<%BANNER%>

Bifurcations of the Degree-Two Standard Family of Circle Maps

Permanent Link: http://ufdc.ufl.edu/UFE0020220/00001

Material Information

Title: Bifurcations of the Degree-Two Standard Family of Circle Maps
Physical Description: 1 online resource (39 p.)
Language: english
Creator: Strickland, William C
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: attraction, basin, bifurcations, circle, covering, diagram, dynamical, family, fractals, lift, orbits, parameter, periodic, region, schwarzian, space, standard, systems, trapping
Mathematics -- Dissertations, Academic -- UF
Genre: Mathematics thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In this research I parameterize the fractals generated by the limit as n goes to infinity of the degree-2 standard family 2x + w + b*sin(2pi*x) of circle maps (g bar) iterated n times and divided by two to the nth power (g bar resized). Beginning with an exploration of degree-n maps and their projections onto the circle, I introduce some theory on the limit as n goes to infinity of continuous, degree-2 maps iterated n times and divided by two to the nth power and present key points from dynamical systems. Next, I explore the phenomenon of large flat spots in the graphs of many of the fractals and present the motivation for taking the values of g bar resized at critical points of g bar and using the results as a bifurcation diagram for the family of fractals. After building up this theory, I present numerical results for the fractals and use these results to explain the trapping effects in the g bar resized and their relation to flat regions in the bifurcation diagram. Finally, I conclude with a characterization of the bifurcation diagram of the limit of g bar resized involving first one, and then both critical points.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by William C Strickland.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Boyland, Philip L.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0020220:00001

