<%BANNER%>

Development of an Insitu Rock Shear Testing Device

Permanent Link: http://ufdc.ufl.edu/UFE0020096/00001

Material Information

Title: Development of an Insitu Rock Shear Testing Device
Physical Description: 1 online resource (245 p.)
Language: english
Creator: Hay, Carlton Alphanso
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Our study involved the development and testing of an insitu rock shear testing device. Foreseeable problems associated with the rock formation led to the development of a second device designed specifically to provide data on the irregularities, caverns and voids anticipated within the test holes. The process of development was dynamic and extensive laboratory tests were performed on simulated rock samples (Gator rock) to arrive at the present prototype designs. The prototypes were built and tested in the laboratory and showed encouraging results. However preliminary field tests exposed minor problems with the instrumentation and mechanical attributes. Thus the necessary adjustments to the designs were made and the devices have been successfully tested at the Fuller Warren Bridge in Jacksonville. The success of the program was evaluated based on the following criteria: The efficiency of the equipment with regards to their ease of operation, their limitations and possible areas for future development. The validity of the results, based on the equipment designs and accuracy of the measuring instruments? used to produce results acceptable margins of errors. The validity of the results based on theoretical assumptions made versus actual test conditions - whether in the field or in the laboratory. With respect to (i), the operation is relatively simple, requiring two technician level staff. The data reduction and interpretation will however require the involvement of an experienced engineer. Considering (ii), the instrumentation and data collection system needs only minor improvement regarding electrical noise from the output signal. With respect to (iii), the level of accuracy of input information such as the depth of penetration has been shown to be insignificant in the determination of the strength envelope as long as the penetration remains constant with change in normal pressure application. The approaches used to arrive at the contact area of the studs for stress determination were based on assumed penetration values and those proposed from modeling. The comparative results of McVay?s theoretical prediction and the field tests (using both approaches) show minor variation but generally trend towards a reasonable range of consistency (10%, one exception at 17.9%). This indicates that the philosophy of using a constant penetration with varying applied pressures is sound. Both sets of determinations show a general reduction in shear strength from a high of about 300psi to a low of about 20 psi. The upper 53 ft. of the rock formation had shear strength values typically above 100 psi (one exception) with a high of about 310 psi from one method of predictions. Below the 53 ft depth range the shear strength of the formation tumbled to an average value of about 40 psi. These ranges are typical of Florida Limestone strength properties and the levels of variation are consistent with those seen in the core samples with intermittent clay intrusion. The values from the field test generally appear slightly lower than those predicted by McVay?s model and could be considered a more conservative estimation of the rock strength.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Carlton Alphanso Hay.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Bloomquist, David G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0020096:00001

