<%BANNER%>

Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron

Permanent Link: http://ufdc.ufl.edu/UFE0021188/00001

Material Information

Title: Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron
Physical Description: 1 online resource (181 p.)
Language: english
Creator: Lungu, Gheorghe
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb & #8722;1 of pp collisions at ps=1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the tt all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, & #190;c. The measured mass of the top quark is 171.1 & #177;3.7(stat.unc.) & #177;2.1(syst.unc.) GeV/c2 and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Gheorghe Lungu.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Konigsberg, Jacobo.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021188:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021188/00001

Material Information

Title: Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron
Physical Description: 1 online resource (181 p.)
Language: english
Creator: Lungu, Gheorghe
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb & #8722;1 of pp collisions at ps=1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the tt all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, & #190;c. The measured mass of the top quark is 171.1 & #177;3.7(stat.unc.) & #177;2.1(syst.unc.) GeV/c2 and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Gheorghe Lungu.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Konigsberg, Jacobo.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021188:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101129_AAAAAU INGEST_TIME 2010-11-30T01:00:01Z PACKAGE UFE0021188_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 36102 DFID F20101129_AAAPPJ ORIGIN DEPOSITOR PATH lungu_g_Page_159.jp2 GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
6cfcd093e17b5847e8cf74d14fcd3307
SHA-1
cc3f5c40bf673fbeb4f970cb76ec57ce766eb7a1
43186 F20101129_AAAPOU lungu_g_Page_123.jp2
9648ddcacbfc76b6467bd0ad4a4b305b
f400daf1b7ade0fa0db9322314a843aaeb02cade
3715 F20101129_AAAOLS lungu_g_Page_166thm.jpg
1a6b47da3cfe4c06168256ac6e69a056
0ca456fffb61978dc5e0099c2335f6625bd080fa
19396 F20101129_AAAOMH lungu_g_Page_167.pro
3223e00878e84a6c90f30c3460fd1fc6
bb228df871637962b54ae6fa4832117eeb7aef36
35676 F20101129_AAAPPK lungu_g_Page_161.jp2
2db44561185e174a57d897668088382c
ac42eac33e6a84299c2dac45cc6afd889728634f
111990 F20101129_AAAPOV lungu_g_Page_127.jp2
c2e41918609bbe26b77e579502ec2df9
b8045295cd061002996e8b585416c42e3c5f48f1
18502 F20101129_AAAOLT lungu_g_Page_082.QC.jpg
3910b58d18becc352d43ce0053cdd084
d89936cca4265a3f6a4029a2c6deba6622f25acb
54959 F20101129_AAAOMI lungu_g_Page_044.pro
386c1463f1a3c5df11b31a6ce877aff3
d32a481ad5bbb2e26d0188c3df5f942eab964ca3
112963 F20101129_AAAPOW lungu_g_Page_128.jp2
fddeedc9576afa5af8dab2a88e9e2bbe
357aa70eb9288f793fa41f4f9732e453d62ac909
1053954 F20101129_AAAOLU lungu_g_Page_129.tif
d5d6d21833643c142fc615e895490bd1
6009993cbb24061001e3710af1e9f4c664662d5f
F20101129_AAAPQA lungu_g_Page_014.tif
3f21f7fdb4d7015005056a06aa4415f4
e6facee12ec5cb6d1e1d7df74f288f46e91553b4
41536 F20101129_AAAPPL lungu_g_Page_166.jp2
c0cc9ef07c0d461fd4770345705bcecd
f6d1dc00b28eb5d48e83138bdc66c476dd78f833
111219 F20101129_AAAPOX lungu_g_Page_129.jp2
cea8d6882ab04f7f6951396aea866f7f
56ada8d6bfc12f8eaed008d4cd2e75c91a2c2d62
1051976 F20101129_AAAOLV lungu_g_Page_093.jp2
39e52c784587d117a8fd94ad21c76ade
c2ed82d2cf3bade0320e19aa774e27c03d71ae23
25271604 F20101129_AAAOMJ lungu_g_Page_056.tif
7a073913b389b71f40831ae6c88b9803
667f7ce47fa6c5bf1240799a16680873eeb71c57
F20101129_AAAPQB lungu_g_Page_015.tif
3d13fe70d648d8c25d16f2f14edbead5
df4ccd50fbe475e704dc7146165f3a0f0f52ec0a
42370 F20101129_AAAPPM lungu_g_Page_167.jp2
db3632975037a828ebbb7b9d0db965e1
1bdfa52386758b95622ba2a517e89552d9f3e1bb
597441 F20101129_AAAPOY lungu_g_Page_132.jp2
7384036d44af88bdf9eae1ae2e62e7cd
88a5c7fbd237f6280881497cc5a6d6cc63d0b4aa
1865 F20101129_AAAOLW lungu_g_Page_080.txt
017d9557859fa9ad59eda02504d83224
a8927bd73aa81d58557e18e3f21eaf5c69db9fee
128 F20101129_AAAOMK lungu_g_Page_155.txt
0cae698dcbb1d4a718d77ff53ff9e872
db2e9afe5a341bf7e079a0fd925a33359654438b
F20101129_AAAPQC lungu_g_Page_016.tif
cb3345c9983e1f15025264ced23a46aa
fd0ddaf262274efb803d13a907280898a28d9fa7
42083 F20101129_AAAPPN lungu_g_Page_168.jp2
2c71d6f978a17445e834aa4a0d0fe119
923dbd26bdf3930ddbd0fecef4c743420d1a4528
69188 F20101129_AAAPOZ lungu_g_Page_133.jp2
a1e6b2b4c8e6327fc80ee7217412a84c
35ff77f96c7bf97a887c3ade6d3185409332b207
6236 F20101129_AAAOLX lungu_g_Page_114thm.jpg
2eefe72001e1b59bbcd1595814f5fe17
80a79f499d890e7d6023ee69ab68a0862877dc3c
79925 F20101129_AAAONA lungu_g_Page_098.jpg
3b36a4ba70425f9e6799c99997806d17
335085940b788b6773681515a982f66b3b649d4f
3616 F20101129_AAAOML lungu_g_Page_140thm.jpg
46f3d7064e433f3ab692a403749cedee
64122189aa0baed19c069b46cc46095fafa3e1ff
F20101129_AAAPQD lungu_g_Page_021.tif
44bd255a96c4aec49cd9df84227ca3e4
b201e5c0d337dd202385e008acdf5ac24b751750
41190 F20101129_AAAPPO lungu_g_Page_171.jp2
cc526119a855119794f7ad285912df43
64488e710007af28d11b0d27e6196c899a86a109
47176 F20101129_AAAOLY lungu_g_Page_068.pro
370bc10f7459c4b14563361f0c8c71e2
2753f70f6d3b039b05f0c459d94b17e26a6518ee
18578 F20101129_AAAONB lungu_g_Page_074.QC.jpg
aad38fea0723a94c5c8f4801ff3d0d23
0808393e4c6ec66872e2680e9f26ea21d7c33445
2227 F20101129_AAAOMM lungu_g_Page_028.txt
4b63d8f26827fcf8215cee6f98f9c2de
deea0237999d321838c35ca45f4cfc6bd2300814
F20101129_AAAPQE lungu_g_Page_023.tif
1246e744652fb9629ceec257b34f520e
08c93148800538fd401c0849f8722ceadb659415
40931 F20101129_AAAPPP lungu_g_Page_172.jp2
cd0d57f312900fdb87fcb6801b7a864b
f981fee6a5bc5e329c3069612f20e6a5717db4e3
22410 F20101129_AAAOLZ lungu_g_Page_080.QC.jpg
e7bcc7e716265909edb24885482f4180
9a9edb043e69e2cd169e39646908811b8f4386df
989345 F20101129_AAAONC lungu_g_Page_063.jp2
910bfb823a7a73de4dcb0ee892e9ecef
d36bccedd151ea13200773d4190188833b819de0
F20101129_AAAOMN lungu_g_Page_059.tif
0d36fab6069e268cb623b85762bd89fd
6d4307b1ae78913cc8561636fa5c435145b3a32b
F20101129_AAAPQF lungu_g_Page_024.tif
4bcd15776e1c4a79b5fef2b145c6ebfe
bf6bc160e7681195586204e053c19b0cee784ba7
40452 F20101129_AAAPPQ lungu_g_Page_173.jp2
96417e9a9c295380c6d166fc47af41b5
26f6f8c5b19f4019108ad30c62cb0fdc27a0ce2b
51487 F20101129_AAAOND lungu_g_Page_130.pro
8ed1af4408dfa0ff2b80551cb5c725ce
cce2a22830e55a14951d820d3e18c11a93430d60
F20101129_AAAOMO lungu_g_Page_133.tif
2e95cb54193712572cf39323ab620fea
bd8f5816d3523edfe81ed2c0e167d86751c2d6c2
F20101129_AAAPQG lungu_g_Page_028.tif
ce911ef0175ad5cb9a1df7898b3ecba0
e7ff46d2115b0c078985958f6360b7990e2daab4
40743 F20101129_AAAPPR lungu_g_Page_174.jp2
07fd216cb1914149ef51711778f8e8ce
802baad8a3b9950537f66875e792f8a953b9910f
23766 F20101129_AAAONE lungu_g_Page_147.pro
7ae20953d6a875097ed227e1ca92457a
a7471e75178950154caf3a557534432416e90d31
71033 F20101129_AAAOMP lungu_g_Page_127.jpg
824f60f362710c45158088cd67d664f7
7ef7b728d369b5cfa962a3c9ed70d5044d02ff1d
F20101129_AAAPQH lungu_g_Page_031.tif
da0437fa7b6615a8ad38c8a4354d4dba
d67ff8fcc8b50e041bcf102ae41710c88a236bc8
121428 F20101129_AAAPPS lungu_g_Page_178.jp2
9274948ac343ea388edcf5085278b793
e72e405b81af8c99ed4e0abd248e5be4c5e52dad
F20101129_AAAONF lungu_g_Page_007.tif
7a3835cf3b54d2da1ea8b9f5e226ac82
c8d0f16bdf2efc3c92c763ff9e15833aa885785c
F20101129_AAAOMQ lungu_g_Page_001.tif
201aefb8bae8ec9240057017647b4de3
152ebfd02d37ab44328caea8936098e6e69e786d
F20101129_AAAPQI lungu_g_Page_033.tif
9254e340a736b018b9ac86f83186ef36
30ccbce963106d2ea2e8fc597da6567511535626
107379 F20101129_AAAPPT lungu_g_Page_179.jp2
83718d4056ea96f00205a4d0ef5f5e4c
ca3b8e8ddf041164bfd45a5f402944dc4fa3b862
F20101129_AAAONG lungu_g_Page_029.tif
e1386c2ca00ca826f9e326be44b23adf
d5ec8d4530a849430447bb8455cc52dc7b9ff8d8
1093 F20101129_AAAOMR lungu_g_Page_169.txt
0bb4e02acbd8535cb97805d924af6379
d06bdd863ace4b7d0e0a698d4ff2475ed801ff0a
F20101129_AAAPQJ lungu_g_Page_039.tif
c810e7c64be4e795ca34f9d5f3808dd9
d88fa8b212f9182cc5b7f3e7d3c96641031ead1e
45055 F20101129_AAAPPU lungu_g_Page_180.jp2
540444c9a10914749ab3e5e71058e523
f79da03330fe4d4306ca72cc5399af8a9ee2122e
5534 F20101129_AAAONH lungu_g_Page_092thm.jpg
c0818660e9db0003cd5787c803c2a28c
a6789d60b986dc82849ec916ecf48a058dc4c237
2067 F20101129_AAAOMS lungu_g_Page_068.txt
6238dd85d7b18dcd25bd6d44d3496f5a
8777b39d8ca988175a23a4aff6a235a25f315487
F20101129_AAAPQK lungu_g_Page_041.tif
6837721d695e6a474a15e720ca1b78ba
ded587e94406c3bab448068304691dce70d50b54
30337 F20101129_AAAPPV lungu_g_Page_181.jp2
db4038cdf8f38f1b85fdb108b31f83a8
07ef3aed4706bbe2308e5e1a8f607b63fc2ca387
1051939 F20101129_AAAONI lungu_g_Page_062.jp2
6146b81194b616ceb5470914d4d605f7
42cbdc803d5f82a469037ede7de11025bd652ce4
7248 F20101129_AAAOMT lungu_g_Page_135.QC.jpg
8af898bb49a3ae1a8bdb9ee3703745e6
4a3a957608f05275e2ba2424c62d2b3c098106e0
F20101129_AAAPQL lungu_g_Page_042.tif
2efb88b267c23d7a2db6ad1b998fc98a
693cf800f35c64e505e1315731322c3a6519b428
F20101129_AAAPPW lungu_g_Page_002.tif
556ee5231e187042165219b9ce355fb4
da94d9b7fe14464ae0d079fbc34251864dab4c2b
42317 F20101129_AAAONJ lungu_g_Page_122.jp2
836ed1230872d135581af49b639e4c4f
9b4b06d8b15c4eac3f565b41bf2fa19bd8bfb930
82746 F20101129_AAAOMU lungu_g_Page_131.jpg
10f68687c3bc49df5d56b5a98fa0931b
c53edd019864edaff66aa24fee55fcaa52758197
F20101129_AAAPRA lungu_g_Page_086.tif
a26ebf27a5797c282534b044386079f8
650e87f7027e320775c2ba73e78fea6475c1fdf6
F20101129_AAAPPX lungu_g_Page_003.tif
5d25f130690c5ab2720fa2345840eb88
33c33ef7915ae526314a3fe79f106a0f9288bd41
2973 F20101129_AAAOMV lungu_g_Page_124thm.jpg
6d25c4cfd02cafe3633127a0ba96e274
5b53f0b7d9eaff4ed09ce1e08de268527f134f94
F20101129_AAAPRB lungu_g_Page_087.tif
ee22b8bae0cc48b3d7e4c97e891da443
2f570b255243421d7e6fa3904d8ac851dcb1a150
F20101129_AAAPQM lungu_g_Page_043.tif
03098d1d15ebafdfaf695d95212b7c81
1830ee39da8939a06f2ecd61fc44e5006e5eed41
F20101129_AAAPPY lungu_g_Page_004.tif
19a6945ecb3a453f4a0a90de5d161eb8
b6adb86ccd429d5f493065c22bf97d5c4cfecaf1
F20101129_AAAONK lungu_g_Page_146.tif
5d5b0cc2f568a71cdc7bd38c8b1a7d45
75f845aecd2d4a121e0be4c98b38905cb6871636
5420 F20101129_AAAOMW lungu_g_Page_002.jp2
12548dfbf0d6cf5b0f2523202dc4d003
f9dec64507c814034aaf3bae7a49fcdf9197fc51
F20101129_AAAPRC lungu_g_Page_088.tif
82b696136dbc65298ff35666b06f4ed3
47abef8c9ac9fde855e261301f776b6255962298
F20101129_AAAPQN lungu_g_Page_045.tif
453ac5c86be4f8bb41f6aa47d6bdeaff
3badb731e32e8aa974c22ff20d733aed351c9eea
F20101129_AAAPPZ lungu_g_Page_008.tif
94720616939f39fec5713c4aa1afe76a
01132f12a6b13d3788382376838736a608469aaa
F20101129_AAAOOA lungu_g_Page_027.tif
47b4587020e69360560681a1bf04ed39
ccdb1843b45d5a6720d919f4eae44dd1fc6dc3ed
2226 F20101129_AAAONL lungu_g_Page_031.txt
1a9896850f3a2d7190a387a69d68b7b8
aae8f2c565b58189e05c255a74d6d27ac93eda00
49009 F20101129_AAAOMX lungu_g_Page_114.pro
efc1b9b1d062db3901fb3384a65fc88c
89aa422bb85d6715bb7ec05f9cb6af8ce6dba9b1
F20101129_AAAPRD lungu_g_Page_089.tif
81b5bed42e0c67e2aaf9e2e14361d72a
5d7086b9855da43055797d6837fc1c91083c9bb1
F20101129_AAAPQO lungu_g_Page_046.tif
eb6d8b65e1695cdfab5a09ed9ccc05a9
503dcd74c13279c458f38d33aa76f8d352e183cb
2739 F20101129_AAAOOB lungu_g_Page_110.txt
fb2f3446074e92d2c26d6a5bc951c41a
52e41e762a1e0de046c84d897a7789f6eb43855b
23178 F20101129_AAAONM lungu_g_Page_135.jpg
1036a8817b657b47240806a414b4a5e1
dd75ed80ee174d58b2bfff1dfd945f45599bf07a
116471 F20101129_AAAOMY lungu_g_Page_004.jp2
b02944a6b09c42fc288cdfc6a084b934
3eb8efefbefa2743620bab10a8061ddc2027197a
F20101129_AAAPRE lungu_g_Page_091.tif
38148d810ddded4a0404e719492bb141
f4958126369658cdac5d176272213208b9f9b4b6
F20101129_AAAPQP lungu_g_Page_049.tif
aada3f3ae2c68c4561e2004b221225b3
a1b21cabbd26643017fd6f88d3e4e5b8449c0295
1051954 F20101129_AAAOOC lungu_g_Page_039.jp2
0c8cae984b5a60ed302efd6558f3405d
c9a1e6dd2b42d846a355ebcc9be8c7807439e4a8
55101 F20101129_AAAONN lungu_g_Page_119.jpg
897fb3405407462119e4fe3dc9094d06
7e2b9be58030866be1c0292463b036a2ac915691
F20101129_AAAOMZ lungu_g_Page_082.tif
5717cfdb3be25a8c1fd292d603c78f78
a38fcfd864b79ded8a45547d9e1d59a65475aa50
F20101129_AAAPRF lungu_g_Page_092.tif
765afa0fd432a9bccfa1c954581d606f
d74ab2c2291c543cba11b843e56fd7adafae1b11
F20101129_AAAPQQ lungu_g_Page_050.tif
e039e457e0019d94c5fd65fe7494dcb1
9a53b263912da17832dd0fcb1dba80096262a326
6754 F20101129_AAAOOD lungu_g_Page_052thm.jpg
3a0f2170af98a4352a8f1861b522782f
8aa721a29d7c23178bace624e8912a01290bd96f
2112 F20101129_AAAONO lungu_g_Page_130.txt
25decde2e537b288b23b3d72b0f86098
d077e8829ed6b183584ba88fbfd1c9d9cbc5c727
F20101129_AAAPRG lungu_g_Page_095.tif
db48b9a963df2095df3ed79c39bc3221
17bd139bb2f8630e06717324f49f23c69850bd04
F20101129_AAAPQR lungu_g_Page_051.tif
1d8c49d44d574e4d525014127c770dad
dcce872cb23130d602897a5147693b036e2661b9
1051969 F20101129_AAAOOE lungu_g_Page_024.jp2
20a5efdb92ee58c4821f2f5d2f914946
c5622ca5cf564b1e6548d532fa3ae056d637c3f4
F20101129_AAAONP lungu_g_Page_120.tif
b71761eb7bf0b3d9de70bffd201ca704
eff6fb6f4a24bbc12fadbd4287f06f14051a7098
F20101129_AAAPRH lungu_g_Page_097.tif
17ab388dfedcd65e8004104f437ef57d
9bd9756dde4b03cd86c5245a5e417635c2356e15
F20101129_AAAPQS lungu_g_Page_054.tif
5a3140d769caff6ffeb630c575967e87
aeaa4abc825849240b89e0947c5f2548e28ddb03
7297 F20101129_AAAOOF lungu_g_Page_090.pro
ed94f3adeec877186390c268f2dd608c
a252aea3fbc91dacc27c6786426ef4b150021288
2373 F20101129_AAAONQ lungu_g_Page_043.txt
ebe44c2f92752667d10c117100f4d514
be8909074f76821ef2383dd9dd25f233c401822d
F20101129_AAAPRI lungu_g_Page_098.tif
e6ca42b884667fb54bcd40e0ea6ca9ed
2cf7fa4a338b245c96cc3562355e60f13b68572d
F20101129_AAAPQT lungu_g_Page_058.tif
6648cf8aadec51303cc323b1e4016761
b34c81011f5d9c78c5adc68d2dc57b67c33ce1d5
39029 F20101129_AAAOOG lungu_g_Page_120.jpg
e2d3df4135208075cc005ee3469f8451
57b7388083aedf2e2fe38a503081d6798e39df52
13273 F20101129_AAAONR lungu_g_Page_049.QC.jpg
029d6cda9a2b29c341b80739e6f619fc
8679a38e2ac969f5df5606a50f624d09b6e29672
F20101129_AAAPRJ lungu_g_Page_101.tif
b0dfcd21312707129a04f557dda98616
d64448b776eee22b80ae787a3b62461147448036
F20101129_AAAPQU lungu_g_Page_060.tif
ad7bbb244a3f3303b61839ca448fc0e3
7a2b83fc5a370387113e75430a48cbd28a7d68fb
F20101129_AAAOOH lungu_g_Page_172.tif
db65cbefc1effe906a88c8ddf7089937
ea0f1177a33eba23fe1103d4222d0a03c88e0068
1692 F20101129_AAAONS lungu_g_Page_082.txt
b4e580b27855c8bac9d323f4c4dfd409
3083dcf99bb36d9c4c0a0fcff48f87b4acb99a14
F20101129_AAAPRK lungu_g_Page_102.tif
9e63c63b687cf3799811edeeeaad66d0
e0217aa0886abfda34df82af7ffdf7b775a90b8c
F20101129_AAAPQV lungu_g_Page_061.tif
0a6ee1b5ebf218cd4ce35d6e584f942a
8f25a366b5769d4019a571f1971460317cd5d01f
2175 F20101129_AAAOOI lungu_g_Page_069.txt
042e5ef648c03c54b993cfd3266db225
c5abdac20304cedb83f5282e17af3e33471c23c0
1973 F20101129_AAAONT lungu_g_Page_077.txt
e1bd1eb06f8db38a848141dcb1ef6614
dc2ec006af8fe2fc5fbb455b2a1d223fd8f23804
F20101129_AAAPRL lungu_g_Page_104.tif
525dc8a91beb60de82919ade5f0a2b15
68a103ec9c0b73f17dc89cf41d2d5acea98e4c06
F20101129_AAAPQW lungu_g_Page_065.tif
98205fb28527048e83a115dd203da701
c8e6e091329acd42a09e9505ce72ef9937cdd2f4
6823 F20101129_AAAOOJ lungu_g_Page_093thm.jpg
a572e624c2fa2e272ccb87d68d0c35bb
75b0350101e12ea2ac4aa703dcbd6c796dd12dba
F20101129_AAAONU lungu_g_Page_052.tif
13e38d1ca2743e3542479ede65b34166
0945e34f6db9dbe12f0fecc10e865d6601ed2e5a
F20101129_AAAPSA lungu_g_Page_139.tif
93c6efbad6fd2ddcf1c700bb61b48409
36963774e4ddf2782bbf6f8a4e46bb72f2976dd8
F20101129_AAAPRM lungu_g_Page_107.tif
41386b581ad61e100bc5c500f4c1874b
7419c51b7665cd9951246ea3a8e57baf26d72398
F20101129_AAAPQX lungu_g_Page_067.tif
4450514dd187172a2b02f926903e8841
8c6ef5880422e930f10b0247a93167311311b14f
81803 F20101129_AAAOOK lungu_g_Page_052.jpg
b2ddead2bad67cea7259d9ec31078891
73e78d910f7fe2a45028a16676c843a63583b1f2
4961 F20101129_AAAONV lungu_g_Page_014thm.jpg
c15cfa84becb3e3df724e795b990a65a
48bf8d92c8ddc748bca4275b26683c626f1f2c2d
F20101129_AAAPSB lungu_g_Page_141.tif
ef55a0fdc142f8eb7f3e2799544ddc15
9f67aa563a717aaf88bfda16d7c482585de9aed2
F20101129_AAAPQY lungu_g_Page_076.tif
5b50452563a7977b07d388ae42e944f5
3fa93e05e3d7ef1954f02696aa000d9ee4cc0d75
6196 F20101129_AAAONW lungu_g_Page_077thm.jpg
d217dbc88df8bfefe91cbc9c20a72938
a2987864b17b1143cfb0c8811fb1d77f46ebe125
F20101129_AAAPSC lungu_g_Page_143.tif
daf931c8456949bdeefb2d8b46723b97
de42cfa3aa67962fa4f80d5b4134045e36a619c3
F20101129_AAAPRN lungu_g_Page_108.tif
e9258877ad7fb685d9597bfd749ccdfa
dd54f826b7c32f4d17ee10e96c868129b38cf283
F20101129_AAAPQZ lungu_g_Page_083.tif
0925155d12e1aa339d90a420675c536f
09ee5caa894f372a98651dcc16b55c55cbced02d
7087 F20101129_AAAOOL lungu_g_Page_043thm.jpg
7a1e6f89e51f39801816eeea86c285b4
0e6ce8e2bf433e1f8befa8c45ac1520c0172d09f
F20101129_AAAONX lungu_g_Page_137.tif
a28adf60eef20a2c17e7a65e633414e9
75a7d9e3ad346b90d58d4ed759432ac764265735
617 F20101129_AAAOPA lungu_g_Page_008.txt
a1878f1c38252e1ccbcbf146c8a44e43
fa9437815007df38ea8ec37b5bbd15503ed576bb
F20101129_AAAPSD lungu_g_Page_148.tif
135a9a4a8d102827f54c4ab07e576684
d81508fe53d02fdbf49bf43e0884f48a73db6fa8
F20101129_AAAPRO lungu_g_Page_109.tif
da8b01cc48f6f43b110d404dba163b29
5c10fd0bcabf84f829ca9a016af1cb6b5a78771f
74402 F20101129_AAAOOM lungu_g_Page_134.jp2
e07af0190b2af5f5d5fa5259be67d347
2e749a6049381a449de48033227174533c935b1c
14530 F20101129_AAAONY lungu_g_Page_149.QC.jpg
8ed4c50b7bc20ff5b1e218c0ea11ae39
d84b694ac734e2ab5a9d934621747dc47d6274c3
23414 F20101129_AAAOPB lungu_g_Page_077.QC.jpg
db567d85a405ad6bf6d3d553ba0ad5cc
0f721aefea56cb79bed739d4c99904b7dd1404a0
F20101129_AAAPSE lungu_g_Page_149.tif
2917ef231a91a78f4d982e032b9b5edb
998d78f5f62df839cc40aa2e01c8ea6fc2d0c8c3
F20101129_AAAPRP lungu_g_Page_111.tif
5c012b6d63dc81dab5814d679c410308
fab178625f20409b72f39527d3b53d447bc365ce
11242 F20101129_AAAOON lungu_g_Page_158.QC.jpg
197cd09066db5e578873eceb10cedd9b
ef07b01212d73771d3839b379796026dece28fbd
1051983 F20101129_AAAONZ lungu_g_Page_114.jp2
78a2d26c975af563fff3ae70e790040c
abfadf3546c33271f7438ed88655eba4bc7a53c1
1772 F20101129_AAAOPC lungu_g_Page_138.txt
2847169693abbcc922e3d22675ee8949
24d09196b0bb0fd1d0701b81a5a020d962ce6cc7
F20101129_AAAPSF lungu_g_Page_150.tif
2c08ef1cd4fcd5c9b3f10c58f9433cf4
da801f595d03683b0a899366629425fd475b1037
F20101129_AAAPRQ lungu_g_Page_114.tif
fb7219b864d8a3f69258140dad73ee64
d1134ec5ab6abf2af9e83f7e2b888151664ee13a
F20101129_AAAOOO lungu_g_Page_127.tif
8f39df1d76190b2eec5bffd0be7e527a
6fa31919cc9299d15f5dadb089e1dd424e5484a9
118078 F20101129_AAAOPD lungu_g_Page_019.jp2
f1dd2bdc1a0a2f05891deffffa3fdfe2
d2aa346d272ed8382645e49bf555272a63255669
F20101129_AAAPSG lungu_g_Page_151.tif
6ce03321a664b908a28907d369a0e843
e33147160240a9aa7721b095b8df9f4f707eb2e9
F20101129_AAAPRR lungu_g_Page_115.tif
4900ad012807a19d963f9d85f9d6c751
c0f1fc0c8c7215057047fd81f9892171275f377d
4601 F20101129_AAAOOP lungu_g_Page_072thm.jpg
69ea35e6f3f3fc014a6171f7fe041959
6166593400f652bfc807be7f3d6f7488da82ea75
1682 F20101129_AAAOPE lungu_g_Page_159.pro
d1ff423e13bd1f51379bea31df6fc9b4
37056874da1b995db9c855dbd684222ef21fbd50
F20101129_AAAPSH lungu_g_Page_161.tif
7d37032fd46c0a5acd638efd21854b11
83087adc53e2b8e8f7f7f25863e53743fdb5b1fe
F20101129_AAAPRS lungu_g_Page_121.tif
691f0a31a0956baebb3cd07557ded30f
78faa4e2672b71795d302a22e64f1f216db0733d
32350 F20101129_AAAOOQ lungu_g_Page_157.jpg
a48943f79f95a48b5a8137c9a5982ba9
1e883fa60337678b6634967d2a253c83e0b9ad00
F20101129_AAAOPF lungu_g_Page_142.tif
d68e5125fa77862d7324b75a983c661b
83a30b7615cbf4c315bb7e23485e70f6368a2f88
F20101129_AAAPSI lungu_g_Page_162.tif
2a9babbd5a4f06efe450109bb76f07c8
1fddf57f594f55f3196ec84c0e457ea8eb2b4926
F20101129_AAAPRT lungu_g_Page_122.tif
0fad00d002ebc5de41162ff563ba2500
07eb743ff3dc56f3cfc994a20ada17ed6e3f32fb
F20101129_AAAOOR lungu_g_Page_131.tif
96553e2624fd066edb7be5ee8915b6b8
8f40272e1dcb54d139c65a4e707295eff977b4b1
39956 F20101129_AAAOPG lungu_g_Page_156.jpg
75a183fa882e0e814946af365ffa00ba
d371faff1f52b1407884b508287095ce279ccab7
F20101129_AAAPSJ lungu_g_Page_163.tif
f8aa468341529bf95cfab80fd31b5a48
a7b857c0d4f10f492a72ae4fd0f34685f0b85cae
F20101129_AAAPRU lungu_g_Page_123.tif
9a06c1888986a3aa33e4ebc9d1d23afa
11ee99da5388c484f36315da32c4b3c251eba960
940 F20101129_AAAOOS lungu_g_Page_163.txt
724c27f282419a20bb0df167caa2dcc4
60452e5b201886f8ac34eb8e2a0e902d19c654c3
25477 F20101129_AAAOPH lungu_g_Page_131.QC.jpg
ca73f014730755e71a0bdedb40fbb733
74a7fe1f2fd5e619fee61323b0c3abfa422a422b
F20101129_AAAPSK lungu_g_Page_165.tif
6d61eeaf236f69ee62cc940adb326ac2
5e943945749956870f09c8b349e8f7da9cad8701
F20101129_AAAPRV lungu_g_Page_124.tif
624f413a1f473baf862b82b4a6ea9b66
24cf7c79fe834ef38b4eed3d183507a4cb06face
F20101129_AAAOOT lungu_g_Page_040.tif
89c8e8b138fdafc4fc543f580f1e815f
d684f4b974612d2640b8e139f16d5c2437dacb20
59298 F20101129_AAAOPI lungu_g_Page_109.jpg
51322c66fbd382b8707dd8d31ed40c50
645f7fff0276e01cec6b6434034be55ba3b7c1c4
F20101129_AAAPSL lungu_g_Page_167.tif
93fa4c4da30ad629aa51051c738e5d07
0e7b16a3ce88743375c794fba0b772c83397e229
F20101129_AAAPRW lungu_g_Page_125.tif
408f32889a4d2ec458ce70330c5856ab
c5a1badf7b0cad36b51e89e59fc8f786acc1ca7e
251 F20101129_AAAOOU lungu_g_Page_160.txt
e7a9cc71f81357feb54ca8f43b1c5c06
4d312ff79496c5028e3f82ad215455bd712f5064
6590 F20101129_AAAOPJ lungu_g_Page_012thm.jpg
ae1e58746a80ffbd3a4cce5940a8e479
4c5799ae6f772e7f411e64b10f036613a2f11f70
60694 F20101129_AAAPTA lungu_g_Page_024.pro
e974861593dabe5237b9d8affa6dab83
1966d83e948275f4bb023b3321ba14a69090dfc6
F20101129_AAAPSM lungu_g_Page_174.tif
621da3ba12f3786a8edfc2da3384bbdb
a07d1ddd361dfc237f3c6c4b3037477b959949c0
F20101129_AAAPRX lungu_g_Page_128.tif
2dd58b8691a6e4a308e0e7afbcf19f7a
75ddedc3627d16298e9e8f53aecb959ee1bd2b2b
517 F20101129_AAAOOV lungu_g_Page_050.txt
d385b81b835fb72da241e07e22eb8fa8
c3d78804589af9c3e34d789630f35b512bf0aff8
3710 F20101129_AAAOPK lungu_g_Page_174thm.jpg
74b9c5b60fdcc126e790720651d1dedf
3146e7a08444354c53efb68c8410beb6cdfad6d4
51587 F20101129_AAAPTB lungu_g_Page_033.pro
8bc48bde8e2a493cd6d05caad9740988
f25bcecc337bfb1be47c5fa3aaae39eb65e4eb8a
F20101129_AAAPSN lungu_g_Page_175.tif
c7eb66affefa76ab360ceeb2d2131a28
24f703049a5e470cc7896f884845d9b7c678a357
F20101129_AAAPRY lungu_g_Page_134.tif
b14813dc7b7202d2e530aedd8b8889c4
a0e6e1e067b7d10c4cf4cfac0253e50d689a320f
22321 F20101129_AAAOOW lungu_g_Page_073.QC.jpg
4ba62ebc6d7f75f68f3ed69c8cc436fe
70d1a826b8cf20128e4e2eea93bb914d52e35f50
F20101129_AAAOPL lungu_g_Page_132.tif
2a5ee45dd14662edc23a00274efdf7de
d425100d11235ca1f8393a4ab933e96c7d362023
53237 F20101129_AAAPTC lungu_g_Page_038.pro
d271935bc161df3534a1a791ee6d954c
be3eb8f60e250624c1255a9368e2d7c936fc9049
F20101129_AAAPRZ lungu_g_Page_136.tif
ab781e1364157374698547185933b299
e9e1a67140e302ada7c2b59b7f392ceaa52442c4
19257 F20101129_AAAOOX lungu_g_Page_085.QC.jpg
373bd9d011377e4e88f19d2f6fcb60d1
cfd9bbc8af455faa315957e3213272b71cbf338f
24431 F20101129_AAAOQA lungu_g_Page_017.QC.jpg
b907fcb8f3d6b70b1bb201579ac4c03d
c085aa26204541cd9010ef406b66366ba23b1f0d
56655 F20101129_AAAPTD lungu_g_Page_040.pro
f05865828e032fd5aa8d7273ed5ead9f
919e395ae8b4daa46d1bf6e3db9a69087870d038
F20101129_AAAPSO lungu_g_Page_177.tif
181d3d03a4bdce3d49e2a282fd1aeff3
8022e56373dd4bb7b8405dacf887141040cd7f9f
2032 F20101129_AAAOOY lungu_g_Page_083.txt
4352460a1f32537392a884528db78bf8
fcdb0c6d6e5c46fa4d7cad4b02a1e7e218c06a25
74104 F20101129_AAAOQB lungu_g_Page_006.jpg
d3ad19806ae91b8e597bd3553f038edf
1065d6bb1e4f679a7ed0934690389bae2c9078b9
2367 F20101129_AAAOPM lungu_g_Page_178.txt
d8f9ac4e6fa3c9b06213d973c8ebc6ad
f04f133121cb5a28eb930cba9133584b25616c47
49792 F20101129_AAAPTE lungu_g_Page_041.pro
bd45aec77dd0bd8b149c3dbaab4c45eb
1c2094ea76be8552ecd3b461e475d0a2ea0ab63b
F20101129_AAAPSP lungu_g_Page_178.tif
219b03cbc832697449165dd1b84f3585
c6a33c65a633863f6b7dd7b8b2093de03322e507
F20101129_AAAOOZ lungu_g_Page_030.tif
940d8f04ae82a5b004415fee9630fbe5
113c53f84e6c6a950472d095c7f3f1ec60e29bcf
33102 F20101129_AAAOQC lungu_g_Page_089.jpg
fd0a68037a7ba76e7915ecf32df80ee5
662be898464c5dc3403e9d01054bdd6ef98d402e
29304 F20101129_AAAOPN lungu_g_Page_072.pro
7a04e2a9318a81f40b85fb1e7aec4917
395b28690294e6ccd4cfc9bf8a87f2fc3a7b5173
56224 F20101129_AAAPTF lungu_g_Page_053.pro
7f30d0c33ef232b90a60119e1c6be233
9c88cd62e127684c2828ea40d24b6e686018adfb
F20101129_AAAPSQ lungu_g_Page_180.tif
eb4a5b8e7e40eb668974be798563d667
1de039a9481eccbe066f8a4b05ba96cd92da0287
500848 F20101129_AAAOQD lungu_g_Page_035.jp2
13c5dac8e0367112fb859cd8917a7ec6
c3791eb8bc0e9098a7a503cd3c97f0d5cbb897ec
F20101129_AAAOPO lungu_g_Page_130.tif
79e41c6e9c6fabf6dd5f5bd0d50ba8e0
4be2925f6c2b1c9f51eaeaf2b806ac78997380b0
44517 F20101129_AAAPTG lungu_g_Page_054.pro
62fe0a6e257e6d380a22495daff8949e
84f8e81ff40755ed771309bc3c308237dfa94ae6
8185 F20101129_AAAPSR lungu_g_Page_001.pro
fe40c90ea922d7050654191ee671b867
810bb7b2fad8a325a0c7cbf5af1defb0d4f464ee
32257 F20101129_AAAOQE lungu_g_Page_158.jpg
491b89e2e8880306476453951cc7f76b
4b76a010946918e8c350559cbd23b89d33679a75
17946 F20101129_AAAOPP lungu_g_Page_047.pro
240f668134d41b935ff8b42240954be9
77fa9800a63217c5083228b3edeaa1d363e40c28
45182 F20101129_AAAPTH lungu_g_Page_055.pro
d2e89af7d7092023c9ce4436972bc338
6bf29595d194716d01487e64f2cd18e4c886f31e
803 F20101129_AAAPSS lungu_g_Page_002.pro
66d1939dd0ae3edd4a2d69776bdbccfc
497733915be1b08a815b26c542edae5ee6203c7a
2205 F20101129_AAAOQF lungu_g_Page_039.txt
4405951d992f9f5c7198fe23d1ebeb21
c4d5c1cc34cd5f3071892801824a7cdf4c8e43e9
1172 F20101129_AAAOPQ lungu_g_Page_176.txt
0964035eed5d7db0a148fe9e3104f52d
c41aaa2670fa6e372958f8e229eaee59c801ec17
51148 F20101129_AAAPTI lungu_g_Page_060.pro
8bfd23702c02950766765c8578e422a8
b4bbbc52c0b9dbd01c5799b3cb3658ab1815d23a
55998 F20101129_AAAPST lungu_g_Page_004.pro
90103a3726de2776ff3c48fa5641e5b8
ac0ba6ba8ddb64e7d76df95a5c93bcec93ec2957
392183 F20101129_AAAOQG lungu_g_Page_087.jp2
0c4ffde483df132d189d3dcbda553a3b
42ff4c33beec957c78a567fdc42535fe989d7308
10219 F20101129_AAAOPR lungu_g_Page_065.QC.jpg
50f6a28393ef9fb1e39134916ee0adce
c2a46db8b334009b401452fccf23725b60daab29
49726 F20101129_AAAPTJ lungu_g_Page_061.pro
105941d8ffd829840818811af88871b8
ed53263d5cafba2405c8a396b308682e9162fdbe
14148 F20101129_AAAPSU lungu_g_Page_008.pro
8a48b0d6f92a5004554a9f32502055aa
4bb0f766ceac230178f705a57b88d348ee86ac88
5460 F20101129_AAAOQH lungu_g_Page_090.QC.jpg
f2cde2b7b4bc36f1e892256521f81d93
1a5a6658c8f1afd35842d58943c8b9a8a88865b2
F20101129_AAAOPS lungu_g_Page_018.tif
712865cb92db987d9e0654c001af69d4
0ad50d3e46bbd3a9592a64c67cfe64d4fd89daee
F20101129_AAAPTK lungu_g_Page_064.pro
bac62e92f1d51d40179d9d2ae459d56f
3056f6f25449f7f1745e72cdc758bc4f02a4ff0c
56415 F20101129_AAAPSV lungu_g_Page_010.pro
3814b243d7db88b82399882d7f3a986d
81bfa7ed8ab4b5e32b8abae9cc9459204ed680a2
26397 F20101129_AAAOQI lungu_g_Page_030.QC.jpg
15b6abf4943b7d46fa00a5220bf37f8b
95ed740039699a9e45eb0fb85dc3ff0b1082115a
17346 F20101129_AAAOPT lungu_g_Page_176.pro
d4e587f01ba3543b5accc524a2825d2a
e041396eaeb793c88f01b788d72822fd6926c908
7120 F20101129_AAAPTL lungu_g_Page_066.pro
32be9daffae6012fef1d4a7bee54f659
4ddd0622423c71a0eca7fd1c8c76e880fd68704e
60834 F20101129_AAAPSW lungu_g_Page_012.pro
6754dfdd2384f607cc337ec12f480e0e
84082790c80ad9c2efd0bd4c445e7da6af6ad638
3780 F20101129_AAAOQJ lungu_g_Page_167thm.jpg
79df0bb78285dc1b62e6ec51134452a3
60c8c2cb38139e479f4b4ce89da9eab222010d6b
87980 F20101129_AAAOPU lungu_g_Page_014.jp2
7c39ef344fd8d39586d7afb9b8981edd
a0bb946b4aaa02e72923e13decdbf5fde3395c78
33023 F20101129_AAAPUA lungu_g_Page_102.pro
87b80e0f763d5a4dc8ce96a4ba11e886
9dc7c63853e358ef774a41bb86bca79f2326fa87
51555 F20101129_AAAPTM lungu_g_Page_069.pro
6b2fd21c4e3af9414e44ba2712b61160
52950cde86f2582b9ef30355f0e7254bc9ab4ffe
52404 F20101129_AAAPSX lungu_g_Page_015.pro
180e5964e68709ab0dafbb12ba9cd155
5443db979240d519b20fe6a7fb1e30e52f88daa0
1912 F20101129_AAAOQK lungu_g_Page_152.pro
1b88ccacd941065265e95aef5fd20b91
709c2a7550b1040dafc55b2fc23e35744754686e
1051973 F20101129_AAAOPV lungu_g_Page_043.jp2
a20943003e14cb6be3ba5fa5a43a6cc2
018193ca84fe42942d7851688b48c8d648125791
25971 F20101129_AAAPUB lungu_g_Page_103.pro
efa1d95003074164630bb47dc7da114b
c7e9ae8a42db48dbfbc32034d54c90ebe1e0ba61
38808 F20101129_AAAPTN lungu_g_Page_070.pro
865a48cd858e7ca823933d3b127df77e
dcf75f9f32aa94ddfd4135ec218f557c2e79cda2
57365 F20101129_AAAPSY lungu_g_Page_018.pro
bb08441ca71ee73449f4aedcb6e58b77
a49e595932af7f8c89a0751ca0bd87fd63bcd86d
90480 F20101129_AAAOQL lungu_g_Page_024.jpg
2a3dd99c43f4854f73312408f8adbd16
cf4fd8e494715e9ff0244776185e11391f70a373
56504 F20101129_AAAOPW lungu_g_Page_042.pro
77ed89d15a9ad3047fd2db39b3982a59
c77975984e7df262f198992784f88fc01ede08ba
55485 F20101129_AAAPUC lungu_g_Page_104.pro
ace3ef93473625b48c24579e9916fcf0
89c367b0ca504374c81a08fe8b8f7640e6f7167f
49385 F20101129_AAAPTO lungu_g_Page_071.pro
75144494f4b4c3f414285e7f06b37787
0cce16df5764497eaa37fc4fc502ed03fad0ad7c
56654 F20101129_AAAPSZ lungu_g_Page_023.pro
dadee1c4a62ea4daa3b307d4b046fd97
b0c37ca2e10398ff3008df185e4fe55df5501881
F20101129_AAAORA lungu_g_Page_017.tif
ebc3a07f862f5a933a19a9ea79eed901
d1cddb3eb5e02b075d558ed8526607b654a98870
72571 F20101129_AAAOQM lungu_g_Page_027.jpg
08fd92e945cc0e7dbe4fc38c29b510b5
b00ade5540ea0afd5b1371ad370890d6b3e3dc35
7133 F20101129_AAAOPX lungu_g_Page_024thm.jpg
eb739f709f524ccf403df71a667f49bc
916d0b38228dfeca64448606b995d902dfe0df1a
49052 F20101129_AAAPUD lungu_g_Page_106.pro
78cf1894e0166f74ad0bdf051fd9a3dc
b38de433e1c00892808a8f7b2df0110d6fd08e5c
1051938 F20101129_AAAORB lungu_g_Page_078.jp2
abca34846777d40eea92ef4a3f9d0003
baa9db10bffaafe02526cb9ba8c1198dd575c34a
677 F20101129_AAAOPY lungu_g_Page_035.txt
b088c0167bf65395f7074480efbe4e54
c9a7607901d3234c2fa2f52bffc7bb6f77566be6
37814 F20101129_AAAPUE lungu_g_Page_107.pro
81f6ae99ac7787cca44813632008c734
fb0bdd7f2ed236b01f34ac48922356ef1c4699d6
44122 F20101129_AAAPTP lungu_g_Page_073.pro
f83f892fff32456df487e3be6548fce1
e4cf8ebe8fe27a22a78d08b01f51ee7641150569
32558 F20101129_AAAORC lungu_g_Page_160.jpg
3f35d1a7a6ff81812fdcd3ee1971aa50
361719027f882d05be28d62e0ae7617fb5205e1b
4775 F20101129_AAAOQN lungu_g_Page_134thm.jpg
ff79630c9c726430629360686da5e06f
971069c6374a1bfccb506e86da8468b09aab38ab
11250 F20101129_AAAOPZ lungu_g_Page_036.QC.jpg
6b81bbc3830e0de24218228c35318372
94a8f733e70c01f88cdcc047e9e0a6fc2871265d
48210 F20101129_AAAPUF lungu_g_Page_110.pro
044c463dc7793adc4131045cc156c315
ef1f1d61b8565d82269418ecb525dae244ccb2b1
26814 F20101129_AAAPTQ lungu_g_Page_074.pro
95aab3b62c0d62c2a50eaef0c52b52eb
3c0a559e5b1b5c8093a8139c9a5e96dcb7316cea
2246 F20101129_AAAOQO lungu_g_Page_053.txt
d028567016e370dc135fd22e4eb1ee1b
56b1c245c7f303d37e536d43b34c87a1e1746ea8
535021 F20101129_AAAORD lungu_g_Page_140.jp2
28264fea6d43b3330fe18f865aa77e29
d333aae7a1bd2ca5398109420cbe1e4ceb95c72f
28859 F20101129_AAAQAA lungu_g_Page_043.QC.jpg
4c6dfb7b3d6bc08610ba4b5fff4060a5
5a2f59c1d3a589db2249ddb240aa7c39051ffd65
35224 F20101129_AAAPUG lungu_g_Page_119.pro
e38642153bd48fd5b672e143a65ac7e3
11dc64717866966c96ed8ea2bf0a1a3c543869d6
46580 F20101129_AAAPTR lungu_g_Page_077.pro
8882dd7dc3d31e761e29ef631057447e
46762be5184184ce18580423fd1392d8508979a5
3167 F20101129_AAAOQP lungu_g_Page_147.txt
3e3b90ee573b24027905cd3b43efba78
0cedbbdda9f054852e905fab867431a7caec4e06
F20101129_AAAORE lungu_g_Page_044.tif
ef396038eb594178cf0b18c590497acc
aedafeb244dd61ea6711cb785401ab9bc7c080f1
26453 F20101129_AAAQAB lungu_g_Page_045.QC.jpg
4f8904d8f588b5f52b44e3c6537811ae
c170130465fde551d55cd4956be795ad73baf551
15585 F20101129_AAAPUH lungu_g_Page_120.pro
71d2009d8c27c31ee1849392660f3e42
7ed99879ccc867d9a971f2af3e217eed3ae02638
49081 F20101129_AAAPTS lungu_g_Page_078.pro
01c550f303b5e07f84779b950b4573cf
f2b34a490441daf787935750fb0c96d55e865613
71017 F20101129_AAAOQQ lungu_g_Page_080.jpg
e9dff4fd1115f23a99cfbd66fc204e20
7259db09c3f9bebf7ca4428b555be340d0573861
21931 F20101129_AAAORF lungu_g_Page_179.QC.jpg
8ce695b91f7d76780fcdda27cbeff7d0
5ff24c3d8171a600071db6ff485c41246a85f8a1
6576 F20101129_AAAQAC lungu_g_Page_045thm.jpg
83e281fda887d9b0df4c9c86816630e1
beedb384bda99232c5b1b1b7715a644d808580ad
18181 F20101129_AAAPUI lungu_g_Page_123.pro
9502c5dc450f8a135455c5d35127c6e0
068a2be6f709e21109ac7737dbce098e6cbd797a
19526 F20101129_AAAPTT lungu_g_Page_079.pro
69ebe19498361ad96d3c666db43a863a
a8fb48ad12c5bcf33b3eef10711cc609292299d9
2147 F20101129_AAAOQR lungu_g_Page_158.pro
5e6185e0373b005d767bdcc6117ea48d
310b099cef0a0055b8c4499895be6d134d3ba546
45365 F20101129_AAAORG lungu_g_Page_121.jp2
a14c88d423fd2ba63ee36de860965ac8
57026c61aeeae1ade31646c4715d20f25892fdce
13345 F20101129_AAAQAD lungu_g_Page_047.QC.jpg
8a5204b3e22a7c6bfe6c4f83cd34bb22
f1f8559107e63510563c6b7be267f901426177fd
32782 F20101129_AAAPUJ lungu_g_Page_125.pro
0b5a20e0779c04afbb3ae99418d98505
322b804db4205bbfcc0109ea5c00cdf9fe75c61b
42957 F20101129_AAAPTU lungu_g_Page_081.pro
a480113dcec8d5fc60a7b31edf4c2f1e
b99b5c0535c1198c03558672137346d3be8fd626
13402 F20101129_AAAOQS lungu_g_Page_095.QC.jpg
eea152dbe38cec42d93acea6c5dbd306
0bd24c011146ebd39608a00ebf0635ee722b9e43
20775 F20101129_AAAORH lungu_g_Page_096.pro
97fe9f0658434f926093b0381ae351aa
47971cac63c0b242e0f511dfa12d3c2a3af2458d
4130 F20101129_AAAQAE lungu_g_Page_047thm.jpg
866735af8be91311fde6772fa91ce9af
1be3945d97a25cd64d9cda64fedef1bc990bcd8a
14871 F20101129_AAAPUK lungu_g_Page_126.pro
aee78fdc8c997fdfda1538b79305725c
38c4a226def883772e715deadb2805a6a8c6dfe8
46177 F20101129_AAAPTV lungu_g_Page_083.pro
284e200c15228bb44a2e4bbb04c781bc
ca9b9ed5e4a19f7410567ac3243f51d113e49241
F20101129_AAAOQT lungu_g_Page_110.tif
96a905b6ae776d3012a1a8e28658b9c0
9790486753664a946790e7eefd89c4e142614bb8
22805 F20101129_AAAORI lungu_g_Page_081.QC.jpg
493da835548aa5c97ef06e854293724c
4b08c0cd78e72bd9e62749ba1d5c529641674a8e
15616 F20101129_AAAQAF lungu_g_Page_048.QC.jpg
be5ee0f9d8f10d36f9b759d36dbb11af
ffc9a6347b157357216c220f193183671a3fb944
53331 F20101129_AAAPUL lungu_g_Page_129.pro
cc588a0166d79ace519d75043bf8e0c8
e7751d8a402db6e02bbd6e15a76ed905a1c2dcc9
17162 F20101129_AAAPTW lungu_g_Page_089.pro
a705b91a780324f986da1ab67a212a82
728c936d1e64d81b8dd5802255f40da5c5ea11dd
6274 F20101129_AAAOQU lungu_g_Page_071thm.jpg
d9fa5e00dc7b295516b3484fcde34c9a
33dd5a2bda5349ea66c5eca341d7920c59f2fe0f
32151 F20101129_AAAORJ lungu_g_Page_075.pro
41f741791fa947566f2980785ec697f5
b98ba2a2bea12eb8dda299aa9f13dadd262e57b9
3767 F20101129_AAAQAG lungu_g_Page_049thm.jpg
02c84e822f4d82fc2b4aac3eeb0414de
36da42437de0c55bf4839219548fdc7d4447b178
19076 F20101129_AAAPVA lungu_g_Page_164.pro
3c166e70f3df2ba48f9de309bfc2ab34
bc39d7e28dbc16fa110aa9b5cfebcec948c3b92b
27617 F20101129_AAAPUM lungu_g_Page_132.pro
8423b829da249eb5e00c65f8370a9521
462a9c44d71ff641c8430ba0d9741d6035931642
41093 F20101129_AAAPTX lungu_g_Page_091.pro
ab58111d148bf3cb66cee470a26de488
355d5fa6f9b1995f2e000857a6a76fedd3c830c4
46329 F20101129_AAAOQV lungu_g_Page_095.jpg
232f4047675783118d18521a3556164d
67bcfdc905e50536814616a48e301257b5e6f5d6
76817 F20101129_AAAORK lungu_g_Page_020.jpg
f4c329c0e3bd63b3354c01da93e97930
a28195e9a687afb8751081a1940d37c999ee2884
6490 F20101129_AAAQAH lungu_g_Page_053thm.jpg
27958813b2ea46d5dfd8c642ea6650e8
41495873272183404d8df1f1925d75fb714a610c
12631 F20101129_AAAPVB lungu_g_Page_165.pro
7cde13f3a7eb24c1b81c7f59302b540c
8b1d8933e7509e62a8ba44edfed355604164d2bb
56487 F20101129_AAAPUN lungu_g_Page_137.pro
d151c13660a15c53e7e0fc934400c887
4ce42ad53078695860dc1c3547e87ec11815687f
53292 F20101129_AAAPTY lungu_g_Page_099.pro
75ac8c6d73119c2f63aba09803181762
196d57116ac5b187e96db0cf147b88484b8af356
829 F20101129_AAAOQW lungu_g_Page_155.pro
8827b0b1bd0464a7d6c9a7ce68d96909
c1d82371bd1a81f61d9479d8301d345cfb9925b6
10389 F20101129_AAAORL lungu_g_Page_096.QC.jpg
01c168be121bc2381544adf36076d02f
5faaa4f14d425a2f7f556d1a5d9f4b5d5b1ce7be
22137 F20101129_AAAQAI lungu_g_Page_054.QC.jpg
4136ec310740c7cb5f87b37bd0a35bd2
85c79a24d5528950e276378e4f892758a90f0423
11262 F20101129_AAAPVC lungu_g_Page_166.pro
caedce71de24259d7b30e815a0c01ef0
8baf8e6887494245100fd3589118763b6629ba25
40317 F20101129_AAAPUO lungu_g_Page_138.pro
213db7f582536153352a09da3c7cca3f
2824eaa9b2be629fdbe3dbcb7fda95bc6ba879ea
39475 F20101129_AAAPTZ lungu_g_Page_101.pro
446247f5624ed64ac49b96328ed099ba
8a91fe72b7c10904cb7e57d8328ce1fb98d7b3d7
3742 F20101129_AAAOQX lungu_g_Page_152thm.jpg
c933a130ba9b265f9049e487ff6c4ffa
323f74ea7f9d122f3119a989c502742cba7c0ba6
1522 F20101129_AAAOSA lungu_g_Page_072.txt
64e09c7d401361e9307110b2e9a62a62
b22a404bee4bd0760ae178af708b9e4a8bcda8c5
F20101129_AAAORM lungu_g_Page_022.jp2
33ffb6ad2e08a5b1e288a02b0eacbfb5
57c051a43270dc579ffe3d7bd691df3ddcedeee6
6225 F20101129_AAAQAJ lungu_g_Page_055thm.jpg
04729112395247062304e001220306cb
1b5f1c2d459eb0feed221ed5d4539993860fda19
18771 F20101129_AAAPVD lungu_g_Page_168.pro
e23d275816db3043797cb19c2f7b4052
3e596516a04f1764655f9f85e8515495021c36c2
13621 F20101129_AAAPUP lungu_g_Page_139.pro
055573223b05e101df1d29726b0a1a90
c08e10b3207be5e1d61c9e4f278dae7234d401f9
11553 F20101129_AAAOQY lungu_g_Page_152.QC.jpg
25b985bca0786962bd677b8bf1dd452d
df7825f79479723ba025c611153313a02b0ef3e9
72624 F20101129_AAAOSB lungu_g_Page_081.jpg
9a69f7a89b13817fc0585aa462a797d9
5108d3695abe55214956617f1f45951624ec7101
5935 F20101129_AAAORN lungu_g_Page_105thm.jpg
2b37d4b338f2801244caf5cd22c990dd
db741c23eb828bdf4c188bca54d5df2146c6c87b
6450 F20101129_AAAQAK lungu_g_Page_057thm.jpg
519d840941afc49c6219488b32ce3e6a
7ed3d901b2d7b9c01ddee09d4b4b661760019852
10578 F20101129_AAAPVE lungu_g_Page_172.pro
25bd916f439a42c1f5a607fd9c055c33
015264395585713e093714d227a373d78f677884
24732 F20101129_AAAOQZ lungu_g_Page_098.QC.jpg
c607090a59ad1242d71f49405025fbe5
a575b41ffb9eade157b609e78a75ae3a8762f5c3
20279 F20101129_AAAOSC lungu_g_Page_006.QC.jpg
c1b8b3517ebe672bbd2cc00264c1fb4f
9ca3d3f6ed1b462e3573deab8f813faa8c67aef8
25196 F20101129_AAAQAL lungu_g_Page_058.QC.jpg
9efc943db1509f70731161373f6ae733
2780731526b6690012b1702d39ec385eddac47d5
15961 F20101129_AAAPVF lungu_g_Page_173.pro
288d9875c04657a7f5483913c6bc49d7
b57b552456eff7c0a687cbc8e2a5c838b026176b
20555 F20101129_AAAPUQ lungu_g_Page_140.pro
fdf40f1fd9d12027620a0eb74fe1afbf
57f9d2138bb0e2b83f6dfde5b1e870940b87121d
850 F20101129_AAAOSD lungu_g_Page_180.txt
70a6df5a77f20fc165b14c196cfd91be
c5d2ae55883fe3854224dbd31f4ea6ca7d52073e
F20101129_AAAORO lungu_g_Page_138.tif
3c2913b6e7bc3fefe9ec5800c75eb93a
d6ad67f475803a472b6a97aa2d356a2b7c65f6ec
8942 F20101129_AAAQBA lungu_g_Page_086.QC.jpg
bdaf229b836bfeb1a4a2d337873755af
17e7684077689568ffeecfbe15e1ce9edc3b3092
6674 F20101129_AAAQAM lungu_g_Page_058thm.jpg
c2dc01fef9cc1f70b6c4c3cfdc55d70d
4733a1408fe95ec23b696c3a14be22803acbbee4
59603 F20101129_AAAPVG lungu_g_Page_178.pro
4e02159a6d45b038b49dc437a4e6e602
edc7a1d687942db12dba0e2a197146c9711459c3
20741 F20101129_AAAPUR lungu_g_Page_142.pro
c135e54661afa0ef637cdad7e635ebed
dae830c74b3ae7689b7db01cc6cfccf55c862882
85274 F20101129_AAAOSE lungu_g_Page_023.jpg
0be2066522b86436a8134e68836c951a
9471b96db6ef0f264a0951add34358a6696038b7
F20101129_AAAORP lungu_g_Page_079.tif
bf131b9f29992983f65f586b8cbee302
eecf3a312df74904f350629e1780e17511cc47bc
2763 F20101129_AAAQBB lungu_g_Page_086thm.jpg
823db78e3de9f2306107ee170714af43
10e82e36906c08bae29df286f568e49d8f192ee6
6341 F20101129_AAAQAN lungu_g_Page_061thm.jpg
fa8ad8dc272f7440a4d21e896f327545
ee3ace66cce7185a0f7927cc52f21f1c16e17763
52469 F20101129_AAAPVH lungu_g_Page_179.pro
72b28cadd6abc1e36afab50e97b532f6
ae63864664b2c20e975039bef271efecbde971bf
7092 F20101129_AAAPUS lungu_g_Page_143.pro
a101dd3dbcd36eceaa199fedebf989c3
06f3b4d7b59cfe6e5f36c8583d0fdfe974f1ea6d
5909 F20101129_AAAOSF lungu_g_Page_129thm.jpg
2d5bc68e60d2992b69a90c564a322643
a237cc02d8d559fca27ece23cd9c76553e04f19f
6110 F20101129_AAAORQ lungu_g_Page_083thm.jpg
5fd1c7c6119609dac1f484e4e602cb00
cd960fd6d11808fcf9f5c4114faf09bb4cd46e50
4256 F20101129_AAAQBC lungu_g_Page_088thm.jpg
26f2f82d141b33c45b6af7dfe2ccc536
8b5bcd96e1f23ceada1ed78dbf3496b6fe082d69
6805 F20101129_AAAQAO lungu_g_Page_062thm.jpg
45f405ecad36f4a21ed8d47f09f8a062
dc00268c76f28e265fdae7c60c8f120ac72b23c2
20894 F20101129_AAAPVI lungu_g_Page_180.pro
f145abf0957eee54665bc54bcc0a91d2
8bd13e1fcbff12b27a27538e2a4db04d565b503d
24670 F20101129_AAAPUT lungu_g_Page_144.pro
aa6110d18054ce5dedd5a35710a1afec
38a5d7ea3f2f7e4b968b06e5876d98baa2fdac07
2375 F20101129_AAAOSG lungu_g_Page_005thm.jpg
8cd6daa30f43e1d98ae6d0a85360b4d1
e99622c65d7a45db3947c6006021bb1e4d7a61fb
F20101129_AAAORR lungu_g_Page_019.tif
e763c10b4c8d191a4df32e2c855cac8d
e1812d31be11221da820012e7737813e7d17fc17
10796 F20101129_AAAQBD lungu_g_Page_089.QC.jpg
26818767419b0524e4c986ced21c2a0b
530382fb456db526bd10ae7df6458ef3cfda4487
20815 F20101129_AAAQAP lungu_g_Page_063.QC.jpg
faa2e4ff3b6797872170fd78572ef453
7a92013041f7856a63035a6dafad3382090516fa
87 F20101129_AAAPVJ lungu_g_Page_002.txt
23bca7ab5363d87f6f26525e2025eeb6
9135449bc87461f854a32a1130431cccbb20aa85
F20101129_AAAPUU lungu_g_Page_145.pro
ad8b250793231b2f2c3659e14ec19688
d93ba65587aa91ecf28157a48a61dc6e15234556
2445 F20101129_AAAOSH lungu_g_Page_011.txt
7ddb31f91be91589602d84580546e1dd
1563ff631145b80fad654d59fdb6ecab9d9a7e93
2048 F20101129_AAAORS lungu_g_Page_033.txt
1eb5a9ef671cbae899fdb859a279503e
b73b6c971e1269708131a971751daee83b46355d
21052 F20101129_AAAQBE lungu_g_Page_091.QC.jpg
c0bccdc4f78604cabdc94b2b39efaf9e
d0bcbf822c3d3e68a63109fbfab3d930216157aa
1938 F20101129_AAAQAQ lungu_g_Page_067thm.jpg
aaee555a13b73ab9000be8534a064f3c
af6a6ad8144654cc3de910792cda9a19d0df6bd7
448 F20101129_AAAPVK lungu_g_Page_005.txt
caecb96e1f78e6e46b78c916a8d921ab
f5eacd917b9ed7c8e43d18a27dbd978125eb7bd4
6187 F20101129_AAAPUV lungu_g_Page_146.pro
c5bb5a2adb5f08fe1f050163ec8ffa08
c32de7a04033515f5109a9607f17b55995ee329b
88196 F20101129_AAAOSI lungu_g_Page_093.jpg
15b34c523a3f354b5791d6d7ea0639ee
3ac805d508d7f86cde91a00766b1325e0a7db8a1
781 F20101129_AAAORT lungu_g_Page_139.txt
1451d6d66a31c829fe86af8105e18a0c
88d6ad2894f2ed9cbccbe822844fa8b7707c6d3c
5822 F20101129_AAAQBF lungu_g_Page_091thm.jpg
412806e77d9400a1a4121ca2e037a881
1bdb277e5d5d761df7b4a4127cd5049536a167e8
23697 F20101129_AAAQAR lungu_g_Page_068.QC.jpg
04c0e1346c9ee0d46e27bde34b6b72a2
9f4edddcc7009b11a63c66ba2d6d8f54263b7740
2540 F20101129_AAAPVL lungu_g_Page_006.txt
5af388e05d57890aa68c04a66427125a
daba1184f499ef127b1c291f39fbfca1fada0de4
9028 F20101129_AAAPUW lungu_g_Page_149.pro
87c20ff3982345bee95472bbe7983572
12f644657c41a562816bc7e2139737b275b1cde7
794541 F20101129_AAAOSJ lungu_g_Page_085.jp2
42e0d0b146cb52ec9c106f16ca0eee2a
f352f950b764ecd91ca006582c578c60ff5e149d
F20101129_AAAORU lungu_g_Page_011.tif
c001dadd500d38b0364bb287a1c93265
b5f2650b5c1a6d0d81a557cb34da087ced8e7b59
19564 F20101129_AAAQBG lungu_g_Page_092.QC.jpg
e4929590b6a761df8e0a39f56e1ed38f
35fd7aaa68e729c8f8102fb952135a0b7940c43b
6055 F20101129_AAAQAS lungu_g_Page_068thm.jpg
59b85577cd021c8b729db3efa9d37dc4
72783ec7b0a48036d3949098d9a093d3d07ba2e3
2172 F20101129_AAAPWA lungu_g_Page_044.txt
79b54c407598263f7e3a12869728b35b
3b5be8400f80ea8a14692e6055200f65d7af807d
1760 F20101129_AAAPVM lungu_g_Page_007.txt
6e996d79fa7405f9bf9d9722dcfb375e
264b2ea597a586ad53fccaf645a991d1593868eb
3721 F20101129_AAAPUX lungu_g_Page_151.pro
f5307521427b09b26778aaa4ec6794aa
0bfeda4f4315dc3a72529a5c2669e097dc37668d
F20101129_AAAOSK lungu_g_Page_117.tif
739795dfdfcd89cd8cac82220f60ab55
f516f8520e3c76964e9db5e2db0e575a977ed882
50962 F20101129_AAAORV lungu_g_Page_009.pro
ffc854cf1244a521e63e71fac006d0b6
009ccbb1c7ea1378da6203df77ac5742c5e46883
6311 F20101129_AAAQBH lungu_g_Page_097thm.jpg
5774e0e859b65b9e4790ed2466faee09
ca3a1fbe530307d81b76f2ad9d1c19663fd8a464
21712 F20101129_AAAQAT lungu_g_Page_070.QC.jpg
3aba838ebe3e78e2a5b8adacbe043d3a
3c78043ad4e01113650a6b79b453e0f7412c432b
2249 F20101129_AAAPWB lungu_g_Page_045.txt
2175e22d91ead27a9c8360136d255643
c59fa47d2478f32ecd9a01017fef9f1f4fbeaacf
2094 F20101129_AAAPVN lungu_g_Page_009.txt
634ab9d740337f6e2a5e66aff1ee26ae
2cec8e67a3fa940b2dc83fb90226b3aae5375ff1
2877 F20101129_AAAPUY lungu_g_Page_161.pro
cd067429d5c5ff470956f86bbca4776e
62ce6c51f753594066d2807c21a1052bcfaba1f9
6067 F20101129_AAAOSL lungu_g_Page_136thm.jpg
a758c45cdb1025d232ff461ab2acd980
bdf8eaad8ef3f79b6dddab04b8d018bc1b31fc81
26563 F20101129_AAAORW lungu_g_Page_137.QC.jpg
aae989589fa3f4418258291cbbaad1f8
645a68aa4fb358a3b1a529beca47365e6627901e
6251 F20101129_AAAQBI lungu_g_Page_098thm.jpg
42c33424cfd247a7c394b28110cd2210
5ec0bcad99ad5b0b55c56d806d2ddbde47b96a55
23306 F20101129_AAAQAU lungu_g_Page_071.QC.jpg
9695bf4ed4418359baf17ea57cdf9430
3662a5649935a825716bb370e664c2650d255681
1934 F20101129_AAAPWC lungu_g_Page_046.txt
2f524dd6ed1e5ff018a5ca0c3c0e2901
62540e115ab809c259305cb6fac0885df54178a9
2288 F20101129_AAAPVO lungu_g_Page_010.txt
7773879045574be40acdcfb935534f7c
015b37d031b8219600e98a29f984457b2ca2312f
1731 F20101129_AAAPUZ lungu_g_Page_162.pro
ea5400c789c0223915e2b63c7433cb6a
54281bca8edf5e75f4106f28c584740e8630f643
3546 F20101129_AAAOTA lungu_g_Page_143thm.jpg
3b2cd538ba560f78718713467e9e37d9
27aed650081cfc1d887f9f05172901de099fcfce
41281 F20101129_AAAOSM lungu_g_Page_165.jp2
d191d1b3d0b71f7b359951a17cb1f794
0e2c5e12be7717db930686b4d46d136a68e196d1
F20101129_AAAORX lungu_g_Page_062.tif
40159121bb9c152d129540f131ffe48f
30d328c1ca49ceb26a958c9c6e5e6993e2749f46
19179 F20101129_AAAQBJ lungu_g_Page_101.QC.jpg
076a3142f85d90e8c364974937616350
68054573fea864afa9ad3e4a61102f5bbd0694ff
5889 F20101129_AAAQAV lungu_g_Page_073thm.jpg
df7f32aee470c7f49967280e01c83e79
dcecddbc9795818b0727e6b2120a7102ea76862d
948 F20101129_AAAPWD lungu_g_Page_047.txt
f31de526ba04547b79669f6d9e1dcf85
15970de538252b9601719322072e70ed0df1a0d0
2414 F20101129_AAAPVP lungu_g_Page_012.txt
4a75d012c6ef17e851bf9d008cb26d30
0a897a54db466894ae3ff875bfecc5ef7daa6a8e
3840 F20101129_AAAOTB lungu_g_Page_113thm.jpg
51c9f7cf8190ad38ca41638add8f234c
a209d0f60b54129456153a2bffc8b6b7cf27afab
456 F20101129_AAAOSN lungu_g_Page_124.txt
6c3e14e4913a92359c1838da7c6a6365
efd99f0b250f8899dc2b7c1bbf32d8ee2ec180ff
40796 F20101129_AAAORY lungu_g_Page_063.pro
31ade206e5d2007bb51eb4ce2a94c907
1a7278c2caa26e4748718e52191c15a10d8a8150
5589 F20101129_AAAQBK lungu_g_Page_101thm.jpg
545e148f6a9efe98abbd42a8f67572a3
0aeaa19abe2aff832be86c04c0630241aa66e63d
24081 F20101129_AAAQAW lungu_g_Page_083.QC.jpg
d893ad6cf49fc10ab06eb9e9def55131
ed79f24e5e35397c2602af14f07a2eaf062ec5eb
518 F20101129_AAAPWE lungu_g_Page_049.txt
b2da05f44a526fb27981af6d82f08fe5
cad8cf6db27d6a6179736dd679a9c490e0db929c
1855 F20101129_AAAPVQ lungu_g_Page_014.txt
efe1ac54975f3947bd828e0853f4196d
9e03edb6cf2445f3a157c0fff87d85445c678bf0
2080 F20101129_AAAOTC lungu_g_Page_029.txt
d50755fa46c4e0876d0286732980edad
062f728f239914ac6b1c3218ab125ff4cb3941e4
13078 F20101129_AAAOSO lungu_g_Page_088.QC.jpg
d1fa15f3d69a2f99f5305ca9ef97edb7
c23c7df3039d5ef686f8328f5cea5c318b6fcbfc
1051965 F20101129_AAAORZ lungu_g_Page_111.jp2
5e3332140bf9f473300e8bd66ed9c34c
c08e3f6981f0dea693d620d6b6355abd0d219160
4587 F20101129_AAAQBL lungu_g_Page_102thm.jpg
05f6da64441ed52880039798a06e7aa3
9698cf7095976a8a2ad6e7efeb60fa2ddb14168e
25838 F20101129_AAAQAX lungu_g_Page_084.QC.jpg
3275bb5a0accc6dffb825a46b7f13773
10d67bc4ecd8336bdda468fd0ecdd410ed292dad
1846 F20101129_AAAPWF lungu_g_Page_054.txt
2967f4142dd75ab967f6b67e708112c3
9eb4af296401b6a7f54cc5618e6f453e3b6cf596
863 F20101129_AAAOTD lungu_g_Page_165.txt
2ace80aa93bc5706b9f99f017744b08b
c451f05f51adb4b093a178a8a214eef117a0d764
4734 F20101129_AAAQCA lungu_g_Page_125thm.jpg
b20c3b884e359b648b49e0d64f5396c9
c0527c3f89b88b582d85de6b02b7644bc77be87b
13339 F20101129_AAAQBM lungu_g_Page_103.QC.jpg
01530a2d14d9053c72d76d4faf57a9dd
0ceb8c4b57a4342f36679d7aa2e6c972713ee368
6572 F20101129_AAAQAY lungu_g_Page_084thm.jpg
0decf79ff4bf29650cf9b3dbfb961c6f
f65554933e0c712cfe8ece69a47005297d4586ce
2057 F20101129_AAAPWG lungu_g_Page_056.txt
10af92f8d9d53d8a106ec7c7cf7dbbea
a27aaac1218fb6eeb43830092b4ed202824c5ddf
2235 F20101129_AAAPVR lungu_g_Page_019.txt
1d7f9b78f1b0a9e08e15e13fdafc2895
3b50a798b3b415afea222ff2f7d97c2889f2128f
1070 F20101129_AAAOTE lungu_g_Page_170.txt
209363f84be1f26ca4f697bae7b41918
17832951a5f9cf2df2bc7390805e1920dff09337
37088 F20101129_AAAOSP lungu_g_Page_155.jp2
e8c2981817ae929c4096d81c4b0aaae7
0857b4f213d79a54e38497e7a91731143776bf27
8429 F20101129_AAAQCB lungu_g_Page_126.QC.jpg
7cdfd0b42def9d3e77a252e98c184c82
55c38c82c0b631d05d22eae76f4de80b69e537ea
17783 F20101129_AAAQBN lungu_g_Page_109.QC.jpg
e852b63f21e2c4bdb4f2b64879cd9f23
490257910f2c2e051a01c3b7e6afe1a115ce1d86
5205 F20101129_AAAQAZ lungu_g_Page_085thm.jpg
bf48f69f9109fe6622e3b943bcb116eb
c97f6606fe8d64cf5e158d801396f791c9e9f620
2200 F20101129_AAAPWH lungu_g_Page_057.txt
4a3b38f324160ff0529e5f31502022a3
8b1087cb19063a5cf8aa195cecf6a58ebcc225aa
2237 F20101129_AAAPVS lungu_g_Page_020.txt
fa1dcccd3d488fc32e582e72a33de6ad
16f195fba5f2ac7f9194df71cb60f8b398eaabcf
3733 F20101129_AAAOTF lungu_g_Page_161thm.jpg
e4f24e73e4b2f34ef61f7ef28ca1f25b
735521636378278f2ecd2c2b2cac205ad2809c56
13113 F20101129_AAAOSQ lungu_g_Page_135.pro
b83ddb14f855613c59faa8b62858102d
685a3716c5fcc324c0dfc7887fa38d1508eabc44
2814 F20101129_AAAQCC lungu_g_Page_126thm.jpg
a6002f61a2403a85222aa73a1995e1fb
5cf2ee8eba0fffddb429676e774dc4df308178c5
21842 F20101129_AAAQBO lungu_g_Page_110.QC.jpg
2bf5be1abc1c5399754b2949bb07f2d3
87d639715c9a7ba9d6378514ca644a4000849b20
984 F20101129_AAAPWI lungu_g_Page_064.txt
fd9a9f4d156dd1fbb74095ceb4513a1f
0354ee84daf2ee70b8c512e818c339091bc5be5c
2263 F20101129_AAAPVT lungu_g_Page_023.txt
f8ca8b7133ff251b2f12ebd81095ea03
fa3ea2da041ff28caac268a1414b9c5bb4d3e969
2234 F20101129_AAAOTG lungu_g_Page_137.txt
b4b70ee38dae53f54d84e5e3bdb8a222
ad1804e8417a81a9eb0bcc8df633036625b191cf
F20101129_AAAOSR lungu_g_Page_154.tif
fa8135d2771ed6cd6bee06347ca8ec56
600df2713ef43798057644fdd94a455a41bb4e77
23078 F20101129_AAAQCD lungu_g_Page_127.QC.jpg
8956c3973b4439efc4d98e82cff1fbfd
709406f2ec3660b2f75d6898aca6692f73134e0b
5781 F20101129_AAAQBP lungu_g_Page_110thm.jpg
79e8d5c0cba6e9b537fb4c08e194209e
5de6aed4f6e35954e1a9c421641e1a744a72c91e
946 F20101129_AAAPWJ lungu_g_Page_065.txt
565a738086b5202b46a244a5a0366131
afe6fe2739ec185ad47b43516bcdfbf4aea8d90f
2189 F20101129_AAAPVU lungu_g_Page_025.txt
6f7841b32e46938e6ba1f0dd3a74232c
2f982dce5d0738aa7fc828d3a530ed6e9448ed35
F20101129_AAAOTH lungu_g_Page_096.tif
daa72152d97160fc4c74de8aaaffdf5a
d74b532d29d5abb5181e3a8ea42f1bedaca53217
25761 F20101129_AAAOSS lungu_g_Page_052.QC.jpg
a7228f5940ba3fdee8f9fb7adee97b09
726096de3cbc1e2fb775be7fbbb7b50cc3cc0989
5986 F20101129_AAAQCE lungu_g_Page_127thm.jpg
86e6b35f36329d4461675332f09a0b91
40e7ebc69149f4aed76c6a009bbe2bb1aab4c1c4
16825 F20101129_AAAQBQ lungu_g_Page_112.QC.jpg
