E-04 2.217 1.246
1320 4.076E-06 0.032 1.287E-04 2.026 1.191
1380 2.628E-06 0.023 6.076E-05 1.765 1.107
1440 2.346E-06 0.021 5.005E-05 1.705 1.087
1500 1.952E-06 0.019 3.653E-05 1.613 1.054
1560 1.351E-06 0.014 1.948E-05 1.449 0.992
1620 9.532E-07 0.011 1.072E-05 1.314 0.936
1680 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 2
Total sediment mass = 1.093 g
Total ninoff volume = 0.014 m


:0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(o o) (o ) (o ) (o ) (o ) (o ) (S m)


5.35 66.05 12.03 11.63


3.23 5.860 0.023


6.020 0.032


0.043 g
0.020 g


Total phosphonxs mass
Total DP mass =














Table E-46. Field data of event BO90606V1 (site: B, plot: Vl, date: 09/06/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o o) (o o) (S m)
240 0.000E+00 0.0000 0.000E+00 0.000 0.000
300 7.177E-06 0.0105 7.508E-05 1.752 1.515
360 1.149E-05 0.0139 1.592E-04 1.854 1.536
420 1.629E-05 0.0171 2.781E-04 1.947 1.553
480 2.229E-05 0.0206 4.588E-04 2.047 1.567
540 2.336E-05 0.0212 4.945E-04 2.064 1.570
600 1.365E-03 0.2402 3.279E-01 7.974 1.775 11.43 3.96 7.79 71.29 8.19 8.78 0 6.01 0.021
660 1.587E-03 0.2628 4. 170E-01 8.591 1.783
720 1.470E-03 0.2511 3.691E-01 8.271 1.779
780 1.175E-03 0.2197 2.581E-01 7.415 1.767
840 7.732E-04 0.1711 1.323E-01 6.098 1.744
900 5.478E-04 0.1393 7.630E-02 5.240 1.726 6.20 0.032
960 3.366E-04 0.1041 3.505E-02 4.297 1.701
1020 1.400E-04 0.0617 8.633E-03 3.161 1.657
1080 5.179E-05 0.0341 1.764E-03 2.418 1.608
1140 3.102E-05 0.0251 7.776E-04 2.172 1.583 6.11 0.028
1200 2.423E-05 0.0216 5.240E-04 2.077 1.571
1260 1.973E-05 0.0191 3.776E-04 2.006 1.562
1320 1.641E-05 0.0171 2.811E-04 1.949 1.553
1380 1.503E-05 0.0163 2.444E-04 1.924 1.549
1440 1.429E-05 0.0158 2.255E-04 1.910 1.546
1500 1.407E-05 0.0156 2.199E-04 1.906 1.546
1560 1.396E-05 0.0156 2.171E-04 1.904 1.545
1620 1.362E-05 0.0153 2.089E-04 1.897 1.544
1680 1.362E-05 0.0153 2.089E-04 1.897 1.544
1740 1.345E-05 0.0152 2.048E-04 1.894 1.544
1800 1.319E-05 0.0150 1.984E-04 1.889 1.543
1860 0.000E+00 0.0000 0.000E+00 0.000 0.000
Number of field samples = 4
Total sediment mass = 97. 8853 g
Total runoff volume = 0.4638 m3
Total phosphorus mass = 3.3327 g
Total DP mass = 0.8139 g

















(s) (m/s)
600 0.000E+00
660 2.650E-05
720 7.752E-05
780 2.363E-04
840 2.039E-04
900 4.892E-04
960 6.944E-04
1020 1.289E-03
1080 1.579E-03
1140 1.459E-03
1200 1.067E-03
1260 1.476E-03
1320 2.295E-03
1380 2.703E-03
1440 2.839E-03
1500 2.195E-03
1560 1.894E-03
1620 1.898E-03
1680 2.094E-03
1740 2.302E-03
1800 2.773E-03
1860 2.436E-03
1920 1.895E-03
1980 2.376E-03
2040 2.127E-03
2100 1.103E-03
2160 8.061E-04
2220 8.788E-04
2280 1.173E-03
2340 4.559E-04
2400 3.314E-04
2460 4.921E-04
2520 3.835E-04
2580 2.687E-04
2640 2.622E-04
2700 2.558E-04
2760 2.877E-04
2820 6.508E-04
2880 1.065E-03
2940 8.742E-04
3000 8.076E-04
3060 4.570E-04
3120 6.721E-04
3180 1.042E-03
3240 6.476E-04
3300 4.194E-04


1.660
1.677
1.682
1.656
1.641
1.642
1.651 232.1 5.08
1.661
1.679


5.62 12.99 4.58 25.71 46.02 6.02 0.023


1.559
1.567
1.595
1.507
1.478
1.514
1.491
1.460
1.457
1.455
1.466
1.539
1.586
1.567
1.559
1.507
1.542
1.584
1.539
1.499


6.08 0.022


Table E-47. Field data of event BO90906S2 (site: B, plot: S2, date: 09/09/06).


Time Q Sed. Cone


0.000
0.031
0.099
0.333
0.283
0.735
1.077
2.113
2.635
2.418
1.719
2.448
3.961
4.734
4.994
3.774
3.213
3.221
3.584
3.973
4.867
4.227
3.215
4.113
3.646
1.783
1.267
1.392
1.906
0.681
0.481
0.740
0.564
0.383
0.373
0.363
0.412
1.003
1.716
1.384
1.269
0.682
1.039
1.676
0.998
0.622


Time
(s)
0
60
120
180
240
300
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820


Rain
(m s)
0.000E+00
3.333E-06
1.000E-05
3.333E-06
1.667E-06
1.667E-06
3.333E-06
1.667E-06
3.333E-06
1.667E-06
1.500E-05
1.667E-05
1.000E-05
1.167E-05
1.000E-05
1.833E-05
2.000E-05
1.833E-05
1.333E-05
1.333E-05
2.333E-05
2.333E-05
2.500E-05
2.000E-05
1.833E-05
1.833E-05
2.167E-05
2.167E-05
2.167E-05
2.333E-05
2.000E-05
2.333E-05
2.500E-05
2.167E-05
1.000E-05
1.833E-05
1.667E-05
1.833E-05
1.000E-05
1.333E-05
1.167E-05
1.000E-05
8.333E-06
8.333E-06
1.000E-05
1.167E-05


Sed. Load

(g s)
0.000E+00
8.125E-04
7.656E-03
7.860E-02
5.774E-02
3.595E-01
7.476E-01
2.725E+00
4.160E+00
3.528E+00
1.833E+00
3.613E+00
9.093E+00
1.280E+01
1.418E+01
8.285E+00
6.085E+00
6.115E+00
7.505E+00
9.143E+00
1.349E+01
1.030E+01
6.095E+00
9.771E+00
7.756E+00
1.966E+00
1.021E+00
1.223E+00
2.235E+00
3.103E-01
1.593E-01
3.641E-01
2.162E-01
1.028E-01
9.766E-02
9.279E-02
1.186E-01
6.529E-01
1.828E+00
1.210E+00
1.025E+00
3.119E-01
6.984E-01
1.747E+00
6.461E-01
2.607E-01


TP

(mg L)
0.000
2.035
3.797
9.597
8.382
19.406
27.677
52.625
65.130
59.933
43.149
60.655
96.840
115.252
121.464
92.361
78.957
79.158
87.831
97.112
118.424
103.178
79.024
100.448
89.316
44.686
32.262
35.276
47.644
18.088
13.222
19.523
15.244
10.821
10.574
10.334
11.545
25.903
43.085
35.087
32.325
18.130
26.769
42.127
25.771
16.650


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000
1.270
1.355
1.448
1.436
1.513
1.545
1.604
1.624
1.616
1.586
1.617














Table E-47. Continued.
Time Rain Time Q Sed. Cone
(s) (m s) (s) (m /s) i
2880 1.333E-05 3360 5.585E-04 0. 849
2940 1.667E-05 3420 6.412E-04 0.987
3000 1.333E-05 3480 5.241E-04 0.792
3060 1.500E-05 3540 3.665E-04 0.537
3120 1.167E-05 3600 3.127E-04 0.451
3180 1.500E-05 3660 3.508E-04 0.512
3240 1.833E-05 3720 4.123E-04 0.610
3300 1.167E-05 3780 1.391E-03 2.295
3360 1.167E-05 3840 2.177E-03 3.740
3420 1.667E-05 3900 2.583E-03 4. 506
3480 1.333E-05 3960 2.098E-03 3.592
3540 1.167E-05 4020 1.529E-03 2. 544
3600 8.333E-06 4080 6.621E-04 1.022
3660 1.167E-05 4140 6.939E-04 1.076
3720 1.000E-05 4200 8.030E-04 1.261
3780 1.333E-05 4260 1.406E-03 2.322
3840 1.833E-05 4320 1.397E-03 2.306
3900 1.833E-05 4380 3.314E-04 0.481
3960 2.000E-05 4440 2.712E-04 0.387
4020 1.333E-05 4500 2.389E-04 0.337
4080 1.333E-05 4560 2.145E-04 0.299
4140 1.167E-05 4620 1.872E-04 0.258
4200 1.333E-05 4680 1.135E-04 0.150
4260 1.167E-05 4740 8.105E-05 0.104
4320 1.500E-05 4800 3.619E-05 0.043
4380 1.000E-05 4860 3.177E-05 0.037
4440 8.333E-06 4920 2.949E-05 0.034
4500 5.000E-06 4980 2.949E-05 0.034
4560 3.333E-06 5040 1.852E-05 0.021
4620 3.333E-06 5100 1.211E-05 0.013
4680 3.333E-06 5160 1.211E-05 0.013
4740 1.667E-06 5220 8.977E-06 0.009
4800 3.333E-06 5280 6.270E-06 0.000
4920 8.333E-07 5340 0.000E+00 0.000
5040 8.333E-07
5160 8.333E-07
5220 0.000E+00
Number of field samples = 9


Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
4.742E-01 22.174 1.525 6.13 0.032
6.329E-01 25.513 1.538
4.153E-01 20.797 1.519
1.967E-01 14.583 1.487
1.412E-01 12.504 1.473
1.794E-01 13.972 1.483
2.515E-01 16.370 1.498
3.192E+00 56.988 1.611
8.142E+00 91.548 1.655
1.164E+01 109.820 1.672
7.539E+00 88.033 1.652
3.889E+00 62.955 1.620
6.768E-01 26.362 1.541
7.466E-01 27.659 1.545
1.013E+00 32.137 1.559
3.265E+00 57.642 1.612 6.22 0.021
3.221E+00 57.250 1.612
1.593E-01 13.222 1.478
1.048E-01 10.918 1.460
8.045E-02 9.696 1.449
6.423E-02 8.780 1.440 6.01 0.030
4.832E-02 7.763 1.428
1.697E-02 5.073 1.386
8.402E-03 3.921 1.358
1.558E-03 2.366 1.294
1.187E-03 2.215 1.284
1.016E-03 2.137 1.278
1.016E-03 2.137 1.278
3.844E-04 1.762 1.243
1.582E-04 1.540 1.212
1.582E-04 1.540 1.212
8.462E-05 1.427 1.190
0.000E+00 1.326 1.165
0.000E+00 0.000 0.000


12007.0 g
4.277 m3
295.826 g


Total sediment mass =
Total runoff volume =
Total phosphorus mass


Total DP mass = 6.894 g














Table E-48. Field data of event BO90906V2 (site: B, plot: V2, date: 09/09/06).


Time Q Sed. Cone Sed. Load
(s) (m /s) i I (g s)
960 0.000E+00 0.000 0.000E+00
1020 3.250E-05 0.011 3.731E-04
1080 9.041E-05 0.024 2.214E-03
1140 7.887E-05 0.022 1.746E-03
1200 5.620E-04 0.095 5.328E-02
1260 8.333E-04 0.127 1.058E-01
1320 7.500E-04 0.117 8.804E-02
1380 1.297E-03 0.176 2.285E-01
1440 2.233E-03 0.263 5.883E-01
1500 2.100E-03 0.252 5.285E-01
1560 1.630E-03 0.209 3.400E-01
1620 1.433E-03 0.190 2.717E-01
1680 1.633E-03 0.209 3.413E-01
1740 1.897E-03 0.233 4.429E-01
1800 2.042E-03 0.246 5.033E-01
1860 2.257E-03 0.265 5.991E-01
1920 2.364E-03 0.275 6.496E-01
1980 2.156E-03 0.257 5.532E-01
2040 2.100E-03 0.252 5.285E-01
2100 2.183E-03 0.259 5.656E-01
2160 1.668E-03 0.212 3.541E-01
2220 1.162E-03 0.162 1.886E-01
2280 1.067E-03 0.152 1.625E-01
2340 9.500E-04 0.140 1.329E-01
2400 8.500E-04 0.129 1.095E-01
2460 7.190E-04 0.114 8.181E-02
2520 5.744E-04 0.096 5.535E-02
2580 5.859E-04 0.098 5.729E-02
2640 4.235E-04 0.077 3.255E-02
2700 2.630E-04 0.054 1.421E-02
2760 1.333E-04 0.033 4.355E-03
2820 8.333E-05 0.023 1.922E-03
2880 2.333E-04 0.049 1.153E-02
2940 5.333E-04 0.091 4.864E-02
3000 8.208E-04 0.126 1.030E-01
3060 7.646E-04 0.119 9.106E-02
3120 6.833E-04 0.110 7.487E-02
3180 4.833E-04 0.085 4.098E-02
3240 7.500E-04 0.117 8.804E-02
3300 8.333E-04 0.127 1.058E-01
3360 7.504E-04 0.117 8.812E-02
3420 3.667E-04 0.069 2.533E-02
3480 4.667E-04 0.083 3.855E-02
3540 4.000E-04 0.074 2.948E-02
3600 3.667E-04 0.069 2.533E-02
3660 2.833E-04 0.057 1.617E-02


TP

(mg L)
0.000
2.002
2.474
2.395
4.346
5.067
4.858
6.094
7.768
7.551
6.735
6.363
6.741
7.210
7.454
7.805
7.975
7.642
7.551
7.687
6.805
5.813
5.608
5.344
5.107
4.778
4.382
4.415
3.919
3.336
2.731
2.426
3.213
4.262
5.036
4.895
4.684
4.110
4.858
5.067
4.859
3.726
4.058
3.840
3.726
3.417


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH
(mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o )
0.000
1.488


EC

(S m)


5.98 0.021











0 6.03 0.021


1.700
1.709
1.713
1.719
1.722
1.717
1.715
1.717 17.87 2.11
1.702


5.3 78.68 13.18 0.73


6.01 0.021


6.04 0.024














Table E-48. Continued.
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(s) (m /s) i I (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o o) (S m)
3720 2.167E-04 0.047 1.014E-02 3.140 1.588
3780 6.640E-04 0.107 7. 122E-02 4.632 1.649
3840 9.928E-04 0.144 1.434E-01 5.442 1.672
3900 1.322E-03 0.179 2.360E-01 6.143 1.688
3960 1.476E-03 0.194 2. 862E-01 6.447 1.695
4020 1.375E-03 0.184 2. 530E-01 6.250 1.691
4080 1.290E-03 0.175 2.262E-01 6.079 1.687 6.14 0.031
4140 1.073E-03 0.153 1.643E-01 5.622 1.676
4200 9.000E-04 0.134 1.209E-01 5.227 1.666
4260 7.667E-04 0.119 9.148E-02 4.900 1.657
4320 9.275E-04 0.137 1.274E-01 5.292 1.668
4380 8.636E-04 0.130 1.125E-01 5.140 1.664
4440 6.333E-04 0.104 6.559E-02 4.548 1.647
4500 5.616E-04 0.095 5.322E-02 4.345 1.640
4560 3.275E-04 0.064 2.081E-02 3.585 1.610
4620 2.482E-04 0.052 1.284E-02 3.275 1.595
4680 2.039E-04 0.045 9.124E-03 3.083 1.584
4740 1.464E-04 0.035 5.122E-03 2.802 1.567
4800 1.241E-04 0.031 3.843E-03 2.680 1.558
4860 6.667E-05 0.020 1.303E-03 2.306 1.525
4920 5.500E-05 0.017 9.322E-04 2.213 1.515
4980 4.333E-05 0.014 6.156E-04 2.110 1.503
5040 3.167E-05 0.011 3.566E-04 1.993 1.487
5100 2.000E-05 0.008 1.602E-04 1.851 1.464
5160 8.333E-06 0.004 3.491E-05 1.653 1.421
5220 5.000E-06 0.003 1.435E-05 1.569 1.397
5280 3.333E-06 0.002 7.084E-06 1.514 1.378
5340 5.000E-07 0.001 2.607E-07 1.337 1.291
5400 0.000E+00 0.000 0.000E+00 0.000 0.000


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


7
623.439g
3.494 m3
21.216 g
5.874 g














Table E-49. Field data of event BO90906S3


(site: B, plot: S3, date: 09/09/06).


Q
(m/s)
0.000E+00
3.110E-05
3.747E-04
4.160E-04
6.185E-04
6.771E-04
1.148E-03
1.376E-03
1.338E-03
1.012E-03
1.235E-03
2.014E-03
2.518E-03
2.453E-03
2.008E-03
1.595E-03
1.423E-03
2.136E-03
2.261E-03
2.017E-03
1.844E-03
1.386E-03
1.730E-03
2.044E-03
6.015E-04
7.803E-04
8.515E-04
1.145E-03
5.227E-04
4.682E-04
3.448E-04
4.061E-04
3.288E-04
1.937E-04
1.012E-04
1.768E-04
3.891E-04
8.870E-04
1.045E-03
7.811E-04
3.621E-04
7.555E-04
8.385E-04
9.667E-04
6.576E-04
7.697E-04


Sed. Cone


0.000
0.135
1.252
1.375
1.960
2.125
3.408
4.005
3.907
3.044
3.637
5.630
6.876
6.717
5.615
4.572
4.127
5.936
6.244
5.638
5.204
4.033
4.916
5.706
1.912
2.413
2.608
3.400
1.686
1.528
1.163
1.346
1.114
0.694
0.389
0.640
1.295
2.705
3.132
2.415
1.215
2.344
2.573
2.922
2.070
2.383


Sed. Load
(g s)
0.000E+00
4.210E-03
4.692E-01
5.720E-01
1.212E+00
1.439E+00
3.914E+00
5.510E+00
5.227E+00
3.081E+00
4.491E+00
1.134E+01
1.731E+01
1.648E+01
1.127E+01
7.295E+00
5.872E+00
1.268E+01
1.411E+01
1.137E+01
9.596E+00
5.591E+00
8.507E+00
1.166E+01
1.150E+00
1.883E+00
2.221E+00
3.895E+00
8.815E-01
7.155E-01
4.010E-01
5.464E-01
3.663E-01
1.344E-01
3.930E-02
1.132E-01
5.040E-01
2.400E+00
3.272E+00
1.886E+00
4.399E-01
1.771E+00
2.157E+00
2.824E+00
1.361E+00
1.834E+00


TP
(mg L)
0.000
5.749
34.658
37.553
50.994
54.704
82.560
95.092
93.035
74.797
87.378
128.234
152.905
149.781
127.931
106.806
97.627
134.342
140.452
128.386
119.661
95.666
113.829
129.749
49.908
61.075
65.370
82.390
44.774
41.127
32.526
36.863
31.363
21.011
13.010
19.630
35.675
67.481
76.670
61.121
33.765
59.557
64.590
72.163
53.475
60.428


DP dp <0.45pLm 0.45-2Lm
(mg L) ( pm) (o ) (o )
0.000
1.162
1.442
1.456
1.507
1.518
1.590
1.615
1.611
1.572
1.600
1.669 247.9 7.56 6.99
1.702
1.698
1.669
1.636
1.620
1.678
1.686
1.669
1.656
1.616
1.647
1.671
1.503
1.537
1.549
1.589
1.485
1.471
1.432
1.453
1.426
1.362
1.287
1.351
1.447
1.554
1.577
1.537
1.438
1.533
1.547
1.566
1.515
1.535


2-37pLm 37-100pLm 100-250Lm
(o o) (o o) (oo)


250Lm
(oo)


pH EC
(S m)


6.03 0.023


15.16


4.23


16.43


49.63


6.02 0.023


5.98 0.020









6.04 0.025












6.02 0.029













Table E-49. Continued.
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m /s) n(g s) (mg L) (mg L) (pLm)
3420 6.712E-04 2.109 1.415E+00 54.333 1.517
3480 6.515E-04 2.053 1.338E+00 53.092 1.513
3540 4.682E-04 1.528 7.155E-01 41.127 1.471
3600 2.818E-04 0.971 2.736E-01 27.889 1.407
3660 3.621E-04 1.215 4.399E-01 33.765 1.438
3720 1.044E-03 3.130 3.267E+00 76.627 1.577
3780 1.309E-03 3.831 5.016E+00 91.464 1.608
3840 2.083E-03 5.804 1.209E+01 131.712 1.674
3900 1.902E-03 5.351 1.018E+01 122.618 1.661
3960 1.326E-03 3.876 5.142E+00 92.407 1.610
4020 9.045E-04 2.753 2.490E+00 68.520 1.557
4080 6.500E-04 2.049 1.332E+00 52.997 1.513
4140 6.742E-04 2.117 1.428E+00 54.523 1.518
4200 6.968E-04 2.180 1.519E+00 55.935 1.522
4260 1.348E-03 3.934 5.305E+00 93.612 1.612
4320 1.335E-03 3.899 5.204E+00 92.870 1.611
4380 6.333E-04 2.002 1.268E+00 51.940 1.510
4440 4.156E-04 1.374 5.710E-01 37.526 1.455
4500 3.650E-04 1.223 4.465E-01 33.970 1.439
4560 2.870E-04 0.987 2.831E-01 28.276 1.409
4620 2.338E-04 0.821 1.920E-01 24.209 1.385
4680 2.021E-04 0.721 1.458E-01 21.696 1.367
4740 8.394E-05 0.329 2.760E-02 11.371 1.267
4800 7.409E-05 0.294 2.179E-02 10.403 1.253
4860 6.318E-05 0.255 1.612E-02 9.297 1.236
4920 5.470E-05 0.224 1.226E-02 8.408 1.221
4980 4.394E-05 0.184 8.100E-03 7.235 1.198
5040 3.091E-05 0.135 4.161E-03 5.726 1.162
5100 2.636E-05 0.117 3.078E-03 5.167 1.146
5160 2.167E-05 0.098 2.123E-03 4.567 1.126
5220 1.697E-05 0.079 1.337E-03 3.935 1.103
5280 1.348E-05 0.064 8.648E-04 3.440 1.081
5340 1.242E-05 0.060 7.405E-04 3.284 1.073
5400 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 11
Total sediment mass = 15597.704 g


:0.45pLm 0.45-2pLm 2-37pLm 37-100Lm
(oo) (oo) (oo) (o)


100-250pLm >250pLm pH EC
(oo) (oo) (S m)


6.20 0.021


Total ninoff volume =
Total phosphonxs mass
Total DP mass =


3.919 m3
366.735 g
6.254 g














Table E-50. Field data of event BO90906V3 (site: B, plot: V3, date: 09/09/06).


Q
(m/s)
1.063E-08
3.066E-06
1.045E-05
1.076E-05
1.160E-05
1.266E-05
3.949E-05
7.198E-05
6.667E-05
6.700E-05
8.333E-05
9.967E-05
1.160E-04
1.667E-04
4.500E-04
2.000E-03
1.833E-03
1.567E-03
1.367E-03
1.544E-03
2.133E-03
1.900E-03
1.850E-03
1.717E-03
1.417E-03
1.567E-03
1.067E-03
8.833E-04
7.167E-04
5.667E-04
4.833E-04
5.833E-04
5.167E-04
3.406E-04
2.757E-04
2.434E-04
2.000E-04
1.667E-04
1.333E-04
1.000E-04
6.667E-05
1.000E-04
1.500E-04
2.000E-04
4.167E-04
5.833E-04


Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH
n (g s) (mg L) (mg L) (pLm) (o ) (o ) (o ) (o ) (o ) (o )
0.000 0.000E+00 0.000 0.000
0.319 9.784E-04 4.229 1.880
0.104 1.082E-03 4.511 1.819
0.371 3.990E-03 4.518 1.817
0.685 7.944E-03 4.537 1.814
0.575 7.274E-03 4.559 1.809
0.185 7.316E-03 4.875 1.755
0.131 9.396E-03 5.061 1.726
0.173 1.154E-02 5.037 1.730
0.205 1.373E-02 5.038 1.730 5.85
0.250 2.081E-02 5.109 1.720
0.652 6.501E-02 5.169 1.711
3.102 3.598E-01 5.221 1.704
1.954 3.256E-01 5.348 1.688
0.622 2.800E-01 5.730 1.643
0.136 2.719E-01 6.402 1.578
0.127 2.325E-01 6.359 1.582
0.171 2.674E-01 6.283 1.589
0.283 3.874E-01 6.218 1.595
0.220 3.392E-01 6.276 1.589
0.154 3.290E-01 6.433 1.575
0.159 3.020E-01 6.376 1.580
0.038 7.057E-02 6.363 1.582 18.57 1.95 5.04 78.3 13.37 1.34 0 5.93
0.051 8.756E-02 6.327 1.585
0.054 7.618E-02 6.235 1.593
0.030 4.724E-02 6.283 1.589
0.035 3.706E-02 6.103 1.605
0.036 3.213E-02 6.018 1.613
0.036 2.565E-02 5.927 1.623
0.037 2.081E-02 5.826 1.633
0.041 2.000E-02 5.760 1.640
0.028 1.611E-02 5.838 1.632 6.02
0.022 1.158E-02 5.787 1.637
0.029 1.000E-02 5.618 1.655
0.026 7.274E-03 5.536 1.665
0.048 1.158E-02 5.488 1.671
0.092 1.844E-02 5.415 1.679
0.154 2.565E-02 5.348 1.688
0.296 3.952E-02 5.269 1.698
0.515 5.149E-02 5.170 1.711
0.373 2.486E-02 5.037 1.730 6.09
0.153 1.525E-02 5.170 1.711
0.076 1.140E-02 5.311 1.693
0.080 1.595E-02 5.415 1.679
0.043 1.810E-02 5.699 1.647
0.029 1.706E-02 5.838 1.632


EC
(S m)


0.0123


0.021


0.032


0.023














Table E-50. Continued.
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m /s) n(g s) (mg L) (mg L) (pLm)
3540 5.167E-04 0.034 1.734E-02 5.787 1.637
3600 4.167E-04 0.045 1.868E-02 5.699 1.647
3660 6.564E-04 0.023 1.487E-02 5.889 1.626
3720 4.833E-04 0.095 4.608E-02 5.760 1.640
3780 5.000E-04 0.082 4.084E-02 5.774 1.638
3840 4.667E-04 0.165 7.704E-02 5.745 1.641
3900 3.500E-04 0.509 1.781E-01 5.629 1.654
3960 3.333E-04 0.616 2.052E-01 5.610 1.656 14.16
4020 3.000E-04 0.524 1.572E-01 5.569 1.661
4080 5.218E-04 0.218 1.137E-01 5.791 1.637
4140 1.083E-03 0.094 1.016E-01 6.111 1.605
4200 1.467E-03 0.077 1.123E-01 6.252 1.591
4260 1.333E-03 0.064 8.590E-02 6.207 1.596
4320 1.167E-03 0.062 7.262E-02 6.145 1.601
4380 1.017E-03 0.058 5.904E-02 6.082 1.607
4440 9.667E-04 0.048 4.604E-02 6.059 1.610
4500 7.500E-04 0.075 5.605E-02 5.946 1.621
4560 6.000E-04 0.069 4.158E-02 5.850 1.630
4620 5.167E-04 0.045 2.316E-02 5.787 1.637
4680 6.000E-04 0.027 1.624E-02 5.850 1.630
4740 8.500E-04 0.015 1.306E-02 6.001 1.615
4800 7.167E-04 0.014 1.031E-02 5.927 1.623
4860 5.333E-04 0.014 7.466E-03 5.801 1.636
4920 2.667E-04 0.016 4.176E-03 5.523 1.666
4980 1.343E-04 0.025 3.408E-03 5.271 1.698
5040 1.111E-04 0.021 2.339E-03 5.206 1.706
5100 9.036E-05 0.030 2.714E-03 5.136 1.716
5160 6.819E-05 0.010 6.719E-04 5.044 1.729
5220 4.603E-05 0.011 5.000E-04 4.921 1.747
5280 4.603E-05 0.007 3.000E-04 4.921 1.747
5340 3.144E-05 0.000 0.000E+00 0.000 0.000
Number of field samples = 8
Total sediment mass = 329.037 g
Total ninoff volume = 2.690 m
Total phosphonxs mass = 16.288 g
Total DP mass = 4.332 g


0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(o o) (o ) (o ) (o ) (o ) (o ) (S m)


0 6.10 0.031














Table E-51. Field data of event BO90906V1 (site: B, plot: Vl, date: 09/09/06).
Time O Sed. Cone Sed. Load TP DP d, <0.45tin 0.45-2tin 2-37tin 37-100tin 100-250tin >250tin pH EC
(s) (ni s`) (e L1 (e s) (me L1 (me L1 (uim o} (o} (o oo o} (o (S nt)
120 0.000E+00 0.0000 0.000E+00 0.000 0.000
180 7.013E-06 0.0163 1.121E-04 1.996 1.449
240 6.932E-06 0.0158 1.094E-04 1.992 1.448
300 6.816E-06 0.0145 9.905E-05 1.987 1.447
360 6.376E-06 0.0147 9.375E-05 1.967 1.443
420 6.144E-06 0.0154 9.454E-05 1.956 1.440
480 6.178E-06 0.0162 9.985E-05 1.958 1.440
540 6.410E-06 0.0163 1.044E-04 1.969 1.443
600 6.608E-06 0.0157 1.036E-04 1.978 1.445
660 6.573E-06 0.0207 1.363E-04 1.976 1.445
720 7.907E-06 0.0226 1.785E-04 2.034 1.457
780 9.484E-06 0.0207 1.959E-04 2.094 1.470
840 1.010E-05 0.0204 2.060E-04 2.116 1.474
900 1.045E-05 0.0205 2.138E-04 2.128 1.477
960 1.071E-05 0.0220 2.358E-04 2.137 1.479
1020 1.144E-05 0.0231 2.647E-04 2.161 1.483
1080 1.237E-05 4.5554 5.636E-02 2.190 1.489
1140 4.602E-04 0.3038 1.398E-01 5.180 1.768
1200 8.494E-04 0.2022 1.717E-01 6.282 1.820 5.98 0.023
1260 9.757E-04 0.1979 1.931E-01 6.573 1.832
1320 1.056E-03 0.1868 1.972E-01 6.747 1.839
1380 1.071E-03 0.2095 2.245E-01 6.779 1.840
1440 1.169E-03 0.2447 2.860E-01 6.979 1.848
1500 1.376E-03 0.2315 3.187E-01 7.374 1.862
1560 1.481E-03 0.2156 3.193E-01 7.559 1.869
1620 1.483E-03 0.2228 3.304E-01 7.562 1.869
1680 1.517E-03 0.2293 3.478E-01 7.622 1.871
1740 1.571E-03 0.2251 3.535E-01 7.713 1.874
1800 1.588E-03 0.2318 3.681E-01 7.742 1.875
1860 1.632E-03 0.2529 4. 127E-01 7.815 1.877
1920 1.763E-03 0.2559 4.512E-01 8.026 1.884 23.93 1.18 3.3 56.54 5.33 17.85 15.81 6.02 0.025
1980 1.872E-03 0.2543 4.760E-01 8.195 1.890
2040 1.941E-03 0.2636 5.115E-01 8.299 1.893
2100 2.037E-03 0.2460 5.012E-01 8.441 1.897
2160 2.010E-03 0.2438 4.900E-01 8.400 1.896
2220 1.979E-03 0.2313 4. 577E-01 8.355 1.895
2280 1.890E-03 0.2301 4.348E-01 8.222 1.890
2340 1.826E-03 0.2140 3.907E-01 8.125 1.887
2400 1.699E-03 0.2066 3.509E-01 7.924 1.881
2460 1.580E-03 0.2015 3.184E-01 7.729 1.874
2520 1.480E-03 0.1766 2.613E-01 7.557 1.869
2580 1.295E-03 0.1775 2.299E-01 7.223 1.857
2640 1.188E-03 0.1720 2.043E-01 7.017 1.849
2700 1.097E-03 0.1699 1.864E-01 6. 833 1.842
2760 1.031E-03 0.1503 1.550E-01 6.694 1.837 21.17 1.7 3.28 59.77 6.97 16.21 12.07 6.09 0.032
2820 9.106E-04 0.1407 1.281E-01 6.426 1.826
2880 8.006E-04 0.1761 1.410E-01 6.163 1.815
2940 8.542E-04 0.2149 1.836E-01 6.293 1.820
3000 1.021E-03 0.2101 2.145E-01 6.671 1.836
3060 1.133E-03 0.2060 2.335E-01 6.907 1.845
















Table E-51. Continued.
Time O Sed. Cone Sed. Load TP DP d, <0.45tin 0.45-2tin 2-37tin 37-100tin 100-250tin >250tin pH EC
(s) (ni s`) (e L1 (e s) (me L1 (me L1 (uim o} (o} (o oo o} (o (S nt)
3180 1.233E-03 0.1970 2.429E-01 7.105 1.853
3240 1.233E-03 0.2018 2.488E-01 7.105 1.853
3300 1.253E-03 0.2049 2. 568E-01 7.143 1.854
3360 1.280E-03 0.2037 2.607E-01 7.194 1.856
3420 1.293E-03 0.2023 2.616E-01 7.220 1.857
3480 1.296E-03 0.2038 2.642E-01 7.225 1.857 6.02 0.028
3540 1.305E-03 0.1826 2.382E-01 7.241 1.857
3600 1.217E-03 0.1825 2.220E-01 7.073 1.851
3660 1.160E-03 0.1851 2.147E-01 6.962 1.847
3720 1.134E-03 0.1790 2.030E-01 6.909 1.845
3780 1.092E-03 0.1914 2.091E-01 6.823 1.842
3840 1.114E-03 0.2041 2.275E-01 6.868 1.844
3900 1.179E-03 0.2039 2.404E-01 7.000 1.849
3960 1.224E-03 0.2109 2. 582E-01 7.088 1.852
4020 1.285E-03 0.1981 2.545E-01 7.204 1.856
4080 1.272E-03 0.2083 2.650E-01 7.180 1.855
4140 1.308E-03 0.2201 2. 878E-01 7.247 1.858
4200 1.382E-03 0.1920 2.653E-01 7.384 1.863 6.09 0.031
4260 1.309E-03 0.2054 2.688E-01 7.248 1.858
4320 1.320E-03 0.1999 2.639E-01 7.270 1.859
4380 1.304E-03 0.1898 2.474E-01 7.240 1.857
03 4440 1.248E-03 0.1842 2.299E-01 7.134 1.854
9 4500 1.188E-03 0.1656 1.967E-01 7.017 1.849
4560 1.069E-03 0.1461 1.562E-01 6.775 1.840
4620 9.154E-04 0.1253 1.147E-01 6.437 1.826
4680 7.432E-04 0.1040 7.732E-02 6.017 1.808
4740 5.696E-04 0.0886 5.049E-02 5.532 1.786
4800 4.273E-04 0.0789 3.370E-02 5.065 1.762
4860 3.253E-04 0.0690 2.245E-02 4.670 1.739
4920 2.474E-04 0.0545 1.349E-02 4.317 1.716
4980 1.754E-04 0.0534 9.368E-03 3.926 1.689 6.02 0.028
5040 1.372E-04 0.0436 5.977E-03 3.678 1.669
5100 1.013E-04 0.0456 4.623E-03 3.404 1.645
5160 8.519E-05 0.0373 3.176E-03 3.263 1.632
5220 6.612E-05 0.0355 2.346E-03 3.072 1.612
5280 5.391E-05 0.0349 1.884E-03 2.932 1.597
5340 4.649E-05 0.0355 1.649E-03 2. 837 1.585
5400 4.250E-05 0.0354 1.504E-03 2.782 1.579
5460 3.994E-05 0.0292 1.167E-03 2.745 1.574
5520 3.367E-05 0.0099 3.341E-04 2.648 1.561
5580 0.000E+00 0.0000 0.000E+00 0.000 0.000
Number of field samnoles 7
Total sediment mass = 984.7368 r
Total runoff volume = 4.8407 ni
Total phosphorus mass = 35.1225 r
Total DP mass = 8.9820 a















Table E-52. Field data of event BO90906V4 (site: B, plot: V4, date: 09/09/06).


TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


Time


Q Sed. Cone Sed. Load


(m3/S)
0.000E+00
3.278E-05
4.705E-05
1.096E-04
1.592E-04
2.161E-04
2.812E-04
6.437E-04
7.510E-04
7.009E-04
5.996E-04
5.955E-04
8.186E-04
1.150E-03
1.268E-03
1.497E-03
1.523E-03
1.563E-03
1.419E-03
1.282E-03
9.244E-04
7.805E-04
6.976E-04
7.576E-04
6.496E-04
4.854E-04
4.008E-04
3.818E-04
3.226E-04
2.660E-04
2.099E-04
1.913E-04
2.771E-04
5.814E-04
7.381E-04
8.667E-04
8.397E-04
8.885E-04
9.936E-04
1.041E-03
9.077E-04
9.615E-04
9.923E-04
9.167E-04
7.747E-04


0.0000
0.0164
0.0207
0.0358
0.0456
0.0555
0.0658
0.1124
0.1242
0.1188
0.1074
0.1069
0.1313
0.1636
0.1742
0.1940
0.1962
0.1995
0.1874
0.1755
0.1421
0.1273
0.1184
0.1249
0.1131
0.0937
0.0828
0.0802
0.0719
0.0635
0.0545
0.0513
0.0652
0.1053
0.1228
0.1363
0.1335
0.1385
0.1488
0.1534
0.1404
0.1457
0.1487
0.1413
0.1267


(g/s)
0.000E+00
5.381E-04
9.752E-04
3.921E-03
7.258E-03
1.200E-02
1.851E-02
7.237E-02
9.329E-02
8.326E-02
6.439E-02
6.367E-02
1.075E-01
1.881E-01
2.209E-01
2.905E-01
2.988E-01
3.117E-01
2.660E-01
2.250E-01
1.313E-01
9.939E-02
8.261E-02
9.463E-02
7.347E-02
4.547E-02
3.317E-02
3.063E-02
2.320E-02
1.690E-02
1.144E-02
9.816E-03
1.806E-02
6.121E-02
9.065E-02
1.181E-01
1.121E-01
1.230E-01
1.479E-01
1.597E-01
1.274E-01
1.401E-01
1.476E-01
1.295E-01
9.819E-02


(mg/L)
0.000
3.408
3.642
4.367
4.785
5.180
5.566
7.107
7.458
7.298
6.952
6.938
7.665
8.559
8.840
9.347
9.401
9.483
9.180
8.873
7.970
7.550
7.287
7.479
7.127
6.519
6.159
6.072
5.785
5.481
5.140
5.016
5.543
6.887
7.418
7.806
7.728
7.869
8.159
8.284
7.923
8.072
8.155
7.949
7.532


(mg/L) (pLm) (%) (%) (%) (%) (%) (%) (S/m)
0.000
1.793
1.769
1.712
1.688
1.668
1.652
1.600
1.591
1.595
1.605
1.605 5.86 0.023


6.02 0.022


17.23 1.96


3.68 79.37 14.97


0.01 0 6.20 0.034
















Table E-52. Continued.
Time Q Sed. Cone
(s) (m /s) i
3720 6.706E-04 0.1154
3780 6.726E-04 0.1157
3840 8.167E-04 0.1311
3900 1.215E-03 0.1695
3960 1.273E-03 0.1747
4020 1.376E-03 0.1837
4080 1.313E-03 0.1782
4140 1.176E-03 0.1659
4200 1.068E-03 0.1559
4260 1.087E-03 0.1578
4320 1.067E-03 0.1558
4380 9.564E-04 0.1452
4440 8.897E-04 0.1386
4500 6.577E-04 0.1140
4560 4.382E-04 0.0877
4620 2.710E-04 0.0643
4680 2.429E-04 0.0599
4740 2.262E-04 0.0572
4800 1.864E-04 0.0505
4860 1.723E-04 0.0480
4920 1.522E-04 0.0443
4980 1.320E-04 0.0404
5040 1.119E-04 0.0363
5100 1.020E-04 0.0342
5160 5.207E-05 0.0221
5220 4.648E-05 0.0206
5280 4.089E-05 0.0189
5340 2.524E-05 0.0139
5400 2.198E-05 0.0127
5460 1.872E-05 0.0114
5520 0.000E+00 0.0000
Number of field samples = 7


Sed. Load
(g s)
7.742E-02
7.779E-02
1.071E-01
2.061E-01
2.224E-01
2.527E-01
2.340E-01
1.951E-01
1.665E-01
1.715E-01
1.662E-01
1.389E-01
1.233E-01
7.498E-02
3.843E-02
1.742E-02
1.455E-02
1.293E-02
9.408E-03
8.265E-03
6.736E-03
5.332E-03
4.060E-03
3.486E-03
1.152E-03
9.559E-04
7.742E-04
3.498E-04
2.785E-04
2.138E-04
0.000E+00


TP
(mg L)
7.198
7.204
7.659
8.717
8.852
9.084
8.943
8.621
8.353
8.402
8.350
8.058
7.873
7.154
6.323
5.509
5.346
5.244
4.982
4.882
4.730
4.567
4.388
4.294
3.715
3.634
3.547
3.261
3.190
3.114
0.000


DP dp
(mg L) (pLm)
1.598
1.597
1.586
1.562
1.559
1.554
1.557
1.564
1.569
1.568
1.569
1.576
1.580
1.599
1.624
1.654
1.661
1.666
1.678
1.683
1.691
1.700
1.711
1.717
1.762
1.770
1.778
1.811
1.821
1.832
0.000


:0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250Lm
(oo) (oo) (oo) (oo) (oo)


250pLm pH EC
(oo) (S m)


6.13 0.032






6.03 0.027


Total sediment mass =
Total ninoff volume =
Total phosphonxs mass
Total DP mass =


407.5519 g
2.8790 m
22.7113 g
4.5597 g














Table E-53. Field data of event BO91006S2 (site: B, plot: S2, date: 09/10/06).
Time Rain Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37tim 37-100pLm 100-250pLm >250pLm pH EC


(m s) (s) (m /s)
0.000E+00 900 0.000E+00
1.667E-06 960 1.111E-05
1.667E-06 1020 1.154E-05
1.667E-06 1080 1.268E-05
3.333E-06 1140 1.468E-05
3.333E-06 1200 2.939E-05
3.333E-06 1260 3.217E-05
3.333E-06 1320 4.086E-05
3.333E-06 1380 5.251E-05
5.000E-06 1440 5.484E-05
6.667E-06 1500 6.774E-05
6.667E-06 1560 7.518E-05
5.000E-06 1620 1.663E-04
3.333E-06 1680 4.827E-04
3.333E-06 1740 7.513E-04
5.000E-06 1800 9.132E-04
3.333E-06 1860 1.170E-03
3.333E-06 1920 1.209E-03
5.000E-06 1980 1.544E-03
5.000E-06 2040 1.629E-03
6.667E-06 2100 1.821E-03
5.000E-06 2160 1.628E-03
8.333E-06 2220 1.584E-03
1.667E-05 2280 1.229E-03
1.333E-05 2340 8.916E-04
1.667E-05 2400 4.668E-04
1.667E-05 2460 3.606E-04
1.833E-05 2520 3.109E-04
1.833E-05 2580 3.144E-04
2.000E-05 2640 3.429E-04
2.167E-05 2700 4.510E-04
2.667E-05 2760 4.976E-04
2.500E-05 2820 5.430E-04
2.667E-05 2880 6.846E-04
1.167E-05 2940 1.059E-03
5.000E-06 3000 1.086E-03
3.333E-06 3060 1.101E-03
3.333E-06 3120 1.080E-03
3.333E-06 3180 9.982E-04
6.667E-06 3240 8.925E-04
5.000E-06 3300 8.634E-04
5.000E-06 3360 9.651E-04
5.000E-06 3420 8.732E-04
8.333E-06 3480 6.676E-04
1.167E-05 3540 5.278E-04
1.167E-05 3600 4.283E-04


0.000
0.026
0.027
0.030
0.035
0.067
0.073
0.092
0.117
0.122
0.150
0.166
0.355
0.988
1.510
1.821
2.311
2.385
3.015
3.175
3.534
3.172
3.091
2.423
1.780
0.956
0.746
0.647
0.654
0.711
0.925
1.017
1.106
1.381
2.099
2.152
2.179
2.139
1.984
1.782
1.726
1.921
1.745
1.348
1.076
0.880


(g s)
0.000E+00
2.937E-04
3.163E-04
3.804E-04
5.065E-04
1.976E-03
2.359E-03
3.769E-03
6.163E-03
6.710E-03
1.015E-02
1.245E-02
5.904E-02
4.767E-01
1.135E+00
1.663E+00
2.704E+00
2.884E+00
4.655E+00
5.171E+00
6.437E+00
5.164E+00
4.897E+00
2.979E+00
1.587E+00
4.465E-01
2.691E-01
2.013E-01
2.058E-01
2.439E-01
4.174E-01
5.059E-01
6.004E-01
9.456E-01
2.222E+00
2.338E+00
2.399E+00
2.310E+00
1.980E+00
1.590E+00
1.490E+00
1.853E+00
1.524E+00
9.000E-01
5.679E-01
3.771E-01


(mg L)
0.000
2.033
2.058
2.126
2.243
3.098
3.258
3.757
4.425
4.559
5.297
5.723
10.926
28.999
44.361
53.628
68.344
70.585
89.766
94.648
105.700
94.580
92.086
71.743
52.391
28.091
22.018
19.183
19.383
21.008
27.188
29.848
32.445
40.543
61.962
63.553
64.375
63.168
58.497
52.442
50.775
56.598
51.339
39.569
31.574
25.889


(mg L) (pm) (o)
0.000
1.410
1.411
1.414
1.419
1.443
1.446
1.455
1.463
1.465
1.472
1.476
1.504
1.543
1.560
1.567
1.577
1.578
1.587
1.589 261.4 7.64
1.593
1.589
1.588
1.578
1.566
1.542
1.533
1.527
1.528
1.531
1.541
1.545
1.548
1.556
1.573
1.574
1.574
1.573
1.571
1.566
1.565
1.569
1.565
1.555
1.547
1.539


(oo) (oo) (oo) (oo) (o)


(S m)


6.03 0.023


6.67 14.72 3.39


15.51 52.06 6.11 0.021


6.21 0.031












6.16 0.023














Table E-53. Continued.
Time Rain Time
(s) (m s) (s)
2820 1.667E-05 3660 3..
2880 1.333E-05 3720 1.:
2940 1.333E-05 3780 1..
3000 8.333E-06 3840 8.
3060 8.333E-06 3900 8.:
3120 1.667E-05 3960 7.:
3180 1.167E-05 4020 6.:
3240 8.333E-06 4080 6.(
3300 6.667E-06 4140 5.'
3360 5.000E-06 4200 4.(
3420 5.000E-06 4260 2.:
3480 3.333E-06 4320 1.(
3540 1.667E-06 4380 0.(
3600 1.667E-06
3660 1.667E-06
3720 0.000E+00
Number of field samples = 6
Total sediment mass = 3819.
Total ninoff volume = 1.8(
Total phosphonxs mass = 113.:
Total DP mass = 2.9:


Sed. Cone Sed. Load
i In (g s)
0.695 2.325E-01
0.386 7.004E-02
0.295 4.049E-02
0.178 1.445E-02
0.182 1.510E-02
0.160 1.155E-02
0.139 8.733E-03
0.146 9.666E-03
0.132 7.847E-03
0.104 4.814E-03
0.052 1.154E-03
0.026 2.754E-04
0.000 0.000E+00


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
1.530
1.508
1.497 6.02 0.020
1.479
1.479
1.475
1.470
1.471
1.468
1.459
1.434
1.409
0.000


(m/s)
347E-04
815E-04
372E-04
109E-05
293E-05
236E-05
273E-05
606E-05
940E-05
629E-05
233E-05
076E-05
000E+00





.574 g
66 m3
234 g
21 g


TP
(mg L)
20.539
11.790
9.264
6.061
6.166
5.561
5.011
5.201
4.820
4.069
2.690
2.012
0.000















Table E-54. Field data of event BO91006V2 (site: B, plot: V2, date: 09/10/06).


Time Q Sed. Cone
(s) (m /s) i
960 0.000E+00 0.000
1020 3.533E-06 0.003
1080 6.843E-06 0.005
1140 7.317E-06 0.005
1200 7.929E-06 0.005
1260 8.263E-06 0.005
1320 8.402E-06 0.005
1380 8.555E-06 0.005
1440 8.750E-06 0.005
1500 8.750E-06 0.005
1560 8.750E-06 0.005
1620 8.945E-06 0.006
1680 1.646E-05 0.009
1740 2.050E-05 0.010
1800 3.907E-05 0.016
1860 5.010E-05 0.019
1920 2.199E-04 0.055
1980 3.926E-04 0.083
2040 4.923E-04 0.098
2100 9.110E-04 0.152
2160 1.284E-03 0.195
2220 1.430E-03 0.210
2280 1.221E-03 0.188
2340 1.058E-03 0.169
2400 9.565E-04 0.157
2460 6.662E-04 0.121
2520 4.818E-04 0.096
2580 3.412E-04 0.075
2640 2.315E-04 0.057
2700 1.790E-04 0.047
2760 1.687E-04 0.045
2820 1.703E-04 0.046
2880 2.013E-04 0.051
2940 2.275E-04 0.056
3000 2.873E-04 0.066
3060 3.787E-04 0.081
3120 4.586E-04 0.093
3180 5.856E-04 0.111
3240 6.076E-04 0.114
3300 6.403E-04 0.118
3360 6.114E-04 0.114
3420 5.535E-04 0.106
3480 5.321E-04 0.103
3540 3.220E-04 0.072
3600 2.472E-04 0.060


Sed. Load
(g s)
0.000E+00
9.978E-06
3.106E-05
3.484E-05
4.000E-05
4.294E-05
4.419E-05
4.559E-05
4.738E-05
4.738E-05
4.738E-05
4.921E-05
1.402E-04
2.045E-04
6.193E-04
9.495E-04
1.205E-02
3.262E-02
4.812E-02
1.385E-01
2.497E-01
3.006E-01
2.292E-01
1.791E-01
1.506E-01
8.092E-02
4.637E-02
2.563E-02
1.317E-02
8.464E-03
7.644E-03
7.771E-03
1.036E-02
1.277E-02
1.907E-02
3.066E-02
4.259E-02
6.483E-02
6.908E-02
7.559E-02
6.982E-02
5.885E-02
5.500E-02
2.320E-02
1.473E-02


TP
(mg L)
0.000
1.547
1.652
1.665
1.680
1.687
1.691
1.694
1.699
1.699
1.699
1.703
1.842
1.902
2.120
2.225
3.258
3.977
4.334
5.597
6.541
6.883
6.391
5.984
5.719
4.895
4.298
3.779
3.313
3.057
3.004
3.012
3.169
3.294
3.559
3.925
4.217
4.643
4.713
4.815
4.725
4.539
4.468
3.703
3.384


DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250Lm
(mg L) (pLm) (o ) (o ) (o ) (o ) (o )
0.000


250pLm pH EC
(o o) (S m)


6.02 0.023



6.12 0.031


1.984


1.780
1.781
1.797 7.39
1.808
1.831
1.859
1.878
1.903
1.906
1.912
1.907
1.897
1.893
1.843
1.817


94.49


0 5.98 0.021


6.21 0.022






6.15 0.032














Table E-54. Continued.
Time Q Sed. Co
(s) (m /s) i
3660 1.971E-04 0.051
3720 1.770E-04 0.047
3780 1.512E-04 0.042
3840 1.192E-04 0.035
3900 1.007E-04 0.031
3960 6.370E-05 0.023
4020 4.569E-05 0.018
4080 3.588E-05 0.015
4140 1.974E-05 0.010
4200 1.846E-05 0.009
4260 1.055E-05 0.006
4320 8.900E-06 0.005
4380 5.350E-06 0.004
4440 0.000E+00 0.000
Number of field samples =
Total sediment mass = 12
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


ne


Sed. Load TP
(g s) (mg L)
9.982E-03 3.148
8.298E-03 3.047
6.333E-03 2.909
4.210E-03 2.724
3.149E-03 2.607
1.435E-03 2.340
8.104E-04 2.184
5.352E-04 2.087
1.917E-04 1.891
1.709E-04 1.873
6.534E-05 1.737
4.879E-05 1.702
2.035E-05 1.610
0.000E+00 0.000


DP
(mg L)
1.795
1.784
1.769
1.747
1.731
1.689
1.659
1.638
1.586
1.581
1.534
1.520
1.479
0.000


dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250Lm
(pm) (oo0) (oo0) (oo0) (oo0) (oo0) (o0)


pH EC
(S m)


6.885 g
1.021 m3
5.019 g
1.942 g















Table E-55. Field data of event BO91006S3 (site: B, plot: S3, date: 09/10/06).


Time


Q Sed. Cone


Sed. Load


TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(mg L) (oo)
0.000
1.449
1.458
1.464
1.469
1.489
1.499
1.533
1.540
1.564
1.570
1.574
1.575
1.586
1.587
1.591
1.595
1.590
1.582
1.579


(s) (m /s) i

1140 0.000E+00 0.000
1200 8.917E-06 0.024
1260 1.242E-05 0.034
1320 1.592E-05 0.043
1380 1.942E-05 0.053
1440 4.050E-05 0.109
1500 5.867E-05 0.158
1560 2.051E-04 0.545
1620 2.637E-04 0.699
1680 6.200E-04 1.632
1740 7.417E-04 1.949
1800 8.550E-04 2.244
1860 8.867E-04 2.326
1920 1.318E-03 3.446
1980 1.355E-03 3.540
2040 1.582E-03 4.130
2100 1.782E-03 4.646
2160 1.514E-03 3.954
2220 1.168E-03 3.056
2280 1.018E-03 2.666

2340 8.342E-04 2.190

2400 5.100E-04 1.345
2460 3.333E-04 0.882
2520 3.045E-04 0.807
2580 2.507E-04 0.665
2640 3.480E-04 0.921
2700 4.685E-04 1.236
2760 5.446E-04 1.435
2820 6.172E-04 1.624
2880 6.689E-04 1.759
2940 7.208E-04 1.894
3000 7.749E-04 2.035
3060 7.895E-04 2.073
3120 7.895E-04 2.073
3180 7.705E-04 2.024
3240 7.434E-04 1.953
3300 7.588E-04 1.993
3360 7.741E-04 2.033
3420 7.588E-04 1.993
3480 7.208E-04 1.894
3540 5.424E-04 1.429
3600 2.661E-04 0.706
3660 1.842E-04 0.490
3720 1.738E-04 0.463


(g s) (mg L)
0.000E+00 0.000
2.173E-04 1.990
4.201E-04 2.213
6.889E-04 2.434
1.023E-03 2.655
4.423E-03 3.978
9.251E-03 5.117
1.118E-01 14.320
1.844E-01 18.017
1.012E+00 40.597
1.445E+00 48.336
1.918E+00 55.553
2.063E+00 57.572
4.542E+00 85.117
4.795E+00 87.450
6.534E+00 102.023
8.279E+00 114.826
5.987E+00 97.671
3.569E+00 75.515
2.713E+00 65.916

1.827E+00 54.226

6.858E-01 33.611
2.941E-01 22.418
2.456E-01 20.595
1.668E-01 17.199
3.203E-01 23.343
5.792E-01 30.980
7.815E-01 35.807
1.003E+00 40.418
1.177E+00 43.703
1.365E+00 47.005
1.577E+00 50.448
1.637E+00 51.379
1.637E+00 51.379
1.559E+00 50.169
1.452E+00 48.447
1.513E+00 49.424
1.574E+00 50.402
1.513E+00 49.424
1.365E+00 47.005
7.752E-01 35.668
1.877E-01 18.168
9.028E-02 13.004
8.044E-02 12.351


(o o) (o ) (o o) (o o) (oo) (S m)


6.02










6.11




42.0
4.37 29.73 6.24


1.573 217 76.18 5.11

1.559
1.547
1.544
1.539
1.548
1.557
1.561
1.564
1.567
1.569
1.571
1.571
1.571
1.571
1.570
1.570
1.571
1.570
1.569
1.561
1.541
1.530
1.529


6 12.71













3780 1.721E-04 0.458


7.883E-02 12.241


Table E-55. Continued.
Time Q Sed. Cone Sed. Load TP DP dp
(s) (m /s) n(g s) (mg L) (mg L) ( pm)
3840 1.572E-04 0.419 6.587E-02 11.306 1.526
3900 1.424E-04 0.380 5.406E-02 10.372 1.523
3960 1.275E-04 0.340 4.341E-02 9.438 1.520
4020 1.127E-04 0.301 3.393E-02 8.505 1.517
4080 9.783E-05 0.262 2.561E-02 7.573 1.513
4140 8.298E-05 0.222 1.845E-02 6.641 1.508
4200 6.813E-05 0.183 1.246E-02 5.710 1.503
4260 5.847E-05 0.157 9.188E-03 5.104 1.499
4320 5.138E-05 0.138 7.105E-03 4.660 1.495
4380 3.397E-05 0.092 3.116E-03 3.569 1.484
4440 1.731E-05 0.047 8.137E-04 2.522 1.466
4500 0.000E+00 0.000 0.000E+00 0.000 0.000
Number of field samples = 6
Total sediment mass = 4015.63 g
Total ninoff volume = 1.694 m
Total phosphonxs mass = 99.583 g
Total DP mass = 2.660 g


0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(o o) (o ) (o ) (o ) (o o) (oo)


(S m)














Table E-56. Field data of event BO91006V3 (site: B, plot: V3, date: 09/10/06).


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


7
104.150 g
0.793 m
3.758 g
1.233 g


Time O Sed. Cone Sed. Load TP DP do <0.45tim 0.45-2tmi 2-37tmi 37-100tim 100-250tim >250tmi pH EC
(s) (m /s) (g L) (g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo0) (S m)
1620 0.000E+00 0.000 0.000E+00 0.000 0.000
1680 2.050E-05 0.029 5.897E-04 1.970 1.419
1740 3.567E-05 0.038 1.345E-03 2.195 1.443
1800 5.700E-05 0.047 2.703E-03 2.443 1.463
1860 1.330E-04 0.072 9.542E-03 3.079 1.502
1920 1.920E-04 0.086 1.648E-02 3.457 1.518 27. 57 2.06 2.04 61.89 23.53 10.16 0.31 5.94 0.023
1980 2.775E-04 0.103 2.852E-02 3.920 1.536
2040 4.437E-04 0.129 5.735E-02 4.662 1.558
2100 7.507E-04 0.167 1.255E-01 5.754 1.583
2160 8.587E-04 0.178 1.533E-01 6.088 1.589
2220 1.060E-03 0.198 2.096E-01 6.663 1.599
2280 7.952E-04 0.172 1.367E-01 5.895 1.585
2340 5.167E-04 0.139 7.195E-02 4.947 1.565
2400 4.762E-04 0.134 6.372E-02 4.791 1.561
2460 3.156E-04 0.109 3.455E-02 4.105 1.542 5.77 0.026
2520 2.120E-04 0.090 1.910E-02 3.573 1.523
2580 1.777E-04 0.083 1.469E-02 3.371 1.515
2640 1.536E-04 0.077 1.182E-02 3.218 1.508
2700 1.707E-04 0.081 1.383E-02 3.328 1.513
2760 2.170E-04 0.091 1.978E-02 3.601 1.524
2820 2.810E-04 0.103 2.905E-02 3.937 1.536
2880 3.309E-04 0.112 3.706E-02 4. 176 1.544 27.95 1.77 3.7 56.65 21.08 15.81 1.00 5.93 0.023
2940 3.682E-04 0.118 4.344E-02 4.344 1.549
3000 3.946E-04 0.122 4.817E-02 4.458 1.552
3060 4.125E-04 0.125 5.146E-02 4.534 1.554
3120 4.748E-04 0.134 6.345E-02 4.786 1.561
3180 5.258E-04 0.140 7.385E-02 4.981 1.566
3240 5.546E-04 0.144 7.995E-02 5.087 1.568
3300 4.848E-04 0.135 6.543E-02 4. 824 1.562
3360 4.451E-04 0.129 5.763E-02 4.668 1.558
3420 3.927E-04 0.122 4.782E-02 4.450 1.552
3480 3.479E-04 0.115 3.993E-02 4.254 1.546 5.78 0.013
3540 2.974E-04 0.106 3.161E-02 4.018 1.539
3600 2.464E-04 0.097 2.389E-02 3.761 1.530
3660 1.954E-04 0.087 1.692E-02 3.477 1.519
3720 1.551E-04 0.077 1.199E-02 3.228 1.509
3780 1.108E-04 0.066 7.275E-03 2.917 1.493
3840 8.251E-05 0.057 4.688E-03 2.686 1.480
3900 5.975E-05 0.049 2. 899E-03 2.471 1.465 5.94 0.020
3960 5.631E-05 0.047 2.654E-03 2.436 1.463
4020 4.996E-05 0.044 2.222E-03 2.367 1.458
4080 4.643E-05 0.043 1.992E-03 2.327 1.454
4140 2.947E-05 0.034 1.012E-03 2.111 1.434
4200 1.617E-05 0.026 4.141E-04 1.891 1.408
4260 0.000E+00 0.000 0.000E+00 0.000 0.000















Time Q Sed. Cone
(s) (m /s) i
660 0.000E+00 0.0000
720 8.124E-06 0.0074
780 8.889E-06 0.0079
840 8.750E-06 0.0078
900 9.140E-06 0.0080
960 8.945E-06 0.0079
1020 8.555E-06 0.0077
1080 8.458E-06 0.0076
1140 8.555E-06 0.0077
1200 8.695E-06 0.0078
1260 8.360E-06 0.0076
1320 8.458E-06 0.0076
1380 8.750E-06 0.0078
1440 8.945E-06 0.0079
1500 8.945E-06 0.0079
1560 9.140E-06 0.0080
1620 1.055E-05 0.0089
1680 5.060E-05 0.0251
1740 5.162E-05 0.0254
1800 5.265E-05 0.0258
1860 9.393E-05 0.0379
1920 3.265E-04 0.0867
1980 5.411E-04 0.1213
2040 8.627E-04 0.1653
2100 9.722E-04 0.1790
2160 1.106E-03 0.1949
2220 1.338E-03 0.2213
2280 1.575E-03 0.2466
2340 1.762E-03 0.2657
2400 1.681E-03 0.2575
2460 1.507E-03 0.2395
2520 1.153E-03 0.2005
2580 9.675E-04 0.1784
2640 8.016E-04 0.1574
2700 6.262E-04 0.1336
2760 4. 849E-04 0.1127
2820 4.167E-04 0.1019
2880 4.186E-04 0.1022
2940 4.369E-04 0.1052
3000 4.865E-04 0.1130
3060 5.683E-04 0.1253
3120 6.532E-04 0.1374
3180 7.786E-04 0.1544
3240 8.627E-04 0.1653
3300 9.595E-04 0.1774
3360 1.018E-03 0.1846


Sed. Load TP DP
(g s) (mg L) (mg L)
0.000E+00 0.000 0.000
6.047E-05 1.510 1.277
7.025E-05 1.535 1.288
6.843E-05 1.530 1.286
7.357E-05 1.543 1.291
7.098E-05 1.537 1.289
6.591E-05 1.524 1.283
6.466E-05 1.521 1.282
6.591E-05 1.524 1.283
6.770E-05 1.529 1.285
6.343E-05 1.518 1.280
6.466E-05 1.521 1.282
6.843E-05 1.530 1.286
7.098E-05 1.537 1.289
7.098E-05 1.537 1.289
7.357E-05 1.543 1.291
9.336E-05 1.584 1.310
1.270E-03 2.258 1.526
1.313E-03 2.270 1.529
1.357E-03 2.282 1.532
3.557E-03 2.698 1.621
2.830E-02 4.176 1.831
6.561E-02 5.138 1.923
1.426E-01 6.315 2.013
1.740E-01 6.672 2.036
2.155E-01 7.085 2.062
2.961E-01 7.760 2.101
3.883E-01 8.399 2.135
4.682E-01 8.879 2.158
4.329E-01 8.674 2.148
3.610E-01 8.221 2.126
2.312E-01 7.228 2.071
1.726E-01 6.657 2.036
1.262E-01 6.108 1.998
8.366E-02 5.473 1.951
5.466E-02 4.905 1.903
4.248E-02 4.606 1.875
4.279E-02 4.614 1.876
4.595E-02 4.696 1.884
5.496E-02 4.912 1.903
7.118E-02 5.247 1.933
8.975E-02 5.575 1.959
1.202E-01 6.028 1.993
1.426E-01 6.315 2.013
1.702E-01 6.632 2.034
1.879E-01 6.817 2.046


:0.45pLm 0.45-2pmn 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(o o) (o ) (o ) (o ) (o o) (o ) (S m)


6.03 0.016






6.09 0.028


26.77


1.63 3.83 59.03 28.74


0 6.18 0.032


Table E-57. Field data of event BO91006V1 (site: B, plot: Vl, date: 09/10/06).














Table E-57. Continued.
Time Q Sed. Cone
(s) (m /s) i
3420 9.754E-04 0.1794
3480 8.960E-04 0.1695
3540 8.786E-04 0.1673
3600 8.754E-04 0.1669
3660 8.119E-04 0.1588
3720 6.905E-04 0.1426
3780 5.595E-04 0.1240
3840 4.452E-04 0.1065
3900 4.121E-04 0.1012
3960 3.083E-04 0.0834
4020 2.248E-04 0.0676
4080 1.925E-04 0.0610
4140 1.368E-04 0.0486
4200 9.135E-05 0.0372
4260 5.370E-05 0.0261
4320 4.247E-05 0.0223
4380 1.842E-05 0.0128
4440 0.000E+00 0.0000


Sed. Load TP DP dp
(g s) (mg L) (mg L) (pLm)
1.750E-01 6.682 2.037
1.519E-01 6.426 2.020
1.470E-01 6.368 2.016
1.461E-01 6.357 2.016
1.289E-01 6.143 2.001
9.844E-02 5.713 1.970
6.937E-02 5.212 1.930
4.742E-02 4.733 1.887
4.169E-02 4.585 1.873
2.573E-02 4.083 1.821
1.520E-02 3.622 1.765
1.174E-02 3.425 1.739
6.647E-03 3.043 1.682
3.396E-03 2.675 1.617
1.402E-03 2.295 1.535
9.488E-04 2.156 1.500
2.361E-04 1.772 1.383
0.000E+00 0.000 0.000


0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(oo) (oo) (oo) (oo) (oo) (oo) (S m)













6.09 0.028


Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


317.3248 g
1.8184 m
11.8616 g
3.6580 g















Time O Sed. Cone
(s) (m /s) (g L)
1860 0.000E+00 0.0000
1920 4.922E-05 0.0491
1980 7.567E-05 0.0577
2040 1.021E-04 0.0646
2100 3.429E-04 0.1017
2160 6.278E-04 0.1276
2220 9.208E-04 0.1474
2280 1.186E-03 0.1621
2340 1.056E-03 0.1551
2400 5.290E-04 0.1197
2460 4.586E-04 0.1135
2520 3.421E-04 0.1016
2580 2.959E-04 0.0962
2640 2.547E-04 0.0910
2700 2.141E-04 0.0852
2760 1.845E-04 0.0806
2820 1.574E-04 0.0760
2880 1.753E-04 0.0791
2940 2.885E-04 0.0953
3000 3.419E-04 0.1016
3060 4.177E-04 0.1095
3120 4. 576E-04 0.1134
3180 5.243E-04 0.1193
3240 4.689E-04 0.1144
3300 4.099E-04 0.1088
3360 4.471E-04 0.1124
3420 5.159E-04 0.1186
3480 4.239E-04 0.1101
3540 3.075E-04 0.0977
3600 2.469E-04 0.0899
3660 1.933E-04 0.0820
3720 1.491E-04 0.0744
3780 1.151E-04 0.0675
3840 8.671E-05 0.0607
3900 7.614E-05 0.0578
3960 7.100E-05 0.0563
4020 6.659E-05 0.0550
4080 6.111E-05 0.0533
4140 5.564E-05 0.0514
4200 5.016E-05 0.0494
4260 4.468E-05 0.0473
4320 3.921E-05 0.0451
4380 3.153E-05 0.0415
4440 2.050E-05 0.0353
4500 1.203E-05 0.0289
4560 0.000E+00 0.0000
Number of field samples = 5
Total sediment mass 88.7276
Total ninoff volume = 0.7737
Total phosphonxs mass = 3.5120
Total DP mass = 1.1977


Sed. Load TP DP do
(a s) (me L) (me L) (pLm)
0.000E+00 0.000 0.000
2.416E-03 2.808 1.430
4.366E-03 3.053 1.452
6.593E-03 3.245 1.468
3.488E-02 4.243 1.535
8.013E-02 4.912 1.569
1.357E-01 5.411 1.592
1.923E-01 5.778 1.606
1.638E-01 5.605 1.600
6.332E-02 4.709 1.560
5.204E-02 4.548 1.551
3.476E-02 4.241 1.535
2. 848E-02 4.099 1.527
2.317E-02 3.960 1.518
1.825E-02 3.807 1.509
1.488E-02 3.683 1.501
1.196E-02 3.557 1.492
1.387E-02 3.642 1.498 25.33
2.751E-02 4.076 1.525
3.475E-02 4.240 1.535
4. 576E-02 4.447 1.546
5.188E-02 4.546 1.551
6.256E-02 4.699 1.559
5.364E-02 4.573 1.553
4.458E-02 4.427 1.545
5.025E-02 4.520 1.550
6.117E-02 4.680 1.558
4.669E-02 4.463 1.547
3.003E-02 4.136 1.529
2.220E-02 3.932 1.517
1.586E-02 3.722 1.503
1.109E-02 3.515 1.489
7.773E-03 3.327 1.475
5.266E-03 3.138 1.460
4.403E-03 3.057 1.453
3.999E-03 3.014 1.449
3.662E-03 2.976 1.446
3.254E-03 2.927 1.441
2. 860E-03 2.874 1.436
2.480E-03 2.818 1.431
2.116E-03 2.757 1.425
1.767E-03 2.691 1.418
1.310E-03 2.587 1.407
7.245E-04 2.400 1.385
3.482E-04 2.202 1.358
0.000E+00 0.000 0.000


0.45tim 0.45-2tim 2-37tim 37-100tim 100-250tim >250tim pH EC
ool lool ool lool lool loo (S m)


6.03 0.027


22.36


11.69


0.67 6.10 0.032


6.13 0.029






6.00 0.021


Table E-58. Field data of event BO91006V4 (site: B, plot: V4, date: 09/10/06).














Table E-59. Field data of event B101206S2 (site: B, plot: S2, date: 10/12/06).


Time Rain
(s) (m s)
0 0.000E+00
60 1.667E-06
120 1.667E-06
180 3.333E-06
240 6.667E-06
300 8.333E-06
360 1.333E-05
420 1.500E-05
480 1.667E-05
540 2.167E-05
600 1.500E-05
660 1.333E-05
720 2.833E-05
780 3.333E-05
840 3.000E-05
900 2.333E-05
960 2.167E-05
1020 1.500E-05
1080 1.167E-05
1140 5.000E-06
1200 3.333E-06
1260 1.667E-06
1380 3.333E-06
1440 5.000E-06
1500 1.667E-06
1620 1.667E-06
1920 1.667E-06
1980 0.000E+00

Number of field samples

Total sediment mass =

Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Time Q Sed. Cone Sed. Load TP
(s) (m /s) (g s) (mg L)
480 0.000E+00 0.000 0.000E+00 0.000
540 2.701E-04 0.999 2.697E-01 26.879
600 5.948E-04 1.531 9.104E-01 39.286
660 3.662E-04 1.178 4.313E-01 31.096
720 8. 572E-04 1.865 1.599E+00 46.910
780 2.230E-03 3.127 6.973E+00 74.887
840 2. 573E-03 3.379 8.695E+00 80.351
900 2.030E-03 2.972 6.033E+00 71.509
960 1.547E-03 2.566 3.968E+00 62.580
1020 5.995E-04 1.537 9.215E-01 39.437
1080 1.892E-04 0.824 1.559E-01 22.700
1140 5.018E-05 0.402 2.018E-02 12.283
1200 1.852E-05 0.235 4.345E-03 7.935
1260 1.596E-05 0.216 3.454E-03 7.451
1320 1.482E-05 0.208 3.081E-03 7.223
1380 1.311E-05 0.195 2.551E-03 6.865
1440 9. 546E-06 0.164 1.565E-03 6.033
1500 8.977E-06 0.159 1.424E-03 5.886
1560 8.549E-06 0.154 1.321E-03 5.773
1620 7.552E-06 0.144 1.091E-03 5.497
1680 6.697E-06 0.135 9.066E-04 5.245
1740 6.982E-06 0.138 9.667E-04 5.331
1800 6.127E-06 0.129 7.905E-04 5.068
1860 5.415E-06 0.121 6.535E-04 4.835
1920 4.703E-06 0.112 5.258E-04 4.586
1980 4.560E-06 0.110 5.015E-04 4.534
2040 4.133E-06 0.104 4.310E-04 4.373
2100 2.024E-06 0.071 1.435E-04 3.411
2160 0.000E+00 0.000 0.000E+00 0.000

1800.0

0.687 m3
43.642 g
0.894 g


DP dp
(mg L) (pLm)
0.000
1.274
1.287
1.279
1.293
1.310
1.312
1.308
1.303 407.3
1.287
1.268
1.246
1.229
1.227
1.226
1.224
1.219
1.218
1.217
1.215
1.213
1.214
1.211
1.210
1.207
1.207
1.205
1.194
0.000


:0.45Lm 0.45-2pmm 2-37pLm 37-100Lm 100-250mm >250pLm pH
(o o) (o ) (o ) (o ) (o ) (o )


EC
(S m)


5.83 0.017


1.89 1.67 2.31 2.1 19.66 72.37 6.03 0.024

6.10 0.025


6.20 0.031






























































Total ninoff volume =
Total phosphonxs mass
Total DP mass =


Table E-60. Field data of event B101206V2 (site: B, plot: V2, date: 10/12/06).


Time Q Sed. Cone
(s) (m /s) i
720 0.000E+00 0.000
780 3.490E-06 0.006
840 4.445E-06 0.007
900 5.143E-06 0.007
960 5.399E-06 0.007
1020 6.069E-06 0.008
1080 4.900E-05 0.026
1140 5.825E-04 0.105
1200 1.863E-03 0.203
1260 1.688E-03 0.192
1320 1.255E-03 0.162
1380 8.368E-04 0.129
1440 4.502E-04 0.091
1500 2.853E-04 0.070
1560 1.288E-04 0.045
1620 4.734E-05 0.025
1680 1.914E-05 0.015
1740 1.230E-05 0.012
1800 9.012E-06 0.010
1860 6.847E-06 0.009
1920 5.607E-06 0.008
1980 4.724E-06 0.007
2040 3.955E-06 0.006
2100 3.428E-06 0.006
2160 3.000E-06 0.005
2220 2.530E-06 0.005
2280 2.316E-06 0.005
2340 1.960E-06 0.004
2400 1.761E-06 0.004
2460 1.547E-06 0.004
2520 1.348E-06 0.003
2580 0.000E+00 0.000
Number of field samples = 5
Total sediment mass = 68.664


Sed. Load
(g s)
0.000E+00
2.034E-05
2.969E-05
3.731E-05
4.026E-05
4.835E-05
1.271E-03
6.122E-02
3.778E-01
3.238E-01
2.035E-01
1.079E-01
4.090E-02
2.003E-02
5.769E-03
1.204E-03
2.919E-04
1.461E-04
8.977E-05
5.839E-05
4.272E-05
3.266E-05
2.473E-05
1.977E-05
1.605E-05
1.229E-05
1.071E-05
8.245E-06
6.970E-06
5.692E-06
4.586E-06
0.000E+00


TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(mg L) (mg L) (pm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000 0.000
1.386 1.247
1.420 1.259
1.442 1.266
1.449 1.269
1.468 1.275
2.064 1.387
4.519 1.532 6.03 0.021
7.601 1.606
7.251 1.599
6.311 1.580
5.265 1.555 6.12 0.027
4.075 1.516
3.436 1.489 14.55 2.67 5.24 88.34 3.75 0 0 6.21 0.036
2.651 1.442
2.048 1.385
1.721 1.335
1.607 1.312 6.13 0.028
1.541 1.295
1.489 1.281
1.455 1.271
1.429 1.262
1.403 1.253
1.383 1.246
1.366 1.239
1.345 1.231
1.335 1.226
1.316 1.218
1.305 1.213
1.292 1.207
1.278 1.200
0.000 0.000


0.437 m3
2.692 g
0.686 g


g















Table E-61. Field data of event B101206S3 (site: B, plot: S3, date: 10/12/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(s) (m /s)
480 0.000E+00
540 1.114E-04
600 4.702E-04
660 4.318E-04
720 5.788E-04
780 2.428E-03
840 2.502E-03
900 2.163E-03
960 1.557E-03
1020 1.155E-03
1080 6.197E-04
1140 2.754E-04
1200 1.056E-04
1260 2.976E-05
1320 2.342E-05
1380 1.832E-05
1440 1.736E-05
1500 1.377E-05
1560 1.143E-05
1620 8.675E-06
1680 7.297E-06
1740 6.195E-06
1800 4.403E-06
1860 3.852E-06
1920 2.336E-06
1980 1.647E-06
2040 8.200E-07
2100 0.000E+00
Number of field samples
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


(g s)
0.000E+00
4.160E-02
4.584E-01
3.978E-01
6.482E-01
7.071E+00
7.430E+00
5.832E+00
3.370E+00
2.050E+00
7.262E-01
1.880E-01
3.808E-02
4.612E-03
3.094E-03
2.055E-03
1.878E-03
1.277E-03
9.363E-04
5.912E-04
4.431E-04
3.373E-04
1.910E-04
1.528E-04
6.640E-05
3.709E-05
1.160E-05
0.000E+00


(mg L) (mg L) (pLm) (o)
0.000 0.000
10.529 1.389
24.260 1.403
23.055 1.402
27.497 1.405
66.415 1.419
67.658 1.420
61.805 1.418
50.389 1.415 394.9 1.81
41.913 1.412
28.654 1.406
17.660 1.398
10.225 1.388
5.321 1.376
4.761 1.373
4.268 1.371
4.170 1.370
3.785 1.368
3.512 1.366
3.164 1.364
2.975 1.362
2.813 1.361
2.526 1.357
2.430 1.356
2.132 1.351
1.973 1.348
1.742 1.341
0.000 0.000


(oo) (oo) (oo) (oo) (oo)


(S m)


0.000
0.373
0.975
0.921
1.120
2.912
2.970
2.696
2.165
1.775
1.172
0.683
0.360
0.155
0.132
0.112
0.108
0.093
0.082
0.068
0.061
0.054
0.043
0.040
0.028
0.023
0.014
0.000


1696.019 g
0.753 m3
39.231 g
1.064 g


6.15 0.032


1.7 2.41 2.04 20.11


71.93 5.94 0.028


6.02 0.031




6.18 0.034























5.98 0.023




6.03 0.034

6.10 0.290


3.55 58.65 33.57


0 6.12 0.033


Table E-62. Field data of event B101206V3 (site: B, plot: V3, date: 10/12/06).
Time Q Sed. Cone Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC


(oo) (oo) (oo) (oo) (oo) (S m)


0.000
0.045
0.057
0.072
0.079
0.079
0.078
0.074
0.071
0.068
0.063
0.058
0.051
0.043
0.038
0.037
0.035
0.035
0.034
0.034
0.034
0.033
0.032
0.033
0.033
0.033
0.033
0.000
4
18.720 g
0.250 mr
1.111 g
0.376 g


(s) (m /s)
720 0.000E+00
780 6.584E-06
840 5.497E-05
900 3.841E-04
960 8.390E-04
1020 8.153E-04
1080 7.785E-04
1140 5.130E-04
1200 3.350E-04
1260 2.259E-04
1320 1.233E-04
1380 5.982E-05
1440 2.114E-05
1500 4.313E-06
1560 1.695E-06
1620 1.158E-06
1680 8.131E-07
1740 7.166E-07
1800 6.339E-07
1860 5.926E-07
1920 5.926E-07
1980 4.961E-07
2040 3.721E-07
2100 4.548E-07
2160 4.548E-07
2220 4.134E-07
2280 4.134E-07
2340 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


(g s) (mg L) (mg L) (pLm) (o)
0.000E+00 0.000 0.000
2.956E-04 4.644 1.342
3.157E-03 4.537 1.418
2.764E-02 4.452 1.491
6.609E-02 4.422 1.521
6.402E-02 4.423 1.520
6.080E-02 4.424 1.518
3.817E-02 4.441 1.502
2.372E-02 4.458 1.485
1.528E-02 4.474 1.470
7.777E-03 4.501 1.447
3.469E-03 4.533 1.421
1.087E-03 4.583 1.383
1.844E-04 4.667 1.327 27.40 1.78
6.501E-05 4.719 1.296
4.248E-05 4.742 1.283
2.864E-05 4.763 1.272
2.487E-05 4.770 1.267
2.169E-05 4.778 1.263
2.012E-05 4.782 1.261
2.012E-05 4.782 1.261
1.650E-05 4.793 1.255
1.197E-05 4.811 1.246
1.497E-05 4.798 1.253
1.497E-05 4.798 1.253
1.346E-05 4.804 1.250
1.346E-05 4.804 1.250
0.000E+00 0.000 0.000















Time Q Sed. Cone
(s) (m /s) i
360 0.000E+00 0.0000
420 5.248E-06 0.0096
480 6.960E-06 0.0116
540 8.310E-06 0.0130
600 9.980E-06 0.0147
660 9.771E-06 0.0145
720 1.116E-05 0.0158
780 1.331E-04 0.0797
840 6.355E-04 0.2215
900 1.670E-03 0.4166
960 1.910E-03 0.4548
1020 1.767E-03 0.4322
1080 1.567E-03 0.3996
1140 1.217E-03 0.3387
1200 6.950E-04 0.2349
1260 3.689E-04 0.1553
1320 1.137E-04 0.0719
1380 2.848E-05 0.0291
1440 1.417E-05 0.0184
1500 8.324E-06 0.0130
1560 5.401E-06 0.0098
1620 3.898E-06 0.0079
1680 3.174E-06 0.0069
1740 2.757E-06 0.0063
1800 2.270E-06 0.0056
1860 2.033E-06 0.0052
1920 1.796E-06 0.0048
1980 1.560E-06 0.0044
2040 1.281E-06 0.0038
2100 1.100E-06 0.0035
2160 1.100E-06 0.0035
2220 8.082E-07 0.0028
2280 6.412E-07 0.0024
2340 0.000E+00 0.0000
Number of field samples 5


Sed. Load
(g s)
0.000E+00
5.055E-05
8.062E-05
1.081E-04
1.463E-04
1.413E-04
1.761E-04
1.061E-02
1.408E-01
6.957E-01
8.687E-01
7.636E-01
6.260E-01
4.121E-01
1.632E-01
5.728E-02
8.183E-03
8.286E-04
2.612E-04
1.084E-04
5.301E-05
3.091E-05
2.201E-05
1.743E-05
1.264E-05
1.053E-05
8.585E-06
6.797E-06
4.910E-06
3.818E-06
3.818E-06
2.291E-06
1.563E-06
0.000E+00


TP DP dp <0.45pu
(mg L) (mg L) (pLm) (o )
0.000 0.000
3.246 1.755
3.372 1.760
3.456 1.764
3.547 1.767
3.537 1.766
3.605 1.769
5.458 1.814
7.458 1.843
9.196 1.861
9.476 1.863
9.312 1.862 17.00 2.51
9.066 1.859
8.575 1.855
7.600 1.844
6.664 1.832
5.300 1.811
4.165 1.786
3.735 1.773
3.457 1.764
3.259 1.756
3.123 1.750
3.044 1.747
2.992 1.744
2.923 1.741
2.886 1.739
2.845 1.736
2.800 1.734
2.740 1.731
2.696 1.728
2.696 1.728
2.611 1.723
2.552 1.719
0.000 0.000


m 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250Lm
(o o) (o ) (o ) (o ) (o )


pH EC
(S m)


5.73 0.012




5.08 84.22 8.19 0 0 5.93 0.023

6.02 0.028





5.84 0.023


Total sediment mass =
Total ninoff volume =
Total phosphonxs mass
Total DP mass =


224.8942 g
0.6124 m3
5.3263 g
1.1358 g


Table E-63. Field data of event B101206V1 (site: B, plot: Vl, date: 10/12/06).















