<%BANNER%>

Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India

Permanent Link: http://ufdc.ufl.edu/UFE0021081/00001

Material Information

Title: Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India Possible 500 Ma Downward Revision in the Age of the Purana Basins?
Physical Description: 1 online resource (87 p.)
Language: english
Creator: Malone, Shawn J
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: detrital, geochronology, paleomagnetism, precambrian, vindhyan
Geological Sciences -- Dissertations, Academic -- UF
Genre: Geology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The utility of paleomagnetic data gleaned from the Bhander and Rewa groups of the Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and ?13C correlations with the global curves and possible Ediacara fossil finds in the Lakheri-Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar Supergroup suggest that the Upper Vindhyan sequence is up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa groups yields a paleomagnetic pole at 43.6 N, 213.8 E (alpha95 = 4.1). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8 N, 212.5 E, alpha95=15.3). Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at ~1020 Ma. Comparison between the Upper Bhander sandstone and known Neoproterozoic-Cambrian Marwar sandstone detrital suites shows virtually no similarities. The main 840-920 Ma peak and secondary Malani age peak at 780 Ma are totally absent in the Upper Bhander. This suggests an age for the Upper Bhander > 771 Ma, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at ~1000 Ma, several intriguing possibilities arise. The Bhander-Rewa paleomagnetic pole allows for a reconstruction of India at 1,000 Ma that overlaps with the 1073 +/- 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9degrees N, 210.2degrees E, alpha95= 12.2) and the Australian 1071 +/- 8 Ma Bangemell Basin sills and the ~1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period. Apparent correlations exist between the Bhander-Rewa paleomagnetic pole and those from the Australian Mundine Well dykes (755 +/- 3 Ma), 610-590 Ma Elatina and Yaltipena formations and the 547 +/- 4 Ma Sinyai dolerite pole of the Congo craton; however careful examination suggest that these comparisons are not robust and likely do not represent a remagnetization of the Upper Vindhyan.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Shawn J Malone.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Meert, Joseph G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021081:00001