dab3191837d36b6f336d690aba92bd2c
91530a4434069a596aff913aeaf005abe19ac8dc
318 F20101129_AAAPWK lungu_g_Page_067.txt
79a2e2f48b5ce71217edeb5fc9dc6026
3236816ea9c3607d0549e50c218c8a3f981528e7
2120 F20101129_AAAPVV lungu_g_Page_026.txt
a0486315537a9efb6c19dae78b89e54d
b129d87044020028a0ba5fc1b9fc292366fd6f49
49978 F20101129_AAAOTI lungu_g_Page_136.pro
8d4633ed5bdd7a2326a8157b2ceff1dd
45e536e096778dfb90aa49123f6172ba810f3229
16243 F20101129_AAAOST lungu_g_Page_087.pro
f0ab1d3ccf17c0a6481f468ed5d5904c
d4d0ced94a92e8abf8087ea8eec31d07613dea2b
23413 F20101129_AAAQCF lungu_g_Page_128.QC.jpg
014119f1f56b7c69b03ce3d8cd96a31a
bbfc0cad03faa4ac90aab3b09550174d1d1110ec
13148 F20101129_AAAQBR lungu_g_Page_113.QC.jpg
25b2b5145be08f51b5cbdb1b2717db8c
d4e72a5b3cae80076119637b8751414220aede48
1778 F20101129_AAAPWL lungu_g_Page_070.txt
f8201fc7c313cc5421ed85bc066cb4ce
bf2bc9ed20dad4d2e1cd23153719eeb5e6b46ad0
1896 F20101129_AAAPVW lungu_g_Page_027.txt
e5b694a8c728aaca978477d40fc5c20f
15b9b08f2bc918cd3cda8c579dd7cf70422ad957
2042 F20101129_AAAOTJ lungu_g_Page_154.pro
76466c9000ceb3d3428f677016436483
b661867349f6ffe1f6649c3ed5bb1171f470ad92
692 F20101129_AAAOSU lungu_g_Page_048.txt
09be04c56a4843cdecfc9817c04253b7
144c4994a652687129d67442ad6ccbbdfb058d8c
6410 F20101129_AAAQCG lungu_g_Page_131thm.jpg
ba966d40b9b7792500defb190e764f09
97f4c2a80cc895cc4b0cce046af8c102a15cdb8c
24411 F20101129_AAAQBS lungu_g_Page_114.QC.jpg
d6ef53ccc34f27e1df7d186466b6c99a
2bab495319ac3f40f6e549af51b6073d07cb2a27
1434 F20101129_AAAPXA lungu_g_Page_102.txt
030424bc13a8ab4016cc7b1890041a7d
69226f0cf1b095725cc1de94293b91956cbc5dd8
2117 F20101129_AAAPWM lungu_g_Page_071.txt
d52a270603e772ba8896b7b96ee3ee2f
0957f9b896db931edcdcbd5c06fb795acd943195
2244 F20101129_AAAPVX lungu_g_Page_030.txt
0c327042a29bd56dfdd871cec167d879
0ee01af20dd6b6cd774f8c6a02f6c3003fc9a8df
24585 F20101129_AAAOTK lungu_g_Page_057.QC.jpg
b1a6dd3789498a5bf2749890e6c7430c
b4260664f7f32325af540ea2f7aa0aca55140f83
41636 F20101129_AAAOSV lungu_g_Page_014.pro
754ad398560a63a217674cc37829dde5
08a398782f1e20708a2b283a7b6069f37c7d63fb
15232 F20101129_AAAQCH lungu_g_Page_133.QC.jpg
c1e1cc68bcd93cd5eee38b3ecb32bd56
7ff72f25fd77971e56509da128ca3e2c7753b681
6111 F20101129_AAAQBT lungu_g_Page_115thm.jpg
50fe5567dcf178c647a7126c376b78a2
c9f1ec78ecd2ca28cceac04a44352b13d8a22a87
2072 F20101129_AAAPXB lungu_g_Page_106.txt
c28b13fc7df0d4fc19993a18ffd41207
c38d69f70d1efe544582ffe70bf48a221a451cee
1392 F20101129_AAAPWN lungu_g_Page_074.txt
e634e997cced24b6ce0a612a99740fa9
620bf3c68d0af01415442f75ad9fcde6a8047618
2079 F20101129_AAAPVY lungu_g_Page_032.txt
90b292b47cb6d0bcbc936e47a4be385e
9b87ca94bebcff9ded22ce26532867706ba9b15f
1051964 F20101129_AAAOTL lungu_g_Page_030.jp2
29a2d0083ffd0fa23101ccf0d026a678
1412746f1dab811f861886b2f28d5055676759e3
33076 F20101129_AAAOSW lungu_g_Page_153.jpg
fc50929b87f1dfdf302cd0e8b486d49d
42fdb6030e74918d133b5e79e6ca34d225599ff5
2437 F20101129_AAAQCI lungu_g_Page_135thm.jpg
579f475592ffdd7c453f12e7cac93f06
dd75af43f3fb34b9dd8d59824dcfa2b8cb389bca
28705 F20101129_AAAQBU lungu_g_Page_116.QC.jpg
fea5bcaec0f63557da7c538a7a5eb383
ba861f0e03b8dc9d8fd2de805f8dafa91ab4c9ea
F20101129_AAAPXC lungu_g_Page_108.txt
669ef2a59be5da266df201e44099a9a2
49ef7d1dc5824c09e190fc42e6e586579a8f58e3
1863 F20101129_AAAPWO lungu_g_Page_081.txt
1cd1258747c7309609b4a6c5c3f50e93
f5cd15762f7d4e95bf3f067247c6274a395980c9
2228 F20101129_AAAPVZ lungu_g_Page_042.txt
9139cb29d3fc6de20ad332303b25cbdf
0315f6f726ca0d025776329277f0fa3861b216d8
1905 F20101129_AAAOTM lungu_g_Page_059.txt
2a6e0c2f97892164af7bc1a008d6baec
272efcaaea8970dee31ef286643be812c219de95
709 F20101129_AAAOSX lungu_g_Page_013.txt
4b5d08a6ac9616bdfc0597104eefa3ec
19025c9a11ebbceb415fe11f8dc392776511292d
3107 F20101129_AAAOUA lungu_g_Page_144thm.jpg
97da68aba62aea5d1fa6fb8ad9ba67ac
668391433076b626091118a51314b5ea0978520b
23363 F20101129_AAAQCJ lungu_g_Page_136.QC.jpg
654ef637328dbdd9601a0ff90a849ae8
8f68a85cb51655ecc325718a2327b7e83cc5bced
20722 F20101129_AAAQBV lungu_g_Page_117.QC.jpg
45b6a8e8316979468346ed110591109f
00874f4a7d53bf76c1faec973f05278fa1b37468
1488 F20101129_AAAPXD lungu_g_Page_109.txt
5e14a3ec4d027f837f9f831be2a22aef
cef35b6532681b53971d5cacecf805e03a5f7fe8
1439 F20101129_AAAPWP lungu_g_Page_085.txt
8aa6428ceeeac03abd64ba57bd1c120b
307147b8d9441d79c8bbd4a02f1d3d91d6958041
25156 F20101129_AAAOTN lungu_g_Page_108.QC.jpg
23e3594ff374751efea503860d0571a2
99dc44f7c4c0e83880e2a04897e3c1340ab4075f
5769 F20101129_AAAOSY lungu_g_Page_107thm.jpg
6cfd6e16f9135d6c19dbf7710e685803
52899ff049b21ab99ddfcae9fd923fa710d4ec13
54014 F20101129_AAAOUB lungu_g_Page_084.pro
f4463e5555c57e9655a0fe633f7fe274
541a777b01371d680dd0f4570114afeb132a4196
6739 F20101129_AAAQCK lungu_g_Page_137thm.jpg
453f551e9f4a4b37ae672f1e4fcc7861
c6b5404d501646a5ef5043733909ad418d7e9e2f
5591 F20101129_AAAQBW lungu_g_Page_117thm.jpg
b748b07f2fedec8aba5b7c143e214b9f
1412eed4647f56140ce1573697cba4146b2b82f0
2893 F20101129_AAAPXE lungu_g_Page_112.txt
b216450173a1354a27058557feec5b94
cb796dd7e66b1a94ae02d9ec736dccbab37c490d
460 F20101129_AAAPWQ lungu_g_Page_086.txt
e72ec7ce6cdfb808267583696970c209
85bbce900c18581622603fb962465b9e68754136
F20101129_AAAOTO lungu_g_Page_022.tif
8e63374debf1b8bba09a928cb003556a
1eb0aaffc02efdb4be4010ed5900204f0691d09f
34633 F20101129_AAAOSZ lungu_g_Page_085.pro
bb2a1d3fe610a14369e5020b9dbdd5a8
a76e0b62b3ab01f5caef156c9ea05503d73705da
194 F20101129_AAAOUC lungu_g_Page_152.txt
73603f5dfb6cd68c46106cfaa1d1c480
d14a30141a52109b825e524901a06e76d1412183
19835 F20101129_AAAQCL lungu_g_Page_138.QC.jpg
a1d813eebeda3689a83df23855d5efc2
6a25202cbcb3274bd6c88ca0efe91875944f44a6
25770 F20101129_AAAQBX lungu_g_Page_118.QC.jpg
9c45fb31219efd1fac4981060e008319
08b1a59124f42bab855c45651631e9a9514bbdfc
F20101129_AAAPXF lungu_g_Page_115.txt
17f6c133e4ff0d45ffafaeab0f803a18
442b2f05a6ed0daf1855152aa89e966f26fdf48d
1030 F20101129_AAAPWR lungu_g_Page_087.txt
ba74064ad85d8a14445c8ec2c36a0f0e
304871efeb6d204db8190b95fc7d812a9182deff
75730 F20101129_AAAOTP lungu_g_Page_110.jpg
e9e6a23690a4d5710d9f8a6f18899eae
eb0c27bab9a6ca99a2dff4951f03fbb31f0a39ed
8869 F20101129_AAAOUD lungu_g_Page_141.QC.jpg
72fad5ad5286b60ca8bdfb53bd28fce3
960800b96d6af7106495d61a3776958a040ff3a6
11488 F20101129_AAAQDA lungu_g_Page_153.QC.jpg
f90984a8d063289ed41a5aee74fd22e2
761665fe3ce69a10f97a461f4583d76c0982eb92
5643 F20101129_AAAQCM lungu_g_Page_138thm.jpg
ec7f2e2941cf08abbd06b903ffbb2dd3
061e9d7b35d530b418b253c323abfd23e8450f54
4403 F20101129_AAAQBY lungu_g_Page_119thm.jpg
775127c465582406a5f2659ea69e6f09
0342ff28dd92fac1cd3343f6e4541937e6d28c88
F20101129_AAAPXG lungu_g_Page_117.txt
b2f16d20d20a2d8d688c94eab4db1c96
070b2c5566d07d36b856a73cbaa539411abed810
40686 F20101129_AAAOUE lungu_g_Page_175.jp2
94ca42191824fa4cd20b20ee85ad8ecd
eafa46c8aafc299f4bc41527e550163068a8fe9f
3755 F20101129_AAAQDB lungu_g_Page_155thm.jpg
6b106ffffd6c8a15effd7f3d8e6b7076
9e7f0200f853b3b4e0d0f328336d76cbcdef7f7f
3941 F20101129_AAAQCN lungu_g_Page_139thm.jpg
f04fdf7d2dae8e609940f336b9e7c524
195b1db0d30bf80003a976c778e54aa92b855ff1
12216 F20101129_AAAQBZ lungu_g_Page_120.QC.jpg
6d2ad1b9dc96f198b3b5ab570dd5a720
a7643dfc0a35bc7dbbb007a4c31cf308b4073962
1587 F20101129_AAAPXH lungu_g_Page_119.txt
c654ba477d61894a059878b27cf06bd3
b4b551a9b72235d4cd5180bf9561ab87503863dc
2343 F20101129_AAAPWS lungu_g_Page_088.txt
0cbc7576eac79ae2c5787d2238f9ebd1
4b56dfdabc379c74ee179bc2dd791005502a5276
F20101129_AAAOTQ lungu_g_Page_120thm.jpg
c7f11ab97fe1fdefba2b1b3edc1a46b1
d0dcfc0744edb01086317dc5f4316c326672fc70
5592 F20101129_AAAOUF lungu_g_Page_079thm.jpg
049e5dcc2e7e8b4fb3284430b0c2c266
5f7129ce3e6dc8129533f225b423fed635cb7795
13492 F20101129_AAAQDC lungu_g_Page_156.QC.jpg
6e1e96dcef28bf985db9bca544c1ce67
81972d10c565b84c5f69f81cfc0e3203c77b5690
11145 F20101129_AAAQCO lungu_g_Page_140.QC.jpg
ab928c5f28bce166322364e6f8b1bff4
436c5dcaddeb511f7b986eafa2be1147a860318a
936 F20101129_AAAPXI lungu_g_Page_120.txt
f01566aa76193def6a1f075a64ffdf80
77fa2f15c3fc44991389fe640b962b559fe5dfe2
2323 F20101129_AAAPWT lungu_g_Page_093.txt
c3f0f2f630ad0b683f8acf086c66e32c
f66ee40a472c2a7ac07e2a99fdfce1fc3440cdac
47546 F20101129_AAAOTR lungu_g_Page_100.pro
30280912b1f536f3acfa68b9aa23e743
213202a81f655747a242cbfcc9ca07c611b48233
25295 F20101129_AAAPAA lungu_g_Page_032.QC.jpg
f0bf85b98bfbc3bb0821200119e1d406
01c6fd5800d1749f24ebe4c51bdb95f9df4905c7
F20101129_AAAOUG lungu_g_Page_106.tif
e56f3eab1afca21e7f6c9c06e27df68c
e0731f7daa891eb177e6149d3723967a83072f70
11325 F20101129_AAAQDD lungu_g_Page_157.QC.jpg
9c254af142f776c260824606b5afb207
9a6f0bfac3f9b251b2a30e11df592d26d7e0814d
12613 F20101129_AAAQCP lungu_g_Page_142.QC.jpg
a53effa12de96e3fb4f2b577230a75ba
898cb9839c871dc2f306523ad7d306688e211525
1036 F20101129_AAAPXJ lungu_g_Page_121.txt
5f953b1f83c229d55e34b4a020f6bfb4
c9f606a80bb993bcc7057fc508142cf0e0a6bf59
1059 F20101129_AAAPWU lungu_g_Page_094.txt
18a9f68085e8f35676e402451d835160
d675239d577195a2abe0f3ff6d98409ade5e2eac
2239 F20101129_AAAOTS lungu_g_Page_004.txt
ba0e467e12f3466eede708a91d7dfb59
8298308737ca4a2604139d4fbb9b9fec47c5838b
F20101129_AAAPAB lungu_g_Page_032.tif
c45d9d778d6918e71dbacb8920c22497
503dc71279fc21c28db74ea8048c1ae740d48cf7
43895 F20101129_AAAOUH lungu_g_Page_113.jpg
3e470d962e20b49940f5f0892e9f6e95
487b945e2498deeec059ad8b8850beb98d800170
3697 F20101129_AAAQDE lungu_g_Page_159thm.jpg
61912e76dd707dbb478bc53399ee8e84
dfe0be1031485b021bf456d423213c75ade180cd
3675 F20101129_AAAQCQ lungu_g_Page_142thm.jpg
9352ffa7e7d975614233cc58ddf99b47
fce6fff36f831e310c0b4f62b71c5065c7a21455
911 F20101129_AAAPXK lungu_g_Page_126.txt
3b3c5fe5231f600c956712375fc98aa3
8ab738f04520ed9ccf096e3d665a897b49644405
1097 F20101129_AAAPWV lungu_g_Page_095.txt
1b3f6f63b2b5ac2eb1814675d9ca508a
97a742ce7b6ea5bdec1292bcf89ac19ea18ef238
6539 F20101129_AAAOTT lungu_g_Page_069thm.jpg
f7a9e9f5d76129b68359b29ef73f4f90
eb3b183e4ef3a9f586cf3a1b0f06a74d4c6b822a
2169 F20101129_AAAPAC lungu_g_Page_097.txt
792cb9266eb6750fb30107871320d17a
142f639d6b564413f47a372068e2b8cfbf3a1b6f
746898 F20101129_AAAOUI lungu_g_Page_125.jp2
fdca6b596c77417c833a658a59d7e28f
013ecd1a2c43fa2288e53d151d745729494b074a
11286 F20101129_AAAQDF lungu_g_Page_160.QC.jpg
968e505bae58acac78376c4b809f29c2
664dc8b5b12c0f8625a0974d79e892f8516a577c
10060 F20101129_AAAQCR lungu_g_Page_144.QC.jpg
43c2e46556fcd39310c2a7c963ec71db
677648ab2488abcc41ca80d5f59f1b0c63282c32
2218 F20101129_AAAPXL lungu_g_Page_127.txt
28552de31bdde948515ba332a4a3c727
943269450f0bc69dad18eb64a7c4a4dd686e927b
915 F20101129_AAAPWW lungu_g_Page_096.txt
554e35b0bef5052f81b802bb3e4c0520
6d1fd190684ac126440b1cce9f2a5f4a2726692c
70777 F20101129_AAAOTU lungu_g_Page_009.jpg
fba855aad33ea9675b4d32dfbd3b59ce
0e4e9d20fb8317cf81024f1a33d6ef39c48f3b62
37930 F20101129_AAAPAD lungu_g_Page_139.jpg
85cb3bec36913beed534cffdfdfe2e6a
75829d1439dd12c53c510dcd004bd245e4d120b7
2370 F20101129_AAAOUJ lungu_g_Page_116.txt
4e349970adbbe1f55d0b11342adc0840
12a6f1adedc4456be34b92369521c6d556fb2ff8
11280 F20101129_AAAQDG lungu_g_Page_161.QC.jpg
acd6763b3a1f7e94d70e37418fba819a
c4676063cd9f682697fbf8db9eae68d03f5b7e66
10439 F20101129_AAAQCS lungu_g_Page_146.QC.jpg
85894636e71a54d0736c2262d5b01791
b2972894b659ea9c95c76c98220cf254321030eb
97 F20101129_AAAPYA lungu_g_Page_162.txt
04da56ee4cc349dc847d15bd9444615e
524143c812e5991e7ff503155972ad2ae2019361
2219 F20101129_AAAPXM lungu_g_Page_131.txt
8d7c9eda2bc7020c3595cad4d7533a31
89174b3435263c6a16f450081f4aa14fc3f1b420
2020 F20101129_AAAPWX lungu_g_Page_098.txt
4687862f965ac0b0b215a657fff475e8
a82d80ad42ecec0f6b9fc716ff11ddac00185536
71987 F20101129_AAAOTV lungu_g_Page_059.jpg
267843ce1970c6a5c683c8e279bdd61c
f4d57da4b50bbd507a6d730a844a3a91748810cd
26409 F20101129_AAAPAE lungu_g_Page_104.QC.jpg
ecca67a59b106929d1a0c2ec126c2ecc
0a30a00284c93b27abc01cb2e278b99baac701a9
F20101129_AAAOUK lungu_g_Page_053.tif
e52cf566be7134e041bfeac7ffbaa586
7cbdf6fbb07ef871779fbe0f0ac1d861d16e56fe
11263 F20101129_AAAQDH lungu_g_Page_162.QC.jpg
4855237081cf55d31f2f2ef9768d9df2
4a043edb39c4da57625eece3d49ba37ac51345fb
3022 F20101129_AAAQCT lungu_g_Page_146thm.jpg
53624eef2cfa509192d9115ef59eb82e
01c0205b509d89f0c4d24031e04fe0290fc1a65a
1207 F20101129_AAAPYB lungu_g_Page_164.txt
2a74e38e67862faccc30b496d66d1eac
445b22587330b79d4f5de41a0b9a1beebe8c8557
1366 F20101129_AAAPXN lungu_g_Page_132.txt
73740eb35dbfb869f2279534a71def8d
53491cb2995e2848f2f01ae138c8fbb7346e036a
2128 F20101129_AAAPWY lungu_g_Page_099.txt
d83ec81dd98fd29546d4a88117195f7c
6cf116bd6c89722cdb3923c80c639f81a90d3b5f
22369 F20101129_AAAOTW lungu_g_Page_115.QC.jpg
a59641d21b3005920ae9c8ede46bcdc8
082675be72af9a6ae97291efec43bcc50459d4d4
36669 F20101129_AAAPAF lungu_g_Page_111.pro
6b687df7e20d4e2a136a587308d009d9
99dcd8c31b65a77d285ac775afa37f1714d95913
F20101129_AAAOUL lungu_g_Page_093.tif
03fbc7f8fb672f97a988742e20548127
c51ddd412364603cf8e26e88db05b6e10c9b116c
F20101129_AAAQDI lungu_g_Page_162thm.jpg
4996910fa99fb653d50b3e4b5e9117b8
43d2d5fec48e687e6c02de506d0d54fd8f579b60
7411 F20101129_AAAQCU lungu_g_Page_147.QC.jpg
8c6306f88af9a788f213b129ca9d2d05
daa33b58b2ce5ae672c051b8591df45e4f951056
F20101129_AAAPYC lungu_g_Page_167.txt
1fad3bbf2d682474404d8b5dc3d2ebc4
f8cddf9d4c3f8410b028a1a2866098fb5c3f1895
2077 F20101129_AAAPXO lungu_g_Page_136.txt
2273a571d02f6bdcb326e84a06caa662
315a43f658b27fdebaf4b4876d75cb2df6d16a9d
1965 F20101129_AAAPWZ lungu_g_Page_101.txt
7ab27d376d75097b59909e3585290019
bc2675610fefcf1d64d7ccbf9d827bbaebb6d357
2264 F20101129_AAAOTX lungu_g_Page_040.txt
d3bf12b8f8ecbfb79779497759c22228
f1cb005afbe096a1e8be441ccdae87894d05b128
F20101129_AAAPAG lungu_g_Page_152.tif
1f148cf75d3ce670f1bcd673ac4661c1
2260117a15b77e0155b82498cc4b62c721006652
24883 F20101129_AAAOVA lungu_g_Page_097.QC.jpg
a4f28b4005dab817f95ec161fda9305a
bb88ae22565b0d63b099d493001fd95718bbfa8c
32687 F20101129_AAAOUM lungu_g_Page_088.pro
accd60a6c1607e18e92925d1daad3d3d
d6b737d5c3a4d4aab4eb5da7a14d56ec105dc1fd
11153 F20101129_AAAQDJ lungu_g_Page_165.QC.jpg
fb6e361cca6f8303e01f52fdede7c76b
95b183abf4ba470d8a549b4e6b3ee13f1ae67d14
2494 F20101129_AAAQCV lungu_g_Page_147thm.jpg
077ee430baf6af328b5c5ade97d264d4
001750e4057fecbd70eafed0a30e576db623b15e
1156 F20101129_AAAPYD lungu_g_Page_175.txt
d46450b7fafb560ccd1fbc0791d4c189
f1861ead50cf5f38cdf2041555a6d4ad0a295c1a
981 F20101129_AAAPXP lungu_g_Page_140.txt
e64dd7ff9fab8cff438ef86defacaffd
c0863a1e5526a87bd32a2d4652ae72b7b0efa3ab
F20101129_AAAOTY lungu_g_Page_151thm.jpg
3a3a60babff8fbc9c0be926b1a9076df
c59d3547c3c92239d518ac7ee857358f83feacf2
13616 F20101129_AAAPAH lungu_g_Page_141.pro
f0ce6a1822e3eb8575b47692ff59b0ad
af250f08d08d2dcde103d39bf5f13b31dbd1f5b9
F20101129_AAAOVB lungu_g_Page_060.txt
0a59a570dab0a58d994e4eb5c3388119
d23ab85a7d252bf8f27d7770752804bb270f33a1
51039 F20101129_AAAOUN lungu_g_Page_149.jp2
9fe71ad6bbc6b2983b7cdbe757662b7d
bbdd17118a0c6b16c2aa38d53371fd3431ff353c
3731 F20101129_AAAQDK lungu_g_Page_165thm.jpg
71ae3b1cd66e1a39ab609d763ac844c3
16c7a75575926a19720ab3c43b61ec1dee77167a
7145 F20101129_AAAQCW lungu_g_Page_148.QC.jpg
e0cfd52636b9f68259a73f259851af51
77d2824dd4cfe73313ec7734d3faa6354daf819f
528 F20101129_AAAPYE lungu_g_Page_181.txt
e70559cc4e60863967b363ed39e87d7a
35200f56709e30459c77b95e970c4ff7b06b422d
1091 F20101129_AAAPXQ lungu_g_Page_142.txt
32943cb5ca97272f0b6423f0f7a0bc00
cb73829e2561d088dbd51ebff09a602c86b8a209
58125 F20101129_AAAOTZ lungu_g_Page_076.jpg
7fc8b130af0a67f4f710122f382f7a1b
bd84164681fcd08764f51b1fddb9f8bdd76439de
1135 F20101129_AAAPAI lungu_g_Page_122.txt
26047a20c80e77ff75c6d1e394b84e15
99ccb381faa1d12b91a15dd938575796e50b54bf
54975 F20101129_AAAOVC lungu_g_Page_021.pro
06fde1b586081df77ba6dcee3a81e15d
a60c8f60a89f26013f1b3e872af305648e57a111
6088 F20101129_AAAOUO lungu_g_Page_179thm.jpg
f3ae41bb549c85be5aaa9841e59a4b67
1b27b4da2f1cc91ae858e6f6afe6bac90e728ec3
11052 F20101129_AAAQDL lungu_g_Page_167.QC.jpg
11f5e695048fb2d52b31a15ba2f779b5
3e3ff050af6cdc23353d0e4d69dd68ff451844a9
2504 F20101129_AAAQCX lungu_g_Page_148thm.jpg
64a846020fbe841b3245a39e6aa2d901
c454a9bd83efb9ef253675c15e79c5ce33cac754
2209 F20101129_AAAPYF lungu_g_Page_001thm.jpg
430ee4f86661e709bc6e903fea650693
0a0703ffe51848b7ec83d2651079be3ddeab1ce3
1703 F20101129_AAAPXR lungu_g_Page_144.txt
f2ade6a2b6f58883082f060b006c6e94
d8b9f014d07d592b559f084cbc34279f3be94052
F20101129_AAAPAJ lungu_g_Page_156.tif
f351a8f292322ab220451d8cb1f5429e
5b5877aa0f56e275e364f4bc8e4ee109d36ee883
1051975 F20101129_AAAOVD lungu_g_Page_104.jp2
07859d5b181f47cc2e9e8734efd97664
3daa213bdf68db8767d85dfeb86c7786c7ea9309
19316 F20101129_AAAOUP lungu_g_Page_171.pro
06823c4807e20986689c4cc0d2610506
3098cd6dc6ff04f6acc5a7b56e7d3a07da50cd57
11088 F20101129_AAAQDM lungu_g_Page_168.QC.jpg
1654b6726d3f1b4dc35dce86e36815b8
0494ac2cc260ec278a0b2236da904400ff6ec950
4519 F20101129_AAAQCY lungu_g_Page_149thm.jpg
1d4458fde400b86a6345f77438a5f2b1
84ba25b1c0e4e94ec2e71a0f06d805b764298b71
7184 F20101129_AAAPYG lungu_g_Page_001.QC.jpg
ffb13e2f53b2f153abd76ff5a45c0720
1afa0a6e55eda4ffed14e01f34f1fd59d5a4d510
122 F20101129_AAAPXS lungu_g_Page_145.txt
6ba7e54ec2b8e47f9f11d9addf846774
87f24238920e8e952c424040bda7befc993b0497
5033 F20101129_AAAPAK lungu_g_Page_109thm.jpg
db003a324e5c2de26321d322964c0496
8349c9c3d5c0e5fba7e205bd8befde051dedfac4
3694 F20101129_AAAOVE lungu_g_Page_171thm.jpg
4c436e7f06e21ae8610e2537b7c5a34b
8d5cc0954061f547934584b59a09bec0536cf69b
28551 F20101129_AAAOUQ lungu_g_Page_024.QC.jpg
f10964a0784d06102a7c48b5f94f6b98
8cbfad9a5b16e2734258876d7d4946696c010c88
11200 F20101129_AAAQDN lungu_g_Page_169.QC.jpg
623cc16db03a1c9b213331403877164f
81c26a5f0624baf8e754601881375093b2fdacdb
11541 F20101129_AAAQCZ lungu_g_Page_150.QC.jpg
8e8646074f321cbfa57981e92c8b8625
ab3398d8deaa37f7097d81487f0826aba267faf7
3198 F20101129_AAAPYH lungu_g_Page_002.QC.jpg
e517fbf8974ffcf41e08e763aa7b2a79
459559005612216dccba69d6ed551316e639b1ea
439812 F20101129_AAAPAL lungu_g_Page_144.jp2
a4ccd59af4999f9f34e0b82f07792768
355e599041dcda30f6ff862854a1af3612f5451f
F20101129_AAAOVF lungu_g_Page_119.tif
393563f8b7520f634a496fb36620762c
c0456e209c6b011cc299b5e576f51b7c16252fe3
4217 F20101129_AAAQDO lungu_g_Page_170thm.jpg
12a79fbe46c1d3baed8222018541835d
5cd75a92d8812544e720644541c5a52d941f450d
1347 F20101129_AAAPYI lungu_g_Page_002thm.jpg
04d7433e0574b1a840110013d9733c1b
0cfde14d011b0dcbcb3ebfd498b20043303e29d4
325 F20101129_AAAPXT lungu_g_Page_146.txt
9b1659ef5f9dee1420c8de1c5dfba099
8c608fd658f52726896c06545459948f966ef179
986337 F20101129_AAAPAM lungu_g_Page_070.jp2
80f3793b443d1aafe7ddfc75f1240c67
9b7e3e26dfd57b8a151645b6ff1be35c270f0d92
26347 F20101129_AAAOVG lungu_g_Page_053.QC.jpg
386c5504ecb53a2fcb38cac494cee51b
4944cd7400e91e9665efca65b59b5c2e506fb47f
F20101129_AAAOUR lungu_g_Page_026.tif
0c19f8b3a98271cecbc8dae4e20423ea
56f8056b5ec8ced1fbbd2a47d481e1285b53c79a
F20101129_AAAPBA lungu_g_Page_005.tif
ae21c92210eb3301e1c7a03c52c1c588
76079f7823e047a292aea3313b34080dd9228e1d
10814 F20101129_AAAQDP lungu_g_Page_171.QC.jpg
b8190e4644c1a160e2651b2f3bb5632a
5acf6c7d65443594f829cddca8808b37aac9522b
3028 F20101129_AAAPYJ lungu_g_Page_003.QC.jpg
f5eb7cdd800b558fee88c7b307d5bbd3
cd4e36c2c42e95cb0193feb31996ad7b3b0033ff
131 F20101129_AAAPXU lungu_g_Page_153.txt
c61cb3dd06aef54dfe51a3db2c725306
293d657c0e3841580e6abbe4082c146585ae1dc3
80933 F20101129_AAAPAN lungu_g_Page_025.jpg
9e534d893a09069e56691a0a15f25711
ad01e90a32a567c48f432f10c8c030fdcb23fab8
F20101129_AAAOVH lungu_g_Page_164.tif
ee3981ccd6f9f01341d116a09a1e4e04
c283eb284005869d7da8364eaa124b16d9588b47
4585 F20101129_AAAOUS lungu_g_Page_133thm.jpg
8a86325c0b280ceb76a9b4c8103904be
9fbd7a08378a6fedb17d9467da6d9c97c3432fba
875567 F20101129_AAAPBB lungu_g_Page_092.jp2
2a5ee5686a97f006d58213c48a15bea5
e8448a34cae612e715402d783182beb0988d971e
10769 F20101129_AAAQDQ lungu_g_Page_172.QC.jpg
d3a14a8ee8664bacc940e9b6804db8b2
25efe1ee18ee05edf8fc67253bf64dbde30c2554
12914 F20101129_AAAPYK lungu_g_Page_008.QC.jpg
41bd2320eb4b34a8caa5a5c4ab3fe34e
7d47742639135986592d90fb5ebcfd6f7e6c0932
576 F20101129_AAAPXV lungu_g_Page_156.txt
6aba4b11f2a3324dad883d398f2d7dbb
32ce1564343014ca4d22ce93c1c63ba9a7cc495e
F20101129_AAAPAO lungu_g_Page_144.tif
c478f677b7d7c794b8b4efac2e63d865
203838afa516f8edd97366195564fe574490c381
F20101129_AAAOVI lungu_g_Page_037.tif
307933922130f06f9959c5390dcd23d5
002164d943ee0848edc4dc2673280f1707106718
51079 F20101129_AAAOUT lungu_g_Page_134.jpg
7516b1bfac14c18b360c33abf0d24306
4d86cb432eef3a92f9be10b722f8cad8e5740956
92 F20101129_AAAPBC lungu_g_Page_003.txt
5d0a78c82d85ab851247ef02aa4b5081
b199513cf7909f1b13115bf7bbc065146a1fad58
3656 F20101129_AAAQDR lungu_g_Page_172thm.jpg
bb3c6c546d9bdf04eea434514e52770a
0afbe300c99b898db066e5f8bcf30849fb5c885a
3700 F20101129_AAAPYL lungu_g_Page_008thm.jpg
d2e34db26e52a22b78e1978d51ac87af
8eb45627b86cc209be4f3120cad779f0ea3868be
234 F20101129_AAAPXW lungu_g_Page_157.txt
34e7c97b644438462a56fe6b7cd7170e
d6a9a4b8f7ac60bac6aded4cab2a5eccb4776859
6757 F20101129_AAAPAP lungu_g_Page_022thm.jpg
1f780ffcd3937ea84f932821143592db
266dd8839f72783ff0f444c78f001d2edf774cf1
1051941 F20101129_AAAOVJ lungu_g_Page_044.jp2
174fe9f2c3df2688691e462c7be3ea72
3889f1ec8b2c1de6420c563a7f0b5a302509c2bc
19354 F20101129_AAAOUU lungu_g_Page_079.QC.jpg
156dc389c3f25f2da5f5c17785de7948
fe6c3e96e87066af062af3d2ff3b16ee85385e57
52452 F20101129_AAAPBD lungu_g_Page_108.pro
bacef3af7dbb80aa2d1ec24f738e31fe
eeed132362d19e08f41a8a752c2c272016e8a05c
3647 F20101129_AAAQDS lungu_g_Page_173thm.jpg
6164aad8cbcb3b11962deb2d4cddcd57
f41eaac164f51f81e5d6089be69c8f56e5f5242e
5987 F20101129_AAAPZA lungu_g_Page_018thm.jpg
505184eef9b5a5bef11ab209a732ec4f
b2214271488ba2e0e6161f2e2ab371ded58fc7db
21509 F20101129_AAAPYM lungu_g_Page_009.QC.jpg
062a80835588d15cfbda8082de468620
a3bc2765a38e924ee03a2db4a5c93a59a9ce5277
159 F20101129_AAAPXX lungu_g_Page_158.txt
76313670c6f1cb04790b7c744e4512bc
cf242161482a7559031687cacc0c2b9b513a0187
81362 F20101129_AAAPAQ lungu_g_Page_084.jpg
03e9d0f55af75ccb737ead3e8783e23b
b08ed5eba842b18e3a30198f347fe24f76c5e6c5
33453 F20101129_AAAOVK lungu_g_Page_123.jpg
943398bf132cbd9e0c2a4327190ae23d
7cf1a8520c8153ab630f4d43325f48ec4779f93a
4510 F20101129_AAAOUV lungu_g_Page_132thm.jpg
bcf9c8ff406f2740c9600d3a3e573299
cb9ac453b6920e83167bd3efadecda11b6bf37c2
F20101129_AAAPBE lungu_g_Page_071.tif
56f4f13eea430e7fa0fffc9689daa1c0
a2bb16ead3525980561b1dbd81084db29c01d6e7
3708 F20101129_AAAQDT lungu_g_Page_175thm.jpg
03c5931a9c99ec65128ad9b78a1594e6
cff332dae1ca581723434b7f09c6d41b6299d91d
24727 F20101129_AAAPZB lungu_g_Page_020.QC.jpg
9497e6c3402b42dfc8fd2118818c23cb
baaee9ac7f2ad72f891a3137af60c4394ce47098
5714 F20101129_AAAPYN lungu_g_Page_009thm.jpg
d1f87df719f6d55d0801afa8404f18b7
a03a40d5f94326d8f526e2ca1ce2ee954dc6f5f1
101 F20101129_AAAPXY lungu_g_Page_159.txt
3203e76824be3a0011b3c556387f5b5c
f04475a744ab93714fd55aa23e1768a4fbeb76c4
2198 F20101129_AAAPAR lungu_g_Page_038.txt
74470af8926baeeed79c400997c2d5c1
4534e9642a3f419ae0329b55f0fd33d79f253b01
2927 F20101129_AAAOVL lungu_g_Page_096thm.jpg
eafbca245c9df778ce2628ea38feba0d
533d196a6f4756cd71ba43c5cce831c605b87c78
15139 F20101129_AAAOUW lungu_g_Page_102.QC.jpg
3eba9c517ac978c26e595c047eaf1c2e
a29d14cabfae4536085019a5c9a1a36bfa9cfc1b
32228 F20101129_AAAPBF lungu_g_Page_162.jpg
721dafa2a4f544f7162357523daceb33
a02f5bb832c5499151fdba07e185aeec7674e091
21275 F20101129_AAAQDU lungu_g_Page_177.QC.jpg
d114ec069e74a3bb02df65d0c3259dad
71045b4b58f0d2c1d7cf046057f8c8b749de63b8
6062 F20101129_AAAPZC lungu_g_Page_020thm.jpg
0eec7a58438a1da86412aaf07435e400
d511f5e325c0e1f09e35ac52adffd8d8d8a2f39d
24529 F20101129_AAAPYO lungu_g_Page_010.QC.jpg
f0355c91bdd3a6c7cef270be21da6683
ce51b8d3fae64773c53ca3dac794e65f966ab12d
242 F20101129_AAAPXZ lungu_g_Page_161.txt
1149e72630f8dde87adcb87f5155e792
81abd68aaeed645fdf8446314e51f33aca409a5e
70787 F20101129_AAAPAS lungu_g_Page_179.jpg
cd762ab1f807a89db5666f6365b4c7ea
a305e73009ef3ff82c6097ec3877981c7413e4d5
119494 F20101129_AAAOVM lungu_g_Page_020.jp2
32336fd2c74cc389180389da1cdf4dbc
2bff1b31b370d05b1ab090847092492acbf094ae
F20101129_AAAOUX lungu_g_Page_100.tif
67827515897ba64ec78ae86f9daa4011
23bf07689f5922d2da64ed70d04dcc6019ed751d
43773 F20101129_AAAPBG lungu_g_Page_096.jp2
0579016ccd412175b47068c48f9f0d34
baef1158af47afac6c6726af15df9572870297c8
82492 F20101129_AAAOWA lungu_g_Page_010.jpg
17135e5d892ae4afdfe49e2ad644c0dc
090f78c6519740bcafbd84f8d030e2259677ddf1
5803 F20101129_AAAQDV lungu_g_Page_177thm.jpg
963bdc2391a1813b2e811a9349c9bb2b
a1dc1b393e6c3dadf69d2c5d5f395619ba02116b
27945 F20101129_AAAPZD lungu_g_Page_022.QC.jpg
1d7528fd5efe94947c82afe4acc85c4f
7f0afe8a1363d8f750de860bbc505bb3472ea749
6076 F20101129_AAAPYP lungu_g_Page_010thm.jpg
52adb47b4bb0d65bb5a8aaa4825a2152
94e05f578814027f43631e643a6ec7a2be884d3b
82951 F20101129_AAAPAT lungu_g_Page_042.jpg
c4bca8aa558b543e8683304f6afefb35
3d53fe0bacd6ae522edaacc2222344d6c5649b18
1051986 F20101129_AAAOVN lungu_g_Page_130.jp2
505518fd49254ad2bf38e485c992c1a7
6bd09924337e0aba56e515e9e175de9194c15e80
988 F20101129_AAAOUY lungu_g_Page_123.txt
017b607eb30ebc776302b278f45f802c
568d4f5c9cee400697f2a787cb7060957a3cb961
12665 F20101129_AAAPBH lungu_g_Page_170.QC.jpg
c7600cec3ac4766a78bd265e17552456
33d3b9b47e93bc23d5da4af831ba177e9714ca26
F20101129_AAAOWB lungu_g_Page_155.tif
6797e765d0a915ee1beaf4ee2690a931
899d2eb87eed12a652ec1d379a6fe89dedafcd74
24065 F20101129_AAAQDW lungu_g_Page_178.QC.jpg
83def91291d8b2caed4d43acb8ee8a33
80b2e75e64fda8e3f9f799fb08437c71df8f222c
26327 F20101129_AAAPZE lungu_g_Page_023.QC.jpg
7ae43c1a28eb7795972db0208b699b37
4dda8c58158db75282afcd866fbfac3c10d6085f
F20101129_AAAPYQ lungu_g_Page_011thm.jpg
6ccf0122623aeb8a2f92e3ff462ec9ce
4379b7cbce8a2578cbe2f24abaccad76ae9e44e9
2892 F20101129_AAAPAU lungu_g_Page_157.pro
bb3539d0e549ee6ea9e231225232e1e2
f46bf7e460a986bb1d90ede847f6ebc2e612d157
1051948 F20101129_AAAOVO lungu_g_Page_083.jp2
a358bebc8d5e0aacd160d5cec91d0dd6
7deb67b9797d222cada53dfb57eb5d80a4d2c71c
206345 F20101129_AAAOUZ lungu_g_Page_148.jp2
3e02fe8319718d0c894aaf36ff6982e1
fbbde9f735d811af8b4ae2122da792e0b52ad703
21331 F20101129_AAAPBI lungu_g_Page_005.jpg
c02044ffe0dd3b6cea38481deb4f320a
8391f9873d9fecc54983419375e5c757ef0258fa
51696 F20101129_AAAOWC lungu_g_Page_006.pro
95aeeaea0d1256c090d4c5b7b104b59a
146a9603d1f989fc04f72311e6a841280980a33c
7845 F20101129_AAAQDX lungu_g_Page_181.QC.jpg
a3391f9b89c6911586c8fc2a16f7aa6c
f60afcada381b2d752d1e80eaddb507424c4f262
6635 F20101129_AAAPZF lungu_g_Page_023thm.jpg
5d835fa6b3422c1ba1054bba9589a07f
42128ee202be17557a0eb9225ef7bd5fdab836e5
25897 F20101129_AAAPYR lungu_g_Page_012.QC.jpg
c8b580068e21024540afc3b18b34885d
b91d803a3556a0186653c31911212f770360586d
777 F20101129_AAAPAV lungu_g_Page_003.pro
ab81419732b7e86dd408a08deb8a2c30
9745f42bcb74f42998df75fa195fe11c84e7cbbd
23600 F20101129_AAAOVP lungu_g_Page_061.QC.jpg
18434f8d1a03a01c410bb665a4a6f8aa
95b8f8d9e3981234522b13c5dce6a10a0a2f4822
F20101129_AAAPBJ lungu_g_Page_010.tif
2537d8494e4dbf61305a6eac9101b76d
d629c06638d5492612661153db859caba42e25fb
35900 F20101129_AAAOWD lungu_g_Page_124.jp2
3d94565cc6f06b20592156048f4da3bb
23a383a150fce5e1e3239266a6f49ec0fc0cd64d
2434 F20101129_AAAQDY lungu_g_Page_181thm.jpg
d7b46bff66afc745bc240c5e081c8eac
6991636bf2a089aefeb4ed0fd17ca88060089c39
25212 F20101129_AAAPZG lungu_g_Page_025.QC.jpg
b61353f0204340b735cb1550290bffd7
cd00c4ce6d711194c1bc41238f7ffb6d0f88513c
2729 F20101129_AAAPYS lungu_g_Page_013thm.jpg
09b1b04276b286daebfad36b9893faf4
42be5c9a2625257725f021709e9cecaa9e29b789
F20101129_AAAPAW lungu_g_Page_169.tif
482a472380d8598d4487c4cfe18f8577
bd37c51709ad530fdda7d1f28e18905f24989b9f
14439 F20101129_AAAOVQ lungu_g_Page_048.pro
d384282171bc6f17979ca1c50a247a54
c4eceffbedf8e3275dde9c1b014d2e979c09a1c2
17656 F20101129_AAAPBK lungu_g_Page_175.pro
5c566f13b399d79e996a68bf78c935c0
b8d008c033d6a8a843f52dfd64de4eab960116c2
24019 F20101129_AAAOWE lungu_g_Page_181.jpg
cfeee63c5d17e1e340eec31e0cd534d0
a3b32a879b708a1061df8c193afa2fa6c4dd9223
207465 F20101129_AAAQDZ UFE0021188_00001.mets FULL
f19a9ac8034f2916264eee55c4da90bf
09b97a184a5acd85f2ca53b7dee3d4a8ef05fe8b
6469 F20101129_AAAPZH lungu_g_Page_025thm.jpg
f7f6c8df1f2662be0d24b77b8fb1f7d8
5bc8901d5a8bfb44d2bfa71bf9174b8d42cad959
18612 F20101129_AAAPYT lungu_g_Page_014.QC.jpg
3af0260992d59d9e62662b5b784b2dd4
4b74cf8b3ec09d05481a6e5ee3ff14f90a9a077a
23804 F20101129_AAAPAX lungu_g_Page_060.QC.jpg
aac0ea0a87932720de88016d7307fa20
58bee11e6f2455bc3d11609842644101785ea367
F20101129_AAAOVR lungu_g_Page_173.tif
687883a5c761dbb05f57710ba4fbc2b5
edbea3f49f27cc4a3a29a74703e0abff67ea7a88
9035 F20101129_AAAPBL lungu_g_Page_124.QC.jpg
a50b041061d534d1679f23699f61a87e
7b6644906bcb82445646f87d1459e313ce0a01ef
F20101129_AAAOWF lungu_g_Page_047.tif
b54ad31fceef11e35a7fde6ef2e705f1
8f0bcd6877579f359826d35d577205ba767c8b2e
6270 F20101129_AAAPZI lungu_g_Page_026thm.jpg
9ef006b5385f0a79b63a4f0f298eb297
b1f7ef68f75a88202da482ec90e763211920bfdb
2017 F20101129_AAAPAY lungu_g_Page_177.txt
468f412283ec2c0abe48b317916a1971
2acd9735c25c3ea9ff8b3457beae19015eded247
3825 F20101129_AAAPCA lungu_g_Page_154thm.jpg
e32823fcfc8d15049c21d3a46885506e
0d9ec8cdb99fb209e790d57d217fa01b4018ff61
9963 F20101129_AAAPBM lungu_g_Page_121.QC.jpg
e64bd2168b49139c980d2e8ea1c9298a
099c517e88833aabb75924cc639a690aaf50bec3
2084 F20101129_AAAOWG lungu_g_Page_150.pro
cebcf4b2b0538a1e6500943c1a31966d
a70a5996921af6a11f27bda802d3c36acbe2697a
25937 F20101129_AAAPZJ lungu_g_Page_028.QC.jpg
1f4b0190272e2e615beeed10cc4e7e50
ba5fe28f8df70b5b2bdeabb88a6375d9e488e4dc
22516 F20101129_AAAPYU lungu_g_Page_015.QC.jpg
3f26ab14ec61012d1698b68cd95a32af
255eeabb9cf593a40ee0fe7b59e2a794c3be119b
1003161 F20101129_AAAOVS lungu_g_Page_117.jp2
e1edd23cfafe728239cfc10c0a6a4377
4fd53f13472368d0482c441490a525e3a09d4f3f
F20101129_AAAPCB lungu_g_Page_012.tif
92647f9aed440296c300a6ca9ecc4b47
3be9955a2eb69ecd5ad7ad2b54f475e1595bce48
1051984 F20101129_AAAPBN lungu_g_Page_100.jp2
3017b2baf7b078fc4833337f37acb916
c7699d8a79c8f57db905496ed52a23bb125e4d08
32694 F20101129_AAAOWH lungu_g_Page_172.jpg
775e4113eb47f94cd54d89af488bdb0e
dad442bdcf4c93f2ac7946f58af085a209e299f2
91823 F20101129_AAAPAZ lungu_g_Page_011.jpg
3ae60843c875af3f2fc31341fc743cd2
c6ddb64c68359f62a5a71a8bd6b84ef03caa45ca
6354 F20101129_AAAPZK lungu_g_Page_028thm.jpg
151b1ab112cc686592c3f54d2d4ab49b
9b734cfc001b93a3f8ffb8b5248b534c21c9c7f0
5879 F20101129_AAAPYV lungu_g_Page_015thm.jpg
802309ada1a38c96a0c14763c1948c3d
cd08d0f813d1561f329ecfe8ad31f237c322760b
12986 F20101129_AAAOVT lungu_g_Page_049.pro
63b797528724e23ef0b87802cd51bac8
b6ec42e640e83b572a3bb4ad00c3451c09184b28
5818 F20101129_AAAPCC lungu_g_Page_021thm.jpg
7a135b24d6ad8de5db8790f448c26dc3
43e5cc9a2d506bc80348d71da13322f61c2e329d
2271 F20101129_AAAPBO lungu_g_Page_051.txt
b00df6b1d2297f8917d491cb61503be3
d15c837bb15e23e7899b908f6f9ae28992ae64c1
905343 F20101129_AAAOWI lungu_g_Page_107.jp2
a82e103495d26119e1b1a0ef0c393fd9
d48e31f32416c00a64ab32c25b4f4053f26ac24f
24098 F20101129_AAAPZL lungu_g_Page_029.QC.jpg
1ba6dc6fa8c47f19a8a50b907f3b07f4
3b879eee15f10af30e9b06b0e40999456a89d7ae
24853 F20101129_AAAPYW lungu_g_Page_016.QC.jpg
af98db1db6bfdb1bc47fa5cf5e962b35
3ecef9205103528a1ea32f48315f3ec42fccec99
5081 F20101129_AAAOVU lungu_g_Page_124.pro
159ecf64aecec367fd4a85515ec0ee18
9e837ef240cd816ff34f21b2224f1b73f4f55c9e
22810 F20101129_AAAPCD lungu_g_Page_095.pro
7f6e451cf1a5adda70d26bf3c9d0b75a
65f770e4a136cfe713c4ac97db09da66ecc2f942
50078 F20101129_AAAPBP lungu_g_Page_098.pro
7de8d161425f4884ca901d17628cbb41
414b4b50493e34efd632ef372f275f076eb85a8a
22088 F20101129_AAAOWJ lungu_g_Page_050.jpg
7bd16c2113e9260d184712992a6bbc1a
36d72b35a7fbddf0a29a06b2797e88272a18bb23
6333 F20101129_AAAPZM lungu_g_Page_029thm.jpg
f24ef18b11348567936efe14943e653f
6300244e17176a2de98d30de0e5907d96e80765a
6362 F20101129_AAAPYX lungu_g_Page_016thm.jpg
18ce8a0541a0d69ca7790fb55662abb2
646845ef96ec3c64e12b0b977466b0b14ae5ed61
32579 F20101129_AAAOVV lungu_g_Page_144.jpg
c4b1d8342b0c3f477ac5f6a2e5955fe3
a3098424e891c992c324bfde6d5d10955a143197
6317 F20101129_AAAPCE lungu_g_Page_178thm.jpg
4fda7779209e2b2b4bbdd0114a0819f9
3963588d589e54485a7fcf340f3522aab8c8ed3b
82636 F20101129_AAAPBQ lungu_g_Page_053.jpg
948eb4ccc98decc111d45db1e0a172d4
29eacefbd3b64ca17948fbfab7cd2e58d854d8c1
F20101129_AAAOWK lungu_g_Page_171.tif
d0f8a39f5b06d901ecd6c98eb5541ebf
8ff2673234f51fe80df8d6eb28340d0df87163c2
6723 F20101129_AAAPZN lungu_g_Page_030thm.jpg
692567e8bcc07404aa860cafedf8176b
cdf60c41e0e063120b9a1723e8f5a989f289b664
6186 F20101129_AAAPYY lungu_g_Page_017thm.jpg
57aa92fc818531d5e0df1b7363d8b43d
896ad83525a62d9bf0f7b840a34d985322f81767
56965 F20101129_AAAOVW lungu_g_Page_120.jp2
de400b5c4812e972f691b18ddbbb51ca
97e646e6bc0321ed11c4f2357dac74a5e765e1f0
10117 F20101129_AAAPCF lungu_g_Page_087.QC.jpg
9328a0d4674edcafcb27d73ea2615d32
b81e3ae688a51d31fa21482c62933b3cdc411584
5572 F20101129_AAAPBR lungu_g_Page_074thm.jpg
8845a1514e4a583ee7328d933f0667ad
188865a93ca20b4ef0aaa19f84134abe8ca34cc9
F20101129_AAAOWL lungu_g_Page_168.tif
8c9ec55b5e0075f08a0370475d3c1a34
e9b3d9716ae7ca9a1ac0a3969efd7e66fa583f32
26848 F20101129_AAAPZO lungu_g_Page_031.QC.jpg
f1a54038a61069bf377fc87a3c4930cf
6e1ef7f40f2d450396e51f78548429a93f2b9295
24557 F20101129_AAAPYZ lungu_g_Page_018.QC.jpg
0bfbb58b8749926fb3047133595f3bba
4275bb1c9f8e20e46af7f9419c119d474dfc643a
93073 F20101129_AAAOVX lungu_g_Page_012.jpg
9dbc702f8df1e4beca8b41bf37083d89
3b7a6cef9e638b4ea33d165b634db21fbbff0a95
6849 F20101129_AAAPCG lungu_g_Page_040thm.jpg
e339c32c10f43d7ce21fb57a3d7ab5f8
26ed6fcbcd6fdf46c2477e6937c11455614f707e
5857 F20101129_AAAOXA lungu_g_Page_081thm.jpg
0b9daf93dba2341f50a5e79f8912392b
7daa2dadd36a87795fe7a54790211e9c0a833a8d
F20101129_AAAPBS lungu_g_Page_153.tif
e6e450f1d1376e5014e5130c2e7f80d6
4daff82bbbba577253e2cfaa1cc64a0dadc02516
6404 F20101129_AAAOWM lungu_g_Page_051thm.jpg
d5b33f1ed4eda83f33941490822932a9
5ec882015bddd4a5120bc11cfc902b7eecb4f2e9
6664 F20101129_AAAPZP lungu_g_Page_031thm.jpg
677518ccf414f259038750b7eb2c8d83
9932abbf67c74627a4a351b908d2e6c32ed5ec7a
33894 F20101129_AAAOVY lungu_g_Page_126.jp2
340a600136317f158615dda847ec912f
b1e058f0b6c178595ebbfb5432c6ae74b91442d4
48298 F20101129_AAAPCH lungu_g_Page_034.jpg
880056e9f94dc7252313647e54dc4853
e6c0aa1117892f102247029bda18036edaaded42
35407 F20101129_AAAOXB lungu_g_Page_160.jp2
4a3e56c838f8c02c8e92cb338cb390a0
603d071caca9fbaadd551a9b74f652d1209900d9
13878 F20101129_AAAPBT lungu_g_Page_034.QC.jpg
82534ec8b039ecdffede3fb97f9bec50
5e452a33b32fc7e27cf32427374d298532408d7b
84382 F20101129_AAAOWN lungu_g_Page_045.jpg
7c8f6a5502e21f561936cae18330c018
c5609b798cb3a5ffd68681f0aee9735bfc2839f0
22362 F20101129_AAAPZQ lungu_g_Page_033.QC.jpg
7bda39ca79570582239f4329b65f918d
84be60128bacb48b6aa97202920b495a85a995c5
1188 F20101129_AAAOVZ lungu_g_Page_168.txt
1be9e28d9b849c0051a7fc83f7517d99
34997ecf091cdef1db686d953f25794bff4688e5
39122 F20101129_AAAPCI lungu_g_Page_035.jpg
44b8bf6d8eb0b8344ed67d64aa66bc42
ff3f55143e33135187b1e3d8457f6abfe17ba762
26157 F20101129_AAAOXC lungu_g_Page_039.QC.jpg
f2f32868c55c657151b157e1421de69b
c1da7d1234b65eb5c9603d63fffe55dca93d2bb1
F20101129_AAAPBU lungu_g_Page_158.tif
015a5f9c6542362ed5b9066a43acafcb
82d6142b840249393135bb6a14dbd963e467f806
F20101129_AAAOWO lungu_g_Page_116.jp2
6f44ed9117b461c6f5e3650b50b9c84a
88008120d234a9a0b73126544a24dccf1d4f9e43
4463 F20101129_AAAPZR lungu_g_Page_034thm.jpg
b9d793507977c948459952592d89588b
cde3885d01834965eaf10b2680c9c3f7ca53d521
1036376 F20101129_AAAPCJ lungu_g_Page_081.jp2
c2d57fd99684e89fecf4fb00a8852a3d
99754b847fddeea51b9efc4a23db13a1155c468b
48846 F20101129_AAAOXD lungu_g_Page_133.jpg
cb89accc6de2db2d013a99b9f7b9e12b
912d4b2d9c78b594f7002a0f0913ca14efb16784
757 F20101129_AAAPBV lungu_g_Page_135.txt
537be864f6f5221aacd0e6a9b91f20ba
5a176a1240c8be9157e25368cc0c276116574600
1051979 F20101129_AAAOWP lungu_g_Page_137.jp2
516eed313e9182c476fda0ea9bc7b81d
65dedc19bd7999fab96eb6ce007d19e4d9ca1f4e
11609 F20101129_AAAPZS lungu_g_Page_035.QC.jpg
bce83e21cc56f331eac797bd644f6a11
93900faf00ba587c5e82ceacd7f76f7024412702
1757 F20101129_AAAPCK lungu_g_Page_091.txt
38149003a5b2d6ad57243c20d1cc62ba
006fa53e686fd30ea94ed12b7863e5d7cba1e9a8
2301 F20101129_AAAOXE lungu_g_Page_052.txt
a42172214b0f663ac8d0d4bb2c1dbef0
f12c4c6017b939e6a0b721b0c39ad45c766e7b34
1051980 F20101129_AAAPBW lungu_g_Page_045.jp2
b415c0cf7053967f66d586ab399496e2
7a3cbf335a08fccf180319c3de9993d47ee13353
F20101129_AAAOWQ lungu_g_Page_048.tif
cef1c7dfb25a43bbc338024497e2c946
6f1ca2901b5a8b3aed9224d53d9f4ff28424b501
3717 F20101129_AAAPZT lungu_g_Page_035thm.jpg
4d5de8c89486b184c43ee55c1ba0bf9d
4ce55cc3bb72f091075b59b379d8244f8f295427
1051977 F20101129_AAAPCL lungu_g_Page_007.jp2
c28439884004c383eb2b5be8007df97e
fac6de23ec859e60e05be3ae3f45feb93f6e9c31
1197 F20101129_AAAOXF lungu_g_Page_103.txt
05d9bcb8fbe108e43f289eec1797f507
68c9fe961513cd6bb85625791b5afded41b2da24
F20101129_AAAPBX lungu_g_Page_038.tif
12da9cdcd566a4e5313b350d0cf3126e
ed5ac1eca4a88284b11d4d3eba2d095cc6e225cb
F20101129_AAAOWR lungu_g_Page_068.tif
39993623374d6f99cde42478125081c9
cfdab8d126a99fec78e13704cc6b97793641b3be
3503 F20101129_AAAPZU lungu_g_Page_036thm.jpg
1e03acef3bee5a93b65a0ad725cf27c2
376155ebefa00881701f9d939c35aae30c67fa83
749635 F20101129_AAAPCM lungu_g_Page_102.jp2
dcfafcd78dc2fb18f833279590890f5f
5be619f704e08d88c1dcb76a0452a5a82e33d973
29679 F20101129_AAAOXG lungu_g_Page_086.jp2
a1987cd582589623430830520798da16
13d2341c0624a63851dae44594fa980cece93cf8
11544 F20101129_AAAPBY lungu_g_Page_151.QC.jpg
e3bc974d9f0e5a52fbf1a98fe368ff28
afef20b89cdebb977ecef5538be1070f8ab5f58e
3298 F20101129_AAAOWS lungu_g_Page_122thm.jpg
a691d4a770c117534e0716904f4933c5
83d6fa08942fc66dbffaaa67d55482fcb387914f
9831 F20101129_AAAPDA lungu_g_Page_122.QC.jpg
c5914c28ab9b987dc308e671017c2444
b5d8bef453d8f839a5d0efb4ec2217319f23f78c
F20101129_AAAPCN lungu_g_Page_103.tif
ac11ea6b8ce553a49fd383780db3467a
a3c55a6168cc0fa0fb6fd525268845b4b604d673
24675 F20101129_AAAOXH lungu_g_Page_100.QC.jpg
6d04ab4b8d5400b232b5e865724b336c
90970cc6964a2817bdc85302007cfa51ec59f80b
59698 F20101129_AAAPBZ lungu_g_Page_022.pro
fab85f6ddad89af9fbb933cf73d7eff6
213819fd6fe7d1d2c95926604ee9e056dc50dd14
49991 F20101129_AAAPDB lungu_g_Page_177.pro
58270e43c3f6a04d90915f70568b3aec
e15fb0d52a95e03b6da12b48988484911e155c57
3183 F20101129_AAAPZV lungu_g_Page_037thm.jpg
7fdf1f0ccb140597dd882b86ac128075
200d168a2fe5f3eb2241ef1bc73654bb7739cdcd
F20101129_AAAPCO lungu_g_Page_077.tif
bea02c079adb186eb990f923824be4d6
d798f541557decb76cfec5ce97829e5c6c040884
6276 F20101129_AAAOXI lungu_g_Page_060thm.jpg
41f126eebda758c3029799bf606b1657
9e8aa98112a74a98c11c45278d1a6daf6d0ec498
78155 F20101129_AAAOWT lungu_g_Page_041.jpg
bbea872bdc73e717a4ba0ff2ce9df101
db538d8331e1b02911e7549228621f35b2e1ab5a
3722 F20101129_AAAPDC lungu_g_Page_095thm.jpg
fce4d7620eac7abf207e92fd13a839ce
b70062464487dbcb9973ac5c76c17fc8157bfb1a
25783 F20101129_AAAPZW lungu_g_Page_038.QC.jpg
856c86513dc279866ba9fd24a17b1d8d
cd510d80072a5a8791bb8927e284f3ca59db81d5
84614 F20101129_AAAPCP lungu_g_Page_040.jpg
0a7dde96a8674f78fac45102260ed5b3
f1cc27cd90da604c190a5350187fdcd46e65078c
16723 F20101129_AAAOXJ lungu_g_Page_163.pro
07a366acd8bec220c71ec4150b1bcb81
ad283bd4a82324dc0d455f1f5df1006468ab4f5d
5515 F20101129_AAAOWU lungu_g_Page_063thm.jpg
2066aef51a0773ed1823e50a07923a41
5161a7a8e42322e093a2c0942fe20fe4bd795672
60365 F20101129_AAAPDD lungu_g_Page_116.pro
a09c7c53b5fed1109590f6a4fd795795
f51b5b9679d1f942ec1248b52488693bc67c7efd
6619 F20101129_AAAPZX lungu_g_Page_039thm.jpg
6e60b02af9aec332e017eaabb0d845e3
c908c99f27b23090468285aefa0d3b3bcacf1d63
2388 F20101129_AAAPCQ lungu_g_Page_024.txt
32925f34f320bf36bc2cb7d67da4d78e
255d1c84f1b6f6570a38930daf4425b6e9ccea18
25632 F20101129_AAAOXK lungu_g_Page_099.QC.jpg
a69459cd9004064543d5c5c8a50dded0
9ca05727c1a39842f88c6e7c71f1861101d1d15a
45294 F20101129_AAAOWV lungu_g_Page_008.jpg
e02c8ecbfb7030941fa15cdb4f6d3c94
3dfd194c511b897562164872a88f885d5c1ae206
175 F20101129_AAAPDE lungu_g_Page_148.txt
789a69ded0a569230c9cad8f3ca47651
7ae8f6ad3a0a4480ec3a25096567c62ac5783712
26178 F20101129_AAAPZY lungu_g_Page_040.QC.jpg
c5ae1df46928d326d54cac047c6ff615
6cf7b540203001ee9d2819365ec432293aedf1d8
56777 F20101129_AAAPCR lungu_g_Page_020.pro
8822e289a6711c78e779b34357d8f12a
626d27e33bf32e6252e0a7d47329de5526847076
825 F20101129_AAAOXL lungu_g_Page_090.txt
c017fe1d44ca88cf86c641b2fabd3ecb
27eaa592e861072e497c1d37719201a3d53a43c0
604617 F20101129_AAAOWW lungu_g_Page_143.jp2
18719c49440171274262ab8dc3a0019e
74fd02007e3c8ffa9df2c7b773aa43381c5c39e2
55621 F20101129_AAAPDF lungu_g_Page_030.pro
92fd46fc73d00937d28c33046f3b457f
0a4e8e1c97749c71aafef25dd63acd1683f9b7fc
6756 F20101129_AAAPZZ lungu_g_Page_042thm.jpg
b157f842b9c36b21827d54da2c6dc004
c232c3b108e54af07e0eb880e1ec60784945800a
486563 F20101129_AAAOYA lungu_g_Page_146.jp2
dccb808e7761dc23bf3ad4d3c7dd21c8
3dc7fe179c47e9c53c238127a25454ff9f6e2549
19046 F20101129_AAAPCS lungu_g_Page_121.pro
c4f6f548213f3be906c0af43f1d2ea6b
91918e0ec8bd27e075dae6a7ae9dd0684379ae07
6377 F20101129_AAAOXM lungu_g_Page_106thm.jpg
15156cb471d64d08984731db3b6f5971
4125a44f3b1b54dad3ae2c7e383bf72c6f9f3a91
2395 F20101129_AAAOWX lungu_g_Page_113.txt
2bdc2503df19f3eb3183c4cd4d98e6b3
c4a4a4ab2b82477b7cceeeec350fbd0cc09b8823
51933 F20101129_AAAPDG lungu_g_Page_097.pro
e72357963c566ab2d99d0365b40c8b79
8c8d7848ba23d6dadc890788ebcdddedbe39a4e7
F20101129_AAAOYB lungu_g_Page_160.tif
50a6f093743031bc1e533aa55ecd3624
803d1666f3a2af135e3c5ec84dc0768974d7d621
2137 F20101129_AAAPCT lungu_g_Page_114.txt
bf9f6931856e612cd4810c8f2018cb27
3ba6b48c9d491067167064a7a8c4e1a83b65359a
10748 F20101129_AAAOXN lungu_g_Page_173.QC.jpg
44831381ef2d15e91cdb1ff19eb51d1e
9dde6da0d068ed4cf93c6ef05a1f27bba6d95012
2208 F20101129_AAAOWY lungu_g_Page_021.txt
a4107b079e3480913a81a51b59d4d1cd
06c8729cbe559c00cb3554d16b8e29da4d6a354f
1051968 F20101129_AAAPDH lungu_g_Page_084.jp2
c4b3a8df3f1541eabeb475a30b60b41d
2aaac504060bf54dcc0cce13d4c5f23b5c787621
26740 F20101129_AAAOYC lungu_g_Page_011.QC.jpg
aef92a449c9bfd2703167655debe8743
9f90562ebb1ba969d5792d3c3437b4902cf6f75f
53713 F20101129_AAAPCU lungu_g_Page_039.pro
aa4014c55c9d43e3609ca061110c4da6
37118eef15413b5e5702866c080b3092f1e53706
61774 F20101129_AAAOXO lungu_g_Page_112.jpg
a3606f92db4469e2804882e391f21bb7
4a23e6032746005570fedc1790d24503f10ee0ea
476 F20101129_AAAOWZ lungu_g_Page_143.txt
42bd41d4a82b3a23d23b34282fb65c8b
cfc5254a5302e43c94b07767a9d404a6f6f3c77e
44622 F20101129_AAAPDI lungu_g_Page_105.pro
f1afa1aaec4e3462644885036ce1f8a1
d27f3200b23f86aa4a2c2b440412c3c17834ccc9
22666 F20101129_AAAOYD lungu_g_Page_027.QC.jpg
512ad4d593e7c6c0b71ff9dc79f8e147
ea51487ee63b1d8d939fc07c83ee9dfca4772356
32626 F20101129_AAAPCV lungu_g_Page_134.pro
ee74a8c8a566ba161117ddf85759f797
9bee66939c11d87dcafd6fdfee15698bfb9db8e6
15346 F20101129_AAAOXP lungu_g_Page_035.pro
61bb138bb24042c75cfd6bfc7d380e51
d98726027cb41b51484448e08e5219fef222c9f6
51538 F20101129_AAAPDJ lungu_g_Page_102.jpg
652d96cd8678c0c623d0a4ae4cde07c8
72b297cb9d560fbe283c70fa39c80c8c9c50bf3f
75344 F20101129_AAAOYE lungu_g_Page_060.jpg
1de91c245bbbf52986bf75617e16e5bb
f188ca623eb73fedd8538b48f6b0de89171c37ba
F20101129_AAAPCW lungu_g_Page_170.tif
b120003fd246623189b2c1e90dac2354
56535b168405136b35cc857e1cb4f004b0be09d0
60491 F20101129_AAAOXQ lungu_g_Page_043.pro
4d2e8500749bd6d0c76784f0eedcfa81
f759a2c4f46584f1324eaaa657d8f9639d030ce7
35590 F20101129_AAAPDK lungu_g_Page_162.jp2
497e96f692f099d28fb846173ea5431b
6241516c05f5f6af971b19fae2c46b5c8e1abacb
F20101129_AAAOYF lungu_g_Page_009.tif
ce071f86c3aaf03cfdd5f6e1944dc833
941e424a8c1a7769631087d362ea2a2367c5db5d
642 F20101129_AAAPCX lungu_g_Page_172.txt
d271c05db795e127dc786c7d12bf9ebf
7b0958b2b95e764068f86065121baeee94c7c319
63272 F20101129_AAAOXR lungu_g_Page_092.jpg
bd9d115fa3c38f85b7327e1f5ca174af
96bbdb02469e9fd68363cae1692a6642138a4f21
2382 F20101129_AAAPDL lungu_g_Page_133.txt
106d66bdb59cb6235803428678f9a33b
80710674725d0581e73e93cd0f70cf5d023cd7e5
23243 F20101129_AAAOYG lungu_g_Page_147.jpg
e00de9ef37df9d9550fc67f1b6b9c101
4638b9cfae9cf130b297cf6f70b7a9d9bb77564d
18250 F20101129_AAAPCY lungu_g_Page_075.QC.jpg
a0ae17eefad07f114857fea1a0536c92
2c03cb3205f6b5700efa54213365ef74f2a52ce1
F20101129_AAAOXS lungu_g_Page_166.tif
a27eed8792cd185ab9bfd4231f4f9e9b
f4a6ec57dbee74f7510ab1bb830579dc4fd157a5
21836 F20101129_AAAPEA lungu_g_Page_129.QC.jpg
6e42fb3486dbb715d34cc95ee552a84c
2d3c141bcc754351c6eaf6d67607a7090b15be2a
53115 F20101129_AAAPDM lungu_g_Page_058.pro
2b2746e969faaf7e73b29e403678f50d
c9987feaef53b92903f33a2496ec7a3a47161ad9
7095 F20101129_AAAOYH lungu_g_Page_005.QC.jpg
c359393c16bdc72b065ed732522d8cd3
0214e9859542e737105e8a5bb72ddb80dc5bd775
F20101129_AAAPCZ lungu_g_Page_105.tif
6ebb3dcdda7ce24b1398b9a32414c4ff
feeaf6f9091c8043bd8a94014c190c4f6761ffec
F20101129_AAAOXT lungu_g_Page_073.tif
49b75e45c71dab867440b2f59180e3f0
0697b53cb004e213d0c24b709dbde09d42f2f4f3
2357 F20101129_AAAPEB lungu_g_Page_022.txt
fb6d047c83377cf1510edd39509e80ff
f39eb6bb04aefb7683d5e7a140b21eb0933c1e5d
6643 F20101129_AAAPDN lungu_g_Page_044thm.jpg
5b2b61a049f0d7755e748b3b01301b0b
bd41b0d29ab941fb863b085fbb0e2c335d6ed2b0
2206 F20101129_AAAOYI lungu_g_Page_153.pro
f53fcd36001a54c9d021b75ef082af0c
348e14fe795066a496b1fa5df8f7218a2f3fc37e
11018 F20101129_AAAPEC lungu_g_Page_005.pro
c65a2918c0494bd4922e899c809ee0d6
c41c12fb902cc6a6cfe34ca119cb99f1ee98283f
17012 F20101129_AAAPDO lungu_g_Page_119.QC.jpg
d8d5d5b42596bba24c97b78476a7d794
1c4cccd5d217b072286215b76b3c4d8ccc9e6e6e
18319 F20101129_AAAOYJ lungu_g_Page_076.QC.jpg
f0638a2dbc8f7e1548ac2d34846e0b65
295d17faa5430acff8fcdcddfe29c11a8ac0ea74
19678 F20101129_AAAOXU lungu_g_Page_107.QC.jpg
f1d8afef9e0b6df4b2e7730fee1209dd
c5a5d7fb8518df6950aab801b49a48e9ada9f83a
2256 F20101129_AAAPED lungu_g_Page_018.txt
269676a1bc433b13db0ac59dbdcc16fe
c26d340274e7c8eeef26b8617ec2d7799f9ae2be
2056 F20101129_AAAPDP lungu_g_Page_090thm.jpg
bc6ad6f4bcb90b36c7e23de9eace928e
14b417e968ff0bf5041e93292def1d459539d47c
1750 F20101129_AAAOYK lungu_g_Page_125.txt
482977c5595d9bd5f85b775ae0a9fd40
886631a8fc80527f7d3fda43ac7ca910313412e8
1051930 F20101129_AAAOXV lungu_g_Page_032.jp2
68b1a93da0091765b217d1a21e7b8f70
69293c060cd0fc5f969746f5962d617603d287e0
78527 F20101129_AAAPEE lungu_g_Page_108.jpg
2938527e9a67052b9ebc1bc6f383e56d
b51edab349634d67e960cb211572b24904324cc8
15650 F20101129_AAAPDQ lungu_g_Page_134.QC.jpg
9436beea1f7b7077a09ca25e12a0ec3b
df579cebe9222fe9ab2f07bc1e654751d8e68165
19242 F20101129_AAAOYL lungu_g_Page_170.pro
2294a5cfb0108b20072c402c33fbd798
0e871f545c060b6711f9be58a5c37d4c706d9830
9357 F20101129_AAAOXW lungu_g_Page_050.pro
b320d892330497f4c4db81019b412c3b
96ac78ed3543afc0eb584c0166d77120c4301e58
14402 F20101129_AAAPEF lungu_g_Page_132.QC.jpg
22e8146c4d14a7ed7591487e4aabea95
83755c2d6acef15839be47d0cfa8406807834ba8
56673 F20101129_AAAPDR lungu_g_Page_019.pro
789b747da7e46bc367bb4a573df2c58f
d839ab79e27f02f99bb578d1da447fc247c697ec
F20101129_AAAOYM lungu_g_Page_090.tif
67f46e7959d336b3b6c431baf8018cce
aebd5e4e24ee8b195c8ed89ed6976fe687dfde99
32961 F20101129_AAAOXX lungu_g_Page_165.jpg
7f2cd1f266b67d77731c0476b35a41e7
6f61ebb7b2a7c46302f53ffa2d4d779a3ba92b61
F20101129_AAAPEG lungu_g_Page_106.jp2
1fcd3ffc2595c2dd01bd80e875b45f9b
e650b471a2c5c623d156c13f4cabfd932573983a
6396 F20101129_AAAOZA lungu_g_Page_078thm.jpg
2cebe46d8118149112e0c33ac405a7af
1c13d085812df246eceb0059cbbd2837cb907ff7
22898 F20101129_AAAPDS lungu_g_Page_055.QC.jpg
2f77006973c831dba6407635a71dac4e
49a245546f0bf682d19c0a2d8522dfe47313f9f6
43103 F20101129_AAAOYN lungu_g_Page_142.jpg
4e861297495d8571a2471f65864ccd02
013470f543293033f24994874eafc47693e2b6c0
6077 F20101129_AAAOXY lungu_g_Page_128thm.jpg
ec0f6906e3aa54f36132a2cfedb0780e
6d7b0fb315a66f874b4eddd14124501c09e41366
1051982 F20101129_AAAPEH lungu_g_Page_136.jp2
419b7729c04e982e793d19ebf2457b87
090036ceb31d39d6c40726c7cadc75ac0d15403d
1051952 F20101129_AAAOZB lungu_g_Page_069.jp2
18ee794a0ecb62d6bf01b24187a13747
eaaf5dc1e757c2fb79b352b64e72fc9684a4ebb9
1051966 F20101129_AAAPDT lungu_g_Page_025.jp2
849eeeaf89149410a1778dd94ce63379
b40ca3871606bea608590672b0d0d06c3e593b50
27193 F20101129_AAAOYO lungu_g_Page_093.QC.jpg
2071fa675e1da15d65c1192d23601e5b
f81f4ce326631987a0177b4aec96d6575411d9d8
68530 F20101129_AAAOXZ lungu_g_Page_070.jpg
12a098ca404f065dba3d2de8532352e8
c942e2e82dd9252dbab685c5e220bc9ce8d782ab
2231 F20101129_AAAPEI lungu_g_Page_128.txt
7dd82a2895448603599843e522b5622f
4da425a5768a9be72f6e9d76c4f4f031fde8ff86
1051942 F20101129_AAAOZC lungu_g_Page_118.jp2
9125632830d134850bdc4449d1862429
d1b86fa5ba2c05c81f41fee98deec9498efa8f99
F20101129_AAAPDU lungu_g_Page_055.tif
ac2ef79496b7fdb30a6d6daefbd406ef
0f8bc2336abf7862aa39aa01ef5d4f6d7de09519
3763 F20101129_AAAOYP lungu_g_Page_168thm.jpg
f07bbe0378cc668515f7ca291a01cbff
4119f18a2208e7d86cb4aa250eba436b44092489
6688 F20101129_AAAPEJ lungu_g_Page_099thm.jpg
175a22d11a808a496f76706d33683d49
f716a99e56e7f9f189d600f9fb351678c377f30c
4352 F20101129_AAAOZD lungu_g_Page_048thm.jpg
0992a2c605daf4ee187ced838122a230
6bdfbd7c334429f872f27013633cfb2603aba9c7
16366 F20101129_AAAPDV lungu_g_Page_072.QC.jpg
3803fb9d1e4c3d1561651cdd51cc28d8
e9ceb54b04c4c0386dd876e96fd03544c2055ff4
84361 F20101129_AAAOYQ lungu_g_Page_104.jpg
529d8c6defb5afbdd756eb21ccd9f4dd
cffd305565c87fc322655fede4de3f525e42e811
910 F20101129_AAAPEK lungu_g_Page_141.txt
2be9cbf8fea00c0b775c85796bfbef32
c136dd19d26a8dc43e999a850a45b4a45ab1bd11
F20101129_AAAOZE lungu_g_Page_179.tif
38e2397bb9bad0103b19013a8b233ae3
c9af1e24dd079e6f9f5d95731ffe7c4537590e70
4297 F20101129_AAAPDW lungu_g_Page_156thm.jpg
fa46dac6a39f617c920a72a3aeec1eab
126a289efe316248dc88038ed8eb017fe1c2df48
F20101129_AAAOYR lungu_g_Page_025.tif
079b75c1d29af73e5e4ab11fe9763a52
61db7c6c89bd95fc633a2b25e2719a695565692e
990353 F20101129_AAAPFA lungu_g_Page_054.jp2
82619bff28a5faeed6d3b669a9604e02
65094067264e2a73daa12662c5a62b7b626e205b
84322 F20101129_AAAPEL lungu_g_Page_039.jpg
f45fac8638d1bee022038f647b752799
4526217e6e15b25f4970640b54ac1751500bb67c
10558 F20101129_AAAOZF lungu_g_Page_037.QC.jpg
a5a22d4bc88e8e8863169b3ea5fe8368
91e48a2e03c479c20433362837e45db25fb86c03
F20101129_AAAPDX lungu_g_Page_154.QC.jpg
effb7752b073be9985eba51812e5d482
631df9e17b2d972a6ecb5f30771f9057491e2ebf
3703 F20101129_AAAOYS lungu_g_Page_169thm.jpg
ffd2177fa5000c2ae635a0e4c16c3421
dfd478ca14c0e871495bc763b727260168bfb2c0
44408 F20101129_AAAPEM lungu_g_Page_046.jpg
74c0c535022a79ae5065a16b344d649e
4855e45c5101a7ae6379e4eb65e469b782b24bbe
1913 F20101129_AAAOZG lungu_g_Page_063.txt
c74a6c5a0665906a55043e377d2aaa32
