<%BANNER%>

Borsuk-Ulam Property of Finite Group Actions on Manifolds and Applications

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101207_AAAADB INGEST_TIME 2010-12-07T19:56:02Z PACKAGE UFE0020106_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 5067 DFID F20101207_AACEHN ORIGIN DEPOSITOR PATH turygin_y_Page_12thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
c05ffa5b84a79ac9234e8d9f39ae760e
SHA-1
b0e6db0c959471575e99bb86bf508d938bb46d93
1053954 F20101207_AACECP turygin_y_Page_48.tif
023a8102d73260657de4848e0f88fa4c
ec8f355cdff8d1b267591664a0476562ca126998
25778 F20101207_AACDVS turygin_y_Page_07.QC.jpg
51f26652c17c1d97cd4fac304dd7bdc5
4948d0da07361d8978e621f671093a44317d21d1
4041 F20101207_AACEHO turygin_y_Page_46thm.jpg
84605b5cdd1ce2b7cf3fea3c9033e83f
c6a99cd00c55718b584734595fada99cbb2e8c6d
F20101207_AACECQ turygin_y_Page_49.tif
bd5c6f0518f41b30ec90cfa197d702c5
fb5981cee1f596f1c223458066e052d864155739
4315 F20101207_AACDVT turygin_y_Page_20thm.jpg
a457c5492258390ccf4d9d73cf4ed91e
79109f31605eedaf997987701adae5eda7fbf49a
5374 F20101207_AACEHP turygin_y_Page_10thm.jpg
69b48986b7e0e531304c34e67003fe95
f1e5ea955df8b817feb678def218598fd4b2c6dc
F20101207_AACECR turygin_y_Page_50.tif
4f31c8f26d3db1b56df04c93e136f130
1868365c6dbd6a95a33a36036cc3b58c80fe5e3e
4838 F20101207_AACDVU turygin_y_Page_25thm.jpg
3cd7b0e90b759fc3b45099da3d441e6d
f3b27aad8a493e2e4b4f1b7eec453aa180ebb6dd
17678 F20101207_AACEHQ turygin_y_Page_19.QC.jpg
4d2908c2e1d48c34957530c6e350b397
246588663325afde44154650b0c9ed594c04da1d
8113 F20101207_AACECS turygin_y_Page_01.pro
bea778ecd3b2e48e430436e02424f8fe
57580f4e81d6dc9d1b2e7103a4214c531f6503c8
63235 F20101207_AACDVV turygin_y_Page_28.jpg
d5f713eba4a4b3eca5024496a2787fc7
9afa176c917d58cc430091d2df84a701fa8b228f
833 F20101207_AACECT turygin_y_Page_02.pro
028c30888665571665952fe2616d71af
159499b97d5a0d7447390b1aba24c73db0d48978
20254 F20101207_AACDVW turygin_y_Page_10.QC.jpg
c0e8e7f21e5eacc7157c634e7475b5f4
1f280384914bcc10f8a5a605467305a73b372e2f
7164 F20101207_AACEHR turygin_y_Page_01.QC.jpg
3e6f34ea3d91e9af0af7a9be66850415
aba544a484d011ab0c284ea35bdc4b5a46ab0841
625 F20101207_AACECU turygin_y_Page_03.pro
0e6d4f3d7ad3d024aa8b1aee77cdc41e
4a58de860efbbfc83bc43e21b5467a43de9c38c0
992226 F20101207_AACDVX turygin_y_Page_29.jp2
2edc5f687a6e38da8e06ed705dfb2a28
1762ecf103f64b8deee88168773e6ffd54c8c3dc
20551 F20101207_AACEHS turygin_y_Page_16.QC.jpg
ceeafc0e1204d94cae0246b563be5970
0d1c2928c6fa4c51954bba6bbfb104320f5269c8
10450 F20101207_AACECV turygin_y_Page_04.pro
c5c829894259698afdb531e0a9508340
98ca66ac77c8104b6ce7f33c59a0c6b9064a6186
19292 F20101207_AACDVY turygin_y_Page_44.jpg
919b3cd1373ebad3ed5d8bdac6290f68
913c894f3f5c9aa12a90aa64b689272d55b70b56
6586 F20101207_AACEHT turygin_y_Page_17thm.jpg
95524e4773b9d4f530e109f27f7f0cfc
14b498fa9f3cb6b9b60b033fc486609ebb5921cb
30989 F20101207_AACECW turygin_y_Page_05.pro
6090253fbbf9da6d5c510d0e087e08ef
035fee7ac224d0f8d9fe57dda2d3199aeacdc053
943 F20101207_AACDVZ turygin_y_Page_50.txt
696b31747e662e010121c3dc7890dd5b
0f65b1f38392246253e2dc905e676677d9722804
35707 F20101207_AACECX turygin_y_Page_06.pro
e2295ce647d9ad890c68961c40641858
e6eba8750b0ccf763a6a1ee058af29ab058a5a8a
16526 F20101207_AACEHU turygin_y_Page_06.QC.jpg
63632486567e499e4c48e8cb99fac0ef
b215579b0f9d6ab7ac656d287ea5e91ba8fe5808
60694 F20101207_AACDYA UFE0020106_00001.mets FULL
37791607ffcfe8bea348391ddff2b45b
d1d76242b17b197b1976a0ce6b0df692e3bd5c6d
892528 F20101207_AACEAA turygin_y_Page_11.jp2
3b0b33c0a4bb4a2d1ed80f4631b3c2fe
ebdcbf0c8af9cda5725aa57cf692009f98e34d9c
54904 F20101207_AACECY turygin_y_Page_07.pro
07dbc707e40c21a8fcc726b9e7f85539
a2ac8ae52248b21637d6478a54e96e965bddb051
17640 F20101207_AACEHV turygin_y_Page_05.QC.jpg
7eaa194c47fd353d96470b1791f9db40
9d861c8287189bc7673ca234f4b448b337f4d413
724619 F20101207_AACEAB turygin_y_Page_12.jp2
82bf64533e0fd7d1c9e34330306c3855
2a5e77df3747270d965d67a443488045e4e2fd84
50927 F20101207_AACECZ turygin_y_Page_08.pro
99285867a75f9062a0adf6a12448c2c8
b27e10565f32ceac83c9780e6e2d7880d0d5acd1
5018 F20101207_AACEHW turygin_y_Page_19thm.jpg
9526b2bb6d11d0deb859ece4f98af081
adf7bb751d2ed241d52f18f27da2db1f21a26953
759887 F20101207_AACEAC turygin_y_Page_13.jp2
952eecb10cb2081af398d582543a4819
ee2339946cb3c15139efeee04ce55cd822d846a5
5797 F20101207_AACEHX turygin_y_Page_18thm.jpg
5f75b2788cb89e93196bd1234312d5ec
47d0a4c52cf1535d6db4eeb9354524bb08f95b8b
591209 F20101207_AACEAD turygin_y_Page_14.jp2
10e6e193ebc4689d206f9f091b7ef7f4
051fea8431eb36e813bf3312901ad1ae8c02e5df
1928 F20101207_AACEFA turygin_y_Page_27.txt
6a86df6756993986e007c4e6f60303a3
b9d15266dcc758c03da3e7773e82d83755730625
15304 F20101207_AACEHY turygin_y_Page_31.QC.jpg
94ca143fba32db698297c7e9a79a77a0
b204ae61a8f093d075cb51ce705d3cab80a6d13d
700692 F20101207_AACEAE turygin_y_Page_15.jp2
3795b71fce54ea164b03f0733573773c
e162271cde85f951a594015696930ab638916130
1725 F20101207_AACEFB turygin_y_Page_29.txt
5809f64fcbc67549eedf248368c8fea7
c764bcec8080b5a28b44c506cadcbd3f1816c14f
3198 F20101207_AACEHZ turygin_y_Page_02.QC.jpg
592a6588cc751af9d7e410ca93c6b982
d6a25e90615b8e3f88428025ce12d32c28d635b3
23356 F20101207_AACDYD turygin_y_Page_01.jpg
d417a71ad565c8929eb1645fc8812395
f31e4733d4ed9c35610c866e3ec50b308146aa6f
1051983 F20101207_AACEAF turygin_y_Page_17.jp2
c35d180b8531b7b4628c2c840cb93c40
b9010f4ab4781075a2564c3d197e650f5f51d905
2173 F20101207_AACEFC turygin_y_Page_30.txt
9fbfd5585d4cb0c879c9c2318ecbae24
c24c2cf27767ea26b290bc7ade0067d62a091585
9805 F20101207_AACDYE turygin_y_Page_02.jpg
fef8e484411b87a53a677d758093a0ca
4402b1801071c05c7b9cd18e50c1443facbb5738
926266 F20101207_AACEAG turygin_y_Page_18.jp2
57226212b5f32dc95c176b4e35920053
361f121f7ba99b9ab2487e02750c7cc56aec2ea6
1489 F20101207_AACEFD turygin_y_Page_31.txt
5b9257f70e7631162684c7c6a5b9c113
b10d72a9588a641746c7c0d0e6f3cad83b557767
9312 F20101207_AACDYF turygin_y_Page_03.jpg
e72f894d3b09fe548ef60d9b34859fc2
f583603076214ab7e5a8f96a108268d83d22c006
65885 F20101207_AACEAH turygin_y_Page_20.jp2
b8cd74d6337ba42c0ca4e065ebdf30a0
546b0c0b7a9c5896d6196c018c90205b5cd90083
1828 F20101207_AACEFE turygin_y_Page_32.txt
e11709a7d91d790e0f871fd36866e1cc
d41ce566b53d8fd63b064e46d9eb2a2ffe3ece40
21047 F20101207_AACDYG turygin_y_Page_04.jpg
ba5285d6162b7f59e200d046d507eae5
f6a822b9f0a20ed604d0993de90cd7b6c3524e6f
1712 F20101207_AACEFF turygin_y_Page_33.txt
df4453d73f60f5609377db896b22a599
fedc44dfbc8564eb82fd4f92ae3530eaac013b73
63043 F20101207_AACDYH turygin_y_Page_05.jpg
8591542df35f3b49615ce5ad4b4452e4
b2b0298cd4b320569dfa2891dba762d515b0dbc7
749536 F20101207_AACEAI turygin_y_Page_21.jp2
df119b1aca7f14776f94ea3edac7420e
8a84b170075b0f75b46192641f91894cf19809eb
2076 F20101207_AACEFG turygin_y_Page_34.txt
777a3f13a66d7a640ec4c288187ce4da
409a2c932a4b3f464ea33e8c0a706f07f0e0b671
78484 F20101207_AACDYI turygin_y_Page_08.jpg
6f0b8311d2b325dbc3c0875675e2ae17
cdc22e9cdfea669ef6cc421c96f0c59c9e9dab4d
71501 F20101207_AACEAJ turygin_y_Page_22.jp2
7e7af45cefb1ae0c7066cfbb312ef512
02e5f81b90c7ae71fe5bacb10a785f9fdce90e78
1940 F20101207_AACEFH turygin_y_Page_35.txt
d52dc3957ec2b8c2edb75d8079eaba61
61153f751fefb9c6870289c702088edf5d9864ca
82750 F20101207_AACDYJ turygin_y_Page_09.jpg
f8d9fd60d7d1488372fd3ccd58a4dff6
96c359233ada65503c7cafb82fc318c1539e337a
1977 F20101207_AACEFI turygin_y_Page_36.txt
cf2bb3e46abca79015b901839fefb8d3
ac171c3e76f84d7aabd20f311c870c6554002b86
61925 F20101207_AACDYK turygin_y_Page_10.jpg
f72b7556b6e91f2d42bebc64bbe055ce
872e34dc250b3c09744293f3339dc996177f70ee
658817 F20101207_AACEAK turygin_y_Page_23.jp2
e37fd37d6109c23d24b0ffbbabef6b3b
2aa628691e9742e6db3aaa9f9b747509f759b2a3
1972 F20101207_AACEFJ turygin_y_Page_38.txt
0d32bb9a7c76089097c0b6da230d6201
570e63519556e128541fffe9a6310fed8e49bfe2
56468 F20101207_AACDYL turygin_y_Page_12.jpg
b636ac4f3cdacc08a33b60eb6f3c12d8
cda346ef397ab92476819f2f067d606cd78ca34d
499769 F20101207_AACEAL turygin_y_Page_24.jp2
d107cb48c4917f91f7f6a29b5ae5efe9
e3a41816d440ab36025e659c2098a7e17c2ecdbb
2037 F20101207_AACEFK turygin_y_Page_40.txt
930f1a537862b62762116699fd21cf18
df30a840fb01ec17f117b019747266e5029f452f
51297 F20101207_AACDYM turygin_y_Page_13.jpg
430654dcdd668490eab8e384d1302b59
0801838c20621e99439d41ecc8ad7b42dcb4fe57
103374 F20101207_AACEAM turygin_y_Page_26.jp2
bd30b2283bcc0cc26c582e01add9e76c
539f88ce3867ec18de7e251b01b752b8dc43a1de
1736 F20101207_AACEFL turygin_y_Page_41.txt
f5d0b845acb6ae38c434b81761a3d38a
fe6866f2ae83311ef9d19aa67e39fa7d75377ef0
46635 F20101207_AACDYN turygin_y_Page_14.jpg
c3d57408eeb4c35d892dbc08f040c4e6
6010c27299101813fb3bbc0686761c63674a6e05
970738 F20101207_AACEAN turygin_y_Page_27.jp2
477a29dfa4a39101fc369a5997087714
53314a37d355d83f4a54a53b0cd391c2e5c88ae4
1744 F20101207_AACEFM turygin_y_Page_42.txt
bb2a865882eb650eb7b117df84dbe08a
5850c5284b7d429cde68498810746094fbcf5a09
52681 F20101207_AACDYO turygin_y_Page_15.jpg
e94637ee6dfd5c08ac5cd799a806ea2f
87c68449a1551d2a727dbfde93ec25a47d75b07e
877883 F20101207_AACEAO turygin_y_Page_28.jp2
8c54f094a3b25a046239f50f02584357
7adea0875a2898220d4fd396ed7c3133198b6c71
2114 F20101207_AACEFN turygin_y_Page_43.txt
45905b2d0dfc66df00a478be1b72e9ff
6cbfd1f7a3ade1b7fe2d41013b6037e9de6b1228
62561 F20101207_AACDYP turygin_y_Page_16.jpg
ec6a5d7d7e1457e45a55e0673c42dbac
96fee0ccd3b40ff78f78cc30275d58280a38d8b1
1051944 F20101207_AACEAP turygin_y_Page_30.jp2
9eb92312505753a7ee779fed35358b32
1f74f7e3089d451138e0d65d560c486105c7ec55
395 F20101207_AACEFO turygin_y_Page_44.txt
97d097839ae4d1fa29039422fc98c312
910b6e4d4d9b2a3af247c19fe6a01c16d9c645e5
83519 F20101207_AACDYQ turygin_y_Page_17.jpg
015fb4cd77f3fd5fe850dd023b3b7757
50a22cbd4e3ec508cf82b67e083838cc4946ffb1
74638 F20101207_AACEAQ turygin_y_Page_31.jp2
4c2210b41be2ed1f124a8c403792ae71
677740380bc4cf63d65be83a1ef2fc66b0881d3b
57498 F20101207_AACDYR turygin_y_Page_19.jpg
97a131f8334e9b5fb3ea8d6be7fd2acb
f067b67fd40876d965398a44fd90379dbf7babc1
96728 F20101207_AACEAR turygin_y_Page_32.jp2
f640762ea436a9baf02553843f355528
e7aaf46722e6f1161b0abebc70b4f9a6df6ef1cc
1642 F20101207_AACEFP turygin_y_Page_45.txt
819567af63e2e5c95d24e1d434b08e4f
811cb690af46d374d441846a32f06566a866ec63
55422 F20101207_AACDYS turygin_y_Page_21.jpg
9f8220056a6b797c857b4ae9d2be4c50
54e0326e3aaa032f83c44a27aaee191580efbf32
925318 F20101207_AACEAS turygin_y_Page_33.jp2
47691799b0bc0e7c2bcb61f8760065dd
bac28d00c8a5aab6f2820a124663f45d1fea909f
1337 F20101207_AACEFQ turygin_y_Page_46.txt
89b67663d491e6e8269e92c227280aef
8c9710d9664806533a15e0928554510ce9c16913
47055 F20101207_AACDYT turygin_y_Page_22.jpg
8b560d2b8bfc95d7af91bcb8e4b8c922
146c0c51d2ca48cf49ac0c4f9bcefd1959179614
1051963 F20101207_AACEAT turygin_y_Page_34.jp2
8180db54648b115f12fc4b7a2ea4e8ba
e43483be3b2ab71945aabfc4720a5cdc5a5363df
1093 F20101207_AACEFR turygin_y_Page_47.txt
0e0cd24d8f4f699bdb238fa39712c7a5
b2f7fb3e6ae0dd184909554c39443dc5a4b9a47f
50923 F20101207_AACDYU turygin_y_Page_23.jpg
7e24458652de45dee0383a657fc4d5f5
5705c86e254c677fc70b9f6aba59dbb685a5eff8
91261 F20101207_AACEAU turygin_y_Page_35.jp2
6482af9ca5650ea69a220e9cee33d2f1
e6e860049338327f9a53f7c61ac1828503c6ba20
2223 F20101207_AACEFS turygin_y_Page_01thm.jpg
82031e0529afb0b16e8ff496fa281c84
8c6563c2d6f918d7d91a50afd1fb285dc4d5ca5a
39369 F20101207_AACDYV turygin_y_Page_24.jpg
27ee039b360224adcd1e59b50c2f02e6
aa157b612f84cd3ce119217d426435c388e39a0c
95964 F20101207_AACEAV turygin_y_Page_36.jp2
913d5085d3c801ef5c7c50c183512cb5
8afb580c4225c9a314d212c8fb529b1c22914d07
14106 F20101207_AACEFT turygin_y_Page_14.QC.jpg
5a65f35d22f61a6cc3e061dc52fdd97d
16508fbe9ddc1cb71e83c61f3e477760bdc93080
54195 F20101207_AACDYW turygin_y_Page_25.jpg
845a69465e49d61fc3d1a6f370b13207
105ec567587639041f573230081e4c82b2de2eee
464814 F20101207_AACEAW turygin_y_Page_37.jp2
79c2eeb6f07c08ced74603a09d22bf35
855a103eaae67d38bfab6e12da93ac0f1ffc2db9
19904 F20101207_AACEFU turygin_y_Page_32.QC.jpg
714f873f1e7a6e6feca4cc8549fbd0e3
33b29999b79ca7de86cf24961b525d2c34a2b823
14351 F20101207_AACDYX turygin_y_Page_26.jpg
ea81498344b490391cb903ec439b579e
1f857693fb0a3186b7a3c2b93364f6fdc0fe7fea
1004910 F20101207_AACEAX turygin_y_Page_38.jp2
f2e5ace4408eb4781154e5efe1a355dd
67f504ac8b563c7a47fc9eba988c1d799d602904
14256 F20101207_AACEFV turygin_y_Page_20.QC.jpg
3a9e66b0a1d164ff5e3c0719a276a4f8
626fcf81ab2718200eec4df42f94594637444452
17142 F20101207_AACDWA turygin_y_Page_49.QC.jpg
90962da3c18018a248af5e149fe34131
2bb8ffa831f799b87bd3be49cdee347072072074
71569 F20101207_AACDYY turygin_y_Page_27.jpg
fe0f52906b67187b206639233a399345
0c1c669151cf9800ac8183975bb8c12e293b5b18
1051955 F20101207_AACEAY turygin_y_Page_39.jp2
fbdc7e7e48d8151e9facfba6df3a6cba
ac6cf1b71c21da5ad681ebe03d4f0b0a6e326fa8
24805 F20101207_AACEFW turygin_y_Page_08.QC.jpg
ad628cd85e19219df0b8fdcf8651f607
7941a854a0b272a46df4ebb5aa5f4e541bbaa606
69180 F20101207_AACDYZ turygin_y_Page_29.jpg
c59d207024c6a6be1b2885c73d39efcb
f4c61ba1aef69785f77e45dc12eaa270495ba002
103361 F20101207_AACEAZ turygin_y_Page_40.jp2
08a8307c575ebb7680249057a0a8411a
b4ee87311ff6bd54c144d445e5acc68a447cab2f
25611 F20101207_AACEFX turygin_y_Page_09.QC.jpg
7255b26e2aa6a93424e63ebf8619cf90
a39d25aa89166f8008fb8982fd27c9cc34e57b26
64677 F20101207_AACDWB turygin_y_Page_11.jpg
c475a646f708bd597171406bf95ce0a1
d8b1db926ecff0f19d37d254223e52e06ec9094e
54614 F20101207_AACEDA turygin_y_Page_09.pro
129d96f8b7ac4171362818db6cfcb44d
f26bca26dcc3a370f9ade405b0bbe718ee25c128
4501 F20101207_AACEFY turygin_y_Page_14thm.jpg
3dd33f892e7c4e84a6d27dcbcd789ec0
66026e033c19a3539691673f5587fd05435fe7fc
1181 F20101207_AACDWC turygin_y_Page_24.txt
ae4fb6d8087250e104be84335c725a2d
850eebb93432cd3cf6615564ba87bffaf0aabf96
40067 F20101207_AACEDB turygin_y_Page_10.pro
f1fffcacee0444f3cac3916ce7d933b1
b8d3ffc312f6800abebd0f9ed01f8733ef68e928
11410 F20101207_AACEFZ turygin_y_Page_47.QC.jpg
7b0e08ef197d00e99d871b6fa3a7de8c
5c5820eac148a0da5524972b201799ef56700c03
21439 F20101207_AACDWD turygin_y_Page_47.pro
3fcef23e3af01f23f9e5395e355e74d5
510ee0dfe9b33d98eb26d67e94f3e8d1aff3a37c
41978 F20101207_AACEDC turygin_y_Page_11.pro
8a17cd67f9f50ed84efc545367eced98
0bedf318e7022c4913dc7aa5f7cc3c3a450ee1d8
25271604 F20101207_AACDWE turygin_y_Page_24.tif
ebe4e9a5f25a54bd349bbd8dec185ce1
0d2e48040534b900c6a084531b259d2efbf87c81
32803 F20101207_AACEDD turygin_y_Page_12.pro
968fbbe99bf321385c9ab0abee42fbcc
a4b5e4301f4c49a912804b098759a157581e7827
F20101207_AACDWF turygin_y_Page_41.tif
cf2d89cb42db9b09d72efcac1a9142e9
2c67b2f00432e536883ccf4ff968028ca84146ed
25895 F20101207_AACEIA turygin_y_Page_17.QC.jpg
cb5b2168b3e31ae43debb001c3567bb1
48e325499cdefd5ffe7c26440b9e94bd5a2889b4
893351 F20101207_AACDWG turygin_y_Page_16.jp2
f46b2aa05160e7e70501a08f89a9418b
fe39dd6bdfea6975d4e58cddbeee72c8b96689ac
22626 F20101207_AACEIB turygin_y_Page_27.QC.jpg
2337a440bb05e9e2ccca55bfb9da2da5
677309022763d717ae820ac413fd43a5e97bca12
27230 F20101207_AACEDE turygin_y_Page_14.pro
f045bb437b791cec8782061271efe028
dbebc5e9a6af2a36ea19cdf9c64d6f86f3670804
1541 F20101207_AACDWH turygin_y_Page_49.txt
b5becf0db2a234b76899154daba2903d
65b9348fa73e144944990770ee3184fafeb27274
6677 F20101207_AACEIC turygin_y_Page_04.QC.jpg
7b3b54a6363f3a65d107295cd0d23b47
5371d87f56da1e24445654f85467f8ae91b45de6
32699 F20101207_AACEDF turygin_y_Page_15.pro
a420da66118b4acdcd75cc75d7543580
8fbc745a47efa781303d224b33cc856fbeee539d
21029 F20101207_AACDWI turygin_y_Page_11.QC.jpg
f45cd36f74b93701fdd477b366de6874
ffff1729bc2aaa72fa590ff48f7ea1d76647809c
17228 F20101207_AACEID turygin_y_Page_13.QC.jpg
364cd41c66413df7c7dd1941026f2acb
add2af7f54850e457c8ee8db237bd65f034f8fe8
40049 F20101207_AACEDG turygin_y_Page_16.pro
53796ed4653f1f22f67f4c7850d32746
9ef7075048a07c4b65469092e280c7a3060392cf
34620 F20101207_AACDWJ turygin_y_Page_13.pro
a95a3fed6a685d3b453ad054e4c9e957
9c37b1e5f6e2e7cf0c147ef8402f17d7ba94ce65
1769 F20101207_AACEIE turygin_y_Page_26thm.jpg
c30ada8623c3965de126fcb235bc3c82
67ff9f1706882c9a07b96d260399475dfae836bf
29266 F20101207_AACEDH turygin_y_Page_20.pro
640c3876511475748f13c50b448f1e5f
67233a5888ad187b63223a8a1c796d16e42d62e6
F20101207_AACDWK turygin_y_Page_05.tif
83a2d2358e055ca879246aaa14c9b9af
945f40761751e873c746d128302944ffd8a56803
23970 F20101207_AACEIF turygin_y_Page_34.QC.jpg
5a736cef9364e167134230eb8a3ac3ad
ae22f76899d0f4b93a5e8e944fafbd41fae196e8
34413 F20101207_AACEDI turygin_y_Page_21.pro
06f81e4721921dfef18032137c087e9d
18151a6a67108d0410840146341cec876f2544d6
11014 F20101207_AACDWL turygin_y_Page_37.QC.jpg
03adb8dbca66d88e96148209d8de354c
4a012d333b9ea7c3e459935b7d32ff34b5ce530e
25405 F20101207_AACEIG turygin_y_Page_30.QC.jpg
05a626ba84c1f2a8c99dfc1c6dcafb8d
56ef8fac5b2e929163d91044c4f0e5887d0f2cc8
32822 F20101207_AACEDJ turygin_y_Page_22.pro
c4fedb91af5d2d84cdd4732443075a00
fd5137327f85af7268d9d21b692530cf16434c9f
F20101207_AACDWM turygin_y_Page_16.tif
49972063f5273e861c66855b44517d69
d36b93db075aee32f57d7cec4e9147c5d8a0d65c
78070 F20101207_AACEIH UFE0020106_00001.xml
f383342385aac5edfba4841741cd0d35
85a4674c997b45a90090db4a5df43338b04bf7e3
29913 F20101207_AACEDK turygin_y_Page_23.pro
62844e5791cbb672f9db2a8ccf873d34
ba0ec3f4a794dd3e0e6b5d9b7306f982c6e5bc29
5135 F20101207_AACDWN turygin_y_Page_15thm.jpg
2bf6fda44b39affc924eb972356036d7
9ce39d24b9626cad8e4e550ae21514cd6e8875a5
4973 F20101207_AACEII turygin_y_Page_05thm.jpg
b915c320e617d05340898603a95bcb6c
6c2368522aa64a2a2a612452dc88b9bfb2f43bc6
23288 F20101207_AACEDL turygin_y_Page_24.pro
08edaacf83be6ce6089dca89cdcef6df
ae536b0928c45d6dcf666a25dcb6f91f1885e28b
864563 F20101207_AACDWO turygin_y_Page_10.jp2
913aa09b8cfb9e7036f70565d07277c2
5c7bfa9eb51f2053eb6dec3c27f85e202d635d72
6657 F20101207_AACEIJ turygin_y_Page_09thm.jpg
e0c186c0dd4449f1004baf5d2faca2c5
a3736f0fbd8426be06d4c194134a3a206f4f1110
33199 F20101207_AACEDM turygin_y_Page_25.pro
8c2b4d56744414256fe41faf42c2a84b
d5f53483d4bc2026e08f3cfae1a7a0bd4d35fae1
F20101207_AACDWP turygin_y_Page_25.tif
38c77768d27a6263a2b3e08760b1e76b
6f8a1df138930fbcf1b1b9976908a8c04783fa7d
17216 F20101207_AACEIK turygin_y_Page_15.QC.jpg
df849486799a4acddad31b7e3e0a479e
c9bdc46ecabce78e07f8fcec6c76c12f65664959
40622 F20101207_AACDWQ turygin_y_Page_18.pro
7d964330081d95b29a01b8ca401a8e27
5e0f90f8a6b7d05fa225072fe13f605952483339
17430 F20101207_AACEIL turygin_y_Page_21.QC.jpg
1cf71d4027b2596c1ae8882c3ca891f5
c4cf4e79df4dbefe08a96407d6c6fb132ba3d96c
4479 F20101207_AACEDN turygin_y_Page_26.pro
40797b9d954e18d095d361e092768d85
15dd6803e7e2321e7f3364627a3ec6900b16750b
46183 F20101207_AACDWR turygin_y_Page_36.pro
5453edea26ae918437fea6c3d0284296
dafe48852608f1fcf298f709c2efae5b0d893ac8
5098 F20101207_AACEIM turygin_y_Page_21thm.jpg
5984fc98c68b673325e2675f27f61253
d40dedc4f55c3162c1eceff6df771779e1e063f6
43466 F20101207_AACEDO turygin_y_Page_27.pro
9e4479aec362de46de98d3da1a9e8a41
34b8af9fec4b5f1d7f9a748bf7aa251f4d15b012
42500 F20101207_AACDWS turygin_y_Page_20.jpg
5f1c76304aef22c8189c515f62c7221b
1ac7aaf531d39f4a288b4269bcc5421140cd760b
12710 F20101207_AACEIN turygin_y_Page_24.QC.jpg
038582e5860f07ed0adffe34905be08d
5770381826662a232376b5572a6fdad49cb7dbb5
38283 F20101207_AACEDP turygin_y_Page_28.pro
5faffff41cf858c43049e60ba2d6f9ee
dde09a9f4da7e579fdb4b60b02b9ba794a7ed4e6
9759 F20101207_AACDWT turygin_y_Page_44.pro
1d820fd2e019fedf1e931576f986d4f0
3a77a0d328a57e57d4d31c628e0a2c8d5ae11d48
4045 F20101207_AACEIO turygin_y_Page_24thm.jpg
a1ecaad0060232b3ddc0ccf5bca52969
f92a036d05bc9e788feced5078608d4ad5cb9d89
53310 F20101207_AACEDQ turygin_y_Page_30.pro
baac6675c8bf3c1d1120b40471cf16bc
c76920489c165cb014c74d40dbacc98e14aaf309
1685 F20101207_AACDWU turygin_y_Page_28.txt
54f0f56ab9b79c10b59113224d153e01
c98d581c4e319fad109b596c230e6ab1e94a4ec3
16695 F20101207_AACEIP turygin_y_Page_25.QC.jpg
f8655ce1fa81248f198201705775651e
ea34f8d1e7bd7c8e1bd7e1d2188252e8529ba1e1
44513 F20101207_AACEDR turygin_y_Page_32.pro
bc8da32c574b171dc6b6f591e6e53603
11dd7d427a66ea40cad195d149e01364eb201774
2011 F20101207_AACDWV turygin_y_Page_39.txt
b13866a8ee89edcc3fc66e303fee73d3
aa0ead34ae92c18c0b96719c3d8e52512b2ba482
20289 F20101207_AACEIQ turygin_y_Page_28.QC.jpg
0aafbfb4f835848b42f6fd1d910fb973
c24086a008c33e8d21aa115532d36e1a11eee7d1
40116 F20101207_AACEDS turygin_y_Page_33.pro
fbcf44bf89e3f570f14d9f5a092301bc
f167046f3a4fdda3bb1d9d34795e9e617652140c
78950 F20101207_AACDWW turygin_y_Page_45.jp2
e8ed8b52b08dc9d676c9b99d9c9ece2c
1a38a50c82a7cb23e9651922bb1435dd875f83f8
20171 F20101207_AACEIR turygin_y_Page_33.QC.jpg
3c7d6445e8706676eac0a66b6d235d11
363a050415cd9b2154715144c0e77e2560da4486
49750 F20101207_AACEDT turygin_y_Page_34.pro
c0648c6f6c17917a15d8c1411f059009
cabb01c95e22d3b41063cadae80e1513e2de4d16
44147 F20101207_AACDWX turygin_y_Page_38.pro
e85085633995d5b798401d9da3e1d0d3
d47a2b9c599b0e1e5ccfa13cb1469b0c46248c66
44891 F20101207_AACEDU turygin_y_Page_35.pro
192cae47d483b91317103485839e8a12
d0a98b840b9d235f795abcd4d06a98be27d077f2
F20101207_AACDWY turygin_y_Page_22.tif
3357e509dd662ca8e5c9c06828fe9ec5
ed056e3d3b4d185fec10fcd840c15602ea550f2f
6193 F20101207_AACEIS turygin_y_Page_34thm.jpg
49125c8a6e4406a027d4049724c9fe89
7b5c9583a916e5e2fefa724f80a960dfb57736fa
20629 F20101207_AACEDV turygin_y_Page_37.pro
818cead964ee82f95ed7fc83d15dd76d
f783e7ff744f58702e6d390d9b2e8ba8ce4f8013
