<%BANNER%>

Environmental Accounting of Natural Capital and Environmental Services of the US National Forest System

Permanent Link: http://ufdc.ufl.edu/UFE0020140/00001

Material Information

Title: Environmental Accounting of Natural Capital and Environmental Services of the US National Forest System
Physical Description: 1 online resource (227 p.)
Language: english
Creator: Campbell, Elliott
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: deschutes, emergy, environmental, national, natural, osceola, us
Interdisciplinary Ecology -- Dissertations, Academic -- UF
Genre: Interdisciplinary Ecology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The National Forests of the United States encompass 192.7 million acres of land, nearly five percent of the total land area of the US. These lands are managed by the US Forest Service for multiple uses, including extraction of timber, fossil fuels and minerals, recreation by the public, and preservation of biodiversity, clean air and water, and soils. An environmental accounting technique called emergy synthesis was used to evaluate the environmental services, exports of environmental goods and information, as well as natural capital. The USFS is faced with the question of the value of the environmental services provided by, and the natural capital that makes up, its lands. Environmental accounting (emergy synthesis) provides a method to value the flows of services and storages of capital. The environmental services from USFS lands are equivalent to 259 billion emdollars (emergy-monetary equivalence). The natural capital value is 69 trillion emdollars. The values obtained using emergy synthesis dwarf estimates made through economic analysis, particularly for services and storages that exist outside economic markets like clean water and biodiversity. These huge values emphasize the need to preserve the integrity of these systems so future generations will be able to benefit from the environmental services and natural capital the National Forests provide. The results of the emergy synthesis are used to provide suggestions for management and establish what would be lost if the National Forests were converted to an alternative land use.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Elliott Campbell.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Brown, Mark T.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0020140:00001

Permanent Link: http://ufdc.ufl.edu/UFE0020140/00001

Material Information

Title: Environmental Accounting of Natural Capital and Environmental Services of the US National Forest System
Physical Description: 1 online resource (227 p.)
Language: english
Creator: Campbell, Elliott
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: deschutes, emergy, environmental, national, natural, osceola, us
Interdisciplinary Ecology -- Dissertations, Academic -- UF
Genre: Interdisciplinary Ecology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The National Forests of the United States encompass 192.7 million acres of land, nearly five percent of the total land area of the US. These lands are managed by the US Forest Service for multiple uses, including extraction of timber, fossil fuels and minerals, recreation by the public, and preservation of biodiversity, clean air and water, and soils. An environmental accounting technique called emergy synthesis was used to evaluate the environmental services, exports of environmental goods and information, as well as natural capital. The USFS is faced with the question of the value of the environmental services provided by, and the natural capital that makes up, its lands. Environmental accounting (emergy synthesis) provides a method to value the flows of services and storages of capital. The environmental services from USFS lands are equivalent to 259 billion emdollars (emergy-monetary equivalence). The natural capital value is 69 trillion emdollars. The values obtained using emergy synthesis dwarf estimates made through economic analysis, particularly for services and storages that exist outside economic markets like clean water and biodiversity. These huge values emphasize the need to preserve the integrity of these systems so future generations will be able to benefit from the environmental services and natural capital the National Forests provide. The results of the emergy synthesis are used to provide suggestions for management and establish what would be lost if the National Forests were converted to an alternative land use.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Elliott Campbell.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Brown, Mark T.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0020140:00001


This item has the following downloads:


Full Text





ENVIRONMENTAL ACCOUNTING OF NATURAL CAPITAL AND ENVIRONMENTAL
SERVICES OF THE US NATIONAL FOREST SYSTEM




















By

ELLIOTT CAMPBELL


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008

































To my family and my friends, especially those who are no longer with us.









ACKNOWLEDGMENTS

I would like to thank my parents, Dan Campbell and Kathy Trimmer, for their

unconditional love and for instilling my love for the natural world. I would also like to thank my

grandmother and late step-grandfather, Betty and HT Odum, for fostering my inquisitiveness

about the world in which we live, and pioneering the discipline for which I am passionate.

Without these people I would not be the person that I am today. My committee chair, Dr. Mark

Brown, has been instrumental in the completion of this work. He expanded my understanding at

both the theoretical level as well as the fundamental aspects of research. My other committee

members, Dr. Matt Cohen and Dr. Janaki Alavalapati, provided excellent feedback and helped

me to understand my research questions and the system that I was studying. I would like to thank

the United States Forest Service, in particular Dr. Ariel Lugo, Director of the International

Institute for Tropical Forestry, for supporting this research and providing funding through

cooperative agreement #05-DG-11120101-019 between the USDA, Forest Service International

Institute of Tropical Forestry and the Center for Environmental Policy, University of Florida.









TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ...............................................................................................................3

L IS T O F T A B L E S .............................................................................. ............... 7

LIST O F FIG U RE S ................................................................. 9

ABSTRAC T ................................................... ............... 10

CHAPTER

1 IN TR O D U C T IO N ................................................................................ 11

State ent of the Problem ..................................... .......... .. ....... .................. .. 11
Plan of Study .................. ..................................... ... .... .. ..... .......... .... 12
D description of the U SF S System ......................................................................... ..... 15
The U united States Forest Service System .............................................. .................. 16
Osceola and Deschutes National Forests..................................................................... 17
L iteratu re R ev iew .............................................................................2 0

2 METHODS .........................................25

G general M ethods for Em ergy Synthesis ..................................................................... ......25
Spatial and Temporal Boundaries of the Synthesis.............................. ...............25
T he em ergy synthesis table ........................................................... .....................26
Evaluation of flow s and storage ........................................ ........................ 27
Em ergy Synthesis of the U SFS .......................................................................... 28
Environm ental Flow s....................... ........................ .. ........... ........... 28
P purchased F low s ................................................................................ 2 8
E m d o lla r R atio ................................................................................................... 2 9
S e rv ic e s ................................................................2 9
T o u rism ................................................................2 9
S to ra g e s .......................................................... ... .....................................3 0
Economic Values of Environmental Services and Capital ...........................................31
Emergy Synthesis of USFS Components and Subsystems ..........................................31
Deschutes: emergy of mountain formation .......................................................31
O sceola: evaluation of phosphorus storage ........................................ .................31
Su b sy stem s E v alu ated ............................................................................................... 32
Em ergy Indices and Ratios ............................................................................... 32

3 R E SU L T S .............. ... ................................................................36

Y early Flow s of the U SFS System ................................................................. 36
U S F S E x p o rts ................................................................................................................... 3 7
U SFS Capital A ssets................................................... 39


4









Environm mental Capital ............... .......................................... .... ........40
Footnotes in appendix F .......................................... ............... .... ....... 41
E conom ic C capital ................................................................43
G e o lo g ic C ap ital .....................................................................................................4 3
In fo rm atio n C ap ital ................................................................................................... 4 3
R eg io n al S y n th e se s ........................................................................................................... 4 6
R regional V aviation ........................................................................ ......... 50
Comparison of Yearly Flow Results from the Case Study Forests .....................................52
Pacific Northwest Region and Deschutes National Forest ........................................ 52
Comparison of Results from the USFS Southeast Region and Osceola National
F o re st ............... ... .. .. ... .... .......... ........ ...... .................................. ......... .. .. .. 5 4
Comparison of Storage Results for Case Study Forests and Regions ..................................56
Pacific Northwest Region and Deschutes National Forest ..........................................56
Comparison of Storage Results from the USFS Southeast Region and Osceola NF ......57
Comparison of Emergy and Economic Values .............. ...................................58
Relationship of Capital to Driving Em ergy ................................................................. 62

4 DISCU SSION ........................................... ... ........................ 63

Em ergy Flow s ......................................... ............... ................ .64
N atu ral C ap ital ............................................................................................................64
P potential Sources of E rror.......... ................................................ ................ .......... ....... 65
Intrinsic N ature of Flow s and Storages ....................................................... ............... 66
Renew able Em ergy and N natural Capital........................................... .......................... 66
E m ergy Indices ........................................................... ................. 67
Environm mental Loading R atio ................................................ ............................. 67
Emergy Yield Ratio and Emergy Return on Investment..............................................68
Inform ation Storages and Flow s...................... .... ................................. ............... 68
Comparison of Emergy and Economic Valuation........ ...................... ................69
R regional Syntheses A naly sis................... ................................... ............................. ......7 1
Comparison of Case Study Forests to Overall Region......................... .................71
Comparison of Deschutes NF and the Pacific Northwest Region...............................72
Comparison of Osceola and the Southeast Region..................................................74
C om prison O v erview .......... .................................................................. ....... ............... 76
Scalar D ependence and Significance.......................................................... ............... 77
US Forest Service System within the "M osaic"........................................... ............... 78
U S Forest Service Policy Im plications ............................................................................... ...79
Future Collaboration of Emergy Synthesis and Economic Valuation............................... 79

APPENDIX

A EM ERGY SY STEM S SYM BOLS................................................ ............................. 81

B FOOTNOTES FOR TABLES 3-1 AND 3-2..................................... ........................ 82

C EM ERGY OF BUILDINGS............................................................................. 90









D H U N TIN G O N U SF S L A N D S ................................................................... .....................93

E EMERGY OF ENDANGERED SPECIES ........................................ ........................ 95

F FA U N A O N U SF S L A N D S ...................................................................... ......................97

G EMERGY OF NATIVE AMERICAN CULTURAL INFORMATION..............................100

H REGION 1 TABLES AND NOTES ............ ... ................................ 102

I REGION 2 TABLES AND NOTES.......... ........................... ............... ............... 113

J REGION 3 TABLES AND NOTES.............................. ........................ ............... 123

K REGION 4 TABLES AND NOTES ..................................... ........................ 135

L REGION 5 TABLES AND N OTES...................... .... ................................ ............... 145

M REGION 6 TABLES AND N OTES....................... ...................................... ............... 155

N REGION 8 TABLES AND N OTES....................... ...................................... ............... 165

O REGION 9 TABLES AND N OTES....................... ...................................... ............... 175

P REGION 10 TABLES AND NOTES...................... .................................. ............... 185

Q DESCHUTES NATIONAL FOREST TABLES AND NOTES ..........................................195

R OSCEOLA NATIONAL FOREST TABLES AND NOTES...........................................204

S FOOTNOTES FOR TABLES 3-7 AND 3-8................................... ...................................215

R E F E R E N C E S ............................................................................................... ................. .. 222

B IO G R A PH IC A L SK E T C H ............................................................................. ....................227


















6









LIST OF TABLES


Table page

1-1 U S F S su m m ary ........................................................................................................... 19

1-2 Synopsis of USFS values found in Krieger (2001).................. .....................24

2-1 E x am ple em ergy table............................................................................. ....................27

2-2 Indices for flows (environmental services)............... ........... ...........................34

2-3 Indices for storage (natural capital) ....................................................... ............... 35

3.1 Emergy evaluation of the USFS .................. ........... .............................. 38

3-2 Em ergy of capital in the U SFS system ........................................ ......................... 41

3-4 Comparison by region of components that make up natural capital of the USFS.............49

3-5 Indices com prison case study forest to region ........................................ .....................53

3-6 Case study forests vs regions comparison of storage (units sej/mA2).............................57

3-7 Emergy, emdollar, and economic value of services of the National Forest system ......59

3-8 Emergy emdollar, and economic value of assets of the USFS system........................60

C-1 Emergy storage of building components on USFS lands ..................... .................91

C -2 E m ergy of U SF S buildings .................................................................... .... .................92

D-l Yearly game extracted From USFS lands................................... .......................... 93

E -l E m ergy of endangered species............................................................... .....................96

F-l Storage of biom ass on U SF S lands ......................................................... .....................97

H-1 Annual emergy flows supporting Region 1 of the USFS system .................................102

H -2 Em ergy evaluation of Region 1 assets ................................. .....................109

I-1 Annual emergy flows supporting Region 2 of the USFS system .................................113

1-2 Em ergy evaluation of Region 2 forest assets .................................................................120

J-1 Annual emergy flows supporting Region 3 of the USFS system .................................123

J-2 Em ergy evaluation of Region 3 forest assets ................ ........ ............... ............. 132









K-1 Annual emergy flows supporting Region 4 of the USFS system .............. ................135

K-2 Emergy evaluation of Region 4 of the USFS assets ...................................................... 142

L-l Annual emergy flows supporting Region 5 of the USFS system .................................145

L-2 Emergy evaluation of Region 5 forest assets ............................. .....................152

M-1 Annual emergy flows supporting Region 6 of the USFS system .............. ............ 155

M -2 Em ergy evaluation of Region 6 Forest assets .................................................................162

N-1 Annual emergy flows supporting Region 8 of the USFS system ..................................165

N-2 Em ergy synthesis of Region 8 assets ..................................................... ... .......... 172

0-1 Annual emergy flows supporting Region 9 of the US National Forest system ..............175

0-2 Emergy evaluation of Region 9 Forest assets...........................................................182

P-1 Annual emergy flows supporting Region 10 of the US National Forest system............185

P-2 Emergy evaluation of Region 10 Forest assets.............................. .........192

Q-1 Emergy evaluation of the Deschutes National Forest and its annual contributions of
environm ental services........... .................................................................. ...... ............... 195

Q-2 Emergy evaluation of the Deschutes National Forest assets .............................. 201

R-l Emergy evaluation of the Osceola National Forest and its annual contributions of
environm ental services........... .................................................................. ...... ............... 204

R-2 Emergy evaluation of the Osceola National Forest assets................ ....... ...........211









LIST OF FIGURES


Figure pe

1-1 System s diagram of the U SFS system ........................................................ ..... ...............14

1-2 The nine Regions (1-6, 8-10) of the USFS ........................................ 16

2-1 General diagram for the U SFS system ................... ......... ........................ ............... 33

3-1 Summarization of the annual imports to the USFS system .................... ..................37

3-2 Contribution of various exports to total emergy value of exports from USFS lands. .......39

3-3 Environmental capital, economic capital, and all forms of capital stored on USFS
la n d s ................... ............................................................. ................ 4 2

3-4 Renewable empower in each region, Region 10 is an outlier at over 2.7el 1 sej/m2/yr.....46

3-5 Emergy Return on Investment (exports/imports) by region, Region 10 is largest ............47

3-6 Emergy Yield Ratio by region, Region 10 the highest, at over 25 ..................................47

3-7 ELR in each region, Region 2 has the highest ELR .................................. ............... 48

3-8 Areal storage of total capital in each region ... .................. ......... ...............48

3-9 Emergy of Native American cultural information on areal basis ....................................51

3-10 Emergy of endangered species on areal basis, Region 8 highest....................................51

3-11 Deschutes NF Exports, dominated by water................................... ....................... 53

3-12 R egion 6 exports, w ater is highest........................................................................... ... 54

3-13 Percent of total exports from Osceola NF by Type. Harvest wood is 60% of exports,
compared to 2% for the entire USFS system ......................................................... 55

3-15 Emdollar vs. dollar values for economic storage .................................. ............... 61

3-16 Comparison of non-renewable storage emdollar and dollar values .............................62

3-17 Linear regression of natural capital vs. renewable emergy (n of 11)..............................62









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree Master of Science

ENVIRONMENTAL ACCOUNTING OF NATURAL CAPITAL AND ENVIRONMENTAL
SERVICES OF THE US NATIONAL FOREST SYSTEM

By

Elliott Campbell

August 2008

Chair: Mark Brown
Major: Interdisciplinary Ecology

The National Forests of the United States encompass 192.7 million acres of land, nearly

five percent of the total land area of the US. These lands are managed by the US Forest Service

for multiple uses, including extraction of timber, fossil fuels and minerals, recreation by the

public, and preservation of biodiversity, clean air and water, and soils. An environmental

accounting technique called emergy synthesis was used to evaluate the environmental services,

exports of environmental goods and information, as well as natural capital. The USFS is faced

with the question of the value of the environmental services provided by, and the natural capital

that makes up, its lands. Environmental accounting (emergy synthesis) provides a method to

value the flows of services and storage of capital. The environmental services from USFS lands

are equivalent to 259 billion emdollars (emergy-monetary equivalence). The natural capital value

is 69 trillion emdollars. The values obtained using emergy synthesis dwarf estimates made

through economic analysis, particularly for services and storage that exist outside economic

markets like clean water and biodiversity. These huge values emphasize the need to preserve the

integrity of these systems so future generations will be able to benefit from the environmental

services and natural capital the National Forests provide









CHAPTER 1
INTRODUCTION

Statement of the Problem

Increasingly government agencies like the United States Forest Service (USFS) are being

queried to document the benefits derived from their annual monetary budgets. While it is

relatively easy to account for monetary expenditures for goods and services in support of

operations and the economic returns that result from them, such as the sale of timber or other

material resources, it is quite difficult to evaluate less tangible products such as environmental

services or the natural capital inherent in the forests and grasslands that make up the Forest

Service System. Since society benefits from these environmental services and the natural capital

from which they flow and to date their values have not been well documented within the USFS it

is most appropriate to answer the following question: What is the value of the total assets

(including natural capital) and the environmental services provided by the US National Forest

System? While of interest from an academic perspective, evaluating the non-monetized services

and assets also provides quantitative insight into the National Forest System's benefits and costs

and may help in justifying budgetary expenditures in support of the System.

The US National Forests are excellent examples of coupled human and natural systems

adding complexity to management strategies that must stress multiple uses from timber

extraction to the provision of recreational activities for people. Facing increased pressure to

demonstrate a sound quantitative basis for management decisions, agencies of government

whose functions are environmental protection, preservation, and wise use of resources, require

methodologies that can account for both economic values and biophysical values within the same

evaluative framework. In this study the emergy synthesis technique is applied to the USFS

system to quantitatively evaluate both economic and environmental services and capital assets to









lend insight into the relative importance of these components. The use of the emergy synthesis

approach to understand relative importance of components within a coupled human and natural

systems framework may benefit not only the USFS system but all agencies both public and

private whose function is the management of complex systems.

Plan of Study

Using methods of emergy synthesis the following question was posed and answered in

this study of the USFS system: What is the overall value emergy and emdollar of the various

components of the USFS system and the annual environmental and economic flows supporting

them? In a comparative analysis using economic data this study also answered the following

question: How do the economic costs and benefits of the USFS compare with the emergy and

emdollar costs and benefits? Other research goals included the characterization of the system

through emergy synthesis performed at varying scales and implications of emergy synthesis on

management of the USFS system.

To answer these questions, emergy syntheses of the main storage (natural capital) and

ecological processes (environmental services) of the US Forest Service System were performed.

The methodology of emergy synthesis is defined and outlined in Environmental Accounting by

H.T. Odum (1996). Using an eco-region approach to quantifying storage and processes, natural

capital and environmental service values were quantified and compared for each of the nine

forest service regions. An eco-region approach parses the study area based on climate and

dominant vegetation type. In addition, the flows of purchased inputs, labor, and tourism activity

for each region were evaluated. The data from the regions were summarized in an overall

evaluation of the USFS system. This evaluation included the flows of renewable and

nonrenewable inputs, purchased inputs and exports for the system.









In addition to the evaluation of the USFS system as a whole, two case studies of selected

forests (Osceola, in the southeast region, and Deschutes in the northwest region) were also

evaluated. These more detailed evaluations provided additional demonstration of the values of

environmental services and natural capital from a smaller scale perspective. In a final

comparative analysis, emergy of environmental services and natural capital of the USFS system,

expressed as emdollars was compared to economic values derived using both market and non-

market methodologies.











































Figure 1-1 Systems diagram of the USFS system (Brown and Campbell, 2007)









Description of the USFS System

Figure 1.1 is a systems diagram of the US Forest Service system showing the

environmental driving energies, purchased resources, components and processes as well as

exports. Appendix S gives explanation of symbols used. The environmental sources on the left,

drive environmental subsystems and develop storage of vegetation, surface water, geologic

structure, and soil. These environmental subsystems and storage contribute to the image of the

USFS which serves to draw in tourists from outside the system, (see the top right box) who in

turn import emergy and money to the system, as well as remove some in the form of harvested

fish and wildlife. The non-renewable sources such as fuels, and electricity go drive the human

dominated subsystems that include visitor facilities and USFS operations facilities. The USFS

assets are purchased machinery and goods used in production of information and management of

resources. The assets of the USFS contribute to the management of fire (see divisor symbol on

the interaction symbol in the middle of the diagram). The fire interaction draws down the

environmental storage of vegetation. It is increased by lightning from outside the system as well

as by tourists in the system.









The United States Forest Service System


Figure 1-2. The nine Regions (1-6, 8-10) of the USFS (USFS, 2007)



The United States Forest Service, part of the US Department of Agriculture, manages

192.7 million acres of public land, spread over 155 National Forests and 20 Grasslands. National

Forests (NF) occur in 44 states as well as Puerto Rico (USFS, 2007). National forests cover

about 5% of the total area of the United States. In addition, they comprise roughly a quarter of all

"natural" habitats in the US and are vital for the survival of many endangered and threatened

species. Virtually every habitat type of the US is contained within USFS lands, from the

Redwoods of northern California to the prairie-potholes of North Dakota. The USFS is organized









into nine regions throughout the country and these nine regions are further divided into 600

ranger districts. The regions are numbered 1 through 10 but region 7, originally the entire eastern

portion of the US, underwent several reorganizations from its inception and the number 7 was

lost from the continuum. (USFS, 2007). Table 1-1 summarizes the diverse characteristics of the

USFS regions, and the USFS as a whole. This information characterizes the regions of the USFS.

The USFS was established in 1905 and still abides by its original mission statement made

by its first director, Gifford Pinchot, for USFS lands "to provide the greatest amount of good for

the greatest amount of people in the long run" (USFS 2007). The approach to management and

interpretation of this statement has evolved over time, beginning in the early 1990's an

ecosystem management approach was adopted by the USFS to better manage forests for the good

of people, natural resources, and the species which inhabit them. The USFS provides the Nation

with research in a variety of areas, focusing not only on forestry but also addressing topics as

diverse as biodiversity, hydrology, and climate change.

Osceola and Deschutes National Forests

Osceola National Forest is in North Central Florida, within Region 8 of the USFS, and

consists of 160,000 acres (647 km2) and features 174 km2 of hardwood/Cypress swamp, 97 km2

of Longleaf Pine forest, and 376 km2 of Slash Pine forest (USFS, 2006 unpub.). Osceola is

managed for multiple uses. It produces timber, harbors wildlife, and provides people with hiking,

hunting, and fishing. The majority of its lands are in sustainable rotation timber production.

The Deschutes National Forest in Central Oregon is managed in conjunction with the

abutting Ochoco National Forest and Crooked River National Grassland, within Region 6, the

Pacific Northwest. Deschutes comprises more than half of the combined area, 1.85 million acres

of the total 2.5 million within the three management areas (USFS, 2006 unpub.). It is on the east

side of the Cascade Mountain Range, which extends from Southern British Columbia, Canada to









northern California. Extensive lava fields are evidence of eruptions as recent as 500 years ago.

Deschutes is one of the most heavily used National Forests, receiving over eight million tourists

a year. The forest is dominated by pines, primarily Lodgepole and Ponderosa but also includes

Spruce-Fir forests, small clusters of mixed hardwood stands and Mountain Hemlock stands

(Smith, 2003).











Table 1-1 USFS summary
Units Region 1 Region 2 Region 3 Region 4 Region 5
Area Acres 25,450,317 22,088,183 20,809,796 32,025,617 20,181,999
Forests and Grasslands # in Region 12 24 14 14 18
Avg Forest Size Acres 2,120,860 920,341 1,486,414 2,287,544 1,121,222
ID, MO, ND CO, WY, KA, NE, SD, AZ, NM, TX, OK UT, NV, ID, WY CA
States 4,500,000
1,050
Wilderness Acres 4,700,000 4,800,000 2,700,000 6,000,000 108
Avg. Elevation Meters 1,100 2,100 2,000 2,000 30,700,000
Precipitation Cm 39 36 30 31
Visitors people/year 13,200,000 32,500,000 20,500,000 23,300,000


Region 6 Region 8 Region 9 Region 10 USFS
24,803,002 13,305,609 12,094,684 21,973,139 192,732,346
20 34 15 2 155
1,240,150 391,341 806,312 10,986,570 1,243,434
WA, OR TX, OK, LA, TN, MS, WI., MI, MN, AK
MS, FL, AL, AR, IL, IN, OH, WV,
VA, SC, NC, KY, PA, NY, NH, VT,
GA ME
4,660,000 720,000 1,390,000 5,750,000 35,372,522
1,250 300 700 400 1,500
90 120 84 177 75
28,200,000 31,000,000 22,500,000 2,900,000 204,800,000









Literature Review

There have been several Emergy evaluations of forest systems conducted in the past

decade. Perhaps the most comprehensive emergy study of a forest system was by David Tilley,

for his dissertation at University of Florida (work later published in Journal of Environmental

Management, Tilley and Swank, 2003). Emergy syntheses were performed of the state of North

Carolina, the Coweeta watershed, and Macon Co, N.C. The goals of the study were to identify

the function and role of forest ecosystems within the overall ecological-economic system, using

environmental accounting (emergy) and to suggest methods for managing forest systems that

would maximize emergy in the ecological-economic system. Research questions in Tilley's work

that inspired research questions in this study include the identification of the driving energies of

the systems and their empower, the ecological-economic relationship change as scale changes,

and how dynamics of emergy flows are incorporated into emergy evaluations. Tilley (2003)

expands further on the implications of emergy synthesis on management intensity by suggesting

that the environmental empower in the system should be matched by management emergy to

maximize empower in the system.

The highest valued exports of the system were research information, stream water

discharge, recreated people, and timber, in that order. Tilley found that at the small scale of the

forest, renewable emergy's relevance is maximum but decreases as the resolution of the

"macroscope" is expanded. Tilley constructs a model (MULTIBEN) in order to assess the

situation yielding maximum empower. This model showed that an intermediate level of outside

emergy investment maximized empower, if only one product, recreation, was produced,

intermediate investment intensity also maximized empower.

Scatena, et al (2002) completed an emergy synthesis of the Luquillo Experimental Forest

in Puerto Rico (a part of the USFS) as well as for Puerto Rico as a whole. The analysis was









conducted to provide management recommendations for the particular forest as well as to

formulate general insights into the management of forest ecosystems based on maximizing

emergy flows. Puerto Rico relied heavily on imported resources, the nation as a whole had an

environmental loading ratio (ELR) of 45, while the Luquillo forest had an ELR of 3.5. The

Forest was evaluated for the following environmental functions; net primary production, biomass

storage, erosion, and surface water runoff The Luquillo National Forest was an attractor of both

researchers and tourists, both making up large inputs to the forest system. The tourist emergy

outflow was nearly twice what tourists invested into the forest, making this investment attractive.

Scatena concluded that the water extracted from the Forest totals about 24 million dollars a year

but is worth 73 million emdollars.

The roads within the Forest are identified as high storage of emergy, and are associated

with exacerbating negative effects such as erosion and incidental animal kills. The report

concludes that all of the natural values associated with the Forest, especially the land itself and

water, were undervalued by economic measures. This justified the management decision to

increase investment for protection and maintaining these resources.

Doherty (1995) used emergy synthesis to evaluate a variety of forest systems in Sweden,

Florida, Illinois, Papua New Guinea, and Puerto Rico. In addition, conversion of forest products

to electricity was evaluated using emergy. Doherty looked at a variety of products from forests;

water supply, pulp, paper, and recreation. Doherty evaluated the many uses and products that

forests produce and whether or not these uses and products are viable. In Doherty's evaluation of

recreation he included the emergy of travel cost, and used a transformity of human time that is

based on the average emergy per person in one year. Doherty's research provided a basis for the









concept that the environmental services provided by a forest have the capacity to exceed the

benefit that would be gained by harvesting.

While forests were not the primary focus of"Emergy Synthesis Perspectives, Sustainable

Development, and Public Policy Options for Papua New Guinea" (Doherty and Brown 1993)

they were an important part of the study. In addition to evaluating forests they undertook an

evaluation of cultural information, establishing the extremely high emergy values for cultural

information. The fundamental concept that the emergy value of culture is the sum of the time of

the people spent on developing it was first stated in Doherty and Brown (1993). The Papua New

Guinea study includes an emergy synthesis of the forestry industry in Papua New Guinea; both

rainforest extraction and Sago palm plantations were evaluated. Forest resources formed the

environmental support base for the people of Papua New Guinea.

Krieger (2001) provides a comprehensive review of the methods that economists use to

establish the value of ecosystem services, as well as the current accepted values available in the

literature. It is a synthesis paper of over 50 published works addressing both ecosystem services

and natural capital. Several of the values contained in Krieger's work were for the environmental

services and/or natural capital of the USFS and were included in this work. Table 1-2

summarizes these values. The economic valuation techniques described in the work were

contingent valuation, travel-cost method, hedonic approach, defensive expenditures, benefits

transfer, commercial value, gross expenditure, and economic impact. The categories of

ecosystem services evaluated were watershed services, air quality, biological diversity, carbon

sequestration, recreation and tourism, cultural values, and non-timber commercial forest

products. The highest valued service provided by US forests was climate regulation at 18.3

billion dollars, closely followed by waste treatment at 18.1 billion dollars. Dunkiel and









Sugarman (1998) estimated that consumptive use of water flowing from National Forests was

worth $27 billion per year. Sedell et al (2000) estimated the value of water that was actually

consumed originating in National Forests at $1.4 billion per year. The same study (Sedell et al)

estimated the carbon sequestration value of National Forests at $3.4 billion/year and the

stimulation to the US GDP (Gross Domestic Product) as $110 billion per year. These estimates

were based on the market price for the goods provided. Loomis and Richardson (2000) used

contingent valuation to estimate that the roadless areas of National Forests were worth $280

million/year, by surveying people as to there willingness to pay to preserve these area.










Table 1-2. Synopsis of USFS values found in Krieger (2001)
Value
Category Study Basis for Valuation Estimate
Consumptive use value of all water flowing $50.86/acre-
Dunkiel and from Forests foot $27
Water Sugarman (1998) billion/year
Consumptive use value of water actually $1.4
consumed billion/year
Offstream and onstream value of all water $3.7 billion/yr
Average Marginal value for hydroelectric $0.26 to $17/
acre-foot
Marginal Value of stream flow for recreation < $10/acre-
Sedell et al. (2000) foot
Recreational Value of streamflow $1 to $45/
acre-foot
Value of streamflow for anglers <$10/acre-
foot
Total value of maintaining water body levels $15 to $115/
Brown (1992) houshold/year
Benefits Transfer
Carbon Dunkiel and $65/ton
Sequestration Sugarman (1998) $3.4 billion/yr
Benefits Transfer (only roadless areas of $65/ton
Loomis and USFS) $1 billion/yr
Ricahardson $26.7 billion
(2000) present value
Economic impact of National Forest $6.8 billion in
Moskowitz and recreation 1993 139,000
Recreation Talberth (1998) jobs in 1996
Contribution to Gross Domestic Product
Dunkiel and
Sugarman (1998) $110 billion/yr
Moskowitz and Economic value of fishing $1.3 to 2.1
Talberth (1998) billion (1996
Moskowitz and Total economic value associated with $1.4 to $2.9
Talberth (1998) fishing billion
User day values for roadless area $600
Loomis and recreation million/yr
Ricahardson Economic impact of roadless areas $1.49 billion
(2000) 23,700 jobs
Loomis and Passive use of USFS roadless ares
Ricahardson (contingent valuation method) $280 million
Cultural Values (2000) annually









CHAPTER 2
METHODS

In this study, the emergy synthesis technique was used to quantitatively evaluate both

economic and environmental services and capital assets of the USFS system and to lend insight

into the relative importance of these components. The evaluation of the USFS was carried out at

two scales. First, the storage (natural capital) and primary ecological processes (environmental

services) of the entire USFS system were evaluated by conducting separate evaluations of the

nine USFS regions and summing to obtain total, system wide values. Second, two national

forests, one from the northwest region and one from the southeast region, were studied in greater

detail. At both scales of inquiry, the flows of energy, materials, labor and tourist activity were

evaluated. In a final comparative analysis, emergy of environmental services and natural capital

of the USFS system, expressed as emdollars, were compared to monetary values for the same

services and capital derived using both market and non-market methodologies. Detailed

methods for these analyses follow.

The concept of doing multiple evaluations at varying scales to fully understand the subject

system is taken from Environmental Accounting (Odum, 1996). The diverse characteristics of

the regions made it necessary to evaluate the individual regions and then sum them in evaluating

the total USFS. If national averages were used that would not capture the wide regional diversity.

Regional characteristics that could potentially be lost when using national averages include

climatic variability, geology, and soil attributes.

General Methods for Emergy Synthesis

Spatial and Temporal Boundaries of the Synthesis

The spatial boundaries were defined as the USFS system of lands and the economic

assets (roads, buildings, and machinery) and natural capital (mineral resources, tree biomass and









miscellaneous natural resources) contained within them. The boundary also included the

Washington DC offices of the USFS. For the Forest Service Regions that border an ocean the

boundary was the continental shelf area extending out 1 km from the shore. One kilometer was

used as an estimate of the contributing region of the continental shelf to the on-shore ecosystem.

The vertical stratum of the system evaluated was 1000 meters above the highest ground elevation

and the depth included the mineral and/or aquifer below the surface. Two individual national

forests, the Deschutes and Osceola Forests were also evaluated. The boundaries for these forests

comply with the boundary guidelines established above.

The emergy synthesis table

Each of the emergy evaluations were organized using a standardized table format (Odum,

1996) like the example shown in Table 2.1. The tables had six columns organized as follows:

Column 1: footnote number for each line item in the table

Column 2: each line item, either a flow or storage is listed separately

Column 3: The data for each line item

Column 4: Emergy intensity, usually calculated separately in previous studies,

units are solar emjoules per joule, sej/J or sej/g or sej/$

Column 5: The emergy of each line item, obtained by multiplying column 3 by

column 4.

Column 6: Emdollar value of the line item, obtained by dividing the emergy value

by the Emdollar Ratio.












Table 2-1 Example energy table
4
2 3 Emergy 5 6
1 Note Item Raw Units Intensity Solar Emergy Emdollars

1 Name 1 Data 1 El1 Col 3 x Col 4 Col 5/sej/$

2 Name 2 Data 2 El2

3 Name 3 Data 3 El3

n Name n Data n Eln "


Evaluation of flows and storage

Emergy synthesis of the USFS system and the two individual forests were based on

annual flows of energy, materials, and services. The evaluation of the USFS was conducted for

the year 2005, the most recent year with nearly complete data records. In some cases earlier

years or 10 year averages were used. These are noted in the footnotes to the evaluation tables.

The annual flows were those that crossed the system boundary (inputs and outputs) as well as

resources that were extracted and used within the Forests. A table of flows was formulated that

included input and output flows divided into four categories; environmental inputs (sunlight,

wind, rain, tides, deep heat), resources from within that were utilized within the Forests (soils,

wood, water), purchased inputs (fuels, goods, services), and resources from within that were

exported (minerals, wood, fossil fuels).

The evaluations of Deschutes and Osceola Forests were like-wise carried out using data

from 2005. Data for input flows, export flows, and storage of the Osceola and Deschutes Forests

were obtained directly from personnel at each of the Forests in response to a submitted list of

data needs and personal communique.









Emergy Synthesis of the USFS


Environmental Flows

The environmental flows evaluated are standard in emergy synthesis (Odum, 1996) and

include solar insolation, wind, chemical and geopotential energy of rain, energy of transpiration,

tidal energy, wave energy, and earth cycle energy. Data and GIS coverages from government

organizations were used to obtain values for many of the renewable inputs including rain, tides

(NOAA 2006), sun insolation (NREL 2006), deep heat (International Heat Flow Commission,

IHFC 2006) and elevation changes (USGS 2006). In calculating the solar, rain, heat, and wind

emergy ArcGIS was used to take the data relevant to each region of the USFS and extract it from

the larger data sets using the clip feature. A polygon shape coverage of USFS boundaries was

used as the boundary coverage, this coverage was obtained directly from the USFS. A mean

value for each flow in each region was obtained from the clipped portion of the dataset using the

in program statistics function and then used in the emergy synthesis. Point measurements from

NOAA weather stations for average wave height and tidal range over a yearly period (2005) over

the area adjacent to National Forests, an average value for tide and wave height data from

available weather stations in the area over a years time (2005) was used for the regions with

ocean borders (Regions 5, 6 and 10).

Purchased Flows

The purchased inputs to the system include goods such as herbicides/pesticides, fuel,

machinery, electricity and seedlings. These data were obtained from unpublished and published

USFS documents and databases (USFS 2003, 2004, 2005, 2006). Where data exists for flows in

a monetary form (seedlings and miscellaneous expenditures) the dollar values were converted to

a representative emergy value using the emdollar ratio.









Emdollar Ratio

The emdollar ratio is the equivalence between a dollar circulating in the economy and the

emergy of a country in a given year. The equivalence is made by dividing the emergy budget of

the country for that year by the GDP over the same year (Odum, 1996). Dividing emergy values

by this equivalence allows emergy to be expressed in monetary terms; as the emdollar.

Multiplying dollars by the emdollar ratio allows the dollar value to be converted to a

representative emergy value.

Services

Emergy values of services and labor (services quantified through dollar flows, labor

quantified by hours worked) in the USFS system were yearly values found in USFS documents

(USFS 2006, 2004, and unpub 2006). Dollar values were converted to emergy using the emdollar

ratio. The emergy of labor by USFS employees was calculated using an estimate for number of

hours worked based on the number of full and part time employees in each region and the

Washington Office. The work hours were then multiplied by a transformity for hourly work of

someone with some college education (transformity from Odum, 1996, average education level

from USFS unpublished documents, 2006).

Tourism

The emergy imparted to the USFS system from tourists was calculated using the joules of

energy used by the tourist while visiting the forest and an average transformity value for a joule

of human energy (Odum, 1996). The yearly number of hours of visitation to each region was

known (USFS, 2004) and this was multiplied by an average for joules used by human activity

per hour to obtain the total number of joules used in a region in the given year. The image export

with tourists from the USFS was quantified by the renewable emergy flow in the average area

recreated in each region, over the average time of a recreation visit in each region. This









quantified the quality of the experience for the visitor, but was not a tangible energetic export so

was not included in environmental services or index calculations.

Storages

Emergy in the storage of the system was defined as the yearly emergy input to the

storage multiplied by the turnover time of the storage. Mineral and fossil fuel storage on USFS

lands were assumed to be proportional to the percentage of the US that was USFS land

(approximately 5%). The transformity used for the mineral storage was a weighted average of

the most abundant occurring minerals, as determined by the percentage a mineral makes of the

total yearly sale of minerals from USFS lands. The storage of timber in the regions was found

by inputting desired search criteria into the RPA Data Wiz software (Pugh, 2002). This software

compiles forest inventory data taken by the USFS including biomass per hectare of each tree

species, and can be broken down as fine as by NF district. The COLE (Carbon On-Line

Estimator) was used to obtain an estimate for the mass of shrubs and herbaceous vegetation as

well as the mass of soil organic matter in each of the forest types that occur in the 9 USFS

regions. This tool generates a carbon mass per m2 of each component of the forest, based on

dominant tree species and location. The carbon mass was then converted to biomass using the

assumption that vegetation is 45% carbon. The storage of glaciers on USFS lands was estimated

from USGS data available online (USGS, 2006) on the average depth of the glaciers and USFS

information on the extent of the glacier that is within the boundaries of the National Forests, also

available online (USFS, 2007). The emergy of the physical land is based on the global average

transformity of a hectare of land (Odum, 1996). The extent and characteristics of roads,

buildings, and machinery on USFS lands was unpublished and found in internal USFS databases,

made available by USFS employees. Roads characteristics were determined by class, and these

class specifications were found through personal correspondence (USFS, 2006). The amount of









office equipment was estimated from an average mass of office equipment, 15 kg, per m2 of

office.

Economic Values of Environmental Services and Capital

The economic value was evaluated for all environmental services, natural capital and

economic assets. These values were either obtained directly from USFS documents (in the case

of employees, buildings, machinery, roads, recreation and timber), or were estimated through

literature estimates of market price or willingness to pay (performed for minerals, fossil fuels,

water, peat, and hunting/fishing). The economic values for environmental services and capital

can be found in Tables 3-7 and 3-8.

Emergy Synthesis of USFS Components and Subsystems

The two case studies relied on data obtained from site visits and subsequent personal

communications, as well as published and unpublished materials. The two case study Forests had

the following additional evaluations to the regional analyses.

Deschutes: emergy of mountain formation

An evaluation of the emergy embodied in the mountains of Deschutes was performed for

the case study. The emergy embodied in the mountain range of Deschutes was equal to the

emergy of the region over the time in which the mountains formed. This calculation was based

on the elevations found in the National Forest and the associated emergy/time required for the

earth processes to form mountains of these heights.

Osceola: evaluation of phosphorus storage

An evaluation of the phosphorus resources in the stratum beneath Osceola was made by

the USGS in 1978. This storage was evaluated in the Osceola emergy synthesis, using the USGS

estimate for phosphate storage and a previously calculated phosphate rock transformity (Odum,

1996).









Subsystems Evaluated

Several subsystems within the network of the USFS that were previously unevaluated or

whose evaluation was reworked are contained within the results of this thesis. These subsystems

include buildings, hunting and fishing, evolution, biodiversity, Native American artifacts. The

methods for their evaluation are contained within Appendices A through E of this document.

Emergy Indices and Ratios

Several new indices for both yearly emergy flows and emergy storage were calculated.

Flow indices are summarized in Table 2-2 and storage indices in Table 2-3. Figure 2-2 is used to

pictorially represent how the indices are calculated. There is only a slight difference in the

Emergy Return on Investment calculation and the Emergy Yield Ratio, and both indices

demonstrate the amount of yield from the system compared to the non-renewable emergy input

from outside the system. The difference lies in that the numerator in the emergy Return on

Investment is the exports, calculated as the emergy potential upon export from the system, while

the EYR numerator is the yield, which is all the emergy input in the system. The major flow that

makes a difference in the emergy of the yield and exports is the geopotential emergy of water.

For the yield it is the geopotential from the average elevation of the Forest to the average

elevation at the system boundary while for the export emergy it is the geopotential emergy from

the system boundary to sea level; this difference is larger so the exported geopotential emergy is

larger.































Figure 2-1 General diagram for the USFS system











Table 2-2. Indices for flows (environmental Calculation and Description
services)
Emergy Return on Investment (ERI), also ERI=Exports/F
known as exports to imports ratio The emergy potential exported from the
system divided by the energy invested from
outside the system. It was previously known as
exports/imports index
Emergy Yield Ratio (EYR) EYR=Y (R+N+F)/F
The amount of emergy yield per emergy
investment from outside the system.
Environmental Loading Ratio (ELR) (F+N)/R
The ELR is the nonrenewable emergy in the
system divided by the renewable emergy.
Use (Use=R+F) per Tourist Use/Yearly Tourism (see Table 3-3)
Yearly Use divided by number of visitors per
year. This may indicate the quality of the
experience for the tourist.











Table 2-3. Indices for storage (natural capital) Description/Calculation

Services to Capital Ratio S/C Ratio= Exports/RC
Exported Services divided by total Natural
Capital. This index measures the amount of
yearly services being provided by the stored
Natural Capital. This will change depending on
if the Natural Capital is in a labile form.
Economic-Environmental Ratio EE Ratio= C/RC
All economic storage divided by
environmental storage. This indicates the
amount of development vs. natural lands.
Information Content Info Content= IC/(IC+C+RC)
Total information capital divided by all capital.
This determines the extent to which the capital
emergy is made up by intangible information
emergy.









CHAPTER 3
RESULTS

The results of this study are summarized and organized as follows. The emergy value of

yearly flows and storage within the National Forests were individually established for all nine

regions, and then summed; these values were used for the total USFS evaluation. The values of

driving emergies and storage found for the Osceola and Deschutes National Forests are also

reported in this section. Values for total USFS yearly flows are reported first, followed by USFS

and storage, regional results, case study forest results, comparison of emergy and economic

values, and linear regression results.

Yearly Flows of the USFS System

Table 3-1 summarizes the yearly flow inputs and outputs of the USFS system. The

renewable emergy basis of the US National Forests was 8.67E22 sej yr equivalent to 45.6

billion emdollars (Table 3-1, Ra). The emdollar value of exports from USFS lands was 259

billion emdollars (Table 3-1, exports sum). If recreation is included as an export the value

increases to 351 billion emdollars (Table 3-1, export sum). The summed (non-renewable

emergy) imports to the forest lands equal 22.7 billion emdollars (Table 3-1, import sum). This is

an emergy return of over eleven to one (Table 3-1, export sum/import sum) with tourism not

considered as an export. This indicates that the National Forests are providing nearly four times

the emergy benefit to the larger system than the emergy of support. Of the total emergy used on

national forests 66% is renewable. An index calculated from an emergy synthesis is the emergy

yield ratio (EYR), the emergy yield divided by the emergy from the outside system. The EYR for

the NF is 9.9, another indication of the large contribution to the outside system from the National

Forests. The ELR for the USFS lands is 0.50. This indicates a natural landscape. Developed

lands have an ELR above 4 and average 8 sej of input emergy per sej of renewable support










(Odum 1996). Figure 3-1 shows the emergy imported from outside the system on an annual

basis. Tourist time dominates the imports, with miscellaneous expenditures and labor the second

and third greatest imports.


30000.0
25000.0 -
20000.0
S15000.0
-V 10000.0 -
5000.0
0.0









Figure 3-1. Summarization of the annual imports to the USFS system

USFS Exports

Figure 3-2 shows the percentage of contribution that each category provides to the total

exports. Fossil fuels are the largest single export (26%) but the two forms of energy inherent in

water (chemical and geopotential) form the largest export (40%, 21% from chemical potential

and 19% from geopotential). Other significant exports include minerals (12%), hydroelectric

power (12%), and harvested wildlife (9%).












Table 3.1 Emergy evaluation of the USFS

Unit Emergy Solar EmDollars
Values 1. Emergy (xl06


Note Item
RENEWABLE RESOURCES:
1 Sunlight
2 Rain Chemical Potential
3 Transpiration
4 Rain Geopotential
5 Wind, Kinetic
6 Hurricanes
7 Waves
8 Tides
9 Earth Cycle

INDIGENOUS NONRENEWABLE
RESOURCES:
10 Soil Loss (harvesting)


Top soil loss (harvesting)
11 Miscellaneous Products (plants)

S:
12 Petroleum Products
13 Machinery, Equipment
Goods (Pesticides, herbicides,
14 misc goods)
15 Seedlings
16 Tourist Time
17 Labor (FS + Contract)
18 Electricity
19 Misc. Expenditures


ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
Payments for minerals/fuels
21 extracted
22 Fee Payments


EXPORTS:


Extracted Firewood
Harvested Wood
Water, Chemical Potential
Water, Geopotential
Minerals
Fossil Fuels 1.
Harvested wildlife
Harvested Fish
Information (research) 2.


Units Quantity (sej/unit) (xl0o"sej) Em$)


4.37E+21
2.62E+18
1.18E+18
1.08E+18
3.40E+18
9.26E+13
6.07E+17
1.96E+17
2.10E+18




9.73E+10
8.04E+13
2.50E+13


4.04E+15
4.95E+09

7.22E+07
5.16E+07
1.69E+15
1.22E+08
1.07E+15
2.97E+09


1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
2.43E+04
1.20E+04
Ra=


1.68E+09
1.65E+05
5.04E+04
Sum=

1.11E+05
1.13E+10

1E9 7 E9
1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12
Sum=

1.90E+12

1.90E+12
1.90E+12
Sum=

3.06E+04
5.04E+04
8.10E+04
4.70E+04
Mixed
Mixed
1E5-9.9E5
1.68E+07
2.35E+14


4371.0
81096.1
36087.1
50609.1
8326.4
0.6
30978.9
4756.0
25257.2


g
J
J


J
g

g
$
J
hours
J
$


$ 2.24E+08


2.84E+09
5.05E+07


1.17E+16
1.02E+17
1.26E+18
2.01E+18
4.16E+12
1.52E+18
5.14E+16
9.96E+13
9.10E+05


2300.5
42682.1
18993.2
26636.4
4382.3
0.3
16304.7
2503.2
13293.2


8.67E+04 4.56E+04


163.5 86.1
13.2 7.0
1.3 0.7
178.0 93.7

450.1 236.9
55.8 29.4

1.8 0.9
98.1 51.6
25328.8 13331.0
7683.6 4044.0
313.5 165.0
9264.4 4876.0
43196.1 22734.8

425.9 224.1

5390.2 2837.0
95.9 50.5
5912.0 3111.6


358.9
5158.3
101748.4
94618.6
60553.4
124081.7
42846.3
1673.6
214.1


188.9
2714.9
53551.8
49799.3
31870.2
65306.2
22550.7
880.8
112.7


IMPORT











Table 3-1. Continued.
32 Hydroelectric Power 1. J 5.05E+17 1.20E+05 60743.1 31970.1
33 Image Exported with Tourists hrs 3.69E+09 4.73E+13 174419.2 91799.6
Sum= 666415.6 350745.1
ECONOMIC PAYMENTS MADE
34 Payments to State and Local Gov't $ 4.15E+08 1.90E+12 787.7 414.6
35 Payments for Labor 2. $ 1.32E+09 1.90E+12 2515.1 1323.7
Footnotes for Table 3-1 found in appendix F.









Hydroelectric Pow traced Firew ood
Harvested Fish 12% 0% Harvested Wood
0% L 1%

Water, Chemical
Information Potential
0% 21%



Harvested w wildlife
9%


Water, Geopotential
Fossil Fuels 1. 19%
26%


Minerals
12%





Figure 3-2. Contribution of various exports to total emergy value of exports from USFS lands.

USFS Capital Assets

Given in Table 3-2 and pictorially represented in Figure 3-3 are the emergy values of stored

assets (capital) on USFS lands. There are four principle categories of emergy storage within the

USFS system; environmental, geologic, economic, and information. The principle formation

emergy is the determinant for the category in which a system component is placed. For example,









the majority of emergy embodied in buildings is derived from human (economic) origins so it

falls into the economic capital category. These divisions are used both in Table 3-3 and in the

following presentation of results.

Environmental Capital

Figure 3-3 pictorially presents the proportions of environmental capital of the USFS

system. The largest values are for soil organic matter, glaciers, tree biomass, and fauna,

accounting for 73%, 11%, 9.5% and 3% of the 19.1 trillion emdollars of environmental capital

storage, respectfully (Table 3-2, environmental capital sum).

Soil Organic matter forms the majority of the environmental capital, with 73% of the

total. The value for glaciers is a function of the storage of glaciers on Alaskan lands and the high

specific emergy (sej g-) of glacial ice (Odum, 2000). The fauna storage is the physical storage of

animal biomass in the forests, not including their genetic information (see Appendix E). Other

environmental capital is surface and ground water, both accounting for 0.4% and 2.3% of the

total, the biomass of shrubs and herbaceous plants comprising 0.3%, and the physical land area,

0.2% of the total environmental capital emergy, shown in Figure 3-3. Some environmental

capital storage with economic value are tree biomass, valued at 1.47 trillion emdollars (Table 3-

2), and peat with an emdollar value of 6.4 billion (Table 3-2).











Table 3-2. Emergy of capital in the USFS system

Emergy Solar
Intensities Emergy EmDollars


Units Quantity (sej/unit) (\ 11 c) (x109 Em$)


Note Item
ENVIRONMENTAL CAPITAL
1 Tree Biomass
2 Herb./Shrub Biomass
3 Land Area
4 Soil OM
5 Peat
6 Glaciers
7 Ground Water
8 Surface Water
9 Fauna
ECONOMIC CAPITAL
10 Roads (dirt)
11 Roads (gravel)
12 Roads (paved)
13 Machinery & tools
14 Office Equipment
15 Buildings
GEOLOGIC CAPITAL
16 Fossil Fuels
17 Minerals
17b Minerals
INFORMATION CAPITAL
18 Information Value of Indian Artifacts
19 Value of Endangered Species


J
J
ha
J
J
g
J
J
g


$
g
g
g
g
g


J

g
$


J
# of species


7.71E+19
6.91E+18
7.80E+07
1.39E+20
3.95E+16
6.23E+17
2.80E+18
1.59E+18
3.03E+14


1.70E+09
8.01E+13
4.81E+12
9.90E+10
3.84E+10
9.65E+11


1.27E+18
4.41E+13
1.20E+11


1.15E+18
4.96E+02


4.48E+04
17976
1.05E+15
1.65E+05
3.09E+05
6.46E+06
3.02E+05
8.10E+04
mixed
sum=
1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
mixed
sum=
mixed
7.06E+10
1.90E+12
sum=
1.89E+07
2.26E+22
sum=


3452.5
124.2
81.9
26467.3
12.2
4022.3
845.3
129.1
1075.2
36210.0
3.2
134.6
13.3
1.1
0.4
7.5
160.3
7797.9
3112.8
228.0
11138.7
21728.1
62224.6
83952.62


Footnotes in appendix F


1817.1
65.4
43.1
13930.1
6.4
2117.0
444.9
68.0
565.9
19057.9
1.7
70.9
7.0
0.6
0.2
4.0
84.4
4104.1
1638.3
120.0
5862.5
11435.8
32749.8
4.42E+04












Surface Water Fauna
04% 3 0%
Ground Water
2 3%
Glaciers
11 1%
Peat
0 0%










Soil OM
731%












Endangered
Species
47%




I


Tree Biomass
95%
Herb /Shrub
Blomass
L 0 3%
Land Area
0 2%


Roads (gravel)
1%


Minerals
28%


USFS Environmental Capital


Indian Artifact USFS Total Capital
Information
17%


Figure 3-3 Environmental capital, economic capital, and all forms of capital stored on USFS
lands


Fossil Fuels
71%


USFS Non-Renewable Capital


Herb./Shrub
Biomass
Tree Biomass 0%
3% Land Area
0%









Economic Capital

Economic storage in the USFS system were fairly inconsequential in terms of their

percentage of the total system storage. They comprise less than 0.01% of the total emergy

capital storage of the system (not including information). The largest of these storage is gravel

roads, valued at 71 billion emdollars (Table 3-2). The paved road storage was valued at 7.0

billion emdollars and dirt roads were 1.7 billion emdollars (Table 3-2). An economic estimate of

$15 billion dollars was made for all roads, roughly a sixth of the emdollar value. USFS

machinery and tools were estimated to be 637 million emdollars (Table 3-2), USFS office

equipment was valued at 243 million emdollars and the buildings on USFS lands had a value of

4.01 billion emdollars (Table 3-2).

Geologic Capital

The USFS system has moderately large storage of fossil fuels and other geologic assets

in comparison to the country as a whole. Figure 3-3 shows the Natural Capital of the USFS

including non-renewable storage. These storage account for 22.5% of the storage when

information storage are not included and 8% of the total emergy storage (see Figure 3-3) when

they are. These storage are actually undervalued, as estimates for all mineral storage on USFS

lands were not available. The value for mineral reserves on USFS lands was 16 trillion emdollars

and the value of fossil fuels was 41 trillion emdollars (Table 3-2).

Information Capital

Figure 3-3 demonstrates the large percentage of total USFS capital made up by

information capital (endangered species and Native American culture storages. The two

categories of information capital valued in this study are the cultural information of Native

Americans contained within relics of their civilization and the genetic information contained

within the populations of endangered species in the USFS system. The sum of the information









capital is nearly two times (44.2 trillion emdollars, Table 3-2 information capital sum, vs. 24.9

trillion emdollars Table 3-2 total all other line items) the sum of all other storage. Of the two

information values the storage of genetic information is the larger (34.8 trillion emdollars). The

cultural information embodied in the Native American relics on USFS lands equals 11.4 trillion

emdollars (Table 3-2












Table 3-3 USFS yearly indoces
Unit USFS Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10


Ra (renewable absorbed)

No (local nonrenewable)
N (Non-renewable)
Imports (F)
Exports (B)
Yield (R+N+F)
Use (R+N+NO+F)
Emergy Yield Ratio (Y/F)
% renew
EIR (F/R+N)
ratio imports to exports
Emergy Return on Invest.

Empower Density

Renewable EmP. Density
ELR (F+N)/R

Use per visitor
ESI (EYR/ELR)

Timber Harvest


sej/yr 8.67E+22 3.96E+21 3.73E+21 6.27E+21 9.60E+21 5.58E+21 1.85E+22 7.36E+21 5.57E+21 2.61E+22


sej/yr
sej/yr
sej/yr
sej/yr
sej/yr
sej/yr







Sej/
m^2/yr
Sej
/mA2/yr

sej/
capital

Sej/
m^2/yr
People
/ha/yr


1.69E+20
2.96E+23
4.32E+22
4.92E+23
4.25E+23
1.30E+23
9.85
0.67
0.50
0.09
11.39


3.17E+19
5.45E+21
3.22E+21
2.05E+22
1.26E+22
7.21E+21
3.92
0.55
0.81
0.16
6.38


2.01E+19
1.77E+22
5.36E+21
2.22E+22
2.67E+22
9.10E+21
4.99
0.41
1.43
0.24
4.14


3.85E+18
1.91E+22
3.80E+21
2.95E+22
2.92E+22
1.01E+22
7.69
0.62
0.61
0.13
7.78


2.41E+19
2.90E+21
4.70E+21
3.47E+22
1.72E+22
1.43E+22
3.66
0.67
0.49
0.14
7.37


1.06E+19
1.06E+22
6.31E+21
4.43E+22
2.25E+22
1.19E+22
3.57
0.47
1.13
0.14
7.02


5.00E+19
6.40E+21
5.28E+21
5.38E+22
3.02E+22
2.38E+22
5.72
0.78
0.28
0.10
10.18


7.73E+18
4.70E+21
5.73E+21
1.78E+22
1.78E+22
1.31E+22
3.10
0.56
0.78
0.32
3.11


1.86E+19
7.21E+21
3.94E+21
1.87E+22
1.67E+22
9.53E+21
4.24
0.58
0.71
0.21
4.74


1.67E+11 7.00E+10 1.02E+11 1.20E+11 1.11E+11 1.46E+11 2.38E+11 2.43E+11 1.95E+11


1.11E+11
0.50

6.35E+14
6.01


3.84E+10
0.82

5.43E+14
4.78


4.17E+10
1.44

2.79E+14
3.46


7.44E+10
0.61

4.91E+14
12.68


7.41E+10
0.49

6.14E+14
7.43


6.84E+10
1.13

3.87E+14
3.16


1.84E+11
0.29

8.44E+14
19.85


1.37E+11
0.78

4.22E+14
3.98


1.14E+11
0.71

4.23E+14
5.97


6.61E+09 5.49E+09 4.01E+09 2.15E+09 5.46E+09 8.29E+09 1.06E+10 1.43E+10 1.45E+10


2.80E+18
8.71 E+20
1.04E+21
2.87E+22
2.80E+22
2.72E+22
26.89
0.96
0.04
0.04
27.55

3.06E+11

2.94E+11
0.04

9.37E+15
672.13

1.36E+09


1.28 3.64 2.43 1.80 3.76


Visitors


2.63


2.81 5.76 4.60 0.33










Regional Syntheses

An emergy synthesis was completed for each USFS region (see appendices G-O). The

individual characteristics and indices of the regions can be seen from these syntheses, and are

summarized in Table 3-3. Examples of where a region deviates from the average include region

three's high mineral export value, region four's high export of geopotential emergy and region

10's large values for chemical potential emergy of water. Table 3-4 exhibits values for each

region put on a per m2 basis for comparison. Figure 3-4 exhibits the variability in renewable

empower density.


35
30
25
20
15
10

5 -


USFS Region Region Region Region Region
1 2 3 4 5


Region Region Region Region
6 8 9 10


Figure 3-4. Renewable empower in each region, Region 10 is an outlier at over 2.7el 1 sej/m2/yr

Figures 3-5, 3-6 and 3-7 describe the Emergy Return on Investment Ratio, the Emergy

Yield Ratio and the Environmental Loading Ratio. Region ten has the largest Emergy Return

Ratio of the regions at nearly 28 to one and EYR of over 25 and the smallest ELR, 0.04. Figure

3-5 demonstrates that Region 10 also has the largest input of renewable emergy per unit area.

Figure 3-8 shows the total storage of natural capital per m2 for each region, with region 10 being

the greatest.












30.00

4 25.00
( 20.00
o
E 15.00
S10.00
0
x 5.00
w
0.00


USFS Region 1 Region 2 Region3 Region 4 Region5 Region6 Region8 Region 9 Region 10


Figure 3-5 Emergy Return on Investment (exports/imports) by region, Region 10 is largest



26


25.00
20.00
L" 15.00
1-
10.00 1
5.00
0.00


USFS Region Region Region Region Region Region Region Region Region
1 2 3 4 5 6 8 9 10


Figure 3-6. Emergy Yield Ratio by region, Region 10 the highest, at over 25














1.60
1.40
1.20
Z 1.00
Z 0.80 -
U. 0.60
0.40
0.20
0.00
USFS Region Region Region Region Region Region Region Region Region
1 2 3 4 5 6 8 9 10





Figure 3-7 ELR in each region, Region 2 has the highest ELR


160

140
E 120

o
100
4-
S80 -
.60 /


w 20


USFS Region Region Region Region Region Region Region Region Region
1 2 3 4 5 6 8 9 10



Figure 3-8 Areal storage of total capital in each region



































-1,
I'


Table 3-4 Comparison by region of components that make up natural capital of the USFS
units USFS Region 1 Region 2 Region 3 Region 4

All Natural Capital sej/m^2 4.56E+13 2.52E+13 1.83E+13 1.01E+13 1.70E+13

All Economic Capital sej/m^2 2.14E+11 2.72E+11 1.51E+11 1.23E+11 1.30E+11

Tree Biomass sej/m^2 3.58E+12 4.16E+12 3.49E+12 1.16E+12 2.07E+12

Herbaceous/Shrub Biomass sej/m^2 1.59E+11 1.02E+11 1.33E+11 1.46E+11 1.55E+11

Land Area sej/m^2 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11

Soil OM sej/m^2 3.39E+13 2.02E+13 1.39E+13 7.65E+12 1.39E+13

Peat sej/m^2 1.57E+10 -

Glaciers sej/m^2 5.16E+12 -

Ground Water (drinking aquifer) sej/m^2 1.08E+12 5.60E+11 6.72E+11 1.03E+12 6.72E+11

Surface Water sej/m^2 1.66E+11 7.63E+10 5.05E+10 4.33E+10 4.36E+10

Fauna sej/m^2 1.38E+12

Native American Information sej/m^2 4.38E+12 1.33E+13 1.48E+12 3.34E+13 4.79E+12

Biodiversity Information sej/m^2 1.29E+15 3.29E+12 4.04E+12 1.47E+13 4.70E+12


Region 5

2.14E+13

2.94E+11

4.50E+12

1.66E+11

1.05E+11

1.58E+13





6.72E+11

2.01E+11



8.25E+13

2.82E+13


Region 6

6.68E+13

2.67E+11

7.89E+12

2.04E+11

1.05E+11

5.72E+13



1.26E+10

1.24E+12

2.20E+11



1.97E+13

2.41E+14


Region 8

4.26E+13

4.01E+11

3.47E+12

1.75E+11

1.05E+11

3.66E+13

1.87E+11



1.99E+12

1.75E+11



3.42E+13

4.00E+15


Region 9

6.06E+13

3.17E+11

2.66E+12

8.91E+10

1.05E+11

5.47E+13

7.49E+09



1.18E+12

1.91E+12



4.24E+13

2.40E+13


Region 10

1.52E+14

2.64E+10

2.36E+12

2.42E+11

1.05E+11

1.02E+14

1.66E+09

4.52E+13

2.24E+12

5.89E+11



1.97E+13

2.79E+12









Regional Variation

Table 3-4 shows generally low variation between regions among the four classes of

(environmental, economic, geologic and information) capital storage. There are several notable

absences in the regional syntheses when compared to the total USFS synthesis. Data for regional

storage of minerals and fossil fuels were not available. These estimates would be highly

variable among the regions. Fauna storage for each region was not estimated either; these

estimates would be expected to vary along with the resource base of the region. The soil organic

matter storage is the largest in all regions, varying between 66 and 90% of the natural capital

storage. For nearly all regions the percentage of environmental capital comprised by tree biomass

varies between 8 and 21%. The two exceptions are Region 9 and 10. Region nine's storage were

dominated by soil OM, with 90% of the environmental capital in that form. Region 10 had a

large storage of glacial ice, accounting for 30% of environmental capital.

Figure 3-10 shows that the emergy of cultural information in Native American relics was

greatest in Region 5 and the lowest in Region 2. Figure 3-11 demonstrates that the emergy

storage of genetic information of endangered species is highest in Region 8 (4.4 E24 sej) and

lowest in Region 10 (2.5 E23 sej).









9.00E+13
8.00E+13
7.00E+13
6.00E+13
5.00E+13
4.00E+13
3.00E+13
2.00E+13
1.00E+13 -
0.00E+00


9-


E.1


\db


9


9-
e)


Figure 3-9 Emergy of Native American cultural information on areal basis


USFS Region Region Region Region Region Region Region Region Region
1 2 3 4 5 6 8 9 10


Figure 3-10 Emergy of endangered species on areal basis, Region 8 highest









Comparison of Yearly Flow Results from the Case Study Forests

Pacific Northwest Region and Deschutes National Forest

Environmental services provided by the Pacific Northwest region forests (Region 6) are

dominated by water leaving the system. This emergy export of water was divided into

geopotential energy and chemical potential energy. Figures 3-11 and 3-12 show the

environmental services from Deschutes NF and the Pacific Northwest region, respectively.

Region 6 exports seventy five percent water, with 40% of the emergy derived from geopotential

energy and 35% from chemical potential (percentages calculated without emergy of tourism).

Water forms 89% of Deschutes NF total exports, 62% from geopotential emergy and 27% from

chemical potential emergy. Harvested timber accounts for about 2% of exports for both

Deschutes and Region 6. At the regional level hunted wildlife forms 8% of the total emergy

exported and the emergy of fish exported is less than 1%. The opposite is true for Deschutes; fish

account for 7% of the exports and hunted wildlife is only 1%.

Table 3-5 compares the indices of Deschutes and Region 6. They are very similar for the

majority of indices. Both have high Emergy Return on Investment and Emergy Yield Ratios,

equal to 13.9 and 4.9 for Deschutes and 10.0 and 5.7 for the overall region. The region as has a

higher percentage of use that is renewable, 78% vs. 50% for Deschutes. Deschutes also has a

higher Environmental Loading Ratio (ELR), 0.41 vs. 0.29. The Emergy Sustainability Index

(ESI) is 12.0 for Deschutes and 19.8 for the Pacific NW region.










Table 3-5 Indices comparison case study forest to region


Indices
Ra (renewable absorbed)
No (local nonrenewable)
N (total Nonrenewable)
Imports (F)
Exports (B)
Yield (R+N+F)
Use (R+N+NO+F)
Emergy Yield Ratio (Y/F)
% renew
EIR (F/R+N)
ratio imports to exports
ERI, ratio exports to imports
Empower Density
Renewable EmP. Density
ELR (F+N)/R
Use per visitor
ESI (EYR/ELR)
Timber Harvest
Visitors


Unit Osceola
Sej 1.33E+20
Sej 0.00E+00
Sej 1.874E+19
Sej 1.41E+19
Sej 2.79E+19
Sej 1.662E+20
Sej 1.47E+20
Sej 11.78
0.90
0.11
0.51
1.98
sej/m^2 2.25E+11
sej/m^2 2.03E+11
0.11
sej/capita 9.83E+14
111.34
sej/m^2 2.58E+10
people/ha/yr 2.29


Harvested Fish
7%


Information
(research)
0%

\ ," /


Minerals
1%

Harvested
wildlife
1%


Extracted
Firew ood
0%


Water Chemical
Energy
27%


Water
Geopotential
Energy
62%


Figure 3-11 Deschutes NF Exports, dominated by water


Region 8
7.36E+21
7.73E+18
4.70E+21
5.73E+21
1.78E+22
1.78E+22
1.31E+22
3.10
0.56
0.78
0.32
3.11
2.43E+11
1.37E+11
0.78
4.22E+14
3.98
1.43E+10
5.76


Deschutes
7.34E+20
3.61E+18
4.24E+20
2.97E+20
4.13E+21
1.5E+21
1.03E+21
4.90
0.71
0.40
0.07
13.93
1.38E+11
9.79E+10
0.41
3.69E+14
12.00
9.70E+09
3.73


Region 6
1.85E+22
5.00E+19
6.40E+21
5.28E+21
5.38E+22
3.02E+22
2.38E+22
5.72
0.78
0.28
0.10
10.18
2.38E+11
1.84E+11
0.29
8.44E+14
19.85
1.06E+10
2.81


\











Harvested Fish Information
Harvtd 0% (research) Extracted
Harvldlfe 0% 0 Firewood
wildlife 1%
8% -.1
Minerals Harvested
2% Wood
2%

Water,
Chemical
Potential
41%


Water,
Geopotential
46%




Figure 3-12. Region 6 exports, water is highest

Comparison of Results from the USFS Southeast Region and Osceola National Forest

The Southeast Region, Region 8, has a higher than average export of timber in

comparison to its other exports. Four percent of the total energy exported is from timber,

compared to the national average of 2% (see Table 3-1, the national percentage excludes flows

not included in the regional synthesis). Osceola National Forest is an exceptional forest in that

timber forms the majority (60%) of its energy exports, as seen in Figure 3-13 which summarizes

exports provided by Osceola. Chemical energy of water is the other large energy export,

comprising 31% of the total. The next largest export is fish, at 6%. Figure 3-14 describes Region

8's environmental services which are dominated by water; chemical potential energy is 54% of

the energy export total and geopotential forms 21%. Wildlife and fish extraction form 17% and

1%, respectively. All these percentages are reported without including the tourism energy export

estimate. When enjoyment gained by tourists is considered as an export, it dominates the energy

exports, forming 70% of Region 8 and 81% of Osceola exports, compared to 36% for the USFS










system as a whole. Osceola has fewer visitors per unit area (see Table 3-5 and Table 3-3) than

the national average.

Indices were calculated for both Osceola NF and the Southeast region, showing

significant differences between the two in several areas. Osceola has a higher Emergy Yield

Ratio (11.78 vs. 3.1, see Table 3-5) but a lower Emergy Return on Investment ratio (ERI). The

ERI of Osceola is 1.98 vs. 3.11 for the region. The Environmental Loading Ratio (ELR) of

Osceola is 0.11 while the ELR of the Region is 0.78. Percent of total use that comes from

renewable sources is 90% for Osceola and 56% for the Region (Table 3-5).



Harvested Harvested Fish
wildlife o
wildlife 66% Extracted
1% Information
Firewood (research)
0%
Minerals 0%
Water, 0%
Geopotential
2%


Harvested Wood
Water, Chemical 60%
Potential
31%









Figure 3-13 Percent of total exports from Osceola NF by Type. Harvest wood is 60% of exports,
compared to 2% for the entire USFS system










Information
(research)
Extracted
Harvested 0%
Firewood
Fish 0%
S0%
1% \ /
Harvested
wildlife Harvested
17% \ Wood
4%
Minerals
3%


Water,
Chemical
Water, Potential
Geopotential 54%
21%




Figure 3-14 Region 8 Exports, dominated by water

Comparison of Storage Results for Case Study Forests and Regions



Pacific Northwest Region and Deschutes National Forest

Table 3-6 provides comparison of storage of emergy within Deschutes NF and Region 6.

The largest difference is evident in the storage of tree biomass and soil organic matter. Deschutes

storage were composed of 25% tree biomass and 49% soil organic matter, Region 6 averaged

12% tree biomass and 86% soil organic matter. Soil OM was larger in Region 6 than Deschutes

on a per m2 basis, as was tree biomass (Table 3-6). The next largest storage for both Deschutes

and Region 6 was ground water at 3 and 2%, of natural capital, respectively. They both had the

same solar emjoules of groundwater per meter square of storage (see Table 3-6). The emergy

embodied in mountains (the amount of energy necessary to create relief) was evaluated. The










emergy storage in mountains was exceptionally high, at 5.6 X1028 sej (see appendix Q).

Deschutes had a comparable storage of emergy per unit area in Native American cultural

artifacts but it had an emergy of biodiversity that is almost an order of magnitude less than the

regional average (Table 3-6).

Table 3-6. Case study forests vs regions comparison of storage (units sej/mA2)
Osceola Region 8 Deschutes Region 6
All Natural Capital 1.06E+14 4.26E+13 4.55E+13 6.68E+13
All Economic Capital 2.93E+12 4.01E+11 8.04E+11 2.67E+11
Tree Biomass 2.46E+12 3.47E+12 1.54E+12 7.89E+12
Herbaceous/Shrub Biomass 1.48E+12 1.755E+11 5.41E+10 2.04E+11
Land Area 1.05E+11 1.05E+11 1.05E+11 1.05E+11
Soil OM 6.49E+13 3.66E+13 4.25E+13 5.72E+13
Peat 1.34E+13 1.865E+11
Ground Water (drinking
aquifer) 2.39E+13 1.991E+12 1.24E+12 1.24E+12
Surface Water 6.34E+10 1.745E+11 1.03E+11 2.2E+11
Native American Information 1.87E+14 3.42E+13 1.24E+13 1.97E+13
Biodiversity Information 2.02E+16 4.00E+15 3.17E+13 2.41E+14





Comparison of Storage Results from the USFS Southeast Region and Osceola NF

Table 3-6 lists the emergy values of storage within Osceola National Forest. Osceola's

environmental storage of groundwater and peat are much higher than the overall region on a per

m2 basis (see Table 3-6). When put on a per m2 the storage of biomass was similar to the region

(see Table 3-6). Soil OM storage in Osceola was twice that of the overall region (Table 3-6).

Osceola has a large reserve of phosphorus, accounting for 217 billion emdollars. Mineral storage

for the overall region was not evaluated due to data limitations. Emergy storage of Native

American cultural information embodied in artifacts is higher in Osceola than the overall region,

as is the emergy stored in genetic information (see Table 3-6).









Comparison of Emergy and Economic Values

Table 3-7 provides a breakdown of the services with and without market value provided by

the USFS. Services with market value that have large differences between the dollar and

emdollar value include tourism, carbon sink, wildlife hunting, and wildlife watching (this

number is included in total tourism). The largest services without market value are clean water

and gross primary production. For the categories of pollination, seed dispersal, and predator

control estimates were not available due to data limitation. The emdollar total for both services

with and without market value was 332.4 x109; this is nearly three times the dollar value of

services.

Table 3-8 compares the emergy, emdollar and dollar value found for the Capital on USFS

lands. Figures 3-18 through 3-20 show the exceptional portions of these results, capital that has

emdollar and dollar values that are either especially convergent or divergent. The largest emergy

storage with market value is coal followed by minerals and timber, but the largest dollar value is

for real estate, followed by timber, minerals and coal. The largest storage without market value is

the emergy of geologic formation; genetic resources are also very high.










Table 3-7. Emergy, emdollar, and economic value of services of the National Forest system
Note Parameter Emergy Value Emdollars Dollar Value
(1018sej) (109 Em$) (109 $)
Services with Market Value
1 Research 229 0.1 0.02
2 Image Export (Tourism) 174419 91 11.2
3 Sales, Permits and Concessions 6 0 3.1
4 Hydroelectric energy 60743 32 11.2
5 Water supply 196367 103 63.6
6 Carbon sink 36087 19 1.4
7 Watershed protection 81096 43 19.9
8 Wildlife hunting 42846 23 2.9
9 Fish Harvest 1674 1 1.3
10 Wildlife watching 20571 11 0.8
Total Market4.7 113.4
244.7 113.4
Services/yr.
Non-Market Services
11 Clean air 13181 6.9
12 Clean water 81096 42.7
13 Gross primary productivity 36087 19.0
14 Net primary productivity 14435 7.6
15 Total respiration 21652 11.4
16 Scientific information 214 0.11
Total Non-Market Services/yr. 87.7 0.0
Footnotes in Appendix R










Table 3-8. Emergy, emdollar, and economic value of assets of the USFS system
Emergy Value Emdollars Dollar Value
Notearameter(1021 sej) (109 Em$) (109$)


Capital With Market Value
1 People (employees)
2 Building Infrastructure
3 Machinery, Vehicles
4 Roads
5 Timber
6 Water (surface)
7 Water (ground)
8 Biomass fuel
9 Minerals
10 Real estate
11 Coal
12 Gas
13 Oil
14 Shale
15 Peat
16 Other forest products

Non-Market Capital
17 Soil
18 Old growth biomass
19 Wildlife
20 Endangered wildlife
21 Topography
22 Geologic formations
23 Priceless locations
24 Knowledge
25 Native American Artifacts
26 Total Genetic resources


5.3
7.5
1.1
151.2
2791.6
129.1
845.3
2915.8
3112.8
81.9
7611.1
27.8
159.0
NA
12.2
NA
Total Market Capital

1,868
531
1,075
62,225
1,490,580
5,070,000,000
2,573
370
21,728
292,795,703
Total Non-Market CaDital


2.8
3.9
0.6
79.6
1469.3
68.0
444.9
1534.7
1638.3
43.1
4005.8
14.6
83.7

6.4

9,396


1.3
4.4
0.5
15.0
147.7
40.4
102.0
189.0
120.0
960.0
73.4
8.9
17.0
NA
0.004
0.003
1,680


983
280
566
32,750
784,516
2,668,421,053
1,354
195
11,436
154,103,002
2.823.356.133 --


Footnotes in Appendix R










Figure 3-15 shows the dollar and emdollar values for employees, buildings, machinery and

roads. It can be observed that the values are similar for machinery, buildings and employees but

diverge in the valuation of roads, with the emdollar value being much greater (79.6 billion

emdollars vs. $15 billion dollars).

As shown by Figure 3-16, minerals stored on USFS lands were valued at approximately

120 billion dollars and 1.6 trillion emdollars, shown in figure 3-16. Figure 3-16 also

demonstrates the variation in emdollar and dollar values for oil, natural gas and coal, all given

more value using emergy synthesis. This data can also be found in Table 3-8.




79.6
m 25.0

20.0
15.0 1 Emdollar
15.0 -
o m Dollar
a
10.0
3.9 4.4
o 5.0 2.8
1.3 0.6 0.5
"w 0.0
People Building Machinery, Roads
(employees) Infrastructure Vehicles

Figure 3-15 Emdollar vs. dollar values for economic storage











4500.0 4005.8
4005.8
e 4000.0
x 3500.0
S3000.0
o 2500.0 Emdollar
S2000.0 -1638.3 m Dollar
S1500.0 -
0 1000.0 -
E 500.0 20.0 73.4 14.6 8.9 83.7 17.0
0.0 _
Minerals Coal Gas Oil



Figure 3-16 Comparison of non-renewable storage emdollar and dollar values

Relationship of Capital to Driving Emergy

A linear regression analysis was performed comparing the yearly renewable flow of

emergy to the storage of emergy in the form of natural capital (Figure 3-17). Natural Capital is

regressed against yearly renewable emergy absorbed. It was found that a statistically significant

positive linear relationship was found with an r2 value of 0.774 (see fig. 3-17). The sample size is

the 9 USFS regions and the case study forests (n=l 1).


6.0E+13 R2 = 0.7741

5.00E+13

4.00E+13

S3.00E+13

o 2.00E+13

z 1.00E+13

0.00E+00
0.00E+00 5.00E+10 1.00E+11 1.50E+11 2.00E+11 2.50E+11 3.00E+11 3.50E+11
Ra, sejlm^2/yr



Figure 3-17 Linear regression of natural capital vs. renewable emergy (n of 11)











CHAPTER 4
DISCUSSION

The driving research question for this work is: What is the emergy value within and

provided by the USFS System? The constituents of this system include the flows, both non-

renewable and renewable, that enter and exit the system on a yearly basis and the storage within

the system. Emergy values of exported environmental goods and services as well as information

and material capital storage are established by this research. Emergy values are compared with

economic values based on price and willingness to pay from literature sources. Other research

goals were to establish the relative importance of flows and storage within the system, identify

the potential affect of the magnitude and significance of flows/storages on management, and

ascertain the utility of performing evaluations at multiple scales. The following conclusions were

drawn from the results of this study:

The USFS is providing a much larger benefit to the external system than is necessary to

sustain it; this is exemplified by the Emergy Yield Ration and the Emergy Return on

Investment index.

Values for environmental services, goods and storage are greater when evaluated

through emergy synthesis than when economic methodology is used. Differentiation of

values is least for flows and storage where anthropogenic emergy dominates.

Performing emergy synthesis at multiple scales grants increased understanding of the

character and behavior of the target system.

The National Forests should be managed to sustain the quality and quantity of their

yearly flows and permanent storage









Emergy Flows

The renewable flows supporting the USFS were approximately 8.6 E22 sej/yr, equivalent

to 45.6 billion emdollars. The USFS system was supported by 4.3 E22 sej/yr (22 billion

emdollars) from outside the system and exports 4.9 E23 sej/yr (259 billion emdollars) on a yearly

basis. This is eleven times the emergy necessary to support the system. From an emergetic

perspective the USFS system is a very good investment for the nation, requiring much less

emergy for maintenance than is exported for the benefit of the surrounding lands. The largest

imports to the system were tourist time, and the labor of the USFS employees. The largest export

from the system was the emergy of the chemical potential and geopotential energy of water. This

provides important services to the nation, both clean drinking water and hydroelectric power

(Sedell, 2000). Harvested wildlife through hunting is also an important service provided.

Nonrenewable emergy exports from the system form a large percentage of the emergy exported

from the system the largest being fossil fuels followed by minerals. These flows draw down the

storage within the system; sustainable rates of use are discussed later.

Natural Capital

The total storage of emergy on USFS lands is equal to 69.1 trillion emdollars (See Table

3-2). This is 5.5 times the total GDP of the United States ($12.5 trillion yr1), and more than the

GDP of the globe ($43 trillion per year). Excluding the societal capital the total falls to 24.9

trillion, double the US GDP. Ecologic (or environmental) capital accounts for 19.1 trillion

emdollars, geologic capital is 5.74 trillion emdollars, economic capital equals 84.4 billion

emdollars. The environmental capital is 225 times greater than the economic capital

(environmental capital ratio). The ratio of environmental capital to economic capital emphasizes

the low economic investment on USFS lands in comparison to the existing natural system. The

ratio of geologic to environmental capital is 0.30 to 1. On the national scale natural capital









storage of emergy within the USFS system vary widely. The highest storage is 34.8 trillion

emdollars of genetic information and the smallest 6.4 billion emdollars of peat (see Table 3-2).

There were several reasons for the large range of values, the simplest being the quantity of the

various resources found on USFS lands, due to regional differentiation in characteristics such as

climate, disturbance regime, geology, and topography.

Potential Sources of Error

There are a few potential sources of error inherent in the emergy calculations; potential

error in yearly flows will be discussed first. The biggest is data limitation, particularly for flows

which data was not kept by the USFS. The flows affected were fossil fuel exports, mineral

exports, as well as hunting and fishing exports. Fossil fuel and mineral data had to be estimated

from dollar flows received and an estimate market price, which may not be exactly the price

paid. Fishing data was especially tenuous as the physical flow was estimated from catch per

time data estimates. There is potential error in some of the transformities used. The majority of

transformities were not calculated but were taken from other studies (Many found in Emergy

Folios 1-5, published by the University of Florida Center for Environmental Policy). A best

effort was made to use transformities from studies in the literature that were as similar to this

study as possible in order to minimize the possible error.

Several natural capital storage, including glaciers, fossil fuel storage and mineral storage

were estimated based on best available data. Mineral and fossil fuel estimates are especially

tenuous as they are based on the percentage of the total US made up the USFS and these storage

may be very localized. Assumptions were made in the evaluation of Native American artifacts,

such as cultural turnover time, as with the evaluation of endangered species. These assumptions

were necessary to maintain the scope and timing of the research, but accuracy could be gained by

in depth research into both of these subjects, beyond the scope of this thesis.









Intrinsic Nature of Flows and Storages

The provision of environmental services is intrinsically linked to the natural capital stored

within the system. Intuitively, one would conclude that the larger the storage of natural capital in

the system the more environmental services will be available on a yearly basis from the system.

However, this is not always true (determined through lack of statistically significant relationship)

and the connection is dependent on several factors. The type of natural capital is very important.

Some forms of natural capital are not available for export, such as glaciers, roads, buildings or

unrecoverable storage of fossil fuels, minerals, or groundwater. Most other flows are only

available for export if emergy from the outside system is invested in order to extract the capital.

This is true in the case of timber, fossil fuels, minerals, and hunted fauna. The emergy exerted

for extraction is much less than the emergy extracted (exemplified by Emergy Yield Ratio, Table

3-2). Some exports of the system are provided without feedbacks like inflow of surface/ground

water and in some cases fauna emigration from the system. These result from the natural

conditions under which the system exists. The storage of information is intrinsic to the physical

storage in the system from which it is derived; in this case either the endangered biota or Native

American relics. The information can be replicated in the form of scientific research which

would then leave the system but the storage of information is not depleted. The physical host of

the information must be affected for information to be lost, such as destruction of a relic or

extinction of a species.

Renewable Emergy and Natural Capital

The renewable emergy absorbed by the system on a yearly basis accrues over time within

the system in the form of natural capital. A positive linear relationship was found between the

emergy absorbed within the system and the natural capital found within the system (see Figure 3-

17). This relationship was found to be strongly statistically significant where other suggested









relationships were not, such as renewable emergy absorbed and environmental services, because

environmental services are dependent on humanity extracting the resource. An important result

from this analysis is the recognition that the magnitude of the renewable emergy that is available

to "fuel" the system has a direct result on the amount of natural capital stored in the system.

Emergy Indices

Environmental Loading Ratio

The environmental loading ratio (ELR) is an indicator of the degree that a region is

impacted by human influence. The ELR of the USFS regions varies from 1.44 in region two to

0.04 in region 10, and it is 0.50 for the USFS system as a whole (Figure 3-7). This places USFS

lands firmly in the "natural lands" category, as one would expect. Lands with an ELR under four

are considered natural. The average ELR for the United States is 7.3 (Sweeney, 2008). The

natural condition of the land (its image) serves as the attractor for tourists to come and visit the

forest. These visitors form the largest economic emergy input to the forest. The forest regions

with the highest ELRs are the regions with the largest numbers of visitors. Previous work has

suggested that ELR of one is necessary for the most efficient use of natural resources (Tilley,

2003). It may be that the optimal visitation rate would be one that has equivalent emergy to the

renewable flow. In that case, the National Forests could sustain an approximate 600 million

visitors annually, and achieve an ELR of one. This is assuming all portions of the USFS system

would be available for visitation. This is an overestimate, considering that many parts of USFS

lands are relatively inaccessible and that the vast majority of visitation occurs on designated

sites. Further research is necessary to verify the optimal level of visitation or investment in

resource exploitation. It would be very informative to compare indices of environmental

degradation in National Forests to the ELR in those forests.









Emergy Yield Ratio and Emergy Return on Investment

Emergy return on investment (ERI) and the Emergy Yield Ration (EYR) describes the

ratio between the emergy of the flows exported and the emergy necessary to upkeep the National

Forests. Both indices are calculated similarly (see ch. 2 p. 9 for description of calculation) When

considering either index, the USFS system is exporting much more emergy than is fed back to

the system; it has an ERI of eleven and an EYR of 10. The ERI of the regions vary from 3.8 in

region 8 (southeast) to 28 in region 10 (Alaska), Figure 3-8 and 3-9 demonstrate the ERI and

EYR for all regions and the USFS. Across all regions much more emergy is being provided to

the nation than is required to manage the forests. The exports of the system are either renewable

flows or non-renewable resources with a large amount of embodied geologic work. These

resources have relatively small amounts of human work/resources invested in their provision;

they are considered "raw" resources.

Information Storages and Flows

The yield calculation does not include the "image" export emergy value, when it is

included the EYR rises to 15. It is very hard to quantify the value of the information that

someone has taken with them, in this case represented by the emergy of the area visited, over the

time of the visit. The image value increases the total export value by thirty five percent. The

value represents the enrichment of visitor's lives, and a potential impetus for revisiting and

protecting National Forests or other natural lands. While it is important to acknowledge the large

value of the experience, the results were reported with and without this value because of its lack

of tangible energetic contribution and possible variation by individual.

Information storage comprise 64% of all storage; this ratio is the information content of

capital. These storage represent the emergy necessary to replace the storage in the system if

they were lost. For example, it would take 6.2E25 solar emjoules over three million years of









evolution to replace the endangered species that currently reside on USFS lands. These large

values emphasize the need to protect the physical storage in the system, thus preserving the

information inherent within them.

Comparison of Emergy and Economic Valuation

The results of the emergy synthesis of the USFS system demonstrate the relationship

between emergy valuation and economic valuation as well as identify and value the components

within the system. Values of environmental flows and storage established through emergy are

higher than those established through economic methods. The human work element of both

emergy and economic valuation links the values at the human end of the spectrum and the

accounting of environmental work in emergy valuation yields a division in values at the

"natural" end of the spectrum of system components (see Figures 3-15 and 3-16). There is a

greater benefit being received by the nation from the USFS system than an economic valuation

would imply. An example of this is the flow of water coming from USFS lands. This water

carries with it a tremendous amount of chemical and geopotential energy that contributes energy

to the external system. This export alone (worth 119 billion emdollars annually) more than

justifies the $4-5 billion annual budget of the USFS (USFS, 2006 Fiscal Overview).

Inequality of emergy and economic value is seen in water, timber, fossil fuels, minerals,

wildlife and fish extracted (see Table 3-7 and 3-8). This indicates that the environment is

providing a large value (quantity of work) external to the economic system. This can be seen as

an indicator of the importance of preserving the system that provides this "free" work for the

provision of these resources to continue. Natural resources form the basis of the economy and the

"free" environmental work is the basis of these resources.. When economic measures are used to

value environmental services they are valued at $48.8 billion, but this number is a high estimate;

it assumes 100% of the water resource exported is available for human consumption. The









emdollar value exceeds the total dollar value of natural resources from the USFS system by 177

billion emdollars (226 billion emdollars value vs. $48 billion dollars of payments received, see

Table 3-7). This is the "free" work driving the natural resources from USFS lands, and ultimately

the highest potential annual emergy loss if these lands were altered from their natural state.

Many natural capital storage, such as cultural information, glaciers, soil organic matter,

peat and biodiversity do not have market value. But economics does place a high value on

minerals and fossil fuels (they account for 91% of USFS revenue, unpub. data) the large quantity

of emergy necessary for their creation makes the emdollar value even larger. Together, yearly

mineral and fossil fuel exports are valued at 1.3 billion dollars and 97 billion emdollars (see

Table 3-7).

A potential economic use for the lands of the USFS is to sell the land for development.

This is not feasible for a large portion of the USFS because it is inaccessible, undesirable, or

infertile. However, assuming that all USFS lands were developed the result would be a huge loss

in both the yearly provision of environmental services and the storage of natural capital on the

lands. The largest environmental service from the land is the chemical and geopotential energy

of water. While these values would remain if the land was developed their functionality would be

severely diminished. Much of the value of the water lies in the fact that it is flowing from the

Forests in a relatively pure condition and at a measured rate, unlike water from urban

environments that flows quickly over impervious surfaces, picking up contaminants. Nearly all

of the natural capital storage (excluding geologic storage and perhaps glaciers) such as soil

organic matter, fauna and peat, would be severely impacted by the removal of vegetation. The

largest of the storage, biodiversity, would be severely impacted by the loss of the USFS's

forests. The existing flora and fauna on the lands would be drastically reduced, with the









endangered and threatened species most severely affected (Er, 2005). Endangered and threatened

species often come to have that designation because of their inability to survive in the presence

of people, making them the most vulnerable when lands are developed. The impact of the loss of

USFS lands as habitat for these species would be tremendous, represented by the emergy value

of endangered species. This value represents the emergy that would be necessary for a similar

species to evolve and take the place of the extinct species. Another result of denuding the

National Forests would be a drastic release of CO2 and the corresponding affect on the rate of

global warming (UNEP, 2007).

Regional Syntheses Analysis

A high degree of variation was found among the nine USFS regions. This was to be

expected; the regions fall in general eco-regions across the United States with varying climate,

geography, and composition of flora and fauna species. The heterogeneity of the regions results

in variation among the flows of the regions. For example, Region 3 is in the southwest and

contains rich mineral deposits and less actual forested area, creating opportunity for a large

mineral extraction flow. Region 4 (the rocky mountain region) exports tremendous geopotential

energy by virtue of the high elevation of its forests. Region 8 (the southeast) produces the highest

emergy of timber on a percentage of exports basis. The southeast is a very productive region for

timber, especially pine. The majority of public lands exist in the western part of the country and

the regions in the west cover a larger area, as a result western regions generally have larger flows

than the eastern regions. For regional calculations see appendices G through O, comparison of

regional indices is demonstrated in Table 3-3.

Comparison of Case Study Forests to Overall Region

The individual Forests analyzed were different from the overall region in which they

exist in many of their emergy flows and storage. The origin of these differences was from the









location of the forests, with resultant environmental conditions, as well as the methods of

management being utilized, and the level of recreation. The quality and scalar attributes of data

available may have an influence as well. The percentage of the components contributing to the

total exports and the standing stocks of natural capital on a per m2 basis are the metrics used to

evaluate the similarity to or difference from the overall region. This approach was used because

the environmental services and natural capital of the regions are much larger than that of the

individual forests, of which there are 34 in Region 8 (the Southeastern Region) spread across

fourteen states as well as Puerto Rico compared to 19 NF's in the Pacific Northwest, Region 6,

found throughout Oregon and Washington. The Forests in Region 6 are more expansive, in total

comprising nearly 25 million acres, while there are only 13 million acres in Region 8 among all

34 Forests. This is evidenced in the case study forests, where Osceola NF is only 162,000 acres

while Deschutes NF is over 1.8 million acres. This makes comparison of the magnitudes of flows

and storage between the case study forests very imbalanced, unless put on a per unit area basis

or expressed as a percentage of their total exports or storage. It is important to be able to

compare between the study forest and the overall region because that is where the utility of

performing emergy analysis at multiple scales is gained.

Comparison of Deschutes NF and the Pacific Northwest Region

When comparing the Deschutes National Forest to the Pacific Northwest region one can

immediately notice an inequality in the driving renewable energies (also known as renewable

emergy absorbed). The average rainfall for the region is 0.90 m yr-1 but only 0.59 m yr1 for

Deschutes. Deschutes has a smaller change in average elevation within its borders than the

overall region, resulting in a lower percentage of its renewable emergy input being derived from

geopotential emergy (59% vs. 71%). The remainder of the renewable emergy is from

transpiration, which is higher for the overall region than for Deschutes, 0.35 m yr- vs. 0.26 m yr









. There is more renewable emergy per unit area in the overall region than in Deschutes (1.8 El1

sej m-2 vs. 9.8 E10 sej m-2). A comparison of flows of Deschutes and Region 6 can be found in

Table 3-5, storage are compared in Table 3-6. A portion of Deschutes is located within the

Cascade Mountain Range and part is on the lee, rain shadowed side. Many of the other Forests of

Region 6 are in temperate rainforest conditions, resulting in more renewable emergy input in the

form of rainfall.

While the change in elevation within the Deschutes Forest is below the regional average

the overall forest is at a higher elevation than the average elevation of the region. This results in

more emergy being exported in the geopotential emergy flow than the regional average.

Deschutes is typical of a Region 6 forest in timber harvest. It has a higher than average ELR,

predominately because it receives less environmental emergy per unit area. Deschutes has a

slightly higher emergy return on investment (ERI) than Region 6, 13.7 vs. 10.18. Much of the

difference can be accounted for by Deschutes higher geopotential emergy export. Deschutes also

receives a higher density of tourists per year, averaging 3.5 visitors per ha per year, while the

Region averages 2.8 visitors per ha per yr (Table 3-3).

There is a disparity in the storage of Deschutes and the rest of the Pacific Northwest

Region. Deschutes averages natural capital storage of 6E12 sej m-2 and the Region averages 1.32

E13 sej m-2 (Table 3-5). Much of the difference can be attributed to the difference in the driving

energies. Deschutes receives less renewable energy, hence has less capacity to build capital.

Higher tree biomass storage in Region 6 (see Table 3-6) may be accounted for in that temperate

rainforests in much of the rest of the Pacific NW forests have very large, Sitka Spruce-Douglas

Fir stands while Deschutes has extensive pine forests and mountainous areas that are treeless, as

well as treeless lava fields. Deschutes supports fewer endangered species per unit area than the









average for the region, resulting in the lower value for emergy of genetic biodiversity.

Contributing to this could be that the lower renewable base will result in lower overall diversity

and/or that higher levels of recreation may degrade habitat. Deschutes has a comparable emergy

of Native American Cultural information per m2 to the regional average (Table 3-6).

Comparison of Osceola and the Southeast Region

Osceola is unique compared to many other Region 8 forests. Osceola produces nearly

double the emergy of timber exports per m2 than the Region (see Table 3-6). It also receives less

than half of the visitors per m2 compared to the rest of Region 8 (Table 3-6). These two numbers

indicate that Osceola is much more of a timber production forest than the average Southeastern

Region Forest. It also has very high indices of sustainability (Table 3-7). Emergy import from

tourists (human impact of time spent in the forest) is the largest input at all scales, but Osceola

has less than the other systems analyzed. The emergy from tourists quantifies the impact visitors

have on the forest. The difference between the average emergy input of tourists in Osceola and

for the region is greater than the additional investment emergy (per m2) required for the higher

than average timber extraction. This results in less overall investment emergy for Osceola than

the regional average. This in combination with a higher than average renewable emergy base,

causes indices of sustainability for the forest (Environmental Loading Ratio, Environmental

Sustainability Index, % Renewable Emergy) to be higher in Osceola than the region.

Osceola NF has nearly twice the renewable empower density (sej of renewable absorbed

m-2 of area) than the average Forest in the Southeastern Region. One would expect renewable

empower density to increase with decreasing latitude, and Osceola is one of the lowest latitude

Forests, exceeded only by the other Florida National Forests, Ocala and parts of Apalachicola.

Osceola received a higher average rainfall and transpires more than the average southeastern

forest (see appendix P), both commonly associated with lower latitudes. Higher renewable









emergy input contributes to higher indices of sustainability (function of both the non-renewable

inputs and the renewable emergy inputs to the system).

The natural capital storage of Osceola diverge from the average natural capital of the

Region in several areas. Osceola stored less timber per unit area than the regional average (see

Table 3-6). Much of Osceola is managed for timber production, resulting in less old growth

forest and less biomass per unit area. Osceola also contained higher peat storage than the

regional average. Osceola includes large swamps, the Pinhook and Big Gum swamps.

Permanently saturated conditions are ideal for peat formation, and while Osceola did not have

the degree of peat formation found in the hydrologically connected Okefenokee Swamp it did

have significant peat storage (USFS, unpub.). Osceola also had larger groundwater storage

than the regional average because Osceola overlies one of the largest aquifers in North America

(USGS, 2005), the Floridan Aquifer. The Southeastern Region had one of the highest storage of

groundwater of the Regions, much of which can be attributed to the three Florida Forests

overlying the Floridan aquifer. The storage of soil OM was greater in Osceola on a per m2 basis

than the Region (Table 3-6). The inundated conditions found in parts of Osceola are conducive to

the buildup of organic matter. Osceola's storage of Natural Capital per m2 was 4.55 times higher

than in the Southeastern region.

Region 8 supported a high population of Native Americans and as a result it harbored

more than the regional average of cultural information in Native American artifacts (Table 3-6).

The above average renewable flows and accompanying large storage of natural capital allowed

an above average Native American population density to persist. The genetic information of

biodiversity was five times greater in Osceola than in the Region (Table 3-6). The emergy in

genetic information of endangered species was calculated slightly differently in Osceola, because









population estimates of endangered and threatened species in this forest were available (see

appendix P). The relatively small area of Osceola and more complete account of the populations

yield a higher emergy density of endangered species.

Comparison Overview

The effect of the location of the National Forest within the USFS system is most evident

in the renewable inputs, but can be seen in the exports from the system and has an effect on the

imports necessary for management. The results of the analysis demonstrate the relationship

between magnitude of driving emergy and capital formation in comparison of both Deschutes to

Region 6 and Osceola to Region 8. Osceola has more driving emergy than the overall region, and

this manifests in higher than regional average natural capital storage. Deschutes has less driving

emergy and, as would be predicted, a lower than the regional average natural capital storage (see

Table 3-5 and 3-6).

The management of the forests differed from the overall region for both Osceola and

Deschutes. Osceola is more oriented towards timber production and less toward recreation than

the average Southeastern Forest while Deschutes is more heavily used for recreation than the

average Pacific Northwest Forest. Deschutes has more economic capital storage per unit area, in

order to accommodate the heavier recreational use. Osceola has higher investment per unit of

export than the regional average because it is exporting more timber, requiring nonrenewable

emergy input from outside the system. Osceola may be used less for recreation because its

location, in North Florida, has competition from other outdoor recreation sites, such as springs,

beaches, and the other Florida National Forests. Pine flatwoods are highly productive forest land,

increasing the incentive to manage for timber production. Deschutes is the site of many

recreation sites, creating a large draw for tourists. Some not found in all NF's are ski resorts,









snowmobile tracks, and luxury hotels that while not managed by the USFS exist within the

Forest's borders and draw tourists.

Scalar Dependence and Significance

There are several benefits to performing an emergy synthesis, or any study of a system, at

multiple scales. Perspective is gained, potential errors identified, and ultimately one can

understand the overall system more fully when a subsidiary system is evaluated in conjunction

with the overall system. Scalar analysis can help to identify possible errors in the data; if the case

study and region are widely different there may be an error and the data at both scales should be

evaluated. Scale dependent issues, such as absent data due to the resolution of monitoring, may

arise when looking at a system on a smaller scale. This particular analysis revealed the diversity

and variability that exists within regions. The result was more easily predictable for the

comparison of Osceola and the Southeastern Region because of the large geographic area over

which the Southeastern Region stretches. A great diversity of eco-regions exist within Region 8

making an individual forest more likely to have different conditions than the overall region. In

comparison, Region 6 is only comprised of two states, Oregon and Washington, but nearly as

much divergence in conditions was found between Deschutes and Region 6 as with Osceola and

Region 8. Deschutes NF is located in the middle of Oregon, on the east side of the Cascades and

there is also a long history of volcanic activity in the region. Both these characteristics contribute

to Deschutes aberrations from the overall regional averages.

Ideally an emergy synthesis would be completed for every National Forest to truly

illustrate the diverse nature of the USFS system. However, this is beyond the scope of this study

and the comparison of the two case studies to the overall region must suffice in demonstrating

the variability within regions.









US Forest Service System within the "Mosaic"

The National Forests of the United States comprise 5% of the total land area of the

United States. Results form this study show that USFS lands also contribute 5% of the renewable

emergy budget of the United States. Resources extracted from USFS lands are smaller than one

may expect from the land area. Oil from USFS land is 0.18% of yearly US extraction, natural gas

is 0.28%, and coal from NF's is 1.84% of total extraction from US lands (USGS, 2006). Timber

from the USFS lands is only 2% of all timber harvest in the US and recreation visits are

approximately 2.5% of total recreation activities (USFS, 2003 and 1997). The current timber

harvest is less than a third of the average yearly harvest in the 1960's and 70's (USFS, 2007).

The percentage of recreation would most likely be higher if it was on an hourly basis; many

visitors travel to National Forests and camp there. USFS land tends to be at higher elevation, the

average elevation of the National Forests is approximately 2000 m while the average elevation of

the US is 760 m. (USGS NED, 2006). As a result, twenty five percent of US hydrologically

generated electricity is from USFS lands (USFS, 2007). Combine the high elevations of many

forests with the fact that National Forests were often chosen because of their relative

inaccessibility and distance from established urban centers, in addition an increasing ethic of

preservation within the USFS and the result is that USFS lands are not as highly utilized or

exploited as one may expect from land area percentage and available resources. However, it is

important to have lands such as this within the land use mosaic of the United States. Many

species require minimum human disturbance in order to thrive. National Forests serve as one of

the last vestiges in the US where people can go and witness nature in near pristine condition. The

emergy synthesis of the USFS demonstrates this value; the image tourists take with them is the

largest export from the system, valued at 108 billion emdollars. The genetic information within

the endangered species of the USFS System is the largest emergy storage at 32.7 trillion









emdollars. The USFS System contains approximately a quarter of all natural habitat in the US

and protecting it is vital to maintain ecological integrity as well as preservation of the human-

environment interface.

US Forest Service Policy Implications

The purpose of conducting this research was not to determine how better to run the

USFS. However, the results of the emergy synthesis do have implications for the current, and

future, policies of the USFS. The large value of environmental flows and storage implicate that

the National Forests should be managed to sustain both the quality and quantity of storage and

flows. The USFS is more than providing an equitable return, by many fold, on the investment

that the United States government makes each year in its management. This implies that funding

for USFS activities should not be cut, but should be increased in order to maximize the return

that the country gets from the USFS system. The multi-use ethic that the USFS has embraced

appears to be the best use for the lands. In this way the Forests can be enjoyed by people,

managed for sustainable forestry, as well as have a portion kept as pristine habitat. This is

especially important in light of the fact that the biodiversity harbored within the forests is the

largest storage on the USFS, and would be potentially negatively impacted if a doctrine of more

intense use was enacted. Specific policies of the USFS, such as fire suppression, tourist intensity,

and amount of scientific research were not evaluated. Future research could potentially use

emergy synthesis to evaluate the efficacy of the USFS in these areas.

Future Collaboration of Emergy Synthesis and Economic Valuation

Through comparison of emergy values and economic values it becomes clear that emergy

synthesis is necessary for a complete recognition of the inputs to a system and of the exports

from that system to be made. While it is vital to acknowledge that economic valuation is

necessary to evaluate monetary flows and establish economic viability, an emergy synthesis









allows one to place all components of a system, anthropogenic or biological, on a common basis

(the energy necessary to create it) and compare on common terms. Virtually all exports from the

USFS system are shown to be valued less by the economic system. This includes timber, water,

harvested fish and wildlife, fossil fuels and minerals. Inputs to the system from the outside

system have similar dollar and emdollar values, demonstrating the validity of the emergy-dollar

equivalence used to equate emergy values to the economic system. Using both emergy valuation

and economic valuation allows one to perceive both the donor system of valuation and the value

from the receiver (human) perspective. When both aspects are considered decisions can be made

that take into account the potential impacts on both sides, the donor and receiver. Emergy flows

pertain more to the environmental system and its resources (but are inextricably linked to the

economy by virtue of economic reliance on resources) and the economic flows govern the fiscal

feasibility of a potential decision. Ideally in the future both systems will be commonly used in

conjunction, particularly when evaluating systems consisting predominantly of environmental

flows and capital where undervaluing of natural resources is most evident.
















O-


APPENDIX A
EMERGY SYSTEMS SYMBOLS

ENERGY PATHWAY: a flow of energy often with a flow of
materials.

ENERGY SOURCE: energy which accompanies each of the
resources used by the ecosystems such as sun, winds, tidal
exchanges, waves on the beaches, rains, seeds brought in by wind
and birds.

STORAGE: a place where energy is stored. Examples are
resources such as forest biomass, soil, organic matter, groundwater,
and sands in beach dunes.


HEAT SINK: energy that is dispersed and no longer usable such as
the energy in sunlight after it is used in photosynthesis, or the
metabolic heat passing out of animals.


INTERACTION: process which combines different types of energy
flows or flows of material. In photosynthesis sunlight, water and
nutrients interact to produce organic matter.


PRODUCER: unit which makes products from energy and raw
materials. Examples: trees, grass, crops and factories.


CONSUMER: unit that uses the products from producers.
Examples: insects, cattle, microorganisms, humans, and cities.


TRANSACTION: business exchange of money for energy,
materials, or services.


SWITCH: process which turns on and off, such as starting and
stopping fire and pollination of flowers.


BOX: miscellaneous symbol for subsystems such as soil subsystem
in a diagram of a forest or fishing business in a diagram of an
estuary.


st~-_


_L


I











APPENDIX B
FOOTNOTES FOR TABLES 3-1 AND 3-2

Notes to Table 3-1 Emergy evaluation of the USFS


RENEWABLE RESOURCES:
1 Solar Insolation
Land Area
Insolation
Albedo


Trar
energy sum of the


7.80E+11
6.83E+09
1.80E-01
Energy = (area)*(avg
= 4.37E+21
isformity 1.00E+00
regions= 4.37E+21


m^2
J/m^2/year
(% given as a decimal)
insolation)*(1-albedo)


sej/J
J/yr


Odum et.al, (2000)


2 Rain
Chemical Potential


Land Area 7.80E+11 m^2
Rain 0.755470 m/yr


Total Volume Rain
Energy=

sum of the regions
Transformity
Emergy (sum of regions)


3 Transpiration


Energy (sum of the
Trar
Emergy (sum of


5.89E+11 m^3
(volume)*(1000kg/m^3)*(-' ', .i- i..
2.91E+18 J/yr
2.62E+18 J/yr
3.10E+04 sej/J
8.11E+22 sej/yr


0.70 m/yr
5.48E+11 m3
Energy= (Volume)*(1000Kg/m^3)*(-'' -41, .. I
= 2.71E+18 J/yr
regions)= 1.18E+18 J/yr
isformity 3.06E+04 sej/J
regions) 3.61E+22


4 Rain Geopotential

Mean Elev


Energy (sun


Runoff 0.05
ration Change 1.50E+03
Land Area 7.80E+11
Energy = (.'''.' iil.i,.,I
= 6.12E+17
Transformity 4.70E+04
Sof regions) 1.08E+18


m/yr


NOAA, 2006


m^2
1 .' -. change in elc' .1i i .. 1 ii "ii .. ir )
J
sej/J Odum et.al, (2000)


5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind
Drag Coeff.
Energy=


7.80E+11
1.30E+00 kg/m^3
4.21E+00 mps NOAA, 2006
7.02E+00 observed winds are about 0.6 of geostrophic wind
2.00E-03
(area)*(density)*(dragcoef)*(Geos-gmdVel)^3*(31500000sec/yr)
4.25E+18


Source


NREL, 2006


NOAA, 2006


Odum et.al, (2000)









Odum et.al, (2000)











Transformity
sum of the regions


6 Hurricanes
Avg energy/storm
avg hurricane freq.
percent energy that is kinetic
percent of energy dispersed to land
avg. residence time
area
energy=


Transformity


2.45E+03 sej/J
3.40E+18 J/yr


Odum (2000)


5.00E+05 KCAL/m^2/day Odum et al, 1983
1.00E-01 /yr
3.00E+00 %
1.00E+01 %
1.00E+00 day/year
1.03E+11 m^2
(0.1/yr)*(lyr/365 days)*(5e5Kcal/mA2/day)*(.003*area in
mA2)*(4186J/kcal)
1.77E+14 j/yr
6.49E+03 sej/J Odum (2000)


7 Wave


Shore length = 1.14E+06 m
Wave height = 1.80E+00 m
Energy = (shore length)(1/8)(density)'-!.I\ ii- i' ii .' lic-l.il -i\' c .!, : )
6.46E+17 J/yr
Transformity= 5.10E+04 sej/J Brown and
Bardi, 2001


6.07E+17 J/yr


sum of the regions


Co
Av


nt Shelf Area = 5.16E+09 m^2
g Tide Range = 3.02E+00 m
Density = 1.03E+03 kg/m^3
Tides/year = 7.06E+02 (number of tides in 365 days)
Energy(J) = (shelf)(0.5)(tides/y)(mean tidal range)^2
(density of seawater)(gravity)
1.67E+17 J/yr
Transformity= 2.43E+04 sej/J Brown anc


sum of the regions


1.96E+17 J/yr


9 Earth Cycle


Heat Flow 1.15E+02 miliwatts/m


area 7.80E+11 m^2
energy= (miliwatts/m^2)*(area*sec/yr)
3.63E+06 J/m^2
energy= 2.83E+18 J/yr
Transformity 1.13E+04 sej/J
sum of the regions 2.10E+18 J/yr


Bardi, 2001




IHFC, 2005


Odum (2000)


INDIGENOUS NONRENEWABLE
RESOURCES:
10 Soil Loss
sum of the regions
a) Top Soil Loss (3.5% of total SL)
energy=

sum of the regions


9.73E+10 g/yr
3.41E+09 g/yr
(g ofC)*(5.4 kca'/g)*(4184 J/cal)
7.33E+13 J
8.04E+13 J/yr


8 Tidal


d












ts) 1.40E+09 g/yr
energy= (g)*(3.5kcal/g)*(4186J/Cal)
= 2.05E+13 joules
isformity 1.80E+04 sej/J
isc. Prod 3.08E+06 $/yr


Trar
Dollar Value M


IMPORTS:
12 Petroleum Products
Forest Service Use
energy=
energy=
FS Building Use


energy use =

Total Fuel Use
sum of the regions
Cost (Est. $2.00/gal gas)
Cost Fuel Oil ($14/Mmbtu)
Transformity


13 Machinery, Equipment
FS Vehicle mass
avg. vehicle lifespan
use per yr =
mass used per year
Specific Emergy
Est. for $ value of Depreciation

14 Goods (Pesticides, herbicides, misc
goods)


1.77E+07 gal/yr
(gal)*(13e7j/gal)
2.30E+15 J/yr
3.00E+07 sq feet
6.66E+04 BTU/sq
ft/yr
(BTU/sqft/yr) (sq ft) (1055 joules/BTU)
2.11E+15 J/yr
4.41E+15 J/yr
4.04E+15 J/yr
3.55E+07 $/yr
2.80E+07 $/yr
1.11E+05 sej/J



1.01E+11 g
2.00E+01 yrs
(vehicles) (g/vehicle) (1/avg life of vehicle)
5.06E+09 g
1.13E+10 sej/g
2.35E+07 $/yr


7.22E+07 g/yr


2.49E+10
emergy= 1.79E+18
Est. for cost 1.27E+06


15 Replanting


16 Tourism


Total Cost=
Unit Emergy Value
emergy=


Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=

energy=
Transformity


5.16E+07
1.90E+12
9.81E+19


Estimate


estimate
EIA, 1992






Estimate

Odum,
(1996)


Estimate
Estimate


Calculated


Report of the FS, 2003


sej/g
sej/yr
$/yr


$/yr
sej/$
sej/yr


2.05E+08 people/yr
1.80E+01 hrs
3.69E+09 hours/yr
1.04E+02 kcal/hr
(kcal/hr)*(hrs)*(4186J/C
al)
1.60E+15 J/y
1.50E+07 sej/J


estimate


CEP (2006)


NFS NVUM 2004
NFS NVUM 2005


Odum, 1996


11 Miscellaneous Products (Plan


NFS, 2005













FS
Contractors
Total Labor
Unit Emergy Value


7.77E+07 hrs/yr
4.42E+07 hrs/yr
1.22E+08 hrs/yr
6.30E+13 sej/hr


USFS, 2005
estimate

based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers


18 Electricity


30011200 sqft
37000 btu/ft2/yr
1.11E+12 btu/yr
energy= (btu/yr)*(1055 j/btu)
= 1.17E+15 J
Transformity 2.92E+05
Est. Cost 2.93E+07 $/yr


Total USFS Budget


19 Misc. Expenditures
Unit Emergy Value


4.88E+09 $/yr

2.97E+09 $/yr
1.90E+12 sej/$


emergy= 5.64E+21 sej/yr


20 Payment Received for timber
Unit Emergy Value

21 Payments for Extracted Minerals
Unit Emergy Value

22 Fee Payments Received
Unit Emergy Value


2.24E+08 $/yr
1.90E+12 sej/$


UFSF, 2005
Sweeney, 2007


0.OOE+00 $/y
1.90E+12 sej/$ Sweeney, 2007


5.05E+07 $/yr
1.90E+12 sej/$


USFS PAR, 2006
Sweeney, 2007


EXPORTS:
23 Extracted Firewood


mass 7.82E+08 kg
energy= (mass) (1000g/kg) (15000j/g)
= 1.17E+16 J/yr
Transformity 3.06E+04 sej/J


USFS, 2006


Brown and Bardi
(2001) -Table 9, w/o
services


24 Harvested Wood
sum of the regions


5.41E+12 g/yr
6.82E+12 g/yr
energy= (g)*(15000j/g)


energy
Transformity (w/o services)


1.02E+17 J/yr
5.04E+04


25 Water, Chemical potential


17 Labor


USFS, 2005
EIA, 1992




Odum, 1996


Sweeney,
2007


NFS, 2005


Brown, 2001
wo/service











Total Export From Streams
sum of the regions
Chemical Potential=
joules =
Transformity

26 Water, Geopotential Energy
Geopotential (J)=
avg elevation

sum of the regions
Transformity


27 Minerals


average specific emergy
emergy=
Minerals ($ value)


28 Fossil Fuels
Oil
Transformity
Natural Gas
Transformity
Coal
Transformity
Total Fossil Fuel Emergy

29 Hunting
Sum of Emergy from Game
Weighted Trans. For Game

30 Fishing
avg. mass
energy content=

Energy Fish Caught
Transformity=

31 Research Information
average time spent
research hours
Transformity
total sej of research
$ Spent by NFS
Unit Emergy Value


4.16E+10 m^3/yr
2.54E+11 m^3/yr
(M^3/yr) (1000 kg/M^3) *( 4940 J/kg)
1.26E+18 J/yr
8.10E+04 sej/J


(runoff)(avg elevation)( k.' ii- .! ii )
1.28E+03 m
3.19E+18 J
2.01E+18 J/yr
4.70E+04 sej/J


4.16E+12
mixed
6.06E+22
2.01E+09


9.42E+17
9.11E+04
5.58E+16
7.31E+04
5.20E+17
6.59E+04
1.24E+23


g/yr
sej/g
sej/yr
$/yr


J/yr
sej/J
J/yr
sej/J
J/yr
sej/J


4.28E+22 sej
1.10E+07 sej/J

5.84E+07 fish caught
4.54E+02 g/fish
(4.5Cal/g*4187 J/cal)
1.88E+04 J/g
9.97E+13 J
1.68E+07 sej/J


1.21E+03
8.05E+02
9.72E+05
2.35E+14
2.29E+20
2.50E+08
1.90E+12


USFS, 2000




Odum, 2000







Odum, 2000

NFS, 2003
see app. 3
see app. 3


FS, 2005

FS, 2005

FS, 2005


see appendix 4


USFS, 2005
assume avg weight = 1 lb


assume 20% dry weight


# of papers
hours/paper
hours/yr
sej/hr
sej
$/yr
sej/$


USFS, 2006
Estimate
Estimate
Odum, 1996

USFS, 2006


32 Hydroelectric Power


From


Transf


15% of US total
FS lands 16000 MW
1.6E+10 watts
energy= (watta)*(sec/yr)*(1J/sec)
= 5.05E+17 Joules
ormity = 120300 sej/J


USFS, 2005




Campbell, In Press












33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist
use/ha/hour
emergy of image exported
Unit emergy value

33 Payments to States
Unit Emergy Value

34 Payments for FS Labor
Unit Emergy Value


3.69E+09
2.07E+02
1.20E+00
2.48E+02
2.25E+11
2.06E+23
5.58E+13


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor hour


4.15E+08 $/yr
1.90E+12 sej/$

1.32E+09 $/yr
1.90E+12 sej/$


USFS, 2006
calculated

USFS, 2006
calculated











Notes to Table 3-2. Emergy in stored assets of USFS system
ECOLOGICAL ASSETS (Natural Capital)

1 Tree Biomass


2 Total Understory


3 Land Area


4 Soil OM


5 Peat


Sum of the regions
Transformity


Sum of the regions
Transformity


Sum of the regions
emergy of land structure=

Sum of the regions
Transformity


Sum of the regions
Transformity


6 Glaciers


7 Ground Water


8 Surface Water


9 Biodiversity
Primary Consumer


Herbivores

Omnivores

Carnivores


Sum of the regions
Specific Emergy=


Sum of the regions
Transformity

Sum of the regions
Transformity


7.71E+19 J
3.62E+04 sej/J


BROWN AND
BARDI, 2001


BROWN AND
BARDI, 2001


6.91E+18
9.79E+03


7.80E+07 ha
1.05E+15 sej/ha
mt
1.50E+20 J
1.65E+05 sej/J


3.95E+16 J
3.09E+05 sej/J


6.23E+17 g
6.46E+06 sej/g


2.80E+18 J
2.79E+05 sej/J

1.59E+18 J
8.10E+04 sej/J


COLE, 2006

BROWN AND
BARDI, 2001


BROWN AND
BARDI, 2001


BROWN AND
BARDI, 2001


Buenfil (2001)


Odum, 2000


USFS, RPA
2004

appendix C

appendix C

appendix C

appendix C


6.52E+13 g


Specific energy:

Specific emergy:

Specific energy:

Specific emergy:


Top Carnivores
Specific emergy:
total emergy storage in Biodiversity:
ECONOMIC ASSETS
10 Roads, Dirt


1.27E+09
1.30E+14
1.27E+09
7.17E+13
2.31E+09
3.03E+13
8.19E+09
5.05E+12
8.19E+10
1.08E+24


sej/g
g


11 Roads, Gravel


12 Paved Roads


Sum of the regions
Unit Emergy Value

Sum of the regions
Specific Emergy


1.70E+09 $
1.90E+12 sej/$

8.01E+13 g
1.68E+09 sej/g


Sweeney, 2007


Odum (1996)













13 Machinery


14 Office Equipment


15 Buildings


Sum of the regions
Specific Emergy

Sum of the regions
Specific Emergy

Sum of the regions
Specific Emergy


4.81E+12 g
2.77E+09 sej/g

9.90E+10 g
1.13E+10 sej/g

3.84E+10 g
1.13E+10 sej/g


Sum of the regions
Sum of the regions
W.O and Misc. Buildings

Specific Emergy
emergy from WO and Misc Buildings

16 Fossil Fuels


Natural Gas

Coal


Trai

Trai


Trai
Total Fossil Fuel


2.56E+06
9.65E+11
2.31E+05
9.53E+10
mixed
5.97751E+2
0


1.03959E+1 J
8
isformity 1.53E+05 sej/J
2.26E+17 J
nsformity 1.23E+05 sej/J
4.59E+15 g
energy= (g coal)*(15000J/g)
6.88E+19 J
nsformity 1.11E+05 sej/J
Storage= 7.80E+24 sej


17 Minerals
Gold=
Lead=
Silver-
Copper-
total=
value=
Specific Emergy
CULTURAL ASSETS
18 Emergy of Cultural Information
See Appendix D


1.17E+09
1.51E+13
9.33E+10
6.81E+12
4.41E+13
1.20E+11
4.54E+09


g
g
g
g
g
$
sej/g


See Appendix A


USGS, 2005

Odum, 1996
USGS, 2005
Odum, 1997
EIA, 1999


Odum, 1996


est. 5% of total US Reserves
est. 5% of total US Reserves
est. 5% of total US Reserves
est. 5% of total US Reserves


average


19 Value of Critical Species


See Appendix E


Odum, 1996


CEP,2006


Odum, 1996
USFS, 2005









APPENDIX C
EMERGY OF BUILDINGS

Some innovations were made in the methods of emergy synthesis in the course of

completion of this thesis. A previous study on emergy content of the contents of buildings,

Evaluation of Recycling and Reuse of Building Materials Using the Emergy Analysis Method,

by V. Buranakarn completed in 1998, is the basis for the emergy in USFS buildings calculation.

