<%BANNER%>

Record for a UF thesis. Title & abstract won't display until thesis is accessible after 2010-05-31.

Permanent Link: http://ufdc.ufl.edu/UFE0021139/00001

Material Information

Title: Record for a UF thesis. Title & abstract won't display until thesis is accessible after 2010-05-31.
Physical Description: Book
Language: english
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: Electrical and Computer Engineering -- Dissertations, Academic -- UF
Genre: Electrical and Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Harris, John G.
Electronic Access: INACCESSIBLE UNTIL 2010-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021139:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021139/00001

Material Information

Title: Record for a UF thesis. Title & abstract won't display until thesis is accessible after 2010-05-31.
Physical Description: Book
Language: english
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: Electrical and Computer Engineering -- Dissertations, Academic -- UF
Genre: Electrical and Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Harris, John G.
Electronic Access: INACCESSIBLE UNTIL 2010-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0021139:00001


This item has the following downloads:


Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

Idedicatethisdissertationtomyincrediblefamilywhohavebeenaconstantsourceofsupportandinspiration. 3

PAGE 4

IwouldliketothankmyadvisorDr.JohnG.Harrisforhisencouragement,patienceandguidance.HetaughtmetoasktherightquestionsandgettotherootoftheproblemandthatissomethingIwillalwaysbegratefulfor.Ialsothankhimformakingthehybridgroupahomeawayfromhomeforallofus.IwouldliketothankDr.AliceE.Holmesformeetingwithmeeveryweekandhelpingmeunderstandthefascinatingeldofaudiology.IalsothankDr.HolmesforaccesstotheShandsspeechandhearingclinicwhereImetamazingpeoplewhofurtherstrengthenedmyresolvetoworkonhearinglosscompensation.IwouldliketothankDr.HansvanOostromandDr.ClintSlattonforbeingpartofmycommitteeandprovidingmewithhelpfulinsights.IwouldliketothanktheMotorolaiDENgroupforfundingtheresearchinChapters 2 and 3 .Overthecourseofmyinter-disciplinaryresearch,Ihadtheopportunitytoworkwithseveralaudiologystudentswhohavehelpedmelookathearinglossfromanon-engineeringperspective.IthankSharonPowell,RyanBaker,ShariKwonandBrittanySakowiczforthat.Ialsothankthemforhelpingmerunthesubjectiveevaluationtestsandforhelpingmecollectthehearingaidttingdata.IfeelextremelyblessedtobepartofthehybridgroupwhereIgettointeractwithbrilliantpeopleonadaytodaybasis.Apartfrombeingextremelyknowledgeableresearchers,theyarealsosomeofthenicestpeopleIhavemet.IthankKwansun,Xiaoxiang,Jeremy,Ismail,Mark,Harsha,Du,ChristyandthemanyothersformakingmyPhDlifeextraspecial.Finally,Iwouldliketothankmyfamilyfortheirunwaveringfaithinme. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 11 CHAPTER 1INTRODUCTION .................................. 13 1.1SensorineuralHearingImpairment ....................... 14 1.1.1CausesofSensorineuralHearingLoss ................. 15 1.1.2PerceptualMeasureofSensorineuralHearingLoss .......... 15 1.1.3CharacteristicsofSensorineuralHearingLoss ............. 16 1.1.4ModelingSensorineuralHearingLoss ................. 18 1.2SpeechIntelligibilityandQuality ....................... 19 1.2.1FactorsInuencingSpeechIntelligibilityandQuality ........ 19 1.2.2SpeechIntelligibilityMeasures ..................... 20 1.2.3SpeechQualityMeasures ........................ 21 1.3CellPhoneSpeechIntelligibility ........................ 21 2HEARINGLOSSCOMPENSATIONALGORITHMS ............... 31 2.1ReviewofExistingHearingLossCompensationAlgorithms ......... 31 2.1.1Threshold-OnlyGainPrescriptionProcedures ............ 32 2.1.2SuprathresholdGainPrescriptionProcedures ............. 33 2.2DevelopmentofRecruitmentBasedCompensation .............. 34 2.3ParameterAnalysisofRBC .......................... 36 2.3.1DynamicConstantsofCompression .................. 36 2.3.2FilterBankAnalysis .......................... 38 2.3.3Real-TimeImplementationIssues ................... 39 2.4PerformanceAnalysisoftheRBCAlgorithm ................. 39 2.4.1PerformanceofAlgorithminTermsofSpeechQuality ........ 40 2.4.2PerformanceofAlgorithmintermsofSpeechIntelligibility ..... 41 2.5Summary .................................... 43 3NOISEROBUSTHEARINGENHANCEMENTALGORITHMS ........ 60 3.1EectsofNoiseonCellPhoneSpeech ..................... 60 3.2DevelopmentofNoiseRobustRecruitmentBasedCompensation ...... 61 3.2.1SingleMicrophoneNoiseEstimation .................. 62 3.2.2CalculatingtheNoiseMaskingThreshold ............... 62 3.2.3DerivationofNoiseRobustRecruitmentBasedCompensation ... 63 5

PAGE 6

.............. 64 3.3.1PerformanceofAlgorithminTermsofSpeechQuality ........ 64 3.3.2PerformanceofAlgorithmintermsofSpeechIntelligibility ..... 65 3.4Summary .................................... 66 4ACCLIMATIZATIONMODELINGFORTHEAIDEDHEARINGIMPAIRED 76 4.1DevelopmentoftheFittingSatisfactionScale ................ 77 4.2HearingAidFittingData ........................... 78 4.2.1HearingAidFittingDataCollection .................. 78 4.2.2Multi-SessionHearingAidFittingDataAnalysis ........... 78 4.3ModelingtheAcclimatizationEect ...................... 79 4.4PerformanceAnalysisofModel ........................ 80 4.5Summary .................................... 81 5CONCLUSIONS ................................... 99 APPENDIX ASURVEYOFHEARING-IMPAIREDCELLPHONEUSERS .......... 102 A.1Participants ................................... 102 A.2Results ...................................... 102 A.2.1CellPhoneUsage ............................ 102 A.2.2ElectromagneticInterference ...................... 103 A.2.3CellPhoneSpeechandRingerLevel .................. 103 A.2.4SummaryandConclusions ....................... 103 BCELLPHONEHEARINGEVALUATIONQUESTIONNAIRE ......... 106 CANALYSISOFTHEFOCUSGROUPDISCUSSIONS .............. 110 C.1Participants ................................... 110 C.2FocusGroupMainThemes ........................... 110 C.2.1AidedCellPhoneListeningProblems ................. 110 C.2.2IdealHearingAidCompatibleCellPhone ............... 111 C.2.3CommentsonaCellPhoneAssistiveListeningDevice ........ 111 DPHYSIOLOGYOFHEARING ........................... 112 REFERENCES ....................................... 117 BIOGRAPHICALSKETCH ................................ 123 6

PAGE 7

Table page 1-1Meanopinionscore5pointscale .......................... 23 2-1ThekfconstantforPOGO ............................. 43 2-2ThekfconstantforNAL ............................... 43 3-1Sourcesofcellphonenoiseandnoise-reductionmethods ............. 67 3-2CriticalbandsandFFTbins ............................. 67 4-1Speechintelligibilitybasedttingsatisfactionscale ................ 81 4-2Phonakhearingaidttingparameters ....................... 82 7

PAGE 8

Figure page 1-1Eectsofagingonhearingthresholds ........................ 23 1-2Matlabaudiogramgraphicuserinterface(GUI) .................. 24 1-3Decreasedaudibilitycharacteristicofsensorineuralhearingloss(SNHL) ..... 24 1-4DecreaseddynamicrangecharacteristicofSNHL ................. 25 1-5DecreasedfrequencyresolutioncharacteristicofSNHL .............. 25 1-6DecreasedtemporalresolutioncharacteristicofSNHL ............... 26 1-7Spectrogramsofcellphonespeechfornormal-hearingandsimulatedSNHL ... 27 1-8SimulatedSNHLmodel ............................... 28 1-9Speechintelligibility(SI)asafunctionofbandwidth ............... 28 1-10Hearinginnoisetest(HINT)MatlabGUI ..................... 29 1-11SpeakerresponsefortheMotorolai265 ....................... 29 1-12Meanopinionscore(MOS)speechqualityratingsforcellphonevocoders .... 30 1-13Natureofcellphonehearingproblems ....................... 30 2-1Classicationofexistinghearingaidttingmethods ................ 43 2-2GainsprescribedbytheFig6method ........................ 44 2-3Input-Outputcurveat2kHzobtainedfromthevisualinputoutputlocator ... 44 2-4Variationofdesiredsensationlevel(DSL)prescribedgainwithhearingloss ... 45 2-5Recruitmentbasedcompensationsystem ...................... 45 2-6Computationofgainbasedonloudnessrecruitment ................ 46 2-7Estimateddependenceofrecruitmentrangeonhearingloss ........... 46 2-8Compressioninput-outputandgaincurves .................... 47 2-9Eectofvariationoflterbanksizeonspeechintelligibility ........... 48 2-10AverageMOSscoresforthehearing-impaired ................... 49 2-11AudiogramonthephoneJavamidlet ........................ 50 2-12Audiogramsofallthehearing-impairedlisteners .................. 50 8

PAGE 9

........................... 51 2-14ThePESQobjectivespeechqualityscorefornormal-hearingandhearing-impaired 51 2-15SpectrogramofSNHLandlinear-ampliedspeech ................. 52 2-16Spectrogramofnormal-hearingandlinear-ampliedspeech ........... 53 2-17AverageMOSscoresforthehearing-impaired ................... 54 2-18AverageMOSscoresforthenormal-hearing .................... 55 2-19Speechintelligibilityindex(SII)scoresfornormal-hearingasafunctionofSNR 56 2-20AverageHINTscoresofthehearing-impairedforwidebandspeech ....... 57 2-21AverageHINTscoresofthehearing-impairedforcellphonespeech ....... 58 2-22AverageHINTscoresofthenormal-hearingforcellphonespeech ........ 59 3-1Noiserobustrecruitmentbasedcompensation(NR-RBC)system ......... 68 3-2ThePESQobjectivespeechqualityscoreforvariousHAttingalgorithms ... 69 3-3SpectrogramofSNHLandlinear-ampliedspeech ................ 70 3-4Spectrogramofnormal-hearingandlinear-ampliedspeech ........... 71 3-5AverageNR-RBCMOSscoresforthehearing-impairedlistener ......... 72 3-6AverageNR-RBCMOSscoresforthenormal-hearinglistener .......... 73 3-7TheSIIscoresforsimulatednormal-hearingasafunctionofSNR ........ 74 3-8TheHINTscoresforNR-RBCforhearing-impaired ................ 74 3-9TheHINTscoresforNR-RBCfornormal-hearing ................. 75 4-1ComparisonofClarogainparametersfrominitialtonaltting ......... 83 4-2ComparisonofSaviagainparametersfrominitialtonaltting ......... 84 4-3ComparisonofSaviacompressionparametersfrominitialtonaltting ..... 85 4-4ComparisonofSaviacompressionparametersfrominitialtonaltting ..... 86 4-5PhonakSaviamaximumtrendinttingparametervariation ........... 87 4-6PhonakClaromaximumtrendinttingparametervariation ........... 87 4-7PhonakExtramaximumtrendinttingparametervariation ........... 88 4-8PhonakValeomaximumtrendinttingparametervariation ........... 89 9

PAGE 10

........... 90 4-10PhonakPerseomaximumtrendinttingparametervariation .......... 91 4-11StructureoftheMLPusedtomodelmulti-sessionttingtrends ......... 92 4-12PhonakSavianeuralnetworkmodelingresultsfor40dBgainparameter ..... 93 4-13PhonakSavianeuralnetworkmodelingresultsfor60dBgainparameter ..... 94 4-14PhonakSavianeuralnetworkmodelingresultsfor80dBgainparameter ..... 95 4-15PhonakSavianeuralnetworkmodelingresultsforCRparameter ......... 96 4-16PhonakSavianeuralnetworkmodelingresultsforTKparameter ........ 97 4-17PhonakSavianeuralnetworkmodelingresultsforMPOparameter ....... 98 A-1Degreeofhearingimpairment ............................ 104 A-2Degreeofhearingimpairmentforsurveyparticipants ............... 105 D-1Structureofthehumanear ............................. 114 D-2Organofcorti ..................................... 115 D-3Electronmicrographoftheorganofcorti ...................... 115 D-4Frequencysensitivityofthebasilarmembrane ................... 116 10