Permanent Link: http://ufdc.ufl.edu/UFE0020220/00001

Material Information

Title: Bifurcations of the Degree-Two Standard Family of Circle Maps
Physical Description: 1 online resource (39 p.)
Language: english
Creator: Strickland, William C
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: attraction, basin, bifurcations, circle, covering, diagram, dynamical, family, fractals, lift, orbits, parameter, periodic, region, schwarzian, space, standard, systems, trapping
Mathematics -- Dissertations, Academic -- UF
Genre: Mathematics thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In this research I parameterize the fractals generated by the limit as n goes to infinity of the degree-2 standard family 2x + w + b*sin(2pi*x) of circle maps (g bar) iterated n times and divided by two to the nth power (g bar resized). Beginning with an exploration of degree-n maps and their projections onto the circle, I introduce some theory on the limit as n goes to infinity of continuous, degree-2 maps iterated n times and divided by two to the nth power and present key points from dynamical systems. Next, I explore the phenomenon of large flat spots in the graphs of many of the fractals and present the motivation for taking the values of g bar resized at critical points of g bar and using the results as a bifurcation diagram for the family of fractals. After building up this theory, I present numerical results for the fractals and use these results to explain the trapping effects in the g bar resized and their relation to flat regions in the bifurcation diagram. Finally, I conclude with a characterization of the bifurcation diagram of the limit of g bar resized involving first one, and then both critical points.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by William C Strickland.
Thesis: Thesis (M.S.)--University of Florida, 2007.
Local: Adviser: Boyland, Philip L.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0020220:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101112_AAAAEQ INGEST_TIME 2010-11-12T22:20:09Z PACKAGE UFE0020220_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 91959 DFID F20101112_AACUMY ORIGIN DEPOSITOR PATH strickland_w_Page_10.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
8d003d3530695ea3c0935f41b3fe931f
SHA-1
c0f21277a3ab2fb38fd7b3570b198c17dc31cd6d
1941 F20101112_AACURV strickland_w_Page_33.txt
963146e23fa5b290c7116c5d7f881db9
73380ab1b5f451a9a7b16bf6eb3b5ade5104c5e5
62913 F20101112_AACUMZ strickland_w_Page_11.jpg
3c8c4f5c99645234ea4b787b0d039acc
3a0a26cda46f71b754d61f548485114e0665eb12
183 F20101112_AACURW strickland_w_Page_35.txt
f726c42e023c793b042d6f967fe0a984
08adf7ad417bb4f93f3a7e98ec2f1d4dfefcb1e7
1525 F20101112_AACUKA strickland_w_Page_07.txt
0fa008bb5822e363c0cb28b68d39b81a
efa687b86f01f561a4370c968427f2315d0d57c8
1335 F20101112_AACURX strickland_w_Page_37.txt
fa794414332429455e1aba221dc743f5
90d360f150a4a9db6edd7ca82fa055ce0d7f30cb
6342 F20101112_AACUKB strickland_w_Page_28.pro
ae3999fb4851114e35abf5d5aa2cacf0
df4b1f3b32d605199d6376cbaffb999a6120ea5d
1053954 F20101112_AACUPA strickland_w_Page_09.tif
209ab94ca4aac6dd672cd8b1bfafe5d9
57cc90ead4cc58228c2cbaeef10c85db8ae41066
1026 F20101112_AACURY strickland_w_Page_38.txt
27a5b302783cf64456d10d4c417d6863
fc2e414b8db8604b4f4dfa14627804bcecc26503
27244 F20101112_AACUKC strickland_w_Page_08.QC.jpg
331cb78319aa6adff4266b19adfd54e9
9992d5592a9b9ec05c57a89b34fd57c9f8c83b91
25271604 F20101112_AACUPB strickland_w_Page_11.tif
42d3985844b7ead669df262f786ed0e0
491e7b0ac2f224d15280967a842a6257553569e5
528 F20101112_AACURZ strickland_w_Page_39.txt
3485570415d45e96d7999b9e1c53fa45
8597fe8226762356ec738127d9fb3333fb6e4f4e
43867 F20101112_AACUKD strickland_w_Page_20.jpg
8e583d0e50ee4f140e342fdef581c31b
b611c854aa2bf641249f0b1a8ec0a8e8dedb2b5b
1082 F20101112_AACUKE strickland_w_Page_31.txt
41286ddab986441b1627c0fd4ffdf0fd
bf42fb5b9a288e2a404ea8b818ed4a432d90cd60
2650 F20101112_AACUUA strickland_w_Page_30thm.jpg
4f1f7541348c468af7ff65d33ba66fe7
044d5a6c0b4eae27d1b1194c88be7c65dddde366
F20101112_AACUPC strickland_w_Page_12.tif
3c921da91987c5a66224f81e8ff38da9
b75a7c5fc7d173758586b14d44cefff6d054abc8
85954 F20101112_AACUKF strickland_w_Page_08.jpg
3373a5485172e9c723c21e34f6ee12a2
bd9c32cc4a3a3627d0aba0d4bdbf198236b82fa7
4166 F20101112_AACUUB strickland_w_Page_31thm.jpg
93bf6e13c336529eaeaadf9239ae707c
a1c885fb7edff8c2621f858ae4e271e13e513d2d
F20101112_AACUPD strickland_w_Page_13.tif
dc692893f0465ee7aa0b2be65ff835fd
6dfd28fa4896ab8db861534841a703546503e450
12328 F20101112_AACUKG strickland_w_Page_39.pro
d4dfd199f4e0d763c237361f27187989
7e2b50d5d24d28a6546ed29b95a71eb6c9f6d030
22964 F20101112_AACUUC strickland_w_Page_32.QC.jpg
8185174686d32ace3417b1c59d6a6d61
dbdcd4a6e4df0b36215a868017183fdb9f61d6ff
F20101112_AACUPE strickland_w_Page_15.tif
f6c0e55bed6f7445934af1808ada3dbc
ebc0779cbc0cc11361b92bb66d06f1e72199d67b
40102 F20101112_AACUKH strickland_w_Page_27.pro
735f09cdd63bbe68090a34bff20cc5ab
ab7162e1b348981dc602b77b3e65619b86e68102
6461 F20101112_AACUUD strickland_w_Page_32thm.jpg
192e7ac8b7d7be8bad8343dc95a5473a
e6c9cdee06e2186772e78e6b6d55d40d2c182929
F20101112_AACUPF strickland_w_Page_16.tif
5d4794ec42b955b7630068c29024c816
58d30f00c35b06558be965fe634c00ce371de20d
23752 F20101112_AACUKI strickland_w_Page_01.jp2
b96d7a62c3b96a8556041ae93d6f5a0c
2dfca8128dc1c6089cfacb9b44809bf213a01336
26149 F20101112_AACUUE strickland_w_Page_33.QC.jpg
17c3d5c12027f75a065691e80d6e0c5c
52415cc92b2f1a8cd601e79b667e329fec95b989
F20101112_AACUPG strickland_w_Page_17.tif
20088a17a906a1b9cdc582804276137d
f88fcc2fcf09747fc588aad2c36fab8de9b5cf0d
6400 F20101112_AACUKJ strickland_w_Page_33thm.jpg
0af34b6276bdc131716f442354aeaf9c
1dbe17f6845f99922226b72291a6807b70a94a83
F20101112_AACUPH strickland_w_Page_18.tif
8603567213691d6b14f340c0d6a09408
3399ae2377050a0ebc2bef48966fc7caf59e516e
3566 F20101112_AACUKK strickland_w_Page_38thm.jpg
f1106e4b45259ba7e069ee74f134ca95
35b43f4fb7c96b9fd60f62c03a42c77be7fd8f33
11894 F20101112_AACUUF strickland_w_Page_34.QC.jpg
9c95518fa5569ddc89013b8745ae4707
100c74dcb299a68c21d4c47650b4e8105e871fa1
F20101112_AACUPI strickland_w_Page_20.tif
a6f115c34c906ae52545dab74f1a781f
b8a95068abf62a12d6e1430685470400b7edb98a
3441 F20101112_AACUKL strickland_w_Page_36thm.jpg
ad24668de1340d87ea06cffdab4314ff
f034b30de687ab5de6d1cd3a62174f23cf5cbff3
3562 F20101112_AACUUG strickland_w_Page_34thm.jpg
b618c8336654cd4eebade6531edd9b2e
2fe91e6723392ce7fa10f898f4f7b8cd13ef9fd5
F20101112_AACUPJ strickland_w_Page_21.tif
d7fe574e1fb429f3628a34c0a637fdb9
6d79ec556e94e3531cf5dd5ce0e741929febea29
25889 F20101112_AACUKM strickland_w_Page_27.QC.jpg
e2c4fa2b5800995650d36ad148faebd0
fe705ca8a68c8668ac9d40830789eb588a8f2386
F20101112_AACUPK strickland_w_Page_22.tif
b78dcb27ef5e909864eaf646be87bc82
90d17ce3ddead561f3ceb14ea6b0db4a8fe7f205
F20101112_AACUKN strickland_w_Page_14.tif
4a3019358185208a2ac8b8612b9ae71b
d725fd3c6a3737386a4495ef4be258963666fc18
6290 F20101112_AACUUH strickland_w_Page_35.QC.jpg
a9882c8d0d697cc88d83ee6e282e00f2
14a6e47a53b83250ad6bd760ab6c8cbdbc323979
F20101112_AACUPL strickland_w_Page_23.tif
b7ed20571f9f020f79f7a5db48c253f3
10f940da8a40f0a045917c9ce5b8be7d85687330
F20101112_AACUKO strickland_w_Page_10.tif
4c88953b35eb51d2f0760d484170eaee
2ef232fb75b3834220858f5940e19a3af05d456d
10960 F20101112_AACUUI strickland_w_Page_36.QC.jpg
c5fe8ca26585a463834e86fb5e4b129a
019818b69dddd0b0ca82ecbd312a0376e8d97e66
F20101112_AACUPM strickland_w_Page_24.tif
84432ad681ee1113002432715925f0a1
fdce67afaccaa79b5b71f15741979e3d5ec36979
1934 F20101112_AACUKP strickland_w_Page_01thm.jpg
284c0c1e1d0f286793e464305e61c5e4
3459b3ce7385f18201425ae80229b0b94327e569
9090 F20101112_AACUUJ strickland_w_Page_39.QC.jpg
9b92866cdc649e4a6ebae69e0de5521d
050c023d78ed5c0ff146e68eeddb58f93493b12a
F20101112_AACUPN strickland_w_Page_25.tif
fcddf66790a37bc8c7ba52ccb8b45827
f4334769fcc133cbd62d27f3d0558b1a128e25c5
34034 F20101112_AACUKQ strickland_w_Page_07.pro
6d4ed21d4bef063d3c29aafbb53d4d4e
7a2058f4a6d54650ec5f24883e71ded579c4ddb7
2161 F20101112_AACUUK strickland_w_Page_39thm.jpg
efe3380ff1ede9f0102d5b0aa37ebca9
300b4026f3bb92f8e94c1f516d2aeea53aa4a7c7
F20101112_AACUPO strickland_w_Page_27.tif
b94924229d05f8a523d6acb15a4d8247
d8e4b54beb75f8c95d181a07b271d81c54000521
963663 F20101112_AACUKR strickland_w_Page_10.jp2
c585aca9f6660e8b59878685dd97cf17
6de801ff1b565f0d9b6dfe6367540a128a05f4fd
F20101112_AACUPP strickland_w_Page_28.tif
0fb89b5e9b734ce6126b96413b12ce88
a9124628ec9deb0a42785b273ffd6320938d6abb
640 F20101112_AACUKS strickland_w_Page_22.txt
4369a72ddf63cc8d0dbe13712002ce0e
15a785518faa946a584cd5584a000cf737bdab0c
F20101112_AACUPQ strickland_w_Page_29.tif
51eb4b040b54bcb65970b1a13a1a269a
97e34ae935fd586fe8a2dc1d1dec4692215f5644
F20101112_AACUKT strickland_w_Page_19.tif
ffe1a01c83e6e6a5009b450624c2d45a
acf2639ec83ddd3bd7634a478c53ebb36d435f60
F20101112_AACUPR strickland_w_Page_30.tif
28098476180aa854185e3675f9af1ec6
d6f0cdd88327f2b2cc88a1b21d40c849b379d7e1
1398 F20101112_AACUKU strickland_w_Page_02.pro
db3c509e86e2dada0debabbf2109b0ce
63c302933e14809951703e960920572903e41644
F20101112_AACUPS strickland_w_Page_32.tif
41b0c3e5c69f210499c7a00ace15a80d
b7cab9b57a3aa75ae37dc949a98cf84abc6127ac
40325 F20101112_AACUKV strickland_w_Page_25.pro
b97b423976886e0fde9aeb2a8a78efe9
ac42607fb9bec446099d20a0cdd2b62d56d78589
F20101112_AACUPT strickland_w_Page_33.tif
b2cf587ea1e9ffe35a8932788c8309e3
c043b14bf83338aac89323af352dc0f2d58d5b0a
355 F20101112_AACUKW strickland_w_Page_03.txt
161a96470075fb9f1b08960a4a34b8f3
f385a7883cbaf1004d119ca11731540387bf42db
F20101112_AACUPU strickland_w_Page_34.tif
edaff60b015e0fc9c7e4134026507603
10765fa57fc3d090f16d9ddb5bc2c833730ac79d
371 F20101112_AACUKX strickland_w_Page_36.txt
11933cc7352210494fa37c73686944f2
17737ab10b12dcf611151bb42a2103941d765ea1
F20101112_AACUPV strickland_w_Page_35.tif
e91016e399680195f839b4be15660b12
f351c5c3cd469b78e110f59da3393cbeaec1c2bf
33745 F20101112_AACUKY strickland_w_Page_13.QC.jpg
c7093e34c10aa628df0d0e1e635f94dd
77032d666a3162bf77f09c6ea11121e4d7054d3a
F20101112_AACUPW strickland_w_Page_37.tif
d0f6be7ae8cf7ae6dc2c434d700e71b7
c7a830f69d9d3c72a9f68bd66968fe8822012f49
1755 F20101112_AACUKZ strickland_w_Page_25.txt
05d31d72994ce73cc3731847de2935bc
cc379716a41b9d39ab60697514e42eee49330d63
F20101112_AACUPX strickland_w_Page_38.tif
f8a75f44987e990f91e1f2a0e5fbf36c
7d48222dc6e9988a53b74c4776f3de838b7b0bca
F20101112_AACUPY strickland_w_Page_39.tif
fef671ad6f41dc4c37c2929d9b430870
b03a1b665128533ded6b18e4fc6c482ac5ff7184
7900 F20101112_AACUPZ strickland_w_Page_01.pro
3fdd4ee2df1b5b4c6784df71444cd31c
bc71f7110e9a8ae93426a53247e675feb815ac94
62147 F20101112_AACUNA strickland_w_Page_12.jpg
574726d891becc229626718bbf99956c
5941aff935e6ff54f16227e4ca03dcec5173d089
104786 F20101112_AACUNB strickland_w_Page_13.jpg
d58f62143df566de65172e86e16cba85
b71940f2e2f81caee2f2744735007621c1cc9340
6567882 F20101112_AACUSA strickland_w.pdf
d84702668c7f68a358f6f0d2cfd077a3
f1185ed189aff211fc796cafd5df82b8bf3991e2
76245 F20101112_AACUNC strickland_w_Page_14.jpg
248bdb0c8a9b2516e8e201b3d185f6db
b550f0974f28df600b57091addc7128b07271b3e
6231 F20101112_AACUSB strickland_w_Page_08thm.jpg
2d78dc67fff49a98888201ccf24db164
d2989d57aa063b25407e9b8dbb4b1377d939a711
82852 F20101112_AACUND strickland_w_Page_15.jpg
5c50b9f9bdc3ce35c427e07bec9215c0
c4db92539c27c1a4e890bddfdee7b74ff04c5e6e
6297 F20101112_AACUSC strickland_w_Page_27thm.jpg
b92e6226d1736749c2a05fa993ccb405
0f5499c43174c51be2cc0b4c0a16c82580875d7c
74102 F20101112_AACUNE strickland_w_Page_16.jpg
b48c0d21a3b22b7ed5ea505a6dea6177
00ea2d0fff75e3652f90c272b6d3f20c435649f1
11396 F20101112_AACUSD strickland_w_Page_37.QC.jpg
c9f29aebca4f3b06c461ee100bd799d7
7989e08553d6927e37894a7415f3ae7b7ea99efc
92683 F20101112_AACUNF strickland_w_Page_17.jpg
ae9f1322c24c8e2bb6794798fae1ebf6
cff08ff3e59dbd4441633a18c17b29af4e12d12c
14807 F20101112_AACUSE strickland_w_Page_20.QC.jpg
9f395b22e441dcc9dc62d05c09b09843