The values used in his study (see Table D-5 within Buranakarn 1998) are adapted to a per m2

basis and the emergy baseline is updated. See Buranakarn (1998) for the calculation of quantities

listed in Table C-1. Only the square meters of floor must be known to estimate the emergy of the

entire building. The square meters of floor are multiplied by the emergy value for each building

component per m2 for an estimate of the emergy embodied in the building. These estimates are

based on the assumption of a two story office building. Table C-l shows the mass per m2 values

of building components, the Unit Emergy Values, and the Emergy per m2 of the component.

Table C-2 shows the calculation used to determine the emergy of USFS buildings.









Table C-1 Emergy storage of building components on USFS lands

Note Item Units units per empower
m2 UEV density (per
m2)
1 Cement g 3.72E+04 3.70E+09 1.38E+14
2 Concrete g 2.81E+04 2.12E+09 5.96E+13
3 Masonry, 8" CMU g 9.29E+04 2.27E+09 2.11E+14
4 Masonry, 4" tile brick g 2.98E+04 3.90E+09 1.16E+14
5 Structural Steel g 1.42E+04 2.99E+09 4.24E+13
6 other metals g 3.41E+04 2.99E+09 1.02E+14
7 Glass g 8.26E+02 3.19E+09 2.64E+12
8 Dry Wall g 1.01E+05 3.44E+09 3.49E+14
9 Vinyl tile, carpet g 1.26E+04 9.86E+09 1.25E+14
10 Paint g 4.55E+03 2.55E+10 1.16E+14
11 Electrical System g 1.51E+03 1.13E+10 1.70E+13
12 Elevators g 5.74E+03 1.13E+10 6.46E+13
13 HVAC g 1.39E+04 1.13E+10 1.56E+14
14 Fire System g 4.50E+03 1.13E+10 5.06E+13
15 Plumbing System g 3.32E+03 1.13E+10 3.74E+13
16 Furnishings g 1.34E+04 7.88E+09 1.05E+14
17 Water j 4.93E+05 8.06E+04 3.98E+10
18 Fuel j 5.97E+08 1.11E+05 6.62E+13
19 Electricity j 4.73E+08 2.92E+05 1.38E+14
20 Machinery g 1.48E+04 1.13E+10 1.66E+14
21 Labor $ 5.25E+02 1.00E+12 5.25E+14









Table C-2 Emergy of USFS buildings
area of buildings=2.79E6 m2


Note Item Unit units per m2 Input Resource emergy
(m2*units/m2)

1 Cement g 3.72E+04 1.04E+11 3.83E+20
2 Concrete g 2.81E+04 7.84E+10 1.66E+20
3 Masonry, 8" CMU g 9.29E+04 2.59E+11 5.87E+20
4 Masonry, 4" tile g 2.98E+04 8.30E+10 3.23E+20
brick
5 Structural Steel g 1.42E+04 3.95E+10 1.18E+20
6 other metals g 3.41E+04 9.52E+10 2.85E+20
7 Glass g 8.26E+02 2.30E+09 7.35E+18
8 Dry Wall g 1.01E+05 2.82E+11 9.73E+20
9 Vinyl tile, carpet g 1.26E+04 3.52E+10 3.48E+20
10 Paint g 4.55E+03 1.27E+10 3.24E+20
11 Electrical System g 1.51E+03 4.21E+09 4.73E+19
12 Elevators g 5.74E+03 1.60E+10 1.80E+20
13 HVAC g 1.39E+04 3.87E+10 4.35E+20
14 Fire System g 4.50E+03 1.25E+10 1.41E+20
15 Plumbing System g 3.32E+03 9.27E+09 1.04E+20
16 Furnishings g 1.34E+04 3.72E+10 2.93E+20
17 Water J 4.93E+05 1.38E+12 1.11E+17
18 Fuel J 5.97E+08 1.67E+15 1.85E+20
19 Electricity J 4.73E+08 1.32E+15 3.85E+20
20 Machinery g 1.48E+04 4.12E+10 4.64E+20
21 Labor $ 5.25E+02 1.46E+09 1.46E+21
Total 7.21E+21
Emergy=











APPENDIX D
HUNTING ON USFS LANDS

Estimates for harvested wildlife were based on a USFS study from 2003 that provided

estimates for hours of hunting spent on US public lands (USFS 2004). From this an estimate was

made for number of game taken per hour, based on literature values (USFW, 2004). These values

were then multiplied by 28.7%, the percentage of US public lands that are National Forests, to

obtain an estimate for game taken from USFS lands.

Table D-1 Yearly game extracted From USFS lands

Note Item Unitsl Quantity
UEV Emergy
1 Big Game J 4.21E+16 9.90E+05 4.17E+22
2 Small Game J 9.92E+15 1.20E+05 1.19E+21
3 Migratory Birds J 2.92E+13 1.01E+05 2.95E+18
4 Other J 1.57E+13 1.50E+05 2.35E+18


Notes
% Dry Weight for
Wildlife
1 Big Game Extracted
avg. mass
energy content
energy=
energy=

Transformity=

Emergy=
2 Small Game Extracted

avg. mass
energy content
energy=
energy=
Transformity=

Emergy=
3 Migratory Birds Extracted

avg. mass
energy content
energy=
energy=
Transformity=


2.50E+01 %

1.58E+06 Big Game/y
5.68E+04 g/Game
1.88E+04 J/g estimate
(#Game/yr)*(avg mass)*(% dry weight)*(J/g)
4.21E+16 J/yr USFWS,
2002
9.90E+05 sej/J Brown et al,
2005
4.17E+22 Sej
6.38E+06 Small USFWS,
Game/yr 2002
3.30E+03 g/animal
1.88E+04 J/g
(#Game/yr)*(avg mass)*(% dry weight)*(J/g)
9.92E+15 J/yr
1.20E+05 sej/J Brown et al,
2006
1.19E+21 Sej
4.78E+06 #/yr USFWS,
2002
1.30E+03 g/bird
1.88E+04 J/g
(#Game/yr)*(avg mass)*(% dry weight)*(J/g)
2.92E+13 J/yr
1.01E+05 sej/J Brown et al,










2006
Emergy= 2.95E+18 Sej
4 Other Species Extracted 5.25E+05 #/yr USFWS,
2001
avg. mass 6.35E+03 G
energy content 1.88E+04 J/g
energy= (#Game/yr)*(avg mass)*(% dry weight)*(J/g)
1.57E+13 J/yr
Transformity= 1.50E+05 sej/J Brown et al,
2006
Emergy= 2.35E+18 Sej









APPENDIX E
EMERGY OF ENDANGERED SPECIES

Introduction

There is a capacious amount of emergy embodied in the genetic material of the many

species of the earth. The emergy of a species is equal to the emergy that was required for the

evolution of that species from its closest relative (Odum 1996). The emergy of endangered

species was quantified in this study because the emergy value represents the potential

environmental work that will be lost if those species go extinct.

Methods

An average value for emergy required to develop a species was determined. An average

value for turnover time of species (Weir, 2007), 3 million years, and a median estimate for total

number of species (10 million) was used. The renewable emergy budget of the globe was

multiplied by three million and then divided by the 10 million species to obtain an estimate of

emergy required per species (see Table E-1). There are approximately 496 endangered species

supported by USFS lands and the USFS comprises 3.17% of the North American continent. The

emergy per species was multiplied by these values to obtain an estimate for emergy embodied in

the endangered species inhabiting USFS lands. Species ranges were not known so the total North

American Continent was used as a proxy.



Results

Results from this analysis are summarized in Table E-1. The emergy storage of genetic

information in endangered species was found to be 6.22E25 emjoules, the largest storage in the

USFS system.








Table E-1 Emergy of
endangered species

Endangered Species

Percent of pop


Global Emergy Budget

average emergy per species:



Emergy of endangered
species=

Emergy of endangered
species


4.96E+02 USFWS, 2006

3.17% (USFS % of

Continental Area)

15.83E24 Odum el al 2000

(3E6 yrs of Dev.*15.83E24 sej/yr)/10E6 species

3.96E+24 sej/species

(# of Species)*(%of total Pop in FS land)*(Emergy
Required to develop species)

6.22E+25 sej










APPENDIX F
FAUNA ON USFS LANDS

In calculating fauna biomass the concepts of trophic efficiency and turnover time were

utilized to obtain an estimate for storage within the USFS system. Estimates for the storage of

primary producers on USFS lands were available from USFS documents (USFS, 2004) and these

numbers were used as the basis for consumers in the system. The primary production system is

assumed to have an average turnover time of 5 years and a trophic energy transfer efficiency of

3%. The energy then transfers through consumption into primary, secondary, and tertiary

consumers (see Fig. F-l and Table F-l). All consumer trophic levels have an energy transfer

efficiency of 10%, but have varying turnover times and flow paths (see Figure F-l), resulting in

different emergy storage in the system.

Table F-l Storage of biomass on USFS lands


Note Item Units Quantityla UEV Emergy
1 Primary Producer g 5.43E+15 7.61E+07 4.14E+23
2 Primary Consumer (Insects) g 1.30E+13 6.34E+09 8.27E+22
3 Herbivore g 2.61E+13 6.34E+09 1.65E+23
4 Omnivore g 1.43E+13 1.15E+10 1.65E+23
5 Carnivore g 4.24E+12 5.85E+10 2.48E+23
6 Top Carnivore g 2.99E+12 1.11E+11 3.31E+23


Note


Source


1 Primary Producer Storage
Tree Biomass 5.13E+15 g Pugh, 20(
Shrub/Herb Biomass 2.98E+14 g COLE, 2C
total PP Storage in NF's= 5.43E+15 g
turnover time 5 Yrs Estimate

2 Primary Consumer Storage
Trophic Efficiency 3 %
percentage of PP consumed
by Primary consumers 40 % Estimate

Turnover Time of PC 1 Yr Estimate
Primary Consumers in NF's= 3%*40%*5.43E15 g PP/ 5 yr TT 1yr Storage
= 1.30E+13 g


04
)05










3 Herbivore Storage
Trophic Efficiency
Percentage of PP consumed
by Herbivores
Turnover Time of Herbivores
Herbivore Storage in NF's=


4 Omnivore Storage
Trophic Efficiency from PP
Trophic Efficiency from PC
Percentage of PP consumed
by Omnivores
Percentage of PC consumed
by Omnivores
Turnover Time

Omnivore Storage in NF's=


3 %


40 % Estimate
2 Yrs Estimate
3%*40%* 5.43E15 g PP/5 yr TT 2 yrs Storage
2.61E+13 g


3 %
10 %


20 %


Estimate


100 % Estimate
2 Yrs Estimate
(3%*20%*5.43E15 g PP/5 yr TT + 10% 6.52E13 g PC/2 yr
TT)* 2yrs Storage
1.43E+13 g


5 Carnivore Storage
Trophic Efficiency from
Omnivores, Herbivores
Percentage of Omnivores
and Herbivores consumed
Turnover Time

Carnivore Storage on NF's=


6 Top Carnivore
Trophic Efficiency
Percentage of Omnivores
and Herbivores consumed
Percentage of Carnivores
Consumed
Turnover Time
Top Carnivore Storage on
NF's=


10 %


70 % Estimate
3 Yrs Estimate
(10%*2.61 E13 g Herb 70%/2 yr TT + 10% 1.43E13 g
Omni *70%/ 2 yr TT)*3 yrs storage
4.24E+12 g


10 %


30 %


estimate


100 % estimate
4 Yrs estimate
(10%*2.61 E13g Herb 30%/ 2 yr TT + 10% 1.43E13 g
Omni 30%/ 2 yr TT+ 4.23E12 g Carn./3 yr TT)*4 yr storage
2.99E+12 g








































Figure C-1. Energy transfer across trophic level









APPENDIX G
EMERGY OF NATIVE AMERICAN CULTURAL INFORMATION

The emergy embodied in Native American Artifacts is based on an assumed period of

cultural innovation. It was assumed that the bulk of cultural innovation occurs over the first ten

generations of a culture's development and then traditions are passed down over time. Literature

values were found that the average lifespan of Native Americans pre-colonization was 25 yrs

(www.nativeweb.com), so ten generations is roughly 250 years. Estimates for the population of

Native Americans pre-colonization vary widely so a median value was taken, of 1.2 million

people living within the current bounds of the USFS. To obtain the emergy driving the system

the 250 years of cultural development were multiplied by the current renewable emergy driving

the USFS (this assumes climatic conditions were similar during development). The emergy

driving the civilization was then divided by the joules of human activity expended over that time

period to obtain a transformity (see Table G-l).











Table G-1 Emergy of Native American cultural information

Native Americans on FS lands 1.20E+06 people (estimate)
(peak)

energy per (2500Cal/day)*(365 d/y)*(4186J/Cal)
capital=

3.82E+09 J/yr


Yrs to develop information (10 2.50E+02 (estimate)
gen)

Energy of (population)* (J/yr/Indian)* (year)
Population=

1.15E+18 J
Energy =

Renewable Emergy Budget 8.67E+22 sej/yr (Table 3-1)

Native American Pop (Yrs. Of Development)* (Renewable
Info= Emergy per year)

Energy embodied in Pop. Info 2.17E+25 sej

Emergy of information / energy of
Transformity = population

Transformity 1.89E+07 sej/J











APPENDIX H
REGION 1 TABLES AND NOTES


Table H-1. Annual emergy flows supporting Region 1 of the USFS system


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J

2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss (harvesting) g
Top soil loss (harvesting) J


11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinary, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minereals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels


J


J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J


5.0167E+
20
1.97E+17
9.99E+16
1.92E+16
6.35E+17
0.00E+00
0
0
2.90E+17


Emergy
Intensity
(sej/unit)


1.00E+00

3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04


1.83E+10 1.68E+09
1.38E+13 7.40E+04
1.80E+04


2.07E+14
4.08E+08
9.53E+06

6.57E+06
1.09E+14
1.57E+07
1.15E+14
2.73E+08

2.88E+07
7.92E+07
2.63E+06


1.55E+15
1.12E+16
9.70E+16
1.54E+17
1.14E+11


1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


5.04E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


Note Item


Solar
Emergy
(xl01'sej)


501.7

6101.8
3053.3
904.1
1555.9
0.0
0.0
0.0
3482.5


EmDollars
(x106 Em$)


264.0

3211.5
1607.0
475.9
818.9
0.0
0.0
0.0
1832.9


16.2
0.5
0.0


30.7
1.0
0.0

23.0
4.6
0.2


12.5
1632.5
991.1
33.5
518.4

54.7
150.4
5.0


78.1
565.5
7854.6
7233.1
933.0


6.6
859.2
521.6
17.6
272.8

28.8
79.2
2.6


41.1
297.7
4134.0
3806.9
491.1










Table H-1 continued
Note Item Units Quantity Emergy Solar EmDollars
Intensity Emergy (xl06 Em$)
(sej/unit) (xl01'sej)
29 Harvested wildlife J 3.94E+15 1.10E+07 3722.8 1959.4
30 Harvested Fish J 6.42E+12 1.68E+07 107.9 56.8
31 Information hrs 3.09E+04 1.90E+12 7.3 3.8
32 Hydroelectric Power J
33 Image Exported with Tourists hrs 2.51E+08 1.98E+13 4971.8 2616.7
ECONOMIC PAYMENTS MADE
33 Payments to State and Local $ 2.92E+07 1.90E+12 55.5 29.2
Gov't
34 Payments for Labor $ 1.60E+08 1.90E+12 304.9 160.5


Footnotes to H-l
RENEWABLE RESOURCES:
1 Solar Insolation
Land Area
Insolation


Sources


1.03E+11
5.94E+09


Albedo 1.80E-01
Energy(J) = (area)*(avg
5.02E+20
Transformity 1.00E+00
2 Rain
Chemical Potential
Land Area 1.03E+11
Rain 0.386868
Total Volume Rain 3.98E+10
energy= volume* 1000kg/mA^3*4940J/kg


m^2
J/m^2/ye
ar
(% given as a decimal)
insolation)*(1-albedo)


J
sej/J



m^2
m/yr
m^3


3 Transpiration





4 Rain Geopotentie


Transformity



Energy=
Rain ET Energy
Transformity


Rain
Mean Elevation Change
Land Area
Energy(J) =

Transformity


1.97E+17
3.10E+04 sej/J
1.96E-01 m/m^2/yr
2.02E+10 m3
Vol*1000Kg/mA3*4940J/kg
9.99E+16 J/yr
3.06E+04 sej/J

1.91E-01 m/yr
610 m


Odum, 2000





Odum, 2000

NOAA 2006


1.03E+11 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
1.92E+16 J
4.70E+04 sej/J Odum et.al, (2000)


NREL, 2006


NOAA, 2006











5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff.
Energy=

Transformity
6 Hurricanes


1.03E+11
1.30E+00 kg/m^3
4.39E+00 mps NOAA 2006
7.32E+00 observed winds are about 0.6 of geostrophic
wind
2.00E-03
area* density* dragcoef* (Geos-gmdVel)^3* 31500000
6.35E+17
2.45E+03 sej/J Odum (2000)


None
7 Waves
None
8 Tides
None
9 Earth Cycle
Heat Flow 8.94E+01 miliwatts/m^2
area 1.03E+11 m^2
energy= miliwatts/mA2*area*sec/yr
2.82E+06 J/m^2
energy= 2.90E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.83E+10 g/yr
Top Soil Loss (3.5% of total SL) 6.40E+08 g/yr
energy= g ofC*5.4 kcal/g*4184 J/cal
= 1.38E+13 J
11 Miscellaneous Products (Plants) g/yr


IHFC, 2005





Odum (2000)







NFS,
2005


energy= g*3.5kcal/g*4186J/Kc
al


Transformity
IMPORTS:
12 Petroleum Products
Forest Service Use

energy=
energy=
FS Building Use


2.66E+10 joules
1.80E+04 sej/J


1.78E+05 gal/yr

gal* 13e7j/gal
2.32E+13 J/yr
2.94E+06 sq feet
6.66E+04 BTU/sq ft/yr


NFS,
2006




EIA,
1992


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU











Total Fuel Use
Transformity
Est. Cost
13 Machinary, Equipment
FS
avg. mass
avg. vehicle lifespan
use per y =

Specific Emergy
14 Goods (Pesticides, herbicides,
misc goods)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time

average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


Transformity
17 Labor


2.07E+14
2.30E+14
1.11E+05
3.10E+06


J/yr
J/yr
sej/J
$/yr


1880 vehicles
4.34E+06 g/vehicle
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
4.08E+08 g
1.13E+10 sej/g
9.53E+06 g/yr


2.49E+10
2.37E+17
1.68E+06


Odum, (1996)









Sweeney, 2007
RofFS, 2003


sej/g
sej/yr
$/yr


6.57E+06 $/yr
1.90E+12 sej/$


Sweeney 2007


1.32E+07 visits/yr

1.90E+01 hrs
2.51E+08 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc
al
1.09E+14 J/y
1.50E+07 sej/J


NFS,
2005


FS 6.12E+06 hrs/yr


Contractors
Total Labor
Unit Emergy Value


18 Electricity


Region Budget
19 Services


6.10E+06
1.57E+07
6.30E+13


hrs/yr
hrs/yr
sej/hr


2943770 sq ft
37000 btu/ft2/yr


1.09E+11 btu/yr
energy= btu/yr* 1055 j/btu
= 1.15E+14 J
Transformity 2.92E+05
Est. Cost 2.87E+06 $/yr
2.89E+08 $/yr
2.73E+08 $/yr


NFS,
2005



USA emergy use (1.9E25
sej/yr);work force of 1.5 E8 workers
USFS, 2005
EIA,
1992




Odum, 1996

USFS, 2005
USFS, 2005


^










Unit Emergy Value
20 Payment for timber
Unit Emergy Value
21 Payments for Extracted Minerals
Unit Emergy Value
22 Fee Payments
Unit Emergy Value
EXPORTS:
23 ExtractedFirewood


24 Harvested Wood


1.90E+12
2.88E+07
1.90E+12
7.92E+07
1.90E+12
2.63E+06
1.90E+12


sej/$
$/yr
sej/$
$/y
sej/$
$/yr
sej/$


mass 1.03E+08 kg
energy= mass*1000g/kgl5000j
/g
= 1.55E+15 J/yr
Transformity 3.60E+05 sej/J


1.39E+06 m3/yr


Sweeney, 2007
USFS, 2005
Sweeney, 2007

Sweeney, 2007


Sweeney, 2007







Brown and Bardi
(2001) 15, assuming
50% wood
USFS, 2005


5.40E+05
mass 7.48E+11


energy= g*15000j/


Transformity (w/o services)
25 Water, Chemical Potential
Total Export From Streams
Chemical Potential=
joules =
Transformity =
26 Water, Geopotential Energy

avg. elevation
Geopotential (J) =
joules =
Transformity
27 Minerals
Sp. Emergy (avg)=
emergy=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted


1.12E+16
5.04E+04


1.96E+10 m^3/yr U
M^3/yr 1000 kg/M^3 4940 J/kg
9.70E+16
8.10E+04 O



8.00E+02 m
(volume)(avg elevation)(density)(gravity)
1.54E+17
4.70E+04 sej/J O
1.14E+11 g/yr
8.16E+09 sej/g
9.33E+20 sej


2.50E+01
99277.5


%
Big
Game/y


U


g/m3
g/yr


SFS, 2000



dum, 2000






dum, 2000









SFWS, 2002











ener,



Tran

Small Game

ener,



Tran

Migratory Birds

ener,



Tran

Other Species

ener,


Tran

Sum of Emergy fi
Weighted Trans.
30 Fishing


energy content
Energy Fish Caught
Transformity=
31 Research Information

average time spent

research hours
Transformity
total sej of research
Unit Emergy Value
32 Hydroelectric Power


avg. mass 5.68E+04 g/Game
gy content 2.65E+04 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 3.74E+15 J/yr
isformity= 9.90E+05 sej/J B
Emergy= 3.70E+21 sej
Extracted 377254.5 Small Game/yr L
avg. mass 3.30E+03 g/animal
gy content 6.37E+03 J/g
energy= #*avg mass*(percent dry weight)J/g
energy= 1.98E+14 J/yr
isformity= 1.20E+05 sej/J B
Emergy= 2.38E+19 sej
Extracted 297832.5 #/yr L
avg. mass 1.30E+03 g/bird
gy content 8.83E+03 J/g
energy= #*avg mass*(percent dry weight)J/g
energy= 8.55E+11 J/yr
isformity= 1.01E+05 sej/J B
Emergy= 8.63E+16 sej
Extracted 33092.5 #/yr L
avg. mass 6.35E+03 g
gy content 6.37E+03 J/g
energy= #*avg mass*(percent dry weight)J/g
3.34E+11 J/yr
isformity= 1.50E+05 sej/J B
Emergy= 5.02E+16 sej
rom Game 3.72E+21 sej
For Game 1.10E+07 sej/J
3.76E+06 fish L
caught
avg. mass 4.54E+02 g/fish assume avg weigh


1.88E+04 J/g
6.42E+12 J
1.68E+07 sej/J
# of
papers
8.05E+02 hours/pap
er
30898.01 hours/yr
2.35E+14 sej/hr
7.26E+18 sej
1.90E+12 sej/$


!rown,et al. 2005

JSFWS, 2002





!rown,et al. 2005

JSFWS, 2002





!rown,et al. 2005

JSFWS, 2002





!rown,et al. 2005




JSFS, 2004


lht= 1


lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight










Sweeney, 2007










(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist
use/ha/hour
emergy of image exported
Unit emergy value
34 Payments to State
Unit Emergy Value
35 Payments for FS Labor
Unit Emergy Value


2.51E+08
2.07E+02
1.20E+00
2.48E+02
7.98E+10
4.97E+21
1.98E+13
2.92E+07
1.90E+12
1.60E+08
1.90E+12


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$
$/yr
sej/$


USFS, 2006
Calculated

USFS, 2006
Calculated



USFS, 2005
Sweeney, 2007
USFS, 2005
Sweeney, 2007









Table H-2. Emergy evaluation of Region 1 assets


Note Item Units Quantity UEV Solar Em$
(sej/unit) Emergy (x106
(xlOsej) Em$)


ECOLOGICAL ASSETS (Natural
1 Tree Biomass J
2 Herb./Shrub J
Biomass
3 Land Area ha
4 Soil OM J
5 Ground Water J
6 Surface Water J


ECONOMIC ASSETS
7 Roads (dirt)
8 Roads (gravel)
9 Roads(paved)
10 Machinery &
tools
11 Office
Equipment
12 Buildings

13 Minerals (g)

13a Minerals ($)

CULTURAL ASSETS
15 Information
Indian
Artifacts
16 Value of
Critical
Species

Footnotes to H-2
ECOLOGICAL ASSETS
1 Tree Biomass


# of
ind.


Capital)
1.18E+19
5.83E+17

1.03E+07
1.57E+19
1.91E+17
9.70E+16


2.30E+08
1.50E+13
5.52E+11
8.16E+09


3.62E+04
17976

1.05E+15
1.24E+04
3.02E+05
8.10E+04


1.90E+12
1.68E+09
2.77E+09
1.13E+10


428144.8
10475.4

10812.1
195211.6
57684.5
7854.6


437.7
25219.9
1529.2
91.8


4.10E+09 1.13E+10 46.2

1.13E+11 3.36E+09 708.0


NA


4.54E+09 NA


1.90E+12


6.98E+15 1.89E+07 132082.0


1.50E+01


2.26E+22 338366.3


(Natural Capital)
1.50E+0 m^3
9
5.40E+0 kg/m^3
2
mass= m^3*kg/mA3*1000
g/kg
=8.07E+1 g
4
3.50E+0 Kcal/g of Tree


USFS,
2005


225339.4
5513.4

5690.6
102742.9
30360.3
4134.0


230.4
13273.6
804.8
48.3

24.3

372.6

NA

NA


69516


178087.


















2 Total Understory


0 Biomass
energy= g*4.5kcal/g*4186J/
kcal
= 1.18E+1 J
9
Transformity 3.62E+0 sej/J
4
3.98E+0 mt
7
1.00E+0 g/mt
6
mass= tons*g/t
on
= 3.98E+1 g
3
energy= g*3.5kcal/g*4186J/
kcal
= 5.83E+1 J
7


Transformity


3 Land Area


(emergy of land structure)


4 Soil OM


9.79E+0 sej/J
3
1.03E+0 ha
7
1.05E+1 sej/ha
5

6.95E+0 mt


USFS,
2005


COLE,
2006


mass OM= 6.95E+1 g
4
Energy= massOM* 5.4 kcal/g ofOM 4186j/kcal
1.57E+1 J


Transformity


5 Ground Water
Density of water
Gibbs Free energy of water
Volume


1.24E+0 sej/J
4

1000 kg/m3
4940 J/kg
3.86E+1 m3


USGS,
2005


energy= volume* 1000kg/mA3*4940J/kg
= 1.91E+1 J


transformity


2.79E+0 sej/J
5


6 Surface Water


volume 1.96E+1 m^3


Density of water
Gibbs Free energy of water
energy=


Buenfil
(2001)

Sedell,
2000


1000 kg/m3
4940 J/kg
volume* 000kg/m^3 4940J/kg












Transformity


ECONOMIC ASSETS

7 Roads, Dirt


Unit Emergy Value


8 Roads, Gravel


depth=

volume=

density=

mass gravel=



Specific Emergy


9 Paved Roads


area=

depth=

volume=

density=

mass asphalt=



Specific Emergy


10 Machinery


mass machinery=


9.70E+1
6
8.10E+0
4


J

sej/J


3.84E+0 miles
4
6.00E+0 $/mile
3
2.30E+0 $
8
1.90E+1 sej/$
2
2.12E+0 m length
7
5.00E+0 m width
0
1.02E- mof
01 gravel
1.08E+0 m^3 oflimerock
7
1.39E+0 kg/m^3 gravel
3
m^3*kg/mA3*1000
g/kg
1.50E+1 g
3
1.68E+0 sej/g
9
7.23E+0 m
5
6.70E+0 m^2
0
5.08E- m depth
02
2.46E+0 m^3 of asphalt
5
2.24E+0 kg/m^3 asphalt
3
m^3*kg/mA3*1000
g/kg
5.52E+1 g
1
2.77E+0 sej/g
9
1.80E+0 lbs
7
4.54E+0 g/lb
2
lbs*g/lb


USFS, 2006 (unpub)






CEP
(2006)
USFS, 2006 (unpub)















Odum
(1996)
USFS, 2006 (unpub)















Odum
(1996)
USFS, 2006 (unpub)












Specific Emergy

11 Office Equipment


mass office equipment=



Specific Emergy

12 Buildings

Building Mass=

Specific Emergy
emergy=

13 Minerals
Data NA for Regions
SOCIETAL ASSETS
14 Emergy of Cultural Information
Native Americans on FS lands
(peak)
energy per capital=



Yrs to develop information

Energy of Population=

Energy =

Transformity

15 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species

Em. In critical species=

Emergy in Critical Species (sum of
above)


8.16E+0 g
9
1.13E+1 sej/g
0
1.50E+0 kg/m2
1 area

SA*kg/m2*1000g/k
g
4.10E+0 g
9
1.13E+1 sej/g
0
2.73E+0 m^2
5
1.13E+1 g
1
mixed sej/g
7.08E+2 sej
0




7.56E+0 people
4
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+0 J/yr
9
2.50E+0
2
(population)* (J/yr/Indian)* (yea
r)
6.98E+1 J
5
1.89E+0 sej/J


Odum, 1996

Estimate







Odum, 1996

USFS, 2006 (unpub)











estimate


15 USFWS, 2006
27.80% %
3.96E+2 sej/speci
4 es
# of species*%of total Pop in FS land.*Em. Required to
dev. Species
1.65E+2 sej
5










APPENDIX I
REGION 2 TABLES AND NOTES

Table I-1 Annual emergy flows supporting Region 2 of the USFS system


Note Item


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J 5.2527E+
20
2 Rain Chemical Potential J 1.61E+17
3 Transpiration J 1.05E+17
4 Rain Geopotential J 1.11E+16
5 Wind, Kinetic J 4.87E+17
6 Hurricanes J 0.00E+00
7 Waves J 0
8 Tides J 0
9 Earth Cycle J 2.88E+17
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
10a Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinary, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minereals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J
J
I


1.16E+10 1.68E+09
8.73E+12 7.40E+04
1.80E+04


1.32E+14
4.23E+08
8.27E+06

2.77E+06
2.69E+14
1.32E+07
7.35E+13
2.42E+08

1.56E+07
8.42E+07
3.35E+06


1.34E+15
7.11E+15
5.57E+16
2.43E+17
1.21E+11


1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


4.80E+15 1.10E+07


19.5
0.6
0.0

14.7
4.8
0.2


5.3
4019.5
830.8
21.4
459.1


29.6
160.0
6.4


48.4
358.5
4513.5
11430.2
990.6


10.3
0.3
0.0


2.8
2115.5
437.3
11.3
241.6


15.6
84.2
3.4


25.5
188.7
2375.6
6015.9
521.4


4543.8 2391.5


Emergy
Intensity
(sej/unit)


1.00E+00

3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04


Solar
Emergy
xl10'sej


525.3

4980.1
3208.1
519.6
1193.9
0.0
0.0
0.0
3450.4


EmDollar
(xl06
Em$)


276.5

2621.1
1688.5
273.4
628.3
0.0
0.0
0.0
1816.0










Table I-1 continued
Note Item Units Quantity Emergy Solar EmDollar
Intensity Emergy (x106
(sej/unit) xl0'sej Em$)


30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
33 Payments to State and Local
Gov't
34 Payments for Labor


J 1.58E+13 1.68E+07
hrs 1.61E+05 2.35E+14


265.6
37.9


139.8
19.9


6.18E+08 2.89E+13 17820.9 9379.4


$ 1.19E+07 1.90E+12


22.5


11.9


$ 1.67E+08 1.90E+12 31764.0 16717.9


Foot notes to I-1
RENEWABLE RESOURCES:
1 Solar Insolation Sources


Land Area
Insolation
Albedo
Energy(J) =

Transformity


8.94E+10 m^2
7.17E+09 J/m^2/yr
1.80E-01 (% given as a decimal)
(area)*(avg insolation)* (1-albedo)
5.25E+20 J
1.00E+00 sej/J


NASA, 2006
Gholz and Clark, 2000


2 Rain
Chemical Potential
L

Total Volu


Trar


3 Transpiration



R

4 Rain Geopotential


lain E
Trar


Runoff from Rain
Mean Elevation Change
Land Area
Energy(J) =

Transformity
5 Wind, Kinetic


and Area 8.94E+10 m^2
Rain 0.363811 m/yr
ime Rain 3.25E+10 m^3
energy= volume* 1000kg/m^3*4940J/kg
= 1.61E+17
isformity 3.10E+04 sej/J
2.38E-01 m/m^2/yr
2.12E+10 m3
Energy= Vol*1000Kg/mA3*4940J/kg
T Energy 1.05E+17 J/yr
isformity 3.06E+04 sej/J


0.126 m/yr


NASA, 2006




Odum et.al, (2000)

Sedell, 2000



Odum (2000)

NASA, 2006


305 m
8.94E+10 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
1.11E+16 J
4.70E+04 sej/J Odum, (2000)


Area 8.94E+10










air density
avg annual wind velocity
Geostrophic wind


Drag Coeff.
Energy=


Transformity


1.30E+00 kg/m^3
4.21E+00 mps
7.02E+00 observed winds are about 0.6 of geostrophic
wind


2.00E-03
area*density*dragcoef* (Geos-
Grd)^3*31500000
4.87E+17
2.45E+03 sej/J


6 Hurricanes
None
7 Waves
None
8 Tides
None
9 Earth Cycle
Heat Flow 1.02E+02 miliwatts/m^2
area 8.94E+10 m^2
energy= miliwatts/mA2*area*sec/yr
3.22E+06 J/m^2
energy= 2.88E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.16E+10 g/yr
Top Soil Loss (3.5% of total SL) 4.06E+08 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
= 8.73E+12 J
Transformity= 7.40E+04 sej/j
11 Miscellaneous Products (Plants) g/yr
energy= g*3.5kcal/g*4186J/Kc


Transformity
IMPORTS:
12 Petroleum Products
Forest Service Use
energy=
energy=
FS Building Use


Odum (2000)









IHFC, 2005





Odum (2000)

USFS, 2005





USFS, 2005


joules
1.80E+04 sej/J


1.24E+06 gal/yr
gal* 13e7j/gal
1.61E+14 J/yr
1.88E+06 sq feet
6.66E+04 BTU/sq ft/yr


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
= 1.32E+14
Total Fuel Use 2.93E+14 J/yr
Transformity 1.11E+05 sej/J


USFS, 2005




EIA,
1992




Odum, (1996)










Est. Cost= gal*$2/gal+MMBTUs*$14/MMBTU
4.23E+06 $/yr
13 Machinery, Equipment


mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
14 Goods (Pesticides, herbicides,
misc goods)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value


8.45E+09 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
4.23E+08 g
1.13E+10 sej/g CEP (2006)
8.27E+06 g/yr NFS,
2005


2.49E+10
2.06E+17
1.46E+06

2.77E+06
1.90E+12


sej/g
sej/yr
$/yr

$/yr
sej/$


CEP (2006)


16 Tourism


17 Labor


Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=

Transformity

FS
Contractors
Total Labor
Unit Emergy Value


18 Electricity


Trar
E

FS Regional budget
Unit Emer
19 Services
Unit Emer


3.25E+07 visits/yr
1.90E+01 hrs
6.18E+08 hours/yr
1.04E+02 kcal/hr
Cal/hr*hrs*4186J/Cal
2.69E+14 J/y
1.50E+07 sej/J


6.38E+06
3.86E+06
1.32E+07
6.30E+13


hrs/yr
hrs/yr
hrs/yr
sej/hr


1882186 sqft
37000 btu/ft2/yr


6.96E+10 btu/yr
energy= btu/yr* 1055 j/btu
= 7.35E+13 J
isformity 2.92E+05
st. Cost= BTU/yr/3412btu/kwh*$(
1.84E+06 $/yr
2.56E+08 $/yr
gy Value 1.90E+12 sej/$
2.42E+08 $/yr
gy Value 1.90E+12 sej/$


USFS, 2005









USFS, 2005



based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
USFS, 2005
EIA,
1992




Odum, 1996
).09/kwh



CEP (2006)
USFS, 2005
CEP (2006)










20 Payment for timber
Unit Emergy Value
21 Payments for Extracted Minerals
Unit Emergy Value
22 Fee Payments
Unit Emergy Value
EXPORTS:
23 Extracted Firewood


1.56E+07
1.90E+12
8.42E+07
1.90E+12
3.35E+06
1.90E+12


mass 8.96E+07 kg
energy= mass*1000g/kgl5000j


Transformity


24 Harvested Wood


mass
energy=


Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy
Geopotential (J)=
avg. elevation
joules =
Transformity
27 Minerals
specific emergy=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted

avg. mass
energy content
energy=
energy=
Transformity=


/g
1.34E+15
3.60E+04


J/yr
sej/J


8.78E+05 m3/yr
5.40E+05 g/m3
4.74E+11 g/yr
g*15000j/
g
7.11E+15 J/yr
5.04E+04


1.13E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
5.57E+16 J/yr
8.10E+04 sej/J

(volume)(elevation)(density)(gravity)
2.20E+03 m
2.43E+17
4.70E+04 sej/J
1.21E+11 g/yr
8.16E+09 sej/g


2.50E+01 %
1.21E+05 Big
Game/y
5.68E+04 g/Game
2.65E+04 J/g
#Game/yr*avg mass*(% dry weight)*J/1
4.56E+15 J/yr
9.90E+05 sej/J


Brown and Bardi
(2001) 15, assuming
50% wood
USFS, 2005


Brown, 2001


Sedell, 2000



Odum, 2000



USGS, 2006

Odum, 2000
estimate












g
USFWS, 2002
Brown et al, 2005


$/yr
sej/$
$/y
sej/$
$/yr
sej/$


USFS, 2005
CEP (2006)

CEP (2006)

CEP (2006)










Emergy=
Small Game Extracted
avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Migratory Birds Extracted
avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Other Species Extracted
avg. mass
energy content
energy=

Transformity=
Emergy=
Sum of Emergy from Game
Weighted Trans. For Game
30 Fishing

avg. mass

energy content
Energy Fish Caught
Transformity=
31 Research Information

average time spent

research hours
Transformity
total sej of research
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist


4.51E+21 sej
4.60E+05 Small Game/yr L
3.30E+03 g/animal
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
2.42E+14 J/yr
1.20E+05 sej/J B
2.90E+19 sej
3.64E+05 #/yr L
1.30E+03 g/bird
8.83E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
1.04E+12 J/yr
1.01E+05 sej/J B
1.05E+17 sej
4.04E+04 #/yr L
6.35E+03 g
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
4.08E+11 J/yr
1.50E+05 sej/J B
6.12E+16 sej
4.54E+21 sej
1.10E+07 sej/J
9.26E+06 fish L
caught
4.54E+02 g/fish assume avg weigh


1.88E+04 J/g
1.58E+13 J
1.68E+07 sej/J
1.62E+02 # of
papers
8.05E+02 hours/pap
er
161249 hours/yr
2.35E+14 sej/hr
3.79E+19 sej


6.18E+08
2.07E+02
1.20E+00
2.48E+02


JSFWS, 2002





brown et al, 2005

JSFWS, 2002





Irown et al, 2005

JSFWS, 2002





Irown et al, 2005




JSFS, 2004


lht= 1


lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight







Odum, 1996


hrs
ha
sites/visit
ha


USFS, 2006
CEP (2006)

USFS, 2006










use/ha/hour 1.16E+11 sej/ha
emergy of image exported 1.78E+22 sej/yr
Unit emergy value 2.89E+13 sej/visitor hour
33 Payments to State 1.19E+07 $/yr
Unit Emergy Value 1.90E+12 sej/$
34 Payments for FS Labor 1.67E+08 $/yr
Unit Emergy Value 1.90E+12 sej/$


CEP (2006)



USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)











Table I-2 Emergy evaluation of Region 2 forest assets


Note Item Units Quantity UEV Solar Emdollars
Emergy
(x106 sej) (xl0 em$)
ECOLOGICAL ASSETS (Natural
Capital)
1 Tree Biomass J 8.63E+18 3.62E+04 312275. 164355.4
2 Herb. /Shrub Biomass J 6.63E+17 17976 11926.7 6277.2
3 Land Area h 8.94E+06 1.05E+15 9383.7 4938.8
a
4 Soil OM J 1.01E+19 1.24E+04 125035.8 65808.3
5 Ground Water J 1.99E+17 3.02E+05 60076.8 31619.4
6 Surface Water J 5.57E+16 8.10E+04 4513.5 2375.6
ECONOMIC ASSETS
7 Roads (dirt) $ 1.52E+08 1.90E+12 289.7 152.5
8 Roads (gravel) g 7.31E+12 1.68E+09 12281.2 6463.8

9 Roads (paved) g 1.33E+11 2.77E+09 368.2 193.8
10 Machinery & tools g 8.45E+09 1.13E+10 95.1 50.1
11 Office Equipment g 2.62E+09 1.13E+10 29.5 15.5
12 Buildings g 7.22E+10 7.90E+09 452.0 237.9
13 Minerals (g) g NA 4.54E+09 NA NA
13a Minerals ($) $ NA 1.90E+12 NA NA
CULTURAL ASSETS
15 Information Value of J 6.98E+15 1.89E+07 132082.0 69516.9
Indian Artifacts
16 Value of Critical Species # of 1.60E+01 2.26E+22 360924.0 1899.6
ind.


Footnotes for 1-2
ECOLOGICAL ASSETS (Natui
Capital)
1 Tree Biomass


Trar


2 Total Understory


ral

8.48E+08 m^3
5.40E+02 kg/m^3
mass= mA3*kg/mA3*1 000g/kg
= 4.58E+14 g
4.50E+00 Cal/g of Tree Biomass
energy= g*4.5kcal/g*4186J/kcal
= 8.63E+18 J
isformity 3.62E+04 sej/J
4.53E+07 mt
1.00E+06 g/mt
mass= tons*g/ton
= 4.53E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 6.63E+17 J


NFS,2005







NFS,2005











3 Land Area


Transformity 9.79E+03 sej/J
ha


(emergy of land structure)


4 Soil OM





5 Ground Water


1.05E+15 sej/ha


4.45E+08 mt
mass OM= 4.45E+14 g
Energy= massOM* 5.4 Cal/g of OM 4186 j/Cal
1.01E+19 J
Transformity 1.24E+04 sej/J


Density of water
Gibbs Free energy of water
Volume
energy=


transformity


1000 kg/m3
4940 J/kg
4.02E+10 m3
volume*1 000kg/mA3*4940J/kg
1.99E+17 J
2.79E+05 sej/J


6 Surface Water
volume 1.13E+10 mA3
Density of water 1000 kg/m3
Gibbs Free energy of water 4940 J/kg
energy= volume*1 000kg/mA3*4940J/kg
= 5.57E+16 J
Transformity 8.10E+04 sej/J
ECONOMIC ASSETS


7 Roads, Dirt


Unit Emergy Value


8 Roads, Gravel


9 Paved Roads


depth
volume
density
mass grave

Specific Emerg


area
depth
volume
density
mass asphalt

Specific Emerg


10 Machinary


2.54E+04
6.00E+03
1.52E+08
1.90E+12


miles
$/mile
$
sej/$


1.03E+07 m length
5.00E+00 m width
m of
1= 1.02E-01 gravel
= 5.24E+06 mA3 of limerock
= 1.39E+03 kg/mA3 gravel
I= mA3*kg/m3*1 000g/kg
= 7.31E+12 g
)y 1.68E+09 sej/g

1.74E+05 m
= 6.70E+00 mA2
1= 5.08E-02 m depth
= 5.92E+04 mA3 of asphalt
= 2.24E+03 kg/mA3 asphalt
= mA3*kg/mA3*1000g/kg
= 1.33E+11 g
)y 2.77E+09 sej/g

1.86E+07 Ibs


USFS, 2006
(unpub)


CEP (2006)
USFS, 2006
(unpub)








Odum (1996)
USFS, 2006
(unpub)







Odum (1996)
USFS, 2006
(unpub)


Buenfil (2001)

Sedell, 2000











mass machinary


Specific Emerc
11 Office Equipment


mass office equipment

Specific Emerc


12 Buildings
Building Mass=


Specific Emerg
emerge


13 Minerals
Data NA for Regions
CULTURAL ASSETS
18 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=

Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species

Em. In critical species=
Emergy in Critical Species (sum
of above)


4.54E+02
= bs*g/lb
= 8.45E+09
)y 1.13E+10
1.50E+01


g
sej/g
kg/m2


= SA*kg/m2*1000g/kg
= 2.62E+09 g
)y 1.13E+10 sej/g

1.75E+05 m^2
7.22E+10 g
sej/g
)y 7.90E+09 (avg)
= 4.52E+20 sej


7.31E+03 people
(2500Cal/day)*(365 d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J


CEP (2006)


CEP (2006)
USFS, 2006
(unpub)


estimate


estimate


16 USFWS, 2006
27.80% %
3.96E+24 sej/species
# of species*%of total Pop in FS land.*Em. Required to
develop species

1.76E+25 sej










APPENDIX J
REGION 3 TABLES AND NOTES

Table J-1 Annual emergy flows supporting Region 3 of the USFS system


Note Item


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J 5.9645E+
20
2 Rain Chemical Potential J 1.24E+17
3 Transpiration J 7.87E+16
4 Rain Geopotential J 8.22E+16
5 Wind, Kinetic J 3.49E+17
6 Hurricanes J 0.00E+00
7 Waves J 0
8 Tides J 0
9 Earth Cycle J 2.19E+17
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J


2.22E+09 1.68E+09
1.67E+12 7.40E+04
1.80E+04


1.62E+14
4.74E+08
7.79E+06

1.51E+06
1.70E+14
9.64E+06
9.01E+13
3.16E+08

1.02E+06
1.56E+09
6.49E+06


1.27E+15
3.60E+15
4.53E+16
1.44E+17
2.25E+12


1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


Unit
Emergy
Values '.
(sej/unit)

1.00E+00

3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04


Solar
Emergy
xl10'sej


596.5

3843.1
2406.5
3861.5
855.5
0.0
0.0
0.0
2628.0


EmDollar
(x106
Em$)


313.9

2022.7
1266.6
2032.3
450.2
0.0
0.0
0.0
1383.2


18.1
5.3
0.2


2.9
2535.4
607.2
26.3
600.5

1.9
2964.3
12.3


45.6
181.3
3666.2
6752.3
18373.2


1.5
1334.4
319.6
13.8
316.1

1.0
1560.2
6.5


24.0
95.4
1929.6
3553.8
9670.1










Table J-1 continued
Note Item Units Quantity Unit Solar EmDollar
Emergy Emergy (x106
Values xl101sej Em$)
(sej/unit)


29 Harvested wildlife
30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
33 Payments to State and Local
Gov't
34 Payments for Labor


3.12E+15
9.96E+12
3.09E+04


1E5 9.9E5
1.68E+07
2.35E+14


345.3
167.4
7.3


181.7
88.1
3.8


3.90E+08 3.39E+13 13195.0 6944.7


$ 1.01E+07 1.90E+12

$ 1.32E+08 1.90E+12


19.2

251.2


10.1

132.2


Footnotes to J-1
RENEWABLE RESOURCES:
1 Solar Insolation
Land Area 8.42E+1 m^2
0
Insolation 8.64E+0 J/m^2/yea
9 r
Albedo 1.80E-01 (% given as a decimal)
Energy(J) = (area)*(avg insolation)*(1-albedo)
5.96E+2 J


Transformity


Sources


NREL, 2006


1.00E+0 sej/J


2 Rain
Chemical Potential


Land Area 8.42E+1 m^2
0


Rain
Total Volume Rain


0.297995 m/yr
2.51E+1 m^3


NOAA, 2006


0
energy= volume*1000kg/m^3*4940J/kg
= 1.24E+1


Transformity


3 Transpiration


Energy=
Rain ET Energy


7
3.10E+0 sej/J
4
1.89E-01 m/m^2/yr
1.59E+1 m3 Et
0
Vol*1000Kg/mA3*4940J/kg
7.87E+1 J/yr
6


Odum (2000)










Transformity 3.06E+0 sej/J


4 Rain Geopotential
Rain
Mean Elevation Change
Land Area

Energy(J) =


Transformity

5 Wind, Kinetic
Area

air density

avg annual wind velocity

Geostrophic wind

Drag Coeff.
Energy=
energy

Transformity


4

1.09E-01 m/yr NOAA, 2006
915 m
8.42E+1 m^2
0
(area)(rainfall)(avg change in elevation)(density)(gravity)
8.22E+1 J
6
4.70E+0 sej/J Odum, (2000)
4

8.42E+1
0
1.30E+0 kg/m^3
0
3.85E+0 mps NOAA, 2006
0
6.41E+0 observed winds are about 0.6 of geostrophic
0 wind
2.00E-03
area* density* dragcoef (Geos-grdVel)^3* 31500000
3.49E+1
7
2.45E+0 sej/J Odum (2000)


6 Hurricanes
None
7 Waves
None
8 Tides
None
9 Earth Cycle
Heat Flow 82.40846 miliwatts/m^2
area 8.42E+1 m^2
0
energy= miliwatts/m^2*area*sec/yr
2.60E+0 J/m^2/yr
6
energy= 2.19E+1 J/yr
7
Transformity 1.20E+0 sej/J
4
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 2.22E+0 g/yr
9
Top Soil Loss (3.5% of total SL) 7.77E+0 g/yr


IHFC, 2005








Odum (2000)


USFS, 2005


Odum, (2000)















Trans]

11 Miscellaneous Products (





Tran

IMPORTS:
12 Petroleum Products


Fores


FS


T


7
energy= g ofC*5.4 kca'/g*4184 J/cal
= 1.67E+1 J
2
formity= 7.40E+0 sej/j
4
Plants) g/yr
energy= g*3.5kcal/g*4186J/Kc
al
= 2.66E+1 joules
0
sformity 1.80E+0 sej/J
4


t Service Use 2.52E+0 gal/yr
6
energy= gal* 13e7j/gal
= 3.28E+1 J/yr
4
Building Use 2.31E+0 sq feet
6
6.66E+0 BTU/sq ft/yr
4
energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
1.62E+1
4
total Fuel Use 4.90E+1 J/yr
4
Transformity 1.11E+0 sej/J
5
Est. Cost= gal*$2/gal+MMBTUs*$14/MMBTU
7.20E+0 $/yr


13 Machinery, Equipment


avg. vehicle

u
mass use

Specific

14 Goods (Pesticides, herbi


mass 9.49E+0 g
9
e lifespan 2.00E+0 yrs
1
se per y = vehicles*g/vehicle* 1/avg life of vehicle
i per year 4.74E+0 g
8
cEmergy 1.13E+1 sej/g
0
cides) 7.79E+0 g/yr
6
2.49E+1 sej/g
0
emergy= 1.94E+1 sej/yr


USFS, 2005


















EIA,
1992






Odum, (1996)


CEP (2006)

USFS, 2005











Est. for cost

15 Replanting
Total Cost=

Unit Emergy Value

16 Tourism
Tourist Time

average stay

Total Hours of Stay

avg. energy/hr

total energy expenditure=

energy=

Transformity


7
1.37E+0 $/yr
6

1.51E+0 $/yr
6
1.90E+1 sej/$
2

2.05E+0 visits/yr
7
1.90E+0 hrs/visit
1
3.90E+0 hours/yr
8
1.04E+0 kcal/hr
2
kcal/hr*hrs*4186J/Kc
al
1.70E+1 J/y
4
1.50E+0 sej/J
7


CEP (2006)


USFS, 2004


17 Labor


Co

Tot

Unit Emerg


18 Electricity


Tran

E


Regional FS budget

Unit Emerg


FS 5.04E+0 hrs/yr
6
ntractors 2.44E+0 hrs/yr
6
:al Labor 9.64E+0 hrs/yr
6
gy Value 6.30E+1 sej/hr based on
3 sej/yr) a
workers
2308712 sq ft
37000 btu/ft2/yr

8.54E+1 btu/yr
0
energy= btu/yr* 1055 j/btu
= 9.01E+1 J
3
sformity 2.92E+0
5
st. Cost= BTU/yr/3412btu/kwh*$0.09/kwh
2.25E+0 $/yr
6
2.71E+0 $/yr
8
gy Value 1.90E+1 sej/$
2


USFS, 2005


SUSA emergy use (1.9E25
nd work force of 1.5 E8

USFS, 2005
EIA,
1992






Odum, 1996







CEP (2006)










19 Services

Unit Emergy Value

20 Payment for timber

Unit Emergy Value

21 Payments for Extracted Minerals

Unit Emergy Value

22 Fee Payments

Unit Emergy Value

EXPORTS:
12 Extracted Firewood
mass

energy=



Transformity


24 Harvested Wood



mass

energy=



Transformity (w/o services)

25 Water, Chemical potential
Total Export From Streams

Chemical Potential=
joules =

Transformity

26 Water, Geopotential Energy
Geopotential (J)=
avg. elevation=


3.16E+0
8
1.90E+1
2
1.02E+0
6
1.90E+1
2
1.56E+0
9
1.90E+1
2
6.49E+0
6
1.90E+1
2


USFS, 2005

CEP (2006)

USFS, 2005

CEP (2006)


$/yr

sej/$

$/yr

sej/$

$/y

sej/$

$/yr

sej/$


CEP (2006)


CEP (2006)


8.44E+0 kg
7
mass* 1000g/kg15000j
/g
1.27E+1 J/yr
5
3.60E+0 sej/J
4

4.44E+0 m3/yr
5
5.40E+0 g/m3
5
2.40E+1 g/yr
1
g*15000
j/g
3.60E+1 J/yr
5
5.04E+0
4

9.16E+0 m^3/yr
9
M^3/yr 1000 kg/M^3 4940 J/kg
4.53E+1 J/yr
6
8.10E+0 sej/J
4

(volume)(elevation)(density)(gravity)
1.60E+0 m


Brown and Bardi
(2001)- 15,
assuming 50% wood
USFS, 2005










Brown, 2001


Sedell, 2000





Odum, 2000




USGS, 2006











joules =

Transformity

27 Minerals

sp. Emergy (avg)=

28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife

Big Game Extracted

avg. mass

energy content

energy=
energy=

Transformity=

Emergy=

Small Game Extracted

avg. mass

energy content

energy=
energy=

Transformity=

Emergy=

Migratory Birds Extracted

avg. mass

energy content

energy=
energy=

Transformity=


3
1.44E+1
7
4.70E+0
4
2.25E+1
2
8.16E+0
9


J/yr

sej/J

g/yr

sej/g


Odum, 2000

USFS, 2003


2.50E+0 %
1
7.88E+0 Big
4 Game/y
5.68E+0 g/Game
4
2.65E+0 J/g
4
#Game/yr*avg mass*(% dry weight)*J/g
2.97E+1 J/yr USFWS, 2002
5
1.10E+0 sej/J Brown, et al 2005
5
3.26E+2 sej
0
3.00E+0 Small Game/yr FWS
5
3.30E+0 g/animal
3
6.37E+0 J/g
3
#Game/yr*avg mass*(% dry weight)*J/g
1.57E+1 J/yr
4
1.20E+0 sej/J Brown, et al 2005
5
1.89E+1 sej
9
2.36E+0 #/yr USFWS, 2002
5
1.30E+0 g/bird
3
8.83E+0 J/g
3
#Game/yr*avg mass*(% dry weight)*J/g
6.79E+1 J/yr
1
1.01E+0 sej/J Brown, et al 2005











Emergy=

Other Species Extracted

avg. mass

energy content

energy=


Transformity=

Emergy=

Sum of Emergy from Game

Weighted Trans. For Game
30 Fishing

avg. mass

energy content

Energy Fish Caught

Transformity=

31 Research Information

average time spent

research hours
Transformity

total sej of research

32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's

site area=



ha/vist

use/ha/hour


5
6.85E+1 sej
6
2.63E+0 #/yr t
4
6.35E+0 g
3
6.37E+0 J/g
3
#Game/yr*avg mass*(% dry weight)*J/g
2.66E+1 J/yr
1
1.50E+0 sej/J E
5
3.98E+1 sej
6
3.45E+2 sej
0
sej/J
5.84E+0 fish
6 caught
4.54E+0 g/fish assume avg weil
2 lb
1.88E+0 J/g (4.5Cal/G*4187
4
9.96E+1 J assume 20% dry
2
1.68E+0 sej/J
7
# of
papers
8.05E+0 hours/pape
2 r
30898.01 hours/yr
2.35E+1 sej/hr
4
7.26E+1 sej
8


3.90E+0
8
2.07E+0
2
1.20E+0
0
2.48E+0
2
1.36E+1


hrs

ha

sites/visit

ha

sej/ha


JSFWS, 2002









rown, et al 2005


ght = 1

J/cal)

weight


USFS, 2006

CEP (2006)


USFS, 2006

CEP (2006)











emergy of image exported

Unit emergy value

33 Payments to State

Unit Emergy Value

34 Payments for FS Labor

Unit Emergy Value


1
1.32E+2
2
3.39E+1
3
1.01E+0
7
1.90E+1
2
1.32E+0
8
1.90E+1
2


sej/yr

sej/visitor hour

$/yr

sej/$

$/yr

sej/$


USFS, 2005

CEP (2006)

USFS, 2005










Table J-2 Emergy evaluation of Region 3 forest assets


Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl0'1sej)
(sej/unit)
ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass J 2.71E+18 3.62E+04 97990.0 51573.7
2 Herbaceous/Shrub Biomass J 6.86E+17 17976 12331.9 6490.5
3 Land Area ha 8.42E+06 1.05E+15 8840.6 4653.0
4 Soil OM J 7.84E+18 1.24E+04 97495.8 51313.6
5 Ground Water (drinking aquifer) J 2.86E+17 3.02E+05 86589.8 45573.6
6 Surface Water J 4.50E+16 8.10E+04 3647.9 1920.0
ECONOMIC ASSETS
7 Roads (dirt) $ 2.80E+08 1.90E+12 532.0 280.0
8 Roads (gravel) g 5.32E+12 1.68E+09 8935.2 4702.7
9 Roads (paved) g 1.64E+11 2.77E+09 455.1 239.5
10 Machinery & tools g 9.48E+09 1.13E+10 106.7 56.1
11 Office Equipment g 3.22E+09 1.13E+10 36.2 19.1
12 Buildings g 8.85E+10 7.97E+09 555.0 292.1
13 Minerals (g) g NA 4.54E+09 NA NA
13a Minerals ($) $ NA 1.90E+12 NA NA
CULTURAL ASSETS
15 Information Value of Indian Artifacts J 1.49E+17 1.89E+07 2810976.6 1479461.3
16 Value of Critical Species # of ind. 5.50E+01 2.26E+22 1240676.3 6529.9


Footnotes for J-2
ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass 3.42E+08 m^3
5.40E+02 kg/m^3
mass= m^3*kg/mA3*1000g/
kg
= 1.85E+14 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*4.5kcal/g*4186J/kc


Transformity


2 Total Understory


2.71E+18 J
3.62E+04 sej/J
4.68E+07 mt


1.00E+06
mass= tons*g/to


USFS, 2005











COLE,
2005


g/mt


n
= 4.68E+13 g
energy= g*3.5kcal/g*4186J/kc


Transformity


6.86E+17 J
9.79E+03 sej/J










3 Land Area


4 Soil OM


(emergy of land structure)


8.42E+06 ha
1.05E+15 sej/ha


3.47E+08 mt


mass OM=
Energy=


Transformity
5 Ground Water
Density of water
Gibbs Free energy of water
Volume


USFS, 2007


COLE,
2005


3.47E+14 g
massOM* 5.4 kcal/g of OM 4186 j/kcal
7.84E+18 J
1.24E+04 sej/J


1000 kg/m3
4940 J/kg
5.80E+10 m3


energy= volume* 1000kg/mA3*4940J/kg
= 2.86E+17 J
transformity 2.79E+05 sej/J


6 Surface Water


volume 9.12E+09 m^3


Density of water
Gibbs Free energy of water
energy=

Transformity
ECONOMIC ASSETS


7 Roads, Dirt


8 Roads, Gravel


Unit Emergy Value


depth=

volume=
density=
mass gravel=

mass gravel=
Specific Emergy


9 Paved Roads


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3* 4940J/kg
4.50E+16 J
1.04E+06 sej/J


4.67E+04 miles
6.00E+03 $/mile
2.80E+08 $
1.90E+12 sej/$
7.51E+06 m length
5.00E+00 m width
0.1016 mof
gravel
3.82E+06 m^3 oflimerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3*1000g/
kg
5.32E+12 g
1.68E+09 sej/g


215055.5 m


width=
depth:
volume=
density:
mass asphalt


6.7 m^2
5.08E-02 m depth
7.32E+04 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3*1000g/
kg


USGS,
2005


Buenfil
(2001)

Sedell,
2000


USFS, 2006 (unpub)


CEP (2006)
USFS, 2006 (unpub)









Odum
(1996)


USFS, 2006 (unpub)










asphalt
Specific Emergy


10 Machinery


mass machinery=
Specific Emergy


11 Office Equipment


mass office equipment=

Specific Emergy
12 Buildings
Building Mass=
Specific Emergy
emergy
13 Minerals
Data NA for Regions
CULTURAL ASSETS
18 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species


1.64E+11 g
2.77E+09 sej/g

2.09E+07 lbs
4.54E+02 g/lb
9.48E+09 g
1.13E+10 sej/g
1.50E+01 kg/m2


Building SA*kg/m2* 1000g/kg
3.22E+09 g
1.13E+10 sej/g
214,479 m^2
8.85E+10 g
7.97E+09 sej/g avg
5.55E+20




1.56E+05 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
1.49E+17 J
1.89E+07 sej/J

55
27.80% %
3.96E+24 sej/specie


Odum
(1996)
USFS, 2006 (unpub)


CEP (2006)


CEP (2006)
USFS, 2006 (unpub)








estimate



estimate




USFWS, 2006


Em. In critical species=

Emergy in Critical Species (sum of
above)


# of species*%of total Pop in FS land.*Emergy Required to
develop species
6.05E+25 sej










APPENDIX K
REGION 4 TABLES AND NOTES


Table K-1 Annual emergy flows supporting Region 4 of the USFS system


Note Item


Units


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss (harvesting) g
10a Top soil loss (harvesting) J
11 Miscellaneous Products (plants) J
IMPORTS:
12 Petroleum Products J
13 Machinery, Equipment g
14 Goods (Pesticides, herbicides, g
misc goods)
15 Seedlings $
16 Tourist Time J


17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


hours
J
$


Quantity


7.89E+20
1.99E+17
1.29E+17
1.20E+17
4.20E+17
0.00E+00
0
0
3.88E+17

1.39E+10
1.04E+13



1.82E+14
4.38E+08
1.20E+07

2.99E+06
1.93E+14
1.87E+07
1.01E+14
3.05E+08

3.79E+06
1.35E+08
3.92E+06


1.95E+15
1.40E+16
6.98E+16
3.37E+17
1.94E+11


Unit
Emergy
Values '.
(sej/unit)

1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04

1.68E+09
7.40E+04
1.80E+04

1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
7.77E+04
8.16E+09


3.45E+15 le5 9.9e5


Solar
Emergy
x1018sej


789.5
6163.5
3944.1
5654.1
1028.0
0.0
0.0
0.0
4659.4


EmDollars
(xl06
Em$)


415.5
3243.9
2075.8
2975.8
541.1
0.0
0.0
0.0
2452.3


23.3
0.8
0.0

20.3
4.9
0.3


12.3
0.4
0.0

10.7
2.6
0.2


5.7
2881.7
1181.2
29.6
579.3

7.2
255.7
7.4


70.2
707.3
5655.7
26139.2
1584.2

326.2


3.0
1516.7
621.7
15.6
304.9

3.8
134.6
3.9


36.9
372.3
2976.7
13757.5
833.8

171.7










Table K-1 continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106
Values xl101sej Em$)
(sej/unit)


30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
33 Payments to State and Local
Gov't
34 Payments for Labor


1.13E+13 1.68E+07
0.00E+00 1.90E+12


190.4
0.0


hrs 4.43E+08 3.13E+13 13866.1


2.48E+07 1.90E+12

1.82E+08 1.90E+12


47.1


345.5


100.2
0.0

7298.0


24.8


181.9


Footnotes to K-1
RENEWABLE RESOURCES:
1 Solar Insolation Sources


Land Area
Insolation


1.30E+11 m^2
7.43E+09 J/m^2/yea


NREL, 2006


Albedo 1.80E-01 (% given as a decimal)
Energy(J) = (area)*(avg insolation)*(1-albedo)
7.90E+20 J
Transformity 1.00E+00 sej/J


2 Rain
Chemical Potential


Land Area
Rain


3 Transpiration


1.30E+11 m^2
0.31054393 m/yr
7


Total Volume Rain 4.02E+10 m^3
energy= volume* 1000kg/m^3*4940J/kg
1.99E+17
Transformity 3.10E+04 sej/J
2.01E-01 m/m^2/yr
2.61E+10 m3 et
Energy= Vol* 1000Kg/mA3*4940J/kg
Rain ET Energy 1.29E+17 J/yr
Transformity 3.06E+04 sej/J


NOAA, 2006





Odum et.al, (2000)





Odum et.al. (2000)


4 Rain Geopotential
Rain
Mean Elevation Change
Land Area
Energy(J) =

Transformity


1.09E-01 m/yr NOAA, 2006
3.05E+02 m
1.30E+11 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
1.20E+17 J
4.70E+04 sej/J Odum et.al, (2000)










5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff.
Energy=


Transformity
6 Hurricanes
None
7 Waves
None
8 Tides
None
9 Earth Cycle
Heat Flow
area
energy=


1.30E+11
1.30E+00 kg/m^3
3.54E+00 mps
5.90E+00 observed winds are about 0.6 of geostrophic
wind


2.00E-03
area* density* dragcoef* (Geos-
gmdVel)^3*31500000
4.20E+17
2.45E+03 sej/J









9.50E+01 miliwatts/m^2
1.30E+11 m^2
miliwatts/m^2* area* sec/
yr


3.00E+06 J/m^2
energy= 3.88E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.39E+10 g/yr
a. Top Soil Loss (3.5% of total SL) 4.85E+08 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
1.04E+13 J
Transformity= 7.40E+04 sej/j
11 Miscellaneous Products (Plants) g/yr
energy= g*3.5kcal/g*4186J/Kcal
2.66E+10 joules
Transformity 1.80E+04 sej/J


Odum (2000)









IHFC, 2005






Odum (2000)

See Calcs, 2006





USFS, 2005


IMPORTS:
12 Petroleum Products
Forest Service Use
energy=


energy=
FS Building Use


1.30E+06
gal* 13e7j/g
al
1.56E+14
2.60E+06
6.66E+04


gal/yr


J/yr
sq feet
BTU/sq ft/yr


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU


estimate


EIA,
1992











Total Fuel Use
Transformity
Est. Cost=

13 Machinery, Equipment
mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
14 Goods (Pesticides, herbicides)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=
energy=
Transformity
17 Labor
FS
Contractors
Total Labor
Unit Emergy Value


18 Electricity


1.82E+14
3.39E+14 J/yr
1.11E+05 sej/J
gal* $2/gal+MMBTUs* $14/MMBTU
5.02E+06 $/yr

8.75E+09 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
4.38E+08 g
1.13E+10 sej/g
1.20E+07 g/yr
2.49E+10 sej/g
2.98E+17 sej/yr
2.11E+06 $/yr


2.99E+06
1.90E+12


$/yr
sej/$


2.33E+07 visits/yr
1.90E+01 hrs
4.43E+08 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kcal
1.93E+14 J/y
1.50E+07 sej/J


6.94E+06
7.62E+06
1.87E+07
6.30E+13


hrs/yr
hrs/yr
hrs/yr
sej/hr


2596247 sq ft
37000 btu/ft2/yr


9.61E+10 btu/yr
energy= btu/yr*1055 j/btu
1.01E+14 J
Transformity 2.92E+05
Est. Cost= BTU/yr/3412btu/kwh*$0.01
2.53E+06 $/yr
Regional FS budget 2.88E+08 $/yr
Unit Emergy Value 1.90E+12 sej/$
19 Services 3.05E+08 $/yr


Odum, (1996)




estimate




CEP (2006)
USFS, 2005


CEP (2006)

USFS, 2005


USFS, 2005



based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
USFS, 2005
EIA,
1992




Odum, 1996
)/kwh



CEP (2006)
USFS, 2005










Unit Emergy Value
20 Payment for timber
Unit Emergy Value
21 Payments for Extracted Minerals
Unit Emergy Value
22 Fee Payments
Unit Emergy Value
EXPORTS:
12 Extracted Firewood


mass 1.30E+08 kg


energy=
energy=
Transformity


24 Harvested Wood


mass* 1000g/kg15000j/g
1.95E+15 J/yr
3.60E+04 sej/J


1.73E+06 m3/yr
5.40E+05 g/m3


NFS
Web


Brown and Bardi
(2001) 15, assuming
50% wood
USFS, 2005


mass 9.36E+11
energy= g*15000j/g
1.40E+16


Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy
Geopotential (J)=
avg elevation
joules =
Transformity
27 Minerals
sp. emergy (avg)=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted

avg. mass
energy content
energy=
energy=
Transformity=


5.04E+04


Brown, 2001


1.41E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
6.98E+16 J/yr
8.10E+04 sej/J

(volume)(elevation)(density)(gravity)
2.43E+03 m'3/yr
3.37E+17 J/yr
7.77E+04 sej/J
1.94E+11 g/yr
8.16E+09


2.50E+01 %
8.70E+04 Big
Game/y
5.68E+04 g/Game
2.65E+04 J/g
#Game/yr*avg mass*(% dry weight)*J/g
3.27E+15 J/yr
9.90E+05 sej/J


Sedell, 2000



Odum, 2000



USGS, 2006

Odum, 2000
estimate







USFWS, 2002






Brown et al, 2005


1.90E+12
3.79E+06
1.90E+12
1.35E+08
1.90E+12
3.92E+06
1.90E+12


sej/$
$/yr
sej/$
$/y
sej/$
$/yr
sej/$


CEP (2006)
USFS, 2005
CEP (2006)

CEP (2006)

CEP (2006)


g/yr











Small Game

ener



Tran

Migratory Birds

ener



Tran

Other Species

ener


Tran

Sum of Emergy fi
30 Fishing


energy content
Energy Fish Caught
Transformity=
31 Information
$ spent for Research
Unit Emergy Value
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/visit
use/ha/hour
emergy of image exported
Unit emergy value
33 Payments to State
Unit Emergy Value


Emergy= 3.24E+21 sej
Extracted 3.31E+05 Small Game/yr
avg. mass 3.30E+03 g/animal
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 1.74E+14 J/yr
isformity= 1.20E+05 sej/J
Emergy= 2.08E+19 sej
Extracted 2.61E+05 #/yr
avg. mass 1.30E+03 g/bird
gy content 8.83E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 7.49E+11 J/yr
isformity= 1.01E+05 sej/J
Emergy= 7.56E+16 sej
Extracted 2.90E+04 #/yr
avg. mass 6.35E+03 g
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
2.93E+11 J/yr
isformity= 1.50E+05 sej/J
Emergy= 4.39E+16 sej
rom Game 3.26E+21 sej
6.64E+06 fish
caught
avg. mass 4.54E+02 g/fish assume avg w


1.88E+04
1.13E+13
1.68E+07


J/g
J
sej/J


USFWS, 2002








USFWS, 2002








USFWS, 2002









estimate


eight = 1


lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight


0.00E+00 $/yr
1.90E+12 sej/$


4.43E+08
2.07E+02
1.20E+00
2.48E+02
1.26E+11
1.39E+22
3.13E+13
2.48E+07
1.90E+12


CEP (2006)


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$


USFS, 2006
CEP (2006)

USFS, 2006
CEP (2006)



USFS, 2005
CEP (2006)










34 Payments for FS Labor
Unit Emergy Value


1.82E+08 $/yr
1.90E+12 sej/$


USFS, 2005
CEP (2006)












Table K-2 Emergy evaluation of Region 4 of the USFS assets


Note Item


Units


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Ground Water
6 Surface Water
ECONOMIC ASSETS
7 Roads (dirt)
8 Roads (gravel)
9 Roads(paved)
10 Machinery & tools
11 Office Equipment
12 Buildings
13 Minerals (g)
13b Minerals ($)
CULTURAL ASSETS
15 Information Value of Indian Artifacts
16 Value of Critical Species


Quantity Unit
Emergy
Values
(sej/unit)


7.40E+18
1.12E+18
1.30E+07
1.65E+19
2.88E+17
6.98E+16

5.21E+07
8.69E+12
5.16E+11
8.74E+09
3.62E+09
9.95E+09
NA
NA


3.62E+04
17976
1.05E+15
1.24E+04
3.02E+05
8.10E+04

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
7.97E+09
4.54E+09
1.90E+12


J 6.98E+15 1.89E+07 132082.0 69516.9


# find. 2.70E+01 2.26E+22 609059.3


Footnotes for K-2
ECOLOGICAL ASSETS (Natural Cap
1 Tree Biomass








Tran
2 Total Understory


9.35E+08 m^3
5.40E+02 kg/m^3
mass= m^3*kg/m^3*1000g/kg
= 5.05E+14 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*3.5kcal/g*4186J/kcal
= 7.40E+18 J
sformity 3.62E+04 sej/J
7.65E+07 mt


1.00E+06
mass= tons*g/to


g/mt


n
= 7.65E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 1.12E+18 J
Transformity 9.79E+03 sej/J


Solar
Emergy
(xl0'1sej)


267834.5
20150.5
13605.4
205249.9
87105.3
5655.7

99.1
14594.5
1429.9
98.4
40.7
624.0
NA
NA


EmDollars
(x106 Em$)


140965.5
10605.5
7160.8
108026.3
45844.9
2976.7

52.1
7681.3
752.6
51.8
21.4
328.4
NA
NA


3205.6


USFS, 2004









COLE,
2006


1










3 Land Area


(emergy of land structure)


4 Soil OM






5 Ground Water


1.30E+07 ha
1.05E+15 sej/ha
7.30E+08 mt


USFS, 2007

COLE,
2006


mass OM= 7.30E+14 g
Energy= massOM* 5.4 kcal/g ofOM 4186j/kcal
1.65E+19 J
Transformity 1.24E+04 sej/J


Density of water
Gibbs Free energy of water

Volume
energy=
energy=
transformity


1000 kg/m3
4940 J/kg

5.83E+10 m3
volume* 1000kg/m^3* 4940J/kg
2.88E+17 J
2.79E+05 sej/J


6 Surface Water


volume 1.41E+10 m^3


Density of water
Gibbs Free energy of water
energy=

Transformity


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3* 4940J/kg
6.98E+16 J
8.10E+04 sej/J


USGS,
2005



Buenfil
(2001)

Sedell,
2000




Odum,
2000


ECONOMIC ASSETS


Unit Emergy Value


depth=
volume=
density=
mass gravel=

Specific Emergy


9 Paved Roads


width=
depth=
volume=
density=
mass asphalt=

Specific Emergy


10 Machinery


5.21E+07 miles
6.00E+03 $/mile
1.90E+12 sej/$
1.23E+07 m length
5.00E+00 m width
0.1016 m of gravel
6.23E+06 m^3 oflimerock
1.39E+03 kg/m^3 gravel
m^3*kg/m3* 1000g/kg
8.69E+12 g
1.68E+09 sej/g

675669.6 m
2
6.7 m^2
5.08E-02 m depth
2.30E+05 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3* 000g/kg
5.16E+11 g
2.77E+09 sej/g

1.93E+07 lbs


USFS, 2006 (unpub)

CEP (2006)
USFS, 2006 (unpub)







Odum
(1996)
USFS, 2006 (unpub)


Odum
(1996)
USFS, 2006 (unpub)


7 Roads, Dirt


8 Roads, Gravel













11 Office Equipment


mass machinery=
Specific Emergy


4.54E+02 g/lb
8.74E+09 g
1.13E+10 sej/g
1.50E+01 kg/m2


mass office equipment=


Specific Emergy
12 Buildings
Building Mass=
Specific Emergy

13 Minerals
Data NA for Regions
CULTURAL ASSETS
18 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
17 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Em. In critical species=

Emergy in Critical Species (sum of
above)


building(m^2)*kg/m2* 1000g/kg
3.62E+09 g
1.13E+10 sej/g
2.41E+05 m^2
9.95E+09 g
7.97E+09 sej/g
6.24E+20 sej




3.44E+04 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J

27


CEP (2006)
USFS, 2006 (unpub)








estimate



estimate




USFWS, 2006


2.78E-01 %
3.96E+24 sej/species
# of Species*%of total Pop in FS land.*Emergy Required to
develop species
6.05E+25 sej


CEP (2006)











APPENDIX L
REGION 5 TABLES AND NOTES


Table L-1. Annual emergy flows supporting Region 5 of the USFS system


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss (harvesting) g
Top soil loss (harvesting) J
11 Miscellaneous Products (plants) J


IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels


J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J


5.03E+20
1.86E+17
1.42E+17
2.65E+16
1.80E+17
0.00E+00
1.61E+16
1.30E+14
2.09E+17


Unit
Emergy
Values
(sej/unit)

1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
2.43E+04
1.20E+04


6.08E+09 1.68E+09
4.58E+12 7.40E+04
1.80E+04


3.44E+14
1.14E+09
7.56E+06

8.00E+06
2.54E+14
1.47E+07
1.91E+14
7.70E+08

1.92E+07
6.79E+08
8.16E+06


1.23E+15
1.34E+16
2.02E+17
3.68E+17
9.79E+11


1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


Note Item


Solar
Emergy
(x10'1sej)


502.8
5756.0
4339.1
1244.3
440.9
0.0
819.7
3.2
2503.5


EmDollars
(x106 Em$)


264.65
3029.46
2283.73
654.92
232.08
0.00
431.44
1.66
1317.65


10.2
0.3
0.0


5.38
0.18
0.00


38.3
12.8
0.2

15.2
3796.9
928.0
55.7
1463.1

36.5
1289.5
15.5


44.2
677.1
16387.1
17278.6
7993.5


20.14
6.75
0.10

8.00
1998.34
488.41
29.31
770.05

19.21
678.70
8.16


23.27
356.37
8624.78
9094.01
4207.11










Table L-1 continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (xl06 Em$)
Values (xl101sej)
(sej/unit)


29 Harvested wildlife
30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
33 Payments to State and Local
Gov't
34 Payments for Labor


1.77E+15
1.49E+13
5.02E+04


le5 9.9e5
1.68E+07
2.35E+14


hrs 5.83E+08 4.13E+13

$ 6.80E+07 1.90E+12

$ 1.40E+08 1.90E+12


1670.4
250.9
11.8


879.18
132.06
6.21


24091.7 12679.8


129.2

266.8


68.02

140.43


Footnotes to L-1
RENEWABLE RESOURCES:
1 Solar Insolation Sources


Land Area 8.17E+10 m^2
Insolation 7.51E+09 J/m^2/ye
ar
Albedo 1.80E-01 (% given as a decimal)
nergy(J) = (area)*(avg insolation)*(1-albedo)
5.03E+20 J
ansformity 1.00E+00 sej/J


NREL, 2006


2 Rain
Chemical Potential
Land Area
Rain
Total Volume Rain
energy=

Transformity
3 Transpiration
Energy=
Rain ET Energy
Transformity
4 Rain Geopotential
Rain
Mean Elevation Change
Land Area
Energy(J) =

Transformity


8.17E+10 m^2
0.460202 m/yr
3.76E+10 m^3
volume* 000kg/m^3 4940J/kg
1.86E+17
3.10E+04 sej/J
3.52E-01 m/m^2/yr
Vol* 1000Kg/mA3*4940J/kg
1.42E+17 J/yr
3.06E+04 sej/J


NOAA, 2006




Odum (2000)




Odum (2000)


1.08E-01 m/yr NOAA, 2006
3.05E+02 m
8.17E+10 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
2.65E+16 J
4.70E+04 sej/J Odum (2000)


Tr


E










5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff
Energy=

Transformity
6 Hurricanes
None
7 Waves
Shore length =
Wave height =
Energy(J) =



Energy(J) =
TRANSFORMITY =
8 Tidal
Cont Shelf Area =
Avg Tide Range =
Density =
Tides/year =
Energy(J) =





TRANSFORMITY =
9 Earth Cycle


8.17E+10
1.30E+00 kg/m^3
3.12E+00 mps NOAA, 2006
5.19E+00 observed winds are about 0.6 ofgeostrophic
wind
2.00E-03
area* density* dragcoef (Geos-gmdVel)^3* 31500000
1.80E+17
2.45E+03 sej/J Odum (2000)


1.63E+05 m
7.50E-01 m
(shore length)(1/8)(density)(gravity)(wave
height^2)(velocity)
( m)(1/8)(1.025E3kg/m3)(9.8
m/sec2)( m)A2(_m/sec)(3.14E7s/yr)
1.61E+16 J/yr
5.10E+04 sej/J 2.98E+04

1.63E+07 m^2
1.50E+00 m
1.03E+03 kg/m^3
7.06E+02 (number of tides in 365 days)
(shelf)(0.5)(tides/y)(mean tidal range)^2
(density of seawater)(gravity)
( mA2)*(0.5)*( /yr)*( m)^2*( kg/mA3)
*(9.8m/s^2)
1.30E+14 J/yr
2.43E+04 sej/J


Heat Flow 8.10E+01 miliwatts/m^2
area 8.17E+10 m^2
energy= miliwatts/m^2*area*sec/yr
2.55E+06 J/m^2
energy= 2.09E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 6.08E+09 g/yr
Top Soil Loss (3.5% of total SL) 2.13E+08 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
= 4.58E+12 J
Transformity= 7.40E+04 sej/j


IHFC, 2005





Odum (2000)

USFS, 2005










11 Miscellaneous Products (Plants)
energy=


g/yr
g*3.5kcal/g*4186J/Kc
al


= 2.66E+10 joules
Transformity 1.80E+04 sej/J


IMPORTS:
12 Petroleum Products
Forest Service Use
energy=

FS Building Use


3.38E+06 gal/yr
gal* 13e7j/gal
4.39E+14 J/yr
4.89E+06 sq feet
6.66E+04 BTU/sq ft/yr


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
= 3.44E+14
Total Fuel Use 7.82E+14 J/yr
Transformity 1.11E+05 sej/J
Est. Cost= gal*$2/gal+MMBTUs*$14/MMBTU
1.13E+07 $/yr


13 Machinery, Equipment
FS Vehicles Mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
14 Goods (Pesticides, herbicides)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


2.E+10 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
1.14E+09 g
1.13E+10 sej/g
7.56E+06 g/yr
2.49E+10 sej/g
1.88E+17 sej/yr
1.33E+06 $/yr

8.00E+06 $/yr
1.90E+12 sej/$


3.07E+07 visits/yr
1.90E+01 hrs
5.83E+08 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc
al


EIA,
1992


Odum, (1996)









CEP (2006)
USFS, 2005







CEP (2006)


USFS, 2004


= 2.54E+14 J/y
Transformity 1.50E+07 sej/J


17 Labor


FS
Contractors
Total Labor


5.36E+06
6.08E+06
1.47E+07


hrs/yr
hrs/yr
hrs/yr


USFS, 2005


USFS, 2005










Unit Emergy Value


18 Electricity










Regional FS budget
Unit E
19 Services
Unit E
20 Payment for timber
Unit E


6.30E+13 sej/hr


based on
sej/yr) ai
workers


4889205 sq ft
37000 btu/ft2/yr

1.81E+11 btu/yr
energy= btu/yr* 1055 j/btu
= 1.91E+14 J
Transformity 2.92E+05
Est. Cost= BTU/yr/3412btu/kwh*$0.09/kwh
4.77E+06 $/yr
5.77E+08 $/yr
mergy Value 1.90E+12 sej/$
7.70E+08 $/yr
mergy Value 1.90E+12 sej/$
1.92E+07 $/yr
mergy Value 1.90E+12 sej/$


USA emergy use (1.9E25
nd work force of 1.5 E8

USFS, 2005
EIA,
1992




Odum, 1996




CEP (2006)
USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)


21 Payments for Extracted Minerals
Unit Emergy Value

22 Fee Payments
Unit Emergy Value
EXPORTS:
23 Extracted Firewood


6.79E+08
1.90E+12


$/y
sej/$


8.16E+06 $/yr
1.90E+12 sej/$


mass 8.19E+07 kg
energy= mass* 1000g/kgl5000j


Transformity


24 Harvested Wood


/g
1.23E+15 J/yr
3.60E+04 sej/J

1.66E+06 m3/yr


Brown & Bardi
(2001)
USFS, 2005


5.40E+05 g/m3
mass 8.96E+11 g/yr
energy= g*15000j/


Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy


g
1.34E+16 J/yr
5.04E+04


4.10E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
2.02E+17 J/yr
8.10E+04 sej/J


Brown, 2001

Sedell, 2000



Odum, 2000


CEP (2006)



CEP (2006)










Geopote
avg

Tr
27 Minerals
Sp. Emer
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight fc
Big Game


ener



Tran

Small Game

ener



Tran

Migratory Birds

ener



Tran

Other Species

ener



Tran

Sum of Emergy fi
30 Fishing


ntial (J) =
elevation
joules =
ansformity

rgy (avg)=


(volume)(elevation)(density)(gravity)
9.16E+02 m
3.68E+17 J/yr
4.70E+04 sej/J
9.79E+11 g/yr
8.16E+09 sej/g


t

C
e


r Wildlife 2.50E+01 %
Extracted 4.45E+04 Big L
Game/y
avg. mass 5.68E+04 g/Game
gy content 2.65E+04 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 1.68E+15 J/yr
isformity= 9.90E+05 sej/J B
Emergy= 1.66E+21 sej
Extracted 1.69E+05 Small Game/yr t
avg. mass 3.30E+03 g/animal
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 8.89E+13 J/yr
isformity= 1.20E+05 sej/J B
Emergy= 1.07E+19 sej
Extracted 1.34E+05 #/yr L
avg. mass 1.30E+03 g/bird
gy content 8.83E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 3.84E+11 J/yr
isformity= 1.01E+05 sej/J B
Emergy= 3.87E+16 sej
Extracted 1.48E+04 #/yr t
avg. mass 6.35E+03 g
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
1.50E+11 J/yr
sformity= 1.50E+05 sej/J B
Emergy= 2.25E+16 sej
rom Game 1.67E+21 sej
8.75E+06 fish
caught
avg. mass 4.54E+02 g/fish assume avg weigh


1.88E+04 J/g


JSGS, 2006

)dum, 2000
estimate







JSFWS, 2002






frown et al. 2005

JSFWS, 2002





Irown et al. 2005

JSFWS, 2002





frown et al. 2005

JSFWS, 2002





Irown et al. 2005





ght= 1


lb
(4.5Cal/G*4187 J/cal)


energy content










Energy Fish Caught
Transformity=
31 Research Information

average time spent

research hours
Transformity
total sej of research
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist
use/ha/hour
emergy of image exported
Unit emergy value
33 Payments to State
Unit Emergy Value
34 Payments for FS Labor
Unit Emergy Value


1.49E+13 J
1.68E+07 sej/J
2.40E+01 # of
papers
8.05E+02 hours/pap
er
50209.27 hours/yr
2.35E+14 sej/hr
1.18E+19 sej


5.83E+08
2.07E+02
1.20E+00
2.48E+02
1.66E+11
2.41E+22
4.13E+13
6.80E+07
1.90E+12
1.40E+08
1.90E+12


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor h
$/yr
sej/$
$/yr
sej/$


assume 20% dry weight







Odum, 1996





USFS, 2006
CEP (2006)

USFS, 2006
CEP (2006)

our
USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)











Table L-2 Emergy evaluation of Region 5 forest assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl0'1sej)
(sej/unit)


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Ground Water
6 Surface Water
ECONOMIC ASSETS
7 Roads (dirt)
8 Roads (gravel)
9 Roads(paved)
10 Machinery & tools
11 Office Equipment
12 Buildings
13 Minerals (g)
13a Minerals ($)
CULTURAL ASSETS
15 Information Value of Indian Artifacts
16 Value of Critical Species


J
J
ha
J
J
J


g
g
g
g
g
g

$

J
# find.


1.01E+19
7.55E+17
8.17E+06
8.15E+18
1.82E+17
2.02E+17

2.01E+08
1.13E+13
1.14E+12
2.28E+10
6.81E+09
1.87E+11
NA
NA

6.98E+15
1.02E+02


3.62E+04
17976
1.05E+15
1.24E+04
3.02E+05
8.10E+04

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
7.97E+09
4.54E+09
1.90E+12

1.89E+07
2.26E+22


367249.9
13565.2
8573.9
101294.4
54892.3
16387.1

381.9
18994.5
3148.8
256.3
76.7
1175.2
NA
NA

132082.0
2300890.5


193289.4
7139.6
4512.6
53312.8
28890.7
8624.8

201.0
9997.1
1657.3
134.9
40.4
618.5
NA
NA

69516.9
12110.0


Footnotes for L-2
ECOLOGICAL ASSETS (Natural Cap
1 Tree Biomass


Tran


2 Total Understory







3 Land Area


(emergy of land s


Tran


ital)
1.28E+09 m^3
5.40E+02 kg/m^3
mass= m^3*kg/mA3*1000g/kg
= 6.93E+14 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*4.5kcal/g*4186J/kcal
= 1.01E+19 J
sformity 3.62E+04 sej/J
5.15E+07 mt

1.00E+06 g/mt
mass= 5.15E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 7.55E+17 J
sformity 9.79E+03 sej/J
8.17E+06 ha
structure) 1.05E+15 sei/ha


4 Soil OM


3.60E+08 mt


USFS, 2004









COLE,
2005






USFS, 2007


COLE,
2006


J


J










mass OM=
Energy=


Transformity
5 Ground Water
Density of water
Gibbs Free energy of water
Volume


3.60E+14 g
massOM* 5.4 kcal/g of OM 4186 j/kcal
8.15E+18 J
1.24E+04 sej/J


1000 kg/m3
4940 J/kg
3.67E+10 m3


energy= volume* 1000kg/mA3*4940J/kg
= 1.82E+17 J
transformity 2.79E+05 sej/J


6 Surface Water


volume 4.10E+10 m^3


Density of water
Gibbs Free energy of water
energy=

Transformity


ECONOMIC ASSETS
7 Roads, Dirt


8 Roads, Gravel


Unit Emergy Value


depth=
volume=
density=
mass gravel=

Specific Emergy


9 Paved Roads


width=
depth=
volume=
density=
mass asphalt=

Specific Emergy


10 Machinery


mass machinery=
Specific Emergy


11 Office Equipment


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3*4940J/kg
2.02E+17 J
1.04E+06 sej/J


3.35E+04 miles
6.00E+03 $/mile
2.01E+08 $
1.90E+12 sej/$
1.60E+07 m length
5.00E+00 m width
0.1016 m of gravel
8.11E+06 m^3 of limerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3* 000g/kg
1.13E+13 g
1.68E+09 sej/g

1487943. m
7
6.7 m^2
5.08E-02 m depth
5.06E+05 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3* 000g/kg
1.14E+12 g
2.77E+09 sej/g

5.02E+07 lbs
4.54E+02 g/lb
2.28E+10 g
1.13E+10 sej/g
1.50E+01 kg/m2


USGS,
2005


Buenfil
(2001)

Sedell,
2000




Odum,
2000

USFS, (unpub.)


CEP (2006)
NFS, 2005







Odum
(1996)
USFS, (unpub.)








Odum
(1996)
USFS, (unpub.)


CEP (2006)
estimate











mass office equipment=


Specific Emergy
Value
12 Buildings
Building Mass=
Specific Emergy
emergy
13 Minerals
Data NA for Regions
CULTURAL ASSETS
18 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Em. In critical species=

Emergy in Critical Species (sum of
above)


Building SA*kg/m2* 1000g/kg
6.81E+09 g
1.13E+10 sej/g
$
4.54E+05 m^2


1.87E+11
7.97E+09
1.18E+21


CEP (2006)
NFS, 2005
USFS, (unpub.)


sej/g
sej


3.73E+05 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J


estimate



estimate


1.02E+02 USFWS, 2006
2.78E-01 %
3.96E+24 sej/species
# of species*%of total Pop in FS land.*Emergy Required to
develop species
1.12E+26 sej










APPENDIX M
REGION 6 TABLES AND NOTES


Table M-1 Annual emergy flows supporting Region 6 of the USFS system


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J
J


4.63E+20
4.48E+17
1.76E+17
2.80E+17
3.06E+17
0.00E+00
0
0
3.30E+17

2.88E+10
2.17E+13



3.57E+14
8.52E+08
9.29E+06

1.44E+07
2.33E+14
2.06E+07
1.98E+14
1.91E+08

5.69E+07
7.19E+07
9.52E+06


1.51E+15
2.12E+16
2.72E+17
5.40E+17
1.04E+11


Note Item


4.39E+15 le5 9.9e5


Unit
Emergy
Values
(sej/unit)

1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04

1.68E+09
7.40E+04
1.80E+04

1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


Solar
Emergy
(xl018sej)


462.8
13880.6
5370.1
13142.8
748.7
0.0
0.0
0.0
3955.3


EmDollars
(x106 Em$)


243.6
7305.6
2826.4
6917.3
394.0
0.0
0.0
0.0
2081.7


48.4
1.6
0.0

39.8
9.6
0.2


25.5
0.8
0.0

20.9
5.0
0.1


27.4
3487.7
1296.1
57.9
363.1

108.1
136.5
18.1


54.3
1068.8
22041.8
25372.2
844.8

4152.0


14.4
1835.6
682.2
30.5
191.1


56.9
71.9
9.5


28.6
562.5
11600.9
13353.8
444.6

2185.3










Table M-1 continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (xl06 Em$)
Values (xl0'1sej)
(sej/unit)
30 Harvested Fish J 1.37E+13 1.68E+07 230.5 121.3
31 Information hrs 1.15E+05 2.35E+14 27.1 14.3


32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
34 Payments to State and Local
Gov't
35 Payments for Labor


Footnotes to M-1
RENEWABLE RESOURCES:
1 Solar Insolation
Land Area
Insolation

Albedo
Energy(J) =


Transformity


2 Rain
Chemical Potential
L

Total Voli


Tran


3 Transpiration


Energy=
Rain ET Energy
Transformity
4 Rain Geopotential
Rain
Mean Elevation Change
Land Area
Energy(J) =


Transformity


5.36E+08 6.73E+13 36069.0 18983.7


$ 2.10E+08 1.90E+12

$ 1.67E+08 1.90E+12


398.9

317.6


Sources


1.00E+11 m^2
5.62E+09 J/m^2/
year
1.80E-01 (% given as a decimal)
(area)*(avg insolation)* (1-albedo)
4.63E+20 J
1.00E+00 sej/J


and Area 1.00E+11 m^2
Rain 0.903022 m/yr
ime Rain 9.06E+10 m^3
energy= volume*1000kg/mA3*4940J/kg
4.48E+17
isformity 3.10E+04 sej/J
3.54E-01 m/m^2/


3.56E+10 m3
Vol*1000Kg/mA3*4940J/kg
1.76E+17 J/yr
3.06E+04 sej/J


NREL, 2006










NOAA 2006




Odum (2000)






Odum (2000)


5.49E-01 m/yr NOAA 2006
5.18E+02 m
1.00E+11 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
2.80E+17 J
4.70E+04 sej/J Odum (2000)


210.0

167.2










5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff.
Energy=

Transformity
6 Hurricanes
None
7 Waves
None
8 Tides
None
9 Earth Cycle


1.00E+11
1.30E+00
3.47E+00
5.79E+00


kg/m^3
mps NOAA 2006
observed winds are about 0.6 ofgeostrophic
wind


2.00E-03
area* density* dragcoef* (Geos-gmdVel)A3 31500000
3.06E+17
2.45E+03 sej/J Odum (2000)


Heat Flow 1.04E+02 miliwatts/m^2
area 1.00E+11 m^2
energy= miliwatts/mA2* area* sec/yr
3.28E+06 J/m^2
energy= 3.30E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 2.88E+10 g/yr
Top Soil Loss (3.5% of total SL) 1.01E+09 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
2.17E+13 J
Transformity= 7.40E+04 sej/j
11 Miscellaneous Products (Plants) g/yr
energy= g*3.5kcal/g*4186J/Kc


Transformity
IMPORTS:
12 Petroleum Products
Forest Service Use
energy=

FS Building Use


IHFC, 2005





Odum (2000)

estimate





USFS, 2005


2.66E+10 joules
1.80E+04 sej/J


3.33E+06 gal/yr
gal* 13e7j/gal
4.33E+14 J/yr
5.08E+06 sq feet
6.66E+04 BTU/sq ft/yr


EIA,
1992


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
3.57E+14
Total Fuel Use 7.90E+14 J/yr










Transformity
Est. Cost=

13 Machinery, Equipment
FS Vehicle mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
14 Goods (Pesticides, herbicides,
misc goods)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time


average stay
Total Hours of Stay

avg. energy/hr
total energy expenditure=


Transformity


1.11E+05 sej/J Odum, (1996)
gal* $2/gal+MMBTUs* $14/MMBTU
1.14E+07 $/yr

1.7E+10 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
8.52E+08 g
1.13E+10 sej/g CEP (2006)
9.29E+06 g/yr USFS, 2005


2.49E+10
2.31E+17
1.64E+06


sej/g
sej/yr
$/yr


1.44E+07 $/yr
1.90E+12 sej/$

2.82E+07 visits/y
r
1.90E+01 hrs
5.36E+08 hours/y
r
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc
al
2.33E+14 J/y
1.50E+07 sej/J


CEP (2006)

USFS, 2004


17 Labor


FS 6.38E+06 hrs/yr


Contractors
Total Labor
Unit Emergy Value


18 Electricity




energy=

Transformity
Est. Cost=

Regional FS budget


9.60E+06
2.06E+07
6.30E+13


hrs/yr
hrs/yr
sej/hr


5084087 sq ft
37000 btu/ft2/
yr
1.88E+11 btu/yr
btu/yr* 1055 j/btu
1.98E+14 J
2.92E+05
BTU/yr/3412btu/kwh*$(
4.96E+06 $/yr
4.51E+08 $/yr


NFS,
2005



based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
USFS, 2005
EIA,
1992




Odum, 1996
).09/kwh










Unit Emergy Value
19 Misc. Expenditures
Unit Emergy Value
20 Payment for timber
Unit Emergy Value
21 Payments for Extracted Minerals
Unit Emergy Value
22 Fee Payments
Unit Emergy Value
EXPORTS:
23 Extracted Firewood


mass 1.01E+08 kg
energy= mass*1000g/kgl5000j


Transformity

24 Harvested Wood


mass
energy=

Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy
Geopotential (J)=
avg. elevation
joules =
Transformity
27 Minerals
Sp. Emergy (avg)=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted

avg. mass
energy content
energy=
energy=


1.51E+15 J/yr
3.60E+04 sej/J

2.62E+06 m3/yr
5.40E+05 g/m3
1.41E+12 g/yr
g* 15000j/g
2.12E+16 J/yr
5.04E+04

5.51E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
2.72E+17 J/yr
8.10E+04 sej/J

(volume)(elevation)(density)(gravity)
1.00E+03 m
5.40E+17 J/yr
4.70E+04 sej/J
1.04E+11 g/yr
8.16E+09 sej/g


2.50E+01 %
1.11E+05 Big
Game/y
5.68E+04 g/Game
2.65E+04 J/g
#Game/yr*avg mass*(% dry weight)*J/g
4.17E+15 J/yr


Brown & Bardi
(2001)
USFS, 2005






Brown, 2001





Odum, 2000



USGS, 2006

Odum, 2000


JSFWS, 2002


1.90E+12
1.91E+08
1.90E+12
5.69E+07
1.90E+12
7.19E+07
1.90E+12
9.52E+06
1.90E+12


sej/$
$/yr
sej/$
$/yr
sej/$
$/y
sej/$
$/yr
sej/$


CEP (2006)
USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)

CEP (2006)

CEP (2006)










Transformity=
Emergy=
Small Game Extracted
avg. mass

energy content
energy=
energy=
Transformity=
Emergy=
Migratory Birds Extracted
avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Other Species Extracted
avg. mass
energy content
energy=


Transformity=
Emergy=
Sum of Emergy from Game


30 Fishing


9.90E+05 sej/J I
4.13E+21 sej
4.21E+05 Small Game/yr
3.30E+03 g/anim
al
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
2.21E+14 J/yr
1.20E+05 sej/J
2.65E+19 sej
3.32E+05 #/yr I
1.30E+03 g/bird
8.83E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
9.53E+11 J/yr
1.01E+05 sej/J
9.63E+16 sej
3.69E+04 #/yr I
6.35E+03 g
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
3.73E+11 J/yr
1.50E+05 sej/J
5.59E+16 sej
4.15E+21 sej
8.04E+06 fish I


caught
avg. mass 4.54E+02 g/fish assume avg weil


energy content
Energy Fish Caught
Transformity=
31 Research Information

average time spent

research hours

Transformity
total sej of research
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=


1.88E+04 J/g
1.37E+13 J
1.68E+07 sej/J
1.05E+02 # of
papers
8.05E+02 hours/p
aper
115384.8 hours/y
r
2.35E+14 sej/hr
2.71E+19 sej


5.36E+08
2.07E+02
1.20E+00


ght = 1


lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight








Odum, 1996


hrs
ha
sites/vi


USFS, 2006
CEP (2006)


3rown et al, 2005

JSFWS, 2002









JSFWS, 2002








JSFWS, 2002









JSFS, 2004











ha/vist 2.48E+02
use/ha/hour 2.71E+11
emergy of image exported 3.61E+22
Unit emergy value 6.73E+13
34 Payments to State 2.10E+08
Unit Emergy Value 1.90E+12
35 Payments for FS Labor 1.67E+08
Unit Emergy Value 1.90E+12


ha
sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$
$/yr
sej/$


USFS, 2006
CEP (2006)



USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)











Table M-2 Emergy evaluation of Region 6 Forest assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl0'1sej)
(sej/unit)


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Glaciers
6 Ground Water
7 Surface Water
ECONOMIC ASSETS
8 Roads (dirt)
9 Roads (gravel)
10 Roads(paved)
11 Machinery & tools
12 Office Equipment
13 Buildings
14 Minerals (g)
14b Minerals ($)
CULTURAL ASSETS
16 Information Value of Indian Artifacts
17 Value of Critical Species


2.19E+19
1.14E+18
1.00E+07
3.08E+19
1.96E+14
4.46E+17
2.72E+17

4.82E+08
1.27E+13
1.10E+12
1.70E+10
7.08E+09
1.95E+11
NA
NA


3.62E+04
17976
1.05E+15
1.24E+04
6.46E+06
2.79E+05
8.10E+04

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
7.97E+09
4.54E+09
1.90E+12


791605.8
20458.1
10537.1
383022.5
1266.8
124427.7
22041.8

915.7
21356.6
3035.6
191.7
79.7
1554.2
NA
NA


416634.6
10767.4
5545.8
201590.8
666.7
65488.2
11600.9

481.9
11240.3
1597.7
100.9
42.0
818.0
NA
NA


J 6.98E+15 1.89E+07 132082.0 69516.9


# of ind. 2.20E+01 2.26E+22 496270.5


2612.0


Footnotes for M-2
ECOLOGICAL ASSETS
1 Tree Biomass









2 Total Understory


(Natural Capital)
2.76E+09 m^3
5.40E+02 kg/m^3
mass= m^3*kg/mA3*1000g/kg
= 1.49E+15 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*4.5kcal/g*4186J/kcal
= 2.19E+19 J
Transformity 3.62E+04 sej/J
7.77E+07 mt


Tran


3 Land Area

4 Soil OM


(emergy of land s


1.00E+06 g/mt
mass= tons*g/to
n
= 7.77E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 1.14E+18 J
sformity 9.79E+03 sej/J
1.00E+07 ha
structure) 1.05E+15 sej/ha
1.36E+09 mt


USFS, 2004









COLE,
2005


USFS, 2007

COLE,











mass OM=
Energy=


5 Glaciers




6 Ground Water


Transformity


density=
mass=
specific emergy=


Density of water
Gibbs Free energy of water
Volume


2005
1.36E+15 g
massOM* 5.4 kcal/g of OM 4186 j/kcal
3.08E+19 J
1.24E+04 sej/J
2.13E+08 m^3 USGS,
2005
9.20E+05 g/m^3
1.96E+14 g
6.46E+06 sej/g


1000 kg/m3
4940 J/kg
9.03E+10 m3


energy= volume* 1000kg/mA3*4940J/kg
= 4.46E+17 J
transformity 2.79E+05 sej/J


7 Surface Water


volume 5.51E+10 m^3


Density of water
bbs Free energy of water
energy=

Transformity




Unit Emergy Value


depth=
volume=
density=
mass gravel=

Specific Emergy


ECONOMIC ASSETS
8 Roads, Dirt



9 Roads, Gravel


10 Paved Roads


width=
depth=
volume=
density=
mass asphalt=

Specific Emergy


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3* 4940J/kg
2.72E+17 J
1.04E+06 sej/J

8.03E+04 miles
6.00E+03 $/mile
4.82E+08 $
1.90E+12 sej/$
1.80E+07 m length
5.00E+00 m width
0.1016 m of gravel
9.12E+06 m^3 of limerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3*1000g/kg
1.27E+13 g
1.68E+09 sej/g

1434452. m length
5
6.7 m^2
5.08E-02 m depth
4.88E+05 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3*1000g/kg
1.10E+12 g
2.77E+09 sej/g


USGS,
2005


Buenfil
(2001)

Sedell,
2000







USFS, (unpub)


CEP (2006)
USFS, (unpub)







Odum
(1996)
USFS, (unpub)


Odum
(1996)










11 Machinery


mass machinery=


Specific Emergy
12 Office Equipment
mass office equipment=

Specific Emergy
13 Buildings
Building Mass=
Specific Emergy
14 Minerals
Data NA for Regions
CULTURAL ASSETS
15 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Em. In critical species=

Emergy in Critical Species (sum of
above)


3.75E+07 lbs
4.54E+02 g/lb
lbs*g/lb
1.70E+10 g
1.13E+10 sej/g
1.50E+01 kg/m2
Building SA*kg/m2* 1000g/kg
7.08E+09 g
1.13E+10 sej/g
4.72E+05 m^2
1.95E+11 g
7.97E+09 sej/g (avg)




2.48E+05 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J


USFS, (unpub)



CEP (2006)



CEP (2006)
USFS, (unpub)
appendix, 1





estimate



estimate


2.20E+01 USFWS, 2006
2.78E-01 %
3.96E+24 sej/species
# of species*%of total Pop in FS land.*Em. Required to
develop species
2.42E+25 sej










APPENDIX N
REGION 8 TABLES AND NOTES


Table N-l Annual emergy flows supporting Region 8 of the USFS system


Units Quantity


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J
J


2.42E+20
3.21E+17
2.05E+17
2.30E+16
2.43E+17
9.26E+13
0
0
1.04E+17

4.45E+09
3.35E+12



5.93E+14
7.48E+08
4.98E+06

8.10E+06
2.56E+14
1.49E+07
1.35E+14
4.35E+08

4.02E+07
4.38E+04
9.01E+06


8.10E+14
1.53E+16
1.16E+17
7.83E+16
6.32E+10


Note Item


1.59E+16 1E5 -
9.9E5


Unit
Emergy
Values
(sej/unit)

1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04

1.68E+09
7.40E+04
1.80E+04

1.11E+05
1.13E+10
1E9 7
E9
1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


Solar
Emergy
(xl018sej)


242.0
9959.4
6275.1
1081.8
595.1
0.6
0.0
0.0
1253.6


EmDollars
(x106 Em$)


127.4
5241.8
3302.7
569.4
313.2
0.3
0.0
0.0
659.8


66.1
8.4
0.1


34.8
4.4
0.1


15.4
3834.0
940.6
39.3
825.8


76.4
0.1
17.1


29.1
771.2
9398.4
3678.3
515.7

3118.5


8.1
2017.9
495.0
20.7
434.6


40.2
0.0
9.0


15.3
405.9
4946.5
1935.9
271.4

1641.3










Table N-l continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl101sej)
(sej/unit)


30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
34 Payments to State and Local
Gov't
35 Payments for Labor


1.51E+13 1.68E+07
3.25E+05 2.35E+14


253.4
76.3


5.89E+08 6.89E+13 40588.6


3.76E+07 1.90E+12

1.87E+08 1.90E+12


133.4
40.1


21362.4


71.4


37.6

187.2


355.7


Footnotes to N-l
RENEWABLE RESOURCES:
1 Solar Insolation Sources


Land Area
Insolation

Albedo
Energy(J) =

Transformity


2 Rain
Chemical Potential
L

Total Volu


Tran


3 Transpiration


Rain El
Tran


4 Rain Geopotential
Rain
Mean Elevation Change
Land Area
Energy(J) =


Transformity


5.38E+10 m^2
5.48E+09 J/m^2/ye
ar
1.80E-01 (% given as a decimal)
(area)*(avg insolation)* (1-albedo)
2.42E+20 J
1.00E+00 sej/J


nd Area 5.38E+10 m^2
Rain 1.207792 m/yr
me Rain 6.50E+10 m^3
energy= volume*1000kg/mA3*4940J/kg
= 3.21E+17
sformity 3.10E+04 sej/J
7.72E-01 m/m^2/yr
4.15E+10 m3
Energy= Vol*1000Kg/mA3*4940J/kg
r Energy 2.05E+17 J/yr
sformity 3.06E+04 sej/J


NREL, 2006










NOAA, 2006




Odum, (2000)





Odum, Odum,
(2000) (2000)


4.36E-01 m/yr NOAA 2006
1.00E+02 m
5.38E+10 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
2.30E+16 J
4.70E+04 sej/J Odum, (2000)










5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff
Energy=

Transformity
6 Hurricanes
Avg energy/storm
avg hurricane freq.
percent energy that is kinetic
percent of energy dispersed to
land
avg. residence time
area
energy=


Transformity
7 Waves
None
8 Tides
None
9 Earth Cycle


5.38E+10
1.30E+00 kg/m^3
3.96E+00 mps
6.60E+00 obse


NOAA
rved winds are about 0.6 ofgeostrophic


wind
2.00E-03
area* density* dragcoef* (Geos-gmdVel)^3* 31500000
2.43E+17
2.45E+03 sej/J Odum (2000)


5.00E+05
1.00E-01
3.00E+00
1.00E+01


KCAL/m^2/day


Odum et al, 1983


1.00E+00 day/year
5.38E+10 m^2
0.1/yr* lyr/365 days*5e5Kcal/m^2/day*.003*area
mA2*4186J/kcal
9.26E+13 j/yr
6.49E+03 sej/J Odum (2000)


Heat Flow 6.15E+01 miliwatts/m^2
area 5.38E+10 m^2
energy= miliwatts/m^2*area*sec/yr
1.94E+06 J/m^2
energy= 1.04E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 4.45E+09 g/yr
Top Soil Loss (3.5% of total SL) 1.56E+08 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
= 3.35E+12 J
Transformity= 7.40E+04 sej/j
11 Miscellaneous Products (Plants) g/yr
energy= g*3.5kcal/g*4186J/Kc
al


Transformity


IHFC, 2005





Odum (2000)

estimate


joules
1.80E+04 sej/J


IMPORTS:










12 Petroleum Products
Forest Service Vehicle Use
energy=

FS Building Use


2.70E+06 gal/yr
gal* 13e7j/gal
3.51E+14 J/yr
3.45E+06 sq feet
6.66E+04 BTU/sq ft/yr


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
= 2.42E+14
Total Fuel Use 5.93E+14 J/yr
Transformity 1.11E+05 sej/J
Est. Cost= gal*$2/gal+MMBTUs*$14/MMBTU
8.61E+06 $/yr


13 Machinery, Equipment
FS Vehicle mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
14 Goods (Pesticides, herbicides)

emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


1.50E+10 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
7.48E+08 g
1.13E+10 sej/g
4.98E+06 g/yr
2.49E+10 sej/g
1.24E+17 sej/yr
8.78E+05 $/yr

8.10E+06 $/yr
1.90E+12 sej/$


3.10E+07 visits/yr
1.90E+01 hrs
5.89E+08 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc


USFS, 2004


Transformity


FS
Contractors
Total Labor
Unit Emergy Value


18 Electricity


2.56E+14 J/y
1.50E+07 sej/J


7.14E+06
4.45E+06
1.49E+07
6.30E+13


hrs/yr
hrs/yr
hrs/yr
sej/hr


3448386 sq ft
37000 btu/ft2/yr


estimate



based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
USFS, 2006 unpub.
EIA,
1992


17 Labor


EIA,
1992




Odum, (1996)









CEP (2006)
estimate





USFS, 2006 (unpub)
CEP (2006)














Tran
E

Regional FS budget
Unit Emer
19 Misc. Expenditures
Unit Emer
20 Payment for timber
Unit Emer
21 Payments for Extracted 1
Unit Emer
22 Fee Payments
Unit Emer
EXPORTS:
23 Extracted Firewood