PAGE 11

Cellphonespeechcanleadtoadicultlisteningenvironmentbecauseoftheenvironmentalnoise,thereducedbandwidth,thepacketdroposandthevocoderartifacts.Thisisespeciallytrueforhearing-impairedlistenerswhorequirea9dBimprovementinsignaltonoiseratio(SNR)comparedtonormal-hearinglistenersinordertounderstandspeechinnoise.Thisresearchexploredvariousmeanstoimprovecellphonespeechintelligibilityforthehearing-impairedandresultedinthedevelopmentofthreenovelhearingenhancementalgorithms. Therstalgorithmdevelopedbyusistherecruitmentbasedcompensation(RBC)ttingmethod.RBCisahearingenhancementalgorithmaimedatimprovingspeechintelligibility(SI)forunaidedlistenerswithsensorineuralhearingloss.Itisattingalgorithmwhichadjuststhegainparametersofthecellphonebasedontheindividualsthresholdofhearing.Itprovidesmultiplebandgainandcompressiontomakecellphonespeechaudibleandwithinthereduceddynamicrangeofthehearing-impairedindividual.Subjectivehearinginnoisetests(HINT)runonhearing-impairedsubjectsrevealthatRBCshowsa15dBimprovementinSNRwhencomparedtolinearamplicationwhichistypicalofthecellphonevolumecontrol.RBCalsoshowsa6dBimprovementinSNRwhencomparedtothedesiredsensationlevel(DSL)ttingmethodwhichisapopularaudiologyoption. 11

PAGE 12

ThoughRBCandNR-RBCweredesignedwiththehearing-impairedinmindthealgorithmprovesbenecialtothenormal-hearingpersonwithslightmodications.Thisresultedina3dBimprovementinSNRwhencomparedtoDSLusingRBC,a13dBimprovementinSNRusingNR-RBCandaspeechqualityratingof\Good." Fortheaidedhearing-impairedpopulation,thehearingaidttingacclimatizationmethodwasdevelopedtoimprovespeechintelligibility.Acclimatizationoccursbecauseoftheplasticityoftheauditorycortex.Acclimatizationmodelingwascarriedoutusingneuralnetworkswhichweretrainedwithmulti-sessionPhonakhearingaidttingdata.Thismethodistobeusedinconjunctionwithexistinghearinglossttingalgorithmsandpredictstheeectofhearingaidacclimatization.Themeansquareerror(MSE)betweenthepredictedvaluesandtheoptimalvaluesaveragedacrosstheparametersislowerthanwiththeinitialsettings. 12

PAGE 13

Thesenseofhearingplaysapivotalroleinhumaninteractionandcommunication.Acousticpressurewavesaretransducedbythecochleaintoelectricalneuralsignalswhichareprocessedbythebraintoprovideameaningfulcognitiveexperience.Hearingimpairmentcanreducetheabilitytocommunicatesuccessfully.Theinabilityofbeingabletounderstandwhatisbeingsaidcanresultinsocialandemotionalisolation[ 1 ].Thetelephone,oneofthemostimportantinventionsofthe19thcentury,wastheresultofAlexanderGrahamBell'sworkoncommunicationdevicesforthehearing-impaired.Telephoneshavenowbecomeanintegralpartofhumancommunicationandprovideeasymeansoflong-distancecommunication.Theinventionofthewirelesscellphonehasfurtherleadtoaneaseincommunication.CellphonesarethemoderndaySwissArmyknivesandarepackedwithamyriadofhardwareandsoftwarefunctionalities.AsofJune2007,thereare243million[ 2 ]cellphonesubscribersintheUnitedStatesandthisnumberisgrowing. IntheUnitedStatesalonethereare28million[ 3 ]peoplewhoarehearing-impaired.Yetlessthan8%ofthemusehearingaidsthoughtheycouldobtainsignicantimprovementwiththem.Thisismainlybecauseofthehighcostsandthestigmaattachedtousinghearingaids.Studieshaveshownthathearing-impairedlistenersrequirea9dBimprovementinsignaltonoiseratio(SNR)[ 4 ]whencomparedtonormal-hearinglistenersinordertounderstandconversationalspeech.Hearingaidscanhelpsatisfythisrequirementtoacertainextent.Unfortunatelyhearingaidsandcellphonesarenotcompletelycompatiblebecauseofelectromagneticinterference(EM)[ 5 ].Theamountofinterferencedependsontheamountofradio-frequency(RF)emissionproducedbytheparticularcellphoneandtheimmunityoftheparticularhearingaid.TheIEEEC63.19standard[ 6 ]providesaratingscalewhichservesasameasureofthecompatibilitybetweencellphonesandhearingaids.Consumerscanlookforthisratingwhilepurchasingacell 13

PAGE 14

A hastheresultsofasurveyconductedatUniversityofFloridawhichindicatesthatinordertoavoidtheEMinterference,mostaidedhearing-impairedlistenersprefertoremovetheirhearingaidinordertousethecellphone. Cellphonespeechcansometimesbediculttounderstand,becauseoftheenvironmentalnoise,thereducedsignalbandwidth(300{3400Hz),thepacketdroposandthevocoderartifacts.Theenvironmentalnoisemasksthespeechwhilethereducedsignalbandwidthandvocoderartifactsresultinalossinnaturalnessandintelligibility[ 7 ].Hearing-Impairedlistenersoftenndcellphonesspeechtobeunintelligible.Modernhearingaidsareextremelylowpowerdigitalsignalprocessor(DSP)basedsystemsandprovidegainandcompressionbasedontheindividualshearinglossthroughaprocessreferredtoashearing-aidtting.Inaddition,hearingaidDSPsalsorunfeedbackcancellationandnoisereductionalgorithms.Inordertoimprovecellphonespeechintelligibilityforthehearing-impaired,powerfulhearingenhancementalgorithmscanberunonthecellphones.Thischapterwillprovideanintroductiontosensorineuralhearing-impairmentandcellphonespeechintelligibility. 8 ].Becauseofthenonlinearnatureofthisloss,simplelinearamplicationwillnotrestorenormalhearing.Hearinglosscanbecategorizedbasedontheseverityasmild(25{40dBHL),moderate(40{70dBHL),severe(70{95dBHL)andprofound(95dBHL.)Hearingaidscanhelppeoplewithmildtoseverehearingloss.ThehearingaidalgorithmsattempttoimitatetheOHCsactingtoreplacethedamagedor 14

PAGE 15

9 ].CochlearimplantshavetobeusedifthereissignicantIHClossasisthecasewithprofoundhearingloss.Appendix D providesashortdescriptionofhowwehearanddescribestherolesoftheIHCsandtheOHCs. 1-1 showstheeectsofagingonthethresholdsofhearing.Presbycusisoccursduetowearandtearofthehaircellsofthecochlea.Lossesupto60dBHLcanbeassumedtobecausedbydamagetotheOHCs.Forlossesgreaterthan80dBHL,boththeIHCsandOHCshavetobedamaged. Sensorineuralhearinglosscausedduetoexposuretoloudsoundsiscallednoiseinducedhearingloss(NIHL)[ 10 ].Soundsathighintensitiesfatiguethehaircellsofthecochleaanddependingonthedurationofexposurethismaycausepermanentdamage.PortableaudiodeviceslikeiPodscanproducesoundlevelswhichcancauseirreversibledamageevenwhenplayedforacoupleofminutes[ 11 ].Cellphonesandbluetoothheadsetsalsoproducesoundlevelswhichcancauseconsiderabledamage.Recentlytherehasbeenalotofeortonthepartofportableaudiodevicemanufacturerstoeducatethepubliconsafelisteningpractices.Safelisteninglevelsformusicandspeechhavebeenestimated[ 11 ]usingexistingnoiseexposurestandards[ 12 ],[ 13 ]. 14 ].Theaudiogrammeasuresthethresholdofhearinginquiet.Itisobtainedbyplayingpuretonesornarrowbandsofnoise,typicallybetween250{8000Hz,atvariousintensitylevelstillitisjustaudible. ThethresholdsofhearingthusobtainedarecomparedtotheaveragenormalhearingthresholdsandthedierenceisreportedindBHL(hearinglevel).Peoplewith`perfect'hearingwillhaveanaudiogramof0dBHL.Normalhearingisdenedashavingallpoints 15

PAGE 16

1-2 showsanaudiogramofapersonwithamildhearinglossmeasuredusingaMatlabGUI.Onanaverage,apuretoneaudiogramtakes5minutestobemeasured. 15 ],[ 8 ]. D describesthemechanicsbehindhowwehearandhowhearinglossoccurs.Figure 1-3 showsthehearingthresholdsforahearing-impairedandanormal-hearinglisteneranditcanbeseenthatthehearing-impairedlistenerhashigherthresholdsofhearingespeciallyathighfrequencies. Thisdecreasedaudibilityresultsinlowspeechintelligibilitybecausetheconsonantsandthesecond,thirdformantsofspeechwillnotbeaudible.Sincetheloudnessofspeechisdominatedbythelowfrequencycomponents,thehearing-impairedlistenersdonotrealizethattheyaremissingoutonpartofthesignal[ 16 ].Eventhoughcellphonespeechisbandlimitedto300{3400Hz,for90%ofhearing-impairedlistenersthedegreeofhearinglossworsensfrom500Hz{4kHz[ 17 ]andthisdetrimentallyaectsthecellphonespeechintelligibility.Theaudiogramprovidesadirectmeasureofthedecreasedaudibilityandisusedinallhearingaidttingalgorithms.Decreasedaudibilitycanbecompensatedbyprovidingafrequencydependentgain. 16

PAGE 17

18 ].Thisresultsinadecreaseddynamicrangeofspeechandthisphenomenoniscalledloudnessrecruitment.Loudnessrecruitmentismeasuredusingloudnessscalingexperiments.Figure 1-4 showstypicalloudnessgrowthcurvesmeasuredusingasixpointloudnessscaleforanormal-hearingandahearing-impairedlistener.Decreaseddynamicrangecanbecompensatedbyprovidingcompression. 19 ]referstothedecreaseinfrequencysensitivityandfrequencyselectivity[ 20 ].TheOHCsincreasethesensitivityofthecochleatotheparticularfrequencythattheportionofthebasilarmembraneistunedto.WhentheOHCsaredamagedthissensitivitydecreases.Frequencyresolutioncanbemeasuredusingpsychoacoustictuningcurves.Psychoacousticcurvesaremeasuredbyplayinganaudiblepuretone(probe)andvaryingthelevelofanarrowbandofnoise(masker)tillthetoneisbarelyaudible.Figure 1-5 showsthepsychoacousticcurvesforanormal-hearingandhearing-impairedlistenerfora4kHztonewitha40dBmasker. Thetuningcurveforthehearing-impairedlistenerisatandbroad(Figure 1-5 )[ 21 ].Becauseofthis,thehighenergy,lowfrequencypartsofspeechwillmaskmoreoftheweakerhighfrequencycomponents.Thisisknownasupwardspreadofmasking[ 22 ].Mostoftenenvironmentalnoiseislowfrequencyandbecauseofupwardspreadofmaskinghearing-impairedlistenershaveadiculttimeunderstandingspeechinnoise.Also,ithasbeenshownthatathighintensitylevelsevennormal-hearinglistenershavepoorfrequencyresolution.Thisisbecauseofsaturationofthehaircells.Hearing-Impairedlistenersalwayslistentohighintensitysounds.Thisfurtherworsenstheirfrequencyresolution[ 23 ].Decreasedfrequencyresolutioncanbecompensatedfortoacertainextentbyusingsharpandnarrowlterbankswhileprocessingthespeech. 17

PAGE 18

24 ].Whilelisteningtospeechinannoisyenvironment,normal-hearinglistenersextractmostinformationfromspeechwhenthenoiseislowinmagnitude.Butbecauseofreducedtemporalresolution,thesespeechregionswillbemaskedforthehearingimpaired[ 25 ].Temporalresolutionismeasuredusingpsychoacoustictuningcurves.Figure 1-6 showsthepsychoacousticcurvesforthenormal-hearingandhearing-impairedfora4kHzprobetonewitha40dBmasker.Decreasedtemporalresolutioncanbecompensatedbyvaryingthegainsoastogetnormalmaskingthreshold. 26 ],[ 27 ],[ 28 ]helpinthedevelopmentandtestingofcompensatorytechniques.Forourresearch,weusedamodelbasedonbothMoore[ 26 ]andDuchnowski[ 28 ].Themodelsimulatesthedecreasedaudibilityandtheloudnessrecruitmentaspectsofhearingloss.Spectrogramsofcellphonespeechatanormalconversationallevelforbothnormal-hearingandatypicalmildtosevereSNHLhearinglossof[102030608090]dBHLareshowninFigure 1-7 Thehighfrequencyconsonantinformationofspeechiscompletelymissingforthehearing-impairedandthisresultsinlowspeechintelligibility(Figure 1-7b ).Thehighenergylowfrequencypartofspeechisstillpresentandmakesthespeechaudiblebutunintelligible.Figure 1-8 isthesetupusedtomodelthehearingloss. ThealgorithmusesmultiplelterbandsandcalculatestheHilberttransformforeachlterbandoutput.TheenvelopeofthebandlimitedspeechobtainedfromtheHilberttransformisthenraisedandsmoothedtoobtaintheeectofloudnessrecruitment.Themodiedenvelopeisthenmultipliedwiththenestructurewithintheoriginalenvelope,togeneratesimulatedlossyspeechforthatband.Theoutputsofallthelterbandsarenallysummedtogethertogetthesimulatedlossyspeech.TheMatlabsimulationused30lterbankswithcenterfrequenciesequallyspacedinmelfrequencybetween100Hzto8000Hz. 18