Permanent Link: http://ufdc.ufl.edu/UFE0020096/00001

Material Information

Title: Development of an Insitu Rock Shear Testing Device
Physical Description: 1 online resource (245 p.)
Language: english
Creator: Hay, Carlton Alphanso
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Our study involved the development and testing of an insitu rock shear testing device. Foreseeable problems associated with the rock formation led to the development of a second device designed specifically to provide data on the irregularities, caverns and voids anticipated within the test holes. The process of development was dynamic and extensive laboratory tests were performed on simulated rock samples (Gator rock) to arrive at the present prototype designs. The prototypes were built and tested in the laboratory and showed encouraging results. However preliminary field tests exposed minor problems with the instrumentation and mechanical attributes. Thus the necessary adjustments to the designs were made and the devices have been successfully tested at the Fuller Warren Bridge in Jacksonville. The success of the program was evaluated based on the following criteria: The efficiency of the equipment with regards to their ease of operation, their limitations and possible areas for future development. The validity of the results, based on the equipment designs and accuracy of the measuring instruments? used to produce results acceptable margins of errors. The validity of the results based on theoretical assumptions made versus actual test conditions - whether in the field or in the laboratory. With respect to (i), the operation is relatively simple, requiring two technician level staff. The data reduction and interpretation will however require the involvement of an experienced engineer. Considering (ii), the instrumentation and data collection system needs only minor improvement regarding electrical noise from the output signal. With respect to (iii), the level of accuracy of input information such as the depth of penetration has been shown to be insignificant in the determination of the strength envelope as long as the penetration remains constant with change in normal pressure application. The approaches used to arrive at the contact area of the studs for stress determination were based on assumed penetration values and those proposed from modeling. The comparative results of McVay?s theoretical prediction and the field tests (using both approaches) show minor variation but generally trend towards a reasonable range of consistency (10%, one exception at 17.9%). This indicates that the philosophy of using a constant penetration with varying applied pressures is sound. Both sets of determinations show a general reduction in shear strength from a high of about 300psi to a low of about 20 psi. The upper 53 ft. of the rock formation had shear strength values typically above 100 psi (one exception) with a high of about 310 psi from one method of predictions. Below the 53 ft depth range the shear strength of the formation tumbled to an average value of about 40 psi. These ranges are typical of Florida Limestone strength properties and the levels of variation are consistent with those seen in the core samples with intermittent clay intrusion. The values from the field test generally appear slightly lower than those predicted by McVay?s model and could be considered a more conservative estimation of the rock strength.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Carlton Alphanso Hay.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Bloomquist, David G.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0020096:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101207_AAAABF INGEST_TIME 2010-12-07T08:50:05Z PACKAGE UFE0020096_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 4367 DFID F20101207_AAASOB ORIGIN DEPOSITOR PATH hay_c_Page_120thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
503e31a563866e60adf8b8bfaa9a49e5
SHA-1
bc82af148b676f671a38f9e0d598e2599a4faba4
730031 F20101207_AAAQHD hay_c_Page_131.jp2
1925e02083e900969a0b1e883f42ef07
30e58109eab08886aa99dd9f5ece00d9807992b8
35038 F20101207_AAAQUP hay_c_Page_067.jpg
eac9f2769ed7156eeaaef06cebc08177
7e0d84a81b8ce25a8d5091cb2c1be823ca121f53
25271604 F20101207_AAARRI hay_c_Page_147.tif
7aee182554e0fadd4b204ad293d3ccd3
5030fceb883afee854ba6154c37020326962e009
14155 F20101207_AAASOC hay_c_Page_121.QC.jpg
4a7b1c7b08602bc8e5238668e48308ea
20c0ea8982e512dd372ebccffbf806962f18b336
93330 F20101207_AAAQHE hay_c_Page_099.jpg
2ae5051284293fbf5cf706a5747f2029
b8106c6d4eec99a2fa8111b2b2e2871666bf006c
F20101207_AAARRJ hay_c_Page_148.tif
07a9c997de179c35f103522a2cb7cd41
3ebe3816f2cc18e98f38a99ed13b03293cb3f41d
4164 F20101207_AAASOD hay_c_Page_122thm.jpg
c52e4dff5b4a8b44ee85a7f68d315a4c
759b59e13c8a872e890b43cbb6c548620d97539b
27828 F20101207_AAAQHF hay_c_Page_059.jpg
ea1ac6d8adc160b2f4af862611fe4345
3ce4e4c277b9ed3b182801d5d54a50a8c2a53085
618517 F20101207_AAAQUQ hay_c_Page_068.jp2
0cbe921deaa7c8ee491f688cc1ff0af4
b46d5cb55504d046951629eaa15d15e801456d95
F20101207_AAARRK hay_c_Page_149.tif
31f557ba2038a76fd73e19b0a97a18b5
982a8c5081944a2606a17484698dad4fee576803
3964 F20101207_AAASOE hay_c_Page_124thm.jpg
8857a598f070db1a2b0ef6551c25face
cc607b483368e882fa515ab027581a8e425eee14
585315 F20101207_AAAQHG hay_c_Page_121.jp2
cbdef047c3a13fedf37e4ed20c952ee7
1c9909b0c92a331ccdef6dec9770b8a05f91225d
7229 F20101207_AAAQUR hay_c_Page_086thm.jpg
c234acd724e73d3e11005adcca38b5a1
7f8337f551ef2085a0a7d8e1c97453a8fce1a69e
1053954 F20101207_AAARRL hay_c_Page_153.tif
de2e817246c1fa602fb241f520298641
46c7cf636669ba3f8fd20921491a25d9e5aef4e1
14016 F20101207_AAASOF hay_c_Page_125.QC.jpg
33cc0e848826b935d7f41cd0cfdb4466
ff44c16813268b8c1f95922eb2ea7e3a9be61af0
5217 F20101207_AAAQHH hay_c_Page_163.txt
7da372967c793496c282f44107b4dfc9
776fa23214e8027206a8887a2f4f66df289fe55d
92779 F20101207_AAAREA hay_c_Page_089.jpg
6aa6fb4c7d6c044d8cff5463cac364a3
663e291b54ef7bad3551e9f9363f36af1ba076ab
95617 F20101207_AAAQUS hay_c_Page_189.jpg
cf3f809e99ca47c7fba6b18a85c71090
0883157a8ea6d8d42e269a6acae1fa4f5d2ef041
4066 F20101207_AAASOG hay_c_Page_125thm.jpg
c1f2746dba8919c322896e9bd3026b0e
ab95eed3039cf1d01d9b39241432ba21cbe8cea6
4454 F20101207_AAAQHI hay_c_Page_117thm.jpg
53a28743ee1231669ebce6034d2fa24a
ddf64c03e13623751d7d1ea1c37665789f7b62ff
73523 F20101207_AAAREB hay_c_Page_090.jpg
5082877f459ba2aec3376b41a7a4a6aa
71825e3bd60e94a7618d2dc9fcc3935d625635a4
1051976 F20101207_AAAQUT hay_c_Page_167.jp2
56d6a51324156bd877e9b228928da616
e70e1ebd6c5439b770e78c1ce184e001bd267e37
F20101207_AAARRM hay_c_Page_156.tif
fd8bf26c5c6004ed468bbe1695de19b9
19f2c5f660ebb403aff7352e3ba911f480664d12
13218 F20101207_AAASOH hay_c_Page_127.QC.jpg
01351de5dc60702fae500aeae2c967e0
0cf4958ce8512811690415c045de831046a534d8
26680 F20101207_AAAQHJ hay_c_Page_150.jpg
c7c7404566884147ab0860d06d6806f2
a2423d7e5fda6933b58e58dfdf8e82a688c4169f
74151 F20101207_AAAREC hay_c_Page_091.jpg
05480af26c0516cd5c6f4a004ad561f7
4a50b00663b04db1f0041e1816bcdfffb85b9178
5498 F20101207_AAAQUU hay_c_Page_239thm.jpg
253002e39ae6ab97b478d970f11daff6
88ccb05d19a17247d4d6bb7afdb608a4032b6aff
F20101207_AAARRN hay_c_Page_157.tif
263580c6faee3e0a89b52d1a6ee509b3
42db6882afd3b30f0e81dd8c38aaf1d86c0e2ca1
F20101207_AAAQHK hay_c_Page_182.tif
878adf07403cbb3a971f5ced3870fd24
89018e55a81de4049bf3fdfb765da70ea348403b
41437 F20101207_AAARED hay_c_Page_093.jpg
b198ee0647f5af598f3cbb0a439753e0
74b817ea5b131f557ce126c29c14d3ee39a95a5c
5437 F20101207_AAAQUV hay_c_Page_186.txt
2ebcbf3326c5d42679f08cbc972a6517
c975c9cc66dda55026342e9cc1313e8006fa477b
F20101207_AAARRO hay_c_Page_158.tif
cbb58853fc7ae58297f39695c344a2ef
3cf48343fdf8dee2f83f85944236d261572ae795
4194 F20101207_AAASOI hay_c_Page_128thm.jpg
61d1200d93fd60daa7c1c0e0a5cd518e
1309d123a34149a2dafefe86291af405d0c2ef32
2911 F20101207_AAAQHL hay_c_Page_015.txt
9d975006e429489d105b6ae0c95b1d24
165fc735eb2993ca201f779dd9da9d0947a190e0
41783 F20101207_AAAREE hay_c_Page_094.jpg
e3ad970b890010f42b98ffe8e5c68ac6
e3d9d89f78368238c9642387540be52c17126406
F20101207_AAAQUW hay_c_Page_003.tif
a70b0fe7767cc064e359161e8c265adc
60cf4a95907268edeaf246fdc72a01b5e3df53f9
F20101207_AAARRP hay_c_Page_160.tif
1b9bef1c6a3c62928d0892a38b68d540
7c4438e6f921deaec7b5af4f480b32f5c67ab00d
3670 F20101207_AAASOJ hay_c_Page_129thm.jpg
ae16dfbfd93e587d64f0375e1784be95
ff1b898e485def3ad64980511607d1a3c9d6f195
4707 F20101207_AAAQHM hay_c_Page_098thm.jpg
168a5cbc4cd80239ebd5ac4d16bacf5d
760d6b8091512ea27a96b936b7cb61d348e57b03
48050 F20101207_AAAREF hay_c_Page_095.jpg
2aace229874bc3cd86af95f63cf5056f
f419362d5590f883231462e42d17819154588624
F20101207_AAAQUX hay_c_Page_086.tif
aa258c4076c3302c9ce79a2548d2345a
4f70c129b9c2dedacbe77450841f730470f6503c
F20101207_AAARRQ hay_c_Page_161.tif
02371799809826bb9643bc876ba0e959
9c628bd1e3924deef244589930c768ab06ae7dba
13031 F20101207_AAASOK hay_c_Page_131.QC.jpg
a320fdfdec6c607f9823a9ceb3178514
a61268ab3952b4d3baf8b13920011f501f13281e
F20101207_AAAQHN hay_c_Page_217.tif
33db47d18f71548cd4a709132da564e9
3a51027f243cdc784e134557976581b105108851
43797 F20101207_AAAREG hay_c_Page_096.jpg
18400c272dfac63f2259aff363bc6a92
1e76c60fb3c8ccaddd116c9468bbac459ee0d24d
5400 F20101207_AAAQUY hay_c_Page_181.txt
045ba0e9a97b3ad7bc11a4dfa4b6b627
d734aef269e5dc0127a980a1ccba6ea38b9ad9c1
F20101207_AAARRR hay_c_Page_162.tif
d873d41168fc12468b20b008b7dea6d2
e9f7d06754ed99c39119ea23c05c601d7a378ad0
14408 F20101207_AAASOL hay_c_Page_133.QC.jpg
586f42d0dc941d9f9b8bc980e65f536f
e0810baf345f6c9fcc51d768b4369f9e34d7aca4
F20101207_AAAQHO hay_c_Page_192.tif
8c688e963e9ef1744bdbbd4ccc1bfe66
1d91e0feb94c02ca45371a16cd98489546b278f3
88265 F20101207_AAAREH hay_c_Page_098.jpg
7ad0984d4ed6551ef80b982db820fa42
bde0a84d30a6b66b1fede3e51e2750880e5e4351
947 F20101207_AAAQUZ hay_c_Page_223.txt
edc15a12deee73cd5052f82c2bdd485e
f6d79dfe1343260d6a353066c85373d3e162cdc3
1888 F20101207_AAASBA hay_c_Page_025.txt
69757836d7029689c7e6aa3f8e78e8e6
fb35d4541fe10608f94bb78572b785f1c3ecb469
F20101207_AAARRS hay_c_Page_163.tif
b1836fbe587af6b81dd194f299df5f7f
da3c542256b5d8a15f6e6b7911a4a53990a6c3ff
4222 F20101207_AAASOM hay_c_Page_134thm.jpg
fc03d37efaa6ab3de3f5b24c8339f11b
7ab5a185fddd325cb3204e046663b8e76889b5d3
F20101207_AAAQHP hay_c_Page_008.tif
d7fcd84165d416d5c23a54aa3e6876ee
1acfff3c92e8e8415a48bec0f2bb51e82e9b8e49
94126 F20101207_AAAREI hay_c_Page_100.jpg
3901c7cb2f9f853e555e97da5007de91
5c66ba7d5555017a33af500928ad6ba4dff02825
2585 F20101207_AAASBB hay_c_Page_026.txt
57ef67574d14c803a20b29b251530326
9395c15de30ebbfde3a6cdd4767636e17d9c947a
F20101207_AAARRT hay_c_Page_164.tif
e4150c1b06530a18c024839d86191569
6bc91165cfaeefb85a0417fbcdf1ccfcfe87d8ac
12922 F20101207_AAASON hay_c_Page_135.QC.jpg
ef21361485251cee9bddcdc4f55100ea
c5b8db22f55c166f71b4817e58bd4299cc5f38ea
4592 F20101207_AAAQHQ hay_c_Page_056thm.jpg
946abb1a14f80efeb5be2b261c24de7a
77b2be1db2a56b2eadbef620b1dfb8a4ed102879
67824 F20101207_AAAREJ hay_c_Page_103.jpg
f9c7ba626e817dd9b26d12ce821782e3
683d89c6c08b0c5049926b24ac477b5adc5da8ce
2094 F20101207_AAASBC hay_c_Page_027.txt
4a8c325f9cd5775a25a9d439692d3033
8bd474c1f3e1e4476626846263c71540ab91cb0b
F20101207_AAARRU hay_c_Page_167.tif
7311256cd052c0b999fe823dc35eac46
471ec72fe6a20a95ecbd8d20c527e05bb435f865
4099 F20101207_AAASOO hay_c_Page_135thm.jpg
a05bf61e50e5a942b9d63e15c6afe1e1
ba45407d32c51d5a1e0f564bdd4230f02ca063d9
16127 F20101207_AAAQHR hay_c_Page_234.QC.jpg
ba322e96402f4502307ee8def3b11236
6084a59cd024fe6b9d6aa91dfa281f9c11fb32a1
55668 F20101207_AAAREK hay_c_Page_108.jpg
0b0c343a34b931f648e047d1b811de30
62ad4c9dd827d028ebccc178763f3196e23687fd
1841 F20101207_AAASBD hay_c_Page_028.txt
7bf9590cbbbf609a0b3cf142d2565418
535e055b4f8180e786191c0a9a06c3e33b428c07
F20101207_AAARRV hay_c_Page_168.tif
da3f6eeec02bb5f8c87ab375bfaa6c36
c93d06a6457991ba61d17c2e0a381cf8811dae76
13552 F20101207_AAASOP hay_c_Page_137.QC.jpg
6eb5a46cace75b72f537d0ee2e90b29d
6159716c05a29115835ff3ad99130be74cae791e
F20101207_AAAQHS hay_c_Page_191.tif
cf79acfa2658ef8d96ce752f4a526512
5134135f6a31cb336fdc846d61a13f4af15a9a0a
67666 F20101207_AAAREL hay_c_Page_110.jpg
a963cb104cfcd78bee61fd35cc0c7580
ec9128c385827b1113ce22af643e53e85a4c1327
2023 F20101207_AAASBE hay_c_Page_029.txt
0183b3da8cc6c74ed6032974225b6611
f7ec9ab994423174d7ed7757c9d26f78d88f5060
F20101207_AAARRW hay_c_Page_169.tif
7f313b3b444c1d2a1c84660d5747f469
d37b29a195a7458868ed919811f047ddb790b1ba
4410 F20101207_AAASOQ hay_c_Page_137thm.jpg
9ac20684e509e4d4ce389a731f1eedd5
f18a6c66b77416e33f7895b52f03a025965769fd
105360 F20101207_AAAQHT hay_c_Page_040.jp2
915b695dca35cd139687232e368e35dd
1519a5650a87b6754eb8e640249a72cd6277631e
52788 F20101207_AAAREM hay_c_Page_113.jpg
2eb0e3fc586f727e3dd99752b164ae4c
8ff2d7a9f834be29a82d91e3d8f042942cc44641
2146 F20101207_AAASBF hay_c_Page_030.txt
fe7116ef7588c050354c3541f2aef298
40aa68e4cb09dc1d1d71d355cc2ce9399465d251
F20101207_AAARRX hay_c_Page_171.tif
4df643543067eea2d9e04563a787ac2c
0f454efb6eed070f61f489022b7c58bb02fd60c2
3898 F20101207_AAASOR hay_c_Page_139thm.jpg
60a2ef554fe1b926bf6cc38c8d60ac1f
0bcc7390ef8b2d63fa0c898f0cc1cdc54ddeba35
6406 F20101207_AAAQHU hay_c_Page_214thm.jpg
4c28c3ee466549df6602e8fc6913c8e2
f38e4cb4ef0140903701e4befdaea269987912a6
37523 F20101207_AAAREN hay_c_Page_114.jpg
93fbe3685611cc9b5d70cd37a1ec32a0
0ad3f773c39c41056b48df42075bc9470a85c8dc
1227 F20101207_AAASBG hay_c_Page_032.txt
b535f261b708f6a42fe88109eb0e9a20
266a65b55192a87fdd9414be21e9016bf121ab46
F20101207_AAARRY hay_c_Page_172.tif
1caf8f8c780bdc1cea74d03cf8ddc096
2950a0924baef19ac9e044e951a11165e50e31de
4157 F20101207_AAASOS hay_c_Page_142thm.jpg
91487e7a2a8e39ddc4227d4964e4715a
67928a63cad75a88255b1e9534009fd10801e166
6272 F20101207_AAAQHV hay_c_Page_174thm.jpg
2bb831fec2834d28caef4b34b1081376
9c5bfb6155e0dacc4fe8f1264f4106748c6474ed
47620 F20101207_AAAREO hay_c_Page_115.jpg
d06f12f4e05bf05032ebe828257c0d6f
18892dc4981bb0b32dab79df02467f00611641d4
422 F20101207_AAASBH hay_c_Page_035.txt
8409da1776ac68de6c4657fcd162b0fd
106ec189df929c9232c9f8693a57dd2267111bf5
F20101207_AAARRZ hay_c_Page_173.tif
006f8dc59b2098ed48e2f8e08e8c0481
cadc785d81445367e7374e140b88098cab138c65
4109 F20101207_AAASOT hay_c_Page_143thm.jpg
3fb6e17414d3072d5f6b5786debe2f4a
702b39eceb114164c265579c781dfbcd4bff77a9
52759 F20101207_AAAQHW hay_c_Page_062.pro
022848a76fe0dcdb688ec796470a4f56
d6970cec268a935beb33076c4e48d2ccfe55a9f9
70258 F20101207_AAAREP hay_c_Page_116.jpg
d3b0caa2e454cbd53dd551f097525e1e
0440670fc90b71234c244eb1b3d0a88320ddb69c
253 F20101207_AAASBI hay_c_Page_036.txt
64e1e15c5e2071a0e3dba631b160b407
aa0d9e1cbd17af1e330de43aef63708c64ce0463
14705 F20101207_AAASOU hay_c_Page_144.QC.jpg
5a98ee340d7a07578e70d3ed0a1cfa48
eb14a881f4c1933a92254a906a974be4e21fb3ca
538580 F20101207_AAAQHX hay_c_Page_052.jp2
96ea64c93f273515451004a8e1fb8ab3
d048b9921f1f8218e48c484344120f31a51e7fe5
47643 F20101207_AAAREQ hay_c_Page_118.jpg
010e239435936e37eb89e2335d8c196d
a8ee9bfd9b6a29f66dad770e2094e42dacda846a
248 F20101207_AAASBJ hay_c_Page_037.txt
42964fd396c0889069cf038d8cf482fa
c69a5f54ee021fe57e0995787ccc3c4be2194746
4510 F20101207_AAASOV hay_c_Page_144thm.jpg
fb819772638cfd5fb7e94cce439f843f
b8f2412b112a5f1264148d62458919c5f1ecb253
25215 F20101207_AAAQHY hay_c_Page_175.QC.jpg
b720c07d5532a71af729215e95a985eb
64f6364f58337dd5209ad571bccc61a503755e94
46066 F20101207_AAARER hay_c_Page_119.jpg
e325c5b7a5cef9a5afaa469d06f11e66
aff3fd1c0b026ad9c0d8c2cf72282055053a9308
554 F20101207_AAASBK hay_c_Page_038.txt
7ff77ab181840e47e08c041098cad177
dce1f4f0e1ebe1b6ddca13df437f68453cd9d624
16122 F20101207_AAASOW hay_c_Page_145.QC.jpg
8e03ea8302fb2f7e102882385191ee6d
6047ad68120a04423c41215f213c57c549528b93
49131 F20101207_AAAQHZ hay_c_Page_234.jpg
9002601d838c7381b4d95b444341d75f
ede6b789900db961b28ba2af1440794f9c013c49
47569 F20101207_AAARES hay_c_Page_122.jpg
0075ea06e04887d2abedb5ae5f8f6406
af755976c5ef144b9eb880b55a3b93ba4f379d50
1978 F20101207_AAASBL hay_c_Page_039.txt
71a497fe3e3972b8649e3b3a0565d4e0
5e1a2439f8581e25b3748600adbc99903f34c4df
4442 F20101207_AAASOX hay_c_Page_145thm.jpg
ac37a05de3087ff94c4af5107fd71623
f849b81df5826e8f7dd9774ca5709740d90d80d6
44693 F20101207_AAARET hay_c_Page_123.jpg
f705ceea633faa497b6d21e875cc3bba
858db20b5b7667cd744c1888eeb491c0bc8f510e
1909 F20101207_AAASBM hay_c_Page_041.txt
247a83e8786ab2954ca378f633186c3f
8eda42b65c8d0c56af6db84eaaa9f8c367c2da07
4150 F20101207_AAASOY hay_c_Page_146thm.jpg
24fce9dd4e26399baa162617d814d525
c571cd20dad5a1e31f8e05ac516f101bdaba1949
42145 F20101207_AAAREU hay_c_Page_124.jpg
1b16f2322754512b57ac6147fd795b19
93ab2439c7f2558cabb1bb0b7dd354868053f28c
1930 F20101207_AAASBN hay_c_Page_043.txt
ecf3a6382f19a2683f34e89a8c51b9f8
cb9aa10ca26c5bc6d54550fd94333c28e1f4da44
14105 F20101207_AAASOZ hay_c_Page_147.QC.jpg
2507b88b88e9a339e38aad7fe825e256
788b731f00be92a3f7deddfa147739f118590df4
44692 F20101207_AAAREV hay_c_Page_127.jpg
bdd6b6bdc663e05f8ca9f5c781ca8b99
cb3739f1f67d0e8cf91473228a2f5b9db719a7f4
612 F20101207_AAASBO hay_c_Page_044.txt
1aba06600a1a037082a469d14688f75c
b0c86eed7221d5dcb7ac8383a6ee77a21312e2bc
34993 F20101207_AAAREW hay_c_Page_129.jpg
a204e3ec577516c8f610c760d7c69bbe
6332578b3dcea0b8fb825a59343e481e4fd5001d
186 F20101207_AAASBP hay_c_Page_045.txt
1acef20a511bc8b3c158c335f52bb271
2a30411d7cb56425e06b2e0d91947d7f5b909f37
45421 F20101207_AAAREX hay_c_Page_131.jpg
1559ce418716ae9dfe89265b1bca2dfb
3cbd0c4d2a6654623ce3adda2a66cdf2a058444c
7035 F20101207_AAARXA hay_c_Page_124.pro
0986f1c5c3b06e812edf9be710d993dd
de00ebf9078d51cf468b97309fbfb1ba248d7851
211 F20101207_AAASBQ hay_c_Page_049.txt
90c731b617a8822e9f3719dcf7b12474
c960ec231cb915173993b3c511f90b76267750cd
44699 F20101207_AAAREY hay_c_Page_132.jpg
a3cfd1cfee51444cd3851e613451e085
24437d5320ef72d048b47afa6a1b285047e6eaf4
9103 F20101207_AAARXB hay_c_Page_125.pro
043e6b487047d7d5c17589a4251dc828
58531beb403c2b7409ce9a3e292f356e0a259076
142 F20101207_AAASBR hay_c_Page_050.txt
0bbd222dab4b2e4d8b1a05b3cd67a79f
74df65ffd49f841ca05d20d2e81c1b4a168d5617
44853 F20101207_AAAREZ hay_c_Page_135.jpg
0003419477ca835847cf08696df4c3cb
0334cbb9c75ce877321495f85682501cd12263ef
7805 F20101207_AAARXC hay_c_Page_127.pro
840573d35949793d22a50f03ac6fd662
bb21b1a45b51158890042ffc915ae07b787c9742
876 F20101207_AAASBS hay_c_Page_051.txt
85b4e317f75e1d8a24669ee5ed12f2c7
deb817f5d9999bd093fe5b32a39bb72a56346f4d
9293 F20101207_AAARXD hay_c_Page_128.pro
9696471e616a364abee58746eaede9fc
c63d279598e650220b99a219cb87202d60c2b85b
249 F20101207_AAASBT hay_c_Page_054.txt
55926b0aa73b371db9cc4f1d5ad19e42
384b27c63e5a25ec83eb91625326e18ff9447b3a
11665 F20101207_AAARXE hay_c_Page_129.pro
71368385fb3642718e50506c5b8a5303
13573843e54ec68a8b0fe76deba5d4313766f39b
125 F20101207_AAASBU hay_c_Page_057.txt
f8bc0477446d87e2af0feee095791f4b
b96de491331556f66c5b814d63aaa39e4976137b
34732 F20101207_AAAQNA hay_c_Page_111.jpg
63bef7f6ba108b8ff4ab33148238d98e
f5b48ff43cbc5904eb1322e621e3b45b4d2c743e
7850 F20101207_AAARXF hay_c_Page_130.pro
a4dfd4dad65bc100de02bca60415ebfa
eccb1309854fc42779b0f1504586deb5b1e42abf
606 F20101207_AAASBV hay_c_Page_058.txt
0837c66354571ecc7b2e8330703d0b5d
b253d6dca9159bcdbfffd6f5601d252347507d2a
9181 F20101207_AAAQNB hay_c_Page_068.QC.jpg
fa90da392d1595a160953409585ec266
3a17f38813a6b14d8f88451d000f698198a5bcff
10037 F20101207_AAARXG hay_c_Page_131.pro
ed33b1703f4f0b99aaae0c6aaa269ad4
72fa0b4d174c30472b51875a7308757aa3effc98
179 F20101207_AAASBW hay_c_Page_059.txt
f4719d0cb76969bc26f943021899a1cd
e97d1d4cee9d6ce1be9ba7e05a27bf784d92ae54
2101 F20101207_AAAQNC hay_c_Page_062.txt
990da952e9e47bc6a55323085691593a
53552aa7326be4813e3c858815a1dcef61d7da6e
13555 F20101207_AAARXH hay_c_Page_133.pro
043f12ad5fc90d8183c641e612c6acf6
6d9b50ee9a47f24bd12a83279bbff38a3d005208
1989 F20101207_AAASBX hay_c_Page_061.txt
e477c7be1393d55ab93378e1f5b60746
2659e0fd7765560724aa82b5616c139dae950c62
4183 F20101207_AAAQND hay_c_Page_133thm.jpg
2af23b57b0b5d11f55340b74d16bd05d
dfb003d4d38218fb1e7825c162a1049547404aa0
11486 F20101207_AAARXI hay_c_Page_136.pro
f9de31e518ee244149cf4f25b5c304e6
91a0c11cd42d249ad1f4d192ad4b10abaa5869ea
1862 F20101207_AAASBY hay_c_Page_063.txt
c28008b7d97414810ae09005c50af256
c86e58921cb84b9effdf52c6ec327332bda6fcbe
77275 F20101207_AAAQNE hay_c_Page_219.pro
88ce41b1698f0c4c4bff0ffad152a82c
930a2f8accab722835f5b0abc93989835f4b1f8d
9618 F20101207_AAARXJ hay_c_Page_137.pro
7ce1ca60d383084ed5a12788e5853825
e22174d442e0c7b575b6ba716e920dce93ea118f
574 F20101207_AAASBZ hay_c_Page_065.txt
d521fe4d2f4d42f5b5d6cde809546727
243b1cf7eb6474dbd98d469b658876bf097720e8
1051977 F20101207_AAAQNF hay_c_Page_213.jp2
7da0351252c6c7739f8334cddaab7873
e1c7f6bfa5c1f371777611e612f53425d8722e5d
6189 F20101207_AAARXK hay_c_Page_138.pro
a1519332a8acd04ce328c7db6bec47ee
733f6d71da049e9fe1d021afd72fb60133a730c7
11666 F20101207_AAAQNG hay_c_Page_067.QC.jpg
24fa334378991e18797dbdcc9f8f786b
94f782fc21ed295f35f1637f6bc01892fac2da28
1051948 F20101207_AAARKA hay_c_Page_098.jp2
fb2a528f703af8ac63d46c5d745b4851
433e7460a035f7c390c02515554f76b3c4645f37
7287 F20101207_AAARXL hay_c_Page_139.pro
34f370f4f1b2672d0030b1586a5d9add
13351433c59f8534fed844c9f82cc18640c92972
10858 F20101207_AAAQNH hay_c_Page_160.QC.jpg
e6521b15398de11258014840877e3be5
ec9b0c3c3236aabada68ef726bb2a4ea7c18ea46
1051960 F20101207_AAARKB hay_c_Page_099.jp2
92f262b74f973a38249fc365464a6254
4f4fdd75eec62e98e9b4f7f8df1538d08896612c
7789 F20101207_AAARXM hay_c_Page_141.pro
d88142670317a9d4fb9ce91f755c6857
54d2bc3d6bc932fd47278aec65a0ab205dd848a0
6853 F20101207_AAAQNI hay_c_Page_165thm.jpg
15a934a6b3ec1de8a9285b2f70346a3d
fa970f9e28fd33c46276f2962e07bbf0c049b3cb
F20101207_AAARKC hay_c_Page_100.jp2
9c7e58f452e9c3ff68ebe380d5e78067
54d96c15de8827c6b9a1a7a4f54fc7ffac48088e
10921 F20101207_AAARXN hay_c_Page_142.pro
aab64dcc7f81febe4227de35d9b047c0
19b986dbf9d9f09d4bd20ed62de48d5585e2709c
1023355 F20101207_AAARKD hay_c_Page_102.jp2
56efd1e55cd3092439a19b2100ef09e5
1ad17c5f93a846c2b4640e7d853bdce926fe738c
10649 F20101207_AAARXO hay_c_Page_143.pro
8c00a453a8a797efde307c9d5c47796b
9e8d89c1974bb02a1238be24a93d4b0a026edce7
1051849 F20101207_AAAQNJ hay_c_Page_097.jp2
26500285cf018bfce1c643068ac62843
74dc193591466d5ac9e913256826eae3dd97d6d3
390116 F20101207_AAARKE hay_c_Page_105.jp2
984f2b6f7e3c334a692b6fbc9b278817
42e02175c1f1c5f81128d31618a7abc0c6d5d443
11596 F20101207_AAARXP hay_c_Page_144.pro
7182c464d20fec59c4b2636772511aa2
f88dd9e2e4f4935d7f07ad2af596e3326ab5b7d1
4336 F20101207_AAAQNK hay_c_Page_226thm.jpg
55510b39a2ea487617fbf769435cfa9c
2cdb1ed72b47df9098ee3e5d6398bfc869f7ac64
10719 F20101207_AAARXQ hay_c_Page_145.pro
d4eaf10cecd0b3be36b3cb1f721032e5
c2eb6097527db7383bfe1e5d381b6608a3ac470f
174 F20101207_AAAQNL hay_c_Page_056.txt
372adca119f583baf2217bfeaba644fb
177ddb987241ed7469c6d1e32e1182bf09ba1775
522987 F20101207_AAARKF hay_c_Page_106.jp2
13c95d17eceff8a89f0fd5c7c5354514
cceff3336111515860a99c0ccf463310f5307e88
13211 F20101207_AAARXR hay_c_Page_146.pro
1d01e35ee03bfd246a8d9ae3883bcaa8
97cf551aad62b9d1009e9ce186ae63d876acae39
F20101207_AAAQNM hay_c_Page_170.tif
85b41830c0a9e761bdf67bd7adbe7045
149ae94c049454a2ff3d3531eca56a5012bff860
884747 F20101207_AAARKG hay_c_Page_108.jp2
3aa95ad36b3582d0ce9db527ddfd147b
253fb9328307c5e84711a496ee02f026a8c1fd68
4581 F20101207_AAASHA hay_c_Page_051thm.jpg
d31243307a66ad0b52fcfe99762f94c4
b77142b85eb6556a0c73e2aca18dff0b9c65a359
F20101207_AAAQNN hay_c_Page_124.tif
cae057818c2e698bee87383d6add9701
21022561111893e381ee261f7a1267f521f000fd
700845 F20101207_AAARKH hay_c_Page_109.jp2
0fa80604a6db81c51a9090ac1460dfed
aac00e4bc8450bf3f797f0cdd39c1b2c05b358e6
18502 F20101207_AAARXS hay_c_Page_147.pro
be432c794bddb8acaafb7500f60d4b62
c37f7a5c4b278e07d4b6c8c9aa61927e0621c254
71254 F20101207_AAAQNO hay_c_Page_019.jpg
b8d880200f48767e569c7f1ed65937d2
01513b85713d2bd2e4cf6f915d87ed53c203bf1c
1023253 F20101207_AAARKI hay_c_Page_110.jp2
ebef4315b991ea9fac593ff9e3e076e8
ad8cbc6bebddb5fc9b1b1269980c35c1e284ee24
28492 F20101207_AAASHB hay_c_Page_218.QC.jpg
ee943ed492f5229271e231c28381e014
86890f75b66f206af1008df46c0e14a2db4c3835
8852 F20101207_AAARXT hay_c_Page_148.pro
47595cb87637ff92d79ea0818102282b
7a5c63488f6cbe9b37d9f7f8e42ffdd1a86bc2a0
6424 F20101207_AAAQNP hay_c_Page_018thm.jpg
996d9e1d4afe6a67af2cba4f523d94f1
a9077f75f422db7d8a8d6078a7aef094bc96cd41
1051906 F20101207_AAARKJ hay_c_Page_113.jp2
c0ad7b7a764eceb1aa515451010936b9
fc51ea0e5bfc338d8472a608c2f144ef6d240fb2
21878 F20101207_AAASHC hay_c_Page_039.QC.jpg
9c8f282ae9c1d2a478024995d44e292b
dde86d8175947b460d9c465634f7660518377ae2
9022 F20101207_AAARXU hay_c_Page_149.pro
dbf2d72304f0945a94ef8dd5bfc14fcd
8a684db609afe0566c3dee85e3e7c17818fc56e3
49477 F20101207_AAAQNQ hay_c_Page_134.jpg
e0d6c1a33c92d642b3556d09768378c5
e9c09268f3eccac98dae37ed0ff7bad5323165d2
408690 F20101207_AAARKK hay_c_Page_114.jp2
7dfade95e9b048f7121772ac99db724e
afc428b6d1d957fdfc070c0fc1964e04f1042c1d
2791 F20101207_AAASHD hay_c_Page_150thm.jpg
6d74943a0d996ef3cda4b1b07e02d366
458313f63f21fe6312e36fde9a6545de5ad1d2ab
6155 F20101207_AAARXV hay_c_Page_150.pro
51afea1a9e81c83a28e8e90775a994b1
5ae7c88840199a84c66e335c93361238d60939dc
4363 F20101207_AAAQNR hay_c_Page_060thm.jpg
1c34120bd0a5af52436c1e408b3c0d28
9957fe10fa8436ea96a1eae52878bc4f3941137a
1051985 F20101207_AAARKL hay_c_Page_116.jp2
2dbd72349b6047b3e73d91f48ac68529
e848947c775d3facd2cbd88809921ce14d1fdce2
F20101207_AAASHE hay_c_Page_010thm.jpg
4b8b6ddfac37e565e07356e9799cecf7
1cc6d4925bbaca54c39aee21e679281772bcc31d
7550 F20101207_AAARXW hay_c_Page_151.pro
7fa8d8976bbc01cad6e9b8596f62ad78
e19fc348e67ec5e0ee046f73dfd4a7fada52b91b
99237 F20101207_AAAQNS hay_c_Page_172.jpg
fa513e9894df336f59e2f78030011e30
e3689b580b2ade413e7028a45bd8a500051febf9
1051902 F20101207_AAARKM hay_c_Page_117.jp2
3307c389dfde6119c3a158a8ab0ade2d
5b07bd16a190474a080313efbcf199209828197f
2295 F20101207_AAASHF hay_c_Page_035thm.jpg
5ea21e89ba0c581a138da65019e73c7b
54ad30d9bf9ac1d1bf5f7ae561b87836aa2bd4fb
2041 F20101207_AAARXX hay_c_Page_153.pro
cda96174b4fe91f502214282b3cb1954
f2d0e647e13316583bdf67d357622077b5fc3479
5286 F20101207_AAAQNT hay_c_Page_183.txt
6292cde78fc96b69ac7d2452f050cb70
f8d83eacd7feac68b7366274c4d7021c8030d3a6
687727 F20101207_AAARKN hay_c_Page_118.jp2
9e25b7b5b500b89d6fd4247af8c3c519
9d3f7568132452bdc70a1be357f557b5415afa8c
4478 F20101207_AAASHG hay_c_Page_156thm.jpg
741b95774afdb08f06d1fb5877ee3f81
30a4bdaa10c990725888af21db92d13bf87f2dcc
105870 F20101207_AAARXY hay_c_Page_155.pro
e270e5d7f140d57a0f3d8e7ede8ab885
e32fe68dfd816bc6a50914075547983570a03a65
6131 F20101207_AAAQNU hay_c_Page_199thm.jpg
ce95976cfaabd07fb3def31f7e5d38a5
b9d5aaaf53a62126c8c90fa1ad799fa290bea3bb
645926 F20101207_AAARKO hay_c_Page_119.jp2
704e004129884d4b1744d38cc7dfb237
f391f910eb9327e33b8a2f21fb77c4d3df6b73c3
17558 F20101207_AAASHH hay_c_Page_159.QC.jpg
949ec31b0dfceed7dc0735c1e1ce3803
863283edc1e3774ab9a21ebad228d33bcc6ec63c
14649 F20101207_AAARXZ hay_c_Page_156.pro
a0e24fdc8fa77fbae58a485dc2a1ac4d
e19973559200dde0190bd6c853e4d89dfb2bea09
6570 F20101207_AAAQNV hay_c_Page_085thm.jpg
a43881f25532b81ae8a25a7171dbb3db
2e7124cbe411439941177eb9591dbf1370732d66
717438 F20101207_AAARKP hay_c_Page_120.jp2
6c09647228625d8179b731d94bc4a06f
2d0411d5a5e2c0dff2b0f4f1f4d4085383e37d15
6368 F20101207_AAASHI hay_c_Page_212thm.jpg
796a7d6429285a8995002411f0b777d2
3f0a1143ffba383072a2b6b7e2ae1661c405e553
6251 F20101207_AAAQNW hay_c_Page_103.pro
2a1e8e425c53b9743994123d36e8a413
815624eadc48599df98f59306d1f332cfa69dfd9
723404 F20101207_AAARKQ hay_c_Page_122.jp2
ed238b55c3bd9bc8a849cfcd8395420f
853d99bc58e5158a72ce760178c8fe9eb4163ce2
7817 F20101207_AAASHJ hay_c_Page_033.QC.jpg
5bd114760a3df11f604b70adbff98683
04c1968aa52db42ff997b58e3b38740cb0261ee6
488 F20101207_AAAQNX hay_c_Page_093.txt
d25acd82cf196b656c3724c60fd0704b
a9783067c1ab82e1779b969758610c6b00bf6b26
633751 F20101207_AAARKR hay_c_Page_123.jp2
9da171ec638d7f139b26a5edf29a9abf
f2196c507291d752d80678ca1ca4d17ce35ee498
26312 F20101207_AAASHK hay_c_Page_021.QC.jpg
13b8ec78bc3dbdcd05fd61df10980b36
7ce24e343fd27256fa01687b0dff37aae7e712b3
48522 F20101207_AAAQNY hay_c_Page_109.jpg
8f39ec61b8bbc192f59b8e0898281601
5491e1417226bc259fecce7330f4e89c5e7ba4bb
608125 F20101207_AAARKS hay_c_Page_124.jp2
96257e7e1e478540e368b4b90e0b37d6
9e15d97672b6f440fb887ab4e7705c8ddb83e195
2905 F20101207_AAASHL hay_c_Page_092thm.jpg
30aaefe4e5d7d5027e05c0bbac3b1e56
6285229e07df7d8c01e4afe934a995e918812994
3299 F20101207_AAAQNZ hay_c_Page_057thm.jpg
556a2e40e6573ae531df3476564c46c9
7851816f09360f682a569a8a5517012a76c15325
593815 F20101207_AAARKT hay_c_Page_125.jp2
032ced1d6e65e2fceebd579a860914d1
5d0740abd6c7013c27ab7be4bd70964fec2097c9
11470 F20101207_AAASHM hay_c_Page_151.QC.jpg
89f835cab8798c14b22d9ed669701122
2cc275d7a9281ddf95fe6589028341c546eebffd
488116 F20101207_AAARKU hay_c_Page_126.jp2
370266ef371c6222a0ac529ac4711835
6c48aeaca9d3d2b4307d47f9f9e2e5a293fbfabc
13714 F20101207_AAASHN hay_c_Page_004.QC.jpg
111412794fe51174ec51b3e45373d369
227122fb33936739dfd5641c0d659cbf7500d2e7
623088 F20101207_AAARKV hay_c_Page_128.jp2
cd3cad829ac19ad22b0225abe4a3d602
8f5e4aa7c0f9ba47cbcbb38bdcc97e609b634e4f
6055 F20101207_AAASHO hay_c_Page_208thm.jpg
090833bbf450d2b609db9ebbf442749c
81d664d8d43ba4ea8dbe51f1b8010b8cdb96be42
481156 F20101207_AAARKW hay_c_Page_129.jp2
63019b3a96de50458b5afa918724aed4
fd9e3ca58a33ad8d85e5d1f999cb9f6a3a93698e
4602 F20101207_AAASHP hay_c_Page_046thm.jpg
f97707a3197debaa584e5e14330edb4a
3e130968497eaba0154809e89ccccdd89897cd93
642998 F20101207_AAARKX hay_c_Page_130.jp2
85bd92c1b8cad7b2895df07629eab3ad
e830cbe2a2ac85b618ee3e62953edc2e0b2dd0c4
20022 F20101207_AAASHQ hay_c_Page_100.QC.jpg
0e121b7cd54d101d0156d7ae7cb19e32
6e3af9e05cdb4011a2245fef7e5ba28eda7518dc
672023 F20101207_AAARKY hay_c_Page_133.jp2
0c12f9323e630b2a6abb8a6f4e9f27c9
e8be8d2360bc94e8dce454a6ed1608a2154ef0cc
6721 F20101207_AAASHR hay_c_Page_062thm.jpg
bcbb04c6579deddce8fb3eb26a75f374
d3776c53a57209104bbaebe2b69dac2e0bb3e956
617868 F20101207_AAARKZ hay_c_Page_135.jp2
cd53ffe168765f8cac134d567885aee4
1ef33a2df9eb5911db26cf42d1cae82fca0b2108
6063 F20101207_AAASHS hay_c_Page_028thm.jpg
475618ee1df89197464d2ebcb84f147c
29fd631e9c2b5984fd3085db701920cb4e5cfb42
4078 F20101207_AAASHT hay_c_Page_093thm.jpg
da51f344c1ddac56478dd2a53f6eb522
ae233d99bf7a4d1d5b21f00a3183c27b0ee1c71b
5071 F20101207_AAASHU hay_c_Page_006thm.jpg
070efc7563321ec44f8d0a025eb11647
7c771f12c511862d41ccc99c8f00ba74d7b070ad
4719 F20101207_AAAQTA hay_c_Page_206.txt
637483d54b1a852fa8248f4dd3840b82
77709f282d1bed15dddc221c9474066eca3d618c
4248 F20101207_AAASHV hay_c_Page_153.QC.jpg
d27d7678494f0acebbab6a4f281b9294
7f57c5b4bcc118430a2573ba5d22e35a73d74f72
F20101207_AAAQTB hay_c_Page_002.tif
ad361e2fddaa2ced4f9f5efeeeb5a745
0198f45f5f3a169820d332a334c5eade2fcf550c
6488 F20101207_AAASHW hay_c_Page_166thm.jpg
d517129b330c023c2ab8898a59adae96
341f939dec2dfc9a1775ef728803a36bc1811c7a
F20101207_AAAQTC hay_c_Page_083.tif
224ca699924b784fd4e9c6e88b52afed
59ce1908abc341f4e192d72c0eb89532d703add7
5237 F20101207_AAASHX hay_c_Page_053thm.jpg
3d3c4c89aa94f4c9d1171249a02a7823
718dc9f96911bd30349b297792da641e37a7f799
5728 F20101207_AAAQTD hay_c_Page_225thm.jpg
220eef58f7540c7f3f0f0fd6a5767d7f
b9dae89871bbe93ee96a30dfee9a089924248f8e
14489 F20101207_AAASHY hay_c_Page_149.QC.jpg
c5b6c61c4b0a231683b971439cc40f49
e166890b4ab998a9df6555ca7bde0ab338e05d04
F20101207_AAAQTE hay_c_Page_152.tif
7cc0c8b053eca5d3cc492f508efafcdf
0ff7b8bdb4c6ffb1e251b0bb4575bb1e270061ee
23041 F20101207_AAASHZ hay_c_Page_208.QC.jpg
2a9671837e31cdecf39b6f764c3feaeb
dc0fb327670cad6949d47b0a4e8574d3d82348d3
40401 F20101207_AAAQTF hay_c_Page_242.jpg
4dd7deca0187099cfd2167831c7e1f4c
85cc1baa7ea7921ecbf4f8205a43cb390eef4dd4
1116 F20101207_AAAQTG hay_c_Page_066.pro
e16ffa1f0d626e8c109e017689b49e80
8702696395f0c6fa18481d87b4ebb0cadf9a17f0
25797 F20101207_AAAQTH hay_c_Page_084.QC.jpg
e5c6541296b659952750ce82f0c7f26b
03ef1e1fcc01f2b6d7f5b9b9f9dde0a02e00e47c
F20101207_AAARQA hay_c_Page_098.tif
7c2a7649fa63d6529e125761c4faae01
ae6c552f4577c5cd2da90c370fd7556f2d9389ac
45165 F20101207_AAAQTI hay_c_Page_063.pro
24e94907567241bcfec601ceda2c2b17
ff940b2034c4dd630101cf9eec7f3edb979ba67b
F20101207_AAARQB hay_c_Page_101.tif
9ffd6b8c85e4e889a4ee688ff5428c70
479863ac525e525f5b0df3c4a22d91a4c539bdd4
5289 F20101207_AAAQTJ hay_c_Page_198.txt
319621cbd6edba037bbf3582f646971a
a8dfc0fd5b38841e439ac224eebeadbfd1a9aa67
F20101207_AAARQC hay_c_Page_103.tif
8d8d345d62c759e5c43a14ca1ef571d5
30f6fe25753d1fdb173f05501a5a65714be95a9c
788 F20101207_AAAQTK hay_c_Page_034.txt
03d4ddf1171c15dc2b411fdde3aa02f9
1d23e275c1ce7bda1bba535b6ae21f179607a628
F20101207_AAARQD hay_c_Page_106.tif
52eaf9cad3907146ed4bc054a5eaeaa6
f50efae64576663c31c07e7f09b51b2c31f6f90a
6658 F20101207_AAAQGA hay_c_Page_105.pro
d4548ab77fa06a17a8a90caa8de21598
c2dafa87e735b78d9f333dc3cbd713618a238e7c
9598 F20101207_AAAQTL hay_c_Page_132.pro
a35d8a6a549c48f9350b9c3c01cb5f2d
76d91e44e5f6818033b33d1cc11cf1eedc77097b
F20101207_AAARQE hay_c_Page_107.tif
b2a70ff880082e6ebf4201cd067bd2e4
cb321cbd71bb61a1c81705cec3bdae60e9dadb74
107801 F20101207_AAAQGB hay_c_Page_206.pro
eae2d10f25ef78e5c7e0ab5258178f6a
2d8d990cbd1135d84f167ef7ad0e823639159889
2436 F20101207_AAAQTM hay_c_Page_036thm.jpg
e58c25da38f9f2288a01a4e7447cf298
7e9c5bb663428e4a69b71be44e52e2fe2c4282c2
F20101207_AAARQF hay_c_Page_108.tif
99c72fddce6f700647b6d2cfc533e7a4
12fc7301b7666fb11faf2c9e30c71b20846e0064
15902 F20101207_AAAQTN hay_c_Page_102.QC.jpg
af016817499929aefded7a7dd87b9f2f
4b5817232b681705097124639aeace1115b1d8d4
F20101207_AAARQG hay_c_Page_109.tif
61be62c1a592397815d4e451cccc6c60
23f7bc40bbbb8a363ba1191bbfba41209a0f32a5
6276 F20101207_AAASNA hay_c_Page_087thm.jpg
5cfc88e47ec9729959abfc9db02c79a0
fc542b6a64d91d19806b808e796d4fe107c42937
1051986 F20101207_AAAQGC hay_c_Page_193.jp2
d18aabbce7c0aaf570a80ac156de1f29
5ebf6a84c552ae335d227fc2c2523f50483ddb68
5407 F20101207_AAAQTO hay_c_Page_178.txt
9d094fd292c751cce89f0391aad68bca
bec2af2f91004d227e754feb05ccc708a4995a29
F20101207_AAARQH hay_c_Page_110.tif
49931cd1a396cad1c2d46880303a3cd7
04ef7d0982c0fb06606fa0f994c7124666c92709
27205 F20101207_AAASNB hay_c_Page_088.QC.jpg
b30dd48d0f80343d0a342c0b89d7b486
15d4aad0c1c07c17bfcb1546774f37b4e108cb2c
F20101207_AAAQGD hay_c_Page_130.tif
5838888a43eeabf4accedab49d5826c1
388dc76f45c7832ad2352c9082239680f6a7c18c
F20101207_AAARQI hay_c_Page_111.tif
7d35a53e53bb3d15b8891f29d018be82
62152487d0ac55c41c3c2d255f2a3f1ac1e8a247
26365 F20101207_AAASNC hay_c_Page_089.QC.jpg
e3d6d1553a36ad84eb0d32c35e8aab56
69defb74a6c3ee7521bdf795f623382748e6556d
F20101207_AAAQGE hay_c_Page_179.tif
9e61b4079df29df313fe2c7202fc2310
99ea9de23f9e36cc44a471c172219db7a958680c
F20101207_AAAQTP hay_c_Page_141.tif
0478a915f886ccb12affbf5c38bfa7a7
3a178dbd59772cf68d91c1cdfb72b261be0b49ed
F20101207_AAARQJ hay_c_Page_112.tif
b32736f07ba4cdb992acaa86d6684b03
697c5a2ff572527a7c913082b8456aa0dc1566ba
6567 F20101207_AAASND hay_c_Page_090thm.jpg
8d8cbb1f3b8ec9d9497ce2ca89e8021e
637e8fb68ab27fb7776bd0ac95780e5d476c9b50
5421 F20101207_AAAQGF hay_c_Page_176.txt
95b77b39c32fed1eb7762dd94517aa5c
32d7bdb08426c151184c8e7e0e6b9ca5fda32eac
1051878 F20101207_AAAQTQ hay_c_Page_103.jp2
ee4a8b782e49c5203c502e5da4d48302
53436d2cc5709d4eabbf2cf4e87634d6efb2b654
F20101207_AAARQK hay_c_Page_113.tif
542c010abbde650ad32f71fa113a9088
ebcd0c656f949f54651a7c6ac9a98561ffa50db8
12923 F20101207_AAASNE hay_c_Page_094.QC.jpg
0b4c88752121c6aa4ec36e19b3f2951a
b02fd6de82f284cae29fbb3920a6ad6b73c38118
6378 F20101207_AAAQGG hay_c_Page_202thm.jpg
a8f828fd256231881eaec7a23bbd1cae
4f2fd542f4039d0adc3d131892f909d656a47faa
546 F20101207_AAAQTR hay_c_Page_151.txt
c3d7d9a338a64bde1c4cdd3957599255
7e74beeb49476e63c35b6581c74b603e0bd7f9f8
13961 F20101207_AAASNF hay_c_Page_095.QC.jpg
1dd30044146f8e2ecb1c46ad1c7b0cb9
3bf99468def7ef7d421b18878e79da66960eb4c1
1051954 F20101207_AAAQGH hay_c_Page_163.jp2
db3e6757c8097c1361a05355b9625222
fbf19e84f1feb827ca3de1227ac258e67172af26
41795 F20101207_AAARDA hay_c_Page_049.jpg
22585c9ec978cc11d7693498f462bcbb
a81c67e3005825083cab2f8b335a9f4572250f23
14758 F20101207_AAAQTS hay_c_Page_146.QC.jpg
ea05879fb05f821cafbeefe1a8f09443
e29e45e254fca70a0eeed733f5356ecaf6c9e8c0
F20101207_AAARQL hay_c_Page_114.tif
8ed49552ad0ef8ce60f7aad6d770659f
06a8f2dcdf2f04a14c192e76519f6a78418931ff
4368 F20101207_AAASNG hay_c_Page_095thm.jpg
93828542953dee65e40fffb26df3ec51
1c343ee42db17d95a877305a10ca55c230dd7e59
105230 F20101207_AAAQGI hay_c_Page_073.jp2
bac26428442e78525151a97c635cb03f
672b3c6708ef03e6b3f58d77944e18e694486451
34257 F20101207_AAARDB hay_c_Page_050.jpg
098bb33774fd6bae4e75ed959f52215e
483e7dec2a90246f112ff51390df28b91e412cff
5584 F20101207_AAAQTT hay_c_Page_180.txt
b97be63e3528e1c58367d885b9083668
0d56c00feef01ffdde0abd931fff2316337a4c38
F20101207_AAARQM hay_c_Page_115.tif
be36aeb1dda94eb34936addf8b9ffaa8
ead8fcd71a7160e8458903d83eda3f1f42c71be1
26465 F20101207_AAAQGJ hay_c_Page_180.QC.jpg
cb808e435e78400b4df695e87c1da78d
3ee2666be68f45641e799123e2d4f06d9889df69
48004 F20101207_AAARDC hay_c_Page_051.jpg
1893e07ba5338ec8411c99c483cacb6d
96ec4eddcf03f72f447ebb15595a910f2ae55e76
13268 F20101207_AAAQTU hay_c_Page_136.QC.jpg
06a1b163dea7f89f99ffc539e1d9911f
2d44f429aa363cea4455fd20e65e0f8891484e1c
F20101207_AAARQN hay_c_Page_116.tif
99f261508c406130d119c77abb76e520
c60143457eb15fdf5dd7f4621c2e878374c16645
4255 F20101207_AAASNH hay_c_Page_096thm.jpg
7087a10a2c82553c36447c7ff8d47e8d
061de946a06864182a5a3d6fb24f268ea7c83b03
954887 F20101207_AAAQGK hay_c_Page_060.jp2
19a3562eaea61aa5af5820d73e00b64c
0b562d68d470ffd0d79c7fa39ce9cab2b559bf47
27618 F20101207_AAARDD hay_c_Page_052.jpg
e5b71114f60aa016baa79177deee7e42
eed503a1140f4d8111ec512609831832b6e22aea
F20101207_AAAQTV hay_c_Page_231.jp2
6d23f55ab8954ea0116038de0163a1ec
320bbe38b80e7075fc724b1263cabc01067ee957
F20101207_AAARQO hay_c_Page_117.tif
9c0dea065b90c88168f8e6f25aa62fed
267deaa610bb54587e33d98b9f58c765c6980b3d
20268 F20101207_AAASNI hay_c_Page_098.QC.jpg
f186680b420e13410972fa9c34c6d31d
c1ac533fa4b99f891459bd9d629a28cdfa1b1499
2821 F20101207_AAAQGL hay_c_Page_089.txt
0a3165de3eb012463892dda75ea3fb68
aa44ff6d6be2f53f9812ef1e4b1db1e8be3f5057
42556 F20101207_AAARDE hay_c_Page_053.jpg
e6c3abf428fa82f272af8cd884301a45
02eed324e388eb263c9e840e6de37128b0131e46
1051980 F20101207_AAAQTW hay_c_Page_197.jp2
6d8d7828281991b6375fe3c0c56700cb
c1318bb726e5aa8fdb086b9c673c3dd87eb350b1
F20101207_AAARQP hay_c_Page_119.tif
205d0cc25ec2cb5589b30d347e8496c0
43d51695668c85d49b7a8e9efd1f868427067448
4809 F20101207_AAASNJ hay_c_Page_099thm.jpg
3ab7867a1b829db042fd7da5f12f772c
464a117c1c4b653289f49c1753819aa6aee1c3fa
111077 F20101207_AAAQGM hay_c_Page_195.pro
d4aa2abccfb5e70c697f267feca10f6b
b21f062518f1fc9b2d59adb259ce05196b8b1449
40068 F20101207_AAARDF hay_c_Page_056.jpg
89211e535c77fbb8ccd98f001d1a8059
ad00ddfc7b40a3b252780c9f07f86788426647c4
7110 F20101207_AAAQTX hay_c_Page_083thm.jpg
a9f51c067985fa9f05b21ac38dea35e0
df1c1d7039e4885f3c0c2b76e7c382b9852debae
F20101207_AAARQQ hay_c_Page_121.tif
8c6cc01dc7418a146fb6b20da0c69e48
b55a6ec899d1ef15bee2fae37de8610f1e5b2576
4995 F20101207_AAASNK hay_c_Page_100thm.jpg
38d18d1ca139a1ad6e81bf882bd52e1c
f33e7a961b7d3a8197c790d2ff03dc670a200561
133 F20101207_AAAQGN hay_c_Page_238.txt
cb308b9dc008af491527656e33009bbf
41435e6b5e50083ab6e47bfdc5ebeb9294d79486
28235 F20101207_AAARDG hay_c_Page_057.jpg
392517cf9db09e6c888d8731db4e3113
f55e378f88c327d39013cebbbdd79b81b77ce1c4
2937 F20101207_AAAQTY hay_c_Page_081thm.jpg
87246637cc3b9cae61d44495cfc96c88
e5112cc228549c5a2596d50a1f53c87cd10e2248
F20101207_AAARQR hay_c_Page_122.tif
bc66248609157b929acbf6d8f4521780
cd9eb9fa77a001142d61903b95f0d5c195702129
14779 F20101207_AAASNL hay_c_Page_101.QC.jpg
996ad7bfd29829f045e826316805a3fb
5c5e1299fccf2f8345e77bb17fc9917ba91c10d9
6923 F20101207_AAAQGO hay_c_Page_076thm.jpg
784db3b1f5a6038a46a5f831598236f6
bbf9b2b8c0bf7c8c225e5d08ba826ecb2bdc1f59
53835 F20101207_AAARDH hay_c_Page_058.jpg
c7aae3a292332c177d8b09b89a108148
e00676eab7a2d5ded252300bd76eec04a67f99f8
6642 F20101207_AAAQTZ hay_c_Page_104thm.jpg
3979a1047146a91b5b4c05c09faab95f
71cf32f607117c5193feb772bad4a88580e91cb3
1576 F20101207_AAASAA hay_c_Page_233.pro
a452fa3eb869791bb6df973ef2a8e55b
f873800bf176eced29520434996bfe82c8c53264
F20101207_AAARQS hay_c_Page_123.tif
a1b6fa33322672723dd4916cf5985040
3d1d11e59972900979b3b9fe2f8bb0268ab2c5ae
4394 F20101207_AAASNM hay_c_Page_101thm.jpg
8599df1c452c46be538066e013129f43
f09fb23ac54b8d7bb9a7a8125aa61c97b923aa59
14366 F20101207_AAAQGP hay_c_Page_119.QC.jpg
13989aa620c7454b9f4745aa0dd1470d
02676f0293b20b6c1e7d7fd82fb47ad89427ec95
38872 F20101207_AAARDI hay_c_Page_060.jpg
f99969bce8abe2765aaf2fe165333e03
4387c912c14d4faeee2775887c4e0808c19b3c3f
2276 F20101207_AAASAB hay_c_Page_234.pro
78912b8f2ac777654ae0fbdc0d892512
ca4ca85e168909dd27b32263a22b9504f64432c3
F20101207_AAARQT hay_c_Page_125.tif
e81d8f6c366d365370e637c80d885e72
4e71789697a43b84b31d5cc3845614d49d236954
4801 F20101207_AAASNN hay_c_Page_102thm.jpg
a44bd82fa7c70807b4477660d9e93c27
4ae6f7592115ab970383b102e1b7daeb9e1a1bbf
9929 F20101207_AAAQGQ hay_c_Page_121.pro
f9bca0f30e4813ab1d560868304832b0
dc7eb4a0a5e0a101776958501be2f398c3ab73c6
66387 F20101207_AAARDJ hay_c_Page_061.jpg
32557383b60154d55fa7d7e377d57014
06928579e024fe70a53378c4f7f17e6e3c432341
2498 F20101207_AAASAC hay_c_Page_235.pro
195671c5b6034cf7bd3bb5a6d6f6f46a
4aca292e4538ba5af2ddf514bebbcd88fa8d162e
F20101207_AAARQU hay_c_Page_126.tif
be93721b00c68f1474af0384d0718b33
d2dd5389dc53c701701b64e21526f9eb234b6edc
3273 F20101207_AAASNO hay_c_Page_106thm.jpg
079e426c830bbab9ab34243584fb85d4
51ba026f042fd65257a7949df82b481dc0cac244
F20101207_AAAQGR hay_c_Page_230.tif
24f14b4831f92d67d46b06b8ecaa0fb0
6032502a24d402fe441e132d200c0d5ace344791
74342 F20101207_AAARDK hay_c_Page_062.jpg
fa0a250b5eea72292687b117ea40fb91
cd7678db5631822fafc3a083bcf4a4e66f3a16d5
3061 F20101207_AAASAD hay_c_Page_237.pro
f58295136d8bc2297f7849c2d9ae0c11
28f12b8fdb490d4d87cb553e345faefe45d3ee7c
F20101207_AAARQV hay_c_Page_127.tif
3fc8190f825e66f6719dc93a86bc6eab
95008e6adf5c766db670fefcaf4325567e974015
12126 F20101207_AAASNP hay_c_Page_107.QC.jpg
0cb09a7963ea97849c73f9169a469808
f2307b85047ecd694241ecc71600ba0a8019da03
6572 F20101207_AAAQGS hay_c_Page_185thm.jpg
0493e4129d310a1af565eba37fc928af
254074265cc821b54500ad33c4fa39ef2a6b9522
70403 F20101207_AAARDL hay_c_Page_064.jpg
94314da8e563ecec4d2e1c5a0896fbe5
cb69489e466c17108f00faafd91b41e66854a24d
F20101207_AAASAE hay_c_Page_238.pro
03905c47a5e796d4c85b1040ad3e5c7f
28eb17ff6a98a6ac53a25b5a52959876b5fa79cf
F20101207_AAARQW hay_c_Page_128.tif
8e926b45b61eccfe6f2ebda3e52f7f90
ca8c58d2ef46cb2079c371f4805eea8eb4566345
4566 F20101207_AAASNQ hay_c_Page_108thm.jpg
07883b63be7bc5f59b79b0188b64e060
c31972283a5ff2a8eaf27ed1cc494db8353a03c2
1051984 F20101207_AAAQGT hay_c_Page_013.jp2
80a3194d2826552bacfcb9f8c3781f11
3c7101bd6f4e98051dc038a07a452364f84947d5
26158 F20101207_AAARDM hay_c_Page_065.jpg
fc10cb7fd3cc2d73436d3539a2b0e8a4
bc757ba645ab6f591f892fb5b4b4d6defd1e46d4
4028 F20101207_AAASAF hay_c_Page_239.pro
16ed0e917c3f771e339ae38cd8f3ec63
259a16b786ac286852bf582a025fe85b04de099f
F20101207_AAARQX hay_c_Page_129.tif
9cd4ea7e5e203568a80b6d27ab824a07
7dab7f4f9d32a522e0545ad51a1c185a2ea00232
4527 F20101207_AAASNR hay_c_Page_109thm.jpg
9e2e523efc3717a267ef4f4948d025bc
e925b91bc950c42aafaffeba7dc7dfb8c27bbed1
7209 F20101207_AAAQGU hay_c_Page_134.pro
8dd1f0c5ae95384cc277ae95c9fb2da1
126bb6bc75ad82ca107968eb51404851d70fe570
28904 F20101207_AAARDN hay_c_Page_068.jpg
1f9287d86f2b87ddad929e3f3d528420
838e1d469b89e9cc7e434d5b76e4bd8620bd8441
2751 F20101207_AAASAG hay_c_Page_241.pro
61473d75ba3c1461a1786b039f1375a3
15e6fade96db9273c8f61db688f9c7dd0087e888
F20101207_AAARQY hay_c_Page_133.tif
b595cfb85fe4df61fb34de1c6022f60b
7dd89ac665f9dbb1a079e11f11939aca1a5fd443
5452 F20101207_AAASNS hay_c_Page_110thm.jpg
7de14b94fe1ec77f35ee424ca8c3c950
3a756f910fd2c034dfe80c59dbf5016e882ab90c
1051983 F20101207_AAAQGV hay_c_Page_194.jp2
f27cb6508961434fd5f58e4207198b3f
0474174c3dd59529e19b203596a2e8d0b4e158b6
32023 F20101207_AAARDO hay_c_Page_069.jpg
632b433d15cd16c324ebb9f7d3fa79b5
c2bd783b5c1d006f11e20aa41a9cfafd1d1902d8
2260 F20101207_AAASAH hay_c_Page_242.pro
1f00cfef226766710a20c290a4472d43
72c44a64c7482d15bc42b89e0d5ad9cf5fe30c09
F20101207_AAARQZ hay_c_Page_134.tif
526c4f923b70e3f1b4f2857509568c0a
4de94bd634fbd76a35ac3aabed4f035c42ef291e
11053 F20101207_AAASNT hay_c_Page_111.QC.jpg
5fd7a0dc8a68423852827bfcb86089e1
052db73e00b5afd1812ce50061fa51c502b272c2
101847 F20101207_AAAQGW hay_c_Page_221.jpg
07b792cd35fbf7479d19f5ceda317791
40ee0899d9447c95bc122e62278b266da6c70ad0
32636 F20101207_AAARDP hay_c_Page_070.jpg
3724c0713447aaf61254d12fd728e4a5
765f74e033cbc5d28921018610ca92768188943e
60881 F20101207_AAASAI hay_c_Page_243.pro
7e506140d7b57145a9ea72da8e714ebb
a2aede1cb8c882ea1932b585a20438b0cb080275
15612 F20101207_AAASNU hay_c_Page_113.QC.jpg
896c10664c8c5b9d3bbd75ecb4bff700
8780d3b178248495d45e2c2735ea9ceb20b86e6c
118055 F20101207_AAAQGX hay_c_Page_201.pro
5e9a1828744d0d21d5bbb531363df721
546670f0f4808c94510f90ff58cdbe99b33caea6
F20101207_AAAQZA hay_c_Page_159.tif
d5cfacc864147e662f676327935bfecd
32a83c8f91375c34cb2e1f819159494b97599e01
80259 F20101207_AAARDQ hay_c_Page_072.jpg
9d544a2815eb9637dff1cc0cf38fc1a0
32d51865c07735940df77288727c08416b3f2645
32323 F20101207_AAASAJ hay_c_Page_245.pro
3bed2cd9cadff549a81f777818ecbb21
57fcf79318ad63dc3051721e504ce7a4bfc9c34a
4974 F20101207_AAASNV hay_c_Page_113thm.jpg
285df770611fc523f5a5f5ee0e2761c6
855375835025e4bf05b824e93d8ee5d258f13b73
30862 F20101207_AAAQGY hay_c_Page_009.pro
fe3b6b8ad2e1d3c71a4fc7f8ccf68fd8
488b2162518363733263623bd2d14a333dd9879f
23744 F20101207_AAAQZB hay_c_Page_213.QC.jpg
f8ed2e2bf7107d485a65b3fbab98abc7
75698c3d05e006b5edca16d09b42f39f421e0bfa
69631 F20101207_AAARDR hay_c_Page_073.jpg
5990ca3fbbf05907e41260b3018a1812
be120f2c7e1eb5fd207fa8e31c94535857d71535
78 F20101207_AAASAK hay_c_Page_002.txt
432dc62a30b5dee49f40bff279550ec9
009abbfed67ee961dfde0c7cbd744fd6a4652dcd
3666 F20101207_AAASNW hay_c_Page_114thm.jpg
36edfdeb3f156fffb5c4b8ee0e5a5321
64fcb3bc3a1c86893b546039e01857fc49b2d257
4803 F20101207_AAAQGZ hay_c_Page_171.txt
254f8116a159dfc5985fe7e1fd55c367
7129f8c188fffd560461bc941164db6695a60f52
101421 F20101207_AAAQZC hay_c_Page_191.jpg
4e373f927f1825fe3b9042a02d838117
8204469c295a7c81483b8af5db245e1ce28d1014
75716 F20101207_AAARDS hay_c_Page_075.jpg
222f0723c2fb9caf59c44bf77900265d
5311050060864c0c1b5b8600307c3e314d72a38e
251 F20101207_AAASAL hay_c_Page_003.txt
f2cb97daa8080bb0ee38317a15fa294c
e9f33b9a62a714541a47f587a85248d85bc0a1ac
13742 F20101207_AAASNX hay_c_Page_115.QC.jpg
c8853a2fb49475f6e887f99479b4644a
9e21d843bd49a3f040c65032a8bf18b71ac26650
624115 F20101207_AAAQZD hay_c_Page_127.jp2
f2b3dd46a79b74885f53aa99b8ec46ba
429892861026d590b64dab3f00ae7f06b22a2bc0
91054 F20101207_AAARDT hay_c_Page_078.jpg
92d684e4002f8314230fe15b547762ed
779cb1b372770edcf48e30911d14f80ee4bb84e8
1063 F20101207_AAASAM hay_c_Page_004.txt
23d81bb841cbf4eff51610246508a651
9d81b348f04f67dc81bb4ef372aa2fe32f7597e6
4015 F20101207_AAASNY hay_c_Page_115thm.jpg
329f6e72b3abbe882260ed644057c13e
20e848474eb83401d3bf11d4df8af126e02b1a17
212 F20101207_AAAQZE hay_c_Page_240.txt
d833ec0cf5349a26b0af2fcc996fd910
af3880a56d5b0b09907ff2022053de4d0cab8a28
36578 F20101207_AAARDU hay_c_Page_079.jpg
ddf293470afe33bd4cf5f34344537347
d0fa37174fa74072401a78cfeaa88100abb6b0dd
3542 F20101207_AAASAN hay_c_Page_005.txt
8d229069524db117182a446c0460a927
13ed7699147ed6cec8595c19ab2e0d18048b8057
21230 F20101207_AAASNZ hay_c_Page_116.QC.jpg
4ba2c8c69346a507b0e6bf564728c3eb
d17586f7d97ebd5808438dbe5607a6afde2e4318
739758 F20101207_AAAQZF hay_c_Page_149.jp2
13a7114c42e04ec3ebd13292eec36373
6739b5ddf41fc98b297c33d8002ca2e646e4193d
27991 F20101207_AAARDV hay_c_Page_081.jpg
0b30bdae4e95406a1ff802ab205cea2a
de4637c75b0b0418dd054f48bf4b74b43e5225da
2689 F20101207_AAASAO hay_c_Page_006.txt
d81d379312e9f709a12b2b7a9f7aa054
cbf942ded2066ce615db34612d319a8a719c1ccc
598980 F20101207_AAAQZG hay_c_Page_094.jp2
f67b4181628b0a0003a1129b6a504910
6106022f0c175742fbff9683462ca8cd7a17d0c5
77640 F20101207_AAARDW hay_c_Page_082.jpg
cb96ffca51e447f0164fac385f88bd74
0ac8d562de8a43e399c366261113ad0f3336ffe4
1217 F20101207_AAASAP hay_c_Page_009.txt
674af5e8e4d9c79b3201dba1638dffa2
6273344f0ed83b951c95367c67be3c3cd4a7dac9
2093 F20101207_AAAQZH hay_c_Page_091.txt
78aa4a911400a136877b2d1b6bf4383e
a052b00e7a43601f2c16df018d2b619b81b2e63d
84283 F20101207_AAARDX hay_c_Page_086.jpg
a4add8c5a1f91a298163d2724b651fd5
8cade13af4c8834cf7b738fbdb67407e27c73964
54151 F20101207_AAARWA hay_c_Page_084.pro
413e3e58acaf50b88afc7c63abf9147c
1edf7f5490ddf35a725b75e092ab251f455e0f76
2778 F20101207_AAASAQ hay_c_Page_010.txt
4b134273cea26c0f33a89459c309970f
644d242a5a6a96021e0e24a27154f9224c83cf39
79082 F20101207_AAAQZI hay_c_Page_007.pro
a88b2d9b623faafd858b68e1f8d8f7b3
4517d0adeac74987e220051e2b3573aab99bb32e
71897 F20101207_AAARDY hay_c_Page_087.jpg
71ca8c35d11a170e55583cca55604890
8041291a4cdf9cd3486b54a0cff98e554f1a4c91
50310 F20101207_AAARWB hay_c_Page_085.pro
90e741477ef56e735a7cf07a37b12627
1d634084b352a358f39b78f4ed68aee0a0f7dc6d
2976 F20101207_AAASAR hay_c_Page_011.txt
97d73e0e1e27ed5d73b1a130a46a2e4d
ca5a842e3bcc0624cc4ff9041443e0228fcf248b
1051972 F20101207_AAAQZJ hay_c_Page_104.jp2
545245b72941ee9cd049411c852eb080
30253428aca3c058504b1de697ac50e1f784dc2b
96715 F20101207_AAARDZ hay_c_Page_088.jpg
b94e66ae3dc69f8cee695be1215a6b8d
c2d79181ff0f70914a009c9a448f30c1506d8ab4
53079 F20101207_AAARWC hay_c_Page_086.pro
8b00123340eda57aeb0040fff4f358b0
007a10179cdfe3979614c0b7964c92d0c284b520
2810 F20101207_AAASAS hay_c_Page_012.txt
5ddba6f5f10c9d764fdcc1ca81d029e4
33e000620ebe4176d44ba0f6aa8c1c02a4c45507
1636 F20101207_AAAQZK hay_c_Page_232.pro
01a92b4f02e5b1872da253c1f1564c62
20cd4ade5e731147f99c82f11b6d42c4bb1d5cc5
51948 F20101207_AAARWD hay_c_Page_090.pro
f4f2811ae7534f7fa9e440b12cca98b1
f8f38e3b547a738b880ea7781a0d4b6ac577033c
2793 F20101207_AAASAT hay_c_Page_014.txt
c16e08fb65faacd9858cba854622212d
eac95884f9d8425fa7412560399f19ff0eb04664
4263 F20101207_AAAQMA hay_c_Page_140thm.jpg
767707a181b6914aae9bfb6b8a62a6e6
b0e2dbad51319251cc6e55bee65b5d78d5099edf
F20101207_AAAQZL hay_c_Page_213.tif
a225dbe232fa8249d0e9fbee68c85b13
71822d2777f34bfc4e467fd397c81210e8e37c3d
14050 F20101207_AAARWE hay_c_Page_092.pro
84337b093bb4694ec53725ddc7f1bfbb
3dddc9a5b13257405fd803d395d8762e6df20d04
1846 F20101207_AAASAU hay_c_Page_016.txt
97cb2c2db1e3717912decc93fb9808ee
7b94a9683eecd663bb634731991da4daf4cee4c7
6417 F20101207_AAAQMB hay_c_Page_207thm.jpg
6a239c6e4f5ef69f5a9143fb07179605
725b3dd50f1640b6ea375494fcfc3fd7437a2b03
F20101207_AAAQZM hay_c_Page_053.tif
766ddd1b8fbdfe69b64ee1b1c485a3f0