24 Harvested Wood


1.28E+11 btu/yr
energy= btu/yr* 1055 j/btu
= 1.35E+14 J
sformity 2.92E+05
st. Cost= BTU/yr/3412btu/kwh*$0.09/kwh
3.37E+06 $/yr
4.03E+08 $/yr
y Value 1.90E+12 sej/$
4.35E+08 $/yr
y Value 1.90E+12 sej/$
4.02E+07 $/yr
y Value 1.90E+12 sej/$
Minerals 4.38E+07 $/y
y Value 1.90E+12 sej/$
9.01E+06 $/yr
y Value 1.90E+12 sej/$


mass 5.40E+07 kg
energy= mass*1000g/kg*15000j/g
= 8.10E+14 J/yr
Transformity 3.60E+04 sej/J

1.89E+06 m3/yr
5.40E+05 g/m3
mass 1.02E+12 g/yr
energy= g*15000j/


Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy
Geopotential (J)=
avg. elevation
joules =
Transformity
27 Minerals
Sp. Emergy (avg)=
28 Fossil Fuels
(National data only)


1.53E+16 J/yr
5.04E+04


2.35E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
1.16E+17 J/yr
8.10E+04 sej/J

(volume)(elevation)(density)(gravity)
3.40E+02 m
7.83E+16 J
4.70E+04 sej/J
6.32E+10 g/yr
8.16E+09 sej/g


Odum, 1996




CEP (2006)
USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)

CEP (2006)

CEP (2006)



USFS, 2007



Brown & Bardi
(2001)
USFS, 2007


Brown, 2001

Sedell, 2000



Odum, 2000



USGS, 2006

Odum, 2000
estimate










29 Hunting
% Dry Weight for Wildlife
Big Game Extracted


ener



Tran

Small Game

ener



Tran

Migratory Birds

ener



Tran

Other Species

ener


Tran

Sum of Emergy fi
30 Fishing


energy content
Energy Fish Caught
Transformity=
31 Research Information


average time spent

research hours
Transformity


2.50E+01 %
4.01E+05 Big


t


Game/y
avg. mass 5.68E+04 g/Game
gy content 2.65E+04 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
= 1.51E+16 J/yr
isformity= 2.00E+05 sej/J B
Emergy= 3.02E+21 sej
Extracted 1.53E+06 Small Game/yr L
avg. mass 3.30E+03 g/animal
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 8.01E+14 J/yr
isformity= 1.20E+05 sej/J B
Emergy= 9.61E+19 sej
Extracted 1.20E+06 #/yr t
avg. mass 1.30E+03 g/bird
gy content 8.83E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
energy= 3.46E+12 J/yr
isformity= 1.01E+05 sej/J B
Emergy= 3.49E+17 sej
Extracted 1.34E+05 #/yr t
avg. mass 6.35E+03 g
gy content 6.37E+03 J/g
energy= #Game/yr*avg mass*(% dry weight)*J/g
1.35E+12 J/yr
isformity= 1.50E+05 sej/J B
Emergy= 2.03E+17 sej
rom Game 3.12E+21 sej
8.84E+06 fish
caught
avg. mass 4.54E+02 g/fish assume avg weigh


1.88E+04 J/g
1.51E+13 J
1.68E+07 sej/J
3.65E+02 # of
papers
8.05E+02 hours/pap
er
324590.1 hours/yr
2.35E+14 sej/hr


JSFWS, 2002






Irown, et al, 2005

JSFWS, 2002





frown, et al, 2005

JSFWS, 2002





Irown, et al, 2005

JSFWS, 2002





frown, et al, 2005





lht= 1


lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight

USFS, 2007





Odum, 1996










total sej of research
Unit Emergy Value
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist
use/ha/hour
emergy of image exported
Unit emergy value
34 Payments to State and Local
Unit Emergy Value
35 Payments for FS Labor
Unit Emergy Value


7.63E+19 sej
1.90E+12 sej/$


5.89E+08
2.07E+02
1.20E+00
2.48E+02
2.77E+11
4.06E+22
6.89E+13
3.76E+07
1.90E+12
1.87E+08
1.90E+12


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$
$/yr
sej/$


CEP (2006)


USFS, 2006
CEP (2006)

USFS, 2006
CEP (2006)



USFS, 2005
CEP (2006)
USFS, 2005
CEP (2006)












Table N-2 Emergy synthesis of Region 8 assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl0'1sej)
(sej/unit)


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Peat
6 Ground Water
7 Surface Water
ECONOMIC ASSETS
8 Roads (dirt)
9 Roads (gravel)
10 Roads(paved)
11 Machinery & tools
12 Office Equipment
13 Buildings
14 Minerals (g)
14a Minerals ($)
CULTURAL ASSETS
15 Information Value of Indian Artifacts
16 Value of Critical Species


Footnotes for N-2
ECOLOGICAL ASSETS (Natural Cap
1 Tree Biomass








Tran
2 Total Understory


5.16E+18
5.26E+17
5.38E+06
1.29E+19
3.25E+16
3.55E+17
1.16E+17

1.65E+08
1.11E+13
5.92E+11
1.50E+10
4.81E+09
1.32E+11
NA
NA


3.62E+04
17976
1.05E+15
1.24E+04
3.09E+05
3.02E+05
8.10E+04

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
7.97E+09
4.54E+09
1.90E+12


186598.2
9449.5
5652.6
159755.5
10043.0
107227.5
9398.4

312.6
18594.4
1639.8
168.3
54.1
828.8
NA
NA


98209.6
4973.4
2975.1
84081.8
5285.8
56435.5
4946.5

164.5
9786.5
863.1
88.6
28.5
436.2
NA
NA


J 6.98E+15 1.89E+07 132082.0 69516.9
findn. 1.96E+02 2.26E+22 4421319.0 23270.1


6.52E+08 m^3
5.40E+02 kg/m^3
mass= m^3*kg/m^3*1000g/kg
= 3.52E+14 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*4.5kcal/g*4186J/kcal
= 5.16E+18 J
sformity 3.62E+04 sej/J
3.59E+07 mt


1.00E+06
mass= tons*g/to


USFS, 2004









COLE,
2005


g/mt


n
= 3.59E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 5.26E+17 J
Transformity 9.79E+03 sej/J


1










3 Land Area

4 Soil OM


(emergy of land structure)


T


5 Peat


mas:


5.38E+06 ha
1.05E+15 sej/ha
5.68E+08 mt


USFS, 2007

COLE,
2006


mass OM= 5.68E+14 g
Energy= massOM* 5.4 kcal/g of OM 4186 j/kcal
= 1.29E+19 J
ransformity 1.24E+04 sej/J
1.75E+05 mt estin
sPeatOM= mt*le6g/


late


= 1.44E+12 g
Energy= g* 5.4 kcal/g of OM* 4186 J/kcal
= 3.25E+16 J
Transformity 3.09E+05 sej/J


6 Ground Water
Density of water
Gibbs Free energy of water
Volume


1000 kg/m3
4940 J/kg
7.18E+10 m3


energy= volume* 1000kg/mA3*4940J/kg
= 3.55E+17 J
transformity 2.79E+05 sej/J


7 Surface Water


volume 2.349E+1 m^3


Density of water
Gibbs Free energy of water
energy=

Transformity


ECONOMIC ASSETS
8 Roads, Dirt


Unit Emer


9 Roads, Gravel


mas

Specifi


10 Paved Roads


width=
depth=
volume=


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3* 4940J/kg
1.16E+17 J
8.10E+04 sej/J


2.74E+04 miles
6.00E+03 $/mile
1.65E+08 $
gy Value 1.90E+12 sej/$
1.56E+07 m length
5.00E+00 m width
depth= 0.1016 m of gravel
volume= 7.94E+06 m^3 oflimerock
density= 1.39E+03 kg/m^3 gravel
s gravel= mA3*kg/mA3* 1000g/kg
= 1.11E+13 g
cEmergy 1.68E+09 sej/g


774876.7 m length
6.7 m^2
5.08E-02 m depth
2.64E+05 m^3 of asphalt


USGS,
2005


Buenfil
(2001)

Sedell,
2000




Odum,
2000

USFS, (unpub)


CEP (2006)
USFS, (unpub)







Odum
(1996)
USFS, (unpub)










density=
mass asphalt=

Specific Emergy


11 Machinery


12 Office Equipment
m1


13 Buildings


mass machinery=
Specific Emergy

ass office equipment=

Specific Emergy


Building Mass=
Specific Emergy

14 Minerals
Data NA for Regions
CULTURAL ASSETS
15 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Emergy of critical species=

Emergy in Critical Species (sum of
above)


2.24E+03 kg/m^3 asphalt
m^3*kg/m^3* 1000g/kg
5.92E+11 g
2.77E+09 sej/g

3.30E+07 lbs
4.54E+02 g/lb
1.50E+10 g
1.13E+10 sej/g
1.50E+01 kg/m2
Building SA*kg/m2* 1000g/kg
4.81E+09 g
1.13E+10 sej/g
3.20E+05 m^2
1.32E+11 g
7.97E+09 sej/g
8.29E+20 sej




9.75E+04 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J


Odum
(1996)
USFS, (unpub)


CEP (2006)
estimate


CEP (2006)
USFS, (unpub)








estimate



estimate


1.96E+02 USFWS, 2006
2.78E-01 %
3.96E+24 sej/species
# of species*%of total Pop in FS land.*Em. Required to
develop species
2.16E+26 sej










APPENDIX O
REGION 9 TABLES AND NOTES


Table 0-1 Annual emergy flows supporting Region 9 of the US National Forest system
Note Item Units Quantity Unit Solar Emergy
Emergy (xl0'8sej)
Values
(sej/unit)


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J
J


1.95E+20
2.04E+17
1.14E+17
4.45E+16
2.94E+17
0.00E+00
0
0
8.82E+16

1.07E+10
8.09E+12



2.61E+14
3.62E+08
4.53E+06

7.08E+06
1.86E+14
8.80E+06
1.45E+14
2.72E+08

5.80E+07
1.95E+08
4.69E+06


7.36E+14
1.40E+16
8.97E+16
8.89E+16
2.81E+11


1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
1.20E+04

1.68E+09
7.40E+04
1.80E+04

1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


1.37E+16 1E5 3E5


194.7
6308.5
3480.6
2089.9
720.7
0.0
0.0
0.0
1058.0

18.1
0.6
0.0

29.1
4.1
0.1

13.5
2782.7
554.1
42.3
516.0

110.3
369.8
8.9


26.5
707.3
7262.4
4179.9
2293.6

3977.7


EmDollars
(x106 Em$)


102.5
3320.3
1831.9
1100.0
379.3
0.0
0.0
0.0
556.9


15.3
2.1
0.1


7.1
1464.6
291.7
22.3
271.6

58.0
194.7
4.7


13.9
372.3
3822.3
2199.9
1207.1

2093.5










Table 0-1 continued
Note Item Units Quantity Unit Solar Emergy EmDollars
Emergy (xl101sej) (x106 Em$)
Values
(sej/unit)
30 Harvested Fish J 1.09E+13 1.68E+07 183.7 96.7
31 Information hrs 1.66E+05 2.35E+14 39.0 20.5


32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
33 Payments to State and Local
Gov't
34 Payments for Labor



Footnotes to 0-1
RENEWABLE RESOURCES:
1 Solar Insolation


4.28E+08 5.52E+13


$ 1.48E+07 1.90E+12

$ 1.07E+08 1.90E+12


Land Area 4.89E+10 m^2
Insolation 4.85E+09 J/m^2/ye


2 Rain
Chemical Potential


Albedo
Energy(J) =

Transformity



Land Area
Rain


Total Volu



Tran


3 Transpiration


Rain E
Tran


4 Rain Geopotential
Rain
Mean Elevation Change
Land Area
Energy(J) =


1.80E-01
(area)*(avg
1.95E+20
1.00E+00


ar
(% given as a decimal)
insolation) (1-albedo)


NREL, 2006


J
S(


ej/J


4.89E+10 m^2
0.841641 m/yr


ime Rain 4.12E+10 m^3
energy= volume* 1000kg/m^3*4940J/kg
= 2.04E+17
sformity 3.10E+04 sej/J

4.71E-01 m/m^2/yr
2.30E+10 m3
Energy= Vol* 1000Kg/mA3*4940J/kg
SEnergy 1.14E+17 J/yr
sformity 3.06E+04 sej/J


NOAA,
2006




Odum,
(2000)





Odum,
(2000)


3.71E-01 m/yr NOAA 2006
2.50E+02 m
4.89E+10 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)


23589.9


203.3


12415.7


14.8

107.0


Sources










energy=
Transformity


5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff.
Energy=

Transformity


4.45E+16
4.70E+04


4.89E+10
1.30E+00
4.35E+00
7.26E+00


sej/J


Odum,
(2000)


kg/m^3
mps NOAA 2006
observed winds are about 0.6 of geostrophic
wind


2.00E-03
area* density* dragcoef* (Geos-gmdVel)^3* 31500000
2.94E+17
2.45E+03 sej/J Odum
(2000)


6 Hurricanes
None
7 Waves
None
8 Tides
None
9 Earth Cycle


Heat Flow
area
energy=

energy=
Transformity


5.71E+01 miliwatts/m^2
4.89E+10 m^2
miliwatts/mA2* area* sec/yr
1.80E+06 J/m^2
8.82E+16 J/yr
1.32E+04 sej/J


INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.07E+10 g/yr
Top Soil Loss (3.5% of total SL) 3.76E+08 g/yr
energy= g ofC*5.4 kca'/g*4184 J/cal
= 8.09E+12 J
Transformity= 7.40E+04 sej/j
11 Miscellaneous Products (Plants) g/yr
energy= g*3.5kcal/g*4186J/Kc
al


Transformity
IMPORTS:
12 Petroleum Products
Forest Service Use
energy=

FS Building Use


joules
1.80E+04 sej/J



1.50E+06 gal/yr
gal* 13e7j/gal
1.95E+14 J/yr
3.71E+06 sq feet


estimate



USFS, 2006 (unpub)


IHFC, 2005





Odum
(2000)

estimate










6.66E+04 BTU/sq ft/yr
energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
= 2.61E+14
Total Fuel Use 4.56E+14 J/yr
Transformity 1.11E+05 sej/J

Est. Cost= gal*$2/gal+MMBTUs* $14/MMBTU
= 6.46E+06 $/yr


13 Machinery, Equipment
FS Vehicle Mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy
Est. Cost of Vehicle.
Depreciation
14 Goods (Pesticides, herbicides)

emergy=
Est. for cost


15 Replanting



16 Tourism


17 Labor


18 Electricity


Total Cost=
Unit Emergy Value


Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


Transformity

FS
Contractors
Total Labor
Unit Emergy Value


7.25E+09 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
3.62E+08 g
1.13E+10 sej/g
1.61E+06 $/yr


4.53E+06
2.49E+10
1.13E+17
7.98E+05

7.08E+06
1.90E+12


g/yr
sej/g
sej/yr
$/yr

$/yr
sej/$


2.25E+07 visits/yr
1.90E+01 hrs
4.28E+08 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc


EIA, 1992




Odum,
(1996)









CEP (2006)


estimate







CEP (2006)

USFS, 2004


1.86E+14 J/y
1.50E+07 sej/J


4.08E+06
2.75E+06
8.80E+06
6.30E+13


hrs/yr
hrs/yr
hrs/yr
sej/hr


3713620 sq ft
37000 btu/ft2/yr
1.37E+11 btu/yr
energy= btu/yr*1055 j/btu
= 1.45E+14 J
Transformity 2.92E+05


estimate
estimate

based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
EIA, 1992






Odum, 1996










Est. Cost=
Regional FS budget
Unit Emergy Value
19 Services
Unit Emergy Value
20 Payment for timber
Unit Emergy Value
21 Payments for Extracted Minerals
Unit Emergy Value


22 Fee Payments
Unit Em
EXPORTS:
23 Extracted Firewood


ergy Value


3.62E+06
2.41E+08
1.90E+12
2.72E+08
1.90E+12
5.80E+07
1.90E+12
1.95E+08
1.90E+12
4.69E+06
1.90E+12


$/yr
$/yr
sej/$
$/yr
sej/$
$/yr
sej/$
$/y
sej/$
$/yr
sej/$


CEP (2006)
estimate
CEP (2006)
USFS, 2007
CEP (2006)
USFS, 2006 (unpub)
CEP (2006)
USFS, 2006 (unpub)
CEP (2006)


mass 4.91E+07 kg
energy= mass* 1000g/kgl5000j


1.73E+06 m3/yr
5.40E+05 g/m3
mass 9.36E+11 g/yr
energy= g*15000j/


Transformity (w/o services)
25 Water, Chemical potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
26 Water, Geopotential Energy
Geopotential (J)=
avg. elevation
joules =
Transformity
27 Minerals
Sp. Emergy (avg)=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted


Brown and Bardi (2001)
- 15, assuming 50%
wood
USFS, 2005


1.40E+16
5.04E+04


1.81E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
8.97E+16 J/yr
8.10E+04 sej/J

(volume)(elevation)(density)(gravity)
5.00E+02 m
8.89E+16 J
4.70E+04 sej/J
2.81E+11 g/yr
8.16E+09 sej/g


2.50E+01
3.45E+05


Big
Game/y


Sedell, 2000



Odum, 2000



USGS, 2006

Odum, 2000
estimate


USFWS,
2002


Transformity


USFS, 2005


/g
7.36E+14
3.60E+04


24 Harvested Wood


J/yr
sej/J










avg. mass
energy content
energy=

Transformity=
Emergy=
Small Game Extracted

avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Migratory Birds Extracted

avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Other Species Extracted

avg. mass
energy content
energy=

Transformity=
Emergy=
Sum of Emergy from Game
30 Fishing

avg. mass
energy content
Energy Fish Caught
Transformity=
31 Research Information

average time spent

research hours
Transformity
total sej of research
Unit Emergy Value
32 Hydroelectric Power


5.68E+04 g/Game
2.65E+04 J/g
#Game/yr*avg mass*(% dry weight)*J/g
1.30E+16 J/yr
3.00E+05 sej/J E
3.89E+21 sej
1.31E+06 Small Game/yr U
2
3.30E+03 g/animal
6.37E+03 J/g
#*avg mass*(percent dry weight)J/g
6.88E+14 J/yr
1.20E+05 sej/J
8.26E+19 sej
1.03E+06 #/yr L
2
1.30E+03 g/bird
8.83E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
2.97E+12 J/yr
1.01E+05 sej/J
3.00E+17 sej
1.15E+05 #/yr L
2
6.35E+03 g
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
1.16E+12 J/yr
1.50E+05 sej/J
1.74E+17 sej
3.98E+21 sej
6.41E+06 fish
caught
4.54E+02 g/fish assume avg weil
1.88E+04 J/g (4.5Cal/G*4187
1.09E+13 J assume 20% dry
1.68E+07 sej/J
1.68E+02 # of L
papers
8.05E+02 hours/pap


166076.8
2.35E+14
3.90E+19
1.90E+12


hours/yr
sej/hr
sej
sej/$


Irown et al, 2005

JSFWS,
002








JSFWS,
002








JSFWS,
002


ght = 1 lb
J/cal)
weight

JSFS, 2007


Odum, 1996

CEP (2006)










(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's 4.28E+08
site area= 2.07E+02
1.20E+00
ha/visit 2.48E+02
use/ha/hour 2.22E+11
emergy of image exported 2.36E+22
Unit emergy value 5.52E+13
33 Payments to State and Local 1.48E+07
Unit Emergy Value 1.90E+12
34 Payments for FS Labor 1.07E+08
Unit Emergy Value 1.90E+12


ha
sites/visit


sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$
$/yr
sej/$


USFS, 2006
CEP (2006)

USFS, 2006
CEP (2006)


USFS, 2006 (unpub)
CEP (2006)
USFS, 2006 (unpub)
CEP (2006)











Table 0-2 Emergy evaluation of Region 9 Forest assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl101sej)
(sej/unit)


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Peat
6 Ground Water
7 Surface Water
ECONOMIC ASSETS
8 Roads (dirt)
9 Roads (gravel)
10 Roads(paved)
11 Machinery & tools
12 Office Equipment
13 Buildings
14 Minerals (g)
14a Minerals ($)
CULTURAL ASSETS
15 Information Value of Indian Artifacts
16 Value of Critical Species


J
J
ha
J
J
J
J

$
g
g
g
g
g
g
$

J
# of ind.


3.60E+18
2.43E+17
4.89E+06
1.67E+19
1.19E+15
1.91E+17
8.97E+16

1.21E+08
7.47E+12
6.20E+11
7.24E+09
5.17E+09
1.42E+11
NA
NA

6.98E+15
5.20E+01


3.62E+04
17976
1.05E+15
1.24E+04
3.09E+05
3.02E+05
1.04E+06

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
7.97E+09
4.54E+09
1.90E+12

1.89E+07
2.26E+22


130401.2
4361.8
5138.2
207861.1
366.8
57881.4
93389.5

230.51
12545.1
1719.8
81.5
58.2
892.6
NA
NA

132082.0
1173003.0


68632.2
2295.7
2704.3
109400.6
193.0
30463.9
49152.4

121.3
6602.7
905.2
42.9
30.7
469.8
NA
NA

69516.9
617370.0


Footnotes for 0-2
ECOLOGICAL ASSETS (Natural Cap
1 Tree Biomass








Tran
2 Total Understory


Tran


3 Land Area

4 Soil OM


(emergy of land s


4.55E+08 m^3
5.40E+02 kg/m^3
mass= m^3*kg/m^3*1000g/kg
= 2.46E+14 g
3.50E+00 Kcal/g of Tree
Biomass
energy= g*3.5kcal/g*4186J/kcal
= 3.60E+18 J
sformity 3.62E+04 sej/J
1.66E+07 mt
1.00E+06 g/mt

mass= tons*g/to
n
= 1.66E+13 g
energy= g*3.5kcal/g*4186J/kcal
= 2.43E+17 J
sformity 9.79E+03 sej/J
4.89E+06 ha
structure) 1.05E+15 sej/ha
7.40E+08 mt


NFS, 2005









NFS, 2005
COLE,
2005


NFS, 2006

COLE,


1











m


Trai


5 Peat


mass P


Trai


6 Ground Water
Density of water
Gibbs Free energy of water
Volume


2006
ass OM= 7.40E+14 g
Energy= massOM* 5.4 kcal/g of OM 4186 j/kcal
1.67E+19 J
nsformity 1.24E+04 sej/J
7.50E+04 mt estimate
'eat OM= mt*le6g/mt*70% OM
= 5.25E+10 g
Energy= massPeat* 5.4 kcal/g of OM*1000 g/kg* 4186 J/kcal
= 1.19E+15 J
nsformity 2.52E+04 sej/J


1000 kg/m3
4940 J/kg
3.87E+10 m3


energy= volume* 1000kg/mA3*4940J/kg
= 1.91E+17 J
transformity 2.79E+05 sej/J


7 Surface Water


volume 1.81E+10 m^3


Density of water
bbs Free energy of water
energy=

Transformity




Unit Emergy Value


ECONOMIC ASSETS
8 Roads, Dirt



9 Roads, Gravel


depth=
volume=
density=
mass gravel=

Specific Emergy


10 Paved Roads


width=
depth=
volume=
density=
mass asphalt=

Specific Emergy


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3* 4940J/kg
8.97E+16 J
1.04E+06 sej/J

2.02E+04 miles
6.00E+03 $/mile
1.21E+08 $
1.90E+12 sej/$
1.05E+07 m length
5.00E+00 m width
0.1016 m of gravel
5.36E+06 m^3 oflimerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3* 000g/kg
7.47E+12 g
1.68E+09 sej/g

812691.4 m length
2
6.7 m^2
5.08E-02 m depth
2.77E+05 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3*1000g/kg
6.20E+11 g
2.77E+09 sej/g


USGS,
2005


Buenfil
(2001)

Sedell,
2000


USFS, 2006 (unpub)


CEP (2006)
USFS, 2006 (unpub)







Odum
(1996)
USFS, 2006 (unpub)








Odum











11 Machinery


mass machinery=
Specific Emergy


12 Office Equipment


mass office equipment=


Specific Emergy
13 Buildings
Building Mass=
Specific Emergy

14 Minerals
Data NA for Regions
CULTURAL ASSETS
15 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
16 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Em. In critical species=

Emergy in Critical Species (sum of
above)


1.60E+07 lbs
4.54E+02 g/lb
7.24E+09 g
1.13E+10 sej/g
1.50E+01 kg/m2


Building SA*kg/m2* 1000g/kg
5.17E+09 g
1.13E+10 sej/g
3.45E+05 m^2
1.42E+11 g
7.97E+09 sej/g (avg)
8.93E+20 sej




1.15E+05 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J


(1996)
USFS, 2006 (unpub)


CEP (2006)


CEP (2006)
USFS, 2006 (unpub)
appendix 1







estimate



estimate


5.20E+01 USFWS, 2006
2.78E-01 %
3.96E+24 sej/species
# of species*%of total Pop in FS land.*Emergy Required to
develop species
5.72E+25 sej










APPENDIX P
REGION 10 TABLES AND NOTES


Table P-1 Annual emergy flows supporting Region 10 of the US National Forest system


Note Item


Units


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
6 Hurricanes J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:


10 Soil Loss (harvesting)
Top soil loss (harvesting)
11 Miscellaneous Products (plants)
IMPORTS:
12 Petroleum Products
13 Machinery, Equipment
14 Goods (Pesticides, herbicides,
misc goods)
15 Seedlings
16 Tourist Time
17 Labor
18 Electricity
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing,
grazing, etc)
EXPORTS:
23 Extracted Firewood
24 Harvested Wood
25 Water, Chemical Potential
26 Water, Geopotential
27 Minerals
28 Fossil Fuels
29 Harvested wildlife


g
J
J

J
g
g

$
J
hours
J
$

$
$
$


J
J
J
J
g
J
J


Quantity


5.56E+20
7.78E+17
1.31E+17
4.70E+17
4.85E+17
0.00E+00
5.91E+17
1.96E+17
1.89E+17

1.31E+09
8.09E+12



4.62E+13
1.10E+08
8.23E+06

1.76E+05
2.40E+13
5.62E+06
2.57E+13
1.66E+08

5.79E+05
3.35E+07
2.71E+06


1.34E+15
2.41E+15
3.08E+17
6.12E+16
4.82E+10


Unit
Emergy
Values
(sej/unit)

1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
2.43E+04
1.20E+04

1.68E+09
7.40E+04
1.80E+04

1.11E+05
1.13E+10
1E9 7 E9

1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
4.70E+04
8.16E+09


2.96E+14 1E5 9.9E5


Solar
Emergy
(xl018sej)


555.7
24103.0
4010.4
22110.9
1187.6
0.0
30159.2
4752.9
2266.4


EmDollars
(x106 Em$)


292.5
12685.8
2110.7
11637.3
625.1
0.0
15873.2
2501.5
1192.8


0.3
358.7
354.4
7.5
315.0


0.2
188.8
186.5
3.9
165.8

0.6
33.5
2.7


1.1
63.7
5.2


48.1
121.3
24968.7
2874.1
393.6

280.1


0.3
63.8
13141.4
1512.7
207.1

147.4










Table P-l continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (xl06 Em$)
Values (xl101sej)
(sej/unit)


30 Harvested Fish
31 Information
32 Hydroelectric power
33 Image Exported with Tourists
ECONOMIC PAYMENTS MADE
34 Payments to State and Local
Gov't
35 Payments for Labor


1.41E+12 1.68E+07
3.09E+04 2.35E+14

5.51E+07 8.66E+13


$ 8.24E+06 1.90E+12

$ 8.02E+07 1.90E+12


23.7
7.3


4770.2


12.5
3.8


2510.6


15.7


152.4


80.2


Footnotes to P-l
RENEWABLE RESOURCES:
1 Solar Insolation Sources


Land Area
Insolation
Albedo
Energy(J) =


2 Rain
Chemical Pote


3 Evapotranspir





4 Rain Geopotel


Transformity

ntial
Land Area
Rain
Total Volume Rain
energy=
energy
Transformity
action
volume=
Energy=
Rain ET Energy
Transformity
ntial


8.89E+10 m^2
7.62E+09 J/m^2/yr
1.80E-01 (% given as a decimal)
(area)*(avg insolation)* (1-albedo)
5.56E+20 J
1.00E+00 sej/J



8.89E+10 m^2
1.77 m/yr
1.57E+11 m^3
volume* 000kg/m^3 4940J/kg
7.78E+17
3.10E+04 sej/J
2.99E-01 m/m^2/yr
2.66E+10 m^3
Vol* 1000Kg/mA3*4940J/kg
1.31E+17 J/yr
3.06E+04 sej/J


Rain
Mean Elevation Change
Land Area
Energy(J) =
energy=
Transformity
5 Wind, Kinetic


1.47E+00 m/yr NOAA, 2006
3.05E+02 M
8.89E+10 m^2
(area)(rainfall)(avg change in elevation)(density)(gravity)
4.70E+17 J
4.70E+04 sej/J Odum, (2000)


NREL, 2006









NOAA, 2006




Odum, (2000)





Odum, (2000)










Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff
Energy=
energy
Transformity
6 Hurricanes
None
7 Waves
Shore length =
Wave height =
Energy(J) =



Energy(J) =
TRANSFORMITY =
8 Tides
Cont Shelf Area =
Avg Tide Range =
Density =
Tides/year =
Energy(J) =





TRANSFORMITY =
9 Earth Cycle


8.89E+10
1.30E+00 kg/m^3
4.21E+00 Mps NOAA, 2006
7.02E+00 observed winds are about 0.6 ofgeostrophic
wind
2.00E-03
area* density* dragcoef* (Geos-gmdVel)^3* 31500000
4.85E+17
2.45E+03 sej/J Odum (2000)


9.75E+05 M
1.86E+00 M
(shore length)(1/8)(density)(gravity)(wave
height^2)(velocity)
( m)(1/8)(1.025E3kg/m3)(9.8
m/sec2)( m)A2(_m/sec)(3.14E7s/yr)
5.91E+17 J/yr
5.10E+04 sej/J

5.14E+09 m^2
3.28E+00 M
1.03E+03 kg/m^3
7.06E+02 (number of tides in 365 days)
(shelf)(0.5)(tides/y)(mean tidal range)^2
(density of seawater)(gravity)
( m^2)*(0.5)*( /yr)*( m)A2*( kg/mA3)
*(9.8m/s^2)
1.96E+17 J/yr
2.43E+04 sej/J


Heat Flow 6.74E+01 miliwatts/m^2
area 8.89E+10 m^2
energy= miliwatts/m^2*area*sec/yr
2.12E+06 J/m^2
energy= 1.89E+17 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.31E+09 g/yr
Top Soil Loss (3.5% of total SL) 3.76E+08 g/yr
energy= g ofC*5.4 kcal/g*4184 J/ca


Transformity=
11 Miscellaneous Products (Plants)


8.09E+12
7.40E+04


IHFC, 2005





Odum (2000)

estimate


J
sej/j
g/yr


dl










energy= g*3.5kcal/g*4186J/Ca
1


energy=
Transformity
IMPORTS:
12 Petroleum Products
Forest Service Use
energy=
energy=
FS Building Use


joules
1.80E+04 sej/J


CEP (2006)


1.65E+05 gal/yr
gal* 13e7j/gal
2.15E+13 J/yr
6.58E+05 sq feet
6.66E+04 BTU/sq ft/yr


energy use = BTU/sqft/yr*sq ft* 1055 joules/BTU
4.62E+13 J/yr
Total Fuel Use 6.77E+13 J/yr
Transformity 1.11E+05 sej/J
Est. Cost= gal*$2/gal+MMBTUs*$14/MMBTU
9.44E+05 $/yr


13 Machinery, Equipment
FS Vehicle mass
avg. vehicle lifespan
use per y =
mass used per year
Specific Emergy

14 Goods (Pesticides, herbicides)


emergy=
Est. for cost
15 Replanting
Total Cost=
Unit Emergy Value
16 Tourism
Tourist Time
average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=

energy=
Transformity
17 Labor


2.2E+09 g
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of vehicle
1.10E+08 g
CEP sej/g
(2006)
8.23E+06 g/yr


2.49E+10
2.05E+17
1.45E+06


EIA,
1992


Odum, (1996)









CEP (2006)

NFS,
2005


sej/g
sej/yr
$/yr


1.76E+05 $/yr
1.90E+12 sej/$


CEP (2006)

NVUM. 2005


2.90E+06 visits/yr
1.90E+01 hrs
5.51E+07 hours/yr
1.04E+02 kcal/hr
Cal/hr*hrs*4186J/Kca


2.40E+13 J/y
1.50E+07 sej/J


Odum, 1996


FS 3.06E+06 hrs/yr


1.31E+06 hrs/yr


NFS,
2005


Contractors










5.62E+06 hrs/yr
6.30E+13 sej/hr


658067 sqft


37000 btu/ft2/yr


2.43E+10 btu/yr
energy= btu/yr* 1055 j/btu
energy= 2.57E+13 J
Transformity 2.92E+05
Est. Cost= BTU/yr/3412btu/kwh*$0.09/kwh
6.42E+05 $/yr
Regional FS budget 1.47E+08 $/yr
Unit Emergy Value 1.90E+12 sej/$


19 Services


Unit Emergy Value

20 Payment for timber

Unit Emergy Value

21 Payments for Extracted Minerals
Unit Emergy Value

22 Fee Payments
Unit Emergy Value
EXPORTS:
23 Extracted Firewood


1.66E+08 $/yr

1.90E+12 sej/$

5.79E+05 $/yr

1.90E+12 sej/$

3.35E+07 $/y
1.90E+12 sej/$


2.71E+06
1.90E+12


$/yr
sej/$


mass 8.91E+07 kg
energy= mass* 1000g/kgl5000j


energy=
Transformity


24 Harvested Wood


/g
1.34E+15 J/yr
3.60E+04 sej/J

2.97E+05 m3/yr


based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers


18 Electricity


5.40E+05 g/m3
mass 1.60E+11 g/yr
energy= g*15000j/


energy=
Transformity (w/o services)
25 Water, Chemical potential


g
2.41E+15 J/yr
5.04E+04


Total Labor
Unit Emergy Value


NFS,
2005
EIA,
1992




Odum, 1996




CEP (2006)

NFS,
2005
CEP (2006)

NFS,
2005
CEP (2006)



CEP (2006)



CEP (2006)



USFS, 2005



Brown & Bardi
(2001)
USFS, 2005











Total Export From Streams
Chemical Potential=

Transformity
26 Water, Geopotential Energy
avg. elevation

Transformity
27 Minerals
Sp. Emergy (avg)=
28 Fossil Fuels
(National data only)
29 Hunting
% Dry Weight for Wildlife
Big Game Extracted

avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Small Game Extracted
avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Migratory Birds Extracted
avg. mass
energy content
energy=
energy=
Transformity=
Emergy=
Other Species Extracted
avg. mass
energy content
energy=

Transformity=
Emergy=


6.24E+10 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
3.08E+17
8.10E+04 sej/J
(volume)(elevation)(density)(gravity)
1.00E+02 m
6.12E+16 J/yr
4.70E+04 sej/J
4.82E+10 g/yr
8.16E+09 sej/g


S



C




C
e


2.50E+01 %
7.47E+03 Big L
Game/y
5.68E+04 g/Game
2.65E+04 J/g
#Game/yr*avg mass*(% dry weight)*J/g
2.81E+14 J/yr
9.90E+05 sej/J E
2.78E+20 sej
2.84E+04 Small Game/yr t
3.30E+03 g/animal
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
1.49E+13 J/yr
1.20E+05 sej/J E
1.79E+18 sej
2.24E+04 #/yr t
1.30E+03 g/bird
8.83E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
6.43E+10 J/yr
1.01E+05 sej/J E
6.50E+15 sej
2.49E+03 #/yr t
6.35E+03 g
6.37E+03 J/g
#Game/yr*avg mass*(% dry weight)*J/g
2.52E+10 J/yr
1.50E+05 sej/J B
3.77E+15 sej


edell, 2000



)dum, 2000

JSGS, 2006

)dum, 2000
estimate







JSFWS, 2002






Irown et al, 2006

JSFWS, 2002





irown et al, 2006

JSFWS, 2002





irown et al, 2006

JSFWS, 2002





Irown et al, 2006










Sum of Emergy from Game 2.80E+20 sej
30 Fishing 8.27E+05 fish
caught
avg. mass 4.54E+02 g/fish


energy content
Energy Fish Caught
Transformity=
31 Research Information
research hours
Transformity
total sej of research
Unit Emergy Value
32 Hydroelectric Power
(National Data Only)
33 Image Exported with Tourists
Tourism Time in NF's
site area=

ha/vist
use/ha/hour
emergy of image exported
Unit emergy value
33 Payments to State
Unit Emergy Value
34 Payments for FS Labor
Unit Emergy Value


1.88E+04
1.41E+12
1.68E+07

30898.01
2.35E+14
7.26E+18
1.90E+12




5.51E+07
2.07E+02
1.20E+00
2.48E+02
3.49E+11
4.77E+21
8.66E+13
8.24E+06
1.90E+12
8.02E+07
1.90E+12


J/g
J
sej/J


USFS, 2004

assume avg weight = 1
lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight


hours/yr
sej/hr
sej
sej/$


CEP (2006)


hrs
ha
sites/visit
ha
sej/ha
sej/yr
sej/visitor hour
$/yr
sej/$
$/yr
sej/$


USFS, 2006
CEP (2006)

USFS, 2006
CEP (2006)



USFS, 2006 (unpub)
CEP (2006)
USFS, 2006 (unpub)
CEP (2006)











Table P-2 Emergy evaluation of Region 10 Forest assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (xl06 Em$)
Values (xl0'1sej)
(sej/unit)


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herb/Shrub Biomass
3 Land Area
4 Soil OM
5 Glaciers

6 Peat
7 Ground Water
8 Surface Water
ECONOMIC ASSETS
9 Roads (dirt)
10 Roads (gravel)
11 Roads (paved)
12 Machinery & tools
13 Office Equipment
14 Buildings
15 Minerals (g)
15a Minerals ($)
CULTURAL ASSETS
16 Information Value of Indian Artifacts
17 Value of Critical Species


5.79E+18
1.20E+18
8.88E+06
3.16E+19
6.22E+17

5.84E+15
6.58E+17
6.46E+17

1.57E+07
1.26E+12
2.11E+09
2.19E+09
9.17E+08
2.50E+10
NA
NA


# of ind.


Footnotes for P-2
ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass 7.32E+08 m^3
5.40E+02 kg/m^3
mass= mA3*kg/mA3*1000g/k
g
mass= 3.95E+14 g
3.50E+00 Cal/g of Tree
Biomass
energy= g*3.5kcal/g*4186J/kca


energy=
Transformity


2 Total Understory


5.79E+18
3.62E+04
8.16E+07
1.00E+06


3.62E+04
17976
1.05E+15
1.24E+04
6.46E+06

2.52E+04
3.02E+05
8.10E+04

1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
3.36E+09
4.54E+09
1.90E+12


209524.1
21498.6
9321.0
393301.9
4021050.
3
147.3
198917.7
52354.2

29.9
2122.4
5.9
24.7
10.3
158.0
NA
NA


110275.8
11315.1
4905.8
207001.0
2116342.2

77.5
104693.5
27554.9

15.7
1117.1
3.1
13.0
5.4
83.2
NA
NA


6.98E+15 1.89E+07 132082.0 69516.9
1.10E+01 2.26E+22 248135.3 130597.5


USFS, 2004


USFS, 2004
COLE,
2005


sej/J
mt
g/mt


mass= tons*g/ton
8.16E+13 g
energy= g*3.5
Cal/g*4186J/kcal
1.20E+18 J










Transformity

(emergy of land structure)


m


Trai


5 Peat


mass P


Trai


6 Glaciers




7 Ground Water


9.79E+03
8.88E+06
1.05E+15
1.40E+09


sej/J
ha
sej/ha
mt


USFS, 2007


COLE,
2006


ass OM= 1.40E+15 g
Energy= massOM* 5.4 Cal/g of OM 4186j/kcal
3.16E+19 J
nsformity 1.24E+04 sej/J
2.58E+05 mt estimate
'eatOM= mt*le6g/mt
2.58E+11 g
Energy= massPeat* 5.4 kcal/g of OM*1000g/kg* 4184
J/Cal
5.84E+15 J
nsformity 2.52E+04 sej/J
6.77E+11 m^3 USGS,
2005


density:
mass:
specific emergy:


Density of water
Gibbs Free energy of water
Volume

energy=volume* 1000kg/mA3*4940J/kg
energy=
transformity


9.20E+05
6.22E+17
6.46E+06

1000
4940
1.33E+11


g/m^3
g
sej/g

kg/m3
J/kg
m3


6.58E+17 J
2.79E+05 sej/J


8 Surface Water


volume 1.31E+11 m^3


Density of water
Gibbs Free energy of water
energy=

Transformity


ECONOMIC ASSETS
9 Roads, Dirt


10 Roads, Gravel


Unit Emer


mas


1000 kg/m3
4940 J/kg
volume* 1000kg/m^3*4940J/kg
6.46E+17 J
8.10E+04 sej/J


2.62E+03
6.00E+03
1.57E+07


miles
$/mile


*gy Value 1.90E+12 sej/$
1.78E+06 m length
5.00E+00 m width
depth= 0.1016 m of
gravel
volume= 9.06E+05 m^3 oflimerock
density= 1.39E+03 kg/m^3 gravel
s gravel= mA3*kg/m3* 1000g/k


USGS,
2005


Buenfil
(2001)

Sedell,
2000




Odum,
2000

USFS, 2006 (unpub)


CEP (2006)
USFS, 2006 (unpub)


3 Land Area

4 Soil OM












Specific Emergy


11 Paved Roads


width:
depth:
volume:
density:
mass asphalt


Specific Emergy


12 Machinery


13 Office Equipment


mass machinery=

Specific Emergy


1.26E+12 g
1.68E+09 sej/g

2.77E+03 m length
6.7 m^2
5.08E-02 m depth
9.41E+02 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3*1000g/k


2.11E+09 g
2.77E+09 sej/g


4835710.23
4.54E+02
lbs*g/lb
2.19E+09
1.13E+10
1.50E+01


lbs
g/lb

g
sej/g
kg/m2


Odum
(1996)
USFS, 2006 (unpub)








Odum
(1996)
USFS, 2006 (unpub)


CEP (2006)
estimate


mass office equipment=

Specific Emergy
14 Buildings
Building Mass=
Specific Emergy
emergy=
15 Minerals
Data NA for Regions
CULTURAL ASSETS
18 Emergy of Cultural Information
Native Americans on FS lands (peak)
energy per capital=


Yrs to develop information
Energy of Population=
Energy =
Transformity
18 Value of Critical Species
Endangered/Threatened Species

Percent of pop
average emergy per species

Em. In critical species=

Emergy in Critical Species (sum of
above)


Building SA*kg/m2* 1000g/kg
9.17E+08 g
1.13E+10 sej/g
6.11E+04 m^2
2.50E+10 g
mixed
1.58E+20 sej




9.69E+04 people
(2500Cal/day)*(365
d/y)*(4186J/Cal)
3.82E+09 J/yr
2.50E+02
(population)* (J/yr/Indian)* (year)
6.98E+15 J
1.89E+07 sej/J

1.10E+01


CEP (2006)
USFS, 2006 (unpub)
Buildings appendix







estimate



estimate




USFWS,
2006


2.78E-01 %
3.96E+24 sej/speci
es
#species*%of total Pop in FS land.*Em. Required to develop
species
1.21E+25 sej










APPENDIX Q
DESCHUTES NATIONAL FOREST TABLES AND NOTES


Table Q-1 Emergy evaluation of the Deschutes National Forest and its annual contributions of
environmental services


Note Item


Units


RENEWABLE RESOURCES:
1 Sunlight J
2 Rain Chemical Potential J
3 Transpiration J
4 Rain Geopotential J
5 Wind, Kinetic J
7 Waves J
8 Tides J
9 Earth Cycle J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss g
10a. Top soil loss J
IMPORTS:
11 Petroleum Products J
12 Machinery, Equipment g
13 Goods (Pesticides, herbicides, g
misc goods)
14 Seedlings g
15 Tourist Time J
16 Labor hours
17 Electricity J
ECONOMIC PAYMENTS RECEIVED
18 Payment for timber $
19 Payments for minerals extracted $
20 Fee Payments (hunting, fishing, $
grazing, etc)
EXPORTS:
21 Extracted Firewood J
22 Harvested Saw Timber J
23 Water Chemical Energy J
24 Water Geopotential Energy J
25 Minerals g
26 Harvested wildlife J
27 Harvested Fish J
28 Information (research) $
33 Image Exported with Tourists hrs
ECONOMIC PAYMENTS MADE
29 Payments to State and Local $
Gov't
30 Payments for Labor $


Quantity Unit
Emergy
Values 1.
(sei/unit)


9.28E+16
2.20E+16
9.74E+15
9.29E+15
4.59E+16
0
0
2.33E+16


1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
5.10E+04
7.39E+04
1.20E+04


1.96E+09 1.68E+09
1.77E+12 7.40E+04


5.83E+13
1.36E+08
1.19E+06

2.05E+07
1.58E+13
8.14E+05
1.15E+12

4.86E+06
6.44E+04
3.15E+06


1.68E+14
1.44E+15
1.36E+16
3.36E+16
1.07E+10
2.31E+13
1.71E+13
1.20E+04
3.64E+07


1.11E+05
1.13E+10
2.49E+10

4.70E+09
1.50E+07
6.30E+13
2.92E+05

1.90E+12
1.90E+12
1.90E+12


3.60E+04
5.04E+04
8.10E+04
7.77E+04
1.96E+09
6.7E5-3E10
1.68E+07
2.35E+14
3.92E+13


8.46E+06 1.90E+12

1.28E+07 1.90E+12


Solar
Emergy
(x1016sej)


9.3
68338.6
29792.0
43650.7
11240.4
0.0
0.0
27928.2


EmDollars
(x106 Em$)


0.0
359.7
156.8
229.7
59.2
0.0
0.0
147.0


329.5
13.1

649.6
154.1
3.0


9.6
23693.7
5128.2
33.4


0.1
124.7
27.0
0.2


924.2
12.2
597.8


606.5
7277.9
109812.1
261072.1
2106.6
3370.8
28695.4
282.0
142629.2


3.2
38.3
578.0
1374.1
11.1
17.7
151.0
1.5
750.7


1607.3

2424.4


12.8


\ _I I











Footnotes for Q.1
RENEWABLE RESOURCES:
1 Solar Insolation
Land Area 7.50E+09 m^2
Insolation 1.49E+07 J/m^2/yr


Albedo
Energy(J) =

Transformity


1.70E-01 (% given as a decimal)
(area)*(avg insolation)* (1 -albedo)
9.28E+16 J
1.00E+00 sej/J


Sources

NASA
SSE


Gholz and Clark, 2000


2 Rain
Chemical Potential


Land Area 7.50E+09 m^2
Rain 0.595 m/yr


3 Transpiration



4 Rain Geopotenti;


Volume Rain
energy=

Transformity

Energy=
Rain ET Energy
Transformity
al
Runoff


Mean Elevation Change
Land Area
Energy(J) =

Transformity
5 Wind, Kinetic
Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff.
Energy=


Transformity


4.46E+09 m^3
volume* 1000kg/m^3*4940J/kg
2.20E+16
3.10E+04 sej/J
0.263 m/m^2/yr
Vol*1000Kg/mA3*4940J/kg
9.74E+15 J/yr
3.06E+04 sej/J

0.332 m/m^2/yr


NASA
SSE



Odum et.al, (2000)
GIS Coverage


Odum et.al, (2000)

NASA
SSE


380.60 m
7.50E+09 m^2
(area)(runoff)(avg change in elevation)(density)(gravity)
9.29E+15 J
4.70E+04 sej/J Odum et.al, (2000)


7.50E+09
1.30
4.38
7.30


m^2
kg/m^3
mps
observed winds are about 0.6 of geostrophic
wind


0.002
area* density* dragcoef* (Geos-
gmdVel)^3*31500000
4.59E+16
2.45E+03 sej/J


7 Waves
None
8 Tides
None
9 Earth Cycle


Heat Flow 9.84E+01 miliwatts/m^2

area 7.50E+09 m^2


Odum (2000)






IHFC,
2005










joules= 3.10E+06 J/m^2
energy= miliwatts/mA2*area* sec/yr
= 2.33E+16 J/yr
Transformity 1.20E+04 sej/J
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss 1.96E+09 mt/yr
Percent Org. Matter 4 %
Top Soil Loss 7.84E+07 mt/yr
energy= mass OM*5.4kcal/g*4184J/kcal
= 1.77E+12 J
Soil Gain 0.00E+00 g/yr


Odum (2000)







NFS,
2005


IMPORTS:
11 Petroleum Products
Fores


FS


12 Machinery, Equipm


t Service Use 2.35E+05 gal/yr
energy= gal* 13e7j/gal
energy= 3.05E+13 J/yr
Building Use 3.96E+05 sq feet
6.66E+04 BTU/sq
ft/yr
energy use = (BTU/sqft/yr) (sq ft)
2.78E+13 J/yr
total= 5.83E+13
Transformity 1.11E+05 sej/J
ent


* (1055 joules/BTU)


Odum, (1996)


FS 2.E+09 gof
vechiles
avg. vehicle lifespan 2.00E+01 yrs
use per y = vehicles*g/vehicle* 1/avg life of
vehicle
mass used per year 1.36E+08 g
Specific Emergy CEP sej/g
(2006)
13 Goods (Pesticides, herbicides, 1.19E+06 g/yr
misc goods)
14 Replanting


15 Tourism


Seedlings
avg. mass
Total Mass=

Tourist Time


average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


Transformity


5.85E+06
3.50E+00
2.05E+07


CEP
(2006)
NFS,
2005


seedlings
g/seedling
g/yr


2.80E+06 people/yr

1.30E+01 hrs
3.64E+07 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kcal
1.58E+13 J/y
1.50E+07 sej/J


NFS,
2005


16 Labor


FS Employees 8.14E+05 hrs/yr


NFS,
2005













17 Electricity


18 Payment for timber


Unit Emergy Value 6.30E+13 sej/hr


2.94E+04 sq ft

37000 btu/ft2/yr
1.09E+09 btu/yr
energy= (btu/yr)*(1055 j/btu)
= 1.15E+12 J
Transformity 2.92E+05


Est. Cost 2.86E+04 $/yr
4.86E+06 $/yr


Unit Emergy Value

19 Payments for Extracted Minerals
Unit Emergy Value

20 Fee Payments
Unit Emergy Value


1.90E+12 sej/$

6.44E+04 $/y
1.90E+12 sej/$

3.15E+06 $/yr
1.90E+12 sej/$


EXPORTS:
21 Extracted Firewood


22 Harvested Timber


mass 1.12E+10 g
energy= mass*15000j/g
= 1.68E+14 J/yr
Transformity 3.60E+04 sej/J


9.63E+10 g/yr
energy= g*15000j/


Transformity (w/o services)
23 Water, Chemical Potential
Total Export From Streams
Chemical Potential=
joules =
Transformity
24 Water, Geopotential
Geopotential=

elevation=
joules =
Transformity
25 Minerals

26 Hunting
% Dry Weight for Wildlife
Deer Extracted


based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers
NFS,
2005
EIA, 1992



Odum,
1996


NFS,
2005
CEP
(2006)

CEP
(2006)

CEP
(2006)






Brown and Bardi
(2001) 15, assuming
50% wood

USFS,
2006


USFS,
2006


ODFW, 2006


g
1.44E+15 J/yr
5.04E+04 sej/j


2.74E+09 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
1.36E+16
sej/J


(volume)(elevation)(density)(gravity)
1250 m
3.36E+16
7.77E+04 sej/J
1.07E+10 g/yr


2.50E+01 %
6.12E+02 #/yr










avg. mass
energy content
energy=

Transformity=


Elk Extracted


eneri


Tran

Bear Extracted

eneri


Tran

Upland Game Birds Ex

ener


Tran

Mid-Sized Game Extra

eneri


Ducks Extracted


Geese Extracted


Tran



eneri


Tran



eneri


Tran


Mountain Lion


5.70E+04 g
2.65E+04 J/g
#*avg mass*(% dry weight)*J/g
2.31E+13 J


6.74E+05 sej/J


Trans
diet/j(


Emergy= 1.56E+19 sej
1.11E+02 #
avg. mass 2.70E+05 g
gy content 4.78E+03 J/g
energy= #*avg mass*(% dry weight)*J/g
= 3.58E+12 J
sformity= 4.29E+07 sej/J
Emergy= 1.56E+19 sej
4.00E+00 #/yr
avg. mass 1.02E+05 g
gy content 6873.714 J/g
energy= #*avg mass*(% dry weight)*J/g
= 7.02E+08 J
sformity= 2.29E+09 sej/J
Emergy= 1.61E+18 sej
tracted 8.00E+03 #/yr
avg. mass 2.52E+02 g
gy content 7.95E+03 J/g
energy= #*avg mass*(% dry weight)*J/g
= 4.01E+09 J
sformity= 3.30E+08 sej/J
Emergy= 1.32E+18 sej
acted 7.55E+02 #yr
avg. mass 6.35E+03 g
gy content 4.78E+03 J/g
energy= #*avg mass*(% dry weight)*J/g
= 5.73E+09 J/yr
sformity= 5.23E+07 sej/J
Emergy= 3.00E+17 sej
5.33E+03 #/yr
avg. mass 1.30E+03 g
gy content 8.83E+03 J/g
energy= #*avg mass*(% dry weight)*J/g
= 1.53E+10 J/yr
sformity= 5.92E+08 sej/J
Emergy= 9.06E+18 sej
1.30E+03 #/yr
avg. mass 4.00E+03 g
gy content 1.55E+04 J/g
energy= #*avg mass*(% dry weight)*J/g
= 2.02E+10 J
sformity= 3.50E+07 sej/J
Emergy= 7.06E+17 sej
4.00E+00 #/yr
avg. mass 7.48E+04 g


formities based on sej in
)ules of animal

ODFW, 2006







ODFW, 2006







ODFW, 2006







ODFW, 2006







ODFW, 2006







ODFW, 2006







ODFW, 2006










energy content
energy=

Transformity=
Emergy=
Sum of Emergy from Game
27 Fishing


5.08E+03 J/g
#*avg mass*(% dry weight)*J/g
3.80E+08 J
1.34E+10 sej/J
5.11E+18 sej
3.37E+19 sej


avg. mass 4.54E+09 g offish assume avg weight = 6 ODFW,
lb 2006


energy content
Energy Fish Caught
Transformity=
28 Information
Transformity
total sej of research
33 Image Exported with Tourists
Tourism Time in NF's


1.88E+04
1.71E+13
1.68E+07
1.20E+04
2.35E+14
2.82E+18


J/g
J
sej/J
hours of resea
sej/hr
sej


3.64E+07 hrs


site area= 2.07E+02 ha

1.20E+00 sites/visit
ha/vist 2.48E+02 ha


use/ha/hour

emergy of image exported
Unit emergy value
30 Payments to State

Unit Emergy Value

31 Payments for FS Labor

Unit Emergy Value


1.57E+11 sej/ha


1.42E+21
3.91E+13
8.46E+06


sej/yr
sej/visitor hoi
$/yr


1.90E+12 sej/$

1.28E+07 $/yr

1.90E+12 sej/$


(4.5Cal/G*4187 J/cal)
assume 20% dry weight

irch



USFS,
2006
CEP
(2006)

USFS,
2006
CEP
(2006)

ur
NFS,
2005
CEP
(2006)
NFS,
2005
CEP
(2006)










Table Q-2 Emergy evaluation of the Deschutes National Forest assets
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x106 Em$)
Values (xl016sej)
(sej/unit)
ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass J 3.19E+17 3.62E+04 1153988.8 6073.6
2 Herbaceous/Shrub Biomass J 2.26E+16 17976 40567.8 213.5
3 Land Area ha 7.50E+05 1.05E+15 78733.3 414.4
4 Soil OM J 1.80E+18 1.24E+04 2240154.4 11790.3
5 Ground Water (drinking aquifer) J 3.33E+16 2.79E+05 929727.9 4893.3
6 Surface Water J 9.54E+15 8.10E+04 77289.5 406.8
7 Mountains g 2.53E+19 mixed 5.6E+12 2.9E+10
ECONOMIC ASSETS
8 Roads (dirt) $ 4.25E+07 1.90E+12 8067.0 42.5
9 Roads (gravel) g 2.01E+12 1.68E+09 338237.1 1780.2
10 Roads (paved) g 8.89E+11 2.77E+09 246322.2 1296.4
11 Machinery & tools g 1.97E+09 1.13E+10 2219.1 11.7
12 Office Equipment g 4.40E+08 1.13E+10 495.6 2.6
13 Buildings g 1.21E+10 mixed 7594.3 40.0
SOCIETAL ASSETS
14 Information Value of Native Pop J 7.64E+15 1.22E+07 9308988.1 48994.7
15 Value of Critical Species # of 6.00 mixed 2.4E+07 124973.7
Species


Footnotes for Q.2
ECOLOGICAL ASSETS (Natural Cap
1 Tree Biomass


Tran


2 Shrubs and Herbaceous


ital)
3.92E+07 m^3 NF
5.40E+02 kg/m^3
mass= m^3*kg/mA3*1000g/kg
= 2.12E+13 g
4.50E+00 Kcal/g of Tree
Biomass
energy= g*.8% dry weight*4.5kcal/g*4186J/kcal
= 3.19E+17 J
sformity 3.62E+04 sej/J
5.13E+06 mt NF
mass= tons*g/to


Tr


3 Land Area

4 Soil OM


emergy of lan


= 5.13E+12 g
energy= g*0.3% dry weight*3.5kcal/g*4186J/kcal
= 2.26E+16 J
ansformity 9.79E+03 sej/J
7.50E+05 ha
d structure 1.05E+15 sej/ha
7.25E+07 m^3 OM
massOM= mA3* 1100kg/mA3(Bulk Density)* 1000g/kg
= 7.98E+13 g
Energy= massOM* 5.4 kcal/g of OM 4184 j/kcal


S, 2005


S, 2005











Transformity
5 Ground Water
Density of water
Gibbs Free energy of water
Volume
energy=

transformity
6 Surface Water
volume
Density of water

Gibbs Free energy of water
energy=

Transformity
7 Emergy of Mountain Formation
mass of the mountains
specific emergy
emergy

ECONOMIC ASSETS
8 Roads, Dirt


Unit Emergy Value


9 Roads, Gravel


10 Paved Roads


depth=
volume=
density=
mass gravel=

value of gravel


Specific Emergy


volume=
density=
mass asphalt=

Specific Emergy


11 Machinery


mass machinery=


1.80E+18 J
1.24E+04 sej/J


1000 kg/m3
4940 J/kg
6.75E+09 m3
volume* 1000kg/m^3*4940J/kg
3.33E+16 J
2.79E+05 sej/J

1.93E+09 m^3
1000 kg/m3

4940 J/kg
volume* 1000kg/m^3*4940J/kg
9.54E+15 J
1.04E+06 sej/J


2.53E+19
(mixed)
5.58E+28


6.00E+03
7.08E+03
4.25E+07
1.90E+12


US GWA, 2000








Buenfil
(2001)


Brown and Bardi, 2001
see
appendix


$/mi

value of dirt roads
sej/$


2.59E+06 m length
5.49E+00 m width
0.10 m of gravel
1.44E+06 m^3 oflimerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3*1000g/kg
2.01E+12 g
5.00E+00 $/ton
0.001102 kg/shrt ton
3
1.68E+09 sej/g


3.96E+05 m^3 of asphalt
2.24E+03 kg/m^3 asphalt
m^3*kg/m^3* 000g/kg
8.89E+11 g
2.77E+09 sej/g

4.35E+06 lbs
4.54E+02 g/lb
lbs*g/lb
1.97E+09 g


NFS, 2005







Odum,
1996


Odum
(1996)


NFS, 2005










Specific Emergy

mass off. equip =


Specific Emergy
13 Buildings
total Mass of Materials (see calcs)
Building Mass=
Specific Emergy
Energy Inputs (see calcs)=
Emergy (see calcs)=


1.13E+10 sej/g
1.50E+01 kg/m2
(bldg area)* (kg/m2)* (1000g/kg)
4.40E+08 g
1.13E+10 sej/g
2.94E+04 m^2


CEP (2006)
NFS, 2005


USFS, 2007


1.21E+10
mixed
3.14E+13
7.59E+19


SOCIETAL ASSETS
14 Archeological Sites 1.03E+03 # of Arch. Sites
Acres of Arch. Sites 1.61E+04 acres
density of Indian pop 1.45E+00 Indians/mi^2
Estimate ofavg Indian Pop 2.00E+03 people
energy per capita=2500kcal/day*365
d/y*4186J/kcal
Energy per capital 3.82E+09 J/yr/Indian
Years of cultural development 1.00E+03 yrs
Indian Info=Indians on Des*energy/capita*yrs of cultural dev.
Energy embodied in Pop. Info 7.64E+15
Transformity 1.24E+07 sej/J


15 Value of Critical Species
Endangered/Threatened Species
Percent of pop
average emergy per species
Em. In critical species=

Emergy in Critical Species (sum of
above)


NFS, 2005


6.00E+00 NFS, 2005
1.00% %
3.96E+24 sej/species
(# of Species)*(%of total Pop in FS land)*(Em. Required to
develop species)
2.37E+23 sej


12 Office Equipment











APPENDIX R
OSCEOLA NATIONAL FOREST TABLES AND NOTES

Table R-1 Emergy evaluation of the Osceola National Forest and its annual contributions of environmental
services


Note Item


Units Quantity Unit
Emergy
Values
(sej/unit)


RENEWABLE RESOURCES:
1 Sunlight
2 Rain Chemical Potential
3 Transpiration
4 Rain Geopotential
5 Wind, Kinetic
6 Hurricanes
7 Waves
8 Tides
9 Earth Cycle
INDIGENOUS NONRENEWABLE
RESOURCES:
10 Soil Loss (harvesting)
10a. Top soil loss (harvesting)
IMPORTS:
11 Petroleum Products
12 Machinery, Equipment
13 Goods (Pesticides, herbicides, misc goods)
14 Seedlings
15 Tourist Time
16 Labor
17 Electricity
18 FS Budget Misc.
19 Services
ECONOMIC PAYMENTS RECEIVED
20 Payment for timber
21 Payments for minerals extracted
22 Fee Payments (hunting, fishing, grazing,
etc)
EXPORTS:
23 Miscellaneous Products (plants)
24 Extracted Firewood
25 Harvested Wood
26 Water, Chemical Potential
27 Water, Geopotential
28 Minerals


Harvested wildlife
Harvested Fish
Information (research)


3.14E+18
4.02E+15
3.13E+15
7.98E+14
1.32E+15
1.13E+12
0
0
6.83E+14


0
0


1.00E+00
3.10E+04
3.06E+04
4.70E+04
2.45E+03
6.49E+03
5.10E+04
7.39E+04
5.80E+04


1.68E+09
7.40E+04


1.10E+12 1.11E+05


g
g
$
J
hours
J
$
$

$
$
$


J
J
J
J
J
g

J
J
$


1.29E+07
0
8.93E+04
7.84E+11
2.28E+04
8.76E+11
9.57E+04
4.20E+04

9.65E+05
0
3.47E+04


2.66E+10
5.01E+10
3.36E+14
2.79E+14
6.08E+12
0

5.30E+10
9.59E+10
1.10E+04


1.13E+10
1E9 7 E9
1.90E+12
1.50E+07
6.30E+13
2.92E+05
1.90E+12
1.90E+12

1.90E+12
1.90E+12
1.90E+12


1.80E+04
3.60E+04
5.04E+04
3.10E+04
7.77E+04
5E8 -
3E12
3.36E+06
1.68E+07
1.90E+12


Solar
Emergy
x1016sej


314.4
12471.8
9584.7
3751.2
322.4
0.7
0.0
0.0
3961.1


12.2
14.6
0.0
17.0
1171.7
143.8
25.6
18.2
8.0

183.3
0.0
6.6


0.0
0.2
1695.1
864.3
47.3
0.0

17.8
161.2
2.1


EmDollars
(x103 Em$)


1654.9
65641.1
50445.9
19742.9
1696.8
3.9
0.0
0.0
20848.0


64.4
76.6
0.0
89.3
6166.7
756.7
134.6
95.7
42.0

964.6
0.0
34.7


0.3
0.9
8921.8
4549.2
248.7
0.0

93.7
848.3
11.0










Table R-1 continued
Note Item Units Quantity Unit Solar EmDollars
Emergy Emergy (x103 Em$)
Values xl016sej
(sej/unit)
32 Image Exported with Tourists hrs 1.80E+06 6.37E+13 11462.0 60326.5
Table R-1 continued
ECONOMIC PAYMENTS MADE
33 Payments to State and Local Gov't $ 5.94E+05 1.90E+12 112.9 594.2
34 Payments for Labor $ 4.50E+05 1.90E+12 85.5 450.3


Footnotes for R-1
RENEWABLE RESOURCES:
1 Solar Insolation
Land Area
Insolation


Albedo


2 Rain
Chemical Potential


3 Transpiration




4 Rain Geopotential







5 Wind, Kinetic


Sources


6.56E+08 m^2
5.84E+09 J/m^2/y
ear
1.80E-01 (% given as a decimal)
Energy(J) = (area)*(avg insolation)*(1-albedo)
3.14E+18 J
Transformity 1.00E+00 sej/J


Land Area
Rain
Total Volume Rain
energy=


Transformity


Energy=
Rain ET Energy
Transformity

Rain
Mean Elevation Change
Land Area
Energy(J) =

Transformity

Area
air density
avg annual wind velocity
Geostrophic wind

Drag Coeff
Energy=


6.56E+08 m^2
1.241 m/yr
8.14E+08 m^3
volume* 1000kg/mA3*4940J/kg
4.02E+15
3.10E+04 sej/J
9.67E-01 m/m^2/
yr
Vol*1000Kg/mA3*4940J/kg
3.13E+15 J/yr
3.06E+04 sej/J

1.241 m/yr
1.00E+02 m
6.56E+08 m^2


NASA SSE


Gholz and Clark, 2000

By Definition, Odum
et.al, (2000)



NASA SSE



Odum et.al, (2000)
Ghjolz and Clark, 2000



Odum et.al, (2000)

NASA SSE


(area)(rainfall)(avg change in elevation)(density)(gravity)
7.98E+14 J
4.70E+04 sej/J Odum et.al, (2000)

6.56E+08
1.30E+00 kg/m^3
3.02E+00 mps
5.03E+00 observed winds are about 0.6 ofgeostrophic
wind
2.00E-03
area* density* dragcoef* GeosA3* 31500000











Transformity
6 Hurricanes
Avg energy/storm
avg hurricane freq.
percent energy that is kinetic
percent of energy dispersed to land
avg. residence time
area
energy=


Transformity


1.32E+15
2.45E+03 sej/J


Odum (2000)


5.00E+05 KCAL/m^2/day Odum et al,
1.00E-01 /yr
3.00E+00 %
1.00E+01 %
1.00E+00 day/year
6.56E+08 m^2
0.1/yr* lyr/365 days*5e5Kcal/m^2/day*.003*area in
mA2*4186J/kcal
1.13E+12 j/yr
6.49E+03 sej/J Odum (2000


7 Waves
None
8 Tides
None
9 Earth Cycle


Heat Flow 3.30E+01 miliwatts/m^2


area
energy=

energy=
Transformity
INDIGENOUS NONRENEWABLE RESOURCES:
10 Soil Loss
Top Soil Loss
Soil Gain


6.56E+08 m^2
miliwatts/m^2*area*sec/yr
1.04E+06 J/m^2
6.83E+14 J/yr
5.80E+04 sej/J


0.00E+00
0.00E+00
0.00E+00


g/yr
g/yr
g/yr


1983


I)


IHFC,
2005





Odum (2000)


NFS,
2005


IMPORTS:
11 Petroleum Products


12 Machinery, Equipment


Forest Service Use
energy=

Contractor Use
energy=

Total Fuel Use
Transformity

FS
avg. mass


avg. vehicle lifespan
use per y =

mass used per year
Contractors
percent of use on FS land
use per y =


3.41E+03 gal/yr
gal* 13e7j/gal
4.44E+11 J/yr
5.04E+03 gal/yr
6.55E+11 J/yr

1.10E+12 J/yr
1.11E+05 sej/J


NFS,
2005

Odum, (1996)


6 vehicles
2.87E+07 g/vehicl
e
2.00E+01 yrs
vehicles*g/vehicle* 1/avg life of
vehicle
8.62E+06 g
9 vehicles
33 %
vehicles*g/vehicle* 1/avg life of vehicle*percent of use on FS











g used per year
Total (FS and Contractors)=
Specific Emergy
13 Goods (Pesticides, herbicides, misc goods)

14 Replanting
Seedlings


projects
4.31E+06
1.29E+07
1.13E+10
0.00E+00


g
g
sej/g
g/yr


CEP (2006)
NFS,
2005


1.00E+05 seedling
s


avg. mass 3.50E+00 g/seedli
ng
Total Mass= 3.50E+05 g/yr
Total Cost= 8.93E+04 $/yr
Unit Emergy Value 1.90E+12 sej/$


15 Tourism


Tourist Time

average stay
Total Hours of Stay
avg. energy/hr
total energy expenditure=


Transformity


1.50E+05 people/y
r
1.20E+01 hrs
1.80E+06 hours/yr
1.04E+02 kcal/hr
kcal/hr*hrs*4186J/Kc
al
7.84E+11 J/y
1.50E+07 sej/J


16 Labor


FS 2.08E+04 hrs/yr


Contractors
Total Labor
Unit Emergy Value


17 Electricity


2.02E+03
2.28E+04
6.30E+13


hrs/yr
hrs/yr
sej/hr


CEP (2006)

NFS,
2005







Brown and Bardi
(2001)- 9

NFS,
2005


based on USA emergy use (1.9E25
sej/yr) and work force of 1.5 E8
workers


18000 $/yr


Transformity

18 Unaccounted for FS budget
Total Budget for Osceola from FS
Unit Emergy Value
19 Services

Unit Emergy Value
20 Payment for timber

Unit Emergy Value


0.0735 $/kwh
2.43E+05 kwh
energy= kwh*3.6e6 J/kwh
8.76E+11 J


2.92E+05


1.06E+06
2.37E+06
1.90E+12
4.20E+04


$/yr
$/yr
sej/$
$/yr


1.90E+12 sej/$
9.65E+05 $/yr

1.90E+12 sej/$


Odum (1996)
Appendix C, C-l

S. Kett from NFS
CEP (2006)
NFS,
2005
CEP (2006)
NFS,
2005
CEP (2006)










21 Payments for Extracted Minerals
Unit Emergy Value
22 Fee Payments
Unit Emergy Value


EXPORTS:
23 Miscellaneous Products (Plants)


0.00E+00
1.90E+12
3.47E+04
1.90E+12


$/y
sej/$
$/yr
sej/$


1.81E+06 g/yr

energy= g*3.5kcal/g*4186J/Kc
al


Transformity


2.66E+10 joules
1.80E+04 sej/J


CEP (2006)

CEP (2006)


NFS,
2005


Brown and Bardi
(2001)- 15


24 Extracted Firewood


mass 3.34E+03 kg
energy= mass* 1000g/kgl5000j
/g


5.01E+10 J/yr
3.60E+04 sej/J


2.74E+10 g/yr

energy= g*15000j/g
3.36E+14 J/yr


Transformity (w/o services)

26 Water Chemical Potenial
Total Export From Streams
Chemical Potential=
joules =
transformity
27 Water, Geopotential Energy
Geopotential (J)=


Transformity


5.04E+04


5.64E+07 m^3/yr
M^3/yr 1000 kg/M^3 4940 J/kg
2.79E+14
3.06E+04


(volume)(elevation)(density)(gravity)
6.08E+12
7.77E+04 sej/J


Brown and Bardi
(2001) 15, assuming
50% wood
NFS,
2005


Brown and Bardi
(2001) 9




Odum, 1996




Brown and Bardi
(2001) 21 (runin)


0.00E+00 g/yr


% Dry Weight for Wildlife
Deer Extracted
avg. mass
energy content
energy=

Transformity=


Hog Extracted


2.50E+01 %
2.74E+02 deer/y
4.72E+04 g/deer
2.65E+04 J/g
#*avg mass*(% dry weight)*J/g
4.26E+10 J/yr
5.84E+05 sej/J Transfo


Emergy= 2.48E+16 sej
4.40E+01 hog/yr


diet/jou


FFWCC
.rmities based on sej in
les of animal

FFWCC


Transformity


25 Harvested Wood


28 Minerals

29 Hunting










a
energy


Trans
I


Turkey Extracted


vg. mass 5.67E+04 g/hog
y content 2.72E+04 J/g of
hog
energy= #*avg mass*(% dry weight)*J/g
8.48E+09 J/yr
formity= 1.70E+07 sej/J
Emergy= 1.44E+17 sej
5.60E+01 turkey/y


avg. mass
energy content

energy=
energy=
Transformity=
Emergy=


avg. mass
energy content
energy=

Transformity=
Emergy=


Sum of Emergy from Game
Weighted Trans. For Game
30 Fishing


avg. mass
energy content
Energy Fish Caught
Transformity=

31 Information
average time spent

total days spent
$ Spent by outside researchers
$ Spent by NFS
$ spent for Research in Osceola
Unit Emergy Value
32 Image Exported with Tourists
Tourism Time in NF's


8.16E+03 g/turkey
2.84E+04 J/g
turkey
#*avg mass*(% dry weight)*J/g
1.62E+09 J/yr
6.11E+05 sej/J
9.93E+14 sej
2.32E+02 squirrel/
yr
5.50E+02 g
2.32E+04 J/g
#*avg mass*(% dry weight)*J/g
3.70E+08 J/yr
2.24E+07 sej/J
8.29E+15 sej
1.78E+17 sej
3.36E+06 sej/J
5.63E+04 fish


4.54E+02
1.88E+04
9.59E+10
1.68E+07


caught
g/fish
J/g
J
sej/J


FFWCC


42187.50


assume avg weight = 1 lb
(4.5Cal/G*4187 J/cal)
assume 20% dry weight
Brown and Bardi
(2001) 22


3.00E+00 research groups/year
2.00E+01 days/gro
up
6.00E+01 days/yr
6.00E+03 $/yr
5.00E+03 $/yr
1.10E+04 $/yr
1.90E+12 sej/$


1.80E+06 hrs


site area= 2.07E+02 ha
1.20E+00 sites/visi
t
ha/visit 2.48E+02 ha


use/ha/hour
emergy of image exported


CEP (2006)

NFS,
2005
CEP (2006)


NFS,
2005


2.56E+11 sej/ha/hr
1.15E+20 sej/yr


FFWCC


Grey Squirrel Extracted










Unit emergy value 6.37E+13 sej/visitor hour
33 Payments to State 5.94E+05 $/yr
Unit Emergy Value 1.90E+12 sej/$
34 Payments for FS Labor 4.18E+05 $/yr
Payments for Contractor Labor 3.23E+04 $/yr
Total Labor Payments 4.50E+05 $/yr
Unit Emergy Value 1.90E+12 sej/$


CEP (2006)


USFS, 2005











Table R-2 Emergy evaluation of the Osceola National Forest assets


Note Item


Units


ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass
2 Herbaceous/Shrub Biomass
3 Land Area
4 Soil OM
5 Peat
6 Ground Water (drinking aquifer)


Quantity Unit
Emergy
Values
(sej/unit)


4.46E+16
5.41E+16
6.54E+04
3.47E+17
2.85E+16
5.19E+16


3.62E+04
17976
1.05E+15
1.24E+04
3.09E+05
3.02E+05


7 Surface Water
ECONOMIC ASSETS
8 Roads (dirt)
9 Roads (gravel)
10 Roads(paved)
11 Machinery & tools
12 Office Equipment
13 Buildings
GEOLOGIC ASSETS
14 Phosphorus


14b Phosphorus
SOCIETAL ASSETS
15 Archeological Artifacts
16 Information Value of Timucuan Pop.

17 Biodiversity (Value of Critical Species)


5.14E+14 8.10E+04 4161.5


3.19E+06
2.60E+11
5.32E+11
1.72E+08
2.58E+08
3.52E+03


1.90E+12
1.68E+09
2.77E+09
1.13E+10
1.13E+10
mixed


606.5
43677.0
147470.4
194.0
290.0
253.8


9.07E+13 4.54E+09 41149899
.8
2.27E+09 1.90E+12 430912.8

1.01E+13 1.24E+07 12471.8
1.01E+16 1.22E+07 12276512


# of
species


3.00


1.3E+09 6977956.9


Footnotes for R-2
ECOLOGICAL ASSETS (Natural Capital)
1 Tree Biomass 4.02E+06 m^3
5.90E+02 kg/m^3
mass= m^3*kg/mA3*1000g/k


NFS, 2005


= 2.37E+12 g
4.50E+00 Kcal/g of Tree
Biomass
energy= g*4.5kcal/g*4186J/kc
al


Transformity


4.46E+16 J
3.62E+04 sej/J


Brown and Bardi (2001)


1.36E+06 shrt tons
9.07E+05 g/shrt ton
mass= tons*g/ton


Solar
Emergy
(x016sej)


161497.7
97193.5
6867.0
431156.4
881020.6
1568743.


EmDollars
(xl06 Em$)


850.0
511.5
36.1
2269.2
4637.0
8256.5


21.9


3.2
229.9
776.2
1.0
1.5
1.3

216578.4

2268.0

65.6
64613.2


2 Shrubs


NFS, 2005











Herbaceous Ground Cover


Shrub/Herb Total


1.23E+12 g
2.71E+06 shrt tons
mass= tons*g/ton
= 2.46E+12 g
3.69E+12 g
energy= g*3.5kcal/g*4186J/kc
al


Transformity


3 Land Area
(emergy of land structure)

4 Soil OM


Tr


5.41E+16 J
9.79E+03 sej/J

6.54E+04 ha
1.05E+15 sej/ha


3.85E+07 m^3 OM
massOM= m^3* 1100kg/m^3(Bulk Density)* 1000g/kg
= 4.24E+13 g
Energy= massOM* 5.4 kcal/g ofOM 4186j/kcal
= 3.47E+17 J
ansformity 1.24E+04 sej/J Browl


Brown and Bardi (2001)
6

Odum, Env. Accounting,
1996


1 and Bardi (2001)


3.15E+06 m^3


mass P


Trai


eat OM= m^3*400kg/m^3(Bulk Density)
= 1.26E+12 g
Energy= massPeat* 5.4 kcal/g of OM* 1000g/kg* 4186 J/kcal
= 2.85E+16 J
nsformity 3.09E+05 sej/J Brown and Ba


rdi (2001)


21


6 Ground Water
Density of water
Gibbs Free energy of water
Volume
energy=

transformity


7 Surface Water


Gil





ECONOMIC ASSETS
8 Roads, Dirt

9 Roads, Gravel


volume
Density of water
bbs Free energy of water
energy=
energy=
Transformity


1000 kg/m3
4940 J/kg
1.05E+10 m3
volume*1000kg/mA3*4940J/kg
5.19E+16 J
2.79E+05 sej/J


1.04E+08 m^3
1000 kg/m3
4940 J/kg
volume*1000kg/mA3*4940J/kg
5.14E+14 J
1.04E+06 sej/J


3.19E+06
Unit Emergy Value 1.90E+12
3.40E+05
3.66E+00
area= 1.24E+06
depth= 1.50E-01


sej/$
m length
m width
m^2
m of


Buenfil
(2001)







Brown and Bardi (2001)
23


CEP (2006)
NFS, 2005


5 Peat


FFS, Uof










gravel
1.87E+05 m^3 oflimerock
1.39E+03 kg/m^3 gravel
m^3*kg/m^3*1000g/k


Specific Emergy

10 Paved Roads
area=
depth=
volume=
density=
mass gravel calculated as above
gravel
mass asphalt=

asphalt
total mass
Specific Emergy


11 Machinery


mass machinery=

Specific Emergy


12 Office Equipment


mass office equipment=


13 Buildings



14 Phosphorus


Specific Emergy

building area
mass per m^A2
emergy=


value
Specific Emergy


SOCIETAL ASSETS
15 Archeological Sites

Acres of Arch. Sites
density of Timucuan pop
Estimate of Timucuan on Osc.
energy per capital=


energy in "Cargo"=


2.60E+11
1.68E+09

1.72E+05
1.12E+06
5.08E-02
2.84E+04
2.24E+03


sej/g


Odum
(1996)


m
m^2
m depth
m^3 of asphalt
kg/m^3 asphalt


4.68E+11 g
m^3*kg/m^3*1000g/k


g
6.38E+10
5.32E+11
2.77E+09

3.80E+05
4.54E+02
lbs*g/lb
1.72E+08
1.13E+10
5.68E+05
4.54E+02
lbs*g/lb
2.58E+08
1.13E+10


g
g
sej/g

lbs
g/lb

g
sej/g
lbs
g/lb

g
sej/g


3.52E+03 m^2
see appendix
2.54E+18 sej
9.07E+13 g

2.27E+09 $
4.54E+09 sej/g


3.21E+02 # of Arch. Sites

3.90E+06 M^2
1.04E+01 Indians/mi^2
2.64E+03 people
2500kcal/day*365 d/y*4186J/kcal
3.82E+09 J/yr/India
n
J/yr/Ind* Indians in
Osc.


Odum
(1996)


CEP (2006)




CEP (2006)

Kett, 2005


USGS
(1978)

Odum, Env. Accounting,
1996


USFS,
2005


volume:
density:
mass gravel:











16 Years of cultural development
Timucuan Info=
Energy embodied in Pop. Info
Transformity
17 Biodiversity Value of Critical Species

Red Cockaded Woodpecker
Percent of pop
Florida Black Bear
Percent of pop
Wood Stork
Percent of pop
Avg. Emergy of a Species
Em. In critical species=%oftotal Pop. On
Emergy in Critical Species


1.01E+13 J
1.00E+03 yrs
Indians on Osc*energy/capita*yrs of cultural dev.
1.01E+16
1.24E+07 sej/J
USFS,
2006
1.68E+02 ind.
1.79E+00 %
8.00E+01 ind.
5.33E+00 %
2.50E+01 ind.
2.27E-01 %
3.96E+24 sej
Osc.*Em. Required to develop species
1.33E+25 sej
1.33E+25









APPENDIX S
FOOTNOTES FOR TABLES 3-7 AND 3-8


Notes to Table 3-7
1 Organized recreation
1. Emergy of tourists
Emergy of tourists (sej) = 2.53E+22
2. Tourists economic expenditures for
recreation
Number of toruists = 2.05E+08
Travel costs = $45
Dollar expenditures = 9.2E+09
Sales, Permits and
2 Concessions
1. Emergy equivalent of dollars = (dollars)*
(1.9 E12 sej/$)
2. FS income from concessions and permits
Dollar income= $3,100,000,000
3 Hydroelectric energy
1. Emergy value of hydroelectricity
Emergy (sej) = 6.07E+22
2. Dollar value hydroelectricity generated
Avg price = $ 0.08/kwh
Total generated (kwh) = 1.40E+11
Dollar value = $11,200,000,000
4 Water supply
1. Emergy value of outflowing surface water
Emergy (sej) = 1.96E+23
2. Dollar value
Price ($/m3)= 0.50


Volume of water (m3)

Dollar value


1.27E+11


Table 3-1, Ap. F




Estimate








USFS, 2007



Table 3-1, Ap. F

Estimate
Mallory, 2006




Table 3-1, Ap. F

USEPA, 1999


Estimate 50% available for
consumption


$63,570,523,191


5 Carbon sink
1. Emergy value of gross primary production (emegy driving GPP)
Emergy (sej) = 3.61E+22 Table 3-1, Ap. F
2. Dollar value
Price ($/tonn)= $3


Quantity (tonn/ha)


Pugh, 2004









Area (ha)
Dollar value
6 Watershed protection
1. Emergy value of
Rainfall.


7.80E+07
$1,404,000,000


Emergy (sej) = 8.11E+22
2. Costs of watershed protection
Cost ($/ha) = $255
Area (ha) = 7.80E+07
Dollar value = $19,890,000,000
7 Wildlife hunting
1. Emergy of wildlife harvested
Emergy (sej) = 4.28E+22
2. Estimated dollar expenditures for hunting


Number of hunters

Expenditure/ hunter

Total expenditures
8 Fish Harvest
1. Emergy of fish
harvested


1820000


$1,585


Table 3-1, Ap. F

Estimate; NRCS (2005)





Table 3-1, Ap. F

USFS land = 35% of hunting on
public lands


USFWS (2002)


$2,884,000,000


Emergy (sej) = 1.67E+21
2. Estimated dollar expenditures for fishing
Number persons fishing 1261700
1261700


Expenditure/fisher =
Total expenditures =
9 Wildlife watching
1. Emergy of tourists
Number of wildlife
watchers =
Emergy/person
(sej/person)=
Emergy (sej) =


$1,044
$1,317,200,000



2180000

9.44E+15
2.06E+22


Table 3-1, Ap. F


estiamte =3.7% of total fishers
USFWS (2002)




estiamte =10% of total visitors

Table 3-1, Ap. F


10 Clean air

Emergy value airborne particulate deposition

Deposition (g/cm2)= 1.00E-03
Total quantity (g/yr) = Area deposition
Quanityt (g/yr) = 7.80E+12
Specific Emergy (sej/g) = 1.69E+09


Tilley, 2003
Table 3-1, Ap. F

Odum (2000)









Emergy (sej/yr)
11 Clean water
Emergy value of ranifall
Emergy (sej/yr):
12 Pollination


1.32E+22


8.11E+22


Table 3-1, Ap. F


No estimate available
13 Seed dispersal
No estimate available
14 Predator control
No estimate available
Gross primary
15 productivity
Emergy value of gross primary production (emegy driving GPP)
Emergy (sej) = 3.61E+22 Table 3-1, Ap. F
Net primary
16 productivity
Emergy value of net primary production
(40% GPP)


Emergy (sej)


1.44E+22


17 Total respiration
Emergy value of respiration (60% GPP)
Emergy (sej) = 2.17E+22
18 Scientific information
Annual production of information
Emergy (sej/yr)= 2.14E+20


Table 3-1, Ap. F



Table 3-1, Ap. F



Table 3-1, Ap. F


Notes to Table 3-8
1 Employees
1. Emergy value of employees
Emergy per capital

Emergy =
Emergy =
2. Total salary =
2 Building Infrastructure
1. Emergy value of bldg =
2. Total dollar value =
3 Machinery, Vehicles


31, 511 people
1.68E+17
Employees Emergy
percapita
5.3E+21
$1,323,745,000

7.50E+21
$4,394,513,173


Odum, 1996




USFS, 2006

Table 3-2, Ap. A and F
USFS, 2006 unpub.











1. Emergy in machines, equip.=

2. Dollar value of machines =
4 Roads
1. Emergy in roads by class =
2. Total dollar value =
5 Timber
1. Emergy in standing stock =

2. Total dollar value =

Dollar value =
6 Water (surface)
1. Emergy of water volume =
2. Dollar price of water =

Dollar value =

7 Water (ground)
1. Emergy value of groundwater

2. Dollar price of water =
specific yield =
price =
Dollar value =
Dollar value =
8 Biomass fuel
1. Emergy value of total biomass


2. Dollar value of biomass =

Dollar value =
9 Minerals
1. Emergy of minerals by type =
2. Dollar value =
10 Real estate
1. Emergy value of lands =
2. real estate value =
Dollar value =
11 Coal
1. Emergy value =


1.11E+21


$547,356,612

1.51E+23
$15,000,000,000

2.79E+24
Wholesale $250/1000
board feet
$147,740,374,482

1.29E+23
3.23 Ell m3 $0.5/m3

$40,375,000,000


8.45E+23


5.67E11 m3,
18%
$2.00/1000 gal
Volume Sp.Yield*price
$102,024,291,498


2.92E+24


5.4E12. Kg /1000 kg/tonn*
$35/tonn
$189,000,000,000

3.11E+24
$120,000,000,000

8.19E+22
192.7E6 acres* $500/acre
$96,000,000,000


Table 3-2, Ap. F

USFS, 2006 unpub.

Table 3-2
USFS, 2006 unpub.

Table 3-2, Ap. F

USFS, 2007


USFS, 2007

Table 3-2, Ap. F
Estimate
Assume 25% available for
Consumption


Table 3-2, Ap. F


Estimate


Table 3-2, Ap. F

Estimate



Table 3-2, Ap. F
USGS, 2005

Table 3-2, Ap. F
Estimate


Table 3-2, Ap. F


7.61E+24










2.Dollar value =

Dollar value =
12 Gas
1. Emegyin natural gas reserves


2. Dollar value of reserves =

Dollar value =
13 Oil
1. Emergy in petroleum reserves

2. Dollar value of reserves =
Dollar value =
14 Shale
No data available
15 Peat
1. Emergy in peat =
2. Dollar value of peat =
Dollar value =
16 Mushrooms
1. emergy in mushrooms =
2. Dollar value =
17 Exotic plants
No data available
18 Food (nuts, fruits)
1. emergy in foods =
2. Dollar value =

1 Medicinal plants and animals
19
No data available
20 Seeds
1. Emergy in standing stock =
2. Dollar value =
21 Other forest products
1. Emergy in standing stock =
2. Dollar value =
22 Soil
Emergy in Soil Organic matter =
23 Old growth biomass
Emergy in standing stock=


4.59E9 mt @ $16 per metric
ton
$73,440,000,000


2.78E+22
2.26E17 J @ $1.5 per
Mmbtu
$8,940,147,610


1.59E+23
170424000 @ $100/barrel
$17,042,400,000




1.22E+22
1.27E6 m3 $2.80/m3
$3,559,927

mass harvested not available
$279,803




mass harvested not available
$9,200


Citation


Table 3-2, Ap. F






Table 3-2, Ap. F

Estimate





Table 3-2, Ap. F
Estimate




USFS, 2005





USFS, 2005


mass harvested not available
$8,728 USFS, 2005

mass harvested not available
$3,084,232 USFS, 2005

1.87E+24 Table 3-2, Ap. F

Assume 10% oftreebiomass is old growth









Tree biomass
Old growth
Transformity
Emergy


24 Wildlife


Emergy in standing stock


25 Endangered wildlife
Emergy in standing stock

26 Topography
Emergy value of elevation
Avg. elevation
Density


7.71E19 J
7.71 E18 J
6.89E+04
5.31E+23


1.08E+24


6.22E+25


Odum, 1996


Table 3-2, Ap. C and F


Table 3-2, Ap. E and F


= mass* gravational potential
= 1000m
= 2.6 E3 kg/m2
= 7.8 Ell m2


Energy =

Energy (J) =
Transformity =
Emergy (sej)=
27 Geologic Formations
Emergy value of geologic form.

Avg. elevation =
Area=
Mass =
Specific Emergy (sej/g)=
Emergy (sej)=


(Avg. .elev.)(area)(9.8
m/sec2)(density)
1.98744E+21
7.5E5 sej/J
1.49058E+27


Odum, 2000


mountain mass specific
emergy
1000 m
7.8 Ell m2
(1000m)(2.6E3kg/m3)(7.8E 1 m2)
2.50E+09 Odum, 2000
5.07E+30


28 Priceless locations
Assume value of total content embodied in USFS lands
Continental area = 2.45 E7 km2
Transformity = 1.05E15 sej/ha
Emergy = (area)(transformity)
Emergy (sej) = 2.5725E+24


Odum, 2000


29 Panorama
No data available
30 Knowledge
Emegy value of knowledge
Employees
Emergy per capital
Average age


emergy in expereince
S31, 511 people
S3.36E+17
S35 years


Odum, 1996
Estimate









Emergy
Emergy (sej)
31 Native American Artifacts
Emergy in artifacts
32 Genetic resources
Grams DNA =
Energy (J) =
Specific Emergy (sej/g)=
Emergy (sej)


(Employees) (Emergy percapita)(age)
3.7E+23


2.17E+25


Table 3-2, Ap. E and F


1.15E+13
2.40E+17
1.22E+12


2.93E+29


33 Research
1. Emergy of FS personal engaged in research activities.
Number of staff = 486
Emergy/person = 4.704E+17
Emergy (sej) = 2.29E+20
2. Economic costs of research
(Salary)


$20,416,365


USFS, 2007
Odum, 1996


Dollar costs









REFERENCES


Aiken, R. 2005. Private and Public Land Use by Hunters. United States Fish and Wildlife
Service, Arlington Virginia, 36 pp.

Blake, E., E. Rappaport, and J. Jarrel. 2006. The Deadliest, Costliest, and Most Intense United
States Hurricanes from 1851 to 2004 (and Other Frequently Requested Hurricane Facts.
Technical Memorandum NWS TPC-4. NOAA/NWS Tropical Prediction Center Miami,
Fl. 51 pp.

Brown, M.T. and E. Bardi. 2001. Handbook ofEmergy Evaluation Folio #3. Center for
Environmental Policy, University of Florida, Gainesville, F1.30 pp.

Brown, M.T. and E. Campbell. 2007. Evaluation ofNatural Capital and Environmental Services
of U.S. National Forests Using Emergy Syiihe,\i\ Center for Environmental Policy,
Gainesville Fl. 184 pp.

Brown, M.T, M. Cohen, E. Bardi, and W. Ingwerson. 2006. Species Diversity in the Florida
Everglades: A systems approach to calculating biodiversity. Aquatic Sciences, January,
2006, 24 pp.

Brown, M.T., P. Green, A. Gonzalez and J. Venegas, 1992, Emergy Analysis
Perspectives, Public Policy Options, and Development Guidelines for the Coastal Zone
of Nayarit, Mexico, Vol. 2, Report to The Cousteau Society and Government of Nayarit,
Mexico, Center for Wetlands, University of Florida, Gainesville, FL.

Brown, M.T., H.T. Odum, G. McGrance, R.D. Woithe, S. Lopez and S. Bastianoni,
1995, Emergy Evaluation of Energy Policies for Florida, Final Report to the Florida
Department of Community Affairs, Center for Environmental Policy, Department of
Environmental Engineering Sciences, University of Florida, Gainesville, FL.

Brown, M.T., S. Tennenbaum, and H.T. Odum, 1988, Emergy Analysis andPolicy
Perspectives for the Sea of Cortez, Mexico, Report to The Cousteau Society, Center for
Wetlands, University of Florida, Gainesville, FL, 58 pp.

Brown, M.T., R.D. Woithe, H.T. Odum, C.L. Montague, and E.C. Odum, 1993,
Emergy Analysis Perspectives of the Exxon Valdez Oil Spill in Prince William Sound,
Alaska, Final Report to The Cousteau Society, Center for Wetlands, University of
Florida, Gainesville, FL, 122 pp.

Campbell, D. 1998. Emergy Analysis of Human Carrying Capacity and Regional Sustainability:
An Example Using the State of Maine (Appendix). Environmental Monitoring and
Assessment 51: 531-569.

Campbell, D., and T. Cai. 2006. Emergy and Economic Value. In Press, United States
Environmental Protection Agency. 30 pp.









Daly, Farley and J. Farley. 2003. Ecological Economics: Principles and Applications. Island
Press. Washington D.C. 454 p.

Doherty, S.J.. 1995. Emergy Evaluations of and Limits to Forest Production. PhD Dissertation,
Department of Environmental Engineering. University of Florida, Gainesville Fl. 215 pp.

Doherty, S.J., M.T. Brown, R.C. Murphy, H.T. Odum, and G.A. Smith, 1993,
Emergy Synthesis Perspectives, Sustainable Development, and Public Policy Options for
Papua New Guinea. Final Report to The Cousteau Society, Center for Wetlands,
University of Florida, Gainesville, FL, 182 pp.

Energy Information Administration (EIA). "Official Energy Statistics from the US Government."
1/12/07. http://www.eia.doe.gov/ (1/20/07)

Er, Kenneth, John Innes, Kathy Martin, and Brian Klinkenberg. Forest loss in ih urbanization
predicts bird extirpations in Vancouver. Biological Conservation 126, 2005. 410-418.

ESRI ArcMap Version 9.1. Copyright 1999-2005 ESRI Inc. Accessed 2006-2007.

French, Dwight. "Energy Information Administration (EIA). Effective, Occupied, and Vacant
Square Footage, 1992." July 15t, 1998.
http://www.eia.doe.gov/emeu/cbecs/Squareft/sqtab_la.html (9/10/06)

Hassan, Marwan, Michael Church, Thomas Lisle, Francesco Barardinoni, Lee Benda, Gordon
Grant. Sediment Transport and Channel Morphology of Small, Forest Streams. Journal of
The American Water Resources Association. August, 2005. 853-876, 23 pp.

Hau, J. and B. Bakshi. 2003. Promise and Problems of Emergy Analysis. Ecological Modelling
178. 215-225, 10 pp.

International Heat Flow Commission (IHFC). "Global Heat Flow Database". University of North
Dakota. 9/20/06. http://www.heatflow.und.edu/data.html (8/5/06)

Keamey, M. 2005. 2004 Annual Monitoring and Evaluation Report and 5 Year Review: National
Forests in Florida. United States Forest Service, Tallahassee Fl. 92 pp.

Kreiger, D. 2001. Economic Valuation of Forest Ecosystem Services: A Review. The Wilderness
Society, Washington D.C. 40 pp.

National Council for Air and Stream Improvement (NCASI) and US Forest Service Research
Work Unit 4104. "COLE- Carbon Online Estimator." USDA Forest Service, Northern
Global Change Program. 10/24/05. http://ncasi.uml.edu/COLE/index.html (10/5/06)
National Renewable Energy Laboratory, (NREL). Renewable Resource Data Center. 2006.
http://rredc.nrel.gov/, http://www.nrel.gov/gis/maps.html

NatureServe. Get Data: Animal Data for Download. Copyright 2006.









http://www.natureserve.org/getData/animalData.jsp (7/9/06)


NOAA Satellite Information Service. Get/View Online Climatic Data. 11/13/06.
http://www.ncdc.noaa.gov/oa/climate/climatedata.html
http://tidesandcurrents.noaa.gov/stationretrieve.shtml?type=Historic+Tide+Data
(9/6/06)

Odum. H.T. 2000. Handbook of Emergy Evaluation Folio #2_ Center for Environmental Policy,
University of Florida. 30 pp

Odum, H.T., 1996, Environmental Accounting: Emergy and Environmental Decision
Making, John Wiley & Sons, New York, 370 pp.

Odum, H.T. and M.T. Brown (eds) 1976. Carrying Capacity for Man and Nature in S.wiut
Florida. Report to the US Dept of Interior, National Park Service. Center for Wetlands,
University of Florida, Gainesville.

Odum, H.T., M.T. Brown, and R.A. Christianson, 1986. Energy Systems Overview of
the Amazon Basin, Report to The Cousteau Society, Center for Wetlands, University of
Florida, Gainesville, FL, 190 pp.

Orr, David. 1993. Forests and Trees. Conservation Biology, Vol. 7 no. 3 pgs 454-456

Patton-Mallory, Marcia. "The Role of the Federal Government and Federal Lands in Fueling
Renewable and Alternative Energy" Testimony Subcommittee on Energy and Mineral
Resources Committee on Resources United States House of Representatives. April 6,
2006.

Pugh, S. 2004. RPA Data Wiz V 1. USDA Forest Service, North Central Research Station. St.
Paul, MN.

Scatena F.N., S. Doherty, H.T Odum., and P. Karecha. 2002. An EMERGY Evaluation of Puerto
Rico and the Luquillo Experimental Forest. USDA Forest Service General Technical
Report GTR-9. 79 pages.

Sedell, J. M. Sharpe, D. Apple, M. Copenhagen, and M. Furniss. 2000 Water and the Forest
Service. USDA Forest Service, Washington D.C. 35 pp.

Smith, B., P Miles, J. Vissage,, and S. Pugh. 2003. Forest Resources of the United States, 2002.
United States Forest Service. Washington D.C. 137 pp.

Stackhouse, P. and C. Whitlock,. "Surface meteorology and Solar Energy (release 5.1)." NASA.
3/8/06 http://eosweb.larc.nasa.gov/sse/ (9/5/06)

Stynes, D. and E. White. 2006. Spending Profiles for National Forest Visitors by Activity. United
States Forest Service. Washington D.C. 26 pp.










Sweeney, S. M.T. Brown, and M. Cohen. 2007. Creation of a Global Database for Standardized
National Emergy Syiihew\i Proceedings of Emergy Synthesis Conference 4, 23-1

Tilley, D. and W. Swank. 2003. Emergy-based environmental systems assessment of a multi-
purpose temperate mixed-forest watershed of the ,n/i nhell Appalachian Mouintains,
USA. Journal of Environmental Management. Issue 69. 15 pp.

Tilley, D.R., 1999, Emergy Basis ofForest Systems, Ph.D. Dissertation, Department of
Environmental Engineering Sciences, University of Florida, 300 pp.

United Nations Environmental Programme. United Nations System Wide Earthwatch- Forests.
10/7/07. http://earthwatch.unep.ch/forests/forestloss.php

United States Department of the Interior. National Atlas of the United States Raw Data
Download. 4/28/06. http://www.nationalatlas.gov/atlasftp.html#wildrnp (4/10/06)

United States Department of the Interior, Fish and Wildlife Services and US Department of
Commerce, U.S. Census Bureau. 2001 National Survey ofFishing, Hunting and Wildlife
Associated Recreation. US Department of the Interior, 2001. 170 pp.

United States Fish and Wildlife Service. 2006. USFWS Threatened and Endangered Species System
(TESS). Unpublished Data (excel file).

United States Forest Service (USFS). 2003. Report of the Forest Service- FY2002. United States
Forest Service, Washington D.C. 273 pages.

United States Forest Service (USFS). 2006. 2005 Performance and Accountability Report.
United States Forest Service, Washington D.C, 192 pages.

United States Forest Service (USFS). 2004. National Visitor Use Monitoring Program National
Project Results January 2000-September 2003. United States Forest Service, Washington
D.C. 10 pages.

United States Forest Service (USFS). 2005. FY2005 Forest Service Revenue, Expenses and Cost
of Collection. United States Forest Service. Washington D.C. 14 pages

United States Forest Service (USFS). 2006. Fiscal Year 2006 President's Budget Overview.
United States Forest Service, Washington D.C. 54 pages.

United States Forest Service (USFS), 2006. UnpublishedData Collected On Site.

United States Geologic Survey (USGS). Ground Water Atlas of the United States. 5/25/05.
http://capp.water.usgs.gov/gwa/

United States Geologic Survey (USGS). Latest Oil and Gas Assessment. 1/15/2007.
http://energy.cr.usgs.gov/oilgas/noga/










United States Geologic Survey (USGS). National Elevation Dataset. August, 2006.
http://ned.usgs.gov/ 10/10/2006

Voskresensky, K.P. 1978. Water of the Earth; Water Cycle on Earth. Pp. 42-45; 104-117 in
World Water Balance and Water Resources of the Earth, UNESCO. 663 pp.

Weir, J. T. and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction
rates in birds and mammals. Science 315: 1928-1933.









BIOGRAPHICAL SKETCH

Elliott Thomas Campbell was born in 1982 in Gainesville Florida to Daniel E. Campbell

and Kathleen E. Trimmer. He spent the first year of his life in Gainesville while his father

received his doctorate under Dr. H.T. Odum and then moved to Damariscotta Maine where his

father was employed at the Bigelow Marine Lab. In 1990 he and his family moved to South

Kingstown Rhode Island where his father began his current employment as a nationally

recognized research scientist with the Environmental Protection Agency and his mother was

employed as a special education teacher. In 2001 Elliott received his high school degree from

South Kingstown High. He then attended the University of Rhode from 2001 to 2005 and

graduated from with a Bachelor of Science in environmental science and management. Elliott

has attended the University of Florida from fall 2005-2007 and plans on continuing his education

at the University of Maryland under Dr. David Tilley expanding on his thesis research. Elliott is

passionate about travel and plans on expanding upon the twelve countries he has currently had

the pleasure of visiting.





PAGE 1

1 ENVIRONMENTAL ACCOUNTING OF NATU RAL CAPITAL AND ENVIRONMENTAL SERVICES OF THE US NATIONAL FOREST SYSTEM By ELLIOTT CAMPBELL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008

PAGE 2

2 To my family and my friends, especi ally those who are no longer with us.

PAGE 3

3 ACKNOWLEDGMENTS I would like to thank my parents, Dan Campbell and Kathy Trimmer, for their unconditional love and for instilli ng my love for the natural world. I would also like to thank my grandmother and late step-grandfather, Betty and HT Odum, for fostering my inquisitiveness about the world in which we live, and pioneering the discipline for which I am passionate. Without these people I would not be the person th at I am today. My committee chair, Dr. Mark Brown, has been instrumental in the completion of this work. He expanded my understanding at both the theoretical level as well as the funda mental aspects of research. My other committee members, Dr. Matt Cohen and Dr. Janaki Alaval apati, provided excellent feedback and helped me to understand my research questions and the sy stem that I was studying. I would like to thank the United States Forest Service, in particular Dr. Ariel Lugo, Director of the International Institute for Tropical Forestry, for supporti ng this research and providing funding through cooperative agreement #05-DG-11120101-019 between th e USDA, Forest Service International Institute of Tropical Forestry a nd the Center for Environmental Po licy, University of Florida.

PAGE 4

4 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................3 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES................................................................................................................ .........9 ABSTRACT....................................................................................................................... ............10 CHAPTER 1 INTRODUCTION..................................................................................................................11 Statement of the Problem....................................................................................................... .11 Plan of Study.................................................................................................................. .........12 Description of the USFS System.....................................................................................15 The United States Forest Service System........................................................................16 Osceola and Deschutes National Forests.........................................................................17 Literature Review.............................................................................................................. .....20 2 METHODS........................................................................................................................ .....25 General Methods for Emergy Synthesis.................................................................................25 Spatial and Temporal Bounda ries of the Synthesis.........................................................25 The emergy synthesis table......................................................................................26 Evaluation of flows and storages.............................................................................27 Emergy Synthesis of the USFS...............................................................................................28 Environmental Flows.......................................................................................................28 Purchased Flows..............................................................................................................28 Emdollar Ratio.........................................................................................................29 Services....................................................................................................................29 Tourism....................................................................................................................29 Storages....................................................................................................................... ....30 Economic Values of Environmen tal Services and Capital..............................................31 Emergy Synthesis of USFS Components and Subsystems.............................................31 Deschutes: emergy of mountain formation..............................................................31 Osceola: evaluation of phosphorus storage..............................................................31 Subsystems Evaluated.....................................................................................................32 Emergy Indices and Ratios..............................................................................................32 3 RESULTS........................................................................................................................ .......36 Yearly Flows of the USFS System.........................................................................................36 USFS Exports................................................................................................................... ......37 USFS Capital Assets............................................................................................................ ...39

PAGE 5

5 Environmental Capital.....................................................................................................40 Footnotes in appendix F..................................................................................................41 Economic Capital............................................................................................................43 Geologic Capital..............................................................................................................43 Information Capital.........................................................................................................43 Regional Syntheses............................................................................................................. ....46 Regional Variation............................................................................................................. .....50 Comparison of Yearly Flow Results from the Case Study Forests........................................52 Pacific Northwest Region and Deschutes National Forest..............................................52 Comparison of Results from the USFS Southeast Region and Osceola National Forest......................................................................................................................... ...54 Comparison of Storage Results fo r Case Study Forests and Regions....................................56 Pacific Northwest Region and Deschutes National Forest..............................................56 Comparison of Storage Results from the USFS Southeast Region and Osceola NF......57 Comparison of Emergy and Economic Values.......................................................................58 Relationship of Capital to Driving Emergy............................................................................62 4 DISCUSSION..................................................................................................................... ....63 Emergy Flows................................................................................................................... ......64 Natural Capital................................................................................................................ ........64 Potential Sources of Error..................................................................................................... ..65 Intrinsic Nature of Flows and Storages..................................................................................66 Renewable Emergy and Natural Capital.................................................................................66 Emergy Indices................................................................................................................. ......67 Environmental Loading Ratio.........................................................................................67 Emergy Yield Ratio and Emergy Return on Investment.................................................68 Information Storages and Flows......................................................................................68 Comparison of Emergy and Economic Valuation..................................................................69 Regional Syntheses Analysis..................................................................................................71 Comparison of Case Study Fo rests to Overall Region...........................................................71 Comparison of Deschutes NF and the Pacific Northwest Region...................................72 Comparison of Osceola and the Southeast Region.......................................................74 Comparison Overview.....................................................................................................76 Scalar Dependence and Significance......................................................................................77 US Forest Service System within the Mosaic.....................................................................78 US Forest Service Policy Implications...................................................................................79 Future Collaboration of Emergy S ynthesis and Economic Valuation....................................79 APPENDIX A EMERGY SYSTEMS SYMBOLS.........................................................................................81 B FOOTNOTES FOR TAB LES 3-1 AND 3-2..........................................................................82 C EMERGY OF BUILDINGS...................................................................................................90

PAGE 6

6 D HUNTING ON USFS LANDS..............................................................................................93 E EMERGY OF ENDANGERED SPECIES............................................................................95 F FAUNA ON USFS LANDS...................................................................................................97 G EMERGY OF NATIVE AMERICAN CULTURAL INFORMATION..............................100 H REGION 1 TABLES AND NOTES.....................................................................................102 I REGION 2 TABLES AND NOTES.....................................................................................113 J REGION 3 TABLES AND NOTES.....................................................................................123 K REGION 4 TABLES AND NOTES.....................................................................................135 L REGION 5 TABLES AND NOTES.....................................................................................145 M REGION 6 TABLES AND NOTES.....................................................................................155 N REGION 8 TABLES AND NOTES.....................................................................................165 O REGION 9 TABLES AND NOTES.....................................................................................175 P REGION 10 TABLES AND NOTES...................................................................................185 Q DESCHUTES NATIONAL FORE ST TABLES AND NOTES..........................................195 R OSCEOLA NATIONAL FOREST TABLES AND NOTES...............................................204 S FOOTNOTES FOR TAB LES 3-7 AND 3-8........................................................................215 REFERENCES..................................................................................................................... .......222 BIOGRAPHICAL SKETCH.......................................................................................................227

PAGE 7

7 LIST OF TABLES Table page 1-1 USFS summary.............................................................................................................. ...19 1-2 Synopsis of USFS values found in Krieger (2001)...........................................................24 2-1 Example emergy table...................................................................................................... .27 2-2 Indices for flows (e nvironmental services).......................................................................34 2-3 Indices for storages (natural capital)..................................................................................35 3.1 Emergy evaluation of the USFS.......................................................................................38 3-2 Emergy of capital in the USFS system.............................................................................41 3-4 Comparison by region of components that make up natural capital of the USFS.............49 3-5 Indices comparison case study forest to region................................................................53 3-6 Case study forests vs regions comp arison of storages (units sej/m^2).............................57 3-7 Emergy emdollar, and economic value of services of the National Forest system......59 3-8 Emergy emdollar, and economic value of assets of the USFS system...........................60 C-1 Emergy storage of building components on USFS lands.................................................91 C-2 Emergy of USFS buildings...............................................................................................92 D-1 Yearly game extracted From USFS lands.........................................................................93 E-1 Emergy of endangered species..........................................................................................96 F-1 Storage of biomass on USFS lands...................................................................................97 H-1 Annual emergy flows supporting Region 1 of the USFS system...................................102 H-2 Emergy evaluation of Region 1 assets............................................................................109 I-1 Annual emergy flows supporting Region 2 of the USFS system...................................113 I-2 Emergy evaluation of Region 2 forest assets..................................................................120 J-1 Annual emergy flows supporting Region 3 of the USFS system...................................123 J-2 Emergy evaluation of Region 3 forest assets..................................................................132

PAGE 8

8 K-1 Annual emergy flows supporting Region 4 of the USFS system...................................135 K-2 Emergy evaluation of Region 4 of the USFS assets.......................................................142 L-1 Annual emergy flows supporting Region 5 of the USFS system...................................145 L-2 Emergy evaluation of Region 5 forest assets..................................................................152 M-1 Annual emergy flows supporting Region 6 of the USFS system...................................155 M-2 Emergy evaluation of Region 6 Forest assets.................................................................162 N-1 Annual emergy flows supporting Region 8 of the USFS system...................................165 N-2 Emergy synthesis of Region 8 assets..............................................................................172 O-1 Annual emergy flows supporting Region 9 of the US National Forest system..............175 O-2 Emergy evaluation of Region 9 Forest assets.................................................................182 P-1 Annual emergy flows supporting Region 10 of the US National Forest system............185 P-2 Emergy evaluation of Region 10 Forest assets...............................................................192 Q-1 Emergy evaluation of the Deschutes Nati onal Forest and its a nnual contributions of environmental services.....................................................................................................195 Q-2 Emergy evaluation of the De schutes National Forest assets..........................................201 R-1 Emergy evaluation of the Osceola Nationa l Forest and its annual contributions of environmental services.....................................................................................................204 R-2 Emergy evaluation of the Osceola National Forest assets..............................................211

PAGE 9

9 LIST OF FIGURES Figure page 1-1 Systems diagram of the USFS system...............................................................................14 1-2 The nine Regions (1-6, 8-10) of the USFS........................................................................16 2-1 General diagram for the USFS system...............................................................................33 3-1 Summarization of the annual imports to the USFS system...............................................37 3-2 Contribution of various exports to tota l emergy value of exports from USFS lands........39 3-3 Environmental capital, economic capital, and all forms of capital stored on USFS lands.......................................................................................................................... .........42 3-4 Renewable empower in each region, Re gion 10 is an outlier at over 2.7e11 sej/m2/yr.....46 3-5 Emergy Return on Investment (exports /imports) by region, Region 10 is largest............47 3-6 Emergy Yield Ratio by region, Re gion 10 the highest, at over 25....................................47 3-7 ELR in each region, Region 2 has the highest ELR..........................................................48 3-8 Areal storage of tota l capital in each region......................................................................48 3-9 Emergy of Native American cu ltural information on areal basis......................................51 3-10 Emergy of endangered species on areal basis, Region 8 highest.......................................51 3-11 Deschutes NF Exports, dominated by water......................................................................53 3-12 Region 6 exports, water is highest.....................................................................................54 3-13 Percent of total exports from Osceola NF by Type. Harvest wood is 60% of exports, compared to 2% for the entire USFS system.....................................................................55 3-15 Emdollar vs. dollar values for economic storages.............................................................61 3-16 Comparison of non-renewable st orages emdollar and dollar values.................................62 3-17 Linear regression of natural ca pital vs. renewable emergy (n of 11).................................62

PAGE 10

10 Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree Master of Science ENVIRONMENTAL ACCOUNTING OF NATU RAL CAPITAL AND ENVIRONMENTAL SERVICES OF THE US NATIONAL FOREST SYSTEM By Elliott Campbell August 2008 Chair: Mark Brown Major: Interdisciplinary Ecology The National Forests of the United States encompass 192.7 million acres of land, nearly five percent of the total land ar ea of the US. These lands are managed by the US Forest Service for multiple uses, including extraction of timber, fossil fuels and minerals, recreation by the public, and preservation of bi odiversity, clean air and water, and soils. An environmental accounting technique called emergy synthesis was us ed to evaluate the environmental services, exports of environmental goods and information, as well as natural capital. The USFS is faced with the question of the value of the environmental services pr ovided by, and the natural capital that makes up, its lands. Environmental accoun ting (emergy synthesis) provides a method to value the flows of services and storages of cap ital. The environmental services from USFS lands are equivalent to 259 billion emdollars (emergy-m onetary equivalence). Th e natural capital value is 69 trillion emdollars. The values obtained using emergy synthesis dwarf estimates made through economic analysis, particularly for servi ces and storages that exist outside economic markets like clean water and biodiversity. These h uge values emphasize the need to preserve the integrity of these systems so future generations will be able to benefit from the environmental services and natural capital the National Forests provide

PAGE 11

11 CHAPTER 1 INTRODUCTION Statement of the Problem Increasingly government agencies like the Unit ed States Forest Service (USFS) are being queried to document the benefits derived from their annual monetary budgets. While it is relatively easy to account for monetary expe nditures for goods and se rvices in support of operations and the economic returns that result from them, such as the sale of timber or other material resources, it is quite difficult to evaluate less tangible products such as environmental services or the natural capital inherent in the forests and grasslands that make up the Forest Service System. Since society benefits from thes e environmental services and the natural capital from which they flow and to date their values have not been well documented within the USFS it is most appropriate to answer the following question: What is the value of the total assets (including natural capital) and the environmental services pr ovided by the US National Forest System? While of interest from an academic pe rspective, evaluating the non-monetized services and assets also provides quantitat ive insight into the National Fore st Systems benefits and costs and may help in justifying budgetary e xpenditures in support of the System. The US National Forests are excellent exampl es of coupled human and natural systems adding complexity to management strategies th at must stress multiple uses from timber extraction to the provision of recreational activ ities for people. Facing increased pressure to demonstrate a sound quantitative basis for mana gement decisions, agencies of government whose functions are environmental protection, pr eservation, and wise use of resources, require methodologies that can account for both economic values and biophysical values within the same evaluative framework. In this study the emergy synthesis technique is applied to the USFS system to quantitatively evaluate both economic a nd environmental services and capital assets to

PAGE 12

12 lend insight into the relative im portance of these components. The use of the emergy synthesis approach to understand relative importance of components within a coupled human and natural systems framework may benefit not only the U SFS system but all agencies both public and private whose function is the management of complex systems. Plan of Study Using methods of emergy synthesis the follo wing question was posed and answered in this study of the USFS system: What is the overall value emergy and emdollar of the various components of the USFS system and the annua l environmental and economic flows supporting them? In a comparative analysis using economic data this study also answered the following question: How do the economic costs and benefits of the USFS compare with the emergy and emdollar costs and benefits? Othe r research goals included the characterization of the system through emergy synthesis performed at varying sc ales and implications of emergy synthesis on management of the USFS system. To answer these questions, emergy syntheses of the main storages (natural capital) and ecological processes (environmenta l services) of the US Forest Service System were performed. The methodology of emergy synthe sis is defined and outlined in Environmental Accounting by H.T. Odum (1996). Using an eco-region approach to quantifying storages and processes, natural capital and environmental service values were quantified and compared for each of the nine forest service regions. An eco-region approach parses the study area based on climate and dominant vegetation type. In addition, the flows of purchased inputs, labor, and tourism activity for each region were evaluated. The data from the regions were summarized in an overall evaluation of the USFS system. This eval uation included the flows of renewable and nonrenewable inputs, purc hased inputs and exports for the system.