5345 F20101207_AACEIT turygin_y_Page_35thm.jpg
43727c4f0d105c47400cefd344a23f40
77745f3e2e9b0e904a8ad925a27d111840e811a9
49173 F20101207_AACEDW turygin_y_Page_39.pro
c831458eb878236fec5cc268c0b9048b
9f797c18f1cd7980ae3fe1a62861afa1b036e351
40421 F20101207_AACDWZ turygin_y_Page_46.jpg
1d6544ceb312a35bb0ffc29cd417808a
5a3eca75ff4f4cee5c41c147bc59a9436a91bbe3
5981 F20101207_AACEIU turygin_y_Page_38thm.jpg
ac3cc7e461289fcf87395997678f5077
6930e4197f727f347f148413ff75919c1d76f794
48896 F20101207_AACEDX turygin_y_Page_40.pro
151f2230ae43b2182dacdb858d6065b9
16b1df683b28cfaca6ee7b78492bd6397aebd976
6120 F20101207_AACEIV turygin_y_Page_43thm.jpg
2985bcd32df7ded3b670fc682330a390
3e01ec3900990104822b5bdcc30b4d816bb4e95b
78490 F20101207_AACDZA turygin_y_Page_30.jpg
736bdfae8837f48e3432a41e59cc52c7
8c9c04caaf6bc54ea25e3c129fbc76461506ee7a
919155 F20101207_AACEBA turygin_y_Page_42.jp2
cd049b1ea3acbeade9d2ffeb871d2e94
b48941b67f59b34a0805849a6d20267207977a6f
39803 F20101207_AACEDY turygin_y_Page_41.pro
354395d2d9665eca8d46b0b37d2ef4ca
c10e4b2ad7dc06560671ba8eb7e8b1f7fc5348b6
46693 F20101207_AACDZB turygin_y_Page_31.jpg
e1c2b3a1f22bbf2019f7080f881b3ab4
93da23628f0b01c1f07bcd5e1a3f577d2183eb6a
1036961 F20101207_AACEBB turygin_y_Page_43.jp2
c62c4b8ddbf0adc7c01daea993d3a457
ea7db656d274af0390f062ee6023b55e5606fd1f
41664 F20101207_AACEDZ turygin_y_Page_42.pro
55f5dde9ccad212419dafe899e76b3d3
3c9d5090936c2e97cc79587dede5efb447bb817f
62351 F20101207_AACDZC turygin_y_Page_32.jpg
8a35815a7c9c53bef30e09cb3fb4ed95
bbcc58ab64410c9cded46d9bdecbce209a7b1189
24389 F20101207_AACEBC turygin_y_Page_44.jp2
4382ab108addfa0a7bb330a671abc333
acca59a97e604ee01da3827a69823e571250a580
66557 F20101207_AACDZD turygin_y_Page_33.jpg
e148bc839d36ac45695eb16f140f4f22
a928e32cfe437cd3105fd8dea3341817a5e5a6a3
60018 F20101207_AACEBD turygin_y_Page_46.jp2
a4ceb70f0b975e02730728831d936f11
a1423abe8253bb7111229c869b8eadeb5a2442ba
22245 F20101207_AACEGA turygin_y_Page_48.QC.jpg
50adf3d64806ddabdd4689f2f61d5ffe
293838a2fb7520e9de9de0e6d91aba8592f18d95
46207 F20101207_AACEBE turygin_y_Page_47.jp2
14cde489f3085b5efd68f9e184d0711b
20b836261bf849db785a5f16c1201ed2b3487c79
20578 F20101207_AACEGB turygin_y_Page_36.QC.jpg
bdfc74869762c671c2e19816c9600996
75ad1896b31ecb20bbb3078eb7ea2cb82ecc4d05
79395 F20101207_AACDZE turygin_y_Page_34.jpg
c3184e0e713ffb4aac668c979a3d75a5
dfa486d0469c07c4aa55fa761e0fe95ef5e89468
116645 F20101207_AACEBF turygin_y_Page_48.jp2
a268ecd69f991faaffbb5fddd9b069a4
a67b6120725ac95fc89e069650a6502e10882c17
4718 F20101207_AACEGC turygin_y_Page_23thm.jpg
0c2d477b7200c078249697bd3897a3d6
55880338952fc0cd7a8948beec1988047dd523a7
61986 F20101207_AACDZF turygin_y_Page_35.jpg
0a056d5c5f2d91d54f205fc579d807ac
7bf14e59ea0e25756c2c274039a5d55f1db8290b
86283 F20101207_AACEBG turygin_y_Page_49.jp2
3d3fbc815f70038efec25bc95e7cbe0a
c52e4f40e283bba829ceaed4784184f70e3d54a0
4743 F20101207_AACEGD turygin_y_Page_22thm.jpg
cdb13227aa02c5e164d9577e36812b4a
e29d9a3c9d1ae1681c45f1b21f2d4b8e68427ab5
62518 F20101207_AACDZG turygin_y_Page_36.jpg
40e6672271f6ff3f940c24386753373a
b00b746e21c0161d2e63291b712f8ffba73ffb91
52005 F20101207_AACEBH turygin_y_Page_50.jp2
00d8787d723325883b5b2374177af81a
36306bc9c234fb6368fb497583e08c4238faa632
15413 F20101207_AACEGE turygin_y_Page_23.QC.jpg
d462b7ca09dfba0510c2962b0afdfbc8
c0804d8f48f1f64be53c885cd60d513ab2dbe0cd
70669 F20101207_AACDZH turygin_y_Page_38.jpg
fb0fe725047f36084cf5ebc90af173f7
b01eb205c814d78d22ee085376ea1a06e6ef4f33
F20101207_AACEBI turygin_y_Page_01.tif
d86af88d69b78889fb00e25cf7828615
01315532c394f62c77021e1109520a027660b870
12830 F20101207_AACEGF turygin_y_Page_46.QC.jpg
ea3db4e4c1a38bcea15710e1d67f0bd6
c044c00dc67dc3ed433877ae61cdcc43d3ea96ed
65706 F20101207_AACDZI turygin_y_Page_40.jpg
a83d53cbaa94a9a69231cc4e50b65e18
d4c79ccb5a8690ea2269ec215e3ef180b031edbc
F20101207_AACEBJ turygin_y_Page_02.tif
18be81f04d601cc452d33cf356b004ea
cbd6d49c854da73a88e6a3f61e30a893f3b7b1f2
20319 F20101207_AACEGG turygin_y_Page_41.QC.jpg
d214486244fe5d779c7baa21b4e0edd7
b840caec6c54e2d84a650c6d0ccf2c3611540b1e
64948 F20101207_AACDZJ turygin_y_Page_41.jpg
69a8c3d5cedd9e9e02b5694113c3e807
95b5beb72990b64a47455d347f306473c29d768e
F20101207_AACEBK turygin_y_Page_04.tif
83173c24297ffc715691ca1c260e6f5e
c049c4043f5fc3cb76b35daab650072b99078c5e
5470 F20101207_AACEGH turygin_y_Page_42thm.jpg
3e08b2418b9a6038b1c918ca11485d96
fdee6542149d5410962a43879771d94caef8f417
64144 F20101207_AACDZK turygin_y_Page_42.jpg
9d45bfe18e04a24eae8f654aacbef50d
228411601264e119de2dc9fbb3ad461855a3d678
5999 F20101207_AACEGI turygin_y_Page_29thm.jpg
4f9fc6f0eb58c82997d617305e3a71e3
a1701439901627b92240ec940e5f15b8f73ea5c7
70202 F20101207_AACDZL turygin_y_Page_43.jpg
2ee2c9e9ad8bdb04ac25d971be9aeb18
5f0e0e0b366e125d69f4195b89b4294d4656fc66
F20101207_AACEBL turygin_y_Page_08.tif
319e165d7474f473025de88b57d75724
719d62c16f705be550e980b3ce551b36e70ffbee
22248 F20101207_AACEGJ turygin_y_Page_38.QC.jpg
9e4d34e58bcd912432c8596afa148722
fbdc83bb241c58f2740bfad19c6b464bf809e821
51410 F20101207_AACDZM turygin_y_Page_45.jpg
44b9866c02c7b1c7561102f6a3c977e5
8477f2c0572feb02b15416dbb1b92db5eba76d33
F20101207_AACEBM turygin_y_Page_09.tif
230fabc5db907de05943a095803f248c
8088d6f2c65e809e6534131650edf8b2ff323cc2
17947 F20101207_AACEGK turygin_y_Page_12.QC.jpg
965a874927e3ebdbf709670390f9a697
14bc24a3863b1fdab883591c757f6f53027d8616
33441 F20101207_AACDZN turygin_y_Page_47.jpg
139344f954e34a64a78f8da4f2dda3b6
7391338b807627803cf2fd497590075c4c033daf
F20101207_AACEBN turygin_y_Page_10.tif
5a666af28a2269520dac35b60b6f2104
f7c26773b45225b1a6183fb328f530478b9d0325
3363 F20101207_AACEGL turygin_y_Page_37thm.jpg
4fa2a6aa8a41d856dfe249f57badb6d2
83abc6e3ba8ff43f2929a3de14f20eee7287e8e2
72403 F20101207_AACDZO turygin_y_Page_48.jpg
ed9fea30530fba85797ce3947e59d46c
4e47bb201c43cbdb0f60a7bdd4bb9a91b4398ecd
F20101207_AACEBO turygin_y_Page_12.tif
90e6704391fdd12729281eb0b91b8d96
9edd2917c3780f6464d458a83c24ae4cf3975a15
5563 F20101207_AACEGM turygin_y_Page_11thm.jpg
7398205b4650bb1c2d854a89e06ec898
e6e17a014b4344a4790d0e1b0c8eb364df73bcbc
56614 F20101207_AACDZP turygin_y_Page_49.jpg
d6b7c396e2883e2b01cc4d20147eb400
fc572b5d866fbc81dcd588519b0a1162b0119ac8
F20101207_AACEBP turygin_y_Page_13.tif
ac5ca60a7003953103b6db808b97e4bd
0796e95104c08bda8d42e3287989ea64da00bd2d
3181 F20101207_AACEGN turygin_y_Page_50thm.jpg
496a261832009df3b35acec17acbaf2f
d3e0642e1eb70e78c2a7c4085a16a29b242ff34b
35197 F20101207_AACDZQ turygin_y_Page_50.jpg
3dd2f6786f8f99b261df878bf995ef4e
c2d1ee85ae2520cc0cccde77819ac83366f1d0b3
F20101207_AACEBQ turygin_y_Page_14.tif
f70bad7ca95d1d370cd59e562574d9b0
0f79a1c5441a36918904fbc592da8995cc86f93e
5561 F20101207_AACEGO turygin_y_Page_28thm.jpg
856930a75e9e8304065f9cc95f38339e
7d6e9e2cc46ef6a645db6dfb44988a8389e5cb14
24255 F20101207_AACDZR turygin_y_Page_01.jp2
d2a0085950531d4c5973032235bfe837
5d6484ebd5b7ec147a29bb502c0c753007e38afc
F20101207_AACEBR turygin_y_Page_15.tif
c89bb20dc511d85a96566a5d1a9a0b57
20105844869bcb71c1dbdd834a592ea2bf9cca84
6532 F20101207_AACEGP turygin_y_Page_39thm.jpg
14a66cdcdee1c91de7ad7c833355e8b4
e60885e1ba10a9e5f3e2dc372bb14de83472d2ca
5100 F20101207_AACDZS turygin_y_Page_02.jp2
f49b4d4f2e401ba2f3b265989b7decb2
4e74a924fde441eb306877e5c24f6e5907b1e895
F20101207_AACEBS turygin_y_Page_17.tif
1844ce0628667f91357a06fc6fe2cb2d
19faf1c10e9a8efbd95b051a285bb1262915cefd
4394 F20101207_AACDZT turygin_y_Page_03.jp2
3fda6237adf26a7b38ad75e1e67ca88d
646045b826776eaa78fcd48e932e81cfff7f6ff3
F20101207_AACEBT turygin_y_Page_19.tif
9d3e1353896a10ae59ddb49434676131
6c87ca66cb1fa03d4c988faaf3cb9fc3ef9e867c
16584 F20101207_AACEGQ turygin_y_Page_45.QC.jpg
0218fcf3662c9f3d7a4be6b5c35badb0
f5b4bbbce05873470b708f30358bf241a1ba123d
25790 F20101207_AACDZU turygin_y_Page_04.jp2
25c58052385315129860ba98eefc5bcb
1f8eaee78b018210b4ef1178c871e1065668186b
F20101207_AACEBU turygin_y_Page_20.tif
4308773655b0208427baf37be2fd2086
5d605941b10f502349cd449f3d3676596ac63013
20288 F20101207_AACEGR turygin_y_Page_18.QC.jpg
b883055cc5310caf3a28c23c44e3cc43
b2032c3a58945bba3fa4260dc8d367e4a9296ca3
F20101207_AACEBV turygin_y_Page_21.tif
c5b0d04b38d745dd44f999c8432d9543
5e51246ea80d8c2e0e05efc20e99e9db98e60b8e
6481 F20101207_AACEGS turygin_y_Page_44.QC.jpg
b95f474e01750edaaa22f8fb1f97eb80
9b339b35a709d3f2603ec2dc0d604701b6a53810
1051981 F20101207_AACDZV turygin_y_Page_05.jp2
3743398e4c82990bf3bfdb2f0c4c8902
c5b3f2b6426d92e2dfa1978e08f62b332b195095
F20101207_AACEBW turygin_y_Page_23.tif
fcd4bcaea99188e8243bef59d515d153
0b3a89b5023124b2749d223fd3b5aec23462adc8
21734 F20101207_AACEGT turygin_y_Page_29.QC.jpg
79e0633ba00b87cdca312c00bcd16690
1391274d87622f9835c710340d132e08f9348800
80420 F20101207_AACDZW turygin_y_Page_06.jp2
1f93c6caf40cb9ac554d90e946f487fd
dd77a23e80463c5774d6fdf4f2dc6754313f43ab
F20101207_AACEBX turygin_y_Page_27.tif
4705e752940e93a8f41ea209b377c506
fcce80527dd77469cb3d086d4ae7cc5759e08539
2121 F20101207_AACEGU turygin_y_Page_44thm.jpg
0b222017a1ac146a251dd80b1d2f2f8a
c59540880a92914a08e9910b0a0f4608b2133726
F20101207_AACDZX turygin_y_Page_07.jp2
a4aba815a792b82bb2e76356a7a6ce6c
9e33c618d4b74c3c92aa15bab3b20eabb12e7adf
F20101207_AACEBY turygin_y_Page_29.tif
b340652e9d71185c5189e6310d587df3
df7339b0c1b7bb5a221f9b540c222b32a990acae
5508 F20101207_AACEGV turygin_y_Page_33thm.jpg
aee7923e418d1fdf14ac5940ddb17cdc
3926b3cf5b61602c6cccbe877c0760ea4b045239
4723 F20101207_AACDXA turygin_y_Page_45thm.jpg
1a24efe9af6e66450094bdf6782f2b62
722acf6236d1f7cc9cd5794f5229c0947c8b67a2
1051967 F20101207_AACDZY turygin_y_Page_08.jp2
680231708b47509fd89b7b41434b5c79
d40f91796277a3b11dc1901f9cfb5c9a20e4ddea
F20101207_AACEBZ turygin_y_Page_30.tif
a6df8c573f34c51c51758a4b7764f7a7
0cb5a3b90c8a313b129e4ef1df3bd80434cf2995
23261 F20101207_AACEGW turygin_y_Page_43.QC.jpg
de0cd8ab18ce28538d81136d2ce91183
cf67c71d3502e3103f8b3e568ed2f974329e2921
795733 F20101207_AACDXB turygin_y_Page_19.jp2
b638bef8c7ae2c868290e0f9ccf6bc0c
2b1fab2fa82cf92c736b234a7961f6a37c841cbd
1051975 F20101207_AACDZZ turygin_y_Page_09.jp2
3efbed5eb1993c591bbd47b364ab5369
fcb33ff5a658751562c18927e11040fbb4e372d5
1346 F20101207_AACEGX turygin_y_Page_03thm.jpg
43415f4b6dea088f62d742524d710008
e70e3459811e42b145f70ed069d087f20dce8e95
49701 F20101207_AACEEA turygin_y_Page_43.pro
e5f597a45467134b2388cd5447bcabd0
1b2e247fcaf9215584bb23152e6bcaf355d308de
6212 F20101207_AACEGY turygin_y_Page_08thm.jpg
96db1ec6328714f90134c8feb5e9f57c
f1de4f371e86d12ce4290321bb7301a19e5f6fb4
15593 F20101207_AACDXC turygin_y_Page_22.QC.jpg
f600c86caafcc0b0c6f75a55d39cf864
5994d3842c3daf6aa8e0d7a5c899bad1b7e32c8e
35476 F20101207_AACEEB turygin_y_Page_45.pro
fbd3f2ae1499fba0945868320378a922
b6437a237c1f0a22a02d30193dc060ae47c0e6aa
3578 F20101207_AACEGZ turygin_y_Page_47thm.jpg
b953eac9d7ec93bc90f3519c49ee7d63
0bcf6546c9dc20154ec05d3c3c1594512ca848c1
6131 F20101207_AACDXD turygin_y_Page_48thm.jpg
939bda4e0a9bed2d8c9c82e4e9002a38
2930962316982861841fbeb3d40145d3b4b4ca56
26314 F20101207_AACEEC turygin_y_Page_46.pro
111922ff10fc19c1297a5f6a04090cea
d512b3b61e5ee8f1a1f42cd225e75b0e3d504425
F20101207_AACDXE turygin_y_Page_11.tif
49b4a7c79ea83ae863d45a81a7583f82
3a2f48f8a9b67a2ce91350e6291365a6723462ab
52748 F20101207_AACEED turygin_y_Page_48.pro
bfbd61ef228c28d404e651b2fbed99c3
4c5c9b6eb154fcdbf8113f513dd8a5dbe866dd10
1743 F20101207_AACDXF turygin_y_Page_18.txt
80f37194bd70af1359180698495ade0c
b752fa916c13ef572148f47b79c5b865f9295246
37954 F20101207_AACEEE turygin_y_Page_49.pro
48f65d14ba0d2c9c831e24ba6368015a
3953463b40d80f95d53a43abc33f46cf39113a99
1357 F20101207_AACDXG turygin_y_Page_02thm.jpg
1ff2d566466892a4e35ee985a9701146
237a8730cf40cc6f755c97be6e3d81d673e884e2
22826 F20101207_AACEEF turygin_y_Page_50.pro
07ed296001aa673b888df88fffa63071
7ab158f0c1219a59aa2622d8fceec5e6d79bb4ae
23126 F20101207_AACDXH turygin_y_Page_39.QC.jpg
a35b427d587454bcae52a35df6ec06c8
a1be373be2ce7c49cfde354eee1816a48abdf817
479 F20101207_AACEEG turygin_y_Page_01.txt
8bcc99bd7827fc523649f7d39bc19e5f
e7d53eefc46e7040bc57c00364979c2b093378d4
4663 F20101207_AACDXI turygin_y_Page_49thm.jpg
245713e5aa7a1a23895586ef342292bb
5384bfa57dfa0e2ce9863e593ce7a0f4b4af596b
88 F20101207_AACEEH turygin_y_Page_02.txt
4e286ede4fa0784a9685c993bffa29b5
976124c19ed77ea465a49bcc456ae9210a92227c
53857 F20101207_AACDXJ turygin_y_Page_17.pro
3e27391a06d836a9507c75d1f59ebe6f
a8613270de77dd5c1a63099e6a74e3e4a4e404dc
84 F20101207_AACEEI turygin_y_Page_03.txt
fba33857be850e80f7aebc8b8e5575f6
5abd402609a604f60203ba06da914b07b33cfbe7
331055 F20101207_AACDXK turygin_y.pdf
4b0ecb0418f5fb4334df79df8fac1ea1
9e44beafb379dce1627db51cc811b4400ce3bf42
454 F20101207_AACEEJ turygin_y_Page_04.txt
c18bb2437d75ccec12f8c3c1f60efadf
d5f8da1e0f81483a028987c2f5500917c901e617
870540 F20101207_AACDXL turygin_y_Page_41.jp2
75d4805b5093a86254959c855974f86f
5da798aefb2d4270aea60df62e7b3f4ca9f77a39
1269 F20101207_AACEEK turygin_y_Page_05.txt
7dda4d32527ac7893dfb0714fc3a99fa
cf52e1884c330b530aae66c1d3a3f7348d2d3af5
913 F20101207_AACDXM turygin_y_Page_37.txt
4804bcd13bef93b977600c578303e1be
237c5571de7e0bc176cbf448f6feec0d1071868d
1632 F20101207_AACEEL turygin_y_Page_06.txt
4e36f86205ce5a1e00e9391beca067f8
6fe2509942395be09be40bf6e4f8225ac81336b9
32128 F20101207_AACDXN turygin_y_Page_31.pro
c687e9a0c5c068d1e64d9b1e3922ad36
5687db4dcddc2268fa8046d762c479c585f6d721
2054 F20101207_AACEEM turygin_y_Page_08.txt
68d66cafacd68afd4e9bf2186ffb7fb9
081d083c664516bbb50165092346834ed0397193
F20101207_AACDXO turygin_y_Page_06.tif
ad6e0fb5bff1e37c0d90268d6c9f55f3
97a141d59754097dca2c53bdb582eff493ea5c34
2241 F20101207_AACEEN turygin_y_Page_09.txt
16dae0e2631c4d969b1f5fcc78e03006
b6990a371a9afddf53471d1b0b7cb960f6c9eaa0
53819 F20101207_AACDXP turygin_y_Page_06.jpg
b0cf3c77e5f1c90cab46610d687bdccf
0c074cb14ee858dea6307c3022efc3024d0d8632
32501 F20101207_AACDXQ turygin_y_Page_37.jpg
2c3e210a6f7a3a6de6cf533c3b25d812
e596d265187eeb48c6406edfb61b8df87c34cf6d
1887 F20101207_AACEEO turygin_y_Page_10.txt
bfa0c3c619c7941dce75bb9f3e5cd123
75248e3e77ff816da9a77eadfc2d1922c483410c
5710 F20101207_AACDXR turygin_y_Page_40thm.jpg
3eb600246dfdd28f5dc33cc6423d77b5
3f4956c2032a6a979617f653a5f97b5674f7a3cd
1983 F20101207_AACEEP turygin_y_Page_11.txt
4bdedb78ff01009ed9751f181837180e
e37c06eb1d3b330ea57ee9b824c8806f5f9848dc
42443 F20101207_AACDXS turygin_y_Page_29.pro
119c0c7344751166e5294e09a276b9d5
81700a665ec701531882a41116a425230851a9cd
1526 F20101207_AACEEQ turygin_y_Page_12.txt
1d4a99426906197793f0954f05248a78
ca5bdf8a7f2ffdc41f7fc0e7ae567aca57d257a0
64169 F20101207_AACDXT turygin_y_Page_18.jpg
ec3eaa0a10d0163e1761cd7ae256170f
cc8dd86c5d768106b8a3bb5b8e1dd2b490882f71
1705 F20101207_AACEER turygin_y_Page_13.txt
1db26b02451e2389859393f360fd6b84
685b5b47bf152b05ae015f650538446391eb1808
1432 F20101207_AACDXU turygin_y_Page_14.txt
bc4e85c66965e96f42ebe9bff8321d1b
37a8824d8d20c6b67a040c66061ee768fd0fe713
1776 F20101207_AACEES turygin_y_Page_16.txt
8b109b37fd5ac1bf62575d150299117f
0c8ded3066723f3fb2a5416c69a98738e6b59bcf
21184 F20101207_AACDXV turygin_y_Page_40.QC.jpg
e8fc243ae3c6fed6fea9298d155b1e1a
50f7d9f86620b238f7d722a0ab6241d21ea06136
2155 F20101207_AACEET turygin_y_Page_17.txt
c91e9b33906a7338025cc33bba807427
62530fc98009b02688d7347973c714d948343991
2261 F20101207_AACDXW turygin_y_Page_07.txt
240f480a6a6db661ec9a10191995bfaf
4f32b5dce5377c0b569bd031f75e4037509b4274
1575 F20101207_AACEEU turygin_y_Page_19.txt
92278bde3862686ae94442df34f1eb84
48f2b69a0c8662bfe44a9551990e7d30f3fdc990
5535 F20101207_AACDXX turygin_y_Page_41thm.jpg
0c1941523d0be224ea4e0e8be18c66f5
da083f6e5478bbda9552be4cf6222f3c8ee12185
1527 F20101207_AACEEV turygin_y_Page_21.txt
11049d932667edb533da2d81895fe9a9
32c323c0165895edb91f6eac77ec790bd8710184
723125 F20101207_AACDXY turygin_y_Page_25.jp2
276faa42599a2ba8c4fe24d1eff682b0
fde9185c17d916adb55c12ae8992a00780c35a83
1580 F20101207_AACEEW turygin_y_Page_22.txt
4062116da76818b001f3c6b4dab258ce
9127b4e7d6ca0f5086380465820c2d7c4536f946
1402 F20101207_AACDXZ turygin_y_Page_20.txt
0bfaaf28c310a32bd4f15edd25e3290d
bf733bc5e65da27515edcd16ed52473ae9985c78
1374 F20101207_AACEEX turygin_y_Page_23.txt
b209e5f29f1de145f7b2d5b902b5772a
b4f71a4504078aac1bee48b63e992f8927ea2918
F20101207_AACECA turygin_y_Page_31.tif
359ae3eacd6c864b85a1c9e6347751fa
bf821890010a1b5e33c34ac82ecefdbc4b9bf610
1483 F20101207_AACEEY turygin_y_Page_25.txt
13a019e7f91afc727d22f5b4830851dc
342ae12298b207ccd99f597a69970115324794f6
F20101207_AACECB turygin_y_Page_32.tif
90f3c4366ea1d4a24d7c37ed449090be
5951733122746a85ad99e13342ab41f52d8ebd49
314 F20101207_AACEEZ turygin_y_Page_26.txt
7ce1adf90de37a99b48213f383d4e34e
a66d99e9a3474c9c24c23732cfd81b487a4474e2
F20101207_AACECC turygin_y_Page_33.tif
09a41a69c8562e00cfd364ea93725fcf
ae691eb5eb25f6b9db1965b88395d4d15459f293
5370 F20101207_AACEHA turygin_y_Page_36thm.jpg
da3254093692f7ede44c2ea57c747208
501cd8ed95f62fef16a6460f3a9bb5d032551194
F20101207_AACECD turygin_y_Page_34.tif
2445f7ee34e0dd83ae83302d6e256b25
66070ca996ada345550c1ee23c0de52a59a122be
6376 F20101207_AACDVF turygin_y_Page_07thm.jpg
c760620c66436c3ee7dae0e6abbbfc98
91618acee6f0537ca1112ca43c4266d95d1db331
6525 F20101207_AACEHB turygin_y_Page_30thm.jpg
d1c38c60a216b2f8d79299e5169e7b62
a277a9e3e37cc94821f7fca287a97ade0ca91f10
F20101207_AACECE turygin_y_Page_35.tif
15c0ff9c4d843e1ec388dca0cc2d3746
a0d47df84c286d4e5a434d679a29f3e973b48d83
F20101207_AACDVG turygin_y_Page_28.tif
1587029acfc9a09531248c181c2cdaf0
78e9591e9ba0d803758408e708ef75a0aeff1cb7
4646 F20101207_AACEHC turygin_y_Page_31thm.jpg
7946d912f4e6d949c1913f1daed955c0
d4a3f168858edcc75af9831f9c7fcee521cd7d3a
F20101207_AACECF turygin_y_Page_36.tif
db19fef1b450fad18a96e29f72680264
300fc7a03316943d7a9d33dcbe029a031d071037
4633 F20101207_AACDVH turygin_y_Page_06thm.jpg
e1d1fa6dc4274f579fdb9645f005bbe4
59c5fee516f86cbccbd80aa26ae096fd59662900
20260 F20101207_AACEHD turygin_y_Page_42.QC.jpg
80ae04b8f062fa790c1d48b118d88763
be5694f61ecd655008a49023c46f62c7d6ca0765
F20101207_AACECG turygin_y_Page_37.tif
8cf2107de79d7d97527a0a2ca5b6a15e
dfd3c8509ee211caed9e48f7e2f3332630ab4d88
F20101207_AACDVI turygin_y_Page_03.tif
8485a8a464a672e98455ecaa59439776
ff8229452679b27abc43596fc7bd9b4d6ce20ca4
4964 F20101207_AACEHE turygin_y_Page_13thm.jpg
217313300dca32e63f02f16198c79877
599a7a10af524b83af5cf8a4d76bf1cda1bc96f6
F20101207_AACECH turygin_y_Page_38.tif
c44578ba4248c8689599607b205ed31f
dbbb1fa5695577e8277b3a2040cf88ba521e82d5
F20101207_AACDVJ turygin_y_Page_39.tif
cedf3f88891a90ab82fb522355bc6a59
590dd61728f8e01c113e839009424ae3840702bd
19958 F20101207_AACEHF turygin_y_Page_35.QC.jpg
bb82800c08ac4131782f36d3f6d4e8bf
7b283dfe014d8a81711e9ba75765cbf3c17c6b34
F20101207_AACECI turygin_y_Page_40.tif
89aab99bcffb2d05e3a8b158ae61a44c
ace0f4782621d045a68ea179d29854ef92788be7
36799 F20101207_AACDVK turygin_y_Page_19.pro
af5108c44848eda2a9aad941d9efa0f5
91f306eefde9728da4f3e949db9d84de0a964c8c
11258 F20101207_AACEHG turygin_y_Page_50.QC.jpg
45e306470792438b15848243066835d9
07787ee48d01cdebd79a31a557d660f2898c4838
F20101207_AACECJ turygin_y_Page_42.tif
16d64ac41fdf48e1adaca54173b17d0e
7b58fe6af323a4a8609934a81d12f5f7c15625d3
F20101207_AACDVL turygin_y_Page_26.tif
5708acb2b716952997013ad51dcfcc35
8cc8d12a3709a729a6b900aa84a4e59f051f48c7
4750 F20101207_AACEHH turygin_y_Page_26.QC.jpg
a47cb2328bf197313fc46e0fa12a001b
6a0c84a9c09442302929ba73603771efd574b1e2
F20101207_AACECK turygin_y_Page_43.tif
ba414b10102920eb52ad6949c183596d
e4af2c8497a3ee752db647f4cf2b7a4c8fe378e6
82475 F20101207_AACDVM turygin_y_Page_07.jpg
4afa131371c15dd9510123563e84f062
aafb95b8a48bf9171f2d9ae398b6246f370e2564
2959 F20101207_AACEHI turygin_y_Page_03.QC.jpg
def091478787c799854ddb50b1e9e293
064b0e064c03306c092f5bea3efa1d2580cd8fdf
F20101207_AACECL turygin_y_Page_44.tif
33838cfccfe249678df200d2935c26d4
2afe6e1868e0f53838f1401e0755e0e0b0cce58f
F20101207_AACDVN turygin_y_Page_18.tif
98ec7b480ce78b18c2cde612e17dc0d2
e71fd11e86e1e1e51cc5e67b452ae9e4799e646e
5763 F20101207_AACEHJ turygin_y_Page_16thm.jpg
55fbbe82971db9ac30f309cced68e037
29dc84495da59d9bd5d25dd9ff765e7f8c6b80de
1679 F20101207_AACDVO turygin_y_Page_15.txt
c57eb18dcf7e40a10c1ab8d37bfc78d9
76afa48596271dcacec7ba98ab027683718fba41
5403 F20101207_AACEHK turygin_y_Page_32thm.jpg
a40c013d68525d058f5e173a0dc5c7df
c06d169bd4c5ab83b3dc7b9af400e75f6d6fd848
F20101207_AACECM turygin_y_Page_45.tif
83437c55ca90b6be4af791381912a42a
a423fbf00a18f359bcaf721f40c91868df06d67a
F20101207_AACDVP turygin_y_Page_07.tif
f9b56525b46e5ecb464ccdbd689526fe
9116668746b68e36ba9e5760d8983bbd8308042d
5792 F20101207_AACEHL turygin_y_Page_27thm.jpg
74de81d73998615112605c01dcae182d
678a8ce0536a13a9c88bf1a20700cb4c4b303f8e
F20101207_AACECN turygin_y_Page_46.tif
0e8a1cefb280035fce4e675ad4a3d526
4847cf37d4f4254c4fd2550e5e45f589ec51bfa0
2203 F20101207_AACDVQ turygin_y_Page_48.txt
f36b6fc564707ff8855c13780503d55f
32ae6f3e0ea74d03ac0cf15a19c286057cb10bd5
2169 F20101207_AACEHM turygin_y_Page_04thm.jpg
d9a6a86e5da27821fa04c84600236ef7
1676708c61fd0c4221a3b7fea9a5fff701d03f29
F20101207_AACECO turygin_y_Page_47.tif
6977a82ae19e3fa99879dab720b75872
e4a41485c606f55571c2910663f672f01905344b
73839 F20101207_AACDVR turygin_y_Page_39.jpg
2ab6774e0d2831ebec37a6604d3f107d
7c4787043ab9749b98dfd806195734c6ba6fb1f8



PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

IwouldliketothanksmyadvisorAlexanderDranishnikovformanyencouragingconversationsovertheyearsonvarioustopicsintopologywhichwereofagreatinuenceonmymathematicaleducation.IalsowouldliketothankYuliRudyakforbeingalwaysabletondtimetodiscusstopologywithme.Hisinuenceonmymathematicaleducationhasalsobeensubstantial. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 ABSTRACT ........................................ 6 CHAPTER 1BORSUK-ULAMTHEOREMS ........................... 7 1.1Introduction ................................... 7 1.2Borsuk-UlamTheoremfor(Zp)k-actions ................... 8 1.3Calculationofw2k1() ............................. 10 1.4EulerClassofC:EGGIC(G)!BG 11 1.5ProofofTheorem 1.2.1 ............................. 13 1.6Borsuk-UlamTheoremforZ2k-actions .................... 16 1.7NecessaryLemmas ............................... 18 1.8ComputationofNorms ............................. 21 1.9ComputationofEulerClasse(m) .................... 22 1.10ProofofTheorem 1.6.2 ............................. 25 2HUREWICZTHEOREMANDAPPROXIMATIONOFMAPS ......... 27 2.1Introduction ................................... 27 2.2ProofofTheorem 2.1.7 ............................. 30 2.3ProofsoftheApproximationTheorems .................... 34 3BORSUK-ULAMTHEOREMSFORMAPSWITHINFINITEFIBERS .... 38 3.1Bula'sProperty ................................. 38 3.2LipschitzCompactication ........................... 40 3.3TheConstruction ................................ 41 APPENDIX ABORSUK-ULAMTHEOREMFORZP:::ZPK-ACTIONSONPRODUCTSOFSPHERES .................................... 45 REFERENCES ....................................... 48 BIOGRAPHICALSKETCH ................................ 50 5