fe70d3792c0cee69e356fe7129c3e21704d9ef2a
8611 F20101207_AAARWF hay_c_Page_093.pro
5421fe44b1bf2e4636576d15efedf887
516095f334f4d1fbcaebf1bff94863df0c9856b5
1937 F20101207_AAASAV hay_c_Page_017.txt
01c572f585885457b7d4d3037ad5e00f
ba765f32c9c93bb7f3d390636645d9e45a0a60ca
F20101207_AAAQMC hay_c_Page_058.tif
0b28955902abcea4f5b3fae78187f4b4
bf3deb7a52a82589210cef82662eb06f2e164d72
2066 F20101207_AAAQZN hay_c_Page_023.txt
41d0d430527de50ab5e604eca4206fd7
1e4d8b4a5f914b5c3bd5e23e301e8676fb7afd18
7794 F20101207_AAARWG hay_c_Page_094.pro
df6819d388fb30f0daa7eb2447f038b6
2afa143a5fd537d4eb85d0cc5658ac28b37aaacb
2049 F20101207_AAASAW hay_c_Page_019.txt
8caeee722966259d709727e2f7ed1652
b93fd33924ba0d7763cc7304437a73160116d3b9
112250 F20101207_AAAQMD hay_c_Page_173.pro
be8eb1b1f6341abeeccc1e9332d56b8c
163171455dce7b051fcec61189f3c6c669f02d22
49163 F20101207_AAAQZO hay_c_Page_133.jpg
4a413c5a3d0fe2b584de8deda8a6e2b1
5a38ad719f91975d7d08c250ee3d9288b3e4f02f
19828 F20101207_AAARWH hay_c_Page_095.pro
a51e1496dae28f880b22ce8bcf4e30fb
9d7f485094f5718b9762d145f873de80ff7b731a
2222 F20101207_AAASAX hay_c_Page_021.txt
f967cedfbdee4dbc906d331dcbd27f8d
71f20bd644a6b453cac183e9d3829f6c4000b0ad
5577 F20101207_AAAQME hay_c_Page_005thm.jpg
6c4d19782a66a763cab49693c97ffea0
a2bc42ee6136d0fada09197b683b6b6a0ba909f4
5282 F20101207_AAAQZP hay_c_Page_188.txt
7fab92290bac55516b26940c286ccc53
bbbbd901d7ff4030ecf96dcfb4d5bd931ae875cc
17197 F20101207_AAARWI hay_c_Page_097.pro
1e7df870ada1b1540df7d96b566be2b0
7730afe0c6e296d63ce0bef79c591937eab146ab
2100 F20101207_AAASAY hay_c_Page_022.txt
a7cbd17ca06fcb2d3dfcab413585bed8
b20900e6919c7833441ac91d71ada22918905871
1051901 F20101207_AAAQMF hay_c_Page_229.jp2
354486ee019555554b3a44acdcdb8b6f
61c9498ad04fb9266ba8bb91bf533dc3b46c65ce
95642 F20101207_AAAQZQ hay_c_Page_179.jpg
312c5583ef4fdf7c7afe78562de3b3b3
f47509382814c5c88333cf7833152a43d1a9d1e3
27957 F20101207_AAARWJ hay_c_Page_098.pro
8523f88daf88aaafebe0cee8c58b7b11
f2fa22ff940402cc4bddca495aae9027d45b475c
1302 F20101207_AAASAZ hay_c_Page_024.txt
51b74842aaaaeb760f27ef880f0ae97f
0a1c4ae4310b458dfaaccc32e56b45ff2df7c330
668552 F20101207_AAAQMG hay_c_Page_143.jp2
0ecad89454d3edcbb13846e5c687f2c2
df8c69feeec9eff1ff62932e7d86c5ae6386817b
F20101207_AAAQZR hay_c_Page_151.tif
1854aded884e2598487b80de2cd0927a
7e4bde52a1972d5eeacc10a990a62b8a71e406fb
15407 F20101207_AAARWK hay_c_Page_099.pro
d97b7fae025843003c1ecc662ffc7c86
eaa377ebd1c93d1e6e201dd0dfeca46451ba86e5
52280 F20101207_AAAQMH hay_c_Page_023.pro
bdd562f601b76580f3af5fe2dd66f667
20fb06694c32742160013f3d2f7ee01d777254bf
1051749 F20101207_AAARJA hay_c_Page_049.jp2
e969724505ecea6216b37441519261a3
05a4baf4795eb7cc363b8e4484bf5c3b709ca82d
6517 F20101207_AAAQZS hay_c_Page_014thm.jpg
b90c3af7c8639af6c3e14dff8b5f08da
d513e2a398d935fdf1fb220faa0ea0550405aeef
10135 F20101207_AAARWL hay_c_Page_101.pro
dc2bc487e60b6e22bcd9bb4347be6870
d4ed38e28ae52b4f9dcb98b3e502edc6786323fa
F20101207_AAARJB hay_c_Page_051.jp2
d9417ac3c4fb8d6ef865c50dfa9ea2a1
9bd597ed1ba4bfc5a162f401c6bfb4fc89c74331
6357 F20101207_AAAQZT hay_c_Page_176thm.jpg
743ec8e2ca72727966fe76d081cdff24
59e18c145f358e42b068a6546dc02e53755dce3d
75736 F20101207_AAARWM hay_c_Page_104.pro
f9a805999fe416d182d1ebe9ce309581
16032414fd82cfe09b3fef390fb16db2d0a11494
6002 F20101207_AAAQMI hay_c_Page_236.pro
c63c6505ecad6ddf37d45b083f3fa80d
ce73b96684f8d9df4deacfb7f83577d4573987b5
827262 F20101207_AAARJC hay_c_Page_054.jp2
fa71ac95dd59eb9897f64a2293007586
4ec54727122c8d0e36fd824a1b3c5da629db0b34
F20101207_AAAQZU hay_c_Page_102.tif
bd3ebe686fd89b924dd756432f19af9a
9c5770b995c5ef3b81c9d67630695507b5cbacab
12012 F20101207_AAARWN hay_c_Page_106.pro
12beb5efb8e3361fc72ed6afc91e64a1
ee51ec3937fa65898a366e6ed17cacb8318ff499
599175 F20101207_AAARJD hay_c_Page_055.jp2
ab18b6f79b5b31142c6d9013c3bcaac1
933754781f7232361e8a99b52db989431426b9c9
7549 F20101207_AAARWO hay_c_Page_107.pro
00f0a0d412df9383787b9361a16841c4
a4b9507347d883576bc99c94ad5a4e4188eeef25
6482 F20101207_AAAQMJ hay_c_Page_072thm.jpg
b861c21d1e296437b00455f65aaa41a8
9cc17d58f193bf343c4017b2c46ab7a92a2d777e
1051883 F20101207_AAAQZV hay_c_Page_196.jp2
2c94ed7debf1c8fe364f6d68f26a32c1
c0368a92a83aeebb276aeada6129d3ab9e0e5df1
11699 F20101207_AAARWP hay_c_Page_108.pro
2c89c845118c82350b412d2cc69f4c27
d4da087ea185080e9cf9d04f555f328acb1220ca
4361 F20101207_AAAQMK hay_c_Page_003.QC.jpg
baf55e355dbce8ead1d5429fe8426f2e
b80416da580d5b2f78e89f382bb213c31b4fa40c
572805 F20101207_AAARJE hay_c_Page_059.jp2
cb804bc6b0eabcc5fbac5d989acd28dc
b7b4220db0a34ca1ce870a860e0562b1baea2d7b
13758 F20101207_AAAQZW hay_c_Page_143.QC.jpg
77d2c30db6bc6bb339504b188c8025ee
9b432fd71aa38eb88cd2905f8cb000612c03e47a
35612 F20101207_AAARWQ hay_c_Page_110.pro
3eb8e95872ad0dad0fcbc5d1ec5a9511
1f022a9b0419fe5b15fff3cefe8f24a7e61d5dd6
50136 F20101207_AAAQML hay_c_Page_157.jpg
11cfb7adefaeab648bfb51382be5244e
5a425f146e6a3ce6a6d0552b963529036381ffd6
99963 F20101207_AAARJF hay_c_Page_061.jp2
cc86622d47bb3a4f55e6a5287d26d5e2
2a651e765ee625a01b907f675a46f1410acbcf20
2230 F20101207_AAAQZX hay_c_Page_060.pro
8976bb27e6ad8cddd9c0c1f71450c310
07edba8c24c6f0b080afdfad2d5c3b74242fec8f
348 F20101207_AAAQMM hay_c_Page_115.txt
e9457e4aa493943d3a1907cb7e0b1713
0a0364059fbec7789d6cde11e97cd8ca2bf90f45
111265 F20101207_AAARJG hay_c_Page_062.jp2
d534adf5226f23e8128e55f38c777d66
7ffdd9e867864f742fbfcf585d63f6b435705d57
1051974 F20101207_AAAQZY hay_c_Page_005.jp2
33ab7ffe6503eb6e4995740518364951
1a721b3ab58dc87e39410af73afa68874204bde0
19411 F20101207_AAARWR hay_c_Page_111.pro
04eb19aa6a999f3251045d6c3e707d07
05b57ba94d06e979c54e952ca43a4367caf9967d
242 F20101207_AAAQMN hay_c_Page_060.txt
aaaf9cf2edbcc91b327720ba00fc8793
b313dee97623115a68676cc78e5c79f848c63fb2
106022 F20101207_AAARJH hay_c_Page_064.jp2
44ec0138f74fd54665a75b0ed9c17979
4ab85059c8f3dc98a3c45ad52916ac2d5d4281c5
14295 F20101207_AAAQZZ hay_c_Page_065.pro
aebe1253759a4a44c10a8b34440e75e1
00a35d08a2a5467325f84aede5831adda3cf34dd
6602 F20101207_AAASGA hay_c_Page_023thm.jpg
0ba63dc92d9783df5218a825b6ea9195
9a3bc263fd565975d76e20dfac352429692dadda
1634 F20101207_AAARWS hay_c_Page_112.pro
bfab542a07446050b5ca44fef74f24f4
71db75ad7d8fc388921c265093a630d985be3a2b
89790 F20101207_AAAQMO hay_c_Page_012.jpg
470d67c15e4cdae1ab7447e756be638e
3a84ede3f2e54398e351d65eeccfa322667c9ce6
33851 F20101207_AAARJI hay_c_Page_065.jp2
4bd1c7dd978462061eee465208cd1c78
29d2759ba9898fe16ff1a8bfa2276c2b80b10f46
7679 F20101207_AAASGB hay_c_Page_038.QC.jpg
86da953b63a3c5725f5089ee89feee14
70ebf7ce946db57d9c42b834da9d9a9f4b24d67e
9896 F20101207_AAARWT hay_c_Page_114.pro
39ab11bf73926e5aa40e9cb76e925d94
c1f3ac2a1e5833f06e90a5f50137e3d7f7b5f648
87456 F20101207_AAAQMP hay_c_Page_192.pro
0ed8c1c941d1dfb32c166c1d1b7843a2
14972df522bae35a9899396320e8ccd5aa835267
393444 F20101207_AAARJJ hay_c_Page_066.jp2
826533f07bba1e3b1bbf0884d217c7e6
8e3477cfc811eda491de75020bbcea59b6fc2b83
3117 F20101207_AAASGC hay_c_Page_161thm.jpg
702d30d72aece5978e732580d8a56ad7
9ea8207eff20f4bf2015bf8bace65a7fe599b910
3904 F20101207_AAARWU hay_c_Page_115.pro
eb05aa7058b4ee197658ef044a70182e
db280a3d4b0c4847238c2eb025528e8f0c1cf199
4353 F20101207_AAAQMQ hay_c_Page_119thm.jpg
109d3dee99ee3ca90be7b37a82ad0234
a5e35f83b787fabc89d986b756fb6053c9066deb
812533 F20101207_AAARJK hay_c_Page_067.jp2
2f52e06b83df8f8c3c32b2750c465a70
20398baa56bc98670aae66b8728b7964d406a5ae
3435 F20101207_AAASGD hay_c_Page_160thm.jpg
2da001bf616eb638971ef5688d4a8cb4
871134adf6b039696d286f95297d28dea77aa9b5
2724 F20101207_AAARWV hay_c_Page_117.pro
d3cf2161cca109ac816cbb13e5527b83
3d5b811c7a90a6cdfe7806731d7a48b865af7f0b
1051939 F20101207_AAAQMR hay_c_Page_206.jp2
cbfc9af7712a8e3e1d96512d404d7a3b
18b2715a651312e9b1c3a083d2619d1632fff586
792060 F20101207_AAARJL hay_c_Page_069.jp2
a856903c23e816171321d9043d771e72
ceea3f2df37baa0ce0717b0b06c764858c747421
4029 F20101207_AAASGE hay_c_Page_127thm.jpg
6f13e4a3d1a31f8e717ece9fba093a1b
d1eed648e0b7d5e403c7f52654c6e77f9b1b5e44
11145 F20101207_AAARWW hay_c_Page_118.pro
42bf7c0b5ee3baf45b0c9417747bef0e
47753c28b9f7ed373041b015e6381c317980fbb7
16233 F20101207_AAAQMS hay_c_Page_235.QC.jpg
285f521b08e7ac83544840d68a2fb0bc
6fa41ec5e72ed2ce178cf450e8c8aa236003bbfd
119019 F20101207_AAARJM hay_c_Page_072.jp2
0b50414e4e8832f2ac9d6c8f456b83c9
652a77926cfc453f7f61d138905d3c4ca2f98fb0
11364 F20101207_AAASGF hay_c_Page_129.QC.jpg
3aff2da93135d097468195732b1dc1be
dfdafd27375f389c563d76c2d55ca20f6248d189
9680 F20101207_AAARWX hay_c_Page_119.pro
02eeada6522ed9148502f30d185d4c1b
7917c8ae436f2773708efe6df596b3879852a7fb
4552 F20101207_AAAQMT hay_c_Page_024thm.jpg
fc875c02ebb5f00daf2e694db0e1bd3d
35564ee8548f2ffe8ee4218fe137c31b0b63e9f0
105357 F20101207_AAARJN hay_c_Page_074.jp2
f4b4e441944ef4bf3c343e99507dfccc
56eb29f299f66c46d48846d5c4af92aa0af66f4d
4396 F20101207_AAASGG hay_c_Page_112thm.jpg
ec2da65e36cca6797c5d0076a24aef98
1e5924c21192a8cf9b79ababb57c7e346a3f683e
8906 F20101207_AAARWY hay_c_Page_120.pro
6133b007c48e68c887c724bb770d2801
5c81fdc17af57fce400c4af0f6da409925b0238b
26908 F20101207_AAAQMU hay_c_Page_083.QC.jpg
77adb2b7e27b5dcf10ac5a6b81f228a6
5fb5c11f7f9fcd516381c966103b945ce08c382f
115834 F20101207_AAARJO hay_c_Page_077.jp2
c72489f693cbee3f75467703c4b14123
d0b2fea2bfc3060219d207f746871c48b815cc97
F20101207_AAASGH hay_c_Page_052thm.jpg
fe53744859e2f8f5593702bc5195bbe8
4743c0ecdc937c2f1fc04ed7446d1591f916f283
13272 F20101207_AAARWZ hay_c_Page_123.pro
000a659b9abd11e91fd5ed2c9a25486e
536a9ba824f94b1efafa744f1d11319da6e80f30
384 F20101207_AAAQMV hay_c_Page_033.txt
abcfb19c9f975ad957db92cf6e510538
8f57257397c4d9e44647a405426e42eaf7711031
31809 F20101207_AAARJP hay_c_Page_079.jp2
6d8567b1c1cd59ed3551f305c53e7df4
f40ef400bf05ed73ea58e41a78f91e157916c03c
7097 F20101207_AAASGI hay_c_Page_217thm.jpg
ce46753152bb4ad31fc4f50fccb5fa40
960af8c574d233060c8a0e907b00dedb7dd2af10
9983 F20101207_AAAQMW hay_c_Page_140.pro
f0d889064886cf3d188bfe4607f44d13
e7b9d292d2c32361aef71ec5017ab0e70efe4397
898182 F20101207_AAARJQ hay_c_Page_080.jp2
8fab8b966574139dafd5af6cfa0fdf9c
c7e8d93b524fdec3126fa68c21fbf341d8f0ef78
6409 F20101207_AAASGJ hay_c_Page_196thm.jpg
0698a875312cd016471b54e6b02142d0
e02cf43cd1e1def2708a3e96680f6392e1c28233
F20101207_AAAQMX hay_c_Page_009.tif
467d1f6e0278f961e0e2da5213d016f6
57ed6d069715031d62840dddde2f1e0839147e8f
119764 F20101207_AAARJR hay_c_Page_083.jp2
a0050ad9ec734a199b6f038e8432b2bb
89d91e2bbf61928a3c075e77903388639c958277
F20101207_AAASGK hay_c_Page_064.QC.jpg
478faef78b73f613c8ed8ed04cfb55bd
9b083ff30ef9444a9e0b2aca1f6dd8ea25f2ae61
170 F20101207_AAAQMY hay_c_Page_225.txt
0bd8ddbcdc7cb2f5014174f913734cfd
88b63f9c09aba54c2b45e4e19571be6882f443d0
108780 F20101207_AAARJS hay_c_Page_085.jp2
9915ee296c8356283907e942f1f7df48
ac1eedfdb2f78c003ad9b56e779738ace71685a0
6201 F20101207_AAASGL hay_c_Page_116thm.jpg
9f931587d99bd1504b5d49603878395e
cbd37ad1f8c2e61cd53b93d0fae0b272b19e0ccd
698894 F20101207_AAAQMZ hay_c_Page_081.jp2
e19d2365d944b4a4953a39951c9ebbac
c15d4e4b93de833d1cf6089d56adaa6c5477f630
1051963 F20101207_AAARJT hay_c_Page_086.jp2
047f7879f5414017f5066c22b6f46a3b
b16d553f4b152b3bd00629956f3c33b859eed4dd
6887 F20101207_AAASGM hay_c_Page_022thm.jpg
d1e63fdb384195cfedec235e69347e86
4df634a7a159752a8ca7a10ef3c2653a72e3e4c7
108717 F20101207_AAARJU hay_c_Page_087.jp2
f935304792be0213914271d271213fbd
d25aa69d17b30cd7d692aa727850cde6fd371eb4
20755 F20101207_AAASGN hay_c_Page_099.QC.jpg
67cf3387e43143388599e790ad38c714
04ad8a35f1c0e698654e37fded505884dc3d9c20
147911 F20101207_AAARJV hay_c_Page_088.jp2
0a66639d81e5ca37bcce4783f653a8ca
a067c933956c1537df0d4514189b02bd2f4c82d6
15795 F20101207_AAASGO hay_c_Page_024.QC.jpg
8c663bf04829fcaec8942706d5f1233a
dae7b31c4a43fb4d6d58eab9f2c8a98aea729089
136788 F20101207_AAARJW hay_c_Page_089.jp2
80660d5ef958db323093cd8d2f66e8da
814dbccfb1576f106c28e012ddf1a19b9e1d74af
6738 F20101207_AAASGP hay_c_Page_026thm.jpg
4a3cf85abf08781855dcb501b48c5fa3
10f7c44786449f8711f8cc24d48e30479c6b1ee9
111241 F20101207_AAARJX hay_c_Page_091.jp2
2ea5e085fb3d3ec86b94b6cae23ee787
014f269341b5ac3eab68e2a94d89ff3ff20a296c
6682 F20101207_AAASGQ hay_c_Page_091thm.jpg
51c541bdf2fcdc3feb992e3cb67812ba
13e2dbe9a65849eb84a7dbf7972f65be5daeeed4
517777 F20101207_AAARJY hay_c_Page_095.jp2
701d06de128cca2d04115b16a3e736ab
b766ac243f0596856ba336351368812d09fb1eb7
6400 F20101207_AAASGR hay_c_Page_188thm.jpg
4ce8704bf2390ebe864468606a55e136
8eadba1daafda8c613455a55abdde444c7054855
490745 F20101207_AAARJZ hay_c_Page_096.jp2
8dc24b8a6d0e90cd03b5336a2b7353d7
4dd85462d5c61ce58630d764a8b2fd23eab5b024
25352 F20101207_AAASGS hay_c_Page_026.QC.jpg
aeec59880c597c3f63bdb49fd448707a
0868e55a5eda90e0cd42a125face83c0487dc239
4344 F20101207_AAASGT hay_c_Page_147thm.jpg
94a876cd4dee18a09e04dcb7b5009007
4c7ac4772cd1998d37e743a9d7efc4b373404acd
17905 F20101207_AAASGU hay_c_Page_229.QC.jpg
e292f2473710cf5ec022ed260014be48
8475d6a4fe0bb363a48eb72808f6b02399ef8639
2168 F20101207_AAAQSA hay_c_Page_042.txt
c4071d87ee7e52e679329f7b6f215a23
8dda8f8c327f844b3b06ef62397a170d76ff46e8
27479 F20101207_AAASGV hay_c_Page_167.QC.jpg
4cc7f7ae5f93b9a3c4e3d705c64619d8
890e43f1aa251cd8458f1caf42b700d1c41f9d58
4692 F20101207_AAAQSB hay_c_Page_097thm.jpg
87872886ce15837bd95edd1c0a3036e1
aab5d256f083f3ac3bc18ef67a95518a0486bc9f
6307 F20101207_AAASGW hay_c_Page_181thm.jpg
1e40fbbfc1261f41f64a4b8e8a59edcb
263e0bca2f85b051e920adab6e9aa9291e4be547
662042 F20101207_AAAQSC hay_c_Page_058.jp2
fc21a27cfdd96e0ef4f7b0ef62fbee41
2006354987529e52084e9cd0cb9fc93b12ec9435
15919 F20101207_AAASGX hay_c_Page_117.QC.jpg
71c07c6047e87b43f68d85456ff373c5
aa487c93352a26f9cf3c16a05581c434784ebb82
98044 F20101207_AAAQSD hay_c_Page_203.jpg
72b29551a819ee623c80fc79d1ee1e93
e75aa3d710f8cee60dc9659f4671a3dcfe066134
25039 F20101207_AAASGY hay_c_Page_010.QC.jpg
b547a295343c351678726e9bde5ccd9a
a9afe5df23608a09aa44eea8345ddf1a484df35b
18763 F20101207_AAAQSE hay_c_Page_100.pro
a0128e6923e5359324448206b7984b97
1d9b0940d186a9249ca633d211517a62f64a2af3
6381 F20101207_AAASGZ hay_c_Page_206thm.jpg
be1c4bdaafaf324056388b6b97860168
0f35438a280d541ccf0faf6be0b3d5251583ec45
36522 F20101207_AAAQSF hay_c_Page_106.jpg
b452e3022dc38befa76c6007388386ce
0f3bf214ed1ebd129a38ae33700ea86d6595260a
F20101207_AAAQSG hay_c_Page_165.tif
ee2409e58250ad9317854e97f9e8d86a
9b7133c406150ed379980bdced0dc498251d3a6e
F20101207_AAARPA hay_c_Page_057.tif
64688ad074035f8934def68a061d453b
5d327921d3f50bd1fe97bb5f7ab548f075de6367
15390 F20101207_AAAQSH hay_c_Page_112.QC.jpg
c547559072929cd9354927a484d71c3e
ea1407cb3c15f28a79ab20dcff1dba94e0f6d26a
F20101207_AAARPB hay_c_Page_059.tif
e6afa40b7f109d9a9e21db2d0450d771
328142169a09289287393090c26b36d787d44bcf
F20101207_AAAQSI hay_c_Page_189.tif
9ed0f3b6d571ca284d8869054c154b25
2da19248f4e3d22e4bea9c673df1e7ff1443b84a
F20101207_AAARPC hay_c_Page_060.tif
f9d964776832d498420ffbd3f2fb478b
3b78c90f2f9d523952335d0a2b6359bda71902cf
758 F20101207_AAAQSJ hay_c_Page_106.txt
d7d4bbf33aed8ef398294bc67b70737f
3febc47add29daad8b026073e6c2d8f353bffd4a
F20101207_AAARPD hay_c_Page_063.tif
8a3a3e1a375577000573ead78894b245
74ae69e9bba0e0b21f796eb4d6fe22bbbc903e01
153 F20101207_AAAQSK hay_c_Page_053.txt
ca2e4718bf5139c176827a0dd8885b39
e9d8514f149cec57d61b258c87dc1aae19a6d02f
F20101207_AAARPE hay_c_Page_064.tif
00f9fcd452ac0b106c25d5254f943a28
d1f42cc6d53a62c4b0f59c16a868e304bc5fec83
F20101207_AAAQFA hay_c_Page_166.tif
0854a888365683934300707245ccb859
4bc58d766da7cba9d476eeb04146f762421fe957
7150 F20101207_AAAQSL hay_c_Page_211thm.jpg
d8acb79d8bfef95ff4f61627d22bbca3
a0e0c729a717082719cb1a0edaab76a342ea9e6b
F20101207_AAARPF hay_c_Page_065.tif
988f391889c984013aea949bd4cb016d
8ea3cb6a99aea5ecfb510c8ddd3907e19ecd4837
F20101207_AAAQSM hay_c_Page_180.tif
2db5e9baa5503c347c64f169bc8d2e05
bf86d8c776f0aae1164ac54421b0c8b639c12d8e
F20101207_AAARPG hay_c_Page_066.tif
642c8d080f90202d722b3e5b419a07e6
1d3335405b2f00814b404437be3809567cfa4109
1003125 F20101207_AAAQFB hay_c_Page_053.jp2
8a7e1679338c13afd1894238e1adfc02
15aab35cb06aee9c82f22a64b16cf6ba9ae48cdd
4612 F20101207_AAAQSN hay_c_Page_196.txt
bd7d252035b7bcae808c5bc7a8e3ed1d
05c427f8685499093c86bfc591f8b9c2c9cf712d
F20101207_AAARPH hay_c_Page_067.tif
00ae999f8a27d82b2d4675cf97487bb7
521ba3272be2bcf745ad42b9ce365e3841dd46b7
4104 F20101207_AAASMA hay_c_Page_055thm.jpg
7486d58b9dbfcc83670c7e6620cbc5e8
53bc5057f0829f05895968a739a1f639760b6c12
6321 F20101207_AAAQFC hay_c_Page_073thm.jpg
ad4e91f84293d905bff3b7baae3dc441
45b6c085c3bc1b0587a2cfd9f5e77a02c081cdb6
F20101207_AAARPI hay_c_Page_068.tif
f5a17e17556c6bd98eff85b0751cd0b8
13f85448633079517a45b4a24eaf105b11d6a53b
9258 F20101207_AAASMB hay_c_Page_057.QC.jpg
e4386ae8ccb1204579a670a9c9203b61
13a3b359cf192ba1cf1a6f26888bb879699f3b36
47046 F20101207_AAAQFD hay_c_Page_041.pro
e2c9af01609f869f36cbe9ee6b2cc847
f88c5dd812b0fbb0653875863511426a165b28c0
23391 F20101207_AAAQSO hay_c_Page_019.QC.jpg
4376dbf655af51849c21da63ded33aa7
5eb351e35e3695ccd971ca9783977355d2a244db
F20101207_AAARPJ hay_c_Page_069.tif
014cc9c242c33395ed84b6cf20ed9fa1
fa2bbd57ccae28847caa47ace7a25f8745e1ab1a
17608 F20101207_AAASMC hay_c_Page_058.QC.jpg
d75f33faacd780d7cffb0a06a5e9c9d3
292424ae873d6e0f997aed511df046dda2ffd38e
46133 F20101207_AAAQFE hay_c_Page_028.pro
8732c2bb107000efec8eae4153b75005
4fb2b03663359a6f9b19a78f8ea8419ec111bd38
53530 F20101207_AAAQSP hay_c_Page_244.pro
fb2f84b2d541b3c9fdcea4b803e7c9a7
28b3c84b79799c79e4a95a45439e3c827421478a
5133 F20101207_AAASMD hay_c_Page_058thm.jpg
6d580fe9d607cd02c96d301122319b1a
be257e97058d83fad0351f91a18dace05ac25f85
25143 F20101207_AAAQFF hay_c_Page_075.QC.jpg
c0b95d310081321252ac82e2113a0df7
4982824bad03459b97c5bf201515a77b68ad83d8
F20101207_AAAQSQ hay_c_Page_150.tif
adeb7c23078c7c560154da9736d46885
44b117c06bfabbbd777b08e08f60d214799b8319
F20101207_AAARPK hay_c_Page_072.tif
b1d02396d98d8d18b467a4a4a1e32451
31b7eee3d0e888ca5bd51502ad8980d4a8371586
9301 F20101207_AAASME hay_c_Page_059.QC.jpg
01af197a1c9673589e768e179ec313db
c3ee3ef8bb1e8af9fb6061e124f1936ceb4b78ee
83856 F20101207_AAAQFG hay_c_Page_010.jpg
c46aea9f14e14b951f5b67301a0995f5
0d1a6b044c7726a19a58e85d366f04a95fc8ac7d
43628 F20101207_AAAQSR hay_c_Page_130.jpg
bb40adeb4689904ea4ca7d1dd428b6eb
7c17add37630b466c352e707f52dabf869240aa1
3251 F20101207_AAASMF hay_c_Page_059thm.jpg
202f544071634775479c59d8ed2a7358
9d4cfa81f05e8284fba6914210f8e77eea6649d1
110196 F20101207_AAAQFH hay_c_Page_190.pro
358e06e822c6f82f1d3c1794d0360928
459a135e5ad8e219947b2354eb4efbf0d6389995
68930 F20101207_AAARCA hay_c_Page_008.jpg
f9a0908db95cafd0ca7ba2ccb0f4482e
c24b19de6fc45182db3ba19212fd754e9839b06a
F20101207_AAAQSS hay_c_Page_099.tif
d4dd20146437bd3089be2862114c92a1
9dca59f3885fdc84cc184d0d3376b5c36c7d0175
F20101207_AAARPL hay_c_Page_073.tif
d15bf86d98e855322405c6208b45aeab
fe8fe7c1edcefb704dcf1452536762b3aebf9008
592395 F20101207_AAAQFI hay_c_Page_107.jp2
f90e4d76d7cbf1d3292a86369ef9820a
fc5d8304dc8224e047a979c41172a1602d8f4eda
30327 F20101207_AAARCB hay_c_Page_009.jpg
ced1587311a78781f9dc7a73189e8d59
1be7683d2638265faa6ceb5bf5ab333ef65499bc
20405 F20101207_AAAQST hay_c_Page_008.QC.jpg
818f6c20dbe36eaa27a6c50448857649
16c12ede4faaf4cc5d32e697db2943b68fda7779
F20101207_AAARPM hay_c_Page_076.tif
b434927dafacb4103ba2817338a9f3d2
6cee23dbef47ee7864561c93eb4165f764850eb2
6084 F20101207_AAASMG hay_c_Page_061thm.jpg
875720d6e2eb042c9fee43eb5f5ca289
1afbf8584f8a9c0061810e756d8610bbb70729dc
3649 F20101207_AAAQFJ hay_c_Page_107thm.jpg
cbb02e6387a5554c2c902383f55eb63e
ecbda79a28f02bc232dbd633f2b94be2bb236414
83900 F20101207_AAARCC hay_c_Page_013.jpg
8e0a9ba9c52c672783905db2aa3936b3
18a2c212688d20934ce5c896114519952456f9c8
7577 F20101207_AAAQSU hay_c_Page_216thm.jpg
7cf2ecedb53d40f8039d09eaa7d9aa4f
bbed1573284341c127f475c6f3387ff31fc1cb9d
F20101207_AAARPN hay_c_Page_077.tif
b803b1c6414f32cac6b94adb91903fda
7b48e62d30c5fc0a5cead7ba9dedf203077bd177
24404 F20101207_AAASMH hay_c_Page_062.QC.jpg
30980a2ad2837d1a6e557d6c97087cb3
bfc917603c8c05b350745093f9ffe6742257dd6a
19525 F20101207_AAAQFK hay_c_Page_071.QC.jpg
35e896f8299a7e436361a3e5879ffeff
0b2a9798d9f3d90eaa94f8264b7ab51f22a5fe71
86876 F20101207_AAARCD hay_c_Page_015.jpg
c95d49ed0a45e77c28235672086677a3
5b7465185ea78db9c8922e7df2b693ee118928e8
11080 F20101207_AAAQSV hay_c_Page_102.pro
873418f596fb4d038e5f9046bf2daebb
d525863baf24cfe928efebdee3abf7303577580b
F20101207_AAARPO hay_c_Page_078.tif
3bad6158c0b90ff3f0d9a5c9115ebeb0
3733dffa9b247e83514970e20a646edf9518efb1
7865 F20101207_AAASMI hay_c_Page_066.QC.jpg
c12eac2a795c0b15c75267d77dcde250
6e543bb183c97b7cd0bcfa8f65c75b683d064cdd
246 F20101207_AAAQFL hay_c_Page_048.txt
11f73cc29eba0cee6a5d10b1970457b2
7f454b2f1f88ebcda6213ce96abfa4de573f29f5
64861 F20101207_AAARCE hay_c_Page_017.jpg
01645be9ee90bd3683ee604c1b13e047
41a28d90d6aaedc692ba1eaa1ed14049cf490eeb
F20101207_AAAQSW hay_c_Page_018.tif
4bb3e81428d358e2dc8729a83c7baa6c
4572dfe2095e5e68e50507895404a1d807428878
F20101207_AAARPP hay_c_Page_080.tif
ffcf3cbcdba0e22f8f8d9155a0af0786
62b06a767a6a6db34ea2dfd27434d34e687fbf00
3893 F20101207_AAASMJ hay_c_Page_067thm.jpg
9e9c855844ee9c674169fdd1f3eba96e
59fcb780e2e6549439d06d33e63e9e83cfba2ecf
114829 F20101207_AAAQFM hay_c_Page_184.pro
b5bc89a11b165635692737a43866f722
f0a4a66e82bbb36d58e041746358002843a68a78
77114 F20101207_AAARCF hay_c_Page_020.jpg
7fb50e3e5b6d4b72901e7ce94c545007
8c80b746a6ddfd6dc70171c14996838ef2a41968
F20101207_AAAQSX hay_c_Page_100.tif
cf7b6f02be048aea34cbb78db4c59009
72ea986c694541b952461416caa32f943c2c802c
F20101207_AAARPQ hay_c_Page_081.tif
4d3340676254d933d0f0cb7d5be11245
a1f992d6b9e4da0130d0543c233d27d31f623b97
3325 F20101207_AAASMK hay_c_Page_068thm.jpg
9da0da8dc20cb589d39d407e01e6e016
4c29487dd0d2b499f1f1c81fb120503c99e89771
24140 F20101207_AAAQFN hay_c_Page_033.jpg
113cfb60af8416480346f6597448f5b8
e338a3f5db5a1c8afa7cf2cbe899ee0562aea4c7
80639 F20101207_AAARCG hay_c_Page_021.jpg
474b8a895e78c37631942d6cf0d061c0
73e24210f456f6d57a28654b1a46f4fdb630737b
13826 F20101207_AAAQSY hay_c_Page_128.QC.jpg
d2d4b731a4eb398cfab03eb3cadc94f3
43c593610b30692607d4281f3e731f0dab5e877c
F20101207_AAARPR hay_c_Page_082.tif
6afd403f9c38dcc37efbd0a33b84edc2
11c191f9fa6475f1878cdabaa17c4f1e78d80258
3359 F20101207_AAASML hay_c_Page_069thm.jpg
eac89092d9a3d85d5cadd27dd42a9026
9e08b511ecc8cb47271fb86965b727a594e3706e
91059 F20101207_AAAQFO hay_c_Page_208.jpg
c272fc20a8e37ca0f6e1073f031a141c
6b49b241b66ed2aabb522a11ef41a7d851be17f6
75031 F20101207_AAARCH hay_c_Page_022.jpg
ec506be77324442c40dac7989b5a5673
310700cc3ca89ad42275cf5c827310e55f2a8f01
98757 F20101207_AAAQSZ hay_c_Page_169.jpg
863b07209c3cbc48aa64511b26296e82
c11476fa76b17e0c742d9e57bff0c1e079c3fdbf
F20101207_AAARPS hay_c_Page_087.tif
71ba80a66d2e11b540795ad63e0d579a
6f7716665f5d28ebbaea198a72421f1a161ceeb8
F20101207_AAASMM hay_c_Page_070thm.jpg
037f6629dbc045dc612ceb3dc5f87f87
d2597e2bc041c4166274320a7ef3d93c71d2ee84
5719 F20101207_AAAQFP hay_c_Page_135.pro
206eed7b497b6998fe46f8496005315f
cf0bf920cdfe4c7a297e02521d5ba71edbbee6e0
73318 F20101207_AAARCI hay_c_Page_023.jpg
3bc68c1c198bba7d4b6616ff7510c0ca
bcc04b5426bffb52b2573a75bb486450f294ec37
F20101207_AAARPT hay_c_Page_088.tif
87d6dcf5f66c2151c5926cbd907f7bb4
b47709ab40d7a370da3fbefc448bc4a2ccd58667
5794 F20101207_AAASMN hay_c_Page_071thm.jpg
28e9deda264d42d19263c26be35be4b2
5b6b169cf5c0cd77bd91694da17e84c37b626bf2
23810 F20101207_AAAQFQ hay_c_Page_090.QC.jpg
c091070e9819725aed327163fa8101ed
cb84088c25241a5996522feb988ac1f5d9c340bb
47015 F20101207_AAARCJ hay_c_Page_024.jpg
af2e60e7dc02a864d30d1a888452ea1c
11a98a2261463ece58f8d56cec5e5613c63b4b69
F20101207_AAARPU hay_c_Page_089.tif
27d2e08117e943c60745270375b1e0a3
1509c2b391764002c3d8b21c1f9dac612f2f0bff
23523 F20101207_AAASMO hay_c_Page_074.QC.jpg
7b8c22f0246d3ffd8d88d316dfccab3e
b46039352854e3771dbfcc752fd42e08f400c2f7
44940 F20101207_AAAQFR hay_c_Page_138.jpg
c3c023f8486e909502138a6450911da3
ae7a6146623a7fe84099505f89ae4514ea577bb7
65762 F20101207_AAARCK hay_c_Page_025.jpg
b04b3a73bc25826a19c1e27980e26bab
01e437ff67ad5279086e0cec229290181a918620
F20101207_AAARPV hay_c_Page_090.tif
d7b17f8cfb0a96c05b618bbe66493651
1a4cd08116f8cd3ed7ea54d186dba960ad03c125
6479 F20101207_AAASMP hay_c_Page_074thm.jpg
6fb7861b32c78d257f704977f925e7bf
90669030e8b1e33e421f330a2ad411b37b76aa0c
4729 F20101207_AAAQFS hay_c_Page_212.txt
871a34f4955a4c7552e77589434f0376
afc2a5ec9ba30534fd5c4b26ffb1041234ae66bf
86052 F20101207_AAARCL hay_c_Page_026.jpg
c51a2f6a199b9d4264142b37f55f931a
842b1621619c6798fcef0201c80365dfb3e00788
F20101207_AAARPW hay_c_Page_091.tif
73d50f8cd5aedfafd594c1bb489cc740
992420529286f36394876f4c21cb38d5ddce396a
6485 F20101207_AAASMQ hay_c_Page_077thm.jpg
9cd029ec9f24d7b6e1936283d40d27d4
df80e33c94032cc33ec8adc1dbb0588575e4e422
4959 F20101207_AAAQFT hay_c_Page_237thm.jpg
29cce2e38224a5767c9a68a52113405f
ca2d2c6e7a36be384610d502adac73e8f2b38367
74660 F20101207_AAARCM hay_c_Page_027.jpg
2f885ce3af0296ee601df264cd57a5cd
e83f86ee587280a4f7930086a74224ba81c64ca0
F20101207_AAARPX hay_c_Page_092.tif
98d21d1c41b653a51eb5d4a349fd7ed3
a71537a4d2d58236bb9154d9684f1b54c6a40635
11520 F20101207_AAASMR hay_c_Page_079.QC.jpg
c4855e354279b8b564672dc4f59f7be0
75f6d4f94dd233aee2019f7705bbddbcfb13ed91
44301 F20101207_AAAQFU hay_c_Page_128.jpg
10420873a37c0d3e3911ff6b234f7212
3cd60a5c54d3ae67357dc63d6b57bdfcab3755cf
72426 F20101207_AAARCN hay_c_Page_029.jpg
bb5ba5e56c7245ae879bccb30941b6f1
313dcf7c1f096c287d9b216564519fe3b483a01c
F20101207_AAARPY hay_c_Page_093.tif
9a8262ada52207cd29d13eb7c818d09d
690274224dc66dbd7647acac95d51c97ed868b15
3315 F20101207_AAASMS hay_c_Page_079thm.jpg
6388fbd84fda84f92d569f08e71f71e0
b2d673ddd855e0992c47c53df1d246be5c50cffb
15347 F20101207_AAAQFV hay_c_Page_034.pro
09b9b5641983e26da43b55c0762fa569
ae4ae8d0a5cfa33f6cbbf65b93c24ffac4452c57
71672 F20101207_AAARCO hay_c_Page_031.jpg
d036f9e465bca0d0904355e95a41d8c1
3ab965c69a48f76e510d22ea59f41d4748f3d28a
F20101207_AAARPZ hay_c_Page_097.tif
2951c61c00c6eb4dd66e2f3390aac0fc
300cbd5c8b0f2c8a18eca5e0c6e5528749f026ab
12217 F20101207_AAASMT hay_c_Page_080.QC.jpg
52c4a996fd4580070372884fb2d07df0
c8e430ce05bc5413e453a0f3d62f86a44ce90615
2378 F20101207_AAAQFW hay_c_Page_072.txt
be238f6f91297df7b430f1a1fc5e97bd
2c0386df9e177aa8a8c254444990874cbe6d7031
17865 F20101207_AAARCP hay_c_Page_035.jpg
67e710451b1f7397489a1929d59703ef
8804336f5fd8fb5016eb1d4fabc96aa7f17d5cbc
4156 F20101207_AAASMU hay_c_Page_080thm.jpg
42f8a489488ab938eca04620f13cf5df
48589ccf4a09b22a12be7f49eb9ac8f303febfd9
16763 F20101207_AAAQFX hay_c_Page_241.QC.jpg
f57191c0dea9136959390c8d114693ea
e484a54b8073ed841cd69a86c1cf3d80d419fc5f
F20101207_AAAQYA hay_c_Page_096.tif
799a136b9f4ce72af3a82ec51b867f33
a4887265814fa74d0d065602c49e4fae5d0525af
18865 F20101207_AAARCQ hay_c_Page_036.jpg
f7211e2d609103ae7fb8b64adb7adbe8
9d0e658c9aecc76c2b8b7eb65513982097dfd226
25869 F20101207_AAASMV hay_c_Page_082.QC.jpg
5627046bbd688b03d7e635959eb49473
594d6abddb9ba441fd70761a73e1c7c8fcc67880
5009 F20101207_AAAQFY hay_c_Page_165.txt
b30171ff893a09c6b16d630276af9352
7b8b44416ba310d6b4f9118cdd56faeeba51e374
44764 F20101207_AAAQYB hay_c_Page_156.jpg
6157ce7d87e31bc764e9387db6e11da6
ac0310c722abb5576eae3375cefa0a8e225d0a99
66572 F20101207_AAARCR hay_c_Page_039.jpg
3f93e248ededf60418e2be1f27542cf5
5e4363a1793ee340f3f008ce6997eea0970dc674
6956 F20101207_AAASMW hay_c_Page_084thm.jpg
e10214f3648d47f9ad7fb3cb319fc96f
c2a9187ecbd5cae231d0d06d97bd5d0adb4c8304
2853 F20101207_AAAQFZ hay_c_Page_066thm.jpg
4efa190efb678b469c2a4dd759191af8
d0414f0abdca4981965d97001ccb0e252ecb0a16
5987 F20101207_AAAQYC hay_c_Page_116.pro
cac7952f5cce286133f24992d3db061c
541b1cb1804da03b07ef099b6588f46bb55697de
69248 F20101207_AAARCS hay_c_Page_040.jpg
98a875dcbc70b210e51998cf80e0eb5f
23aa4ae697f7022b1f0bc1122e51d29d24cc00b7
23424 F20101207_AAASMX hay_c_Page_085.QC.jpg
583c6404bf3f2a28c0f93c13ca913816
9af14101a5d736530f055d2409aeb2830dc38ce3
4088 F20101207_AAAQYD hay_c_Page_094thm.jpg
339c4a183b3c274f34ad6275ab4ba860
8ba211349973136d29b1356c7b5353284386aa96
66818 F20101207_AAARCT hay_c_Page_041.jpg
e6d9f9f25254b0fba42d28fd81e5d8e3
4879fd77c1320a5dc1ce8340e859c23ad8b7b3a8
26710 F20101207_AAASMY hay_c_Page_086.QC.jpg
7252046a00aac3aedc6d4a82ef750cf5
b80a6979cf5ea477d2584f4d2b7bdc3fa9d559f9
2892 F20101207_AAAQYE hay_c_Page_013.txt
24f7deaa3ba3250bf6cbfd38e2fbe038
e1df6f549d1cdf1ff214d618e783ac70e5f6df05
74746 F20101207_AAARCU hay_c_Page_042.jpg
77c880ac961cdff21a9881375e9106a7
929f6e220ddb49b2f9fc3b21893df9f337bfbf26
23562 F20101207_AAASMZ hay_c_Page_087.QC.jpg
3af282b541011635da30da6bd57cd9b6
ff4f98a6b44799f21b76c8f46e889c78e65981b1
583 F20101207_AAAQYF hay_c_Page_158.txt
c1c7793b10685bf6df297311c3b664ae
0dfd257d3e95ba35d74738beb8892f8a7a726c2a
28032 F20101207_AAARCV hay_c_Page_044.jpg
e5fe20ffd2a84f4a08671664164d1a4c
40eb075df97bf302cdb12e2d5bff7bd958307b37
2157 F20101207_AAAQYG hay_c_Page_076.txt
fd7958edd8095adbee1ac0c2a69fdd2f
19d8858280afcf985b9cad4c8fc3f47f73c61028
42171 F20101207_AAARCW hay_c_Page_045.jpg
bbc5e853069df69e3934e35336c30de8
bd6889f88c805ebbc68290fd75bd1279be7477b3
F20101207_AAAQYH hay_c_Page_233.jp2
40c37a23c652f7fff51c5518d5dc9a8c
59b48526ad3a14b8a0e0e624910d8f3fe3e67fd2
43122 F20101207_AAARCX hay_c_Page_046.jpg
32d09c68d67dfeebf59a11c959bc869c
1dc79e61e50e2a373260a5c94817c32baddb9268
3118 F20101207_AAARVA hay_c_Page_050.pro
84b9813b29396584647255f006630587
f4c083fac5fba85fabe952fcfcbc5842c0246fed
F20101207_AAAQYI hay_c_Page_205.tif
abb9c60472694cf8c6772f0871c87c20
5ebec52cc4a8bb684353b4166fa061b4b215dfc7
43647 F20101207_AAARCY hay_c_Page_047.jpg
387c1c88e4a161a06f0c32a32d8189fa
9088e70a5b51f6476b30ed2e930e80f774ca3e48
11419 F20101207_AAARVB hay_c_Page_051.pro
d6b207a062152cf9c6881ea87aa26c2d
d631d3c9931fa7d77cb4450284bf82f17f98ecdc
84455 F20101207_AAAQYJ hay_c_Page_014.jpg
81805c48c6f2f55123e518c0d5c33720
7d2b29f2559243c15b4390c7ff17c29b4789b87f
44690 F20101207_AAARCZ hay_c_Page_048.jpg
946382c9a549430b9cc475dceafbd4dd
e4dd87498a83150ac72e4fd462d0e9acb094244a
1350 F20101207_AAARVC hay_c_Page_052.pro
dc79a4a58474afd5817132c8156f6fdf
adca4c6f5d3e0d2588f58c4599691c2fcac07152
25603 F20101207_AAAQYK hay_c_Page_109.pro
6c67b7ad35c1c862edf4e7de493137dc
dcebf3836ee6f6bd3183fc2dbc2d42ce957a9b3c
2277 F20101207_AAARVD hay_c_Page_053.pro
10b4fbe6e548d4c5e78b997a9ab8817e
7c83b111dc89ee6725a4a67fa142522f6df5b567
2768 F20101207_AAAQLA hay_c_Page_033thm.jpg
2bb97c7b001b84d6b6f2e6acbcb20d4b
0faf14651aa3a60e384e66bd4c1cd805839b508c
5790 F20101207_AAAQYL hay_c_Page_017thm.jpg
5dcb93a37e9ab1355db191f5853e9d6d
c95a5003a7de1f5c2f4b8bf50b4ca6e6c8bdcee5
4742 F20101207_AAARVE hay_c_Page_054.pro
6773b144bed8f538f690267a992f7198
3f27ed3287748bbd0b8a34337fc6c8822a008aba
3779 F20101207_AAAQLB hay_c_Page_192.txt
dbfd17a553e65f61241f382e5a2e3abf
585e0f8d02205c1c14a2ec178a7488e1764bc756
2012 F20101207_AAAQYM hay_c_Page_064.txt
a0178d4da4d9368775112ec7613f30a5
6b9b72a0bb0db9f511eb593d0073f0235d9924f7
3638 F20101207_AAARVF hay_c_Page_056.pro
c48b11726ec0e9480371c906456102ca
efdb3eb9b96c92e168395c72129350ff0eb28836
6072 F20101207_AAAQLC hay_c_Page_213thm.jpg
2c463dfd4cabbc6690c499dca83be3e9
7b74aaf696350938a13281b0e79246fa7161c58d
603785 F20101207_AAAQYN hay_c_Page_093.jp2
1b622303ed0aeefb7ba3c7c8641b4e89
a1722a1108d3e678badf0a7161dbf9dd9485b2f3
2052 F20101207_AAARVG hay_c_Page_057.pro
78dcedd46056e8513d7f16901d4ffb18
4b226db1289a9cc248fe3e9b82e7c3b23a9c1d11
71209 F20101207_AAAQLD hay_c_Page_222.jpg
c9b189fb2b739dc1fe97f7f32dfb43dc
a9b717ca0657b708ab81f3beb554bd3bcd90168d
5021 F20101207_AAAQYO hay_c_Page_048.pro
b3d4ccbc47d8db2389ad01bf636d3973
4c71264a5f3229799b4d61e09e7225ef1be7eee1
13462 F20101207_AAARVH hay_c_Page_058.pro
30b84b2d574441ae1617acf1c81e97cf
dfad79115ec4341eee3e8ed7ac489f3c67f57605
F20101207_AAAQLE hay_c_Page_184.tif
5093815df4e00958cb4b9d61a636e140
d5d863543a7c11775e5e0a0c214058e238eef2f4
F20101207_AAAQYP hay_c_Page_075.tif
fd904ed6a2b35c20d23fa2f37b11a2a7
985cea9452118344eccd97504595152b8a7354b3
2691 F20101207_AAARVI hay_c_Page_059.pro
0f019cb04895d68773767a58f698b1be
b0a84a8dd58a9a02a0053e3116eacf44d7762b5f
F20101207_AAAQLF hay_c_Page_010.tif
3d715c93fe1084e498a69c53e55a97b7
9158bbc0be6aa375e2ce754ebc7bdf43d4f66e3d
56110 F20101207_AAAQYQ hay_c_Page_112.jpg
1b5a8ff913cde904811b0a5c1665301d
6182560ee6db9fd6ed1e5ad1f676baf3e28dc395
46324 F20101207_AAARVJ hay_c_Page_061.pro
cff0d41134a3f37b245be70addcb1098
5f9947651f696b4200d3bb4c245bb1dfcb1315ce
14639 F20101207_AAAQLG hay_c_Page_140.QC.jpg
f85d86d562c567968d680ad95170a327
0e3fb42f310fb30475af793464219f15aa808ab1
72496 F20101207_AAAQYR hay_c_Page_085.jpg
1cad186b39a9b2ae9378aa2f2553c5fd
1b8e0496b95bbd76b0cdca12b1bc289469628c12
49878 F20101207_AAARVK hay_c_Page_064.pro
25aa28379c3c33134857ba7cf23549e5
c49967a796a8dd8a1f34b7f0714ff1cf2b652a7f
1051975 F20101207_AAARIA hay_c_Page_015.jp2
76253f7d59c4479b8ad7ae39de7f90ca
81877c9936f1a10f95e5f1b82143b1fdd1728ad3
7291 F20101207_AAAQYS hay_c_Page_218thm.jpg
0a6d766f1b13446f2c83501a6fd0e157
aacb2d52d769f29b53e8402e668b673b4e5f96e9
1246 F20101207_AAARVL hay_c_Page_067.pro
7acdf3e9a22f476ef6f412bf0c3df3fd
1500e02c321cfc7e1278e5b85376798f72381fc8
F20101207_AAAQLH hay_c_Page_023.tif
d7ace55b56e8e481a1218b01fe756bb7
a080a0e7836256cb0a9f68e915cd1f6b9f20df99
1051981 F20101207_AAARIB hay_c_Page_016.jp2
79eb55d0bd07fe3efd720d0e1b6597ec
32b5d03d1a022a59fa302b12c167c9d5c44cb9a1
F20101207_AAAQYT hay_c_Page_155.tif
a7dbec60741e6668cad9b3a91918dcce
a027e334520f7a74d07063b82cba7c82fd8791f3
1220 F20101207_AAARVM hay_c_Page_068.pro
2494dd2b47f0dc21d8e2f3b3c2a4c540
c9bc303f3ddeb0593db53cf59f23588b93f707e4
2192 F20101207_AAAQLI hay_c_Page_082.txt
7721e55c8a8ebe6554bf3ff5c83ab096
6cb1517ccc58a462c186d35f346ef96e3375c02c
94629 F20101207_AAARIC hay_c_Page_017.jp2
7b8916d6dab69d93ee58d264948c299e
da6a925480dd961d7b0ee9e43608fb9aae1715f7
F20101207_AAARVN hay_c_Page_069.pro
8e36d14f44623df648e56cfa0ec27867
24dc777bd2ad28565eacc14c284fded5bbc8b257
F20101207_AAAQLJ hay_c_Page_208.tif
a60f0969f980b52a31bd51ce8cb53923
8467e2eeb31f591927b16e6aa8eade8c953ae298
208 F20101207_AAAQYU hay_c_Page_046.txt
753a309b67ebbb5d270616e2271b0e4d
78d5af665e46353e40a59779ecca77d270492374
7074 F20101207_AAARVO hay_c_Page_070.pro
46f646370a97988c1ecc67f620e0650a
aa3962dc3cc8bf943f29f9123c6321a3d091a07c
2770 F20101207_AAAQLK hay_c_Page_055.pro
996da77bd97b98cd26fd74c275cc783c
0485116214e5769ebd07fd84532c9751e02db96a
106385 F20101207_AAARID hay_c_Page_018.jp2
b7236a988d84a07ed7fe268c6489fa43
8288374bec1b48b287f685c7d60b47406accc1b1
35397 F20101207_AAAQYV hay_c_Page_232.jpg
b090a83c9eda37052ae9d9cf65aa8ff7
5a087955daca505c0b434bd0374009065e2f56ff
39620 F20101207_AAARVP hay_c_Page_071.pro
8ee205b01e77a964f37365ac13b26f71
93afacc0d88e2ee259a02f824500f545efd5449b
3248 F20101207_AAAQLL hay_c_Page_008.txt
c871e8a99bc4e530bff6aa96d84bc524
1b8a8f6b39875a12a03d948c5228b0cd37c02167
116245 F20101207_AAARIE hay_c_Page_020.jp2
145c4ec88151fbe74fe845a5daa8f380
7f3e0a3374e8659886710c69fdc0cf80bf6e6d02
81991 F20101207_AAAQYW hay_c_Page_193.pro
e76f82cbefa5dac2b956d2f89b0c3cc5
d93f9714ca420c45bc237e7271218cfd29677c9c
23942 F20101207_AAAQLM hay_c_Page_078.QC.jpg
844b934b8596dfc294e11fded49ae1e9
cb4e8978af0f7ff4e1f3ed152dcb0c80b1a86f2a
122332 F20101207_AAARIF hay_c_Page_021.jp2
06863b694d49661fc253c9035fccc692
1d231e64b18e1b555f23027dd550ed3ac21eb7d5
F20101207_AAAQYX hay_c_Page_187.jp2
78b4219cd530e894ab58d18ab269a0f8
e35731c7b2543c4f810cd160a3fe01719d377e3c
49069 F20101207_AAARVQ hay_c_Page_073.pro
392e1060b1b738db64cedc531dff92f4
96ac48fa3e89eb9fd18c8cfd4861e536c627e11f
F20101207_AAAQLN hay_c_Page_146.tif
9ec0d794c7e0b3e4b9702a1dc22b86a3
20d442c1c281eb6c6a5f4cb465370767bf23c7e0
112281 F20101207_AAARIG hay_c_Page_022.jp2
e05d9aba3f8b934b3fdf78bbe44bd771
44d2cfc996b43838a57436bf2cf4e2d8fa6250b6
44084 F20101207_AAAQYY hay_c_Page_125.jpg
93e5773a2d8d7f9e6d4e9dbe51490622
0364f4141f6f63f54d896e7fcff901559e980590
49509 F20101207_AAARVR hay_c_Page_074.pro
c91b1e4cd866c81c6a03c3afe6c3c81f
c3be48e600d44c9db2918d509a63bc71f7a8ca10
26698 F20101207_AAAQLO hay_c_Page_168.QC.jpg
d9694bd4cad503917dd6da86d117b3ff
969e2efd9e4322c30a9b4754b3572094f7e8ddcf
112175 F20101207_AAARIH hay_c_Page_027.jp2
2fced2345ed0f5500b0f86e7a02ba54a
e2a0a8dfc0cf78ab7432c8b69b8a98750cf741ab
56870 F20101207_AAAQYZ hay_c_Page_072.pro
2b694d95dce09bb9cac98496a0947575
b0bfd92df8caaca0fa48fb60ce632314f6bcb2b4
4880 F20101207_AAASFA hay_c_Page_208.txt
655e8d74a14f4cdb419203d42cb61474
8b2c885cacab9292a2e81745bb93f40ce5cd1552
54471 F20101207_AAARVS hay_c_Page_075.pro
332944d4458ae2e6e04dc9403b7d7f91
6c4f4e3f40f0c2c9681bfe474de5b6b8fb5ce8c9
F20101207_AAAQLP hay_c_Page_017.tif
79400429f8327c1196d651b8dad1ce9e
b68ae6b3058cfcb7d169a610123840185dbd6a91
98000 F20101207_AAARII hay_c_Page_028.jp2
a15b660b0bd147b09f5623b481e9377e
e72c809572b1701687c95e6c7ecdcbfc7af1cfc7
5099 F20101207_AAASFB hay_c_Page_210.txt
d62e96af2bdf96a2fa5a00d35ef97c9f
7fba2369e4c1bf8f903e8a9d0758e750494fcec9
54473 F20101207_AAARVT hay_c_Page_076.pro
d549da6bb4681fa03300f680182092d7
05d858ad3b916b19822fc9f7e9b2ebc3c03a04f8
F20101207_AAAQLQ hay_c_Page_025.tif
703f0c5c73de448d2773ac44d537b29f
27fb4a18084c9ea59fed7403e155b1a047e68ef9
108454 F20101207_AAARIJ hay_c_Page_029.jp2
429d8d8d3a35c3c510fea8fe01331d9b
bee42601a386761f128e8f10e3c5cdd1680ed4e5
4660 F20101207_AAASFC hay_c_Page_211.txt
6ce3f636da059446825581b170a24fd7
0579e805f2e98d26a5dcc904d4bdd173785c5d4d
55398 F20101207_AAARVU hay_c_Page_077.pro
ebb311ea3b3b43ae0534e8331700e7e4
76acff67f9a2cffdf402251aa116fe90cceb094f
492 F20101207_AAAQLR hay_c_Page_134.txt
f1fc079f971c26a02810189be442deda
9d3348e9c32737cfada65e5e838eb6fdd11297e6
107227 F20101207_AAARIK hay_c_Page_031.jp2
ca93848d10c55e123e058207ade46065
5fd1abd82ac0d9a120ebd3b8ed4e0a60df0db8eb
5754 F20101207_AAASFD hay_c_Page_213.txt
132b4c60b3d4e94b264738fb5d9496c8
477c7dd2e84b2de51b78dd482ffbf7e416d1c8a9
19529 F20101207_AAARVV hay_c_Page_079.pro
eaa2174cfee9e49eb0881732f27e24e4
ba0496209d3b64f4c9249e53cd588f6cd5246e98
52676 F20101207_AAAQLS hay_c_Page_091.pro
525ec1452ef883377c20bd25dd48c0ff
1789956acc099ae132e200b822a0f62ac1b210da
64457 F20101207_AAARIL hay_c_Page_032.jp2
38b16e8df5673bdc715cdace630bf64e
965cae3d51384355fb9d6c0bfe62663e057635fe
5074 F20101207_AAASFE hay_c_Page_214.txt
42dc5570a75101713beea2429bb4d5ff
ffb5a3e381c554097af3b16d9bfe035e1637a19e
3810 F20101207_AAARVW hay_c_Page_080.pro
8cc19623cb55cf27d979ec6d7680da29
7da308244e90895bd19b2a957c569a782c608d86
25334 F20101207_AAAQLT hay_c_Page_184.QC.jpg
621d13095c0d75fe81f358d38251498b
3a601a0e13e1110ec7a6bd600f3ae36a70bd2167
296171 F20101207_AAARIM hay_c_Page_033.jp2
1ad8465c44a14f13df7dd90d2df6fb05
282dd39a140b035607bc0b16e9332b2d0c8d3f5d
2674 F20101207_AAASFF hay_c_Page_215.txt
2e47dad128ae1c334e3e5d27f44734de
14e05a6e49a4e3c2ff8f8a679280809e0c8d98e5
1818 F20101207_AAARVX hay_c_Page_081.pro
09bd2b3e3b63d0e671db38e4c84ce8c5
cd80a71a05bc06e6667e8c0ce98d5e48a5f88200
8850 F20101207_AAAQLU hay_c_Page_065.QC.jpg
a6a62637afc1bbc4ca7de71628709ee5
66946b9c6be1de3311cc931f99eac4ce21c0832f
733978 F20101207_AAARIN hay_c_Page_034.jp2
b13f229b254ca3ee76a7d6085675d2d9
e0804892fd178b333350666ae0d3ccd8d92d9acd
3344 F20101207_AAASFG hay_c_Page_216.txt
9980ad599b1a70ca40f4a127a22f65af
4216997d16c5a33793a0810f6fbe5d948f7d89c0
53881 F20101207_AAARVY hay_c_Page_082.pro
14ecac9943ee949039c4860ff91216f1
eb95b8de4f5eab5a93ca0137dd4d5e98c9590d29
17209 F20101207_AAARIO hay_c_Page_035.jp2
e5b19b5ab539d59b25e4a8845abb4a56
b132eb0a8ec6d10aa139a36c6fc5c07215fc9278
3438 F20101207_AAASFH hay_c_Page_217.txt
83bca93b453e6305891a399fe70203b6
c0d7e311aee05281946380cdd05ec47dc2f7e583
57303 F20101207_AAARVZ hay_c_Page_083.pro
a20f3fdbde3dcd1dd38f8956b0948624
f159be8877ba15cf6bfb73e6e7c8700b283333db
5240 F20101207_AAAQLV hay_c_Page_173.txt
0cbc22ddbc769b2d939fad1c87dbed43
b3883d620673713195f55294e0a08f5cef7999f6
20419 F20101207_AAARIP hay_c_Page_036.jp2
5b2752903bd1f9af32d24966778b6e38
a0ad64e94a852cb8fa9959a1ad4dd43f7243ef94
3425 F20101207_AAASFI hay_c_Page_218.txt
5bd9fba06a8362eb46b1a7354284ba71
ffcc092d48a702b919b20ffa2a17f2725af4be6d
1795 F20101207_AAAQLW hay_c_Page_003thm.jpg
8834dcbf3a0f353bcee9766ca87d4cb4
4da503c769129786341fa6499e244155075caac9
236790 F20101207_AAARIQ hay_c_Page_037.jp2
05c7e47ab694ce109f3b062a78a7e893
5dc82aa472bb00cb5989dd8f01abb043e9225510
3177 F20101207_AAASFJ hay_c_Page_219.txt
30f300b7847be470a78fbdd6a9eb427c
e1eaea6dbd5748eb8cc5fabb038a75c79663541d
999745 F20101207_AAAQLX hay_c_Page_232.jp2
fd5c1ac99c581705dbd62f45cef8f024
ce489c9e5e870dea36d61a7c9938d91101c25cf3
99999 F20101207_AAARIR hay_c_Page_039.jp2
97a39e0f989a5db346be39151217ee55
361f0137a53cc62aef3f3011b8f8c7c8ecca8179
1992 F20101207_AAASFK hay_c_Page_222.txt
30ba22ac341b1e9528d39e9db6dc6625
ee2420a834835d488ef3343981857773d20cbdb5
F20101207_AAAQLY hay_c_Page_196.tif
5111fd5ab5c7b2397345398bb4800638
536a9b89c1e90dcd8e83a532168f7ccd73279f2c
100430 F20101207_AAARIS hay_c_Page_041.jp2
acb2cf10dfb8b3ec03f3d4efc5548506
279514a2e81fc3eda2ca8c81bebdb691fae73bb4
163 F20101207_AAASFL hay_c_Page_226.txt
ffdd4a28035660992a8e5f8e5dac45ca
1f7b603905c3884e52eecc9528a0f6b5e58b2ef5
1051959 F20101207_AAAQLZ hay_c_Page_008.jp2
672798539335bfa917c55d4295092046
c08ec8250313815d0c9403a954898db01bc208ec
112945 F20101207_AAARIT hay_c_Page_042.jp2
ce226d04d2710d739e3a212164af28ff
4b8a2f55bd0dfd0b7dd29a237daacd2c2637e68f
F20101207_AAASFM hay_c_Page_227.txt
d461efeccdb55ebdb99fe7f245049953
93f102b53186ff6f70768fd706a4d2d62d487f89
103026 F20101207_AAARIU hay_c_Page_043.jp2
6fc5a04c03677c6f04ec02e0560d74ea
8f448b4248397e9d7eeb2d8f99ff96308a31582e
506 F20101207_AAASFN hay_c_Page_229.txt
0cbfe28f753711d9907b2e07384ff527
d5ebb9f3f225f58c94b5374fceeaa8ad53a768ce
36491 F20101207_AAARIV hay_c_Page_044.jp2
f990fc53588aeb02f2fe5013aefd76ad
47890c2688e0a791c07350fb7c84a15b7176b046
225 F20101207_AAASFO hay_c_Page_230.txt
a2c8887937311529ef624f3e4396913b
a1d50643434c5ad8793df226ecf5b630ba0e3ce3
1051927 F20101207_AAARIW hay_c_Page_045.jp2
40ffa91452b3aa3c6002e21ecd919767
b861200d1517512a6a8517a992391c66c9dd6b37
214 F20101207_AAASFP hay_c_Page_231.txt
b8ffcd95f1d53e55183e3f634658dae8
b6e2c97ca09a29e7c0cbbcae94b5216bd821db27
1051929 F20101207_AAARIX hay_c_Page_046.jp2
ff3e3be80c4f249f84770694138bf98b
ff22484d76ac296fb77b3791b905ffdfebbb9d9c
127 F20101207_AAASFQ hay_c_Page_232.txt
dd9c5f9ba485622ca8246a49b9d12805
05f587681247e01ab2bddbc5718d6a9f3a78c4cf
1051785 F20101207_AAARIY hay_c_Page_047.jp2
617e1d2282704d496fc6ab4fac88a1ab
30f745d8b19a3c83c5255d2b3d007a15e4c7002c
F20101207_AAASFR hay_c_Page_233.txt
8c15bf1bf15538ebbf9180b1c38dfcf7
9ec30ebd58b3a08dc01a1484f61f4335400d7eba
F20101207_AAARIZ hay_c_Page_048.jp2
91aaa45761e23ba2cedca9d02a3ad35a
760d79e977877b77c7e2e60be6ac70c7efbde4f3
176 F20101207_AAASFS hay_c_Page_234.txt
cf5900d524710c19ac6dce88315a137d
ce4cd3f0a042b4f38a1e44b66736db9e9a7893f8
226 F20101207_AAASFT hay_c_Page_235.txt
6087501ea40b90cc4c7a905ac6ad5b8c
45447f6219b1aec3db15ff4df699a92b0526e4fa
283 F20101207_AAASFU hay_c_Page_236.txt
c3fe708617c063d6b821af9048e123ff
5ab6fae113d810660a99d46e5bf485d7b4c69540
F20101207_AAAQRA hay_c_Page_062.tif
cb30d23e1026881f51dc1a58fb11639f
8133aa45da8aad43d0188a0160acbcb8251ed2fa
201 F20101207_AAASFV hay_c_Page_239.txt
17b375f1a81689d7dd860d46627ee446
aa213c91ee9b74fb5252ce59dca1b3c16e4a58d1
20498 F20101207_AAAQRB hay_c_Page_063.QC.jpg
fd82ebe8bcccd5f738748938c15e2735
e8f00682ea2e6909d92b0902a063d23cf6443c38
2383 F20101207_AAASFW hay_c_Page_243.txt
66b0e852eb8b6702a37cfdf896e31c99
3823938f07c0932706f79b32ea54b9ce71be37ce
25808 F20101207_AAAQRC hay_c_Page_243.QC.jpg
d65bdc43eb3cbe15493cd45b1846d757
31be7e1f1a7f201645743b562aae2dc146924804
2246 F20101207_AAASFX hay_c_Page_001thm.jpg
6dcc02bab51a2fbcec100ba71376e3aa
2922e93bf1cf6981c1d21cefd8021e4363495469
23916 F20101207_AAAQRD hay_c_Page_091.QC.jpg
f894507cd3bb374cc147c041ecc5d09b
5c073d287d373034e2e8b7fc576c8b660c56bc35
13807970 F20101207_AAASFY hay_c.pdf
9ac670e7497a8b6188c67c32c185468f
0485f25e78e814bba71a04e71c169bd74691aed7
69685 F20101207_AAAQRE hay_c_Page_074.jpg
90124585f044b6d0a7983b96544be6c1
09ad513cf102fb1f4f35dcd390260223446953b1
4052 F20101207_AAASFZ hay_c_Page_132thm.jpg
bf94da0d5f0ce4e376e517f346d5d312
3636b9ff755fa45b78a4a132e28c0a08ed50f369
6006 F20101207_AAAQRF hay_c_Page_182.txt
ae844999be06f946b4a8b001c7593cb9
3fec8ccb3604e6d3d815803de1f7b3b634239409
2114 F20101207_AAAQRG hay_c_Page_031.txt
d9983f48eb28e95416509e53f95e72c2
ffd4ca15d20519017da25ceed13d9317ca988174
F20101207_AAAROA hay_c_Page_013.tif
16fcc286531b3214d49137e4851e6292
d73e63e26c9145804a0d3f5cf659d38db163ace3
83300 F20101207_AAAQRH hay_c_Page_011.jpg
29905480df76f6e8b166dacb52ffc3a7
5be7c680be5f02921f4d16688e1c37c74bed9bb8
F20101207_AAAROB hay_c_Page_014.tif
196ef6ac64284f8ec0b5f24e9446a30e
44473aada0dd36ff9ae85e5f7eac292cf65880b6
76500 F20101207_AAAQRI hay_c_Page_076.jpg
09c9516ebd90edea2815abaf25c2de92
39993090dbff36587a216a502e49a476bf2030b3
F20101207_AAAROC hay_c_Page_015.tif
93582c9b1a2e850feb289fe7feeb08f6
0817f96e086878540c565a8bb7c106ffca693bb4
4957 F20101207_AAAQRJ hay_c_Page_238thm.jpg
03cd949647318588c0c224b7034670bc
724e11f704bdf04dad888d804b5596121f392b02
F20101207_AAAROD hay_c_Page_016.tif
71c9b456dedede5f16a0371474748d14
8bc2563420850a3a480e3c96635e41e9be826c06
38253 F20101207_AAAQRK hay_c_Page_126.jpg
5b4c1490c56da7d8c7f6f71a72c91ee1
57caf395370b94d276692062ea6adb186f460676
F20101207_AAAROE hay_c_Page_020.tif
c4f3907843fa9dbf816b8bf5d258b38c
37e4068fba3f729f6267004aba68f2d836fd294c
F20101207_AAAQRL hay_c_Page_227.tif
b17a32bbe17baf58c077b5045c020242
d8913e5a68344ea9d23a60f0a08fc0c22d5a9f5f
F20101207_AAAROF hay_c_Page_021.tif
c351742567891a1f803eefe980c150db
07948d6e6c009a4ce6efb84e3fa4cb384bc79ebb
12745 F20101207_AAAQEA hay_c_Page_153.jpg
44f8aafdcf3366a4b7f05ad6eaedd431
ccd8ea52c6434430f928a5eaf3dd3c40dfbb09cd
F20101207_AAAQRM hay_c_Page_043.tif
36f644a8f7fc71b6daac5deda0ee5d57
6794b0cc7af140d0937141b5e6bcff08f8fadd82
F20101207_AAAROG hay_c_Page_027.tif
024c69e6c9583480ed2d5d2a9c59e0ef
04d04afb0840ae8b84c6ff6ed43912a8690e798d
464 F20101207_AAAQEB hay_c_Page_101.txt
ec848cfc1e268e4664ce5fa77f443e9b
90edb2448e7a58af1b452f9e0fb3e36afcc85d31
F20101207_AAAROH hay_c_Page_028.tif
687d5a2450622e87a5f7f32eddfae5b2
bc1781c5e84d4ea9caab2a0846ccedcaa79e7084
24055 F20101207_AAASLA hay_c_Page_023.QC.jpg
c248aeb785325156d1e1a3d5e302fd74
24fdbabf116c48c19847db553044dfbcf697cc56
113942 F20101207_AAAQEC hay_c_Page_166.pro
67afcb78797d95e6009cf62b5eb11c16
9fe9f10d2275a66375a0b3d39b43548a9927d3d8
24141 F20101207_AAAQRN hay_c_Page_176.QC.jpg
f5cafcaf037e6f18f12dc5616fe95153
ff7c81acf0e658ec3c190df65940212d6797b56e
F20101207_AAAROI hay_c_Page_032.tif
8b5620e342ff7b9617e7a816a450ec31
8875427df12d7af63ae8f57bf4b7c4b467523abb
21628 F20101207_AAASLB hay_c_Page_025.QC.jpg
2732c96b82262f8506cd3eb2cea23334
7c780efb65f9d9e2e7136d5bd93cb050493c5ce1
1051930 F20101207_AAAQED hay_c_Page_207.jp2
6bb141c101f7e0bc8d4803b55435dc19
e0bd686e57166799392ed25b82cd0a913a88abdf
3924 F20101207_AAAQRO hay_c_Page_158thm.jpg
69e5300905edc59dff602844882bf2af
b36c5d26fa54b9165cf5d319b6a98fc9c963a80a
21929 F20101207_AAASLC hay_c_Page_028.QC.jpg
0fc8f5e60eb601b8a7254de11c9b7b93
9fe1b304b9bcfed9735d9c02991ef68590fb6a6b
F20101207_AAAQEE hay_c_Page_197.tif
6cdfff77b889f209bb7d7495d69a6f3a
39acea5d5b0f0cff253f9002bf8baad312f46a7b
48656 F20101207_AAAQRP hay_c_Page_231.jpg
78b0d66746b5057a40dc523698182c8c
599c3f3e9db47a8c4f7b39d6b0737c051cbff9aa
F20101207_AAAROJ hay_c_Page_033.tif
b373e8200b43078119cbfb5e5d43d0d0
4f6c895ade7315a0bd52861671b3807698ba3605
6646 F20101207_AAASLD hay_c_Page_029thm.jpg
a93294c3c3bac899bc1f55e7031509cd
cec49987aa60cd00c67d55c2af1ff874894d17d8
97015 F20101207_AAAQEF hay_c_Page_063.jp2
5512785b6584aee9491ca9fcbe88242e
e554e256054d007be3ebae19958964040013b703
24796 F20101207_AAAQRQ hay_c_Page_027.QC.jpg
bd52c1b8b0a6bb7d89591468851b38e2
331618f84144aac450d520211bdf807112c45905
F20101207_AAAROK hay_c_Page_035.tif
ae79ad640736f362da1ca59c8f527516
7bad425424e531d2d136943b5e947eb49fcd9ad3
6559 F20101207_AAASLE hay_c_Page_031thm.jpg
4b9771fac885d7acf3584da622177ede
9511feb0de07fac9e3c508cbba15e1bc423c555d
88462 F20101207_AAAQEG hay_c_Page_071.jp2
1c515e4abc086b7b0642cf15931be762
7816064311b866a6d4511fbddeb1d4f3a01c91e6
F20101207_AAAQRR hay_c_Page_237.txt
74b3a953cd59b1d65ee53b29b70a9761
3643fe224ed4c5a75e48df7736f19e8fa579a518
F20101207_AAAROL hay_c_Page_036.tif
48fac876756f52371963f0b66ac5100b
3cf7a72f12727b3e07fb01d9852796c748ac3db9
405 F20101207_AAAQEH hay_c_Page_141.txt
e2eb6cf47066a45fcdb3a645dafe8c34
44cf0e1c2d359db1377956f42c090f2ed1e67615
23234 F20101207_AAARBA hay_c_Page_196.QC.jpg
b37c48164481b5eaa9ad08f6620db276
268a98e23db1a95e7618fc165733b59e67964311
26250 F20101207_AAAQRS hay_c_Page_173.QC.jpg
c7206f0de1bd691e94b12363139eef9c
de5415b85426573fe53d96184c521bfb86977bce
F20101207_AAAROM hay_c_Page_037.tif
cb0bc0ffffc5bafab90622303cade7dc
3c80048d2d8782595de2a7a0edc1b9f20bd754c9
14371 F20101207_AAASLF hay_c_Page_032.QC.jpg
a613d2c71ab97204c3fb778ec053dddc
9d00850e123dbca35223e5407f86e2b8a549c388
564114 F20101207_AAAQEI hay_c_Page_057.jp2
81b31fb1292fea30c4b3fb81fe82d409
9c65b8b961acd537fb0d4cbf0d761c3081291efa
16406 F20101207_AAARBB hay_c_Page_157.QC.jpg
cdaa6c3b13b1c93e9d005bc7e07296ba
0355f22eac387b5beffb4f427de088d2c38c3256
6691 F20101207_AAAQRT hay_c_Page_089thm.jpg
4ec1d1f181ffc44b9a169d3495a232aa
1125260344ed5ed57dd81eda0269045f5e2c9491
F20101207_AAARON hay_c_Page_038.tif
3632f936f25c886b36c59eb2235450b2
2971cfbf406d36f092d049c66b1f9a0841296a9d
4265 F20101207_AAASLG hay_c_Page_032thm.jpg
3b81e049e8e64d3cf74feaf6a596a7bb
bb1cec6917bcdb62ddeb49f11eafda52f3d31e8c
117700 F20101207_AAAQEJ hay_c_Page_202.pro
fb7f8743a5c6354554eb76c1763616f2
cd68a0b139e90c14f3a2ba86f18c1b6d5421b2fd
24143 F20101207_AAARBC hay_c_Page_178.QC.jpg
a9ba20502d704223da5726c4d01abb28
fa51cee78609b74194dbd1f8c192436781f1e51f
22304 F20101207_AAAQRU hay_c_Page_001.jp2
e1e433e6fd0607d18b3f8129a655be00
612406dfafd6e9f9c7035ea574106545418e26b0
F20101207_AAAROO hay_c_Page_039.tif
2d9aef05dcd409991552733fecaf27e3
8a1236e06d340af9e5dc44e1d46c01b8b689ebd5
4270 F20101207_AAASLH hay_c_Page_034thm.jpg
f111142729ad87ceaa90e74710914af9
63412b1e92752b8c7a1efed85abbbff142457835
F20101207_AAAQEK hay_c_Page_224.jp2
28907beca6c6a69b0da3214d17ba9f92
5489f226607a7f5ba68d9ccb0a822ba9ccfbde97
F20101207_AAARBD hay_c_Page_095.tif
c2004bf73ec130919e48ce2bf6cf0ef4
4e63ad4b07aa1172c3b3cdc06a32fd7ed06c7068
22820 F20101207_AAAQRV hay_c_Page_043.QC.jpg
cf14ee040b6321c242ad4115e9c61df3
ea29110dab3b47553a6374cb61ddb75e0dd955dc
F20101207_AAAROP hay_c_Page_040.tif
5daa2100b0e4e806ed1f8eadb73e03ba
b48225d752629b394ac96a74101f9f9275af5ce1
6177 F20101207_AAASLI hay_c_Page_035.QC.jpg
e7dbc4af8189a0e58bf0f1825338c0d4
61ff837f728af1e8ae9189f69e4f66d8b0754920
916 F20101207_AAAQEL hay_c_Page_159.txt
238e7a7a5baf9a7edb58f9dd2244c66e
00e4acb74589ef558b935aa014212d634cfdea8e