f616bf4c82e19a0ea46e94006dd83430addfeaf2
70874 F20101112_AACUNG strickland_w_Page_18.jpg
f05f14a174a7a3e15656318c624b46ba
37c5c5a6b18496e05ce47bbf87fb60b107b3c34f
64936 F20101112_AACUNH strickland_w_Page_19.jpg
b0999e392407a41fb1c56879caf20e06
46e1214d49bbd432dce9b439c4ff652f172e22ee
7851 F20101112_AACUSF strickland_w_Page_24thm.jpg
3fa5d90de7ccd0913a463d7a514f28d6
fc5d60281a6951cad426218593a5602d9444ac2c
94070 F20101112_AACUNI strickland_w_Page_21.jpg
7889cd37046abe389874c77983031374
1dcaea0604e317c01a35a53a602007a46f4a904c
8825 F20101112_AACUSG strickland_w_Page_30.QC.jpg
f305cb063087a563a965271ac7f7604c
9176fc0fe54a7e392372e5d4d2f6b3d5d48682e5
48803 F20101112_AACUNJ strickland_w_Page_22.jpg
1a9645e815ae7f4f737be28051b480b9
3b837b0a56d492476c0fdc38bc8198e98a6c4282
3737 F20101112_AACUSH strickland_w_Page_37thm.jpg
85b810b2a3092754b48a7daa63049553
992d8d447bdeff6b2fe3a84768396e6111d2186b
63524 F20101112_AACUNK strickland_w_Page_23.jpg
3c5f1325bda9dd7119f6f81e9a111a88
626c045fd5efcddfbf7d42a3466147ebf9d42692
14839 F20101112_AACUSI strickland_w_Page_38.QC.jpg
f7f8c36132b3c3999240c705c879521a
5f840694f05cb6301aabd9b3a4e9b527e4a4af75
101403 F20101112_AACUNL strickland_w_Page_24.jpg
70dec11ee13ab73a8b5576dc10dd7b2c
d5ed9a5050b597d7c924f7ce436915b51e27ba92
31321 F20101112_AACUSJ strickland_w_Page_25.QC.jpg
0eb9ee1cd8df850376cbb1043b9f9c44
469520fb4d41e068ffa55f0732ee5a13d07cd692
100026 F20101112_AACUNM strickland_w_Page_25.jpg
9c193dff782666615d5929bc3468a088
e1ddb1009877621876238ac76f42992b72e8b6c6
14971 F20101112_AACUSK strickland_w_Page_31.QC.jpg
cc68338045af16ca970b78d7ff5a5473
e751c029d5bd175d7cf257167a8fc8ba37b07f9c
82006 F20101112_AACUNN strickland_w_Page_27.jpg
f22e204c0f7e0c737d327c91617c1f31
9c0d82aa6b241e5830636fc8735ab097b6cfc52e
19952 F20101112_AACUSL strickland_w_Page_23.QC.jpg
5ffed66a543557b902affffbc289191a
30c2107c8e7a77dd088ec4ab2d85303e5ce1ca16
24498 F20101112_AACUNO strickland_w_Page_28.jpg
0cb55220e2fce98db322c797e80399ee
70dbfa689d8961a16f374687f36428d59140d4f6
6717 F20101112_AACUSM strickland_w_Page_14thm.jpg
3b246d30ab2c8788c452682f2e0c2617
e559a852c0381e0cabfa46311ee001dd456086b7
78047 F20101112_AACUNP strickland_w_Page_29.jpg
d7dea0e71f4e050ede98c3290ff13225
50cd30fea19a4987eb3a9f23c5ec6329bd5706c8
2122 F20101112_AACUSN strickland_w_Page_35thm.jpg
4e181af2ba67234b6606aae876931d07
4d1a3c233af6c1ec8d28229aef01ef1b9ab02613
25884 F20101112_AACUNQ strickland_w_Page_30.jpg
0ef013924f6b8ca67b1f6f2e134beb9b
a3324efbc483f11aced912ae9a8064872f2fed09
21630 F20101112_AACUSO strickland_w_Page_18.QC.jpg
73c6b81e9d00e4326d56f6e83523572f
a4da50a3595e9a75f4916ecc38f9d4ecdb98f20d
71896 F20101112_AACUNR strickland_w_Page_32.jpg
126b048ab3365d662212c8b5f5d90c50
57e1d9f493655b7b631e5fb84f38e2e5f2ea8f21
1475 F20101112_AACUSP strickland_w_Page_03thm.jpg
0912c1cb8f739f6c878460d39fcefa4c
7e2c61fb7160d3db9d2e2015ca26bfb05f3c9ad0
80512 F20101112_AACUNS strickland_w_Page_33.jpg
078d0b43bb9e22ecb3ef071d8dd94a33
76fcc304b68d569eaa6a688361eebd9360111ac3
32248 F20101112_AACUSQ strickland_w_Page_24.QC.jpg
3525759975517235733235c6e3e0de73
8ae1f3c21e19e3312188e0c6a762a55c4add1659
34783 F20101112_AACUNT strickland_w_Page_34.jpg
4bd2edfea27576f9c71001d65bc2ce85
643d8fcc85ca2feecbe210838c88aa69693d558b
8328 F20101112_AACUSR strickland_w_Page_13thm.jpg
833fb0ced6b827a5178e59f880f56fc9
71da5d33ffd597da7afc06fe5103368a4361042b
31454 F20101112_AACUNU strickland_w_Page_36.jpg
e66fe3c3f297ab56995280e922d807d9
8429b7038df09c94be60a62efcd17c405ea35754
2761 F20101112_AACUSS strickland_w_Page_06thm.jpg
79c280029c3bd2a38c7c52c9f947f1f1
27b8d14bbde7cae65e0ec7df426bac45d32c1a25
33953 F20101112_AACUNV strickland_w_Page_37.jpg
aa201cf54b0a7b693a267ebb5ffab964
33d78e96f96d0b4f736874a572d3af03235a84ad
62906 F20101112_AACUST UFE0020220_00001.xml FULL
9c9a2586aa012de92e4d36cf3dad62ba
babdeae7ea54cc861b2b2e0ae4356d5d4a8059ee
51726 F20101112_AACUNW strickland_w_Page_38.jpg
2b5449795f44b2e1bccc981145852055
eb3441b4fac0aab440ddcd641d281b593c105414
7897 F20101112_AACUSU strickland_w_Page_01.QC.jpg
db39cf68e86fbebc281e4820fa74d05b
307084f89190bfdc85fb696f5df57bfa69d18799
28036 F20101112_AACUNX strickland_w_Page_39.jpg
6215e67662e2fce436597e6ea0bdf363
8f1162b13eecf8a27ba0e18989834b658de8e7fe
1746 F20101112_AACUSV strickland_w_Page_02.QC.jpg
cec7dd49b4fc5d21df9410bb025b1c71
fd4499bb0d46618b9da8b5e64307418db5061a60
6250 F20101112_AACUNY strickland_w_Page_02.jp2
9dd57a8c0a65734fb4180dba1bc875ca
09b50fc63cebaf40f76a919e4f7830007f6ddd58
553 F20101112_AACUSW strickland_w_Page_02thm.jpg
2407dce8729a42c17226a112c9be0c78
cdb62e274d6b9d272761622ec4d60d844322d4e7
F20101112_AACULA strickland_w_Page_36.tif
19a80387f7f3892bbc3def178968fc16
d7dc0d79c7692cd1261f6b5046c6d9ba17dafb7a
20648 F20101112_AACUNZ strickland_w_Page_03.jp2
54cdeb2364b6858d33005fc0651478da
19cc7efcbde6b682eb9374c99d70f75808f3bb63
6174 F20101112_AACUSX strickland_w_Page_03.QC.jpg
7b15dcc738527d6841962433dc9fcddd
489438b7bfb0078c32a1aeb596f0fd2ddb8e525d
1051986 F20101112_AACULB strickland_w_Page_05.jp2
a0d552dad48a4071716e9bbaaeeda316
9ab70a4ca9878c57dc781dde271acc536ddd7d5f
24433 F20101112_AACUSY strickland_w_Page_04.QC.jpg
d4e039b05a414cffc29b194c2611ba2a
17c3cbe7cb58bd41bf1bedefd7537cb0370f9182
74415 F20101112_AACULC strickland_w_Page_07.jp2
cb8f4b861eeaf73fa635a3a4e6930b43
714de04ec18384c582e957a758a85076a98b03a4
7942 F20101112_AACUQA strickland_w_Page_03.pro
7434150614f811ae182b51ee493212a3
ac4d86c06e57323bca48889885d100a4088f462b
5196 F20101112_AACUSZ strickland_w_Page_04thm.jpg
132736899dc0e92db15eede4725f0592
4fa37d8852027d60528c965c0d033a3b5f671c66
55354 F20101112_AACULD strickland_w_Page_13.pro
fc7290b34460ccb2a7d0328cbce591b6
374f0cb0197a4b4353046dee24e5f66dbe19e9f4
45431 F20101112_AACUQB strickland_w_Page_04.pro
b2788803055bb91238446045bbce2c13
7813fd2cf7069f7359cfcd15e55a6c70644699c9
6657 F20101112_AACULE strickland_w_Page_09thm.jpg
87094905a5074fa7e4ed0b132be8dd4a
e47b6f5499a47d9d32adf01e4c5116898e6511b7
58170 F20101112_AACUQC strickland_w_Page_05.pro
2e4caab0fe6ab1de9e658420c65df519
39801294328aafeed5f728e58219a6b708e3b293
7275 F20101112_AACULF strickland_w_Page_21thm.jpg
c29823abc9950a17b28786c6df2fc5d8
149e547dec8e50d5aa82cfd0bf49454b92565450
1051973 F20101112_AACULG strickland_w_Page_23.jp2
cfcae82661c9e5079b0939c312b4ebd0
474744eaf7ea73e504bcf417c3390d9cd318ea0d
16703 F20101112_AACUQD strickland_w_Page_06.pro
46f8fa2fb12c4ebe9ee2e8cea20c8308
e117a431acfd16204ddf946d5a097e287ab589ff
1811 F20101112_AACULH strickland_w_Page_08.txt
f684b58a8c2ab20864b1996bae5a3912
0bfd07a06169c18110f91da188d6187c4e54e61d
43480 F20101112_AACUQE strickland_w_Page_08.pro
8a048754f6aa96da79c994f9d03ec9fd
c59d57b07f21a7f1433b4ca8c0b6be8e8b7f0616
F20101112_AACULI strickland_w_Page_26.tif
8dc02a87a4518c6fef6ec5b3d26084b1
b13e94605a637f2b485213e029fdbf4bee22d9cc
38948 F20101112_AACUQF strickland_w_Page_09.pro
e8b900c0f565a68ebc604753c963670d
bc210bff07a0e36358a1f55672c04944586be40a
105032 F20101112_AACULJ strickland_w_Page_05.jpg
acbb6ce76ced117bbd2bba3b09a91b6e
0bb1416b06a2ebb01695081d64473ec5eaea0054
45924 F20101112_AACUQG strickland_w_Page_10.pro
6c69851e21cebaede4cc6539888724a7
5ecca7e74299ce947436756d1793a822f072be87
898283 F20101112_AACULK strickland_w_Page_29.jp2
c3c6e862ead9326c1404398b60aeb628
d860c47985bf475a9574fa264a20aa25b76ad65c
32103 F20101112_AACUQH strickland_w_Page_11.pro
6bcbdb94ea89ed31024a9593200b5312
d18eb39c4897172488c809f0c1fe13b248aa66bd
5636 F20101112_AACULL strickland_w_Page_23.pro
a68da2dfb3fdb83333c055fb7ec9d87e
c11835201593cd17d3243cb502109b58d90015b0
41231 F20101112_AACUQI strickland_w_Page_14.pro
3a4196a046ffd5ba1a2a095aaf1b548d
a0e34d94ed938f7540b565fc5a630123242d0339
29879 F20101112_AACULM strickland_w_Page_12.pro
4f624243abcbc6767458eb98fe4d1170
84339ecbf528695ad2e0bf4fc8e3788d71320e53
41693 F20101112_AACUQJ strickland_w_Page_15.pro
1dbfaaf964eecbd5a450277a21739623
e6c55f46d91992a0eee99194bdcfee67a07256fd
1899 F20101112_AACULN strickland_w_Page_11.txt
14a0264d7bab71a16b50f9a60d82e370
3f9f1df9d7f452971c4977babf214a004f8e6be8
37517 F20101112_AACUQK strickland_w_Page_16.pro
366ad2a6d4e66569061413610ef1a2ff
8bdf667e4a6fd5092c71ea4dcfe3202113ad0db5
672319 F20101112_AACULO strickland_w_Page_11.jp2
6d06fdc68f0b75a1ab87a74f2a720777
2b62aa67859d32a788d53d5c8f9bd71e2489ba76
47364 F20101112_AACUQL strickland_w_Page_17.pro
81acb5077ddbc546b2031a6434c292c4
714b4cc8787702d720db7eea69ffbba79b8dd1e4
19061 F20101112_AACULP strickland_w_Page_35.jpg
e660138e4164ceeb71e44a7c1ed0d702
a975041bcce03186829698c80289627d98a09d8f
34235 F20101112_AACUQM strickland_w_Page_18.pro
1a457005b0d4812b45e7a498134436de
795fea9ae41437f7ce086dce3597d8e7420b94c1
31640 F20101112_AACUQN strickland_w_Page_19.pro
a863dd3a3b63a997800626b649160680
b083d849620f02ab29ab9002c310a134b3cca632
1051824 F20101112_AACULQ strickland_w_Page_32.jp2
9c785f7c2367ad4b5db28d338a8eb630
190e1fd4c2fd8fd30b39755f0753b08852e8230b
20287 F20101112_AACUQO strickland_w_Page_20.pro
467e6219f4cccdc5bd7371692c3508b5
4ec333f7b2d87d3ef005a8bade98e70189eaefdd
30159 F20101112_AACULR strickland_w_Page_21.QC.jpg
63203639867e2958cf3c4f751338bee3
4310cc104be03268e397cc286e06ff71ec6de45a
47441 F20101112_AACUQP strickland_w_Page_21.pro
2b2c5d2e111a23fda4b3c58abe4125bf
a41b504a4f05a6ada389c19a512664829538a135
44908 F20101112_AACULS strickland_w_Page_31.jpg
522b013652016374c2509a3b653d600f
f12fe4b73722fd3b90d745ca0fc3793e66c3ffdc
51437 F20101112_AACUQQ strickland_w_Page_24.pro
07f5a6e1ffe9b53fb919572960018832
8ae350f8f6afc6cfd08a33518bc6a19d1868670c
668 F20101112_AACULT strickland_w_Page_06.txt
befb6c77c9b04f25f3ab44b91469b432
aba4fc28328e1f22ae8b7a4210ca0386354024ce
11276 F20101112_AACUQR strickland_w_Page_26.pro
600fcf74c2e82ff17c51814ab20a0811
9da8fc949cece2ea98b2f0571a81294ec004f3bc
F20101112_AACULU strickland_w_Page_07.tif
8da314fcbfbeb8fc7f4c365a36c9732d
b6e2776e11fc836f77fcfb6f4dddf3ad21e26f70
40357 F20101112_AACUQS strickland_w_Page_29.pro
2811e77aa6cb833ad1e3d5305416aef7
1edcfffe72648b8c86aadd196055bebc7fd9d7b6
16250 F20101112_AACULV strickland_w_Page_22.QC.jpg
afea3bc681ef7d0a837bd40150cc7705
a61ee9ef261ab6169c9c644a71d5e68d7ecb3e46
6643 F20101112_AACUQT strickland_w_Page_30.pro
5ab72029d4b0f7a9968fcba1bb77af1a
502af1ebafdc13eff16393dbe4389872dd9a7cfb
8940 F20101112_AACULW strickland_w_Page_28.QC.jpg
97a13bbd6538010cc333c64b775c3219
e80e1e5c3e40769e15e5f5bbfa2fc7e255b17f6e
18191 F20101112_AACUQU strickland_w_Page_31.pro
9234935d85317f574c729e2c851fc18b
43b75923ba5d5f3e820df5a966897971b070da94
5337 F20101112_AACULX strickland_w_Page_19thm.jpg
6bf23e1872ed2065fc387d427dc78867
313a7586942f41076655bb7dd5a03764a6713a49
22257 F20101112_AACUQV strickland_w_Page_32.pro
f713a2cac1a944293c06af49e8ee265f
2fcc9c59f0ca266d412ed308d7739841ea726b4f
76295 F20101112_AACULY strickland_w_Page_09.jpg
cbd1c7151a379b32b6f06ae2f321d9b0
ad72a0bc3ad9ed32ec47da779099f0da2f3747a5
40589 F20101112_AACUQW strickland_w_Page_33.pro
f550abe3cc99eb75056548ba8c0da3d0
33fa5890526296083b6ecabaf7ca13cb3b12f5cf
21088 F20101112_AACULZ strickland_w_Page_11.QC.jpg
8bf83ad39bd96ac7a93891a5788c47cb
1f36c26200c64940561f982f3fbc367b2a44cda6
12021 F20101112_AACUQX strickland_w_Page_34.pro
d95ce863d5d460de3f3fa68f4e960f3d
5272ca062b6cda50b17d46a1a6fccbd72dca1768
1051972 F20101112_AACUOA strickland_w_Page_04.jp2
9574cc81e14bb26c152c1755d6b39f1b
0fd1947e83501cd2f6cb765b67d3fd81224a684a
3582 F20101112_AACUQY strickland_w_Page_35.pro
b1f230452689fb25c28a69a9078c8740
1b67e30eaf24cb94ee9fece973f208c9722a456b
7356 F20101112_AACUQZ strickland_w_Page_36.pro
7f347e557bfe27c8aac4f600b2722b73
2b418e4e9545c19ea3730464f47f80f5d70ebded
959398 F20101112_AACUOB strickland_w_Page_08.jp2
dcbac7f57f1aaffced3df82a65363eb5
da1eb7317e58b8423f9bc78477a67c3657c0d229
637876 F20101112_AACUOC strickland_w_Page_12.jp2
32db19f5ef7d467fd5ad97342011fddb
aa56fa3cba0b8a8c32ad97f217a2ce602ee6811b
33142 F20101112_AACUTA strickland_w_Page_05.QC.jpg
bf22f457a498d089b75de1739cca7bac
7bdef4ef901d397d2c7bf4358dadf952f29d5ca5