PAGE 19

29 ]andspeechqualityindicateswhetherthespeechmeetstheexpectationsofthelistener.Subjectivemeasuresofevaluatingspeechintelligibilityandqualityarebasedonscoresobtainedvialisteningexperiments.Objectivemeasuresofintelligibilityandqualityrelyonsignal-to-noisemeasurementsandmodelsofhumanspeechperception. Bandwidth 30 ].Measurementsshowthattheintelligibilityofspeechdecreaseswithdecreasingbandwidth.Itisalsoimportantforthefrequencyresponsetobereasonablyatthroughoutit'srange.Forsinglewordsnarrowband(NB)speechyieldsanaccuracyofonly75%,whilewideband(WB)speechresultsina97%accuracy[ 31 ].Thislossofintelligibilityincreaseswhenmultiple-wordspeechsoundsareusedtotestintelligibility(Figure 1-9 ). 32 ].Onlynoisewhichfallswithinthesamecriticalbandwidthasspeechcancontributetothemaskingofspeech.Environmentalnoiseispredominantlylowfrequencyandisastrongmaskerwhichathighsoundpressurelevelscanmaskboththespeechvowelsandconsonants[ 33 ],[ 34 ]. 35 ].Independentmulti-bandoperationschangethetemporalandspectralenvelopeofspeechandthisdetrimentallyaectsthespeechcuesresultinginlowSI[ 36 ].Toavoidaudibleartifacts,multi-bandtechniquesareusuallyfollowedbysomepost-processinglikeenvelopesmoothening. 19

PAGE 20

37 ].Listenersareplacedina65dBAconstantnoiseenvironmentandspeechsentencesatvarioussignallevelsarepresentedtothemviaheadphones.Thelistenerthenhastorepeatwhatheheard.Theintensityofthenextsentenceisadaptivelyvariedby2dBor4dBbasedontheirresponse.Itisstipulatedthatafter10sentences,thenalsentenceintensitylevelconvergestoalevelatwhichthelistenerrecognizes50%ofthesentencescorrectly.Thismethodofscoringintelligibilityiscalledthereceptionthresholdforsentences(RTS).AMatlabGUIwasusedtoautomatethetest(Figure 1-10 ).TheresultoftheHINTisaSNRvaluebasedonRTS.ThelowertheSNRvalue,thehigherthespeechintelligibility. 1{1 Inthisformula,nreferstothenumberoffrequencybandsusedwhichcanvaryfrom6octavebandsto21criticalbands.IiisthebandimportancefunctionandAireferstothebandaudibility,whichrangesfrom0to1andindicatestheproportionofspeechcuesthat 20

PAGE 21

38 ]. 1-1 .AMatlabGUIwascreatedtoautomatetheMOStest. 39 ]recommendedstandardfortheobjectivemeasurementofthespeechqualityofnarrowbandsystems.PESQcomparestheoriginalsignaltoamodiedversionofthesameandpredictstheperceivedqualitythatwouldbegiventothemodiedsignalbysubjectsinasubjectivelisteningtest.TherangeofthePESQscoreis-0.5(extremelylowquality)to4.5(excellentquality). 7 ].Figure 1-11 showsthefrequencyresponseoftheMotorolai265cellphoneloudspeaker.Itcanbenotedthatresponseisnotatacrossfrequenciesandthisfurtherresultsinalossinintelligibility. 21

PAGE 22

Inaddition,cellphonespeechalsohasvocoderartifacts.Basicallyforanyvocoder,theinputspeechisrstdividedintooverlappingframes.Asetofmodelparametersarethenestimatedforeachframe,quantizedandthentransmitted.Atthereceiver,thedecoderreconstructsthemodelparametersandusesthemtogenerateasyntheticspeechsignal.Theadvancedmulti-bandexcitation(AMBE)vocoderiscommonlyusedwithMotorolahandsets[ 40 ].Figure 1-12 showstheMOSspeechqualityratingsforthemostcommonlyusedvocoders.Dependingonthedatarate,AMBEhasanaverageMOSscoreof3.2to3.7. ClarityandtheEARfoundationconductedaresearchstudyamongarandomgroupof458babyboomersbetweentheageof41-60[ 41 ].53%ofthebabyboomersreportedhavingatleasta`mild'lossandover57%ofbabyboomershadtroublehearingontheircellphones.40%ofthosewhohadproblemsusingthecellphonesaidtheywouldusethecellphonemoreofteniftheycouldheartheconversationsmoreclearlywhileusingit.Figure 1-13 liststhenatureofthecellphonehearingproblems. Inordertobetterunderstandthecellphoneneedsofthehearing-impaired,focusgroupsandsurveysoncellphonehearingwerecarriedoutattheUniversityofFlorida.A`Cellphonehearingevaluation'questionnaire,availablefromAppendix B ,wascreatedandhandedoutto84patientsattheShandsspeechandhearingclinicinGainesville.Appendix A hastheresultsfromthequestionnairebasedsurveyandAppendix C discussesthemainthemesobservedatthetwofocusgroupswhichwereconducted.Theresultsfromboththeseindicatethenecessityofhavingalgorithmsrunonthecellphoneinordertoenhancethehearingandimprovespeechintelligibility. 22

PAGE 23

Meanopinionscore5pointscale MOSQuality Figure1-1. Eectsofagingonhearingthresholds[ 42 ] 23

PAGE 24

Figure1-3. Thresholdsofhearingforthenormal-hearingandhearing-impaired 24

PAGE 25

Loudnessgrowthcurveforthenormal-hearingandhearing-impaired Figure1-5. Psychoacoustictuningcurveshowingdecreasedfrequencyresolution 25

PAGE 26

Psychoacoustictuningcurvesforthenormal-hearingandhearing-impaired 26

PAGE 27

b SpectrogramsofcellphonespeechforA)Normal-HearingB)MildtoSevereSNHL 27

PAGE 28

Simulatedsensorineuralhearinglossmodel Figure1-9. Speechintelligibilitymeasuredusingarticulationindexasafunctionofbandwidth[ 31 ] 28

PAGE 29

HearinginNoiseTestMatlabGUI Figure1-11. SpeakerresponsefortheMotorolai265 29

PAGE 30

MOSspeechqualityratingsforcellphonevocoders[ 40 ] Figure1-13. Natureofcellphonehearingproblems[ 41 ] 30

PAGE 31

Hearingaidshavetobecustomizedtoeachuser'suniquehearingloss.Thisisachievedbyadjustingthegainandcompressionvaluesofthehearingaiddigitalsignalprocessor(DSP)usingaprescriptivealgorithm.Thisprocessisreferredtoashearingaidttingandtheprescriptivealgorithmusediscalledthehearinglosscompensationalgorithmorthehearingaidttingalgorithm.AsmentionedinChapter 1 andinAppendix D ,mildtomoderatelyseveresensorineuralhearingloss(SNHL)isprimarilycausedbydamagetotheouterhaircellsofthecochlea.Soineect,thehearinglosscompensationalgorithmhastoimitatetheouterhaircells(OHC)[ 9 ].Inordertorunhearingenhancementalgorithmsonthecellphoneforthehearing-impaired,theDSPofthephonehastobettothelistener'shearingloss.Thischapterwillprovideabriefreviewoftheexistingttingalgorithmsandwilldetailthedevelopmentofanewhearinglosscompensationalgorithmforcellphonespeech,therecruitmentbasedcompensation(RBC)method.Speechprocessedbythenewalgorithmwillbeshowntohavehigherintelligibilityandqualitythantheexistingmethods. 15 ]whichvaryintheirrationalebehindgainprescription.Somealgorithmsprescribegainsothatthespeechisalwaysatamostcomfortablelevel(MCL)[ 43 ],othersuseloudnessnormalizationorloudnessequalization[ 44 ]astherationale.Loudnessnormalizationisameansofprescribinggainsoastomaketheloudnessgrowthcurveofthehearing-impairedthesameasthatfornormal-hearing.Loudnessequalizationisbasedontheprincipleofequalizingtheloudnessinformationacrossfrequencies.Intelligibilityisassumedtobemaximizedwhenallthebandsofspeechareperceivedtohavethesameloudness[ 45 ].Figure 2-1 showsthebasicclassicationofthehearingaidgainttingalgorithms.AllthesealgorithmshavebeenimplementedinMatlab. 31

PAGE 32

46 ].Justmirroringtheaudiogramwouldresultinanineectivettingsincetheoutputwillreachuncomfortableloudlevelswhentheinputsignalishighinintensity.ThisisbecauseofthedecreaseddynamicrangeaspectofSNHL.Sincethreshold-onlyalgorithmsdonotincludecompressionintheprescription,theyshouldbefollowedbyoutputlimitingcompressiontopreventthesoundsfromgettingtooloud. 2{1 IGf=0:5Hf(2{1) HereIGfisthegainandHfisthefrequencydependenthearingloss, 47 ]isa1 2gainrulewithanattenuationtermatthelowfrequencies.Thisisdonetodecreasetheupwardspreadofmasking.TheformulaforttingisgivenbyEquation 2{2 IGf=0:5Hf+kf(2{2) HereIGfistheGain,Hfisthefrequencydependenthearingloss,andkfisasshowninTable 2-1 .POGOcanbeusedforhearinglossesupto80dBHL. 48 ]ofAustraliapublishedthenationalacousticlab-revised(NAL-R)formulain1983.Itisthemostpopularofthethreshold-onlybasedttingmethods.TheaimoftheNAL-RprocedureistomaximizelistenerintelligibilityattheMCLbyequalizingloudness.TheNAL-RttingformulaisgivenbyEquation 2{3 .Table 2-2 indicateshowtheconstantkfvarieswith 32

PAGE 33

49 ]procedurefollowstheloudnessnormalizationrationaleformediumandhighlevelinputsignals.Fig6prescribesgainsforthreedierentinputintensitylevels(40dBSPL,65dBSPLand95dBSPL)basedontheaudiogramandaverageloudnessgrowthdata.Thethreelevelsofspeechrepresentthedierentlevelsofconversationalspeechwith40dBSPLrepresentingsoftspeech,65dBSPLrepresentingconversationalspeechand95dBSPLloudspeech. Figure 2-2 showsthetargetsasprescribedbyg6.The95dBSPLcurveprovideslittlegainforthelowfrequencysoundswhicharemoreintensethanthehighfrequencysoundsevenforconversationallevelspeech.The65dBSPLand40dBSPLcurvesprovidesmoregainatthehighfrequencies.Itcanbeseenthattheamountofgaindecreaseswhentheinputlevelincreases. 50 ]techniqueisbasedonloudnessnormalizationandusesloudnessscalingexperimentsinsteadofaverageloudnessgrowthcurves.Theloudnessscalingprocedureusedisthecontourtestandinvolvesplayingpulsedwarbletonesinascendingorderfrom5dBtillthesubjectindicatesthatthestimulusisattheMCL. Ateachlevelthesubjectusesa7pointratingscaletodescribeitsloudness.Thesevenloudnesscategoriesforwarbletonesarecondensedtothreecategoriesforspeech 33

PAGE 34

2-3 .Thevisualinputoutputlocator(VIOLA)programthenplotsforeachfrequencyaninput-outputcurvewith2compressionthresholdsand2compressionratios.Anexampleinput-outputgraphisshowninFigure 2-3 .Thediagonallineacrossthegraphrepresentsthe0dBgain.ThedistancebetweentheIHAFFprescribedtargets(theasterisks)andthediagonallineisthegaintoamplifysoft,averageandloudinputspeechforthatfrequency. 51 ],[ 52 ]aimsatmakingspeechcomfortablyloudandaudible.ThegainfordierenthearinglossandfrequencyasusedintheDSL4.0computerprogramisshowninFigure 2-4 .ThecompressionratioprescribedbyDSLislargerthanthatrequiredtonormalizeloudnessandisprescribedsoastottheextendeddynamicrangefromthenormal-hearingthresholdtothehearing-impairedUCLintothereduceddynamicrangeofthehearingimpaired.DSListhemostpopularsuprathresholdttingmethod. 53 ].ForournovelmethodthisisachievedbyusinglterbanksasshowninFigure 2-5 .HereS(n)istheincomingcellphonespeechsignalwhichistobeenhanced.Processingiscarriedoutinthetimedomainusingaframe-by-frameapproach.S(n)isfedtoalterbankwhichhas14bandswithcenterfrequenciesequallyspacedinmelfrequencybetween300-3400Hz.Thegaincomputationblockusestheenergyperbandandtheuser'shearingthresholdstoprescribeagainandcompressiontermforeachbandaspertheRBCformula.ThesignalsfromeachbandarenallycombinedtogethertogettheenhancedspeechsignalSe(c).TheRBCgainblockshouldbefollowedbyaoutputlimitingblockwhichmakessurethatthesoundsnevergetpainfullyloud.Thecompressionratioandthresholdforthisstagearexedat:10:1and110dBSPLrespectively.Loudnessnormalizationisamethodofprescribinggainssoastomaketheloudnessgrowthcurveforthehearing-impairedthesameasthatforthenormal-hearing.Figure 2-6 showsthe 34