F20101207_AAARBE hay_c_Page_061.tif
b32d827973c214560a50a0a30ab4f215
bd8dbb6ce28ec204d72ce4da16c2003e6b2e5afd
51084 F20101207_AAAQRW hay_c_Page_087.pro
46cd824f6b7813285dd3ebf968ff3faf
e29bfd849f9960edd4cbf343332e3181b40bfe58
F20101207_AAAROQ hay_c_Page_041.tif
8c1a41a50a129d72f9f168aff5530322
135b5371a25c4d93bade7249cb934e09f2e1b0ef
8518 F20101207_AAASLJ hay_c_Page_037.QC.jpg
8215d7dc1a057da084c225b3f893c172
361d184cb7fe69b36f82e1500c0f5b3d926e6876
84595 F20101207_AAAQEM hay_c_Page_217.pro
04229649caf533caac9577b40309bd77
9d09a7e2307ffa6cb5b3f0b82e8577f542691f7e
883651 F20101207_AAARBF hay_c_Page_056.jp2
f9f7011bbca0040d64a5ca703eced48e
4a2a32832d25d3f56aceec244fdb4aabc93cb010
29467 F20101207_AAAQRX hay_c_Page_155.QC.jpg
ec839ffddfd31c9ff6c70e2b87574ff1
6cb8af8962904ae168c83614fd5a10bf2b349364
F20101207_AAAROR hay_c_Page_042.tif
a6155aee64334972fa5d8106a0a13abf
a2be20cad9b52343588214ad72ae40aee60011b2
6032 F20101207_AAASLK hay_c_Page_039thm.jpg
11f98228ea22a6cf51214ef512cf3569
4f2204d784ab21ff53ddb740212a5d5ee8815e53
1996 F20101207_AAAQEN hay_c_Page_074.txt
537d03f0a9db611ae121949fb9c31a3d
32c38ec49194d04760ee1ed63401fe4dc2c63234
F20101207_AAARBG hay_c_Page_079.tif
2712714cbf00555f950a4d7000744be9
b88a7b44c9393ede98b1f59776257d8a9dffdee5
10802 F20101207_AAAQRY hay_c_Page_152.pro
34f22d91cb4ef587897e804aa60e6a77
d00661dafe6bf2d6ff4c57f35cf3af843f93ce5d
F20101207_AAAROS hay_c_Page_044.tif
903559341aa68ec0a670772186b6c159
5868f1072e692faf4ce36079032eb96c0408dcc3
22421 F20101207_AAASLL hay_c_Page_040.QC.jpg
ea371574a88cbf7bf7d109e2beec39fc
44a6358a05080f576bf85ba07888af5147ad6067
F20101207_AAAQEO hay_c_Page_074.tif
359231506192f4a1a6adbfea7546e5f9
539271a08bb717117be4ec1b7eb6b352d9bd982d
60988 F20101207_AAARBH hay_c_Page_071.jpg
7ada9000f04eee8eae5272ed688ef315
749cf2a84fb4916817b0772dd0f28b25e72f2869
75902 F20101207_AAAQRZ hay_c_Page_077.jpg
d935c75ca418d623ce6623a68af5d1e8
76e7375d95f22e08952956072e064b5465a39b02
F20101207_AAAROT hay_c_Page_045.tif
217339218f355ec40df9b2eac625a300
cf5c1c3ce9403ae9a15b420f46d9c236380eabb8
21569 F20101207_AAASLM hay_c_Page_041.QC.jpg
cae981430e66e00039695b69504fcf1b
9e45bd1028ebfc831c84083cf1cf07f4bc347c5e
38168 F20101207_AAAQEP hay_c_Page_080.jpg
b75a62f06b7bd77b77027a876b94228f
d5bd21d920c8d05825a6ed8f67f2a1f2b05b387c
F20101207_AAARBI hay_c_Page_131.tif
997a565ccb1f73132d2418b29d379415
1a6fa4014afa292e1f4741f03bf9ca78ddc15c16
F20101207_AAAROU hay_c_Page_046.tif
fb9b4519badf54e5ffe50e955c1da69c
24d886e6a98448874b8fbce1dfefbf1940e50bcc
6070 F20101207_AAASLN hay_c_Page_041thm.jpg
eae9069cc307c5e1f0327a31dad6f89a
3ddb3d15850c33594e09a07ade989bb171d85c86
F20101207_AAAQEQ hay_c_Page_190.jp2
f20dc43322a47634b7c8836a0cb137e9
914eb86579ee8995b89f5ff70297369f83f30f90
70433 F20101207_AAARBJ hay_c_Page_010.pro
6b549490316ea9228860989fdb1aa348
d3e9a28a96552e5c127f0f6d1e6afaa63fd1e4cf
F20101207_AAAROV hay_c_Page_048.tif
936f7a38ca205aca450122ea89219cb4
c08669ee786b5bc2091a3386158071204ccf60e1
25074 F20101207_AAASLO hay_c_Page_042.QC.jpg
ca2fdfb1332e15a8b91174bbb84b0127
c6474194487ad2abb2a43d8f8478af9dae497246
6828 F20101207_AAAQER hay_c_Page_198thm.jpg
de92e46e6911ee2fff10968f86249d8a
fe13b35de948bcf757d5a5da4a18c53f47d753a9
2096 F20101207_AAARBK hay_c_Page_020.txt
21a1f1da1821b9168370b70ec9c6dc27
0c40fcd7a0a9d81c10f9adb4bf2db531e0f2fcab
F20101207_AAAROW hay_c_Page_051.tif
c5a3cc65d9bb9383ee11bebeb46f06fb
2d28d1c7a63923a8b6bc546b265c7bd6dc348eb9
6803 F20101207_AAASLP hay_c_Page_042thm.jpg
6afae5465bb7517c829b9a0c92a185db
410eacaef69de5e3a762a1b87dc6921ebbab4ad6
13711 F20101207_AAAQES hay_c_Page_142.QC.jpg
2c698b5d6d8af72416572867d39645bf
14c34ba9fdb812bca6d8c6fe36a65380e975385f
F20101207_AAARBL hay_c_Page_070.QC.jpg
a469980b7b33433f7818cda77d2543d5
fdda7997e0cb899d3abefbd7dc191f14d5ffc6ab
14612 F20101207_AAASLQ hay_c_Page_045.QC.jpg
36c4b0c7ad4a949157acc0cf41ecdcda
55a572acbb5dd7b04a0f286637b23f0300271c36
28865 F20101207_AAAQET hay_c_Page_217.QC.jpg
a7e0ddaf333e95b836ec11ea5a10fd81
66f63bc5c668675ad4f69d066bcbb682ffbd1c14
4878 F20101207_AAARBM hay_c_Page_164.txt
a867305acd162fdd632c020e305e6f97
3cab88f2e289862aaf9eb6ca0f93cceb56898449
F20101207_AAAROX hay_c_Page_052.tif
62ab116049785f7ada4efb075fcc5235
7877bc6cd37dbbfdc81d84c14c5c5aa500931d03
14132 F20101207_AAASLR hay_c_Page_046.QC.jpg
28cf1522c80aae36026f069c9e4f5bfd
cfe6edbe209029058ce4ee0af98f6092c0c8733b
92780 F20101207_AAAQEU hay_c_Page_212.jpg
b8369d2a8e7bd95e5ce6bc5a95f21092
66560552afef7434f646e91f25226f15c0a84dc5
109994 F20101207_AAARBN hay_c_Page_008.pro
0649b3ae5d56c8d902b4350eadb446c0
11f0a6b8ca4f40224cc7f2a6aa00ca8f43ed7175
F20101207_AAAROY hay_c_Page_054.tif
ae4512988b9bea985dd75fa9132c433c
68b6a5229bd62a01fb104e8ec749e09287e697a8
14031 F20101207_AAASLS hay_c_Page_047.QC.jpg
2e38c6b927533763795790553d4c6154
c113b9c48bf452aaaf6cafb9a312a928edf573ee
27143 F20101207_AAAQEV hay_c_Page_166.QC.jpg
95f17e93da05b6873cea1aa43fcc03d4
b99c1ce982b0ba3b5867527d10df4b8fb86538ca
4672 F20101207_AAARBO hay_c_Page_189.txt
863ae13afc25bef013e3086de7c3ff06
1b1bc62de62fa23b9df6f21006c7f52132f1a99c
F20101207_AAAROZ hay_c_Page_055.tif
9f18cca8e6cd47e222819050634a55eb
0571c4b7d20bdef148ef28fdbac7dbf512127b3b
13418 F20101207_AAASLT hay_c_Page_049.QC.jpg
8f9b8d4750f33440881f4a57b3a6aee2
9f110946cb6d7d8ae8295ff25d22b29c3bddebc1
4251 F20101207_AAAQEW hay_c_Page_138thm.jpg
c540888799da769e417ad62c1d6af7fd
c4de9d96f8c0d39a47c47116c2926dbe3b148619
3258 F20101207_AAARBP hay_c_Page_221.txt
ea97fed91081091ce8626fd9b5fb4cb4
224b29e0e402036e559e247a6720e7f2db1dd058
4420 F20101207_AAASLU hay_c_Page_049thm.jpg
141e39effc5251fbb5f3afee8bbf04f8
57d9b4318f0eae7bd1ca4d7e07d9cecc79c3a561
F20101207_AAAQEX hay_c_Page_132.tif
1c28e9ef82dfd000a7fd6728f6ba2c35
0ad7a5095c257a2494eaf0a81c4e0e423b7fa8a1
1051949 F20101207_AAAQXA hay_c_Page_155.jp2
aecf706a4f1adee130eae0e7f9214819
95f5fc77c3657aac5821e3160c85d6d73c6d204e
24975 F20101207_AAARBQ hay_c_Page_037.jpg
b374b2a246c4b3fe82bd419b1e983434
28253df052e0abb68898dc85dece6025ca2192bd
14677 F20101207_AAASLV hay_c_Page_051.QC.jpg
61e3a4fab97484443b68ec42b46fab8a
5a038608ab95f4136d024c40b5bea40acee26486
118559 F20101207_AAAQEY hay_c_Page_169.pro
70e4c2ca68051ae944648909da6590b0
f9de491227ab43f8b2ec91c47e06de96bac19d8c
F20101207_AAAQXB hay_c_Page_049.tif
66f430cfe0095d13166aefc11434254e
b6c81845a911033a15d694ceb277f6059611571c
277113 F20101207_AAARBR UFE0020096_00001.mets FULL
30719608961129836ff979b31907878e
4afcb1dc615d2bea3beaf4233f719a736ad006f8
9179 F20101207_AAASLW hay_c_Page_052.QC.jpg
529624760174ee4a314f2fb16e0db366
f4cf806ba503964c53b2f5ea52f5abec0224b3c1
22667 F20101207_AAAQEZ hay_c_Page_244.QC.jpg
8b4ae045e212f89be744b240ac30d178
252b6eb892248e8e942ef83133b1a9805941e127
193 F20101207_AAAQXC hay_c_Page_228.txt
9c2819c6e668b4254fe9cd73547377d2
3c2f375c952382efbfc13cd18e4e6019f857c0fa
15053 F20101207_AAASLX hay_c_Page_053.QC.jpg
0a466c4c9648812ca0213db32b80d0c8
28a99ad3faa412bf30183853f2afe9c1ce67014c
F20101207_AAAQXD hay_c_Page_095.txt
7ca5d527c9e58af9668e2848a8aed9ef
99e9df1b9fc16f4fdeb81befde11d7badf19478d
13854 F20101207_AAASLY hay_c_Page_054.QC.jpg
06c4b3b993f0eea2bae29de5f7425863
92f8b51e351bd662ea9b40b9e2ded32deba49963
1051978 F20101207_AAAQXE hay_c_Page_115.jp2
b5bdbccfea6cd60c9aea470b9b8594b1
9d702d1fe6e903352f72dd6a268eb18fa9e13d80
21748 F20101207_AAARBU hay_c_Page_001.jpg
f37cd07cfdfa52edd67e1565e2185d55
5265bb303ee70b58b2d8a8cb42fe5b042f0274d0
11288 F20101207_AAASLZ hay_c_Page_055.QC.jpg
de10af98e8ad136b3383855ff61d8952
a314e4883673d9c4d528b1c50ae03b8e29d258c3
1958 F20101207_AAAQXF hay_c_Page_018.txt
f698e2a531197468f31999514a465621
e8c7e7b5f449a42484010afc0af6a33fa7b61871
9545 F20101207_AAARBV hay_c_Page_002.jpg
429157f252bd4f309bfc5b5344b975ba
4301aa08305c06853c6e358f1862575c5538a1d2
112 F20101207_AAAQXG hay_c_Page_052.txt
7cacf9ce5bb24dd53ab87d98e672374e
378b981631820254302303a4c0d580908fd03ec1
14130 F20101207_AAARBW hay_c_Page_003.jpg
911a4a6f34c8c3b7c7c5cb9ce1545e2e
54db6231e0029831b2e75f9a5680b3265b2a42dd
1944 F20101207_AAAQXH hay_c_Page_040.txt
77d1ce947756f458d93e979497645191
4ebd3b4429b5c36d49a85e64edbe6c4e0efeb9b2
42015 F20101207_AAARBX hay_c_Page_004.jpg
1cdb252a234d4c7bdcc080b3bd1bb38a
b21f6c3ee5b7f5fdf0a0472ea4c41828996755b9
72246 F20101207_AAARUA hay_c_Page_014.pro
0010493f3d9b733582681578bfde11a0
eebce985653f0c076f14636a81bc7b550da1f162
13091 F20101207_AAAQXI hay_c_Page_228.QC.jpg
133d537ce934a02653a0611baac6300a
8bf985f989f11b2a532384d291b70fbe5ee6acae
69620 F20101207_AAARBY hay_c_Page_006.jpg
138d46672202a0e94f6510ad00245575
d0f141cd9cdc900215b3b404f3c6f3e0208cc0aa
74610 F20101207_AAARUB hay_c_Page_015.pro
6d1091f21ddaff199efa54ff7f7a78cd
5f414e0bdf42a9b824b2482158514aa37144fabf
155 F20101207_AAAQXJ hay_c_Page_055.txt
b89cb2c78d6e0e9c6bb31aae8dcd8e8b
28244ecaaf9233b7cb65af6faa656db67080e692
68475 F20101207_AAARBZ hay_c_Page_007.jpg
815bcedd429a36057b6fc75730e8b6ae
fd454969d2fa8ada1d2b233ace95fce799a8d9df
46143 F20101207_AAARUC hay_c_Page_016.pro
54974673ec3a5862ca0ac62e53f1f248
b97a1721b0cb9055e0a95b013982472546263d3d
F20101207_AAAQXK hay_c_Page_234.tif
aa3b6d3feab20141d957a13341b95a2f
09bf4c6ae087ac863513e6425b30354fe4c71134
43504 F20101207_AAARUD hay_c_Page_017.pro
25a6613ea1f30d34e25ff68f0b488fd8
f7f3577ddd6bfa9af9e8d74c6db8988b5b69f19a
22074 F20101207_AAAQKA hay_c_Page_066.jpg
65f629e487349f106b5a852e70172b24
027ac5ab37c82ef181188b750256ea7933ae9afd
709622 F20101207_AAAQXL hay_c_Page_009.jp2
58aff0913f029bc630266cb044c3c455
c5735df278e09071d6e90380e09ca5a2d35f1eca
53257 F20101207_AAARUE hay_c_Page_020.pro
62b52d8b710531d58810b2576cc47135
8997c230cd09100b67192380b95151ad59d99668
F20101207_AAAQKB hay_c_Page_070.tif
22d97f4efca3b0ffa75abb354a82d318
1f8ad7c37ed47c5db2ae3c2f395c0bb5226ad04c
4902 F20101207_AAAQXM hay_c_Page_231thm.jpg
671812bfd18e50b2ba0638f63604bcf7
df9921bad40123a9cf89f715407f642889248adc
56914 F20101207_AAARUF hay_c_Page_021.pro
9c1ea177fc9b54c2abfda0ea884b28e1
c4fa4294234833f800792cea5f7112311f9138c9
F20101207_AAAQKC hay_c_Page_183.tif
130bf04248909e176e95defd47554ead
8b336ab89b187a9b0464532e3c535350850b6c41
15436 F20101207_AAAQXN hay_c_Page_238.QC.jpg
ad2581eb70574d4996542b303f4fc3c0
f259fae921fc0e4128f89cbfd69188ffa0f3b197
31238 F20101207_AAARUG hay_c_Page_024.pro
22a68cd3b4998afdcf9882e8515e7aba
cadb72469187fbd75256f4481ece80f1b7355f78
7552 F20101207_AAASRA hay_c_Page_221thm.jpg
c9c743fa98b45bfcb33b6f63d707263a
f52af164a0fbaf09316dc7b0f12e8833cfc39b39
F20101207_AAAQKD hay_c_Page_112.jp2
1241be33d9a65b394812ca5879f8277f
b243a9d8cd10014afb8d5071f4cad890115fae71
103347 F20101207_AAAQXO hay_c_Page_211.jpg
bc1a3bfafbcf7903ded7bf9262a1691c
33b7d94f9462a84c37bd0f70df57636d7ff156c9
45140 F20101207_AAARUH hay_c_Page_025.pro
905b3f158cbcf3c9ce25dff9b2c3d8e5
f618e5c6bdb74d39b72228d8139ec258e57b31fd
23664 F20101207_AAASRB hay_c_Page_222.QC.jpg
8e2992d16b78243beefd61d1f96d700d
c41ada1533b7de0de5f6e47a7e7ba372efdbe4a7
6548 F20101207_AAAQKE hay_c_Page_036.QC.jpg
5fe7a09ceb57d0f8b970107ca5eb0700
140cb771ca240ec0221653f8e08be44d823622fc
50859 F20101207_AAAQXP hay_c_Page_102.jpg
a40ca8210a52d78e2bbd12145d7f06ef
be498bb6f43d38afd1e9f410b51d9fcebddaa988
62786 F20101207_AAARUI hay_c_Page_026.pro
bb2659fc94e47befe04fd31d1c3307f4
9c5f276e0e796bd1b30bf978b3832a4997c0636e
6614 F20101207_AAASRC hay_c_Page_222thm.jpg
1c7d9c8f3aca9edc5dffe8d85249845d
9ef864a5bad05187f32ca7fd4b2a43847a4d19ae
27732 F20101207_AAAQKF hay_c_Page_185.QC.jpg
dc16f05d5a2507fc887d70b2b697a1b4
f7497ff7ebe1a1f0b4d0f7e75aa9c5fa8a5ea169
F20101207_AAAQXQ hay_c_Page_096.txt
c04b21a1e973186c79d81145ff5ae258
555ab1770397853be2c4cdbba5f627d8256e6468
52741 F20101207_AAARUJ hay_c_Page_027.pro
b7105027ad86cd7d1e2c4bbaad6ee66f
ed03aa1eebc499da1050347b282e849731d74035
12989 F20101207_AAASRD hay_c_Page_223.QC.jpg
8e531799abfd28c8d736743a6d69c158
1338dcb03aec25e06882ae8734e9ed199e87c7a0
4388 F20101207_AAAQXR hay_c_Page_242thm.jpg
abf389d7a29f833985ebbf52169af794
af0f20203ee1b1dc59a3a7cca8a19be20a986f4a
54190 F20101207_AAARUK hay_c_Page_030.pro
3304a1f43ee6b322c043ff741f8c805f
f277011826f5f961890172c8b84d53f0ec63552e
19200 F20101207_AAASRE hay_c_Page_225.QC.jpg
4b4dbba1ea717a7cce1d4012dc4c4b4d
f33a0a08b6c93baee0fbd41febb1cd1eaf9967e8
468452 F20101207_AAAQKG hay_c_Page_160.jp2
4f2029fda2045fb9c9d9d3d532cb0c9e
c7de4148efa9f6645231b5f963a25064d41daa2f
107867 F20101207_AAARHA hay_c_Page_216.jpg
98272cf3e607a334a2890ebebfd043a6
187ecc1aaf820ccec556f750f6f2369b362649c4
4346 F20101207_AAAQXS hay_c_Page_118thm.jpg
b163be43ef643877760b0a87daadd4db
05881183fd09c5d23a7900102983bad1f72a1f31
51229 F20101207_AAARUL hay_c_Page_031.pro
93dcd6d4b9a68b295f3babe4e944b758
0860e04d58e70474117a3c86e2380ca581670f39
5327 F20101207_AAASRF hay_c_Page_229thm.jpg
312f84c4b3c84c1710b44e7011409c17
4fdf80116c93f2844b7140444f708fef22dacd64
F20101207_AAAQKH hay_c_Page_244.tif
cbc8ab0640334f7d02bbe7969795863c
e1ee2d5a6fabf265b72a595bf55f7f5a5dfc2515
107076 F20101207_AAARHB hay_c_Page_217.jpg
7fcd8306e9d3242d77d04cf3de488cb5
1827ab572b1bfcea09790ff4abd98c80af6d6868
29253 F20101207_AAARUM hay_c_Page_032.pro
4f8859ad3354fabef6f3c80ed3738c25
94eb4f68dba0d8549ba973b650d6aae1978ad652
20883 F20101207_AAASRG hay_c_Page_230.QC.jpg
5178f4b5ff959114f4782cca3a0520a0
d1b975b345123f100e436bd449148ca32a7c1b3d
F20101207_AAAQKI hay_c_Page_211.tif
8823c34db9522b8ece8166a7aab03fdd
6ee438519a392a333c848cceed775514fdc24697
571 F20101207_AAAQXT hay_c_Page_092.txt
13213711dcb33907111b8d88f7b8186e
599daa3d8abb45d61daa27669992a4d985120911
6795 F20101207_AAARUN hay_c_Page_033.pro
3801d309498aebb8bbedc0a7b46528fd
cdf621c95110ae9a6514ad1e73e41e60f2082e82
15073 F20101207_AAASRH hay_c_Page_231.QC.jpg
a2dc86b849e585284b301bcc1ada060a
78b2060baa51144e19e44db87852c5655c257e40
F20101207_AAAQKJ hay_c_Page_056.tif
a8ed31d5f9dff687e4dac18a7af290ae
50f6748b852130a82877b8d68a0941f01c3fb123
107075 F20101207_AAARHC hay_c_Page_218.jpg
b3d7b50c690670f585d811190fc30100
ae5632f710622a2df51a7b46a15b0d357ceab5cb
6540 F20101207_AAAQXU hay_c_Page_190thm.jpg
87d3a1d33f3976644786e8a51e2eb00a
7c7767fd154e6a0ee5e0c85f9db89512ed75659a
3741 F20101207_AAARUO hay_c_Page_035.pro
55fe749cd691a27172140f01c3eaff37
6b2d7b435bb62f2cf65bd5f5ec07846321592a46
3752 F20101207_AAASRI hay_c_Page_232thm.jpg
2e12db28569b08b573421f766c4cd545
2a4d052cc637d5659b18557f47b7031d8de13816
F20101207_AAAQKK hay_c_Page_139.txt
c4c8a122b373e0736847c70a052176c9
67ab2866cce122ad349c9f53527d562ab523d896
93618 F20101207_AAARHD hay_c_Page_220.jpg
4e61f1f477c1d5845421cf93bb933ca7
06b65ec9191bd58dc4b6418c3c1c92847a80627a
24541 F20101207_AAAQXV hay_c_Page_029.QC.jpg
3addda0f38eb76f103457ddb35df9e45
89fb574c48d391d9ac9f0268977f665075e76a84
13671 F20101207_AAASRJ hay_c_Page_233.QC.jpg
e3ce26600cb44190cdbadd5ca9585d71
6724b92b68e82df35547cb8a447a9ab382ece9c3
800 F20101207_AAAQKL hay_c_Page_156.txt
c173003a192af217400d94567a2cd49b
a72506d3d139f3a23a5809cb5516662762f0146f
39502 F20101207_AAARHE hay_c_Page_223.jpg
d484bdec88b8344e3471b2f18d848755
d2e3dd0a6546bf3d86a2ac92bd5108bf21125a33
451 F20101207_AAAQXW hay_c_Page_120.txt
00595f4edcad188497ff4b183a0921d8
9c08fa78e0036cd954ad015aaa088ad41e2328cb
4825 F20101207_AAARUP hay_c_Page_036.pro
47bdc9114e4824001fe62eed521fa3b1
6df23a8bb1ca5362232f9f50830d4a4c88802b29
4564 F20101207_AAASRK hay_c_Page_233thm.jpg
ac7bc2008dec3d2addcb1da30cbd08e8
0f8ed92b7d8a629bbb494a0107c62c4c6935d4ae
6495 F20101207_AAAQKM hay_c_Page_013thm.jpg
84b6360c1e3e52107eedd885277292dd
af86ef832296cdca76912898420f6eae340e55d0
58272 F20101207_AAARHF hay_c_Page_224.jpg
b50a545ea283c0ef4b37e347c307a498
d84fdcce27b93836aaf1c77794ceb93d43b96486
100197 F20101207_AAAQXX hay_c_Page_173.jpg
1aee558b887e563662769e3536a66642
6acf270e7c81f2b775daeade8931cddceedec898
5467 F20101207_AAARUQ hay_c_Page_037.pro
674e2d13c65a24ee3b40b2e287323cec
6e3bb45a3383e2b1b150f9ce79b9e7ad6cc3729b
25978 F20101207_AAAQKN hay_c_Page_015.QC.jpg
7792ca488868a0058531fbfd0d0e15bc
520f652a45f24ba05d074a59ce6808efe6634023
39494 F20101207_AAARHG hay_c_Page_226.jpg
63e43af8c5b2a427bee007e461443ba7
e1db58ef42cd661b998c07c3572227cad8e44956
68285 F20101207_AAAQXY hay_c_Page_089.pro
4adcb16113846cf030935b7a066595e0
b44a4177cff030190b9709990f97afb2d7d703c5
5875 F20101207_AAARUR hay_c_Page_038.pro
37ee7b73fecbcc57987e777e5671bd4a
3dbea4272132b3768ef88dc1c68bbf49ec1e6539
5543 F20101207_AAASRL hay_c_Page_234thm.jpg
7c496f6a534c39451794efcbb8afa702
955ffee96f4df21ecd053d86c7569d917dbf5aa7
111116 F20101207_AAAQKO hay_c_Page_023.jp2
f0561670707cab8630d50a140cf8ebe6
27483c6768973da268c86810535f7953f5e6b10c
43578 F20101207_AAARHH hay_c_Page_227.jpg
7ca56818d0c08d8c1faf0708a9294db6
ff808a963494b9b9eb91d14d5732bccd4ebbd252
F20101207_AAAQXZ hay_c_Page_085.tif
18ce19ea464c7f060b85c96a0083dc0a
ab45a210022d07f23300a9b512e4874223512c40
107 F20101207_AAASEA hay_c_Page_153.txt
4a62c5df751518988b05e7ff44d491db
3ad0a5cb32c8b260c7170c04127da7a682732dee
46792 F20101207_AAARUS hay_c_Page_039.pro
9f68ff96d0599245cdf5afef9e53905e
fe000fc7faf9c8ee763abed521e8531344e8740e
5426 F20101207_AAASRM hay_c_Page_235thm.jpg
bd0c8d920282a4427ab10775b4bec13c
a6dbd162f5a24bb7c8e7fd4b33ee21bc70b0ead5
3933 F20101207_AAAQKP hay_c_Page_136thm.jpg
727e214a418aff53cf7184f50feeb67f
05fc56f30ecf77a3843e46bfa8ca4525ad9f4be9
40195 F20101207_AAARHI hay_c_Page_228.jpg
cb546f76bb5c917984932af812308811
cc52d884b928d6b2c0d450aa15704c0014e7211c
4785 F20101207_AAASEB hay_c_Page_154.txt
2a86fe15c4729b84d0fb581e7a4e6cac
0e6c2104c4582906088ce2836cfb1c0de04c1001
48379 F20101207_AAARUT hay_c_Page_040.pro
2b076690c272ee6962a6b86252b50005
8d5712c5589cfd74f8cd4f9a705bcb24c206b384
18772 F20101207_AAASRN hay_c_Page_236.QC.jpg
1a1b68c254fc6a1dc76f29ea31673e98
468df3f2bb68ada2dce061bf9f043fac769e9d29
26896 F20101207_AAAQKQ hay_c_Page_214.QC.jpg
6e32ee71fe4b8ad73ce9eb6b29f470a7
f0722e6afcb477810c2faae18b1edbcb19ca1010
61317 F20101207_AAARHJ hay_c_Page_229.jpg
14f8457125b77de3f204b5bd90ad32a2
caa97092a678d7eaae3482a22b81ab97e8fa45f0
5702 F20101207_AAASEC hay_c_Page_155.txt
5acd9a10b03b1378322c45bb11f39973
497442366e010d46988e597531b6c1bb324f9681
52780 F20101207_AAARUU hay_c_Page_042.pro
b5336fbf9af1b689c8b9aa01814dd5d8
2b1ee1d09119185a4c48351509aa702e6290e200
5887 F20101207_AAASRO hay_c_Page_236thm.jpg
8c82d56ee474a2807653629984ddbba9
1c0e2ab54948d81eaa3e35f9f272bd0f5ef3540e
430 F20101207_AAAQKR hay_c_Page_094.txt
c1a5ff7b0aa2e7003872988d8edc64c7
3f42275fdf96b5c9c445a453c106411e74d6a569
72517 F20101207_AAARHK hay_c_Page_230.jpg
9069d1be6b8f84292d1d2fdb83fe162d
11bda964aece59f216cb69f6344beaf24c18d686
1207 F20101207_AAASED hay_c_Page_157.txt
bf55d6648882a9acb50067f63c5031a3
26eadc03ed7a2886351a7e9bc805d497bbcbadd0
47770 F20101207_AAARUV hay_c_Page_043.pro
9b98f686302f2aee838823c2e3077355
738864db836204bb4869bde4af7e159c490468e9
4190 F20101207_AAASRP hay_c_Page_240thm.jpg
36ff44b32b858c3a9cd7444ca5d775b0
bcb2396a08932a7175fadfe024de59639fff9d25
68799 F20101207_AAAQKS hay_c_Page_043.jpg
c07932dcc44109c9618e7ca997ee92e4
47437c27cb268363ab058ed17d0673b7073eaff6
43014 F20101207_AAARHL hay_c_Page_233.jpg
d38e49875e3652a7f80bd2c78c35d17c
5bbe78569de19429a1d17709072d7ab5cf5241c1
524 F20101207_AAASEE hay_c_Page_160.txt
f0d6bdd144c45b86307e98b10a11ba37
a6ecd5f39cd988a92d67ac5f665e1a489e261686
3692 F20101207_AAARUW hay_c_Page_045.pro
66e3ab3d807b3264306bcc2f07a8963d
cc4ca5f112bc8259c2f6e2ff55fd52643933dfa4
5485 F20101207_AAASRQ hay_c_Page_241thm.jpg
1f8c27c83f0aa5faa2addf9b8f9b6023
9358da50680d10aae0f6d7d4ba2ce677e1240425
18038 F20101207_AAAQKT hay_c_Page_224.QC.jpg
6ba2fd5eef8863f629118a0c16ab25d6
a27f86cf73f9d20a6c35dceccdd6336720738430
50748 F20101207_AAARHM hay_c_Page_235.jpg
749f5bac26bc4db77fd736d306e98420
8b77429eeb3bfbc320dec22007b5416c25967234
330 F20101207_AAASEF hay_c_Page_161.txt
fe7ae45ec7812f3a4d962b4dc1bfcb42
5cdb52bbb5182e2f6bdc1835f9bb940b03c4bd51
4304 F20101207_AAARUX hay_c_Page_046.pro
96760cac708c291dd0dc476e648cfe78
7c66ead30bd7682389a65ad08250a954de0745a8
13297 F20101207_AAASRR hay_c_Page_242.QC.jpg
57e625b5db87235ee60c68662f6132bb
40fb55698897d0462603f8fff104d575804877c2
13978 F20101207_AAAQKU hay_c_Page_132.QC.jpg
08f38060785709d23d6c229be93e0778
effe5bebac66f715d8210ea8e90ca5535128f0a8
56327 F20101207_AAARHN hay_c_Page_236.jpg
88847477685550cbae4eb7673418899c
23a7c6c99b854a774949eb502cb9e2db08538a1e
60 F20101207_AAASEG hay_c_Page_162.txt
d800adf04d3d9c113d594e172b9701bc
0033d234bff42febc86ca6a3c57ff3f9e8846f6d
4358 F20101207_AAARUY hay_c_Page_047.pro
595202d9d57ad0b754e7fdb312f37078
e02465ac1d8ecd9ad9d4dbd49efd5a98efc06644
6955 F20101207_AAASRS hay_c_Page_243thm.jpg
33a180a2b82ca862f550827f14ac71cb
6b7cc9469dcc4cc409342645d0cb5ad4664a316a
65004 F20101207_AAAQKV hay_c_Page_016.jpg
1af2e309092ef3dca17486a5dfbb508d
0ff31e773257fc5321bc990a368d80a6db3a9d69
46622 F20101207_AAARHO hay_c_Page_237.jpg
3c982496a3f1eea1d9af43230ece8bbe
7d0547918aae1d00a7e9d5853c6101a31773aa12
4896 F20101207_AAASEH hay_c_Page_166.txt
986a33086950716993f9e921e62a5261
d260c9e73e3293301ffc686f7d8b105777fc49ef
4334 F20101207_AAARUZ hay_c_Page_049.pro
7f8dcd50477574688489e67b2d84911a
dbb12acc814757c7c6d3b6fcc0442c9a456325d7
6279 F20101207_AAASRT hay_c_Page_244thm.jpg
8e3942750455af5395c9b222a3d54645
14551b47cb0ebdd9e87a3c32c720d920014adf96
3978 F20101207_AAAQKW hay_c_Page_113.pro
40240b85d14746571380a79c57417f11
64e3ec35fa1ca7fe28fce0e4b6cb8712303f3357
46627 F20101207_AAARHP hay_c_Page_238.jpg
0e786d89d1bacf5defaf5dfe404b1976
0efb20dbacc393cfd98b53f4d97131fbbfada6bd
5511 F20101207_AAASEI hay_c_Page_169.txt
1f988774efbc824a22488194dc41182e
6807ebed09ebe9fe288af0ea31010590a5078148
16713 F20101207_AAASRU hay_c_Page_245.QC.jpg
1867bd92f92518d8f352f7d90af21792
3b2ec900486a1a7555a2822c970dc5ce592458ca
5471 F20101207_AAAQKX hay_c_Page_195.txt
6fc605a57a2d496f990dd8931aafa9ff
8f208aed15f664116597eb402d23a50275c60c40
52374 F20101207_AAARHQ hay_c_Page_239.jpg
40d86a7b51fcd35ad9d8447e442a2b42
f2cfb886394427b22a8639ad98955a3bc3866df0
5273 F20101207_AAASEJ hay_c_Page_170.txt
f96b225c5ca5c6d025bb8bb4b105cc2f
505b04c7c183e74192c8d650230a19d3e41b8007
5115 F20101207_AAASRV hay_c_Page_245thm.jpg
ce2c382c6128bb9476bd963516d07331
993cb7d94f43c988381c5c33209480f800f58393
6669 F20101207_AAAQKY hay_c_Page_175thm.jpg
755a9fbc1d732d4e2de334d7afe14c19
f1c8ad2097219d7c6f757b183b58cf4d5941fcd7
37785 F20101207_AAARHR hay_c_Page_240.jpg
b0788cbe5ad41f4d5030c16645de002c
d46622a8e2d11544ef251f4b0fb115408280386f
5764 F20101207_AAASEK hay_c_Page_172.txt
f020c78cf000ddb65d0ea21578eb8fe6
b9114d1ce7c77fb4df1a2d8d4ad71455888a77f9
4962 F20101207_AAAQKZ hay_c_Page_157thm.jpg
7551a0df050b06cb57017eb5acdd1b13
1dde573586f713315947027b4ecac7e90ae8f5d9
52976 F20101207_AAARHS hay_c_Page_241.jpg
027f429eaddb0558be7151450a0f9425
8a18a1c0a431a1a03acfe62aa7b2a119030d31ed
F20101207_AAASEL hay_c_Page_174.txt
42f6283d52527721fefc6d2ef3951f08
5f16c8111c2431d75d5bbf433fcdf0aee3dcaed4
84593 F20101207_AAARHT hay_c_Page_243.jpg
d82dd9c7cfbcbf6294821edd3b3d9ab1
b6a2f9d48e06c635c65d111d337b72d1bccbe49d
F20101207_AAASEM hay_c_Page_175.txt
6cef1ddb1fede6d01c68706c34ff5044
c6ecaf9dc22cef28124d75a56281a966cbe6f576
76213 F20101207_AAARHU hay_c_Page_244.jpg
0d01e8fd99aa78cd7ff61d5d4a9cc3c6
60bb74e889606b3ff7267969b6fdfda0883ce301
4815 F20101207_AAASEN hay_c_Page_177.txt
ceb014b84a2ea17a69dc8dff10e5180d
4bb3edfb343aa8e11ce863d1bb0cecd9db0507e2
51847 F20101207_AAARHV hay_c_Page_245.jpg
549f2e93a10f4908819ba8b3804f9e6f
06977af8438d47b46ec58338e787ea3d7ddcb1af
5208 F20101207_AAASEO hay_c_Page_184.txt
163f1a9d99a040bd379dc3e5e173240f
e66f647e1950c153ad378c8a48cc4cb8aae45715
13247 F20101207_AAARHW hay_c_Page_003.jp2
a76802b75b2b5a87d9ed1d419fdcb285
78658e9c0185efb314efe605a3a067ef0f22e85b
5701 F20101207_AAASEP hay_c_Page_185.txt
79038b1be16532c79c5f4896d820f1ce
f9eec94dedd94413813395c0ad81e4e3bb0b38b5
58622 F20101207_AAARHX hay_c_Page_004.jp2
ce26ee3884c18034c413efea30998ad1
f5a660769a9a83728454565a34dfb9ba763955c6
F20101207_AAASEQ hay_c_Page_187.txt
d1535b449c107547e2641277d568a276
f430aa70bfae870cb55bcb4c023d7411c069c81c
1051968 F20101207_AAARHY hay_c_Page_007.jp2
9f1dca6fd0d86a89b2cf2e909c68df1e
e1ea05850e80ddcb86020e29a7c5594f7d754747
4936 F20101207_AAASER hay_c_Page_190.txt
b1cc224c3ee31a5d7352a30fe5d98e38
e3261655c36a93e14ba78a2a2af060284df35cd1
1051956 F20101207_AAARHZ hay_c_Page_010.jp2
4bb0a55f07bdc79395ae494bd1c7a74a
0fe33671a6a90005b378ce61e1dc64061099640d
4308 F20101207_AAASES hay_c_Page_193.txt
f1f64e365277633926c642b72d005a1a
4de7291ba4cb37495039c71a411e481020d8d7eb
5137 F20101207_AAASET hay_c_Page_194.txt
c8e0ef698472f3c0fbfb0afbff8dde23
60ac761094f79fe34bdc7efca08ba48712042d32
5285 F20101207_AAASEU hay_c_Page_199.txt
2cdfaab38856056218892e6785035677
001793048def3e29feafbfdb1df7b02b8f0c1578
112182 F20101207_AAAQQA hay_c_Page_189.pro
f785ceb2eabb785a701f7076fd6dbd04
40be32ceef2fb9b85da22f431b4275c6f5265b1b
5389 F20101207_AAASEV hay_c_Page_200.txt
8f6a30cc773ce4e9360be3acfa83b61d
bfac99211db813ba9ba1177ea4f86b77d61fa100
115989 F20101207_AAAQQB hay_c_Page_076.jp2
a42db817b716465cbc9aba690b13045a
1431e9caf9f55aca4db39e01835345fe2f65783e
5219 F20101207_AAASEW hay_c_Page_201.txt
13c62dd5aa19f6420b95f9092c50d779
6fc44e685d7a0b7de945ff895e9d38c7f3283480
19573 F20101207_AAAQQC hay_c_Page_110.QC.jpg
f3e6abf51d2e9d31c80adfc7ad8f28c8
c1723a13645ac703e6e3e66726b2bcc455897791
4931 F20101207_AAASEX hay_c_Page_202.txt
3a1a534b32bbe2808ab091c123058b10
07fff76d3ebf0c68cc29096b1d18e5aa8d5e87e2
F20101207_AAAQQD hay_c_Page_026.tif
32b130ff384815ef3d23082a585b2e88
3e87f2abdfe1da044de103f60cbfc724e974c3c2
5968 F20101207_AAASEY hay_c_Page_204.txt
a2387ace95487533521edd0e5e6dedfe
a5ed8350537f789a3acd80d2be123a1cead96ed2
2220 F20101207_AAAQQE hay_c_Page_225.pro
2dc3328ee5bf34e3f2eb781972580f5f
a0d6f7f77e19a2b54921b6c8c7508ecb0aab9071
5705 F20101207_AAASEZ hay_c_Page_205.txt
85833b67a57ca0f5ebc39ebacb2f4ca3
334f613680f608c02ac86aa740dd7139b084ec29
11282 F20101207_AAAQQF hay_c_Page_232.QC.jpg
c53053298922b7204b834f296c0b83e0
0c7966ad89fa1dc2ed8e90f8e9b143ce9acb6e34
F20101207_AAAQQG hay_c_Page_105.tif
1ec8c2454783d8d62c95a9d7ff3b7874
4bf0dce68e92742bfca1ddc1ec5bca2b4fd0e5df
F20101207_AAARNA hay_c_Page_211.jp2
7d4f31f1755268769d71f841015232ea
aff543fe37019cbf80e74f828501bbe23983019d
F20101207_AAAQQH hay_c_Page_011.tif
ed56bdd882ef904092e40691946757fc
e6098e3066aa6030d378125af7350254cfde4c07
1051946 F20101207_AAARNB hay_c_Page_212.jp2
4978f1247bedd30e724978a0a84147fd
a8256d01c941e27ac7c557690389116a876a24a6
100961 F20101207_AAAQQI hay_c_Page_167.jpg
61f65902cd1efbf1f2bc826602e941b8
1415c99e00919d4456aec70cfecfe1875413766e
F20101207_AAARNC hay_c_Page_214.jp2
bb4c02397a29a9ade369fe4f303b8058
202f3642d214376cf623ba0d52d77ab40548a629
1354 F20101207_AAAQQJ hay_c_Page_245.txt
8e6c31e713587028586a59fe4e584ca9
43fc1d1222a8c0f53c697c922346c59bb6518180
130621 F20101207_AAARND hay_c_Page_215.jp2
8c9370aae9cb0e19cca2e9fa6b2f08ee
6528a1c5909fecaeb98eb3e569305ed19e7eb988
111197 F20101207_AAAQQK hay_c_Page_090.jp2
ac799bc5a500422330ac6ed5e600cea0
f32b0b3607e2c8638c485bb39f3e245dc38742a9
164295 F20101207_AAARNE hay_c_Page_218.jp2
d6ad11ca8334e9f530d37bc521bca35b
97ec8bdeca0c2ccb0fbd6c1e0464b78bc8cd7314
45525 F20101207_AAAQQL hay_c_Page_032.jpg
84c4a5f61fe2df58c11fa1726daa0654
c26bccd3f3a3c6cb40cf8a4d22d554b2abd90da9
150234 F20101207_AAARNF hay_c_Page_219.jp2
c3c1fef099045ffed1fc87d3add58ec5
57fb2484bedaea396adde34555b2f2c356b1631f
138175 F20101207_AAARNG hay_c_Page_220.jp2
e943edcc55eb13a8e701d1f2f846966a
d8e99fa966109cae5004297e94c228e9693667e8
7990 F20101207_AAAQQM hay_c_Page_150.QC.jpg
8e0fe2dcda782b8ace3524f0e95f222f
b3f97c7e89ac30bca7691e254a85af636e8424a5
155923 F20101207_AAARNH hay_c_Page_221.jp2
d34ea60f7bb1c4e694d9047ab57801be
e5cf8d93a52af556060ff7a26518b7200e1af0c3
6266 F20101207_AAASKA hay_c_Page_173thm.jpg
749f994b67e853ba7e16a1b769c88008
66573072d38641c55af5384440022147e8581b01
5399 F20101207_AAAQQN hay_c_Page_207.txt
d622daff431367510eb415a2530a4b89
9d8707a18a99421afda541ca952bdc1360b81206
13370 F20101207_AAASKB hay_c_Page_139.QC.jpg
d373ebed31bcbd63def2b868b212f86e
e202049f7c644398da622c82c5ad18db53b11b3a
F20101207_AAAQQO hay_c_Page_118.tif
d99c22b42b05ec1cffb606b750a5f573
04fea05cfae91666d50d4da90ad44609e6fe599c
107679 F20101207_AAARNI hay_c_Page_222.jp2
5b82b38b2a28ddb88add089b223b20a9
a6386aaf50dc4d046a6b69d6b36762c223867194
6586 F20101207_AAASKC hay_c_Page_001.QC.jpg
2d16d6603011dc0854a9732f1b3a5aa3
029775ab0b133a505a514dc9dfa6d3b01148ba8a
5641 F20101207_AAAQQP hay_c_Page_168.txt
e713b705df5b98454c0388f3b6087388
c76d29f8dfa4ba774b823c1daa6ecd0b9d500544
54339 F20101207_AAARNJ hay_c_Page_223.jp2
08bd7d37117f312e8c3299b40ea39b6d
84a127419b10889c60dc25ca4beabed841c1d8f4
6404 F20101207_AAASKD hay_c_Page_197thm.jpg
675bdf44f9f4826e7c0b5d052e1d546e
eb15802777e105089e498db3e019effe5376a877
24743 F20101207_AAAQQQ hay_c_Page_210.QC.jpg
c1ebb512d00bf5ef296ef7a856cfde9c
ef378d5a9e8f28c138b50b99abfead3cd3ae064c
1051912 F20101207_AAARNK hay_c_Page_225.jp2
cc1394292412a426ecce20641042a0d8
1135183d101120215b5bba35843a9c1081123f02
F20101207_AAAQQR hay_c_Page_194.tif
881057e28943fb0377a02951cae27b78
290d778be5d03854ef69347a205856d3a2ed15cf
976405 F20101207_AAARNL hay_c_Page_228.jp2
74ac66dc347a774a86f9e15bf04ae637
9c289c46b528df6858dc2503356f450483b03452
26194 F20101207_AAASKE hay_c_Page_200.QC.jpg
84e9f0bfc327c73b5a4323619b553a33
80d253e2db3a9cca41f92511ddd5af463bba212e
6943 F20101207_AAARAA hay_c_Page_088thm.jpg
6622fe7ff34afc3bec434ef4611b0e5a
465178036458932027ca65cd988cb7e53de215c5
F20101207_AAAQQS hay_c_Page_084.tif
2f667d18b493651125ff67a13e1379a3
728704e0b71716d3c8ec2d68fb92ba8d1d08f75a
F20101207_AAARNM hay_c_Page_234.jp2
0048f5def38e36c4da06ca233a77bb2a
6988b14892f54e14424e96d505797e23e8ee0e8d
2622 F20101207_AAASKF hay_c_Page_050thm.jpg
8d498f14f1c011034fce811fd79e102b
c80d61798664ab558bc203f55e3a7d6ffa5873b7
1331 F20101207_AAARAB hay_c_Page_002thm.jpg
214d64b09df9efb6515c72ff0b247f09
03c4f08c7c9cdcbc83eba4b216ae1fccac2130e8
F20101207_AAAQQT hay_c_Page_034.tif
f423a67c13025fc72b2235341fb8feed
b52a6873c247572193690026a81442880f6d264a
1051947 F20101207_AAARNN hay_c_Page_235.jp2
4a8c6a79b17fa6f294cfa7bb86c69cd1
e20e80f99a833c06e1a2f115519ca5c83a243ee5
24818 F20101207_AAASKG hay_c_Page_183.QC.jpg
f414f5ae73d5b290d882b5e6d8b3a528
21a08ec40cb347e8b69cfe1a25e33d4a85d8ac3c
13321 F20101207_AAARAC hay_c_Page_124.QC.jpg
e6b3eb74aae3173b1a326d5159e60c86
e9ae86ba25279b179b128909fc9dc83418d673fb
7082 F20101207_AAAQQU hay_c_Page_204thm.jpg
5406c7f71bbd00c398dc4008ed93972c
0967b9aa94c0b015746220caf35755fde18a664b
1051966 F20101207_AAARNO hay_c_Page_236.jp2
b7b23c96a8550f3f3999c53a61707b9b
b959bb6d7ffd4ab6b3fbcac1c211208bdfbec63f
6372 F20101207_AAASKH hay_c_Page_078thm.jpg
5ad5fc451f257a70031012c048825516
4e672b5b8206826881a38f96004abfd6cd86e249
F20101207_AAARAD hay_c_Page_241.tif
fda4b4c55aae65cec702ed4578938d56
a85819e8a7f89f957aaa5a1ab4c292abba33d71a
11390 F20101207_AAAQQV hay_c_Page_122.pro
152f2cb79b6ceee8403f9be7c40595c5
86ffea91a0377fa995b7289f951aee8309575f6f
F20101207_AAARNP hay_c_Page_237.jp2
308a17f9bf4831c89d722a4742bc6fd0
640782654e12b460370a106eaee81cd37680b55b
6936 F20101207_AAASKI hay_c_Page_082thm.jpg
224fb8c1dfebd088597773fdfc15aa12
cf777311e4e130baf79e05415e428c26878cf0ba
223479 F20101207_AAARAE hay_c_Page_038.jp2
fa81d339a4fd59f99b64adf6ef675694
e84139067fa5633c91e70367173e6b3e35f4c0a7
13569 F20101207_AAAQQW hay_c_Page_141.QC.jpg
991c1e9635c5bb34b21b9383750622e5
b0dfb046243c69697baaec1465e7fae5d01a30cb
1051970 F20101207_AAARNQ hay_c_Page_238.jp2
b572d77a5c63f95b080564e0eb54e9c4
5a66f3e8888b11f335f4ab1ab7c04fc0fc72a41a
25888 F20101207_AAASKJ hay_c_Page_170.QC.jpg
4a54ade110f922ea7c7a82d2c981b3c8
fd6c020c182dca8029ea0c7d82c63c0ecd8a2154
F20101207_AAARAF hay_c_Page_218.tif
f352d5e8dc742289cbaec7bda99d4274
e1d5800ac27a5b5829ace4530ddcac823d5b7c48
10556 F20101207_AAAQQX hay_c_Page_161.QC.jpg
ba10cd4bd5f6300b0bd682b0cc878945
2f2bd012d9f0fce892783f769ec9290278083d2e
1051723 F20101207_AAARNR hay_c_Page_239.jp2
7a5a17e15968933dac8ca26c2895ec9f
f82cc8e65ca8a1d119e1bf8eb91993818fda4b4c
24921 F20101207_AAASKK hay_c_Page_189.QC.jpg
3031ea59bc823c318c70eb19225268b5
ef82875530ae054ad5609ef779c9baf975b98bc1
40694 F20101207_AAARAG hay_c_Page_107.jpg
f4d0e914165d6001bc5adda46a1fadb6
ce5bab9f983085e18d7981cab531e792e46ecb97
1051922 F20101207_AAAQQY hay_c_Page_180.jp2
c638a997b84b2e291ebe58fd5b7a214f
b0ba37193bf447e434c765d0c7ae31429ba5995e
936384 F20101207_AAARNS hay_c_Page_240.jp2
7b0a068e081c472ad55f2a887b987bb4
b02d53012cf12266115692f55260610ad96d7c31
6583 F20101207_AAASKL hay_c_Page_215thm.jpg
c985908940321e4c0edaba1963c7aa20
c16160e1157abafa4c73a901bb1aa04b2d3c97a8
F20101207_AAARAH hay_c_Page_094.tif
f97d0c45adc0c5bc792b264a3130d375
d84f3ba76a25c751a5bd73b9c611c16f8c328651
3971 F20101207_AAAQQZ hay_c_Page_121thm.jpg
e878a51a513f8c5bea48a7f5fce6b1cd
8aebeb7087f4c1ee7b11ff194aa52e365fc497a1
1051942 F20101207_AAARNT hay_c_Page_241.jp2
38f9985640c8c7dc0c970ac61465fa46
c89fb6e128b12d66bd3fa8961a3c0ed65ce793e6
14965 F20101207_AAASKM hay_c_Page_109.QC.jpg
f79e33d0f338584c31e15c34b14a204d
16d52b030e4a0530abcc584f450259bb5920655b
4352 F20101207_AAARAI hay_c_Page_141thm.jpg
d5bb68666d2523ac0f1bf85fa3d5dd45
692eb4dc32ed8e2edaa9b78c4435ffe7b6b21b75
1018695 F20101207_AAARNU hay_c_Page_242.jp2
3905d1f3f51fd0b9dfda971c59d7ab90
6c26f4dc97a8969868d1ec1e53214246af019d0d
358721 F20101207_AAASKN UFE0020096_00001.xml
e6756f49f57cfedd0f38446d577db471
a94eb78db4cca195cd0438be5181c69d4c1da045
F20101207_AAARAJ hay_c_Page_022.tif
dee41951ca9a7cd0bf6bf2b29fec1789
ddd6992a32c113408e63586c5237aae036ec5b9c
129346 F20101207_AAARNV hay_c_Page_243.jp2
62b74ad738ec37656dbbe38107a83e6f
bf192bd04b3ba050c1ac891f6bd50a73f7df30f3
3994 F20101207_AAASKO hay_c_Page_004thm.jpg
48e0368f6ba83fc8292e31339ad70fb4
5895253da1ad63582f4bcfefbba35bd514ea04ad
6057 F20101207_AAARAK hay_c_Page_063thm.jpg
12af87bf841e1ddc31d80f2bd4f21c5a
ff9a7fee046e294214d37be2f4105bed49331abf
F20101207_AAARNW hay_c_Page_001.tif
de5709fc49e0dd057e683c8bb4a63abf
c829fc1b1cc01a7efdff9049af0357a05a235540
5451 F20101207_AAASKP hay_c_Page_007thm.jpg
1d9d2919227d8e1586799da5e2b5e83a
1296b2faf299d7a39ee5c63b590b8ba4ef3ca31a
12168 F20101207_AAAQDS hay_c_Page_126.QC.jpg
850725bb73f980d5e8705fcd37f26880
102e6c2b49016121f8dedfbbaabf77f7783774c7
97334 F20101207_AAARAL hay_c_Page_177.jpg
9537551c958778cc2beb911bee0d1bff
74f4e03caf1f099b229ab9edcf8b40dff85231ef
F20101207_AAARNX hay_c_Page_005.tif
1aadf464a0b3d1568098e874abc150a4
858226eb96e7960bf29025affe0a722289d4c32b
5507 F20101207_AAASKQ hay_c_Page_008thm.jpg
2b7195103903542f93093e80acdfbb4e
c77f1230f6d5d86dcb862a0537ed46068298cc0f
220 F20101207_AAAQDT hay_c_Page_112.txt
2ae601654fcdb470bd11f6b3b4cd51f8
3ea06adf5125fcea70cf612bce5e1588542c593e
F20101207_AAARAM hay_c_Page_224.txt
9630ab0b7b249df02c6e4f4b94426e33
7c6844455b895592522e4f2593b63ce80348ce48
F20101207_AAARNY hay_c_Page_006.tif
ef141c93f65fefa9a2bf5acf87813d85
a75cdbf2c5548ba66d38073cbb734c67707147e7
2762 F20101207_AAASKR hay_c_Page_009thm.jpg
8c57ad6f403f63f8d279d79a5807ec23
3ffc4b379ae22e93db6c54d719d63cfa99de8837
25333 F20101207_AAAQDU hay_c_Page_030.QC.jpg
0c9db21a2011dc2e62fc6c5e40d2208c
8d3cbe5a1612ffd971204f0daf1f6214ee82ebcc
75688 F20101207_AAARAN hay_c_Page_088.pro
b12ab9e44249d25b75d626c003e592eb
75b455b6f3a563297af537c8441b68ae3b13102f
F20101207_AAARNZ hay_c_Page_007.tif
227dc24d0d0312161c2e46a9e240ccac
806bb767eeb002ba29425f04717dee1ea42fc599
25259 F20101207_AAASKS hay_c_Page_012.QC.jpg
c2c0ec3cf16f668307f85ecf6c18f097
020c55932256e5e72c0ec7362dba4bf367675589
13234 F20101207_AAAQDV hay_c_Page_060.QC.jpg
9fae6f8c7d452d2edc18211f0569d85f
ce78f43f770abe12299054647f029ccb5fdb085d
67598 F20101207_AAARAO hay_c_Page_225.jpg
b6c98ba4e84fe200fe1d9855081f3b68
010360cca44a95628da5357b95bed3f749a1d2db
25268 F20101207_AAASKT hay_c_Page_013.QC.jpg
6f963db109fef6d8b6cfeda9c163bc75
7e5aea05c23c820c05c3ac45490fb290339963c9
1010758 F20101207_AAAQDW hay_c_Page_226.jp2
bfb76d1096f42faf405c01e229441ae8
965de28fb6b5219d05f0e9d0f1e227a541315d69
38639 F20101207_AAARAP hay_c_Page_158.jpg
00f5919a568dbcc17710914c9f9115fe
e3cf053e5f73c6de95cf31d5e76d9b6d9089f4d4
25353 F20101207_AAASKU hay_c_Page_014.QC.jpg
7db6df5464951f33abef46c0e066e9a2
45eb81d877f73ce725a11b28553a908ed1eb2e3f
11008 F20101207_AAAQDX hay_c_Page_105.QC.jpg
bc3a554ff6e895392e5dd685ffe6a1bd
481bafd3dfda05ce5cdbe25b980e127c769c02d5
671 F20101207_AAAQWA hay_c_Page_114.txt
dafb85e959c4d43413a734bd5361a5bf
3120a06d4603e7700438728b4849377877e33824
607 F20101207_AAARAQ hay_c_Page_127.txt
28501005bfbfc19efb0102ae6f9494d5
484ab9122015df054057e8beebf4785bddfb8395
19851 F20101207_AAASKV hay_c_Page_016.QC.jpg
de033a4905463d1f218d64abd215a4c8
d43338ebf9014c50afabc2915020c75e6a9c888a
F20101207_AAAQDY hay_c_Page_038thm.jpg
3f26d8c620c416317bfd2f0dae57e315
cc9a3bfffd76a8ad9322313c95fb031e95c2c9eb
99121 F20101207_AAAQWB hay_c_Page_182.jpg
83659a761b1cc640ce11df944ba4366d
609663e9f4cac21bb0d75b3d2248826e399023b3
14364 F20101207_AAARAR hay_c_Page_048.QC.jpg
4069f1a9fce47606ddfade922467a72d
3e2cef90026a92d0ae2d1de8b4728d6add7b81da
5136 F20101207_AAASKW hay_c_Page_016thm.jpg
a0deb2b1d850ddeb74aab681a8894755
30f7b1d159903757386b7f057ae1e9cfcbc07ce5
102220 F20101207_AAAQDZ hay_c_Page_180.jpg
b8a8475365b6d6ec5f3ab6447be43da7
b223718a995a247b8f5786b489bc64f69a1b69c0
71457 F20101207_AAAQWC hay_c_Page_013.pro
4102bf2862a8a7a242c5bcce4a465274
bed75f3bf9638f3c27e4d3d97127ceea7f05e6cd
22444 F20101207_AAARAS hay_c_Page_038.jpg
c394204e4dcd4b5f173cdc45b1d02ad0
5f19da60dbe749ab0bf70ccbbd843109efccaa97
6565 F20101207_AAASKX hay_c_Page_019thm.jpg
786ec13117a1989f854280df27d37237
9b8b08a83ac2eb632ca403d355a4466325df902a
6268 F20101207_AAAQWD hay_c_Page_043thm.jpg
4bde27aac28689c65a4830a3e31c59c1
857ee0b36e9a9c5f27775833bceb2045dbc37924
115757 F20101207_AAARAT hay_c_Page_205.pro
4e9886cb67e93ec1bbc3b2165369410f
03bfcc6566530b25738c243618b2e77ba5e8eec5
25242 F20101207_AAASKY hay_c_Page_020.QC.jpg
429af9d40df570f0a32df7a9a7202258
1a1e337da38ffa226c4398033f69cb73b17b66e2
84956 F20101207_AAAQWE hay_c_Page_192.jpg
f14376365dcf3b221b78db44fa112e08
1240c2d3e8ddb87ae3e5fb16026328be2b3c17b7
833 F20101207_AAARAU hay_c_Page_146.txt
521193115fbce6710d477bab70340668
0c4b0225c8a8b5ba824f4e4dc7a18ceded2a6d9f
6970 F20101207_AAASKZ hay_c_Page_020thm.jpg
97716a60f2462489e098178dc1f3fc0b
ac84f84858da1aee2928abf6171d04186451ad9e
190 F20101207_AAAQWF hay_c_Page_080.txt
919a0f81aa8507656c32f2793828c250
ad5bdeff40f0fca8456c561464c1360efc571a0c
F20101207_AAARAV hay_c_Page_143.tif
ba1c9e6568857d54d1ebfc0453edbd7b
905ce115491f5b32a3f1f7f097deb1dcf34a7e60
F20101207_AAAQWG hay_c_Page_012.tif
6be25a8cb49508dbdbcf9522de3899ae
9cbb7514557a5b54dae5c2f3e74860fd7b469cab
10283 F20101207_AAARAW hay_c_Page_152.QC.jpg
f24e2057d0d174efc54c4c1a66e6ec18
bc23144b6b9ebddce451e9cc54bf90d4dd147a46
27198 F20101207_AAAQWH hay_c_Page_219.QC.jpg
2178718ebe6ba318ad878d136c3e6a04
c0916d9cf7b661e9f03b908870c5afeca6173383
6904 F20101207_AAARAX hay_c_Page_203thm.jpg
53267ea984bb2d774de639eef4719bde
7e9d220eef0191b2d91be3c486113192b56f128b
F20101207_AAARTA hay_c_Page_219.tif
899861e5564a3ff62dbebcc41f5618cb
c9a02c27ecd1f7237d315c6f1681802ce38de804
57679 F20101207_AAAQWI hay_c_Page_117.jpg
2e050f04ca3fba17f92e3d7fe68d78d2
c99a66fe065f5af83476c411768427f721c09a51
F20101207_AAARAY hay_c_Page_230.pro
db45ad5d64e124f8d29ef723d6d04fcb
e5ff91869238f38abb2c364cf5c5d71ebeb5fa73
F20101207_AAARTB hay_c_Page_220.tif
84ba5e069f1b57cf6c124ca7cf6eade8
57f72eed923bba040fcaaf2985cb2b82c7e06355
135003 F20101207_AAAQWJ hay_c_Page_078.jp2
c051d55ba261e028256cacf52b6c1046
16f97d01464e1c706030bfaa500584f42b830b6c
6574 F20101207_AAARAZ hay_c_Page_163thm.jpg
d0281d36ead4feae1e98b07e392fd028
676c766827c961a0724f314ff712f6b83381f81b
F20101207_AAARTC hay_c_Page_222.tif
2ecaeecfd067c085d9c95db0a23f859d
91dac6e58f3782733163fabed8c0329e8b1405ac
F20101207_AAAQWK hay_c_Page_191.txt
7e279416cec7ed73e29f09353332c4fc
fb5db0a6a88f7b62f95f829a6d65671f14b57adc
F20101207_AAARTD hay_c_Page_223.tif
aed2b54df992dbef90e5920f73736968
3f1834c93415fd1ae5e92fbe76d12831bd052d58
F20101207_AAAQJA hay_c_Page_101.jp2
4639f32741c94eb6faa1f81948b48995
05c52b5e3891fc4c3264e581ffc74b5cf606a7f8
F20101207_AAAQWL hay_c_Page_221.tif
d035b9b25756719351ee80b00ecd7714
f994c82ed23c2b0ecb5ead9ab72203cb2a1c4e29
F20101207_AAARTE hay_c_Page_224.tif
3af77faec458ecfbc9696646d2fd7ebb
168ac842cd73541fb76b4c69a934c727f0de7e18
83245 F20101207_AAAQJB hay_c_Page_097.jpg
29d7343a44e2f7842ed2466fc077b058
ed86b9a60f0bc1d10e62f807b7726f0bbff84e2a
22811 F20101207_AAAQWM hay_c_Page_073.QC.jpg
d9be0652a5acdd1c22a1216d7a2640c8
6d4299935fe67c28048af0d42c9a097a232f55ac
F20101207_AAARTF hay_c_Page_225.tif
f83cef697d8ec9e16bc5eef4abd5f55c
4e7f80b760b3c08b02e2831c0a0512928bcd91a8
15106 F20101207_AAAQJC hay_c_Page_134.QC.jpg
9dbf64de6ebb179283b4e3f86e2846b7
492c0767112f102458134d8dda39198c91e01e6e
18673 F20101207_AAAQWN hay_c_Page_006.QC.jpg
0bd588ef9e6e20b32596dc71249c949b
b0b0de64affad58b18991740762a25f295752b7c
F20101207_AAARTG hay_c_Page_226.tif
6c536f36df5c81051015e5740c6f5310
b66cd4ad68724018fb15c0934be67000a01f13a2
23890 F20101207_AAASQA hay_c_Page_188.QC.jpg
e088f59b698b7ecfc8282d35a4008ec7
829b8041a6c8e4c67ecbcf60941a4378c012af0c
45555 F20101207_AAAQJD hay_c_Page_034.jpg
65ba0b87eccdd3f41f4c467f54001f8d
d0120e67598472a44c7d9df3dd18b3efc0494c2f
6302 F20101207_AAAQWO hay_c_Page_040thm.jpg
93f24d040e6551b373f2f053de1f016d
35ed014ca43ec029d7974477c39f6d3ab14eff7e
F20101207_AAARTH hay_c_Page_229.tif
40235e44cef172fac9715098e67a2373
0d54ad2b5ddf152fe544b5dbf7d9190d42f37c81
6659 F20101207_AAASQB hay_c_Page_189thm.jpg
c96e42c9868f2d0ff983de2b375ba01f
038abbed0d103e6625f58d4aa1b987affd2ad65f
169 F20101207_AAAQJE hay_c_Page_242.txt
c5616996ccae2f03d41a2d547c5f9247
d2cfb4c19a5943e7bf5ef55dac7c30cd5edd60c6
F20101207_AAAQWP hay_c_Page_188.jp2
5297487b34e9ce0d58f81dea6187f73d
25efc64ed9b877102b796dcd2d2b6584e5b28657
F20101207_AAARTI hay_c_Page_231.tif
f84deb9c671a1c7cb86aab8044615feb
824a2899ed57b8cfdfd74a61173b12bee25c0315
26937 F20101207_AAASQC hay_c_Page_191.QC.jpg
67ca789ea66b5711df0aed4c8aa9a847
2512ed85da833793fd02e6c8d4116a5cbaeaaa1f
51147 F20101207_AAAQWQ hay_c_Page_029.pro
bc825b0e04194fef5a9f696cc43c6fc2
87282082404f53495818bb49063912dfe9fea315
F20101207_AAARTJ hay_c_Page_232.tif
759d4f58f5c4185d515a1463f0df5cf2
dc996769b4f5a8f9aa1d66ba19269dddfaf9d45c
22833 F20101207_AAASQD hay_c_Page_192.QC.jpg
d8f7d81362028df867c205ff12183aa7
041d41c8138e50176184f515e9eba6727d95559d
111327 F20101207_AAAQJF hay_c_Page_177.pro
21ac808dafef5834d7478d9acf8ac9ae
7817c9864e53e89dcbcd503a14a8476b7b241e3e
67286 F20101207_AAAQWR hay_c_Page_028.jpg
b6e02acafb925ed570d55e245a5d155f
665860a042297c9b9a3b8faeb6799d1d7cfd62d8
F20101207_AAARTK hay_c_Page_233.tif
d3dc9c75f271f659fa626b8cb651c310
ab175d7faa7a040d9d56eebe36f6631803ae055b
6067 F20101207_AAASQE hay_c_Page_192thm.jpg
fbeadbe0426a03b6709dd86e92c4dca6
463e67126a7da2ac5aff4bb8616b45bf982bf31d
13767 F20101207_AAAQJG hay_c_Page_227.QC.jpg
b437971d1cc3eded3fa7dca7fc067268
99502278987329a148daea4e8c47d3fc81da8202
95207 F20101207_AAARGA hay_c_Page_176.jpg
1fcc788d188e4e694d754d186dd8fe96
efe19d21b28c02f1ca66d9041d948289c307c6f3
F20101207_AAARTL hay_c_Page_235.tif
6203fe60a844ac2238df75ed88e8564f
5182e9da27df2a648c7eed505bdbe7d12325db4e
20967 F20101207_AAASQF hay_c_Page_193.QC.jpg
5512fb7fb71cdf0da775a4519975a4c9
c6093799723e9ece7c8797af8cc39653e625dd7e
6397 F20101207_AAAQJH hay_c_Page_183thm.jpg
3d0f36923860abf01306ce06a16db3b7
087e206d159a56dff27051be6f39ae9406e4af61
F20101207_AAAQWS hay_c_Page_228.tif
b333022dc63b7774a450dd373a6b5603
da8abfe907a3a204fc0d6a47524dea3e1bb486d8
F20101207_AAARTM hay_c_Page_236.tif
fa70f2cf4ae2cde7826e21b091c478be
572eafbb24b89fcc8ee30671916aa6a8873a918d
5638 F20101207_AAASQG hay_c_Page_193thm.jpg
3f72f275669cf424e0f2905d83bcda4f
2a6dabe71d8724a8a95e4ab4121a591ab8ea1a6f
4005 F20101207_AAAQJI hay_c_Page_130thm.jpg
1a19b7898e28460a5eb45e6dca4f07fb
5c4c5d47ba012ac9d866a1daecafbc31a3277add
92214 F20101207_AAARGB hay_c_Page_178.jpg
7bc818b8bf1a2b829aaf5ae087d8774a
f2b70840d279243a4b60399a6ec53b42cb23e7d4
F20101207_AAAQWT hay_c_Page_197.txt
6b60a887e76b0c4618406c64b11dda11
e8f59ad1cc3bd163ed60dd27b903f08d38f3a14d
F20101207_AAARTN hay_c_Page_237.tif
e2411832ae0dd03e8117d9080f18b6f9
7079ee86ceeae55adb60c88515f83269fd097fd7
26028 F20101207_AAASQH hay_c_Page_194.QC.jpg
4a52598a1749797472739c463563a4cb
699657a37d2451b13b9df43f31cec0c2306f8754
14960 F20101207_AAAQJJ hay_c_Page_044.pro
4c57c1f9c74eac46ac331cf6c5c2f8c9
4ec9e1aaa0974b728e5a25552eca12c4e15b0690
95901 F20101207_AAARGC hay_c_Page_181.jpg
d57592425ae239aa8fafbef086757116
617eb9122620c52104b859fe25af532d5a42b6e4
45446 F20101207_AAAQWU hay_c_Page_136.jpg
8bc7cc650e5d3fa28d87e9a705a14985
5ab5fdd810c98d4ab50323505c783390ba078ed3
F20101207_AAASQI hay_c_Page_194thm.jpg
c0b7c511b51b045e73813ff97013ade8
dcc735fb23fe1d67e0d0bc3a170277d7780955e6
26262 F20101207_AAAQJK hay_c_Page_174.QC.jpg
49e77e77e28c50010fed24f3d6a06308
34ceb6c6a1c106e3c17de487c9596b961448eadf
98502 F20101207_AAARGD hay_c_Page_183.jpg
62a4a3716ae4b9704d1f4ec368f9c692
05dac884cfaf15ebd26d1d985647fb298d3f42df
5918 F20101207_AAAQWV hay_c_Page_230thm.jpg
15736eb3908a39a14acfe3aa1687d3e3
1465ad96168ea69d8185973eae4d296b0f29d6ff
F20101207_AAARTO hay_c_Page_238.tif
29d85b3cd3b6d8e95fa0a14ea381d16f
60a770a15447182881f7dde68598e0543df402d4
25927 F20101207_AAASQJ hay_c_Page_195.QC.jpg
473acc0052df41d06f0ae9095ca20ed6
ec68cd822a1ce8f83741c35198814e20a46d8fea
115545 F20101207_AAAQJL hay_c_Page_198.pro
bfcb86900bd7cc22ae768d49e1630205
e54462b6eeef29b951c33b2a50cb1cc439a9fff5
96190 F20101207_AAARGE hay_c_Page_184.jpg
395afc8fe7b2e556322e8187338bbb8c
4ad373b0e8655d134a00495600ff9af9eec00274
39432 F20101207_AAAQWW hay_c_Page_054.jpg
89bb3dc8a71ce30db15060b576d1d2cf
24b008fd85da556103e4b4c94d030b30f0549a8c
F20101207_AAARTP hay_c_Page_239.tif
6753a473fbaec9ed3cc31000dad4b700
390f00f4b0d7b329d872edb3f085efd48ecdb09e
115599 F20101207_AAAQJM hay_c_Page_030.jp2
e67711421e6240eecd525c569ccfcf4d
3dfc6b013fa4b4f2a440a9fe7ed95d5c68a0237f
102614 F20101207_AAARGF hay_c_Page_185.jpg
8fc093c293da010500a966342b9f9643
b9bd1aff8b6d30ea295769a620fe4c0827a0e666
6893 F20101207_AAAQWX hay_c_Page_015thm.jpg
1e35a45e5bc87300118816b7cb11f8fa
4d09e8d05605ebf2c3fac4952fc33b380a9529c6
F20101207_AAARTQ hay_c_Page_240.tif
a8297b3d5bab99b0b0f58028360b49e3
642ff5aad90e60cea150b1995fb28943581cadb2
24395 F20101207_AAASQK hay_c_Page_197.QC.jpg
6f066b7e7bdbef9fc2c544bac45db822
72365b138caa2f04d14db7fbb2bfafbc34d344f5
98746 F20101207_AAAQJN hay_c_Page_219.jpg
1aea37a89097759ed461278ab9919b8c
13b1f21f5d0b091f0ff6be3f7f5ad449c9ac5f47
100057 F20101207_AAARGG hay_c_Page_186.jpg
dea04157ec5fb41f98e8c2f3ac4c5446
dfa9dc68fcc8ea6ca5b97b7643617c20ae410ffa
76865 F20101207_AAAQWY hay_c_Page_084.jpg
c62d270523d6993d61a2e005998b699f
baca76b21a22bb009aa5f4bba954fdec5b7932dc
F20101207_AAARTR hay_c_Page_243.tif
2ff48bff3ec2ba8d7d513551d56002c1
23485f7564e702c13ebc4adeb2b446c8690687bf
25112 F20101207_AAASQL hay_c_Page_198.QC.jpg
f32c56f8a5e5fd548635ba517521b5bc
e22432fe4e951716070649fd2e01a1393dd602ba
12265 F20101207_AAAQJO hay_c_Page_240.QC.jpg
434c84a505397d6990e4cdb38b2bac98
f226219d0f1bf065957d4874fef53e831eb6985e
93948 F20101207_AAARGH hay_c_Page_187.jpg
4b521bb4f196fd54b0a611928dfaf0bb
1f9a2ac64961b212a9ae8c76567d22840eadade2
76507 F20101207_AAAQWZ hay_c_Page_030.jpg
c553009ef44a5d22b71c75431a6bf6ed
e4e5bd0cb03aee37335fc3ad34e608b7b0355845
826 F20101207_AAASDA hay_c_Page_111.txt
009f8bbae831c54abe96271fda1700a9
599ab48029cd070c921a8e7e7b9e152bb270fc93
F20101207_AAARTS hay_c_Page_245.tif
56518267aa9645694fc348f9554227b6
1fb422e58e0d5c59a6aabca384f75b5ce2905056
24576 F20101207_AAASQM hay_c_Page_199.QC.jpg
9ccfb277d1acae1d06abc04d606d9d72
287799a0cdf86431d5d2a3f187d776b72fe844c5
104061 F20101207_AAAQJP hay_c_Page_154.jpg
b673582e726f6c2636bc3dc8738d4124
21ead107928d1c7598ef27264b62265dff61275f
88899 F20101207_AAARGI hay_c_Page_188.jpg
4073c0146ae2643f898d4c25a4d62465
69666277e18115d2eb9855ee6a1fef1f28bcf533
281 F20101207_AAASDB hay_c_Page_116.txt
325911cd8ae0a51a02e77ffaa95bc5e9
c68550a70a52d71774a5dd89ebfed874861ebb56
7348 F20101207_AAARTT hay_c_Page_001.pro
554c3af331b30aae4d510dc27ba5a3b3
b8aa0b50d8554f78497cf578c500cb73a2c64d20
6661 F20101207_AAASQN hay_c_Page_200thm.jpg
4db585b368e50dfd58cc096e82ea93f2
90b3c69ac15ee23c3242b42cea0a1131e842e6b7
6622 F20101207_AAAQJQ hay_c_Page_012thm.jpg
28201f6dbf891ead9188f71beb14fb02
7f5cce49694662c15566f323e6a1d6495a6f1f1b
F20101207_AAARGJ hay_c_Page_193.jpg
3f505a38725c15defe8349d282f4fed9
ffc6645489fe2bf2f37a8e4ab49ce30fb6118a16
181 F20101207_AAASDC hay_c_Page_117.txt
6b5806ab7839baf536c5f1b119f7ed57
18b74c18920d7c4f50000cc43e8148019073b8a4
832 F20101207_AAARTU hay_c_Page_002.pro
72d0e06ebef375d1a2b9a4c17562b4a2
43eccf6b63da53d91206f26fdb860a968e48cbf7
26561 F20101207_AAASQO hay_c_Page_201.QC.jpg
b817cf2675a39ce2b079e4429dfd65c1
49b78d24bb2e90ef52f819128ea5bbdb503ac722
67482 F20101207_AAAQJR hay_c_Page_078.pro
d7049e8a76a7020b061635c29cd284c7
fa4d6e310bd054be00fc2adbbb15a1e6e0b90cc4
97342 F20101207_AAARGK hay_c_Page_194.jpg
de46662b6edb6cf8054091520a0dd3a4
bd2cf732f7a2b207ab3f6d70ad8b4d6531fc5401
590 F20101207_AAASDD hay_c_Page_118.txt
ceb862a0f115aa5f1903c84c3dd3681b
94a1c02e0493d8863b73e589d8d606ca5bc76599
4511 F20101207_AAARTV hay_c_Page_003.pro
d50743d846f0f0a4d45db8668cbac348
039930db8fc1743943ff1f39313ffe06bd934a65
6405 F20101207_AAASQP hay_c_Page_201thm.jpg
3e9ea29e5164d62a898462db189e4dba
a720dd3d647eab452cc6854f70f2d5c8da79894d
115815 F20101207_AAAQJS hay_c_Page_084.jp2
5c9bd3263bdb72219b5be3dd5415b1f8
9a26b554f712ccd8def0d49dd9cb69206dd6097c
97075 F20101207_AAARGL hay_c_Page_195.jpg
df8657978c86f8848e123302b1320a28
e422f494635b22a5a0f6c9f4e0ad73db9413b8a6
538 F20101207_AAASDE hay_c_Page_119.txt
2001cd04d073142860256dcdb9d8edfd
d20207d6f448fa59d6119d67b5b65352449249ce
25410 F20101207_AAARTW hay_c_Page_004.pro
95f0dfbcdfde4b8afb2faa82a45291bf
77d88e55299bbbb3633f2c1eb6501e52304e4135
25913 F20101207_AAASQQ hay_c_Page_202.QC.jpg
1b0c31cf38b975dc97c6b10709e611e1
a6f30541c0dd2e49d80196a432cd5c8f6344955f
12926 F20101207_AAAQJT hay_c_Page_096.QC.jpg
0606d91130265ab3307af7aa1fb36232
a86bc58ee0dfb3fd60e27e4b60079ef14bc3a270
89897 F20101207_AAARGM hay_c_Page_196.jpg
ec7f33ac9a41b5a162545b55b0d3a43d
0cc0cc579082c7b01a5801a2eaf1c3f79f57fe93
F20101207_AAASDF hay_c_Page_121.txt
8efbed784bb79c4319f749cad62fa20e
e82240a11489f229344450df8478563e8ac7089c
86814 F20101207_AAARTX hay_c_Page_005.pro
2fe61d8566b26988e59200ccc2ef9ed6
4147bda292a01d0ed8bdd5984bdb0094dfbdd7e3
25411 F20101207_AAASQR hay_c_Page_203.QC.jpg
5a0668ba0f023642630f9c42085b2c4a
5c5777086f85b2a98f6f8522a07741fbc6427047
1051926 F20101207_AAAQJU hay_c_Page_199.jp2
5f8f4019a042af03ef199f8428d7475b
fb5aba2ca29d730b35c02a3021c131312c82fa5a
90437 F20101207_AAARGN hay_c_Page_197.jpg
a32a79c3c2f7b84fe454c9a61accfaaa