PAGE 13

13 In addition to the evaluation of the USFS system as a whole, two case studies of selected forests (Osceola, in the southeast region, and De schutes in the northwest region) were also evaluated. These more detailed evaluations provide d additional demonstration of the values of environmental services and natural capital from a smaller scale perspective. In a final comparative analysis, emergy of environmental se rvices and natural capital of the USFS system, expressed as emdollars was compared to econo mic values derived using both market and nonmarket methodologies.

PAGE 14

14 Figure 1-1 Systems diagram of the USFS system (Brown and Campbell, 2007)

PAGE 15

15 Description of the USFS System Figure 1.1 is a systems diagram of the US Forest Service system showing the environmental driving energies, purchased reso urces, components and processes as well as exports. Appendix S gives explanation of symbols used. The environmental sources on the left, drive environmental subsystems and develop st orages of vegetation, surface water, geologic structure, and soil. These environmental subsystems and storages contribute to the image of the USFS which serves to draw in tourists from out side the system, (see the top right box) who in turn import emergy and money to the system, as we ll as remove some in the form of harvested fish and wildlife. The non-renewable sources such as fuels, and electricity go drive the human dominated subsystems that include visitor faci lities and USFS operations facilities. The USFS assets are purchased machinery and goods used in production of information and management of resources. The assets of the USFS contribute to the management of fire (see divisor symbol on the interaction symbol in the middle of the diagram). The fire interaction draws down the environmental storages of vegeta tion. It is increased by lightning from outside the system as well as by tourists in the system.

PAGE 16

16 The United States Forest Service System Figure 1-2. The nine Regions (16, 8-10) of the USFS (USFS, 2007) The United States Forest Service, part of the US Department of Agriculture, manages 192.7 million acres of public land, spread over 1 55 National Forests and 20 Grasslands. National Forests (NF) occur in 44 states as well as Puerto Rico (USFS, 2007). National forests cover about 5% of the total area of the United States. In addition, they comprise roughly a quarter of all natural habitats in th e US and are vital for the survival of many endangered and threatened species. Virtually every habitat type of the US is contained within USFS lands, from the Redwoods of northern California to the prairie-pot holes of North Dakota. The USFS is organized

PAGE 17

17 into nine regions throughout the country and th ese nine regions are fu rther divided into 600 ranger districts. The regions are numbered 1 thro ugh 10 but region 7, original ly the entire eastern portion of the US, underwent several reorganiza tions from its inception and the number 7 was lost from the continuum. (USFS, 2007). Table 1-1 summarizes the diverse characteristics of the USFS regions, and the USFS as a whole. This info rmation characterizes the regions of the USFS. The USFS was established in 1905 and still abides by its orig inal mission statement made by its first director, Gifford Pinchot, for USFS lands "to provide the greatest amount of good for the greatest amount of people in the long run" (USFS 2007). The approach to management and interpretation of this statement has evol ved over time, beginning in the early 1990s an ecosystem management approach was adopted by the USFS to better manage forests for the good of people, natural resources, a nd the species which inhabit them The USFS provides the Nation with research in a variety of areas, focusing not only on forestry but also addressing topics as diverse as biodiversity, hydr ology, and climate change. Osceola and Deschutes National Forests Osceola National Forest is in North Central Florida, within Region 8 of the USFS, and consists of 160,000 acres (647 km2) and features 174 km2 of hardwood/Cypress swamp, 97 km2 of Longleaf Pine forest, and 376 km2 of Slash Pine forest (USFS, 2006 unpub.). Osceola is managed for multiple uses. It produces timber, ha rbors wildlife, and provides people with hiking, hunting, and fishing. The majority of its lands are in sustainable rota tion timber production. The Deschutes National Forest in Central Or egon is managed in conjunction with the abutting Ochoco National Forest and Crooked Ri ver National Grassland, within Region 6, the Pacific Northwest. Deschutes comprises more than half of the combined area, 1.85 million acres of the total 2.5 million within the three management areas (USFS, 2006 unpub.). It is on the east side of the Cascade Mountain Range, which extend s from Southern British Columbia, Canada to

PAGE 18

18 northern California. Extensive lava fields are ev idence of eruptions as recent as 500 years ago. Deschutes is one of the most heavily used Nationa l Forests, receiving over eight million tourists a year. The forest is dominated by pines, prim arily Lodgepole and Pondero sa but also includes Spruce-Fir forests, small clusters of mixed hardwood stands and Mountain Hemlock stands (Smith, 2003).

PAGE 19

19Table 1-1 USFS summary Units Region 1 Region 2 Region 3 Region 4 Area Acres 25,450,317 22,088,183 20,809,796 32,025,617 Forests and Grasslands # in Region 12 24 14 14 Avg Forest Size Acres 2,120,860 920,341 1,486,414 2,287,544 States ID, MO, ND CO, WY, KA, NE, SD, AZ, NM, TX, OK UT, NV, ID, WY Wilderness Acres 4,700,000 4,800,000 2,700,000 6,000,000 Avg. Elevation Meters 1,100 2,100 2,000 2,000 Precipitation Cm 39 36 30 31 Visitors people/year 13,200,000 32 ,500,000 20,500,000 23,300,000 Region 5 20,181,999 18 1,121,222 CA 4,500,000 1,050 108 30,700,000 Region 6 Region 8 Region 9 Region 10 USFS 24,803,002 13,305,609 12,094 ,684 21,973,139 192,732,346 20 34 15 2 155 1,240,150 391,341 806,312 10,986,570 1,243,434 WA, OR TX, OK, LA, TN, MS, FL, AL, AR, VA, SC, NC, KY, GA MS, WI., MI, MN, IL, IN, OH, WV, PA, NY, NH, VT, ME AK 4,660,000 720,000 1,390,000 5,750,000 35,372,522 1,250 300 700 400 1,500 90 120 84 177 75 28,200,000 31,000,000 22,500,000 2,900,000 204,800,000

PAGE 20

20 Literature Review There have been several Emergy evaluations of forest systems conducted in the past decade. Perhaps the most comprehensive emergy study of a forest system was by David Tilley, for his dissertation at University of Florida (work later publishe d in Journal of Environmental Management, Tilley and Swank, 2003). Emergy syntheses were perf ormed of the state of North Carolina, the Coweeta watershed, and Macon Co, N.C. The goals of the study were to identify the function and role of forest ecosystems w ithin the overall ecological-economic system, using environmental accounting (emergy) and to suggest methods for managing forest systems that would maximize emergy in the ecological-economic system. Research questions in Tilleys work that inspired research questions in this study include the identifica tion of the driving energies of the systems and their empower, th e ecological-economic relationshi p change as scale changes, and how dynamics of emergy flows are incorpor ated into emergy evaluations. Tilley (2003) expands further on the implications of emergy s ynthesis on management intensity by suggesting that the environmental empower in the system should be matched by management emergy to maximize empower in the system. The highest valued exports of the system were research information, stream water discharge, recreated people, and ti mber, in that order. Tilley found that at the small scale of the forest, renewable emergys relevance is maxi mum but decreases as the resolution of the macroscope is expanded. Tilley constructs a model (MULTIBEN) in order to assess the situation yielding maximum empower. This model s howed that an intermed iate level of outside emergy investment maximized empower, if only one product, recreation, was produced, intermediate investment intens ity also maximized empower. Scatena, et al (2002) completed an emergy synthesis of the Luquillo Experimental Forest in Puerto Rico (a part of the USFS) as well as for Puerto Rico as a whole. The analysis was

PAGE 21

21 conducted to provide management recommendations for the particular forest as well as to formulate general insights into the manageme nt of forest ecosystems based on maximizing emergy flows. Puerto Rico relied heavily on im ported resources, the nation as a whole had an environmental loading ratio (ELR) of 45, while the Luquillo forest had an ELR of 3.5. The Forest was evaluated for the following environm ental functions; net primary production, biomass storage, erosion, and surface water runoff. The Lu quillo National Forest was an attractor of both researchers and tourists, both making up large in puts to the forest system. The tourist emergy outflow was nearly twice what tour ists invested into the forest, ma king this investment attractive. Scatena concluded that the water extracted from th e Forest totals about 24 million dollars a year but is worth 73 million emdollars. The roads within the Forest ar e identified as high storages of emergy, and are associated with exacerbating negative effects such as erosion and incidental animal kills. The report concludes that all of the natural values associated with the Forest, especially the land itself and water, were undervalued by economic measures. This justified the management decision to increase investment for protecti on and maintaining these resources Doherty (1995) used emergy synthesis to evalua te a variety of forest systems in Sweden, Florida, Illinois, Papua New Guinea, and Puerto Rico. In addition, conversion of forest products to electricity was evaluated usi ng emergy. Doherty looked at a vari ety of products from forests; water supply, pulp, paper, and recreation. Dohert y evaluated the many uses and products that forests produce and whether or not these uses an d products are viable. In Dohertys evaluation of recreation he included the emergy of travel cost, and used a transformity of human time that is based on the average emergy per person in one year Dohertys research provided a basis for the

PAGE 22

22 concept that the environmental services provided by a forest have the capacity to exceed the benefit that would be gained by harvesting. While forests were not the primary focus of Emergy Synthesis Pers pectives, Sustainable Development, and Public Policy Options fo r Papua New Guinea (Doherty and Brown 1993) they were an important part of the study. In addition to evaluating forests they undertook an evaluation of cultural information, establishing the extremely high emergy values for cultural information. The fundamental concept that the emer gy value of culture is the sum of the time of the people spent on developing it was first stat ed in Doherty and Brown (1993). The Papua New Guinea study includes an emergy synthesis of the forestry industry in Papua New Guinea; both rainforest extraction and Sago palm plantations were evaluated. Forest resources formed the environmental support base for the people of Papua New Guinea. Krieger (2001) provides a comprehensive review of the methods that economists use to establish the value of ecosystem se rvices, as well as the current accepted values available in the literature. It is a synthesis pa per of over 50 published works addressing both ecosystem services and natural capital. Several of th e values contained in Kriegers work were for the environmental services and/or natural cap ital of the USFS and were incl uded in this work. Table 1-2 summarizes these values. The economic valuation techniques described in the work were contingent valuation, travel-cost method, hedonic approach, defensive expenditures, benefits transfer, commercial value, gross expenditure, and economic impact. The categories of ecosystem services evaluated were watershed se rvices, air quality, biol ogical diversity, carbon sequestration, recreation and t ourism, cultural values, and non-timber commercial forest products. The highest valued service provided by US forests was climate regulation at 18.3 billion dollars, closely followed by waste tr eatment at 18.1 billion dollars. Dunkiel and

PAGE 23

23 Sugarman (1998) estimated that consumptive us e of water flowing from National Forests was worth $27 billion per year. Sedell et al (2000) es timated the value of water that was actually consumed originating in Nationa l Forests at $1.4 billi on per year. The same study (Sedell et al) estimated the carbon sequestration value of National Forests at $3.4 billion/year and the stimulation to the US GDP (Gross Domestic Produc t) as $110 billion per year. These estimates were based on the market price for the goods provided. Loomis and Richardson (2000) used contingent valuation to estimate that the ro adless areas of National Forests were worth $280 million/year, by surveying people as to there willingness to pay to preserve these area.

PAGE 24

24 Table 1-2. Synopsis of USFS values found in Krieger (2001) Category Study Basis for Valuation Value Estimate Water Dunkiel and Sugarman (1998) Consumptive use value of all water flowing from Forests $50.86/acrefoot $27 billion/year Sedell et al. (2000) Consumptive use value of water actually consumed Offstream and onstream value of all water Average Marginal value for hydroelectric Marginal Value of stream flow for recreation $1.4 billion/year $3.7 billion/yr $0.26 to $17/ acre-foot < $10/acrefoot Brown (1992) Recreational Value of streamflow Value of streamflow for anglers Total value of maintaining water body levels $1 to $45/ acre-foot <$10/acrefoot $15 to $115/ houshold/year Carbon Sequestration Dunkiel and Sugarman (1998) Benefits Transfer $65/ton $3.4 billion/yr Loomis and Ricahardson (2000) Benefits Transfer (onl y roadless areas of USFS) $65/ton $1 billion/yr $26.7 billion present value Recreation Moskowitz and Talberth (1998) Economic impact of National Forest recreation $6.8 billion in 1993 139,000 jobs in 1996 Dunkiel and Sugarman (1998) Contribution to Gross Domestic Product $110 billion/yr Moskowitz and Talberth (1998) Economic value of fishing $1.3 to 2.1 billion (1996 Moskowitz and Talberth (1998) Total economic value associated with fishing $1.4 to $2.9 billion Loomis and Ricahardson (2000) User day values for roadless area recreation Economic impact of roadless areas $600 million/yr $1.49 billion 23,700 jobs Cultural Values Loomis and Ricahardson (2000) Passive use of USFS roadless ares (contingent valuation method) $280 million annually

PAGE 25

25 CHAPTER 2 METHODS In this study, the emergy synthesis technique was used to quantitatively evaluate both economic and environmental services and capital a ssets of the USFS system and to lend insight into the relative importance of these components. The evaluation of the USFS was carried out at two scales. First, the storages (natural capital) and primary ecological processes (environmental services) of the entire USFS system were ev aluated by conducting separate evaluations of the nine USFS regions and summing to obtain total, system wide values. Second, two national forests, one from the northwest region and one fr om the southeast region, were studied in greater detail. At both scales of inqui ry, the flows of energy, materials, labor and tourist activity were evaluated. In a final comparative analysis, emer gy of environmental services and natural capital of the USFS system, expressed as emdollars, were compared to monetary values for the same services and capital derived using both ma rket and non-market methodologies. Detailed methods for these analyses follow. The concept of doing multiple evaluations at va rying scales to fully understand the subject system is taken from Environmental Accounting (Odum, 1996). The diverse characteristics of the regions made it necessary to evaluate the i ndividual regions and then sum them in evaluating the total USFS. If national averages were used th at would not capture the wide regional diversity. Regional characteristics that could potentially be lost when using national averages include climatic variability, geology, and soil attributes. General Methods for Emergy Synthesis Spatial and Temporal Bounda ries of the Synthesis The spatial boundaries were defined as th e USFS system of lands and the economic assets (roads, buildings, and machinery) and natu ral capital (mineral resources, tree biomass and

PAGE 26

26 miscellaneous natural resources) contained wi thin them. The boundary also included the Washington DC offices of the USFS. For the Fore st Service Regions that border an ocean the boundary was the continental shel f area extending out 1 km from the shore. One kilometer was used as an estimate of the contributing region of the continental shelf to the on-shore ecosystem. The vertical stratum of the system evaluated was 1000 meters above the highest ground elevation and the depth included the mineral and/or aquife r below the surface. Tw o individual national forests, the Deschutes and Osceola Forests were also evaluated. The boundaries for these forests comply with the boundary guidelines established above. The emergy synthesis table Each of the emergy evaluations were organize d using a standardized table format (Odum, 1996) like the example shown in Table 2.1. The tables had six columns organized as follows: Column 1: footnote number for each line item in the table Column 2: each line item, either a fl ow or storage is listed separately Column 3: The data for each line item Column 4: Emergy intensity, usually calculate d separately in previous st udies, units are solar emjoules per jo ule, sej/J or sej/g or sej/$ Column 5: The emergy of each line item, obtained by multiplying column 3 by column 4. Column 6: Emdollar value of the line ite m, obtained by dividing the emergy value by the Emdollar Ratio.

PAGE 27

27 Table 2-1 Example emergy table 1 Note 2 Item 3 Raw Units 4 Emergy Intensity 5 Solar Emergy 6 Emdollars 1 Name 1 Data 1 EI1 Col 3 x Col 4 Col 5/sej/$ 2 Name 2 Data 2 EI2 3 Name 3 Data 3 EI3 n Name n Data n EIn Evaluation of flows and storages Emergy synthesis of the USFS system and th e two individual forests were based on annual flows of energy, materials, and services The evaluation of the USFS was conducted for the year 2005, the most recent year with nearly complete data records. In some cases earlier years or 10 year averages were used. These are noted in the footnotes to the evaluation tables. The annual flows were those that crossed the system boundary (inputs a nd outputs) as well as resources that were extracted and used within th e Forests. A table of fl ows was formulated that included input and output flows divided into four categories; environmental inputs (sunlight, wind, rain, tides, deep heat ), resources from within that were utilized within the Forests (soils, wood, water), purchased inputs (fuels, goods, services), and res ources from within that were exported (minerals, wood, fossil fuels). The evaluations of Deschutes and Osceola Fore sts were like-wise carried out using data from 2005. Data for input flows, export flows, and storages of the Osceola and Deschutes Forests were obtained directly from personnel at each of the Forests in response to a submitted list of data needs and personal communiqu.

PAGE 28

28 Emergy Synthesis of the USFS Environmental Flows The environmental flows evaluated are sta ndard in emergy synthesis (Odum, 1996) and include solar insolation, wind, chemical and geopot ential energy of rain, energy of transpiration, tidal energy, wave energy, and earth cycle en ergy. Data and GIS coverages from government organizations were used to obtain values for ma ny of the renewable input s including rain, tides (NOAA 2006), sun insolation (NREL 2006), deep h eat (International He at Flow Commission, IHFC 2006) and elevation changes (USGS 2006). In calculating the solar, rain, heat, and wind emergy ArcGIS was used to take the data relevant to each region of the USFS and extract it from the larger data sets using the clip feature. A polygon shape coverage of USFS boundaries was used as the boundary coverage, this coverage was obtained directly from the USFS. A mean value for each flow in each region was obtained fr om the clipped portion of the dataset using the in program statistics function and then used in the emergy synthesis. Point measurements from NOAA weather stations for averag e wave height and tidal range over a yearly period (2005) over the area adjacent to National Forests, an averag e value for tide and wa ve height data from available weather stations in the area over a ye ars time (2005) was used for the regions with ocean borders (Regions 5, 6 and 10). Purchased Flows The purchased inputs to the system include goods such as herbicides/pesticides, fuel, machinery, electricity and seedlings. These data were obtained from unpublished and published USFS documents and databases (USFS 2003, 2004, 2005, 2006). Where data exists for flows in a monetary form (seedlings and miscellaneous expe nditures) the dollar valu es were converted to a representative emergy value using the emdollar ratio.

PAGE 29

29 Emdollar Ratio The emdollar ratio is the equivalence between a dollar circulating in the economy and the emergy of a country in a given year. The equivalence is made by dividing the emergy budget of the country for that year by the GDP over the same year (Odum, 1996). Dividing emergy values by this equivalence allows emergy to be expr essed in monetary terms; as the emdollar. Multiplying dollars by the emdollar ratio allows the dollar value to be converted to a representative emergy value. Services Emergy values of services and labor (ser vices quantified through dollar flows, labor quantified by hours worked) in the USFS system were yearly values found in USFS documents (USFS 2006, 2004, and unpub 2006). Dollar values were converted to emergy using the emdollar ratio. The emergy of labor by USFS employees was calculated using an estimate for number of hours worked based on the number of full and part time employees in each region and the Washington Office. The work hours were then mu ltiplied by a transformity for hourly work of someone with some college education (transfo rmity from Odum, 1996, average education level from USFS unpublished documents, 2006). Tourism The emergy imparted to the USFS system from t ourists was calculated using the joules of energy used by the tourist while visiting the forest and an average transformity value for a joule of human energy (Odum, 1996). The yearly number of hours of visitation to each region was known (USFS, 2004) and this was multiplied by an average for joules used by human activity per hour to obtain the total number of joules used in a region in the given year. The image export with tourists from the USFS was quantified by th e renewable emergy flow in the average area recreated in each region, over the average time of a recreation visit in each region. This

PAGE 30

30 quantified the quality of the experi ence for the visitor, but was not a tangible energetic export so was not included in environmental services or inde x calculations. Storages Emergy in the storages of the system was defined as the yearly emergy input to the storage multiplied by the turnover time of the storage. Mineral a nd fossil fuel storages on USFS lands were assumed to be proportional to th e percentage of the US that was USFS land (approximately 5%). The transformity used for the mineral storage was a weighted average of the most abundant occurring minerals, as determ ined by the percentage a mineral makes of the total yearly sale of minerals from USFS lands. The storage of timber in the regions was found by inputting desired search criter ia into the RPA Data Wiz software (Pugh, 2002). This software compiles forest inventory data taken by the U SFS including biomass per hectare of each tree species, and can be broken down as fine as by NF district. The COLE (Carbon On-Line Estimator) was used to obtain an estimate for the mass of shrubs and herbaceous vegetation as well as the mass of soil organic matter in each of the forest types that occur in the 9 USFS regions. This tool generates a carbon mass per m2 of each component of the forest, based on dominant tree species and location. The carbon ma ss was then converted to biomass using the assumption that vegetation is 45% carbon. The st orage of glaciers on USFS lands was estimated from USGS data available onlin e (USGS, 2006) on the average dept h of the glacie rs and USFS information on the extent of the glacier that is w ithin the boundaries of th e National Forests, also available online (USFS, 2007). The emergy of the phys ical land is based on the global average transformity of a hectare of land (Odum, 1996) The extent and characteristics of roads, buildings, and machinery on USFS lands was unpublis hed and found in internal USFS databases, made available by USFS employees. Roads characteristics were determined by class, and these class specifications were found through pers onal correspondence (USFS, 2006). The amount of

PAGE 31

31 office equipment was estimated from an average mass of office equipment, 15 kg, per m2 of office. Economic Values of Environmental Services and Capital The economic value was evaluated for all environmental services, natural capital and economic assets. These values were either obtai ned directly from USFS documents (in the case of employees, buildings, machinery, roads, recr eation and timber), or were estimated through literature estimates of market pr ice or willingness to pay (performed for minerals, fossil fuels, water, peat, and hunting/fishing). The economic va lues for environmental services and capital can be found in Tables 3-7 and 3-8. Emergy Synthesis of USFS Components and Subsystems The two case studies relied on data obtained from site visits and subsequent personal communications, as well as published and unpublished materials. The two case study Forests had the following additional evaluati ons to the regional analyses. Deschutes: emergy of mountain formation An evaluation of the emergy embodied in the mountains of Deschutes was performed for the case study. The emergy embodied in the mount ain range of Deschutes was equal to the emergy of the region over the time in which the mountains formed. This calculation was based on the elevations found in the National Forest an d the associated emergy/time required for the earth processes to form mountains of these heights. Osceola: evaluation of phosphorus storage An evaluation of the phosphorus resources in the stratum beneath Osceola was made by the USGS in 1978. This storage was evaluated in the Osceola emergy synthesis, using the USGS estimate for phosphate storage and a previously ca lculated phosphate rock transformity (Odum, 1996).

PAGE 32

32 Subsystems Evaluated Several subsystems within the network of th e USFS that were previ ously unevaluated or whose evaluation was reworked are contained within the results of this thesis. These subsystems include buildings, hunting and fi shing, evolution, biodiversity, Na tive American artifacts. The methods for their evaluation are contained with in Appendices A through E of this document. Emergy Indices and Ratios Several new indices for both yearly emergy flows and emergy storages were calculated. Flow indices are summarized in Table 2-2 and stor age indices in Table 2-3. Figure 2-2 is used to pictorially represent how the indices are calcul ated. There is only a slight difference in the Emergy Return on Investment calculation a nd the Emergy Yield Ra tio, and both indices demonstrate the amount of yield from the system compared to the non-renewable emergy input from outside the system. The difference lies in that the numerator in the emergy Return on Investment is the exports, calculated as the em ergy potential upon export from the system, while the EYR numerator is the yield, which is all the emergy input in the system. The major flow that makes a difference in the emergy of the yield an d exports is the geopotential emergy of water. For the yield it is the geopotential from the av erage elevation of the Forest to the average elevation at the system boundary while for the export emergy it is the geopotential emergy from the system boundary to sea level; this difference is larger so th e exported geopotential emergy is larger.

PAGE 33

33 Figure 2-1 General diagram for the USFS system

PAGE 34

34 Table 2-2. Indices for flows (environmental services) Calculation and Description Emergy Return on Investment (ERI), also known as exports to imports ratio ERI=Exports/F The emergy potential exported from the system divided by the energy invested from outside the system. It was previously known as exports/imports index Emergy Yield Ratio (EYR) EYR=Y (R+N+F)/F The amount of emergy yield per emergy investment from outside the system. Environmental Loading Ratio (ELR) (F+N)/R The ELR is the nonrenewable emergy in the system divided by the renewable emergy. Use (Use=R+F) per Tourist Use/Yearly Tourism (see Table 3-3) Yearly Use divided by number of visitors per year. This may indicate the quality of the experience for the tourist.

PAGE 35

35 Table 2-3. Indices for stor ages (natural capital) Description/Calculation Services to Capital Ratio S/C Ratio= Exports/RC Exported Services divided by total Natural Capital. This index measures the amount of yearly services being provided by the stored Natural Capital. This will change depending on if the Natural Capital is in a labile form. Economic-Environmental Ratio EE Ratio= C/RC All economic storages divided by environmental storages. This indicates the amount of development vs. natural lands. Information Content Info Content= IC/(IC+C+RC) Total information capital divided by all capital. This determines the extent to which the capital emergy is made up by intangible information emergy.

PAGE 36

36 CHAPTER 3 RESULTS The results of this study are summarized a nd organized as follows. The emergy value of yearly flows and storages within the National Fo rests were individually es tablished for all nine regions, and then summed; these values were used for the total USFS evaluation. The values of driving emergies and storages found for the Osce ola and Deschutes National Forests are also reported in this section. Values for total USFS yearly flows are reported first, followed by USFS and storages, regional results, case study forest results, comparison of emergy and economic values, and linear regression results. Yearly Flows of the USFS System Table 3-1 summarizes the yearly flow input s and outputs of the USFS system. The renewable emergy basis of the US National Forests was 8.67E22 sej yr-1, equivalent to 45.6 billion emdollars (Table 3-1, Ra). The emdo llar value of exports from USFS lands was 259 billion emdollars (Table 3-1, e xports sum). If recreation is in cluded as an export the value increases to 351 billion emdollars (Table 3-1, export sum). The summed (non-renewable emergy) imports to the forest lands equal 22.7 bil lion emdollars (Table 3-1, import sum). This is an emergy return of over eleven to one (Table 3-1, export sum/import sum) with tourism not considered as an export. This indicates that the National Forests are pr oviding nearly four times the emergy benefit to the larger system than the emergy of support. Of the total emergy used on national forests 66% is renewable. An index calculated from an emergy synthesis is the emergy yield ratio (EYR), the emergy yi eld divided by the emergy from the outside system. The EYR for the NF is 9.9, another indication of the large contribution to the outside system from the National Forests. The ELR for the USFS lands is 0.50. This indicates a natural landscape. Developed lands have an ELR above 4 and average 8 sej of input emergy per sej of renewable support

PAGE 37

37 (Odum 1996). Figure 3-1 shows th e emergy imported from outs ide the system on an annual basis. Tourist time dominates th e imports, with miscellaneous e xpenditures and labor the second and third greatest imports. 0.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0P e t r o l e u m P r o d u c t s M a c h i n a r y E q u i p m e n t G o o d s S e e d l i n g s T o u r i s t T i m e L a b o r E l e c t r i c i t y M i s c E x p e n d i t u r e ssej x 10^18 Figure 3-1. Summarization of the annual imports to the USFS system USFS Exports Figure 3-2 shows the percentage of contribu tion that each category provides to the total exports. Fossil fuels are the larg est single export (26%) but the two forms of energy inherent in water (chemical and geopotential) form the larg est export (40%, 21% from chemical potential and 19% from geopotential). Other significant ex ports include minerals (12%), hydroelectric power (12%), and harv ested wildlife (9%).

PAGE 38

38 Table 3.1 Emergy evaluation of the USFS Note Item Units Quantity Unit Emergy Values 1. (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 4.37E+21 1.00E+00 4371.0 2300.5 2 Rain Chemical Potential J 2.62E+18 3.10E+04 81096.1 42682.1 3 Transpiration J 1.18E+18 3.06E+04 36087.1 18993.2 4 Rain Geopotential J 1.08E+18 4.70E+04 50609.1 26636.4 5 Wind, Kinetic J 3.40E+18 2.45E+03 8326.4 4382.3 6 Hurricanes J 9.26E+13 6.49E+03 0.6 0.3 7 Waves J 6.07E+17 5.10E+04 30978.9 16304.7 8 Tides J 1.96E+17 2.43E+04 4756.0 2503.2 9 Earth Cycle J 2.10E+18 1.20E+04 25257.2 13293.2 Ra= 8.67E+04 4.56E+04 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 9.73E+10 1.68E+09 163.5 86.1 Top soil loss (harvesting) J 8.04E+13 1.65E+05 13.2 7.0 11 Miscellaneous Products (plants) J 2.50E+13 5.04E+04 1.3 0.7 Sum= 178.0 93.7 IMPORTS: 12 Petroleum Products J 4.04E+15 1.11E+05 450.1 236.9 13 Machinery, Equipment g 4.95E+09 1.13E+10 55.8 29.4 14 Goods (Pesticides, herbicides, misc goods) g 7.22E+07 1E9 7 E9 1.8 0.9 15 Seedlings $ 5.16E+07 1.90E+12 98.1 51.6 16 Tourist Time J 1.69E+15 1.50E+07 25328.8 13331.0 17 Labor (FS + Contract) hours 1.22E+08 6.30E+13 7683.6 4044.0 18 Electricity J 1.07E+15 2.92E+05 313.5 165.0 19 Misc. Expenditures $ 2.97E+09 1.90E+12 9264.4 4876.0 Sum= 43196.1 22734.8 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 2.24E+08 1.90E+12 425.9 224.1 21 Payments for minerals/fuels extracted $ 2.84E+09 1.90E+12 5390.2 2837.0 22 Fee Payments $ 5.05E+07 1.90E+12 95.9 50.5 Sum= 5912.0 3111.6 EXPORTS: 23 Extracted Firewood J 1.17E+16 3.06E+04 358.9 188.9 24 Harvested Wood J 1.02E+17 5.04E+04 5158.3 2714.9 25 Water, Chemical Potential J 1.26E+18 8.10E+04 101748.4 53551.8 26 Water, Geopotential J 2.01E+18 4.70E+04 94618.6 49799.3 27 Minerals g 4.16E+12 Mixed 60553.4 31870.2 28 Fossil Fuels 1. J 1.52E+18 Mixed 124081.7 65306.2 29 Harvested wildlife J 5.14E+16 1E5-9.9E5 42846.3 22550.7 30 Harvested Fish J 9.96E+13 1.68E+07 1673.6 880.8 31 Information (research) 2. hrs 9.10E+05 2.35E+14 214.1 112.7

PAGE 39

39 Table 3-1. Continued. 32 Hydroelectric Power 1. J 5.05E+17 1.20E+05 60743.1 31970.1 33 Image Exported with Tourists hrs 3.69E+09 4.73E+13 174419.2 91799.6 Sum= 666415.6 350745.1 ECONOMIC PAYMENTS MADE 34 Payments to State and Local Gov't $ 4.15E+08 1.90E+12 787.7 414.6 35 Payments for Labor 2. $ 1.32E+09 1.90E+12 2515.1 1323.7 Footnotes for Table 3-1 found in appendix F. Water, Geopotential 19% Minerals 12% Fossil Fuels 1. 26% Information 0% Water, Chemical Potential 21% Hydroelectric Power 12% Extracted Firewood 0% Harvested wildlife 9% Harvested Fish 0% Harvested Wood 1% Figure 3-2. Contribution of various exports to total emergy value of exports from USFS lands. USFS Capital Assets Given in Table 3-2 and pictoria lly represented in Figure 3-3 are the emergy values of stored assets (capital) on USFS lands. Ther e are four principle categories of emergy storages within the USFS system; environmental, geologic, economi c, and information. The principle formation emergy is the determinant for the category in whic h a system component is placed. For example,

PAGE 40

40 the majority of emergy embodied in buildings is derived from human ( economic) origins so it falls into the economic capital category. These di visions are used both in Table 3-3 and in the following presentation of results. Environmental Capital Figure 3-3 pictorially presents the propor tions of environmenta l capital of the USFS system. The largest values are for soil organi c matter, glaciers, tree biomass, and fauna, accounting for 73%, 11%, 9.5% and 3% of the 19.1 trillion emdollars of environmental capital storage, respectfully (Table 3-2, environmental capital sum). Soil Organic matter forms the majority of th e environmental capital, with 73% of the total. The value for glaciers is a function of the storage of glaciers on Alaskan lands and the high specific emergy (sej g-1) of glacial ice (Odum, 2000). The fauna storage is the physical storage of animal biomass in the forests, not including their ge netic information (see Appendix E). Other environmental capital is surface and ground water, both accounting for 0.4% and 2.3% of the total, the biomass of shrubs and herbaceous plants comprising 0.3%, and the physical land area, 0.2% of the total environmental capital emer gy, shown in Figure 3-3. Some environmental capital storages with economic value are tree biom ass, valued at 1.47 trillion emdollars (Table 32), and peat with an emdollar va lue of 6.4 billion (Table 3-2).

PAGE 41

41 Table 3-2. Emergy of capital in the USFS system Note Item Units Quantity Emergy Intensities (sej/unit) Solar Emergy (x1021sej) EmDollars (x109 Em$) ENVIRONMENTAL CAPITAL 1 Tree Biomass J 7.71E+19 4.48E+04 3452.5 1817.1 2 Herb./Shrub Biomass J 6.91E+18 17976 124.2 65.4 3 Land Area ha 7.80E+07 1.05E+15 81.9 43.1 4 Soil OM J 1.39E+20 1.65E+05 26467.3 13930.1 5 Peat J 3.95E+16 3.09E+05 12.2 6.4 6 Glaciers g 6.23E+17 6.46E+06 4022.3 2117.0 7 Ground Water J 2.80E+18 3.02E+05 845.3 444.9 8 Surface Water J 1.59E+18 8.10E+04 129.1 68.0 9 Fauna g 3.03E+14 mixed 1075.2 565.9 ECONOMIC CAPITAL sum= 36210.0 19057.9 10 Roads (dirt) $ 1.70E+09 1.90E+12 3.2 1.7 11 Roads (gravel) g 8.01E+13 1.68E+09 134.6 70.9 12 Roads (paved) g 4.81E+12 2.77E+09 13.3 7.0 13 Machinery & tools g 9.90E+10 1.13E+10 1.1 0.6 14 Office Equipment g 3.84E+10 1.13E+10 0.4 0.2 15 Buildings g 9.65E+11 mixed 7.5 4.0 GEOLOGIC CAPITAL sum= 160.3 84.4 16 Fossil Fuels J 1.27E+18 mixed 7797.9 4104.1 17 Minerals g 4.41E+13 7.06E+10 3112.8 1638.3 17b Minerals $ 1.20E+11 1.90E+12 228.0 120.0 INFORMATION CAPITAL sum= 11138.7 5862.5 18 Information Value of Indian Artifacts J 1.15E+18 1.89E+07 21728.1 11435.8 19 Value of Endangered Species # of species 4.96E+02 2.26E+22 62224.6 32749.8 sum= 83952.62 4.42E+04 Footnotes in appendix F

PAGE 42

42 USFS Environmental Capital Soil OM 73.1% Tree Biomass 9.5% Ground Water 2.3% Fauna 3.0% Surface Water 0.4% Glaciers 11.1% Peat 0.0% Land Area 0.2% Herb./Shrub Biomass 0.3% USFS Non-Renewable Capital Mineral s 28% Fossil Fuels 71% Roads (gravel) 1% USFS Total Capital Tree Biomass 3% Herb./Shrub Biomass 0% Soil OM 20% Land Area 0% Peat 0% Ground Water 1% Endangered Species 47% Indian Artifact Information 17% Surface Water 0% Roads 0% Fossil Fuels 6% Minerals 2% Fauna 1% Glaciers 3% Figure 3-3 Environmental capital, economic capit al, and all forms of capital stored on USFS lands

PAGE 43

43 Economic Capital Economic storages in the USFS system were fairly inconsequential in terms of their percentage of the total system storages. They comprise less than 0.01% of the total emergy capital storage of the system (not including inform ation). The largest of these storages is gravel roads, valued at 71 billion emdollars (Table 32). The paved road storage was valued at 7.0 billion emdollars and dirt roads were 1.7 billion emdollars (Table 3-2). An economic estimate of $15 billion dollars was made for all roads, roughly a sixth of the emdollar value. USFS machinery and tools were estimated to be 637 million emdollars (Table 3-2), USFS office equipment was valued at 243 million emdollars and the buildings on USFS lands had a value of 4.01 billion emdollars (Table 3-2). Geologic Capital The USFS system has moderately large storages of fossil fuels and other geologic assets in comparison to the country as a whole. Fi gure 3-3 shows the Natura l Capital of the USFS including non-renewable storag es. These storages account for 22.5% of the storages when information storages are not included and 8% of the total emergy storage (see Figure 3-3) when they are. These storages are actually undervalue d, as estimates for all mineral storages on USFS lands were not available. The value for minera l reserves on USFS lands was 16 trillion emdollars and the value of fossil fuels was 41 trillion emdollars (Table 3-2). Information Capital Figure 3-3 demonstrates the large per centage of total USFS capital made up by information capital (endangered species and Na tive American culture storages). The two categories of information capital valued in th is study are the cultural information of Native Americans contained within relic s of their civilization and the genetic information contained within the populations of enda ngered species in the USFS system. The sum of the information

PAGE 44

44 capital is nearly two times (44.2 trillion emdolla rs, Table 3-2 information capital sum, vs. 24.9 trillion emdollars Table 3-2 total all other line ite ms) the sum of all other storages. Of the two information values the storage of genetic inform ation is the larger (34.8 trillion emdollars). The cultural information embodied in the Native Amer ican relics on USFS lands equals 11.4 trillion emdollars (Table 3-2

PAGE 45

45 Table 3-3 USFS yearly indoces Unit USFS Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10 Ra (renewable absorbed) sej/yr 8.67E+22 3.96E+21 3.73E+21 6. 27E+21 9.60E+21 5.58E+21 1.85E+ 22 7.36E+21 5.57E+21 2.61E+22 No (local nonrenewable) sej/yr 1.69E+20 3.17E+19 2.01E+19 3. 85E+18 2.41E+19 1.06E+19 5.00E+ 19 7.73E+18 1.86E+19 2.80E+18 N (Non-renewable) sej/yr 2.96E+23 5.45E+21 1.77E+22 1.91E +22 2.90E+21 1.06E+22 6.40E+ 21 4.70E+21 7.21E+21 8.71E+20 Imports (F) sej/yr 4.32E+22 3.22E+21 5.36E+21 3.80E+ 21 4.70E+21 6.31E+21 5.28E+21 5.73E+21 3.94E+21 1.04E+21 Exports (B) sej/yr 4.92E+23 2.05E+ 22 2.22E+22 2.95E+22 3.47E+22 4.43E+22 5.38E+22 1.78E+22 1.87E+22 2.87E+22 Yield (R+N+F) sej/yr 4.25E+23 1.26E+22 2.67E+22 2.92E+ 22 1.72E+22 2.25E+22 3.02E+22 1.78E+22 1.67E+22 2.80E+22 Use (R+N+N0+F) sej/yr 1.30E+23 7.21E+21 9.10E+21 1.01E +22 1.43E+22 1.19E+22 2.38E+ 22 1.31E+22 9.53E+21 2.72E+22 Emergy Yield Ratio (Y/F) 9.85 3.92 4.99 7.69 3.66 3.57 5.72 3.10 4.24 26.89 % renew 0.67 0.55 0.41 0.62 0.67 0.47 0.78 0.56 0.58 0.96 EIR (F/R+N) 0.50 0.81 1.43 0.61 0.49 1.13 0.28 0.78 0.71 0.04 ratio imports to exports 0.09 0.16 0.24 0.13 0.14 0.14 0.10 0.32 0.21 0.04 Emergy Return on Invest. 11.39 6.38 4.14 7.78 7.37 7.02 10.18 3.11 4.74 27.55 Empower Density Sej/ m^2/yr 1.67E+11 7.00E+10 1.02E+11 1.20E+11 1.11E +11 1.46E+11 2.38E+11 2. 43E+11 1.95E+11 3.06E+11 Renewable EmP. Density Sej /m^2/yr 1.11E+11 3.84E+10 4.17E+10 7.44E+10 7.41E +10 6.84E+10 1.84E+11 1. 37E+11 1.14E+11 2.94E+11 ELR (F+N)/R 0.50 0.82 1.44 0.61 0.49 1.13 0.29 0.78 0.71 0.04 Use per visitor sej/ capita 6.35E+14 5.43E+14 2.79E+14 4.91E+14 6.14E +14 3.87E+14 8.44E+14 4. 22E+14 4.23E+14 9.37E+15 ESI (EYR/ELR) 6.01 4.78 3.46 12.68 7.43 3.16 19.85 3.98 5.97 672.13 Timber Harvest Sej/ m^2/yr 6.61E+09 5.49E+09 4.01E+09 2.15E+09 5.46E +09 8.29E+09 1.06E+10 1. 43E+10 1.45E+10 1.36E+09 Visitors People /ha/yr 2.63 1.28 3.64 2.43 1.80 3.76 2.81 5.76 4.60 0.33

PAGE 46

46 Regional Syntheses An emergy synthesis was completed for each USFS region (see appendices G-O). The individual characteristics and i ndices of the regions can be seen from these syntheses, and are summarized in Table 3-3. Examples of where a re gion deviates from the average include region threes high mineral export value, region fours high export of geopoten tial emergy and region 10s large values for chemical potential emergy of water. Table 3-4 exhibits values for each region put on a per m2 basis for comparison. Figure 3-4 exhi bits the variability in renewable empower density. 0 5 10 15 20 25 30 35 USFSRegion 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10E10 sej/m^2/yr Figure 3-4. Renewable empower in each region, Region 10 is an outlier at over 2.7e11 sej/m2/yr Figures 3-5, 3-6 and 3-7 describe the Emer gy Return on Investment Ratio, the Emergy Yield Ratio and the Environmental Loading Ra tio. Region ten has the largest Emergy Return Ratio of the regions at nearly 28 to one and EYR of over 25 and the smallest ELR, 0.04. Figure 3-5 demonstrates that Region 10 also has the la rgest input of renewable emergy per unit area. Figure 3-8 shows the total stor age of natural capital per m2 for each region, with region 10 being the greatest.

PAGE 47

47 0.00 5.00 10.00 15.00 20.00 25.00 30.00USFSRegion 1Region 2Region 3Region 4Region 5Region 6Region 8Region 9Region 10Exports/Imports (B/F) Figure 3-5 Emergy Return on Investment (expor ts/imports) by region, Region 10 is largest 260.00 5.00 10.00 15.00 20.00 25.00USFSRegion 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10Y/F Figure 3-6. Emergy Yield Ratio by region, Region 10 the highest, at over 25

PAGE 48

48 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60USFSRegion 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10(F+N)/R Figure 3-7 ELR in each region, Region 2 has the highest ELR 0 20 40 60 80 100 120 140 160 USFSRegion 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10E12 sej/m2 of storage Figure 3-8 Areal storage of total capital in each region

PAGE 49

49Table 3-4 Comparison by region of components that make up natural capital of the USFS units USFS Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10 All Natural Capital sej/m^2 4.56E+13 2.52E+13 1.83E+13 1.01E+13 1.70E+13 2.14E+13 6.68E+13 4.26E+13 6.06E+13 1.52E+14 All Economic Capital sej/m^2 2.14E+11 2.72E+11 1.51E+11 1.23E+11 1.30E+11 2.94E+11 2.67E+11 4.01E+11 3.17E+11 2.64E+10 Tree Biomass sej/m^2 3.58E+12 4.16E +12 3.49E+12 1.16E+12 2.07E +12 4.50E+12 7.89E+12 3. 47E+12 2.66E+12 2.36E+12 Herbaceous/Shrub Biomass sej/m^2 1.59E+11 1.02E+11 1.33E+11 1. 46E+11 1.55E+11 1.66E+11 2.04E+ 11 1.75E+11 8.91E+10 2.42E+11 Land Area sej/m^2 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 1.05E+11 Soil OM sej/m^2 3.39E+13 2.02E+13 1.39E+13 7.65E+12 1.39E+13 1.58E+13 5.72E+13 3.66E+13 5.47E+13 1.02E+14 Peat sej/m^2 1.57E+10 1.87E+11 7.49E+09 1.66E+09 Glaciers sej/m^2 5.16E+12 1.26E+10 4.52E+13 Ground Water (drinking aquifer) sej/m^2 1. 08E+12 5.60E+11 6.72E+11 1.03E +12 6.72E+11 6.72E+11 1.24E+ 12 1.99E+12 1.18E+12 2.24E+ 12 Surface Water sej/m^2 1.66E+11 7.63E+10 5.05E+10 4.33E+ 10 4.36E+10 2.01E+11 2.20E+11 1.75E+11 1.91E+12 5.89E+11 Fauna sej/m^2 1.38E+12 Native American Information sej/m^2 4.38E +12 1.33E+13 1.48E+12 3.34E+ 13 4.79E+12 8.25E+13 1.97E+13 3.42E+13 4.24E+13 1.97E+13 Biodiversity Information sej/m^2 1.29E+ 15 3.29E+12 4.04E+12 1.47E+13 4.70E+12 2.82E+13 2.41E+14 4.00E+15 2.40E+13 2.79E+12

PAGE 50

50 Regional Variation Table 3-4 shows generally low variation be tween regions among the four classes of (environmental, economic, geologic and information) capital storages. Ther e are several notable absences in the regional synthese s when compared to the total U SFS synthesis. Data for regional storages of minerals and fossil fuels were not available. These estimates would be highly variable among the regions. Fauna storage for each region was not estimated either; these estimates would be expected to vary along with the resource base of the region. The soil organic matter storage is the largest in all regions, va rying between 66 and 90% of the natural capital storage. For nearly all regions the percentage of environmental capital comprised by tree biomass varies between 8 and 21%. The two exceptions ar e Region 9 and 10. Region nines storages were dominated by soil OM, with 90% of the enviro nmental capital in that form. Region 10 had a large storage of glacial ice, accounti ng for 30% of environmental capital. Figure 3-10 shows that the emergy of cultural information in Native American relics was greatest in Region 5 and the lowest in Regi on 2. Figure 3-11 demonstr ates that the emergy storage of genetic information of endangered speci es is highest in Region 8 (4.4 E24 sej) and lowest in Region 10 (2.5 E23 sej).

PAGE 51

51 0.00E+00 1.00E+13 2.00E+13 3.00E+13 4.00E+13 5.00E+13 6.00E+13 7.00E+13 8.00E+13 9.00E+13R egion 1 Re gi on 2 R egion 3 Re gi on 4 R egion 5 Re gi on 6 R egion 8 Re gi on 9 Region 10sej/m2 Figure 3-9 Emergy of Native American cultural information on areal basis 0 5 10 15 20 25 30 35 40 45 USFSRegion 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 8 Region 9 Region 10E14 sej/m2 Figure 3-10 Emergy of endangered species on areal basis, Region 8 highest

PAGE 52

52 Comparison of Yearly Flow Resu lts from the Case Study Forests Pacific Northwest Region and Deschutes National Forest Environmental services provide d by the Pacific Northwest re gion forests (Region 6) are dominated by water leaving the system. This emergy export of water was divided into geopotential energy and chemical potential energy. Figures 3-11 and 3-12 show the environmental services from Deschutes NF and the Pacific Northw est region, respectively. Region 6 exports seventy five percent water, w ith 40% of the emergy derived from geopotential energy and 35% from chemical potential (percent ages calculated without emergy of tourism). Water forms 89% of Deschutes NF total export s, 62% from geopotential emergy and 27% from chemical potential emergy. Harvested timber accounts for about 2% of exports for both Deschutes and Region 6. At the regional level h unted wildlife forms 8% of the total emergy exported and the emergy of fish e xported is less than 1%. The opposit e is true for Deschutes; fish account for 7% of the exports a nd hunted wildlife is only 1%. Table 3-5 compares the indices of Deschutes and Region 6. They are very similar for the majority of indices. Both have high Emergy Re turn on Investment and Emergy Yield Ratios, equal to 13.9 and 4.9 for Deschutes and 10.0 and 5.7 for the overall region. The region as has a higher percentage of use that is renewable, 78% vs. 50% for Deschutes Deschutes also has a higher Environmental Loading Ratio (ELR), 0.41 vs. 0.29. The Emergy Sustainability Index (ESI) is 12.0 for Deschutes and 19.8 for the Pacific NW region.

PAGE 53

53 Table 3-5 Indices comparison ca se study forest to region Indices Unit Osceola Region 8 Deschutes Region 6 Ra (renewable absorbed) Sej 1. 33E+207.36E+217.34E+20 1.85E+22 No (local nonrenewable) Sej 0. 00E+007.73E+183.61E+18 5.00E+19 N (total Nonrenewable) Sej 1. 874E+194.70E+214.24E+20 6.40E+21 Imports (F) Sej 1.41E+195 .73E+212.97E+20 5.28E+21 Exports (B) Sej 2.79E+191 .78E+224.13E+21 5.38E+22 Yield (R+N+F) Sej 1.662E+201.78E+221.5E+21 3.02E+22 Use (R+N+N0+F) Sej 1.47E+2 01.31E+221.03E+21 2.38E+22 Emergy Yield Ratio (Y/F) Sej 11.783.104.90 5.72 % renew 0.900.560.71 0.78 EIR (F/R+N) 0.110.780.40 0.28 ratio imports to exports 0.510.320.07 0.10 ERI, ratio exports to imports 1.983.1113.93 10.18 Empower Density sej/m^2 2.25E +112.43E+111.38E+11 2.38E+11 Renewable EmP. Density sej/m^2 2.03E+111.37E+119 .79E+10 1.84E+11 ELR (F+N)/R 0.110.780.41 0.29 Use per visitor sej/capita 9. 83E+144.22E+143.69E+14 8.44E+14 ESI (EYR/ELR) 111.343.9812.00 19.85 Timber Harvest sej/m^2 2.58E +101.43E+109.70E+09 1.06E+10 Visitors people/ha/yr2.295.763.73 2.81 Minerals 1% Extracted Firewood 0% Harvested Saw Timber 2% Harvested Fish 7% Harvested wildlife 1% Water Geopotential Energy 62% Water Chemical Energy 27% Information (research) 0% Figure 3-11 Deschutes NF E xports, dominated by water

PAGE 54

54 Water, Chemical Potential 41% Water, Geopotential 46% Harvested wildlife 8% Minerals 2% Information (research) 0% Harvested Fish 0% Extracted Firewood 1% Harvested Wood 2% Figure 3-12. Region 6 expor ts, water is highest Comparison of Results from the USFS Sout heast Region and Osceola National Forest The Southeast Region, Region 8, has a highe r than average export of timber in comparison to its other exports. Four percent of the total emergy exported is from timber, compared to the national average of 2% (see Ta ble 3-1, the national percentage excludes flows not included in the regional synthe sis). Osceola National Forest is an exceptional forest in that timber forms the majority (60%) of its emergy e xports, as seen in Figur e 3-13 which summarizes exports provided by Osceola. Chemical energy of water is the other large emergy export, comprising 31% of the total. The next largest ex port is fish, at 6%. Figu re 3-14 describes Region 8s environmental services which are dominated by water; chemical potential energy is 54% of the emergy export total and geopot ential forms 21%. Wildlife and fish extraction form 17% and 1%, respectively. All these percentages are repor ted without including th e tourism emergy export estimate. When enjoyment gained by tourists is considered as an export, it dominates the emergy exports, forming 70% of Region 8 and 81% of Os ceola exports, compared to 36% for the USFS

PAGE 55

55 system as a whole. Osceola has fewer visitors per unit area (see Table 3-5 and Table 3-3) than the national average. Indices were calculated for both Osceol a NF and the Southeast region, showing significant differences between the two in seve ral areas. Osceola has a higher Emergy Yield Ratio (11.78 vs. 3.1, see Table 3-5) but a lower Emergy Return on Investment ratio (ERI). The ERI of Osceola is 1.98 vs. 3.11 for the region. The Environmental Load ing Ratio (ELR) of Osceola is 0.11 while the ELR of the Region is 0.78. Percent of total use that comes from renewable sources is 90% for Osceola a nd 56% for the Region (Table 3-5). Extracted Firewood 0% Harvested Wood 60% Minerals 0% Water, Chemical Potential 31% Information (research) 0% Harvested Fish 6% Water, Geopotential 2% Harvested wildlife 1% Figure 3-13 Percent of total exports from Osceola NF by Type. Harvest wood is 60% of exports, compared to 2% for the entire USFS system

PAGE 56

56 Water, Geopotential 21% Minerals 3% Harvested Fish 1% Harvested wildlife 17% Harvested Wood 4% Water, Chemical Potential 54% Extracted Firewood 0% Information (research) 0% Figure 3-14 Region 8 Exports, dominated by water Comparison of Storage Results for Case Study Forests and Regions Pacific Northwest Region and Deschutes National Forest Table 3-6 provides comparison of storages of emergy within Deschutes NF and Region 6. The largest difference is evident in the storage of tree biomass and soil organic matter. Deschutes storages were composed of 25% tree biomass and 49% soil organic matter, Region 6 averaged 12% tree biomass and 86% soil organic matter. So il OM was larger in Region 6 than Deschutes on a per m2 basis, as was tree biomass (Table 3-6). The next largest storage for both Deschutes and Region 6 was ground water at 3 and 2%, of natural capital, respectively. They both had the same solar emjoules of groundwater per meter square of storage (see Table 3-6). The emergy embodied in mountains (the amount of energy ne cessary to create relief) was evaluated. The

PAGE 57

57 emergy storage in mountains wa s exceptionally high, at 5.6 X1028 sej (see appendix Q). Deschutes had a comparable storage of emergy per unit area in Native American cultural artifacts but it had an emergy of biodiversity that is almost an order of magnitude less than the regional average (Table 3-6). Table 3-6. Case study forests vs regions co mparison of storages (units sej/m^2) Osceola Region 8 Deschutes Region 6 All Natural Capital 1.06E+1 4 4.26E+13 4.55E+13 6.68E+13 All Economic Capital 2.93E+1 24.01E+118.04E+112.67E+11 Tree Biomass 2.46E+123. 47E+121.54E+127.89E+12 Herbaceous/Shrub Biomass 1.48E +121.755E+115.41E+102.04E+11 Land Area 1.05E+111.05E+1 11.05E+111.05E+11 Soil OM 6.49E+133.66E +134.25E+135.72E+13 Peat 1.34E+131.865E+11Ground Water (drinking aquifer) 2.39E+131.991E+121.24E+121.24E+12 Surface Water 6.34E+101.745E+111.03E+112.2E+11 Native American Information 1. 87E+143.42E+131.24E+131.97E+13 Biodiversity Information 2.02E +164.00E+153.17E+132.41E+14 Comparison of Storage Results from the USFS Southeast Region and Osceola NF Table 3-6 lists the emergy values of storages within Os ceola National Forest. Osceolas environmental storages of groundwater and peat ar e much higher than the overall region on a per m2 basis (see Table 3-6). When put on a per m2 the storage of biomass was similar to the region (see Table 3-6). Soil OM storage in Osceola was tw ice that of the overall region (Table 3-6). Osceola has a large reserve of phosphorus, accounti ng for 217 billion emdollars. Mineral storage for the overall region was not evaluated due to data limitations. Emergy storage of Native American cultural information embodied in artifacts is higher in Osceola than the overall region, as is the emergy stored in genetic information (see Table 3-6).

PAGE 58

58 Comparison of Emergy and Economic Values Table 3-7 provides a breakdown of the services with and without market value provided by the USFS. Services with market value that have large differences between the dollar and emdollar value include tourism, carbon sink, wildlife hunting, and wildlife watching (this number is included in total tourism). The larges t services without market value are clean water and gross primary production. For the categories of pollination, seed dispersal, and predator control estimates were not available due to data limitation. The emdollar total for both services with and without market value was 332.4 x109; this is nearly three times the dollar value of services. Table 3-8 compares the emergy, emdollar and dollar value found for the Capital on USFS lands. Figures 3-18 through 3-20 show the exceptional portions of th ese results, capital that has emdollar and dollar values that ar e either especially convergent or divergent. The largest emergy storage with market value is coal followed by minerals and timber, but the largest dollar value is for real estate, followed by timber, minerals and co al. The largest storage w ithout market value is the emergy of geologic formation; gene tic resources are also very high.

PAGE 59

59 Table 3-7. Emergy emdollar, and economic value of services of the National Forest system Note Parameter Emergy Value (1018sej) Emdollars (109 Em$) Dollar Value (109 $) Services with Market Value 1 Research 229 0.1 0.02 2 Image Export (Tourism) 174419 91 11.2 3 Sales, Permits and Concessions 6 0 3.1 4 Hydroelectric energy 60743 32 11.2 5 Water supply 196367 103 63.6 6 Carbon sink 36087 19 1.4 7 Watershed protection 81096 43 19.9 8 Wildlife hunting 42846 23 2.9 9 Fish Harvest 1674 1 1.3 10 Wildlife watching 20571 11 0.8 Total Market Services/yr 244.7 113.4 Non-Market Services 11 Clean air 13181 6.9 -12 Clean water 81096 42.7 -13 Gross primary productivity 36087 19.0 -14 Net primary productivity 14435 7.6 -15 Total respiration 21652 11.4 -16 Scientific information 214 0.11 -Total Non-Market Services/yr 87.7 0.0 Footnotes in Appendix R

PAGE 60

60 Table 3-8. Emergy emdollar, and economic value of assets of the USFS system Note Parameter Emergy Value (1021 sej) Emdollars (109 Em$) Dollar Value (109 $) Capital With Market Value 1 People (employees) 5.3 2.8 1.3 2 Building Infrastructure 7.5 3.9 4.4 3 Machinery, Vehicles 1.1 0.6 0.5 4 Roads 151.2 79.6 15.0 5 Timber 2791.6 1469.3 147.7 6 Water (surface) 129.1 68.0 40.4 7 Water (ground) 845.3 444.9 102.0 8 Biomass fuel 2915.8 1534.7 189.0 9 Minerals 3112.8 1638.3 120.0 10 Real estate 81.9 43.1 960.0 11 Coal 7611.1 4005.8 73.4 12 Gas 27.8 14.6 8.9 13 Oil 159.0 83.7 17.0 14 Shale NA -NA 15 Peat 12.2 6.4 0.004 16 Other forest products NA -0.003 Total Market Capital9,396 1,680 Non-Market Capital 17 Soil 1,868 983 -18 Old growth biomass 531 280 -19 Wildlife 1,075 566 -20 Endangered wildlife 62,225 32,750 -21 Topography 1,490,580 784,516 -22 Geologic formations 5,070,000,000 2,668,421,053 -23 Priceless locations 2,573 1,354 -24 Knowledge 370 195 -25 Native American Artifacts 21,728 11,436 -26 Total Genetic res ources 292,795,703 154,103,002 -Total Non-Market Capital2,823,356,133 -Footnotes in Appendix R

PAGE 61

61 Figure 3-15 shows the dollar a nd emdollar values for employees, buildings, machinery and roads. It can be observed that the values are similar for machinery, buildings and employees but diverge in the valuation of roads, with th e emdollar value being much greater (79.6 billion emdollars vs. $15 billion dollars). As shown by Figure 3-16, minerals stored on USFS lands were valued at approximately 120 billion dollars and 1.6 trillion emdolla rs, shown in figure 3-16. Figure 3-16 also demonstrates the variation in emdollar and dollar values for oil, natural gas and coal, all given more value using emergy synthesis. This data can also be found in Table 3-8. 2.8 3.9 0.6 1.3 4.4 0.5 15.0 0.0 5.0 10.0 15.0 20.0 25.0 People (employees) Building Infrastructure Machinery, Vehicles Roads 79.6Emdollar/Dollar x10^9 Emdollar Dollar Figure 3-15 Emdollar vs. dollar values for economic storages

PAGE 62

62 1638.3 4005.8 14.6 83.7 120.0 73.4 8.9 17.0 0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0 4500.0 MineralsCoalGasOilEmdollars and Dollars (x10^9) Emdollar Dollar Figure 3-16 Comparison of non-renewable st orages emdollar and dollar values Relationship of Capital to Driving Emergy A linear regression analysis was performed comparing the yearly renewable flow of emergy to the storages of emergy in the form of natural capital (Figure 3-17). Natural Capital is regressed against yearly renewable emergy absorbed. It was found that a statistically significant positive linear relationship was found with an r2 value of 0.774 (see fig. 3-17). The sample size is the 9 USFS regions and the cas e study forests (n=11). R2 = 0.7741 0.00E+00 1.00E+13 2.00E+13 3.00E+13 4.00E+13 5.00E+13 6.00E+13 0.00E+005.00E+101.00E+111.50E+112.00E+112.50E+113.00E+113.50E+11 Ra, sej/m^2/yrNat. Capital sej/m^2 Figure 3-17 Linear regression of natural capital vs. re newable emergy (n of 11)

PAGE 63

63 CHAPTER 4 DISCUSSION The driving research question for this work is: What is the emergy value within and provided by the USFS System? The constituents of this system include the flows, both nonrenewable and renewable, that en ter and exit the system on a yearly basis and the storages within the system. Emergy values of exported environmen tal goods and services as well as information and material capital storages are established by this research. Emergy values are compared with economic values based on price and willingness to pay from literature sources. Other research goals were to establish the relative importance of flows and storages within the system, identify the potential affect of the magnitude and signifi cance of flows/storages on management, and ascertain the utility of performing evaluations at multiple scales. The following conclusions were drawn from the resu lts of this study: The USFS is providing a much larger benefit to the external system than is necessary to sustain it; this is exemplified by the Em ergy Yield Ration and the Emergy Return on Investment index. Values for environmental services, goods a nd storages are greater when evaluated through emergy synthesis than when economic methodology is used. Differentiation of values is least for flows and storages where anthropogenic emergy dominates. Performing emergy synthesis at multiple scal es grants increased understanding of the character and behavior of the target system. The National Forests should be managed to sustain the quality an d quantity of their yearly flows and permanent storages

PAGE 64

64 Emergy Flows The renewable flows supporting the USFS were approximately 8.6 E22 sej/yr, equivalent to 45.6 billion emdollars. The USFS system was supported by 4.3 E22 sej/yr (22 billion emdollars) from outside the system and exports 4.9 E23 sej/yr (259 billio n emdollars) on a yearly basis. This is eleven times the emergy necessa ry to support the system. From an emergetic perspective the USFS system is a very good i nvestment for the nation, requiring much less emergy for maintenance than is exported for th e benefit of the surround ing lands. The largest imports to the system were tourist time, and th e labor of the USFS employees. The largest export from the system was the emergy of the chemical potential and geopotential energy of water. This provides important services to the nation, both clean drinking water and hydroelectric power (Sedell, 2000). Harvested wild life through hunting is also an important service provided. Nonrenewable emergy exports from the system fo rm a large percentage of the emergy exported from the system the largest being fossil fuels followed by minerals. These flows draw down the storages within the system; sustainabl e rates of use are discussed later. Natural Capital The total storage of emergy on USFS lands is equal to 69.1 trillion emdollars (See Table 3-2). This is 5.5 times the total GDP of the United States ($12.5 trillion yr-1), and more than the GDP of the globe ($43 trillion pe r year). Excluding the societal capital the total falls to 24.9 trillion, double the US GDP. Ecologic (or envi ronmental) capital accounts for 19.1 trillion emdollars, geologic capital is 5.74 trillion em dollars, economic capital equals 84.4 billion emdollars. The environmental capital is 225 times greater than the economic capital (environmental capital ratio). The ratio of envi ronmental capital to economic capital emphasizes the low economic investment on USFS lands in co mparison to the existing natural system. The ratio of geologic to environmental capital is 0.30 to 1. On the nationa l scale natural capital

PAGE 65

65 storages of emergy within the USFS system va ry widely. The highest storage is 34.8 trillion emdollars of genetic information and the smallest 6.4 billion emdollars of peat (see Table 3-2). There were several reasons for the large range of values, the simplest being the quantity of the various resources found on USFS lands, due to regiona l differentiation in characteristics such as climate, disturbance regime, geology, and topography. Potential Sources of Error There are a few potential sour ces of error inherent in th e emergy calculations; potential error in yearly flows will be disc ussed first. The biggest is data limitation, particularly for flows which data was not kept by the USFS. The flow s affected were fossil fuel exports, mineral exports, as well as hunting and fish ing exports. Fossil fuel and mine ral data had to be estimated from dollar flows received and an estimate mark et price, which may not be exactly the price paid. Fishing data was especially tenuous as the physical flow was estimated from catch per time data estimates. There is potential error in some of the transformities used. The majority of transformities were not calculated but were taken from other studies (Many found in Emergy Folios 1-5, published by the University of Florid a Center for Environmen tal Policy). A best effort was made to use transformities from studies in the literature that were as similar to this study as possible in order to minimize the possible error. Several natural capital storages, including glacie rs, fossil fuel storages and mineral storages were estimated based on best available data. Mi neral and fossil fuel estimates are especially tenuous as they are based on the percentage of th e total US made up the USFS and these storages may be very localized. Assumptions were made in the evaluation of Native American artifacts, such as cultural turnover time, as with the evaluation of endange red species. These assumptions were necessary to maintain the scope and timing of the research, but accuracy could be gained by in depth research into both of these subjects, beyond th e scope of this thesis.

PAGE 66

66 Intrinsic Nature of Flows and Storages The provision of environmental services is intrinsically linked to the natural capital stored within the system. Intuitively, one would conclude that the larger the storage of natural capital in the system the more environmental services will be available on a yearly basis from the system. However, this is not always true (determined thr ough lack of statistically significant relationship) and the connection is dependent on several factors. The type of na tural capital is very important. Some forms of natural capital are not available for export, such as glaciers, roads, buildings or unrecoverable storages of fossil fuels, minera ls, or groundwater. Most other flows are only available for export if emergy from the outside system is invested in order to extract the capital. This is true in the case of timber, fossil fuel s, minerals, and hunted fauna. The emergy exerted for extraction is much less than the emergy ex tracted (exemplified by Em ergy Yield Ratio, Table 3-2). Some exports of the system are provided without feedbacks like in flow of surface/ground water and in some cases fauna emigration from the system. These result from the natural conditions under which the system exists. The stor age of information is intrinsic to the physical storage in the system from which it is derived; in this case either the endangered biota or Native American relics. The information can be replicat ed in the form of scientific research which would then leave the system but the storage of information is not depleted. The physical host of the information must be affected for information to be lost, such as de struction of a relic or extinction of a species. Renewable Emergy and Natural Capital The renewable emergy absorbed by the system on a yearly basis accrues over time within the system in the form of na tural capital. A positive linear relationship was found between the emergy absorbed within the system and the natu ral capital found within the system (see Figure 317). This relationship was found to be strongly statistically significant where other suggested

PAGE 67

67 relationships were not, such as renewable emergy absorbed and environmental services, because environmental services are dependent on humanity extracting the resource. An important result from this analysis is the recogni tion that the magnitude of the re newable emergy that is available to fuel the system has a dire ct result on the amount of natural capital stored in the system. Emergy Indices Environmental Loading Ratio The environmental loading ratio (ELR) is an indicator of the degree that a region is impacted by human influence. The ELR of the U SFS regions varies from 1.44 in region two to 0.04 in region 10, and it is 0.50 for the USFS system as a whole (Figure 3-7). This places USFS lands firmly in the natural lands category, as one would expect. Lands with an ELR under four are considered natural. The average ELR fo r the United States is 7.3 (Sweeney, 2008). The natural condition of the land (its image) serves as the attractor for tourists to come and visit the forest. These visitors form the largest economic emergy input to the forest. The forest regions with the highest ELRs are the regi ons with the largest numbers of visitors. Previous work has suggested that ELR of one is ne cessary for the most efficient us e of natural resources (Tilley, 2003). It may be that the optimal visitation rate would be one that has equivalent emergy to the renewable flow. In that case, the National Fo rests could sustain an approximate 600 million visitors annually, and achieve an ELR of one. This is assuming all portions of the USFS system would be available for visitation. This is an ove restimate, considering th at many parts of USFS lands are relatively inaccessible and that the va st majority of visitation occurs on designated sites. Further research is necessary to verify the optimal level of visitation or investment in resource exploitation. It would be very informative to compare indices of environmental degradation in National Forests to the ELR in those forests.

PAGE 68

68 Emergy Yield Ratio and Emergy Return on Investment Emergy return on investment (ERI) and th e Emergy Yield Ration (EYR) describes the ratio between the emergy of the flows exported and the emergy necessary to upkeep the National Forests. Both indices are calculated similarly (see ch. 2 p. 9 for description of calculation) When considering either index, the USFS system is e xporting much more emergy than is fed back to the system; it has an ERI of eleven and an EYR of 10. The ERI of the regions vary from 3.8 in region 8 (southeast) to 28 in region 10 (Alask a), Figure 3-8 and 3-9 demonstrate the ERI and EYR for all regions and the USFS. Across all regi ons much more emergy is being provided to the nation than is required to manage the forests. The exports of the syst em are either renewable flows or non-renewable resources with a larg e amount of embodied geologic work. These resources have relatively small amounts of huma n work/resources invested in their provision; they are considered raw resources. Information Storages and Flows The yield calculation does not include the image export emergy value, when it is included the EYR rises to 15. It is very hard to quantify the value of the information that someone has taken with them, in this case repr esented by the emergy of the area visited, over the time of the visit. The image value increases the total export value by thir ty five percent. The value represents the enrichment of visitors lives, and a potential im petus for revisiting and protecting National Forests or othe r natural lands. Wh ile it is important to acknowledge the large value of the experience, the results were reported with and without this value because of its lack of tangible energetic contribution an d possible variation by individual. Information storages comprise 64% of all storag es; this ratio is the information content of capital. These storages represent the emergy necessa ry to replace the storages in the system if they were lost. For example, it would take 6.2E25 solar emjoules over three million years of

PAGE 69

69 evolution to replace the endange red species that currently re side on USFS lands. These large values emphasize the need to protect the physical storages in the syst em, thus preserving the information inherent within them. Comparison of Emergy and Economic Valuation The results of the emergy s ynthesis of the USFS system demonstrate the relationship between emergy valuation and economic valuation as well as identify and value the components within the system. Values of environmental fl ows and storages established through emergy are higher than those established through economic methods. The human work element of both emergy and economic valuation links the values at the human end of the spectrum and the accounting of environmental work in emergy valu ation yields a division in values at the natural end of the spectrum of system com ponents (see Figures 3-15 and 3-16). There is a greater benefit being received by the nation from the USFS system than an economic valuation would imply. An example of this is the flow of water coming from USFS lands. This water carries with it a tremendous amount of chemical and geopotential energy th at contributes energy to the external system. This export alone (worth 119 billion emdollars annually) more than justifies the $4-5 billion a nnual budget of the USFS (USFS, 2006 Fiscal Overview). Inequality of emergy and economic value is seen in water, timber, fossil fuels, minerals, wildlife and fish extracted (see Table 3-7 and 38). This indicates that the environment is providing a large value (quantity of work) external to the economic system. This can be seen as an indicator of the importance of preserving the system that provides this free work for the provision of these resources to co ntinue. Natural resources form th e basis of the economy and the free environmental work is the basis of these resources.. When economic measures are used to value environmental services they are valued at $48.8 billion, but th is number is a high estimate; it assumes 100% of the water resource exporte d is available for human consumption. The

PAGE 70

70 emdollar value exceeds the total dollar value of natural resources from the USFS system by 177 billion emdollars (226 billion emdollars value vs $48 billion dollars of payments received, see Table 3-7). This is the free work driving the natural resources from USFS lands, and ultimately the highest potential annual emergy loss if these lands were altered from their natural state. Many natural capital storages, such as cultura l information, glaciers, soil organic matter, peat and biodiversity do not have market value. But economics does place a high value on minerals and fossil fuels (they account for 91% of USFS revenue, unpub. data) the large quantity of emergy necessary for their cr eation makes the emdollar value ev en larger. Together, yearly mineral and fossil fuel exports are valued at 1.3 billion dollars and 97 billion emdollars (see Table 3-7). A potential economic use for the lands of the USFS is to sell the land for development. This is not feasible for a large portion of th e USFS because it is inaccessible, undesirable, or infertile. However, assuming that all USFS lands were developed the result would be a huge loss in both the yearly provision of e nvironmental services and the st orage of natura l capital on the lands. The largest environmental service from the land is the chemical and geopotential energy of water. While these values would remain if th e land was developed their functionality would be severely diminished. Much of the value of the water lies in the f act that it is flowing from the Forests in a relatively pure condition and at a measured rate, unlike water from urban environments that flows quickly over impervious surfaces, picking up contaminants. Nearly all of the natural capital storages (excluding geolog ic storages and perhaps glaciers) such as soil organic matter, fauna and peat, would be severe ly impacted by the removal of vegetation. The largest of the storages, biodive rsity, would be severely impa cted by the loss of the USFSs forests. The existing flora and fauna on the la nds would be drastical ly reduced, with the

PAGE 71

71 endangered and threatened species most severely affected (Er, 2005). Endangered and threatened species often come to have that designation because of their inability to survive in the presence of people, making them the most vulnerable when lands are developed. The impact of the loss of USFS lands as habitat for thes e species would be tremendous, represented by the emergy value of endangered species. This value represents th e emergy that would be necessary for a similar species to evolve and take the place of the extinct species. Another result of denuding the National Forests would be a drastic release of CO2 and the corresponding affect on the rate of global warming (UNEP, 2007). Regional Syntheses Analysis A high degree of variation was found among the nine USFS regions. This was to be expected; the regions fall in ge neral eco-regions across the United States with varying climate, geography, and composition of flora and fauna speci es. The heterogeneity of the regions results in variation among the flows of the regions. Fo r example, Region 3 is in the southwest and contains rich mineral deposits and less actual forested area, creating opportunity for a large mineral extraction flow. Region 4 (the rocky mo untain region) exports tremendous geopotential energy by virtue of the high elevation of its forest s. Region 8 (the southeas t) produces the highest emergy of timber on a percentage of exports basis. The southeast is a very productive region for timber, especially pine. The majority of public la nds exist in the western part of the country and the regions in the west cover a larger area, as a result western regions gene rally have larger flows than the eastern regions. For regional calculations see appendi ces G through O, comparison of regional indices is demonstrated in Table 3-3. Comparison of Case Study Forests to Overall Region The individual Forests analyzed were diffe rent from the overall region in which they exist in many of their emergy flows and storages The origin of these differences was from the

PAGE 72

72 location of the forests, with resultant envir onmental conditions, as well as the methods of management being utilized, and the level of recrea tion. The quality and scalar attributes of data available may have an influence as well. The pe rcentage of the compone nts contributing to the total exports and the standing stoc ks of natural capital on a per m2 basis are the metrics used to evaluate the similarity to or difference from th e overall region. This approach was used because the environmental services and natural capital of the regions are much larger than that of the individual forests, of which there are 34 in Re gion 8 (the Southeastern Region) spread across fourteen states as well as Puerto Rico compared to 19 NFs in the Pacific Northwest, Region 6, found throughout Oregon and Washington. The Forests in Region 6 are more expansive, in total comprising nearly 25 million acres, while there are only 13 million acres in Region 8 among all 34 Forests. This is evidenced in the case st udy forests, where Osceola NF is only 162,000 acres while Deschutes NF is over 1.8 million acres. This makes comparison of the magnitudes of flows and storages between the case study forests very imbalanced, unless put on a per unit area basis or expressed as a percentage of their total exports or storages. It is important to be able to compare between the study forest and the overall region because that is where the utility of performing emergy analysis at multiple scales is gained. Comparison of Deschutes NF a nd the Pacific Northwest Region When comparing the Deschutes National Forest to the Pacific Northwest region one can immediately notice an inequality in the drivi ng renewable energies (a lso known as renewable emergy absorbed). The average ra infall for the region is 0.90 m yr-1 but only 0.59 m yr-1 for Deschutes. Deschutes has a smaller change in av erage elevation within its borders than the overall region, resulting in a lower percentage of its renewable emergy input being derived from geopotential emergy (59% vs. 71%). The rema inder of the renewable emergy is from transpiration, which is higher for the ove rall region than for Deschutes, 0.35 m yr-1 vs. 0.26 m yr-

PAGE 73

73 1. There is more renewable emergy per unit area in the overall region than in Deschutes (1.8 E11 sej m-2 vs. 9.8 E10 sej m-2). A comparison of flows of Deschutes and Region 6 can be found in Table 3-5, storages are compared in Table 3-6. A portion of Desc hutes is located within the Cascade Mountain Range and part is on the lee, rain shadowed side. Many of the other Forests of Region 6 are in temperate rainfore st conditions, resulting in more renewable emergy input in the form of rainfall. While the change in elevation within the De schutes Forest is below the regional average the overall forest is at a higher elevation than th e average elevation of the region. This results in more emergy being exported in the geopotenti al emergy flow than the regional average. Deschutes is typical of a Region 6 forest in tim ber harvest. It has a higher than average ELR, predominately because it receives less envi ronmental emergy per unit area. Deschutes has a slightly higher emergy return on investment (ERI) than Region 6, 13.7 vs. 10.18. Much of the difference can be accounted for by Deschutes highe r geopotential emergy export. Deschutes also receives a higher density of tourists per year, averaging 3.5 visitors per ha per year, while the Region averages 2.8 visitors per ha per yr (Table 3-3). There is a disparity in the storages of Desc hutes and the rest of the Pacific Northwest Region. Deschutes averages natural capital storage of 6E12 sej m-2 and the Region averages 1.32 E13 sej m-2 (Table 3-5). Much of the difference can be at tributed to the difference in the driving energies. Deschutes receives le ss renewable energy, hence has less capacity to build capital. Higher tree biomass storage in Region 6 (see Tabl e 3-6) may be accounted for in that temperate rainforests in much of the rest of the Pacific NW forests have very large, Sitka Spruce-Douglas Fir stands while Deschutes has extensive pine fo rests and mountainous areas that are treeless, as well as treeless lava fields. Deschutes supports fewer endangered species per unit area than the

PAGE 74

74 average for the region, resulting in the lower value for emergy of genetic biodiversity. Contributing to this could be th at the lower renewable base will result in lower overall diversity and/or that higher levels of r ecreation may degrade habitat. De schutes has a comparable emergy of Native American Cultural information per m2 to the regional average (Table 3-6). Comparison of Osceola and the Southeast Region Osceola is unique compared to many other Region 8 forests. Osceola produces nearly double the emergy of timber exports per m2 than the Region (see Table 36). It also receives less than half of th e visitors per m2 compared to the rest of Region 8 (Table 3-6). These two numbers indicate that Osceola is much more of a timber production forest than the average Southeastern Region Forest. It also has very high indices of sustainability (T able 3-7). Emergy import from tourists (human impact of time spent in the forest ) is the largest input at all scales, but Osceola has less than the other systems analyzed. The emer gy from tourists quantifies the impact visitors have on the forest. The difference between the av erage emergy input of tourists in Osceola and for the region is greater than the additional investment emergy (per m2) required for the higher than average timber extraction. This results in le ss overall investment emergy for Osceola than the regional average. This in combination with a higher than average renewable emergy base, causes indices of sustainability for the fore st (Environmental Loading Ratio, Environmental Sustainability Index, % Renewable Emergy) to be higher in Osceol a than the region. Osceola NF has nearly twice the renewable empower density (sej of renewable absorbed m-2 of area) than the average Forest in the S outheastern Region. One would expect renewable empower density to increase with decreasing latit ude, and Osceola is one of the lowest latitude Forests, exceeded only by the ot her Florida National Forests, O cala and parts of Apalachicola. Osceola received a higher average rainfall and tr anspires more than the average southeastern forest (see appendix P), both commonly associ ated with lower latitudes. Higher renewable

PAGE 75

75 emergy input contributes to higher indices of sustainability (func tion of both the non-renewable inputs and the renewable emergy inputs to the system). The natural capital storages of Osceola dive rge from the average natural capital of the Region in several areas. Osceola stored less tim ber per unit area than the regional average (see Table 3-6). Much of Osceola is managed for timber production, resulting in less old growth forest and less biomass per unit area. Osceola also contained higher peat storage than the regional average. Osceola includes larg e swamps, the Pinhook and Big Gum swamps. Permanently saturated conditions are ideal for peat formation, and while Osceola did not have the degree of peat formation found in the hydr ologically connected Okefenokee Swamp it did have significant peat storages (USFS, unpub.). Os ceola also had larger groundwater storages than the regional average because Osceola overlies one of the largest aquifers in North America (USGS, 2005), the Floridan Aquifer. The Southeaste rn Region had one of th e highest storages of groundwater of the Regions, much of which can be attributed to the three Florida Forests overlying the Floridan aquifer. The storage of soil OM was greater in Osceola on a per m2 basis than the Region (Table 3-6). The inundated cond itions found in parts of Osceola are conducive to the buildup of organic matter. Osceolas storage of Natural Capital per m2 was 4.55 times higher than in the Southeastern region. Region 8 supported a high population of Native Americans and as a result it harbored more than the regional average of cultural inform ation in Native American artifacts (Table 3-6). The above average renewable flows and accompanyi ng large storages of natural capital allowed an above average Native American population de nsity to persist. The genetic information of biodiversity was five times grea ter in Osceola than in the Region (Table 3-6). The emergy in genetic information of endangered species was calcul ated slightly differently in Osceola, because

PAGE 76

76 population estimates of endangered and threatened species in this forest were available (see appendix P). The relatively small area of Osceola and more complete account of the populations yield a higher emergy density of endangered species. Comparison Overview The effect of the location of the National Fore st within the USFS system is most evident in the renewable inputs, but can be seen in the exports from the system and has an effect on the imports necessary for management. The results of the analysis demonstrate the relationship between magnitude of driving emergy and capital formation in comparison of both Deschutes to Region 6 and Osceola to Region 8. Osceola has mo re driving emergy than the overall region, and this manifests in higher than regional average na tural capital storage. De schutes has less driving emergy and, as would be predicted, a lower than th e regional average natura l capital storage (see Table 3-5 and 3-6). The management of the forests differed fr om the overall region for both Osceola and Deschutes. Osceola is more orie nted towards timber production and less toward recreation than the average Southeastern Forest while Deschutes is more heavily used for recreation than the average Pacific Northwest Forest. Deschutes has more economic capital storage per unit area, in order to accommodate the heavie r recreational use. Os ceola has higher investment per unit of export than the regional average because it is exporting more timber, requiring nonrenewable emergy input from outside the system. Osceola may be used less for recreation because its location, in North Florida, has competition from other outdoor recreation s ites, such as springs, beaches, and the other Florida National Forests. Pine flatwoods are highly productive forest land, increasing the incentive to manage for timbe r production. Deschutes is the site of many recreation sites, creating a large draw for tourists. Some not found in all NFs are ski resorts,

PAGE 77

77 snowmobile tracks, and luxury hotels that wh ile not managed by the USFS exist within the Forests borders and draw tourists. Scalar Dependence and Significance There are several benefits to performing an em ergy synthesis, or any study of a system, at multiple scales. Perspective is gained, potenti al errors identified, and ultimately one can understand the overall system more fully when a subsidiary system is evaluated in conjunction with the overall system. Scalar anal ysis can help to identify possible errors in the data; if the case study and region are widely different there may be an error and the data at both scales should be evaluated. Scale dependent issues, such as absent data due to the reso lution of monitoring, may arise when looking at a system on a smaller scale. This particular analysis revealed the diversity and variability that exists within regions. The result was more easily predictable for the comparison of Osceola and the Southeastern Re gion because of the larg e geographic area over which the Southeastern Region stretches. A great diversity of eco-regions exist within Region 8 making an individual forest more likely to have different conditions than the overall region. In comparison, Region 6 is only comprised of two st ates, Oregon and Washington, but nearly as much divergence in conditions was found between Deschutes and Region 6 as with Osceola and Region 8. Deschutes NF is located in the middle of Oregon, on the east side of the Cascades and there is also a long history of volcanic activity in the region. Both these characteristics contribute to Deschutes aberrations from the overall regional averages. Ideally an emergy synthesis would be comp leted for every National Forest to truly illustrate the diverse nature of the USFS system. However, this is beyond the scope of this study and the comparison of the two case studies to th e overall region must suffice in demonstrating the variability within regions.

PAGE 78

78 US Forest Service System within the Mosaic The National Forests of the United States co mprise 5% of the total land area of the United States. Results form this study show that USFS lands also contribute 5% of the renewable emergy budget of the United States. Resources extr acted from USFS lands are smaller than one may expect from the land area. Oil from USFS land is 0.18% of yearly US extraction, natural gas is 0.28%, and coal from NFs is 1.84% of total extraction from US lands (USGS, 2006). Timber from the USFS lands is only 2% of all timber harvest in the US and recreation visits are approximately 2.5% of total recreation activ ities (USFS, 2003 and 1997). The current timber harvest is less than a third of the average yearly harvest in the 1960s and 70s (USFS, 2007). The percentage of recreation w ould most likely be higher if it was on an hourly basis; many visitors travel to National Fo rests and camp there. USFS land tends to be at higher elevation, the average elevation of the Nationa l Forests is approximately 2000 m while the average elevation of the US is 760 m. (USGS NED, 2006). As a resu lt, twenty five percen t of US hydrologically generated electricity is from USFS lands (USFS, 2007). Combine the high elevations of many forests with the fact that National Forests were often chosen because of their relative inaccessibility and distance from established urba n centers, in addition an increasing ethic of preservation within the USFS and the result is that USFS lands are not as highly utilized or exploited as one may expect from land area percentage and available resources. However, it is important to have lands such as this within the land use mosaic of the United States. Many species require minimum human dist urbance in order to thrive. Na tional Forests serve as one of the last vestiges in the US where people can go a nd witness nature in near pristine condition. The emergy synthesis of the USFS demons trates this value; the image t ourists take with them is the largest export from the system, valued at 108 billion emdollars. The genetic information within the endangered species of the USFS System is the largest emergy storage at 32.7 trillion

PAGE 79

79 emdollars. The USFS System contains approximately a quarter of all natu ral habitat in the US and protecting it is vital to maintain ecological integrity as well as preservation of the humanenvironment interface. US Forest Service Policy Implications The purpose of conducting this research wa s not to determine how better to run the USFS. However, the results of the emergy synthe sis do have implications for the current, and future, policies of the USFS. The large value of environmental flows and storages implicate that the National Forests should be managed to sustain both the quality and quantity of storages and flows. The USFS is more than providing an e quitable return, by many fo ld, on the investment that the United States government makes each ye ar in its management. This implies that funding for USFS activities should not be cut, but should be increased in order to maximize the return that the country gets from the USFS system The multi-use ethic that the USFS has embraced appears to be the best use for the lands. In this way the Forests can be enjoyed by people, managed for sustainable forestry, as well as have a portion kept as pristine habitat. This is especially important in light of the fact that the biodi versity harbored within the forests is the largest storage on the USFS, and would be potentially negatively impacted if a doctrine of more intense use was enacted. Specific pol icies of the USFS, such as fire suppression, tourist intensity, and amount of scientific research were not ev aluated. Future research could potentially use emergy synthesis to evaluate the effi cacy of the USFS in these areas. Future Collaboration of Emergy Synthesis and Economic Valuation Through comparison of emergy values and eco nomic values it becomes clear that emergy synthesis is necessary for a comp lete recognition of the inputs to a system and of the exports from that system to be made. While it is vi tal to acknowledge that economic valuation is necessary to evaluate monetary flows and es tablish economic viability, an emergy synthesis

PAGE 80

80 allows one to place all components of a system anthropogenic or biological, on a common basis (the energy necessary to create it) and compare on common terms. Virtually all exports from the USFS system are shown to be valued less by the economic system. This includes timber, water, harvested fish and wildlife, fossil fuels and mi nerals. Inputs to the system from the outside system have similar dollar and emdollar values, demonstrating the validi ty of the emergy-dollar equivalence used to equate emergy values to the economic system. Using both emergy valuation and economic valuation allows one to perceive both the donor syst em of valuati on and the value from the receiver (human) perspective. When bot h aspects are considered decisions can be made that take into account the poten tial impacts on both sides, the donor and receiver. Emergy flows pertain more to the environmental system and its resources (but are inex tricably linked to the economy by virtue of economic reliance on resour ces) and the economic flows govern the fiscal feasibility of a potential decision. Ideally in th e future both systems will be commonly used in conjunction, particularly when evaluating systems consisting predominantly of environmental flows and capital where undervaluing of natural resources is most evident.

PAGE 81

81 APPENDIX A EMERGY SYSTEMS SYMBOLS ENERGY PATHWAY: a flow of en ergy often with a flow of materials. ENERGY SOURCE: energy which accompanies each of the resources used by the ecosystems such as sun, winds, tidal exchanges, waves on the beaches, rains, seeds brought in by wind and birds. STORAGE: a place where energy is stored. Examples are resources such as forest biomass, soil, organic matter, groundwater, and sands in beach dunes. HEAT SINK: energy that is disper sed and no longer usable such as the energy in sunlight after it is used in photosynthesis, or the metabolic heat passing out of animals. INTERACTION: process which combines different types of energy flows or flows of material. In photosynthesis sun light, water and nutrients interact to produce organic matter. PRODUCER: unit which makes products from energy and raw materials. Examples: trees, grass, crops and factories. CONSUMER: unit that uses th e products from producers. Examples: insects, cattle, micr oorganisms, humans, and cities. TRANSACTION: business exchange of money for energy, materials, or services. SWITCH: process which turns on a nd off, such as starting and stopping fire and pollination of flowers. BOX: miscellaneous symbol for s ubsystems such as soil subsystem in a diagram of a forest or fish ing business in a diagram of an estuary.

PAGE 82

82 APPENDIX B FOOTNOTES FOR TAB LES 3-1 AND 3-2 Notes to Table 3-1 Emergy evaluation of the USFS RENEWABLE RESOURCES: 1 Solar Insolation Source Land Area 7.80E+11 m^2 Insolation 6.83E+09 J/m^2/year NREL, 2006 Albedo 1.80E-01 (% given as a decimal) Energy = (area)*(avg insolation)*(1-albedo) = 4.37E+21 J Transformity 1.00E+00 sej/J Odum et.al, (2000) energy sum of the regions= 4.37E+21 J/yr 2 Rain Chemical Potential Land Area 7.80E+11 m^2 Rain 0.755470 3 m/yr NOAA, 2006 Total Volume Rain 5.89E+11 m^3 Energy= (volume)*(1000kg/m^3)*(4940J/kg) = 2.91E+18 J/yr sum of the regions 2.62E+18 J/yr Transformity 3.10E+04 sej/J Odum et.al, (2000) Emergy (sum of regions) 8.11E+22 sej/yr 3 Transpiration 0.70 m/yr 5.48E+11 m3 Energy= (Volume)*(1000Kg/m^3)*(4940J/kg) = 2.71E+18 J/yr Energy (sum of the regions)= 1.18E+18 J/yr Transformity 3.06E+04 sej/J Odum et.al, (2000) Emergy (sum of regions) 3.61E+22 4 Rain Geopotential Runoff 0.05 m/yr NOAA, 2006 Mean Elevation Change 1.50E+03 m Land Area 7.80E+11 m^2 Energy = (area)(rainfall)(avg change in elevation)(density)(gravity) = 6.12E+17 J Transformity 4.70E+04 sej/J Odum et.al, (2000) Energy (sum of regions) 1.08E+18 J 5 Wind, Kinetic Area 7.80E+11 air density 1.30E+00 kg/m^3 avg annual wind velocity 4.21E+00 mps NOAA, 2006 Geostrophic wind 7.02E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff. 2.00E-03 Energy= (area)*(density)*(dragcoe f)*(Geos-grndVel)^3*(31500000sec/yr) = 4.25E+18

PAGE 83

83 Transformity 2.45E+03 sej/J Odum (2000) sum of the regions 3.40E+18 J/yr 6 Hurricanes Avg energy/storm 5.00E+05 KCAL/m^2/day Odum et al, 1983 avg hurricane freq. 1.00E-01 /yr percent energy that is kinetic 3.00E+00 % percent of energy dispersed to land 1.00E+01 % avg. residence time 1.00E+00 day/year area 1.03E+11 m^2 energy= (0.1/yr)*(1yr/365 days)* (5e5Kcal/m^2/day)*(.003*area in m^2)*(4186J/kcal) = 1.77E+14 j/yr Transformity 6.49E+03 sej/J Odum (2000) 7 Wave Shore length = 1.14E+06 m Wave height = 1.80E+00 m Energy = (shore length)(1/8)(density)(gravity)(wave height^2)(velocity) = 6.46E+17 J/yr Transformity= 5.10E+04 sej/J Brown and Bardi, 2001 sum of the regions 6.07E+17 J/yr 8 Tidal Cont Shelf Area = 5.16E+09 m^2 Avg Tide Range = 3.02E+00 m Density = 1.03E+03 kg/m^3 Tides/year = 7.06E+02 (number of tides in 365 days) Energy(J) = (shelf)(0.5)(tides/y)(mean tidal range)^2 (density of seawater)(gravity) = 1.67E+17 J/yr Transformity= 2.43E+04 sej/J Brown and Bardi, 2001 sum of the regions 1.96E+17 J/yr 9 Earth Cycle Heat Flow 1.15E+02 miliwatts/m ^2 IHFC, 2005 area 7.80E+11 m^2 energy= (miliwatts/m^2)*(area*sec/yr) 3.63E+06 J/m^2 energy= 2.83E+18 J/yr Transformity 1.13E+04 sej/J Odum (2000) sum of the regions 2.10E+18 J/yr INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss sum of the regions 9.73E+10 g/yr a) Top Soil Loss (3.5% of total SL) 3.41E+09 g/yr energy= (g of C)*(5.4 kca'/g)*(4184 J/cal) = 7.33E+13 J sum of the regions 8.04E+13 J/yr

PAGE 84

84 11 Miscellaneous Products (Plants) 1.40E+09 g/yr NFS, 2005 energy= (g)*(3.5kcal/g)*(4186J/Cal) = 2.05E+13 joules Transformity 1.80E+04 sej/J Dollar Value Misc. Prod 3.08E+06 $/yr IMPORTS: 12 Petroleum Products Forest Service Use 1.77E+07 gal/yr Estimate energy= (gal)*(13e7j/gal) energy= 2.30E+15 J/yr FS Building Use 3.00E+07 sq feet estimate 6.66E+04 BTU/sq ft/yr EIA, 1992 energy use = (BTU/sqft/yr) (sq ft) (1055 joules/BTU) 2.11E+15 J/yr Total Fuel Use 4.41E+15 J/yr sum of the regions 4.04E+15 J/yr Cost (Est. $2.00/gal gas) 3.55E+07 $/yr Estimate Cost Fuel Oil ($14/Mmbtu) 2.80E+07 $/yr Transformity 1.11E+05 sej/J Odum, (1996) 13 Machinery, Equipment FS Vehicle mass 1.01E+11 g Estimate avg. vehicle lifespan 2.00E+01 yrs Estimate use per yr = (vehicles) (g/vehicle) (1/avg life of vehicle) mass used per year 5.06E+09 g Specific Emergy 1.13E+10 sej/g Calculated Est. for $ value of Depreciation 2.35E+07 $/yr 14 Goods (Pesticides, herbicides, misc goods) 7.22E+07 g/yr Report of the FS, 2003 2.49E+10 sej/g emergy= 1.79E+18 sej/yr Est. for cost 1.27E+06 $/yr estimate 15 Replanting Total Cost= 5.16E+07 $/yr Unit Emergy Value 1.90E+12 sej/$ CEP ( 2006) emergy= 9.81E+19 sej/yr 16 Tourism Tourist Time 2.05E+08 people/yr NFS NVUM 2004 average stay 1.80E+01 hrs NFS NVUM 2005 Total Hours of Stay 3.69E+09 hours/yr avg. energy/hr 1.04E+02 kcal/hr total energy expenditure= (kcal/hr)*(hrs)*(4186J/C al) energy= 1.60E+15 J/y Transformity 1.50E+07 sej/J Odum, 1996

PAGE 85

85 17 Labor FS 7.77E+07 hrs/yr USFS, 2005 Contractors 4.42E+07 hrs/yr estimate Total Labor 1.22E+08 hrs/yr Unit Emergy Value 6.30E+13 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 30011200 sq ft USFS, 2005 37000 btu/ft2/yr EIA, 1992 1.11E+12 btu/yr energy= (btu/yr)*(1055 j/btu) = 1.17E+15 J Transformity 2.92E+05 Odum, 1996 Est. Cost 2.93E+07 $/yr Total USFS Budget 4.88E+09 $/yr 19 Misc. Expenditures 2.97E+09 $/yr Unit Emergy Value 1.90E+12 sej/$ Sweeney, 2007 emergy= 5.64E+21 sej/yr 20 Payment Received for timber 2. 24E+08 $/yr UFSF, 2005 Unit Emergy Value 1.90E+12 sej/$ Sweeney, 2007 21 Payments for Extracted Minerals 0.00E+00 $/y Unit Emergy Value 1.90E+12 sej/$ Sweeney, 2007 22 Fee Payments Received 5.05E+07 $/yr USFS PAR, 2006 Unit Emergy Value 1.90E+12 sej/$ Sweeney, 2007 EXPORTS: 23 Extracted Firewood mass 7.82E+08 kg USFS, 2006 energy= (mass) (1000g/kg) (15000j/g) = 1.17E+16 J/yr Transformity 3.06E+04 sej/J Brown and Bardi (2001) -Table 9, w/o services 24 Harvested Wood 5.41E+12 g/yr NFS, 2005 sum of the regions 6.82E+12 g/yr energy= (g)*(15000j/g) energy 1.02E+17 J/yr Transformity (w/o services) 5.04E+04 Brown, 2001 wo/service 25 Water, Chemical potential

PAGE 86

86 Total Export From Streams 4.16E+10 m^3/yr USFS, 2000 sum of the regions 2.54E+11 m^3/yr Chemical Potential= (M^3/yr) (1000 kg/M^3) *( 4940 J/kg) joules = 1.26E+18 J/yr Transformity 8.10E+04 sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) = (runoff)(avg elevation)(density)(gravity) avg elevation 1.28E+03 m = 3.19E+18 J sum of the regions 2.01E+18 J/yr Transformity 4.70E+04 sej/J Odum, 2000 27 Minerals 4.16E+12 g/yr NFS, 2003 average specific emergy mi xed sej/g see app. 3 emergy= 6.06E+22 sej/yr see app. 3 Minerals ($ value) 2.01E+09 $/yr 28 Fossil Fuels Oil 9.42E+17 J/yr FS, 2005 Transformity 9.11E+04 sej/J Natural Gas 5.58E+16 J/yr FS, 2005 Transformity 7.31E+04 sej/J Coal 5.20E+17 J/yr FS, 2005 Transformity 6.59E+04 sej/J Total Fossil Fuel Emergy 1.24E+23 29 Hunting Sum of Emergy from Game 4.28E+22 sej see appendix 4 Weighted Trans. For Game 1.10E+07 sej/J 30 Fishing 5.84E+07 fish caught USFS, 2005 avg. mass 4.54E+02 g/fish assume avg weight = 1 lb energy content= (4.5Cal/g*4187 J/cal) = 1.88E+04 J/g Energy Fish Caught 9.97E+13 J assume 20% dry weight Transformity= 1.68E+07 sej/J 31 Research Information 1.21E+03 # of papers USFS, 2006 average time spent 8.05E+02 hours/paper Estimate research hours 9.72E+05 hours/yr Estimate Transformity 2.35E+14 sej/hr Odum, 1996 total sej of research 2.29E+20 sej $ Spent by NFS 2.50E+08 $/yr USFS, 2006 Unit Emergy Value 1.90E+12 sej/$ 32 Hydroelectric Power 15% of US total From FS lands 16000 MW USFS, 2005 = 1.6E+10 watts energy= (watta)*(sec/yr)*(1J/sec) = 5.05E+17 Joules Transformity = 120300 sej/J Campbell, In Press

PAGE 87

87 33 Image Exported with Tourists Tourism Time in NF's 3.69E+09 hrs USFS, 2006 site area= 2.07E+02 ha calculated 1.20E+00 sites/visit ha/vist 2.48E+02 ha USFS, 2006 use/ha/hour 2.25E+11 sej/ha calculated emergy of image exported 2.06E+23 sej/yr Unit emergy value 5.58E+13 sej/visitor hour 33 Payments to States 4.15E+08 $/yr Unit Emergy Value 1.90E+12 sej/$ 34 Payments for FS Labor 1.32E+09 $/yr Unit Emergy Value 1.90E+12 sej/$

PAGE 88

88 Notes to Table 3-2. Emergy in st ored assets of USFS system ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass Sum of the regions 7.71E+19 J Transformity 3.62E+04 sej/J BROWN AND BARDI, 2001 2 Total Understory Sum of the regions 6.91E+18 Transformity 9.79E+03 sej/J BROWN AND BARDI, 2001 3 Land Area Sum of the regions 7.80E+07 ha emergy of land structure= 1.05E+15 sej/ha 4 Soil OM mt COLE, 2006 Sum of the regions 1.50E+20 J Transformity 1.65E+05 sej/J BROWN AND BARDI, 2001 5 Peat Sum of the regions 3.95E+16 J Transformity 3.09E+05 sej/J BROWN AND BARDI, 2001 6 Glaciers Sum of the regions 6.23E+17 g Specific Emergy= 6.46E+06 sej/g BROWN AND BARDI, 2001 7 Ground Water Sum of the regions 2.80E+18 J Transformity 2.79E+05 sej/J Buenfil (2001) 8 Surface Water Sum of the regions 1.59E+18 J Transformity 8.10E+04 sej/J Odum, 2000 9 Biodiversity Primary Consumer 6.52E+13 g USFS, RPA 2004 Specific emergy= 1.27E+09 sej/g Herbivores 1.30E+14 g appendix C Specific emergy= 1.27E+09 Omnivores 7.17E+13 g appendix C Specific emergy= 2.31E+09 Carnivores 3.03E+13 g appendix C Specific emergy= 8.19E+09 Top Carnivores 5.05E+12 g appendix C Specific emergy= 8.19E+10 total emergy storage in Biodiversity= 1.08E+24 sej ECONOMIC ASSETS 10 Roads, Dirt Sum of the regions 1.70E+09 $ Unit Emergy Value 1.90E+12 sej/$ Sweeney, 2007 11 Roads, Gravel Sum of the regions 8.01E+13 g Specific Emergy 1.68E+09 sej/g Odum (1996) 12 Paved Roads

PAGE 89

89 Sum of the regions 4.81E+12 g Specific Emergy 2.77E+09 sej/g Odum, 1996 13 Machinery Sum of the regions 9.90E+10 g Specific Emergy 1.13E+10 sej/g CEP, 2006 14 Office Equipment Sum of the regions 3.84E+10 g Specific Emergy 1.13E+10 sej/g Odum, 1996 15 Buildings USFS, 2005 Sum of the regions 2.56E+06 m^2 Sum of the regions 9.65E+11 g See Appendix A W.O and Misc. Buildings 2.31E+05 m^2 9.53E+10 g Specific Emergy mixed emergy from WO and Misc Buildings 5.97751E+2 0 sej 16 Fossil Fuels Oil 1.03959E+1 8 J USGS, 2005 Transformity 1.53E+05 sej/J Odum, 1996 Natural Gas 2.26E+17 J USGS, 2005 Transformity 1.23E+05 sej/J Odum, 1997 Coal 4.59E+15 g EIA, 1999 energy= (g coal)*(15000J/g) = 6.88E+19 J Transformity 1.11E+05 sej/J Odum, 1996 Total Fossil Fuel Storage= 7.80E+24 sej 17 Minerals Gold= 1.17E+09g est. 5% of total US Reserves Lead= 1.51E+13g est. 5% of total US Reserves Silver= 9.33E+10g est. 5% of total US Reserves Copper= 6.81E+12g est. 5% of total US Reserves total= 4.41E+13 g value= 1.20E+11 $ Specific Emergy 4.54 E+09 sej/g average CULTURAL ASSETS 18 Emergy of Cultural Information See Appendix D 19 Value of Critical Species See Appendix E

PAGE 90

90 APPENDIX C EMERGY OF BUILDINGS Some innovations were made in the methods of emergy synthesis in the course of completion of this thesis. A previous study on emergy content of the contents of buildings, Evaluation of Recycling and Reuse of Buildi ng Materials Using the Emergy Analysis Method by V. Buranakarn completed in 1998, is the basi s for the emergy in USFS buildings calculation. The values used in his study (see Table D-5 w ithin Buranakarn 1998) are adapted to a per m2 basis and the emergy baseline is upd ated. See Buranakarn (1998) fo r the calculation of quantities listed in Table C-1. Only the square meters of fl oor must be known to estimate the emergy of the entire building. The square meters of floor are multiplied by the emergy value for each building component per m2 for an estimate of the emergy embodied in the building. These estimates are based on the assumption of a two story offi ce building. Table C-1 shows the mass per m2 values of building components, the Unit Emergy Values, and the Emergy per m2 of the component. Table C-2 shows the calculation used to de termine the emergy of USFS buildings.

PAGE 91

91 Table C-1 Emergy storage of building components on USFS lands Note Item Unitsunits per m2 UEV empower density (per m2) 1 Cement g 3.72E+04 3.70E+09 1.38E+14 2 Concrete g 2.81E+04 2.12E+09 5.96E+13 3 Masonry, 8" CMU g 9.29E+04 2.27E+09 2.11E+14 4 Masonry, 4" tile brick g 2.98E+04 3.90E+09 1.16E+14 5 Structural Steel g 1.42E+04 2.99E+09 4.24E+13 6 other metals g 3.41E+04 2.99E+09 1.02E+14 7 Glass g 8.26E+02 3.19E+09 2.64E+12 8 Dry Wall g 1.01E+05 3.44E+09 3.49E+14 9 Vinyl tile, carpet g 1.26E+04 9.86E+09 1.25E+14 10 Paint g 4.55E+03 2.55E+10 1.16E+14 11 Electrical System g 1.51E+03 1.13E+10 1.70E+13 12 Elevators g 5.74E+03 1.13E+10 6.46E+13 13 HVAC g 1.39E+04 1.13E+10 1.56E+14 14 Fire System g 4.50E+03 1.13E+10 5.06E+13 15 Plumbing System g 3.32E+03 1.13E+10 3.74E+13 16 Furnishings g 1.34E+04 7.88E+09 1.05E+14 17 Water j 4.93E+05 8.06E+04 3.98E+10 18 Fuel j 5.97E+08 1.11E+05 6.62E+13 19 Electricity j 4.73E+08 2.92E+05 1.38E+14 20 Machinery g 1.48E+04 1.13E+10 1.66E+14 21 Labor $ 5.25E+02 1.00E+12 5.25E+14

PAGE 92

92 Table C-2 Emergy of USFS buildings area of buildings=2.79E6 m2 Note Item Unit units per m2 Input Resource (m2*units/m2) emergy 1 Cement g 3.72E+04 1.04E+11 3.83E+20 2 Concrete g 2.81E+04 7.84E+10 1.66E+20 3 Masonry, 8" CMU g 9.29E+04 2.59E+11 5.87E+20 4 Masonry, 4" tile brick g 2.98E+04 8.30E+10 3.23E+20 5 Structural Steel g 1.42E+04 3.95E+10 1.18E+20 6 other metals g 3.41E+04 9.52E+10 2.85E+20 7 Glass g 8.26E+02 2.30E+09 7.35E+18 8 Dry Wall g 1.01E+05 2.82E+11 9.73E+20 9 Vinyl tile, carpet g 1.26E+04 3.52E+10 3.48E+20 10 Paint g 4.55E+03 1.27E+10 3.24E+20 11 Electrical System g 1.51E+03 4.21E+09 4.73E+19 12 Elevators g 5.74E+03 1.60E+10 1.80E+20 13 HVAC g 1.39E+04 3.87E+10 4.35E+20 14 Fire System g 4.50E+03 1.25E+10 1.41E+20 15 Plumbing System g 3.32E+03 9.27E+09 1.04E+20 16 Furnishings g 1.34E+04 3.72E+10 2.93E+20 17 Water J 4.93E+05 1.38E+12 1.11E+17 18 Fuel J 5.97E+08 1.67E+15 1.85E+20 19 Electricity J 4.73E+08 1.32E+15 3.85E+20 20 Machinery g 1.48E+04 4.12E+10 4.64E+20 21 Labor $ 5.25E+02 1.46E+09 1.46E+21 Total Emergy= 7.21E+21

PAGE 93

93 APPENDIX D HUNTING ON USFS LANDS Estimates for harvested wildlife were ba sed on a USFS study from 2003 that provided estimates for hours of hunting spent on US public lands (USFS 2004). From this an estimate was made for number of game taken per hour, based on literature values (USFW, 2004). These values were then multiplied by 28.7%, the percentage of US public lands that are National Forests, to obtain an estimate for game taken from USFS lands. Table D-1 Yearly game extracted From USFS lands Note Item Units1 Quantity UEV Emergy 1 Big Game J 4.21E+169.90E+054.17E+22 2 Small Game J 9.92E+151.20E+051.19E+21 3 Migratory Birds J 2. 92E+131.01E+052.95E+18 4 Other J 1.57E+131 .50E+052.35E+18 Notes % Dry Weight for Wildlife 2.50E+01 % 1 Big Game Extracted 1.58E+06 Big Game/y avg. mass 5.68E+04 g/Game energy content 1.88E+04 J/g estimate energy= (#Game/yr)*(avg mass)*(% dry weight)*(J/g) energy= 4.21E+16 J/yr USFWS, 2002 Transformity= 9.90E+05 sej/J Brown et al, 2005 Emergy= 4.17E+22 Sej 2 Small Game Extracted 6.38E+06 Small Game/yr USFWS, 2002 avg. mass 3.30E+03 g/animal energy content 1.88E+04 J/g energy= (#Game/yr)*(avg mass)*(% dry weight)*(J/g) energy= 9.92E+15 J/yr Transformity= 1.20E+05 sej/J Brown et al, 2006 Emergy= 1.19E+21 Sej 3 Migratory Birds Extracted 4.78E+06 #/yr USFWS, 2002 avg. mass 1.30E+03 g/bird energy content 1.88E+04 J/g energy= (#Game/yr)*(avg mass)*(% dry weight)*(J/g) energy= 2.92E+13 J/yr Transformity= 1.01E+05 sej/J Brown et al,

PAGE 94

94 2006 Emergy= 2.95E+18 Sej 4 Other Species Extracted 5.25E+05 #/yr USFWS, 2001 avg. mass 6.35E+03 G energy content 1.88E+04 J/g energy= (#Game/yr)*(avg mass)*(% dry weight)*(J/g) 1.57E+13 J/yr Transformity= 1.50E+05 sej/J Brown et al, 2006 Emergy= 2.35E+18 Sej

PAGE 95

95 APPENDIX E EMERGY OF ENDANGERED SPECIES Introduction There is a capacious amount of emergy embodi ed in the genetic material of the many species of the earth. The emergy of a species is equal to the emergy that was required for the evolution of that species fr om its closest rela tive (Odum 1996). The emergy of endangered species was quantified in this study because the emergy value represents the potential environmental work that will be lo st if those species go extinct. Methods An average value for emergy required to de velop a species was determined. An average value for turnover time of species (Weir, 2007), 3 million years, and a median estimate for total number of species (10 milli on) was used. The renewable emergy budget of the globe was multiplied by three million and then divided by th e 10 million species to obtain an estimate of emergy required per species (see Table E-1). Th ere are approximately 496 endangered species supported by USFS lands and the USFS comprises 3.17% of the North American continent. The emergy per species was multiplied by these values to obtain an estimate for emergy embodied in the endangered species inhabiting USFS lands. Speci es ranges were not know n so the total North American Continent was used as a proxy. Results Results from this analysis are summarized in Table E-1. The emergy storage of genetic information in endangered species was found to be 6.22E25 emjoules, the largest storage in the USFS system.

PAGE 96

96 Table E-1 Emergy of endangered species Endangered Species 4.96E+02 USFWS, 2006 Percent of pop 3.17% (USFS % of Continental Area) Global Emergy Budget 15.83E24 Odum el al 2000 average emergy per species= (3E6 yrs of Dev.*15.83E24 sej/yr)/10E6 species 3.96E+24 sej/species Emergy of endangered species= (# of Species)*(%of total Pop in FS land)*(Emergy Required to develop species) Emergy of endangered species 6.22E+25 sej

PAGE 97

97 APPENDIX F FAUNA ON USFS LANDS In calculating fauna biomass the concepts of trophic efficiency and turnover time were utilized to obtain an estimate for storage with in the USFS system. Estimates for the storage of primary producers on USFS lands were availabl e from USFS documents (USFS, 2004) and these numbers were used as the basis for consumers in the system. The primary production system is assumed to have an average turnover time of 5 ye ars and a trophic energy tr ansfer efficiency of 3%. The energy then transfers through consum ption into primary, s econdary, and tertiary consumers (see Fig. F-1 and Table F-1). All cons umer trophic levels have an energy transfer efficiency of 10%, but have va rying turnover times and flow pa ths (see Figure F-1), resulting in different emergy storages in the system. Table F-1 Storage of biomass on USFS lands Note Item Units Quantity1a UEV Emergy 1 Primary Producer g 5.43E+157.61E+07 4.14E+23 2 Primary Consumer (Insects) g 1.30E+136.34E+09 8.27E+22 3 Herbivore g 2.61E+1 36.34E+09 1.65E+23 4 Omnivore g 1.43E+131.15E+10 1.65E+23 5 Carnivore g 4.24E+1 25.85E+10 2.48E+23 6 Top Carnivore g 2.99E +121.11E+11 3.31E+23 Note Source 1 Primary Producer Storage Tree Biomass 5.13E+15g Pugh, 2004 Shrub/Herb Biomass 2.98E+14g COLE, 2005 total PP Storage in NFs= 5.43E+15g turnover time 5Yrs Estimate 2 Primary Consumer Storage Trophic Efficiency 3% percentage of PP consumed by Primary consumers 40% Estimate Turnover Time of PC 1Yr Estimate Primary Consumers in NFs= 3%*40%*5.43E15 g PP/ 5 yr TT 1yr Storage = 1.30E+13g

PAGE 98

98 3 Herbivore Storage Trophic Efficiency 3% Percentage of PP consumed by Herbivores 40% Estimate Turnover Time of Herbivores 2Yrs Estimate Herbivore Storage in NFs= 3%*40%* 5.43E15 g PP/5 yr TT 2 yrs Storage = 2.61E+13g 4 Omnivore Storage Trophic Efficiency from PP 3% Trophic Efficiency from PC 10% Percentage of PP consumed by Omnivores 20% Estimate Percentage of PC consumed by Omnivores 100% Estimate Turnover Time 2Yrs Estimate Omnivore Storage in NFs= (3%*20%*5.43E15 g PP/5 yr TT + 10% 6.52E13 g PC/2 yr TT)* 2yrs Storage = 1.43E+13g 5 Carnivore Storage Trophic Efficiency from Omnivores, Herbivores 10% Percentage of Omnivores and Herbivores consumed 70% Estimate Turnover Time 3Yrs Estimate Carnivore Storage on NFs= (10%*2.61E13 g Herb 70%/2 yr TT + 10% 1.43E13 g Omni *70%/ 2 yr TT)*3 yrs storage = 4.24E+12g 6 Top Carnivore Trophic Efficiency 10% Percentage of Omnivores and Herbivores consumed 30% estimate Percentage of Carnivores Consumed 100% estimate Turnover Time 4Yrs estimate Top Carnivore Storage on NFs= (10%*2.61E13g Herb 30%/ 2 yr TT + 10% 1.43E13 g Omni 30%/ 2 yr TT+ 4.23E12 g Carn./3 yr TT)*4 yr storage = 2.99E+12g

PAGE 99

99 Sun Wind Rivers Rain Prim. Prod. Carnivore.Primary Consumer Omnivore Herbivore Top Carnivore 3%10% 10% 10%7.27E+10 g1 yr Turnover Time 2 yr Turnover Time 3 yr Turnover Time 4 yr Turnover Time 40% 40% 20%5 yr Turnover Time 70% 30% 30% 70% Figure C-1. Energy transfer across trophic level

PAGE 100

100 APPENDIX G EMERGY OF NATIVE AMERICAN CULTURAL INFORMATION The emergy embodied in Native American Artif acts is based on an assumed period of cultural innovation. It wa s assumed that the bulk of cultura l innovation occurs over the first ten generations of a cultures development and then traditions are passed down over time. Literature values were found that the average lifespan of Native Americans pre-colonization was 25 yrs (www.nativeweb.com ), so ten generations is roughly 250 ye ars. Estimates for the population of Native Americans pre-colonization vary widely so a median value was taken, of 1.2 million people living within the current bounds of the USFS. To obtain the emergy driving the system the 250 years of cultural development were multi plied by the current renewable emergy driving the USFS (this assumes climatic conditions were similar during development). The emergy driving the civilization was then divided by the joules of human activity expended over that time period to obtain a transformity (see Table G-1).