PAGE 35

In1959,HallpikeandHood[ 54 ]showedthattherangeofrecruitment,TcTi,isafairlyorderlyfunctionofthehearingloss,TiTnandisindependentoffrequencyforunilateralhearingloss.Miskolczy-Fodor[ 55 ]furtherreportedthisbehaviorforpresbycusis.BoththeserelationshipsareasshowninFigure 2-7 Letbedenedastheanglebetweentherecruitmentcurveandthehorizontalaxis(Figure 2-6 ).TherelationbetweenandhearinglosscanbedescribedbyEquation 2{4 HerehearinglossHL=TiTn.IfR=TcTiisusedtorepresenttherecruitmentrange,therelationbetweentherecruitmentrangeandhearinglosscanbedescribedbyEquation 2{5 Inordertoachieveloudnessnormalization,thealgorithmampliesthesignalineachchannelsuchthattheoutputlevelisrelatedtotheinputlevelbythesolidline.Asthelevelisincreased,thegaindecreasesuntilatTcthegainbecomesone.Fromtheaudiogram,wecancomputeandRandhencethegainfactorperchannelcanbecomputed.Thisapproachwhichisbasedonthefrequencyindependentrelationshipbetweenrecruitmentandhearinglossiscalledtherecruitmentbasedcompensation(RBC)method. 35

PAGE 36

2{6 tan(w)1=47+0:45HL(w) (2{6) HereHL(w)isthehearinglossatthecenterfrequencyofeachbandwhichisobtainedbythelinear-interpolationoftheaudiogram.TheRBCalgorithmincludescompressionaspartoftheprescriptionandthecompressionratioforeachchannelisgivenbyCR(w)=1 Whiletheexistingalgorithmswhicharealsobasedontheconceptofloudnessnormalizationrequiretheloudnessgrowthcurveforeachfrequencyortheaverageloudnessgrowthcurves,alltheRBCmethodrequiresistheaudiogramofthehearing-impairedperson. 2.3.1DynamicConstantsofCompression 56 ].Compressioncanbecarriedouteitherinasinglebandoninmultiplebands.Inmulti-bandprocessing,eachbandusuallyhasdierentcompressioncharacteristicsandthedegreeofcompressioneitherincreasesordecreaseswithfrequency.Typically2or3bandsareused.Increasingthenumberofcompressionbandsbeyond3canresultinaudibledistortion.Fittingalgorithms 36

PAGE 37

Theattackandreleasetimesarethedynamicconstantsofcompressionandspecifyhowquicklyacompressoroperates.Iftheeectofcompressionisinstantaneousaudibleartifactsareproducedbecauseofthesuddenchangeinlevels.ANSIS3.22denestheattacktimeasthetimetakenfortheoutputtostabilizewithin3dBofitsnallevelaftertheinputchangesfrom55to90dBSPL.Thereleasetimeisdenedasthetimetakenfortheoutputtostabilizewithin4dBofitsnallevelaftertheinputfallsfrom90to55dBSPL.Experimentallyanattacktimeof6msandareleasetimeof20mswasfoundtobeideal.TheimplementationoftheattackandreleasetimeconstantscompressionisgivenbyEquations 2{7 (2{7) HereGave(w)istheaveragesmoothedgainperband,Gi(w)istheinstantaneousgainperband,attackandreleasearetheattackandreleaseconstantsasdenedinANSIS3.22. Compressionratioistheinverseoftheslopeoftheinput-outputcurve.Thecompressionratiousuallyvariesfrom1.1:1to3:1.CompressionthresholdistheSPLabovewhichcompressionkicksin.Ifloudnessistobenormalizedcompletely,compressionshouldkickinfromthethresholdofnormal-hearingwhichis0dBSPL[ 57 ].Butusefulspeechsoundsrarelyoccurbelow30dBSPL.Whenthecompressionthresholdis>50dBSPLitistermedashigh-thresholdandwhenthecompressionthresholdis<50dBSPLitistermedaslow-threshold.Widedynamicrangecompression(WDRC)referstosystemswhichhavelowthreshold.Figure 2-8 showsatypicalWDRCcharacteristicswithoutputlimiting. Tillthecompressionthresholdof50dB,thegainislinear.CompressioniseectivefromafterthethresholdtillthethresholdofcompleterecruitmentTc(80dBinthis 37

PAGE 38

2-9 ). InordertouseRBCforthenormal-hearingpopulationalterbanksizeof5wasfoundtobeoptimalasaresultofsubjectivelisteningtests.Thisisbecausenormal-hearinglistenerscanheartheartifactscausedbecauseofmulti-bandgain.Also,sincetypicalnormal-hearingpopulationhavelittleornoloudnessrecruitmenteects,thecompressionparametersvariedfrom1.1to1.5. 58 ]canbeusedclinicallytodetectdeadregionsofthecochlea.Itissimilartomeasuringthresholdsofhearinginnoiseandmeasuresthe 38

PAGE 39

Audiogramonthephone 59 ]wascreatedtomeasurethethresholdsofhearingusingthecellphone.Sincethecellphoneistobeusedasanassistivelisteningdeviceforcellphoneconversationsandnotahearingaid,calibrationisnotakeyissue.Themidletplaystonesatdierentlevelsandthelistenerpressesakeytoindicatehavingheardthesound.TheMotorolaRokerE2has7volumestepsandbyplayingscaledtonewavelesavolumerangefrom3{65dBwasachieved.Figure 2-11 showsadepictionofhowtheaudiogramonthephonewouldlook. 60 ],theDSLmethod,theHGmethod,thePOGOmethodandtheNAL-Rmethod.ThespeechdatabaseunlessotherwisementionedisthestandardHINTdatabase.Cellphonespeechwasobtainedbybandlimitingthespeechto300{3400HzandthenpassingitthroughanAMBEvocoder/decoderblocktointroducedthevocodereects. 2-12 showstheaudiogramsofallthehearingimpairedsubjects.Outputlimitingcompressionwasprovidedforallthealgorithmswithacompressionratioof10:1andacompressionthresholdof110dB. 39

PAGE 40

2-13 wasused.Typicalmildtoseveresensorineuralhearinglossandtypicalnormal-hearingweresimulatedusingtheMatlabhearinglosssimulationblock.Theaudiogramsusedwere:[102030608090]dBHLand[51015202020]dBHLrespectively.Theunprocessedcellphonespeechwaspassedthroughthehearinglossblocktogeneratesimulatedlossspeech.Speechpreprocessedbythevariousttingalgorithmswerepassedthroughthehearinglossblocktogeneratecompensatedspeech. TheobjectivePESQscoreswereobtainedusingtheoriginalcellphonespeechasthereferencesignalandcomparingittoboththesimulatedlossspeechandthecompensatedspeech(Figure 2-14 ). PESQissensitivetodistortionduetocompression.ThetypicalmildtosevereSNHLmodeledherewouldprovideoutputlevelsathighfrequencieswhichwouldturnontheoutputlimitingcompression.ThisresultsinlowPESQscores.IfwecomparewithallthecompressionbasedsystemsRBCdoesthebestfollowedbyDSLandNAL-R.ThescoresalsorevealthatRBCoutdidlinearamplicationandtheotherttingalgorithmsfornormal-hearingsubjectswithanaveragePESQscoregreaterthan\4-Good." 2-15 ).Thesimulatedhearinglossblockwasusedtogeneratethespeech(Figure 2-13 ). Forthehearing-impaired,alotofhighfrequencyinformationismissing(Figure 2-15a ).Linearamplicationdoesnothelpbecauseofthereduceddynamicrangeaspectofthe 40

PAGE 41

2-15b ).Compressionresultsinmorehighfrequenciesandthishelpsimproveintelligibility(Figure 2-15c ). Thespectrogramsforthetypicalnormal-hearingsimulatedspeech,linearlyampliedspeechandthespeechcompensatedusingtheRBCmethodwerealsoobtained(Figure 2-16 ).Thereismorehighfrequencyinformationbecauseoffrequencydependentgainandthishelpsimproveintelligibility. Theseresultsshowthatforboththenormal-hearingandthehearing-impairedRBChasbetterspeechqualityandmoreusefulfrequenciesthanwithjustalineargainwhichiswhatthecellphonesvolumecontroldoes. 2-17 showstheaverageoftheMOSscoresforthehearing-impaired.Forthehearing-impaired,RBChasanaverageMOSscoregreaterthan\4-Good." Figure 2-18 showstheaverageoftheMOSscoresforthenormal-hearing.Forthenormal-hearing,RBChasanaverageMOSscoregreaterthan\4-Good." 3-7 showsthevariationofSIIwithSNRfrom-30to30. 41

PAGE 42

2-20 showstheaveragedSNRforthe10hearing-impairedsubjects,withreferencetothebaseline(lineargain)forwidebandspeech.ThesescoresshowthatRBCdoesthebestfollowedbyDSLandhalf-gain.NAL-Randhalf-Gain.WhencomparedtothelineargaintechniqueRBCprovidesupto15dBimprovementinSNR.ThedierencebetweenRBCandDSLforwidebandspeechisabout3dB. Figure 2-21 showstheaveragedHINTresultswithnarrowbandcellphonespeechinput.ThesescoresindicatethatRBCdoesthebestfollowedbyNAL-Randhalf-gain.Half-Gainprescribesahighergainthanallthettingmethodsbeingtested.Forloudinputlevels,thiswillleadtoadecreaseinintelligibilitybutintheHINTthelevelofspeechisreducedsothegainincrementhelpshalf-gaindobetter.ThedierencebetweenRBCandlineargainis15dB.ThedierencebetweenRBCandDSLforcellphonespeechisabout6dB. Figure 2-22 showstheaveragedHINTresultswithnarrowbandcellphonespeechinput.ThesescoresshowthatRBCdoesthebestfollowedbyNAL-RandHPF.ThedierencebetweenRBCandlineargainis6dB.ThedierencebetweenRBCandDSLforcellphonespeechisabout3dB. 42

PAGE 43

Table2-1: ThekfconstantforPOGO Freq250500100020004000 Table2-2: ThekfconstantforNAL Freq2505001000200030004000 Figure2-1. Classicationofexistinghearingaidttingmethods 43

PAGE 44

GainsprescribedbytheFig6method Figure2-3. Input-Outputcurveat2kHzobtainedfromthevisualinputoutputlocator 44

PAGE 45

DSLprescribedgainfordierenthearingloss Figure2-5. Recruitmentbasedcompensationsystem 45

PAGE 46

Computationofgainbasedonloudnessrecruitment Figure2-7. Estimateddependenceofrecruitmentrangeonhearingloss 46

PAGE 47

Compressioninput-outputandgaincurves 47

PAGE 48

b SubjectiveHINTresultsforhearing-impairedA)AverageHINTscoreswithvaryinglterbanksizeB)Averageaudiogramofthehearing-impairedlisteners 48

PAGE 49

b SubjectiveMOSresultsA)AverageMOSscoresforthehearing-impairedB)Audiogramofthehearing-impairedlisteners 49

PAGE 50

AudiogramonthephoneJavamidlet Figure2-12. Audiogramsofallthehearing-impairedlisteners 50

PAGE 51

Hearinglosssimulationsystem Figure2-14. ThePESQobjectivespeechqualityscorefornormal-hearingandhearing-impaired 51

PAGE 52

b c Spectrogramofhearing-impairedforA)TypicalmildtosevereSNHLB)Linear-AmpliedspeechC)RBCampliedspeech

PAGE 53

b c Spectrogramofnormal-hearingforA)Typicalnormal-hearingB)Linear-AmpliedspeechC)RBCampliedspeech

PAGE 54

b SubjectiveMOSresultsA)AverageMOSscoresforthehearing-impairedB)Audiogramofthehearing-impairedlisteners 54

PAGE 55

b SubjectiveMOSresultsA)AverageMOSscoresforthenormal-hearingB)Audiogramofthenormal-hearinglisteners 55