876fca5e6993beab7b6b5159dee31c00787f1d17
752 F20101207_AAASDG hay_c_Page_122.txt
9fb03c2e6645df8a9ca5986af4309ce3
dde208330e1340aa73940608835892e717d45b4a
65144 F20101207_AAARTY hay_c_Page_006.pro
7302a42b29342964f33a30808ac3be66
b8f8c9baecce59169811167dbda456df3cdcea49
27281 F20101207_AAASQS hay_c_Page_204.QC.jpg
b8f76ca999174c8cf0a682ecab4594a2
f8fbcca4bddf77a33abf2a37669bf9d65dde2d72
F20101207_AAAQJV hay_c_Page_031.tif
899f25a99d2b0be9d1d0aab2f3897466
349b1d369a5bf9ca5c5596d3de156028aadaa144
98086 F20101207_AAARGO hay_c_Page_198.jpg
991e6259122d8854a7dba8d162cdc2d2
1a694cbd73ff04b11210022e5741286d3b9a02bb
1020 F20101207_AAASDH hay_c_Page_123.txt
59e8ec6741bdbe4d2c565f64d25371d4
e996a75614e6e646e50f09e2ccc33a374a47015e
75112 F20101207_AAARTZ hay_c_Page_011.pro
2733fe6def9607ef2f52a3be2ed67aea
cf427775f4bfad1dd192735acd777df62ac48a58
25464 F20101207_AAASQT hay_c_Page_206.QC.jpg
2498c26c54c89bc0948df5c4511bf179
67975d8cdc24506b109e7962b9e3891ea7a4edb6
34880 F20101207_AAAQJW hay_c_Page_092.jp2
70f13b57e460265dde7e81f1b79e23e6
75cee8b743d58c15bd94d4f587a4591ac535237e
95291 F20101207_AAARGP hay_c_Page_199.jpg
357222fef7e3aab1b5672f469b498e3b
d8d854dcb66e69162c805fdbb5e84e59eb12eedb
F20101207_AAASDI hay_c_Page_124.txt
ef755608bd3f363a8ffc6b89f69cb1f1
df645ad0b6b1327db282c0c9c39dbe6935da3c61
25262 F20101207_AAASQU hay_c_Page_207.QC.jpg
fe6abef27396a857fc67c2be467de0d6
52ed124fdcb7c02178ba37c78a29c4c357c01493
3793 F20101207_AAAQJX hay_c_Page_126thm.jpg
dfecd525c8385a296d1d5695af5e07a7
b42bebfd57635c5ccffc3f434aa0bbc1c16fd1b3
104519 F20101207_AAARGQ hay_c_Page_200.jpg
215a022b53c05e9e26308c1c4fbd2a34
38693c59877357eece127e7d30d35067a493d41d
534 F20101207_AAASDJ hay_c_Page_125.txt
da4e4b9aec79eef2a02b693ac00181ae
7b5ef34e6277f22e7488401cd46de5fb4ce7c3db
25509 F20101207_AAASQV hay_c_Page_209.QC.jpg
10e5eac9673aabce40e72674ff8125b1
2d5be3487d9979fd270c81cb9072280318f3a6fa
1323 F20101207_AAAQJY hay_c_Page_109.txt
5a09991cb4fc7231e47d647aa6f8f0cb
eb6fd4ab31bad1bc55d174f9bc36587240d666f6
98823 F20101207_AAARGR hay_c_Page_201.jpg
3cb1ef1ea25acea7e3258fbf2b4e8bd8
3a6b7a0c93ca003aca5f3a8f6414a3ae10a53301
473 F20101207_AAASDK hay_c_Page_126.txt
b49d74a64ff9c509af560841b198e7dd
80fd0023c3af39d47b54d7717c1de48b8fa8b6be
27848 F20101207_AAASQW hay_c_Page_211.QC.jpg
d94f34094dd2b0959af7c62d23181489
c2d10e8a2b76787bbf6b1d4f8af517d87c6de1de
95673 F20101207_AAAQJZ hay_c_Page_210.jpg
e056b25870e19d34fbb37f99e76a2de0
02044ea785ad9460e746f774991e6567698cc93b
103543 F20101207_AAARGS hay_c_Page_204.jpg
278b360c68a9268fdbd89c3abd1aa189
faf2751cd37df04ddf552d49f967eac2cae3d44a
690 F20101207_AAASDL hay_c_Page_129.txt
4ad1be53e92613894303ce049a745116
ef90e8bc82cee257fd3915050e4c8a49533796bc
29514 F20101207_AAASQX hay_c_Page_216.QC.jpg
4a334afcbc6188f5dff121c65f599d2a
3633dd014368944244690dd1fb964d3ae3836313
97503 F20101207_AAARGT hay_c_Page_205.jpg
0215be31789b0da23c329b75768c9364
7a34b29120822053f97fd7da4a04b95557691cc8
F20101207_AAASDM hay_c_Page_130.txt
ac20d64e01363680260b1984a7ff5571
1797b65c8e7c3fd50be9879a68d9982c31f8a4eb
6814 F20101207_AAASQY hay_c_Page_220thm.jpg
c5bf7c93a3367b61a8ad5844653e9d02
e7afa5609530c0b1e8c107478a14726f9cef76de
97306 F20101207_AAARGU hay_c_Page_206.jpg
161092f55098d43a96910a4376ed565b
6539290f3a6f3ff438276d5f0ab9dd2c18ef080c
558 F20101207_AAASDN hay_c_Page_131.txt
1acbb91576dbc61a2d5ac18cf7f2641e
18708a3f16fa46f3e04e02b6696dc8eafdbaeb3f
29145 F20101207_AAASQZ hay_c_Page_221.QC.jpg
7ade69a3ae16cfa2443d92bd1b22c013
92231a661e03a5ea73cccdee4f32fe59de5d4184
94597 F20101207_AAARGV hay_c_Page_207.jpg
38dee6dfb8372964cd3e3af39885fbce
bf58e9902f911b7dbc2bace030875c2c8b7ddee3
982 F20101207_AAASDO hay_c_Page_133.txt
5ba80642735c2bfce72327b2196bd62c
381859b07d366c323ff5690e74d62b232b0c1eac
97743 F20101207_AAARGW hay_c_Page_209.jpg
22d52c405721e3afbd257a62ee124119
9b18751edcbbb995844697b659a198196b29ef02
484 F20101207_AAASDP hay_c_Page_137.txt
09253e129d6aef17fdd3a146cbe66825
612d848ce00ffa83adef5ef1df4f0a778f2f9c0f
92727 F20101207_AAARGX hay_c_Page_213.jpg
be29303983109170926a1104d0046897
ef96c40c1f15d0456681632a1f4e9cdd177a1c56
90798 F20101207_AAARZA hay_c_Page_196.pro
767422b2385ed21dda969182cbaed63d
613e6c90f15036ba28c5045453502106f5957e23
327 F20101207_AAASDQ hay_c_Page_138.txt
b61338fa11ce94f60d3ccd1bd5588872
19498dca09328f479447b07280f388da3f341b97
98777 F20101207_AAARGY hay_c_Page_214.jpg
76831a217a97b993e26169a76fc3b74c
3a00949ae38e757e27efbd97d3d9a15d4896d40c
101061 F20101207_AAARZB hay_c_Page_197.pro
85d3d49ca033554b978d1833744b89eb
f55b193cdb2b56b07af7d035f4fd58f7c6a8eb8a
563 F20101207_AAASDR hay_c_Page_140.txt
f1dd9a4fca7d02f22ed2afa1a7d5724a
3731d25c24e6cd34eaf5fc6a6df41c06e48745c9
86828 F20101207_AAARGZ hay_c_Page_215.jpg
3818a07aca0c6b85a317b748cc635dca
497956ed67a0c81f26f52376852af37533b7a63d
109725 F20101207_AAARZC hay_c_Page_199.pro
ee1e679c76a1c74af39eb4783fa64d93
6f2128a285bcf287fb17128dcfb94e8e6c2ec4f8
726 F20101207_AAASDS hay_c_Page_142.txt
29f79b28730674b03c18609f68015836
434cca0a3b4bb7a593dd5b9bdb20f1d54b227be3
115580 F20101207_AAARZD hay_c_Page_200.pro
a2ff8d31bbda615b6f625292998adb11
2035970b897613f6537dcb453e524e3398c4ee8f
778 F20101207_AAASDT hay_c_Page_143.txt
d71c7781f3acc121cd9e184df7f604d6
1ed73e366da5ade3f6249c6b4000db6fcfd650d3
108992 F20101207_AAARZE hay_c_Page_203.pro
f1a2e8fe8df325e72eb79f72cb9fab1a
28290f4f4605916c21ee7cea3d2c9bd481a2194e
795 F20101207_AAASDU hay_c_Page_144.txt
b5150929be8d42ba99d0adecf931eb27
ab635778164e0585ed9eac0f2deac52c2d4533de
163833 F20101207_AAAQPA hay_c_Page_217.jp2
1a344cf0b0a744ce8de7efac09472d49
780e4312fcd9fa8edf35b60b69127f29bf3562f7
128753 F20101207_AAARZF hay_c_Page_204.pro
4d905dc0dde43b16a6ec0a134b049e9e
9554728520172303e958b89c0dfb20bd2665cdfd
745 F20101207_AAASDV hay_c_Page_145.txt
df0142406d3d88deab376a78c80d03b7
a77d57b912daa8d796bd04bc55db9a9299baa582
8362 F20101207_AAAQPB hay_c_Page_126.pro
7d21d07abba8253453d684955a5e31f5
1f9714d2d60a8601f86eaf70a489f040f6d52c78
116179 F20101207_AAARZG hay_c_Page_207.pro
fe64c9cc683917da27b3df527f9c4bf4
c6c6cf1a479c3ae5143aaef2399f7c47955d14a9
1118 F20101207_AAASDW hay_c_Page_147.txt
7d8637c7250ec07529bd9e1d0e872710
090ff6b040e57c676fdafca445f6ad03fcfa7885
61820 F20101207_AAAQPC hay_c_Page_063.jpg
96f7ba475c29063cdf4dca421fe1f64e
27392a2cd0deecf77a23fe20df05f3c084887c38
114107 F20101207_AAARZH hay_c_Page_208.pro
69cdf2afcc920104caa9fe6a6485e6f0
e710ab4865efc6d0069d151234c8dcb05a0fd9c2
511 F20101207_AAASDX hay_c_Page_148.txt
938acda0443235b2fc256b06e78a936d
6f9d3ceb269bcc954e5f09b8942634172f843410
90014 F20101207_AAAQPD hay_c_Page_154.pro
34bfaee3463322613d02abb544e36a97
b7f86df37d1e652479a656ccf7af3c8aefcce4eb
113725 F20101207_AAARZI hay_c_Page_209.pro
6ae96a6748d7211d11041e85c12d4d68
ad115beb5120fc23b6620cfb41dfc53a79010604
421 F20101207_AAASDY hay_c_Page_150.txt
e9f44d4bb82dfc839f46700b8d0f58d9
962cec73cc65481472e12a41a23759631c49b149
50602 F20101207_AAAQPE hay_c_Page_120.jpg
15b83eaa5abb3b3cfd896e3956f6b67b
e79e098e998890dc89633ec9e17341a73cbed82d
116351 F20101207_AAARZJ hay_c_Page_210.pro
7582551ae38997f633e9d7b2bf77febe
ac20bffe429ec9daf0c727100f059f79d1d218d0
1089 F20101207_AAASDZ hay_c_Page_152.txt
399eb04cd2d9789bbcec5b4e7e7a605e
3e907bdc2999ab8065e7c6e4e1dfca90549c09a2
26429 F20101207_AAAQPF hay_c_Page_092.jpg
192c1b4011c17f6e3e3034bccbadac6f
8923ae2ccfb460dfd4ae0b2854b76ade91e0f346
115314 F20101207_AAARZK hay_c_Page_212.pro
9391aac69ff57340e0f5c36294719335
2e9bf0035c08fe107a2d2808629a30b2e174ebfe
6474 F20101207_AAAQPG hay_c_Page_025thm.jpg
08f0641973d24ae7ae5c89e5a8215fa5
5ac71520c643ed23daabda7b45db1dd8177a9cb2
F20101207_AAARMA hay_c_Page_172.jp2
46206cbac8356c82cbc98bc28ae87b56
88a869dca09cc6af80b1b0713d4999df42548d87
113966 F20101207_AAARZL hay_c_Page_213.pro
ed8a56a2bba444d60d4060f79592b86c
ecda0346c4fe83d1906b13d3d43910275d19f1f8
4563 F20101207_AAAQPH hay_c_Page_227thm.jpg
cc501388803e42109eda6223af560450
30bab9c94d9d9ee2212df7dcb9d42c7881b461c2
F20101207_AAARMB hay_c_Page_173.jp2
22eacf89d24913a8b7ad89cfd9505b81
78af3336a36e55f2a5545f979def58caf8d2c2dd
118423 F20101207_AAARZM hay_c_Page_214.pro
3f7dea2058422e6d9ba88d6dd749e749
332f8a8edf48b0cc75dd78193668de0102bc446d
F20101207_AAAQPI hay_c_Page_019.tif
1df6b364ecc8dfa1f91210f46bffc53f
0120c8be725bb7aac6b707a8514ca41403db91f2
F20101207_AAARMC hay_c_Page_174.jp2
57788abe2283c00bef098a716b61643a
14f4ff69e6098fbd7ddc2049e0a07c698fd255d1
65023 F20101207_AAARZN hay_c_Page_215.pro
3043d85bc1e8865c8f80340a36fd65e7
e4967388c03fc09d2a144a33bf3840820d78b480
21186 F20101207_AAAQPJ hay_c_Page_061.QC.jpg
7c539a515122143d9d380234a26d294a
a07ec46ced7b8934c53f90add82c3907cf8a2a1f
1051923 F20101207_AAARMD hay_c_Page_175.jp2
31827c76d029928fbc481deddaffaf6d
7ac3fe33e83c5666405222b1302589e734ba6b44
82233 F20101207_AAARZO hay_c_Page_216.pro
5de79ed10c208a02d3d5dc5241d3f9d2
63b83d2874e221506d4073aeed6907bc3bc0642e
F20101207_AAAQPK hay_c_Page_004.tif
e91bfda78378291bf41bdb3d2d8da59e
c76559590c463be653dad69fa98dcb3f997f4ada
F20101207_AAARME hay_c_Page_176.jp2
85b1a44f1a9c36f2b38c2b3c2a68fbf1
a7d6cff8571bedc7649249ea99c0bd8f2a97c4e6
84182 F20101207_AAARZP hay_c_Page_218.pro
82cb2cf50d3dae9514fc9922aca7161c
92234fded34751dfbd2724a9454c66746936bb5b
1051943 F20101207_AAARMF hay_c_Page_177.jp2
ac52be9faaebe810f47abb74d9ecbc15
bd98d2cb58eb08871378992d92d2bf165de8bc49
70220 F20101207_AAARZQ hay_c_Page_220.pro
e7d4a2d4fe12948a2533455b1330c4bd
ae2e8d5e2cf6a7694881ce8b953846cf78d60eed
F20101207_AAAQPL hay_c_Page_168.jp2
57b2b5beb02d8fb28348eac8201bf3e0
d13d13258c9795d2898865153830409f893b3175
F20101207_AAARMG hay_c_Page_178.jp2
7fb3571cba113360c8e29a2738f30f8c
9c593a3d39285cf7eff5024f54b654212fc68e8e
79629 F20101207_AAARZR hay_c_Page_221.pro
fa5fc806c71c52c1e4fd1c3035f7feaf
b7954a1f050adbf55e28339c953a96617504ac37
F20101207_AAAQPM hay_c_Page_006.jp2
b2bd25f9119f054e6e2824583665293c
f5a9b1d1b84da600fc3ab15f41e51ab0a1719fff
6322 F20101207_AAASJA hay_c_Page_210thm.jpg
3c90134e6384e2f70860f257a29cf218
60fe9ff59f82aeea25e3418932335cb56fffc60f
49935 F20101207_AAARZS hay_c_Page_222.pro
d477bbc5f6125acf6f5a71d1538f614d
726d636d06d7726bc6351289529ce82baad1278b
F20101207_AAAQPN hay_c_Page_071.tif
0e6182e8ee882e8c7a65e86989258b8e
c768ae741623150b20f69d2384fdd0a9dda86858
F20101207_AAARMH hay_c_Page_179.jp2
efe8b13c636654fbd202a7ced02c7352
36750b56806ba5304179b2c2a981fe82b324a865
12602 F20101207_AAASJB hay_c_Page_114.QC.jpg
5c64170a4c60b15a9e1be97d0b5bb339
7b91f5e283630b2bdfa3b7132f7eb586da52baeb
23835 F20101207_AAARZT hay_c_Page_223.pro
d954655ff8f19fcd121d8431e789b11f
5a45cbfa281fd445981e4d738a0f3062ba88489f
F20101207_AAAQPO hay_c_Page_208.jp2
b660aea14d3042c0827c5e5bc5dfe450
d77604715a3fb308c975e10db4b135329ee9e4c0
1051911 F20101207_AAARMI hay_c_Page_181.jp2
bc67822a5bb4bf53aed94fb0d201a246
105537abb1c6ac113c6f53a68f969d8b090df4fb
9153 F20101207_AAASJC hay_c_Page_081.QC.jpg
ac0b9c40861d81d871485f73426dbfb8
0d9a0540bac7d8056d7382ee701ae5a16d53efa3
119283 F20101207_AAAQPP hay_c_Page_244.jp2
41afd485294bb52ae3809846d3d4a12c
06aba7b74bb1ddd1ea72275118a51af6547e8a4a
F20101207_AAARMJ hay_c_Page_182.jp2
a052677f5db95688e94897ff033d1945
5dc32f8f4b31a5814c64db0ad4f765e1a4aad47f
2184 F20101207_AAARZU hay_c_Page_224.pro
4944869ee4a28a94da9865c097d74d2e
f12510467baa601bf10eccd1f701b4cc485f5959
25245 F20101207_AAAQPQ hay_c_Page_022.QC.jpg
29fef05a771dff3ff6b67db5693f0f54
236b912ec1a7946fc32ffcf6674a0ea94fe4d83e
F20101207_AAARMK hay_c_Page_183.jp2
3f99bc3de44a2a0a587805e2aae83963
c09aa645f937b6b2756787a21b1286eaa228accb
F20101207_AAASJD hay_c_Page_104.QC.jpg
298dfe77019c1ce6ba4681157c5a8d07
18f36590dde610938f4d02c34602fff8dabd9183
2104 F20101207_AAARZV hay_c_Page_226.pro
8a5244cc7ec42b068e3c9a4145704ad1
075fd896d510ec04c61c421dadbd7c05f5483d27
2429 F20101207_AAAQPR hay_c_Page_240.pro
cd3de436b0ff4c4ddfb261ef4e25dddc
6da4f67cf8549bdb70e9fba9aa6c3ad748249052
F20101207_AAARML hay_c_Page_184.jp2
e9e6a583dfb59f11f6d6d35ae809fabb
706dab460aa3b6eb91ac00b526b70cc72499da6d
15432 F20101207_AAASJE hay_c_Page_237.QC.jpg
dc349002541b9401ff5984331169e64c
519795ceb4296c056eedc2a7a27a55adef4eca09
2234 F20101207_AAARZW hay_c_Page_227.pro
a59bc365d45257431ba684172e4a0ec6
9ae178949c2140cf41a01803c8fb59f3909b8ee9
7268 F20101207_AAAQPS hay_c_Page_155thm.jpg
f266225caf0773dc028fcdde403d41c8
323a7124714a96c5e4a8365b5f84373f5fa36e79
1051876 F20101207_AAARMM hay_c_Page_185.jp2
b942374e9b0731ececfa5a83293a6109
ad5726b76f288a094da37408f86ccdc04b0b927f
25322 F20101207_AAASJF hay_c_Page_076.QC.jpg
2a81fec1642123e1055a3cec3dcdb88e
9624160742e78385a244ca55493c54ed8bc2073b
3185 F20101207_AAARZX hay_c_Page_228.pro
f4e476f919cd486e03436fe956218089
6809a6bd379b81f9925eb7ed8d0b58d6b4d2be11
733529 F20101207_AAAQPT hay_c_Page_134.jp2
2c518eae0b230ec27e21823dfc6d0a1c
a51958efc9b7f8c219f527bc8bf542f6fd9665f5
F20101207_AAARMN hay_c_Page_186.jp2
8ef60433b7c46b4adb5d055b52439c37
e7e71a467fb80898997e80c570f5d4284a350fd9
10623 F20101207_AAASJG hay_c_Page_106.QC.jpg
faf52b27f5887ffc6ce566a3aec54a59
b67e0d9de1d43a19589ff5375fd30250097457f6
5401 F20101207_AAARZY hay_c_Page_229.pro
4730c665a324cb4c6c1b867e7fc5ef26
cd16835b7f7bc6617263e1839f99d7c22002082d
100246 F20101207_AAAQPU hay_c_Page_174.jpg
500827ff09497f656e670e4fde24ac4e
c41128af9181e26e5898b9b0d896b8930f42e673
F20101207_AAARMO hay_c_Page_189.jp2
48b1f143e3568ca855a5c47f957bea25
0fdbdc68830f6ca79395dc0a3c87fc8c31b831e5
19866 F20101207_AAASJH hay_c_Page_007.QC.jpg
04dc16cebad05f40ef6cca19466b3f85
2f9ea3960d94e1f54ff3f7bcbdfca6c980ca0587
3936 F20101207_AAARZZ hay_c_Page_231.pro
30394608d568249af014dbb970a91243
f171de636d382fee90cc582c2e3635f436f5b2ed
13699 F20101207_AAAQPV hay_c_Page_034.QC.jpg
47bc4c0c19ee75e9808392c8dd4de5ee
7eeec78045187b39e00f4162ed56c0e02154eb80
1051982 F20101207_AAARMP hay_c_Page_191.jp2
e397ac0ef52ebeab80880e80f7f54f41
f0a5c7178f392bc676605dd9775dcc415c3b7765
6663 F20101207_AAASJI hay_c_Page_011thm.jpg
fab92c80399dddd4fcb461168c68371f
1fb801dc54e15e4206478f5c2f21bbf0da299997
542911 F20101207_AAAQPW hay_c_Page_050.jp2
26c354f146fe4b44e3f81a1d2f398b3d
68249e3275119eba051d49e11fbf5cdc2d1483b0
F20101207_AAARMQ hay_c_Page_192.jp2
842aab0e3e26100cf43d1766440d5b2c
c501bdcc2c4c61fa40e28d2fcee1f9e493492b23
13624 F20101207_AAASJJ hay_c_Page_056.QC.jpg
7b66da96da1af900df44a914e3c7ac1c
41b96dc7776b689c16d19fc71b58d06173cf1dda
97672 F20101207_AAAQPX hay_c_Page_025.jp2
6e9f02b5db541501babb785abf03ef23
0f476b13b6a734b3e2977da3bd87e6cd80cae3e9
F20101207_AAARMR hay_c_Page_195.jp2
9c125184be8e12e89b8f414e07a1a794
c4badd414e4ae61bb8f66b5cd2d2034cca7db693
6558 F20101207_AAASJK hay_c_Page_064thm.jpg
f7eb86ca6abfd5966195d1dc0571d439
374b867990fe99d87f0eda41cf9ab66282a96931
F20101207_AAAQPY hay_c_Page_195.tif
61f02cfc744c5cea90e6e643083ac610
f6eb5c31496566e7684848135c24d9e5f5620085
F20101207_AAARMS hay_c_Page_198.jp2
f51ca6fd7e74be869fc4d058ace9c799
418e05daf892f199afdf38bd661580f471cf828c
6989 F20101207_AAASJL hay_c_Page_075thm.jpg
afa9fe3a76710556c6f9fe39d47589b7
1e11f5c3ebd46d23b9563dfffc970bed350158cc
699 F20101207_AAAQPZ hay_c_Page_128.txt
0c1c6e246a22f4c7775c69ac2ad9696d
bee58651f93aa871b0ab021b507db2f84e561c11
1051917 F20101207_AAARMT hay_c_Page_200.jp2
6eb926006b269cd037e9e1ed132e8b64
9879482bfb2fb624d1d567d9690725f191f269dd
18916 F20101207_AAASJM hay_c_Page_097.QC.jpg
fc06f5ec03730edb513e474e6842c405
d90b11b564e94d3ff531fc733705a3208eef09c9
F20101207_AAARMU hay_c_Page_202.jp2
4a9225394f31c3cc0a507460627d86a3
b05acb096f4fb9592b47330074119ea691e2c3db
2829 F20101207_AAASJN hay_c_Page_044thm.jpg
59332c66f79b9f618bd5142fb2e5aa71
77174dd543d6648b870e4e3f9cc414c24f49256a
F20101207_AAARMV hay_c_Page_203.jp2
4ff822d757b1fabde4a3193f69daef75
07659db08a5796886b758793de94421ddc3eb633
10388 F20101207_AAASJO hay_c_Page_069.QC.jpg
ca6a4f87d08e621b2420139cc8c75af8
a954082baa331a5fc7d886e617d4f29ae9466be1
F20101207_AAARMW hay_c_Page_204.jp2
122e369c82c11984f2a561bfe7eff7fb
94195c0ed714a639c5cdc59c214c03efd8ee2b91
6709 F20101207_AAASJP hay_c_Page_027thm.jpg
436bc9dbed2214d544a3cd6914ed3bb0
abe17530bedb46667585cf37324b00bb5161f21c
1051919 F20101207_AAARMX hay_c_Page_205.jp2
5ff3ef845537be8ea9353113023d60aa
16942121695842fddf177753a8d51a664a0f3c6a
13413 F20101207_AAASJQ hay_c_Page_123.QC.jpg
350e5d822421f6884c151bc65e986000
6d4ee1f95f9c1dc464eb17ed08a73b250b7b2b6f
F20101207_AAARMY hay_c_Page_209.jp2
6688d8d6887dab5a531afc0842d50ffe
46306e7323675318be5418ae82ae73516f4210b5
4655 F20101207_AAASJR hay_c_Page_159thm.jpg
74db85bd804bb2ef87d84be6f665268d
87d8f04c06968b66baa38a077c3dc59ae34414c1
F20101207_AAARMZ hay_c_Page_210.jp2
88eec39ecfdf303fc48161682d786cb6
896b846a5293908e7e4ef428f7783246805cf32e
26183 F20101207_AAASJS hay_c_Page_220.QC.jpg
01c68e8d873e58377793d6cc0e8c020a
4f8f4a6a8868d4e73179733eb060fac739d03c70
24323 F20101207_AAASJT hay_c_Page_072.QC.jpg
eb464b507584448cc6c8c817adcb6c24
af5524d193a7c8dca23c36e2fef2dbb867c116dc
6544 F20101207_AAASJU hay_c_Page_170thm.jpg
31ea780b0c1fe2ccb65198c4f7d88ee3
4f8809afa1c11f339767c0baa61d1792030515e6
78786 F20101207_AAAQVA hay_c_Page_083.jpg
e80e37447be5302daa64d8ed73fdf1ec
7ced8842f5eb1994a3c71905e0262ce629ce1bc9
9323 F20101207_AAASJV hay_c_Page_092.QC.jpg
42909e54350af2b74834c3160c769d8a
642b1b969bf48bdd701761c45e9402238726b524
4756 F20101207_AAAQVB hay_c_Page_167.txt
77642bfc372ce06b8bf393d105698536
c6de50ece0a4f6887c5e50d43bda689e1791f970
12925 F20101207_AAASJW hay_c_Page_093.QC.jpg
3e43c022e191e374ddfd1b8c9795c088
f5ba50d598ac99ee910f8c954f0a1d86d72630c7
14799 F20101207_AAAQVC hay_c_Page_122.QC.jpg
61215a606475b94f022394e8d780721b
a30c527026e172b2c1c5fc8d1c2c6d57b94f618a
2722 F20101207_AAASJX hay_c_Page_065thm.jpg
8afc417242a9eec508e27f1419b7f5ce
97d6ddef28d10cfd9d4f491ac65f5546654d990e
6766 F20101207_AAAQVD hay_c_Page_167thm.jpg
85963ba2e67cbd2629e660881a9fc5f4
203b33ca0f64a92e98438b6914aca4f45449958a
2955 F20101207_AAASJY hay_c_Page_037thm.jpg
f6db5ce70e327349cb550bf0967349cc
372c5d422fdc8609cddfdefb9508529e1976fb6d
9292 F20101207_AAAQVE hay_c_Page_044.QC.jpg
64488fd896e30a6c1fb517188a26b18c
cce1c18cc937ba946e5ea7cd368e9865ff3fce97
13948 F20101207_AAASJZ hay_c_Page_138.QC.jpg
f1a6010733b6ee77e2602161b0ccdb95
ad2d766e89eb5cb4fa3bcf64c9b128d04e892467
F20101207_AAAQVF hay_c_Page_154.tif
00ab919b97b99819bf65bcb91f8de7b6
6ca43c1bb91b7946402e61db3a36125e186515a1
39417 F20101207_AAAQVG hay_c_Page_105.jpg
baeec8530f7eed1ccadfd1613901818e
ec6b48b97d5f6bde4f29c13661a9c7a82851c9d6
1051957 F20101207_AAAQVH hay_c_Page_230.jp2
fc1d9d31c6aec1d2093cbb2367baeffd
1de97b4c0383677f7392f2021d4d239cb75b8fd9
F20101207_AAARSA hay_c_Page_174.tif
811e5e2cee6be6263ad060bea59083a7
6de03d05adf663cb89c5fb89a77bbcbdbee4299d
128397 F20101207_AAAQVI hay_c_Page_026.jp2
7e7d204f0c7a23585b473f4ced199432
7661d1a2e5b01e663cbfc5e1b0f8c2e675c0b067
F20101207_AAARSB hay_c_Page_175.tif
2d4ed60f6bdeac37d6a90d53518cfe96
7dc1e00f291a357ed61c0d8a07218214a9a84d47
98927 F20101207_AAAQVJ hay_c_Page_202.jpg
dcc68e1bc35a3cf27b5e85c31aad5efd
67d3063ae5d8e04ee713f0e45cfd87e3cbb0c289
F20101207_AAARSC hay_c_Page_176.tif
8dde29ad642081a325c2743af6cda53a
0c45e5bd972c404502a2ba81b2c9dcb54e2a8f4f
15291 F20101207_AAAQVK hay_c_Page_148.QC.jpg
0fd5dda70413ec41a78bf7eab009cb00
98392f4576e34b91ff8961c1257442d24f5ca8fc
F20101207_AAARSD hay_c_Page_177.tif
31c2f9b6d7b2606720fa47e8c31ad678
42ed42fed52420fa8c3e5aa80001d1f236ae16af
112869 F20101207_AAAQIA hay_c_Page_155.jpg
9877c5037a30d1569f5f2c37410a9699
8dfe124771eb0aab052237c00cfe67bb67065ddf
F20101207_AAAQVL hay_c_Page_242.tif
da2046b301d02ed992c5ce6d3f9e2708
698a57cf277d100ce251b71ba46977fba13653fa
F20101207_AAARSE hay_c_Page_178.tif
cabb84d33b4920962c9bae165e084ff4
e957fc0e63d4440e26714e82769382bd18cd9eea
21422 F20101207_AAAQIB hay_c_Page_005.QC.jpg
d93c0a04f08a8fedc7c9d5751a52cf2f
051e69c986e3bc164011894713c9fa1d7c7c4800
24629 F20101207_AAAQVM hay_c_Page_011.QC.jpg
af1134e43e3ee73293ba5b513af97926
057dc3fe5d641a12fb98096ab0c48a2f7e9fd222
F20101207_AAARSF hay_c_Page_181.tif
06effa3b42b97781f0f84843303f641f
7ae89548a99782220df37ba28018d9d1ffe009a0
F20101207_AAAQIC hay_c_Page_050.tif
e7aaa4ef0568a2f3504f68d736926b22
2390f51f1818440dbc89f01c04703c03a9d5cacf
F20101207_AAAQVN hay_c_Page_045thm.jpg
117011f8ecab63041f8e513fa5cc2b1a
e81f27a84cdc7a51a57252debecd40bfa6c38583
F20101207_AAARSG hay_c_Page_185.tif
4173f1cd57e7f5ad2b67c705f218d3a8
cdd02b4e6ea19592a58d10444955c7bf071fbd66
4139 F20101207_AAASPA hay_c_Page_149thm.jpg
8aef06101aac5876c88e9a3f20d8e8ac
e2a8f4e1958b2d86cba69ae804c52c40d400a29e
53111 F20101207_AAAQID hay_c_Page_022.pro
23f9cafea43f40b78b305eccce1a629a
8eaeba3146a23743b42e4c704fc78a3ddc3eb531
105735 F20101207_AAAQVO hay_c_Page_019.jp2
4185b669569063fe3a24e40a8aced412
ae2fb4bc3899dde11e02bd26bdfd89e6a9eb2808
F20101207_AAARSH hay_c_Page_186.tif
46969f33ac8cfb596e380f1a1fbf269e
7a05109e7abd5fce791f0bf071614d8a7950e8a5
3402 F20101207_AAASPB hay_c_Page_151thm.jpg
9da10ab2903f32d6d6716b6b74dfb54e
6fbcc9e75a497666e0fdca50b0f6d6db66556c6e
5102 F20101207_AAAQVP hay_c_Page_209.txt
d6e5b383859a9aaf88e39ca696cd8992
3af0d1256481c8daf19c2e49ee82253043ce7f58
F20101207_AAARSI hay_c_Page_187.tif
0be3ad330a332ab885af7447ba1111a5
4862ef6c154f5a82ee1f1850cc5ee0163e98a9d2
3148 F20101207_AAASPC hay_c_Page_152thm.jpg
32f747e3ea186e29f5d3b90e4be0924f
09892051616b17c5cb96e53aeee1678e0409c259
692731 F20101207_AAAQIE hay_c_Page_136.jp2
e696ca3a68bc6e515091720a4049b2d5
a499dc4df72bb7748cd51bdba7f380459e6e4ce8
2888 F20101207_AAAQVQ hay_c_Page_220.txt
fb5df511c674891793e4dbf580d0a1d1
1ce6fdb6d939b808330135b3d4b78d3178c80a7f
F20101207_AAARSJ hay_c_Page_188.tif
2ad3ec0288994b3dbd0e223f30e15cbb
661c4faae6358ba79926f09acb7aa500ee7c2237
1500 F20101207_AAASPD hay_c_Page_153thm.jpg
fa1b950cf506234092e100e594746ad2
d1aca7c456119617ac0c0012087d9df40a4dfd18
26038 F20101207_AAAQIF hay_c_Page_182.QC.jpg
be8834de73c0f1f04d7383a2d814f53f
e20faeaca24577e5824624d874f6f4e54a44af0c
F20101207_AAARSK hay_c_Page_190.tif
9e5d3c4c789cd5d270bcd4e13f342e24
201b1ea1eb5f234cfbda843777338f5718275004
7096 F20101207_AAASPE hay_c_Page_154thm.jpg
e07013af06c41036aa1127993cecc0f9
ccdeb8565121ca0f338816ac12ad2b00515da700
6331 F20101207_AAAQIG hay_c_Page_209thm.jpg
e068bd3bf974dba57f1cddab5a4eba5d
0f10934046db9fb51d64b1fd2655b64e8e2d3fec
6958 F20101207_AAAQVR hay_c_Page_191thm.jpg
c19463da918422e8afce05ee3307e33f
01425f473f8e382e9041046d191de41fc494d9b7
F20101207_AAARSL hay_c_Page_193.tif
66c5df63b4689a60cd743c97adcb52c5
e42231026c8c25eff5e639ee772ddbcd7bb081d6
14783 F20101207_AAASPF hay_c_Page_156.QC.jpg
538e9b83f01724972f0124cd535b50ca
ed3bcbdd7429fb8ace9577704375be139daa0585
14354 F20101207_AAAQIH hay_c_Page_120.QC.jpg
70da5456639bd894654d019a7a5e5b75
a5291995c0ef679622152dd53f11b26f119c441b
46814 F20101207_AAARFA hay_c_Page_137.jpg
ff79e8f3619db2b0b3398b7de8141dcb
ba3afde42b7c2070cee834ffac28a71fa4b12a78
564 F20101207_AAAQVS hay_c_Page_149.txt
4e9ce153b0da5b82c06de3dd3ebdf02e
727ed8beb2037b6a535572466fc09b9c48f82b7a
F20101207_AAARSM hay_c_Page_199.tif
6234e8a26a4a28922f93ac869f99a872
f96a5fbe4e15ea86ab03b3ce1b9ea52227f138e7
12394 F20101207_AAASPG hay_c_Page_158.QC.jpg
54f5f828a529f9b8dab09214d1276c13
dc23a4eceed1579d5cf331b605dc8d5ede58a37e
4558 F20101207_AAAQII hay_c_Page_048thm.jpg
10710dd1f12a4dfe5b298b115d3aa351
f619dd961193317acbad66a8798cc469e4eb9247
42912 F20101207_AAARFB hay_c_Page_139.jpg
aed4cd0544c34816ec6677214707bb72
ae6f6ffe7e2d3edc3af7b090713c989407f0ea73
4172 F20101207_AAAQVT hay_c_Page_228thm.jpg
8980ed976f296da91d50f379544b5ea0
f81613c5a48b0fab51bfee412f7af0e461536b20
3500 F20101207_AAASPH hay_c_Page_162.QC.jpg
b486c62a5a3bd8fb75d5076063fe31d3
5f878789859672e2184ab9961263482a9df1e96d
713 F20101207_AAAQIJ hay_c_Page_136.txt
845c2901fd728fbcc1fdc87c8b404033
631e3810399c0c3d1dbf6ef68fc3fb0263e740a4
46708 F20101207_AAARFC hay_c_Page_140.jpg
e33dd2d87436fbf75026e5e826a154f8
5a1fea9153e1aaaa598787ba72c6f5f78f50601e
189 F20101207_AAAQVU hay_c_Page_241.txt
f4ca718299864700b6a607672bd0ebfe
dfed6bf352a269b8b2abb8c83132bdfcafc1bdb3
F20101207_AAARSN hay_c_Page_200.tif
1d5ef1e34964a7e20ccb0bc420bbd05a
6a3e1cb8d64475e48d6d044a8dbe2fadf6ff54e9
1355 F20101207_AAASPI hay_c_Page_162thm.jpg
fda90158743d10e0712b977efb7f6349
3fec81bc2cf4053c4d054fd29c5d835ca6eece05
4832 F20101207_AAAQIK hay_c_Page_103thm.jpg
4bafe8ed2ad4533ae68cf4ae53606588
9aeba59bc13b5460b6d9760b738ab6da2ecdef0b
43455 F20101207_AAARFD hay_c_Page_141.jpg
50b69466387393759c34beea4dabf7ce
f86cd0a70a99e0cfae2cb5763964980540383b93
1051928 F20101207_AAAQVV hay_c_Page_227.jp2
77f3abaf866b7527cd89a392e27c855e
567b9e6a4317cc43451e57b6dd2bf01d719842e6
F20101207_AAARSO hay_c_Page_201.tif
cf64d2071cf493d730dde24068fa10d0
c41baa83d62bb4cad4044da2b9b05b1c6d0b1f04
F20101207_AAAQIL hay_c_Page_014.jp2
d6c970c5310093af2716847cc79c2ffc
5616379ebf87ae26fa084f27b5213c79c879cca3
46184 F20101207_AAARFE hay_c_Page_142.jpg
1c0845a78001c11d2bce4025218f2d1c
b4dd607d2abde182b5d5805699045f83bbcd0e49
93167 F20101207_AAAQVW hay_c_Page_190.jpg
61ca76c7ed2a8cbee69397c4c3b374cb
6f32f3441fab491b4ef2d0bb75cd94f5a6361f1b
F20101207_AAARSP hay_c_Page_202.tif
bc4ee5c6b544aeb28075118f7c276e31
be546236b519f0351f435ae452437a8730d8d369
25720 F20101207_AAASPJ hay_c_Page_163.QC.jpg
1f9151ba9dd7480c91f8328dae84390d
becb4c020a7f4654562b928c93df6b8df9296494
43825 F20101207_AAAQIM hay_c_Page_111.jp2
ce587721eaf8a6b26cadfa5469e63108
86a73a51853cb66d0cf9c02e1a043f3a1b2877b6
44249 F20101207_AAARFF hay_c_Page_143.jpg
88783b861fa8a777540122b4cd81ec76
fa111d697a12e5c709f284da6cb3c5baae9a3e9a
9020 F20101207_AAAQVX hay_c_Page_153.jp2
98ea5cd50753431f51f8f2d8e9fb3e41
4054be9e49f0a3a63b7429fb5e7468771af6c8e5
F20101207_AAARSQ hay_c_Page_203.tif
d20f163a414ebfa311cd6c8b14b9f3b1
68125f028a56f3084791a336a2cd5311391eb373
26968 F20101207_AAASPK hay_c_Page_164.QC.jpg
bf211b9c07c85099701ae90f2b1e540f
26280adb4e0fc07e23226307dfb9a658d9d71909
543741 F20101207_AAAQIN hay_c_Page_070.jp2
fec29e2d7877491dcc956fc2492deb5d
294426a15a0acbc4b555faeeadcd824d2adcea11
53364 F20101207_AAARFG hay_c_Page_144.jpg
43a8b18cc45df96ce5c9b4686592e367
a4e361bd7ded9330f01c8302935db6ff8137bbd6
6126 F20101207_AAAQVY hay_c_Page_203.txt
c0891f03366877b82ca255710f6e2422
dffacbf5327fcb0db44b2ccaa372e8b233a27fa0
F20101207_AAARSR hay_c_Page_204.tif
64c929a24640998f43bf488dd1f795c8
e4a9269c24976d0bb46632776622ee014cd39226
6639 F20101207_AAASPL hay_c_Page_164thm.jpg
d564b603c206dac9f8359290459a3198
ed0a2fbc9e94dc0c178420a39943f871364e6e4e
6412 F20101207_AAAQIO hay_c_Page_178thm.jpg
daffd1b9d74ff5f5269ccc445480e11d
8e367e5dd02b54d77758963cc7178e24b28da477
57009 F20101207_AAARFH hay_c_Page_145.jpg
7aeeeb763b59de8d4d31e06cbbcd19f6
46d5efa8703c91833562112d8725f44efd49a30b
F20101207_AAAQVZ hay_c_Page_148thm.jpg
5d08d7acb4ba348b51d4eb87b4844595
74dfe27997dbbf58e8022dd633bec76bfacc9f6d
119 F20101207_AAASCA hay_c_Page_066.txt
c25e299fbcbc9e23fbe40915462c4919
0db3e1a105727c09f167c16803e6d460085c342d
F20101207_AAARSS hay_c_Page_206.tif
cb5cfae1e8a0a1bf7019d1b77f2e5c39
aaeb1d49fb7585a0da581df3cc23920c42da9d48
6593 F20101207_AAASPM hay_c_Page_168thm.jpg
6df2dea969e9860d20cb2b50e490c608
05a786ae0973d385a2013395d94ec3d273155814
105465 F20101207_AAAQIP hay_c_Page_211.pro
305a095bf5b73d4808f47f2bb6339243
b41f7eb513e0444e9755bc83ec5d8b7c040004a0
48015 F20101207_AAARFI hay_c_Page_146.jpg
d78a8f00a562c34d9acad89ae8ca0d1e
7f9a5a0ba0d4b57d694d32e1d8547beb1d42dc01
122 F20101207_AAASCB hay_c_Page_067.txt
5eac6bdc1039aff6a711ea0a5d893d70
224642f250794bfe1e24b959699700f49b7cb43e
F20101207_AAARST hay_c_Page_207.tif
5a6caf9b4102e745ce40c322f2ff2aaf
8a25f9519dac8ec1a511bd5bb4258f23bdc82a22
25480 F20101207_AAASPN hay_c_Page_169.QC.jpg
8d94a1e7851d0ce4bfea4886aaef4fb2
1b3b3b5cc74ef6f8f22b39019ee612a0fa2a5ccd
3097 F20101207_AAAQIQ hay_c_Page_007.txt
5a1192acc7d4259458322d17bbdd59c4
38e1b84ec01f25f71d6db42f0441f4be70459a16
46146 F20101207_AAARFJ hay_c_Page_147.jpg
97772a9534bd9b4c2a421775595c9315
481978fb25f99c744574b89d495fdf58fb97ae89
F20101207_AAASCC hay_c_Page_068.txt
3a1dc1eb0a99cd438fd171e974d8db11
e6eadcd60b48e4231469d76b041828d5c6cdca53
F20101207_AAARSU hay_c_Page_209.tif
0aff6659b6d1404cd7cf8f50a5ab44a2
af9ab681c8c2b38a6b79e66242e3131169597c02
6717 F20101207_AAASPO hay_c_Page_169thm.jpg
079b5a35bc71089711656002f6195243
f6c776cf049b585e17d7cc906cfb02dcdb3fa614
73961 F20101207_AAAQIR hay_c_Page_245.jp2
ff428a42e230d1de29da29bd999cdb11
429488e4fb9e06b6a68cbafc3997055da560287d
51865 F20101207_AAARFK hay_c_Page_148.jpg
f01d79a611fd681ef2d284e550be3af9
26d38167cbfd724134aa3f6ca39c208eb16830f3
111 F20101207_AAASCD hay_c_Page_069.txt
7b288b63b46b5bf454ecffcc75f27cac
3ef1f62f0761cdcb37367961256fe92a95e34950
F20101207_AAARSV hay_c_Page_210.tif
a29e8955387b04c8abd2d7521d5850b0
26665acab262b8f9071ae198fdfe28fef38fbd06
6520 F20101207_AAASPP hay_c_Page_171thm.jpg
39a235d155d5d248423b888d3c66068e
bdd368b4e7a49ae92e96fed550bbddd60e55bfe9
28576 F20101207_AAAQIS hay_c_Page_154.QC.jpg
9a808dc29d0f9e7b717eb3449496bf23
7f4e4e9e5089fbafe368a0a28bb1a32cb7f3d1f0
48173 F20101207_AAARFL hay_c_Page_149.jpg
33f6de69c6d04f0787627069bc7edcea
b2be88ac04f520e07c9adc68d7e892f2791e1ecd
471 F20101207_AAASCE hay_c_Page_070.txt
ecccd0d2e830c37d8a6e200fefc05a48
4f8da5aa5e9be63e9b1631a732cc9f13f05565c6
F20101207_AAARSW hay_c_Page_212.tif
6439dc6f7cae45bcedc3e56215e19209
a72b8db981442bb5da578a0d110d6640e647ca14
26008 F20101207_AAASPQ hay_c_Page_172.QC.jpg
01d7a3405a3bc180048618ed6d4a5e98
1c6026cd104892f0ceb85bff1c3d6f7d164f0a84
347 F20101207_AAAQIT hay_c_Page_135.txt
77032c2a1c4f803a94aa1fed02ae8b64
114614489b6ab55182bf87a266bfdf10381a0df9
36687 F20101207_AAARFM hay_c_Page_151.jpg
6be047b01327f4ff8ddf3fef9a720f84
339abc43f3819f042eb072724a54c7fc5e6bba43
1707 F20101207_AAASCF hay_c_Page_071.txt
d603a88c97cda74b490c423b662297b0
42b9e5c0a03d1d952056bbfd10089780d1fdec53
F20101207_AAARSX hay_c_Page_214.tif
516a9e7007e264cffee4a3feea81381a
cb8745dcbc07eda3b22c384ada8b8e33c2e79aed
F20101207_AAASPR hay_c_Page_172thm.jpg
ef853b803b01b66a531a95b27a87f516
1ad239dadc9adb84b846c8e51c64ad5dfa480c8f
6782 F20101207_AAAQIU hay_c_Page_219thm.jpg
9403608b24eb02fe6cbfefcd3353a818
cf4063b7e068dbed2284b83a0130ff7be2b5de23
34192 F20101207_AAARFN hay_c_Page_152.jpg
1785653353cf3c1f26cb1cc568ac87f9
ef2b900b4fa090559f049077bcaba16baf706bfc
1974 F20101207_AAASCG hay_c_Page_073.txt
3d0c2c7092d32484179dde0b2b1fe4b7
468c2217d7216801b548a0583647dfc5b2487a18
F20101207_AAARSY hay_c_Page_215.tif
a46f59d39de5a141a9f22653cffdd751
d8ed176088e66cc42729a15a750e74608b42bba3
26203 F20101207_AAASPS hay_c_Page_177.QC.jpg
5203b135492f66679f3d8b9258336457
5c974835815d9917a790b5c2605c56a469acc201
6882 F20101207_AAAQIV hay_c_Page_030thm.jpg
c37db64fc0975dc31fde218830dc048c
3e667627d3d05c8b6cc2226b6c2239f06eb42d74
62221 F20101207_AAARFO hay_c_Page_159.jpg
88ad90183f98f4f74641f69bd78c7292
edef1813c264e28cc045946d37c3d0b2015a5393
2149 F20101207_AAASCH hay_c_Page_075.txt
09322f4fd6e2d6fd83777543dd3c669a
a145856821acc44627916ec5528c9dea9b7526bb
F20101207_AAARSZ hay_c_Page_216.tif
8452ffa2584d69bffe220137694b697d
1f413774cd0abbdab865a223a347d2faffdb34a1
6446 F20101207_AAASPT hay_c_Page_177thm.jpg
6d322ee4a6192c277751daef4b1f0ffb
a8f044807e6e3095d5afc18dad1b7dd0f4fe6f07
415 F20101207_AAAQIW hay_c_Page_001.txt
70522327ebcedaadd293491c54dcba6d
a1dd8caedee9eb036928d2e94b1573698cd9fd2d
35863 F20101207_AAARFP hay_c_Page_160.jpg
e65f03f050812408a14167b0895bf986
3edfba775401490d3df6fd3a2cf374de200c95e9
2254 F20101207_AAASCI hay_c_Page_077.txt
cc7efa6e47497ed58792ec513beff574
562f970ecbb418f57533c3bbda6d0df39acd0804
24643 F20101207_AAASPU hay_c_Page_179.QC.jpg
09d8fa3e619279c6a3a9791a3982feed
cf4014487094ac319b788abd14738755f74a8991
5086 F20101207_AAAQIX hay_c_Page_179.txt
a7978d9dc9bd8582a14298b2f93e47a5
b149d7565fd603a50605c7956963816cbf9d0c5a
31432 F20101207_AAARFQ hay_c_Page_161.jpg
dd9d3dcd94a55a5446e8274e170f3b0e
0a2ef690af74bba072329223653cba13a57db27c
F20101207_AAASCJ hay_c_Page_078.txt
9b24d72a52f657448830601bc64121f8
ba65b388151fb901b5d27d7a922b48ed9f9bfcd6
6523 F20101207_AAASPV hay_c_Page_179thm.jpg
4ff49927f0b72f08d697f6f7aba4d9f6
aa78f98e54e810457168c70c2a562978e6cfb8c6
3890 F20101207_AAAQIY hay_c_Page_223thm.jpg
2e30e8102482507616880bc6b6f2a3af
f55d71e2e9692fffbdfc405b365c07d6c6dab4b4
10856 F20101207_AAARFR hay_c_Page_162.jpg
02648253f835b52f3953594f24c6a80d
6d66c8870d34a5bd12f7690bba71edcd2bca0c93
1238 F20101207_AAASCK hay_c_Page_079.txt
2e47d448a09d6d82e1be72bf02911ac8
f4aa75694e7de7fe370ffc8cc31d1dfe4df7d98b
7075 F20101207_AAASPW hay_c_Page_180thm.jpg
24a1909d237953f8c6df3030a8e9bc40
5dec84ceeb9019ee450f1f1c7e443c0778892732
7248 F20101207_AAAQIZ hay_c_Page_021thm.jpg
d6b5d79838af6f626d9f00257f9fc3cf
910208ff2eff833a29ff638a5ab4bb68050220ed
95992 F20101207_AAARFS hay_c_Page_163.jpg
1fad7eed34a0b205828b31ed6b2b1659
67f594df297135a136c0197c3d4f73a6df8d1d17
140 F20101207_AAASCL hay_c_Page_081.txt
47b055a229d5f7b6f8af8eb0a91871ad
27b20425d2f1abc1ee3e9373808caeb2de767e60
6526 F20101207_AAASPX hay_c_Page_182thm.jpg
3ec571be1d510651cd9b220a6c3d02e6
ca48eb2605af49b1df342f2d409034ac0d708419
100170 F20101207_AAARFT hay_c_Page_164.jpg
e9dc8f6b7b48ca7765ddd39ec5c9ae95
cb713345f55844c0e1eb9e459a7e45c8a1d312bd
2243 F20101207_AAASCM hay_c_Page_083.txt
f0162f3368ea985e54270f3f7e6783d9
51e342a1fef22773b0553ae70f67158c8f7c2c2b
6250 F20101207_AAASPY hay_c_Page_184thm.jpg
4b6805f65a0ceb1c993161e54f7696ac
8fe8037de67833a1c163a07686a995ed017d146c
108429 F20101207_AAARFU hay_c_Page_165.jpg
1542b3d6307f430e6441936d4cafec4d
36712ec5f1a7440d76c16536df93e7df2062b36b
2120 F20101207_AAASCN hay_c_Page_084.txt
525bf5eb6dc5281cf5351658e2b461b6
b08f96a0bc44d090fa392c8897fb1691e0807e3e
24913 F20101207_AAASPZ hay_c_Page_187.QC.jpg
3d07693f9b413d71088bd14f5a22af79
410fe35836e24974cad919b51cf52f9c0d28fafe
101473 F20101207_AAARFV hay_c_Page_166.jpg
c2cedd8be65993e44e3d644454e3d4ee
661a326868f76137001eb3360f7ffa3be3a6cb0f
1991 F20101207_AAASCO hay_c_Page_085.txt
719934d746dc743d9f6e7f00d60306c0
dc2c52c08eafb5dc8e9df1735613abb5236ef6a9
100365 F20101207_AAARFW hay_c_Page_168.jpg
f7029dd962bda6fee0f98712034b8f12
01af2fe4822306e0d1c929f3161a195533c20448
2089 F20101207_AAASCP hay_c_Page_086.txt
b60dd0a5866263cf1d5b46f14b7c563f
698932c73ade2fa9c4a9c260d3ae9c5de35b6f68
97654 F20101207_AAARFX hay_c_Page_170.jpg
6c24e8cfbbf4b8fc7ceefa425b8d167a
8549cd49c9fb69b41b4bd7a4c7491277a70f7b02
10039 F20101207_AAARYA hay_c_Page_158.pro
7a8a919d56427f80e3a7d7caf68a5171
68ef42338092fe5dcf2ea615c9f16aa629dd9339
2025 F20101207_AAASCQ hay_c_Page_087.txt
93db3a9796ca1e6f03ff3242b2321980
1ff36b44fb7c35033df1db9d0ed684859465f03a
100373 F20101207_AAARFY hay_c_Page_171.jpg
a5ad54afe94ae2ed748d23e31c765f2e
fc9b9c92e62e725a6a568c49adcc01512fc486ff
15465 F20101207_AAARYB hay_c_Page_159.pro
957cc877849927037b6eaf6e7656b9ae
6b0640f8bdfb74960c2f60ba64d593a62cc3057a
1408 F20101207_AAASCR hay_c_Page_098.txt
7d7ff65fe6e7443ffdf993993a17b192
ab666d8d5add3ccc1360ece4fed6ee5211f24fee
96064 F20101207_AAARFZ hay_c_Page_175.jpg
9debc5968ac2ab5d27b4a72fbb17d5b0
ea0b4eaa698ba85655b0bb38600028a8de14d156
F20101207_AAARYC hay_c_Page_160.pro
9d8f4443d4c64ca25116ebcc2e2ece29
be4970008da3b5b30da8701778b2a1b176ffcfa9
1021 F20101207_AAASCS hay_c_Page_099.txt
8783f231d9ebeccc718e7de8fa991ac2
65edf551e9ccd8e3a5f744cad382695d6c333956
5811 F20101207_AAARYD hay_c_Page_161.pro
ad56f379f426def8a69e51c4f52fc6d3
57e997273d2918e8f32c066470a85db9662f503a
888 F20101207_AAASCT hay_c_Page_102.txt
77954f38becc566d2cd1405fff121367
af1d40a640a76e0389ba07d80a84694bb01251b1
1209 F20101207_AAARYE hay_c_Page_162.pro
2130b53e45829f16bba63f51bfb055ba
8cc62c2236cd9cd85e00734c4abae5909ec91229
338 F20101207_AAASCU hay_c_Page_103.txt
325c03f0c9ddb0b09caef324e6436cbe
91f8e368517e6683dfa36fe2e516f6197b0c09e2
70714 F20101207_AAAQOA hay_c_Page_018.jpg
88515575e6dc0a3d8602af1efbf7c68e
fde53aa56469b8b6a0d32e778e38ecd98bf0a8f3
98355 F20101207_AAARYF hay_c_Page_163.pro
723e4ffc66cb742911d0664e1d67edb9
f18d807e947887443b6fe08340169be679b8b1d3
3238 F20101207_AAASCV hay_c_Page_104.txt
7a8676fa690d2e01ab4f8d054148755e
74c39b51380689a046bfa466d51f89a0fcfd0238
23345 F20101207_AAAQOB hay_c_Page_018.QC.jpg
aaff29de6977ed41767abcbff369a0d3
f8854d0cbbee3987c9eadd26ead63bb7adcd50f0
104884 F20101207_AAARYG hay_c_Page_164.pro
60b9b9030fcf2b2939a2fc194f7fdcab
48da7a4d5920344f45a95c7913287f7a29cf939f
375 F20101207_AAASCW hay_c_Page_105.txt
280912fd356b8f5ace3a3d59a8814a43
c73c1fec56252078efc12120f994d334843a2bd8
91298 F20101207_AAAQOC hay_c_Page_104.jpg
cbf8ac2dd90512fbc9d1311fcc948660
06b70de1a2e680ad3a3aa676c1ee470874a6cb8c
112765 F20101207_AAARYH hay_c_Page_167.pro
9417616eec77337c4e938484c4df6cc4
779675c77f238babc2dc1f1a568e9bbf44c884a3
439 F20101207_AAASCX hay_c_Page_107.txt
a00ddc555944e29945cda5ae4593c2a1
5dab2609825449bc6c121e3d657eda1bbc8615b4
24827 F20101207_AAAQOD hay_c_Page_157.pro
8f8ad00e90fc3a892281791bf451c2ee
2a0733409b27218f0e9615237e7c2ad0b2a0a2f9
121154 F20101207_AAARYI hay_c_Page_168.pro
39146658cb1f246418fe182dc53b0fc7
818cb93eabed78635b8d78d79591b3c1e2afcce1
580 F20101207_AAASCY hay_c_Page_108.txt
02905a56ab61ade403b60dda7e573cba
f45621f7636896380c2356b8ce696f65ff326c2e
113444 F20101207_AAAQOE hay_c_Page_171.pro
14a6a5465aa8859e6aa6aa250509820d
6df1a7cc3ae93103f94b305417430f9d87eac972
113568 F20101207_AAARYJ hay_c_Page_170.pro
8c997c74ce1feb7b21e5001452ad5c43
4b5dfe8243b06eba88875d79c92dae7c871108fe
1769 F20101207_AAASCZ hay_c_Page_110.txt
b1293244f68b6f7fc4e67fe6091a9f4f
931a44879c7ea5d9fc2a0530766def439cdab4db
528969 F20101207_AAAQOF hay_c_Page_151.jp2
2b84096e7f48351591f365d8af95af0b
4cd5804beca62558d27c8a29a312af20428646cc
117193 F20101207_AAARYK hay_c_Page_172.pro
69136ca085eb3fa5377064dd36615753
39c8e33fbb58a88891311acb911ae3b468efedc3
76347 F20101207_AAAQOG hay_c_Page_005.jpg
dfe170b3caf2aa2ede4e2dac3f4ad3da
7d72dc9bbacae6ba24c917dded7b572afb67417c
663278 F20101207_AAARLA hay_c_Page_137.jp2
62f694d16d7ef35555f7722bfc9f4125
c6e0d3e9489b8e27b0950da1e4fa2072637339d4
112173 F20101207_AAARYL hay_c_Page_174.pro
fb0284f4f74e8ce9a877ef8f8c425a73
5920e0038a5e78f5736285ecebb6e12cd7faca91
1252 F20101207_AAAQOH hay_c_Page_097.txt
ea3edad2e6d8c76d260e586e650ee1ce
9534a8a2956ea4619a5495c2a5e0bd9f9d64d0ad
632229 F20101207_AAARLB hay_c_Page_138.jp2
91247d4ff9887d8698b0da25673ccc91
48b83b6c0fc78f826587ccb9909aa083dc991fe6
129867 F20101207_AAARYM hay_c_Page_175.pro
b696ec781540e8185aecdd4d914f52aa
101b36e4bba1ded597f12c0d27ab33591ee42dca
2092 F20101207_AAAQOI hay_c_Page_090.txt
5f3928bea716eeaba26c0f8b7ef7260a
c07c3f1050250c9dc360832256e93efa4306883b
612602 F20101207_AAARLC hay_c_Page_139.jp2
e27962e4214526219eb3ac8ec9a92086
5b2f53c8ac612102c235fd5753ce4a1dc18aa9b5
118971 F20101207_AAARYN hay_c_Page_176.pro
b3a6d6e5977453f2846e9fe057ff4b38
9622ee83d28d1f85b84c57e1d4d1fb5155bec348
4107 F20101207_AAAQOJ hay_c_Page_131thm.jpg
3da981be01fc416dc84303d40027c7c3
d8b94eda1283fd6e5fbcadf2fface3b0486d3416
691458 F20101207_AAARLD hay_c_Page_140.jp2
a46376e30b0ee87693e65f55fc3bae5e
34fcc8f953b1bea72a465d6a42e02280f392f5d0
111087 F20101207_AAARYO hay_c_Page_178.pro
a87968f67f00bfe29e1d6f7203422fe0
8f92794184a737c24a353b41e1b4e75c815e860d
632347 F20101207_AAARLE hay_c_Page_141.jp2
6e540d3fd76637aaace5ba703e727993
6a9094a2a105acedc41d97873157092fedb86baa
116758 F20101207_AAARYP hay_c_Page_179.pro
ec56181daf37c546e2feb96b3af2a003
3de47eaa378f494fbaba6a66e6eea3d9a7bd439e
F20101207_AAAQOK hay_c_Page_244.txt
9e8797918a2c0c7e657e9aef93f3f6f7
c87819816d41ae518ffbcbfc37549d6f125cf7f7
651219 F20101207_AAARLF hay_c_Page_142.jp2
d708f968bba536d66b89f147e8de73a2
f4062c6c655b3eb4f5d73f0b9a47f3a8131bb785
114650 F20101207_AAARYQ hay_c_Page_180.pro
792f21152b582c0ca9e99e84b36874db
26defc4ef4009a43d23bcd810adf30f82c432db4
F20101207_AAAQOL hay_c_Page_140.tif
eb062bedebe7996a1cba335c8ae7b821
c9b7a41c437e46eb1be0721917594ebbe5ae252e
120878 F20101207_AAARYR hay_c_Page_181.pro
4e3401c624633cf2f6b404cdbeb7f25f
0f1eb900524780e3f5d06ad8e181aab3670ebca7
49190 F20101207_AAAQOM hay_c_Page_018.pro
7b60e2924f601ace3fce76a1a0697cd2
4186e980175bfb16e708f124dc6e74ea8db4c8e5
787942 F20101207_AAARLG hay_c_Page_144.jp2
b74225502994ec7924fc7415c436492d
54f11f58cf77a78ab40294c007e881e5f68835fc
20192 F20101207_AAASIA hay_c_Page_017.QC.jpg
7535ccf447b7bc0480adc5de0d1f5282
4662a77e016a6c2b2820f07bd6be70d11e703b6c
129135 F20101207_AAARYS hay_c_Page_182.pro
39cc714d70776baed463594cc8c18af8
93ecbee9fad6f383aaa9ec3abcfff27f51ac96eb
54385 F20101207_AAAQON hay_c_Page_101.jpg
0a820cee24028117d1854996bb3eda0f
d86affe498679861f753e2c5085929fbb02108bb
963707 F20101207_AAARLH hay_c_Page_145.jp2
4e830a93f499fc3ddf049ec974d54606
e345e25063682949b81276d145b0025ca3d167d2
24605 F20101207_AAASIB hay_c_Page_205.QC.jpg
d733cf59ee3b1af6e2b1cda5ee945e79
03d074296eb2f1162b7c6fa237c80512727ece31
71748 F20101207_AAAQOO hay_c_Page_012.pro
918416141d942b25cd7385dcd47879e3
ff8d1ee06512a9a7ba4d14e676ae002da79baf7a
717222 F20101207_AAARLI hay_c_Page_146.jp2
e4b6ace0ee121031ad82590322419c1b
8cd6f353b38ea570ce05034b78360fa28a2870d2
117046 F20101207_AAARYT hay_c_Page_183.pro
46e74f717ab5c97796940b426f1ea468
7f2bfdb1eac77600df43a67117d602f25cc89db8
116034 F20101207_AAAQOP hay_c_Page_075.jp2
95eeb516e1544875b13c8582a5b2c8d4
32a717174da204469c6966cfd1664aaa2587f9fb
641988 F20101207_AAARLJ hay_c_Page_147.jp2
05a26720683e2c16b33143dcfdecd195
00a9bc527693f5e5c0ba0b4b231f0d535f3b8372
16253 F20101207_AAASIC hay_c_Page_239.QC.jpg
0a0b470c6b468358460db0007e181c75
62dfefb78c28fdce282455de693f14db0123a648
126102 F20101207_AAARYU hay_c_Page_185.pro
9a8aa8f7435af0b8e0e04cf885683511
28d9fccd958b0c0de958a04040eac065148026eb
43064 F20101207_AAAQOQ hay_c_Page_121.jpg
4b2702a8f7f0b340b85af7beb0da1e41
465e803ba99fa01cf350797a7eb3ab00b50a90b4
799170 F20101207_AAARLK hay_c_Page_148.jp2
cb49e6349e995995d862224d8f8774be
e0e1395d8dbf7c9d7a089b179577e5e59568dc36
16981 F20101207_AAASID hay_c_Page_103.QC.jpg
8e005d28e1051b047161eebadfe25b9f
6b2e87c66a1f9f4b981d21789ac246b70099ba00
118745 F20101207_AAARYV hay_c_Page_186.pro
64fed291f788f3831a11467aab0bde8f
63c99d584066deeabb12facffef089fd4d672e68
F20101207_AAAQOR hay_c_Page_029.tif
c18c81080421f574f162be0e4102912d
022362ac088c2b4509f7ec0f3dfbf3ae9a6f4095
307609 F20101207_AAARLL hay_c_Page_150.jp2
2a877c50a9a479e60f61c93d845e033a
fd5cadfaf9b68c704cfe84bb106d91b37b30fe60
4751 F20101207_AAASIE hay_c_Page_047thm.jpg
01a52610ac98b43bdd6492ad723b271a
e6af15df360e7159c0653f166b6ce988c4710c39
111801 F20101207_AAARYW hay_c_Page_187.pro
4c7c18da7e8a5394e34b3eb47db90477
6272d8175c9e647b8ae96cf530e953d71cf39207
F20101207_AAAQOS hay_c_Page_047.tif
fa5ca4eec84360c33415e61d29e0ab4d
9e0c4163367cf1b043c530e6ff473d48ded9d5f2
438560 F20101207_AAARLM hay_c_Page_152.jp2
756e837ce97f4d33287329751e722639
1d2f6bc4c85ebe2f357ab6d3722734562139b1a5
25957 F20101207_AAASIF hay_c_Page_186.QC.jpg
201bea44049aa9e74c7b96ba6ed6eadf
4e7a98de6ef5a94ae4c4426d305e12141e7fa59c
116128 F20101207_AAARYX hay_c_Page_188.pro
8b45a649396a62c1c7aab604bb42f27e
674db25835bf897d9260ec707f50697fdfede206
160343 F20101207_AAAQOT hay_c_Page_216.jp2
21888df536ab3493e2d46a56747e8890
3db9ccff2dc824e16452fe827540d1c81b25cedd
F20101207_AAARLN hay_c_Page_154.jp2
9deaba3c8d39fe635cd258bb8a8dacd3
a0f703adb4fbca097fb1e1c9d5527639dc952ebf
23606 F20101207_AAASIG hay_c_Page_031.QC.jpg
6397f395a06d22154b1628944a1e5e3e
43e1230fca6181d419ea9a76ad57e2904066ae97
115340 F20101207_AAARYY hay_c_Page_191.pro
01abd2720ae46229d8c4c9a646407cde
409b1b80ca66206b57b4d4a0cb687200c604f6dd
646 F20101207_AAAQOU hay_c_Page_132.txt
14a4afe3c32165393c232333ad061147
9949011fbf341576870dc2a6379ade929c2049b6
567336 F20101207_AAARLO hay_c_Page_156.jp2
77fd26c298fe214c59dd1e03fe9d963d
16bb96578f849542250cc16b10e79d88cd32a377
6091 F20101207_AAASIH hay_c_Page_187thm.jpg
8f2f9cf81c58cbdd857a18b6a4438c14
1cb3705725946519ac5126e1ea91e17cf4fb37a4
112248 F20101207_AAARYZ hay_c_Page_194.pro
27c013d8dcb02ab0380aaa5a746ae324
6fe7463ba7a0e979aac2e1988ced61c7904a8353
973 F20101207_AAAQOV hay_c_Page_100.txt
76489ada1eeb62fd87be9050a68a500d
6922795f57ca091664e87c7e2f51d281d271ac3c
629054 F20101207_AAARLP hay_c_Page_157.jp2
477061465ee81c6baf3c259e380a00af
0c5f9bac0b091efe0b8c3285aadef40be7ee3d59
24122 F20101207_AAASII hay_c_Page_190.QC.jpg
cdae9042fd86521c64abb4dceeb687f2
e72796b0e835190cc73e3c2375b125e3ba1b5eb9
F20101207_AAAQOW hay_c_Page_024.tif
093c42f79cb93fac4d2cc44668be32f4
1a802541f053282b5bc5de24a84267635060599c
486432 F20101207_AAARLQ hay_c_Page_158.jp2
e9edca40ce4f91bbad2c18861493fd50
bdb75fb2dba4c9076fc29c0e065bdbf92ea7fb00
24607 F20101207_AAASIJ hay_c_Page_181.QC.jpg
f262bcedfbecaf1f6d66cd7d16eb6130
a33cc69b13eb2870dbcee4d2aa37a3de8faaa1b0
4332 F20101207_AAAQOX hay_c_Page_123thm.jpg
01ec4b6bb710be2e0dc928e4f23e468d
9023f8cf693e9ba267d0572be1672c81779e1a27
699402 F20101207_AAARLR hay_c_Page_159.jp2
9b4b1ea0dac4ab58ef69a5441173d7e0
62010538cc41057d62b96a22db7c1958c82ebec2
9131 F20101207_AAASIK hay_c_Page_009.QC.jpg
cfb92270376c51c7630af81c0b91bcad
11949bb24b24101791e0a12dac8d6db446bb5f7a
3108 F20101207_AAAQOY hay_c_Page_088.txt
e2800e2b3a27ea65f76309bd27b31f08
3c7572c87617a24453b5a47e845d7f06a9ebd24f
387785 F20101207_AAARLS hay_c_Page_161.jp2
91fd0a23e3a99b91902d3f14e447e9f4
d6559b33559dfdb4b8a5b294c3c9826e7f413560
6845 F20101207_AAASIL hay_c_Page_195thm.jpg
56de14ec1a0871c5a61db1a393fa03a6
251cc82b5d764a0583ff4dec41498e8e727ba8ca
F20101207_AAAQOZ hay_c_Page_030.tif
b753700e311ecff6b2f6ffabe4277027
562788fd0b9143cd7706abba579cc71af1a325dc
6116 F20101207_AAARLT hay_c_Page_162.jp2
d6d56cd874df091b29a3702e7e54378d
8b64c6c630b6ce1b97a10e66237fc333f923ebd1
28384 F20101207_AAASIM hay_c_Page_165.QC.jpg
7f130943b77b62bdfd6bf37b870362b1
6fe315bcdf80c794a69774ac1b34806609730e99
F20101207_AAARLU hay_c_Page_164.jp2
64a6bce65bc9fbe7767526d0fe562f27
956efaf918ab4d30be7d73628e22d7aaef49bdca
6693 F20101207_AAASIN hay_c_Page_186thm.jpg
05189e6494cf40f756a99345cb294ab4
b746d61062529dc10a33d319bd92dd87880b1a22
F20101207_AAARLV hay_c_Page_165.jp2
93d326ff1bbf9e4e8fc1d2b3c45126b4
dd53380c42f7c173af30d49fc3a72da04b84bf47
26199 F20101207_AAASIO hay_c_Page_171.QC.jpg
d5032729cdeb07e8400dce698127a0d4
68d016806f5fbd6b3d8fdfe4725e80c799f27818
F20101207_AAARLW hay_c_Page_166.jp2
3ffe9830e37fd02bfa233980e8156e0c
a5c70ce35b80963dadda06066e593512396c056a
8206 F20101207_AAASIP hay_c_Page_050.QC.jpg
51783ea83d0a0d0c83650cef3f17c3bb
a28b8a56b633764e131f162be182206de5ab9197
F20101207_AAARLX hay_c_Page_169.jp2
640bbe0bb263900300495cf0e11a1bd7
b3efb2ade9e28fe63face29d8975439b4086bd39
3400 F20101207_AAASIQ hay_c_Page_105thm.jpg
12dfa3c649ca87eb62d4d2c5edd50d79
c7d1b0d420031fad16d61b727e440365ad936649
F20101207_AAARLY hay_c_Page_170.jp2
0d43b975beb2926488b505caa377c830
ca09c144fc82bc8d3eb57d956eab349d8a8e06f6
13587 F20101207_AAASIR hay_c_Page_130.QC.jpg
253d3230c5f760521f767eb7b1927b89
2e1ba0b99caca6f6124fd5c0b4ac3e9aafec056e
1051936 F20101207_AAARLZ hay_c_Page_171.jp2
59b3d95ef78ad60bb9f4d4f5a51e8717
86814b6333ed88982d48ca70c26fc4c70a8bebd0
24156 F20101207_AAASIS hay_c_Page_212.QC.jpg
dadb4eb22482b172fa1e86771cc9e57a
2a9ae9affe25b9b881450b044c1561f81ccd5461
5336 F20101207_AAASIT hay_c_Page_224thm.jpg
b5c7983d5402694a093d5ad3c2a299a4
4452bc5236b3a4beb0fe8bd51e41f21c843c4994
24098 F20101207_AAASIU hay_c_Page_077.QC.jpg
92ee6eac73165fdd04a0ab2fb94bc9c4
574df3af30c35fbbfc1930d82d8d3854b3dda294
F20101207_AAAQUA hay_c_Page_201.jp2
81c839f8679ec892ffca31795e802a7f
b05aa9fe135df8503791f0add620837ad73375e6
13514 F20101207_AAASIV hay_c_Page_226.QC.jpg
2b2375ae626cd261b240c1ddbd91595a
09dc8872e9cd3be5efa01ea4e1aad5072346a46e
3337 F20101207_AAAQUB hay_c_Page_111thm.jpg
3548e1bd3bb36340272969242d896318
491d4418a22707079b65687d353756637cb4d7be
15628 F20101207_AAASIW hay_c_Page_108.QC.jpg
3923931b8f19214f8257646a9d364622
5824d0aa9f0aae12873dce7bfefa369120d1e9e2
203 F20101207_AAAQUC hay_c_Page_113.txt
c377bfaeb18968ba3348fa14232b3c77
e51bcc3b74afe4e456ae6f868d5c0dd374e34d17
3066 F20101207_AAASIX hay_c_Page_002.QC.jpg
c671a6d1a9e179e1cc0d794381b02b4a
267a7fe6b5b8fbad872bca0fa100e6fa7e613cb1
641449 F20101207_AAAQUD hay_c_Page_132.jp2
d31a6d3a40b60920ce357755ee67821e
854e1f2c92f8646fa9199032e478e468db22bfb1
6428 F20101207_AAASIY hay_c_Page_205thm.jpg
e9fce2813951443b7b7ef64c775e0a8a
65682c36d9e6a8f34348bf4809f79a49a0c118ed
19395 F20101207_AAAQUE hay_c_Page_096.pro
6ccaead3140a0879b3fa149d7942d3e0
250d6177d2bb810de3653d0afa5c06d074f9065c
25174 F20101207_AAASIZ hay_c_Page_215.QC.jpg
2953ad0c86256f4797a1b33e30273be0
6c9caa298691d3a2452b057dd161a4b2a3074cdd
48741 F20101207_AAAQUF hay_c_Page_019.pro
9d72f4db2c6117b89ff3a4a2c4e46eb8
e4d2ebdc7b853b64fe6fa3c116370dcc01d726e3
210 F20101207_AAAQUG hay_c_Page_047.txt
0bce1373890f96c8f558e5cca23735fd
b1f2fb6ddc16f1604d4108c0644112d66fec063f
F20101207_AAAQUH hay_c_Page_198.tif
43111f42820ae2c7c180b3bb50f15bad
76714cf04b6035a028ae333c06cd1b4f770373aa
F20101207_AAARRA hay_c_Page_135.tif
30fa5d9cc2f6609a6c9328374c07df92
fe8100c51235f544d811b0c5fea1cfbdd6791e80
F20101207_AAAQUI hay_c_Page_054thm.jpg
f63f70495144f751610bcd5e3d5dc405
1435269584b434495a90f7b6d4df621379aa98de
F20101207_AAARRB hay_c_Page_136.tif
094a567f258ea8d1cdbb25e928441126
4771fd599c9f98a88cfc4a61013d593ff3201198
F20101207_AAAQUJ hay_c_Page_104.tif
a8fc37969c80fdcf9bde472fb28b1dec
4c4b2745d68535b715ba0dea68a62c673aa539bf
F20101207_AAARRC hay_c_Page_137.tif
dd204699f0df31a1713f11c3cb237373
29c5394c39cc0502e74351c45f8e02439ecce8f9
F20101207_AAAQUK hay_c_Page_012.jp2
f802f83383438043e1e701b3172f7e5b
b3595b2629bde79c1129c57a79493651c3fd105e
F20101207_AAARRD hay_c_Page_138.tif
0f590245ab52b8661d7727a5ef5caac4
85638abc217b0034afa0bdd337e9d4a69364927c
4884 F20101207_AAAQHA hay_c_Page_002.jp2
ee910953896979c8a59d199383dad73d
896f16fd88efe4e914b99efb7aecc3f4ffff8882
104702 F20101207_AAAQUL hay_c_Page_165.pro
93aa0baf799c0887656957803d90a7cc
c6c7095b0cc7aacc4ebf24800ac9498cdb465614
F20101207_AAARRE hay_c_Page_139.tif
b7e61d78f5e5c6f4f17f2780abf53b2f
d752fdfbcaae70fab6d12790667f4d7c7a1a87b2
68911 F20101207_AAAQHB hay_c_Page_024.jp2
191d008d14ae885c44f81c46fc269242
d56dac954cef1bbe0d5811bd7bee187f219fdf15
F20101207_AAAQUM hay_c_Page_011.jp2
c4b772a9f331873403b42d702eb5d96b
4fb7bb6b82ed44290fc870b6a89b9cbb08637ebd
F20101207_AAARRF hay_c_Page_142.tif
fda3d0c1d6b6956300fbe4cd165b2c01
7ec727bddc40dd6052d200bc97f2583e8fb4b5f1
116476 F20101207_AAAQHC hay_c_Page_082.jp2
4806f2c96d521a4797e0f5e7356562aa
7616090f825850a5a01aae6aa7c61323edc0a35f
31936 F20101207_AAAQUN hay_c_Page_055.jpg
84965832b872280b70e0a6f283a95f95
e4165d3c43efe941140bf0b3c9b6eb7db20c19be
F20101207_AAARRG hay_c_Page_144.tif
974c2122e9333e8897cbe1e4ba3e3eb4
8d37d9d680786be8a82225cc702d1f4130543b46
14823 F20101207_AAASOA hay_c_Page_118.QC.jpg
7222dd8a16ad2dfe1ff4f465e8f0358f
eec8cc68788f6529c8b53fe07ed8ab748b86e54e
F20101207_AAAQUO hay_c_Page_120.tif
b7c6395d9aa4f4872ffec6215c6eb95e
8e4aa3f734c996a12762e5a33f07428e781c056a
F20101207_AAARRH hay_c_Page_145.tif
ee5a6196dcbd5e5249075c0ad54353dc
bc8c16600e7d73aecc2b1ba62658b1c3def108f6