PAGE 6

Thisdissertationisdevotedtoseveraltopicsingeometrictopologyanddimensiontheory.IntherstchapterwediscussBorsuk-Ulamtheorems.Weviewedthehistoryofthesubject,statedafewclassicalresultsinthisareaanddescribedageneralapproachtoprovingBorsuk-Ulamtypetheorems.Theresultsoftheauthorinthisareaarealsostatedandprovedinthischapter. Inthesecondchapterwediscusstwocloselyrelatedquestionsindimensiontheory.Namely,aberwiseversionoftheclassicaltheorembyHurewiczabout0-dimensionalmapsofk-dimensionalcompactaintok-dimensionalcubeandaconjecturebyV.V.Uspenskijaboutapproximationofk-dimensionalmapsbetweencompactabyk-dimensionalsimplicialmapsofpolyhedra. InthethirdchapterweoutlineageneralgeometricconstructionwhichshowshowitmightbepossibletouseBorsuk-Ulamtypetheoremsforconstructinganexampleofa1-dimensionalmapbetweencompactawhichcannotbeapproximatedby1-dimensionalsimplicialmapsofpolyhedra. 6

PAGE 7

29 ]andD.G.Bourgin[ 1 ]: 2 ]andithasrstappearedintheirfamousbook. 1.1.2 becameacornerstoneinthedevelopmentoftheBorsuk-Ulamtypetheorems.ItsproofhelpedtoshapeupthegeneralapproachtoprovinggeneralizationsoftheBorsuk-Ulamtheorem.ItsimportancecanhardlybeoverestimatedalsoduetothefactthatithasthefamoustheorembyJ.Milnor[ 11 ]asoneofitscorollaries.ThetheoremofJ.Milnorassertsthateveryelementofordertwoinagroupwhichactsfreelyonaspheremustbecentral(see[ 15 ]fordetails).Thelatertheoremplayedanimportantroleinthesolutionofthesocalled"sphericalspaceformproblem"whichaimwastogiveaclassicationofallnitegroupswhichadmitafreeactiononasphere. IntheirconsequentworksH.Munkholm[ 12 ]andM.Nakaoka[ 15 ]showedthatthedierentiabilityconditionontheinvolutionTintheformulationofTheorem 1.1.2 can 7

PAGE 8

24 ].Furtheranduntiltherestofthedissertationpisalwaysassumedtobeaprimenumber. 3 ].Inthecasenim(pk1)foralli(1ik)thetheoremabovewasprovedbyV.V.Volovikovin[ 27 ].Moreover,intheVolovikov'stheoremtheactioncanbeassumedanarbitraryfreeaction. 8

PAGE 9

Proof. Conversely,givenacontinuoussectionsof,itdenesaG-equivariantmaps:M!MRm[G]whichisduetoitsequivariancemustbeoftheforms(x)=(x;Pg2Gf(xg1)g)forsomef:M!Rm,andthelemmafollows. Usually,toproveaBorsuk-UlamtypetheoremformapsintoEuclideanspacesoneshowsthattheEulerclassofthevectorbundle:MGIRm(G)!M=Ginasuitablecohomologytheoryisnon-trivial.ThenthedimensionrestrictionsonthecoincidencesetA(f)follow(seetheproofofTheorem 1.2.1 ).Thetheoremsfrom[ 12 13 ]wereprovedinthisway.Unfortunately,whenoneusesordinarycohomologytheory,Eulerclassofveryoftenturnsouttobetrivial(see[ 12 ]).This,infact,isthereasonwhyallavailableresultsintheareaarerestrictedtotheactionsofsofewgroups.InthissettingtheresultsofH.Munkholmfrom[ 13 ](alsosee[ 14 ])areespeciallyinteresting.InthatpaperheprovesaBorsuk-UlamtypetheoremforZpa-actions,pisodd,onodddimensionalspheresusinga 9

PAGE 10

25 ]andinthisdissertation(seeTheorem 1.6.2 ). TheprooftheTheorem 1.2.1 isbasedonthenon-trivialityofthe(modp)Eulerclassofacorrespondingvectorbundle.ThenexttwosectionswillbedevotedtothecalculationofEulerclassesofrelevantvectorbundles. InthissectionassumethatG=(Z2)k.AsusualBGstandsfortheclassifyingspaceofGandEGstandsforthetotalspaceoftheuniversalG-bundle.Thissectionisdevotedtothecalculationofthe(mod2)Eulerclassofavectorbundle:EGGIR(G)!BG,i.e.itsStiefel-Whitneyclassw2k1().ThesecalculationsarethenneededintheproofofTheorem 1.2.1 incasep=2.RecallthatH(BG;Z2)isapolynomialalgebraZ2[x1;:::;xk]on1-dimensionalgenerators. Letibeavectorbundleobtainedfromthefollowingdiagram:E(i)!S1Z2R[Z2]i##BGpri!RP1

PAGE 11

1.2.1 incaseofoddprimes.Recallthat:H(BG;Zp)=Zp(y1;:::;yk)Zp[x1;:::;xk]; ChernclassesofaregularrepresentationofG,i.e.ChernclassesofthevectorbundleC"1C:EGGC[G]!BG,wererstcomputedbyB.M.MannandR.J.Milgramin 11

PAGE 12

10 ].Thelemmawhichisstatedafterthenextdenitionisessentiallyborrowedfromtheirpaper. ThepolynomialdenedaboveiscalledthekthDickson'spolynomial(see[ 10 ]formoredetails). pinducesonCastructureofaC[Zp]-modulewhichwewilldenotebyL.Letpri:BG!BZpbeaprojectionontheithcoordinate.Thenletibea1-dimensionalcomplexvectorbundleobtainedfromthefollowingdiagram:E(i)!S1ZpLi##BGpri!BZp Letibeavectorbundleobtainedfromthefollowingdiagram:E(i)!S1ZpC[Zp]i##BGpri!BZp

PAGE 13

1.2.1 1.2.1 .HereassumethatpisanyprimenumberandthatG=(Zp)k. 1.2.1 Byuniversalitypropertythereexiststhefollowingcommutativediagram:MIRm(G)!EGGIRm(G)M##M=G'!BG: 1.3 .ThenfromtheisomorphismIRm=IR:::IR=mIRitfollowsthat=:::=m.Thuse2()=w2k1()=w2k1()m.ByLemma 1.3.1 wehavew2k1()=kYq=1Y1i1<:::
PAGE 14

whereQkdoesnotcontainmonomialsoftheformxm1x2m2:::x2k1mk.ItiseasytoverifythatH(M=G;Z2)=Z2[x1;:::;xk]=(xn1+11;:::;xnk+1k); 1.4 .ThenfromtheisomorphismICm=IC:::IC=mICitfollowsthatC=:::=m,whereCisacomplexicationofthevectorbundle.Wehavethefollowingchainofequalities:ep()2=ep(C)=c2k1(C)=c2k1(C)m:(2) ByLemma 1.4.1 wehaveep(C)=(1)kLp1k=(1)kLp1k124Yj2Zp(1x1+:::+k1xk1+xk)35p1==(1)kxpk1(p1)kLp1k1+Rk;

PAGE 15

21xmp(p1) 22xmpk1(p1) 2k+^Qk;(3) wherea2(1)q(modp)forsomeq0and^Qkcontainsnomonomialsoftheformbxm(p1) 21xmp(p1) 22xmpk1(p1) 2k;b6=0;b2Zp: 21;:::;xnk+1 2k); 21;:::;xnk+1 2k): SinceA(f)isclosedandG-invariant,thesetMnA(f)isalsoG-invariant,andthereforewecanconsiderthefollowingexactsequenceofapair::::!Hl(M=G;(MnA(f))=G)!Hl(M=G)!Hl((MnA(f))=G)!:::: 1.2.1 thevectorbundleMhasanon-vanishingsectionoverMnA(f).Thus(ep(M))=0.Thereforethereexistsanon-trivialelement2Hm(pk1)(M=G;(MnA(f))=G) 15

PAGE 16

7 ]).SincethegroupGisniteiteasilyfollowsthatdimA(f)dimZpA(f)dimMm(pk1); 14 ]H.MunkholmandM.NakaokaprovedthefollowinggeneralizationoftheBorsuk-Ulamtheorem: First,considerabundle^:GMG!=G,whereMG=QjGji=1MandGactsonMGbypermutingthecoordinates.Everycontinuousmapf:!Minducesasections(f)ofthebundle^givenbytheformula:s(f)(xG)=(x;Xg2Gf(xg1)g)G:

PAGE 17

1.2.1 fordetails. Nowconsiderthenormalbundleof=GMinGMG.Itwasshownin[ 14 ]thathasastructureofacomplexvectorbundle(Proposition2[ 14 ]).MainlyitfollowsfromthefactthatallirreduciblerepresentationsofGarecomplex.LetbethegKU-theoreticThomclassof.Itturnsoutthatforanycontinuousmapf:!Mtheinducedhomomorphisms(f):gKU(GMG;=GM)!gKU(=G) inK-theorymapstotheEulerclassofthevectorbundle:GIRm(G)!=G,whereIRmisthekerneloftheaugmentationhomomorphismRm[G]!Rm(seeProposition3of[ 14 ]).HereandthroughoutthepaperRmisassumedtobearingwithmultiplicationgivenbythemultiplicationofthecoordinates. Itfollowsfromourconstructionsthatiff:!MisamapwhichdoesnotcollapseanyorbitofGtoapoint,thens(f)()=e()=0. ThecomplexG-moduleIRm(G)isasumofallnon-trivialirreduciblecomplexG-modules,whichmakesasumofone-dimensionalcomplexvectorbundles.ThisdecompositionallowstocomputethegKU-theoreticEulerclassof.Fromcertainconsiderationsinelementaryalgebraicnumbertheoryitfollowsthate()6=0provideddimissucientlylarge,whichcompletestheproofofthetheorem. IncaseG=Z2k;k>1;neithernorhaveacomplexstructure,simply,becausethedimensionofandisodd.ThisfactdoesnotallowtousecomplexK-theoryinordertoprovethatdoesnothaveanon-vanishingsectionprovideddimensionofissucientlylarge.Presumably,thisisthereasontheaboveresultofH.MunkholmandM.NakaokaisrestrictedtothecaseofoddordergroupsG=Zpk.NotethattheEulerclassofinordinarycohomologytheoryistrivialifk>2(see[ 12 ],[ 14 ]fordetails). 17

PAGE 18

1.6.1 donotneedtobeassumeddieren-tiable.Theproofworkswithoutanychangesifoneassumes=S2n+1,theactionGtobefreeandthemanifoldMtobeanm-dimensionaltopologicalmanifold. 1.6.2 whichrstappearedin[ 25 ]coversthisgap. 1.6.2 untilsection 1.10 .InthenextsectionswewillstateandproveallthenecessaryresultswhichareneededfortheproofofTheorem 1.6.2 18

PAGE 19

1.6 ,theproofofTheorem 1.6.2 heavilyreliesonthegeometryofthevectorbundle.Inthenextlemmawewillgiveafulldescriptionofintermsof"smaller"vectorbundleswhosegeometryisfairlysimple. LetGactonCbyrotationsby2 1.7.2 andthefollowingobviousequality:=2k1: Let:E()!S2n+1=Gbeavectorbundleinducedfromavectorbundle:S2n+1GR!S2n+1=Gviaaprojectionpr:S2n+1=GM!S2n+1.Itiseasy 19

PAGE 20

Itiseasytoseethatthereexiststhefollowingcommutativediagram:S2n+1G(MGRm)!S2n+1GRm#"j#mS2n+1GMG^!S2n+1=G;

PAGE 21

isanobviousinclusion.ThefollowingpropositionplaysanimportantroleintheproofofTheorem 1.6.2 : (a)N(pl1)=ppl,0l
PAGE 22

[Q(pl1):Q]=pkpk1 InthissectionwewillcomputetheEulerclasse(m)2gKU0(S2n+1=G)andwillprovethatitisnon-trivialprovidedthedimensionofthesphereS2n+1issucientlylarge. mandlet:S2n+1ZmC!S2n+1=Zm Proof.

PAGE 23

maptherstChernclassoftotherstChernclassof. 1.7.2 andProposition 1.9.1 23

PAGE 24

1.8.1 wehave:2k1Yj=2N(j())[2k1

PAGE 25

1.8.1 ,N(1)=p.Thus,wehaven+1dm2k1m2k2(k1)2k1+1 anddn2k1(m1)m2k2(k1): 1.7.2 itfollowsthat:e(dm)=((x+1)1)d[((x+1)1)((x+1)21):::((x+1)2k11)]m: 1.9.3 1.6.2 1.6.2 .Recallthatforamapf:S2n+1!Mwedeneacoincidenceset:A(f)=fx2S2n+1jf(x)=f(gx)8g2Z2kg: 1.6.2 1.7.1 wehavee(d)s(f)()=e(d)e(m)=0:

PAGE 26

1.9.3 ,wemusthave:dn2k1(m1)m2k2(k1):

PAGE 27

In[ 26 ]V.V.Uspenskijintroducedthenotionofamapadmittinganapproximationbyk-dimensionalsimplicialmaps.Followinghimwesaythatamapf:X!Yadmitsapproximationbyk-dimensionalsimplicialmapsifforeverypairofopencovers!XofthespaceXand!YofthespaceYthereexistsacommutativediagramofthefollowingformXX!jKjf##pYY!jLj; InthatpaperV.V.Uspenskijproposedthefollowingquestionandconjecturedthatinthegeneralcasetheanswertoitis"no". (Q1)Doeseveryk-dimensionalmapf:X!Ybetweencompactaadmitapproximationbyk-dimensionalsimplicialmaps? 27

PAGE 28

6 ]A.N.DranishnikovandV.V.Uspenskijprovedthatlightmapsadmitapproximationbynite-to-onesimplicialmaps.InthispaperwegivesomepartialresultsansweringthequestionofV.V.Uspenskijinarmative. 16 ].Werecallthatthediagonalproductoftwomapsf:X!Yandg:X!Zisamapf4g:X!YZdenedbyf4g(x)=(f(x);g(x)). (Q2)Letf:X!Ybeak-dimensionalmapbetweencompacta.Doesthereexistamapg:X!Iksuchthatdim(f4g)0? Inthispaperweprovethefollowingtheoremwhichstatesthatthequestions(Q1)and(Q2)areequivalent. 28

PAGE 29

16 ],[ 17 ],[ 18 ],[ 21 ],[ 20 ],[ 8 ],[ 9 ],[ 22 ]).In[ 16 ]Pasynkovannouncedthefollowingtheoremtowhichtheproofappearedmuchlaterin[ 17 ]and[ 18 ]. 21 ]TorunczykprovedthefollowingtheoremwhichiscloselyrelatedtothetheoremprovedbyPasynkov. 2.1.5 holds(forf)ifandonlyifthestatementoftheorem 2.1.6 holds(forf)(theproofcanbefoundin[ 8 ]). WeimprovetheargumentusedbyTorunzykin[ 21 ]toprovethenexttheoremandtheimplication"(="oftheorem 2.1.4 5 ].

PAGE 30

6 ]itfollowsthattheextensionaldimensioncannotbeloweredby0-dimensionalmapssothecorollaryisanimmediateconsequenceoftheorem 2.1.7 OnecanunderstandthestatementofthepreviouscorollaryasageneralizationoftheclassicalHurewiczformula. 2.1.7 Proof. LetF=N0[SfNk:k1gbetheunionofallnitesequencesofpositiveintegersplusemptysequenceN0=fg.Foreveryi2Fletusdenotebyjijthelengthofthesequenceiandby(i;p)thesequenceobtainedbyaddingtoiapositiveintegerp. 30

PAGE 31

(a)F(i)isclosedinY,thesetsU(i)andV(i)areopensubsetsofXand[U(i)]\[V(i)]=?; (b)U()B;V()CandF()=Y; (c)U(i;p)U(i)\f1(F(i;p))andV(i;p)V(i)\f1(F(i;p))foreveryp2N; (d)F(i)[fF(i;p):p2NganddiamF(i)<1 (e)thesetE(i)=f1(F(i))n(U(i)[V(i))admitsanopencoveroforderkanddiameter1 1+jij; (f)innotationsof(e)thefamilyfE(i;p):p2NgisdiscreteinX. ThenthereexistsaclosedsubsetTofXsuchthatdimTk1andforanyy2YthesetTseparatesf1(y)betweenBandC. Proof.