Time Q
(s) (m /s)
360 0.000E+00
420 1.045E-06
480 1.306E-06
540 2.037E-06
600 1.899E-06
660 1.169E-06
720 3.332E-06
780 7.053E-06
840 8.467E-05
900 1.217E-03
960 1.141E-03
1020 7.003E-04
1080 3.607E-04
1140 1.467E-04
1200 5.228E-05
1260 2.309E-05
1320 1.486E-05
1380 6.154E-06
1440 3.040E-06
1500 2.296E-06
1560 1.662E-06
1620 1.345E-06
1680 1.166E-06
1740 1.042E-06
1800 8.211E-07
1860 6.833E-07
1920 6.419E-07
1980 6.006E-07
2040 5.041E-07
2100 3.801E-07
2160 3.387E-07
2220 3.387E-07
2280 1.596E-07
2340 1.182E-07
2400 0.000E+00
Number of field samples I
Total sediment mass =
Total ninoff volume =
Total phosphonxs mass =
Total DP mass =


Sed. Cone


0.0000
0.0246
0.0260
0.0292
0.0286
0.0253
0.0331
0.0401
0.0756
0.1493
0.1469
0.1297
0.1095
0.0870
0.0668
0.0542
0.0485
0.0387
0.0323
0.0301
0.0277
0.0262
0.0253
0.0246
0.0231
0.0221
0.0217
0.0213
0.0204
0.0190
0.0184
0.0184
0.0152
0.0141
0.0000
5


Sed. Load TP DP dp <0.45pLm 0.45-2pLm 2-37pLm 37-100pLm 100-250pLm >250pLm pH EC
(g s) (mg L) (mg L) (pLm) (oo) (oo) (oo) (oo) (oo) (oo) (S m)
0.000E+00 0.000 0.000
2.568E-05 2.106 1.397
3.401E-05 2.151 1.400
5.940E-05 2.245 1.406
5.440E-05 2.230 1.405
2.957E-05 2.128 1.398
1.102E-04 2.363 1.413
2.825E-04 2.570 1.423
6.400E-03 3.600 1.458 5.98 0.026
1.817E-01 5.682 1.497
1.676E-01 5.614 1.496
9.082E-02 5.131 1.489
3.948E-02 4.562 1.479 10.08 3.61 7 87.23 2.17 0 0.00 6.03 0.028
1.277E-02 3.926 1.466
3.494E-03 3.349 1.451 6.10 0.030
1.252E-03 2.985 1.440
7.203E-04 2.817 1.433
2.381E-04 2.530 1.421
9.820E-05 2.340 1.411 6.09 0.027
6.903E-05 2.273 1.407
4.601E-05 2.201 1.403
3.527E-05 2.156 1.400
2.948E-05 2.128 1.398
2.559E-05 2.106 1.397
1.899E-05 2.062 1.393
1.507E-05 2.029 1.391
1.394E-05 2.018 1.390
1.282E-05 2.007 1.389
1.029E-05 1.978 1.387
7.218E-06 1.933 1.383
6.247E-06 1.916 1.381
6.247E-06 1.916 1.381
2.428E-06 1.814 1.371
1.666E-06 1.778 1.367
0.000E+00 0.000 0.000


30.3295 g
0.2267 m3
1.1885 g
0.3376 g


Table E-64. Field data of event B101206V4 (site: B, plot: V4, date: 10/12/06).










LIST OF REFERENCES


Abu-Zreig, M. 2001. Factors affecting sediment trapping in vegetated filter strips: simulation
study using VFSMOD. Hydrological Processes 15, 1477-1488.

Abu-Zreig, M., Ramesh, P.R., Hugh, R.W., Manon, N.L., Narinder, K.K., 2003. Phosphorus
removal in vegetated filter strips. Journal of Environmental Quality 32, 613-619.

Anderson, J.M., 1976. An ignition method for determination of total phosphorus in lake
sediments. Water Research 10, 329-331.

Babare, A.M., Sale, P.W.G., Fleming, N., Garden, D.L., Johnson, D., 1997. The agronomic
effectiveness of reactive phosphate rock. The effect of particle size of a moderately
reactive phosphate rock. Australian journal of experimental agriculture 37, 969-984.

Barfield B.J.,Toller, E.W., Hayes, F.C., 1978. The use of grass filters for sediment control in
strip mining drainage. Vol. I: Theoretical studies on artificial media. Publish number
3 5-RRR2-78. Institute for Mining and Minerals Research, University of Kentucky,
Lexington.

Barfield, B.J., Tollner, E.W., Hayes, J.C., 1979. Filtration of sediment by simulated vegetation I.
Steady-state flow with homogeneous sediment. Transactions of ASAE 22 (5), 540-545.

Beck, M.A., Zelazny, L.W., Daniels, W.L., Mullins, G.L., 2004. Using Mehlich-1 extract to
estimate soil phosphorus saturation for environmental risk assessment. Soil Science
Society of America Journal 68, 1762-1771.

Blum, A, Lasaga, A., 1988. Role of surface speciation in the low-temperature dissolution of
minerals. Nature 331, 431-433.

Chaubey, I., Daniel, T.C., Moore, P.A., 1994. Modeling nutrient transport in vegetative filter
strips. ASAE Meeting Paper No. 942149. St. Joseph, MI.

Chien, S.H., Menon, R.G., 1995 Factors affecting the agronomic effectiveness of phosphate rock
for direct application. Fertilizer Research 41, 227-234.

Cuadros-Rodriquez, L., Hernandez Torres, M.E., Almansa Lopez, E., Egea Gonzalez, F.J.,
Arrebola Liebanas, F.J., Martinez Vidal, J.L., 2002. Assessment of uncertainty in pesticide
multiresidue analytical methods: main sources and estimation. Analytica Chimica Acta 454
(2), 297-314.

Day, P.R., 1965. Particle fractionation and particle-size analysis, in Black, C.A., ed., Methods of
soil analysis, Part 1: American Society of Agronomy, Inc., Madison, Wisconsin, pp.
545-567.

DEP, 2006a. Peace River Cumulative Impact Study. Water Quality. Available at:
www.floridadep.org. Accessed 08 February 2007.










DEP. 2006b. Peace River Cumulative Impact Study. Land Use Change. Available at:
www.floridadep.org. Accessed 02 February 2007.

Department of Land and Water Resources Engineering. 2006. Visual MINTEQ Version 2.5 1
[Online]. Available at: www.1wr.kth. se/English/OurSoftware/vminteq/ (verified 22 Feb.
2007). Department of Land and Water Resources Engineering, Stockholm.

Dillaha, T.A., Reneau, R.B., Mostaghimi, S., Lee. D., 1989. Vegetative fi1ter strips for
agricultural nonpoint source pollution control. Transactions of the ASABE 32 (2),
491-496.

Driessens, F.C.M., 1982. Mineral aspects of dentistry. Monographs in Oral Science 10, 49-90

Elliott, J.C., 1994. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates.
Elsevier, Amsterdam, Netherlands.

Foster, G.R., 1982. Chapter 8. Modeling the erosion process. In: Hydrologic Modeling of Small
Watersheds, Editors: C. T. Haan, H. P. Johnson, and D. L. Brakensiek. ASAE Monograph
No. 5, American Society of Agricultural Engineers, St. Joseph, MI, pp. 297-380.

Foster, G.R., Lane, L.J., Nowlin, J.D., Laflen, J.M., Young, R.A., 1980. A model to estimate
sediment yield from Hield-sized areas development of model. In: Knisel, W.G., CREAMS:
A Field-scale Model for Chemical, Runoff, and Erosion from Agricultural Management
Systems. Vol. II. USDA-Science Education Administration Conservation Report No. 26,
pp. 193-281.

Foster, G.R., 1982. Modeling the erosion process, chapter 8 Hydrologic modeling of small
watersheds, editors: Haan, C.T., Johnson, H.P., Brakensiek, D.L., pp. 297-388.

Gao, B., Walter, M.T., Steenhuis, T.S., Hogarth, W.L., Parlange, J.Y., 2004. Rainfall induced
chemical transport from soil to runoff: theory and experiments. Journal of Hydrology 295
(1-4), 291-304.

Gharabaghi, B., Rudra, R.P., Whiteley, H.R., Dickinson, W.T., 2000. Improving removal
efficiency of vegetative fi1ter strips. ASAE Annual Meeting. Paper No. 002083. St Joseph;
USA.

Gordon, J.D., Newland, C.A., Gagliardi, .S.T., 2000. Laboratory performance in the sediment
laboratory quality-assurance proj ect, 1996-98. USGS Water Resources Investigations
Report 99-4184. Washington, D.C., USGS.

Griffin, R.A., Jurinak, J.J., 1973. Estimation of activity coefficients from the electrical
conductivity of natural aquatic systems and soil extracts. Soil Science 1 16, 26-30.

Guidry, M.W., Mackenzie, F.T., 2000. Apatite weathering and the Phanerozoic phosphorus
cycle. Geology 28, 631-634.










Guidry, M.W., Mackenzie, F.T., 2003. Experimental study of ingeneous and sedimentary apatite
dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates,
Geochimica et Cosmochimica Acta, 67 (16); 2949-2963.

Han, J., Wu, S., Allan, C., 2005. Suspended sediment removal by vegetative filter strip treating
highway runoff. Journal of Environmental Science and Health, 40, 1637-1649.

Haan, C.T., Barfield, B.J., Hayes, J.C., 1994. Design Hydrology and Sedimentology for Small
Catchments. Academic Press, San Diego, CA.

Hanna, J, Anazia, I., 1990. Selective flotation of dolomitic limestone impurities from Florida
phosphates. Florida institutes of phosphate research. Publication No. 02-066-089.

Harmel, R.D., Cooper, R.J., Slade, R.M., Haney, R.L., Arnold, J.G., 2006. Cumulative
uncertainty in measured streamflow and water quality data for small watersheds.
Transactions of the ASABE 49 (3), 689-701.

Harmel, R.D., King, K.W., 2005. Uncertainty in measured sediment and nutrient flux in runoff
from small agricultural watersheds. Transactions of the ASABE 48 (5), 1713-1721.

Harmel, R.D., Smith, P.K., 2007. Consideration of measurement uncertainty in the evaluation of
goodness-of-fit in hydrologic and water quality modeling. Journal of Hydrology 337,
326-336.

Harris, W.G., Rhue, R.D., Kidder, G., Littell, R.C., Brown, R.B., 1996. P retention as related to
morphology of sandy coastal plain soils. Soil Science Society of America j journal 60,
1513-1521.

He, Z.L., Yao, H., Calvert, D.V., Stoffella, P.J., Yang, X.E., Chen, G., 2005. Dissolution
characteristics of Central Florida phosphate rocks in an acidic sandy soil. Plant Soil 273,
157-166.

He, Z.L., Zhang, M.K., Calvert, D.V., Stoffella, P.J. Li, Y.C., 2003. Loading of phosphorus in
surface runoff in relation to management practices and soil properties. Soil and Crop
Science Society of Florida Proceedings 62, 12-20.

Huyer, W., Neumaier, A., 1999. Global optimization by multilevel coordinate search. Journal of
Global Optimization 14, 331-355.

Jackson, M.L., 1969. Soil chemical analysis-advanced course. Revised ed. Publ. by author.
Department of Soils, University of Wisconsin. Madison, WI.

Jahnke, R.A., 1984. The synthesis and solubility of carbonate fluorapatite. American Journal of
Science 284, 58-78.

Kizil, U., Disrud L.A., 2002. Vegetative filter strips modeling of a small watershed. ASAE
Meeting Paper No. 02-2133. St. Joseph: ASAE.










Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity, laboratory methods. In:
Klute A (ed) Methods of soil analysis, Part I. Soil Science Society of America, Madison,
Wisconsin. pp. 687-732.

Kotlash, A.R., Chessman, B.C., 1998. Effects of water sample preservation and storage on
nitrogen and phosphorus determinations: implications for the use of automated sampling
equipment. Water Research 32 (12), 3731-3737.

Krause P., Boyle, D.P., Base, F., 2005. Comparison of different efficiency criteria for
hydrological model assessment. Advances in Geosciences, 5, 89-97.

Kuo, Y.M., Mufioz-Carpena, R., Li, Y.C., Campbell, K.L., Parsons, J.E., 2005. Using vegetative
filter strips to reduce phosphorus transport from the phosphorus mining areas in central
Florida. Paper number 052174. ASAE Annual International Meeting, St. Joseph.

Lambot, S., Javaux, M., Hupet, F., Vanclooster, M., 2002. A global multilevel coordinate search
procedure for estimating the unsaturated soil hydraulic properties. Water Resources
Research 38 (11), 1222-1239.

Lane, M. III, Mackenzie, F.T, 1990. Mechanisms and rates of natural carbonate fluorapatite
dissolution. Geological Society of America Abstracts with Programs 21 (6), A208.

Lane, M. III., Mackenzie, F.T., 1991. Kinetics of carbonate fluorapatite dissolution: Application
to natural systems. Geological Society of America Abstracts with Programs 22 (7), Al 51.

Legates, D.R., McCabe, G.J., 1999. Evaluating the use of "goodness-of-fit" measures in
hydrologic and hydroclimatic model validation. Water Resources Research 35, 233-241.

Martin, G. R., Smoot, J.L., White, K.D., 1992. A comparison of surface-grab and
cross-sectionally integrated stream-water-quality sampling methods. Water Environment
Research 64 (7), 866-876.

McConnell, D., 1973. Apatite, its crystal chemistry, mineralogy, and geologic and biologic
occurrences. Springer-Verlag.

McCuen, R.H., Knight, Z., Cutter, A.G., 2006. Evaluation of the Nash-Sutcliffe efficiency index.
Journal of Hydrologic Engineering 11 (6), 597-602.

McDowell, H., Gregory, T.M., Brown, W.E., 1977. Solubility of Ca5(PO4)30H in the system
Ca (OH)2-H3PO4-H20 at 5,15,25 and 37 oC. Journal of Research of the National Bureau of
Standards 81A, 273-281.

McDowell, R.W., Sharpley, A.N., 2001a. Soil phosphorus fractions in solution: Influence of
fertilizer and manure, filtration and method of determination. Chemosphere 45, 737-748.

McDowell, R.W., Sharpley, A.N., 2001b. Approximating phosphorus release from soils to
surface runoff and subsurface drainage. Journal of environmental quality 30, 508-520.










Mehlich, A., 1953. Determination of P, Ca, Mg, K, Na, NH4. Raleigh (NC): North Carolina
Department of Agriculture, Agronomic Division. Soil Testing Division Publication pp.
1-53.

Mercurio, G., Perot, J., Roth, N., Southerland, M., 2002. Maryland biological stream survey
2000: quality assessment report. Springfield, Va.: Versar, Inc., and Baltimore, Md.:
Maryland Department of Natural Resources.

Millington, R. J., Quirk, J. P., 1960. Transport in porous media, 7th Intern. Congress of Soil
Science, Madison, Wisconsin, USA, 97-106.

Mueller, D.K., Hamilton, P.A., Helsel, D.R., Hitt, K.J., Ruddy, B.C., 1995. Nutrients in ground
water and surface water of the United States An analysis of data through 1992: U. S.
Geological Survey Water-Resources Investigations Report 95-4031, pp. 74.

Mufioz-Carpena, R., Miller, C.T., Parsons, J.E., 1993a. A quadratic Petrov-Galerkin solution for
kinematic wave overland flow. Water Resources Research 29 (8), 2615-2627.

Mufioz-Carpena, R., Parsons, J.E., Gilliam, J.W., 1993b. Numerical approach to the overland
flow process in vegetative filter strips. Transactions of ASAE 36 (3),761-770.

Mufioz-Carpena, R., Parsons, J.E., Gilliam, J.W., 1999. Modeling hydrology and sediment
transport in vegetative filter strips. Journal of Hydrology 214, 111-129.

Mufioz-Carpena, R., Parsons, J.E., 2004. A design procedure for vegetative filter strips using
VFSMOD-W. Transactions of ASABE 47 (6), 1933-1941.

Mufioz-Carpena, R., Zaj ac, Z., Kuo, Y.M., 2007. Evaluation of water quality models through
global sensitivity and uncertainty analyses techniques: application to the vegetative filter
strip model VFSMOD-W. Transactions of ASABE, submitted.

Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of
phosphate in natural water. Analytica Chimica Acta 27, 31-36.

Nair, V.D., Graetz, D.A., Portier, K.M., 1995. Forms of phosphorus in soil profiles from dairies
of south Florida. Soil Science Society of America j ournal 59, 1244-1249.

Nair, V.D., Graetz, D.A., Reddy, K.R., 1998. Dairy manure influences on phosphorus retention
capacity of Spodosols. Journal of environmental quality 27, 522-527.

Nair, V.D., Graetz, D.A., 2002. Phosphorus saturation in Spodosols impacted by manure. Journal
of environmental quality 31, 1279-1285.

Nash, J.E., Sutcliffe J.V., 1970. River flow forecasting through conceptual models. Part 1-A
discussion of principles. Journal of Hydrology 10, 282-290.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Computer Journal 7,
308-313.










Nelson, D.W., Logan, T.J., 1983. Chemical processes and transport of phosphorus. Iowa State
Press, Ames.

Olsen, S.R., Khasawneh, F.E., 1980. Use and limitations of physical-chemical criteria for
assessing the status of phosphorus in soils. In: The role of phosphorus in agriculture.
American Society of Agronomy, Madison, Wisconsin, 61-410,

Ritter, A., Hupet, F., Mufioz-Carpena, R., Vanclooster, M., Lambot, S., 2003. Using inverse
methods for estimating soil hydraulic properties from field data as an alternative to direct
methods. Agricultural Water Management 59 (2), 77-96.

Ritter A., Mufioz-Carpena, R., 2007. Inverse calibration ofVFSMOD using the global multilevel
coordinate search/Nelder-Mead Simplex algorithm. 2007 ASAE Annual International
Meeting.

Rudra R.P., Gupta,N., Sebti, S., Gharabaghi, B., 2002. Incorporation of a phosphorus component
to the upland hydrology module of the VFSMOD model. ASAE Meeting Paper No.
022078.

Sauer, V.B., Meyer, R.W., 1992. Determination of error in individual discharge measurements.
USGS Open File Report 92-144. Washington, DC: USGS.

Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds, Technical Release 55:
Engineering Division. U. S. Dept. of Agriculture, Soil Conservation Service.

Sharpley, A.N., Ahuja, L,R,, Yamamoto, M,, Menzel, R,G., 1981. The kinetics of phosphorus
desorption from soil. Soil Science Society of America Journal 45, 493-496.

South Florida Water Management District. 2004. Background Information on the Peace River
Basin. Resource Conservation & Development Department, pp. 1-10

Southwest Florida Water Management District. 2001. Peace River comprehensive watershed
management plan. Volume I. Available at:
www. swfwmd. state.fl .us/documents/pl ans/cwm/cwm-peaceriverpart l.pdf. Acce ssed 02
February 2007.

Storm, D.E., Dillaha, T.A., Mostaghimi, S., Shanholtz, V.O., 1988. Modeling phosphorus
transport in surface runoff. Transactions of ASAE 3 1 (1), 1 17-127.

Tollner, E.W., Barfield, B.J., Haan, C.T., Kao, T.Y., 1976. Suspended sediment filtration
capacity of simulated vegetation. Transactions of ASAE 19 (4), 678-682.

Topping, J., 1972. Errors of observation and their treatment, fourth ed. Chapman and Hall,
London, UK.

UNEP, 2001. Environmental Aspects of Phosphate and Potash Mining. United Nations
Environment Programme. International Fertilizer Industry Association.










USDA Natural Resources Conservation Service, 1976. Field Offce Technical Guide, Section
IV-Practice Standards and Specifieations, 342-Critical Area Planting.

USEPA, 1982. Methods for chemical analysis of water and wastes. EPA 600/4-79-020. US
Government Print Office, Washington, DC.

USEPA, 1986, Quality criteria for water 1986: Washington, D.C., U.S. Environmental Protection
Agency Report 440/5-86-001, Office of Water, variously paginated.

USEPA, 2005. Management measures to protect and restore wetlands and riparian areas for the
abatement of nonpoint source pollution. Chapter 6: management measure for vegetated
treatment systems. Available at http://www. epa.gov/owow/nps/wetmeasures/ Accessed 02
June 2007.

Vadas, P.A., Sims, J.T., 2002. Predicting phosphorus desorption in Mid-Atlantic Coastal Plain
soils. Soil Science Society of America j ournal 66, 623-63 1.

Valsami-Jones, E., Ragnarsdottir. K.V., Putnis, A., Bosbach, D., Kemp, A.J., Gressey, G., 1998.
The dissolution of apatite in the presence of aqueous metal cations at pH 2~7. Chemical
geology 151, 215-233.

Wang, H.D., Harris, W.G., Yuan, T.L., 1989. Phosphate minerals in some Florida phosphatic
soils. Soil and Crop Science Society of Florida Proceedings 48, 49-55.

Welch, S.A., Taunton, A.E., Banfield, J.F., 2002. Effect of microorganisms and microbial
metabolites on apatite dissolution. Geomicrobiology Journal 19, 343-367.

Wilson, B. N., Barfield B.J., Moore, I.D., 1982. A Hydrology and Sedimentology Watershed
Model. Part I. Modeling Technique. Department of Agricultural Engineering, University of
Kentucky, Lexington, KY.

Yang, W., Weersink, A., 2005. Cost-effective Targeting of Riparian Buffers. 2004. Canadian
Journal of Agricultural Economics 52, 17-34.

Zhang, Q., Okoren, C.G., Mankin, K.R., 2001. Modeling Fecal Pathogen Transport in Vegetative
Filter Strips. ASAE Meeting Paper No. 01-2194. St. Joseph: ASAE.









BIOGRAPHICAL SKETCH

Born in Taiwan on June 2nd 1975, Yi-Ming Kuo received a bachelor' s degree in hydraulic

engineering from Feng Chia University in 1997 and a master of science in agricultural

engineering from National Taiwan University in 1999. He has received the certification of

professional hydrologist in 1998. After receiving his M. S. degree, he served in military for

almost two years. He enj oys playing and watching baseball. He j oined the photography club

and has exhibited photos twice. He received his Ph.D. in agricultural and biological

engineering from the University of Florida in August 2007.





PAGE 1

1 VEGETATIVE FILTER STRIPS TO REDUCE SURFACE RUNOFF PHOSPHORUS TRANSPORT FROM MINING SAND TAILINGS IN THE UPPER PEACE RIVER BASIN OF CENTRAL FLORIDA By YI-MING KUO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Yi-Ming Kuo

PAGE 3

3 To my parents, Mao-Ching Kuo and Li-Yin Hu ang, my wife, Anli Chen, and my son, Air Kuo. None of this would have been possi ble without their love and support.

PAGE 4

4 ACKNOWLEDGMENTS I acknowledge several individuals for their as sistance and contributions in the completion of this dissertation. First, I gratefully thank my parents, Mao-Ching Kuo and Li-Yin Huang for their constant support and encourag ement. I want to acknowledge my wife Anli Chen (Celine) for being my best friend and for her unsurpassa ble patience, encouragement, and understanding during this phase of our lives. It would not ha ve been possible, or as much fun, without her. I want to thank my advisor, Dr. Rafael M uoz-Carpena, for giving me the opportunity to pursue my degree and for helping to direct the scope of this wor k. His advice and critiques will remain with me always. For his guidance and encouragement in my academic career, I thank Dr. Yuncong Li. I also thank Dr. Willie Harris fo r his patience in discussing my research with me, and his hard work in advising my researc h. I thank Dr. Dean R hue for his patience in teaching soil chemistry and for his belief in me wh ich helped develop confidence in my abilities as a scientist. I thank Dr. Kenneth Campbell for his encouragement and patience since my arrival at UF. For giving me a comprehensive approach to thinking about my research, I thank Dr. Kirk Hatfield. I truly appr eciate everyones time and energy that was spent to improve my research. I have learned a great deal from them and I will never forget th e valuable lessons they taught me. Thanks are also given to Dr. Axel Ritter and Bin Gao for their precious comments on my research. I especially thank Dr. Hu aguo Wang for sharing with me his seemingly endless knowledge and experience wh ile pursuing my doctoral degree. I thank the Bureau of Mine Reclamation, and the FDEP for supporting this work. I also thank the following individuals and institutions for their kindness, support, and assistance in installing and maintaining experi mental sites: Paul Lane, Larry Miller, Jimmy Rummel, Daniel Preston, Zuzanna Zajac, Stuart Muller, David Kaplan, Jonathan Schroder, Oscar Perez Ovilla (UF-ABE); Tina Dispenza and Harry Trafford (UF-TREC, Homestead, FL ); Kevin Claridge,

PAGE 5

5 Michelle Harmeling, Marisa Rhian, Charles Co ok, David Arnold, and Michael Elswick (Bureau of Mine Reclamation, FDEP). Thanks are also given to Ginqin Yu, Laura Rosado, and Newton Campbell (UF-TREC), Bill Reve, Lisa Stanle y, and Aja Stoppe (UF-SWS) for laboratory technical assistance. I also thank Dr. Jim Jawitz, Dr. Jim J ones, Dr. Kenneth Campbell, Dr. Rafael Muoz-Carpena, Dr. Dean Rhue, and Dr. Overman for offering the wonderful courses that they taught. Their responsible attitudes toward stud ents and wonderfully prepared lectures will always stay in my mind. I give thanks to George Trie bel and Stephen Flocks for impr oving my writing skills and for their prompt revisions of my manuscripts. Fo r assisting me in writing MALTAB codes, I thank Fei Yan. The friendliness of all of the faculty, sta ff, and students in this department made completing this research as enjoyable as possi ble. They all gave me the motivation and inspiration to make all of my achievements possible. My experience at UF has been enriched by all these people and many more who I have not listed. I have learned a great deal, and I am grateful for having had this time here.

PAGE 6

6 TABLE OF CONTENTS Page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........9 LIST OF FIGURES................................................................................................................ .......14 ABSTRACT....................................................................................................................... ............18 CHAPTER 1 INTRODUCTION..................................................................................................................20 2 RUNOFF WATER QUALITY POLLUTION FROM PHOSPHATE MINING AREAS AND CONTROL BY VEGETATIVE FILTER STRIPS......................................................26 Introduction................................................................................................................... ..........26 Methods and Materials.......................................................................................................... .27 Field Experiments............................................................................................................27 Characterization of E xperimental Sites...........................................................................30 Characterization of Soil a nd Runoff Water Chemistry...................................................31 Results and Discussions........................................................................................................ ..31 Overland flow modification by the grass filters..............................................................33 Trapping Efficiencies of Sedi ment and Phosphorus Fraction.........................................33 Sediment Delivery Capacity in Runoff...........................................................................34 Estimations of Curve Number and Runoff Volume........................................................35 Estimated Yearly Pollutant Yields..................................................................................37 Conclusions.................................................................................................................... .........38 3 EVIDENCE FOR APATITE CONTROL OF PHOSPHORUS RELEASE TO RUNOFF FROM SOILS OF PHOSPHATE MINE RECLAMATION AREAS...................................55 Introduction................................................................................................................... ..........55 Materials and Methods.......................................................................................................... .56 Field Experiments............................................................................................................56 Soil Chemical Properties.................................................................................................57 Mehlich-1 extraction................................................................................................58 Degree of phosphorus saturation (DPS)...................................................................58 Phosphorus sorption isotherms (PSI).......................................................................58 Phosphorus fractionation..........................................................................................59 Total phosphorus in each particle fraction...............................................................59 Phosphate Solubility Equilibria.......................................................................................60 Approach for Modeling Phosphorus Release..................................................................61 Results and Discussion......................................................................................................... ..64 Soil Properties................................................................................................................ .64

PAGE 7

7 Phosphate Solubility Equilibria.......................................................................................65 Results of Modeling Phosphorus Release.......................................................................66 Conclusions.................................................................................................................... .........67 4 SIMPLIFIED MODELING OF PHOSPH ORUS REMOVAL BY VEGETATIVE FILTER STRIPS TO CONTROL RUNO FF POLLUTION FROM PHOSPHATE MINING AREAS...................................................................................................................76 Introduction................................................................................................................... ..........76 Methods and Materials.......................................................................................................... .79 Field Experiments............................................................................................................79 Characterization of E xperimental Sites...........................................................................80 Simplified Phosphorus Modeling....................................................................................81 Particulate phosphorus transport..............................................................................81 Dissolved phosphorus transport...............................................................................82 Inverse Calibration Methodology....................................................................................85 Calibration procedure...............................................................................................85 Selected input parameters and model outputs..........................................................85 Goodness-of-Fit Indicators..............................................................................................87 Consideration of Measured Data Un certainty in the Model Evaluation.........................87 Results and Discussion......................................................................................................... ..90 Conclusions.................................................................................................................... .........93 5 CONCLUSIONS..................................................................................................................107 APPENDIX A SOIL PHYSICAL PROPERTIES AND SIMULATION PARAMETERS.........................110 Soil Texture (or called part icle size distribution)..........................................................110 Saturated Hydraulic Conductivity ( Ks)..........................................................................110 Soil Moisture Retention Curve ( (h))............................................................................110 Soil Bulk Density ( db) and Porosity ( ).........................................................................111 Calibration of a Capacitance Probe (ECH2O probe).....................................................112 Topographical Survey...................................................................................................112 Grass Spacing (Ss).........................................................................................................113 Grass Height (H)............................................................................................................113 Results........................................................................................................................ ...........113 B GOODNESS-OF-FIT INDICATORS..................................................................................124 Nash and Sutcliffe Coefficient of Efficiency (effC).............................................................124 Modified Form of Ceff (m effC).............................................................................................124 Root Mean Square Error ( RMSE ).........................................................................................125 C VERIFICATION OF THE INVERSE MODELING ALGORITHM..................................126

PAGE 8

8 D SIMULATION RESULTS OF CHAPTER 3.......................................................................131 E SUMMARY OF FIELD DATA...........................................................................................145 LIST OF REFERENCES.............................................................................................................236 BIOGRAPHICAL SKETCH.......................................................................................................243

PAGE 9

9 LIST OF TABLES Table page 2-1. Characteristics of the e xperimental sites A and B..................................................................40 2-2. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow rate, and initial water moisture in site A............................................................................41 2-3. The loads of sediment, TP, and DP of selected events in site A............................................42 2-4. Intensity, duration, and amount of rainfall with corresponding runoff volume, peak flow rate, and initial water moisture in site B............................................................................43 2-5. The loads of sediment, TP, and DP of selected events in site B............................................44 2-6. Trapping efficiencies of runoff volume, p eak flow rate, sediment, TP, and DP in the sites A and B.................................................................................................................. ....45 3-1. Results of organic carbon (OC), soil te xture, hydraulic conductivity (Ks), and pH..............68 3-2. Main compounds in soil samples of both si tes examined by X-ray fluorescence (XRF)......68 3-3. Average concentration of each so il phosphorus fraction among all samples.........................68 3-4. The results of Mehlich-1 P extraction, degr ee of P saturation (DPS), ratio of P/Ca..............68 3-5. P concentrations in different particle size classes..................................................................69 3-6. Weight of CFA per gram soil sample.....................................................................................69 3-7. Surface area of CFA per gram soil.........................................................................................69 3-8. Concentrations of ions, pH EC, and ionic strength of runo ff samples collected in June 2006........................................................................................................................... .........70 3-9. Input parameters and simulations result s of the CFA dissolution model compared to the DP of batch experiments..............................................................................................71 4-1. Simulation parameters for the VFSMOD-W model...............................................................95 4-2. Selected quantities of hydrology, sediment, and phosphorus transport.................................95 4-3. The range of selected parameters used in calibration and measured data of each parameter at sites A and B.................................................................................................96 4-4. Measured data uncertainty of DP, TP sediment, and flow for each category.......................96

PAGE 10

10 4-5. Calibrated parameters of hydrology and sedi ment and measured and predicted selected quantities..................................................................................................................... .......97 4-6. Results of hydrology and sediment simulati ons in selected goodness -of-fit indicators with and without including measuremen t uncertainty (PER=% for hydrology, PER=% for sediment)..................................................................................................98 4-7. The calibrated range of parameters compared with the measured value of parameters in different plots................................................................................................................ .....99 4-8. The selected goodness-of-fit indicators fo r each quantity with/without including PER......100 A-1. Soil properties at site A................................................................................................. .......115 A-2. Soil properties at site B................................................................................................. .......115 A-3. Suction pressure head (cm) versus water content (%) for soil cores extracted from site A.............................................................................................................................. .........116 A-4. Suction pressure head (cm) versus water content (%) for soil cores extracted from site B.............................................................................................................................. .........116 A-5. Cumulative percentages for specific particle size ranges of soil samples collected at sites A and B.................................................................................................................. ..117 A-6. Average slope at each point in VFS and source areas at site A (X=0 m is in the edge of rain gutter)................................................................................................................... .....117 A-7. Average slope at each point in VFS and source areas at site B (X=0 m is in the edge of rain gutter)................................................................................................................... .....118 A-8. Grass spacing parameters at site A (06/18/06)....................................................................119 A-9. Grass spacing parameters at site B (06/18/06)....................................................................119 A-10. The averaged grass height at site A and site B measured at different period in year 2006........................................................................................................................... .......119 C-1. The measured value, calibration range, and optimized value of each parameter used in the verification of inverse modeling algorithm................................................................128 C-2. Results of hydrology and sediment simulati ons in selected goodness -of-fit indicators with and without including measured data uncertainty (PER=0.20 for hydrology, PER=0.29 for sediment)..................................................................................................128 C-3. Measured and predicted outputs of perfect data set and ARP.............................................128 E-1. Field data of event A020306S2 (sit e: A, plot: S2, date: 02/03/06)......................................146

PAGE 11

11 E-2. Field data of event A020306V2 (sit e: A, plot: V2, date: 02/03/06).....................................149 E-3. Field data of event A020306S3 (sit e: A, plot: S3, date: 02/03/06)......................................150 E-4. Field data of event A020306V3 (sit e: A, plot: V3, date: 02/03/06).....................................152 E-5. Field data of event A020306V1 (sit e: A, plot: V1, date: 02/03/06).....................................153 E-6. Field data of event A020306V4 (sit e: A, plot: V4, date: 02/03/06).....................................154 E-7. Field data of event A061306S2 (sit e: A, plot: S2, date: 06/13/06)......................................155 E-8. Field data of event A061306V2 (sit e: A, plot: V2, date: 06/13/06).....................................157 E-9. Field data of event A061306S3 (sit e: A, plot: S3, date: 06/13/06)......................................159 E-10. Field data of event A061306V3 (sit e: A, plot: V3, date: 06/13/06)...................................161 E-11. Field data of event A061306V1 (sit e: A, plot: V1, date: 06/13/06)...................................162 E-12. Field data of event A061306V4 (sit e: A, plot: V4, date: 06/13/06)...................................164 E-13. Field data of event A070706S2 (sit e: A, plot: S2, date: 07/07/06)....................................166 E-14. Field data of event A070706V2 (sit e: A, plot: V2, date: 07/07/06)...................................167 E-15. Field data of event A070706S3 (sit e: A, plot: S3, date: 07/07/06)....................................168 E-16. Field data of event A070706V3 (sit e: A, plot: V3, date: 07/07/06)...................................169 E-17. Field data of event A091006S2 (sit e: A, plot: S2, date: 09/10/06)....................................170 E-18. Field data of event A091006V2 (sit e: A, plot: V2, date: 09/10/06)...................................171 E-19. Field data of event A091006S3 (sit e: A, plot: S3, date: 09/10/06)....................................172 E-20. Field data of event A091006V3 (sit e: A, plot: V3, date: 09/10/06)...................................173 E-21. Field data of event A09106V4 (sit e: A, plot: V4, date: 09/10/06).....................................174 E-22. Field data of event B061306S2 (sit e: B, plot: S2, date: 06/13/06)....................................175 E-23. Field data of event B061306V2 (sit e: B, plot: V2, date: 06/13/06)...................................176 E-24. Field data of event B061306S3 (sit e: B, plot: S3, date: 06/13/06)....................................177 E-25. Field data of event B061306V3 (sit e: B, plot: V3, date: 06/13/06)...................................178 E-26. Field data of event B061306V1 (sit e: B, plot: V1, date: 06/13/06)...................................179