PAGE 56

Speechintelligibilityindex(SII)scoresfornormal-hearingasafunctionofSNR 56

PAGE 57

b SubjectiveHINTresultswithwidebandspeechforthehearing-impairedA)AverageHINTscoresB)Audiogramofthehearing-impairedlisteners 57

PAGE 58

b SubjectiveHINTresultswithcellphonespeechforthehearing-impairedA)AverageHINTscoresB)Audiogramofthehearing-impairedlisteners 58

PAGE 59

b SubjectiveHINTresultswithcellphonespeechforthenormal-hearingA)AverageHINTscoresB)Audiogramofthenormal-hearinglisteners 59

PAGE 60

Environmentalnoisedetrimentallyaectstheintelligibilityofspeech[ 61 ]andthiseectismorepronouncedforpeoplewithhearingimpairment.Speechisahighlyredundantsignal.Inamoderatelynoisyenvironment,anormal-hearinglistenerwillbeabletounderstandwhatisbeingsaidevenifsomepartsofthespeecharemaskedbynoisebyvirtueoftheredundantnatureofspeech.Hearing-Impairedlistenersdealwithalessredundantspeechsignalbecauseofthenatureoftheirhearingloss[ 62 ].Thisimpliesthateveniftheenvironmentalnoisemasksasmartportionoftheremainingspeech,theintelligibilitywillbedegradedsignicantly.Thecochleaanalyzessoundbymeansofagroupofhighlyoverlappingnarrowbandlters.Theseltersarecalledthecriticalbandsandplayanimportantroleinnoisemasking.Onlythenoisewhichfallswithinthesamecriticalbandasspeechcanmaskthespeech.Butthesamenoisewillmasktoalesserextent,signalsinhigherfrequencybandsbecauseofthehighlyoverlappedstructureofthecriticallterbank.Thiseectiscalledtheupwardspreadofmaskinganditincreaseswithincreaseinnoiseintensity.Thisisalsowhylowfrequencysoundsarebetterspeechmaskers.Forthehearing-impairedthecriticalbandswillbemorebroadandhencetheupwardspreadofmaskingincreases.Thisiswhyhearing-impairedlistenersrequirea9dBincreaseinSNR,whencomparedtonormal-hearinglisteners,inordertounderstandspeechinnoise[ 25 ].Thischapterwilldiscussthedevelopmentofanoiserobustrecruitmentbasedcompensation(NR-RBC)algorithm. 60

PAGE 61

3-1 providesalistofcellphonenoisesourcesandsuggestspossiblewaystoreduceit. TheRBCalgorithmusestheaudiograminquietinformationtoprescribethegains.IfmaskedthresholdsofhearingarecalculatedthentheycanbeusedintheplaceofthethresholdsinquietintheRBCestimationmethod.Thealgorithmwillthenvarythegainandcompressionbasedonboththethresholdsofhearingandtheenvironmentalnoise.Thismodiedalgorithmiscalledthenoiserobustrecruitmentbasedcompensation(NR-RBC)method. Figure 3-1 showstheblockdiagramoftheprocedure.HereS(n)istheincomingcellphonespeechsignalwhichistobeenhanced.Processingiscarriedoutinthetimedomainusingaframe-by-frameapproach.S(n)isfedtoalterbankwhichhas18bandswithcenterfrequenciesandbandwidthasshowninTable 3-2 .Theenvironmentalnoiseispickedupbythecellphone'scalibratedmicrophoneandisreferredtoasY(n).Themicrophonealsopicksuptheuser'svoice.Inordertoidentifywhichframescontainnoise,Y(n)passesthroughavoiceactivitydetectionblock.Thenoiseframesarethenfedtoanoiseestimationblockwhichprovidesanestimateofthenoiseforeachoctave-band.Thisoctave-bandnoiseestimateisusedtocomputethenoisemaskedthresholds.Thegaincomputationblockusestheenergyperband,thenoiseestimateandtheuser'shearingthresholdstoprescribeagainandcompressiontermforeachbandaspertheNR-RBC 61

PAGE 62

3-1 ).DuringpausesintheconversationY(n)picksuptheenvironmentalnoise.Usingavoiceactivitydetectionsystemtheframescanbemonitoredfornoiseandspeech.Ifanoiseagissetthenthenoisepowerestimateisthenupdated.UsingthesinglemicrophonesystemanestimateoftheenvironmentalnoiseN(w)atthelistenersendhastobecalculated.Thiswillbedoneduringpausesintheconversation.TechniqueslikeMinimaControlledRecursiveAveraging(MCRA)[ 63 ]methodandothers[ 64 ]areavailableforrobustestimationofnoise.Weusedasimplevoiceactivitydetectorbasedonspectraldistance. 65 ],[ 66 ].Asarststepacriticalbandanalysishastobecarriedoutinordertoknowwhichspeechbandsoftheincomingcellphonesignalwillbeaectedbytheenvironmentalnoise.ThiscanbeachievedbypassingthenoisethroughlterbankstructuresimilartotheoneusedinRBC 2-5 .Whilethiswillleadtoanaccurateanalysis,itwillbecomputationallyinecienttoimplementonthephone.AwaytoworkaroundthisistogrouptogethertheFFTbinsbasedonthecriticalbandcenterfrequenciesandbandwidth.Table 3-2 liststhecriticalbandnumber,centerfrequency,bandwidthandtheFFTbindetailsforabinsizeof256andasamplingfrequencyof8000Hz. CriticalbandanalysisiscarriedoutonthepowerspectrumofthesignalovertheFFTbinswhichcorrespondtoeachcriticalband.18criticalbandscoverthecellphonefrequencyrangeupto4000Hz.Sincethecriticalbandsarehighlyoverlappedstructures 62

PAGE 63

67 ]isgivenbyEquation 3{1 10log10Ti=15:81+7:5(i+0:474)17:5(1+(i+0:474)2)1=2 where,iisthecriticalbandnumberandTiisthespreadingfunction. Thenextstepinvolvesthecalculationofthenoisemaskingthreshold,givenbyEquation??,whichincludesanosettermOiwhichisspeciedinTable?? ThenoisespreadthresholdhastobeconvertedbacktotheBarkorcriticalbanddomain.Thisisdonebyrenormalization.ThebarkthresholdsarecomparedtotheindividualsabsolutethresholdsofhearingHL(w)alsointhebarkscale.ThenoisemaskingthresholdT(w)foranycriticalbandwhichhasanoisethresholdlowerthantheabsolutethresholdischangedtotheabsolutethreshold. ThegainforeachchannelGdB(w)iscalculatedbyEquationset 3{3 2,whenT(w)
PAGE 64

2-13 wasused.Atypicalmildtoseveresensorineuralhearinglossandatypicalnormal-hearingwassimulatedusingtheMatlabhearinglosssimulationblock.Theaudiogramsusedwere:[102030608090]dBHLand[51015202020]dBHL.Theunprocessedcellphonespeechwaspassedthroughthehearinglossblocktogeneratespeechwithsimulatedloss.Thenspeechpreprocessedbythevariousttingalgorithmswerepassedthroughthehearinglossblocktogeneratecompensatedspeech. AmongtheHAttingalgorithmswhichincludecompression,NR-RBChasthemaximumPESQscore.Forthenormal-hearingNR-RBChadaslightlylowerPESQscorethiscouldbedueartifacts.Inordertounderstandthisthespectrogramsofsimulatednormal-hearingspeechwerecalculated. 64

PAGE 65

3-3 showsthespectrogramsforthehearing-impairedspeech,linearlyampliedspeechandthespeechcompensatedusingtheNR-RBCmethod.Theseresultsshowthatforthehearing-impairedNR-RBChasbetterspeechqualityandintelligibilitythanwithjustalineargainwhichiswhatthecellphonesvolumecontroldoes.Figure 3-4 showsthespectrogramsforthenormal-hearingspeech,linearlyampliedspeechandthespeechcompensatedusingtheNR-RBCmethod.Theseresultsalsoshowthatforthenormal-hearingNR-RBChasbetterspeechqualityandintelligibilitythanwithjustalineargain. Figure 3-5 showstheaverageoftheMOSscoresforthehearing-impaired.Forthehearing-impaired,NR-RBChasanaverageMOSscoregreaterthan`4-Good'.Figure 3-6 showstheaverageoftheMOSscoresforthenormal-hearing.Forthenormal-hearing,NR-RBChasanaverageMOSscoregreaterthan`4-Good'. 65

PAGE 66

2 weknowthatRBCandDSLshowthebestperformance.TheperformanceofNR-RBCwascomparedtoRBCandDSLwithvaryingltersizes. Figure 3-8 showstheaveragedSNRforthe10hearing-impairedsubjects,withreferencetothebaseline(lineargain).ItisclearthatNR-RBCoutperformsRBCandDSLandhasbestperformanceatN=14(Figure 3-8 ).ThedierencebetweenNR-RBCandthebestDSLisabout20dB. Figure 3-9 showstheaveragedSNRforthe10normal-hearingsubjects,withreferencetothebaseline(lineargain).ItisclearthatNR-RBCoutperformsRBCandDSLandhasbestperformanceatN=8.ThedierencebetweenNR-RBCandthebestDSLisabout13dB. 66

PAGE 67

Sourcesofcellphonenoiseandnoise-reductionmethods CellphonenoiseWaystoreducenoise ReceiversideenvironmentnoiseTopreventitfrombeingtransmitted:BeamformingandAGCTohelpyouhearbetter:RBCalgorithm(Automaticallyadjustgain)Tohelpyouhearbetter:Occludecontra-lateralear TransmittedenvironmentnoiseToreduceitseects:Spectralsubtraction VocoderandchannelnoiseToreduceitseects:Spectralsubtraction Table3-2: CriticalbandsandFFTbins Criticalbanddetails FFTdetails Noisemaskingdetails Criticalband Centerfreq Bandwidth FFTcriticalband Osettermnumber (Hz) (Hz) range(Hz) (dB) 1 50 80 094 -172 150 100 94187 -183 250 100 187312 -194 350 100 312406 -205 450 110 406500 -216 570 120 500625 -227 700 140 625781 -238 840 150 781906 -249 1000 160 9061094 -2510 1170 190 10941281 -2511 1370 210 12811469 -2512 1600 240 14691719 -2513 1850 280 17192000 -2514 2150 320 20002312 -2515 2500 380 23122687 -2416 2900 450 26873125 -2317 3400 550 31253687 -2218 4000 700 36874000 -19 67

PAGE 68

Noiserobustrecruitmentbasedcompensation(NR-RBC)system

PAGE 69

ThePESQobjectivespeechqualityscoreforvariousHAttingalgorithms

PAGE 70

b c Spectrograminnoiseofhearing-impairedforA)TypicalmildtosevereSNHLB)Linear-AmpliedspeechC)NR-RBCampliedspeech

PAGE 71

b c Spectrograminnoiseofnormal-hearingforA)Typicalsimulatednormal-hearingB)Linear-AmpliedspeechC)NR-RBCampliedspeech

PAGE 72

b SubjectiveMOSresultsA)AverageMOSscoresforthehearing-impairedB)Audiogramofthehearing-impairedlisteners 72

PAGE 73

b SubjectiveMOSresultsA)AverageMOSscoresforthenormal-hearingB)Audiogramofthenormal-hearinglisteners 73

PAGE 74

TheSIIscoresforsimulatednormal-hearingasafunctionofSNR Figure3-8. TheHINTscoresforRBC(A1),NR-RBC(A2)andDSL(A3)withvariationofltersizeforhearing-impaired 74

PAGE 75

TheHINTscoresforRBC(A1),NR-RBC(A2)andDSL(A3)withvariationofltersizefornormal-hearing 75

PAGE 76

Theauditorycortexundergoesphysiologicalandanatomicalchangesoveraperiodoftimewhenpresentedwithalteredauditorysignalinputs.InthecaseofapersonwithmildtosevereSNHL,thealteredauditorysignalwillhavelittleornohighfrequencies.Moore[ 68 ]providedareviewofstudiesshowingevidenceofplasticityintheauditorysystemoftheadultbrain.Becauseofthisbrainplasticity,ittakestimefortheaidedhearing-impairedlistenerstofullyusethehigh-frequencyinformationthattheywerepreviouslynotusedtohearing.Thisisknownastheacclimatizationeect.Thetimeperiodforacclimatizationisdenedastheperiodbetweenwhenthehearinglosswasnoticedandwhenthehearingaidwastted. Acclimatizationismorepronouncedfornewhearingaidusersandaectsthehearingaidttingprocedure.Forarsttimehearingaiduser,theaudiologistwillrstmeasuretheamountofloss,discussthevarioushearingaidoptions(styles,binauralormonoaural)andthenchooseamakeandmodelofahearing-aid.Earmoldmeasurementsofthepatientarethenmade.Thehearingaidwillarriveafter2-3weeksandthepatientwillbe`t'withthehearingaid.Fittingistheprocedurebywhichthehearingaidparametersaretunedforthepatient'shearingloss.Usually,eachhearingaidisaccompaniedbyaCDwiththecompany'sproprietaryttingsoftwarewhichalsoallowsselectingcertainestablishedttingprocedureslikeDSLandNAL.Aslongastheinitialttingparametersdonotcauseanydiscomfort,theywillnotbemodiedduringtherstvisit.Duringthefollowupvisits,theaudiologistwillne-tunetheparametersbasedonverbalfeedbackfromthepatient.Theverbalfeedbackisdescriptiveandindicateshowcertainsoundsarenowbeingperceivedwiththehearing-aid.Thepatientisnotaskedtoratethesoundsonanyscale.Thene-tuningprocessisrepeatedovermultiplevisitsuntilthehearingaiduserissatisedwithaparticulartting.Thefollowupvisitsareusuallyapartbyacoupleofweeks. 76