DEVELOPMENT OF AN INSITU ROCK SHEAR TESTING DEVICE


By

CARLTON A. HAY

















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007




























2007 Carlton A. Hay




























To my mother, my son and daughter, my sisters and brothers and very special friends


Nothing is what it appears but everything is what it is.
Carlton Hay 1992









ACKNOWLEDGMENTS

I am most thankful to Dr. Dave Bloomquist, Chairman of my supervisory committee and

Dr. Micheal MacVay, Committee member, for their guidance throughout the entire study. I am

appreciative of Dr. Frank Townsend and Dr. Sankar for serving as members of my committee.

I am also grateful to Chen Yu, Zhihong Hu and George Dunlop for their invaluable

assistance. Danny, Sydney, Vick, and Junior (JJ) are greatly thanked for their help with the

design and construction of the shear device and supporting equipment; for laboratory work and

all other assistance required at the Coastal laboratory.

Appreciation is also extended to the administrative staff; Doretha, Sonya, Debra and

Nancy for the invaluable service they provide year to year not only administratively but for their

support and encouragement throughout my stay at the University of Florida. Finally, I am

deeply indebted to my family and very special friends for their love and support.









TABLE OF CONTENTS

page

A CK N O W LED G M EN T S ................................................................. ........... ............. .....

L IST O F T A B L E S ...................................................................................................... . 7

LIST OF FIGURES .................................. .. .... ..... ................. 10

A B S T R A C T ................................ ............................................................ 17

CHAPTER

1 INTRODUCTION ............... ................. ........... .............................. 19

B a ck g ro u n d ........................................................................................................ ............... 19
Florida Lim estone and G eology .................................... .... ............................... 19
C om position of Florida L im estone...................................................................... .. .... 20
M echanical Properties of Florida's Lim estone..............................................................21
Lim estone D rainage Conditions ............................................ ................................... 22
S cop e............ ........................... ........................................ .......... ..... 24

2 R E V IEW O F L ITER A TU R E ................................................................... ....... .................25

Review of Previous Insitu and Empirical Determination of Rock Shear Strength.................25
Insitu Measurements Using Handy's Rock Borehole Shear Test ..................................25
P u ll O u t T e st......................................................................... .. 2 7
Theoretical Prediction Using Laboratory Test Results ................................................29

3 PROPOSED EQUIPM ENT............................................................ .................... 39

Proposed D devices ................................................. 39
The Rock Shear Device ................................... ..... .. ...... ............... 42

4 TESTING PHASE ............... ............................ ........................... ...61

R ock Shear D vice (R SD ) ....................................................................... .. .......................6 1
B orehole M apping D vice (B M D ) .............................................................. .....................63
FEM Theoretical M odel ................... .... .............................. ................ .. ............. 64

5 LABORATORY AND PSEUDO FIELD TEST RESULTS, OBSERVATIONS AND
C O N C L U SIO N S ................. ......................................... ........ ........ ..... .... .. ..7 1

D direct Shear D vice Testing............................................................................... 71
Pseudo Field Rock Shear Device Tests ............................................................................ 72
Borehole M apping Device (BM D) Testing .................................... .......................... ........ 73
O b serve atio n s .............................................................................. 7 4









L laboratory T testing R esults...................................................................... ..................74
Item 1 D irect shear tests ................... ................. ....... ................ ............... 74
Item 2 Tests using prototype device in cored gator rock ...................................75
Item 3 Laboratory tests results using the borehole mapping device ...................76
C onclu sions.......... .............................. ................................................77

6 FIELD TESTS, OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS ......82

Rock Shear Device: Fuller W warren Bridge Site .............................. .................... 82
T testing ....................................... .... ................. ................................................ 83
Test Results at the Fuller Warren Bridge, Jacksonville ..............................................84
C onclu sions.......... ..........................................................88
Recommendations.................. ..... .. .. ..... .... ..................90

APPENDIX

A GRAPHICAL REPRESENTATION OF REDUCED DATA ................... .....................118

B SAMPLES OF lABORATORY TESTING AND DATA REDUCTION RESULTS .........153

C FIELD AND REDUCTION DATA ................................................... ......162

D OPERATIONS AND MAINTENANCE ........................................ ........................ 215

Rock Shear Testing Device: Components and Descriptions...............................................215
Rock Shear Testing: Field Operation ............................................................................217
BM D : Com ponents and D escriptions............................................................................. ...220
B M D T est: F field O operation ................................................................................ ......... 220
Rock Shear Testing Device: M aintenance................................ ......................... ........ 221
Borehole M apping Device: M maintenance ........................................ ......................... 222

L IST O F R E F E R E N C E S ..................................................................................... ..................243

B IO G R A PH IC A L SK E T C H ............................................................................. ....................245


















6









LIST OF TABLES

Table page

5-1 Summary of Results using Laboratory Direct Shear Machine .............................. ....79

6-1 Section of data reduction table for Borehole 1 at 47' ....................................................104

6.2 Showing Correlation between Rock Strength and Penetration within Normal Force
testing ranges used in the field .................................. ............................ 111

B-1 Sample FDOT Laboratory Test Results for Borehole #1 .............................................154

C-1 Borehole #1 at 44 feet ................................... ... .. ......... .............. .. 163

C -2 B orehole # 1 at 44/30 feet ............................ ................... ....................................... 164

C -3 B orehole # 1 at 44/36 feet ....................................................................... ................... 165

C -4 B orehole # 1 at 44/45 feet .......................................................................................... 166

C -5 B orehole # 1 at 45/26 feet ............................ ................... ....................................... 167

C-6 Borehole #1 at 45/33 feet ................................................................. ...............168

C -7 B orehole # 1 at 45/39 feet ............................ ................... ....................................... 169

C -8 B orehole # 1 at 45/46 feet ....................................................................... ................... 170

C -9 B orehole # 1 at 47/25 feet ............................ ................... ....................................... 171

C -10 B orehole #1 at 47.5/32 feet ............................ ........................................................ 172

C -11 B orehole #1 at 47.5/40 feet ............................ ........................................................ 173

C -12 B orehole #1 at 47.5/40 feet ............................ ........................................................ 174

C -13 B orehole # 1 at 47.5/45 feet .................................................................. ..................... 175

C -14 B orehole # 1 at 48/23 feet .......................................................................................... 176

C -15 B orehole # 1 at 4 8/3 1 feet ............................ ................................................................ 177

C-16 Borehole #1 at 48/37 feet ................................................................. ...............178

C -17 B orehole # 1 at 47.5/40 feet ............................ .......................................................... 179

C -18 B orehole # 1 at 49/26 feet ....................................................................... ................... 180









C-19 Borehole #1 at 49/32 feet ................................................................................ .........181

C-20 Borehole #1 at 49/38 feet ................................................................................ .........182

C-21 Borehole #1 at 49/47 feet ................................................................................ .........183

C-22 Borehole #1 at 54/28 feet ................................................................................ .........184

C-23 Borehole #1 at 54/34 feet ................................................................................ .........185

C-24 Borehole #1 at 54/38 feet ................................................................................ .........186

C-25 Borehole #1 at 54/43 feet ................................................................................ .........187

C-26 Borehole #1 at 55/22 feet ................................................................................ .........188

C-27 Borehole #1 at 55/31 feet ................................................................................ .........189

C-28 Borehole #1 at 55/39 feet ................................................................................ .........190

C-29 Borehole #1 at 54/48 feet ................................................................................ .........191

C-30 Borehole #2 at 43/25 feet ................................................................................ .........192

C-31 Borehole #2 at 43/29 feet ................................................................................ .........193

C-32 Borehole #2 at 43/33 feet ................................................................................ .........194

C-33 Borehole #2 at 43/36 feet ................................................................................ .........195

C-34 Borehole #2 at 44/25 feet ................................................................................ .........196

C-35 Borehole #2 at 44/29 feet ................................................................................ .........197

C-36 Borehole #2 at 44/32 feet ................................................................................ .........198

C-37 Borehole #2 at 44/36 feet ................................................................................ .........199

C-38 Borehole #2 at 45/30 feet ........................................................................ ...................200

C-39 Borehole #2 at 45/33 feet ........................................................................ ...................201

C-40 Borehole #2 at 45/36 feet ........................................................................ ...................202

C-41 Borehole #2 at 50/25 feet ........................................................................ ...................203

C-42 Borehole #2 at 50/29 feet ........................................................................ ...................204

C-43 Borehole #2 at 50/35 feet ................................................................................ .........205









C -44 B orehole #2 at 50/40 feet ....................................................................... ...................206

C -45 B orehole #2 at 54/26 feet ....................................................................... ...................207

C -46 B orehole #2 at 54/32 feet ....................................................................... ...................208

C-47 Borehole #2 at 54/35 feet ......................................................... ... ...............209

C -48 B orehole #2 at 54/42 feet ....................................................................... ...................210

C -49 B orehole #2 at 55/30 feet ............................................................................ .............211

C-50 Borehole #2 at 55/35 feet ....................................................... .... ...............212

C -51 B orehole #2 at 55/40 feet ....................................................................... ...................213

C -52 B orehole #2 at 55/45 feet ....................................................................... ...................214









LIST OF FIGURES


Figure page

2-1 Schematic of Rock Borehole Shear Tester ...................... ............. ..................33

2-2 Schematic of Pull-Out Test Setup and Anchor Casting Detail........................................34

2-3 Typical Pressurem eter Curve .................................................. ............................... 35

2-4 Pressuremeter Curve Illustrating Peak and Ultimate Shear Strength. ............................36

2-5 Showing Cohesion and Shear Strength at Rock/Shaft Interface............... .......... 37

2-6 Strength Envelope for Mohr-Coulomb Florida Limestone ............................................38

3-1 Electronic D irect Shear M machine. ........................................ .......................................45

3-2 Vertical Loading Cross Arm, Horizontal Load Cell and Dial Guages. ..........................45

3-3 Modified Upper Specimen Frame showing Wire Mesh Shear Element .........................46

3-4 Load Assembly Showing "5" Flat Head Shear Stud Arrangement. ..................................46

3-5 Load Assembly Showing "5" Multiple Head Shear Stud Arrangement .........................47

3-6 Load Assembly Showing "9" Point Head Shear Stud Arrangement................................47

3-7 Load Assembly Showing "21" Point Head Shear Stud Arrangement.............................48

3-8 Direct Sheared Sample Showing Predetermined Shear Plane (Red) and End Effects
(B lu e) ......................................................... ....................................4 8

3-9 Wire Mesh Sheared Gator Rock Sample Showing some Edge effects............................49

3-10 Multiple Head Sheared Gator Rock Sample Showing End Effects.................................49

3-11. Fracture Pattern developing under a Cone or Wedge ..................................................50

3-12 Shear Studs Used in Tests from left to right: Flat Head, Seregated Head, Pointed
H ead, and M multiple H ead ....................................................................... .....................5 1

3-13 R ubber B ladder and Shear Studs. ........................................................... .....................51

3-14 Lightw eight Tripod A ssem bly. ............................................... ............................... 52

3-15 Jack and Cylinder A rrangem ent...................... .... .................. ................. ............... 53

3-16 Probe H ead with Instrum entation. ............................................ ............................. 54









3-17 Probe and Inner Rubber Bladder/Chinese Lantern Assembly. ........................................54

3-18 Expanded H ardened M etal Studs............................................... ............................ 55

3-19 Compressed Air Supply Regulator. .............................................................................55

3-20 Extended Steel Spikes used for Displacement Measurements. .......................................56

3-21 Tripod, Hydraulic Jack and Rod Setup. ....................................................................... 56

3-22 Probe and the electronic hardware used for Calibration ............... ............. ...............57

3-23 Initial Design Schematic of the Borehole M apper.................................. ...... ............ ...58

3-24 Prototype of Borehole Mapping Device (BMD) Showing Measuring and Feeler
W heels............ ......................... ..................................... ......... ..... 59

3-25 Air Cylinder Controlled Measuring Wheels Being Calibrated..................... ......... 60

4-1 Shear Testing Probe. ............................................. .. .. ...... ....... .... ..... .. 66

4-2 L laboratory T testing Setup .......................................................................... ................... 67

4-3 Borehole M apping Device. ...... ........................... ...........................................68

4-4 L laboratory M appear Setup. ........................................................................ ...................69

4-5 Showing Finite Element M odel of Shear Test....................................... ............... 70

5-2 Wider Spring Steel Sheeting with Screwed End Connections.............. ............. 80

5-3 Mapping Device Setup for Gator Rock Test Hole................. .................. ..............80

5-4 Showing Mapping Test Setup in Transparent Tube. ................................. ...............81

6-1 Comparison of McVay's Shear Strength Prediction with those of the Device for
B orehole N o. 1. ..............................................................................93

6-2 Comparison of McVay's Shear Strength Prediction with those of the Device for
B orehole N o. 2. .............................................................................94

6-3 % Differences and Typical Bar Chart Showing Variation with Depth of Results for
B o reh o le 1 ................................................................................9 5

6-4 % Differences and Typical Bar Chart Showing Variation with Depth of Results for
B orehole 2 ............ ... ........ ......................................... .. .......... ....... 96

6-5 Shear Stress vs Displacement (Plot Representation) showing Peak Stress Location .....97









6-6 Shear Stress vs Displacement (Plot Representation) showing Peak Stress
D term nation .......................................................... ................. 98

6-7 Shear Stress vs Displacement (Plot Representation ) showing Peak Stress Location.......99

6-8 Shear Stress vs Displacement (Plot Representation) showing problematic Results........100

6-9 Stud to Rock Typical Scenarios ................ ......... ................................. ............... 101

6-10 Effective Area Determination During Penetration ............... .............................. 102

6-11 Effective Area Determination During Shear...... ................................................ ..........103

6-12 Peak Shear Stress vs Displacement Curve................................... ...............105

6-13 Determination of Peak Shear Stress using Load vs Time Curve................................106

6-14 Shear Stress vs Normal Stress Curve (Failure Envelope)....................................107

6-15 Non-effect of 50% Decrease and Increase in Depth of Penetration on Failure
E envelope ................................................................................108

6-16 Predicted and Experimental Penetration Same Locations (Gator Rock).........................109

6-17 Predicted and Experimental Penetration Virgin Locations ................ ................110

6-18 Field C oring at the K anapaha Site. .......................................................... .................112

6-19 Rock Sample quality and Recovery at the Kanahapa Site .... ..................................113

6-20 Piers at the Fuller Warren Bridge Site. ... ...........................................113

6-21 Corehole Layout with Respect to Bridge Pier and Load Test Location .....................114

6-22 Coring at the Fuller Warren Bridge Site.......................... ......................115

6-23 Cored Sample with Alternating Rock and Clay intrusion. .............................................116

6-24 Field Setup of Compressor, Jack and Data Collection System................... ............116

6-25 Field Setup of Winch, Batteries and Compressed Air Regulator ..................................117

A-i Load vs Time: BH 1@ 44'(Norm Pressure = 23psi)........................................................ 118

A-2 Load vs Time: BH 1@ 44'(Norm Pressure = 30psi)........................................................118

A-3 Load vs Time: BH 1@ 44'(Norm Pressure = 36psi)........................................................119

A-4 Load vs Time: BH 1@ 44'(Norm Pressure = 45psi)........................................................ 119









A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-25

A-26

A-27

A-28

A-29


Load vs Time: BH1@45'(Norm Pressure

Load vs Time: BH1@45'(Norm Pressure

Load vs Time: BH1@45'(Norm Pressure

Load vs Time: BH1@45'(Norm Pressure

Load vs Time: BH1@47'(Norm Pressure

Load vs Time: BH1@47'(Norm Pressure

Load vs Time; BH1@47'(Norm Pressure

Load vs Time: BH1@47'(Norm Pressure

Load vs Time: BH1@48'(Norm Pressure

Load vs Time: BH1@48'(Norm Pressure

Load vs Time: BH1@48'(Norm Pressure

Load vs Time: BH1@48'(Norm Pressure

Load vs Time: BH1@49'(Norm Pressure

Load vs Time: BH1@49'(Norm Pressure

Load vs Time: BH1@49'(Norm Pressure

Load vs Time: BH1@49'(Norm Pressure

Load vs Time: BH1@54'(Norm Pressure

Load vs Time: BH1@54'(Norm Pressure

Load vs Time: BH1@54'(Norm Pressure

Load vs Time: BH1@54'(Norm Pressure

Load vs Time: BH1@54'(Norm Pressure

Load vs Time: BH1@55'(Norm Pressure

Load vs Time: BH1@55'(Norm Pressure

Load vs Time: BH1@55'(Norm Pressure

Load vs Time: BH1@55'(Norm Pressure


= 26psi) .............. ...... .................. ............ 120

= 33psi) .............. ...... .................. ............ 120

= 39psi) .............. ...... .................. ............ 121

= 46psi) .............. ...... .................. ............ 121

= 25psi) .............. ...... .................. ............ 122

= 32psi) .............. ...... .................. ............ 122

= 40psi) .............. ...... .................. ............ 123

= 45psi) .............. ...... .................. ............ 123

= 23psi) .............. ...... .................. ............ 124

= 31psi) .............. ...... .................. ............ 124

= 37psi) .............. ...... .................. ............ 125

43psi) ............................. ............... 125

= 25psi) .............. ...... .................. ............ 126

= 32psi) .............. ...... .................. ............ 126

= 38psi) .............. ...... .................. ............ 127

= 47psi) .............. ...... .................. ............ 127

= 26psi) .............. ...... .................. ............ 128

= 34psi) .............. ...... .................. ............ 128

= 38psi) .............. ...... .................. ............ 129

= 43psi) .............. ...... .................. ............ 129

= 47psi) ................. ...... .................. 130

= 22psi) ................. ...... .................. 130

= 31psi) ................. ......................... 131

= 39psi) ................. ......................... 131

= 48psi) ................. ...... .................. 132









A-30 Load vs Time: BH2@43'(Norm Pressure = 25psi)...................................................... 132

A-31 Load vs Time: BH2@43'(Norm Pressure = 29psi)......................................................133

A-32 Load vs Time: BH2@43'(Norm Pressure = 33psi)......................................................133

A-33 Load vs Time: BH2@43'(Norm Pressure = 36psi)...................................................... 134

A-34 Load vs Time; BH2@44'(Norm Pressure = 25psi)...................................................... 134

A-35 Load vs Time: BH2@44'(Norm Pressure = 29psi)......................................................135

A-36 Load vs Time: BH2@44'(Norm Pressure = 32psi)......................................................135

A-37 Load vs Time: BH2@44'(Norm Pressure = 36psi)...................................................... 136

A-38 Load vs Time: BH2@45'(Norm Pressure = 30psi)...................................................... 136

A-39 Load vs Time: BH2@45'(Norm Pressure = 33psi)......................................................137

A-40 Load vs Time: BH2@45'(Norm Pressure = 36psi)......................................................137

A-41 Load vs Time: BH2@50'(Norm Pressure = 25psi)...................................................... 138

A-42 Load vs Time: BH2@50'(Norm Pressure = 29psi)...................................................... 138

A-43 Load vs Time: BH2@50'(Norm Pressure = 35psi)......................................................139

A-44 Load vs Time: BH2@50'(Norm Pressure = 40psi)......................................................139

A-45 Load vs Time: BH2@54'(Norm Pressure = 26psi)...................................................... 140

A-46 Load vs Time: BH2@54'(Norm Pressure = 32psi)...................................................... 140

A-47 Shear Stress vs Displacement; BH2@54'(Norm Pressure = 35psi).............................141

A-48 Load vs Time: BH2@54'(Norm Pressure = 42psi)........................................................ 141

A-49 Load vs Time: BH2@55'(Norm Pressure = 30psi) ...................................................142

A-50 Load vs Time: BH2@55'(Norm Pressure = 35psi) ...................................................142

A-51 Load vs Time: BH2@55'(Norm Pressure = 40psi)........................................................ 143

A-52 Load vs Time: BH2@55'(Norm Pressure = 45psi)........................................................ 143

A-53 Shear Stress vs Normal Stress; BH1@44'................ ..........................................144

A-54 Shear Stress vs Normal Stress; BH1@45'...................... ..............................144









A-55 Shear Stress vs Normal Stress; BH 1@ 47.5' ............................................... .................145

A-56 Shear Stress vs Normal Stress; BH1@48'........................................................ 145

A-57 Shear Stress vs Normal Stress; BH1@49'.................................................................146

A-58 Shear Stress vs Normal Stress; BH1@54'.......................................................................146

A-59 Shear Stress vs Normal Stress; BH1@55'.......................................................................147

A-60 Shear Stress vs Normal Stress; BH2@43'.......................................... ...............147

A-61 Shear Stress vs Normal Stress; BH2@44'.......................................................................148

A-62 Shear Stress vs Normal Stress; BH2@45'.......................................................................148

A-63 Shear Stress vs Normal Stress; BH2@50'.......................................................................149

A-64 Shear Stress vs Normal Stress; BH2@54'.......................................................................149

A-65 Shear Stress vs Normal Stress; BH2@55'.......................................................................150

A-66 Mapping Results Borehole 3 @ 51'.....................................................................151

A-67 Mapping Results Borehole 3 @ 49'......................................................................152

B-l Direct Shear Test Results on Gator rock samples using Commercial Device ..............156

B-2 Direct Shear Test Results on Gator rock samples using Commercial Device ..............157

B-3 Direct Shear Test Results on Gator rock samples using Commercial Device ..............158

B-4 Prototype Device Representative Laboratory Test Results. .........................................159

B-5 Mapping Results in Laboratory Contour Mold................. ........ ................160

B-6 Mapping Results in Laboratory Contour Mold.................................... ..............161

D-1 Picture Showing Complete Component Setup in the Field. .........................................224

D-2 Picture showing Shear Device Taped and Ready for Testing.......................................225

D-3 Picture Showing Hydraulic Jack Connected to Leg of Tripod. .......................................226

D-4 Pictures Showing Remote Controlled Winch with Tripod Connector.............................227

D-5 Pictures Showing Data Collection System with Laptop Computer Black and Blue
Box and N iD aq H ardw are ...........................................................................228

D-7 Picture Showing Shear Device Adaptor with Cable and Connector .............................230









D-8 Picture Showing Power Supply System including Batteries, Inverter etc.....................230

D-9 Picture Showing Air Regulator with Pressure Transducer and Digital Dial Gauge and
Electronic Connector to B lack B ox. ................................................................... .......231

D-10 Picture Showing 175 psi Air Compressor..................................................................... 232

D -11 Pictures Show ing M obile Tool Kit. ........................................................................... 233

D-12 Picture showing Data Collection connection Setup in Field. ........................................234

D-13 Picture Showing Winch Cable and Pulley Setup on Tripod..................... ..............235

D-14 Picture Showing Disassembled RSTD with metal sheet Chinese Lantern and Split
Chamber Cylinder ............ .. .... ............... .............. ......... .. ............... 236

D-15 Picture Showing Tapered Springs and on and off Studs ............................................236

D-16 Pictures Showing Wooden Template Used to aid in Reassembling the Device..............237

D-17 Pictures Showing Wooden Template Used to aid in Reassembling the Device..............238

D-18 Picture Showing Partially Reassembled Device........................................................239

D-19 Picture Showing Cylinder with Base plate, Closed Hook and LVDT...........................239

D-20 Picture Showing String Pot and Pulley Connection. ............................... ...............240

D-21 Picture Showing Jack and LVDT with Steel Base Plate attached to Tripod Top............241

D-22 Picture Showing Pressure Reversible Unit attached to Regulator..............................242









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DEVELOPMENT OF AN INSITU ROCK SHEAR TESTING DEVICE

By

Carlton A. Hay

August 2007

Chair: Dave Bloomquist
Major: Civil Engineering

Our study involved the development and testing of an insitu rock shear testing device.