Permanent Link: http://ufdc.ufl.edu/UFE0021081/00001

Material Information

Title: Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India Possible 500 Ma Downward Revision in the Age of the Purana Basins?
Physical Description: 1 online resource (87 p.)
Language: english
Creator: Malone, Shawn J
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: detrital, geochronology, paleomagnetism, precambrian, vindhyan
Geological Sciences -- Dissertations, Academic -- UF
Genre: Geology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The utility of paleomagnetic data gleaned from the Bhander and Rewa groups of the Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and ?13C correlations with the global curves and possible Ediacara fossil finds in the Lakheri-Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar Supergroup suggest that the Upper Vindhyan sequence is up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa groups yields a paleomagnetic pole at 43.6 N, 213.8 E (alpha95 = 4.1). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8 N, 212.5 E, alpha95=15.3). Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at ~1020 Ma. Comparison between the Upper Bhander sandstone and known Neoproterozoic-Cambrian Marwar sandstone detrital suites shows virtually no similarities. The main 840-920 Ma peak and secondary Malani age peak at 780 Ma are totally absent in the Upper Bhander. This suggests an age for the Upper Bhander > 771 Ma, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at ~1000 Ma, several intriguing possibilities arise. The Bhander-Rewa paleomagnetic pole allows for a reconstruction of India at 1,000 Ma that overlaps with the 1073 +/- 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9degrees N, 210.2degrees E, alpha95= 12.2) and the Australian 1071 +/- 8 Ma Bangemell Basin sills and the ~1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period. Apparent correlations exist between the Bhander-Rewa paleomagnetic pole and those from the Australian Mundine Well dykes (755 +/- 3 Ma), 610-590 Ma Elatina and Yaltipena formations and the 547 +/- 4 Ma Sinyai dolerite pole of the Congo craton; however careful examination suggest that these comparisons are not robust and likely do not represent a remagnetization of the Upper Vindhyan.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Shawn J Malone.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Meert, Joseph G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0021081:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101114_AAAABC INGEST_TIME 2010-11-14T07:12:31Z PACKAGE UFE0021081_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 4240 DFID F20101114_AAALWJ ORIGIN DEPOSITOR PATH malone_s_Page_68.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
59e59fec6bb2fd7310f734585973823d
SHA-1
c915ed4ed9cc803d3f734200be63de75b4d7e30a
3629 F20101114_AAALRM malone_s_Page_04thm.jpg
9b18a9709be5e6c73ef328b1511882f5
c3535a6ffefbf5f7f6cd911e3840ed39fddabcc7
30211 F20101114_AAALCU malone_s_Page_62.jpg
c4e05550d26f759e9f3168bf5e8dafb1
687a7c71188dc55a4a46f304c2cf2dce41671161
56224 F20101114_AAALMO malone_s_Page_55.pro
83c384123d64a060ba93e7bb06e9837a
81010ca18d506f2e94de31e49cd7082f0bae640e
1053954 F20101114_AAALHR malone_s_Page_15.tif
1e4e66b2e7ea535789ce64cf308d1a05
66c141c7c12adc977ccea1301d49ecbc0625e16b
1520 F20101114_AAALWK malone_s_Page_68thm.jpg
f947d5134aa2fc0d5b51ac48f434b72d
78a084df4f77b14d2b66c62a81173dc4f2f65ea0
44180 F20101114_AAALCV malone_s_Page_63.jpg
2f34e3b738b309afccd1a61f2060cb5c
df27e6e860b41dbed83285efb3ac64fe8952811c
53497 F20101114_AAALMP malone_s_Page_56.pro
179122de35e147feb4ca4ff0d96dd429
e693123059a57c2e85e9490675c1a422b76e3d10
F20101114_AAALHS malone_s_Page_16.tif
92344d3ce4e8d12e7699022e4d8210e9
8455c88299c7f3da206fd2e2e8360045615bc8ac
14391 F20101114_AAALWL malone_s_Page_69.QC.jpg
c495a8ca91250978d172daa93b26355b
65de7eebe33392a60c7e37b2cd843479c0f169c3
19491 F20101114_AAALRN malone_s_Page_05.QC.jpg
19bfa6b41affa708e06cf41bc430dc8a
a74e2f2fdf42bc676c733def27576f5333fb6bf5
56060 F20101114_AAALCW malone_s_Page_64.jpg
506aaa8e55c165040c1a09a859f30296
898073aa7af81e5aa97c29a1188c72079c9b3062
58942 F20101114_AAALMQ malone_s_Page_57.pro
c56c0492f4508cba5632a6df1086dd63
089c40a2670ea8fd7773ba105abcfab52c0b5f9f
25271604 F20101114_AAALHT malone_s_Page_17.tif
05c1a6ce45417d1d4db0ffbc52836fde
fde0959de16126f98c1dee444373fd7b1dfd9db9
4126 F20101114_AAALWM malone_s_Page_69thm.jpg
c468beddc63b33797f1835ef4be6a016
dc0557dff1e422a257471ce8ad27d23054d188e6
4958 F20101114_AAALRO malone_s_Page_05thm.jpg
378cc36005300ac2f5c30fffa944eada
d507cd8edff9c343acdbb40f031a8a385f977f4e
42356 F20101114_AAALCX malone_s_Page_65.jpg
35e5110ca2de1d9d1b554640a63da454
27d4a9afb7d4206cde0e5c299803b0939870b687
51576 F20101114_AAALMR malone_s_Page_58.pro
4a05d7c83c425e565bdcafc9aa62ce85
74ea11cc90e7282615c7d366dd2d8f31e66af929
F20101114_AAALHU malone_s_Page_18.tif
762ff635b2e14e77bc181d2ab5f86170
ab0c04da512a4bc23e8b7c6c04413446452ba4e4
16009 F20101114_AAALWN malone_s_Page_70.QC.jpg
7d3149fb5788a517266e2958bf6c8309
e9968625c574b8185adb3c87b555bf1d13295274
6576 F20101114_AAALRP malone_s_Page_06.QC.jpg
8e8e53ed13c20f0304133efc6ba17000
ec7d6f0d9388a5294080286b3e4845505237784a
78589 F20101114_AAALCY malone_s_Page_66.jpg
574a17382e9e0fb4de30fd70a10cd385
9b65b6f1b266c8470ce7f29dfe8e07d0e3954d22
57248 F20101114_AAALMS malone_s_Page_59.pro
5809cd73a8d33d2b397883adb5062e49
67e7122c8759dc2c696541d1dfeba701986d3bf2
F20101114_AAALHV malone_s_Page_19.tif
934e8b32fc0dbf19bfb80657e2708afd
b77f480d9199aee1f279f95d14a907f287a3a1e5
4568 F20101114_AAALWO malone_s_Page_70thm.jpg
55325e8248059de92b590b3a1b6e62f0
7c20be85e6b520f9f7f532cc54663646a96f3137
2271 F20101114_AAALRQ malone_s_Page_06thm.jpg
63cfc52d447003061a416f9c42ce97c0
0201d7251eb5a8634cf18b54c985f4831f78a15e
73655 F20101114_AAALCZ malone_s_Page_67.jpg
af595ab9ba71c9bb9b5aef775eb24ed3
69a29869eb71170e7d431bcf93d2d62ed0e03577
56357 F20101114_AAALMT malone_s_Page_60.pro
8e372811e0104498ac1cdc236485fdc8
1286c8c5d2b2872ade2be4ee04bd927e679c3cb0
F20101114_AAALHW malone_s_Page_20.tif
284aff37f779ef448f1a52ecaed2361f
0c8cebaca1bf33e1a607fb50d9d9c626d3e9d347
16056 F20101114_AAALWP malone_s_Page_71.QC.jpg
88f5e2144c0d9d1a86fffd4d4892f87c
2827039226950e4e22b8293e7389159dea6ca145
7593 F20101114_AAALRR malone_s_Page_07.QC.jpg
6318dc87b673a7293e8c6ac79048e16b
0f1665d3487df7273f6a7919fe485286bc2823c1
8232 F20101114_AAALMU malone_s_Page_61.pro
8f4ed693a917a92ca16b7557708190b5
4e4b3193640b0d12906fa4618890913c4fd18432
F20101114_AAALHX malone_s_Page_21.tif
8c8823a21d6557e3cb1f536cf23277a1
9a675d4cbc056288111e73f924cc27bc623ce818
4479 F20101114_AAALWQ malone_s_Page_71thm.jpg
40267705ee2e250b091bdd79468b2540
69fbf0dde0755294811f264453a7af4793771d09
2290 F20101114_AAALRS malone_s_Page_07thm.jpg
cabe671c25ce1fe08c2c696806b4b8e7
5cad2c8579c543748a920d9235731f143b1e927c
44124 F20101114_AAALMV malone_s_Page_62.pro
5b59451fd876de3c0bdbcb77e4a403a1
4c8782c7c3dc3a39a761b52a29e2bfe07c78b6db
119573 F20101114_AAALFA malone_s_Page_33.jp2
661abb7e3fdb6f120f414971a9d567e1
3fc3bc8d01ab3821f30c1a66b21ccc6945b75fb6
F20101114_AAALHY malone_s_Page_22.tif
450f5404bed20560dc50129ab326bc9c
fb6e16460e5a6fb71cb3bdb9ebce6f14ab611d82
16442 F20101114_AAALWR malone_s_Page_72.QC.jpg
a79a5c849c31f99ced2d998919ca784c
c74b8d7217943d761c7cab6c3884d5f2438a1551
26412 F20101114_AAALRT malone_s_Page_08.QC.jpg
9a0f48c5dcf6bc615abd4667f840a5b2
bd34fc3760a32915126ff159f61b47d4a18021a4
10537 F20101114_AAALMW malone_s_Page_63.pro
162e98f1c549bdc1492b844b0b90bbcf
8895d664ca29fe6df4b0fb990e466e011f8a3ac0
F20101114_AAALHZ malone_s_Page_23.tif
9a2d30b30a29fc478e9934f81ceac890
73949dbfbb8ba9537fc22e7145ead102c1da1f92
6928 F20101114_AAALRU malone_s_Page_08thm.jpg
e58dc5b2abe7cd3d4957ecaf63f18b33
0de2d89ea3a551188ec3616878e53ac19b43eb90
25862 F20101114_AAALMX malone_s_Page_64.pro
0f785b636758f3a6d2d761fba8956ec8
5f7c4eaf2a18ed2d6db0379c0ffa3adfd45354a7
120590 F20101114_AAALFB malone_s_Page_34.jp2
47ba9a66e9236d9e41f3739113e20220
8b82fce34eb0b6d0d16660c5622a1427a5c6852d
4580 F20101114_AAALWS malone_s_Page_72thm.jpg
3c1c72ff7a6073fdb148115d0fb937d9
8eb7c90348bb799831011f954cd1bdcdb8930b64
5617 F20101114_AAALRV malone_s_Page_09.QC.jpg
e42b9ec061f7a976f83eb5bef61c0f17
4430136d29b4be5bd96eb4849f3df0b381afa8f4
15599 F20101114_AAALMY malone_s_Page_65.pro
a9d381b20644e6d2e720c979cbfd1518
6405a5b1eb78e99e3c2b4a11fb2fee2f77c2565a
118917 F20101114_AAALFC malone_s_Page_35.jp2
e2e45e30e128d49c1f89d22949758c9d
bc7de932e070bbd1df53a5a60329aced639aaf46
1054428 F20101114_AAALKA malone_s_Page_76.tif
386365b6ea1463ea6b3c8d3050a39ec1
adfc03c7dae6f08c0ee6bc909580bac19d9574e2
16567 F20101114_AAALWT malone_s_Page_73.QC.jpg
796a58eff04b009204c4f15bbcc579f1
0171e50d931d3459959b8f78dd017a7ec9a395e1
1947 F20101114_AAALRW malone_s_Page_09thm.jpg
b5d1013d1c2c31f39b52b614d43c4685
2a22b0c3209fe3cd232289f7d7e4935bdd6d11ca
53324 F20101114_AAALMZ malone_s_Page_66.pro
9637a6c67d1fb0d2fda77d30397d0e48
3896a308e31f7d06a668c7ef741b6e262b7fedb3
80890 F20101114_AAALFD malone_s_Page_36.jp2
1dc5a05e16003313acd972b7c39bcb40
8df52ee30b9b21994d095520105485b9bf4c72fe
F20101114_AAALKB malone_s_Page_77.tif
0acc594e720533a76178476354df0633
9c890658aefc4ae8b8039f94e90407c437477e77
4533 F20101114_AAALWU malone_s_Page_73thm.jpg
bd7dc37527c1d70a172d3db4281a129c
66990d63a338d953dbad4687e7f4723778c73703
22243 F20101114_AAALRX malone_s_Page_10.QC.jpg
be6afb2cd605b532f03d1475a1fcde67
29ca4fb952762e15d765aa0ee27a0633f49ba8cc
145979 F20101114_AAALFE malone_s_Page_37.jp2
0f323ca46afa2f7b41f898f6e7d952ff
3b18a561aab06faccbeecd71513d120f7d42d969
F20101114_AAALKC malone_s_Page_78.tif
07a13a41ab7ca58d67a8d22f166aebe4
ef58f21da0544b509b833f2dab88a1f2b54810e3
5593 F20101114_AAALWV malone_s_Page_74.QC.jpg
be5286675e4b0e6455dc89656dbb6fec
f742487ed2089d5122af0a0632cef23b577688e2
6410 F20101114_AAALRY malone_s_Page_10thm.jpg
9d9c2a8dcfcd70e57cab1504477cf559
a013c75069fdb7c632c832c3c6478ac7a1177ef5
51444 F20101114_AAALFF malone_s_Page_38.jp2
819265daafad6b9ed4664e1bdeec856f
f392af0f727f72c40706599414e84a0c58c765e7
2122 F20101114_AAALPA malone_s_Page_32.txt
2f9888e37a4aedfca3aafdbcfec2881b
6180eb0b4b069a80d44baace3b6389ffbdf29e20
131462 F20101114_AAALAI UFE0021081_00001.xml FULL
3ff8efd1a3813d9a30106c4099a79112
d26b71d6d7e141d9ebab4cd79006ab6a0260d167
F20101114_AAALKD malone_s_Page_79.tif
0067cf69b818f8814109e42760398f8c
b40df0ea92b1c74783cd660075ff99dab423aba0
1878 F20101114_AAALWW malone_s_Page_74thm.jpg
d3db20efb316ec74693230f0c9556e53
5361587be3e2176a96ebb357adbfdf8213434812
15698 F20101114_AAALRZ malone_s_Page_11.QC.jpg
4cb49f8937dc5eed283fffdf6858f255
bd846b949615adde1670ce89d64eeb3b6a248361
522300 F20101114_AAALFG malone_s_Page_39.jp2
6c27290553e4a4c96cf4f1e8e669ee8e
e975abeb0ef76763286723aabd56597793fedcb0
2208 F20101114_AAALPB malone_s_Page_33.txt
72159cfef74c68a56fa98a7497242ade
40d047fc5e9942dc902bad9d5e5581a03437fc50
F20101114_AAALKE malone_s_Page_80.tif
681a3cfde591f6e62970edcbffec8cf9
d30f2320050b57967808d13524c32db991101257
4386 F20101114_AAALWX malone_s_Page_75.QC.jpg
4886b334b8e0d11de2d7dfe7dc15e37e
cabab4501e60e478fdee7785fa756545ab6d3632
437013 F20101114_AAALFH malone_s_Page_40.jp2
848009fdaece59bea0f9f1989c514120
245729228614b66af46f7bf06935971ad95d9a13
2187 F20101114_AAALPC malone_s_Page_34.txt
0397216e1a98075cf6030391e598b414
0f65424051f2d10a45798038e7bdb3ce8f797ab3
F20101114_AAALKF malone_s_Page_81.tif
019833ac1090d5656b8d323d1aca5d9f
7b2eb28c580843a556f4e45dfa14c3388e756c48
1523 F20101114_AAALWY malone_s_Page_75thm.jpg
9574f9f98cafef235f1f48cb40bdec21
721e8ac692915768e37a87769987d2ef13347fe9
7315 F20101114_AAALUA malone_s_Page_37thm.jpg
de5bc962e0aaed29f0ed50cb8c90be47
3ad0c8359ffb854a2dda578a977645a01de11dbb
385118 F20101114_AAALFI malone_s_Page_41.jp2
88427339244067bf3571140465fb361c
9473244e7ef605cda254f143bf31c5919e19a733
2189 F20101114_AAALPD malone_s_Page_35.txt
66ce8ae56e005b11dbfcc8c3057aaca1
a48cc5738307c09e5c738c83bbd5f627a1d59c7a
29219 F20101114_AAALAL malone_s_Page_01.jpg
5a3faba6278046d4ca0cbb8cde966b98
4eb2221c86b77be83107a3b9d7ee1c969cbce5f7
14208 F20101114_AAALWZ malone_s_Page_76.QC.jpg
085d33fd968f4c4b30b83a7f4323649b
ecfa02fedfaee60a341b5cdc8621842fda972e1a
11408 F20101114_AAALUB malone_s_Page_38.QC.jpg
9828771aeedb5e973f5673bca8fb26c5
e862a70d0f021103ab288268be110aa64652dc52
677702 F20101114_AAALFJ malone_s_Page_42.jp2
46c6f605b61f06360698a3386525d427
3c5f8935db404c5c46473139e7c222b24b7d9a2c
1407 F20101114_AAALPE malone_s_Page_36.txt
0d9cb02a442fd247771ae8a7b6b3b5b4
40f42a8847ef362b2bf96e265c9b0489bff46f06
9906 F20101114_AAALAM malone_s_Page_02.jpg
5adb861ad825a50c3e5a30d00ae7af75
c8d741e8989100edb7bb8af013115a7e96fcac70
F20101114_AAALKG malone_s_Page_82.tif
9803ec3bf2b00d11b5c9539736f3182f
3edbbfa11098c3f4542c8b8abb7b8eeba8e52340
3352 F20101114_AAALUC malone_s_Page_38thm.jpg
67f6056c39a033abbbc45ada4aeed988
ff4cd6370952edc549f599aea38591f56ef5f1d1
498085 F20101114_AAALFK malone_s_Page_43.jp2
8ff503ae399eb28dca32cb1422e27d9b
6109da2e671b73b77f00e8d1e744f1841bdbbb3a
4145 F20101114_AAALPF malone_s_Page_37.txt
698d862e8c51a65ca4307816f6fd7cbf
7441076cf7be94818f9cff9a55c2120c2231a841
10723 F20101114_AAALAN malone_s_Page_03.jpg
21193e15eb76fd2693fdff70385e2448
633de2c5923c2b33458046630220c18bafcf43d8
F20101114_AAALKH malone_s_Page_83.tif
ccd909e64fe35eb087dcd1da7301bc1e
72f931aaf40426113b86f0e0a8cd9e8a9ebc6393
12515 F20101114_AAALUD malone_s_Page_39.QC.jpg
94a8614d26bf77880671c36a7058c498
862699e5367f7cce1729265600c787648a66ab20
331158 F20101114_AAALFL malone_s_Page_44.jp2
ac9fd25ecdc020f0b907e8c402e65a6e
51d7ea685c3d15f511df61fde1c1cd193311500a
1611 F20101114_AAALPG malone_s_Page_38.txt
a334f04e5820b7efc79169f5d9395360
bc591faee7572d79a6598100d0d7955d423c5940
38415 F20101114_AAALAO malone_s_Page_04.jpg
3f67c5a1bc277f62ed5522b5112bac21
c2155597d04bba49c6021461abf76030898a39bb
F20101114_AAALKI malone_s_Page_84.tif
5f4601428192c9533f9f78c8e67ea559
a988d359997a6aba3dd6157e0d7e95bb4a3076e5
3980 F20101114_AAALUE malone_s_Page_39thm.jpg
a55cd6189b2a4a5ac0712c78e6516113
028e797c0697c97c7acec210aedd3ee0442389cd
869813 F20101114_AAALFM malone_s_Page_45.jp2
9c24968ccc9fb4afa71ed58f3edca254
fb4bcffa4ced9688f3164786f1058983c86b3f4c
1167 F20101114_AAALPH malone_s_Page_39.txt
dd4cc1ce5303e849fc1442df9f4e33de
79452504bc45907b0e80bad59f3136af0e921545
72769 F20101114_AAALAP malone_s_Page_05.jpg
7f48ae2b2c1ff950f0d0fefcdbe6a508
71e51c106bdb4d597c749ef24bf2cf919184d62d
F20101114_AAALKJ malone_s_Page_85.tif
894e464b0ac50aa8eb12a526587651e9
be872a876727696d8541ccc74ca1a4ee12948fa0
11446 F20101114_AAALUF malone_s_Page_40.QC.jpg
e43f8f3250f61453c62bd4b57f2b3764
60bd5eb54a0c8c13e5f4203438f40665894790dc
901872 F20101114_AAALFN malone_s_Page_46.jp2
f53b7a8a12eba0fedc3bbbfdb824800c
290d3c8619949818851ab9868edb8fc032b76ee2
917 F20101114_AAALPI malone_s_Page_40.txt
944b41724a92f016b4e57448c8ca9e1a
f4523bb706543430e44591ac761936ea2de16ea4
21321 F20101114_AAALAQ malone_s_Page_06.jpg
e6609d6ff28d0b6a930bce07809f0711
e702eb7e886bf1a9fe55b2a18248366f79de59c8
F20101114_AAALKK malone_s_Page_86.tif
c474c48af5e4608be53d75da25858b57
fa0e88bde058c7610fc58dc44132f7aebe75657a
3801 F20101114_AAALUG malone_s_Page_40thm.jpg
60a7613073617fdc0314b76036413026
e9b899f8e61704c375692d0499f626697c1c74f7
559105 F20101114_AAALFO malone_s_Page_47.jp2
e6a6bf6c4d04568122ea710ac59e16a6
cf3a18572bd9a93debb75b6aea7bc708b4b7348a
733 F20101114_AAALPJ malone_s_Page_41.txt
a27f0b41dfd1109b1abe3c1f996bfae4
ff2261428e229c15fbc65444d3aad54eece873be
25254 F20101114_AAALAR malone_s_Page_07.jpg
b954543e26df2f8f74975240d23d63ae
f6fce6cd32d000d83940d8fa4b65501c07201dc3
F20101114_AAALKL malone_s_Page_87.tif
96f1ea673b75d992bbed54f2497dab51
16b1d631530f15e16551e295de3683963dcb545b
9994 F20101114_AAALUH malone_s_Page_41.QC.jpg
1100fdb466697cf169f01c5e76c77029
17ec8ccf033d37208ad7e552e0611c7f12517df4
725779 F20101114_AAALFP malone_s_Page_48.jp2
345b11f3aa566e0c0259e6d570e74f34
326b67e6b431ee788ab76dd4193d7637835f49e5
513 F20101114_AAALPK malone_s_Page_42.txt
b5ba99dad9627b633b1b80647d451711
95982809f9f82789a20dcab0565474ef0b0e80c4
92861 F20101114_AAALAS malone_s_Page_08.jpg
1089164854be59f7eedf7238b1c9948b
788c8cd38a526ae900e62221de30edd1863fdd15
10400 F20101114_AAALKM malone_s_Page_01.pro
23219b117a4b01adbe62dfc64b72bdd2
c77d468c952f6de62ac6d9e86880515c83d0e2aa
3000 F20101114_AAALUI malone_s_Page_41thm.jpg
7497d721abbe6d70ae59c9a57be48254
45f76f526d884fc564b5069c403865f2f838c9b3
607477 F20101114_AAALFQ malone_s_Page_49.jp2
e7b262d950da782eb4d7f0b682599b49
9c962eacbf8c933b40640725a4c311c43512c6b8
18910 F20101114_AAALAT malone_s_Page_09.jpg
0b5a6b4c24c66365e2db63d9ab4aa811
64a270d4a8c2d8c46603354061899de21604e256
859 F20101114_AAALKN malone_s_Page_02.pro
2b0b7aab86d65181d972a8f7de4282e2
402e811ed867f2c1ffb686b99fc8d6da42dcca6e
17396 F20101114_AAALUJ malone_s_Page_42.QC.jpg
b333647cadd0519294c997e3ef4554da
ae18e10ab3dfbe845c7d80381ed0473135bce3e3
111123 F20101114_AAALFR malone_s_Page_50.jp2
68616ab2c6d23c1dd472e907714d4acc
8d93517b803f46ed68d31ebdd56b0b25c4d119d9
1114 F20101114_AAALPL malone_s_Page_43.txt
8cf0bd4e9cc190faf79dec42d5124479
21e026c01721d4fe161f4c4555c2ff80bf980f17
72290 F20101114_AAALAU malone_s_Page_10.jpg
7e4dfbe71c3008eb0c79c46adbdf1f26
6d3f7993a434e9a2287512f3b08e085869f67d43
1429 F20101114_AAALKO malone_s_Page_03.pro
e2855e9dc59a0e3d0bdd7c4fb569b5b5
9460a67758982fc400d8e1965646b5745a08de10
4962 F20101114_AAALUK malone_s_Page_42thm.jpg
03dacbd1eeea8061b53f882875c7a459
a4927a1f3d1db4206f97176d97290efe31c6e01e
123414 F20101114_AAALFS malone_s_Page_51.jp2
8148f59261513ddab79fc59d364305a4
de2c76bde0188876c782987b6ddd620a2f033c63
550 F20101114_AAALPM malone_s_Page_44.txt
fc084dc2db5082352780a681935bd290
4865535f3adaa5131c3dce7fbcb777c620e7857b
47055 F20101114_AAALAV malone_s_Page_11.jpg
b9848bee9e6568120dd44397df1916dc
499f59c866b8448724434aa304ab0b548687da55
22053 F20101114_AAALKP malone_s_Page_04.pro
b4e4e6ea8b4c7c2d28f37096e007b400
904f7a40f0a79eb083dae142c98d27986262e566
13477 F20101114_AAALUL malone_s_Page_43.QC.jpg
828c7ed5d38979677a295292e2e54526
22e7c0e4d186bf626c6f18ea17e708b056eb4d8e
114242 F20101114_AAALFT malone_s_Page_52.jp2
f8514137e368cce210b9d2fc6f29366e
0852c9ad97d845ea36706d155c718768f6b983c5
1734 F20101114_AAALPN malone_s_Page_45.txt
95827106f6ad37be08c494526a01e588
b882da25d5a5f9f68b257e7df1a69a492004b9ff
73294 F20101114_AAALAW malone_s_Page_12.jpg
d152c07aaab806b14afd5df288385327
a7437eb9127ee3e6b81e1082bcc5d880b0c346ea
79666 F20101114_AAALKQ malone_s_Page_05.pro
b650ea2827bc356b53fdab7c28e6274c
3feee0b62c1f2592691f9ddf99d4ea79740c1985
4035 F20101114_AAALUM malone_s_Page_43thm.jpg
9409adb93b1fb4d293555eded5421b78
e515d8898a3ba8de771af0d8bf4d55617fe6f8b2
118981 F20101114_AAALFU malone_s_Page_53.jp2
9d1d688dc25321ef77cbc1c259272d2b
ae8e46123af28ac8411396c5d36f665842d2be52
1698 F20101114_AAALPO malone_s_Page_46.txt
5a2c5bf76896abcebccc22abcc61d2b4
b6368d1c7b3ff4b54fb0d0c8b7a5ce5d3fdd524a
81565 F20101114_AAALAX malone_s_Page_13.jpg
415cb30c2aee996422d3beaf1deb2acd
42dbc173ff7a774c6c96114eef256cbb4bf3b7cf
11991 F20101114_AAALKR malone_s_Page_06.pro
039aedafef1b799b9d61c67aee7b3604
746b35311386c7b74111b57235a68b5021c2800d
8517 F20101114_AAALUN malone_s_Page_44.QC.jpg
efab897379232da95e9d4acf044bc6f4
4b95e93ee29fa3927a3dd397dcd90b6a32939198
121596 F20101114_AAALFV malone_s_Page_54.jp2
23ee4c49281534290e24e305d6e2d337
02f4285d4d2a1a0f55ac748661d9248ee4230910
1021 F20101114_AAALPP malone_s_Page_47.txt
3061a20dd7b91006f7556eac2f71cbce
b00eeee3c3ebb0184bf8f1face3f0e545ebcb366
78982 F20101114_AAALAY malone_s_Page_14.jpg
eb94333b7fa45559226471ff5b8ffc0a
7903b529e7cd68ea3ec91c46e5d6e1515ae8df48
18700 F20101114_AAALKS malone_s_Page_07.pro
362506959a958bd9263241dc40ae694a
e1467f858d65d55839f9ddca042e6a88d3776616
2708 F20101114_AAALUO malone_s_Page_44thm.jpg
1555ffde3fd3d0d8665d0f7969899585
74bf164daad7923d4f3366fa0d2a2f04ee92e4c8
120773 F20101114_AAALFW malone_s_Page_55.jp2
8982315a41b92d7a4c41b67745f0ba7a
6ebd509326d71bb5f705ab4d1dc315483bf30085
883 F20101114_AAALPQ malone_s_Page_48.txt
28087e2ced79a288ce6090d3d51d6a03
ad528146c019b7b12d2f28ad185da6bd773d973b
77167 F20101114_AAALAZ malone_s_Page_15.jpg
33975ee5df5bd3caccd5d92ae81dcf2b
4e6d67a7991bad707a383e4f0161534b86117cfe
73430 F20101114_AAALKT malone_s_Page_08.pro
091db4e21651220d3beb911e861dffa5
74e53376afe1ce55e760fe51798597e9cba22b98
18070 F20101114_AAALUP malone_s_Page_45.QC.jpg
6b564717205686a8bf6052b89136532d
15e171eec06a2d6f718af8abc5fc425a54847aea
116591 F20101114_AAALFX malone_s_Page_56.jp2
f72ffc64687a6a91b6cd66e8cbed4be4
673223b3f0a9a2fa1387dc02e90e52b145e3a409
1372 F20101114_AAALPR malone_s_Page_49.txt
0035a9c7938d29174e8627ff59b73590
c1a4d98c67ea2819e27e47b60d1627be369d6f76
7105 F20101114_AAALKU malone_s_Page_09.pro
f129ef29780ab9c51e99022bbe67d25c
55bb691f6d095f70047eb84a657fcdb411364556
127038 F20101114_AAALFY malone_s_Page_57.jp2
dbe19f9c0ffbeea02998b1103e0ba6b8
a3e811ca2729995763e5e19578ecf9e7c4a6f188
2079 F20101114_AAALPS malone_s_Page_50.txt
71fddaaa04736e02bed09372106c67d6
42e57a02de1d4d530d202d086866553ee1df26dc
45678 F20101114_AAALKV malone_s_Page_10.pro
ab10e4b367723f8d11b63e466a707012
c2a9bf3ab1ff3a6d2781c5523f1f884351dabc3d
5121 F20101114_AAALUQ malone_s_Page_45thm.jpg
c4c11a93c2c46e07820c48936a3155a9
66dd4c10b56ae3cc2e7ec430b5136af3353bc367
113904 F20101114_AAALFZ malone_s_Page_58.jp2
a2785f831fafbad307d2c46c6a074e20
c745d3074e2981d7e14271a480d8ea11b01ec0ab
2232 F20101114_AAALPT malone_s_Page_51.txt
6eead1055f93c82e82474b4b7fb4bd2a
501dbf5e125b347d140b24b256fb5d8ef4b02ba9
29454 F20101114_AAALKW malone_s_Page_11.pro
55629adfd0bf34359a697bee171d166c
f63250784b388a3b0115ee7c93222037b1acf244
12692 F20101114_AAALDA malone_s_Page_68.jpg
f8c6b49e19ac409a6f344ac03b2e1c8b
c88ad7c89a83a613ea84b11e094ab31757eed1e0
19215 F20101114_AAALUR malone_s_Page_46.QC.jpg
72a53a714300baa354763ea3f3cf9aa5
1ecce2298ebc25a2b286813cead0edd53d7f57b5
2046 F20101114_AAALPU malone_s_Page_52.txt
353c2296cc686c063e7953169c8c0e70
0c1c0527fa54330ac5328ed9f9aa3d87b4e799c3
50532 F20101114_AAALKX malone_s_Page_12.pro
3a79c32682f024da0e4224cc014e27f5
2da6e176990d1630068886b275bc61c58c8f6cc6
50801 F20101114_AAALDB malone_s_Page_69.jpg
80905cd9f63f112285869dd5e56677de
e0de980cc2c2ada9df867fca4a2bcd6d809b7b55
5423 F20101114_AAALUS malone_s_Page_46thm.jpg
2525f45c51f4b8545b7228625419a331
b6c70a2487a27249d359f7efeb36a24e222a1fd3
2104 F20101114_AAALPV malone_s_Page_53.txt
3a9af0ba794d5bc8252a796e0ffb3352
711bfe2b1bcd74f8ba310ee098ecea91de93eaa3
F20101114_AAALIA malone_s_Page_24.tif
a80c15ca2143fd5fc80770eff160055c
c3ebbc38c6b670e6262872019646fa282be34637
56269 F20101114_AAALKY malone_s_Page_13.pro
1ead6517a42e671fd0b5ede8c75edaf3
1cd7c17093a4064ee93fc2f9b419ad2ea7084a35
57655 F20101114_AAALDC malone_s_Page_70.jpg
dd30f3a93209cb2750b2b380b4cd4088
2f0eb56c7271b7e70a5026b10370df5ed2311cd7
12265 F20101114_AAALUT malone_s_Page_47.QC.jpg
17699968117a9741d980e3d25b28c164
c8e3798c1e6e6a8fcbc4168221151b31cb708cce
2179 F20101114_AAALPW malone_s_Page_54.txt
1d7b49bc51a0b70c18aba63d131aca3e
b1626f7d7a801e810ed8754e7beee93479aa1646
F20101114_AAALIB malone_s_Page_25.tif
e9697c543316d056114f479266435526
04a80b8c7e09c543caf681043398aac7c3e704fc
55736 F20101114_AAALKZ malone_s_Page_14.pro
f012161bd820692c3cbb9303aea77aa0
09a58df89e988f426428b0231b5fd2256353f494
57111 F20101114_AAALDD malone_s_Page_71.jpg
15c08ec5f110f93c4861c194cef14ec9
d9042b551ad0d94c7ed3835d34d80893f666c68c
3632 F20101114_AAALUU malone_s_Page_47thm.jpg
187a77eca9033e9f21fdf364d27b3973
67de838ff89bdb90ed397ffe2f4338735a528f11
F20101114_AAALPX malone_s_Page_55.txt
fba4b7e9dfd2481f2f8971fcb6996972
a5dd2cb1530cea568acd60d1d239fb659cc3c792
F20101114_AAALIC malone_s_Page_26.tif
2c66aa8826061fbd13ad8ca53def4e6b
c7405d9016a1a2a2f1712be10afe2706b65c6800
57992 F20101114_AAALDE malone_s_Page_72.jpg
10334d69d1cb6654ee6a1b198adf336c
8c755779122554af3858a2ca2a071782134cfad8
17050 F20101114_AAALUV malone_s_Page_48.QC.jpg
5208a47f2b20148953ab52ce3cfd5ef1
98e10072d6226a74aaacf6d72d88015c2dc757c5
F20101114_AAALPY malone_s_Page_56.txt
981e9b3d0750d78cd7afd1076c5c5718
e09e6d9e5d74ac61c31f762accfe72166e239be5
F20101114_AAALID malone_s_Page_27.tif
03d28450fbbc192426f60e02f3c28c5f
c398016877125b9da179b31a6736f79a91a0c9c4
57824 F20101114_AAALDF malone_s_Page_73.jpg
8dff4169a45c1aec47149f3b895121fd
39affc48fc77e54127381356db8cae9507a214f3
49363 F20101114_AAALNA malone_s_Page_67.pro
549ca80f9bf4be94a96f60ad5fb00cfc
55e5ffe6d76f1338d4e4688ea0a3ebe409baa3a0
5459 F20101114_AAALUW malone_s_Page_48thm.jpg
0dfc13c4e2143a1d4bc5635e7f0c14cb
b020bc68c4dbaa2a4e8c7de3fcaa6585e28daf32
2307 F20101114_AAALPZ malone_s_Page_57.txt
6cfd3fc0c2072fbbbd2a6efba02c5d67
c860f10beccc793270469ab31a38154bb989badc
17801 F20101114_AAALDG malone_s_Page_74.jpg
329fdef56fee6d9cd17d6c00bccac063
e8c0cd6acda44f530f4a7437a0b0ec3b2dbacdd6
2068 F20101114_AAALNB malone_s_Page_68.pro
71bdb9e04a97e378701e709c55009d1f
82f725e7ea286c9e1dafce4fc41b5d3fb406be98
13176 F20101114_AAALUX malone_s_Page_49.QC.jpg
a0ff1fc07455283de5226aeeb52d184f
76658e00e66ed0b9cb8225399836b64f29f937bc
F20101114_AAALIE malone_s_Page_28.tif
f20403408be579a2fc22c8159c8ba799
a2c462464eb8cb0b514a292b20b1702d1d930163
12989 F20101114_AAALDH malone_s_Page_75.jpg
4dcde9fac9c617afc5cbe46876f4c629
f44a39ce9bb583cff32fe25fadf47eb4e60a5400
74069 F20101114_AAALNC malone_s_Page_69.pro
262cea888dba868840193cb3957f6fa0
3747ec23ac586989fd7c1eaea695323da0e6d0d5
3963 F20101114_AAALUY malone_s_Page_49thm.jpg
c793ef6744eb4fac27d4215830d89a22
a7fc10ecf03459af6ad24f50f5fba9ddadd4f880
4437 F20101114_AAALSA malone_s_Page_11thm.jpg
85c8395f23982d3076a588f7933a92dd
021acc342897b3236412999c5e48d097ff96fc00
F20101114_AAALIF malone_s_Page_29.tif
1c18f2277db7e986b6ee9813aa1e33fd
dc71f951ea0a2cccd5eb68042e99b0208fb49ffe
51129 F20101114_AAALDI malone_s_Page_76.jpg
c829e3e14236a974790f0e8923bd6d89
c2cfcf6920504844a458d3a7e528ef731a1186cd
75105 F20101114_AAALND malone_s_Page_70.pro
a907a540a0b9fbf250c8f5652d8181c7
fcec7c1d42846da6eab01c902fcb258987948e6f
24210 F20101114_AAALUZ malone_s_Page_50.QC.jpg
7c5c8a0977468fe83e2adecdbf55feed
23f895853700c75ef34ce5eaf8d1c2364c68346d
23696 F20101114_AAALSB malone_s_Page_12.QC.jpg
698c664c4b8332874541c958faf83fba
88b8fa99586337e423c436cd9c9bb57456b7d94d
F20101114_AAALIG malone_s_Page_30.tif
8db60ab65e7ad2b3391668acd11a23c5
e952f39fb49ec63d593f89ee2c81647efdb12317
55571 F20101114_AAALDJ malone_s_Page_77.jpg
75d8c4e98f5a3317ce03b98df6809c17
73ad0999094e1cf2accd34e21fdbc8f56ab6a6a4
86997 F20101114_AAALNE malone_s_Page_71.pro
b61f45a8f51136836460c831d5695df7
c7c78bfc642dbeb46e17aef7e9eba1cbb6567fe4
6787 F20101114_AAALSC malone_s_Page_12thm.jpg
fe32f78946592ea435338ee910f068db
7ca41a325af5ce28a3d87bff65b4fc2a1c00be47
F20101114_AAALIH malone_s_Page_31.tif
46b18c5c1d401903a110667338fe67bd
c991bc6b3a8585d2bdae7df5d3a77bb4f647f1e8
57811 F20101114_AAALDK malone_s_Page_78.jpg
0581dcb934f461b0a7f5ca78f3ac558a
adc49c0fc69e15972b5ecb804eb1c65252374c04
86973 F20101114_AAALNF malone_s_Page_72.pro
c5f33a1b3f2a88c71223872a99cffd30
8c1023494ae0a55c46d8394b636e86b3cfd95e99
4273 F20101114_AAALXA malone_s_Page_76thm.jpg
a496dbc9159f2d4cef39ee1fc4b21dd4
a89ac0d54024a5d88045cecc0a90ce0414339d6e
27155 F20101114_AAALSD malone_s_Page_13.QC.jpg
dbd1032457e7ec23d0349c8470cebec6
76c79377034b05e41a1b34744b87a319e0b74ccc
F20101114_AAALII malone_s_Page_32.tif
b7c27d9688037f1ee1d6a0c8b7ad7e94
a7051fb050b72f975aabef2ba3d38a3f968360ec
16775 F20101114_AAALDL malone_s_Page_79.jpg
ae2762abda6a41bbb44059a36ab4a62b
53754cf62eb5d5fd5ccfc47ff5df543d3ca75684
84427 F20101114_AAALNG malone_s_Page_73.pro
7413e683d425c49bc6b3151111a9aced
87500414788f28863ebbea517b30467e1913914e
15428 F20101114_AAALXB malone_s_Page_77.QC.jpg
6ac0fd173eb93792af9c4f220029b760
98a6b65cca618578f5dec7f35f7192308b962ce8
F20101114_AAALSE malone_s_Page_13thm.jpg
81da00a2b4bfbe5b6165b42aee6f157a
4985140a3039d6a77f547c3bda50a93530d65188
F20101114_AAALIJ malone_s_Page_33.tif
df1d8a121ca0899c78afbf4564ddc601
a0e36edb22d48153d27c75684d7169c73a98c42a
85381 F20101114_AAALDM malone_s_Page_80.jpg
4a64543b11e5eeec10fc258e4c3a368e
e3f57c9133d8b104257694bb21e68342576289fc
21788 F20101114_AAALNH malone_s_Page_74.pro
79cfdd9daffa6d1a67cf4b0fe806a96e
11b2f53c2c0f8e03feb21ee3e77aa04cab7c807c
4441 F20101114_AAALXC malone_s_Page_77thm.jpg
0e046529c5c65f68348d43ff53bb191b
7b9182a227d9bffcf7d8ad9bdf6f0c75b15b7ae9
26352 F20101114_AAALSF malone_s_Page_14.QC.jpg
1e5c17b14ea25a7321450b6c700a7248
40f4e25e18f5a9b93d11b72bd04e4fb058e60a7d
F20101114_AAALIK malone_s_Page_34.tif
33d863725eb0f4e55d75c828cce688b2
1e1b955da1a5f82fdd1901114c33a768081fff62
86832 F20101114_AAALDN malone_s_Page_81.jpg
15d3fe99680301d3758ac2ac6598cc4a
63f7118f663b09c1fd1ce17f44d93508f019a072
2172 F20101114_AAALNI malone_s_Page_75.pro
5c6f381737e56c8e9ad22be635751258
9a142cc4527512654b0f74efe625d525f51e2ad8
15984 F20101114_AAALXD malone_s_Page_78.QC.jpg
e9528f2025cbe368e3bc840eaba55703
521b66caaf51b37d4bccdfd06bcb54e20f01f51b
7140 F20101114_AAALSG malone_s_Page_14thm.jpg
2b08eb754122112d7a2ac0b83037a85c
5084336643dee01639bebc84adffc0f1b5a36f29
F20101114_AAALIL malone_s_Page_35.tif
96edb02ee0978a7171f316a2ff335678
ea26c0ed1b60040b35f0a11eb4d949b24ada9896
87588 F20101114_AAALDO malone_s_Page_82.jpg
e39e256191d0944cf1269abac6e82e34
9838872d7cc76bf5d296b7cd6ac31aa179f7b991
4484 F20101114_AAALXE malone_s_Page_78thm.jpg
4bffb7c642524e0cbdc609f32cdd31c6
cc3c8012f90ee6c4bd7f5e999a2508a21b9955c9
25457 F20101114_AAALSH malone_s_Page_15.QC.jpg
f8b1b8331d8f3cd07ab9ebdcd643bbbb
bf602dbcff2e035f46e538c8be5fdd6ca4869a6e
F20101114_AAALIM malone_s_Page_36.tif
8c6da281ba60fdc4d2910af9f1e919e1
828a57b4971f6bc01fe1c313ee178bf620e6f207
78621 F20101114_AAALDP malone_s_Page_83.jpg
d6b2e1628e8f30a7dc824f3261d38f12
8c8834d5673176afd1634a1dfb813e4ed53e29f1
72455 F20101114_AAALNJ malone_s_Page_76.pro
6f478568d70794f14dfd8547a061042d
b135e425bfd17d761d6ade3ba4d189c435388d96
5260 F20101114_AAALXF malone_s_Page_79.QC.jpg
3922fbc45be77e293eb9e648fecc45ba
69275f9d0e562b696b598caafb8050d6cff26e3d
6979 F20101114_AAALSI malone_s_Page_15thm.jpg
3414d14ad9a34420af77a1ea57513b06
894ad7b83c13baf020364b44526250564d78729b
F20101114_AAALIN malone_s_Page_37.tif
179d5e21ced367e03083d8851e25fde0
a6fbf9cd29aad30ab1e5c2ed0573d64bf56ed5e5
93926 F20101114_AAALDQ malone_s_Page_84.jpg
b0df57d6c2a1cf9118c77adb187e6734
cab5e1eb882739968c033aba1049f72df71d3922
85057 F20101114_AAALNK malone_s_Page_77.pro
82bd59125dc2bf6409f61fa20c8d47fe
7db521f791599b7d74f1d22ebee15e7a77652c00
1766 F20101114_AAALXG malone_s_Page_79thm.jpg
d3918f7930caf4a3262b26fdb5be4c27
6b78d5236bafcee1e7d65a90298c7f4da3c24486
14636 F20101114_AAALSJ malone_s_Page_16.QC.jpg
5d11dfb68b0c2f98a2a2ff488c77cca8
5c5822c086eea64d58731f0bf04cec7b32c49dc6
F20101114_AAALIO malone_s_Page_38.tif
5a3f6958a76fe2d1ed11976c224af844
08332be644ae170f0d3083d6a586e6bec405b5e1
91471 F20101114_AAALDR malone_s_Page_85.jpg
c51f0cdfd56365ca64acf12e1c0f8e5b
96a1c226465477fdc0bbbf2c165383295fe76306
80464 F20101114_AAALNL malone_s_Page_78.pro
48bb21e7761d88d0ddd1dea3221a1cf5
244ba30970548945eed981fc8f31210d745c0757
24486 F20101114_AAALXH malone_s_Page_80.QC.jpg
471751bb77eee58d409144929ca66e97
2cd508959c8d9f968c04546fbe585768d03bab6d
4065 F20101114_AAALSK malone_s_Page_16thm.jpg
d6c388f6fc7e981a05332e89eb40f80f
34d92814e807da92034c00ae524fb1895e66a629
F20101114_AAALIP malone_s_Page_39.tif
2100be030af769c5af778c4225a5103e
670f980066a2069c71ceb56d7fb7b0d2d59eb0b3
48793 F20101114_AAALDS malone_s_Page_86.jpg
1e7fb4d75acde9685606d4a8483a896a
103a7790bac5fdb4f54c20745471df0e0bc336a6
22077 F20101114_AAALNM malone_s_Page_79.pro
28029a50c456926a6ef407ae08632100
958de1108637cc35610ad335512ebed737fefe8a
6833 F20101114_AAALXI malone_s_Page_80thm.jpg
75ab44659e8f98b7b7e63ee13c70af62
f0b548f5514f1b5fecebb13f508d9b446600bf22
14469 F20101114_AAALSL malone_s_Page_17.QC.jpg
f54f3b0df9296f6c57639444d1e050e5
b4f80b7149fbfa17d10b8b7e7b59a971ad723d93
F20101114_AAALIQ malone_s_Page_40.tif
a9a8c52cb1b43ccda25dc48d4af5c6a8
4067041f3d0ca5f8b4bc3f434d0e03a596036389
38452 F20101114_AAALDT malone_s_Page_87.jpg
e1dad1a2e9235fd4614cd33179a9b9b8
bc24f9a28b451c94559514c09a9e39df79e2652d
58595 F20101114_AAALNN malone_s_Page_80.pro
bb26a5adc097628d3a583258b001c03a
7eaed79b864710b7676f9c7ff310c099f821a64a
25699 F20101114_AAALXJ malone_s_Page_81.QC.jpg
cffa12b573618fd036a464593ad2a8b9
0e6ea1e7dbe88065c61c0f6e1cfd12b6e397acf0
4307 F20101114_AAALSM malone_s_Page_17thm.jpg
062bc203645505ebb86a30fda4abf183
c9ac21daa49a2a391a794273fb1558cdaeb07fbe
F20101114_AAALIR malone_s_Page_41.tif
645d89efbb1e37142421ab133236b6f2
0be4cb7356ae97a960476d9900402f7ae3d27cc0
30319 F20101114_AAALDU malone_s_Page_01.jp2
04e77e1b51065d51c855622b63214921
0e2e6ab1c6892f828918df6874a35686e8eb30a4
60794 F20101114_AAALNO malone_s_Page_81.pro
5978c08999d9f08e71bf42019171b916
76f3877b0c346314046f6ecffbfc58f7ecab2d38
6949 F20101114_AAALXK malone_s_Page_81thm.jpg
99dc78517f4d673a93cff88b62aee276
d3f522881fe3c7ecc3f4f62c3603ec443db34b9e
22624 F20101114_AAALSN malone_s_Page_18.QC.jpg
9ae2ba1e629762512ae17a1caca02969
b2f939103e04652aaaca27a6b42a97d59a101098
F20101114_AAALIS malone_s_Page_42.tif
b928a6cc01505aaa8855442e7cd55204
2ec29e73db4697fbb666aa352d65b9a1eb9b6b09
5096 F20101114_AAALDV malone_s_Page_02.jp2
b7cfb7b153227c731b823a28db323203
7ae54eb704a9db20731cd6748a5d17048d01c377
61017 F20101114_AAALNP malone_s_Page_82.pro
0ceaded4236af2403ea808baf04b5341
2afa5206ccb344aa204651f4b5b2dc1ba892b3ac
25553 F20101114_AAALXL malone_s_Page_82.QC.jpg
e6a55829929877b4d188e90336b638e1
9a29f09eecdf4eb9816fd28a526e0f628f10757f
F20101114_AAALIT malone_s_Page_43.tif
0e3d2b58cce50f4bb3e2bf6699912479
74174c3c8dfa7f5956b770edae43e33cd527ba83
6567 F20101114_AAALDW malone_s_Page_03.jp2
8dec9b123135e92b8069a83a9553e4a4
636bee71996efddc2d4fe61a99b7dd14b28a1044
55780 F20101114_AAALNQ malone_s_Page_83.pro
10ec8552025c21b6b9a8fb36f616f4bb
fd953ff4884bd67d2fcb711dc7adc72d2315a9f9
7206 F20101114_AAALXM malone_s_Page_82thm.jpg
780938fc077de9350b539d765fe3a72c
a55a33b7e5d13eaca5622055031fec2ad9506069
6564 F20101114_AAALSO malone_s_Page_18thm.jpg
60cd252b54d0a11d86245d52f7634bcf
b6cb5272d5d2c3214a2656690b496b19ef5985cf
F20101114_AAALIU malone_s_Page_44.tif
312e4a25ea22745471438d13f086395a
e869d50cefa470f3159d8d8c24fbb8a98eb857ef
51476 F20101114_AAALDX malone_s_Page_04.jp2
c81c1463c2ac50f76ad1eaf19af1896f
d2deb9ffd7e232ac965221de91c347a35caf58ac
66127 F20101114_AAALNR malone_s_Page_84.pro
a910359eb308dbe939650d526f06770a
58d71f96904b30b2d71a625737c1a9b964a7ee5a
24410 F20101114_AAALXN malone_s_Page_83.QC.jpg
0f4fdc7a77ac34eb5bafa95cdd8c0a2c
469c8b39e060202b8a005cf32033349d652c23d7
13735 F20101114_AAALSP malone_s_Page_19.QC.jpg
ef802dcd987451d71b2e08ce4993e9f7
324f51218272628d8f7d6c211cd9d7847b58ccbe
F20101114_AAALIV malone_s_Page_45.tif
f2f948e9cf349cd40d858b430713f214
181d7a7fb6059c983482a1472c9f0c42e9f86852
1051969 F20101114_AAALDY malone_s_Page_05.jp2
423248b47a238a64856d3c732fdfb458
dd3f23e7950f6269293197a74bf4995fafbe38fb
66225 F20101114_AAALNS malone_s_Page_85.pro
a7c338d3efbde0e593532773cde52cf5
0b1c168f4c965f4a35bcc24bfcbc0f90dd3b2358
6839 F20101114_AAALXO malone_s_Page_83thm.jpg
d98072d67ea66b36823442584194de73
0f1690d021d882e513f24e9db583bbd0b3a61cb9
4037 F20101114_AAALSQ malone_s_Page_19thm.jpg
887498a46ad3490a244c6c5cc778b0a8
10bb6c890c02a6f87bcbd2498a7101e2af74fc17
44288 F20101114_AAALBA malone_s_Page_16.jpg
7fdc2c19f23ed405d0d6a914aefd9dfc
1a2c0dd37b2a9a18b1de16ff07609fb7927fdc76
432533 F20101114_AAALDZ malone_s_Page_06.jp2
d3dc030723ebfcbaf88123365ed892ad
85236085d82171c33cf8600d29a3728a137b8bd0
31880 F20101114_AAALNT malone_s_Page_86.pro
32e6823b1248eb1cfc51ae3c0ef2c01d
17bdfd1e39b19adf7efe4e9ff3f73e8c8bfdb164
F20101114_AAALIW malone_s_Page_46.tif
93ed9c2ecf1ecfcb85de567fb106c74a
b55fe5a9af407595498b70d8df2558d1042f63fc
27203 F20101114_AAALXP malone_s_Page_84.QC.jpg
39c92d6dff2c09664799c3c0530552e9
6b8d63744c75fc3eebf8bd47641a4629dafdd5df
24739 F20101114_AAALSR malone_s_Page_20.QC.jpg
5ac849f7bc67daf994aaca53ca758411
fcb300544aceeecac3906a1aea79aa1e27b67b6c
52359 F20101114_AAALBB malone_s_Page_17.jpg
d6d8a54e6c2f9a82d29fad280912debb
ea0b622f02453fc646ad1bc39488c42ae4dbba56
21938 F20101114_AAALNU malone_s_Page_87.pro
269a43d18fab51971f7ac53b98aa6400
2ab19821146102013b4356d045e75b3b4d6f9661
F20101114_AAALIX malone_s_Page_47.tif
06516d55b7feeafdfaa2d7992ee6aa4a
3e27aced3078a917111d35796735e08ae0a37871
7276 F20101114_AAALXQ malone_s_Page_84thm.jpg
bb3437e980a8c47648fb70d03bb0cc14
b33165be438aff6f5a8170ad055f40cf41cb43cb
6781 F20101114_AAALSS malone_s_Page_20thm.jpg
48192b092ca919be2fbade54ed9b55f7
37b6659006f6d5f09c98d409b6af4dcc5daba5ce
74292 F20101114_AAALBC malone_s_Page_18.jpg
b64cdd871da25577bbac0eebf2bc4d64
e4038672d26ae3d8458106da30a658d8bdca6976
568 F20101114_AAALNV malone_s_Page_01.txt
a11fe9b6b15f67965b5048851c2c3b95
9197ef79e071b4b08aafc87475d795e6efb515df
125307 F20101114_AAALGA malone_s_Page_59.jp2
06c31cfdf4d0d4cf5dfd2ce7b639c7b9
2c790765408955a8c9cbe919f19445e10655c000
F20101114_AAALIY malone_s_Page_48.tif
3c759f470cb3a9436ee51633448a6889
516a0c895d0f90a82c6edaf0ef04475caaa85227
27003 F20101114_AAALXR malone_s_Page_85.QC.jpg
db69937b3a48537571fdccb3be55c237
eaa9ad6084a9d9f414bfab667f0790e9c575d1fd
26313 F20101114_AAALST malone_s_Page_21.QC.jpg
db6f5e5e7599dc007801c480db0a5db4
2efae72ccd305209f6eb79e1ab769eeea780497e
46587 F20101114_AAALBD malone_s_Page_19.jpg
e448f308139ba155166e22b801007ad7
b066fe0585b622d29ac1982c894dd708bd2c6a6c
91 F20101114_AAALNW malone_s_Page_02.txt
42765848f6ca3487a7374b594476d971
b64803d5707e9077e1ce7652893fc5eabaed7da9
122333 F20101114_AAALGB malone_s_Page_60.jp2
52bba3dbd336d063a61910454a585bdb
a6e65f7bf4c08650e4445e16d3c0e7b764dddbcf
F20101114_AAALIZ malone_s_Page_49.tif
b0c2d4b12ecd900c039a620d5376f71c
0a6f5bc65957805a85f97bd1feb664c3e91b6c47
7293 F20101114_AAALXS malone_s_Page_85thm.jpg
97f3fb4feb1808e0d7d2d8e0736cd6e8
3acffd61781b7d14f50af44675ff868c80590eb1
7094 F20101114_AAALSU malone_s_Page_21thm.jpg
a95288c24b58c11fa30a6464305ad86e
a2cf73e75ac2d2aa69f3e0a9643f83ec6132b38d
74615 F20101114_AAALBE malone_s_Page_20.jpg
b1c25089e81d764d76ec98c37251146c
d02a8f95c337c7717db85702bbe870c9d6ef15b5
109 F20101114_AAALNX malone_s_Page_03.txt
4804faae8fe624eddb59b69bded82e31
0f734429ad322322587e252c2d9f59aa505df2b2
24659 F20101114_AAALSV malone_s_Page_22.QC.jpg
36cbfac148c79b455ad82bce7971471c
a761c08214305263a8b65de602f40a3f3ee414c1
79735 F20101114_AAALBF malone_s_Page_21.jpg
bd6ea2e77c95b01b92f1fef7369259ee
d13525da5afc76016a9a1dc85260d03c5bcf9408
53846 F20101114_AAALLA malone_s_Page_15.pro
edc4a05cdc81cb0f4f00a3504513a70a
5aab65fe59503b760aa433fb9ab91d024e4689d8
913 F20101114_AAALNY malone_s_Page_04.txt
1f4dceb1006367d933dce71e1bd37ffb
9b21b4786125a035437d465e0d4f88ba2f83fb3a
21796 F20101114_AAALGC malone_s_Page_61.jp2
f5b243dd7f4148dc5c5fe42d44a31ff2
995d5885c8f51a728f5cfa6175d39b1c0ee00474
14465 F20101114_AAALXT malone_s_Page_86.QC.jpg
d36f82811845629addbb5a0393409112
f775c1dd19a142199beabec7c6417b263c1db1da
6758 F20101114_AAALSW malone_s_Page_22thm.jpg
454f7ed5c08b3fbb45fcb887c0a743ce
85ae0ce0d1427bf312d24458a79889e18019aaf4
74762 F20101114_AAALBG malone_s_Page_22.jpg
42f318d0151c47d3677bc2fd31c548b6
36e6755607d48a9d0d09d4c34a02084b322a0798
27621 F20101114_AAALLB malone_s_Page_16.pro
d6ef0782321f5a9559448c1740c4539b
4752c1bcd503741d694e23063d12165b16398e7c
3176 F20101114_AAALNZ malone_s_Page_05.txt
d58b136c896273fbf010519a22a52adc
97c98f8fc3be08deb7c28935fbdcf9468c79e39f
73150 F20101114_AAALGD malone_s_Page_62.jp2
3510ba3fad5018aa7594c8fcaf476157
a4f3d4ab53eb25872063b063d46b2abb44907729
4237 F20101114_AAALXU malone_s_Page_86thm.jpg
50171ec9fd0cc8b6e4f7ba193f0875cb
08fd2ba11c1a3e5d4055e9e512469b3217ab2466
24720 F20101114_AAALSX malone_s_Page_23.QC.jpg
436092bcc07b675216fa994a277508e6
ba18463d6463ee0efc4f5690323662214b004885
76001 F20101114_AAALBH malone_s_Page_23.jpg
53eed1c2cf04e458084e1bd96453f5bb
cf75744dfaaed6cf8a4a5230750c8219bcaf026d
15927 F20101114_AAALLC malone_s_Page_17.pro
d8f428d6db2f9f524e399c0b1a90e651
e115774c11f77cf5945211be6c08e219d81e3871
577720 F20101114_AAALGE malone_s_Page_63.jp2
86808c3e123af0d5cc8531d8be3ae958
5dd39158dfd0c0eb3476bd1462323082c93b2992
12731 F20101114_AAALXV malone_s_Page_87.QC.jpg
69c11a57b18be3b9e197880d8a336952
2b36432436beaeed2366508ba0770a4337e42fa9
6958 F20101114_AAALSY malone_s_Page_23thm.jpg
1786baf392adc8e5513a462b4ea0eb14
7e8ec134388dec62530cf7dabfe1c1f4eff9969a
2026 F20101114_AAALQA malone_s_Page_58.txt
f85a42cdc0e452d8a35e7231af0d1226
0d1436e1002d2bb8a31795fc9d491c1c58e8ed70
72591 F20101114_AAALBI malone_s_Page_24.jpg
7ee9c5fa83c8fd7ddfc87587f7e94332
76ea35a8d2863291ded4c3e7f86fc4ce90240b5d
17867 F20101114_AAALLD malone_s_Page_18.pro
f67fa375ed8240c8d54353be2535ac7b
054d83c60ca665426cce6f97163fe199b30dcaf0
762898 F20101114_AAALGF malone_s_Page_64.jp2
2216fb9a9cbcb4a6fc141b792121e56a
e79d76873c5c506e39998018b989b75002a91d83
3672 F20101114_AAALXW malone_s_Page_87thm.jpg
4a3e8e238d01cf199c8c37833c0f628a
f63dc83d32cc6e6ac7537e430a4a78a4764d1764
23937 F20101114_AAALSZ malone_s_Page_24.QC.jpg
a7cd66a0e880d2a3f0485705cd938537
eeb7b4211f1bde65c47830f917ab086d65ebda74
2252 F20101114_AAALQB malone_s_Page_59.txt
d54cf2952d614553917818a4f350ad58
1d20a06558ed0bf3b1e32b084972281fe3fc0309
7298 F20101114_AAALLE malone_s_Page_19.pro
f66a2226dcdea613a46472711e648273
57779d1cf5b148507fff7cf7bd8e4cc4145b0e4e
440153 F20101114_AAALGG malone_s_Page_65.jp2
e4e6235f329d5e680a3d7fb056546e0c
f3dc36e9f379a8df46a18f67fdd4305a69a30d34
32232 F20101114_AAALBJ malone_s_Page_25.jpg
56d3ef4b95e807eee4012e01099ecd2b
d61f0d9f426901092caf5e408fb7371aaa787ed8
101631 F20101114_AAALXX UFE0021081_00001.mets
1bb129b7d7d16f0c3894defb88f08e9b
b4b4e2dd36f16c0a5ea8e6e66f19d8168d0749b3
2206 F20101114_AAALQC malone_s_Page_60.txt
932fd35d7b461a648832ea53670e9c83
b3847693b13792b9819ea10558df6c9503a70f9f
51472 F20101114_AAALLF malone_s_Page_20.pro
a7c7e5a07d76ffbce22753ac27b3d168
1fe213652a7f9744887076d5c137ce9831a9933d
118613 F20101114_AAALGH malone_s_Page_66.jp2
15f5c9aa2a53ebaeb43721eda7989d30
28ec483fe21864470862f68652ca52dd6932399d
44987 F20101114_AAALBK malone_s_Page_26.jpg
8c50416c3d13ba5dee332db97581480b
3c8828a6bd39ae22b3db70ea65f333e3cac9dd08
6566 F20101114_AAALVA malone_s_Page_50thm.jpg
e37d4948021816e0da70df75b5d9073d
6eef9afd90b67c3dcbe21ce3868896100a2beabd
330 F20101114_AAALQD malone_s_Page_61.txt
3bbaee63cdb400e535513650b005f463
73e4c93076f4770dd526e382069478dc96ac3ec2
55174 F20101114_AAALLG malone_s_Page_21.pro
7ee6fe24b945eff559b0c91ff3fd198c
d829f8728b9ee1d0fea0200a28b05b33cb7c6efa
109723 F20101114_AAALGI malone_s_Page_67.jp2
f1e4e7ef5117fea1ee3b7bd38c396efd
b4c29c0ff29a6f9ccf1f6dffb22911a98feae918
70310 F20101114_AAALBL malone_s_Page_27.jpg
bef6db241a4f41bdea809ee10f15c855
4406550c6b04e6698762e9cc8f088950ab96c816
26621 F20101114_AAALVB malone_s_Page_51.QC.jpg
3932a8d826eda306cbfcbcd6a2715df1
4293b857a626253aad7f09cd65bc0865dad8a62e
1824 F20101114_AAALQE malone_s_Page_62.txt
9375ff055dd354dcea0d203929c200b4
203a130004183f3c593ebf6b80e6c17354f66e90
8909 F20101114_AAALGJ malone_s_Page_68.jp2
99ad83b0b4b2c96bcce3e7cd22bf5f1a
0e167db4c33e6dc993d3c4784337ee924598a3e3
78428 F20101114_AAALBM malone_s_Page_28.jpg
f433878337bd15acd624427eb5c8f72a
31ccdbb3293b768ff361221762a323a211db8833
7190 F20101114_AAALVC malone_s_Page_51thm.jpg
04e6102443fd00f30571d9ec75b4b3d7
6bd155833db9e62d3dc4ae1ce41081e6d0ba8362
501 F20101114_AAALQF malone_s_Page_63.txt
4d730753a514277dd45c806f6d9e1afb
80b6361ccf36af1b29519c541563a0e099b57dc3
52154 F20101114_AAALLH malone_s_Page_22.pro
34a608257bd9f601f93cdba00d12ba8a
684be48571239f4167399b5a2137e42ed2190c52
131890 F20101114_AAALGK malone_s_Page_69.jp2
e6c2c3c8c7fbe3aa6518e4ca7c3eaa3d
39efad4c347fb25266c8d8342f069e589550fa60
78284 F20101114_AAALBN malone_s_Page_29.jpg
fa8ca5c7d764dd851a5417903095a789
353d13aed7381a5c3cf1da3fb237d5685bfacff0
24526 F20101114_AAALVD malone_s_Page_52.QC.jpg
2460b3babefafa64492899e2dd29eaec
8c23efbefc90a3daee35630c81b04fa0476b1e7e
1194 F20101114_AAALQG malone_s_Page_64.txt
46263b81d8b4ebb67b76bfe9df16cce1
c3eb0d74deaaf7f03cb359294dcefd77133d05ef
51609 F20101114_AAALLI malone_s_Page_23.pro
74f8abadc4b2a0023b4596768c36b8b3
a1fcb32805029ee99e351913e8e435dd257c1a65
155676 F20101114_AAALGL malone_s_Page_70.jp2
d117d757de1df415987bd1a418975e7b
e43e53baa82d140edc6f0f0cd7834720ea0685ba
12086 F20101114_AAALBO malone_s_Page_30.jpg
79a4635cb1802a2ce8067fa25b2dd0b8
1f152c908fcdc74f60925d0aa631b133e07692fb
6754 F20101114_AAALVE malone_s_Page_52thm.jpg
bb49a63a1c17cc2983e3c6b5ebe30a09
e6b1e88538aaa30c525dd7b0cdf24dffee1e6fad
F20101114_AAALQH malone_s_Page_65.txt
30e4cfd9186516783b317668d60153ed
23b7a94efbbbb4e933d06955e9865d0ce87ad33e
49247 F20101114_AAALLJ malone_s_Page_24.pro
b2b1046e07b5a288860e0927775e4d9e
29b0ef8008f8a51c10ccd331a584a2dba1c40b96
153729 F20101114_AAALGM malone_s_Page_71.jp2
76f31bff08d01732242c3530f60ccafd
f4038dc6b28094d1dec35c8c3a446b76fa88c32d
73237 F20101114_AAALBP malone_s_Page_31.jpg
f7d0919e91fc33780780d41f13455505
4a6ec8861c3accad0246cefbfd1f66bbd1e06d49
26011 F20101114_AAALVF malone_s_Page_53.QC.jpg
09d3ef1e7ef97abc2a7df59df1281ae7
12b0cf3ff63d1c77ecef1abf5a612216b1c7fc4e
2171 F20101114_AAALQI malone_s_Page_66.txt
bcb29e6930ab528fb30d8e1b2ff38835
0c7c177826d16400fbe306bef28db1378c295cb0
18119 F20101114_AAALLK malone_s_Page_25.pro
0d1e4764f18491ac614c470c663e3d34
08bb194b3fd0ab34e6f011589a50ecac6bcc718f
153854 F20101114_AAALGN malone_s_Page_72.jp2
0c5b26cb888c2f1e23124365657aae97
379d3d8d32859764fb90b88557c98bf049135854
76990 F20101114_AAALBQ malone_s_Page_32.jpg
63b3272d7c39b51e1a5c4184a66ae6a9
1b196493c798ea0340a29af566a6d5564597bde5
7154 F20101114_AAALVG malone_s_Page_53thm.jpg
e4d70421dba414724b14b373a4ccb96c
05480b6c5e3b2126e4402c002e5eccbead859108
1944 F20101114_AAALQJ malone_s_Page_67.txt
f2540a66bb5fdc44717e154375ad3e03
9578afe50b06d3a2289d33a555533a3f4ed5bd44
40489 F20101114_AAALLL malone_s_Page_26.pro
a6aff50fb5cdcfb8e607b6272c6f8e8a
86109ad0c2586f2e1401a2807f318a27c8405c44
156498 F20101114_AAALGO malone_s_Page_73.jp2
3421e63f8c4cd7f619c71225d6ca5663
6316a1fe0f5261d1b883820776a6888b8d37d7ca
78715 F20101114_AAALBR malone_s_Page_33.jpg
b41262d80d4b1c279f3d584fa723fa3d
2de0b69213d3ba0c996e6dea468c3189fc2057ad
26695 F20101114_AAALVH malone_s_Page_54.QC.jpg
9b0f5085c16b95fc341453036d39dd9e
12805e4006cb63f052f6d938501661e0f85a350c
110 F20101114_AAALQK malone_s_Page_68.txt
65eeba83fc285fb2f3175b41ad63dc8a
3ee83ff4ed7772a58553f2ab54242cfa8d79ed47
46899 F20101114_AAALLM malone_s_Page_27.pro
ee65926182b3e6360129aa7864927e53
2ab9368a1a51838a594ca2a42e3a7f4a12483ddf
34743 F20101114_AAALGP malone_s_Page_74.jp2
0bd2f332f221f50b0ba7b7c1e98060cb
42b822bce197377a325b9944781c28727ad4bf3a
79461 F20101114_AAALBS malone_s_Page_34.jpg
b452e5ce112225cdf17aeb1b51d53e2e
fafdf316400fdccf86b033ac0eeb67e2c54de36b
7144 F20101114_AAALVI malone_s_Page_54thm.jpg
c33149351400de8486361ae1848f3f51
37b7d0e8d6e9708ab324ac050f274996c6f0ccbc
3378 F20101114_AAALQL malone_s_Page_69.txt
152d7e547e9fb93416ccbe5474e6e90b
01ae6a9a435a3b1ce47cf50277df00bc0b521329
54609 F20101114_AAALLN malone_s_Page_28.pro
b5dbfc53afcd4306c8a8d1171db8e8e7
f12b4d80fa1a6688acc1a57746c48423e2ca5755
9649 F20101114_AAALGQ malone_s_Page_75.jp2
3e075a3d3548c7713d04defc2ce3c7f3
e7749ca731f6a23f7e5663805ae568331148301b
77300 F20101114_AAALBT malone_s_Page_35.jpg
1d3ea8eefc57c7a7511a96f8d96340a0
2d4acb66d2152083739a1d7e5db71c7273e18f51
26258 F20101114_AAALVJ malone_s_Page_55.QC.jpg
c50fff45fc99e6f14fca0494244eca4b
9496059fb0078a9ffad51c0035e0f0cfc5fbd34a
55495 F20101114_AAALLO malone_s_Page_29.pro
c47fe5aa124b585fc4e29e661a8144ba
b145426225f4d96e79a533aa21da78cec7037ee7
137966 F20101114_AAALGR malone_s_Page_76.jp2
67710644277c01d22851044c1b742419
5e36074107ee1ded84191e71e190ce1cd78b9682
54617 F20101114_AAALBU malone_s_Page_36.jpg
955c567db604d9e7cedfaee55d1af07f
3246eef9d337eaa7051c5d080834f79de9263e82
7124 F20101114_AAALVK malone_s_Page_55thm.jpg
a2306557ca9604851381a2a2dbe929a3
0cd9ab0a739ab350d0d74db2f49c88408c3cadad
3361 F20101114_AAALQM malone_s_Page_70.txt
e5dd049c7b37ea6c9231ff9035e82091
7cc07a42766364a757a1952a97d152b521fd23a7
2871 F20101114_AAALLP malone_s_Page_30.pro
06973522f31360f5139d29fb4f1a6781
dcac23623eccfc5bf73ecdaff6544072b4a16b21
148511 F20101114_AAALGS malone_s_Page_77.jp2
3a6f893fcc947b400c84ecfbca48d1d9
3092357b122e7f7de0698a46bfedad013031a3dc
90088 F20101114_AAALBV malone_s_Page_37.jpg
144d84db0f5a564c171fb3da02e87232
c342264c54f953d3b4624142aecb564760622e28
25060 F20101114_AAALVL malone_s_Page_56.QC.jpg
f179739acf82847896b637fd05e229d9
3df332504e916150c1c06824407ae6fd66ca7620
3760 F20101114_AAALQN malone_s_Page_71.txt
65e8014b68336349c61ac2afc2389b58
af189874a25829fae192ea9021828511eac9f4a6
50963 F20101114_AAALLQ malone_s_Page_31.pro
f160ee27d2a0a93f8dfade2a03b05cb0
13975d3f0b2aa7baa1e4ec9a11a90043602a94dc
155325 F20101114_AAALGT malone_s_Page_78.jp2
00c6c802f03021feaab691f181fb3459
bac0edd5b9c805d56ade6b445b3f6e86b42867f7
37133 F20101114_AAALBW malone_s_Page_38.jpg
cb0961c8a6b1371de726612e0966971f
00416974ebf495b7bf7c49acd997bbbcecf434e7
6748 F20101114_AAALVM malone_s_Page_56thm.jpg
34c18a318c4edf1f2c26ab43ef0d6d12
489b684cbceae9a36001727c513be359112b8e2b
3935 F20101114_AAALQO malone_s_Page_72.txt
2cf011645da65aa1ecfa160c3f6bbcbe
3a5a1f753326b71eea289e3443e3439e8b1096f1
53908 F20101114_AAALLR malone_s_Page_32.pro
36fa864dd3d7885ebcbb790bf8868f51
af9cc60016349e75a4a406889b21bc28fdcc29e6
34473 F20101114_AAALGU malone_s_Page_79.jp2
ec8a12033b04aee81ac8f763bf33af79
19d8be2d065ad92f31e7d166d9c0c0494591358a
41782 F20101114_AAALBX malone_s_Page_39.jpg
d62f000af6d2e079f646a1b8a568d0f8
26cb6f5f28b01cf099a92c97f2ce752b1abdfe55
27883 F20101114_AAALVN malone_s_Page_57.QC.jpg
0c5aa63cacbc9f8ee675db6d291473cc
e897b5e5bb1105c5e4d1512c4ebc349e8a09cfe8
3846 F20101114_AAALQP malone_s_Page_73.txt
4d39a5826f645cdf4acd1a892f1871db
e65e0d5008137e43edea1f7a1613d00bd08911de
123331 F20101114_AAALGV malone_s_Page_80.jp2
1915d793f6843c00276345861ded00d2
140959ae12dc81efb0ede746edc3fa86fbf6b447
34059 F20101114_AAALBY malone_s_Page_40.jpg
56c36b8a8f4d378bf641e8a5ab59def9
f56f626f4cc567f8f2539fd1c5fd085e50aa71f1
55397 F20101114_AAALLS malone_s_Page_33.pro
4e0567336f24f37cf878ac6f5cd81159
7a114d0dd7a4bb605e8fb1901d758a1f750fc88c
7582 F20101114_AAALVO malone_s_Page_57thm.jpg
717334d707aabc6f204409e445525d7c
ef99c77e0134f06f5646ca273bdd59b874a90d7e
1063 F20101114_AAALQQ malone_s_Page_74.txt
117f34fb0dfe90c4aad959fd449030b4
1cb50e694386ec56b49c22e41ab04364ce3be36e
128839 F20101114_AAALGW malone_s_Page_81.jp2
3920425298ba001fd46586e069da4cde
00fea036175dc1707c11f19df6ec0d77192b2a8e
31217 F20101114_AAALBZ malone_s_Page_41.jpg
347eeb407ea0d20d00fed11768aa1f69
367e59d0cb794c34c944bc082b6c2b493f8121fd
55653 F20101114_AAALLT malone_s_Page_34.pro
cd079abcf101dfa47cefca43a900c062
88539cf23f97be790e40b1a2742c58dd0c95a8c1
24611 F20101114_AAALVP malone_s_Page_58.QC.jpg
1fa8ec8032d6c34907621e6877f8380b
381a1bbd56ed1dab0ff62b46cf04684abec60768
113 F20101114_AAALQR malone_s_Page_75.txt
71ffa5632ad5c8f789d8515b01f5f04f
50ccc7e12489f659c10b8b1f4a9aab8162c0b132
129407 F20101114_AAALGX malone_s_Page_82.jp2
0dfca2609f40c7b42f41de7336a16b51
c33a2b5383ef0c01f818c5da3fbbffa3a407b5e8
54830 F20101114_AAALLU malone_s_Page_35.pro
8f899823b7be67a5ab0f4c55cfa71900
6b5f010be76f5f01542e2af7e24ebe679ff036a4
6796 F20101114_AAALVQ malone_s_Page_58thm.jpg
a1c86f3dbb310d879bcff6046d3ccd78
aec39faebe94d2c2d8702b43eb7529c8e8aa0f44
3347 F20101114_AAALQS malone_s_Page_76.txt
3d2d2de9879eff65fb3ed95f65a5e56b
f225f291a820a55f80c81f5d99560cf81dd53fed
119912 F20101114_AAALGY malone_s_Page_83.jp2
0ba72073ef472432e4ad9ef4b9850952
c695be9ded1b104769026c1728dd9c6da6ca93ca
35299 F20101114_AAALLV malone_s_Page_36.pro
7ae49779bacd5f52608c8e10a6c6031c
d92d87139040f4ce448253351947b372ea050472
3770 F20101114_AAALQT malone_s_Page_77.txt
8af056b012b37f3f35bb465a540243df
c4c005d55094f1b0fcb301107ae3b86dd0024fac
535116 F20101114_AAALEA malone_s_Page_07.jp2
77a577d0330a2e193e01fa6c7194d1e9
9eea1934ca2a5fd390dc5d84701a7057ed7e1b71
138615 F20101114_AAALGZ malone_s_Page_84.jp2
e18841143440e64a5c116497b7290365
be062fabdc7dd804a16cd62778706d7d89c973b7
89355 F20101114_AAALLW malone_s_Page_37.pro
bc77ebdd296d93bb4edfa4c07c3f8cbb
cc70438d6085d19569801debb340c0dbcb7235bf
27224 F20101114_AAALVR malone_s_Page_59.QC.jpg
aa006f8be3217958b94dd9fc7ac0f47f
6e90b63f3b60c0f9cca63c8a2617e6dd8ab7f9af
3696 F20101114_AAALQU malone_s_Page_78.txt
31b13816a56a272056f1124c372e26f4
3860985e1a5d8a808ae53caeac636743e86b49c9
1051961 F20101114_AAALEB malone_s_Page_08.jp2
d8ceb533769c1ec50106150a152bf1be
b821d89c863d817bad759e070182c223cbb584f2
32188 F20101114_AAALLX malone_s_Page_38.pro
317e4ebedd55bd368ff3c3a81e103226
c30bc040680ad798a617f155769d9c3b2f8ccf26
7329 F20101114_AAALVS malone_s_Page_59thm.jpg
deed0d712e1163318fd71ed92d8f6b94
44c687992405b3365729abdd98b930f64c84e428
1052 F20101114_AAALQV malone_s_Page_79.txt
97d367544e13a24ca720b8c5a2be8b76
9c476d8d36c2be8be92778a33e2aa111d52b3627
350656 F20101114_AAALEC malone_s_Page_09.jp2
fee578220ca3f5b8065ca3fe74fa6b0f
e7912c7addecd596fa514950695b868bd9648154
F20101114_AAALJA malone_s_Page_50.tif
f979f09ba6060747a512a03f66731b2e
364ae74afd4cbf456c5266e2283496c8b5119e40
23456 F20101114_AAALLY malone_s_Page_39.pro
2973368d1f7d5c3ebb0f75d078593cd8
7758f3d2bcfc8006b863fd26b115dbde16f443ed
26865 F20101114_AAALVT malone_s_Page_60.QC.jpg
7f1c73723c0dae0ff6e50d38a2e298a0
44357e6b6060176e664c230fd73822691aa96bb2
2404 F20101114_AAALQW malone_s_Page_80.txt
e5dafac434712f68279e9554702f120e
d119e8359b1b77ccc030dfc55d4ff6da10eaccb2
104858 F20101114_AAALED malone_s_Page_10.jp2
e8fcbb9edcc146c3e950b816da033e30
a025655a77f14c58a67a1e2f4256167b00a88145
F20101114_AAALJB malone_s_Page_51.tif
f286cc7e52e09807332669c3c5d06b09
97bdaffc15a54d24f6d8579d1ffe14c0354d627c
18300 F20101114_AAALLZ malone_s_Page_40.pro
e76338cffdc25db8a8f807fdebd02cdb
e7d3077be6b73cf6a785c2f4a70b720be3f9b21f
7135 F20101114_AAALVU malone_s_Page_60thm.jpg
da720d1e400412a010fc8373cca7de7c
c5a4e763c3fc9d89afda9382fef4c83ae4a9a2fb
2491 F20101114_AAALQX malone_s_Page_81.txt
45e219c963c3b77de38f5cce3b2bf6ef
74067e306c63933a1735ba460739a0cac9a7d81f
67327 F20101114_AAALEE malone_s_Page_11.jp2
cd30db93e1bc8e08bb0b5f35f66536f8
1fdc258cd8307795b33a945db0f13635fb7490b7
F20101114_AAALJC malone_s_Page_52.tif
09c845c31a425b2733a559740a57d0e5
a3ce0b0dce36ae519feeae83d593590152b2e0bd
6309 F20101114_AAALVV malone_s_Page_61.QC.jpg
7a03c76a8f14653cba311db27e2b9077
463452f98b14a8c9891e9ee53a84dc6bcbb7cf23
2505 F20101114_AAALQY malone_s_Page_82.txt
3e89f46bed14e935e8680ad1e9825d26
25ce74e0c20f9ac79cfad69c35e2a079f2c2b791
478 F20101114_AAALOA malone_s_Page_06.txt
3d1fcd86781cf652e87e46b52f36a5a8
9e7d99c44c1563fdf346d080de0c65f81385de9d
F20101114_AAALJD malone_s_Page_53.tif
2821bd0239fa70f909f13d79fd2b3163
a05742c31210454438d127d4103314d555d06eda
110599 F20101114_AAALEF malone_s_Page_12.jp2
93fc71378a97db2437d407b69bedaa31
63a94881a5cd662dd1dbc048bb167a1e5d777cdb
2205 F20101114_AAALVW malone_s_Page_61thm.jpg
b7ad6aeaade744df059a32ea3d7f2d50
a195763c6bf922aa54eae66b81d981696b9d5952
2272 F20101114_AAALQZ malone_s_Page_83.txt
ef7233997ec52a3c53e530f47a5bffb9
cc40cb76823b1b4320d93ceee5c2df0f1b09c8cc
826 F20101114_AAALOB malone_s_Page_07.txt
96f76c2157eed6aca43adb1975fc1b6e
887209581a25fb39e0ad2cbe2a7186d0e933104d
F20101114_AAALJE malone_s_Page_54.tif
ab94bf889e53fda5db500eb219bd3e1a
336ba52cbe8a7dfed99b8bbfb9892797aeee454a
123668 F20101114_AAALEG malone_s_Page_13.jp2
01561c137138a640cd8d981fc3652839
b2da3f2d11a7ebc46ededcbd18ab502394a29a6c
8867 F20101114_AAALVX malone_s_Page_62.QC.jpg
e4b34e2c004bf04ec086bb8478b1823c
73278b200014937cccc08951b169aff2f6bd0ff8
2976 F20101114_AAALOC malone_s_Page_08.txt
fa2adadfbf68194a826e24c0523a92ba
1cb11283400e33076f98a8e0e9646a7cae2ef4cb
119747 F20101114_AAALEH malone_s_Page_14.jp2
2671517435b86e11f29888b227902ec6
2dad0023b7fce96f1ebd4072111b70e21228b543
2825 F20101114_AAALVY malone_s_Page_62thm.jpg
9b25b35724cf9090a04ad41021045adf
a9083143e14c9f0c54a6218ea3346b16166f25e3
6416 F20101114_AAALTA malone_s_Page_24thm.jpg
814ba482578f9212ab3d401a7a707d18
712c0eb9ab179732dda54aa4b8234cc72462ac52
290 F20101114_AAALOD malone_s_Page_09.txt
6da4220417dd48e310bdac29f05beaad
1c34ef6d20c71277b0f1ef80b700dfe3c56d5a0a
F20101114_AAALJF malone_s_Page_55.tif
c26a4e0b346fc4d4b48d989140883fe7
2a7eab213d186e67a401890ec6d536f06591ea77
117111 F20101114_AAALEI malone_s_Page_15.jp2
25ec0ff05c6b9f2c2e26eed5b33544b3
032d1a20b8275627f3e3d421f07563d7113c57df
12611 F20101114_AAALVZ malone_s_Page_63.QC.jpg
ee3949377787d3681f651d1338a90c94
3bed0372ea6dd00d5939ea500d47c8feb69d6e78
10595 F20101114_AAALTB malone_s_Page_25.QC.jpg
69eabdcce0ff0b7b9d3feb7c0e8a487f
38995656516af166ee89cbafad70bb4bf453d4b7
1982 F20101114_AAALOE malone_s_Page_10.txt
608663ce7dbddfbe6d64741543bd5da2
80a5ef66102573db103138628f7d0a75cd74ff9d
F20101114_AAALJG malone_s_Page_56.tif
23fd7751d159f0b00a2792ad502aa396
f7557013f7a788802e9338628299ae326f987e50
61728 F20101114_AAALEJ malone_s_Page_16.jp2
236e90e7538b6114160b6d7a4bc90c28
b00ad0bd0e8282dd31736512e01f943311b92efd
3165 F20101114_AAALTC malone_s_Page_25thm.jpg
e0cb069bef996f72e927d7837413dce8
499140066cbe7a977c5e461be2d034eca53abe94
1168 F20101114_AAALOF malone_s_Page_11.txt
bf3a94ae3db4a74f7a9372a4dd520a54
801605656c57178e35607b11cfca2d058825516f
F20101114_AAALJH malone_s_Page_57.tif
a8b923f243e2fa9770f9e034d876940a
f674b3d0eff7850d733c0c45882a3df72ea1b567
901302 F20101114_AAALEK malone_s_Page_17.jp2
b4e99fee1e0ae8d9be221a218b98128e
ab2fc2860f7d2e44f5aa15c8d7bb4945f7987859
12889 F20101114_AAALTD malone_s_Page_26.QC.jpg
462b845628048a769845e14c1e26b966
c48032a27a67d38628329421b0b6553eefbabf6f
F20101114_AAALOG malone_s_Page_12.txt
254eae12fe5e9a89709fd873cceb16fa
5adb4f4fe7fc12e7dc3194e5ff15477a425c687f
F20101114_AAALJI malone_s_Page_58.tif
4b2427c3d7d708b3d393a4488e2a5e2a
698480d58b6e44ba181efb9b75c0827ae6fbe5f8
1051980 F20101114_AAALEL malone_s_Page_18.jp2
c138ad175bf1014efdd851c190f49024
11329481398d29b944b622d220d02671635aab3e
3993 F20101114_AAALTE malone_s_Page_26thm.jpg
8fd440681b1e54b07052e200d80fbc57
8017ed67402b7a6a2dea780f64debd8fa74c7c6c
2236 F20101114_AAALOH malone_s_Page_13.txt
a2cd939de18b44edaeb4c55d903ce59b
3781833372a6da923bf72b8d07ed86ebf4a942f7
F20101114_AAALJJ malone_s_Page_59.tif
26f99fb5056ad36e49259283754a38ba
fb54c1b962d4bba0172109448569b9a0dcbbdef9
527200 F20101114_AAALEM malone_s_Page_19.jp2
96f22f7cfcb9116465ecc768f71c3fd3
a19322bd2d47d5a8f13d48b3624a00b6de4ae568
23533 F20101114_AAALTF malone_s_Page_27.QC.jpg
6c1bd9ce2205d43b11985079ee1a7845
02590c29cb763466cc204131f1a26cd19196a801
2231 F20101114_AAALOI malone_s_Page_14.txt
1ba8eefd5145d3e0867a82087864e5ae
87518dab7769e7111799af82e27940c37757c5f5
F20101114_AAALJK malone_s_Page_60.tif
f50db0538a8d70b31950858ec0f4a5b1
3b02abbd7423afb4df7f767119f3f0c316610461
112896 F20101114_AAALEN malone_s_Page_20.jp2
099eb5c04b1dcaac3baa75cb27afebc9
86f67aafe36cd066224d46446ed2da6fc9bca7d2
6296 F20101114_AAALTG malone_s_Page_27thm.jpg
a6568e6797bb3e4bbb7d2c765f0484f4
fcb3b15ddc71fe08013c4efc33c5fda874ab193b
2116 F20101114_AAALOJ malone_s_Page_15.txt
a30da203c4f82f11a883ae62fd018aa1
98f585c7dd12e9fda5d09be0b179d6ebeb02714d
F20101114_AAALJL malone_s_Page_61.tif
37811639f59d4dd36973fb78392198e1
ef3248454541dd8ec2997de5275e6a90c16386d1
120512 F20101114_AAALEO malone_s_Page_21.jp2
20e19d84eafffd56a403020506dbfbd2
40eb8eacfdea3f156d64ad1cdc476b5e582cc57a
26320 F20101114_AAALTH malone_s_Page_28.QC.jpg
84c2861b611ad50e4926b70bd08d0c09
948680b88627a1f30a4c3a6c5017943427267a36
F20101114_AAALJM malone_s_Page_62.tif
bf5a95b6502cde923accebf28f2c40b2
63949acbc76333d168a7da2258ace229170a323e
115834 F20101114_AAALEP malone_s_Page_22.jp2
b34a4c9522796436528faec045f71878
d9d4fb5ae4e2e062da7672fd9f98941c4d3458b1
7184 F20101114_AAALTI malone_s_Page_28thm.jpg
1847e85ee7e8a752f0502aa8eafd6319
35833623788fed50debe51b87bd19f03bbd3dea5
1095 F20101114_AAALOK malone_s_Page_16.txt
dc9f40c22201a6a80e1db2e808f68673
d44233f1862a2809cd07773baccd715aa89b39c2
F20101114_AAALJN malone_s_Page_63.tif
121941ca41690d1890b927a97a40964b
c84886e0e68c8d8a1173b653564b837f0158a17d
114897 F20101114_AAALEQ malone_s_Page_23.jp2
55b5298038746ff61c4e50e201100a10
874449ec831b5ad66093adbb8dc96acad0c57a19
26061 F20101114_AAALTJ malone_s_Page_29.QC.jpg
568ecf3b4947fc3bc45be923076a7116
dda4670093788b9fae371bc599be38c00586b0cc
889 F20101114_AAALOL malone_s_Page_17.txt
b7b3866f14d8a1aeaa8b05ab479b0180
6e2c81b8c0d9d4f03e61243499fb81246e84feec
F20101114_AAALJO malone_s_Page_64.tif
c817a9cb2326548f79ba699cc4bdc0f9
0626f7887c79f428d929339b495134e68c61c098
107918 F20101114_AAALER malone_s_Page_24.jp2
205b5085b12a7e339f22082bf064ef3b
ed9079f88f15db972af9e9dad01a0f1125703434
6998 F20101114_AAALTK malone_s_Page_29thm.jpg
aed9e2991001bf0822ad2327fc605f50
e7860534520bccc7987d78256d9a3a35f3531835
1128 F20101114_AAALOM malone_s_Page_18.txt
e2cb9d85e96644946860539e2c7f3f10
5c451b5c1ef28886ff223bacc9dc6a34a42ce267
F20101114_AAALJP malone_s_Page_65.tif
fc29f056ecc432fe8b629a55368ddeee
aab66fc801b184914681271e56beb4041a353b28
42802 F20101114_AAALES malone_s_Page_25.jp2
e9daf0b43400ba089c4e6a8ffc97bb61
9b28f8b3b2762ff70a48b0b9242837773488e92c
4034 F20101114_AAALTL malone_s_Page_30.QC.jpg
db507f5a2f44c66432e15d8721447feb
c184ca4a08a8f95d5aa7d13e8e5708e021468acf
364 F20101114_AAALON malone_s_Page_19.txt
0f7c1e73cb02d0f3fda93eafadfa8218
551f5eaa7cfc59784854f8fcbe8606ba7661e79e
F20101114_AAALJQ malone_s_Page_66.tif
b8c3dcff61d9e63b2b7bb92cacee94ac
16c40f3a77dbb22f677c0df0e8cd2671d2a89bb8
72476 F20101114_AAALET malone_s_Page_26.jp2
20d8fff03c814e6b2b4069ee04be6e04
5b95f13a4516b6178866108bccec6006454d9bed
1573 F20101114_AAALTM malone_s_Page_30thm.jpg
c01be88e57648c3113ff231a17a7b706
8146e265cacc5b35e76d4d3d0521762beb2fe911
F20101114_AAALJR malone_s_Page_67.tif
0d94b05dfa77b6658d5a64ef4bdcf729
f8b024161f0a64da111d4725121b85a27b09df17
104947 F20101114_AAALEU malone_s_Page_27.jp2
c8394c6202466f822087cfbae390af46
952f152833fc9aea08cec325aa21286fa7743933
2110 F20101114_AAALOO malone_s_Page_20.txt
6a04b092b703f69a0a954e41aade6e0f
cc5e843d2db5d29c6eff2bd0c15eb23a7f763efe
24213 F20101114_AAALTN malone_s_Page_31.QC.jpg
714bacb73fadad3cae4d3871f39dde7c
128683f644af6c206cd88f1a76efb587c9b6e543
F20101114_AAALJS malone_s_Page_68.tif
bdd917777f5255c00a7676e8e8f51802
bd09c3d6f76efb1f3e968519343149b08d799af0
119907 F20101114_AAALEV malone_s_Page_28.jp2
679f41ab97787346763d0c5c0f08eab5
25adff92f9dc239ab158406b294d5bbcbcd3bcf4
2161 F20101114_AAALOP malone_s_Page_21.txt
5c996a4801375694783f79603cea5131
fafd995153ae097362d756a732ac890442da15f6
6644 F20101114_AAALTO malone_s_Page_31thm.jpg
43b011da29ad13566a6f55b7c4d299c2
221542b39186dd250576e1a53f95b947988bae05
F20101114_AAALJT malone_s_Page_69.tif
fe5006f525fac515ba534e3f7f9ad306
3caa3bfc25302dc78b1ab6636d12b0740357401d
119661 F20101114_AAALEW malone_s_Page_29.jp2
17e3188bfd8075f5a2ed03282775c01e
6d554dc527871fa9e415d0372fbc01a5cce016d4
2052 F20101114_AAALOQ malone_s_Page_22.txt
d45f3d709cad9ce6130cdfc045e5d4d2
b22fb86b4ae142caf9a7e28a95be98b31d99a19a
F20101114_AAALJU malone_s_Page_70.tif
d5cc6f7430b56a9ca1ad2e59c8c74c33
162fa4a7eedabdc98ae2c4c051d35955462a142f
10004 F20101114_AAALEX malone_s_Page_30.jp2
3491faeeabb3e1fbff8a8620ad50abca
dfdc350f36f0934d3fc3cd2bbdcceedbb35c31c4
2030 F20101114_AAALOR malone_s_Page_23.txt
aac2b7349f77ab6ae5bb4c864c5e7216
d93858267c20a7e8f8872ed3b4d94bdebf1699f4
25265 F20101114_AAALTP malone_s_Page_32.QC.jpg
b211ea29001bbe5c5aaf20fc28e526e8
4b9fbb8d93e8a1930ed606576d4751b4445957f5
F20101114_AAALJV malone_s_Page_71.tif
9fb17885a9cc3f1d39a5c1bab9195a83
705a5f57e55a44b19b5cde0358527b21979a2988
108935 F20101114_AAALEY malone_s_Page_31.jp2
40739e6fe25d91c5f2d37938a1a8789a
9b9f670bbf4ab95f00936bab0fb6e54317c3e559
1991 F20101114_AAALOS malone_s_Page_24.txt
2260ad1f39b922ec9b51a5ddc91278e3
c388ef31be70aa8ebe3be68492ddb817d5f9450f
6940 F20101114_AAALTQ malone_s_Page_32thm.jpg
3e008af9f5ff0cb66a07d99c49bdac23
f0abefa472480bf51ef7c7360cf757860e2e135e
F20101114_AAALJW malone_s_Page_72.tif
f6bdb349fe6438356221c80c6d49a49c
52ea62093a9075d76067463d56f027a6b29377d9
59022 F20101114_AAALCA malone_s_Page_42.jpg
ecca797591564c0826db264fcd4a8a7f
3fa6b51df6545cfc3dfa457e7cc6750a3efe7fe4
114968 F20101114_AAALEZ malone_s_Page_32.jp2
78246beed0380ef27e41d2874089a5c2
fc14ae3b0bfb7fbe8b942d882f04f76f3b39b40b
729 F20101114_AAALOT malone_s_Page_25.txt
c3f7b02e330439395a66e93aeddf689a
d66851909186859a9f138419e5d9c8316a09af9c
26476 F20101114_AAALTR malone_s_Page_33.QC.jpg
020deedbf01364073d1874717be6b417
0de014e917d384c356501c9d1797475fc3bdeb95
F20101114_AAALJX malone_s_Page_73.tif
f89916278980ab9d8ce877d107fad169
f9215357f786c3a37c2eb1b7e38f092b390c4ee4
44023 F20101114_AAALCB malone_s_Page_43.jpg
324b89a652698a77766623dea4cabad4
a1d17b76cd7849768d1173e3e0e224fc971e4399
1776 F20101114_AAALOU malone_s_Page_26.txt
44d5bf3fe63092cf4f8ed0b9e07e01a4
c151479e582f37ceed877d46b878ecd379fd367f
7131 F20101114_AAALTS malone_s_Page_33thm.jpg
e45b5ec0604c6d6f14aa0776e2c4a187
0774c830f354215d9fa3f84d46ffbd6267f97c4f
138758 F20101114_AAALHA malone_s_Page_85.jp2
90a9849fc7cf863a4bdb1aafc226bb5b
4e0a6e47eae48752a5cc4f0c844edb7536c0d07d
F20101114_AAALJY malone_s_Page_74.tif
06725dcc912001a1447c72dde20f15c8
bbe7f80ac55ccdb9e534849c12d8f11ffcdf84db
28545 F20101114_AAALCC malone_s_Page_44.jpg
99db3346473bdfb118536dedf90092c9
304e67211901e43e90a268fb0925bc38a9b03c4c
1967 F20101114_AAALOV malone_s_Page_27.txt
3a52f4a6b5e574307bf18cea10a4fbda
db160315dcc96c8a995f1d2aaa91fc7c82ae8502
26235 F20101114_AAALTT malone_s_Page_34.QC.jpg
b481a54dd1645be649e1a577ce380cbd
7ca6d0fbf91eeee46f55b196fd4fe513e79ae1aa
70218 F20101114_AAALHB malone_s_Page_86.jp2
f929e84c0503ef182cc4331c3edf243d
87e2d41cb6fc22650b1cf354d6166c5cee528acb
F20101114_AAALJZ malone_s_Page_75.tif
02adce2bfb42b6f0f398a31960bfface
9327019daf10fd282c209c991f973f7202938700
61563 F20101114_AAALCD malone_s_Page_45.jpg
9e408638710accb24f497b23f83d3604
617aa5efa3e7b29e42acf77583aec8f4953e6d98
2174 F20101114_AAALOW malone_s_Page_28.txt
44bfe4561f7e35ca4966e7cf29afc7d8
084be959a484870a56afae902a1518ec6f5d108e
7049 F20101114_AAALTU malone_s_Page_34thm.jpg
3f3083e332636f6edc1c27938e0c07e7
e535bfa03159a1e69de1aec2a5d90dd289c530d3
65679 F20101114_AAALCE malone_s_Page_46.jpg
51e07f8472c8048d3f7446605985d98c
29e2c6e7c9a5ac693c0938d5300460492fccebad
2177 F20101114_AAALOX malone_s_Page_29.txt
9f342db2d73c318c9362447b400b9a7f
cf14a81b4f40330654a71ba3ce960804a1e7191c
52118 F20101114_AAALHC malone_s_Page_87.jp2
953af5a845cf68e0db28bf75c5f95518
7fb3b094e389523d445043655d6fc109c3211850
25762 F20101114_AAALTV malone_s_Page_35.QC.jpg
7754ed6a1c18a320780c185d17671bfd
f7b251a1caefaddf7695ef7cf80896a79a4921c0
42542 F20101114_AAALCF malone_s_Page_47.jpg
0d9534ce64385122590d7f70afe55ba4
37c288374a62e9c23b448e9366e61eefcc35dc2d
11438 F20101114_AAALMA malone_s_Page_41.pro
9205e864cffb517e7a22986ae4a554a3
7676196bd9f9ba8d564e3017f61aa1554d086968
118 F20101114_AAALOY malone_s_Page_30.txt
2dec51723d067e517cd82919a4969e44
ca44f9b55dd4fcbe6d00b480170a6d8cd5b6192b
6893 F20101114_AAALTW malone_s_Page_35thm.jpg
bd6c21e229975ba2ae5046a8a67569b5
226ca3e6c5b48bff954287c9adfc96721863b7d8
51398 F20101114_AAALCG malone_s_Page_48.jpg
8650b407f9bd79166355af14bb06b03e
141573c4581d595e3e65317d9853091c16e62c4a
10277 F20101114_AAALMB malone_s_Page_42.pro
760c8b24c666d8c7b366b84cc753c09e
337942e61c004ae08d865fbe075c938594544637
2124 F20101114_AAALOZ malone_s_Page_31.txt
f48083d8bf0380063b7a662afd2c3f13
1be6ec0ca0d3a408010b5c4cfffdcf3799e89d69
F20101114_AAALHD malone_s_Page_01.tif
d05ebd7933d0677168b00e2fdb60a972
ca5faa151bca2e1a477f0e18b09bfcf1540900fe
18385 F20101114_AAALTX malone_s_Page_36.QC.jpg
c6eb4d8f6fb2dcb9ef2264c4ec0362ed
c99ff3fa39730e8a8b8d3696ae50c94ada76cff1
47540 F20101114_AAALCH malone_s_Page_49.jpg
9fa1463d4909943cf07567b68c944b02
e107757109e1c5eaf482b31f395e976c74f968f2
22485 F20101114_AAALMC malone_s_Page_43.pro
5410a25ac871b024faa5c58137d8992e
3362c8f1b9081b9a6d3cedfca308566dc49bd9b9
F20101114_AAALHE malone_s_Page_02.tif
4708d793e8e666a1fd7670b72d9a3231
927a584daf6aff877cbf6cff177b4f3dd913ab79
5219 F20101114_AAALTY malone_s_Page_36thm.jpg
6be0ba3d4b83548bb227f55fb408c372
1873b7240606222df892c79c8845a398796fb8fb
2700 F20101114_AAALRA malone_s_Page_84.txt
d5eb70bec8175da9195fd5bfde79f1d9
774a396bbaf5db9b0bcc9704908ef14c6a3e3a31
74282 F20101114_AAALCI malone_s_Page_50.jpg
90de04de4977ef77716e9184f59c0c27
bc24b559bedf948caacc5dfd39c88f61bba97f44
10750 F20101114_AAALMD malone_s_Page_44.pro
d2d7e053ee5470af75afb964c4308e38
e132b787043bddea75e4550e5df98fd12965e0a5
F20101114_AAALHF malone_s_Page_03.tif
efac1aaeaee3aee4173d445aff615045
57ed1ece7b579f135b98b9e65b10e978ab1d1ca2
27265 F20101114_AAALTZ malone_s_Page_37.QC.jpg
c1e0a9de1f0ce0074827c4d2755403c2
28c4f4118316f16fdf43c0ff7c3ad5b89377267d
2709 F20101114_AAALRB malone_s_Page_85.txt
d46f21d99fc67ca7753252c6ecf512cb
b37ed5a66e860be927e8620b8b39826fa63aa733
80310 F20101114_AAALCJ malone_s_Page_51.jpg
05a172023f87c7529865892302482dba
e6cdb0e8d0276defc5f37e933c93c512a6f14a52
35004 F20101114_AAALME malone_s_Page_45.pro
c50aa16cb857cd2f7ff1c1f12d5e140f
151001222487737dcdcdd43b26f9165dbbb7653b
F20101114_AAALHG malone_s_Page_04.tif
d0c9d86c6b4c1b39f236e6e4fe90c97f
e94de8e660d71602722c0a5036bcaf9984b6abef
1326 F20101114_AAALRC malone_s_Page_86.txt
24b5731a817615c1a98c9c0ba2783381
0486242978ef2b708648515b45840896b4bbf758
75502 F20101114_AAALCK malone_s_Page_52.jpg
145668765a1c3aaa55a0827f5e406197
b0bd0ba937afc845ee7db89a467990ca120ecdb9
34546 F20101114_AAALMF malone_s_Page_46.pro
40bef88b66555e7095ef279b62732794
b8854e36685981520893135161165ebaa75d8385
F20101114_AAALHH malone_s_Page_05.tif
bbe5cab3bd80d30c5eef489cbbb7db8b
773fa3dfa5e5e6ab503433a73085a53de577fd35
3813 F20101114_AAALWA malone_s_Page_63thm.jpg
f8313c8824751076928cde32644364b9
7ad19b5f1816775a1d6650b783f40f0b43e93cdf
910 F20101114_AAALRD malone_s_Page_87.txt
31945657c300cdabf62d0a7092dfbbfe
7d831a213ffd89242e73af84af101c5c60cf8902
78705 F20101114_AAALCL malone_s_Page_53.jpg
9df4732f94cb0453a73f294348520adf
24257d6eaf5c08490b730256872cf696fdec333d
23067 F20101114_AAALMG malone_s_Page_47.pro
bf0d36aca9d38ceb9a07be9e85e725ab
56951b45c3539569ba6b40de617994de7f71e20b
F20101114_AAALHI malone_s_Page_06.tif
74b8824a327d2b253c7d62758229d55b
ba4feec8be7468021e64093cc1d2afe307d84ea2
15100 F20101114_AAALWB malone_s_Page_64.QC.jpg
e55205de48cde1ff5e359ac827018719
d0903e94360ea603167def0ac3b19eda53a37ff1
2818408 F20101114_AAALRE malone_s.pdf
50161db17e26e649a67432b852e8efc8
c9493756addc6c56d550599b9a6d8bac1e5497a8
81119 F20101114_AAALCM malone_s_Page_54.jpg
94281516e7e3415d38fb6c07086e721f
ff7d1d9899d6455ff2112158b1e404f7bbe5571d
16979 F20101114_AAALMH malone_s_Page_48.pro
b01bbcaa2cfe8ce77361454428ee47ae
8b696a34db3ea76d2b2925bd0498a5c6693be6a4
F20101114_AAALHJ malone_s_Page_07.tif
eb4d3caea463bcc91317eda470998435
f6622992934700a5bb8c0b435e71aab628fe2fe5
4377 F20101114_AAALWC malone_s_Page_64thm.jpg
ed713c836bf4906a49bf514508f4f827
1ded9211f395b6038891144dbdfa718333486aee
8500 F20101114_AAALRF malone_s_Page_01.QC.jpg
09b9b6caf865a822c9b78f4ed34b8813
9902dfee4f6948edafc4ad130ae1d99d696099ac
79972 F20101114_AAALCN malone_s_Page_55.jpg
dba41e0c81a3de274db97595556eef67
2d5b1fc71295ecb14dbc5e8777b64ba0cc35d0f3
F20101114_AAALHK malone_s_Page_08.tif
f3d3cb39b84b9df66e61aeab56fcc24f
968b3f2802e939ffe22e29c637904a7416588668
12170 F20101114_AAALWD malone_s_Page_65.QC.jpg
7255d6fccae5c5b94f417bfd92acfe04
1e31bd05bfa8f7286cf5331851631f73fd14e0eb
2617 F20101114_AAALRG malone_s_Page_01thm.jpg
d94bf8eb546c015dbded03caaad01e1b
36a6bbe25846b52226955e0a882b304b01339971
76888 F20101114_AAALCO malone_s_Page_56.jpg
a442b22aaaf26a378732192f04da2693
70128dda60e0ec8794abb7e0cf52ff69c437bb39
28845 F20101114_AAALMI malone_s_Page_49.pro
7fe3bb3bf5b1501677006e034c20f16a
1dbdb3007678a413a79e06c200c687231612e43c
F20101114_AAALHL malone_s_Page_09.tif
58ecf8ab0e0d2f7b8e5293bc820f0dfe
60ae70285e1e0130333e4f2d812649c4424d3de9
3501 F20101114_AAALWE malone_s_Page_65thm.jpg
ff7480aeac0fe367966685cf15d91dc1
d7f1158ce86629a9bf4b136a990941772ff66d5b
3079 F20101114_AAALRH malone_s_Page_02.QC.jpg
ab115f9411d73beed1fa10328c788f12
c7a2c98a6b6d1a01a3989035112d98536e2a0693
83755 F20101114_AAALCP malone_s_Page_57.jpg
b17ba048805761c5ab45c62dfd340f35
93e001217874bcafb3713f86350a51d9f3572639
50344 F20101114_AAALMJ malone_s_Page_50.pro
bc85cfaafec291cca368056a7e69be57
ef0d820a5e975887649ddb4c973399daaa723bca
F20101114_AAALHM malone_s_Page_10.tif
34cc105a197cf5738aded3bb5fada683
4d4d8470d0667f05efa38184412f90527f4845ad
25632 F20101114_AAALWF malone_s_Page_66.QC.jpg
4b7610283f076fc7fa74ee0f1b7711f1
361f9d6a574a24253698978d3dd2f46949d92090
1335 F20101114_AAALRI malone_s_Page_02thm.jpg
b9221460a0a9117e272ed5af56dba89a
50e84263d4a35f293a22945de2cd06a01cce7946
75673 F20101114_AAALCQ malone_s_Page_58.jpg
c88da84bb7c1464abc9ec2df2c0efd85
e02286f6773f994ac196f9f4b6c3fdd7e51c64f5
56967 F20101114_AAALMK malone_s_Page_51.pro
a2908fc7cbd268829c989154fdca5091
a2bbc4aa5aad507a3b02540f8aaca68c1dd6c111
F20101114_AAALHN malone_s_Page_11.tif
c3562e92cbbbb1bdc2eb2da3042bb86f
9ee3f3fc52d47ad2019fa54a6a456789455ebeb2
6903 F20101114_AAALWG malone_s_Page_66thm.jpg
e88130844f8e507ee6bad3ee0da815ee
5a0ec557ad40b3c9afeb5193e7f808716d48a919
3257 F20101114_AAALRJ malone_s_Page_03.QC.jpg
ad72115341c6f5b23b7d6905e509f7dd
d46b18844f62f1a28ea98f310099428bde49a6e3
83332 F20101114_AAALCR malone_s_Page_59.jpg
2dbab833fc3d3228743c51b58724c01b
63abc71e963529847bff6df3718be1ba8712e33b
52054 F20101114_AAALML malone_s_Page_52.pro
95639195d488dc9b48c86790a3ab8e7f
191e559723a265f196c74a2d0ba0e60bc7791d35
F20101114_AAALHO malone_s_Page_12.tif
bc912d77c263fe98386971887d5bd995
95a1f81fbfc31c85e2c1b5930daffbf7b7a4c071
24266 F20101114_AAALWH malone_s_Page_67.QC.jpg
a7b3764fbf5bcce205df34ab02591b18
32072909b38fbaa3d8085da38211f4b1f9bc98f4
1390 F20101114_AAALRK malone_s_Page_03thm.jpg
8f02a2f8bc852be863c1dc50c9cabd01
f4376fbf7b7e1e4617632ed7b095ee9816149f5a
81238 F20101114_AAALCS malone_s_Page_60.jpg
835de926ebfdc8158947032078450916
96dde4defb7c2247926bde0c32ac2ce09bfa9c28
53608 F20101114_AAALMM malone_s_Page_53.pro
866b8640c3d2f4fde6abf71b264ca11e
2f6ff5ff209c3297ab17eb54c7b8c2a205cda069
F20101114_AAALHP malone_s_Page_13.tif
6e7635d60297277f919a3ae4e4678e74
e6ce84b88750de3fdd0216201e71661d32c770e8
6562 F20101114_AAALWI malone_s_Page_67thm.jpg
ed26afe54a1dfec9dd1abdfae83f83f4
86a1a2a53b30ac9713160768bc00eef28834be9b
12440 F20101114_AAALRL malone_s_Page_04.QC.jpg
e7c780cecef0113ba6f13a75b5978cb8
bc644c7f80e861503e4e8faae30869fcfe62cce1
18956 F20101114_AAALCT malone_s_Page_61.jpg
bb601a463957c856bbe553903b4d37ac
b7bb1b18dab7513419e16f6372770dff7dec78c2
55648 F20101114_AAALMN malone_s_Page_54.pro
06bb7ce8516486adfdd3de3fec03fe16
56dc6502f71867f82fcc3bc71e6ca739f12463b9
F20101114_AAALHQ malone_s_Page_14.tif
537c2ad40459121ee505bcab4c49bc89
057d4cb4c2e9de5c2bc77ecffe42642ce6338ba0