PAGE 101

101 Table G-1 Emergy of Native American cultural information Native Americans on FS lands (peak) 1.20E+06 people (estimate) energy per capita= (2500Cal/day)*(365 d/y)*(4186J/Cal) = 3.82E+09 J/yr Yrs to develop information (10 gen) 2.50E+02 (estimate) Energy of Population= (population)*(J/yr /Indian)*(year) Energy = 1.15E+18 J Renewable Emergy Budget 8.67E +22 sej/yr (Table 3-1) Native American Pop Info= (Yrs. Of Development)*(Renewable Emergy per year) Energy embodied in Pop. Info 2.17E+25 sej Transformity = Emergy of information / energy of population Transformity 1.89E+07 sej/J

PAGE 102

102 APPENDIX H REGION 1 TABLES AND NOTES Table H-1. Annual emergy flows supporting Region 1 of the USFS system Note Item Units Quantity Emergy Intensity (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 5.0167E+ 20 1.00E+00 501.7264.0 2 Rain Chemical Potential J 1.97E+173.10E+04 6101.83211.5 3 Transpiration J 9.99E+163.06E+04 3053.31607.0 4 Rain Geopotential J 1.92E+164.70E+04 904.1475.9 5 Wind, Kinetic J 6.35E+172.45E+03 1555.9818.9 6 Hurricanes J 0.00E+006.49E+03 0.00.0 7 Waves J 05.10E+04 0.00.0 8 Tides J 07.39E+04 0.00.0 9 Earth Cycle J 2.90E+171.20E+04 3482.51832.9 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 1.83E+101.68E+09 30.716.2 Top soil loss (harvesting) J 1.38E+137.40E+04 1.00.5 11 Miscellaneous Products (plants) J 1.80E+04 0.00.0 IMPORTS: 12 Petroleum Products J 2.07E+141.11E+05 23.012.1 13 Machinary, Equipment g 4.08E+081.13E+10 4.62.4 14 Goods (Pesticides, herbicides, misc goods) g 9.53E+061E9 7 E9 0.20.1 15 Seedlings $ 6.57E+061.90E+12 12.56.6 16 Tourist Time J 1.09E+141.50E+07 1632.5859.2 17 Labor hours 1.57E+076.30E+13 991.1521.6 18 Electricity J 1.15E+142.92E+05 33.517.6 19 Services $ 2.73E+081.90E+12 518.4272.8 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 2.88E+071.90E+12 54.728.8 21 Payments for minereals extracted $ 7.92E+071.90E+12 150.479.2 22 Fee Payments (hunting, fishing, grazing, etc) $ 2.63E+061.90E+12 5.02.6 EXPORTS: 23 Extracted Firewood J 1.55E+155.04E+04 78.141.1 24 Harvested Wood J 1.12E+165.04E+04 565.5297.7 25 Water, Chemical Potential J 9.70E+168.10E+04 7854.64134.0 26 Water, Geopotential J 1.54E+174.70E+04 7233.13806.9 27 Minerals g 1.14E+118.16E+09 933.0491.1 28 Fossil Fuels J

PAGE 103

103 Table H-1 continued Note Item Units Quantity Emergy Intensity (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 29 Harvested wildlife J 3.94E+151.10E+07 3722.81959.4 30 Harvested Fish J 6.42E+121.68E+07 107.956.8 31 Information hrs 3.09E+041.90E+12 7.33.8 32 Hydroelectric Power J 33 Image Exported with Tourists hrs 2.51E+081.98E+13 4971.82616.7 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Gov't $ 2.92E+071.90E+12 55.529.2 34 Payments for Labor $ 1.60E+081.90E+12 304.9160.5 Footnotes to H-1 RENEWABLE RESOURCES: Sources 1 Solar Insolation Land Area 1.03E+11m^2 Insolation5.94E+09J/m^2/ye ar NREL, 2006 Albedo1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 5.02E+20J Transformity1.00E+00sej/J 2 Rain Chemical Potential Land Area 1.03E+11m^2 Rain0.386868m/yr NOAA, 2006 Total Volume Rain3.98E+10m^3 energy= volume*1000kg/m^3*4940J/kg =1.97E+17 Transformity3.10E+04sej/J Odum, 2000 3 Transpiration 1.96E-01m/m^2/yr 2.02E+10m3 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy9.99E+16J/yr Transformity3.06E+04sej/J Odum, 2000 4 Rain Geopotential Rain1.91E-01m/yr NOAA 2006 Mean Elevation Change610m Land Area 1.03E+11m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =1.92E+16J Transformity4.70E+04sej/J Odum et.al, (2000)

PAGE 104

104 5 Wind, Kinetic Area1.03E+11 air density1.30E+00kg/m^3 avg annual wind velocity4.39E+00mps NOAA 2006 Geostrophic wind7.32E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 =6.35E+17 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 8.94E+01miliwatts/m^2 IHFC, 2005 area1.03E+11m^2 energy=miliwatts/m^2*area*sec/yr 2.82E+06J/m^2 energy=2.90E+17J/yr Transformity1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.83E+10g/yr Top Soil Loss (3.5% of total SL)6.40E+08g/yr energy=g of C*5.4 kcal/g*4184 J/cal =1.38E+13J 11 Miscellaneous Products (Plants) g/yr NFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =2.66E+10joules Transformity1.80E+04sej/J IMPORTS: 12 Petroleum Products Forest Service Use1.78E+05gal/yr NFS, 2006 energy=gal*13e7j/gal energy=2.32E+13J/yr FS Building Use2.94E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU

PAGE 105

105 =2.07E+14J/yr Total Fuel Use2.30E+14J/yr Transformity1.11E+05sej/J Odum, (1996) Est. Cost3.10E+06$/yr 13 Machinary, Equipment FS1880vehicles avg. mass4.34E+06g/vehicle avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle =4.08E+08g Specific Emergy1.13E+10 sej/g Sweeney, 2007 14 Goods (Pesticides, herbicides, misc goods) 9.53E+06g/yr R of FS, 2003 2.49E+10sej/g emergy=2.37E+17sej/yr Est. for cost1.68E+06$/yr 15 Replanting Total Cost=6.57E+06$/yr Unit Emergy Value1.90E+12sej/$ Sweeney 2007 16 Tourism Tourist Time1.32E+07visits/yr NFS, 2005 average stay1.90E+01hrs Total Hours of Stay2.51E+08hours/yr avg. energy/hr1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =1.09E+14J/y Transformity1.50E+07 sej/J 17 Labor FS6.12E+06hrs/yr NFS, 2005 Contractors6.10E+06hrs/yr Total Labor1.57E+07hrs/yr Unit Emergy Value6.30E+13sej/hr USA emergy use (1.9E25 sej/yr);work force of 1.5 E8 workers 18 Electricity 2943770sq ft USFS, 2005 37000btu/ft2/yr EIA, 1992 1.09E+11btu/yr energy=btu/yr*1055 j/btu =1.15E+14J Transformity2.92E+05 Odum, 1996 Est. Cost2.87E+06$/yr Region Budget 2.89E+08$/yr USFS, 2005 19 Services 2.73E+08$/yr USFS, 2005

PAGE 106

106 Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 20 Payment for timber 2.88E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 21 Payments for Extracted Minerals 7.92E+07$/y Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 22 Fee Payments 2.63E+06$/yr Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 EXPORTS: 23 ExtractedFirewood mass1.03E+08kg energy=mass*1000g/kg15000j /g =1.55E+15J/yr Transformity3.60E+05sej/J Brown and Bardi (2001) 15, assuming 50% wood 24 Harvested Wood 1.39E+06m3/yr USFS, 2005 5.40E+05g/m3 mass7.48E+11g/yr energy=g*15000j/ g =1.12E+16J/yr Transformity (w/o services)5.04E+04 25 Water, Chemical Potential Total Export From Streams1.96E+10m^3/yr USFS, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 9.70E+16 Transformity =8.10E+04 Odum, 2000 26 Water, Geopotential Energy avg. elevation 8.00E+02m Geopotential (J) = (volume)(avg elevation)(density)(gravity) joules = 1.54E+17 Transformity4.70E+04sej/J Odum, 2000 27 Minerals 1.14E+11g/yr Sp. Emergy (avg)=8.16E+09sej/g emergy=9.33E+20sej 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01% Big Game Extracted99277.5Big Game/y USFWS, 2002

PAGE 107

107 avg. mass5.68E+04g/Game energy content2.65E+04J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=3.74E+15J/yr Transformity=9.90E+05sej/J Brown,et al. 2005 Emergy=3.70E+21sej Small Game Extracted377254.5Small Game/yr USFWS, 2002 avg. mass3.30E+03g/animal energy content6.37E+03J/g energy=#*avg mass*(percent dry weight)J/g energy=1.98E+14J/yr Transformity=1.20E+05sej/J Brown,et al. 2005 Emergy=2.38E+19sej Migratory Birds Extracted297832.5#/yr USFWS, 2002 avg. mass1.30E+03g/bird energy content8.83E+03J/g energy=#*avg mass*(percent dry weight)J/g energy=8.55E+11J/yr Transformity=1.01E+05sej/J Brown,et al. 2005 Emergy=8.63E+16sej Other Species Extracted33092.5#/yr USFWS, 2002 avg. mass6.35E+03g energy content6.37E+03J/g energy=#*avg mass*(percent dry weight)J/g 3.34E+11J/yr Transformity=1.50E+05sej/J Brown,et al. 2005 Emergy=5.02E+16sej Sum of Emergy from Game3.72E+21sej Weighted Trans. For Game1.10E+07sej/J 30 Fishing 3.76E+06fish caught USFS, 2004 avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught6.42E+12J assume 20% dry weight Transformity=1.68E+07sej/J 31 Research Information # of papers average time spent8.05E+02hours/pap er research hours30898.01hours/yr Transformity2.35E+14sej/hr total sej of research7.26E+18sej Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 32 Hydroelectric Power

PAGE 108

108 (National Data Only) 33 Image Exported with Tourists Tourism Time in NF's2.51E+08hrs USFS, 2006 site area=2.07E+02ha Calculated 1.20E+00sites/visit ha/vist2.48E+02ha USFS, 2006 use/ha/hour7.98E+10sej/ha Calculated emergy of image exported4.97E+21sej/yr Unit emergy value1.98E+13sej/visitor hour 34 Payments to State 2.92E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ Sweeney, 2007 35 Payments for FS Labor 1.60E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ Sweeney, 2007

PAGE 109

109 Table H-2. Emergy evaluation of Region 1 assets Note Item Units Quantity UEV (sej/unit) Solar Emergy (x1018sej) Em$ (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 1.18E+19 3.62E+04 428144.8 225339.4 2 Herb./Shrub Biomass J 5.83E+17 17976 10475.4 5513.4 3 Land Area ha 1.03E+07 1.05E+15 10812.1 5690.6 4 Soil OM J 1.57E+19 1.24E+04 195211.6 102742.9 5 Ground Water J 1.91E+17 3.02E+05 57684.5 30360.3 6 Surface Water J 9.70E+16 8.10E+04 7854.6 4134.0 ECONOMIC ASSETS 7 Roads (dirt) $ 2.30E+08 1.90E+12 437.7 230.4 8 Roads (gravel) g 1.50E+13 1.68E+09 25219.9 13273.6 9 Roads (paved) g 5.52E+11 2.77E+09 1529.2 804.8 10 Machinery & tools g 8.16E+09 1.13E+10 91.8 48.3 11 Office Equipment g 4.10E+09 1.13E+10 46.2 24.3 12 Buildings g 1.13E+11 3.36E+09 708.0 372.6 13 Minerals (g) g NA 4.54E+09 NA NA 13a Minerals ($) $ NA 1.90E+12 NA NA CULTURAL ASSETS 15 Information Indian Artifacts J 6.98E+15 1.89E+07 132082.0 69516 16 Value of Critical Species # of ind. 1.50E+01 2.26E+22 338366.3 178087. Footnotes to H-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 1.50E+0 9 m^3 USFS, 2005 5.40E+0 2 kg/m^3 mass=m^3*kg/m^3*1000 g/kg =8.07E+1 4 g 3.50E+0Kcal/g of Tree

PAGE 110

110 0Biomass energy=g*4.5kcal/g*4186J/ kcal =1.18E+1 9 J Transformity3.62E+0 4 sej/J 2 Total Understory 3.98E+0 7 mt USFS, 2005 1.00E+0 6 g/mt mass=tons*g/t on =3.98E+1 3 g energy=g*3.5kcal/g*4186J/ kcal =5.83E+1 7 J Transformity9.79E+0 3 sej/J 3 Land Area 1.03E+0 7 ha (emergy of land structure) 1.05E+1 5 sej/ha 4 Soil OM 6.95E+0 8 mt COLE, 2006 mass OM=6.95E+1 4 g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 1.57E+1 9 J Transformity1.24E+0 4 sej/J 5 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume3.86E+1 0 m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =1.91E+1 7 J transformity2.79E+0 5 sej/J Buenfil (2001) 6 Surface Water volume1.96E+1 0 m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg

PAGE 111

111 =9.70E+1 6 J Transformity8.10E+0 4 sej/J ECONOMIC ASSETS 7 Roads, Dirt 3.84E+0 4 miles USFS, 2006 (unpub) 6.00E+0 3 $/mile 2.30E+0 8 $ Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) 8 Roads, Gravel 2.12E+0 7 m length USFS, 2006 (unpub) 5.00E+0 0 m width depth=1.02E01 m of gravel volume=1.08E+0 7 m^3 of limerock density=1.39E+0 3 kg/m^3 gravel mass gravel=m^3*kg/m^3*1000 g/kg =1.50E+1 3 g Specific Emergy1.68E+0 9 sej/g Odum (1996) 9 Paved Roads 7.23E+0 5 m USFS, 2006 (unpub) area=6.70E+0 0 m^2 depth=5.08E02 m depth volume=2.46E+0 5 m^3 of asphalt density=2.24E+0 3 kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000 g/kg =5.52E+1 1 g Specific Emergy2.77E+0 9 sej/g Odum (1996) 10 Machinery 1.80E+0 7 lbs USFS, 2006 (unpub) 4.54E+0 2 g/lb mass machinery=lbs*g/lb

PAGE 112

112 =8.16E+0 9 g Specific Emergy1.13E+1 0 sej/g Odum, 1996 11 Office Equipment 1.50E+0 1 kg/m2 area Estimate mass office equipment=SA*kg/m2*1000g/k g =4.10E+0 9 g Specific Emergy1.13E+1 0 sej/g Odum, 1996 12 Buildings 2.73E+0 5 m^2 USFS, 2006 (unpub) Building Mass=1.13E+1 1 g Specific Emergymixed sej/g emergy=7.08E+2 0 sej 13 Minerals Data NA for Regions SOCIETAL ASSETS 14 Emergy of Cultural Information Native Americans on FS lands (peak) 7.56E+0 4 people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+0 9 J/yr Yrs to develop information2.50E+0 2 Energy of Population=(population)*(J/yr/Indian)*(yea r) Energy =6.98E+1 5 J Transformity1.89E+0 7 sej/J 15 Value of Critical Species Endangered/Threatened Species15USFWS, 2006 Percent of pop27.80%% average emergy per species3.96E+2 4 sej/speci es Em. In critical species=# of species*%o f total Pop in FS land.*Em. Required to dev. Species Emergy in Critical Species (sum of above) 1.65E+2 5 sej

PAGE 113

113 APPENDIX I REGION 2 TABLES AND NOTES Table I-1 Annual emergy flows supporting Re gion 2 of the USFS system Note Item Units Quantity Emergy Intensity (sej/unit) Solar Emergy x1018sej EmDollar (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 5.2527E+ 20 1.00E+00 525.3276.5 2 Rain Chemical Potential J 1.61E+173.10E+04 4980.12621.1 3 Transpiration J 1.05E+173.06E+04 3208.11688.5 4 Rain Geopotential J 1.11E+164.70E+04 519.6273.4 5 Wind, Kinetic J 4.87E+172.45E+03 1193.9628.3 6 Hurricanes J 0.00E+006.49E+03 0.00.0 7 Waves J 05.10E+04 0.00.0 8 Tides J 07.39E+04 0.00.0 9 Earth Cycle J 2.88E+171.20E+04 3450.41816.0 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 1.16E+101.68E+09 19.510.3 10a Top soil loss (harvesting) J 8.73E+127.40E+04 0.60.3 11 Miscellaneous Products (plants) J 1.80E+04 0.00.0 IMPORTS: 12 Petroleum Products J 1.32E+141.11E+05 14.77.8 13 Machinary, Equipment g 4.23E+081.13E+10 4.82.5 14 Goods (Pesticides, herbicides, misc goods) g 8.27E+061E9 7 E9 0.20.1 15 Seedlings $ 2.77E+061.90E+12 5.32.8 16 Tourist Time J 2.69E+141.50E+07 4019.52115.5 17 Labor hours 1.32E+076.30E+13 830.8437.3 18 Electricity J 7.35E+132.92E+05 21.411.3 19 Services $ 2.42E+081.90E+12 459.1241.6 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 1.56E+071.90E+12 29.615.6 21 Payments for minereals extracted $ 8.42E+071.90E+12 160.084.2 22 Fee Payments (hunting, fishing, grazing, etc) $ 3.35E+061.90E+12 6.43.4 EXPORTS: 23 Extracted Firewood J 1.34E+153.60E+04 48.425.5 24 Harvested Wood J 7.11E+155.04E+04 358.5188.7 25 Water, Chemical Potential J 5.57E+168.10E+04 4513.52375.6 26 Water, Geopotential J 2.43E+174.70E+04 11430.26015.9 27 Minerals g 1.21E+118.16E+09 990.6521.4 28 Fossil Fuels J 29 Harvested wildlife J 4.80E+151.10E+07 4543.82391.5

PAGE 114

114 Table I-1 continued Note Item Units Quantity Emergy Intensity (sej/unit) Solar Emergy x1018sej EmDollar (x106 Em$) 30 Harvested Fish J 1.58E+131.68E+07 265.6139.8 31 Information hrs 1.61E+052.35E+14 37.919.9 32 Hydroelectric power J 33 Image Exported with Tourists hrs 6.18E+082.89E+13 17820.99379.4 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Gov't $ 1.19E+071.90E+12 22.511.9 34 Payments for Labor $ 1.67E+081.90E+12 31764.016717.9 Foot notes to I-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 8.94E+10m^2 Insolation7.17E+09J/m^2/yr NASA, 2006 Albedo1.80E-01(% given as a decimal) Gholz and Clark, 2000 Energy(J) =(area)*(avg insolation)*(1-albedo) 5.25E+20J Transformity1.00E+00sej/J 2 Rain Chemical Potential Land Area 8.94E+10m^2 Rain0.363811m/yr NASA, 2006 Total Volume Rain3.25E+10m^3 energy= volume*1000kg/m^3*4940J/kg =1.61E+17 Transformity3.10E+04sej/J Odum et.al, (2000) 3 Transpiration 2.38E-01m/m^2/yr 2.12E+10m3 Sedell, 2000 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.05E+17J/yr Transformity3.06E+04sej/J Odum (2000) 4 Rain Geopotential Runoff from Rain0.126m/yr NASA, 2006 Mean Elevation Change305m Land Area 8.94E+10m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =1.11E+16J Transformity4.70E+04sej/J Odum, (2000) 5 Wind, Kinetic Area8.94E+10

PAGE 115

115 air density1.30E+00kg/m^3 avg annual wind velocity4.21E+00mps Geostrophic wind7.02E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragcoef*(GeosGrnd)^3*31500000 =4.87E+17 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 1.02E+02miliwatts/m^2 IHFC, 2005 area8.94E+10m^2 energy=miliwatts/m^2*area*sec/yr 3.22E+06J/m^2 energy=2.88E+17J/yr Transformity1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.16E+10g/yr USFS, 2005 Top Soil Loss (3.5% of total SL)4.06E+08g/yr energy=g of C*5.4 kca'/g*4184 J/cal =8.73E+12J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr USFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =joules Transformity1.80E+04sej/J IMPORTS: 12 Petroleum Products Forest Service Use1.24E+06gal/yr USFS, 2005 energy=gal*13e7j/gal energy=1.61E+14J/yr FS Building Use1.88E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU =1.32E+14 Total Fuel Use2.93E+14J/yr Transformity1.11E+05sej/J Odum, (1996)

PAGE 116

116 Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 4.23E+06$/yr 13 Machinery, Equipment mass8.45E+09g avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 4.23E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides, misc goods) 8.27E+06g/yr NFS, 2005 2.49E+10sej/g emergy=2.06E+17sej/yr Est. for cost1.46E+06$/yr 15 Replanting Total Cost=2.77E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP ( 2006) 16 Tourism Tourist Time3.25E+07visits/yr USFS, 2005 average stay1.90E+01hrs Total Hours of Stay6.18E+08hours/yr avg. energy/hr1.04E+02kcal/hr total energy expenditure=Cal/hr*hrs*4186J/Cal =2.69E+14J/y Transformity1.50E+07 sej/J 17 Labor FS6.38E+06hrs/yr USFS, 2005 Contractors3.86E+06hrs/yr Total Labor1.32E+07hrs/yr Unit Emergy Value6.30E+13sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 1882186sq ft USFS, 2005 37000btu/ft2/yr EIA, 1992 6.96E+10btu/yr energy=btu/yr*1055 j/btu =7.35E+13J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 1.84E+06$/yr FS Regional budget 2.56E+08$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) 19 Services 2.42E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 117

117 20 Payment for timber 1.56E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 21 Payments for Extracted Minerals 8.42E+07$/y Unit Emergy Value1.90E+12sej/$ CEP (2006) 22 Fee Payments 3.35E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass8.96E+07kg energy=mass*1000g/kg15000j /g =1.34E+15J/yr Transformity3.60E+04sej/J Brown and Bardi (2001) 15, assuming 50% wood 24 Harvested Wood 8.78E+05m3/yr USFS, 2005 5.40E+05g/m3 mass4.74E+11g/yr energy=g*15000j/ g =7.11E+15J/yr Transformity (w/o services)5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams1.13E+10m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 5.57E+16J/yr Transformity8.10E+04sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) = (volume)(elevation)(density)(gravity) avg. elevation2.20E+03m USGS, 2006 joules = 2.43E+17 Transformity4.70E+04sej/J Odum, 2000 27 Minerals 1.21E+11g/yr estimate specific emergy=8.16E+09sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01% Big Game Extracted1.21E+05Big Game/y avg. mass5.68E+04g/Game energy content2.65E+04J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=4.56E+15J/yr USFWS, 2002 Transformity=9.90E+05sej/J Brown et al, 2005

PAGE 118

118 Emergy=4.51E+21sej Small Game Extracted4.60E+05Small Game/yr USFWS, 2002 avg. mass3.30E+03g/animal energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=2.42E+14J/yr Transformity=1.20E+05sej/J Brown et al, 2005 Emergy=2.90E+19sej Migratory Birds Extracted3.64E+05#/yr USFWS, 2002 avg. mass1.30E+03g/bird energy content8.83E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=1.04E+12J/yr Transformity=1.01E+05sej/J Brown et al, 2005 Emergy=1.05E+17sej Other Species Extracted4.04E+04#/yr USFWS, 2002 avg. mass6.35E+03g energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 4.08E+11J/yr Transformity=1.50E+05sej/J Brown et al, 2005 Emergy=6.12E+16sej Sum of Emergy from Game4.54E+21sej Weighted Trans. For Game1.10E+07sej/J 30 Fishing 9.26E+06fish caught USFS, 2004 avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.58E+13J assume 20% dry weight Transformity=1.68E+07sej/J 31 Research Information 1.62E+02# of papers average time spent8.05E+02hours/pap er research hours161249hours/yr Transformity2.35E+14sej/hr Odum, 1996 total sej of research3.79E+19sej 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NF's6.18E+08hrs USFS, 2006 site area=2.07E+02ha CEP (2006) 1.20E+00sites/visit ha/vist2.48E+02ha USFS, 2006

PAGE 119

119 use/ha/hour1.16E+11sej/ha CEP (2006) emergy of image exported1.78E+22sej/yr Unit emergy value2.89E+13sej/visitor hour 33 Payments to State 1.19E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 34 Payments for FS Labor 1.67E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 120

120 Table I-2 Emergy evaluation of Regi on 2 forest assets Note Item Units Quantity UEV Solar Emdolla rs Emergy (x106 sej) (x10 em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 8.63E+18 3.62E+04 312275. 164355.4 2 Herb. /Shrub Biomass J 6.63E+17 17976 11926.7 6277.2 3 Land Area h a 8.94E+06 1.05E+15 9383.7 4938.8 4 Soil OM J 1.01E+19 1.24E+04 125035.8 65808.3 5 Ground Water J 1.99E+17 3.02E+05 60076.8 31619.4 6 Surface Water J 5.57E+16 8.10E+04 4513.5 2375.6 ECONOMIC ASSETS 7 Roads (dirt) $ 1.52E+08 1.90E+12 289.7 152.5 8 Roads (gravel) g 7.31E+12 1.68E+09 12281.2 6463.8 9 Roads (paved) g 1.33E+11 2.77E+09 368.2 193.8 10 Machinery & tools g 8.45E+09 1.13E+10 95.1 50.1 11 Office Equipment g 2.62E+09 1.13E+10 29.5 15.5 12 Buildings g 7.22E+10 7.90E+09 452.0 237.9 13 Minerals (g) g NA 4.54E+09 NA NA 13a Minerals ($) $ NA 1.90E+12 NA NA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 6.98E+15 1.89E+07 132082.0 69516.9 16 Value of Critical Species # of ind. 1.60E+01 2.26E+22 360924.0 1899.6 Footnotes for I-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 8.48E+08m^3 NFS, 2005 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =4.58E+14g 4.50E+00Cal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kcal =8.63E+18J Transformity3.62E+04 sej/J 2 Total Understory 4.53E+07mt NFS, 2005 1.00E+06g/mt mass=tons*g/ton =4.53E+13g energy=g*3.5kcal/g*4186J/kcal =6.63E+17J

PAGE 121

121 Transformity9.79E+03sej/J 3 Land Area ha (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 4.45E+08mt mass OM=4.45E+14g Energy=massOM* 5.4 Cal/g of OM 4186 j/Cal 1.01E+19J Transformity1.24E+04 sej/J 5 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume4.02E+10m3 energy=volume*1000kg/m^3*4940J/kg =1.99E+17J transformity2.79E+05sej/J Buenfil (2001) 6 Surface Water volume1.13E+10m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =5.57E+16J Transformity8.10E+04sej/J ECONOMIC ASSETS 7 Roads, Dirt 2.54E+04miles USFS, 2006 (unpub) 6.00E+03$/mile 1.52E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 8 Roads, Gravel 1.03E+07m length USFS, 2006 (unpub) 5.00E+00m width depth=1.02E-01 m of gravel volume=5.24E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =7.31E+12g Specific Emergy1.68E+09sej/g Odum (1996) 9 Paved Roads 1.74E+05m USFS, 2006 (unpub) area=6.70E+00m^2 depth=5.08E-02m depth volume=5.92E+04m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =1.33E+11g Specific Emergy2.77E+0 9 sej/g Odum (1996) 10 Machinary 1.86E+07lbs USFS, 2006 (unpub)

PAGE 122

122 4.54E+02g/lb mass machinary=lbs*g/lb =8.45E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 11 Office Equipment 1.50E+01kg/m2 mass office equipment=SA*kg/m2*1000g/kg =2.62E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Buildings 1.75E+05m^2 USFS, 2006 (unpub) Building Mass= 7.22E+10g Specific Emergy7.90E+09 sej/g (avg) emergy=4.52E+20sej 13 Minerals Data NA for Regions CULTURAL ASSETS 18 Emergy of Cultural Information Native Americans on FS lands (peak) 7.31E+03 people estimate energy per capita= (2500Cal/day)*(365 d/y)*(4186J/Cal) = 3.82E+09 J/yr Yrs to develop information 2.50E+02 estimate Energy of Population= (population)*(J/yr/Indian)*(year) Energy = 6.98E+15 J Transformity 1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species16 USFWS, 2006 Percent of pop27.80%% average emergy per species3.96E+24sej/species Em. In critical species= # of species*%of total Pop in FS land.*Em. Required to develop species Emergy in Critical Species (sum of above)1.76E+25sej

PAGE 123

123 APPENDIX J REGION 3 TABLES AND NOTES Table J-1 Annual emergy flows supporting Region 3 of the USFS system Note Item Units Quantity Unit Emergy Values 1. (sej/unit) Solar Emergy x1018sej EmDollar (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 5.9645E+ 20 1.00E+00 596.5 313.9 2 Rain Chemical Potential J 1.24E+173.10E+04 3843.1 2022.7 3 Transpiration J 7.87E+163.06E+04 2406.5 1266.6 4 Rain Geopotential J 8.22E+164.70E+04 3861.5 2032.3 5 Wind, Kinetic J 3.49E+172.45E+03 855.5 450.2 6 Hurricanes J 0.00E+006.49E+03 0.0 0.0 7 Waves J 05.10E+04 0.0 0.0 8 Tides J 07.39E+04 0.0 0.0 9 Earth Cycle J 2.19E+171.20E+04 2628.0 1383.2 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 2.22E+091.68E+09 3.7 2.0 Top soil loss (harvesting) J 1.67E+127.40E+04 0.1 0.1 11 Miscellaneous Products (plants) J 1.80E+04 0.0 0.0 IMPORTS: 12 Petroleum Products J 1.62E+141.11E+05 18.1 9.5 13 Machinery, Equipment g 4.74E+081.13E+10 5.3 2.8 14 Goods (Pesticides, herbicides, misc goods) g 7.79E+061E9 7 E9 0.2 0.1 15 Seedlings $ 1.51E+061.90E+12 2.9 1.5 16 Tourist Time J 1.70E+141.50E+07 2535.4 1334.4 17 Labor hours 9.64E+066.30E+13 607.2 319.6 18 Electricity J 9.01E+132.92E+05 26.3 13.8 19 Services $ 3.16E+081.90E+12 600.5 316.1 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 1.02E+061.90E+12 1.9 1.0 21 Payments for minerals extracted $ 1.56E+091.90E+12 2964.3 1560.2 22 Fee Payments (hunting, fishing, grazing, etc) $ 6.49E+061.90E+12 12.3 6.5 EXPORTS: 23 Extracted Firewood J 1.27E+153.60E+04 45.6 24.0 24 Harvested Wood J 3.60E+155.04E+04 181.3 95.4 25 Water, Chemical Potential J 4.53E+168.10E+04 3666.2 1929.6 26 Water, Geopotential J 1.44E+174.70E+04 6752.3 3553.8 27 Minerals g 2.25E+128.16E+09 18373.2 9670.1 28 Fossil Fuels J

PAGE 124

124 Table J-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy x1018sej EmDollar (x106 Em$) 29 Harvested wildlife J 3.12E+151E5 9.9E5 345.3 181.7 30 Harvested Fish J 9.96E+121.68E+07 167.4 88.1 31 Information hrs 3.09E+042.35E+14 7.3 3.8 32 Hydroelectric power J 33 Image Exported with Tourists hrs 3.90E+083.39E+13 13195.0 6944.7 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Govt $ 1.01E+071.90E+12 19.2 10.1 34 Payments for Labor $ 1.32E+081.90E+12 251.2 132.2 Footnotes to J-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 8.42E+1 0 m^2 Insolation8.64E+0 9 J/m^2/yea r NREL, 2006 Albedo1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 5.96E+2 0 J Transformity1.00E+0 0 sej/J 2 Rain Chemical Potential Land Area 8.42E+1 0 m^2 Rain0.297995m/yr NOAA, 2006 Total Volume Rain2.51E+1 0 m^3 energy= volume*1000kg/m^3*4940J/kg =1.24E+1 7 Transformity3.10E+0 4 sej/J Odum (2000) 3 Transpiration 1.89E-01m/m^2/yr 1.59E+1 0 m3 Et Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy7.87E+1 6 J/yr

PAGE 125

125 Transformity3.06E+0 4 sej/J Odum, (2000) 4 Rain Geopotential Rain1.09E-01m/yr NOAA, 2006 Mean Elevation Change915m Land Area 8.42E+1 0 m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =8.22E+1 6 J Transformity4.70E+0 4 sej/J Odum, (2000) 5 Wind, Kinetic Area8.42E+1 0 air density1.30E+0 0 kg/m^3 avg annual wind velocity3.85E+0 0 mps NOAA, 2006 Geostrophic wind6.41E+0 0 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 energy3.49E+1 7 Transformity2.45E+0 3 sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 82.40846m iliwatts/m^2 IHFC, 2005 area8.42E+1 0 m^2 energy=miliwatts/m^2*area*sec/yr 2.60E+0 6 J/m^2/yr energy=2.19E+1 7 J/yr Transformity1.20E+0 4 sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 2.22E+0 9 g/yr USFS, 2005 Top Soil Loss (3.5% of total SL)7.77E+0g/yr

PAGE 126

126 7 energy=g of C*5.4 kca/g*4184 J/cal =1.67E+1 2 J Transformity=7.40E+0 4 sej/j 11 Miscellaneous Products (Plants) g/yr USFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =2.66E+1 0 joules Transformity1.80E+0 4 sej/J IMPORTS: 12 Petroleum Products Forest Service Use2.52E+0 6 gal/yr energy=gal*13e7j/gal =3.28E+1 4 J/yr FS Building Use2.31E+0 6 sq feet 6.66E+0 4 BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU 1.62E+1 4 Total Fuel Use4.90E+1 4 J/yr Transformity1.11E+0 5 sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 7.20E+0 6 $/yr 13 Machinery, Equipment mass9.49E+0 9 g avg. vehicle lifespan2.00E+0 1 yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 4.74E+0 8 g Specific Emergy1.13E+1 0 sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 7.79E+0 6 g/yr USFS, 2005 2.49E+1 0 sej/g emergy=1.94E+1sej/yr

PAGE 127

127 7 Est. for cost1.37E+0 6 $/yr 15 Replanting Total Cost=1.51E+0 6 $/yr Unit Emergy Value1.90E+1 2 sej/$ CEP ( 2006) 16 Tourism Tourist Time2.05E+0 7 visits/yr USFS, 2004 average stay1.90E+0 1 hrs/visit Total Hours of Stay3.90E+0 8 hours/yr avg. energy/hr1.04E+0 2 kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al energy=1.70E+1 4 J/y Transformity1.50E+0 7 sej/J 17 Labor FS5.04E+0 6 hrs/yr USFS, 2005 Contractors2.44E+0 6 hrs/yr Total Labor9.64E+0 6 hrs/yr Unit Emergy Value6.30E+1 3 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 2308712sq ft USFS, 2005 37000btu/ft2/yr EIA, 1992 8.54E+1 0 btu/yr energy=btu/yr*1055 j/btu =9.01E+1 3 J Transformity2.92E+0 5 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 2.25E+0 6 $/yr Regional FS budget 2.71E+0 8 $/yr Unit Emergy Value1.90E+1 2 sej/$ CEP (2006)

PAGE 128

128 19 Services 3.16E+0 8 $/yr USFS, 2005 Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) 20 Payment for timber 1.02E+0 6 $/yr USFS, 2005 Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) 21 Payments for Extracted Minerals 1.56E+0 9 $/y Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) 22 Fee Payments 6.49E+0 6 $/yr Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) EXPORTS: 12 Extracted Firewood mass8.44E+0 7 kg energy=mass*1000g/kg15000j /g =1.27E+1 5 J/yr Transformity3.60E+0 4 sej/J Brown and Bardi (2001) 15, assuming 50% wood 24 Harvested Wood 4.44E+0 5 m3/yr USFS, 2005 5.40E+0 5 g/m3 mass2.40E+1 1 g/yr energy=g*15000 j/g =3.60E+1 5 J/yr Transformity (w/o services)5.04E+0 4 Brown, 2001 25 Water, Chemical potential Total Export From Streams 9.16E+0 9 m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 4.53E+1 6 J/yr Transformity8.10E+0 4 sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) = (volume)(elevation)(density)(gravity) avg. elevation=1.60E+0m USGS, 2006

PAGE 129

129 3 joules = 1.44E+1 7 J/yr Transformity4.70E+0 4 sej/J Odum, 2000 27 Minerals 2.25E+1 2 g/yr USFS, 2003 sp. Emergy (avg)=8.16E+0 9 sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+0 1 % Big Game Extracted7.88E+0 4 Big Game/y avg. mass5.68E+0 4 g/Game energy content2.65E+0 4 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=2.97E+1 5 J/yr USFWS, 2002 Transformity=1.10E+0 5 sej/J Brown, et al 2005 Emergy=3.26E+2 0 sej Small Game Extracted3.00E+0 5 Small Game/yr FWS avg. mass3.30E+0 3 g/animal energy content6.37E+0 3 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=1.57E+1 4 J/yr Transformity=1.20E+0 5 sej/J Brown, et al 2005 Emergy=1.89E+1 9 sej Migratory Birds Extracted2.36E+0 5 #/yr USFWS, 2002 avg. mass1.30E+0 3 g/bird energy content8.83E+0 3 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=6.79E+1 1 J/yr Transformity=1.01E+0sej/J Brown, et al 2005

PAGE 130

130 5 Emergy=6.85E+1 6 sej Other Species Extracted2.63E+0 4 #/yr USFWS, 2002 avg. mass6.35E+0 3 g energy content6.37E+0 3 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 2.66E+1 1 J/yr Transformity=1.50E+0 5 sej/J Brown, et al 2005 Emergy=3.98E+1 6 sej Sum of Emergy from Game3.45E+2 0 sej Weighted Trans. For Gamesej/J 30 Fishing 5.84E+0 6 fish caught avg. mass4.54E+0 2 g/fish assume avg weight = 1 lb energy content1.88E+0 4 J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught9.96E+1 2 J assume 20% dry weight Transformity=1.68E+0 7 sej/J 31 Research Information # of papers average time spent8.05E+0 2 hours/pape r research hours30898.01hours/yr Transformity2.35E+1 4 sej/hr total sej of research7.26E+1 8 sej 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NFs3.90E+0 8 hrs USFS, 2006 site area=2.07E+0 2 ha CEP (2006) 1.20E+0 0 sites/visit ha/vist2.48E+0 2 ha USFS, 2006 use/ha/hour1.36E+1sej/ha CEP (2006)

PAGE 131

131 1 emergy of image exported1.32E+2 2 sej/yr Unit emergy value3.39E+1 3 sej/visitor hour 33 Payments to State 1.01E+0 7 $/yr USFS, 2005 Unit Emergy Value1.90E+1 2 sej/$ CEP (2006) 34 Payments for FS Labor 1.32E+0 8 $/yr USFS, 2005 Unit Emergy Value1.90E+1 2 sej/$

PAGE 132

132 Table J-2 Emergy evaluation of Region 3 forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 2.71E+18 3.62E+04 97990.051573.7 2 Herbaceous/Shrub Biomass J 6.86E+17 17976 12331.96490.5 3 Land Area ha 8.42E+06 1.05E+15 8840.64653.0 4 Soil OM J 7.84E+18 1.24E+04 97495.851313.6 5 Ground Water (drinking aquifer) J 2.86E+17 3.02E+05 86589.845573.6 6 Surface Water J 4.50E+16 8.10E+04 3647.91920.0 ECONOMIC ASSETS 7 Roads (dirt) $ 2.80E+08 1.90E+12 532.0280.0 8 Roads (gravel) g 5.32E+12 1.68E+09 8935.24702.7 9 Roads (paved) g 1.64E+11 2.77E+09 455.1239.5 10 Machinery & tools g 9.48E+09 1.13E+10 106.756.1 11 Office Equipment g 3.22E+09 1.13E+10 36.219.1 12 Buildings g 8.85E+10 7.97E+09 555.0292.1 13 Minerals (g) g NA4.54E+09 NANA 13a Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 1.49E+17 1.89E+07 2810976.61479461.3 16 Value of Critical Species # of ind. 5.50E+01 2.26E+22 1240676.36529.9 Footnotes for J-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 3.42E+08m^3 USFS, 2005 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/ kg =1.85E+14g 3.50E+00Kcal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kc al =2.71E+18J Transformity3.62E+04 sej/J 2 Total Understory 4.68E+07mt COLE, 2005 1.00E+06g/mt mass=tons*g/to n =4.68E+13g energy=g*3.5kcal/g*4186J/kc al =6.86E+17J Transformity9.79E+03sej/J

PAGE 133

133 3 Land Area 8.42E+06ha USFS, 2007 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 3.47E+08mt COLE, 2005 mass OM=3.47E+14g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 7.84E+18J Transformity1.24E+04 sej/J 5 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume5.80E+10m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =2.86E+17J transformity2.79E+05sej/J Buenfil (2001) 6 Surface Water volume9.12E+09m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =4.50E+16J Transformity1.04E+06sej/J ECONOMIC ASSETS 7 Roads, Dirt 4.67E+04miles USFS, 2006 (unpub) 6.00E+03$/mile 2.80E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 8 Roads, Gravel 7.51E+06m length USFS, 2006 (unpub) 5.00E+00m width depth=0.1016m of gravel volume=3.82E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/ kg mass gravel=5.32E+12g Specific Emergy1.68E+09sej/g Odum (1996) 9 Paved Roads 215055.5 6 m width=6.7m^2 USFS, 2006 (unpub) depth=5.08E-02m depth volume=7.32E+04m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/ kg

PAGE 134

134 asphalt1.64E+11g Specific Emergy2.77E+09 sej/g Odum (1996) 10 Machinery 2.09E+07lbs USFS, 2006 (unpub) 4.54E+02g/lb mass machinery=9.48E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 11 Office Equipment 1.50E+01kg/m2 mass office equipment=Building SA*kg/m2*1000g/kg =3.22E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Buildings 214,479m^2 USFS, 2006 (unpub) Building Mass=8.85E+10g Specific Emergy7.97E+09 sej/g avg emergy5.55E+20 13 Minerals Data NA for Regions CULTURAL ASSETS 18 Emergy of Cultural Information Native Americans on FS lands (peak)1.56E+05people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy = 1.49E+17J Transformity1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species55 USFWS, 2006 Percent of pop27.80%% average emergy per species3.96E+24sej/specie s Em. In critical species=# of species*%of to tal Pop in FS land.*Emergy Required to develop species Emergy in Critical Species (sum of above) 6.05E+25sej

PAGE 135

135 APPENDIX K REGION 4 TABLES AND NOTES Table K-1 Annual emergy flows supporting Region 4 of the USFS system Note Item Units Quantity Unit Emergy Values 1. (sej/unit) Solar Emergy x1018sej EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 7.89E+201.00E+00 789.5 415.5 2 Rain Chemical Potential J 1.99E+173.10E+04 6163.5 3243.9 3 Transpiration J 1.29E+173.06E+04 3944.1 2075.8 4 Rain Geopotential J 1.20E+174.70E+04 5654.1 2975.8 5 Wind, Kinetic J 4.20E+172.45E+03 1028.0 541.1 6 Hurricanes J 0.00E+006.49E+03 0.0 0.0 7 Waves J 05.10E+04 0.0 0.0 8 Tides J 07.39E+04 0.0 0.0 9 Earth Cycle J 3.88E+171.20E+04 4659.4 2452.3 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 1.39E+101.68E+09 23.3 12.3 10a Top soil loss (harvesting) J 1.04E+137.40E+04 0.8 0.4 11 Miscellaneous Products (plants) J 1.80E+04 0.0 0.0 IMPORTS: 12 Petroleum Products J 1.82E+141.11E+05 20.3 10.7 13 Machinery, Equipment g 4.38E+081.13E+10 4.9 2.6 14 Goods (Pesticides, herbicides, misc goods) g 1.20E+071E9 7 E9 0.3 0.2 15 Seedlings $ 2.99E+061.90E+12 5.7 3.0 16 Tourist Time J 1.93E+141.50E+07 2881.7 1516.7 17 Labor hours 1.87E+076.30E+13 1181.2 621.7 18 Electricity J 1.01E+142.92E+05 29.6 15.6 19 Services $ 3.05E+081.90E+12 579.3 304.9 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 3.79E+061.90E+12 7.2 3.8 21 Payments for minerals extracted $ 1.35E+081.90E+12 255.7 134.6 22 Fee Payments (hunting, fishing, grazing, etc) $ 3.92E+061.90E+12 7.4 3.9 EXPORTS: 23 Extracted Firewood J 1.95E+153.60E+04 70.2 36.9 24 Harvested Wood J 1.40E+165.04E+04 707.3 372.3 25 Water, Chemical Potential J 6.98E+168.10E+04 5655.7 2976.7 26 Water, Geopotential J 3.37E+177.77E+04 26139.2 13757.5 27 Minerals g 1.94E+118.16E+09 1584.2 833.8 28 Fossil Fuels J 29 Harvested wildlife J 3.45E+151e5 9.9e5 326.2 171.7

PAGE 136

136 Table K-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy x1018sej EmDollars (x106 Em$) 30 Harvested Fish J 1.13E+131.68E+07 190.4 100.2 31 Information hrs 0.00E+001.90E+12 0.0 0.0 32 Hydroelectric power J 33 Image Exported with Tourists hrs 4.43E+083.13E+13 13866.1 7298.0 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Gov't $ 2.48E+071.90E+12 47.1 24.8 34 Payments for Labor $ 1.82E+081.90E+12 345.5 181.9 Footnotes to K-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 1.30E+11m^2 Insolation7.43E+09J/m^2/yea r NREL, 2006 Albedo1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 7.90E+20J Transformity1.00E+00sej/J 2 Rain Chemical Potential Land Area 1.30E+11m^2 Rain0.31054393 7 m/yr NOAA, 2006 Total Volume Rain4.02E+10m^3 energy= volume*1000kg/m^3*4940J/kg =1.99E+17 Transformity3.10E+04sej/J Odum et.al, (2000) 3 Transpiration 2.01E-01m/m^2/yr 2.61E+10m3 et Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.29E+17J/yr Transformity3.06E+04sej/J Odum et.al, (2000) 4 Rain Geopotential Rain1.09E-01m/yr NOAA, 2006 Mean Elevation Change3.05E+02m Land Area 1.30E+11m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =1.20E+17J Transformity4.70E+04sej/J Odum et.al, (2000)

PAGE 137

137 5 Wind, Kinetic Area1.30E+11 air density1.30E+00kg/m^3 avg annual wind velocity3.54E+00mps Geostrophic wind5.90E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragcoef*(GeosgrndVel)^3*31500000 =4.20E+17 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 9.50E+01miliwatts/m^2 IHFC, 2005 area1.30E+11m^2 energy=miliwatts/m^2*area*sec/ yr 3.00E+06J/m^2 energy=3.88E+17J/yr Transformity1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.39E+10g/yr See Calcs, 2006 a. Top Soil Loss (3.5% of total SL)4.85E+08g/yr energy=g of C*5.4 kca'/g*4184 J/cal 1.04E+13J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr USFS, 2005 energy=g*3.5kcal/g*4186J/Kcal =2.66E+10joules Transformity1.80E+04sej/J IMPORTS: 12 Petroleum Products Forest Service Use1.30E+06gal/yr estimate energy=gal*13e7j/g al energy=1.56E+14J/yr FS Building Use2.60E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU

PAGE 138

138 =1.82E+14 Total Fuel Use3.39E+14J/yr Transformity1.11E+05sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 5.02E+06$/yr 13 Machinery, Equipment mass8.75E+09g estimate avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 4.38E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 1.20E+07g/yr USFS, 2005 2.49E+10sej/g emergy=2.98E+17sej/yr Est. for cost2.11E+06$/yr 15 Replanting Total Cost= 2.99E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP ( 2006) 16 Tourism Tourist Time2.33E+07visits/yr USFS, 2005 average stay1.90E+01hrs Total Hours of Stay4.43E+08hours/yr avg. energy/hr1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kcal energy=1.93E+14J/y Transformity1.50E+07 sej/J 17 Labor FS6.94E+06hrs/yr USFS, 2005 Contractors7.62E+06hrs/yr Total Labor1.87E+07hrs/yr Unit Emergy Value6.30E+13sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 2596247sq ft USFS, 2005 37000btu/ft2/yr EIA, 1992 9.61E+10btu/yr energy=btu/yr*1055 j/btu =1.01E+14J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 2.53E+06$/yr Regional FS budget 2.88E+08$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) 19 Services 3.05E+08$/yr USFS, 2005

PAGE 139

139 Unit Emergy Value1.90E+12sej/$ CEP (2006) 20 Payment for timber 3.79E+06$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 21 Payments for Extracted Minerals 1.35E+08$/y Unit Emergy Value1.90E+12sej/$ CEP (2006) 22 Fee Payments 3.92E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) EXPORTS: 12 Extracted Firewood mass1.30E+08kg NFS Web energy=mass*1000g/kg15000j/g energy=1.95E+15J/yr Transformity3.60E+04sej/J Brown and Bardi (2001) 15, assuming 50% wood 24 Harvested Wood 1.73E+06m3/yr USFS, 2005 5.40E+05g/m3 mass9.36E+11g/yr energy=g*15000j/g =1.40E+16J/yr Transformity (w/o services)5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams1.41E+10m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 6.98E+16J/yr Transformity8.10E+04sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) = (volume)(elevation)(density)(gravity) avg elevation2.43E+03m^3/yr USGS, 2006 joules = 3.37E+17J/yr Transformity7.77E+04sej/J Odum, 2000 27 Minerals 1.94E+11g/yr estimate sp. emergy (avg)=8.16E+09 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01% Big Game Extracted8.70E+04Big Game/y USFWS, 2002 avg. mass5.68E+04g/Game energy content2.65E+04J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=3.27E+15J/yr Transformity=9.90E+05sej/J Brown et al, 2005

PAGE 140

140 Emergy=3.24E+21sej Small Game Extracted3.31E+05Small Game/yr USFWS, 2002 avg. mass3.30E+03g/animal energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=1.74E+14J/yr Transformity=1.20E+05sej/J Emergy=2.08E+19sej Migratory Birds Extracted2.61E+05#/yr USFWS, 2002 avg. mass1.30E+03g/bird energy content8.83E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=7.49E+11J/yr Transformity=1.01E+05sej/J Emergy=7.56E+16sej Other Species Extracted2.90E+04#/yr USFWS, 2002 avg. mass6.35E+03g energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 2.93E+11J/yr Transformity=1.50E+05sej/J Emergy=4.39E+16sej Sum of Emergy from Game3.26E+21sej 30 Fishing 6.64E+06fish caught estimate avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.13E+13J assume 20% dry weight Transformity=1.68E+07sej/J 31 Information $ spent for Research0.00E+00$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NF's4.43E+08hrs USFS, 2006 site area=2.07E+02ha CEP (2006) 1.20E+00sites/visit ha/visit2.48E+02ha USFS, 2006 use/ha/hour1.26E+11sej/ha CEP (2006) emergy of image exported1.39E+22sej/yr Unit emergy value3.13E+13sej/visitor hour 33 Payments to State 2.48E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 141

141 34 Payments for FS Labor 1.82E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 142

142 Table K-2 Emergy evaluation of Region 4 of the USFS assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 7.40E+18 3.62E+04 267834.5140965.5 2 Herb/Shrub Biomass J 1.12E+18 17976 20150.510605.5 3 Land Area ha 1.30E+07 1.05E+15 13605.47160.8 4 Soil OM J 1.65E+19 1.24E+04 205249.9108026.3 5 Ground Water J 2.88E+17 3.02E+05 87105.345844.9 6 Surface Water J 6.98E+16 8.10E+04 5655.72976.7 ECONOMIC ASSETS 7 Roads (dirt) $ 5.21E+07 1.90E+12 99.152.1 8 Roads (gravel) g 8.69E+12 1.68E+09 14594.57681.3 9 Roads (paved) g 5.16E+11 2.77E+09 1429.9752.6 10 Machinery & tools g 8.74E+09 1.13E+10 98.451.8 11 Office Equipment g 3.62E+09 1.13E+10 40.721.4 12 Buildings g 9.95E+09 7.97E+09 624.0328.4 13 Minerals (g) g NA4.54E+09 NANA 13b Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 6.98E+15 1.89E+07 132082.069516.9 16 Value of Critical Species # of ind. 2.70E+01 2.26E+22 609059.33205.6 Footnotes for K-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 9.35E+08m^3 USFS, 2004 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =5.05E+14g 3.50E+00Kcal/g of Tree Biomass energy=g*3.5kcal/g*4186J/kcal =7.40E+18J Transformity3.62E+04 sej/J 2 Total Understory 7.65E+07mt COLE, 2006 1.00E+06g/mt mass=tons*g/to n =7.65E+13g energy=g*3.5kcal/g*4186J/kcal =1.12E+18J Transformity9.79E+03sej/J

PAGE 143

143 3 Land Area 1.30E+07ha USFS, 2007 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 7.30E+08mt COLE, 2006 mass OM=7.30E+14g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 1.65E+19J Transformity1.24E+04 sej/J 5 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg USGS, 2005 Volume5.83E+10m3 energy=volume*1000kg/m^3*4940J/kg energy=2.88E+17J transformity2.79E+05sej/J Buenfil (2001) 6 Surface Water volume1.41E+10m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =6.98E+16J Transformity8.10E+04sej/J Odum, 2000 ECONOMIC ASSETS 7 Roads, Dirt 5.21E+07miles USFS, 2006 (unpub) 6.00E+03$/mile Unit Emergy Value1.90E+12sej/$ CEP (2006) 8 Roads, Gravel 1.23E+07m length USFS, 2006 (unpub) 5.00E+00m width depth=0.1016m of gravel volume=6.23E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =8.69E+12g Specific Emergy1.68E+09sej/g Odum (1996) 9 Paved Roads 675669.6 2 m USFS, 2006 (unpub) width=6.7m^2 depth=5.08E-02m depth volume=2.30E+05m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =5.16E+11g Specific Emergy2.77E+09 sej/g Odum (1996) 10 Machinery 1.93E+07lbs USFS, 2006 (unpub)

PAGE 144

144 4.54E+02g/lb mass machinery=8.74E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 11 Office Equipment 1.50E+01kg/m2 mass office equipment=building(m^2)*kg/m2*1000g/kg =3.62E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Buildings 2.41E+05m^2 USFS, 2006 (unpub) Building Mass=9.95E+09g Specific Emergy7.97E+09 sej/g 6.24E+20 sej 13 Minerals Data NA for Regions CULTURAL ASSETS 18 Emergy of Cultural Information Native Americans on FS lands (peak)3.44E+04people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 17 Value of Critical Species Endangered/Threatened Species27 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/species Em. In critical species=# of Species*%of to tal Pop in FS land.*Emergy Required to develop species Emergy in Critical Species (sum of above) 6.05E+25sej

PAGE 145

145 APPENDIX L REGION 5 TABLES AND NOTES Table L-1. Annual emergy flows supporting Region 5 of the USFS system Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 5.03E+201.00E+00 502.8 264.65 2 Rain Chemical Potential J 1.86E+173.10E+04 5756.0 3029.46 3 Transpiration J 1.42E+173.06E+04 4339.1 2283.73 4 Rain Geopotential J 2.65E+164.70E+04 1244.3 654.92 5 Wind, Kinetic J 1.80E+172.45E+03 440.9 232.08 6 Hurricanes J 0.00E+006.49E+03 0.0 0.00 7 Waves J 1.61E+165.10E+04 819.7 431.44 8 Tides J 1.30E+142.43E+04 3.2 1.66 9 Earth Cycle J 2.09E+171.20E+04 2503.5 1317.65 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 6.08E+091.68E+09 10.2 5.38 Top soil loss (harvesting) J 4.58E+127.40E+04 0.3 0.18 11 Miscellaneous Products (plants) J 1.80E+04 0.0 0.00 IMPORTS: 12 Petroleum Products J 3.44E+141.11E+05 38.3 20.14 13 Machinery, Equipment g 1.14E+091.13E+10 12.8 6.75 14 Goods (Pesticides, herbicides, misc goods) g 7.56E+061E9 7 E9 0.2 0.10 15 Seedlings $ 8.00E+061.90E+12 15.2 8.00 16 Tourist Time J 2.54E+141.50E+07 3796.9 1998.34 17 Labor hours 1.47E+076.30E+13 928.0 488.41 18 Electricity J 1.91E+142.92E+05 55.7 29.31 19 Services $ 7.70E+081.90E+12 1463.1 770.05 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 1.92E+071.90E+12 36.5 19.21 21 Payments for minerals extracted $ 6.79E+081.90E+12 1289.5 678.70 22 Fee Payments (hunting, fishing, grazing, etc) $ 8.16E+061.90E+12 15.5 8.16 EXPORTS: 23 Extracted Firewood J 1.23E+153.60E+04 44.2 23.27 24 Harvested Wood J 1.34E+165.04E+04 677.1 356.37 25 Water, Chemical Potential J 2.02E+178.10E+04 16387.1 8624.78 26 Water, Geopotential J 3.68E+174.70E+04 17278.6 9094.01 27 Minerals g 9.79E+118.16E+09 7993.5 4207.11 28 Fossil Fuels J

PAGE 146

146 Table L-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 29 Harvested wildlife J 1.77E+151e5 9.9e5 1670.4 879.18 30 Harvested Fish J 1.49E+131.68E+07 250.9 132.06 31 Information hrs 5.02E+042.35E+14 11.8 6.21 32 Hydroelectric power J 33 Image Exported with Tourists hrs 5.83E+084.13E+13 24091.7 12679.8 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Govt $ 6.80E+071.90E+12 129.2 68.02 34 Payments for Labor $ 1.40E+081.90E+12 266.8 140.43 Footnotes to L-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 8.17E+10m^2 Insolation7.51E+09J/m^2/ye ar NREL, 2006 Albedo1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 5.03E+20J Transformity1.00E+00sej/J 2 Rain Chemical Potential Land Area 8.17E+10m^2 Rain0.460202m/yr NOAA, 2006 Total Volume Rain3.76E+10m^3 energy= volume*1000kg/m^3*4940J/kg =1.86E+17 Transformity3.10E+04sej/J Odum (2000) 3 Transpiration 3.52E-01m/m^2/yr Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.42E+17J/yr Transformity3.06E+04sej/J Odum (2000) 4 Rain Geopotential Rain1.08E-01m/yr NOAA, 2006 Mean Elevation Change3.05E+02 m Land Area 8.17E+10m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =2.65E+16J Transformity4.70E+04sej/J Odum (2000)

PAGE 147

147 5 Wind, Kinetic Area8.17E+10 air density1.30E+00kg/m^3 avg annual wind velocity3.12E+00mps NOAA, 2006 Geostrophic wind5.19E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 =1.80E+17 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes None 7 Waves Shore length =1.63E+05m Wave height =7.50E-01m Energy(J) = (shore length)(1/8)(density)(gravity)(wave height^2)(velocity) =(__m)(1/8)(1.025E3kg/m3)(9.8 m/sec2)(__m)^2(__m/sec)(3.14E7s/yr) Energy(J) =1.61E+16J/yr TRANSFORMITY =5.10E+04sej/J 2.98E+04 8 Tidal Cont Shelf Area =1.63E+07m^2 Avg Tide Range =1.50E+00m Density =1.03E+03kg/m^3 Tides/year =7.06E+02(number of tides in 365 days) Energy(J) =(shelf)(0.5)(tides/y)(mean tidal range)^2 (density of seawater)(gravity) =(____m^2)*(0.5)*(____/yr)*(____m)^2*(_____kg/m^3) *(9.8m/s^2) =1.30E+14J/yr TRANSFORMITY =2.43E+04sej/J 9 Earth Cycle Heat Flow 8.10E+01miliwatts/m^2 IHFC, 2005 area8.17E+10m^2 energy=miliwatts/m^2*area*sec/yr 2.55E+06J/m^2 energy=2.09E+17J/yr Transformity1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 6.08E+09g/yr USFS, 2005 Top Soil Loss (3.5% of total SL)2.13E+08g/yr energy=g of C*5.4 kca/g*4184 J/cal =4.58E+12J Transformity=7.40E+04 sej/j

PAGE 148

148 11 Miscellaneous Products (Plants) g/yr USFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =2.66E+10joules Transformity1.80E+04sej/J IMPORTS: 12 Petroleum Products Forest Service Use3.38E+06gal/yr energy=gal*13e7j/gal =4.39E+14J/yr FS Building Use4.89E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU =3.44E+14 Total Fuel Use7.82E+14J/yr Transformity1.11E+05sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 1.13E+07$/yr 13 Machinery, Equipment FS Vehicles Mass2.E+10g avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.14E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 7.56E+06g/yr USFS, 2005 2.49E+10sej/g emergy=1.88E+17sej/yr Est. for cost1.33E+06$/yr 15 Replanting Total Cost=8.00E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP ( 2006) 16 Tourism Tourist Time3.07E+07visits/yr USFS, 2004 average stay1.90E+01hrs Total Hours of Stay5.83E+08hours/yr avg. energy/hr1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =2.54E+14J/y Transformity1.50E+07 sej/J 17 Labor FS5.36E+06hrs/yr USFS, 2005 Contractors6.08E+06hrs/yr Total Labor1.47E+07hrs/yr

PAGE 149

149 Unit Emergy Value6.30E+13sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 4889205sq ft USFS, 2005 37000btu/ft2/yr EIA, 1992 1.81E+11btu/yr energy=btu/yr*1055 j/btu =1.91E+14J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 4.77E+06$/yr Regional FS budget 5.77E+08$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) 19 Services 7.70E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 20 Payment for timber 1.92E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 21 Payments for Extracted Minerals 6.79E+08$/y Unit Emergy Value1.90E+12sej/$ CEP (2006) 22 Fee Payments 8.16E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass8.19E+07kg energy=mass*1000g/kg15000j /g =1.23E+15J/yr Transformity3.60E+04sej/J Brown & Bardi (2001) 24 Harvested Wood 1.66E+06m3/yr USFS, 2005 5.40E+05g/m3 mass8.96E+11g/yr energy=g*15000j/ g =1.34E+16J/yr Transformity (w/o services)5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams4.10E+10m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 2.02E+17J/yr Transformity8.10E+04sej/J Odum, 2000 26 Water, Geopotential Energy

PAGE 150

150 Geopotential (J) = (volume)(elevation)(density)(gravity) avg. elevation9.16E+02m USGS, 2006 joules = 3.68E+17J/yr Transformity4.70E+04sej/J Odum, 2000 27 Minerals 9.79E+11g/yr estimate Sp. Emergy (avg)=8.16E+09sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01% Big Game Extracted4.45E+04Big Game/y USFWS, 2002 avg. mass5.68E+04g/Game energy content2.65E+04J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=1.68E+15J/yr Transformity=9.90E+05sej/J Brown et al. 2005 Emergy=1.66E+21sej Small Game Extracted1.69E+05Small Game/yr USFWS, 2002 avg. mass3.30E+03g/animal energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=8.89E+13J/yr Transformity=1.20E+05sej/J Brown et al. 2005 Emergy=1.07E+19sej Migratory Birds Extracted1.34E+05#/yr USFWS, 2002 avg. mass1.30E+03g/bird energy content8.83E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=3.84E+11J/yr Transformity=1.01E+05sej/J Brown et al. 2005 Emergy=3.87E+16sej Other Species Extracted1.48E+04#/yr USFWS, 2002 avg. mass6.35E+03g energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 1.50E+11J/yr Transformity=1.50E+05sej/J Brown et al. 2005 Emergy=2.25E+16sej Sum of Emergy from Game1.67E+21sej 30 Fishing 8.75E+06fish caught avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal)

PAGE 151

151 Energy Fish Caught1.49E+13J assume 20% dry weight Transformity=1.68E+07sej/J 31 Research Information 2.40E+01# of papers average time spent8.05E+02hours/pap er research hours50209.27hours/yr Transformity2.35E+14sej/hr Odum, 1996 total sej of research1.18E+19sej 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NFs5.83E+08hrs USFS, 2006 site area=2.07E+02ha CEP (2006) 1.20E+00sites/visit ha/vist2.48E+02ha USFS, 2006 use/ha/hour1.66E+11sej/ha CEP (2006) emergy of image exported2.41E+22sej/yr Unit emergy value4.13E+13sej/visitor hour 33 Payments to State 6.80E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 34 Payments for FS Labor 1.40E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 152

152 Table L-2 Emergy evaluation of Region 5 forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 1.01E+19 3.62E+04 367249.9193289.4 2 Herb/Shrub Biomass J 7.55E+17 17976 13565.27139.6 3 Land Area ha 8.17E+06 1.05E+15 8573.94512.6 4 Soil OM J 8.15E+18 1.24E+04 101294.453312.8 5 Ground Water J 1.82E+17 3.02E+05 54892.328890.7 6 Surface Water J 2.02E+17 8.10E+04 16387.18624.8 ECONOMIC ASSETS 7 Roads (dirt) $ 2.01E+08 1.90E+12 381.9201.0 8 Roads (gravel) g 1.13E+13 1.68E+09 18994.59997.1 9 Roads (paved) g 1.14E+12 2.77E+09 3148.81657.3 10 Machinery & tools g 2.28E+10 1.13E+10 256.3134.9 11 Office Equipment g 6.81E+09 1.13E+10 76.740.4 12 Buildings g 1.87E+11 7.97E+09 1175.2618.5 13 Minerals (g) g NA4.54E+09 NANA 13a Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 6.98E+15 1.89E+07 132082.069516.9 16 Value of Critical Species # of ind. 1.02E+02 2.26E+22 2300890.512110.0 Footnotes for L-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 1.28E+09m^3 USFS, 2004 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =6.93E+14g 3.50E+00Kcal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kcal =1.01E+19J Transformity3.62E+04 sej/J 2 Total Understory 5.15E+07mt COLE, 2005 1.00E+06g/mt mass=5.15E+13g energy=g*3.5kcal/g*4186J/kcal =7.55E+17J Transformity9.79E+03sej/J 3 Land Area 8.17E+06ha USFS, 2007 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 3.60E+08mt COLE, 2006

PAGE 153

153 mass OM=3.60E+14g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 8.15E+18J Transformity1.24E+04 sej/J 5 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume3.67E+10m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =1.82E+17J transformity2.79E+05sej/J Buenfil (2001) 6 Surface Water volume4.10E+10m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =2.02E+17J Transformity1.04E+06sej/J Odum, 2000 ECONOMIC ASSETS 7 Roads, Dirt 3.35E+04miles USFS, (unpub.) 6.00E+03$/mile 2.01E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 8 Roads, Gravel 1.60E+07m length NFS, 2005 5.00E+00m width depth=0.1016m of gravel volume=8.11E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =1.13E+13g Specific Emergy1.68E+09sej/g Odum (1996) 9 Paved Roads 1487943. 7 m USFS, (unpub.) width=6.7m^2 depth=5.08E-02m depth volume=5.06E+05m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =1.14E+12g Specific Emergy2.77E+09 sej/g Odum (1996) 10 Machinery 5.02E+07lbs USFS, (unpub.) 4.54E+02g/lb mass machinery=2.28E+10g Specific Emergy1.13E+10 sej/g CEP (2006) 11 Office Equipment 1.50E+01kg/m2 estimate

PAGE 154

154 mass office equipment=Building SA*kg/m2*1000g/kg =6.81E+09g Specific Emergy1.13E+10 sej/g CEP (2006) Value $ NFS, 2005 12 Buildings 4.54E+05m^2 USFS, (unpub.) Building Mass=1.87E+11g Specific Emergy7.97E+09 sej/g emergy1.18E+21sej 13 Minerals Data NA for Regions CULTURAL ASSETS 18 Emergy of Cultural Information Native Americans on FS lands (peak)3.73E+05people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species1.02E+02 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/species Em. In critical species=# of species*%of to tal Pop in FS land.*Emergy Required to develop species Emergy in Critical Species (sum of above) 1.12E+26sej

PAGE 155

155 APPENDIX M REGION 6 TABLES AND NOTES Table M-1 Annual emergy flows supporting Region 6 of the USFS system Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 4.63E+201.00E+00 462.8 243.6 2 Rain Chemical Potential J 4.48E+173.10E+04 13880.6 7305.6 3 Transpiration J 1.76E+173.06E+04 5370.1 2826.4 4 Rain Geopotential J 2.80E+174.70E+04 13142.8 6917.3 5 Wind, Kinetic J 3.06E+172.45E+03 748.7 394.0 6 Hurricanes J 0.00E+006.49E+03 0.0 0.0 7 Waves J 05.10E+04 0.0 0.0 8 Tides J 07.39E+04 0.0 0.0 9 Earth Cycle J 3.30E+171.20E+04 3955.3 2081.7 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 2.88E+101.68E+09 48.4 25.5 Top soil loss (harvesting) J 2.17E+137.40E+04 1.6 0.8 11 Miscellaneous Products (plants) J 1.80E+04 0.0 0.0 IMPORTS: 12 Petroleum Products J 3.57E+141.11E+05 39.8 20.9 13 Machinery, Equipment g 8.52E+081.13E+10 9.6 5.0 14 Goods (Pesticides, herbicides, misc goods) g 9.29E+061E9 7 E9 0.2 0.1 15 Seedlings $ 1.44E+071.90E+12 27.4 14.4 16 Tourist Time J 2.33E+141.50E+07 3487.7 1835.6 17 Labor hours 2.06E+076.30E+13 1296.1 682.2 18 Electricity J 1.98E+142.92E+05 57.9 30.5 19 Services $ 1.91E+081.90E+12 363.1 191.1 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 5.69E+071.90E+12 108.1 56.9 21 Payments for minerals extracted $ 7.19E+071.90E+12 136.5 71.9 22 Fee Payments (hunting, fishing, grazing, etc) $ 9.52E+061.90E+12 18.1 9.5 EXPORTS: 23 Extracted Firewood J 1.51E+153.60E+04 54.3 28.6 24 Harvested Wood J 2.12E+165.04E+04 1068.8 562.5 25 Water, Chemical Potential J 2.72E+178.10E+04 22041.8 11600.9 26 Water, Geopotential J 5.40E+174.70E+04 25372.2 13353.8 27 Minerals g 1.04E+118.16E+09 844.8 444.6 28 Fossil Fuels J 29 Harvested wildlife J 4.39E+151e5 9.9e5 4152.0 2185.3

PAGE 156

156 Table M-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 30 Harvested Fish J 1.37E+131.68E+07 230.5 121.3 31 Information hrs 1.15E+052.35E+14 27.1 14.3 32 Hydroelectric power J 33 Image Exported with Tourists hrs 5.36E+086.73E+13 36069.0 18983.7 ECONOMIC PAYMENTS MADE 34 Payments to State and Local Govt $ 2.10E+081.90E+12 398.9 210.0 35 Payments for Labor $ 1.67E+081.90E+12 317.6 167.2 Footnotes to M-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 1.00E+11m^2 Insolation5.62E+09J/m^2/ year NREL, 2006 Albedo1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 4.63E+20J Transformity1.00E+00sej/J 2 Rain Chemical Potential Land Area 1.00E+11m^2 Rain0.903022m/yr NOAA 2006 Total Volume Rain9.06E+10m^3 energy= volume*1000kg/m^3*4940J/kg =4.48E+17 Transformity3.10E+04sej/J Odum (2000) 3 Transpiration 3.54E-01m/m^2/ yr 3.56E+10m3 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.76E+17J/yr Transformity3.06E+04sej/J Odum (2000) 4 Rain Geopotential Rain5.49E-01m/yr NOAA 2006 Mean Elevation Change5.18E+02m Land Area 1.00E+11m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =2.80E+17J Transformity4.70E+04sej/J Odum (2000)

PAGE 157

157 5 Wind, Kinetic Area1.00E+11 air density1.30E+00kg/m^3 avg annual wind velocity3.47E+00mps NOAA 2006 Geostrophic wind5.79E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 =3.06E+17 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 1.04E+02miliwatts/m^2 IHFC, 2005 area1.00E+11m^2 energy=miliwatts/m^2*area*sec/yr 3.28E+06J/m^2 energy=3.30E+17J/yr Transformity1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 2.88E+10g/yr estimate Top Soil Loss (3.5% of total SL)1.01E+09g/yr energy=g of C*5.4 kca/g*4184 J/cal =2.17E+13J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr USFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =2.66E+10joules Transformity1.80E+04sej/J IMPORTS: 12 Petroleum Products Forest Service Use3.33E+06gal/yr energy=gal*13e7j/gal =4.33E+14J/yr FS Building Use5.08E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU =3.57E+14 Total Fuel Use7.90E+14J/yr

PAGE 158

158 Transformity1.11E+05sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 1.14E+07$/yr 13 Machinery, Equipment FS Vehicle mass1.7E+10g avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 8.52E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides, misc goods) 9.29E+06g/yr USFS, 2005 2.49E+10sej/g emergy=2.31E+17sej/yr Est. for cost1.64E+06$/yr 15 Replanting Total Cost=1.44E+07$/yr Unit Emergy Value1.90E+12sej/$ CEP ( 2006) 16 Tourism Tourist Time2.82E+07visits/y r USFS, 2004 average stay1.90E+01hrs Total Hours of Stay5.36E+08hours/y r avg. energy/hr1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =2.33E+14J/y Transformity1.50E+07 sej/J 17 Labor FS6.38E+06hrs/yr NFS, 2005 Contractors9.60E+06hrs/yr Total Labor2.06E+07hrs/yr Unit Emergy Value6.30E+13sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 5084087sq ft USFS, 2005 37000btu/ft2/ yr EIA, 1992 1.88E+11btu/yr energy=btu/yr*1055 j/btu =1.98E+14J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 4.96E+06$/yr Regional FS budget 4.51E+08$/yr

PAGE 159

159 Unit Emergy Value1.90E+12sej/$ CEP (2006) 19 Misc. Expenditures 1.91E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 20 Payment for timber 5.69E+07$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 21 Payments for Extracted Minerals 7.19E+07$/y Unit Emergy Value1.90E+12sej/$ CEP (2006) 22 Fee Payments 9.52E+06$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass1.01E+08kg energy=mass*1000g/kg15000j /g =1.51E+15J/yr Transformity3.60E+04sej/J Brown & Bardi (2001) 24 Harvested Wood 2.62E+06m3/yr USFS, 2005 5.40E+05g/m3 mass1.41E+12g/yr energy=g*15000j/g =2.12E+16J/yr Transformity (w/o services)5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams5.51E+10m^3/yr Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 2.72E+17J/yr Transformity8.10E+04sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) =(volume)(elevation)(density)(gravity) avg. elevation1.00E+03m USGS, 2006 joules = 5.40E+17J/yr Transformity4.70E+04sej/J Odum, 2000 27 Minerals 1.04E+11g/yr Sp. Emergy (avg)=8.16E+09sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01% Big Game Extracted1.11E+05Big Game/y USFWS, 2002 avg. mass5.68E+04g/Game energy content2.65E+04J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=4.17E+15J/yr

PAGE 160

160 Transformity=9.90E+05sej/J Brown et al, 2005 Emergy=4.13E+21sej Small Game Extracted4.21E+05Small Game/yr USFWS, 2002 avg. mass3.30E+03g/anim al energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=2.21E+14J/yr Transformity=1.20E+05sej/J Emergy=2.65E+19sej Migratory Birds Extracted3.32E+05#/yr USFWS, 2002 avg. mass1.30E+03g/bird energy content8.83E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=9.53E+11J/yr Transformity=1.01E+05sej/J Emergy=9.63E+16sej Other Species Extracted3.69E+04#/yr USFWS, 2002 avg. mass6.35E+03g energy content6.37E+03J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 3.73E+11J/yr Transformity=1.50E+05sej/J Emergy=5.59E+16sej Sum of Emergy from Game4.15E+21sej 30 Fishing 8.04E+06fish caught USFS, 2004 avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.37E+13J assume 20% dry weight Transformity=1.68E+07sej/J 31 Research Information 1.05E+02# of papers average time spent8.05E+02hours/p aper research hours115384.8hours/y r Transformity2.35E+14sej/hr Odum, 1996 total sej of research2.71E+19sej 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NFs5.36E+08hrs USFS, 2006 site area=2.07E+02ha CEP (2006) 1.20E+00sites/vi

PAGE 161

161 sit ha/vist2.48E+02ha USFS, 2006 use/ha/hour2.71E+11sej/ha CEP (2006) emergy of image exported3.61E+22sej/yr Unit emergy value6.73E+13sej/visitor hour 34 Payments to State 2.10E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 35 Payments for FS Labor 1.67E+08$/yr USFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 162

162 Table M-2 Emergy evaluation of Region 6 Forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 2.19E+193.62E+04 791605.8416634.6 2 Herb/Shrub Biomass J 1.14E+1817976 20458.110767.4 3 Land Area ha 1.00E+071.05E+15 10537.15545.8 4 Soil OM J 3.08E+191.24E+04 383022.5201590.8 5 Glaciers g 1.96E+146.46E+06 1266.8666.7 6 Ground Water J 4.46E+172.79E+05 124427.765488.2 7 Surface Water J 2.72E+178.10E+04 22041.811600.9 ECONOMIC ASSETS 8 Roads (dirt) $ 4.82E+081.90E+12 915.7481.9 9 Roads (gravel) g 1.27E+131.68E+09 21356.611240.3 10 Roads (paved) g 1.10E+122.77E+09 3035.61597.7 11 Machinery & tools g 1.70E+101.13E+10 191.7100.9 12 Office Equipment g 7.08E+091.13E+10 79.742.0 13 Buildings g 1.95E+117.97E+09 1554.2818.0 14 Minerals (g) g NA4.54E+09 NANA 14b Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 16 Information Value of Indian Artifacts J 6.98E+151.89E+07 132082.069516.9 17 Value of Critical Species # of ind. 2.20E+012.26E+22 496270.52612.0 Footnotes for M-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 2.76E+09m^3 USFS, 2004 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =1.49E+15g 3.50E+00Kcal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kcal =2.19E+19J Transformity3.62E+04 sej/J 2 Total Understory 7.77E+07mt COLE, 2005 1.00E+06g/mt mass=tons*g/to n =7.77E+13g energy=g*3.5kcal/g*4186J/kcal =1.14E+18J Transformity9.79E+03sej/J 3 Land Area 1.00E+07ha USFS, 2007 (emergy of land structure)1.05E+15sej/ha 4 Soil OM 1.36E+09mt COLE,

PAGE 163

163 2005 mass OM=1.36E+15g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 3.08E+19J Transformity1.24E+04sej/J 5 Glaciers 2.13E+08m^3 USGS, 2005 density=9.20E+05g/m^3 mass=1.96E+14g specific emergy=6.46E+06sej/g 6 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume9.03E+10m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =4.46E+17J transformity2.79E+05sej/J Buenfil (2001) 7 Surface Water volume5.51E+10m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =2.72E+17J Transformity1.04E+06sej/J ECONOMIC ASSETS 8 Roads, Dirt 8.03E+04miles USFS, (unpub) 6.00E+03$/mile 4.82E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 9 Roads, Gravel 1.80E+07m length USFS, (unpub) 5.00E+00m width depth=0.1016m of gravel volume=9.12E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =1.27E+13g Specific Emergy1.68E+09sej/g Odum (1996) 10 Paved Roads 1434452. 5 m length USFS, (unpub) width=6.7m^2 depth=5.08E-02m depth volume=4.88E+05m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =1.10E+12g Specific Emergy2.77E+09 sej/g Odum (1996)

PAGE 164

164 11 Machinery 3.75E+07lbs USFS, (unpub) 4.54E+02g/lb mass machinery=lbs*g/lb =1.70E+10g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Office Equipment 1.50E+01kg/m2 mass office equipment=Building SA*kg/m2*1000g/kg =7.08E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Buildings 4.72E+05m^2 USFS, (unpub) Building Mass=1.95E+11g appendix, 1 Specific Emergy7.97E+09 sej/g (avg) 14 Minerals Data NA for Regions CULTURAL ASSETS 15 Emergy of Cultural Information Native Americans on FS lands (peak)2.48E+05people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species2.20E+01 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/species Em. In critical species=# of species*%o f total Pop in FS land.*Em. Required to develop species Emergy in Critical Species (sum of above) 2.42E+25sej

PAGE 165

165 APPENDIX N REGION 8 TABLES AND NOTES Table N-1 Annual emergy flows supporting Region 8 of the USFS system Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 2.42E+201.00E+00 242.0127.4 2 Rain Chemical Potential J 3.21E+173.10E+04 9959.45241.8 3 Transpiration J 2.05E+173.06E+04 6275.13302.7 4 Rain Geopotential J 2.30E+164.70E+04 1081.8569.4 5 Wind, Kinetic J 2.43E+172.45E+03 595.1313.2 6 Hurricanes J 9.26E+136.49E+03 0.60.3 7 Waves J 05.10E+04 0.00.0 8 Tides J 07.39E+04 0.00.0 9 Earth Cycle J 1.04E+171.20E+04 1253.6659.8 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 4.45E+091.68E+09 7.53.9 Top soil loss (harvesting) J 3.35E+127.40E+04 0.20.1 11 Miscellaneous Products (plants) J 1.80E+04 0.00.0 IMPORTS: 12 Petroleum Products J 5.93E+141.11E+05 66.134.8 13 Machinery, Equipment g 7.48E+081.13E+10 8.44.4 14 Goods (Pesticides, herbicides, misc goods) g 4.98E+061E9 7 E9 0.10.1 15 Seedlings $ 8.10E+061.90E+12 15.48.1 16 Tourist Time J 2.56E+141.50E+07 3834.02017.9 17 Labor hours 1.49E+076.30E+13 940.6495.0 18 Electricity J 1.35E+142.92E+05 39.320.7 19 Services $ 4.35E+081.90E+12 825.8434.6 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 4.02E+071.90E+12 76.440.2 21 Payments for minerals extracted $ 4.38E+041.90E+12 0.10.0 22 Fee Payments (hunting, fishing, grazing, etc) $ 9.01E+061.90E+12 17.19.0 EXPORTS: 23 Extracted Firewood J 8.10E+143.60E+04 29.115.3 24 Harvested Wood J 1.53E+165.04E+04 771.2405.9 25 Water, Chemical Potential J 1.16E+178.10E+04 9398.44946.5 26 Water, Geopotential J 7.83E+164.70E+04 3678.31935.9 27 Minerals g 6.32E+108.16E+09 515.7271.4 28 Fossil Fuels J 29 Harvested wildlife J 1.59E+161E5 9.9E5 3118.51641.3

PAGE 166

166 Table N-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 30 Harvested Fish J 1.51E+131.68E+07 253.4133.4 31 Information hrs 3.25E+052.35E+14 76.340.1 32 Hydroelectric power J 33 Image Exported with Tourists hrs 5.89E+086.89E+13 40588.621362.4 ECONOMIC PAYMENTS MADE 34 Payments to State and Local Govt $ 3.76E+071.90E+12 71.437.6 35 Payments for Labor $ 1.87E+081.90E+12 355.7187.2 Footnotes to N-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 5.38E+10 m^2 Insolation5.48E+09 J/m^2/ye ar NREL, 2006 Albedo1.80E-01 (% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 2.42E+20 J Transformity1.00E+00 sej/J 2 Rain Chemical Potential Land Area 5.38E+10 m^2 Rain1.207792 m/yr NOAA, 2006 Total Volume Rain6.50E+10 m^3 energy= volume*1000kg/m^3*4940J/kg =3.21E+17 Transformity3.10E+04 sej/J Odum, (2000) 3 Transpiration 7.72E-01 m/m^2/yr 4.15E+10 m3 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy2.05E+17 J/yr Transformity3.06E+04 sej/J Odum, (2000) Odum, (2000) 4 Rain Geopotential Rain4.36E-01 m/yr NOAA 2006 Mean Elevation Change1.00E+02 m Land Area 5.38E+10 m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =2.30E+16 J Transformity4.70E+04 sej/J Odum, (2000)

PAGE 167

167 5 Wind, Kinetic Area5.38E+10 air density1.30E+00 kg/m^3 avg annual wind velocity3.96E+00 mps NOAA Geostrophic wind6.60E+00 obser ved winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 =2.43E+17 Transformity2.45E+03 sej/J Odum (2000) 6 Hurricanes Avg energy/storm5.00E+05 KCAL/m^2/day Odum et al, 1983 avg hurricane freq. 1.00E-01 /yr percent energy that is kinetic3.00E+00 % percent of energy dispersed to land 1.00E+01 % avg. residence time1.00E+00 day/year area5.38E+10 m^2 energy=0.1/yr*1yr/365 days*5e5Kcal/m^2/day*.003*area m^2*4186J/kcal =9.26E+13 j/yr Transformity6.49E+03 sej/J Odum (2000) 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 6.15E+01 miliwatts/m^2 IHFC, 2005 area5.38E+10 m^2 energy=miliwatts/m^2*area*sec/yr 1.94E+06 J/m^2 energy=1.04E+17 J/yr Transformity1.20E+04 sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 4.45E+09 g/yr estimate Top Soil Loss (3.5% of total SL) 1.56E+08 g/yr energy=g of C*5.4 kca/g*4184 J/cal =3.35E+12 J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr energy=g*3.5kcal/g*4186J/Kc al =joules Transformity1.80E+04 sej/J IMPORTS:

PAGE 168

168 12 Petroleum Products Forest Service Vehicle Use2.70E+06 gal/yr energy=gal*13e7j/gal =3.51E+14 J/yr FS Building Use3.45E+06 sq feet 6.66E+04 BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU =2.42E+14 Total Fuel Use5.93E+14 J/yr Transformity1.11E+05 sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 8.61E+06 $/yr 13 Machinery, Equipment FS Vehicle mass1.50E+10 g avg. vehicle lifespan2.00E+01 yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 7.48E+08 g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 4.98E+06 g/yr estimate 2.49E+10 sej/g emergy=1.24E+17 sej/yr Est. for cost8.78E+05 $/yr 15 Replanting Total Cost=8.10E+06 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP ( 2006) 16 Tourism Tourist Time3.10E+07 visits/yr USFS, 2004 average stay1.90E+01 hrs Total Hours of Stay5.89E+08 hours/yr avg. energy/hr1.04E+02 kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =2.56E+14 J/y Transformity1.50E+07 sej/J 17 Labor FS7.14E+06 hrs/yr estimate Contractors4.45E+06 hrs/yr Total Labor1.49E+07 hrs/yr Unit Emergy Value6.30E+13 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 3448386 sq ft USFS, 2006 unpub. 37000 btu/ft2/yr EIA, 1992

PAGE 169

169 1.28E+11 btu/yr energy=btu/yr*1055 j/btu =1.35E+14 J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 3.37E+06 $/yr Regional FS budget 4.03E+08 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) 19 Misc. Expenditures 4.35E+08 $/yr USFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 20 Payment for timber 4.02E+07 $/yr USFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 21 Payments for Extracted Minerals 4.38E+07 $/y Unit Emergy Value1.90E+12 sej/$ CEP (2006) 22 Fee Payments 9.01E+06 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass5.40E+07 kg USFS, 2007 energy=mass*1000g/kg*15000j/g =8.10E+14 J/yr Transformity3.60E+04 sej/J Brown & Bardi (2001) 24 Harvested Wood 1.89E+06 m3/yr USFS, 2007 5.40E+05 g/m3 mass1.02E+12 g/yr energy=g*15000j/ g =1.53E+16 J/yr Transformity (w/o services)5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams2.35E+10 m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 1.16E+17 J/yr Transformity8.10E+04 sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) =(volume)(elevation)(density)(gravity) avg. elevation3.40E+02 m USGS, 2006 joules = 7.83E+16 J Transformity4.70E+04 sej/J Odum, 2000 27 Minerals 6.32E+10 g/yr estimate Sp. Emergy (avg)=8.16E+09 sej/g 28 Fossil Fuels (National data only)

PAGE 170

170 29 Hunting % Dry Weight for Wildlife2.50E+01 % Big Game Extracted4.01E+05 Big Game/y USFWS, 2002 avg. mass5.68E+04 g/Game energy content2.65E+04 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g =1.51E+16 J/yr Transformity=2.00E+05 sej/J Brown, et al, 2005 Emergy=3.02E+21 sej Small Game Extracted1.53E+06 Small Game/yr USFWS, 2002 avg. mass3.30E+03 g/animal energy content6.37E+03 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=8.01E+14 J/yr Transformity=1.20E+05 sej/J Brown, et al, 2005 Emergy=9.61E+19 sej Migratory Birds Extracted1.20E+06 #/yr USFWS, 2002 avg. mass1.30E+03 g/bird energy content8.83E+03 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=3.46E+12 J/yr Transformity=1.01E+05 sej/J Brown, et al, 2005 Emergy=3.49E+17 sej Other Species Extracted1.34E+05 #/yr USFWS, 2002 avg. mass6.35E+03 g energy content6.37E+03 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 1.35E+12 J/yr Transformity=1.50E+05 sej/J Brown, et al, 2005 Emergy=2.03E+17 sej Sum of Emergy from Game3.12E+21 sej 30 Fishing 8.84E+06 fish caught avg. mass4.54E+02 g/fish assume avg weight = 1 lb energy content1.88E+04 J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.51E+13 J assume 20% dry weight Transformity=1.68E+07 sej/J 31 Research Information 3.65E+02 # of papers USFS, 2007 average time spent8.05E+02 hours/pap er research hours324590.1 hours/yr Transformity2.35E+14 sej/hr Odum, 1996

PAGE 171

171 total sej of research7.63E+19 sej Unit Emergy Value1.90E+12 sej/$ CEP (2006) 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NFs5.89E+08 hrs USFS, 2006 site area=2.07E+02 ha CEP (2006) 1.20E+00 sites/visit ha/vist2.48E+02 ha USFS, 2006 use/ha/hour2.77E+11 sej/ha CEP (2006) emergy of image exported4.06E+22 sej/yr Unit emergy value6.89E+13 sej/visitor hour 34 Payments to State and Local 3.76E+07 $/yr USFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 35 Payments for FS Labor 1.87E+08 $/yr USFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006)

PAGE 172

172 Table N-2 Emergy synthesis of Region 8 assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 5.16E+18 3.62E+04 186598.298209.6 2 Herb/Shrub Biomass J 5.26E+17 17976 9449.54973.4 3 Land Area ha 5.38E+06 1.05E+15 5652.62975.1 4 Soil OM J 1.29E+19 1.24E+04 159755.584081.8 5 Peat J 3.25E+16 3.09E+05 10043.05285.8 6 Ground Water J 3.55E+17 3.02E+05 107227.556435.5 7 Surface Water J 1.16E+17 8.10E+04 9398.44946.5 ECONOMIC ASSETS 8 Roads (dirt) $ 1.65E+08 1.90E+12 312.6164.5 9 Roads (gravel) g 1.11E+13 1.68E+09 18594.49786.5 10 Roads (paved) g 5.92E+11 2.77E+09 1639.8863.1 11 Machinery & tools g 1.50E+10 1.13E+10 168.388.6 12 Office Equipment g 4.81E+09 1.13E+10 54.128.5 13 Buildings g 1.32E+11 7.97E+09 828.8436.2 14 Minerals (g) g NA4.54E+09 NANA 14a Minerals ($) NA1.90E+12 NANA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 6.98E+15 1.89E+07 132082.069516.9 16 Value of Critical Species # of ind. 1.96E+02 2.26E+22 4421319.023270.1 Footnotes for N-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 6.52E+08m^3 USFS, 2004 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =3.52E+14g 3.50E+00Kcal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kcal =5.16E+18J Transformity3.62E+04 sej/J 2 Total Understory 3.59E+07mt COLE, 2005 1.00E+06g/mt mass=tons*g/to n =3.59E+13g energy=g*3.5kcal/g*4186J/kcal =5.26E+17J Transformity9.79E+03sej/J

PAGE 173

173 3 Land Area 5.38E+06ha USFS, 2007 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 5.68E+08mt COLE, 2006 mass OM=5.68E+14g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal =1.29E+19J Transformity1.24E+04 sej/J 5 Peat 1.75E+05mt estimate mass Peat OM=mt*1e6g/ mt =1.44E+12g Energy= g* 5.4 kcal/g of OM* 4186 J/kcal =3.25E+16J Transformity3.09E+05sej/J 6 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume7.18E+10m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =3.55E+17J transformity2.79E+05sej/J Buenfil (2001) 7 Surface Water volume2.349E+1 0 m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =1.16E+17J Transformity8.10E+04sej/J Odum, 2000 ECONOMIC ASSETS 8 Roads, Dirt 2.74E+04miles USFS, (unpub) 6.00E+03$/mile 1.65E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 9 Roads, Gravel 1.56E+07m length USFS, (unpub) 5.00E+00m width depth=0.1016m of gravel volume=7.94E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =1.11E+13g Specific Emergy1.68E+09sej/g Odum (1996) 10 Paved Roads 774876.7m length USFS, (unpub) width=6.7m^2 depth=5.08E-02m depth volume=2.64E+05m^3 of asphalt

PAGE 174

174 density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =5.92E+11g Specific Emergy2.77E+09 sej/g Odum (1996) 11 Machinery 3.30E+07lbs USFS, (unpub) 4.54E+02g/lb mass machinery=1.50E+10g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Office Equipment 1.50E+01kg/m2 estimate mass office equipment=Building SA*kg/m2*1000g/kg =4.81E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Buildings 3.20E+05m^2 USFS, (unpub) Building Mass=1.32E+11g Specific Emergy7.97E+09sej/g 8.29E+20 sej 14 Minerals Data NA for Regions CULTURAL ASSETS 15 Emergy of Cultural Information Native Americans on FS lands (peak)9.75E+04people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species1.96E+02 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/species Emergy of critical species=# of species*%of total Pop in FS land.*Em. Required to develop species Emergy in Critical Species (sum of above) 2.16E+26sej

PAGE 175

175 APPENDIX O REGION 9 TABLES AND NOTES Table O-1 Annual emergy flows supporting Region 9 of the US National Forest system Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 1.95E+201.00E+00 194.7102.5 2 Rain Chemical Potential J 2.04E+173.10E+04 6308.53320.3 3 Transpiration J 1.14E+173.06E+04 3480.61831.9 4 Rain Geopotential J 4.45E+164.70E+04 2089.91100.0 5 Wind, Kinetic J 2.94E+172.45E+03 720.7379.3 6 Hurricanes J 0.00E+006.49E+03 0.00.0 7 Waves J 05.10E+04 0.00.0 8 Tides J 07.39E+04 0.00.0 9 Earth Cycle J 8.82E+161.20E+04 1058.0556.9 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 1.07E+101.68E+09 18.19.5 Top soil loss (harvesting) J 8.09E+127.40E+04 0.60.3 11 Miscellaneous Products (plants) J 1.80E+04 0.00.0 IMPORTS: 12 Petroleum Products J 2.61E+141.11E+05 29.115.3 13 Machinery, Equipment g 3.62E+081.13E+10 4.12.1 14 Goods (Pesticides, herbicides, misc goods) g 4.53E+061E9 7 E9 0.10.1 15 Seedlings $ 7.08E+061.90E+12 13.57.1 16 Tourist Time J 1.86E+141.50E+07 2782.71464.6 17 Labor hours 8.80E+066.30E+13 554.1291.7 18 Electricity J 1.45E+142.92E+05 42.322.3 19 Services $ 2.72E+081.90E+12 516.0271.6 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 5.80E+071.90E+12 110.358.0 21 Payments for minerals extracted $ 1.95E+081.90E+12 369.8194.7 22 Fee Payments (hunting, fishing, grazing, etc) $ 4.69E+061.90E+12 8.94.7 EXPORTS: 23 Extracted Firewood J 7.36E+143.60E+04 26.513.9 24 Harvested Wood J 1.40E+165.04E+04 707.3372.3 25 Water, Chemical Potential J 8.97E+168.10E+04 7262.43822.3 26 Water, Geopotential J 8.89E+164.70E+04 4179.92199.9 27 Minerals g 2.81E+118.16E+09 2293.61207.1 28 Fossil Fuels J 29 Harvested wildlife J 1.37E+161E5 3E5 3977.72093.5

PAGE 176

176 Table O-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 30 Harvested Fish J 1.09E+131.68E+07 183.796.7 31 Information hrs 1.66E+052.35E+14 39.020.5 32 Hydroelectric power J 33 Image Exported with Tourists hrs 4.28E+085.52E+13 23589.912415.7 ECONOMIC PAYMENTS MADE 33 Payments to State and Local Govt $ 1.48E+071.90E+12 28.114.8 34 Payments for Labor $ 1.07E+081.90E+12 203.3107.0 Footnotes to O-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 4.89E+10 m^2 Insolation4.85E+09 J/m^2/ye ar NREL, 2006 Albedo1.80E-01 (% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 1.95E+20 J Transformity1.00E+00 sej/J 2 Rain Chemical Potential Land Area 4.89E+10 m^2 Rain0.841641 m/yr NOAA, 2006 Total Volume Rain4.12E+10 m^3 energy= volume*1000kg/m^3*4940J/kg =2.04E+17 Transformity3.10E+04 sej/J Odum, (2000) 3 Transpiration 4.71E-01 m/m^2/yr 2.30E+10 m3 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.14E+17 J/yr Transformity3.06E+04 sej/J Odum, (2000) 4 Rain Geopotential Rain3.71E-01 m/yr NOAA 2006 Mean Elevation Change2.50E+02 m Land Area 4.89E+10 m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity)

PAGE 177

177 energy=4.45E+16 J Transformity4.70E+04 sej/J Odum, (2000) 5 Wind, Kinetic Area4.89E+10 air density1.30E+00 kg/m^3 avg annual wind velocity4.35E+00 mps NOAA 2006 Geostrophic wind7.26E+00 obser ved winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 =2.94E+17 Transformity2.45E+03 sej/J Odum (2000) 6 Hurricanes None 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 5.71E+01 miliwatts/m^2 IHFC, 2005 area4.89E+10 m^2 energy=miliwatts/m^2*area*sec/yr 1.80E+06 J/m^2 energy=8.82E+16 J/yr Transformity1.32E+04 sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.07E+10 g/yr estimate Top Soil Loss (3.5% of total SL)3.76E+08 g/yr energy=g of C*5.4 kca/g*4184 J/cal =8.09E+12 J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr energy=g*3.5kcal/g*4186J/Kc al =joules Transformity1.80E+04 sej/J IMPORTS: 12 Petroleum Products Forest Service Use1.50E+06 gal/yr estimate energy=gal*13e7j/gal =1.95E+14 J/yr FS Building Use3.71E+06 sq feet USFS, 2006 (unpub)

PAGE 178

178 6.66E+04 BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU =2.61E+14 Total Fuel Use4.56E+14 J/yr Transformity1.11E+05 sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU =6.46E+06 $/yr 13 Machinery, Equipment FS Vehicle Mass7.25E+09 g avg. vehicle lifespan2.00E+01 yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 3.62E+08 g Specific Emergy1.13E+10 sej/g CEP (2006) Est. Cost of Vehicle. Depreciation 1.61E+06 $/yr 14 Goods (Pesticides, herbicides) 4.53E+06 g/yr estimate 2.49E+10 sej/g emergy=1.13E+17 sej/yr Est. for cost7.98E+05 $/yr 15 Replanting Total Cost=7.08E+06 $/yr Unit Emergy Value1.90E+12 sej/$ CEP ( 2006) 16 Tourism Tourist Time2.25E+07 visits/yr USFS, 2004 average stay1.90E+01 hrs Total Hours of Stay4.28E+08 hours/yr avg. energy/hr1.04E+02 kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =1.86E+14 J/y Transformity1.50E+07 sej/J 17 Labor FS4.08E+06 hrs/yr estimate Contractors2.75E+06 hrs/yr estimate Total Labor8.80E+06 hrs/yr Unit Emergy Value6.30E+13 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 3713620 sq ft EIA, 1992 37000 btu/ft2/yr 1.37E+11 btu/yr energy=btu/yr*1055 j/btu =1.45E+14 J Transformity2.92E+05 Odum, 1996

PAGE 179

179 Est. Cost=3.62E+06 $/yr Regional FS budget 2.41E+08 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) 19 Services 2.72E+08 $/yr estimate Unit Emergy Value1.90E+12 sej/$ CEP (2006) 20 Payment for timber 5.80E+07 $/yr USFS, 2007 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 21 Payments for Extracted Minerals 1.95E+08 $/y USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006) 22 Fee Payments 4.69E+06 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass4.91E+07 kg USFS, 2005 energy=mass*1000g/kg15000j /g =7.36E+14 J/yr Transformity3.60E+04 sej/J Brown and Bardi (2001) 15, assuming 50% wood 24 Harvested Wood 1.73E+06 m3/yr USFS, 2005 5.40E+05 g/m3 mass9.36E+11 g/yr energy=g*15000j/ g =1.40E+16 J/yr Transformity (w/o services)5.04E+04 25 Water, Chemical potential Total Export From Streams1.81E+10 m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 8.97E+16 J/yr Transformity8.10E+04 sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) =(volume)(elevation)(density)(gravity) avg. elevation5.00E+02 m USGS, 2006 joules = 8.89E+16 J Transformity4.70E+04 sej/J Odum, 2000 27 Minerals 2.81E+11 g/yr estimate Sp. Emergy (avg)=8.16E+09 sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01 % Big Game Extracted3.45E+05 Big Game/y USFWS, 2002

PAGE 180

180 avg. mass5.68E+04 g/Game energy content2.65E+04 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g =1.30E+16 J/yr Transformity=3.00E+05 sej/J Brown et al, 2005 Emergy=3.89E+21 sej Small Game Extracted1.31E+06 Small Game/yr USFWS, 2002 avg. mass3.30E+03 g/animal energy content6.37E+03 J/g energy=#*avg mass*(percent dry weight)J/g energy=6.88E+14 J/yr Transformity=1.20E+05 sej/J Emergy=8.26E+19 sej Migratory Birds Extracted1.03E+06 #/yr USFWS, 2002 avg. mass1.30E+03 g/bird energy content8.83E+03 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g energy=2.97E+12 J/yr Transformity=1.01E+05 sej/J Emergy=3.00E+17 sej Other Species Extracted1.15E+05 #/yr USFWS, 2002 avg. mass6.35E+03 g energy content6.37E+03 J/g energy= #Game/yr*avg mass*(% dry weight)*J/g 1.16E+12 J/yr Transformity=1.50E+05 sej/J Emergy=1.74E+17 sej Sum of Emergy from Game3.98E+21 sej 30 Fishing 6.41E+06 fish caught avg. mass4.54E+02 g/fish assume avg weight = 1 lb energy content1.88E+04 J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.09E+13 J assume 20% dry weight Transformity=1.68E+07 sej/J 31 Research Information 1.68E+02 # of papers USFS, 2007 average time spent8.05E+02 hours/pap er research hours166076.8 hours/yr Transformity2.35E+14 sej/hr Odum, 1996 total sej of research3.90E+19 sej Unit Emergy Value1.90E+12 sej/$ CEP (2006) 32 Hydroelectric Power

PAGE 181

181 (National Data Only) 33 Image Exported with Tourists Tourism Time in NFs4.28E+08 hrs USFS, 2006 site area=2.07E+02 ha CEP (2006) 1.20E+00 sites/visit ha/visit2.48E+02 ha USFS, 2006 use/ha/hour2.22E+11 sej/ha CEP (2006) emergy of image exported2.36E+22 sej/yr Unit emergy value5.52E+13 sej/visitor hour 33 Payments to State and Local 1.48E+07 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006) 34 Payments for FS Labor 1.07E +08 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006)

PAGE 182

182 Table O-2 Emergy evaluation of Region 9 Forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 3.60E+18 3.62E+04 130401.268632.2 2 Herb/Shrub Biomass J 2.43E+17 17976 4361.82295.7 3 Land Area ha 4.89E+06 1.05E+15 5138.22704.3 4 Soil OM J 1.67E+19 1.24E+04 207861.1109400.6 5 Peat J 1.19E+15 3.09E+05 366.8193.0 6 Ground Water J 1.91E+17 3.02E+05 57881.430463.9 7 Surface Water J 8.97E+16 1.04E+06 93389.549152.4 ECONOMIC ASSETS 8 Roads (dirt) $ 1.21E+08 1.90E+12 230.51121.3 9 Roads (gravel) g 7.47E+12 1.68E+09 12545.16602.7 10 Roads (paved) g 6.20E+11 2.77E+09 1719.8905.2 11 Machinery & tools g 7.24E+09 1.13E+10 81.542.9 12 Office Equipment g 5.17E+09 1.13E+10 58.230.7 13 Buildings g 1.42E+11 7.97E+09 892.6469.8 14 Minerals (g) g NA4.54E+09 NANA 14a Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 15 Information Value of Indian Artifacts J 6.98E+15 1.89E+07 132082.069516.9 16 Value of Critical Species # of ind. 5.20E+01 2.26E+22 1173003.0617370.0 Footnotes for O-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 4.55E+08m^3 NFS, 2005 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =2.46E+14g 3.50E+00Kcal/g of Tree Biomass energy=g*3.5kcal/g*4186J/kcal =3.60E+18J Transformity3.62E+04 sej/J 2 Total Understory 1.66E+07mt NFS, 2005 1.00E+06g/mt COLE, 2005 mass=tons*g/to n =1.66E+13g energy=g*3.5kcal/g*4186J/kcal =2.43E+17J Transformity9.79E+03sej/J 3 Land Area 4.89E+06ha NFS, 2006 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 7.40E+08mt COLE,

PAGE 183

183 2006 mass OM=7.40E+14g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal 1.67E+19J Transformity1.24E+04 sej/J 5 Peat 7.50E+04mt estimate mass Peat OM=mt*1e6g/mt*70% OM =5.25E+10g Energy=massPeat* 5.4 kcal/g of OM*1000g/kg* 4186 J/kcal =1.19E+15J Transformity2.52E+04sej/J 6 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume3.87E+10m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg =1.91E+17J transformity2.79E+05sej/J Buenfil (2001) 7 Surface Water volume1.81E+10m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =8.97E+16J Transformity1.04E+06sej/J ECONOMIC ASSETS 8 Roads, Dirt 2.02E+04miles USFS, 2006 (unpub) 6.00E+03$/mile 1.21E+08$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 9 Roads, Gravel 1.05E+07m length USFS, 2006 (unpub) 5.00E+00m width depth=0.1016m of gravel volume=5.36E+06m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =7.47E+12g Specific Emergy1.68E+09sej/g Odum (1996) 10 Paved Roads 812691.4 2 m length USFS, 2006 (unpub) width=6.7m^2 depth=5.08E-02m depth volume=2.77E+05m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =6.20E+11g Specific Emergy2.77E+09 sej/g Odum

PAGE 184

184 (1996) 11 Machinery 1.60E+07lbs USFS, 2006 (unpub) 4.54E+02g/lb mass machinery=7.24E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Office Equipment 1.50E+01kg/m2 mass office equipment=Building SA*kg/m2*1000g/kg =5.17E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Buildings 3.45E+05m^2 USFS, 2006 (unpub) Building Mass=1.42E+11g appendix 1 Specific Emergy7.97E+09sej/g (avg) 8.93E+20 sej 14 Minerals Data NA for Regions CULTURAL ASSETS 15 Emergy of Cultural Information Native Americans on FS lands (peak)1.15E+05people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 16 Value of Critical Species Endangered/Threatened Species5.20E+01 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/species Em. In critical species=# of species*%of to tal Pop in FS land.*Emergy Required to develop species Emergy in Critical Species (sum of above) 5.72E+25sej

PAGE 185

185 APPENDIX P REGION 10 TABLES AND NOTES Table P-1 Annual emergy flows supporting Region 10 of the US National Forest system Note Item Units QuantityUnit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 5.56E+201.00E+00 555.7 292.5 2 Rain Chemical Potential J 7.78E+173.10E+04 24103.0 12685.8 3 Transpiration J 1.31E+173.06E+04 4010.4 2110.7 4 Rain Geopotential J 4.70E+174.70E+04 22110.9 11637.3 5 Wind, Kinetic J 4.85E+172.45E+03 1187.6 625.1 6 Hurricanes J 0.00E+006.49E+03 0.0 0.0 7 Waves J 5.91E+175.10E+04 30159.2 15873.2 8 Tides J 1.96E+172.43E+04 4752.9 2501.5 9 Earth Cycle J 1.89E+171.20E+04 2266.4 1192.8 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 1.31E+091.68E+09 2.2 0.0 Top soil loss (harvesting) J 8.09E+127.40E+04 0.6 0.0 11 Miscellaneous Products (plants) J 1.80E+04 0.0 0.0 IMPORTS: 12 Petroleum Products J 4.62E+131.11E+05 5.2 2.7 13 Machinery, Equipment g 1.10E+081.13E+10 1.2 0.7 14 Goods (Pesticides, herbicides, misc goods) g 8.23E+061E9 7 E9 0.2 0.1 15 Seedlings $ 1.76E+051.90E+12 0.3 0.2 16 Tourist Time J 2.40E+131.50E+07 358.7 188.8 17 Labor hours 5.62E+066.30E+13 354.4 186.5 18 Electricity J 2.57E+132.92E+05 7.5 3.9 19 Services $ 1.66E+081.90E+12 315.0 165.8 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 5.79E+051.90E+12 1.1 0.6 21 Payments for minerals extracted $ 3.35E+071.90E+12 63.7 33.5 22 Fee Payments (hunting, fishing, grazing, etc) $ 2.71E+061.90E+12 5.2 2.7 EXPORTS: 23 Extracted Firewood J 1.34E+153.60E+04 48.1 0.3 24 Harvested Wood J 2.41E+155.04E+04 121.3 63.8 25 Water, Chemical Potential J 3.08E+178.10E+04 24968.7 13141.4 26 Water, Geopotential J 6.12E+164.70E+04 2874.1 1512.7 27 Minerals g 4.82E+108.16E+09 393.6 207.1 28 Fossil Fuels J 29 Harvested wildlife J 2.96E+141E5 9.9E5 280.1 147.4

PAGE 186

186 Table P-1 continued Note Item Units QuantityUnit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) 30 Harvested Fish J 1.41E+121.68E+07 23.7 12.5 31 Information hrs 3.09E+042.35E+14 7.3 3.8 32 Hydroelectric power J 33 Image Exported with Tourists hrs 5.51E+078.66E+13 4770.2 2510.6 ECONOMIC PAYMENTS MADE 34 Payments to State and Local Gov't $ 8.24E+061.90E+12 15.7 8.2 35 Payments for Labor $ 8.02E+071.90E+12 152.4 80.2 Footnotes to P-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 8.89E+10 m^2 Insolation7.62E+09 J/m^2/yr NREL, 2006 Albedo1.80E-01 (% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) 5.56E+20 J Transformity1.00E+00 sej/J 2 Rain Chemical Potential Land Area 8.89E+10 m^2 Rain1.77 m/yr NOAA, 2006 Total Volume Rain1.57E+11 m^3 energy= volume*1000kg/m^3*4940J/kg energy7.78E+17 Transformity3.10E+04 sej/J Odum, (2000) 3 Evapotranspiration 2.99E-01 m/m^2/yr volume=2.66E+10 m^3 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy1.31E+17 J/yr Transformity3.06E+04 sej/J Odum, (2000) 4 Rain Geopotential Rain1.47E+00 m/yr NOAA, 2006 Mean Elevation Change3.05E+02 M Land Area 8.89E+10 m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) energy=4.70E+17 J Transformity4.70E+04 sej/J Odum, (2000) 5 Wind, Kinetic

PAGE 187

187 Area8.89E+10 air density1.30E+00 kg/m^3 avg annual wind velocity4.21E+00 Mps NOAA, 2006 Geostrophic wind7.02E+00 obser ved winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragc oef*(Geos-grndVel)^3*31500000 energy4.85E+17 Transformity2.45E+03 sej/J Odum (2000) 6 Hurricanes None 7 Waves Shore length =9.75E+05 M Wave height =1.86E+00 M Energy(J) = (shore length)(1/8)(density)(gravity)(wave height^2)(velocity) =(__m)(1/8)(1.025E3kg/m3)(9.8 m/sec2)(__m)^2(__m/sec)(3.14E7s/yr) Energy(J) =5.91E+17 J/yr TRANSFORMITY =5.10E+04 sej/J 8 Tides Cont Shelf Area =5.14E+09 m^2 Avg Tide Range =3.28E+00 M Density =1.03E+03 kg/m^3 Tides/year =7.06E+02 (number of tides in 365 days) Energy(J) =(shelf)(0.5)(tides/y)(mean tidal range)^2 (density of seawater)(gravity) =(____m^2)*(0.5)*(____/yr)*(____m)^2*(_____kg/m^3) *(9.8m/s^2) =1.96E+17 J/yr TRANSFORMITY =2.43E+04 sej/J 9 Earth Cycle Heat Flow 6.74E+01 miliwatts/m^2 IHFC, 2005 area8.89E+10 m^2 energy=miliwatts/m^2*area*sec/yr 2.12E+06 J/m^2 energy=1.89E+17 J/yr Transformity1.20E+04 sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.31E+09 g/yr estimate Top Soil Loss (3.5% of total SL)3.76E+08 g/yr energy=g of C*5.4 kcal/g*4184 J/cal 8.09E+12 J Transformity=7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr

PAGE 188

188 energy=g*3.5kcal/g*4186J/Ca l energy=joules Transformity1.80E+04 sej/J CEP (2006) IMPORTS: 12 Petroleum Products Forest Service Use1.65E+05 gal/yr energy=gal*13e7j/gal energy=2.15E+13 J/yr FS Building Use6.58E+05 sq feet 6.66E+04 BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU 4.62E+13 J/yr Total Fuel Use6.77E+13 J/yr Transformity1.11E+05 sej/J Odum, (1996) Est. Cost=gal*$2/gal+MMBTUs*$14/MMBTU 9.44E+05 $/yr 13 Machinery, Equipment FS Vehicle mass2.2E+09 g avg. vehicle lifespan2.00E+01 yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.10E+08 g Specific EmergyCEP (2006) sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 8.23E+06 g/yr NFS, 2005 2.49E+10 sej/g emergy=2.05E+17 sej/yr Est. for cost1.45E+06 $/yr 15 Replanting Total Cost=1.76E+05 $/yr Unit Emergy Value1.90E+12 sej/$ CEP ( 2006) 16 Tourism Tourist Time2.90E+06 visits/yr NVUM. 2005 average stay1.90E+01 hrs Total Hours of Stay5.51E+07 hours/yr avg. energy/hr1.04E+02 kcal/hr total energy expenditure=Cal/hr*hrs*4186J/Kca l energy=2.40E+13 J/y Transformity1.50E+07 sej/J Odum, 1996 17 Labor FS3.06E+06 hrs/yr NFS, 2005 Contractors1.31E+06 hrs/yr

PAGE 189

189 Total Labor5.62E+06 hrs/yr Unit Emergy Value6.30E+13 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 18 Electricity 658067 sq ft NFS, 2005 37000 btu/ft2/yr EIA, 1992 2.43E+10 btu/yr energy=btu/yr*1055 j/btu energy=2.57E+13 J Transformity2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*$0.09/kwh 6.42E+05 $/yr Regional FS budget 1.47E+08 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) 19 Services 1.66E+08 $/yr NFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 20 Payment for timber 5.79E+05 $/yr NFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 21 Payments for Extracted Minerals 3.35E+07 $/y Unit Emergy Value1.90E+12 sej/$ CEP (2006) 22 Fee Payments 2.71E+06 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) EXPORTS: 23 Extracted Firewood mass8.91E+07 kg USFS, 2005 energy=mass*1000g/kg15000j /g energy=1.34E+15 J/yr Transformity3.60E+04 sej/J Brown & Bardi (2001) 24 Harvested Wood 2.97E+05 m3/yr USFS, 2005 5.40E+05 g/m3 mass1.60E+11 g/yr energy=g*15000j/ g energy=2.41E+15 J/yr Transformity (w/o services)5.04E+04 25 Water, Chemical potential

PAGE 190

190 Total Export From Streams6.24E+10 m^3/yr Sedell, 2000 Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg =3.08E+17 Transformity8.10E+04 sej/J Odum, 2000 26 Water, Geopotential Energy (volume)(elevation)(density)(gravity) avg. elevation1.00E+02 m USGS, 2006 6.12E+16 J/yr Transformity4.70E+04 sej/J Odum, 2000 27 Minerals 4.82E+10 g/yr estimate Sp. Emergy (avg)=8.16E+09 sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife2.50E+01 % Big Game Extracted7.47E+03 Big Game/y USFWS, 2002 avg. mass5.68E+04 g/Game energy content2.65E+04 J/g energy=#Game/yr*avg mass*(% dry weight)*J/g energy=2.81E+14 J/yr Transformity=9.90E+05 sej/J Brown et al, 2006 Emergy=2.78E+20 sej Small Game Extracted2.84E+04 Small Game/yr USFWS, 2002 avg. mass3.30E+03 g/animal energy content6.37E+03 J/g energy=#Game/yr*avg mass*(% dry weight)*J/g energy=1.49E+13 J/yr Transformity=1.20E+05 sej/J Brown et al, 2006 Emergy=1.79E+18 sej Migratory Birds Extracted2.24E+04 #/yr USFWS, 2002 avg. mass1.30E+03 g/bird energy content8.83E+03 J/g energy=#Game/yr*avg mass*(% dry weight)*J/g energy=6.43E+10 J/yr Transformity=1.01E+05 sej/J Brown et al, 2006 Emergy=6.50E+15 sej Other Species Extracted2.49E+03 #/yr USFWS, 2002 avg. mass6.35E+03 g energy content6.37E+03 J/g energy=#Game/yr*avg mass*(% dry weight)*J/g 2.52E+10 J/yr Transformity=1.50E+05 sej/J Brown et al, 2006 Emergy=3.77E+15 sej

PAGE 191

191 Sum of Emergy from Game2.80E+20 sej 30 Fishing 8.27E+05 fish caught USFS, 2004 avg. mass4.54E+02 g/fish assume avg weight = 1 lb energy content1.88E+04 J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.41E+12 J assume 20% dry weight Transformity=1.68E+07 sej/J 31 Research Information research hours30898.01 hours/yr Transformity2.35E+14 sej/hr total sej of research7.26E+18 sej Unit Emergy Value1.90E+12 sej/$ CEP (2006) 32 Hydroelectric Power (National Data Only) 33 Image Exported with Tourists Tourism Time in NF's5.51E+07 hrs USFS, 2006 site area=2.07E+02 ha CEP (2006) 1.20E+00 sites/visit ha/vist2.48E+02 ha USFS, 2006 use/ha/hour3.49E+11 sej/ha CEP (2006) emergy of image exported4.77E+21 sej/yr Unit emergy value8.66E+13 sej/visitor hour 33 Payments to State 8.24E+06 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006) 34 Payments for FS Labor 8.02E+ 07 $/yr USFS, 2006 (unpub) Unit Emergy Value1.90E+12 sej/$ CEP (2006)

PAGE 192

192 Table P-2 Emergy evaluation of Region 10 Forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1018sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 5.79E+183.62E+04 209524.1110275.8 2 Herb/Shrub Biomass J 1.20E+1817976 21498.611315.1 3 Land Area ha 8.88E+061.05E+15 9321.04905.8 4 Soil OM J 3.16E+191.24E+04 393301.9207001.0 5 Glaciers g 6.22E+176.46E+06 4021050. 3 2116342.2 6 Peat J 5.84E+152.52E+04 147.377.5 7 Ground Water J 6.58E+173.02E+05 198917.7104693.5 8 Surface Water J 6.46E+178.10E+04 52354.227554.9 ECONOMIC ASSETS 9 Roads (dirt) $ 1.57E+071.90E+12 29.915.7 10 Roads (gravel) g 1.26E+121.68E+09 2122.41117.1 11 Roads (paved) g 2.11E+092.77E+09 5.93.1 12 Machinery & tools g 2.19E+091.13E+10 24.713.0 13 Office Equipment g 9.17E+081.13E+10 10.35.4 14 Buildings g 2.50E+103.36E+09 158.083.2 15 Minerals (g) g NA4.54E+09 NANA 15a Minerals ($) $ NA1.90E+12 NANA CULTURAL ASSETS 16 Information Value of Indian Artifacts J 6.98E+151.89E+07 132082.069516.9 17 Value of Critical Species # of ind. 1.10E+012.26E+22 248135.3130597.5 Footnotes for P-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 7.32E+08m^3 USFS, 2004 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/k g mass=3.95E+14g 3.50E+00Cal/g of Tree Biomass energy=g*3.5kcal/g*4186J/kca l energy=5.79E+18J Transformity3.62E+04 sej/J 2 Total Understory 8.16E+07mt USFS, 2004 1.00E+06g/mt COLE, 2005 mass=tons*g/ton =8.16E+13g energy=g*3.5 Cal/g*4186J/kcal =1.20E+18J