PAGE 77

ThethreemainpsychoacousticphenomenaassociatedwithSNHL,elevatedthreshold,loudnessrecruitment,andfrequencyblurring,lowerthespeechintelligibilityforhearing-impairedlistenersbydegradingthespeechcues.Ourpreviousresearchinthisarea[ 69 ]hasshownthatSIbasedttingmethodologiesshowbetterperformanceinnoiseandotherrealworldscenarios.Henceitisbettertousearatingscale,asshowninTable 4-1 ,basedonSIwhere1islowintelligibilityand5ishighintelligibility.Itisassumedthatthelistenersarenottrainedlisteners,thatthespeechstimuliaresentencesandthatthelistenershavenopriorcuesaboutthespeechstimuli. 77

PAGE 78

4.2.1HearingAidFittingDataCollection 4-2 showssomeofthettingparametersprovidedbythelistedPhonakHAs.AllHAsallowfrequencybasedne-tuningofthegainparametersandthemaximumpoweroutput(MPO)valuesatoneorseveralinputsignallevels.Somehearingaidsalsoallowmodicationofthecompressionparameters(CR,TK,TKknee)acrossfrequency. Figure 4-1 showsthevariationofthe50dBand80dBgainsfortheClaroHA,asprescribedbyDSL,betweentherstandlasttting.FortheClaro,morepeopletendtopreferhavinglessergainatthenal-ttingthanattheinitial-tting.ThisgoesagainstourhypothesisthatpatientswillslowlyincreasetheHFgain.Thiscouldbeexplainedby 78

PAGE 79

15 ]. Figure 4-2 showsthevariationofthe40dBand80dBgainsfortheSaviaHA,asprescribedbyNAL-NL1,betweentherstandlasttting.FortheSaviamorepeoplepreferhavinghighergainatthenal-ttingthanattheinitial-tting.Thiscouldbeexplainedbytheacclimatizationprocess. Figures 4-3 and 4-4 showthevariationofthecompressionparametersfortheClaroandSaviaHA.ItcanbeseenthatmorepeopletendtonotchangeTKforbothClaroandSavia.ForClaroHAs,thechangeincompressionratiodoesnotfollowanyconclusivetrendwhileforSaviathecompressionratioseemstoincreaseatthenaltting.ThiscouldbeexplainedbythefactthatNAL-NL1prescribeslesserCRatallfrequenciescomparedtotheothersuprathresholdmethods[ 15 ]. InordertostudythevariationofthealltheparametersforeachHA,thetrendinchangeforeachparameterwasrstaveragedacrossthefrequency.ThemaximumtrendacrossthisaveragewasthenpickedupandplottedforeachHAinFigures 4-5 to 4-9 FortheClarowhichwastbyDSL,fromFigure 4-6 itappearsthatthegainparametersdecreaseatthenalttingwhiletheTK,MPOparametersremainthesameandtheCRdecreaseatthenaltting. FortheNAL-NL1basedHAsitappearsthatthefrequencyaveragedgainparametersincreaseatthenaltting.ForSavia(Figure 4-5 ),Extra(Figure 4-7 ),andValeo(Figure 4-8 )thefrequencyaveragedcompressionparametersremainthesameacrossthettingstages.ForEleva(Figure 4-9 )andPerseo(Figure 4-10 )thefrequencyaveragedcompressionparametersdecreaseacrossthettingstages. 70 ]andto 79

PAGE 80

71 ].J.M.Kates[ 72 ]studiedthefeasibilityofusingNNstoderiveHAprescriptiveprocedures.KatesconcludedthatthefactorswhichaectedtheaccuracyofaNNbasedttingmethodwerethetrainingdatabasesize,thevariabilityofthepatient'sresponsesandthevariabilityofthehearingloss.Gao[ 73 ]proposedanewhearingprostheticssimilartotheoneproposedbyKateswhichwasbasedonNNsandfuzzylogic. RatherthanusingNNstoreplaceexistingttingalgorithms,weproposetousetheNNsalongwiththeexistingttingalgorithmstomodeltheacclimatizationeect.TheNNwastrainedonthemulti-sessionttingdatausingsupervisedlearning.Theinputwastheinitialttingdataandthedesiredwasthenalttingdata.Inadditiontothettingdata,someHAuserspecicparameterssuchaspatient'sage,degreeofhearingloss(HL)andthenumberofyearswithHLwereusedasinputsduringtraining. Figure 4-11 showsthestructureoftheNNusedintheacclimatizationmodelingsetup.TheNNusedtomodelacclimatizationwasthemulti-layerperceptron[ 74 ].Ithad7sigmoidalinputnodesand7linearoutputnodes.Thenumberofhiddennodeswasvarieduntilthelowesterrorwasobtainedandwasfoundtobe4.TrainingwascarriedoutusingtheLevenberg-Marquardt[ 75 ]methodwithaninitialgloballearningrate(LR)of0.01.Crossvalidationwasusedtostopthetraininginordertopreventover-training.TheNNwastrainedontheSaviadatawhichhadthemostnumberofdatapoints. 80

PAGE 81

4-12 to 4-17 showtheresultsoftrainingfortheSaviaHA.Inthegures,theredcurveshowstheMSEbetweentheinitialttingvaluesandthedesiredoroptimalvalues.Fromthegures,itcanbeobservedthatthegainspredictedbytheNNareclosertotheoptimalvaluesthanbyjustusingtheinitialvalues.Thereexistssomeerrorbetweenthepredictedandtheoptimalvaluesespeciallyatthelowfrequenciesandthismightberesolvedbyincreasingthetrainingdatabase. Fromthegures,itcanbeseenthattheneuralnetworksucceedsinmodelingthetrendwithacertainamountoferror.Theerrorcanbebroughtdownbyincreasingthetrainingdatabase.TheMSEoftheoptimumsettingisalwayslessthanthatwiththeinitialsetting. Table4-1: Speechintelligibilitybasedttingsatisfactionscale SpeechintelligibilityScore Speechisneverintelligible1Speechisrarelyintelligible2Speechissometimesintelligible3Speechisusuallyintelligible4Speechisalwaysintelligible5

PAGE 82

Phonakhearingaidttingparameters HearingAidsFittingInputFrequency(kHz)NoofNoofparameterslevel(dB)parametersPatients SaviaGain40[0.30.881.72.43.57]630Gain60[0.30.881.72.43.57]630Gain80[0.30.881.72.43.57]630CR-[0.30.881.72.43.57]630TK-[0.30.881.72.43.57]630MPO-[0.30.881.72.43.57]630

PAGE 83

b ComparisonofchangefrominitialtonalstageforClaroparameterA)50dBGainB)80dBGain 83

PAGE 84

b ComparisonofchangefrominitialtonalstageforSaviaparameterA)50dBGainB)80dBGain 84

PAGE 85

b ComparisonofchangefrominitialtonalstageforClaroparameterA)TKandB)CR 85

PAGE 86

b ComparisonofchangefrominitialtonalstageforSaviaparameterA)TKandB)CR 86

PAGE 87

PhonakSaviamaximumtrendinttingparametervariationaveragedacrossfrequencies Figure4-6. PhonakClaromaximumtrendinttingparametervariationaveragedacrossfrequencies 87

PAGE 88

PhonakExtramaximumtrendinttingparametervariationaveragedacrossfrequencies 88

PAGE 89

PhonakValeomaximumtrendinttingparametervariationaveragedacrossfrequencies 89

PAGE 90

PhonakElevamaximumtrendinttingparametervariationaveragedacrossfrequencies 90

PAGE 91

PhonakPerseomaximumtrendinttingparametervariationaveragedacrossfrequencies 91

PAGE 92

StructureoftheMLPusedtomodelmulti-sessionttingtrends 92

PAGE 93

b PhonakSavianeuralnetworkmodelingresultsfor40dBgainA)testontraindataandB)testonnewdata 93

PAGE 94

b PhonakSavianeuralnetworkmodelingresultsfor60dBgainA)testontraindataandB)testonnewdata 94

PAGE 95

b PhonakSavianeuralnetworkmodelingresultsfor80dBgainA)testontraindataandB)testonnewdata 95

PAGE 96

b PhonakSavianeuralnetworkmodelingresultsforCRparameterA)testontraindataandB)testonnewdata 96

PAGE 97

b PhonakSavianeuralnetworkmodelingresultsforTKparameterA)testontraindataandB)testonnewdata 97

PAGE 98

b PhonakSavianeuralnetworkmodelingresultsforMPOparameterA)testontraindataandB)testonnewdata 98

PAGE 99

TheUScensusbureaustatesthat50millionpeople,nearlyone-fthoftheUSpopulation,areinsomewaydisabled.Amongthis28millionpeoplearehearing-impaired.Withsuitabletechnologicalassistancethesemenandwomen(notablytheagingbabyboomers)mayprolongtheirindependenceandreducetheirneedforspecializedcare.Theirqualityoflifewillbeimproved.Whilenoproductcanbedesignedsothateverysinglepersonintheworldcanuseit,theintentistomaximizethepotentialofeachdevice.Thisdissertationproposesusingthecellphoneasanassistivelisteningdevice.Thiswillenablethe20millionhearing-impairedpeoplewhodonotusehearingaidsunderstandcellphonespeechbetter.Thiswillalsohelpnormal-hearinglistenersespeciallyinnoisesituations. Sensorineuralhearingloss(SNHL)ismostlycausedbydamagetotheouterhaircells(OHC).Soinparticular,thehearinglosscompensationalgorithmhastoreplacethedamagedouterhaircells.Anovelalgorithmbasedonthefrequencyindependentrelationshipbetweenhearinglossandrecruitmentwasdeveloped.Thisrecruitmentbasedcompensation(RBC)algorithmprescribesboththegainsandcompressionparameters.RBCshowsa15dBimprovementinspeechintelligibilitywhencomparedtothebaselinealgorithm(lineargain)forthehearing-impaired.ForthenormalhearingtheSNRdierencebetweenRBCandlineargainis6dB.ByprovidingfrequencydependentgainandcompressionthedecreasedaudibilityanddecreaseddynamicrangeaspectsofSNHLareovercome.Thisiscarriedoutbyprocessingthespeechsignalin14lterbanks.ThelterbankshavetheircentersequallyspacedinmelfrequencyandissodesignedkeepingtheauditoryprocessingoftheOHCsinmind. TheOHCslosetheirabilitiestoincreasethesensitivityofthecochleaforfrequenciestowhichtheaectedpartofthecochleaistuned.Psychoacoustically,thisshowsupasattertuningcurves.Becauseofthis,noisehasagreatermaskingeectfor 99

PAGE 100

Theauditorycortexundergoesphysiologicalandanatomicalchangesinthepresenceofalteredauditoryinput.Becauseofthisbrainplasticity,ittakessometimeforthehearing-impairedtolearntofullyusethehigh-frequencyinformationthattheywerepreviouslynotusedtohearing.Thisisknownastheacclimatizationeect.Multiple-sessiondataforanumberofPhonakhearingaidswascollectedandanalyzed.Neuralnetworkwereusedtomodeltheacclimatizationeectinhearingaidtting.Lowmeansquareerror(MSE)fortestonnewdatawasobtained. Threenovelalgorithmsallbasedontherationaleofmaximizingspeechintelligibilitywerecreated.RBCisaimedtowardshelpingbothnormal-hearingandunaidedhearing-impairedlistenersunderstandcellphonespeechbetter.NR-RBCisanoiserobusttechniquewhichenhancesthehearinginnoise.Acclimatizationmodelingisproposedtoimprovethequalityoftheinitialtfortheaidedhearing-impairedlistener.Thehearingenhancementalgorithmsweretestedextensivelyintermsofobjectiveandsubjectivemeasuresofspeechquality(SQ)andintelligibility(SI)onbothnormal-hearingandhearing-impairedsubjects 100