80308 F20101112_AACUOD strickland_w_Page_14.jp2
487738bdd2f604c804877a39141a7e55
e806fd52c86a97e79b9460be1fd94ddf72155c64
7235 F20101112_AACUTB strickland_w_Page_05thm.jpg
09ac3a1c5a41b3dbcce300322ec98959
d1738be4a80100fd0eedd2dbfc37ebb0ede39558
996474 F20101112_AACUOE strickland_w_Page_17.jp2
7df8ad841ec97ccf6af788c7b86cc7fc
1be30976bc052abe374349253da807dd58d1d790
11873 F20101112_AACUTC strickland_w_Page_06.QC.jpg
d1d6d614349309ceb1be3017831a88ff
7204abec27c2f612a305e95c5757bfb682c6132b
734317 F20101112_AACUOF strickland_w_Page_18.jp2
00b450b0c19dc6cd2e5e866005da7d82
3d7261789a3abae27b5eb5ecb649b681c972faa3
21339 F20101112_AACUTD strickland_w_Page_07.QC.jpg
9834f6d4a929cca55d8b8a2e88c3c632
adc79a7872b789f6cc1ad339dc5fc1d169612696
1042780 F20101112_AACUOG strickland_w_Page_21.jp2
ed0ba964b6dd136008f9cfd291c7dcdd
8bc24b4fafeed05b307554d28bd1817f0b34bddc
5128 F20101112_AACUTE strickland_w_Page_07thm.jpg
514047cb8409eebaff406d3008e8b54f
bfb705f210a2cc6767e1e9c29d9e5a91e30ad33a
972687 F20101112_AACUOH strickland_w_Page_22.jp2
32b77c797d466708afe5f179f7f6bdf2
799e80550c26874e69bd44078fd1986e759134dd
29490 F20101112_AACUTF strickland_w_Page_10.QC.jpg
f2fa8b98015c49576836a97e0a77e7d1
0272000fca4c7507abef7503d583bda6f15b83ba
1051969 F20101112_AACUOI strickland_w_Page_24.jp2
da8dc178acf8677393fa08f15347205a
0464cb6d4bab39b1d85e29472bfa294e711152bc
1051958 F20101112_AACUOJ strickland_w_Page_26.jp2
d16051a378175ab1a3a3a443e6df3d74
ae3ffabc6a722d2e83d8e2d9d932c99ac9f9b8d4
6061 F20101112_AACUTG strickland_w_Page_11thm.jpg
b92f7606fe43f804d7bc7808d3290fc2
81bfea6f8288b0d70e32bd0ebd4f7c7c3b9feb59
223528 F20101112_AACUOK strickland_w_Page_28.jp2
edd83cc466fcd0d62c86455d039af2fd
a12efef8dcd59ffe6e7119e7dec7af03f90c8656
20462 F20101112_AACUTH strickland_w_Page_12.QC.jpg
82f25fefe5c0cf3e1e96f7b18570c8a4
17154eee485453f0ba6ab2751279fc4ebd882e0c
241134 F20101112_AACUOL strickland_w_Page_30.jp2
4d38646a7bcf5d14600956061befa1f5
b3497a5d7edc87c7c0fdbc8639b7af116b927a21
5751 F20101112_AACUTI strickland_w_Page_12thm.jpg
12050955c0df3342c83e2a3704555718
e5336d013fb092bc7cf4bc9c7910db7a15fe1e77
25402 F20101112_AACUTJ strickland_w_Page_14.QC.jpg
a9e58212393e8efbbb2211b163d1ac46
e78fbe49bca74d311273e761bb989185dd596520
476359 F20101112_AACUOM strickland_w_Page_31.jp2
71a218db0a3f3125624242ddd93a1ef7
28190f0680219ad2d0266da4436bbfdb4f7775aa
26304 F20101112_AACUTK strickland_w_Page_15.QC.jpg
c68be05150f4f3d46294945bb1b3ad01
a4ee666f722fcdb9b8a84a3691f574fe57e647da
888272 F20101112_AACUON strickland_w_Page_33.jp2
61611a38847b55726dc2f15292809a8d
ab3dcd440c80288af4cc28e9db365a9ad28ef9e3
7071 F20101112_AACUTL strickland_w_Page_15thm.jpg
e6564842872ba8861a32cd8bdc6b64f3
3b27261cf96ecc77015ba2c295bfd075ccb6c9a0
355972 F20101112_AACUOO strickland_w_Page_34.jp2
fd7dbc859d9eb9a221852db48c656430
77be7aa55593e824cd835a088a888c39434d919a
6712 F20101112_AACUTM strickland_w_Page_16thm.jpg
6bca214670e9e9669f26f558b2f4ee53
58e5e61f2008079eac64df351861a1b44c58e3dd
20535 F20101112_AACUOP strickland_w_Page_35.jp2
5d63d0779cbbb296547425dd4832df2e
58215e1ee663f797b18465de5036d7efdbf76b38
24671 F20101112_AACUJT strickland_w_Page_16.QC.jpg
c1333780ad7406f7df651561ceff7f69
7d42c1abdefd6b9e537c970620c058478643e066
28169 F20101112_AACUTN strickland_w_Page_17.QC.jpg
e9b19f0c47d8ea116afe6c8d60c0df85
651624c284e3c2e35a8095a812a879159d539b37
31817 F20101112_AACUOQ strickland_w_Page_36.jp2
9dfc6d7d4023c337156681d5eccec577
c34a2c72a57f2e8e96c289718298d9a37f44ecd4
38208 F20101112_AACUJU strickland_w_Page_06.jpg
6aa76a414b9b2953b8570b7c25f2d969
100afa64e05e80c14a469d6e5723150b99c316c6
7480 F20101112_AACUTO strickland_w_Page_17thm.jpg
6792f8dda68a0aefca6bdc177f61619e
878abd89a3727bb134f4b79b71f43763f6cb814b
32932 F20101112_AACUOR strickland_w_Page_37.jp2
5629014dabc8b8f2045231a5b849e7e9
1514b057a9813a2d86c2730f22f69ceb79472bbe
799106 F20101112_AACUJV strickland_w_Page_16.jp2
6ad8b33b99545231e680bb607b6e9083
6785240a9e1726cbe8f1a7556f4d90f81a75437d
5559 F20101112_AACUTP strickland_w_Page_18thm.jpg
db7fc47153cbc285a8cd41766af49acd
49f5066bccc57a0b3c9c7d6738e1396fa96191bb
57643 F20101112_AACUOS strickland_w_Page_38.jp2
b54c34cea5af834948208f77eccc8009
ca4a62caaaa6878d4cac034e6223f06400135f37
2408 F20101112_AACUJW strickland_w_Page_05.txt
d170a9c18ee1a5de64df1b8275ee52e5
6848f8474cb06ac9cda3ae2cb7540f0f18770022
20974 F20101112_AACUTQ strickland_w_Page_19.QC.jpg
a7a15bc8b20bfd8e04614eac152abffb
f49ae42c9db517de8a163e85c3215aaf16637bf6
29196 F20101112_AACUOT strickland_w_Page_39.jp2
a97ca296e54b91d98cebc8454beeff52
06da3702701911535218c34b1741d257f03d426d
906269 F20101112_AACUJX strickland_w_Page_15.jp2
0510d8c74388e6120bf5f24998e50deb
bfe9cb7c768aeb52c72a12fc773109a985140440
4407 F20101112_AACUTR strickland_w_Page_20thm.jpg
d9838ba61ecf4102461456b2d5513365
d43013900a5e565ed219f0c1f8ae54df1f889e13
F20101112_AACUOU strickland_w_Page_01.tif
21a0527a2281daf5987b66d2a737709f
c27fbea0ddde1223f91f379a7394f5fe6de49d42
578432 F20101112_AACUJY strickland_w_Page_06.jp2
2fa3f45e9b9ac87680895a1d660c7f2a
24115105e890406074464c9c46f65c7f129e2421
5603 F20101112_AACUTS strickland_w_Page_22thm.jpg
790a6500128a4f3dc29c16431db5e447
cd85b642389c952789c60ffb90e9c15fa19166fb
F20101112_AACUOV strickland_w_Page_02.tif
7720f143bfd7a5c82e4f2920e823e957
df7ef954b79edaa264405d4b9c7ff5eb86922479
1051985 F20101112_AACUJZ strickland_w_Page_25.jp2
091c76d313665830f67241ff64e5ba65
84ecb5934434d80b664ba808588ca89d4ff662d7
6242 F20101112_AACUTT strickland_w_Page_23thm.jpg
cf550b27ea40af949c6e0bd05ec295d6
c4e309962a2240828ce7db43d343614b62c3b549
F20101112_AACUOW strickland_w_Page_03.tif
0abe1a5c149e9d33e315b723ade63782
914a77dc2710fd7c5348c6369f046e0ae1b4b8b7
8232 F20101112_AACUTU strickland_w_Page_25thm.jpg
f048641000e0ae568b835d0dd6596b1a
bc170bf7aa7d0f462030bde0a42d2fe554973058
F20101112_AACUOX strickland_w_Page_05.tif
6695f36854cb849ad1b7e7166291b3df
eb61d10d572e4b0591bb98986cd4fc9b557d2887
16627 F20101112_AACUTV strickland_w_Page_26.QC.jpg
afee694f106b15834c321a81d3a41ec1
e13a58b7535297c1deb9b736c4dfeaffb0dee299
F20101112_AACUOY strickland_w_Page_06.tif
6592983b154cabc62dca67de4fe8bdb1
7f0953d74b6f88731fcb57890589bbfa6d22325b
4842 F20101112_AACUTW strickland_w_Page_26thm.jpg
1dd353ea520e9dcef43f4162c732c158
efecd643e1e56800e40029d771d1d5403d4f6edd
1051981 F20101112_AACUMA strickland_w_Page_13.jp2
614ac198c16c05c4010f9c6c5e998a16
9c7da506daaa5db30ab1284098a9100687be6536
F20101112_AACUOZ strickland_w_Page_08.tif
dd344397e6ccf2fcd1569d55a8115377
70372b8f67694629ca8542850f5a6cb428f0a64c
2780 F20101112_AACUTX strickland_w_Page_28thm.jpg
50bcb64ba0650fae53c4a1d782292732
ac7bc3fd6fcab80b1ab1390e0b87b78d56dd43d1
4226 F20101112_AACUMB strickland_w_Page_22.pro
2cc7cf5b281eb9a8e09647ea493816bb
c63031d78fa8d640f92001a598202685ac8ec818
12097 F20101112_AACURA strickland_w_Page_37.pro
67c681f2dc7ff0ece3ff4bc3b79561ca
b22675e06cb5f4d27afeb801129081d8f3de1c26
25487 F20101112_AACUTY strickland_w_Page_29.QC.jpg
f8f86079801a7581e1f42fc8cb78d00e
914c80d529a5b0bbfde6a3a824d561cb98eeed5d
314 F20101112_AACUMC strickland_w_Page_23.txt
aa6ba6bc58d3acc5c0b275846e322980
4c44470b2cf93e8b2625529d48ba68a86783c435
24651 F20101112_AACURB strickland_w_Page_38.pro
e74780ba7bb8bdfff787ffc633987597
3e5d4703b1503d089d02c8be563d3d2cce60c526
6300 F20101112_AACUTZ strickland_w_Page_29thm.jpg
e37698469ac05a71ba623f2fd4c52cfd
106ebcf88ae2bc0572e795ad4f816b277ff232d8
25839 F20101112_AACUMD strickland_w_Page_09.QC.jpg
22c21306a3cc271159d34025bdc037d9
4082a8be8f42e96c0975f5e83ef54421b0371e4a
435 F20101112_AACURC strickland_w_Page_01.txt
bf027ff5418683db6ec8d6ea049cf3a6
97f0d5537a64465ef3d392e7bb54958aa6858ec9
F20101112_AACUME strickland_w_Page_31.tif
4778ee8716d4751d72a682292938fcd3
fd8976a5af8710cd0e493d0a459305fa53885607
112 F20101112_AACURD strickland_w_Page_02.txt
2b8511198bb7626af2c02b35be052aca
cf0c8cd95b2cb1495fce045bfd793bedd3c7870b
567 F20101112_AACUMF strickland_w_Page_34.txt
0af4a70a2b0442863acc86a550f3b477
3690be382a3daec82ef808f4147aa2a005322338
467396 F20101112_AACUMG strickland_w_Page_20.jp2
9052371e70ed4cfc893ccc14923f57a5
f6c6bb66dd1077ae0cb91044bd7e0a6335b52638
2031 F20101112_AACURE strickland_w_Page_04.txt
2058930d0d485f942b683f0e9d81f720
b4dbd8d3dcfe3e66e057b26fca731a5818b44895
F20101112_AACUMH strickland_w_Page_04.tif
78cb7d10fe00dd6507db7bd255c4a4d5
326266975a8fbb53d1b31b8947f19a16147a3d87
1907 F20101112_AACURF strickland_w_Page_10.txt
54e07af37e59fab77608605cb0ed5019
a9a7329cc77ba933bac6b5ccd4b1e148f2ea4627
58110 F20101112_AACUMI strickland_w_Page_26.jpg
4aad3bebaa688749cf773d837afd87e0
161ff058eb5cb928f7ac02fb3d9ccc7e06efd7d7
1764 F20101112_AACURG strickland_w_Page_12.txt
7a7a136ef62711643a2ebdcb77d9230f
10a0d3df1e6e4c7898cd7489818b84ef964e2664
1689 F20101112_AACUMJ strickland_w_Page_09.txt
7c2ba03fb33063d7dbe95689104c4817
62fef1cbcda56bc4c27e42ba3dd2d7fab29af7dd
1951 F20101112_AACURH strickland_w_Page_14.txt
473f9990716f743620e14e88f9c8a177
bcfdf06ec49f88c7c9a9be93575e2bcdc09e3349
873369 F20101112_AACUMK strickland_w_Page_27.jp2
c1b67b856efab5f2744674f13b378ee8
e3fae7ae0cb7daa07261282270a4a90518e9c692
7527 F20101112_AACUML strickland_w_Page_10thm.jpg
fd63b9324f3b922afc8bbf3657297d1e
bea726f808a83f1defbe290be7ac15d441f1ea24
1814 F20101112_AACURI strickland_w_Page_15.txt
33b6a3093fc313196f7203ebc3deb53b
c86940e12000aada467b7d5dab6d5005d516e55e
696120 F20101112_AACUMM strickland_w_Page_19.jp2
3f00cc0ba9c153a83cadbbbe7a6d567b
9fcdf54355a3c07e44423d1a6279397af38a06cc
1740 F20101112_AACURJ strickland_w_Page_16.txt
2ae8d78885184f1bc432c8d10d0a182d
3b6cac00ad91301189203d7c22251aaa693c2449
2200 F20101112_AACUMN strickland_w_Page_13.txt
ba27b719fde334fb4ee5243e01a03cc2
8a9e791929819ff8d1554a1cf4990476694d71f4
1925 F20101112_AACURK strickland_w_Page_17.txt
63296a935adc295e71e4cdd23bee9f43
877bba71643e5ad3a5caea23015db183b16a9858
1707 F20101112_AACUMO strickland_w_Page_18.txt
7bbf8957d4ff8e24b376481e65557ff3
8396dfaddc687c3badaba14a9eb1206d18d1c2b1
1633 F20101112_AACURL strickland_w_Page_19.txt
cdec6ca0188c6b69b584a5ff4fed0b1c
65a08520b3275b2d1b1f3b7b0c9237dd7e69fe32
83222 F20101112_AACUMP strickland_w_Page_09.jp2
5fbb565c5ae50f57b0965b4b01b0b55b
993cdc35783ad4f303a336c225b897befa5882c2
861 F20101112_AACURM strickland_w_Page_20.txt
af2185506fe310c62b3f4d3092d95bd4
8441ca485b2497eb33f29775a669d77ff4f4b33d
48987 F20101112_AACUMQ UFE0020220_00001.mets
16e2fd53e28b01615bdc9219fea66673
247d70829634202a3019de1f4143816a00b7502d
2163 F20101112_AACURN strickland_w_Page_21.txt
930acfe857f5e3cdc73f9683bad050de
d0d0519aa4646ffa1cb399c4ecf337261e880d26
2099 F20101112_AACURO strickland_w_Page_24.txt
1b7701d028bce61aefc950fd5838103b
d83ecd7d6defbe9ec9b91ea639f9ffa0f093aab6
646 F20101112_AACURP strickland_w_Page_26.txt
062acc24cab0819b4e631db4b026a50b
07f6f3f78b49d4a146ee399909c61ccf765038db
26047 F20101112_AACUMT strickland_w_Page_01.jpg
2fd9e80ccc0ebd324397cf0c258024ef
5a4260efcb44c9174074928f7d1f8d9e53bfecb7
F20101112_AACURQ strickland_w_Page_27.txt
592d69a0a5dca8fe31847d5c791eca3c
ce9e60bbad99c7421d2638ad55b79a25355a5553
4847 F20101112_AACUMU strickland_w_Page_02.jpg
1cf8362b21252a244f555c2d947ed697
5d3e6a85c5f5ad8f860183bb56493e6473c3cbed
436 F20101112_AACURR strickland_w_Page_28.txt
e5579f1f39915735c7e8a1057a67e5ca
28c1d0bc4bbbbcbe5dc6bfecb5c778bd7a77ef55
18097 F20101112_AACUMV strickland_w_Page_03.jpg
a9c8dfdda579e106f31c4f10645f8b1c
c06911a66fe445bd5aafa506c3e5545fee55d02e
1937 F20101112_AACURS strickland_w_Page_29.txt
fc5f371417354b25e44c302d7464f99e
15425047cb4a41f3c2403be3b5dd52d897fe2b19
85525 F20101112_AACUMW strickland_w_Page_04.jpg
727ad8e0054a1dfb0d9a83f920c19f90
8efdec5841a7c6718a6f126c77bdf1b89010b0f3
514 F20101112_AACURT strickland_w_Page_30.txt
e805e8fae5714ffe83b2f7f643050cc2
6e9d0f313bc3191d7de0b8831f597a85a7100be9
70460 F20101112_AACUMX strickland_w_Page_07.jpg
5dddbe3f2d341f00b131e703e578de40
9c01df878248066cd0269919402f5334765dc174
1067 F20101112_AACURU strickland_w_Page_32.txt
c56f5b4010355adb3ec0b15c89797dfa
11294c30e28e45dfb2284590d3627667cb131f74