4b64abd76db183ce2d6a5bd2613b57ff72d30c6c
F20101129_AAAPDY lungu_g_Page_145.tif
96d0d70e2916aba1c07fe51b94ceed99
038b66f63e7a9c8851c80c78317ced58aae5e077
21253 F20101129_AAAOYT lungu_g_Page_105.QC.jpg
38811bb901d4baff21b4aea280201973
594dd33a7250eb0ccb34c7dc70581990e15ded35
6100 F20101129_AAAPFB lungu_g_Page_080thm.jpg
04badded5bd24eb31dd7926906877377
f4336d87fd3a753221401a52f45975d5700138b4
F20101129_AAAPEN lungu_g_Page_013.tif
44921a7402d40d165a1a25c787af041f
f431aa024492f4c3da3612e134aa9fedf3584571
3665 F20101129_AAAOZH lungu_g_Page_176thm.jpg
e44a49282a70d7b087884f02e66ad6cc
cf577c7df590aa8a1623ea54b04e3ff6f26248d8
12368 F20101129_AAAPDZ lungu_g_Page_156.pro
acd35bc766ed2209c870a2bf90a0205e
5705a07014fed7cb9178eeec2a9794bee95e5ff3
F20101129_AAAOYU lungu_g_Page_112.tif
9c2c9515c4c7da08d484061c79da9032
de689ecf31d4de5576d6f3abe0294ebfa370a9d7
12806 F20101129_AAAPFC lungu_g_Page_094.QC.jpg
f55ec0039f7f9d10ba77e2281704603b
1a0002512b7c2000f8ccd2b07370a24528984448
91961 F20101129_AAAPEO lungu_g_Page_043.jpg
08b03136e3c4feda944e4ad4f5a696b2
bfd8dff62b48ccd93896d230c2f6be8faf4faf05
6148 F20101129_AAAOZI lungu_g_Page_056thm.jpg
bc2099090a0bd3da5f5d03b15051e633
0e8e5c19ee49ab932b9fe703436eecbbdac866fa
864272 F20101129_AAAPFD lungu_g_Page_046.jp2
acc138a4ea052d96a4b6f63622233890
6e28e5e19eb3134000c9f0d60e470fe8d5e59ab5
6049 F20101129_AAAPEP lungu_g_Page_041thm.jpg
5c2d85264cedb86c517ccb56d477bacd
5615a1d80bf86e85ddd746aed6d22fe29e5ce3b7
36145 F20101129_AAAOZJ lungu_g_Page_152.jp2
ec2f2e4b6b12603bb26a9d184526be73
c7cb0fd450f19125a069463b6568f9927fd41d61
40100 F20101129_AAAOYV lungu_g_Page_133.pro
e64b6f780acaa3f87a3439d307bc1744
3add2eb897510e0fb21229ac932976877fc4b420
2862 F20101129_AAAPFE lungu_g_Page_180thm.jpg
8a5a246a2170089ccbe828faa067dc34
70e076e3ed4c6c83b724d87540b86a3df8039bd7
49446 F20101129_AAAPEQ lungu_g_Page_029.pro
6f4af1d6b5c9a24012e55a021945e33d
a0fe032d7bf4533f341b6c8fb3de183abc23f951
F20101129_AAAOZK lungu_g_Page_064.tif
977e3e54a4ef9228f1b0a6bc6342277a
70d932381bfeb124313c065a5d75efddcbd7a8b4
F20101129_AAAOYW lungu_g_Page_157.tif
0ff438cdbe189505e8c2c0a993f8d32e
42607e9a0234a15496db63b7d7e437be60b92e23
2248 F20101129_AAAPFF lungu_g_Page_084.txt
6d9ac2f1b9e1bf253eac133faf7bf3d3
9d0ec65c57bfe33ffb1e83bae6cdcd9a50ab9dd0
24588 F20101129_AAAPER lungu_g_Page_078.QC.jpg
63f56e4e2b39ca943c332815861f0f8e
628be6800be77adcea76a988fa94db40c930acb3
2160 F20101129_AAAOZL lungu_g_Page_041.txt
1464ac25570760fbf674d383acb422af
a9a5bd96289224a508a22857c64bcf786933f7bf
81253 F20101129_AAAOYX lungu_g_Page_099.jpg
a0264d8ec5e0989ee6acd7193a185270
b978dc6aced6313cd91e1289862ba0244c787689
54305 F20101129_AAAPFG lungu_g_Page_170.jp2
3f35f0939f4ffd7b1964dd67c2a3ca78
1e998b2521dd3bccb971747154f6ee4b7122bc37
57573 F20101129_AAAPES lungu_g_Page_062.pro
49a55ca6e5af56211a6cd4fe812e1163
b670de5eccedaddc60f8f78a13ae5c214cee0f42
75844 F20101129_AAAOZM lungu_g_Page_016.jpg
e4bd42ebb2df0cad827f272bcdb41435
59726319be2f7154702c2e7ec55ea5b283aaa73c
17517 F20101129_AAAPFH lungu_g_Page_065.pro
5214b5267f59dd23e52f849d696a8d01
afb6461abe54c9f1983d05be5627f8fd772dd3ef
F20101129_AAAPET lungu_g_Page_069.tif
19bd4a9d67f495bee0a4316055b53078
1ee41f239f3c6bbaa08a4ec44e2363632e854fa1
43024 F20101129_AAAOZN lungu_g_Page_163.jpg
8c4d63a1b081bad252a4dd98cb6f258f
5161313edcd6f9e89cfabed7211a52b88a5164e1
3886 F20101129_AAAOYY lungu_g_Page_046thm.jpg
b495b49659e1a0ba6ca8905cb4b3b912
2aacb51ac7afce36bc347ee1eeb09e003f92cfcb
15389 F20101129_AAAPFI lungu_g_Page_125.QC.jpg
2bd683708fcaf5a879d7ecb3a31adb6a
caf5ae4a07f53eaebc448c0f14d0d21865081ff0
F20101129_AAAPEU lungu_g_Page_006.tif
c463d6e14f5883735de08574e92d848b
57b005a49192c49066fe15a156b3fc21bedc7984
23289 F20101129_AAAOZO lungu_g_Page_007.QC.jpg
7f661c88d214a4a277d027e1facbcc58
23be0ac905e5abe35bd10b637e0047d218770c85
6644 F20101129_AAAOYZ lungu_g_Page_104thm.jpg
912d00f0c16cea5a4c5d248315deb146
53eae447cafdb402a60c748d9765d072f84f8510
2162 F20101129_AAAPFJ lungu_g_Page_105.txt
f8148c7b2c46674391e6df731849c6e8
1e89dddeb10e416436393d2ec17b1dd8d6ee69b6
722 F20101129_AAAPEV lungu_g_Page_166.txt
b240df44be011adaf9ae4d945fa81292
a3b4e1ef7ea32b5946b0ef54a330e9bbc1c09d7e
74297 F20101129_AAAOZP lungu_g_Page_055.jpg
26aef91fee9ebca93e58bf52d28db25c
630f423de2141f2fc62ca037dec8baf040d3a56f
47049 F20101129_AAAPFK lungu_g_Page_132.jpg
7c9f79f8a6c912283f373a94f0df4e75
dabbb0950a301897e484fb91f950ef0b9a16b726
53210 F20101129_AAAPEW lungu_g_Page_127.pro
ae91a3ed705fa99f8bbb56c77153ddd3
9e54a169d8bccc5f940c77c30f71458863966a78
55694 F20101129_AAAOZQ lungu_g_Page_118.pro
2dc6c755a641da53c51e8ae22f5158a6
5f58c5282a144269c2047692c49446e2c2351949
56201 F20101129_AAAPFL lungu_g_Page_011.pro
d84fc312c9c14b267ed45a93c568c1f9
10859d49e884ff778c566145fc01c89af3e30841
62201 F20101129_AAAPEX lungu_g_Page_074.jpg
8108f3b19e9f9e4f04031a90153b3c66
01949d7ef83f476d4722214c5334e8bcbcc8543b
F20101129_AAAOZR lungu_g_Page_085.tif
8407aa5ed4afd2b7ca832f04e6c99dfe
f66689c0596ed8b36a478e2b3ba54cb58a3b7ebf
1656 F20101129_AAAPGA lungu_g_Page_092.txt
0a769cffa1b5ab99c2107d06600ec740
b83366658aa88868e711584eb77f1684975e8ef0
33236 F20101129_AAAPFM lungu_g_Page_150.jpg
b5d9d46843f0137e4ad1aa9b58e800a3
877afa7923daa01df13b148f2cf3530e9669f6b4
F20101129_AAAPEY lungu_g_Page_078.tif
2cea03ac1d3a38c6f5fbff98d7284958
4fb79d8c3917c81eef274b81803601b48513e70a
17511 F20101129_AAAOZS lungu_g_Page_174.pro
413150bb9ecbd81f9277253e4bbc1c82
90b0423d9640393c46228a42abf92d00fafb44c2
6493 F20101129_AAAPGB lungu_g_Page_038thm.jpg
8a737dc1da98ed1c4a6db6b3eae0f144
9faf909b3a80f523bcd9c72cd905ac7339e830a2
494 F20101129_AAAPFN lungu_g_Page_037.txt
30f8aad3cd7c13529c98b44c11b2f2f1
7a64c7b23e1289ce6be279117c0de54ccfcbdc25
27431 F20101129_AAAPEZ lungu_g_Page_062.QC.jpg
f9e654d2e58b0d1783bfcdd8c0259085
9640e1fca9c838a108c62b4442d82878e9a7f680
F20101129_AAAOZT lungu_g_Page_131.jp2
39940a1ef8b7cd5fbcee4c237728e0cc
7311c2448cbb26fb09787ae292ae6db96f4b31ff
F20101129_AAAPFO lungu_g_Page_176.tif
8c73429300d2336ab666c00ad5c32f2a
9a8662fd4b7837657d19531ce1a83bc72ab8b13a
24441 F20101129_AAAOZU lungu_g_Page_004.QC.jpg
f063d90251c0c037ec4c357f5d33058c
da8c40e701b389c2688bda9601bc0a3d5b8dd39c
3734 F20101129_AAAPGC lungu_g_Page_164thm.jpg
c3c925a1a7da4cc6ca22fbf2d60e0c0b
3405714422f090a0b1af789d1f77b743e89bc927
1909 F20101129_AAAPFP lungu_g_Page_073.txt
d549f2da5d014771fd83a2ea38043636
54b6745a2a1b9fd2cf83710de3ff0db9f54d124b
2156 F20101129_AAAOZV lungu_g_Page_129.txt
4c9ae3b1b165985dbf8431f9e3632bf8
e8b8ca7622885463bbf862a863d8aa7d3bf4fe57
F20101129_AAAPGD lungu_g_Page_072.tif
c430885cf1c46fe03644496e6689613d
74daacefbf2a929cf4279eaaef1e043164d5e0fc
9747 F20101129_AAAPFQ lungu_g_Page_013.QC.jpg
12b6f3c7b06ffe4ddc4ae173bdfcc7d9
69ecd4849e04f00a8ea67fbc064364bd7eb3a110
1663 F20101129_AAAPGE lungu_g_Page_111.txt
3c271753d8ff95b91f948a3d4462c87b
34e0229a3d6d150329facc4cb7ba1e8c2af8ad1d
31350 F20101129_AAAPFR lungu_g_Page_013.jpg
b88518b68c2acd99eadc5e9824570c55
d232b5ffde3e37bbbd7e6a86e8ade3006b3f76d7
2285 F20101129_AAAOZW lungu_g_Page_016.txt
1e91387e870c2f1842238e133b3f94c7
269b82ff1e354195c5e8ae3ff51146d7c5f2e792
859638 F20101129_AAAPGF lungu_g_Page_049.jp2
b6602144fdbadc75711d4f79e6ac50d2
4bd3e4b591a0f06e63ded15b7769814538c2e326
1051981 F20101129_AAAPFS lungu_g_Page_077.jp2
5db53c8a02e8dde6639a931808d1fb0c
be0a54357e7ad847d15f02a026b752c8f42170bf
5830 F20101129_AAAOZX lungu_g_Page_027thm.jpg
7ccab66523cd184153b071e00eb097b1
1b4fb1c04862a84d25ba937e3afd732b2eaa2d98
60126 F20101129_AAAPGG lungu_g_Page_075.jpg
4f6cc03aab0dca1cece9cef5ea69cc34
018dd9e1d7ddd86f113bb829fee8914759e2a0fe
71148 F20101129_AAAPFT lungu_g_Page_015.jpg
f59ab9db023465e5b7d9ab2b2cb3df3f
b522a04aa926cb853d48bc17434cac94d8384019
25392 F20101129_AAAOZY lungu_g_Page_050.jp2
5f4e8488d14393d6b240c5fb3cd1f37c
928172053256d0bdf21b4efbb03bce6842a290dd
2107 F20101129_AAAPGH lungu_g_Page_058.txt
861717e209a38a8bdeee2f6e05e83244
9b508058001147adb4147de1d3583eb2fcd0e832
444 F20101129_AAAPFU lungu_g_Page_001.txt
2e1b13c22bbceb6588eb06018aca3e3d
e23a1aa6f0d0250a035f66a0b4836b941b3c83c2
504757 F20101129_AAAOZZ lungu_g_Page_139.jp2
0c4f4352e49f60bdd019ae7fa7f036fc
bf26fe78b8cedfa7bcc6e51ef6bfb817aff525a3
F20101129_AAAPGI lungu_g_Page_034.tif
faec9afcd8f7d67d4c41b65495c3bb50
963473b5589dc97158e970ca92e39b868ed8731f
10921 F20101129_AAAPFV lungu_g_Page_176.QC.jpg
7e73cc58c7316f9fefb388b834113ee7
901064067afa27c39dbde49f8668edbde01d86a1
228 F20101129_AAAPGJ lungu_g_Page_150.txt
2618bae8b86f3f590393ae812828fc3e
ee1376aabe50bee09a8b2a50cd973d09c82b3ee4
1051985 F20101129_AAAPGK lungu_g_Page_009.jp2
3e9cd45f7bfdd23cb917e3d4062913df
5b364e0d8d421185607be9ecee0f071b267c602f
571088 F20101129_AAAPFW lungu_g_Page_095.jp2
fa451eb61988b9e2adec1af4aa8a714c
1907eac14c797f9ea79d1924b5e0574bec705da1
33025 F20101129_AAAPHA lungu_g_Page_076.pro
6913738f9f3d9733b127a081cb4e4542
edb17164699d467d42313b7fe298f38c02351f70
440362 F20101129_AAAPGL lungu_g_Page_064.jp2
00a62f05ec281006afe0228e4e9c0a1c
900fdb7f29417ab5a0cd1e14072dd867a80a320f
6516 F20101129_AAAPFX lungu_g_Page_108thm.jpg
fbb56e8b393b2e4e97ffc8f8599d015f
2ad0a792081b4a2901f076c70c4e83ed2d3b5028
6484 F20101129_AAAPHB lungu_g_Page_111thm.jpg
6c0486d627bad91a1d6a4f521d144ba7
6873390f6878576f30d1f4546a10fb4e90464339
75036 F20101129_AAAPGM lungu_g_Page_077.jpg
f66c1e410fa350f36e43ee527b3f2246
602c3f2fea2037f92897605ba3b94c4db16b6d98
2292 F20101129_AAAPFY lungu_g_Page_100.txt
8983ce33e04a92e5c296ffb1aca7275e
5b3fb9e5c1edfdda0e296af5668f6be83f9e54c8
3874 F20101129_AAAPHC lungu_g_Page_094thm.jpg
0933bcdf38a1a59444e5ee2676fcec55
6ce009a3df5c481313f800afe68facec5ed7225b
11168 F20101129_AAAPGN lungu_g_Page_166.QC.jpg
c81c5d5680b99cd9c34cb7808b0cd031
5df4974801f8acb644060f7bdea5d9e4026cc224
88354 F20101129_AAAPFZ lungu_g_Page_007.jpg
1b4110e80ee5bf9d134cd08b0c35cc26
b1c481352b81ba04b598f9da7bd9b45a83731910
12198 F20101129_AAAPGO lungu_g_Page_139.QC.jpg
7ce960edb065cc936a2ec9f9a0ddfa1a
e856e51ba097e620ad5deee1013500e8f90dcee2
9531 F20101129_AAAPHD lungu_g_Page_086.pro
c4ef71ddc9bdb17f4ad4efcf79294118
cd657bcdd6e7c83e2f8691d41a308f9762954da8
5898 F20101129_AAAPGP lungu_g_Page_033thm.jpg
1360abef1bb631f1ba2fd38b4781eca9
6e8d14d058933170d63d23a5091362b5957ff78a
19219 F20101129_AAAPHE lungu_g_Page_046.pro
3fe171a802ac586c8f297c104ed062d2
3aecd1a68bbf2a2d41eae3b4094d0dc6502d996e
8024 F20101129_AAAPGQ lungu_g_Page_145.QC.jpg
5fe1368765398b2bf901341bf69c776c
7d6b328e121553f4f8f37fb453d7278b7c57a19c
4178 F20101129_AAAPHF lungu_g_Page_160.pro
93c0f5838914ee649f905a171497bc8a
5d4ab4d22c3a10e0aa20b28378bd51701d229d36
1220 F20101129_AAAPGR lungu_g_Page_171.txt
a4bbb8fd036bd9ca1a3e0d522ddcc638
c841ea8a00086be6373a1cec78bb447e3240d979
3465 F20101129_AAAPHG lungu_g_Page_087thm.jpg
80ed356e338e2f931a7316cd2eaf3764
82293b052d156101e2ac65256887072a349e9097
984493 F20101129_AAAPGS lungu_g_Page_073.jp2
68c35bcf2d1809051c59d22044c2f6de
28c99c288e2fe6ba39b9216d6d224dfecb5cb32e
9927 F20101129_AAAPHH lungu_g_Page_180.QC.jpg
c4b23a630bcffa5e4e74d91b09cc5085
14569b3b4d39d910a5c88b2c8d3d0a46b28b8022
711192 F20101129_AAAPGT lungu_g_Page_047.jp2
bb2353650a96b7f4a90f83d844458434
907b2ae5f376678a696b9a2ec23c436b3d1163da
2030 F20101129_AAAPHI lungu_g_Page_061.txt
477945c494ad7d2b4a98125ba5276218
63a919168aa784c3e55c695817d1a6a6bc6139b6
46012 F20101129_AAAPGU lungu_g_Page_103.jpg
db4a7d8da8843a04af264d82687bb39f
267ed32a0ce72c5416c915d87859553ebccb6948
17199 F20101129_AAAPHJ lungu_g_Page_067.jpg
dce1a5898629bccc59bbef21dfedf877
873e1408970cdc65c2914dd201e90fc0ea21bec0
F20101129_AAAPGV lungu_g_Page_118.tif
e94e086ee23f5ba4d2dc214a27199d70
6f0ef7ae46967acffe6a493bc3fd529e16eb835e
9694 F20101129_AAAPHK lungu_g_Page_066.QC.jpg
42041e51fb226b87aabdd2b5cdb3a9b4
c27aeb3778a0581fe4fe0e1473f80dd8e108e79f
3401 F20101129_AAAPGW lungu_g_Page_121thm.jpg
8cc429ffdc73748a305ad65b5c0f20f1
0216c61562e88aaa7bd295818725a9f96036e494
10732 F20101129_AAAPHL lungu_g_Page_174.QC.jpg
b83525c4b9c23cad6fc338edd9c619bf
c0a2d855f90ac20ab9c51ec975db68e5221a1371
24464 F20101129_AAAPGX lungu_g_Page_019.QC.jpg
5d29b633b42a976df3f99baafc53872d
d9000842112338035fbcbd4fe5bcdb1449dda847
91077 F20101129_AAAPIA lungu_g_Page_116.jpg
0c47a7dcc612cc37cedbdecd6982ae50
a25dec30f9e77a5a9ea9d2462e77d2e4119000dd
45604 F20101129_AAAPHM lungu_g_Page_027.pro
d3b9234f07256c8901751e54cbfc94ac
e5945be446ab4e4634df941c15252362091c2c4f
27786 F20101129_AAAPGY lungu_g_Page_124.jpg
df4ad5a115f07b13b9ae4487be2239e2
f4c56b35b38cdf57b5cbc6c7f34b1c51f1f940e4
6135 F20101129_AAAPIB lungu_g_Page_070thm.jpg
e88ea711800ce122e9cd6f9e119ac3d1
b52f0ddc88075f72c1746d7e1dfd4fb0edf7fde5
58685 F20101129_AAAPHN lungu_g_Page_017.pro
4310e3834248f7029d5a65d391a2c8e4
7fdc1e696996f93e358779df766c64b40b863586
4802 F20101129_AAAPGZ lungu_g_Page_112thm.jpg
bcdbd8c90517e9105fec652f4d6559c9
5c45b4d3daad67ab25a75db1389aea3be5792822
22125 F20101129_AAAPIC lungu_g_Page_034.pro
51916acbf62e6912a6807053763469c9
eae83f9a985841d7c18223be2ab67d0936259e3a
65258 F20101129_AAAPHO lungu_g_Page_113.jp2
5d308a59a68970a3f9d4b7c5f2ab518a
5b5e9423f290b2a326cca621c194c8867a745155
70894 F20101129_AAAPID lungu_g_Page_177.jpg
10d52dcbe7545e88f5bce49ead7bc395
eb2ca05071f115365d0959bf68b79fa6902f6eed
2171 F20101129_AAAPHP lungu_g_Page_015.txt
effe5443a2e0d63da7134bea8946888e
e61154bcf17e9b3f17151f1f52d99bc98f4232cb
40253 F20101129_AAAPHQ lungu_g_Page_080.pro
7242895445752596ab5565b9041c30ed
36da6588d12ea02d5270dbbf5b11b96f2d3ae81b
F20101129_AAAPIE lungu_g_Page_099.tif
f7ecb00c4c3e2f1a458b3bf1f59b7d56
c11ce9a90219d23ad867111c650cab00177750b1
40774 F20101129_AAAPHR lungu_g_Page_007.pro
b2c28804a3bab0853360ec6354228367
3dc61749e20e1c01454cdd1ee443472f6bc91805
435532 F20101129_AAAPIF lungu_g_Page_089.jp2
dbcdc456b4ede9b7e040a177c0a19705
9fa23b84fad60d14c7dc5272ce31a094025619be
54204 F20101129_AAAPHS lungu_g_Page_128.pro
3ced3ccf9576d3cc80e2961cd351cda4
6774e54f54b20ab6e4329f5cbd3cd8ecbe64fe88
43175 F20101129_AAAPIG lungu_g_Page_149.jpg
25f1fc23987cde0f69b4910710f2407b
ebe1abe3a81f71021ea07dabad1d9c88ea84e3f8
40865 F20101129_AAAPHT lungu_g_Page_164.jp2
d2fc4af2be3a17f371a58eac0687c94f
9584a0a5fa945da6a660f336d431873e03315914
2277 F20101129_AAAPIH lungu_g_Page_104.txt
3f3543b947003c615d928c5491d490cb
5b0770c9da6e2cc65cf46437cfadd46078ee778c
2307 F20101129_AAAPHU lungu_g_Page_017.txt
fee234d78e89bcdc2ecfcbd275de9e05
033df0e24e7dcfa9ef673f4cfc0fadd9f4bd08ed
75266 F20101129_AAAPII lungu_g_Page_019.jpg
3973c982ec910f4ca3e50e9703ada8f8
5d968041eff16d6ebfbe5a4fa5b5bec9d95b0d00
3195 F20101129_AAAPHV lungu_g_Page_066thm.jpg
610d89977485c483f7f069e888d9cb5a
caec59f7d1f8aac04e95ac9b92f0a3384888df69
6141 F20101129_AAAPIJ lungu_g_Page_004thm.jpg
c3311e4c1425fea8417078385adf0f0b
909641a0e4de3bc504b658de5f2650ac1de73cb4
39522 F20101129_AAAPHW lungu_g_Page_113.pro
f4c0a6d8020e7b3b44e4c313390b3b35
6153ea96d15e952c8f47f1e0b1550e4cbde1edb3
1114 F20101129_AAAPIK lungu_g_Page_173.txt
b9931c2cbb2b0768f55209539747e567
81cfcc895fa7353a66735fdc7858c1945a724110
3739 F20101129_AAAPHX lungu_g_Page_160thm.jpg
09f5ff8e3f691b9c38a0b457fb64f7ce
77bd908c48de992dbbede2b9e799452eb20695ad
3752 F20101129_AAAPJA lungu_g_Page_153thm.jpg
7f4a35e9a262bea8bef31a5dce05a598
5a17be3ddcff41179f4dc0ed4f26ee4ebaf3236a
F20101129_AAAPIL lungu_g_Page_084.tif
ac02255fdb85f2e5bb66166e9daf97af
87f49519e35bbc40b0b5c9fe66e32d29be5970cc
F20101129_AAAPHY lungu_g_Page_116.tif
ff6267faeb33b726329ea6228a9c208e
aac07dd07913bf5f3e0ed8db39b86ad2c81b3b5a
79033 F20101129_AAAPJB lungu_g_Page_111.jpg
9aa7d289fce3a60e33de10f1e54994bb
3fa2549dfe6d69e716c208dbb9ad35cc41c0bcb2
F20101129_AAAPIM lungu_g_Page_055.txt
e18ca5df63daede4562aacd661ccb78b
76a1667467cb5e6cbd5411335fb6469030600788
4906 F20101129_AAAPHZ lungu_g_Page_067.pro
4e40a0228ead0481a39d7527499726fd
cf5d93a9c35b8f986c2ce41715dd0d0e61bd70fe
F20101129_AAAPJC lungu_g_Page_159.tif
22275b7b94902e6ae4ec4f0bb0860791
d95cb3374fbfdc1ff890d813ecd8f73a6d231a8b
F20101129_AAAPIN lungu_g_Page_060.jp2
2ba2254e4dd483b21429a2f02c3995e4
e27a2dde631e6112beb44d41821e618c7ec89a11
23436 F20101129_AAAPJD lungu_g_Page_021.QC.jpg
b27db919427dfb61aeee3b1d17ab194b
71b72d27560debc3627dd797e77ca99ff8e62665
42552 F20101129_AAAPIO lungu_g_Page_176.jp2
c42c95d49f83b4af5cbc3f877e8ca2cd
2e62c5c84faf15df1905e05d1cdd9f3dfe1fb03d
627093 F20101129_AAAPJE lungu_g_Page_142.jp2
82b3094ec10aff4c4ed7520327e95fb0
ce6f11fa38fbf0e88a50c7c8ff9523c5d952af0a
10043 F20101129_AAAPIP lungu_g_Page_064.QC.jpg
bd5d9ac1abd043dd4916ce7eb162dfd4
25b6f5d4fd862345fa9ee4be20ac9bc6df241a49
F20101129_AAAPIQ lungu_g_Page_035.tif
7ef7d5029ad779421960932f20aa8afb
7cf966d3864c72ffce745eae1fcd40484941dfbf
2432 F20101129_AAAPJF lungu_g_Page_050thm.jpg
8dbb96d33b8e48ae494fe73b0824b2b4
be84416333213b4d0289a7466c63e1ca891b23bc
667 F20101129_AAAPIR lungu_g_Page_036.txt
d23c9375ba0c199a22e7792f03a0b18d
05741eb5af7f82e932761cb6febeb94bab8ef28a
F20101129_AAAPJG lungu_g_Page_066.tif
199912ea70819336faccfcc951a37e73
297c0ce1e6c4fbecb25705ff29f92bb76b78cc4d
84903 F20101129_AAAPIS lungu_g_Page_030.jpg
f2fef52b76f6067247320e8ed00e12a3
26def96349b65eafc542a2beaca547390fd6f920
54724 F20101129_AAAPJH lungu_g_Page_131.pro
f09801da66c30706ca820cb03f8c6ccd
6602ae1b66bfdc7718852f1f3208a12d76f1c7ff
6946 F20101129_AAAPIT lungu_g_Page_116thm.jpg
2ec76cb384c218f94025ecccb715f6a7
c9562a09ec0a5ec869c475cd6667de867c9c16fd
6977 F20101129_AAAPJI lungu_g_Page_050.QC.jpg
96c9645912c5b04b10a515fae2f87bdd
d8d7bfaeb4f7dd610afb094c6c57cdb7f10a31c5
26847 F20101129_AAAPIU lungu_g_Page_042.QC.jpg
f52cefb5646c519efa6d1527659bf338
96c3556f842caef60a34a44ae613a2f98a049893
13941 F20101129_AAAPJJ lungu_g_Page_036.pro
ef5ce01330e236d7c4ae063b915337a3
ceb6ffc8fb469e3c4a502bbfbb9a784e647eed38
F20101129_AAAPIV lungu_g_Page_042.jp2
e465909ae0b792f4fd45c1f93bb357d7
89c9a1352ba0ddf5cb118f053fd3d7cbed818e03
300 F20101129_AAAPJK lungu_g_Page_066.txt
2fe432244ab802e191d004604d5b60a8
7a858f79f911d9cb9cccf37980f4c4b520530c19
39166 F20101129_AAAPIW lungu_g_Page_092.pro
6a77724776e5ab1c2db7dc0c860bf741
21a14edf3535ee900ece824d93b38743a328edf4
9493 F20101129_AAAPKA lungu_g_Page_003.jpg
0c500950f17422931e0062a10066f3c3
788c02bd895315a0195eb4ace0b6014046a23ce6
F20101129_AAAPJL lungu_g_Page_150thm.jpg
cc95599c6ccd25a88636dfc106e4cc6e
618bbe78d69487ef7aa1c87268084a64602a7128
40834 F20101129_AAAPIX lungu_g_Page_094.jpg
912ce562b2acbe96f2438c77528f8e15
4bbffa9ef032d8ccb3db1d7aae52d5e6be21f2fb
59016 F20101129_AAAPKB lungu_g_Page_014.jpg
27f3833e25b42a0b7b47f744a45e03be
9ece00ca269c2a4d2323e8b4ce78f48137e32424
F20101129_AAAPJM lungu_g_Page_118.txt
4317d76c17da7d0b895c706b8c8cecec
ef32fd3ace1ceb85199f09a7385734cafec1c8ad
3447 F20101129_AAAPIY lungu_g_Page_089thm.jpg
cde5429f60ff9d2d188652d09503d0e2
92135baeb193adbc30f9907f92f85545dcb03c19
76537 F20101129_AAAPKC lungu_g_Page_018.jpg
366b94e9d4a9d2f46e2b171da2f703e6
7c237227abe078bac4491ec3ac549383d47bcc96
15956 F20101129_AAAPJN lungu_g_Page_169.pro
9b9dca1cb520c49d8cf636fb589efaee
4c442a85c4bfc8c60bc0702e3e722ce4ac203335
32021 F20101129_AAAPIZ lungu_g_Page_082.pro
97bb8f2248a24eb537169581f722c5d3
30430b49040c0231f297f673042b4c29dfbb42a0
72916 F20101129_AAAPKD lungu_g_Page_021.jpg
c117d86aa367cb690c00803c3a9bdf7b
ef3db1488a197411944e7bb561cdf0e633d5808c
1790 F20101129_AAAPJO lungu_g_Page_107.txt
cfc3ab836736367c4bd701b63d9a8328
886800074139892366f0b793308155371890cb8f
3381 F20101129_AAAOHC lungu_g_Page_065thm.jpg
e30e451bd00b28613b44850bbdefb2dd
54cdf4a267542805e2330ba0142a56d9024d502e
89915 F20101129_AAAPKE lungu_g_Page_022.jpg
852cc962e00f85f7d437d3b13b2c927c
eccfdd21bdde7528363a23e8e39d488592b5ce32
32699 F20101129_AAAPJP lungu_g_Page_169.jpg
f7d73ad63fbe7cfc6835b2670f005428
a4a88f7b204acd1cfb881a2b69784092d2f40f7c
F20101129_AAAOHD lungu_g_Page_098.jp2
d77f3915f2e7c66c71d0b79d0ddbac09
d7d962d1a65df9b992e832bf38ffcebb8979c91a
78813 F20101129_AAAPKF lungu_g_Page_026.jpg
321403fc5490bdf11fb8aa976892d739
91c37f67514ae6f25c3508a5d122f189595884d0
42549 F20101129_AAAPJQ lungu_g_Page_117.pro
65ae5393f3c4d50d7a6bd0b97d9cb123
67492f4c2987b71e8533746513ee914c695d92c1
76177 F20101129_AAAPJR lungu_g_Page_004.jpg
56d333e1f8f182968ddb214f918e2c76
acab9c3d0c82a1263fc1a6dc6b412f4eafcb0cdf
32889 F20101129_AAAOHE lungu_g_Page_176.jpg
532b37604b6867ef25d6c8014e0aa829
fb201aba342043c9fc6a4b8d77bf8f1a58270649
74244 F20101129_AAAPKG lungu_g_Page_029.jpg
51dffa4e58cfc2ea77b431e9463b91b6
27bb651e1b58e02f173040079ba42d75cb286329
3300 F20101129_AAAPJS lungu_g_Page_064thm.jpg
a829b631491a9b94afaf34f94e789237
2d1ee33b327683fdd78701e4377952a77e019083
6448 F20101129_AAAOHF lungu_g_Page_100thm.jpg
efb82751642f012f6ba7fd924d0e30cc
9b6454732545779da69370c2e07c26cd33325142
86908 F20101129_AAAPKH lungu_g_Page_031.jpg
7a116afa2a1db48d90fbaa39ca3f5feb
193af72bdc99e29f20c462d19034954e5502f89a
6069 F20101129_AAAPJT lungu_g_Page_054thm.jpg
8190b6df733a0f5d2edf70218c00046a
80dc4af7611b99322c2aa687340a7a6cc32b2e64
4712 F20101129_AAAOHG lungu_g_Page_003.jp2
0fd399531b1524f7f6bd041a4be9957e
207da5b271ac2a1ba783010bf5fa80e13f21246f
81040 F20101129_AAAPKI lungu_g_Page_032.jpg
71a52f9a9712f16bb0140608c85b9881
8de510054985a21f5be19cb3b76ebf07b3a512e3
F20101129_AAAPJU lungu_g_Page_113.tif
71ea1985809bee6d685caadb87c8d26b
6f5bfd4f3ef9e083270473d7ae61fb52a285074a
170582 F20101129_AAAOHH lungu_g_Page_090.jp2
509e009b43b5476ab4f2a445cc97736c
b655b23dc47a41c11ede506c7694ebff2e9da325
69290 F20101129_AAAPKJ lungu_g_Page_033.jpg
dbfb5414a795d4af226b8de33f15ccff
fa394a47465ad2752426c48c823e35af83186471
F20101129_AAAPJV lungu_g_Page_080.tif
c5fad4db35c6fcf175a4a7d266e29886
a8a2ff0db4842a60424484fe3a5e33efea23f9d7
36319 F20101129_AAAPKK lungu_g_Page_036.jpg
f19bd86762a8379f9bc845511dfa4852
37168af762023db500c834a0ba6e67b233c6cb8a
268603 F20101129_AAAPJW UFE0021188_00001.xml
298cc32d7c896b9f674a02a995c8afd7
c60ef3a1ce43b9ffea5a4c5d0d6ede934ec43d16
1051974 F20101129_AAAOHI lungu_g_Page_051.jp2
d0b72e753f38303b84d4bbd3ba266eb8
a29239abce6571a3b6ad98500d46c645ff527446
37871 F20101129_AAAPKL lungu_g_Page_037.jpg
a6ca58d2d1f79bbab12fcdfb5a0e6ac0
de05e4c361e7a8d410e4746c3a37cfbb8cf13a76
75148 F20101129_AAAPLA lungu_g_Page_068.jpg
9efeb4262507af26ef1a715b18bb65e3
92c1ac1b263e338c5464846c8171607a3c45e0fa
F20101129_AAAOHJ lungu_g_Page_020.tif
04888fa13ef42bf24c35dadac6477b8c
6c0c3caa1e66b9a08f8e34d04011ebe8d0c54790
83360 F20101129_AAAPKM lungu_g_Page_038.jpg
509e313f27184d1f977d1e67a1260ffa
98b8be8f83ec907b555c3d364f58ba931c83a74f
78407 F20101129_AAAPLB lungu_g_Page_069.jpg
28d3cc8aff86f726271bbcc1f9372213
a6c6e79322969a01cb90c7ab9470fb413e5ca18d
33441 F20101129_AAAOHK lungu_g_Page_155.jpg
8a214a7c1ab6c7c31be34f956fa2192f
a6a600617cd0ee35e25d12a2736bc845381e5775
85831 F20101129_AAAPKN lungu_g_Page_044.jpg
295d73485c4e25d81f31cfd6ce6deee7
34efc28982292df5db5b2eaa6818d16c1608faf0
9871 F20101129_AAAPJZ lungu_g_Page_002.jpg
416b6c98e6dfc7549de99182c87f81d3
4a63dfc0d0ef2e1cd4839986d7e1c686970075cd
77830 F20101129_AAAOIA lungu_g_Page_051.jpg
d8c040490e150962551f0cff9ca178d5
c39184bc0107546d04b14d8cd800ed5534a61e3b
73453 F20101129_AAAPLC lungu_g_Page_071.jpg
c84f2a504a004e8c998805e69b71f2b6
bf890716742cb2b85d2d4145e8d10d253a651133
880 F20101129_AAAOHL lungu_g_Page_079.txt
ac375160780e7ea115af4b5fc7e58191
031daf7058a79b997b14a601ea6bf51eaff2a1d4
54877 F20101129_AAAPKO lungu_g_Page_048.jpg
f355a5666ac761ff03842faab40c1a41
f6b8ec08b44251be6d65ae27f2a07582fd696c60
F20101129_AAAOIB lungu_g_Page_074.tif
bb431a38eee6392bddf6daf14a747da3
bfb60eecd31f02b27c52e044687f94272326704d
51021 F20101129_AAAPLD lungu_g_Page_072.jpg
40ff8e73126d6ad964fb0525fffb6bd4
6e684746782c2bda37fd810f09c5b01c1000c37b
F20101129_AAAOHM lungu_g_Page_140.tif
eb2963e120aece8eafd8a4a06d416618
207137ee4174a72ce151ea7129c268e0ab9e6bd8
50872 F20101129_AAAPKP lungu_g_Page_049.jpg
3a148bb9e3d45cf5095f54fc9964764d
f2e6c52ec171df21c570d7d1a058304222422bc3
25843 F20101129_AAAOIC lungu_g_Page_130.QC.jpg
5b715f7b7ca9371af4787e3cd5000e26
1eb78946f678e2996cec1964863dc7626b31ee6b
69705 F20101129_AAAPLE lungu_g_Page_073.jpg
7eace78a82e5b377d5cc1d598a1cee47
c13cdae56985fdcdfee1ce3fcc608825cf8bdc61
1355 F20101129_AAAOHN lungu_g_Page_003thm.jpg
62742a14561736a517b463d423b84cb8
6591d7e4a0b11aa6330b1697cdc9679d60611cc5
70547 F20101129_AAAPKQ lungu_g_Page_054.jpg
03d2a0b6f59bb555f19c7202d0f8a9c2
64f1e043b7ff4c4399b2f6d8f491d074e34970b1
40572 F20101129_AAAOID lungu_g_Page_143.jpg
a995a150e4b4f34e4a191e78945eafb1
d72e153fcc9b09aeded694f6442d344359612961
76920 F20101129_AAAPLF lungu_g_Page_078.jpg
74240f26b1d24c6e94aa07ddf5aab129
f729639d2092b3d1f3411e7fb05c4459f8f5be3a
47190 F20101129_AAAOHO lungu_g_Page_059.pro
7f7af5daf0b7a28c0bf5c66cc91cc3b3
cc1edabfd031586a0f7281cfbb280c7533898cd0
76281 F20101129_AAAPKR lungu_g_Page_056.jpg
0106ac966d2bc10c9fa958ca5dc9a1c7
532c089c7b3aea98f532e95a8b693103917e03e1
23137 F20101129_AAAOIE lungu_g_Page_111.QC.jpg
c6215b258dc6bb93cff3acce00dcafb5
3da11fb1dabd17acc9cc6ec4fbab8858f3b5cc53
61320 F20101129_AAAPLG lungu_g_Page_082.jpg
cb69b77cdb9ee8a382a4d07790bea988
2821b0ca15ef900582347f19df92876d5b75915b
19798 F20101129_AAAOHP lungu_g_Page_122.pro
c2ca23aa4608644fd7632559bad43e96
befcf57aacebe27ad4ac71d4b7512e3ce5468564
78480 F20101129_AAAPKS lungu_g_Page_057.jpg
3bd24dd05893e8176bb7643739f910c3
46b8e30ba335fbd76aac4b7786d809698a13c8a6
12150 F20101129_AAAOHQ lungu_g_Page_143.QC.jpg
a84b3b4f6b7c0472051bea0816ba4cd5
41bd81ac0bf284244a7b19f76e8ebcb0cf352c19
F20101129_AAAOIF lungu_g_Page_075.tif
0f95c82c66ff0e113152f829ed296d22
2f3fec174b10c8cb553bf607fd3bba7dfcfc0a91
77486 F20101129_AAAPLH lungu_g_Page_083.jpg
da02f63f44b49b572fb8aff96eef1358
638d587e6b3df00b0b31ab7036a0c1513747fcaa
35820 F20101129_AAAOHR lungu_g_Page_151.jp2
8cc8f71c50ca886e4b9ebaa400b4d514
513c60bf1f40ba9064d0d0b8cf050308e9f3b711
82327 F20101129_AAAPKT lungu_g_Page_058.jpg
8e9bdae838868f5a0b60f640cd760917
846907febbce3b3df4300f0d93bd52662519464a
60164 F20101129_AAAPLI lungu_g_Page_085.jpg
a4f9ac574199947dc50f0811136635d6
1eff3644f2c0c427e37e46aa3d231fd996b3523c
6457 F20101129_AAAOIG lungu_g_Page_032thm.jpg
171e2d197eaafc642b4ed201d0952724
25b77a3e6dde9a0b2c981fe87bdbf18cae783335
24468 F20101129_AAAOHS lungu_g_Page_106.QC.jpg
765c2bece1c0b2a151392603a24f6525
6f60d8f85a697689d839ceaa31fa4e819e66e733
77543 F20101129_AAAPKU lungu_g_Page_061.jpg
7238563b746ba3ccaae90f6436652a94
8ccc5e3187f11437914cbf88c6df1ee61efa60e0
26032 F20101129_AAAPLJ lungu_g_Page_086.jpg
9f7fe40d56e616364c761d76e2bd2d9d
69c1ad030a90fb9913ba669bfc217a7c82fb79fa
2265 F20101129_AAAOIH lungu_g_Page_062.txt
333bc87e826a1631287cb3d1a7489d44
1dfee5c75773ecbbbcf7afd35156c8f4ef8dfe05
12333 F20101129_AAAOHT lungu_g_Page_181.pro
3a4936923da17bd774282b3ae9458ebf
9d923620d24decdc7d691c04ee70e4cefaa25e6d
85244 F20101129_AAAPKV lungu_g_Page_062.jpg
b460d1bc5a3a4fa5c505d4e59bd8db51
e81db92319e2cf48eb47c0c83276516d4310dd6a
32058 F20101129_AAAPLK lungu_g_Page_087.jpg
1d8f0eaadebceaa5ece954e93438b9ab
fa990ecbc154496996e30bfed614b609cffa65a2
57967 F20101129_AAAOII lungu_g_Page_016.pro
37070ff2ad24e25b713febf270724865
fc3d3280f0133486bc21efa0615e2fa5d6e685cf
2811 F20101129_AAAOHU lungu_g_Page_145thm.jpg
62448d0abf087a4709c83eb1562ba95d
85662d44fdf80369cdd5acc7f6551e44666dc354
65733 F20101129_AAAPKW lungu_g_Page_063.jpg
f42bb7165cf76384fd5c3ed545da90ad
2a2343f1dcc5dcbf295299d3ac433d5896cf87db
76374 F20101129_AAAPMA lungu_g_Page_136.jpg
7f111fb18ec23fd76731c7c9410af887
dd0365f9abb32abc2019e74dafb789a5ad7a0b8d
18056 F20101129_AAAPLL lungu_g_Page_090.jpg
7d000f7bb9e8440efbef9d0f93f398d0
13aa5c1092d1822ceed76e4e0f98437f2ef8f403
532 F20101129_AAAOIJ lungu_g_Page_149.txt
bf57194c2b113a295a8eb569f9f2f71e
764e773b2d5eea0446d188ca2b86199be26055f3
F20101129_AAAOHV lungu_g_Page_126.tif
cfb036a96f9b01768c59f09f799565bd
2c1ca669e09feac1e5a235cedff13ddaaee7b7cd
32206 F20101129_AAAPKX lungu_g_Page_064.jpg
8bea8f7c27317249d73c7046d5b60ec0
4578c272d241271a456144c263f0ddee0dbddfa1
86776 F20101129_AAAPMB lungu_g_Page_137.jpg
151fa4d2d2d87ca07f207a5a741a31cc
4fc446e4b88fcab194ee7a27f6823c955dafc2ca
35223 F20101129_AAAPLM lungu_g_Page_096.jpg
7d7dbe8408bac7f4b9cf89800b2aabc9
0f2f4ddcb2f4346e5d6b9e160532a94fdc39d13a
F20101129_AAAOIK lungu_g_Page_059thm.jpg
1bf328c3a8c3e0a79ba88d2afaa60ecf
0ebb5c1e71dd51bfa7bab509f9b770d8813f12d8
862 F20101129_AAAOHW lungu_g_Page_089.txt
ec3a10f1d8d54586c2b803e3df21941c
1eb1d428437350ee2c3fd6128fe1a65b1ada74c4
36489 F20101129_AAAPKY lungu_g_Page_065.jpg
d64bc5c901761fb855afe93446769bc0
2ce2192684a60f2806c2d34dd5f6ac43da38fd3f
67266 F20101129_AAAPMC lungu_g_Page_138.jpg
dc25ef83d93445c01ae488cfb4e27e83
6ae352cc5d2a0354f89dea3e85ad518ff9d4a903
80758 F20101129_AAAPLN lungu_g_Page_097.jpg
36ee47db2c9f5962feb3e87994801e24
082a879bc1dc4351450769d803d79f6830a01a30
44391 F20101129_AAAOJA lungu_g_Page_088.jpg
70839c5c6cd3a890b08dcb0cbb02180d
ed14ea7ce287cd65f854053b81ec2f317c926aa6
53417 F20101129_AAAOIL lungu_g_Page_051.pro
e5836db8abf9ddf2090440c1f5cc77d7
4a564f9ce53ba1f7b0b02a0143745e907286f732
547841 F20101129_AAAOHX lungu_g_Page_036.jp2
99b233948a9079bfca4daad0ad7f696b
006b2079fd0ea5c46ee3f29c98101dec7cd77aac
30300 F20101129_AAAPKZ lungu_g_Page_066.jpg
15c90cfcd4016efd581bb1bd06da71b9
5928330052305200d4ceca56fe1a04d397ee22f5
39234 F20101129_AAAPMD lungu_g_Page_140.jpg
eba8589a4189f34f7ee46136313b7bfe
accb1e359d3ce731bea8296d3b5da9dbf12f4fc8
75855 F20101129_AAAPLO lungu_g_Page_100.jpg
58881b463c8d292225d0f9859efb9043
e87f2dfcdef11dd72add7714018f06b2bd5e96a4
22436 F20101129_AAAOJB lungu_g_Page_059.QC.jpg
0c4a7cc0e0cb4c32d2fc993fbde40e4c
3d4382adfa397c3061cc5eb723b2184eddca7663
13023 F20101129_AAAOIM lungu_g_Page_046.QC.jpg
f661e7746a49bed7a3b1f8a4a4e1c6af
aa49260bd932f0173e48186857d7da5c4fe9fe20
5049 F20101129_AAAOHY lungu_g_Page_076thm.jpg
d783daf6ddc93894c2ab85c6a4acec04
d256afc690213f37b4c76caaf51fd7b524550f66
28492 F20101129_AAAPME lungu_g_Page_141.jpg
d234c204873a1ee490ad7df7f855d110
277dd2893ec695378737c069f543a9220b222a00
63505 F20101129_AAAPLP lungu_g_Page_101.jpg
d19d41e0236bd312f3b10c2af88c0a9d
2e50b15962152a139b182bd0521f044189aca35b
3143 F20101129_AAAOJC lungu_g_Page_123thm.jpg
04a8fb8e77730da364219101ebb2be50
c563d86f47253301de4e8d1ce22aac99e350b904
5192 F20101129_AAAOIN lungu_g_Page_075thm.jpg
384cab3b290ac93797d428b430977e88
03304464b4e6775a35fce3906d114cada4d423cf
58297 F20101129_AAAOHZ lungu_g_Page_093.pro
5a8a3dc183fbf900df3b87b234415437
6f1e16f3d1f8d2105826a72b461202a6929a995e
25724 F20101129_AAAPMF lungu_g_Page_145.jpg
0b5f76a12e5e0394eb061649067cac94
8ef8f7e606f793850670dee77f936016569abb68
69581 F20101129_AAAPLQ lungu_g_Page_105.jpg
6cf4d191ebbb7dc2f85c3658770d37d9
136d1aa7cc84f32eeb228ce044a53aec00cf9101
26437 F20101129_AAAOJD lungu_g_Page_044.QC.jpg
1f8e124f25f0c49d96a897a807c603a0
8b53fc3d4ebb898ed1aed5264afadcfa21ff24b1
43647 F20101129_AAAOIO lungu_g_Page_047.jpg
6d47a1ef4c3e8ecdb2b03279af0683dc
c26ec1226eb008b5d6bfa17728a44d8587b7c94b
21199 F20101129_AAAPMG lungu_g_Page_148.jpg
42f3b37c30c49b3ff433c04f3564174f
f80bfc92d0a29997adaf58832e303f62e308d637
75749 F20101129_AAAPLR lungu_g_Page_106.jpg
5e9e930cbfaf76d6f20b19182ea56d6a
dc7993c86ca11e59670be36f94f63cc0897aa411
56941 F20101129_AAAOJE lungu_g_Page_052.pro
8db8911a63cb226454751de5e5726f27
98f959068d5d77010286e2fd116480aead5e8cd5
2114 F20101129_AAAOIP lungu_g_Page_179.txt
874bdfc86260a9ccdc57df0d00cfb619
74d995daa56f1b723569d7936d28fe36a9a212ab
32758 F20101129_AAAPMH lungu_g_Page_152.jpg
b4530dc1f1d876755148ee5e7b7390f5
447797afba4f42930878de79e18dfffc4c962ee6
76202 F20101129_AAAPLS lungu_g_Page_114.jpg
e7a23851f7fd42d1ea35719e225332b1
c69859b2a674c56c4ae83715726cc9f1f26733cb
F20101129_AAAOJF lungu_g_Page_057.tif
bd6c044445f3d24cfaf87dbdc4d1c516
68594315d59f50bb8f683e0faefb239ecdbfb3a4
5682 F20101129_AAAOIQ lungu_g_Page_007thm.jpg
d897bde521caafc36f3d5ada69ba8636
681fb1612674a999ed9e1b256659393e480970f8
74371 F20101129_AAAPLT lungu_g_Page_115.jpg
afe78e026ca6e7d1ae9572f384dc6311
ee22f1e1cbd569603391dcead2077ff9ebc8bb19
23668 F20101129_AAAOIR lungu_g_Page_001.jpg
bdeddc7c5b381ee21c25c0edfc8e9b59
06d83782936a1257e3e638a108f9c56ae93a7995
33335 F20101129_AAAPMI lungu_g_Page_154.jpg
c546679deed353ce19a5648fe4172386
55fc6355f9ed0a453eb154bc10d22692c1fe544b
66262 F20101129_AAAPLU lungu_g_Page_117.jpg
6351d270cdab8d540f992194c451c401
a43454500d5804d4444471dee9b092479d9836c7
34992 F20101129_AAAOJG lungu_g_Page_146.jpg
fcd04fcbfde8c7345102237fc15b4814
521a36d5cfe2ff665b9c93b833c1c10b8ba89259
1051937 F20101129_AAAOIS lungu_g_Page_048.jp2
0bee1ec618406dde8256514da19e3d0b
075f138d480d6e10243767725653c04adca97754
32263 F20101129_AAAPMJ lungu_g_Page_159.jpg
d225ac47be32cbd36f1862a594115198
340cffea80e02006a23fd7053545dc7366f79f4e
84867 F20101129_AAAPLV lungu_g_Page_118.jpg
664d027a237fe82bb05bb5811e14aeaa
4ad502d0bc3aeccbdc9cf6e19ce74177e5710e5b
61945 F20101129_AAAOJH lungu_g_Page_107.jpg
03eb031924fa28fc21be7a364c033420
7499e4ccb813aa476e52722b3d277ba4fd8342b7
11348 F20101129_AAAOIT lungu_g_Page_159.QC.jpg
43acfe44fcda2eb2ce2216cd21df41cf
2f7c2e4084bdb57d2ec53cb5cb9e67ae5707f3c2
32914 F20101129_AAAPMK lungu_g_Page_161.jpg
3b20bfa6f6615fd9c0ccfe8285bf61f1
d41367eb9ad514a77134ed5ae713b1c7a5d71e21
33205 F20101129_AAAPLW lungu_g_Page_121.jpg
5dae9641caeb36e81309a190936c4042
62deec1e95f535cd21e502059c742684eed86998
F20101129_AAAOJI lungu_g_Page_070.tif
fa04cddbb7c3aaad18cdc634a86f3f6a
75111ef57d1e6ecdf71276715be14baf37990f5b
F20101129_AAAOIU lungu_g_Page_158thm.jpg
72311eafff41d67f0c5207560972027d
b323f68b5f760415da58bfc4b7ce240829d5768c
F20101129_AAAPNA lungu_g_Page_011.jp2
235f162f8a3b8e400d09671e748d1427
c4837faa07fe347c5457c669d6199789e5f3a761
32763 F20101129_AAAPML lungu_g_Page_164.jpg
ff13e3732311b3b300e2fdfb23b3f8a6
44daa55fa0f90097b2773d0f47f064d21a7adcbb
72477 F20101129_AAAPLX lungu_g_Page_128.jpg
375f800c97c2cda0cbcd570ef1a6b771
9f21dba27aac4c31e3367e79fb80e3ad06731e2a
41310 F20101129_AAAOJJ lungu_g_Page_169.jp2
d77b210778f693c5343d1f2339a0acfb
1893e50d09f4ed8a97b2b40500bbddd545f3e10a
1051874 F20101129_AAAOIV lungu_g_Page_026.jp2
2098f5c151565e7110867f814a87139e
22cd7f3f03dd3ea7428eee9cf7e85b3a363ef4f8
F20101129_AAAPNB lungu_g_Page_012.jp2
150eb45afe2c2b557c24db7794d8c95d
f970aca4ed0a3a56fc85283430e889f0212073c2
32975 F20101129_AAAPMM lungu_g_Page_166.jpg
002a19446b2e344f7faae7599203af15
672a382de278e5f4fa61a012afafb012a175b04a
68323 F20101129_AAAPLY lungu_g_Page_129.jpg
92f304151404455bb93c069966061252
9fcb104cc19a7840fe26797392b857ff3d1da15e
10772 F20101129_AAAOJK lungu_g_Page_175.QC.jpg
5f4dcfab07fa423ccf08846236f43a2f
0524d11a727a4c9d1500ce3eaf4c4bd5c5e22da2
46999 F20101129_AAAOIW lungu_g_Page_115.pro
16836bfb891cdcb847511a9596da4aaf
101d6937d68f0f34433253ba8b3ec42967d32338
675794 F20101129_AAAPNC lungu_g_Page_013.jp2
ae719d8821ddc507bfbc5787e2541e85
9857b04626351b19290cc59e930cb60757e0af3c
33089 F20101129_AAAPMN lungu_g_Page_167.jpg
75d82bee4e0310739abc2cfd02f3b4d4
6df175fc622d7226ffb2d4c4e77f83dfe28a1268
79795 F20101129_AAAPLZ lungu_g_Page_130.jpg
5a4803e57171fcff94a7d8f7d8aafe3d
5888e7da2e973bb6e7a7fe0238677db39625da87
24366 F20101129_AAAOJL lungu_g_Page_026.QC.jpg
e464b665c0d6cc4a82777cf0dbcfa924
4f678817e735998a6b140f4847392c5880f9f2d2
795038 F20101129_AAAOIX lungu_g_Page_076.jp2
87853e9fb4c10dc7da85e8c2df61dadd
6a9cb3c7308531c3305aca3d5a7a6f90cd68d3ab
3726 F20101129_AAAOKA lungu_g_Page_157thm.jpg
54c93814be830c1584c174cdb07647f8
3202e2bb1f5d7371dc8fe0ab88fbcc34e1dcc092
109280 F20101129_AAAPND lungu_g_Page_015.jp2
298e03d30ab6a89dd3d24a4e3740587f
84738a93d173437158b36e548139bdf41c7ef0e4
33002 F20101129_AAAPMO lungu_g_Page_168.jpg
1cba498f8cf3d578d36291aa78ed1433
ddafb2a30167eabf465b85e2536eef4ab4a005e1
24489 F20101129_AAAOJM lungu_g_Page_051.QC.jpg
55d26b58b7232f65b7f09c5ea96994db
6d908a2fe9d8f8edff58feae198ab8aff69843ad
83026 F20101129_AAAOIY lungu_g_Page_028.jpg
8e6bb9ab77c521b9bd0f3160d52e01bf
92649e9c9f82339e3726121a1b6dceb4097da056
6447 F20101129_AAAOKB lungu_g_Page_130thm.jpg
64058ea092789d844312f3415ff01b32
cc8b47a39f8d8554ab9cb74ce7b998cae8bc10bc
119630 F20101129_AAAPNE lungu_g_Page_016.jp2
bb77e5f11382cc743e1b36a8d10d8f57
1ac3cced34273b478c21ef0c80935bbe03c14297
40538 F20101129_AAAPMP lungu_g_Page_170.jpg
4e4c7becac861c8c295744c7acf93bdf
a5a285660d092a1d1354a832f0e458f99202163f
5344 F20101129_AAAOJN lungu_g_Page_082thm.jpg
0ce104d84cb434b83dd197754c9c6e50
ebe503f174a94c58ca866e1399995cae4d0cebe2
F20101129_AAAOIZ lungu_g_Page_135.tif
fd4864cb23eb79f4638408342498e44f
0a67b1f5be850dd50acddf430f1c798015a2d1b6
1149 F20101129_AAAOKC lungu_g_Page_034.txt
943060d880b674ad8679ee80706bace2
280c7ebc47658a053424efdc5f13c707e061fd7f
121200 F20101129_AAAPNF lungu_g_Page_017.jp2
d5788e9631fe8648eaca860240fc8f01
13eb5956e5042306842fb1516df2fb12ae54675e
32800 F20101129_AAAPMQ lungu_g_Page_171.jpg
85e11a150ad9a579d1896d8fbfbaa2ae
ea98fae621bdf3de001ab375b8d2bf095a4c1619
1051970 F20101129_AAAOJO lungu_g_Page_056.jp2
876f602c20e40ac0c42693ea82f68cf3
a4316e813497c8d9d9e6db4f5945db9e77cc0503
114497 F20101129_AAAOKD lungu_g_Page_021.jp2
969dc924728a17b2256b7dbfc1ff0d38
b472e200df3085a8e710288e2271ee8f91a14696
119730 F20101129_AAAPNG lungu_g_Page_018.jp2
b71510b3eba2d60f3afa5d85c9886996
ca0558826769f1aa3a1cf6f2c7e4dc86b4993f34
32582 F20101129_AAAPMR lungu_g_Page_173.jpg
0401b638ea54e4e07ce07cb4fa7775a2
75bf656403cbf73357c58946931abcfa3a0642c4
32723 F20101129_AAAOJP lungu_g_Page_122.jpg
f97e9e923a43ac0eaa418d1cc385e8a2
136b4f54a101a79fea85d8245f3d3c26f4d70410
1524 F20101129_AAAOKE lungu_g_Page_075.txt
238a1c7b270358d51df55c9b1ce1eaf2
dcdc626a00e0ff9faf7b510540b8a34adb282f4e
1051936 F20101129_AAAPNH lungu_g_Page_023.jp2
e5b9738b46288b18ce87bbaa045e5666
861021ea28ba64d4dcfe32d8bb876ee7f11b1a46
32531 F20101129_AAAPMS lungu_g_Page_174.jpg
eb21c1ae82624b293f80d81d76747db4
74609a1c79719d9d8f09be0c1c43c0bd54c91749
53359 F20101129_AAAOJQ lungu_g_Page_028.pro
cbc7ad0015a4db69cae884194eb20061
386f86bd44920f53c677dca338bb7137161cd4c3
16983 F20101129_AAAOKF lungu_g_Page_013.pro
63caab350eb0ba8ff7a2115ef4d9e30d
1ffd13492ee5032f0df9fbc2d673fdd1ba848951
1040121 F20101129_AAAPNI lungu_g_Page_027.jp2
e9c9b08d7ff83adf25b07adad728866f
71e584225a2eabadcf4e59ec2ea5f3fb9f3a8247
32440 F20101129_AAAPMT lungu_g_Page_175.jpg
12a81e4bb812cfa2175975dbfa2cf464
46b6775e71d47261883b1cd0291ca20abcdf9563
F20101129_AAAOJR lungu_g_Page_081.tif
ffa7e9343cc394f822771dda14f47ada
811e1149bd39b8d2a428221ec8591fcbb5b91e89
24975 F20101129_AAAOKG lungu_g_Page_069.QC.jpg
7d637309f8dbd49c88558effe5c7ffdf
245062a0c2d1b808e4dbb1383f641c4b68976452
82845 F20101129_AAAPMU lungu_g_Page_178.jpg
ecb8b6eaebc75966a09c2d5b8e5a9861
25029675979d24e5f3d7d6dacbfa90e897b16a1d
1051960 F20101129_AAAOJS lungu_g_Page_006.jp2
059e538b1c8164342b1c49b181cc9aa2
2ab36eab2b2fc66392f9c2676625dff37fe1bbb4
1051958 F20101129_AAAPNJ lungu_g_Page_028.jp2
44210085a4864b9b2fe7ef21b90e88e0
6d2ce787e982e3d44a829ce0b03ebc87da297ad1
34810 F20101129_AAAPMV lungu_g_Page_180.jpg
3bf20a7b131b948345c4523504c77d82
378b70e29cc6be9f73786e9164c5cecba5179b9e
2061 F20101129_AAAOJT lungu_g_Page_078.txt
1907bc0ab479ffcec1c2c547f4efd5b7
52abaf38db5fa427291b1dec0f850fd42cbec03a
826015 F20101129_AAAOKH lungu_g_Page_082.jp2
ebac5ccd75faacf759f831c3fee1ec8f
8fd3c628ffa448a45c2f738a9f28a421972553b1
F20101129_AAAPNK lungu_g_Page_029.jp2
48133c85d6d04169838c13f2e01977ae
8cfe5f7bac996005e78d85a4dc06e455ffa869d8
23821 F20101129_AAAPMW lungu_g_Page_001.jp2
1282a96287b90446d3d81bd5950880af
177120c4f8d36a38af95d4a6f7b4199a9ff3c541
99459 F20101129_AAAOJU lungu_g_Page_112.jp2
dfb06aeed96b89f19ff49d0c46350a78
d65b412eab4ca747a823f01ad302a2b22ef6e1a6
4508 F20101129_AAAOKI lungu_g_Page_163thm.jpg
c8f1e27a15418e59dccdb27e6cebbc12
8af2553b587ce39d2279982180a5be33abb62732
150531 F20101129_AAAPOA lungu_g_Page_067.jp2
b6541bd3cff2e6a6bc807c601892a4ea
435cce176c65cc89524db36e160aa9ad809efa59
F20101129_AAAPNL lungu_g_Page_031.jp2
8339cd6270c07c5b561005da71b0917b
e8185894da251ffc3601950bd9e73a8db0f24b90
26061 F20101129_AAAPMX lungu_g_Page_005.jp2
2af17d563b0dad54708bc8cc9c7ec745
cc5ea4e58513e60b45ef7b68a54965c5045f2c0a
231 F20101129_AAAOJV lungu_g_Page_151.txt
926d0d12b99f54158d8b3ae437cbfa0c
7a5bce629ff18a15f4b020025cb02d4dd9ee1845
1206 F20101129_AAAOKJ lungu_g_Page_174.txt
712e74cd65e8448fb7937b9b7188ba51
bdc13e048fe9efb2b058d86fea81c4227c386a31
F20101129_AAAPOB lungu_g_Page_068.jp2
b7f964ec7f24b84c47eeb3221364b2d9
8b57e84714ede2a96ea637fcefe298c373793ee7
108141 F20101129_AAAPNM lungu_g_Page_033.jp2
abfbe74b1bdac661a6848000b7f80733
595a3f8e72fc31402844993f4562643bbeba5a1c
905080 F20101129_AAAPMY lungu_g_Page_008.jp2
6d4ed35bdab64cef56ed0e9d41eabdae
cd4b5f25265192a8230b9f92f5ce668bb71b98a9
26781 F20101129_AAAOJW lungu_g_Page_126.jpg
45e216a2b6280ece655c11ddcc9ebb6b
f64d3fc02b90a21f09870408ef1cb9d27eefa9a4
1051925 F20101129_AAAOKK lungu_g_Page_110.jp2
772cb26859ad08be008c32c6b3bf56c7
299bc174a667bd9e14e6b81082b29836b4baebcf
F20101129_AAAPOC lungu_g_Page_071.jp2
859841b2ed868d01c2f1a9db28315c93
b0029138717424f21bb948e72c54062a2adb8185
604868 F20101129_AAAPNN lungu_g_Page_034.jp2
ccae41b4392ae42c4e1499a56b79ed67
19d726df9403d22b76c5e3f28441d35a0da7bf44
F20101129_AAAPMZ lungu_g_Page_010.jp2
2f4ae65f894b34cea70d55cc5054a76f
f190491cadb2eb48a4dad22832bf4eb15584b530
4968 F20101129_AAAOJX lungu_g_Page_006thm.jpg
f2d0f92ad44fa4d05e78a98dc16cc465
6e53d5fe8f587594425e5b9ee811e5e35b5c7c7b
F20101129_AAAOLA lungu_g_Page_019thm.jpg
62d597ea474801cf6bef6110ff0a5e62
03ad85d016f92486dab71d252dff9da06ec7aff9
58511 F20101129_AAAOKL lungu_g_Page_163.jp2
a19e22a10d280b3a6f170afa9b73fb9a
d8246dc2fad1c2b4ff6326f59e9ddc93b28535f7
692539 F20101129_AAAPOD lungu_g_Page_072.jp2
bc4194d6f9e681ea4df0b54da5599616
9bb108824422ed83fcca8651d737c6aaa2990f57
F20101129_AAAPNO lungu_g_Page_037.jp2
e9049fca51625f699f7c672bb5ad3d53
7161857c46b8fac4e0e3fe234460be64a6b092d1
76180 F20101129_AAAOJY lungu_g_Page_017.jpg
e3772094ff8d27b88ac9d2e8f2813b13
766fbf18754bce0bab419451246bdd8c34b45b5b
6780 F20101129_AAAOLB lungu_g_Page_118thm.jpg
c15797939c9d288d68f224c28a12dec4
6f531795646c9a1b074d92a8473bb6e76de50cf5
11137 F20101129_AAAOKM lungu_g_Page_164.QC.jpg
4a811060ed040616bc00d241b54b7312
1b3436c6715a719549d5de1c95c0bf74fb2892d1
843290 F20101129_AAAPOE lungu_g_Page_074.jp2
e3c025664fe423fccd459451ae83308b
32fdaac2b82ad8ede446355ded0090926098539e
F20101129_AAAPNP lungu_g_Page_038.jp2
9f7fe39061ce7453804bcca4225015d4
c24b9a21c7ae82e5d0079cedb652b03246d72a07
51111 F20101129_AAAOJZ lungu_g_Page_026.pro
f3763adcb2f95827688187255aab69ec
cb457e024a79602609393d06c4e624e928bbc716
1759 F20101129_AAAOLC lungu_g_Page_076.txt
c134f830c5724255362129ae78ab7e40
55e8cbdb4482f0c7b41a90b69aa8f06fe002b566
10381 F20101129_AAAOKN lungu_g_Page_123.QC.jpg
c3b30b5734f4431c80c7bfad7a341902
5038f5d664dbf19a784328ee5ab4348a05bcaf57
852684 F20101129_AAAPOF lungu_g_Page_075.jp2
db38412e4bab990dd79a7b164c30defe
594db9dd4daf258790269d57b039fae4f1522df3
1051920 F20101129_AAAPNQ lungu_g_Page_040.jp2
c47385b5c59f91483510676b7d2aee23
c47bb077cf3caeba1a3f24c65538a7e5fc64b832
52986 F20101129_AAAOLD lungu_g_Page_025.pro
c3d6a1ed20198fe9662efecfbf5fa0a6
eacd5a3a93d33aa68a3abf2adecee62607caf1fa
F20101129_AAAOKO lungu_g_Page_063.tif
a4f3bfaee7ece4d88e1da824561f407b
81b18b525edf21af27853bd850c7c6003d47ec3a
895648 F20101129_AAAPOG lungu_g_Page_079.jp2
2497c3fc9bd1888dbe0877617172f00e
87a7ccbba94e9fb0a6d8d32cc86009f309bd53f6
F20101129_AAAPNR lungu_g_Page_041.jp2
737ff48b068988486ea8e03e60b105d3
f3207795500e7547fd5126cb5e06b3c4f34ddf17
5624 F20101129_AAAOLE lungu_g_Page_067.QC.jpg
304c72a23a8fea617cad2f8b25377bc8
2b3f464233f510b8fba783d88fce14e19aceb479
1684 F20101129_AAAOKP lungu_g_Page_134.txt
7d6cc9af0e6b8e8b94d651192ac188da
12c2015d07ece2f4b9b863116d438161e6183c2d
1008995 F20101129_AAAPOH lungu_g_Page_080.jp2
770af2418d27e4064e8bc3aa05a72d96
77be26feca53d5fced011026e6395d535fb5f1e5
F20101129_AAAPNS lungu_g_Page_052.jp2
abd3a270a298460f7fd0a3b31521f28f
f3330eee316207f494ffd7828d2cec64128c6c82
F20101129_AAAOLF lungu_g_Page_057.jp2
2a884b9fe00895801a39acc832616e22
02adb53b8483e1f665185c9085ebf49c5fdc6012
105053 F20101129_AAAOKQ lungu_g_Page_177.jp2
c81d893d3a36e066a8b51bc9f798baf8
9209a11f2d2661aafce024a7a1399922319f1854
600037 F20101129_AAAPOI lungu_g_Page_088.jp2
ff34f074a365a7307e2be4e78dec5fc1
4258a6ae59ea2e8cf0429500d4867874315e35ad
1051978 F20101129_AAAPNT lungu_g_Page_053.jp2
a4e69a44388498f1ebb13c6c55d315c8
f9c00d19c1ff1df27185ccb804e3f387fe98953a
59946 F20101129_AAAOLG lungu_g_Page_079.jpg
07025ce0a54df5d412609026c6c056b1
fbede2c0bf39e7b6d43b3f66abf3155aa5fe24f6
2447543 F20101129_AAAOKR lungu_g.pdf
6f376af9a8a94531e885ec51fe39b1f1
635c0d848119d07b3ab1cfc48acb4aec00ac5563
939601 F20101129_AAAPOJ lungu_g_Page_091.jp2
fb677bd9fb2e085b5485b6cbc449b0fb
794b651079a03d3e78e932965432ea6fe93790ae
1051922 F20101129_AAAPNU lungu_g_Page_055.jp2
6d4ae3cfc20fa5a008d009d2c5a1004b
8f4dd24971bb3ab814ac24e7f5b1904b4c8611e2
214 F20101129_AAAOLH lungu_g_Page_154.txt
c320cfe8866341294c73b462656686d5
b64014c2eaea87d583e66dd9e127c657d239d73f
13642 F20101129_AAAOKS lungu_g_Page_163.QC.jpg
3cfe87e4ecb5118bc9e02cb1720ff7ec
b8ae2f29549db56eb8f8a1a687b53de0cb589938
F20101129_AAAPNV lungu_g_Page_058.jp2
7c48c2a3b972c5a7f455ec826b11065f
d905ab98baddd5a18f665ed7f5361cf288d5d7f0
52123 F20101129_AAAOKT lungu_g_Page_057.pro
6c2e3064f44d568aafd30e9d04989b04
28d853a2d3c892c9818c52fc0ba53f83d8bdb593
56556 F20101129_AAAPOK lungu_g_Page_094.jp2
bb15fc80b62c6f946ee6d6bcf04afcd6
fdd416a233fd36d772cbf51e9b5b0bb6c0df6646
1039728 F20101129_AAAPNW lungu_g_Page_059.jp2
b7906d008626e49bdfcbed7ee625b291
e89c41c8336c3d42aea8edaddff28c86043de29c
2947 F20101129_AAAOLI lungu_g_Page_141thm.jpg
ea2621167f0754fc387e4076d9e2e0b0
05c0f763c50e7fd7129465e2361314acedfeb961
32816 F20101129_AAAOKU lungu_g_Page_151.jpg
1c76778a90de3f0b7aae685c6a7c5f5b
0825862c16ece2ff88743e5f9cb6a494c0769327
29379 F20101129_AAAPPA lungu_g_Page_135.jp2
bb7d1b6379acff8069aa09f7796450af
c4c78a71dbcab96b1394549393ce160587084df7
1051962 F20101129_AAAPOL lungu_g_Page_097.jp2
2246c162a310988f3399221d0c5309cc
65d30b41be36c704d03d9aadf5b5994aad39bb25
F20101129_AAAPNX lungu_g_Page_061.jp2
e1221f04fe0eb8c850d48bedbb17d565
b5dc776930d3d847dd74a3ae01932fc04acda515
24740 F20101129_AAAOLJ lungu_g_Page_094.pro
71f3d35a5f7a73c1338612a0df70b013
bfbde1bc4468cb107a1dd3215444b0b25d01f8fe
47232 F20101129_AAAOKV lungu_g_Page_056.pro
c4eeaf094b8d4d41a6ff6ba600a079b4
eb0f64ce0199a6265f132282ca6b897706b4c641
968879 F20101129_AAAPPB lungu_g_Page_138.jp2
16bbfb7bf34e574fbd1bc67bfa678ee1
47ff18116caa47849c87cd0d43ff0578201420b2
F20101129_AAAPOM lungu_g_Page_099.jp2
e921fff587d3e6fe511b6313309a901f
b2bcd274157b0f2255d4360e3a54577385de7b20
517533 F20101129_AAAPNY lungu_g_Page_065.jp2
18ea0ae6e0fcda014ad1d1068137a185
8db4469890c884b2dbd37450509717ad0af51e0f
45920 F20101129_AAAOLK lungu_g_Page_112.pro
8b82f6755b67829e1c8372daf32fe60f
bf26043480e4861a178d49d32522e61a3e5dd8d3
11765 F20101129_AAAOKW lungu_g_Page_155.QC.jpg
9c02eab801b2f68330365c45af33427e
074d6c946e81a6474e00b9f90929d6d9a210ddee
366865 F20101129_AAAPPC lungu_g_Page_141.jp2
d5eec82526fb1f86b51d85c087396e5b
ece0f6a50086bd859acf3bd510758da21b8eb1b0
936617 F20101129_AAAPON lungu_g_Page_101.jp2
26675150a44cb29f291d8a055dfe1ef2
9f416a0340646db2c41e6ffa202f472709939fdf
463158 F20101129_AAAPNZ lungu_g_Page_066.jp2
360654d3dd11b03073cf199f3b2ed116
e771875633ed054e6e79f00df25cd3b9d0262fea
23461 F20101129_AAAOMA lungu_g_Page_056.QC.jpg
cb81096b5ad44f263aec3ba7c110dbe7
21613aeb0a80146db0ac0d7064955712285f6470
24318 F20101129_AAAOLL lungu_g_Page_041.QC.jpg
9c1cb4f20a8edfb537e52dbe8718286c
9a500f80374a0a687aed6bba7947e5ef1d4c544b
52920 F20101129_AAAOKX lungu_g_Page_125.jpg
131509c941b525c82c43fb181d21d534
7400f746a4a77668f9e945b18b0c64990a4e8238
274555 F20101129_AAAPPD lungu_g_Page_147.jp2
1bba7bd036ded0e9e578b1042a324f9d
8819ca83b6a3775b16902786db7208d539139ecd
610170 F20101129_AAAPOO lungu_g_Page_103.jp2
f902f74d306aac22a0816f392098fc15
803f1f74e4f898efcb6279fee4c1e6d047fcb893
10699 F20101129_AAAOMB lungu_g_Page_037.pro
35c7547019cd4f16a2d5dfebe15c6bb8
47cf29af586d55adfd0a957225d5671ba79c9442
F20101129_AAAOLM lungu_g_Page_147.tif
c7c97435c78c78356af392ff46193e6d
9a87e630249a5a58192de819fa735041cc96b9fb
F20101129_AAAOKY lungu_g_Page_181.tif
a9aac534ae5442519ffe032b81458f80
5a28ffdd4a920cb5db7b83131189c720b1a92a02
36984 F20101129_AAAPPE lungu_g_Page_150.jp2
e62a29831793dd7ff4d75ff711a65677
fde4f2aa9f25c81d3758aa3c28b5ab62a12e9d72
991028 F20101129_AAAPOP lungu_g_Page_105.jp2
04fbb7b166894d29f7da75251d1ffc46
73c476ac302f8f180d8a169e488d8d0d4a48bdea
F20101129_AAAOMC lungu_g_Page_094.tif
d8047fbbf61f20fb5a8d74c199347aca
e344667bf947f2747aae852c4ae1bb9abe3213c2
67913 F20101129_AAAOLN lungu_g_Page_091.jpg
e06992c8e6268718e979f56e56cec65d
0199daadf8740312dfa10a135c82068f305f722c
1655 F20101129_AAAOKZ lungu_g_Page_148.pro
3b213d3f33ddb72a0da5c664f29a2e62
115660f849f2414ce0b3c1a5ed9478eaa921ddb1
36234 F20101129_AAAPPF lungu_g_Page_154.jp2
1f1bfbc722691b7f7f9685b8015b48f1
e5c600488462f9105e76d79fda9f6f8748dab379
F20101129_AAAPOQ lungu_g_Page_108.jp2
8413103a11434bfc621e60d1a115a214
d235f22750fb41e329abc4b21dbbae260a6692ad
55754 F20101129_AAAOMD lungu_g_Page_031.pro
655bc7db4ad92555e6427774be0c527b
9dfaa9a93417175f2fd0e31e83f07d686e9f1747
3924 F20101129_AAAOLO lungu_g_Page_103thm.jpg
662ae42a7d7e94a50b9886433f3716d7
710a2e75e67751fbdc15144b769caa68bcfc46ce
47952 F20101129_AAAPPG lungu_g_Page_156.jp2
d034567b9d8b1644b3494127c3bb6ed3
787f4fb2301fdd2b0d94f2075bf9d1e504ccf42a
803088 F20101129_AAAPOR lungu_g_Page_109.jp2
0459af0b6e947f70342b4f4386c85a47
d6c77c5fee93d38cb57102e0b7cb5bf09f9f84be
F20101129_AAAOME lungu_g_Page_109.pro
f34527607f58b99abcc7a7f013f6bb27
19327b9ca3936da7ee78c4c4318a4fd8e1b5ff7f
F20101129_AAAOLP lungu_g_Page_036.tif
9d51c993479ff5c7dabe3869ba9692ca
b8d6f9a3fddc49a690fd6f10110216a80f8edd33
35363 F20101129_AAAPPH lungu_g_Page_157.jp2
4fd2e3b3f5f84cacb48d9c61643529b3
6bc74e2117acef46981c68eb1c791de13e2d49b4
F20101129_AAAPOS lungu_g_Page_115.jp2
12718df799a60ef2cc7d0bed8ef90021
1ad8cadcd3e22cc96aec281c7941bcec8d205875
57007 F20101129_AAAOMF lungu_g_Page_045.pro
930d245d89d20ecd6c5099db9d6b63d0
479923a0fa8a76658c4f31dce21608a89989526f
302313 F20101129_AAAOLQ lungu_g_Page_145.jp2
8ab59c671596a2aafa90cbcff29d64df
7feec49e3c56d02b06314ec39acf9b73bd002179
35263 F20101129_AAAPPI lungu_g_Page_158.jp2
a97954458f7ce00c8f6b79134115471c
985a86820f066df83b5e0a9e3fce16323ba14364
77786 F20101129_AAAPOT lungu_g_Page_119.jp2
f55a3f8168e3c77c11fc852ddba728bd
05e5e0f12b52c86f7860ae51d261bd062e73588a
36142 F20101129_AAAOLR lungu_g_Page_153.jp2
abca660173cf64ced919cdeff952a2b7
c7070527636e931bb2137d8ee29e0399ae4aab34
51768 F20101129_AAAOMG lungu_g_Page_032.pro
326dfc18c0901882ce1af5ec273531da
769e830449891051b8e9b029d760018a85661e37