PAGE 12

12 E-27. Field data of event B071406S2 (sit e: B, plot: S2, date: 07/14/06)....................................180 E-28. Field data of event B071406V2 (sit e: B, plot: V2, date: 07/14/06)...................................182 E-29. Field data of event B071406S3 (sit e: B, plot: S3, date: 07/14/06)....................................184 E-30. Field data of event B071406V3 (sit e: B, plot: V3, date: 07/14/06)...................................186 E-31. Field data of event B071406V1 (sit e: B, plot: V1, date: 07/14/06)...................................188 E-32. Field data of event B072006S2 (sit e: B, plot: S2, date: 07/20/06)....................................190 E-33. Field data of event B072006V2 (sit e: B, plot: V2, date: 07/20/06)...................................191 E-34. Field data of event B072006S3 (sit e: B, plot: S3, date: 07/20/06)....................................192 E-35. Field data of event B072006V3 (sit e: B, plot: V3, date: 07/20/06)...................................193 E-36. Field data of event B072006V1 (sit e: B, plot: V1, date: 07/20/06)...................................194 E-37. Field data of event B072806S2 (sit e: B, plot: S2, date: 07/20/06)....................................195 E-38. Field data of event B072806V2 (sit e: B, plot: V2, date: 07/28/06)...................................197 E-39. Field data of event B072806S3 (sit e: B, plot: S3, date: 07/28/06)....................................199 E-40. Field data of event B072806V3 (sit e: B, plot: V3, date: 07/28/06)...................................201 E-41. Field data of event B072806V1 (sit e: B, plot: V1, date: 07/28/06)...................................202 E-42. Field data of event B090606S2 (sit e: B, plot: S2, date: 09/06/06)....................................203 E-43. Field data of event B090606V2 (sit e: B, plot: V2, date: 09/06/06)...................................204 E-44. Field data of event B090606S3 (sit e: B, plot: S3, date: 09/06/06)....................................205 E-45. Field data of event B090606V3 (sit e: B, plot: V3, date: 09/06/06)...................................206 E-46. Field data of event B090606V1 (sit e: B, plot: V1, date: 09/06/06)...................................207 E-47. Field data of event B090906S2 (sit e: B, plot: S2, date: 09/09/06)....................................208 E-48. Field data of event B090906V2 (sit e: B, plot: V2, date: 09/09/06)...................................210 E-49. Field data of event B090906S3 (sit e: B, plot: S3, date: 09/09/06)....................................212 E-50. Field data of event B090906V3 (sit e: B, plot: V3, date: 09/09/06)...................................214 E-51. Field data of event B090906V1 (sit e: B, plot: V1, date: 09/09/06)...................................216

PAGE 13

13 E-52. Field data of event B090906V4 (sit e: B, plot: V4, date: 09/09/06)...................................218 E-53. Field data of event B091006S2 (sit e: B, plot: S2, date: 09/10/06)....................................220 E-54. Field data of event B091006V2 (sit e: B, plot: V2, date: 09/10/06)...................................222 E-55. Field data of event B091006S3 (sit e: B, plot: S3, date: 09/10/06)....................................224 E-56. Field data of event B091006V3 (sit e: B, plot: V3, date: 09/10/06)...................................226 E-57. Field data of event B091006V1 (sit e: B, plot: V1, date: 09/10/06)...................................227 E-58. Field data of event B091006V4 (sit e: B, plot: V4, date: 09/10/06)...................................229 E-59. Field data of event B101206S2 (sit e: B, plot: S2, date: 10/12/06)....................................230 E-60. Field data of event B101206V2 (sit e: B, plot: V2, date: 10/12/06)...................................231 E-61. Field data of event B101206S3 (sit e: B, plot: S3, date: 10/12/06)....................................232 E-62. Field data of event B101206V3 (sit e: B, plot: V3, date: 10/12/06)...................................233 E-63. Field data of event B101206V1 (sit e: B, plot: V1, date: 10/12/06)...................................234 E-64. Field data of event B101206V4 (sit e: B, plot: V4, date: 10/12/06)...................................235

PAGE 14

14 LIST OF FIGURES Figure page 2-1. Locations of the experimental sites, phosphate mining areas, and Peace River basin in U.S.A.......................................................................................................................... ........46 2-2. Schematic diagram of the experimental sites (sites A and B) in Bartow, FL.........................47 2-3. Depth of capacitance probe submersion into water column versus capacitance probe output voltage (mV)...........................................................................................................48 2-4. Relationship between output voltage of capacitance probe and flow rate.............................48 2-5. Hydrographs, sedimentogra phs, and hyetograph of Site B on event of July 28, 2006...........49 2-6. Trapping efficiencies of runoff volume (Q), peak flow rate (Qp), sediment, TP, and DP versus source/VFS area ratio.............................................................................................50 2-7. The TE ratio of selected vari ables versus length of VFS.......................................................50 2-8. Relationship between mean DP concetra tion ooutput from the V FS and source areas.........51 2-9. Relationships between sediment yield, Q, and Qp in the VFS and source areas....................51 2-10. Relationships between PP and sediment in water samples collected from VFS and source areas................................................................................................................... .....52 2-11. Curve numbers of different antecedent soil moisture conditions and relationships between runoff and rainfall in site A.................................................................................52 2-12. Curve numbers of different antecedent soil moisture conditions and relationships between runoff and rainfall in site B..................................................................................53 2-13. Yearly outflows (runoff volume, sediment DP, TP) collected from VFS and source areas in mining areas..........................................................................................................54 3-1. Scheme of phosphorus fractionation of phosphate mining soils............................................72 3-2. Apatite was found in soil samples of s ites A and B observed by X-Ray diffraction.............72 3-3. P sorption isotherm of soil samples in site A (2 hours shaken)..............................................73 3-4. P sorption isotherm of soil samples in site B (2 hours shaken)..............................................73 3-5. Phosphate-mineral solubility diagram relating the log H2PO4 2to pH in soil solutions of runoff water samples collected from phosphate mining areas...........................................74

PAGE 15

15 3-6. The measured value versus predicted value using ak =6.91-8 moles m-2 s-1 and n=-0.67 in Eq. (3.9)..........................................................................................................74 4-1. Graphical representation to calculate modi fied deviation between paired observed and predicted data based on the pr obable measured error range............................................101 4-2. Hydrographs of event B071406V3.......................................................................................101 4-3. Sedimentographs of event B071406V3................................................................................102 4-4. Comparison of measured filter strip peak flow measured on the experimental site vs. goodness of fit VFSMOD runoff predictions..................................................................102 4-5. effC of sediment versus effC of Q for all simulated events...............................................103 4-6. Scatterplot of measured and predicted TRF including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER).......................................................................................................103 4-7. Scatterplot of measured and predicted CSF including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER).......................................................................................................104 4-8. Scatterplot of measured and predicted MSF including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER)....................................................................................................104 4-9. Scatterplot of measured a nd predicted DP diluted from rainfall including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER)...............................................................................105 4-10. Scatterplot of measured and predicted DP without dilution from rainfall including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER).......................................105 4-11. Scatterplot of measured and predicted PP including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER).......................................................................................................106 4-12. Scatterplot of measured and predicted TP including measurement uncertainty for each measured value plotted as an error bar (PER=%, number in brackets is Ceff considering the PER).......................................................................................................106 A-2. Suction curves of soil cores extr acted from VFS areas at site B.........................................120 A-3. Suction curves of lower-l ayer soil cores extracted from source areas at site B..................121 A-4. Suction curves of upper-layer soil cores extracted from source areas at site B..................121

PAGE 16

16 A-5. Cumulative particle size distributions of soil samples collected from site A......................122 A-6. Cumulative particle size distributions of soil samples collected from site B......................122 C-1. The target and predicted hydrographs of sample project (per fect data set).........................129 C-3. The target and predicted hydrographs of the ARP condition (adding random noise to the perfect data set)..........................................................................................................130 C-4. The target and predicted sedimentographs of the ARP condition (adding random noise to the perfect data set)......................................................................................................130 D-1. Hydrograph of plot 2 (l ength=6.8 m) in VFS area at site B on date 07/14/06....................132 D-2. Sedimentograph of plot 2 (length=6.8 m) in VFS area at site B on date 07/14/06.............132 D-3. Hydrograph of plot 3 (l ength= 13.4 m) in VFS area at site B on date 07/14/06.................133 D-4. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/14/06..........133 D-5. Hydrograph of plot 2 (len gth= 6.8 m) in VFS area at site B on date 07/20/06...................134 D-6. Hydrograph of plot 2 (len gth= 6.8 m) in VFS area at site B on date 07/20/06...................134 D-7. Hydrograph of plot 3 (l ength= 13.4 m) in VFS area at site B on date 07/20/06.................135 D-8. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 07/20/06..........135 D-9. Hydrograph of plot 2 (len gth= 6.8 m) in VFS area at site B on date 09/09/06...................136 D-10. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/09/06..........136 D-11. Hydrograph of plot 3 (l ength= 13.4 m) in VFS area at site B on date 09/09/06...............137 D-12. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/09/06........137 D-13. Hydrograph of plot 2 (l ength= 6.8 m) in VFS area at site B on date 09/10/06.................138 D-14. Sedimentograph of plot 2 (length= 6.8 m) in VFS area at site B on date 09/10/06..........138 D-15. Hydrograph of plot 3 (l ength= 13.4 m) in VFS area at site B on date 09/10/06...............139 D-16. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 09/10/06........139 D-17. Hydrograph of plot 3 (l ength= 13.4 m) in VFS area at site B on date 10/12/06...............140 D-18. Sedimentograph of plot 3 (length= 13.4 m) in VFS area at site B on date 10/12/06........140 D-19. Hydrograph of plot 2 (l ength= 4.1 m) in VFS area at site A on date 07/07/06.................141

PAGE 17

17 D-20. Sedimentograph of plot 2 (length= 4.1 m) in VFS area at site A on date 07/07/06..........141 D-21. Hydrograph of plot 3 (l ength= 5.8 m) in VFS area at site A on date 07/07/06.................142 D-22. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/07/06..........142 D-23. Hydrograph of plot 2 (l ength= 4.1 m) in VFS area at site A on date 07/28/06.................143 D-24. Sedimentograph of plot 2 (length= 4.1 m) in VFS area at site A on date 07/28/06..........143 D-25. Hydrograph of plot 3 (l ength= 5.8 m) in VFS area at site A on date 07/28/06.................144 D-26. Sedimentograph of plot 3 (length= 5.8 m) in VFS area at site A on date 07/28/06..........144

PAGE 18

18 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy VEGETATIVE FILTER STRIPS TO REDU CE SURFACE RUNOFF PHOSPHORUS TRANSPORT FROM MINING SAND TAILINGS IN THE UPPER PEACE RIVER BASIN OF CENTRAL FLORIDA By Yi-Ming Kuo December 2007 Chair: Rafael Muoz-Carpena Cochair: Yuncong Li Major: Agricultural an d Biological Engineering Runoff non-point source pollution from phosphate mining areas is a potential risk to ecosystems in many parts of the world. Mini ng sand tailings that still contain apatite (phosphate rock) shape the landscapes in recl aimed lands at the upper Peace River basin of Central Florida. The objectives of this re search were to assess the surface runoff pollution loads from the mining sand tailings in Central Fl orida and to evaluate an d model the efficiency of vegetative filter strips to control phosphorus (P ) from these areas. Field experimental data were collected from two sites with different sl opes, source-to-filter ratios, and soil properties representative of the surrounding area. The num erical model VFSMOD-W was used to predict overland flow and sediment trapping within the filter and was linked to a simplified P transport algorithm based on experimental data to predict TP, PP, and DP fractions in the filter outflow. An advanced global inverse optimization technique is used for the model calibration process, and consideration to the uncertainty of the measured data is given. Phosphorus in soils of the area was in the form of apatite, as indicat ed by x-ray diffraction (XRD). TP concentrations were about 17.0-25.7 g/kg and Caand Mg-bound P accounted for about 95% of TP. DP concentrations were about 0.4 3.0 mg/L in surface runoff collected

PAGE 19

19 from the experimental sites. Release of P from the soils was primarily from apatite dissolution rather than desorption from metal oxides that is more typical of soils of the region. Runoff volume, sediment, TP, and DP were reduced by at least 62%, 97%, 96% and 66%, respectively, within the vegetative filters. The VFSMODW can predict hydrology transport well (Nash and Sutcliffe efficiency ( Ceff), 0.60 < Ceff < 0.99) for all but small events (peak runoff flow rate in the VFS < 0.4 L/s) due likely to large measuremen t uncertainty in the small events. The good predictions in runoff and sediment outflow fr om the filter result in good predictions of PP transport since apatite is a main component of sediment. A good pr ediction of DP filter outflow was found when considering rainfall impact on DP dissolved from apatite in surface soil. The inclusion of the uncertainty of measured data in the goodness-of-fit indicators provides us more realistic information to evaluate model perf ormance and data sets. VFSMOD-W successfully predicts runoff, sediment, and P transport from phosphate mining sand tailings, which provides management agencies with a design tool for controlling runoff and P transport.

PAGE 20

20 CHAPTER 1 INTRODUCTION Florida is rich in phosphate rock formed m illions of years ago in the late Miocene era under ocean waters. Phosphate rock (PR) is usually found about 7.6-12.2 m beneath the ground in a mixture of phosphate pebbles, sand and clay known as phosphate matrix. Phosphate is a key ingredient in fertilizer and cannot be synthesized; so na tural phosphate mining is the only supply and for the last 120 years has been one of the main economic activities of Central Florida region. The extraction and bene ficiation of phosphate rock to produce fertilizer has the potential to adversely impact th e environment. These impacts can be the landscape, water quality, excessive water consumption, and air pollution (UNEP, 2001). The landscape may be disturbed through removing topsoil and vegetation, excavating ore, depositing overburden, and inducing surface subsidence due to underground mi ning. The water resources may be adversely affected by the release of processing water, th e erosion of sediments, and leaching of toxic minerals from overburden and processing wastes. The quality of the air can be affected by emissions such as dust and exhaust gases. Th e continued mining activi ties in central Florida has degraded water quality in the upper Peace Ri ver basin and has left behind large refuse sand tailings that now shape the lands cape surrounding the river. The mound material is essentially homogenous clean sand (>94% in weight) with a high concentration in ap atite, the phosphorus (P) mineral ore, and mixed with small pockets of clay in some points. Hanna and Anaziz (1990) found that the main mineral in Floridas PR is carbonate-fluorapatite (CFA, Ca9.62Na0.273Mg0.106(PO4)4.976(CO3)1.024F2.41 also named as francolite), the P fraction per unit weight of CFA is 0.158.). Decreasing particle size or increasing soil moisture content in creases the percentage dissoluti on rate of PR (He et al., 2005). Guidry and Mackenzie (2003) reported that the dissolution rates of fluor apatite (FAP) and CFA

PAGE 21

21 are highly dependent on pH. Apatite can be di ssolved immediately with runoff water. Thus, once runoff occurs in mining lands, there can be potential polluti on sources contributing dissolved P (DP) into water bodies. The Peace River is 190 km in length. Peace River watershed is approximately 5,670 km2 in size. The largest land uses in the watershe d are agricultural and mi ning. The agricultural lands account for nearly 50 % when pasturel and is included (DEP, 2006a). Undeveloped lands consisting of forest, water, and wetlands account for 30 % of the land use. Urban or built-up land makes up 10 % of the land use. Th e actively mined lands ar e increased from 0.5% to 10.3% (from 30.4 km2 to 589.7 km2) of the watershed area during 1940-1999 (SFWMD, 2004). The agricultural and mining lands are po tential pollution source s that can contribute high amounts of DP into water bodies. The averag e DP concentration in the Peace River at the Bartow sub-basin has declined from 18 mg/L to 1.23.93 mg/L from 1965 to 2005 due to the changes in mining practices (DEP, 2006b). The average concentration of total P (TP) was 1.38.93 mg/L from 1990 to 1995. However, the TP concentration was still higher than the U.S. Environmental Protection Agency (USEPA) criterion of maximum TP concentration (0.1 mg/L) discharging into a river (USEPA, 1986; Mueller et al., 1995). Phosphorus carried in surface runoff from agricu ltural lands has been studied extensively. Phosphorus in runoff is generally divided into particulate and dissolved fraction by filtration through a 0.45 m filter. Particulate forms include sorbed P, organic P, and mineral P phases. Dissolved forms are normally considered to be ort hophosphate, inorganic polyphosphates, and organic P compounds (Nelson and Logan, 1983; McDowell and Sharpley, 2001a). These P compounds exist in dynamic equilibrium between th eir dissolved and particulate forms and are heavily influenced by soil properties and la nd management practices (He et al, 2003).

PAGE 22

22 Therefore, the factors that a ffect the mechanism of runoff tr ansport will also govern the P transport. Runoff easily occurs during rainfall events in disturbed bare lands resulting from mining activities where no vegetation exists to resist flow transport. Thus, the reclamation activities must be conducted to avoid high environmenta l impacts in the disturbed mining areas. The reclamation activities in mining areas gene rally involve landscap ing, revegetation, and maintenance of disturbed areas (United Na tions Environment Programme (UNEP), 2001). Revegetation is an economical and less labo r intensive method. Vegetation can increase surface roughness and infiltration, and decrease runoff volume that can reduce particles and sediment-bound pollutant transport. Vegetative filter strips (VFS) are defined as areas of vegetation designed to reduce tr ansport of sediment and pollutants from surface runoff by deposition, infiltration, adsorp tion, and absorption (Dillaha et al., 1989). VFS has been recommended as a best management practice (B MP) in controlling non-p oint source pollution from agricultural lands (USDA, 1976; Barfield et al., 1979). Mathematical models that can simulate water and/or sediment transport in VFS would be good tools for assessing the impact of human activ ities and natural processes on water resources and for designing BMPs to reduce these impact s. Particularly, the VFS model (VFSMOD-W, Muoz-Carpena and Parsons, 1999) enables pred iction of water and contaminant transport through VFS. VFSMOD-W is a field scale, mech anistic, storm-based model developed to route incoming hydrographs and sedimentographs from an adjacent field through VFS. VFSMOD consists of a series of modules: a time-depende nt Green-Ampt infiltration module for calculating the water balance in the soil su rface, a kinematic wave overland flow module for determining flow rate and depth on the infiltrating soil surface, and a sedimentation module for simulating

PAGE 23

23 transport and deposition of the incoming sedi ment along the VFS. The model uses time dependent hyetographs and field (inflow) runoff hydrographs, space distributed filter parameters (vegetation roughness or density, slop e, infiltration characteristics) and various characteristics of incoming sediment. Model outputs include the infiltration, surface runoff hydrograph, and sedimentograph from the VFS, and its sedi ment and runoff trapping efficiencies. USEPA (2005) listed VFSMOD-W as one of models to evaluate the efficiency of the BMP in VFS for protecting watershed environments VFSMOD-W was successfully tested with natural events data from the Coastal Plain (Muoz-Carpena, 1993) and the North Carolina Piedmont (Muoz-Carpena et al, 1999a). Rese archers in Canada (A bu-Zreig et al., 2001; Gharabaghi et al., 2001) reported a good agreement (R2=0.9) with a highly significant (p<0.01) linear relationship between model predictions an d measured values in infiltration, outflow and sediment trapping efficiency. Abu-Zreig (2001) and Abu-Zreig et al., (2003) also investigated the principal factors that affect trapping performance of VFS us ing VFSMOD-W. Rudra et al., (2002) incorporated an empiri cal phosphorus component to th e VFSMOD-W to estimate the phosphorus yield. VFSMOD-W has also been used to model the effect of VFS on a small watershed (72 ha) (Kizil and Di srud, 2002), as well as a component to simulate fecal pathogen filtering from runoff (Zhang et al., 2001). VFSMOD-W was conj ugated with the AnnAGNPS model to simulate the pollution trapping efficiencies of VFS and to examine cost-effective targeting of land retirement for establishing riparian buffers in an agricultural watershed in Ontario, Canada (Yang and Weersink, 2004). VFSMOD-W was successfully simulated the total suspended sediment removal from an experi mental VFS treating highway runoff (Han et al., 2005). Therefore, the VFSMOD-W has been identified as a poten tial BMP design tool used to

PAGE 24

24 reduce surface phosphorus runoff from the reclaimed phosphate mines in Flor ida (specifically in Polk County) and other similar areas elsewhere. The success in modeling such processes heavily depends on the quality of the model parameters, i.e. if they are representative of th e hydraulic properties of the soil and the vegetated filter. Thus, the first step in applying VFSMOD-W to predict outflows from VFS is to find these optimal parameters. A popular method fo r parameter estimation is manual calibration by a trial and error procedure comparing simulate d values with measured values. However, this method is time consuming, subjective, and cannot ensure that the best parameter set is found. A more elaborate, complex and in creasingly attractive form of parameter estimation is automatic inverse modeling. This procedure provides effe ctive parameters in the range of envisaged model applications and overcomes the draw backs of manual calibra tion. The GMCS-NMS (Global Multilevel Coordinate Se arch combined with a Nelder Mead Simplex) is a powerful optimization algorithm to numerically solve inverse problems (Ritter et al., 2003). GMCS-NMS has been integrated within the V FSMOD-W (Ritter et al., 2007) graphical user interface to allow the model us ers to perform inverse optimi zation of the parameters of VFSMOD-W. Uncertainty of measured data can result from field measurem ent, water sample collection and storage, and water quality analysis (Har mel et al., 2006). The hydrologic/water quality models are increasingly applied to guide decisi on-making in water resource management. The consideration of uncertainty in measured data can allow decision makers/modelers to more realistically evaluate model performance. The main objectives of this dissertation were to:

PAGE 25

25 1 Assess the surface runoff P pollution from mi ning sand tailings in the upper Peace River basin and investigate the efficiency of VFS in reducing P and sediment transports from the surface runoff of reclaimed mining areas. 2 Study the relationship between apatite a nd DP concentration in runoff water. 3 Model VFS P transport reduction from mi ning sand tailings using the VFSMOD-W. These three objectives are developed in Chapters 2-4 of this dissertation.

PAGE 26

26 CHAPTER 2 RUNOFF WATER QUALITY POLLUTION FR OM PHOSPHATE MINING AREAS AND CONTROL BY VEGETATIVE FILTER STRIPS Introduction Florida is rich in phosphate rock formed milli ons of years ago under ocean waters. Phosphate Rock was discovered in the late 1880s in centr al Florida, Polk County. Phosphate is a key ingredient in fertiliz er and cannot be synthesized; so phos phate mining is the only supply. Phosphate mining in the Peace River watershed (P olk County, Florida) has disturbed the land and affected water quality. The Peace River is 193 km in length. The Peace River watershed is approximately 5,670 km2 in size. The largest land uses are agricultural and mining. Agricultural lands account for nearly 50 % including pastur eland (SFWMD, 2004). The actively mined lands increased from 0.5 % to 10.3 % (from 30.4 km2 to 580.7 km2) of watershed during 1940-1999. Urban or built-up lands account for about 10 %. U ndeveloped lands consisting of forest, water, and wetlands make up the remaining 30 % of the land uses. Hanna and Anazia (1990), He et al. (2003), and Guidry and Mack enzie (2003) investigated the dissolution of Floridas phosphate rock. The dissolu tion rate of phosphate ro ck in soil solution is mainly affected by soil pH, moisture content, P and Ca concentrations (Chien and Menon, 1995; Babare et al., 1997). Phosphorus in runoff is generally divided in to particulate phosphorus (PP) and dissolved phosphorus (DP) by filtration through a 0.45 m filter. Surface runoff carries DP in organic and inorganic P forms, wh ile PP is carried in sorbed P, organic P, and mineral P forms (McDowell and Sharpley, 2001a). Loading of P in runoff is heavily influenced by soil properties and land management pract ices (He et al., 2003). The soil properties such as fractions of clay and silt, organic matter, pH, ion and aluminum oxides a ffect the desorption of DP from PP and adsorption of DP onto sediment (Sharpley et al., 1981; Vadas and Sims 2002). In addition, rainfall intensity,

PAGE 27

27 runoff duration, and a water/soil ratio also dominat e the desorption of soil P for a runoff event in agricultural lands (McD owell and Sharpley, 2001b; Storm et al., 1988). Hanna and Anaziz (1990) found that the main mine ral in Floridas PR is carbonate-fluorapatite (CFA, also called francolite). Decreasing particle size or increasing soil moisture content increases the percentage dissolution rate of PR (He et al., 2003). Guidry and Mackenzie (2003) reported that the dissolution rates of fluorapat ite (FAP) and CFA are highly depe ndent on pH. Apatite can be partially dissolved immediately with contacting runoff water. Thus, once runoff occurs in the mining lands, these can be potential sources of DP into surface water bodies. The average DP concentration in the Peace River at the Bartow sub-basin has declined from 18 mg/L to 1.23.93 mg/L from 1965 to 2005 due to the changes in mining practices (DEP, 2006 and SFWMD, 2001). Concentration of TP was 1.38.93 mg/L from 1990 to 1995. However, the DP concentration was still higher than U.S. Environm ental Protection Agency (USEPA) cr iterion of TP co ncentration (0.1 mg/L) discharging into a river (USEPA, 1986; Mueller et al., 1995). The VFS studies have been widely applied in agricultural lands since the late 1970s; however, the VFS studies have not been app lied in phosphate mine areas. Th e primary objectives of this study were to assess the surface runoff P pollution from the mining sand tailings (bare source areas) in the upper Peace River basin and investigate the efficien cy of VFS in reducing phosphorus and sediment transports from the surface runoff of reclaimed mi ning areas under varied lengths, source areas, slopes, incoming flow rates, runoff volumes, rainfa ll intensities, soil properties, and densities of vegetation cover in experimental sites. Methods and Materials Field Experiments Two field experiments were conducted in the pr operty of the Bureau of Mine Reclamation, Florida Department of Environmental Protection (FDEP), Bartow, FL (Figure 2-1). The land was

PAGE 28

28 originally used for phosphate mining. The phosphate mine company ceased to excavate PR and donated the land to the Bureau of Mine Reclamation in the 1980s. Two experimental sites (site A and site B) 3 km apart were chosen to represen t the bare disturbed mining lands in the upper Peace River watershed. Each experiment al site contained a set of runo ff plots including bare source areas with down slope grass filter of different dimensions (four plots in both VFS and source areas). The bare source areas were kept with no vegetation by gently pulling weeds to avoid disturbing areas. The dimensions of the plots for sites A and B are shown in Figure 2-2. The average slopes of site A and site B are 2.0 %, and 4.3 %, respectively. The lengths of the source areas at site A and site B are 14.4 m and 40.0 m, respectively. The lengt hs of the filters were 4.1 m and 5.8 m at site A and 6.8 m and 13.4 m at site B, respectively. Thus two different source ar eatoVFS area ratios of 2.5 and 3.5 in site A and 3.0 and 6.0 in site B were us ed to determine their e ffects on performances of VFS. The width of each plot was 3.3 m. Each plot was separate d by boards consisting of plastic plates inserted vertically a mi nimum of 10 cm to avoid lateral runoff losses. Locations of instruments installed in the field to convey runoff, collect water samples, and record data (i.e. flow rate, soil moisture, and rainfall intensity) are show n in Figure 2-2. Runoff was collected in a rain gutter buried at the outlet of each plot from where it flowed into a flume and sampling trough. Then, runoff from the source area was re distributed through a runoff spreader into the filter. The runoff spreaders were made of perforated PVC pipes in stalled at the entry of the VFS. A cover was installed to avoid direct rain fall ing into the runoff gutter. Six-inch (15.24 cm) HS flumes were used to measure the flow rate. To automatically record flow rate the stage of each flume was recorded using a capacitance probe (ECH2O, model EC-20, Decagon Devices, WA ) inserted vertically in the throat of each flume. The probes were tested in the laboratory and were f ound to give an excellent relationship (996 0 R2, Figure 2-3) between depth of submer sion into a water column and output

PAGE 29

29 voltage. The Ceff_m and RMSE of measured depth and predicted depth obtained from equation in Figure 2-3 are 0.942 and 0.402. The output voltage-fl ow rate relationship for the HS-flume was obtained and fitted to an exponential relationship (997 0 R2, Figure 2-4). The Ceff_m and RMSE of measured flow rate and predicted flow rate obt ained from equation in Figure 2-4 are 0.959 and 0.00012. The detailed description about Ceff_m and RMSE are presented in Appendix B. A field datalogger (CR-10X, Campbell Scientific UT) was programmed to record flow rate from the capacitance probe in each flume every mi nute. To avoid changing the measurement of flow rate in the flume, runoff water samples were collected at each trough positioned below the flume outlet by an automatic water sampler containing 24 plastic sampling bottles (ISCO 6712, ISCO, Inc.). The datalogger sent pulses to the ISCO 6712 automatic water sampler based on changes of accumulated runoff volume recorded at each flume in an effect to distribute the 24 samples throughout the runoff event. After activation, the sa mpler purged the suction hose and then collected runoff water samples from the trough into the 500 mL bottles. Runoff samples were analyzed for concentrations of sediment, TP, and DP. Load s and flow-weighted mean concentration were computed for each collected event. Another capacitance probe was used to measure so il moisture in each of the plots (Fig 2-2). The soil moisture was measured every minute and the averaged data for every 30 minutes was recorded in the CR-10X datalogger. The capaci tance probe was calibrated in a PVC cylinder containing soil with a bulk density similar to the field condition. The soil was saturated and weight and voltage measurements were take n periodically as the water drai ned and evaporated (Appendix A). To measure rainfall intensity, a rain gauge (Tex as Electronics, Inc TR-525M tipping bucket rain gauge) was installed between the source and the filter area. The rainfall data were recorded in the datalogger every minute. All outputs from the se nsors were delivered to the CR-10X datalogger

PAGE 30

30 through a relay multiplexer (AM416, Campbell Scientif ic, UT). Two groundwater observation wells with a pressure sensor and a barometric atmosphe re sensor were installe d to observe groundwater level since the water table in the cannel ever rais ed a height of three me ters during the hurricane season in 2004. A solar panel was installed to charge the batter ies to supply the electr ic power for the CR-10X and water samplers. In order to download data re motely and audit the field instruments, wireless serial communication equipment using long distance bluetooth (Promi-SD, Initium, Korea) was installed to access each of the sites CR10Xs from a computer at the experimental station office (about 2 km away from the sites). The computer at th e experimental station o ffice was then accessed through the internet from the University of Florid a main campus in Gainesville (277 km away). Daily remote monitoring of the sites allowed for quick collection of samples after major events. Characterization of Ex perimental Sites Saturated hydrauli c conductivity (sK), soil texture, porosity, grass spacing, and slope were measured to investigate the surface runoff movement and infiltration. Core cylinders made of brass with 5.4 cm diameter and 6.0 cm height (Soilmoist ure Equipment Corp, CA) were used to collect undisturbed soil samples. The soil cores were then saturated with 0.005 M CaSO4-thymol solution and the sK was measured based on the application of Darcys Law with a constant head permeameter (Klute and Dirksen, 1986). Saturated and final weights of the soil was measured and used to calculate bulk density and soil porosity. The average suction at the wetting front ( Sav) was also estimated as the area under th e unsaturated hydraulic conductivity () ( h Kuns) curve applying SoilPrep model (Workman and Skaggs, 1990). The ) ( h Kuns was obtained from the Millington and Quirk (1960) procedure. Equipment employing the Polarization Intensity Differential Scattering technique (Beckman-Coulter, Inc.) was used to anal yze particle size distribution of soil and sediment

PAGE 31

31 samples. For this analysis soil samples needed to be pretreated to remove organic matter (Day, 1965). A 0.5 by 0.5 m frame was used to determin e the grass spacing by counting the amount of grass stems within the frame area (Appendix A). The main grass in filter areas is Bahia grass which accounts for about 90 %, and the remaining grasses are Hairy Indigo, Cogon grass, and Smutgrass. The detailed description of meas ured soil physical and field prope rties (topographical survey and grass height) are presented in Appendix A. Characterization of Soil and Runoff Water Chemistry Soil chemical properties were analyzed to prov ide the information on the dynamics of surface runoff phosphorus transport. Soil samples were colle cted from the top 2 cm depths of each site since this is the zone of greatest inte raction between soil and runoff water. All samples were air-dried and then sieved using a 2.0 mm mesh sieve. Soil pH wa s measured in a 1:1 mixture of soil:water using a pH meter (pH/Cond 340i/Set, WTW, Germany). TP was determined by ignition method: One gram of dry soil was ashed at 350 for 3-hour, 550 for 2-hour, and then digested with 6M HCl (Anderson, 1976). The water solu ble phosphorus (WSP) of soil samples was measured by 2-hour extraction with deionized water at a solution/so il ratio of 10:1. Soil organic carbon (OC) was measured by the Walkley-Black oxidation procedur e (Nelson and Sommers, 1982). TP in water samples was determined by persulfate digesti on according to USEPA Method 365.3 (USEPA, 1982). DP in the water sample was determined by filtering through the 0.45 m membrane filter. The concentrations of DP and TP and WSP were de termined by the molybdate blue method (Murphy and Riley, 1962). Results and Discussions Table 2-1 shows the characteristics of experiment al sites. USDA soil texture is sandy, where clay and silt fractions are 4.2 % and 5.6 % in sites A and B, respectively. The saturated hydraulic

PAGE 32

32 conductivities agree with that of sandy soils, ranging between 20 to 31 cm/h and 1.6 to 6.4 cm/h for sites A and B, respectively. The m ean concentration of WSP in site B is 25.6 mg/kg which is higher than 16.2 mg/kg in site A. The TP concentrati ons of soil in both sites are in the range 19,600 27,900 mg/kg. The mean grass spacing was found to be 4.5 cm in site A and 3.7 cm in site B. The pH in both sites ranges from 6.09 to 6.32 with OC ranges of 0.27 to 0.76 % in site A and of 1.11 to 1.70 % in site B. The field data at site A were collected during 2006 (total rainfall 722 mm), while at site B were collected from June to December during the rainy season (rainfall 506 mm). An approximate annual rainfall of 682 mm was recorded at a weather station near site A (1 km apart). During the rainy season of year 2006, the goundwater tables ranged from 1.9 m to 2.4 m and from 1.5 m to 2.0 m in observation wells 1 and 2, respectively. The runoff was only driven by the excess rainfall instead of the shallow groundwater table. Runoff events reco rded in year 2006 at sites A and B are shown in Table 2-2 and Table 2-4, respectively. The recorded runoff events from sources are 21 events in site A and 19 events in site B. The recorded runoff events from VFS are 14 events in site A and 11 events in site B. A higher slope, longer length, and lower sK source area contributes a higher runoff volume. Consequently, larger runoff events in site B were collected compared to site A during the same monitoring period. The corresponding outflows of pollu tants in site A and site B are shown in Table 2-3 and Table 2-5, respec tively. As an example, observed hydrographs, pollutographs, and hyetographs of a runoff event that occurred on July 28th, 2006 in site B are shown in Figure 2-5 with the amounts of runoff volume, sediment, TP, and DP also shown in each corresponding sub-figure.

PAGE 33

33 Overland flow modification by the grass filters The trapping efficiency (TE) of the filter is defi ned as the ratio of the difference between inflow and outflow from the filter divided by the inflow of the filter. This concept is applied to overland flow changes happening at the filter expressed both in terms of flow volume (Q) and peak flow rate (PQ) of the incoming and outgoing hydrographs at the f ilter. Figure 2-6(a) and 2-6(b) show that the smaller area ratio of source/VFS has a higher runo ff volume TE (QTE) and peak flow rate TE (QPTE) compared to the larger ratio in both sites. The mean Ks in filters in sites A and B are 20 and 6.4 cm/h, respectively. Figure 2-6(a) shows that QTE at site A is more variable with area ratio than at site B due to the larger Ks value at site B (mean Ks in VFS in sites A and B are 20 and 6.4 cm.h, respectively). The same results are found in QPTE (Figure 2-6(b)). For each event, the small or negative QTE values occurred in the small rainfall intensity with the lower i in source areas and the higher i in filters. This is because the lower i in source area resulted in the lower incoming runoff volume to VFS, and the higher i in VFS resulted in the higher out flow volume. Figure 2-7 shows that the slope of QTE/QPTE is near zero wh ich means the same factors control Q and PQ in VFS. Thus, the area ratio, Ks in VFS, rainfall intensity, and differe nce in initial soil moisture between source and filters affect the QTE and QPTE in VFS. Trapping Efficiencies of Sedime nt and Phosphorus Fraction Based on the hydrological and polluta nt transport data, the TE of Q, PQ, and pollution loads in filters of sites A and B were calculated as shown in the Table 2-6 and Figure 2-6. As results, the sediment TE (STE) and TP TE (TPTE) in both site s are both greater than 0.96 as shown in Figure 2-6(c) and 2-6(d), respectively. Although the QTEs in the VFS areas at both sites are between 0.62 and 0.86, the STEs and TPTEs are highe r than 0.96 with small standard deviation error. This is because the high amounts of incoming coarse particles are mostly depos ited in the first meter of the

PAGE 34

34 filter (Muoz-Carpena and Parsons, 2004) and apat ite (one kind of phosphate rock) was found in experimental sites and distributed in particle sizes from clay to coar se sand (Chapter 3). The TPTEs are smaller than STEs in both sites, since the TP consists of DP and PP, and although PP depends directly on the STE, the DP is rela ted to the flow changes in the filte r. In addition, lower QTE in the higher area ratio of site A contribu tes to the smaller STE and TPTE than in the smaller area ratio. The shorter length in site A should be enlarged to increase STE and TPTE. Figure 2-7 shows that the slope of the TPTE/STE line is approximately zero, and thus their movements in VFS are dominated by the same factors. TP in water samples contain a high frac tion of PP (mineral P, apatite), thus STE and TPTE are very close. The smaller area ratio in site A has a higher DP TE (DPTE) than larger area ratio, but in site B has a lower DPTE than the larger area ratio (Figur e 2-6(e)). This resulte d from the higher QTE and the mean DP concentrations of collected events fr om VFS being lower than those from source areas at site A (Figure (2-8)). At site B, the longer filter s (smaller area ratio) may increase the runoff travel time, and thus increase the amount of DP rel eased to runoff water. Thus, the mean DP concentrations of collected events from VFS are highe r than those from source areas at site B (Figure (2-8)). Sediment Delivery Capacity in Runoff In the source areas, the sediment yields can be estimated from equations (2.1) and (2.2) as shown in Figure 2-9. Eq. (2.1) can be applied in areas within the study region with higher saturated hydraulic conductivity and shorter bare source areas. Eq. (2.2) can be applied in areas with lower saturated hydraulic c onductivity and longer source area s. The lower slope and higher sK in site A increase infiltration and decrease PQ and Q. Thus, even a longer duration rainfall event accumulates higher Q, but PQ is still lower resulting in the lower sediment capacity.