PALEOMAGNETISM AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE UPPER
VINDHYAN SEQUENCE, RAJASTHAN AND SON VALLEY, INDIA: A POSSIBLE
500 MA DOWNWARD REVISION IN THE AGE OF THE PURANA BASINS?



















By

SHAWN J. MALONE


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2007


































2007 Shawn J. Malone

































To everyone who has helped me get here today









ACKNOWLEDGMENTS

I would like to acknowledge the assistance and education in paleomagnetism and field

geology provided by my committee chair, Joseph G. Meert. I also would like to thank Niel D.

Opdyke and David A. Foster for their constructive criticisms and assistance as members of my

committee. Additionally, I thank George Kamanov, Sam Coyner, and Warren Grice for their

assistance on the geochronology aspects of my research, as well as training me in a science

initially not part of my project. I wish to extend a special thanks to Ellen Martin, Phillip Neuhof,

Jim Vogl, and Ray Russo for their support over my graduate school experience. Finally, I wish

to thank Kelly Probst, Jennifer Gifford, Kris Crockett and my other friends in the Department of

Geological Science who provided invaluable support for the past few years.









TABLE OF CONTENTS



A C K N O W L E D G M E N T S ..............................................................................................................4

L IST O F T A B L E S ...... .. ................ ............ ...... ...... .. ........................ ..............

L IST O F FIG U R E S ................................................................................8

ABSTRAC T ................................................... ............... 10

CHAPTER

1 INTRODUCTION ................. .............. ........... ............................. 12

B a c k g ro u n d ................................. ........................................ ................ 12
G eologic Setting ................................. .................................. .......... 13
S tratig rap h y ..............................................................................14

2 PREVIOUS WORK.......................... ............................... 20

Temporal Controls on the Vindhyanchal Basin Sedimentation ..........................................20
P aleo m ag n etism ...................... .. ............. .. ......................................................2 4

3 A N A LY TIC A L M E TH O D S ......................................................................... ...................27

P aleo m ag n etism ...................... .. ............. .. ....................................................2 7
G eochronology M methods ............................................................................. .....................28

4 RESULT S ............... ................................ 31

P aleo m ag n etism ...................... .. ............. .. .................................................... 3 1
Rock M magnetic Tests ................................... .. .......... ............... 33
G eo ch ro n o lo g y ............................................................................... 3 5

5 D ISCU SSIO N .................................................................................... ........................... 50

A ge of the B hander-R ew a G roups ............................................................................ ... .... 50
F ossil E evidence .................. .................................................... ................. 50
Correlations with Global Events .................................. .....................................51
P aleom magnetic E vidence........................................................................... .............. 53
Detrital Zircon Geochronology and Provenance............................................54
Paleomagnetic Implications of an Old (c. 1,000 Ma) Upper Vindhyan Sequence ...............57
Other potential paleomagnetic correlations: Neoproterozoic to Cambrian ..........................59

6 CONCLUSIONS ............................ ... ...... ... ..................66









APPENDIX

A U-Pb ISOTOPIC RATIOS, AGE: UPPER BHANDER DETRITAL ZIRCONS.................68

B U-Pb ISOTOPIC RATIOS, AGE: MARWAR SUPERGROUP DETRITAL ZIRCONS .....75

L IS T O F R E F E R E N C E S ......... ..... ............ ................. ............................................................8 1

B IO G R A P H IC A L SK E T C H .........................................................................................................88









LIST OF TABLES

Table page

2-1 Recent age constraints for the Vindhyanchal Basin ............... ............ .....................26

4-1 Summery of paleomagnetic data from the Bhander and Rewa groups, Upper
Vindhyan sequence. ........................ ......... .. .......... ............... 37

5-1 Paleom agnetic data used in this study ........................................ .......................... 62

A -1 U paper B hander isotopic ratios ........................................ .............................................69

B -1 M arw ar isotopic ratios ...................... ...................... .. .. .... ................. 76









LIST OF FIGURES


Figure page

1-1 Pangaea reconstruction of Gondwana. ................................................. 17

1-2 Map of the Vindhyanchal basin and surrounding lithological units. ..............................18

1-3 Generalized stratigraphy for the Vindhyanchal basin. Note that most reliable ages
are concentrated in the Lower Vindhyan units. ........... .......................... ............... 19

4-1 Demagnetization examples. A) Zijderveld plots and associated equal angle
stereoplots of selected thermally demagnetized samples from the Rewa sandstone
and Lakheri lim stone. ........................ ........................ .. ............. ......... 39

4-1 Demagnetization examples. B) Zijderveld plots and associated equal angle
stereoplots of selected thermally demagnetized samples from the Lower and Upper
B hander sandstone. ............................................................ .. .............. ...... 40

4-2 Stereoplots of in situ and tilt corrected mean site directions from the Upper Vindhyan
units sam pled in this study. ......................... .................... ... .. ...... .......... .....41

4-3 Magnetostratigraphic column (Note: NOT a measured section) for the Upper
Vindhyan sequence. ................................. .. .......... ............... 42

4-4 Fold test results for the Upper Vindhyan units. ........... ......................... ...............43

4-5 Bhander and Rewa directions from this study. ...................................... ............... 44

4-6 A comparison between this study's Upper Vindhyan poles, previous Bhander and
Rewa poles, and selected radiometrically dated Indian poles: Majhgawan kimberlite. ...45

4-7 Intensity decay plots for the samples shown in figure 4-1. Note the high unblocking
temperatures the samples show, diagnostic of hematite. ................................................. 45

4-8 Curie temperature runs from selected samples.. ........................................ ...............46

4-9 IRM Acquisition curves for typical Upper Vindhyan samples.........................................47

4-10 Photographs of detrital zircon grains analyzed on the UF Nu Plasma LA-ICP MS. .......48

4-11 C oncordia plots ............................................................................48

4-12 Detrital zircon probability distribution functions by site for the U. Bhander sandstone
and M arwar sandstones of Rajasthan. ................................ .. ................................. 49

5-1 A) Comparison between the Upper Vindhyan poles and the Majhgawan kimberlite
with well dated -1050 to 1070 Ma poles from Australia. ............ ....... ............... 63









5-1 B) Comparison between the Upper Vindhyan poles from this study, and the
Majhgawan kimberlite with Neoproterozoic East Gondwana poles. ............................64

5-2 Reconstruction of India at -1000 Ma using the Bhander-Rewa paleomagnetic pole. .....65









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree Master of Science

PALEOMAGNETISM AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE UPPER
VINDHYAN SEQUENCE, RAJASTHAN AND SON VALLEY, INDIA: A POSSIBLE
500 MA DOWNWARD REVISION IN THE AGE OF THE PURANA BASINS?

By

Shawn J. Malone

August 2007

Chair: Joseph G. Meert
Major: Geology

The utility of paleomagnetic data gleaned from the Bhander and Rewa groups of the

Vindhyanchal Basin has been hampered by the poor age control associated with these units.

Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic

and are derived from a variety of sources, including 7Sr/86Sr and 613C correlations with the

global curves and possible Ediacara fossil finds in the Lakheri-Bhander limestone. New analyses

of the available paleomagnetic data collected from this study and previous work on the 1073 Ma

Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone

and sandstones from the Marwar Supergroup suggest that the Upper Vindhyan sequence is up to

500 Ma older than is commonly thought.

Paleomagnetic analysis generated from the Bhander and Rewa groups yields a

paleomagnetic pole at 43.6 N, 213.8 E (a95 = 4.1). This paleomagnetic pole closely resembles

the VGP from the well-dated Majhgawan intrusion (36.8 N, 212.5 E, a95=15.3). Detrital zircon

analysis of the Upper Bhander sandstone identifies a youngest age population at -1020 Ma.

Comparison between the Upper Bhander sandstone and known Neoproterozoic-Cambrian

Marwar sandstone detrital suites shows virtually no similarities. The main 840-920 Ma peak and









secondary Malani age peak at 780 Ma are totally absent in the Upper Bhander. This suggests an

age for the Upper Bhander >771 Ma, and is likely close to the age of the 1073 Ma Majhgawan

kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper

Vindhyan at -1000 Ma, several intriguing possibilities arise. The Bhander-Rewa paleomagnetic

pole allows for a reconstruction of India at 1,000 Ma that overlaps with the 1073 +/- 13.7

Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.90

N, 210.20 E, a95= 12.2) and the Australian 1071 +/- 8 Ma Bangemell Basin sills and the -1070

Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period.

Apparent correlations exist between the Bhander-Rewa paleomagnetic pole and those from the

Australian Mundine Well dykes (755 +/- 3 Ma), 610-590 Ma Elatina and Yaltipena formations

and the 547 +/- 4 Ma Sinyai dolerite pole of the Congo craton; however careful examination

suggest that these comparisons are not robust and likely do not represent a remagnetization of the

Upper Vindhyan.









CHAPTER 1
INTRODUCTION

Background

The cratonic blocks of East Gondwana represent an important element of Proterozoic

paleogeographic reconstructions and tectonic studies. Included in these cratonic blocks are the

Rayner and Mawson (East Antarctica), Australia, Madagascar, the Seychelles, Sri Lanka and

India (Meert, 2003; Powell and Pisarevsky, 2002). Figure 1-1, modified from Gray et al. (2007),

shows the position of these cratons, as well as orogenic belts associated with their assembly, in

the Gondwana supercontinent configuration. In particular, there has been a good deal of debate

concerning their configuration in the Mesoproterozoic supercontinent of Rodinia, as well as their

subsequent coalescence in the continent of Gondwana following the Neoproterozoic breakup of

Rodinia (e.g. Meert and Van der Voo 1994; Rodgers et al., 1994; Weil et al., 1998; Powell and

Pisarevsky, 2002; Meert, 2003; Meert and Torsvik, 2003; Veevers, 2004; Collins and Pisarevsky,

2005; Squire et al. 2006) The paucity of high quality paleomagnetic data hinders the

reconstructions and the refinement of APW paths of these units for this critical time interval

(Meert and Powell, 2001). Research on the Indian subcontinent provides an important window

into this problem as it is both accessible and contains targets of the appropriate age. High quality

paleomagnetic and geochronologic data are almost non-existent for India during Meso- to

Neoproterozoic times.

The Vindhyanchal basin, located in the central peninsular region of India, provides a

promising area to conduct the necessary paleomagnetic studies due to the long depositional

history recorded in the basin, limited deformation and unmetamorphosed nature of the rock

basin-wide. Studies in the Vindhyanchal basin, however, are hindered by the poor

geochronologic control of the Upper Vindhyan units. These units are separated from the well









dated Lower Vindhyan by a basin-wide unconformity of indeterminate interval. Any project

seeking to use paleomagnetic data generated from the Upper Vindhyan must address the problem

of poorly constrained age in the basin. The data ultimately generated by this paper will aid in

constraining the position and of India during the poorly resolved Meso- to Neoproterozoic

interval, generate points that can be used in a Proterozoic APW path for India, and to test

hypotheses bearing on Rodinia breakup and assembly of East Gondwana.

Geologic Setting

The Vindhyanchal Basin is a large sedimentary basin located in central peninsular India

that outcrops over an area of over 104,000 km2, with additional area covered by the Deccan traps

and Indo-Gangetic alluvium (figure 1; Venkatachala, 1996). Geographically, the basin lies

between the gneiss and granite of the Archean (>2.5 Ga.) Aravalli-Bundelkhand province to the

north and east (Mazumder et al. 2000), and the Cretaceous age Deccan Traps flood basalts to the

south. The outcrop area of the Vindhyanchal basin is divided into two terrains: the Rajasthan

terrain in the present day west region, and the Uttar Pradesh-Madhya Pradesh-Bihar region in the

eastern sector of the modem day areal extent (Mitra, 1996). Acting as a basement ridge between

the Rajasthan and Son Valley terrains (Prasad and Rao, 2006) are the trondhjemitic gneisses of

the 2600-2500 Ma Bundelkhand Igneous complex (Sarkar et al., 1995). The Bundlekhand

granite, considered to be the terminal event in the Bundlekhand complex, is dated at 2492 +/- 10

Ma by Mondal et al (2002). The Great Boundary Fault of the Rajasthan section separates the

weakly deformed and unmetamorphosed Vindhyan system sediments from older, deformed

Aravalli supergroup and provides a western boundary for the Rajasthan section of the basin.

Across the modem day Aravalli Mountains is the 54,000 km2 Malani Igneous Province, and

unconformably overlying sediments of the Neoproterozoic-Cambrian Marwar Supergroup (Roy,

2001). The Marwar supergroup is represented by undeformed to mildly folded sediments up to 2









km in thickness (Roy, 2001). The lower age for the Marwar is constrained by the Malani

Igneous Province and is generally assumed to continue to the latest Neoproterozoic (Chaudhuri

et al., 1999). A few modem day drainages cross through this region onto the Vindhyan outcrop

area. To the east, the Vindhyanchal basin is separated from Paleoproterozoic rock by the

Narmada-Son Lineament (Prasad and Rao, 2006). Figure 1-2 A shows these important

lithological and structural units.

The basin is one of a group of Proterozoic basins in the Indian subcontinent referred to as

Purana ("Ancient") basins. These Purana basins represent the infill of probable failed rifts that

developed on earlier Archean and/or early Paleoproterozoic cratonic blocks (Chaudhuri et al.,

2002). The Vindhyanchal basin formed on the Aravalli craton, which stabilized by 2.5 Ga.

(Bose et al., 2001). Rifting thinned part of the crust along a series of east to west trending faults

in a dextral transtensional setting (Bose et al., 2001). Rift related features are common in the

lower parts of the section, including volcaniclastic units, faults, and paleoseismic sedimentary

deformation (Bose et al., 2001). The rift origin of these basins is supported by a variety of data.

The basins are bounded by faults visible on seismic profiles, gravity data, and geologic mapping

(Chaudhuri et al., 2002). Periodic volcanic events deposited volcaniclastic layers preserved in

the basins (Chaudhuri et al., 2002). Basin wide unconformities, sedimentation disturbances, and

changes in paleoslope level indicate tectonic changes in the fault block underlying the basin

(Chaudhuri et al., 2002). For the most part, the sediments of the Vindhyanchal are undeformed

to mildly deformed, and typically show low dips except in areas of Cenozoic faulting.

Stratigraphy

Sedimentary units in the Vindhyanchal basin are primarily represented by shallow marine

facies, and can be subdivided into four groups: The Semri (or "Lower Vindhyan" sequence),

Kaimur, Rewa and Bhander (Forming the "Upper Vindhyan" sequence) (Chaudhuri et al., 1999).









The lower Vindhyan and upper Vindhyan units are separated by a basin wide-- and laterally

traceable-unconformity of undetermined duration related to an inferred low stand of sea level

(Bose et al., 2001). Figure 1-3 outlines this general stratigraphy.

The lower Vindhyan units are collectively designated the Semri group. The Semri

sediments unconformably overlay basement rock of either the 1854 +/- 7 Ma Hindoli group (Deb

et al., 2002) or the 2492 +/- 10 Ma Bundlekhand granites (Model, 2002). The Semri group in the

Son Valley overlies the Bijawar series of sediments and lavas, which contains volcanic rocks

which Muthra (1981) correlates these volcanic rocks to the 1815 Ma Gwalior volcanics. Prasad

and Rao (2006) suggest that the Gwalior and Bijawar series form an extensive part of the

basement, as well as offering geophysical data that suggest the Hindoli group extends beneath

the Rajasthan section of the Vindhyanchal Basin. The Semri group consists of five formations

and is typically alternating shale and carbonate units, with areas of sandstone and volcaniclastic

units. The Semri is noteworthy for good age control from Pb-Pb ages from carbonate units, as

well as precise U-Pb ages derived from zircon separated from volcaniclastic strata (Ray et al.

2002; Rasmussem et al. 2002).

The Semri group is separated from the Upper Vindhyan groups by a basin wide

unconformity between the Rhotas limestone and the overlaying Kaimur group. The Kaimur

consists of a lower shale unit overlain by quartz rich sandstone containing basin wide

volcaniclastic deposit (Bose et al., 2001). This unit is intruded by the 1073 +/- 13.7 Ma

Majhgawan kimberlite (Gregory et al., 2006), which cross-cuts the Semri and Kaimur groups and

is currently exposed in the Kaimur Baghain sandstone in the vicinity of Panna, Madhya Pradesh

(figure 1-2 A, C). Up-section is the Rewa Group, a series of shale and sandstone formations that,

in areas, contain kimberlite derived diamondiferous conglomerates (Bose et al., 2001). There is









uncertainty with regard to the source of these conglomerates, as Rau and Soni (2003) suggest

that the diamonds present in the conglomerate may not be derived from the proximal Majhgawan

or Hinota kimberlites. The conglomerate is succeeded by a shale unit, which in turn is succeeded

by the Rewa sandstone. A thin shale unit marks the transition into the Bhander group. The

Bhander group contains the only major carbonate unit in the upper Vindhyan system, a unit

containing stromatolites, ooids, and micritic layers known as the Bhander or Lakheri limestone

(Bose et al., 2001). The overlying lower Bhander sandstone marks a transition into shallower,

sometimes fluvial, sandstone typical of the Bhander group (Bose et al., 2001). The Sirbu shale

overlies the lower Bhander sandstone, and is in turn overlain by the upper Bhander sandstone.

Bose et al. (2001) observed that the upper Bhander sandstone is primarily a unit of coarse, red

sandstones, and may represent former barrier islands, sand bars, beaches and fluvial systems

(Akhtar, 1996).











GONDWANA
(after Gray et aL, 2007)


I-I Mesozoic Trtiary
.. Orogen
D Palaeczoic-Mescaoic
S Orogen
Palaeaoic Oogen
S Kuungan
l Orogen
SBrasiliano-Damara
Orogen
] East African
Orogen
r Neoproterozoic
I rogen
F, Precambrian 91ield


SiWest + Jaron / K-> a.. -



Gondwana l__


,"Subduction Zone .

1000 kn


Figure 1-1. Pangaea reconstruction of Gondwana. Note the separation of the cratonic blocks by
Neoproterozoic orogens, as well as the division between East and West Gondwana
elements. Modified from Grey et al (2007).


































26.0 7 .0 E 80.0"E 81.0*E
025.0N

25.5'N iles 411,412 24.5'N

KOTA
I I, lll] Sitesdl4 ,_
2S.0 N 24, S64 24.6N"
24.N .SiN 1R


B 23. S'Nr Nil% 4h1-462.466. 19.
C 'ANNA
I I -I Rajasthan Section I I I Son Valley Sectih
0 50 100 Km 0 50 100 Km


Figure 1-2. Map of the Vindhyanchal basin and surrounding lithological units. A) Regional
map. Note the locations of the Majhgawan kimberlite and the Malani Igneous
province, as well as the Great Boundary Fault (GBF). B) Rajasthan section, showing
sampling sites. C) Son Valley section, showing sampling sites. Modified from
Malone et al., (2005; 2006).
































Figure 1-3. Generalized stratigraphy for the Vindhyanchal basin. Note that most reliable ages
are concentrated in the Lower Vindhyan units. Ages from Gregory et al., 2006;
Sarangi et al., 2004; Ray et al., 2003; Ray et al., 2002; Rasmussen et al., 2002; De
2003, 2006.









CHAPTER 2
PREVIOUS WORK

Temporal Controls on the Vindhyanchal Basin Sedimentation

The age of deposition in the Vindhyanchal basin has been debated for over 100 years

(e.g. Oldham, 1893; Auden, 1933; Crawford and Compston, 1970; Venkatachala, 1996). Due to

the general absence of fossils suitable for biostratigrapic dating, ages for the various Vindhyan

units has been assigned by radiometric means where possible. Early radiometric age dates

depended on K-Ar, Rb-Sr, and fission track methods on detrital or authigenic minerals or on

kimberlite intrusions that cross cut the Vindhyanchal basin; however, later work focused on

dating volcaniclastic deposits, fossil evidence, or global isotopic correlations (e.g. Vinogradov et

al., 1964; Tugarinov et al., 1965; Crawford and Compston, 1970; Paul et al., 1975; Paul, 1979;

Srivastava and Rajagopalan, 1988; Smith, 1992; Kumar et al., 1993; Miller and Hargraves, 1994;

Venkatchala et al., 1996; Rasmussem et al., 2002; Ray et al., 2002; Sarangi et al., 2004; Ray et

al., 2003; De, 2003, 2006). For the most part, these studies limited the age of the Lower

Vindhyan Semri group to older than 1.1 Ga. Glauconite and fission track dates used in many

studies, however, may reflect post-depositional thermal or chemical resetting (Rasmussen et al.,

2002).

Basement age control, as noted above, is primarily based on U-Pb analysis of zircon

separated from the 2530 +/- 3.6 Ma Berach granite (Tucker, per. comm.), 2492 +/- 10 Ma

Bundlekhand granite (Model at al., 2002), the maximum age of 2240 Ma for the Khairmalia

felsite (Tucker, per. comm.), and the1854+/- 7 Ma Hindoli group (Deb et al. 2002). Lower

Vindhyan Semri group ages are generally well constrained. The Kajrahat limestone yielded a

Pb-Pb age of 1721+/-90 Ma (Sarangi et al. 2004). Rasmussen et al. (2002) and Ray et al. (2002)

have published consistent U-Pb ages taken from magmatic zircons. Zircon grains separated from









ash beds located in the Rampur shale give ages of 1602 +/- 10 and 1593 +/- 12 Ma, and those

from the Deonar/Porcellanite formation yield an age of 1628 +/- 8 Ma. (Rasmussen et al., 2002).

Further constraints published by Ray et al. (2002) from the Deonar/Porcellanite formation

showed ages of 1630 +/- 5.4 and 1631 +/- 0.8 Ma. Pb-Pb dating on the Rhotas limestone has

yielded two ages, 1599 +/- 48 Ma (Sarangi et al. 2004) and 1601 +/- 130 Ma (Ray et al. 2003).

These age constraints are summarized in table 1.

Age control on the Upper Vindhyan sequences is more problematic. The Majhgawan

kimberlite intrudes the Lower Vindhyan and into the Baghain sandstone (Kaimur group) near

Panna and has been dated using the K-Ar and Rb-Sr methods, yielding dates between 1170 Ma

(Paul et al., 1975) to 947 Ma (Paul et al., 1975). Rb-Sr ages determined by Crawford and

Comptson (1970), at 1140 +/- 12 Ma, Smith (1992) an age of 1044+/- 22, Kumar et al (1993) an

age of 1067 +/- 31 Ma. Most recently, the Majhgawan kimberlite has been dated by Gregory et

al. (2006) at 1073.5 +/- 13.7 Ma via 40Ar-39Ar analysis of pholgopite phenocrysts, and is the date

used in this study. Ages from within the Upper Vindhyan sedimentary units lack consistency

and reliability. The Kaimur sandstone, intruded by the Majhgawan, has a reported K-Ar age on

authigenic glauconite of 910 +/- 39 Ma (Vinogradov et al. 1964). Fission track ages from the

Govindgarh sandstone (upper Rewa) yield a date of 710 +/- 120 Ma (Srivastava and Rajgopalan,

1988). Recent Pb-Pb dating of Bhander group carbonates produce an unreliable date of 650 +/-

770 Ma; however, this age appears consistent with samples taken from the Bhander-Lakheri

limestone that yield a 87Sr/86Sr value consistent with global values near 650 Ma (Ray et al. 2003).

Further isotopic studies of the Bhander limestone 87Sr/86Sr values indicate a 750 Ma age when

compared to global curves for the Neoproterozoic (Ray et al. 2003). 613C values for the

limestone units show some overlap with the ages inferred by 87Sr/86Sr isotopic curves and also









show some negative values which Ray et al (2003) suggest may be evidence of Neoproterozoic

glaciations.

Non-isotopic methods of dating the Upper Vindhyan units have also been attempted, with

equivocal results. Possible Ediacara fauna fossils of 9 coelenterate genera (Tribachidium,

Eoporita, Kaisalia, Cyclomedusa, Ediacaria, Nimbia, Paliella, Medusinites, Hiemaloria), one

proto arthropod (./, i'giiUt) and several unidentified taxa have been described in Lakheri and

Sirbu formation of the Bhander group and would indicate an Ediacaran age (<635 Ma.) for the

Bhander (De, 2003; De, 2006). This fauna is useful both for the biostratigrapic age constraint as

well as for correlations with other Ediacara sites worldwide (De, 2006). Ediacara occurrences

from India, Canada and Namibia show similar facies control on the distribution of Ediacara

fossils, with preservation maximized in siliciclastic units and absent in intervening stromatolitic

carbonate beds (De, 2006). Waggoner (1999) notes that Ediacara fauna typically fall into one of

three broad, regionally defined groups: Group one, diagnostic of Baltica, Siberia, northern

Laurentia, and Australia; Group two, diagnostic of Namibia, the South American Ediacara

occurrences, and southern Laurentia; and group three, restricted to the Avalonia terrane

preserved in the present Carolina Slate Belt, Newfoundland and the Charnwood Forest site of

Great Britain.

Meert and Lieberman (2007) observe that the fauna described by De (2003; 2006)

appears to fit best in the group two category, and might provide a link between the other group

two localities and recent group two fauna discovered in South China (Meert and Lieberman,

2007). Australia and India should, according to recent paleogeographic reconstructions, fall into

a group one faunal zone (Meert and Lieberman, 2007). This may indicate a need for further

examination of the Ediacara fauna described by De (2003; 2006). Fossil evidence in the









Vindhyanchal Basin has proven problematic in the past, as exhibited by the controversial

triploblastic animal traces from the Semri group described by Seilacher et al (1998), which were

claimed to push back the age of metazoan development. Azmi (1998) added to the controversy

with his reports of brachiopods and small shelly fauna (SSF) in the Chorhat sandstone (Semri

group) The conclusion made by Azmi (1998) that the Chorhat sandstone represented the

Neoproterozoic-Cambrian transition was challenged and dismissed by Indian paleontologists

who failed to find fossil evidence at the sites Azmi described (Bagla, 2000). Further research

into the age of the Lower Vindhyan sediments yielded robust Paleoproterozoic ages (Ray et al.,

2002; Rasmussen et al., 2002) and makes the Neoproterozoic-Cambrian age for the Chorhat

untenable. These incidents underscore the need for independent verification of Vindhyan fossil

finds if major conclusions are to be drawn from them.

Attempts to assign age control to the Upper Vindhyan have also used correlations

between paleomagnetic directions from the group and directions with better age control.

Directions obtained from the Bhander and Rewa appear to correlate with late Neoproterozoic to

Cambrian data from Pakistan (McElhinny et al. 1978). These correlations are suspect due to

significant rotations in the Salt Range (Klootwijk et al., 1986). Similarities between the

Bhander-Rewa paleomagnetic pole and those of other Gondwana cratons have been drawn as

well. Many publications (e.g. Meert, 2001; Powell and Pisarevsky, 2002) place the Bhander and

Rewa poles on the late Neoproterozic to Cambrian APW path for Gondwana, assuming a -550

Ma age for the Upper Vindhyan and comparing the poles to the 547 Ma Sinyai dolerite pole on

the Congo craton (Meert and Van der Voo, 1995) or the > 600 Ma Elatina-Yaltipena formation

poles of Australia from Williams and Schmidt (1995) and Sohl et al (1999).











Paleomagnetism

The Vindhyanchal basin has been the subject of several paleomagnetic studies. Athavale

et al. (1972) treated Upper Bhander and Rewa sandstone samples to alternating fields of up to 80

mT and thermal demagnetization steps up to 6000 C that yielded a Bhander mean direction of

D=48, I=-19, k=200, a95=5.7 and a Rewa mean of D=32, I=-37, k=15, t95=13.7. These results

yielded a paleomagnetic pole of 350 N and 2220 E for the Rewa, and 31.50 N and 1990 E for the

Bhander. Klootwijk (1973) analyzed 43 cores from seven sites in Rajasthan by applying

progressive alternating field (AF) and thermal treatments on the samples, and generated a

combined site mean of D=207.5, I=+9.5, k=137.5, a95=5.5 and a paleomagnetic pole at 51.40 N

and 2140 E.

A later study conducted by McElhinny et al. (1978) expanded sampling into the lower

sandstone of the Bhander and included one site in the Rewa group. In all, seven sites were

sampled and subjected to a thermal demagnetization treatment (McElhinny et al. 1978). Three

vectors were identified: A viscous component aligned with the present day field, a Tertiary

overprint associated with the Deccan Traps emplacement, and a primary direction evident above

600-6650C (McElhinny et al. 1978). This primary direction, averaged for the seven Bhander

sites, is as follows: D=203.4, I=+8.1 (k=36.5, a95=11.2) with a Rewa VGP at 45.00 N, 191.30 E

and a Bhander paleomagnetic pole at 51.30 N, 222.70 E (McElhinny et al. 1978).

Paleomagnetism on the Kaimur sandstones, stratigraphically under the Bhander and

Rewa sequences, were conducted by Sahasrabudhe and Mishra, (1966) which yielded the

following directions: D=3570, I=+31 (t95=6.0). Although these samples show several reverse

directions, the overall mean is suspiciously close to the local present day field direction (Meert

and Torsvik, 2003).









Poornachandra Rao et al (2005) obtained somewhat similar directions from the

Dhandraul sandstone of the Kaimur group (D=50, I=+420, k=14.04, a95=13.21) and steeper

inclinations from Dicken sandstone (Kaimur group) of D=3560, I=+62 (k=35.10, a95= 11.84).

The authors attempt to use these directions to correlate the Kaimur directions (and hence age of

the Kaimur) to the Malani Igneous province (D=359.1, I=+620). This age correlation is negated

by the relationship between the Kaimur group and the 1073 +/- 13.7 Ma Majhgawan intrusion,

which suggests that the Kaimur magnetization may either represent a Malani-like

remagnetization or more likely the present day geomagnetic field.











Table 2-1. Recent age constraints for the Vindhyanchal Basin


UPPER VINDHYAN
Unit
Bhander Group ages
Lakheri Ls., Rajasthan
Lakheri Ls., Rajasthan
Bhander Ls., Son Valley


Age

Ediacaran
650 Ma
650 +/- 770 Ma
750 Ma
700-1100 Ma


Rewa Group ages
Jhiri Shale (Rewa group) Son Valley 700-1100 Ma
Kaimur Group ages (Majhgawan kimberlite intrusion)
Majhgawan kimberlite, which intrudes the 1044+/- 22 Ma
Kaimur group (Baghain Ss.) near Panna 1067 +/- 31 Ma
1073.5 +/-13.7
Ma


LOWER VINDHYAN
Semri Group ages
Rhotas Ls. (Semri Group)
(Son Valley)
Glauconite Ss. (Chorhat Ss, Semri grp)
Rampur Shale (Semri Group)
Porcellanite Fm (Semri Group)
(Son Valley)
Kajrahat Ls (Semri Group)
BASEMENT
Hindoli Group volcanics
Bundlekhand Granite


1599 +/-48 Ma
1601 +/- 130 Ma
1504-1409 Ma
1599 +/- 8 Ma
1628 +/-8 Ma
1630.7 +/- 0.4 Ma
1721+/- 90 Ma

1854 +/- 7 Ma
2492 +/- 10 Ma


Method


Reference


Fossils (?)
Sr isotope stratigraphy
Pb-Pb Isochron
Sr isotope stratigraphy
Chuaria-Tawunia fossils

Chuaria-Tawunia fossils

Rb-Sr (Phlogopite)
Rb-Sr (Phlogopite)
Ar-Ar (Pholgopite)




Pb-Pb Isochron
Pb-Pb Isochron
Rb-Sr (Glaconite)
U-Pb (Zircon)
U-Pb (Zircon)
U-Pb (Zircon)
Pb-Pb Isochron

U-Pb (Zircon)
Pb-Pb (Zircon)


De, 2003; De, 2006
Ray et al., 2003
Ray et al., 2002
Ray et al., 2003
Kumar and Srivastava, 1997

Rai etal., 1997

Smith, 1992
Kumar et al., 1993
Gregory et al., 2006




Sarangi et al., 2004
Ray et al., 2003
Kumar et al., 2001
Rasmussen et al., 2002
Rasmussen et al., 2002
Ray et al., 2002
Sarangi et al., 2004

Deb et al., 2002
Mondal et al.,2002









CHAPTER 3
ANALYTICAL METHODS

Paleomagnetism

A total of 56 sites located in Rajasthan and the Son Valley of India were sampled for

paleomagnetic study using a water-cooled portable drill. Sample collection covered the

sandstones and carbonates of the Bhander and Rewa groups. Sample orientation was performed

in the field using Brunton magnetic compasses, and solar readings were used to correct any

magnetic deflections and local declination deviations.

The samples were cut into cylindrical specimens of relatively uniform volume in the

laboratory and stored in a magnetically shielded room in the Paleo and Environmental

Magnetism laboratory, University of Florida. Sample susceptibility was measured on the Agico

SI-3B bridge, and Curie temperature runs were performed incrementally on rock powders in a

KLY-3S susceptibility bridge attached to a CS-3 heating unit. Isothermal remnant

magnetizations (IRM) were conducted on an ASC Scientific Model IM-10-30 impulse

magnetizer. All samples had NRM measurements taken prior to any demagnetization treatments.

Pilot samples were selected for preliminary demagnetization and a sequence of

demagnetization steps was chosen based on these preliminary results. Sandstone samples were

treated with stepwise thermal demagnetization. Magnetite bearing limestone samples were

treated with initial low temperature treatments in the form of liquid N2 baths, followed by

alternating fields up to 10-30 mT and stepwise thermal demagnetization or by conventional

alternating field (AF) treatments. Thermal demagnetization was carried out using an ASC TD-

48 thermal demagnetizer and AF demagnetization treatments used a DTech 2000 AF

demagnetizer. All samples were measured on a 2G 77R Cryogenic Magnetometer. The resulting









data was analyzed using principle component analysis of a best fit line on Super IAPD software

(Torsvik et al. 2000).