PAGE 32

(1)FpisclosedinY,thesetsUpandVpareopensubsetsofXand[Up]\[Vp]=?; (2)UpU\f1(Fp),VpV\f1(Fp); (3)FSfFp:p2NganddiamFp<; (4)thesetEp=f1(Fp)n(Up[Vp)admitsanopencoveroforderkanddiameter; (5)innotationsof(4)thefamilyfEp:p2NgisdiscreteinX. Proof. andifGisamemberoflthenf1(G)n(U(G)[V(G))Ql(y) forsomey2F.LetfF(G):G2gbeaclosedshrinkingofthecoverandletE(G)=f1(F(G))n(U(G)[V(G)) 32

PAGE 33

2.2.2 Proof. 2.2.2 .NowtogetthesetsU(i;p),V(i;p)andF(i;p)forallp2NapplyLemma 2.2.3 tothesetsU=U(i),V=V(i),F=F(i)andto=1 1+jij. 2.2.2 Proof. 2.2.2 .Take=minf(U(i);V(i)) 4;1 1+jijg.Byassumption,thereexistsacommutativediagramofthefollowingform:XX!jKjf##pYY!jLj;

PAGE 34

2.2.3 tothesetsU,V,FandtotoproducethesetsUp,VpandFpforallp2Nsatisfyingconditions(1)-(5)ofLemma 2.2.3 .NowsetU(i;p)=1X(Up),V(i;p)=1X(Vp)andF(i;p)=1Y(Fp).Sincetakingapreimagepreservesintersections,unionsandsubtractions,thesetsU(i;p),V(i;p)andF(i;p)satisfytheconditions(a)-(f). 2.1.7 8 ]),so,itissucienttoproveonly(i).But(i)immediatelyfollowsfromLemmas 2.2.1 2.2.2 and 2.2.4 2.1.4 8 ]toshowthatthereexistsamapg:X!Ikwithdim(f4g)0itissacienttonda-compactsubsetAinXofdimensionatmostk1suchthatdimfjXnA0.TheexistenceofsuchsubsetAfollowsimmediatelyfromLemmas 2.2.1 2.2.2 and 2.2.5 34

PAGE 35

(a1)&!Y; (b1)theorderof&doesnotexceeddimY+1; (c1)(&)=fUI:(;)2ADgfO(y;t):(y;t)2YIkg. Thepartitionofunityfu:2AgonYsubordinatedtothecover&givesrisetothecanonicalmap:Y!jN&j.Thenthemapid:YIk!jN&jIkisan(&)-map.By:jN&jIk!jN&jwedenotetheprojection.LetandbesuchtriangulationsonpolyhedrajN&jIkandjN&jrespectivelysuchthatthefollowingconditionsaresatised: (10):jN&jIk!jN&jisasimplicialmaprelativetothetriangulationsand; (20)f(id)1(St(a;)):a2g&; (30)f1(St(b;)):b2g&. Letusdene=fSt(a;):a2gand=fSt(b;):b2g.Denethepartitionofunityfwa:a2gonjN&jIksubordinatedtothecoverbylettingwa(z)tobethebarycentriccoordinateofz2jN&jIkwithrespecttothevertexa2.Analogously,denethepartitionofunityfvb:b2gonjN&jsubordinatedtothecover.Notethattheprojection:jN&jIk!jN&jsendsthestarsoftheverticesofthetriangulationtothestarsoftheverticesofthetriangulation.Thatiswhythereisasimplicialmap$:N!Nbetweenthenervesofthecoversand.Moreover,thefollowingdiagramcommutes.jN&jIk!jNj##$jN&j!jNj:

PAGE 36

Recallthat'isanfO(y;t)g-map.Foreverya2pickapoint(y;t)asuchthatWaO(y;t)a.Letwa=wa(f4g)andBa=(y;t)a.Thensupp(wa)(f4g)1(Wa)(f4g)1(O(y;t)a): 36

PAGE 37

ThefollowingresultsofM.Levin[ 8 ]andY.Sternfeld[ 20 ]areneededtoprovetheorems 2.1.2 and 2.1.3 : 2.1.2 2.3.1 and 2.1.4 2.1.3 2.3.2 and 2.1.4 37

PAGE 38

AquestionaboutexistenceofopenmapsbetweencompactawithinniteberswhichdoesnotsatisfyBula'spropertyiswell-knownincontinuumtheoryandwasrststatedbyBula.Therstexampleofsuchamapwasgivenby:p:1Yi=0S2i!1Yi=0RP2i 4 ].ThefollowingtheoremisageneralizationofhisconstructionandheavilyreliesonTheorem 1.2.1 InterestingexamplesofopenmapsbetweencompactawithoutBula'spropertywereconstructedin[ 9 ].Recallthefollowingtheoremfromthatpaper: 38

PAGE 39

Thereisenoughevidencetobelievethatsuchanexampleexists.Forinstance,themapsproducedbyTheorem 3.1.2 almostsatisfytherequirementsofbeingsuchexamples. (i)f:X!YdoesnotsatisfyBula'sproperty, (ii)forany':X![o;1]thereexistsy2Ysuchthat'(f1(y))=pt; (iv)Themapfcannotbeapproximatedby1-dimensionalsimplicialmaps. Proof. Theimplication(ii))(i)isobvious. ByTheorem 2.1.4 thestatements(ii)and(iv)areequivalent.Toseehow(i),(ii)notethatifthemapg:X![0;1]exists,thenitdoesnotmapanyberofftoapoint. ThepreviouspropositionshowshowBula'spropertyisrelatedtoHurewicztheoremformapsandV.Uspenskij'sconjecture.Ourgoalnowwouldbetoconstructanexampleofastrictly1-dimensionalmapbetweencompactawhichwouldsatisfyatleastoneoftheproperties(i)(iv). TheexamplesofmapsproducedbyTheorem 3.1.2 ,althoughsupplyevidencethatthedesiredexampleexists,donothaveuniformdimensionalityofthebers,i.e.incasen=1thebersofthemapsproducedbyTheorem 3.1.2 arenotstrictly1-dimensional. 39

PAGE 40

Itisawell-knownfactingeneraltopologythateachcompacticationofasucientlygoodtopologicalspacecanbedescribedasthesetofmaximalidealsofaBanachalgebraoffunctions.LipschitzmapsonapropercompactmetricspacedonotformaBanachalgebra,sowewillconsiderthesmallestBanachalgebracontainingallLipschitzfunctions. LetXbeapropermetricspace.DenotebyCL(X)theclosureofthesetofallboundedLipschitzfunctionsf:X!RwithLip(f)<1.Forx2Xdene(x)=(f(x))f2CL(X)2RCL(X).Itiseasytoprovethat:X,!RCL(X)isanembedding.DenetheLipschitzcompacticationLXofthepropermetricspaceXasLX= Weclaimthatthereexisti02Nforwhichgi0(F)<1 3andgi0(Xn~U)>2 3.Thiscanbeprovenasfollows.Assumethereisnosuchi02N.Thenthereexistasequencexn2XnU

PAGE 41

30suchthatf(F)>.Notethatf(U)=0.Itiseasytocheckthatf:X![0;1]isaLipschitzfunction.Therefore,thereexistsafunctionf:X![0;1]suchthatfjX=f.Obviously,f(F). Aneasyconsequenceofthepreviouspropositionisthefollowing Proof. LetFF~UbeasubsetofXsuchthattheclosureofFinLXcontainsx2LX.ThenbyProposition 3.2.1 ,dist(F;Xn~U)>0.Thendist(f(F);Ynf(~U))>0,becausefislocallyaprojection.Therefore,byProposition 3.2.1 ,wehave 41

PAGE 42

1.1.3 wecanchooseasequencefnigofoddnumberssuchthatafreeZpi-actiononSniwillhave1-Borsuk-Ulamproperty,butwillnothave2-Borsuk-Ulamproperty. (i)Foranyx2Sniwehavediamfi(Zpix)1; 3.2.2 ,wehaveanopenmapL(tpi):L(tSni)!L(tCP[ni betweenLipschitzcompactications. Proof. 22 ]itwasprovedthatthereexistsamapg:cS1![0;1]suchthatthemap^p4g:cS1![CP1[0;1] is0-dimensional.Itfollowsfromthelaststatementthatg(^p1(y))=[a;b]witha6=bforeveryy2[CP1.LetLy:[a;b]![0;1]bealineartransformationof[a;b]into[0;1].Deneamap':cS1![0;1]asacomposition'=Lyg.Thecontinuityofthemap'essentiallyfollowsfromthefactthat^pisanopenmap.Now,deneA='1(0)andB='1(1).ThesetsAandBareclosedanddisjointandeachoneofthemintersectseachberof^p.Also,notethatdist(A;B)>0,therefore,theclosuresofAandBinaredisjointLcS1by 42

PAGE 43

3.2.1 .Now,non-trivialityofeachberofthemapL^pfollowsfromProposition??. Proof. LetfOj2AgbeanopencoveringofLcS1suchthatforany2Aandanyx;x02Oitfollowsthatj'(x)'(x0)j< pkbethegeneratorofthegroupZpk.Wecanchoosek2Ntobelargeenough,sothatthepointsx2S1=^p1(y)ande2i pkx2S1=^p1(y)arefOj2Ag-closeforanychoiceofy2[CP1,i.e.thereexists2Asuchthatx;e2i pkx2O. Now,choosenlargeenough,sothatTheorem??guaranteesexistenceofanorbitofZpkwhichwillbecollapsedtoapointunderthefollowingcomposition:S2n1i,!LcS1'!I: Toproduceanexampleofanopenstrictly1-dimensionalmapitremainstoproveProposition 3.3.1 andthefactthatthebersofourmapareareallstrictly1-dimensional.Thelaterfactintuitivelyseemsobvious,sinceaberinthecoronaofourmapisbeingapproachedbycirclesinaLipschitzmanner.So,itseems,thatthebersinthecoronashouldalsobe1-dimensional,sincedimensioncannotberaisedbyaLipschitzmap.Oncewehaveprovedallthese,wehaveproducedthedesiredexamplewhichremainstohave 43

PAGE 44

AfterapplyingScepin'sSpectralTheoremwehaveproducedanexampleofamapwhichgivesapositivesolutiontotheV.Uspenskij'sconjectureandanswersthequestionofB.A.Pasynkovinthenegative. 44

PAGE 45

SetG=Zp:::Zpkforaxedoddprimepandk1andletM=S2n11:::S2nk1:InthissectionwewilldiscussafailedattempttoproveaBorsuk-UlamtheoremforG-actionsonproductsofspheresandmapsintoEuclideanspaces.Thiscaseismoredicultthanthecaseof(Zp)k-actions,becausetheEulerclassofthecorrespondingvectorbundleintheordinarycohomologytheoryturnsouttobetrivial.BelowwewillalsoshowthattheEulerclassofthevectorbundle,whichneedtobeconsidered,inthecomplexK-theoryistrivialaswell.Therefore,thisparticularcasecallsforamoresophisticatedcohomologytheoryinordertoextractaBorsuk-Ulamtheorem. LetLibea1-dimensionalcomplexZpi-module,inwhichZpiactsbymultiplicationbye2i piandlet0:S2ni1ZpiLi!Lni(pi) betheassociatedcomplexvectorbundle.HereLni(pi)isthelensspaceS2n11=G:Denotebyi:Ln1(p):::Lnk(pk)!Lni(pi) theprojectionontheithfactorandseti=(0i):ThenitfollowsfromtheisomorphismC[G]wC[Zp]:::C[Zpk] that=(M0C[G]!M=G)w1:::k;

PAGE 46

isnon-trivial.Obviously,C=;therefore,itissucienttoprovethate()6=0.Thisprobablycanbedonebymeansofsomeextraordinarycohomologytheory.LetusseewhathappensinthecaseofcomplexK-theory. First,recallthat~K0C(Ln1(p):::Lnk(pk))wZ[x1;:::;xk]=I;

PAGE 47

fromabove.Theauthorisbeingabletoprovethatinfactthepolynomiale()almostalwaysbelongtotheidealIwhichmakethecomplexK-theoryapproachinecientwhentryingtoproveaBorsuk-Ulamtheoremforthesekindsofactions. 47

PAGE 48

[1] D.G.Bourgin,Multiplicityofsolutionsinframemappings,IllinoisJ.Math.,vol.9(1965),169-177 [2] P.E.ConnerandE.E.Floyd,Dierentiableperiodicmaps,Springer-Verlag,Berlin,1964 [3] A.N.Dranishnikov,OnQ-brationswithoutdisjointsections,Funct.Anal.Appl.,22(1988)no.2,151-152 [4] [5] A.N.Dranishnikov,TheEilenberg-Borsuktheoremformapsintoarbitrarycom-plexes,Math.Sbornikvol.185(1994),no.4,81-90. [6] A.N.DranishnikovandV.V.Uspenskij,Lightmapsandextensionaldimension,TopologyAppl.,80(1997)91-99. [7] A.N.Dranishnikov,Cohomologicaldimensionofcompactmetricspaces,6issue1(2001),TopologyAtlasInvitedContributions [8] M.Levin,Bingmapsandnitedimensionalmaps,Fund.Math.151(1)(1996)47-52. [9] M.LevinandW.Lewis,Somemappingtheoremsforextensionaldimension,arXiv:math.GN/0103199 [10] B.M.MannandR.J.MilgramOntheChernclassesoftheregularrepresentationsofsomenitegroups,Proc.EdinburghMath.Soc(1982)25,259-268 [11] J.Milnor,GroupswhichactonSnwithoutxedpoints,Amer.J.Math.,vol.79,n.3(1957),pp.623-630 [12] H.J.MunkholmBorsuk-UlamtypetheoremsforproperZp-actionson(modp)homologyn-spheres,Math.Scand.24(1969)167-185 [13] H.J.MunkholmOntheBorsuk-UlamtheoremfortheZpaactionsonS2n1andmapsS2n1!Rm,OsakaJ.Math7(1970)451-456 [14] H.J.MunkholmandM.Nakaoka,TheBorsuk-Ulamtheoremandformalgroups,OsakaJ.Math.9(1972),337-349 [15] M.NakaokaGeneralizationsofBorsuk-Ulamtheorem,OsakaJ.Math.7(1970),423-441 [16] B.A.Pasynkov,Thedimensionandgeometryofmappings,(Russian)Doklad.Akad.Nauk.SSSR221(1975),543-546. [17] B.A.Pasynkov,Theoremon!-mappingsformappings,(Russian)Uspehi.Math.Nauk.vol.39(1984),no.5(239),107-130. 48

PAGE 49

[18] B.A.Pasynkov,Onthegeometryofcontinuousmappingsofnitedimensionalmetrizablecompacta,Proc.SteklovInst.Math.vol.212(1996),138-162. [19] J.E.Roberts,AstrongerBorsuk-UlamtypetheoremforproperZp-actionsonmodphomologyn-sheres,Proc.Amer.Math.Soc.,vol.72,n.2(1978),pp.381-386 [20] Y.Sternfeld,Onnite-dimensionalmapsandothermapswith"small"bers,Fund.Math.,147(1995),127-133. [21] H.Torunczyk,Finitetoonerestrictionsofcontinuousfunctions,Fund.Math.125(1985),237-249. [22] H.MuratTuncali,V.Valov,Ondimensionallyrestrictedmaps,Fund.Math.175(1)(2002),35{52. [23] YuriA.Turygin,Approximationofk-dimensionalmaps,TopologyandIt'sApplica-tions,TopologyAndIt'sApplications,139(2004)227-235 [24] YuriA.Turygin,ABorsuk-Ulamtheoremfor(Zp)k-actionsonproductsof(modp)homologyspheres,TopologyAndIt'sApplications,154(2007)455-461 [25] YuriA.Turygin,ABorsuk-UlamtheoremforZ2k-actionsonspheres,preprint [26] V.V.Uspenskij,AselectiontheoremforC-spases,TopologyAppl.85(1998)351-374. [27] V.Volovikov,Bourgin-YangtheoremforZnp-actions,Mat.Sb.,vol.183,n.7(1992),pp.115-144 [28] C.T.Yang,OnmapsfromspherestoEuclideanspaces,Amer.J.Math.vol.79,no.4(1957),725-732 [29] C.Y.Yang,OntheoremsofBorsuk-Ulam,Kakutani-Yamabe-YajoboandDyson,I,Ann.Math.vol.60,no.2(1954),262-282

PAGE 50

IwasborninTroitsk,MoscowRegion,onSeptember4,1978.AftergraduationfromHighSchool5attheageof16,IenrolledintoaprograminmathematicsatPeople'sFriendshipUniversity.InacoupleofyearsIrealizedthatformetohavearealisticchanceofbecomingamathematicianIneedtogetintoabetterschool.Infall1997,IstartedattendingaresearchseminaronGeneralTopologyatMoscowStateUniversityorganizedbyBorisAlekseevichPasynkov.Insummer1998ProfessorPasynkovhelpedmetransfertotheMathematicsDepartmentofMoscowStateUniversity,whereIcontinuedstudyingtopologyunderhissupervision.IgraduatedfromMoscowStateUniversityinJune2002,withabachelorsdegreeinMathematics.InAugust2002IstartedinthePhDprogramattheUniversityofFloridawhichIcompletedinMay2007. 50


Permanent Link: http://ufdc.ufl.edu/UFE0020106/00001

Material Information

Title: Borsuk-Ulam Property of Finite Group Actions on Manifolds and Applications
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0020106:00001

Permanent Link: http://ufdc.ufl.edu/UFE0020106/00001

Material Information

Title: Borsuk-Ulam Property of Finite Group Actions on Manifolds and Applications
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0020106:00001


This item has the following downloads:


Full Text





BORSUK-ULAM PROPERTY OF FINITE GROUP ACTIONS ON MANIFOLDS AND
APPLICATIONS



















By

YURI A. TURYGIN


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007


































02007 Yuri A. Turygin




































To my parents









ACKNOWLEDGMENTS

I would like to thanks my advisor Alexander Dranishnikov for many encouraging

conversations over the years on various topics in topology which were of a great influence

on my mathematical education. I also would like to thank Yuli Rudyak for being

alv-i-, able to find time to discuss topology with me. His influence on my mathematical

education has also been substantial.









TABLE OF CONTENTS


page


ACKNOWLEDGMENTS .................

ABSTRACT .........................

CHAPTER

1 BORSUK-ULAM THEOREMS ............


1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10


Introduction .. .............
Borsuk-Ulam Theorem for (Zp)k-actions
Calculation of i,_ -1 (l) .. .....
Euler Class of rlc: EG x Ic(G) BG .
Proof of Theorem 1.2.1 .. ........
Borsuk-Ulam Theorem for Z2-actions .
Necessary Lemmas .. .........
Computation of Norms .. ........
Computation of Euler Class e(( mp) .
Proof of Theorem 1.6.2 .. ........


2 HUREWICZ THEOREM AND APPROXIMATION OF MAPS ....

2.1 Introduction . . . . . . . .
2.2 Proof of Theorem 2.1.7 ........................
2.3 Proofs of the Approximation Theorems ...............

3 BORSUK-ULAM THEOREMS FOR MAPS WITH INFINITE FIBERS


Bula's Property ..........
Lipschitz Compactification ...
The Construction .........


APPENDIX


A BORSUK-ULAM THEOREM FOR Zp
OF SPHERES .............

REFERENCES ................

BIOGRAPHICAL SKETCH .........


x ... x ZpK-ACTIONS ON PRODUCTS


..................
..................
..................









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

BORSUK-ULAM PROPERTY OF FINITE GROUP ACTIONS ON MANIFOLDS AND
APPLICATIONS

By

Yuri A. Turygin

May 2007

C('!, : Alexander N. Dranishinikov
Major: Mathematics

This dissertation is devoted to several topics in geometric topology and dimension

theory. In the first chapter we discuss Borsuk-Ulam theorems. We viewed the history of

the subject, stated a few classical results in this area and described a general approach to

proving Borsuk-Ulam type theorems. The results of the author in this area are also stated

and proved in this chapter.

In the second chapter we discuss two closely related questions in dimension theory.

Namely, a fiberwise version of the classical theorem by Hurewicz about 0-dimensional

maps of k-dimensional compact into k-dimensional cube and a conjecture by V.V.

U-i ni-1:ii about approximation of k-dimensional maps between compact by k-dimensional

simplicial maps of polyhedra.

In the third chapter we outline a general geometric construction which shows how

it might be possible to use Borsuk-Ulam type theorems for constructing an example of a

1-dimensional map between compact which cannot be approximated by 1-dimensional

simplicial maps of polyhedra.









CHAPTER 1
BORSUK-ULAM THEOREMS

1.1 Introduction

The famous Borsuk-Ulam theorem is well known. It states that every continuous

map of a sphere S" into Euclidean space R' will necessarily collapse at least one pair of

antipodal points. It has been generalized by many authors. Among the first and most

memorable generalizations were by C.T. Yang [29] and D.G. Bourgin [1]:

Theorem 1.1.1. Let T be a fixed point free involution on a sphere S" and let f: S' R'"

be a continuous map into Euclidean space. Then the dimension of the coincidence set

A(f) {x c S f(x) = f(Tx)} is at least n m.
The later theorem stimulated a lot of interest in generalizations of the Borsuk-Ulam

theorem. It became a starting point in the research of many authors on this subject. The

next important generalization belongs to P.E. Conner and E.E. Floyd [2] and it has first

appeared in their famous book.

Theorem 1.1.2. Let T be a differentiable involution on a sphere S" and let f: S' M'"

be a continuous map into a differentiable i,,' ,:'.l ./ M' of dimension m. Assume that

f*: H,(S'; Z2) -+ Hn(M; Z2) is trivial. Then the dimension of the coincidence set

A(f) {x c S'f(x) = f(Tx)} is at least n m.

The Theorem 1.1.2 became a cornerstone in the development of the Borsuk-Ulam

type theorems. Its proof helped to shape up the general approach to proving generalizations

of the Borsuk-Ulam theorem. Its importance can hardly be overestimated also due to the

fact that it has the famous theorem by J. Milnor [11] as one of its corollaries. The theorem

of J. Milnor asserts that every element of order two in a group which acts freely on a

sphere must be central (see [15] for details). The later theorem p1 i,'. d an important role

in the solution of the so called "spherical space form pin- I i which aim was to give a

classification of all finite groups which admit a free action on a sphere.

In their consequent works H. Munkholm [12] and M. Nakaoka [15] showed that the

differentiability condition on the involution T in the formulation of Theorem 1.1.2 can









be dropped provided the target topological manifold M" is assumed to be compact.

Moreover, they generalized the previous theorem to the case of free actions of a cyclic

group Zp on (mod p) homology spheres. Their result reads as follows:

Theorem 1.1.3. Let a ;,/. 1.,' p'.rq' Zp of a prime order act freely on a (mod p) .,,., i'/.

n-sphere N", and let f: N" -' Mm be a continuous map into a compact t'. '.y '..: '

i,,,,,.:f1 ,/,/ Mm of dimension m. If p is odd also assume that M is orientable. Suppose

that f,: H,(N; Zp) -H H,(M; p) is trivial. Then the dimension of the coincidence set

A(f) = {x N f(x) = f(gx) Vg e Zp} is at least n m(p 1).
1.2 Borsuk-Ulam Theorem for (Zp)-actions

The purpose of this section is to -,I -.- -1 another generalization of the Borsuk-Ulam

theorem which initially appeared in [24]. Further and until the rest of the dissertation p is

alv--v- assumed to be a prime number.

Theorem 1.2.1. Let M := N'" x ... x N" be a product of (mod p) b,,,.,I,; n i-spheres

and let p: (Z,)k 0 M be the product of free actions p: Zp 0 N" (1 < i < k). If p is

odd also assume that all ni's are odd. For a map f: M R"I I ;,L.: a coincidence set

A(f) : {x MIf(x) = f(gx) Vg e (Z)k}. Then

dimA(f) > dimM (p 1)

provided ni > mpi-'(p 1) for all i(1 < i < k).

Remark. For p = 2 and m = 1 the theorem above was ii,1',l. /ili proved by A.N.