PAGE 35

35 Site A (slope 2.0%, 14.4m*694m): 620 0 p) (Q*Q 609 5 Sed 955 0 R2 (2.1) Site B (slope 4.3%, 40m*250m): 929 0 p) (Q*Q 344 87 Sed 937 0 R2 (2.2) where Sed is sediment yield (kg/ha); Q is flow volume (m3); PQ is peak flow rate (m3/s). The power equations similar to the one proposed by Fost er et al. (1982) were used to describe the relationships among sediment yields, runoff volume, and peak flow rate for each runoff event. P concentration in each partic le size class of soil was dete rmined in Chapter 3. The P concentration in finer particles is significantly greater than that in coarser particles as shown in Table 3-5. Linear equations were used to describe the relationships betw een outflows of PP and sediment from VFS and source areas (Figure 2-10). VFS: Sed 02606 0 PP 988 0 R2 (2.3) Source: Sed 02270 0 PP 977 0 R2 (2.4) where Sed is weight of sediment (g); PP is weight of particulate P (g). Sediment from VFS, after filtering through, contains a high fraction of fine particles and thus contains a high amount of PP based on the same weight from source areas. T hus, the slope coefficient of the linear equation of VFS is higher than that of the source area. Estimations of Curve Number and Runoff Volume The USDA Natural Resource Conservation Servi ces (Formerly Soil Conservation Services) curve number (SCS, 1986) method is a simple and wide ly used method for determining the amount of runoff from a rainfall event in a particular area. The curve number (CN) va lue is determined from land use, treatment and hydrologic condition. For a rainfall event, when soil and depression area

PAGE 36

36 storage approach ultimate satura tion, storage will approach the potential soil water retention ( S ) and infiltration rate approaches zero. Three antecedent soil moisture conditions have been defined for both sites. Based on the recorded data in site A, c ondition I, II, and III repres ent initial soil moisture (i; units: m3m-3) at 0-0.04, 0.04-0.08, and 0.08-0.12, respectivel y. Condition I, II, and III represent initial soil moisture (i) at 0.10-0.20, 0.20-0.30, and 0.30-0.40, respec tively, in site B. Curve number can be obtained from the em pirical Eqs. (2.5) and (2.6) as follows: ) S 8 0 P ( ) S 2 0 P ( Qmax 2 max maxS 2 0 P (2.5) ) mm : S P Q ( 254 CN 25400 Smax max (2.6) maxS of each antecedent condition in both sites were obtained from Eq. (2.5) based on the measured Q and P. In site A, maxS volumes are 60.5 mm, 58.4 mm, and 45.0 mm, in condition I, II, and III, respectively. In site B, maxS volumes are 38.5 mm, 29.4 mm, and 13.2 mm, in condition I, II, and III, respectively. Once maxS was obtained, curve number can be calculated from Eq. (2.6). In site A, curve numbers are 81, 82, and 83, in conditi on I, II, and III, respectively. In site B, curve numbers are 87, 90, and 95, in condition I, II, and III, respectively. The higher slope and higher i in site B resulted that the curve numbers in site B are greater than those in site A. With known maxS of each antecedent condition in bo th sites and the total rainfall, the runoff volume can be estimated from Eq. (2.5) as shown in Figures 2-11 and 2-12. The Nash and Sutcliff coefficient of efficiency ( Ceff, shown in Appendix B) of estimated and obser ved runoff volume in sites A and B are 0.87 and 0.92, respectively.

PAGE 37

37 The second antecedent soil moisture condition (i=0.04-0.08 in site A, and i=0.20-0.30 in site B) was applied to estimate curve numbers for ante cedent conditions I and III using the standard TR-55 correction equations based on antecedent condition II (SCS, 1986). The curve number in antecedent conditions I and III are 66 and 91, respectiv ely, in site A, and are 78 and 95, respectively, in site B. However, the definition of antecedent condition II is total 5-day antecedent rainfall in range of 1.27 2.79 cm (Chow et al., 1988). The antecedent conditions in site A can be one antecedent condition since initial soil moisture only ranges from 0.02 to 0.10 and the three fitted equations are very close as shown in Figure 2-11. Estimated Yearly Pollutant Yields For runoff events in plots where insignificant flow was available to collect water samples, the concentrations of pollutants were calculated from regression equations obtained for the appropriate flow rate ranges as presented above. The missing ev ents during year 2006 at site B were assumed to have the same rainfall intensity as site A. The outputs of sediment, Q, TP, and DP for missing events at site B were estimated from the outputs of the approximate rainfall intensity at site B. Consequently, the yearly outflow s of sediment, TP, DP, and Q from source and VFS areas are illustrated in Figure 2-13. In the lands with 4.3 % slope, 1.6 cm/h sK, and runoff lengths of 40 m, yearly outflows of Q, sediment, TP, and DP were 1,300 m3/ha, 4,550 kg/ha, 104 kg/ha, and 2.21 kg/ha, respectively. In the land scape with 2.0% slope, 31.0 cm/h sK, and runoff lengths of 14.4 m, yearly outflows of Q, sediment, TP, and DP were 615 m3/ha, 240 kg/ha, 6.12 kg/ha, and 0.27 kg/ha, respectively. Higher PQ and Q has a higher transport capacity to deliver sediment and pollutants (Foster et al., 1982). The length of filter should be enlarged to reduce runoff and pollutants transport in higher slope and lower sK lands, which contribute to the higher Q and PQ.

PAGE 38

38 Conclusions A value of 2.3 % of TP was found in soil sample s of the reclaimed mining areas in the upper Peace River basin. DP concentrations from source and VFS areas range from 0.4 to 3.0 mg/L, which exceeds EPA criterion of P concentration (0.1 mg/L) discharging into a river. A range of field conditions were studied and it was found that a significant amount of runoff volume and sediment transport capacity occurred in the exposed surfac e lands. In the lands with 4.3% slope, 1.6 cm/h sK, and runoff lengths of 40 m, yearly outflows of Q, sedi ment, TP, and DP were 1300 m3/ha, 4550 kg/ha, 104 kg/ha, and 2.21 kg/ha, respectively. In the landscape with 2.0 % slope, 31.0 cm/h sK, and runoff lengths of 14.4 m, yearly outflow s of Q, sediment, TP, and DP were 615 m3/ha, 240 kg/ha, 6.12 kg/ha, and 0.27 kg/ha, respectively. Vegetative fi lter strips (grass buffers) adjacent downstream from these source areas considerly reduce runoff and DP (>60%) and also transports of sediment and TP (>96%). The length of filters, soil saturated hydraulic conductivity (sK) in filters, rainfall intensity, and initial soil moisture were the main factors contro lling the changes of runoff volume and peak flow rate in filters. TP in water samples containe d a high fraction of PP (apa tite), thus STE and TPTE were closely related in both sites and were cont rolled by the same factors. Since phosphate rock exists in soil, movement of PP and se diment in VFS are highly correlated ( R2=0.97-0.98). In site A, lower Q obtained in the 4.1 m filters (larger area ratio) resulted in lower STE compared to the 5.8 m filters (smaller area ratio). In site B, there were no significant differences in the STE and TPTE of 6.8 m and 13.4 m filters. The shorter f ilters (larger area ratio) were almost as effective as the longer filters (smaller area ratio) in trapping sediment and TP since in both cases the removal efficiency was very large. The longer filters with lower sK at site B increased the r unoff travel time, and thus seemed to increase the DP mass released from apatite.

PAGE 39

39 Power equations were found to describe well ( R2=0.93-0.96) the relationships between sediment yields and product of runoff vol ume and peak flow rate (Q*PQ), for each runoff event. To aid in future BMP design efforts, the source areas curv e numbers from the Soil C onservation Service TR-55 methods (SCS, 1986) were fitted to the experimental data collected onsite. This will be useful in future VFS design efforts.

PAGE 40

40 Table 2-1. Characteristics of the experimental sites A and B. Length Slope Width Grass Soil Site Plot (m) (%) (m) Spacing (cm) Texture* (%) Ks (cm/h) WSP# (mg/kg) TP (mg/kg) pH OC (%) Source 14.4 1.9 3.3 -(1.4,1.7,96.9) 31 15.2.3 19,600, 000 6.09.15 0.27.23 5.8 A VFS 4.1 2.2 3.3 4.49.25 (2.5,2.9,94.6) 20 10 17.3.2 27,900,100 6.37.19 0.76.40 Source 40 4.3 3.3 -(1.8,3.5,94.7) 1.6 6.825.0.0 25,700, 800 6.18.13 1.70.31 13.4 B VFS 6.8 4.3 3.3 3.73.48 (2.5,3.4,94.1) 6.4 6.928.6.6 20,300, 300 6.32.21 1.11.48 *: % (clay, silt, sand) where clay: <2 m, silt: 2-37 m, sand: >37 m. #: WSP: water soluble phosphorus.

PAGE 41

41Table 2-2. Intensity, duration, and amount of rainfall with corres ponding runoff volume, peak flow rate, and initial water mois ture in site A. Event Rain Time I30 (1) A-Source-1(2) A-Source-2 A-Source-3 A-Source-4 A-VFS-1 A-VFS-2 A-VFS-3 A-VFS-4 Date (mm) (min) (mm/h) Q(3) Qp i Q Qpi Q Qpi Q Qpi Q Qpi Q Qpi Q Qpi Q Qpi 01/18 6.9 110 5.6 0.000 0.000 0.04 0.0000.0000.030.0000.0000.030.0000.0000.020.000 0.0000.030.0000.0000.110.0000.0000.150.0000.0000.09 02/3 33.4 430 32.2 0.867 1.053 0.11 0.9691.0350.091.0831.1070.111.0481.0730.110.051 0.0900.050.0530.0900.050.0180.0240.020.0560.0830.05 02/26 7.7 42 12.4 0.012 0.010 0.04 0.0140.0170.040.0000.0000.040.0270.0240.030.000 0.0000.060.0060.0110.150.0000.0000.200.0040 .0050.03 03/23 5.8 120 6.2 0.000 0.000 0.03 0.0080.0070.020.0000.0000.030.0000.0000.020.000 0.0000.020.0000.0000.080.0000.0000.130.0000. 0000.05 06/02 2.3 46 4.6 0.000 0.000 0.05 0.0000.0000.050.0000.0000.050.0000.0000.050.000 0.0000.050.0000.0000.110.0000.0000.180.0000.0000.10 06/02 16.3 38 26.6 0.013 0.010 0.05 0.0070.0080.050.0120.0130.050.0130.0100.050.007 0.0090.040.0120.0100.100.0000.0000.180.0000.0000.09 06/11 4.2 30 8.4 0.000 0.000 0.04 0.0000.0000.040.0000.0000.040.0000.0000.030.000 0.0000.020.0000.0000.080.0000.0000.150.0000.0000.04 06/12 64.3 840 26.8 0.172 0.131 0.04 0.4640.4250.040.4930.4110.040.3940.2410.050.007 0.0100.040.0280.0120.090.0060.0040.160.025 0.0100.10 06/13 43.0 610 51.2 0.312 0.735 0.08 0.4410.7020.090.7521.1100.080.4240.7000.080.235 0.5450.080.0750.0600.180.3810.8920.270.166 0.4540.14 06/25 10.9 230 9.6 0.000 0.000 0.06 0.0000.0000.050.0000.0000.070.0000.0000.070.000 0.0000.060.0000.0000.120.0000.0000.180.0000 .0000.13 07/02 6.3 44 12.0 0.000 0.000 0.05 0.0000.0000.040.0000.0000.040.0000.0000.040.000 0.0000.020.0000.0000.090.0000.0000.150.0000. 0000.06 07/07 24.4 44 47.4 0.100 0.203 0.05 0.1300.3050.050.1820.4850.050.1320.2850.040.034 0.0560.030.0480.1070.090.0570.1230.140.0450.0910.07 07/14 26.3 56 29.2 0.038 0.063 0.07 0.0770.1290.070.0550.1480.070.0730.0470.060.014 0.0150.080.0410.0350.180.0300.0370.230.0290.0160.07 07/20 20.6 50 37.2 0.028 0.029 0.07 0.0360.0370.070.0370.0510.070.0270.0380.060.013 0.0080.070.0130.0080.180.0160.0100.240.0170.0080.11 07/23 5.2 14 10.4 0.007 0.010 0.06 0.0000.0000.060.0070.0100.060.0000.0000.060.000 0.0000.060.0060.0080.160.0000.0000.220.0030.0050.09 07/28 31.4 54 60.2 0.155 0.462 0.05 0.2920.9290.050.3221.1840.050.1280.3890.050.032 0.0790.050.0280.0770.130.1320.4020.180.0530.1570.08 08/6 5.7 14 11.4 0.000 0.000 0.04 0.0010.0030.050.0000.0000.050.0000.0000.040.000 0.0000.030.0000.0000.100.0000.0000.090.0000.0000.07 08/14 3.9 12 7.8 0.000 0.000 0.04 0.0000.0000.050.0000.0000.050.0000.0000.040.000 0.0000.020.0000.0000.090.0000.0000.090.0000.0000.04 08/15 6.9 115 12.2 0.000 0.000 0.05 0.0000.0000.050.0070.0080.050.0000.0000.050.007 0.0120.030.0000.0000.100.0000.0000.090.0000.0000.06 08/23 11.6 38 16.2 0.014 0.006 0.05 0.0030.0050.050.0150.0140.050.0060.0040.040.000 0.0000.030.0000.0000.100.0000.0000.140.0030.0060.08 08/27 8.3 77 12.6 0.009 0.006 0.08 0.0000.0000.080.0120.0100.080.0000.0000.070.017 0.0270.070.0000.0000.160.0000.0000.240.0210.0140.15 09/02 19.2 155 26.6 0.004 0.003 0.07 0.0000.0000.070.0130.0100.070.0000.0000.060.000 0.0000.080.0210.0220.180.0000.0000.230.053 0.0400.13 09/04 11.2 226 13.6 0.020 0.006 0.06 0.0000.0000.070.0000.0000.060.0000.0000.060.000 0.0000.070.0000.0000.170.0000.0000.220.006 0.0070.12 09/06 5.3 28 10.6 0.009 0.005 0.06 0.0000.0000.070.0060.0120.070.0000.0000.060.000 0.0000.080.0080.0060.180.0000.0000.230.0090. 0250.13 09/09 39.1 89.0 42.2 0.000 0.000 0.08 0.0420.0170.090.0100.0110.080.0910.0310.070.000 0.0000.110.0610.0140.200.0000.0000.240.0750.0170.15 09/10 35.1 81.0 57.6 0.157 0.554 0.09 0.1580.6440.100.1800.6650.080.1030.4040.070.000 0.0000.120.0380.0510.210.0390.0630.250.0680.0840.15 09/15 8.1 47 12.2 0.050 0.031 0.07 0.0000.0000.080.0000.0000.070.0000.0000.060.013 0.0060.090.0100.0080.180.0000.0000.220.0120. 0110.13 09/19 10.5 212 14.2 0.026 0.020 0.06 0.0210.0190.060.0070.0170.060.0240.0150.050.000 0.0000.070.0130.0120.160.0000.0000.320.0110.0210.17 10/12 6.4 34 12.6 0.000 0.000 0.04 0.0000.0000.040.0000.0000.040.0000.0000.030.008 0.0130.020.0100.0130.020.0000.0000.050.0060. 0130.03 10/28 19.1 262 14.0 0.012 0.013 0.04 0.0150.0590.040.0240.1000.040.0140.0460.030.004 0.0070.020.0090.0110.020.0110.0200.040.015 0.0230.03 12/14 18.5 172 22.2 0.114 0.408 0.04 0.0640.2390.040.1030.3560.040.0360.1510.040.009 0.0200.030.0300.0230.030.0260.1100.070.068 0.1780.04 12/24 2.3 25 4.6 0.000 0.000 0.06 0.0000.0000.050.0000.0000.060.0000.0000.050.000 0.0000.060.0000.0000.090.0000.0000.200.0000.0 000.11 12/25 23.8 219 25 0.351 0.692 0.06 0.2020.9940.050.1650.6790.060.0740.4310.050.000 0.0000.060.0510.0330.100.0000.0000.190.0420. 0530.12 (1) I30: maximum 30-minute rainfall intensity; (2) A: site A; number is plot ID; (3) Q: runoff volume (m3), Qp: peak flow rate (L/s), i: initial soil moisture (%).

PAGE 42

42Table 2-3. The loads of sediment, TP, and DP of selected events in site A. Event A-Source-1(1) A-Source-2 A-Source-3 A-Source-4 A-VFS-1 A-VFS-2 A-VFS-3 A-VFS-4 Date Sed(2) (g) TP(g) DP(g) Sed(g) TP(g) DP(g)Sed(g)TP(g)DP(g)Sed(g)TP(g)DP(g)Sed(g)TP(g)DP(g) Sed(g)TP(g)DP(g)Sed(g)TP(g)DP(g)Sed(g)TP(g) DP(g) 01/18 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 02/3 343 7.969 0.409 369 8.396 0.47842111.6640.5262969.8560.4622.210.0720.016 2.420.0750.0140.190.0100.0052.490.0800.017 02/26 0.7 0.03 0.005 1.6 0.05 0.0060.00.000.0002.40.080.0110.000.0000.000 0.040.0030.0010.000.0000.0000.020.0020.001 03/23 0.0 0.00 0.000 0.4 0.01 0.0030.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 06/02 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 06/02 12.5 0.29 0.006 5.6 0.13 0.0036.10.150.0055.40.160.0050.110.0030.002 0.090.0060.0030.000.0000.0000.000.0000.000 06/11 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 06/12 29.2 0.67 0.061 79 2.18 0.19487.72.440.21846.01.060.1280.040.0030.002 0.200.0110.0060.020.0020.0010.210.0100.005 06/13 130 3.04 0.116 202 5.00 0.1693037.280.327108.03.400.1472.200.1250.070 0.600.0300.0161.360.1560.1161.430.0800.040 06/25 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 07/02 0.000 0.00 0.000 0.000 0.00 0.0000.0000.000.0000.0000.000.0000.00.0000.000 0.000.0000.0000.0000.0000.0000.0000.0000.000 07/07 38.9 0.78 0.042 43.5 1.00 0.05962.91.920.10236.01.020.0521.420.0480.019 1.820.0660.0182.240.0810.0302.070.0670.017 07/14 9.6 0.20 0.017 24.8 0.64 0.04113.90.360.02412.60.350.0300.130.0080.004 0.270.0140.0060.210.0130.0060.140.0080.005 07/20 2.1 0.07 0.012 3.6 0.11 0.0174.00.110.0162.50.070.0110.090.0060.003 0.080.0060.0030.120.0080.0040.130.0080.004 07/23 0.4 0.01 0.003 0.0 0.00 0.0000.40.010.0030.00.000.0000.000.0000.000 0.040.0030.0010.000.0000.0000.020.0010.001 07/28 90.1 1.94 0.071 148.9 3.57 0.140210.65.370.15861.31.680.0560.320.0160.008 0.260.0110.0078.990.3250.0580.060.0260.013 08/6 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 08/14 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 08/15 0.0 0.00 0.000 0.0 0.00 0.0000.30.010.0030.00.000.0000.070.0040.002 0.000.0000.0000.000.0000.0000.000.0000.000 08/23 0.4 0.02 0.005 0.1 0.00 0.0010.90.030.0060.10.010.0020.000.0000.000 0.000.0000.0000.000.0000.0000.020.0010.001 08/27 0.3 0.01 0.003 0.0 0.00 0.0000.50.020.0050.00.000.0000.120.0080.004 0.000.0000.0000.000.0000.0000.300.0130.005 09/02 0.1 0.00 0.001 0.0 0.00 0.0000.40.020.0060.00.000.0000.000.0000.000 0.150.0110.0050.000.0000.0000.570.0290.012 09/04 0.4 0.02 0.007 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.140.0050.002 09/06 0.3 0.01 0.003 0.0 0.00 0.0000.20.010.0030.00.000.0000.000.0000.000 0.040.0040.0020.000.0000.0000.150.0070.002 09/09 0.0 0.00 0.000 8.0 0.21 0.0182.50.070.00412.60.290.0370.000.0000.000 0.250.0150.0080.000.0000.0000.350.0180.009 09/10 138 2.91 0.084 158 3.92 0.083145.23.600.08753.91.420.0490.000.0000.000 0.400.0220.0122.120.0650.0172.810.0930.023 09/15 4.4 0.14 0.022 0.0 0.00 0.0000.00.000.0000.00.000.0000.080.0060.003 0.050.0040.0020.000.0000.0000.090.0050.003 09/19 5.7 0.12 0.011 4.4 0.12 0.0082.80.080.0092.20.060.0100.000.0000.000 0.080.0050.0030.000.0000.0000.100.0050.002 10/12 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.060.0040.002 0.070.0050.0030.000.0000.0000.060.0030.002 10/28 2.3 0.05 0.005 2.6 0.07 0.0066.60.180.0102.40.060.0050.050.0030.001 0.130.0060.0030.160.0070.0030.280.0120.004 11/29 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 12/14 21.4 0.53 0.050 14.7 0.34 0.03024.20.580.0486.00.140.0140.080.0040.002 0.230.0150.0070.830.0350.0091.270.0510.016 12/24 0.0 0.00 0.000 0.0 0.00 0.0000.00.000.0000.00.000.0000.000.0000.000 0.000.0000.0000.000.0000.0000.000.0000.000 12/25 67.8 1.77 0.164 53.2 1.46 0.09942.01.100.07917.80.440.0320.000.0000.000 0.340.0250.0120.000.0000.0000.400.0210.010 (1) A: site A; last number is plot ID; (2):Sed: sediment load.

PAGE 43

43Table 2-4. Intensity, duration, and amount of rainfall with corres ponding runoff volume, peak flow rate, and initial water mois ture in site B. Even Rain Time I30 (1) B-Source-1(2) B-Source-2 B-Source-3 B-Source-4 B-VFS-1 B-VFS-2 B-VFS-3 B-VFS-4 Date (mm(min(mm/hQ (3) Qp i Q Qpi Q Qpi Q Qpi Q Qp i Q Qpi Q Qpi Q Qpi 06/13 9.7 54 18.2 0.563 1.007 0.32 0.404 0.7220.16 0.191 0.4510.14 0.268 0.3650.26 0.047 0.1120.22 0.024 0.0670.15 0.006 0.0090.39 0.017 0.0190.22 06/14 6.1 128 9.2 0.023 0.087 0.38 0.0000.0000.290.0000.0000.140.0080.0130.170.007 0.0100.120.0000.0000.240.0020.0040.240.0060.0090.19 06/29 2.2 34 4.2 0.000 0.000 0.34 0.000 0.0000.21 0.000 0.0000.11 0.000 0.0000.10 0.000 0.0000.06 0.000 0.0000.09 0.000 0.0000.09 0.000 0.0000.12 07/02 4.6 46 8.6 0.000 0.000 0.33 0.000 0.0000.21 0.000 0.0000.10 0.011 0.0100.09 0.000 0.0000.05 0.000 0.0000.05 0.000 0.0000.06 0.000 0.0000.10 07/11 7.4 48.0 14.4 0.041 0.071 0.35 0.015 0.0160.22 0.000 0.0000.11 0.008 0.0110.11 0.009 0.0090.09 0.015 0.0130.19 0.003 0.0010.20 0.013 0.0130.20 07/14 23.9 70 29.8 1.980 2.229 0.39 1.1781.436 0.25 1.4132.148 0.12 0.5130.676 0.13 0.917 0.893 0.13 0.3210.590 0.23 0.4270.757 0.24 0.0610.069 0.12 07/20 18.9 43 33.8 1.650 3.464 0.40 1.1872.342 0.27 1.4222.626 0.13 0.7171.197 0.15 0.972 1.624 0.14 0.6491.586 0.23 0.6771.061 0.24 0.1820.320 0.15 07/28 20.1 50 38.4 1.185 2.702 0.35 0.5961.663 0.22 0.9251.648 0.12 0.3840.796 0.14 0.593 1.078 0.11 0.1500.344 0.17 0.2620.462 0.18 0.0220.0430.08 08/05 1.7 18 3.4 0.000 0.000 0.36 0.000 0.0000.22 0.002 0.0030.12 0.002 0.0030.11 0.003 0.0050.08 0.004 0.0060.07 0.000 0.0000.15 0.000 0.0000.05 08/06 6.0 14 12.0 0.275 1.558 0.36 0.125 0.9670.22 0.132 0.9900.12 0.070 0.5590.11 0.008 0.0200.08 0.010 0.0360.07 0.007 0.0200.14 0.005 0.0120.05 08/13 1.4 14 2.8 0.000 0.000 0.34 0.000 0.0000.21 0.000 0.0000.12 0.000 0.0000.11 0.002 0.0040.06 0.004 0.0070.05 0.000 0.0000.09 0.000 0.0000.04 08/14 2.9 15 5.8 0.000 0.000 0.34 0.000 0.0000.22 0.000 0.0000.12 0.000 0.0000.11 0.007 0.0080.06 0.012 0.0160.05 0.000 0.0000.09 0.003 0.0030.04 08/15 11.0 111 16.8 0.500 0.687 0.35 0.067 0.2260.22 0.084 0.2780.12 0.025 0.0630.11 0.016 0.0200.07 0.025 0.0320.06 0.000 0.0000.09 0.000 0.0000.04 08/23 4.6 68 5.2 0.010 0.007 0.36 0.0000.0010.230.0000.0000.130.0000.0000.130.005 0.0060.100.0100.0210.080.0000.0000.110.0020.0040.04 08/26 12.9 136 12.6 0.158 0.386 0.36 0.0080.0120.220.0000.0000.130.0190.0030.120.008 0.0080.080.0760.0260.060.0000.0000.100.0020.0060 .04 08/27 6.7 102 6.8 0.148 0.487 0.39 0.0020.0100.290.0000.0000.160.0000.0000.170.008 0.0100.160.0260.0210.180.0000.0000.150.0020.0060.0 7 08/28 11.0 33 21.6 0.677 1.507 0.37 0.167 0.7200.25 0.089 0.7120.14 0.044 0.2220.160.065 0.3110.18 0.031 0.0320.20 0.000 0.0000.18 0.000 0.0000.06 08/30 7.8 137 6.6 0.005 0.009 0.37 0.0000.0000.260.0000.0000.140.0000.0000.160.007 0.0080.200.0410.0160.230.0000.0000.200.0000.0000.0 8 08/30 11.2 244 3.4 0.000 0.000 0.39 0.000 0.0000.29 0.000 0.0000.16 0.000 0.0000.18 0.013 0.0040.22 0.015 0.0090.25 0.000 0.0000.22 0.000 0.0000.09 09/01 10.1 149 5.6 0.004 0.015 0.38 0.0000.0000.250.0000.0000.140.0000.0000.190.042 0.0060.200.0370.0120.230.0000.0000.210.0000.0000. 08 09/02 5.5 58 7.6 0.000 0.000 0.38 0.000 0.0000.26 0.000 0.0000.15 0.000 0.0000.16 0.012 0.0050.22 0.017 0.0120.23 0.000 0.0000.21 0.000 0.0000.08 09/04 11.8 132 14.4 0.000 0.000 0.38 0.000 0.0000.24 0.000 0.0000.15 0.000 0.0000.17 0.026 0.0080.21 0.032 0.0150.21 0.000 0.0000.21 0.000 0.0000.08 09/06 13.1 21 17.4 0.814 2.872 0.38 0.662 2.2320.25 0.507 1.6940.16 0.346 1.2250.15 0.463 1.5870.22 0.286 1.2650.22 0.014 0.0220.21 0.034 0.1850.10 09/09 62.3 210 66.2 6.593 3.324 0.37 4.277 2.8390.24 3.919 2.5180.16 3.109 1.9810.15 4.842 2.0370.21 3.829 2.3640.21 3.513 2.1720.21 2.879 1.5630.10 09/10 31.0 66 47.6 2.512 2.057 0.38 1.866 1.8210.27 1.694 1.7820.18 1.286 1.6220.16 1.818 1.7620.25 1.162 1.4300.25 0.925 1.0600.24 1.092 1.1860.22 09/14 8.3 132 10.2 0.014 0.008 0.37 0.025 0.0130.24 0.000 0.0000.16 0.000 0.0000.13 0.001 0.0030.23 0.000 0.0000.23 0.000 0.0000.23 0.000 0.0000.15 09/15 4.9 84 7.4 0.004 0.006 0.38 0.002 0.0030.25 0.000 0.0000.17 0.000 0.0000.15 0.001 0.0040.24 0.000 0.0000.24 0.000 0.0000.24 0.000 0.0000.15 09/19 20.1 378 13.2 --0.37 --0.23--0.15--0.120.016 0.0070.210.0090.0050.210.0000.0000.220.0000.0000.12 09/20 4.2 143 3.6 0.000 0.000 0.40 0.0000.0000.290.0000.0000.190.0000.0000.190.000 0.0000.260.0000.0000.270.0000.0000.250.0000.0000.15 10/12 18.2 32 36 0.966 3.460 0.33 0.6872.5730.210.7532.5020.130.6162.2480.150.612 1.9100.070.4371.8630.050.2770.9740.090.2271.2170.05 11/16 1.8 51 2.2 0.000 0.000 0.32 0.000 0.0000.20 0.000 0.0000.14 0.000 0.0000.11 0.000 0.0000.04 0.000 0.0000.05 0.000 0.0000.11 0.000 0.0000.06 11/16 1.6 25 3.2 0.000 0.000 0.33 0.000 0.0000.21 0.000 0.0000.14 0.000 0.0000.12 0.000 0.0000.04 0.000 0.0000.05 0.000 0.0000.11 0.000 0.0000.07 11/29 2.1 55 3.2 0.003 0.008 0.32 0.0020.0070.200.0000.0000.150.0000.0000.110.003 0.0060.030.0030.0050.040.0000.0000.080.0020.0040.07 12/03 0.2 108 0.2 0.000 0.000 0.32 0.000 0.0000.20 0.000 0.0000.15 0.000 0.0000.11 0.000 0.0000.04 0.000 0.0000.05 0.000 0.0000.08 0.000 0.0000.07 (1) I30: maximum 30-minute rainfall intensity; (2) B: site B; number is plot ID; (3) Q: runoff volume (m3), Qp: peak flow rate (L/s), i: initial soil moisture (%).

PAGE 44

44Table 2-5. The loads of sediment, TP, and DP of selected events in site B. Event B-Source-1(1) B-Source-2B-Source-3B-Source-4B-VFS-1 B-VFS-2B-VFS-3B-VFS-4 Date Sed(2) (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) Sed (g) TP (g) DP (g) 06/13 134 3.04 1.06 94.9 2.35 0.67 20.47 0.50 0.30 22.5 0.522 0.305 3.710.126 0.0621.300.0710.0410.290.0100.0060.510.0360.021 06/14 4.22 0.13 0.03 0 0 0 0 0 0 0.290.0150.009 0.050.007 0.0060000.0090.0020.0010.060.0100.008 06/29 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 07/02 0 0 0 0 0 0 0 0 0 0.400.0210.012 00 0000000000 07/11 7.13 0.22 0.06 0.88 0.04 0.02 0 0 0 0 0 0 00 00.560.030.02000000 07/14 6930 150 4.17 2635 54.1 2.314026100.22.6456012 0.84 1625.55 1.8159.11.970.6059.72.190.802.310.140.09 07/20 7735 186 3.32 4668 110.4 2.2468151432.29209951 1.16 31610.1 1.782026.861.161164.521.1718.90.700.27 07/28 5012 121.1 1.49 2140 47.8 0.70278865.31.1272418 0.39 1404.46 0.999.750.460.2334.31.330.420.230.040.03 08/05 0 0 0 0 0 0 0.0360.0030.0020.040.0030.002 0.0290.004 0.0030.110.0060.0030.0000.0000.0000.0000.0000.000 08/06 985 21.4 0.47 343 8.14 0.16 434 10.330.21 21 0.49 0.108 00 00.720.030.02000000 08/13 0 0 0 0 0 0 0 0 0 0 0 0 0.0180.003 0.0020.130.0070.004000000 08/14 0 0 0 0 0 0 0 0 0 0 0 0 0.0720.009 0.0060.470.0230.0130000.0030.0010.001 08/15 1045 22.8 0.77 70.5 1.79 0.11 103.82.440.15 9.35 0.18 0.028 00 01.090.060.04000000 08/23 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 08/26 103 2.70 0.24 0 0 0 0 0 0 0 0 0 00 02.910.140.08000000 08/27 134 3.44 0.23 0 0 0 0 0 0 0 0 0 00 01.060.050.03000000 08/28 2864 61.3 1.27 548 12.96 0.33 476 11.200.31 63.2 1.48 0.103 4.4350.23 0.102.230.090.04000000 08/30 0.15 0.01 0.01 0 0 0 0 0 0 0 0 0 0.0810.010 0.0071.460.070.04000000 08/30 0 0 0 0 0 0 0 0 0 0 0 0 0.0780.014 0.0110.400.020.01000000 09/01 0.20 0.01 0.01 0 0 0 0 0 0 0 0 0 0.3920.052 0.0381.270.060.04000000 09/02 0 0 0 0 0 0 0 0 0 0 0 0 0.1050.014 0.0110.580.030.02000000 09/04 0 0 0 0 0 0 0 0 0 0 0 0 0.2350.032 0.0241.090.060.03000000 09/06 6667 144 1.66 3322 78.0 0.99 1991 48.7 0.65 916 22.0 0.478 983.33 0.8149.01.810.521.090.040.022.220.090.04 09/09 22493 515 11.25 16092 392 6.89 19992 469 6.25 11188 264 4.69 98535.1 8.9868225.96.4454520.35.7640822.74.56 09/10 8858 192 4.18 5639 138 2.92 5843 146 2.66 3093 72.7 2.15 31711.9 3.661395.602.201194.581.4488.63.531.19 09/14 0.54 0.03 0.02 1.45 0.06 0.03 0 0 0 0 0 0 00 0000000000 09/15 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 09/19 ------------00 0000000000 09/20 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 10/12 4391 95.3 1.34 2245 54.1 0.89 2310 53.7 1.06 1766 41.5 0.76 2255.33 1.1468.72.690.6930.71.230.4230.31.190.34 11/16 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 11/16 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 11/29 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 12/03 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000 (1) B: site B; last number is plot ID; (2):Sed: sediment load.

PAGE 45

45 Table 2-6. Trapping efficiencies of runoff volume, peak flow rate, sediment, TP, and DP in the sites A and B. Flow volume Peak flow rateSediment TP DP Mean SE (1) Mean SE Mean SE Mean SE Mean SE Plot Area ratio (range) (range) (range) (range) (range) 0.86 0.03 0.83 0.03 0.98 0.01 0.97 0.02 0.76 0.04 A6(2) 2.5 (0.14~1.00) (-0.28~1.00 ) (0.96~1.00) (0.94~1.00) (0.52~0.98) 0.67 0.06 0.67 0.06 0.97 0.03 0.96 0.04 0.72 0.05 A4 3.4 (-0.86~1.00 ) (-0.71~1.00) (0.92~1.00) (0.87~0.99) (0.08~0.97 ) 0.68 0.05 0.69 0.05 0.98 0.01 0.97 0.02 0.66 0.08 B13 3.0 (0.02~0.98) (0.14~1.00) (0.96~1.00) (0.95~1.00) (0.09~0.99) 0.62 0.07 0.60 0.08 0.98 0.01 0.97 0.03 0.70 0.08 B7 5.9 (-0.37~1.00) (-0.33~1.00) (0.96~1.00) (0.92~1.00) (0.05~0.97) (1) SE: standard error. (2) A6: includes plots A-VFS-1 and A-VFS-3 (5.8 m long); A4: includes plots A-VFS-2 and A-VFS-4 (4.1 m long); B13: includes plots B-VFS-1 and B-VFS-3 (13.4 m long); B7: includes plots B-VFS-2 and B-VFS-4 (6.8 m long).

PAGE 46

46 Figure 2-1. Locations of the expe rimental sites, phosphate mini ng areas, and Peace River basin in U.S.A. 80 0 8 0 km N E S W Gainesville Bartow Peace River Ba sin Phosphate Mine Areas FloridaU.S.A. Experimental Site

PAGE 47

47 Figure 2-2. Schematic diagram of the experiment al sites (sites A and B) in Bartow, FL. Flow direction 13.2 m Soil moisture p robe B: slope 4.3% A: slope 2.0% Runoff spreader A=14.4 m B=40.0 m Plate Runoff gutter A=5.8 m B=13.4 m A=4.1 m B=6.8 mV F S Area Source Area Sampling trough Flume 3.3 m 3.3 m CR10X & Antenna A-Source-1 B-Source-1 A-VFS-1 B-VFS-1 Capacitance p robe Rain Gauge Water sampler Groundwater observation well A: Well #1 A: Well #2 A-Source-2 B-Source-2 A-Source-3 B-Source-3 A-Source-4 B-Source-4 A-VFS-2 B-VFS-2 A-VFS-4 B-VFS-4 A-VFS-3 B-VFS-3

PAGE 48

48 y = 3E-05x2 0.0072x R2 = 0.9955 0 5 10 15 20 25 02004006008001000Capacitance probe (mV) Water depth(c m water depth (cm) vs.capacitance probe (mV) Poly. (water depth (cm) vs.capacitance probe (mV)) Water depth (cm) Figure 2-3. Depth of capacitance probe submersion into water column versus capacitance probe output voltage (mV). Figure 2-4. Relationship between output voltage of capacitan ce probe and flow rate. Q=5.28E-06*Exp(mV/128.93) R2=0.9970.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 200 400 600 800 1000 Capacitance probe (mV)Q ( m3/s )

PAGE 49

49 Source 1 Source 2 VFS 7m VFS 13m Time (s) 0500100015002000250030003500 DP discgarge rate (kg/s) 0.0 5.0e-7 1.0e-6 1.5e-6 2.0e-6 DP loads (kg) from: B-Source-2: 0.0007 B-Source-3: 0.0011 B-VFS-2: 0.0002 B-VFS-3: 0.0004 0500100015002000250030003500 Rainfall intensity(m/s) 0 1e-5 2e-5 3e-5 4e-5 5e-5 Flow rate (m3/s) 0.0 0.3 0.6 0.9 1.2 1.5 1.8 Sediment discgarge rate (kg/s) 0.000 0.002 0.004 0.006 0.008 TP discgarge rate (kg/s) 0.0000 0.0005 0.0010 0.0015 0.0020 Sediment Load (kg) from B-Source-2: 1.651 B-Source-3: 2.182 B-VFS-2: 0.010 B-VFS-3: 0.034 TP loads (kg) from: B-Source-2: 0.007 B-Source-3: 0.0511 B-VFS-2: 0.0005 B-VFS-3: 0.0013 Total runoff Volume (m3) from B-Source-2: 0.597 B-Source-3: 0.925 B-VFS-2: 0.153 B-VFS-3: 0.262 B-Source-2 B-Source-3 B-VFS-2 B-VFS-3 Figure 2-5. Hydrographs, sediment ographs, and hyetograph of Site B on event of July 28, 2006.

PAGE 50

50 Area Ratio (Source/VFS) 23456 Trapping Efficiency (%) 0.0 0.2 0.4 0.6 0.8 1.0 23456 23456 234567 Site A Site B Q Sediment TP DP 23456 (a) (c) (d) (b) (e) Qp Figure 2-6. Trapping efficiencies of runoff volume (Q), peak flow rate (Qp), sediment, TP, and DP versus source/VFS area ratio. Length of VFS (m) 2468101214 TE ratio 0.6 0.8 1.0 1.2 1.4 1.6 1.8 TPTE/STE DPTE/STE DPTE/QTE STE/QTE QTE/QPTE Figure 2-7. The TE ratio of selected variables versus length of VFS.

PAGE 51

51 0 0.5 1 1.5 2 2.5 00.511.522.5Mean DP concentration from VFS (mg/L)Mean DP concentration from source areas (mg/L) 1:1 line Site B Site A Figure 2-8. Relationship between mean DP concetra tion ooutput from the VFS and source areas. Figure 2-9. Relationships between sediment yield, Q, and Qp in the VFS and source areas. Ceff=0.863

PAGE 52

52 Sediment (g) 05000100001500020000 PP(g) 0 100 200 300 400 Source: PP= 0.02270*sediment R2=0.977 VFS: PP= 0.02606 *sediment R2=0.988 Source VFS Figure 2-10. Relationships between PP and sedime nt in water samples collected from VFS and source areas. E =0.85 Rainfall (mm) 020406080100120 Runoff (mm) 0 10 20 30 40 50 60 i=0.00-0.04 i=0.04-0.08 i=0.08-0.12 i=0.00-0.04, CN=81 i=0.04-0.08, CN=82 i=0.08-0.12, CN=83 Ceff=0.87 Figure 2-11. Curve numbers of different anteceden t soil moisture conditions and relationships between runoff and rainfall in site A.