Geochronology Methods

Geochronologic samples from the Rewa group (Son Valley) Sohgigihat and Teonthar ash

beds, as well as a possible volcaniclastic bed from the Rajasthan section, were taken in an

attempt to provide a more tightly constrained age for the Upper Vindhyan. In addition, detrital

zircon grains were separated from Upper Bhander sandstone from paleomagnetic sites 43, 44 and

45 in Rajasthan as well as two sites (Sonia and Girbakhar sandstones) from the Marwar

Supergroup. The ash fall volcaniclastic deposits and sandstones were crushed, disk milled and

sieved. The ash-fall deposit samples were sieved at 125[tm and rinsed before further processing

in heavy liquids, followed by magnetic separation on a Franz Isodynamic separator. Detrital

zircons were separated from sandstones via water table treatment, followed by heavy liquids and

magnetic separation. Zircon grains were picked from the appropriate fractions (lowest non

magnetic for ashfall grains, non magnetic at 60, 1.0 A for detrital grains), were mounted in epoxy

plugs, ground, and polished to expose the grains. The plugs were sonicated and cleaned in nitric

acid and to remove any common Pb surface contamination. Following cleaning, the grains were

photographed under a reflected light microscope.

U-Pb concentrations were collected and analyzed using the University of Florida using

laser ablation multi-collector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS).

The analyses were measured on a Nu Plasma high resolution multi-collector plasma source mass

spectrometer, located in house at the University Of Florida Department Of Geological Sciences.

Mounted zircon grains were laser ablated using an attached New Wave 213 nm ultraviolet laser.

A mix of Ar and He carrier gas (1L/min Ar, 0.5 L/min He) was used for sample transport into the

mass spectrometer. The laser was set at 4 Hz pulse frequency, 40% power and a laser spot









diameter of 40[am. Two FC 1 zircon standards were ablated, followed by 10 unknown grains and

two more FC 1 standards in order to provide information used for error analysis and drift

correction. Prior to ablation, a background measurement was taken for 10 seconds to measure

a blank. Actual ablation proceeded for 30 seconds in order to minimize ablation pit depth and

hence elemental fractionation. Actual isotopic data was acquired using Nu Instruments Time

Resolved Analysis software. The Time Resolved Analysis software allows for isotopic ratios to

be calculated from the desired time segment of data, allowing variations due to grain defects or

surface contamination to be avoided.

Data calibration and drift corrections were based on the FC-1 (Duluth Gabbro) zircon

standard, dated at 1099.3 0.3 Ma (207Pb / 206Pb = 0.0762, 207Pb / 235U = 1.9428 and 206Pb / 238U

= 0.1850) by Paces and Miller (1993), as well as being dated more recently by Black et al.

(2003) at1099.0 +/- 0.7 and 1099.1 +/- 0.5 Ma. Data generated from the zircon isotopic analysis

was imported into a Microsoft Excelc spreadsheet and drift corrected using the known values for

the FC 1 (Duluth Gabbro) standard listed above. Common Pb correction was applied in Excel

as well using the 207Pb/206Pb correction outlined in Williams (1998). Williams (1998) outlines

three methods for correcting common Pb. His first method is of limited applicability to the Nu

Plasma ICP due to the presence of isobaric 204Hg in the Ar/He gas mix used for a plasma source,

as well as the low abundance of 204Pb in zircon grains. The second method Williams (1998)

outlines is a correction based on 208Pb, although this only works when Th-U ratios can be

assumed to be undisturbed. The method incorporated in this study corresponds to the third

method in Williams (1998) based on 207Pb; however, this is of limited utility when 207Pb/206Pb

ages are needed. Given the above limitations, any 207Pb/206Pb ages are calculated after omitting

grains with excessive common Pb contamination. Isotopic ages and degrees of concordance









were calculated, and concordia plots were generated using Isoplot/Ex Version 2.4 (Ludwig,


2000).









CHAPTER 4
RESULTS

Paleomagnetism

Paleomagnetic results for the Bhander and Rewa groups correlate well with the previous

research and are summarized in table 4-1. Generally speaking, demagnetization behaviors were

relatively simple. Hematite bearing samples identified in rock magnetic tests (Section 4.2- Rock

magnetic tests) and pilot runs showed mostly univectoral demagnetization paths under thermal

demagnetization with little evidence of low temperature overprints. Thermal treatments for the

sandstones were favored, as hematite appeared to be the primary carrier seen in pilot runs and

rock magnetic tests (See Curie temperature results, intensity decay plots and IRM acquisition

curves. For reference purposes, (+) inclinations are referred to as 'normal' and (-) inclinations

are 'reverse' in this paper.

Fourteen sites were sampled from the Rewa sandstone, and nine yielded consistent

directions. Figure 4-1 A shows the demagnetization behaviors for two typical specimens of the

tan and purple Rewa sandstone sites. The average NRM intensity for the Rewa sandstones was

2.80 mA/m. Tilt corrected paleomagnetic directions for the Rewa sites range between D= 15.50

to 29.90 and I= -80 to -38.10 with two 'normal' magnetized sites at D= 2220, I= 160 and D=

221.30, I= 37.3. In situ directions differ only slightly, ranging from D= 14.30 to 28.30 and I= -

6.40 to -14.70. The tilt corrected directions yield a 'reverse' paleomagnetic pole of 46.50 N and

218.20 E (a95=11), and a 'normal' pole at 29.90 S and 35.60 E (a95=10.1). The Lower Bhander

sandstone consisted mainly of tan to reddish fine grain sandstones, with NRM intensities

averaging 3.76 mA/m. Eight sampled sites in the Lower Bhander sandstone show simple

demagnetization behaviors (figure 4-1 B) and exhibit only one polarity with tilt corrected

directions ranging between D= 19.20 to 310 and I= -7.60 to -30.10. Again, in situ directions









differ only slightly, with D= 19.20 to 30.30 and I= -5.70 to -30.10. The paleomagnetic pole

derived from the lower Bhander sandstone lies at 43.1 N, 206.60 E (a95=8.7). The red upper

Bhander sandstone shows primarily 'normal' directions compared to those observed in the lower

Bhander. Nine sites sampled in the Upper Bhander had an average NRM intensity of 11.09

mA/m and yield tilt corrected directions ranging between D= 201.60 to 2270 and I= 20 to 33.90

with two 'reverse' sites characterized by inverted directions at D= 320, I= -31.70 and D=47.40, I=

-10.80. In situ directions vary little, with a range ofD= 193.80 to 204.50 and I= 4.30 to 21.50.

The paleomagnetic pole generated from the upper Bhander plots at 490 S, 35.70 E (a95=7.2),

with the pole from the two 'reverse' sites plotting at 36.50 N, 205.80 E (a95=7.2).

The magnetization in the Lakheri-Bhander limestone samples was less stable than the

other stratigraphic units sampled. Eleven Son Valley sites of gray to black limestone yielded

weak NRM intensities (1.722 to 0.278 mA/m) and demagnetized at relatively low temperatures

(<4500 C). Even with great circle analysis, site VGP's were incompatible with the rest of the

Upper Vindhyan units and generally gave NW declinations ranging between 346.80and 281.8,

with moderate to steep inclinations ranging between +64.30 to +18.50 (see table 4-1). These

directions may represent a remagnetization of indeterminate age. Two Son Valley Lakheri sites,

S16 and S17, did yield directions consistent with the majority of the Upper Vindhyan sites and

relatively simple demagnetizations (figure 4-1 A). The tilt corrected directions for these

consistent Son Valley sites, as well as the Rajasthan Lakheri sites, range between D= 25.20 to

540 and I= -100 to -210, with one reversed site with D= 208.80, I= 24.50. The paleomagnetic

pole for the 'reverse' site cluster lies at 41.40 N, 206.60 E (a95=22.3), and the VGP for the

'normal' site lies at 42.20 S and 37.00 E (a95=4.4). The two sites from Rajasthan and two from









the Son Valley lobe show similar directions and appear to confirm the broad stratigraphic

correlation drawn between the Upper Vindhyan carbonate units on either side of the basin.

Table 4-1 summarizes the site mean paleomagnetic directions from this study. As seen

by the site mean directions (figure 4-2) and summarized in the cartoon magnetostratigraphic

column (figure 4-3), the data suggest the presence of at least eleven magnetic field reversals

during the deposition of the Upper Vindhyan sediments. A McFadden and McElhinny (1990)

reversal test performed on the site mean directions yields a C classification (y,= 12.1) indicating

a satisfactory result. Fold tests performed on the Upper Vindhyan sites proved inconclusive, as

shown in figure 4-4. This is most likely due to the low dips and limited deformation seen in the

Upper Vindhyan sequence. A comparison between the Upper Vindhyan paleomagnetic

directions and those of commonly encountered Indian overprints are quite different, as seen in

figure 4-5. Although not conclusive, the presence of geomagnetic field reversals and the

directional differences between the Bhander-Rewa direction and common Indian overprints

suggests a primary magnetization. Figure 4-6 illustrates the positions of the paleomagnetic poles

generated from each Upper Vindhyan unit sampled, and compares them to the previous work and

other dated Indian poles.

Rock Magnetic Tests

The thermal demagnetization behavior of the Bhander and Rewa sandstones are generally

consistent with hematite as a primary carrier mineral for most sites. High unblocking

temperatures, typically between 6300 C and 6800 C, are indicative of hematite and are seen in the

majority of the sandstone samples. Intensity decay plots (figure 4-7) show little evidence of

magnetite based remanence being lost in the 5000 C to 5800 C range, providing further evidence

that hematite is the primary carrier. The carrier mineralogy is further defined by rock magnetic

tests. Curie temperature runs for many sandstone samples show a sharp loss of susceptibility at









ranges characteristic of hematite at temperatures between 613.60 C and 700.90 C. Site 466, tan

sandstone from the Rewa group, shows a heating Curie temperature at 700.90 C and a cooling

Curie temperature at 699.60 C (figure 4-8 A). The red sandstones from site 43 and 48 show a

drop in heating susceptibility at 670.50 C and 683.1 C respectively, with a cooling Curie

temperature at 670.50 C and 682.1 C, respectively (figure 4-8 D and E).

Other sandstones show lower Curie temperatures that may be indicative of minor

magnetite or impure hematite contributions. For example, site 422, light brown Lower Bhander

sandstone, has a heating Curie temperature of 551.50 C and a cooling Curie temperature of

535.20 C (figure 4-8 C). The intensity decay plot for site 422 (figure 4-7) still shows the main

loss of intensity after heating above 6000 C. This may be due to the presence of higher Ti-

magnetite and/or Ti-hematite in the sample. The red Bhander-Lakheri limestone sites exhibit

different behaviors. Two Rajasthan red-bed limestone sites (1411 and 1412) show hematite as a

primary carrier. The demagnetization behavior was more complex than the sandstones with

remanence being lost by 6300 C. Curie temperature runs on the red limestone from site 412

shows a lower Curie temperature than is seen in the red sandstones noted above with a heating

Curie temperature of 613.6 C and a cooling Curie temperature of 586.8 C. IRM acquisition

tests for the Upper Bhander, Lower Bhander and Rewa sandstones, as well as the Lakheri

limestone (figure 4-9) were also performed on selected samples. Typical curves (figure 4-9 A)

for the Son Valley black (site 467 and 473) to gray limestone (site 458) shows saturation by 0.4

T, indicative of magnetite. It is noteworthy, however, that these samples unblocked at low

temperatures under thermal demagnetization and carried radically different directions (NW

declinations; moderate inclinations- see table 4-1) from the units immediately lower and higher

in the stratigraphic column. Some samples (see 1426- figure 4-9 A) showed some evidence of a









minor hematite contribution. IRM measurements on the red Upper Bhander sandstones

produced the characteristic curve of hematite, failing to saturate at fields up to 2.0 T (figure 4-9

B). The tan and purple sandstones more characteristic of the Lower Bhander and Rewa

sandstones (E.g. sites 422 and 466- figure 4-9 B) were also dominated by hematite, but included

contributions from magnetite as well. This minor contribution can be seen in the sharper

saturation seen in the applied fields between 0.05 and 0.2 Tesla (figure 4-9 B), but the lack of

total saturation until higher applied fields suggests hematite as the main carrier.

Geochronology

Mineral separation and analysis of separated zircon grains was carried out in accordance

with the methods outline in section 3.2 above. The Rewa group contains several ash fall and

volcaniclastic units; however, these yielded few useful zircon grains for geochronology. Of

multiple ash beds sampled, only one yielded a suite of minerals suitable for radiometric dating.

Small (-40xl20utm) sub- to euhedral zircon grains were extracted following the processes

outlined in the section 3.2. U-Pb analysis of these grains, conducted on the UF Nu Plasma LA-

ICP-MS system yielded equivocal results. Most of the grains analyzed showed very discordant

dispersions between 206Pb/238U and 207Pb/235U ages as well as high common Pb contamination.

Of 23 grains ablated, only 3 yielded concordant ages after drift and common Pb correction

(section 3.2). Two grains yield a 207Pb/206Pb age of 1554.9 Ma, and a single grain yielded a

207Pb/206Pb age of 1053.4 Ma.

The detrital zircon sample processed from the Upper Bhander sandstone (Rajasthan

section) yielded numerous datable grains with varying degrees of concordance. The grains were

typically small (<250[tm) and mildly to strongly abraded, as is visible in figure 4-10 A. Of 166

analyses, 136 grains were within 10% of concordia (figure 4-11 A). 207Pb/206Pb ages are

generally preferred for analysis of grains over 1,000 Ma old due to the higher Pb to U ratios.









1600 Ma zircons form the largest population in the sample. The youngest population resolved

peaks at -1020 Ma. Several other age population populations are resolved at 1100 Ma, 1220

Ma, 1340 Ma, 1740 Ma, andl800 Ma. A small population of Archean grains is also present,

ranging between 2500 Ma to 2680 Ma.

Two sites of Marwar Supergroup sandstone (Girbhakar and Sonia sandstones) were

similarly processed to extract detrital zircon. The Girbhaker sandstone yielded many -200tm

sub- to euhedral grains, as well as small euhedral to subhedral zircons with mild abrasion (figure

4-10 B); when analyzed, the vast majority of these grains gave results within 5% of concordia

(figure 4-11 B). The Sonia sandstone yielded smaller, abraded grains with a higher incidence of

discordant ages. The age distribution for both sandstones, however, was similar. These analyses

yielded a major age peak for the Marwar Sandstones centered at 880 Ma (206Pb/238U), with trivial

occurrences of Meso- and Paleoproterozoic grains (16.4% of grains occurring in a small

population -1000 Ma or single grains between 1100 Ma to 2100 Ma). Also present in the

Marwar sample was a population of -780 Ma grains, forming the youngest significant

population. Figure 4-12 illustrates the probability density function for the Upper Bhander and

Marwar detrital sample ages.












Table 4-1. Summery of paleomagnetic data from the Bhander and Rewa groups, Upper


Vindhyan sequence.
Site Locations

Site Lat Site
s.
26 32.877 N 77 0

26 27.816 N 77 0
26 27.024 N 77 0
26 31.306 N 77 0
26 26.307 N 76
26 26.289 N 76 5
26 25.916 N 76 5
26 25.902 N 76 5
26 25.840 N 76 5
26 25.966 N 76 5


In Situ


Tilt Corr.


Long n= Dec Inc Dec Inc


2.093 E

2.649 E
3.334 E
1.052 E
57.163E
7.482 E
7.269 E
7.234 E
7.213 E
7.184 E


193.8

46.4
337

204.5
201.5
204.2
203.9
199.2
198.9


21.5 206.8

11.4 47.4
6.3 227

8.9 204.5
9.7 201.6
2.7 204
11.2 203.8
4.3 199.2
9 198.9


Site VGP's
Pole Pole
k a95 Lat Long


33.9 117.7

10.8 78.24
6.3 73.83

10.3 107.3
11.6 61.31
2 36.38
12.6 32.1
4.3 111
9 104.1


-37.9 N

34.7 N
-35.8 N

-50.5 N
-51.5 N
-54.1N
-48.5 N
-55.9 N
-54.0 N


44.2 E

195.8 E
12.8 E

36.5 E
40.9 E
33.0 E
38.5 E
41.0 E
43.6 E


S64
Sirbu Sh. (S20)
L. Bhander Ss.


250 08.8 N 750 48.1 E 27
24 18.6 N 80 46.1 E 8


33 37.8
50.5 -41


32 31.7 28
51 -38 54.1


5.4 37.5 N 216.2 E
7.6 -21.9 N 31.5 E


24 48.964 N 750 59.283 E 2 21.1 -5.7 20.2 11.1


24 48.949 N

24 49.237 N
250 05.708 N
250 03.597 N

250 04.263 N

250 04.425 N


750 59.452 E

750 00.214 E
750 55.071 E
750 43.382 E

750 34.546 E

750 33.524 E


31.4

30.3

19.2

31

28.1


10.6 31.2

16.1 30.2

-7.6 19.2

30.1 31

25.6 28.1


53.8 N 220.4 E


26.1 18.16

18.6 26.83

-7.6 12.31

30.1 25.2

25.6 100.6


250 06.286 N 750 14.343 E 3 163.4 50.3 163.4 50.3 20.1


40.9 N

44.7 N

56.8 N


12.2 39.7 N

6.7 43.5 N


214.3 E

210.7 E

219.3 E

215.6 E

216.4 E


28.2 21.9 N 211.5 E


250 50.989 N 76 20.680 E 9 214.7 33.9 208.8 24.5 137.8 4.4 -42.2 N 35 E


250 50.815 N

250 06.295 N
250 06.416 N


24 35.474 N
24 18.581 N

24 15.357 N
24 17.514 N
24 36.466 N
24 36.086 N
24 35.720 N
24 33.523 N
24 33.452 N
24 33.342 N
24 33.352 N
24 15.9 N
25 15.4 N


76 20.729 E

750 05.482 E
750 55.572 E


80 43.292 E
80 46.163 E

80 48.272 E
800 53.631 E
800 56.551 E
800 56.626 E
800 56.242 E
800 59.779 E
800 24.602 E
81 24.600 E
81 24.568 E
80 48.2 E
80 48.3 E


23.4

30.7
131.5


346.8
102.2

62
285.3
281.2
300
315.8
292.7
293.4
294.6
293.2
3
10


-9.5 25.2

33.5 17.1
69.6 208.8


56.6 346.8
23.6 102.2

35.4 62
20 285.3
19.8 281.8
19.8 300
64.3 315.8
25.7 114.1
22.2 293.4
31 294.6
29.7 293.2
35 32
52 54


12.5 37.95

38.9 22.85
85.1 8.61


56.6 11.67
23.6 99.78

35.4 262.4
20 130.4
18.5 60.9
19.8 25.27
64.3 26.23
25.3 307.6
22.2 106
31 388.1
29.7 2017
-21 1500
-10 24.3


49.6 N

62.4 N
8.5 N


50.9 N
-11.9 N

-26.3 N
15.1 N
11.6 N
29.5 N
28.8 N
-23.4 N
-29.9
23.5 N
22.3 N
-43.0
-29.8


215.6 E

143.9 E
175.3 E


343.2 E
77.4 E

291.9 E
280.7 E
279.7 E
281.7 E
326.1 E
75.5 E
283.3 E
288.3 E
287.2 E
35.4 E
12.5 E


Site
U. Bhander S
Site 41

Site 42
Site 43
Site 44
Site 45
Site 46
Site 47
Site 48
Site 49
Site 410


Site 416

Site 417

Site 418
Site 419
Site 420

Site 421

Site 422


Site 424
Lakheri Ls.
(Raj)
Site 411

Site 412

Site 426
Site 427
Lakheri Ls.
(Son)
Site 458
Site 467

Site 468
Site 469
Site 470
Site 471
Site 472
Site 473
Site 474
Site 476
Site 477
S16
S17












Table 4-1 Continued

Rewa Ss.
Site 437 26 59.129 N
Site 456 24 40.590 N

Site 475 24 58.203 N

Site 461 24 12.613 N

Site 462 24 11.176 N

Site 466 24 12.613 N
Site 481 24 21.823 N

Site 482 24 22.035 N
S19 24 12.5 N
S33 24 11.2 N

S41 24 16.9 N
S42 24 16.9 N

S43 24 29.8 N

S45 24 27.7 N


77 36.778 E 4 348.8
800 12.982 E

81' 41.043 E 5 343.1

80 48.220 E 4 14.5

80 48.778 E 7 15.4

80 48.220 E 4 14.3
81 20.637 E 3 19.7

81 20.288 E 4 28.3
80 48.2 E 5 5
80 48.8 E 21 21

80 42.9 E 7 7
80 42.8 E 9 9

81 32.6 E 6 6

81 35.8 E 2 2


48.3 10.3 46.4 599.3 3.8 60.6 N


44.2 339.2 38.1 279.8 4.6 -60.5 N

13.5 16.7 14.8 18.83 21.7 54.3 N

-21 17.4 29.7 20.27 13.7 46.4 N

-6.4 15.5 11.2 12.97 26.5 56.5 N
12.3 18.3 12.1 13.33 35.2 70.7 N

14.7 29.9 13.7 30.31 17 47.7 N
224 222 16 22 16.7 -37.8 N
20 19.2 -8 20 6.6 -56.2 N

55 60 29.1 27 11.7 -19.2 N
211 221.3 37.3 27 10.1 -29.9 N

26 28 18.4 47 9.9 -46.6 N

53 50 10.3 -33N


18.8 E


42.2 E

231.6 E

236.1 E

232 E
71.2 E

214.6 E
23.9 E
44.7 E

18.6 E
35.6 E

39.1 E

16.1 E











Site 1462, Rewa S.s., #4
N


In Situ directions


W, Up


ImA/M


650 C.
630 C
640C *--*


2 mA/M


Site 1482, Rewa S.s., #3
N


In Situ directions


W,Up


ImA/M


650 C 640 C

.630C
590 C *


S*NRM


Site 1411, Lakeri L.s., # 15
In Situ directions
*


S W,Up


NRM
275 C 4 *

590 C
600 C
2mA/M


1 mA/M


,615 C


W, Up
ImA/M



630 C
*615C
S00C
*


630 C


Figure 4-1. Demagnetization plots. A) Zijderveld plots and associated equal angle stereoplots of
selected thermally demagnetized samples from the Rewa sandstone and Lakheri
limestone. Zijderveld plot open circles represent vertical vectors, closed represents
horizontal vectors. Open circles represent (-) inclinations, closed indicates (+)
inclinations on the equal angle plots.


4mA/M


*'NRM


Site 1412, Lakeri L.s., # 1
N


In Situ directions


2mA/M


SI*NRM














Site 1421, L. Bhander S.s., #2
N


In Situ directions
W, Up


675 C,
670 C 4 mA/M
1 mA/M 665 C .,
660 C .


675 C


a 665 C 4 mA/M
670 C
660 CI'* *


*NRM


N






In Situ directions


Site 1410, U. Bhander S.s., #8


In Situ directions


1 mA/M

650 C
640C


NRM


Sm W, Up
1OmA/M


S6 600C 6mA/M
630 C *


665 C
*675 C
10mA/M 670 C


680 C


%NRM


Figure 4-1. Demagnetization plots. B) Zijderveld plots and associated equal angle stereoplots of
selected thermally demagnetized samples from the Lower and Upper Bhander
sandstone.


Site 1422, L. Bhander S.s., #1
N







W, Up In Situ directions


ImA/M


*NRM


400
400 C


Site 142, U. Bhander S.s., #6


W, Up










Rewa Site Means Lakheri Site Means L. Bhander Site Means U. Bhander Site Means
N N N N

1' it -


_E _E__


N N N




-* -
E E E



.;I.


N E

.------E


Figure 4-2. Stereoplots of in situ and tilt corrected mean site directions from the Upper
Vindhyan units sampled in this study. Open circles represent (-) inclinations, solid
circles represent (+) inclinations.


80


i EE












































Figure 4-3. Magnetostratigraphic column (Note: NOT a measured section) for the Upper
Vindhyan sequence. Note the presence of geomagnetic field reversals in the both the
Bhander and Rewa groups, as well as the difference in polarity between the Rewa
sandstone and Lower Vindhyan Rhotas limestone. The Lakheri-Bhander Limestone
only exhibited field reversals in the Rajasthan section.










Rewa Sandstone fold test
McEIhinny Test NOT SIGNIFICANT (p=0.05):CR=3.44






A CR
1 0. ....................... . . ............ . . .. ................................................. . R
100 20 40 Unfolding 60 80 100

Lower Bhander Sandstone fold test
McElhinny Test NOT SIGNIFICANT (p=0.05):CR=2.98
100



-..-.-------- A... ---- ------- -A-- -
A CR
0 20 40 Unfolding 60 80 100

Upper Bhander Sandstone fold test
McElhinny Test NOT SIGNIFICANT (p=0.05):CR=2.48


100

I F
r ^A A.---.~-------ii7

.4 A A


A CR


"' 20 40 Unfolding 60 80 100


Figure 4-4. Fold test results for the Upper Vindhyan units. These are likely inconclusive due to
the low dips and limited deformation of the Upper Vindhyan sequence.





















E D


OG







Figure 4-5. Bhander and Rewa directions from this study (A) and a composite of this study and
the previous work (B) compared to the Malani Igneous province (C), Harohalli dykes
(D) the Rajhamal Traps (E) and Reverse (F) and Normal (G) Deccan Traps directions.
Note that the Upper Vindhyan directions do not resemble the later igneous events that
commonly show as overprints in older rock.




































Figure 4-6. A comparison between this study's Upper Vindhyan poles, previous Bhander and
Rewa poles, and selected radiometrically dated Indian poles: Majhgawan kimberlite
(Gregory et al., 2006; Miller and Hargraves 1994); Harohalli dikes(Radhakrisha and
Mathew, 1996); Malani Igneous province (Torsvik et al., 2003)




1.2- 12
Rewa sandstone and Lakheri limestone samples, U. and L. Bhander sandstone
.o intensely decay plots intensely decay plots

0.8- ._

0.6 Z oh

0.4I 0.4
-*- 1411. 15. Redbed Lakheri L.s. e --- 142,. Redbed U Bhander Ss.
0. -1412, 1. Redbed Lakhei L.s. 0 1410. #8, Redbed U. Bhander S.s.
-4- 1462, #4, Tan Rewa Ss. 4 1421. 2. Tan L. Bhander S.s.
-- 1482. 3. Purple Rewa S.s. -- 1422,#1.Tan L. Bhander S.s.
0.0. .II- OD ,
0 100 150 20 2 350 30 0 40 450 500 560 60S 6 700 0 s 100 150 200 250 300 350 00 4 65090 550 600 650 700 750
Temperature (C) Temperture


Figure 4-7. Intensity decay plots for the samples shown in figure 4-1. Note the high unblocking
temperatures the samples show, diagnostic of hematite.



























0 W 100 150 200 2 300 350 00 450 500 550 600 660 700 750 0 50 I00 10 30 0 0 30 O0 400 50 00 5W0 600 65 700 750
Tempereure) TemperatueVC)

Site 422, L. Bhander Sandstone Site 43, U. Bhander Sandstone
S-- g 5ea-ai D
V -v^ C [ 00g 1m D
~~ImA


-I

8


6

E,
0
I '
.?


50 100 IS 0 250 300 350 400 45 550 50 5W 600 65 700
Tempeatue'aC)


0 5O 100 IM O 200 250 30 30 400 4S 90 5Mo 600 650 700 750
TempeiurepC)


Figure 4-8. Curie temperature runs from selected samples. A) Tan Rewa S.s., showing a heating
curie temperature at 700.90 C and a cooling temperature at 699.6 C, B) Redbed
Lakheri L.s., showing a heating curie temperature at 613.6 OC and a cooling
temperature at 586.8 OC, C) Tan L. Bhander S.s., showing a heating curie temperature
at 551.5 C and a cooling temperature at 535.3 C, D) Redbed U. Bhander S.s.,
showing a heating curie temperature at 670.5 C and a cooling temperature at 670.5
C, E) Redbed U. Bhander S.s., showing a heating curie temperature at 683.1 OC and
a cooling temperature at 682.1 OC.


Site 466, Rewa Sandstone

--- n /alg
coo01g .W"


I.............. I


Ste 412, Lakheri Urresbne











Cooll
o , ,















Selected IRM Aquisition curves, Lakheri-Bhander Limestone
., ._ t


--*- Site 426
-U- Site 468
-- Site 407
- S- Site 473


. Lahei Ls.(FRjaslhan)
SLakhei Ls.(Son iley)i
. Lhei Ls.(Son \lley)
, ILhei Ls.(Son 4lley)


OD 0.1 02 0.3 0.4 0.5 OB 0.7 08 09 ID1 12 1 1.3 1.4 1.5 1l
Applied Field (Tesla)


0.0 02 0.4 08 0.8 1D 12 1.4 1.6 1.8 2D 22
Applied Field (Tesla)


Figure 4-9. IRM Acquisition curves for typical Upper Vindhyan samples. A) Lakheri-Bhander
limestone: Most specimens show curves indicative of single domain magnetite; Site
426 may have a minor hematite contribution. B) U. Bhander, L. Bhander, and Rewa
sandstones. Red sandstones such as Site 410 show the characteristic curve of high
coercivity hematite, whereas the tan-purple sandstones of the L. Bhander and Rewa
show some magnetite contribution.


i0.

0h.



04


02


A


~-

































Figure 4-10. Photographs of detrital zircon grains analyzed on the UF Nu Plasma LA-ICP MS.
A) Girbhakar sandstone (Marwar Supergroup; B) Upper Bhander sandstone.






A_ B
OM a rn mronc. pM. UL aUaderr unclsatm t1s iw"autr el nO .Mia mon (4 "141
dimgt anffr iprea ar late-pkt arnr m -n
0.60
an











0 4 a 12 1$ 0 4 12 1e 02 24
s"ph"u z"pb "U



Figure 4-11. Concordia plots: A) Shows a Concordia plot of the U. Bhander sandstone (N=166,
from sampling sites 43, 44 and 45), and B) shows a concordia plot for the Marwar
sandstones (Girbarkahr and Sonia sandstones)











A LU Bhander sandstone: detrltal zicon ages B Marwar Sandsones ceinal zrcon ages
(n=136) (n-=91)
OC0 0 20

xI
I cAN- I onG

O'CO GO Af' 44t I -4AA A




am Io r12 14oo i iO o o 2 n00 22 24 00 2 800 10 123 1240 lm IN IB 20O am2
"'PbI rP Agr "ptiU A

Figure 4-12. Detrital zircon probability distribution functions by site for the U. Bhander
sandstone and Marwar sandstones of Rajasthan. These units have been correlated in
the past (e.g. Heron, 1932, 1936; Pascoe, 1959) but clearly show a different
provenance. Note the youngest significant populations, -1000 Ma for the U.
Bhander, and -780 Ma for the Marwar. The Marwar shows a Malani component,
absent in the supposedly 650-750 Ma U. Bhander sequence. a) Site 43, b) Site 44, c)
Site 45, d) Undifferentiated sample separated from paleomagnetic cores representing
sites 43, 44, and 45, e) Girbarkhar sandstone, f) Sonia sandstone. These results are
shown together by group in g) Upper Bhander and h) Marwar Supergroup.









CHAPTER 5
DISCUSSION

Age of the Bhander-Rewa Groups

Fossil Evidence

Ages derived from the Bhander and Rewa groups typically are ambiguous and lack

consistency. Fossil markers found in the Bhander-Rewa groups, such as Chuaria and Tawuia

(Rai et al. 1997; Kumar and Srivastava, 2003) and possible burrows (Chakrabarti, 1990) do not

have the narrow enough range or good preservation to act as good index fossils. De's (2003,

2006) alleged Ediacara fossils in the Lakheri-Bhander limestone suggest that the Bhander-Rewa

groups are Ediacaran in age, consistent with some previous assertions. The utility of the

Ediacara fauna described by De (2003, 2006) is limited until it is confirmed independently.

Seilacher et al (1998) reported finding triploblastic worm burrows in the Semri group, Chorhat

and Rhotas formations. The Semri group has been well dated by U-Pb analysis of zircon

separated from the Rampur shale and Porcellenite formations at 1630-1592 Ma in age

(Rasmussen et al. 2002; Ray et al. 2002), Pb-Pb ages taken from the Kajhrahat (1721+/- 90 Ma,

Sarangi et al., 2004) and Rhotas (1599 +/- 48 Ma, Sarangi et al., 2004; 1601 +/- 130 Ma, Ray et

al., 2003) limestones, and Rb-Sr dating of authigenic glaconite by Kumar et al (2001) at 1600

Ma. If the discoveries are correct, these fossils would extend the antiquity of metazoans far older

than previously suspected. Kathel et al. (2000) similarly reported Ediacaran fossils in the Semri

group near Majhgawan; however, the authors are aware that the true nature of their find is

uncertain. Azmi (1998) reported the startling discovering small shelly fauna (SSF) and

brachiopods in the Rhotas limestone. Normally, this assemblage is diagnostic of latest

Neoproterozoic-Cambrian (<550 Ma) rock. Issues with this finding arose when Indian

paleontologists questioned the veracity of the discovery. Indeed, the findings of Azmi (1998)









were dismissed by Indian paleontologists who failed to find fossil evidence at the sites Azmi

described (Bagla, 2000). The death knell to the Cambrian age hypothesis concluded by Azmi

(1998) was the publication of well constrained radiometric ages for the Semri Group, listed

above. These cases illustrate the difficulties of using biostratigraphy in the Vindhyanchal Basin,

as well as the need for further work and independent confirmation of fossils discovered.

Correlations with Global Events

Recent attempts to directly date the Lakheri-Bhander limestone resulted in an age of

-750 Ma based on correlations with global 87Sr/86Sr ratios for this time (Ray et al. 2002).

87Sr/86Sr curves have been developed as a tool for the relative dating of carbonate sequences, as

Sr isotopic values are generally believed to be homogenous throughout the ocean. Using

87Sr/86Sr values for dating presents several difficulties, however. Values for the Proterozoic,

unlike the data from the Phanerozoic, are poorly constrained by reliable ages, as well as suffering

from gaps in the record. This method, however, is considered reliable in producing minimum

ages for Precambrian carbonates (Ray, 2006). Discrepancies in minimum ages generated by Ray

et al. (2003) and Kumar et al. (2002) are likely due to the less altered horizon sampled by Ray et

al., giving a more pristine signal (Ray, 2006).

Kumar et al (2002) observe that the 613C values for the Lakheri limestone correlate with

the global curve between 700-570 Ma. The correlation between 613C curves is problematic,

especially in the Proterozoic where continuous records are scarce and radiometric age constraints

on important markers are rare (Meert, 2007). The negative 613C excursions in the Lakheri-

Bhander limestone are interpreted by some authors (E.g. Kumar et al. 2002) as being associated

with Neoproterozoic global glaciations. Kumar et al. (2002) also notes that the Bhander-Lakheri

limestone in Rajasthan overlies an intraformational conglomerate he interprets as a tilloid. These

data have been used to label the Lakheri limestone unit as a "cap carbonate" associated with









"Snowball Earth" Neoproterozoic glaciations. Several problems with this explanation include

the equivocal nature of the "glaciogenic tilloids" (Prasad, 1984; Kumar et al. 2002) and the

uncertainties associated with the 613C excursion documented in the Son Valley Lakheri

limestone (Ray et al. 2003). Ray et al (2003) notes that complications in verifying the 613C

excursion may be due to the sampling of different horizons of the Lakheri limestone. The global

synchronicity of 613C excursions used to identify Snowball Earth glaciations in carbonates has

recently been called into question as more high resolution geochronologic data for glacial

deposits becomes available (Meert, 2007).

Interpretations assigning a latest Neoproterozoic to Cambrian age for the Upper

Vindhyan also fail to unequivocally record other global events. This boundary represents a

major period of phosphorite deposition, and is recorded in rock known to be of this age across

Australia and south-southeast Asia (Shen et al., 2000). Phosphorite deposits that record the

transition into the lower Cambrian time outcrop in the Krol and Tal formations of the Lesser

Himalayas (Mazumdar and Banerjee, 2001). These deposits have almost identical lithologies to

those found in South China, Iran and parts of Arabia, and Banerjee and Mazumdar (1999) use

these correlations to place these blocks adjacent to one another at the time. These deposits are

generally characterized by thick sequences of stromatolitic carbonates overlain by phosphatic

black shale and chert (Banerjee and Mazumdar, 1999). This discussion becomes important when

considering the alleged Neoproterozoic-Cambrian age of the Upper Vindhyan groups.

Lithologies of this sort, and indeed any phosphatic horizons are absent in the upper

Vindhyanchal Basin. This absence is noteworthy, considering the regional extent observed by

Banerjee and Mazumdar (1999) and indeed the global scale of the phosphate event in the oceans









of the time and suggests that the Upper Vindhyan was deposited prior to the Neoproterozoic-

Cambrian transition (Meert and Lieberman, 2007).

Paleomagnetic Evidence

The Majhgawan intrusion into the Kaimur group provides an important reference as a

cross cutting intrusion at 1073.5 +/- 13.7 Ma. The VGP generated from the Majhgawan

kimberlite, the Harohalli dykes paleomagnetic pole, and the paleomagnetic pole from the Malani

Igneous province provide the best temporally constrained paleomagnetic information covering

the suspected period of deposition for the Bhander and Rewa groups. The comparison of the

Bhander-Rewa poles to those from the well dated Majhgawan and Malani sties, however,

provides an interesting conundrum. The Bhander and Rewa poles of Athavale (1972), Klootwijk

(1973), McElhinny (1978) and this study all plot very closely to the Majhgawan VGPs of Miller

and Hargraves (1994) and Gregory et al. (2006) as illustrated in figure 4-6. In contrast, the

Malani pole plots far from both the Majhgawan and Bhander-Rewa poles as seen graphically in

figure 4-6.

This observation leads to a remarkable interpretation. Although some age dates on the

Bhander and Rewa group suggest a <750 Ma age, there is no similarity between the Bhander-

Rewa poles and the well constrained Malani Igneous province pole. This suggests that the upper

Vindhyan group is not, in fact, of a similar age to the Malani Igneous province as implied by the

Sr-data of Ray et al. (2003). This dissimilarity may be due to several factors. The possibility of

a remagnetization of the Upper Vindhyan units and the Majhgawan kimberlite would explain the

apparent similarities between these poles to each other, as well as the apparent correlation they

share with the Cambrian APW path with Gondwana. Such a remagnetization event would likely

have affected the Lower Vindhyan Semri group. The Semri Group paleomagnetic directions

typically are very different from the Neoproterozoic-Cambrian Gondwana poles (547 Ma Sinyai









dolerite, 755 Ma Mundine Well dykes, etc) as well as the Upper Vindhyan and Majhgawan.

This difference implies that no remagnetization event affected the Upper Vindhyan strata at large

or Majhgawan kimberlite as such an event should have affected the underlying strata of the

Semri Group. A Malani age of remagnetization is highly unlikely, due to the major differences

in directions between the Malani Igneous province and the Upper Vindhyan noted above.

Additional support for the primary nature of magnetization is found in the presence of at least 11

geomagnetic reversals in the Upper Vindhyan sedimentary units. The reversal test performed on

the Upper Vindhyan paleomagnetic data yielded a C result, acceptable for a time averaged field.

Detrital Zircon Geochronology and Provenance

The detrital zircon geochronology conducted in this study offers further clues into the

possible age of the Bhander-Rewa sequence. The 207Pb/206Pb age distribution yields several

noteworthy peaks that can be correlated with regional tectonic and magmatic events. The largest

peak recorded in the Upper Bhander sandstone of Rajasthan, at circa 1600 Ma, correlates well

with the volcanic activity recorded in the Lower Vindhyan Deonar porcellinite and has been

precisely dated by Rasmussen et al (2002) at 1602 +/- 10 and 1593 +/- 12 Ma and by Ray et al

(2002) at 1630 +/- 5.4 and 1631 +/- 0.8 Ma. The secondary large peaks at 1740 Ma and seems to

correlate with the ages from the Hindoli group of Deb et al (2002), and the -1800 Ma ages

possibly relate to Banded Gneiss Complex input (Buick et al. 2006). Zircon ages between 1400

Ma to 1100 Ma may correlate with events in the Dehli Fold belt (Biju-Sekur et al. 2002; Deb et

al. 2001), and/or volcanic activity related to ash fall deposits in the Rewa group. The youngest

population in the Upper Bhander sandstone at about 1020 Ma correlates well with volcanic

activity described by Deb et al (2007) from the Sukhda and Sapos tuffs (uppermost section of the

Chattisgarh basin), and may help constrain a maximum age of deposition for the Upper Bhander









sandstone. Further constraints may be provided by considering a potential source not

represented in the detrital zircon provenance of the Upper Bhander sandstone.

Gregory et al. (submitted) presented a recent U-Pb zircon date from the Malani rhyolite,

yielding an age of 771 +/- 5 Ma. This is significant because grains of this age are completely

absent from the detrital grains analyzed from the Rajasthan Upper Bhander sandstone. The

Malani igneous province, having an area of 54,000 km2 and a position proximal to the modern

position of the Vindhyanchal basin, would likely have been contributing sediment (including

detrital zircon) to the Bhander sandstones. The absence of Malani age zircon may be due to

several factors: a) The Great Boundary Fault (GBF) acted as a topographic divide during the

time of Vindhyan sedimentation, keeping Malani sediments from reaching the basin, b) The GBF

represents a suture after Bhander deposition, or c) That the Bhander sandstone, and hence the

remainder of the upper Vindhyan sequence, is far older than the Malani Igneous Province.

The first possibility is difficult to evaluate as a great deal of uncertainty exists about the

nature of the GBF. The presence of zircon similar in age to the Hindoli group (Deb et al. 2002)

and Dehli-Aravalli orogen (Chakraborty, 2006) that lies across the GBF from the Vindhyanchal

basin suggests that the fault itself did not inhibit the transport of sediment. The age of the GBF

is debatable; however, Verma (1996) states that the GBF is a pre-Vindhyan feature, formed

initially as a normal fault that has been reactivated numerous times in geologic history. Prased

and Rao (2006) support the pre-Vindhyan origin of the GBF when they note the presence of

Vindhyan sediments only to the east of the fault trace. Folding of Vindhyan sedimentary units in

the vicinity of the GBF trace suggest that is was active during their deposition. The area to the

west of the GBF may have been a positive relief feature during the deposition of the Semri

group, suggested by the presence of conglomerates in unspecified horizons (Verma 1996).









Sedimentological studies of the Upper Bhander sandstones, however, suggest that low elevation

sources provided sediment to the basin, suggested by the lack of unstable minerals and

predominance of mature quartz grains in the sandstone (Bose et al. 2001). Modem maps of

Rajasthan show fluvial systems transversing the present GBF, and through the modem Aravalli

Mountains. This seems to suggest that sediment could cross the GBF in the past to be deposited

in the Vindhyanchal Basin.

The second option is improbable, due to the lack of geologic evidence indicative of a

suture zone (e.g., ophiolites, pervasive deformation of the Rajasthan section of the basin, etc).

The Vindhyanchal basin, as suggested by several authors (e.g. Chaudhuri et al. 1999; Bose et al.

2001) notes the limited deformation and stable shelf character of the Upper Vindhyan groups.

Deb et al., (2001) dated many igneous rocks representing an arc across the GBF from the

Vindhyanchal basin, and finds that most were emplaced between 987 +/- 6.4 Ma and 836 +7/-5

Ma. The Malani Igneous province was in turn emplaced onto this terrane, as well as the older

(>1700 Ma) Delhi Supergroup (Deb et al. 2001). This implies that the Malani area was

emplaced onto rock contiguous with the Aravalli craton.

The third option is quite plausible and is less subject to paleogeographic uncertainties.

The absence of Malani age zircon in the Upper Bhander sandstone is explained by the >771 Ma

age of the sediments, without the need to resort to complicated paleogeographies and highlands

not seen in the sedimentary record. This allows for an age bracket to be inferred for the Upper

Bhander sandstone, between 771 Ma (Malani age) and -1000 Ma (Youngest detrital zircon ages-

figure 4-12 A). Further support for this reasoning is seen in the Marwar Supergroup detrital

zircon ages. The Marwar is known to be Neoproterozoic-Cambrian based on fossil evidence.

Detrital zircon grains analyzed from the Girbarkhar and Sonia sandstone show a probability









density function distinct from the Upper Bhander sandstone (figure 4-12 B). The dominant age

population for the Marwar samples peaks sharply in the 840-920 Ma range, a population

completely absent in the Upper Bhander. Furthermore, the Marwar grains show a small

population of Malani age zircon, again totally absent in the Upper Bhander sandstone. The

source for the main 840-920 Ma age peak in the Marwar detrital zircon dataset remains unknown

with any certainty, but maybe related to igneous events in the South China craton or juvenile

crust formed in the Arabian-Nubian shield. The placement of South China adjacent to India

during the Neoproterozoic is suggested by Jiang et al. (2003), and Xiao et al. (2007) has recently

published U-Pb zircon ages on subduction related igneous activity of this age. Younger detrital

zircon ages may be locally derived from granitic magmatic activity (E.g. Erinpura granite) in the

accreted arc terrane dated at 840-820 Ma (Deb et al. 2001). The zircon U-Pb ages Deb et al.

(2007) publish from the Sukhda and Sapos tuff units provide further support for an adjustment to

the age of the Upper Vindhyan sediments. The tuffs were emplaced in the uppermost section of

the Chattisgarh basin, and SHRIMP analysis of zircon separated from these units yields ages of

990, 1015, and 1020 Ma (Deb et al. 2007). These ages are significant, as the Purana basins of

India are reliably thought to be related in age and origin (Chaudhuri et al. 1999). This allows for

age determinations for one basin to be applied to the other sister basins across the Indian

subcontinent, and offers considerable support to the detrital zircon data presented above.

Paleomagnetic Implications of an Old (c. 1,000 Ma) Upper Vindhyan Sequence

The simplest explanation for the data discussed above may be that the Bhander and Rewa

groups are only marginally younger than the Majhgawan kimberlite. If true, this allows for the

Bhander and Rewa poles to be compared to other, c. 1,070-1,000 Ma paleomagnetic poles from

East Gondwana cratons. Paleomagnetic data from East Antarctica, a major East Gondwana

element, are scarce and poorly constrained by reliable geochronology. In contrast, Australia, the









other element critical to East Gondwana reconstructions, provides several well dated

paleomagnetic poles of the appropriate age generated from mafic intrusions found in the western

cratons. Schmidt et al. (2006) recently published a paleomagnetic pole, located at 2.80 N, 84.40

E and dated at -1070 Ma, from the Alcurra Dike swarm of the Australian Musgrave block.

When rotated into India co-ordinates (India fixed; modified from the Africa fixed Gondwana

configuration of Norton and Sclater, 1979; see table 5-1 for poles used in comparisons) this

paleomagnetic pole plots distant from the Majhgawan kimberlite VGP or the Upper Vindhyan

paleomagnetic pole as shown by figure 5-1 A. There is, however, some question about the tilt

correction for dike orientation this study which may impact any comparisons. The high quality

Bangemall Basin sill pole at 33.80 N, 950 E, dated at 1070 +/-6 Ma (Wingate et al. 2002), also

fails to compare to the Bhander-Rewa or Majhgawan paleomagnetic poles when similarly

rotated into a fixed India position. Figure 5-1 A shows the positions of these Australian

paleomagnetic poles when rotated into India co-ordinates, and illustrates their complete lack of

overlap with the Upper Vindhyan paleomagnetic pole and Majhgawan VGP. Traditional

reconstructions (e.g. Dalziel, 1997) typically place India adjacent to Antarctica and Australia as

part of a coherent East Gondwana. If India and Australia were adjacent, attached cratons at 1.0

Ga, then these poles should lie much closer together. The paleomagnetic data discussed above,

however, seem to support models of a separated East Gondwana at the Meso- to Neoproterozoic

boundary (E.g. Meert et al. 1995; Powell and Pisarevsky 2002; Meert 2003). Figure 5-2 shows

reconstructions for India at -1000 Ma, using the Bhander-Rewa paleomagnetic pole discussed

above and compare it to the positions of other paleomagnetically constrained cratons for a

similar interval.









Other potential paleomagnetic correlations: Neoproterozoic to Cambrian

The Upper Vindhyan paleomagnetic is commonly treated as being late Neoproterozoic to

Cambrian in age. This is due in part to several apparent correlations between the Upper

Vindhyan paleomagnetic pole and alleged similarly aged poles from various Gondwana

elements. The Bhander and Rewa paleomagnetic pole has been placed on the Gondwana APW

path by assuming a Neoproterozoic-Cambrian age and comparing them to the 547 +/- 4 Ma

Sinyai dolerite paleomagnetic pole (290 N, 1390 E, a95= 5.0) of Meert and Van der Voo (1995).

This match has been used by many authors and seems reasonable given the equivocal age

constraints on the Upper Vindhyan sequence. However, further investigation brings forward two

lines of evidence that suggest that the comparison is not so simple. The robust 755 +/- 3 Ma

Mundine Well dyke paleomagnetic pole (45.30 N, 135.40 E, a95= 5.0) from Australia actually

correlates better to the 547 Ma Sinyai dolerite paleomagnetic pole than to the Upper Vindhyan,

as illustrated by figure 5-1 B. The possibility of a remagnetization of the Mundine Well dykes is

unlikely, as a positive baked contact test suggests the primary nature of the magnetization

(Wingate and Giddings, 2000). Placing the Upper Vindhyan near the Neoproterozoic-Cambrian

boundary also reintroduces the lack of diagnostic global events recorded in the Upper Vindhyan,

such as the glacial markers, definitive cap carbonates phosphorite deposits and transitional

faunas to the Cambrian expansion described in preceding sections.