MEASUREMENT OF THE TOP QUARK( MASS IN THE ALL
HADRONIC CHANNEL AT THE TEVATRON


















By
GHEORGHE LUNGU


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007


































S2007 Gheorghe Lungu





































To my wife, Corina.










ACKENOWLED GMENTS

The first person I want to acknowledge is my advisor, Prof. Jacobo K~onigsberg,

for guiding and supporting me during my graduate student years in ner IlrJ rlis. His

dedication, his commitment to his work and his students, and his savviness in the

high-energy experimental field serve as an example to which I aspire as a physicist

and as a scientist.

Also I will be forever grateful to Dr. Valentin Necula in many aspects. He made

possible many things for me starting with lending me money to pI li the tests needed for

admission in the graduate school at the University of Florida. Moreover, he contributed

greatly to the success of this analysis, from the writing the C++ code for main tools

and ending with rich and enlightening discussions on the topic. His great skills and his

excellence represent a standard for me.

I would like to mention the great influence I received in my first years at the

University of Florida from Prof. K~evin Ingersent and Prof. Richard Woodard. With

or without their awareness, they helped me deepen my knowledge in theoretical physics.

Also I take this opportunity to thank the members of the committee supervising this

thesis: Dr. Toshikazu Nishida, Dr. Richard Field, Dr. Pierre Ramond and Dr. Guenakh

Mitselmakher. I will be inspired by their tremendous work and by their extraordinary

achievements in physics. Despite our rather brief interaction, I want to mention that my

experience during my Oral Examination helped redefine me as a physicist and as a person.

At CDF I drew much knowledge from interacting with many people such as Dr.

Roberto Rossin, Dr. Andrea Castro, Dr. Patrizia Azzi, Dr. Fabrizio Margfaroli, Dr.

Florencia Canelli, Dr. Daniel Whiteson, Dr. Nathan Goldschmidt, Dr. Unki Yang, Dr.

Erik Brubaker, Dr. Douglas Glenzinski, Dr. Alexandre Pronko, Dr. Mircea Coca, Dr.

Gavril Giurgiu. Special thanks to Dr. Dmitri Tsybychev, Dr. Alexander Sukhanov and

Dr. Song Ming Wang who helped me greatly getting up to the speed of the experimental

physics at CDF. Also I want to mention and thank Yuri Oksuzian and Lester Pinera for










many interesting discussions we had and for being the friends I needed during difficult

times.

At last, yet most importantly, I want to thank my wife, Corina, whom I dedicate

this work. Without her constant support, criticism and love I wouldn't have succeeded in

finding the balance needed to reach this goal. Also I thank my father and my sisters for

loving me, and my mother who will be ah-- 0-4 in my mind.











TABLE OF CONTENTS


page

ACK(NOWLEDGMENTS ....._.__ .. .. 4

LIST OF TABLES ....._.. ... 9

LIST OF FIGURES ......... .... .. 10

ABSTRACT ......_ .._ ._ .. 14

CHAPTER

1 INTRODUCTION ..... ... 15

1.1 History of Particle Physics ......... .. .. 15
1.2 The Standard Model ......... . .. 21
1.3 Top Quark Physics ......... .. .. 2:3
1.4 Highlights of Mass Measurement . ..... .. :32

2 EXPERIMENTAL APPARATUS ....._ .. :38

2.1 Tevatron Overview ........ . .. :38
2.2 CDF Overview and Design ........ ... .. 40
2.2.1 Cl.,~ i. al:0,v Luminosity Counters ..... ... .. 41
2.2.2 Silicon Tracking ........ .. .. 42
2.2.3 Central Outer Tracker . .. .. .. 42
2.2.4 Calorinteters ........ ... .. 4:3
2.2.5 The bluon System ....... ... .. 44
2.2.6 The Ti1;__ 1- System ....... .. .. 44

:3 EVENT RECONSTRUCTION ........ .. 51

:3.1 Tracks ........ . .. 51
:3.2 Vertex Reconstruction ........ . .. 5:3
:3.3 Jets Reconstruction ........ .. .. .. 54
:3.3.1 Relative Energy Scale Correction .... .. .. 56
:3.3.2 Multiple Interactions Correction .... .... 57
:3.:3.3 Absolute Energy Scale Correction .... .. .. 57
:3.3.4 Underlying Event Correction . ... .. 58
:3.3.5 Out of Cone Correction ..... .. .. 58
:3.4 Leptons Reconstruction ........ .. 59
:3.4.1 Electrons ........ . .. 59
:3.4.2 Aluons ........ . .. 59
:3.4.3 Tau Leptons ........ .. .. 60
:3.4.4 Neutrinos ........ . .. 60
:3.5 Photon Reconstruction ........ .. .. 60
:3.6 Bottom Quark TI_-! .. it,-; ... .. .. .. 61










:3.6i.1
:3.63.2
:3.63.3


SecVtx Algorithm.
Jet Probability Algorithm
Soft Lepton Tag Algorithm.


4 DESCRIPTION OF THE MATRIX ELEMENT MACHINERY

4.1 Probability Density Definition.
4.2 Combinatorics.
4.3 Calculation of the Matrix Element
4.4 Transfer Functions
4.5 Transverse Montentunt of the it System.
4.6 Inmplenientation and Evaluation of the Probability Density
4.7 Clo.~ L a- of the Matrix Element Calculation

5 DATA SAMPLE AND EVENT SELECTION

5.1 Data and Monte Carlo Samples
5.2 Event Selection

6 BACKGROUND MODEL.

6.1 Definition
6.2 Validation of the Background Model
6.2.1 Validation in Control Region 1.
6.2.2 Validation in Control Region 2.
6.2.3 Validation in the Signal Region
6.2.4 Effects on the Statistical Uncertainty


7 DESCRIPTION OF THE MASS MEASITREMENT METHOD .. .. .. .. 104

7.1 Likelihood Definitions ......... .. .. 104
7.2 Top Templates ......... . .. .. 106
7.2.1 Definition of the Template ...... .. . 106
7.2.2 Paranleterization of the Templates .... .... .. 106
7.3 Dijet Mass Templates ......... .. .. 108
7.3.1 Definition of the Template ...... .. . 108
7.3.2 Paranleterization of the Templates .... .... .. 108

8 MODEL VALIDATION AND SENSITIVITY STUDIES .. .. .. 114


Pseudo-experintents Setup ....
Validation of the Model .....
Expected Statistical Uncertainty .


114
115
118


9 SYSTEMATIC UNCERTAINTIES .....


. .. 127


Jet Fragmentation
Initial State Radiation
Final State Radiation.









9.4 Proton and Antiproton PDFs
9.5 Background Shape
9.6 Background Statistics ..........
9.7 Correlation Between Top Mass and Dijet Mass ...
9.8 2D Calibration
9.9 B-jet Energy Scale
9.10 Residual Jet Energy Scale ........
9.11 Summary of the Systematic Uncertainties .....

10 CONCLUSION.

APPENDIX

A PARTON DISTRIBUTION FUNCTION OF THE PROTON

B TRANSVERSE MOMENTUM OF THE TT SYSTEM ..

C TR ANSFER FUNCTIONS

D SIGNAL TOP TEMPLATES

E SIGNAL DIJET MASS TEMPLATES

REFERENCES .......... ....

BIOGRAPHICAL SKETCH ..........










LIST OF TABLES


Table page

1-1 Classification of the fundamental fernxions in Standard Model. .. .. .. :34

1-2 Force carriers described in Standard Model. ..... .. :34

1-3 Branching ratios of the it decay channels. ...... .. .. :35

4-1 Definition of the inning of the parton pseudo-rapidity ... .. .. 85

4-2 Definition of the inning of the parton energy for b-jets .. .. .. 86

4-3 Definition of the inning of the parton energy for W-jets .. .. .. 87

5-1 Number of events in the niulti-jet data ...... .. . 94

5-2 Number of events in the it Monte Carlo sample .... .. .. 94

5-3 Expected signal to background ratios for the it Monte Carlo samples. .. .. 95

5-4 Efficiency of the minLKL cut for the it Monte Carlo samples. .. .. .. .. 96

7-1 Values of the parameters describing the shapes of the top templates for the it
samples. ......... .... . 110

7-2 Values of the parameters describing the shapes of the top templates in the case
of the background events. ......... .. .. 110

7-3 Values of the parameters describing the dijet mass templates shapes for the it
samples. ......... .... . 112

7-4 Values of the parameters describing the dijet mass templates shapes in the case
of the background events. ......... .. .. 11:3

8-1 Value of the correlation factor between any two pseudo-experintents .. .. .. 119

8-2 Linearity check of the M,,,, and JES reconstruction ... .. .. .. 119

9-1 Uncertainties on the parameters of the top mass templates for background. .. 1:32

9-2 Residual jet energy scale uncertainty on the top mass. ... .. . .. 1:32

9-:3 Suninary of the systematic sources of uncertainty on the top mass. .. .. .. 13:3

10-1 Expected and observed number of events for the it events .. .. .. .. 1:38










LIST OF FIGURES


Figure page

1-1 Leading order diagram for it production via quark-antiquark annihilation .. 34

1-2 Leading order diagrams for it production via gluon-gluon fusion. .. .. .. .. 34

1-3 Cross-section of it pair production as a function of center-of-mass energy .. 35

1-4 Diagrams for the self-energies of W-boson and Z-boson ... .. .. .. 35

1-5 Constraint on the Higgs boson mass . .. .. .. 36

1-6 Loop contributions to the Hifggs boson propagator ... ... .. .. 36

1-7 Experimental constraints on M~w and M~to. * * *. 37

2-1 Diagram of the Tevatron accelerator complex .. .. .. 46

2-2 Elevation view of the East hall of the CDF detector .. .. .. .. 46

2-3 Schematic of tracking volume and plug calorimeters .. .. .. .. 47

2-4 Initial instantaneous luminosity and total integrated luminosity in Run II .. 47

2-5 Schematic view of the Run II CDF silicon tracking system. .. .. .. 48

2-6 East end-plate slots Sense and field planes in COT ... .. .. .. 48

2-7 Cross section of upper part of new end plug calorimeter. .. .. .. 49

2-8 Configuration of steel, chambers and counters for the C \!U detector .. .. .. 49

2-9 Readout functional block diagram in Run II. .. .. 50

3-1 Jets correction factor as a function of rl. ...... .. . 63

3-2 Average transverse energy as a function of the number of primary vertices in
the event . .. ..... . 64

3-3 Absolute jet energy scale corrections for jets with cone size of 0.4 .. .. .. 64

3-4 Fractional systematic uncertainty due to underlying event .. .. .. 65

3-5 Jet corrections due to out-of-cone effect for jets .... .. .. 65

3-6 Schematic view of an event containing a jet with a secondary vertex. .. .. 66

3-7 Jet probability distribution for prompt, charm and bottom jets. .. .. .. .. 66

3-8 Sigfned impact parameter distribution . .... .. 67

4-1 Tree level Feynman diagram for the process us i t ... .. . .. 85











Tree level Feynman diagram for the process us i tt bbundd ......

Cross section for it production versus the top mass, from CompHep ...

Transverse momentum of the it events ......

Mass reconstruction using smeared parton energies ......

Mass reconstruction using jets matched to partons ......

Reconstructed top mass versus input top mass using realistic jets. ....

Minimum of the negative log event probability .......

Background validation in control region 1 for single I__ d events ....

Background validation in control region 1 for double I__ d events ...

Sum of event probabilities calculated for for background samples. ....


.... 86i

. .. 87

. 88

. 88

. 89

. 90

. 95

.... 100

.... 101

.... 101


6-4 Dijet invariant mass of the ulrnt I_ d jets for background before the cut on the
signal-like probability.


6-5 Dijet invariant mass of the ulrnt I_ d jets for background
on the signal-like probability ......

6-6 Event by event most probable top mass distributions for
after the signal-like probability cut .....

6-7 Effect of the background contamination in the top mass r
only the matrix element technique. .....

7-1 Top templates for it events. .....

7-2 Top templates for background events .....

7-3 Dijet mass templates for it events. .....

7-4 Dijet mass templates for background events .....

8-1 Raw reconstruction in the JES versus Top Mass plane .

8-2 Reconstructed top mass versus input top mass, for input

8-3 Reconstructed JES versus input JES, for input top mass

8-4 Slope of the mass calibration curve versus input JES. ..

8-5 Constant of the mass calibration curve versus input JES.

8-6 Slope of the JES calibration curve versus input JES. ..

8-7 Constant of the JES calibration curve versus input JES.


samples after the cut
.. 102


background samples
.. 103

reconstruction using
.. 103

. 111

. 111

. 111

.. 113

. 120

JES equal to 0. .. 120

equal to 170 GeV. .. 120

.. 121

.. 121

.. 121

. . 121










8-8 Mass pull means versus input top mass, for input JES equal to 0. .. .. .. 122

8-9 Mass pull widths versus input top mass, for input JES equal to 0. .. .. .. 122

8-10 Average of mass pull means versus input JES. .. .. .. 122

8-11 Average of mass pull widths versus input JES. .. .. .. 122

8-12 JES pull means versus input top mass, for input top mass equal to 170 GeV. 12:3

8-1:3 JES pull widths versus input top mass, for input top mass equal to 170 GeV. .. 12:3

8-14 Average of JES pull means versus input top mass. .. . .. 12:3

8-15 Average of JES pull widths versus input top mass. ... .. .. .. 12:3

8-16 Corrected reconstruction in the JES versus Top Mass plane .. .. .. .. .. 124

8-17 Slope of the AG<>, calibration curve versus true JES after the 2D correction. .. 125

8-18 Intercept of the Alrt, calibration curve versus true JES after the 2D correction. 125

8-19 Slope of the JES calibration curve versus true AO<>, after the 2D correction. .. 125

8-20 Intercept of the JES calibration curve versus true AG<>, after the 2D correction. 125

8-21 Mass reconstruction using blind mass samples .... ... .. 125

8-22 JES reconstruction using blind JES samples .... .. .. 125

8-2:3 Expected uncertainty on top mass versus input top mass .. . .. 126

8-24 Expected uncertainty on JES versus input JES ... .. .. 126

9-1 Event multiplicity for background events .... .. .. 1:32

9-2 Parameters of the top mass template for single I__ d background events .. 13:3

9-3 Parameters of the top mass template for double I__ d background events .. 1:34

9-4 Top mass pull mean as a function of AO<>; considering the correlation between
the event top mass and the dijet mass . .... .. 1:34

9-5 Top mass pull width as a function of AG>;, considering the correlation between
the event top mass and the dijet mass. . .... .. 1:35

10-1 Event reconstructed top mass in the data .... .. .. 1:38

10-2 Contours of the mass and JES reconstruction in the data .. .. .. .. 1:39

10-3 Expected statistical uncertainty front Monte Carlo .. . .. 1:39

10-4 Most precise top mass results at Fernmilah .... ... . 140











A-1 Shapes for the PDF distributions used in the matrix element calculation .. 141

B-1 Transverse montentunt of the it system for different generators and top masses. 142

C-1 Transfer functions for the W-hoson decay partons .. . .. 143

C-2 Transfer functions for the b-quark partons ..... .. 146

D-1 Top templates for it single' I__- d events ... .. .. 149

D-2 Top templates for it double' I__- d events ... .. .. 156

E-1 Dijet mass templates for it single' I__- d events ... ... .. 163

E-2 Dijet mass templates for it double' I__- d events .. ... .. 170









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

MEASITREMENT OF THE TOP QUARK( MASS IN THE ALL
HADRONIC CHANNEL AT THE TEVATRON

By

Gheorghe Lungu

August 2007

C'I I!r: Jacoho K~onigfshergf
Major: Physics

This study presents a measurement of the top quark mass in the all hadronic channel

of the top quark pair production mechanism, using 1 fb- of p collisions at 2@=1.96 TeV

collected at the Collider Detector at Fermilah (CDF). Few novel techniques have been

used in this measurement. A template technique was used to simultaneously determine

the mass of the top quark and the energy scale of the jets. Two sets of distributions have

been parameterized as a function of the top quark mass and jet energy scale. One set of

distributions is built from the event-by-event reconstructed top masses, determined using

the Standard Model matrix element for the it all hadronic process. This set is sensitive

to changes in the value of the top quark mass. The other set of distributions is sensitive

to changes in the scale of jet energies and is built from the invariant mass of pairs of light

flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the

measured jets in the final state is expressed in units of its uncertainty, oy.. The measured

mass of the top quark is 171.1+3.7(stat.unc.)+2.1(syst.unc.) GeV/c2 and to the date

represents the most precise mass measurement in the all hadronic channel and third best

overall.









CHAPTER 1
INTRODUCTION

1.1 History of Particle Physics

At the end of the 19th century, the scientists were convinced that matter is made up

by atoms. The atomic theory has been first conjectured by ancient Greek philosophers

like Leucippus, Democritus, and Epicurus, then later indicated by Dalton's chemistry

experiments. One of the philosophical motivations behind this theory was the reductionist

desire to explain the diversity of matter by the existence of few fundamental and

indivisible particles.

The atoms were thought to be these fundamental particles, but an uncomfortably

large number of different atoms have been identified. Moreover, some experiments were

showing evidence that the atoms are not indivisible. By 1897, Thomson discovered the

electrons and measured its charge to mass ratio. Also he proposed his plum-pudding

model of the atom, where the electrons are small, negatively charged and distributed

inside the massive, positively charged atom. It was already known that some atoms

decay spontaneously producing three types of radiations: ac-rays, bent slightly by a

magnetic field, P-rays, bent significantly in a magnetic field, and y-rays, not affected by

the magnetic field. Therefore the atoms were no longer seen as fundamental.

In 1900, studying the radiation of the black body, Planck determined that the power

of light emitted by matter is a multiple of a fundamental quantum of energy. At a given

frequency of the light v, the minimum quantum of energy is hv. He introduced the

constant h= 6.625 x10-34 JS, Which is one of the most important constants of the quantum

theory. Later in 1905, Einstein's explanation of the photoelectric effect confirmed the

quantum theory of light and then in 1923 Compton's experiment settled in the photon as

particle of light.

Back in 1909, Rutherford concluded following the scattering of ac-particles off gold

atoms that Thomson's atom is not realistic and that the positive charge and almost all










mass is concentrated in a nucleus with the electrons orbiting around it. Several years later

in 1918, following a different scattering experiment with ac-particles, he will conclude that

the hydrogen nucleus is an elementary particle and it is present inside the nucleus of every

atom. This new particle was later called proton. While the proton was able to explain the

charge of the nucleus, it couldn't explain the mass of heavier atoms. Rutherford believed

that a neutral particle he called neutron exists, but this was confirmed experimentally only

in 1932 by ChI I [wick.

Rutherford's atom was not a satisfactory model. The electron going around the

nucleus would be accelerated centripetally and therefore should emit electromagnetic

radiation according to the classical theory of electromagnetism. The loss of energy through

radiation should make the electron collapse on the nucleus rendering Rutherford's atom

unstable. In 1913, Bohr will propose a different model for the atom in which the electrons

sit on orbits with discrete values of the orbital angular momentum. The electron can

move from one orbit to another by releasing or receiving a photon with an energy equal

to the energy difference between the orbits. This model will receive support from the

Franck-Hertz experiment where it was observed that the atoms can absorb only specific

amounts of photons.

Bohr's atom was still not explaining several experimental observations like the

splitting of the atomic spectral lines (Zeeman effect) or the splitting of a beam of electrons

when passing a magnetic field (Stern-Gerlach experiment). To explain this, in 1925,

Uhlenbeck and Goudsmit proposed that the electron spins on its axis as it orbits around

the nucleus. Soon Pauli introduced the exclusion principle stating that two particles can

occupy a state defined by the same quantum numbers explaining why the electrons were

spread overall several orbits.

In 1924, De Broglie extended the particle-wave duality from photons to any particle

such as the electron. The wavelike character of the electron was observed in 1927 in

a diffractive experiment hv Davisson and Germer. Based on this idea, Schrodinger










formulated his famous matter wave equation predicting precisely the energies levels of

the electron in a hydrogen atom. Simultaneously, Heisenberg introduce the uncertainty

principle which helped explain the concept of matter as both waves and particles. This

constitutes the starting point of the quantum mechanics.

The quantum theory developed by Schrodinger and Heisenberg wasn't incorporating

the special relativity theory and the spin of the electron. This problem was solved by

Dirac by writing the appropriate equation which could also explain the fine splitting

and hyperfine splitting of energy levels within the hydrogen atom. The Dirac equation

also predicted the existence of negative energy states which lead to the prediction of

antiparticles. This surprising prediction was validated in 19:31 by Anderson who discovered

the positron, the anti-particle of the electron. Later in 1955, the antiproton was discovered

and a year later the antineutron.

Besides the gravitational force and the electromagnetic force which were known

at that time, a new force was introduced which will hind the protons and the neutrons

inside the nucleus. This force was called the strong force and in 19:35 Yukawa believed it

is mediated by a massive particle called pion, denoted by Tr. To account for all possible

interactions between the nucleons it was expected that the pion exists in three charge

states: positive, neutral and negative. In 19:37, Anderson observed a new particle, but it

wasn't exhibiting the expected properties of the pion. Therefore the scientists decided that

the new particle wasn't not the pion, but a different new particle they called the muon,

denoted p.

Studying the /3 decay of nuclei, the scientists concluded that it was due to either

neutron decay or proton decay. While it was found that the proton decays only if

stimulated, the neutron was decaying spontaneously with a half-time of about 10 minutes.

This period couldn't he associated to strong force or the electromagnetic force. So a new

force was introduced to explain the process and they called it the weak force. The neutron

decays into a proton and an electron. The spectrum of the electron energy led Pauli










in 1930 to postulate the existence of a new particle which Fermi called neutrino. This

particle was discovered in 1956 hv Reines.

Eventually, in 1947, Powell, Lattes and Occhialini discovered the charged pions,

while the neutral pion was discovered later in 1950. However, in about the same time

with the pion discovery other new strongly interacting particles were observed, the

kaons and the hyperons. They were generically called strange particles because they

were unexpected and they seemed to be produced via strong interaction, but decay via

the weak interaction. Attempting to classify the strongly interacting particles, in 1964

Gell-1\ann and Zweig introduced the quark model containing three varieties of quarks:

up, down and strange. All the known particles are either mesons where two quarks are

combined or '.I i-. ess- where three quarks are combined. This was not a totally new idea

because between 1953 and 1957 scattering of electrons off nuclei revealed a charge density

distribution inside the protons and the neutrons. Later in 1968, Feynman and Bjorken

made the same observation in an experiment at Stanford Linear Accelerator where

electrons were collided with protons.

The decay of the strange kaons led Lee and Yang in 1956 to propose that the weak

interaction doesn't conserve parity. Later that year Wu observed this feature in the

decav of the cobalt. This discovery shocked the scientific community as much as the

corpuscular theory of light did in the past. Following this property of the weak interaction,

it was expected that the electron and the neutrino have preferred polarizations. In 1957,

Frauenfelder determined that the electron is left-handed and in 1958 Goldhaber showed

that the neutrino is left-handed as well. Studying the spins of the electrons emitted in

the muon decays, it was discovered that the charge conjugation symmetry is also violated

by the weak interaction. It was believed though that the CP symmetry is preserved by

the weak interaction. However, in 1964, Chi s!-1. 1,-,.1,~ Cronin, Fitch and Turlay showed

that the kaon decay doesn't preserve this symmetry either. The CP violation of the weak










interaction was not understood until later. However, the CP conservation by the strong

force remains a mystery.

Another thing that puzzled the physicists was why the decay of the muon into an

electron and a photon was not observed. The solution adopted was the postulation

of two types of neutrinos, the electron-neutrino and the muon-neutrino, along with

the conservation of two new quantum numbers, the electron number and the muon

number. The muon-neutrino was eventually discovered in 1962 by Lederman, Schwarts

and Steinberger.

Through the work of Feynman in 1947, the physicists were able to calculate the

electromagnetic properties of the electron, positron and the photon using the Feynman

diagrams. This constitutes the birth of quantum electrodynamics, or QED.

The theory of weak interaction was first formulated by Fermi in 1933 and it was

assuming a four-fermion interaction acting at a single point. The Fermi coupling constant

GF=1.16639x10-s GeV-2 WaS giving the strength of the weak interaction. In 1956,

Feynman and Gell-Mann incorporated the phenomenon of parity violation into this theory.

The Fermi theory of weak interaction was able to explain the low-energy processes, but

was making unacceptable prediction for high-energy weak interactions. The solution

to this problem was to introduce a particle which mediates the weak interaction. This

particle was thought to be a spin 1 boson, with three charge states, W-, Wo, W+ and

was the result of work done by Schwinger, Bludman and Glashow in 1959. Later in 1967

Weinberg and Salam propose a theory that unifies the weak and the electromagnetic

forces. In this theory the neutral boson carrying the weak force is called Zo. In addition

to that a massive boson called the Higgs boson is predicted. The W and Z bosons will be

eventually discovered in 1983 at CERN in according to the predictions.

In 1964 the fundamental particles were: three quarks up (u), down (d) and strange

(s), and two pairs of leptons the electron (e) with its neutrino (ve), and the muon

(p-) with its neutrino (v,). Their corresponding antiparticles were also considered as










fundamental. Observing the pattern of the leptons many physicists started believing

in the existence of a fourth quark, called charm (c). In 1970 Glashow, Iliopoulos and

Alaiani proposed a mechanism through which the weak theory will allow flavor-conserving

Zo-mediated weak interactions. This mechanism was requiring the existence of a fourth

quark. Later in 197:3, at CERN, Perkins found evidence of weak interactions with no

charge exchange. The existence of charm was confirmed in 1974 by Richter and Ting who

found a charm-anticharm meson called J/W, and then reconfirmed in 1976 by Goldhaber

and Pierre who found a charm-antiup meson called DO.

A quantum field theory of strong interaction is formulated in 197:3 hv Fritzsch and

Gell-Mann. They introduce the gluon (g) as a massless quanta of the strong force. This

theory of quarks and gluons is similar in structure to QED, but since strong interaction

deals with color charge this theory is called quantum chromodynamics, or QCD. The

color charge was a concept introduced earlier in 196:3 by Greenberg, Han and Nambu.

The hadrons made of quarks were considered color neutral. In 197:3, Politzer, Gross and

Wilczek discover that at short distances the strong force was vanishing. This special

property was called.movi-nlll Ie freedom. In 1979, a strong evidence for a gluon radiated

by a quark is found at DESY, in Hamburg, Germany.

In 1976, another unexpected particle is discovered. This new particle seen by Perl at

SLAC was the tau lepton, denoted 7r, and it was the first particle of the third generation.

In 1977, the existence of a third generation was confirmed by Lederman at Fermilah by

discovering a new quark, called bottom (b). In 1989, the experiments at SLAC and CERN

strongly supported the hypothesis of only three generations of fundamental particles by

measuring the lifetime of Zo-hoson. Later in 1995 at Fermilah the remaining quark of the

third generation is discovered. This is called the top quark (t) and it has mass much larger

than the other quarks. Also at Fermilah the third generation is completed by the discovery

of the tau neutrino (v-) in 2000.










All the discoveries described above led to the formulation of a theory that suninarizes

the current knowledge of the fundamental particles and the interactions between them.

This theory is called the Standard Model of particle physics and it will be described in

more detail in the next section.

1.2 The Standard Model

The Standard Model of particle physics is a theory which describes three of the four

known fundamental interactions between the elementary particles that make up all matter.

It is a quantum field theory which is consistent with both quantum niechanics and special

relativity. To date, almost all experimental tests of the three forces described by the

Standard Model have agreed with its predictions. However, the Standard Model falls short

of being a complete theory of fundamental interactions, primarily because of its lack of

inclusion of gravity, the fourth known fundamental interaction, but also because of the

large number of numerical parameters (such as masses and coupling constants) that must

he put "by hand" into the theory (rather than being derived front first principles).

The matter particles described by the Standard Model all have an intrinsic spin whose

value is determined to be 1/2, making them fernxions. For this reason, they follow the

Pauli exclusion principle in accordance with the spin-statistics theorem giving them their

material quality. Apart front their antiparticle partners, a total of twelve different types

of matter particles are known and accounted for by the Standard Model. Six of these

are classified as quarks (up, down, strange, charm, top and bottom), and the other six as

leptons (electron, nmuon, tau, and their corresponding neutrinos).

Each quark carries any one of three color charges red, green or blue, enabling them

to participate in strong interactions. The up-type quarks (up, charm, and top quarks)

carry an electric charge of +2/3, and the down-type quarks (down, strange, and bottom)

carry an electric charge of -1/3, enabling both types to participate in electromagnetic

interactions .










Leptons do not carry any color charge they are color neutral, preventing them

from participating in strong interactions. The down-type leptons (the electron, the

muon, and the tau lepton) carry an electric charge of -1, enabling them to participate in

electromagnetic interactions. The up-type leptons (the neutrinos) carry no electric charge,

preventing them from participating in electromagnetic interactions.

Both quarks and leptons carry a handful of flavor charges, including the weak isospin,

enabling all particles to interact via the weak nuclear interaction. Pairs from each group

(one up-type quark, one down-type quarks, a lepton and its corresponding neutrino) form

a generation. Corresponding particles between each generation are identical to each other

apart from their masses and flavors (Table 1-1). The force-mediating particles described

by the Standard Model all have an intrinsic spin whose value is 1, making them bosons

(Table 1-2). As a result, they do not follow the Pauli Exclusion Principle.

The photons mediate the familiar electromagnetic force between electrically charged

particles (these are the quarks, electrons, muons, tau, W-boson). They are massless and

are described by the theory of quantum electrodynamics. The W and Z gauge bosons

mediate the weak nuclear interactions between particles of different flavors (all quarks and

leptons). They are massive, with the Z-boson being more massive than the W-boson.

An interesting feature of the weak force is that interactions involving the W gauge

bosons act on exclusively left-handed particles. The right-handed particles are completely

neutral to the W bosons. Furthermore, the W-bosons carry an electric charge of +1

and -1 making those susceptible to electromagnetic interactions. The electrically neutral

Z-boson acts on particles of both chiralities, but preferentially on left-handed ones.

The weak nuclear interaction is unique in that it is the only one that selectively acts on

particles of different chiralities, the photons of electromagnetism and the gluons of the

strong force act on particles without such prejudice. These three gauge bosons along with

the photons are grouped together which collectively mediate the electroweak interactions.










There are no mass terms for the fermions. Everything else will come through

the scalar (Higgs) sector. The eight gluons mediate the strong nuclear interactions

between color charged particles (the quarks). They are massless. But, each of the eight

carry combinations of color and an anticolor charge enabling them to interact among

themselves. The gluons and their interactions are described by the theory of quantum

chromodynamics. Leptons carry no color charge; quarks do. Moreover, the quarks have

only vector couplings to the gluons, ie, the two helicities are treated on par in this part of

the standard model.

The Higgs particle described by the Standard Model has no intrinsic spin, and thus

is also classified as a boson. As of early 2007 there have been indications of particles at

the predicted mass of the Higgs boson found by the Tevatron at Fermilab; the significance

level of these indications is however not high enough to warrant it being confirmed as

the Higgs particle. It is hoped that upon the completion of the Large Hadron Collider,

experiments conducted at CERN would bring experimental evidence confirming the

existence for the particle. The Higgfs boson pha7i~ a unique role in the Standard Model.

The Standard Model predicted the existence of W and Z bosons, the gluon,

the top quark and the charm quark before these particles had been observed. Their

predicted properties were experimentally confirmed with good precision. The Large

Electron-Positron collider at CERN tested various predictions about the decay of Z

bosons, and found them confirmed.

1.3 Top Quark Physics

The first observations of the top quark were reported twelve years ago by the CDF

and DO experiments [1]. The discovery of the top quark was not a surprise. Indeed, the

existence of an isospin partner for the b-quark is strongly motivated by arguments of

theoretical consistency of the Standard Model, absence of flavor changing neutral current

in B meson decays and studies of Z boson decays [2]. However, the large mass of the top

quark, nearly 175 GeV/c2, WaS in itSelf a Surprise at the time. In this regard, the top










quark separates itself from all other quarks. For example, it is the most massive fermion

by a factor of nearly 40 (the bottom being the closest competitor).

Interestingly, even though the top quark is the most recent quark observed, its mass

is the best known of all quarks. This is because it has such a short lifetime that it decays

before any hadronization effects can occur. We should not be satisfied with this relative

success and a more accurate determination of M~to is Strongly motivated inside and

beyond the SM.

The top quark is the weak isospin partner of the b-quark in the Standard Model. As

such, it carries the following quantum numbers: an electric charge +2/3, an intrinsic spin

of 1/2 and a color charge associated with the strong force. Due to the relatively small data

sample collected in Run I of the Tevatron, none of these assignments have been measured

directly. However, strong indirect evidence exists. First, the precision electroweak data of

Z boson decay properties requires the existence of an isospin partner of the b-quark with

electric charge +2/3 and a large mass. Furthermore, the predicted rate of top quark pair

production, which is very sensitive to the spin and strong coupling of the top quark, is

in good agreement with the data [3] [4] [5] [6]. Therefore, current observations lead us to

believe that the particle observed at the Tevatron is indeed the top quark. However, direct

measurements are still desirable and will be attempted in the case of the electric charge

and spin using data from the Run II of the Tevatron or the LHC [7].

The other intrinsic properties of an elementary particle are its mass and lifetime. The

most precise knowledge of the mass comes from direct measurements. The current world

average containing only measurements performed during Run I at the Tevatron is 178

+ 4.3 GeV/c2. In quantum mechanics, the lifetime of a particle is related to its natural

width through the relationship -r = &/0. The branching ratio for the electroweak top

quark decay t Wb is far larger than any other decay mode and thus its full width can

be approximately calculated from the partial width F(t Wb). Assuming Myw = M1,. = 0,

the lowest order calculation of the partial width has the expression shown in Equation 1-1,









where GF is the Fermi constant and Vtb is the Cabibbo-K~o .-- .-1 i-Maskawa (CK(M)

matrix element linking the top and bottom quarks.

G M 2, |Vt b 2
Fo~t Wb) 1.76 GeV, (1-1)

This simplified picture illustrate that the width is driven by the square of M~t,. More

sophisticated calculations result in negative corrections of about 211' the final result being

1.42 GeV with theoretical uncertainties less than 1 This results in a lifetime for the top

quark of approximately 4 x 10-25 S. This is about an order of magnitude lower than the

characteristic time for QCD effects to take place. Therefore, due to its very large mass,

the top quark will not form hadrons before it decays. This property makes the top quark

the only quark without hadron spectroscopy (i.e., where we can expect meson or baryon

states including a top quark). In addition, the short lifetime facilitates the measurement of

top quark properties since the information about the bare quark is directly reflected by the

decay products.

The top quark is produced predominantly in it pairs at the Tevatron via the strong

interaction. At a center-of-mass energy of 1.96 TeV, the process qq f t and gg i t

occur approximately 85' and 15' of the time, respectively. The leading order diagrams

for the two processes are shown in Figure 1-1 and in Figure 1-2. Calculations of the total

it cross-sections a(tt) have been performed up to the next-to-leading order (NLO) in the

coupling constant of the strong force (as,). The theoretical value at a center-of-mass energy

of 1.96 TeV [8] is shown in Equation 1-2 for M\t, = 175 GeV/c2


ass(tt) = 6.7'ji pb, (1-2)

Since the typical partonic center-of-mass energy available at the Tevatron is still

relatively close to the it threshold production, (for example the average velocity of the

produced top quarks is P m 0.5), the cross-section di pk.--s~ significant dependence on Mrs,.

This is illustrated in Figure 1-3 where we show a(tt) as a function of the center-of-mass









energy for various values of lMo,. The theoretical calculations are in good agreement with

the measurements performed at 1.8 TeV (Run I) [3] [4] and 1.96 TeV (Run II) [5] [6].

Figure 1-3 illustrates one motivation to measure accurately lMop: the knowledge of the

top quark mass is necessary to compare as precisely as possible the theoretical predictions

and measurements of the it cross-section. An eventual discrepancy could be a sign of new

physics as discussed in more detail in [7].

The electroweak production of single top quarks is also predicted by the Standard

Model but has not been observed to date [9] [10]. The production cross-section is

predicted to be smaller than for it (a 2.4 pb) and the experimental signature suffers

from much larger background contamination.

The top quark decay is mediated by the electroweak interaction. Since flavor changing

neutral currents are forbidden in the Standard Model due to the GIM mechanism [11],

the decays of the top quark involving Z or y bosons in the final state (e.g., t Zc) are

highly suppressed and can only occur through higher order diagrams. Therefore, the top

quark decay vertex must include a W boson. Three possible final states exist: t Wb,

t We and t Wd. As illustrated in Equation 1-1, the partial width of charged current

top decays is proportional to the square of the corresponding CK(M matrix element.

Assuming a Standard Model with three families, the relevant CK(M matrix elements have

the constraints [12] given in Equation 1-3.


0.0048 < |%4|l < 0.014,

0.037 < IV,| < 0.043,

0.9990 < |%tb| < 0.9992. (1-3)


Therefore, the decay t Wb is completely dominant and its predicted branching

ratio is BR(t i Wb) > 99.>' Hence only t Wb decays have been considered

in the identification of top quarks, though searches for other decay modes have been

undertaken [13]. We note that the W boson from the top quark decay is real (i.e., its mass









corresponds to the measured mass Myw a 80.4 GeV/c2), given that Mt, > M~w + Ml,

This is an important characteristic of it events that is exploited in this analysis in the

reconstruction of the top quark mass and the W boson mass. The W boson will in

trn decay to two quarks about 2/3 of the time and a charged lepton associated with a

neutrino about 1/3 of the time.

The experimental signature of top quarks thus emerge. They are produced as it pairs,

each one decaying immediately to a real W boson and a b-quark, the latter hadronizing

to form a b-jet. The resulting W decay defines the it final state: There can be two

hadronic decays (all-hadronic channel), one leptonic and one hadronic decay (lepton + jets

channel), and two leptonic decays (dilepton channel), where the leptonic decays considered

are usually only to electrons and muons (with their associated neutrinos) due to the

experimental difficulty of identifying tau leptons. The approximate branching ratios for

each channel are given in Table 1-3.

The top quark pIIl us a central role in the predictions of many SM observables by

contributing to their radiative corrections. Good examples are the W and Z boson

propagators, in which loops involving top quarks are expected to strongly contribute, as

illustrated in Figure 1-4. These diagrams can exist for any type of quark or lepton, but

the very large value of M~t, makes the top quark contribution dominant. To illustrate the

effect of the top quark, we consider in Equation 1-4 the theoretical calculation of the W

boson mass [12].
xacl 1
z/Gysin28w 1 ar )
a~ is the fine structure constant, Ow is the Weinberg angle and Ar contains the

radiative corrections and is approximately given by Equation 1-5.









The term aro is due to the running of a~. The term Ap is due to the one-loop

top quark correction to W-boson propagators shown in Figure 1-4, and is given by

Equation 1-6.


3 GF Mt2,
Ap = (1-6)
80K2~r
The uncertainty on the Fermi constant GF is completely negligible with respect to the

one on the top quark mass in the computation of Ap. The term aro and the Weinberg

angle in Equation 1-5 are known to a precision of 0."' The uncertainty on the top quark

mass is currently about an order of magnitude larger than the other uncertainties and

moreover it contributes quadratically to Ar. Thus the precision on Met, is currently the

limiting factor in the theoretical prediction of the W boson mass. The parameter Ap is

qualified as "universal" in the literature because it enters in the calculation of many other

electroweak observable like sinew and the ratio of the production of b-quark hadrons of all

types (usually denoted Rb), to name a few. Therefore, the top quark mass pha7i~ a central

role in the interplay between theoretical predictions and experimental observables that

aims to test consistency of the SM.

One consistency check is to compare the measured value of M~t, with the predicted

value from SM precision observables (excluding of course direct measurements of Meo).

The indirect constraints, inferred from the effect of top quark radiative corrections,

yields M~t, = 181'82 GeV/c2 [14]. The relatively small uncertainty is achieved because of

the large dependence of M~t, on many electroweak observables. This is in remarkable

agreement with the Run I world average of M~t, = 178 + 4.3 GeV/c2 [15], and is
considered a success of the SM.

A similar procedure can be used to constrain the Higgs boson mass (M~H), the last

particle in the SM that has yet to be observed. The only direct information on M~H is a

lower bound obtained from searches at LEP-II: M~H > 114 GeV/c2 at 95' confidence

level [16]. Indirect constraints on M~H can be obtained with precise measurements of









M~w and lMop. Indeed, the correction to the W boson mass Ar given in Equation 1-4

contains additional terms due to Higgs boson loops. These corrections depend only

logarithmically on M~H and have thus weaker dependence on M~H than on lMop. Still,

precise determination of lMop and M~w can be used to obtain meaningful constraints on

M~H aS illuStrated in Figure 1-5. Numerically, the constraints are [14] made explicit in

Equations 1-7 and 1-8.


M~H = 126+47 GeV/c2 (7

M~H < 280 GeV/c2 at 95' C.L., (1-8)


Only the top quark mass measurements from Run I have been used. Such constraints

on M~H can help direct future searches at the Tevatron and LHC and constitutes another

stringent test of the Standard Model when compared to limits from direct searches or

mass measurements from an eventual discovery.

Even though the Standard Model successfully describes experimental data up to a few

hundred GeV, it is believed that new physics must come into pIIl w at some greater energy

scale. At the very least, gravity effects are expected at the Planck scale (a 1019 GeV) that

the SM ignores in its current form.

The SM can thus be thought of as an effective theory with some unknown new

physics existing at higher energy scale. A link exists between the new physics and

the SM that manifests itself through radiative corrections to SM particles. The Higgs

boson sector is the most sensitive to loops of new physics. For example the Higgs boson

mass corrections from fermion loops shown in diagram (a) of Figure 1-6 are given by

Equation 1-9, where mf is the fermion mass and A is the "cut-off" scale used to regulate

the loop integral.

AM -i 2A +6f ln(A~ i /my + f ..., (1-9)

The parameter A can be interpreted as the scale for new physics that typically

corresponds to the scale of the Grand Unified Theory (GUT) near 1016 GeV. This is a










problem for the SM, since on the one hand the Hifggs hoson mass receives corrections of

the order of 100 GeV/c2 to give the correct mass to the SM electroweak gauge hosons.

There is a discrepancy of 14 orders of magnitude between the targeted mass and the

radiative corrections! This is known as the fine-tuning problem of the SM Higgs hoson (or

gauge hierarchy problem) and has occupied theoretical physicists for several decades. A

few solutions have emerged from this work, all of them manifesting themselves near the

scale of the origin of mass near 1 TeV (or electroweak symmetry breaking scale).

The top quark, with its large mass of nearly 0.2 TeV, could be more closely connected

to new physics than any other SM particle. One interesting numerological argument

-II---- -r- the top quark is indeed a special case. Its Yukawa coupling (yt) (i.e., its coupling

to the Higgs field), is approximately equal to unity as shown in Equation 1-10, where v is

the vacuum expectation value of the Hifggs field that is known from properties of the weak

interaction to be approximately 171 GeV.


Yt = Afe,4, ~~ 1) (1-10)


This could be a coincidence, or it could be a sign that the top quark mass is related

to the mechanism of the origin of mass that physics beyond the SM must explain, as

-II_ _t---- -b above. In this respect, the top quark mass could turn out to be a more

fundamental parameter of nature. For these reasons, albeit somewhat hypothetical, a

precise measurement of Aft,, would certainly be desirable for the understanding of any

theory.

One example of a new physics model is Supersymmetry (SUSY), which constitutes

an extension of the SM where the SM fermionic particles have associated hosonic particles

and vice-versa. It is generally regarded as the favored option to extend or replace the

SM at higher energies. Indeed, SUSY solves elegantly the gauge hierarchy problem since

the fermion and hoson partners cancel each other's divergent corrections to the Higgfs

hoson mass proportional to A2 (given in Equation 1-9 for fermionic particles). Moreover,









SITSY has other attractive features, such as providing a good candidate for dark matter,

predicting the unification of the gauge coupling constants at the GITT scale and being

required by the only consistent theory of quantum gravity currently available (superstring

theory).

The top quark pil- an important role in SITSY models. Indeed, the radiative

corrections from SITSY particles to electroweak observables, which can he computed

in a similar fashion as for the SM particles, are dominated by loops involving the top

quark and its scalar partners, the stop quarks. This effect is especially apparent in the

Higgs sector of SITSY models. Considering the simplest model of SITSY, the Minimum

Supersymmetric Standard Model (iLSSM), the one-loop correction to the lightest MSSM

Higgs hoson mass (il 1) is proportional to [17] as shown in Equation 1-11, where AA, and

if are the masses of the lightest and the heaviest stop quarks, respectively.


a~lM G'r~l~l:lug((1op

Thus the corrections to ii T. depend quartically on Afer>,! Therefore, the same

conclusion as discussed previously for the SM is valid for SITSY (and even reinforced

due to the stronger Affr>, dependence): high precision measurements of Afte, will be crucial

for the self-consistency check of the theory and determination of unknown parameters.

For instance, the value of the top quark mass was crucial to determine the current upper

bound of about 135 GeV/c2 on the lightest MSSM Higgs hoson mass [18].

Using the current measurements of precision observables, it is already possible to set

meaningful constraints on SITSY. For example, Figure 1-7 shows the current measurements

of Affr>, and Afw as well as the region allowed exclusively inside the MSSM (green), the

SM (red) as well as an overlap region between the MSSM and SM (blue). As can he seen,

the additional radiative corrections from SITSY particles are large enough such that the

overlap region between SM and MSSM is small in the Aft<>, Myw plane. The current

experimental accuracies are not good enough to distinguish between the two theories, but










future prospects (e.g., black curve for Tevatron/LHC and red curve for the International

Linear Collider (ILC)) demonstrates very good discriminating power. The radiative

corrections from MSSM particles to the SM precision observables are discussed in more

detail in [19].

Other alternatives to replace the SM at energies near the TeV scale are theories

involving dynamical breaking of the electroweak symmetry [20]. These models, one

well-known example being Technicolor [21], do not include an elementary Higgs boson,

but rather give mass to the SM particles by introducing a new strong gauge interaction

that produce condensates of fermions that act as Higgs bosons. In some versions of

these models, denoted "topl In i the new gauge interaction acts only on the third

generation, and the fermion condensates are made of top quarks [22]. Such a model could

be discovered by looking for evidence of new particles in the it invariant mass at the

Tevatron or LHC.

1.4 Highlights of Mass Measurement

Now that the top quark was placed in the context of particle physics and of the

Standard Model, the most successful theory describing it, we stop to outline the remaining

of the study. In the following chapters a detailed analysis of the measurement of the mass

of the quark will be presented.

The experimental apparatus used to produce and collect the data is described in

broad details. This description is divided into a section dedicated to the accelerator of

particles, Tevatron, and another for detailing the particle detector, the Collider Detector

at Fermilab (CDF). M1 I.ny techniques are used for the identification of particles separately

for leptons, photons, quarks and gluons.

A more sophisticated tool involves the calculation of the matrix element for the

process us i tt bbundd used in the computation of a probability to observe such

process. This probability will be later used in the event selection and the in the mass










reconstruction. However, in the fourth chapter details of the matrix element calculation

are offered as well as consistency checks.

The data samples and the Monte Carlo samples used in this study to determine

the event selection used to enhance the it content of the data sample. The achieved

signal to background ratio is almost 1/1 and it will have a big impact in the value of the

uncertainty on the mass. The modeling of the background processes is extracted from a

data sample with small it contribution.

The top quark mass reconstruction technique allows for the simultaneous determination

of the top quark mass and of the scale of jet energies. The need for having the jet energy

scale determined together with the top mass is to take into account the correlation

between the two. As a consequence the effect of the jet energy scale on the uncertainty on

the top mass is not double counted. This would be the case of a method where the top

mass is determined separately from the jet energy scale but a systematic uncertainty due

to the jet energy scale uncertainty has to be assigned. Moreover, in the bi-dimensional

analysis the jet energy scale can be easily constrained and calibrated as it will be seen.

The method briefly described above involves the full statistical treatment of the expected

uncertainties. Also various systematic effects are described in detail and the corresponding

uncertainty evaluated.

The mass measurement represented the best such measurement in the it all hadronic

channel. The treatment of the jet energy scale was one of the main improvements

with respect to other mass measurements in this channel along with the use of the it

matrix element in the event selection and in the mass measurement technique itself. This

measurement had a 11 weight in the world averaged top quark mass. Only two other

measurements had a larger impact in the world average and those were done in the it

lepton+jets channel.











Table 1-1. Classification of the fundamental fermions
arranged in three generations.
Generation Flavor Mass (GeV/c2) !
U~p (u) 0.003
I Down (d) 0.006
e-Neutrino (ve) < 2 x10-6
Electron (e) 0.0005
('1. ) is (c)1.5
II Strange (s) 0.1
p--Neutrino (v,) < 2 x10-6
Muon (p) 0.1
Top (t) 171
III Bottom (b) 4.2
-rNeutrino (v,) < 2 x10-6
Tau (-r) 1.7


in Standard Model. They are


Weak Isospin
-

-

1

-

-


Table 1-2. Force carriers described in Standard Model.

Boson Force Mass (GeV/c2) l ie
Photon (y) EM 0 0
W* weak 80.4 +1
Zo weak 91.2 0
Gluon (g) strong 0 0


Figure 1-1. Leadingf order diagram for it production via quark-antiquark annihilation. In
this figure the incident quarks are the up-quarks.


O
I
O

I
p


Figure 1-2. Leading order diagrams for it production via gluon-gluon fusion.