PAGE 53

53 Rainfall (mm) 010203040506070 Runoff (mm) 0 10 20 30 40 50 60 70 i=0.31-0.40, CN=95 i=0.31-0.40 i=0.21-0.30 i=0.11-0.20 i=0.21-0.30, CN=90 i=0.11-0.20, CN=87 C eff =0.92 Figure 2-12. Curve numbers of different anteceden t soil moisture conditions and relationships between runoff and rainfall in site B.

PAGE 54

54 (a) B-sourceB-VFS-7B-VFS-13A-SourceA-VFS-4 A-VFS-6 Runoff Volume (m 3 /ha/year) 0 300 600 900 1200 1500 1800 0 300 600 900 1200 1500 1800 (b) B-sourceB-VFS-7B-VFS-13A-SourceA-VFS-4 A-VFS-6 Sediment (kg/ha/year) 0 1000 2000 3000 4000 5000 6000 0 50 100 150 200 250 300 (d) B-sourceB-VFS-7B-VFS-13A-SourceA-VFS-4 A-VFS-6 0 20 40 60 80 100 120 140 0 2 4 6 8 (c) B-sourceB-VFS-7B-VFS-13A-SourceA-VFS-4 A-VFS-6 DP(kg/ha/year) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35TP (kg/ha/year) Figure 2-13. Yearly outflows (runoff volume, sedi ment, DP, TP) collected from VFS and source areas in mining areas.

PAGE 55

55 CHAPTER 3 EVIDENCE FOR APATITE CONTROL OF PH OSPHORUS RELEASE TO RUNOFF FROM SOILS OF PHOSPHATE MINE RECLAMATION AREAS Introduction Phosphorus (P) carried in surface runoff fr om agricultural lands has been studied extensively and identified as a non-point sour ce pollutant of surface water systems which may degrade water quality. Loading of P in runoff is heavily influenced by soil properties and land management practices (He et al., 2003). Soil properties such as part icle size distribution, organic matter, pH, and metal oxides affect P dyna mics in soil solution (Sharpley et al., 1981; Vadas and Sims 2002). In addition, rainfall in tensity, runoff duration, and a water/soil ratio also dominate the desorption/diffusion of soil P in the runoff water in agricultural lands (Storm et al., 1988; McDowell and Sharpley, 2001b). Mechanisms controlling P release from soils rich in geologic P (Wang et al., 1989) may deviate from mechanisms typical for soils enri ched with fertilizer P. Geologic P can be abundant in anthropogenic soils of reclaimed phosphate mining areas. High dissolved P (DP) has been measured in runoff from two reclaime d phosphate mining sites in Florida (Appendix E) (0.4 3.0 mg L-1). The average DP concentration in the upper Peace River at the Bartow sub-basin has been declining from 18 mg L-1 to 1.23.93 mg L-1 due to the changes in mining practices (DEP, 2006 and Southwest Florida Wa ter Management Dist rict, 2001) between 1965 and 2005. Total P (TP) concentration is still higher than the U.S. Environmental Protection Agency (USEPA) criterion of TP concentration (0.1 mg L-1) discharging into a river (USEPA, 1986; Mueller et al., 1995). The soils of these si tes have very high P concentrations, but very low clay, Fe, and Al concentrations. These cond itions led to the suspici on that dissolution rate of residual geologic apatite (car bonate fluorapatite, CFA) is c ontrolling P release from these

PAGE 56

56 soils, rather than P adsorption and desorption processes that typically control the fate of P in soils of the southeastern USA coasta l plain (Harris et al., 1996). The dissolution rate of CFA, the phosphate mineral that dominates phosphate rock (common term used for the phosphate ore), is ma inly affected by soil pH concentrations of P and Ca (Guidry and Mackenzie, 2003; Babare et al., 1997; Chien and Menon, 1995), moisture content, and particle size (He et al., 2005). The influence of part icle size stems from its inverse relation to specific surface area (SSA) in conjunc tion with dissolution being a surface-controlled process. Dissolution of apatite minerals w ould ensue immediately upon contact with runoff water. Thus, once runoff occurred in the mi ning lands, they would be potential sources contributing DP into water bodies. The objectives of this study were to (i) conf irm the presence and part icle size distribution of apatite via solid-state and chemical analyses, (i i) determine if CFA is undersaturated in runoff and hence subject to dissolution, and (iii) compare P concentrati ons predicted from reported CFA dissolution rate constants with observed experimental values. Materials and Methods Field Experiments Water and soil samples analyzed in this study were collected from a phosphate mining reclamation site near Bartow, FL, where fiel d experiments were conducted to evaluate the efficiency of vegetative cover strips (VFS) in reducing P concentration in runoff. Two experimental sites (A and B) were chosen that were 3 km apart. Source areas were representative of the bare disturbed mining lands in the upper Peace River watershed. Dimensions of the plots for sites A and B are sh own in Figure 2-2. The average slopes of site A and site B were 2.0 %, and 4.3 %, respectively. The lengths of the source areas at site A and

PAGE 57

57 site B were 14.4 m and 40.0 m, respectively. The lengths of the filters were 4.1 m and 5.8 m at site A and 6.8 m and 13.4 m at site B. Runoff was collected by a gutter at the outlet of each plot where it then flowed into a flume and trough. Then, runoff was redistributed thro ugh a PVC spreader into filters. A cover shield was installed to avoid rain falling into th e gutter. Runoff water samples were collected at each trough by an automatic water sampler. The fl ow rate was measured from a six-inch (15.24 cm) HS flume from each VFS and source plot. A capacitance probe was inserted vertically in each flume throat to measure the flow rate. The capacitance probe detected the flow rate in the flume every minute and stored this data in a da talogger. The datalogger then sent sampling pulses to the ISCO 6712 automatic water sampler (ISCO, Inc.) based on changes in accumulated runoff volume. After activation, the sampler purge d the suction hose and then collected runoff water samples from the trough into 500 mL bo ttles. Runoff samples were analyzed for concentrations of sediment, TP, and DP. Soil Chemical Properties Soil samples were collected from the top 2 cm depths of each site since this zone has the greatest interaction between soil and runoff water. All samples were air-dried and then sieved using a 2.0 mm mesh sieve. Soil pH was measured in a 1:1 mixture of soil:water using a pH meter (pH/Cond 340i/Set, WTW, Germany). So il organic carbon (OC) was measured by the Walkley-Black oxidation procedure (Nelson and Sommers, 1982). Mehlich-1 extraction, degree of phosphorus saturation (DPS), phosphor us sorption isotherms (PSI), phosphorus fractionation, and TP in each pa rticle size class were conducted to investigate the P dynamics in the soil and soil solution. Details of these analyses follow:

PAGE 58

58 Mehlich-1 extraction A combination of HCl and H2SO4 acids (Mehlich, 1953) with a 1:4 soil: extractant ratio was used to extract P from soils. The extractio n was shaken for 5 minutes and filtered through Whatman # 42 filter paper. Mehlich-1 extractio n can dissolve Aland Fe-phosphates as well as P adsorbed on colloidal surfaces in soils. Me hlich-1 extraction works well for acidic, low cation exchange capacity soils, whic h are prevalent in the SE USA. Degree of phosphorus saturation (DPS) The degree of phosphorus saturation (DPS), whic h relates soil extracta ble P to extractable Fe and Al, has been introduced as an environm ental index of soil adsorbed P available to be released through runoff (Nair et al., 1998, Beck et al. 2004). DPS calculated from Mehlich-1 extraction has been shown to be a valid indicator of P release potential (N air and Graetz, 2002). Thus, values of Mehlich-1 extractable Fe, Al, and P were used for DPS determination in this study. The following method of calculation was applied: 100 ) (1 1 1 Mehlich Mehlich MehlichAl Fe P DPS (3.1) where Mehlich-1 extractable P and metal c oncentrations are expressed as mole kg-1. Phosphorus sorption isotherms (PSI) Phosphate sorption was measured by using two grams of soil sample with 20 mL of 0.05 M KCl solution containing 0, 1.5, 4.5, 8.5, 15, and 50 mg[P] L-1 in a 50 mL centrifuge tube, respectively. Each tube with suspension was shaken for a 2hour period. After centrifugation at 5000 rpm for 15 minutes, the supe rnatant was filtered through a 0.45 m membrane filter. The amount of P adsorbed by soil was determined by the difference between the initial and final concentration of P in the solution.

PAGE 59

59 Phosphorus fractionation The sequential extraction procedure, fo llowing the method of Nair et al. (1995), distinguishes six forms of P (Fi gure 3-1). After the supernatan t of one extraction was removed, the tube and soil were re-weighed, and the next extracting solution was added to the tube. All of the supernatants were filtered through 0.45 m membrane filters and refrigerated at 4 C until analysis. Total phosphorus in each particle fraction Particle size fractionation was conducted by si eving and centrifugati on using a procedure based on one described by Whittling and Allardice ( 1989). Samples were initially saturated with Na to promote dispersion. This was accomplished by placing 20 g of soil in a 250 mL centrifuge bottle, adding 1N NaCl to 250 mL volume, shak ing, centrifuging, and decanting supernatant. These steps were re peated twice more, after which sa mples were rinsed free of salt using repeated washings with de-ionized wa ter until the supernatant appeared turbid. Sand (> 37 m) was then separated from silt and cl ay particles by wet sieving. The soil in the bottle was washed into a 37 m mesh sieve using pH=10 water. The < 37 m material was collected into centrifuge bottles to separate silt (2-37 m) and clay (< 2 m) by centrifugation using time and gravity forces base d on principles of Stokes law (Jackson, 1969). Sand was further fractionated by sievi ng into particle sizes of 37 to 106 m and 106 to 250 m. The soil in each particle class was measured for TP. TP is analyzed by ashing and HCl (6N) digestion (Anderson, 1976). All extractions of P were determ ined by the molybdate blue method of Murphy and Riley (1962). Samples were examined by x-ray diffraction (XRD) for mineral identification, and by X -ray fluorescence (XRF) spectrome try to determine the relative concentrations of elements.

PAGE 60

60 Phosphate Solubility Equilibria Runoff water samples collected from both si tes in June 2006 were used for chemical speciation modeling and evaluation with respect to CFA solubility. Each water sample was extracted through a 0.45 m membrane f ilter. The concentrations of Ca2+, Fe2+, Mg2+, Al3+, K+, Na+, Cu+, Mn2+, and Zn2+ were measured by means of atomic absorption spectrometry (Varian 220FS, Varian Australia Pty Ltd, Mulgrave Vict oria, Australia). The concentrations of F-, NO2-, NO3-, H2PO4 3-, SO42-, and Clwere analyzed using ion chromatography (Dionex LC20 Chromatography Enclosure, Dionex, CA). I onic strength of solu tion components were calculated from equation, I=0.013 EC (Griffin a nd Jurinak, 1973), where EC is expressed in S cm-1. The pH was measured directly from a pH electrode (p H/Cond 340i/Set, WTW, Germany). Ionic activities of solution component s were calculated using the Visual MINTEQ equilibrium speciation program (Department of Land and Water Resources Engineering. 2006). The thermodynamic solubility product (spK) was computed for HAP, FAP, and CFA, respectively, using the following equilibrium formulas: OH 2 PO 6 Ca 10 OH ) PO ( Ca3 4 2 2 6 4 10 (3.2) F 2 PO 6 Ca 10 F ) PO ( Ca3 4 2 2 6 4 10 (3.3) F ) x 3 0 52 2 ( CO ) x ( PO ) x 57 0 83 5 ( Ca 10 O H F ) CO ( ) PO ( Ca2 3 3 4 2 2 x 3 0 52 2 x 3 x 57 0 83 5 4 10 (3.4) ThespK for HAP was determined to be 6 11610 by McDowell et al. (1977). In most natural systems, apatite contains F-1 (FAP or CFA) instead of OH-1 (HAP), resulting in lower solubility. ThespK for FAP has been reported as 2 12110 (Driessens, 1982). Calcium apatite is often

PAGE 61

61 found in a non-stoichiometric form which may explain the range in spK values reported in the literature (e.g. spK=11410-11910 for HAP, and spK=12110-12210 for FAP) (McConnell, 1973; Elliott, 1994). ThespK of CFA varies depending on the degree of CO3 substitution from FAP (Jahnke, 1985). FAP was found to have the lowest solubility (spK=12210). CFA with the maximum CO3 substitution (~ 6.5 wt. %) has the highest solubility (spK=5 10710) among CFA specimens evaluated. With known spK of HAP and FAP, phosphate-mineral solubility diagram was plotted to show the relationships between logH2PO4 2and pH. This solubility diagram is particular useful for determini ng relative stability of phosphate compounds and minerals in soils at various pH values (Olsen and Khasawneh, 1980). Approach for Modeling Phosphorus Release A number of studies have a ddressed kinetic dissolution of geologically natural FAP and CFA (Lane and Mackenzie, 1990 and 1991; ValsamiJones et al., 1998; Guidry and Mackenzie, 2000 and 2003, and Welch et al., 2002). The e quation applied to simulate FAP and CFA dissolution rates was adopted from the result s of Guidry and Mackenzie (2003). They investigated dissolution rates ove r a range of pH, solution satura tion state, temperature, and on FAP and CFA by using both a fluidized-bed and stir red-tank reactor. In their study two of five apatite samples were CFA and obtained from the cen tral Florida. Their results from dissolution rates versus pH experiments showed that all of the experimental solutions were found to be undersaturated with respect to the CFA or FAP. Dissolution rates of apatite dependent on pH can be described using following equation (Blum and Lasaga, 1988) n a CFAH k R] [ (3.5)

PAGE 62

62 where CFAR is dissolution rate (moles m-2 s-1), ak is rate constant (moles m-2 s-1), ] [H is hydrogen ion activity, and n is reaction order. In the study of Guidry and Mackenzie (2003), at pH between 4 and 7, a linear regression yielded a ak= 6.91-8 moles m-2 s-1 and n= -0.67 with R2 = 0.79 for CFA compositions. The ak changed inversely with pH. We lch et al. (2002) studied the effect of pH on the rate of inorganic FAP dissolution from 2.0< pH< 7.0. From 2.0< pH< 5.5, the regression line of experiments fitted well with the overlapping fluidized-bed and stirred-tank reactor data of Guidry and Mackenzie. To model P release from CFA, the units of dissolution rate of CFA (CFAR) are converted from moles m-2 s-1 to mg L-1 s-1 when considering the ratio of soil/water and SSA of CFA per gram soil. Each particle is assigned a sphere of influence radius, thus SSA can be expressed as: d 10 6 10 ) 2 / d ( ) 3 / 4 ( ) 2 / d ( 4 ) particle(g of weight ) sphere(m of area surface SSACFA 6 CFA 6 3 2 2 (3.6) where SSA is the specific surface area of a particle (m2 g-1), d is the particle diameter (m), and CFA is particle density of CFA (g cm-3), which can be calculated from following equation: ) 60225 0 Volume Cell ( Z ) Weight Molecular (CFA (3.7) where CFA is particle density of CFA (g cm-3), cell volume is in Angstroms3, Z is in formula units per cell, Molecular Weight is in g mole-1, and 0.60225 is the Avogadro constant/(1.024). If a uniform distribution between 1d and 2d is assumed, the average SSA ( CFASSA) can be calculated as (Storm et al., 1988):

PAGE 63

63 1 2 1 2 CFA 6 CFAd d ln ) d d ( 10 6 SSA (3.8) where CFASSA is the average value of SSA between 1d and 2d (m2 g-1), 1d and 2d are the particle diameter (m). Thus, the equation used to describe th e CFA dissolution is shown as follows: 1 1 CFA n a 1 3 1 2 CFA 1 2 CFA CFA s L mg volume water weight soil SSA ] [H K 31 mole g 31 cm volume water g weight soil g m SSA s m mole R K (3.9) 1 1 b CFA n a b CFA n a CFAs L mg SSA ] [H K 31 volume volume SSA ] [H K 31 K (3.10) where : porosity (cm3 cm-3), b : bulk density (g cm-3), and CFASSA : the SSA of CFA per gram soil (m2 g-1) can be calculated from Eq. (3.11). n 1 i CFA CFA(i) SSA 0.158 (i) ion concentrat P (i) size Particle SSA (3.11) where Particle size (i): mass fraction of particles repres enting a given size range (i); P concentration (i): P concentration within a given partic le size range (i) (m g/kg) (Table 3-5); CFASSA(i): specific surface area for a given particle size range (i) (m2/g) (Table 3-7); can be calculated from Eq. (3.8); 0.158: P fraction per un it weight of CFA calculated from the formula of CFA (Ca9.62Na0.273Mg0.106(PO4)4.976(CO3)1.024F2.41; Hanna and Anazia, 1990). Eq. (3.9) can be used to calculate DP concentr ation in batch experiments. Eq. (3.10) can be applied to simulate P release of CFA from the soil profile per unit de pth with consideration bulk density and porosity of soil profile under field conditions.

PAGE 64

64 Results and Discussion Soil Properties Physical and chemical propertie s did not vary appreciably be tween sites or between source and VFS areas for most properties, with slightly acid pH and relatively low OC (Tables 3-1). A higher fraction of fine particles was found in site B compared to site A. Chemical extractions and P fractionation confirms very high TP concen tration and a dominance of Ca-P. A form of apatite in the samples was confirmed by XRD (Figure 3-2). We infer that this apatite is CFA since that is the form that has been well docum ented in phosphoritic deposits from which the material used to construct th e remediated soils was derived (Hanna and Anazia, 1990; Guidry and Mackenzie, 2003). Results of XRF (Table 3-2) showed the main elements to be Si, Ca, Al, P, K, and Fe. Quartz is the main mineral in soil, accounting for the dominance of Si. The second most abundant element is Ca, a major component of CFA. Phosphorus content of 3.7 % as determined by XRF was slightly higher than TP as determined chemically (ranging from 1.7 % to 2.3 %; Table 3-3). These very high P conc entrations result from the residual CFA. The P sequential fractionation of soils (Table 3-3) fr om the two sites is also consistent with a dominance of Ca(and/or Mg-) bound P (approximatel y 95 % of TP). Water soluble P is in the range from 15.5 to 24.1 mg kg-1, which represented 0.10 % of TP. Water soluble and exchangeable P fractions are considered availabl e forms of P to crop growth. The sum of these two forms ranged from 29.3 to 35.0 mg kg-1 (around 0.16%). Mehlich-1 P (Table 3-4) P concen tration ranges from 740 to 1192 mg kg-1. The major Mehlich-1-extractable element wa s Ca, whose mean concentration ranges from 1804 to 3490 mg kg-1. The concentration ratio of P/Ca ranges from 33 % to 45 %. The element ratio of P/Ca (0.40) in the formula of CFA is in this range. The DPS values were very high, ranging from 630 to 1620 %, consistent with apatite dissolutio n from Mehlich-1 extraction. Results of P

PAGE 65

65 sorption isotherms (Figures 3-3 and 3-4) confirm a high equilibrium P concentration at zero net P sorption (0EPC) for soils from both sites (approximately 10-16 mg L-1). If the P concentration of runoff is less than the 0EPC, then there would be a net release from the soil. Thus, only runoff DP concentration greater than 10 mg L-1 would result in net P sorption to soil particles. Total P concentrations were higher in the fine r particle-size ranges (Table 3-5). Particles smaller than 37 m contain about 3.1% P. The con centrations between classes 0 < 2 m and 2-37 m were not significantly differe nt. Coarser particles (250-2000 m) contain about 1.6 % P. The higher P concentration found in finer size fractions relates to a greater abundance of CFA in these fractions, possibly refl ecting the predominant particle size of CFA in the ore body. Alternatively, CFA may have been sorted via elut riation or comminuted (b eing softer that quartz) during the mining process. Based on the formula of CFA (Ca9.62Na0.273Mg0.106(PO4)4.976(CO3)1.024F2.41), the P fraction per unit weight of CFA is 0.158. The wei ght fraction of CFA in each size fraction was calculated using this value in conjunction with TP for that size fraction (Table 3-6). The weight fraction of CFA in each size fraction (Table 3-6) multiplied by SSA of CFA in each size fraction of CFA (as Eq. (3.8)) equals the CFA SSA contribu tion of each particle si ze class of soil sample as shown in Table 3-7. Phosphate Solubility Equilibria Concentrations of cations and anions, along with pH, EC, and ionic strength of runoff samples (Table 3-8) were used to model chemi cal speciation for runoff samples. Figure 3-5 presents the soil solution compositi on in relation to the stability of phosphate minerals in soils. The mean activity of Ca2+ (pCa2+= 4.7) was used to develop the diagrams. Since spK of CFA is varied based on the CO3 substitution and the line of higher spK in phosphate-mineral

PAGE 66

66 solubility diagram is far away from the intersec tion of x axis and y axis, the relations between logH2PO4 2and pH of CFA are not plotted in figure A solution point plotted above a certain solubility line represents a solution that is supersaturated relative to the phosphate phase represented by the line, which indica tes that the solution and that pha se could form and be stable. Any solution point plotted below a mineral solubili ty line is undersaturated. The results from Visual MINTEQ and Figure 3-5 show the soil solu tion is undersaturated. In addition, we found low Al and Fe bound P in P fractionation data and low Al and Fe concentrations in Mehlich-1 extraction. Ca and Mg concentrations were high er in both extractions. Thus, we determined that the high DP concentration in runoff water was P releasing from CFA. Results of Modeling Phosphorus Release Linear equation from Guidry and Mackenzie study (2003) was adopted to simulate the dissolution of CFA (ak=6.91-8 moles m-2 s-1 and n=-0.67, at 4 < pH <7). To simulate dissolution of apatite, 2 grams soil with 20 mL deionized water in a 50 mL centrifuge tube were shaken for 15 minutes (soil-water contact time). The pH was measured after batch experiments. After centrifugation at 5000 rpm for 5 minutes the supernatant was filtered through a 0.45 m membrane filter. After that, soil samples were analyzed for particle size distribution. Once we know particle size distribution, P concentrati on in each particle size class (as Table 3-5), P fraction per unit weight of CFA (0 .158), and average SSA in each si ze class, we can calculate the total CFASSA of soil samples based on Eq. (3.11). Results of the simulation (Table 3-9) were calculated based on Eq. (3.9). The modified Nash-Sutcliffe efficiency (Ceff_m) was used to evaluate the model predictions. The detailed description about Ceff_m is presented in Appendix B. Using ak= 6.91-8 moles m-2 s-1 and n= -0.67 (Guidry and Mackenzie, 2003) to predict DP in batch experiments, Ceff_m is -0.78 and

PAGE 67

67 predicted DP is underestimated for all samples as shown in Figure 3-6. The underestimation relates either to the ra te equation or constant not being applicable or to an underestimation of actual CFA SSA. There could be differences in the nature of the CFA of this study and the specimens analyzed by Guidry and Mackenzie (2003) (e.g.,crystallinity) th at would result in a different dissolution rate consta nt. Also, the narrow pH range may have limited the sensitivity of the rate equation used. Th e calculation of SSA of CFA was based on the Eqs. (3.8) and (3.11) assuming that each particle is a sphere and uniform distribution is assigned in the each particle size class. These two assumptions ma y result in an underestimation of CFA SSA, which would in turn produce an underestimation of DP release. Despite the underestimation, however, a strong relationship be tween calculated SSA of CFA a nd measured DP concentration (R2=0.93; Figure. 3-7) is supportiv e of other evidence that CFA dissolution is a major factor controlling P release from these soils. Conclusions Phosphorus in soils at the remediation was in the form of apatite, as indicated by XRD and corroborated by XRF elemental analysis and chem ical fractionation. Results of this study supported the hypothesis that releas e of P from the soils was primarily from apatite dissolution rather than desorption from metal oxides that is more typical of soils of the region. The P release behavior in a batch e xperiment closely related to th e modeled SSA of CFA. The absolute prediction of DP release based on m odeled CFA surface area and a CFA rate constant from the literature underestimated observed release, suggesting that the rate equation or constant were not applicable to the CFA of the soils studied or that SS A of CFA was underestimated, or both.

PAGE 68

68 Table 3-1. Results of organic carbon (OC), so il texture, hydraulic condu ctivity (Ks), and pH. Soil Site Plot N OC MeanSD# Texture* (%) pH MeanSD Source 8 0.270.23 (1.4,1.7,96.9) 6.090.15 A VFS 8 0.760.4 (2.5,2.9,94.6) 6.370.19 Source 8 1.700.31 (1.8,3.5,94.7) 6.180.13 B VFS 8 1.110.48 (2.5,3.4,94.1) 6.320.21 *: (clay, silt, sand), where clay: <2 m, silt: 2-37 m, sand: >37 m. #: SD: standard deviation. Table 3-2. Main compounds in soil samples of both sites examined by X-ray fluorescence (XRF). Main compounds in soil samples (%) Site Plot N Si P Ca Al K Fe Mn Sr Source 4 47.93.3 2.770.04 8.821.344.380.541.330.020.500.090.020.001 0.020.001 A VFS 4 60.10.13 2.920.04 6.270.2913.01.810.590.030.910.060.100.1 0.150.14 Source 4 37.60.6 3.260.18 13.33.168.660.320.710.011.580.210.010.003 0.050.002 B VFS 4 44.91.02 3.000.05 11.550.039.821.830.920.141.440.380.030.013 0.040.009 Table 3-3. Average concentration of each soil phosphorus fraction among all samples. Water KCl Fe/Al-Pi Organic-P Mg/Ca-Pi Residual-P TP Site Plot N mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Source 7 15.5.8 13.8.217424 18432 1670078 15822 1726757 A VFS 7 19.9.6 11.4.229162 40173 2032096021952 21267960 Source 7 23.3.3 8.48.6 35846 476184 2182068017754 22870880 B VFS 7 24.1.2 10.9.123483 398103 1841757 15637 1924090 Table 3-4. The results of Mehlich-1 P extracti on, degree of P saturation (DPS), ratio of P/Ca. Fe Al Ca Mg P DPS P/Ca Site Plot N (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) % % Source 6 4.300.63 572.5 221362 6716.7 9896 5525 452 A VFS 6 4.58.69 11411 1804412325 73868 21130 41 Source 8 12.913.50 14053 3490115863 11858 297126 34 B VFS 10 13.711.49 788 3640 12443 1192 495147 33

PAGE 69

69 Table 3-5. P concentrations in different particle size classes. P concentration (mg/kg) in each particle size class ( m) Site plot N 0.45<2 2-37 37-100 100-250 250-2000 Source 4 295602030 289732230 202952670 176181660 156341890 A VFS 4 320512080 307491430 21780860 195941610 170201240 Source 4 308131800 296602270 232941920 199371350 165031170 B VFS 4 323182200 311581580 246691770 197662020 167621450 Table 3-6. Weight of CFA per gram soil sample. g[CFA]/g[Soil] Site plot 0.45-2 m 2-37 m 37-100 m 100-250 m >250 m Source 0.1932.0128 0.1831.0141 0.1283.0169 0.1114.0105 0.0988.0119 A VFS 0.2026.0103 0.1944.0091 0.1377.0117 0.1238.0102 0.1076.0079 Source 0.1948.0114 0.1875.0144 0.1472.0122 0.1260.0086 0.1043.0074 B VFS 0.2043.0140 0.1969.0100 0.1559.0111 0.1249.0128 0.1059.0092 Table 3-7. Surface area of CFA per gram soil. m2[CFA]/g[S] Site Plot N 0.45-2 m 2-37 m 37-100 m 100-250 m >250 m Source 4 0.4191.0287 0.0586.00450.0041.0005 0.0014.0001 0.00053.00006 A VFS 4 0.4544.0294 0.0622.00290.0044.0004 0.0015.0001 0.00057.00004 Source 4 0.4368.0255 0.0600.00460.00468.000390.00158.00011 0.00056.00004 B VFS 4 0.4581.0312 0.0630.03200.00496.000360.00156.00016 0.00056.00005

PAGE 70

70Table 3-8. Concentrations of ions, pH, EC, and ionic strength of runoff samples co llected in June 2006. EC Ionic F-1 NO-2NO-3PO4-3SO4-2Cl-1 Ca+2 Mg+2 Fe+2 Al+3 K+1 Na+1Cu+1Mn+2Zn+2 Samples ID pH S/cm Strength mg/L A2-5 5.81 21 0.00027 0.39 0.17 0.43 1.45 2.36 12.831.13 0.26 0.01 0.11 0.22 1.17 0.00 0.01 0.01 A2-6 6.01 17 0.00022 0.21 0.16 0.25 1.33 1.91 10.600.98 0.24 0.00 0.08 0.24 0.82 0.00 0.01 0.03 A2-8 6.09 13 0.00017 0.65 0.14 0.21 1.43 1.55 8.06 0.69 0.15 0.01 0.01 0.14 1.02 0.01 0.01 0.02 A3-17 5.97 17 0.00022 0.08 0.16 0.20 0.97 1.90 10.860.51 0.30 0.01 0.12 1.42 0.91 0.01 0.01 0.09 B1-5 6.10 28 0.00036 0.36 0.28 0.26 4.92 1.17 9.64 2.01 1.27 0.46 1.23 2.06 1.01 0.03 0.02 0.08 B4-4 6.20 35 0.00046 0.35 0.33 0.39 5.35 1.38 10.292.05 1.25 0.39 1.27 2.34 1.13 0.03 0.02 0.08 A3-24 4.86 15 0.00020 0.07 0.11 0.18 1.01 1.67 9.96 0.28 0.17 0.00 0.22 1.42 0.85 0.02 0.02 0.10 A5-17 4.81 14 0.00018 0.06 0.14 0.17 0.95 1.52 10.660.26 0.14 0.01 0.19 1.13 0.90 0.02 0.02 0.09

PAGE 71

71 Table 3-9. Input parameters a nd simulations results of the CF A dissolution model compared to the DP of batch experiments. Sample SSACFA Soil/water Time DP* Measured DP ID m2[CFA]/g[S] pH g/L s mg/L mg/L A1 0.00868 5.96 100 900 0.436 0.744 A2 0.01066 6.10 100 900 0.424 0.924 A4 0.01047 6.05 100 900 0.581 0.997 A5 0.01119 6.14 100 900 0.662 1.060 B1 0.01314 6.20 100 900 0.779 1.402 B2 0.01321 6.19 100 900 0.888 1.676 B4 0.01446 6.05 100 900 0.884 1.798 B5 0.01256 6.17 100 900 0.668 1.474 *ak=6.91E-8 and n =-0.67 used in Eq. (3.9), Ceff_m = -0.78 were obtained.

PAGE 72

72 Figure 3-1. Scheme of phosphorus fr actionation of phosphate mining soils. Figure 3-2. Apatite was found in soil samples of sites A and B observed by X-Ray diffraction. Site B Water Soluble P 20 mL H2O Shake 2 h. Exchangeable P [Pi] 20 mL 1 M KCl Shake 2 h. Water Soluble P 20 mL H2O+ 2 g soil Shake 2 h. Inorganic Fe/Al P [Pi] 20 mL 0.1 M NaOH Shake 17 h. Alkali extractable Organic P [P0] 11N H2SO4 and potassium pers ulfate digestion [NaOH-TP] Inorganic Fe/Al P Ca and Mg P [Pi] 20 mL 0.5 M HCl Shake 24 h. Residual P [P0] 20 mL 6M HCl Digestion at 100C Site A

PAGE 73

73 -20 -15 -10 -5 0 5 10 15 20 25 0510152025303540455055 P concentration (mg/L)sorbed P (mg/kg ) Plot A4&A3 Plot A5&A6 Plot A1&A7 Plot A2&A8 Figure 3-3. P sorption isotherm of soil samples in site A (2 hours shaken). -30 -20 -10 0 10 20 30 0510152025303540455055 P concentration (mg/L)sorbed P (mg/kg) Plot B4&B3 Plot B5&B6 Plot B1&B7 Plot B2&B8 Figure 3-4. P sorption isotherm of soil samples in site B (2 hours shaken).

PAGE 74

74 pH 4.55.05.56.06.5 Log H 2 PO 4 2-6 -4 -2 0 2 Runoff WaterH2PO4 2Fluorapatite Hydroxyapatite Figure 3-5. Phosphate-mineral solu bility diagram relating the log H2PO4 2to pH in soil solutions of runoff water samples collected from phosphate mining areas. Figure 3-6. The measured value versus predicted value using ak=6.91-8 moles m-2 s-1 and n=-0.67 in Eq. (3.9). Ceff_m = -0.78

PAGE 75

75 Figure 3-7. The relationship between the ca lculated SSA of CFA and measured DP concentration.

PAGE 76

76 CHAPTER 4 SIMPLIFIED MODELING OF PHOSPHORUS REMOVAL BY VEGETATIVE FILTER STRIPS TO CONTROL RUNOFF POLLUTI ON FROM PHOSPHATE MINING AREAS Introduction Florida is rich in phosphate rock formed millions of years ago under ocean waters. Phosphate is a key ingredient in fertilizer a nd cannot be synthesized; so natural phosphate mining is the only supply and for the la st 120 years has been one of th e main economic activities in the Florida region. The extraction and beneficiation of phosphate rock to produce fertilizer has the potential to adversely impact the environment. These impacts can be the landscape, water contamination, excessive water consumption, and air pollution (UNEP, 2001). Specifically, the water resources may be adversely affected by th e release of processed water, the erosion of sediments, and leaching of toxic minerals from overburden and processing wastes. The continued mining activities in central Florida have degraded water quality in the upper Peace River basin and have left behind large refuse sand tailings that now shape the landscape surrounding the river. The mound material is essentially homogenous clean sand (> 94 % of weight) with a high concentration of apatite, the phosphorus (P) mi neral ore, and is mixed with small pockets of clay in some areas. The aver age dissolved P (DP) concentration in the Peace River at the Bartow sub-basin has declined from 18 mg/L to 1.23 1.93 mg/L from 1965 to 2005 due to the changes in mining practices (DEP, 2006) The average concentration of total P (TP) was 1.38.93 mg/L from 1990 to 1995. However, the TP concentration was still higher than the U.S. Environmental Protection Agency (USE PA) criterion of maximum TP concentration (0.1 mg/L) discharging into a river (USEPA, 19 86; Mueller et al., 1995). Thus, reclamation activities must be conducted to avoid more environmental impacts in the mining areas. Field experiments of surface runoff P transpor t from vegetative filter strips (VFS) and disturbed areas have been conducted in sand tai lings (Chapter 3). Fully instrumented runoff

PAGE 77

77 plots were constructed at differe nt locations to represent the ra nge of conditions found in the region (landscape slope and lengths, soil variab ility, locally recommended grasses, climate characteristics, etc.). In 2006, with an annual rainfall of 722 mm about 8.5 % of rainfall volume was diverted as runoff from the bare sand mounds of sK = 31.0 cm/h and slope =2.0%. However, with an approximate annual rainfall of 682 mm about 20.3 % of rainfall volume was diverted as runoff from the bare sand mounds of sK = 1.6 cm/h and slope =4.3 %. The runoff carried 4,550 kg/ha/year of sediment, 104 kg/ha/year of total P (TP), 2.21 kg/ha/year of dissolved P (DP) from the 4.3 % slope source area (40 m 250 m). The reclamation activities in mining areas gene rally involve landscapi ng, revegetation, and maintenance of disturbed areas (UNEP, 2001). Revegetation can be an economical and less laborious method. Vegetation can increase surface roughness and infiltration, and decrease runoff volume that can reduce particles and sedi ment bound pollutant transport. Vegetative filter strips (VFS) are defined as areas of vegeta tion designed to reduce transport of sediment and pollutants from surface runoff by deposition, infilt ration, adsorption, and absorption (Dillaha et al., 1989). VFS has been recommended as best management practice (BMP) in controlling non-point source pollution from di sturbed lands (USDA, 1976; Barfie ld et al., 1979). However, VFS also effectively reduce surface pollution tr ansport in phosphate mining areas. Runoff volume (Q), sediment, TP, and DP were reduced by VFS at least 62 %, 97 %, 96 %, and 66 % with respect to the amounts measured from the ba re sand tailings, respec tively (Chapter 2). Mathematical models that can simulate water and/or sediment transport in VFS can be good tools for assessing the impacts of human activ ities and natural proce sses on water resources and for designing optimal BMPs to reduce these impacts. VFSMOD-W, developed by Muoz-Carpena and Parsons (1999), simulates water and sediment transport in vegetated filter

PAGE 78

78 strips based on overland flow hydraulics (Muoz-Carpena et al ., 1993a), Einstein bed load sediment transport equation (Bartfield et al., 1978) suspended sediment transport (Tollner et al., 1976), and infiltration into the soil matrix (M uoz-Carpena et al., 1993b). The USEPA (2005) listed VFSMOD-W as one of the models to eval uate the efficiency of the BMP in VFS for protecting watershed environments. The success in modeling such processes heavily depends on the quality of the model parameters, i.e. if they are representative of the hydrologic properti es of the soil and the vegetated filter. Thus, the fi rst step of applying VFSMOD-W in predicting outflows from VFS is to identify optimal model parameters. A popular method for parameter estimation is manual calibration by a trial and error procedure comp aring simulated values with measured values. However, this method is time consuming, quite subjective, and cannot ensure that the best parameter set is found. A more elaborate, complex and increasingly attractive form of parameter estimation is inverse optimization. Th is procedure can provide effective parameters in the range of the envisaged model applica tion, and overcomes th e drawbacks of manual calibration (Ritter et al., 2003). Uncertainty of measured data can result from field measurements, water sample collection and storage, and water quality chemical analysis (Harmel et al., 2006). The hydrologic/water quality models are increasingly applied to guide decision-making in water resource management. Including the uncertainty of measured data in model goodne ss-of-fit indicators used during the model testing process can provide important information for decision makers/modelers to more realistically evaluate model performance. The main objective of this study is to model the efficiency of grass buffers to control surface runoff pollution from phosphate mining sand tailings. For this, the numerical model

PAGE 79

79 VFSMOD-W is used to predict overland flow and sediment tra pping within the filter and is linked with a simplified phosphorous transport algor ithm based on experimental data to predict total, particulate and dissolved P fractions in the filter outflow An advanced global inverse optimization technique is used for the model calibration process, and the uncertainty of the measured data is considered in goodnessof-fit indicators of the model testing. Methods and Materials Field Experiments Two field experiments were conducted on th e property of the Bureau of Mine Reclamation, Florida Department of Environm ental Protection (FDEP), Bartow, FL. The land was previously used for phosphate mining. Two experimental sites (site A and site B) 3 km apart were chosen to present the bare disturbed sand tailings in the upper Peace River watershed. The dimensions of the plots for sites A and B ar e shown in Figure 2-2. The average slopes of site A and site B are 2.0 %, and 4.3 %, respecti vely. The lengths of the source areas at site A and site B are 14.4 m and 40.0 m, respectively. Th e lengths of the filters are 4.1 m and 5.8 m at site A and 6.8 m and 13.4 m at site B, respectivel y. The width of each plot is 3.3 m. Thus, two different source areatoVFS area ratios of 2.5 and 3.5 in site A and 3.0 and 6.0 in site B are used to determine their effects on performances of VFS. Locations of instruments installed in the fiel d to convey runoff, collect water samples, and record data (i.e. flow rate, soil moisture, and ra infall intensity) are shown in Figure 2-2. Runoff was collected in a rain gutter bur ied at the outlet of each plot fr om where it flowed into a flume and sampling trough. Then, runoff was redistri buted through a perforated PVC spreader installed at the entry of the VFS. A cover was in stalled to prevent direct rain from falling into the runoff gutter. Six-inch (15.24 cm) HS flumes were used to measure the flow rate. To automatically record flow rate the stage of each flume was recorded using a capacitance probe

PAGE 80

80 (ECH2O, model EC-20, Decagon Devices, WA) inserted vertically in the throat of each flume. A field datalogger (CR-10X, Campbell Scientific, UT) was programmed to record flow rate from the capacitance probe in each flume every minute. To avoid changing the measurement of flow rate in the flume, runoff water samples were collected at each trough positioned below the flume outlet by an automatic water sampler containi ng 24 plastic sampling bottles (ISCO 6712, ISCO, Inc.). The datalogger sent pulses to the IS CO 6712 automatic water sampler based on changes of accumulated runoff volume recorded at each fl ume in an effort to distribute the 24 samples throughout the runoff event. After activation, the sampler purged the suction hose and then collected runoff water samples from the trough in to the 500 mL bottles. Runoff samples were analyzed for concentrations of sediment, TP, and DP. Loads and flow-weighted mean concentration were computed fo r each collected event. The field data at site A were collected duri ng the entire 2006 (total rainfall 722 mm), while at site B were collected from June to Decem ber during the rainy season (rainfall 506 mm). An approximate annual rainfall of 682 mm was recorded at a weather station near site A (1 km apart). The saturated hydraulic conductivity (VKS) and initial soil moisture significantly influence the overland flow transport in sour ce and VFS areas. Thus, 16 data sets were collected from site B and 9 data sets were collected from site A with low VKS to test VFSMOD-W performances. The hydrographs and pollutographs (sediment, TP, and DP) of inflow and outflow, and a hyetograph of each event are recorded. Characterization of Ex perimental Sites Saturated hydrauli c conductivity (sK), soil texture, porosity, grass spacing, and slope were measured to investigate the surface runoff movement and infiltration. Core cylinders made of brass with 5.4 cm diameter and 6.0 cm height (Soilmoisture Equipment Corp, CA) were used to

PAGE 81

81 collect undisturbed soil samples. The soil co res were then saturated with 0.005 M CaSO4-thymol solution and the sK was measured based on the applicati on of Darcys Law with a constant head permeameter (Klute and Dirksen, 1986). Saturated and final weights of the soil was measured and used to calculate bulk density a nd soil porosity. The average suction at the wetting front (Sav) was also estimated as the area under the unsaturated hydr aulic conductivity () (h Kuns) curve applying SoilPrep model (Workman and Skaggs, 1990). The ) (h Kuns was obtained from the Millington and Quirk ( 1960) procedure. Equipment employing the Polarization Intensity Differential Scattering technique (Beckman-Coulte r, Inc.) was used to analyze particle size distribution of soil and sedi ment samples. For this analysis soil samples needed to be pretreated to remove organic matter (Day, 1965). A 0.5 by 0.5 m frame was used to determine the grass spacing by counting the amount of grass stems within the frame area (Appendix A). The main grass in filter areas is Bahia grass which accounts for about 90 %, and the remaining grasses are Hairy Indigo, Cogon gra ss, and Smutgrass. The detailed description of measured soil physical and field properties (topographical survey and grass height) are presented in Appendix A. Simplified Phosphorus Modeling Particulate phosphorus transport Modeling TP phosphorus transport in VFS can be separated into DP and particulate P (PP) transports. Modeling PP transport in VFS can be calculated from the outflow of sediment since the relationship between sediment and PP was obtained from Eq. (4.1) (Chapter 2). PP=0.02606*sediment, with R2 = 0.988 (4.1) where: PP= PP concentration (g/L); sediment= sediment concentration (g/L).