Paleomagnetic data from the Elatina and Yaltipena formations of Australia resemble the

Upper Vindhyan paleomagnetic pole, as seen in figure 5-1 B. The Elatina formation is

commonly associated with the Marinoan glaciation and is generally dated at -600 Ma, and the

Yaltipena formation lies stratigraphically beneath the Elatina (Willams and Schmidt, 1995; Sohl

et al., 1999). The Elatina formation shows clear evidence of glaciation in the form of a basal

diamictite, dropstones, and other diagnostic features of a coastal glaciomarine setting (Sohl et al.,









1999). In contrast, the Bhander group of India lacks such definite glaciogenic features (Prasad,

1984; Kumar et al. 2002). The primary tie between the Bhander Group and other "Snowball

Earth" units is the negative 613C excursion used to label the Lakheri limestone as a cap

carbonate. This correlation is questionable, however, as Ray et al (2003) note that the excursion

is not found in the Son Valley section of the Lakheri limestone. Meert (2007) notes that the 613C

curves for both the Sturtian and Marinoan glaciations require further geochronologic work to

allow for usable correlations. New geochronology on the Edwardsburg (Windamere

Supergroup), Aralka (Australia), Tindelpina (Australia) and Merinjina (Australia) formations

strongly suggest that the Sturtian glaciation was not a synchronous event (Meert, 2007).

The Upper Vindhyan paleomagnetic pole (43.90 N, 210.20 E, a95= 12.2) as noted above,

shows some similarity to the robust 755 Ma Mundine Well dyke paleomagnetic pole (45.30 N,

135.40 E, a95= 5.0) from Australia seen in figure 5-1 B (Wingate and Giddings, 2000). Defining

the age of the Upper Vindhyan sequence on the basis of this correlation is apparently supported

by the 87Sr/86Sr data compiled by Kumar et al (2002) and Ray et al (2003), which assign a

minimum age of 750-650 Ma to the Bhander-Lakheri limestone. Further investigation of

paleomagnetic data for this interval yields an intriguing problem in relation to the age of Upper

Vindhyan. The Malani Igneous province provides a robust paleomagnetic pole (72.70 N, 70.50

E, a95= 7.9) at 771 Ma (Torsvik et al. 2001; Gregory et al., submitted). The directions and

paleomagnetic pole provided by the Malani dataset differ sharply from the Upper Vindhyan

paleomagnetic pole, being separated by 28.80 of latitude and a great circle distance of 6681 km

(60.090), as illustrated by figure 5-1 B and listed in table 5-1. The study regions for these poles

both lie on the Aravalli-Bundlekhand craton, and are unlikely to have been separated by any

great distance. Furthermore, the Malani paleomagnetic pole is separated from the Mundine Well









dykes paleomagnetic pole by a great circle distance of 4431.1 km and an angular separation of

39.860 (27.40 of latitudinal separation). Clearly, this separation between two robust

paleomagnetic poles precludes any connection between the Aravalli-Bundlekhand craton and

Australia in the -750 Ma age range.


















Table 5-1 Paleomagnetic data used in this study


Study
INDIA
Harohalli dykes (Radhakrisha and Mathew
1996)
Majhgawan kimberlite (Gregory et al., 2006)
Bhander-Rewa (Athavale et al., 1972)
Bhander-Rewa (Klootwijk, 1973)
Bhander-Rewa (McElhinny et al., 1978)
Bhander-Rewa: This study
Bhander-Rewa: Composite, all studies
Malani Igneous province (Torsvik et al., 2001)
AUSTRALIA
Bangemell Basin sill (Wingate et al., 2002)
Alcurra dikes (Schmidt et al., 2006)
Mundine Well dikes (Wingate and Giddings,
2000)
Yaltipena Fm (Sohl et al., 1999)
Elatina Fm (Sohl et al., 1999)
Elatina Fm (Williams and Schmidt, 1995)
AFRICA
Sinyai dolerite (Meert and Van der Voo, 1996)

Euler Pole: Rotaton to India co-ordinates
Africa to India
Australia to India


Age (Ma) N Dec Inc K a95 Pole Latitude


1123+/-14
(New)
1073 +/- 13.7
980-1070
980-1070
980-1070
980-1070
980-1070
771 +/- 5


36
22
18
37
21
33 Sites
4 Studies
4 Studies


1071 +/-8 79
-1070 47


775 +/- 3
600-610
590-600
590-600

547 +/- 4


7.4
37.5
49.0
207.5
203.0
29.5
32.3
359.1


81.5
-26.5
-19.0
37.0
8.1
-18.0
-20.8
62.0


46
54
200
137
17.5
28.95
25.21
73.17


339.9 46.5 30 8.4
281.2 50.8 41.9 8.0


14.8
204.0
212.1
17.4


31.1
-16.4
-16.9
7.1


42 241.0 20.0 20 5.0 29.0 N


Lat
29.6
11.07


Long
36.1
183.48


Angle
56.8
-62.09


-28 N
36.8 N
31.5 N
48.5 N
51 N
43.6 N
43.9 N
72.7 N

33.8 N
2.8 N

45.3 N
44.2 N
39.7 N
51.5 N


Pole
Longatude


260.0 E
212.5 E
199.0 E
213.5 E
217.8 E
213.8 E
210.2 E
70.5 E

95.0 E
80.4 E

135.4 E
172.7 E
181.9 E
166.6 E

139.0 E

































Figure 5-1 Paleomagnetic comparisons. A) Comparison between the Upper Vindhyan poles and
the Majhgawan kimberlite with well dated -1050 to 1070 Ma poles from Australia.
Note the lack of correlation between the India and Australia poles, as well as within
the Australia poles themselves. Alcurra: Schmidt et al., 2006; Bangemell Basin sill:
Wingate et al., 2002; Majhgawan: Gregory et al. 2006
























+ Harohalli dykes (823 Ma- Old, 1123 Ma- New) -
+ Majhgawan Kimberlite (1073 Ma)
Upper Vindhyan (This study)
O Upper Vindhyan (Composite)
+ Malani Igneous province (771 Ma)
+ Mundine Well dykes (755 Ma)
Yaltipena Formation
Elatina Formation (Sohl et al.)
Elatina Formation (Williams and Schmidt)
Sinyai Dolerite (547 Ma)


Figure 5-1 Paleomagnetic comparisons. B) Comparison between the Upper Vindhyan poles
from this study, and the Majhgawan kimberlite with Neoproterozoic East Gondwana
poles. Note how the 547 Ma Sinyai Dolerite and 755 Ma Mundine Well dikes poles
appear to correlate, but the 771 Ma Malani and 755 Mundine Wells poles do not.
Also, note the Elatina and Yaltipena poles apparent correlation with the Upper
Vindhyan and Majhgawan Elatina and Yatipena: Sohl et al., 1999; Elatina: Williams
and Schmidt, 1995; Mundine Well: Wingate and Giddings, 2000; Malani: Torsvik et
al., 2003; Sinyai dolerite: Meert and Van der Voo, 1995.


















North Pole




i South Pole

North Pole

South Pole


S90

Figure 5-2 Reconstruction of India at -1000 Ma using the Bhander-Rewa paleomagnetic pole.
The Northern Hemisphere reconstruction assumes a South Pole (Normal polarity), the
Southern Hemisphere reconstruction assumes a North Pole (Reverse polarity).
Although the North Pole-North Pole fit may allow a tradition reconstruction with the
placement of Antarctica between Australia and India, longitudinal uncertainty and the
poor paleomagnetic constraints on Antarctica's location for this time hinder such a
reconstruction.









CHAPTER 6
CONCLUSIONS

My study provides a refined paleomagnetic pole for the Upper Vindhyan sequence of the

Vindhyanchal basin. The data collected by this study, when combined with the previous work

of Athavale et al (1972), Klootwijk (1973) and McElhinny et al (1978) place a paleomagnetic

pole at 43.90 N, 210.20 E (a95=12.2). This paleomagnetic pole correlates well with the VGP

generated from the Majhgawan kimberlite by Gregory et al (2006) that lies at 36.8 N, 212.5 E

(a95=15.3). Age control on the Upper Vindhyan remains controversial. The 1073 +/- 13.7 Ma

Majhgawan kimberlite (Gregory et al., 2006) intrudes the Lower Vindhyan Semri group and

Kaimur sandstone and places limits on their age. The Bhander and Rewa groups are

unconstrained by reliable direct age dates. Detrital zircon geochronology helps to provide a

maximum age control by identifying the youngest age population centered at 1020 Ma. Other

age control is provided by 87Sr/86Sr isotope data correlated to global curves. The 650-750 Ma

age assigned to the Lakheri-Bhander limestone by these correlations (Ray et al., 2003) fails to

correspond well with the existing paleomagnetic data, such as the conflicting correlations

between the well dated robust Malani and Mundine Well dyke paleomagnetic poles. Fossil

evidence provides yet another possible age control for the Upper Vindhyan paleomagnetic pole.

The alleged discovery of a diverse Ediacara fauna by De (2003; 2006) would place the age of the

Bhander and Rewa groups at <635 Ma. This discovery, however, remains unconfirmed by

independent research. Paleontology in the Vindhyanchal Basin has provided several

controversial finds that failed to survive peer scrutiny, either due to possible misinterpretation

(e.g. Seilacher et al. 1998) utter lack of independent confirmation (e.g. Azmi, 1998).

We argue that the simplest interpretation for the age of the Bhander and Rewa groups is

only marginally younger than the Majhgawan kimberlite between 1070-980 Ma. Deb et al









(2007) make a similar 500 Ma revision to the age of the Chattisgarh basin on the basis of direct

dates (990, 1015, and 1020 Ma) on tuff layers near the top of the basin, suggesting that such a

downward revision is needed for other Purana basins. The Purana Basins are recognized as

having similar origins and ages, applying this older revision to the Vindhyanchal Basin by

default. By assigning this age to the Bhander and Rewa group, several interesting possibilities

can be considered. The Upper Vindhyan paleomagnetic poles, along with the Majhgawan VGP,

fail to correlate with Australian poles (E.g. Bangemell sills, Alcurra dykes) dated between 1070-

1050 Ma. This suggests a separation between Australia and India at this time. If the Malani

Igneous province and Mundine Well dykes paleomagnetic poles are considered, this separation is

show to have lasted until -750 Ma. This data support the idea that East Gondwana did not

coalesce until the end Neoproterozoic-Cambrian transition, as suggested by Meert et al. (1995),

Powell and Pisarevsky (2002), and Meert (2003). The second conclusion possible with the

refined Upper Vindhyan paleomagnetism and geochronology addresses the issue of probable

TPW during the 1100-900 Ma interval, suggested by Meert and Torsvik (2003). The new U-Pb

zircon age suggested for the Harohalli dykes paleomagnetic pole by Pradhan and Meert

(Per.comm) at 1123 +/- 14 Ma, when compared to the -1000 Ma Bhander and Rewa

paleomagnetic pole, shows an APW path similar in length and rate of plate motion to the

Laurentia, Kalahari and Baltica cratons during similar intervals. While not conclusive, further

paleomagnetic data can refine this interval and better constrain this issue. Finally, the refined

Bhander and Rewa paleomagnetic pole place a paleomagnetically well defined pole on an India

APW path for the 1070-980 Ma interval.









APPENDIX A
U-PB ISOTOPIC RATIOS, AGE: UPPER BHANDER DETRITAL ZIRCONS















Table A-i Upper Bhander isotopic ratios
Sample Is Is Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.


UBM 1
UBM 2
UBM 3
UBM 4
UBM 5
UBM 7
UBM 8
UBM 9
UBM 10
UBM 11
UBM 13
UBM 15
UBM 16
io UBM_18
UBM 19
UBM 20
UBM 22
UBM 23
UBM 24
UBM 25
UBM 26
UBM 27
UBM 28
UBM 30
UBM 31
UBM 32
UBM 34
UBM 35


0.09979
0.08016
0.10465
0.08032
0.07766
0.09688
0.10943
0.09843
0.08925
0.07672
0.07634
0.09312
0.10997
0.08902
0.11144
0.09726
0.07578
0.08131
0.08626
0.10057
0.09071
0.12110
0.12110
0.10804
0.17756
0.08039
0.08197
0.07851


0.0009
0.0008
0.0010
0.0008
0.0007
0.0009
0.0010
0.0009
0.0030
0.0007
0.0007
0.0008
0.0010
0.0008
0.0010
0.0009
0.0007
0.0007
0.0008
0.0009
0.0008
0.0012
0.0012
0.0010
0.0016
0.0007
0.0007
0.0007


4.06554
2.25442
3.76535
2.07642
1.46862
3.61433
4.87186
2.13079
2.28032
1.99804
2.07190
2.70896
4.43495
2.92240
2.67199
3.63563
3.15930
2.20942
1.65317
3.51426
3.14280
3.37528
3.37528
3.27818
10.50511
2.24443
1.83340
2.15145


4.08028 0.1610 0.29547 0.0105
2.29702 0.0905 0.20397 0.0073
3.81042 0.1668 0.26095 0.0101
2.09743 0.0858 0.18750 0.0072
1.48448 0.0572 0.13716 0.0047
3.56006 0.1390 0.27057 0.0095
4.71961 0.1848 0.32290 0.0114
2.13171 0.0834 0.15701 0.0056
2.30369 0.1207 0.18530 0.0065
2.06440 0.0799 0.18888 0.0066
2.00540 0.0799 0.19683 0.0071
2.71709 0.1047 0.21098 0.0074
4.39743 0.1710 0.29250 0.0104
2.76574 0.1220 0.23809 0.0085
2.69142 0.1112 0.17389 0.0065
3.60155 0.1463 0.27111 0.0099
1.98611 0.0774 0.30235 0.0107
2.20910 0.0860 0.19707 0.0070
1.66792 0.0661 0.13900 0.0049
3.43882 0.1351 0.25344 0.0091
3.11444 0.1246 0.25128 0.0091
3.37188 0.1677 0.20214 0.0102
3.37188 0.1677 0.20214 0.0102
3.23962 0.1394 0.22005 0.0087
10.32768 0.4209 0.42910 0.0162
2.25851 0.0868 0.20250 0.0070
1.84781 0.0725 0.16223 0.0058
2.10353 0.0877 0.19875 0.0071


1650
1198
1575
1138
910
1552
1798
1135
1195
1115
1141
1321
1711
1387
1287
1556
1472
1182
976
1522
1443
1460
1460
1454
2448
1194
1049
1166


1673
1196
1477
1103
818
1542
1805
911
1080
1115
1161
1219
1640
1375
991
1544
1751
1156
821
1443
1445
1134
1134
1249
2234
1188
958
1169


1620
1201
1708
1205
1138
1565
1790
1594
1409
1114
1104
1490
1799
1405
1823
1572
1089
1229
1344
1635
1441
1973
1973
1767
2630
1207
1245
1160


1.4
-0.1
-6.2
-3.1
-10.0
-0.6
0.4
-19.8
-9.6
0.0
1.7
-7.7
-4.1
-0.8
-23.0
-0.8
19.0
-2.2
-15.9
-5.2
0.1
-22.3
-22.3
-14.1
-8.7
-0.6
-8.7
0.3












Table A-i Continued
Sample Is Is Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.


UBM 36
UBM 37
UBM 38
UBM 39
UBNM 1
UBNM 2
UBNM 3
UBM 41
UBM 42
UBM 43
UBM 44
UBM 45
UBM 47
UBM 49
UBM 50
0 UBA_1
UBA 7
UBB 2
UBB 3
UBB 5
UBB 6
UBB 9
UBB 10
UBB 11
UBB 13
UBB 15
UBB 16
UBB 17
UBB 18
UBB 19
UBB 20
UBC 1
UBC 2


0.09738
0.10415
0.07197
0.09794
0.10996
0.10030
0.09652
0.18099
0.08199
0.08190
0.08086
0.09845
0.08212
0.10688
0.10924
0.10206
0.10950
0.07345
0.16247
0.10132
0.08025
0.09831
0.08466
0.07345
0.07555
0.09633
0.08474
0.09501
0.10646
0.09833
0.09948
0.08132
0.08565


0.0010
0.0009
0.0007
0.0009
0.0010
0.0009
0.0009
0.0016
0.0008
0.0011
0.0007
0.0009
0.0007
0.0013
0.0010
0.0128
0.0138
0.0092
0.0204
0.0127
0.0101
0.0123
0.0106
0.0092
0.0095
0.0121
0.0106
0.0119
0.0134
0.0123
0.0125
0.0102
0.0107


3.16976
2.49284
1.66576
2.93287
4.50629
3.38754
3.53005
12.37477
1.97962
1.71384
2.00198
2.90284
1.98656
3.72415
4.09646
4.57597
3.48390
3.01791
6.04518
3.35396
1.47115
3.76867
2.53046
1.22219
1.87185
2.57473
2.68987
3.20638
3.79395
3.75753
3.44472
2.39467
2.56837


3.11230
2.53701
1.70007
2.97056
4.46320
3.33159
3.53514
11.55418
2.00624
1.65427
2.01196
2.87881
1.98988
3.82520
3.99385
4.21692
3.15848
1.80294
8.66414
3.17240
1.37461
3.42116
2.40149
1.80294
1.79916
2.40404
2.61680
3.10007
3.62773
3.52083
3.31680
2.30528
2.43467


0.1386 0.23608
0.1095 0.17360
0.0701 0.16786
0.1388 0.21718
0.1743 0.29723
0.1304 0.24495
0.1521 0.26526
0.4699 0.49589
0.0787 0.17511
0.0722 0.15177
0.0804 0.17956
0.1118 0.21385
0.0765 0.17544
0.1596 0.25271
0.1581 0.27196
1.1836 0.32518
0.8905 0.23076
0.5056 0.29801
2.4302 0.26986
0.8925 0.24009
0.3856 0.13295
0.9683 0.27803
0.6737 0.21679
0.5063 0.12069
0.5048 0.17970
0.6753 0.19385
0.7339 0.23021
0.8705 0.24477
1.0180 0.25846
0.9883 0.27715
0.9308 0.25115
0.6471 0.21358
0.6849 0.21747


0.0088
0.0068
0.0060
0.0092
0.0103
0.0086
0.0096
0.0176
0.0063
0.0056
0.0066
0.0074
0.0061
0.0088
0.0095
0.0251
0.0194
0.0230
0.0209
0.0186
0.0103
0.0215
0.0168
0.0095
0.0139
0.0152
0.0177
0.0192
0.0202
0.0214
0.0194
0.0165
0.0168


1352
998
1001
1247
1666
1397
1513
2580
1031
898
1058
1228
1033
1429
1530
1831
1305
1732
1434
1368
792
1580
1262
726
1065
1119
1337
1403
1461
1576
1432
1249
1265


-6.2
-19.8
0.5
-9.5
-3.5
-6.4
-1.2
-1.8
-6.4
-10.5
-4.8
-10.3
-6.5
-8.5
-6.8
4.4
-13.1
20.4
-25.1
-7.7
-12.8
-0.3
-1.3
-9.7
-0.6
-12.4
0.8
-3.5
-7.5
-0.5
-5.0
0.6
-1.9












Table A-i Continued
Sample Is Is Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.


UBC 4
UBC 5
UBC 6
UBC 9
UBC 10
UBC 11
UBC 13
UBC 14
UBC 15
UBC 16
UBC 17
UBC 18
144 1
144 2
144 3
144 4
144 5
144 6
144 7
144 8
144 9
144 10
144 11
144 12
144 13
144 14
144 15
144 16
144 18
144 19
144 20
144 21
144 22


0.11117 0.0139 4.57776
0.09865 0.0124 3.49644
0.10134 0.0127 3.31407
0.10548 0.0132 4.47630
0.07733 0.0097 1.98408
0.09468 0.0119 3.35753
0.09776 0.0123 3.41358
0.11686 0.0147 5.25101
0.16128 0.0202 10.26877
0.17195 0.0216 9.74317
0.16295 0.0204 9.87399
0.09798 0.0123 3.28878
0.10576 0.0016 3.33536
0.10430 0.0016 4.44726
0.10703 0.0016 2.42335
0.08323 0.0013 1.80911
0.08504 0.0013 2.55089
0.09606 0.0017 1.93024
0.10548 0.0016 3.30047
0.08594 0.0013 2.68493
0.17060 0.0026 6.50335
0.10497 0.0016 4.39612
0.07700 0.0013 2.06971
0.07700 0.0012 2.38886
0.07604 0.0011 4.54366
0.08609 0.0013 2.99937
0.08177 0.0012 2.00910
0.09856 0.0015 3.42728
0.11316 0.0017 3.02798
0.10914 0.0017 3.09612
0.08350 0.0013 1.22346
0.07615 0.0011 3.00143
0.07615 0.0011 2.41154


4.27180 1.1999 0.29864 0.0235
3.15454 0.8873 0.25706 0.0199
3.20183 0.9005 0.23718 0.0185
4.27338 1.1994 0.30778 0.0238
2.01145 0.5670 0.18608 0.0144
3.14711 0.8872 0.25720 0.0200
3.26033 0.9296 0.25326 0.0196
4.89826 1.3738 0.32590 0.0252
10.19431 2.8751 0.46177 0.0357
9.55057 2.6813 0.41096 0.0323
9.47684 2.6629 0.43949 0.0339
2.99254 0.8433 0.24344 0.0191
3.11756 0.0841 0.22872 0.0053
4.28606 0.1941 0.30926 0.0061
2.50160 0.1571 0.16421 0.0094
1.79712 0.0531 0.15764 0.0035
2.47537 0.0437 0.21755 0.0037
1.92191 0.0623 0.14573 0.0055
3.47592 0.1128 0.22694 0.0051
2.63225 0.1092 0.22660 0.0044
6.38815 0.1886 0.27648 0.0072
4.36024 0.0704 0.30373 0.0052
1.93561 0.0260 0.19495 0.0032
1.93561 0.0477 0.22502 0.0039
0.96894 0.0240 0.43338 0.0080
2.70482 0.1130 0.25268 0.0077
1.98418 0.0980 0.17820 0.0039
3.55413 0.1767 0.25219 0.0046
2.94469 0.0480 0.19407 0.0037
3.01213 0.0586 0.20575 0.0046
1.21930 0.0228 0.10627 0.0025
1.93236 0.0266 0.28585 0.0058
1.93236 0.0780 0.22967 0.0060


1738
1521
1472
1727
1109
1493
1502
1855
2457
2377
2410
1470
1471
1723
1219
1039
1285
1069
1462
1324
1969
1711
1140
1246
1804
1412
1113
1504
1383
1406
796
1428
1254


1671
1465
1352
1730
1099
1472
1446
1808
2443
2152
2321
1392
1299
1741
942
930
1266
850
1290
1315
1454
1709
1149
1319
2475
1460
1049
1439
1100
1169
634
1659
1346


1819
1599
1649
1723
1130
1522
1582
1909
2469
2577
2486
1586
1728
1702
1749
1275
1316
1549
1723
1337
2563
1714
1121
1121
1096
1340
1240
1597
1851
1785
1281
1099
1099


-3.8
-3.6
-8.1
0.2
-0.9
-1.4
-3.7
-2.5
-0.6
-9.5
-3.7
-5.4
-11.7
1.0
-22.7
-10.4
-1.5
-20.5
-11.8
-0.6
-26.1
-0.1
0.9
5.9
37.2
3.4
-5.7
-4.3
-20.5
-16.8
-20.3
16.2
7.4












Table A-i Continued
Sample Is Is ls 207Pb/235U ls 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.


144 23
144 25
144 26
144 27
144 28
144 29
144 30
145 1
145 2
145 4
145 6
145 7
145 9
145 10
S 145_11
145 12
145 13
145 14
145 15
145 16
145 17
145 18
145 20
145 21
145 22
145 24
145 25
145 26
145 27
145 28
143 2
143 3
143 4


0.08547 0.0013 2.70645
0.11127 0.0017 4.40081
0.08526 0.0013 2.38558
0.09867 0.0015 3.88490
0.09288 0.0014 3.20804
0.09612 0.0015 2.73294
0.08577 0.0013 2.82402
0.10385 0.0016 4.42922
0.10837 0.0016 4.48843
0.10559 0.0016 4.63955
0.09726 0.0015 3.83521
0.10287 0.0016 4.33798
0.10628 0.0017 3.83735
0.09182 0.0014 2.90930
0.10912 0.0017 4.36815
0.09860 0.0018 2.82410
0.11795 0.0019 4.65010
0.15450 0.0023 9.65474
0.07359 0.0011 1.85620
0.10032 0.0015 4.01865
0.10571 0.0016 4.69386
0.10732 0.0016 4.50230
0.11601 0.0019 4.52004
0.10337 0.0016 4.44940
0.10194 0.0020 3.31459
0.10896 0.0017 3.86116
0.10913 0.0024 3.54185
0.10643 0.0016 3.73475
0.07663 0.0020 1.64175
0.16790 0.0026 10.79870
0.08973 0.0010 1.54981
0.11560 0.0008 5.40306
0.11841 0.0008 5.82590


2.59295 0.1046 0.22967 0.0060
4.35560 0.1385 0.28684 0.0051
2.35667 0.0687 0.20294 0.0034
3.99946 0.1225 0.28557 0.0058
3.51998 0.2221 0.25051 0.0043
2.84225 0.1595 0.20621 0.0043
2.74142 0.0616 0.23880 0.0041
4.13707 0.1936 0.30934 0.0054
4.49735 0.0995 0.30038 0.0051
5.53638 0.4410 0.31869 0.0057
3.81934 0.1478 0.28600 0.0048
5.69914 0.6572 0.30584 0.0056
4.00786 0.1544 0.26187 0.0047
3.09044 0.1512 0.22980 0.0043
5.80691 0.5647 0.29032 0.0054
2.80707 0.1397 0.20773 0.0037
6.17320 0.7197 0.28593 0.0048
9.63775 0.6642 0.45321 0.0076
1.82284 0.0385 0.18295 0.0030
3.82004 0.0951 0.29052 0.0048
5.04707 0.2566 0.32203 0.0054
4.38250 0.2548 0.30426 0.0052
4.36339 0.1457 0.28258 0.0063
4.10864 0.1432 0.31217 0.0057
3.76587 0.1114 0.23583 0.0044
3.83689 0.0898 0.25700 0.0046
3.44403 0.1508 0.23540 0.0091
3.43145 0.1012 0.25450 0.0046
1.47334 0.0560 0.15539 0.0030
10.39065 0.4542 0.46646 0.0137
1.58984 0.0543 0.12527 0.0031
5.19252 0.1796 0.33897 0.0070
5.92417 0.2259 0.35685 0.0074


1330
1702
1234
1612
1457
1324
1364
1720
1725
1760
1603
1703
1589
1379
1699
1346
1741
2404
1067
1639
1770
1729
1719
1725
1471
1590
1517
1565
982
2499
931
1885
1953


1333
1607
1184
1621
1438
1188
1384
1742
1685
1789
1626
1724
1480
1325
1630
1194
1592
2412
1085
1645
1807
1708
1577
1758
1344
1450
1332
1440
924
2453
739
1881
1972


1326
1820
1321
1599
1485
1550
1333
1694
1772
1724
1572
1677
1737
1464
1785
1598
1925
2396
1030
1630
1727
1754
1896
1686
1660
1782
1785
1739
1112
2537
1420
1889
1932


0.2
-5.6
-4.0
0.6
-1.3
-10.2
1.4
1.3
-2.3
1.7
1.4
1.3
-6.9
-3.9
-4.1
-11.3
-8.6
0.4
1.7
0.4
2.1
-1.2
-8.2
1.9
-8.6
-8.8
-12.2
-8.0
-5.8
-1.8
-20.7
-0.2
1.0












Table A-i Continued
Sample
Name 207Pb/206Pb


error *207Pb/235U 207Pb/235U error 206Pb/238U error


Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb %


(Ma) error (Ma) error (Ma)


Conc.


143 6
143 7
143 8
143 9
143 10
143 11
143 13
143 14
143 15
143 16
143 17
143 18
143 19
143 20
143 21
S 143_22
143 23
143 24
143 25
143 26
143 28
143 29
143 30
143 32
143 33
143 34
143 35
143 36
143 37
143 38
143 39
143 40
144 1


0.17029 0.0012 11.17128
0.10993 0.0008 4.63695
0.10479 0.0008 4.19533
0.12172 0.0010 4.72716
0.11028 0.0009 4.81568
0.07667 0.0005 4.96108
0.16644 0.0011 4.28166
0.18208 0.0016 6.59683
0.10461 0.0007 4.08777
0.10575 0.0007 4.36944
0.11064 0.0009 4.69175
0.09139 0.0006 2.74873
0.09605 0.0007 3.70334
0.17073 0.0011 11.47245
0.07609 0.0005 1.69840
0.07609 0.0005 4.84356
0.07296 0.0005 1.72061
0.11791 0.0008 5.57550
0.11115 0.0011 3.81666
0.11342 0.0008 5.24071
0.10586 0.0007 4.63284
0.08398 0.0024 1.73548
0.09977 0.0007 3.90898
0.08913 0.0008 1.78657
0.08028 0.0006 1.77167
0.07992 0.0006 1.57444
0.07472 0.0006 1.64724
0.17678 0.0012 11.87331
0.10032 0.0007 4.28045
0.11066 0.0007 4.20024
0.09575 0.0008 3.37419
0.08105 0.0005 2.32178
0.16176 0.0011 9.88358


12.05523 0.7470 0.48351 0.0111 2597


10.02632 0.4529 0.47579 0.0106
4.62209 0.1539 0.30593 0.0064
4.20730 0.2215 0.29037 0.0060
4.74755 0.1822 0.28167 0.0086
4.74614 0.1954 0.31670 0.0067
1.97632 0.0793 0.46931 0.0099
10.53780 0.3909 0.18657 0.0039
7.30189 0.2735 0.26276 0.0055
4.18322 0.1674 0.28342 0.0060
4.50628 0.4101 0.29968 0.0063
4.70345 0.1734 0.30755 0.0065
2.72527 0.1002 0.21813 0.0045
3.61915 0.1307 0.27963 0.0058
11.15559 0.3657 0.48736 0.0102
1.86864 0.0654 0.16189 0.0034
1.86864 0.0802 0.46168 0.0103
1.72283 0.0700 0.17103 0.0037
5.95389 0.2703 0.34294 0.0072
3.92092 0.2428 0.24904 0.0052
5.10390 0.1741 0.33512 0.0069
4.58174 0.1653 0.31742 0.0065
1.67960 0.0642 0.14988 0.0039
3.31473 0.1553 0.28416 0.0063
1.73840 0.0745 0.14538 0.0030
1.79411 0.0896 0.16005 0.0034
1.60531 0.0573 0.14288 0.0032
1.65502 0.0595 0.15990 0.0033
11.41994 0.4282 0.48713 0.0107
4.21958 0.1753 0.30946 0.0064
4.12201 0.1386 0.27528 0.0058
3.33940 0.1446 0.25558 0.0053
2.24452 0.0846 0.20776 0.0046
9.34915 0.3641 0.44315 0.0102


2532
1752
1670
1750
1786
1890
1598
1965
1647
1705
1761
1335
1574
2562
1004
1867
1016
1911
1577
1860
1758
1010
1615
1024
1028
951
986
2588
1695
1661
1495
1219
2414


2497
1713
1637
1562
1770
2674
994
1366
1600
1686
1720
1261
1593
2558
962
2632
1018
1898
1403
1864
1782
885
1612
855
947
849
952
2543
1748
1546
1462
1217
2343


2561
1798
1711
1982
1804
1112
2522
2672
1707
1727
1810
1455
1549
2565
1097
1097
1013
1925
1818
1855
1729
1292
1620
1407
1204
1195
1061
2623
1630
1810
1543
1222
2474


144 3 0.18097 0.0012 12.06446


57 2514 48 2662 -3.2











Table A-i Continued
Sample Is Is ls 207Pb/235U ls 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.
144 4 0.16241 0.0011 9.79974 9.39224 0.3401 0.43762 0.0094 2403 32 2312 42 2481 -3.8
144 5 0.09789 0.0007 3.83344 3.67235 0.1403 0.28401 0.0063 1601 29 1614 32 1584 0.8
144 6 0.10638 0.0007 4.19835 4.09950 0.1578 0.28622 0.0061 1668 31 1612 30 1738 -3.3
143 43 0.10487 0.0007 4.41703 4.53619 0.1757 0.30548 0.0064 1716 32 1719 32 1712 0.2
143 44 0.08818 0.0006 2.87402 2.95096 0.1131 0.23637 0.0049 1374 29 1367 26 1386 -0.6









APPENDIX B
U-PB ISOTOPIC RATIOS, AGE: MARWAR SUPERGROUP DETRITAL ZIRCONS















Table B-l Marwar isotopic ratios

Sample ls ls ls 207Pb/235U ls 206Pb/238U ls 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.


GIR 1
GIR 2
GIR 3
GIR 4
GIR 5
GIR 6
GIR 7
GIR 8
GIR 9
GIR 10
GIR 13
GIR 14
S GIR_15
GIR 16
GIR 17
GIR 18
GIR 19
GIR 20
GIR 23
GIR 24
GIR 25
GIR 26
GIR 27
GIR 28
GIR 29
GIR 30
GIR 31
GIR 32
GIR 33
GIR 34


0.05199 0.0001 1.15095
0.05466 0.0002 1.31104
0.05863 0.0001 1.73477
0.17222 0.0008 17.70329
0.05454 0.0003 1.28541
0.05413 0.0001 1.37577
0.05486 0.0001 1.35259
0.05467 0.0001 1.33226
0.05410 0.0001 1.33730
0.05402 0.0001 1.35930
0.12219 0.0002 3.85754
0.05404 0.0001 1.39064
0.05845 0.0001 3.27087
0.05397 0.0001 1.30574
0.05260 0.0001 1.28003
0.05437 0.0000 1.34547
0.05378 0.0001 1.32054
0.05386 0.0001 1.39607
0.05361 0.0001 1.33894
0.05397 0.0001 1.35142
0.05358 0.0001 1.31421
0.12339 0.0002 8.99515
0.05992 0.0012 1.50299
0.05360 0.0001 1.35653
0.05335 0.0001 1.27532
0.05356 0.0001 1.35999
0.05655 0.0001 1.58330
0.05341 0.0001 1.31635
0.05357 0.0001 1.33021
0.05415 0.0001 1.42223


0.68362 0.0084 0.09776 0.0008
0.84129 0.0290 0.10590 0.0003
1.04732 0.0160 0.13066 0.0008
9.94033 0.2900 0.45388 0.0060
0.76808 0.0120 0.10407 0.0007
0.89019 0.0370 0.11222 0.0009
0.82080 0.0270 0.10886 0.0010
0.80430 0.0180 0.10761 0.0011
0.91857 0.0290 0.10915 0.0010
0.83922 0.0230 0.11111 0.0008
5.27943 0.0700 0.31483 0.0018
0.74978 0.0210 0.11307 0.0009
0.95206 0.0057 0.11819 0.0004
0.78497 0.0051 0.10669 0.0002
0.77348 0.0380 0.10745 0.0010
0.80794 0.0100 0.10926 0.0007
0.83868 0.0230 0.10841 0.0009
0.86771 0.0150 0.11446 0.0009
0.81242 0.0240 0.10993 0.0010
0.78914 0.0120 0.10886 0.0004
0.76119 0.0170 0.10830 0.0007
5.22294 0.1400 0.32188 0.0012
0.98396 0.0410 0.11076 0.0009
0.85052 0.0140 0.11174 0.0010
0.75025 0.0160 0.10555 0.0010
0.75340 0.0250 0.11212 0.0006
0.91508 0.0180 0.12362 0.0011
0.81679 0.0270 0.10883 0.0009
0.80550 0.0099 0.10964 0.0010
0.83738 0.0088 0.11598 0.0007


777
849
1021
2980
838
879
868
859
862
872
1667
885
1393
848
838
865
855
888
863
867
852
2325
926
871
835
873
964
853
859
899


773
832
1014
3013
819
881
855
845
858
873
2366
887
837
839
847
858
852
898
864
855
852
2233
863
878
831
881
964
856
862
909


285
399
553
2579
393
376
407
399
375
372
1988
373
546
369
312
386
362
365
355
369
354
2006
601
354
344
353
474
346
353
377












Table B-l Continued
Sample Is Is Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma)


GIR 35 0.05345 0.0001 1.34326
GIR 36 0.05483 0.0003 1.09970
GIR 37 0.05327 0.0001 1.37392
GIR 38 0.05344 0.0001 1.34206
GIR 39 0.05582 0.0001 1.58608
GIR 40 0.05255 0.0001 1.26607
GIR 41 0.05348 0.0001 1.33762
GIR 42 0.05713 0.0001 1.71280
GIR 43 0.05348 0.0001 1.33186
GIR 44 0.05315 0.0001 1.30133
GIR 45 0.08612 0.0000 4.64138
GIR 46 0.05335 0.0001 1.34678
GIR 47 0.05501 0.0001 1.37997
GIR 48 0.05340 0.0001 1.34640
GIR 49 0.05362 0.0001 1.37010
S GIR 51 0.05356 0.0001 1.35280
GIR 52 0.05350 0.0002 1.37230
GIR 53 0.05350 0.0001 1.28633
GIR 54 0.05334 0.0001 1.32129
GIR 55 0.05341 0.0000 1.34714
SON 1 0.05402 0.0001 1.39158
SON 3 0.06872 0.0002 1.54797
SON 4 0.10661 0.0063 1.68891
SON 5 0.05329 0.0001 1.35784
SON 6 0.05345 0.0001 1.26954
SON 8 0.06353 0.0012 1.23576
SON 9 0.05701 0.0001 1.65026
SON 10 0.05337 0.0001 1.34912
SON 11 0.06296 0.0004 1.63434
SON 12 0.05952 0.0004 1.36943
SON 13 0.05443 0.0001 1.43886
SON 14 0.05235 0.0002 1.15612
SON 15 0.12552 0.0005 7.96007


0.87730 0.0200 0.11098 0.0010
0.68011 0.0150 0.08857 0.0026
0.84389 0.0270 0.11388 0.0008
0.87019 0.0330 0.11088 0.0007
0.94108 0.0120 0.12547 0.0007
0.72334 0.0049 0.10638 0.0009
0.85292 0.0280 0.11044 0.0008
1.01517 0.0130 0.13239 0.0008
0.81187 0.0290 0.10996 0.0010
0.83351 0.0530 0.10812 0.0009
2.78373 0.0350 0.23797 0.0013
0.78832 0.0091 0.11147 0.0006
0.84038 0.0083 0.11077 0.0008
0.84828 0.0170 0.11133 0.0007
0.81600 0.0110 0.11283 0.0006
0.81103 0.0160 0.11153 0.0005
0.90740 0.0320 0.11325 0.0005
0.74746 0.0077 0.10617 0.0006
0.79803 0.0230 0.10938 0.0007
0.81535 0.0140 0.11138 0.0008
0.86875 0.0280 0.11375 0.0005
0.96985 0.0140 0.09946 0.0011
0.90187 0.0430 0.06995 0.0062
0.83122 0.0150 0.11251 0.0007
0.76157 0.0260 0.10489 0.0006
0.75089 0.0130 0.08589 0.0029
1.02051 0.0230 0.12782 0.0006
0.83949 0.0210 0.11161 0.0005
0.96132 0.0250 0.11462 0.0012
0.84115 0.0079 0.10159 0.0005
0.89720 0.0200 0.11672 0.0006
0.69020 0.0057 0.09752 0.0007
4.80091 0.1800 0.28003 0.0061


865
749
879
865
966
831
863
1014
860
847
1755
867
880
867
877
869
878
839
855
867
886
934
945
872
832
805
990
868
976
870
906
779
2192


872
700
895
872
979
838
868
1029
865
851
1740
876
869
875
886
876
890
836
860
875
893
768
514
884
826
671
995
877
888
794
915
771
1942


348
405
340
348
445
309
349
496
349
335
1341
344
413
346
355
353
350
350
344
346
372
891
1742
341
348
726
492
345
707
586
389
301
2036


Conc.

0.8
-6.6
1.8
0.8
1.3
0.9
0.7
1.4
0.5
0.5
-0.9
1.1
-1.2
1.0
1.1
0.8
1.3
-0.4
0.6
1.0
0.8
-17.8
-45.6
1.4
-0.7
-16.7
0.5
1.1
-9.0
-8.7
1.0
-1.1
-11.4












Table B-l Continued
Sample 1s
Name 207Pb/206Pb error


SON 17
SON 18
SON 19
SON 20
SON 21
SON 22
SON 23
SON 24
SON 25
SON 26
SON 27
SON 28
SON 29
SON 30
SON 31
SON 32
00
SON 33
SON 34
SON 35
SON 36
SON 37
SON 38
SON 39
SON 40
SON 41
SON 42
SON 43
SON 44
SON 45
GIR 56
GIR 57
GIR 58
GIR 59
GIR 60


0.09927
0.05751
0.05751
0.10142
0.08277
0.07872
0.05334
0.05282
0.05276
0.05573
0.05439
0.07189
0.05347
0.06256
0.08376
0.06280
0.05262
0.05683
0.05412
0.05451
0.05434
0.05239
0.05372
0.08708
0.06202
0.06651
0.05334
0.05375
0.05849
0.05315
0.05852
0.06954
0.05360
0.06520


0.0002
0.0001
0.0001
0.0001
0.0001
0.0003
0.0001
0.0000
0.0001
0.0003
0.0001
0.0005
0.0001
0.0000
0.0008
0.0003
0.0001
0.0002
0.0003
0.0002
0.0002
0.0002
0.0002
0.0001
0.0002
0.0003
0.0001
0.0001
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001


Is 1s
*207Pb/235U 207Pb/235U error 206Pb/238U error


5.99504
1.58328
1.58328
6.70640
4.53590
3.81731
1.37341
1.29294
1.29616
1.41638
1.42061
1.32469
1.37310
2.24206
2.41011
1.43240
1.29301
1.26953
1.38763
1.33971
1.29470
1.27895
1.33919
4.47930
1.79647
1.68584
1.31841
1.40243
1.56257
1.30520
1.44190
2.86887
1.33060
2.41682


3.45190 0.0930 0.26667 0.0022
0.99603 0.0180 0.12155 0.0009
0.99603 0.0180 0.12155 0.0009
4.13154 0.1100 0.29198 0.0031
2.52489 0.1100 0.24198 0.0011
2.20733 0.1300 0.21412 0.0039
0.82021 0.0240 0.11370 0.0005
0.77062 0.0170 0.10808 0.0005
0.77216 0.0260 0.10848 0.0004
0.85845 0.0200 0.11222 0.0005
0.87360 0.0210 0.11534 0.0009
0.80206 0.0100 0.08136 0.0014
0.87409 0.0160 0.11340 0.0007
1.41360 0.0420 0.15825 0.0011
1.45213 0.0440 0.12705 0.0009
0.87654 0.0080 0.10072 0.0008
0.81075 0.0180 0.10850 0.0005
0.70565 0.0420 0.09863 0.0007
0.82408 0.0130 0.11321 0.0011
0.73982 0.0340 0.10851 0.0011
0.81822 0.0360 0.10520 0.0011
0.79677 0.0550 0.10779 0.0006
0.81602 0.0140 0.11007 0.0006
2.58580 0.0560 0.22713 0.0030
1.08152 0.0096 0.12791 0.0009
1.00804 0.0099 0.11191 0.0006
0.75672 0.0150 0.10914 0.0007
0.86652 0.0200 0.11521 0.0009
0.96975 0.0260 0.11797 0.0019
0.90480 0.0310 0.10843 0.0007
0.87022 0.0110 0.10880 0.0009
1.76960 0.0490 0.18217 0.0009
0.86976 0.0410 0.10961 0.0006
1.49509 0.0230 0.16368 0.0013


207Pb/235U Is 206Pb/238U Is 207Pb/206Pb
(Ma) error (Ma) error (Ma)


1968
962
962
2074
1741
1595
879
843
845
895
898
836
878
1196
1218
893
843
828
884
862
842
837
863
1721
1040
992
854
891
953
848
902
1374
859
1248


1911
947
947
2082
1775
1586
893
851
854
879
904
629
891
1212
953
784
854
775
888
852
827
849
865
1662
989
864
859
904
919
853
850
1375
862
1248


Conc.
-2.9
-1.6
-1.6
0.4
2.0
-0.6
1.6
0.9
1.1
-1.7
0.7
-24.8
1.4
1.4
-21.7
-12.2
1.3
-6.4
0.5
-1.2
-1.8
1.4
0.2
-3.4
-4.9
-12.9
0.5
1.5
-3.5
0.6
-5.8
0.1
0.3
0.0











Table B-l Continued
Sample Is Is Is 207Pb/235U Is 206Pb/238U Is 207Pb/206Pb %
Name 207Pb/206Pb error *207Pb/235U 207Pb/235U error 206Pb/238U error (Ma) error (Ma) error (Ma) Conc.
GIR 61 0.05444 0.0002 1.42182 0.85266 0.0110 0.11531 0.0012 899 16 904 13 390 0.6
GIR 62 0.05592 0.0003 1.23675 0.75223 0.0130 0.09766 0.0015 814 17 768 14 449 -5.6
GIR 63 0.05723 0.0001 1.69840 1.02557 0.0230 0.13104 0.0006 1009 21 1018 12 500 1.0
GIR 64 0.05557 0.0004 1.42051 0.86193 0.0300 0.11286 0.0013 897 25 884 13 436 -1.4
GIR 65 0.05607 0.0002 1.35306 0.82785 0.0400 0.10655 0.0005 866 31 836 10 455 -3.5









LIST OF REFERENCES


Akhtar, K., 1996. Facies, sedimentation processes and environments in the Proterozoic
Vindhyan Basin, India. In Bhattacharyya, A. (Ed) Recent Advances in Vindhyan
Geology. Geol. Society of India. Bangalore.

Auden, J.B. 1933. Vindhyan sedimentation in the Son Valley, Mirzapur district, memoir.
Geologic Survey of India. 141-250.

Athavale, R N. 1972. Comments on 'Palaeomagnetism of the Cambrian Purple Sandstone from
the Salt-Range, W. Pakistan' by M. W. McElhinny, Earth Planet. Sci. Lett. 8 (1970) 149-
156 in Earth Planet. Sci. Lett 15, 215-217

Athavale, R N; Hansraj, Asha; Verma, R K, 1972. Paleomagnetism and age of Bhander and
Rewa sandstones from India. The Geophysical Journal of the Royal Astronomical
Society 28, 499-509.

Azmi, R.J., 1998. The discovery of Lower Cambrian small shelly fauna fossils and brachiopods
from the Lower Vindhyan of Son Valley, central India. Journal of Geological Society of
India 52, 381-389.

Bagla, P., 2000. Team rejects claim of early Indian fossils. Science 289, 1273.

Banerjee, D.M., Mazumdar, A., 1999. On the Late Neoproterozoic-Early Cambrian transition
events in parts of East Godwanaland. Gondwana Research 2, 199-211.

Biju-Sekhar, S., Pandit, M.K., Yokoyama, K., Santosh, M., 2000. Electron microprobe dating of
the Ajitgarha and Barodiya granitoids, NW India; Implications on the evolution of the
Delhi Fold Belt. Journal of the Geosciences 45, 13-27.

Buick, I.S., Allen, C., Pandit, M., Rubatto, D., Hermann, J., 2006. The Proterozoic magmatic
and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India. LA-
ICP-MS U-Pb zircon constraints. Precambrian Res 151, 119-142.

Camacho, A., Simons, B., Schmidt, P.W., 1991. Geological and paleomagnetic significance of
the Kulgera dyke swarm, Musgrave block, NT, Australia. Geophysical Journal
International 107 37-45.

Crawford, A. R., Compston. W., 1970. The age of the Vindhyan system of peninsular India.
Quarterly Journal of the Geological Society of London 125, 351-371

Chakrabarti, A., 1990. Traces and dubiotraces: examples from the so called Late Proterozoic
silisiclastic rocks of the Vindhyan Supergroup around Maihar, India. Precambrian Res..
47 141-153









Chakraborty, C., 2006. Proterozoic intracontinental basin: The Vindhyan example. Journal of
Earth System Science 115, 3-22

Chaudhuri, A.K., Mukhopadhyay, J., Patranabis-Deb, S., Chanda, S.K., 1999. The
Neoproterozoic cratonic successions of peninsular India. Gondwana Research 2, 213-
225.

Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hoffman, C., Bhandari, N.,
Ghevariya, Z.G. Cosmic Markers, 40Ar/39Ar dating and paleomagnetism of the Anjar
area of the Deccan large igneous province. Earth Planet. Sci. Lett 182, 137-156.

De, C., 2003. Possible organisms similar to Ediacaran forms of the Bhander Group, Vindhyan
Supergroup, Late Neoproterozoic of India. Journal of Asian Earth Sciences 21, 387-395.

De, C., 2006. Ediacara fossil assemblage in the Upper Vindhyans of Central India and its
significance. Journal of Asian Earth Sciences 27, 660-683.

Deb, M., Thorpe, R.I., Krstic, D., Corfu, F., Davis, D.W., 2001. Zircon U-Pb and galena Pb
isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the
Aravalli-Delhi orogenic belt, northwestern India. Precambrian Res 108, 195-213.

Deb, M., Thorpe, R., Krstic, D., 2002. Hindoli Group of rocks in the Eastern Fringe of the
Aravalli-Delhi Orogenic belt- Archean secondary greenstone belt or Proterozoic
supracrustals? Gondwana Research 5, 879-883.

Evans, DA.D., 2003. True polar wander and supercontinents. Tectnophysics 362, 303-320.

Gray, D.R., Foster, D.A., Meert, J.G., Goscombe, B.D., Armstrong, R., Truow, R.A.J., Passchier,
C.W. 2007.. A Damaran perspective on the assembly of southwestern Gondwana.
Geological Society of London Special Publication In Press.

Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E., Malone, S.J., 2006 A
paleomagnetic and geochronologic study of the Majhgawan Kimberlite, India:
Implications for the age of the Vindhyan Supergroup. Precambrian Res 149, 65-75.

Heron, A.M., 1932. The Vindhyans of western Rajputana. Rec. Geol. Sur. India 65, 457-489.

Heron, A.M., 1936. Geology of southeastern Mewar, Rajputana. Rec. Geol. Sur. India 63, 1-
130.

Jiang, G., Sohl, L.E., Christie-Blick, N., 2003. Neoproterozoic stratigraphic comparison of the
Lesser Himalaya (India) and Yangtze Block (south China): Paleogeographic
implications. Geology 31,917-920.