BIFURCATIONS OF THE DEGREE-TWO STANDARD FAMILY OF CIRCLE MAPS


By

WILLIAM CHRISTOPHER STRICKLAND



















A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2007


































2007 William C'! i-l, -1!1. ir Strickland









ACKNOWLEDGMENTS

I wish to thank my advisor, Philip Boyland, for his constant support and patience

during the researching and writing of this thesis. The time which he committed to this

project has been a critical part of its success, and I am extremely grateful for all that he

has taught me.









TABLE OF CONTENTS
page

ACKNOW LEDGMENTS ................................. 3

LIST OF FIGURES .................................... 5

A B ST R A CT . . . . . . . . .. . 7

CHAPTER

1 INTRODUCTION .................................. 8

2 T H EO RY . . . . . . . . . 9

2.1 Degree-n Maps of the Real Line ........... ............ 9
2.2 Covering Space Point of View ......................... 10
2.3 The Degree-2 Case ............................... 11
2.4 Some Dynamical Systems ........................... 13
2.4.1 Periodic Points and Orbits ......... ............. 13
2.4.2 Critical Points .................. ........... .. 14
2.4.3 Schwarzian Derivative .................. ....... .. 15
2.5 Periodic Orbits of Degree-Two Maps ................ .. .. 15
2.6 Flat Spots in the Graph of a .......... . . .... 16
2.7 The (b, w) Diagram for the Degree-Two Standard Family . ... 18

3 NUMERICAL RESULTS .................. ........... .. 19

3.1 Plots of the Standard Family .................. ..... .. 19
3.2 The Bifurcation Diagram of the Standard Family . ...... 21
3.3 C(! i .:terizing the Bifurcation Diagram ............. .. .. 24
3.3.1 Fixed Points and Saddle Points . ......... 24
3.3.2 Trapping Regions and Other Effects ................. .. 27
3.4 C(! i i'terizing the Double Bifurcation Diagram .............. .. 32

REFERENCES .............................. .. ..... 38

BIOGRAPHICAL SKETCH ........... ..... . .... .. 39









LIST OF FIGURES
Figure page

3-1 gb,w when w = 0.5 and b = 0.75. ............... ....... 19

3-2 gb,, when w = 0.2 and b = 0.2. ............... ...... 20

3-3 a when b = 0.87 and w = 0.3. ............... ...... 20

3-4 a when b 0.87 and w 0. .................. .. ...... 21

3-5 si(b,w). ...... ....... ................... .. ..22

3-6 2(b, w). ..... ......... ................. .. .. 22

3-7 Key for 3-5 and 3-6 ................ ........... .. 23

3-8 3D im age for 3-5. .. .. .. ... .. .. .. ... ... ... .. ... .. 23

3-9 sl(b,w) with b ranging from 1 to and w ranging from 0 to 3.. . . 23

3-10 si(b,w) with w ranging from -0.5 to 0.5. .............. ...... 25

3-11 Bifurcation diagram with the colors running through running seven times the
normal mod 1 .................. ................. .. 26

3-12 Graph of gb,w when b = 1 and the critical point is a fixed point. . ... 26

3-13 Graph of gb,w at parameter point s in 3-10. ............... .. .. 27

3-14 Graph of gb,w when b = 0.6 and w = -0.6 ................ .... 28

3-15 Graph of gb,w at parameter point a in 3-10. ................ .... 28

3-16 Graph of gb,w, approximately at parameter point 3 in 3-10. ........... .29

3-17 Graph of gb,w in area 7 in the bifurcation diagram. .............. 30

3-18 Graph of gb,w approximately at point 6 in the bifurcation diagram . .... 30

3-19 Graph of gb,w in the area c of the bifurcation diagram. ............ ..31

3-20 Graph of gb,w approximately at point Q in the bifurcation diagram. . 31

3-21 Double Bifurcation Diagram. .................. ...... 32

3-22 ab,w(X) when b = 0.6 and w = 0.6. .................... ...... 32

3-23 gb,w(x) when b = 0.726 and w = 0 with two fixed point lines. ......... ..33

3-24 gb,w(x) when b = 1.235 and w = 0.5 with three fixed point lines. . ... 34

3-25 ab,w(x) when b = 0.8 and w = 0. .................. ........ .. 34









3-26 gb,w(x) in region X, when b = 0.6 and w = 0.2. .................. .. 35

3-27 gb,w(x) in region Y, when b = 0.6 and w = 0.8. .................... .. 35

3-28 gb,w(x) in region Z, when b = 0.4 and w = 0. ................ 36

3-29 ab,w(x) in area nu when b = 0.85 and w = 0.3. .................... .. 36

3-30 ab,((x)in area lambda when b = 1.05 and w = 0.5. ................ 36

3-31 ab,w(x) in area theta when b= 1.05 and w= 0.1. ................ 37

3-32 ab,,w(x) in area U when b = 0.97 and w = 0.83. .................... .. 37

3-33 ab,w(x) in area V when b =0.97 and w 0.17. .................... 37









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

BIFURCATIONS OF THE DEGREE-TWO STANDARD FAMILY OF CIRCLE MAPS

By

William C!i i-I. 11h!. r Strickland

August 2007

C(!i ': Philip Boyland
Major: Mathematics

In this research I parameterize the fractals generated by lim,,, f(xr)/2' where

g(x) is the degree-2 standard family 2x + w + b sin(27rx) of circle maps iterated n times.

Beginning with an exploration of degree-n maps and their projections onto the circle, I

introduce some theory on lim.. g for continuous, degree-2 maps f and present key

points from dynamical systems. Next, I explore the phenomenon of large flat spots in

the graphs of many of the fractals and present the motivation for taking the values of

'(x)/22 at the critical points of g(x), and using the results as a bifurcation diagram for

the family of fractals. After building up this theory, I present numerical results for the

fractals and use these results to explain the trapping effects in T(x)/2' and their relation

to flat regions in the bifurcation diagram. Finally, I conclude with a characterization of

the bifurcation diagram of lim ,,.T(x)/2' involving first one, and then both critical

points.









CHAPTER 1
INTRODUCTION

This work is a study of non-linear dynamical systems. Heuristically, a non-linear

system is one whose behavior cannot be described using only the parts that comprise

it. Systems of this type are of particular interest because they are the most prevalent

in nature and are often difficult to understand. Looking at the wide variety of fractals

obtained from iterating the degree-n standard family, one can immediately see that the

dynamics of this system are much more than just the sum of its parts.

The one dimensional dynamics that I will discuss have the added feature that they

act on the circle and not just the real line. Often we use the lift, the real line version

or the function, to better understand what is happening on the circle where output has

a tendency to overlap. Once this step is accomplished and the theory properly built

up, the natural way to seek understanding of the function is to find some sort of map

that describes how it behaves when the values of its parameters change. Some standard

references for one dimensional dynamics are [1], [2] and [3].

This strategy is exactly what is used in this paper in which I describe the bifurcation

diagram for the degree-2 standard family. I begin by explaining more about this family

and discuss some of its particular details before moving on to the specific dynamical

systems studied here. After establishing the relationship between the family on the circle

map and the family on the real line, I will rely heavily on numerical results to draw

conclusions about how changes in the parameters effect the long term behavior found by

iterating the function.









CHAPTER 2
THEORY

2.1 Degree-n Maps of the Real Line

Definition 1. Let f : X X be a function. We /. I;,'. the kt iterate off, or fk, as

fofofo ... o f(x) k times.
Definition 2. Ifn E Z, a function f : R -+ R is said to be degree n when f(x + 1)

f(x) + n for all x e R.
Lemma 1. If f : R -+ R is degree n and m E Z, then

1. f(x + m) = f(x) + nm.

2. fk is degree nk, i.e. fk(x + 1) f(x) + k
Proof: We can assume m / 0. Suppose that m E N, and proceed by induction

on m. The base case is m 1, and by definition we have our result. Now suppose the

lemma holds for m < m. Then f(x + m + 1) = f((x + 1) + m) = f(x + 1) + nm

f(x) + nm + n = f(x) + n(m + 1). We can quickly check that the lemma holds for m E Z
as well. Suppose m < 0 and let k = ml. Then f(x) = f((x k) + k) = f(x k) + kn, and

so f(x) k = f(x- k). Thus f(x) + mn = f(x + m).

Proof of 2: Proceed by induction. If k = 1, f(x + 1) = f(x) + n = f(x) + n1 which

proves the base case. Now assume the lemma is true for k = m. Then fm+l(x + 1) =

f(f m(x + 1)) = f(f(x) + nm) by the induction hypothesis. Now f(f(x) + n"m)

f(x) + n nm = f(x) l. +

Example 1. The following are some examples of degree n functions:

1. f(x) = nx is degree n.

2. The degree-n standard fi n,,:l; for parameters w, b E R:

g(x) = nx + w + bsin(27rx) (2-1)


3. A periodic function of period 1 (y(x + 1) = 7(x)) is the same as a degree-zero map.

4. If 7 is degree zero, then f(x) = nx + 7(x) is degree n.









Lemma 2. The map f : R --- R is degree n if and only if there exits a degree-zero map 7
with f(x) = x + 7(x).
Proof: Let f be degree n. Then f(x + 1) = f(x) + n. We want to show that

f(x) = nx + 7(x), so define 7(x) = f(x) nx. We just need to check that 7 is degree-zero:
7(x + 1) f(x + 1) n(x + 1) = f(x) + n x n f(x) nx = 7(x). Now conversely, let

7(x) be a degree-zero map with f(x) = nx + 7(x). Then f(x + 1) = n(x + 1) + 7(x + 1) =
nx + n + 7(x) = f(x) + n. So f(x) is degree n. D

2.2 Covering Space Point of View

The circle is denoted S1 and treated as the real numbers mod 1, i.e. R/Z, or as the

unit circle in the complex plane {z E C : z = 1}. I will often use both of paradigms.
The covering projection is the map p : R -- S1 defined alternately as p(x) = x [xI,
i.e. the fractional part of x, or else p(x) = exp(27ix). The map f : R -+ R is said to be a

lift of a circle map if there is a map / : S1 S1 so that p o f = f o p, i.e. the following
diagarm commutes:
R R---


(2-2)


S1 -f S1
In the situation shown in diagram (2-2), the map f is called the lift of the map f and
conversely, the map f is called the projection of the map f. A point x with p(x) = is
called a lift of T. Note that if x is a lift of i, then so is x + n for all n E Z.
Lemma 3. A function f : R -+ R is the lift of a circle map if and only if it is degree-n for
some n E Z.
Proof: Suppose that f is the lift of a circle map. Note that for x, x' E R, p(x) =

p(x') if and only if x = x' + n for some n E Z. Now since p(x + 1) p(x), f(p(x +
1) = f(p(x)) and by the commuting diagram (2-2), p(f(x + 1) p(f(x)). Thus

(f(x + 1) f(x)) E Z and so, by continuity, there exists n such that f(x + 1) f(x) = n.









Now conversely, let f be a degree-n function: f(x + 1) = f(x) + n. For each y E S1,

pick some r E R such that p(r) = y and define f(y) = p(f(r)). The actual choice of r does

not matter since p(f(r + k)) = p(f(r) + kn) = p(f(r)), so this function is well defined. We

now have that p(f(x)) = f(p(x)) by definition. D

2.3 The Degree-2 Case

From now on, we will assume that f : R -+I R is degree 2 and that f: S1 S1 is its

corresponding circle map. From Lemma 3, we may assume that


f(x) = 2x + y(x) (2-3)

with 7 periodic. The most important degree-2 map for us is the degree-2 standard family:


gbw(x) =2x + w + bsin(2rx) (2-4)

The following theorem is essential in our discussion of gb,w(X) [4].

Theorem 1 (Boyland). Let f : R -+ R be a continuous, degree-2 map and 1. 7;,'.: F, by:

f"
F,-: (2-5)

Then there exists a continuous, degree-one map a : R -+ R with F, -+ a unifoi ,,l ;

Furthermore, if 7 is as in (2-3), then:

F,-(x) x + 7(f 1(x)) (2 6)
j=1

and

a(x) x + f )) (2-7)
2J
j= 1
In addition, a o f = d o a where d(x) = 2x, i.e. the following l.:,rram commutes:

f R

a a (2-8)
R d R
----- RKD









Proof: First, I will show that (2-6) holds by induction.

Base case: If j 1, then we have that

Fl(x) f(x) 2x + 7(x) +
2 2 2

Induction step: Suppose that (2-6) holds for n = k and consider k + 1:

f k+ () f(fk(x)) 2 fk(x) + (fk(x))
Fk+(x) 2k+1 2k+1 2k+1

fk(x) (fk(x)) Fk (f ())
2k 2k+1 2k+1

By the induction hypothesis,


Fk+I(X) + k f-l + (f ))
2 i2k+1
j=1


k+1 _- ))

2j
j=1


(2-9)








(2-10)


(2-11)


Now to show that limn,,, Fn converges uniformly, consider 7 from (2-6). 7 is

degree-zero, so 7(x + 1) = 7(x). Since 7 is periodic and continuous, there exists M with

I7(x)| < M for all x E R. As a result, for each j E N:


(2-12)


M converges, so by the Weierstrass M test [5], FT converges uniformly.
All that remains is to check that a o f d o a when d(x) = 2x:

f"( f(r))
a (f (x)) = lim Fn(f (x)) = lim
n-*oo n-2oo n

fn+1(.) f'(x)
lim = lim 2 f (X 2a-(x) = d(a(x))
n-oo 2n n-oO 2n

All of the maps in (2-8) project to the circle and so we also get

S1 f S1


S1 S1


(2-13)


(2-14)


7(f J-(x)) < M
23i 2i









In the situation shown in the diagram (2-14) (or (2-8)), the map d is called a factor

of the map f and conversely, the map f is called an extension of the map d. The map J is

a ',,,'... ,' i,, ;i from (or of) f to d.

2.4 Some Dynamical Systems

2.4.1 Periodic Points and Orbits

Definition 3. The orbit or tr i. /.., '; of a point x is all iterates of x under f and is

written as o(x, f). That is, o(x, f) {f"(x) : n E N}.
In this section the space X is either the real line R, the interval [0, 1] or the circle S1,

and f, g : X X are differentiable functions in the class C3.

Definition 4. A point x with f(x) = x is called a fixed point of f. For a map g, the set

Fix(g) denotes the set of all fixed points of g. If for some n > 0, f"(x) = x and n is the
least such integer for which that holds, then x is called a periodic point of least period n or

a period-n point. The orbit o(x, f) of a periodic point x is called a periodic orbit. When x

is a period-n point, its orbit o(x, f) contains ,,. /l;, n elements. Note that for a period-n

point x, x e Fix(fkn) for all k e N.
Definition 5. The fixed point x for f is attracting if there is an open interval I containing

x, and y E I implies that f"(y) -- x as n -- oo. The 1., -. such interval that contains

x is called the basin of x. The point is said to be a one-sided attractor if I is as above, but

instead of x being in the interior of I, it is one of the endpoints. A fixed point x for f is

repelling if there is an open interval I containing x, and y E I implies that for some n > 0,

f"f(y) I. A period-n point x is said to be an attractor, one-sided attractor, or repeller
if x meets the same fI;./,:'.,n for fn. Attractors and repellers are also sometimes called

stable and unstable, /' 1.. ,/; .
Lemma 4. Assume that x is a fixed point for f. If If'(x) < 1, then x is an attractor and

if f'(x) > 1, then x is a repeller.
Proof: I will show that if If'(x) < 1, then x is an attractor. The proof that if

|f'(x)| > 1 then x is a repeller is similar. Let E > 0. Since the derivative exists at x, f









is continuous at x. Thus, by continuity, there exists 6 > 0 such that for all ly xl < 6,

If'(y) < 1. Now by the Mean Value Theorem, there exists c such that c E [x, y] and

I f()-f( I f'(c) < 1. Thus If(y) x = If(y) f(x)l = If'(c,)1 y x We claim that
y--X


Mf(y) X| | f'(ci)| ly- Xy (2-15)
i= 1

for some ci E [x, y] with If'(ci)I < 1 and prove the claim by induction.

Base case: There is nothing to prove when n = 1.