Dranishnikov in [/3. In the case ni > m(pk 1) for all i(1 < i < k) the theorem above was

proved by V. V. Volovikov in [27]. Moreover, in the Volovikov's theorem the action p can be

assumed an arbitrary free action.

Let G be a group and let R be a commutative ring with a unit. Then by IR(G) we

denote the augmentation ideal of the group ring R[G], i.e. the kernel of the augmentation

homomorphism R[G] R. In this paper we assume R" to be a ring where multiplication

structure is given by multiplication of the coordinates.









The key ingredient in the proofs of the most Borsuk-Ulam type theorems for maps

into Euclidean spaces is the following basic observation:

Lemma 1.2.1. Let G 0 M be a free action of a finite p. ',a' G on a '.,'.I/..y..,,/ 1 ,,,f,:.1./l

M. For a continuous map f: M -R IR" I/. ; ,' a coincidence set A(f) : {x c Ml f(x)

f(gx) Vg E G}. Then A(f) / 0 if and only if the vector bundle : M XG IR (G) -+ M/G

does not have a non-; ,,.-I,.:,': i section.

Proof. First, note that every continuous map f: M --R IR gives rise to a continuous

section s(f): M/G -+ M XG R'[G] of the vector bundle M: M xG RI[G] M/G defined

by a formula:

s(f)(xG)= (x, f(xg-1)g)G.
gEG
Observe that E = F E where Em is a trivial m-dimensional real vector bundle. Therefore

a projection 7r: M XG R m[G] -- M X IRm(G) is well defined. Now define a continuous

section s(f): M/G M XG IRm (G) of by a formula s(f) := 7 o s(f). It is easy to see

that s(f)(xG) = 0 if and only if the orbit of x E M is mapped by f to a point.

Conversely, given a continuous section s of it defines a G-equivariant map s: M

M x R7[G] which is due to its equivariance must be of the form s(x) (x, ZcG f(xg-1)g)

for some f : M --R R, and the lemma follows. E

Usually, to prove a Borsuk-Ulam type theorem for maps into Euclidean spaces one

shows that the Euler class of the vector bundle : M x Ipm (G) -- M/G in a suitable

cohomology theory is non-trivial. Then the dimension restrictions on the coincidence set

A(f) follow (see the proof of Theorem 1.2.1). The theorems from [12, 13] were proved in
this way. Unfortunately, when one uses ordinary cohomology theory, Euler class of very

often turns out to be trivial (see [12]). This, in fact, is the reason why all available results

in the area are restricted to the actions of so few groups. In this setting the results of H.

Munkholm from [13] (also see [14]) are especially interesting. In that paper he proves a

Borsuk-Ulam type theorem for Z, 11i i, p is odd, on odd dimensional spheres using a









KU-theory Euler class. The remaining case of Z2k-actions on spheres, k > 1, is considered

in [25] and in this dissertation (see Theorem 1.6.2).

The proof the Theorem 1.2.1 is based on the non-triviality of the (mod p) Euler class

of a corresponding vector bundle. The next two sections will be devoted to the calculation

of Euler classes of relevant vector bundles.

1.3 Calculation of i,'_ _1(])

In this section assume that G = (Z2)k. As usual BG stands for the classifying space

of G and EG stands for the total space of the universal G-bundle. This section is devoted

to the calculation of the (mod 2) Euler class of a vector bundle ]: EG XG IR(G) -G BG,

i.e. its Stiefel-Whitney class i,'_ _1(9). These calculations are then needed in the proof of

Theorem 1.2.1 in case p = 2. Recall that H*(BG; Z2) is a polynomial algebra Z2[x, ..., xk]

on 1-dimensional generators.

Lemma 1.3.1. ,' _1(]) = I rq i<...
Proof. Let Z2 act on R by an obvious involution. This involution induces on R a structure

of an R[Z2]-module which we will denote by V. Denote by pri: BG -- RP" a projection

on the ith coordinate. Then by Ai we denote a 1-dimensional real vector bundle obtained

from the following diagram:
E(Ak) S' xz, V

Ai I I
BG p RP"

Here S" stands for the infinite dimensional sphere. From the construction of A it

follows that wi(Ai) = xi.

Let r]i be a vector bundle obtained from the following diagram:

E(Ti) S" xz, R[Z2]

rG -I IR
BG P"' RP'
___ x 222









From the isomorphism R[Z2] V V (V I V) i V V2 it follows that 'i Ai E A)

where A =2 Ai A is a trivial 1-dimensional bundle. Recall the isomorphism of R-modules:

R[G] R[Z2 ... Z21] 2 R[Z2] *R ... pR R[2]. From this isomorphism it follows that

T] E1 ]1 01 ... 0 Tlk. Therefore, there exists the following chain of isomorphisms of vector
bundles:
k
S (N0(Ai A)A e (A a ... 0A ).
i-1 (al,...,ak)EG
It is a well known that the first Stiefel-Whitney class of a tensor product of

1-dimensional real vector bundles equals to the sum of the first Stiefel-Whitney classes

of the multiplies. Then by this fact and a formula of Whitney we get the following chain

of qualities:


"- --1(T7) I"- -i(?7TI 1) HJ (aixi + ... + akXk)
(a ,....,ak)70
k
=a na
H H (Xi, '+ +x + i').
q= 1 l

1.4 Euler Class of ]c: EG XG Ic(G) -- BG

Through out this section assume that p is a fixed odd prime and that G = (Zp)k

In this section we will calculate the (mod p) Euler class of a complex vector bundle

c: EG xG Ic(G) -+ BG which equals to its ('!l, i class Cpk_l(rlc). These calculations are

then needed in the proof of Theorem 1.2.1 in case of odd primes. Recall that:

H*(BG; ZP) = zp(Y,, ., k) Zp[xl,..., xk],

where Az,(yl, ...,yk) is an exterior algebra on 1-dimensional generators and Zp[x, ..., xk is

a polynomial algebra on 2-dimensional generators.

('!., i classes of a regular representation of G, i.e. ('! i i classes of the vector bundle

r]c 1 E': EG XG C[G] -- BG, were first computed by B.M. Mann and R.J. Milgram in









[10]. The lemma which is stated after the next definition is essentially borrowed from their

paper.

Definition 1.4.1. Lk = 1i Ha z/p(axll ... i+ ai-lx1 + xi)

The polynomial defined above is called the kth Dickson's polynomial (see [10] for more

details).

Lemma 1.4.1. e(/c) =(- 1)kLp'1

Proof. The action of Zp on C by rotations by 2, induces on C a structure of a C[Zp]-module
p
which we will denote by L. Let pri: BG -B BZP be a projection on the ith coordinate.

Then let Ai be a 1-dimensional complex vector bundle obtained from the following

diagram:
E(A-) S" xz L

Ai I

BG p B Zp

It is not very difficult to show that c (Ai) = Xi.

Let rli be a vector bundle obtained from the following diagram:

E(Ti) S" xzz C[Z,]


BlG I
BG ri
BCA


BI
BZP


It follows from the isomorphism C[Zp] 2 L E ... E LP, where L = L _[

that Ti Ai ... A4. Here A =- A, C ... c Ai. Also note that A4 is a trivial

complex bundle. Recall the isomorphism of C-modules: C[G] C[Zp E ... E

C[Zp] 0c ... 0c C[Zp]. From this isomorphism it follows that r~ ED F 1 i

Therefore there exists the following chain of isomorphisms of vector bundles:


k

ii1


1 "'" '" 1 L ,

1-dimensional

Zp1
... 0 lk.


(al,...,ak)EG









From a formula by Whitney and the fact that the first ('!., i class of a tensor product

of 1-dimensional complex bundles equals to the sum of the first ('!i. 1i classes of the

multiples, it follows that

Cp _I(71c) = Cpk _1(7C 1 ) = (a11 + ... +akk)
(al ,...,amc)#0
k
I J[(P -i)!]P ni (aixi + ... + ai-i-1 + x)Pl -
i-1 (al,..., i_ 1,1,0,...,0)
[(p )!]kLp1 (-l)kLP-1

The last equality follows from a theorem of Wilson which states that (p 1)!

(-1)(mod p). Thus e(T]c) = Cpk_ (c) = (-k1)L-1.

1.5 Proof of Theorem 1.2.1

In this section we use the results of the previous sections to finish the proof of

Theorem 1.2.1. Here assume that p is any prime number and that G (Zp)k.

Proof of Theorem 1.2.1. Recall that M = N" x ... x N1 is a product of (mod p) homology

ni-spheres. We will begin the proof by showing that under assumptions of the theorem the

(mod p) Euler class of M : M x, IRm (G) M/G is non-trivial.
By universality property there exists the following commutative diagram:

M x, IRm(G) EG Xc Im(G)

CMI
M/G -A BG.

Case p=2. Let q be the vector bundle from section 1.3. Then from the isomorphism IR,

I e... Elg mlR it follows that ( rql... EDq mrl. Thus e2() i '. _-1() = i -(I)".

By Lemma 1.3.1 we have


) J J (xi +... + X) i
q-1 l_







k-1
-= xi (x, +... + xj,) + Rk,
q=1 where Rk contains monomials in powers less than 2k-1. Therefore

e2(0) =X7 X ... X +Qk, (1)

where Qk does not contain monomials of the form x xm ... 'i m. It is easy to verify

that

H*(M/G; Z) Z2 [X, ] / ( +1),

and p*: H*(BG; Z2) -- H*(M/G; Z2) is an epimorphism with

Ker 0* ( 1l+1, ..., Xn 1 ).


Thus from (1) and the assumption ni > m2'-1 for all i(1 < i < k) it follows that

eC(M) -= p*2(()) / 0.
Case p > 2. Let rTc be a vector bundle from section 1.4. Then from the isomorphism

Ic~ Ic ... Ic mlc it follows that C T Erl ... E rl mry, where C is a

complexification of the vector bundle (. We have the following chain of qualities:


e,(0)2 = e,(C) = C2k-1(C-) = C2k-1(c/)T. (2)

By Lemma 1.4.1 we have
p-1
eP(rcC) = (- )kL' (- )kL -' (a1X1 + ... + k-1X-1 + Xk)


S(-1)k xk-1 + Rk,

where Rk contains Xk in powers less than pk-l(p 1). Thus

ep(C) (- l)(kmr mp 1lp-1)(p-1) +k,
() k- !C 1 + @ k,









where Rk contains Xk in powers less than mpk-l(p 1). Then by induction it follows that

ep(C() (-l)kmnX (P1) mp(p-1) mp. 1(p1)+
... X2k + Qk,

where Qk contains no monomials of the form

bxm(P-l) mp(p-l) p 1p--1), b O, b Z.


Therefore from the previous and (2) it follows that

m(p-1) mp(p-1) mpk-(p-1)
ep() = ax, 2 X2 2 .Xk 2 + Qk, (3)

where a2 (-m1)(od p) for some q > 0 and Qk contains no monomials of the form

m(p-1) mp(p-1) mpk-1(p-1)
bx1 2 x2 2 X 2 b/ 0, be Zp.

It is not very difficult to see that

nl+l nk+l
H*(M/G;p) = Az,(Y,...,yk) 2[X1,...,Xk/(X 2 ,..,Xk ),

where dimxi = 2, and o*: H*(BG; Zp) -- H*(M/G; Zp) is an epimorphism with

nl+l nk+1l
Ker ~* = (x1 ,...,Xxk ).

Then from (3) and the assumption ni > mpi-l(p 1) for all i(1 < i < k) it follows that

e,(M) = c*(e,()) / 0.
Since A(f) is closed and G-invariant, the set M \ A(f) is also G-invariant, and

therefore we can consider the following exact sequence of a pair:

... H(M/G, (M \ A(f))/G) -' H'(M/G) > H'((M \ A(f))/G) -..


By Lemma 1.2.1 the vector bundle (M has a non-vanishing section over M \ A(f). Thus

/3(ep({M)) = 0. Therefore there exists a non-trivial element

pe R' -)(M/G, (M \A(f))/G)









such that a(p) = ep,(M). Since we are working over coefficients in a field Zp there exists a

corresponding non-trivial element / E H, pkl)(M/G, (M \ A(f))/G). Then by Alexander

duality we have

HdimM-- -1)(A(f)/G Z) /,

and thus dimZ A(f)/G > dimM m(p 1) (see [7]). Since the group G is finite it easily

follows that

dim A(f) > dimz A(f ) > dimM m(k- 1),

and we are done. D

1.6 Borsuk-Ulam Theorem for Z2k-actions

In [14] H. Munkholm and M. Nakaoka proved the following generalization of the

Borsuk-Ulam theorem:

Theorem 1.6.1. Let G be a, I ; 1.. .., ii of odd order pk, where p is a prime, and E

be a homote(.,' 2n + 1 sphere on which a free differentiable G-action is given. Let M

be a differentiable m-in,,,,,':;'..1 and let f: E -+ M be a continuous map. Then the set

A(f) = {x e lf(x) = f(gx) Vg E G} has dimension at least 2n + 1 (pk 1)m [m(k -
1)pk (mk + 2)pk-1 + m + 3].
The proof of the theorem above is essentially based on non-triviality of a KU-theoretic

Euler class of a certain complex vector bundle. Let us sketch here the main ideas of the

proof needed to show that A(f) / 0 provided that dimension of E is sufficiently large. For

simplicity, we will omit the tricks used to estimate the dimension of A(f).

First, consider a bundle : E xG MG E/G, where MG = fli M and G acts on

MG by permuting the coordinates. Every continuous map f: E -- M induces a section

s(f) of the bundle given by the formula:


s(f) (xG) (x, f (xg-)g)G.
gCG









One can easily show that functions {f: E -+ M} which do not collapse any orbit of G to a

point are in one-to-one correspondence with sections {s(f)} such that s(f)(E/G) n (E/G x

AM) 0, where AM is the diagonal in the product MG. See Lemma 1.2.1 for details.

Now consider the normal bundle v of E/G x AM in E XG MG. It was shown in

[14] that v has a structure of a complex vector bundle (Proposition 2 [14]). Mainly it

follows from the fact that all irreducible representations of G are complex. Let 0 be the

KU-theoretic Thom class of v. It turns out that for any continuous map f: E -- M the

induced homomorphism

s(f)*: KU (E XG MG, E/G x AM) KU (E/G)


in K-theory maps 0 to the Euler class of the vector bundle : EG x IR (G) -+ E/G, where

IRm is the kernel of the augmentation homomorphism IR [G] -- IR (see Proposition 3 of

[14]). Here and throughout the paper R" is assumed to be a ring with multiplication given

by the multiplication of the coordinates.

It follows from our constructions that if f: E -- M is a map which does not collapse

any orbit of G to a point, then s(f)*(0) = e(o) = 0.

The complex G-module IRm (G) is a sum of all non-trivial irreducible complex

G-modules, which makes ( a sum of one-dimensional complex vector bundles. This

decomposition allows to compute the KU-theoretic Euler class of From certain

considerations in elementary algebraic number theory it follows that e() / 0 provided

dim E is sufficiently large, which completes the proof of the theorem.

In case G = Z2c, k > 1, neither v nor have a complex structure, simply, because the

dimension of and v is odd. This fact does not allow to use complex K-theory in order to

prove that ( does not have a non-vanishing section provided dimension of E is sufficiently

large. Presumably, this is the reason the above result of H. Munkholm and M. Nakaoka

is restricted to the case of odd order groups G = Zpf. Note that the Euler class of in

ordinary cohomology theory is trivial if k > 2 (see [12],[14] for details).









Remark. The ,,,inr,:../,/1 E and M in Theorem 1.6.1 do not need to be assumed differen-

tiable. The proof works without wi;1, li~.ir, if one assumes = S2n+1, the action G C E

to be free and the in,,,:. .1./ M to be an m-dimensional tej'l''.I1-j:./ .l i ,,,,./'1

To the best knowledge of the author a Borsuk-Ulam type theorem for free Z2 -actions

on spheres has not been published yet. Theorem 1.6.2 which first appeared in [25] covers

this gap.

Theorem 1.6.2. Let S2"+1 be a (2n + 1)-dimensional sphere endowed with a free action

of a ;/. 1.:, /i,. -'1 Z2k, where k > 1. Let M be an m-dimensional te'l' 1I j.:, l ,,,,,' .:. 1.1 and

let f: S2+1 M be a continuous map. Then the coincidence set A(f) = {x c E|f(x)

f(gx) Vg e 2k has dimension at least (2n + 1) [2(m 1) + m2k-1(k 1) + 1].
We will postpone the proof of Theorem 1.6.2 until section 1.10. In the next sections

we will state and prove all the necessary results which are needed for the proof of Theorem

1.6.2.

1.7 Necessary Lemmas

Let G = Z2k and suppose that a free action of G on S2n+1 is given. Then consider a

bundle

S: S2n+1 XG MG S2+1/G,

where M is a topological manifold of dimension m and MG = HJIG M. It is assumed here

that G acts on MG by permutation of coordinates. Let

v: E(v) S2"+1/G x AM


be a normal bundle of S2n+1/G x AM in S2n+1 XG MG. Here AM is the diagonal of MG

invariant under the action of G. Let


: S2n+1 X G R (G) S S2n+l/G

be a vector bundle with IRm(G) Ker(F.' [G] R") as a fiber. Then the following

lemma holds:









Lemma 1.7.1. Let i: S2+1/G S2n+/G x AM be an obvious inclusion. Then i*(v) = .

As it was mentioned in section 1.6, the proof of Theorem 1.6.2 heavily relies on the

geometry of the vector bundle In the next lemma we will give a full description of in

terms of "-in i! I vector bundles whose geometry is fairly simple.

Let G act on C by rotations by T. This action gives C a structure of a C[G]-module

which in its turn gives rise to a vector bundle A: S2n+1 XG C S2n+1/G. Similarly, the

group G acts on R by involutions which gives rise to a vector bundle p: S2"+1 XGR -

S2n+1/G.

Lemma 1.7.2. ( = m(p A A2 2 ... A2 1-1)

Proof. The proof of this lemma follows immediately from elementary representation

theory. E

Lemma 1.7.3. mn = m(A A 2 ... A2k1)

Proof. This fact is an immediate consequence of Lemma 1.7.2 and the following obvious

equality:

p i = A .



As it follows from the previous lemma, the vector bundle ( E mp admits a structure

of a complex vector bundle. Therefore, one can consider its Euler class e({ E mp) E
-0
KU (S2n+1/G). In the following sections we will prove that e( E mp) is non-trivial,

provided dimension of the sphere S2'+1 is sufficiently large.

Let p*: E(p*) -- S2n+l/G be a vector bundle induced from a vector bundle

p: S2n+l XG R S2n+/G via a projection pr: S2n+1/G x AM --- S2n+. It is easy









to see that there exists the following commutative diagram:


E( Dmp) E(v rmp*)

( mnp I Iv mp*
S2n+1/G S2n+1G x AM.

The existence of this diagram is equivalent to the statement of the following lemma:

Lemma 1.7.4. ( E mp = i*(v E mp*).

It follows now that a vector bundle v E mp* admits a structure of a complex vector

bundle.

It is easy to see that there exists the following commutative diagram:

S2n+1 XG (MG x R) 2n+l XR m



S2+1 X MG S2n+1/G,

where j: S2n+1 xMG S2n+1 XG (MG x Rm) is the obvious inclusion and r oj = id. It is

not very difficult to show that the normal bundle of S2n+1/G xAM in S2n+ XG(MG xRm)

is isomorphic to

v E mrp*: E(v E mrp*) S2n+1/G x AM.

Now let f: S2,+1 M be a continuous map and let


s(f): S2n+/G S2n+ XG MG

be a section of the bundle : S2n+1 x MG S2n+1/G associated to it. Define a map

s(f): S2n+l/ S2~1 XG (MG x R ) as a composition s(f) j o s(f). Consider the

Thom class of the complex vector bundle v E mp*:

T(v m*) G kUO0 (S21 XG (MG x R), S2 G x AM).
Tt e mpl*) E KU (S2"+1 XG (MG x Rm), S2n+l/G x AM).









Note that by excision there exists the following isomorphism:


--0 --0
KU (E(v e p*), S2n+1/G x AM) KU (S2n+l XG (MG x R-), S2n+1/G x AM).

Define 0 E KU (S2"+1 XG (MG x Rt)) by a formula

0 =i'*T(vED mp*),

where

i'*: (S2n+1 XG (MG x RI), 0) (S2n+l XG (MG x R'), S2n+1/G x AM)


is an obvious inclusion. The following proposition p1 i,- an important role in the proof of

Theorem 1.6.2:

Proposition 1.7.1. In the notations above, one has the following ,,;,i;.:;.1;


s(f)*(0) = e(B Dmp).

Proof. The idea of the proof is to compare the map s(f) with the ".. section of 0 o r

on the cohomological level. D

1.8 Computation of Norms

Let F/K be a field extension. Recall that a norm map N: F K is a map defined as

N(u) = ((-l1)ao)[F:K(u)], where f(x) = x + ... + ao e K[x] is the minimal polynomial of

u e F. Also recall that N: F K is a multiplicative map, i.e. for any u, v F we have

N(uv) = N(u)N(v). Throughout this section and further in the paper 4T(x) stands for

the nth cyclotomic polynomial.

Lemma 1.8.1. For a prime p, let 7 be a primitive root of ; il;', of order pk and let

Q(7)/Q be the corresponding /. l'/.:,,.: extension. Then
(a) N(,y t) p, 0 < 1 < k,
(b) N(4) (7)) pP1 p,1 0 < < k,

(c) N(4mp (7)) 1, if pm, m > 1.









Proof. (a) First, note that yP is a primitive root of unity of order pkl.

minimal polynomial for (-,' 1) is pk- (x + 1). Thus ao = p)k_-(1)

[Q(7) : Q] p Pk-1
[Q(7) Q(-,' -)] [Q) pk-1 k-1-1

Therefore,

N,) F1)m (((a) it f s that1 P.