Foreseeable problems associated with the rock formation led to the development of a second

device designed specifically to provide data on the irregularities, caverns and voids anticipated

within the test holes.

The process of development was dynamic and extensive laboratory tests were performed

on simulated rock samples (Gator rock) to arrive at the present prototype designs. The

prototypes were built and tested in the laboratory and showed encouraging results. However

preliminary field tests exposed minor problems with the instrumentation and mechanical

attributes. Thus the necessary adjustments to the designs were made and the devices have been

successfully tested at the Fuller Warren Bridge in Jacksonville. The success of the program was

evaluated based on the following criteria:

* the efficiency of the equipment with regards to their ease of operation, their limitations and
possible areas for future development.

* the validity of the results, based on the equipment designs and accuracy of the measuring
instruments' used to produce results acceptable margins of errors.

* the validity of the results based on theoretical assumptions made versus actual test
conditions whether in the field or in the laboratory.









With respect to (i), the operation is relatively simple, requiring two technician level staff.

The data reduction and interpretation will however require the involvement of an experienced

engineer. Considering (ii), the instrumentation and data collection system needs only minor

improvement regarding electrical noise from the output signal.

With respect to (iii), the level of accuracy of input information such as the depth of

penetration has been shown to be insignificant in the determination of the strength envelope as

long as the penetration remains constant with change in normal pressure application. The

approaches used to arrive at the contact area of the studs for stress determination were based on

assumed penetration values and those proposed from modeling. The comparative results of

McVay's theoretical prediction and the field tests (using both approaches) show minor variation

but generally trend towards a reasonable range of consistency (10%, one exception at 17.9%).

This indicates that the philosophy of using a constant penetration with varying applied pressures

is sound.

Both sets of determinations show a general reduction in shear strength from a high of about

300psi to a low of about 20 psi. The upper 53 ft. of the rock formation had shear strength values

typically above 100 psi (one exception) with a high of about 310 psi from one method of

predictions. Below the 53 ft depth range the shear strength of the formation tumbled to an

average value of about 40 psi. These ranges are typical of Florida Limestone strength properties

and the levels of variation are consistent with those seen in the core samples with intermittent

clay intrusion.

The values from the field test generally appear slightly lower than those predicted by

McVay's model and could be considered a more conservative estimation of the rock strength.









CHAPTER 1
INTRODUCTION

Background

The following provides an overview of the general characteristics and geology of Florida

limestone formations that influences its load response behavior.

Florida Limestone and Geology

The upper stratum of soil material of Florida is generally made up of sand with some clay

fraction overlying limestone. This simplification however was made more complicated by

numerous climatic and geological events due predominantly by the hydraulic forces. The Ice

Age and other climatic events induced changes in the sea levels that resulted in the submergence

and exposure of the Florida basin. These processes lead to the deposition of carbonate sediments

that formed limestone which were further altered by the outwash sediment depositions from the

mountains and periodic erosion and weathering.

The highlands of the northern peninsula and panhandle of Florida consist of the dissected,

sedimentary remains of Neogene fluvial, deltaic, and shallow water marine systems.

Transported southward from the southeastern coastal plain and the southern Appalachians, silici-

clastic sediments filled the Gulf trough and spilled onto the carbonate platform of Florida. This

silici-clastic invasion into the clear, carbonate producing, shallow waters, covered the limestone

platform and formed a spine of clayey sand on the peninsula. "Subsequent sea level fluctuations

and associated near-shore, coast parallel currents reworked and reshaped these deposits, leaving

the elongated system of upland ridges we see today." (Schmidt, 1997).

The Florida peninsula acquired its present shape during the last ice age, some 15,000-

20,000 years ago. A north to south river orientation dominates the peninsula, reflecting near

shore marine environment that contributed to the basic landform present today. Relict beach









ridges separate swales previously occupied by shallow lagoons. "When the sea level dropped,

these lagoons became valleys, and streams eroded the sands and clays, creating several coast-

parallel river systems seen today as the St. Johns, Kissimmee, and Withlacoochee Rivers"

(Schmidt, 1997).

The topography of south Florida is typical of peninsular Florida's general geology.

Biscayne Bay separates Miami Beach, located on the Atlantic Ridge, from the mainland

(downtown Miami sits on a western ridge). To the west of southeastern coastal counties of

Dade, Broward and Palm Beach and the east of the Gulf coast of Florida (where the Gulf Coast

ridge is located) sits the immense "shallow lagoon" of the Everglades. Similar features, on a

smaller scale, occur in many areas of Florida.

Composition of Florida Limestone

Sedimentary rocks, including Florida limestone, formed as wind water and ice transported

minerals, fragmented rock, and the remains of certain organisms which were deposited into

sedimentary layers. As sediments accumulate, pressure and/or chemical reactions harden the

deposits. The sedimentary rocks include two major divisions, detrital and chemical. Pressure on

deposited solid products of chemical and mechanical weathering, generally form detrital

sedimentary rocks. Limestone belongs to the chemical sedimentary rock, composed primarily of

the mineral calcite (calcium carbonate, CaCO3) hardened underwater by chemical cementing

action, rather than pressure. Limestone represents about 10% of all sedimentary rocks, and most

formations, including Florida limestone, have a marine biochemical origin.

Because of the varied deposition and erosion processes that occurred during Florida's

geologic history, Florida limestone has a highly heterogeneous nature. Even within the same

formation, it may include coral, shell, chert, strongly cemented carbonates, crystalline deposits,

oolites, and lime mud. It may also include zones of weak cementation, poor consolidation,









detrital weathering products, and inclusions of clay, sand, and organic matter deposited in karst

features and/or interbedded layers. The carbonate matrix may also contain impurities, including

iron, silica, and magnesium. The dolomitic limestone (dolomite, CaMg(CO3)2) sometimes found

in Florida forms when magnesium ions, transported through limestone beds by ground water,

replace some of the calcium in the calcite matrix. Groundwater may convey carbonic acids

(dissolved carbon dioxide) and organic acids that dissolve the calcite matrix, forming karst

features such as cavities and fissures. Because of the greater influence of weathering processes

and lesser consolidation stresses, Florida limestone found near the surface tends to be weaker

than that found at depth.

Mechanical Properties of Florida's Limestone

Generally weaker than many other sedimentary rocks, and often including zones of

unconsolidated carbonates and karst features, the mechanical properties of Florida limestone

vary significantly. Properties may vary between and within recognized formation units, and both

laterally and vertically at the given site, often almost randomly. Because of this inherent

variability, the FDOT performs a detailed investigation of the limestone at each site when it may

affect the structure under design. This investigation typically consists of the STP and strength

tests of core samples. The competency of the limestone also plays an important role in core

retrieval and in the excavation of a borehole in which to perform insitu tests, both of which may

affect the quality of the respective test results. Testing and sampling techniques add further

variation. Reported parameters usually include the SPT N-value, (ASTM D1586), core recovery

(%), rock quality designation (%) and laboratory tests. Laboratory tests are usually limited to the

unconfined compressive strength, qu (ASTM D2938) and splitting tensile strength, qt (ASTM

D3967). Unconfined compressive strengths vary from less than 100 psi to as much as 10,000

psi, but the majority of values fall between 500 psi and 2000 psi. A few projects have included









pullout tests of small diameter (< 6") concrete plugs used to model the shaft side shear. Drilled

shafts designed using these test results typically have a high capacity, and the FDOT routinely

performs load tests during the construction phase of each project to verify design assumptions.

Limestone Drainage Conditions

Many engineers assume Florida Limestone behaves as a drained material. Limestone

typically has a permeability similar to very fine sand, in the range of 10 -3 to 10-5 ft./sec., and a

porosity of 5 to 15 %. According to Johnston and Chiu (1981) the dissipation of porewater

pressure caused by loading "may be described by the coefficient of consolidation, cy" which

varies inversely with the coefficient of volume change, my, and directly with permeability. For a

relatively incompressible material like soft limestone, the coefficient of volume change (my), the

reciprocal of the constrained modulus, may be several orders of magnitude smaller than clay.

This combination results in a c, value that is several orders of magnitude larger than for clays"

Johnston and Chui (1981), and leads to a more rapid porewater dissipation rate. Johnston and

Chui (1981) further indicated that their laboratory "specimens did not contain the fissures, joints

and seams encountered in the field," which will lead to further increase in drainage. Of course,

the presence of clay in the limestone matrix, a common occurrence in Florida, will significantly

reduce drainage.

Load Response: Drill Shaft Socketed in Limestone

The ultimate drill shaft capacity is generally expressed as:

Qu = Qs + Qp -W

Where Qs is the side friction, Qp the point resistance and W the weight of the shaft. The

ultimate side resistance in rock is found from the unit side shear, fs, multiplied by the perimeter

area of the shaft. The ultimate point resistance in rock is found from a representative value of tip

bearing pressure, qtip, multiplied by the cross sectional end area of the shaft. The spatial









variation of Florida's limestone with respect to formation depth and strength has created

uncertainties for designers regarding the relative contribution of end bearing for socketed drill

shafts resistance. The prediction of unit side shear on socketed drill shaft is therefore of utmost

importance for design. An accurate value for unit side shear is required so that the strength of

the rock is properly represented in the design calculations. This will offset the necessity of

including large safety factors that significantly increase the diameter and or length of the shaft,

resulting in unnecessary cost of construction.

The method presently used by the Florida Department of Transportation incorporates the

recommendation by Professor McVay (1992) which relates the ultimate side friction to the rock

material properties; qu and qt (unconfined compression strength and split tensile strength

respectively). The qu and qt values are determined in the laboratory and a statistical approach is

used to determine the mean, upper bound and lower bound values for these two parameters for

design. To account for the high spatial variability of the rock quality, the percent recovery is

applied to the ultimate side friction as an "uncertainty factor" to obtain the design ultimate side

friction.

The accuracy of this method is dependent on the level of recovery and the quality of the

rock samples recovered. In far too frequent situations (locations, depths etc.), inadequate

number of samples is recovered and/or very poor sample recoveries are made. In either case, the

laboratory determination of qu and qt is suspect. The designer is therefore left to make value

judgments regarding what design values to use. The cost of these value judgments could result

in the loss of money.

The objective of the FDOT was to develop an insitu approach to determine the ultimate

side friction of borehole rock surfaces. Three current methods have been found which attempted









to measure the shear strength of rock insitu; the Iowa Borehole Shear Testing Device, the

Pressuremeter Test and the Pull-Out Test. Some levels of success have been obtained with these

instruments, however their limitations (discussed in chapter 2) led to the development and

implementation of a new insitu rock shear strength testing device.

Scope

The goal of our study was to design and build a borehole device capable of measuring

insitu, the direct shear strength of Florida Limestone. The operation involves the axial pulling

of a laterally pressurized cylinder composed of retractable shear studs. It can provide a direct

measurement of the mobilized shear strength mobilized along the borehole wall as input for the

design of drilled shafts. Due to the presence of voids and inconsistencies in the borehole walls,

a second device was to be built to detect and map their locations. The proposed study was

divided into the following six tasks:

* Literature review
* Design/modify laboratory equipment for preliminary testing
* Perform laboratory test
* Design/build the rock shear device
* Perform field testing
* Analyze final tests results and prepare final report









CHAPTER 2
REVIEW OF LITERATURE

Review of Previous Insitu and Empirical Determination of Rock Shear Strength

Several references have been found that investigate the measurement of rock shear strength. The

following are the ones most often noted in the literature:

* the insitu measurement of shear strength of rocks by R.L. Handy; Iowa University using
borehole direct shear equipment.

* the insitu measurement of shear strength of rocks by Townsend et. al, using the pull out
test.

* the insitu measurement of shear strength of rocks by Bullock et. al, using the pressuremeter
test.

* the theoretical prediction of rock shear strength for design of drilled shafts by McVay et.
al.

Insitu Measurements Using Handy's Rock Borehole Shear Test

Using the Rock Borehole Shear Test (RBST) Handy et al. (17th Symposium on Rock

Mechanics Paper 4B, pp. 1-11), concluded that:

The test requires a borehole, in which are expanded two diametrically opposed serrated

plates. The plates engage the rock with a controlled pressure, while a separately controlled force

is applied to cause shearing displacement axially along the hole (See Fig. 2-1 below).

In the Rock Borehole Shear Test (RBST) the shear plate contact pressure is maintained

constant while the shearing stress is increased to failure, at which time the normal and shear

stress (forces) are read and tabulated. The hydraulic gauge pressures are converted to normal

shearing stresses by means of calibration data; the expansion forces divided by one plate area

equals the normal stress, and the shearing force divided by two plate areas equal the nominal

shearing stress. The plate is then removed cleaned rotated and the test repeated.









Sequential RBST's at different normal stresses of closely spaced intervals within a test

produced linear failure envelopes when compared with most laboratory tests. In homogenous

rocks the correlation coefficient "r" of the linear envelopes is generally about 0.99. In highly

varied rocks the RBST generates multiple failure envelopes and allows evaluations of both c and

p, for which the means, standard deviations, and confidence limits on the means and individual

values can be obtained.

The following are some of the inferences and principles by which the RBST operates:

* Linear Mode of failure envelopes stemming from different modes of rock behavior, i.e.
dilatant, nondilatant, and ductile, may be defined as a function of applied normal stress

* Comparative Triaxial tests show close agreement of friction angles (p), but some loss of
cohesion ( c) in the RBST, probably due to incomplete seating of the shear plate teeth.
This loss amounts to about 25%, and either may be corrected or left as an additional safety
factor in design.

* The minimum seating force required, after Evans and Murrell (1962) is: F = 2bdqu(f + tan
P) Where; F is the force to cause penetration, b is wedge length, d is penetration depth, qu
is the unconfined compression strength, f is the coefficient of friction between rock and
steel and a is half the wedge angle

* The measured extent of the rock damage from wedge penetrations appears to be less than
predicted from theory. Even with full plastic failure, the tooth spacing of 10 times the
tooth depth leaves about 60% to 80% of the confined (by adjacent teeth) surface
unfractured, depending on the friction angle (p). Since friction still develops along the
fractures, only cohesion should be appreciably affected. The extent of the plastic failure
during seating will be reduced if the rock is compressible.

* The ratio of shear to normal force for teeth to slip along the tooth surfaces may be found
using Patton (1966). The angle of inclination I = (90-0), where 0 is half the apical angle.
Then;

Tan ((ps + i) = tan ((ps + 90 P) = zmax/Gn

Where Tmax is the nominal normal stress, and ps is the friction angle between the wedge
surface and the rock. Substituting 0 = 30 and Tmax = c + an tan p, slip may occur if

on/c < 1/((tan (ps = 600 ) tan yp)

For an estimated value of ps = 20 and a value of p = 35,









on/c < 0.2 for slip, or the normal stress need only to exceed one fifth of the rock cohesion
for tooth slip to be prevented.

Pull Out Test

This research involves the assessment of the maximum side friction along a rock socket

using a small scale anchor cast with a fluid grout (Figure 2-2). The assessment is done by

pulling the anchor and measuring the pulling force and the displacement and developing a T-Z

curve at the required locations. The method essentially applies the same principles used to

perform in situ load testing of socketed drill shafts. In the pullout test an anchor is cast (between

2 to 6 feet long) at a specified depth, allowing three to five days of setting for the designed grout

to achieve maximum strength and then pulling the plug to failure (defined as the force required

to overcome resisting force).

It is assumed that the scale effect (difference of side shear of anchor compared to full size

shaft) is negligible provided the diameter of the anchor exceeded about 5 inches. It is not known

however the extent to which the anchor's length diameter ratio affects the maximum side shear

developed (note, the authors commented that this aspect needs further investigation).

Some agreements were observed with the T-Z values obtained from pullout tests and load

tests. Similar results were seen with the displacements to mobilize the maximum side shear.

The observed range was between 0.1 and 0.2 inches. The results of the pullout test also appeared

to compare reasonably well with McVay's theoretical prediction model. Concerns however have

been expressed about the effects of increased side shear readings during the pullout due to

Poisson effects; the application of the pulling force on the plate resulted in a vertical

compression of the grout which results in a lateral expansion of the plug. This increased the

normal contact between plug and the borehole, resulting in higher friction and hence an increase

in the observed shear resistance.









The Pressuremeter Test

The Pressuremeter is comprised of two main parts; the down hole probe and the surface

control unit. The probe consists of expandable tubing that is pressurized using water, its pressure

controlled by the surface unit. Both volume and pressure is recorded with each increase in

pressure at the test depth. The pressure is generally increased at regular intervals and held for a

minute. The readings are usually recorded every 30 seconds before moving to the next test

depth.

The pressure is measured using a pressure transducer at the surface and the volume

measured using an LVDT in the probe. The resulting plot of pressure versus Volume/Volume

Change is shown in Figure 2-3. The plot is typically "S" shaped with clear points of inflexion;

AB Portion over which the membrane expands to the surface of the core wall

BC Linear Elastic expansion phase (the Initial Pressure po is represented by point B)

CD Phase of Plastic deformation (the Yield Pressure py is defined by point C)

The pressure approached after yielding is considered the Limiting Pressure PL. The initial at rest

horizontal stress can be theoretically determined using the straight line portions of the curve AB

and BC and is defined by their point of intersection.

The current design procedure for determining unit side shear for drill shaft design involves the

use of empirical data that relates the unit side shear to limit pressure using factors such as; the

soil type, the method of installation and the type of pile /shaft.

The limit pressures are used to obtain equivalent pressures representative of similar layers.

The equation for the equivalent limited pressure, PLe (Briaud, 1992), is given by:

PLe = 1/2a PL(z) dz from a to +a









where "a" is the height of the layer. For drill shaft "a" is estimated from the diameter of the shaft

as "a" = B/2. The average unit side shear can now be determined and the ultimate side resistance

derived from;

Qs = P Ifsu dz from 0 to h, where "P" is the perimeter of the drill shaft.

A plot of the pressuremeter data on the log scale (Figure 2-4) can also be used to determine

the undrained shear strength of the rock as proposed by Gibson and Anderson and later refined

by Mair and Wood (1987).

Theoretical Prediction Using Laboratory Test Results

Drill shafts are generally socket into the limestone rock to carry large axial and or lateral

loads. Florida Limestone has been known to be highly variable with respect to depth and the

concentration of caverns and voids within very small spatial areas. These factors have created

uncertainties for designers resulting in only nominal use of tip resistance and a more significant

reliance on skin resistance. The fact that determination of the mean skin friction along the

length of the drill shaft is more reliably acquired compared to the tip resistance has also been an

important factor in drilled shaft design. The accurate prediction of skin resistance is therefore

key to a successful deep foundation design.

A number of relationships involving the skin resistance of rocks have been reviewed and

correlated with field data from load tests by McVay et. al. 1992. The relationships (by

correlation of field and or laboratory data with strength data available) indicated that the skin

friction (fsu) can be expressed as a constant times the unconfined compressive strength (qu).

This assumes a constant angle of internal friction or a power curve relationship for a variable

angle of internal friction. The constant and variable methods are used depending on the

database's location and type of rock under investigation. The resulting correlations assume that









the characteristics of the rock material can be represented by Coulombic parameters (yp and C)

while the value of the skin friction is assumed to be approximately equal to the rock's cohesion.

A numerical analysis looked at the maximum skin friction mobilized at the rock-shaft

interface. A simple elasto-plastic bi-linear model was used to characterize the rock by assigning

a constant element stiffness with Youngs Modulus and Poisson's Ratio. Failure was determined

from a significant reduction in element stiffness and was described by a Mohr-Coulomb strength

envelop in cohesion versus friction angle stress space.

The results are summarized in Figure 2-5. The initial and final stress states are illustrated;

starting at the top of the shaft where the overburden stresses are minimal to the bottom of the

shaft where the geostatic stresses are maximum. The elements are failed through shear from the

top (where the load is applied) and progress to the bottom of the shaft as each successive element

has reached its minimum stiffness and the load is transferred downward. The growths of the

Mohr circles can be seen to be limited to a single strength envelop. As shown the pole is used to

determine the maximum shear stress on the vertical plane (since rock/shaft interface is vertical)

and shown to be in close agreement with the rock's cohesion (between 5% and 10%).

By verifying that the skin friction is in close agreement with the cohesion, the problem

now becomes that of predicting the cohesion value for the rock. This can be accomplished by

performing multiple triaxial tests on representative rock samples at different confining pressures.

A less expensive method is to utilize unconfined compression tests and split tension tests, both

simpler to perform and far less time consuming. By representing these values on a Mohr's

circle, and using basic trigonometry, a relationship for the skin friction can be derived with

respect to "c" and "yp". See Figure. 2-6.

From the above figure the following relationship was derived;









fsu= 1/2 !qu9qt

The rock's skin friction can therefore be determined (predicted) with knowledge of its

unconfined compressive strength and its split tension strength. In the development of the above

relationship, the tensile strength (qt) determined from the split tensile test agreed with the

uniaxial tension test which assumes a major principal stress of zero (Jaeger and Cook 1969).

The high variability rock strengths require that sufficient sampling be performed in the vicinity

of the shaft's embedment depth to quantify the mean of the formation. The recommendation is

that a relationship be used to evaluate the expected error in the mean in order to assess the level

of accuracy of the prediction for skin friction design values. The following is the recommended

error relationship:

E =to/ln

Where E= standard error in the mean; n = number of laboratory specimens tested; G=
standard deviation of strength test; and t = confidence level from student "t" distribution.

For design purposes, the % recovery obtained from the rock core sampling is used as a

reduction factor to account for the spatial variability of the formation in the vicinity of the drill

shaft, that is; (fsu)design = %REC x fsu. To reduce the prediction error and to obtain a reliable and

conservative value for the design skin friction, the following method has been recommended:

Find the mean values and standard deviations of both the qu and qt strength tests.

Establish the upper and lower bounds of each type of strength tests by using the mean
values +/- the standard deviations.

Discount all the data that are larger or smaller than the established upper and lower
bounds, respectively.
Recalculate the mean values of each strength using the data set that fall within the
boundaries.
Establish the upper and lower bounds of qu and qt.

Use the new qu and qt obtained above to calculate the ultimate skin friction, fsu.









Multiply the derived ultimate skin friction fsu by the mean REC (in decimal) to account
for spatial variability.

The allowable or design skin friction can then be obtained by applying an appropriate
factor of safety or load factor.

While each of the above methods have proven to contribute to foundation design

methodologies, FDOT was interested in the further development of a complementary source for

rock strength data. This was the impetus for this project.

The proposed device discussed herein is expected to:

* Reduce the problem of borehole irregularity and nonconformance that affects the
pressuremeter test.

* In addition to measurements of normal and shear forces, the device will measure shear
displacement.

* The device will eliminate the effects of normal force reduction along the length of shear
plate (due to length/stiffness ratio of plate) as experienced in the IB ST.

The need to acquire and test a sufficient quantity and quality of laboratory samples that in

practice, has not been consistently possible. This can result in insufficient design data at a

particular location.




















A


.............. Pull Rod


v
.................... Borehole ...................


Shearing Teeth &
Plate


Rock



I.- Shearing Surface



SExpansion Cylinders


I

^ mt


Figure 2-1. Schematic of Rock Borehole Shear Tester (Handy/Fox 1963)


Pulling Jack
























Corehole (6" diam. ty






I Side Shear



! -^ .*






Upper plastic 1. I


Plexiglass container ...........


p.)


Rebar Cage with stirrups- -


Pullout Force


Dywidag bar (attached
to bottom plate





Anchor (typ. length
2 to 6 ft.)


" t -.


4
, '


I .tom Plate


2


.Steel bottom plate


t






1V


i' i- I|, 'c attached to upper lid


......PVC Pipe used to isolate bar from



............ Dywidag Bar screwed in bottom nut


S.... Dywidag bottom nut welded to bottom plate


Figure 2-2. Schematic of Pull-Out Test Setup and Anchor Casting Detail


.7




























Pressure / \
C




B


A





Relative change in Probe Radius AR/Ro




Figure 2-3. Typical Pressuremeter Curve.






























Cult


CUpeak


Relative change in Probe Radius


AVVo


Figure 2-4. Pressuremeter Curve Illustrating Peak and Ultimate Shear Strength (Mair & Wood
1987).


Pressure,P



















Failure stress
state along rock
shaft interface


To Botto


Initial stresses at
rock shaft


Figure 2-5. Showing Cohesion and Shear Strength at Rock/Shaft Interface (McVay et al. 1992)


Pole














Shear
Stress


qu = Unconfined
C = f, =Ultmiate Skin Friction compression
Stress

Normal Stre s (j

qt
x Split
Tension









Figure 2-6. Strength Envelope for Mohr-Coulomb Florida Limestone (McVay et al. 1992).









CHAPTER 3
PROPOSED EQUIPMENT

Proposed Devices

The previous chapter established the importance of determining the shear strength of

Florida limestone in the design of drilled shafts. The recognition of this fact led to the scope of

this research, i.e., the design and construction of a borehole shear device capable of measuring

the shear strength of Florida limestone. This requires acquiring data from the axial pulling force

of a laterally pressurized cylinder with shear studs. It provides a direct measure of the shear

strength mobilized at the borehole wall and can be used as input for the design of drilled shafts.

The proposed device development process was divided into the following six tasks:

1. Literature review
2. Design/modify laboratory equipment for preliminary testing
3. Perform laboratory test
4. Design/build direct shear device
5. Perform laboratory/field testing
6. Analyze final tests results and prepare final report

For Task 2, the following effects were being investigated:

* The contact shape of the shear studs
* The spacing and arrangement of the shear studs
* The size of the shear studs
* Displacement and its measurement
* The requirement of normal load (seating force) for stud "biting" into a variety of rock
* Seating damage
* Surface Irregularities


Figures 3-1 to 3-12 show the Direct Shear laboratory equipment and setup used in

conjunction with Gator rock (mix design by weight of crushed limestone; 20% cement and 20%

water by weight of sand aggregate having a Coefficient of Uniformity of 4 and passing the #10

sieve) along with the various loading heads and shear boxes to make the above determinations.

For Task 3 Perform laboratory Direct Shear Tests, the list of tests done is as follows:









* Direct Shear tests; these were initially done with little success until the samples were sawn
to initiate the failure surface (simulation of discontinuities).

* Direct Shear tests using Wire Mesh

* Shear tests using Studs; the tests were carried out using four different types (shape of
contact surface) of studs.

Details of the testing procedure can be seen in Chapters 4 and 5.

The objective at this phase of the research was to design a stud that would penetrate into a

borehole using reasonable operating normal pressures with constraints that would limit the

penetration in lower strength rocks. This is to avoid a bearing rather than a shear failure.

Reference was also made to the work done by I. Evans and S.A.F. Murrell regarding the

response of rocks (soft and hard shale, limestone and diorite) to loading (static and dynamic)

using circular rods with pointed ends. Several pointed end shapes were tested; 300, 600, 90 and

1200 apex angle. Quasi static indentation tests were conducted using an Instron Universal

Testing Machine at the loading speed of 0.0254 mm/min. in conjunction with displacement

probes and force transducer arrangements.

The force penetration relationships were analyzed and the indentation process was

observed by means of a 500 power microscope that permitted a clear distinction between

chipping and crushing processes. The target penetration depth was measured by means of a

profilometer. In soft rock, crater volume is considered to be that of the pointed end embedded to

its maximum. In the harder rocks, the volume and net surface area of the craters were

determined by stereotatic measurements (optical) and a program written to compute the

penetration depth/volume.

A number of observations and conclusions were made regarding this research. Pertinent

were the following:









1. Rock penetration occurs as a result of crushing and chipping (see Figure 3-11) with an

initial fracture in the direction of loading. Small angle points (heads) lead to larger

chipping zones and smaller crushing zones with minute secondary radial fractures. Large

angle points substantially suppress the chipping regime and increase the size of the other

features of penetration (for example crushing).

2. The force required to produce the same penetration in all three rock types increase

significantly with point angle, i.e., from 60 to 1200.

3. Increased loading at the same location increase penetration but significantly less than the

initial penetration caused by the first load.

4. Increase loading at different location produced very marginal increase in penetration for

all three point angles and rock strength. The author stated, A tenfold increase in the

input energy for a 600 conical penetrator acting on a virgin shale or limestone resulted in

a 5 to 1 ratio for the peak force, but nearly identical values of the maximum penetration

for the two cases.

5. The above results confirmed the existence of an optimal input energy level to achieve a

given penetration in a particular rock and point head configuration.

6. Conical point heads produced significantly higher penetration than wedge shaped heads

for the same input energy levels for both limestone and shale but less significant in

diorite.

7. Based on the above the decision was therefore made to use conical point heads for the

prototype design of our studs. In addition a configuration was formulated to limit

maximum penetration regardless of applied pressure. That is to say, once the conical

points reached their maximum penetration depth, the surface area of the studs increases









dramatically, thereby reducing contact stress. It was found that the stud point pattern that

would produce minimal deleterious effect on the shearing process (regardless of the

orientation of the points with respect to the direction of shearing) consists of four

conically shaped point heads equally spaced on the stud's surface.

With respect to Task 4, "Design and Build the Prototype Borehole Shear Devise", the

instrument that was ultimately designed and constructed was based primarily on the literature

review, laboratory tests and the performance of a mock-up laboratory model.

It is important to note that there was a legitimate concern by the FDOT that one or more

studs might not make contact with the rock face due to the presence of fissures in the surface of

the borehole. This concern lead to the development of an additional piece of equipment referred

to as a Borehole Mapping Device (BMD). The rationale is that this will allow pre-evaluation of

a borehole's surface condition prior to shear testing.

Constructability issues (in particular, assembling) were addressed in the laboratory by

using transparent plastic pipes to create a 1:1 scale model/prototype. This effort helped ensure

construction of the actual prototype was not encumbered by unanticipated problems.

The Rock Shear Device

The rock shear device includes a jack for application of the vertical force pressure, strain

instrumentation inside the cell/probe, pressure transducers for the cell pressure and the shear

element, electrical cables and pressure tubing, and digitized recording data. For the prototype

device, data collection was obtained using a laptop computer and a commercial data logger.

A number of adjustments have been made throughout the design/construction and

preliminary testing phase which have led to a more robust design.

The main features of the field device are shown in Figures 3-13 to 3-25.

The following are changes and or enhancement made during the initial testing:









* the reaction beam and assembly has been replaced by a sturdy but relatively light weight

tripod assembly capable supporting over 10,000 lbs.

* the pressure supply jack has been replaced by a hollow cylinder with a remote controlled

winch and pulley system necessary for lowering and retracting the probe. It includes an

assembly of drill rods connected to the probe and jack via threaded adapters.

* the hydraulic hollow cylinder (controlled by the hydraulic jacks) applies a vertical force

to the probe via 1.25 inch diameter AW rods. The AW rods are attached to a load cell

nut that measures the corresponding force during probe movement.

* the above arrangement has subsequently been altered for field testing. The pressure

supplied by the jack is now being measured directly from the jack using a pressure

transducer. This pressure is converted to force using the area of the jack's inner cylinder.

* the transducer, load cell and LVDT were initially located in the upper cylinder of the

probe. However while field testing below the water table, signal drift due to water

pressure/temperature led to the relocation of these instruments at the surface to ensure

reproducible results. However all electrical leads from these instruments to the data

collecting system were spliced and sealed to allow for submerged testing.

* the metal strips (spring steel, aka Chinese lantern), shown in Figure 3-17, now completely

protect the rubber membrane from puncture while possessing flexibility. This allows for

the non-uniform movement of the studs resulting from borehole wall imperfections

* the steel studs shown in Figure 3-18 were precisely machined with four contact points

each with apex shaped at 600 from point to base. The studs were case hardened to protect

from wear and surface damage.









* the compressed air supply is controlled by regulators to provide air pressures to the shear

studs and to the fixing spikes located within the datum base.

* the data collection system was setup using a laptop computer. The system, NIDAQ 6.3,

is user friendly, compatible with Labview and commonly used spreadsheet software

such as excel and can be operable by field technicians. The data from the pressure

transducers and LVDT are displayed in three windows that are converted to stresses and

displacement respectively using voltage calibrations relationships.






























Figure 3-1. Electronic Direct Shear Machine.


Figure 3-2. Vertical Loading Cross Arm, Horizontal Load Cell and Dial Guages.





























Figure 3-3. Modified Upper Specimen Frame showing Wire Mesh Shear Element.


Figure 3-4. Load Assembly showing "5" Flat Head Shear Stud Arrangement.





























Figure 3-5. Load Assembly showing "5" Multiple Head Shear Stud Arrangement.


Figure 3-6. Load Assembly showing "9" Point Head Shear Stud Arrangement.






























Figure 3-7. Load Assembly showing "21" Point Head Shear Stud Arrangement.


Figure 3-8. Direct Sheared Sample Showing Predetermined Shear Plane (Red) and End Effects
(Blue).






























Figure 3-9. Wire Mesh Sheared Gator Rock Sample Showing some Edge effects


Figure 3-10. Multiple Head Sheared Gator Rock Sample Showing End Effects.














Normal Load


Crushing Region


Chipping


Figure 3-11. Fracture Pattern developing under a Cone or Wedge.
































Figure 3-12. Shear Studs Used in Tests from left to right: Flat Head, Seregated Head, Pointed
Head, and Multiple Head (bird eye view).


Rubber Bladder



Stiffness of
SRubber Bladder
s and Spacing
Designed to Limit
Spring : Relative
Spring Roelieien of
Studs.
Deflected
Bladder Under
Cell Pressure


Figure 3-13. Rubber Bladder and Shear Studs.




































Figure 3-14. Lightweight Tripod Assembly.















Hollow
Clyinder





















Pressure Jack



Figure 3-15. Jack and Cylinder Arrangement.






































Figure 3-16. Probe Head with Instrumentation.


Heat Shrink Sea


Thin metal
Strip Protector


Figure 3-17. Probe and Inner Rubber Bladder/Chinese Lantern Assembly.































Figure 3-18. Expanded Hardened Metal Studs.


Figure 3-19. Compressed Air Supply Regulator.
























Figure 3-20. .Extended Steel Spikes used for Displacement Measurements.


Figure 3-21. Tripod, Hydraulic Jack and Rod Setup.





























Figure 3-22. Probe and the electronic hardware used for Calibration.































Housing for
Potentiometer to
measure Horizontal
displacement of -
wheels


Sllidilg connection


From Air Cylinder to
air supply and control

%


Figure 3-23. Initial Design Schematic of the Borehole Mapper.


.. .. .. .. .. .. .. .. .. .. .. .. .

.. .i........... ...., ............. .... ... .. .... .... .... ....... ........ .... .... .... ... .... .... .... ............... .... .... .... .... ... .... .. ................ .... ... .... .... ... ... ..

... ....... .... ...







































Figure 3-24. Prototype of Borehole Mapping Device (BMD) Showing Measuring and Feeler
Wheels.

















































Figure 3-25. Air Cylinder Controlled Measuring Wheels Being Calibrated.














60









CHAPTER 4
TESTING PHASE

In order to accomplish the stated objectives, two series of tests were performed. The first

involved laboratory testing using the Gator Rock cement/sand mixture (20% cement/20% water

by weight of aggregate; crushed limestone passing #10 standard sieve with Cu of 4) designed

specifically to simulate the properties of Florida's soft limestone. The second was to conduct

field tests using the equipment in boreholes at bridge locations that also had drilled shaft load

testing data. A computer model of the stud/rock loading environment to determine the stress

distribution was also performed to aid in the validation of the device.

At the conclusion of this research program it is envisaged that sufficient data will be

generated to arrive at conclusions regarding;

* The efficiency of the equipment in regards to their ease of operation, limitations and
possible areas for future development.

* The validity of the results, based on the equipment designs and accuracy of the measuring
instruments' acceptable margins of errors.

* The validity of the results based on theoretical assumptions made versus true testing
conditions whether in the field or in the laboratory

Rock Shear Device (RSD)

The scope and the sequence of work were as follows;

* Build the device as shown in Figure 4-1

* Setup instrumentation and data collection software and electronics

* Calibrate measuring instruments including, load cell, pressure transducer and LVDT

* Prepare existing gator rock samples in a steel drum for testing by coring appropriate size
holes to accommodate probe

* Measure load and displacement at four different normal pressures.

* Compare the relationship between vertical load and displacement









* Compare relationship between normal stress and vertical (shear) stress

* Determine the shear strength of rock (cohesion and angle of internal friction) and compare
it to the theoretical derivation (McVay, ASCE, 1993).

The following section will briefly look at the methods and procedures used to address the

above objectives. Details of the devices operations can be seen in Appendix D.

Testing Procedures Summary

The laboratory setup is as shown in Figure 4-2. The compressed air supply is connected

to the regulator with the valves closed. The supply lines from the regulator are connected to the

appropriate lines on the probe (one to the lower datum spikes and one to the central expandable

chamber). The data collection system is setup to the computer and connected to the probe. The

cylinder from the hydraulic jack is placed on top of the tripod with the threaded 34" steel rod

suspended through the center hole of the cylinder.

The threaded rod is then connected to the probe adapter rod and the probe lowered into the

test hole. On the desktop, the shear-test icon is clicked and opened to initiate the data collecting

system. A zero reading is taken (by clicking the start button) prior to the application of pressure

and force to ensure that all the measuring instruments are connected and activated (e.g., low

waveform and not flat lines in the respective windows indicate active instruments).

The valve to the pressure chamber is now opened and the first normal pressure of about

10 psi is applied to the studs and allowed to seat for about 20 seconds. The start button is again

clicked and the pressure immediately applied to the jack until the cylinder inner tube extends to

about 34" above its initial position corresponding to the displacement of the probe. The stop

button is clicked and the data collection terminated and saved. The jack valve is released to

deflate the inner tube of the cylinder for the next test. The process is repeated for 3 additional









pressure levels using 5 psi increments. At the completion of the four tests, the probe is raised to

another level in the borehole.

Using the calibration relationships derived earlier for each instrument, the stresses are

calculated and plots of shear stress versus normal stresses are computed to determine the strength

parameters. This is repeated in all the test holes and the data analyzed and comparisons made.

Borehole Mapping Device (BMD)

The scope and the sequence of work were as follows;

* Build the device as shown in Figure 4-3.

* Setup instrumentation and data collection software and electronics

* Calibrate measuring instruments including, the Hall Sensors and the String Potentiometer.

* Prepare gator rock samples by coring appropriate size holes to accommodate the BMD

* Measure wheel deflection and height at two orthogonal positions within the hole by
rotating the BMD 90 degrees after the first test (a test starts at the bottom of the hole and is
completed at the top)

* The data display window shows a plot of the wheel defection versus height/depth

* Check for abnormally high deflections (voids).

* Determine all the locations within the run where deflections are abnormally large and
ensure that these locations are avoided during shear testing.

The following section reviews the methods and procedures used to accomplish the above

procedures.

Brief Testing Procedures

The laboratory setup is as shown in Figure 4-4. The compressed air supply is connected to

the regulator with the valves closed. The supply line from the regulator is connected to the dual

action valve that controls the direction of the air springs attached to the measuring wheel. The









String Potentiometer is extended over the small pulley and attached to the BMD via a nut at the

base of the extended threaded rod adapter.

The data collection system is connected to the computer and BMD. The cylinder from the

hydraulic jack is placed on top of the tripod with the threaded 1/2" steel rod suspended through the

center hole of the cylinder.

On the desktop, the mapper-test icon is clicked and opened to initiate the data collecting

system. The initial plots are noted showing the two vertical axes and the initial ground or datum

level.

The valve is then opened and the pressure adjusted to about 10 psi to ensure that the

wheels are fully extended outwards i.e., that the dual action valve is in the outward position. The

BMD is lowered to the bottom of the testing hole and the start button clicked while raising the

device slowly to the top of the borehole. The stop button is clicked and the data collection

terminated and saved. The process is repeated by rotating the device 90 degrees and lowering it

back to the bottom of the hole. At the completion of the two tests the plots are analyzed for

depressions and/or voids for future shear test reference.

FEM Theoretical Model

A two dimensional model of the test was done as shown schematically in Figure 4-5

below. The modeling was done using the Adina Finite Element Software.

The Boundary conditions are as shown in the figure. The rock is assumed to be

coulombic, homogenous and isotropic and infinite in relation to the loading surface. To ensure

rigidity of the stud the elastic modulus was inputted approximately 10 times the typical modulus

of steel. Displacement control loading was modeled to ensure that under the loading

environment, no element within the stud was displaced relative to each other, i.e., that actual

movement of the stud relative to the rock acts as a rigid body.









Typical normal stresses were applied and a predetermined displacement was programmed

into the model for analysis. The resulting shear stresses within the rock material at each normal

pressure were plotted and surface to surface contact (contact pairs) compared to the Mohr's

failure envelope derived from the laboratory and field test results. To date the models have not

converged to a solution, due to the large strain levels produced. More work needs to be done in

this area and another program, FLAC 3D is currently being evaluated.












































Figure 4-1. Shear Testing Probe.











































Figure 4-2. Laboratory Testing Setup.










































Figure 4-3. Borehole Mapping Device.






































Figure 4-4. Laboratory Mapper Setup.













Displacement
C ontroUed Loading m"'<




F -Rock
S- - -. a Co l
.. later


Sieel Slud
Elasnrc <
Member E M S .









Figure 4-5. Showing Finite Element Model of Shear Test.


Boundaries









CHAPTER 5
LABORATORY AND PSEUDO FIELD TEST RESULTS, OBSERVATIONS AND
CONCLUSIONS

Direct Shear Device Testing

Preliminary Testing Setup

The tests were performed on Gator rock coupons carefully shaped to fit the 2.5" diameter

direct shear sample housing. The samples were soaked and placed in the sample box of the

device. The vertical loading arm was secured and lowered in contact with the sample via the

upper frame containing the various shear studs. The dial gauge was zeroed and a vertical load

applied to the sample. The horizontal dial guage was adjusted in place using clamps and a

horizontal load applied with a preset rate of strain of 0.14 cm/s. The horizontal load was

measured using a load cell and digital readings of pressure load and displacement were recorded

with each successive increase in the vertical load application.

The results were, for the most part, consistent with direct shear theory as it relates to

normal and shear stresses (see Appendix B and Table 5-1 for results).

The minor inconsistencies observed in several of the results were attributed to the

following:

* End effects due to stress concentration around the circumference of the sample (see Figure
3-10).

* Edge effects due to stress concentration created by the vertically loaded studs at the edge
of the samples (see Figure 3-9).

* Non-symmetrical application of the normal load via the cross arm of the instrument. This
could be observed during some tests with the tilting of the loading head.









Pseudo Field Rock Shear Device Tests

The preliminary tests were carried out at the Coastal Engineering Laboratory. The setup is

as shown in Figure 4-2. During the testing, several problems were identified and addressed;

1. The steel drum containing the gator rock was being lifted up with the application of the
vertical load during testing

2. Deflections at the support of the tripod were affecting the measurement of vertical load
and displacement

3. Leaks were detected at the connections of several pressure lines (horizontal pressure)

4. At the initial stage of testing, the dial gauge used to detect slippage of the probe from its
base position was not yet installed. A number of readings indicated that the LVDT was
not engaged while testing, i.e. slipping was occurring.

5. The spring steel used to construct the Chinese lantern was deforming after a number of
use. This affects the sliding mechanism designed to prevent problems with the spring
action of the studs. The problem was confirmed when a number of the shear stud heads
were observed in direct contact with the expanding rubber membrane.

6. The spring steels strips were initially welded in place at both ends. Thus, any damage to
the rubber chamber by the shear studs could not be repaired in the field. Repair would
involve cutting and discarding of the spring steels and re-welding the attachments -
leading to delays and associated costs.

7. Reduction of the data collected indicated that there was sensor drift in zero reading
(compared to that at calibration) in a number of the test results.

The following measures were subsequently taken to solve the above problems:

Item (1): I beams were placed above welded plate extensions on the drums and bolted

down to the concrete floor.

Item (2): the legs of the tripod that are supported across the side wall were reinforced and

placed in contact with the spanning I beams to eliminate the observed deflections.

Item (3): all pneumatic tubing were redone and checked for leaks.

Item (4): the contact spike pressure and fixity of the spikes was improved. A

potentiometer was added to measure and record any displacement.









Items (5 & 6): the entire pressure chamber with a protective spring steel "Chinese lantern"

was redesigned and rebuilt. The width and thickness of the individual steel sheet has been

increased to improve resistance to yield and to allow for more overlapping of each steel sheet

during expansion thus preventing direct contact between the studs and the expanding rubber.

The ends of each spring steel sheet is now connected to the sliding mechanism by screws

(instead of welding) to allow for field repairs to be made.

With the above listed adjustments made, a number of tests were again carried out and the

results analyzed. A linear relationship was found to exist between the applied normal stress and

the shear stress. This relationship can be used to derive the strength parameters (apparent

cohesion and angle of internal friction) of the rock. The indications are that this particular Gator

Rock mix has a cohesion value ranging from 240 psi to 300 psi, and angle of internal friction

ranging from 32 degrees to 34 degrees. The operation of the equipment is discussed in more

detail in Appendix D

Borehole Mapping Device (BMD) Testing


The device was tested in two phases. The first involved testing in the boreholes created

in the Gator Rock for the rock shear device and the other in a Plexiglas transparent tube lined

with man-made undulations (Figure 5-4).

The pneumatic fittings were secured to the device and compressed air set to an initial

pressure of 8 psi. The direction control level is adjusted to ensure that the wheels are in the "out"

position so that as they travel along the walls of the borehole, the air pressure acts as a spring.

The String Potentiometer was connected near the top of the device via a small pulley and the

data collection system initialized. The test was performed by clicking the start button on the









acquisition screen and slowly raising the BMD to the top of the hole very slowly with care taken

to ensure that the alignment of the mapper is maintained vertically.

The results indicated that for the majority of the tests, the contour lines of the plots

mimicked the surface contour of the test holes. However, there were sections on the plots that

varied slightly from the actual wall surface geometry. The reason was that the probe could tilt,

thereby creating spurious data. The alignment problem was addressed by adding another set of

feeler wheels at the top of the probe to reduce the tilting problem.

Observations

Laboratory Testing Results

The results of the laboratory tests were divided into three different sections:

1. Direct shear tests of the Gator rock coupons for the development and design of the shear
studs,

2. Prototype equipment tests at the Coastal lab (the Pseudo-field tests).

3. Mapping device tests in both the gator rock and plexi-glass contoured container.

Item 1 Direct shear tests

The results are shown in Appendix B and summarized in Table 5-1. As expected, an

increase in the normal stress resulted in an increase in the shear stress at failure in all cases.

There were however limitations regarding the applied normal stresses associated with the loading

environment. That is to say, the problem with end and edge effects dominated at the higher

vertical loading ranges. The adverse effects were due to problems associated with the proximity

of the loaded area to the boundary of the sample and container. In addition, end effects were

primarily caused by stress concentration created during loading between the sample and the rigid

wall, edge effects on the other hand is caused by the proximity of the load (stud) to the sample

edge. Both effects have lead to apparent failures and deflections that appeared to have









compromised the results. The loading arm application of the normal load could not be

maintained at a horizontal position throughout some of the test resulting in an unsymmetrical

load application leading to uneven distribution of the load on the respective shear heads. This

resulted in erroneous assumption of stress distribution during data reduction.

The measurements of vertical displacements which could have been used to estimate stud

penetration and hence contact areas for stress calculations appeared inconsistent with

expectations especially at the higher load applications where edge and end effects were

significant and the loading arm tilting. The penetration results are also shown in tables; the

values ranged from 0.1mm to 0.5mm depending on the stud type used and the number of stud

arrangement.

From the plots of the Shear Stress versus Normal Stress, the apparent cohesion (shear

strength) of the gator rock ranged from 150 psi to 230 psi with a mean of about 200psi. The

angle of internal friction was deduced to range from 17 degrees to 34 degrees with a mean of

27.9 degrees. Though no obvious trends were seen in these results, the arrangements that

involved 9 studs or more (studs close to edge of sample) appeared to have resulted in more

deviation from the trend lines or contained discarded data points (boundary effects).

Item 2 Tests using prototype device in cored gator rock

The tests were carried out as discussed earlier and a representative plot of the results is

shown in Figure B-4 of Appendix B. The figure includes plots of deduced shear stresses versus

normal stresses. The variation of load pressure and displacement versus time are consistent with

expectation; where the load and displacement peaks at a point (then decrease or remain constant)

and the pressure held relatively constant throughout the test.

The shear stress versus normal stress plots, represent the shear envelope of the sample and

are used to determine the apparent cohesion (shear strength) and the angle of internal friction.









The deduced average penetration at the operation pressures were used to calculate areas of

contact from the normal loads and the shear forces. This average penetration value was

obtained from the load versus penetration relationship developed by modeling using the

laboratory commercial shear machine, the gator rock and the studs used in the prototype.

The cohesion values ranged from 185 psi to 300 psi and the angle of internal friction

ranged from 22 degrees to 36 degrees. These values as expected are comparable to those

obtained using the direct shear machine with the gator rock.

The data points showed very good cluster about the trend line. This is reflected in R-

squared values in excess of 95%. The variations seen in the deduction of the coulombic

parameters are significant enough to warrant a discussion; notwithstanding the fact that the rock

samples are hardly likely to have the same properties throughout (due to inconsistencies in the

mix and its compaction), the differences could be attributed to the unaccounted for variations in

the penetration depths of the studs during testing.

The determination of the penetration depth and hence the contact area calculations is

essential to the accuracy of the data reduction. The relationship between the applied force and

penetration depth was investigated/modeled in the laboratory using available rock samples with

known unconfined compressive strengths and the results are discussed in Chapter 6 below.

Item 3 Laboratory tests results using the borehole mapping device

The measuring wheels are limited to 34" total displacement on either side of the device and

the wheels will not detect fractures or voids less than 1/2 in width. This level of detection is

adequate for the purposes of identifying voids/fractures that could affect the use of the shear test

device at a particular depth.

The alternative use of the device is to identify or map voids within a rock formation

through the use of boreholes around an existing or proposed drill shaft location. The logs of the









coring would give the general areas where cavities or voids may exist in the rock formation

(based on recoveries versus core run) but would not necessarily identify an area that is

significantly fractured. Theoretically the BMD would identify within the low recovery areas

(known from the logs) the actual height and distribution of the voids in an area, however the

depth and continuity of the void cannot be established beyond 34". The correlation of the

mapping information obtained at all the cored locations could lead to some presumptive

extrapolation of the data. This information could prove useful in determining the frequency and

distribution of cavities/voids for estimation of an applicable factor of safety.

The anticipated problem in the field is the possible effect of the ground water and

suspended fines on the sliding mechanisms of the testing wheels. During the tests, the sliding

motion of the wheels is dependent on the air spring pressure and a smooth travel rod (stainless

steel). If the rod is smeared by fines between the rods and the bearings (as is expected in the

field), the accuracy of the recorded defections could be affected.


Conclusions

Laboratory
* The laboratory Direct Shear equipment can be used successfully to demonstrate the
relationship between normal and shear stress to the cohesion or shear strength of Florida
Limestone.

* The accuracy of the deduced shear strength is dependent on the proximity of the applied
normal stress to the edge of the sample due to problem of stress concentration that lead to
undesirable edge damage (edge effects).

* The contact surface of the metallic stud needs a relatively sharp edge to cause damage to
the surface of the rock for shearing (predominantly) to occur during testing.

* The depth of penetration with normal load application is controlled in part by the apex
angle of the teeth of the stud which also minimize the problem of slipping (the use of a 600
apex angle requires only about 25% of the shear strength of the rock for normal loading to
prevent slipping Patton 1966).









* The coefficient of friction between Florida Limestone and steel was not known and a value
of 0.4 was used based on general information available on the relationship between various
material and steel. This value is expected to vary with the mechanical property of the rock
and its surface condition under field testing environment.

* The preliminary design of the rock shear device particularly the measuring instrumentation
was suitable under laboratory environment but was not so under field conditions due to
problems with the water pressure and temperature changes at depth, leading to drifting and
general mechanical ware.

* The determination of the point of shear failure in the laboratory is significantly more
defined in the laboratory than in the field due primarily to the condition of the shear
surface of the rock; the equipment used to core the gator rock in the laboratory produced a
relatively smoother surface than that used in the field.