I I P

s















CDF Run 1
Combined 110 pb


CDF Run 2 Preliminary
Combined 760 pb"


2O O Cacciari et al. JHEP 0404:068 (2004) rq=175 GeV/c2
1800 1850 1900 1950 2000
\I (GeV)


Figure 1-3. Cross-section of it pair production as a function of center-of-mass energy for
the theory prediction and CDF measurements.


Table 1-3. Branching ratios of the it decay channels.
CI. .il., IBranching Ratio
all-hadronic 44
lepton jets 30
dilepton 5
tau lepton X 21


Figure 1-4. Diagframs for the self-energfies of W-boson and Z-boson where a loop involving
the top quark is contributing.





















80.5-


(D
CD
S80.4-

E


80.3-


Figure 1-5.


Constraint on the Higgfs hoson mass as a function of the top quark and W
hoson measured masses as of winter 2007. The full red curve shows the
constraints (0.1' C.L.) conting from studies at the Z hoson pole. The dashed
blue curve shows constraints (0.*' C.L.) front precise nicasurenient of M~w and


f


S
I \
I (
I
H\ I


(2) (b)



Figure 1-6. Loop contributions to the Higgs hoson propagator front (a) fernlionic and (b)
scalar particles.


175

mt [GeV]










































Heinemeyer, Hollik, Stoc
170 175
mt [GeV]


Experimental constraints on M~w and M~to tOuter blue ellipse), the projected
constraints at the end of the Tevatron and LHC (middle black ellipse) and at
the ILC (red inner ellipse). Also shown are the allowed region for MSSM
(green hatched), the SM (red cross-hatched) and the overlap region between
the SM and MSSM (blue vertical lines).


Figure 1-7.










CHAPTER 2
EXPERIMENTAL APPARATUS

The Fermi National Accelerator Laboratory (FNAL, Fermilah) has been running in

its current phase of operation since 2001. Located near Batavia, IL, the pp synchrotron

accelerator supports several experiments, including two collider detectors, one of which,

the Collider Detector at Fermilah (CDF), collected data for this analysis. The accelerator

also provides protons to fixed target experiments. CDF is a general purpose hard

scattering detector supporting a wide variety of physics analyses. One of the priorities

of FNAL is a precise measurement of the top quark mass. Several hundred people support

the operation of the accelerator and another several hundred are responsible for the

commissioning and operation of the CDF detector. A competing collaboration, DO,

independently measures similar physics quantities. Combined results from these two

collaborations have resulted in increasingly precise measurements of the top quark mass

and other interesting physical phenomena. This chapter outlines the basic operation and

structure of the accelerator and of the detector.

2.1 Tevatron Overview

The main accelerator at FNAL, the Tevatron, accelerates protons and antiprotons,

colliding them at a center of mass energy of 1.96 TeV. Several stages of acceleration are

necessary before protons and antiprotons can he brought to this energy. Since no readily

available source of antiprotons exists, they must he produced using energetic proton

collisions. Figure 2-1 schematically describes the Tevatron complex.

Protons colliding in the Tevatron start out as hydrogen gas. The hydrogen is ionized

by adding an electron and then fed to a Cockroft-Walton direct current electrostatic

accelerator. Exiting the Cockroft-Walton with 750 keV, the hydrogen ions are fed into a

RF linear accelerator, the Linac, and ramped to 400 AleV. The hydrogen ions then strike a

stationary target of carbon foil, stripping the two electrons from the ions and leaving bare

protons.










Protons are collected and accelerated to 8 GeV in the Booster, a 475 m circumference

synchrotron. The Booster then injects them into the Main Injector, a 3 km circumference

synchrotron. The Main Injector has several purposes. It accelerates protons and

antiprotons from 8 GeV to 150 GeV, preparing them for injection into the Tevatron;

and it also accelerates protons to 120 GeV for antiproton production, as described later.

The Tevatron is a 6.3 km circumference synchrotron using superconducting magnets

with a peak field of 4.2 T. Protons and antiprotons are injected into the Tevatron forming

a beam containing 36 discrete packages of particles known as bunches and are accelerated

from 150 to 980 GeV. Protons and antiprotons rotate in opposite directions in the ring

and are held in separate helical orbits. Focusing quadrupole magnets at two collision

points bring the proton and the antiproton beams to intersection. Bunches pass a given

collision point every 396 ns. Each bunch collides approximately 2.6 x 101 p and 3.5 x 1010

p. These numbers contribute to the instantaneous luminosity of the beam [23] as shown in

Equation 2-1.
37 folV Ns, Np F
L = (2-1)

NsB is the number of bunches in the accelerator; NV, and Ny~ are the number of p and

f5 per bunch, respectively; fo is the revolution frequency; y = E/m is the relativistic

energy factor; P is the beta function at the low beta focus; e, and eg are the proton

and antiproton beam emittances, respectively; and F is a form factor describing bunch

geometry. Integrating instantaneous luminosity over time and taking the product with a

scattering cross-section returns the number of events produced.

Antiprotons are produced by colliding accelerated protons from the Main Injector

with a stationary nickel target in the Target Station. Magnets focus charged particles from

this collision into a beam and strip away everything but the antiprotons. Antiproton

production is not very efficient, requiring a million incident protons to produce 20

antiprotons.










Once collected into a beam, the antiproton are sent to the Debuncher, a triangular

synchrotron with a radius of 90 m, where their spread in energy is reduced using a

synchronized oscillating potential in the RF cavities. This potential is designed to

accelerate slower particles and decelerate faster particles. Uniform velocities of antiprotons

enables more efficient beam manipulation and increases instantaneous luminosity by

reducing bunch widths.

Thus prepared, the antiprotons are collected and stored until they are needed

for acceleration and collisions. One storage unit, the Accumulator, is a synchrotron

in the same tunnel as the Debuncher, labeled .1.1sI n-IIn~~ source" in Figure 2-1. The

Accumulator reduces the longitudinal momentum of the antiprotons using a synchronized

potential and stochastic cooling [24]. Stochastic cooling was developed at CERN in the

1970s and dampens unwanted momentum phase-space components of the particle beam

using a feedback loop. Essentially, the beam orbit is measured with a pickup and corrected

with a kicker.

The other antiproton storage unit is the Recycler, a synchrotron in the same ring as

the Main Injector. The Recycler was originally designed to collect antiprotons from the

Tevatron once collisions for a given store were finished, but attempts to use it for this

purpose have not been worthwhile. As an additional storage unit, the Recycler has allowed

increased instantaneous luminosity since 2004. The Recycler takes advantage of electron

c....11nlr in which a 4.3 MeV beam of electrons over 20 m is used to reduce longitudinal

momentum. When a store is ready to begin, antiprotons are transferred from either or

both the Accumulator and the Recycler to the Tevatron for final acceleration.

2.2 CDF Overview and Design

The Collider Detector at FNAL (CDF) is a general purpose charged and neutral

particle detector [25] [26]. It surrounds one of the beam crossing points described in

section 2.1. The detector observes particles or their decay remnants via charged tracks

bending in a 1.4 T solenoidal field, electromagnetic and hadronic showers in calorimeters,










and charged tracks in muon detection chambers. Additionally, C'I. 1. ill:,v counters

measure the instantaneous luminosity of the colliding beams. In order from nearest to

beam line to the outermost region of the detector, the 1!n I inr~~ components are the silicon

tracking system, the central outer tracking system, the solenoid, the calorimeters, and the

muon chambers, Figure 2-2.

CDF is cylindrical in construction, with the beam line defining the z-axis oriented

with the direction of proton travel, which is also the direction of the solenoidal field lines.

The x-axis is defined as pointing away from the Tevatron ring, and the y-axis is defined as

pointing directly upward. Transverse components are defined to be perpendicular to the

beam line, in other words the polar r 4 dimension as given in Equation 2-2. Another

useful coordinate variable is the rapidity shown in Equation 2-3. The pseudo-rapidity, rl, is

the massless limit of rapidity and is given in Equation 2-4.


ET = Esin0 (2-2)

1 E + pz
y = I(2-3)
2 E pz

rl = In(tanO). (2-4)

Pseudo-rapidity is ahr-l- .- defined with respect to the detector coordinates unless

explicitly specified. Many of the components of CDF are segmented in pseudo-rapidity.

Figure 2-3 shows the rl coordinates relative to the tracking volume and plug calorimeter.

2.2.1 Cherenkov Luminosity Counters

To measure luminosity, C'I. i. ill:,v Luminosity Counters (CLC) [27] are positioned

near the beam line, 3.7 < |9|l < 4.7. The counters are long, conical chambers filled

with isobutane at atmospheric pressure. C'I. i. ill:0,v light radiated from particles passing

through the chambers is collected with Photo-Multiplier Tubes (PMTs) allowing a

measurement of the number of inelastic pp mnteractions at each bunch crossing. The

momentum threshold for detection of electrons is 9.3 MeV/c and of pions is 2.6 GeV/c.










Figure 2-4 shows the initial instantaneous luminosity and total integrated luminosity as a

function of year. The initial instantaneous luminosity increased with running time due to

intprovenients such as using the Recycler to store antiprotons. Total integrated luminosity

is separated according to that delivered hv the Tevatron and that recorded to tape by the

CDF detector.

2.2.2 Silicon Tracking

The innermost component of CDF is a tracking system composed of silicon

micro-strip arrays. Its main function is to provide precise position measurements near

collision vertices, and it is essential for identification of secondary vertices.

Constructed in three separate components, LOO [28], SVXII [29] and ISL [:30], the

silicon tracking system covers detector |vy| < 2. LOO is a single 1... -r mounted directly on

the beam pipe, r = 1.6 cm, and is a single-sided array with a pitch of 50 ftn providing

solely axial measurements. SVXII is mounted outside of LOO, 2.4 < r < 10.7 cm, and is

composed of 5 concentric 1.,-< cms in 4 and :3 segments, or barrels, in x. Each lI.-c c is further

subdivided into 12 segments in ~, or wedges. Double-sided arrays provide axial (r 4)

measurements on one side and stereo (x) measurements on the other. The stereo position

of li n-c- c 1 and :3 is perpendicular to the x-axis, and that of lI .-cc 2 and 4 is is -1.2"

and +1.2", respectively. The SVXII detector spatial resolution for axial measurements

is 12 pn1. ISL surrounds SVXII, 20 < r < 29 cm, and is composed of three l o,-c rs of

double-sided arrays. As with SVXII, one side provides axial measurements and the other

stereo measurements at 1.2" relative to the x-axis. The ISL detector resolution for axial

measurements is 16 pni (Figure 2-5).

2.2.3 Central Outer Tracker

The Central Outer Tracker (COT) [:31] comprises the bulk of CDF's tracking volume,

located between 40 < r < 1:32 cm and detector |vy| < 1. The COT provides the best

measurements of charged particle montentunt, but does not measure position as precisely

as the silicon tracking system. It is a 96-1 .,-cc open-cell drift chamber subdivided into 8










super-111--c rs. Each super-11s-c r is further divided with gold covered Mylar field sheets into

cells containing 25 wires alternating between potential and sense wires, see Figure 2-6.

In half of the super-11s-c r~s, the wires are parallel to the beam line and provide axial

measurements, while in the other half, the wires are alternately at +2" and provide stereo

measurements. The innermost super-l} ... r provides a stereo measurement and subsequent

1 .,;-
comprised of 50'; argon and 50'; ethane (and lately, some oxygen was added to prevent

corrosion). This results in a maximum drift time of 100 ns, far shorter than the time

between hunch collisions. The single hit resolution of the COT is 140 pm, and the track

momentum resolution using muon cosmic ray,~s is o-,g,;~ M 0.001 (GeV/c)j-

2.2.4 Calorimeters

Calorimeters provide energy and position measurements of electron, photon and

hadron showers. They are divided into electromagnetic (EM) and hadronic (HA)

segments, with EM positioned closer to the interaction region than the HA. Both regions

are sampling calorimeters with alternating 11s-
generate photons in the scintillators which are collected and carried to PMTs with

wavelength shifting optical fibers. Lead is used as the absorber in EM segments and iron

in HA segments. The EM segment closest to the interaction region acts as a pre-shower

detector useful for photon and ~ro discrimination. A shower-maximum detector, placed at

about 6 radiation lengths in the EM calorimeter, measures the shower profile and obtains

a position measurement with a resolution on the order of a few mm.

Due to detector geometry, calorimeters are divided into a barrel shaped region

surrounding the solenoid, the central calorimeters (CPR, CES, CEM and CHA) [:32]; and

calorimeters capping the barrel, the plug calorimeters (PPR, PES, PEM and PHA) [:33]. A

wall hadronic calorimeter (WHA) fills the gap between the two. The central region covers

detector |vy| < 1, the wall 0.6 < |vy| < 1.3, and the plug 1.1 < |vy| < :3.6. Each of these

regions is further segmented in ty and 4 into towers covering 0.1 x 15" in the central, 0.1 x










7.50 in the wall, and 0.16 x 7.50 or 0.2-0.6 x 150 in the plug. The energy resolution of the

C1EM is o-(E)/E = 0.135/ Er(TGeV) 0.015. Figures 2-'7 shows a c~ross-sectional vie~w of

the plug calorimeter.

2.2.5 The Muon System

Whereas electrons create showers confined to the calorimeters, the mass of muons

makes them nearly minimum ionizing particles (jl\l's), and high momentum pass through

the calorimeters. The calorimeters (and in some cases additional steel shielding) block the

1 in .0 lRy of hadronic particles from reaching the outer detector. Drift chambers placed on

the outside of the detector identify charged tracks from muons and measure their position.

There are three muon detection systems: C \l U, C \lP' and CijlS [34]. CijlU and CijlP

cover detector |9|l < 0.6, with CijlP located outside CijlU, and CijlS covers detector 0.6



The C \LU chambers surround the central calorimeter in ~. They are composed of

4 concentric 1... ris of cells containing argon-ethane gas and high-voltage sense wires

parallel to the beam pipe (Figure 2-8). The CijlP chambers are separated from the C11lU

chambers by 60 cm of steel shielding. They are similar in construction to the C \!U

chambers, but the lIn-;-rs are successively offset by half of a cell. The C \! X chambers

are nearly identical to the C \LU chambers. They are arranged in four logical 1 ... rs

successively offset by half of a cell. Each logical 111-;-r consists of two partially overlapping

physical 1... ris of cells. On average, a particle will traverse six cells. Sense wires are

independent in the CijlP chambers, but are shared between 4 neighbors in CijlU and

C'j lS The single-hit r resolution is 0.25 mm. Measurements in z with a resolution

of 1.2 mm are also possible by using differences in arrival times and amplitudes of pulses

measured at either end of each wire in neighboring cells.

2.2.6 The Trigger System

Collisions occur every 396 ns (2.5 MHz), far too quickly even for CDF's custom

hardware to process and read out detector information. To reduce the number of collisions










for which data is stored, CDF uses information from some detector components to make a

decision to save an event, called a tri ~-r. Data is stored in buffers until trim. r--i decisions

cause some of the events to be read out and stored on computer disk or the buffer to be

emptied. The trigger is divided into three levels of increasing sophistication in object

identification (Figure 2-9).

Data is stored in synchronous buffers awaiting an initial trigger decision. The first

trigger level returns a decision with a latency of 5.5 ps and a maximum accept rate of 50

kHz and will ak- -l-s occur in time to read out the event. Level one uses solely custom

hardware operating in three parallel streams. One stream, the extremely Fast Tracker

(XFT), reconstructs transverse COT tracks and extrapolates them to calorimeters and

muon chambers. Another stream detects possible electron, photon or jet candidates, along

with total and missing transverse energy. The final stream searches for tracks in muon

chambers. These streams are combined in the final level one decision.

After a level one accept, the event information is read out into .l-inchronous buffers.

Since events remain in these buffers until a level two decision is made, it is possible some

events passing level one will be lost when these buffers are full. The level two tr~i ;r

returns a decision with a latency of 25 ps and a maximum accept rate of 300 Hz. Level

two used custom hardware and modified commercial microprocessors to cluster energy

in calorimeters and reconstruct tracks in the silicon detector using the Silicon Vertex

Tracker (SVT). Calorimeter clusters estimate the total jet energy and help to identify

electrons and photons. The SVT measures the impact parameters of tracks, part of

locating displaced vertices.

The third trigger level runs on a commercial dual microprocessor farm and returns a

decision with a maximum accept rate of 150 Hz. The farm runs a version of CDF offline

reconstruction merging information from many detector systems to identify physical

objects in the event. Data passing level three tr~i ;r requirements is transferred via














computer network to a storage facility using a robotic tape library. This data is then


processed with offline reconstruction software for use in analyses.


Fermilab's
ACCE L ER TOR CHAIN



fci~ ~\MAIN INJECTOR

.RECYCLER
TEVATRON



11 D:ERI Deetr TAGET HACL
Experiment ANTIPROTON

: (Colllder Deictp Infrmlb .7 :-
-p Iner~l BOOSTER


COCKCROFT-WALTON
PROTON




Dumps



Figure 2-1. Diagram of the Tevatron accelerator complex








CENTRAL DR IT CHAMBER
---~~C*O -- -- iAET IC
x, EM SHAMER
HADRONIC CALORIMETER
MUON DR IT CHAMBERS
--- INTILL TOR
ISL 3 LAER S

svX I (3 BARRELS)




z I-SOLENolD COlL
PRESHowER DETECTOR








Figure 2-2. Elevation view of the East hall of the CDF detector. The West half is nearly

symmetric.




















CDF Tracking Volume


,30






n = 2.0



*n =3.0
-30


5 10o 15
SVX II INTERMEDIATE
5 LAYERS SILICON LAYERS


Figure 2-3. Schematic of trackingf volume and plugf calorimeters of the upper east quadrant
of the CDF detector.
















Year2002 2003 2004 2005 2006 2007 Year2002 2003 2004 2005 2006 2007
Ms nth 4 7 10 1 4 7 101 4 7 1 47101 7 0 Ms nth 4 7 10 1 4 7 101 4 7 1 47101 7 0





150 12500



50 ls i~3500 eird
0 u


1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Store Number Store Number


Figure 2-4. Initial instantaneous luminosity (left) and total integrated luminosity (right)
as a function of year since the start of Run II.



















------ i -----


i

i

/I


00 R=29 cm


Port Cards











90crn


Layer 00)


SVX 11


64cm


Figure 2-5. Schematic with the r-< and the y-z views of the Run II CDF
system.


silicon tracking


I II


' I


+ Potential wires
*Sensewires
X Shaper wires
BareMylar
Gold on Mylar (Field Panel)


j6 58 60 62 64R
SL2


Layer # 1 2 3 4 5 6 7 8
Cells 188 192 240 288 336 384 432 480


Figure 2-6. East end-plate slots Sense and field planes are at the clock-wise edge of each
slot (left). Nominal cell layout (right).

















Figure 2-7. Cross section of upper part of new end plug calorimeter.


:i

II-
`~il~
(>
11

11


Figure 2-8.


Detail showing the configuration of steel, chambers and counters for the
Central Muon Upgfrade walls. A muon track is drawn to establish the
interaction point. Counter readout is located at z=0. Counters 1.vrlis are
offset from the chambers and from each other in x to allow overlappingf light
guides and PMTs, minimizingf the space required.













































L1 Storage
Pipeline:
42 Clock
Cycles Deep





L2 Buffers:
4 Events





DAQ Buffers


.7.6 MHz Synchronous pipeline
5544ns latency
<50 kHz Acecept rate





]Level 2:
Asynchronous 2 stage pipeline
~20rs latency
3300 Hz Accept Rate


L1+L2 rejection: 20,000:1


Figure 2-9. Readout functional block diagram in Run II.


Dataflow of CDF "Deadtinless"6
Trigger and DAQ










CHAPTER 3
EVENT RECONSTRUCTION

In this chapter we will describe how we can identify the particles produced in a pp

collision starting front the raw outputs of the different parts of the detector. First we

will see how information from silicon detectors and COT are used to reconstruct charged

particle trajectories. Then we will move to the reconstruction of jets of hadronic particles,

based on calorinteters. A section will be devoted to the correction of jet energies for

different error sources introduced by calorinteters and reconstruction algorithms. After a

brief description of the identification of leptons and photons, we will end with the different

methods used at CDF to identify a jet of particles originated front a b quark.

3.1 Tracks

Track reconstruction is performed using data from silicon tracking system and COT.

The reconstruction is based on the position of the hits left b charged particles on detector

components. Combining these hits one can reconstruct particle trajectories.

The whole tracking system is ininersed in a 1.4 T magnetic field. C'I Iaged particles

moving in a homogeneous magnetic field follow a helix trajectory. The helix axis is parallel

to the magnetic field. 1\easuring the radius of curvature of the helix, one can obtain the

transverse montentunt of the particle, while the longitudinal montentunt is related to the

helix pitch. To describe a helix five parameters are needed, three to paranieterize the circle

in r projection and two to paranieterize the trajectory in x. At CDF, as shown by

Equation :31, the helix of a charged particle is paranleterized.


S= (cot0, C, xo, D, 00) (:31)


The parameters used to describe the helix of a charged particle are: cot 8 is the

cotangent of the polar angle at nmininiun approach to the origin; C is the half curvature,

whose sign is given by the charge of the particle; xo is the position on x axis of the

nmininiun approach to the helix origin; D is the signed impact parameter (i.e., the distance










between the helix and the origin at minimum approach); 00 is the direction in r 4 of the

helix at the point of minimum approach.

If (.ro, Wo) is the center of the circle, then the impact parameter is calculated as in

E~quation? :32, where p = 2~is the radius of the circle and Q2 the charge of th~e particle.


D = Q ( r,~ x + YO2 p) (:32)


Having described the parameterization of a particle trajectory, we'll turn on the main

tracking algorithms developed for offline analysis, the Standalone and the Outside-In

algorithms.

Standalone tracking [:35] is a strategy to reconstruct tracks in the silicon detector. It

consists in findings triplets of aligned :3D hits, extrapolating them and adding matching

:3D hits on other 11s-c v ;. This technique is called standalone because it doesn't require any

input from outside: it performs tracking completely inside the silicon detector. First the

algorithm builds :3D hits from all possible couples of intersecting axial and stereo strips

on each lI ... Once a list of such hits is available, the algorithm searches for triplets of

aligned hits. This search is performed fixingf a 111-< v and doing a loop on all hits in the

inner and outer 11s-
and one in the outer 1.,-< c a straight line in the r x plane is drawn. Next step consists

in examining the 1 .,-cc in the middle: each of its hits is used to build a helix together with

the two hits of the inner and outer 111-c v ;. The triplets found so far are track candidates.

Once the list of candidates is complete, each of them is extrapolated to all silicon 11s-< rs

looking for new hits in the proximity of the intersection between candidate and 111-< v. If

there is more than one hit, the candidate is cloned and a different hit is attached to each

clone. Full helix fits are performed on all candidates. The best candidate in a clone group

is kept, the others rejected.

The Outside-In algorithm [:36] exploits information from both COT and silicon. The

first step is tracking in the COT, which starts translating the measured drift times in










hits positions: once all COT hit candidates in the event are known, the eight super-l} ... rs

are scanned looking for line segments. A line segment is defined as a triplet of aligned

hits which belong to consecutive l o,-;- s. A list of candidate segments is formed and

ordered by increasing slope of the segment with respect to the radial direction so that high

momentum tracks will be given precedence. Once segments are available, the tracking

algorithm tries to assemble them into tracks. At first, axial segments are joined in a 2D

track and then stereo segments and individual stereo hits are attached to each axial track.

Outside-In algorithm takes COT tracks and extrapolates them into the silicon detectors,

adding hits vi a progressive fit. As each lI .-cc of silicon is encountered (going from the

outside in), a road size is established based on the error matrix of the track: currently,

it is four standard deviations hig. Hits that are within the road are added to the track,

and the track parameters and error matrix are refit with this new information. A new

track candidate is generated for each hit in the road, and each of these new candidates are

then extrapolated to the next 1.,-c c in, where the process is repeated. At the end of this

process, there may be many track candidates associated with the original COT track. The

candidate that has hits in the largest number of silicon 1 .,-c rs is chosen as the real track:

if more than one candidate has the same number of hits, the X2 of the fit in the silicon is

used to choose the best track.

3.2 Vertex Reconstruction

The position of the interaction point of the pp collision (primary vertex) is of

fundamental importance for event reconstruction. At CDF two algorithms can he use

for primary vertex reconstruction.

One is called PrimVtx [37] and starts by using the beam line x-position (seed vertex)

measured during collisions. Then the following cuts (with respect to the seed vertex

position) are applied to the tracks: |Itrk Xertezr| < 1.0 cm, |do| < 1.0 cm, where do is track

impact parameter, and ( < 3.0, where o- is error on do.










Tracks surviving the cuts are ordered in decreasing pr and used in a fit to a common

vertex. Tracks with X2 TelatiVe tO the vertex greater than 10 are removed and the

remaining ones are fit again to a common point. This procedure is iterated until no

tracks have X2 > 10 relative to the vertex.

The second vertex finding algorithm developed at CDF is ZVertex~oll [38].

This algorithm starts from pre-tracking vertices (i.e., vertices obtained from tracks

passing minimal quality requirements). Among these, a lot of fake vertices are present:

ZVertex~oll cleans up these vertices requiring a certain number tracks with pT > 300 MeV

be associated to them. A track is associated to a vertex if it is within 1 cm from silicon

standalone vertex (or 5 cm from COT standalone vertex). Vertex position z is calculated

from tracks positions zo weighed by their error 6 according to Equation 3-3.


z = (3-3)


Vertices found by ZVertex~oll are classified by quality flags according to the number

of tracks with silicon/COT tracks associated to the vertex. Associated COT tracks have

shown to reduce the fake rate of vertices thus higher quality is given to vertices with COT

tracks associated:

* Quality 0: all vertices

* Quality 4: at least one track with COT hits

* Quality 7: at least one track with COT hits, at least 6 tracks with silicon hits

* Quality 12: at least 2 tracks with COT hits

* Quality 28: at least 4 tracks with COT hits

* Quality 60: at least 6 tracks with COT hits

3.3 Jets Reconstruction

Jets are reconstructed by applying a clustering algorithm to calorimeter data. This

algorithm determines the number of jets in an event, their energies and directions.










Each tower in the calorimeter is assigned a vector in the rrq space: it originates in

the interaction point and points toward the tower energy barycenter. Its module is equal

to the total transverse energy of the tower. The tower barycenter is located at 6 radiation

lengths Xo for electromagnetic calorimeters and 1.5 interaction lengths A for hadronic ones

(i.e., it is assumed that all energy has been released at the average depth of calorimeters).

Towers with ET > 1 GeV are ordered according to their decreasing energy and

.Illi Il:ent towers are grouped in pre-clusters. A fixed radius cone is drawn around each

precluster in the 17 plane (ar = Aq2 2),; High muultiplicity events have a smaller

value for radius (typically Ar = 0.4), while a greater radius (ar = 0.7) is chosen in other

cases. The cone axis is the vector with maximum module.

All vectors falling inside a cone are summed and the axis is estimated again. This

step is repeated until all vectors are assigned to a cone. Remaining vectors with ET > 1

GeV are associated to the cone containing them and the axis is estimated again until no

new vector is found inside the cone.

If two cone overlap, two solutions are possible, depending on how much is the

energy they have in common: if the less energetic one has more than T.~' of its energy in

common with the other, the two comes are merged into a single one. Otherwise, they are

kept separated and common vectors are assigned to the closest cone in the rl plane.

Finally, summing all vectors in a cone, jet 4-momentum is computed in Equation 3-4

assuming that each vector corresponds to a massless particle that deposited all its energy

in the tower barycenter.


E = (E "a + Emen









Starting from the quantities in Equation 3-4, the jet transverse energy, transverse

momentum and pseudo-rapidity are calculated in Equations 3-5, 3-6 and 3-7.


PT = (3 5)


Er = PT, (3-6)


E pz

The jet 4-momenta measured in the calorimeter suffer from intrinsic limits of

both calorimeter and jet algorithm. Different particles produce different responses

in calorimeters and some of them can fall in uninstrumented regions of the detector.

Moreover, calorimeter response to particle energies is non-linear. The jet clustering

algorithm, on the other hand, doesn't take into account multiple interactions and

energy that can be radiated outside the fixed radius cone. For all these reasons, a set

of corrections has been developed in order to scale measured jet energy back to the energy

of the particle [39].

3.3.1 Relative Energy Scale Correction

Relative (or rl-dependent) jet energy corrections [40] are applied to raw jet energies

to correct for non-uniformities in calorimeter response along rl. Calorimeter response in

each rl bin is normalized to the response in the region with 0.2 < |9|l < 0.6, because this

region is far away from detector cracks and it is expected to have a stable response. The

correction factor is obtained using the dijet balancing method applied to dijet events.

This method starts selecting events with one out of two jets in the region 0.2 < |9|l <

0.6. This jet is defined as tr~i ;r jet. The other jet is defined as probe jet. If both jets

are in the region of 0.2 < |9|l < 0.6, tr~i -;r and probe jet are assigned randomly. The

transverse momentum of two jets in a 2 2 process should be equal and this property is

used to calculate first a pT balancing fraction Apr f as shown in Equation 3-8


,~~,prPTobe t riggerj (8









Then a correction factor to make, on average, the probe jet scale equal to trigger is

calculated in Equation 3-9.
pf~robe 2 +t ap f
= lLg 7 (3-9)
pt ,e 2 Apr f
In Figure 3-1 we show the correction factor as a function of rl for dijet data (black)

and for dijet Monte Carlo using Pythia as generator (red).

3.3.2 Multiple Interactions Correction

At current instantaneous luminosity and with 36 bunches, we expect on average

one hard interaction per beam crossing. However, in a fraction of events more than one

pp interaction can occur. Energy from these non overlapping minimum bias events may

fall into the jet clustering cone of the hard interaction causing thus a mis-measurement

of jet energy. A correction for this effect is extracted using a sample of minimum bias

events [41]: for each event, transverse energy ET inside cones of different radii (0.4,

0.7 and 1.0) is measured in a region far away from cracks (0.1 < |9|l < 0.7): then, the

distribution of average ET as a function of the number of quality 12 vertices is fitted with

a straight line and the slope of the fitting lines are taken as correction factors (Figure 3-2).

3.3.3 Absolute Energy Scale Correction

A jet contains different types of particles with wide momentum spectra. Absolute

energy scale correction converts the calorimeter cluster transverse momentum pr to the

sum of transverse moment of the particles in the jet cone [42]. The procedure to extract a

calorimeter-to-hadron correction factor is based on the following steps:

* use fully simulated CDF samples where particles have pr ranging from 0 to 600 GeV,

* cluster the calorimeter towers and the HEPG particles,

* associate calorimeter-level jets with hadron-level jets,

* parameterize the mapping between calorimeter and hadron-level jets as a function of
hadron-level jets,

* as a correction factor, extract the probabilities of measuring a jet with 1p/' given a jet
with fixed value of p ~d.









In Figure 3-3 the absolute jet energy scale corrections for jets cone size of 0.4 as a

function of the jet momentum (blue). The uncertainty for this correction is also shown as

a function of the jet momentum (black).

3.3.4 Underlying Event Correction

In a hadron-hadron collision, in addition to the hard interaction that produces the

jets in the final state, there is also activity in the detector originating from soft spectator

interactions. In some event, the spectator interaction may be hard enough to produce

soft jets. Energy from the underlying event can fall in the jet cones of the hard scattering

process thus biasing jet energy measurements. A correction factor for such effect has been

calculated using a sample of minimum bias events as for multiple interaction correction,

but selecting only those events with one vertex [43]. For each event, transverse energy

Er inside cones of different radii (0.4, 0.7 and 1.0) is measured in a region far away from

cracks (0.1 < |9|l < 0.7). The correction factor is extracted from the mean values of ET

distribution (Figure 3-4).

3.3.5 Out of Cone Correction

The jet clustering may not include all the energy from the initiating partons. Some

of the partons generated during fragmentation may fall outside the cone chosen for the

clustering algorithm. This energy must be added to the jet to get the parton level energy.

A correction factor is obtained using MC events [44]: hadron-level jets are matched to

partons if their distance in the rl plane is less than 0.1. Then the difference in energy

between hadron and parton jet is parameterized using the same method as for absolute

correction (Figure 3-5).

We have seen different corrections that account for different sources of jet energy

mis-measurement. Depending on the physics analysis, all of them or just a subset can be

applied. The corrections are applied to the raw measured jet momentum.


PT (R, PT, r) = (P}"(R)- f,(R, PT r)-M,~(R))- fabs(R PT)- UE(R)+ OOC(R, PT) (3-10)










In Equation 3-10, R is the clustering cone radius, PT is the raw energy measured in

the cone and if the pseudo-rapidity of the jet: f,7, Af,, fabs, UE and 000 are respectively

relative, multiple interactions, absolute, underlying event and out-of-cone correction

factors .

3.4 Leptons Reconstruction

3.4.1 Electrons

Being a charged particle, an electron traversingf the detector first leaves a track in the

tracking system and then loses its energy in the electromagnetic calorinteter. So a good

electron candidate is made of a cluster in the electromagnetic calorinteter (central or plug)

and one or more associated tracks; if available, shower nmax cluster and preshower clusters

can help electron identification. The shower has to be narrow and well defined in shape,

both longitudinally and transversely. The ratio between hadronic and electromagnetic

energies has to be small and track montentunt has to match electromagnetic cluster

energy [45].

3.4.2 Muons

Muons can leave a track in the tracking system and in the nmuon system, with little

energy deposition in the calorinteter. Aluons are reconstructed using the information

coming front nuon chambers (CMET, CM~P, CM~X, BIfET) and nmuon scintillators

(CSP, CSX, BSU, TSU). The first provide measurements of drift time, which is then

converted to a drift distance (i.e., a distance front the wire to a location that the nmuon has

occupied in its flight, in the plane perpendicular to the chamber sense wire). Scintillators,

on the other hand, only produce timing information. The output of chambers and

scintillators produce nmuon hits. A nmuon track segment (a stub) is obtained by fitting

the nmuon hits. Finally, COT tracks are extrapolated to the nmuon chambers and matched

to nmuon stubs in the r plane [46].










3.4.3 Tau Leptons

Tau lepton can decay leptonic-ally into electron or muon (and the corresponding

neutrinos) or semileptonically into charged and neutral pions: the first case is not

distinguishable from a leptonic decay from W bosons, while the second has a precise

signature. Taus decay preferably into 1 or 3 charged pions and in most cases neutral

pions are present. So a well isolated jet with low track multiplicity and neutral pions is a

good tau candidate. The reconstruction procedure exploits information from calorimeter

and tracking systems. One looks for an isolated narrow cluster above a certain energy

threshold and then matches it to COT tracks.

3.4.4 Neutrinos

Neutrinos don't leave any signature in the detector, but their presence can be inferred

from requiring momentum conservation in the plane transverse to the beam line. As

the mass of the neutrino is negligible, then its transverse energy can be expressed as the

opposite of the vector sum of all calorimetric towers.


fr = (EzsinO4)Wi; (3-11)
towers

In Equation 3-11, Ei is the energy of the ith tower, Os is the polar angle of the line

pointing from the interaction point to the ith tower and n4 is the transverse unit vector

pointing from the interaction point to the center of the tower.

3.5 Photon Reconstruction

A photon traversing with the CDF detector leaves most of its energy in the

electromagnetic calorimeter and leaves a signature in the shower max detector without

a track pointing to it. Its identification algorithms start looking for clusters of energy

around a seed tower with energy greater than 3 GeV. Total energy of the hadronic towers

located behind the photon cluster has to be very small with respect to the electromagnetic

cluster. Photon cluster isolation is required: the difference between photon energy and the

energy in a cone of radius 0.4 around the seed tower has to be less than 15' of photon










energy. Moreover, the sum of transverse moment of all tracks pointing to the 0.4 cone

should be less than 2 GeV/c. The line connecting the primary vertex to the shower max

position of the photon candidate determines the photon direction.

3.6 Bottom Quark Tagging

The hadrons produced by a b quark have two important properties: long lifetime

allowing it to travel before decaying and the possibility of semi-leptonic decay b luIs.

Typically, the lifetime is about 1.5 ps for a hadron with an energy of about 40 GeV, so

the distance it travels if few millimeters. From these properties it is possible to construct

algorithms to tag jets if they are produced by b quarks. At CDF there are used three such

algorithms: the SecVtx algorithm, the JetProbability (JP) algorithm and the Soft Lepton

T.--I ;::_ (SLT) algorithm.

3.6.1 SecVtx Algorithm

This algorithm [47] exploits the fact that the B hadron travels before it decays

and therefore the jet produced by it will contain a secondary vertex (Figure 3-6). The

algorithm starts from COT and silicon tracks inside a cone and as a first step, using as

discriminating variable their impact parameter, it removes tracks identified as Ks, A or y

daughters, or consistent with primary vertex or too far from it. Then a three dimensional

common vertex constrained fit is performed using two tracks: if X2 < 50 the two tracks are

used as seed to find other tracks that point toward the same secondary vertex. If at least

three tracks are found to be compatible with a secondary vertex, the jet containing them

is considered a b-tag if it passes the following cuts:

* |Le,| < 2.5 cm, where L,, is the decay length of the secondary vertex; this cut helps
rejecting conversions from the first 1 ., -r of SVXII;

~Lz

* if if is the invariant mass of the tracks, |mKs ii1T, I > 0.01 GeV and |mA i
0.006 GeV;

* Lv-(i./Pr) m










The tags are classified depending on where the secondary vertex is located with

respect to the jet cone axis. Secondary vertices on the same side of the interaction point

as the jet cone axis are positive tags, otherwise they are labeled as negative tags. Negative

tags can arise from tracks mis-measurements.

3.6.2 Jet Probability Algorithm

This algorithm uses the information of the tracks associated to a jet to determine

the probability that the jet comes from the primary vertex [48]. The probability

distribution is uniformly distributed for a jet arising from the primary vertex, while

it shows a peak at zero for a long-lived jet (Figure 3-7). The probability is based on

track impact parameters and on their uncertainties. All tracks associated to the primary

vertex have equal probability to be either positively or negatively signed as far as their

impact parameter is concerned. The width of the impact parameter distribution from

these tracks is solely due to the tracking detector resolution and multiple scattering. A

long-lived particle will produce more tracks with positive impact parameter (Figure 3-8).

To minimize the contribution of mis-measured tracks, the final probability is computed

using the signed impact parameter significance (ratio of the impact parameter to its

measured error) instead of the parameter itself. Given a track with impact parameter

significance Sa,,, the probability that a track from a light quark has a larger value of Sa,, is

calculated. Combining probabilities for all tracks in a jet, one obtains the jet probability.

By construction, this probability is flat for jets coming from light quarks or peaked at zero

for those coming from heavy quarks.

3.6.3 Soft Lepton Tag Algorithm

This algorithm is based on the fact that about 20 of b quarks decay to mons.

In general, muon identification relies on the presence of a stub in the muon chambers,

associated with a track and minimum ionization energy deposition in the calorimeter.

Muons coming from b quarks are not isolated so information from calorimeters can't he

used. Moreover, multiple scattering of muons in the material of CDF detector has to be










taken into account. This causes a deflection in the nmuon path that ranges front about a

few nmilinteters for a montentunt of 2 GeV/c to about half a meter for a 50 GeV/c nmuon.

The SLT algorithm procedure can he divide in two steps [49].

First, the' I__ .1.11. tracks are found (i.e., tracks that could have been left by nmuons).

To take into account the fact that the nmuon might not have had enough energy to

reach the nmuon chambers, tracks whose montentunt is lower than 2.8 GeV are rejected.

Moreover, it has to point to a volume limited by the physical edges of the nmuon chambers,

or a distance of 3 outrs inside/outside the physical edges. Here o-3;s is the standard

deviation of the nmaxiniun deflection expected front multiple scattering through the

material of the detector.

If a track is I_ 1.11. and has a stub associated to it, the algorithm computes a

likelihood comparing all the available information about the nmuon candidate with the

expected values. Besides variables front nuon detectors, for the likelihood one can use

also some track quality information, like the number of COT hits, the beam line-corrected

impact parameter and the track xo position.

= pPt"'prb/ttrig CDF Run 2 Preliminary
CO.. ~ 1 I R O
1.2 -r



0.8
0.7
Sjet50 data 5.3.1 pre2
0.6 ~ dijet50 MC 5.3.1pre2
0.5
3 2 1 2 Je~t

Figure 3-1. Correction factor as a function of rl for dijet data (black) and for dijet Monte
Carlo using Pythia as generator (red). The jets were reconstructed with a cone
of 0.4.



















72 / ndf 15.62 /4
pO 0.0058941 0.0007298
pl 0.35631 0.0006464


e 3.5
o

(u3.

E
o
"2.5

A

Lu .5
v
1

0.5


1 23 45 67 8
Nurnber of primary vertices


Figure 3-2. Average transverse energy as a function of the number of primary vertices in
the event: a correction factor is extracted from the slope of the fittingf line.


u 16

S15


S14



12


***--- CorrectionforCone04Jets
-Uncertainty to





-

-.~


50 100 150 200 250 300 350 400 450 500
PT jet (GeV)


Figure 3-3. Absolute jet energy scale corrections for jets with cone size of 0.4 as a function

of the jet momentum (blue). The uncertainty for this correction is also shown

as a function of the jet momentum (black).















































































Figure 3-5. Jet corrections due to out-of-cone effect for jets with cone size of 0.4 as a
function of the jet momentum (red). The uncertainty for this correction is also
shown as a function of the jet momentum (black).


20 40 60 80 100 120 140 160 180 200
Corrected jet PT (GeV)


t 0.14

0.12



C~0.08


U)0. 06
LI

- 0.04


Underlying Event Systematic Uncertainty
SCon 0




-oe0


Figure 3-4. Fractional
transverse


systematic uncertainty due to underlying event as a function of jet
momentum for different jet cone sizes.


**** Correction for Cone 0 4 jets
- Uncertaintyio


20 40 60 80 100 120 140 160 180 200
PT particle-jet (GeV)














Jet


Displaced
Tracks


Secondary
Vertex


L /
xy ,


Primary
Vertex


Prompt tracks


Figure 3-6. Schematic view of an event containing a jet with a secondary vertex.


Figure 3-7. Jet probability distribution for prompt, charm and bottom jets.








































signed ImpactParameter Signed Impact Paraeter



Figure 3-8. Signed impact parameter distribution for tracks from primary vertex (left) and
from secondary vertex (right).









CHAPTER 4
DESCRIPTION OF THE MATRIX ELEMENT MACHINERY

In this section we will present in detail how the matrix element is calculated and used

in our analysis. The matrix element is used to calculate the a priori probability density for

an event to be the result of the it Standard Model production and decay at a given pole

mass M~to. We will dedicate a section for the general expression of the probability density,

one section discussing the combinatorics, another for the matrix element calculation,

another for the transfer functions, another on the transverse momentum of the it system,

and in the final section of this chapter we will put together the final expression of the

probability density with its implementation details.

4.1 Probability Density Definition

Given an event defined by a set of six observables (i.e., jets) one can compute the

elementary cross-section at a given top mass m as if the event were the result of it

production followed by the all hadronic decay as given by Equation 4-1.


damj d~~f4,fX~EEb U, t, | Mm )(h"(j~f, (2xr)32Ei
i= 1

In Equation 4-1, j is a generic notation by which we understand all six 4-momenta

describing the final state; za(zb) is the fraction of the proton(anti-proton) momentum

carried by the colliding partons; f (za) and f (zb) Stand for the parton distribution

functions for proton and for anti-proton respectively; MZ/ (m, j) is the matrix element

corresponding to the all hadronic tt; Efi, is a generic notation for the 4-vector of the final

state, and similarly for the initial state we use Ei,i.

If the elementary cross-sections from a group of events are added up we should obtain

a fraction of total it cross-section, atot(m), for top mass m as shown in Equation 4-2.


a(m) = de~m, j) = tot(m>e(m) (4-2)









where e(m) represents the fraction of events considered. In practice we use only a fraction

of the events, namely those passing certain selection criteria.

At this point, we can define a probability density for each event. This is nothing

but the normalized elementary cross-section without the d3j meaSUT6 aS giVen by

Equation 4-3.
P~i) / dzedzb a )f~ b) li 0~, j) 2(2xr)4 (4)(Efi, Ei,i) (r)2 43

4EEblV 1,1 a tot (m>e(m) (2x32E

Th~e quantity P(jlm) n8 d3l Will be th~e probab~ility for anl event defined by th~e

set of six jets (i.e., six 4-momenta) to be the result of it production followed by an all

hadronic decay for top mass m.

So far we didn't worry about how accurately we can determine the six 4-momenta.

In reality, the final state partons which are observed as jets in the detector, can be

mis-measured. We can account for this using our it Monte Carlo samples and determine a

probability for a parton with 4-momentum p to be observed as a jet with 4-momentum j.

This new probability is called Trans ferFunction TF(Jlp3 and all the technical details on

how we determine them will be presented in section 4.4.

Since we don't know what is the parton 4-momentum that generated a given jet

4-momentum we have to consider all possibilities and integrate over them weighed by the

transfer functions. The Equation 4-3 can be rewritten as in Equation 4-4.

1 dzdz a b
P~jIm= tot(m~e(m) 4~db(afX~EaEb Ug t, | i= (2xr)32Ei ,,,,

x TF(J ~p (2x)4f(" (4)(fi (4-4)


The parton configurations integrated over in Equation 4-4 are weighed by the

transfer functions so that those more likely to produce a given 6-jets event are enhanced.

Ideally the it phase space should be enhanced as well and not diminished. In order to

enforce this last aspect of the integration, we introduce an additional weight, PT(p3,

that follows the shape of the transverse momentum of the it system. This last weight










is also determined with the help of a Monte Carlo sample and we'll offer more details

in section 4.5. Therefore the new expression for the probability density is shown in

Equation 4-5.



1 dzdz a b
P~jIm= totmt(m>em 4 Xdb(,fX~EaEb Ug t, | i= (2xr)32Ei ,,,,




Even though a tt event in the all hadronic final state is fully reconstructed, there is

an ambiguity in assigning the jets to the partons. Therefore all the possible combinations

are considered and their contributions averaged. The number of possible assignments

depends on the topology of the event and this will be discussed in section 4.2. Until then

the Equation 4-6 gives the most general expression of the probability density.

1 d a z a b
P(j Im)=x
atot (m)e(m) Ncombi ddxf,)xb4EEblV i, r, | I (2xr)32Ei1

x |Mz~(m, p)|12(2xT)4 b(4) (Efi, Ei,i )TF(j13 |p P(pi3 (4-6)

4.2 Combinatorics

In general, there are 6! = 720 r-wsi~ to assign the observed jets to the six partons of

the final state in an all hadronic tt process. This number can be reduced by making few

observations and assumptions.

First, one has to notice that the matrix element is symmetric to t +-4 t. Let's write

down in Equation 4-7 the spin averaged matrix element squared for the process us i t.


4 M 288(p,g +' ps)m)v ~~T YL(~-m-y(j~ tl(
spons

Assuming that the masses of the up quarks are zero and omitting the constant and

the gluon propagator term, we can write Equation 4-8



spons










After using the properties of the gamma matrices and the full trace technology, we are

left with the expression in Equation 4-9.


|M|2 m 32(m(lipj )p- t 2(pi, pt)(Ps- ) 32mr(p, pe (4-9)
spons

Fr-om Equation 4-9 the t tat symmetry is evident. This should hold for the matrix

element of the process containing the decay of the top quarks since this symmetry reflects

the invariance to the charge conjugation of the strong interaction. This symmetry can be

translated into a symmetry to b tab once we consider all possible b-W pairings for each

top quark: {t = (bi, Wi), t = (b2, 2~)}, {t = (bi, W2), t = (b2, 1~) It is Obvious that

swapping the b's is equivalent with swapping the top quarks.

In conclusion, due to the t tat symmetry the total number of combinations is reduced

to 360. Secondly, if any of the jets can be identified as a heavy flavor jet we can assume

that jet to be produced by a b-quark. This assumption results in a factor of 3 reduction

of the total number of combinations, down to 120 (or 5!). If there is an additional heavy

flavor jet, we get a factor of 5 reduction down to 24 (or 4!). If there are more than two

heavy flavor jets, we will assign to a b-quark only the two jets with the highest transverse

energy since we expect the b-quarks to be more energetic than the W-boson decay

products. The Equation 4-10 summarizes the possible values for Ncombi.

360, for 0 b-tags

Nvcombi =120, for 1 b-tags (4-10)

24, for 2 b-tags


4.3 Calculation of the Matrix Element

In this analysis we use the matrix element describing the process us i tt bbundd.

As far as the incident partons are concerned, the dd annihilation and the gluon-gluon

fusion should be considered as well. For the energy at the Tevatron the gluon-gluon fusion

is about 15' and of the remaining contributions the us dominates at 911' In a sample









with only gluon-gluon fusion we reconstructed the top mass using an only uu matrix

element and we didn't observe any bias. We concluded that using uu in the initial state

should be sufficient for mass reconstruction.

For the final state, having a W boson decay into a ad pair or a cs pair doesn't make

a difference. The other decays are suppressed via the CK(M matrix. Therefore all we need

to do is calculate the matrix element for the case when both W bosons decay into ad pairs

and multiply by 4 in the expression of the probability density given in Equation 4-6.

The invariant amplitude for the process uu i tt bbundd is given below as a

product of several factors as shown in Equation 4-11.


iMz~=A-C(i) kl)-I- P, -T- P, Pi -W, P w, W2 PW 2


All the terms entering the invariant amplitude shown in Equation 4-11 are detailed

by the Equation 4-12.

-ig 2g4
A=W

C'(i) kl) = AAb,

I = vU(pe~)Y"U(p,)

P=
S(p, + s) 2 + 6
T = u(pb)y"a y5) /~ p _~,( my( 5)v(pg)


P- =, 2+i~


W, = u(q,)70 (1 ys )vgi

1 W1

w2 = UOd 7p 7-5)v(qui)

Pw1/ a n1 (4-12)
P M+ il~wry









The term A is a constant representing the product of all constants present in the

vertex terms and the propagator terms of the process uu i tt bbundd. We will omit

this term in the actual calculation since only the top mass dependent terms are useful.

The term C(i) kl) is the color term with ij being the colors of the uu pair and

kl1 being the colors of the it pair. Ag and A~ are the Gell-Mann SUJ(3) matrices with

a, b = 1, 2, .. ,8. For completeness we will average over the initial state colors and sum

over the final state colors, but we will ignore this constant as well in the final expression of

the probability density for the same reason given for term A.

The term I represents the uu and gluon vertex. The term P, is the denominator of

the gluon propagator between uu and it.

The term T is the product of the ttg, tbW+ and tbW- vertices with the numerators

of the top quark and the antitop quark propagators. The terms Pt and Py are the

denominators of the top quark and the antitop quark propagators.

The terms W1 and W2 represent the W+ud and W-du~ vertices. The terms Pw, and

Pw, are the denominators of the W+ and W- propagators. We have used the Feynman

gauge for the W boson propagator.

The Dirac gamma matrices y" are defined in the Dirac representation as shown in

Equation 4-13, where o-9 = (1, 3) and a" = (1, -3'). a are the Pauli spin matrices.

O o-0L -1
y7L = ,Y Ts (4-13)
FM0 0 1

In general, the solutions of the Dirac equation for positive frequencies, u~p), and for

negative frequencies, v(p), for any spin states ( (or rl for antiparticles) can be written as in

Equation 4-14.

u(p) = c v(p) = --~~ j(4-14)









In the high-energy limit (or the massless limit) the solutions to the Dirac equation

can be written as in Equation 4-15.


1- (4 1-
u(p) = 2 -p (-5


The presence of the operator p a will project the spin states along the direction

of movement defined by p. For a particle traveling in the direction defined by the polar

angle 8 and by the azimuthal angle 4, the spin states along this direction are shown in

Equation 4-16.
cose -e-i sino
((1) =2 __ 2(4-16)
ei sine cos?

For an antiparticle we have that rl(l) = ~(() and rl(-) = -((1`). These spin states

satisfy the Equation 4-17.


(4-17)


Using Equations 4-15 and 4-17, we can rewrite in Equation 4-18 the 4-vectors W1

and W2 from Equation 4-12.







Also the tensor in term T from Equation 4-12 can be rewritten in the form given by

Equation 4-19.






We assume that the incoming partons travel along the z-axis, with the proton going

in the positive direction. For the final expression of the probability density given in










Equation 4-6, we will need to sum over all the possible spin configurations of the initial

state. We find two non-zero contributions corresponding to the situations when the

incoming partons have the same handedness. Therefore for the term I from Equation 4-12

is expressed in Equation 4-20.


IgR = ZEd (0, 1, i,0)
I = (p- o (s) =(4-20)
If, = ~E~(0,1,: -i, 0)

In principle, we need to average over all the possible spin configurations of the

final state. The Equations 4-18 and 4-19 represent the non-zero contributions. Using

Equations 4-18, 4-19 and 4-20, the product of the terms I, T, W1 and W2 is giVeH in

Equation 4-21.

I T W1 W2 = Ex ManR,LL (4-21)

Fr-om Equation 4-21, the term E proportional to the product of the energies of all

particles, incoming or outgoing, is shown in Equation 4-22.






May,LL ( f ) (7 .; o ) 0(h b naL ), m2 bRR,LL) 0 (4-23)


The terms ManR and MrsL, shown in Equation 4-23, are calculated in a C++ code

using Equation 4-15 and the matrix algebra. Therefore we can write down the expression

of the matrix element squared from Equation 4-6 in the form of Equation 4-24.

IM"-1 |A|=~2 -C ||
|Ad|2~~~~ 2622 -P P P (|Man|$ + |McL|2) (4-24)
spons
colors









The factors entering the final expression of the matrix element squared from

Equation 4-24 are detailed in Equation 4-25.

3

Cs = I Ax362x3

(p, + >~) 4

pt = | Ps 2
(p,2 m2 2 2I'2

P-2 = |a~ Py | 2

P~ = |Pwll",|2
w (P@ M~ )a 2 +n MS F

Pw = |Pw, |2 I= \ (4-25)


4.4 Transfer Functions

These functions are defined as the probability for a parton of energy E, to be

associated to a jet of energy Ej. The transfer functions term present in Equation 4-6 is

in fact a product of six terms, one for each of the final state quarks: two for the b-quarks

and four for the decay products of the W-boson. The probability density for the transfer

functions is given in Equation 4-26.

646
i= 1

For each jet in the final state we assume that the jet angles are in fact the angles of

the parton that went on to form the jet. Therefore we can write Equation 4-27 to express

the transfer functions in a more general way.


TF(3 |p ) TF(j, Ips) jf b(2)(r pi) (4-27)


The transfer function depends both on the jet energy and on the parton energy. This

bi-dimensional dependence can be projected either on the jet axis to obtain the jet-to-

parton type of transfer functions or on the parton axis to obtain the parton-to-jet type.









We use the second type, parton-to-jet. That is for a given parton energy p we build a

probability to produce a jet of energy j normalized as shown in Equation 4-28.


TFf| d = Tjip)j dji (4-28)

In order to assure Lorentz invariance for transfer functions we will make a change of

variables j i = 1 j/p. Therefore the transfer functions we will use are T((slpi) and

Equation 4-29 gives their normalization.


((sps~ge 1(((ji)|Ipi) -1di (4-29)

We can write the Equation 4-26 again with the full expression entering Equation 4-6

holding the probability density for the it all hadronic process.


TFC7Ip3 T F(j |p) ((j)|s 62 __0)


The transfer functions T((slp ) are built using it Monte Carlo samples. More

exactly, a jet is associated to a parton if its direction is within a cone of AR = 0.4 around

the parton direction. We wi that a jet is matched to the parton if no other jet should

satisfy this geometrical requirement. We call an event as being a matched event if each

of the six partons in the final state has a different jet matched to it. Of all the it Monte

Carlo events passing the kinematical selection defined later in section 5, about 50I' are

matched events.

The jets formed by the decay partons of the W-bosons have a different energy

spectrum than the jets originating from the b-quarks. Thus we form different sets of

transfer functions depending on the flavor of the parton the jet has been matched to.

The transfer functions are described using a parameterization in bins of the parton

energies and of the parton pseudo-rapidities. Table 4-1 shows the definition of the binningf

in pseudo-rapidity. The same definition holds for b-jet transfer function and for W-jets
transfer functions.









The inning in parton energy is defined such that each bin contains at least 3000

entries and it is wider than 5 GeV. This is done in each bin of pseudo-rapidity. Table 4-2

shows the definition of energy inning for the b-jets transfer functions, while Table 4-3 is

for the W-jets transfer functions.

In each bin the transfer function is represented by the distribution of the variable

1 Ejet/E,,rton. The shape of this distribution is fitted to the sum of two gaussians.

Appendix C holds the fitted shapes.

4.5 Transverse Momentum of the it System

The PT(p3 weight is written as dependent on the 4-vectors of the partons in the final

state, generically represented by P'in the argument of the function. This dependence is

difficult to parameterize. Therefore we will pick a more natural set of parameters to work

with. In the next section we will detail the change of variables needed to accommodate

this simplification. Until then we anticipate that the variables used for integration in
Equa~~tion 4-6 are 6 and ,6 representing the projections of the transverse momentum of

the it system along the x and y axes. The probability density related to the transverse

momentum of the it system weight is shown in Equation 4-31.


PT(p~ PT(p p) (4 31)


The parameters we actually use are the magnitude of the transverse momentum of the

it system, p), and the azimuthal angle, ~. The upper index means that these parameters

are determined using the 6 partons in the final state. We expect to have a flat dependence

on ## and therefore we can factorize the two dependence. The Equation 4-32 gives the
normalization relation.


dp d, PrX (p ~)= 1 = dpP~r (p~l )~ X d (4-32)

The transverse momentum spectrum of the it events, represented by PT(p ) in the

Equation 4-32, is obtained from a tt Monte Carlo sample with M~to = 178 GeV. The









shape of this distribution is normalized to unity and therefore we have in Equation 4-33
the value for #1.
dp r, (p ) = 1, O (4-33)


As mentionedl before wei needT tnpnpo ex rpres vrythingin terms of p6 andl p6 This can be

done just by changing the variables from the polar to the Cartesian coordinates as shown

in Equation 4-34.


dp d~ PT(p t) = 1= dpn6dp




T("'tp = (p6)2







Fiue 4-2 o riei quto 3 the shapepesio of the transverse momentum of tei vnsi hw itdt u


of ~p 3 gaussians.43




section 4.3,t 4.4 an 4.5~ offeredig detailsnc on the exreso ms b i uns of eea iprat piece





4 Ipeenteringd vlutono the probability density.UigEutos42,43an435wecnrten




Equation 4-36 the new expression for the probability density.












P~jsn = ) j dzedzbfx) x b a b I 6 (2r32Edi (2x,)4 (4)(Efi, Ei,i)
4EEblV U a 2)3E tot (m)e(m) Ncombi
combi i= 1
|A|2 C E|2,,


x 6(2) 36)
i=1 i 2x (p )2

As mentioned previously, we will not use any constant that can be factored out in

the expression of the probability density. From now on we will omit all such constants

except for the number of combinations, Ncombi. Also in the- argument- of Prw ilu

just p6 but it should be understood ()2 2Which in turn should be understood

as a function of the 4-vectors of the final state partons.

We will move to spherical coordinates in the integration over the partons moment.

Due to the assumption that the angles of the partons are known as the measured angles

of the jets, made explicit by the delta functions, 6(2)(R04 04p), all the integrals after the

angles will be dropped together with the aforementioned delta functions. Also we use (4

instead of ((ji) in the argument of T.

One should notice that |E|2 1S divided out by the energy factors in the denominator

as seen in Equation 4-37.


P~j n)= j Va -, Itot(m)e(m) Ncombi ji p iF~ p)]
combi i= 1

x t -I' Py -t P (|Mag|R2 + | |17~,2 6(4)(Efi,, Ez,i) (4-37)
p6

To reduce the number of integrals we will work in the narrow width approximation for

the W-bosons. This translates in two more delta functions arising from the square of the

W-boson propagators as shown by Equation 4-38.


Pw =1 rw~l MW 6 2 -14 M ) (4-38)
(P& M)2+ W M~Wry










Considering the high-energy limit, we have that the invariant mass of the W-boson

decay products is given by Equation 4-39. 01,2 is a geneTic HOtation for the polar, 01~,2

and the azimuthal, ~1,2, angles of the two decay products. Arl2a is the difference in

pseudo-rapidities of the two decay partons and a#12 = 1 2-.


P( = 2lp~snip28 ( 882COSha 012 COS 12~) = 2plp2 a(12 12) (4-39)


Making the change of variables P i pi, the Equation 4-38 can be written as a

delta function depending on the energy of one of the W-boson decay partons as shown in

Equation 4-40, where-- pO =VW MS/(2p2 12


Pw wtw 1- p) (4-40)


The mass of the W-boson is 80.4 GeV and its width is 2.1 GeV. Without these

new constants and using the expression from Equation 4-40 for both W-boson squared

propagators, we can write in Equation 4-41 the probability density.

P~~j mj C i~~~ dzedzb (a f( b) ip dPbR3 PT~p)
00mb -v i, |"Ttot (m) e(m) Ncombi p294 pT

x ((4|p) t b'" 4(Ef,,, E,?,) (4-41)
i= 1

When we calculated the matrix element in section 4.3 we assumed that the incoming

partons were traveling along the z-axis. This means their transverse momentum is zero.

Therefore the energy conservation is violated in the transverse coordinates since based

on Figure 4-2 we considered non-zero transverse momentum for the it system. However,

we expect this to be a small effect covered by the uncertainty on the parton distribution

functions of the proton and of the antiproton. Anyway, we need ignore the delta functions

requiring energy conservation along the x and y axes as shown in Equation 4-42.











6 6
fi(4)(Ey4,-E4) E +E i a

6 6
=il I vs+ s- E) b(lvl ve- ) (4-42)
i= 1 i= 1

In Equation 4-41, we made the change of variables za p, and zb p g giVen

that za = pul/pproton and zb PE Pantiproto. The values of the proton and antiproton

moment, proton and pantiproton, are COnStant and from now on we will drop them from any

expressions. In the high-energy limit we will have |v, I, | = 2c and therefore we will omit

this term as well. In preparation for this change of variables, we write in Equation 4-43

the expression for the energy-conserving delta function, where p g( os4

and p'~ = g1 o-)2
6 6
(i4)( (Ere, E,)t 6 (pl + pa ps) b (p p ..-


= &(u )6ps -p )(4-43)


Using all of the above, the expression for the probability density is given by

Equation 4-44 in an almost final form.

P(j 7m) =~o~l~~i~~Uii 1ip d ab~P~P pbR 9 93(~
combi Ll)(o3)P4

xi TF~ ($pi) -_, ~ Pt q -(|Man|$2 + |McL|Z)(44
i= 1,

In section 4.5, we announced our preference to integrate over the x and y components

of the momentum of the it system. That is accomplished by a last change of variables

{pbPy VVI6U U6 Whose Jacoian J(b 6), is given by Equation 4-45.


J(b 6) = (4-45)









The Jacobian is obtained by solving a system of equations for pb and pg. The relations

entering the system of equations are shown in Equation 4-46.


(4-46)


We can then write in Equation 4-47 the expression of the probability density in its

final form which is used inside a C++ code.


P(jm) =/ x
ator (m) a(m) Nvcombi (12 2 Lo34 2p294
combi

x W((4|p) 6 t Pi (|Man|$ + |Mc~L|2 (47
fi= 1 F~p)]Dpn6

The integration is performed by simply giving values to the 4 integration variables

and then by adding up the integrand obtained at each step. The limits of the integration
are -60 GeVi 60 GeV~ for ,6 and 10 GeV 300 GeV for p24. The step of integration is

2 GeV. Given these limits, at each step of integration we have to check the physicality of

the components entering Equation 4-47. The probability density is evaluated for top mass

values going in 1 GeV increments from 125 GeV 225 GeV.

The dependence on mass of the it cross-section is obtained from values calculated by

CompHep Monte Carlo generator for the processes us i t, dd i t and gg i t. The

absolute values for these cross sections are not as important as their top mass dependence.

Figure 4-1 shows this dependence.
For the proton andl antiproton PDF, f ( ) f (p3i), we~ wVill use the~ CTE5LU dUistibutions

with the scale corresponding to 175 GeV. The shapes are given in Appendix A. The it

acceptance, e(m), depends on the top mass and will be described later when the event
selection is addressed.

The final expression of the probability density has been given and its implementation

has been detailed. The following section is dedicated to the checks we performed in order

to assure the proper functionality of the matrix element technique.










4.7 Checks of the Matrix Element Calculation

The event probability described in the section 4.6 depends on the top quark pole mass

and is expected to be minimized in negative log scale around the true masses in the event.

Multiplying all the event probabilities we obtain a likelihood function that depends on the

top pole mass. Equation 4-48 shows the expression of the likelihood.


L(Mtop) = (jMtp)8)
events

In negative log scale this likelihood is expected to have a minimum around the true

pole mass, and so the top mass reconstruction can be performed. This reconstruction

is the traditional matrix element top mass reconstruction. However, we only use this

reconstruction to check the matrix element calculation.

We use Monte Carlo samples generated at various input top masses. Only signal

events are used. For each sample, the reconstructed top mass done by using only the

matrix element calculation can be plotted against the input top mass. This can be done

at various levels of complexity. Ideally, we'd see a linear dependence with no bias and a

unitary slope.

The first check to do is at the parton level. We take the final state partons moment

from our Monte Carlo, smear their energies and use them as jets moment. Figure 4-5

shows a good linearity in the case of a 5' uniform smearing. There is a small bias of

about 0.8 GeV, but the slope is consistent with 1. As the smearing is increased the bias

becomes more evident, and slope degrades slightly. This can be also seen in Figure 4-5

for 101' smearing and for 211' smearing, respectively. In all of these situations a gaussian

centered on 0 and with width equal to the amount of smearing used has been emploi-x I as

a transfer function in the event probability computation.

The partons can also be smeared using the functions described in section 4.4, in

which case the same functions are used as transfer functions in the event probability

computation. This test makes the transition between the parton level to the jets level,










although it's still a parton level check. Figure 4-5 shows the linearity check in this case as

well .

The next check is moving closer to reality by using in the reconstruction the jets

that have been matched to the partons. This is already a check at the jets level and the

functions defined in section 4.4 have to be used. Figure 4-6 shows the linearity check.

The final check is the most realistic we can get using only signal events, and that is

we use all the events we have with disregard to whether the jets have been matched or not

to the partons. Figure 4-7 shows the linearity check in this case.

All the checks we have listed above show the good performance of our matrix element

calculation. In general, the traditional matrix element approach is expected to provide

a better statistical uncertainty on the top mass than the template analyses. In the case

of the present analysis, the traditional matrix element method does better only the

reconstruction is performed on signal samples. When the background is mixed in, the

template method we use has a greater sensitivity.











Figure 4-1. Tree level Feynman diagram for the process us i t


Table 4-1. Definition of the inning of the parton pseudo-rapidity for the parameterization
of the transfer functions.
Bin |9|l
1 0 0.7
2 0.7 1.3
3 1.3 2.0














Table 4-2. Definition of the inning of the parton energy for the b-jets transfer functions
parameterization.
Bin 0 < rl < 0.7 0.7 < rl < 1.313<<20
1 10 53 10 83 10 00o
2 53 64 83 111
3 64 74 111 00o
4 74 85
5 85 97
6 97 114
7 114 00o


Figure 4-2. Tree level Feynman diagram for the process us i tt bbundd











Table 4-3. Definition of the inning of the parton energy for the W-jets transfer functions
parameterization.
Bin 0 < rl < 0.7 0.7 < rl < 1.313<<20
1 10 32 10 50 10 98
2 32 38 50 63 98 00o
3 38 44 63 76
4 44 49 76 90
5 49 54 90 108
6 54 59 108 00o
7 59 64
8 64 69
9 69 75
10 75 81
11 81 89
12 89 99
13 99 113
14 113 00o








H25-


20-



15-



10-



5- L



120 140 160 180 200 220
Top Mass [GeV]

Figure 4-3. Cross section for it production as a function of the top mass, as obtained from
CompHep. The line is not a fit.















PtTThar


18000 u 2i
Undelflow
16000 -C Overflow 197
Integral 4545e+05
14000 # \i~df 31 3e 92

12000C pO 5259e+05 i1445e+04
pl 3402 11018
10000t p2 2552e+04 i1083
p3 1658e+06 i2212e+04
8000 p4 -1183 i01924
p5 339219653
6000 p5 -1995e+06 i3403e+04
p7 -24 9110 05462
4000 p8 1514106078

2000-

0
Pt_ttbar [GeV]



Figure 4-4. Transverse momentum of the it events. The fit is a sum of 3 gaussians.


22 Indf 1.269 I 3
Prob 0.7365

p0 177.210.03468
pl 0.9892 10.001879


-y=x
- y =pO +(x -178)*pl


150 160 170 180 190 200
Input Top Mass [GeV]


Graph

F200


I<190


0180


170


160


150


X2 Indf 2.845 I 3
Prob 0.4162
pO 176.8 10.05232
pl 0.9866 10.002775


-y=x
| = O + x -178)*pl


150 160 170 180 190 200
Input Top Mass [GeV]



Figure 4-5. Reconstructed top mass versus input top mass at parton level. A) The

energies of the partons have been smeared by 5' B) The energies of the

partons have been smeared by 10'; C) The energies of the partons have been

smeared by 211' D) The energies of the partons have been smeared using the

transfer functions.
















Graph

F200
e,
I190


180


170


160


150


X2 I ndf 3.296 I 3
Prob 0.3482
p0 176.4 10.08033
pl 0.976110.004343


-y= x
- y =pO +(x -178)*pl


150 160 170 180 190 200
Input Top Mass [GeV]


Graph


X2 /ndf 0.5515 /3
Prob 0.9074
pO 177.1 &0.0906
pl 0.9891 & 0.005017


-y=x
- y =pO +(x -178)*pl


150 160 170 180 190 200
Input Top Mass [GeV]


Figure 4-5. Continued


Graph


X2 I ndf 4.778 I 3
Prob 0.1888
p0 179.2 10.0871
pl 1.005 10.004798


-y=x
- y =pO +(x -178)*pl


150 160 170 180 190 200
Input Top Mass [GeV]


Figure 4-6. Reconstructed top mass versus input top mass using jets that were uniquely

matched to partons.














































Grapl


~200 / ndf 3.627 / 3
Prob 0.3047
SpO 178.510.1308
pl0.939410.0071
,190-


8180-


170-


160- y=x
y= p + x -178)*pl

150-
150 160 170 180 190 200
Input Top Mass [GeV]



Figue 47. econstructed top mass versus input top mass using realistic jets.









CHAPTER 5
DATA SAMPLE AND EVENT SELECTION

5.1 Data and Monte Carlo Samples

The data events are the Run2 CDF multi-jet events selected with the TOP_M~ULTIJET

trigger, and it amounts to approximately 943 pb-l. This trigger selects about M' of the

it all hadronic events.

The Monte Carlo samples are the official CDF samples. We use 12 different samples

generated with the Herwigf package to parameterize the mass dependence of our templates.

The mass takes values from 150 GeV to 200 GeV in 5 GeV increments. There are also

samples with a top mass of 178 GeV used to determine various systematic uncertainties:

different choice of generator (in this case we used the Pythia package), different modeling

of the initial state radiation (ISR) and of the final state radiation (FSR), different choice

of proton parton distribution function (PDF). The background model described in

section 6 is validated with the help of two Monte Carlo samples generated with the Alpgfen

package: one with events having bb+4 light partons in the final state and another with

events having 6 light partons in the final state.

5.2 Event Selection

Before describing and listing the selection cuts, we need to mention the sample

composition. The multi-jet events contain beside our signal events, a multitude of

backgrounds:

* QCD multi-jets

* hadronic W,Z production

* single top production

* pair production in other channels

The QCD multi-jet production has the N----- -1 contribution, while the others can be

neglected since they involve electroweak couplings.









There are three sets of cuts. The first set, clean-up cuts, is aimed at enhancing the all

hadronic top content of our datasets. They are listed below:

* vertex position: |z| < 60 cm and |z z,| < 5 cm

* f/ET ~~ < 3 (GeV)1/2

* remove events having muons or electrons

These clean-up cuts select about ;::' of the it Monte Carlo samples out of which

about b !' are all-hadronic events. In the data only ";' of the events pass these cuts,

most of the events failing the good run list and the tr~i ;r cuts.
Next, the kinematical and topologfical cuts are applied in order to enhance the it
events over the background:

* require events with exactly 6 jets with |9|l < 2 and ET > 15 GeV

* Aplanarity +0.005 C ET3 > 0.96

* centrality > 0.78

* C ET > 280 GeV

* > 1 SVX tag

where EET is sum of all the transverse energies of all the six jets in the event, CE3E

is the sum of all the six jets minus the two most energetic ones, Centrality is defined

in Equation 5-1 and the A!;~,, J.:111i is defined as 3/2 of the smallest eigenvalue of the

sphericity matrix Sij. The sphericity matrix Sij is defined in Equation 5-2.