PAGE 82

82 The use of this equation is s upported by the TP content found in the soil samples (2.3 % of soil weight), which matches very closely the PP-to-sediment ratio in water samples from VFS obtained in the experimental equation (slope=0 .02606). The finer particles transport through VFS which contain higher P concen tration; thus, the ratio in Eq. (4.1) is higher than TP fraction in soil. Dissolved phosphorus transport (1). Release of DP from apatite into runoff water: Since the measured outflow DP concentration was found to be similar to the measured inflow DP concentration (out DPCin DPC) (Chapter 2 and Appendix E), the outflo w DP loads can be estimated directly from the accumulation of the product of outflow volume and DP concentration for each time step, n 1 l l l outin DP outC Q DP (4.2) where: outDP= DP outflow mass (g); out lQ= runoff outflow volume at time step l; in DP lC=inflow DP concentration at time step l. During a rainfall event, the DP mass in th e VFS was in a dynamic equilibrium. VFS receive the input DP loads from a source area an d rainfall, and lose th e output DP loads by infiltration into soil and discharg ing to the down slope. Thus, the Eq. (4.2) can be derived from the mass balance of cumulative DP loads in the VFS at the end of a runoff event as, rain D F in outDP DP DP DP DP (4.3)

PAGE 83

83 where: outDP= DP outflow mass (g); inDP = DP inflow mass (g); FDP=DP mass infiltrated to soil (g); DDP=DP mass released from apatite (g). rainDP= DP mass from rainfall (g). Eq. (4.3) can be expressed as Eq. (4.4) assuming that DP concentration of infiltration is the same as inflow DP concentration and DP mass from rainfall is zero. n 1 l l out l l l l l out) C Q C Q C Q ( DPD DP in DP F in DP in (4.4) where: l= time step (s); out lQ= outflow volume (m3); in lQ = inflow volume (m3); F lQ = infiltration volume (m3); in DP lC=inflow DP concentration (mg/L); D DP lC= DP concentration contributed from apatite dissolution (mg/L). The water volume balance in VFS can be expressed as follows: Fl in l rain l out lQ Q Q Q (4.5) where: rain lQ= rainfall volume at each time step (m3). The first term in left-hand side of Eq. (4.4) was substituted from Eq. (4.2) and out lQ in the last term of right-hand side was substituted from Eq. (4.5), then Eq. (4.4) can be expressed as follows: n 1 l l l in l rain l l l l l n 1 l l out l) C ) Q Q Q ( C Q C Q ( C QD DP F in DP F in DP in in DP (4.6) By considering the water volume balance (Eq. (4.5)), we obtain, in DP D DPl out l rain l lC Q Q C (4.7)

PAGE 84

84 Eq. (4.7) indicates that DP concentration cont ributed from apatite dissolution is related to rainfall intensity, inflow concentration, and outfl ow rate. Thus, DP released from apatite may result from the impact of rainfall inte nsity as proposed by Gao et al. (2004). (2). Inflow DP concentration diluted from rainfall: If the dissolution of apatite was not considered in DP transport in the VFS in P mining areas and rainDP=0, the last two terms of Eq. (4.3) can be removed and expressed as, F in outDP DP DP (4.8) We assumed that the inflow DP concentration was diluted from rainfall first, and then the diluted DP concentration was infiltrated into soil. Thus, Eq. (4.8) can be expressed as, n 1 l l l rain l in l in l l in l out) C Q ) Q Q Q ( C Q ( DPin DP F in DP (4.9) By considering water volume balance (Eq. (4.5)), we obtain, out rain in in DP inl n 1 l l l l l outQ ) Q Q ( C Q DP (4.10) Eq. (4.2) assumes that the dissolution of apatite results from rainfall impact and consequently the assumption of in DPC=out DPC is made to predict outflow DP loads. Eq. (4.10) does not consider the dissolution of apatite and inflow DP concentration is diluted before infiltration and discharge. Thes e two simplified DP transport mode ls (Eq. (4.2) and Eq. (4.10)) in mining refuse sand tailings may give us the in formation to determine if apatite dissolves DP into runoff water from the surface soil matrix due to rainfall impact.

PAGE 85

85 Inverse Calibration Methodology Calibration procedure The flow or sediment parameters were es timated using inverse modeling by minimizing the following objective function: N i i i ib t P t O w b OF1 2) ( ) ( ) ( (4.11) where OF(b ) is the objective functi on of parameter vector b that represents the error between measured and simulated values; ) (it O and ) (it Pare observed and predicted values (hydrographs or sedimentographs) using parameter vector b respectively; t is the time; N is the number of measurements available; and iw is the weight of a particular measurement (Lambot et al., 2002). VFSMOD-W was coupled with the Global Multilevel Coordina te Search (GMCS) algorithm (Huyer and Neumaier, 1999) combined sequentially with the classical Nelder-Mead Simplex (NMS) algorithm (Nelder and Mead, 1965) (GMCS-NMS) to perform the inverse calibration of parameter vector b (Ritter et al., 2007). The GMCS can deal with objective functions with complex topography and has the advant age that initial values of the parameters to be optimized are not needed. The NMS method (also known as downhill simplex method) refines the locally optimal solution to a nonlinear problem with several variables when the objective function varies smoothly. Selected input parameters and model outputs The main parameters of hydrology and sediment transports that can be used in model calibration are listed in Table 4-1. These sensit ive parameters were chosen based on an initial sensitivity analysis (Muoz-Carpe na et al., 2007). A global sens itivity analysis was performed

PAGE 86

86 to gain insight in the dependence of the VFSM OD-W outputs on certain model parameters, i.e. the most important model parameters (Muoz-Carpe na et al., 2007). These authors reported that for the conditions in the experimental area the saturated hydraulic conduct ivity (VKS) is a main factor in dominating the runoff delivery ratio (R DR) whereas the order of parameters controlling the total infiltration in filter were VKS, widt h of the vegetative filter strip (FWIDTH), and wetting front (SAV). The order of important parame ters with respect to sediment delivery ratio and (SDR) were median of sediment particle size (dp), FWIDTH, VKS, and grass modified Mannings nm (VN). Variations in the Manning s roughness coefficient (RNA) mainly controlled the time to peak of the outgoing hydrograph and had li ttle effect on sediment output (Muoz-Carpena et al., 1999). The length of the filter (VL) may be chan ged from the variation of the FWIDTH. The saturated water content (O S) may result in the variation of the SAV. Therefore, VKS, FWIDTH, VL, SAV, OS, and R NA were selected to calibrate the optimal values in hydrology transport. VN, dp, and incoming flow sediment concentration (CI) were used to calibrate the optimal values in sediment transport. The values of VKS, FWIDTH, VL, SAV, and OS were measured or calculated from experimental results. The values of VN and RN A were referred from Hann et al., (1994) and Foster et al., (1980), respectively. The CI wa s selected to calibrate the optimal value since sediment deposited in the runoff gutter and flume was not collected to in corporate with inflow sediment concentration. The mean and range of measured parameters were listed in Table 4-2 as well as the calibrated range of each parameter. Quantities listed in Table 4-2 (TRF, RDR, MSF, SDR, CSF, PP, DP, and TP) are used to evaluate the models performance based on predicted and measured results.

PAGE 87

87 Goodness-of-Fit Indicators The goodness-of-fit indicators are used to ev aluate the performance of the model simulation during the calibration a nd testing processes. The Na sh-Sutcliffe coefficient of efficiency (effC, Nash and Sutcliffe, 1970) and root mean square error (RMSE) are commonly used goodness-of-fit indicators for hydrologists to evaluate mode l performance (Legates and McCabe, 1999). However, the effC is not very sensitive to systematic model overor under-prediction especially duri ng low flow periods (Krause et al., 2005). To reduce the oversensitivity to extreme values in the effC, a modified form of effC (Krause et al., 2005), m effC_, was applied to evaluate potential systematic (e.g. overor under-prediction) and dynamic (e.g. timing, and falling or rising lamb) model si mulation errors. The detailed description of goodness-of fit indicators is presented in Appendix B. Using a combination of these indicators (effC, m effC_, and RMSE), we can appropriately evaluate model performance resulting from different types of observed and predicted data. Consideration of Measured Data Uncertainty in the Model Evaluation Common sources of measured errors of hydrol ogic and water quality data are related to flow measurement, sample collection, sample st orage, and laboratory analysis (Harmel et al., 2006). The deviation term (i i iP O e ) in goodness-of-fit indicato rs is normally determined as the difference between observed and predicte d data. This deviation term does not account for uncertainty of measured data in indicators. Therefore, Harmel et al. (2007) modified the deviation term in goodness-of-fit indicators ba sed on the cumulative probable error to appropriately compare model predictions and observations (Fig. 4-1).

PAGE 88

88 The probable error range (PER) resulting from the various hydrologic/water quality data collection procedures can be estimated by propa gation of errors method in Eq.(4.12) (Topping, 1972). n iE E E E1 2 4 2 3 2 2 2 1PER (4.12) Where: PER = probable error range ( %); n = number of potentia l error sources; and E1, E2, E3, and E4 are uncertainties (%) associ ated with flow measurement, sample collection, sample storage, and laboratory analysis, respectiv ely. In hydrology, this method has been used for uncertainty estimates relate d to discharge measurements (S auer and Meyer, 1992) and water quality (Cuadros-Rodriquez et al ., 2002; Harmel et al., 2007). The measured data uncertainty of each erro r category (E1 to E4) was determined based on the sample collecting and data analysis procedur es (Harmel et al., 2006). The measured data uncertainty of each category is summarized in Tabl e 4-4. The sampling uncertainty (E2) of TP was taken as that of sediment since most P in TP comes from mineral apatite in the soil transported as sediment. Storage uncertainty (E 3) of DP was taken as maximum value of the storage error (Kotlash and Chessman, 1998) but was increased up to 45% to account for potential dissolution of carbonate-fluorapa tite (CFA, also called francolite), since CFA exists in water/sediment samples. Sediment deposited in the flume can result in errors of measured flows (E1). Thus, flow uncertainty was taken as poor condition (10%) and added up to 20% to account for sediment effect on measurement. Sin ce DP, TP, and sediment were collected from the flow, 20% of measured flow error was chosen Finally, probable erro r range (Eq. 4.12) are calculated yielding 50%, 30%, 29% and 20%, for DP, TP, sediment, and flow, respectively. This measured data can be incorporated into goodness-of-fit indicators following Harmel and

PAGE 89

89 Smith (2007) to evaluate the prediction perf ormances of VFSMOD-W. The uncertainty boundaries of the observation were calculated as Eq. (4.13) (Harmel and Smith, 2007). 100 O PER O (u) UOi i i i 100 O PER O ) l ( UOi i i i (4.13) where: UOi(u) = upper uncertainty boundary for each observed data point; UOi(l) = lower uncertainty boundary for each observed data point; PERi = probable error range for each measured data point. To include PER in goodness-of-fit in dicators the deviation term (i i iP O e ) in Eqs. (B.1)-(B.3) in Appendix B is replaced by the modified deviation, iem, which is defined based on the PER of the measured value and model predicted value. The calculation of iem is shown in Eq. (4.14) and gr aphically in Figure 4-1. i i iP ) l ( UO em if i iP ) l ( UO i i iP ) u ( UO em if i iP ) u ( UO (4.14) 0 emi if ) u ( UO P ) l ( UOi i i where iem is modified deviation between measured and predicted data. When a predicted value is located outside the uncertainty boundari es, the deviation is calculated as the difference betw een the predicted value and th e nearest uncertainty boundary; otherwise, the deviation is equal to 0. In this study, we assume that all measured data of each category have the same PER during each event.

PAGE 90

90 Results and Discussion To verify the robustness of the inverse m odeling algorithm integrated in the VFSMOD-W, two conditions, perfect data set and adding rando m noise to the perfect data set (ARP), were created. The results show that inverse m odeling algorithm integrated in the VFSMOD-W is robust since it successfully calib rated the parameters even in the presence of random noise associated with the measured data (Appendix C). A total of twenty five runoff events were se lected to evaluate VFSMOD-W performance in simulating runoff, sediment, and P transport in VFS from refuse mining sand tailings. An example (event on 07/14/06) of observed and pr edicted hydrographs and sedimentographs is shown in Figures 4-2 and 4-3. Hydrographs and sedimentographs of other remaining events are presented in Appendix D. The VFS sediment tra pping efficiency for this event is about 98% in VFS. The inflow mass of sediment was two orde rs larger than outflow, thus inflow sediment was not included in the sedi mentograph (Figure 4-3). For the 25 events, values of optimal paramete rs and the quantities of measured QPF (peak flow measured from VFS), TRS, TRF, CSF, and MSF and pred icted TRF, CSF, and MSF are listed in Table 4-5. Simulation results expres sed in different goodness-of -fit indicators with (PER>0) and without (PER=0) considering measur ement uncertainty of hydrology and sediment transport are shown in Table 4-6. Ceff, sensitive in large volume, is mainly used to evaluate model performance since large value (peak flow vol ume) has a significant effect on sediment and runoff transport. The relationship between QPF and Ceff of runoff flow simulati on was found (Figure 4-4), such that smaller events (Qp < 0.4 L/s) are not simulated well with the model (Ceff < 0.60), likely due to limitations of the experimental system to register such small events. The low flow velocity of the events may have limited energy to flush deposited sediment in the flume. Under

PAGE 91

91 this situation deposited sediment in the flum e may raise the water level and consequently increase the measured flow rate. Thus, in some events with a low QPF, the measured runoffs from VFS are far greater than simulated runo ffs from VFS as shown in Table 4-5. Once VFSMOD-W is calibrated for runoff, th e model offers good sediment transport predictions, shown in Figure 45. For those events (QPF < 0.4 L/s) which were not predicted well in runoff transport, their measured TRFs are less than 60 L and relative measured MSFs are less than 3 g. The relative larger measuremen t error in low runoff events resulted in poor predictions of VFSMOD-W in runoff and sediment transport. The predicted MSFs are zero in these low runoff events. Thus, similarly to the runoff case the model performed fairly well throughout the range of measured data, except for the low values of measured runoff subject to experimental limitations. The calibrated ranges of parameters for diff erent events and measured mean value or referred range of parameters in different plots ar e shown in Table 4-7. The range of calibrated VKS is within one order of magn itude of the measured value for each plot. This is considered an acceptable range since VKS field distribution of values is often described by a lognormal distribution. The minimum calibrated SAV is cl ose to the measured value. The calibrated range of OS is within 15 % of measured OS The minimum calibrated FWIDTH is close to 1.0 which occurred in the highest runoff volum e in site B with 6.8 m long filter (B090906V2). The concentrated flow path may occur in the event with a high runoff volume. The ranges of VL are between onefold and twofold of meas ured length which means the route of runoff transport is not straight. The event with VL < measured length (Ceff < 0.6 as well) happened in the small runoff event in the 13.4 m-long filter wi th a higher initial soil moisture. Calibrated RNA(I)s are usually between 0.1 and 0.60, typical of grass with different density, except event

PAGE 92

92 B101206V2. The maximum VN of each plot is sli ghtly greater than the measured range. In most events dp is greater than 0.0037 m (COARSE > 0.5 as well) since the source area contains a high fraction of sand (>0.94). The values of dp and COARSE match the experimental measurements from sediment particle size distribution of water samples. In Table 4-6 most values of Ceff are higher than Ceff_m for both hydrology and sediment simulations, which indicates that the model can simulate high volume very well. When considering measured data uncertainty (PER = 20 %) in runoff simulation for these 25 events, Ceff increased 1 % to 1179 %, Ceff_m increased 5 % to 460 %, and RMSE decreased -20 % to -51 %. For sediment simulation consideri ng measured data uncertainty (PER = 29 %), Ceff increased 2% to 1311%, Ceff_m increased 7% to 1034%, and RMSE decreased -24% to -68%. The highest increase of Ceff occurred in the poor simulation result. The narrow range increased in Ceff_m compared to Ceff since weight of each point is the same in calculation of Ceff_m. The goodness-of-fit indicators of hydrology, se diment, and P simulations are shown in Table 4-8. Again, VFSMOD-W was not able to predict very well in small events due to the measurement error. In these low runoff events the RMSEs are less than 0.0006. The small magnitude did not have a signifi cant effect on goodness-of-fit i ndicators when bigger events were included in the comparis on. Including the probable e rror range (PER) in goodness-of-fit indicators, the predictions of TRF (Ceff = 0.991, Ceff_m = 0.888) and MSF (Ceff = 0.976, Ceff_m = 0.874) are very high for these 25 events. These good predictions in runoff and sedime nt also result in good prediction of PP transport (Ceff = 0.961, Ceff_m = 0.838) since apatite exists almost uniformly in sediment. Good DP predictions (Ceff = 0.965) were found based on the assu mption of considering rainfall impact on P release from apatite. The release of DP from apatite into runoff water maintains the

PAGE 93

93 system equilibrium for the DP loss from infiltration and dilution of DP concentration from rainfall. The Ceff of TP transport is also as high as PP since DP is a small fraction of TP. When uncertainty of measured data is included in these 25 events, the Ceff is greater than 0.98 for each output quantity except RDR. This means that VFSMOD-W predicts systematic and dynamic behaviors of runoff, sediment, and P transport very well considering acceptable measured data uncertainties. The Ceff_m of each quantity is also significantly increased. The paired predicted and measured values with their measured data error of each quantity are shown from Figures 4-6 to 4-12. Most predicted data including measured data uncertainty cover the 1:1 line. Conclusions The VFSMOD-W parameters obtained by invers e modeling are within acceptable ranges of measured values. The smaller events (peak flow, QPF < 0.4 L/s) are not simulated well with the model (Ceff < 0.60), likely due to limitations of the expe rimental system to register such small events. For those events (QPF < 0.4 L/s) whic h were not predicted well in runoff transport, their measured TRFs are less than 60 L and rela tive measured MSFs are less than 3 g. Once VFSMOD-W is calibrated for runoff, the model offers good sediment transport predictions. Similarly to the runoff case the model performe d fairly well throughout th e range of measured data, except for the low values of measured runoff subject to experi mental limitations. When considering uncertainty of measured data in each quantity for 25 events, the Ceff is greater than 0.98 for each quantity except RDR. The Ceff_m of each quantity is also significantly increased. The uncertainty of measured data included in the goodness-of-f it indicators is more realistic to evaluate model performance a nd data sets. The good predictions of TRF (Ceff = 0.991, Ceff_m = 0.888) and MSF (Ceff = 0.976, Ceff_m = 0.874) are very high for these 25 events. These good predictions in runoff and sediment al so result in good prediction of PP transport (Ceff

PAGE 94

94 = 0.961, Ceff_m = 0.838) since apatite exists almost uniformly in sediment. Good DP predictions (Ceff = 0.965) were found based on the assumption of considering rainfall impact on P release from apatite. The release of DP from apatite in to runoff water maintains the system equilibrium for the DP loss from infiltration and dilution of DP concentration from rainfall. The Ceff of TP transport is also as high as PP sin ce DP is a small fraction of TP. Based on the successful perfor mance of VFSMOD-W, this tool shows promise for the management agencies involved in mining permitt ing in upper Peace River basin. These agencies could apply VFSMOD-W to desi gn VFS for controlling runoff and P transport in phosphate mining sand tailings.

PAGE 95

95 Table 4-1. Simulation parameters for the VFSMOD-W model. Description # Parameter Units Hydrology 1 FWIDTH m Effective flow width of the strip 2 VL m Length of the filter (flow direction) 3 RNA(I) s /m1/3 Filter Mannings roughness n for each segment 4 SOA(I) m/m Filter slope for each segment 5 VKS m/s Soil vertical saturated hydraulic conductivity in the VFS, Ks 6 SAV m Green-Ampts average suction at wetting front 7 OS m3/m3 Saturated soil water content, s 8 OI m3/m3 Initial soil water content, i 9 SM m Maximum surface storage 10 SCHK -Relative distance from the upper filter edge where check for ponding conditions is made (i.e. 1 = end, 0.5 = mid point, 0 = beginning) Sediment transport 11 SS cm Average spacing of grass stems 12 VN s /cm1/3 Filter media (grass) modified Mannings nm (.012 for cylindrical media) 13 H cm Filter grass height 14 VN2 s /m1/3 Bare surface Mannings n for sediment inundated area in grass filter 15 dp cm Sediment particle size diameter (d50) 16 COARSE -Fraction of incoming sedi ment with particle diameter > 0.0037 cm (coarse fraction routed through wedge as bed load) [unit fraction, i.e. 100% = 1.0] 17 CI g/cm3 Incoming flow sediment concentration 18 POR m3/m3 Porosity of deposited sediment 19 SG g/cm3 Sediment particle density Table 4-2. Selected quantities of hydrol ogy, sediment, and phosphorus transport. Description Quantity Units Hydrology TRF m3 Total runoff output from filter RDR -Runoff delivery ratio Sediment MSF kg Mass of sediment output from filter CSF g/L Concentration of sediment in outflow from filter SDR -Sediment delivery ratio Phosphorus DP g DP mass output from filter PP g PP mass output from filter TP g TP mass output from filter

PAGE 96

96 Table 4-3. The range of selected parameters used in calibration and measured data of each parameter at sites A and B. Site B Site A Measured Calibrated Measured Calibrated Component Parameter n mean range range n mean range range VKS 8 1.8E-05 2.8E-6 1.0E-41E-6 9E-4 8 5.6E-55.9E-5 1.1E-4 1E-6 9E-4 SAV 8 0.23 0.05-32 0.1-1 8 0.17 0.14-0.27 0.1-1 OS 8 0.46 0.40-0.49 0.32-0.56 8 0.40 0.37-0.43 0.32-0.56 Hydrology FWIDTH 1 3.30 -1.0-3.3 1 3.30 -1.0-3.3 1 6.8 -6.6-12 1 4.1 -4.1-10 VL(1) 1 13.4 -13.4-20 1 5.8 -5.8-12 RNA(I)(2) --0.015-0.4 0.01-0.60 0.01-0.60 VN(3) --0.008-0.016 0.008-0.025 ---0.008-0.016 0.008-0.025 Sediment CI(4) ---0.001-0.05 ----0.0005-0.020 dP 20 0.027 0.018-0.041 0.0037-0.045100.025 0.011-0.038 0.0037-0.045 (1): VL has two lengths at each site; (2): Fo ster et al., 1980; (3); Hann et al., 1994; (4): measured values were not provided since measured data did not include sediment deposited in flume and runoff gutter. --: no value provided. Table 4-4. Measured data uncertainty of DP TP, sediment, and flow for each category. E1=Flow(1) E2=Sampling(2) E3=Storage(3) E4=Analysis(4)(5) Measured Item Range (%) (Central value) Used (%) Range (%) (Central value)Used (%) Range (%) (Central value)Used (%) Range (%) (Central value) Used (%) PER (%) DP -5 to 10 (--) 20 0 to 0 (0) 0 -39 to 20 (-17) 45 # -14 to 22 (8) 8 50 TP -5 to 10 (--) 20 0 to 17 (0 ) 20 -64 to 9 (-11) 11 -24 to 22 (2) 2 30 Sediment -5 to 10 (--) 20 14 to 33 (20) 20 0 to 0 (0 ) 0 -4.9 to -2.5 (--) 5.0 29 Flow -5 to 10 (--) 20 0 to 0 (0) 0 0 to 0 (0) 0 0 to 0 (0 ) 0 20 *: Sampling error taken as that of sediment since most P in TP comes from mineral apatite in sediment. #: Storage taken as max value (39%) but increas ed 5% (rounded to 45%) to account for potential dissolution of apatite. (--): no value provided. Harmel et al., 2006: (1): Sauer and Meyer (1992); (2 ): Martin et al. (1992); (3): Kotlash and Chessman (1998); (4): Gordon et al. (2000); (5): Mercurio et al. (2002).

PAGE 97

97Table 4-5. Calibrated parameters of hydrology and sediment and measured and predicted selected quantities. Hydrology Sediment Measured data Predicted data Event ID VKS (m/s) SAV (m) OS (%) FWIDTH (m) VL (m) RNA (s/m1/3) VN (s/m1/3) CI (g/cm3) dp (mm) QPF (L/s) TRS (m3) CSF (g/L) TRF (m3) MSF (kg) CSF (g/L) TRF (m3) MSF (kg) B061306V2* 0.000007 0.66 0.56 3.11 9.74 0.23 0.009 0.028 0.0048 0.067 0.518 0. 0590.0200.001 0.06 0.010 0.001 B071406V2 0.000007 0.79 0.56 3.26 9.23 0.31 0.011 0.019 0.0018 0.590 1.290 0. 1840.3230.059 0.191 0.239 0.046 B072006V2 0.000021 0.44 0.35 2.76 8.96 0.60 0.014 0.042 0.0056 1.586 1.181 0. 3100.6530.202 0.273 0.553 0.151 B072806V2 0.000044 0.37 0.44 2.23 8.22 0.33 0.008 0.026 0.0031 0.344 0.592 0. 0630.1540.010 0.037 0.048 0.002 B090606V2 0.000025 0.41 0.52 2.38 6.89 0.39 0.017 0.025 0.0067 1.265 0.655 0. 1700.2870.049 0.172 0.242 0.041 B090906V2 0.000015 1.03 0.46 1.06 8.05 0. 44 0.010 0.004 0.0019 2.364 4.261 0.1783.4940.623 0 3.381 0.544 B091006V2 0.000027 0.42 0.39 1.74 8.07 0.58 0.019 0.009 0.0038 1.430 1.861 0. 1241.0280.127 0.127 0.907 0.115 B101206V2 0.000008 0.25 0.46 2.78 12.0 0. 79 0.025 0.001 0.0203 1.863 0.676 0.0070.4400.003 0 0.431 0.000 B061306V3 0.000005 0.45 0.40 2.40 8.26 0.37 0.014 0.014 0.0129 0.009 0.189 0. 0520.0060.000 0.001 0.038 0.000 B071406V3 0.000007 0.72 0.56 1.50 16.0 0.09 0.025 0.025 0.0042 0.757 1.035 0. 1360.4280.058 0.129 0.348 0.045 B072006V3 0.000004 0.68 0.52 1.50 16.6 0.32 0.019 0.025 0.0091 1.061 1.208 0. 1680.8870.149 0.174 0.742 0.129 B072806V3 0.000031 0.53 0.47 1.84 7.93 0.50 0.008 0.015 0.0023 0.462 0.917 0. 1290.2670.034 0.196 0.066 0.013 B090606V3 0.000077 0.74 0.48 1.30 8.38 0.15 0.022 0.001 0.0044 0.022 0.500 0. 0760.0140.001 0.064 0.003 0.000 B090906V3 0.000007 1.01 0.46 2.31 15.6 0.57 0.022 0.015 0.0042 2.133 3.895 0. 1232.6810.329 0.13 2.627 0.342 B091006V3 0.000009 0.83 0.50 1.50 13.6 0.21 0.019 0.009 0.0037 1.060 1.688 0. 1270.9400.119 0.107 0.900 0.096 B101206V3 0.000021 0.45 0.48 1.56 17.9 0.17 0.020 0.012 0.0037 0.974 0.743 0. 1060.2540.027 0.096 0.210 0.020 A020306V2 0.000050 0.81 0.37 2.19 4.34 0.34 0.020 0.012 0.0104 0.090 0.962 0. 0490.0500.002 0.068 0.017 0.001 A061306V2 0.000026 0.70 0.45 2.06 8.20 0.44 0.023 0.011 0.0046 0.060 0.436 0. 0100.0620.001 0.011 0.011 0.000 A070706V2 0.000026 0.10 0.45 1.50 4.39 0.05 0.013 0.008 0.0022 0.107 0.128 0. 0410.0440.002 0.043 0.038 0.002 A072806V2 0.000044 0.69 0.45 2.33 4.39 0.22 0.025 0.021 0.0093 0.077 0.289 0. 0100.0270.000 0.013 0.008 0.000 A091006V2 0.000100 0.10 0.45 1.57 4.40 0.05 0.021 0.005 0.0180 0.051 0.139 0. 0100.0360.000 0.07 0.006 0.000 A020306V3 0.000012 0.80 0.42 3.30 11.0 0.11 0.008 0.011 0.0198 0.024 1.076 0. 0100.0200.000 0.001 0.024 0.000 A070706V3 0.000008 0.80 0.49 2.56 5.98 0.15 0.022 0.018 0.0025 0.892 0.197 0. 0360.0620.002 0.029 0.043 0.001 A072806V3 0.000014 0.81 0.45 1.49 5.80 0.54 0.018 0.020 0.0037 0.402 0.317 0. 0630.1430.009 0.108 0.044 0.005 A091006V3 0.000031 0.80 0.45 2.49 7.38 0.17 0.008 0.015 0.0035 0.063 0.177 0. 0390.0550.002 0.035 0.012 0.000 In event ID, A: Site A; B: Site B; six numbers succession: Gregorian date; V2: plot number 2 in VFS area.

PAGE 98

98Table 4-6. Results of hydrology and sediment si mulations in selected goodness-of-fit indicators with and without including measurement uncertainty (PER=20% for hydrology, PER=29% for sediment). Hydrology Sediment PER=0 PER=0.2 PER=0 PER=0.29 Event ID effC m effC_ RMSE# effCm effC_RMSE effCm effC_RMSE# effC m effC_RMSE B061306V2* 0.628 0.519 9.4E-06 0.7940.660 7.0E-06 0.4220.563 0.0009 0.734 0.721 0.0006 B071406V2 0.820 0.681 4.8E-05 0.9100.797 3.4E-05 0.8310.726 0.0110 0.935 0.867 0.0068 B072006V2 0.948 0.870 9.7E-05 0.9720.922 7.1E-05 0.6850.740 0.0882 0.865 0.862 0.0578 B072806V2 0.315 0.313 6.4E-05 0.5790.474 5.0E-05 0.5910.578 0.0048 0.819 0.734 0.0032 B090606V2 0.989 0.894 3.6E-05 0.9960.940 2.3E-05 0.9810.909 0.0093 0.998 0.969 0.0030 B090906V2 0.868 0.719 2.5E-04 0.9490.866 1.5E-04 0.7870.660 0.0782 0.933 0.841 0.0438 B091006V2 0.908 0.768 1.0E-04 0.9530.865 7.3E-05 0.9460.811 0.0138 0.990 0.929 0.0060 B101206V2 0.974 0.888 6.9E-05 0.9940.962 3.4E-05 0.0310.419 0.0781 0.442 0.576 0.0593 B061306V3 -1.286 -0.376 3.6E-06 -0.463-0.101 2.9E-06 -1.183-0.348 0.0002 -0.100 0.043 0.0001 B071406V3 0.738 0.529 7.3E-05 0.8690.681 5.2E-05 0.8610.699 0.0093 0.948 0.841 0.0057 B072006V3 0.810 0.701 1.9E-04 0.9260.842 1.2E-04 0.9480.863 0.0193 0.982 0.950 0.0114 B072806V3 0.033 0.050 1.0E-04 0.4220.280 8.0E-05 0.4410.376 0.0138 0.749 0.607 0.0093 B090606V3 -0.818 -0.182 9.9E-06 -0.1400.077 7.8E-06 -0.4110.085 0.0009 0.289 0.350 0.0006 B090906V3 0.925 0.774 1.6E-04 0.9700.907 9.9E-05 0.8010.647 0.0434 0.930 0.832 0.0258 B091006V3 0.587 0.553 1.7E-04 0.8020.733 1.2E-04 0.7390.662 0.0204 0.920 0.842 0.0113 B101206V3 0.855 0.765 8.8E-05 0.9340.872 5.9E-05 0.7230.656 0.0138 0.923 0.836 0.0073 A020306V2 0.131 0.253 2.2E-05 0.4710.429 1.7E-05 0.6230.592 0.0009 0.815 0.729 0.0006 A061306V2 -0.770 -0.259 2.0E-05 -0.1030.012 1.6E-05 -0.2650.029 0.0002 0.369 0.326 0.0001 A070706V2 0.733 0.595 1.5E-05 0.8720.742 1.0E-05 0.7070.707 0.0008 0.897 0.842 0.0005 A072806V2 0.242 0.062 1.3E-05 0.5170.256 1.0E-05 0.3360.120 0.0001 0.674 0.386 0.0001 A091006V2 -0.277 0.182 1.4E-05 0.1980.358 1.1E-05 -0.2060.212 0.0002 0.400 0.452 0.0001 A020306V3 -0.339 0.163 8.7E-06 0.1610.354 6.9E-06 -0.4010.126 0.0001 0.307 0.391 0.0001 A070706V3 0.723 0.660 1.9E-05 0.8660.788 1.3E-05 0.3560.462 0.0012 0.758 0.678 0.0007 A072806V3 0.884 0.755 3.8E-05 0.6800.624 6.3E-05 0.6000.605 0.0047 0.819 0.761 0.0032 A091006V3 -0.201 0.256 1.8E-05 0.2460.417 1.4E-05 0.1530.369 0.0007 0.598 0.584 0.0005 *In event ID, A: Site A; B: Site B; six numbers succession: Gregorian date; V2: plot number 2 in VFS area. #units of RMSEs in hydrology and sediment are (m3/s) and (g/s), respectively.

PAGE 99

99Table 4-7. The calibrated range of parame ters compared with the measured value of parameters in different plots. B-VFS-2 B-VFS-3 A-VFS-2 A-VFS-3 Component Parameter Measured Min Max Measured Min Max Measured Min Max Measured Min Max VKS 9.08E-06 7.08E-06 4.41E-055.13E -05 4.26E-06 7.69E-05 5.76E-05 2.62E-0 59.99E-057.78E-05 7.67E-063.14E-05 SAV 0.32 0.25 1.03 0.28 0.45 1. 01 0.21 0.10 0.81 0.19 0.80 0.81 OS 0.47 0.35 0.56 0.49 0.40 0. 56 0.43 0.37 0.45 0.45 0.42 0.49 Hydrology FWIDTH 3.30 1.06 3.26 3.30 1.30 2.40 3.30 1.50 2.33 3.30 1.49 3.30 VL 6.80 6.89 12.02 13.40 7.93 17. 92 4.10 4.34 8.20 5.80 5.80 11.00 RNA(I) 0.05-0.4 0.234 0.794 0.05-0.4 0.092 0.567 0.05-0.4 0.050 0. 436 0.05-0.4 0.110 0.538 VN 0.008-0.016 0.0083 0.0250 0.0080.016 0.0081 0.0253 0.008-0.016 0. 0129 0.0250 0.008-0.016 0.0080 0.0220 Sediment CI 0.0013 0.0417 0. 0014 0.0250 0.0054 0.0207 0.0110 0.0200 dP 0.018-0.041 0.0018 0.0203 0.0210.039 0.0023 0.0129 0.015-0.038 0. 0022 0.0180 0.011-0.036 0.0025 0.0198 *: values not provided, because measured data did not include sediment deposited in flume and runoff gutter.

PAGE 100

100 Table 4-8. The selected goodness-of-fit indicators for each quantity with/without including PER. Goodness-of-fit indicators Quantity Error range Ceff Ceff_m RMSE PER=0 0.991 0.888 0.078 TRF PER=0.2 0.998 0.963 0.039 PER=0 0.706 0.498 0.127 RDR PER=0.2 0.857 0.721 0.088 PER=0 0.976 0.874 0.021 MSF PER=0.29 0.998 0.991 0.002 PER=0 0.973 0.810 0.001 SDR PER=0.29 0.996 0.949 0.001 PER=0 0.901 0.749 0.023 CSF PER=0.29 0.983 0.936 0.009 PER=0 0.961 0.838 0.688 PP PER=0.3 0.994 0.957 0.301 PER=0 0.857 0.661 0.523 DP* PER=0.5 0.997 0.964 0.073 PER=0 0.965 0.792 0.260 DP # PER=0.5 0.999 0.976 0.054 PER=0 0.949 0.788 1.093 TP* PER=0.3 0.994 0.952 0.401 PER=0 0.967 0.825 0.880 TP # PER=0.3 0.994 0.957 0.363 *: DP diluted from rainfall. #: rainfall induces the DP released from apatite.

PAGE 101

101 Figure 4-1. Graphical representati on to calculate modified devi ation between paired observed and predicted data based on the probable measured error range. Time(s) 010002000300040005000 Flow Rate, Q (m3/s) 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 Rainfall, P (m/s) 0.0 1.0e-5 2.0e-5 3.0e-5 4.0e-5 5.0e-5 6.0e-5 7.0e-5 8.0e-5 inflow observed predicted Rainfall (m/s) Figure 4-2. Hydrographs of event B071406V3. emi=UOi(u)-Pi emi=UOi(l)-Pi Oi P i P i P i Measurement uncertainty range emi=0 UOi (l) UOi(u)

PAGE 102

102 Time(s) 010002000300040005000 Sediment outflow, gso (g/s) 0.00 0.04 0.08 0.12 0.16 0.20 Rainfall, P (m/s) 0.0 1.0e-5 2.0e-5 3.0e-5 4.0e-5 5.0e-5 6.0e-5 7.0e-5 8.0e-5 Observed Rain(m/s) Predicted Figure 4-3. Sedimentographs of event B071406V3. QPF (L/s) 0.00.51.01.52.02.5 Ceff of Q -1.5 -1.0 -0.5 0.0 0.5 1.0 QPF vs Ceff of Q Fitted Curve Figure 4-4. Comparison of measured filter strip peak flow measured on the experimental site vs. goodness of fit VFSMOD runoff predictions.

PAGE 103

103 R 2 =0.873 Ceff of Q -1.5-1.0-0.50.00.51.0 Ceff of sediment -1.5 -1.0 -0.5 0.0 0.5 1.0 Q vs Sediment Fitted Line Sediment = 0.144+0.7783*Q R 2 =0.773 Figure 4-5. effC of sediment versus effC of Q for all simulated events. Observed TRF(m 3 ) 0.01.53.04.5 Predicted TRF(m 3 ) 0.0 1.5 3.0 4.5 Predicted vs Observed Uncertainty Range Ceff=0.991 (0.998) Figure 4-6. Scatterplot of measured and pred icted TRF including measurement uncertainty for each measured value plotted as an error bar (PER=20%, number in brackets is Ceff considering the PER).