PAGE 193

193 Transformity9.79E+03sej/J 3 Land Area 8.88E+06ha USFS, 2007 (emergy of land structure)1.05E+15 sej/ha 4 Soil OM 1.40E+09mt COLE, 2006 mass OM=1.40E+15g Energy=massOM* 5.4 Cal/g of OM 4186 j/kcal 3.16E+19J Transformity1.24E+04 sej/J 5 Peat 2.58E+05mt estimate mass Peat OM=mt*1e6g/mt =2.58E+11g Energy=massPeat* 5.4 kcal/g of OM*1000g/kg* 4184 J/Cal =5.84E+15J Transformity2.52E+04sej/J 6 Glaciers 6.77E+11m^3 USGS, 2005 density=9.20E+05g/m^3 mass=6.22E+17g specific emergy=6.46E+06sej/g 7 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume1.33E+11m3 USGS, 2005 energy=volume*1000kg/m^3*4940J/kg energy=6.58E+17J transformity2.79E+05sej/J Buenfil (2001) 8 Surface Water volume1.31E+11m^3 Sedell, 2000 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =6.46E+17J Transformity8.10E+04sej/J Odum, 2000 ECONOMIC ASSETS 9 Roads, Dirt 2.62E+03miles USFS, 2006 (unpub) 6.00E+03$/mile 1.57E+07$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 10 Roads, Gravel 1.78E+06m length USFS, 2006 (unpub) 5.00E+00m width depth=0.1016m of gravel volume=9.06E+05m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/k

PAGE 194

194 g =1.26E+12g Specific Emergy1.68E+09sej/g Odum (1996) 11 Paved Roads 2.77E+03m le ngth USFS, 2006 (unpub) width=6.7m^2 depth=5.08E-02m depth volume=9.41E+02m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/k g =2.11E+09g Specific Emergy2.77E+09 sej/g Odum (1996) 12 Machinery 4835710.23lbs USFS, 2006 (unpub) 4.54E+02g/lb mass machinery=lbs*g/lb =2.19E+09g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Office Equipment 1.50E+01kg/m2 estimate mass office equipment=Building SA*kg/m2*1000g/kg =9.17E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 14 Buildings 6.11E+04m^2 USFS, 2006 (unpub) Building Mass=2.50E+10g Buildings appendix Specific Emergymixed emergy=1.58E+20 sej 15 Minerals Data NA for Regions CULTURAL ASSETS 18 Emergy of Cultural Information Native Americans on FS lands (peak)9.69E+04people estimate energy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal) =3.82E+09J/yr Yrs to develop information2.50E+02 estimate Energy of Population=(population)*(J/yr/Indian)*(year) Energy =6.98E+15J Transformity1.89E+07 sej/J 18 Value of Critical Species Endangered/Threatened Species1.10E+01 USFWS, 2006 Percent of pop2.78E-01% average emergy per species3.96E+24sej/speci es Em. In critical species=#species*%of total Pop in FS land.*Em. Required to develop species Emergy in Critical Species (sum of above) 1.21E+25sej

PAGE 195

195 APPENDIX Q DESCHUTES NATIONAL FOREST TABLES AND NOTES Table Q-1 Emergy evaluation of the Deschutes Na tional Forest and its annual contributions of environmental services Note Item Units Quantity Unit Emergy Values 1. (sej/unit) Solar Emergy (x1016sej) EmDollars (x106 Em$) RENEWABLE RESOURCES: 1 Sunlight J 9.28E+161.00E+00 9.3 0.0 2 Rain Chemical Potential J 2.20E+163.10E+04 68338.6 359.7 3 Transpiration J 9.74E+153.06E+04 29792.0 156.8 4 Rain Geopotential J 9.29E+154.70E+04 43650.7 229.7 5 Wind, Kinetic J 4.59E+162.45E+03 11240.4 59.2 7 Waves J 05.10E+04 0.0 0.0 8 Tides J 07.39E+04 0.0 0.0 9 Earth Cycle J 2.33E+161.20E+04 27928.2 147.0 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss g 1.96E+091.68E+09 329.5 1.7 10a. Top soil loss J 1.77E+127.40E+04 13.1 0.1 IMPORTS: 11 Petroleum Products J 5.83E+131.11E+05 649.6 3.4 12 Machinery, Equipment g 1.36E+081.13E+10 154.1 0.8 13 Goods (Pesticides, herbicides, misc goods) g 1.19E+062.49E+10 3.0 0.0 14 Seedlings g 2.05E+074.70E+09 9.6 0.1 15 Tourist Time J 1.58E+131.50E+07 23693.7 124.7 16 Labor hours 8.14E+056.30E+13 5128.2 27.0 17 Electricity J 1.15E+122.92E+05 33.4 0.2 ECONOMIC PAYMENTS RECEIVED 18 Payment for timber $ 4.86E+061.90E+12 924.2 4.9 19 Payments for minerals extracted $ 6.44E+041.90E+12 12.2 0.1 20 Fee Payments (hunting, fishing, grazing, etc) $ 3.15E+061.90E+12 597.8 3.1 EXPORTS: 21 Extracted Firewood J 1.68E+143.60E+04 606.5 3.2 22 Harvested Saw Timber J 1.44E+155.04E+04 7277.9 38.3 23 Water Chemical Energy J 1.36E+168.10E+04 109812.1 578.0 24 Water Geopotential Energy J 3.36E+167.77E+04 261072.1 1374.1 25 Minerals g 1.07E+101.96E+09 2106.6 11.1 26 Harvested wildlife J 2.31E+136.7E5-3E10 3370.8 17.7 27 Harvested Fish J 1.71E+131.68E+07 28695.4 151.0 28 Information (research) $ 1.20E+042.35E+14 282.0 1.5 33 Image Exported with Tourists hrs 3.64E+073.92E+13 142629.2 750.7 ECONOMIC PAYMENTS MADE 29 Payments to State and Local Gov't $ 8.46E+061.90E+12 1607.3 8.5 30 Payments for Labor $ 1.28E+071.90E+12 2424.4 12.8

PAGE 196

196 Footnotes for Q.1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 7.50E+09 m^2 Insolation1.49E+07 J/m^2/yr NASA SSE Albedo1.70E-01 (% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) Gholz and Clark, 2000 9.28E+16 J Transformity1.00E+00 sej/J 2 Rain Chemical Potential Land Area 7.50E+09 m^2 Rain0.595 m/yr NASA SSE Volume Rain4.46E+09 m^3 energy= volume*1000kg/m^3*4940J/kg =2.20E+16 Transformity3.10E+04 sej/J Odum et.al, (2000) 3 Transpiration 0.263 m/m^2/yr GIS Coverage Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy9.74E+15 J/yr Transformity3.06E+04 sej/J Odum et.al, (2000) 4 Rain Geopotential Runoff0.332 m/m^2/yr NASA SSE Mean Elevation Change380.60 m Land Area 7.50E+09 m^2 Energy(J) =(area)(runoff)(avg change in elevation)(density)(gravity) =9.29E+15 J Transformity4.70E+04 sej/J Odum et.al, (2000) 5 Wind, Kinetic Area 7.50E+09 m^2 air density1.30 kg/m^3 avg annual wind velocity4.38 mps Geostrophic wind7.30 observed winds are about 0.6 of geostrophic wind Drag Coeff.0.002 Energy=area*density*dragcoef*(GeosgrndVel)^3*31500000 =4.59E+16 Transformity2.45E+03 sej/J Odum (2000) 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 9.84E+01 miliwatts/m^2 IHFC, 2005 area7.50E+09 m^2

PAGE 197

197 joules=3.10E+06 J/m^2 energy=miliwatts/m^2*area*sec/yr =2.33E+16 J/yr Transformity1.20E+04 sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss1.96E+09 mt/yr Percent Org. Matter4% Top Soil Loss7.84E+07 mt/yr energy=mass OM*5.4kcal/g*4184J/kcal =1.77E+12 J Soil Gain0.00E+00 g/yr NFS, 2005 IMPORTS: 11 Petroleum Products Forest Service Use2.35E+05 gal/yr energy=gal*13e7j/gal energy=3.05E+13 J/yr FS Building Use3.96E+05 sq feet 6.66E+04 BTU/sq ft/yr energy use =(BTU/sqft/yr) (sq ft) (1055 joules/BTU) 2.78E+13 J/yr total=5.83E+13 Transformity1.11E+05 sej/J Odum, (1996) 12 Machinery, Equipment FS2.E+09 g of vechiles avg. vehicle lifespan2.00E+01 yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.36E+08 g Specific EmergyCEP (2006) sej/g CEP (2006) 13 Goods (Pesticides, herbicides, misc goods) 1.19E+06 g/yr NFS, 2005 14 Replanting Seedlings5.85E+06 seedlings avg. mass3.50E+00 g/seedling Total Mass=2.05E+07 g/yr 15 Tourism Tourist Time2.80E+06 people/yr NFS, 2005 average stay1.30E+01 hrs Total Hours of Stay3.64E+07 hours/yr avg. energy/hr1.04E+02 kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kcal =1.58E+13 J/y Transformity1.50E+07 sej/J 16 Labor FS Employees8.14E+05 hrs/yr NFS, 2005

PAGE 198

198 Unit Emergy Value6.30E+13 sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 17 Electricity 2.94E+04 sq ft NFS, 2005 37000 btu/ft2/yr EIA, 1992 1.09E+09 btu/yr energy=(btu/yr)*(1055 j/btu) =1.15E+12 J Transformity2.92E+05 Odum, 1996 Est. Cost2.86E+04 $/yr 18 Payment for timber 4.86E+06 $/yr NFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 19 Payments for Extracted Minerals 6.44E+04 $/y Unit Emergy Value1.90E+12 sej/$ CEP (2006) 20 Fee Payments 3.15E+06 $/yr Unit Emergy Value1.90E+12 sej/$ CEP (2006) EXPORTS: 21 Extracted Firewood mass1.12E+10 g energy=mass*15000j/g =1.68E+14 J/yr Transformity3.60E+04 sej/J Brown and Bardi (2001) 15, assuming 50% wood 22 Harvested Timber 9.63E+10 g/yr energy=g*15000j/ g USFS, 2006 =1.44E+15 J/yr Transformity (w/o services)5.04E+04 sej/j 23 Water, Chemical Potential Total Export From Streams2.74E+09 m^3/yr Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 1.36E+16 Transformitysej/J 24 Water, Geopotential Geopotential= (volume)(elevation)(density)(gravity) elevation=1250 m joules = 3.36E+16 Transformity7.77E+04 sej/J 25 Minerals 1.07E+10 g/yr USFS, 2006 26 Hunting % Dry Weight for Wildlife2.50E+01 % Deer Extracted6.12E+02 #/yr ODFW, 2006

PAGE 199

199 avg. mass5.70E+04 g energy content2.65E+04 J/g energy= #*avg mass*(% dry weight)*J/g =2.31E+13 J Transformity=6.74E+05 sej/J Transformities based on sej in diet/joules of animal Emergy=1.56E+19 sej Elk Extracted 1.11E+02 # ODFW, 2006 avg. mass2.70E+05 g energy content4.78E+03 J/g energy= #*avg mass*(% dry weight)*J/g =3.58E+12 J Transformity=4.29E+07 sej/J Emergy=1.56E+19 sej Bear Extracted 4.00E+00 #/yr ODFW, 2006 avg. mass1.02E+05 g energy content6873.714 J/g energy= #*avg mass*(% dry weight)*J/g =7.02E+08 J Transformity=2.29E+09 sej/J Emergy=1.61E+18 sej Upland Game Birds Extracted 8.00E+03 #/yr ODFW, 2006 avg. mass2.52E+02 g energy content7.95E+03 J/g energy= #*avg mass*(% dry weight)*J/g =4.01E+09 J Transformity=3.30E+08 sej/J Emergy=1.32E+18 sej Mid-Sized Game Extracted 7.55E+02 #yr ODFW, 2006 avg. mass6.35E+03 g energy content4.78E+03 J/g energy= #*avg mass*(% dry weight)*J/g =5.73E+09 J/yr Transformity=5.23E+07 sej/J Emergy=3.00E+17 sej Ducks Extracted 5.33E+03 #/yr ODFW, 2006 avg. mass1.30E+03 g energy content8.83E+03 J/g energy= #*avg mass*(% dry weight)*J/g =1.53E+10 J/yr Transformity=5.92E+08 sej/J Emergy=9.06E+18 sej Geese Extracted 1.30E+03 #/yr ODFW, 2006 avg. mass4.00E+03 g energy content1.55E+04 J/g energy= #*avg mass*(% dry weight)*J/g =2.02E+10 J Transformity=3.50E+07 sej/J Emergy=7.06E+17 sej Mountain Lion 4.00E+00 #/yr ODFW, 2006 avg. mass7.48E+04 g

PAGE 200

200 energy content5.08E+03 J/g energy= #*avg mass*(% dry weight)*J/g =3.80E+08 J Transformity=1.34E+10 sej/J Emergy=5.11E+18 sej Sum of Emergy from Game 3.37E+19 sej 27 Fishing avg. mass4.54E+09 g of fish assume avg weight = 6 lb ODFW, 2006 energy content1.88E+04 J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught1.71E+13 J assume 20% dry weight Transformity=1.68E+07 sej/J 28 Information 1.20E+04 hours of research Transformity2.35E+14 sej/hr total sej of research2.82E+18 sej 33 Image Exported with Tourists Tourism Time in NF's3.64E+07 hrs USFS, 2006 site area=2.07E+02 ha CEP (2006) 1.20E+00 sites/visit ha/vist2.48E+02 ha USFS, 2006 use/ha/hour1.57E+11 sej/ha CEP (2006) emergy of image exported1.42E+21 sej/yr Unit emergy value3.91E+13 sej/visitor hour 30 Payments to State 8.46E+06 $/yr NFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006) 31 Payments for FS Labor 1.28E+07 $/yr NFS, 2005 Unit Emergy Value1.90E+12 sej/$ CEP (2006)

PAGE 201

201 Table Q-2 Emergy evaluation of the Deschutes National Forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1016sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 3.19E+17 3.62E+04 1153988.86073.6 2 Herbaceous/Shrub Biomass J 2.26E+16 17976 40567.8213.5 3 Land Area ha 7.50E+05 1.05E+15 78733.3414.4 4 Soil OM J 1.80E+18 1.24E+04 2240154.411790.3 5 Ground Water (drinking aquifer) J 3.33E+16 2.79E+05 929727.94893.3 6 Surface Water J 9.54E+15 8.10E+04 77289.5406.8 7 Mountains g 2.53E+19 mixed 5.6E+122.9E+10 ECONOMIC ASSETS 8 Roads (dirt) $ 4.25E+07 1.90E+12 8067.042.5 9 Roads (gravel) g 2.01E+12 1.68E+09 338237.11780.2 10 Roads (paved) g 8.89E+11 2.77E+09 246322.21296.4 11 Machinery & tools g 1.97E+09 1.13E+10 2219.111.7 12 Office Equipment g 4.40E+08 1.13E+10 495.62.6 13 Buildings g 1.21E+10 mixed 7594.340.0 SOCIETAL ASSETS 14 Information Value of Native Pop J 7.64E+15 1.22E+07 9308988.148994.7 15 Value of Critical Species # of Species 6.00 mixed 2.4E+07124973.7 Footnotes for Q.2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 3.92E+07m^3 NFS, 2005 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg =2.12E+13g 4.50E+00Kcal/g of Tree Biomass energy=g*.8% dry weight*4.5kcal/g*4186J/kcal =3.19E+17J Transformity3.62E+04 sej/J 2 Shrubs and Herbaceous 5.13E+06mt NFS, 2005 mass=tons*g/to n =5.13E+12g energy=g*0.3% dry weight*3.5kcal/g*4186J/kcal =2.26E+16J Transformity9.79E+03sej/J 3 Land Area 7.50E+05ha emergy of land structure1.05E+15 sej/ha 4 Soil OM 7.25E+07m^3 OM massOM=m^3*1100kg/m^3(Bulk Density)*1000g/kg =7.98E+13g Energy=massOM* 5.4 kcal/g of OM 4184 j/kcal

PAGE 202

202 =1.80E+18J Transformity1.24E+04 sej/J 5 Ground Water Density of water1000kg/m3 US GWA, 2000 Gibbs Free energy of water4940J/kg Volume6.75E+09m3 energy=volume*1000kg/m^3*4940J/kg =3.33E+16J transformity2.79E+05sej/J 6 Surface Water volume1.93E+09m^3 Density of water1000kg/m3 Buenfil (2001) Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg =9.54E+15J Transformity1.04E+06sej/J 7 Emergy of Mountain Formation mass of the mountains2.53E+19g specific emergy (mixed) Brown and Bardi, 2001 emergy5.58E+28sej see appendix ECONOMIC ASSETS 8 Roads, Dirt 6.00E+03$/mi 7.08E+03 4.25E+07value of dirt roads Unit Emergy Value1.90E+12sej/$ 9 Roads, Gravel 2.59E+06m length 5.49E+00m width depth=0.10m of gravel volume=1.44E+06m^3 of limerock NFS, 2005 density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/kg =2.01E+12g value of gravel5.00E+00$/ton 0.001102 3 kg/shrt ton Specific Emergy1.68E+09sej/g Odum, 1996 10 Paved Roads volume=3.96E+05m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass asphalt=m^3*kg/m^3*1000g/kg =8.89E+11g Specific Emergy2.77E+09 sej/g Odum (1996) 11 Machinery 4.35E+06lbs 4.54E+02g/lb mass machinery=lbs*g/lb NFS, 2005 =1.97E+09g

PAGE 203

203 Specific Emergy1.13E+10 sej/g 12 Office Equipment 1.50E+01kg/m2 CEP (2006) mass off. equip = (bldg area)*(kg/m2)*(1000g/kg) NFS, 2005 =4.40E+08g Specific Emergy1.13E+10 sej/g 13 Buildings 2.94E+04m^2 USFS, 2007 total Mass of Materials (see calcs) Building Mass=1.21E+10g Specific Emergymixed Energy Inputs (see calcs)=3.14E+13 J Emergy (see calcs)=7.59E+19sej SOCIETAL ASSETS 14 Archeological Sites 1.03E+03# of Arch. Sites Acres of Arch. Sites 1.61E+04acres density of Indian pop 1.45E+00Indians/mi^2 Estimate of avg Indian Pop 2.00E+03people energy per capita=2500kcal/day*365 d/y*4186J/kcal NFS, 2005 Energy per capita 3.82E+09J/yr/Indian Years of cultural development 1.00E+03yrs Indian Info=Indians on Des*energy /capita*yrs of cultural dev. Energy embodied in Pop. Info 7.64E+15 Transformity1.24E+07sej/J 15 Value of Critical Species Endangered/Threatened Species6.00E+00 NFS, 2005 Percent of pop1.00%% average emergy per species3.96E+24sej/species Em. In critical species=(# of Species)*(%of total Pop in FS land)*(Em. Required to develop species) Emergy in Critical Species (sum of above) 2.37E+23sej

PAGE 204

204 APPENDIX R OSCEOLA NATIONAL FOREST TABLES AND NOTES Table R-1 Emergy evaluation of the Osceola National Fo rest and its annual contri butions of environmental services Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy x1016sej EmDollars (x103 Em$) RENEWABLE RESOURCES: 1 Sunlight J 3.14E+18 1.00E+00 314.41654.9 2 Rain Chemical Potential J 4.02E+15 3.10E+04 12471.865641.1 3 Transpiration J 3.13E+15 3.06E+04 9584.750445.9 4 Rain Geopotential J 7.98E+14 4.70E+04 3751.219742.9 5 Wind, Kinetic J 1.32E+15 2.45E+03 322.41696.8 6 Hurricanes J 1.13E+12 6.49E+03 0.73.9 7 Waves J 05.10E+04 0.00.0 8 Tides J 07.39E+04 0.00.0 9 Earth Cycle J 6.83E+14 5.80E+04 3961.120848.0 INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss (harvesting) g 01.68E+09 0.00.0 10a. Top soil loss (harvesting) J 07.40E+04 0.00.0 IMPORTS: 11 Petroleum Products J 1.10E+12 1.11E+05 12.264.4 12 Machinery, Equipment g 1.29E+07 1.13E+10 14.676.6 13 Goods (Pesticides, herbicides, misc goods) g 01E9 7 E9 0.00.0 14 Seedlings $ 8.93E+04 1.90E+12 17.089.3 15 Tourist Time J 7.84E+11 1.50E+07 1171.76166.7 16 Labor hours 2.28E+04 6.30E+13 143.8756.7 17 Electricity J 8.76E+11 2.92E+05 25.6134.6 18 FS Budget Misc. $ 9.57E+04 1.90E+12 18.295.7 19 Services $ 4.20E+04 1.90E+12 8.042.0 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber $ 9.65E+05 1.90E+12 183.3964.6 21 Payments for minerals extracted $ 01.90E+12 0.00.0 22 Fee Payments (hunting, fishing, grazing, etc) $ 3.47E+04 1.90E+12 6.634.7 EXPORTS: 23 Miscellaneous Products (plants) J 2.66E+10 1.80E+04 0.00.3 24 Extracted Firewood J 5.01E+10 3.60E+04 0.20.9 25 Harvested Wood J 3.36E+14 5.04E+04 1695.18921.8 26 Water, Chemical Potentia l J 2.79E+14 3.10E+04 864.34549.2 27 Water, Geopotential J 6.08E+12 7.77E+04 47.3248.7 28 Minerals g 05E8 3E12 0.00.0 29 Harvested wildlife J 5.30E+10 3.36E+06 17.893.7 30 Harvested Fish J 9.59E+10 1.68E+07 161.2848.3 31 Information (research) $ 1.10E+04 1.90E+12 2.111.0

PAGE 205

205 Table R-1 continued Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy x1016sej EmDollars (x103 Em$) 32 Image Exported with Tourists hrs 1.80E+06 6.37E+13 11462.060326.5 Table R-1 continued ECONOMIC PAYMENTS MADE 33 Payments to State and Local Gov't $ 5.94E+051.90E+12 112.9594.2 34 Payments for Labor $ 4.50E+051.90E+12 85.5450.3 Footnotes for R-1 RENEWABLE RESOURCES: 1 Solar Insolation Sources Land Area 6.56E+08m^2 Insolation 5.84E+09J/m^2/y ear NASA SSE Albedo 1.80E-01(% given as a decimal) Energy(J) =(area)*(avg insolation)*(1-albedo) Gholz and Clark, 2000 3.14E+18J Transformity1.00E+00sej/J By Definition, Odum et.al, (2000) 2 Rain Chemical Potential Land Area 6.56E+08m^2 Rain1.241m/yr NASA SSE Total Volume Rain8.14E+08m^3 energy= volume*1000kg/m^3*4940J/kg =4.02E+15 Transformity3.10E+04sej/J Odum et.al, (2000) 3 Transpiration 9.67E-01m/m^2/ yr Ghjolz and Clark, 2000 Energy=Vol*1000Kg/m^3*4940J/kg Rain ET Energy3.13E+15J/yr Transformity3.06E+04sej/J Odum et.al, (2000) 4 Rain Geopotential Rain1.241m/yr NASA SSE Mean Elevation Change1.00E+02 m Land Area 6.56E+08m^2 Energy(J) =(area)(rainfall)(avg change in elevation)(density)(gravity) =7.98E+14J Transformity4.70E+04sej/J Odum et.al, (2000) 5 Wind, Kinetic Area6.56E+08 air density1.30E+00kg/m^3 avg annual wind velocity3.02E+00mps Geostrophic wind5.03E+00 observed winds are about 0.6 of geostrophic wind Drag Coeff.2.00E-03 Energy=area*density*dragcoef*Geos^3*31500000

PAGE 206

206 =1.32E+15 Transformity2.45E+03sej/J Odum (2000) 6 Hurricanes Avg energy/storm5.00E+05KCAL/m^2/day Odum et al, 1983 avg hurricane freq. 1.00E-01/yr percent energy that is kinetic3.00E+00% percent of energy dispersed to land1.00E+01% avg. residence time1.00E+00day/year area6.56E+08m^2 energy=0.1/yr*1yr/365 days*5e5Kcal/m^2/day*.003*area in m^2*4186J/kcal =1.13E+12j/yr Transformity6.49E+03sej/J Odum (2000) 7 Waves None 8 Tides None 9 Earth Cycle Heat Flow 3.30E+01miliwatts/m^2 IHFC, 2005 area6.56E+08m^2 energy=miliwatts/m^2*area*sec/yr 1.04E+06J/m^2 energy=6.83E+14J/yr Transformity5.80E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 0.00E+00g/yr Top Soil Loss0.00E+00g/yr Soil Gain0.00E+00g/yr NFS, 2005 IMPORTS: 11 Petroleum Products Forest Service Use3.41E+03gal/yr energy=gal*13e7j/gal =4.44E+11J/yr Contractor Use5.04E+03gal/yr energy=6.55E+11J/yr NFS, 2005 Total Fuel Use1.10E+12J/yr Transformity1.11E+05sej/J Odum, (1996) 12 Machinery, Equipment FS6vehicles avg. mass2.87E+07g/vehicl e avg. vehicle lifespan2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 8.62E+06g Contractors9vehicles percent of use on FS land33% use per y = vehicles*g/vehicle*1/avg life of vehicle*percent of use on FS

PAGE 207

207 projects g used per year4.31E+06g Total (FS and Contractors)=1.29E+07g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Goods (Pesticides, herbicides, misc goods) 0.00E+00g/yr NFS, 2005 14 Replanting Seedlings1.00E+05seedling s avg. mass3.50E+00g/seedli ng Total Mass=3.50E+05g/yr Total Cost=8.93E+04$/yr Unit Emergy Value1.90E+12sej/$ CEP ( 2006) 15 Tourism Tourist Time1.50E+05people/y r NFS, 2005 average stay1.20E+01hrs Total Hours of Stay1.80E+06hours/yr avg. energy/hr1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kc al =7.84E+11J/y Transformity1.50E+07 sej/J Brown and Bardi (2001) 9 16 Labor FS2.08E+04hrs/yr NFS, 2005 Contractors2.02E+03hrs/yr Total Labor2.28E+04hrs/yr Unit Emergy Value6.30E+13sej/hr based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers 17 Electricity 18000$/yr 0.0735$/kwh 2.43E+05kwh energy=kwh*3.6e6 J/kwh =8.76E+11J Transformity2.92E+05 Odum (1996) Appendix C, C-1 18 Unaccounted for FS budget 1.06E+06$/yr Total Budget for Osceola from FS2.37E+06$/yr S. Kett from NFS Unit Emergy Value1.90E+12sej/$ CEP (2006) 19 Services 4.20E+04$/yr NFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006) 20 Payment for timber 9.65E+05$/yr NFS, 2005 Unit Emergy Value1.90E+12sej/$ CEP (2006)

PAGE 208

208 21 Payments for Extracted Minerals 0.00E+00$/y Unit Emergy Value1.90E+12sej/$ CEP (2006) 22 Fee Payments 3.47E+04$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) EXPORTS: 23 Miscellaneous Products (Plants) 1.81E+06g/yr NFS, 2005 energy=g*3.5kcal/g*4186J/Kc al =2.66E+10joules Transformity1.80E+04sej/J Brown and Bardi (2001) 15 24 Extracted Firewood mass3.34E+03kg energy=mass*1000g/kg15000j /g =5.01E+10J/yr Transformity3.60E+04sej/J Brown and Bardi (2001) 15, assuming 50% wood 25 Harvested Wood 2.74E+10g/yr NFS, 2005 energy=g*15000j/g =3.36E+14J/yr Transformity (w/o services)5.04E+04 Brown and Bardi (2001) 9 26 Water Chemical Potenial Total Export From Streams5.64E+07m^3/yr Chemical Potential= M^3/yr 1000 kg/M^3 4940 J/kg joules = 2.79E+14 transformity3.06E+04 Odum, 1996 27 Water, Geopotential Energy Geopotential (J) = (volume)(elevation)(density)(gravity) =6.08E+12 Transformity7.77E+04sej/J Brown and Bardi (2001) 21 (runin) 28 Minerals 0.00E+00g/yr 29 Hunting % Dry Weight for Wildlife2.50E+01% Deer Extracted2.74E+02deer/y avg. mass4.72E+04g/deer energy content2.65E+04J/g energy= #*avg mass*(% dry weight)*J/g =4.26E+10J/yr FFWCC Transformity=5.84E+05sej/J Transformities based on sej in diet/joules of animal Emergy=2.48E+16sej Hog Extracted 4.40E+01hog/yr FFWCC

PAGE 209

209 avg. mass5.67E+04g/hog energy content2.72E+04J/g of hog energy= #*avg mass*(% dry weight)*J/g =8.48E+09J/yr Transformity=1.70E+07sej/J Emergy=1.44E+17sej Turkey Extracted 5.60E+01turkey/y r FFWCC avg. mass8.16E+03g/turkey energy content2.84E+04J/g turkey energy= #*avg mass*(% dry weight)*J/g energy=1.62E+09J/yr Transformity=6.11E+05sej/J Emergy=9.93E+14sej Grey Squirrel Extracted 2.32E+02squirrel/ yr FFWCC avg. mass5.50E+02g energy content2.32E+04J/g energy= #*avg mass*(% dry weight)*J/g 3.70E+08J/yr Transformity=2.24E+07sej/J Emergy=8.29E+15sej Sum of Emergy from Game 1.78E+17sej Weighted Trans. For Game 3.36E+06sej/J 30 Fishing 5.63E+04fish caught 42187.50 avg. mass4.54E+02g/fish assume avg weight = 1 lb energy content1.88E+04J/g (4.5Cal/G*4187 J/cal) Energy Fish Caught9.59E+10J assume 20% dry weight Transformity=1.68E+07sej/J Brown and Bardi (2001) 22 31 Information3.00E+00research groups/year average time spent2.00E+01days/gro up total days spent6.00E+01days/yr $ Spent by outside researchers6.00E+03$/yr $ Spent by NFS5.00E+03$/yr $ spent for Research in Osceola1.10E+04$/yr Unit Emergy Value1.90E+12sej/$ CEP (2006) 32 Image Exported with Tourists Tourism Time in NF's1.80E+06hrs NFS, 2005 site area=2.07E+02ha CEP (2006) 1.20E+00sites/visi t ha/visit2.48E+02ha NFS, 2005 use/ha/hour2.56E+11sej/ha/hr emergy of image exported1.15E+20sej/yr

PAGE 210

210 Unit emergy value6.37E+13sej/visitor hour CEP (2006) 33 Payments to State 5.94E+05$/yr Unit Emergy Value1.90E+12sej/$ 34 Payments for FS Labor 4.18E+05$/yr USFS, 2005 Payments for Contractor Labor3.23E+04$/yr Total Labor Payments4.50E+05$/yr Unit Emergy Value1.90E+12sej/$

PAGE 211

211 Table R-2 Emergy evaluation of the Osceola National Forest assets Note Item Units Quantity Unit Emergy Values (sej/unit) Solar Emergy (x1016sej) EmDollars (x106 Em$) ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass J 4.46E+16 3.62E+04 161497.7850.0 2 Herbaceous/Shrub Biomass J 5.41E+16 17976 97193.5511.5 3 Land Area ha 6.54E+04 1.05E+15 6867.036.1 4 Soil OM J 3.47E+17 1.24E+04 431156.42269.2 5 Peat J 2.85E+16 3.09E+05 881020.64637.0 6 Ground Water (drinking aquifer) J 5.19E+16 3.02E+05 1568743. 4 8256.5 7 Surface Water J 5.14E+14 8.10E+04 4161.521.9 ECONOMIC ASSETS 8 Roads (dirt) $ 3.19E+06 1.90E+12 606.53.2 9 Roads (gravel) g 2.60E+11 1.68E+09 43677.0229.9 10 Roads (paved) g 5.32E+11 2.77E+09 147470.4776.2 11 Machinery & tools g 1.72E+08 1.13E+10 194.01.0 12 Office Equipment g 2.58E+08 1.13E+10 290.01.5 13 Buildings m2 3.52E+03 mixed 253.81.3 GEOLOGIC ASSETS 14 Phosphorus g 9.07E+13 4.54E+09 41149899 .8 216578.4 14b Phosphorus $ 2.27E+09 1.90E+12 430912.82268.0 SOCIETAL ASSETS 15 Archeological Artifacts J 1.01E+13 1.24E+07 12471.865.6 16 Information Value of Timucuan Pop. J 1.01E+16 1.22E+07 12276512 .9 64613.2 17 Biodiversity (Value of Critical Species) # of species 3.00 1.3E+096977956.9 Footnotes for R-2 ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 4.02E+06m^3 NFS, 2005 5.90E+02kg/m^3 mass=m^3*kg/m^3*1000g/k g =2.37E+12g 4.50E+00Kcal/g of Tree Biomass energy=g*4.5kcal/g*4186J/kc al =4.46E+16J Transformity3.62E+04 sej/J Brown and Bardi (2001) 6 2 Shrubs 1.36E+06shrt tons NFS, 2005 9.07E+05g/shrt ton mass=tons*g/ton

PAGE 212

212 =1.23E+12g Herbaceous Ground Cover 2.71E+06shrt tons mass=tons*g/ton =2.46E+12g Shrub/Herb Total 3.69E+12g energy=g*3.5kcal/g*4186J/kc al =5.41E+16J Transformity9.79E+03sej/J Brown and Bardi (2001) 6 3 Land Area 6.54E+04ha (emergy of land structure) 1.05E+15 sej/ha Odum, Env. Accounting, 1996 4 Soil OM 3.85E+07m^3 OM massOM=m^3*1100kg/m^3(Bulk Density)*1000g/kg =4.24E+13g Energy=massOM* 5.4 kcal/g of OM 4186 j/kcal =3.47E+17J Transformity1.24E+04 sej/J Brown and Bardi (2001) 6 5 Peat 3.15E+06m^3 FFS, U of F mass Peat OM=m^3*400kg/m^3(Bulk Density) =1.26E+12g Energy=massPeat* 5.4 kcal/g of OM*1000g/kg* 4186 J/kcal =2.85E+16J Transformity3.09E+05sej/J Brown and Bardi (2001) 21 6 Ground Water Density of water1000kg/m3 Gibbs Free energy of water4940J/kg Volume1.05E+10m3 energy=volume*1000kg/m^3*4940J/kg =5.19E+16J transformity2.79E+05sej/J Buenfil (2001) 7 Surface Water volume1.04E+08m^3 Density of water1000kg/m3 Gibbs Free energy of water4940J/kg energy=volume*1000kg/m^3*4940J/kg energy=5.14E+14J Transformity1.04E+06sej/J Brown and Bardi (2001) 23 ECONOMIC ASSETS 8 Roads, Dirt 3.19E+06$ Unit Emergy Value1.90E+12sej/$ CEP (2006) 9 Roads, Gravel 3.40E+05m length NFS, 2005 3.66E+00m width area=1.24E+06m^2 depth=1.50E-01m of

PAGE 213

213 gravel volume=1.87E+05m^3 of limerock density=1.39E+03kg/m^3 gravel mass gravel=m^3*kg/m^3*1000g/k g =2.60E+11g Specific Emergy1.68E+09sej/g Odum (1996) 10 Paved Roads 1.72E+05m area=1.12E+06m^2 depth=5.08E-02m depth volume=2.84E+04m^3 of asphalt density=2.24E+03kg/m^3 asphalt mass gravel calculated as above gravel4.68E+11g mass asphalt=m^3*kg/m^3*1000g/k g asphalt6.38E+10g total mass5.32E+11g Specific Emergy2.77E+09 sej/g Odum (1996) 11 Machinery 3.80E+05lbs 4.54E+02g/lb mass machinery=lbs*g/lb =1.72E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 12 Office Equipment 5.68E+05lbs 4.54E+02g/lb mass office equipment=lbs*g/lb =2.58E+08g Specific Emergy1.13E+10 sej/g CEP (2006) 13 Buildings building area3.52E+03m^2 Kett, 2005 mass per m^2see appendix emergy=2.54E+18sej 14 Phosphorus 9.07E+13g USGS (1978) value2.27E+09$ Specific Emergy4.54E+09 sej/g Odum, Env. Accounting, 1996 SOCIETAL ASSETS 15 Archeological Sites 3.21E+02# of Arch. Sites USFS, 2005 Acres of Arch. Sites3.90E+06M^2 density of Timucuan pop1.04E+01Indians/mi^2 Estimate of Timucuan on Osc.2.64E+03people energy per capita=2500kcal/day*365 d/y*4186J/kcal =3.82E+09J/yr/India n energy in "Cargo"=J/yr/Ind*Indians in Osc.

PAGE 214

214 =1.01E+13J 16 Years of cultural development 1.00E+03yrs Timucuan Info=Indians on Osc*energy/capita*yrs of cultural dev. Energy embodied in Pop. Info1.01E+16 Transformity1.24E+07sej/J 17 Biodiversity Value of Critical Species USFS, 2006 Red Cockaded Woodpecker 1.68E+02ind. Percent of pop 1.79E+00% Florida Black Bear 8.00E+01ind. Percent of pop 5.33E+00% Wood Stork 2.50E+01ind. Percent of pop 2.27E-01% Avg. Emergy of a Species 3.96E+24sej Em. In critical species=%of total Pop. On Osc.*Em. Required to develop species Emergy in Critical Species 1.33E+25sej 1.33E+25

PAGE 215

215 APPENDIX S FOOTNOTES FOR TAB LES 3-7 AND 3-8 Notes to Table 3-7 1 Organized recreation 1. Emergy of tourists Emergy of tourists (sej) = 2.53E+22 Table 3-1, Ap. F 2. Tourists economic expenditures for recreation Number of toruists = 2.05E+08 Travel costs = $45 Estimate Dollar expenditures = 9.2E+09 2 Sales, Permits and Concessions 1. Emergy equivalent of dollars = (dollars)* (1.9 E12 sej/$) 2. FS income from concessions and permits Dollar income = $3,100,000,000 USFS, 2007 3 Hydroelectric energy 1. Emergy value of hydroelectricity Emergy (sej) = 6.07E+22 Table 3-1, Ap. F 2. Dollar value hydroelectricity generated Avg price = $ 0.08/kwh Estimate Total generated (kwh) = 1.40E+11 Mallory, 2006 Dollar value = $11,200,000,000 4 Water supply 1. Emergy value of outflowing surface water Emergy (sej) = 1.96E+23 Table 3-1, Ap. F 2. Dollar value Price ($/m3)= 0.50 USEPA, 1999 Volume of water (m3) = 1.27E+11 Estimate 50% available for consumption Dollar value = $63,570,523,191 5 Carbon sink 1. Emergy value of gross primary production (emegy driving GPP) Emergy (sej) = 3.61E+22 Table 3-1, Ap. F 2. Dollar value Price ($/tonn)= $3 Quantity (tonn/ha) = 6 Pugh, 2004

PAGE 216

216 Area (ha) = 7.80E+07 Dollar value = $1,404,000,000 6 Watershed protection 1. Emergy value of Rainfall. Emergy (sej) = 8.11E+22 Table 3-1, Ap. F 2. Costs of watershed protection Cost ($/ha) = $255 Estimate; NRCS (2005) Area (ha) = 7.80E+07 Dollar value = $19,890,000,000 7 Wildlife hunting 1. Emergy of wildlife harvested Emergy (sej) = 4.28E+22 Table 3-1, Ap. F 2. Estimated dollar expenditures for hunting Number of hunters = 1820000 USFS land = 35% of hunting on public lands Expenditure/ hunter = $1,585 USFWS (2002) Total expenditures = $2,884,000,000 8 Fish Harvest 1. Emergy of fish harvested Emergy (sej) = 1.67E+21 Table 3-1, Ap. F 2. Estimated dollar expenditures for fishing Number persons fishing = 1261700 estiamte =3.7% of total fishers Expenditure/fisher = $1,044 USFWS (2002) Total expenditures = $1,317,200,000 9 Wildlife watching 1. Emergy of tourists Number of wildlife watchers = 2180000 estiamte =10% of total visitors Emergy/person (sej/person)= 9.44E+15 Table 3-1, Ap. F Emergy (sej) = 2.06E+22 10 Clean air Emergy value airborne particulate deposition Deposition (g/cm2)= 1.00E-03 Tilley, 2003 Total quantity (g/yr) = Area deposition Table 3-1, Ap. F Quanityt (g/yr) = 7.80E+12 Specific Emergy (sej/g) = 1.69E+09 Odum (2000)

PAGE 217

217 Emergy (sej/yr) = 1.32E+22 11 Clean water Emergy value of ranifall Emergy (sej/yr)= 8.11E+22 Table 3-1, Ap. F 12 Pollination No estimate available 13 Seed dispersal No estimate available 14 Predator control No estimate available 15 Gross primary productivity Emergy value of gross primary production (emegy driving GPP) Emergy (sej) = 3.61E+22 Table 3-1, Ap. F 16 Net primary productivity Emergy value of net primary production (40% GPP) Emergy (sej) = 1.44E+22 Table 3-1, Ap. F 17 Total respiration Emergy value of respiration (60% GPP) Emergy (sej) = 2.17E+22 Table 3-1, Ap. F 18 Scientific information Annual production of information Emergy (sej/yr) = 2.14E+20 Table 3-1, Ap. F Notes to Table 3-8 1 Employees 1. Emergy value of employees31, 511 people Emergy per capita 1.68E+17 Odum, 1996 Emergy = Employees Emergy percapita Emergy =5.3E+21 2. Total salary = $1,323,745,000 USFS, 2006 2 Building Infrastructure 1. Emergy value of bldg = 7.50E+21 Table 3-2, Ap. A and F 2. Total dollar value = $4,394,513,173 USFS, 2006 unpub. 3 Machinery, Vehicles

PAGE 218

218 1. Emergy in machines, equip.=1.11E+21 Table 3-2, Ap. F 2. Dollar value of machines = $547,356,612 USFS, 2006 unpub. 4 Roads 1. Emergy in roads by class =1.51E+23 Table 3-2 2. Total dollar value = $15,000,000,000 USFS, 2006 unpub. 5 Timber 1. Emergy in standing stock =2.79E+24 Table 3-2, Ap. F 2. Total dollar value = Wholesale $250/ 1000 broard feet USFS, 2007 Dollar value = $147,740,374,482 USFS, 2007 6 Water (surface) 1. Emergy of water volume =1.29E+23 Table 3-2, Ap. F 2. Dollar price of water = 3.23 E11 m3 $0.5/m3 Estimate Dollar value = $40,375,000,000 Assume 25% available for Consumption 7 Water (ground) 1. Emergy value of groundwater = 8.45E+23 Table 3-2, Ap. F 2. Dollar price of water =5.67E11 m3, specific yield = 18% price =$2.00/1000 gal Estimate Dollar value =Volume Sp.Yield*price Dollar value = $102,024,291,498 8 Biomass fuel 1. Emergy value of total biomass = 2.92E+24 Table 3-2, Ap. F 2. Dollar value of biomass = 5.4E12. Kg /1000 kg/tonn* $35/tonn Estimate Dollar value = $189,000,000,000 9 Minerals 1. Emergy of minerals by type = 3.11E+24 Table 3-2, Ap. F 2. Dollar value = $120,000,000,000 USGS, 2005 10 Real estate 1. Emergy value of lands =8.19E+22 Table 3-2, Ap. F 2. real estate value =192.7E6 acres* $500/acre Estimate Dollar value = $96,000,000,000 11 Coal 1. Emergy value = 7.61E+24 Table 3-2, Ap. F

PAGE 219

219 2.Dollar value = 4.59E9 mt @ $16 per metric ton Dollar value = $73,440,000,000 Citation 12 Gas 1. Emegyin natural gas reserves =2.78E+22 Table 3-2, Ap. F 2. Dollar value of reserves = 2.26E17 J @ $1.5 per Mmbtu Dollar value = $8,940,147,610 13 Oil 1. Emergy in petroleum reserves =1.59E+23 Table 3-2, Ap. F 2. Dollar value of reserves =170424000 @ $100/barrel Estimate Dollar value =$17,042,400,000 14 Shale No data available 15 Peat 1. Emergy in peat =1.22E+22 Table 3-2, Ap. F 2. Dollar value of peat = 1.27E6 m3 $2.80/m3 Estimate Dollar value = $3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = $279,803 USFS, 2005 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = $9,200 USFS, 2005 19 Medicinal plants and animals No data available 20 Seeds 1. Emergy in standing stock =mass harvested not available 2. Dollar value =$8,728 USFS, 2005 21 Other forest products 1. Emergy in standing stock =mass harvested not available 2. Dollar value =$3,084,232 USFS, 2005 22 Soil Emergy in Soil Organic matter =1.87E+24 Table 3-2, Ap. F 23 Old growth biomass Emergy in standing stock=Assume 10% of treebiomass is old growth

PAGE 220

220 Tree biomass = 7.71E19 J Old growth = 7.71 E18 J Transformity = 6.89E+04 Odum, 1996 Emergy =5.31E+23 24 Wildlife Emergy in standing stock =1.08E+24 Table 3-2, Ap. C and F 25 Endangered wildlife Emergy in standing stock =6.22E+25 Table 3-2, Ap. E and F 26 Topography Emergy value of elevation =mass* gravational potential Avg. elevation = 1000m Density = 2.6 E3 kg/m2 Area = 7.8 E11 m2 Energy = (Avg..elev.)(area)(9.8 m/sec2)(density) Energy (J) = 1.98744E+21 Transformity = 7.5E5 sej/J Odum, 2000 Emergy (sej) =1.49058E+27 27 Geologic Formations Emergy value of geologic form. = mountain mass specific emergy Avg. elevation = 1000 m Area= 7.8 E11 m2 Mass = (1000m)(2.6E3kg/m3)(7.8E11m2) Specific Emergy (sej/g)= 2.50E+09 Odum, 2000 Emergy (sej)=5.07E+30 28 Priceless locations Assume value of total content embodied in USFS lands Continental area = 2.45 E7 km2 Transformity =1.05E15 sej/ha Odum, 2000 Emergy =(area)(transformity) Emergy (sej) =2.5725E+24 29 Panorama No data available 30 Knowledge Emegy value of knowledge = emergy in expereince Employees =31, 511 people Emergy per capita = 3.36E+17 Odum, 1996 Average age = 35 years Estimate

PAGE 221

221 Emergy = (Employees) (Emergy percapita)(age) Emergy (sej) =3.7E+23 31 Native American Artifacts Emergy in artifacts = 2.17E+25 Table 3-2, Ap. E and F 32 Genetic resources Grams DNA = 1.15E+13 Energy (J) = 2.40E+17 Specific Emergy (sej/g)= 1.22E+12 Emergy (sej) =2.93E+29 33 Research 1. Emergy of FS personel e ngaged in research activitties. Number of staff =486 USFS, 2007 Emergy/ person = 4.704E+17 Odum, 1996 Emergy (sej) = 2.29E+20 2. Economic costs of research (Salary) Dollar costs = $20,416,365

PAGE 222

222 REFERENCES Aiken, R. 2005. Private and Public Land Use by Hunters United States Fish and Wildlife Service, Arlington Virginia, 36 pp. Blake, E., E. Rappaport, and J. Jarrel. 2006 The Deadliest, Costliest, and Most Intense United States Hurricanes from 1851 to 2004 (and Othe r Frequently Requested Hurricane Facts. Technical Memorandum NWS TPC-4. NOAA/NWS Tropical Prediction Center Miami, Fl. 51 pp. Brown, M.T. and E. Bardi. 2001. Handbook of Emergy Evaluation Folio #3. Center for Environmental Policy, University of Florida, Gainesville, Fl.30 pp. Brown, M.T. and E. Campbell. 2007. Evaluation of Natural Capital and Environmental Services of U.S. National Forests Us ing Emergy Synthesis. Center for Environmental Policy, Gainesville Fl. 184 pp. Brown, M.T, M. Cohen, E. Bardi, and W. Ingwerson. 2006 Species Diversity in the Florida Everglades: A systems approac h to calculating biodiversity Aquatic Sciences, January, 2006, 24 pp. Brown, M.T., P. Green, A. Gonzalez and J. Venegas, 1992, Emergy Analysis Perspectives, Public Policy Options, and Devel opment Guidelines for the Coastal Zone of Nayarit, Mexico, Vol. 2 Report to The Cousteau Society and Government of Nayarit, Mexico, Center for Wetlands, University of Florida, Gainesville, FL. Brown, M.T., H.T. Odum, G. McGrance, R.D. Woithe, S. Lopez and S. Bastianoni, 1995 Emergy Evaluation of Energy Policies for Florida Final Report to the Florida Department of Community Affa irs, Center for Environmen tal Policy, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL. Brown, M.T., S. Tennenbaum, and H.T. Odum, 1988, Emergy Analysis and Policy Perspectives for the Sea of Cortez, Mexico Report to The Cousteau Society, Center for Wetlands, University of Flor ida, Gainesville, FL, 58 pp. Brown, M.T., R.D. Woithe, H.T. Odum, C.L. Montague, and E.C. Odum, 1993, Emergy Analysis Perspectives of the E xxon Valdez Oil Spill in Prince William Sound, Alaska Final Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 122 pp. Campbell, D. 1998. Emergy Analysis of Human Carrying Capacity and Regional Sustainability: An Example Using the State of Maine (Appendix). Environmental Monitoring and Assessment 51: 531-569. Campbell, D., and T. Cai. 2006. Emergy and Economic Value. In Press, United States Environmental Protection Agency. 30 pp.

PAGE 223

223 Daly, Farley and J. Farley. 2003. Ecological Economics: Principles and Applications Island Press. Washington D.C. 454 p. Doherty, S.J.. 1995. Emergy Evaluations of and Limits to Forest Production PhD Dissertation, Department of Environmental Engineering. Univ ersity of Florida, Gainesville Fl. 215 pp. Doherty, S.J., M.T. Brown, R.C. Murphy, H.T. Odum, and G.A. Smith, 1993, Emergy Synthesis Perspectives, Sustainable De velopment, and Public Policy Options for Papua New Guinea Final Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 182 pp. Energy Information Administration (EIA). Official Energy Statistics from the US Government. 1/12/07. http://www.eia.doe.gov/ (1/20/07) Er, Kenneth, John Innes, Kathy Martin, and Brian Klinkenberg. Forest loss with urbanization predicts bird extirpations in Vancouver. Biological Conservation 126, 2005. 410-418. ESRI ArcMap Version 9.1. Copyright 1999-2005 ESRI Inc. Accessed 2006-2007. French, Dwight. Energy Information Administra tion (EIA). Effective, Occupied, and Vacant Square Footage, 1992. July 15th, 1998. http://www.eia.doe.gov/emeu/cbecs/Squareft/sqtab_1a.html (9/10/06) Hassan, Marwan, Michael Church, Thomas Lisle, Francesco Barardinoni, Lee Benda, Gordon Grant. Sediment Transport and Channel Morphology of Small, Forest Streams. Journal of The American Water Resources Association. August, 2005. 853-876, 23 pp. Hau, J. and B. Bakshi. 2003. Promise and Problems of Emergy Analysis Ecological Modelling 178. 215-225, 10 pp. International Heat Flow Commissi on (IHFC). Global Heat Flow Database. University of North Dakota. 9/20/06. http://www.heatflow.und.edu/data.html (8/5/06) Kearney, M. 2005. 2004 Annual Monitoring and Evaluation Report and 5 Year Review: National Forests in Florida. United States Forest Service, Tallahassee Fl. 92 pp. Kreiger, D. 2001. Economic Valuation of Forest Ecosystem Services: A Review. The Wilderness Society, Washington D.C. 40 pp. National Council for Air and Stream Improve ment (NCASI) and US Forest Service Research Work Unit 4104. COLECarbon Online Estimator. USDA Forest Service, Northern Global Change Program 10/24/05. http://ncasi.uml.edu/COLE/index.html (10/5/06) National Renewable Energy Laboratory, (NREL). Renewable Resource Data Center 2006. http://rredc.nrel.gov/ http://www.nrel.gov/gis/maps.html NatureServe. Get Data: Animal Data for Download Copyright 2006.

PAGE 224

224 http://www.natureserve.org/getData/animalData.jsp (7/9/06) NOAA Satellite Information Service. Get/View Online Climatic Data. 11/13/06. http://www.ncdc.noaa.gov/oa /climate/climatedata.html http://tidesandcurrents.noaa.gov/station_r etrieve.shtml?type=H istoric+Tide+Data (9/6/06) Odum. H.T. 2000. Handbook of Emergy Evaluation Folio #2 Center for Environmental Policy, University of Florida. 30 pp Odum, H.T., 1996, Environmental Accounting: Emer gy and Environmental Decision Making John Wiley & Sons, New York, 370 pp. Odum, H.T. and M.T. Brown (eds) 1976. Carrying Capacity for Man and Nature in South Florida. Report to the US Dept of Interior, Na tional Park Service. Center for Wetlands, University of Florida, Gainesville. Odum, H.T., M.T. Brown, and R.A. Christianson, 1986. Energy Systems Overview of the Amazon Basin Report to The Cousteau Society, Ce nter for Wetlands, University of Florida, Gainesville, FL, 190 pp. Orr, David. 1993. Forests and Trees Conservation Biology, Vol. 7 no. 3 pgs 454-456 Patton-Mallory, Marcia. The Role of the Federal Government and Federal Lands in Fueling Renewable and Alternative Energy Tes timony Subcommittee on Energy and Mineral Resources Committee on Resources United Stat es House of Representatives. April 6, 2006. Pugh, S. 2004. RPA Data Wiz V. 1 USDA Forest Service, North Central Research Station. St. Paul, MN. Scatena F.N., S. Doherty, H.T Odum., and P. Karecha. 2002. An EMERGY Evaluation of Puerto Rico and the Luquillo Ex perimental Forest. USDA Forest Service General Technical Report GTR-9. 79 pages. Sedell, J. M. Sharpe, D. Apple, M. Copenhagen, and M. Furniss. 2000 Water and the Forest Service. USDA Forest Service, Washington D.C. 35 pp. Smith, B., P Miles, J. Vissage,, and S. Pugh. 2003. Forest Resources of the United States, 2002 United States Forest Service. Washington D.C. 137 pp. Stackhouse, P. and C. Whitlock,. Surface meteorology and Solar Energy (release 5.1). NASA. 3/8/06 http://eosweb.larc.nasa.gov/sse/ (9/5/06) Stynes, D. and E. White. 2006. Spending Profiles for National Forest Visitors by Activity United States Forest Service. Washington D.C. 26 pp.

PAGE 225

225 Sweeney, S. M.T. Brown, and M. Cohen. 2007. Creation of a Global Da tabase for Standardized National Emergy Synthesis. Proceedings of Emergy Synthesis Conference 4, 23-1 Tilley, D. and W. Swank. 2003. Emergy-based environmental systems assessment of a multipurpose temperate mixed-forest watershed of the southern Appalachian Mouintains, USA. Journal of Environmental Management. Issue 69. 15 pp. Tilley, D.R., 1999, Emergy Basis of Forest Systems Ph.D. Dissertation, Department of Environmental Engineering Sciences University of Florida, 300 pp. United Nations Environmental Programme. United Nations System Wi de EarthwatchForests. 10/7/07. http://earthwatch.unep.ch/forests/forestloss.php United States Department of the Interior. National Atlas of the United States Raw Data Download. 4/28/06. http://www.nationalatlas.go v/atlasftp.html#wildrnp (4/10/06) United States Department of the Interior, Fish and Wildlife Services and US Department of Commerce, U.S. Census Bureau. 2001 National Survey of Fishing, Hunting and Wildlife Associated Recreation. US Department of the Interior, 2001. 170 pp. United States Fish and Wildlife Service. 2006. USFWS Threatened and Endangered Species System (TESS) Unpublished Data (excel file). United States Forest Service (USFS). 2003. Report of the Forest ServiceFY2002 United States Forest Service, Washington D.C. 273 pages. United States Forest Service (USFS). 2006. 2005 Performance and Accountability Report United States Forest Service, Washington D.C, 192 pages. United States Forest Service (USFS). 2004. National Visitor Use Monitoring Program National Project Results January 2000-September 2003 United States Forest Service, Washington D.C. 10 pages. United States Forest Service (USFS). 2005. FY2005 Forest Service Revenue, Expenses and Cost of Collection United States Forest Service. Washington D.C. 14 pages United States Forest Service (USFS). 2006. Fiscal Year 2006 Pres idents Budget Overview United States Forest Service, Washington D.C. 54 pages. United States Forest Service (USFS), 2006. Unpublished Data Collected On Site. United States Geologic Survey (USGS). Ground Water Atlas of the United States. 5/25/05. http://capp.water.usgs.gov/gwa/ United States Geologic Survey (USGS). Latest Oil and Gas Assessment. 1/15/2007. http://energy.cr.usgs.gov/oilgas/noga/

PAGE 226

226 United States Geologic Survey (USGS). National Elevation Dataset. August, 2006. http://ned.usgs.gov/ 10/10/2006 Voskresensky, K.P. 1978. Water of the Earth; Water Cycle on Earth. Pp. 42-45; 104-117 in World Water Balance and Water Res ources of the Earth, UNESCO. 663 pp. Weir, J. T. and D. Schluter. 2007. The latitudinal gradient in recent speciation and extinction rates in birds and mammals. Science 315: 1928-1933.

PAGE 227

227 BIOGRAPHICAL SKETCH Elliott Thomas Campbell was born in 1982 in Gainesville Florida to Daniel E. Campbell and Kathleen E. Trimmer. He spent the first ye ar of his life in Gainesville while his father received his doctorate under Dr H.T. Odum and then moved to Damariscotta Maine where his father was employed at the Bigelow Marine La b. In 1990 he and his family moved to South Kingstown Rhode Island where his father be gan his current employment as a nationally recognized research scientist wi th the Environmental Protection Agency and his mother was employed as a special education teacher. In 2001 Elliott received his high school degree from South Kingstown High. He then attended the University of Rhode from 2001 to 2005 and graduated from with a Bachelor of Science in environmental science and management. Elliott has attended the University of Florida from fall 2005-2007 and plans on continuing his education at the University of Maryland under Dr. David Till ey expanding on his thesis research. Elliott is passionate about travel and plans on expanding u pon the twelve countries he has currently had the pleasure of visiting.