Induction step: Assume that the claim is true for n = k. Then Ifk(y) xl < 6 by

hypothesis, so (fk+l)/(y) < 1 and by the Mean Value Theorem,


Sfk+(y) fk+( = If(Ck+l) < 1 (2 16)
fk(y) fk(x)

for some ICk+1- XI < Ifk(y) xI. Now we have that Ifk+l(y) fk+l(x)l fk+l(y) xl

If'(Ck+i1) Ifk(y)- fk(x)l If'(Ck+)l Ifk(y) xl. By the induction hypothesis,
k k+1
Ifk+1() X_ (cCk+1) f'(ci) y XI f'(i) y -x (2-17)
i=1 i=1
which proves the claim.

Now we claim that as limit If'(ci)l I 1. By way of contradiction, assume the

contrary. Then by the continuity of f', there exists z such that Iz x y < ly x| < 6 and

If'(z)| = 1. But then Iz x| < 6, which implies that If'(z)l < 1, a contradiction.
As a result, we have that there is a number R < 1 such that Vc, If'(ci)l < R. Let N

be such that RN < Then for all n > N, we have that:


i ff(y) x = f'(ci)l y x1 < R|y x < 6= (2-18)
i= 1

So when n -- o, If"(y) x = 0 and thus f"f(y) -- x. D

2.4.2 Critical Points

A point c E X is called a critical point for f if f'(c) = 0.









It is convenient to avoid crowding the superscripts and write Df(x) for f'(x). The
chain rule implies that

Df(x) = Df (f"- (x))Df (f-2(x)) ... Df(x). (2-19)

Thus the derivative of the nth iterate is the product of the derivatives along the orbit. A

point y is called precritical if for some n, f"(y) = c, a critical point. By (2-19) this implies

that DfI(y) 0 for j > n.
2.4.3 Schwarzian Derivative

Definition 6. For a function f as above, the Schwarzian derivative, S(f), is 1. fi., as

f"' 3 ,f" 2
SW -2 f) f (2-20)

An easy calculation shows that the degree-two standard family (2-4) is not injective if

and only if b > 1/7, and when b > 1/7, S(gbw)(x) < 0 for all x.

Definition 7. For an iterated function f and a point x in the domain of f, we f,.': the

omega limit of x as all the points y such that for some subsequence ni, limit f"' (x) = y.

That is,


u(x) = {y : lim f"'(x) = y for some ni -- oo}

With this definition, I proceed with a fundamental result by Singer [6]:

Theorem 2 (Singer). If f : X -+ X -,i/r. S(f)(x) < 0, then for each attracting

period-n point xo there is a critical point c in the basin of xo and hence u(c) is equal to the

orbit of xo.

Thus the degree-two standard family can have at most two attracting periodic points

because it has exactly two critical points.

2.5 Periodic Orbits of Degree-Two Maps

Now assume as above that f : R -+ R is degree two and it projects to the map of the
circle f : S1 -+ S1. The main dynamic object of interest is the circle map, as the circle is









compact and orbits of f often come back near themselves (recur). We need to understand

the connection between periodic orbits of f and their lifted orbits of f.

Definition 8. Assume that x E S1 has a period-n orbit under f and that x E R is a lift of

-. Now since f (() = then using (2-2), f"(x) = x + m for some mn c Z. In this case,
we -r ;, that x is a 1,',' (n, m) point for f.

Note that if I chose a different lift of x, I would get a different m. In fact, using

Lemma 1 for an arbitrary k e Z,

f"(x + k) f"(x) + 2"k = x + m + 2"k = (x + k) + m + (2" 1)k (2-21)

and so x + k is of type (n, (2" 1)k + m).

This means that the type of a period-n point x E S1 under f is only defined modulo

2" 1.

If x has type (n, m) for a degree-two f and a is as in Theorem 1, then using diagram

(2-8),


(f"(x)) = a( + m)

dn(a(x)) = a(x) + m

2'a(x) = a(x) + m

which implies that a(x) = 2- If I choose another lift (x + k) of 7, I get that

(2" l)k +m m
a(x+ k) -( 1)k k +
2" 1 2 1'

and so a(x) a(x + k) mod 1. So on the circle we have that if x is a period-n point, then

2 -) = e S1 for some 0 < m < 2" 1.
2.6 Flat Spots in the Graph of a

Definition 9. A flat spot for the 'j'i,, of a is a closed interval I so that a(xi) = a(x2)

for all x X2 E I, and I is the maximal interval with this 1", 1 .,/;, i.e. f is not constant

on iw,1 interval J with J / I and I C J.









Lemma 5.


1. If I is an interval with f(I) C I, then I is contained in a flat spot of a.

2. If I C S1 is an interval with f (I) C I for some n > 0, then I is in a flat spot of u.

3. If I C S1 is the basin of an attracting periodic point for f, then I is in a flat spot of
0a.

Proof:

1. Let I be an interval,-v I [a,b]. Then by induction, ff"() C I C [a, b]. So for
all x C I, a < f'(x) < b and thus < < f-. Now by the squeeze theorem,
limn. fn- 0, so for all x C I, a(x) 0. As a result, I is contained in a flat spot
of a.

2. The proof is the same as for 1, just add in the bars denoting that you are on the
circle.

3. By definition, I is the maximal interval on which lim f (x) = J(x) = o, where Xo is
an attracting periodic point. By part two of this lemma, I is a flat spot of 5. o

Remark 1. An example of a flat spot that does not come from the basin of a periodic

point is a tril j.':,,, region; a region in which the points cannot escape. The f-,l.it.:. of a

flat spot I... -,, 1,]:,,j to a = 0 or a = 1 is i. /-l;, that: a trapping region that does not go

around the circle (see numerical results for .. ..:'' examples and descriptions).

Lemma 6.

1. If x is precritical and f"(x) = c, a critical point, then for all j > 0, F]+j(x) = 0, with
F, as 1, 1. ,lin Theorem 1.

2. If f has an attracting periodic point x of type (n, m) with 0 < m < (2" 1), then for
some critical point T, -(d) = and further, c is contained in a flat spot of a.

Proof:

1. Since f"(x) = c, F, and thus FT = 0. F1+i = f() and since f(x) is a real
number, F+, =- 0. By induction, F' + = 0.

2. We have that S(f) < 0, so by Singer's Theorem there exists a critical point T
with w(() = o(-), the orbit of x. This fact means that c is in the basin of x and









by Lemma 5, c is in the flat spot of T. By the discussion in the previous section,
a(() = and since c is in the basin of x, we also have a( ) = m. E

2.7 The (b, w) Diagram for the Degree-Two Standard Family

The degree-two standard family (2-4) has exactly two critical points in the interval

[0, 1] and thus the circle map gb,w has two critical points. The critical points of gb,w are the

solutions to g'b(x) = 0, and they depend on b but not w. I denote them as cl(b) and c2(b)

and solve for them as follows:




0 = gb(x) = 2 + 2b7 cos(27x)
-2
2b= cos(27x)
2bx7
arccos(-) 27 arccos( )
= x = cl(b), 2 = x = c2(b)
2xr 2xr

The notes so far indicate the importance of studying the value of a at a critical point.

Note that we get a different a for each (b, w). I indicate this by writing ab,, and for each

(b, w), I define:

s(b, w) = ab,w(Cl(b)) and 2(b, w) = b,w(c2(b)). (2-22)

Note that Lemma 6 -,i- that if gb,, has an attracting periodic point i of type (n, m),

then sj(b, w) =- for j = 1 or 2, or both, but not necessarily the converse.

Remark 2. As will become evident in the numerical results, we can r, i,,i.;l. things about

the relationship between si and s2. In particular, si(b, 1 w) = s2(b, w), allowing us to

study si and generalize to 2*.










CHAPTER 3
NUMERICAL RESULTS

3.1 Plots of the Standard Family

We will now begin to look specifically at the family of maps b,w = limo(gl,/2"') of

the standard family gb,w = 2x + w + bsin(27rx) on the circle. To begin, 3-1 is a plot of gb,w

when b = 0.75 and w = 0.5 with y = x + 1 included:



3

2.5

2

1.5

1

0.5


0.2D.4. D. 8 1



Figure 3-1. gb,w when w = 0.5 and b = 0.75.

The position of w and b in gb,w gives us the result that changing w has the effect of

shifting the plot along the y-axis while changing b has the effect of increasing or decreasing

the size of the bumps in the graph. To illustrate this effect, Figure 3-2 is gb,w when both b

and w have the value of 0.2. Again, I have plotted y = x + 1 with the graph.

Since gb,w is on the circle, the intersections of y = x + n with gb,w represent the fixed

points of b,b,Vn E Z. In both Figure 3-1 and Figure 3-2, we can visualize all intersections

with only y = x + 1 since the graphs on R2 do not cross y =x or y x + 2. Comparing

these graphs, we also notice that the number of fixed points in gb,w can change with the

parameters. Now as in Theorem 3.1 of C! .lpter 2, define Gb,w,,(X) as follows in equation

(3-1):














Gb,,n (X)


2.5


1.5


2"


(3-1)


Figure 3-2. gbw when w = 0.2 and b = 0.2.


Since Gb,w,10 is a good approximation of Kb,w under most of the graphical resolutions

used in this paper, the reader may assume that Gb,w,10 was used to produce results for Tb,w

unless stated otherwise. With this note in mind, here is an example of a:

g[x] (2 x+ 0.87 sin (2 x) +0.3)


1.75
1.5
1.25
1
0.75
0.5
0.25


0.2 0.4 0.6 0.8 1


Figure 3-3. a when b = 0.87 and w = 0.3.

While this plot is obviously quite complicated, if we merely reset w to 0, we get the

plot shown in Figure 3-4. Now there are obvious flat spots, and the process used to create

the plot is clear. If we are willing to hold either b or w fixed, we can directly observe how










ab,w changes with its other parameter by using animations or 3D plots. In addition, all of

ab,w can be viewed by using an animation of 3D plots.

g [x] (2x+ 0.87 sin(2 x))
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0.2 0.4 0.6 0.8 1

Figure 3-4. a when b = 0.87 and w = 0.

Unfortunately, all these v--,v of viewing the ab,w family are quite cumbersome and

do little to tell us what is actually causing the plots to look the way they do. Given the

importance of the critical points shown in chapter 2, a natural solution to figuring out the

trends in vb,w, is to look at the behavior of the gb,w critical points as we vary b and w.

3.2 The Bifurcation Diagram of the Standard Family

As stated in C'! ipter 2, gbw has exactly two critical points whenever b > 1-, and so

there are two bifurcation diagrams, si(b, w) and s2(b, w). Graphed as a density plot, these

bifurcation diagrams are shown in 3-5 and 3-6. If x e S1, the color value for x in Figure

3-5 and Figure 3-6 can be found by the radius 0 = 27x on the circle in Figure 3-7.

To better visualize what the colors mean, I have also included the 3D version of the

bifurcation diagram in Figure 3-5 as Figure 3-8.

Of course, even though we must take b > -, there is no reason why we must limit

ourselves to b < 1 + -, which is the upper bound for b in all the previous plots. Figure 3-9

is a plot of s1(b, w) in which the dimensions of the plot are 3x3.

Recall that since 1s(b, w) is on the circle, 2x + (w + n) + b sin(27x) 2x +w + b sin(27x)

mod 1 which accounts for the vertical repetition in 3-9. 3-9 also dispels the illusion that

there is noticeably more blue in si(b, w) than green. Similarly, the non-red colors appear

more even when we expand the range of b in s2(b, w). Using a graphics program to count



















1 1




0.8




0.6




0.4




0.2




0
0



Figure 3-5. s(b, w).













1




0.8




0.6




0.4




0.2




0


.4 0.6 0.8 1 1.2


0.4 0.6 0.8 1 1.2


Figure 3-6. s2(b, w).






























Figure 3-7. Key for 3-5 and 3-6.


0.5


0.25


Figure 3-8. 3D image for 3-5.


3 ,


0.5 1 1.5 2 2.5


Figure 3-9. s(b, w) with b ranging from to and w ranging from 0 to 3.
7T 7T









the pixels of the most prominent colors under different resolutions, I have arrived at the

following statement:

Conjecture 1. In the complete plot of s(b, w) and s2(b,w) (that is, when b r,",. from

to .,I ),.i)l the areas of i(.- ,, *ui,,.:., colors is equivalent.

This conjecture is further supported by the second part of Lemma 6 in C'! Ilpter 2.

For different parameter values, cl (c2) could be attracted to different points in the same

periodic orbit of gb,w. As long as the period of the attractor is the same, it is natural to

expect that the areas for attraction in the parameter space be equal. Consider 3-7 and

find the position of the most prominent green and blue in the parameter space as an

example. Green is found at 2 and blue is at 4, which means that green corresponds to

the value 1/3 and blue to 2/3 on S1. These are exactly the values possible when gb,w has

an attracting periodic point of type (2, m) for 0 < m < (2" 1).

3.3 Characterizing the Bifurcation Diagram

Now that we have generated these density plots for si(b, w) and S2(b, w), the obvious

question to ask is what the features of the plot tell us. As mentioned at the end of

C'!i lpter 2, si(b, 1 w) = 2(b, w) so in this section, I will only talk about si(b, w) since

the behavior of s2(b, w) is similar. Figure 3-10 shows si(b, w) again, with some of the more

interesting features labeled.

3.3.1 Fixed Points and Saddle Points

The fixed point line in 3-10 represents the w value (mod 1) for which a given b value

makes the critical point a fixed point of a. This line was found numerically by solving the

equation:



ci(b) 2c1(b) + w + bsin(27rci(b)) (3-2)

We can immediately see that using the parameters to shift the fixed point slightly

away from the critical point does not affect the value of ab,w(cl). The critical point still

converges to the same place in the graph, the fixed point of gb,,. By Lemma 4 in C'!i lpter

















0


-0.2.




0.4 0.6 0.8 1 1.2

Figure 3-10. si(b, w) with w ranging from -0.5 to 0.5. While this image was created using
a graphics program to label the bifurcation diagram and combine it with the
fixed point line in a size ratio preserving way, code can be found in the index
which places the line on the bifurcation diagram, verifying that the placement
is correct.

2, the fixed point is an attractor as long as the derivative of the point is less than 1, so we

could conjecture that the parameter line on which the derivative of the fixed point equals

1 (making the fixed point a saddle point) would form a boundary for the flat spot of the

critical point. Indeed, plotting this "saddle point line" on the bifurcation diagram shows

that it exactly follows the largest boundary for the red flat region (see Figure 3-11).