Cetntrality7 = (5-1)



Sij = Lp C," ~ where i, j = x, y, z (5-2)
E 6= 1 Pp2
The values of the cuts have been optimized using a tt Monte Carlo sample and a

sample of background events. The background events were in fact from the multi-jet

dataset passing only the clean-up cuts, so that the it content is negligible. The details of










the optimization can be found in [50]. Table 5-1 shows the number of events in the data

sample. Table 5-2 shows the number of events in a tt Monte Carlo sample with My =

170 GeV.

The SVX b-' I__-- used has a higher efficiency in the Monte Carlo than in the data.

Therefore we need to degrade the number of' I__- d events according to the appropriate

scale factor which is SF = 0.91. Taking this scale factor into account, and converting to

the luminosity of the data, we show in Table 5-3 the signal to background ratios, S/B,

for different top masses after the kinematical cuts for single and double I__ d events

separately. The conversion to the observed luminosity is done by using the theoretical it

cross section. The number of background events is the difference between the observed

number of events in the data shown in Table 5-1 and the signal expectation.

An additional cut is introduced to further cut down the background. This new

variable we cut on is the minimum of the event probability given in Equation 4-6 of

section 4. Figure 5-1 shows the distribution of the minimum of the negative log event

probability for a signal sample versus the background shape.

Note that the top mass value for which this event probability is minimized will be

used in the final top mass reconstruction, and the value of the probability in negative log

scale is used as a discriminating variable between it and background. We denote this value

as minLKL, and the cut definition is requiring this variable to be less than 10.

The value of this last cut has been obtained by minimizing the statistical uncertainty

on the top mass value as reconstructed in section 4, that is using only the matrix element

calculation. Table 5-4 shows the efficiency of this cut relative to the number of events

after' I__h;~! and after the kinematical cuts, for signal at different top masses and for

background. The table also shows the number of signal events corresponding to 943 pb-l

and the appropriate signal to background ratio.

Comparing the signal-to-background ratios S/B between Table 5-3 and Table 5-4

there is an improvement of about a factor of 3 for samples with one I__ d heavy










flavor jets and about a factor of 6 for samples with two I__ d heavy flavor jets. This

improvement in the signal-to-background ratio will result in a better resolution in the top

mass reconstruction.

Table 5-1. Number of events in the multi-jet data after the clean-up cuts, kinematical cuts
and' I__;h! The integrated luminosity is L 943 pb-l
Cut Events Fr-action ( .)


Initial
|z| < 60cm
|z z,|1 < 5cm
Lepton Veto
fr/CE < 3
Netightets = 6
K~inematic Cuts
1 tag
> 2 ta f


12274958
3555054
3397341
3392551
3333451
380676
4172
782
148


100
28.9
27.7
27.6
27.2
3.1
0.034
6.37e-5
1.21e-5


Table 5-2. Number of events in the it Monte
Cut Events Fraction ( .)
Initial 233233 100
|z| < 60cm 128169 55.0
|z z,|1 < 5cm 128045 54.9
Tigfht Lepton Veto 113970 48.9
fr/CE < 3 88027 37.7
Neightjets = 6 29485 12.6
K~inematic Cuts 5999 2.6
1 tagf 2603 1.1
> 2 taf 1599 0.69


Carlo sample with M~top


170 GeV.













Table 5-:3. Number of events and expected signal to background ratios for the it Monte
Carlo samples with top masses between 150 GeV and 200 GeV for a luminosity
of L 94:3 ph l. The number of data events is shown too. These events are
passing the kinentatical selection, but not the nxininiun likelihood cut.
M~t<, (GeV/c2) Single Tag S/B Double Tag S/B
150 7:3 1/10 45 1/2
155 72 1/10 46 1/2
160 74 1/10 45 1/2
165 74 1/10 48 1/2
170 74 1/10 49 1/2
175 71 1/10 47 1/2
178 75 1/9 50 1/2
180 69 1/10 47 1/2
185 67 1/11 44 1/2
190 61 1/12 4:3 1/2
195 59 1/12 :39 1/:3
200 56 1/1:3 :38 1/:3
Data Events 782 -148








minLKLminLKLb
0.14 -Ma s
0.12 -Uddo


0.08-
0.06-


Figure 5-1. Mininiun of the negative log event probability. In blue it's shown the curve for
it sample of M~t<> = 175 GeV, while in red it's shown the background shape.























Table 5-4. Number of events, minLKL cut efficiency (e) relative to the kinentatical cuts
and the signal to background ratios for the it 1\onte Carlo samples with top
masses between 150 GeV and 200 GeV for a luminosity of 94:3 ph l. These
events pass all the cuts. The efficiency for background events is also shown.
M~,,, (GeV/c2) Single Tag S/B Double Tag S/B
150 18 0.25 1/2 14 0.32 :3/1
155 17 0.2:3 1/2 15 0.:33 4/1
160 16 0.21 1/2 14 0.31 :3/1
165 16 0.22 1/2 14 0.3 4/1
170 15 0.2 1/2 14 0.29 4/1
175 1:3 0.19 1/:3 14 0.29 :3/1
178 14 0.18 1/:3 14 0.28 4/1
180 12 0.18 1/:3 1:3 0.27 :3/1
185 11 0.16 1/:3 11 0.26 :3/1
190 9 0.15 1/4 11 0.25 :3/1
195 9 0.15 1/4 10 0.25 2/1
200 7 0.12 1/5 8 0.22 2/1
Background -0.05 --0.04
Data Events 48 -24










CHAPTER 6
BACKGROUND MODEL

6.1 Definition

After all the cuts the background events represent at least half of the whole sample.

Therefore we need to have a good description of these events. There are two things we

have to understand well: the shape of the distributions and the number of such events.

Since there is no cross section measurement of this background, and also, the

composition of our data sample hasn't been determined at CDF, we define the expected

number of background events as the difference between the total number of events

observed in the data and the expected number of it events based on the Standard Model.

The shape of the background events can he determined with the help of our Monte

Carlo samples. However, due the small statistics of this samples, we will be forced to

re-sample heavily when we will perform the sensitivity studies of our technique. In order

to overcome that, we will form a sample of background-like events using data events from

a sample quasi-dominated by background. Then we'll make sure that the shape of this

data-driven background model corresponds to the shape from Monte Carlo background

events.

To form the data-driven background events, we start with our pretag data events

before the minimum likelihood cut, but after all the clean-up and kinematical cuts. In

this sample the signal to background ratio is about 1/25. Then we start to randomly

b-tag the jets of these events by using the b-tag rates of the mistag matrix defined in

the all hadronic cross-section analysis [51]. Each event can end up in any of the possible

I__- d configurations by having a number of' I__- d jets between 0 and 6. We iterate

this artificial b-' I_---1-:: procedure many times keeping all the configurations that have

at least one b-' I__- d jet. Some configurations will appear multiple times in this process,

and we will use it that often in our studies as if it were a distinct configuration. The










reason behind this is to preserve the tag rates determined by the nxistag matrix, which by

definition are the rates in the background events.

We start with around 2,600 niulti-jet data events which passed only the kinentatical

cuts without requiring the presence of a heavy flavor jet. We apply our b-tag procedure

for 20,000 times, and we end up with approximately 9 million configurations with only one

heavy flavor jet and 1 million configurations with only two heavy flavor jets in the final

sample. Only about 13,000 single' I__- d configurations and about 27,000 double' I__- d

configurations are indeed distinct.

6.2 Validation of the Background Model

To validate the background model proposed in the previous section, we check the

shapes of several variables of interest in two control regions and in the signal region. The

three regions are defined as follows:

* Control Region 1: events passing the clean-up cuts

* Control Region 2: events passing the kinentatical cuts

* Signal Region: events passing all the cuts

6.2.1 Validation in Control Region 1

The nxistagf matrix used for the background model is based on the .- I_;~! rates of

the data sample with 4 tight jets and passing all the other clean-up cuts. This check is

meant to validate our assumption that the nxistag rates front the 4-jet hin can he used to

predict the nxistag rates in the 6-jet hin. We do this by comparing the observed rates in

the data sample passing the clean-up cuts with the predicted rates for this sample based

on the nxistagf matrix. Figure 6-1 shows the comparison in the exclusive single' I__- d

sample, while Figure 6-2 shows the comparison in the inclusive double I__ d sample. The

variables chosen for this comparison are the transverse energies, pseudo-rapidity and the

polar angle of the jets, and the number of vertices, sunt of the transverse energies of the










leading six jets, and of the sub-leading four jets, aplanarity and centrality as defined in

section 5.

6.2.2 Validation in Control Region 2

We compare shapes between our background model for this region and a Monte Carlo

background. The background model for this region is formed by taking the pretag data

sample in this kinematical region and by using the mistag matrix to obtain the tag rates.

The Monte Carlo sample used has bb + 4 light partons in its final state.

One variable we can look at is the sum of the event probabilities as defined in

section 4 using the matrix element. The sum is between a top mass equal to 125 GeV up

to 225 GeV in steps of 1 GeV. Figure 6-3 shows the shapes of Monte Carlo background

and of the data-driven background.

Another interesting variable is the invariant mass of all the untl I_ d pairs of jets in

the event. Figure 6-4 shows this variable for the I__ d events before the minLKL cut,

while Figure 6-5 shows the case of' I__- d events after the minLKL cut.

6.2.3 Validation in the Signal Region

The top mass value for which the event probability is minimized represents another

interesting variable. Figure 6-6 shows this variable for events after the minLKL cut.

The event by event most probable top mass and the dijet mass variables are of

particular interest since they will be used in the reconstruction of the top mass and of the

JES variable to be described in section 7. All these comparisons show good agreement

between our data-driven background model and the Alpgfen bb + 4 light partons.

6.2.4 Effects on the Statistical Uncertainty

Using a top mass reconstruction technique based solely on the matrix element, we can

vary the background fraction of our mixture of signal and background events and observe

the effects on the statistical uncertainty of the top mass.

The goodness of the mass reconstruction is related to the parameters of the

reconstructed versus the input top mass. The statistical uncertainty is affected by the























































































Aplanarity


Figure 6-1.


Jet Eta
CDF Runil preliminary L=943pb'

0.2

0.1
U 5 'l'15 20
Number of Z's
CDF Runil preliminary L=943pb'
0.12
0.15 -
0. 8 -
0. 6 -

OU 100 O 0
SumEt3 (GeV/c2)
CDF Runil preliminary L=943pb'



O.02C -~

U 0.2 ~~040.6 0.8
Centrality


0 2 4 6
Jet Phi
CDF Runil preliminary L=943pb







0.0 0. .


slope of the calibration curve. The bias in the mass reconstruction is related to the


intercept of the calibration curve.


In the upper plot, Figure 6-7 shows how the slope decreases with the background


fraction, while the lower plot shows how the intercept changes with the background


fraction. The slope decrease indicates a decrease in the sensitivity, in other words an


increase in the statistical uncertainty on the top mass. For the calibration curves studied


in these plots the intercept should be 178 GeV, and it can he seen that as the background


fraction increases the intercept gets further from the 178 GeV value, that is the bias


mecreases.


The reason for the background fraction to have such a big effect on the mass


reconstruction using the matrix element technique of section 4 is because the background


is completely ignored in the matrix element calculation or in assessing a background event


probability. In this analysis we still won't calculate a background matrix element, but we


will use a background probability instead, which will be described in the next sections.

CDF Runil preliminary L=943pb' CDF Runil preliminary L=943pb'




"U 5 100 15 o 20 -O1


Jet Et (GeV/c2)
CDF Runil preliminary L=943pb


Background validation in control region 1 for single I__ d events. The red

points are the data points, while the black points are from the background
model.






















O1 '_


Jet Eta
CDF Runil preliminary L=943pb'

0.3 9

0.1
U 5 1015 20
Number of Z's
CDF Runil preliminary L=943pb'
0.12 -'
0.1



O 1002030
SumEt3 (GeV/c2)
CDF Runil preliminary L=943pb'

0.4 -
0. 2 -

U 0.2 d0.4 0.6 0.8
Centrality


Jet Et (GeV/c2)
CDF Runil preliminary L=943pb





0 2 4 6
Jet Phi
CDF Runil preliminary L=943pb





O 200 400 O
SumEt (GeV/c2)
CDF Runil preliminary L=943pb
0.2 O
0.15


O 0.1 0.2 0.3 3 .4 0.5
Aplanarity


CDF Runil preliminary L=943pb


CDF Runil preliminary L=943pb'


0.12 -


I~


Figure 6-2. Background validation in control region 1 for double I__ d events. The red

points are the data points, while the black points are from the background
model.


1000


Integral of neg.Iog likei~h~ood


4000


I00 ntegral of neg.Iog likei~h~ood


4000


Figure 6-3.


Sum of event probabilities calculated for Alt,, = 125 GeV up to Alt,, = 225

GeV in steps of 1 GeV. These are the events before the minLKL cut for

Alpgfen bb 4 light partons in blue, and for the background model in black.

The plot to the left shows the single' I__- d events (K~olmogorov-Smirnov

probability is 1 .), while the plot to the right shows the double' I__- d events

(K~olmogorov-Smirnov probability is 1;:' .).


CDF RunlI preliminary L=943pb 1

0.12~ Bckg Data

0.1- BB4P

0.08 -

01.06 -

0.04 -

0.02 -


CDF RunlI preliminary L=943pb ~

0.12~ Bckg Data

0.- BB4P

0.08-

0.06-

0.04-

0.02-

0 I I +
















CDF RunlI preliminary L=943pb 1

Bckg Data
BB4P


CDF RunlI preliminary L=943pb ~

4 Bckg Data
2- BB4P








OU50 100 150 200 250 300 300
Dijet Mass (GeV/c2)


0.08

0.06


U 5U 1UU lbU 2UU 25U 3UU 3U
Dijet Mass (GeV/c2)


Figure 6-4.


Dijet invariant mass of the ulrnt I_ d jets. These are the events before the
minLKL cut for Alpgen bb 4 light partons in blue, and for the background
model in black. The plot to the left shows the single' I__- d events
(K~olmogorov-Smirnov probability is 25' .), while the plot to the right shows
the double' I__- d events (K~olmogorov-Smirnov probability is 4;:' .).


CDF RunlI preliminary L=943pb 1

Bckg Data
1 BB4P


CDF RunlI preliminary L=943pb ~

0.4~ t Bckg Data
0.4 -- BB4P


0.2

0.1


0 50 100 150 200 250 300 350
Dijet Mass (GeV/c2)


Dijet Mass (GeV/c2)


Figure 6-5.


Dijet invariant mass of the ulrnt I_ d jets. These are the events after the
minLKL cut for Alpgfen bb 4 light partons in blue, and for the background
model in black. The plot to the left shows the single' I__- d events
(K~olmogorov-Smirnov probability is 911' .), while the plot to the right shows
the double' I__- d events (K~olmogorov-Smirnov probability is '711' .).





















CDF RunlI preliminary L=943pb ~

3C Bckg Data

--BB4P













0130 140 150 160 170 180 190 200 210 22U
Event Top Mass (GeV/c2)


08

06

01
02


02 01 06 08
Bb*BrOUnll~rd0110n
7
'82
180
178
176
171
172
170


CDF RunlI preliminary L=943pb 1


Figure 6-6. Event by event most probable top masses. These are the events after the

minLKL cut for Alpgfen bb + 4 light partons in blue, and for the background

model in red. The plot to the left shows the single' I__- d events, while the

plot to the right shows the double' I__- d events.


Figure 6-7.


Effect of the background contamination in the top mass reconstruction using

only the matrix element technique. The upper plot: slope of the calibration

curve versus the background fraction. The lower plot: intercept of the

calibration curve versus the background fraction. The calibration curves are

built using only the matrix element reconstruction technique described in

section 4.









CHAPTER 7
DESCRIPTION OF THE MASS MEASUREMENT METHOD

The N----- -r contribution to the uncertainty on the top quark mass is the jet energy

scale uncertainty. The jet energy scale and its uncertainty is measured independently at

CDF by the Jet Energy Resolution working group. It takes into account the differences

between the energy scale of the jets in our Monte Carlo samples and the scale observed

in the data. Its value depends on the transverse energy, pseudo-rapidity and the

electromagnetic fraction of the total energy of a jet. So the jet energy uncertainty is

different from jet to jet, but we will generically denote that with ac. The environment in

which this scale and uncertainty is determined is quite different than that of the it events,

and additional corrections might be needed at this level. We define a variable, JES, called

Jet Energy Scale, measured in units of ac. There is a correlation between the top mass

and the value of JES, and that's why we plan to measure them simultaneously to avoid

any double counting in the final uncertainty on the mass.

Our technique starts by modeling the data using a mixture of Monte Carlo signal

and Monte Carlo background events. The events will be represented by two variables:

dijet invariant mass and an event-by-event reconstructed top mass. The latter is obtained

using the matrix element technique described in section 4. For signal, the shapes obtained

in these two variables are parameterized as a function of top quark pole mass and JES.

For background no such parameterization is needed. Hence our model will depend on the

top mass and the JES. The measured values for the top quark mass and for the JES are

determined using a likelihood technique described in this section.

7.1 Likelihood Definitions

The likelihood function used to reconstruct the top mass, shown in Equation 7-1,

is product of 3 terms: the single tag likelihood used for single I__ d events, ~Lte,, the

double tag likelihood used for double I__ d events, 2tag and the JES constraint, JES,

whose expression is shown in Equation 7-7.












S= lisag 2tag JES 71

Both the single tag likelihood and the double tag likelihood are a product of four

terms as shown in Equation 7-2. The top template term, top, iS Shown in Equation 7-3.

The W template term, w, is shown in Equation 7-4. The constraint on total number of

events, Onev, is shown in Equation 7-5. The constraint on the it number of events, L,,, is

shown in Equation 7-6.

1,2tag = top .W .nev .n, (7-2)

Both top and W template terms have the same structure: a weighted sum of

the event signal probability at a given top mass and JES and the event background

probability. The fraction of it events, us/(us + ab), is the weight of the signal probability

and the fraction of background events, nb Es, + ab), is the weight of the background

probability. Together with M~ and JES, the parameters as and nb are free in the

likelihood fit.
et n, Ptop(m,, | M, JE S) + nb tl- )
us + nb
evt 1


Cw = r~v 11~U "et (7-4)
n, + nb
evt=1
The sum of signal and background events, as + ab, is constrained to the total number

of observed events in the data, NVor gs, via a Poisson probability with a mean equal to
Netot
even~lts *

Cnev = (eo enes/R 'b *p(NJnes/ (7-5)
(us + nb)

The number of signal events, us, is constrained to the expected number of it events,
ae sp, ia a Gaussnian of mean equa~l to nsp and width equal to o-Ps. The width of the

gaussian is simply the uncertainty on the expected number of it events.
The epecnpted nu~mbers of sigrnal evepnts, ns, are 13 Single' I__- d and 14 double

I__- d events, corresponding to a theoretical cross-section of 6.7'ji pb [55] and an










integrated luminosity of 943 pb-l. These numbers have been determined using a tt Monte

Carlo sample with a cross-section equal to the theoretical value. The value of the top mass

used in the it Monte Carlo sample just mentioned is 175 GeV and it also corresponds to

the top mass value for which the theoretical cross-section has been calculated. Therefore

we read the expected number of signal events from Table 5-4.

The uncertainties on the numbers of signal events a,p are chosen to be the Poisson

errors. This is a conservative approach since the Poisson errors are larger than the

uncertainties derived based on the theoretical cross-section uncertainty.


L,, = exp ( >" (7-6)


The value of JES is constrained to the a priori determination of this parameter by

the CDF Jet Energy Resolution group, JESemp. This constraint is a gaussian centered on

JESemp and width equal to 1. The unit used is a, which represents the uncertainty on the

jet energy scale.

~~ ~( (JES JESemp2(77


7.2 Top Templates

7.2.1 Definition of the Template

As mentioned in section 7.1, we use the matrix element to build the top templates.

The event probability defined in section 4 is plotted as a function of the top pole mass in

the range 125 GeV and 225 GeV. In negative logarithmic scale this event probability will

be minimized for a certain value of top mass which we'll use to form the top templates.

The shape of these templates depends on the input top mass and JES for it events, but

not for background events.

7.2.2 Parameterization of the Templates

We form signal templates for the mass samples described in section 5 with 7 different

JES values: -3, -2, -1, 0, 1, 2, 3, after all our selection cuts have been applied. In total

there are 84 templates for signal used for parameterization. The function used to fit them










is a normalized product of a Breit-Wigfner function and an exponential. The parameters

of this function depend linearly on top mass and JES. The Equation 7-8 d~;-1i ph the fit

function and the dependence of its parameters on top mass and JES.


11

x (7-8)


The expression for normalization term NV(M, JES) from Equation 7-8 is given in

Equation 7-9.


N(MJES)= ( 3k 3+1 JES + p3k+2 JES2) Mk~ _79)


The dependence of the parameters asi from Equation 7-8 as a function of the top mass

M~ and jet energy scale JES is given by Equation 7-10.


asc = p1s i = (7-10)
p3i+13 + 3i+14 M~ + p3i+15 JES i = 2, 3

The X2 per degree of freedom is 1554/1384 = 1.12 for the single' I__- d sample

and 1469/1140 = 1.29 for the double' I__- d sample. The expression for X2 1S given ill

Equation 7-11.
p12 p7 Nl~bins hbin -fbin2
tm= 1 j= 1 bin=] hi <@ ))
(E2 p b ihns 1) 25

where hbin is the bin content of the template histogram and fbin is the value of the

function from Equation 7-8 at the center of the bin. The summation in Equation 7-11

is done for all templates and for all the bins for which Abin has more than 5 entries. The

denominator of Equation 7-11 is the number of degrees of freedom.

For each sample, the values of the 25 parameters, p, are given in Table 7-1. The

shapes of few of the signal templates as well as the parameterized curves are shown in

Figure 7-1.










The background template shape is build in the same way as the signal templates

using the matrix element, There is no top mass dependence. Also because we use data

events to model the background there is no .JES dependence. There is one subll. ivi

regarding this shape: the procedure used to extract the background shape from data and

described in section 6 doesn't remove any possible top contamination. After all the cuts

are applied, this contamination is quite significant. To remove it, from the raw shape

of the background template we subtract the shape corresponding to a signal template

for mass equal to 170 GeV and JES = 0, with the appropriate coefficients reflecting

the sample composition. We will assess a systematic uncertainty for the choice of signal

template we subtracted.

After corrections, the shape of the background template is fitted to a normalized

gaussian. For both the single' I__- d and the double' I:__- d samples, we show the values of

the parameters in Table 7-2.

Figure 7-2 shows the shapes of the background templates as well as the parameterized

curves, for single and double I__ d events. In Appendix D, all the top templates

corresponding to signal events are di;1li- I.v.d

7.3 Dijet Mass Templates

7.3.1 Definition of the Template

The dijet mass templates are formed by considering the invariant mass of all possible

pairs of untl I_ d jets in the sample. The shape of these templates depends on the input

top mass and .JES for it events, but not for background events.

7.3.2 Parameterization of the Templates

To form the signal templates we use the same 84 samples used for determining the

top templates, after all our selection cuts have been applied. The function used to fit them

is a normalized sum of two gaussians and a gamma integrand. The parameters of this

function depend linearly on top mass and .JES. The Equation 7-12 shows the fit function

and the dependence of its parameters on top mass and .JES.












'~ ~'7 exp ( n (ment W S))

exx

to (mi az)
c03 \"ev "4 2
exp -(-2


NV(M, JES) from Equation 7-12 is given in


eve N(M~, JES)

x (mentW a~s)t9





The expression for normalization term

Equation 7-13.

1:


3k+1 JES + p3k+2 J~ES2) Mk~'


(713)


The dependence of the parameters asi from Equation 7-12 as a function of the top

mass M~ and jet energy scale JES is given by Equation 7-14.


as = p3i+6 + 3i+7 M~ + p3i+8 JES, i = 0, 9


(7-14)


The X2 per degree of freedom is 3551/2636 = 1.35 for the single' I__- d sample and

2972/2524 = 1.18 for the double' I__- d sample. The X2 has the same definition as in

Equation 7-11. In each sample, the values of the 36 parameters, p, are given in Table 7-3.

The shapes of few of the signal templates as well as the parameterized curves are shown in

Figure 7-3.

The background template shape is build in the same way as the signal templates. The

top contamination is removed in the same way as in the case of the top templates (see

section 7.2).

The background template is fitted to a normalized sum of two gaussians and a gamma

integfrand. For both the single' I__- d and the double' .,---- d samples, we show the values

of the parameters in Table 7-4.










Figure 7-4 shows the shapes of the background templates as well as the parameterized

curves, for single and double I__ d events. In Appendix E, all the dijet mass templates

corresponding to signal events are di;11l-phi 4.

Table 7-1. Values of the parameters describing the shapes of the top templates for the it
samples.


Parameter Values (1Tag)
po 1.56e+03
pi -3.25e+02
p2 1.25e+02
p3 -8.71e+00
p4 2.68e+00
ps -1.06e+00
p6 -6.70e-03
p7 3.44e-03
ps -1.07e-03
p9 2.74e-04
plo -5.77e-05
pll 2.41e-05
pl2 -5.47e-07
pl3 5.81e-08
pl4 -3.66e-08
p1s 8.36e+02
pl6 4.28e+00
p17 9.79e-01
pls 1.98e+00
pl9 4.09e+00
p20 9.29e-02
p21 2.13e-01
p22 -3.87e-02
p23 3.06e-04
p24 -1.35e-03


Uncertainties (1Tag)
5.69e+02
2.15e+02
9.62e+01
2.85e+00
2.26e+00
6.81e-01
1.53e-02
1.34e-02
2.69e-03
9.24e-05
7.07e-05
1.40e-05
3.33e-07
2.05e-07
5.63e-08
7.17e+02
1.23e+00
6.97e-03
5.85e-02
2.29e+00
1.32e-02
9.86e-02
5.50e-03
3.04e-05
2.53e-04


Values (2Tags)
1.76e+01
-1.03e+01
-3.14e+00
8.72e-02
1.39e-01
4.12e-02
-3.88e-03
-4.50e-04
-8.99e-05
2.64e-05
-8.36e-07
-6.36e-07
-5.41e-08
4.39e-09
2.25e-09
5.11e+00
4.84e+00
9.81e-01
1.63e+00
-7.95e+00
1.38e-01
5.01e-01
1.28e-02
-4.10e-05
-2.20e-03


Uncertainties (2Tags)
4.56e+00
4.65e-01
2.05e-01
1.14e-02
3.56e-03
1.74e-03
3.82e-05
2.09e-05
9.6;9e-06;
1.48e-07
1.09e-07
5.06e-08
7.52e-10
4.38e-10
1.91e-10
5.02e+00
1.06e+00
6.03e-03
4.72e-02
1.63e+00
9.30e-03
7.21e-02
6.61e-03
3.65e-05
2.680e-04


Table 7-2. Values of the parameters describing the shapes of the top templates in the case
of the background events.


Values (1Tag) Uncertainties (1Tag)
1.53e-02 3.09e-05
1.59e+02 7.68e-02
1.79e+03 7.17e+00


Values (2Tags)
1.28e-02
1.63e+02
3.28e+03


Uncertainties (2Tags)
9.08e-05
3.73e-01
6.42e+01


Parameter
1
2
3

















17 -
6 17e


JES =-1
oa JES=1
26 =3 8


JES =-1
JES=1
a JES=3


Figure 7-1.


Top templates for it events, single tags in the left plot, double tags in the right

plot. The upper plots show the parameterized curves, while the bottom plots

show the original histograms. The left column shows the templates variation

with top mass at JES = 0. The right column shows their variation with JES

at top mass lHop = 170 GeV.


minLKLmassV1


minLKLmassV1


minLKLmassV1

Mann 1851

ovdernow a
Integrol 4165 a
7ine J814*<4/22


minLKLmassV1
Emneso losi
Mean 1899
Rus 26os

Integral 4231.*04
findr a44/22
proa
po 1o'ii"oo
looeso372e"
112 2940+6417


35000

30000 _

25000 -

20000 -

15000-

10000-

5000-







Figure 7-2.


140 160 180 200 220
Scanned Top Mass (GeVlc 2)


0 140 160 180 200 220
Scanned Top Mass (GeVlc 2)


Top templates for background events. Single tags in the left plot, and double

tags in the right plot.


O
O
O



B rCIJ


,r


I


Figure 7-3.


Dijet mass templates for it events, single tags in the left plot, double tags in

the right plot. The upper plots show the parameterized curves, while the

bottom plots show the original histograms. The left column shows the

templates variation with top mass at JES = 0. The right column shows their

variation with JES at top mass lHop = 170 GeV.


-JES=-3
JES=-1
JES=1
JES=














Table 7-3. Values of the parameters describing the dijet mass templates shapes for the it


samples.
Parameter Values (1Tag)
po -1.11e+00
pi 5.78e-01
p2 -1.49e-03
p3 3.44e-02
p4 4.33e-05
ps 6.51e-06
p6 2.20e-02
p7 6.46e-03
ps 1.63e-01
p9 8.20e+01
plo -1.60e-02
pll 1.07e+00
pl2 1.04e+01
pl3 -1.78e-02
pl4 2.64e-02
pis -4.61e+00
pl6 3.52e-02
p1y 1.24e-01
pls 4.86e+01
pl9 3.24e-01
p20 2.64e+00
p21 -2.48e+01
p22 2.85e-01
p23 -2.53e-02
p24 3.46e+00
p25 -7.15e-03
p26 2.99e-01
p27 8.61e-02
p28 -3.04e-04
p29 7.73e-04
p30 -2.55e+01
p31 2.05e-01
p32 -2.16e-01
p33 7.40e+00
p34 -3.10e-02
p35 4.96e-02


Uncertainties (1Tag)
6.84e-02
3.45e-02
1.01e-02
3.96e-04
1.68e-04
5.83e-05
3.70e-02
2.08e-04
9.01e-03
2.81e-01
1.57e-03
2.39e-02
2.29e-01
1.27e-03
2.56e-02
4.58e-02
2.94e-04
1.30e-02
9.69e-01
5.39e-03
1.39e-01
7.58e-01
4.12e-03
1.06e-01
5.52e-02
3.05e-04
1.91e-02
3.95e-04
2.38e-06
1.29e-04
6.34e-01
3.58e-03
1.18e-01
3.64e-02
1.86e-04
1.39e-02


Values (2Tags)
1.60e+00
-5.84e-02
-1.53e-03
-5.38e-03
-8.99e-06
7.51e-06
6.51e-01
-2.38e-03
-2.02e-02
8.19e+01
-1.72e-02
1.37e+00
1.19e+01
-2.21e-02
8.09e-02
6.97e-01
-3.20e-03
-8.24e-03
1.22e+02
-1.10e-01
-1.15e+00
3.90e+01
-3.29e-02
1.17e+00
2.68e-01
1.51e-04
-3.20e-02
5.75e-04
1.49e-04
-5.69e-04
2.29e+01
-6.22e-02
1.35e+00
-1.67e+00
1.79e-02
-9.61e-02


Uncertainties (2Tags)
8.78e-03
4.20e-03
1.25e-03
4.83e-05
2.11e-05
6;.88e-06;
5.48e-03
2.86e-05
1.73e-03
2.31e-01
1.28e-03
2.40e-02
1.91e-01
1.07e-03
2.42e-02
6.25e-03
3.28e-05
1.82e-03
1.89e+00
1.14e-02
2.82e-01
1.48e+00
8.97e-03
2.24e-01
6.71e-03
3.81e-05
2.67e-03
3.82e-04
2.06;e-06;
1.18e-04
7.68e-01
4.19e-03
1.15e-01
3.12e-02
1.82e-04
1.16e-02
























xM103

600 _

500 -

400 -

300-

200 -

100 -

00 50 100 150 200


hMW1c
Entries 6570
Mean 89.85
RMS 33.51
Underfow 0
Overfow 0
Integral 4.82e+06
X'Indf 4.569e+04126
Prob 0
pO 6.297e+06+i18356
pl 80.17+0.01
p2 7.005+0.01g
p3 1.568e+07+41300
p4 99.65+0.06
p5 29.81+ 0.03
p6 1.152e+07+i36575
p7 0.04026+i0.00000
pa 10.4+0.0
pg1.886+0.007


250 300 350


hMtN2c


7080
84.68
32.44
0
0
13e+05
946130
0
+5379
7+ 0.05
+gage
+9212
4+0.32
8 +0.18
+8169
0.0003
.4+ 0.2
+0.028


350


RMS
40000F Underfow
Overfow
35000 -Integral 2.7
X lndf 4(
30000:Prb
pO 6.582e+05
: pl 80.1i
25000 -p2 gagg5
p3 6.69e+05
20000t p4 94.6
p5 33.51
15000F l ) p6 5.412e+05
p7 0.0408+
10000~ p8 19
pg1.579
5000

00 50 100 150 200 250 300


Entries
Mean


Figure 7-4. Dijet mass templates for background events. Single tags in the

double tags in the right plot.


left plot, and


Table 7-4. Values of the parameters describing the dijet mass templates shapes in the case


of the background events.

Parameter Values (1Tag) Uncertainties (1Tag)

1 1.88e-01 9.52e-02

2 8.02e 01 4. 29e-02

3 7.01e 00 1.70e-02

4 4.68e-01 9.52e-02

5 9.97e 01 4. 29e-02

6 2.98e 01 1.70e-02

7 3.44e-01 9.52e-02

8 4.03e-02 4.29e-02

9 1.04e 01 1.70e-02

10 1.89e 00 9.52e-02


Values (2Tags)

3.53e-01

8.02e 01

9.13e 00

3.59e-01

9.46e 01

3.36e 01

2.90e-01

4.08e-02

1.04e 01

1.58e 00


Uncertainties (2Tags)

2.39e-01

1.12e-01

4.41e-02

2.39e-01

1.12e-01

4.41e-02

2.39e-01

1.12e-01

4.41e-02

2.39e-01









CHAPTER 8
MODEL VALIDATION AND SENSITIVITY STUDIES

Havingf defined in the previous sections the model used to describe the data, now we

need to validate it and then determine the sensitivity of our method given this model. The

validation of the method is in fact a self-consistency test since we will use the same Monte

Carlo samples on which the modeling of the data was determined.

The statistical fluctuations of the data sample can be estimated by building many

copies of the model, and by performing in each of them the same analysis we would in real

data. For obvious reasons, these copies are called pseudo-experiments, and in the following

subsection we describe their construction.

8.1 Pseudo-experiments Setup

Each pseudo-experiment is a mixture of signal and background events. The number

of events per pseudo-experiment is drawn from a Poisson distribution of mean equal to

the expected number of events. For signal events this expectation depends on the top

mass according to the Standard Model. The number of background events is the difference

between the observed total number of events in the data and the number of signal events.

The event-by-event top and dijet masses are randomly drawn from the shapes of

the top templates histograms and dijet mass templates histograms respectively. This

is what is called sampling with replacement. Therefore the pseudo-experiments thus

formed will be correlated. These correlations will affect the width of any distribution

filled with variables determined from the pseudo-experiments. Based on [52], we found

that for any distribution the statistical uncertainty on the mean should be expressed as

in Equation 8-1, the width should be expressed as in Equation 8-2 and the statistical

uncertainty on the width should be expressed as in Equation 8-3.

1 p
6M~ = ems + (8-1)
(NPE 1)1- ) 1 -












a = rawm (8-2)
(NVPE 1)( P)


6a = (8-3)
2(NPE -)
In Equations 8-1, 8-2 and 8-3, NVPE is the number of pseudo-experiments, ar. is

the uncorrected width of a distribution, and p is the average correlation between any

two pseudo-experiments. The value of the correlation factors depends on the size of the

number of events per pseudo-experiment and on the total number of events available.

Since the last two numbers depend on the top mass (see Table 5-4) then the average

correlation between any two pseudo-experiments will depend on the top mass. The values

for these correlation terms are given in Table 8-1.

When the JES prior is applied, the value of the JES each pseudo-experiment is

constrained to is randomly selected based on a gaussian centered on the true JES of the

sample and of width equal to 1.

The variables extracted from each pseudo-experiment are the values of r!! I-- .TT ,, and

JES, JESout, that minimize the likelihood defined in section 7, the statistical uncertainties

on the above variables, 6ilT and 5JESout and the pulls as defined by Equation 8-4.

ifl --T, JE Sout JE Strue
Pul mssPullJES (4
bTT 6JESout

The pseudo-experiment by pseudo-experiment reconstructed mass and JES form

the distribution of the most probable values for mass and JES respectively. These

distributions are each fitted to a gaussian. The means of these gaussians are interpreted

as the reconstructed top mass and JES respectively. The width of the gaussians will

represent the expected uncertainty on the top mass and on JES respectively.

8.2 Validation of the Model

This technique is used to simultaneously measure the top mass and the JES, and the

likelihood to be maximized is described in section 7. Neither the top mass, nor the JES










are fixed in the likelihood. However the JES is constrained via a gaussian centered on the

true JES and with a width of 1.

Figure 8-1 shows the reconstructed JES and the reconstructed top mass represented

by the points, versus the true JES and true top mass represented by the grid. Ideally the

points should match the grid crossings. Figure 8-2 shows reconstructed top mass versus

the true top mass for a true JES of 0. Ideally, this curve should have a slope of 1, and

an intercept of 175 consistent with no hias. Figure 8-3 shows reconstructed JES versus

the true JES for a true top mass of 170 GeV, and again, ideally, this curve should have

a slope of 1, and an intercept of 0 consistent with no hias. Figure 8-4 shows how the

slope of Figure 8-2 changes with the true JES, while Figure 8-5 shows how the intercept

of Figure 8-2 changes with the true JES. Figure 8-6 shows how the slope of Figure 8-3

changes with the true top mass, while Figure 8-7 shows how the intercept of Figure 8-3

changes with the true top mass. Figure 8-8 shows the mass pull means versus true top

mass, while Figure 8-9 shows the mass pull widths versus true top mass. In both plots

the true JES is 0. Based on these figures it results that the uncertainty on top mass has

to be inflated by 10.5' The average mass pull mean as a function of true JES is shown

in Figure 8-10, while the average mass pull width as a function of true JES is shown

in Figure 8-11. For a given true JES value, the average is over all the mass samples.

Figure 8-12 shows the JES pull means versus true JES, while Figure 8-13 shows the JES

pull widths versus true JES. In both plots the true top mass is 170 GeV. Based on these

plots it results that the uncertainty on the JES has to be inflated by 5.>' The average

JES pull mean as a function of true top mass is shown in Figure 8-14, while the average

JES pull width as a function of true top mass is shown in Figure 8-15. For a given true

top mass value, the average is over all the JES samples.

As it can he seen in Figure 8-1, there seems to be a slight hias in the reconstruction

of JES and top mass. We can extract the slope and the intercept of the dependence of

the reconstructed mass on the true mass. This can he done for different JES values.










Figures 8-4 and 8-5 show the dependence on the JES of the slopes and, respectively, of

the intercepts. Similarly, in the case of JES reconstruction we obtain Figures 8-6 and 8-7.

Based on the fits from Figures 8-4 and 8-5, we can express analytically how the

reconstructed mass depends on the true top mass and on the true JES. This is shown in

Equation 8-5. Using the fits from Figures 8-6 and 8-7, we can write similar expressions for

the reconstructed JES. This is shown in Equation 8-6.


1 T = Om + Sm -(l T 175) (8-5)

JE Sout = Cj + Sj JEStrue (8-6)


The parameters Om, Cj, Sm, and Sj from Equations 8-5 and 8-6 depend on the

true values of top mass and jet energy scale as shown in Equation 8-7. The values of the

parameters of these equations correspond to the fit parameters of Figures 8-4, 8-5, 8-6

and 8-7. They are listed in Table 8-2.

Cm = a + a2 E Strue

Sm = a3 + 4 JE Strue
(8-7)
Cj = by + b 2 '

Sj = b3 + b4 'l

Our studies indicate that the imperfect parameterization of the templates is behind

the poor reconstruction of JES and top mass. The failure of the parameterization to

describe the template histogframs is linked to the poor statistics of the histogframs. To

undo these effects on the reconstruction, we can use the Equations 8-5 and 8-6 as a

system of equations and solve them for the true top mass, -T T, and the true JES,

JEStrue. After these corrections are applied the new reconstructed values for JES and

top mass are consistent with the true value within the uncertainties, as it can be seen in

Figures 8-16, 8-17, 8-18, 8-19 and 8-20.










Figure 8-21 shows the residual of the top mass reconstruction using samples for which

the input top mass was unknown to us, and Figure 8-22 shows the JES residuals for

samples with unknown true JES. The top mass group conveners provided the samples and

they were the only ones able to calculate these residuals. The plots indicate that within

the uncertainties the top mass and JES reconstruction is unbiased.

8.3 Expected Statistical Uncertainty

Similar to the correction on the top mass and JES reconstructed values, we need a

correction on the uncertainties on these values. By differentiating Equations 8-5 and 8-6,

we obtain another system of equations to be solved for the real uncertainties. Solving

Equations 8-8 and 8-9 will provide the correct uncertainties on top mass and on JES.


b.T T = (a2 + 4 (il T, 175)) 6JESteve + (as + a4 JEStrue) 6i i, (8-8)


6JESoit = (b2 + b4 .IESteve) 6if1, + (b:3 + b4 il T ) 6JESnse (8-9)

Figure 8-2:3 shows the expected uncertainty on top mass versus input top mass, using

an input JES of 0. Figure 8-24 shows the expected uncertainty on the JES versus input

JES for an input top mass of 170 GeV. The expected uncertainties shown in Figure 8-2:3

contain both the pure statistical uncertainty on the top mass and the uncertainty due to

JES. This uncertainty depends on the top mass because the expected number of it events

depends on the top mass.

In order to disentangfle the statistical contribution from the JES component of this

uncertainty, we performed a different reconstruction of the top mass by fixing the JES

to the true value in the 2D fit. Following this reconstruction, the uncertainty on the top

mass is purely of statistical nature. For a top mass of 170 GeV the expected statistical

uncertainty is 2.5 GeV, whereas the combined statistical and JES-systematic uncertainty,

as per Figure 8-2:3, is :3.2 GeV. That means the systematic uncertainty due to JES on top

mass is 2.0 GeV. This systematic uncertainty shows an improvement of 10I' over the 1D

JES systematic uncertainty on top mass of 2.2 GeV.










On average, the uncertainty on the JES is 0.9 a,, and this also shows an improvement

of 101' over the uncertainty provided by the JER group. The uncertainty on JES is

consistent with the weighted average of the in situ measurement of JES provided by the

W templates and the measurement provided by the JER group. The uncertainty in the

latter case is 1. In order to estimate the uncertainty on the JES provided by the in situ

measurement using the W templates, we performed a different 2D reconstruction with

the JES constraint removed. The uncertainty on the JES in this case is 1.47, and it is

consistent with the weighted averaged result.

Table 8-1. Value of the average correlation factor between any two pseudo-experiments.
The dependence on the value of the top mass is due to the it cross-section
dependence on top mass.
I4to (GeV/c2)
150 0.073
155 0.068
160 0.065
165 0.064
170 0.062
175 0.061
178 0.055
180 0.059
185 0.059
190 0.062
195 0.059
200 0.061


Table 8-2. Values of the parameters describing the linear dependence on the true JES and
on the true l%,, of the intercept and slope of the lMy calibration curve and of
the JES calibration curve respectively.
Parameter Value Uncertainty
al 175.0 0.1
a2 -0.09 0.05
a3 0.975 0.008
a4 0.016 0.004
bi 0.6 0.3
b2 -0.003 0.002
b3 1.35 0.15
b4 -0.0021 0.0008
















Graph

S 4 -

3-

O 2









-2-

-3-


150 160 170 180 190 200
output Mass


Figure 8-1. JES versus Top Mass plane. The
mass.


points represent the reconstructed JES and


X2 /ndf 4.116 /10
020 Prob 0.942
SpO 175.3 i0.2763
8190 pl 0.9674 10.01897 -







150 160 170 180 190 200
Input Top Mass [GeV]


Figure 8-2. Reconstructed top mass
versus input top mass,
for input JES equal to
0.


2 / ndf 0.6064 /5
Prob 0.9877
pO 0.0459310.0849
pl 0.98910.04234


//


-3 -2 -1 0 1 2 3
Input JES


Figure 8-3. Reconstructed JES
versus input JES, for
input top mass equal to
170 GeV.
































X2 / ndf 0.4804 / 5
Prob 0.9928
pO 0.9754 & 0.007529
pl 0.01593 &0.003795


Gra2 Y/ ndf 2.001 /5
=176 Prob 0.849



8175-

54.5-

S174-


173.5 E


0.5 -2



Figure 8-4.


17 -2 -1 0


0 1 2 3
Input JES


2 3
Input JES


Slope of the mass
calibration curve versus

input JES.


Figure 8-5.


Constant of the mass

calibration curve versus

input JES.


X2 /ndf 1.915 /10
Prob 0.997
pO 1.35 10.1498
pl -0.002098 & 0.0008475


X2 /ndf 0.5311 /10
Prob
pO 0.6195 &0.2939
pl -0.003254~ 0.001664


0.8


.5 150 160 170 180 190 200
Input Mass


Figure 8-6. Slope of the JES
calibration curve versus

input JES.


150 160 170 180 190 200
Input Mass


Figure 8-7. Constant of the JES
calibration curve versus

input JES.





Grah 2 /ndf 7.127 /11
rasProb 0.7887
pO 0.1211 0.07954

0.4
0.2

-0.2
-0.4 -1
-0.6
-0.8-

150 160 170 180 190 200
Input Top Mass [GeV]


X2 /ndf 231.3 /11
Prob 0
pO 1.105 &0.002257


1.2


1. -


05 150 160 170 180 190 200
Input Top Mass [GeV|


Figure 8-8.


Mass pull means versus

input top mass, for

input JES equal to 0.


Figure 8-9.








1.2

1.1


Mass pull widths versus

input top mass, for

input JES equal to 0.



X2 / ndf 235.8 / 6
Prob 0
pO 1.13 &0.0008728


X2 / ndf 5.385 / 6
0.5
Prob 0.4955
s~t~pO 0.0368 i 0.03073
"0.2

-0.0

-0.3



-0.5 0 1 2 3
Input JES


Figure 8-10. Average of mass pull
means versus input
JES.


0.8 -2 -1 0


2 3
Input JES


Figure 8-11. Average of mass pull
widths versus input
JES.






























X2 /ndf 0.5199 /6
Prob 0.9976
pO 0.05343 & 0.09964


X2 / ndf 36.54 / 6
Prob 2.168e-06
pO 1.058 &0.002828


-3 -2


0. 3 -2 -1 0


-
Input JES


2 3
Input JES


Figure 8-12. JES pull means versus

input top mass, for

input top mass equal
to 170 GeV.


Figure 8-13.


JES pull widths versus

input top mass, for

input top mass equal
to 170 GeV.


X2 / ndf 3.468 /11
Prob 0.983
pO 0.05026 10.02838


X2 / ndf 550.7 /111
Prob 0
pO 1.0441 0.0008059


150 160 170 180 190 200
Input Mass


150 160 170 180 190 200
Input Mass


Figure 8-15. Average of JES pull
widths versus input

top mass.


Figure 8-14. Average of JES pull
means versus input top
mass.


0.4 -
,0.3



0-































Graph



S3






-2





-2

-3

150 160 170 180 190 200
Corrected output Mass


Figure 8-16. JES versus Top Mass plane. The points represent the reconstructed JES and
mass after the 2D correction.














































































Graph ]
1
0.8 -
0.6
0.4
m 0.2-


1-0.2-
-0.4-
-0.6
-0.8-
1 ^





S1.5
2 1.4
'1.3
I 1.2



0.9
0.8
0.7
0.6
0.5-2


$ /ndf 1.981 /5
po 175 + 108
pl 0.002025 + 0.05578


0.4327 / 5
0.9944
0.9999 & 0.007786
-0.0001245 & 0.003924


173.51


17 -2 -1 0


2 3
Input JES


2 3
Input JES


Figure 8-17. Slope of the l4,
calibration curve

versus true JES after

the 2D correction,


Figure 8-18.


Intercept of the lMy

calibration curve

versus true JES after

the 2D correction.


XZ21ndf 1.797110
Prob 0.9977
pO 0.9959 10.1549
pl 2.192e-05 10.0008764


0.5187/10

-0.007206~ 0.304
4.298e-05 & 0.001721


150 160 170 180 190 200
Input Mass


150 160 170 180 190 200
Input Mass


Figure 8-19.


Slope of the JES

calibration curve

versus true l4, after

the 2D correction,


Figure 8-20.


Intercept of the JES

calibration curve

versus true l4, after

the 2D correction.


3

92

1 -






-2 -

-3


X2 Indf
Prob
p0


0.55 14
0.9685
0.08 E 0.1789


4 5
Blind Samples


3
Blind JES samples


Figure 8-21. Difference between the

reconstructed mass

and the true mass for

blind mass samples.


Figure 8-22.


Difference between the

reconstructed and the

true JES for blind JES

samples.


:176

5,.5

8175






































































*


Graph
10
5' s

8
;j7


X2 /ndf
Prob


7990 /11
0


p0 3.615 +0.007506


3-


150 160 170 180 190 200
Input Top Mass [GeV]


Figure 8-23. Expected uncertainty on top mass versus input top mass, for input .JES equal
to 0. This uncertainty includes the pure statistical uncertainty and the

systematic uncertainty due to .JES.


Graph
1.5
'1.4F
S1.3C
6j 1.2


X2/ ndf 74.55 /6
Prob 4.741e-14
pO 0.9007 0.002408


-3 -2 -1 0 1 2 3
Input JES


Figure 8-24. Expected
170GeV.


uncertainty on .JES versus input .JES, for input top mass equal to










CHAPTER 9
SYSTEMATIC UNCERTAINTIES

Our model for it events is exclusively based on the simulation which doesn't describe

the physics of such events very precisely. The 1 in r~ sources of uncertainties appear

front our understanding of jet fragmentation, our modeling of the radiation off the

initial or final partons, and our understanding of the proton and antiproton internal

structure. Apart front these generic uncertainties, we also address other issues specific to

the present method such as the shape of the background top templates following the it

decontamination, the correlation between the dijet masses and the top mass determined

for each event, and the level of intprecision in the determination of the hi-dintensional

correction of the reconstructed top mass and JES.

9.1 Jet Fragmentation

The default Monte Carlo package used to determine our top and dijet templates is

Herwig which is known to differ front the Pythia package in terms of modeling the jet

fragmentation. We decided that reconstructing the top mass in a sample generated with

Pythia, but using our Herwig hased machinery, will result in an offset with respect to

the Herwig sample that would represent the uncertainty on the jet fragmentation model.

Havingf the true top mass equal to 178 GeV, we reconstruct a top mass of 177.6 GeV

using Herwig as generator and 178.6 GeV using Pythia. Therefore the uncertainty due to

modeling of the jet fragmentation amounts to 1 GeV.

9.2 Initial State Radiation

The amount of radiation off the initial partons is regulated in Pythia by certain

parameters. Using the default set of values, a sample with the true top mass of 178 GeV

is reconstructed at 178.6 GeV. Increasing the amount of radiation off the initial partons

results in a reconstructed top mass of 178.9 GeV, while decreasing the amount of such

radiation results in a top mass of 178.6 GeV. Taking the nmaxiniun change in top mass, we

quote 0.3 GeV as the uncertainty due to initial state radiation modeling.










9.3 Final State Radiation

Similar arguments to those used for initial state radiation uncertainties will help us

determine the uncertainty due to modeling of the radiation off the final partons. The

reconstructed top mass in the default case is again 178.6 GeV for a true top mass of

178 GeV. Increasing the amount of radiation results in a top mass of 177.7 GeV, while

decreasing it we get 177.4 GeV. The nmaxiniun change in top mass is 1.2 GeV and this

will be the uncertainty on the modeling of the final state radiation.

9.4 Proton and Antiproton PDFs

In our default simulation, the internal structures of the proton and antiproton is given

by the CTEQ5L set of functions, and a true top mass of 178 GeV is reconstructed at 178.6

GeV. C'I .Ilan!~! the set of functions to those given by CTEQ6M, the reconstructed top

mass is 178.7 GeV. Within the CTEQ6M set, the top group has identified 20 independent

parameters whose variations will be representative for the uncertainty on the modeling

of such structure functions. Adding in quadrature all the 20 offsets observed on top mass

reconstruction due to these variations, we get 0.4 GeV.

Also, it is known that the value of AQCD has a direct effect on the shape of the

structure functions. In order to estimate this effect, we chose yet another set of PDFs

given by IR ST, and reconstructed the top mass for AQCD = 228 GeV to get a top mass

of 177.7 GeV, and for AQCD = 300 GeV to get a top mass of 178.7 GeV. Therefore the

uncertainty due to the value of AQCD is 0.3 GeV.

Adding the two contributions in quadrature, we quote that the total uncertainty due

to the choice of structure functions of proton and antiproton is 0.5 GeV.

9.5 Background Shape

Since the background shape has been obtained initially front data, we had to remove

the it contamination. To remove the top contamination, we assumed a top mass of

170 GeV, and now we have to estimate effect of this assumption. We have modify our

assumption on the top mass of the top contamination by 10 GeV, that is we got two










background shapes one corrected for top of 160 GeV and the other corrected for top of 180

GeV. The change in the value of the reconstructed top mass is 0.9 GeV.

9.6 Background Statistics

Another effect we address here is the effect of the limited statistics of the sample

used to generate the background sample. To estimate this effect is enough to vary the

parameters describing the background shapes. First we notice that the dijet mass template

histograms for background are quite smooth, so only the event top mass template

histograms will be modified.

One has to reniember that the background model is based on about 2600 pretag data

events passing the kinentatical selection. Then using the nxistag matrix we artificially

increased the size of this sample by calling i.; 10 any distinct I__ d configuration.

Therefore any of the original 2600 events will generate a number of these artificial

.; .. 1 '. This number will be referred to as the multiplicity of the real event.

In order to find the uncertainties on the background parameters, we need to fluctuate

the content of the template histograms. Given the fact that entries of these histograms are

not real events, but artificial i... at ', we have to somehow fluctuate the number of real

events front each hin. The procedure is described below:

* assume the event multiplicity the same for all real events and equal to the average
multiplicity for the whole sample: 735 for single tags and 41 for double tags

* before the it contamination removal and based on the constants above, we scale down
the template histograms

* fluctuate the content of the scaled histograms using the Poisson probability

* after the Poisson fluctuation, scale back up the histogframs, remove the it contamination
and fit with a gaussian to obtain the new template function

* repeat the above steps 10,000 times, and histogfram the parameters of the new
templates

* extract the uncertainties on the background parameters front these last histograms










Figure 9-1 shows the event multiplicity single' I__- d events on the left, and for double

I__- d events on the right. Figure 9-2 shows the histograms of the three parameters

describing the gaussian fit for the single' I__- d events, while Figure 9-3 shows the

equivalent plots in the case of the double I__ d events. The uncertainties on the

background parameters as determined following the histogfram fluctuation are shown

in Table 9-1. Varying the background parameters within these uncertainties results in a

shift in top mass of 0.4 GeV.

9.7 Correlation Between Top Mass and Dijet Mass

We investigate here the effect of the correlation between the event top mass and

dijet mass has on the top mass pull widths and pull means. Our pseudo-experiments were

formed by randomly selecting the event top masses from the top mass templates and by

randomly selecting the dijet masses from the dijet mass templates. As a consequence the

correlation between two masses is reduced to zero. Figure 9-4 shows on the left the top

mass pull mean in the default case when the above correlation was reduced to zero, while

on the right is shown the situation with full correlation. Figure 9-5 shows the equivalent

comparison involving the top mass pull widths.

On average over different top mass samples, the pull mean is consistent within the

uncertainties between the two scenarios. However, the pull widths appear higher when

the correlation between the event top mass and the dijet mass is zero. We conclude that

there is no need for a systematic uncertainty, and we keep the default pull width as the

correcting factor on the statistical error on the top mass since it represents the more

conservative approach.

9.8 2D Calibration

We have varied the parameters of Equations 8-5 and 8-6 within their uncertainties as

listed in Table 8-2. We then re-calibrated the reconstructed values for the top mass. The

change in top mass is 0.2 GeV.










9.9 B-jet Energy Scale

We study the effect of the uncertainty on the modeling of heavy flavor jets due to

the uncertainty in the senli-leptonic branching ratio, the modeling of the heavy flavor

fragmentation and due to the color connection effects.

To determine this we reconstruct the top mass in a Monte Carlo sample where the

b-quarks could be geometrically matched to a jet, and the energy of such jets was modified

by 1 As it turns out in [53], 0.10' of the jet energy uncertainty on the b-jets is coming

front the effects listed above. Therefore the final shift on the top mass following our

1 shift in b-jets energies needs to be scaled down by a factor of 0.6. The systematic

uncertainty on the top mass due to the b-jet energy scale is 0.4 GeV.

9.10 Residual Jet Energy Scale

Fr-on the hi-dintensional fit for top mass and JES, we extract an uncertainty on the

top mass that includes a statistical component as well as a systematic uncertainty due

to the uncertainty on the JES parameter. However, the JES parameter is defined as the

sunt of six independent effects, and therefore the systematic uncertainty on the top mass

included in the 2D fit is only a leading order uncertainty due to our limited understanding

of the jet energy scale. Second order components of this uncertainty arise front the limited

understanding of the six individual contributions to JES. Additional details on this source

of uncertainty can he found in [54].

For this we have to study the effect on the top mass reconstruction front each of

these six sources: level 1, 4, 5, 6, 7 and 8. A Monte Carlo sample has been used where

the energies of the jets have been shifted up or down by the uncertainty at each level

separately, so a total of 12 samples have been obtained. We reconstruct the top mass in

each of them, without applying any constrain on the value of JES. In Table 9-2 we present

the average shift on the top mass at each level, and their sunt in quadrature. We conclude

front this that the residual jet energy uncertainty on top mass is 0.7 GeV.












9.11 Summary of the Systematic Uncertainties

The total systematic uncertainty on the top mass combining all the effects listed

above is 2.1 GeV. Table 9-3 suninarizes all sources of systematic uncertainties with their

individual contribution as well as the combined effect.

EntrgdMt63 EntbgM~t12
45 Mean 7348 600 -Mean 4063
RMS 4969 RMS 388
40 Undemfow 0Undemfow0
35 ovemow o 500 -ovelfow
Integral 633 Integral 1120
30 400-
25
,, n,300-


0500 1000 1500 2000 2500 3000


050 100 150 200 250 300 350 400


Figure 9-1. Event multiplicity for background events. On the left is shown the plot for
single' I__- d events, while on the right the plot for double I__ d events is
shown.



Table 9-1. Uncertainties on the parameters of the top mass templates for background.

Parameter 1 tag 2 tags
Constant 10.2e-04 7.0e-04
Mean 2.59 :3.35

Sigma 272.1 711.9


Table 9-2. Residual jet energy scale uncertainty on the top mass.

Level Uncertainty (GeV/c2)
L1 0.2
L4 0.1
L5 0.5
L6 0.0
L7 0.5
L8 0.1
Total JES Residual 0.7

















bnans bhp soo nne hpl 100
1000 an. ooses2 M ~ean 159
am ooosion
unen 00 -deflw 2 3
800- ses500 n egr 999
2 /ndf 175 8158
ine o~eis -Prob 4957e-16
600 oonsen owes" us 400 Iormtant 159470 7599
n 0usssissssesSigma 2593+002021
400 -s.,n oono~season 300 -
200-
200-
100-

0 0.005 0.01 0.015 0.02 0.025 140~ 145 150 155 160 165 170 175 180


Iblp II bhlp2 I flII bfn1
Entries 10000I 00
400 IMean 31252 5000
350 IUnderfow 0
Overflow 4
300 I Integral 9996 00
Xldf 889.217 / 76Im
250-
Constant 401.31 5.2 3000-
200 -Mean 151713.613
Sigma 272.112.095


1000-
50-

(0 1000 1500 2000 2500 3000 35 0 .~5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5



Figure 9-2. Histograms of the parameters of the gaussian fit of the background event top
mass template for single ----- d events. Upper left plot shows the constant of

the gaussian, upper right shows the mean of the gaussian, lower left shows the
width of the gaussian, and lower right plot shows the normalization of the

gaussian.








Table 9-3. Summary of the systematic sources of uncertainty on the top mass.

Source Uncertainty (GeV/c2)

Initial State Radiation 0.3

Final State Radiation 1.2

PDF choice 0.5

Pythia vs. Herwig 1.0
Method Calibration 0.2

Background Shape 0.9

Background Statistics 0.4

Sample Composition 0.1

Heavy Flavor JES 0.4
Residual JES 0.7

Total 2.1





700

600

500

400

300

200

100


00


0.005 0.01 0.015 0.02


0.025


2500 -


2000 -


1500


1000


500-


0.5 0.6 0.7 0.8 0.9


1.1 1.2 1.3 1.4 1.5


Figure 9-3. Histograms of the parameters of the gaussian fit of the background event top

mass template for double I__ d events. Upper left plot shows the constant of

the gaussian, upper right shows the mean of the gaussian, lower left shows the

width of the gaussian, and lower right plot shows the normalization of the

gaussian.


1 i l df 7.12 11
Ero 0.8 -

0.~p 0.1211+ 07954








-0.4 -





150 160 170 180 190 200
Input Top Mass (GeV/ci


1 i ldf 6.6611
Ero 0.8 -
pO0.1200+ 0.08026

0.6







-0.4-





150 160 170 180 190 200
Input Top Mass (GeV/cS


Figure 9-4. Top mass pull mean as a function of top mass for different treatment of the

correlation between the event top mass and the dijet mass. On the left is the

default case when the correlation is zero, while on the right is shown the

situation with the full correlation.


Sbh2p0 hp

mean consi 250 -
RMS 00010@8


Integrol mis 200-

- mea colss+12sees 150



150-
-en 0131294


bfn2
-Enfles 2
mann
RuS S1Zeize
und~mow
overriew
Insmlm 2

















































~ldf 231.3/11 6 ""
pO 1.105+ 0.002257 .1.25
1 .2


1.15


4415r1
0
1.115+ 0.002278


1.2


1


1-


09 150 160 170 180 190 200
Input Top Mass (GeV/cS


150 160 170 180 190 200
Input Top Mass (GeV/ci


Figure 9-5. Top mass pull width as a function of top mass for different treatment of the

correlation between the event top mass and the dijet mass. On the left is the

default case when the correlation is zero, while on the right is shown the

situation with the full correlation.










CHAPTER 10
CONCLUSION

We have applied the method described in the previous chapters to the data sample

corresponding to 943 ph l. In this sample, there are 48 single' I__- d and 24 double

I---- d events after all the cuts have been applied.

In the second column of Table 10-1, we show in the total number of events and the

expected number of signal events used as input in the 2D likelihood of Equation 7-1. Note

that in Equation 7-1 we need the uncertainty on the expected number of signal events and

this is also shown in Table 10-1. The numbers of background events are shown as well,

but they are not used as input values in the likelihood. In the third column we show the

number of events as they result from the minimization of the 2D likelihood.

Following the minimization of the 2D likelihood, we measured a top mass of 171.1 &

3.7 GeV, and a JES of 0.5 + 0.9 ec.. The value of the jet energy scale (JES) is therefore

consistent with the previous determination of JES at CDF.

The quoted uncertainty on the top mass represents the combination of the statistical

uncertainty with the systematic uncertainty due to JES uncertainty. In order to obtain

only the statistical uncertainty on the top mass, the minimization of the 2D likelihood is

modified such that the JES parameter is fixed to 0.5 ce. (the result from 2D fit). Following

this procedure the statistical uncertainty on the top mass is 2.8 GeV. Therefore the

systematic uncertainty due to JES is 2.4 GeV.

Figure 10-1 shows the distributions of event by event reconstructed top masses as

the black points for data and as the orange histogfram for the combination of signal and

background templates that best fitted the data. The blue histogram represents only the

background template. The sample with single I__ d events is shown in the left plot, while

the double' I__- d events are shown in the right plot.










The 2D likelihood is shown in Figure 10-2. The central point corresponds to the

nmininiun of the likelihood, while the contours represent the 1-signia, 2-signia, and :$-sigma

levels, respectively.

Using a tt 1\onte Carlo sample with a top mass equal to 170 GeV and the number of

signal and background events as resulted front the data fit, we formed pseudo-experintents

and determined the expected uncertainty on the top mass due to statistical effects and

JES. About 41 of the pseudo-experintents had such combined uncertainty on the top

mass lower than the measured value of :3.7 GeV. This can he seen in Figure 10-3, where

the histogram shows the results of the pseudo-experintents and the blue line represents

the measured uncertainty. In conclusion, the measured combined statistical and JES

uncertainties on the top mass agrees with the expectation.

The total uncertainty on the top mass in this analysis is 4.3 GeV. The previous best

mass measurement in this channel had an equivalent total uncertainty of 5.3 GeV [56]

which is 2 :' more. The source for this intprovenient is the uncertainty due to jet energy

scale (JES) on the top mass. In this analysis this uncertainty amounts to 2.4 GeV

compared to 4.5 GeV in the previous best result which is M' more. Some of this gain in

precision is lost due to the somewhat higher systematic uncertainties front other sources

and due to a slightly worse statistical uncertainty in this analysis compared with the

previous best mass result in this channel. A more careful estimation of the other sources of

systematic uncertainties on the top mass as well as a more efficient it event selection will

help further reduce the total uncertainty on the top mass.

Compared to mass measurements in other it decay channels, the mass measurement

front this analysis ranked third in the top mass world average [57] with a 11 weight.

The two better measurements were performed in the lepton+jets channel as it can he seen

in Figure 10-4. This measurement promotes the all hadronic channel as the second best

channel for the top quark mass analyses in Run II at the Tevatron.










In conclusion, it is for the first time in the it all hadronic channel to have a

simultaneous measurement of the top mass and of the jet energy scale. It is also the

first mass measurement in this channel that involved the use of the it matrix element

either in the event selection or in the mass measurement itself. All of the above were

successfully mixed together resulting in the best top mass measurement in the all hadronic

channel.


r


Table 10-1. Number of events for the it expectation and for the observed total for a
luminosity of 943 pb-l passing all the cuts. The input values for signal have
the uncertainties next to them in parenthesis. The background expectation
being the difference between total and signal is also shown. For the output
values, the numbers in the parenthesis are the uncertainties.
Number of Events Input Reconstructed
Total Observed(1tag) 48 47.8
Expected Signal (1tag) 13 + 3.6 13.2 + 3.7
Background (1tag) 35 34.6 + 7.2
Total Observed(2tags) 24 23.3
Expected Signal (2tags) 14 & 3.7 14.1 & 3.4
Background (2tags) 10 9.2 & 4.3


CDF Runil preliminary L=943pbl CDF Runil preliminary L=943pbl
16 Single Tags 1 --Double Tags
$1v Data
14 -- Dnal+Bakground M Signal+Bakground
5 2 Background I Background


Event Top Mass (GeV/cz)


Figure 10-1. Event reconstructed top mass for data (black points), signal+background
(orange) and only background events (blue). Single I__ d sample is on the
left, while the double' I__- d sample is on the right.















CDF RunlI preliminary L=943pb'


2 A In L=4.5
A In L=2

1C A In L=0.5







-2-

165 170 175 180
Top Mass (GeV/c2)


Figure 10-2. Contours for 1-sigma (red), the 2-sigma (green) and the 3-sigma (blue) levels
of the mass and JES reconstruction in the data.


Figure 10-3. Histogram shows the expected statistical uncertainty from 1\onte Carlo using
pseudo-experiments, while the line shows the measured one. About 41 of all
pseudo-experiments have a lower uncertainty.


CDF RunlI preliminary L=943pbl
























Best Tevatron Run II (preliminary, March 2007)


-*---


All-Jets: CDF
(943 pb )


171.1 & 4.3


164.5 & 5.6


172.5 & 8.0


170.9 & 2.5


170.5 1 2.7


170.9 +1.8
X2/dof = 9.2/10


Dilepton: CDF
(1030 pb )


A


--*--


--*--


Dilepton: DO
(1000 pb )

Lepton+Jets: CDF
(940 pb )

Lepton+Jets: DO
(900 pb )

Tevatron


(Run //Run //, M~arch 2007)


150 160 170 180 190 200
Top Quark Mass (GeV/c2)


Figure 10-4. Most precise results from each channel from the DO and CDF experiment at
Fermilah by March 2007. Taking correlated uncertainties properly into
account the resulting preliminary world average mass of the top quark is
170.9 + 1.1 Statt) + 1.5 (syst) GeV/c2 which corresponds to a total
uncertainty of 1.8 GeV/c2. The top quark mass is now known with a
precision of 1.1





































0.7 0.8 0.9


APPENDIX A

PARTON DISTRIBUTION FUNCTION OF THE PROTON


pdfs _u


pdfs_u
ntes 9800
sen 0.2078
us .1ss


terl 2072


Oup
Odown
Ogluon
Oubar
Ot*3r
strange
charm
Obottom


sum
Fntrier 9800
Mean 0.00094
RMS 0.1239
Underfow 0

0.9954

Integral=0.995420








0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9


Figure A-1. Upper plot
section 4.3.

PDFs.


shows the PDF shapes used in the matrix element calculation of

Bottom plot shows a cross check of the normalization of these


1.5





0.5


00 0.1 0.2 0.3 0.4 0.5 0.6




















-CH TopMass=175 sa
-HW TopMass=130 slas
HW TopMass=140
HW TopMass=150 sae
HW TopMass=160
SHW TopMass=170
HW TopMass=180
HW TopMass=190
-HW TopMass=200
HW TopMass=210
- ~HW TopMass=220
-HW TopMass=230
--= Pvt TooMass=178


APPENDIX B

TRANSVERSE MOMENTUM OF THE ft SYSTEM


PtTTbar


D I


PtT.ba


0 20 40 60 80 100


means


means


















30 35 40 45 50


0 5

rms


10 15 20 25


20 25


0 5 10 15


Figure B-1.


Transverse momentum of the it system for different generators and for

different top masses. Upper plot: shapes of the transverse momentum of the it

system for different generators (CompHep, Pythia and Herwig) and for
different top masses. Middle plot: the Means of the distributions in the upper

plot. Lower plot: the RMS of the distributions in the upper plot.









APPENDIX C
TRANSFER FUNCTIONS

A
























Figure C-1. Transfer functions for the W-boson decay partons. A) For partons with the
value for pseudo-rapidity |9| < 0.7. B) For partons with pseudo-rapidity
0.7 < |9| < 1.3. C) For partons with pseudo-rapidity 1.3 < |9|l < 2.





























































Entus T EC 1 F 307Etns F
300D -08 Me ooa Mean 001451
uMs o2564 Rus oiso4
undemow 19 30 undsow..
250"" emw 0 wmo






sigma omosnioo425 II slma2 oo~outooom
100n -sl061 100T ~ a2022i0



15 45 5 1 5 02 15 -1 45 0 05 I~ga0 15 20








I ~ ~q TF i _1'_FEZ : i I EnnsT 3 11
400 _Mean oo3em

350 n- II undsnow
ocn350- ol "C ovmow


250d 250 1 o iso a 2821

200 20 surrl ooo66+ 2emD


100n 100 -10








o2 -15 -1 05 0 05 1 15 2 02 15 -1 45 0 05 1 15 2LLL~LLL



ntsqTF E 41301Enn TF E 5 1 4o
Memt oo10e Mean oo491
400011 s IRus 01367
undemow o1 600 undsow


0 rr 2aos21 500t -1 x' 218612

srluml ooooo 2 oooa slumal oo OInoos
20conrt2 2m~i25ei I cona2 soo~i349

Memn2 ools21i ooome6 300T IMean2 oo2237tooo1ri
10sigmn oo2252roooom I slma2 oo213tom lo































































144



















































Figure C-1. Continued
















































Figure C-2.