Kathel, P.K., Patel, D.R., Alexander, P.O., 2000. An Ediacaran fossil Sprigginia (?) from the
Semri Group and its implication on the age of the Proterozoic Vindhyan Basin, central
India. Neues. Jahr. Geol. Palaont.-Monat 6, 321-332.

Kirschvink, J.L., 1980. The least square line and plane and the analysis of paleomagnetic data.
Geophysics J. R. Astronom Soc 62, 189-200.

Klootwijk, C.T., 1971. Paleomagnetism of the Upper Gondwana Rajhmahal Traps, northeast
India. Tectonophysics 12, 449-467.

Klootwijk, C. T., 1973. Palaeomagnetism of upper Bhander sandstones from central India and
implications for a tentative Cambrian Gondwanaland reconstruction. Tectonophysics 18,
123-145.

Klootwijk, C.T., Nazirullah, R., de Jong, K.A., 1986. Paleomagnetic constraints on formation of
the Mianwali re-entrant, Trans-Indus and Western Salt Range, Pakistan. Earth Planet.
Sci. Lett 80, 394-414.

Kumar, A., Padmakumari, V.M., Murthy, D.S.M., Gopalan, K., 1993. Rb-Sr Ages of Proterozic
kimberlites of India: Evidence for contemperaneous emplacement. Precambrian Res 62,
227-232.

Kumar, S., Srivastava, P., 1997. A note on the carbonaceous megafossils from the
Neoproterozoic Bhander group, Maihar area, Madhya Pradesh. J. Paleontological Soc.
India 42, 141-146.

Kumar, S., Srivastava, P., 2003. Carbonaceous marcrofossils from the Neoproterozoic Bhander
Group, central India. Journal of the Paleontological society of India, 48 139-154.

Ludwig, K.R., 2000. Isoplot/Ex Version 2.4. A Geochronological Toolkit for Microsoft Excel.
1.a. Berkley Geochronological Centre Special Publication, Berkley.

Mazumder, R., Bose, P.K., Sarkar, S., 2000. A commentary on the tectano-sedimentary record
of pre-2.0 Ga continental growth in India vis-a-vis s possible pre-Gondwana Afro Indian
supercontinent. J. Afr. Earth Sci 30, 201-217.

Mazumder, R., Bannerjee, D.M., 2001. Regional variations in the carbon isotopic composition
of phosphorite from the Early Cambrian Lower Tal formation, Mussoorie Hills, India.
Chemical geology 175, 5-15.
McElhinny, M W; Cowley, J A; Edwards, D J. 1978 Palaeomagnetism of some rocks from
peninsular India and Kashmir. Tectonophysics 50, 41-54.

McFadden, P.L., McElhinny, M.W., 1990. Classification of the reversal test in paleomagnetism.
Geophysical Journal International 103, 725-729.









Meert, J.G., 1999. A paleomagnetic analysis of Cambrian true polar wander. Earth Planet. Sci.
Lett 168, 131-144.

Meert, J.G., 2001. Growing Gondwana and rethinking Rodinia: A paleomagnetic perspective.
Gondwana Research 4, 279-288.

Meert, J.G., 2003. A Synopsis of events related to the assembly of East Gondwana. Precambrian
Res 362, 1-40.

Meert, J.G., 2007. Testing the Neoproterozoic glacial models. Doi10.1016/j/gr.2006.11.002.

Meert, J.G., Powell, C.M.A., 2001. Assembly and Breakup of Rodinia. Precambrian Res 110,
1-8.

Meert, J.G., Van der Voo, R., 1996. Paleomagnetic and 40Ar/39Ar study of the Sinyai dolerite,
Kenya: implications for Gondwana assembly. Journal of Geology 104 131-142.

Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia
revised. Tectonophysics 375, 261-288.

Miller, K.C., Hargraves, R.B., 1994. Paleomagnetism of some Indian kimberlites and
lamporites. Precambrian Res 69, 259-267.

Mitra, N.D., 1996. Some problems of Vindhyan geology. Mem. Geol. Soc. India 36. 137-155

Mondal, M.E.A., Goswami, J.N., Deomurari, M.P., Sharma, K.K., 2002. Ion microprobe
207Pb/206Pb ages of zircons from the Bundlekhand Massif, northern India: implications
for crustal evolution of the Bundlekhand-Aravalli supercontinent. Precambrian Res 117,
85-100.

Norton, 1.0., Sclater, J.G., 1979. A model for the evolution of the Indian Ocean and the breakup
of Gondwana. Journal of Geophysical Research 84, 6803-6830.

Oldham, R D. 1893. Manual of Geology, India, 2nd Edition.

Paul, D.K., Potts, P.J., Gibson, I.L., Harris, P.G. 1975. Rare-earth abundances in Indian
kimberlites. Earth Planet. Sci. Lett 25, 151-158.

Paces, J.B., Miller, J.D., 1993. Precise U-Pb ages for the Duluth Complex and related mafic
intrusions, Northeastern Minnesota: Geochronological insights to physical, petrogenetic,
paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent
Rift system. Journal of Geophysical Research 98, 13997-14013.

Pascoe, H.S., 1959. A manual on the geology of India and Burma, 3rd Ed. Geologic Survey of
India. 2, 1-485.









Patranabis-Deb, S., Bickford, M.E., Hill, B., Chaudhuri, A.K., Basu, A., 2007. SHRIMP ages of
zircon in the uppermost tuff in Chattisgarh Basin in central India require up to 500 Ma
adjustment in Indian Proterozoic stratigraphy. Journal of Geology In press.

Poornachandra Rao, G.V.S., Mallikharjuna Rao, J., Rajendra Presed, N.P., Venkatewarlu, M.,
Srinivasa Rao, B., Ravi Prakash, S., 2005. Tectonics and Correlation of Upper Kaimur
group sandstones by their paleomagnetic study. J. Ind. Geophys. Union 9, 83-95.

Prasad, B., 1984. Geology, sedimentation and paleogeography of the Vindhyan Supergroup,
southeastern Rajasthan. Mem. Geol. Soc. India 116 (part 2) 1-58.

Prasad, B.R., Rao, V.V., 2006. Deep seismic reflection study over the Vindhyans of Rajasthan:
implications for the geophysical setting of the basin. Journal of Earth System Science
115, 135-147.

Radhakrishna, T., Mathew, J., 1996. Late Precambrian (850-800 Ma) paleomagnetic pole for the
south Indian shield from the Harohalli alkaline dykes: geotectonic implications for
Gondwana reconstructions. Precambrian Res 80, 77-87.

Rai, V., Shukla, M., Gautam, R., Vibhuti, 1997. Discovery of carbonaceous megafossils
(Chuaria-Tawuia assemblage) from the Neoproterozoic Vindhyan succession (Rewa
group), Allahabad, India. Current Science 73, 783-788.

Rasmussen, B., Bose, P.K., Sakar, S., Banerjee, S., Fletcher, I.R., McNaughton, N.J., 2002. 1.6
Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: Possible
implications for the early evolution of animals. Geology 20, 103-106.

Rau, T.K., Soni., 2003. Diamondiferous Vindhyan conglomerates and their provenance: A
critical study. Indian Min 37, 22-30.

Ray, J., 2006. Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth
System Science 115 149-160.

Ray, J.S., Martin, M.W., Veizer, J., Bowring, S.A., 2002. U-Pb Zircon dating and Sr isotope
systematic of the Vindhyan Supergroup, India. Geology 30 131-134.

Ray, J.S., Veizer, J., Davis, W.J., 2003. C, O, Sr and Pb isotope systematics of carbonate
sequences of the Vindhyan Supergroup, India: Age,diagenesis, correlations, and
implications for global events. Precambrian Res 121, 103-140.

Roy, A.B., Neoproterozoic crustal Evolution of Northwestern Indian Shield: Implications on
break up and assembly of supercontinents. Gondwana Research 4, 289-306.

Sahasrabudhe, P.W., Mishra, D.C., 1966. Paleomagnetism of Vindhyan Rocks of India. Bull.
Natl. Geophys. Res. Inst. Hyderabad 4, 49-55.









Sarangi, S., Gopalan, K., Kumar, S., 2004. Pb-Pb age of earliest megascopic, eukaryotic alga
bearing Rhotas formation, Vindhyan Supergroup, India: implications for Precambrian
atmospheric oxygen evolution. Precambrian Res 121, 107-121.

Sarkar, A., Paul, D.K., Potts, P.J., 1995. Geochronology and geochemistry of the mid-Archean
trondjemitic gneisses from the Bundlekhand craton, central India. In Saha, A.K. (Ed)
Recent Researches in Geology and Geophysics of the Precambrian, RRG 16, 76-92.

Schmidt, P.W., Williams, G.E., Camacho, A., Lee, J.K.W., 2006. Assebly of Proterozoic
Australia: implications of a revised pole for the -1070 Ma Alcurra Dyke swarm, central
Australia. Geophysical Journal International 167, 626-634.

Seilacher, A., Bose, P.K., Pfluger, F., 1998. Triploblastic animals more than 1 billion years ago:
trace fossil evidence from India. Science 282, 80-83.

Shen, Y., Schidlowski, M., Chu, X., 2000. Biogeochemical approach to understanding
phosphogenic events in the Termianl Proterozoic to Cambrian. Palaeogeography,
palaeoclimatology, Palaeoecology 158, 99-108.

Smith, C.B., 1992. The age of the Majhgawan pipe, India. Scott Smith Petrology 9.

Sohl, L.E., Christie-Blick, N., Kent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan
(ca. 600 Ma) glacial deposits of Australia; implications for the duration of low-latitude
glaciation in the Neoproterozoic time. GSA Bulletin 111, 1120-1139

Squire, R.J., Campbell, I.H., Allen, C.M., Wilson, C.J.L., 2006. Did the Transgondwanan
supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci.
Lett 250, 116-135.

Srivastava, A.P., Rajagopalan, G., 1988. F-T Ages of the Vindhyan Glauconitic sandstone beds
exposed around the Rawatbhata area, Rajasthan. Journal of the Geologic Society of India
32, 527-529.

Torsvik, T.H., Carter, L., Ashwal, L.D., Bhushan, S.K., Pandit, M.K., Jamtveit, B., 2001.
Rodinia refined or obscured: Paleomagnetism of the Malani Igneous Suite (NW India).
Precambrian Res 108, 319-333.

Tugarinov, A.I., Shanin, L.L., Kazakow, G.A., Arakelyantis, M.M., 1965. On the Glauconite
ages of the Vindhyan system (India). Geokhmiya 6, 652-660.

Veevers, J.J., 2004. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in
Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and
radiometric dating. Earth-Science Reviews 68, 1-132.

Verma, P.K., 1996. Evolution and age of the Great Boundary Fault of Rajasthan. Mem. Geol.
Soc. India 36. 137-155









Venkatachala, B S., Mukund, S., Shukla, M., 1996. Age and Life of the Vindhyans- Facts and
Conjectures. Mem. Geol. Soc. India 36 137-155

Vinogradov, A.P., Tugarinov, A.I., Zhikov, C.I., Stanikova, N.I., Bibikova, E.V., Khorre, K.,
1964. Geochronology of the Indian Precambrian. Report of the 22nd International
Congress, New Dehli 10, 553-567.

Williams, I. S., 1998. U-Th-Pb geochronology by electron microprobe. in McKibben, M.A., et
al. Eds. Applications of micro analytical techniques to understanding mineralizing
processes: Reviews in Economic Geology 7, 1-35.

Wingate, M.T.D., Giddings, J.W., 2000. Age and paleomagnetism of the Mundine Well dyke
swarm, Western Australia; implications for an Australia-Laurentia connection at 755 Ma.
Precambrian Res 100, 335-357.

Wingate, M.T.D., Pisarevsky, S.A., Evans, D.A.D., 2002. Rodinia connection between Australia
and Laurentia; no SWEAT, no AUSWUS? Terra Nova 14, 121-128.

Xiao, L., Zhang, H., Ni, P., Xiang, H., Liu, X., 2007. LA-ICP-MS U-Pb zircon geochronology
of early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze
Block, South China: Implication for tectonic evolution. Precambrian Res
Doi: 10.1016/jprecamres.2006.12.013









BIOGRAPHICAL SKETCH

Shawn J. Malone was born in Pamona, California on 19 November 1980. He lived in

Rancho Cucamonga, California until age 12, when he moved with his parents to Charleston,

South Carolina. He was an star scholar in high school, maintaining an "A" average and placing

highly in Jr. ROTC, Academic Quiz bowl, and placing nationally in the National Ocean Science

Bowl. He attended the prestigious College of Charleston from 1999 to 2004, majoring in

geology and minoring in sociology. Just before graduation, Shawn was awarded the

outstanding student and outstanding teaching assistant awards. He then attended the University

of Florida, majoring in geology for his Master of Science degree. He graduated from the

University of Florida in August 2007, and intends on pursuing a Ph D. in geology in the near

future.





PAGE 1

1 PALEOMAGNETISM AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE UPPER VINDHYAN SEQUENCE, RAJASTHAN AND SON VALLEY, INDIA: A POSSIBLE 500 MA DOWNWARD REVISION IN THE AGE OF THE PURANA BASINS? By SHAWN J. MALONE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Shawn J. Malone

PAGE 3

3 To everyone who has helped me get here today

PAGE 4

4 ACKNOWLEDGMENTS I would like to acknowledge the assistance and education in paleomagnetism and field geology provided by my committee chair, Joseph G. Meert. I also would like to thank Niel D. Opdyke and David A. Foster for their constructive criticisms and assistance as members of my committee. Additionally, I thank George Kamanov, Sam Coyner, and Warren Grice for their assistance on the geochronology aspects of my research, as well as training me in a science initially not part of my project. I wish to extend a special thanks to Ellen Martin, Phillip Neuhof, Jim Vogl, and Ray Russo for their support over my graduate school experience. Finally, I wish to thank Kelly Probst, Jennifer Gifford, Kris Crockett and my other friends in the Department of Geological Science who provided invaluable support for the past few years.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT ...................................................................................................................................10 CHAPTER 1 INTRODUCTION ..................................................................................................................12 Background .............................................................................................................................12 Geologic Setting ..............................................................................................................13 Stratigraphy .....................................................................................................................14 2 PREVIOUS WORK................................................................................................................20 Temporal Controls on the Vindhyanchal Basin Sedimentation .............................................20 Paleomagnetism ......................................................................................................................24 3 ANALYTICAL METHODS ..................................................................................................27 Paleomagnetism ......................................................................................................................27 Geochronology Methods ........................................................................................................28 4 RESULTS ...............................................................................................................................31 Paleomagnetism ......................................................................................................................31 Rock Magnetic Tests ..............................................................................................................33 Geochronology .......................................................................................................................35 5 DISCUSSION .........................................................................................................................50 Age of the Bhander-Rewa Groups ..........................................................................................50 Fossil Evidence ................................................................................................................50 Correlations with Global Events .....................................................................................51 Paleomagnetic Evidence ..................................................................................................53 Detrital Zircon Geochronology and Provenance .............................................................54 Paleomagnetic Implications of an Old (c. 1,000 Ma) Upper Vindhyan Sequence .................57 Other potential paleomagnetic correlations: Neoproterozoic to Cambrian ............................59 6 CONCLUSIONS ....................................................................................................................66

PAGE 6

6 APPENDIX A U-Pb ISOTOPIC RATIOS, AGE: UPPER BHANDER DETRITAL ZIRCONS..................68 B U-Pb ISOTOPIC RATIOS, AGE: MARWAR SUPERGROUP DETRITAL ZIRCONS .....75 LIST OF REFERENCES ...............................................................................................................81 BIOGRAPHICAL SKETCH .........................................................................................................88

PAGE 7

7 LIST OF TABLES Table page 2-1 Recent age constraints for the Vindhyanchal Basin ..........................................................26 4-1 Summery of paleomagnetic data from the Bhander and Rewa groups, Upper Vindhyan sequence. ...........................................................................................................37 5-1 Paleomagnetic data used in this study ...............................................................................62 A-1 Upper Bhander isotopic ratios ...........................................................................................69 B-1 Marwar isotopic ratios .......................................................................................................76

PAGE 8

8 LIST OF FIGURES Figure page 1-1 Pangaea reconstruction of Gondwana. .. ............................................................................17 1-2 Map of the Vindhyanchal basin and surrounding lithological units. ..............................18 1-3 Generalized stratigraphy for the Vindhyanchal basin. Note that most reliable ages are concentrated in the Lower Vindhyan units. ...............................................................19 4-1 Demagnetization examples. A) Zijderveld plots and associated equal angle stereoplots of selected thermally demagnetized samples from the Rewa sandstone and Lakheri limestone. ....................................................................................................39 4-1 Demagnetization examples. B) Zijderveld plots and associated equal angle stereoplots of selected thermally demagnetized samples from the Lower and Upper Bhander sandstone. .........................................................................................................40 4-2 Stereoplots of in situ and tilt corrected mean site directions from the Upper Vindhyan units sampled in this study. ..............................................................................................41 4-3 Magnetostratigraphic column (Note: NOT a measured section) for the Upper Vindhyan sequence. .........................................................................................................42 4-4 Fold test results for the Upper Vindhyan units. ...............................................................43 4-5 Bhander and Rewa directions from this study. ..................................................................44 4-6 A comparison between this study's Upper Vindhyan poles, previous Bhander and Rewa poles, and selected radiometrically dated Indian poles: Majhgawan kimberlite. ...45 4-7 Intensity decay plots for the samples shown in figure 4-1. Note the high unblocking temperatures the samples show, diagnostic of hematite. ...................................................45 4-8 Curie temperature runs from selected samples.. ................................................................46 4-9 IRM Acquisition curves for typical Upper Vindhyan samples.. ........................................47 4-10 Photographs of detrital zircon grains analyzed on the UF Nu Plasma LA-ICP MS. .......48 4-11 Concordia plots ..................................................................................................................48 4-12 Detrital zircon probability distribution functions by site for the U. Bhander sandstone and Marwar sandstones of Rajasthan. ..............................................................................49 5-1 A) Comparison between the Upper Vindhyan poles and the Majhgawan kimberlite with well dated ~1050 to 1070 Ma poles from Australia. .................................................63

PAGE 9

9 5-1 B) Comparison between the Upper Vindhyan poles from this study, and the Majhgawan kimberlite with Neoproterozoic East Gondwana poles. ..............................64 5-2 Reconstruction of India at ~1000 Ma using the Bhander-Rewa paleomagnetic pole. .....65

PAGE 10

10 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree Master of Science PALEOMAGNETISM AND DETRITAL ZIRCON GEOCHRONOLOGY OF THE UPPER VINDHYAN SEQUENCE, RAJASTHAN AND SON VALLEY, INDIA: A POSSIBLE 500 MA DOWNWARD REVISION IN THE AGE OF THE PURANA BASINS? By Shawn J. Malone August 2007 Chair: Joseph G. Meert Major: Geolog y The utility of paleomagnetic data gleaned from the Bhander and Rewa groups of the Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/8613C correlations with the global curves and possible Ediacara fossil finds in the Lakheri-Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar Supergroup suggest that the Upper Vindhyan sequence is up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa groups yields a paleomagnetic pole at 43.6 N, 2195 = 4.1). This paleomagnetic pole closely resembles the VGP from the well-95=15.3). Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at ~1020 Ma. Comparison between the Upper Bhander sandstone and known Neoproterozoic-Cambrian Marwar sandstone detrital suites shows virtually no similarities. The main 840-920 Ma peak and

PAGE 11

11 secondary Malani age peak at 780 Ma are totally absent in the Upper Bhander. This suggests an age for the Upper Bhander >771 Ma, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at ~1000 Ma, several intriguing possibilities arise. The Bhander-Rewa paleomagnetic pole allows for a reconstruction of India at 1,000 Ma that overlaps with the 1073 +/13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9 95= 12.2) and the Australian 1071 +/8 Ma Bangemell Basin sills and the ~1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period. Apparent correlations exist between the Bhander-Rewa paleomagnetic pole and those from the Australian Mundine Well dykes (755 +/3 Ma), 610-590 Ma Elatina and Yaltipena formations and the 547 +/4 Ma Sinyai dolerite pole of the Congo craton; however careful examination suggest that these comparisons are not robust and likely do not represent a remagnetization of the Upper Vindhyan.

PAGE 12

12 CHAPTER 1 INTRODUCTION Background The cratonic blocks of East Gondwana represent an important element of Proterozoic paleogeographic reconstructions and tectonic studies. Included in these cratonic blocks are the Rayner and Mawson (East Antarctica), Australia, Madagascar, the Seychelles, Sri Lanka and India (Meert, 2003; Powell and Pisarevsky, 2002). Figure 1-1, modified from Gray et al. (2007), shows the position of these cratons, as well as orogenic belts associated with their assembly, in the Gondwana supercontinent configuration. In particular, there has been a good deal of debate concerning their configuration in the Mesoproterozoic supercontinent of Rodinia, as well as their subsequent coalescence in the continent of Gondwana following the Neoproterozoic breakup of Rodinia (e.g. Meert and Van der Voo 1994; Rodgers et al., 1994; Weil et al., 1998; Powell and Pisarevsky, 2002; Meert, 2003; Meert and Torsvik, 2003; Veevers, 2004; Collins and Pisarevsky, 2005; Squire et al. 2006) The paucity of high quality paleomagnetic data hinders the reconstructions and the refinement of APW paths of these units for this critical time interval (Meert and Powell, 2001). Research on the Indian subcontinent provides an important window into this problem as it is both accessible and contains targets of the appropriate age. High quality paleomagnetic and geochronologic data are almost non-existent for India during Mesoto Neoproterozoic times. The Vindhyanchal basin, located in the central peninsular region of India, provides a promising area to conduct the necessary paleomagnetic studies due to the long depositional history recorded in the basin, limited deformation and unmetamorphosed nature of the rock basin-wide. Studies in the Vindhyanchal basin, however, are hindered by the poor geochronologic control of the Upper Vindhyan units. These units are separated from the well

PAGE 13

13 dated Lower Vindhyan by a basin-wide unconformity of indeterminate interval. Any project seeking to use paleomagnetic data generated from the Upper Vindhyan must address the problem of poorly constrained age in the basin. The data ultimately generated by this paper will aid in constraining the position and of India during the poorly resolved Mesoto Neoproterozoic interval, generate points that can be used in a Proterozoic APW path for India, and to test hypotheses bearing on Rodinia breakup and assembly of East Gondwana. Geologic Setting The Vindhyanchal Basin is a large sedimentary basin located in central peninsular India that outcrops over an area of over 104,000 km2, with additional area covered by the Deccan traps and Indo-Gangetic alluvium (figure 1; Venkatachala, 1996). Geographically, the basin lies between the gneiss and granite of the Archean (>2.5 Ga.) Aravalli-Bundelkhand province to the north and east (Mazumder et al. 2000), and the Cretaceous age Deccan Traps flood basalts to the south. The outcrop area of the Vindhyanchal basin is divided into two terrains: the Rajasthan terrain in the present day west region, and the Uttar Pradesh-Madhya Pradesh-Bihar region in the eastern sector of the modern day areal extent (Mitra, 1996). Acting as a basement ridge between the Rajasthan and Son Valley terrains (Prasad and Rao, 2006) are the trondhjemitic gneisses of the 2600-2500 Ma Bundelkhand Igneous complex (Sarkar et al., 1995). The Bundlekhand granite, considered to be the terminal event in the Bundlekhand complex, is dated at 2492 +/10 Ma by Mondal et al (2002). The Great Boundary Fault of the Rajasthan section separates the weakly deformed and unmetamorphosed Vindhyan system sediments from older, deformed Aravalli supergroup and provides a western boundary for the Rajasthan section of the basin. Across the modern day Aravalli Mountains is the 54,000 km2 Malani Igneous Province, and unconformably overlying sediments of the Neoproterozoic-Cambrian Marwar Supergroup (Roy, 2001). The Marwar supergroup is represented by undeformed to mildly folded sediments up to 2

PAGE 14

14 km in thickness (Roy, 2001). The lower age for the Marwar is constrained by the Malani Igneous Province and is generally assumed to continue to the latest Neoproterozoic (Chaudhuri et al., 1999). A few modern day drainages cross through this region onto the Vindhyan outcrop area. To the east, the Vindhyanchal basin is separated from Paleoproterozoic rock by the Narmada-Son Lineament (Prasad and Rao, 2006). Figure 1-2 A shows these important lithological and structural units. The basin is one of a group of Proterozoic basins in the Indian subcontinent referred to as developed on earlier Archean and/or early Paleoproterozoic cratonic blocks (Chaudhuri et al., 2002). The Vindhyanchal basin formed on the Aravalli craton, which stabilized by 2.5 Ga. (Bose et al., 2001). Rifting thinned part of the crust along a series of east to west trending faults in a dextral transtensional setting (Bose et al., 2001). Rift related features are common in the lower parts of the section, including volcaniclastic units, faults, and paleoseismic sedimentary deformation (Bose et al., 2001). The rift origin of these basins is supported by a variety of data. The basins are bounded by faults visible on seismic profiles, gravity data, and geologic mapping (Chaudhuri et al., 2002). Periodic volcanic events deposited volcaniclastic layers preserved in the basins (Chaudhuri et al., 2002). Basin wide unconformities, sedimentation disturbances, and changes in paleoslope level indicate tectonic changes in the fault block underlying the basin (Chaudhuri et al., 2002). For the most part, the sediments of the Vindhyanchal are undeformed to mildly deformed, and typically show low dips except in areas of Cenozoic faulting. Stratigraphy Sedimentary units in the Vindhyanchal basin are primarily represented by shallow marine ).

PAGE 15

15 The lower Vindhyan and upper Vindhyan units are separated by a basin wide-and laterally traceableunconformity of undetermined duration related to an inferred low stand of sea level (Bose et al., 2001). Figure 1-3 outlines this general stratigraphy. The lower Vindhyan units are collectively designated the Semri group. The Semri sediments unconformably overlay basement rock of either the 1854 +/7 Ma Hindoli group (Deb et al., 2002) or the 2492 +/10 Ma Bundlekhand granites (Model, 2002). The Semri group in the Son Valley overlies the Bijawar series of sediments and lavas, which contains volcanic rocks which Muthra (1981) correlates these volcanic rocks to the 1815 Ma Gwalior volcanics. Prasad and Rao (2006) suggest that the Gwalior and Bijawar series form an extensive part of the basement, as well as offering geophysical data that suggest the Hindoli group extends beneath the Rajasthan section of the Vindhyanchal Basin. The Semri group consists of five formations and is typically alternating shale and carbonate units, with areas of sandstone and volcaniclastic units. The Semri is noteworthy for good age control from Pb-Pb ages from carbonate units, as well as precise U-Pb ages derived from zircon separated from volcaniclastic strata (Ray et al. 2002; Rasmussem et al. 2002). The Semri group is separated from the Upper Vindhyan groups by a basin wide unconformity between the Rhotas limestone and the overlaying Kaimur group. The Kaimur consists of a lower shale unit overlain by quartz rich sandstone containing basin wide volcaniclastic deposit (Bose et al., 2001). This unit is intruded by the 1073 +/13.7 Ma Majhgawan kimberlite (Gregory et al., 2006), which cross-cuts the Semri and Kaimur groups and is currently exposed in the Kaimur Baghain sandstone in the vicinity of Panna, Madhya Pradesh (figure 1-2 A, C). Up-section is the Rewa Group, a series of shale and sandstone formations that, in areas, contain kimberlite derived diamondiferous conglomerates (Bose et al., 2001). There is

PAGE 16

16 uncertainty with regard to the source of these conglomerates, as Rau and Soni (2003) suggest that the diamonds present in the conglomerate may not be derived from the proximal Majhgawan or Hinota kimberlites. The conglomerate is succeeded by a shale unit, which in turn is succeeded by the Rewa sandstone. A thin shale unit marks the transition into the Bhander group. The Bhander group contains the only major carbonate unit in the upper Vindhyan system, a unit containing stromatolites, ooids, and micritic layers known as the Bhander or Lakheri limestone (Bose et al., 2001). The overlying lower Bhander sandstone marks a transition into shallower, sometimes fluvial, sandstone typical of the Bhander group (Bose et al., 2001). The Sirbu shale overlies the lower Bhander sandstone, and is in turn overlain by the upper Bhander sandstone. Bose et al. (2001) observed that the upper Bhander sandstone is primarily a unit of coarse, red sandstones, and may represent former barrier islands, sand bars, beaches and fluvial systems (Akhtar, 1996).

PAGE 17

17 Figure 1-1. Pangaea reconstruction of Gondwana. Note the separation of the cratonic blocks by Neoproterozoic orogens, as well as the division between East and West Gondwana elements. Modified from Grey et al (2007).

PAGE 18

18 Figure 1-2. Map of the Vindhyanchal basin and surrounding lithological units. A) Regional map. Note the locations of the Majhgawan kimberlite and the Malani Igneous province, as well as the Great Boundary Fault (GBF). B) Rajasthan section, showing sampling sites. C) Son Valley section, showing sampling sites. Modified from Malone et al., (2005; 2006).

PAGE 19

19 Figure 1-3. Generalized stratigraphy for the Vindhyanchal basin. Note that most reliable ages are concentrated in the Lower Vindhyan units. Ages from Gregory et al., 2006; Sarangi et al., 2004; Ray et al., 2003; Ray et al., 2002; Rasmussen et al., 2002; De 2003, 2006.

PAGE 20

20 CHAPTER 2 PREVIOUS WORK Temporal Controls on the Vindhyanchal Basin Sedimentation The age of deposition in the Vindhyanchal basin has been debated for over 100 years (e.g. Oldham, 1893; Auden, 1933; Crawford and Compston, 1970; Venkatachala, 1996). Due to the general absence of fossils suitable for biostratigrapic dating, ages for the various Vindhyan units has been assigned by radiometric means where possible. Early radiometric age dates depended on K-Ar, Rb-Sr, and fission track methods on detrital or authigenic minerals or on kimberlite intrusions that cross cut the Vindhyanchal basin; however, later work focused on dating volcaniclastic deposits, fossil evidence, or global isotopic correlations (e.g. Vinogradov et al., 1964; Tugarinov et al., 1965; Crawford and Compston, 1970; Paul et al., 1975; Paul, 1979; Srivastava and Rajagopalan, 1988; Smith, 1992; Kumar et al., 1993; Miller and Hargraves, 1994; Venkatchala et al., 1996; Rasmussem et al., 2002; Ray et al., 2002; Sarangi et al., 2004; Ray et al., 2003; De, 2003, 2006). For the most part, these studies limited the age of the Lower Vindhyan Semri group to older than 1.1 Ga. Glauconite and fission track dates used in many studies, however, may reflect post-depositional thermal or chemical resetting (Rasmussen et al., 2002). Basement age control, as noted above, is primarily based on U-Pb analysis of zircon separated from the 2530 +/3.6 Ma Berach granite (Tucker, per. comm.), 2492 +/10 Ma Bundlekhand granite (Model at al., 2002), the maximum age of 2240 Ma for the Khairmalia felsite (Tucker, per. comm.), and the1854+/7 Ma Hindoli group (Deb et al. 2002). Lower Vindhyan Semri group ages are generally well constrained. The Kajrahat limestone yielded a Pb-Pb age of 1721+/-90 Ma (Sarangi et al. 2004). Rasmussen et al. (2002) and Ray et al. (2002) have published consistent U-Pb ages taken from magmatic zircons. Zircon grains separated from

PAGE 21

21 ash beds located in the Rampur shale give ages of 1602 +/10 and 1593 +/12 Ma, and those from the Deonar/Porcellanite formation yield an age of 1628 +/8 Ma. (Rasmussen et al., 2002). Further constraints published by Ray et al. (2002) from the Deonar/Porcellanite formation showed ages of 1630 +/5.4 and 1631 +/0.8 Ma. Pb-Pb dating on the Rhotas limestone has yielded two ages, 1599 +/48 Ma (Sarangi et al. 2004) and 1601 +/130 Ma (Ray et al. 2003). These age constraints are summarized in table 1. Age control on the Upper Vindhyan sequences is more problematic. The Majhgawan kimberlite intrudes the Lower Vindhyan and into the Baghain sandstone (Kaimur group) near Panna and has been dated using the K-Ar and Rb-Sr methods, yielding dates between 1170 Ma (Paul et al., 1975) to 947 Ma (Paul et al., 1975). Rb-Sr ages determined by Crawford and Comptson (1970), at 1140 +/12 Ma, Smith (1992) an age of 1044+/22, Kumar et al (1993) an age of 1067 +/31 Ma. Most recently, the Majhgawan kimberlite has been dated by Gregory et al. (2006) at 1073.5 +/13.7 Ma via 40Ar-39Ar analysis of pholgopite phenocrysts, and is the date used in this study. Ages from within the Upper Vindhyan sedimentary units lack consistency and reliability. The Kaimur sandstone, intruded by the Majhgawan, has a reported K-Ar age on authigenic glauconite of 910 +/39 Ma (Vinogradov et al. 1964). Fission track ages from the Govindgarh sandstone (upper Rewa) yield a date of 710 +/120 Ma (Srivastava and Rajgopalan, 1988). Recent Pb-Pb dating of Bhander group carbonates produce an unreliable date of 650 +/770 Ma; however, this age appears consistent with samples taken from the Bhander-Lakheri limestone that yield a 87Sr/86Sr value consistent with global values near 650 Ma (Ray et al. 2003). Further isotopic studies of the Bhander limestone 87Sr/86Sr values indicate a 750 Ma age when 13C values for the limestone units show some overlap with the ages inferred by 87Sr/86Sr isotopic curves and also

PAGE 22

22 show some negative values which Ray et al (2003) suggest may be evidence of Neoproterozoic glaciations. Non-isotopic methods of dating the Upper Vindhyan units have also been attempted, with equivocal results. Possible Ediacara fauna fossils of 9 coelenterate genera (Tribachidium, Eoporita, Kaisalia, Cyclomedusa, Ediacaria, Nimbia, Paliella, Medusinites, Hiemaloria), one proto arthropod (Spriggina) and several unidentified taxa have been described in Lakheri and Sirbu formation of the Bhander group and would indicate an Ediacaran age (<635 Ma.) for the Bhander (De, 2003; De, 2006). This fauna is useful both for the biostratigrapic age constraint as well as for correlations with other Ediacara sites worldwide (De, 2006). Ediacara occurrences from India, Canada and Namibia show similar facies control on the distribution of Ediacara fossils, with preservation maximized in siliciclastic units and absent in intervening stromatolitic carbonate beds (De, 2006). Waggoner (1999) notes that Ediacara fauna typically fall into one of three broad, regionally defined groups: Group one, diagnostic of Baltica, Siberia, northern Laurentia, and Australia; Group two, diagnostic of Namibia, the South American Ediacara occurrences, and southern Laurentia; and group three, restricted to the Avalonia terrane preserved in the present Carolina Slate Belt, Newfoundland and the Charnwood Forest site of Great Britain. Meert and Lieberman (2007) observe that the fauna described by De (2003; 2006) appears to fit best in the group two category, and might provide a link between the other group two localities and recent group two fauna discovered in South China (Meert and Lieberman, 2007). Australia and India should, according to recent paleogeographic reconstructions, fall into a group one faunal zone (Meert and Lieberman, 2007). This may indicate a need for further examination of the Ediacara fauna described by De (2003; 2006). Fossil evidence in the

PAGE 23

23 Vindhyanchal Basin has proven problematic in the past, as exhibited by the controversial triploblastic animal traces from the Semri group described by Seilacher et al (1998), which were claimed to push back the age of metazoan development. Azmi (1998) added to the controversy with his reports of brachiopods and small shelly fauna (SSF) in the Chorhat sandstone (Semri group) The conclusion made by Azmi (1998) that the Chorhat sandstone represented the Neoproterozoic-Cambrian transition was challenged and dismissed by Indian paleontologists who failed to find fossil evidence at the sites Azmi described (Bagla, 2000). Further research into the age of the Lower Vindhyan sediments yielded robust Paleoproterozoic ages (Ray et al., 2002; Rasmussen et al., 2002) and makes the Neoproterozoic-Cambrian age for the Chorhat untenable. These incidents underscore the need for independent verification of Vindhyan fossil finds if major conclusions are to be drawn from them. Attempts to assign age control to the Upper Vindhyan have also used correlations between paleomagnetic directions from the group and directions with better age control. Directions obtained from the Bhander and Rewa appear to correlate with late Neoproterozoic to Cambrian data from Pakistan (McElhinny et al. 1978). These correlations are suspect due to significant rotations in the Salt Range (Klootwijk et al., 1986). Similarities between the Bhander-Rewa paleomagnetic pole and those of other Gondwana cratons have been drawn as well. Many publications (e.g. Meert, 2001; Powell and Pisarevsky, 2002) place the Bhander and Rewa poles on the late Neoproterozic to Cambrian APW path for Gondwana, assuming a ~550 Ma age for the Upper Vindhyan and comparing the poles to the 547 Ma Sinyai dolerite pole on the Congo craton (Meert and Van der Voo, 1995) or the > 600 Ma Elatina-Yaltipena formation poles of Australia from Williams and Schmidt (1995) and Sohl et al (1999).

PAGE 24

24 Paleomagnetism The Vindhyanchal basin has been the subject of several paleomagnetic studies. Athavale et al. (1972) treated Upper Bhander and Rewa sandstone samples to alternating fields of up to 80 mT and thermal demagnetization steps up to 600 C that yielded a Bhander mean direction of D=48, I=-95=5.7 and a Rewa mean of D=32, I=-95=13.7. These results yielded a paleomagnetic pole of 35 N and 222 E for the Rewa, and 31.5 N and 199 E for the Bhander. Klootwijk (1973) analyzed 43 cores from seven sites in Rajasthan by applying progressive alternating field (AF) and thermal treatments on the samples, and generated a 95=5.5 and a paleomagnetic pole at 51.4 N and 214 E. A later study conducted by McElhinny et al. (1978) expanded sampling into the lower sandstone of the Bhander and included one site in the Rewa group. In all, seven sites were sampled and subjected to a thermal demagnetization treatment (McElhinny et al. 1978). Three vectors were identified: A viscous component aligned with the present day field, a Tertiary overprint associated with the Deccan Traps emplacement, and a primary direction evident above 600-665C (McElhinny et al. 1978). This primary direction, averaged for the seven Bhander sites, is as follows: D=203.4, I=+8.1 (95=11.2) with a Rewa VGP at 45.0 N, 191.3 E and a Bhander paleomagnetic pole at 51.3 N, 222.7 E (McElhinny et al. 1978). Paleomagnetism on the Kaimur sandstones, stratigraphically under the Bhander and Rewa sequences, were conducted by Sahasrabudhe and Mishra, (1966) which yielded the 95=6.0). Although these samples show several reverse directions, the overall mean is suspiciously close to the local present day field direction (Meert and Torsvik, 2003).

PAGE 25

25 Poornachandra Rao et al (2005) obtained somewhat similar directions from the 95=13.21) and steeper 95=11.84). The authors attempt to use these directions to correlate the Kaimur directions (and hence age of the Kaimur) to the Malani Igneous province (D=359.1, I=+62). This age correlation is negated by the relationship between the Kaimur group and the 1073 +/13.7 Ma Majhgawan intrusion, which suggests that the Kaimur magnetization may either represent a Malani-like remagnetization or more likely the present day geomagnetic field.

PAGE 26

26 Table 2-1. Recent age constraints for the Vindhyanchal Basin UPPER VINDHYAN Unit Age Method Reference Bhander Group ages Lakheri Ls., Rajasthan Ediacaran Fossils (?) De, 2003; De, 2006 Lakheri Ls., Rajasthan 650 Ma Sr isotope stratigraphy Ray et al., 2003 Bhander Ls., Son Valley 650 +/ 770 Ma Pb Pb Isochron Ray et al., 2 002 750 Ma Sr isotope stratigraphy Ray et al., 2003 700 1100 Ma Chuaria Tawunia fossils Kumar and Srivastava, 1997 Rewa Group ages Jhiri Shale (Rewa group) Son Valley 700 1100 Ma Chuaria Tawunia fossils Rai et al., 1997 Kaimur Group ages (Majhgawa n kimberlite intrusion) Majhgawan kimberlite, which intrudes the Kaimur group (Baghain Ss.) near Panna 1044+/ 22 Ma Rb Sr (Phlogopite) Smith, 1992 1067 +/ 31 Ma Rb Sr (Phlogopite) Kumar et al., 1993 1073.5 +/ 13.7 Ma Ar Ar (Pholgopite) Gregory et al ., 2006 LOWER VINDHYAN Semri Group ages Rhotas Ls. (Semri Group) 1599 +/ 48 Ma Pb Pb Isochron Sarangi et al., 2004 (Son Valley) 1601 +/ 130 Ma Pb Pb Isochron Ray et al., 2003 Glauconite Ss. (Chorhat Ss, Semri grp) 1504 1409 Ma Rb Sr (Glaconite) Kumar et al., 2001 Rampur Shale (Semri Group) 1599 +/ 8 Ma U Pb (Zircon) Rasmussen et al., 2002 Porcellanite Fm (Semri Group) 1628 +/ 8 Ma U Pb (Zircon) Rasmussen et al., 2002 (Son Valley) 1630.7 +/ 0.4 Ma U Pb (Zircon) Ray et al., 2002 Kajrahat L s (Semri Group) 1721+/ 90 Ma Pb Pb Isochron Sarangi et al., 2004 BASEMENT Hindoli Group volcanics 1854 +/ 7 Ma U Pb (Zircon) Deb et al., 2002 Bundlekhand Granite 2492 +/ 10 Ma Pb Pb (Zircon) Mondal et al.,2002

PAGE 27

27 CHAPTER 3 ANALYTICAL METHODS Paleomagnetism A total of 56 sites located in Rajasthan and the Son Valley of India were sampled for paleomagnetic study using a water-cooled portable drill. Sample collection covered the sandstones and carbonates of the Bhander and Rewa groups. Sample orientation was performed in the field using Brunton magnetic compasses, and solar readings were used to correct any magnetic deflections and local declination deviations. The samples were cut into cylindrical specimens of relatively uniform volume in the laboratory and stored in a magnetically shielded room in the Paleo and Environmental Magnetism laboratory, University of Florida. Sample susceptibility was measured on the Agico SI-3B bridge, and Curie temperature runs were performed incrementally on rock powders in a KLY-3S susceptibility bridge attached to a CS-3 heating unit. Isothermal remnant magnetizations (IRM) were conducted on an ASC Scientific Model IM-10-30 impulse magnetizer. All samples had NRM measurements taken prior to any demagnetization treatments. Pilot samples were selected for preliminary demagnetization and a sequence of demagnetization steps was chosen based on these preliminary results. Sandstone samples were treated with stepwise thermal demagnetization. Magnetite bearing limestone samples were treated with initial low temperature treatments in the form of liquid N2 baths, followed by alternating fields up to 10-30 mT and stepwise thermal demagnetization or by conventional alternating field (AF) treatments. Thermal demagnetization was carried out using an ASC TD-48 thermal demagnetizer and AF demagnetization treatments used a DTech 2000 AF demagnetizer. All samples were measured on a 2G 77R Cryogenic Magnetometer. The resulting

PAGE 28

28 data was analyzed using principle component analysis of a best fit line on Super IAPD software (Torsvik et al. 2000). Geochronology Methods Geochronologic samples from the Rewa group (Son Valley) Sohgigihat and Teonthar ash beds, as well as a possible volcaniclastic bed from the Rajasthan section, were taken in an attempt to provide a more tightly constrained age for the Upper Vindhyan. In addition, detrital zircon grains were separated from Upper Bhander sandstone from paleomagnetic sites 43, 44 and 45 in Rajasthan as well as two sites (Sonia and Girbakhar sandstones) from the Marwar Supergroup. The ash fall volcaniclastic deposits and sandstones were crushed, disk milled and sieved. The ash-in heavy liquids, followed by magnetic separation on a Franz Isodynamic separator. Detrital zircons were separated from sandstones via water table treatment, followed by heavy liquids and magnetic separation. Zircon grains were picked from the appropriate fractions (lowest non magnetic for ashfall grains, non magnetic at 6, 1.0 A for detrital grains), were mounted in epoxy plugs, ground, and polished to expose the grains. The plugs were sonicated and cleaned in nitric acid and to remove any common Pb surface contamination. Following cleaning, the grains were photographed under a reflected light microscope. U-Pb concentrations were collected and analyzed using the University of Florida using laser ablation multi-collector inductively coupled plasma mass spectrometer (LA-MC-ICP-MS). The analyses were measured on a Nu Plasma high resolution multi-collector plasma source mass spectrometer, located in house at the University Of Florida Department Of Geological Sciences. Mounted zircon grains were laser ablated using an attached New Wave 213 nm ultraviolet laser. A mix of Ar and He carrier gas (1L/min Ar, 0.5 L/min He) was used for sample transport into the mass spectrometer. The laser was set at 4 Hz pulse frequency, 40% power and a laser spot

PAGE 29

29 two more FC1 standards in order to provide information used for error analysis and drift correction. Prior to ablation, a background measurement was taken for 10 seconds to measure a blank. Actual ablation proceeded for 30 seconds in order to minimize ablation pit depth and hence elemental fractionation. Actual isotopic data was acquired using Nu Instruments Time Resolved Analysis software. The Time Resolved Analysis software allows for isotopic ratios to be calculated from the desired time segment of data, allowing variations due to grain defects or surface contamination to be avoided. Data calibration and drift corrections were based on the FC-1 (Duluth Gabbro) zircon standard, dated at 1099.3 0.3 Ma (207Pb / 206Pb = 0.0762, 207Pb / 235U = 1.9428 and 206Pb / 238U = 0.1850) by Paces and Miller (1993), as well as being dated more recently by Black et al. (2003) at1099.0 +/0.7 and 1099.1 +/0.5 Ma. Data generated from the zircon isotopic analysis was imported into a Microsoft Excel spreadsheet and drift corrected using the known values for the FC1 (Duluth Gabbro) standard listed above. Common Pb correction was applied in Excel as well using the 207Pb/206Pb correction outlined in Williams (1998). Williams (1998) outlines three methods for correcting common Pb. His first method is of limited applicability to the Nu Plasma ICP due to the presence of isobaric 204Hg in the Ar/He gas mix used for a plasma source, as well as the low abundance of 204Pb in zircon grains. The second method Williams (1998) outlines is a correction based on 208Pb, although this only works when Th-U ratios can be assumed to be undisturbed. The method incorporated in this study corresponds to the third method in Williams (1998) based on 207Pb; however, this is of limited utility when 207Pb/206Pb ages are needed. Given the above limitations, any 207Pb/206Pb ages are calculated after omitting grains with excessive common Pb contamination. Isotopic ages and degrees of concordance

PAGE 30

30 were calculated, and concordia plots were generated using Isoplot/Ex Version 2.4 (Ludwig, 2000).