(b) From (a) it follows that


N(p1 1_ )
N(%p( ))- N( P 1)_)


(c) Note that, if p { m, then 7"mp

the same reasoning as in (a), one can

have


Therefore, the

p. Also, note that

p.


1p 11


is a primitive root of unity of order pk- Following

show that N(7y 1) = N(yP 1) = pP. Thus, we


N(,mp1 )
NV (4)Tnp) ; -t
Hdlmpld<,mp' 4d(7


N(Qy m
N(p -


1.9 Computation of Euler Class e( E mp)
-0
In this section we will compute the Euler class e( E mp) E KU (S2"+1/G) and will

prove that it is non-trivial provided the dimension of the sphere S2"+1 is sufficiently large.

Proposition 1.9.1. Let Z, act on C by rotations by 2 and let

A: S2n+1 Xm C S2n+l/Zm

be a vector bundle associated to this action. Then

U (s2n+l/ 2f) Z [x]/((x + 1)2k 1 x1+),


where x = e(A).

Proof. Let rl be the universal one-dimensional complex vector bundle over CP". It is a

well-known fact that the total space of the spherization of the m-fold tensor product of rl









is homeomorphic to S2n+1//m. The later fact allows to write down the following Gysin

long exact sequence:

0 Ue(lm) 0 0
... KU (CP) KU (CP") KU (S2n+l/Z) ....

-0
The ring KU (CP") is a truncated polynomial algebra Z[x]/(x"+l) where x = e(). From

a formula e(rl 0 T) = x2 + 2x it follows that


e(rm) = (x + 1)m- 1.

-0
Therefore, KU (S2+1/) [x]/ ((x + 1) 1,xn+1). The equality x = e(A) in
-0
KU (S2fn+l/Z) follows from the fact that the homomorphism

(~T) : H2(Cpn) H2(S2n+I/Zm)


map the first ('!. i i class of Tr to the first ('!. i i class of A. D

Proposition 1.9.2. e( mTp) [(x 1)(x2 1) .... (x21 1)_].

Proof. The proposition follows from Lemma 1.7.2 and Proposition 1.9.1. D

Proposition 1.9.3. Let d > 0 and I = ((x 1)"1,x2 1) be an ideal in Z[x] generated

by Fr, 'I; i'.rl (x 1)+1 and x2 1. Suppose that

P(x) = (x- 1)d[(x 1)(x2 ) .... (x 1)]' c I,

then d > n 2k-(Im 1) m2k-2(k 1).

Proof. The polynomial P(x) lies in the ideal I if and only if there exist polynomials h(x)

and g(x) such that

(x- )d[(x 1)(x2 _) .... (-1 -) h (x)(x- ),n1 + g(x)(x2 )










Let 4j(x) be the jt cyclotomic polynomial. Then the equality above can be rewritten in


the following form:


+ 2- I2
(x 1)d+ 2k-1 [ I ]


h(x)(x 1)n1 + g(x)(x


k
1)j f 2jX.
j=2


Let cj be defined as follows:

1, if j 2k

0 if j t2k

There exist polynomials g(x) and h(x) such that:


h(x)(x )n+l-d-n2k + g(x-)2k(X).


Let 7 be a primitive root of unity of order 2k and let Q(7)/Q be the corresponding

cyclotomic extension. Then in Q(7) we have:


2k1
,,(7)[ ]m-'


h(7)(7 1)n+1-d-nm2k-


N(h(7))N((7


))n+l-d-mn2k 1


So, it follows that


2k
N(( 1))n+l-d-mr2k- I J N(4y))[2]nm-
j=2

By Lemma 1.8.1 we have:


2k-12k
N(4 )(7)) ]m- =
j=2

k-1
- H 2(2J-2- 1)(m2 -- 1-1)
j=1

2Z j25- 1(m2h 1-1


k-1
N(()2J (7)) 2 j 1-1
j=1


S2E -(2_-25 )(m2 -- 1-1)


2) m2k 2(k-1)-2 -1+1


k- (7) kI
N(@y(7)[ m-I


2k-1
S(X) [ .]mn-









Note that according to Lemma 1.8.1, N(7 1) = p. Thus, we have


n + 1 d m2k-1 < m2k-2(k 1) 2k-1 + 1

and

d > n 2k-l(m 1) m2-2(k 1).



Corollary 1.9.1. Let d > 0 and suppose that the class e(dA ( mp) is trivial in
-0
KU (S2+1/22k). Then d > n 2k-1(m 1) m2k-2(k 1).

Proof. From Lemma 1.7.2 it follows that:

e(dA E mpn) = ((x + 1)- 1)d[((x + 1) 1)((x + 1)2- 1) ... (( + 1)2 1 )]_.

If the class e(dA E ( E mp) is trivial in KU (S2n+1/Z2k), it must belong to the ideal

((x + 1)2k 1), x.+1). Now, the statement of the corollary follows from Proposition
1.9.3. E

1.10 Proof of Theorem 1.6.2

In this section we will use the results of the previous sections to finish the proof of

Theorem 1.6.2. Recall that for a map f: S2"+1 -+ M we define a coincidence set:


A(f) ={x E S2n+ f(x) f(gx) Vg E 2k}.

Let A: S2n+1 x- C -- S2n+1/Z2 be a one-dimensional complex vector bundle where the

action of Z2k0 on C is given by rotations by 2.

Proof of Theorem 1.6.2. Assume dim A(f) < 2d, then a vector bundle dA E ( E mp has a

non-vanishing section by elementary dimension considerations. Thus e(dA)e(( E mp) = 0.

By Proposition 1.7.1 we have

e(dA)s(f)*(0) = e(dA)e( E mp) = 0.









Therefore, by Proposition 1.9.3, we must have:


d > n 2k-(m 1) m22-2(k 1).

It follows now that:


dim A(f) > (2n + 1) [2k(m 1) + m2-l1(k 1) + 1].

[]









CHAPTER 2
HUREWICZ THEOREM AND APPROXIMATION OF MAPS

2.1 Introduction

All spaces are assumed to be separable metrizable. By a map we mean a continuous

function, I = [0; 1]. If KC is a simplicial complex then by IICI we mean the corresponding

polyhedron. By a simplicial map we mean a map f: |C| I which sends simplices to

simplices and is affine on them. We -;? that a map f: X Y has dimension at most

k (dim f < k) if and only if the dimension of each of its fibers is at most k. We recall

that a space X is a C-space or has property C if for any sequence {an : n E N} of open

covers of X there exists a sequence {I, : nE N} of disjoint families of open sets such that

each p, refines a, and the union of all systems p,, is a cover of X. Each finite-dimensional

paracompact space and each countable-dimensional metrizable space has property C. By a

C-compactum we mean a compact C-space.

In [26] V.V. U-i. i-1:;ii introduced the notion of a map admitting an approximation

by k-dimensional simplicial maps. Following him we -zi- that a map f: X Y admits

approximation by k-dimensional simplicial maps if for every pair of open covers Wx of the

space X and wy of the space Y there exists a commutative diagram of the following form

X |/C|

f I I P
Y L- I\1,

where Kx is an wx-map, Ky is an wy-map and p is a k-dimensional simplicial map

between polyhedra |II and I I.

In that paper V.V. Usp, ii-1:ii proposed the following question and conjectured that in

the general case the answer to it is "no".


(Q1) Does every k-dimensional map f: X Y between compact admit
approximation by k-dimensional simplicial maps?









In [6] A.N. Dranishnikov and V.V. Usp, ii-l:;i proved that light maps admit approximation

by finite-to-one simplicial maps. In this paper we give some partial results answering the

question of V.V. U-p. i-l1:ii in affirmative.

Theorem 2.1.1. Let f: X Y be a k-dimensional map between C-compacta. Then

for ,i;1 pair of open covers ux of the space X and uy of the space Y there exists a

commutative diagram of the following form

X |/C|

f I I p
Y | \ |,

where Kx is an wx-map, K y is an uwy-map and p is a k-dimensional simplicial map

between compact py1;,,. Ji,i,, I|/C and L1. Furthermore, one can il;,. n, assume that

dim|
Theorem 2.1.2. k-dimensional maps between compact admit approximation by (k + 1)-

dimensional simplicial maps.

Theorem 2.1.3. k-dimensional maps of Bing compact (i.e. compact with each compo-

nent her, .:/.r, :,7;; indecomposable) admit approximation by

k-dimensional simplicial maps.

It turned out that the question (Qi) is closely related to the next question proposed

by B.A. P i-Lkov in [16]. We recall that the diagonal product of two maps f: X Y

and g: X Z is a map f A g: X Y x Z defined by f A g(x) = (f(x),g(x)).


(Q2) Let f: X Y be a k-dimensional map between compact. Does there exist a
map g: X Ik such that dim(f A g) < 0?

In this paper we prove the following theorem which states that the questions (Q1)

and (Q2) are equivalent.









Theorem 2.1.4. Let f: X Y be a map between compact. Then f admits approx-

imation by k-dimensional maps if and only if there exists a map g: X Ik' such that

dim(f A g) < 0.

There are a lot of papers devoted to P .-i tkov's question ([16],[17],[18],[21],[20],

[8],[9],[22]). In [16] P -i- ikov announced the following theorem to which the proof

appeared much later in [17] and [18].

Theorem 2.1.5. Let f: X Y be a k-dimensional map between finite dimensional

compact. Then there exists a map g: X I"k such that dim(f A g) < 0.

In [21] Torunczyk proved the following theorem which is closely related to the

theorem proved by P .-i- kov.

Theorem 2.1.6. Let f: X Y be a k-dimensional map between finite dimensional

compact. Then there exists a a-compact A C X such that dim A < k 1 and dim f IX\A

0.

One can prove that for any map f: X Y between compact the statement of

theorem 2.1.5 holds (for f) if and only if the statement of theorem 2.1.6 holds (for f) (the

proof can be found in [8]).

We improve the argument used by Torunzyk in [21] to prove the next theorem and

the implication "-" of theorem 2.1.4.

Theorem 2.1.7. Let f: X Y be a k-dimensional map between C-compacta. Then

(i) there exists a a-compact subset A C X such that

dim A < k 1 and dim f IX\A< 0.

(ii) there exists a map g: X ) Ik such that dim(f A g) < 0.

In the next corollary by e- dim(X) we mean the extensional dimension of a compact

space X introduced by A.N. Dranishnikov in [5].

Corollary 2.1.1. Let f: X Y be a k-dimensional map between C-compacta. Then

e- dim(X) < e- dim(Y x Ik).









Proof. From [6] it follows that the extensional dimension cannot be lowered by 0-dimensional

maps so the corollary is an immediate consequence of theorem 2.1.7. D

One can understand the statement of the previous corollary as a generalization of the

classical Hurewicz formula.

2.2 Proof of Theorem 2.1.7

Further in this section we assume that every space X is given with a fixed metric

px which generates the same topology on it. By px(A, B) we mean the distance between
subsets A and B in the space X, namely, px(A,B) = inf{px(a,b)| a E A,b E B}. The

closure of a subset A will be denoted by [A].

Lemma 2.2.1. Let f: X Y be a map between compact. Suppose that for ,..i closed

disjoint subsets B and C of X there exists a closed subset T of X such that dimT < k 1

and for ,.; y E Y the set T separates f-l(y) between B and C. Then there exists a

a-compact subset A c X with dim A < k 1 such that dim f X\A < 0.

Proof. Take a countable open base B {UI 7 E F} on X such that the union of any

finite number of sets from B is again a member of B. Define the set A C F x F by the

requirement: (7, p) E A if and only if [U,] n [U~] = 0. Note that A is countable. By

assumption for every pair (7, p) E A there exists a set T(,,,) of dimension at most k 1

separating every fiber f-'(y) between [U,] and [U,]. Now define A = U{T(,,)I (y7, ) E A}.

By definition A is u-compact and, obviously, dim A < k 1. It is also easy to see

that dim f IX\A< 0. Indeed, by the additivity property of the base B for every pair of

disjoint closed subsets G and H of a given fiber f-l(y) there exists a pair (7, p) E A such

that G c U, and H C U,. Then T(,,,) C A separates f-l(y) between G and H. So,

dim(f-l(y) \ A) < 0. D

Let F = NO U U{Nk : k > 1} be the union of all finite sequences of positive integers

plus empty sequence No {*}. For every i cE let us denote by il the length of the

sequence i and by (i,p) the sequence obtained by adding to i a positive integer p.








Lemma 2.2.2. Let f: X Y be a map between compact. Let B and C be closed
disjoint subsets of X. Suppose that for every i CE there are sets U(i), V(i) and F(i) such
that:

(a) F(i) is closed in Y, the sets U(i) and V(i) are open subsets of X and [U(i)] n

[V(i)] 0;
(b) U(*) D B, V(*) D C and F(*) = Y;

(c) U(i,p) D U(i) n f -(F(i,p)) and V(i,p) D V(i) n f-(F(i,p)) for every p E N;
(d) F(i) C U{F(i,p) : p E N} and diamF(i) < T
(e) the set E(i) = f-1(F(i)) \ (U(i) U V(i)) admits an open cover of order k and
diameter 1

(f) in notations of (e) the f.indll; {E(i,p) : p e N} is discrete in X.
Then there exists a closed subset T of X such that dimT < k 1 and for ,:; y e Y
the set T separates f-l(y) between B and C.

Proof. We define the set T in the following way:

T,= U{E(i): i= n} and T= n{T: n > 0}.

From property (e) it follows that dimT < k 1. Let us show that for every y e Y the set
T separates f- (y) between B and C. For every y e Y there exists a sequence {i : n E N}
such that

{y} F(i) n F(i, i2) n...

Then f-l(y) \ T C U(y) U V(y) is a desired partition. Here we denote by U(y) and V(y)
the following sets

U(y) f -(y) n Uui(1,..., p) rc N},

V(y) f -(y) n UIlV,..., 1 ) .p N}.

F








Lemma 2.2.3. Let f: X Y be a k-dimensional map between C-compacta and c be w;:,
positive number. Let U and V be open subsets of X with [U] n [V] = 0, and F be a closed
subset of Y such that f(U) n f(V) D F. Then there exist families of sets {Up}, {V,}, and

{Fp} for p N such that:
(1) Fp is closed in Y, the sets Up and Vp are open subsets of X and [Up] n [Vp] = 0;
(2) Up DU n f-1(Fp), Vp D V n f-(Fp);
(3) F C U{Fp: p E N} and diamFp < e;
(4) the set Ep = f-(Fp) \ (Up U V,) admits an open cover of order k and diameter e;
(5) in notations of (4) the f.nl,,:;/ {Ep : p e N} is discrete in X.

Proof. Let {W 1 : I N} be a countable sequence of open disjoint sets such that each
of them separates X between [U] and [V]. For every y c F let Pi(y) C W1 be a closed
(k 1)-dimensional set separating f-l(y) between [U] and [V]. Let Ql(y) C W1 be an
open neighborhood of Pl(y) admitting a finite open cover of size C and order k. As the
map f is closed there exists a neighborhood Gl(y) of y in F such that f-'([Gl(y)]) 0 Ql(y)
separates f-1([Gl(y)]) between [U] and [V] and diamG(y) < e. For every I e N the family
ai { Gi(y) : y E F} is an open cover of F. As F is a C-compactum there exists a finite
sequence of finite disjoint open families of sets {p' : 1 < N} such that each family pi refines
the cover ac and p = U{p, : 1 < N} is an open cover of F. Further, for every G e p there
are open subsets U(G) and V(G) of X with disjoint closures such that

U(G) D f-(G) n [U], V(G) D f-l(G)n [V]

and if G is a member of pi then

f -(G) \ (U(G) U V(G)) c Ql(y)

for some y c F. Let {F(G) : G E p} be a closed shrinking of the cover p and let

E(G)= f -(F(G)) \(U(G) U V(G))









for G E p. Then for G E p and H E p we have E(G) n E(H) C W, n Wm = 0. So the
family {E(G) : G E p} is discrete in X. Let us enumerate the members of p: GC, G2,
To get the desired sets we set

Fp F(G,), Up = U(G), V = V(Gp).



Lemma 2.2.4. Let f: X Y be a k-dimensional map between C-compacta. Then for
i,,,, closed disjoint subsets B and C of X and for 1,,;1 i C F there exist sets U(i), V(i) and
F(i) .rl'fying (a)-(f) of Lemma 2.2.2.

Proof. We will construct the sets U(i), V(i) and F(i) by induction on i First set
F(*) = Y and U(*) = U, V(*) =V for some open subsets U and V of X with

[U] n [V] = 0. Assume the sets U(i), V(i) and F(i) are already constructed and satisfy the
conditions (a)-(f) of Lemma 2.2.2. Now to get the sets U(i,p), V(i,p) and F(i,p) for all
p C N apply Lemma 2.2.3 to the sets U U= (i), V = V(i), F = F(i) and to c = .

Lemma 2.2.5. Let f: X Y be a map between compact ,il,,:i.:,:, approximations by
k-dimensional maps. Then for i;,, closed disjoint subsets B and C of X there exist sets

U(i), V(i) and F(i) './:-/;.,,:,i (a)-(f) of Lemma 2.2.2.

Proof. The sets U(i), V(i) and F(i) will be constructed by induction on i First set
F(*) = Y and U(*) = U, V(*) = V for some open subsets U and V of X with

[U] n [V] = 0. Assume the sets U(i), V(i) and F(i) are already constructed and satisfy the
conditions (a)-(f) of Lemma 2.2.2. Take e = min{ (U(iV()), i}. By assumption, there
exists a commutative diagram of the following form:

X |/C|
f I I[P
Y Y L 1,









where KX and Ky are maps with c-small fibers. Let G = x([U(i)]), H = x([V(i)])

and F Ky(F(i)). Note that G n H 0. Let U and V be open subsets of |/C with

U D C, V D H and [U] n [V] = 0. Let A, be a Lebesgue number of some open covering on

IICI whose preimage under the map KX is an c-small covering on X. Let A2 be a number

defined similarly for IL and Ky. Let A = min{Ai, A2}. Apply Lemma 2.2.3 to the sets U,

V, F and to A to produce the sets Up, Vp and Fp for all p C N satisfying conditions (1)-(5)

of Lemma 2.2.3. Now set U(i,p) = K(Up), V(i,p) = Kix(V) and F(i,p) = Ky(Fp). Since

taking a preimage preserves intersections, unions and subtractions, the sets U(i,p), V(i,p)

and F(i,p) satisfy the conditions (a)-(f). E

Proof of theorem 2.1.7. The statements (i) and (ii) are equivalent ([8]), so, it is sufficient

to prove only (i). But (i) immediately follows from Lemmas 2.2.1, 2.2.2 and 2.2.4. E

2.3 Proofs of the Approximation Theorems

Let 7 be an open cover on X. Then by N1 we mean the nerve of the cover 7. Let

{a, : ca A} be some partition of unity on X subordinated to the locally finite cover
7. Then the canonical map defined by the partition of unity {a, : a E A} is a map

K: X |N1V defined by the following formula


ux) = aa ax) a a.
aEA

If r is some triangulation of the polyhedron P, then by St(a, r) we mean the star of the

vertex aE r with respect to triangulation r, i.e. the union of all open simplices having a

as a vertex.

Proof of theorem 2.1.4. Let f: X Y be a map between compact admitting

approximation by k-dimensional simplicial maps. By [8] to show that there exists a

map g: X Ik with dim(f A g) < 0 it is sufficient to find a a-compact subset A in X of

dimension at most k 1 such that dim f IX\A 0. The existence of such subset A follows

immediately from Lemmas 2.2.1, 2.2.2 and 2.2.5.









Now suppose there exists a map g: X I I" such that dim(f A g) < 0. For every

(y, t) E Y x Ik there exists a finite disjoint family of open sets V(y,t) {= {V : 7 E F(y,t)} such
that (f A g)-l(y,t) C U"',,,., and v(y,t) > Wx. Let O(y,t) be an open neighborhood of (y,t)
in Y x Ik such that (fA g)-1O(,t) C U ,,. Let = {Ua : a A} and L = {Is : 6 e D} be
finite open covers of the spaces Y and Ik such that:

(ai) ; >- Wy;
(bi) the order of < does not exceed dimY + 1;

(cl) (, x L) {U x h : (a, 6) e A x D}> {O(,t): (y,t) e Y x Ik.
The partition of unity {ua : a E A} on Y subordinated to the cover gives rise to the
canonical map p: Y |IH|. Then the map p x i: Y x I" I x I is an (, x t)-map.
By r": || x Ik | we denote the projection. Let T and 0 be such triangulations on
polyhedra |A| x Ik and |A| respectively such that the following conditions are satisfied:

(1') : |A| x Ik -S |A is a simplicial map relative to the triangulations 'T and 0;
(2') {(p x id)-1(St(a, -)) : a E } c x t;
(3') {p-1(St(b, 0)) : b 0} >- c.
Let us define {St(a, r) : a E r} and ( {St(b,0) : b E 0}. Define the partition
of unity {I,', : a E r} on 1|A| x Ik subordinated to the cover ( by letting it, (z) to be the
barycentric coordinate of z E || x Ik with respect to the vertex a E c Analogously,
define the partition of unity {,,. : b 0} on |4| subordinated to the cover (. Note that
the projection r: || x Ik sends the stars of the vertices of the triangulation 'T
to the stars of the vertices of the triangulation 0. That is why there is a simplicial map
=: -) NH between the nerves of the covers and (. Moreover, the following diagram
commutes.
I41 x I


XK .
i~X^ I N









Here b and 0 are canonical maps defined by the partitions of unity {"', : a E T}

and {,,. : b E 0} respectively. Let us remark that dim < k. By Wa we will denote the

set (p x id)-'(St(a, ,)), by A the cover {W, : a E }c and Tr is p-1((). Further, we set
w* = ,,', o (p x id) for each aE -T and = ,. o p for each b E 0. The partitions of

unity {w* : a E r} on Y x Ik and {v* : bE 0} on Y are subordinated to the covers A

and TI respectively. We set IC' = A and L = Ab. The simplicial complexes /C' and L are

isomorphic to A/ and A/e that is why the simplicial map q : IC' |LI is defined and the

following diagram commutes.
YxIk /IC '

pr { q
Y L1.
Here o and Ky are canonical maps defined by the partitions of unity {w* : a E } and

{, : b e 0} respectively. Obviously, dimq < k.
Recall that p is an {O(y,t)}-map. For every a E T pick a point (y,t)a such that

Wa C O(y,t).. Let w* w* o (f A g) and Ba F(y,t). Then


supp (w**) C (f A g)-(Wa) C (f A g)-(Ot))

Consequently, Uv(v,t), D supp(w**). As the family v(y,t), is disjoint, there exists

a family of non-negative functions {b3 : 3 Ba} such that w** = EpB, b and

supp(b3) C Vp. Let B U{B : a E 7} and V = {Vp n (f A g)-1(Wa) : a E r,3 P B}.