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101112_AAAADA INGEST_TIME 2010-11-12T16:37:09Z PACKAGE UFE0020140_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 25271604 DFID F20101112_AABWRG ORIGIN DEPOSITOR PATH campbell_e_Page_054.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
bbca952a8fa43709a34fa7278ddfe511
SHA-1
835755f05e653cf8391b995133f550145c37f2c3
1051963 F20101112_AABXOA campbell_e_Page_223.jp2
ee87fb0a541815a687757449b944eb9e
f068913c43d2092ccd7723e685dd20db66610bfb
25726 F20101112_AABWRH campbell_e_Page_075.QC.jpg
c63b7cf9389ef2d7d075f517c619f03d
70f11d3631d6bb3e9cdf263335edbbee8eb6c55f
1051964 F20101112_AABXOB campbell_e_Page_224.jp2
d3c452921d332a42ac887e35de4be800
9a8589a70469a2c04e2b098679f80abed7a0b266
20990 F20101112_AABWRI campbell_e_Page_087.jpg
d570679ffd09e9c9d3f8f51268573986
b1641b3bf43813eab3badc9640d076f110609dd2
1051975 F20101112_AABXOC campbell_e_Page_225.jp2
bc38757ea2ff8ade2108817fb733e6e6
ab2880cc8f7320dac985f854c992ba8386f66ca6
2175 F20101112_AABWRJ campbell_e_Page_131thm.jpg
3c3a6322c4bc89ef5f7bd0efdaa24844
d112d57979e94425ddb6a2bf341dbe7fea653609
291390 F20101112_AABXOD campbell_e_Page_226.jp2
8b1d5f1e3b530f9ab94e71ab12e82ecd
a9607d44690fb8e861bc97d7f748124b6b093fce
F20101112_AABWRK campbell_e_Page_033.tif
1c8cd81ca9273984114b9af64b82019e
b8998cee52dd6282cfa4dc3df877e92b31746081
68005 F20101112_AABXOE campbell_e_Page_227.jp2
4c5b1dc2773eee12af140703696a98d3
f630a42488371d6cb7d941b8b8f539bbb7b3ba90
72585 F20101112_AABWRL campbell_e_Page_025.jpg
ef60b13f9c6a0bf72599d84dfa0200b6
f77040c5cf9581452fd43bf72575fbc446873966
1053954 F20101112_AABXOF campbell_e_Page_001.tif
6b3de6830a3b1f612941327e713ab60e
8d49bffbd60e4fe2a238aaeceaa1f204494fc9dd
15293 F20101112_AABWRM campbell_e_Page_207.QC.jpg
209ab26b5f82ac3bf0b5432518cb6f4e
33b5240a0fee7b6760b822b5230f92b7b11a8d88
F20101112_AABXOG campbell_e_Page_002.tif
dd031b6187e7b1c716b80bcd4f3c4694
d92a4209cae2bc5b49e0d15f4e46fcbc2f8513f0
358331 F20101112_AABWRN campbell_e_Page_051.jp2
78aa38d858c5f0beedfca46619c43807
9c691e6797b3da524a12e9200fb167968b8e4031
F20101112_AABXOH campbell_e_Page_003.tif
543574ad0fe16bf4f73f1d6379e3eb9d
8ae8217d5aceb875758f3973ab5316c19ed0bee7
5131 F20101112_AABYLA campbell_e_Page_142thm.jpg
db0d6f295bb14c0601325d2c5085ed8a
307fa54f253dd022cbf466c49879266aaae9c999
69865 F20101112_AABWRO campbell_e_Page_121.jp2
8dca9547d11368b059ef4fce37553933
877b6a448d89f76eb7d1b6bea4c382d80abfa2a3
F20101112_AABXOI campbell_e_Page_005.tif
bc8c7d04e9c64f6705fdf8fc6f8d0d56
4ef31f14788a7cfde93beda9172fa7046e397e2e
4792 F20101112_AABYLB campbell_e_Page_015thm.jpg
b8b908b4ae65753ed611a5de761bccd7
37b3fc5b0a30155692da6e14f164deb5448ac2aa
56359 F20101112_AABWRP campbell_e_Page_066.pro
6a3556c23940197492791fd5cfd24816
0b25fda6ab0c59c230ca1acc99af0b775eaa31f0
F20101112_AABXOJ campbell_e_Page_007.tif
33ac8c7322e8ed6b6580c1d6cd67d4fd
ce7d7a8a1ef5662a8ed3ddeee4e13f26843270e9
6472 F20101112_AABYLC campbell_e_Page_102thm.jpg
fd204cd6cab171320a4b035806406e64
16e61d2db432553aa77cc083183844237edc7981
1825 F20101112_AABWRQ campbell_e_Page_219.txt
14390c3735775dbfd722b42d15afc94c
a3b7ad5c2f91ce728ca894c35a47b7c705954e36
F20101112_AABXOK campbell_e_Page_008.tif
5348cff6b1090eaaa512379268d1fbc5
1f28b4511c6fb0c3315cc34f34bf6f2a88975608
15339 F20101112_AABYLD campbell_e_Page_055.QC.jpg
aebe912ba413490f6960fbb91841dc2e
79ef835047d29d7fc14dd3dbd0d058b9bd585b48
F20101112_AABWRR campbell_e_Page_087.tif
b1934360a20759af98e9f5bdca598afb
7b96dba936c0a8ce2a8206b433782ae7f741b8ce
F20101112_AABXOL campbell_e_Page_009.tif
b5eb1feac561599b3911ce54229237a1
08fd60418345aa71389cfcc4a70cf349da887795
6302 F20101112_AABYLE campbell_e_Page_005thm.jpg
1c4f809407f53f6658d78a8429cd99f7
e4abb335486c207f84b4bbbed1a9245139b9cb9f
1473 F20101112_AABXBA campbell_e_Page_081.txt
86d227ac9d420e03fcfed2edfdb3f649
a7934a6557708d03e79f7e65faaee094d806c519
3861 F20101112_AABWRS campbell_e_Page_059thm.jpg
50e9c7031af3ec5c67a52a84a10f498f
3cd16e92b9b16dbfc2d4e1ce0826be38d1c96e2d
F20101112_AABXOM campbell_e_Page_010.tif
0b781ffdf532d4340d36fc7b5b9b71c4
485ccbb32e4fe588278032d24cf52e5064bcf101
5357 F20101112_AABYLF campbell_e_Page_208thm.jpg
9da272838595dda308455c1480933da9
4d87402c3fe06b339a49a63753e8d99ad983d605
70024 F20101112_AABXBB campbell_e_Page_041.jp2
2b66957617d53738261398169dbfd9ee
78b83bd6a08ba9a46a80cbb7f5388c4f95312723
15919 F20101112_AABWRT campbell_e_Page_138.QC.jpg
ad92008d915b8886512ba0f2a18a860d
0a081aec107fea67592401d5f4de9ad75640eaf8
F20101112_AABXON campbell_e_Page_012.tif
e32995db09c04ab8c5a92384eceaa060
04c0a55620c0e8f4a212ce675b5964ecd999d706
19758 F20101112_AABYLG campbell_e_Page_027.QC.jpg
8c768511f1a307e2a19d6bb55c290d56
c0a379faed14488ce278a95e8a91d4b0d0b2063c
668 F20101112_AABXBC campbell_e_Page_094.txt
dcb5aa11c6361c9e96ef9449b49595e5
d3555c5fec66e7cd0e3d91c9e1aff64323545d69
17581 F20101112_AABWRU campbell_e_Page_136.QC.jpg
9d6c76a8bd7fc5529e7194b50e46b956
9e314e9fe5f1d42a034bd8fbf2f96a971c3ce704
F20101112_AABXOO campbell_e_Page_013.tif
59aedab7a15d447238efc53a2fcf0245
6a0bb854830ebaa8cc0d9b529d8c70bd22ef104f
13029 F20101112_AABYLH campbell_e_Page_129.QC.jpg
81576e0ec854dfa12e39f57f6a7f1b23
2386bd67b5599a5e39a15ba1d2b3d5b2f9b753e9
40091 F20101112_AABXBD campbell_e_Page_146.pro
391cbefa4847779ec16c1481562a3214
5320b655ba9b48bfffbd5010821d028a603e484d
F20101112_AABWRV campbell_e_Page_079.tif
c2dece3a506c1cb2352c76c60bece14a
aceab5ab1af09450fbd3c768d7426b054a6d0b7b
25265604 F20101112_AABXOP campbell_e_Page_014.tif
71b1303c8cb8b0c2a1cdc876596696c4
57da6ad5bedcb9e89fd5ff22f3e286267ec245c6
4952 F20101112_AABYLI campbell_e_Page_006thm.jpg
ce55f500f2016acdb7786219882c777d
f7a1f9244383cba98d7d93ac12ff079aaf2bcf23
5371 F20101112_AABXBE campbell_e_Page_132thm.jpg
9357fdd88e07565e7fb80c6b29014f09
53ec9e11cccc569662f1a2971eb2e96973991b9a
77730 F20101112_AABWRW campbell_e_Page_156.jp2
98c5bf03b83899e526a0400c3c9c8eee
c76ae65b2594d692a4189669b607b6faa3b2b3b8
F20101112_AABXOQ campbell_e_Page_016.tif
1b50bc2a24b0f4ef22db426b3052971d
66a6ab39647c141b6c2c3ff29a01b756a9206051
7207 F20101112_AABYLJ campbell_e_Page_069thm.jpg
0967b82d39e2b0afb0b13bb2c63e77c7
b2d19d06e6dc37aa9fdc749af6f63f0e218157c3
5126 F20101112_AABXBF campbell_e_Page_149thm.jpg
14190f7251936ee8aa1527ddcb812537
5d9350f325886d2b2a9f03d67b4458cfa870a8b3
13622 F20101112_AABWRX campbell_e_Page_184.QC.jpg
ccd4cda1dd94bf5e54030dd7dfad9bb8
429ac8bb4ef76c927a2fda6eefd01823f33f8815
F20101112_AABXOR campbell_e_Page_018.tif
bd37d131d9816530a385a3f936ca2b91
95485f42a96c92ba33ee3900dd45dd38364b5863
4746 F20101112_AABYLK campbell_e_Page_197thm.jpg
0b81fec9191fe5b6f891d63d9f569e8b
dbd5873b07bf956c9ff624ca431bc6246cb69ea5
1051976 F20101112_AABXBG campbell_e_Page_004.jp2
f0241424e5bfbc6d8b1172995257fb34
400f54f60a9b4c5f10818ddfca7a22cedc691233
9326 F20101112_AABWRY campbell_e_Page_013.QC.jpg
ed6787949e10beaa9af0407a5856349e
085081dea1f1f977368e5c479ce7088bb640947d
340474 F20101112_AABYLL UFE0020140_00001.xml FULL
2f9bcc4bfe4e8e773fe7480c16c22d34
2b8d8c0f9b3491c1173044321e7214c4ff93e2a1
34947 F20101112_AABXBH campbell_e_Page_092.pro
ffecc4f309d456d3a407300fba2c527b
07c357cabcc4d1931977a13718ef24930743782a
6003 F20101112_AABWRZ campbell_e_Page_046thm.jpg
6579659c43488f46eeef2881b11bd950
0deae451061abae6fd83538db88a9f072232f9fa
1054428 F20101112_AABXOS campbell_e_Page_019.tif
0964d98e91e7dd354dd48487112c8734
b31b3d750ed8e288bdcc75f703ca257265e83ca6
7513 F20101112_AABYLM campbell_e_Page_001.QC.jpg
e1ef6345ac58eb9db89fbde68f323b76
23fe7d1b60bfa62a354571985b6dd0e259a87ced
35000 F20101112_AABXBI campbell_e_Page_216.pro
6468252a2492de3e748a3a90415fd65b
cbf8fcfefd3b3c6ffdaf281e457a922e66c8a85d
F20101112_AABXOT campbell_e_Page_020.tif
06d2707d70fa2c5988b926e21dbb1bd2
75005db779f1e0e9eb07c4c423e69c398c0e63a0
16808 F20101112_AABYLN campbell_e_Page_003.QC.jpg
0d827e8cad507565169b9c167c42afe2
c413b13ed689c52d319aeee53e0d3dd51ff497e4
16929 F20101112_AABXBJ campbell_e_Page_058.QC.jpg
ffd1194b464b6ef8bc00b14a6641ed62
4b26f708f09dc030cbed0f4f14882d7884649c3d
F20101112_AABXOU campbell_e_Page_021.tif
3945161aacf64a51f728e9c1a94a2b06
20122335f799ac0087bb7676cd2e4ef93ad61d8d
4696 F20101112_AABYLO campbell_e_Page_003thm.jpg
de83c35cfd7069a1d0f019e5b90ae34b
7ba674bf24a0b1478fc57194730f2df7802aecc6
F20101112_AABXBK campbell_e_Page_030.tif
d92e2878f36cba16e715780f31801bdb
2d0274a425d705ae99a525c9e5e55ced5360a487
F20101112_AABXOV campbell_e_Page_022.tif
9c9ff02a870b8bb8cb847aef0f426701
67a8aeb33ae2938064cf67bf085f68347d3956af
5303 F20101112_AABYLP campbell_e_Page_004thm.jpg
6ffdb86ba9668bc60261075bc67deea3
65ae7df2b764a14fe9d43774e7e62b8e52d0e4cb
2074 F20101112_AABXBL campbell_e_Page_021.txt
893d6fee3c1afa92a29faf9383d5c2a0
948a20c75d5550c7ad95048e8756d369d48d1d84
F20101112_AABXOW campbell_e_Page_024.tif
6226f7a6399d05af9401fde93aaf1a8b
9a40f8ef60c1c65f756545715443152f8138edd7
21924 F20101112_AABYLQ campbell_e_Page_010.QC.jpg
90930efc08184c063af726616691ba74
a6088f43025fad4859a5b5a00df2fa2971b541b7
24713 F20101112_AABXBM campbell_e_Page_067.QC.jpg
622b3efffa6539c626277433e2999bb1
7f6178275343fcb51e3166b50f699ae52ee08c77
F20101112_AABXOX campbell_e_Page_025.tif
395bd1e8a3a30639ad8d30764b907c06
b3348695c1f85d5e66b19d104614d291981cc208
13207 F20101112_AABYLR campbell_e_Page_014.QC.jpg
ee1953f66a707e818e1698e4a3cbc6ee
f3a3d72c044fc414fe6cb21d7fc72b35b577e92b
46667 F20101112_AABXBN campbell_e_Page_034.jp2
45b12962ddb1a0b181b9a1dbe41bfdc3
9aecc1533fa2c714c3c5e1e5e4244ee708633c25
F20101112_AABXOY campbell_e_Page_026.tif
bff81f967b982766498cf829465cd970
e802cb302c3c3524f5bdf28eacf510e2a0303f0b
20174 F20101112_AABYLS campbell_e_Page_016.QC.jpg
67660a210c97b534236f5f3d21bcb3b2
89451061be674bec5f787b0fded78e8ff9b4a175
F20101112_AABXBO campbell_e_Page_037.tif
f5a82b426e4c4524625a053b68ba79c2
1dfa24da621710f40702ebbf67d0ba5a4aa06adb
F20101112_AABXOZ campbell_e_Page_027.tif
2468d3103b943b7ec69850761c95c810
dc2f696518e3619012fda1ad9140282f2c59106d
6557 F20101112_AABYLT campbell_e_Page_016thm.jpg
554578adb53342422b9f19205d35e2f9
d1c4e402e4cd97854f6c59a9b614083ad2506b2b
2366 F20101112_AABXBP campbell_e_Page_150.txt
37ffee212d26a86c275e07375368d7a1
b710905abee6363cc700553a3b9767320126f66c
7611 F20101112_AABYLU campbell_e_Page_017thm.jpg
1594ba2c31d459e5bba78e14cbc6eebd
3f044ed61e10bbb8cbc5b3876bbce7daac5cf446
1533 F20101112_AABWXA campbell_e_Page_062.txt
749acf66673617b93385f3cfd37bc231
6062ebc7224e10f2201f35d31edb3a840aa37c0b
2431 F20101112_AABYLV campbell_e_Page_018thm.jpg
3b4cc45e17f0e2217cc31817860e273a
f99e48605bd6d3e6dc17ab70c1733ac25e66e890
38167 F20101112_AABWXB campbell_e_Page_138.pro
5ba5dc69b957683f45ee87753becde61
d3b51306c9450710b90b6b329a9490a67862fa72
14349 F20101112_AABXBQ campbell_e_Page_085.QC.jpg
882ef0d5a24e68aa778b803e2e69e429
42935c0ec48ba9c3eb195d525820f7166e8c1260
25378 F20101112_AABYLW campbell_e_Page_020.QC.jpg
65e504a510ffb6846636dec3909dd472
53b81c028c68289efedc81fb3b508a5dd57202da
2225 F20101112_AABWXC campbell_e_Page_170.txt
e71b44ac98daa3ee4f47f08071fea446
b40edec64c68be3294783eb424ef49a38d074f03
2283 F20101112_AABXBR campbell_e_Page_001thm.jpg
9eeb0e0c9a9a9e07bbea22bc35ff2b9f
90f2c9770e7a9d3176c5f8fa7478c217da2261a3
7005 F20101112_AABYLX campbell_e_Page_020thm.jpg
0a2222aacfdf64ed6af8b28177d2f562
26128801fa63be3f3c43e69e70337dcff017ee01
45860 F20101112_AABWXD campbell_e_Page_010.pro
7e90308f357029ca95b5ad8d34651276
df105bb916c4abbd16263d57151d753db1571ee2
17327 F20101112_AABXBS campbell_e_Page_131.jpg
6fb945584ea08de10be768db3b9324fa
bd6ac25569898499f6175d8b5ed1b13c530d68c8
24983 F20101112_AABYLY campbell_e_Page_022.QC.jpg
e640843d61660af0a9386b5a9d8dd9d7
7d22700f0e89dc243b38015163db94d27573138e
25903 F20101112_AABWXE campbell_e_Page_065.QC.jpg
62d6c16a9d36d1451481b9a9fcae21cb
3892b005709a5d980ac9a5d5f621ea60d285b076
40703 F20101112_AABXBT campbell_e_Page_032.pro
5a099f40a290665fd7e94dc0bf5c8802
6d3817d08124cb5ebbe9490f0c2842382a860e80
21353 F20101112_AABWXF campbell_e_Page_119.jp2
09581d4de90c9dedf272a95cd6a612ad
8202b34515f46d66dd44a597e9b360f04467e24a
12598 F20101112_AABXBU campbell_e_Page_200.QC.jpg
7e704ac6e0e1b9aead9d6e8459f27fc5
c96472cef65b6ae66e963b8e6ae1afc212568279
6032 F20101112_AABYLZ campbell_e_Page_024thm.jpg
ff5f3c161354044fba852b55b706413b
317d66667d5b44b538f3e19aeb1f1746d8cea4f4
62802 F20101112_AABWXG campbell_e_Page_089.jp2
9276623db2d5583f4b681b670d3540a4
3a99df349ad57f90337a6b2ebe9c5525c5421aad
73148 F20101112_AABXBV campbell_e_Page_220.jp2
477d18481089874ecdd054fe4d1e6f5d
a9b8f7b04e9afb19713060dc23f8fc0a6b95888b
2600 F20101112_AABXBW campbell_e_Page_185.txt
2677521847b140053fdef4e782a3d404
812e1a94b7b5a818a084b13e705c44775bb56211
19503 F20101112_AABXUA campbell_e_Page_023.pro
1b5b2b192165c54a49cb55f7d048998b
9bf3ea71f7176013e184fe1ac5ebe07858843a14
F20101112_AABWXH campbell_e_Page_132.tif
0efdf6581dc6431feeca16190b04cd22
a614ea3100e2f6846c5b57f4c4d0a5e5c85ab0a1
F20101112_AABXBX campbell_e_Page_193.tif
b307b8040c8ef566b058c5fa45b95b35
0b7c1ace91a575bdde80df6c4c3da0646dac4a23
57391 F20101112_AABXUB campbell_e_Page_024.pro
37aa4cff86c83b1c5b30d85f368e7254
c9f5a509c57b9df9c355a5aac86389c00b204c8e
58318 F20101112_AABWXI campbell_e_Page_074.pro
d11ed5ff228e93f6c1c6cc1a18cbb179
f710c9c00f1fb6c98704ef789e59b9ea9750c985
F20101112_AABXBY campbell_e_Page_006.tif
c268b10e43dcdedbd13658aa2b7e51a7
8f82dff3d8ba91da664f757350270d43fe3cad3a
49681 F20101112_AABXUC campbell_e_Page_025.pro
9489868cbdd184acd65a06ef2c56c8cf
ef18907b3b83ebefb0053d41f3481d18af6a3421
F20101112_AABWXJ campbell_e_Page_224.tif
a61fbba0b378fb09028c35f634d4ff4f
2022053260a1a1c44101d446aa4208237fbdd65e
25471 F20101112_AABXBZ campbell_e_Page_064.QC.jpg
08c1af16195fe26d84f75862b1d6af12
9a457b34c0a769c780f9cb7cc1d6c62e0a4e29dc
35144 F20101112_AABWXK campbell_e_Page_163.pro
9b93aa12fa5e5e75f0d05e8f9600fc75
ce757080f06d6d53a6edbc0dc5064edbe907a324
37349 F20101112_AABXUD campbell_e_Page_026.pro
f759069eb795935f84774837d5d54615
7957a463e8ca5cc7e24c6f20a42ec5c04f719285
98408 F20101112_AABWKA campbell_e_Page_201.jp2
d086a0a415d283bf528f5f3ded7aa08e
73fe57c59f9c3fc105efca7f9baff533b2ab4037
54953 F20101112_AABWXL campbell_e_Page_169.jpg
3aba24e7270a0ea8f192887a9c6b0ec4
7fffdb1ff797e5b9417c44f1441af06f89ee0570
41029 F20101112_AABXUE campbell_e_Page_027.pro
fda72718010b32625c0fdca64db2170d
164856cbc72f456819fd045d5d767333dab3ed2e
84981 F20101112_AABWKB campbell_e_Page_118.jp2
5afff813d3b5d75d873f364873285b54
613a546558d0d082248e64aa27c273570aef1d1b
112533 F20101112_AABWXM campbell_e_Page_005.pro
af7baf74f0085d02c4226f42ffdcecff
ff6bf745dc365da6322cdebe1c989dfa96f96d08
49082 F20101112_AABXUF campbell_e_Page_029.pro
f9d8a88337316cbc89e3e3c0ded40d9e
44a1a6c8a5ba0965d97933ed0dcbdeb68c63d280
5055 F20101112_AABWKC campbell_e_Page_138thm.jpg
550b72675d77422d4c6d379346758430
bcf677c1df47afa4e72473d64440c18bf9c2370a
14542 F20101112_AABWXN campbell_e_Page_181.pro
c22acfe5c25bbf7e1d937aecc96b322f
9028dc76fc51249df7d6fcbfee0607f168dba788
56262 F20101112_AABXUG campbell_e_Page_030.pro
26dd497a3bbeaab629b54f682fd7b523
6671e6b244a1041b9ca11cc0028a9070bed2c2cf
7118 F20101112_AABYRA campbell_e_Page_222thm.jpg
fcbe6db49a5e9190b7cb885aaf005895
7bf10a26278e9f477f746a9bf34bcda0a88ad1d8
73559 F20101112_AABWKD campbell_e_Page_106.jp2
eee25b0a92368733f3df8bb109f14e49
820fcd04a8ba3861652c3d5e29ff8ca33476d6d4
2160 F20101112_AABWXO campbell_e_Page_002.pro
a197135ff60eb37bc2a47ca2a9ac4ad4
5ac5589d52fc44066d69da53e22bf4be6d9f83cc
45930 F20101112_AABXUH campbell_e_Page_031.pro
35fb770a28e6ae8148aef2202aa65fcb
b5af7e39291d8cb4f66d0ef3d957b1da19fc0789
7480 F20101112_AABYRB campbell_e_Page_224thm.jpg
1ca7642ce9938794b909890d5548e1ee
7c2c5a386646a80c3932c2ca02f70b258349c3e0
42893 F20101112_AABWKE campbell_e_Page_118.pro
891473285e6c459e41af3d915d16799c
4535211f9e35d104f27535fae7318029c374c267
2130 F20101112_AABWXP campbell_e_Page_022.txt
db916915b25cc63df31dd75cf1d46b58
1b88ee4b63844be83e37e209890e35e4ba2f0d25
1484 F20101112_AABXUI campbell_e_Page_033.pro
f4a9086da0d684da80046731f9dbc67a
de53df6f565042f2cca3138e47e3d74d515e44da
37094 F20101112_AABWKF campbell_e_Page_168.pro
bed1cad3151aa8cd86e256f623d0d105
57425fc0c88fe7de4c912bc901639ebbf5974ef6
51763 F20101112_AABWXQ campbell_e_Page_212.jpg
e59e5620e71f8da12f6b39b0ee89de66
8d8d93a3bc3ce7505d5b3c7532075868faef82c3
20421 F20101112_AABXUJ campbell_e_Page_034.pro
08931dee59cd901323d1bd10db84486c
382df7c3e984cbc0c77d30c36e49071e30467098
F20101112_AABWKG campbell_e_Page_129.tif
0f797e166432a817448dce676f81e913
92b69e339dd824878c081f79b828de2a2c8e5d8f
1684 F20101112_AABWXR campbell_e_Page_203.txt
b38aeee8fd7a9970e84e01978902564a
e9d738d3dfae5775d5e31d39c32ab42d293c73ac
19390 F20101112_AABXUK campbell_e_Page_035.pro
d870810046497e1e40a53e29a4e1e9df
ba564e0c15265046c0875f0d7f8dded26e16be89
56737 F20101112_AABWKH campbell_e_Page_026.jpg
f695f658f4c6cd5758a582a446d8042c
a026544ccdc97d060df35182202f47a09fbb1600
54462 F20101112_AABXHA campbell_e_Page_160.jpg
5c9510cc03636f8444a1bd69ba29efae
274bfb69bd6aae938d25defc7a879c79f269140c
42244 F20101112_AABWXS campbell_e_Page_089.jpg
d95f4b94d4db8da852146033fd60a8ce
b36af6f470d2fc7c8891ca3bd16101ca10640c8a
51721 F20101112_AABXUL campbell_e_Page_036.pro
0b9535c6f043fea346837a63d4ea01e8
c54204f751e6953b53533bfbf3bc0511741d79d3
22491 F20101112_AABWKI campbell_e_Page_145.QC.jpg
db6d77654dbda4d979eea76da08e5867
bc013cbdd472113ef72d8e130c7662d8ebda37d4
20741 F20101112_AABXHB campbell_e_Page_161.jpg
9bc0190930500b9bf990cc4b4d60042d
9ba4d0f74b68c008e8dc5cd570ec3690c834f58f
51335 F20101112_AABWXT campbell_e_Page_045.jpg
8157959e61ba34baaa49007389c3f026
65ed2597e4e854becb2aafdc3a693d0164fc0a85
20397 F20101112_AABXUM campbell_e_Page_037.pro
13de2f22cd938593daf977dbf7341bc0
3e968b8144c9f91d6d4d8fc97589536ece1716dc
4818 F20101112_AABWKJ campbell_e_Page_180thm.jpg
bf95018694dceba4fe87b1f5f9513bde
20b2a63d837492213a2d2403031e96700c8e2dcd
63817 F20101112_AABXHC campbell_e_Page_162.jpg
9bd84f7b9c5b0ae992612e19de31428c
834481f943c6c774bb8ecb5d4e227dfe82915252
2201 F20101112_AABWXU campbell_e_Page_116.txt
1dd89421ac4dfe194dea10146bee28b5
68bdacd8ca371e7ece4f96580f99632747ffc59c
57260 F20101112_AABXUN campbell_e_Page_038.pro
96ab5fbcaaf6f1616292d33625d5c4b4
305f6129166c5e5dd0a389e37359fa7744824db1
F20101112_AABWKK campbell_e_Page_036.tif
e2e2cc310a05750fd51540f562ac18d6
144851eab0f33c3ee5fa6c5d08053ecb2ae28976
49358 F20101112_AABXHD campbell_e_Page_163.jpg
89a090dc2862a4edf0d51f4bc4628599
2901e91e536e7dc83963af5bc15ee11284192f23
50669 F20101112_AABWXV campbell_e_Page_149.jpg
220c5f282b1e725666f01e1e8e661327
7475b81350cfc76253dff4688f5668ed31fa3534
32913 F20101112_AABXUO campbell_e_Page_039.pro
fa06a809e38601a1430db4b172407b1f
594a484ac82c667aaa77155bdfb1be37c5113bd8
F20101112_AABWKL campbell_e_Page_123.tif
297ee2fb3f0fdb6a1ef8c93fc8443b4e
533239538984335459ab3a8ec07798796cdc5be5
43830 F20101112_AABXHE campbell_e_Page_164.jpg
e923c5574f86d6d431740db416e07caf
04f43a83910c480e7f513a8b0469856a97759481
4916 F20101112_AABWXW campbell_e_Page_209thm.jpg
831bcbcd6b307015f90adfa51d0e0dd6
87e65b52a9ffb398ecdb48bc780def82fb4d0972
36747 F20101112_AABXUP campbell_e_Page_040.pro
6ef0f6043f490fbc1dd9770e1e844485
fc55ae25a2f309025a05d6e9531f107e44fc3644
6995 F20101112_AABWKM campbell_e_Page_066thm.jpg
ce18ddb01f8ef632238654d4456a5d3a
27a97c746ad3f158ed1e847716b9a4c3fb2f3c88
71225 F20101112_AABXHF campbell_e_Page_165.jpg
3fd1eb9191aa66e90a22458d7563418e
d35a940cd4c6243144c233e86977d0c39029fee3
41898 F20101112_AABWXX campbell_e_Page_128.jpg
65c78cfe2aa8676e40dc599cb4a6959c
ad2ed8afb41007897fd86b8a3e6fb53a3f483213
36108 F20101112_AABXUQ campbell_e_Page_041.pro
e8d480373e7cdcaebba187dbff304b40
e5f2db47673049aa3fffd7cd81df8def192c8ff9
37642 F20101112_AABWKN campbell_e_Page_218.pro
28fc6f90176aecafeae26c38a43aef75
44dc9552fbd354dd2341fbe4a04d01d9d5b8a97e
55719 F20101112_AABXHG campbell_e_Page_166.jpg
600dfe83ed948471a436ceb58bb87a48
03e31fbb5dec30f77d226d70423099f45f6f6b0c
37273 F20101112_AABWXY campbell_e_Page_197.pro
b35f4eb7dcf04547ae8f68576fb87cfa
2b63f53106abb0f75767314e00698f36b522a137
14496 F20101112_AABXUR campbell_e_Page_042.pro
52080ffaef6689f1d1ce811532ff5642
8fa94381db6b158986048e03bfa55e1120ec7a50
6427 F20101112_AABWKO campbell_e_Page_028thm.jpg
ebe552ec798a7edc15ede265bd51e3f7
3acc9a96d0ae391a1e8491d385487bb482b1ef67
29243 F20101112_AABXHH campbell_e_Page_171.jpg
3ab83c10182046a2adf721b0885ce368
911f224f8023057e41d5dfebacf957b8055e9768
10701 F20101112_AABWXZ campbell_e_Page_049.QC.jpg
f31e5c4b1903b27c4f9e189f064bb472
35e719fce15bb135e70653a705d3251eee396270
1984 F20101112_AABYEA campbell_e_Page_178.txt
3ac3c290fd357b036db36adac254db3c
e78cfe4c74202c4cd1ec53a98dd63c806efeebfe
11008 F20101112_AABXUS campbell_e_Page_044.pro
fa1a487eb02031e8f42795a2ab7b15ba
bbf35345fcc0ec12b5b327b44c2e40b6f42d2757
18641 F20101112_AABWKP campbell_e_Page_040.QC.jpg
1426b7b272e2563d3a844a527b61de8e
a8bd185854a78c380c835e29f28c93fd81fc3aaf
50770 F20101112_AABXHI campbell_e_Page_173.jpg
aa8f75bc431567831eca8f1528de4ebc
a09ecc07fc44506ace200b0fb23e441f0db9cc3e
1964 F20101112_AABYEB campbell_e_Page_179.txt
2a6f0d7c2431fff4b44b10c1b8458861
5cab8a3fb6a3682a4b8a53744be56d4727ff7a96
60561 F20101112_AABXUT campbell_e_Page_045.pro
b81e3e8e3cb0c2bbab3c69315ccfd0cd
bfeb6f9c920fa429be51e3e26a5a57f7342ff02e
32777 F20101112_AABWKQ campbell_e_Page_056.pro
147027aee5a4a4e5c5ac734453ae5d9c
77e6478385d6a8acb3692dce97ee8628cbdc8491
47596 F20101112_AABXHJ campbell_e_Page_174.jpg
9659e6bf6679e35f00d071b013d5c901
466ac8513bd487acfdea5ceb3980e8bd11cb4236
2599 F20101112_AABYEC campbell_e_Page_180.txt
246e6fc64a9dcb15622b1a643e806a89
f81162707e3f2c7c6a35ef401c61cf6fc6dcda17
35128 F20101112_AABXUU campbell_e_Page_046.pro
9435d572040ee0c22c4829a573284e17
c5b5834957dfb3bdc6f6b8a45d577f21be1ecbf2
12386 F20101112_AABWKR campbell_e_Page_059.QC.jpg
94da546759d4cc7df84b6c35f9526829
568a1231a2ac3ac3657d2bcdb22261c8ed03868a
45926 F20101112_AABXHK campbell_e_Page_177.jpg
db9790375020dfe9b6589a97a528d2c1
977f36e0b57ed523788d4928147674b384aa155e
2516 F20101112_AABYED campbell_e_Page_182.txt
d4e2b2c271200fb3e1a31c2f517fed57
bca8dc66d102effb4fae54a0fadd07d59163eccd
12997 F20101112_AABXUV campbell_e_Page_047.pro
7261ffa30c5a1e343ed351ee04365e19
dc776416a8b70b9d3bd1879c3f24698387166e53
83255 F20101112_AABWKS campbell_e_Page_026.jp2
c8e11e6970da91eac9b9782089816a85
f78bee3279940cf23eed9b6650296839e5297928
51259 F20101112_AABXHL campbell_e_Page_178.jpg
9ee851619d2e019ce6689651993f1ef3
6382fcec14badd5eb7859ba6adffda6f935928e7
1866 F20101112_AABYEE campbell_e_Page_183.txt
15134815900bacd10b2f6eb4517a224c
209b013ac293303b6cf4c39742fdf5b4735437f9
34990 F20101112_AABXUW campbell_e_Page_050.pro
40fb06790385e0884f9bffa2e6045903
b2a2b844005725d5fe70cfc8a4b0d58932bd2889
F20101112_AABWKT campbell_e_Page_131.tif
69ad9eb9215890f69a8e95f0a71cca39
90987d78c7650a65d6e9d8e7bbf847d67305f590
55445 F20101112_AABXHM campbell_e_Page_179.jpg
5633b2ca1d3894cc2d58aeda5308f3cd
68c4c85ad12acd0e7bb1dce369565b746fc750f8
1630 F20101112_AABYEF campbell_e_Page_184.txt
ffd6211c7f2f5a89d7015ef83c70047d
e243e1d7a0da23a4c600d04abd7c2e243fab90a8
10876 F20101112_AABXUX campbell_e_Page_051.pro
ffa8bdfa4fce41633a4b3cca2c5135ac
b2b4428be4def2decbcf376eacd07b3e6e7a56d6
7073 F20101112_AABWKU campbell_e_Page_064thm.jpg
ae630ce48c1a51cce7aa6d83ff9b0d42
86ae8bbc8910fb24ff2fef88ab488055e790933c
26426 F20101112_AABXHN campbell_e_Page_181.jpg
a88e5803f77eb6148ce49d83249c7fe7
f87d32974ae91c1e8f2b4f5b8aa0a5b4e4490cb3
2158 F20101112_AABYEG campbell_e_Page_186.txt
4349630a18ddc5dcf1711163b1a8e791
c5aa1b34aa86018ed0fdd256e0f97b0e474b8b84
39842 F20101112_AABXUY campbell_e_Page_053.pro
2387e3be74e0d0d8cbe6f9431fee3e03
e458abba390034af2eeca96c1e906ad80d98f111
F20101112_AABWKV campbell_e_Page_155.tif
3babbeaddf1b1217ac4c4578203d6493
a92b6cd91291f79bbe6dcad5b2b5c43e66d52e12
63963 F20101112_AABXHO campbell_e_Page_182.jpg
764b648cccc84fd2b944334bfb8fec26
23da2dcd1bba441162b5c20528986e9f399d0430
2205 F20101112_AABYEH campbell_e_Page_187.txt
a6bdf912e359a801269fad53370a0da6
68b85c254369f6262929c4a654fa954ab09740af
40407 F20101112_AABXUZ campbell_e_Page_054.pro
5bc2901f7e31306794f3ac85b636a64f
db53e33a94e02c817269d6d8561deab509b9f892
45376 F20101112_AABWKW campbell_e_Page_137.jpg
9d208ebd6b5e1a62ad37e6f454c9536a
227ede62f914d7e840c3b4233e99828dbc504dde
51554 F20101112_AABXHP campbell_e_Page_183.jpg
6e7f6f65f5264b08c115d11c7cb7b212
879062fcfcbb41f740a900d9b87493f63a39235a
1953 F20101112_AABYEI campbell_e_Page_188.txt
02036673da8fb6ebb23ce042eec115e4
c78c997d8b546eafd032096edc10fe3d04243b57
6319 F20101112_AABWKX campbell_e_Page_185thm.jpg
8b249d9333659b831520a64ed9de987e
8a1b69a43badaa29072c107cf7decf738a24a625
43879 F20101112_AABXHQ campbell_e_Page_184.jpg
0cc1e737e3b570df76fbb3be20e15a41
8796c559ad3c5d2ac4f1c9024c377cf34f03f469
1663 F20101112_AABYEJ campbell_e_Page_189.txt
13d55b4240b8d1a422315f4ae4089dc4
e0c15211fe84f0e95a2d3eb1c45cce5cf955848c
6115 F20101112_AABWKY campbell_e_Page_010thm.jpg
d03cdcfab3b55eef2ccf86a246a3f498
b9f46bebab7cdbfe793f9646a1181bda38605839
72709 F20101112_AABXHR campbell_e_Page_185.jpg
b3d9c24d524266dc91de1184a74c1d8e
21ab6e98b1fb8d1bc88767e29dfdbf88c4ac36d4
1508 F20101112_AABYEK campbell_e_Page_191.txt
879680cb34751b88141b735755a6e7a4
d4effd1ef0e35c6d05d8ccbee25f7db4f1f133e8
77964 F20101112_AABWKZ campbell_e_Page_007.jpg
4598a5c567287c1a4bb05da4a78a198d
3d1dbd513ce89b3dd92397afee9fca651870372c
53635 F20101112_AABXHS campbell_e_Page_187.jpg
f9fb5f8d1153690d4a2fa082a3d6fd1a
eec046cff3633ba2cd579f97ad0e84d6fcb86f33
2502 F20101112_AABYEL campbell_e_Page_192.txt
60ca383d8cd9ac5b0399c9e09295d2cf
a1ed8a903daa58b8f5ff57ccfe27d09016b0556d
56054 F20101112_AABXHT campbell_e_Page_190.jpg
2a44fccf69f6afbb6f8962000af5b381
bd8c617de78564b4cfb0515833b73f52ce74bc56
1946 F20101112_AABYEM campbell_e_Page_193.txt
c62d21b2dc74fe6ada818d39fe700a48
ddbdf5ec1c28d48a44e34420bbc2db9f6eed88c4
40370 F20101112_AABXHU campbell_e_Page_191.jpg
73d173362b2cab4f5bfb7353f13e99e2
6695eb5d00406deae19a5a75f51d92e00549f4c5
2146 F20101112_AABYEN campbell_e_Page_194.txt
76ec41f151a3151f1b4a34e4729db88f
952b168e849832be01158c1f6fef58798e72f3dc
61046 F20101112_AABXHV campbell_e_Page_192.jpg
fc12e3936e7a5dce49d0a85b44ace51d
bf3ca1eefd98c4705b07d0fb9e7e7cccf87453aa
3097 F20101112_AABYEO campbell_e_Page_195.txt
09d1826d6152f2e743078f3c1d7a952b
adb5f84b8e306920c5a9be7d6f2dcce31479f9a0
1833 F20101112_AABYEP campbell_e_Page_196.txt
8e2aa17a3a074a4e3eb0708d3e44741b
05aeda9a4a3b2baf00beb3d79107d2bbdb53662d
50105 F20101112_AABXHW campbell_e_Page_193.jpg
54f1181c5a0bedcff56db49f64e88ccd
4179328d4880fc41010ae6ace8be24763ec75da4
1683 F20101112_AABYEQ campbell_e_Page_200.txt
368bc18ca519269a660ba646ac972b2f
9e8be72de1463e9c0f77fad07ef9db1c7d8bd046
54257 F20101112_AABXHX campbell_e_Page_194.jpg
1968b4b65144f70bc5e0f2685d85f62a
9686b01fd7cdc05b68361694f8c26b9c1d0c3cf9
2895 F20101112_AABYER campbell_e_Page_201.txt
5af79c5585e6d03bdbf9e21f236cb744
e2a1cdeeda0e1dbbbd0d9d38dc74860738b8f8d2
78578 F20101112_AABXHY campbell_e_Page_195.jpg
26ebb0ef76f7617832783292d442862f
056b0557b605c91bd4fd437e7a50d078a44632aa
49112 F20101112_AABXHZ campbell_e_Page_196.jpg
06afaa02f1114ed1315d9823fa770bd9
607eefe5f3aa9f4654ee0c39ad97a89e9c787273
1924 F20101112_AABYES campbell_e_Page_202.txt
98062815c74a15f4dead1a66356432ac
f283e99260ad523bbc6cc4d07fe65e8f0f90982c
2496 F20101112_AABYET campbell_e_Page_205.txt
603f84f4182166490166d98591649e6d
286079132556c1ddced658a8edb71c0b46b05f97
2200 F20101112_AABYEU campbell_e_Page_206.txt
3efa7b95446a36cd74810c39f0ec37c3
c01cd370b14131e1805acd13f3cdcef508383be0
15198 F20101112_AABWQA campbell_e_Page_013.pro
37f1cd309ed733b68d9ac52e6c3b9a14
c4f4945eaba529bd7fbe5eea0c0394ab0cad7e0a
2242 F20101112_AABYEV campbell_e_Page_209.txt
a7143dfece0bf9307c1210a9180f2d32
5a97d278cbba7775bb568bda8749c6087b3bc852
83141 F20101112_AABWQB campbell_e_Page_209.jp2
ee37e6258db8297b69f11315c38e8239
748b60d1dc1425fd757eafe48a3d72553f205c81
490 F20101112_AABYEW campbell_e_Page_210.txt
2214ee33e60e12fed5f1a94e35108944
b557270d95709dc17de69e2b8be7c396bb913801
7347 F20101112_AABWQC campbell_e_Page_072thm.jpg
38d05b177c17103681a202501b749f02
be5967968532f9d5474258a25219d80dc5da0817
2165 F20101112_AABYEX campbell_e_Page_211.txt
34a2dfa39e7553eb93bf9904f625e1e8
5d7b75cc9a2c342165d5e32fefdbdc2662742387
76013 F20101112_AABWQD campbell_e_Page_196.jp2
65a703c05deff87364b5c5302acf730b
332ce2935e08a3b5f93bb0fa155f15441d4b2428
1983 F20101112_AABYEY campbell_e_Page_213.txt
ae22bb9b68b8b07b43d68532c3c41a67
22711198dbabaaffe180e9c6a870b758e3831727
5861 F20101112_AABWQE campbell_e_Page_052thm.jpg
d9e0d25eac4326124ead7b38ab53a590
48e1c37011d51d41487f6df831cd95fe5d1e9975
1566 F20101112_AABYEZ campbell_e_Page_215.txt
093b5d1cd40d2707f263592588250603
7f02b39e11a9d98eb64a41efba4ac0e047af22f8
811 F20101112_AABWQF campbell_e_Page_016.txt
7f282fda62230b5a645f21d425816897
789ca939b39c898456eb20b622f615cc5e4813d7
7309 F20101112_AABWQG campbell_e_Page_074thm.jpg
d133f6355ce46e541c7a00926d4c008d
e2613690fd0b75712fa0cae86d4c24a769a6b851
79655 F20101112_AABXNA campbell_e_Page_186.jp2
cf4fad607a1d3f7d66d547b71765906d
9462b4293ec4396dd2174167c47a443219b9cecf
F20101112_AABWQH campbell_e_Page_221.tif
7ca6399e447eeb0916f67f9dfc84aa5c
4237fdf9eac493487ad42a65eabf513d6327d8a3
79800 F20101112_AABXNB campbell_e_Page_187.jp2
3f7a5a1215dccdad24853236121d4384
cf6275c09dbd2ad2b5497069329beed771beb89a
11849 F20101112_AABWQI campbell_e_Page_034.QC.jpg
7919ee6ac4b64d83e61460e34367dc7b
9c6288592f26fe082ad4d798ef674a3ff1a43f5d
70947 F20101112_AABXNC campbell_e_Page_188.jp2
757e8d7a1d06ada8340656e9950fec66
5909588a24fe71c4d873e1c2c17a4c4ca51cd7c3
F20101112_AABWQJ campbell_e_Page_086.tif
3d655577c4023b7c342fe53e79391092
8006868d886b6eb1d1db0602a3f64a3e4a3d883e
68937 F20101112_AABXND campbell_e_Page_189.jp2
25c16df493d2d0ca9c8632415b9b7fd1
193092c8ee49babb9ca8b34093918c188a41235b
54404 F20101112_AABWQK campbell_e_Page_071.pro
3211a10bce5b14d5184458b568b217f9
2a131782e53fe698e699b203888450b1e11ee1bb
57741 F20101112_AABXNE campbell_e_Page_191.jp2
191e267a8fad4a7a4a38127de553611d
1adf59ef42c0a007478c400beac72a6e5e2acf1b
42241 F20101112_AABWQL campbell_e_Page_063.pro
b193f9858f8509bdeb1d0610c6e1b128
4ac7dd452108a2348afe014ab7084a60511e28bd
90079 F20101112_AABXNF campbell_e_Page_192.jp2
6d775053df17fc303496a601855922f4
fe4c95bbd1b571d6d0a54aceb827c1cf5a1c97a3
117895 F20101112_AABWQM campbell_e_Page_073.jp2
2a5eff595013933f2b4023af4dd7fb80
e293fefb4bc74c3665a14b83368944a818e74cac
75843 F20101112_AABXNG campbell_e_Page_193.jp2
98c68a41a3af93545651b4082ad1990f
02700d3d2fd577d5aed0b605b589a800db0b3ebd
38018 F20101112_AABWQN campbell_e_Page_187.pro
cca7ac89323bcc060c4337d7ce100546
b719d21a37d5a5ba3046a54248b3f1e805c1eda1
113226 F20101112_AABXNH campbell_e_Page_195.jp2
92b837d0c228d295527de9f2d6cb4fc5
655254b67e29c52e71602590e496951bf3a6a41e
25312 F20101112_AABYKA campbell_e_Page_070.QC.jpg
7e3a798e9837a0ae83cf0e58438a4862
3f6d936652af07f8d660a338a869f557016c4213
F20101112_AABWQO campbell_e_Page_194.tif
eca1c617ac618029a32470d503e425c6
882374b69990c233b86f466f9c33eb1fa28325e1
75206 F20101112_AABXNI campbell_e_Page_198.jp2
6182417479aa3c281f28035bc7ecfdf5
bc103ec527565939575024effcc41a01438048d5
14800 F20101112_AABYKB campbell_e_Page_217.QC.jpg
4fcae9cf2d32efb7112018e6d2c5e55f
9c671015295e8dfa9ca2acf60b6643658c1d59cb
2613 F20101112_AABWQP campbell_e_Page_118.txt
f5c52050076ce0d3adb8691708fe8f92
e613bcd36e0053a1ecfbf3c12c098b27a32a3884
84496 F20101112_AABXNJ campbell_e_Page_199.jp2
145674cb1c530e0f3b7d1f2537177987
6c5c337123f442b2822a8c3baec2a546ad6d2aa1
17187 F20101112_AABYKC campbell_e_Page_216.QC.jpg
85ae75663a34f6efba8638576b5c0691
36f55fc700f81504844198e44088905a5e649496
6229 F20101112_AABWQQ campbell_e_Page_054thm.jpg
f768b4e042e6a05c22b8def2306cabe3
56090a63f1f08dbc347e04c4728ba00d7638c6ce
56693 F20101112_AABXNK campbell_e_Page_200.jp2
d81ea2b458c26a51a7de3c532672cb1b
3434d4c96a6984fdf922cff1e8f916463505dd6a
28547 F20101112_AABYKD campbell_e_Page_017.QC.jpg
033b7c3e36c894b142564504290cf3eb
4afe0531467cf859674eb8692dd4b6591b3e3816
65790 F20101112_AABWQR campbell_e_Page_124.jp2
2c0552ea743d3bc70db94b423bb5234c
9db7370f7e8de3b94fa2f96bdc4bed0fa282cc25
74632 F20101112_AABXNL campbell_e_Page_202.jp2
08f65032ece442a6d9a9581754045914
1d28e1a9b79d9192ff8179fb123788b459c1f54a
5113 F20101112_AABYKE campbell_e_Page_169thm.jpg
3573d0c5a2b34938e7ee2f84b75102db
414ca99ece1a913e786b7a921ea6ab049b2d2e07
51529 F20101112_AABXAA campbell_e_Page_168.jpg
516c223aaa2b6e8cf3bc6e184ffdf7f1
71ef2df4199e20164f62f8b6cc22365666cf9e9f
2562 F20101112_AABWQS campbell_e_Page_086.txt
bedafa9a82f22b621ca82e844da6b2c9
b2029827c2b1b0bb12580b35813d0b43a66e80b0
111279 F20101112_AABXNM campbell_e_Page_204.jp2
b08d0f40ba7493ff10671ca13c26ef69
2a868c2e790a52d2d939b149be03f93a1aaa6e26
29238 F20101112_AABYKF campbell_e_Page_225.QC.jpg
d8f12c6056ad161b81316ff00b42408b
de9c3f941c53ad8412a37db28cd583780847adc7
52500 F20101112_AABXAB campbell_e_Page_208.jpg
b38caf8a1cf75c500132dec6f33ed9b5
420940a9fb65cefd0e644eec6b92ab8784c7e60a
537 F20101112_AABWQT campbell_e_Page_161.txt
9c8cbbf1b66a7aa73b828da915a318ef
dd13d88a73cbbcff17eab3aef8b3ead882b2f4ac
89834 F20101112_AABXNN campbell_e_Page_205.jp2
0090a174250ddccb6b45bce3c9ed5158
3096c3b2b0ac36a7f61bf75b2070defaa562c4d9
20030 F20101112_AABYKG campbell_e_Page_182.QC.jpg
b8a97fc7987079d27c16ff6d7d4e73c2
2c03ae1d842b598c30a16b11c73cec682b711e11
1865 F20101112_AABXAC campbell_e_Page_039.txt
2d6dbe0f33bb54dea8c69108237818de
fd31dc2584d8e092ecf674af86b5317a9969afd3
747 F20101112_AABWQU campbell_e_Page_048.txt
01b6940ef7b40b06cc5585db415586b5
c55b610d9e8dd657ae24a41426fe3da443e109f7
77486 F20101112_AABXNO campbell_e_Page_206.jp2
c34d1f841fbc8d4ac81a853c8fee5778
42288e5506787fc8af030fa3a6748b4635b6d8cd
5012 F20101112_AABYKH campbell_e_Page_193thm.jpg
9b5ae0c3cce7c90bcaf2aa6310d6b267
a0f5418542a0836b181b47d7f90258e985c471db
76428 F20101112_AABXAD campbell_e_Page_204.jpg
5ba8456ab4f4a625104b37f10e2fbc64
09f9e15a005d7d9e1137ccaa0d118c0d9cdcea79
1707 F20101112_AABWQV campbell_e_Page_126.txt
b6a0a1561aa818ea138ea56c9ee4e38a
6bc963ffda24d79e473fffd5fe5efe20bba4ba7e
76665 F20101112_AABXNP campbell_e_Page_207.jp2
a0d7eb92ee5496b532cc7114c20149af
051c8da7feda69735ecaf1ea15a704ac6cbfef9a
8908 F20101112_AABYKI campbell_e_Page_221.QC.jpg
64f3e460d91841d2fa3b19ce028b7e14
be7034759de0f0028f7c9e16ae9a57fe85a46bd0
1763 F20101112_AABXAE campbell_e_Page_085.txt
a38b38486685ae883355c137f218315f
a9920aebcdaa5d0be965b62f32b6e854a164b79e
79661 F20101112_AABWQW campbell_e_Page_088.jp2
54765ae90035fa1b01278ddc81fa2e8f
fbd2cb6cb36e30d247a9ff973a3c1645ff3c54c3
80551 F20101112_AABXNQ campbell_e_Page_208.jp2
c71de1349d128972ce14018f74e0b19c
b3a09b97a8e870803a13d1bf39133e147c418bf6
4216 F20101112_AABYKJ campbell_e_Page_112thm.jpg
d1b09f51c30e2726df46f7f5a1fa51df
261d41bab127c22749c1fd3d64c46d62cd8423a2
14017 F20101112_AABXAF campbell_e_Page_083.QC.jpg
ded386791b1be26d2d7363d575c68b4f
22f49a068045f2b53b7ee3db1e132935fe8be917
6917 F20101112_AABWQX campbell_e_Page_068thm.jpg
9644f09191c9e322c6a13efdba3d0d29
3dc413ea3fd9df83160883431c52cf12170d3479
19673 F20101112_AABXNR campbell_e_Page_210.jp2
197a13a211d99743f26e437524013e69
e896d7287230eb55f2c4cfc8c308fd06e2714b2c
27199 F20101112_AABYKK campbell_e_Page_074.QC.jpg
ed0c14372d09e1a59e7734b45727e6cc
8584d9bc0064232f2656df47335d7fcb0ed018e1
F20101112_AABXAG campbell_e_Page_097.tif
33940fcabb837b22cdd3926cd956b963
fcc8d4de1780de07da2f450f19066e93bc2643ef
82533 F20101112_AABWQY campbell_e_Page_040.jp2
25730f18b5a114e537c8f31b4a7e94d0
21ef3e864db3870cef5cf7cd2e720ecfea3e4664
93220 F20101112_AABXNS campbell_e_Page_211.jp2
9e36e9e914d3ef17997c64cb1c790d79
a9d1ca7ce7be14b3a121a03c17558de8fd80b64d
2656 F20101112_AABYKL campbell_e_Page_019thm.jpg
689a20c2fa612a438ef45e3d60d3de45
4ce248121d7a12d2fac2171806d3d03e9ff38772
12732 F20101112_AABXAH campbell_e_Page_048.pro
80c4daff9ab5f449c3d51d789687afff
600d2c1092bfbf7231074dc8806a9455f274444e
52645 F20101112_AABWQZ campbell_e_Page_021.pro
3685cdcfa32c4281d4cc1322bd6fbcd3
dceea7243d61a82e901e49635c8e83cb2219cdc9
78337 F20101112_AABXNT campbell_e_Page_212.jp2
44e9f97ad0d1073e32c2086f18a721b7
4a3db8a76afa19663c13744610c127edc65f9405
22466 F20101112_AABYKM campbell_e_Page_175.QC.jpg
1d37f399744f167f832ae9074e0cb358
3bd2e9c49841ff2c2590ae7cf9f7b74fbb1a228e
3931 F20101112_AABXAI campbell_e_Page_203thm.jpg
055bb17090be1f5dc56be2f6311c647d
d8f1bee71cd70af16e44fc437250be0646291cb2
72059 F20101112_AABXNU campbell_e_Page_215.jp2
56bffd6bdb5c42b376a38fbc0e7643d4
eaf191f14646582685ff12b66884b1565ac0a402
16910 F20101112_AABYKN campbell_e_Page_176.QC.jpg
b09cd635ca4ec1eff73c81ad918b0d17
c416f7fd16fec0f1e0424f2391b7da16a7b6fbcb
F20101112_AABXAJ campbell_e_Page_147.tif
5bd3e9d8aa1851e7fd8e3085b47ea53a
2b04d5a8c320df906ec5936c41e4469c9aa1288f
77480 F20101112_AABXNV campbell_e_Page_216.jp2
38deb0615f0f6c6efb1ed45aef849b85
fbeeff20b92da8ddfac39347b306ec6634f807c7
16067 F20101112_AABYKO campbell_e_Page_147.QC.jpg
a199fbe64c5723eb5374145789e0c225
802a5f03daabbb64d0d9343b79053b6f4501104a
39393 F20101112_AABXAK campbell_e_Page_130.jpg
acde1152208e731403e5ab31aec0595f
d1c0cab0a189124f12fe39174099d9fd5380a9b9
65634 F20101112_AABXNW campbell_e_Page_217.jp2
54360b6e112ba2b023c34a1c1b472717
10266b784455d86f37c48580fc579ce4bbffd343
14291 F20101112_AABYKP campbell_e_Page_060.QC.jpg
e3e0121e854a1549e508f4194707efcb
cdcffb78aef5bea9e518074940ac6781afad9432
F20101112_AABXAL campbell_e_Page_214.tif
7f349f39612f3c6c7255449e99ebe758
0e3a9027fd828315b13e3bf728b8ecc260f7a987
81746 F20101112_AABXNX campbell_e_Page_218.jp2
518a38cecf98d84164f57cb91e98b710
b64450e3cccb55fe737244f916cc8b7a6ba1e61b
13797 F20101112_AABYKQ campbell_e_Page_203.QC.jpg
683dabad373ea6cb9044d363e5c381e4
de8a0727dab358d713c26e7970242edb27655d61
100897 F20101112_AABXAM campbell_e_Page_010.jp2
11adaeccac825c3475e90eb98e046db3
682eef2af59b5d38798e0777472c20eb399c78a5
77082 F20101112_AABXNY campbell_e_Page_219.jp2
aa5e5fc61f79ad02030517ebc80daa1b
f5a00e701a20ae55640201e9cd09227cb0777b0f
5508 F20101112_AABYKR campbell_e_Page_103thm.jpg
6570243b7657c2e77953b8f14d22d70e
ad0e49ecfd853e1d3ac10ebf97ab341c2b1f9e72
F20101112_AABXAN campbell_e_Page_039.tif
5be95029adf23e37c65e56d940feebb5
44b038b1bae87eabaab56c1603b7f0de492eb75b
139669 F20101112_AABXNZ campbell_e_Page_222.jp2
1ed82bc0550d6782c6f34e4bcbf56bd0
3042c40939619e6e95aebf2b98789458da4d6c19
25153 F20101112_AABYKS campbell_e_Page_073.QC.jpg
a32877d1cf21d2cad4eba45d597e34e4
ce66f8b8b881e27dba1590a30790ffea67604d87
F20101112_AABXAO campbell_e_Page_130.tif
ac51792c93f98840ad2859a1dcfb51c6
e901670ed1539e3b5161f4eceaf3d0af2ab6bef3
3331 F20101112_AABYKT campbell_e_Page_099thm.jpg
1e77aa9f5ad2f25ea09fe63d18cdf8a0
131e0806e0a1e971776c5a10c1e499b0b5c7ba73
18209 F20101112_AABYKU campbell_e_Page_146.QC.jpg
703d102e52373b4ae1ea6f912454f652
1658c03405ef403d812ab88579d431cdc89a8b3b
55509 F20101112_AABWWA campbell_e_Page_139.jpg
3ac7549c6b8cd2eed6ebb93467c745fa
51beef4b3384d221cdcfb75559f23ac5f02b8c85
4295 F20101112_AABXAP campbell_e_Page_045thm.jpg
716a6b54b0d5630be0dbfa3a18788eb6
b88d1d9837c52759f1858ab35f7901f0b9077fc5
5704 F20101112_AABYKV campbell_e_Page_027thm.jpg
f9e985f21c7d0cbdb77846887afc5e84
16f95f8635956bc0ed28a2470f4f6ec8ef79e136
11324 F20101112_AABWWB campbell_e_Page_051.QC.jpg
fd15e01d5773eaae80e6ba22aa64027a
42a9de41093b970d199bbe62d445d7ecb5f18ebb
5618 F20101112_AABXAQ campbell_e_Page_109thm.jpg
b98024185b53e0a816c5cc2ba3cf2fa6
739317ea7ceec9136f4f8a44c15c7c960b35e1f3
16676 F20101112_AABYKW campbell_e_Page_039.QC.jpg
df3b2cc07d99cca97a1c738274ea4862
8d6718e4bd8ac2fa5c07c8d31f3d4153e8497581
F20101112_AABWWC campbell_e_Page_186.tif
8df9ca93abaa4425a26785c51edfd7ef
42ee5566b8c40552e3bedd427e09894e25b7a4e2
21883 F20101112_AABXAR campbell_e_Page_057.QC.jpg
bea876910534eab5dfe8b8f38cecc225
91c967000e1f6cf672d2a8469ab6ccd6dd656e05
20346 F20101112_AABYKX campbell_e_Page_097.QC.jpg
847f82bafdbfa7d91178a73c6c481019
5ea5fe8d8a9bb68a020f2577f89592f861c09736
39300 F20101112_AABWWD campbell_e_Page_125.jpg
aaa1d998244f4426b9da67be165063af
ebfea841e7f4dcab4ac0931a56569fae651360b6
F20101112_AABXAS campbell_e_Page_116.tif
b173b4e9b1118b0a2e430af3238bd2d7
9fcbf8cc3c968f7a8274acedf6fef25723bac119
50420 F20101112_AABWWE campbell_e_Page_012.pro
7817c22f8cdd4188b61193f6052e7252
a13c479b62e772bdac9315b8a50a9e7b377c11a6
F20101112_AABXAT campbell_e_Page_166.tif
e516f52f7579f05bf5c183dbc9d5f785
ba73ed6eddf791236bb710c4a0662d54376dafd0
22298 F20101112_AABYKY campbell_e_Page_135.QC.jpg
2bbaeea45237f14e732c85d7a1ad82c6
9a73db3a360cecdc426155e56df077c7cbfa5f86
F20101112_AABWWF campbell_e_Page_082.tif
5a0d438a6f7525c60d4a004ed5d71d48
540d9809ba3475b43f74a07ce06030704683e7e6
F20101112_AABXAU campbell_e_Page_181.tif
df60ed71a8ef5832eee9a20af1ec14c8
95ce321c932574afb1fd8fc3198aac6111f430fa
4946 F20101112_AABYKZ campbell_e_Page_207thm.jpg
57f9875c4f3d323fafa02997c4e26a73
4b8041e19c593b1af490e679281eef2b2cdf0a20
F20101112_AABXAV campbell_e_Page_060.tif
80c477040f05f979a945cf03d0969cbc
9c5f626ed5db1c743f6ae7f4b3c1925549acdf40
62756 F20101112_AABWWG campbell_e_Page_008.jpg
065bce14029cb855245e471d6e460562
dcede6d8dc5258276695dd748170c49aaf773747
2065 F20101112_AABXAW campbell_e_Page_076.txt
6a34723fb2007d0b08a50f5957d8e900
6962268bb66b9cfd62fc6486d4b2591a721db4d5
F20101112_AABXTA campbell_e_Page_202.tif
8e1e2341f3c9a41343d341e54d005517
d7852e694f2c65aa8ca86b7505887e910849826e
53646 F20101112_AABWWH campbell_e_Page_086.jpg
211311536ff5cddd762b84dc88be852c
f0fca837b752fab58ca3fb44502bfdef36132ed3
F20101112_AABXAX campbell_e_Page_023.tif
492450428f03a0594e45df16f6ae6370
9accd0b53d754b231f7310ba24e96e2e392e0ef2
F20101112_AABXTB campbell_e_Page_203.tif
1aeb476b49b094e189e0b48a71bb171b
c2262e068af81965302524147bf93321e70dffc2
24773 F20101112_AABWWI campbell_e_Page_011.QC.jpg
30645c3d0a046cf4612bcaf84237cd6f
e492aeee660313a54acd5b32163a429e30b6c474
2053 F20101112_AABXAY campbell_e_Page_207.txt
a329936206ccbffe165a524db491c2b0
541dba4b99885c71a28558085ec9012eb86bef96
4930 F20101112_AABWWJ campbell_e_Page_116thm.jpg
490e1e2770dc3e09b78d3af3a14ef4c5
334013ebcf5a0747c8f4b3e89e22a8fa1d78da79
16913 F20101112_AABXAZ campbell_e_Page_139.QC.jpg
93fc5280a3630377755ae0b56ac5c991
459af4ea699299e33ae310258c4524bcde924929
F20101112_AABXTC campbell_e_Page_205.tif
0e908bca32f453bbca9dea976ed6637c
492b2a78fc0f7e3eb96dd69827d45aed5a86518f
102160 F20101112_AABWWK campbell_e_Page_165.jp2
bbb6e24a9cea49c18ffddf08924b6d4f
f5c8777d910ad80470fb57922fbd6247076d0034
F20101112_AABXTD campbell_e_Page_208.tif
8a9c4f237ff2b2df7f9494aa629efab6
e4212651615ff2e5653da15b31ada269b6371599
2230 F20101112_AABWJA campbell_e_Page_172.txt
0297d8fd2ac2e0fc2dfd2ee3bcb09419
8ef7b9bffc5fecf9279878f45cece9f41e672761
2623 F20101112_AABWWL campbell_e_Page_214thm.jpg
6f8099aba503c1cb3c81d068148f6eb4
5ff2bc8ea00b531f4d297c537f778c51eac39ef1
F20101112_AABXTE campbell_e_Page_209.tif
46414fb6e416776ce48199ce473a4bab
2d4c3d654150c61458fb312c0599c25226f4d676
16659 F20101112_AABWJB campbell_e_Page_219.QC.jpg
3ae0a5a577cdd57ebfb37ed1f9df5c21
883eb271e7e8aeaca8d22479cae2aa610f7fc30c
F20101112_AABWWM campbell_e_Page_089.tif
e8b3c335638993dcbd95ad4e50a70bfb
1e996b175437dbab65d60ec36a9e75104c7ad847
F20101112_AABXTF campbell_e_Page_210.tif
5577a0fbd0b5b562cbfd1b5da75ead49
9525319d579d6296aacf332df4c52b969288e334
49751 F20101112_AABWJC campbell_e_Page_088.jpg
988a8f6e5a1f4e01ba2198686671253b
b70c777019ce2bf1d93bd5c794bdcfd4006a665d
24327 F20101112_AABWWN campbell_e_Page_110.pro
57ad5518b5bca1e4c2c5d1ea6f1608b4
daf988ec58b5f5784295e883cdb37e9c465e690b
F20101112_AABXTG campbell_e_Page_212.tif
ab030f46308fa0a9990549c268365989
08dd2131dc9099323af59cb394cb12f4367878f6
17926 F20101112_AABYQA campbell_e_Page_186.QC.jpg
2e198fce0b4d4e32400cab0f556e2a7c
f00fb351a3fcc284802fde8013e11f6def2d5d31
120013 F20101112_AABWJD campbell_e_Page_069.jp2
92e351ded18b5c6ef877d35c69d4f234
b4c7685993ed4f147b7c1cdc99dc47a6172da9ac
49319 F20101112_AABWWO campbell_e_Page_105.jpg
0ffffb1c95509dd779a0322eb1e39ef0
dbab96e68f29e5bb224ec3690c0f666a235a6357
F20101112_AABXTH campbell_e_Page_213.tif
c393fca807b65d385985cd83e8c2bdd4
ec38b0456b653b33656e4578c42673cfbd109f51
16480 F20101112_AABYQB campbell_e_Page_187.QC.jpg
e2ef5ad8cdac9b9f109a1fdef035637d
e865638041e546f98301670b7c4b0005a24a84ac
14839 F20101112_AABWJE campbell_e_Page_188.QC.jpg
5821890ebaa8c4d8f900c35c91a2c1f4
8d0c0df756f41b4a371380fe1b97e20889f86ce8
F20101112_AABWWP campbell_e_Page_198.tif
99eab6b89808add982bf68bc2d39301b
cdd5f9d0417105f114110e016169aed63b587f43
F20101112_AABXTI campbell_e_Page_215.tif
f5c034271e79f64a191967b033e2ab62
c16b22f69caa10a5e997fef179c2f498a6721740
15157 F20101112_AABYQC campbell_e_Page_189.QC.jpg
debda518e2599b79c08d88dce40027bf
a9c29fddb31d33cd3af6276d193578982c002eeb
F20101112_AABWJF campbell_e_Page_199.tif
8324214927bb5687a90331f75cf1ab08
dd070f17d0d8e069b4f1a493aeea5b6ad04c4ef5
117306 F20101112_AABWWQ campbell_e_Page_022.jp2
5617d4e788b4c444de7192b8fc7b6373
66d9a9b2dbf8bbf1e064062c9293934200018388
F20101112_AABXTJ campbell_e_Page_217.tif
3ffb7fc5dd260248c2529355f71c5ba4
d95a922fee54667519cc50b76d9ba795f2ae687f
4974 F20101112_AABYQD campbell_e_Page_190thm.jpg
15be6c4d45c4aa6d9534113315f369fd
4b09602d5e79f5b37b9244828b8d4912ba2e3145
4035 F20101112_AABWJG campbell_e_Page_004.txt
8f7324d7d2722545591c105179d605fd
07fddd72dd795ed97edb13c6ca5e85fbdedbfc8f
1729 F20101112_AABWWR campbell_e_Page_220.txt
072aa1ca2a17b5240707e9d073e2f051
04ece1c8e33f004ddb1720b0eca490826cb93358
F20101112_AABXTK campbell_e_Page_218.tif
5bcdf6091d33e6976ddb0f5c2839fadd
9a5930d6b4f8dda2484f4967ac87dff9fa6467bf
12775 F20101112_AABYQE campbell_e_Page_191.QC.jpg
74adf6dd462c773e7be3db0f38bfac81
32c412f0850cb68771d635a327b8d85235dcc875
73345 F20101112_AABWJH campbell_e_Page_133.jp2
42574c32f944820590184d3dad44aaf0
2f95490dbb07cf7443347cf2538bd3ecfb5d443c
54100 F20101112_AABXGA campbell_e_Page_117.jpg
614946a2a19eeaa4e42171f8ebfb58b6
028b35b3ed7d0f1e76ebc9d45ecfca0543dc3dce
5481 F20101112_AABWWS campbell_e_Page_139thm.jpg
c0ec4ce8464e13b7bda59e56bd10f896
ad6d56b0616f32bf97fd3a2d91211d7f1605e0c4
F20101112_AABXTL campbell_e_Page_219.tif
b844ce63f5054d27933ee9c511c32c0f
c3fe6671c5e82497996cb837ee3930827ec23003
5563 F20101112_AABYQF campbell_e_Page_192thm.jpg
dece794786685fb1da92721157caa9ef
eef119d1142e572b21df1504d5503fb124c320c3
43904 F20101112_AABWJI campbell_e_Page_035.jp2
3d57edfe5faadd052139c999ae20901a
bfbf457ddd64f8030851344ed0e9bde466c4ada7
19066 F20101112_AABXGB campbell_e_Page_119.jpg
11f4a0eee093f430db4eeaab66f84e71
8c5a8991e211cae01f32d034f6ee868b575064ca
37359 F20101112_AABWWT campbell_e_Page_126.jpg
88331b796efb92de713eb0e27e540801
3deaaf86361250d395ebb4e343ec02cde5f5d664
F20101112_AABXTM campbell_e_Page_220.tif
ab2ff13f22d618afdb7ed3beac73483b
39f8c703ebaf8ee832c8d14c8b9f6ce1c0e8c396
16100 F20101112_AABYQG campbell_e_Page_193.QC.jpg
cfe565e0aa597ea8fa3a13784eeb737c
461b39229af76fe7ccbccc4f7e09a69b82b9bec7
2858 F20101112_AABWJJ campbell_e_Page_132.txt
0f56382eaaba42b12f1b4f9aabcd4fb3
b5eeee348dfbf60b16b5d336bf52c9556e9306e3
51176 F20101112_AABXGC campbell_e_Page_121.jpg
a24ef388a98a4359c98a53fd15d7b6e1
34e64a3f4443ab46812e74191dfaea4173825d17
1918 F20101112_AABWWU campbell_e_Page_089.txt
1565a52cfc87fb4c02d11561ec2898c8
14556ee4a4d9fa9e49b4f92bdc40b3f37bb488e5
F20101112_AABXTN campbell_e_Page_223.tif
60fecd9f61f2e8c9201591de62a87327
d5f318a63bb286762758ce416c1889eef67ce6a6
16620 F20101112_AABYQH campbell_e_Page_194.QC.jpg
bb39d95ed0a43daecf94fe3ae364945c
3aeeddb4c088934feec0290463edb2e931c2de24
30568 F20101112_AABWJK campbell_e_Page_223.QC.jpg
6faacce7b3b5a4b58aef188dba9ae511
b656f9848dd82d68f6f973a24f2bcdd067960eec
41787 F20101112_AABXGD campbell_e_Page_122.jpg
10214ea36be79db73f92c2d19321e1fb
dfc11bd30d4bf4dd195866617cbfcdb620aa4ea2
1852 F20101112_AABWWV campbell_e_Page_218.txt
65c0c0e27fd39433d04fd5331b5e7f4b
def55d2fdecc8c99eb1569c04b8e58b0d21d9e9a
F20101112_AABXTO campbell_e_Page_226.tif
a74a8e678f60e6480d04855be9a018b9
b74644d65d934a2bc7682e2da7c7dad8d35a370b
6395 F20101112_AABYQI campbell_e_Page_195thm.jpg
12cec0669c049fa7678600c8181ffa55
3c2523e85bfa1e928c36032f4b4d9e6d8fade6d4
37356 F20101112_AABWJL campbell_e_Page_116.pro
4a0c5ea968cdd4f6fcb235026d58851d
a0a18ea6d61fcac30b2f744e858d3965b277fe64
69855 F20101112_AABXGE campbell_e_Page_123.jpg
763ee70e024896a75951bda50e898355
2e4652d3a33e4de2ff4837d448919138b66f794f
82099 F20101112_AABWWW campbell_e_Page_194.jp2
046ac38d27211bf50c3d869c714dff61
1c9d567104015b4a74ef515e99878737d1051cb3
F20101112_AABXTP campbell_e_Page_227.tif
7ed47e605e54e7a075916977c17162a0
4c3f883d9745a3e6fe8b740b054840bce92f0c3f
15354 F20101112_AABYQJ campbell_e_Page_196.QC.jpg
cbb9518d8843b77185fc77dc89bf52da
ae2f078e015e964401ebc4612928352ef5e7a882
F20101112_AABWJM campbell_e_Page_179.tif
96e7cef8899efc6cf06edbdfd9e8594a
be26622936f25b95fd1351226861890180a95380
36107 F20101112_AABXGF campbell_e_Page_127.jpg
67239d1930665b42abd79ab98bd25d55
f3d6e5543eebc0cd0535926ebbbfda4ac9fec584
74461 F20101112_AABWWX campbell_e_Page_213.jp2
e181818349335d0b840a79e96f6a2f75
2a280b7d5f7d4685e7b32cd9fc563691ea0f2de4
8600 F20101112_AABXTQ campbell_e_Page_001.pro
7eee152cabf21eb848e94beb8727d25c
7869f0a83fe028437e15562dd2cc1604c44eed1a
15146 F20101112_AABYQK campbell_e_Page_197.QC.jpg
53e336d70dfdae905a8721193efa21ea
9cbe502b293e6a28868cfc5d325a8e7122c909c6
57676 F20101112_AABWJN campbell_e_Page_093.jpg
5a2d7eb2d1f99d71bd2f2584ecf925b8
c8d717772816882bfe1f68293eab19ae5355856b
38636 F20101112_AABXGG campbell_e_Page_129.jpg
e51dc487824e9ff17997845c82c1a5ea
0912c9880a50a53c15a3dd03a177859b26f0ec47
4840 F20101112_AABWWY campbell_e_Page_148thm.jpg
16ac12a4fcbc28c2d24b382d5eb465e6
f66d42b973a840c9b4d8b8d9b82ca9e849a0425f
96274 F20101112_AABXTR campbell_e_Page_004.pro
cad0314817ff029fce844e8c78d836eb
e31ec7bd80e555d6917372701ea0f3794fc617fe
15561 F20101112_AABYQL campbell_e_Page_198.QC.jpg
71ba6e16614eb0c994c9082cd37e9ea3
0ecf5e27956e8992b455530862a4c20b17cb32ac
67399 F20101112_AABWJO campbell_e_Page_060.jp2
94ff35fee06f6fd1b2eb71858a947c40
2eefaff7e6bde357c35c860b9bf88aebadb2c163
49297 F20101112_AABXGH campbell_e_Page_133.jpg
12dca02a4630a3efb91ab70951e6d58f
665e1c3fae2b7ff955b4bb319a45f029be679378
F20101112_AABWWZ campbell_e_Page_206.tif
ef859972aa2e64c13538ac85932b2b8b
3934570a0642e53cf559f59f9a3a2b7b77c67746
F20101112_AABYDA campbell_e_Page_137.txt
1fd41190d0de27f0dadba4eca5efc49f
79589903ee5c234080b723141b4c837ed29803b5
53392 F20101112_AABXTS campbell_e_Page_006.pro
fcadf0ff8eb02c9aca8f9eb983fc3992
fbc486638d998c922a4e694744bf1786983a0408
4984 F20101112_AABYQM campbell_e_Page_198thm.jpg
d0e53f7bcc92410fe659720db4747072
e518bec3cd210eea2da3c37b85d2c56af3fc4a7b
55784 F20101112_AABWJP campbell_e_Page_204.pro
c4db7f510ec9943970a7c1fa404fa189
e2d1e780756b7475fd8a77094d172b3a040e38ac
46260 F20101112_AABXGI campbell_e_Page_134.jpg
3924933166df4f43dd40a889fcc151b1
9048b68f2bee7bbe9b1a1b1772a4d038214d0fa3
1774 F20101112_AABYDB campbell_e_Page_143.txt
3932cff1b585e2a26ccdd1f58bb29efc
175f42b9af873582a9bbee7e32832b3bb1677db6
50116 F20101112_AABXTT campbell_e_Page_008.pro
a7fff2c70eaf502b5fd54dfabcf8a1ee
b417a08b0bfa2bb46a54e4b04103f200d1940a0c
5007 F20101112_AABYQN campbell_e_Page_199thm.jpg
6545f36760678ee3e7735febccdcd197
942b41b795378ceb995de32b83a89da9287171d9
5313 F20101112_AABWJQ campbell_e_Page_062thm.jpg
4c0d470e121699480c794d41cc3f9b70
bd1ce7ec8bdcf33b44870ace35a01dbfc77c470d
70346 F20101112_AABXGJ campbell_e_Page_135.jpg
b2b1abc2b33acf560f3c89839e6fdfa8
e91490836ad4eb84ee580fd79727e7514a097e18
1544 F20101112_AABYDC campbell_e_Page_144.txt
1bb2ff220d44b8876ce16904a4ecd2f8
4c25ae974bbd586e8e76286a01a657ffc5ece581
60170 F20101112_AABXTU campbell_e_Page_009.pro
c6c4e85f4bcb821365217a4c07a6458e
9fe717347145cf08001bbdd739076cec7869b9f4
20032 F20101112_AABYQO campbell_e_Page_201.QC.jpg
ddec5a3180403f8928f402b555b04cb6
ebae4785d74b0d355a0538c9dd5d1ab0ae07b15f
F20101112_AABWJR campbell_e_Page_077.tif
9381ae821a4dd9b18bf3b695cbd156db
4a7a2a6b764a29f3e53c120303d7a6663c3271d4
54380 F20101112_AABXGK campbell_e_Page_136.jpg
f56f1c936d7449b81a3cd490ddb399e9
4c4fc06b6755b9b1a98645ccc7ba2c659a838e10
2614 F20101112_AABYDD campbell_e_Page_145.txt
58af52190886b2bbd24721918f3b5fc6
e2a14fe6b6ec27611ac12c35231b780f33f3c342
52895 F20101112_AABXTV campbell_e_Page_011.pro
1b0532d9d9c621ce0f0aa5d4304630bd
9cad0f7c3a077c5e3da070ddd73fba6cdc80a40f
4870 F20101112_AABYQP campbell_e_Page_202thm.jpg
1a25d72c6097064640b87c6823c4ba04
2bb62cbb4096eb1d23d83a1144257b726e8e7844
11891 F20101112_AABWJS campbell_e_Page_154.QC.jpg
15ab63c51fb42075d6dad08bb5312f47
7dc9a4a97a23352ae1bae67ef6794b7f880235ed
53332 F20101112_AABXGL campbell_e_Page_138.jpg
1e943b1910605e21db02732b27a92a84
84034680034c6783d4e0570eda84b6bde8d1f1c0
2256 F20101112_AABYDE campbell_e_Page_146.txt
4a955149aa083999ee81be392616aa98
59f911d1c447a0d0fdc1b2bf1acc5e11f9a43284
33103 F20101112_AABXTW campbell_e_Page_015.pro
82f63197e50e9b055a1cbfcf4f538908
b64da8f039f42ca4c22d2758189e6f6ba9cb3812
22639 F20101112_AABYQQ campbell_e_Page_204.QC.jpg
4d7f05ffcf25e5a7fb92b4dbb619a334
0e2c2559c86384dbb0065f860079accca44728b8
58994 F20101112_AABWJT campbell_e_Page_006.jpg
3e6a5dda573edbbddbfc403538ed6089
7ce588dce87b6463b2ae58bbed98ea1f760db9c3
57334 F20101112_AABXGM campbell_e_Page_140.jpg
8246aeec7e443183ddb8238f94355cf0
aeff418e065ee6a5f318ebb835675fee1b4fef59
1922 F20101112_AABYDF campbell_e_Page_148.txt
c7288cb510d640c8035b96e3431df157
192ce307879118e988045ab1f6e15a85185d376e
57187 F20101112_AABXTX campbell_e_Page_017.pro
30018c27c6dfe4b6d69c9875e27188a4
a9a077f8e043667cc89fdf166a036d72332c12b1
5970 F20101112_AABYQR campbell_e_Page_205thm.jpg
07a38da5892af5269f2d23e511850ed5
584b85d8cf9cf8cd875ca5267f621d542206ad94
35094 F20101112_AABWJU campbell_e_Page_221.jp2
06e0f71080c79d8ec806a20c170d865f
b6796ae3707e284a3334a0c27e2ab34656ca316b
12452 F20101112_AABXGN campbell_e_Page_141.jpg
07471d2b30d38b5f8578d824b9902a12
3335a807891a7b0cb8e17e8669d0a934ca3a108e
1892 F20101112_AABYDG campbell_e_Page_149.txt
c2efc6edf81e33d3368681dc449bd439
35166c55fd490472ca4d3b0a167e544722efccc7
10514 F20101112_AABXTY campbell_e_Page_018.pro
7cbacd8d0c18b8cd5eacf4b9a85c0aec
105d140d7630d3e2c229008862fe83ee20eb8011
1950 F20101112_AABYQS campbell_e_Page_210thm.jpg
4f63bd32332820912db7f4801bc13100
ef2a1cdc2620a80943c2bf1862be35f95fed5261
F20101112_AABWJV campbell_e_Page_066.tif
fb3f7d58b1a14848e307bff595052729
844b43de8e57f8bb146bab8dfe1ff3ab282b9ae8
51315 F20101112_AABXGO campbell_e_Page_143.jpg
b27cda00cb3105ee73f522d45160aa70
43ca8a107b708421bd34ec0f4e59bdb02deb0d8f
1341 F20101112_AABYDH campbell_e_Page_151.txt
e284f6d6c7e558a5753a69befc08eff4
89d3180e9c21f96651511cefe5ffc0124472134c
54189 F20101112_AABXTZ campbell_e_Page_022.pro
d99ebce6b077057f85b6e3d98e3c8100
8520aec60802a30e63c0c589b0bd4121411fbc1f
4772 F20101112_AABYQT campbell_e_Page_213thm.jpg
869daa4e9dd12a70d7ca7dd57fa9e9cf
3e4d5dba3bd4691676794f1fbaebd46d4edab962
62267 F20101112_AABWJW campbell_e_Page_120.jpg
e45d38ac7d55a9c27e3218e1d6e61493
e900d8bd1b289201606b87ab8dfea859c33db953
52255 F20101112_AABXGP campbell_e_Page_147.jpg
03c499a4184a9b2818c2ed31b2b4a374
b66f0cf8b412ae6b9ff242c8ffdcf76ed3ddbe38
2421 F20101112_AABYDI campbell_e_Page_152.txt
8ff1b0caa24582e38c0905934719d78d
1d182aa08671a41e25116c894255785bd8d272ef
8230 F20101112_AABYQU campbell_e_Page_214.QC.jpg
e8f47f585aaa55230262d8ddf870f9a2
bd50c9c857dc93fea7cf55ed6799b356ef4950ff
41436 F20101112_AABWJX campbell_e_Page_209.pro
80c04c03f9e42381b6593a95815ada3a
4d408cca3e1a4abaccf5740386d923db3597893a
49620 F20101112_AABXGQ campbell_e_Page_148.jpg
d492ebd66898cea0a91ac315c79f201c
b424b861ccb8a368b4469c6187992e59f28f7959
1788 F20101112_AABYDJ campbell_e_Page_153.txt
4f4ca8e3c3540b1990708a2b140abca6
7fd10dec65a36a7779fecdbf30022488eec7ee59
4781 F20101112_AABYQV campbell_e_Page_215thm.jpg
d96661a8e3967e1d3e76104fcbbabaf1
1afdbb6ec529f85afb6c4a50db7f512d1bd541f1
53182 F20101112_AABWJY campbell_e_Page_123.pro
f5d514c77214848f432740d257503dfd
d21e5656289d465085238ea3d65c15d466c5536c
56113 F20101112_AABXGR campbell_e_Page_150.jpg
17719dd9f7e525c8dfeb509e357ca3a1
ebb2bb10b3812cb35c33ddb6faed3f5c839eea61
1477 F20101112_AABYDK campbell_e_Page_154.txt
cc51a7732a74100babdef120edb8558f
bc83e4ac7e181cd4a1959c82a5c6a9446af64e15
4977 F20101112_AABYQW campbell_e_Page_216thm.jpg
1385f8ffb689c27d2c36d817a0bb4502
f616ae4c0cda6e006eff431a5d87d645871bbc7f
34486 F20101112_AABXGS campbell_e_Page_151.jpg
79bdc35ede5415f697156082b98641c8
32ecd1b6e5d5f9321816914489787b30192f673e
2686 F20101112_AABYDL campbell_e_Page_155.txt
6820920b0692eb3c6292294b6491dc7a
b21acd6a68d9813af4532746e9a0d1c4491e3293
5540 F20101112_AABYQX campbell_e_Page_219thm.jpg
7010d848fdb68c91a359beb00efcd526
5686d3fe0ed15d940c2194bd044fcbbd91025dd6
F20101112_AABWJZ campbell_e_Page_011.tif
183990cefb82f49986dfbdba8ff072cc
4783929dbdf85ad798808dd9d77f2d5e750d6297
62977 F20101112_AABXGT campbell_e_Page_152.jpg
ff8363e9ae4be18fe51fbf24e4a745f5
fb4c30e0d269f5ce67573d870cb7ed174e0c7c49
2295 F20101112_AABYDM campbell_e_Page_156.txt
3d4ba0847497877a512d2ecb1b13d45c
b7b941fc608311e03d98ecac03bfcbff72745466
15306 F20101112_AABYQY campbell_e_Page_220.QC.jpg
e0d174dcb72ceff9aae341f7d2f6e52e
5fc978921b731bd72f6e802a756fb2dfb2d9445d
39007 F20101112_AABXGU campbell_e_Page_154.jpg
4cb22f2c2acf6653d3dfe23c758a5421
4937ce667054bcf15217a429947b34237f5bf532
2017 F20101112_AABYDN campbell_e_Page_158.txt
0e23ce485b81120f21db3102cc58613c
9da5eb443c9b492ca0e2807cd09358d4f8b8aee0
26492 F20101112_AABYQZ campbell_e_Page_222.QC.jpg
79a0c7a9440938b5d9b3fc1ccf3794a5
d3ec971e40e75e034383350fa27daa04c8b3eeff
2149 F20101112_AABYDO campbell_e_Page_159.txt
4b6c5e267ed0e3582de8cbd90be77f1d
e145e2c6a11cfb039c9b7eccb7d7a46a0d20245b
72230 F20101112_AABXGV campbell_e_Page_155.jpg
1865775304975f19a9af6069d4cc849e
97245105c03b6d50853bb28b8cac89f63f8cde94
2296 F20101112_AABYDP campbell_e_Page_160.txt
3ee8965f62db8e5b47e5c7d3a506a16c
c25330e193c42aa7908fd814d598f0e39230a575
55028 F20101112_AABXGW campbell_e_Page_156.jpg
756eff7388884a2c10281102a09b9add
154277b8f85a606c591b31d67661fc5ddfaffb3b
38162 F20101112_AABXZA campbell_e_Page_206.pro
9cf4e1159c97b4bbc561eeb7240361cb
b753249f4a5d1e90eba04f57ff3ff9151be10a6d
1642 F20101112_AABYDQ campbell_e_Page_164.txt
4a8e0c7bbd53d3d533c4b6a1cca69a60
71108772ecd364d756493ed967a74a06af278f27
46268 F20101112_AABXGX campbell_e_Page_157.jpg
496c6ed58e453b7aa2f34178ff4054f5
2ffba03ce4b288e806e7bcaa4ff10e695ea3f1e0
37457 F20101112_AABXZB campbell_e_Page_207.pro
f23edf08fd9481e6c5ffc4b41c476237
2c82f99b8cb7a922130fadef9c8225f177fe5b9b
48087 F20101112_AABXGY campbell_e_Page_158.jpg
eb1448d519703849bb3efc5050d79d62
81b492c0ac9694c12c81a39cbfe0d150bebfa4fc
8718 F20101112_AABXZC campbell_e_Page_210.pro
60c715633fb33d722bf07ecb1997d091
7d22b04aa21ee7f6f8b1dc0ff5af2bb2af4f1181
2590 F20101112_AABYDR campbell_e_Page_165.txt
34951ba473fcaf8afb56d88d5f228eb8
5082b6d10d1ffd788c1a2bef1d098fcf26d58d16
55583 F20101112_AABXGZ campbell_e_Page_159.jpg
e7fc0b6022163d5e725d79a12a1e1206
fae1d050b7be757efee23c5850acb0ecac6622e0
44757 F20101112_AABXZD campbell_e_Page_211.pro
5d4fb480f173b8c76929b133c1412784
cb20b3483e1af87ff5c6f97c22ef4570defeaa4f
2080 F20101112_AABYDS campbell_e_Page_166.txt
9ebe954aa77c1d52041d9d5c11351603
72d8ddc20d9d06fdff79c0999c8fe9cb73685ef6
37979 F20101112_AABXZE campbell_e_Page_212.pro
2b1001514bb17dae8a5d5c1ca5500320
60124b6a7864bd9c656ab790491a5cfa71e3dca5
F20101112_AABYDT campbell_e_Page_167.txt
7720527655f11f3fc527fa8c7bf164f7
4bb36594d4f718263abeb6303108c3996acb4ab6
36002 F20101112_AABXZF campbell_e_Page_213.pro
d1e56c3eafba5e257f12f63c0abafc18
5e80573c8dd6364d3d2a9982a63c0865e5288ca4
1977 F20101112_AABYDU campbell_e_Page_168.txt
81a62655eeef0dc337b26fcb57bcf515
0c3f30adeacd1faa936af0dc0c64f081e535ac83
25537 F20101112_AABWPA campbell_e_Page_087.jp2
6f30bf8ecd21935bc7bace69b5fa8dd1
9706361f02bd5d5eb1247380eba5958429a866be
15885 F20101112_AABXZG campbell_e_Page_214.pro
3aa4221ac49addd0b555cde76f5286ee
b6ea0bc24ce261cded4038e1f7df5b159eb6c428
2104 F20101112_AABYDV campbell_e_Page_169.txt
fa489b96b6886ab81336857507d0055d
e5d885063a5241f63b5ae44f1b0a1b546f7e91d6
2043 F20101112_AABWPB campbell_e_Page_142.txt
26bfed88db3fdcdf4dd0e493a0992e7d
0660512d8901d8d103d92feaf3735435c6a5bce6
32204 F20101112_AABXZH campbell_e_Page_215.pro
fd30e0279fe800436d38787fead5a497
72b084bfb49c4561eb85c32ac69f1fbc7079fbf6
886 F20101112_AABYDW campbell_e_Page_171.txt
dbf7dc4e8d86769a76f63e0b0dc59a69
82b68da37b58405684b5c72e3688fdf14ad17ce1
35729 F20101112_AABWPC campbell_e_Page_111.jpg
9688f9d789880a2cec36c3212f329464
bc4a62861b916b734eb263f09d6724fd89ec005f
1818 F20101112_AABYDX campbell_e_Page_173.txt
e8ffb0fbf790a0d10814885b623f1ede
a3cafce2bf5912cd2c0c59b4a8066d071fb28dbd
19942 F20101112_AABWPD campbell_e_Page_211.QC.jpg
c3a1a452de0baef44b8b7f558a702de3
d82f2e4d61641cf0dfd36b61e4a5ac7db5eb01dc
35072 F20101112_AABXZI campbell_e_Page_219.pro
e9b4a1a51300adcbc5ad4d08d88d4d52
5649c7148bcc322ab06490c746f7157d7c0d6146
2826 F20101112_AABYDY campbell_e_Page_175.txt
f333ad0f86cb86f9af4e1550bd1e315b
a783de0f4fa46302e27b4d17bd82f8d82b7186a9
17360 F20101112_AABWPE campbell_e_Page_080.QC.jpg
fe40944b2c292410e573b3fe0916f5e2
afc496385337ab2474f81bc001ed93151ca88f05
32415 F20101112_AABXZJ campbell_e_Page_220.pro
de14b6385b0cb19f187ef58936930748
304ef8d1bdc124b3b1853b2812498f5af5e955e9
1829 F20101112_AABYDZ campbell_e_Page_177.txt
2ec41137ba32b52e76ae071a9d8a8d42
f3ccf5c400fcebdcae69acc03e222f581c65a4d9
F20101112_AABWPF campbell_e_Page_216.tif
982f1267eee774023bc10daf4b96bae4
20b0665ac383662e9cf8067cadbff92de6a81b06
63269 F20101112_AABXZK campbell_e_Page_222.pro
113c2c4efe84dd760f9a2abeb1f5f4bf
dba133bb93b19dc69922c9b781875c9074ccd9c4
10311 F20101112_AABWPG campbell_e_Page_047.QC.jpg
0f6b4d84f5973566af4eda2f9b2fc3bd
40c995f5a3647a6c1b0a7c6268cf59086cb69a66
77123 F20101112_AABXMA campbell_e_Page_149.jp2
f6093a073edc7835df1d2eba715540eb
e6fdb5db9b6efd5caca96602767396e0fd070586
64752 F20101112_AABXZL campbell_e_Page_223.pro
0f55c91fe1dd51d20ed6fc90c1b1de93
d663919ca3032f6a6e1a3dcc5441b2196b49f3bd
31604 F20101112_AABWPH campbell_e_Page_101.jpg
13fbb550bcba823e331784baff3395a8
d0246feab54115d3c3cc24ab4e39e1679c5616c5
86234 F20101112_AABXMB campbell_e_Page_150.jp2
5216e0ee49a4dbf09fd92fda6324c68e
c49f81681312d3ff516c825e57ece42d8e92a921
57410 F20101112_AABXZM campbell_e_Page_224.pro
10de0130202ced8cd1c11bcde2b37a03
98f24b0fa5a032f235b3b04253d773520e13ab62
78251 F20101112_AABWPI campbell_e_Page_143.jp2
59efc729e61547f4bf9d44938aff3e13
98dbe70adbed44838b5d4f32532863d00ed959ad
76964 F20101112_AABXMC campbell_e_Page_153.jp2
4c9bce96cb4cf50eba77906a8f458fcd
05de7a4f6db7a24546af04fb5763e526218346a3
62216 F20101112_AABXZN campbell_e_Page_225.pro
75916a619475ab4e740ede92121d95a4
53eeba87d66658a7501d47cbb4c59139345d3248
68768 F20101112_AABWPJ campbell_e_Page_038.jpg
3b94be154c3e766d07d8fe818081a2f2
3fbdeb5146539bc2ceba5f1d52118317e1490099
54833 F20101112_AABXMD campbell_e_Page_154.jp2
479288da432f58a7cb3376f124ff128d
e3a1333b69b58ca430dc57db68eabb4e83ef35e4
11231 F20101112_AABXZO campbell_e_Page_226.pro
b069a44b808be67405c6c2dfa04c22e0
8c94e1dd79841a0c9080fbd7c18abfe9903d3a0c
7133 F20101112_AABWPK campbell_e_Page_071thm.jpg
e6a4ad6e4fad9e7e0188eee5c8bb7399
f2657a3cf1e16417b5d2212e6a05d30aecb88e40
103200 F20101112_AABXME campbell_e_Page_155.jp2
342c242403a0983337d8f6af2678afa0
1185724131dd89257f9b6ebef1fb4e2ac018ec4d
30020 F20101112_AABXZP campbell_e_Page_227.pro
ae4fc1480f7c3ae60d824b76c1eeed8b
2cd0c471f114c23865854cd3137be8117ce0d2a9
45420 F20101112_AABWPL campbell_e_Page_086.pro
5845a8996d9efe58dc1a22f1308fa396
1ec8ddd440c98c21715d380f9e38a4e3e2d7add2
72003 F20101112_AABXMF campbell_e_Page_158.jp2
b9a373aa5aa857c8401f3f9d3b5f936d
dc301d8b67db53aa483f1a939224888d46aaa12e
497 F20101112_AABXZQ campbell_e_Page_001.txt
44ce9ad72b32b25a172c4eabd6498454
9112dfa246f9ab159ac7c2a88a9a732e96ad865d
42363 F20101112_AABWPM campbell_e_Page_014.jpg
162aba0c6fb3333a0de548e3863c8c22
b7f082ba4d8f8ad3a0b94d4763f1ab867c72a183
79413 F20101112_AABXMG campbell_e_Page_160.jp2
32454a9eb9184e639ff2424215790e62
d673ef16bf4b72f5dde72fea5cff417e458a31c7
137 F20101112_AABXZR campbell_e_Page_002.txt
884042ad8fca7b0573ec716a498aa3ea
91d40ce6bd6b092315f4acb6350fc232cf5b9cde
74533 F20101112_AABWPN campbell_e_Page_197.jp2
0ae3ce0d6aaea81aa9c8cd124e43431d
558934c89bd90799e98616a6ac095fcdb929379e
22777 F20101112_AABXMH campbell_e_Page_161.jp2
32253431e338ef2326f2b32ac64af98d
ece220ea80865dfd7e4fefdaaec22cb20cf1738b
3474 F20101112_AABYJA campbell_e_Page_034thm.jpg
e25c80fe8bcad1434bc3cf1c82bc6973
3ac8d23e019766bcd9a3bd8238f688c5a543e5dd
1303 F20101112_AABXZS campbell_e_Page_003.txt
769692e8b27cc849435381ce4e46e56a
55986dbd73c4c268f1b234e1694895f22bb042c5
15536 F20101112_AABWPO campbell_e_Page_133.QC.jpg
6fa5c05da8272f750beada2577cae11f
f68484ab7b96ca4781e2833af7d96eef4eff2292
73931 F20101112_AABXMI campbell_e_Page_163.jp2
8c010028637c2fcf8f9ff77130d9c421
dfc2d9e407a24e5e1655c0bb9672ba437269e1a7
7767 F20101112_AABYJB campbell_e_Page_181.QC.jpg
d22cc1bfcb6bf70dd7048a5b7d8c30f8
4cd47a4cddfd5b308ec5a6066477b335944b13a4
4547 F20101112_AABXZT campbell_e_Page_005.txt
9bf01652ef0b7a1f5324daad8b4d4ca8
6a380f434636580f52e5d008aa92f6cc1d50873c
35613 F20101112_AABWPP campbell_e_Page_109.pro
daa377593eee2c446fb91866d41dab54
520517a2091759239694c94e865312b890dfcb52
62295 F20101112_AABXMJ campbell_e_Page_164.jp2
adefd9052bf8bac533d953e1c23b2dcb
8cccc13f28dc284a2d44e8bb361b349c8b7c83a0
21956 F20101112_AABYJC campbell_e_Page_054.QC.jpg
a21bcd8018dca85ed8b7e54f6e7083b5
5484c2f1cba7f630fbbaeec26443cbd50372cc2e
2797 F20101112_AABXZU campbell_e_Page_007.txt
a914956878fda3bb534d2206cac8c013
c98181f015cea58ffb8d84c8ba194a4d83880de0
119303 F20101112_AABWPQ campbell_e_Page_075.jp2
12384dff86e09d8e756522330c5632db
710bf6c84b8d0fa6942162bcd34e1dfe8856b9c8
78818 F20101112_AABXMK campbell_e_Page_166.jp2
ede5be8bcee4512e3317a6cb60cf86d0
93545dd04ca8e2be4460f023c2b4875a5e313e52
6147 F20101112_AABYJD campbell_e_Page_113thm.jpg
a38acba8c381495ab31217dd74c738ea
919c324ed53fa214a63db46a6d0fafe3730f35ea
1998 F20101112_AABXZV campbell_e_Page_010.txt
a479f87909ead796b0482f341f37d5ba
d874e66d112f6da3f0294c8a4b6d919e61333ef3
2264 F20101112_AABWPR campbell_e_Page_083.txt
0d1e6fa4a5d5be848c072574fdd4a13f
32257876484f78f8905c142573bd17d38df71a36
73013 F20101112_AABXML campbell_e_Page_167.jp2
d670c1e3975a90a76d189fe8a70bcb36
0fcde5ba0da9eb8c45400eda9113205a7d46c8a8
7099 F20101112_AABYJE campbell_e_Page_079thm.jpg
3c4651226dd514d2a56172a17c69b418
113e8ad9559590b35c09360205d045b789320f59
2186 F20101112_AABXZW campbell_e_Page_011.txt
04c4c63869a39eae519bdb23e56c43ef
a6a763b1e418140e8bf3f8062cc611c6fcd57bfd
2127 F20101112_AABWPS campbell_e_Page_139.txt
051ddb7d977573e6e73ca712d969de40
9c53572d62d316d1c3c5ff71b4f5fab4eb9f7337
75484 F20101112_AABXMM campbell_e_Page_168.jp2
06b6261d15043535bf23bf36f5ab58fd
2e68cb3658a147fb7dbb77504ec92950d506715d
5251 F20101112_AABYJF campbell_e_Page_136thm.jpg
530ea923989a943b714d999db910092e
1398a255bd5230030748ad5ca0d2ac0eaa35f0fa
2026 F20101112_AABXZX campbell_e_Page_012.txt
f0c5f322b282c5cf35d04f8a0d5fd506
d014b96815781a8b2e24744ca96de351ab053191
16135 F20101112_AABWPT campbell_e_Page_116.QC.jpg
44d318f52e1a1821fdc560c4ac2ee056
b90ad19f9d946b5d0dbf027645e280c24e3d5b45
81959 F20101112_AABXMN campbell_e_Page_169.jp2
aee3a6aea456004b48a92ba5d7892fe1
27adeae89efc8fa60c41defec5c0123eba6cf6a0
4786 F20101112_AABYJG campbell_e_Page_163thm.jpg
64df2daf29d5069c5a9d117c7cc22f68
a31378960843d99fa18ad2341e5059e9d55b3b03
612 F20101112_AABXZY campbell_e_Page_013.txt
1334755715eb8cddb6e6ac03445288a6
87f811c517a439d70fc765e26cb37f88d2280d71
2434 F20101112_AABWPU campbell_e_Page_009.txt
ae0a0316ad8f9f6164f3e17b711deaad
1a23abb2d1120224b9b4304d649fae7d5fc2b964
84665 F20101112_AABXMO campbell_e_Page_170.jp2
8415e5fa8149402874cf8718fcd88674
40ea624eb5ae49db0f84e074637cc53c88936f70
4978 F20101112_AABYJH campbell_e_Page_173thm.jpg
801961df62f8f67956dd86a8898779d6
c43bd40c6d2d7bde9d9d941cb25c5ccb63ced96d
157 F20101112_AABXZZ campbell_e_Page_014.txt
d52e51de366d2bf8891160e9e1a9805c
53bc84097717621fff0a057202255077a96046f1
50274 F20101112_AABWPV campbell_e_Page_043.pro
d0d63a8601e74b3de420d19c0e652ecb
a1dfd845fd3718b4f44b3a9592cfbd6f8e848a77
37893 F20101112_AABXMP campbell_e_Page_171.jp2
fd24186448c60ac3b01ac9fc99b2184d
94a828d8972f67ca9c23525ba67bfe6026f4db6b
24471 F20101112_AABYJI campbell_e_Page_077.QC.jpg
b604e43a50e8d4b4ed141ab160cf6269
0f8b519cfc5175c6a12d0178bc8700b072a32474
6766 F20101112_AABWPW campbell_e_Page_011thm.jpg
903555935729d09bfc4a76eeffb8906c
4afe5d29b940eb9806c02cc9217029772cafefc7
87642 F20101112_AABXMQ campbell_e_Page_172.jp2
56ac81a7073350e50b8a8e662e3640da
f5dd4324d1050e33919d0790da444114b382917b
23070 F20101112_AABYJJ campbell_e_Page_155.QC.jpg
8b8a0ea22c8aab01516954d91d8d866f
ea515571acf4f1bf9596459c0cef1cddfb815b70
39761 F20101112_AABWPX campbell_e_Page_034.jpg
06dce7946ad646e2732c0f92af4e0fd6
d61fc2c990129449ea175ab69d8613474a660a47
75493 F20101112_AABXMR campbell_e_Page_173.jp2
b3fb1327131684d084258301dbf31b0b
92c3974d934dc6b37709d4cedf67330a2fd4a522
4990 F20101112_AABYJK campbell_e_Page_196thm.jpg
1924a0eb223ee928eb67436f4dd9d15f
ace44de468ebff2c3c5558c6b92d821adc28e39c
2178 F20101112_AABWPY campbell_e_Page_147.txt
0bab7ffe2f3998c8a8f32964f90f090c
55d990b11235799f33160bfd664a8cd6a4e8e2e0
69620 F20101112_AABXMS campbell_e_Page_174.jp2
047fb101fcbf975a8ddeb692243e2ce4
4fff927799455c7462d635a54b1f39bcec0dc5d9
26139 F20101112_AABYJL campbell_e_Page_005.QC.jpg
0dd5e7b64e2a4c63865c9f9095b39395
3e7a6b87622d154cea82a6219ab4be9696c74e73
32201 F20101112_AABWPZ campbell_e_Page_060.pro
1c6ea62414bf1b2faa9784a02f2ef045
ca518497cc59a713a4c48275ee44884a3658aecc
104522 F20101112_AABXMT campbell_e_Page_175.jp2
bbeb3090e3d3fa73ee752128bec5a5f8
7cae0faee3677744ae80987e34b3cd57b55766aa
4519 F20101112_AABYJM campbell_e_Page_115thm.jpg
e5f9d79d27a5dbd58d4e12bebc953226
26a49cfd4af830e3f76337f26c9b8ceace7b0d1e
65611 F20101112_AABXMU campbell_e_Page_177.jp2
151dddf3765fa8519e70c4c453b8a29c
838c9848964a446a67c97df62177310188e74101
7507 F20101112_AABYJN campbell_e_Page_226.QC.jpg
6886c835d7276ceea211d056c105b9b5
79bd2875942881ed7ba856f53cd3e4170c3e8ee9
73054 F20101112_AABXMV campbell_e_Page_178.jp2
b4187b3bb4d130127ce03d0314e4222b
1bdc52e9a8bcc063f8900c49f06b2d2791ce09e6
18114 F20101112_AABYJO campbell_e_Page_166.QC.jpg
78f450420b1d2502060a8ea99a28b6e2
48c07c87436295f25ae6827ae95976bb30778926
32602 F20101112_AABXMW campbell_e_Page_181.jp2
b5f877b182b5e1bcd38923ec251d8417
2a258beff3224010443d4dbb249d9387d3d75f1f
5192 F20101112_AABYJP campbell_e_Page_156thm.jpg
c74c7417ea3ee4312942767347a42a04
f322f5e8f0b6cbd7ca726d537434d17bde673f7c
94359 F20101112_AABXMX campbell_e_Page_182.jp2
bf1d507fbc684772afa7ea6750a0c925
554db60e966bda33a2c12bb872d865d4db56d406
5530 F20101112_AABYJQ campbell_e_Page_218thm.jpg
6aad55ca965f76751609f886b994115d
42b27b316b8da12f1ef40b3600ca949372fa81bf
78240 F20101112_AABXMY campbell_e_Page_183.jp2
f8afd59f62480b47ca0be2a65c73d30e
46c8145fe9e75c16db37c1a80c125aafa1dbbb60
6706 F20101112_AABYJR campbell_e_Page_025thm.jpg
0c82c6927410fcddd65fd678f8790f70
a04358703f02ccf45e3a5aee7cf6c0212cb663eb
63945 F20101112_AABXMZ campbell_e_Page_184.jp2
219a4fb6f48cf23cbd0416e501a3b486
74117b44313ae48dc1f634c1986e03f1b8ead4c2
14033 F20101112_AABYJS campbell_e_Page_134.QC.jpg
928243ea235ee6c3c6e0a2554f404613
abee1c4bdec4e5b3449f0b32219c6274190e6671
16320 F20101112_AABYJT campbell_e_Page_168.QC.jpg
195a0e71eaf51027cdd1b55ef3497768
e155e055a2158de883e73d5d7a6daafe5b93b48e
3969 F20101112_AABYJU campbell_e_Page_051thm.jpg
21b72f631b7d78982a1fe8c4628001ca
ea886c35eb731944cded089d3faaa28e7f22ac3f
F20101112_AABWVA campbell_e_Page_124.tif
39287569bd34f76baf270869f2eb301b
67827ada553c050b69365d677637700bbc04aaea
26905 F20101112_AABYJV campbell_e_Page_030.QC.jpg
37dbc61f663792ee3598beca4f4042f5
3a7ab6047c3f9eae2e0c529f152bdfd770f7a286
2532 F20101112_AABWVB campbell_e_Page_225.txt
6f1766bebbd28262fa6abb5122448727
c6a242c6704dcf58100f9a5b8982a113f3b84500
13045 F20101112_AABYJW campbell_e_Page_112.QC.jpg
40600e06c841a78cedd98d7283003add
99c881773d2ef69cdbb74ecb8d802eead8445981
25872 F20101112_AABWVC campbell_e_Page_127.pro
8b402425678d1c37e37fac30df6e9de8
b365778a6429f4563aec1a903abbe973161bfdf8
2119 F20101112_AABWVD campbell_e_Page_067.txt
6e305a32790a50df947f00209ca5e921
67d9c02344f24d7dcabbf78275090d1d0668af4f
5403 F20101112_AABYJX campbell_e_Page_026thm.jpg
d740cfd7a3a7db7f82e08111d5a3a76a
d18ca5f255d4b12f3d56fb3fc0c671e687947f32
F20101112_AABWVE campbell_e_Page_093.tif
2c4aabac24ca296c128c991acfc3efbf
2c9aed91d809e745dcf6cced0ade258c0995ea5e
6208 F20101112_AABYJY campbell_e_Page_155thm.jpg
631f8e042e38cd93e9f42110697ec626
9b6df26272be22e66839db0e26ddb550d20892a9
15564 F20101112_AABYJZ campbell_e_Page_090.QC.jpg
9a690ceacadce58d256533d572ce43a6
1512d5497b1cd6d0ce63b577dfab82a351fb606a
70820 F20101112_AABWVF campbell_e_Page_007.pro
8b8d313be297a0ed8bc7e1b8c66ffaad
136f6c8ba545087de0a11d9ee65f64d7cc92ac15
253820 F20101112_AABWVG campbell_e_Page_033.jp2
e3961f76a644e0ba9e5a8f49706f52f2
8853e0865d7414d8698d473a5e98d0af8ad67618
F20101112_AABXSA campbell_e_Page_160.tif
b3bf5a087ca348c8a5e8cc8b3e0dfc0f
956b49bb68aa9c94e7bebd8a0e7b167f244548cc
F20101112_AABWVH campbell_e_Page_225.tif
ab0b1ec279a67fb93b31c27bff548b14
77c347a7cb8e1531d84b9b544bb9cc25b2dc4e8f
14945 F20101112_AABWVI campbell_e_Page_045.QC.jpg
c21d68eea64a894675308fccd5c09f4f
5f0102f8a711e039328388f6c0777ea4020740fa
F20101112_AABXSB campbell_e_Page_161.tif
ea68f84f04770cea7a6feac575799d24
7dc72e664cd5c33b4cfa4e752120e9f8961696d9
5024 F20101112_AABWVJ campbell_e_Page_058thm.jpg
9a5a178cdca5593134a166d0422dfc1e
a51b088e4596d540ee2200d0f00198ccb4449a87
F20101112_AABXSC campbell_e_Page_162.tif
44c7538189f467a37f4193bfcb4445b5
91d60fc24be2629ba1b4fa6fd63dc86e1323c74d
112044 F20101112_AABWVK campbell_e_Page_067.jp2
082f5f0a19afb1152451d3e31356114a
275eea754413a5a5b25cb43e801e5832e957bcb4
F20101112_AABXSD campbell_e_Page_165.tif
f5d232205ff786dc3e671ecb97ae4681
93f120d24379836fc7936d2dc985d84e3857aada
1965 F20101112_AABWIA campbell_e_Page_157.txt
fc90ee75bee9c8e9ec9facb7c38fdfab
2d098c7bb7070e273d202dd7d8b5e641156c1404
58130 F20101112_AABWVL campbell_e_Page_019.jp2
73cbb63ce20c4e1d494044125b9938b2
9d1b832f84c4bfb8d83c6cf1794063b2d954d5a7
F20101112_AABXSE campbell_e_Page_167.tif
67188a312963c1d11103408c54615f0f
104e3235dbda10d0c2b6b41526a573cedd54e41b
77719 F20101112_AABWIB campbell_e_Page_068.jpg
a4958b59b91cffc2c3486f6c297c9dc8
ff5a62220be139c8fd3d8117808992ed64639c7f
1942 F20101112_AABWVM campbell_e_Page_109.txt
f956e03c6a5442ec43dca15c68fa7e39
1a8572030295ed72500aa3a4de31161297a07c39
F20101112_AABXSF campbell_e_Page_168.tif
1d084bd41576537908499cc93d33d22e
3b133b5dae7e3ba2893e0fc5c9914fadb3c401a8
781 F20101112_AABWIC campbell_e_Page_181.txt
02d835f5b401a7904e448e79a8483423
a6e0170cd621543f08f0b0f49eaecec8eb60fafc
68197 F20101112_AABWVN campbell_e_Page_157.jp2
6f7d5e62b372ffae4e6d064d7e695fbe
cc26a77c1164280796f790093c7881cb065a9043
F20101112_AABXSG campbell_e_Page_169.tif
167f04bc4c8337818a2f6836dcb018fa
b90d3f87d4bdd14226a37469eee953098ef4cb6d
16017 F20101112_AABYPA campbell_e_Page_149.QC.jpg
540d24b8121126fb8b191d3c34379f77
4a0fb9148e3c30f20e4a755dc09887c6c8ec72c9
54045 F20101112_AABWID campbell_e_Page_126.jp2
0658ca6eea2bdf6072b3285459257aa1
42d22a7788136c8d85a91ae8326e6d46a58d5dd0
24317 F20101112_AABWVO campbell_e_Page_195.QC.jpg
c575c5708d03182b08517ac116783b5f
054f94b965efe261f5c3a2615678c4dbc438460c
F20101112_AABXSH campbell_e_Page_170.tif
df58d6e713854c96e4f704dd6f353364
cc7891fcf2b7c4929b6f5fc4e5a852a0bcf12fc5
16871 F20101112_AABYPB campbell_e_Page_150.QC.jpg
1f753127494b7d3eaffcb8f3fc6c1b4a
88ecc039997c3bb0c5d94a68f19523543a4c3696
1051985 F20101112_AABWIE campbell_e_Page_005.jp2
57a9b859cf6153cd73b5f41da216aa37
5d9cc7b2ccc393b12e7475b6b5d67daa136e4bb1
4999 F20101112_AABWVP campbell_e_Page_055thm.jpg
cc1333d011fe8319bbd800f60e1042d8
6070366a6d64d2e266c753cd90f696ab57c553ff
F20101112_AABXSI campbell_e_Page_172.tif
bda2ed116dfe952b5eeabaa518af2442
a6e0db05621052976db0ba4d8d3a8af013980b59
5047 F20101112_AABYPC campbell_e_Page_150thm.jpg
c0fb46914b7efa67031209e25914d20a
e8a8d088eb47b5848cd42a64be7333b86e9ecc6c
F20101112_AABWIF campbell_e_Page_135.tif
68a8e6669a166a1de06b5088b73e1b06
88a0b92feb9a46fb8ef173f94ce99b503e6bc7f8
4316 F20101112_AABWVQ campbell_e_Page_129thm.jpg
8e4b7968cbc780f8e19c37b9822decba
d27eee77e3737d1d09efc95a08fd093804c5069a
F20101112_AABXSJ campbell_e_Page_173.tif
00e62f281618fd6eebd312d69575485d
825e8aa8d360a9f858c116c529654317c6c8d366
10700 F20101112_AABYPD campbell_e_Page_151.QC.jpg
bd5d42a4f9a4a905f91891e490c8fd28
48606587d73cf2c24b5ae6d7dcce493132f25db4
F20101112_AABWIG campbell_e_Page_051.tif
5d3debe6af8c334f6f5f62a37d335371
1f0d3097f8658d317c1cc040aae1164a1a27d64f
F20101112_AABWVR campbell_e_Page_106.tif
5663f5169907bfb971c737e60cea4120
db7b47aa62e040e7eabced2c0ccb15ab907ecea9
F20101112_AABXSK campbell_e_Page_174.tif
948e0e7c586c9bb7765fdc5e84bc8057
d92d5a68821f4f0b39377ef152662ac8ab3f136f
14436 F20101112_AABYPE campbell_e_Page_157.QC.jpg
8bbf4f25296bbdaf423af30ba77ec9c9
cdbd850f982e779317a9e69974b417e1c4f839d5
5794 F20101112_AABWIH campbell_e_Page_007thm.jpg
9058acf579c0eacb7a234b000da410d2
36e4dd7edb5a52a0d5af2cff41e3f2faa56e6a92
78091 F20101112_AABXFA campbell_e_Page_075.jpg
8da64056dbb2b539c88828a49c344a6f
8b5a48a8c9ca64275ec046cfc4e3102052741ff1
41099 F20101112_AABWVS campbell_e_Page_142.pro
8f2d8a7ee0c06194227601d813760896
8b92bf98a5e8528aea39517abb33ec20de3b962d
F20101112_AABXSL campbell_e_Page_176.tif
cd819e095940fef6a44612a8eea45cd6
b88e348371ee3f59a0ba9f1c6058f012ec54157b
4629 F20101112_AABYPF campbell_e_Page_158thm.jpg
04c9691376738cdeca08479fcd6bf5c1
217d70f70d8dbfbbfc0b0393b38589090b2996eb
4879 F20101112_AABWII campbell_e_Page_188thm.jpg
16b0239e11e9f240dff207e3e7aba1a8
11bfa0a0889efec9eb465bbbd492b5a453e26465
74560 F20101112_AABXFB campbell_e_Page_076.jpg
3078f3b0b8da6d24dd9789c71c780605
d13cf72afaca7c97f54cd7dea6cbc71281a3f7de
6942 F20101112_AABWVT campbell_e_Page_075thm.jpg
c038c231e05c025d2e7cdfd906ab5475
a630e0649cf36dd0e6dd760943a3347244f49d0d
F20101112_AABXSM campbell_e_Page_177.tif
b1ff40dc6c909e5d35f63635affaebd1
5174a6ba760461f618b188503231d63fe3966b08
5109 F20101112_AABYPG campbell_e_Page_159thm.jpg
f1fe146e2685fb051609feb9e1875345
5262c18a7ce7d552ddf085ef035a5fa3d8c37dfa
1880 F20101112_AABWIJ campbell_e_Page_104.txt
67f0cbda4c5b6e7aa97d17b728f6ae27
a6558ffb3d96321ac87d28585d007a53365e0552
73969 F20101112_AABXFC campbell_e_Page_077.jpg
742651410b574093cabc395d7877ad16
867db221b734f92c5d4fdef3ae2e04f3fd3880d7
35126 F20101112_AABWVU campbell_e_Page_214.jp2
8c67313f1c86bc77b2328b0247e27ee6
33bb5cbae396f77af43127569df69a54f1125b28
F20101112_AABXSN campbell_e_Page_178.tif
e006dcf4aeac6ce4484b2cba5e378d79
6ad0613d4ab55fb6fe4146a1b070a7ab76f6e1e2
4869 F20101112_AABYPH campbell_e_Page_160thm.jpg
5ba5f92cf81e0c434e7f1152586b1238
5d0dc84f4c86b0782afa4770b8b9575f1dea827c
1051974 F20101112_AABWIK campbell_e_Page_007.jp2
ca0f915b4eac10c1869cfadfd0d33ed3
f738ae16fbe26f93d0c606ddcae48970cae517a7
82748 F20101112_AABXFD campbell_e_Page_078.jpg
f24cf569211999fad56bc9a4b9190e8b
831f6f5d38047088082e8efe30b5dfc1bfdc112d
F20101112_AABWVV campbell_e_Page_121.tif
7ad08539a7ad16f5df91189d4320a7d3
0f3090d3ff8a4d8632cb855a94a1d0ef8821ffb0
F20101112_AABXSO campbell_e_Page_180.tif
1e3752723780d195d68b4b4689553a0a
a8eb7626fb6590a38dcdf199ed52f43918b69b00
6162 F20101112_AABYPI campbell_e_Page_161.QC.jpg
03726af14fa8c7fc9dbd998045e6de1d
4cee5036a9b24e08b501f48a783464e85d2c9b94
37660 F20101112_AABWIL campbell_e_Page_098.pro
19809b41d94f86e530ea422f6e7fc759
bdf2efac6399ef48b4609ca1f68b83d833ed07d2
65457 F20101112_AABXFE campbell_e_Page_081.jpg
d651aa13b62e1243e0a07e9888fd4525
60f186be3809bd3776e5dcac6b75543b06ef0a96
25381 F20101112_AABWVW campbell_e_Page_076.QC.jpg
491967acd500e719bc1471b363c5fa3f
c20acc07697a52066242f1b26dbfc586558cf7e8
F20101112_AABXSP campbell_e_Page_182.tif
4eac9b35d9f3fef2b1392db69ad29227
7107a53a21d4e9b884f762d7c1be1c85ca3a2eae
2147 F20101112_AABYPJ campbell_e_Page_161thm.jpg
558a0a0e208018f8167131df77ea49d3
2fbecd482768f3b6a0ff7d5bb3344177f02d6e8e
23026 F20101112_AABWIM campbell_e_Page_007.QC.jpg
b38b97711fdf32c67bdab15ab504f5c1
e5788a8f2537c884a00da9a61979c4a153630c20
50088 F20101112_AABXFF campbell_e_Page_082.jpg
30fe941511c6c2c3d24c113deeed953f
346aff18fed692e3602f729113dd6a3ff0c811b6
73894 F20101112_AABWVX campbell_e_Page_145.jpg
b95ea22db533dce2292fab832f872e72
93c5c3eb6f6fc49b208fe0f7deb983ea2b8249c6
F20101112_AABXSQ campbell_e_Page_184.tif
8e3a5c6a4917df5ebda24cc873827ee3
c891c3b88382d7527a9573e93e931bc11a4af14b
F20101112_AABYPK campbell_e_Page_162thm.jpg
bf3a98415aed303d1f6d738d36cdcc8b
50eeb1bc811183ded570b3a772ff73e97cc63220
15920 F20101112_AABWIN campbell_e_Page_227.QC.jpg
d6cb5882fdb13d27384f92f872c8aa8d
6b85930422b7bf7b282cc0b3fec1acf1ad9180d8
46641 F20101112_AABXFG campbell_e_Page_083.jpg
7056d7c5662c17372530f85488c81250
663843894b70636460f17a16df34adbf179ef5d5
F20101112_AABWVY campbell_e_Page_183.tif
7db0a0301c357b12724d4f38f65bdbed
32cf3e38f880201ccfe0468afdc23de79cb134ec
F20101112_AABXSR campbell_e_Page_185.tif
ea0bb638bdffa7f9e3cd5d62cdda74af
ea6b8fc0e55e47cc2d76816feb415160eb72c3fc
15213 F20101112_AABYPL campbell_e_Page_163.QC.jpg
932d76f5debc796fc00b3ba0d1ede097
765c870c22d48d55718b084a0f6ede4712572564
F20101112_AABWIO campbell_e_Page_004.tif
6771ad9bce49da4b4b3d7bfafc5f4217
c62fd56e010c9d090db56bee39f3b31a6cf19e33
49573 F20101112_AABXFH campbell_e_Page_084.jpg
b126df827e3e6cdb69e9b1276cfba28c
b79219b22805d3dc87373ab924aa2d3c2a84b1c4
42310 F20101112_AABWVZ campbell_e_Page_172.pro
0e6a58f7fb1a5b1ecfe9bc7053816887
629c82a3e6d741627c038dba3ffea4892d78bb00
1728 F20101112_AABYCA campbell_e_Page_091.txt
09f8addd4b89b99cb7d5568e52cbcbfe
cd6984da49d2ea6cc6c9035d0596f4232e0ead20
F20101112_AABXSS campbell_e_Page_189.tif
ed6c5ab5f3918244a2a3f0dabc33163a
b0f5fa4d95ca3bf6f83f7b7be24ee8fd425cdc63
3979 F20101112_AABYPM campbell_e_Page_164thm.jpg
6f5f3db586227daec67a1ff82d5261c0
a78ba40385a6dc1de0a895afec045bc4c6b8a825
49454 F20101112_AABWIP campbell_e_Page_106.jpg
4c962f14f81273249105526decb8669d
a317f235076a5b1421135c3940bc61c2e5f81aa3
44702 F20101112_AABXFI campbell_e_Page_085.jpg
d369bb5c21f50f8e562cda9bb3a6252c
f92cbd72f41cdaf5276e0b153f993b100ab3b65b
1855 F20101112_AABYCB campbell_e_Page_092.txt
135700cbf74bea98e03a64abb3f20399
1e1f8dd56f2fd097b16af8ae43def188dc6665b8
F20101112_AABXST campbell_e_Page_190.tif
f14f2ac7571c7d3a154061e17d6b9ed7
7d96ab2595fc2f23ba236eb626b8682d7dcaa718
6314 F20101112_AABYPN campbell_e_Page_165thm.jpg
ac327445d9e3691617bb57213f1e60e6
26ccedf586024a058e05185e836f6933ed9961b4
3923 F20101112_AABWIQ campbell_e_Page_200thm.jpg
3dea40c80c7cb7937bd374329868f4c1
b79c0c35b1cab83bcaacceee57bffbb715b2162e
48541 F20101112_AABXFJ campbell_e_Page_090.jpg
3d14c0e32c389f38303a43e749537e27
4608910a57d45ce0769ebe3e81f5d91f8ea88fe7
F20101112_AABYCC campbell_e_Page_093.txt
a23ea7f5e42762b496f4b3fd2534a4d5
53b90df02a830069390d44cce03508278a8d0c76
F20101112_AABXSU campbell_e_Page_192.tif
dfd51b6da569e052a828861aa3f894f2
9100ccf9ea8282cefa9af8ea760e2de95cdcd21c
5281 F20101112_AABYPO campbell_e_Page_166thm.jpg
c1334069a012b8c3bb194473fcb4f85f
124b1677ded1a9196bfd5d21e5628c0cbed12502
F20101112_AABWIR campbell_e_Page_117.tif
b3f3e444a91a09bcac36e9c4febf1ef6
52a597487146c1cf1d7fa4e14afcdc6f8cd7ae59
48724 F20101112_AABXFK campbell_e_Page_091.jpg
9a247dd1bf76a76dc602717ece44a1a5
f2aefd48fddac196777f22e616ed5f8a82ed81d5
1624 F20101112_AABYCD campbell_e_Page_095.txt
274d7c53c04e08eec4cda7fd7cbae127
18da805cb12c731c63a022ff70e5e0ba34806a8f
F20101112_AABXSV campbell_e_Page_195.tif
f1a3e4db54c7dad63c3695e18eb41c16
a360e5e145f16ff7cf55f85ae2f7792c1290a74e
15832 F20101112_AABYPP campbell_e_Page_167.QC.jpg
ac080d46a1c198b9428fbf8cdf44891f
ef7f339c0d909f21009c1db0db3f97ff68f0d9bd
1489 F20101112_AABWIS campbell_e_Page_122.txt
fc445954eaf1226d58071c1454827c2d
1aa21f96b01ce5c6087549a81767eec8c1a74f21
50094 F20101112_AABXFL campbell_e_Page_092.jpg
1e5ca47116190a25b3a04689a6bd0243
7111b1110443241a8fbcc2d491c8711146fceaa7
592 F20101112_AABYCE campbell_e_Page_096.txt
c33a0c27b4e0f642be23f6934c5c5047
c22a136cee51d87e3ceef6b2a6b8d9ac9cb5c9dd
F20101112_AABXSW campbell_e_Page_196.tif
f2174096efb2936ff670da9ac97c124c
ce7a16b0ee7ead25a3b2dce2374dd7a72b3c9d38
4763 F20101112_AABYPQ campbell_e_Page_167thm.jpg
1fb5fb2a11b2f4dc4b4fb1916856e38f
e18b3b6771f6f2bffd82442c9a0bae55c4838455
35684 F20101112_AABWIT campbell_e_Page_019.pro
c2e3b6e82c06ee0d66b0b00b7682ebf9
0026113eae3ecb1386eb5f4bcf9b2682f38e392f
16200 F20101112_AABXFM campbell_e_Page_094.jpg
255671032890ba0bcd2bfc453011ed9c
9e7fcc93fbcf9bf9e13afc03004f1b845eb75254
2306 F20101112_AABYCF campbell_e_Page_097.txt
f524a0825b3e3958d8fa216628dc5c03
1a183f8c0a433fe5e765284314593d458a51d6ca
F20101112_AABXSX campbell_e_Page_197.tif
6ba7b45ae05a6f9a92f06292b8dd389b
21713808e9b21ef32b8f9d860d2909844b0b9ba1
4841 F20101112_AABYPR campbell_e_Page_168thm.jpg
5821b44ba931ea32dbd58be5ea663368
f2feb614105edc440f04f4643deb0fb6cc23ebf0
50978 F20101112_AABWIU campbell_e_Page_116.jpg
2b53fc96569a30296b77cb899666aada
b4638228d97026ab7f29402307bdcbcd2941a9e1
59813 F20101112_AABXFN campbell_e_Page_095.jpg
4767b94e8c5ca941247b0771eeba98f8
ab1788733f761716b84055e4d274bfac92c56d71
1691 F20101112_AABYCG campbell_e_Page_098.txt
d60953cc0a02f06ddf6af16dbf99305a
e313a4a5539181386549278b08c573f176783472
F20101112_AABXSY campbell_e_Page_200.tif
830a8e5f7c7451b94c80063c52aec54f
48d3f9356f9d94505a4fd4c692c960f930bc5f6d
17410 F20101112_AABYPS campbell_e_Page_169.QC.jpg
bae8f17e3ebcffb479cda43b7d09c352
bca84fba6320419da9fd36049e379b6defaf0e56
F20101112_AABWIV campbell_e_Page_137.tif
710229fa55255892d7e1fd2c15cf9277
7d76ad9ecc7abaaba8a1cb33df3af5ee7ad0caf4
26018 F20101112_AABXFO campbell_e_Page_096.jpg
c44ce2deb6f8bbb58c313e70c5bd867a
b6515c2c4954a464ee0688464b199b2c10fe2055
127 F20101112_AABYCH campbell_e_Page_099.txt
ace997a195c8c7bac44d6faade43aefe
72b00fac0cce4bddc1789360d30084a6a7291cd5
F20101112_AABXSZ campbell_e_Page_201.tif
7c54a598d9c815dc3b016691fea51639
50cc3c82e0e18b06bb4a7b35660b11be3c881516
4979 F20101112_AABYPT campbell_e_Page_170thm.jpg
15037787e5d9bde6ff1b6bcf7060a6e4
89f47c3a066904ce0aff0c3ab5f56b39b28a4834
F20101112_AABWIW campbell_e_Page_035.tif
541d06bcd950e88d6166ac2c0047c1bd
4c6b4d7126f13ea4c02c3a572175f42be9031d3e
46961 F20101112_AABXFP campbell_e_Page_098.jpg
786a036dcbef7ecd2fe532b83035bf6e
0efadf2370d39d38b317424830bdcd83116efed2
973 F20101112_AABYCI campbell_e_Page_101.txt
3ec90989e908441b4f82b9cfbdb3b904
0dde55114e8a315e8cf1f546078001d79b1d5ec8
14009 F20101112_AABYPU campbell_e_Page_174.QC.jpg
30ba0019556d65952e87992bcbc33ee0
0456151383918d0293fc5a033dea003d7acfe81a
18517 F20101112_AABWIX campbell_e_Page_218.QC.jpg
35af048774194322d0c11749979f4222
86a08f2713ee5141aaa33b0a5b1d0f0f9bc87986
28899 F20101112_AABXFQ campbell_e_Page_099.jpg
91d19c353b09e4b823fa17a5be3ef4f8
babbf6ae19bd1516f2b19942c69833e286da7e3d
2555 F20101112_AABYCJ campbell_e_Page_102.txt
636b6cf51757ff53b29261cdd60e5fe5
20aa976c46912b0f4346b6d633b30baf14677412
4445 F20101112_AABYPV campbell_e_Page_177thm.jpg
b65cd4c1e6775ad0b279a66173b358b3
f0e0f8c2091fe92761d4791ca2e379e5b34ea4f4
71624 F20101112_AABXFR campbell_e_Page_102.jpg
3d77ab7a73a8230819703c343fad08a8
5c9e0d83b128fabc2a5a11a44c12877e5569dd4f
1895 F20101112_AABYCK campbell_e_Page_106.txt
f3e8f807a0d53e5f060b38c963011103
ed94ddde6e836ae01e743c64807c6fba491d4bba
15576 F20101112_AABYPW campbell_e_Page_178.QC.jpg
0c14190c52d987d5a93f5aba9cf76644
3b36c5d5d920baffba0922075c731b221e8343ce
55873 F20101112_AABWIY campbell_e_Page_118.jpg
f206c57c84ee14dcafe77d57184a21b6
a34d8f36e7d2c4f8ca182d58d5f27fa98876aa50
55277 F20101112_AABXFS campbell_e_Page_103.jpg
5870099477bee16eb037abe16ae50dca
7f5901ba0e127ea8075d744c67d5499a127ca0c1
735 F20101112_AABYCL campbell_e_Page_108.txt
9a6678a596a707e8fdb0132759c86e4c
b7bae640933017b1c603b8c39f6953d9d915ba7a
5600 F20101112_AABYPX campbell_e_Page_182thm.jpg
2c1a858dead996a37cebc891fda7f24c
2d2e118068ede347ee08de518013ab76813bf782
100300 F20101112_AABWIZ campbell_e_Page_057.jp2
c7da8f8d7a72c7491cb1f60ba0f72067
16fb993d5582c40e851d6341b8ac7886ffe49817
44224 F20101112_AABXFT campbell_e_Page_104.jpg
1b2c0dc1585570a8d01fc94aae121dfb
b5a5c3fcfc41dd5c20672e77452f86f386536722
1240 F20101112_AABYCM campbell_e_Page_111.txt
8c0f4d4743815c01357499fbe3326183
61e3e20aeff6f66dc0caafc48645a5ef824c12b3
4078 F20101112_AABYPY campbell_e_Page_184thm.jpg
3831434ce8b9fd30792f39fd2045960a
7cc4d0c548949e2b42fda8e2792464cd6cbbf37b
2804 F20101112_AABYCN campbell_e_Page_113.txt
3ee20615af952272ab68cc1436df77cd
cae0189ce323596534cfff58dde37b56f308bbeb
22976 F20101112_AABYPZ campbell_e_Page_185.QC.jpg
3575ca785d1864ea2a471ea05d8e764f
cad8fb83545d4fc0944915bf6643cd7622242c8f
54450 F20101112_AABXFU campbell_e_Page_107.jpg
d1d1c81731ff5de0a88f462386daecf9
1ffd51f58c58f54cc4b2f02701d579ace4f93056
2132 F20101112_AABYCO campbell_e_Page_114.txt
7a364cf1f0e78c49728bcb9046b9fa51
527aa7f83ff22cabadcbf8fda8d8d264b5e288e3
25044 F20101112_AABXFV campbell_e_Page_108.jpg
9079477eae6a8dd3d817e7b51bbb2480
d9fd76f74baf39f2b9283cea18c942f48fdb10a5
F20101112_AABYCP campbell_e_Page_115.txt
391117be3a8122762514968746a43915
52d194bcee452a4029bef072ae4045cfb62601ee
56304 F20101112_AABXFW campbell_e_Page_109.jpg
5d20a90be123822c51256435286d8b91
d7199f3dbbb1f2aff73b609f92c33af4fc561dcf
43115 F20101112_AABXYA campbell_e_Page_170.pro
6de20f4f0cbd381b3b8fb48819341285
a744307fff9f63e7acb54ecdd082feaffb838f0e
35276 F20101112_AABXFX campbell_e_Page_110.jpg
053634f0d32ba0b3f1aa60f938800459
e1228e272abb5b3b38a03fb79540326a0d0b81c0
37304 F20101112_AABXYB campbell_e_Page_173.pro
3a6d42b08b1379b07156b5a6dc09a6e2
175067767f54718a07401d65a92cddc982c8396c
2060 F20101112_AABYCQ campbell_e_Page_117.txt
dc9620880074a533cd1992eb09a3a191
42c8979ee791cc71597039e7ff7231f6f350207f
40436 F20101112_AABXFY campbell_e_Page_112.jpg
e8f22f30a8e6d8e34427ebc5b60aa656
61676bf76caface327be93a704f6e029b2f9f34f
32637 F20101112_AABXYC campbell_e_Page_174.pro
c7d39fcef82d49fafa777debd9a53314
8d003e9f5c1ef37bbdccc0d752956814fd2cb42c
1899 F20101112_AABYCR campbell_e_Page_121.txt
115c4b95c0511cd270de1991bd0f0674
4a4aba404b3dab6bb11acb5b3e4bdef75fd15374
47109 F20101112_AABXFZ campbell_e_Page_115.jpg
624d0c0c358734b66125038a2568619b
cc8b9ada982fe8e661451cab81c0c72a159e5319
55551 F20101112_AABXYD campbell_e_Page_175.pro
4df4fba49eeb8a518b88f0bfe0852652
a15c781fa17686c7aeaf9a21497b75f0ef642a0b
2677 F20101112_AABYCS campbell_e_Page_123.txt
eba0706892bba8e8c5547cd5f5f47738
272c88a80e7c318968e7e3bd60b8d19ba1b58f8c
37875 F20101112_AABXYE campbell_e_Page_176.pro
be47147c3fefe50d30ef20c0530333d6
1f831d86d4fba11d0efb6bac7133fbaca001f850
1901 F20101112_AABYCT campbell_e_Page_124.txt
ffbc34183e2b3b683883495951a901e8
dc2e831015d339e1d3c02cae05bd6100698cb28c
31511 F20101112_AABXYF campbell_e_Page_177.pro
76ee70cc78ac9d3e0579ae3917baeda0
8705316471d3d9e64fd94485f10b811ed1f50548
2012 F20101112_AABYCU campbell_e_Page_125.txt
71bf56c726b7efcb1ea5a41b0df96c38
ab84b54b64a04425d60b2735674385f57d807bd6
2301 F20101112_AABWOA campbell_e_Page_107.txt
6129f6f59fabc8dce2bd925d844c8fef
bac5cb46682cecfb298fadb9aa2a0658c1225770
36355 F20101112_AABXYG campbell_e_Page_178.pro
312fdf1b7d322ec6b5ac318955b07f80
6074fd469bc3f52d969135dfcfb128797df5b6ab
1767 F20101112_AABYCV campbell_e_Page_128.txt
402e0c29ca383e5e3b5680ed2ac3c8a5
34db4471256ae5dd8423bf639feb570bff211db4
72183 F20101112_AABWOB campbell_e_Page_029.jpg
94282db402f5e7df59ebfc62bc32fd95
5bc762b1fc2c5f61f7457e31bcd5399b1d00b14d
F20101112_AABYCW campbell_e_Page_129.txt
33e7f8dd08cdd9963b92d26555ed2a32
deeeef3d55a3c61ebc56ffafe0f8a14dfa01e8dc
27549 F20101112_AABWOC campbell_e_Page_013.jpg
2ea384a8a7c23a5b0cf0c58b5256972f
1690598ef352f315d58f13871e51ecabb83d5fac
39514 F20101112_AABXYH campbell_e_Page_179.pro
0c7b668ee907cc2578fa53b91899798f
09c2219615fdca22c674c0562424e1af2b4f1a70
F20101112_AABYCX campbell_e_Page_130.txt
f401f49d9fe8d5e048dbba95ce57cac8
867d70f33e91e52507e67a838cba524d79c494a0
2505 F20101112_AABWOD campbell_e_Page_181thm.jpg
ea38688636143d0aab9649580b01efd7
0ec0875e515bc0169eb1027e43cc97ec2a438ed9
46839 F20101112_AABXYI campbell_e_Page_182.pro
a7afc0a7deb5443521c62823568cf9bc
b9702217ba5f3dc24e965d7207a7c7ea99feafff
1710 F20101112_AABYCY campbell_e_Page_134.txt
569ddea4d7e283e910d8ed2fc56813cb
b28559c870a5aeb83f08788a091c1f4e2325070b
4489 F20101112_AABWOE campbell_e_Page_227thm.jpg
1fd1d66ca4edbea5ef9fcc2832de0f36
be2defb5ef218f78e4ff88658938a91dfbd9755c
37528 F20101112_AABXYJ campbell_e_Page_183.pro
004caa01e9e27ce5035ff39bdcfe86de
1894274978c436b3c83b85a3f360d1a2b63865b3
2176 F20101112_AABYCZ campbell_e_Page_136.txt
34d4c2c854d7b2f301552c4f84f72765
b3f5033e57e2c92f5c8e4486723ccc61a42286e6
39030 F20101112_AABWOF campbell_e_Page_166.pro
e03e319e572313a0f0589d8f8a89c0b5
ef8cae045d92679a38350d8ee1ed81e97509f84e
30036 F20101112_AABXYK campbell_e_Page_184.pro
edc790887739ee642fea699d5be37d4f
c1367e41110c82d98fef6bc2b6be450400644fb6
22579 F20101112_AABWOG campbell_e_Page_031.QC.jpg
2a3b20c10ae17a0ddc7da3d72276ce7a
4697ab7df7feaf38660b6705ae042f3e881f8948
71976 F20101112_AABXLA campbell_e_Page_105.jp2
e2d192004854ddf139181416e333e769
0115b6c328ec1e673c99cdae23bd9aadcb7a5ff7
39474 F20101112_AABXYL campbell_e_Page_186.pro
ec33abfcc7ef0c3869304f17d5d2359a
dd542069d5b44546dced5c8bf2866a367a7a4703
1425 F20101112_AABWOH campbell_e_Page_110.txt
22b2e8eb4d7a917c7d352cf4291e7e6a
e89431ac0f0d11719de43378579ff7a777b428cf
84822 F20101112_AABXLB campbell_e_Page_107.jp2
1fd9154207dd196725501fe213305175
4dde73f4139b30139cb21f0487d6e1d48c202aec
32217 F20101112_AABXYM campbell_e_Page_189.pro
630a0896ad75269768baebd23b5327ec
545e81612c04c6ca69990517b516f1bc3d0a1536
16842 F20101112_AABWOI campbell_e_Page_140.QC.jpg
fabb62c82f66de56e365c04d56166f1a
b71832c00359085272a3eac747f3315b018cc2ef
79505 F20101112_AABXLC campbell_e_Page_109.jp2
511ac2709f16eeff3c726b1c2ef49957
3f7c53e12f03126d018fbd63c9a8684dac95b0c6
42514 F20101112_AABXYN campbell_e_Page_190.pro
81e3133b87386f463c8543f455ced5ba
91a0c445ae5699615be8a401fffd4619aad34d15
34320 F20101112_AABWOJ campbell_e_Page_188.pro
11adf5603ce5b2373732d41d9ec9b253
21c3805deba8afbe6908d72d127389ed8cfe99ab
51107 F20101112_AABXLD campbell_e_Page_110.jp2
360ce7f4bf53f93aeb7a786afac77731
194fc803cff42ac5acabecc9b386f16340cee2e2
27123 F20101112_AABXYO campbell_e_Page_191.pro
a1dc2e3ba030135f6c7175c4bd05f3f1
d87e3f903a986f42d9ed65f9d5d2509766900e59
39633 F20101112_AABWOK campbell_e_Page_139.pro
1a671aef7db01885da2ef849155a696c
2fc6a21c3b7fa5094430b9855a0283bce06dc8cf
50041 F20101112_AABXLE campbell_e_Page_111.jp2
956ce426694a54f3b552f6c98b83de03
fcdc8e048ebd22e671771b98399fc8bbe84d773b
43804 F20101112_AABXYP campbell_e_Page_192.pro
9b59595c5d99a4a677d392590b23caa7
c81909234b70e9cefa237a52f6d9f124e5be3403
64882 F20101112_AABWOL campbell_e_Page_203.jp2
c74ac51e64817c8ce657df98fcbde054
05af79714291aacaf2a0d746dc62937180a515d8
101941 F20101112_AABXLF campbell_e_Page_113.jp2
1e6fcb574bb5b790678f695e29a9b1a4
6723a3957bd421b966e5a0eb5d2bb77540b04668
37465 F20101112_AABXYQ campbell_e_Page_193.pro
99cd16f8fd8a9c72e9a2c8804835af79
259d62ce88ded1fff04ca2e077b5f18452e886c6
76932 F20101112_AABWOM campbell_e_Page_022.jpg
b308180fae11307b8cdcf3468799ab3f
82105c362ef3729cf7d6ea6b056c427bd970346a
81085 F20101112_AABXLG campbell_e_Page_114.jp2
d82cf07b0814b481117e25056639b2e2
c8b1358806ba72cacd1d7021c8ecb123425bd8f5
64636 F20101112_AABXYR campbell_e_Page_195.pro
26d41a896a5a42d7b2edd414e1c64783
aff087d5d07d1ae783f29ef9bfe8749cc22f6f22
67146 F20101112_AABWON campbell_e_Page_134.jp2
abf8342ba50eb0a176c625bfb7db143c
1b5650fbb83da34bc5fc05a209b16cc76b938142
68848 F20101112_AABXLH campbell_e_Page_115.jp2
5ddc8f0c6310dc764c3b1b358893e2fc
70578eb3f9d726e5f8f37dc2d7a9533937c05a1b
18734 F20101112_AABYIA campbell_e_Page_132.QC.jpg
9c3660e4f2cffd42f714934447e96609
63d7a3ef2782f992f42166fc9acfbbcdff5b271d
35869 F20101112_AABXYS campbell_e_Page_196.pro
ce719f9cda5dd212f1970515e1ddfaeb
c653cd1df7172a94fc9a3189b862dd6a2e7ae091
2718 F20101112_AABWOO campbell_e_Page_204.txt
afb8d9f8827c4d70127edb7770c90804
e7cdae8880540e838795fb4aae2d38e6fde79492
80350 F20101112_AABXLI campbell_e_Page_117.jp2
ebb9fcadc86bb4f21dc6066a34426e28
624024dc0f95bfc2034060cc9681b354d9d07020
16263 F20101112_AABYIB campbell_e_Page_121.QC.jpg
f9e15c5b760fc0d06feb38276bb55b13
32fdb0b894d73b433b9362f76fa75d835398d99e
35840 F20101112_AABXYT campbell_e_Page_198.pro