PAGE 31

31 CHAPTER 4 RESULTS Paleomagnetism Paleomagnetic results for the Bhander and Rewa groups correlate well with the previous research and are summarized in table 4-1. Generally speaking, demagnetization behaviors were relatively simple. Hematite bearing samples identified in rock magnetic tests (Section 4.2Rock magnetic tests) and pilot runs showed mostly univectoral demagnetization paths under thermal demagnetization with little evidence of low temperature overprints. Thermal treatments for the sandstones were favored, as hematite appeared to be the primary carrier seen in pilot runs and rock magnetic tests (See Curie temperature results, intensity decay plots and IRM acquisition -) inclinations is paper. Fourteen sites were sampled from the Rewa sandstone, and nine yielded consistent directions. Figure 4-1 A shows the demagnetization behaviors for two typical specimens of the tan and purple Rewa sandstone sites. The average NRM intensity for the Rewa sandstones was 2.80 mA/m. Tilt corrected paleomagnetic directions for the Rewa sites range between D= 15.5 to 29.9 and I= -8 to -221.3, I= 37.3. In situ directions differ only slightly, ranging from D= 14.3 to 28.3 and I= -6.4 to -sandstone consisted mainly of tan to reddish fine grain sandstones, with NRM intensities averaging 3.76 mA/m. Eight sampled sites in the Lower Bhander sandstone show simple demagnetization behaviors (figure 4-1 B) and exhibit only one polarity with tilt corrected directions ranging between D= 19.2 to 31 and I= -7.6 to -30.1. Again, in situ directions

PAGE 32

32 differ only slightly, with D= 19.2 to 30.3 and I= -5.7 to -30.1. The paleomagnetic pole derived from the lower Bhander Bhander. Nine sites sampled in the Upper Bhander had an average NRM intensity of 11.09 mA/m and yield tilt corrected directions ranging between D= 201.6 to 227 and I= 2 to 33.9 -31.7 and D=47.4, I= -10.8. In situ directions vary little, with a range of D= 193.8 to 204.5 and I= 4.3 to 21.5. The paleomagnetic pole generated from the upper Bhander plots at The magnetization in the Lakheri-Bhander limestone samples was less stable than the other stratigraphic units sampled. Eleven Son Valley sites of gray to black limestone yielded weak NRM intensities (1.722 to 0.278 mA/m) and demagnetized at relatively low temperatures Upper Vindhyan units and generally gave NW declinations ranging between 346.8and 281.8, with moderate to steep inclinations ranging between +64.3 to +18.5 (see table 4-1). These directions may represent a remagnetization of indeterminate age. Two Son Valley Lakheri sites, S16 and S17, did yield directions consistent with the majority of the Upper Vindhyan sites and relatively simple demagnetizations (figure 4-1 A). The tilt corrected directions for these consistent Son Valley sites, as well as the Rajasthan Lakheri sites, range between D= 25.2 to 54 and I= -10 to -21, with one reversed site with D= 208.8, I= 24.5. The paleomagnetic The two sites from Rajasthan and two from

PAGE 33

33 the Son Valley lobe show similar directions and appear to confirm the broad stratigraphic correlation drawn between the Upper Vindhyan carbonate units on either side of the basin. Table 4-1 summarizes the site mean paleomagnetic directions from this study. As seen by the site mean directions (figure 4-2) and summarized in the cartoon magnetostratigraphic column (figure 4-3), the data suggest the presence of at least eleven magnetic field reversals during the deposition of the Upper Vindhyan sediments. A McFadden and McElhinny (1990) c= 12.1) indicating a satisfactory result. Fold tests performed on the Upper Vindhyan sites proved inconclusive, as shown in figure 4-4. This is most likely due to the low dips and limited deformation seen in the Upper Vindhyan sequence. A comparison between the Upper Vindhyan paleomagnetic directions and those of commonly encountered Indian overprints are quite different, as seen in figure 4-5. Although not conclusive, the presence of geomagnetic field reversals and the directional differences between the Bhander-Rewa direction and common Indian overprints suggests a primary magnetization. Figure 4-6 illustrates the positions of the paleomagnetic poles generated from each Upper Vindhyan unit sampled, and compares them to the previous work and other dated Indian poles. Rock Magnetic Tests The thermal demagnetization behavior of the Bhander and Rewa sandstones are generally consistent with hematite as a primary carrier mineral for most sites. High unblocking temperatures, typically between 630 C and 680 C, are indicative of hematite and are seen in the majority of the sandstone samples. Intensity decay plots (figure 4-7) show little evidence of magnetite based remanence being lost in the 500 C to 580 C range, providing further evidence that hematite is the primary carrier. The carrier mineralogy is further defined by rock magnetic tests. Curie temperature runs for many sandstone samples show a sharp loss of susceptibility at

PAGE 34

34 ranges characteristic of hematite at temperatures between 613.6 C and 700.9 C. Site 466, tan sandstone from the Rewa group, shows a heating Curie temperature at 700.9 C and a cooling Curie temperature at 699.6 C (figure 4-8 A). The red sandstones from site 43 and 48 show a drop in heating susceptibility at 670.5 C and 683.1 C respectively, with a cooling Curie temperature at 670.5 C and 682.1 C, respectively (figure 4-8 D and E). Other sandstones show lower Curie temperatures that may be indicative of minor magnetite or impure hematite contributions. For example, site 422, light brown Lower Bhander sandstone, has a heating Curie temperature of 551.5 C and a cooling Curie temperature of 535.2 C (figure 4-8 C). The intensity decay plot for site 422 (figure 4-7) still shows the main loss of intensity after heating above 600 C. This may be due to the presence of higher Ti-magnetite and/or Ti-hematite in the sample. The red Bhander-Lakheri limestone sites exhibit different behaviors. Two Rajasthan red-bed limestone sites (I411 and I412) show hematite as a primary carrier. The demagnetization behavior was more complex than the sandstones with remanence being lost by 630 C. Curie temperature runs on the red limestone from site 412 shows a lower Curie temperature than is seen in the red sandstones noted above with a heating Curie temperature of 613.6 C and a cooling Curie temperature of 586.8 C. IRM acquisition tests for the Upper Bhander, Lower Bhander and Rewa sandstones, as well as the Lakheri limestone (figure 4-9) were also performed on selected samples. Typical curves (figure 4-9 A) for the Son Valley black (site 467 and 473) to gray limestone (site 458) shows saturation by 0.4 T, indicative of magnetite. It is noteworthy, however, that these samples unblocked at low temperatures under thermal demagnetization and carried radically different directions (NW declinations; moderate inclinationssee table 4-1) from the units immediately lower and higher in the stratigraphic column. Some samples (see I426figure 4-9 A) showed some evidence of a

PAGE 35

35 minor hematite contribution. IRM measurements on the red Upper Bhander sandstones produced the characteristic curve of hematite, failing to saturate at fields up to 2.0 T (figure 4-9 B). The tan and purple sandstones more characteristic of the Lower Bhander and Rewa sandstones (E.g. sites 422 and 466figure 4-9 B) were also dominated by hematite, but included contributions from magnetite as well. This minor contribution can be seen in the sharper saturation seen in the applied fields between 0.05 and 0.2 Tesla (figure 4-9 B), but the lack of total saturation until higher applied fields suggests hematite as the main carrier. Geochronology Mineral separation and analysis of separated zircon grains was carried out in accordance with the methods outline in section 3.2 above. The Rewa group contains several ash fall and volcaniclastic units; however, these yielded few useful zircon grains for geochronology. Of multiple ash beds sampled, only one yielded a suite of minerals suitable for radiometric dating. Small (~40x12to euhedral zircon grains were extracted following the processes outlined in the section 3.2. U-Pb analysis of these grains, conducted on the UF Nu Plasma LA-ICP-MS system yielded equivocal results. Most of the grains analyzed showed very discordant dispersions between 206Pb/238U and 207Pb/235U ages as well as high common Pb contamination. Of 23 grains ablated, only 3 yielded concordant ages after drift and common Pb correction (section 3.2). Two grains yield a 207Pb/206Pb age of 1554.9 Ma, and a single grain yielded a 207Pb/206Pb age of 1053.4 Ma. The detrital zircon sample processed from the Upper Bhander sandstone (Rajasthan section) yielded numerous datable grains with varying degrees of concordance. The grains were -10 A. Of 166 analyses, 136 grains were within 10% of concordia (figure 4-11 A). 207Pb/206Pb ages are generally preferred for analysis of grains over 1,000 Ma old due to the higher Pb to U ratios.

PAGE 36

36 1600 Ma zircons form the largest population in the sample. The youngest population resolved peaks at ~1020 Ma. Several other age population populations are resolved at 1100 Ma, 1220 Ma, 1340 Ma, 1740 Ma, and1800 Ma. A small population of Archean grains is also present, ranging between 2500 Ma to 2680 Ma. Two sites of Marwar Supergroup sandstone (Girbhakar and Sonia sandstones) were similarly processed to extract detrital zircon. The Girbhaker sandstone yielded subto euhedral grains, as well as small euhedral to subhedral zircons with mild abrasion (figure 4-10 B); when analyzed, the vast majority of these grains gave results within 5% of concordia (figure 4-11 B). The Sonia sandstone yielded smaller, abraded grains with a higher incidence of discordant ages. The age distribution for both sandstones, however, was similar. These analyses yielded a major age peak for the Marwar Sandstones centered at 880 Ma (206Pb/238U), with trivial occurrences of Mesoand Paleoproterozoic grains (16.4% of grains occurring in a small population ~1000 Ma or single grains between 1100 Ma to 2100 Ma). Also present in the Marwar sample was a population of ~780 Ma grains, forming the youngest significant population. Figure 4-12 illustrates the probability density function for the Upper Bhander and Marwar detrital sample ages.

PAGE 37

37 Table 4-1. Summery of paleomagnetic data from the Bhander and Rewa groups, Upper Vindhyan sequence. Site Locations In Situ Tilt Corr. Sit e VGP's Site Site Lat Site Long n= Dec Inc Dec Inc k Pole Lat Pole Long U. Bhander Ss. Site 41 26 32.877 N 77 02.093 E 6 193.8 21.5 206.8 33.9 117.7 6.2 37.9 N 44.2 E Site 42 26 27.816 N 77 02.649 E 4 46.4 11.4 47.4 10.8 78.24 10.4 34.7 N 195.8 E Site 43 26 27.024 N 77 03.334 E 5 337 6.3 227 6.3 73.83 9 35.8 N 12.8 E Site 44 26 31.306 N 77 01.052 E Site 45 26 26.307 N 76 57.163E 18 204.5 8.9 204.5 10.3 107.3 3.4 50.5 N 36.5 E Site 46 26 26.289 N 76 57.482 E 12 201.5 9.7 201.6 11.6 61.31 5.6 51.5 N 40. 9 E Site 47 26 25.916 N 76 57.269 E 5 204.2 2.7 204 2 36.38 12.9 54.1N 33.0 E Site 48 26 25.902 N 76 57.234 E 12 203.9 11.2 203.8 12.6 32.1 7.8 48.5 N 38.5 E Site 49 26 25.840 N 76 57.213 E 6 199.2 4.3 199.2 4.3 111 6.4 55.9 N 41.0 E Site 410 26 25.966 N 76 57.184 E 8 198.9 9 198.9 9 104.1 5.5 54.0 N 43.6 E S64 25 08.8 N 75 48.1 E 27 33 37.8 32 31.7 28 5.4 37.5 N 216.2 E Sirbu Sh. (S20) 24 18.6 N 80 46.1 E 8 50.5 41 51 38 54.1 7.6 21.9 N 31.5 E L. Bhander Ss. Site 416 24 48.964 N 75 59.283 E 2 21.1 5.7 20.2 11.1 53.8 N 220.4 E Site 417 24 48.949 N 75 59.452 E 6 31.4 10.6 31.2 26.1 18.16 16.2 40.9 N 214.3 E Site 418 24 49.237 N 75 00.214 E 9 30.3 16.1 30.2 18.6 26.83 10.1 44.7 N 210.7 E Site 419 25 0 5.708 N 75 55.071 E Site 420 25 03.597 N 75 43.382 E 11 19.2 7.6 19.2 7.6 12.31 13.6 56.8 N 219.3 E Site 421 25 04.263 N 75 34.546 E 7 31 30.1 31 30.1 25.2 12.2 39.7 N 215.6 E Site 422 25 04.425 N 75 33.524 E 6 28.1 25.6 28 .1 25.6 100.6 6.7 43.5 N 216.4 E Site 424 25 06.286 N 75 14.343 E 3 163.4 50.3 163.4 50.3 20.1 28.2 21.9 N 211.5 E Lakheri Ls. (Raj) Site 411 25 50.989 N 76 20.680 E 9 214.7 33.9 208.8 24.5 137.8 4.4 42.2 N 35 E Site 412 25 50.815 N 76 20.729 E 7 23.4 9.5 25.2 12.5 37.95 10 49.6 N 215.6 E Site 426 25 06.295 N 75 05.482 E 12 30.7 33.5 17.1 38.9 22.85 9.3 62.4 N 143.9 E Site 427 25 06.416 N 75 55.572 E 9 131.5 69.6 208.8 85.1 8.61 18.6 8.5 N 175.3 E Lakheri Ls. (Son) Site 458 24 35.474 N 80 43.292 E 8 346.8 56.6 346.8 56.6 11.67 16.9 50.9 N 343.2 E Site 467 24 18.581 N 80 46.163 E 5 102.2 23.6 102.2 23.6 99.78 7.7 11.9 N 77.4 E Site 468 24 15.357 N 80 48.272 E 4 62 35.4 62 35.4 262.4 5.7 26.3 N 291.9 E Site 469 24 17.514 N 80 53.631 E 12 285.3 20 285.3 20 130.4 5.7 15.1 N 280.7 E Site 470 24 36.466 N 80 56.551 E 10 281.2 19.8 281.8 18.5 60.9 6.2 11.6 N 279.7 E Site 471 24 36.086 N 80 56.626 E 7 300 19.8 300 19.8 25.27 12.2 29.5 N 281.7 E Site 472 24 35.720 N 80 56.242 E 8 315.8 64.3 315.8 64.3 26.23 11 28.8 N 326.1 E Site 473 24 33.523 N 80 59.779 E 7 292.7 25.7 114.1 25.3 307.6 3.4 23.4 N 75.5 E Site 474 24 33.452 N 80 24.602 E 7 293.4 22.2 293.4 22.2 106 5.9 29.9 283.3 E Site 476 24 33.342 N 81 24.600 E 5 294.6 31 294.6 31 388.1 3.9 23.5 N 288.3 E Site 477 24 33.352 N 81 24.568 E 3 293.2 29.7 293.2 29.7 2017 2.7 22.3 N 287.2 E S16 24 15.9 N 80 48.2 E 3 3 35 32 21 1500 3 43.0 35.4 E S17 25 15.4 N 80 48.3 E 10 10 52 54 10 24.3 10 29.8 12.5 E

PAGE 38

38 Table 4-1 Continued Rewa Ss. Site 437 26 59.129 N 77 36.778 E 4 348.8 48.3 10.3 46.4 599.3 3.8 60.6 N 18.8 E Site 456 24 40.590 N 80 12.982 E Site 475 24 58.203 N 81 41.043 E 5 343.1 44.2 33 9.2 38.1 279.8 4.6 60.5 N 42.2 E Site 461 24 12.613 N 80 48.220 E 4 14.5 13.5 16.7 14.8 18.83 21.7 54.3 N 231.6 E Site 462 24 11.176 N 80 48.778 E 7 15.4 21 17.4 29.7 20.27 13.7 46.4 N 236.1 E Site 466 24 12.613 N 80 48.220 E 4 14.3 6.4 15. 5 11.2 12.97 26.5 56.5 N 232 E Site 481 24 21.823 N 81 20.637 E 3 19.7 12.3 18.3 12.1 13.33 35.2 70.7 N 71.2 E Site 482 24 22.035 N 81 20.288 E 4 28.3 14.7 29.9 13.7 30.31 17 47.7 N 214.6 E S19 24 12.5 N 80 48.2 E 5 5 224 222 16 22 16.7 37.8 N 23.9 E S33 24 11.2 N 80 48.8 E 21 21 20 19.2 8 20 6.6 56.2 N 44.7 E S41 24 16.9 N 80 42.9 E 7 7 55 60 29.1 27 11.7 19.2 N 18.6 E S42 24 16.9 N 80 42.8 E 9 9 211 221.3 37.3 27 10.1 29.9 N 35.6 E S43 24 29.8 N 81 32.6 E 6 6 26 28 18.4 47 9 .9 46.6 N 39.1 E S45 24 27.7 N 81 35.8 E 2 2 53 50 10.3 33 N 16.1 E

PAGE 39

39 Figure 4-1. Demagnetization plots. A) Zijderveld plots and associated equal angle stereoplots of selected thermally demagnetized samples from the Rewa sandstone and Lakheri limestone. Zijderveld plot open circles represent vertical vectors, closed represents horizontal vectors. Open circles represent (-) inclinations, closed indicates (+) inclinations on the equal angle plots.

PAGE 40

40 Figure 4-1. Demagnetization plots. B) Zijderveld plots and associated equal angle stereoplots of selected thermally demagnetized samples from the Lower and Upper Bhander sandstone.

PAGE 41

41 Figure 4-2. Stereoplots of in situ and tilt corrected mean site directions from the Upper Vindhyan units sampled in this study. Open circles represent (-) inclinations, solid circles represent (+) inclinations.

PAGE 42

42 Figure 4-3. Magnetostratigraphic column (Note: NOT a measured section) for the Upper Vindhyan sequence. Note the presence of geomagnetic field reversals in the both the Bhander and Rewa groups, as well as the difference in polarity between the Rewa sandstone and Lower Vindhyan Rhotas limestone. The Lakheri-Bhander Limestone only exhibited field reversals in the Rajasthan section.

PAGE 43

43 Figure 4-4. Fold test results for the Upper Vindhyan units. These are likely inconclusive due to the low dips and limited deformation of the Upper Vindhyan sequence.

PAGE 44

44 Figure 4-5. Bhander and Rewa directions from this study (A) and a composite of this study and the previous work (B) compared to the Malani Igneous province (C), Harohalli dykes (D) the Rajhamal Traps (E) and Reverse (F) and Normal (G) Deccan Traps directions. Note that the Upper Vindhyan directions do not resemble the later igneous events that commonly show as overprints in older rock.

PAGE 45

45 Figure 4-6. A comparison between this study's Upper Vindhyan poles, previous Bhander and Rewa poles, and selected radiometrically dated Indian poles: Majhgawan kimberlite (Gregory et al., 2006; Miller and Hargraves 1994); Harohalli dikes(Radhakrisha and Mathew, 1996); Malani Igneous province (Torsvik et al., 2003) Figure 4-7. Intensity decay plots for the samples shown in figure 4-1. Note the high unblocking temperatures the samples show, diagnostic of hematite.

PAGE 46

46 Figure 4-8. Curie temperature runs from selected samples. A) Tan Rewa S.s., showing a heating curie temperature at 700.9 C and a cooling temperature at 699.6 C, B) Redbed Lakheri L.s., showing a heating curie temperature at 613.6 C and a cooling temperature at 586.8 C, C) Tan L. Bhander S.s., showing a heating curie temperature at 551.5 C and a cooling temperature at 535.3 C, D) Redbed U. Bhander S.s., showing a heating curie temperature at 670.5 C and a cooling temperature at 670.5 C, E) Redbed U. Bhander S.s., showing a heating curie temperature at 683.1 C and a cooling temperature at 682.1 C.

PAGE 47

47 Figure 4-9. IRM Acquisition curves for typical Upper Vindhyan samples. A) Lakheri-Bhander limestone: Most specimens show curves indicative of single domain magnetite; Site 426 may have a minor hematite contribution. B) U. Bhander, L. Bhander, and Rewa sandstones. Red sandstones such as Site 410 show the characteristic curve of high coercivity hematite, whereas the tan-purple sandstones of the L. Bhander and Rewa show some magnetite contribution.

PAGE 48

48 Figure 4-10. Photographs of detrital zircon grains analyzed on the UF Nu Plasma LA-ICP MS. A) Girbhakar sandstone (Marwar Supergroup; B) Upper Bhander sandstone. Figure 4-11. Concordia plots: A) Shows a Concordia plot of the U. Bhander sandstone (N=166, from sampling sites 43, 44 and 45), and B) shows a concordia plot for the Marwar sandstones (Girbarkahr and Sonia sandstones)

PAGE 49

49 Figure 4-12. Detrital zircon probability distribution functions by site for the U. Bhander sandstone and Marwar sandstones of Rajasthan. These units have been correlated in the past (e.g. Heron, 1932, 1936; Pascoe, 1959) but clearly show a different provenance. Note the youngest significant populations, ~1000 Ma for the U. Bhander, and ~780 Ma for the Marwar. The Marwar shows a Malani component, absent in the supposedly 650-750 Ma U. Bhander sequence. a) Site 43, b) Site 44, c) Site 45, d) Undifferentiated sample separated from paleomagnetic cores representing sites 43, 44, and 45, e) Girbarkhar sandstone, f) Sonia sandstone. These results are shown together by group in g) Upper Bhander and h) Marwar Supergroup.

PAGE 50

50 CHAPTER 5 DISCUSSION Age of the Bhander-Rewa Groups Fossil Evidence Ages derived from the Bhander and Rewa groups typically are ambiguous and lack consistency. Fossil markers found in the Bhander-Rewa groups, such as Chuaria and Tawuia (Rai et al. 1997; Kumar and Srivastava, 2003) and possible burrows (Chakrabarti, 1990) do not 2006) alleged Ediacara fossils in the Lakheri-Bhander limestone suggest that the Bhander-Rewa groups are Ediacaran in age, consistent with some previous assertions. The utility of the Ediacara fauna described by De (2003, 2006) is limited until it is confirmed independently. Seilacher et al (1998) reported finding triploblastic worm burrows in the Semri group, Chorhat and Rhotas formations. The Semri group has been well dated by U-Pb analysis of zircon separated from the Rampur shale and Porcellenite formations at 1630-1592 Ma in age (Rasmussen et al. 2002; Ray et al. 2002), Pb-Pb ages taken from the Kajhrahat (1721+/90 Ma, Sarangi et al., 2004) and Rhotas (1599 +/48 Ma, Sarangi et al., 2004; 1601 +/130 Ma, Ray et al., 2003) limestones, and Rb-Sr dating of authigenic glaconite by Kumar et al (2001) at 1600 Ma. If the discoveries are correct, these fossils would extend the antiquity of metazoans far older than previously suspected. Kathel et al. (2000) similarly reported Ediacaran fossils in the Semri group near Majhgawan; however, the authors are aware that the true nature of their find is uncertain. Azmi (1998) reported the startling discovering small shelly fauna (SSF) and brachiopods in the Rhotas limestone. Normally, this assemblage is diagnostic of latest Neoproterozoic-Cambrian (<550 Ma) rock. Issues with this finding arose when Indian paleontologists questioned the veracity of the discovery. Indeed, the findings of Azmi (1998)

PAGE 51

51 were dismissed by Indian paleontologists who failed to find fossil evidence at the sites Azmi described (Bagla, 2000). The death knell to the Cambrian age hypothesis concluded by Azmi (1998) was the publication of well constrained radiometric ages for the Semri Group, listed above. These cases illustrate the difficulties of using biostratigraphy in the Vindhyanchal Basin, as well as the need for further work and independent confirmation of fossils discovered. Correlations with Global Events Recent attempts to directly date the Lakheri-Bhander limestone resulted in an age of ~750 Ma based on correlations with global 87Sr/86Sr ratios for this time (Ray et al. 2002). 87Sr/86Sr curves have been developed as a tool for the relative dating of carbonate sequences, as Sr isotopic values are generally believed to be homogenous throughout the ocean. Using 87Sr/86Sr values for dating presents several difficulties, however. Values for the Proterozoic, unlike the data from the Phanerozoic, are poorly constrained by reliable ages, as well as suffering from gaps in the record. This method, however, is considered reliable in producing minimum ages for Precambrian carbonates (Ray, 2006). Discrepancies in minimum ages generated by Ray et al. (2003) and Kumar et al. (2002) are likely due to the less altered horizon sampled by Ray et al., giving a more pristine signal (Ray, 2006). Kumar et al (2002) observe that the 13C values for the Lakheri limestone correlate with the global curve between 700-13C curves is problematic, especially in the Proterozoic where continuous records are scarce and radiometric age constraints on important ma13C excursions in the Lakheri-Bhander limestone are interpreted by some authors (E.g. Kumar et al. 2002) as being associated with Neoproterozoic global glaciations. Kumar et al. (2002) also notes that the Bhander-Lakheri limestone in Rajasthan overlies an intraformational conglomerate he interprets as a tilloid. These

PAGE 52

52 l problems with this explanation include uncertainties associated with 13C excursion documented in the Son Valley Lakheri 13C excursion may be due to the sampling of different horizons of the Lakheri limestone. The global synchroni13C excursions used to identify Snowball Earth glaciations in carbonates has recently been called into question as more high resolution geochronologic data for glacial deposits becomes available (Meert, 2007). Interpretations assigning a latest Neoproterozoic to Cambrian age for the Upper Vindhyan also fail to unequivocally record other global events. This boundary represents a major period of phosphorite deposition, and is recorded in rock known to be of this age across Australia and south-southeast Asia (Shen et al., 2000). Phosphorite deposits that record the transition into the lower Cambrian time outcrop in the Krol and Tal formations of the Lesser Himalayas (Mazumdar and Banerjee, 2001). These deposits have almost identical lithologies to those found in South China, Iran and parts of Arabia, and Banerjee and Mazumdar (1999) use these correlations to place these blocks adjacent to one another at the time. These deposits are generally characterized by thick sequences of stromatolitic carbonates overlain by phosphatic black shale and chert (Banerjee and Mazumdar, 1999). This discussion becomes important when considering the alleged Neoproterozoic-Cambrian age of the Upper Vindhyan groups. Lithologies of this sort, and indeed any phosphatic horizons are absent in the upper Vindhyanchal Basin. This absence is noteworthy, considering the regional extent observed by Banerjee and Mazumdar (1999) and indeed the global scale of the phosphate event in the oceans

PAGE 53

53 of the time and suggests that the Upper Vindhyan was deposited prior to the Neoproterozoic-Cambrian transition (Meert and Lieberman, 2007). Paleomagnetic Evidence The Majhgawan intrusion into the Kaimur group provides an important reference as a cross cutting intrusion at 1073.5 +/13.7 Ma. The VGP generated from the Majhgawan kimberlite, the Harohalli dykes paleomagnetic pole, and the paleomagnetic pole from the Malani Igneous province provide the best temporally constrained paleomagnetic information covering the suspected period of deposition for the Bhander and Rewa groups. The comparison of the Bhander-Rewa poles to those from the well dated Majhgawan and Malani sties, however, provides an interesting conundrum. The Bhander and Rewa poles of Athavale (1972), Klootwijk (1973), McElhinny (1978) and this study all plot very closely to the Majhgawan VGPs of Miller and Hargraves (1994) and Gregory et al. (2006) as illustrated in figure 4-6. In contrast, the Malani pole plots far from both the Majhgawan and Bhander-Rewa poles as seen graphically in figure 4-6. This observation leads to a remarkable interpretation. Although some age dates on the Bhander and Rewa -Rewa poles and the well constrained Malani Igneous province pole. This suggests that the upper Vindhyan group is not, in fact, of a similar age to the Malani Igneous province as implied by the Sr-data of Ray et al. (2003). This dissimilarity may be due to several factors. The possibility of a remagnetization of the Upper Vindhyan units and the Majhgawan kimberlite would explain the apparent similarities between these poles to each other, as well as the apparent correlation they share with the Cambrian APW path with Gondwana. Such a remagnetization event would likely have affected the Lower Vindhyan Semri group. The Semri Group paleomagnetic directions typically are very different from the Neoproterozoic-Cambrian Gondwana poles (547 Ma Sinyai

PAGE 54

54 dolerite, 755 Ma Mundine Well dykes, etc) as well as the Upper Vindhyan and Majhgawan. This difference implies that no remagnetization event affected the Upper Vindhyan strata at large or Majhgawan kimberlite as such an event should have affected the underlying strata of the Semri Group. A Malani age of remagnetization is highly unlikely, due to the major differences in directions between the Malani Igneous province and the Upper Vindhyan noted above. Additional support for the primary nature of magnetization is found in the presence of at least 11 geomagnetic reversals in the Upper Vindhyan sedimentary units. The reversal test performed on the Upper Vindhyan paleomagnetic data yielded a C result, acceptable for a time averaged field. Detrital Zircon Geochronology and Provenance The detrital zircon geochronology conducted in this study offers further clues into the possible age of the Bhander-Rewa sequence. The 207Pb/206Pb age distribution yields several noteworthy peaks that can be correlated with regional tectonic and magmatic events. The largest peak recorded in the Upper Bhander sandstone of Rajasthan, at circa 1600 Ma, correlates well with the volcanic activity recorded in the Lower Vindhyan Deonar porcellinite and has been precisely dated by Rasmussen et al (2002) at 1602 +/10 and 1593 +/12 Ma and by Ray et al (2002) at 1630 +/5.4 and 1631 +/0.8 Ma. The secondary large peaks at 1740 Ma and seems to correlate with the ages from the Hindoli group of Deb et al (2002), and the ~1800 Ma ages possibly relate to Banded Gneiss Complex input (Buick et al. 2006). Zircon ages between 1400 Ma to 1100 Ma may correlate with events in the Dehli Fold belt (Biju-Sekur et al. 2002; Deb et al. 2001), and/or volcanic activity related to ash fall deposits in the Rewa group. The youngest population in the Upper Bhander sandstone at about 1020 Ma correlates well with volcanic activity described by Deb et al (2007) from the Sukhda and Sapos tuffs (uppermost section of the Chattisgarh basin), and may help constrain a maximum age of deposition for the Upper Bhander

PAGE 55

55 sandstone. Further constraints may be provided by considering a potential source not represented in the detrital zircon provenance of the Upper Bhander sandstone. Gregory et al. (submitted) presented a recent U-Pb zircon date from the Malani rhyolite, yielding an age of 771 +/5 Ma. This is significant because grains of this age are completely absent from the detrital grains analyzed from the Rajasthan Upper Bhander sandstone. The Malani igneous province, having an area of 54,000 km2 and a position proximal to the modern position of the Vindhyanchal basin, would likely have been contributing sediment (including detrital zircon) to the Bhander sandstones. The absence of Malani age zircon may be due to several factors: a) The Great Boundary Fault (GBF) acted as a topographic divide during the time of Vindhyan sedimentation, keeping Malani sediments from reaching the basin, b) The GBF represents a suture after Bhander deposition, or c) That the Bhander sandstone, and hence the remainder of the upper Vindhyan sequence, is far older than the Malani Igneous Province. The first possibility is difficult to evaluate as a great deal of uncertainty exists about the nature of the GBF. The presence of zircon similar in age to the Hindoli group (Deb et al. 2002) and Dehli-Aravalli orogen (Chakraborty, 2006) that lies across the GBF from the Vindhyanchal basin suggests that the fault itself did not inhibit the transport of sediment. The age of the GBF is debatable; however, Verma (1996) states that the GBF is a pre-Vindhyan feature, formed initially as a normal fault that has been reactivated numerous times in geologic history. Prased and Rao (2006) support the pre-Vindhyan origin of the GBF when they note the presence of Vindhyan sediments only to the east of the fault trace. Folding of Vindhyan sedimentary units in the vicinity of the GBF trace suggest that is was active during their deposition. The area to the west of the GBF may have been a positive relief feature during the deposition of the Semri group, suggested by the presence of conglomerates in unspecified horizons (Verma 1996).

PAGE 56

56 Sedimentological studies of the Upper Bhander sandstones, however, suggest that low elevation sources provided sediment to the basin, suggested by the lack of unstable minerals and predominance of mature quartz grains in the sandstone (Bose et al. 2001). Modern maps of Rajasthan show fluvial systems transversing the present GBF, and through the modern Aravalli Mountains. This seems to suggest that sediment could cross the GBF in the past to be deposited in the Vindhyanchal Basin. The second option is improbable, due to the lack of geologic evidence indicative of a suture zone (e.g., ophiolites, pervasive deformation of the Rajasthan section of the basin, etc). The Vindhyanchal basin, as suggested by several authors (e.g. Chaudhuri et al. 1999; Bose et al. 2001) notes the limited deformation and stable shelf character of the Upper Vindhyan groups. Deb et al., (2001) dated many igneous rocks representing an arc across the GBF from the Vindhyanchal basin, and finds that most were emplaced between 987 +/6.4 Ma and 836 +7/-5 Ma. The Malani Igneous province was in turn emplaced onto this terrane, as well as the older (>1700 Ma) Delhi Supergroup (Deb et al. 2001). This implies that the Malani area was emplaced onto rock contiguous with the Aravalli craton. The third option is quite plausible and is less subject to paleogeographic uncertainties. The absence of Malani age zircon in the Upper Bhander sandstone is explained by the >771 Ma age of the sediments, without the need to resort to complicated paleogeographies and highlands not seen in the sedimentary record. This allows for an age bracket to be inferred for the Upper Bhander sandstone, between 771 Ma (Malani age) and ~1000 Ma (Youngest detrital zircon agesfigure 4-12 A). Further support for this reasoning is seen in the Marwar Supergroup detrital zircon ages. The Marwar is known to be Neoproterozoic-Cambrian based on fossil evidence. Detrital zircon grains analyzed from the Girbarkhar and Sonia sandstone show a probability

PAGE 57

57 density function distinct from the Upper Bhander sandstone (figure 4-12 B). The dominant age population for the Marwar samples peaks sharply in the 840-920 Ma range, a population completely absent in the Upper Bhander. Furthermore, the Marwar grains show a small population of Malani age zircon, again totally absent in the Upper Bhander sandstone. The source for the main 840-920 Ma age peak in the Marwar detrital zircon dataset remains unknown with any certainty, but maybe related to igneous events in the South China craton or juvenile crust formed in the Arabian-Nubian shield. The placement of South China adjacent to India during the Neoproterozoic is suggested by Jiang et al. (2003), and Xiao et al. (2007) has recently published U-Pb zircon ages on subduction related igneous activity of this age. Younger detrital zircon ages may be locally derived from granitic magmatic activity (E.g. Erinpura granite) in the accreted arc terrane dated at 840-820 Ma (Deb et al. 2001). The zircon U-Pb ages Deb et al. (2007) publish from the Sukhda and Sapos tuff units provide further support for an adjustment to the age of the Upper Vindhyan sediments. The tuffs were emplaced in the uppermost section of the Chattisgarh basin, and SHRIMP analysis of zircon separated from these units yields ages of 990, 1015, and 1020 Ma (Deb et al. 2007). These ages are significant, as the Purana basins of India are reliably thought to be related in age and origin (Chaudhuri et al. 1999). This allows for age determinations for one basin to be applied to the other sister basins across the Indian subcontinent, and offers considerable support to the detrital zircon data presented above. Paleomagnetic Implications of an Old (c. 1,000 Ma) Upper Vindhyan Sequence The simplest explanation for the data discussed above may be that the Bhander and Rewa groups are only marginally younger than the Majhgawan kimberlite. If true, this allows for the Bhander and Rewa poles to be compared to other, c. 1,070-1,000 Ma paleomagnetic poles from East Gondwana cratons. Paleomagnetic data from East Antarctica, a major East Gondwana element, are scarce and poorly constrained by reliable geochronology. In contrast, Australia, the

PAGE 58

58 other element critical to East Gondwana reconstructions, provides several well dated paleomagnetic poles of the appropriate age generated from mafic intrusions found in the western cratons. Schmidt et al. (2006) recently published a paleomagnetic pole, located at 2.8 N, 84.4 E and dated at ~1070 Ma, from the Alcurra Dike swarm of the Australian Musgrave block. When rotated into India co-ordinates (India fixed; modified from the Africa fixed Gondwana configuration of Norton and Sclater, 1979; see table 5-1 for poles used in comparisons) this paleomagnetic pole plots distant from the Majhgawan kimberlite VGP or the Upper Vindhyan paleomagnetic pole as shown by figure 5-1 A. There is, however, some question about the tilt correction for dike orientation this study which may impact any comparisons. The high quality Bangemall Basin sill pole at 33.8 N 95 E, dated at 1070 +/-6 Ma (Wingate et al. 2002), also fails to compare to the Bhander-Rewa or Majhgawan paleomagnetic poles when similarly rotated into a fixed India position. Figure 5-1 A shows the positions of these Australian paleomagnetic poles when rotated into India co-ordinates, and illustrates their complete lack of overlap with the Upper Vindhyan paleomagnetic pole and Majhgawan VGP. Traditional reconstructions (e.g. Dalziel, 1997) typically place India adjacent to Antarctica and Australia as part of a coherent East Gondwana. If India and Australia were adjacent, attached cratons at 1.0 Ga, then these poles should lie much closer together. The paleomagnetic data discussed above, however, seem to support models of a separated East Gondwana at the Mesoto Neoproterozoic boundary (E.g. Meert et al. 1995; Powell and Pisarevsky 2002; Meert 2003). Figure 5-2 shows reconstructions for India at ~1000 Ma, using the Bhander-Rewa paleomagnetic pole discussed above and compare it to the positions of other paleomagnetically constrained cratons for a similar interval.

PAGE 59

59 Other potential paleomagnetic correlations: Neoproterozoic to Cambrian The Upper Vindhyan paleomagnetic is commonly treated as being late Neoproterozoic to Cambrian in age. This is due in part to several apparent correlations between the Upper Vindhyan paleomagnetic pole and alleged similarly aged poles from various Gondwana elements. The Bhander and Rewa paleomagnetic pole has been placed on the Gondwana APW path by assuming a Neoproterozoic-Cambrian age and comparing them to the 547 +/4 Ma Sinyai dolerite paleomagnetic pole (29 N, 139 95= 5.0) of Meert and Van der Voo (1995). This match has been used by many authors and seems reasonable given the equivocal age constraints on the Upper Vindhyan sequence. However, further investigation brings forward two lines of evidence that suggest that the comparison is not so simple. The robust 755 +/3 Ma 95= 5.0) from Australia actually correlates better to the 547 Ma Sinyai dolerite paleomagnetic pole than to the Upper Vindhyan, as illustrated by figure 5-1 B. The possibility of a remagnetization of the Mundine Well dykes is unlikely, as a positive baked contact test suggests the primary nature of the magnetization (Wingate and Giddings, 2000). Placing the Upper Vindhyan near the Neoproterozoic-Cambrian boundary also reintroduces the lack of diagnostic global events recorded in the Upper Vindhyan, such as the glacial markers, definitive cap carbonates phosphorite deposits and transitional faunas to the Cambrian expansion described in preceding sections. Paleomagnetic data from the Elatina and Yaltipena formations of Australia resemble the Upper Vindhyan paleomagnetic pole, as seen in figure 5-1 B. The Elatina formation is commonly associated with the Marinoan glaciation and is generally dated at ~600 Ma, and the Yaltipena formation lies stratigraphically beneath the Elatina (Willams and Schmidt, 1995; Sohl et al., 1999). The Elatina formation shows clear evidence of glaciation in the form of a basal diamictite, dropstones, and other diagnostic features of a coastal glaciomarine setting (Sohl et al.,

PAGE 60

60 1999). In contrast, the Bhander group of India lacks such definite glaciogenic features (Prasad, 13C excursion used to label the Lakheri limestone as a cap carbonate. This correlation is questionable, however, as Ray et al (2003) note that the excursion 13C curves for both the Sturtian and Marinoan glaciations require further geochronologic work to allow for usable correlations. New geochronology on the Edwardsburg (Windamere Supergroup), Aralka (Australia), Tindelpina (Australia) and Merinjina (Australia) formations strongly suggest that the Sturtian glaciation was not a synchronous event (Meert, 2007). 95= 12.2) as noted above, shows some similarity to the robust 755 Ma Mundine Well dyke paleomagnetic pole (45.3 N, 95= 5.0) from Australia seen in figure 5-1 B (Wingate and Giddings, 2000). Defining the age of the Upper Vindhyan sequence on the basis of this correlation is apparently supported by the 87Sr/86Sr data compiled by Kumar et al (2002) and Ray et al (2003), which assign a minimum age of 750-650 Ma to the Bhander-Lakheri limestone. Further investigation of paleomagnetic data for this interval yields an intriguing problem in relation to the age of Upper Vindhyan. The Malani Igneous province provides a robust paleomagnetic pole (72.7 N, 70.5 95= 7.9) at 771 Ma (Torsvik et al. 2001; Gregory et al., submitted). The directions and paleomagnetic pole provided by the Malani dataset differ sharply from the Upper Vindhyan paleomagnetic pole, being separated by 28.8 of latitude and a great circle distance of 6681 km (60.09), as illustrated by figure 5-1 B and listed in table 5-1. The study regions for these poles both lie on the Aravalli-Bundlekhand craton, and are unlikely to have been separated by any great distance. Furthermore, the Malani paleomagnetic pole is separated from the Mundine Well

PAGE 61

61 dykes paleomagnetic pole by a great circle distance of 4431.1 km and an angular separation of 39.86 (27.4 of latitudinal separation). Clearly, this separation between two robust paleomagnetic poles precludes any connection between the Aravalli-Bundlekhand craton and Australia in the ~750 Ma age range.

PAGE 62

62 Table 5-1 Paleomagnetic data used in this study Study Age (Ma) N Dec Inc K Pole Latitude Pole Longatude INDIA Harohalli dykes (Radhakrisha and Mathew 1996) 1123 +/ 14 (New) 36 7.4 81.5 46 7.7 28 N 260.0 E Majhgawan kimberlite (Gregory et al., 2006) 1073 +/ 13.7 22 37.5 26.5 54 15.3 36.8 N 212.5 E Bhander Rewa (Athava le et al., 1972) 980 1070 18 49.0 19.0 200 5.7 31.5 N 199.0 E Bhander Rewa (Klootwijk, 1973) 980 1070 37 207.5 37.0 137 5.5 48.5 N 213.5 E Bhander Rewa (McElhinny et al., 1978) 980 1070 21 203.0 8.1 17.5 11.1 51 N 217.8 E Bhander Rewa: This study 980 1070 33 Sites 29.5 18.0 28.95 4.1 43.6 N 213.8 E Bhander Rewa: Composite, all studies 980 1070 4 Studies 32.3 20.8 25.21 12.2 43.9 N 210.2 E Malani Igneous province (Torsvik et al., 2001) 771 +/ 5 4 Studies 359.1 62.0 73.17 7.9 72.7 N 70.5 E AUSTRAL IA Bangemell Basin sill (Wingate et al., 2002) 1071 +/ 8 79 339.9 46.5 30 8.4 33.8 N 95 .0 E Alcurra dikes (Schmidt et al., 2006) ~1070 47 281.2 50.8 41.9 8.0 2.8 N 80.4 E Mundine Well dikes (Wingate and Giddings, 2000) 775 +/ 3 116 14.8 31 .1 5.0 45.3 N 135.4 E Yaltipena Fm (Sohl et al., 1999) 600 610 36 204.0 16.4 12.2 11.0 44.2 N 172.7 E Elatina Fm (Sohl et al., 1999) 590 600 126 212.1 16.9 9.9 6.2 39.7 N 181.9 E Elatina Fm (Williams and Schmidt, 1995) 590 600 79 17.4 7.1 11.1 15 .2 51.5 N 166.6 E AFRICA Sinyai dolerite (Meert and Van der Voo, 1996) 547 +/ 4 42 241.0 20.0 20 5.0 29.0 N 139.0 E Euler Pole: Rotaton to India co ordinates Lat Long Angle Africa to India 29.6 36.1 56.8 Australia to Ind ia 11.07 183.48 62.09

PAGE 63

63 Figure 5-1 Paleomagnetic comparisons. A) Comparison between the Upper Vindhyan poles and the Majhgawan kimberlite with well dated ~1050 to 1070 Ma poles from Australia. Note the lack of correlation between the India and Australia poles, as well as within the Australia poles themselves. Alcurra: Schmidt et al., 2006; Bangemell Basin sill: Wingate et al., 2002; Majhgawan: Gregory et al. 2006

PAGE 64

64 Figure 5-1 Paleomagnetic comparisons. B) Comparison between the Upper Vindhyan poles from this study, and the Majhgawan kimberlite with Neoproterozoic East Gondwana poles. Note how the 547 Ma Sinyai Dolerite and 755 Ma Mundine Well dikes poles appear to correlate, but the 771 Ma Malani and 755 Mundine Wells poles do not. Also, note the Elatina and Yaltipena poles apparent correlation with the Upper Vindhyan and Majhgawan Elatina and Yatipena: Sohl et al., 1999; Elatina: Williams and Schmidt, 1995; Mundine Well: Wingate and Giddings, 2000; Malani: Torsvik et al., 2003; Sinyai dolerite: Meert and Van der Voo, 1995.

PAGE 65

65 Figure 5-2 Reconstruction of India at ~1000 Ma using the Bhander-Rewa paleomagnetic pole. The Northern Hemisphere reconstruction assumes a South Pole (Normal polarity), the Southern Hemisphere reconstruction assumes a North Pole (Reverse polarity). Although the North Pole-North Pole fit may allow a tradition reconstruction with the placement of Antarctica between Australia and India, longitudinal uncertainty and the poor paleomagnetireconstruction.

PAGE 66

66 CHAPTER 6 CONCLUSIONS My study provides a refined paleomagnetic pole for the Upper Vindhyan sequence of the Vindhyanchal basin. The data collected by this study, when combined with the preveious work of Athavale et al (1972), Klootwijk (1973) and McElhinny et al (1978) place a paleomagnetic 95=12.2). This paleomagnetic pole correlates well with the VGP generated from the Majhgawan kimberlite by Gregory et al (2006) that lies at 36.8 N, 212.5 E 95=15.3). Age control on the Upper Vindhyan remains controversial. The 1073 +/13.7 Ma Majhgawan kimberlite (Gregory et al., 2006) intrudes the Lower Vindhyan Semri group and Kaimur sandstone and places limits on their age. The Bhander and Rewa groups are unconstrained by reliable direct age dates. Detrital zircon geochronology helps to provide a maximum age control by identifying the youngest age population centered at 1020 Ma. Other age control is provided by 87Sr/86Sr isotope data correlated to global curves. The 650-750 Ma age assigned to the Lakheri-Bhander limestone by these correlations (Ray et al., 2003) fails to correspond well with the existing paleomagnetic data, such as the conflicting correlations between the well dated robust Malani and Mundine Well dyke paleomagnetic poles. Fossil evidence provides yet another possible age control for the Upper Vindhyan paleomagnetic pole. The alleged discovery of a diverse Ediacara fauna by De (2003; 2006) would place the age of the Bhander and Rewa groups at <635 Ma. This discovery, however, remains unconfirmed by independent research. Paleontology in the Vindhyanchal Basin has provided several controversial finds that failed to survive peer scrutiny, either due to possible misinterpretation (e.g. Seilacher et al. 1998) utter lack of independent confirmation (e.g. Azmi, 1998). We argue that the simplest interpretation for the age of the Bhander and Rewa groups is only marginally younger than the Majhgawan kimberlite between 1070-980 Ma. Deb et al

PAGE 67

67 (2007) make a similar 500 Ma revision to the age of the Chattisgarh basin on the basis of direct dates (990, 1015, and 1020 Ma) on tuff layers near the top of the basin, suggesting that such a downward revision is needed for other Purana basins. The Purana Basins are recognized as having similar origins and ages, applying this older revision to the Vindhyanchal Basin by default. By assigning this age to the Bhander and Rewa group, several interesting possibilities can be considered. The Upper Vindhyan paleomagnetic poles, along with the Majhgawan VGP, fail to correlate with Australian poles (E.g. Bangemell sills, Alcurra dykes) dated between 1070-1050 Ma. This suggests a separation between Australia and India at this time. If the Malani Igneous province and Mundine Well dykes paleomagnetic poles are considered, this separation is show to have lasted until ~750 Ma. This data support the idea that East Gondwana did not coalesce until the end Neoproterozoic-Cambrian transition, as suggested by Meert et al. (1995), Powell and Pisarevsky (2002), and Meert (2003). The second conclusion possible with the refined Upper Vindhyan paleomagnetism and geochronology addresses the issue of probable TPW during the 1100-900 Ma interval, suggested by Meert and Torsvik (2003). The new U-Pb zircon age suggested for the Harohalli dykes paleomagnetic pole by Pradhan and Meert (Per.comm) at 1123 +/14 Ma, when compared to the ~1000 Ma Bhander and Rewa paleomagnetic pole, shows an APW path similar in length and rate of plate motion to the Laurentia, Kalahari and Baltica cratons during similar intervals. While not conclusive, further paleomagnetic data can refine this interval and better constrain this issue. Finally, the refined Bhander and Rewa paleomagnetic pole place a paleomagnetically well defined pole on an India APW path for the 1070-980 Ma interval.