Transfer functions for the b-quark partons. A) For partons with the value for
pseudo-rapidity |vy| < 0.7. B) For partons with pseudo-rapidity 0.7 < |vy| < 1.3.
C) For partons with pseudo-rapidity 1.3 < |vy| < 2.




























































bbTFE_0_ bTFE 1 1
E'ntri son8 Entum 02

men oomo mea on. a.. B
300~~~,,. us 091 Rs 01
undemow 1I 300C undemow
"ealow o1 omow
25 -Iteoria so27 rI Inteoral Iml
xinar 3a26/34 250C -I Ix inr loeoiso
Pronl o2e22 I Pronl o42o
20 -consti 2713mas I consl 1307+2s3
emisl oose22ioooae 200C -I meani oloostooloo
slumal oosalifoooml I slumal oo11matooose

10-const2 2m82r8ozes cona2 1863+262
Meml2 oI991soa242 150C mean. 2 oo4374tooem
sigmn omo2rosi2o I slma2 oo282otooo41o

100 100-









-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2





EntiebTF_ 2 41

500os menoose
ans o1632
undemow
ouealow

400 Itoera 4168
,irnr 4564/2s
Prone oolme8
conni 2193+307

300- umsl o14oosiool11
slumal ominooo2e
conn2 2Bli29e

200 oslum2 oo232i00ooas



100mi -016~0









-2 -1.5 -1 -0.5 0 0.5 1 1.5 2






Figure C-2. Continue
















































147




























































Figure C-2. Continued


-2 -1.5 -1 -0.5 0 0.5 1 1.5 2









APPENDIX D
SIGNAL TOP TE1\PLATES

I mn~uniin I I mnrunii I mn~uniaA





























Figure D-1. Top templates for it single' I__- d events for samples with different top
masses: from 150 GeV to 200 GeV. A) Case of JES = -3. B) Case of
JES = -2. C) Case of JES = -1. D) Case of JES = 0. E) Case of
JES = 1. F) Case of JES = 2. G) Case of JES = 3.




































c -=~nii a I 0~uii I- 0ruii
































Figure D-1. Continued














C E C E~miV mlliI II n~miV


I mn~unia I mr~liii I I mnrlmiinC








c-=-a I-= a c-=-








Figfure D-1. Continued









































CLI C Cn~ni II mrlmiii I C nrlmiiin



















Figure D-1. Continued












C E C E~miV mlliI II n~miV

ip~ ~i~IE














Figure D-1. Continued

































CDEE mlliiI C mlEEECiI I CnlEEECiV I





























Figure D-1. Continued






















































Figure D-1. Continued












I mnlKlmiiiVI I


id_
I mnrKuniiin I



I mnrKuniiin I



I mnrKuniiin I


I mnlKlmiiiVI I


Ikl
I mnrKuniia I



I mnrKuniia I


~LI
I mnrKuniia I


I mnlKlmiiiVI I



I mnrKuniia I



I mnrKuniia I



I mnrKuniia I



M


Figure D-2. Top templates for it double' I__- d events for samples with different top


masses: from 150 GeV to 200 GeV. A) Case of JES =
JES = -2. C) Case of JES = -1. D) Case of JES =
JES = 1. F) Case of JES = 2. G) Case of JES = 3.


-3. B) Case of
0. E) Case of























C E C E~liiV C E~miI II ml~miV




I mn~uniin I mr~unia I mr~uniaB































Figure D-2. Continued










1-=- C-=a c-=-



car e :-- -- :-=





Figure D-2. Continued










I ml~liiiI II ml~liiiI II ml~liiiID







Fi ur D-2 Cotiue















C E C E~miV mlliI II n~miV


~W ~TI -E

I -0~uii I- -0 cn~mii -= a~mi







c =r=-ia c c ===iin IImnamii








Figure D-2. Continued























C mnr~iia C Er~liiin C Er~liiin



c== c== c===


Figure D-2. Continued











I- mn-==0iV I [--=-VI II n 0liiV










Figur D-2 Cotiue
















APPENDIX E

SIGNAL DIJET MASS TEMPLATES


Figure E-1. Dijet mass templates for it single' I__- d events for samples with different top

masses: from 150 GeV to 200 GeV. A) Case of JES = -3. B) Case of

JES = -2. C) Case of JES = -1. D) Case of JES = 0. E) Case of

JES = 1. F) Case of JES = 2. G) Case of JES = 3.





















16i3


220 -
200 -
180 -
160 -
140 -
120 -
100 -


40 -
20
0 0 1 200 250 3


180 -
160 -
140 -
120 -
100 -
80 .
60 -
40 -
20 -

I 9E dO dO 200 250 3 E


700 -







600 i L~~12~~

500 -







400 ~ i L~~;i~


350 0 40 0 50 j0 30 0 0 10 10 0 5












100 0 10 0 50 90 30 0 0 10 10 0 5













































250 -


200 -


150 .


100 -


50 -


OC 50 100 150 200 250 MU 900






350 -

300 -

250 -

200 -

150 -

100 -

50 -


OC 50 100 150 200 250 3UU dt0





900 -

800 -

700 -

600 -

500 -

400 -

300 .

200 -

100 -

OC 0





500 -


400 -


300 -


200 .


100 -



OC 0


300 -

250 -

200 -

150 -

100 -

50 -


OE 50 100 150 200 250 E0







400 -

350 -

300 .

250 -

200 -

150 -

100 -

50 -

E 50 100 150 200 250 3UU di0






450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

OE E 0







500 -


400 -


300 -


200 -


100 -


OE E 0


350 -

300 -

250 -

200 -

150 -

100 -

50 -


01 50 100 150 200 250 U di0






400 -

350 -

300 -

250 -

200 -

150 -

100 .

50 -

01 50 100 150 200 250 3UU di0







500 -


400 -


300 -


200 -


100 -


0







500 -


400 -


300 -


200 -


100 -


0


Figure E-1. Continued










































400 -





250 -





100 -

50 -

01 50 100 150 200 25 E





500 -


400 _


300 -


200 -


100 -



0 50 100 150 200 250 MU 96





1000 -


800 -


600 -


400 -


200 -


40u -





300 -






100 -

50 -

50 100 150 200 25 E (





600 -


500 -

400 .


300 .


200 .


100 -


90 50 100 150 200 250 U 9! (





700 -

600 -

500 -

400 -

300 -

200 -

100 -


300 -






100 -

50 -

OE 50 100 150 200 250





600 -


500 -


400 -


300 -


200 -


100 -


OE 50 100 150 200 250 U 3 (





700 -

600 -

500 -

400 -

300 -

200 -

100 -


Figure E-1. Continued










































500 -


400 -


300 -


200 -


100 -


01 50 100 150 200 25 E






600 -

500 .

400 -

300 -

200 -

100 -


0 50 100 150 200 250 U 9?


500 -


400 -


300 -


200 -


100 -


50 100 150 200 25 E






700 -

600 -



0 -

300 -

200 .

100 -


90 50 100 150 200 250 U 92


600 -

500 .


400 -

300 -


200 -

100 -


OE 50 100 150 200 25





500 -


400 -


300 -


200 -


100 -


OE 50 100 150 200 250 U 3


Figure E-1. Continued


600 -

500 -

400 -

300 -

200 -

100 -


OC












































600 -


500 -


400 -


300 -


200 -


100 -


01 50 100 150 200 2 E 0






800 -

700 -

600 -

500 .

400 -

300 -

200 -

100 -

0 50 100 150 200 250 MU 9 0







0 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -









350 -

300 -

250 -

200 -

150 -

100 -

50 -


600 -

500 -

400 -

300 -

200 -

100 -


50 100 150 200 25 E 0






800 -

700 -

600 -

500 .

400 -

300 -

200 -

100 -

90 50 100 150 200 250 U 2 0






800 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -









800 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -


700 -

600 -

500 -

400 -

300 -

200 -

100 -


OE 50 100 150 200 25







700 -

600 -

500 -

400 -

300 -

200 -

100 -


OE 50 100 150 200 250 U Af 0







800 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -








700 -

600 -

500 -

400 -

300 -

200 -

100 -


Figure E-1. Continued













































600 -

500 -

400 -

300 -

200 -

100 -


OC 50 100 150 200 2 E 0







800 -

700 -

600 -



0 -

300 -

200 -

100 -

OC 50 100 150 200 250 MU 9? 0






700 -

600 -

500 -

400 -

300 -

200 -

100 -


OC E 0





mu -

600 -

500 -




0 -

200 .

100 -


OC E 0


uu -

600 -

500 _

400 -

300 -

200 -

100 -


OE 50 100 150 200 25







700 -

600 -

500 -

400 -

300 -

200 -

100 -


50 100 150 200 250 U






700 -

600 -

500 -

400 -

300 -

200 -

100 -

0







700 -

600 -

500 -



0 -

200 -

100 -

0


800 -

700 -

600 -

500 -

400 -

300 .

200 -

100 -

01 50 100 150 200 25







700 -

600 -

500 -

400 -

300 -

200 -

100 -


01 50 100 150 200 250 U di 0






800 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -

0






600 -


500 -


400 -


300 -


200 -


100 -


0


Figure E-1. Continued











































700 -

600 -

500 -

400 -

300 -

200 -

100 -








800 -

700 -

600 -

500 _

400 -

300 -

200 -

100 -








600


500 -


400-


300-


200 -


100 -














400 -


300 -


200 -


100 -


700

600 -

500 -

400 -

300 -

200 -

100 -


OE 50 100 150 200 25 E







700 -

600 -

500 -

400 -

300 -

200 -

100 -


9 50 100 150 200 250 MU 9E







600 -

500 -

400 -

300 -


200 -

100 -

0








500 -


400 -


300 -


200 .


100 -


0


700 -

600 -

500 -

400 -

300 -

200 -

100 -


01 50 100 150 200 25





mu -

600 -

500 -

400 -

300 -

200 -

100 -


01 50 100 150 200 250 U







600 -

500 -

400 -

300 -

200 -

100 -

0







500 -


400 -


300 -


200 -


100 -


0


Figure E-1. Continued




































































I~i~m~


I~i~z~


450 -
400 -
350 -
300 -
250 -
200 -
150 -
100 -
50 -

Or




300 -

250 -

200 -

150 .

100 -

50 -


Or 0 150 200 250 UU


Figure E-2.


Dijet mass templates for it double

masses: from 150 GeV to 200 GeV.


JES = -2. C) Case of JES = -1.

JES = 1. F) Case of JES = 2. G)


I__- d events for samples with different top


A) Case of JES = -3. B) Case of

D) Case of JES = 0. E) Case of

Case of JES = 3.


80 -
70 -
60 -
50 -
40 -
30 -




Or 0 150 200 250 3 0


100 -

80 -

60-

40 -

20 -


I 0 1 200 250 3UU lt


120 -

100 -

80 -

60 -

40 -

20 -

0 1 1 200 250 3UU E


350 -
350 -
300 -
300 -
250 250 -

200 200 -
150 150 -

100 100 -

50 50 -

50 100 150 200 250 U 7? 0 0 1 1 200 250 3UU ? 0













































120 -


100 -

80 -


60 -

40 -


20 -


0 0 dO 200 250 3 00






220 -
200 -
180 -
160 -
140 -
120 -
100 -
80 -
60 -
40 -
20 -

0 0 150 200 250 3UU 00








0 -

350 -

300 -

250 -

200 -



O -

50 -

OC 0





400 -

350 -

300 -

250 -

200 -

150 .

100 .

50 -


OC 0


160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

oC 0 dO 200 250 3 If 0








250 -


200 -


150 -


100 .


50 -


0 1 200 250 3UU If 0







300 -

250 -

200 -

150 -


100 -

50 -


OE E 0







450 -

400 -

350 -

300 -

250 -

200 _

150 -

100 .

50 -

0 E 0


180 -

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0 dO 1 200 250 3UU ?0







250 .


200 -


150 -


100 -


50 -


0 1 1 200 250 3UU ?0







350 -

300 -

250 -

200 .

150 .

100 -

50 -

0






450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0


Figure E-2. Continued





Figure E-2. Continued


zuu -
180 -

160 -
140 -
120 -
100 -

80 -
60 -
40 -
20 -

0 0 1 200 250 3







250 -


200 -


150 _


100 -


50 -


0 0 1 200 250 3U 3


250 -


200 -


150 -


100 -


50 -


0 1 0 200 250 UU It






350 -

300 -

250 -

200 -

150 -

100 -

50 -


0 1 0 200 250 3UU It


d dO dO 200 250 3UU 94


500 -


400 -


300 -


200 -


100 -


500 -
500 -


400 400 -


300 300 -


200 200 -


100 100 -


00











































250 -


200 -


150 -


100 -


50 -



0 0 1 200 250 UU 7?






350 -

300 -

250 -

200 _

150 -

100 -

50 -


0 0 1 200 250 UU 7?







1000 -


800 -


600 -


400 -


200 -








uuu -


500 -


400 -


300 -


200 -


100 -


300 -


250 -


200 -


150 -

100 -


50 -


nt 0 1 200 250 UU 92







0 -

350 -

300 -

250 -

200 -

150 _

100 -

50 -

90 0 1 200 250 3UU 92






500 -


400 -


300 -


200 -


100 -










600 -


500 -


400 -

300 -


200 -


100 -


300 -


250 -

200 -


150 -

100 -


50 -


0 1 0 200 250 UU






400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 1 dO 200 250 3UU






500 -


400 -


300 -


200 -


100 -


0








500 -


400 -


300 -


200 -


100 -


0


Figure E-2. Continued










































300 -


250 -


200 -


150 -


100 -


50 -


0 0 1 200 250 3 3 0





450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

01 50 100 150 200 250 3UU 9 0





450 -

400 -

350 -

300 .



0 -

150 -

100 -

50 -









600 -

500 -


400 -

300 -

200 -


100 -


!0


350 -

300 -

250 -

200 -

150 -

100 -

50 -


1 50 100 150 200 250 3UU 32 0






500 -


400 -


300 -


200 -


100 -



nO 0 1 200 250 3UU 92 0








500 -


400 -


300 -


200 -


100 -









600 -


500 -


400 -


300 -


200 -

100 .


20


350 -

300 -

250 -

200 -

150 -

100 .

50 -


0 1 0 200 250 UU If 0





500 -


400 -


300 -


200 -


100 -



0 1 dO 200 250 3UU If 0






600 -


500 -

400 -


300 -


200 -


100 -








600 -


500 -


400 -


300 -


200 -


100 -


0


Figure E-2. Continued











































350 -

300 -

250 -

200 -

150 -

100 -

50 -


0 50 0 1 200 250 UU ? 0






400 -

350 -

300 -

250 -

200 -

150 -

100 .

50 -

0 0 1 200 250 UU 7? 0





450

400 -

350 -

300 -

250 -

200 -

150 -

1



OC E 0





600 -


500 -


400 -


300 -


200 -

100 _


OC E 0


400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

oC 50 100 150 200 250 3UU 3





500 -


400 -


300 -


200 -


100 -



0 1 200 250 3UU







500 -


400 -


300 -


200 -


100 -


0







500 -


400 -


300 -


200 -


100 -


0


400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

01 50 100 150 200 250 3UU di 0





500 -


400 -


300 -


200 -


100 -



0 1 1 200 250 3UU ? 0






600 -

500 -

400 -


300 -

200 -


100 -

0







500 -


400 -


300 -


200 -


100 -


0


Figure E-2. Continued












































350 -





250 -

200 -

150 -

100 -

50








400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -














250 -

200 -

150 -

100-

50 -













400 .


300 -


200 -


100 -


400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -


oC 50 100 150 200 250 3UU JE






450 -

400 -

350 -

300 -

250 _

200 -

150 -

100 .

50 -

dO 1 200 250 3UU E






450 -

400 -

350

300

250

200 -

150 -

100 -

50

0






450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0


400 -

350 -

300 -



0 -

150 -

100 -

50 -

0 1 1 200 250 3UU 3






450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 1 1 200 250 3UU





500 -


400 -


300 -


200 -


100 -










450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50 -


Figure E-2. Continued









REFERENCES


[1] F. Abe et 74, 26:32 (1995).

[2] J.H. K~uhn, Lectures delivered at 2:3rd SLAC Suniner Institute, hep-ph/9707:321
(1997).

[:3] V.M. Ahazov et
[4] T. Affolder et Erratuni-ibid. D 67, 119901 (200:3).

[5] D. Acosta et
[6] D. Acosta et
[7] D. C'I I1:1 .I~orty, J. K~onigsherg and D.L. Rainwater, Ann. Rev. Nucl. Part. Sci. 53,
:301 (200:3).

[8] 31. Cacciari et 68, 114014 (200:3).

[9] B. Abbott et V.M. Ahazov et
[10] D. Acosta et
[11] S.L. Glashow, J. Iliopoulos and L. Alaiani, Phys. Rev. D 2, 1285 (1970).

[12] S. Eidelman et
[1:3] F. Abe et et (CDF Collaboration), Phys. Rev. D 62, 012004 (2000); V.M. Ahazov et Collaboration), Phys. Rev. Lett. 88, 15180:3 (2002).

[14] ALEPH, DELPHI, L:3 and OPAL Collaborations and The LEP Working Group for
Higgs Boson Searches, hep-ex/06120:34 (2006).

[15] P. Azzi et Group, hep-ex/0404010 (2004).

[16] ALEPH, DELPHI, L:3 and OPAL Collaborations and The LEP Working Group for
Higgs Boson Searches, Phys. Lett. B 565, 61 (200:3).









[17] H. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991); Y. Okada, M.
Yamaguchi and T. Yanagida, Prog. Theor. Phys., 85, 1 (1991); J. Ellis, G. Ridolfi
and F. Zwirner, Phys. Lett. B 257, 83 (1991); J. Ellis, G. Ridolfi and F. Zwirner,
Phys. Lett. B 262, 477 (1991); R. Barbieri and M. Fr-igeni, Phys. Lett. B 258, 395
(1991).

[18] S. Heinemeyer, W. Hollik and G. Weinglein, Eur. Phys. J. C 9, 343 (1999); G.
Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weinglein, Eur. Phys. J. C
28, 133 (2003).

[19] S. Heinemeyer and G. Weinglein, hep-ph/0412214 (2004).

[20] A review of dynamical electroweak symmetry breaking models can be found in: C.T.
Hill and E.H. Simmons, Phys. Rept. 381 235 (2003); Eratum-ibid. 390, 553 (2004).

[21] S. Weinberg, Phys. Rev. D 13 974 (1976); L. Susskind, Phys. Rev. D 20 2619
(1979).

[22] C.T. Hill, Phys. Lett. B 266, 419 (1991).

[23] D. Cronin-Hennessy, A. Beretvas, P.F. Derwent, Nucl. Instrum. Meth. A 443, 37-50
(2000).

[24] S. Van Der Meer et al., Phys. Rep. 58, 73 (1980).

[25] R. Blair et al. (CDF Collaboration), Fermilab Report No.
FERMILAB-Pub-96-390-E, Section 12 (1996).

[26] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71 032001 (2005).

[27] D. Acosta et al. (CDF Collaboration), Nucl. Instrum. Meth. A 461 540-544 (2001).

[28] C.S. Hill et al. (CDF Collaboration), Nucl. Instrum. Meth. A 530 1 (2004).

[29] A. Sill et al. (CDF Collaboration), Nucl. Instrum. Meth. A 447 1-8 (2000).

[30] T. Affolder et al. (CDF Collaboration), Nucl. Instrum. Meth. A 453 84 (2000).

[31] T. Affolder et al. (CDF Collaboration), Nucl. Instrum. Meth. A 526 249-299 (2004).

[32] L. Balka et al. (CDF Collaboration), Nucl. Instrum. Meth. A 267 272-279 (1998); S.
Bertolucci et al. (CDF Collaboration), Nucl. Instrum. Meth. A 267 301-314 (1998).

[33] M. Albrow et al. (CDF Collaboration), Nucl. Instrum. Meth. A 480
524-545 (2002); R. Blair et al. (CDF Collaboration), Fermilab Report No.
FERMILAB-Pub-96-390-E, Section 9 (1996); G. Apollnari et al. (CDF
Collaboration), Nucl. Instrum. Meth. A 412 515-526 (1998).

[34] A. Artikov et al. (CDF Collaboration), Nucl. Instrum. Meth. A 538 358-371 (2005).

[35] P. Gatti, "Performance of the new tracking system at CDF II", CDF Note 5561.










[36] W. Yao, K(. Bloom, "Outside-In silicon tracking at CDF", CDF Note 5991.

[37] H. Stadie, W. Wagner, T. Muller, "VxPrim in Run II", CDF Note 6047.

[38] J.F. Arguin, B. Heinemann, A. Yagil, "The z-Vertex Algorithm in Run II", CDF
Note 0.25

[39] CDF collaboration, Jet Energy Group, "Jet Energy Corrections at CDF", CDF Note
7543.

[40] A.A. Bhatti, K(. Hatakeyama, "Relative jet energy corrections using missing Et
projection fraction and dijet I In 1al s! CDF Note 6854.

[41] B. Cooper, M. D'Onofrio, G. Flanagan, \!.i11ll sle interaction corrections", CDF
Note 7365.

[42] A. Bhatti, F. Canelli, "Absolute corrections and their systematic uncert 1!il I. -
CDF Note 5456.

[43] J.F. Arguin, B. Heinemann, "Underlying event corrections for Run II", CDF Note
6293.

[44] A. Bhatti, F. Canelli, L. Galtieri, B. Heinemann, "Out-of-Cone corrections and their
Systematic Uncert .sist s. CDF Note 7449.

[45] R. Wagner, "Electron Identification for Run II: algorithms", CDF Note 5456.

[46] J. Bellinger, "A guide to muon reconstruction and software for Run 2", CDF Note
5870.

[47] D. Glenzinski, "A detailed study of the SECVTX als.. )111 .1.. CDF Note 2925.

[48] D. Acosta, "Introduction to Run II jet probability heavy flavor .- -I__-:, CDF Note
6315.

[49] L. Cerrito, A. Taffard, "A soft muon' I---- 1- for Run II", CDF Note 6305.

[50] P. Azzi, A. Castro, A. Gresele, J. K~onigsberg, G. Lungu and A. Sukhanov, 1
kinematical selection for All-hadronic tt events in the Run II multijet <1 II I-, I CDF
Note 7717.

[51] P. Azzi, A. Castro, A. Gresele, J. K~onigsberg, G. Lungu and A. Sukhanov,
"B-' I__;l!_; efficiency and background estimate in the Run II multijet <1 It I-- I
CDF Note 7723.

[52] Roger Barlow, "Application of the Bootstrap resampling technique to Particle
Physics exp.~ Hin,! Il- MAN/HEP/99/4 April 14 2000.

[53] J.F. Arguin, P. Sinervo, "b-jets Energy Scale Uncertainty From Existing
Experimental Constraints", CDF Note 7252.










[54] A. Abulencia, J. Adelman, E. Brubaker, G. Chlachidze, W.T. Fedorko, S.H. ~ini,
Y.K(. K~in, Y.J. Lee, T. Alaruyania, K(. Sato, 31. Shochet, P. Sinervo, T. Tomiura, G.
Velev, IT.K. Yang, "Top Quark Mass Measurement Using the Template Method in
the Lepton + Jets C'I Iall., I with 680 ph-l", CDF Note 8074.

[55] 31. Cacciari, S. Frixione, M.L. Alangano, P. ?- I-..is G. Ridolfi, "The it cross-section
at 1.8 and 1.96 TeV: a study of the systematics due to parton densities and scale
dependence" hep-ph/0:30:3085 (200:3).

[56] A. Castro, F. Alargaroli, "All-hadronic top mass measurement using the Template
Method with 1.02 fb-l", CDF Note 8:358.

[57] Tevatron Electroweak Working Group, "A Combination of CDF and DO Results on
the Mass of the Top CII 1i1: hep-ex/070:3034v1 (2007).









BIOGRAPHICAL SKETCH

Gheorghe Lungu was born in Galati, Galati County, Romania, on December

16th 1977. After graduating from high school in 1996 he was accepted in the Physics

Department of the University of Bucharest. He graduated with a B.Sc. in physics in 2000,

entered the Physics Graduate Department at University of Florida in 2001 and moved to

Fermilab in 2003 for research within the CDF collaboration under the supervision of Prof.

Jacobo K~onigfsberg.





PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

TherstpersonIwanttoacknowledgeismyadvisor,Prof.JacoboKonigsberg,forguidingandsupportingmeduringmygraduatestudentyearsinmanyways.Hisdedication,hiscommitmenttohisworkandhisstudents,andhissavvinessinthehigh-energyexperimentaleldserveasanexampletowhichIaspireasaphysicistandasascientist.AlsoIwillbeforevergratefultoDr.ValentinNeculainmanyaspects.HemadepossiblemanythingsformestartingwithlendingmemoneytopaythetestsneededforadmissioninthegraduateschoolattheUniversityofFlorida.Moreover,hecontributedgreatlytothesuccessofthisanalysis,fromthewritingtheC++codeformaintoolsandendingwithrichandenlighteningdiscussionsonthetopic.Hisgreatskillsandhisexcellencerepresentastandardforme.IwouldliketomentionthegreatinuenceIreceivedinmyrstyearsattheUniversityofFloridafromProf.KevinIngersentandProf.RichardWoodard.Withorwithouttheirawareness,theyhelpedmedeepenmyknowledgeintheoreticalphysics.AlsoItakethisopportunitytothankthemembersofthecommitteesupervisingthisthesis:Dr.ToshikazuNishida,Dr.RichardField,Dr.PierreRamondandDr.GuenakhMitselmakher.Iwillbeinspiredbytheirtremendousworkandbytheirextraordinaryachievementsinphysics.Despiteourratherbriefinteraction,IwanttomentionthatmyexperienceduringmyOralExaminationhelpedredenemeasaphysicistandasaperson.AtCDFIdrewmuchknowledgefrominteractingwithmanypeoplesuchasDr.RobertoRossin,Dr.AndreaCastro,Dr.PatriziaAzzi,Dr.FabrizioMargaroli,Dr.FlorenciaCanelli,Dr.DanielWhiteson,Dr.NathanGoldschmidt,Dr.UnkiYang,Dr.ErikBrubaker,Dr.DouglasGlenzinski,Dr.AlexandrePronko,Dr.MirceaCoca,Dr.GavrilGiurgiu.SpecialthankstoDr.DmitriTsybychev,Dr.AlexanderSukhanovandDr.SongMingWangwhohelpedmegreatlygettinguptothespeedoftheexperimentalphysicsatCDF.AlsoIwanttomentionandthankYuriOksuzianandLesterPinerafor 4

PAGE 5

5

PAGE 6

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 9 LISTOFFIGURES .................................... 10 ABSTRACT ........................................ 14 CHAPTER 1INTRODUCTION .................................. 15 1.1HistoryofParticlePhysics ........................... 15 1.2TheStandardModel .............................. 21 1.3TopQuarkPhysics ............................... 23 1.4HighlightsofMassMeasurement ........................ 32 2EXPERIMENTALAPPARATUS .......................... 38 2.1TevatronOverview ............................... 38 2.2CDFOverviewandDesign ........................... 40 2.2.1CherenkovLuminosityCounters .................... 41 2.2.2SiliconTracking ............................. 42 2.2.3CentralOuterTracker ......................... 42 2.2.4Calorimeters ............................... 43 2.2.5TheMuonSystem ............................ 44 2.2.6TheTriggerSystem ........................... 44 3EVENTRECONSTRUCTION ........................... 51 3.1Tracks ...................................... 51 3.2VertexReconstruction ............................. 53 3.3JetsReconstruction ............................... 54 3.3.1RelativeEnergyScaleCorrection ................... 56 3.3.2MultipleInteractionsCorrection .................... 57 3.3.3AbsoluteEnergyScaleCorrection ................... 57 3.3.4UnderlyingEventCorrection ...................... 58 3.3.5OutofConeCorrection ......................... 58 3.4LeptonsReconstruction ............................. 59 3.4.1Electrons ................................. 59 3.4.2Muons .................................. 59 3.4.3TauLeptons ............................... 60 3.4.4Neutrinos ................................ 60 3.5PhotonReconstruction ............................. 60 3.6BottomQuarkTagging ............................. 61 6

PAGE 7

............................ 61 3.6.2JetProbabilityAlgorithm ....................... 62 3.6.3SoftLeptonTagAlgorithm ....................... 62 4DESCRIPTIONOFTHEMATRIXELEMENTMACHINERY ......... 68 4.1ProbabilityDensityDenition ......................... 68 4.2Combinatorics .................................. 70 4.3CalculationoftheMatrixElement ...................... 71 4.4TransferFunctions ............................... 76 4.5TransverseMomentumofthettSystem .................... 78 4.6ImplementationandEvaluationoftheProbabilityDensity ......... 79 4.7ChecksoftheMatrixElementCalculation .................. 84 5DATASAMPLEANDEVENTSELECTION ................... 91 5.1DataandMonteCarloSamples ........................ 91 5.2EventSelection ................................. 91 6BACKGROUNDMODEL .............................. 97 6.1Denition .................................... 97 6.2ValidationoftheBackgroundModel ..................... 98 6.2.1ValidationinControlRegion1 ..................... 98 6.2.2ValidationinControlRegion2 ..................... 99 6.2.3ValidationintheSignalRegion .................... 99 6.2.4EectsontheStatisticalUncertainty ................. 99 7DESCRIPTIONOFTHEMASSMEASUREMENTMETHOD ......... 104 7.1LikelihoodDenitions ............................. 104 7.2TopTemplates ................................. 106 7.2.1DenitionoftheTemplate ....................... 106 7.2.2ParameterizationoftheTemplates ................... 106 7.3DijetMassTemplates .............................. 108 7.3.1DenitionoftheTemplate ....................... 108 7.3.2ParameterizationoftheTemplates ................... 108 8MODELVALIDATIONANDSENSITIVITYSTUDIES ............. 114 8.1Pseudo-experimentsSetup ........................... 114 8.2ValidationoftheModel ............................ 115 8.3ExpectedStatisticalUncertainty ........................ 118 9SYSTEMATICUNCERTAINTIES ......................... 127 9.1JetFragmentation ............................... 127 9.2InitialStateRadiation ............................. 127 9.3FinalStateRadiation .............................. 128 7

PAGE 8

......................... 128 9.5BackgroundShape ............................... 128 9.6BackgroundStatistics .............................. 129 9.7CorrelationBetweenTopMassandDijetMass ................ 130 9.82DCalibration ................................. 130 9.9B-jetEnergyScale ............................... 131 9.10ResidualJetEnergyScale ........................... 131 9.11SummaryoftheSystematicUncertainties ................... 132 10CONCLUSION .................................... 136 APPENDIX APARTONDISTRIBUTIONFUNCTIONOFTHEPROTON .......... 141 BTRANSVERSEMOMENTUMOFTHETTSYSTEM .............. 142 CTRANSFERFUNCTIONS ............................. 143 DSIGNALTOPTEMPLATES ............................ 149 ESIGNALDIJETMASSTEMPLATES ....................... 163 REFERENCES ....................................... 177 BIOGRAPHICALSKETCH ................................ 181 8

PAGE 9

Table page 1-1ClassicationofthefundamentalfermionsinStandardModel. .......... 34 1-2ForcecarriersdescribedinStandardModel. .................... 34 1-3Branchingratiosofthettdecaychannels. ..................... 35 4-1Denitionofthebinningofthepartonpseudo-rapidity .............. 85 4-2Denitionofthebinningofthepartonenergyforb-jets .............. 86 4-3DenitionofthebinningofthepartonenergyforW-jets ............. 87 5-1Numberofeventsinthemulti-jetdata ....................... 94 5-2Numberofeventsinthet tMonteCarlosample .................. 94 5-3Expectedsignaltobackgroundratiosforthet tMonteCarlosamples. ...... 95 5-4EciencyoftheminLKLcutforthet tMonteCarlosamples. .......... 96 7-1Valuesoftheparametersdescribingtheshapesofthetoptemplatesforthettsamples. ........................................ 110 7-2Valuesoftheparametersdescribingtheshapesofthetoptemplatesinthecaseofthebackgroundevents. .............................. 110 7-3Valuesoftheparametersdescribingthedijetmasstemplatesshapesforthettsamples. ........................................ 112 7-4Valuesoftheparametersdescribingthedijetmasstemplatesshapesinthecaseofthebackgroundevents. .............................. 113 8-1Valueofthecorrelationfactorbetweenanytwopseudo-experiments ....... 119 8-2LinearitycheckoftheMtopandJESreconstruction ................ 119 9-1Uncertaintiesontheparametersofthetopmasstemplatesforbackground. ... 132 9-2Residualjetenergyscaleuncertaintyonthetopmass. .............. 132 9-3Summaryofthesystematicsourcesofuncertaintyonthetopmass. ....... 133 10-1Expectedandobservednumberofeventsforthet tevents ............. 138 9

PAGE 10

Figure page 1-1Leadingorderdiagramforttproductionviaquark-antiquarkannihilation .... 34 1-2Leadingorderdiagramsforttproductionviagluon-gluonfusion. ......... 34 1-3Cross-sectionofttpairproductionasafunctionofcenter-of-massenergy .... 35 1-4Diagramsfortheself-energiesofW-bosonandZ-boson .............. 35 1-5ConstraintontheHiggsbosonmass ......................... 36 1-6LoopcontributionstotheHiggsbosonpropagator ................. 36 1-7ExperimentalconstraintsonMWandMtop. .................... 37 2-1DiagramoftheTevatronacceleratorcomplex ................... 46 2-2ElevationviewoftheEasthalloftheCDFdetector ................ 46 2-3Schematicoftrackingvolumeandplugcalorimeters ................ 47 2-4InitialinstantaneousluminosityandtotalintegratedluminosityinRunII .... 47 2-5SchematicviewoftheRunIICDFsilicontrackingsystem. ............ 48 2-6Eastend-plateslotsSenseandeldplanesinCOT ................ 48 2-7Crosssectionofupperpartofnewendplugcalorimeter. ............. 49 2-8Congurationofsteel,chambersandcountersfortheCMUdetector ....... 49 2-9ReadoutfunctionalblockdiagraminRunII. .................... 50 3-1Jetscorrectionfactorasafunctionof. ...................... 63 3-2Averagetransverseenergyasafunctionofthenumberofprimaryverticesintheevent ....................................... 64 3-3Absolutejetenergyscalecorrectionsforjetswithconesizeof0.4 ........ 64 3-4Fractionalsystematicuncertaintyduetounderlyingevent ............ 65 3-5Jetcorrectionsduetoout-of-coneeectforjets .................. 65 3-6Schematicviewofaneventcontainingajetwithasecondaryvertex. ...... 66 3-7Jetprobabilitydistributionforprompt,charmandbottomjets. ......... 66 3-8Signedimpactparameterdistribution ........................ 67 4-1TreelevelFeynmandiagramfortheprocessuu!tt 85 10

PAGE 11

86 4-3Crosssectionfort tproductionversusthetopmass,fromCompHep ....... 87 4-4Transversemomentumofthet tevents ....................... 88 4-5Massreconstructionusingsmearedpartonenergies ................ 88 4-6Massreconstructionusingjetsmatchedtopartons ................. 89 4-7Reconstructedtopmassversusinputtopmassusingrealisticjets. ........ 90 5-1Minimumofthenegativelogeventprobability ................... 95 6-1Backgroundvalidationincontrolregion1forsingletaggedevents ........ 100 6-2Backgroundvalidationincontrolregion1fordoubletaggedevents ........ 101 6-3Sumofeventprobabilitiescalculatedforforbackgroundsamples. ........ 101 6-4Dijetinvariantmassoftheuntaggedjetsforbackgroundbeforethecutonthesignal-likeprobability ................................. 102 6-5Dijetinvariantmassoftheuntaggedjetsforbackgroundsamplesafterthecutonthesignal-likeprobability ............................. 102 6-6Eventbyeventmostprobabletopmassdistributionsforbackgroundsamplesafterthesignal-likeprobabilitycut ......................... 103 6-7Eectofthebackgroundcontaminationinthetopmassreconstructionusingonlythematrixelementtechnique. ......................... 103 7-1Toptemplatesforttevents. ............................. 111 7-2Toptemplatesforbackgroundevents ........................ 111 7-3Dijetmasstemplatesforttevents. ......................... 111 7-4Dijetmasstemplatesforbackgroundevents .................... 113 8-1RawreconstructionintheJESversusTopMassplane ............... 120 8-2Reconstructedtopmassversusinputtopmass,forinputJESequalto0. .... 120 8-3ReconstructedJESversusinputJES,forinputtopmassequalto170GeV. ... 120 8-4SlopeofthemasscalibrationcurveversusinputJES. ............... 121 8-5ConstantofthemasscalibrationcurveversusinputJES. ............. 121 8-6SlopeoftheJEScalibrationcurveversusinputJES. ............... 121 8-7ConstantoftheJEScalibrationcurveversusinputJES. ............. 121 11

PAGE 12

........ 122 8-9Masspullwidthsversusinputtopmass,forinputJESequalto0. ........ 122 8-10AverageofmasspullmeansversusinputJES. ................... 122 8-11AverageofmasspullwidthsversusinputJES. ................... 122 8-12JESpullmeansversusinputtopmass,forinputtopmassequalto170GeV. .. 123 8-13JESpullwidthsversusinputtopmass,forinputtopmassequalto170GeV. .. 123 8-14AverageofJESpullmeansversusinputtopmass. ................. 123 8-15AverageofJESpullwidthsversusinputtopmass. ................ 123 8-16CorrectedreconstructionintheJESversusTopMassplane ............ 124 8-17SlopeoftheMtopcalibrationcurveversustrueJESafterthe2Dcorrection. ... 125 8-18InterceptoftheMtopcalibrationcurveversustrueJESafterthe2Dcorrection. 125 8-19SlopeoftheJEScalibrationcurveversustrueMtopafterthe2Dcorrection. ... 125 8-20InterceptoftheJEScalibrationcurveversustrueMtopafterthe2Dcorrection. 125 8-21Massreconstructionusingblindmasssamples ................... 125 8-22JESreconstructionusingblindJESsamples .................... 125 8-23Expecteduncertaintyontopmassversusinputtopmass ............. 126 8-24ExpecteduncertaintyonJESversusinputJES .................. 126 9-1Eventmultiplicityforbackgroundevents ...................... 132 9-2Parametersofthetopmasstemplateforsingletaggedbackgroundevents .... 133 9-3Parametersofthetopmasstemplatefordoubletaggedbackgroundevents ... 134 9-4TopmasspullmeanasafunctionofMtopconsideringthecorrelationbetweentheeventtopmassandthedijetmass ....................... 134 9-5TopmasspullwidthasafunctionofMtopconsideringthecorrelationbetweentheeventtopmassandthedijetmass. ....................... 135 10-1Eventreconstructedtopmassinthedata ...................... 138 10-2ContoursofthemassandJESreconstructioninthedata ............. 139 10-3ExpectedstatisticaluncertaintyfromMonteCarlo ................. 139 10-4MostprecisetopmassresultsatFermilab ..................... 140 12

PAGE 13

.... 141 B-1Transversemomentumofthettsystemfordierentgeneratorsandtopmasses. 142 C-1TransferfunctionsfortheW-bosondecaypartons ................. 143 C-2Transferfunctionsfortheb-quarkpartons ..................... 146 D-1Toptemplatesforttsingletaggedevents ...................... 149 D-2Toptemplatesforttdoubletaggedevents ..................... 156 E-1Dijetmasstemplatesforttsingletaggedevents .................. 163 E-2Dijetmasstemplatesforttdoubletaggedevents .................. 170 13

PAGE 14

pcollisionsatp 14

PAGE 15

15

PAGE 16

16

PAGE 17

17

PAGE 18

18

PAGE 19

19

PAGE 20

20

PAGE 21

21

PAGE 22

1-1 ).Theforce-mediatingparticlesdescribedbytheStandardModelallhaveanintrinsicspinwhosevalueis1,makingthembosons(Table 1-2 ).Asaresult,theydonotfollowthePauliExclusionPrinciple.Thephotonsmediatethefamiliarelectromagneticforcebetweenelectricallychargedparticles(thesearethequarks,electrons,muons,tau,W-boson).Theyaremasslessandaredescribedbythetheoryofquantumelectrodynamics.TheWandZgaugebosonsmediatetheweaknuclearinteractionsbetweenparticlesofdierentavors(allquarksandleptons).Theyaremassive,withtheZ-bosonbeingmoremassivethantheW-boson.AninterestingfeatureoftheweakforceisthatinteractionsinvolvingtheWgaugebosonsactonexclusivelyleft-handedparticles.Theright-handedparticlesarecompletelyneutraltotheWbosons.Furthermore,theW-bosonscarryanelectricchargeof+1and-1makingthosesusceptibletoelectromagneticinteractions.TheelectricallyneutralZ-bosonactsonparticlesofbothchiralities,butpreferentiallyonleft-handedones.Theweaknuclearinteractionisuniqueinthatitistheonlyonethatselectivelyactsonparticlesofdierentchiralities;thephotonsofelectromagnetismandthegluonsofthestrongforceactonparticleswithoutsuchprejudice.Thesethreegaugebosonsalongwiththephotonsaregroupedtogetherwhichcollectivelymediatetheelectroweakinteractions. 22

PAGE 23

1 ].Thediscoveryofthetopquarkwasnotasurprise.Indeed,theexistenceofanisospinpartnerfortheb-quarkisstronglymotivatedbyargumentsoftheoreticalconsistencyoftheStandardModel,absenceofavorchangingneutralcurrentinBmesondecaysandstudiesofZbosondecays[ 2 ].However,thelargemassofthetopquark,nearly175GeV/c2,wasinitselfasurpriseatthetime.Inthisregard,thetop 23

PAGE 24

3 ][ 4 ][ 5 ][ 6 ].Therefore,currentobservationsleadustobelievethattheparticleobservedattheTevatronisindeedthetopquark.However,directmeasurementsarestilldesirableandwillbeattemptedinthecaseoftheelectricchargeandspinusingdatafromtheRunIIoftheTevatronortheLHC[ 7 ].Theotherintrinsicpropertiesofanelementaryparticleareitsmassandlifetime.Themostpreciseknowledgeofthemasscomesfromdirectmeasurements.ThecurrentworldaveragecontainingonlymeasurementsperformedduringRunIattheTevatronis1784.3GeV/c2.Inquantummechanics,thelifetimeofaparticleisrelatedtoitsnaturalwidththroughtherelationship=~=.Thebranchingratiofortheelectroweaktopquarkdecayt!Wbisfarlargerthananyotherdecaymodeandthusitsfullwidthcanbeapproximatelycalculatedfromthepartialwidth(t!Wb).AssumingMW=Mb=0,thelowestordercalculationofthepartialwidthhastheexpressionshowninEquation 1{1 24

PAGE 25

0(t!Wb)=GFM2topjVtbj2 tpairsattheTevatronviathestronginteraction.Atacenter-of-massenergyof1.96TeV,theprocessq q!t tandgg!t toccurapproximately85%and15%ofthetime,respectively.TheleadingorderdiagramsforthetwoprocessesareshowninFigure 1-1 andinFigure 1-2 .Calculationsofthetotalttcross-sections(tt)havebeenperformeduptothenext-to-leadingorder(NLO)inthecouplingconstantofthestrongforce(s).Thetheoreticalvalueatacenter-of-massenergyof1.96TeV[ 8 ]isshowninEquation 1{2 forMtop=175GeV/c2. 1-3 whereweshow(tt)asafunctionofthecenter-of-mass 25

PAGE 26

3 ][ 4 ]and1.96TeV(RunII)[ 5 ][ 6 ].Figure 1-3 illustratesonemotivationtomeasureaccuratelyMtop:theknowledgeofthetopquarkmassisnecessarytocompareaspreciselyaspossiblethetheoreticalpredictionsandmeasurementsofthettcross-section.Aneventualdiscrepancycouldbeasignofnewphysicsasdiscussedinmoredetailin[ 7 ].TheelectroweakproductionofsingletopquarksisalsopredictedbytheStandardModelbuthasnotbeenobservedtodate[ 9 ][ 10 ].Theproductioncross-sectionispredictedtobesmallerthanfortt(2.4pb)andtheexperimentalsignaturesuersfrommuchlargerbackgroundcontamination.Thetopquarkdecayismediatedbytheelectroweakinteraction.SinceavorchangingneutralcurrentsareforbiddenintheStandardModelduetotheGIMmechanism[ 11 ],thedecaysofthetopquarkinvolvingZorbosonsinthenalstate(e.g.,t!Zc)arehighlysuppressedandcanonlyoccurthroughhigherorderdiagrams.Therefore,thetopquarkdecayvertexmustincludeaWboson.Threepossiblenalstatesexist:t!Wb,t!Wsandt!Wd.AsillustratedinEquation 1{1 ,thepartialwidthofchargedcurrenttopdecaysisproportionaltothesquareofthecorrespondingCKMmatrixelement.AssumingaStandardModelwiththreefamilies,therelevantCKMmatrixelementshavetheconstraints[ 12 ]giveninEquation 1{3 0:004899.8%.Henceonlyt!Wbdecayshavebeenconsideredintheidenticationoftopquarks,thoughsearchesforotherdecaymodeshavebeenundertaken[ 13 ].WenotethattheWbosonfromthetopquarkdecayisreal(i.e.,itsmass 26

PAGE 27

1-3 .ThetopquarkplaysacentralroleinthepredictionsofmanySMobservablesbycontributingtotheirradiativecorrections.GoodexamplesaretheWandZbosonpropagators,inwhichloopsinvolvingtopquarksareexpectedtostronglycontribute,asillustratedinFigure 1-4 .Thesediagramscanexistforanytypeofquarkorlepton,buttheverylargevalueofMtopmakesthetopquarkcontributiondominant.Toillustratetheeectofthetopquark,weconsiderinEquation 1{4 thetheoreticalcalculationoftheWbosonmass[ 12 ]. 1r;(1{4)isthenestructureconstant,WistheWeinbergangleandrcontainstheradiativecorrectionsandisapproximatelygivenbyEquation 1{5 rr0 tan2W(1{5) 27

PAGE 28

1-4 ,andisgivenbyEquation 1{6 =3GFM2top 1{5 areknowntoaprecisionof0.2%.Theuncertaintyonthetopquarkmassiscurrentlyaboutanorderofmagnitudelargerthantheotheruncertaintiesandmoreoveritcontributesquadraticallytor.ThustheprecisiononMtopiscurrentlythelimitingfactorinthetheoreticalpredictionoftheWbosonmass.Theparameterisqualiedas\universal"intheliteraturebecauseitentersinthecalculationofmanyotherelectroweakobservablelikesinWandtheratiooftheproductionofb-quarkhadronsofalltypes(usuallydenotedRb),tonameafew.Therefore,thetopquarkmassplaysacentralroleintheinterplaybetweentheoreticalpredictionsandexperimentalobservablesthataimstotestconsistencyoftheSM.OneconsistencycheckistocomparethemeasuredvalueofMtopwiththepredictedvaluefromSMprecisionobservables(excludingofcoursedirectmeasurementsofMtop).Theindirectconstraints,inferredfromtheeectoftopquarkradiativecorrections,yieldsMtop=181+129GeV/c2[ 14 ].TherelativelysmalluncertaintyisachievedbecauseofthelargedependenceofMtoponmanyelectroweakobservables.ThisisinremarkableagreementwiththeRunIworldaverageofMtop=1784.3GeV/c2[ 15 ],andisconsideredasuccessoftheSM.AsimilarprocedurecanbeusedtoconstraintheHiggsbosonmass(MH),thelastparticleintheSMthathasyettobeobserved.TheonlydirectinformationonMHisalowerboundobtainedfromsearchesatLEP-II:MH>114GeV/c2at95%condencelevel[ 16 ].IndirectconstraintsonMHcanbeobtainedwithprecisemeasurementsof 28

PAGE 29

1{4 containsadditionaltermsduetoHiggsbosonloops.ThesecorrectionsdependonlylogarithmicallyonMHandhavethusweakerdependenceonMHthanonMtop.Still,precisedeterminationofMtopandMWcanbeusedtoobtainmeaningfulconstraintsonMHasillustratedinFigure 1-5 .Numerically,theconstraintsare[ 14 ]madeexplicitinEquations 1{7 and 1{8 OnlythetopquarkmassmeasurementsfromRunIhavebeenused.SuchconstraintsonMHcanhelpdirectfuturesearchesattheTevatronandLHCandconstitutesanotherstringenttestoftheStandardModelwhencomparedtolimitsfromdirectsearchesormassmeasurementsfromaneventualdiscovery.EventhoughtheStandardModelsuccessfullydescribesexperimentaldatauptoafewhundredGeV,itisbelievedthatnewphysicsmustcomeintoplayatsomegreaterenergyscale.Attheveryleast,gravityeectsareexpectedatthePlanckscale(1019GeV)thattheSMignoresinitscurrentform.TheSMcanthusbethoughtofasaneectivetheorywithsomeunknownnewphysicsexistingathigherenergyscale.AlinkexistsbetweenthenewphysicsandtheSMthatmanifestsitselfthroughradiativecorrectionstoSMparticles.TheHiggsbosonsectoristhemostsensitivetoloopsofnewphysics.ForexampletheHiggsbosonmasscorrectionsfromfermionloopsshownindiagram(a)ofFigure 1-6 aregivenbyEquation 1{9 ,wheremfisthefermionmassandisthe\cut-o"scaleusedtoregulatetheloopintegral. MH22+6m2fln(=mf)+:::;(1{9)TheparametercanbeinterpretedasthescalefornewphysicsthattypicallycorrespondstothescaleoftheGrandUniedTheory(GUT)near1016GeV.Thisisa 29

PAGE 30

1{10 ,wherevisthevacuumexpectationvalueoftheHiggseldthatisknownfrompropertiesoftheweakinteractiontobeapproximately171GeV. 1{9 forfermionicparticles).Moreover, 30

PAGE 31

17 ]asshowninEquation 1{11 ,whereM~t1andM~t2arethemassesofthelightestandtheheavieststopquarks,respectively. M2hGFM4toplogM~t1M~t2 18 ].Usingthecurrentmeasurementsofprecisionobservables,itisalreadypossibletosetmeaningfulconstraintsonSUSY.Forexample,Figure 1-7 showsthecurrentmeasurementsofMtopandMWaswellastheregionallowedexclusivelyinsidetheMSSM(green),theSM(red)aswellasanoverlapregionbetweentheMSSMandSM(blue).Ascanbeseen,theadditionalradiativecorrectionsfromSUSYparticlesarelargeenoughsuchthattheoverlapregionbetweenSMandMSSMissmallintheMtopMWplane.Thecurrentexperimentalaccuraciesarenotgoodenoughtodistinguishbetweenthetwotheories,but 31

PAGE 32

19 ].OtheralternativestoreplacetheSMatenergiesneartheTeVscalearetheoriesinvolvingdynamicalbreakingoftheelectroweaksymmetry[ 20 ].Thesemodels,onewell-knownexamplebeingTechnicolor[ 21 ],donotincludeanelementaryHiggsboson,butrathergivemasstotheSMparticlesbyintroducinganewstronggaugeinteractionthatproducecondensatesoffermionsthatactasHiggsbosons.Insomeversionsofthesemodels,denoted\topcolor",thenewgaugeinteractionactsonlyonthethirdgeneration,andthefermioncondensatesaremadeoftopquarks[ 22 ].SuchamodelcouldbediscoveredbylookingforevidenceofnewparticlesinthettinvariantmassattheTevatronorLHC. 32

PAGE 33

33

PAGE 34

ClassicationofthefundamentalfermionsinStandardModel.Theyarearrangedinthreegenerations. GenerationFlavorMass(GeV/c2)ChargeWeakIsospin Up(u)0.0032 31 2IDown(d)0.006-1 3-1 2e-Neutrino(e)<210601 2Electron(e)0.0005-1-1 2 31 2IIStrange(s)0.1-1 3-1 2-Neutrino()<210601 2Muon()0.1-1-1 2 31 2IIIBottom(b)4.2-1 3-1 2-Neutrino()<210601 2Tau()1.7-1-1 2 ForcecarriersdescribedinStandardModel. BosonForceMass(GeV/c2)Charge Photon()EM00Wweak80.41Z0weak91.20Gluon(g)strong00 Leadingorderdiagramforttproductionviaquark-antiquarkannihilation.Inthisguretheincidentquarksaretheup-quarks. Leadingorderdiagramsforttproductionviagluon-gluonfusion. 34

PAGE 35

Cross-sectionofttpairproductionasafunctionofcenter-of-massenergyforthetheorypredictionandCDFmeasurements. Table1-3. Branchingratiosofthettdecaychannels. ChannelBranchingRatio all-hadronic44%lepton+jets30%dilepton5%taulepton+X21% Diagramsfortheself-energiesofW-bosonandZ-bosonwherealoopinvolvingthetopquarkiscontributing. 35

PAGE 36

ConstraintontheHiggsbosonmassasafunctionofthetopquarkandWbosonmeasuredmassesasofwinter2007.Thefullredcurveshowstheconstraints(68%C.L.)comingfromstudiesattheZbosonpole.Thedashedbluecurveshowsconstraints(68%C.L.)fromprecisemeasurementofMWandMtop. LoopcontributionstotheHiggsbosonpropagatorfrom(a)fermionicand(b)scalarparticles. 36

PAGE 37

ExperimentalconstraintsonMWandMtop(outerblueellipse),theprojectedconstraintsattheendoftheTevatronandLHC(middleblackellipse)andattheILC(redinnerellipse).AlsoshownaretheallowedregionforMSSM(greenhatched),theSM(redcross-hatched)andtheoverlapregionbetweentheSMandMSSM(blueverticallines). 37

PAGE 38

psynchrotronacceleratorsupportsseveralexperiments,includingtwocolliderdetectors,oneofwhich,theColliderDetectoratFermilab(CDF),collecteddataforthisanalysis.Theacceleratoralsoprovidesprotonstoxedtargetexperiments.CDFisageneralpurposehardscatteringdetectorsupportingawidevarietyofphysicsanalyses.OneoftheprioritiesofFNALisaprecisemeasurementofthetopquarkmass.SeveralhundredpeoplesupporttheoperationoftheacceleratorandanotherseveralhundredareresponsibleforthecommissioningandoperationoftheCDFdetector.Acompetingcollaboration,D0,independentlymeasuressimilarphysicsquantities.Combinedresultsfromthesetwocollaborationshaveresultedinincreasinglyprecisemeasurementsofthetopquarkmassandotherinterestingphysicalphenomena.Thischapteroutlinesthebasicoperationandstructureoftheacceleratorandofthedetector. 2-1 schematicallydescribestheTevatroncomplex.ProtonscollidingintheTevatronstartoutashydrogengas.ThehydrogenisionizedbyaddinganelectronandthenfedtoaCockroft-Waltondirectcurrentelectrostaticaccelerator.ExitingtheCockroft-Waltonwith750keV,thehydrogenionsarefedintoaRFlinearaccelerator,theLinac,andrampedto400MeV.Thehydrogenionsthenstrikeastationarytargetofcarbonfoil,strippingthetwoelectronsfromtheionsandleavingbareprotons. 38

PAGE 39

23 ]asshowninEquation 2{1 (p+ 39

PAGE 40

2-1 .TheAccumulatorreducesthelongitudinalmomentumoftheantiprotonsusingasynchronizedpotentialandstochasticcooling[ 24 ].StochasticcoolingwasdevelopedatCERNinthe1970sanddampensunwantedmomentumphase-spacecomponentsoftheparticlebeamusingafeedbackloop.Essentially,thebeamorbitismeasuredwithapickupandcorrectedwithakicker.TheotherantiprotonstorageunitistheRecycler,asynchrotroninthesameringastheMainInjector.TheRecyclerwasoriginallydesignedtocollectantiprotonsfromtheTevatrononcecollisionsforagivenstorewerenished,butattemptstouseitforthispurposehavenotbeenworthwhile.Asanadditionalstorageunit,theRecyclerhasallowedincreasedinstantaneousluminositysince2004.TheRecyclertakesadvantageofelectroncooling,inwhicha4.3MeVbeamofelectronsover20misusedtoreducelongitudinalmomentum.Whenastoreisreadytobegin,antiprotonsaretransferredfromeitherorboththeAccumulatorandtheRecyclertotheTevatronfornalacceleration. 25 ][ 26 ].Itsurroundsoneofthebeamcrossingpointsdescribedinsection 2.1 .Thedetectorobservesparticlesortheirdecayremnantsviachargedtracksbendingina1.4Tsolenoidaleld,electromagneticandhadronicshowersincalorimeters, 40

PAGE 41

2-2 .CDFiscylindricalinconstruction,withthebeamlinedeningthez-axisorientedwiththedirectionofprotontravel,whichisalsothedirectionofthesolenoidaleldlines.Thex-axisisdenedaspointingawayfromtheTevatronring,andthey-axisisdenedaspointingdirectlyupward.Transversecomponentsaredenedtobeperpendiculartothebeamline,inotherwordsthepolarrdimensionasgiveninEquation 2{2 .AnotherusefulcoordinatevariableistherapidityshowninEquation 2{3 .Thepseudo-rapidity,,isthemasslesslimitofrapidityandisgiveninEquation 2{4 2lnE+pz 2ln(tan):(2{4)Pseudo-rapidityisalwaysdenedwithrespecttothedetectorcoordinatesunlessexplicitlyspecied.ManyofthecomponentsofCDFaresegmentedinpseudo-rapidity.Figure 2-3 showsthecoordinatesrelativetothetrackingvolumeandplugcalorimeter. 27 ]arepositionednearthebeamline,3.7
PAGE 42

2-4 showstheinitialinstantaneousluminosityandtotalintegratedluminosityasafunctionofyear.TheinitialinstantaneousluminosityincreasedwithrunningtimeduetoimprovementssuchasusingtheRecyclertostoreantiprotons.TotalintegratedluminosityisseparatedaccordingtothatdeliveredbytheTevatronandthatrecordedtotapebytheCDFdetector. 28 ],SVXII[ 29 ]andISL[ 30 ],thesilicontrackingsystemcoversdetectorjj<2.L00isasinglelayermounteddirectlyonthebeampipe,r=1.6cm,andisasingle-sidedarraywithapitchof50mprovidingsolelyaxialmeasurements.SVXIIismountedoutsideofL00,2.4
PAGE 43

2-6 .Inhalfofthesuper-layers,thewiresareparalleltothebeamlineandprovideaxialmeasurements,whileintheotherhalf,thewiresarealternatelyat2oandprovidestereomeasurements.Theinnermostsuper-layerprovidesastereomeasurementandsubsequentlayersalternatebetweenaxialandstereomeasurements.Thegasllingthechamberiscomprisedof50%argonand50%ethane(andlately,someoxygenwasaddedtopreventcorrosion).Thisresultsinamaximumdrifttimeof100ns,farshorterthanthetimebetweenbunchcollisions.ThesinglehitresolutionoftheCOTis140m,andthetrackmomentumresolutionusingmuoncosmicraysispT=p2T0.001(GeV/c)1. 32 ];andcalorimeterscappingthebarrel,theplugcalorimeters(PPR,PES,PEMandPHA)[ 33 ].Awallhadroniccalorimeter(WHA)llsthegapbetweenthetwo.Thecentralregioncoversdetectorjj<1,thewall0.6
PAGE 44

2-7 showsacross-sectionalviewoftheplugcalorimeter. 34 ].CMUandCMPcoverdetectorjj<0.6,withCMPlocatedoutsideCMU,andCMXcoversdetector0.6
PAGE 45

2-9 ).Dataisstoredinsynchronousbuersawaitinganinitialtriggerdecision.Thersttriggerlevelreturnsadecisionwithalatencyof5.5sandamaximumacceptrateof50kHzandwillalwaysoccurintimetoreadouttheevent.Leveloneusessolelycustomhardwareoperatinginthreeparallelstreams.Onestream,theextremelyFastTracker(XFT),reconstructstransverseCOTtracksandextrapolatesthemtocalorimetersandmuonchambers.Anotherstreamdetectspossibleelectron,photonorjetcandidates,alongwithtotalandmissingtransverseenergy.Thenalstreamsearchesfortracksinmuonchambers.Thesestreamsarecombinedinthenallevelonedecision.Afteraleveloneaccept,theeventinformationisreadoutintoasynchronousbuers.Sinceeventsremaininthesebuersuntilaleveltwodecisionismade,itispossiblesomeeventspassinglevelonewillbelostwhenthesebuersarefull.Theleveltwotriggerreturnsadecisionwithalatencyof25sandamaximumacceptrateof300Hz.LeveltwousedcustomhardwareandmodiedcommercialmicroprocessorstoclusterenergyincalorimetersandreconstructtracksinthesilicondetectorusingtheSiliconVertexTracker(SVT).Calorimeterclustersestimatethetotaljetenergyandhelptoidentifyelectronsandphotons.TheSVTmeasurestheimpactparametersoftracks,partoflocatingdisplacedvertices.Thethirdtriggerlevelrunsonacommercialdualmicroprocessorfarmandreturnsadecisionwithamaximumacceptrateof150Hz.ThefarmrunsaversionofCDFoinereconstructionmerginginformationfrommanydetectorsystemstoidentifyphysicalobjectsintheevent.Datapassinglevelthreetriggerrequirementsistransferredvia 45

PAGE 46

DiagramoftheTevatronacceleratorcomplex ElevationviewoftheEasthalloftheCDFdetector.TheWesthalfisnearlysymmetric. 46

PAGE 47

SchematicoftrackingvolumeandplugcalorimetersoftheuppereastquadrantoftheCDFdetector. Figure2-4. Initialinstantaneousluminosity(left)andtotalintegratedluminosity(right)asafunctionofyearsincethestartofRunII. 47

PAGE 48

Schematicwithther-andthey-zviewsoftheRunIICDFsilicontrackingsystem. Figure2-6. Eastend-plateslotsSenseandeldplanesareattheclock-wiseedgeofeachslot(left).Nominalcelllayout(right). 48

PAGE 49

Crosssectionofupperpartofnewendplugcalorimeter. Detailshowingthecongurationofsteel,chambersandcountersfortheCentralMuonUpgradewalls.Amuontrackisdrawntoestablishtheinteractionpoint.Counterreadoutislocatedatz=0.CounterslayersareosetfromthechambersandfromeachotherinxtoallowoverlappinglightguidesandPMTs,minimizingthespacerequired. 49

PAGE 50

ReadoutfunctionalblockdiagraminRunII. 50

PAGE 51

pcollisionstartingfromtherawoutputsofthedierentpartsofthedetector.FirstwewillseehowinformationfromsilicondetectorsandCOTareusedtoreconstructchargedparticletrajectories.Thenwewillmovetothereconstructionofjetsofhadronicparticles,basedoncalorimeters.Asectionwillbedevotedtothecorrectionofjetenergiesfordierenterrorsourcesintroducedbycalorimetersandreconstructionalgorithms.Afterabriefdescriptionoftheidenticationofleptonsandphotons,wewillendwiththedierentmethodsusedatCDFtoidentifyajetofparticlesoriginatedfromabquark. 3{1 ,thehelixofachargedparticleisparameterized. 51

PAGE 52

3{2 ,where=1 2CQistheradiusofthecircleandQthechargeoftheparticle. 35 ]isastrategytoreconstructtracksinthesilicondetector.Itconsistsinndingtripletsofaligned3Dhits,extrapolatingthemandaddingmatching3Dhitsonotherlayers.Thistechniqueiscalledstandalonebecauseitdoesn'trequireanyinputfromoutside:itperformstrackingcompletelyinsidethesilicondetector.Firstthealgorithmbuilds3Dhitsfromallpossiblecouplesofintersectingaxialandstereostripsoneachlayer.Oncealistofsuchhitsisavailable,thealgorithmsearchesfortripletsofalignedhits.Thissearchisperformedxingalayeranddoingalooponallhitsintheinnerandouterlayerswithrespecttothexedone.Foreachhitpair-oneintheinnerandoneintheouterlayer-astraightlineintherzplaneisdrawn.Nextstepconsistsinexaminingthelayerinthemiddle:eachofitshitsisusedtobuildahelixtogetherwiththetwohitsoftheinnerandouterlayers.Thetripletsfoundsofararetrackcandidates.Oncethelistofcandidatesiscomplete,eachofthemisextrapolatedtoallsiliconlayerslookingfornewhitsintheproximityoftheintersectionbetweencandidateandlayer.Ifthereismorethanonehit,thecandidateisclonedandadierenthitisattachedtoeachclone.Fullhelixtsareperformedonallcandidates.Thebestcandidateinaclonegroupiskept,theothersrejected.TheOutside-Inalgorithm[ 36 ]exploitsinformationfrombothCOTandsilicon.TherststepistrackingintheCOT,whichstartstranslatingthemeasureddrifttimesin 52

PAGE 53

pcollision(primaryvertex)isoffundamentalimportanceforeventreconstruction.AtCDFtwoalgorithmscanbeuseforprimaryvertexreconstruction.OneiscalledPrimVtx[ 37 ]andstartsbyusingthebeamlinez-position(seedvertex)measuredduringcollisions.Thenthefollowingcuts(withrespecttotheseedvertexposition)areappliedtothetracks:jztrkzvertexj<1.0cm,jd0j<1.0cm,whered0istrackimpactparameter,andd0 53

PAGE 54

38 ].Thisalgorithmstartsfrompre-trackingvertices(i.e.,verticesobtainedfromtrackspassingminimalqualityrequirements).Amongthese,alotoffakeverticesarepresent:ZVertexCollcleansuptheseverticesrequiringacertainnumbertrackswithpT>300MeVbeassociatedtothem.Atrackisassociatedtoavertexifitiswithin1cmfromsiliconstandalonevertex(or5cmfromCOTstandalonevertex).Vertexpositionziscalculatedfromtrackspositionsz0weighedbytheirerroraccordingtoEquation 3{3 54

PAGE 55

3{4 assumingthateachvectorcorrespondstoamasslessparticlethatdepositedallitsenergyinthetowerbarycenter. (3{4) 55

PAGE 56

3{4 ,thejettransverseenergy,transversemomentumandpseudo-rapidityarecalculatedinEquations 3{5 3{6 and 3{7 P(3{6) 39 ]. 40 ]areappliedtorawjetenergiestocorrectfornon-uniformitiesincalorimeterresponsealong.Calorimeterresponseineachbinisnormalizedtotheresponseintheregionwith0.2jj0.6,becausethisregionisfarawayfromdetectorcracksanditisexpectedtohaveastableresponse.Thecorrectionfactorisobtainedusingthedijetbalancingmethodappliedtodijetevents.Thismethodstartsselectingeventswithoneoutoftwojetsintheregion0.2jj0.6.Thisjetisdenedastriggerjet.Theotherjetisdenedasprobejet.Ifbothjetsareintheregionof0.2jj0.6,triggerandprobejetareassignedrandomly.Thetransversemomentumoftwojetsina2!2processshouldbeequalandthispropertyisusedtocalculaterstapTbalancingfractionpTfasshowninEquation 3{8 pTf=pT 56

PAGE 57

3{9 3-1 weshowthecorrectionfactorasafunctionoffordijetdata(black)andfordijetMonteCarlousingPythiaasgenerator(red). pinteractioncanoccur.Energyfromthesenonoverlappingminimumbiaseventsmayfallintothejetclusteringconeofthehardinteractioncausingthusamis-measurementofjetenergy.Acorrectionforthiseectisextractedusingasampleofminimumbiasevents[ 41 ]:foreachevent,transverseenergyETinsideconesofdierentradii(0.4,0.7and1.0)ismeasuredinaregionfarawayfromcracks(0.1jj0.7):then,thedistributionofaverageETasafunctionofthenumberofquality12verticesisttedwithastraightlineandtheslopeofthettinglinesaretakenascorrectionfactors(Figure 3-2 ). 42 ].Theproceduretoextractacalorimeter-to-hadroncorrectionfactorisbasedonthefollowingsteps:usefullysimulatedCDFsampleswhereparticleshavepTrangingfrom0to600GeV,clusterthecalorimetertowersandtheHEPGparticles,associatecalorimeter-leveljetswithhadron-leveljets,parameterizethemappingbetweencalorimeterandhadron-leveljetsasafunctionofhadron-leveljets,asacorrectionfactor,extracttheprobabilitiesofmeasuringajetwithpcalTgivenajetwithxedvalueofphadT. 57

PAGE 58

3-3 theabsolutejetenergyscalecorrectionsforjetsconesizeof0.4asafunctionofthejetmomentum(blue).Theuncertaintyforthiscorrectionisalsoshownasafunctionofthejetmomentum(black). 43 ].Foreachevent,transverseenergyETinsideconesofdierentradii(0.4,0.7and1.0)ismeasuredinaregionfarawayfromcracks(0.1jj0.7).ThecorrectionfactorisextractedfromthemeanvaluesofETdistribution(Figure 3-4 ). 44 ]:hadron-leveljetsarematchedtopartonsiftheirdistanceintheplaneislessthan0.1.Thenthedierenceinenergybetweenhadronandpartonjetisparameterizedusingthesamemethodasforabsolutecorrection(Figure 3-5 ).Wehaveseendierentcorrectionsthataccountfordierentsourcesofjetenergymis-measurement.Dependingonthephysicsanalysis,allofthemorjustasubsetcanbeapplied.Thecorrectionsareappliedtotherawmeasuredjetmomentum. 58

PAGE 59

3{10 ,Ristheclusteringconeradius,PTistherawenergymeasuredintheconeandthepseudo-rapidityofthejet:f;MI;fabs;UEandOOCarerespectivelyrelative,multipleinteractions,absolute,underlyingeventandout-of-conecorrectionfactors. 3.4.1ElectronsBeingachargedparticle,anelectrontraversingthedetectorrstleavesatrackinthetrackingsystemandthenlosesitsenergyintheelectromagneticcalorimeter.Soagoodelectroncandidateismadeofaclusterintheelectromagneticcalorimeter(centralorplug)andoneormoreassociatedtracks;ifavailable,showermaxclusterandpreshowerclusterscanhelpelectronidentication.Theshowerhastobenarrowandwelldenedinshape,bothlongitudinallyandtransversely.Theratiobetweenhadronicandelectromagneticenergieshastobesmallandtrackmomentumhastomatchelectromagneticclusterenergy[ 45 ]. 46 ]. 59

PAGE 60

3{11 ,Eiistheenergyoftheithtower,iisthepolarangleofthelinepointingfromtheinteractionpointtotheithtowerand~niisthetransverseunitvectorpointingfromtheinteractionpointtothecenterofthetower. 60

PAGE 61

47 ]exploitsthefactthattheBhadrontravelsbeforeitdecaysandthereforethejetproducedbyitwillcontainasecondaryvertex(Figure 3-6 ).ThealgorithmstartsfromCOTandsilicontracksinsideaconeandasarststep,usingasdiscriminatingvariabletheirimpactparameter,itremovestracksidentiedasKS;ordaughters,orconsistentwithprimaryvertexortoofarfromit.Thenathreedimensionalcommonvertexconstrainedtisperformedusingtwotracks:if2<50thetwotracksareusedasseedtondothertracksthatpointtowardthesamesecondaryvertex.Ifatleastthreetracksarefoundtobecompatiblewithasecondaryvertex,thejetcontainingthemisconsideredab-tagifitpassesthefollowingcuts:jLxyj<2.5cm,whereLxyisthedecaylengthofthesecondaryvertex;thiscuthelpsrejectingconversionsfromtherstlayerofSVXII;Lxy 61

PAGE 62

48 ].Theprobabilitydistributionisuniformlydistributedforajetarisingfromtheprimaryvertex,whileitshowsapeakatzeroforalong-livedjet(Figure 3-7 ).Theprobabilityisbasedontrackimpactparametersandontheiruncertainties.Alltracksassociatedtotheprimaryvertexhaveequalprobabilitytobeeitherpositivelyornegativelysignedasfarastheirimpactparameterisconcerned.Thewidthoftheimpactparameterdistributionfromthesetracksissolelyduetothetrackingdetectorresolutionandmultiplescattering.Along-livedparticlewillproducemoretrackswithpositiveimpactparameter(Figure 3-8 ).Tominimizethecontributionofmis-measuredtracks,thenalprobabilityiscomputedusingthesignedimpactparametersignicance(ratiooftheimpactparametertoitsmeasurederror)insteadoftheparameteritself.GivenatrackwithimpactparametersignicanceSd0,theprobabilitythatatrackfromalightquarkhasalargervalueofSd0iscalculated.Combiningprobabilitiesforalltracksinajet,oneobtainsthejetprobability.Byconstruction,thisprobabilityisatforjetscomingfromlightquarksorpeakedatzeroforthosecomingfromheavyquarks. 62