PAGE 104

104 Observed CSF (g/L) 0.00.10.20.30.4 Predicted CSF (g/L) 0.0 0.1 0.2 0.3 0.4 Predicted vs Observed Uncertainty Range Ceff=0.901 (0.983) Figure 4-7. Scatterplot of measured and pred icted CSF including measurement uncertainty for each measured value plotted as an error bar (PER=29%, number in brackets is Ceff considering the PER). Observed MSF(kg) 0.000.150.300.450.600.750.90 Predicted MSF(kg) 0.00 0.15 0.30 0.45 0.60 0.75 0.90 Predicted vs Observed Uncertainty Range Ceff=0.976 (0.998) Figure 4-8. Scatterplot of meas ured and predicted MSF including measurement uncertainty for each measured value plotted as an error bar (PER=29%, number in brackets is Ceff considering the PER).

PAGE 105

105 Observed DP (g) 0.01.53.04.56.07.59.0 Predicted DP(g) 0.0 1.5 3.0 4.5 6.0 7.5 9.0 Predicted vs Observed Uncertainty Range Ceff=0.857 (0.997) Figure 4-9. Scatterplot of measured and pred icted DP diluted from rainfall including measurement uncertainty for each measured value plotted as an error bar (PER=50%, number in brackets is Ceff considering the PER). Observed DP (g) 0.01.53.04.56.07.59.0 Predicted DP(g) 0.0 1.5 3.0 4.5 6.0 7.5 9.0 Predicted vs Observed Uncertainty Range Ceff=0.965 (0.994) Figure 4-10. Scatterplot of measured and predicted DP w ithout dilution from rainfall including measurement uncertainty for each measured value plotted as an error bar (PER=50%, number in brackets is Ceff considering the PER).

PAGE 106

106 Observed PP (g) 048121620 Predicted PP (g) 0 4 8 12 16 20 Predicted vs Observed Uncertainty Range Ceff=0.961 (0.994) Figure 4-11. Scatterplot of measured and predicted PP including measurement uncertainty for each measured value plotted as an error bar (PER=30%, number in brackets is Ceff considering the PER). Observed TP (g) 0481216202428 Predicted TP (g) 0 4 8 12 16 20 24 28 Ceff=0.967 (0.994) Predicted vs Observed Uncertainty Range Figure 4-12. Scatterplot of measured and predicted TP including measurement uncertainty for each measured value plotted as an error bar (PER=30%, number in brackets is Ceff considering the PER).

PAGE 107

107 CHAPTER 5 CONCLUSIONS A value of 2.3 % of TP was found in soil sa mples of the reclaimed mining areas in the upper Peace River basin. DP concentrations from source and VFS areas range from 0.4 to 3.0 mg/L, which exceeds EPA criterion of P concentrati on (0.1 mg/L) discharging into a river. A range of field conditions were studied and it was found that a signi ficant amount of runoff volume and sediment transport capacity occurred in the exposed surface lands. In the lands with 4.3% slope, 1.6 cm/h sK, and runoff lengths of 40 m, year ly outflows of Q, sediment, TP, and DP were 1300 m3/ha, 4550 kg/ha, 104 kg/ha, and 2.21 kg/ha, respectively. In the landscape with 2.0 % slope, 31.0 cm/h sK, and runoff lengths of 14.4 m, y early outflows of Q, sediment, TP, and DP were 615 m3/ha, 240 kg/ha, 6.12 kg/ha, and 0.27 kg/ha, respectively. Vegetative filter strips (grass buffers) adjacent downstream from these source areas considerly reduce runoff and DP (60%) and also transports of sediment and TP (>96%). The length of filters, soil saturated hydraulic conductivity (sK) in filters, rainfall intensity, and initial soil moisture were the main factors controlling the changes of runoff volume and peak flow rate in filters. TP in water samples cont ained a high fraction of PP (apatite), thus STE and TPTE were closely related in both sites and we re controlled by the same factors. Since phosphate rock exists in soil, movement of PP and sediment in VFS are highly correlated (R2=0.97-0.98). In site A, lower flow volume (Q) obtained in the 4.1 m filters (larger area ratio) resulted in lower STE compared to the 5.8 m filters (smaller area ratio). In site B, there were no significant differences in the STE and TPTE of 6.8 m and 13.4 m filters. The shorter filters (larger area ratio) were almost as effective as the longer filt ers (smaller area ratio) in trapping sediment and TP since in both cases the removal efficiency was very large. The longer filters

PAGE 108

108 with lower sK at site B increased the runoff travel tim e, and thus seemed to increase the DP mass released from apatite. Power equations were found to describe well (R2=0.93-0.96) the relationships between sediment yields and product of runoff volume and p eak flow rate (Q*Qp), for each runoff event. To aid in future BMP design efforts, the source areas curve numbers from the Soil Conservation Service TR-55 methods (SCS, 1986) were fitted to th e experimental data colle cted on-site. This will be useful in future VFS design efforts. Phosphorus in soils at the remediation was in the form of apatite, as indicated by XRD and corroborated by XRF elemental analysis and chem ical fractionation. Results of this study supported the hypothesis that releas e of P from the soils was primarily from apatite dissolution rather than desorption from metal oxides that is more typical of soils of the region. The P release behavior in a batch e xperiment closely related to th e modeled SSA of CFA. The absolute prediction of DP release based on m odeled CFA surface area and a CFA rate constant from the literature underestimated observed release, suggesting that the rate equation or constant were not applicable to the CFA of the soils studied or that SS A of CFA was underestimated, or both. The calibrated parameters of VFSMOD-W are in the acceptable range of measured data by applying the inverse method. The smaller events (Qp < 0.4 L/s) are not simulated well with the model (Ceff < 0.60), likely due to limitati ons of the experimental system to register such small events. For those events (Qp < 0.4 L/s) which were not predicte d well in runoff transport, their measured TRFs are less than 60 L and relativ e measured MSFs are less than 3 g. Once VFSMOD-W is calibrated for runoff, the model offers good sediment transport predictions.

PAGE 109

109 Similarly to the runoff case the model performe d fairly well throughout th e range of measured data, except for the low values of measured runoff subject to experi mental limitations. When considering uncertainty of measured data in each quantity for 25 events, the Ceff is greater than 0.98 for each quantity except RDR. The Ceff_m of each quantity is also significantly increased. The uncertainty of measured data included in the goodness-of-f it indicators is more realistic to evaluate model performance a nd data sets. The good predictions of TRF (Ceff = 0.991, Ceff_m = 0.888) and MSF (Ceff = 0.976, Ceff_m = 0.874) are very high for these 25 events. These good predictions in runoff and sediment al so result in good prediction of PP transport (Ceff = 0.961, Ceff_m = 0.838) since apatite exists almost uniformly in sediment. Good DP predictions (Ceff =0.965) were found based on the assumption of considering rainfall impact on P release from apatite. The release of DP from apatite in to runoff water maintains the system equilibrium for the DP loss from infiltration and dilution of DP concentration from rainfall. The Ceff of TP transport is also as high as PP sin ce DP is a small fraction of TP. Based on the successful perfor mance of VFSMOD-W, this tool shows promise for the management agencies involved in mining pe rmitting in upper Peace River basin. These agencies could apply VFSMOD-W to design V FS for controlling runoff and P transport in phosphate mining sand tailings.

PAGE 110

110 APPENDIX A SOIL PHYSICAL PROPERTIES AND SIMULATION PARAMETERS Soil physical properties including soil textur e, saturated hydrau lic conductivity, soil moisture retention curve, bulk density, and porosity were analyzed to investigate the water movement in the subsurface. These ar e important factors for affecting hydrograph and infiltration. The calibration of soil moisture probe (capacitance probe) is also included in this Appendix. The surface t opography, and grass spacing and height were also measured to supply the model inputs in the modeling of pollution transport. Soil Texture (or called part icle size distribution) Equipment employing the Polarization Inte nsity Differential Scattering technique (Beckman-Coulter, Inc.) was used to analy ze particle size distri bution (PSD) of a soil sample. Organic matter was removed using hydrogen peroxide (Day, 1965) before analyzing PSD. Saturated Hydraulic Conductivity ( Ks) The core cylinder made of brass with 5.4 cm diameter and 6.0 cm height (Soil moisture Equipment Corp, CA) was used to collect soil samples and then to measure saturated hydraulic cond uctivity. The saturated hydraulic co nductivity (Ks) of a soil is a measurement of the soil's ability to transmit water when submitted to a hydraulic head gradient. The soil cores were slowly wetting with 0.005 M calcium sulfate (CaSO4)-thymol solution during 2 days to a void air entrapment. Based on the application of Darcys Law, the constant head method was implemented to calculate Ks. Soil Moisture Retention Curve ( (h)) In the lab, the soil core s (6 cm of height) saturated with 0.005 M CaSO4-thymol solution were prepared for the soil moisture characteristic curve determination. Soil

PAGE 111

111 moisture characteristic curve is measured in drainage curve using a positive pressure with porous ceramic plate device and Tempe cell pr ovided with compressed air (Soilmoisture Equipment Corp., 1995). Ten pressure steps fr om 0 to 990 cm of water were taken for each soil core. For each pressure step, wei ghts were measured unt il the weights were not change. After the last pressure step th e cores were weighted, and dried in the oven at 105 for 48 h. After the cores reached th e room temperature, the cores were weighed again to obtain dry soil weight, whic h was the residual saturation after the last pressure step. The water density was assumed 1.0 g/cm3 and air entrapment was considered negligible in this procedure. The soil water retention property was expressed by the van Genucthen (1980) function with Mualem pore-size distribution model. Then, the residual soil water content, saturated soil water content and saturated hydrauli c conductivity can be obtained from the model. The average suction at th e wetting front (Sav) was also estimated as the area under the unsaturated hydraulic conductivity () (h Kuns) curve applying SoilPrep model (Workman and Skaggs, 1990). Soil moisture retention curve is primarily dependent on the soil texture, and structure or arrangement of the particles (Reeve et al., 1973). Soil Bulk Density ( db) and Porosity ( ) Soil bulk density is an expression of the mass to volume relationship for a given material. Soil bulk density measures tota l soil volume. After running soil moisture retention curve, the final weight of soil was measured and used to calculate the soil density and porosity. The initia l volume of the soil sample was assumed equal to that of

PAGE 112

112 the core. The total water content of soil samples at saturation is equal to soil porosity. With these values the following parameters were calculated: Bulk density (bd) = t sV volume Total M soil dry of Mass Total porosity ( ) = t vV V space pore of volume Particle density (sd) = s sV soil dry of Volume M= 100 1bd Void ratio (e) = s vV V Calibration of a Capacitance Probe (ECH2O probe) The capacitance probe was calibrated in a PVC cylinder (16.0 cm diameter and 25 cm height) containing soil with a bulk density similar to the field condition. The soil was saturated and the whole cylinder was weig hed. Voltage measurements were taken periodically as the water drained and evapor ated. After about 20 days (or soil moisture dried to a limited value), the whole cylinde r with soil and the probe was weighed to determine the initial soil weight, and initia l water volume added into the soil column. The water loss and output voltage of probe we re recorded to determine the relationship between soil moisture content a nd output voltage of probe. Topographical Survey Topographical field survey was conducted to obtain the slopes of plot for simulation purposes. Four points were measur ed in each transversal direction in 3.3 m wide. The transversal values of slope (to the direction of flow) were averaged to obtain

PAGE 113

113 a width averaged set of slopes for each plot. In the flow (longitudinal) direction the elevation was recorded at every 0.8 m and 1.2 m in VFS and source area, respectively. Grass Spacing (Ss) Vegetation cover was collected at the both e xperimental site to determine the grass spacing (Ss). Vegetation stems within a 50 cm 50 cm frame was counted to determine grass density (GD, stems/m2). The grass spacing was calculated as (Wilson et al., 1981): ) (stems/m GD21 100 Ss Three spots were collected in each plot at s ite A and 6.8 m long VFS areas at site B. Four spots were collected in 13.4 m long VFS areas at site B. Grass Height (H) Five spots in each plot at site A and site B are randomly selected to determine the averaged grass height. Results Table A-1 and Table A-2 summarized the results from the experiments (Ks, db, ds, e, and ), values of Sav were calculated from the SoilPrep program (Workman and Skaggs, 1990) based on Green-Ampt model, as well as results of parameters (r, s, n, and ) were calculated from retention curve program (RETC) based on Ven Genuchten model. The suction pressure head versus wate r content for soil cores at site A and site B were shown in Table A-3 and Table A-4. Th e suction curves of the soil cores collected at site A were illustrated in Figure A-1. The suction curves of soil cores extracted from VFS area at site B are illustrated in Figure A-2. Those of lower-layer and upper-layer

PAGE 114

114 soil cores extracted from source area at si te B are shown in Figure A-3 and A-4, respectively. In site A, Ks ranges from 14.2 to 40.3 cm/h with an average of 28.9 cm/h for all soil samples. The average of Ks within VFS area is 26.1 cm/h that is smaller than that within source area is 30.7 cm/h. The smallest value of Ks is 14.2 cm/h, located near river, where the soil sample contains high percentage of clay. The porosity ranges from 0.39 to 0.49 with a mean value 0.44. The mean values of bulk density and particle density are 1.36 g/cm3 and 2.44 g/cm3, respectively. In site B, Ks at upper-layer samples extracted from source area range from 1.79 to 37.0 cm/h with an average of 13.14 cm/h. The Ks at lower-layer samples extracted from so urce area ranges from 0.05 to 40.2 cm/h with an average of 8.44 cm/h. The average of Ks within VFS area is 11.74 cm/h, which is smaller than that of upper-layer samples in the source area and greater than that of lower-layer samples in the source area. Th e porosity ranges from 0.43 to 0.54 with a mean value 0.49 for all samples. The mean values of bulk density and particle density are 1.33 g/cm3 and 2.60 g/cm3, respectively. The cumulative particle size distributions of site A and site B analyzed by Beckman coulter are shown in Figure A-5 and Figure A6, respectively. Cumulative percentages of volume for a specific particle size range of each soil sample at site A and site B are shown in Table A-5. The result of the cap acitance probe calibrati on is shown in Figure A-7. Results of topographical field survey in site A and site B ar e listed in Table A-6 and Table A-7, respectively. The results of grass spacing at two sites are shown in Table A-8 and Table A-9. The results of gr ass height at two sites are shown in Table A-10.

PAGE 115

115 Table A-1. Soil properties at site A Sample Ks Sav r s n db e ds ID cm/h cm cm3/cm3 cm3/cm3 g/cm3 cm3/cm3 cm3/cm3 g/cm3 AV-1-1* 36.8 9.9 0.269 0.456 0.039 5.03 1.277 0.491 0.964 2.507 AV-1-2 28.6 12.7 0.219 0.483 0.039 2.70 1.343 0.479 0.920 2.579 AV-2-1 20.7 20.5 0.1936 0.434 0.032 2.72 1.413 0.454 0.832 2.587 AV-3-1 28.0 13.2 0.277 0.452 0.058 0.24 1.399 0.455 0.833 2.564 AV-3-2 14.2 19.1 0.153 0.448 0.032 3.47 1.342 0.480 0.923 2.582 AV-4-1 28.3 13.8 0.266 0.432 0.051 1.92 1.398 0.449 0.815 2.538 AS-1-1* 34.5 13.5 0.198 0.404 0.048 2.79 1.370 0.394 0.651 2.262 AS-1-2 40.3 15.4 0.088 0.37 0.041 6.77 1.356 0.405 0.680 2.277 AS-2-1 38.3 13.5 0.158 0.404 0.036 4.71 1.270 0.444 0.798 2.284 AS-2-2 27.7 26.6 0.077 0.405 0.028 7.13 1.494 0.418 0.718 2.567 AS-3-1 23.0 21.9 0.082 0.402 0.033 6.47 1.321 0.433 0.763 2.330 AS-3-2 40.2 14.5 0.092 0.376 0.046 4.24 1.432 0.389 0.638 2.346 AS-4-1 21.4 15.4 0.119 0.4300.0365.591.3460.453 0.8282.461 AS-4-2 22.4 14.8 0.154 0.4070.0382.621.2840.422 0.7312.223 *A: site A; S: source area; V: VFS; first number is a pl ot number; second number is a sample number in a plot Table A-2. Soil properties at site B Sample Ks Sav r s n db e ds ID cm/h cm cm3/cm3 cm3/cm3 g/cm3 cm3/cm3 cm3/cm3 g/cm3 BS-1-8U* 3.54 17.8 0.31 0.510.031.821.180.53 1.142.52 BS-1-8L 0.21 33.3 0.36 0.440.011.961.430.47 0.872.69 BS-1-24U 1.29 21.3 0.33 0.500.031.811.260.53 1.112.67 BS-1-24L 0.05 14.0 0.18 0.530.011.091.220.54 1.172.65 BS-2-8U 10.40 30.6 0.00 0.470.004.011.290.49 0.972.54 BS-2-8L 0.25 18.8 0.34 0.530.031.591.220.54 1.182.66 BS-2-24U 4.41 12.2 0.00 0.430.016.271.390.45 0.802.50 BS-2-24L 18.50 16.4 0.00 0.420.012.371.400.46 0.862.61 BS-3-8U 26.04 25.7 0.20 0.450.284.881.410.46 0.852.62 BS-3-8L 7.49 7.50 0.02 0.480.051.531.340.50 0.992.67 BS-3-24U 2.49 24.6 0.27 0.490.253.151.320.51 1.032.69 BS-3-24L 0.24 37.2 0.28 0.430.021.361.420.44 0.792.54 BS-4-8U 37.00 15.9 0.17 0.510.042.731.170.53 1.142.51 BS-4-8L 40.20 12.9 0.19 0.470.053.071.260.52 1.072.61 BS-4-24U 19.98 17.5 0.21 0.480.403.321.340.49 0.972.63 BS-4-24L 0.57 16.1 0.30 0.480.042.221.340.50 0.992.68 BV-1-4U* 3.35 5.3 0.31 0.440.0510.251.420.45 0.832.60 BV-1-4L 0.09 25.5 0.29 0.460.022.531.400.48 0.912.67 BV-1-11U 4.06 18.0 0.34 0.470.042.681.310.49 0.952.55 BV-1-11L 21.00 18.2 0.13 0.400.036.181.490.43 0.762.62 BV-2-4U 5.75 28.4 0.22 0.480.036.601.300.48 0.922.51 BV-2-4L 0.99 32.1 0.36 0.460.023.251.350.48 0.912.57 BV-3-4U 18.45 28.4 0.23 0.490.036.601.280.50 0.992.55 BV-3-11U 37.15 29.3 0.00 0.450.021.711.440.44 0.792.57 BV-4-4U 14.79 21.2 0.27 0.470.032.291.390.49 0.942.70 A: site A; S: source area; first number is a plot numbe r; second number is the dist ance from runoff gutter; U: upper layer sample; L: lower layer sample

PAGE 116

116 Table A-3. Suction pressure head (cm) versus water content (%) for soil cores extracted from site A Suction pressure head (cm) Sample ID 0.0 6.9 10.9 24.6 50.8 105.5 253.1 492.1 731.1 900 AV-1-1* 0.467 0.451 0.448 0.3850.2780.2780.2770.273 0.271 0.250 AV-1-2 0.477 0.477 0.477 0.3920.2960.2410.2340.224 0.218 0.210 AV-2-1 0.430 0.430 0.430 0.3850.2720.2370.2020.200 0.198 0.179 AV-3-1 0.444 0.443 0.439 0.3500.3160.2990.2970.294 0.288 0.254 AV-3-2 0.446 0.446 0.446 0.3700.2240.1620.1620.159 0.155 0.140 AV-4-1 0.425 0.425 0.418 0.3690.3240.3000.2950.287 0.283 0.241 AS-1-1 0.375 0.366 0.364 0.2970.2230.2220.2140.198 0.192 0.184 AS-1-2 0.372 0.368 0.368 0.2390.0920.0910.0910.089 0.089 0.082 AS-2-1 0.413 0.412 0.383 0.3280.1780.1670.1620.159 0.158 0.150 AS-2-2 0.406 0.406 0.402 0.3860.1110.0870.0820.078 0.076 0.061 AS-3-1 0.402 0.402 0.402 0.3460.1000.1000.0960.096 0.079 0.041 AS-3-2 0.376 0.370 0.370 0.2270.1110.1010.0960.093 0.090 0.079 AS-4-1 0.432 0.430 0.427 0.3420.1380.1240.1200.118 0.118 0.118 AS-4-2 0.407 0.400 0.394 0.3310.2210.1900.1710.156 0.155 0.143 *A: site A; S: source area; V: VFS; first number is a pl ot number; second number is a sample number in a plot Table A-4. Suction pressure head (cm) versus water content (%) for soil cores extracted from site B Suction pressure head (cm) Sample ID 0.0 5.1 14.0 25.4 50.8 105.5 253.1 492.1 731.1 900 BS-1-8U* 0.507 0.504 0.5000.4480.4370.3680.340 0.328 0.3260.313 BS-1-24U 0.501 0.500 0.4960.4730.4430.3950.368 0.354 0.3500.331 BS-2-8U 0.487 0.487 0.4860.4570.4460.4420.435 0.419 0.2190.191 BS-2-24U 0.439 0.438 0.4370.4370.4350.4280.418 0.416 0.4140.362 BS-3-8U 0.453 0.452 0.4500.4260.2570.2310.215 0.205 0.1880.185 BS-3-24U 0.486 0.485 0.4820.4550.3700.2900.287 0.279 0.2790.246 BS-4-8U 0.507 0.499 0.4890.3970.2630.2130.199 0.177 0.1620.155 BS-4-24U 0.477 0.472 0.4680.3620.2590.2320.208 0.207 0.2070.206 BS-1-8D 0.445 0.440 0.4370.4370.4310.4020.386 0.373 0.3700.365 BS-1-24D 0.531 0.526 0.5240.5240.5150.5090.494 0.482 0.4810.456 BS-2-8D 0.527 0.527 0.5170.5030.4540.4220.402 0.388 0.3620.359 BS-2-24D 0.450 0.442 0.4200.3890.3650.3180.129 0.044 0.0330.028 BS-3-8D 0.472 0.469 0.4560.3870.2930.2500.237 0.219 0.1370.134 BS-3-24D 0.427 0.426 0.4260.4240.4100.3780.368 0.357 0.3460.327 BS-4-8D 0.470 0.461 0.4550.3160.2450.2190.194 0.188 0.1880.170 BS-4-24D 0.477 0.477 0.4640.4280.3820.3300.324 0.313 0.3130.293 BV-1-11U 0.443 0.443 0.4410.3260.3190.3110.310 0.308 0.3040.298 BV-1-11D 0.456 0.451 0.4500.4370.3890.3220.312 0.298 0.2950.271 BV-1-11U 0.469 0.469 0.4680.4250.3740.3580.340 0.338 0.3370.329 BV-1-11D 0.411 0.401 0.3980.3800.1680.1420.132 0.126 0.1200.118 BV-2-11U 0.474 0.474 0.4710.4610.3890.3490.317 0.293 0.2570.253 BV-2-11D 0.461 0.461 0.4610.4600.4190.3760.368 0.362 0.3620.346 BV-3-11U 0.492 0.491 0.4870.4790.2780.2520.244 0.233 0.2130.210 BV-3-11U 0.436 0.436 0.4340.4230.2520.2200.180 0.080 0.0240.020 BV-4-11U 0.465 0.464 0.4620.4260.3300.3200.293 0.279 0.2770.240 B: site B; S: source area; V: VFS; first number is a plot number; second number is the distance from runoff gutter; U: upper layer sample; L: lower layer sample

PAGE 117

117 Table A-5. Cumulative percentages for speci fic particle size ranges of soil samples collected at sites A and B. Particle size ( m) plot < 0.45 < 2 < 37 < 100 < 250 < 2000 A-S-1 0.0 1.3 2.6 3.7 44.1 100 A-S-2 0.0 1.5 3.6 4.8 42.1 100 A-S-3 0.0 1.6 3.7 5.0 42.6 100 A-S-4 0.0 1.3 2.6 3.6 43.9 100 A-V-1 0.1 2.2 5.1 7.6 47.8 100 A-V-2 0.1 2.2 5.2 7.6 47.8 100 A-V-3 4.3 8.8 10.3 17.8 50.5 100 A-V-4 0.1 3.0 6.0 8.5 42.5 100 B-S-1 1.2 4.8 8.7 16.6 56.2 100 B-S-2 1.9 5.3 8.4 12.8 54.3 100 B-S-3 1.3 5.2 8.3 10.8 51.3 100 B-S-4 1.4 3.5 9.1 9.6 43.7 100 B-V-1 0.9 6.5 9.8 10.7 48.1 100 B-V-2 0.9 7.3 12.5 16.1 51.4 100 B-V-3 0.8 6.5 9.6 11.7 39.7 100 B-V-4 0.7 4.5 7.5 10.5 48.2 100 A: site A; B: site B; S: source area; V: VFS; last number: is the plot number. Table A-6. Average slope at each point in V FS and source areas at site A (X=0 m is in the edge of rain gutter) X (m) A-S-1* A-S-2 A-S-3 A-S-4 X (m) A-V-1 A-V-2 A-V-3 A-V-4 0.0 1.2% 0.9% 1.3% 0.6% 0.0 0.9% 1.3% 0.8% 1.3% 1.2 2.6% 1.7% 1.3% 0.8% 0.8 3.0% 1.1% 0.7% 1.1% 2.4 2.0% 2.1% 1.4% 1.0% 1.4 2.4% 2.2% 1.9% 2.2% 3.7 1.4% 1.4% 1.4% 2.1% 2.3 4.3% 2.8% 1.9% 2.8% 4.9 1.4% 1.5% 2.4% 2.6% 3.2 4.4% 1.9% 3.4% 1.9% 5.8 0.7% 0.8% 1.7% 0.7% 4.1 2.8% 1.5% 3.1% 1.5% 6.7 1.6% 1.6% 0.8% 0.7% 5.0 1.4% 1.4% 7.6 2.2% 0.4% 0.3% 0.2% 5.8 1.5% 1.4% 8.5 3.4% 2.4% 0.5% 0.4% 9.5 4.0% 3.2% 2.6% 0.9% 10.4 3.3% 3.0% 2.2% 1.4% 11.3 3.5% 5.1% 0.5% 0.9% 12.2 3.1% 3.4% 2.5% 3.7% 13.2 1.3% 2.2% 5.9% 3.1% 14.4 1.3% 2.2% 1.0% 3.1% Mean 2.2% 2.1% 1.7% 1.5% Mean 2.6% 1.8% 1.8% 1.8% A: site A; S: source area; V: VFS; last number: is the plot number.

PAGE 118

118 Table A-7. Average slope at each point in VFS and source areas at site B (X=0 m is in the edge of rain gutter) X (m) B-S-1 B-S-2 B-S-3 B-S-4 X (m) B-V-1 B-V-2 B-V-3 B-V-4 0.0 4.0% 5.6% 3.2% 3.8% 0.0 5.1% 7.0% 5.2% 5.0% 1.5 5.0% 3.6% 4.0% 4.0% 0.6 4.7% 4.9% 5.3% 4.5% 3.1 5.3% 5.5% 3.7% 4.5% 1.2 3.7% 5.8% 4.6% 4.1% 4.6 5.0% 3.9% 2.7% 3.6% 2.1 3.5% 5.3% 4.9% 4.5% 6.1 7.0% 3.6% 3.3% 3.4% 3.1 3.7% 4.1% 5.8% 4.3% 7.6 6.4% 3.1% 3.7% 3.1% 4.0 3.7% 5.1% 5.8% 4.5% 9.2 3.8% 3.7% 5.2% 4.0% 4.9 4.0% 3.4% 4.4% 3.3% 10.7 5.0% 3.7% 6.2% 4.7% 5.8 4.4% 3.5% 4.7% 3.3% 12.2 3.9% 5.9% 5.5% 6.2% 6.7 4.2% 3.4% 4.5% 3.3% 13.7 3.4% 2.4% 4.9% 5.3% 7.6 4.4% 3.8% 14.9 4.3% 4.0% 6.4% 5.5% 8.5 3.7% 2.5% 16.2 3.9% 3.7% 5.3% 5.9% 9.5 3.3% 4.1% 17.4 4.3% 5.1% 4.4% 5.5% 10.4 3.3% 2.8% 18.6 4.2% 3.3% 4.0% 6.4% 11.3 3.0% 4.4% 19.8 3.7% 3.9% 3.1% 3.6% 12.2 1.1% 3.3% 21.0 5.6% 3.9% 3.7% 2.6% 13.4 1.2% 3.3% 22.0 3.1% 3.8% 3.9% 3.9% 22.9 5.6% 3.8% 4.5% 4.7% 23.8 5.1% 3.4% 4.1% 3.8% 24.7 3.8% 3.4% 4.0% 3.3% 25.6 3.8% 3.6% 4.0% 4.0% 26.5 3.8% 3.4% 2.5% 3.9% 27.5 3.7% 3.2% 3.3% 2.5% 28.4 3.6% 3.1% 2.8% 3.4% 29.3 3.7% 3.1% 2.8% 2.8% 30.8 3.6% 2.7% 2.7% 3.0% 32.3 3.6% 2.9% 2.6% 2.9% 33.8 3.4% 2.6% 2.4% 2.6% 35.3 3.3% 2.8% 2.5% 2.5% 36.8 3.3% 2.5% 2.6% 2.7% 38.3 3.2% 2.7% 2.7% 2.6% 40.0 3.0% 2.5% 2.5% 2.5% mean 4.2% 3.6% 3.7% 3.9% mean 3.6% 4.7% 4.3% 4.1% B: site B; S: source area; V: VFS; last number: is the plot number.

PAGE 119

119 Table A-8. Grass spacing parame ters at site A (06/18/06) A-V-1* A-V-3 A-V-2 A-V-4 X(m) GD Ss GD Ss X(m) GD Ss GD Ss 0-2 528.0 4.35 356.0 5.30 1-1.5 328.0 5.52 432.0 4.81 2-4 324.0 5.56 340.0 5.42 2.5-3 384.0 5.10 440.0 4.77 4-6 360.0 5.27 288.0 5.89 3-4.1 436.0 4.79 392.0 5.05 mean 404.0 5.06 328.0 5.54 mean 382.7 5.14 421.3 4.88 A: site A; V: VFS; last number: is the plot number; GD: grass density; Ss: grass spacing. Table A-9. Grass spacing para meters at site B (06/18/06) B-V-1* B-V-3 B-V-2 B-V-4 X(m) GD Ss GD Ss X(m) GD Ss GD Ss 0-2 704.0 3.77 472.0 4.60 0-2 484.0 4.55 480.0 4.56 2-5 728.0 3.71 620.0 4.02 2-4 712.0 3.75 356.0 5.30 5-9 716.0 3.74 632.0 3.98 4-6.8 568.0 4.20 340.0 5.42 9-13 640.0 3.95 712.0 3.75 mean 694.7 3.80 654.7 3.91 mean 640.0 3.97 348.0 5.36 B: site B; V: VFS; last number: is the plot number; GD: grass density; Ss: grass spacing. Table A-10. The averaged grass height at site A and site B measured at different period in year 2006 0602-0621 0622-0704 0705-07200721-0805 0806-0824 0825-0920 0921-1017 Plots cm cm cm cm cm cm cm Average cm A-V-1* 17.8 12.1 14.9 15.0 18.8 18.1 17.8 16.4 A-V-2 18.6 12.9 15.7 15.9 20.1 19.1 18.4 17.3 A-V-3 19.1 14.0 16.2 15.5 19.5 18.6 18.1 17.3 A-V-4 19.3 13.5 16.4 16.2 20.0 19.0 18.4 17.5 B-V-1 21.3 15.5 18.5 18.3 23.7 21.9 21.3 20.1 B-V-2 18.9 13.7 16.0 16.2 20.5 19.4 19.6 17.8 B-V-3 22.7 16.9 20.0 17.9 23.0 21.3 20.9 20.4 B-V-4 22.4 16.9 19.7 19.4 25.4 23.2 22.2 21.3 A: site A; B: site B; V: VFS; last number: is the plot number;

PAGE 120

120 0.00 0.10 0.20 0.30 0.40 0.50 0.60 01002003004005006007008009001000Water content (%)Water Pressure Head (cm) AS-2-1 AS-2-2 AS-3-1 AS-3-2 AV-1-1 AV-1-2 AV-2-1 AV-3-1 AV-3-2 AV-4-1 AS-1-1 AS-1-2 AS-4-1 AS-4-2Figure A-1. Suction curves of soil cores extracted from site A 0.00 0.10 0.20 0.30 0.40 0.50 0.60 01002003004005006007008009001000water content (%)Water pressure head (cm) BV-1-11U BV-1-11D BV-1-11U BV-1-11D BV-2-11U BV-2-11D BV-3-11U BV-3-11U BV-4-11U Figure A-2. Suction curves of soil cores extracted from VFS areas at site B VFS area Transition Source area

PAGE 121

121 0.00 0.10 0.20 0.30 0.40 0.50 0.60 02004006008001000Water content (%)Water pressure head (cm) BS-1-24D BS-2-8D BS-2-24D BS-3-8D BS-3-24D BS-4-8D BS-4-24D BS-1-8D Figure A-3. Suction curves of lower-layer soil cores extracted from source areas at site B 0.00 0.10 0.20 0.30 0.40 0.50 0.60 01002003004005006007008009001000Water content (%)Water pressure Head (cm) BS-1-8U BS-1-24U BS-2-8U BS-2-24U BS-3-8U BS-3-24U BS-4-8U BS-4-24U Figure A-4. Suction curves of upper-layer soil cores extracted from source areas at site B

PAGE 122

122 Figure A-5. Cumulative particle size distributions of soil samples collected from site A. Figure A-6. Cumulative particle size distributions of soil samples collected from site B.

PAGE 123

123 y = 0.00081x -0.30015 R = 0.99097 0 0.1 0.2 0.3 0.4 0.5 0.6 3004005006007008009001000Water content (%)Capacitance probe output (mV) Figure A-7.The relationship between soil moisture content and capacitance probe output voltage

PAGE 124

124 APPENDIX B GOODNESS-OF-FIT INDICATORS Nash and Sutcliffe Coefficient of Efficiency (effC) The Nash and Sutcliffe coefficient of efficiency (effC) (Nash and Sutcliffe, 1970) has been widely used to evaluate the performance of hydr ologic and water quality models (McCuen et al., 2006, Erpul et al., 2003, Merz a nd Bloscl 2004). The range of effC lies between 1.0 and effC = 1 implies that the plot of predicted vs. observed values matches the 1:1 line. It is calculated as following: N i i N i i i effO O P O C1 2 1 21 (B.1) where iO=observed data, iP=predicted data, and O=mean of observed data. The effC can be sensitive to sample size, outliers, and magn itude bias and time-offset bias (McCuen et al., 2006). Since effC calculated as squared values of the differences between the observations and simulations it significantly overestimated larg er values (sensitive) and underestimated the lower values (insensitive) (Legates and McCabe, 1999). This calculation results in high values of effC even when the fit is relatively poor. Thus, th e Nash-Sutcliffe is not very sensitive to systematic model overor under-pre diction especially during low flow periods (Krause et al. 2005). Modified Form of Ceff (m effC) The Modified forms of effC were developed by Krause et al. (2005) to reduce the overestimation of the peak values wi th j=1 in modified equation (b).

PAGE 125

125 N i j i N i j i i m effO O P O C1 11_ with N j (B.2) The modified forms with j=1 provide boarder range of valu es for model calibration than the forms withj>1. The modified forms with lower value of j are more sensitive to overor under-prediction than higher value of j. To evaluate the model pr ediction in high values of flow rates and sediment loads the value of j should be raised to incr ease the sensitivity to high values. Root Mean Square Error ( RMSE ) A measure of total error defined as the square root of the sum of the variance and the square of the bias. N i i iP O N RMSE1 2 1) ( (B.3)

PAGE 126

126 APPENDIX C VERIFICATION OF THE INVERSE MODELING ALGORITHM To verify the robustness of the inverse m odeling algorithm integrated in the VFSMOD-W, two conditions, perfect data set and data set af ter adding random noise to the perfect data set (ARP), were created. The runoff and sediment simulated outflows from the sample project (sample.prj) in the directory of VFSMOD-W repr esent the perfect target data sets. Adding random noise to the runoff and sediment outfl ows in the sample project can represent the measured data uncertainty/error of a field expe riment. The range of random noise added to runoff and sediment data was determined based on the PER in measuring flow rate and sampling sediment, respectively (Chapter 4). These two c onditions (perfect data se t and ARP) were used to verify the robustness of inverse modeling algorithm based on the calibrated results. Three sensitive parameters (VKS, SAV, and RNA) in the hydrology component and two in the sediment component (dp, and VN) were selected to calibrate the optimal values in the sample project. The measured value, the range used in calibration, and the final calibrated value of each parameter are shown in Table C-1. In the hydrology component, calibrated values of VKS for these two conditions were similar to the target value. RNA was almost the same as target value, and SAV was slightly higher than the target value. Both effC and m effC were close to 1 with and without considering PER in the goodness-of -fit indicators for the perfec t data set (Table C-2). Considering PER, effC and m effC were significantly increased (effC=0.975) in the ARP tes (Table C-2). The predicted runoff ouflow from filters (TRF) was calculated based on using the optimized value of calibrated parameters in VFSMOD-W. The target and predicted ouflows of these two conditions are shown in the Table C-3. The predicted TRF was higher than target

PAGE 127

127 value for both conditions since the calibrated value of VKS was slightly smaller than the target value and VKS was most sensitive parameter in the hydrology component in VFSMOD-W. In the sediment component, calibrated values of dp in these two conditions were very similar to the target value. The VN was variable but within the calibrated range. Both effC and m effC were also very close to 1 with and w ithout considering PER in the goodness-of-fit indicators for the perfect data set (Table C-2). Considering PER, effC was increased from 0.934 to 0.960 in the ARP condition (Table C-2). The predicted mass of sediment outflow from filters (MSF) in the perfect data set was very close to the target data set (Table C-3). However, in the ARP condition the predicted MSF was slightly higher than the targ et MSF (about 9% of target MSF). This may result from lowe r calibrated dp and higher predicted TRF which increase a higher amount of sediment in runoff. However, these errors are considered small when compared to the PER and typical errors as sociated to most field values. The hydrographs and sedimentographs of these two tests are shown in Figures C-1 to C-4. The results show that inverse modeling algor ithm integrated in the VFSMOD-W is robust since it successfully calibrated th e parameters even in the presence of random noise associated with the measured data.

PAGE 128

128 Table C-1. The measured value, calibration range, and optimized value of each parameter used in the verification of inverse modeling algorithm. Component Parameter (units) Measured value Calibration range Optimized value With perfect data Optimized value with ARP* VKS (m/s) 0.000013 0.0009-0.000001 0.000012 0.000009 Hydrology SAV (m) 0.379 0.29-0.45 0.449 0.439 RNA (s/m1/3) 0.400 0.1-0.5 0.400 0.409 VN (s/m1/3) 0.012 0.008-0.018 0.008 0.017 Sediment Dp (cm) 0.00130 0.0005-0.0020 0.00138 0.00128 *ARP: data set after adding random noise to the pefect data set. Table C-2. Results of hydrology an d sediment simulations in selected goodness-of-fit indicators with and without including measured da ta uncertainty (PER=0.20 for hydrology, PER=0.29 for sediment). Hydrology Sediment PER=0 PER=0.20 PER=0 PER=0.29 Event effC m effC_ RMSE# effC m effC_RMSE effCm effC_RMSE effC m effC_RMSE Perfect data 1 0.993 0.000007 1 1 0 1 0.996 0.0101 1 1 0 ARP* 0.945 0.861 0.000115 0.975 0.924 0.000085 0.9340.860 0.2900 0.960 0.950 0.2302 *ARP: data set after adding random noise to the pefect data set. #units of RMSEs in hydrology and sediment are (m3/s) and (g/s), respective