91741bdad7985b1216dcd863babc07ee
0d1e9e87edf072556a5f8fff75114f6849fa6c80
2003 F20101112_AABWOP campbell_e_Page_041.txt
762b8a7fbb32772117ff266e74df128e
b97e7c3f419cc9fda7937626c06a065e9daefead
99258 F20101112_AABXLJ campbell_e_Page_123.jp2
06a1053eb3143dae4e31a049f8f88948
99781c2586027740b4e1b3579b43c81aebd398ef
18365 F20101112_AABYIC campbell_e_Page_056.QC.jpg
73b81d59931b8f5091556d77f38ce33f
5b43615475b6afe3ad8f5cefe0b7838aac3b654a
42028 F20101112_AABXYU campbell_e_Page_199.pro
db3de5ba3d85d4b1a5979b4188d95e5d
5250aece12685da69c8dfc70f6ddd7218a6fc548
31944 F20101112_AABWOQ campbell_e_Page_003.pro
14d79843518e1d105ea3776fe37bf75a
f5656f0af1ab30bbd730a9b0d5355ccb246c50b4
61403 F20101112_AABXLK campbell_e_Page_125.jp2
71c1cbe71729b6e0ae5bc8a18ee4186b
4be4806db77fbf28cc2e8b729acbe4b966760238
2995 F20101112_AABYID campbell_e_Page_096thm.jpg
cc89fd42f386b1fa382e95b2232e67cf
862d42b268584b90834f43b964ce383361263bd9
27302 F20101112_AABXYV campbell_e_Page_200.pro
88a425f6cb40208133405e5e336964fe
c5626224866fc72274486d02b3cb92ad1893ab3c
91066 F20101112_AABWOR campbell_e_Page_152.jp2
700c1b4fa5582a436d5e33c67a713c34
178fd6eabd4421d9aeb8132ca92856915b7b41af
54025 F20101112_AABXLL campbell_e_Page_127.jp2
9d357c6cd553186e7a2396d3f85def71
3a382d66c40e2876de0111533727a45b075fc93b
3713 F20101112_AABYIE campbell_e_Page_111thm.jpg
c62eb48019486e645339956fef8dd242
5e9fb4b9cdb9663ed2d41c82a856f13fe2e6af03
54763 F20101112_AABXYW campbell_e_Page_201.pro
d4a45ca03c04d8629791f00d678d7f4a
1bb4d53cbeca21670135963cdb91f657d803eb97
67242 F20101112_AABWOS campbell_e_Page_137.jp2
a470e812aeac375d09bb1e871533a3ff
fe3e095654899fcffd32106c9e6887cc7258ef4e
63521 F20101112_AABXLM campbell_e_Page_128.jp2
7ba7a3c76340886854cfce941e64069d
a14defb97f07bcf7bce8213445218791137215c6
8015 F20101112_AABYIF campbell_e_Page_223thm.jpg
18b05033bf4906ce382edcd94c453be9
f0187f0a64afa83ba284ed314455b65cc0517cc4
34528 F20101112_AABXYX campbell_e_Page_202.pro
e2c7b596048dcfeff7b18f08904dbada
38a5d6a03f6a98d457db103a97a26d056236fa2c
19051 F20101112_AABWOT campbell_e_Page_192.QC.jpg
2722b3b012f0944cf25063759146a5b4
3423cd08ce1e9f559bb94a60d8a8a21572ada339
59200 F20101112_AABXLN campbell_e_Page_129.jp2
d2e4673fa1b8eafb25a0c248948b6cb7
972ed180a9671ca620954d85fdbb43c569c55001
14388 F20101112_AABYIG campbell_e_Page_177.QC.jpg
06653cfb23f57eadb57684996e891a5e
f5aed4530d1869ea038ecab4434054b1f92c10d5
32294 F20101112_AABXYY campbell_e_Page_203.pro
b58bb9a4d80f6a9509fb922d85140faf
6378e56301dd5ec800f34d5775993a0bb7833374
102251 F20101112_AABWOU campbell_e_Page_145.jp2
42b4d0fafa65513196fc1d883d866107
1c6420f1b6580df0aa4f987d99036a49bca32de4
59534 F20101112_AABXLO campbell_e_Page_130.jp2
e5807e708661ad07c0a1b1994aa88700
f63a6d9c3fea384ac9382d4787a277c03dcc5f08
13331 F20101112_AABYIH campbell_e_Page_089.QC.jpg
fec1525f5e883553efda69893aeef3dc
64d6544aadcc65eef0a08b56038d21152c74f203
44083 F20101112_AABXYZ campbell_e_Page_205.pro
c835774b9ff229eed4afe99e1ce36342
64478a518eeedb8fc446fc2a300caba5458b46d4
48664 F20101112_AABWOV campbell_e_Page_028.pro
632d72b4377f7e4423450c2e03529535
b746e6a1b02e3af63528db83211edbc6d82c1b31
19113 F20101112_AABXLP campbell_e_Page_131.jp2
61146d9e1e39c0fcb88bdd28273391b6
4b78efd7a1e5b9068c428f97ae20e0f9f9016170
16862 F20101112_AABYII campbell_e_Page_179.QC.jpg
63fca406c348a50ca5d1d4f81708edbd
78fbb686f128b710d3f3e020790951aa7a729a4c
2499 F20101112_AABWOW campbell_e_Page_108thm.jpg
f2fb0260ac081436a99104ab38a4eb90
7269412d7eae436cb371126cc38dcb28dd226fe5
101870 F20101112_AABXLQ campbell_e_Page_135.jp2
eae36e316fb720447b46d3546bf05ea9
76eb9c0d572cb2ca0ea0309a0553e1450ba35c39
16033 F20101112_AABYIJ campbell_e_Page_212.QC.jpg
71fb2a9c47cdc1e03e7a872972a3e6fc
e961caa0adf9321f64cc6402dc7834666987f97a
16648 F20101112_AABWOX campbell_e_Page_117.QC.jpg
fefdbfe3a4a7c9525fa8941b262f3992
19ca868458e2079dab0179e0387289c5b49e0cf3
77963 F20101112_AABXLR campbell_e_Page_136.jp2
bb3c4d865070332660bfc0d8257c5e2a
7eb842a2fe5a9aea976c7fba15e9b17c452710ef
4815 F20101112_AABYIK campbell_e_Page_133thm.jpg
f4c80b33189400fc6161c26b3b898eb0
8a50766c3317124b9ed1cd06702b6d173f20f1a1
14055 F20101112_AABWOY campbell_e_Page_221.pro
28fef3ca8e623b93383b944c87a056e9
dde4b88ca682b90eb6913a1ff5d7094485713866
78274 F20101112_AABXLS campbell_e_Page_138.jp2
811beb0202c9d777050de0028230075d
a6125629299b24c358087b37fc46bf5879fb0432
5898 F20101112_AABYIL campbell_e_Page_038thm.jpg
5dbe276274c3f7870695d4bb50e291b6
78b9487a0cbefcb9c67de5f7535057d15dbb95a8
1140 F20101112_AABWOZ campbell_e_Page_100.txt
cb1d77246a2dc650acf7ba9d426affc0
dd98b3c7c1882b1328c7e7f2b6e8eef525d5e551
84154 F20101112_AABXLT campbell_e_Page_139.jp2
69757e2ffb865f11651afb87320e3b1e
d3c183c5c1e4cc1138d002eccb3cd2665ee2efd2
15160 F20101112_AABYIM campbell_e_Page_213.QC.jpg
cf338dd0a4d88deb9ac6bab3f73dfb35
f92b4ca039469d724156a112dd8317480acf7566
85297 F20101112_AABXLU campbell_e_Page_140.jp2
1a772e5ced7c37531062ae247ea60700
d48f6322802b4841569b3096f61d13067f7b0993
8838 F20101112_AABYIN campbell_e_Page_096.QC.jpg
cf1566de837631a48135f10219b64dd4
e8670f1c7075fe82f067b3235158a3308d1e38bb
86170 F20101112_AABXLV campbell_e_Page_142.jp2
426f40608f241bac7b2e356d4ddb24c6
49cc0d746bee4f3a402c6127efc19eadeda4fbe6
27270 F20101112_AABYIO campbell_e_Page_072.QC.jpg
abf1ed485680181247fce460035ab1c4
e955c33d02f7b75c9135e1835a0d6210d04c06b9
60028 F20101112_AABXLW campbell_e_Page_144.jp2
51f53118839473fc9b4fefab971f84d0
e7a69a8db456201880b16d388d592249c7fecc88
6989 F20101112_AABYIP campbell_e_Page_021thm.jpg
3391e48e96ddb02872010139c1ecd1fe
24741b8e68d75a0eb1b16ade4111622adb286af8
79561 F20101112_AABXLX campbell_e_Page_146.jp2
a06a706da8985efaad0d1876afc2fe1f
e1e88b3aed71b58d3c164226eaf69358d512fc36
4920 F20101112_AABYIQ campbell_e_Page_220thm.jpg
1b6bd36703059f0249cf205b733f4f4a
99014a5987d8315f5fa23d8295f82d0397a2d438
78238 F20101112_AABXLY campbell_e_Page_147.jp2
af32c00fb0593432f790a2774a092b44
558fc40d268be43363838ae609341dfea574fcf4
4944 F20101112_AABYIR campbell_e_Page_212thm.jpg
6a806849256b2202b522b88c9c3b9322
5a86f4050e58ab48df458f01a735d1905b7ddc77
72630 F20101112_AABXLZ campbell_e_Page_148.jp2
b75886ce957869c0183bf8aabc450aaa
f2966747c6526499d5bbe4ca1d386129134d6bae
5169 F20101112_AABYIS campbell_e_Page_179thm.jpg
4b71e40c7adf4860f93cfede03e8c7b7
51fbbc97c07985d556d279542de3c31cb1c13d36
17984 F20101112_AABYIT campbell_e_Page_093.QC.jpg
54ff43a87f9c3639f0da87f89b81566a
cfa2f615b0cd85ab6e3c685710b56738365c1702
23634 F20101112_AABYIU campbell_e_Page_043.QC.jpg
779b1b6ccab482fe82edc6c8bdd329bd
515fc8287c9312b90b94c9424d65df14f0821623
16989 F20101112_AABWUA campbell_e_Page_171.pro
b2eb2529f24197bc2a5988ec08498303
1dc835a0ff7bb18fbfc7e0a22396d4cd8842b059
4853 F20101112_AABYIV campbell_e_Page_187thm.jpg
d57f1b7a52efe4de90c44c5d611e6973
b5a1edc90ce95a21cdc27262494c027aa08b026d
2067 F20101112_AABWUB campbell_e_Page_105.txt
c546c35a30f6f449101f9d3a4fd339bf
a272d529bd7e3effe48cc22b6a8f90de9fd0ea09
60159 F20101112_AABWUC campbell_e_Page_132.jpg
f668fc7b6f36fc63bce61c6453f23985
43ae2b2b52273bf159c150909a13abcc103b078d
15122 F20101112_AABYIW campbell_e_Page_158.QC.jpg
0a57dfc47005291e3461b805ae65bba4
bfaa76b13464f1260d67611053cfdfc2b77a3bd2
113522 F20101112_AABWUD campbell_e_Page_011.jp2
24bff1ad55d9655c00164d54a77335f2
e24fce4d014af86257ee5108865d7d72e282d91a
5211 F20101112_AABYIX campbell_e_Page_040thm.jpg
f28e163657567e087f5f8eeff2412927
050775a306f194cee57f5c91c1e435286078a9bd
19906 F20101112_AABYIY campbell_e_Page_120.QC.jpg
e0f480cf23aa76a4890f5e5cc67e50fa
c16aa5e3523dec8404a3b17f6845ff0c08454116
118772 F20101112_AABWUE campbell_e_Page_020.jp2
cab2147c54e2782f2de7b50c38d0dd75
b3a5e82ad8910189ce121571e658141b7320d479
F20101112_AABYIZ campbell_e_Page_044thm.jpg
a5bc0d8ea7a9e19d1f9be5f630fda457
8cba96965e4e470e44e5ba6ee74324051f749952
80481 F20101112_AABWUF campbell_e_Page_180.jp2
3882a7cf8c60de25eaf2ad972841634a
81f3427b3309eb38c6ac61571ee79ae7ce2ae3ba
F20101112_AABWUG campbell_e_Page_113.tif
587ebdf403a2b25d0724143280ec4edf
49d5e39b69980f90a370efc92f7724f8ad6cf8d7
25918 F20101112_AABWUH campbell_e_Page_226.jpg
50aafa2644e971d72028cadd6f609afc
e64c873434247623c890a87c411bc3e4218d243d
F20101112_AABXRA campbell_e_Page_114.tif
2a7e8d275f41d7c9047d665b3fd19d24
a5bf6b1f3fbe2a063b10d15023f4137e34a72f4a
1472 F20101112_AABWUI campbell_e_Page_040.txt
3b9708a533087eb67ec3940f1efbd96d
a232e829a4fb678268e5650f9a3ee5c80449682c
F20101112_AABXRB campbell_e_Page_115.tif
6272603d33888a7e1e24ee80c7179aa0
672d1b8894c67b7bfdc5213b83843fa4deb81dea
18242 F20101112_AABWUJ campbell_e_Page_172.QC.jpg
50e211b791218834eb1830d176aa4807
37dae886121932c17e49655e93d18dc9349cc4df
F20101112_AABXRC campbell_e_Page_118.tif
a4c7481825cb1cccb0fd83fd4ad12142
b393c1b64503340b4610c38e8e8a2a88a012597e
2177 F20101112_AABWUK campbell_e_Page_006.txt
e81d35db6a33cba3ffb3e820ecc7b198
1886cae4fa83529dc1babd0997dfb94ca8f893f9
F20101112_AABXRD campbell_e_Page_119.tif
3f1c933375d819fa4807f95ad6678bf2
790fdd7dd7693aaa54ff58a41847de61f015fb72
F20101112_AABWUL campbell_e_Page_187.tif
4f8f5c21a9edcdac54f701df214a530e
b487a3d15a8417a84524fd3ca8d96726ecc9a15e
F20101112_AABXRE campbell_e_Page_120.tif
1d225f33ed56868e2453ab20637ad382
51f43d1ac03be5e883a5d7d50282e78f36356194
2180 F20101112_AABWUM campbell_e_Page_140.txt
ac1da91677f78508af0bae7b6d83659a
1e5b14759567ad773d962a7fc8920b4818437f6b
F20101112_AABXRF campbell_e_Page_122.tif
8285c06ea7a8ef33014bb24ce321e0bb
c390abdc1a0afc159e8df5463c36ea549dcdb468
279089 F20101112_AABWUN campbell_e_Page_099.jp2
1d9a75991230f45177d1a784a19d2dcc
1c7d8a2c9c16dfdc47caf7c3e18f51b1a09c7daf
F20101112_AABXRG campbell_e_Page_125.tif
cad16de0416ef0335116ca970739faf1
7c9c7f7e646d1447e8f9cde76f862aaa5729e255
16844 F20101112_AABYOA campbell_e_Page_107.QC.jpg
52c1d9b5c80949dbe771d24ffa6d798c
419410f3832f9b4cf2a8be621c584e4bbaeae4e3
22173 F20101112_AABWUO campbell_e_Page_123.QC.jpg
96967b15614a892b77164159fa8d8495
863e5c0b31bdd09f8b6398cf73d8a516a00ef46b
F20101112_AABXRH campbell_e_Page_128.tif
e61eff7c81cbe26b62163c8f75f9892c
9e42c9101e78bc065f289b3a4dec191b58e26f87
4820 F20101112_AABYOB campbell_e_Page_107thm.jpg
55a51c775f53f0c3b9b224d098a40893
9467707476238b87544b757b90f5fd31a988a9e8
F20101112_AABWUP campbell_e_Page_090.tif
55253a408b8dd4cc3f931ad28f6558da
de2ce3ad65ed5982ea8226f51db8710eec13e9a4
F20101112_AABXRI campbell_e_Page_133.tif
6e7e1c436e0f0013db827706f811cc29
7487ed991bc997a378a33cefac0ddbda629f0c0d
7688 F20101112_AABYOC campbell_e_Page_108.QC.jpg
7254b152d0d9a7edc256b33bc794c999
a6c664bf34ea25c517d82aa1b32a665a840ec0e7
51586 F20101112_AABWUQ campbell_e_Page_153.jpg
8cb52bc1954c8dfb959fd8964e587c10
15fbaf1423ba4b6728bc8594dc422eb0a83eeb75
F20101112_AABXRJ campbell_e_Page_134.tif
3a84bed2deeba541b7d9f44c33e2e909
e52f9929843c23f8f9a1e6cb71ddf93378101f15
18149 F20101112_AABYOD campbell_e_Page_109.QC.jpg
4391be287c1521daf0fe505e7fc421b4
4d24a0176409d66d724b034b977f1931bcdb941e
12687 F20101112_AABWUR campbell_e_Page_127.QC.jpg
8dde4b322994ed8673dd8318b8af0642
70aae5326a352df334ab8f320960565b596d2f3d
F20101112_AABXRK campbell_e_Page_138.tif
33cd42725d0e54eba750605810d519f4
a7b6146ee4d7ebb9a84a994bbbb86483af07c342
11690 F20101112_AABYOE campbell_e_Page_111.QC.jpg
4da4c2daa50e2c434667cad169f71c0e
40a27e36e2f1e2ae774120c0a93f49e33b2a0d00
61208 F20101112_AABXEA campbell_e_Page_032.jpg
15fc25d916912ca8ea2df3276aef2310
cb8601d4b5278d17e1741f5f57ee433abb81de8b
87520 F20101112_AABWUS campbell_e_Page_120.jp2
8137bcfb29282c7f4fe198ff55c3ac00
36941561e05e30466dca314aaf38ed5f6ea4843a
F20101112_AABXRL campbell_e_Page_139.tif
0e733035d94ad55c329962126778e14c
e84e6936dfb907858a612a8ccf355f0c0d83ff28
17598 F20101112_AABYOF campbell_e_Page_114.QC.jpg
e982c7dec702f14bb2a1a11f1a9f15ec
02f21bf5e39157f7bcac4d475e56930122114e39
28697 F20101112_AABXEB campbell_e_Page_033.jpg
d5e51f5464077102d2cf069b476259a3
9d13db2a9f2f1461a835e3d6dd8c26c41e99497e
4935 F20101112_AABWUT campbell_e_Page_153thm.jpg
29296e7c192f2ac36f526892816ce0af
ffe80ef31027c782c10c65ab4159ccb63aba12a7
F20101112_AABXRM campbell_e_Page_141.tif
62775d09cb6b54d43231cc9436ff64c9
b71ca2cebf9a7200d44e67f1e824d58b1fd8feaa
15210 F20101112_AABYOG campbell_e_Page_115.QC.jpg
480840bb8ab830080efebfa72dd19282
2af747d5519857e4c1c29adda44c40303d5358c8
74424 F20101112_AABXEC campbell_e_Page_036.jpg
640972e0c65010831d77a6927770fa82
171747c1a171ab134dd96c781e13089e8aacb511
29740 F20101112_AABWUU campbell_e_Page_217.pro
0eb4ace5327c235a724ca22421bd2fea
e84c999e16fd4c95883b4ca28be9cdcb315537e1
F20101112_AABXRN campbell_e_Page_142.tif
b6ee8fcb123b2895be4248c4f7fd2304
117ba20705f38618eac7816b4635cd32621b859b
5095 F20101112_AABYOH campbell_e_Page_117thm.jpg
148b626be3cb478a149edf451a2c5ffb
7cde30319a3ca3483e0616db87a5c8890de268c5
53502 F20101112_AABXED campbell_e_Page_039.jpg
8bc115189d4d7a2f2e99471137aa7730
acfe282df3e1c6d6e0576b9c238bce9f213e9130
15658 F20101112_AABWUV campbell_e_Page_215.QC.jpg
990ba5a8e4eade7878d13a8c6f239939
e294cb9b587e9652ac95b4df7b51e37e24a4ff7f
F20101112_AABXRO campbell_e_Page_145.tif
29d920efe9654202b29e1d13ac7506e4
1aec342cdf623c0d50f8474d758d7b3bc3583303
17035 F20101112_AABYOI campbell_e_Page_118.QC.jpg
dede4f2b21f7aa5d9e658af6933cd7b6
58abfa467694f0dd6155b4c5436e992ab5160ee6
56059 F20101112_AABXEE campbell_e_Page_040.jpg
1bafa82bc07367cdbfd0d37eb014f4fb
9a5e09c0174e7af35d9670fe13cf5565ffd9cbc2
F20101112_AABWUW campbell_e_Page_031.tif
61dc67c3a7f70496175e06d4c895fad7
62e7771d886c44b516e5f050d57d068df5c0ab1d
F20101112_AABXRP campbell_e_Page_146.tif
56d8c14b63d3e8843e45b14e5f7b0d1f
67fa16d390ea603e90449c47e2edf6ecbd82ef58
4976 F20101112_AABYOJ campbell_e_Page_121thm.jpg
78fe5edcd96839669eadbe4d872ae85b
f10191f3ede7ef450e3d6c448eb090c3351ea1b9
54792 F20101112_AABXEF campbell_e_Page_041.jpg
039cba2fb53b2d498def6f868680a7fe
134dfa5b67910f082d2dcae414e098eeb96f52df
824 F20101112_AABWUX campbell_e_Page_214.txt
9aacf22a4f544b665861d04eeeb4abe1
2dfc526966763cb37278bda7da384f88739f4d47
F20101112_AABXRQ campbell_e_Page_148.tif
e345108a0629ff7efc94e418a41a4ff8
1d07226ad2cda8750784d11102edbda3500e292f
12950 F20101112_AABYOK campbell_e_Page_122.QC.jpg
7fd0b5e69b2339b093203b2345841bce
36761b6b432c8447a78269ac41b65f98e591ba50
39396 F20101112_AABXEG campbell_e_Page_042.jpg
60789683006a4010a8177695795f14f2
30b5d1325fececcc995d25cf3df3d876f1f59b66
F20101112_AABWUY campbell_e_Page_017.tif
e3ae75fa7a2b0fdd12bffe02a401115a
5691cfd81c27d0dc66a4ac394441933e63e1bf0c
F20101112_AABXRR campbell_e_Page_150.tif
30c0f4c65f386803a05f3d8aaeb9d7c3
3592347abf8063f6dccd1c920418825ddd34af62
3910 F20101112_AABYOL campbell_e_Page_122thm.jpg
d6ba6847241557d37ccd6d830b3ca3ba
9a85e130e3436030e561cceb41d85bf0622c5a4e
73534 F20101112_AABXEH campbell_e_Page_043.jpg
650d5f791e3b610fa2c2d5556ec0f1dd
5c812ccc03163fc6646cdbe09b594407f1569177
17036 F20101112_AABWUZ campbell_e_Page_170.QC.jpg
2789aa33f2b24239fe74753dadade1f6
27f2f4ff57d7be6d14bdc10bccf83e0a6e0ab7a4
1687 F20101112_AABYBA campbell_e_Page_052.txt
71dc90f8766b864e5ffdd7e453dbe280
7c470a709d55c877d700093d12f70aee6d67542b
F20101112_AABXRS campbell_e_Page_151.tif
80bf90318756d3dd57c69deda9263867
7d047fad3d465b3db415f328a6cf74dd9f52ce1e
13323 F20101112_AABYOM campbell_e_Page_125.QC.jpg
c6a4f41d75537772383b20de25539dc7
f34f0b60c2be2670ce344e22187deddfbe5a8623
22142 F20101112_AABXEI campbell_e_Page_044.jpg
4f06e98e4923a870ff12d72164c971a1
131a3779f5cd381cc879848059698405c5713f7b
1904 F20101112_AABYBB campbell_e_Page_053.txt
1125741f0a75c6eddeb9451a61a5e2a2
29b1194d2dcb12aae7cba58f111b555af2db005f
F20101112_AABXRT campbell_e_Page_152.tif
43432e1a9f0c9c34dd87f469f42051ae
c000065b3da311325d0a48c0117b8c11bac03c52
4429 F20101112_AABYON campbell_e_Page_125thm.jpg
6e622025fbdeca0ef1a5f574e3554fb9
9f2e83896cd415972a888f41b37411803031282c
61948 F20101112_AABXEJ campbell_e_Page_046.jpg
8d2864c6f304bdccabc7efa0f065948c
82bfc8cd73c2e7793b5be1b833ecb89f329e7166
1955 F20101112_AABYBC campbell_e_Page_054.txt
dda238e852608bc70186218e2c5f784a
d476c79e2535d7756fb94c36c5907b604d373b70
F20101112_AABXRU campbell_e_Page_153.tif
8851f1160e35ad07d4eb3919e9ab0e81
ca7598a7fae82c3ff1ed9b4e7047f1026790effb
3994 F20101112_AABYOO campbell_e_Page_126thm.jpg
39d305ed1df0b175036021a6f292066d
ddbcf4024766ce53e0ba301ea1122eccc0b84cb3
31754 F20101112_AABXEK campbell_e_Page_047.jpg
5683213b85986e8709d100fbbeaee9fb
6161e606940dc3ca4a71eadb536beca5a8fbeeb7
1365 F20101112_AABYBD campbell_e_Page_055.txt
86986594b3dfcb3ad3ea88f6c5118ef6
df36e7494f2a47bbda76eea689d349fcd9c980d5
F20101112_AABXRV campbell_e_Page_154.tif
fb2ca916553620a092b925a6865adbd6
167d21a87b0771a67cc194532b4b31ff0fcb667d
4008 F20101112_AABYOP campbell_e_Page_127thm.jpg
334de1e29f54e50a9a286f78ba75a14a
88ab9ef0b8203095a1980b10c3d79fb10a534502
30304 F20101112_AABXEL campbell_e_Page_049.jpg
9f563e591e909e92c989b2dc415e1cc8
42bb59be88f024f63b68a08470b416c4b9c96abb
1826 F20101112_AABYBE campbell_e_Page_056.txt
7fee2c357e039d70a1976d988a123b76
3a3d1521a554e3c8e85c72c4aafc1176f7aa1f39
F20101112_AABXRW campbell_e_Page_156.tif
b14c69805d70f348d997699e3e1d2cf3
c34c3dca9dd57fe8429b1086650c3abf1c0d0612
13547 F20101112_AABYOQ campbell_e_Page_130.QC.jpg
cfb5fb14cdcebcc2eba423d9b4bad37e
3692b277a99cce0106edbda82cf2ba5e775741b1
54307 F20101112_AABXEM campbell_e_Page_050.jpg
b829abab7df7502a9777a480277fd6d0
cadfbb8899198c9fa884016021dfd8ccacaaa541
1347 F20101112_AABYBF campbell_e_Page_058.txt
a74c43983b790ea403ba04b3ad6f3578
dc269cd16f7750b71a992ee2408e21187908b928
F20101112_AABXRX campbell_e_Page_157.tif
ed5e90eaf73e1e9a4f785d603a473090
1092dd1efa1fb98a7824ebe71b0a55b6e7935a96
4396 F20101112_AABYOR campbell_e_Page_130thm.jpg
12aadee9133cc2f1d607352ecbd5de65
046bebc9a827533be9ddcdba0d15a494ae6f3e97
F20101112_AABWHU campbell_e_Page_032thm.jpg
7d1c1910846905ba21dae5377176f28c
1414636d6320938e544adb3397a2bb484bf8a254
65063 F20101112_AABXEN campbell_e_Page_053.jpg
3a57dedc692e7c6236c0784312736988
e02246fd1f5b5a5676e59d73b2711ecbead94d11
2118 F20101112_AABYBG campbell_e_Page_059.txt
ed643e693ad7e70e9c6f149bbe503b31
144787bedd05f224fc6ca1346013320937dd863d
F20101112_AABXRY campbell_e_Page_158.tif
b03098973682f17924bb819b605224f7
4feb45af5aaea49d74548ecf32c343a875ea8bfa
4253 F20101112_AABYOS campbell_e_Page_134thm.jpg
deb2845e5e222c02474ebdaa6eeef879
e58a60357abb020cd6f7f2dc40ba130e8cb8b7ac
41523 F20101112_AABWHV campbell_e_Page_144.jpg
5ab357847a962faa14d1cc2af752855d
a1bbe98ad3c7496251980108761144998ba55e49
49073 F20101112_AABXEO campbell_e_Page_055.jpg
d22018004956ffa2dcbab503c37b177f
76b20185f5d5a1ba102977ba6a3052f5b7cb2938
1723 F20101112_AABYBH campbell_e_Page_060.txt
1cf3b295aa7d22bae3633b45c6d1d3f1
01fdb988cbd60969b076b85a7f8e47dcb493c0fa
F20101112_AABXRZ campbell_e_Page_159.tif
036f9cdc1679646da48054901abb6c62
b5094e9d574bd4d51716ba3e31ab0fb16584ade6
4496 F20101112_AABYOT campbell_e_Page_137thm.jpg
9dea143f578c1adebbf61a5fbc3f3ab7
e1f8531a77e587034be384495fc12321ca34efb3
5477 F20101112_AABWHW campbell_e_Page_114thm.jpg
060577b4b5c3cdb26514eaa9f60d2114
a32e4fc7ad0bb05afe75891aff34168beadd8984
58613 F20101112_AABXEP campbell_e_Page_056.jpg
f4081eaf8b8962cd2eb42374efc48153
3e9e16890f09c34d773e94a032f1d33ad973c85d
1356 F20101112_AABYBI campbell_e_Page_061.txt
103c0ec690237b8e4cfde6c58f24bb7b
b7420134eacda65c567db89c2808b67662313647
4067 F20101112_AABYOU campbell_e_Page_141.QC.jpg
c2a9da08eef87488a2c5b014527169d5
303d9c078e5e4e2b32767c8b53db3d613102792d
40676 F20101112_AABXEQ campbell_e_Page_059.jpg
71908c3d99439ec5c15458909cf31a00
fa6ca38d1ab11cbdc7cc7206d397041e87e91753
2222 F20101112_AABYBJ campbell_e_Page_064.txt
ee3aae5ac85a85eea9ef8ea063e69c52
73f989d05c473847ae948c45451e0f3d53ef880c
1538 F20101112_AABYOV campbell_e_Page_141thm.jpg
8237a179b333a81e082e717b144af712
5dab0db6f2c2dabc77e04764912ab0acaf1c806a
19107 F20101112_AABWHX campbell_e_Page_205.QC.jpg
fb5bb805f6ab700226e25f97f38e4aaf
81391d79027edbc1c5c56134d40e9b7f9fabed56
46568 F20101112_AABXER campbell_e_Page_060.jpg
7cbbd22eeb933d94a78820a9b008d619
af5f3f88fdc724adcf1687032b779ffc446b6182
2263 F20101112_AABYBK campbell_e_Page_066.txt
97af9606b97b7c6922489bcf0c24aebb
b4dc906a8973abd987229fd42bf8d702a3917cea
5077 F20101112_AABYOW campbell_e_Page_143thm.jpg
124516b24407edacffb897e3a6a7c097
f57cf1b16a87d9d24d58fa07e0d4bdf523e8f351
38923 F20101112_AABWHY campbell_e_Page_169.pro
54c490d4d211f3bb255034d3a24a890a
dad9488e77316677d6e2039084988949af7d45fe
43957 F20101112_AABXES campbell_e_Page_061.jpg
4552b56f517e1a01e152768a18f72e4e
1deda84ee5ea1f755b4025fc972f5d994a245029
2161 F20101112_AABYBL campbell_e_Page_068.txt
719a7c290dd40bda16e87c6dbddde3b1
b6bf3b50bc502336468f552d6f1700bbb4f987f4
12245 F20101112_AABYOX campbell_e_Page_144.QC.jpg
bd294fc9b0b6c11af2cb1889a9b9495f
08b697602309237218fe39a37d352770d5f1468d
48121 F20101112_AABWHZ campbell_e_Page_189.jpg
2dd2b50c3c1ab948a9e36e7d416e53a8
481ec7148d6612add625eff4bef3592dca14bd4b
2210 F20101112_AABYBM campbell_e_Page_069.txt
d67fe2164f68a25c508ae5e228e56667
6dbec13c58d831ecf1272fd1aebca45245a5b4da
6065 F20101112_AABYOY campbell_e_Page_145thm.jpg
cec1fd16fd91fa2aeb90d93b10b4265c
a53abfdf1e430794d957c15cfd01bbbd2a4639f2
78367 F20101112_AABXET campbell_e_Page_065.jpg
84205c98e47015cb5e28b2f633cfdf02
dced2f7cdfe1a0d19cf8a6af43eca859f0439d8d
F20101112_AABYBN campbell_e_Page_070.txt
6e82f96808cca5765306915f0f0234ff
6d85e6ad59d356bdb072d0f9be56edac570e726f
F20101112_AABYOZ campbell_e_Page_146thm.jpg
24739af6570fc94fa864e76f89a70e87
99bf42a34a558d8ea375865102a8d636d2d8448b
78924 F20101112_AABXEU campbell_e_Page_066.jpg
9f7ff636084e2ec8887602d6b8f981dd
3e9922114c88253076b707836d3606dd74c9bceb
2191 F20101112_AABYBO campbell_e_Page_071.txt
1196aaea101c34f02229706b2e153461
61e8adfad6cf52fe8c6f3cee3dbd8bba497588da
74820 F20101112_AABXEV campbell_e_Page_067.jpg
a6905517ac27f09629b7606fe9dbef2f
794cbe348a99586864d44d24605b89aed1ee407b
77499 F20101112_AABXEW campbell_e_Page_070.jpg
0ee785bbd092726dc68ec5cadb38f75e
d57b148a9333605a00b552cbb852f33ca01ff0a2
30848 F20101112_AABXXA campbell_e_Page_134.pro
02054483a33492ce299d318619747716
85409d9a1f46b0549291f596179057293fb5b604
2274 F20101112_AABYBP campbell_e_Page_072.txt
55eaf6b64afb468a78bca8128acce0cf
b7df6beb570bc96205ff5b7e9a5d1d3f9c5d1694
77180 F20101112_AABXEX campbell_e_Page_071.jpg
9d16b23f7356f7d0eb96e1491e68b94d
3086cdfde00cfbe15aa26924ebfc13385d4afedf
56174 F20101112_AABXXB campbell_e_Page_135.pro
93262fb9b94ada8bf0c1665e06559ba7
bf129c08686a54dbda28746d42dc474d4dd55d5b
2284 F20101112_AABYBQ campbell_e_Page_074.txt
8c06a5099bcaa5731b04b3cf44cb5016
bc4be5b0876ec8b20a6d7ac95f4f51efc7a0db59
81353 F20101112_AABXEY campbell_e_Page_072.jpg
d04023e0dcff7872a9aa03457e55191b
e90541b49b4a0677886ad646ee27112f5965729d
39472 F20101112_AABXXC campbell_e_Page_136.pro
6546e170cf93e153e5e6a230a7f19d58
63aaeaa0ede4928c69e96a04558957f6788e7038
2128 F20101112_AABYBR campbell_e_Page_075.txt
080bfca355bd3fbf9126c7d13dde18b5
2290567ed889b23e2eb98cb6d49524bfb0d22427
77299 F20101112_AABXEZ campbell_e_Page_073.jpg
132e70be148cbae026f886ee280f1611
32ad709ad8c26b19be6d2027d81cf8d947a26e81
31898 F20101112_AABXXD campbell_e_Page_137.pro
8cefe71d2f7202413c9b6ca55e79df11
fc43ca48a6ea3587ac2fed46f7fab6ab37f63510
2082 F20101112_AABYBS campbell_e_Page_077.txt
41f0b837904f0d77782114357f4e5843
79f6b79c964c412169d0fa8bde7c403633d0e432
42494 F20101112_AABXXE campbell_e_Page_140.pro
c23e17b3ecb1f016d80d125fca9c11d3
08692c9c246ae8514c9c5ea37cd0fe64841859d1
2302 F20101112_AABYBT campbell_e_Page_078.txt
bb3477da0701e65ff9b48924d42fcf4a
cd72c30d0465ed8e10dcb262c718a1d37e1e635d
2907 F20101112_AABXXF campbell_e_Page_141.pro
45199424578d66431cab94bb93ab8934
2376bf6c731e62af8b9349b31a3e21d4412ff447
1361 F20101112_AABYBU campbell_e_Page_080.txt
43b1cd74c5accd1624ea97bc0ade8ccb
9b04d0584dbe8e9b97e472353c4bea5be565b093
20682 F20101112_AABWNA campbell_e_Page_102.QC.jpg
19860d72845633c0c48941b6bc6a2fd3
27e77404b32ccbc9815673a26133f484985b2fb5
2204 F20101112_AABYBV campbell_e_Page_082.txt
230a6a4589ede584e7aa00491f6b8205
a4f6b6c60f3ae273d503ded5c9a52724734d7bad
964448 F20101112_AABWNB campbell_e_Page_054.jp2
b1520ad2d9d770050fa6a0a41acbf432
58341b1e0bade0515e677cce3f78734060d7f3e0
36808 F20101112_AABXXG campbell_e_Page_143.pro
37655b5af67b5733cd15532fbde14c6c
c156f1442e3825c30ef0e44772105389554729be
2369 F20101112_AABYBW campbell_e_Page_084.txt
3a2c3adf4a453a2ded18fb48904bbde9
a0d24da4536209bbe17161f1e00916b14b079510
53792 F20101112_AABWNC campbell_e_Page_020.pro
02c1f8924b3fb30b77be409fed12eb37
83c0bdd6d5063b0d948cbd9ec72ef3bb1472a019
55266 F20101112_AABXXH campbell_e_Page_145.pro
2fb7e10fdf487767f54d46e46b08cbaf
6c3e5ea80ddcb323686f5b191a8ee9a3ee6f8e02
699 F20101112_AABYBX campbell_e_Page_087.txt
373a45af2afb59ee46549dc6115ddd84
4f2395cb855e175e7384a2c41802a733e0612db2
F20101112_AABWND campbell_e_Page_127.tif
45a10a0129a5896d4cd8270e7364982b
bc8aeade4e9c1933120427afcbbe7ef5cc625bb7
37279 F20101112_AABXXI campbell_e_Page_147.pro
f49f7b45c95cddbabc03c30dac29e244
aae489476061fe69b817d5093216177b22b6f8b7
1886 F20101112_AABYBY campbell_e_Page_088.txt
fba7b6dc74e868dbf221f455f7eaa96b
32cd42186a295fe7f802615e4e269b4b8ab1bfc4
103719 F20101112_AABWNE campbell_e_Page_185.jp2
216100f4804b191297f01f362ce00947
5592265fe408d0b2d1c571a78afe4a929ece2954
35568 F20101112_AABXXJ campbell_e_Page_148.pro
0d6c36514b7b320afec7df124353aa65
a75ea82484d6a289c01611a4901eeadc29ac70a6
1255 F20101112_AABYBZ campbell_e_Page_090.txt
2abe196c4c0aa3d7078c29c4413c09fb
f32a2a5a9f633f10ca79cb52d5762c9e3fae3e1e
58218 F20101112_AABWNF campbell_e_Page_072.pro
9dc0d52b3f83f003e662c1ed7f7ec1a1
312a2c2043d48bd638f4d05374f9411eb10dbdfd
36646 F20101112_AABXXK campbell_e_Page_149.pro
5f6bd5eff8e84906adc3ce8b2ebf28ea
0eae2cba9d94a7886f0789259da4b92793ff20f1
17554 F20101112_AABWNG campbell_e_Page_103.QC.jpg
84dbb0d82ecbd29250ca8441b194f87f
dcb14bed6663daea3c9b500d4b44cfc259294d71
94840 F20101112_AABXKA campbell_e_Page_063.jp2
45840513118bcb9aba5c668e9dc4b447
85e175b2462139b4cc1fc1c5ba3bec79dc35b481
44015 F20101112_AABXXL campbell_e_Page_150.pro
0ec472ba879de5041269431b947ef00c
b6bd4cbf121153bce3066d81b1e5f35d68f9771a
49704 F20101112_AABWNH campbell_e_Page_202.jpg
64f62ea54207931a420fdbee690c0a40
8ded9db9148bc656f809b6ab52b3f292e5620cc9
117591 F20101112_AABXKB campbell_e_Page_064.jp2
c1eac2924df821ae149e2154a3bbb01a
065c9e0669b034ec980f31539a2891b723619512
22039 F20101112_AABXXM campbell_e_Page_151.pro
82e7026effb35234c2d25064c866c6dd
4cfa61c766a1c7472f20f2c06f3775777a5c2ba2
1051971 F20101112_AABWNI campbell_e_Page_008.jp2
f96c8a9527bb89091c77c6819fe46e4e
1817f096aeccd3626bc42e58430c2a75a2159a94
120081 F20101112_AABXKC campbell_e_Page_065.jp2
cd100e780e8ea43d5bdeffe064d55fb8
e8f997f586996f00dc9207ec8f83799df68e5c3e
45712 F20101112_AABXXN campbell_e_Page_152.pro
745902df3a29e07df33ef76805148e4a
6e28cf147a15b8d8df885a8b0dceba5b1ec29e25
2152 F20101112_AABWNJ campbell_e_Page_119thm.jpg
8307e259f4d2ad97b80fc3dc2acb778f
8f8c6d89c1d9f9be60ece108cabce5b9d3512365
118994 F20101112_AABXKD campbell_e_Page_066.jp2
ca95942364bf1e44cf9d1e87fffd8cb8
2c75a0fc684a096c16ba7599273831b6daeb82f2
25514 F20101112_AABXXO campbell_e_Page_154.pro
63f189f719a061fd85d2df7263b4655e
136f35c23c1179d50ae13e9c1cbb0bf98231d35f
65247 F20101112_AABWNK campbell_e_Page_201.jpg
d4f9460e06834d269e8efe19095f0160
45ea0d394256058cb70079d1df8348f160423463
117106 F20101112_AABXKE campbell_e_Page_070.jp2
0257a35c2d10d86cc7e4878b560ef4bb
3aa130fe7da4e1306e454cc4251dcc86828d7260
55769 F20101112_AABXXP campbell_e_Page_155.pro
8b946590ef05ae078326c407bc477e34
653760a77d1884765c0f969ea4e8779483fd7d8b
5209 F20101112_AABWNL campbell_e_Page_140thm.jpg
54e7d6e7e147c6199ebc13574fefb8c1
8bd5eb38082c3eb938fda6b625eef91980263b28
118872 F20101112_AABXKF campbell_e_Page_071.jp2
ce9bb3266aa2967131d592b8186854c6
76841bc3735cdc25cd056baf606d6d9b5d713c55
38976 F20101112_AABXXQ campbell_e_Page_156.pro
3e99d3a9f39d59829960dae66bfbd78c
0b1902f8b862747471bceb6defb6c226bc851531
4688 F20101112_AABWNM campbell_e_Page_105thm.jpg
e9d9c4d1fad0b656b544edaad05ffa7c
ba2626c3bbfaea7ee8ee0880c475c6c0671f7d84
123961 F20101112_AABXKG campbell_e_Page_072.jp2
158d99ae2dbe4ed1a2345f9d6434103e
3bb67bd84e5960c39e834e74b26e887afc5d4fc5
32595 F20101112_AABXXR campbell_e_Page_157.pro
6760eb54d04b339a6e45d4f0a6c57c43
02a05866c9cb9404a81be2b2129e91cbf7b51137
420 F20101112_AABWNN campbell_e_Page_018.txt
fb9298c45f575ba2019e0a89e37a48c5
38362205de0833e8b778cb6a57789d033468b495
125593 F20101112_AABXKH campbell_e_Page_074.jp2
0c292b058eadb6f4e5c40da2ef6465fa
4257e70fae484f278a57aa4d3ebae28a2b0bffa7
21483 F20101112_AABYHA campbell_e_Page_113.QC.jpg
7023cc2975cfb514479471c9d5ce65f6
ac952b62e1396560366101f39b03c5a9645777b8
35340 F20101112_AABXXS campbell_e_Page_158.pro
f320cb9cf87936e9c6aed8a9aee09a9f
432e23a72214888a03bc33b3678594cf7c76bbd9
38202 F20101112_AABWNO campbell_e_Page_200.jpg
0e2f28baad545547db8feaa4525415a5
2db4867caf6d697475e6a7b01169980bca1baf18
112641 F20101112_AABXKI campbell_e_Page_077.jp2
ab29bb85ae0c89900290f7b9d8263d14
26e30885e31976ef4f3f86eab564cd7aa1293ee1
10875 F20101112_AABYHB campbell_e_Page_023.QC.jpg
6a486e23d4ac28dd3f008f3ee669265b
3f0b83546319f4f1c67debe4b19c91b11fa60e5e
38731 F20101112_AABXXT campbell_e_Page_159.pro
7dcb669b9ba032086e66b547d4ca7475
01b046c878699ccbcfc9283e9455bdc945ee31f3
450 F20101112_AABWNP campbell_e_Page_131.txt
4c1b5eedb7fd0d5f4d7d3444f24baf9a
237b0896ad32669850b98b47d6a51fd861e8a562
125180 F20101112_AABXKJ campbell_e_Page_078.jp2
2ab3dec84c1c496dc54c6aaa8d871603
d34f106dcc28f7f6c76bc04ae02774702924045a
23873 F20101112_AABYHC campbell_e_Page_029.QC.jpg
6a89712b431a080882a5dc591d91ebd4
20bba51697dfa57218679e03faf945ce0eee696c
40349 F20101112_AABXXU campbell_e_Page_160.pro
44a10ad470a44d53fed67738339c6242
9fecbc44b9c7d3450ee9eb2872c448072cfe2153
50543 F20101112_AABWNQ campbell_e_Page_167.jpg
336046caa5520e2d32f2195ac65277ac
93e8cc26d0719218d7ed3645dc550eb7d42c7d6c
117231 F20101112_AABXKK campbell_e_Page_079.jp2
8aed4dba4ca2cf82ee0f2e08fde4f5f7
bc440dc883561ec7136f0d6de6c17d4c36498cd8
5310 F20101112_AABYHD campbell_e_Page_039thm.jpg
ac3f69f6c42899c12fa5050bf1666b9d
d381fb0441a4e7c98ac7a69f8eb2157cf1adab1b
9979 F20101112_AABXXV campbell_e_Page_161.pro
385849a8af7375fc4190e17e82d31811
908da0efc304467f5c4cc0579bd84e37fbdd31e9
12953 F20101112_AABWNR campbell_e_Page_164.QC.jpg
6df65d1674a59fabb6a6e83fc20efaf9
e6780adf59f1bf59eff75960d6452fded18e5f85
900960 F20101112_AABXKL campbell_e_Page_081.jp2
3b02aa322ea2cf98bfddd0954cb6b43e
4ff99b67d973dd94ae2b3dc44d4a9f0f602536e3
15683 F20101112_AABYHE campbell_e_Page_041.QC.jpg
1ef02567ffebb166ffe75bf4def6eeb9
adb739b5f95e297e0e372ba4207a3127b3154b67
46125 F20101112_AABXXW campbell_e_Page_162.pro
b1ec3f4f8ce4e381c67ad36d85866e38
b2a0aefcf9e0aff960087b940968adf6dfd1df0d
F20101112_AABWNS campbell_e_Page_072.tif
ff163339224dde7ec65b6c4778c38607
862c92fdb04fff246e79fa19bc69dcb6c6d4b79b
76150 F20101112_AABXKM campbell_e_Page_082.jp2
3c272722a2f56ae08c9a071a8080b4e8
e5c38b725de022afb4d2b9f2292be5a033079790
15835 F20101112_AABYHF campbell_e_Page_173.QC.jpg
a36c4f665b01050b08b07e23d49bf63d
43db313ae0d3cfc0444447dc9a0cfc79c2677d34
29172 F20101112_AABXXX campbell_e_Page_164.pro
c35810bdcb7b03739c281f188db3f976
3ddbdd0744dd6b4ae57f0ad78b625eaff7900674
16124 F20101112_AABWNT campbell_e_Page_199.QC.jpg
3e6cbdbee5bdd92dd36817f7c12fc829
77edfe396a77d122b0b09a2262ea0926ce3d67e5
74341 F20101112_AABXKN campbell_e_Page_083.jp2
06ec5361e641763a31cee9e6076995fe
2b422d8ad4243db6cd88b8ef44676c551c3d095d
18193 F20101112_AABYHG campbell_e_Page_142.QC.jpg
6c748ac575ec1aa76fb3893b92ff035b
9aad5b1e23cd4f82089f756806c4e2c291b2a229
54838 F20101112_AABXXY campbell_e_Page_165.pro
55b1bf9930867723c037e85c367949a3
22ea291bc43c5815a3fe610bd5d1fda048e2eaa1
3399 F20101112_AABWNU campbell_e_Page_033thm.jpg
1ff027ec7a99b290a4a9d9ed458ff480
7d19f8caf6ce7086c57cffbda2695f09715ddbc1
75820 F20101112_AABXKO campbell_e_Page_084.jp2
aad31919bc2cd321ae38d4d2cf400f37
88b9891a6c9f3dc33d909bf0585d8786a0c674dd
4473 F20101112_AABYHH campbell_e_Page_089thm.jpg
6344986328034ca568d4eeacd04fcc65
2070f7300c69bc50bcdf36b366c942ef8a2798ed
34658 F20101112_AABXXZ campbell_e_Page_167.pro
dd283f6cfcb44e2dded6b3b27440e6e6
3880fd403ba5c26515a1ea58c21cd57a713cf1e7
2473 F20101112_AABWNV campbell_e_Page_162.txt
b9562b7383e74a4cf4f17349518662a7
352c6a2a0021df7ae7c1bc88f7199e1cbea317a7
68086 F20101112_AABXKP campbell_e_Page_085.jp2
3ca04eb5dba381809d0e259e9806c430
982d0fb9b1568ae662b7d934884c6bca4ecc22cf
3499 F20101112_AABYHI campbell_e_Page_002.QC.jpg
062748a5ec5a4a857413abcb796f2ec5
d417c933f0dc770d75133a263f5009d96728e789
47305 F20101112_AABWNW campbell_e_Page_217.jpg
cc45ca9c40ac2dc6533c4ce5726c5eff
bad2b2cf9e20c0f76c1febfcc542695af3f9742a
83032 F20101112_AABXKQ campbell_e_Page_086.jp2
fed32a504e6c887d2ad870ae2b5b5edc
2395f07b2c09835ebbd2f4f7cebcf12f68005b84
2358 F20101112_AABYHJ campbell_e_Page_226thm.jpg
5c403dc96c423a09bbb5f6d92813725d
7b9f1d66972ecec8613c5fd9afe68235efee1fb0
58795 F20101112_AABWNX campbell_e_Page_172.jpg
c46362f517b10de1498303dc0f84ff72
7df3d4045d5487b8d7ebefd80daa1dcecf270d0f
67324 F20101112_AABXKR campbell_e_Page_090.jp2
a193a69c0e5ff713da068d6c17ba4f62
3fefe05d1c4418e5a67db296166dfcadedba2b5c
14218 F20101112_AABYHK campbell_e_Page_104.QC.jpg
afb2baf967bf285c3f084c6958663014
929d276c4b9652e98fade3a3cda2c07bdd1543cc
40341 F20101112_AABWNY campbell_e_Page_180.pro
8480ce28cf2ce68e42d4cc08260f283e
54810aab92deafe5b2f4f20159a11d707390b101
65599 F20101112_AABXKS campbell_e_Page_092.jp2
72aac78046561adfdeda16f5df2a2054
b0edd640506260e5d85c2a4795655ba8de033f35
26458 F20101112_AABYHL campbell_e_Page_069.QC.jpg
f85e6e9d01f4717dbfb5150144284488
e295bfe449df2771f272737d89372fc0c9042276
1815 F20101112_AABWNZ campbell_e_Page_063.txt
fdd71186930998eb046e7de1282baa6f
4c7f09bdec9eca0c6e013c47de240c59b635a69d
17820 F20101112_AABXKT campbell_e_Page_094.jp2
8a1e44288f7c4fad56da38c79e2aa0d8
59c4fef90413afcf10e953cd095082a7b76d5a8d
19037 F20101112_AABYHM campbell_e_Page_152.QC.jpg
86d6a72eb7ad68acb6035a6525b584c8
ea3437dd7ab306fba1744c3ec8509478972ff223
89016 F20101112_AABXKU campbell_e_Page_095.jp2
53d45f3b220202dd6a7683cc7c2d5600
3d2ae07e5106f2a8ed85320e785d4c3a1bc78a66
15298 F20101112_AABYHN campbell_e_Page_202.QC.jpg
73f6e9597d82ec8499fa9e31b16fc131
0b52e0c82dfa298502f4b6632f50dc3806e47fa6
32833 F20101112_AABXKV campbell_e_Page_096.jp2
c63774f40db95824c5f88751ec44adf3
814ddcb980b0d2f7e38852587743006c8f618563
5889 F20101112_AABYHO campbell_e_Page_056thm.jpg
3e87381fae8590b8da31b6abc0806baa
1af84b8b77dbd1c261b7a4b55b62655838e62993
63806 F20101112_AABXKW campbell_e_Page_098.jp2
45370b411ea636cacd24f6860e14fc89
7227336d35faf1c324c598f600849f142388770e
F20101112_AABYHP campbell_e_Page_013thm.jpg
6da8a8ce907e6575116c60d7f21699c9
e24cb3457aac7227177865227ec38c152b3e87aa
41620 F20101112_AABXKX campbell_e_Page_101.jp2
197d756ac23325b84350b948524f5899
fb0ea5dfcf3774b272eded29b083bc7604ca6d60
5492 F20101112_AABYHQ campbell_e_Page_088thm.jpg
2b9ac29ef051154229b1765288236a73
6d4d9387df1d45ca5a77fb65f0764734c62d3e5c
80972 F20101112_AABXKY campbell_e_Page_103.jp2
8bbb283fcc2fefc92b37f4e07253dbff
3a327c32cde081f178e7383ed2eb177f06bcbe2c
15184 F20101112_AABYHR campbell_e_Page_082.QC.jpg
8e6bab954876956d20ee2aece40d1f0d
3509002913db5be42384fa5ea320fb97e3082a71
5111 F20101112_AABYHS campbell_e_Page_094.QC.jpg
c4d7af7a233697ecf9f2d8285daf9f59
ae81b6aff196b479cdcda66b4dbfcef1caf15e8c
65396 F20101112_AABXKZ campbell_e_Page_104.jp2
0048da9ffba950864edd25536a1404fd
50cb5befac159cbcb2d869e77fc00930465f3ba7
3901 F20101112_AABYHT campbell_e_Page_144thm.jpg
9ca8489b544c743b24f1e21b8d427e46
c4db62e52778398772f9b1ebe30a81157c3f3599
20398 F20101112_AABYHU campbell_e_Page_024.QC.jpg
578ceae2c40608f6c580e030aaaaa393
a6a0df201eb56c915521395805e48d64bc9d9465
F20101112_AABWTA campbell_e_Page_143.QC.jpg
599ed9d830bdda87c69d62883620abee
a331710ddd16e2533e5139eed7fe20be69d3338f
F20101112_AABWTB campbell_e_Page_143.tif
eb8c64063b409a452654c567d808a141
da302e3c0c3abaf7a00f1f6ef0bc6c99de50d278
16241 F20101112_AABYHV campbell_e_Page_160.QC.jpg
614597f0748015139b1c2b764bc24140
32e9c79059ca81964c109b9f15be57e9964208d4
F20101112_AABWTC campbell_e_Page_222.tif
d80bc77768d442f217f0161f457f3cf4
1f5446a9d3b79d7d4c3d7a2522d198e9217012a2
20916 F20101112_AABYHW campbell_e_Page_063.QC.jpg
51c0e2851e4eb6e772ac39fa822741a0
fd6e51fe15ff8c383e4e9dd7ed24da681300ae43
6672 F20101112_AABYHX campbell_e_Page_175thm.jpg
bd1c7ff3b5754c91474f3443a4c603f4
9bad4ca13bf11696be84161432146d0e77a11c45
112648 F20101112_AABWTD campbell_e_Page_012.jp2
6626d9ed097cddb519430b96d8d3f2d1
3a448193dd85cc94382e645b7ec902a7cff19971
6512 F20101112_AABYHY campbell_e_Page_087.QC.jpg
2e063de746c058eff7dbc7cb7562b12b
56385fa6890d39974bce686317260585140bacbf
2709 F20101112_AABWTE campbell_e_Page_135.txt
13f091ca662f73cc98879b021432c815
9f29ca7b93d37903f22d27002253bab55f036a9e
4306 F20101112_AABYHZ campbell_e_Page_104thm.jpg
37d97c9195f8eae988cda4500910e328
b4f8938a082e7780e9d506c71aa69be9d1ab79cd
77428 F20101112_AABWTF campbell_e_Page_079.jpg
641da7a4e23a3392323e6a151b5b90b4
ced579684f0dc85548a72339682212a8bb06f30e
59066 F20101112_AABWTG campbell_e_Page_142.jpg
72fea0afa65c91fe46d2e45acdaccdd4
769133d4a34f14669c8e1bb4566031eacf7fc8e6
14608 F20101112_AABWTH campbell_e_Page_091.QC.jpg
714f48da78ebd877005e433a6c511f46
607e87ac9eda72a40719c3d8070903b257c0c3d1
F20101112_AABXQA campbell_e_Page_070.tif
566bf5b5049a0f704c43e5425f032253
c07eb074f206547ba97f7ba91088a7339cf14736
56730 F20101112_AABWTI campbell_e_Page_186.jpg
1ff359bb611f95280e810e73ea084981
25a5dfc0db4ac3a9fdc8f40f2772558523a059c1
F20101112_AABXQB campbell_e_Page_071.tif
8c0d34039ad1e0665f5508f6abfcc965
e0d2dea01954996274f55addb220659f60ae15f8
5319 F20101112_AABWTJ campbell_e_Page_186thm.jpg
c27de2c98717c97132f2932194554789
dfadc37c6fab83528b8c09b15eb13baa06ed8961
F20101112_AABXQC campbell_e_Page_073.tif
2cfd35b5d15866304dc6404138ee2c5e
242c1d14dea38abafc303d6bef95431944c2868f
38388 F20101112_AABWTK campbell_e_Page_208.pro
f35af1caaee0c3187b1bacdbfccdae5e
7662dcf63f46c10c071901819e19323de844cc6f
F20101112_AABXQD campbell_e_Page_074.tif
bfe27b255515b1b14932aeef37f74ffe
3eb862ea071e8b0719dba6a28eb1a7c39d308bcb
60255 F20101112_AABWTL campbell_e_Page_112.jp2
015550023d68713e1e29e7c2c9e42e6f
24ce6fe336a7ba9ec7c1aee4d7939d979f9e8439
F20101112_AABXQE campbell_e_Page_076.tif
532b06178016296d6f50694f7fd5c9f5
74ca9b5d3553c09f07a0ff4550faad6c6a262ddc
2869 F20101112_AABWTM campbell_e_Page_171thm.jpg
b62e97c5da8285341fd7a76152676fb8
16780d7c40ad907e8a04e4e6914af1c507b69019
F20101112_AABXQF campbell_e_Page_078.tif
0e2d1fb935dfde2407cd65f3e7cc9491
83908aff077e81fc0fbcb21a1fa5843156ad2e41
102069 F20101112_AABWTN campbell_e_Page_031.jp2
41f725862c7132c466e6a5cdbdcffc50
48a2d58e15ee2d4b69c0f4314afedd8a5184d45f
F20101112_AABXQG campbell_e_Page_081.tif
0ed7d3390163574dee4c6150f504d534
20ae116f720b78899a69f670021abda222d9f696
6950 F20101112_AABYNA campbell_e_Page_070thm.jpg
0d026ecc86963aec965f859ae9b89ef5
5f4ff1300e404a2f010d58a44472736de82b0c25
F20101112_AABWTO campbell_e_Page_040.tif
b01ae73c5cbaf6d09d4846ca2e788af3
90df5ee8c2ea4566ddcd93af212105ae71112307
F20101112_AABXQH campbell_e_Page_083.tif
6a53ab0e36f201cd605464447138e757
51f071d1f8e70df3e2ddee068b40b1e03c89e99c
25756 F20101112_AABYNB campbell_e_Page_071.QC.jpg
524f53da0463e80c78e74860b4ef529b
619953d1633bd81e8151f5922faf9cf81ab499b4
16429 F20101112_AABWTP campbell_e_Page_209.QC.jpg
076d9bcdd9107f9493837eab4e4eb1cc
cb0d8e957373352a4444772e46440e5e8afe7ab7
F20101112_AABXQI campbell_e_Page_084.tif
e9e493fe9b86782fa8ae52c121c4e668
526ba1aff8ad19d073b38a13d8e12d5735cdc417
6922 F20101112_AABYNC campbell_e_Page_073thm.jpg
da56731b3ec7e6ce6c6b5299d4c58387
6609eb41922b73452beca01945ca6b26559812a4
F20101112_AABWTQ campbell_e_Page_175.tif
903e5d121c82ff65339c423059df303a
fe0e4fdfe039363e0538d5fa45942ee8324470e0
F20101112_AABXQJ campbell_e_Page_088.tif
ae5be5814383977c1ebecad8ac6ba6e6
8dd330b925982023ced46e3314658d7032102ebf
6757 F20101112_AABYND campbell_e_Page_077thm.jpg
903e0efaaed73fdf4d36e1f6f2a38abb
1d7ed30b521888699b2f65529a4653d7be9c5b9d
75244 F20101112_AABWTR campbell_e_Page_176.jp2
1733132b6b822a5f930b8166dc719522
16f456e47f63bd8aaba1d4d41c5159ce7c943194
F20101112_AABXQK campbell_e_Page_091.tif
6a8ee0e5e8fccbec32036a095c68cd78
4d07d801e909ae61c9c2ba460405bad6e5a4fcb1
26916 F20101112_AABYNE campbell_e_Page_078.QC.jpg
c04fbe4179601a0b5345592554d698f7
9987f606be67f0560461fb728ea208981d4dd02d
62212 F20101112_AABXDA campbell_e_Page_091.jp2
6e896ec166aa843aa7bb6f8e154474ac
9033d9b4bf3668dffe89e60111b1a558370b3e70
64149 F20101112_AABWTS campbell_e_Page_052.jpg
21ecb0d4732fcfef3ab6b13d5fbab541
e47c03c880ae8b54fa26d880e8cc4d011c18bc42
F20101112_AABXQL campbell_e_Page_092.tif
560791632f8642122fcabf929497a735
5c560d89fafd32189a7d265712092800ba0e740e
7228 F20101112_AABYNF campbell_e_Page_078thm.jpg
e24bb7af71b76242ec7fb7472486cb29
ac8244658396a12a4414c47fa284190cc259cd97
79694 F20101112_AABXDB campbell_e_Page_069.jpg
760c8a92025a86a5e7179414b1398ef4
24d8423b71cda22adb9f0249a811d5f90293ebaa
F20101112_AABWTT campbell_e_Page_207.tif
8cf47640af2012afb08bd24880f6f99b
ea48a5f02a0dc44da2594024dd2e61866aa8b68d
F20101112_AABXQM campbell_e_Page_094.tif
926df0ebeb4be84582e73012f3a28197
fea697c8c5e2a7848e8ed1af29a442b891880ccb
26160 F20101112_AABYNG campbell_e_Page_079.QC.jpg
0349fab361b707f6b7a607024eba0e17
af3027b6b637005c5ba1ee854bb511f0e3f24d30
262558 F20101112_AABXDC UFE0020140_00001.mets
d1c5196058aac695c433e9187b06ec83
d8e8435075d271027acdf2421400f5aba1f09a9a
93676 F20101112_AABWTU campbell_e_Page_222.jpg
dc78950a78e90b63ca14a0b0f10d510b
d9acc6427b8d4c89d4de6c9abee3c62afb5befd5
F20101112_AABXQN campbell_e_Page_095.tif
476d82e2c5181eb1682f5510765a919a
bfeb3607c1b4bcf6daf0313f1d793b7a5bf8b34c
4867 F20101112_AABYNH campbell_e_Page_080thm.jpg
1b221098762020800e874fb16ce540a5
fd72b73d455d4fcbc58d2a1623730026e6513caf
6698 F20101112_AABWTV campbell_e_Page_076thm.jpg
a9802f2785f9b20df5e64ae83078abbb
435d384f3dc7d2733c65dd004869a591738fe195
F20101112_AABXQO campbell_e_Page_096.tif
9e1285bebd167abc1df68a792d55d930
b19068a1b1e857f38b05a7392efe4ecf0e3dd0c6
20001 F20101112_AABYNI campbell_e_Page_081.QC.jpg
64133a3ce28f4dab20f442ad68f3a0f7
3f8b45d3f337b1ea1330ac8e9f7c97a2560fecad
1051973 F20101112_AABWTW campbell_e_Page_006.jp2
98d8d69d5a33ec78a63b4fd98b841b81
5f4b5127f55b61893f1f3d01dbe0d17507e1cdbb
F20101112_AABXQP campbell_e_Page_098.tif
872df26e3071b3f3e996992a1c5f7cd4
9f7f2ce203e7ea617b6a956b0be8588716648ee5
5776 F20101112_AABYNJ campbell_e_Page_081thm.jpg
9e8cc476d21af940cc9d0a0046955e51
6d794623552059a9d50c2503080cd42368972df6
23933 F20101112_AABXDF campbell_e_Page_001.jpg
c3a67c667d270745f33e01ac004f10b1
7a254d6a28612bcfae0d00ffe7cdf512ff4097e9
2001 F20101112_AABWTX campbell_e_Page_008.txt
3e1930091b924cc854438b734e37be7d
fbd2700479345f434019a33c624a2e7c8df0a417
8423998 F20101112_AABXQQ campbell_e_Page_099.tif
3e33e2f33867049ae6d252f39d4b2a8a
0a05ab90288991aa1fe562a36312750c71a913c8
F20101112_AABYNK campbell_e_Page_082thm.jpg
b27d75b8a6e17992e46ed35b19494744
3582d21b1d40b978d119df8a01248f66e3dec328
11688 F20101112_AABXDG campbell_e_Page_002.jpg
3a2eca660906d5fa4024b32526b2c9b6
a95f05af696928c250de67141d4c735968b3d016
56439 F20101112_AABWTY campbell_e_Page_170.jpg
cdec82d7bff77ed9c95164d7c179f5c0
bd424196c91cc42b763b244a419f59baeaf2b152
F20101112_AABXQR campbell_e_Page_100.tif
eebeba4e56cc7557b6db613d78d8d707
600aaee3c1ddd16371109774acc0ac4ea3f2dd31
4304 F20101112_AABYNL campbell_e_Page_083thm.jpg
5e3c9dd65f6e5a491aa4cd033277792e
48d200cbe5d372e8c4a83420f296f0c910351b07
50821 F20101112_AABXDH campbell_e_Page_003.jpg
7d95dcb3211d41ec4d352cdb4a823d0c
8f55aaf35454500e40a4c4fbc0fa5bdb6560027b
43930 F20101112_AABWTZ campbell_e_Page_037.jpg
243f2d5d0af507574fc1a9b53da1df24
5371c179cfdbee9b0b5a4bb36f45180d48eb94a6
2245 F20101112_AABYAA campbell_e_Page_017.txt
97a10928c79012c577475bb3cb55aefc
c8f2a6fc9ac54d44b128d3266d5f038d037a9adc
F20101112_AABXQS campbell_e_Page_101.tif
b5524a961b889ab60afaa30064d52f9f
a93495bde8c1049dfb06faeb4757dfd9b79e24fa
15154 F20101112_AABYNM campbell_e_Page_084.QC.jpg
174f28f309b21c085f0d03df1fdbce76
3b98a5a43d481a24ab107babbf780b625bc076a4
79864 F20101112_AABXDI campbell_e_Page_004.jpg
afb48408319ea9395c504dab76eace82
2019a531e0992cd8cf43f388ec017625001fba77
2087 F20101112_AABYAB campbell_e_Page_019.txt
2457cb1aa57a9f128b852e9b6e2126a2
972d846f083434894eda65f00c9bbfa00d050908
F20101112_AABXQT campbell_e_Page_102.tif
afc1626f8cb0c681eb409824398423d5
ff3a7198ae9ad6c8846360a7188e2df97102723f
4402 F20101112_AABYNN campbell_e_Page_084thm.jpg
137a77b96cd0686ba857fe1adf67f349
e915336f48a1b908c8ddeea392c898e35a9af520
104774 F20101112_AABXDJ campbell_e_Page_005.jpg
86a3f2e585acc56be1f834f88b2eb3a3
be8502e3dba3f747b475b3148dd9be309bdccab2
2156 F20101112_AABYAC campbell_e_Page_020.txt
77fa4dec7396d19ab611260e0b542a66
278eae84d6bf986eb12f22166357ee19af288b1e
F20101112_AABXQU campbell_e_Page_104.tif
a3e96e05ac6c37717500b1472f628989
d5187d0cad4b84ff17f023c16df2ef3f0638e50f
4398 F20101112_AABYNO campbell_e_Page_085thm.jpg
60e13e1e425eada403ae4d3126ed5dcc
e575f8b4212623f999b31e35e1d69e63b2e85eb1
75380 F20101112_AABXDK campbell_e_Page_009.jpg
b99888ddc05ee4016a7fa8cc422561a1
93bf893cf2e0abc9b89461434c37a8266e14d979
773 F20101112_AABYAD campbell_e_Page_023.txt
b4a95aef54d6053f4504c47ddd1adb2f
08f131ebbf87aef79fe77d7aa02f926db996eaef
F20101112_AABXQV campbell_e_Page_105.tif
3e97e0a6713045977eb86eda73f49e5f
09f2f330a3c1e44df7ea70269dd5a754b66b2f5d
5013 F20101112_AABYNP campbell_e_Page_086thm.jpg
9be2a5ffa42f463d721650d1a20629ff
b0123ab807122873d074923641148cea70f3fa51
75061 F20101112_AABXDL campbell_e_Page_011.jpg
36da198cc3b7d0e446642b233bf35695
5380f505d85820407292a76accda7074b6dbfa32
3974 F20101112_AABYAE campbell_e_Page_024.txt
72368ad00dd8b6f3a8b16d72063e60cc
61757758716f080667ac3d2dc7b527e0b50698f7
F20101112_AABXQW campbell_e_Page_107.tif
ae147f76769864723d77abdefb9559bd
d8abaada16f25f9c72508414713085454871724a
2218 F20101112_AABYNQ campbell_e_Page_087thm.jpg
0f6991eebbef1e54d4215b87dcc68b7c
7b6453bb3a0d91b7fd683a033b1d34e3290171f4
73397 F20101112_AABXDM campbell_e_Page_012.jpg
de95193ca0ba98388166b67ad523dfbe
72a06e9bb0748a54979797af06614190238608a5
2073 F20101112_AABYAF campbell_e_Page_025.txt
0f144730b02e97a76f03319bb46f5eab
690570f174e79d4ea064fd286777920ca4d71832
F20101112_AABXQX campbell_e_Page_109.tif
5066b65e96d0c5db57e1497431b9c21d
7c1d6750d25c4e9afe2030b680b5c1a01e8ac6ec
4430 F20101112_AABYNR campbell_e_Page_090thm.jpg
7f9279dbc5be157b7d0772297cf60b1a
237f0b63c1ccdf74603d3348c4c969d23bfe9d35
52099 F20101112_AABXDN campbell_e_Page_015.jpg
ebb734b256f82ffeaaedb59114e22816
45b27ce45296aa697f59314fbb49963861d61b41
1620 F20101112_AABYAG campbell_e_Page_026.txt
44f0b6c54fdde3ed74ad0d9069bcc9e8
e24eb75e9f125ffca56ad7e9923d55e413e9b732
F20101112_AABXQY campbell_e_Page_110.tif
e0127cb1e8ceec3601a5913352b873d3
8c833b6c96c8d298642e5070a25f5a37f640adbb
4237 F20101112_AABYNS campbell_e_Page_092thm.jpg
af3f6375109496c1d2a7e2bcfb55011d
e4bb3f91dff6e75e7d73aa5c8bd275058b50179f
61690 F20101112_AABXDO campbell_e_Page_016.jpg
9b57b4147f7fd537500c165822056ef4
f516089787d41c77cd9d2cadc039a00f516d1419
1755 F20101112_AABYAH campbell_e_Page_027.txt
44a2aeb391091b181177dfdaa900f1cc
47ae81a478023ae6e1f24d34767331e656c86a59
F20101112_AABXQZ campbell_e_Page_111.tif
12c35d4b9516ad6d852a6ffd30da3ef6
7e9ce8b7b131ffeebd8da792f83d442f7ad403a4
1943 F20101112_AABYNT campbell_e_Page_094thm.jpg
3ebf666250a7b67a296d78d7811a6122
e99413f24d9bfce2872988b8bbd3e78088eaeca5
90130 F20101112_AABXDP campbell_e_Page_017.jpg
d87ecc85c6de560577e1de33e576a766
8d618cf464d537d1f6247342386a823441f84176
F20101112_AABYAI campbell_e_Page_028.txt
a2e91255d7569325daa05966c469f1ac
105864b8077016187027d93d0dbb69959bc7a8ec
19257 F20101112_AABYNU campbell_e_Page_095.QC.jpg
02f53dc5ae02d3ca5b57b7234c58397d
11cadc0b9ff88243ff03bf9dd05aae7d1e8f949f
2596 F20101112_AABWZA campbell_e_Page_222.txt
487dcf028ef70a0c61098a9690f320d7
8aff6910db2e2d1326ee8aa9c0c20f8c1b789d0b
21939 F20101112_AABXDQ campbell_e_Page_018.jpg
6034555ef73962191fb205a699a3e8ab
3c7d517a018dce25950afe3202cc372540940bdb
1938 F20101112_AABYAJ campbell_e_Page_029.txt
d332cc34a06fd8db6a71b52338145f0f
1aef950d3eecca4c1622dde756604ec2b5751660
14205 F20101112_AABYNV campbell_e_Page_098.QC.jpg
79ea3bb7050f260d6126da785f45f19d
e2116caf2add694f8c8ca7cee2c90557ef83d8c5
F20101112_AABWZB campbell_e_Page_140.tif
35b83eb0fcb415c24bed33c34f6ffcd3
19b237163a4ee8a9b7416d28aa463dab85fc5459
26183 F20101112_AABXDR campbell_e_Page_019.jpg
a749b366ad03e5111639203cf692bdc6
c48fb2c1ff90dedf32caf54fe127ae1ca816e3ce
2199 F20101112_AABYAK campbell_e_Page_030.txt
8497385f6dea5f0f7eeddd534401cc1a
84daab7fd926caab8677126b7d521b2651e9abe8
4331 F20101112_AABYNW campbell_e_Page_098thm.jpg
ff8a87e472733cf714be0f08f28e0f8e
bc31dd71ad46c240770a23aa345f3b3d4e9bf3df
83008 F20101112_AABWZC campbell_e_Page_179.jp2
d54e5d3f8417a7e1c230a20523c60a38
089c5cbbace9f0a74a23974d4e99e63e9af312c2
F20101112_AABYAL campbell_e_Page_031.txt
27e5c8b5e5e9299d52e714c8d655a1e5
4890ffeba2075c87fcc36fd6d2a21c59ff913b96
9829 F20101112_AABYNX campbell_e_Page_099.QC.jpg
02ab899163654a9d47f8f2206b881b22
380715ad5173da67562483fa979fade6baa029eb
51989 F20101112_AABWZD campbell_e_Page_058.jpg
5d69683c5b545b063ee43675eb4fe702
4c09dbedffae9835073e5435c5de269fad9c0f9d
77640 F20101112_AABXDS campbell_e_Page_020.jpg
85a92db2b076de121ec36811aac828f4
23d7b327cfce4cee2b863c749bda8f028b402b6b
1629 F20101112_AABYAM campbell_e_Page_032.txt
6e11ef14ad6a476aa3f15c6db4dede34
3fb50747a3519b4056c41678d8ec8107be225b2e
15630 F20101112_AABYNY campbell_e_Page_100.QC.jpg
6c7e4f366fdeacee612b4d9bc18742f0
8b4d9b0327580c0de61a6fb5f7b0c766511589ae
13124 F20101112_AABWZE campbell_e_Page_042.QC.jpg
04fa6ae411faa15e9346c5f06937af08
10f5ed3566e29debbd1915a4dff208c4dfea5568
75041 F20101112_AABXDT campbell_e_Page_021.jpg
5195b07a0f09da07dda40cf86f1490b8
38ab107a4ccbdc1ab0a1ceb48648410c4b26ec31
107 F20101112_AABYAN campbell_e_Page_033.txt
a19eff682867f086050e997124af4f61
66e975e10054209eccb79351943cd35171d2f86f
3697 F20101112_AABYNZ campbell_e_Page_101thm.jpg
319ce767d5b9a65784a4045f1a44b54b
cdc8088ffbfe46cf9a6b77bb54d1bd56778921d1
F20101112_AABWZF campbell_e_Page_191.tif
10969b9aaab55cd252f1e02372044c77
9928e4fece4cc38c0f0e9e676d83e2393ce71d39
32815 F20101112_AABXDU campbell_e_Page_023.jpg
ab1608c66cea14eb5cc805bbbcc2ca3e
db77ec3389f929bf3fa170744382d8ef26c104b2
71070 F20101112_AABWZG campbell_e_Page_057.jpg
6b324873c52f31028a82bffd84164264
5cfd9cc0357c4958be8d11eeac795b659ae4ea1c
66505 F20101112_AABXDV campbell_e_Page_024.jpg
0fc24b9d948959da275a7aef2e8a1352
2211fb36efd76cf506c74573f3daaaf84601dd1a
1338 F20101112_AABYAO campbell_e_Page_035.txt
afa5be57f2aa103e34c8c0a5022ef28a
446eafd3372343a7c42907dd26faca952e7b8677
4735 F20101112_AABWZH campbell_e_Page_128thm.jpg
e21f68f22ec84ba9135a5bf8d5fbb960
070fb5c5a49817df397676608652abfadc04d407
59856 F20101112_AABXDW campbell_e_Page_027.jpg
549bcf1b8b60f8a3897393dcc2bebba9
9b0906a5cf2c22a8032bddb8a626d96b02450a4d
1536 F20101112_AABXWA campbell_e_Page_099.pro
0b84c7c9ca3435a17fa96543f3eb7e92
5b2d0650146698b72018ec9365a9c7b61cb55dd8
2140 F20101112_AABYAP campbell_e_Page_036.txt
f89e79f8829acfe062aefe55d3c85324
cc18585204e2e255a6f126ca87d41ef027cfc6db
2197 F20101112_AABWZI campbell_e_Page_079.txt
7c3844d60138f0f101a7604a17e532ec
ad909f269f3878de862fb5181f0b0e0391d57265
71346 F20101112_AABXDX campbell_e_Page_028.jpg
58c6e46299f7ad2f35a7a9d3a6c52048
c3998a6e59dd16f52874bafe724196832272d9d8
27327 F20101112_AABXWB campbell_e_Page_100.pro
150f97cebad5b7a4eeeda5ffbf531f08
50b814b21153aea44158259eb560d96a1b81b8ef
923 F20101112_AABYAQ campbell_e_Page_037.txt
0b1081dbe84438e96fdbe14f3fd9a116
7fc9af1638c5dd670cfded9dab04ea3a005d620b
80954 F20101112_AABXDY campbell_e_Page_030.jpg
839e4c4cf84c163e662aca99f53609a0
c18f244a6536fd53c2f9a297637301e79fbaa826
18237 F20101112_AABXWC campbell_e_Page_101.pro
8510ee3f595dcfadaba8b5c4cd770b56
a9915be39ec1b317624cdebae0972b05ebbcc043
2979 F20101112_AABYAR campbell_e_Page_038.txt
85f5a46095106eb471c497dcc51c40ba
d7e4bfc06f031e7d1bee249e3a53118ea22557a4
4511 F20101112_AABWZJ campbell_e_Page_100thm.jpg
eeb95daf11d170b9a5948f42fe3a0a71
cec5da928aa156b9472f56baf4c62dfe8db5561c
67166 F20101112_AABXDZ campbell_e_Page_031.jpg
019187654e94787b4cfe29a0e5c38685
2b3b0ffc3665ffc624c4652d4a5348173950d691
53610 F20101112_AABXWD campbell_e_Page_102.pro
8a23453e3744facc3faeea8eb2426e10
81c2072344c7369617c69ff86fc296f8791c3336
829 F20101112_AABYAS campbell_e_Page_042.txt
fa9ae9ae44c791833136b2976d428110
b6e3f79eb7b41c01fd02a3b798d9616da54842f1
17420 F20101112_AABWZK campbell_e_Page_006.QC.jpg
ee6a958fed410fe6ccb839bea5e55569
ebadfa1f0171efac17707deebbca182ce4a4af5b
41269 F20101112_AABXWE campbell_e_Page_103.pro
7db588e8b4d70a6cbb0d42c4dec28b73
5554750827c102250975cfbd71574453e00ccf92
439 F20101112_AABYAT campbell_e_Page_044.txt
4d8c113850ca9dd5c6474bffc4cc2ba9
83082ca7f69db3025fd17f0850b0e6479b117944
F20101112_AABWMA campbell_e_Page_126.tif
32bce9f3caab46ce09cd92765a58bf9b
44b387248c59557b75f8e4548bb680728722cc77
89571 F20101112_AABWZL campbell_e_Page_097.jp2
379a4696b13217afd8a1d5ea52a00002
a139dd0d110adc0fd3666c362feba94897ba7f10
2719 F20101112_AABYAU campbell_e_Page_045.txt
b732b08c075553ba5956a89b9f1fb3fa
054633f5e17399b637f9acbf5e00fec5b3374ae4
2382 F20101112_AABWMB campbell_e_Page_138.txt
1a3d81f75c216bfc726787e3c0cb3189
6a4ee244591ddc82ade788206beaf5b31bfc5c73
15043 F20101112_AABWZM campbell_e_Page_148.QC.jpg
685ce9d97c0e9c1e8e5f16a53b7fa678
03df4a28db1a82c54096d402f29a7c20fe04d842
30846 F20101112_AABXWF campbell_e_Page_104.pro
4bff7fd25bcfb8ef8535beab4190ef57
4cc54ffb922a2f133ff478543fc2cdfbe3b8c7a1
1468 F20101112_AABYAV campbell_e_Page_046.txt
63523a2e3ee17b44d0e182690104f75e
2ec71e4dbf76175168229d5d1d5f9a49035c407b
5008 F20101112_AABWMC campbell_e_Page_050thm.jpg
f543eb01d02f9c8da2ddc70b77860bbb
2e5d364fb9d3a58c6a0c04dda14337084dcc2a71
78210 F20101112_AABWZN campbell_e_Page_064.jpg
6bf34e80320a8a6b609ec6b26327dcef
54a7177b1a5bba95cfb6df5f0fb291d8a77f061f
35665 F20101112_AABXWG campbell_e_Page_105.pro
6857db2dcb859fd23db8b83ca98870d3
4147e1c9515bd07ca26359e542271d016cadc39b
667 F20101112_AABYAW campbell_e_Page_047.txt
736d8db6e9bcf215d1565bda1f0e313b
8a3b76279ccb931d57c85f5820af88b86aee2fe6
58407 F20101112_AABWMD campbell_e_Page_078.pro
321b4f7d9581aaf960d0402f35aa83ec
b6aa9fccefb71cd3e09104b3603d2953752c30d4
47187 F20101112_AABWZO campbell_e_Page_124.jpg
2a2409d912ace67d5fdc1c6ad0748d7f
d9ea15b377397ecb76e4e21fab6b24a9bf36411b
35093 F20101112_AABXWH campbell_e_Page_106.pro
b9a614aba2e6fb75048dc540eaa7b3ee
ee7f3ddb7e647c677782258fed8766319bafbe65
F20101112_AABYAX campbell_e_Page_049.txt
6a6d2c2f2cc47df9d602916008123184
32cfb77dc7641161dbbdc0630d4c545049fbc605
53461 F20101112_AABWZP campbell_e_Page_176.jpg
f95cd74da60018fa5ef255775054294d
06f60e399ba9b5698b7b6ba360acd80bf25f9910
43650 F20101112_AABXWI campbell_e_Page_107.pro
d811e1ad526513668cfc9ec1d491696a
b45992980f52d69c69a35cfea5849aaffbb04ba1
1438 F20101112_AABYAY campbell_e_Page_050.txt
cbfa1454d930ab5501647525c46164b4
65d97e9d56a1d72a01f45d2d989c0329fbdb8c9c
1985 F20101112_AABWME campbell_e_Page_043.txt
3cfe18cd1ddf97ade6e4842b638632c2
fef1a5826b9577b81a5603b21bbd0c096d83b357
F20101112_AABWZQ campbell_e_Page_112.tif
58af83711ffdae9f7eebfc103d8167b8
01e7966a5f0a263ee4e8443b44d182cfc3152dbb
14031 F20101112_AABXWJ campbell_e_Page_108.pro
848e4d75496e50e0653d478d986ce165
46bc2dd4ae7a8d316eef8a48dfbe6eec4bbef4da
500 F20101112_AABYAZ campbell_e_Page_051.txt
e53da2d16900a0c99541af1343714238
9a2736a5590feefd29b77681bb931a101f68929f
86447 F20101112_AABWMF campbell_e_Page_190.jp2
91418fe0d71f89106f392b61d15b1fda
bb2f2398dfbe827e30aff3aa0620dbe2dfd8d209
11116 F20101112_AABWZR campbell_e_Page_101.QC.jpg
f5db795058022a65ce0fde49fa715ab1
c2e0d30e391fc9b77ada2bb8c21c44636d3d8c3b
22538 F20101112_AABXWK campbell_e_Page_111.pro
83421ce605cfdbf1cf113afc22e590d5
ecc1b86015d59da5d3442da36711a702029703e7
12575 F20101112_AABWMG campbell_e_Page_126.QC.jpg
1f89b79db9864692bcc97d2a13c1a8cf
312840d213b94660d79abbb81dd805efe8e9e6d7
112874 F20101112_AABXJA campbell_e_Page_021.jp2
cd07e18963486421d85fd58a8b2ebf1f
3e851db1b31cac6280e202264b16ded67f6b604b
21579 F20101112_AABWZS campbell_e_Page_038.QC.jpg
073f0fc9aa8de0297296de77702a0078
e86aa3cb5495509866f7e2d4a7ce776e998c2b04
27721 F20101112_AABXWL campbell_e_Page_112.pro
ed2fbd24498bf29c263854382a0c8df1
6464b18fce8c7684bb904e3c512265d26eee3f03
72568 F20101112_AABWMH campbell_e_Page_113.jpg
b771f8de5126129f1182d30116b69df1
45d4b6e1ee239f0357a9ead2fcea340637f8a97f
45864 F20101112_AABXJB campbell_e_Page_023.jp2
cec9d7b2e5f9739e8669ff3864a80637
653e0187b00884278e34051611389e2769b5c3a5
5393 F20101112_AABWZT campbell_e_Page_093thm.jpg
ac33b35de6d6e3df04bac390848949c1
824ea58f7eb8fa0599103fea92605bfe5d2ba415
56049 F20101112_AABXWM campbell_e_Page_113.pro
9b9e4d24d5e722593a0ca4ffe54d5778
36161a1ef191bf2c98a2b4b5dd9c28c28e2513f3
1287 F20101112_AABWMI campbell_e_Page_034.txt
ca00022f6c3e0fab1fb0f14499baef2c
3933cd71ae0fbac92b7431b7ac8f00eb6df6a093
87454 F20101112_AABXJC campbell_e_Page_024.jp2
33da711fe59c74481c2c94622b9200a1
38553d61d1b3b47e5d934bbccf7bdc98b98de820
9852 F20101112_AABWZU campbell_e_Page_033.QC.jpg
56e637c60c30f0347cc684dcd94af57a
c0a1e453599bebe1d9483f399534bbd8a6a7d810
41151 F20101112_AABXWN campbell_e_Page_114.pro
7737555bb18bf5913d795de1a1881c05
3d76973fa2214897f5b3d4d27fb3f1ec95121dfc
1709 F20101112_AABWMJ campbell_e_Page_112.txt
458d03f140bcff6b40b6082d9fa0d563
d8405531c965c4870333165ff8781f59dd9d567d
109165 F20101112_AABXJD campbell_e_Page_025.jp2
4884ef9945d27dbd3d7b803969711c3b
cf8f9ab9490954d85ce43ce9bfc97f33c214ac1d
7773 F20101112_AABWZV campbell_e_Page_131.pro
d63896cabb85364a36bcbb2592f0d739
5a8ecfcebc4a291fe460e92ceb8f5612245cf1a6
37891 F20101112_AABXWO campbell_e_Page_117.pro
0e4861b46ef5d096faec39573c18c10c
90722ba3a2d7551b34ff5c6813f422dbfdf1d003
15387 F20101112_AABWMK campbell_e_Page_206.QC.jpg
da70a330491918767f5a75e66e066009
30f421702ca5ff20925a910d2e27e82fecad6118
85662 F20101112_AABXJE campbell_e_Page_027.jp2
c4b136677da9011582d4a6b339b1d3d7
f70f9647e61c338755512908c78650d5d2d4dfca
48217 F20101112_AABWZW campbell_e_Page_151.jp2
ab8ffc1387173d8de1e3b2ddd6eec85f
484791235ad2921ab2ae2234cb184084e56797e6
8988 F20101112_AABXWP campbell_e_Page_119.pro
32b963ac4df7f90e8e808f245f4ad104
11a0d3bc1e10f20ded6b108d364ba2f97e55b0d8
84338 F20101112_AABWML campbell_e_Page_093.jp2
37e579b6cfba2cb553e2d030f8cb3e38
ce7e2e209f3f71b21069e836553bc4eb46b4c4e1
108640 F20101112_AABXJF campbell_e_Page_028.jp2
67f46bc2f84ea6a4c4398e8d587293cf
47aa867bfd8028c7304f140ed98852d40c4aa89a
49784 F20101112_AABWZX campbell_e_Page_220.jpg
c4123361684b853b790cb5be452fa0be
0a70d1d146c594b3c992e1cbf9db87672e02060b
45911 F20101112_AABXWQ campbell_e_Page_120.pro
d9291c8e78781941a4650a377e881490
7377b40ffb8193ecb3589c5b0cae89f730ae1a5d
76470 F20101112_AABWMM campbell_e_Page_080.jp2
1e360ddf0a3e8e5bef1f00b24d706b44
e6519ce075c54a4558aed29d08e974fb1b021309
108319 F20101112_AABXJG campbell_e_Page_029.jp2
26e687bd6579306f2069aa635cd75803
fac1d9aacbc1147a1b2bd6bbea29308dca25ffc0
F20101112_AABWZY campbell_e_Page_108.tif
876bacb5937fff87de7075c5316bd8ce
d76044254d6b02964893eaee8be885c39ff02653
39462 F20101112_AABXWR campbell_e_Page_121.pro
638003b0b8a0fa815cbf8af44769cbe0
b9afeebf7ced3735a796b6aff4dc0402deee8eb0
56690 F20101112_AABWMN campbell_e_Page_146.jpg
cd8fc22646519a510c81fd76e9afbc92
27962c69ead0f94f307b6a1a7f26b8a7a1ec13d9
123168 F20101112_AABXJH campbell_e_Page_030.jp2
e75f4e8e168ffa19f2e853eae4a58a4d
8c3ac7e31792df3930d90b3544883d20069308a7
93740 F20101112_AABWZZ campbell_e_Page_162.jp2
9177b1cb641d6cc1f87ace314a27ab23
513d201f2ff0d8d86d4bcf212dfd79cdf252919b
3986 F20101112_AABYGA campbell_e_Page_091thm.jpg
8418895dd38f226c642446ce6f4fc469
ab2f97e42e78bcadd36b69f4f3470e9062e27fb1
29925 F20101112_AABXWS campbell_e_Page_122.pro
9fe4069ff3617d9d78dad58e1ea12414
02b80cc62389a2bd05272e2aa2d6debd9127a4ef
2020 F20101112_AABWMO campbell_e_Page_176.txt
414af7e47e586bbd3104567eb69b1f00
cf4b5a37ae3c3a3807362e214bbaaaeede77414b
89909 F20101112_AABXJI campbell_e_Page_032.jp2
1c6fe64e847ca42ac4add91d93cc2c94
bbd0159ff77bfec44f5977f47393e711279ac021
17079 F20101112_AABYGB campbell_e_Page_015.QC.jpg
f3300742eadcc1da41bbbe43808d81a2
888840e5669e18bae5f67d25cdacba87114465d2
32132 F20101112_AABXWT campbell_e_Page_124.pro
a135b28551f25b648749cb677f923cdd
d2e03aa6bed287a346d78f954437e5f9f0fbacf4
318861 F20101112_AABWMP campbell_e_Page_048.jp2
a8d2617eacb292e09b845a82ef24016a
3228375e46d63d514777c26a0230c6f02095ffe2
111151 F20101112_AABXJJ campbell_e_Page_036.jp2
b0cef007c0fe45c4ce3cc7dd0bb62a45
7b03fa9fcdd5884b393010664fab4e84296f56a4
19925 F20101112_AABYGC campbell_e_Page_162.QC.jpg
ce5fd6c1f0c567168920c2c8595f9a6f
cc86392c0d6786b5f65e162a0f11d5a33bfd4769
28252 F20101112_AABXWU campbell_e_Page_125.pro
8e2a30a04c71845c96af513d3d5cb080
28cac9a980e60983c6123d1e00b762cfcbb27efb
6089 F20101112_AABWMQ campbell_e_Page_123thm.jpg
b76d7c021b25afe18276efdb5e18552d
e2ab094ce9444b08a87544765fc83396ca78d17e
565954 F20101112_AABXJK campbell_e_Page_037.jp2
7f20afda870cbeec1c6ada0da5e75d5d
c282aa5ac57f5d267c10b3fb9e8e025a77e46dfd
15965 F20101112_AABYGD campbell_e_Page_180.QC.jpg
ed8abe6c5e99921a91c2d0b3d0e6a431
0a13e29bfcf7b203b9605cd7e33b1152af08f68b
28827 F20101112_AABXWV campbell_e_Page_128.pro
492477a6b81d023f3ce9ebbc229cef4f
28a852f393f1ed4a84dbcb5803eacb51b41b7227
1756 F20101112_AABWMR campbell_e_Page_174.txt
deb96cc5d38a8add2f7bb78f4e392384
ad879f489efed9257f73ca4994c5744bf10434bd
105387 F20101112_AABXJL campbell_e_Page_038.jp2
ef77354cd256337fac419e50379e68bd
461ab3eec9d6d5e30293e71d1bafc24df3fd202c
3820 F20101112_AABYGE campbell_e_Page_191thm.jpg
9acd224bca805c6dc83584bd5e1959ef
939a2528341f1f291e4c0834d30a41d99bfd1b38
28243 F20101112_AABXWW campbell_e_Page_129.pro
0f9acfa28719d880a9d87a8f44afa129
12f74aaf04d33f168d57c8ac63e3cef8a8f1c412
466 F20101112_AABWMS campbell_e_Page_226.txt
75dfcb04d03ee95c17e2e276e487d698
2b4dd55262bef948b060cd086ebf5c2bb411990d
736202 F20101112_AABXJM campbell_e_Page_039.jp2
f5b90f7f79d901192e2b758d7402e0f2
db733a4784b8aa9369ca69819aeb7860b8d7744f
5858 F20101112_AABYGF campbell_e_Page_211thm.jpg
cded8b136059be91ba2edd4bffbd1589
66fa65a6ccaeeb5ca97db32c9089dbe9605fa396
28996 F20101112_AABXWX campbell_e_Page_130.pro
26a975c375b4a64997efc7c423ff13ac
c7d5f9e0bdc5bf1d76da416b3f07c3017b7e98ac
14145 F20101112_AABWMT campbell_e_Page_128.QC.jpg
3d1f7dba14a7cfcfd11ac768abbc3e8f
d2914a2b6d58c5c9bc72ff8f6b2659644bb5cd60
604620 F20101112_AABXJN campbell_e_Page_042.jp2
f732addde4094bf09afbd009c2ad6d83
ac65160b00b496713aa12db36e26cd9f74206794
5483 F20101112_AABYGG campbell_e_Page_201thm.jpg
05ba11d2457c599dc11553239b6d2772
d90e7657fd89fa1b1020871b1b63fc5872484b42
49442 F20101112_AABXWY campbell_e_Page_132.pro
1964c80a085b503c8b787ee2c5eca67e
d197f1f954b45f0b127ba9f43b18545d8cccc75f
F20101112_AABWMU campbell_e_Page_085.tif
e686394b4b42a891e9008375d976407a
5c78c957b8bcd2a243b0512141aabaf1a7476035
109833 F20101112_AABXJO campbell_e_Page_043.jp2
111d38ac38e5a6e9ca727848606b0973
a2064e03b41c54a93d8ab6d366d813e423310fd8
14527 F20101112_AABYGH campbell_e_Page_061.QC.jpg
3e61d7d4023b9e1d6f0ad0e1f601386d
9d4972c9b1f7c78ba6f58bd435eb98f29fd5a086
34376 F20101112_AABXWZ campbell_e_Page_133.pro
cae33cc42301ccb193a7403f84d62702
23f43de25c190aea7c06ac1d34ee7caf13fe321a
5847 F20101112_AABWMV campbell_e_Page_131.QC.jpg
9761207f14a87b509d7594dc6549c858
c436e17a5a73613790c89c149ad354650b9b7b31
25869 F20101112_AABXJP campbell_e_Page_044.jp2
77f1d466408379dfc4eca4ac5dbba99f
57f390e2b75e1b7ab4aa8c5b3d9c79b8c468e110
6834 F20101112_AABYGI campbell_e_Page_022thm.jpg
d8bb89eae87b42355ea5cf56f9ddfe17
a9c618968e7bb858d944d4da1c217d1e4b48a2a4
70111 F20101112_AABWMW campbell_e_Page_049.jp2
ccdfe8f3be2fac324f734e081f2b0bef
9120be1115f7b2ab7166ba58d4ab703194309340
98286 F20101112_AABXJQ campbell_e_Page_045.jp2
8d7466bb473f5e1f2464f428faceda0a
d113dd4283d934d5c1bfd41f1091706fe6e48d9d
16921 F20101112_AABYGJ campbell_e_Page_208.QC.jpg
284e52d5b23961e541d5a1fcfe8a066f
5af109978083a4cf2d4fadc40d01407c7e086a22
30748 F20101112_AABWMX campbell_e_Page_062.pro
092655198fb2627dc2bc81c55e736118
91c1332f07001ad11d8d5c3a3e66f11c6c4f2d14
815085 F20101112_AABXJR campbell_e_Page_046.jp2
80bdd0759c3bd44929b99625a54f0808
9c525dafe374db8b8ff7c2457d3eaeee19ce7a52
3666 F20101112_AABYGK campbell_e_Page_154thm.jpg
49cee57f3cb4a3f130245e5b08fd2be7
b73de4f95af1855e4d9a5e8f79b70c00ae4c84e5
25968 F20101112_AABWMY campbell_e_Page_126.pro
b31f166c1466ab1fa5625caed4280910
58a5c503721d12ce61f549406eddd712e798457e
339983 F20101112_AABXJS campbell_e_Page_047.jp2
7973eaaf3b0ac25031cbada0e7b4ae98
cfa0ced8a4708a4da73f49a99547bdcadc89af52
20843 F20101112_AABYGL campbell_e_Page_004.QC.jpg
c45fc9b1b1186c82e21f525edb713c1d
cd54540e2fab37da9568c6aeb77e14f77b8cdff8
20912 F20101112_AABWMZ campbell_e_Page_016.pro
d6bc067aabe791f7779d31e675a07c09
b292125bdea73bb27e9aad8e6fc9a496f3e0f295
80111 F20101112_AABXJT campbell_e_Page_050.jp2
0f32525cb8b416b724c5cd65fbf2ab70
f7db6e800ec090ac6c610025a890bf12d9c16b82
4757 F20101112_AABYGM campbell_e_Page_041thm.jpg
cf165cacb4f14a829ff9104cfbb7ca5a
ae9548240a2c01e4ccc0fbb143098fc8d3eb1c00
95098 F20101112_AABXJU campbell_e_Page_052.jp2
049d969d84a8efd91fa9b4e625340289
6b5641810ffd2488e7f2a75c2307f1896a9eb80a
22160 F20101112_AABYGN campbell_e_Page_009.QC.jpg
f6c7706572f2572208338d17deafed83
ffbef73d4f83d3e55e6d01a6b7b32276c68258bb
823312 F20101112_AABXJV campbell_e_Page_056.jp2
eaf3b724617b047bc374e40a3fd4239d
282794f40cb58c8f7bc384ab69af9c56d33550d5
F20101112_AABYGO campbell_e_Page_194thm.jpg
05120cfae7a24f1698fbdda3ec204e5d
63b21a0a21cab11671cf1434f025429ff7a04552
73668 F20101112_AABXJW campbell_e_Page_058.jp2
8ca267db843d332df4b1892b2ca85f1e
56d8f4cafb8da73bcf26ecad59cbfb3b3e9dd927
3339 F20101112_AABYGP campbell_e_Page_023thm.jpg
797a762573ea25d0c43aa6751c4f3665
fcfa0f327cc24db980af18ea11ba17e428ae75ef
51160 F20101112_AABXJX campbell_e_Page_059.jp2
ab8e5a65782c021972d13ae1897b0a0d
460556f52a37b3f50923a4bc047c519adfd5dada
4793 F20101112_AABYGQ campbell_e_Page_124thm.jpg
5b075b1466ba63ca4d6b98ec0794acd0
e799044cb983e753949044b77d1620ffa05818e1
4762 F20101112_AABYGR campbell_e_Page_042thm.jpg
3b16667dafc2dbc1cc0e5b75f8da2fd7
f5a6954f9a573fa49cbca2e650864f7eb7c985e5
560856 F20101112_AABXJY campbell_e_Page_061.jp2
0b6a5b8b3b3f48b7aa8dfe54157ef6cc
7c9a0d64bb57c150457a243d7d82d7c882e2aae8
8900 F20101112_AABYGS campbell_e_Page_171.QC.jpg
0ca712c91ac2abb86fdf3e0aea1f9580
9755456d33e6d7efbbb79a32deb3286357364e5c
657500 F20101112_AABXJZ campbell_e_Page_062.jp2
feca20f2667a87585d65d2c5edd7bc8c
0a8e0212dd1f02837cb1bac3a78a98eae254d925
16096 F20101112_AABYGT campbell_e_Page_088.QC.jpg
4c864673613e8d3a14ab8d32020a90dc
051db409685e394323944416423abee9701ec4f6
2364 F20101112_AABWSA campbell_e_Page_120.txt
727308ac77a0d70b96e14a9162bb47a9
2d3dafa9645d26b4fd8f1b7f3bae0b3b8f98fe9a
16002 F20101112_AABYGU campbell_e_Page_086.QC.jpg
f90a6435be42882862ef1a522c3be024
21aceb6ae70ef3322611bca4c23cc5f8aca42331
100440 F20101112_AABWSB campbell_e_Page_225.jpg
a5d98a1a0423f434d24298b61d207785
909c745e2bda5541146394011e9866503b98b276
5977 F20101112_AABYGV campbell_e_Page_097thm.jpg
b2a5207f89d819635ccb0910d48406b3
daaa36bf15da1ee2e951bb7e3253f287bfdd0f5b
4729 F20101112_AABYGW campbell_e_Page_106thm.jpg
1ba69760fba515aec595dff34e6e47e7
be04fff6609b466ffbb3646109fe3ab5bb906727
F20101112_AABWSC campbell_e_Page_188.tif
c89f163f0a265689438154aef015ad71
5e50e61813347c9d9ac9ad7d24b0764b764f3e1c
16246 F20101112_AABYGX campbell_e_Page_183.QC.jpg
3620e3429327a2878f11eeacb12f4b0d
9bf3a38c22e23d3276c89a102a820e87efc69afd
4737 F20101112_AABWSD campbell_e_Page_178thm.jpg
b55659b3b42930dc7050090604918209
4c132ed9655bc807a1a8810f7df33cc08ceab5c2
16867 F20101112_AABYGY campbell_e_Page_062.QC.jpg
f97765ddca131995a0b5c735d66de13c
f43ed8de6aa7bdbff94f7c836f09a93199a69d8d
45298 F20101112_AABWSE campbell_e_Page_049.pro
349a7c7f9bb7443f8f218bf3b04aece8
d19eb88f4fdb9192a04ee3fba484feddcd5c375c
4681 F20101112_AABYGZ campbell_e_Page_061thm.jpg
808096472cd1731246c33130b845aaa2
4a9507c0bd8c0b375ba16ebfbb7ebe86b2188ac4
32295 F20101112_AABWSF campbell_e_Page_115.pro
7a6171ebceaf388afc0436c02d5db67f
10ddba5245b3c1771a97c25236f63c2395187f76
F20101112_AABWSG campbell_e_Page_038.tif
2bb110488d4d1b102e89215f805fb5b7
11ff3f3d3b255598bb4701b89ac9b922031f6e15
F20101112_AABXPA campbell_e_Page_028.tif
0fd43ff9f1d1b910e701c1091578acaf
0b4ce383d85da9c250bfdfaed2c97b405538edff
25955 F20101112_AABWSH campbell_e_Page_066.QC.jpg
c1bb038b7798ee13b05ace3a750614c0
679ded1aa86fb7795ee6e081b0c4ea28bc3962ab
F20101112_AABXPB campbell_e_Page_029.tif
73909031b8c64ec72a465a4579edcbda
678375f5e3047541f3dc507a8aa5dce691f007cc
3768 F20101112_AABWSI campbell_e_Page_110thm.jpg
f013a456b2dbc655afb02049b4dade44
4f9bf21863a898bb3f7fdaf3c3d1c1f099cb7021
F20101112_AABXPC campbell_e_Page_032.tif
01912fa6c8e9076bc6a69b9d588032c0
59c8dc8bb0586469768166f358c0a835e90a39c2
54994 F20101112_AABWSJ campbell_e_Page_079.pro
26ff4b44fbf6104043b38548d7473517
8d226935931236a500a05540d7c09d36f4ae276e
F20101112_AABXPD campbell_e_Page_034.tif
610a9ec9cc4f913807e168a2d2051df5
f9d22ef543bcc8b7a0086f8157fbb1a0085ed4eb
2182 F20101112_AABWSK campbell_e_Page_197.txt
dde0a1c8b32797e0d9dc241f2eccc81b
350318c9d6a3acb618e07b3f4610b61e88ef8c48
F20101112_AABXPE campbell_e_Page_041.tif
2c0c4683d33363bdabb93c5017e5a871
3b9a8d0662602a22958c4d5729f8cd6237978f1e
F20101112_AABWSL campbell_e_Page_065.tif
43de60a943514724b509a01b65eb1454
b2dadce9f227ea801e33d0d88a874d0317e17c1c
F20101112_AABXPF campbell_e_Page_042.tif
29013220d40be41aa7f07eb88a9f0e1f
828a39b34f8137f716c2818589f94658f680a65e
F20101112_AABWSM campbell_e_Page_136.tif
54c69f92bcc9cb207d58bee01f3bb2d3
0f4350b67ae7c945bad17b18a160aa98c73a5950
5899 F20101112_AABWSN campbell_e_Page_120thm.jpg
c24e01ef4812c537140c224a2c2b16f7
27198fada3a88d59c25f8157e07eba06e7770cb3
F20101112_AABXPG campbell_e_Page_043.tif
53420906608b7381d62e0702ec5a6bc1
3c8f08ee52ea45c2f4a45f65a88536300f503722
23759 F20101112_AABYMA campbell_e_Page_025.QC.jpg
978bec881a21cee5efead399a602580a
7a136fb12415b4514e9e6eb6e1a27c1ab17b8ca5
39195 F20101112_AABWSO campbell_e_Page_194.pro
12b48b87cc53cb27fa27878cb027149d
ef6004e82f73663019a92b157def693122b7dc25
F20101112_AABXPH campbell_e_Page_044.tif
8cd9cb6e2332759fb332cd1cbcce2ee9
ce82a56062ad20cff0a521ef619b1013379e3d7e
18623 F20101112_AABYMB campbell_e_Page_026.QC.jpg
52346244b2e1c137bb408d2092d72434
ac7716e18686285181bb1b4686577bb53346e515
F20101112_AABWSP campbell_e_Page_075.tif
84562123fc09a4c42e3510bf08d55f62
240162ddba2540f9538c6b6607c5cf9350e7e9ab
F20101112_AABXPI campbell_e_Page_045.tif
ac06890673ef44b403aace1f26efad53
7d2946e9c34f57385f377b314279aef3be116472
23422 F20101112_AABYMC campbell_e_Page_028.QC.jpg
fd8396921998e87698c4acc706cc42ce
db93477031e5a57e2e89bfb8f4256404ba98ebc2
F20101112_AABWSQ campbell_e_Page_190.txt
e23bc49110f391ac1974465a1dd91e92
e316d9c27be2c0009601617e0bf77e0096695901
F20101112_AABXPJ campbell_e_Page_046.tif
16e12ed2e7b2d9fc390707df69da3b02
6330d02593045b6c528eb74f80e976d00d0017ab
7199 F20101112_AABYMD campbell_e_Page_030thm.jpg
0458f9ad82f2062d949094e3b1b061e4
5f9d412af40e635a343512e01860ffb1ad0b4ef6
55297 F20101112_AABWSR campbell_e_Page_216.jpg
abd8a98e6c405aeae0e799b502da255c
3366ab5c9955c41110b1f01eacfac4e2275dec9e
F20101112_AABXPK campbell_e_Page_047.tif
307471922816906077f05de643440d12
f22e2d3d86f0727294f4d82aa1c12d39b20e1c8e
6446 F20101112_AABYME campbell_e_Page_031thm.jpg
b527afe3f3e1c7aea3498ed86db22c19
1a2b58271d2b58b20f889fd86449843db437ddde
24269 F20101112_AABXCA campbell_e_Page_012.QC.jpg
14e283a14f50dc50ffe578a45c4b8385
946b63648457be0d5fe4b702f6cea10a4cc06cb6
1976 F20101112_AABWSS campbell_e_Page_198.txt
d2f0772247e0a785fcb9c03ff870b100
15ffd40d2bfde4af9b82c75b8dbdd002e713c18f
F20101112_AABXPL campbell_e_Page_048.tif
5ebbb77957dd4b34d1bdc1021ec8e52e
b71e551c2054c74db45ef9f8d72c3fefbedcc87c
10964 F20101112_AABYMF campbell_e_Page_035.QC.jpg
f5b7d5aa5db0b8fcaaff9b5e7691f685
ec7b4f34eda384f3cbebfcce04cbb6c9674c31f5
670171 F20101112_AABXCB campbell_e_Page_055.jp2
7361171a54e8027e6f2d29f81dc0a533
f04ec9179621867cef3a8051295593e5e8800e54
4587 F20101112_AABWST campbell_e_Page_157thm.jpg
1ca19fb757cf5f91f820c8f1d29b6990
26d41ad97a9c8efdebb260d52b5149ab625e8042
F20101112_AABXPM campbell_e_Page_049.tif
12045db0a91ed8db1f8d574552ff94ac
2041aa12cb0850f0596082fbe3a0f4c984d624da
3226 F20101112_AABYMG campbell_e_Page_035thm.jpg
3aecb99828398f6425442b93b5648fbf
f54a6da699b1fa4409a453090aa4e0d5e9ab0e31
1320 F20101112_AABXCC campbell_e_Page_015.txt
87e5f141597eec95713aca6132e37198
4e6bbe0145ff3b6cf0e718478294df648d0b4654
56462 F20101112_AABWSU campbell_e_Page_065.pro
cb591274c98cbaf1fd1352016ecf4d4a
19adc2d1ca5ed53f6483928735b4f1e2e6e90a1c
F20101112_AABXPN campbell_e_Page_050.tif
7a16cdfb64d2c066eed1d4dc29aa5641
00db32519b1c7e9a49efd2acc928bede4cb3c0d5
24094 F20101112_AABYMH campbell_e_Page_036.QC.jpg
ba28a585e8db37382ebf19a48d6e61e9
93761e05e06cd38071f5e106b539bd99408734df
140 F20101112_AABXCD campbell_e_Page_141.txt
59ea452c08055fddc842b0f5042f882b
58628338028ba91e3075c01f58f5049aa8168844
6025 F20101112_AABWSV campbell_e_Page_119.QC.jpg
cc0e60eb946982fc48cebeef6f22c020
ef8cf08d57ef54872d32b74ee4b55f5c51e8c67b
F20101112_AABXPO campbell_e_Page_052.tif
76c9b70cb2ec9d029d0582eb9257c3d6
ac99cb5499788195e341ae201cd570f72e79ec58
6827 F20101112_AABYMI campbell_e_Page_036thm.jpg
73e4ab2a393fe1e536a2254d850a1535
2845352a12965c61df03cd417bcec2735d1811cc
16405 F20101112_AABXCE campbell_e_Page_159.QC.jpg
264b7df74c2b02fdfb1a91e54442b331
e5353d0d077c487a03243298441c6d3fa20c9812
F20101112_AABWSW campbell_e_Page_171.tif
05ee3b66ea7223d1b515c2341f9301b6
79d3373b3c2398dc365eb1b69002adaf9bdaf0e6
F20101112_AABXPP campbell_e_Page_053.tif
a2aebff4bceb58c09c53e0da6bfa3b5a
4e58ea85b8d064e94f6cf2e2df0774fbbafdeddb
14801 F20101112_AABYMJ campbell_e_Page_037.QC.jpg
6219f1ca2cfedec12e94a4c1d4bb122b
770347878b1b4062ae3e75481b412c2862a1d6aa
6573 F20101112_AABXCF campbell_e_Page_012thm.jpg
35119fa29fa705bcfe216ddae0f1f899
834a531457ee2235c3899c3cb373d578b7bbfb74
4346 F20101112_AABWSX campbell_e_Page_060thm.jpg
aae4b7eaff2159d08af2107c9f82ca4f
0c546618d1a36b235623c2be2833ff8af4bc9c2a
F20101112_AABXPQ campbell_e_Page_055.tif
5b338ee9e6a9e9d2c51a19bcca6bc4d8
2c23c0c135e798579ca9b96542cffb8e2f678247
4467 F20101112_AABYMK campbell_e_Page_037thm.jpg
4211a827fca691ac7b0cf0d97ca92af5
99a71d34a04a0828608c2aff7de1c6ba28197e79
2240 F20101112_AABXCG campbell_e_Page_065.txt
5f2ad9417d574be96f95e87e99835ada
0f2d41d4af45dc629d4e985fd4acfe10c019b07b
1752 F20101112_AABWSY campbell_e_Page_133.txt
ec5d7cfbd510ab373dbeb23b372eda91
1ba0c1f719828da2e85eba44b07ac3651c2e8609
F20101112_AABXPR campbell_e_Page_056.tif
21ef017ae93e2c11971356cc40b9fa27
5492e15ca09e4f5f6c11032befa3930a2f284830
6489 F20101112_AABYML campbell_e_Page_043thm.jpg
583f291cee771c4abe593a44043e0ae2
1740be584d3aa98ae5af5dfa31e6cf63fc1b56fa
55693 F20101112_AABXCH campbell_e_Page_114.jpg
07c6ee6b611654f94d4804ae39b4e9cf
96284d5c716ff270bfe806d4edcae544205f8516
F20101112_AABWSZ campbell_e_Page_118thm.jpg
31102b51a5a84c6bba77438e8edd19e9
0c48f553b759dc9a89f908e2d7a86e57038a6d1d
F20101112_AABXPS campbell_e_Page_057.tif
6fec819318d97061a62b335070fc2294
29c02951d5126201cde12e7328649391c223f866
19902 F20101112_AABYMM campbell_e_Page_046.QC.jpg
7119259becc6f7e1a8a5fe8034f6d2b3
9c0180b66bbfbe86f980acb9827ddead0e840551
F20101112_AABXCI campbell_e_Page_164.tif
5d191cf9fb3e879c14e1223a5d85c222
8148c36892547af286e39226ae96869476403fdf
F20101112_AABXPT campbell_e_Page_059.tif
cda7014fc77aac3bd02d2f4d03f1e42c
1fa9919fa6aef62a24c9cca4a9f74e48bc3cc8dc
3833 F20101112_AABYMN campbell_e_Page_047thm.jpg
6dbd3944dae84c238c4a825f047367cd
729dfbf96982347e7fb5e93f780f18626f15bf25
F20101112_AABXCJ campbell_e_Page_058.tif
9d82bcc19a39b25202a9fbab6e17c6ff
a8c11a40a61a70647fad8fe4c8403ebf2a8dca17
F20101112_AABXPU campbell_e_Page_061.tif
63138d9401326adc59df08d524f0f9d2
f89aab90ffa322b5d3e3ebf2889c2fc94d5f0780
11095 F20101112_AABYMO campbell_e_Page_048.QC.jpg
b9a305ebf5c83fdfdaf1cdcfebf91336
b16a4a84b35cdc75ff5984d153945a0d6d8234c6
F20101112_AABXCK campbell_e_Page_062.tif
2d2dda8e2b840704347f7dfdfc8cdcfe
0a9aafee466a054fa1c6c5ce71cecb7b5fc6c122
F20101112_AABXPV campbell_e_Page_063.tif
e430262e6ce211bd0e6e05fc0704b72b
d701f5ce116eab7cdb90ebba4a72005bba57f156
3670 F20101112_AABYMP campbell_e_Page_048thm.jpg
7555b1ef797011e02f57a4fa373eedc8
1f8130265aff14987d85bd5d08d328e554e3511f
53803 F20101112_AABXCL campbell_e_Page_199.jpg
70b5579f22cf0621fbcd46c75882618d
86a5ec4438c8fbd6c0ae310fa91fcbcf10298d11
F20101112_AABXPW campbell_e_Page_064.tif
a33251712d45ed420b6ac4b7507e0639
01fa3272897e05532300d354e9bb855577777adb
3113 F20101112_AABYMQ campbell_e_Page_049thm.jpg
f81e0b5843cea4018da353d089dd8553
9b0fc636b1b34109111d5bd6b1ac4f13edb51fa4
2096 F20101112_AABXCM campbell_e_Page_057.txt
b9a86174b82f9fa5de82ac0aa855f0b4
2c9f45ae6966ae5f407564895aaf5832c8e2acdb
F20101112_AABXPX campbell_e_Page_067.tif
7785d21c818cedfcc74617158988ba8d
ae92f8d65951853bacd67d89cb87f5508b18187e
17630 F20101112_AABYMR campbell_e_Page_050.QC.jpg
795991e74f36ff7d1cab7fcce41689c4
8acb774ab52383d6085a108417ddb0ec4a201239
869517 F20101112_AABXCN campbell_e_Page_053.jp2
850ce6848a12fd67139fe61d72217256
b8b1a085af3f8cae3121be233582e9d841776295
F20101112_AABXPY campbell_e_Page_068.tif
bab27a28a9088475c585e01a1187eab5
fa32f8be3ebbfb6a3560cc41ba5934acef824eee
21302 F20101112_AABYMS campbell_e_Page_052.QC.jpg
f068ec6a69a3ab3fc97874c8bac6674a
662f28be2d9fb78b38f06282e677987ab816b1f9
54153 F20101112_AABXCO campbell_e_Page_075.pro
64cae3ca8cad4cb8b5cd1102e9a5b78e
4e6d88790586f1de12f9dab9d855eaecb8a680f9
F20101112_AABXPZ campbell_e_Page_069.tif
b6a22c48d4c84528e6a778f85bf2d1d7
1bed023132a1d7fdeeeec615a5b230a4560e65dc
18730 F20101112_AABYMT campbell_e_Page_053.QC.jpg
f2e81e87e63806f9b35c27637d903560
2abe767ac957de8a281e36718dd632d78184e17b
27720 F20101112_AABXCP campbell_e_Page_144.pro
f7d988600293c45654c5364e0dae8334
fceb827e83f16ae48d604f35d614fa55eaa08011
5583 F20101112_AABYMU campbell_e_Page_053thm.jpg
0002c0b7539a2ab45ec217709cd48b46
977a9d525834ba17b018ac54e50e86b029393218
F20101112_AABWYA campbell_e_Page_204.tif
7f1ada20ecaf8befe7417aa49bbe1cb6
dee27de26f6dbcd36fb441f5e49acf6b3e244168
5040 F20101112_AABXCQ campbell_e_Page_172thm.jpg
651ecbaf7a5410b791e406c67662f641
20fcad9c97e87eb969a84a1076e69e5eedbf4507
6262 F20101112_AABYMV campbell_e_Page_057thm.jpg
bd59529ccfeb32a29f3f6ba388b18273
097339eef3784dad02b1e27f9679d4e33247a1c0
F20101112_AABWYB campbell_e_Page_144.tif
23794030f8ab3db1956fb668be8b649a
391e38ad9da78e293459d942de1681f9d21768fd
6029 F20101112_AABYMW campbell_e_Page_063thm.jpg
5644772819e2edaba8437ea657bd3aef
c3071084ae92576a74a2db58f947c7f4e9ad0863
F20101112_AABWYC campbell_e_Page_199.txt
e12ac32e3411b75c2168732208211394
0a1d66458c84324e7a455a176d9ce5a4e32fbdf5
5167 F20101112_AABXCR campbell_e_Page_176thm.jpg
1c7505aea9a16d34163a2ec12f8eee69
26e0530a9e66308a05554bbb788dc2a907ecb530
6994 F20101112_AABYMX campbell_e_Page_065thm.jpg
a0b5ca312728a52cc3cfb81b0c0d7ef0
5b893b6538aca9f1b2e0c80290bdbe246d182d15
2943 F20101112_AABWYD campbell_e_Page_221thm.jpg
79a5cb03edd81726758cece21c18f1cb
43d9f35ef223325d206c24cedec261086ffa710a
76107 F20101112_AABXCS campbell_e_Page_116.jp2
9d230a736e4e7a9cb16910d4ff6840b1
2073a8786eeac84ea1b8e017a266773bb793ee5c
6835 F20101112_AABYMY campbell_e_Page_067thm.jpg
a4783e3d481d279d008c7ecdbb788138
f8ef590c4b25f023ce182a25bac67f3a159a8c2c
88162 F20101112_AABWYE campbell_e_Page_132.jp2
8d9c4ab1ec5cc44ef92a9cdde72c123e
2f066474ce0bdc17f7dc8dbf91cde79e4a883517
49729 F20101112_AABXCT campbell_e_Page_100.jpg
fc13b79c35b35dbd998a0b0c7c47de0e
7d1f3c2336be9f2d854269cfa7130db61bb1ae5d
25655 F20101112_AABYMZ campbell_e_Page_068.QC.jpg
4f5ccc0824655e6da050082abebb1a39
00b1ead31ddc05373def758d9558cd5504b2df02
658213 F20101112_AABWYF campbell_e_Page_100.jp2
339f53b55544cb9192f845ce49842f03
51a8f33dd68c6f74914555634e855c6ff164478d
5678 F20101112_AABXCU campbell_e_Page_095thm.jpg
0ee456c2d4519e32b70d3b58f859144b
b38d9a06db6fc2a851baeb4d16d280e12fdd7fae
F20101112_AABWYG campbell_e_Page_211.tif
7e6c17c02e3ee1f0b726b96f92257bfe
f3e5d1897a15cc44bea313b7c4d09b203780989a
1784 F20101112_AABXCV campbell_e_Page_163.txt
6970934f534c0fb131fc6b865b036d3f
f7424d061bbf820a90e53e070ea3b2dfd00a0082
33287 F20101112_AABWYH campbell_e_Page_048.jpg
549d093ce7317726d804ed2cf4407361
673db153382e1265a9ee8f7a3c75cd22f9513c4c
2010 F20101112_AABXCW campbell_e_Page_212.txt
536c46e7e7d7a9bdeaac58cbc6426c39
9b7f86841ffd74a619e19c722afcb1f48c440698
27411 F20101112_AABXVA campbell_e_Page_055.pro
a37e461fc39652fb6547727eada66dbe
17c9fc973b6e3ae79b372bbbddd989766c05d30d
461 F20101112_AABXCX campbell_e_Page_119.txt
2ba875503ada0fa2753e45a2856c392d
ae7ae7c3d8e1652e091aaae16fa5f9a2faf45b69
51080 F20101112_AABXVB campbell_e_Page_057.pro
1570083fc0bf552e4cf16218b337deb2
15dd6335e57a9043d699d045b8893399b95af190
F20101112_AABWYI campbell_e_Page_014.pro
e6075448f9c1d1c6cc73d17526cabd43
b7ed35a1f3a94c1b2652fb61d15afa81fa64454f
64499 F20101112_AABXCY campbell_e_Page_097.jpg
27e285ba2aa8a714738703d4c699179b
67905cd9a1f1f3361cec048458e3c261c6e69a7a
33077 F20101112_AABXVC campbell_e_Page_058.pro
ec04da24088c5c88c8c61002aa791850
2c4a91f114158fe27c98cea0ef94f35d08b5f23d
8329 F20101112_AABWYJ campbell_e_Page_019.QC.jpg
d4994470f4ceed7cdca7daf16721a3b6
251b926733437b247299df1c1ab3f294bf40145d
7751 F20101112_AABXCZ campbell_e_Page_225thm.jpg
6da490997f39baf8b6d7dea89352e5e8
edcb209f1be0838e7678d4616d05d533dc2409aa
34736 F20101112_AABXVD campbell_e_Page_059.pro
3483b248e577f08f167c91cbae2fc6e7
02f94c09054e0d3ff358d21db52a48c0d6c5629a
F20101112_AABWYK campbell_e_Page_103.tif
1487955989f697e4f6b52f38a5e53f91
b3be436632f6070d63f6e1c058a2b2c14a4618a1
2154 F20101112_AABWLA campbell_e_Page_073.txt
4ce65b9e49aa5996f668a4346d2f04ec
487de86542846e180cd16809764624cff5040600
4059 F20101112_AABWYL campbell_e_Page_014thm.jpg
02dbec6b2c925761c5fb5fe831ee8e7e
87eecd2138ee8e529f23b63fea9dbd526d3de229
26997 F20101112_AABXVE campbell_e_Page_061.pro
0dce36c490fefc08697ced82984c19fc
a303339f17357f9bfaebe916974de61fcf007abf
7222 F20101112_AABWLB campbell_e_Page_018.QC.jpg
93b1f78e2af7ba8d864deb40703e7499
7bbb7836a35ac598e4977e65112b47044f37fbdb
F20101112_AABWYM campbell_e_Page_127.txt
9b8f1dd62299df69461273a1c8b799a7
be2ecbdc8c86a6adc13eef21480fb1192fdc57e0
54667 F20101112_AABXVF campbell_e_Page_064.pro
b52b2deb1b457d43475b022e4ea65d93
b3fdc4acefbb77c90abad4e29e82b53a84ac16e7
54873 F20101112_AABWLC campbell_e_Page_185.pro
1c2a5b7f2b02ededf0eaf0528d33309b
be742cdba9548cd82fd923a34192deb96c3e9d86
69103 F20101112_AABWYN campbell_e_Page_010.jpg
1b707e2892728d01521d48c29b92e611
cd568d8ba7acd4b4ea3c12d49d039c73058cb672
52973 F20101112_AABXVG campbell_e_Page_067.pro
b37f5a5dbf31c5edf3ad5522d2400b4d
99083bf925d401d6a48c77004969c2bfee4ed14b
47894 F20101112_AABWLD campbell_e_Page_215.jpg
bae8f4999ddfb19ce055078c5a5053e0
d99c32cae603c19fadda895fc38324376cf87aed
F20101112_AABWYO campbell_e_Page_015.tif
0b6dc3fd3c650308b8e5933d00a8e7e8
410e749298dafa3717ba8a7a8f27ea42d9d25951
54841 F20101112_AABXVH campbell_e_Page_068.pro
7baa0b869b229bf6506c6d46fee9d367
cc8aa4a914057b030af3173a978bdea395f7c211
F20101112_AABWLE campbell_e_Page_163.tif
44f47c9830e0943154ba390992df4139
54064ed47b903bd8dbf659230f816468a88d0bd5
100128 F20101112_AABWYP campbell_e_Page_102.jp2
38dc56152dc3bb72f20a0e25be90ae4a
ed614adc367e0bc488452ee61145cd50b44484f8
55851 F20101112_AABXVI campbell_e_Page_069.pro
71a56e36e719225e9101b92f930cf596
9b36685e60b671e7a948977e0d2e7686e82a86f5
F20101112_AABWLF campbell_e_Page_149.tif
f294a54f4acd75abd07723ee103316e3
cfebd3b1abf6bae0beedc334006efd19a7ad1b0e
68870 F20101112_AABWYQ campbell_e_Page_054.jpg
2e6c5873f2ac3be780096d69b0167da5
a4522e710b9b4a6746637fbe9c71fa0c99845265
55385 F20101112_AABXVJ campbell_e_Page_070.pro
22a4cde7895cc7e207736efa7a298783
171814b2aeff75666a4761c0b5d4bf9b3aee5ae7
33442 F20101112_AABWLG campbell_e_Page_051.jpg
a3dcdd1001328573d4a2c0808c532460
0cdaeca5a29d653b8d20e18515f4dab9f99f2471
74480 F20101112_AABWYR campbell_e_Page_015.jp2
83c05c514280195cd8a5a65366da3c07
44b8855d01a7213e2dee72be7b4484d308c4ca3f
54850 F20101112_AABXVK campbell_e_Page_073.pro
ab69a5e485c2f96c113713465139caa7
2b2d2770a55259785054f73e9f7962829c789db5
9612 F20101112_AABWLH campbell_e_Page_141.jp2
453cc0f63c2710c41ec4f7aaa970936c
54732bf0e146b8bc81d2ce4a2313e80291e7d304
49531 F20101112_AABXIA campbell_e_Page_197.jpg
6f410071e93eda399f9a258af6e60230
286d8b5e333dfc926be8aa405ed9f6c3d8fd7144
21898 F20101112_AABWYS campbell_e_Page_165.QC.jpg
3ed3d94999f7bc224740492a398508b3
e05de93b1505ca0b5dd022ec684e03b5468e3c24
52522 F20101112_AABXVL campbell_e_Page_076.pro
8e9a22c2929cda9804e37d19b655e20a
04a1bc475fa6b41f6f700c7fa01e555552473be3
114718 F20101112_AABWLI campbell_e_Page_076.jp2
3341fec0eff4eac166bf2a7725a9aebf
716c9d727b60b886aca8af1183dfdf8ed19af32f
50362 F20101112_AABXIB campbell_e_Page_198.jpg
e83fb2f30e229a7eec12f611f6b757aa
9020fb9a263eb515b4c7c960c88e29b509c66363
4896 F20101112_AABWYT campbell_e_Page_147thm.jpg
30bc8080b14d60eb9b894c250b20d0b1
792fe27abf91ee0731fa95afe285ad583457026f
52089 F20101112_AABXVM campbell_e_Page_077.pro
a76689398bb21f7d87317e677158c4aa
45a0ac9607e07c00bd0d9537c46148cf55c15ea4
117009 F20101112_AABWLJ campbell_e_Page_068.jp2
f1f17c7a3e1651eaa7fa6313efc0ad2d
320713e934a8b0e1316d08093dcf9dd3ef006129
44754 F20101112_AABXIC campbell_e_Page_203.jpg
63ad2f420bb74f450b470113fb2a7478
528d44ed2dd310dd916c9f83bb1820fe5711d6f3
2278 F20101112_AABWYU campbell_e_Page_103.txt
d0c55e22190a1a16daf32e5716dd8310
8696a5ba61eb5dbb3051777a29e1b76221b2005d
34414 F20101112_AABXVN campbell_e_Page_080.pro
eb8ad46fcd593c0dc3b51d8582a7a87e
0f50f67871b9558179b6db01f3a1200589cdc508
37622 F20101112_AABWLK campbell_e_Page_035.jpg
b359c25ad4c5b81310ac64cf20245dd4
f887b0fead22ab3222302897aa972b36145de018
59370 F20101112_AABXID campbell_e_Page_205.jpg
e2fbfcfaefe72e311ace3b3d2514f92e
cb4e27c90ad7a5289108d8ee472567a1e0202aa1
23972 F20101112_AABWYV campbell_e_Page_021.QC.jpg
b7795a7bd0627de9999f939f69fbdcfb
79f5f96d33d74488cc39a707274f38e78183b181
36221 F20101112_AABXVO campbell_e_Page_081.pro
a51304b2570230267be313b977bbd925
92be0409f9128b8140f5d3794f29a8fda832a6dd
52070 F20101112_AABWLL campbell_e_Page_080.jpg
c77720ecdf0e0435af81e8a736167174
55790d8c4f13c7c235e75f326a819315289c9fc5
51092 F20101112_AABXIE campbell_e_Page_206.jpg
b73bec34d3357205538f6809414bab29
9de14e70eb9a9b2ba71a374d0bdda95d284a1de3
1979 F20101112_AABWYW campbell_e_Page_208.txt
9f3ba7c99f7a964e3e037783e4986ef4
7c2f5a1658c6af6fe255586dcc6e2ab877df47db
42696 F20101112_AABXVP campbell_e_Page_083.pro
9d258cb53bc8db33f54cc7f9d1c74d08
773ebce1a0f09068942d0fca77b775ef391ec920
841642 F20101112_AABWLM campbell_e.pdf
31fb8425991d24d3184e070e702765c6
149f599cd36da3fc472b2478de095e0b967c13b2
BROKEN_LINK
www.nativeweb.com
50134 F20101112_AABXIF campbell_e_Page_207.jpg
9915b8ca26103398bad5a98a4da443e6
53ff64dc67c18112f1a2c5951ec938bb1ecf7ba5
27353 F20101112_AABWYX campbell_e_Page_224.QC.jpg
a09f6614401a191dadb6e81242c6439e
0b9517099adc89db624b64fbf421a2861c4707f4
42140 F20101112_AABXVQ campbell_e_Page_084.pro
e045675f79e790b3042ac3b85307a422
b3688772b80ed86b35d96bde6f6ef9db19463256
55495 F20101112_AABWLN campbell_e_Page_122.jp2
391cef910898f6545ec9f48c9a08b5b9
8ea77ed6bca2f11c48802d44fc2218d3dd80eed6
53686 F20101112_AABXIG campbell_e_Page_209.jpg
9ae14fdfe845bfd0c57b9f0b286298cc
af4800ff656a4afe63a677f2df4bb750c100c6ef
F20101112_AABWYY campbell_e_Page_080.tif
33b96ad37f66a1add151120f38f50093
72d1fe10a572494d78ac69d6b7af889bd29192ad
35666 F20101112_AABXVR campbell_e_Page_085.pro
18be89e096bfd30a7b8343aa06d1f551
f4c29410a25cf1ef61e19be2873460f3714d1a47
53323 F20101112_AABWLO campbell_e_Page_180.jpg
b1fe9257f616b6724c28109537b8a60a
16ee74b41c4bc4d96b6b586c50c43e885b5a0dac
18662 F20101112_AABXIH campbell_e_Page_210.jpg
a844cf0184b073ba76e820a4a88368bd
2fff72ef7dfc38ed2b4833a81a81f31e8b8d8b5e
82048 F20101112_AABWYZ campbell_e_Page_159.jp2
e59460e1a4891b3c45f28d2627ae0923
490fc39fee01a83f66fd145bd41a610214146c8e
1733 F20101112_AABYFA campbell_e_Page_216.txt
935dacf4cfddacdfb89efb7eb626859f
c49b16ca2a0aba34bdba6f611c71ba12518797a2
12026 F20101112_AABXVS campbell_e_Page_087.pro
d7dce4b314100ee867d3ff5c73301dcd
8086cea611b73ecc9dfc668c3fd3707f550e2b35
48725 F20101112_AABWLP campbell_e_Page_188.jpg
6e8b2473fd0136b07f655f1eb1a622a8
612c370d504dc7363549f8cc83aa2783253918e9
62450 F20101112_AABXII campbell_e_Page_211.jpg
6b895d456500a9e2873d0ff2aa32c2d5
30c8072f086b68ec692113ea445b051b4f9f8b5e
1444 F20101112_AABYFB campbell_e_Page_217.txt
52d59443466422e252c9cb3c3e92b888
30cf881650be46edc0b46366f6f90e9a97ecf569
40380 F20101112_AABXVT campbell_e_Page_088.pro
d43aa10015c22dc638a3117a76489312
0700d4b366e678ce9ca3af072ce0247fcedc75a5
51251 F20101112_AABXIJ campbell_e_Page_213.jpg
602e380ddbc8b6dc6f2276b7e279aaee
2f00abce764a9e93232335588f77743444099583
F20101112_AABYFC campbell_e_Page_221.txt
2a61dbf20a784e72ec46f67adfe77c9f
b02739d588dd0e53ad694ed67c674f5c6746793d
32540 F20101112_AABXVU campbell_e_Page_089.pro
d2ea737df2f3628124d1b4b7bdd1d070
a59ae508368d1fb1ec773d5828b0da957effd244
44547 F20101112_AABWLQ campbell_e_Page_093.pro
3e353fc1bf5ce07168f993077b53d59c
e2e842354133e5b0b3e509e420379f8924c37215
27096 F20101112_AABXIK campbell_e_Page_214.jpg
9e79a5265bfd40ea26045598214bb270
1afeaad080aa4ec0f86f67c4c7906518fc03002c
2624 F20101112_AABYFD campbell_e_Page_223.txt
e4e3ed8d6db2632a9cd4863912665aa0
59f11bbbb1282d946e39f9f3938810af9f7a2239
29760 F20101112_AABXVV campbell_e_Page_090.pro
d05032d4dd3df136b3bd2ca332aca7c9
112bf289979c2f45ad08209e168a393673e82188
51458 F20101112_AABWLR campbell_e_Page_062.jpg
52f1d214307f0e4343308477e862b369
a0cdeacdeab27ed8f326ec2a51597452c21176e8
57060 F20101112_AABXIL campbell_e_Page_218.jpg
45cb16833a5620c39270bb4b31d7cc88
4c937806d80b0679999df593b1f27eb27a4f8d40
2353 F20101112_AABYFE campbell_e_Page_224.txt
2e8e67b3806bb9e6f5472fe3f75a52a1
2ba0b400c12747128154e1030e0d56df7db430ba
8055 F20101112_AABXVW campbell_e_Page_094.pro
8074c1a27af3b0ff9901c95c05ff6313
fe89bf6dffc66a6511f8ce66954cc642decf8589
82144 F20101112_AABWLS campbell_e_Page_074.jpg
1b363c5b8069a3edf2132714083f79c3
590eea4475a91530432b90318d96ad15bcab1a03
55476 F20101112_AABXIM campbell_e_Page_219.jpg
ec8063343d6e360e6c9acef4d15401c8
190f1f0056489a51c094b68abec3c3f39e658e8a
1228 F20101112_AABYFF campbell_e_Page_227.txt
ee4aea1b1d020ad966cca0bf66e98c01
873d43f49858e19ac23f233d87c18805e3ee6ed5
38953 F20101112_AABXVX campbell_e_Page_095.pro
a38b587472dc174a8250105518089945
efd377cc6e0f59ea731465860fded99d0521986e
6594 F20101112_AABWLT campbell_e_Page_029thm.jpg
2fe423c16f648575d9f9f10f558d46c9
a253e3294efbe7085514b706500d1d36afd22e9d
27775 F20101112_AABXIN campbell_e_Page_221.jpg
f8692768d7849dfe440698d9c257c2af
270e7222c38d5c10cf79d03cd1f016100d1c0ca2
4938 F20101112_AABYFG campbell_e_Page_206thm.jpg
90a4ade4cd66b3d2e05f2e6d6194c023
c04f87c090e847cf3914e19d5751df4da641efa9
12540 F20101112_AABXVY campbell_e_Page_096.pro
6d361d51c62a68eed248e2f649014adc
c7161e7445f81bb05f17ac2c25b92891f25f1b69
36745 F20101112_AABWLU campbell_e_Page_153.pro
86656337c4e9072dec3aa2b99da49de6
9abc2602e2e6a2dd7aff6ee1afb240e90294cc74
104940 F20101112_AABXIO campbell_e_Page_223.jpg
5a34094796d37ee7ec390a1ac7ae205a
f25d1411ee161a256273470da7428f7bbb864257
5164 F20101112_AABYFH campbell_e_Page_008thm.jpg
129f41de21427322cb9ace262ab0f69e
1db808efb06ac36a528719094da0dde64cbb9999
50575 F20101112_AABXVZ campbell_e_Page_097.pro
08452f86f32914d0c5680b75f32b4287
2daa1f1d8413d9a48081e561d77edddedb0e7683
32246 F20101112_AABWLV campbell_e_Page_108.jp2
5587fc98f6a0cfe3aee5cfe8b4b97aca
44d67927ae9d2eccfe8adf5d55b7ee2bd28e922c
94581 F20101112_AABXIP campbell_e_Page_224.jpg
0d7d9a383bb35e6315033220f0e50768
a5094a694672a4153107e413bde0a4f599fdb061
20246 F20101112_AABYFI campbell_e_Page_032.QC.jpg
7002c242c61c57304e309a63301ce5c3
da0b1141e340fb7bae19aff1f0f78110c33ac8b9
4189 F20101112_AABWLW campbell_e_Page_174thm.jpg
42dab8271c65162fd0a6236c059a09d8
a027cd943785f567d907b500c3a32d0483200c7b
48822 F20101112_AABXIQ campbell_e_Page_227.jpg
2aa30520c8f72e1ac1bf43d6b71c0a8c
99fb9994e2fed75a3466b848c2d5322beee3ad76
15428 F20101112_AABYFJ campbell_e_Page_106.QC.jpg
8a8a62b72a6b5933271dfa148901a563
0ff25fd38685f28a202963073f1f9c53993b0d96
4738 F20101112_AABWLX campbell_e_Page_189thm.jpg
1853c705f7e1154679788a09bc786ad8
4541e26cbded25b8a23c5168f47772a1640842fc
25963 F20101112_AABXIR campbell_e_Page_001.jp2
dc8e335d2adf8e415a0fd0865b85ff9a
9eb47e8754da60b712e570b5a6922b081ad7867e
4638 F20101112_AABYFK campbell_e_Page_217thm.jpg
9aaa5ac0af2853716ed549253fe861c5
c4b2edd884501e0189f575ff57297a36e6c1ab35
33642 F20101112_AABWLY campbell_e_Page_091.pro
d5a4891bb3f70d8046091c75617c5cf7
85ffa8fe0c85610ea723709e891d0e3c8123100b
7904 F20101112_AABXIS campbell_e_Page_002.jp2
68f5b09d5eb1d57faa0b8ee0e5de79c6
2d52f1be3ac5e7a691c43472c8c4f23d2d3451aa
15735 F20101112_AABYFL campbell_e_Page_153.QC.jpg
dbf8a2f0039f26f256d66bc615f450e0
e1888765aef9dad511e75f14a630913303dfd4c9
71896 F20101112_AABWLZ campbell_e_Page_175.jpg
08e37b9ae298a846d4fc479e9695071a
911b35b9a825adf6ed1519390d7beb69c2306111
70868 F20101112_AABXIT campbell_e_Page_003.jp2
c51dc189b28401fcde41d3f1fb2390e1
f87c9a87c376a971d61abd7b2e8eb2fa655a5db5
5714 F20101112_AABYFM campbell_e_Page_210.QC.jpg
6532351bed216538524b7d31c7403e14
d4576591c91cd16a2baddd9e8062d5f1cdfdfbca
1051986 F20101112_AABXIU campbell_e_Page_009.jp2
12e137a494e0cb66f1b347525567e4e0
6bfa74882c5f7b7059cdd7e80962abb4be0cece3
F20101112_AABYFN campbell_e_Page_156.QC.jpg
6d189ec808bb6cd268e352dadfbb2ea3
3196272f194b6de740cee36f83b46506cdaf7c63
36328 F20101112_AABXIV campbell_e_Page_013.jp2
809a1837101a77f431fc56c5ea20c2a7
9d4e94529734803fbb73bb514ee2167307be272c
14138 F20101112_AABYFO campbell_e_Page_137.QC.jpg
547322baf27e6bca84ec356646adc49c
91aee7e5bdc840fd55183b9b627dab9996da37c4
752517 F20101112_AABXIW campbell_e_Page_014.jp2
36f5b997eda5fb4f3cc70c6cc6d4c4a5
15dd43f4bdd4fa8c3e479396b8686bce2fb3a087
15024 F20101112_AABYFP campbell_e_Page_105.QC.jpg
d92db80a0bc31556f7ca713dc19f0be8
a54ee122f9bf159957847b83d798a89d000fb873
19219 F20101112_AABYFQ campbell_e_Page_008.QC.jpg
c8f57c0cd5451b2f5a76b379f50cc484
6eb8041e8aebfe503a4d518958476e57908b7933
1051980 F20101112_AABXIX campbell_e_Page_016.jp2
8ab0e4ab5c1dadaf7a80d7a09f374182
6359c62a9e6bfbfefec7a124d6e72350e5e19ce9
3254 F20101112_AABYFR campbell_e_Page_151thm.jpg
9b93aacf2783327fc7317c63de5fb507
0f8a0e93cf2d4ff53288a55f4a4c52dec7af0380
1051966 F20101112_AABXIY campbell_e_Page_017.jp2
20a44454fb0456f3e1fa7bae05377e4f
525111e2535d61fef590f82a601caad677d11fd3
15669 F20101112_AABYFS campbell_e_Page_124.QC.jpg
34c09d41e17985e8b0c584739073eac6
d78208bffadcf6d5f61d23a9f3c6d4d35a9ee1e4
26295 F20101112_AABXIZ campbell_e_Page_018.jp2
142bd7ed9dfc8fd5a9f9785635282ee5
43c0540a475584ecf0b69a01ff637bd351251b13
6013 F20101112_AABYFT campbell_e_Page_009thm.jpg
017f99000ea9fd3fbf0af48da0cbe2b6
394739987e87977e1bdeb43e253caad573e5fb15
63385 F20101112_AABWRA campbell_e_Page_063.jpg
48934d65c74fbbb790b42f9d4b6a8667
b8be9dbf0416ed4f1f73282499a7c5a4e36281e0
11619 F20101112_AABYFU campbell_e_Page_110.QC.jpg
5033a6d382282d6fda1fdd16274b72d9
05a671512f5f817caf616373e5378f5ab24568e3
1478 F20101112_AABYFV campbell_e_Page_002thm.jpg
b1d6a9b7b561b787cac21d400ed373ec
c8654bc716c7ba1a7563db9be1cdbd6da2e50c8a
17409 F20101112_AABWRB campbell_e_Page_190.QC.jpg
501717ab433254463173e8cce89b59c1
08f598febda9a6740785e79006a328f985ee180a
4915 F20101112_AABYFW campbell_e_Page_183thm.jpg
036968aa05025ce31a9ae5ed621ab728
a12baa0e8b5429c84a04428be03be6a255661d98
6217 F20101112_AABWRC campbell_e_Page_135thm.jpg
547c7c3d7d597d0677918b89002bc788
962dee01813521f221952f094e650924082c5888
5379 F20101112_AABYFX campbell_e_Page_152thm.jpg
742ecf1577fe711a6e975d4c21a41ae3
309716a51e4bd76e452568b3f9f308b9d682fb56
15229 F20101112_AABWRD campbell_e_Page_092.QC.jpg
d3032e2ed44e9052885b8d9a1195e449
5137a83ca61439a02c90b4f6ea84139c32810c14
6511 F20101112_AABYFY campbell_e_Page_204thm.jpg
727b48e26db6a338e22f852fc0b9e836
503e08692b0cae8c83cb615a07b87da3b212a90c
42123 F20101112_AABWRE campbell_e_Page_082.pro
8691374839a233172ade527bcc2b07b0
1313b0d3ddaad3dcf4affa8e27aa28856583a104
7317 F20101112_AABYFZ campbell_e_Page_044.QC.jpg
cd625bdb6f1258370cc87321af66b1e4
2b9704ef87f23c03c8434ef552ea9ee592a411b1
41873 F20101112_AABWRF campbell_e_Page_052.pro
9516af1b497230ee2e0b975e701e3b05
bd49dec7e9e3a914f21141bb0dd5fe8ca47a4922