PAGE 101

101

PAGE 102

Thischapterdiscussestheresultsofthecellphonehearingevaluationsurvey.84hearing-impairedparticipantsanswered20hearingaidandcellphonerelatedquestionsandprovidedotherrelevantdemographicinformation.ThequestionnaireusedinthesurveyisavailableinAppendix B A-1 .Hearingaidusageexperiencevariedamongthesubjects.Subjectsrangedfrom23to89yearsofagewithameanageof66.32yearsold.Fifty-twomalesand32femalesparticipatedinthesurvey. 102

PAGE 103

A-2 indicatestheself-reportedunderstandingofcellphonespeechinquietandinnoiseforbothaidedandunaidedhearing-impairedparticipants. 103

PAGE 104

6 ]indicateshowhearingaidandcellphonemanufacturersshouldmeasuretheEMinterference.ThemeasurementsaretranslatedintoM-ratingsinwhichthehigherratingsindicatealowerlikelihoodofinterference.HandsetsthatreceiveahearingaidcompatibilityratingofM3orhigherhavemetorsurpassedFCCrequirement.TheFCChasrequiredthatcellphonecompanieshave50%oftheirhandsetsmeetaminimumANSIratingofM3orbetterbyFebruary18,2008. FigureA-1. Degreeofhearingimpairmentamongsurveyparticipants 104

PAGE 105

Degreeofhearingimpairmentforsurveyparticipants 105

PAGE 106

1. Isyourhearingloss: (a) Mild-Alittledicultyhearingspeech (b) Moderate-Moredicultyhearingspeech (c) Severe-Alotofdicultyhearingspeech (d) Profound-Sobadthathearingaidsmaynothelp 2. DoyouuseHearingaids? (a) Yes (b) No 3. YourLeftEarHearingaidis: (a) None (b) ITE-InTheEar (c) BTE-BehindtheEar (d) CIC-CompletelyInCanal (e) Other 4. YourRightEarHearingaidis: (a) None (b) ITE-InTheEar (c) BTE-BehindtheEar (d) CIC-CompletelyInCanal (e) Other 5. WhatisthemakeandmodelofyourHearingaid? 6. Checkwhicheveristrue: (a) Icanunderstandspeechoverthetelephonewithmyhearingaid 106

PAGE 107

Icanunderstandspeechoverthetelephoneinnoisyenvironmentswithmyhearingaid (c) Icanunderstandspeechoverthetelephonewithoutmyhearingaid 7. DoesyourHearingaidhaveatelecoil? (Afeatureavailableonmanyhearingaidsisthetelecoilort-switchort-coilwhichaidsinhearingtelephoneconversations.) (a) Yes (b) No 8. IfyourHearingaidhasatelecoil,doyouuseyourtelecoilwithyourcellphone? (a) Yes (b) No (c) Idon'tusecellphones 9. Doyoufrequentlyusecellphones? (a) Yes (b) No 10. Checkwhicheveristrue:Whathasbeenyourgeneralexperiencewithcellphones? (a) Icanunderstandspeechonthecellphone (b) Icanunderstandspeechonthecellphonesinnoisyenvironments (c) Ihavetroublehearingmycellphonering (d) Icannotunderstandspeechonthecellphonesbecause: Whatisthemakeandmodelofthecellphoneyouuse? (ExampleMake=MotorolaModel=v300) 12. IsitaFlipphone? (a) Yes 107

PAGE 108

No 13. Doyouuseaneckloopforcellphoneconversations? (Aneckloopisanecklace-sizeloopofwirewornaroundtheneckofsomeonewhohasahearingaidwithatelecoil.) (a) Yes (b) No 14. WhichCellphoneNetworkproviderdoyouuse? (a) Cingular (b) Tmobile (c) Verizon (d) Sprint (e) Other 15. Howmanyminutespermonthdoyoutalkonthecellphone? (a) Justforemergencies (b) (c) 200-400 (d) 400+ (e) Don'tknow 16. Checkwhicheveristrue: (a) Iwishmycellphonewouldbelouder (b) MycellphonecreatenoiseinmyHearingaid (c) Thisnoisepreventsmefromusingmycellphone (d) ApersontalkingnearmeonacellphoneproducesnoiseinmyHearingaid 17. DoesyourcellphonebacklightcausenoiseinyourHearingaid? (a) Yes (b) No (c) Notnoticed 108

PAGE 109

WouldyoubeinterestedinacombinationHearingaidandcellphone? (a) Yes (b) No 19. Isthereenoughinformationavailableonlinetohelpyouchoosethecellphonerightforyou? (a) Yes (b) No 20. Whatinformationregardingcellphonesandhearingaidswouldyouliketoseeavailable? 109

PAGE 110

Inordertobetterunderstandtheneedsofthehearing-impairedpopulationtwofocusgroupswithhearing-impairedparticipantswereconducted.Thischapterprovidesasynopsisofthemainthemeswhichwereobservedatthetwofocusgroup. C.2.1AidedCellPhoneListeningProblems 110

PAGE 111

111

PAGE 112

Thehumanear,theorganofhearingandbalance,isthebestexampleofanengineeringmasterpiece.Itenablesustohearsoundsrangingfrom20Hz-20kHzwithadynamicrangeof0-130dB.Anatomically,thehumanearcanbedividedintothreeparts:theouterear(pinna,auditorycanal),themiddleear(ossicles,eardrum,ovalwindow)andtheinnerear(cochlea,semicircularcanals).Figure D-1 ,showstheinternalstructureoftheear. Thehumanpinnaissymmetric,pointsforwardandhasacurvedstructure.Itfocusessoundpressurewavesintotheauditorycanal.Thestructureofthepinnaaidsinsoundlocalization.Horizontallocalizationismadepossiblebecauseofinter-auraltimeandintensitydierenceswhileverticallocalizationismadepossiblebecauseofthefrequencyshapingofthesoundbythecurvesofthepinna.Theauditorycanalwhichisaround2.7cminlengthactsasa1 4waveclosedtuberesonatorandbooststhe2-5kHzregionby15dB.Thebroadresonancepeakisbecausetheclosedendoftheauditorycanalistheplianteardrumortympanicmembrane. Themiddleearconsistsoftheeardrum,theossicles(malleus,incusandstapes)andtheovalwindow.Theossiclestranslatethesoundpressurewavetovibrationsinthecochlea.Theyprovideimpedancematchingsincetheacousticimpedanceoftheuidinthecochleaisabout4000timesthatofair.Theossiclesprovideamplicationbyleveraction(3x)andbytermsofareaamplication(15x).Theossiclesalsohelpblockveryloudlowfrequencysoundsbymeansofthestapediusreex.Thestapestransmitsvibrationstotheovalwindowontheoutsideofthecochlea.Thismovestheuidinthecochleawhichformsatravelingwave,withapeakatonelocationalongthelengthofthecochlea.Conductivehearinglossoccurswhensoundisnotconductedecientlytothecochleathroughtheossicles.Thecochleaisintactforconductivehearingloss. 112

PAGE 113

D-2 ).Threerowsconsistofouterhaircells(OHCs)andonerowconsistsofinnerhaircells(IHCs).Eachhaircellhashundredsoftinystereocilia.ThestereociliaoftheOHCsareembeddedinthetectorialmembrane.ThetravelingwavebendstheIHC'sstereociliaandthisproducesactionpotentials. TheaerentIHCstransmitsignalstothebrainviatheauditorynerve.TheeerentOHCsreceiveneuralinputfromthebrainwhichinuencesitsmotilityaspartofthecochlea'smechanicalpre-amplier.TheOHCshelptheIHCssensesoftsoundsbysharpeningthepeakofthetravelingwave.Basedonfeedbackfromthebrain,theOHCsmechanicallyshrinkpullingdownthetectorialmembrane.OncetheIHCsciliabrushesagainstthetectorialmembrane,actionpotentialsaregenerated.Inadditiontoamplifyingsoftsounds,OHCsalsosharpenthepeakofthetravelingwaveresultinginhighfrequencyresolution.Sensorineuralhearinglossoccursbecauseofdamagetothehaircells.Hearinglossduetoagingorpresbycusisisatypeofsensorineuralhearinglossandoccursduetowearandtearofthehaircells.Ahearinglossupto60dBHLcanbeconsideredtobebecauseofOHCsandanythinghigherthan80dBHLisbecauseofbothIHCandOHCdamage.Figure D-3 ,showsthehaircellsforapersonwithnormal-hearingandapersonwithseverehearingloss.DamagetotheOHCsindicatesalowerfrequencyresolutionandtheinabilitytohearsoftsoundswhiledamagetotheIHCsindicatesthatthesoundinformationisnotbeingsenttothebrain. ThereisatonotopicmappingalongthelengthoftheBM(Figure D-4 ).EachpartoftheBMhasacharacteristicfrequencyofmaximumvibrationwhichdependsonitsrelativeposition.Atthebaseofthecochlea(neartheovalwindow),theBMisstiandthinand 113

PAGE 114

FigureD-1. Structureofthehumanear[ 76 ] 114

PAGE 115

HaircellsoftheOrganofcorti[ 77 ] b ElectronmicrographoftheorganofcortiforA)Normal-hearingB)Severehearingloss[ 78 ] 115

PAGE 116

Frequencysensitivityofthebasilarmembrane 116

PAGE 117

[1] S.Arlinger,\Negativeconsequencesofuncorrectedhearingloss{areview,"Interna-tionalJournalofAudiology,vol.42,pp.S17{20,2003. [2] \CTIAsemi-annualwirelessindustrysurvey,"(updated2007;citedDecember2007).[Online].Available: http://les.ctia.org/pdf/CTIA Survey Mid Year 2007.pdf ,CTIA,Washington,DC. [3] Statisticsabouthearingdisorders,earinfections,anddeafness.(updatedJanuary2007;citedDecember2007).[Online].Available: http://www.nidcd.nih.gov/health/statistics/hearing.asp .NIDCD.Bethesda,MD. [4] M.C.Killion,\TheSINreport:Circuitshaven'tsolvedthehearing-in-noiseproblem,"TheHearingJournal,vol.50,p.10,1997. [5] M.Skopec,\Hearingaidelectromagneticinterferencefromdigitalwirelesstelephones,"IEEETransactionsOnRehabilitationEngineering,vol.6,pp.235{239,1998. [6] [7] J.Rodman,\Theeectofbandwidthonspeechintelligibility,"WhitePaper,Polycom,2003. [8] B.C.J.Moore,\Perceptualconsequencesofcochlearhearinglossandtheirimplicationsforthedesignofhearingaids,"EarandHearing,vol.17,pp.133{161,1996. [9] T.Venema,CompressionforClinicians.SanDiego,CA:SingularPublishingGroup,1999. [10] Noiseinducedhearinglossfacts.(updated2007;citedDecember2007).[Online].Available: http://www.hei.org/news/facts/nihlfact.htm .HEI.LosAngeles,CA. [11] C.Portnu.SafelisteninglevelsforappleiPod.(updatedOctober2006;citedDecember2007).[Online].Available: http://www.physorg.com/news80304823.html .Boulder,CO. [12] [13] [14] J.W.HallandH.G.Mueller,Audiologists'DeskReferenceVolumeI:DiagnosticAudiologyPrinciplesProceduresandProtocols.SanDiego,CA:SingularPublishingGroup,1996. 117

PAGE 118

H.Dillon,HearingAids.NewYork:ThiemeMedicalPublishers;1stedition,2001. [16] M.C.Killion,\SNRloss:Icanhearwhatpeoplesay,butican'tunderstandthem,"TheHearingReview,vol.4,pp.8{14,1997. [17] J.H.MacraeandH.Dillon,\Gain,frequencyresponse,andmaximumoutputrequirementsforhearingaids,"JournalofRehabilitationResearchandDevelopment,vol.33,no.4,pp.363{76,1996. [18] J.C.SteinbergandM.B.Gardner,\Thedependenceofhearingimpairmentonsoundintensity,"JournaloftheAcousticalSocietyofAmerica,vol.9,no.1,pp.11{23,1937. [19] B.A.Henry,C.W.Turner,andA.Behrens,\Spectralpeakresolutionandspeechrecognitioninquiet:Normalhearing,hearingimpaired,andcochlearimplantlisteners,"JournaloftheAcousticalSocietyofAmerica,vol.118,pp.1111{1121,2005. [20] B.R.GlasbergandB.C.J.Moore,\Psychoacousticabilitiesofsubjectswithunilateralandbilateralcochlearhearingimpairmentsandtheirrelationshiptotheabilitytounderstandspeech,"ScandinavianAudiology,vol.32,pp.1{25,1989. [21] E.ZwickerandK.Schorn,\Psychoacousticaltuningcurvesinaudiology,"Audiology,vol.17,pp.120{40,1978. [22] E.M.DanaherandJ.M.Pickett,\Somemaskingeectsproducedbylow-frequencyvowelformantsinpersonswithsensorineuralhearingloss,"JournalofSpeechandHearingResearch,vol.18,pp.261{71,1975. [23] J.R.DubnoandA.B.Schaefer,\Frequencyselectivityforhearing-impairedandbroadband-noise-maskednormallisteners,"QuarterlyJournalofExperimentalPsychology,vol.43,pp.543{64,1991. [24] E.M.Danaher,M.P.Wilson,andJ.M.Pickett,\Backwardandforwardmaskinginlistenerswithseveresensorineuralhearingloss,"Audiology,vol.17,pp.324{38,1978. [25] S.Hygge,J.Ronnberg,andB.Larsby,\Normal-hearingandhearing-impairedsubjects'abilitytojustfollowconversationincompetingspeech,reversedspeech,andnoisebackgrounds,"JournalofSpeechandHearingResearch,vol.35,pp.208{15,1992. [26] B.C.J.MooreandB.R.Glasberg,\Simulationoftheeectsofloudnessrecruitmentandthresholdelevationontheintelligibilityofspeechinquietandinabackgroundofspeech,"JournaloftheAcousticalSocietyofAmerica,vol.94,pp.2050{2062,Oct.1993. [27] Y.NejimeandB.C.J.Moore,\Simulationoftheeectofthresholdelevationandloudnessrecruitmentcombinedwithreducedfrequencyselectivityontheintelligibilityofspeechinnoise,"JournaloftheAcousticalSocietyofAmerica,vol.102,no.1,pp.603{615,1997. 118