PAGE 63

49 ].First,thetaggabletracksarefound(i.e.,tracksthatcouldhavebeenleftbymuons).Totakeintoaccountthefactthatthemuonmightnothavehadenoughenergytoreachthemuonchambers,trackswhosemomentumislowerthan2.8GeVarerejected.Moreover,ithastopointtoavolumelimitedbythephysicaledgesofthemuonchambers,oradistanceof3MSinside/outsidethephysicaledges.HereMSisthestandarddeviationofthemaximumdeectionexpectedfrommultiplescatteringthroughthematerialofthedetector.Ifatrackistaggableandhasastubassociatedtoit,thealgorithmcomputesalikelihoodcomparingalltheavailableinformationaboutthemuoncandidatewiththeexpectedvalues.Besidesvariablesfrommuondetectors,forthelikelihoodonecanusealsosometrackqualityinformation,likethenumberofCOThits,thebeamline-correctedimpactparameterandthetrackz0position. Correctionfactorasafunctionoffordijetdata(black)andfordijetMonteCarlousingPythiaasgenerator(red).Thejetswerereconstructedwithaconeof0.4. 63

PAGE 64

Averagetransverseenergyasafunctionofthenumberofprimaryverticesintheevent:acorrectionfactorisextractedfromtheslopeofthettingline. Absolutejetenergyscalecorrectionsforjetswithconesizeof0.4asafunctionofthejetmomentum(blue).Theuncertaintyforthiscorrectionisalsoshownasafunctionofthejetmomentum(black). 64

PAGE 65

Fractionalsystematicuncertaintyduetounderlyingeventasafunctionofjettransversemomentumfordierentjetconesizes. Jetcorrectionsduetoout-of-coneeectforjetswithconesizeof0.4asafunctionofthejetmomentum(red).Theuncertaintyforthiscorrectionisalsoshownasafunctionofthejetmomentum(black). 65

PAGE 66

Schematicviewofaneventcontainingajetwithasecondaryvertex. Jetprobabilitydistributionforprompt,charmandbottomjets. 66

PAGE 67

Signedimpactparameterdistributionfortracksfromprimaryvertex(left)andfromsecondaryvertex(right). 67

PAGE 68

4{1 4EaEbjvavbjjM(m;j)j2(2)4(4)(EfinEini)6Yi=1d3~ji 4{1 ,jisagenericnotationbywhichweunderstandallsix4-momentadescribingthenalstate;za(zb)isthefractionoftheproton(anti-proton)momentumcarriedbythecollidingpartons;f(za)andf(zb)standforthepartondistributionfunctionsforprotonandforanti-protonrespectively;M(m;j)isthematrixelementcorrespondingtotheallhadronictt;Efinisagenericnotationforthe4-vectorofthenalstate,andsimilarlyfortheinitialstateweuseEini.Iftheelementarycross-sectionsfromagroupofeventsareaddedupweshouldobtainafractionoftotalttcross-section,tot(m),fortopmassmasshowninEquation 4{2 68

PAGE 69

4{3 4EaEbjvavbjjM(m;j)j2(2)4(4)(EfinEini) (2)32Ei(4{3)ThequantityP(jjm)Q6i=1d3~jiwillbetheprobabilityforaneventdenedbythesetofsixjets(i.e.,six4-momenta)tobetheresultofttproductionfollowedbyanallhadronicdecayfortopmassm.Sofarwedidn'tworryabouthowaccuratelywecandeterminethesix4-momenta.Inreality,thenalstatepartonswhichareobservedasjetsinthedetector,canbemis-measured.WecanaccountforthisusingourttMonteCarlosamplesanddetermineaprobabilityforapartonwith4-momentumptobeobservedasajetwith4-momentumj.ThisnewprobabilityiscalledTransferFunctionTF(~jj~p)andallthetechnicaldetailsonhowwedeterminethemwillbepresentedinsection 4.4 .Sincewedon'tknowwhatistheparton4-momentumthatgeneratedagivenjet4-momentumwehavetoconsiderallpossibilitiesandintegrateoverthemweighedbythetransferfunctions.TheEquation 4{3 canberewrittenasinEquation 4{4 4EaEbjvavbjZ6Yi=1d3~pi (4{4) ThepartoncongurationsintegratedoverinEquation 4{4 areweighedbythetransferfunctionssothatthosemorelikelytoproduceagiven6-jetseventareenhanced.Ideallythettphasespaceshouldbeenhancedaswellandnotdiminished.Inordertoenforcethislastaspectoftheintegration,weintroduceanadditionalweight,PT(~p),thatfollowstheshapeofthetransversemomentumofthettsystem.Thislastweight 69

PAGE 70

4.5 .ThereforethenewexpressionfortheprobabilitydensityisshowninEquation 4{5 4EaEbjvavbjZ6Yi=1d3~pi (4{5) Eventhoughatteventintheallhadronicnalstateisfullyreconstructed,thereisanambiguityinassigningthejetstothepartons.Thereforeallthepossiblecombinationsareconsideredandtheircontributionsaveraged.Thenumberofpossibleassignmentsdependsonthetopologyoftheeventandthiswillbediscussedinsection 4.2 .UntilthentheEquation 4{6 givesthemostgeneralexpressionoftheprobabilitydensity. 4EaEbjvavbjZ6Yi=1d3~pi (4{6) 4{7 thespinaveragedmatrixelementsquaredfortheprocessuu!tt. 1 4XspinsjMj2=g4s 4{8 1 4XspinsjMj2Tr[6pu6p 70

PAGE 71

4{9 1 4XspinsjMj232(pup 4{9 thet$ t=(b2;W2)g;ft=(b1;W2); t=(b2;W1)g.Itisobviousthatswappingtheb'sisequivalentwithswappingthetopquarks.Inconclusion,duetothet$ 4{10 summarizesthepossiblevaluesforNcombi. 71

PAGE 72

4{6 .Theinvariantamplitudefortheprocessuu!tt!bbuuddisgivenbelowasaproductofseveralfactorsasshowninEquation 4{11 4{11 aredetailedbytheEquation 4{12 (pu+p 72

PAGE 73

bWverticeswiththenumeratorsofthetopquarkandtheantitopquarkpropagators.ThetermsPtandP dandWd uvertices.ThetermsPW1andPW2arethedenominatorsoftheW+andWpropagators.WehaveusedtheFeynmangaugefortheWbosonpropagator.TheDiracgammamatricesaredenedintheDiracrepresentationasshowninEquation 4{13 ,where=(1;~)and 4{14 73

PAGE 74

4{15 2(1^p~)1 2(1+^p~)1CA;v(p)=p 2(1^p~)1 2(1+^p~)1CA(4{15)Thepresenceoftheoperator^p~willprojectthespinstatesalongthedirectionofmovementdenedby^p.Foraparticletravelinginthedirectiondenedbythepolarangleandbytheazimuthalangle,thespinstatesalongthisdirectionareshowninEquation 4{16 4{17 4{15 and 4{17 ,wecanrewriteinEquation 4{18 the4-vectorsW1andW2fromEquation 4{12 AlsothetensorintermTfromEquation 4{12 canberewrittenintheformgivenbyEquation 4{19 74

PAGE 75

4{6 ,wewillneedtosumoverallthepossiblespincongurationsoftheinitialstate.Wendtwonon-zerocontributionscorrespondingtothesituationswhentheincomingpartonshavethesamehandedness.ThereforeforthetermIfromEquation 4{12 isexpressedinEquation 4{20 u(0;1;i;0)ILL=p u(0;1;i;0)(4{20)Inprinciple,weneedtoaverageoverallthepossiblespincongurationsofthenalstate.TheEquations 4{18 and 4{19 representthenon-zerocontributions.UsingEquations 4{18 4{19 and 4{20 ,theproductofthetermsI,T,W1andW2isgiveninEquation 4{21 4{21 ,thetermEproportionaltotheproductoftheenergiesofallparticles,incomingoroutgoing,isshowninEquation 4{22 u(4{22) 4{23 ,arecalculatedinaC++codeusingEquation 4{15 andthematrixalgebra.ThereforewecanwritedowntheexpressionofthematrixelementsquaredfromEquation 4{6 intheformofEquation 4{24 26XspinscolorsjMj2=jAj2CjEj2 75

PAGE 76

4{24 aredetailedinEquation 4{25 93Xi;j;k;l=1aijakl36=234fPg=jPgj2=1 (pu+p (p2tm2)2+m22teP (p2 (P2W+M2W)2+M2W2WgPW2=jPW2j2=1 (P2WM2W)2+M2W2W 4{6 isinfactaproductofsixterms,oneforeachofthenalstatequarks:twofortheb-quarksandfourforthedecayproductsoftheW-boson.TheprobabilitydensityforthetransferfunctionsisgiveninEquation 4{26 4{27 toexpressthetransferfunctionsinamoregeneralway. 76

PAGE 77

4{28 4{29 givestheirnormalization. 4{26 againwiththefullexpressionenteringEquation 4{6 holdingtheprobabilitydensityforthettallhadronicprocess. tMonteCarlosamples.Moreexactly,ajetisassociatedtoapartonifitsdirectioniswithinaconeofR=0:4aroundthepartondirection.Wesaythatajetismatchedtothepartonifnootherjetshouldsatisfythisgeometricalrequirement.Wecallaneventasbeingamatchedeventifeachofthesixpartonsinthenalstatehasadierentjetmatchedtoit.Ofallthet tMonteCarloeventspassingthekinematicalselectiondenedlaterinsection 5 ,about50%arematchedevents.ThejetsformedbythedecaypartonsoftheW-bosonshaveadierentenergyspectrumthanthejetsoriginatingfromtheb-quarks.Thusweformdierentsetsoftransferfunctionsdependingontheavorofthepartonthejethasbeenmatchedto.Thetransferfunctionsaredescribedusingaparameterizationinbinsofthepartonenergiesandofthepartonpseudo-rapidities.Table 4-1 showsthedenitionofthebinninginpseudo-rapidity.Thesamedenitionholdsforb-jettransferfunctionandforW-jetstransferfunctions. 77

PAGE 78

4-2 showsthedenitionofenergybinningfortheb-jetstransferfunctions,whileTable 4-3 isfortheW-jetstransferfunctions.Ineachbinthetransferfunctionisrepresentedbythedistributionofthevariable1Ejet=Eparton.Theshapeofthisdistributionisttedtothesumoftwogaussians.Appendix C holdsthettedshapes. 4{6 arep6xandp6y,representingtheprojectionsofthetransversemomentumofthettsystemalongthexandyaxes.TheprobabilitydensityrelatedtothetransversemomentumofthettsystemweightisshowninEquation 4{31 4{32 givesthenormalizationrelation. 4{32 ,isobtainedfromattMonteCarlosamplewithMtop=178GeV.The 78

PAGE 79

4{33 thevaluefor6T. 2(4{33)Asmentionedbeforeweneedtoexpresseverythingintermsofp6xandp6y.ThiscanbedonejustbychangingthevariablesfromthepolartotheCartesiancoordinatesasshowninEquation 4{34 2=1=Zdp6xdp6yePTp6T=q q 2==Zdp6xdp6yPT(p6x;p6y) (4{34) WecannowwriteinEquation 4{35 thefullexpressionofthetransversemomentumofthettsystemweight. q 2(4{35)TheshapeofePT(p6T)hasaslightdependenceonthetopmass,butitturnsoutthatchoosingtheshapeobtainedwithMtop=178GeVdoesn'tintroduceasignicantbiasinthenalmassreconstruction.SeeAppendix B forthemassdependenceofthisshape.InFigure 4-2 theshapeofthetransversemomentumofthetteventsisshownttedtoasumof3gaussians. 4{6 .Thesections 4.3 4.4 and 4.5 oereddetailsontheexpressionsofseveralimportantpiecesenteringtheprobabilitydensity.UsingEquations 4{24 4{30 and 4{35 ,wecanwriteinEquation 4{36 thenewexpressionfortheprobabilitydensity. 79

PAGE 80

4EaEbjvavbjZ6Yi=1d3~pi Asmentionedpreviously,wewillnotuseanyconstantthatcanbefactoredoutintheexpressionoftheprobabilitydensity.Fromnowonwewillomitallsuchconstantsexceptforthenumberofcombinations,Ncombi.AlsointheargumentofePTwewillputjustp6T,butitshouldbeunderstoodq 4{37 (4{37) ToreducethenumberofintegralswewillworkinthenarrowwidthapproximationfortheW-bosons.ThistranslatesintwomoredeltafunctionsarisingfromthesquareoftheW-bosonpropagatorsasshownbyEquation 4{38 (P2WM2W)2+M2W2WWMW!(P2WM2W) MWW(4{38) 80

PAGE 81

4{39 .1;2isagenericnotationforthepolar,1;2,andtheazimuthal,1;2,anglesofthetwodecayproducts.12isthedierenceinpseudo-rapiditiesofthetwodecaypartonsand12=12. 4{38 canbewrittenasadeltafunctiondependingontheenergyofoneoftheW-bosondecaypartonsasshowninEquation 4{40 ,wherep01=M2W=(2p2!12). MWW1 2p2!12(1;2)(p1p01)(4{40)ThemassoftheW-bosonis80.4GeVanditswidthis2.1GeV.WithoutthesenewconstantsandusingtheexpressionfromEquation 4{40 forbothW-bosonsquaredpropagators,wecanwriteinEquation 4{41 theprobabilitydensity. (!12)2(!34)2(4)(EfinEini) (4{41) Whenwecalculatedthematrixelementinsection 4.3 weassumedthattheincomingpartonsweretravelingalongthez-axis.Thismeanstheirtransversemomentumiszero.ThereforetheenergyconservationisviolatedinthetransversecoordinatessincebasedonFigure 4-2 weconsiderednon-zerotransversemomentumforthettsystem.However,weexpectthistobeasmalleectcoveredbytheuncertaintyonthepartondistributionfunctionsoftheprotonandoftheantiproton.Anyway,weneedignorethedeltafunctionsrequiringenergyconservationalongthexandyaxesasshowninEquation 4{42 81

PAGE 82

InEquation 4{41 ,wemadethechangeofvariablesza!puandzb!p 4{43 theexpressionfortheenergy-conservingdeltafunction,wherep0u=P6i=1pi(1+cosi)=2andp0 2(pup0u)(p (4{43) Usingalloftheabove,theexpressionfortheprobabilitydensityisgivenbyEquation 4{44 inanalmostnalform. (!12)2(!34)2p2p46Yi=1gTF(ijpi)ePT(p6T) (4{44) Insection 4.5 ,weannouncedourpreferencetointegrateoverthexandycomponentsofthemomentumofthettsystem.Thatisaccomplishedbyalastchangeofvariablesfpb;p 4{45 82

PAGE 83

4{46 4{47 theexpressionoftheprobabilitydensityinitsnalformwhichisusedinsideaC++code. (!12)2(!34)2p2p46Yi=1gTF(ijpi)ePT(p6T) (4{47) Theintegrationisperformedbysimplygivingvaluestothe4integrationvariablesandthenbyaddinguptheintegrandobtainedateachstep.Thelimitsoftheintegrationare-60GeV!60GeVforp6x;yand10GeV!300GeVforp2;4.Thestepofintegrationis2GeV.Giventheselimits,ateachstepofintegrationwehavetocheckthephysicalityofthecomponentsenteringEquation 4{47 .Theprobabilitydensityisevaluatedfortopmassvaluesgoingin1GeVincrementsfrom125GeV!225GeV.Thedependenceonmassofthet tcross-sectionisobtainedfromvaluescalculatedbyCompHepMonteCarlogeneratorfortheprocessesu u!t t,d d!t tandgg!t t.Theabsolutevaluesforthesecrosssectionsarenotasimportantastheirtopmassdependence.Figure 4-1 showsthisdependence.FortheprotonandantiprotonPDF,f(p0u)f(p0 A .Thet tacceptance,(m),dependsonthetopmassandwillbedescribedlaterwhentheeventselectionisaddressed.Thenalexpressionoftheprobabilitydensityhasbeengivenanditsimplementationhasbeendetailed.Thefollowingsectionisdedicatedtothechecksweperformedinordertoassuretheproperfunctionalityofthematrixelementtechnique. 83

PAGE 84

4.6 dependsonthetopquarkpolemassandisexpectedtobeminimizedinnegativelogscalearoundthetruemassesintheevent.Multiplyingalltheeventprobabilitiesweobtainalikelihoodfunctionthatdependsonthetoppolemass.Equation 4{48 showstheexpressionofthelikelihood. 4-5 showsagoodlinearityinthecaseofa5%uniformsmearing.Thereisasmallbiasofabout0.8GeV,buttheslopeisconsistentwith1.Asthesmearingisincreasedthebiasbecomesmoreevident,andslopedegradesslightly.ThiscanbealsoseeninFigure 4-5 for10%smearingandfor20%smearing,respectively.Inallofthesesituationsagaussiancenteredon0andwithwidthequaltotheamountofsmearingusedhasbeenemployedasatransferfunctionintheeventprobabilitycomputation.Thepartonscanalsobesmearedusingthefunctionsdescribedinsection 4.4 ,inwhichcasethesamefunctionsareusedastransferfunctionsintheeventprobabilitycomputation.Thistestmakesthetransitionbetweenthepartonleveltothejetslevel, 84

PAGE 85

4-5 showsthelinearitycheckinthiscaseaswell.Thenextcheckismovingclosertorealitybyusinginthereconstructionthejetsthathavebeenmatchedtothepartons.Thisisalreadyacheckatthejetslevelandthefunctionsdenedinsection 4.4 havetobeused.Figure 4-6 showsthelinearitycheck.Thenalcheckisthemostrealisticwecangetusingonlysignalevents,andthatisweusealltheeventswehavewithdisregardtowhetherthejetshavebeenmatchedornottothepartons.Figure 4-7 showsthelinearitycheckinthiscase.Allthecheckswehavelistedaboveshowthegoodperformanceofourmatrixelementcalculation.Ingeneral,thetraditionalmatrixelementapproachisexpectedtoprovideabetterstatisticaluncertaintyonthetopmassthanthetemplateanalyses.Inthecaseofthepresentanalysis,thetraditionalmatrixelementmethoddoesbetteronlythereconstructionisperformedonsignalsamples.Whenthebackgroundismixedin,thetemplatemethodweusehasagreatersensitivity. TreelevelFeynmandiagramfortheprocessuu!tt Denitionofthebinningofthepartonpseudo-rapidityfortheparameterizationofthetransferfunctions. Binjj 85

PAGE 86

Denitionofthebinningofthepartonenergyfortheb-jetstransferfunctionsparameterization. Bin0jj<0:70:7jj<1:31:3jj2:0 110!5310!8310!1253!6483!111364!74111!1474!85585!97697!1147114!1 TreelevelFeynmandiagramfortheprocessuu!tt!bbuudd

PAGE 87

DenitionofthebinningofthepartonenergyfortheW-jetstransferfunctionsparameterization. Bin0jj<0:70:7jj<1:31:3jj2:0 110!3210!5010!98232!3850!6398!1338!4463!76444!4976!90549!5490!108654!59108!1759!64864!69969!751075!811181!891289!991399!11314113!1 Crosssectionfort tproductionasafunctionofthetopmass,asobtainedfromCompHep.Thelineisnotat. 87

PAGE 88

Transversemomentumofthet tevents.Thetisasumof3gaussians. A BFigure4-5. Reconstructedtopmassversusinputtopmassatpartonlevel.A)Theenergiesofthepartonshavebeensmearedby5%.B)Theenergiesofthepartonshavebeensmearedby10%.C)Theenergiesofthepartonshavebeensmearedby20%.D)Theenergiesofthepartonshavebeensmearedusingthetransferfunctions. 88

PAGE 89

DFigure4-5. Continued Reconstructedtopmassversusinputtopmassusingjetsthatwereuniquelymatchedtopartons. 89

PAGE 90

Reconstructedtopmassversusinputtopmassusingrealisticjets. 90

PAGE 91

MULTIJETtrigger,anditamountstoapproximately943pb1.Thistriggerselectsabout88%ofthettallhadronicevents.TheMonteCarlosamplesaretheocialCDFsamples.Weuse12dierentsamplesgeneratedwiththeHerwigpackagetoparameterizethemassdependenceofourtemplates.Themasstakesvaluesfrom150GeVto200GeVin5GeVincrements.Therearealsosampleswithatopmassof178GeVusedtodeterminevarioussystematicuncertainties:dierentchoiceofgenerator(inthiscaseweusedthePythiapackage),dierentmodelingoftheinitialstateradiation(ISR)andofthenalstateradiation(FSR),dierentchoiceofprotonpartondistributionfunction(PDF).Thebackgroundmodeldescribedinsection 6 isvalidatedwiththehelpoftwoMonteCarlosamplesgeneratedwiththeAlpgenpackage:onewitheventshavingb b+4lightpartonsinthenalstateandanotherwitheventshaving6lightpartonsinthenalstate. 91

PAGE 92

PET<3(GeV)1=2removeeventshavingmuonsorelectronsTheseclean-upcutsselectabout37%ofthet tMonteCarlosamplesoutofwhichabout84%areall-hadronicevents.Inthedataonly27%oftheeventspassthesecuts,mostoftheeventsfailingthegoodrunlistandthetriggercuts.Next,thekinematicalandtopologicalcutsareappliedinordertoenhancethet teventsoverthebackground:requireeventswithexactly6jetswithjj<2andET>15GeVAplanarity+0:005PET3>0:96centrality>0:78PET>280GeV1SVXtagswhereETissumofallthetransverseenergiesofallthesixjetsintheevent,3ETisthesumofallthesixjetsminusthetwomostenergeticones,CentralityisdenedinEquation 5{1 andtheAplanarityisdenedas3=2ofthesmallesteigenvalueofthesphericitymatrix^Sij.Thesphericitymatrix^SijisdenedinEquation 5{2 92

PAGE 93

50 ].Table 5-1 showsthenumberofeventsinthedatasample.Table 5-2 showsthenumberofeventsinat tMonteCarlosamplewithMtop=170GeV.TheSVXb-taggerusedhasahighereciencyintheMonteCarlothaninthedata.ThereforeweneedtodegradethenumberoftaggedeventsaccordingtotheappropriatescalefactorwhichisSF=0:91.Takingthisscalefactorintoaccount,andconvertingtotheluminosityofthedata,weshowinTable 5-3 thesignaltobackgroundratios,S=B,fordierenttopmassesafterthekinematicalcutsforsingleanddoubletaggedeventsseparately.Theconversiontotheobservedluminosityisdonebyusingthetheoreticalt tcrosssection.ThenumberofbackgroundeventsisthedierencebetweentheobservednumberofeventsinthedatashowninTable 5-1 andthesignalexpectation.Anadditionalcutisintroducedtofurthercutdownthebackground.ThisnewvariablewecutonistheminimumoftheeventprobabilitygiveninEquation 4{6 ofsection 4 .Figure 5-1 showsthedistributionoftheminimumofthenegativelogeventprobabilityforasignalsampleversusthebackgroundshape.Notethatthetopmassvalueforwhichthiseventprobabilityisminimizedwillbeusedinthenaltopmassreconstruction,andthevalueoftheprobabilityinnegativelogscaleisusedasadiscriminatingvariablebetweenttandbackground.WedenotethisvalueasminLKL,andthecutdenitionisrequiringthisvariabletobelessthan10.Thevalueofthislastcuthasbeenobtainedbyminimizingthestatisticaluncertaintyonthetopmassvalueasreconstructedinsection 4 ,thatisusingonlythematrixelementcalculation.Table 5-4 showstheeciencyofthiscutrelativetothenumberofeventsaftertaggingandafterthekinematicalcuts,forsignalatdierenttopmassesandforbackground.Thetablealsoshowsthenumberofsignaleventscorrespondingto943pb1andtheappropriatesignaltobackgroundratio.Comparingthesignal-to-backgroundratiosS=BbetweenTable 5-3 andTable 5-4 thereisanimprovementofaboutafactorof3forsampleswithonetaggedheavy 93

PAGE 94

Table5-1. Numberofeventsinthemulti-jetdataaftertheclean-upcuts,kinematicalcutsandtagging.TheintegratedluminosityisL=943pb1. CutEventsFraction(%) Initial12274958100jzj<60cm355505428.9jzzpj<5cm339734127.7LeptonVeto339255127.66ET=p PET<3333345127.2Ntightjets=63806763.1KinematicCuts41720.0341tag7826.37e-52tag1481.21e-5 Table5-2. Numberofeventsinthet tMonteCarlosamplewithMtop=170GeV. CutEventsFraction(%) Initial233233100jzj<60cm12816955.0jzzpj<5cm12804554.9TightLeptonVeto11397048.96ET=p PET<38802737.7Ntightjets=62948512.6KinematicCuts59992.61tag26031.12tag15990.69 94

PAGE 95

Numberofeventsandexpectedsignaltobackgroundratiosforthet tMonteCarlosampleswithtopmassesbetween150GeVand200GeVforaluminosityofL=943pb1.Thenumberofdataeventsisshowntoo.Theseeventsarepassingthekinematicalselection,butnottheminimumlikelihoodcut. Minimumofthenegativelogeventprobability.Inblueit'sshownthecurvefort tsampleofMtop=175GeV,whileinredit'sshownthebackgroundshape. 95

PAGE 96

Numberofevents,minLKLcuteciency()relativetothekinematicalcutsandthesignaltobackgroundratiosforthet tMonteCarlosampleswithtopmassesbetween150GeVand200GeVforaluminosityof943pb1.Theseeventspassallthecuts.Theeciencyforbackgroundeventsisalsoshown. 96

PAGE 97

teventsbasedontheStandardModel.TheshapeofthebackgroundeventscanbedeterminedwiththehelpofourMonteCarlosamples.However,duethesmallstatisticsofthissamples,wewillbeforcedtore-sampleheavilywhenwewillperformthesensitivitystudiesofourtechnique.Inordertoovercomethat,wewillformasampleofbackground-likeeventsusingdataeventsfromasamplequasi-dominatedbybackground.Thenwe'llmakesurethattheshapeofthisdata-drivenbackgroundmodelcorrespondstotheshapefromMonteCarlobackgroundevents.Toformthedata-drivenbackgroundevents,westartwithourpretagdataeventsbeforetheminimumlikelihoodcut,butafteralltheclean-upandkinematicalcuts.Inthissamplethesignaltobackgroundratioisabout1=25.Thenwestarttorandomlyb-tagthejetsoftheseeventsbyusingtheb-tagratesofthemistagmatrixdenedintheallhadroniccross-sectionanalysis[ 51 ].Eacheventcanendupinanyofthepossibletaggedcongurationsbyhavinganumberoftaggedjetsbetween0and6.Weiteratethisarticialb-taggingproceduremanytimeskeepingallthecongurationsthathaveatleastoneb-taggedjet.Somecongurationswillappearmultipletimesinthisprocess,andwewilluseitthatofteninourstudiesasifitwereadistinctconguration.The 97

PAGE 98

6-1 showsthecomparisonintheexclusivesingletaggedsample,whileFigure 6-2 showsthecomparisonintheinclusivedoubletaggedsample.Thevariableschosenforthiscomparisonarethetransverseenergies,pseudo-rapidityandthepolarangleofthejets,andthenumberofvertices,sumofthetransverseenergiesofthe 98

PAGE 99

5 b+4lightpartonsinitsnalstate.Onevariablewecanlookatisthesumoftheeventprobabilitiesasdenedinsection 4 usingthematrixelement.Thesumisbetweenatopmassequalto125GeVupto225GeVinstepsof1GeV.Figure 6-3 showstheshapesofMonteCarlobackgroundandofthedata-drivenbackground.Anotherinterestingvariableistheinvariantmassofalltheuntaggedpairsofjetsintheevent.Figure 6-4 showsthisvariableforthetaggedeventsbeforetheminLKLcut,whileFigure 6-5 showsthecaseoftaggedeventsaftertheminLKLcut. 6-6 showsthisvariableforeventsaftertheminLKLcut.TheeventbyeventmostprobabletopmassandthedijetmassvariablesareofparticularinterestsincetheywillbeusedinthereconstructionofthetopmassandoftheJESvariabletobedescribedinsection 7 .Allthesecomparisonsshowgoodagreementbetweenourdata-drivenbackgroundmodelandtheAlpgenb b+4lightpartons. 99

PAGE 100

6-7 showshowtheslopedecreaseswiththebackgroundfraction,whilethelowerplotshowshowtheinterceptchangeswiththebackgroundfraction.Theslopedecreaseindicatesadecreaseinthesensitivity,inotherwordsanincreaseinthestatisticaluncertaintyonthetopmass.Forthecalibrationcurvesstudiedintheseplotstheinterceptshouldbe178GeV,anditcanbeseenthatasthebackgroundfractionincreasestheinterceptgetsfurtherfromthe178GeVvalue,thatisthebiasincreases.Thereasonforthebackgroundfractiontohavesuchabigeectonthemassreconstructionusingthematrixelementtechniqueofsection 4 isbecausethebackgroundiscompletelyignoredinthematrixelementcalculationorinassessingabackgroundeventprobability.Inthisanalysiswestillwon'tcalculateabackgroundmatrixelement,butwewilluseabackgroundprobabilityinstead,whichwillbedescribedinthenextsections. Figure6-1. Backgroundvalidationincontrolregion1forsingletaggedevents.Theredpointsarethedatapoints,whiletheblackpointsarefromthebackgroundmodel. 100

PAGE 101

Backgroundvalidationincontrolregion1fordoubletaggedevents.Theredpointsarethedatapoints,whiletheblackpointsarefromthebackgroundmodel. Figure6-3. SumofeventprobabilitiescalculatedforMtop=125GeVuptoMtop=225GeVinstepsof1GeV.ThesearetheeventsbeforetheminLKLcutforAlpgenb b+4lightpartonsinblue,andforthebackgroundmodelinblack.Theplottotheleftshowsthesingletaggedevents(Kolmogorov-Smirnovprobabilityis1%),whiletheplottotherightshowsthedoubletaggedevents(Kolmogorov-Smirnovprobabilityis13%). 101

PAGE 102

Dijetinvariantmassoftheuntaggedjets.ThesearetheeventsbeforetheminLKLcutforAlpgenb b+4lightpartonsinblue,andforthebackgroundmodelinblack.Theplottotheleftshowsthesingletaggedevents(Kolmogorov-Smirnovprobabilityis25%),whiletheplottotherightshowsthedoubletaggedevents(Kolmogorov-Smirnovprobabilityis43%). Figure6-5. Dijetinvariantmassoftheuntaggedjets.ThesearetheeventsaftertheminLKLcutforAlpgenb b+4lightpartonsinblue,andforthebackgroundmodelinblack.Theplottotheleftshowsthesingletaggedevents(Kolmogorov-Smirnovprobabilityis90%),whiletheplottotherightshowsthedoubletaggedevents(Kolmogorov-Smirnovprobabilityis70%). 102

PAGE 103

Eventbyeventmostprobabletopmasses.ThesearetheeventsaftertheminLKLcutforAlpgenb b+4lightpartonsinblue,andforthebackgroundmodelinred.Theplottotheleftshowsthesingletaggedevents,whiletheplottotherightshowsthedoubletaggedevents. Eectofthebackgroundcontaminationinthetopmassreconstructionusingonlythematrixelementtechnique.Theupperplot:slopeofthecalibrationcurveversusthebackgroundfraction.Thelowerplot:interceptofthecalibrationcurveversusthebackgroundfraction.Thecalibrationcurvesarebuiltusingonlythematrixelementreconstructiontechniquedescribedinsection 4 103

PAGE 104

tevents,andadditionalcorrectionsmightbeneededatthislevel.Wedeneavariable,JES,calledJetEnergyScale,measuredinunitsofc.ThereisacorrelationbetweenthetopmassandthevalueofJES,andthat'swhyweplantomeasurethemsimultaneouslytoavoidanydoublecountinginthenaluncertaintyonthemass.OurtechniquestartsbymodelingthedatausingamixtureofMonteCarlosignalandMonteCarlobackgroundevents.Theeventswillberepresentedbytwovariables:dijetinvariantmassandanevent-by-eventreconstructedtopmass.Thelatterisobtainedusingthematrixelementtechniquedescribedinsection 4 .Forsignal,theshapesobtainedinthesetwovariablesareparameterizedasafunctionoftopquarkpolemassandJES.Forbackgroundnosuchparameterizationisneeded.HenceourmodelwilldependonthetopmassandtheJES.ThemeasuredvaluesforthetopquarkmassandfortheJESaredeterminedusingalikelihoodtechniquedescribedinthissection. 7{1 ,isproductof3terms:thesingletaglikelihoodusedforsingletaggedevents,L1tag,thedoubletaglikelihoodusedfordoubletaggedevents,L2tagandtheJESconstraint,LJES,whoseexpressionisshowninEquation 7{7 104

PAGE 105

7{2 .Thetoptemplateterm,Ltop,isshowninEquation 7{3 .TheWtemplateterm,LW,isshowninEquation 7{4 .Theconstraintontotalnumberofevents,Lnev,isshowninEquation 7{5 .Theconstraintonthet tnumberofevents,Lns,isshowninEquation 7{6 tevents,ns=(ns+nb),istheweightofthesignalprobabilityandthefractionofbackgroundevents,nb=(ns+nb),istheweightofthebackgroundprobability.TogetherwithMandJES,theparametersnsandnbarefreeinthelikelihoodt. (ns+nb)!(7{5)Thenumberofsignalevents,ns,isconstrainedtotheexpectednumberoft tevents,nexps,viaaGaussianofmeanequaltonexpsandwidthequaltonexps.Thewidthofthegaussianissimplytheuncertaintyontheexpectednumberoft tevents.Theexpectednumbersofsignalevents,nexps,are13singletaggedand14doubletaggedevents,correspondingtoatheoreticalcross-sectionof6:7+0:70:9pb[ 55 ]andan 105

PAGE 106

5-4 .TheuncertaintiesonthenumbersofsignaleventsnexpsarechosentobethePoissonerrors.ThisisaconservativeapproachsincethePoissonerrorsarelargerthantheuncertaintiesderivedbasedonthetheoreticalcross-sectionuncertainty. 7.2.1DenitionoftheTemplateAsmentionedinsection 7.1 ,weusethematrixelementtobuildthetoptemplates.Theeventprobabilitydenedinsection 4 isplottedasafunctionofthetoppolemassintherange125GeVand225GeV.Innegativelogarithmicscalethiseventprobabilitywillbeminimizedforacertainvalueoftopmasswhichwe'llusetoformthetoptemplates.TheshapeofthesetemplatesdependsontheinputtopmassandJESfort tevents,butnotforbackgroundevents. 5 with7dierentJESvalues:3;2;1;0;1;2;3,afterallourselectioncutshavebeenapplied.Intotalthereare84templatesforsignalusedforparameterization.Thefunctionusedtotthem 106

PAGE 107

7{8 displaysthetfunctionandthedependenceofitsparametersontopmassandJES. (mtopevt1)2+224 (7{8) TheexpressionfornormalizationtermN(M;JES)fromEquation 7{8 isgiveninEquation 7{9 7{8 asafunctionofthetopmassMandjetenergyscaleJESisgivenbyEquation 7{10 7{11 7{8 atthecenterofthebin.ThesummationinEquation 7{11 isdoneforalltemplatesandforallthebinsforwhichhbinhasmorethan5entries.ThedenominatorofEquation 7{11 isthenumberofdegreesoffreedom.Foreachsample,thevaluesofthe25parameters,p,aregiveninTable 7-1 .TheshapesoffewofthesignaltemplatesaswellastheparameterizedcurvesareshowninFigure 7-1 107

PAGE 108

7-2 .Figure 7-2 showstheshapesofthebackgroundtemplatesaswellastheparameterizedcurves,forsingleanddoubletaggedevents.InAppendix D ,allthetoptemplatescorrespondingtosignaleventsaredisplayed. 7.3.1DenitionoftheTemplateThedijetmasstemplatesareformedbyconsideringtheinvariantmassofallpossiblepairsofuntaggedjetsinthesample.TheshapeofthesetemplatesdependsontheinputtopmassandJESfort tevents,butnotforbackgroundevents. 7{12 showsthetfunctionandthedependenceofitsparametersontopmassandJES. 108

PAGE 109

TheexpressionfornormalizationtermN(M;JES)fromEquation 7{12 isgiveninEquation 7{13 7{12 asafunctionofthetopmassMandjetenergyscaleJESisgivenbyEquation 7{14 7{11 .Ineachsample,thevaluesofthe36parameters,p,aregiveninTable 7-3 .TheshapesoffewofthesignaltemplatesaswellastheparameterizedcurvesareshowninFigure 7-3 .Thebackgroundtemplateshapeisbuildinthesamewayasthesignaltemplates.Thetopcontaminationisremovedinthesamewayasinthecaseofthetoptemplates(seesection 7.2 ).Thebackgroundtemplateisttedtoanormalizedsumoftwogaussiansandagammaintegrand.Forboththesingletaggedandthedoubletaggedsamples,weshowthevaluesoftheparametersinTable 7-4 109

PAGE 110

7-4 showstheshapesofthebackgroundtemplatesaswellastheparameterizedcurves,forsingleanddoubletaggedevents.InAppendix E ,allthedijetmasstemplatescorrespondingtosignaleventsaredisplayed. Table7-1. Valuesoftheparametersdescribingtheshapesofthetoptemplatesforthettsamples. ParameterValues(1Tag)Uncertainties(1Tag)Values(2Tags)Uncertainties(2Tags) Table7-2. Valuesoftheparametersdescribingtheshapesofthetoptemplatesinthecaseofthebackgroundevents. ParameterValues(1Tag)Uncertainties(1Tag)Values(2Tags)Uncertainties(2Tags) 11.53e-023.09e-051.28e-029.08e-0521.59e+027.68e-021.63e+023.73e-0131.79e+037.17e+003.28e+036.42e+01 110

PAGE 111

Toptemplatesforttevents,singletagsintheleftplot,doubletagsintherightplot.Theupperplotsshowtheparameterizedcurves,whilethebottomplotsshowtheoriginalhistograms.TheleftcolumnshowsthetemplatesvariationwithtopmassatJES=0.TherightcolumnshowstheirvariationwithJESattopmassMtop=170GeV. Figure7-2. Toptemplatesforbackgroundevents.Singletagsintheleftplot,anddoubletagsintherightplot. Figure7-3. Dijetmasstemplatesforttevents,singletagsintheleftplot,doubletagsintherightplot.Theupperplotsshowtheparameterizedcurves,whilethebottomplotsshowtheoriginalhistograms.TheleftcolumnshowsthetemplatesvariationwithtopmassatJES=0.TherightcolumnshowstheirvariationwithJESattopmassMtop=170GeV. 111

PAGE 112

Valuesoftheparametersdescribingthedijetmasstemplatesshapesforthettsamples. ParameterValues(1Tag)Uncertainties(1Tag)Values(2Tags)Uncertainties(2Tags) 112

PAGE 113

Dijetmasstemplatesforbackgroundevents.Singletagsintheleftplot,anddoubletagsintherightplot. Table7-4. Valuesoftheparametersdescribingthedijetmasstemplatesshapesinthecaseofthebackgroundevents. ParameterValues(1Tag)Uncertainties(1Tag)Values(2Tags)Uncertainties(2Tags) 11.88e-019.52e-023.53e-012.39e-0128.02e+014.29e-028.02e+011.12e-0137.01e+001.70e-029.13e+004.41e-0244.68e-019.52e-023.59e-012.39e-0159.97e+014.29e-029.46e+011.12e-0162.98e+011.70e-023.36e+014.41e-0273.44e-019.52e-022.90e-012.39e-0184.03e-024.29e-024.08e-021.12e-0191.04e+011.70e-021.04e+014.41e-02101.89e+009.52e-021.58e+002.39e-01 113

PAGE 114

52 ],wefoundthatforanydistributionthestatisticaluncertaintyonthemeanshouldbeexpressedasinEquation 8{1 ,thewidthshouldbeexpressedasinEquation 8{2 andthestatisticaluncertaintyonthewidthshouldbeexpressedasinEquation 8{3 (NPE1)(1)+ 114

PAGE 115

8{1 8{2 and 8{3 ,NPEisthenumberofpseudo-experiments,rawistheuncorrectedwidthofadistribution,andistheaveragecorrelationbetweenanytwopseudo-experiments.Thevalueofthecorrelationfactorsdependsonthesizeofthenumberofeventsperpseudo-experimentandonthetotalnumberofeventsavailable.Sincethelasttwonumbersdependonthetopmass(seeTable 5-4 )thentheaveragecorrelationbetweenanytwopseudo-experimentswilldependonthetopmass.ThevaluesforthesecorrelationtermsaregiveninTable 8-1 .WhentheJESpriorisapplied,thevalueoftheJESeachpseudo-experimentisconstrainedtoisrandomlyselectedbasedonagaussiancenteredonthetrueJESofthesampleandofwidthequalto1.Thevariablesextractedfromeachpseudo-experimentarethevaluesofmass,Mout,andJES,JESout,thatminimizethelikelihoodsdenedinsection 7 ;thestatisticaluncertaintiesontheabovevariables,MoutandJESoutandthepullsasdenedbyEquation 8{4 7 .Neitherthetopmass,northeJES 115

PAGE 116

8-1 showsthereconstructedJESandthereconstructedtopmassrepresentedbythepoints,versusthetrueJESandtruetopmassrepresentedbythegrid.Ideallythepointsshouldmatchthegridcrossings.Figure 8-2 showsreconstructedtopmassversusthetruetopmassforatrueJESof0.Ideally,thiscurveshouldhaveaslopeof1,andaninterceptof175consistentwithnobias.Figure 8-3 showsreconstructedJESversusthetrueJESforatruetopmassof170GeV,andagain,ideally,thiscurveshouldhaveaslopeof1,andaninterceptof0consistentwithnobias.Figure 8-4 showshowtheslopeofFigure 8-2 changeswiththetrueJES,whileFigure 8-5 showshowtheinterceptofFigure 8-2 changeswiththetrueJES.Figure 8-6 showshowtheslopeofFigure 8-3 changeswiththetruetopmass,whileFigure 8-7 showshowtheinterceptofFigure 8-3 changeswiththetruetopmass.Figure 8-8 showsthemasspullmeansversustruetopmass,whileFigure 8-9 showsthemasspullwidthsversustruetopmass.InbothplotsthetrueJESis0.Basedontheseguresitresultsthattheuncertaintyontopmasshastobeinatedby10:5%.TheaveragemasspullmeanasafunctionoftrueJESisshowninFigure 8-10 ,whiletheaveragemasspullwidthasafunctionoftrueJESisshowninFigure 8-11 .ForagiventrueJESvalue,theaverageisoverallthemasssamples.Figure 8-12 showstheJESpullmeansversustrueJES,whileFigure 8-13 showstheJESpullwidthsversustrueJES.Inbothplotsthetruetopmassis170GeV.BasedontheseplotsitresultsthattheuncertaintyontheJEShastobeinatedby5:8%.TheaverageJESpullmeanasafunctionoftruetopmassisshowninFigure 8-14 ,whiletheaverageJESpullwidthasafunctionoftruetopmassisshowninFigure 8-15 .Foragiventruetopmassvalue,theaverageisoveralltheJESsamples.AsitcanbeseeninFigure 8-1 ,thereseemstobeaslightbiasinthereconstructionofJESandtopmass.Wecanextracttheslopeandtheinterceptofthedependenceofthereconstructedmassonthetruemass.ThiscanbedonefordierentJESvalues. 116

PAGE 117

8-4 and 8-5 showthedependencesontheJESoftheslopesand,respectively,oftheintercepts.Similarly,inthecaseofJESreconstructionweobtainFigures 8-6 and 8-7 .BasedonthetsfromFigures 8-4 and 8-5 ,wecanexpressanalyticallyhowthereconstructedmassdependsonthetruetopmassandonthetrueJES.ThisisshowninEquation 8{5 .UsingthetsfromFigures 8-6 and 8-7 ,wecanwritesimilarexpressionsforthereconstructedJES.ThisisshowninEquation 8{6 (8{5) TheparametersCm,Cj,Sm,andSjfromEquations 8{5 and 8{6 dependonthetruevaluesoftopmassandjetenergyscaleasshowninEquation 8{7 .ThevaluesoftheparametersoftheseequationscorrespondtothetparametersofFigures 8-4 8-5 8-6 and 8-7 .TheyarelistedinTable 8-2 8{5 and 8{6 asasystemofequationsandsolvethemforthetruetopmass,Mtrue,andthetrueJES,JEStrue.AfterthesecorrectionsareappliedthenewreconstructedvaluesforJESandtopmassareconsistentwiththetruevaluewithintheuncertainties,asitcanbeseeninFigures 8-16 8-17 8-18 8-19 and 8-20 117

PAGE 118

8-21 showstheresidualofthetopmassreconstructionusingsamplesforwhichtheinputtopmasswasunknowntous,andFigure 8-22 showstheJESresidualsforsampleswithunknowntrueJES.Thetopmassgroupconvenersprovidedthesamplesandtheyweretheonlyonesabletocalculatetheseresiduals.TheplotsindicatethatwithintheuncertaintiesthetopmassandJESreconstructionisunbiased. 8{5 and 8{6 ,weobtainanothersystemofequationstobesolvedfortherealuncertainties.SolvingEquations 8{8 and 8{9 willprovidethecorrectuncertaintiesontopmassandonJES. 8-23 showstheexpecteduncertaintyontopmassversusinputtopmass,usinganinputJESof0.Figure 8-24 showstheexpecteduncertaintyontheJESversusinputJESforaninputtopmassof170GeV.TheexpecteduncertaintiesshowninFigure 8-23 containboththepurestatisticaluncertaintyonthetopmassandtheuncertaintyduetoJES.Thisuncertaintydependsonthetopmassbecausetheexpectednumberoft teventsdependsonthetopmass.InordertodisentanglethestatisticalcontributionfromtheJEScomponentofthisuncertainty,weperformedadierentreconstructionofthetopmassbyxingtheJEStothetruevalueinthe2Dt.Followingthisreconstruction,theuncertaintyonthetopmassispurelyofstatisticalnature.Foratopmassof170GeVtheexpectedstatisticaluncertaintyis2.5GeV,whereasthecombinedstatisticalandJES-systematicuncertainty,asperFigure 8-23 ,is3.2GeV.ThatmeansthesystematicuncertaintyduetoJESontopmassis2.0GeV.Thissystematicuncertaintyshowsanimprovementof10%overthe1DJESsystematicuncertaintyontopmassof2.2GeV. 118

PAGE 119

Table8-1. Valueoftheaveragecorrelationfactorbetweenanytwopseudo-experiments.Thedependenceonthevalueofthetopmassisduetothettcross-sectiondependenceontopmass. Table8-2. ValuesoftheparametersdescribingthelineardependenceonthetrueJESandonthetrueMtop,oftheinterceptandslopeoftheMtopcalibrationcurveandoftheJEScalibrationcurverespectively. ParameterValueUncertainty 119

PAGE 120

JESversusTopMassplane.ThepointsrepresentthereconstructedJESandmass. Figure8-2. Reconstructedtopmassversusinputtopmass,forinputJESequalto0. Figure8-3. ReconstructedJESversusinputJES,forinputtopmassequalto170GeV. 120

PAGE 121

SlopeofthemasscalibrationcurveversusinputJES. Figure8-5. ConstantofthemasscalibrationcurveversusinputJES. Figure8-6. SlopeoftheJEScalibrationcurveversusinputJES. Figure8-7. ConstantoftheJEScalibrationcurveversusinputJES. 121

PAGE 122

Masspullmeansversusinputtopmass,forinputJESequalto0. Figure8-9. Masspullwidthsversusinputtopmass,forinputJESequalto0. Figure8-10. AverageofmasspullmeansversusinputJES. Figure8-11. AverageofmasspullwidthsversusinputJES. 122

PAGE 123

JESpullmeansversusinputtopmass,forinputtopmassequalto170GeV. Figure8-13. JESpullwidthsversusinputtopmass,forinputtopmassequalto170GeV. Figure8-14. AverageofJESpullmeansversusinputtopmass. Figure8-15. AverageofJESpullwidthsversusinputtopmass. 123

PAGE 124

JESversusTopMassplane.ThepointsrepresentthereconstructedJESandmassafterthe2Dcorrection. 124

PAGE 125

SlopeoftheMtopcalibrationcurveversustrueJESafterthe2Dcorrection. InterceptoftheMtopcalibrationcurveversustrueJESafterthe2Dcorrection. SlopeoftheJEScalibrationcurveversustrueMtopafterthe2Dcorrection. InterceptoftheJEScalibrationcurveversustrueMtopafterthe2Dcorrection. Figure8-21. Dierencebetweenthereconstructedmassandthetruemassforblindmasssamples. Figure8-22. DierencebetweenthereconstructedandthetrueJESforblindJESsamples. 125

PAGE 126

Expecteduncertaintyontopmassversusinputtopmass,forinputJESequalto0.ThisuncertaintyincludesthepurestatisticaluncertaintyandthesystematicuncertaintyduetoJES. Figure8-24. ExpecteduncertaintyonJESversusinputJES,forinputtopmassequalto170GeV. 126

PAGE 127

teventsisexclusivelybasedonthesimulationwhichdoesn'tdescribethephysicsofsucheventsveryprecisely.Themajorsourcesofuncertaintiesappearfromourunderstandingofjetfragmentation,ourmodelingoftheradiationotheinitialornalpartons,andourunderstandingoftheprotonandantiprotoninternalstructure.Apartfromthesegenericuncertainties,wealsoaddressotherissuesspecictothepresentmethodsuchastheshapeofthebackgroundtoptemplatesfollowingthet tdecontamination,thecorrelationbetweenthedijetmassesandthetopmassdeterminedforeachevent,andthelevelofimprecisioninthedeterminationofthebi-dimensionalcorrectionofthereconstructedtopmassandJES. 127

PAGE 128

tcontamination.Toremovethetopcontamination,weassumedatopmassof170GeV,andnowwehavetoestimateeectofthisassumption.Wehavemodifyourassumptiononthetopmassofthetopcontaminationby10GeV,thatiswegottwo 128

PAGE 129

tcontaminationremovalandbasedontheconstantsabove,wescaledownthetemplatehistogramsuctuatethecontentofthescaledhistogramsusingthePoissonprobabilityafterthePoissonuctuation,scalebackupthehistograms,removethet tcontaminationandtwithagaussiantoobtainthenewtemplatefunctionrepeattheabovesteps10,000times,andhistogramtheparametersofthenewtemplatesextracttheuncertaintiesonthebackgroundparametersfromtheselasthistograms 129

PAGE 130

9-1 showstheeventmultiplicitysingletaggedeventsontheleft,andfordoubletaggedeventsontheright.Figure 9-2 showsthehistogramsofthethreeparametersdescribingthegaussiantforthesingletaggedevents,whileFigure 9-3 showstheequivalentplotsinthecaseofthedoubletaggedevents.TheuncertaintiesonthebackgroundparametersasdeterminedfollowingthehistogramuctuationareshowninTable 9-1 .Varyingthebackgroundparameterswithintheseuncertaintiesresultsinashiftintopmassof0.4GeV. 9-4 showsontheleftthetopmasspullmeaninthedefaultcasewhentheabovecorrelationwasreducedtozero,whileontherightisshownthesituationwithfullcorrelation.Figure 9-5 showstheequivalentcomparisoninvolvingthetopmasspullwidths.Onaverageoverdierenttopmasssamples,thepullmeanisconsistentwithintheuncertaintiesbetweenthetwoscenarios.However,thepullwidthsappearhigherwhenthecorrelationbetweentheeventtopmassandthedijetmassiszero.Weconcludethatthereisnoneedforasystematicuncertainty,andwekeepthedefaultpullwidthasthecorrectingfactoronthestatisticalerroronthetopmasssinceitrepresentsthemoreconservativeapproach. 8{5 and 8{6 withintheiruncertaintiesaslistedinTable 8-2 .Wethenre-calibratedthereconstructedvaluesforthetopmass.Thechangeintopmassis0.2GeV. 130

PAGE 131

53 ],0:6%ofthejetenergyuncertaintyontheb-jetsiscomingfromtheeectslistedabove.Thereforethenalshiftonthetopmassfollowingour1%shiftinb-jetsenergiesneedstobescaleddownbyafactorof0:6.Thesystematicuncertaintyonthetopmassduetotheb-jetenergyscaleis0.4GeV. 54 ].Forthiswehavetostudytheeectonthetopmassreconstructionfromeachofthesesixsources:level1,4,5,6,7and8.AMonteCarlosamplehasbeenusedwheretheenergiesofthejetshavebeenshiftedupordownbytheuncertaintyateachlevelseparately,soatotalof12sampleshavebeenobtained.Wereconstructthetopmassineachofthem,withoutapplyinganyconstrainonthevalueofJES.InTable 9-2 wepresenttheaverageshiftonthetopmassateachlevel,andtheirsuminquadrature.Weconcludefromthisthattheresidualjetenergyuncertaintyontopmassis0.7GeV. 131

PAGE 132

9-3 summarizesallsourcesofsystematicuncertaintieswiththeirindividualcontributionaswellasthecombinedeect. Figure9-1. Eventmultiplicityforbackgroundevents.Ontheleftisshowntheplotforsingletaggedevents,whileontherighttheplotfordoubletaggedeventsisshown. Table9-1. Uncertaintiesontheparametersofthetopmasstemplatesforbackground. Parameter1tag2tags Constant10.2e-047.0e-04Mean2.593.35Sigma272.1711.9 Table9-2. Residualjetenergyscaleuncertaintyonthetopmass. LevelUncertainty(GeV/c2) L10.2L40.1L50.5L60.0L70.5L80.1TotalJESResidual0.7 132

PAGE 133

Histogramsoftheparametersofthegaussiantofthebackgroundeventtopmasstemplateforsingletaggedevents.Upperleftplotshowstheconstantofthegaussian,upperrightshowsthemeanofthegaussian,lowerleftshowsthewidthofthegaussian,andlowerrightplotshowsthenormalizationofthegaussian. Table9-3. Summaryofthesystematicsourcesofuncertaintyonthetopmass. SourceUncertainty(GeV/c2) InitialStateRadiation0.3FinalStateRadiation1.2PDFchoice0.5Pythiavs.Herwig1.0MethodCalibration0.2BackgroundShape0.9BackgroundStatistics0.4SampleComposition0.1HeavyFlavorJES0.4ResidualJES0.7Total2.1 133

PAGE 134

Histogramsoftheparametersofthegaussiantofthebackgroundeventtopmasstemplatefordoubletaggedevents.Upperleftplotshowstheconstantofthegaussian,upperrightshowsthemeanofthegaussian,lowerleftshowsthewidthofthegaussian,andlowerrightplotshowsthenormalizationofthegaussian. Figure9-4. Topmasspullmeanasafunctionoftopmassfordierenttreatmentofthecorrelationbetweentheeventtopmassandthedijetmass.Ontheleftisthedefaultcasewhenthecorrelationiszero,whileontherightisshownthesituationwiththefullcorrelation. 134

PAGE 135

Topmasspullwidthasafunctionoftopmassfordierenttreatmentofthecorrelationbetweentheeventtopmassandthedijetmass.Ontheleftisthedefaultcasewhenthecorrelationiszero,whileontherightisshownthesituationwiththefullcorrelation. 135

PAGE 136

10-1 ,weshowinthetotalnumberofeventsandtheexpectednumberofsignaleventsusedasinputinthe2DlikelihoodofEquation 7{1 .NotethatinEquation 7{1 weneedtheuncertaintyontheexpectednumberofsignaleventsandthisisalsoshowninTable 10-1 .Thenumbersofbackgroundeventsareshownaswell,buttheyarenotusedasinputvaluesinthelikelihood.Inthethirdcolumnweshowthenumberofeventsastheyresultfromtheminimizationofthe2Dlikelihood.Followingtheminimizationofthe2Dlikelihood,wemeasuredatopmassof171.13.7GeV,andaJESof0.50.9c.Thevalueofthejetenergyscale(JES)isthereforeconsistentwiththepreviousdeterminationofJESatCDF.ThequoteduncertaintyonthetopmassrepresentsthecombinationofthestatisticaluncertaintywiththesystematicuncertaintyduetoJESuncertainty.Inordertoobtainonlythestatisticaluncertaintyonthetopmass,theminimizationofthe2DlikelihoodismodiedsuchthattheJESparameterisxedto0.5c(theresultfrom2Dt).Followingthisprocedurethestatisticaluncertaintyonthetopmassis2.8GeV.ThereforethesystematicuncertaintyduetoJESis2.4GeV.Figure 10-1 showsthedistributionsofeventbyeventreconstructedtopmassesastheblackpointsfordataandastheorangehistogramforthecombinationofsignalandbackgroundtemplatesthatbestttedthedata.Thebluehistogramrepresentsonlythebackgroundtemplate.Thesamplewithsingletaggedeventsisshownintheleftplot,whilethedoubletaggedeventsareshownintherightplot. 136

PAGE 137

10-2 .Thecentralpointcorrespondstotheminimumofthelikelihood,whilethecontoursrepresentthe1-sigma,2-sigma,and3-sigmalevels,respectively.UsingattMonteCarlosamplewithatopmassequalto170GeVandthenumberofsignalandbackgroundeventsasresultedfromthedatat,weformedpseudo-experimentsanddeterminedtheexpecteduncertaintyonthetopmassduetostatisticaleectsandJES.About41%ofthepseudo-experimentshadsuchcombineduncertaintyonthetopmasslowerthanthemeasuredvalueof3.7GeV.ThiscanbeseeninFigure 10-3 ,wherethehistogramshowstheresultsofthepseudo-experimentsandthebluelinerepresentsthemeasureduncertainty.Inconclusion,themeasuredcombinedstatisticalandJESuncertaintiesonthetopmassagreeswiththeexpectation.Thetotaluncertaintyonthetopmassinthisanalysisis4.3GeV.Thepreviousbestmassmeasurementinthischannelhadanequivalenttotaluncertaintyof5.3GeV[ 56 ]whichis23%more.Thesourceforthisimprovementistheuncertaintyduetojetenergyscale(JES)onthetopmass.Inthisanalysisthisuncertaintyamountsto2.4GeVcomparedto4.5GeVinthepreviousbestresultwhichis88%more.Someofthisgaininprecisionislostduetothesomewhathighersystematicuncertaintiesfromothersourcesandduetoaslightlyworsestatisticaluncertaintyinthisanalysiscomparedwiththepreviousbestmassresultinthischannel.Amorecarefulestimationoftheothersourcesofsystematicuncertaintiesonthetopmassaswellasamoreecienttteventselectionwillhelpfurtherreducethetotaluncertaintyonthetopmass.Comparedtomassmeasurementsinotherttdecaychannels,themassmeasurementfromthisanalysisrankedthirdinthetopmassworldaverage[ 57 ]witha11%weight.Thetwobettermeasurementswereperformedinthelepton+jetschannelasitcanbeseeninFigure 10-4 .ThismeasurementpromotestheallhadronicchannelasthesecondbestchannelforthetopquarkmassanalysesinRunIIattheTevatron. 137

PAGE 138

Table10-1. Numberofeventsforthet texpectationandfortheobservedtotalforaluminosityof943pb1passingallthecuts.Theinputvaluesforsignalhavetheuncertaintiesnexttotheminparenthesis.Thebackgroundexpectationbeingthedierencebetweentotalandsignalisalsoshown.Fortheoutputvalues,thenumbersintheparenthesisaretheuncertainties. NumberofEventsInputReconstructed TotalObserved(1tag)4847.8ExpectedSignal(1tag)133.613.23.7Background(1tag)3534.67.2TotalObserved(2tags)2423.3ExpectedSignal(2tags)143.714.13.4Background(2tags)109.24.3 Figure10-1. Eventreconstructedtopmassfordata(blackpoints),signal+background(orange)andonlybackgroundevents(blue).Singletaggedsampleisontheleft,whilethedoubletaggedsampleisontheright. 138

PAGE 139

Contoursfor1-sigma(red),the2-sigma(green)andthe3-sigma(blue)levelsofthemassandJESreconstructioninthedata. Figure10-3. HistogramshowstheexpectedstatisticaluncertaintyfromMonteCarlousingpseudo-experiments,whilethelineshowsthemeasuredone.About41%ofallpseudo-experimentshavealoweruncertainty. 139

PAGE 140

MostpreciseresultsfromeachchannelfromtheD0andCDFexperimentatFermilabbyMarch2007.Takingcorrelateduncertaintiesproperlyintoaccounttheresultingpreliminaryworldaveragemassofthetopquarkis170.91.1(stat)1.5(syst)GeV/c2whichcorrespondstoatotaluncertaintyof1.8GeV/c2.Thetopquarkmassisnowknownwithaprecisionof1.1%. 140

PAGE 141

UpperplotshowsthePDFshapesusedinthematrixelementcalculationofsection 4.3 .BottomplotshowsacrosscheckofthenormalizationofthesePDFs. 141

PAGE 142

Transversemomentumofthettsystemfordierentgeneratorsandfordierenttopmasses.Upperplot:shapesofthetransversemomentumofthettsystemfordierentgenerators(CompHep,PythiaandHerwig)andfordierenttopmasses.Middleplot:theMeansofthedistributionsintheupperplot.Lowerplot:theRMSofthedistributionsintheupperplot. 142

PAGE 143

AFigureC-1. TransferfunctionsfortheW-bosondecaypartons.A)Forpartonswiththevalueforpseudo-rapidityjj<0:7.B)Forpartonswithpseudo-rapidity0:7jj<1:3.C)Forpartonswithpseudo-rapidity1:3jj2. 143

PAGE 144

Continued 144

PAGE 145

Continued 145

PAGE 146

Transferfunctionsfortheb-quarkpartons.A)Forpartonswiththevalueforpseudo-rapidityjj<0:7.B)Forpartonswithpseudo-rapidity0:7jj<1:3.C)Forpartonswithpseudo-rapidity1:3jj2. 146

PAGE 147

Continued 147

PAGE 148

Continued 148

PAGE 149

AFigureD-1. Toptemplatesforttsingletaggedeventsforsampleswithdierenttopmasses:from150GeVto200GeV.A)CaseofJES=3.B)CaseofJES=2.C)CaseofJES=1.D)CaseofJES=0.E)CaseofJES=1.F)CaseofJES=2.G)CaseofJES=3. 149

PAGE 150

Continued 150

PAGE 151

Continued 151

PAGE 152

Continued 152

PAGE 153

Continued 153

PAGE 154

Continued 154

PAGE 155

Continued 155

PAGE 156

Toptemplatesforttdoubletaggedeventsforsampleswithdierenttopmasses:from150GeVto200GeV.A)CaseofJES=3.B)CaseofJES=2.C)CaseofJES=1.D)CaseofJES=0.E)CaseofJES=1.F)CaseofJES=2.G)CaseofJES=3. 156

PAGE 157

Continued 157

PAGE 158

Continued 158

PAGE 159

Continued 159

PAGE 160

Continued 160

PAGE 161

Continued 161

PAGE 162

Continued 162

PAGE 163

AFigureE-1. Dijetmasstemplatesforttsingletaggedeventsforsampleswithdierenttopmasses:from150GeVto200GeV.A)CaseofJES=3.B)CaseofJES=2.C)CaseofJES=1.D)CaseofJES=0.E)CaseofJES=1.F)CaseofJES=2.G)CaseofJES=3. 163

PAGE 164

Continued 164

PAGE 165

Continued 165

PAGE 166

Continued 166

PAGE 167

Continued 167

PAGE 168

Continued 168

PAGE 169

Continued 169

PAGE 170

Dijetmasstemplatesforttdoubletaggedeventsforsampleswithdierenttopmasses:from150GeVto200GeV.A)CaseofJES=3.B)CaseofJES=2.C)CaseofJES=1.D)CaseofJES=0.E)CaseofJES=1.F)CaseofJES=2.G)CaseofJES=3. 170

PAGE 171

Continued 171

PAGE 172

Continued 172

PAGE 173

Continued 173

PAGE 174

Continued 174

PAGE 175

Continued 175

PAGE 176

Continued 176

PAGE 177

[1] F.Abeetal.,Phys.Rev.Lett.74,2626(1995);S.Abachietal.,Phys.Rev.Lett.74,2632(1995). [2] J.H.Kuhn,Lecturesdeliveredat23rdSLACSummerInstitute,hep-ph/9707321(1997). [3] V.M.Abazovetal.(D0Collaboration),Phys.Rev.D67,012004(2003). [4] T.Aolderetal.(CDFCollaboration),Phys.Rev.D64,032002(2001);Erratum-ibid.D67,119901(2003). [5] D.Acostaetal.(CDFCollaboration),Phys.Rev.D71,052003(2005). [6] D.Acostaetal.(CDFCollaboration),Phys.Rev.D93,142001(2004). [7] D.Chakraborty,J.KonigsbergandD.L.Rainwater,Ann.Rev.Nucl.Part.Sci.53,301(2003). [8] M.Cacciarietal.,JHEP0404,068(2004);N.KidonakisandR.Vogt,Phys.Rev.D68,114014(2003). [9] B.Abbottetal.(D0Collaboration),Phys.Rev.DRapidComm.63,031101(2001);V.M.Abazovetal.(D0Collaboration),Phys.Lett.B517,282(2001);D.Acostaetal.(CDFCollaboration),Phys.Rev.D68,052003(2004). [10] D.Acostaetal.(CDFCollaboration),Phys.Rev.D65,091120(2002). [11] S.L.Glashow,J.IliopoulosandL.Maiani,Phys.Rev.D2,1285(1970). [12] S.Eidelmanetal.,Phys.Lett.B592,1(2004). [13] F.Abeetal.(CDFCollaboration),Phys.Rev.Lett.79,3585(1997);B.Abbottetal.(D0Collaboration),Phys.Rev.Lett.82,4975(1999);T.Aolderetal.(CDFCollaboration),Phys.Rev.D62,012004(2000);V.M.Abazovetal.(D0Collaboration),Phys.Rev.Lett.88,151803(2002). [14] ALEPH,DELPHI,L3andOPALCollaborationsandTheLEPWorkingGroupforHiggsBosonSearches,hep-ex/0612034(2006). [15] P.Azzietal.,CDFandD0CollaborationsandTheTevatronElectroweakWorkingGroup,hep-ex/0404010(2004). [16] ALEPH,DELPHI,L3andOPALCollaborationsandTheLEPWorkingGroupforHiggsBosonSearches,Phys.Lett.B565,61(2003). 177

PAGE 178

H.HaberandR.Hemping,Phys.Rev.Lett.66,1815(1991);Y.Okada,M.YamaguchiandT.Yanagida,Prog.Theor.Phys.,85,1(1991);J.Ellis,G.RidolandF.Zwirner,Phys.Lett.B257,83(1991);J.Ellis,G.RidolandF.Zwirner,Phys.Lett.B262,477(1991);R.BarbieriandM.Frigeni,Phys.Lett.B258,395(1991). [18] S.Heinemeyer,W.HollikandG.Weinglein,Eur.Phys.J.C9,343(1999);G.Degrassi,S.Heinemeyer,W.Hollik,P.SlavichandG.Weinglein,Eur.Phys.J.C28,133(2003). [19] S.HeinemeyerandG.Weinglein,hep-ph/0412214(2004). [20] Areviewofdynamicalelectroweaksymmetrybreakingmodelscanbefoundin:C.T.HillandE.H.Simmons,Phys.Rept.381235(2003);Eratum-ibid.390,553(2004). [21] S.Weinberg,Phys.Rev.D13974(1976);L.Susskind,Phys.Rev.D202619(1979). [22] C.T.Hill,Phys.Lett.B266,419(1991). [23] D.Cronin-Hennessy,A.Beretvas,P.F.Derwent,Nucl.Instrum.Meth.A443,37-50(2000). [24] S.VanDerMeeretal.,Phys.Rep.58,73(1980). [25] R.Blairetal.(CDFCollaboration),FermilabReportNo.FERMILAB-Pub-96-390-E,Section12(1996). [26] D.Acostaetal.(CDFCollaboration),Phys.Rev.D71032001(2005). [27] D.Acostaetal.(CDFCollaboration),Nucl.Instrum.Meth.A461540-544(2001). [28] C.S.Hilletal.(CDFCollaboration),Nucl.Instrum.Meth.A5301(2004). [29] A.Silletal.(CDFCollaboration),Nucl.Instrum.Meth.A4471-8(2000). [30] T.Aolderetal.(CDFCollaboration),Nucl.Instrum.Meth.A45384(2000). [31] T.Aolderetal.(CDFCollaboration),Nucl.Instrum.Meth.A526249-299(2004). [32] L.Balkaetal.(CDFCollaboration),Nucl.Instrum.Meth.A267272-279(1998);S.Bertoluccietal.(CDFCollaboration),Nucl.Instrum.Meth.A267301-314(1998). [33] M.Albrowetal.(CDFCollaboration),Nucl.Instrum.Meth.A480524-545(2002);R.Blairetal.(CDFCollaboration),FermilabReportNo.FERMILAB-Pub-96-390-E,Section9(1996);G.Apollnarietal.(CDFCollaboration),Nucl.Instrum.Meth.A412515-526(1998). [34] A.Artikovetal.(CDFCollaboration),Nucl.Instrum.Meth.A538358-371(2005). [35] P.Gatti,\PerformanceofthenewtrackingsystematCDFII",CDFNote5561. 178

PAGE 179

W.Yao,K.Bloom,\Outside-InsilicontrackingatCDF",CDFNote5991. [37] H.Stadie,W.Wagner,T.Muller,\VxPriminRunII",CDFNote6047. [38] J.F.Arguin,B.Heinemann,A.Yagil,\Thez-VertexAlgorithminRunII",CDFNote6238. [39] CDFcollaboration,JetEnergyGroup,\JetEnergyCorrectionsatCDF",CDFNote7543. [40] A.A.Bhatti,K.Hatakeyama,\RelativejetenergycorrectionsusingmissingEtprojectionfractionanddijetbalancing",CDFNote6854. [41] B.Cooper,M.D'Onofrio,G.Flanagan,\Multipleinteractioncorrections",CDFNote7365. [42] A.Bhatti,F.Canelli,\Absolutecorrectionsandtheirsystematicuncertainties",CDFNote5456. [43] J.F.Arguin,B.Heinemann,\UnderlyingeventcorrectionsforRunII",CDFNote6293. [44] A.Bhatti,F.Canelli,L.Galtieri,B.Heinemann,\Out-of-ConecorrectionsandtheirSystematicUncertainties",CDFNote7449. [45] R.Wagner,\ElectronIdenticationforRunII:algorithms",CDFNote5456. [46] J.Bellinger,\AguidetomuonreconstructionandsoftwareforRun2",CDFNote5870. [47] D.Glenzinski,\AdetailedstudyoftheSECVTXalgorithm",CDFNote2925. [48] D.Acosta,\IntroductiontoRunIIjetprobabilityheavyavortagging",CDFNote6315. [49] L.Cerrito,A.Taard,\AsoftmuontaggerforRunII",CDFNote6305. [50] P.Azzi,A.Castro,A.Gresele,J.Konigsberg,G.LunguandA.Sukhanov,\NewkinematicalselectionforAll-hadronictteventsintheRunIImultijetdataset",CDFNote7717. [51] P.Azzi,A.Castro,A.Gresele,J.Konigsberg,G.LunguandA.Sukhanov,\B-taggingeciencyandbackgroundestimateintheRunIImultijetdataset",CDFNote7723. [52] RogerBarlow,\ApplicationoftheBootstrapresamplingtechniquetoParticlePhysicsexperiments",MAN/HEP/99/4April142000. [53] J.F.Arguin,P.Sinervo,\b-jetsEnergyScaleUncertaintyFromExistingExperimentalConstraints",CDFNote7252. 179

PAGE 180

A.Abulencia,J.Adelman,E.Brubaker,G.Chlachidze,W.T.Fedorko,S.H.Kim,Y.K.Kim,Y.J.Lee,T.Maruyama,K.Sato,M.Shochet,P.Sinervo,T.Tomura,G.Velev,U.K.Yang,\TopQuarkMassMeasurementUsingtheTemplateMethodintheLepton+JetsChannelwith680pb1",CDFNote8074. [55] M.Cacciari,S.Frixione,M.L.Mangano,P.Nason,G.Ridol,\Thettcross-sectionat1.8and1.96TeV:astudyofthesystematicsduetopartondensitiesandscaledependence",hep-ph/0303085(2003). [56] A.Castro,F.Margaroli,\All-hadronictopmassmeasurementusingtheTemplateMethodwith1.02fb1",CDFNote8358. [57] TevatronElectroweakWorkingGroup,\ACombinationofCDFandD0ResultsontheMassoftheTopQuark",hep-ex/0703034v1(2007). 180

PAGE 181

GheorgheLunguwasborninGalati,GalatiCounty,Romania,onDecember16th1977.Aftergraduatingfromhighschoolin1996hewasacceptedinthePhysicsDepartmentoftheUniversityofBucharest.HegraduatedwithaB.Sc.inphysicsin2000,enteredthePhysicsGraduateDepartmentatUniversityofFloridain2001andmovedtoFermilabin2003forresearchwithintheCDFcollaborationunderthesupervisionofProf.JacoboKonigsberg. 181