In examining 3-11, it is important to recall that the image was actually produced

using Gb,w,10 instead of ab,w and that there is only a limited amount of precision available

in density plots of this nature. The line appears further away from the colors as b

decreases, but the width of the colors increases in this direction as well. One can easily

imagine that if a true plot of ab,w was available, the colors would reach the saddle point

line for all values of b greater than 1.

To further validate this claim, we will now examine gb,w at the points s, a, and f listed

in 3-10. Point f is obvious and shown in Figure 3-12.

The graph in Figure 3-13 for point s uses w = -1.265.
















0.4


0.2



01



-0.2



-0.4


0.4 0.6 0.8 1 1.2


Figure 3-11. Bifurcation diagram with the colors running through running seven times the
normal mod 1. Once again, a graphics program was used to create the
picture, and I have included code which verifies the placement of the line.


Figure 3-12. Graph of gb,w when b = 1 and the critical point is a fixed point. The fixed
point line mod 1 has been included.












1

0.75

0.5

0.25

.2 0. 0.6 0.8 1
-0.25

-0.5

-0.75

-1



Figure 3-13. Graph of gb,w at parameter point s in 3-10.

Finally, the graph of point a in 3-10 simply shows a fixed point that is not a saddle

point but still left of the critical point. I have omitted it for the sake of brevity.

3.3.2 Trapping Regions and Other Effects

As explained in C'! lpter 2, the flat spots in ab,w are not only the result of attracting

fixed points but can also occur from trapping regions. In the following diagrams, trapping

regions for the critical point will be represented by red boxes. Figure 3-14 is a typical

graph of gb,w with a trapping region taken from the middle of the red region of the

bifurcation diagram. Note that using the fixed point line, we can visually see that the

critical point never maps outside the box.

Figure 3-15 is the graph of a typical point in the region alpha of the bifurcation

diagram. For the next few graphs, I will also include the horizontal line through the fixed

point which defines the base of the trapping region.

Since the line connecting the left-most fixed point intersects gb,"(x), the curve

provides a way that the critical point might escape if the box was extended to the right.

Notice that this effect could not happen in Figure 3-14 because the horizontal line

connecting the leftmost fixed point never intersects the curve. Since this line is dependent

on the position of the second critical point, it is not directly visible on the bifurcation















1



0.8



0.6



0.4



0.2







Figure 3-14. Graph of gb,w, when t


0.2 0.4 0.6 0.8 1


- 0.6 and w = -0.6


.2 0.4 0.6 0.8 1


Figure 3-15. Graph of gb,w at parameter point a in 3-10. w
the plot.


1.2 was used to generate










diagram. As we shall see when discussing the point phi in 3-10, the threshold of this effect

does become visible if the bifurcation diagram of the second critical point was shown on

top of the diagram for the first critical point. Now in Figure 3-16, we see that beta lies

right on the threshold the first critical point escaping.



1

0.75

0.5

0.25

.2 0.4 0.6 0.8 1
-0.25

-0.5

-0.75

-1



Figure 3-16. Graph of gb,w, approximately at parameter point 3 in 3-10.

Above point beta on the diagram, the critical point escapes the trapping region on

the first iteration of gb,w. It is still possible that critical point may enter the region under

a later iteration, but it now has an escape hatch where parts of the curve rise above the

top of the trapping box. The green lines in Figure 3-17 show how the critical point maps

below the trapping region in the first iteration.

Conjecture 2. In iw.;, plot that falls within area ,Iaiia,, the x values in the interval

represented by the bottom of the tr'j''.:'r region form a cantor set of points that never

escape the region. This statement should be ..,-; to prove using a code space.

At point delta, gb,w is on a threshold of no longer using the curve to fall below the

trapping region, as seen in Figure 3-18.

For area epsilon, iterations of gb,w sometimes take the critical point into the trapping

region while others allow it to escape. Because we must examine ab,w to determine the

result, the graph of gb,w in Figure 3-19 is somewhat unenlightening.




















0.8


0.6


0.4

0.2


0.2 0.4 D0. 1

0.2

-0.4




Figure 3-17. Graph of gb,w in area 7 in the bifurcation diagram. w
create the plot.


-0.8 was used to


Figure 3-18. Graph of gb,w approximately at point 6 in the bifurcation diagram.



































Figure 3-19. Graph of gb,w in the area c of the bifurcation diagram. w = -0.65 was used to
make this particular plot.

Finally, phi is situated on the line in the bifurcation diagram that marks where the

horizontal line through the right fixed point intersects the first critical point. As discussed

earlier for the horizontal line through the left fixed point, this threshold has particular

significance for the second critical point, and I have graphed it in Figure 3-20.



1.2

1

0.8

0.6

0.4

0.2


0.2 0.4 0.6 .8 1

-0.2



Figure 3-20. Graph of gb,w approximately at point ( in the bifurcation diagram. A
horizontal line through the right fixed point has been included.











3.4 Characterizing the Double Bifurcation Diagram

Now we shall examine different areas of the density plot formed when the bifurcation

diagram of the second critical point is placed on the bifurcation diagram of the first

critical point. These areas are labeled in Figure 3-21. Obviously, some of these areas

contain concepts we have already examined in the previous section. Area F, for example,

has already been shown under gb,w in Figure 3-14. Figure 3-22 is the a(x) of the same

point in the parameter space (mod 1 for w).


I


0.4 0.6 0.8 1 1.2

Figure 3-21. Double Bifurcation Diagram. The bifurcation diagram of the second critical
point on top of the bifurcation diagram of the first critical point.


2x+ 0.6 sin(2 x) +0.6


0.75
0.5
0.25

0.2 0.4

Figure 3-22. ab,w,(x ) when b = 0.6 and w = 0.6.


0.6 0.8 1











The ideas behind point B have also been discussed. B is special in that the horizontal

lines through the left and right fixed point form a sort of box with the function gb,w. It is

the threshold for both critical points having an escape hatch. Point S represents the place

where gb,w has a double saddle point, since it is the intersection between both saddle point

lines (Figure 3-23).


2

1.75

1.5

1.25

1

0.75

0.5

0.25

0.2 0.4 0.6 0.8 1



Figure 3-23. gb,w(x) when b = 0.726 and w = 0 with two fixed point lines.

Another intersection occurs at B. At this point, the large value of b in gb,w(x) has

expanded the graph to just touch three fixed point lines (Figure 3-24). The area A should

also be familiar, as it di-,'1,v behavior like the area alpha in 3-10 for both critical points.

ab,w of this region is di- .1' '.1 in Figure 3-25.

Referring back to Figure 3-23, we can also imagine the defining characteristics

for areas X, Y, and Z. In X, we have the situation where the top most fixed point line

intersects gb,w, and the other fixed point line is too low to pl ,i a role. Area Y is just the

opposite, and area Z places both critical points between the fixed point lines.

The plots of ab,,(x) will vary depending on the choice of b and w in these regions,

since later iterations of gb,w(x) have a pronounced effect on the limit. This is also the case

for areas nu, mu, lambda, and theta. Below are the ab,w plots for nu, lambda, and theta

respectively, mu is simply a 180 degree rotation of nu.





























Figure 3-24. gb,w(x) when b = 1.235 and w = 0.5 with three fixed point lines.

2 x + 0.8 sin(2 x)


Figure 3-25. ab,w(x) when b = 0.8 and w = 0.

Finally, both areas U and V lie in the first iteration flat spot of one of the critical

points while sitting in a later iteration flat spot of the other. The first iteration flat spot

seems to have the effect of swallowing the other, so that the result is the graphs shown in

Figure 3-32 and Figure 3-33.






























Figure 3-26. gb,w(X) in region X, when b = 0.6 and w = 0.2.


Figure 3-27. gb,w(x) in region Y, when b = 0.6 and w = 0.8.








































Figure 3-28. gb,w(x) in region Z, when b = 0.4 and w =


2
1.75
1.5
1.25
1
0.75
0.5
0.25


2 x+ 0.85 sin(2 Tx)


Figure 3-29. ab,w(x) in area nu when b


0.85 and w


2 x+ 1.05 sin(2 T x)


0.5


Figure 3-30. ab,,(x)in area lambda when b


1.05 and w = 0.5.

















2x+1.05sin(2 7x) +0.1
1.5

1.25



0.75

0.5

0.25

0.2 0.4 0.6 0.8 1
-0.25

-0.5



Figure 3-31. ab,w(x) in area theta when b = 1.05 and w = 0.1.








2 x+ 0.97 sin(2 x x) +0.83
2.5

2.25

2

1.75

1.5

1.25

0.2 0.4 0.6 0.8 1
0.75

0.5



Figure 3-32. ab,w(x) in area U when b = 0.97 and w = 0.83.








2 x+0.97 sin(27Tx) +0.17
1.5

1.25



0.75

0.5

0.25

0.2 0.4 0.6 0.8 1
-0.25

-0.5


Figure 3-33. ab,w (x) in area V when b = 0.97 and w = 0.17.









REFERENCES

[1] L. S. Block and W. A. Coppel, Dwii.i in one dimension, vol. 1513 of Lecture Notes
in Mathematics, Springer-Verlag, Berlin, 1992.

[2] W. de Melo and S. van Strien, One-dimensional l;;,i/,,ii, vol. 25 of Ergebnisse der
Mathematik und ihrer G, .q, 1.: /..1 (3) [Results in Mathematics and Related Areas
(3)], Springer-V. i1 i: Berlin, 1993.

[3] L. Alsedh, J. Llibre, and M. Misiurewicz, Combinatorial ;i,. ii. and entropy in
dimension one, vol. 5 of Advanced Series in Nonlinear Dl,,,ii. World Scientific
Publishing Co. Inc., River Edge, NJ, second edition, 2000.

[4] P. Boyland, "Semiconjugacies to angle-doubling," Proc. Amer. Math. Soc., vol. 134,
no. 5, pp. 1299-1307 (electronic), 2006.

[5] W. Rudin, Principles of Mathematical A,...u.-.:- McGraw-Hill, Inc., New York, 1976.

[6] D. Singer, "Stable orbits and bifurcation of maps of the interval," SIAM J. Appl.
Math., vol. 35, no. 2, pp. 260-267, 1978.









BIOGRAPHICAL SKETCH

William (C!i -I, -p! i r Strickland was born on April 16, 1983 in Houston, Texas. He

grew up in Oxford, Mississippi and graduated from Oxford High School in 2001. He

earned his B.A in French and his B.S. in mathematics with a minor in physics from

the University of Mississippi in 2005. (C'! -Ii 1!r then entered graduate school at the

University of Florida in order to continue his studies in mathematics. He completed his

M.S. in 2007.





PAGE 1

1

PAGE 2

2

PAGE 3

Iwishtothankmyadvisor,PhilipBoyland,forhisconstantsupportandpatienceduringtheresearchingandwritingofthisthesis.Thetimewhichhecommittedtothisprojecthasbeenacriticalpartofitssuccess,andIamextremelygratefulforallthathehastaughtme. 3

PAGE 4

page ACKNOWLEDGMENTS ................................. 3 LISTOFFIGURES .................................... 5 ABSTRACT ........................................ 7 CHAPTER 1INTRODUCTION .................................. 8 2THEORY ....................................... 9 2.1Degree-nMapsoftheRealLine ........................ 9 2.2CoveringSpacePointofView ......................... 10 2.3TheDegree-2Case ............................... 11 2.4SomeDynamicalSystems ........................... 13 2.4.1PeriodicPointsandOrbits ....................... 13 2.4.2CriticalPoints .............................. 14 2.4.3SchwarzianDerivative .......................... 15 2.5PeriodicOrbitsofDegree-TwoMaps ..................... 15 2.6FlatSpotsintheGraphof 16 2.7The(b;w)DiagramfortheDegree-TwoStandardFamily .......... 18 3NUMERICALRESULTS .............................. 19 3.1PlotsoftheStandardFamily ......................... 19 3.2TheBifurcationDiagramoftheStandardFamily .............. 21 3.3CharacterizingtheBifurcationDiagram .................... 24 3.3.1FixedPointsandSaddlePoints .................... 24 3.3.2TrappingRegionsandOtherEects .................. 27 3.4CharacterizingtheDoubleBifurcationDiagram ............... 32 REFERENCES ....................................... 38 BIOGRAPHICALSKETCH ................................ 39 4

PAGE 5

Figure page 3-1gb;wwhenw=0:5andb=0:75. ........................... 19 3-2gb;wwhenw=0:2andb=0:2. ........................... 20 3-3whenb=0:87andw=0:3. ............................ 20 3-4whenb=0:87andw=0. ............................. 21 3-5s1(b;w). ........................................ 22 3-6s2(b;w). ........................................ 22 3-7Keyfor 3-5 and 3-6 ................................. 23 3-83Dimagefor 3-5 ................................... 23 3-9s1(b;w)withbrangingfrom1 .......... 23 3-10s1(b;w)withwrangingfrom0:5to0:5. ...................... 25 3-11Bifurcationdiagramwiththecolorsrunningthroughrunningseventimesthenormalmod1. .................................... 26 3-12Graphofgb;wwhenb=1andthecriticalpointisaxedpoint. ......... 26 3-13Graphofgb;watparameterpointsin 3-10 ..................... 27 3-14Graphofgb;wwhenb=0:6andw=0:6 ..................... 28 3-15Graphofgb;watparameterpointin 3-10 .................... 28 3-16Graphofgb;w,approximatelyatparameterpointin 3-10 ............ 29 3-17Graphofgb;winareainthebifurcationdiagram. ................ 30 3-18Graphofgb;wapproximatelyatpointinthebifurcationdiagram. ........ 30 3-19Graphofgb;wintheareaofthebifurcationdiagram. .............. 31 3-20Graphofgb;wapproximatelyatpointinthebifurcationdiagram. ....... 31 3-21DoubleBifurcationDiagram. ............................ 32 3-22b;w(x)whenb=0:6andw=0:6. .......................... 32 3-23gb;w(x)whenb=0:726andw=0withtwoxedpointlines. ........... 33 3-24gb;w(x)whenb=1:235andw=0:5withthreexedpointlines. ......... 34 3-25b;w(x)whenb=0:8andw=0. ........................... 34 5

PAGE 6

................... 35 3-27gb;w(x)inregionY,whenb=0:6andw=0:8. ................... 35 3-28gb;w(x)inregionZ,whenb=0:4andw=0. .................... 36 3-29b;w(x)inareanuwhenb=0:85andw=0:3. ................... 36 3-30b;w(x)inarealambdawhenb=1:05andw=0:5. ................. 36 3-31b;w(x)inareathetawhenb=1:05andw=0:1. ................. 37 3-32b;w(x)inareaUwhenb=0:97andw=0:83. ................... 37 3-33b;w(x)inareaVwhenb=0:97andw=0:17. ................... 37 6

PAGE 7

7

PAGE 8

1 ],[ 2 ]and[ 3 ].ThisstrategyisexactlywhatisusedinthispaperinwhichIdescribethebifurcationdiagramforthedegree-2standardfamily.Ibeginbyexplainingmoreaboutthisfamilyanddiscusssomeofitsparticulardetailsbeforemovingontothespecicdynamicalsystemsstudiedhere.Afterestablishingtherelationshipbetweenthefamilyonthecirclemapandthefamilyontherealline,Iwillrelyheavilyonnumericalresultstodrawconclusionsabouthowchangesintheparameterseectthelongtermbehaviorfoundbyiteratingthefunction. 8

PAGE 9

Denition1.