PAGE 119

P.DuchnowskiandP.M.Zurek,\Villchurrevisited:Anotherlookatautomaticgaincontrolsimulationofrecruitinghearingloss,"JournaloftheAcousticalSocietyofAmerica,vol.98,no.6,pp.3170{3181,1995. [29] P.W.Barnett,\Overviewofspeechintelligibility,"inProceedingsoftheInstituteofAcoustics,vol.21,1999. [30] K.Kasturi,P.Loizou,M.Dorman,andT.Spahr,\Theintelligibilityofspeechwithholesinthespectrum,"JournaloftheAcousticalSocietyofAmerica,vol.112,2002. [31] N.R.FrenchandJ.C.Steinberg,\Factorsgoverningtheintelligibilityofspeechsounds,"JournaloftheAcousticalSocietyofAmerica,vol.19,p.90,1947. [32] J.D.Miller,\Eectsofnoiseonpeople,"JournaloftheAcousticalSocietyofAmer-ica,vol.56,pp.724{764,1974. [33] S.Fidell,R.Horonje,andS.Teeteller,\Eectivemaskingbandwidthsatlowfrequencies,"JournaloftheAcousticalSocietyofAmerica,vol.73,pp.628{38,1983. [34] G.ParikhandP.Loizou,\Theinuenceofnoiseonvowelandconsonantcues,"JournaloftheAcousticalSocietyofAmerica,vol.118,pp.3874{3888,2005. [35] L.M.JenstadandP.E.Souza,\Quantifyingtheeectofcompressionhearingaidreleasetimeonspeechacousticsandintelligibility,"JournalofSpeech,LanguageandHearingResearch,vol.48,pp.651{67,2005. [36] R.V.Shannon,F.Zeng,andV.Kamath,\Speechrecognitionwithprimarilytemporalcues,"Science,vol.270,pp.303{304,1995. [37] Hearinginnoisetest.(updatedJune2005;citedDecember2007).[Online].Available: http://www.californiaearinstitute.com/audiology/hint.php .CaliforniaEarInstitute.PaloAlto,CA. [38] [39] [40] MOSresultsonDVSIAMBEVocoders.(updated2006;citedDecember2007).[Online].Available: http://www.dvsinc.com/papers/toll.htm .DVSI.Westford,MA. [41] Babyboomerhearinglossstudy.(updated2006;citedDecember2007).[Online].Available: http://www.clarityproducts.com/boomer/ .ClarityandtheEARfoundation.Chattanooga,TN. [42] E.ZwickerandH.Fastl,Psychoacoustics,factsandmodels.NewYork:SpringerVerlag,1990. 119

PAGE 120

K.W.Berger,E.N.Hagberg,andD.M.Varavvas,\Comparisonofhearingthresholdlevelandmostcomfortableloudnesslevelinhearingaidprescription,"EarandHearing,vol.3,pp.30{3,1982. [44] G.KeidserandF.Grant,\Comparingloudnessnormalization(IHAFF)withspeechintelligibilitymaximization(NAL-NL1)whenimplementedinatwo-channeldevice,"EarandHearing,vol.22,pp.501{515,2002. [45] C.V.Pavlovic,\Derivationofprimaryparametersandprocedeuresforuseinspeechintelligibilitypredictions,"JournaloftheAcousticalSocietyofAmerica,vol.82,pp.413{422,1987. [46] L.E.Humes,\Evolutionofprescriptivettingapproaches,"AmericanJournalofAudiology,vol.5,pp.19{23,1995. [47] \Prescriptionofgain/output(POGO)forhearingaids,"HearingInstruments,vol.34,p.16,1983. [48] D.ByrneandH.Dillon,\Thenationalacousticlaboratories'(nal)newprocedureforselectingthegainandfrequencyresponseofahearingaid,"EarandHearing,vol.7,pp.257{265,1986. [49] M.C.Killion,\Loudness-databasisforFIG6hearing-aidttingtargets,"JournaloftheAcousticalSocietyofAmerica,vol.98,p.2927,1995. [50] R.M.Cox,\Ahands-ondiscussionoftheIHAFFapproach,"TheHearingJournal,1995. [51] R.C.Seewald,M.Ross,andM.K.Spiro,\Selectingamplicationcharacteristicsforyounghearing-impairedchildren,"EarandHearing,vol.6,pp.48{53,1985. [52] R.SeewaldandL.Cornelisse,\AsoftwareimplementationofthedesiredsensationlevelDSL[i/o]methodforttinglineargainandwidedynamicrangecompression,"Usersmanual,HealthcareResearchUnit,UniversityofWesternOntario,London,Ontario,Canada,1997. [53] E.Villvhur,\Signalprocessingtoimprovespeechintelligibilityinperceptivedeafness,"JournaloftheAcousticalSocietyofAmerica,vol.53,no.6,pp.1646{1657,1973. [54] C.S.HallpikeandJ.D.Hood,\Observationsupontheneurologicalmechanismoftheloudnessrecruitmentphenomenon,"ActaOtolaryngol,vol.50,pp.472{86,1959. [55] F.Miskolczy-Fodor,\Relationbetweenloudnessanddurationoftonalpulses.iii.responseincasesofabnormalloudnessfunction,"JournaloftheAcousticalSocietyofAmerica,vol.32,pp.486{492,1960. 120

PAGE 121

A.J.OxenhamandS.P.Bacon,\Cochlearcompression:perceptualmeasuresandimplicationsfornormalandimpairedhearing,"EarandHearing,vol.24,no.5,pp.352{366,2003. [57] C.Grasso,D.Quaglia,andL.Farinetti,\Wide-bandcompensationofpresbycusis,"inIASTEDInternationalConferenceonSignalProcessing,PatternRecognition,andApplications,Greece,2003,pp.104{108. [58] B.C.J.Moore.AnewCDfordiagnosisofdeadregionsinthecochlea-theTEN(HL)CD.(updated2004;citedDecember2007).[Online].Available: http://hearing.psychol.cam.ac.uk/dead/TENCD.html .DepartmentofExperimentalPsychology.Cambridge,England. [59] Q.Yang,\Hearingenhancementalgorithmimplementation,"UniversityofFlorida,MotorolaInternalDocument,December2006. [60] R.J.NiederjohnandD.G.Mliner,\Theeectsofhigh-passandoflow-passlteringupontheintelligibilityofspeechinwhitenoise,"JournalofAudiologyResearch,vol.22,pp.189{99,1982. [61] J.CooperandB.Cutts,\Speechdiscriminationinnoise,"JournalofSpeechandHearingResearch,vol.14,pp.332{337,1971. [62] M.A..PickenyandN.I..Durlach,\Speakingclearlyforthehardofhearingii:acousticcharacteristicsofclearandconversationalspeech,"JournalofSpeechandHearingResearch,vol.29,pp.434{445,1986. [63] I.Cohen,\Noisespectrumestimationinadverseenvironments:Improvedminimacontrolledrecursiveaveraging,"IEEETransactionsonSpeechandAudioProcessing",year="2002",volume="11",pages=466-475,. [64] K.Maleh,A.Samouelian,andP.Kabal,\Frame-levelnoiseclassicationinmobileenvironments,"inProceedingsofIEEEConferenceonAcoustics,SpeechandSignalProcessing,Phoenix,AZ,1999,pp.237{240. [65] N.Virag,\Singlechannelspeechenhancementbasedonmaskingpropertiesofthehumanauditorysystem,"IeeeTransactionsOnSpeechAndAudioProcessing,vol.7,no.2,pp.126{137,1999. [66] J.D.Johnston,\Transformcodingofaudiosignalsusingperceptualnoisecriteria,"IEEEJournalonSelectedAreasinCommunications,,vol.6,pp.314{323,1988. [67] M.R.SchroederandB.S.Atal,\Optimizingdigitalspeechcodersbyexploitingmaskingpropertiesofthehumanear,"JournaloftheAcousticalSocietyofAmerica,vol.66,p.16471652,1979. [68] C.I.Moore,M.B.Browning,andG.M.Rose,\Hippocampalplasticityinducedbyprimedburst,butnotlong-termpotentiation,stimulationisimpairedinareaCA1ofagedscher-344rats,"Hippocampus,vol.3,pp.57{66,1993. 121

PAGE 122

M.Ramani,J.G.Harris,andA.Holmes,\Comparisonofhearinglosscompensationalgorithmsusingspeechintelligibilitymeasures,"inJournaloftheAcousticalSocietyofAmerica,vol.117,Vancouver,CA,April2005,p.2604. [70] F.Feldbusch,\Identicationofnoisesbyneuralnetsforapplicationinhearingaids,"inProceedingsoftheSecondInternationalICSCSymposiumonNeuralComputation,Berlin,May2000,pp.505{510. [71] O.Arnsten,H.Koren,andT.Strom,\Hearing-aidpre-selectionthroughaneuralnetwork,"ScandinavianAudiology,vol.25,pp.259{262,1996. [72] J.M.Kates,\Onthefeasibilityofusingneuralnetstoderivehearing-aidprescriptiveprocedures,"JournaloftheAcousticalSocietyofAmerica,vol.98,no.1,pp.172{180,1995. [73] R.Gao,Y.Liu,andS.Basseas,\Nextgenerationhearingaiddevices,"inProceedingsofthe11thIEEEInternationalConferenceonToolsWithArticialIntelligence,vol.117,Chicago,IL,April1999,pp.327{331. [74] D.W.Ruck,\Themultilayerperceptronasanapproximationtoabayesoptimaldiscriminantfunction,"IEEETransactionsonNeuralNetworks,vol.1,no.4,pp.296{298,1995. [75] I.A.Manolis,\Abriefdescriptionofthelevenberg-marquardtalgorithm,"(updatedFebruary2005;citedDecember2007).[Online].Available: http://www.ics.forth.gr/lourakis/levmar/levmar.pdf ,InstituteofComputerScience,Crete,Greece. [76] D.Packard.Humanear.(Updated2006;CitedDecember2007).[Online].Available: http://commons.wikimedia.org/wiki/Image:HumanEar.jpg .Stanford,CA. [77] R.FettiplaceandC.Hackney,\Thesensoryandmotorrolesofauditoryhaircells,"NatureReviewsNeuroscience,vol.7,pp.19{29,2006. [78] A.S.Lab,\Electronmicrographsofnormalanddamagedcochlea,"(updated2005;citedDecember2007).[Online].Available: http://www.sickkids.ca/AuditoryScienceLab/section.asp?s=Hearing+Loss&sID=3243 ,UniversityofToronto,Toronto,Canada. 122

PAGE 123

MeenaRamaniwasborninthesmalltownofPalakkad,KeralainIndia,onJune1,1981.ShereceivedherbachelorsdegreeinelectronicsandcommunicationengineeringfromKumaragurucollegeoftechnologyin2002.ShereceivedhermastersdegreeinelectricalandcomputerengineeringfromtheUniversityofFloridain2004.ShejoinedtheComputationalNeuroEngineeringLaboratory(CNEL)attheUniversityofFloridain2003andhassincebeenworkingundertheguidanceofDr.JohnG.Harris.HerPhDresearchhasbeenfundedbyMotorola.Herresearchinterestsincludespeechandhearingenhancement,noisereduction,spikebasedcomputationandcochlearimplants.Duringthecourseofherstudies,MeenahasworkedasasoftwaredevelopmentandtestinginternatMicrosoft,WAandasaresearchscientistwithSoundID,CA.AftergraduationMeenawilljoinSoundIDfulltimeasaresearchscientist. 123