PAGE 68

68 APPENDIX A U-PB ISOTOPIC RATIOS, AGE: UPPER BHANDER DETRITAL ZIRCONS

PAGE 69

69 Table A-1 Upper Bhander isotopic ratios Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. UBM_1 0.09979 0.0009 4.06554 4.08028 0.1610 0.29547 0.0105 1650 32 1673 52 1620 1.4 UBM_2 0.08016 0.0008 2.25442 2.29702 0.0905 0.20397 0.0073 1198 28 1196 39 1201 0.1 UBM _3 0.10465 0.0010 3.76535 3.81042 0.1668 0.26095 0.0101 1575 35 1477 51 1708 6.2 UBM_4 0.08032 0.0008 2.07642 2.09743 0.0858 0.18750 0.0072 1138 28 1103 39 1205 3.1 UBM_5 0.07766 0.0007 1.46862 1.48448 0.0572 0.13716 0.0047 910 23 818 27 1138 10.0 UB M_7 0.09688 0.0009 3.61433 3.56006 0.1390 0.27057 0.0095 1552 30 1542 48 1565 0.6 UBM_8 0.10943 0.0010 4.87186 4.71961 0.1848 0.32290 0.0114 1798 31 1805 55 1790 0.4 UBM_9 0.09843 0.0009 2.13079 2.13171 0.0834 0.15701 0.0056 1135 27 911 31 1594 19.8 U BM_10 0.08925 0.0030 2.28032 2.30369 0.1207 0.18530 0.0065 1195 37 1080 35 1409 9.6 UBM_11 0.07672 0.0007 1.99804 2.06440 0.0799 0.18888 0.0066 1115 27 1115 36 1114 0.0 UBM_13 0.07634 0.0007 2.07190 2.00540 0.0799 0.19683 0.0071 1141 26 1161 38 1104 1.7 UBM_15 0.09312 0.0008 2.70896 2.71709 0.1047 0.21098 0.0074 1321 29 1219 39 1490 7.7 UBM_16 0.10997 0.0010 4.43495 4.39743 0.1710 0.29250 0.0104 1711 32 1640 52 1799 4.1 UBM_18 0.08902 0.0008 2.92240 2.76574 0.1220 0.23809 0.0085 1387 31 1375 44 1405 0.8 UBM_19 0.11144 0.0010 2.67199 2.69142 0.1112 0.17389 0.0065 1287 31 991 36 1823 23.0 UBM_20 0.09726 0.0009 3.63563 3.60155 0.1463 0.27111 0.0099 1556 32 1544 50 1572 0.8 UBM_22 0.07578 0.0007 3.15930 1.98611 0.0774 0.30235 0.0107 1472 18 1751 52 1089 19.0 UBM_23 0.08131 0.0007 2.20942 2.20910 0.0860 0.19707 0.0070 1182 27 1156 37 1229 2.2 UBM_24 0.08626 0.0008 1.65317 1.66792 0.0661 0.13900 0.0049 976 25 821 28 1344 15.9 UBM_25 0.10057 0.0009 3.51426 3.43882 0.1351 0.25344 0.0091 1522 30 144 3 47 1635 5.2 UBM_26 0.09071 0.0008 3.14280 3.11444 0.1246 0.25128 0.0091 1443 30 1445 47 1441 0.1 UBM_27 0.12110 0.0012 3.37528 3.37188 0.1677 0.20214 0.0102 1460 40 1134 55 1973 22.3 UBM_28 0.12110 0.0012 3.37528 3.37188 0.1677 0.20214 0.0102 1460 4 0 1134 55 1973 22.3 UBM_30 0.10804 0.0010 3.27818 3.23962 0.1394 0.22005 0.0087 1454 33 1249 46 1767 14.1 UBM_31 0.17756 0.0016 10.50511 10.32768 0.4209 0.42910 0.0162 2448 38 2234 73 2630 8.7 UBM_32 0.08039 0.0007 2.24443 2.25851 0.0868 0.20250 0.00 70 1194 27 1188 37 1207 0.6 UBM_34 0.08197 0.0007 1.83340 1.84781 0.0725 0.16223 0.0058 1049 26 958 32 1245 8.7 UBM_35 0.07851 0.0007 2.15145 2.10353 0.0877 0.19875 0.0071 1166 28 1169 38 1160 0.3

PAGE 70

70 Table A-1 Continued Sample Name 207Pb/206Pb 1s erro r *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. UBM_36 0.09738 0.0010 3.16976 3.11230 0.1386 0.23608 0.0088 1441 33 1352 46 1575 6.2 UBM_37 0.10415 0.0009 2.49284 2.53701 0 .1095 0.17360 0.0068 1244 32 998 37 1699 19.8 UBM_38 0.07197 0.0007 1.66576 1.70007 0.0701 0.16786 0.0060 996 26 1001 33 985 0.5 UBM_39 0.09794 0.0009 2.93287 2.97056 0.1388 0.21718 0.0092 1377 36 1247 49 1585 9.5 UBNM_1 0.10996 0.0010 4.50629 4.46320 0.1743 0.29723 0.0103 1726 32 1666 51 1799 3.5 UBNM_2 0.10030 0.0009 3.38754 3.33159 0.1304 0.24495 0.0086 1492 30 1397 44 1630 6.4 UBNM_3 0.09652 0.0009 3.53005 3.53514 0.1521 0.26526 0.0096 1532 34 1513 49 1558 1.2 UBM_41 0.18099 0.0016 12.37477 1 1.55418 0.4699 0.49589 0.0176 2626 35 2580 75 2662 1.8 UBM_42 0.08199 0.0008 1.97962 2.00624 0.0787 0.17511 0.0063 1102 27 1031 35 1245 6.4 UBM_43 0.08190 0.0011 1.71384 1.65427 0.0722 0.15177 0.0056 1004 27 898 31 1243 10.5 UBM_44 0.08086 0.0007 2.0 0198 2.01196 0.0804 0.17956 0.0066 1111 27 1058 36 1218 4.8 UBM_45 0.09845 0.0009 2.90284 2.87881 0.1118 0.21385 0.0074 1368 29 1228 40 1595 10.3 UBM_47 0.08212 0.0007 1.98656 1.98988 0.0765 0.17544 0.0061 1105 26 1033 33 1248 6.5 UBM_49 0.10688 0.00 13 3.72415 3.82520 0.1596 0.25271 0.0088 1562 34 1429 45 1747 8.5 UBM_50 0.10924 0.0010 4.09646 3.99385 0.1581 0.27196 0.0095 1641 31 1530 48 1787 6.8 UBA_1 0.10206 0.0128 4.57597 4.21692 1.1836 0.32518 0.0251 1753 194 1831 121 1662 4.4 UBA_7 0.10950 0.0138 3.48390 3.15848 0.8905 0.23076 0.0194 1502 188 1305 101 1791 13.1 UBB_2 0.07345 0.0092 3.01791 1.80294 0.5056 0.29801 0.0230 1438 118 1732 112 1026 20.4 UBB_3 0.16247 0.0204 6.04518 8.66414 2.4302 0.26986 0.0209 1913 319 1434 107 2482 25.1 UBB_ 5 0.10132 0.0127 3.35396 3.17240 0.8925 0.24009 0.0186 1482 191 1368 96 1648 7.7 UBB_6 0.08025 0.0101 1.47115 1.37461 0.3856 0.13295 0.0103 908 149 792 58 1203 12.8 UBB_9 0.09831 0.0123 3.76867 3.42116 0.9683 0.27803 0.0215 1586 188 1580 107 1592 0.3 UBB_10 0.08466 0.0106 2.53046 2.40149 0.6737 0.21679 0.0168 1279 178 1262 88 1308 1.3 UBB_11 0.07345 0.0092 1.22219 1.80294 0.5063 0.12069 0.0095 804 210 726 55 1026 9.7 UBB_13 0.07555 0.0095 1.87185 1.79916 0.5048 0.17970 0.0139 1071 165 1065 75 1083 0.6 UBB_15 0.09633 0.0121 2.57473 2.40404 0.6753 0.19385 0.0152 1277 178 1119 82 1554 12.4 UBB_16 0.08474 0.0106 2.68987 2.61680 0.7339 0.23021 0.0177 1327 184 1337 92 1309 0.8 UBB_17 0.09501 0.0119 3.20638 3.10007 0.8705 0.24477 0.0192 1454 192 1403 99 1528 3.5 UBB_18 0.10646 0.0134 3.79395 3.62773 1.0180 0.25846 0.0202 1579 198 1461 103 1740 7.5 UBB_19 0.09833 0.0123 3.75753 3.52083 0.9883 0.27715 0.0214 1583 192 1576 107 1593 0.5 UBB_20 0.09948 0.0125 3.44472 3.31680 0.9308 0.25115 0.0194 150 7 194 1432 99 1614 5.0 UBC_1 0.08132 0.0102 2.39467 2.30528 0.6471 0.21358 0.0165 1242 177 1249 87 1229 0.6 UBC_2 0.08565 0.0107 2.56837 2.43467 0.6849 0.21747 0.0168 1289 179 1265 89 1330 1.9

PAGE 71

71 Table A-1 Continued Sample Name 207Pb/206Pb 1s error *207P b/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. UBC_4 0.11117 0.0139 4.57776 4.27180 1.1999 0.29864 0.0235 1738 199 1671 116 1819 3.8 UBC_5 0.09865 0.0124 3.49644 3.15454 0.8873 0 .25706 0.0199 1521 184 1465 101 1599 3.6 UBC_6 0.10134 0.0127 3.31407 3.20183 0.9005 0.23718 0.0185 1472 195 1352 96 1649 8.1 UBC_9 0.10548 0.0132 4.47630 4.27338 1.1994 0.30778 0.0238 1727 201 1730 116 1723 0.2 UBC_10 0.07733 0.0097 1.98408 2.01145 0 .5670 0.18608 0.0144 1109 177 1099 78 1130 0.9 UBC_11 0.09468 0.0119 3.35753 3.14711 0.8872 0.25720 0.0200 1493 189 1472 102 1522 1.4 UBC_13 0.09776 0.0123 3.41358 3.26033 0.9296 0.25326 0.0196 1502 195 1446 100 1582 3.7 UBC_14 0.11686 0.0147 5.25101 4.89826 1.3738 0.32590 0.0252 1855 203 1808 122 1909 2.5 UBC_15 0.16128 0.0202 10.26877 10.19431 2.8751 0.46177 0.0357 2457 231 2443 156 2469 0.6 UBC_16 0.17195 0.0216 9.74317 9.55057 2.6813 0.41096 0.0323 2377 233 2152 148 2577 9.5 UBC_17 0.16295 0 .0204 9.87399 9.47684 2.6629 0.43949 0.0339 2410 225 2321 151 2486 3.7 UBC_18 0.09798 0.0123 3.28878 2.99254 0.8433 0.24344 0.0191 1470 184 1392 99 1586 5.4 I44_1 0.10576 0.0016 3.33536 3.11756 0.0841 0.22872 0.0053 1471 20 1299 28 1728 11.7 I44_2 0. 10430 0.0016 4.44726 4.28606 0.1941 0.30926 0.0061 1723 35 1741 30 1702 1.0 I44_3 0.10703 0.0016 2.42335 2.50160 0.1571 0.16421 0.0094 1219 47 942 52 1749 22.7 I44_4 0.08323 0.0013 1.80911 1.79712 0.0531 0.15764 0.0035 1039 19 930 20 1275 10.4 I44_5 0 .08504 0.0013 2.55089 2.47537 0.0437 0.21755 0.0037 1285 12 1266 20 1316 1.5 I44_6 0.09606 0.0017 1.93024 1.92191 0.0623 0.14573 0.0055 1069 22 850 31 1549 20.5 I44_7 0.10548 0.0016 3.30047 3.47592 0.1128 0.22694 0.0051 1462 27 1290 27 1723 11.8 I44_ 8 0.08594 0.0013 2.68493 2.63225 0.1092 0.22660 0.0044 1324 30 1315 23 1337 0.6 I44_9 0.17060 0.0026 6.50335 6.38815 0.1886 0.27648 0.0072 1969 27 1454 37 2563 26.1 I44_10 0.10497 0.0016 4.39612 4.36024 0.0704 0.30373 0.0052 1711 13 1709 26 1714 0.1 I44_11 0.07700 0.0013 2.06971 1.93561 0.0260 0.19495 0.0032 1140 9 1149 17 1121 0.9 I44_12 0.07700 0.0012 2.38886 1.93561 0.0477 0.22502 0.0039 1246 14 1319 21 1121 5.9 I44_13 0.07604 0.0011 4.54366 0.96894 0.0240 0.43338 0.0080 1804 4 2475 35 1096 37.2 I44_14 0.08609 0.0013 2.99937 2.70482 0.1130 0.25268 0.0077 1412 28 1460 39 1340 3.4 I44_15 0.08177 0.0012 2.00910 1.98418 0.0980 0.17820 0.0039 1113 33 1049 21 1240 5.7 I44_16 0.09856 0.0015 3.42728 3.55413 0.1767 0.25219 0.0046 1504 40 1439 24 1597 4.3 I44_18 0.11316 0.0017 3.02798 2.94469 0.0480 0.19407 0.0037 1383 12 1100 20 1851 20.5 I44_19 0.10914 0.0017 3.09612 3.01213 0.0586 0.20575 0.0046 1406 15 1169 25 1785 16.8 I44_20 0.08350 0.0013 1.22346 1.21930 0.0228 0.10627 0.0025 796 11 634 14 1 281 20.3 I44_21 0.07615 0.0011 3.00143 1.93236 0.0266 0.28585 0.0058 1428 7 1659 29 1099 16.2 I44_22 0.07615 0.0011 2.41154 1.93236 0.0780 0.22967 0.0060 1254 23 1346 31 1099 7.4

PAGE 72

72 Table A-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/23 5U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. I44_23 0.08547 0.0013 2.70645 2.59295 0.1046 0.22967 0.0060 1330 28 1333 31 1326 0.2 I44_25 0.11127 0.0017 4.40081 4.35560 0.1385 0.28684 0.0051 17 02 26 1607 26 1820 5.6 I44_26 0.08526 0.0013 2.38558 2.35667 0.0687 0.20294 0.0034 1234 21 1184 18 1321 4.0 I44_27 0.09867 0.0015 3.88490 3.99946 0.1225 0.28557 0.0058 1612 25 1621 29 1599 0.6 I44_28 0.09288 0.0014 3.20804 3.51998 0.2221 0.25051 0.004 3 1457 52 1438 22 1485 1.3 I44_29 0.09612 0.0015 2.73294 2.84225 0.1595 0.20621 0.0043 1324 43 1188 23 1550 10.2 I44_30 0.08577 0.0013 2.82402 2.74142 0.0616 0.23880 0.0041 1364 16 1384 21 1333 1.4 I45_1 0.10385 0.0016 4.42922 4.13707 0.1936 0.30934 0 .0054 1720 35 1742 27 1694 1.3 I45_2 0.10837 0.0016 4.48843 4.49735 0.0995 0.30038 0.0051 1725 18 1685 25 1772 2.3 I45_4 0.10559 0.0016 4.63955 5.53638 0.4410 0.31869 0.0057 1760 76 1789 28 1724 1.7 I45_6 0.09726 0.0015 3.83521 3.81934 0.1478 0.28600 0 .0048 1603 31 1626 24 1572 1.4 I45_7 0.10287 0.0016 4.33798 5.69914 0.6572 0.30584 0.0056 1703 118 1724 28 1677 1.3 I45_9 0.10628 0.0017 3.83735 4.00786 0.1544 0.26187 0.0047 1589 32 1480 24 1737 6.9 I45_10 0.09182 0.0014 2.90930 3.09044 0.1512 0.22980 0.0043 1379 39 1325 23 1464 3.9 I45_11 0.10912 0.0017 4.36815 5.80691 0.5647 0.29032 0.0054 1699 102 1630 27 1785 4.1 I45_12 0.09860 0.0018 2.82410 2.80707 0.1397 0.20773 0.0037 1346 37 1194 20 1598 11.3 I45_13 0.11795 0.0019 4.65010 6.17320 0.7197 0.28593 0.0048 1741 124 1592 24 1925 8.6 I45_14 0.15450 0.0023 9.65474 9.63775 0.6642 0.45321 0.0076 2404 61 2412 34 2396 0.4 I45_15 0.07359 0.0011 1.85620 1.82284 0.0385 0.18295 0.0030 1067 14 1085 17 1030 1.7 I45_16 0.10032 0.0015 4.01865 3.82004 0.0 951 0.29052 0.0048 1639 19 1645 24 1630 0.4 I45_17 0.10571 0.0016 4.69386 5.04707 0.2566 0.32203 0.0054 1770 45 1807 26 1727 2.1 I45_18 0.10732 0.0016 4.50230 4.38250 0.2548 0.30426 0.0052 1729 46 1708 26 1754 1.2 I45_20 0.11601 0.0019 4.52004 4.36339 0.1457 0.28258 0.0063 1719 27 1577 32 1896 8.2 I45_21 0.10337 0.0016 4.44940 4.10864 0.1432 0.31217 0.0057 1725 26 1758 28 1686 1.9 I45_22 0.10194 0.0020 3.31459 3.76587 0.1114 0.23583 0.0044 1471 26 1344 23 1660 8.6 I45_24 0.10896 0.0017 3.86116 3.83 689 0.0898 0.25700 0.0046 1590 19 1450 24 1782 8.8 I45_25 0.10913 0.0024 3.54185 3.44403 0.1508 0.23540 0.0091 1517 34 1332 48 1785 12.2 I45_26 0.10643 0.0016 3.73475 3.43145 0.1012 0.25450 0.0046 1565 22 1440 23 1739 8.0 I45_27 0.07663 0.0020 1.6417 5 1.47334 0.0560 0.15539 0.0030 982 21 924 17 1112 5.8 I45_28 0.16790 0.0026 10.79870 10.39065 0.4542 0.46646 0.0137 2499 39 2453 60 2537 1.8 I43_2 0.08973 0.0010 1.54981 1.58984 0.0543 0.12527 0.0031 931 22 739 18 1420 20.7 I43_3 0.11560 0.0008 5.40 306 5.19252 0.1796 0.33897 0.0070 1885 28 1881 34 1889 0.2 I43_4 0.11841 0.0008 5.82590 5.92417 0.2259 0.35685 0.0074 1953 33 1972 35 1932 1.0

PAGE 73

73 Table A-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb /235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. I43_6 0.17029 0.0012 11.17128 10.02632 0.4529 0.47579 0.0106 2532 37 2497 46 2561 1.4 I43_7 0.10993 0.0008 4.63695 4.62209 0.1539 0.30593 0.0064 1752 27 1713 31 1798 2.2 I43_8 0.104 79 0.0008 4.19533 4.20730 0.2215 0.29037 0.0060 1670 43 1637 30 1711 1.9 I43_9 0.12172 0.0010 4.72716 4.74755 0.1822 0.28167 0.0086 1750 32 1562 43 1982 10.7 I43_10 0.11028 0.0009 4.81568 4.74614 0.1954 0.31670 0.0067 1786 34 1770 32 1804 0.9 I43_11 0.07667 0.0005 4.96108 1.97632 0.0793 0.46931 0.0099 1890 12 2674 42 1112 41.5 I43_13 0.16644 0.0011 4.28166 10.53780 0.3909 0.18657 0.0039 1598 79 994 22 2522 37.8 I43_14 0.18208 0.0016 6.59683 7.30189 0.2735 0.26276 0.0055 1965 39 1366 29 2672 30.5 I43_15 0.10461 0.0007 4.08777 4.18322 0.1674 0.28342 0.0060 1647 33 1600 30 1707 2.9 I43_16 0.10575 0.0007 4.36944 4.50628 0.4101 0.29968 0.0063 1705 75 1686 31 1727 1.1 I43_17 0.11064 0.0009 4.69175 4.70345 0.1734 0.30755 0.0065 1761 31 1720 32 1810 2.3 I43_18 0.09139 0.0006 2.74873 2.72527 0.1002 0.21813 0.0045 1335 27 1261 24 1455 5.5 I43_19 0.09605 0.0007 3.70334 3.61915 0.1307 0.27963 0.0058 1574 28 1593 29 1549 1.2 I43_20 0.17073 0.0011 11.47245 11.15559 0.3657 0.48736 0.0102 2562 29 2558 44 2565 0.1 I43_21 0.07609 0.0005 1.69840 1.86864 0.0654 0.16189 0.0034 1004 24 962 19 1097 4.2 I43_22 0.07609 0.0005 4.84356 1.86864 0.0802 0.46168 0.0103 1867 13 2632 44 1097 41.0 I43_23 0.07296 0.0005 1.72061 1.72283 0.0700 0.17103 0.0037 1016 26 1018 20 1013 0.2 I43_24 0.11791 0.0008 5.57550 5.95389 0.2703 0.34294 0.0072 1911 41 1898 34 1925 0.7 I43_25 0.11115 0.0011 3.81666 3.92092 0.2428 0.24904 0.0052 1577 51 1403 27 1818 11.0 I43_26 0.11342 0.0008 5.24071 5.10390 0.1741 0.33512 0.0069 1860 28 1864 33 1855 0.2 I43_28 0.10586 0.0007 4.63284 4.58174 0.1653 0.31742 0.0065 1758 29 1782 32 1729 1.4 I43_29 0.08398 0.0024 1.73548 1.67960 0.0642 0.14988 0.0039 1010 24 885 22 1292 12.4 I43_30 0.09977 0.0007 3.90898 3.31473 0.1553 0.28416 0.0063 1615 32 1612 31 1620 0.2 I43_32 0.08913 0.0008 1.78657 1.73840 0.0745 0.14538 0.0030 1024 27 855 17 1407 16.6 I43_33 0.08028 0.0006 1.77167 1.79411 0.0896 0.16005 0.0034 1028 33 947 19 1204 7.8 I43_34 0.07992 0.0006 1.57444 1.60531 0.0573 0.14288 0.0032 951 23 849 18 1195 10.7 I43_35 0.07472 0.0006 1.64724 1.65502 0.0595 0.15990 0.0033 986 23 952 18 1061 3.4 I43_36 0.17678 0.0012 11.87331 11.41994 0.4282 0.48713 0.0107 2588 33 2543 46 2623 1.7 I43_37 0.10032 0.0007 4.28045 4.21958 0.1753 0.30946 0.0 064 1695 33 1748 31 1630 3.1 I43_38 0.11066 0.0007 4.20024 4.12201 0.1386 0.27528 0.0058 1661 27 1546 30 1810 6.9 I43_39 0.09575 0.0008 3.37419 3.33940 0.1446 0.25558 0.0053 1495 33 1462 27 1543 2.2 I43_40 0.08105 0.0005 2.32178 2.24452 0.0846 0.20776 0.0046 1219 26 1217 24 1222 0.2 I44_1 0.16176 0.0011 9.88358 9.34915 0.3641 0.44315 0.0102 2414 34 2343 46 2474 2.9 I44_3 0.18097 0.0012 12.06446 12.05523 0.7470 0.48351 0.0111 2597 57 2514 48 2662 3.2

PAGE 74

74 Table A-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. I44_4 0.16241 0.0011 9.79974 9.39224 0.3401 0.43762 0.0094 2403 32 2312 42 2481 3.8 I44_5 0.09789 0.0007 3.83344 3.67235 0.1403 0.28401 0.0063 1601 29 1614 32 1584 0.8 I44_6 0.10638 0.0007 4.19835 4.09950 0.1578 0.28622 0.0061 1668 31 1612 30 1738 3.3 I43_43 0.10487 0.0007 4.41703 4.53619 0.1757 0.30548 0.0064 1716 32 1719 32 1712 0.2 I43_44 0.08818 0.0006 2.87402 2.950 96 0.1131 0.23637 0.0049 1374 29 1367 26 1386 0.6

PAGE 75

75 APPENDIX B U-PB ISOTOPIC RATIOS AGE: MARWAR SUPERGROUP DETRITAL ZIRCONS

PAGE 76

76 Table B-1 Marwar isotopic ratios Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206P b/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. GIR_1 0.05199 0.0001 1.15095 0.68362 0.0084 0.09776 0.0008 777 14 773 10 285 0.5 GIR_2 0.05466 0.0002 1.31104 0.84129 0.0290 0.10590 0.0003 849 25 832 9 399 2.0 GIR_3 0.05863 0.0001 1.73477 1.04732 0.0160 0.13066 0.0008 1021 18 1014 12 553 0.7 GIR_4 0.17222 0.0008 17.70329 9.94033 0.2900 0.45388 0.0060 2980 33 3013 42 2579 1.1 GIR_5 0.05454 0.0003 1.28541 0.76808 0.0120 0.10407 0.0007 838 16 819 10 393 2.3 G IR_6 0.05413 0.0001 1.37577 0.89019 0.0370 0.11222 0.0009 879 30 881 12 376 0.2 GIR_7 0.05486 0.0001 1.35259 0.82080 0.0270 0.10886 0.0010 868 23 855 12 407 1.5 GIR_8 0.05467 0.0001 1.33226 0.80430 0.0180 0.10761 0.0011 859 19 845 12 399 1.6 GIR_9 0.0 5410 0.0001 1.33730 0.91857 0.0290 0.10915 0.0010 862 26 858 12 375 0.5 GIR_10 0.05402 0.0001 1.35930 0.83922 0.0230 0.11111 0.0008 872 21 873 11 372 0.1 GIR_13 0.12219 0.0002 3.85754 5.27943 0.0700 0.31483 0.0018 1667 7 2366 24 1988 41.9 GIR_14 0.0540 4 0.0001 1.39064 0.74978 0.0210 0.11307 0.0009 885 23 887 12 373 0.2 GIR_15 0.05845 0.0001 3.27087 0.95206 0.0057 0.11819 0.0004 1393 54 837 11 546 39.9 GIR_16 0.05397 0.0001 1.30574 0.78497 0.0051 0.10669 0.0002 848 13 839 9 369 1.0 GIR_17 0.05260 0. 0001 1.28003 0.77348 0.0380 0.10745 0.0010 838 30 847 12 312 1.1 GIR_18 0.05437 0.0000 1.34547 0.80794 0.0100 0.10926 0.0007 865 15 858 11 386 0.8 GIR_19 0.05378 0.0001 1.32054 0.83868 0.0230 0.10841 0.0009 855 22 852 11 362 0.2 GIR_20 0.05386 0.0001 1.39607 0.86771 0.0150 0.11446 0.0009 888 18 898 12 365 1.1 GIR_23 0.05361 0.0001 1.33894 0.81242 0.0240 0.10993 0.0010 863 22 864 12 355 0.1 GIR_24 0.05397 0.0001 1.35142 0.78914 0.0120 0.10886 0.0004 867 17 855 10 369 1.4 GIR_25 0.05358 0.0001 1.3142 1 0.76119 0.0170 0.10830 0.0007 852 18 852 11 354 0.0 GIR_26 0.12339 0.0002 8.99515 5.22294 0.1400 0.32188 0.0012 2325 31 2233 23 2006 3.9 GIR_27 0.05992 0.0012 1.50299 0.98396 0.0410 0.11076 0.0009 926 31 863 11 601 6.8 GIR_28 0.05360 0.0001 1.35653 0.85052 0.0140 0.11174 0.0010 871 17 878 12 354 0.8 GIR_29 0.05335 0.0001 1.27532 0.75025 0.0160 0.10555 0.0010 835 18 831 12 344 0.4 GIR_30 0.05356 0.0001 1.35999 0.75340 0.0250 0.11212 0.0006 873 22 881 10 353 1.0 GIR_31 0.05655 0.0001 1.58330 0.9150 8 0.0180 0.12362 0.0011 964 18 964 13 474 0.0 GIR_32 0.05341 0.0001 1.31635 0.81679 0.0270 0.10883 0.0009 853 24 856 11 346 0.4 GIR_33 0.05357 0.0001 1.33021 0.80550 0.0099 0.10964 0.0010 859 15 862 12 353 0.3 GIR_34 0.05415 0.0001 1.42223 0.83738 0.008 8 0.11598 0.0007 899 15 909 11 377 1.1

PAGE 77

77 Table B-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. GIR_35 0.05345 0.0001 1.34326 0.87 730 0.0200 0.11098 0.0010 865 20 872 12 348 0.8 GIR_36 0.05483 0.0003 1.09970 0.68011 0.0150 0.08857 0.0026 749 18 700 21 405 6.6 GIR_37 0.05327 0.0001 1.37392 0.84389 0.0270 0.11388 0.0008 879 23 895 11 340 1.8 GIR_38 0.05344 0.0001 1.34206 0.87019 0. 0330 0.11088 0.0007 865 27 872 11 348 0.8 GIR_39 0.05582 0.0001 1.58608 0.94108 0.0120 0.12547 0.0007 966 16 979 12 445 1.3 GIR_40 0.05255 0.0001 1.26607 0.72334 0.0049 0.10638 0.0009 831 13 838 11 309 0.9 GIR_41 0.05348 0.0001 1.33762 0.85292 0.0280 0. 11044 0.0008 863 24 868 11 349 0.7 GIR_42 0.05713 0.0001 1.71280 1.01517 0.0130 0.13239 0.0008 1014 17 1029 12 496 1.4 GIR_43 0.05348 0.0001 1.33186 0.81187 0.0290 0.10996 0.0010 860 25 865 12 349 0.5 GIR_44 0.05315 0.0001 1.30133 0.83351 0.0530 0.10812 0.0009 847 40 851 11 335 0.5 GIR_45 0.08612 0.0000 4.64138 2.78373 0.0350 0.23797 0.0013 1755 22 1740 19 1341 0.9 GIR_46 0.05335 0.0001 1.34678 0.78832 0.0091 0.11147 0.0006 867 15 876 10 344 1.1 GIR_47 0.05501 0.0001 1.37997 0.84038 0.0083 0.11077 0. 0008 880 15 869 11 413 1.2 GIR_48 0.05340 0.0001 1.34640 0.84828 0.0170 0.11133 0.0007 867 19 875 11 346 1.0 GIR_49 0.05362 0.0001 1.37010 0.81600 0.0110 0.11283 0.0006 877 16 886 10 355 1.1 GIR_51 0.05356 0.0001 1.35280 0.81103 0.0160 0.11153 0.0005 8 69 18 876 10 353 0.8 GIR_52 0.05350 0.0002 1.37230 0.90740 0.0320 0.11325 0.0005 878 27 890 10 350 1.3 GIR_53 0.05350 0.0001 1.28633 0.74746 0.0077 0.10617 0.0006 839 14 836 10 350 0.4 GIR_54 0.05334 0.0001 1.32129 0.79803 0.0230 0.10938 0.0007 855 21 860 11 344 0.6 GIR_55 0.05341 0.0000 1.34714 0.81535 0.0140 0.11138 0.0008 867 17 875 11 346 1.0 SON_1 0.05402 0.0001 1.39158 0.86875 0.0280 0.11375 0.0005 886 24 893 10 372 0.8 SON_3 0.06872 0.0002 1.54797 0.96985 0.0140 0.09946 0.0011 934 18 768 12 89 1 17.8 SON_4 0.10661 0.0063 1.68891 0.90187 0.0430 0.06995 0.0062 945 31 514 48 1742 45.6 SON_5 0.05329 0.0001 1.35784 0.83122 0.0150 0.11251 0.0007 872 18 884 11 341 1.4 SON_6 0.05345 0.0001 1.26954 0.76157 0.0260 0.10489 0.0006 832 23 826 10 348 0. 7 SON_8 0.06353 0.0012 1.23576 0.75089 0.0130 0.08589 0.0029 805 17 671 23 726 16.7 SON_9 0.05701 0.0001 1.65026 1.02051 0.0230 0.12782 0.0006 990 21 995 11 492 0.5 SON_10 0.05337 0.0001 1.34912 0.83949 0.0210 0.11161 0.0005 868 20 877 10 345 1.1 SON_ 11 0.06296 0.0004 1.63434 0.96132 0.0250 0.11462 0.0012 976 22 888 13 707 9.0 SON_12 0.05952 0.0004 1.36943 0.84115 0.0079 0.10159 0.0005 870 15 794 10 586 8.7 SON_13 0.05443 0.0001 1.43886 0.89720 0.0200 0.11672 0.0006 906 20 915 11 389 1.0 SON_14 0. 05235 0.0002 1.15612 0.69020 0.0057 0.09752 0.0007 779 14 771 10 301 1.1 SON_15 0.12552 0.0005 7.96007 4.80091 0.1800 0.28003 0.0061 2192 40 1942 43 2036 11.4

PAGE 78

78 Table B-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/23 8U 1s error 207Pb/235U (Ma) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. SON_17 0.09927 0.0002 5.99504 3.45190 0.0930 0.26667 0.0022 1968 30 1911 24 1610 2.9 SON_18 0.05751 0.0001 1.58328 0.99603 0.0180 0.12155 0.0009 962 19 947 12 511 1. 6 SON_19 0.05751 0.0001 1.58328 0.99603 0.0180 0.12155 0.0009 962 19 947 12 511 1.6 SON_20 0.10142 0.0001 6.70640 4.13154 0.1100 0.29198 0.0031 2074 32 2082 28 1650 0.4 SON_21 0.08277 0.0001 4.53590 2.52489 0.1100 0.24198 0.0011 1741 37 1775 19 1264 2. 0 SON_22 0.07872 0.0003 3.81731 2.20733 0.1300 0.21412 0.0039 1595 48 1586 30 1165 0.6 SON_23 0.05334 0.0001 1.37341 0.82021 0.0240 0.11370 0.0005 879 22 893 10 343 1.6 SON_24 0.05282 0.0000 1.29294 0.77062 0.0170 0.10808 0.0005 843 18 851 10 321 0.9 SON_25 0.05276 0.0001 1.29616 0.77216 0.0260 0.10848 0.0004 845 23 854 10 318 1.1 SON_26 0.05573 0.0003 1.41638 0.85845 0.0200 0.11222 0.0005 895 20 879 10 441 1.7 SON_27 0.05439 0.0001 1.42061 0.87360 0.0210 0.11534 0.0009 898 20 904 12 387 0.7 SON_28 0.07189 0.0005 1.32469 0.80206 0.0100 0.08136 0.0014 836 16 629 13 983 24.8 SON_29 0.05347 0.0001 1.37310 0.87409 0.0160 0.11340 0.0007 878 18 891 11 349 1.4 SON_30 0.06256 0.0000 2.24206 1.41360 0.0420 0.15825 0.0011 1196 27 1212 15 693 1.4 SON_31 0. 08376 0.0008 2.41011 1.45213 0.0440 0.12705 0.0009 1218 28 953 12 1287 21.7 SON_32 0.06280 0.0003 1.43240 0.87654 0.0080 0.10072 0.0008 893 16 784 11 701 12.2 SON_33 0.05262 0.0001 1.29301 0.81075 0.0180 0.10850 0.0005 843 19 854 10 312 1.3 SON_34 0.0 5683 0.0002 1.26953 0.70565 0.0420 0.09863 0.0007 828 33 775 10 485 6.4 SON_35 0.05412 0.0003 1.38763 0.82408 0.0130 0.11321 0.0011 884 16 888 13 376 0.5 SON_36 0.05451 0.0002 1.33971 0.73982 0.0340 0.10851 0.0011 862 27 852 12 392 1.2 SON_37 0.05434 0.0002 1.29470 0.81822 0.0360 0.10520 0.0011 842 29 827 12 385 1.8 SON_38 0.05239 0.0002 1.27895 0.79677 0.0550 0.10779 0.0006 837 42 849 10 303 1.4 SON_39 0.05372 0.0002 1.33919 0.81602 0.0140 0.11007 0.0006 863 17 865 10 359 0.2 SON_40 0.08708 0.0001 4.47930 2.58580 0.0560 0.22713 0.0030 1721 25 1662 26 1362 3.4 SON_41 0.06202 0.0002 1.79647 1.08152 0.0096 0.12791 0.0009 1040 17 989 12 675 4.9 SON_42 0.06651 0.0003 1.68584 1.00804 0.0099 0.11191 0.0006 992 16 864 10 823 12.9 SON_43 0.05334 0.000 1 1.31841 0.75672 0.0150 0.10914 0.0007 854 17 859 11 343 0.5 SON_44 0.05375 0.0001 1.40243 0.86652 0.0200 0.11521 0.0009 891 20 904 12 360 1.5 SON_45 0.05849 0.0002 1.56257 0.96975 0.0260 0.11797 0.0019 953 23 919 17 548 3.5 GIR_56 0.05315 0.0001 1.30 520 0.90480 0.0310 0.10843 0.0007 848 27 853 10 335 0.6 GIR_57 0.05852 0.0001 1.44190 0.87022 0.0110 0.10880 0.0009 902 16 850 11 549 5.8 GIR_58 0.06954 0.0001 2.86887 1.76960 0.0490 0.18217 0.0009 1374 28 1375 16 915 0.1 GIR_59 0.05360 0.0001 1.33060 0.86976 0.0410 0.10961 0.0006 859 32 862 10 354 0.3 GIR_60 0.06520 0.0001 2.41682 1.49509 0.0230 0.16368 0.0013 1248 21 1248 16 781 0.0

PAGE 79

79 Table B-1 Continued Sample Name 207Pb/206Pb 1s error *207Pb/235U 207Pb/235U 1s error 206Pb/238U 1s error 207Pb/235U (M a) 1s error 206Pb/238U (Ma) 1s error 207Pb/206Pb (Ma) % Conc. GIR_61 0.05444 0.0002 1.42182 0.85266 0.0110 0.11531 0.0012 899 16 904 13 390 0.6 GIR_62 0.05592 0.0003 1.23675 0.75223 0.0130 0.09766 0.0015 814 17 768 14 449 5.6 GIR_63 0.05723 0.0001 1.69 840 1.02557 0.0230 0.13104 0.0006 1009 21 1018 12 500 1.0 GIR_64 0.05557 0.0004 1.42051 0.86193 0.0300 0.11286 0.0013 897 25 884 13 436 1.4 GIR_65 0.05607 0.0002 1.35306 0.82785 0.0400 0.10655 0.0005 866 31 836 10 455 3.5

PAGE 80

80 LIST OF REFERENCES Akhtar, K., 1996. Facies, sedimentation processes and environments in the Proterozoic Vindhyan Basin, India. In Bhattacharyya, A. (Ed) Recent Advances in Vindhyan Geology. Geol. Society of India. Bangalore. Auden, J.B. 1933. Vindhyan sedimentation in the Son Valley, Mirzapur district, memoir. Geologic Survey of India. 141-250. Athavale, R N. 1972. Comments on 'Palaeomagnetism of the Cambrian Purple Sandstone from the Salt-Range, W. Pakistan' by M. W. McElhinny, Earth Planet. Sci. Lett. 8 (1970) 149-156 in Earth Planet. Sci. Lett 15, 215-217 Athavale, R N; Hansraj, Asha; Verma, R K, 1972. Paleomagnetism and age of Bhander and Rewa sandstones from India. The Geophysical Journal of the Royal Astronomical Society 28, 499-509. Azmi, R.J., 1998. The discovery of Lower Cambrian small shelly fauna fossils and brachiopods from the Lower Vindhyan of Son Valley, central India. Journal of Geological Society of India 52, 381-389. Bagla, P., 2000. Team rejects claim of early Indian fossils. Science 289, 1273. Banerjee, D.M., Mazumdar, A., 1999. On the Late Neoproterozoic-Early Cambrian transition events in parts of East Godwanaland. Gondwana Research 2, 199-211. Biju-Sekhar, S., Pandit, M.K., Yokoyama, K., Santosh, M., 2000. Electron microprobe dating of the Ajitgarha and Barodiya granitoids, NW India; Implications on the evolution of the Delhi Fold Belt. Journal of the Geosciences 45, 13-27. Buick, I.S., Allen, C., Pandit, M., Rubatto, D., Hermann, J., 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India. LA-ICP-MS U-Pb zircon constraints. Precambrian Res 151, 119-142. Camacho, A., Simons, B., Schmidt, P.W., 1991. Geological and paleomagnetic significance of the Kulgera dyke swarm, Musgrave block, NT, Australia. Geophysical Journal International 107 37-45. Crawford, A. R., Compston. W., 1970. The age of the Vindhyan system of peninsular India. Quarterly Journal of the Geological Society of London 125, 351-371 Chakrabarti, A., 1990. Traces and dubiotraces: examples from the so called Late Proterozoic silisiclastic rocks of the Vindhyan Supergroup around Maihar, India. Precambrian Res.. 47 141-153

PAGE 81

81 Chakraborty, C., 2006. Proterozoic intracontinental basin: The Vindhyan example. Journal of Earth System Science 115, 3-22 Chaudhuri, A.K., Mukhopadhyay, J., Patranabis-Deb, S., Chanda, S.K., 1999. The Neoproterozoic cratonic successions of peninsular India. Gondwana Research 2, 213-225. Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hoffman, C., Bhandari, N., Ghevariya, Z.G. Cosmic Markers, 40Ar/39Ar dating and paleomagnetism of the Anjar area of the Deccan large igneous province. Earth Planet. Sci. Lett 182, 137-156. De, C., 2003. Possible organisms similar to Ediacaran forms of the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. Journal of Asian Earth Sciences 21, 387-395. De, C., 2006. Ediacara fossil assemblage in the Upper Vindhyans of Central India and its significance. Journal of Asian Earth Sciences 27, 660-683. Deb, M., Thorpe, R.I., Krstic, D., Corfu, F., Davis, D.W., 2001. Zircon U-Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli-Delhi orogenic belt, northwestern India. Precambrian Res 108, 195-213. Deb, M., Thorpe, R., Krstic, D., 2002. Hindoli Group of rocks in the Eastern Fringe of the Aravalli-Delhi Orogenic beltArchean secondary greenstone belt or Proterozoic supracrustals? Gondwana Research 5, 879-883. Evans, D.A.D., 2003. True polar wander and supercontinents. Tectnophysics 362, 303-320. Gray, D.R., Foster, D.A., Meert, J.G., Goscombe, B.D., Armstrong, R., Truow, R.A.J., Passchier, C.W. 2007.. A Damaran perspective on the assembly of southwestern Gondwana. Geological Society of London Special Publication In Press. Gregory, L.C., Meert, J.G., Pradhan, V., Pandit, M.K., Tamrat, E., Malone, S.J., 2006 A paleomagnetic and geochronologic study of the Majhgawan Kimberlite, India: Implications for the age of the Vindhyan Supergroup. Precambrian Res 149, 65-75. Heron, A.M., 1932. The Vindhyans of western Rajputana. Rec. Geol. Sur. India 65, 457-489. Heron, A.M., 1936. Geology of southeastern Mewar, Rajputana. Rec. Geol. Sur. India 63, 1-130. Jiang, G., Sohl, L.E., Christie-Blick, N., 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (south China): Paleogeographic implications. Geology 31, 917-920.

PAGE 82

82 Kathel, P.K., Patel, D.R., Alexander, P.O., 2000. An Ediacaran fossil Sprigginia (?) from the Semri Group and its implication on the age of the Proterozoic Vindhyan Basin, central India. Neues. Jahr. Geol. Palaont.-Monat 6, 321-332. Kirschvink, J.L., 1980. The least square line and plane and the analysis of paleomagnetic data. Geophysics J. R. Astronom Soc 62, 189-200. Klootwijk, C.T., 1971. Paleomagnetism of the Upper Gondwana Rajhmahal Traps, northeast India. Tectonophysics 12, 449-467. Klootwijk, C. T., 1973. Palaeomagnetism of upper Bhander sandstones from central India and implications for a tentative Cambrian Gondwanaland reconstruction. Tectonophysics 18, 123-145. Klootwijk, C.T., Nazirullah, R., de Jong, K.A., 1986. Paleomagnetic constraints on formation of the Mianwali re-entrant, Trans-Indus and Western Salt Range, Pakistan. Earth Planet. Sci. Lett 80, 394-414. Kumar, A., Padmakumari, V.M., Murthy, D.S.M., Gopalan, K., 1993. Rb-Sr Ages of Proterozic kimberlites of India: Evidence for contemperaneous emplacement. Precambrian Res 62, 227-232. Kumar, S., Srivastava, P., 1997. A note on the carbonaceous megafossils from the Neoproterozoic Bhander group, Maihar area, Madhya Pradesh. J. Paleontological Soc. India 42, 141-146. Kumar, S., Srivastava, P., 2003. Carbonaceous marcrofossils from the Neoproterozoic Bhander Group, central India. Journal of the Paleontological society of India, 48 139-154. Ludwig, K.R., 2000. Isoplot/Ex Version 2.4. A Geochronological Toolkit for Microsoft Excel. 1.a. Berkley Geochronological Centre Special Publication, Berkley. Mazumder, R., Bose, P.K., Sarkar, S., 2000. A commentary on the tectano-sedimentary record of pre-2.0 Ga continental growth in India vis--vis s possible pre-Gondwana Afro Indian supercontinent. J. Afr. Earth Sci 30, 201-217. Mazumder, R., Bannerjee, D.M., 2001. Regional variations in the carbon isotopic composition of phosphorite from the Early Cambrian Lower Tal formation, Mussoorie Hills, India. Chemical geology 175, 5-15. McElhinny, M W; Cowley, J A; Edwards, D J. 1978 Palaeomagnetism of some rocks from peninsular India and Kashmir. Tectonophysics 50, 41-54. McFadden, P.L., McElhinny, M.W., 1990. Classification of the reversal test in paleomagnetism. Geophysical Journal International 103, 725-729.

PAGE 83

83 Meert, J.G., 1999. A paleomagnetic analysis of Cambrian true polar wander. Earth Planet. Sci. Lett 168, 131-144. Meert, J.G., 2001. Growing Gondwana and rethinking Rodinia: A paleomagnetic perspective. Gondwana Research 4, 279-288. Meert, J.G., 2003. A Synopsis of events related to the assembly of East Gondwana. Precambrian Res 362, 1-40. Meert, J.G., 2007. Testing the Neoproterozoic glacial models. Doi10.1016/j/gr.2006.11.002. Meert, J.G., Powell, C.M.A., 2001. Assembly and Breakup of Rodinia. Precambrian Res 110, 1-8. Meert, J.G., Van der Voo, R., 1996. Paleomagnetic and 40Ar/39Ar study of the Sinyai dolerite, Kenya: implications for Gondwana assembly. Journal of Geology 104 131-142. Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisted. Tectonophysics 375, 261-288. Miller, K.C., Hargraves, R.B., 1994. Paleomagnetism of some Indian kimberlites and lamporites. Precambrian Res 69, 259-267. Mitra, N.D., 1996. Some problems of Vindhyan geology. Mem. Geol. Soc. India 36. 137-155 Mondal, M.E.A., Goswami, J.N., Deomurari, M.P., Sharma, K.K., 2002. Ion microprobe 207Pb/206Pb ages of zircons from the Bundlekhand Massif, northern India: implications for crustal evolution of the Bundlekhand-Aravalli supercontinent. Precambrian Res 117, 85-100. Norton, I.O., Sclater, J.G., 1979. A model for the evolution of the Indian Ocean and the breakup of Gondwana. Journal of Geophysical Research 84, 6803-6830. Oldham, R D. 1893. Manual of Geology, India, 2nd Edition. Paul, D.K., Potts, P.J., Gibson, I.L., Harris, P.G. 1975. Rare-earth abundances in Indian kimberlites. Earth Planet. Sci. Lett 25, 151-158. Paces, J.B., Miller, J.D., 1993. Precise U-Pb ages for the Duluth Complex and related mafic intrusions, Northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift system. Journal of Geophysical Research 98, 13997-14013. Pascoe, H.S., 1959. A manual on the geology of India and Burma, 3rd Ed. Geologic Survey of India. 2, 1-485.

PAGE 84

84 Patranabis-Deb, S., Bickford, M.E., Hill, B., Chaudhuri, A.K., Basu, A., 2007. SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require up to 500 Ma adjustment in Indian Proterozoic stratigraphy. Journal of Geology In press. Poornachandra Rao, G.V.S., Mallikharjuna Rao, J., Rajendra Presed, N.P., Venkatewarlu, M., Srinivasa Rao, B., Ravi Prakash, S., 2005. Tectonics and Correlation of Upper Kaimur group sandstones by their paleomagnetic study. J. Ind. Geophys. Union 9, 83-95. Prasad, B., 1984. Geology, sedimentation and paleogeography of the Vindhyan Supergroup, southeastern Rajasthan. Mem. Geol. Soc. India 116 (part 2) 1-58. Prasad, B.R., Rao, V.V., 2006. Deep seismic reflection study over the Vindhyans of Rajasthan: implications for the geophysical setting of the basin. Journal of Earth System Science 115, 135-147. Radhakrishna, T., Mathew, J., 1996. Late Precambrian (850-800 Ma) paleomagnetic pole for the south Indian shield from the Harohalli alkaline dykes: geotectonic implications for Gondwana reconstructions. Precambrian Res 80, 77-87. Rai, V., Shukla, M., Gautam, R., Vibhuti, 1997. Discovery of carbonaceous megafossils (Chuaria-Tawuia assemblage) from the Neoproterozoic Vindhyan succession (Rewa group), Allahabad, India. Current Science 73, 783-788. Rasmussen, B., Bose, P.K., Sakar, S., Banerjee, S., Fletcher, I.R., McNaughton, N.J., 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: Possible implications for the early evolution of animals. Geology 20, 103-106. Rau, T.K., Soni., 2003. Diamondiferous Vindhyan conglomerates and their provenance: A critical study. Indian Min 37, 22-30. Ray, J., 2006. Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth System Science 115 149-160. Ray, J.S., Martin, M.W., Veizer, J., Bowring, S.A., 2002. U-Pb Zircon dating and Sr isotope systematic of the Vindhyan Supergroup, India. Geology 30 131-134. Ray, J.S., Veizer, J., Davis, W.J., 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: Age,diagenesis, correlations, and implications for global events. Precambrian Res 121, 103-140. Roy, A.B., Neoproterozoic crustal Evolution of Northwestern Indian Shield: Implications on break up and assembly of supercontinents. Gondwana Research 4, 289-306. Sahasrabudhe, P.W., Mishra, D.C., 1966. Paleomagnetism of Vindhyan Rocks of India. Bull. Natl. Geophys. Res. Inst. Hyderabad 4, 49-55.

PAGE 85

85 Sarangi, S., Gopalan, K., Kumar, S., 2004. Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rhotas formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res 121, 107-121. Sarkar, A., Paul, D.K., Potts, P.J., 1995. Geochronology and geochemistry of the mid-Archean trondjemitic gneisses from the Bundlekhand craton, central India. In Saha, A.K. (Ed) Recent Researches in Geology and Geophysics of the Precambrian, RRG 16, 76-92. Schmidt, P.W., Williams, G.E., Camacho, A., Lee, J.K.W., 2006. Assebly of Proterozoic Australia: implications of a reviesed pole for the ~1070 Ma Alcurra Dyke swarm, central Australia. Geophysical Journal International 167, 626-634. Seilacher, A., Bose, P.K., Pfluger, F., 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282, 80-83. Shen, Y., Schidlowski, M., Chu, X., 2000. Biogeochemical approach to understanding phosphogenic events in the Termianl Proterozoic to Cambrian. Palaeogeography, palaeoclimatology, Palaeoecology 158, 99-108. Smith, C.B., 1992. The age of the Majhgawan pipe, India. Scott Smith Petrology 9. Sohl, L.E., Christie-Blick, N., Kent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia; implications for the duration of low-latitude glaciation in the Neoproterozoic time. GSA Bulletin 111, 1120-1139 Squire, R.J., Campbell, I.H., Allen, C.M., Wilson, C.J.L., 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci. Lett 250, 116-135. Srivastava, A.P., Rajagopalan, G., 1988. F-T Ages of the Vindhyan Glauconitic sandstone beds exposed around the Rawatbhata area, Rajasthan. Journal of the Geologic Society of India 32, 527-529. Torsvik, T.H., Carter, L., Ashwal, L.D., Bhushan, S.K., Pandit, M.K., Jamtveit, B., 2001. Rodinia refined or obscured: Paleomagnetism of the Malani Igneous Suite (NW India). Precambrian Res 108, 319-333. Tugarinov, A.I., Shanin, L.L., Kazakow, G.A., Arakelyantis, M.M., 1965. On the Glauconite ages of the Vindhyan system (India). Geokhmiya 6, 652-660. Veevers, J.J., 2004. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews 68, 1-132. Verma, P.K., 1996. Evolution and age of the Great Boundary Fault of Rajasthan. Mem. Geol. Soc. India 36. 137-155

PAGE 86

86 Venkatachala, B S., Mukund, S., Shukla, M., 1996. Age and Life of the VindhyansFacts and Conjectures. Mem. Geol. Soc. India 36 137-155 Vinogradov, A.P., Tugarinov, A.I., Zhikov, C.I., Stanikova, N.I., Bibikova, E.V., Khorre, K., 1964. Geochronology of the Indian Precambrian. Report of the 22nd International Congress, New Dehli 10, 553-567. Williams, I. S., 1998. U-Th-Pb geochronology by electron microprobe. in McKibben, M.A., et al. Eds. Applications of micro analytical techniques to understanding mineralizing processes: Reviews in Economic Geology 7, 1-35. Wingate, M.T.D., Giddings, J.W., 2000. Age and paleomagnetism of the Mundine Well dyke swarm, Western Australia; implications for an Australia-Laurentia connection at 755 Ma. Precambrian Res 100, 335-357. Wingate, M.T.D., Pisarevsky, S.A., Evans, D.A.D., 2002. Rodinia connection between Australia and Laurentia; no SWEAT, no AUSWUS? Terra Nova 14, 121-128. Xiao, L., Zhang, H., Ni, P., Xiang, H., Liu, X., 2007. LA-ICP-MS U-Pb zircon geochronology of early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze Block, South China: Implication for tectonic evolution. Precambrian Res Doi:10.1016/jprecamres.2006.12.013

PAGE 87

87 BIOGRAPHICAL SKETCH Shawn J. Malone was born in Pamona, California on 19 November 1980. He lived in Rancho Cucamonga, California until age 12, when he moved with his parents to Charleston, South Carolina. He was an star scholar in high school, maintaining an "A" average and placing highly in Jr. ROTC, Academic Quiz bowl, and placing nationally in the National Ocean Science Bowl. He attended the prestigious College of Charleston from 1999 to 2004, majoring in geology and minoring in sociology. Just before graduation, Shawn was awarded the outstanding student and outstanding teaching assistant awards. He then attended the University of Florida, majoring in geology for his Master of Science degree. He graduated from the University of Florida in August 2007, and intends on pursuing a Ph D. in g eology in the near future.