The family {b3 : P3 B} is a partition of unity on X subordinated to the cover V.

Let C be the nerve of the cover V and Kx: X I C the canonical map defined by

the partition of unity {b3 : 3 B}. We define a simplicial map p': IC| -+ I|C' by

requiring that the vertex 3 E Ba goes to a. Clearly, the map p' is finite-to-one. Indeed,

no two vertices in Ba are connected by an edge. That is why the restriction of p' to any

simplex is a homeomorphism. Finally we define the desired k-dimensional simplicial map









p: I|C | IL as the composition p = q o p'. Moreover by (b1) we have dim I < dimY

and dim IIC| < dim Y + k since p is k-dimensional.



The following results of M.Levin [8] and Y.Sternfeld [20] are needed to prove theorems

2.1.2 and 2.1.3:

Theorem 2.3.1. Let f: X Y be a k-dimensional map between compact. Then there

exists a map g: X Ijk+1 such that dim(f A g) < 0.

Theorem 2.3.2. Let f: X Y be a k-dimensional map of Bing compact. Then there

exists a map g: X Ik such that dim(f A g) < 0.

Proof of theorem 2.1.2. The theorem is an immediate consequence of theorems 2.3.1 and

2.1.4. O

Proof of theorem 2.1.3. The theorem is an immediate consequence of theorems 2.3.2 and

2.1.4. O









CHAPTER 3
BORSUK-ULAM THEOREMS FOR MAPS WITH INFINITE FIBERS

3.1 Bula's Property

We -v- that a surjective map f: X -+ Y satisfies Bula's property if and only if there

exist closed disjoint subsets A and B, A, B C X, such that f(A) = f(B) = Y.

A question about existence of open maps between compact with infinite fibers which

does not satisfy Bula's property is well-known in continuum theory and was first stated by

Bula. The first example of such a map was given by:


p: fJS2' fJ p2i
i=0 i=0

and was first Ii-.-i -1. 1 by A. Dranishnikov in [4]. The following theorem is a generalization

of his construction and heavily relies on Theorem 1.2.1.

Theorem 3.1.1. Let n, > pi-l(p 1) for I,'; i and let p: (Zp,) 0 CH, S"i be a product

of free actions of ,Z on S"i. Then the projection
00

i 1 i 1

does not ',ify Bula's p ,'/'p Il

The proof of the previous theorem is almost straightforward and therefore omitted in

this dissertation.

Interesting examples of open maps between compact without Bula's property were

constructed in [9]. Recall the following theorem from that paper:

Theorem 3.1.2. Let M be an n-dimensional compact i,,, ..:./..1.1 with n > 3. Then there

exists a surjective open monotone map on M with nontrivial fibers which does not ,ri. fi

Bulas 1* 'p /

The author's interest in Borsuk-Ulam theorems and Bula's property was stimulated

by Hurewicz theorem for maps and the conjecture by V. Usp, i-1:ii about approximation of

k-dimensional maps between compact which were discussed in the previous chapter. The

author believes that the answer to the V. Usp, i,-1:ii's conjecture is "y' In other words,









there exist a k-dimensional map between compact which cannot be approximated by

k-dimensional simplicial maps of polyhedra or, equivalently, for which Hurewicz theorem

for maps does not hold.

There is enough evidence to believe that such an example exists. For instance, the

maps produced by Theorem 3.1.2 almost satisfy the requirements of being such examples.

Proposition 3.1.1. Let f: X -+ Y be an open -;, ii. l. ,- map such that for each y E Y we

have dim f-(y) = 1. Then the following statements are equivalent:

(i) f: X Y does not -.'li.fy Bula's p," I'/'i,/

(ii) for ni, p: X -- [o, 1] there exists y E Y such that (f-l(y)) = pt,
(iii) Hurewicz theorem does not hold for f,

(iv) The map f cannot be approximated by 1-dimensional simplicial maps.

Proof. Suppose (i) holds and there exists a map p: X [0, 1] which does not collapse

any fiber of f into a point. Then define a map p: X -+ [0, 1] by a formula: ip(x) =

p(x)/diam(f -(f())). Then define A -1(0) and B = -'(1). Obviously, A n B = 0
and f(A) = f(B) Y which contradicts (i).

The implication (ii)=(i) is obvious.

By Theorem 2.1.4 the statements (ii) and (iv) are equivalent. To see how (i)>(ii)

note that if the map g: X [0, 1] exists, then it does not map any fiber of f to a

point. E

The previous proposition shows how Bula's property is related to Hurewicz theorem

for maps and V.U-i. i,-:;ii's conjecture. Our goal now would be to construct an example

of a strictly 1-dimensional map between compact which would satisfy at least one of the

properties (i)- (iv).

The examples of maps produced by Theorem 3.1.2, although supply evidence that the

desired example exists, do not have uniform dimensionality of the fibers, i.e. in case n = 1

the fibers of the maps produced by Theorem 3.1.2 are not strictly 1-dimensional.









In the next sections we will outline the idea how to construct an example of an open,

strictly 1-dimensional map between metric compact without Bula's property.

3.2 Lipschitz Compactification

In this section we will discuss compactifications of proper metric spaces with respect

to a family of certain types of Lipschitz functions. Recall that a metric space is called

proper if and only if every closed ball in it is compact.

It is a well-known fact in general topology that each compactification of a sufficiently

good topological space can be described as the set of maximal ideals of a Banach algebra

of functions. Lipschitz maps on a proper compact metric space do not form a Banach

algebra, so we will consider the smallest Banach algebra containing all Lipschitz functions.

Let X be a proper metric space. Denote by CL(X) the closure of the set of all

bounded Lipschitz functions f: X -+ R with Lip(f) < oc. For x E X define Q(x) =

(f(x))fECL(x) E RoL(X). It is easy to prove that ': X RoL(X) is an embedding. Define
the Lipschitz compactification LX of the proper metric space X as

LX = (X).

Proposition 3.2.1. Let (X, d) be a proper metric space and let X be the Lipschitz

, **'1,,'. iU. ailln. of X. Let U C X be an open subset of X and let F C U be a closed

subset of U. Let U C X be the unique maximal open subset of X such that U n X = U and

let F be the closure of F in X. Then

F cU i dist(X \ U, F) > 0. (.)

Proof. (w) There exists a function g: X [0; 1] such that g(F) = 0 and g(X \ U) =1.

As long as g is continuous on X there exist a sequence of Lipschitz functions {gj(x) i E N}

such that g(x) = limit gi(x).

We claim that there exist io E N for which gi0 (F) < and gi0 (X \U) > This can be

proven as follows. Assume there is no such io E N. Then there exist a sequence x, E X \ U









with lim,,, dist(x,, F) = 0 and a sequence y, E F with lim,,, d(x,, y,) = 0. Thus,

there exist the following double inequality:

1
3 < d(gi(x,), gi(y.)) < Ad(x,, y,),

from which is follows that gi(x) is not a Lipschitz function.

(-) Define a function f: X [0; 1] by a formula f(x) = d(x,X \ U). By

assumption, there exists 6 > 0 such that f(F) > J. Note that f(U) = 0. It is easy to check

that f: X -+ [0; 1] is a Lipschitz function. Therefore, there exists a function f: X -+ [0; 1]

such that fx = f. Obviously, f(F) > 6. E

An easy consequence of the previous proposition is the following

Proposition 3.2.2. Let f: X -+ Y ne a continuous Lipschitz map between proper metric

spaces. The the map f can be extended to an open continuous map Lf : LX -+ LY between

Lipschitz -*,,/,i, /I'7 ,I/. ,mns.

Proof. Let x E LX and let U C LX be an open neighborhood of x E LX. We need

to prove that there exists an open neighborhood V C LY of the point Lf(x) such that

V cLf(U).

Let F C F C U be a subset of X such that the closure of F in LX contains x e LX.

Then by Proposition 3.2.1, dist(F,X \ U) > 0. Then dist(f(F),Y \ f(U)) > 0, because f

is locally a projection. Therefore, by Proposition 3.2.1, we have


f(F) c f(U n S-).




3.3 The Construction

Let G be a finite group acting freely on a manifold M. We -i- that the action of G

on M has m-Borsuk-Ulam property if for every continuous map f: M -- R"m there exists

an orbit of G in M which is collapsed by f to a point.









Let {pi} be a sequence of prime numbers such that limit, pi = oc. Recall that by

Theorem 1.1.3 we can choose a sequence {ni} of odd numbers such that a free Zp,-action

on S"' will have 1-Borsuk-Ulam property, but will not have 2-Borsuk-Ulam property.

Proposition 3.3.1. There exists a sequence of continuous Lipschitz functions fi: S'i

R2 such that:

(i) For ,,, x C S'i we have diamfi(Zp, x) > 1,

(ii) limit" L(f)= 0, where L(fi) is the Lipschitz constant of fi.

Now consider the following obvious map:

Upi: US'i -UiCPL1.

This is an open Lipschitz map between proper metric spaces. By Proposition 3.2.2, we

have an open map

L(Upi): L(US') L(ULCP i])

between Lipschitz compactifications.

Proposition 3.3.2. Every fiber of L(Upi): L(US"i) L(LUCP1 ) is a non-degenerate

connected compact space.

Proof. The space CP" is a countable union of finite dimensional spaces. Therefore, it is a

C-space. In [22] it was proved that there exists a map g: S" [0; 1] such that the map

pAg : S CP x [0; 1]

is 0-dimensional. It follows from the last statement that g(p-l(y)) =[a, b] with a / b for

every y E CP-. Let Ly: [a, b] [0,1] be a linear transformation of [a, b] into [0, 1]. Define

a map p: S -- [0, 1] as a composition p = Ly o g. The continuity of the map p essentially

follows from the fact that p is an open map. Now, define A = -1(0) and B = p-1(1).

The sets A and B are closed and disjoint and each one of them intersects each fiber of p.

Also, note that dist(A, B) > 0, therefore, the closures of A and B in are disjoint LS" by









Lemma 3.2.1. Now, non-triviality of each fiber of the map Lp follows from Proposition

??. O

Proposition 3.3.3. The map L(Up,): L(US"T) -+ L(ULCP[ ]) has 1-Borsuk-Ulam

,, '/'. ,i ;, i.e. for every continuous function : L(US"i) I = [0; 1] there exists y

L(ULCPl]) such that o(L(ULp)-'(y)) = pt.

Proof. Suppose there exists a function p: Lp: LS" -- I = [0; 1] such that for every y E

LCP- we have p(Lp-l(y)) / pt. Then there exists E > 0 such that diam p(Lp-l(y)) > E

for every y e LCPc.

Let {O~,a c A} be an open covering of LS" such that for any a c A and any
2,i
x, x' e O, it follows that Ip(x) p(x')l < Let e P be the generator of the group

Zpk. We can choose k E N to be large enough, so that the points x e S1 = P-1(y) and
e7p x S1 = P-(y) are {O1,a c A}-close for any choice of y e CP", i.e. there exists
27i
c E A such that x, e x C O,.

Now, choose n large enough, so that Theorem ?? guarantees existence of an orbit of

Zp~ which will be collapsed to a point under the following composition:

S2n-1 iLSQ .


Here i: S2n-1 LS is an inclusion. As p o i is a Lipschitz map, the image of such an

orbit will have a diameter less than E, because of our pervious assumptions. The later

conclusion contradicts our initial assumption. O

To produce an example of an open strictly 1-dimensional map it remains to prove

Proposition 3.3.1 and the fact that the fibers of our map are are all strictly 1-dimensional.

The later fact intuitively seems obvious, since a fiber in the corona of our map is being

approached by circles in a Lipschitz manner. So, it seems, that the fibers in the corona

should also be 1-dimensional, since dimension cannot be raised by a Lipschitz map. Once

we have proved all these, we have produced the desired example which remains to have









only one downside, namely, the spaces involved in the map are non-metarizable spaces. To

get rid of this downside, one needs to use Scepin's Spectral Theorem.

After applying Scepin's Spectral Theorem we have produced an example of a map

which gives a positive solution to the V.Usp, ni-lii's conjecture and answers the question of

B.A.P ti-'nkov in the negative.









APPENDIX A
BORSUK-ULAM THEOREM FOR Zp x ... x ZpK-ACTIONS ON PRODUCTS OF
SPHERES

Set G = Zp x ... x Zp, for a fixed odd prime p and k > 1 and let M = S2-1 x ... x

S2nK-1. In this section we will discuss a failed attempt to prove a Borsuk-Ulam theorem

for G-actions on products of spheres and maps into Euclidean spaces. This case is more

difficult than the case of (Zp)k-actions, because the Euler class of the corresponding vector

bundle in the ordinary cohomology theory turns out to be trivial. Below we will also show

that the Euler class of the vector bundle, which need to be considered, in the complex

K-theory is trivial as well. Therefore, this particular case calls for a more sophisticated

cohomology theory in order to extract a Borsuk-Ulam theorem.

Let Li be a 1-dimensional complex Zpi-module, in which Zpi acts by multiplication by
2,i
e p and let

A': S2ni-1 pi L L n(pi)

be the associated complex vector bundle. Here L (pi) is the lens space S2-nl1/G. Denote

by

Ti: L'(p) x ... x LT(pk) L(pi)

the projection on the ith factor and set A = 7r*(A'). Then it follows from the isomorphism


C[G] C[Zp] ... 0 C[Zp,]


that

= (M xPo C[G] M/G) ... 0 k,

where i = (M xz C[Zpi] LTj(pi)). From elementary representation theory we have

isomorphism C[Zpi] Li D L2 D ... L Lti and therefore


SA A ... AAr.









Thus we have


k
t`(g(A, A? ... ED Af') (A D ... 0D A)
ti (ie,...,ak)EG


(ai,...,ac)70
where e, is 1-dimensional trivial complex vector bundle. It is easy to see that

S= (M X Ic(G) M/G) (A Ak).
(ai,...,ac))o

To prove a Borsuk-Ulam type theorem for maps from M to R1 one needs to prove that the

Euler class e( ) of the vector bubdle


b = (M XG I(G) -M/G)

is non-trivial. Obviously, '_ = ], therefore, it is sufficient to prove that e(Q) / 0. This

probably can be done by means of some extraordinary cohomology theory. Let us see what

happens in the case of complex K-theory.

First, recall that


Ko(L (p) x ... x L" (pk)) Z[x,,...,xk]l,

where

I = ( ...," (x + 1)P ..., (k + 1) 1).

Here x = [Ai 1] (1 < i < k). This facts follow easily from the existence of

homeomorphisms

(AP)r, -_ Li (i) (t
from the Gysin sequence and the Kunneth formula for K-theory. By (Ai )s we mean the

spherization of the vector bundle A< .









From the structure of the formal group law for Kc given by a formula F1K (x, y)=

x + y + xy we are able to conclude that e(A') = (x, + 1)"a 1 and therefore
k
(A D... 0 A ) i((Xi + 1)&1 1,..., (Xk + 1)k 1),
i=

where ac is the ith symmetric polynomial. Thus we have
k
T(,) n i((XI +) -, (X + ) ) -
(a1,...,ak)#0 i 1

In ((Xi + 1)a(X2 + )a2 ... (Xk + 1)a ).
(ai,...,ac))o
To prove a Borsuk-Ulam theorem we need to find conditions under which the polynomial

e(qr) does not belong to the ideal

I = ( ..., (x + 1) 1,..., (xk + ) 1)

from above. The author is being able to prove that in fact the polynomial e(qr) almost

alv--i- belong to the ideal I which make the complex K-theory approach inefficient when

trying to prove a Borsuk-Ulam theorem for these kinds of actions.









REFERENCES

[1] D.G. Bourgin, Multiplicity of solutions in frame mappings, Illinois J. Math., vol. 9
(1965), 169-177

[2] P.E. Conner and E.E. Floyd, Differentiable periodic maps, Springer-V 1 I- Berlin,
1964

[3] A.N. Dranishnikov, On Q-fibrations without disjoint sections, Funct. Anal. Appl., 22
(1988) no.2, 151-152

[4] A. N. Dranishnikov, A vibration that does not accept two disjoint I,,i. i\ --i.,l. 1
sections, Topology Appl. 35 (1990) 71-73

[5] A. N. Dranishnikov, The Eilenberg-Borsuk theorem for maps into arbitrary com-
plexes, Math. Sbornik vol. 185(1994), no. 4, 81-90.

[6] A. N. Dranishnikov and V. V. Usp, i-l;ii, Light maps and extensional dimension,
Topology Appl., 80 (1997) 91-99.

[7] A.N. Dranishnikov, Cohomological dimension of compact metric spaces, 6 issue 1
(2001), Topology Atlas Invited Contributions

[8] M. Levin, Bing maps and finite dimensional maps, Fund. Math. 151(1) (1996) 47-52.

[9] M. Levin and W. Lewis, Some mapping theorems for extensional dimension,
arXiv:math.GN/0103199

[10] B.M. Mann and R.J. Milgram On the Chern classes of the regular representations of
some finite groups, Proc. Edinburgh Math. Soc (1982) 25, 259-268

[11] J. Milnor, Groups which act on S" without fixed points, Amer. J. Math., vol. 79, n.
3 (1957), pp. 623-630

[12] H.J. Munkholm Borsuk-Ulam type theorems for proper Zp-actions on (mod p)
homology n-spheres, Math. Scand. 24 (1969) 167-185

[13] H.J. Munkholm On the Borsuk-Ulam theorem for the Zp, actions on S2"-1 and
maps S2n-1 -- Rm, Osaka J. Math 7 (1970) 451-456

[14] H.J. Munkholm and M. Nakaoka, The Borsuk-Ulam theorem and formal groups,
Osaka J. Math. 9(1972), 337-349

[15] M. Nakaoka Generalizations of Borsuk-Ulam theorem, Osaka J. Math. 7(1970),
423-441

[16] B. A. P .i-nkov, The dimension and geometry of mappings, (Russian) Doklad. Akad.
Nauk. SSSR 221(1975), 543-546.

[17] B. A. P .i-nkov, Theorem on u-mappings for mappings, (Russian) Uspehi. Math.
Nauk. vol.39 (1984), no. 5(239), 107-130.


48









[18] B. A. P .i-nkov, On the geometry of continuous mappings of finite dimensional
metrizable compact, Proc. Steklov Inst. Math. vol. 212(1996), 138-162.

[19] J.E. Roberts, A stronger Borsuk-Ulam type theorem for proper Zp-actions on mod p
homology n-sheres, Proc. Amer. Math. Soc., vol. 72, n. 2 (1978), pp. 381-386

[20] Y. Sternfeld, On finite-dimensional maps and other maps with "small" fibers, Fund.
Math., 147 (1995), 127-133.

[21] H. Torunczyk, Finite to one restrictions of continuous functions, Fund. Math. 125
(1985), 237-249.

[22] H. Murat Tuncali, V. Valov, On dimensionally restricted maps, Fund. Math. 175
(1)(2002), 35-52.

[23] Yuri A. Turygin, Approximation of k-dimensional maps, Topology and It's Applica-
tions, Topology And It's Applications, 139 (2004) 227-235

[24] Yuri A. Turygin, A Borsuk-Ulam theorem for (Zp)k-actions on products of (mod p)
homology spheres, Topology And It's Applications, 154 (2007) 455-461

[25] Yuri A. Turygin, A Borsuk-Ulam theorem for Z_ -., tions on spheres, preprint

[26] V. V. Usp, n-l;ii, A selection theorem for C-spases, Topology Appl. 85 (1998)
351-374.

[27] V. Volovikov, Bourgin-Yang theorem for Lp-actions, Mat. Sb., vol. 183, n. 7 (1992),
pp. 115-144

[28] C.T. Yang, On maps from spheres to Euclidean spaces, Amer. J. Math. vol. 79, no.
4(1957), 725-732

[29] C.Y. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yajobo and Dyson, I,
Ann. Math. vol. 60, no. 2 (1954), 262-282









BIOGRAPHICAL SKETCH

I was born in Troitsk, Moscow Region, on September 4, 1978. After graduation from

High School 5 at the age of 16, I enrolled into a program in mathematics at People's

Friendship University. In a couple of years I realized that for me to have a realistic chance

of becoming a mathematician I need to get into a better school. In fall 1997, I started

attending a research seminar on General Topology at Moscow State University organized

by Boris Alekseevich P t-i-, kov. In summer 1998 Professor P t-i-, kov helped me transfer

to the Mathematics Department of Moscow State University, where I continued studying

topology under his supervision. I graduated from Moscow State University in June 2002,

with a bachelors degree in Mathematics. In August 2002 I started in the PhD program at

the University of Florida which I completed in May 2007.