PAGE 10

2{2 ),themapfiscalledtheliftofthemap 2{2 ),p(f(x+1)=p(f(x)).Thus(f(x+1)f(x))2Zandso,bycontinuity,thereexistsnsuchthatf(x+1)f(x)=n. 10

PAGE 11

3 ,wemayassumethat 4 ]. 2{3 ),then: 2j(2{6)and 2j(2{7)Inaddition,f=dwhered(x)=2x,i.e.thefollowingdiagramcommutes: 11

PAGE 12

2{6 )holdsbyinduction.Basecase:Ifj=1,thenwehavethat 2=2x+(x) 2=x+ 2{6 )holdsforn=kandconsiderk+1:Fk+1(x)=fk+1(x) 2k+1=f(fk(x)) 2k+1=2fk(x)+(fk(x)) 2k+1 2k+(fk(x)) 2k+1=Fk(x)+(fk(x)) 2k+1(2{10)Bytheinductionhypothesis, 2j+(fk(x)) 2k+1=x+k+1Xj=1(fj1(x)) 2j(2{11)Nowtoshowthatlimn!1Fnconvergesuniformly,considerfrom( 2{6 ).isdegree-zero,so(x+1)=(x).Sinceisperiodicandcontinuous,thereexistsMwithj(x)j
PAGE 13

2{14 )(or( 2{8 )),themap 2.4.1PeriodicPointsandOrbits Denition3.

PAGE 14

.ThenforallnN,wehavethat: ="(2{18)Sowhenn!1,jfn(y)xj=0andthusfn(y)!x.2 14

PAGE 15

2{19 )thisimpliesthatDfj(y)=0forj>n. Denition6. 2f00 2{4 )isnotinjectiveifandonlyifb>1=,andwhenb>1=,S(gbw)(x)<0forallx. 6 ]: 15

PAGE 16

2{2 ),fn(x)=x+mforsomem2Z.Inthiscase,wesaythatxisatype(n;m)pointforf.NotethatifIchoseadierentliftofx,Iwouldgetadierentm.Infact,usingLemma 1 foranarbitraryk2Z, 1 ,thenusingdiagram( 2{8 ),

PAGE 17

2n
PAGE 18

5 2{4 )hasexactlytwocriticalpointsintheinterval[0;1]andthusthecirclemap 0=g0bw(x)=2+2bcos(2x)2 2b=cos(2x)arccos(1 2=x=c1(b);2arccos(1 2=x=c2(b)Thenotessofarindicatetheimportanceofstudyingthevalueofatacriticalpoint.Notethatwegetadierentforeach(b;w).Iindicatethisbywritingb;wandforeach(b;w),Idene: 6 saysthatif

PAGE 19

3-1 isaplotofgb;wwhenb=0:75andw=0:5withy=x+1included: Figure3-1. Thepositionofwandbingb;wgivesustheresultthatchangingwhastheeectofshiftingtheplotalongthey-axiswhilechangingbhastheeectofincreasingordecreasingthesizeofthebumpsinthegraph.Toillustratethiseect,Figure 3-2 isgb;wwhenbothbandwhavethevalueof0.2.Again,Ihaveplottedy=x+1withthegraph.Since 3-1 andFigure 3-2 ,wecanvisualizeallintersectionswithonlyy=x+1sincethegraphsonR2donotcrossy=xory=x+2.Comparingthesegraphs,wealsonoticethatthenumberofxedpointsin 3{1 ): 19

PAGE 20

2n(3{1) Figure3-2. Since Figure3-3. Whilethisplotisobviouslyquitecomplicated,ifwemerelyresetwto0,wegettheplotshowninFigure 3-4 .Nowthereareobviousatspots,andtheprocessusedtocreatetheplotisclear.Ifwearewillingtoholdeitherborwxed,wecandirectlyobservehow 20

PAGE 21

Figure3-4. Unfortunately,allthesewaysofviewingthe 3-5 and 3-6 .Ifx2S1,thecolorvalueforxinFigure 3-5 andFigure 3-6 canbefoundbytheradius=2xonthecircleinFigure 3-7 .Tobettervisualizewhatthecolorsmean,Ihavealsoincludedthe3DversionofthebifurcationdiagraminFigure 3-5 asFigure 3-8 .Ofcourse,eventhoughwemusttakeb1 3-9 isaplotof 3-9 3-9 alsodispelstheillusionthatthereisnoticeablymoreblueins1(b;w)thangreen.Similarly,thenon-redcolorsappearmoreevenwhenweexpandtherangeofbins2(b;w).Usingagraphicsprogramtocount 21

PAGE 22

Figure3-6. 22

PAGE 23

Keyfor 3-5 and 3-6 Figure3-8. 3Dimagefor 3-5 Figure3-9. 23

PAGE 24

3-7 andndthepositionofthemostprominentgreenandblueintheparameterspaceasanexample.Greenisfoundat2 3-10 showss1(b;w)again,withsomeofthemoreinterestingfeatureslabeled. 3-10 representsthewvalue(mod1)forwhichagivenbvaluemakesthecriticalpointaxedpointof.Thislinewasfoundnumericallybysolvingtheequation: 4 inChapter 24

PAGE 25

2,thexedpointisanattractoraslongasthederivativeofthepointislessthan1,sowecouldconjecturethattheparameterlineonwhichthederivativeofthexedpointequals1(makingthexedpointasaddlepoint)wouldformaboundaryfortheatspotofthecriticalpoint.Indeed,plottingthis"saddlepointline"onthebifurcationdiagramshowsthatitexactlyfollowsthelargestboundaryfortheredatregion(seeFigure 3-11 ).Inexamining 3-11 ,itisimportanttorecallthattheimagewasactuallyproducedusingGb;w;10insteadofb;wandthatthereisonlyalimitedamountofprecisionavailableindensityplotsofthisnature.Thelineappearsfurtherawayfromthecolorsasbdecreases,butthewidthofthecolorsincreasesinthisdirectionaswell.Onecaneasilyimaginethatifatrueplotofb;wwasavailable,thecolorswouldreachthesaddlepointlineforallvaluesofbgreaterthan1 3-10 .PointfisobviousandshowninFigure 3-12 .ThegraphinFigure 3-13 forpointsusesw=1:265. 25

PAGE 26

Bifurcationdiagramwiththecolorsrunningthroughrunningseventimesthenormalmod1.Onceagain,agraphicsprogramwasusedtocreatethepicture,andIhaveincludedcodewhichveriestheplacementoftheline. Figure3-12. Graphofgb;wwhenb=1andthecriticalpointisaxedpoint.Thexedpointlinemod1hasbeenincluded. 26

PAGE 27

Graphofgb;watparameterpointsin 3-10 Finally,thegraphofpointain 3-10 simplyshowsaxedpointthatisnotasaddlepointbutstillleftofthecriticalpoint.Ihaveomitteditforthesakeofbrevity. 3-14 isatypicalgraphofgb;wwithatrappingregiontakenfromthemiddleoftheredregionofthebifurcationdiagram.Notethatusingthexedpointline,wecanvisuallyseethatthecriticalpointnevermapsoutsidethebox.Figure 3-15 isthegraphofatypicalpointintheregionalphaofthebifurcationdiagram.Forthenextfewgraphs,Iwillalsoincludethehorizontallinethroughthexedpointwhichdenesthebaseofthetrappingregion.Sincethelineconnectingtheleft-mostxedpointintersectsgb;w(x),thecurveprovidesawaythatthecriticalpointmightescapeiftheboxwasextendedtotheright.NoticethatthiseectcouldnothappeninFigure 3-14 becausethehorizontallineconnectingtheleftmostxedpointneverintersectsthecurve.Sincethislineisdependentonthepositionofthesecondcriticalpoint,itisnotdirectlyvisibleonthebifurcation 27

PAGE 28

Graphofgb;wwhenb=0:6andw=0:6 Figure3-15. Graphofgb;watparameterpointin 3-10 .w=1:2wasusedtogeneratetheplot. 28

PAGE 29

3-10 ,thethresholdofthiseectdoesbecomevisibleifthebifurcationdiagramofthesecondcriticalpointwasshownontopofthediagramfortherstcriticalpoint.NowinFigure 3-16 ,weseethatbetaliesrightonthethresholdtherstcriticalpointescaping. Figure3-16. Graphofgb;w,approximatelyatparameterpointin 3-10 Abovepointbetaonthediagram,thecriticalpointescapesthetrappingregionontherstiterationofgb;w.Itisstillpossiblethatcriticalpointmayentertheregionunderalateriteration,butitnowhasanescapehatchwherepartsofthecurveriseabovethetopofthetrappingbox.ThegreenlinesinFigure 3-17 showhowthecriticalpointmapsbelowthetrappingregionintherstiteration. 3-18 .Forareaepsilon,iterationsofgb;wsometimestakethecriticalpointintothetrappingregionwhileothersallowittoescape.Becausewemustexamineb;wtodeterminetheresult,thegraphofgb;winFigure 3-19 issomewhatunenlightening. 29

PAGE 30

Graphofgb;winareainthebifurcationdiagram.w=0:8wasusedtocreatetheplot. Figure3-18. Graphofgb;wapproximatelyatpointinthebifurcationdiagram. 30

PAGE 31

Graphofgb;wintheareaofthebifurcationdiagram.w=0:65wasusedtomakethisparticularplot. Finally,phiissituatedonthelineinthebifurcationdiagramthatmarkswherethehorizontallinethroughtherightxedpointintersectstherstcriticalpoint.Asdiscussedearlierforthehorizontallinethroughtheleftxedpoint,thisthresholdhasparticularsignicanceforthesecondcriticalpoint,andIhavegrapheditinFigure 3-20 Figure3-20. Graphofgb;wapproximatelyatpointinthebifurcationdiagram.Ahorizontallinethroughtherightxedpointhasbeenincluded. 31

PAGE 32

3-21 .Obviously,someoftheseareascontainconceptswehavealreadyexaminedintheprevioussection.AreaF,forexample,hasalreadybeenshownundergb;winFigure 3-14 .Figure 3-22 isthe(x)ofthesamepointintheparameterspace(mod1forw). Figure3-21. DoubleBifurcationDiagram.Thebifurcationdiagramofthesecondcriticalpointontopofthebifurcationdiagramoftherstcriticalpoint. Figure3-22. 32

PAGE 33

3-23 ). Figure3-23. AnotherintersectionoccursatB.Atthispoint,thelargevalueofbingb;w(x)hasexpandedthegraphtojusttouchthreexedpointlines(Figure 3-24 ).TheareaAshouldalsobefamiliar,asitdisplaysbehaviorliketheareaalphain 3-10 forbothcriticalpoints.b;wofthisregionisdisplayedinFigure 3-25 .ReferringbacktoFigure 3-23 ,wecanalsoimaginethedeningcharacteristicsforareasX,Y,andZ.InX,wehavethesituationwherethetopmostxedpointlineintersectsgb;w,andtheotherxedpointlineistoolowtoplayarole.AreaYisjusttheopposite,andareaZplacesbothcriticalpointsbetweenthexedpointlines.Theplotsofb;w(x)willvarydependingonthechoiceofbandwintheseregions,sincelateriterationsofgb;w(x)haveapronouncedeectonthelimit.Thisisalsothecaseforareasnu,mu,lambda,andtheta.Belowaretheb;wplotsfornu,lambda,andthetarespectively.muissimplya180degreerotationofnu. 33

PAGE 34

Figure3-25. Finally,bothareasUandVlieintherstiterationatspotofoneofthecriticalpointswhilesittinginalateriterationatspotoftheother.Therstiterationatspotseemstohavetheeectofswallowingtheother,sothattheresultisthegraphsshowninFigure 3-32 andFigure 3-33 34

PAGE 35

Figure3-27. 35

PAGE 36

Figure3-29. Figure3-30. 36

PAGE 37

Figure3-32. Figure3-33. 37

PAGE 38

[1] L.S.BlockandW.A.Coppel,Dynamicsinonedimension,vol.1513ofLectureNotesinMathematics,Springer-Verlag,Berlin,1992. [2] W.deMeloandS.vanStrien,One-dimensionaldynamics,vol.25ofErgebnissederMathematikundihrerGrenzgebiete(3)[ResultsinMathematicsandRelatedAreas(3)],Springer-Verlag,Berlin,1993. [3] L.Alseda,J.Llibre,andM.Misiurewicz,Combinatorialdynamicsandentropyindimensionone,vol.5ofAdvancedSeriesinNonlinearDynamics,WorldScienticPublishingCo.Inc.,RiverEdge,NJ,secondedition,2000. [4] P.Boyland,\Semiconjugaciestoangle-doubling,"Proc.Amer.Math.Soc.,vol.134,no.5,pp.1299{1307(electronic),2006. [5] W.Rudin,PrinciplesofMathematicalAnalysis,McGraw-Hill,Inc.,NewYork,1976. [6] D.Singer,\Stableorbitsandbifurcationofmapsoftheinterval,"SIAMJ.Appl.Math.,vol.35,no.2,pp.260{267,1978. 38

PAGE 39

WilliamChristopherStricklandwasbornonApril16,1983inHouston,Texas.HegrewupinOxford,MississippiandgraduatedfromOxfordHighSchoolin2001.HeearnedhisB.AinFrenchandhisB.S.inmathematicswithaminorinphysicsfromtheUniversityofMississippiin2005.ChristopherthenenteredgraduateschoolattheUniversityofFloridainordertocontinuehisstudiesinmathematics.HecompletedhisM.S.in2007. 39