* With respect to the BMD, the use of the Hall Effect theory that indicated the production of
a sinusoidal wave form when a Hall sensor is passed across a magnetic field was chosen
because of its simplicity and size and the fact that it would be functional under water. The
calibration curves show the distance from the magnetic source that the sensor would
operate within the "linear" portion of the wave form. The 3rd order fit was used with the
best R2 results, however for our purpose and the level of accuracy required, the 1st order fit
was found adequate.

* The movement of the measuring wheels is controlled by air springs (reversible) that use a
sliding mechanism to facilitate displacement measurements. Under the controlled
environment of the laboratory, this mechanism is quite adequate and produces fairly
accurate mapping of the test surface as long as the central axis of the cylinder remains near
vertical. For the laboratory testing this is one of the limiting factors controlling the
accuracy of the results.

* The measuring wheels are controlled by two air springs that allow sliding along a
horizontal rod through self lubricating cylindrical bearings. The wheels extend with the
opening of the air valves to the air springs. One of the wheels is known to extend at a
higher pressure (2 psi) than the other due to faults with the alignment of the sliding
mechanism that produce more friction on one than the other. This affects the accuracy of
the displacement measurement since the displacement of either wheel is not symmetrical
under the extension or compression of the spring.










Table 5-1. Summary of Results using Laboratory Direct Shear Machine
Stud Stud Estimated Cohesion Estimated Phi
Type Arrangement (psi) (deg)
Mesh 195.00 27.40
195.00 32.60
190.00 29.90
200.00 33.50
Pointed Head 21 200.00 34.00
21 200.00 34.90
9 200.00 24.70
5 175.00 21.80
Multiple Head 21 175.00 20.50
21 190.00 17.70
5 230.00 34.90
5 250.00 27.70
Seregated Head 9 195.00 26.60
9 210.00 24.20
9 200.00 33.00
11 200.00 28.80
5 160.00 16.70
Flat Head 5 175.00 24.20





























Figure 5-2. Wider Spring Steel Sheeting with Screwed End Connections.


Figure 5-3. Mapping Device Setup for Gator Rock Test Hole.









































Figure 5-4. Showing Mapping Test Setup in Transparent Tube.









CHAPTER 6
FIELD TESTS, OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS

Rock Shear Device: Fuller Warren Bridge Site

The site is an existing bridge spanning across Park Avenue in Jacksonville. A number of

load tests were done prior to construction however we chose a load test location that indicated

that the rock formation was about 12m below existing ground level. The site is shown

schematically in Figure 6-21, three boreholes were positioned around the pier in close proximity

to the test shaft to assess the variability of the rock strength and quality around the pier. Each

borehole was taken to a depth of 24m and was done by Universal Drillers in Jacksonville.

Figure 6-22 shows the drilling in progress and the samples from one core run, respectively.

Between the depth range of 12m and 18m, the recoveries varied between 58 and 92% but were

about 76% with infrequent areas of discontinuities/cavities filled with clays/silts (Figure 6-23).

The soils encountered were similar in all three locations; the upper 12m was predominantly

clayey sands with the water table about 6.2m below existing ground level. The rock formation

was encountered at about 12. m and although recovery was good to the maximum depth (appr.

75%) there were intermittent thin layers where the recovery was primarily sandy clays. The

upper 12. 1m was therefore cased to prevent corewall failure.

The samples were taken to the FDOT laboratory for testing and the results used to predict

theoretically the insitu shear strength of the rock for future comparison with that of the rock

shear testing device. The equipment including the air compressor and other electrical devices

such as investors etc., were mobilized on site and setup as shown in Figures 6-24 and 6-25.

Details of the testing procedures can be seen in Appendix D. The preliminary attempts at

testing were not successful for a number of reasons; the borehole had to be widen, the wires

extending from the load cell, the pressure transducer and the air conduits got tangled and









damaged, the electronic connectors kept breaking at the soldered ends, the winch support failed

resulting in difficulties in lifting the rods out of the hole (15m). The sensor drift in the

instrumentation (load cell and pressure transducer) were very significant (possibly due to low

water temperature and high pressure at depths) resulting in unstable and unreadable signals. The

corrections required re-wiring of the instrument and a change of instrumentation; the load cell

and pressure transducer were removed from the instrument and transducers were taken out of the

problem environment (the test hole), and placed on the jack and air regulator respectively.

With regards to the drifting and changes in the excitation voltage, the method of

measurement has been adjusted to a ratiometric one where the ratio of the output voltage and the

excitation voltage is used with the full scale voltage reading to offset the problem. This

adjustment was made within the software and the real time data and graph reflects this output.

The new setup however has not yet been modified to prevent the amplification of noises in the

output; this will have to be done in the future using filters. Some mechanical problems had to

be corrected including the use of stiffer springs that are able to retract the studs upon release of

the chamber pressure; the fines suspended in the water clog the shaft of the studs and affect their

sliding (retracting) mechanism under the influence of the springs.

Testing

The BMD was first lowered to a depth of 17m and the operation pressure applied

accounting for the hydrostatic pressure at that depth; this pressure is adjusted as the device is

lifted. The mapping is examined real time and the full deflection of the wheels noted. The test

was done at 0.75m intervals i.e., two sets with each 1.5m length of rod which is removed as it

emerged from the hole and reached the top of the Tripod. The remote control of the winch was

used to advance the BMD to the top of the hole with a smooth rate of ascent. For the purpose of

this set of testing, the instrument was severely clogged during testing and the results deemed









insignificant. With all the rods removed, and the cable still connected to the end adapter, the

BMD was unscrewed, removed and the end adapter screwed onto the top of the rock shear

testing device. The device was then lowered to a depth of 17m and the test started. The test was

done at each depth location at least 4 times with different normal pressures and the results saved.

The device was then lifted to another test depth and the procedure repeated (see Appendix D for

detail testing procedures). The real time plots of pressure with time load with time and

displacement with time are examined during the tests. Each test was performed by using the

manual loading jack to displace the shear device by a maximum of 34" before the test was

stopped. Situations that prevented this displacement usually involved the extension of the studs

into voids or clay filled voids; this was corrected by lifting the entire device above the problem

area.

Test Results at the Fuller Warren Bridge, Jacksonville

The comparative results of McVay's theoretical prediction and that of the device are

shown in Figures 6-1 and 6-2. The values show some vertical variation but generally are within

a reasonable range of consistency. Both sets of determinations show a general reduction in shear

strength from a high of about 300psi to a low of about 20psi. The upper 53 ft. of the rock

formation had shear strength values typically above 100psi (one exception) with a high of about

3 10psi from both methods of predictions. Below the 53ft depth range the shear strength of the

formation tumbled to an average value of about 40psi. These ranges are typical of Florida

Limestone strength properties and the levels of variation are consistent with those seen in the

core samples with intermittent clay intrusion. The unconfined compression and split tension test

results of the samples obtained from all three boreholes are shown in Appendix D. These values

were used to determine the shear strength of the rock with depth based on McVay's theoretical









prediction that relates the shear strength of the rock with its unconfined compression strength and

split tension properties.

The variation with depth of the comparison shown in Figures 6-1 and 6-2 refers to

Boreholes 1 and 3 respectively. Only one set of device data was obtained from Borehole number

2 due to problems with equipment blocking and clogging during the time of testing. The

conformance is good (generally within the 10% of each other) although a number of areas show

some differences as shown in Figures 6-3 and 6-4, their order of magnitude are very similar.

These variations are expected and could be attributed to sectional clay contributions within the

test/contact area of the device while testing. The values from the field test appear marginally

lower than those predicted by McVay's model and could be considered a marginally more

conservative estimation of the rock strength.

To determine the stresses at contact between the stud and the rock/gator rock, the depth of

penetration of the apex of the stud into the sample surface should be measured or otherwise

scientifically deduced. This penetration depth will vary with the strength of the rock and the

applied pressure. There are empirical relationships available that relate the penetration to the

shape of the stud point and the strength of a rock (Evans and Murrell,1962), however, we have

done our own laboratory modeling and the results are shown in Figures 6-16 and 6-17.

The modeling was done using the Direct Shear Machine in the Laboratory; the loading

plate was modified to accommodate five of the studs used in the prototype device. An electronic

dial gauge was attached to the top of the plate and zeroed. Vertical loads were applied via the

loading arm at the same locations (Figure 6-16) and at virgin locations (Figure 6-17) and the

loads and corresponding penetrations (dial gauge readings) recorded.









Not withstanding some error dial gage readings that have been discarded, the results show

excellent conformance with Evans/Murrell Model at the pressure range used (Figure 6-16 ) using

samples of Gator Rock and applying pressures at the same location (gator rock samples only). In

Figure 6-17 (various strength samples), the pressures were applied at virgin locations (method

used in the field) and with samples of varying unconfined compressive strength. The results

generally indicated that the penetrations are fairly constant and that the variation of pressure with

depth is more significant in the fairly soft limestone (Qu < 200 psi). This is consistent with

previous work done (Evans and Murrell 1962) that suggested that unless a certain energy/force

threshold is reached, the measured penetrations would remain relatively constant with increased

normal force/pressure. A correlation between rock strength and penetration (within our test

pressure range), has been deduced and adapted based on the samples tested so far and is shown

in Table 6.2. This data base could be improved with additional testing on more variety of rock

strengths.

This analytical approach uses the laboratory model derived as shown in Figure 6-17. The

important application of this model is the use of a constant depth of penetration with varying

normal force at each test level. This explains the good comparison obtained using a single

average penetration depth for data reduction (Figure 6-3 to 6-4) and penetration depths obtained

from the model. Figure 6-15 shows that the strength envelope is not sensitive to the level of

accuracy of the depth of penetration used in its determination. A sensitivity analysis was done

on the shear strength determination by increasing/decreasing by 50% the depth of penetration

(Figure 6-15) used for data reduction. All the points are shown to have clustered along the same

strength envelop. The indications are that as long as a single depth of penetration is used at each









test level the strength envelope will not be affected by an inaccurate estimation of the penetration

depth.

The results generally showed good compatibility, however in situations where the studs

have penetrated stratified clayey inlayers within the rock formation, the approach shows

erroneously very high shear strength, owing to significant bearing effects (e.g., Borehole 2 at 44

ft.). This anomaly is not reflected in the McVay's prediction since its determination is based on

tests of intact rock samples in the laboratory.

The results when properly analyzed can also be used to determine locations where

unusually high penetrations are resulting from significant presence of clays or very soft rocks.

In theses cases bearing problems are typical and the normal stresses are significantly lower than

the shear stresses resulting in erroneously large or negative shear strengths as seen in red

numbers in Figures 6-3 and 6-4.

The problems encountered in the field were limited to mechanical issues; the cored holes

were only marginally larger than the device and its relevant attachments (clearance issues). This

resulted in difficulties to move the device up and down the hole freely and could have

contributed to friction related errors (considered minor) between the sections of the device (not

the studs) and the walls of the hole. The fines in suspension at depth (mud intrusion) affected the

free retraction of the studs by the springs and the expansion of the internal bladder. These effects

are not quantifiable however steps were taken to keep the instrument as water tight as possible to

minimize these problems.

By and large, there are a number of factors that may have affected the observed results but

within the limits of these experimental errors it would appear that the validity of the method and

simple theories that governs quantitatively the derivation of the strength envelope of the rock are









relatively sound based on the satisfactory conformance of the methods used to determining the

rock shear strength.

The Finite element model shown in Figure 4-5 is supposed to simulate the testing

conditions in the laboratory and field. The preliminary results however have not been consistent

with expectation for the following reason;

* The boundary conditions are difficult to model to represent the conditions of loading in the
field; in the field/laboratory, the normal loads dictates the required shear force required for
failure during the displacement, in the model, the normal and shear forces are applied to
achieve a displacement. The result of this is undesirable rotation about the surface/surface
contact. A number of combinations of loads have been use with the same result. The studs
are modeled as a rigid elastic body to ensure that translation of the elements is uniform.
The rock is modeled as a Coulombic material (c/p) with two fixed boundaries and
translation of the elements free only along the loading axis. The result of the rotation
about the surface/surface contact point is a significant reduction in developed shear stresses
in the contact elements. The model would best represent field condition under strain
controlled loading however, to date the solution does not converge under this condition.



Conclusions

* The field and laboratory tests at the drill shaft location tested indicate that the variation in
rock strength with depth is fairly high however the spatial variation and mechanical
properties of the rock formation at that location is relatively small. This information is
location specific and does not in anyway suggest that similar results can be expected at
other shaft locations.

* The determination of the rock shear strength is not significantly affected by an inaccurate
estimation of the depth of penetration (of shear stud) as long as a constant penetration
depth is used at each test level for data reduction.

* The undulating rock surface in the field and unfiltered noise in the instrumentation has
resulted in a more erratic data point distribution and multiple failure surface, the
interpretation of which requires a very clear understanding of the surface and loading
conditions for derivation of the peak stress. The simplest approach to determining the peak
stresses is to plot the load versus time graph and deduce the peak load from which the
corresponding peak stresses are determined. From the results, the failure point was
generally found between 0.1" and 0.3" of displacement.

* For this particular testing exercise, after the boreholes were made, the contractor had to use
a tricone bit which wobbled at high speed to open the holes a little wider to facilitate ease
of movement of the device during testing in an effort to minimize jamming of unretracted









studs (due to clogging) while lifting. The result of this widening has lead to further
undulating and possible opening of fractures along the borehole which could have affected
the production of classical failure curves.

* The prior determination of rock unconfined compression strength before testing is
important to the determination of the operation pressures used during testing which also
helps to reduce stud penetration into the rock surface and hence limits bearing influence on
results and jamming of the equipment.

* In accordance with "Item 10", the level of mud residue and soil suspension in the hole is
highest immediately after coring and their presence also helps to increase the problem of
clogging and jamming of the equipment.

* The measuring instruments used in the preliminary design of the device were not reliable
in the field conditions and the adjustments made to keep all instrumentation above the
surface has eliminated the problems associated with the changes in temperature and
pressure of the ground water with depth. A couple of filters are however required to
reduce the level of noise seen in the data.

* The setup on site involves the lifting and movement of a relatively heavy tripod to the test
locations, the attachment of various instruments to the tripod and the wiring and
connection of the data collection systems. These operations require manual and technical
inputs and can be time consuming; the average time of setup and take down is about 2
hours using one operator.

* The studs are made of hardened steel and will start rusting within a few hours after testing.
This affects the shear surface of the studs and also prevents easy movement of the springs
for stud retraction leading to possible jamming of the equipment.

* The winch has a length capacity of only sixty feet and therefore can only test to a
maximum depth of 55 feet (need at least 5 feet to remain on the winch to prevent slippage).
The rods are also limited to a testing depth of 60 feet.

* The current sliding mechanism used for the displacement measurement of the mapper
wheels is unsuitable for an environment that has significant suspension of soil material in
the ground water. The tests were terminated after only one attempt in the borehole due to
clogging and jamming of the wheels. The results indicated that the wheels underwent
minimal movement during testing. An adjustment to the mechanical sliding systems is
required.

* With respect to the finite element model further assessment is required on its development,
logistics and also its simulation.









Recommendations

For data reduction and analysis, the use of a limiting penetration approach based on the

penetration correlation proposed (Table 6.2) in this report, appears to be a technically sound

method in the derivation of contact areas for stress calculations. The table should be used as a

guide however inaccuracies in the penetration prediction have been shown to be insignificant in

the estimation of the rock strength.

The designs of the both devices have been dynamic and have undergone a series of

changes based on foreseen and unforeseen problems. The instrumentation changes to the shear

device for example rendered a number of areas on the present device obsolete; the lower

chamber with the spikes is no longer required since the displacement is now being measured at

the jack cylinder; the upper chamber which housed the pressure transducer and LVDT is no

longer required since they have been removed to the surface (as shown in later figures).

The inner tube that is used to transport the compressed air to the spikes through the outer

tube is no longer required along with the seals and self lubricating bearings that separated both

tubes to facilitate relative movement for displacement measurements.

The problem of fines suspension in the ground water that affects the spring controlled

retraction of the studs can be solved either by increasing the stiffness of the spring to a point

where the fines are unlikely to have much effect (this would also means an increased pressure

application to the chamber to expand the bladder and extend the stud for testing not advisable),

or design a thin rubber sheeting with holes at the stud locations with diameters similar to that of

the stud or slightly less. This would allow the shear surface of the stud to contact the rock but

prevents fines intrusion. The sheeting must be removable for maintenance purposes and must be

durable and ware resistant under the testing environment.









The size of the borehole is critical to the operation of the device; allowances must be given

to the possibility of the studs becoming jammed so sufficient clearance is required. The

recommendation is that the hole be between 4 14 and 4 12 inches in diameter (can be done by

advancing the casings to the depth of the coring and retracting) and that the coring be done at a

controlled low gear to reduce wobbling of the core barrel that would produce too much

undulation in the rock surface.

During the application of the shear force, the operator has to be very cognizant of the rate

and amount of jacking (loading) based on the level of resistance being felt in addition to keeping

a watchful eye on the monitor. The possibility of encountering clay filled holes is likely and they

cannot be detected by the BMD. This situation if not recognized can lead to the complete

retraction of the affected stud and damage to the equipment. A constant increase in load with

minimal displacement is a clear indication of this problem and the test at that location needs to

be terminated and the equipment repositioned (see Appendix D Operation and Maintenance).

A study of previous bore logs and the present core logs of the test location should be done

prior to testing. In areas where the recoveries are relatively low (less than 70%), the possibility

of encountering problematic areas are likely and care should be taken during the test.

During the lowering of the device (by the winch), it is critical that the air hoses be secured

to the rods with plastic ties at every rod length to prevent sagging of the hose within the hole;

these can become entangled with the device when it's being lifted up and cause it to jam.

The setup and operation is time consuming and should be done by at least two technicians.

For future improvement, the device could be set up and operated from the drill rig or from a

truck similar to the cone truck without the need for the tripod setup and movement.









The mechanical problem (wheel sensitivity) and field limitation (soil suspension clogging)

are issues to be addressed with the BMD, the solution at the moment include realignment of the

sliding rods for the wheels and the covering of the open areas with a rubber sheeting to minimize

fines intrusion.

The finite element models using ADINA and the ABACUS software have not converged

so far and another FEM model considered more appropriate for the 3 dimensional and dynamic

modeling has been bought and being tested at present.















10000


Shear Strength (psi)
15000 20000


40 00






4500--






5000 -- -






5500 -






6000 --






65 00
4<





7000 -





75 n0n


250 00 300 00 350 00


-- McVay's
-- Device

Device-Penet.


Figure 6-1. Comparison of McVay's Shear Strength Prediction with those of the Device for
Borehole No. 1.













Shear Strength (psi)
10000 15000 20000


250 00 300 00 350 00


40 00






4500--____






5000 --






5500--






60 00





65 00






7000





75 0nn-


Figure 6-2. Comparison of McVay's Shear Strength Prediction with those of the Device for
Borehole No. 2.


-- McVay's
-- Device
Device-Penet.












Average
Penetration

Device Shear
(psi)
175.00
230.00
145.00
195.00
240.00
50.00
40.00


Model
Penetration
Device
Shear
(psi)
170.00
195.00
130.00
230.00
220.00
45.00
50.00


McVays
(psi)
183.5
237.5
139.28
235.67
229.15
47.73
47.55


Average
Penetration
Device
Shear
% diff.
95.37
96.84
104.11
82.74
104.73
104.76
84.12


Model
Penetration
Device
Shear
% diff.
92.64
82.11
93.34
97.59
96.01
94.28
105.15


a McVay's
a Device-Per
* Device-Avg


Shear Strength (psi)


Figure 6-3. % Differences and Typical Bar Chart Showing Variation with Depth of Results for
Borehole 1.


Depth
(ft)
44.00
45.00
47.00
48.00
49.00
54.00
55.00


54 0000


49 0000


S48 0000

0C
O 47 0000


45 0000


44 0000


Jul'












Average
Penetration

Device Shear
(psi)
310.00
90.00
220.00
70.00
30.00
50.00


Model
Penetration
Device
Shear
(psi)
300.00

230.00
75.00
40.00
40.00


Avgerage Model
Penetration Penetration


McVay's
(psi)
316.10
83.30
240.00
70.10
38.89
40.80


% Diff

98.07
108.04
91.67
99.86
77.14
122.55


% Diff.

94.91

95.83
106.99
102.85
98.04


Depth
(ft)
45.00
46.00
47.00
52.00
56.00
57.00






57 0000


56 0000


S52 0000

0C
O 47 0000


46 0000


45 0000


0 50 100 150 200 250 300 350
Shear Strenqth (psi)


Figure 6-4. % Differences and Typical Bar Chart Showing Variation with Depth of Results for
Borehole 2.


o McVay's
a Device-Per
* Device-Avg


MIMI I
















Laboratory Conditions


L.. .......... .- -



1,Fl 0na 1r



- - -I i d -
to Fiinire 6 4
., .. ,. ., . . I. efunec


.lr -a.e rcoudIr,
- -- - - -

t I _Frt.e .











-/
- -
.. -. .. ... -. . -,, -, -... .. -










,- i ,- -, -, ,-- ,- - ,- - ,- ,-,-- ,- -, ,-- ,- ,- ,-, -,













Displacement (in)

Figure 6-5. Shear Stress vs Displacement (Plot Representation) showing Peak Stress Location















Field Condition


Shear Stresstr r p-i'








. ... .
- - .
- -
Sh a -ze Ee p t _- '-

-- ,- .- -7 -,-










-- -, .-,.-.---, -.-, ,-







- ,, -, - -,. ,
y -, -


-. - -. -. -- .
-i


F i i l _li] i ~ lll i i ii i lii ii ] [l~i i i I i i i ll [ii i




. '. ,. .. '. ,. .. . '.. ,. .. . '. . '. .


. . . . .















*~ ..
. .. . . . .
- ,- ,- ,- ,- ,- -i ,-- i- - ,- - ,- ,- ,- ,- -


, . ... ._ ,. .. .,. ., .
.1_ . . . .





- -
:i~~~~~ -2" -i -i -i -i -i i i


Displacement (in)



Figure 6-6. Shear Stress vs Displacement (Plot Representation) showing Peak Stress

Determination.




















Field Condition


I.


I ,*. i .i
i i i i, i


I. I..









I .1


-- -
















K I -
















--- -- -


i
i.


i_


I..-









I .


I. I..



I .- .1.


I I I


III. I I


I.


II I


- - - -


Diiplacemeur (in)





Figure 6-7. Shear Stress vs Displacement (Plot Representation) showing Peak Stress Location.

























99


''"''L""''"''"-''" "''"I""''"'""'"'"'' "t''''r''`"'"'"'''' "'


I- I














- -j -. I- --








U .. .



- - -

~ ~ -.,-,-.,, ,- -,-I - -


jr











Field Condition


- - Pioblm Condirton- - -. .
No C leanrl Defined
Peak Load '

ear Stressqpi'~ c I


.......... .... ..





,L ; '_ =, = '- =, : : = : = = : =, = : =, : : = = : - : - -
-:....-..---- .--------------
.


Displacement (in)



Figure 6-8. Shear Stress vs Displacement (Plot Representation) showing problematic Results















100


'- \- -: -, '- '- \- '- '-



- - '- '- -








---------------------------- ---- -----
- - - - -
---
- - -
-















Scenario relates
to Figure 6.5
showing multiple
small peaks to
failure














Scenario relates
to Figure 6.6
showing high
initial peak
before normal
shearing











Scenario relates to
Figure 6.7 showing
erroneously high
shear stresses and an
increase in shear
stress with constant
normal stress due to
significant bearing
problems


Figure 6-9. Stud to Rock Typical Scenarios.





















































































/


Enlargement of Stud Penetration in Rock /
/I /
/

/


I
I
r
r

I
r
r

rrrrIr










:r
r
r

r
r

r
r

r


/ ----rojected Normal

S, effective Area


Penetation


Figure 6-10. Effective Area Determination During Penetration.













102


I
I
I
I

!
!
!

,/
..
:"
/


I
I
I
I
I
I


Sr ar
;- ,* a
























Shaded
Effective
Shear


Shear
Direction


Back of Stud not
involved with
shearing or normal
load resistance
During Shearing

Wedge
formed by
Shearing, /


Figure 6-11. Effective Area Determination During Shear












Area calculation example:
normal area is;


Effective shear area is;


For a penetration of 0.026", based on Figure 6.10, the Effective


(4 x 3.142 x (tan30x0.026) 2)/2= 0.001415993 sq. inch
The force is exerted on 4 half conical x-section on each studs.
Note also normal pressure
Divided by the stud cap area of 0.1964 gives normal force and
Accounting for water pressure at that depth gives a normal force
= 5.6488 (lbs). The Normal stress is obtained by dividing this
Force by the normal stud area = 5.6488/0.001415993 = 3989.28psi


{3.142 x (tan 30 x 0.026) x 4[(0.026)2 tan230 + 0.0262 ]x 4 x 42}/2
= 0.206017 For Shear force of 433.239,
Shear Stress = 2102.93psi
Half Conical effective shear area (HrL/2) where L is the length of
the sloping side. Each stud contains 4 conical contact surface (see
Figure 6-10) and 42 studs in total.


Table 6-1. Section of data reduction table for Borehole 1 at 47' (40psi applied pressure)
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.


Load
(volts)
0.0006
0.0043
0.0074
0.0069
0.0073
0.0078
0.0089
0.0089
0.008
0.0081
0.0076
0.0092
0.0093
0.0082
0.0093
0.0081
0.0101


Est. Load
(psi)
12.4916
92.7744
140.6428
132.1643
135.1198
148.4106
171.9182
183.8926
161.8831
161.358
155.6869
176.7251
193.1818
165.5727
176.4101
166.5917
195.1841


(calculated)
29
47.5
0.026
0.1964
42
38

Est. Press.
(psi)
42.8022
42.7564
41.9568
42.1278
42.024
42.0331
42.3139
41.8195
41.554
41.9813
41.9111
42.0362
41.9263
41.551
41.847
42.0026
42.0606


0.03827677
(ft)
(ft)
(in)
(in2)


Normal
Force
(Ib)
5.8035
5.8035
5.6488
5.6875
5.6488
5.6488
5.7262
5.6101
5.5714
5.6488
5.6488
5.6488
5.6488
5.5714
5.6101
5.6488
5.6488


Unit Wt H20
Unit Wt Rod
Cylinder Bore Area
Shear Stud Area
Normal Stud Area
Qu (psi)

Shear Force
(Ib)
-175.0038
125.0626
376.4696
335.9201
368.3597
408.9093
498.1182
498.1182
425.1291
433.2390
392.6894
522.4479
530.5578
441.3489
530.5578
433.2390
595.4370


LVDT
(in)
-0.001
0.0201
0.1203
0.1048
0.1116
0.1115
0.1378
0.1937
0.2075
0.2055
0.1986
0.206
0.2496
0.2733
0.2719
0.273
0.2892


Pressure
(volts)
0.0214
0.0214
0.021
0.0211
0.021
0.021
0.0212
0.0209
0.0208
0.021
0.021
0.021
0.021
0.0208
0.0209
0.021
0.021


62.4
2.96
4.72
0.206069136
0.001415993
945.7
Normal
Stress
(psi)
4098.5673
4098.5673
3989.2597
4016.5866
3989.2597
3989.2597
4043.9135
3961.9328
3934.6058
3989.2597
3989.2597
3989.2597
3989.2597
3934.6058
3961.9328
3989.2597
3989.2597


(lb/ft3)
(lb/ft)
(in2)




Shear
Stress
(psi)
-849.2481
606.8964
1826.9094
1630.1331
1787.5541
1984.3304
2417.2383
2417.2383
2063.0409
2102.3962
1905.6199
2535.3040
2574.6593
2141.7515
2574.6593
2102.3962
2889.5014



















4500 00


4000 00


3500 00


S3000 00
0.

h 250000

I-
S200000

(0
C 150000


100000


50000


000


Figure 6-12. Peak Shear Stress vs Displacement Curve.


* BH1-47/40
- Poly (BH1-47/40


01 02 03 04 05

Displacement (in)






























150





100





50


0 5 10 15 20 25
Time


-4-11.1 J 4


30 35 40 45 50


Figure 6-13. Determination of Peak Shear Stress using Load vs Time Curve.


























106


:-.^~ ----------------------
/.. . .
S.. . . . . . . .
S. . . . . .

,- / ," iii-*


*L. . . I" F.ailuri Load . . . .






















Point shown in blue from example




BH1@47.5 ft


0 I
0 500 1000 1500 2000 2500 3000


3500 4000 4500 5000


Normal Stress (psi)



Figure 6-14. Shear Stress vs Normal Stress Curve (Failure Envelope).


3000


2500


2000


| 1500
0)
f


1000




500











12000


10000



8000




6000




4000



2000




0


* BH1@47.5 ft


0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Normal Stress (psi)



Figure 6-15. Non-effect of 50% Decrease and Increase in Depth of Penetration on Failure
Envelope.




From the Peak Load (Fig. 6-13), the corresponding Shear and Normal Stresses are determined
and used as a point on the Shear vs Normal Stress Plot (Fig. 6-14) to Determine Su (Cohesion)
and Phi.












No. of Contact Points
No. of Studs
Area
Qu

Normal
Force
(lb)
0.41
0.61
0.73
0.81
1.02
1.22
1.42
1.63
1.83
2.03

00600




00500


00400



o
S00300

a.

00200




00100


0 0000
00


0


4
5
4.91
300
Gator 1
Laboratory
Penetration
(in)
0.0094
0.0140
0.0167
0.0190
0.0250
0.0290
0.0340
0.0350
0.0410
0.0460


sq.inch
Psi
Gator 2
Laboratory
Penetration
(in)
0.0092
0.0138
0.0163
0.0170
0.0260
0.0250
0.0350
0.0380
0.0440
0.0480


Gator 3
Laboratory
Penetration
(in)
0.0091
0.0135
0.0159
0.0170
0.0230
0.0270
0.0310
0.0340
0.0380
0.0440


050


200


Evan's 1962
Predicted
Penetration
(in)
0.0088
0.0132
0.0158
0.0176
0.0221
0.0265
0.0308
0.0353
0.0396
0.0441


-- Predicted
-- Sample 1
Sample 2
Sample 3


250


Force (Ibs)

Figure 6-16. Predicted and Experimental Penetration Same Locations (Gator Rock)


____ ___)___ K 7__ __









EEEiLE2
_ _ z ^ _ _ _


I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1














4
5
Area 4.91
Qu(psi) 684.5
Kanahapa
Normal B1 4U


Force


Penetration
(in)
0.0116
0.0132
0.0137
0.0159
0.0174
0.0192
0.0235
0.0231
0.0247
0.0251


Cont. Points
No. of Studs
sq.inch
822
Fuller Warren
B1 3U
Penetration


0.0065
0.0072
0.0094
0.0116
0.0125
0.0141
0.0162
0.0153
0.0164
0.0169


165
Fuller Warren
B1 8U
Penetration


0.0330
0.0352
0.0414
0.0465
0.0463
0.0471
0.0486
0.0511
0.0532
0.0558


256
Gator Rock
20%/20%
Penetration


0.0267
0.0253
0.0286
0.0286
0.0289
0.0302
0.0330
0.0328
0.0334
0.0361


256
Gator Rock
20%/20%
Prediction


0.0125
0.0143
0.0199
0.0262
0.0324
0.0374
0.0436
0.0561
0.0623
0.0748


684.5


B1 4U
Prediction
(in) (in)
0.0047
0.0054
0.0075
0.0098
0.0121
0.0140
0.0163
0.0210
0.0233
0.0280


822 165


B1 3U
Prediction
(in)
0.0039
0.0045
0.0062
0.0081
0.0101
0.0116
0.0136
0.0175
0.0194
0.0233


B1 8U
Prediction
(in)
0.0193
0.0222
0.0309
0.0406
0.0503
0.0580
0.0677
0.0870
0.0967
0.1160


- -*- Gator pred
---B1-4Uact
B1-3U act
-- B1-8U act
- -x- -B1-4Upred
B1-3U pred
- -+- -B1-8U pred
- Gator act


Figure 6-17. Predicted and Experimental Penetration


01400--




01200 -




01000-




c 00800-
c
o


0 00600 -
a-



00400 -




00200 -




00000 -
00


050 100 150 200 250 300 350
Force (Ibs)


Virgin Locations










Table 6.2. Showing Correlation between Rock Strength and Penetration within Normal Force
testing ranges used in the field (Fn < 10 lbs)
Unconfined Penetration
Compression range
Strength
(psi) (in)
100-200 0.060
200 400 0.050
400- 500 0.040
500 600 0.030
600- 800 0.025
800-1000 0.022
1000- 1400 0.017


SamDle Calculations for Predicted Penetrations


F = 2bdqu(f + tanp)


Where;


Seating/Penetration Force
:wedge Length
: Penetration Depth
=Unconfined Compressive Strength
Coefficient of Friction between rock and steel
1/2 wedge angle


0.07874 in.
D
300 psi
0.4
30 deg.


Rearranging --- D = F/[2x0.07874x qu (0.4+0.57735)] = 6.4972 F/ qu

For F= 2.03 lbs & qu = 300psi,

D = 0.04396 inch















































Figure 6-18. Field Coring at the Kanapaha Site.
















112






























Figure 6-19. Rock Sample quality and Recovery at the Kanahapa Site.


V:s- ~ Ll"


Figure 6-20. Piers at the Fuller Warren Bridge Site.










-------------------

I%

Fuller Warren Pier
S Bridgee 1


I







SCorehole 3







I----- -







i,
Corehole 2
I -

-JL-------- ----w- --


I

I I
I
II
Ii
1
I\
I
I\


I\
II
i


II



Ii


I
1/ !


Lamp
I
I
I
I

I
I




I
I



I r


I B
I


Corehole 1


idary


iig Buildwz


Figure 6-21. Corehole Layout with Respect to Bridge Pier and Load Test Location.


1
































































~VL~G~_I.I
~~7it~*'-~-'-~;~i.
h3r
..
:~' F
.*r
i:rcj
'L~k;i~"L~~.-- ~Yr:~S


Figure 6-22. Coring at the Fuller Warren Bridge Site.





























Figure 6-23. Cored Sample with Alternating Rock and Clay intrusion.


*. .-, .-

2_ -.^_ '"'r
I,'- L .


Figure 6-24. Field Setup of Compressor, Jack and Data Collection System.









































-a v~ -b**

6I~


Figure 6-25. Field Setup of Winch, Batteries and Compressed Air Regulator.










APPENDIX A
GRAPHICAL REPRESENTATION OF REDUCED DATA


160

140

120

- 100

80
0
,- 60

40

20

0


---bhl-44-23


0 5 10 15 20 25 30 35 40 45
Time


Figure A-1. Load vs Time: BH1@44'(Norm Pressure = 23psi)


0 10 20 30
Time


- bhl-44-30


40 50 60


Figure A-2. Load vs Time: BH1@44'(Norm Pressure


L* i\I .. .. .







J^;^/4i


I..


30psi)



















I -- bh-44-36


0 10 20 30 40 50 60 70
Time


Figure A-3. Load vs Time: BH1@44'(Norm Pressure












:

: I ,, :' : :


10 20 30
Time


40 50 60


Figure A-4. Load vs Time: BH1@44'(Norm Pressure = 45psi)





119


36psi)


-*-bh1-44-45


I KKK


c~c.












rSi

V Ll^n


i,,,,


0 5 10 15 20 25
Time


30 35 40 45 50


Figure A-5. Load vs Time: BH1@45'(Norm Pressure = 26psi)


-- bhl-45-33


10 20 30
Time


40 50 60


Figure A-6. Load vs Time: BH1@45'(Norm Pressure = 33psi)




120


'I


***


--- bh1-45-26














































0 10 20 30 40 50
Time




Figure A-7. Load vs Time: BH1@45'(Norm Pressure


0
i "


*11


60


39psi)



















--- bhl-45-46


10 20 30 40 50 60
Time


Figure A-8. Load vs Time: BH1@45'(Norm Pressure = 46psi)















121


IPItN / 4 I *~- 4i *
'41 Si~ *-
'4


-*-bhl-45-39


\
?r
i
'~'~~U


II"".























10000


8000 bhl -47-25


6000


4000


2000


0 00
0 10 20 30 40 50
Time



Figure A-9. Load vs Time: BH1@47'(Norm Pressure = 25psi)


I


---bhl-47 5-32


0 5 10 15 20 25 30 35 40 45 50
Time



Figure A-10. Load vs Time: BH1@47'(Norm Pressure = 32psi)












122


. . . . .









. . . . : : : : : :



























S, L-*-bhl-47 540














0 5 10 15 20 25 30 35 40 45 50
Time



Figure A-11. Load vs Time; BH1@47'(Norm Pressure = 40psi)


300




250



200 . .

S. .. . .
/ .. . .













*im
150 .. -bhl 47 5-45















1230
50




0
0 10 20 30 40 50 60
Time



Figure A-12. Load vs Time: BHl@47'(Norm Pressure 45psi)






123


III III II I I III I III





































0 10 20 30 40 50
Time


Figure A-13. Load vs Time: BH1@48'(Norm Pressure












U'I














0 10 20 30 40 50
Time



Figure A-14. Load vs Time: BH1@48'(Norm Pressure


.1\


I-4-bhl-48-23


60



23psi)


-bhl-48-31


60


31psi)



















.. .-


...........
II "
7 .. -*<
/ *
1


Time


Figure A-15. Load vs Time: BH1@48'(Norm Pressure


37psi)


0 10 20 30 40 50
Time



Figure A-16. Load vs Time: BH1@48'(Norm Pressure 43psi)











125


-*-bhl-48-37


Sit. -Pi%1.'0 I* **-
''4.


-- bhl-48-43


c
I',
1 '.Clc~.~4t


n :,


hX,


: : : : :
































40


Figure A-17. Load vs Time: BH1@49'(Norm Pressure


10 20 30 40 50
Time


Figure A-18. Load vs Time: BH1@49'(Norm Pressure = 32psi)






126


&-4
*~ r a


'.1
4


-* bhl-49-23


60



25psi)


"Vt.-..,


-*-bhl-49-32


$

.I: j: r


I I II II I II II I II









































0 10 20 30 40 50
Time



Figure A-19. Load vs Time: BH1@49'(Norm Pressure

















J

-- '.


0 10 20 30 40 50 60 70
Time



Figure A-20. Load vs Time: BH1@49'(Norm Pressure = 47psi)









127


-- bh1-49-38


60




38psi)


-* bh 1-49-47




































Figure A-21. Load vs Time: BH1@54'(Norm Pressure


.. .
*. . .
f. . .
.



| : :: : :


60



26psi)


200



15













0 10 20 30 40 50 60
Time


Figure A-22. Load vs Time: BH1@54'(Norm Pressure = 34psi)








128
128


--bhl-54-28


---bhl-54-34

















160 -


140


120 -


100


80 I


60


40


20


144


0 10 20 30 40 50 60
Time


Figure A-23. Load vs Time: BH1@54'(Norm Pressure


38psi)


250



200 -



150



100 .



50



0
0 10 20 30 40 50 60
Time


Figure A-24. Load vs Time: BH1@54'(Norm Pressure











129


43psi)


-o
8


--- bhl-54-38


---bh1@54-43







































. . .
I .... ..












0 10 20 30 40 50 60 70
Time




Figure A-25. Load vs Time: BH1@54'(Norm Pressure


* bhl-54-47


















80






47psi)


*6


Time


Figure A-26. Load vs Time: BH1@55'(Norm Pressure


22psi)


0
'.4.,r


1


r


L









.4. 7 i'-9
'." 1.I


0 10 20 30 40 50 60 70
Time
Figure A-27. Load vs Time: BH1@55'(Norm Pressure = 31psi)


10 20 30
Time


Figure A-28. Load vs Time: BH1@55'(Norm Pressure



131


-
1" I


... .I
.. i!
i f:
I~
,


---bhl-55-39


39psi)


40 50 60


""


,I: r~I:I*
.....


-*-bhl-55-31

















... .. .

/ "* ,1.1 JO JV. *

,'. . . ..... .

o










0 10 20 30 40 50 60 70
Time



Figure A-29. Load vs Time: BH1@55'(Norm Pressure = 48psi)


10 15 20
Time


25 30 35 40


Figure A-30. Load vs Time: BH2@43'(Norm Pressure = 25psi)














132


--bhl-55-48


--- bh2-43-25























A.


12


. .* .


S. ..........








0 5 10 15 20 25 30 35
Time




Figure A-31. Load vs Time: BH2@43'(Norm Pressure = 29psi)






300 . '. '. '. .


. . .

50 . . .








100 :
Tim















50








0 5 10 15 20 25 30 35 40 45 50
0 5 10 15 20 25 30 35 40 45 50


Figure A-32. Load vs Time: BH2@43'(Norm Pressure









133


33psi)


-- bh2-43-29


-*--bh2-43-33




















I ....... .. .
S-4--bh24336









0 5 10 15 20 25 30 35 40 45
Time


Figure A-33. Load vs Time: BH2@43'(Norm Pressure = 36psi)


, / *,
r
*ir *


4I



4


Figure A-34. Load vs Time; BH2@44'(Norm Pressure


25psi)


/ '
.....I. ,


.4il....
t ._/ ^. .^ .













































10 15 20 25 30 35 40
Time


Figure A-35. Load vs Time: BH2@44'(Norm Pressure


-4-bh2-44-29















45




29psi)


Time


Figure A-36. Load vs Time: BH2@44'(Norm Pressure = 32psi)





















4. .) I i I 4
4 4
4. 4


4


30 35 40 45 50


Figure A-37. Load vs Time: BH2@44'(Norm Pressure = 36psi)









7

.. . .~ .. ",

r' ,*. /
4

.. . . . . .



.5 I\ .I .,. . . . . .. .


Figure A-38. Load vs Time: BH2@45'(Norm Pressure = 30psi)


















136


---bh2-44-36


. .. .' . '


















300




250 1


'
200 :



150 -



100



50 -




0 5 10 15 20 25 30 35 40 45 50


Figure A-39. Load vs Time: BH2@45'(Norm Pressure


--- bh2-45-33


33psi)


-- bh2-45-36


0 10 20 30 40 50 60
Time


Figure A-40. Load vs Time: BH2@45'(Norm Pressure


36psi)





































Figure A-41. Load vs Time: BH2@50'(Norm Pressure


25psi)


0 10 20 30 40 50 60
Time


Figure A-42. Load vs Time: BH2@50'(Norm Pressure


I h ..1&


-*-- bh2-50-29


29psi)







































10 20 30
Time


40 50


Figure A-43. Load vs Time: BH2@50'(Norm Pressure


10 20 30
Time


3


- bh2-50-40


40 50


Figure A-44. Load vs Time: BH2@50'(Norm Pressure












139


40psi)


/ // ////


-- bh2-50-35












60




5psi)
























- bh2-54-26


10 20 30 40 50 60
Time


Figure A-45. Load vs Time: BH2@54'(Norm Pressure


/t i'. 1l
.. .,* .
Ii .1 L


Figure A-46. Load vs Time: BH2@54'(Norm Pressure


26psi)


-*- bh2-54-32


200

180

160

140

120
l3T
100
-j
80

60

40

20

0


0 10 20 30 40 50 60 70
Time


0


32psi)







































0 10 20 30


40 50 60 70


Time


Figure A-47. Shear Stress vs Displacement; BH2@54'(Norm Pressure = 35psi)


- bh2-54-42


10 20 30 40 50 60 70


Time



Figure A-48. Load vs Time: BH2@54'(Norm Pressure = 42psi)


-- bh2-54-35















HHH A TW


4 i


80




60



40



20
: :
o.*


/ 4. '


i :


.*
*i .9


--- bh2-55-30


0 5 10 15 20 25 30 35 40 45
Time



Figure A-49. Load vs Time: BH2@55'(Norm Pressure = 30psi)


250




200




150 "-




100




50 -




0


0 10 20 30 40 50 60 70
Time




Figure A-50. Load vs Time: BH2@55'(Norm Pressure = 35psi)









142


-- bh2-55-35



















250




200



150 ............... .. ... .
150
-Ja


100




50



0
0 10 20 30 40 50 60

Time




Figure A-51. Load vs Time: BH2@55'(Norm Pressure


7


300



250 -

*
200 -


150



100



50


0 *


-- bh2-55-40














0






40psi)


- bh2-55-45


0 10 20 30 40 50 60 70
Time




Figure A-52. Load vs Time: BH2@55'(Norm Pressure = 45psi)








143












6000


5000



4000



3000



2000



1000



0
0 1000 2000 3000 4000 5000 6000
Normal Stress (psi)



Figure A-53. Shear Stress vs Normal Stress; BH1@44'


2500 -


1500 --

a


1000 /-




500 --




0
0 500 1000 1500 2000 2500 31
Normal Stress (psi)



Figure A-54. Shear Stress vs Normal Stress; BH1@45'



144


* BH1@44 0 ft


7000


SBH1@45 0 ft


_V___ _


/
/


I-n














3000




2500




2000




S1500




1000




500------




0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Normal Stress (psi)




Figure A-55. Shear Stress vs Normal Stress; BH1@47.5'


a.
2500


2000
,c


1500


1000



500



0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Normal Stress (psi)




Figure A-56. Shear Stress vs Normal Stress; BH1@48'





145


* BH1@BH1@48 0 ft


# BH1@47 5 ft













6000




5000




4000




3000 BH1@49 0 ft




2000




1000




0-
0 1000 2000 3000 4000 5000 6000 7000
Normal Stress (psi)



Figure A-57. Shear Stress vs Normal Stress; BH1@49'


600




500




400


300

300 --BH1@54 Oft




200




100





0 100 200 300 400 500 600 700 800
Normal Stress (psi)



Figure A-58. Shear Stress vs Normal Stress; BH1@54'
Figure A-58. Shear Stress vs Normal Stress; BH1 @54'




















500




400



a
300
(a)


.c
200




100




0


Figure A-59.



5000


4500


4000


3500


'V 3000
a-

S2500
==

S2000


1500


1000


500


0 -


_ _ _ _ /
^^ZJ^ZJ^Z^^^Z^^^ZZ^^JZ
_ _ _ _ 7 _





/




/
/
-^^^^^^ ,^^^^^^^^
_ / _ _ _
^^^^^^^^^ZZ^Z^^ZZ
_ _ _ _
_ _ z _ _ _
_._ _ _
^ _ _ _


/


200 400 600 800

Normal Stress (psi)




Shear Stress vs Normal Stress; BH1@55'


0 500 1000 1500 2000 2500
Normal Stress (psi)




Figure A-60. Shear Stress vs Normal Stress; BH2@43'


* BH1@55.0 ft


* BH2@43 ft





























3000




2000




1000




0
0 500 10 0 1500 2000 2500 3000 3500
Normal Stress (psi)



Figure A-61. Shear Stress vs Normal Stress; BH2@44'


0 500 1000 1500 2000 2500 3000
Normal Stress (psi)


3500 4000 4500


Figure A-62. Shear Stress vs Normal Stress; BH2@45'


S* BH2@44 ft


* BH2@45 ft






























* BH2@50 ft


Figure



800


700


600


500
-


S400


S300


200


100


500 1000 1500 2000 2500 3000 3501
Normal Stress (psi)



A-63. Shear Stress vs Normal Stress; BH2@50'


* BH2@54 ft


0 200 400 600 800 1000 1200 1400
Normal Stress (psi)




Figure A-64. Shear Stress vs Normal Stress; BH2@54'


1600

























500




S400


S. -- BH2@55 ft

S300/




200




100---





0 100 200 300 400 500 600 700 800 900
Normal Stress (psi)




Figure A-65. Shear Stress vs Normal Stress; BH2@55'


7nn(
















Vertical Displ. (m)
ino n


50.00



50.20



50.40



50.60



50.80



51.00



51.20



51.40


-0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80



Figure A-66. Mapping Results Borehole 3 @ 51'.





























151


Due to
Clogging




















Horizontal 'iPI Inm)


-- R-Wheel
-m- L-Wheel
















































































0 0.05 0.1 0.15


0.2 0.25


. . . .


. . . .













. . .


. . . . .




. . . . .

. . .
. . . . .
. . . . .


0.3 0.35


Hor. Displ. (in)






Figure A-67. Mapping Results Borehole 3 @ 49'

















































152


SR-Wheel

-- L-Wheel









APPENDIX B
SAMPLES OF LABORATORY TESTING AND DATA REDUCTION RESULTS













Table B-1. Sample FDOT Laboratory Test Results for Borehole #1

S I'ATE MATERIALS R C
Rock Core
OFFILCE FtTLbti,.R .i-eiJ rn' 4.27 -15
I.'ncontincd Lornprrr::..ion- lpil4
Foundauuns Laborairon 13 n1in I I lue I .I I


Tsiw I rj\iij) Drni IDE TT.ST 1. 'T- UT. WEl 1. r O coftR
r, TOP T DITE V HT trilT HT R1O FAC-TOR
. l !1 "' II i 'A T %%p I I 1 II

CB-11 1T 40.50 8/102006 2,3420 2.4850 4634 155.4 094
2U 4.8177 2.4610 799.3 132.9 1.96 1.00
3T _2.4465 24200 374.3 126.7 1.01
4T 2 .3805 2.4200 396.3 137.9 0.98
5U 45.50 4.1642 2.4765 751.1 142.6 1.68 1.02

CB-112 1U 45.50 8/10/2006 3.6302 2.4545 679.5 150.7 1.48 1.04
2T 2.4455 2.4625 442.7 144.8 0.99
3U 4.5233 2.4315 750.0 136.0 1.86 1.01
4T 2.3470 2.4250 399.4 140.4 0.97
5U 4.6885 2-4535 805.6 138.5 1.91 1.01
ST 2.1235 2.4700 3842 143.9 0.86
7T 2.5135 2.4600 454.9 145.1 1.02
8U 4.8195 2.4570 848.5 141.5 1.96 1.00
8T 2.5560 2.4640 472.0 147.5 1.04
10U 50.50 4.7962 2.4740 892.8 147.5 1.94 1.00

CB-1/3 1T 50.50 8/102006 2-4945 2-4510 464.0 150-2 1.02
2U 4.7732 2.4630 911.1 152.6 1.94 1.00
3T 2.4785 2.4495 451.5 147.2 1.01
4T 8/11/2006 2.4555 2.4545 388.3 127.3 1.00
5T 2.3780 2.4340 355.0 122.2 0.98
6_T 55.50 2.4080 2.4240 34..0 118.6 0.99

CB-114 1U 55.50 8/14/2006 4.7672 2.3530 693-6 127-5 2_03 1 00
2T 2.5350 2.3975 384.2 1279 106
3T 2.5305 2-4060 3534 1170 1.05
4U 4.8415 2.4215 758.B 129.6 2.00 1 00
5T 2.020 2.4115 341.0 1292 0.91
6U 4.8682 2.4230 766.8 130.1 2.01 1.00
7T 2.3085 2.4170 345.1 124.1 0.96
plJ 47217 2 4350 771 1250 1 9 100
9T 60.50 _2.5060 2.4400 393.8 128.0 1.03

CB-115 IT 6050 8,14'3006 23600 20160 2271 114 1 17
2T 0'?t15 1000 7077 1130 096
3T 2.4585 22185 285.8 114.6 1.11
4U 4.0008 2.0860 420.4 117.1 1.92 1.01
5U 4.8755 22955 597.1 112.7 2.12 1.00
6T _2.4770 2.4000 349.0 118.6 1.03
7U 4 83i 24-230 6Ba 3 11 8 200 1 00
BU 4.6912 2.4060 665.3 118.8 1.95 100
9T 6550 2_4465 2.3815 3262 114.0 1.03

CB-1/6 1T 65.50 8/15/2006 2.5280 2.3400 328.9 115.3 1.08
2T 2.3860 22185 296.0 122.3 1.08
3U 4.8008 2.3850 675.2 119.9 2.01 1.00
4T 2 329 2 40-0 34-. 1 12410 097
5T 70.50 2.3140 2.3200 303.5 118.2 1.00o













Table B-2. Sample FDOT Laboratory Test Results for Borehole #1

Project Number Fuller Warren Location; CB-1
Lab Number: Date Received: 83/92006
Bridge Number: Tested by: JC
LMS Number:


RrPi 1 'i P I DR 1 T qul PIrFl.P STRIP UN REC T4Rl T DR
/ il 1 'TTWTr I. 4 l STRC'ITH F.AL. i F I. W WIT wT
ll rI ip l. I .lb. (pa l 'pii i 'I (I 1 ) I .',RU J I' i a l

CB-1fl IT J1 1)04 3s632 433 5 0O0640 -3) 67 4271 6738 859 3
2?U 16 73 1138 10174 2133 00419 103 431 I 12243 Il 10)
3T 7301 1030 :76 ?9 B 004-4 4101 781 711 7
4T 1560 1193 799.5 S3 4 00-445 4255 21 1 767 7
5U 10.93 128.6 65782 1335.3 0.0609 1.46 433 1181.1 1107.4

CB-1/2 1U 8.01 139.5 9815.4 1990.3 0.0699 1.93 94f74 424.3 1098.2 1048.2
2T 10.47 131.1 1191 125.9 0.0443 418.9 861 819.1
3U 14.44 118.9 3855 822.8 0.0496 1.10 302.8 10517 957.2
41 11 tI 12,6 d96 1002 0 0.1. 3_0 f 7ib ,;'. 5
5U IdO 1214 34c3 726, 00672 143 4352 12394 11403
6T 11.39 129.1 1814 2202 0.0509 328.3 711.6 672.4
7T 11.43 130.2 2473 254.6 0.0558 434.1 887.6 841.1
8U 11.42 127.0 4494 945.7 0.0522 1.08 368.9 1201.4 1116.1
9T 11.39 132.4 1875 189.6 0.0411 429.5 900.9 852.7
1OU 1 #DIV4JO OV! = _VAUE! #VALUE

CB-13 1T 8.79 138.1 2483.1 258.6 0o_ 04 60f48 377.8 840.9 603.5
2U 8.31 140.9 7533 1575.1 0.0527 1.10 372.3 1279.6 1210
3T 9.49 134.5 1582 185.9 0.0408 428.2 8782 839.2
4T 16.13 109.6 245 25.9 0.0289 427.1 814.5 760.7
5T 24.16 98.5 112 12.4 0.0213 372.3 726.9 657.9
BT 3127 90.4 183 19.9 0.0297 435.2 780.7 698.4

CB.-14 1U 26 J 1009 / .9 1745 0 016 1 08 9277 A271 111184 97. 1
2T 2305 1039 161 190 00223 3724 7562 6843
3T 30.80 89.5 121 12.7 0.0393 435-3 780.1 6989
All 77 3 1061 1408 305.7 0.0440 0.91 419 1165.6 1029.8
_5T 2222 105.7 299 35.9 0.0278 364.9 705.4 643.5
6U 22.05 106.6 1468 318.3 0.0547 1.12 308.2 1073.8 935.5
7T 27.86 97.1 215 24.6 0.0356 313.1 6578 582.7
__u 25 314 I005 77' 1651 00576 122 _3732 10988 9521
91 2343 1037 I67 278 100440 4255 819 74.43

CB-.1 1T 3630 843 109 14.6 00336 967 3152 542 4816
2T 41.19 80.0 61 9.2 00242 431.1 637.8 577.5
3T 45.34 78.8 29 3.4 00173 432.5 716.5 627.9
4U 37.67 85.1 338 98.4 0.0608 1.52 370.4 789.6 674.9
5U 3626 82.7 423 1023 0.0610 125 3706 659 807.5
6T 33.82 88.7 136 14.5 0.0388 376.5 724.3 636.4
'U 34 3-1 862 5.50 Iij3 00565 1 16 l 31b. t 3 i169
_U 29 72 91 6 4"'9 1_0 1 D 0420 090 3009 9652 513
9T 3054 874 119 13.0 D.0401 371.3 E97 E ?O

CB-1ls I1T 2923 892 51.7 5.6 0,0276 5838 3152 643.7 569.4
2T 2722 96.1 46 55 00407 4313 7267 663-5
3U 2898 930 187 41. 0.0531 1.11 370.4 1145.1 893.5
4T 21.96 101.7 53 6.0 0.0284 384.9 708.7 48.8
ST 25.61 94.1 30 3.5 00372 432-5 735.6 673.8






























0.0 200.0 400.0 600.0 800.0 1000.0


14000 -
1200 0
10000 -
8000 -
6000 -
4000 -
2000

00 2000 4000 6000 8000 10000 12000 14000 16000 18000


IZUU U
1000 0
8000
6000
4000
200
00
00 2070 4m00 6000 8000 1o00 12000 14m00 16i00


00 2000 40000 0 8000 10000 12000 14000 16000


120 0
1000 0

8000

6000 -----V^--------

4000

20 0

00
00 2000 4 0 6000 8000 100 0 12000 14000 160 0


Figure B-1. Direct Shear Test Results on Gator rock samples using Commercial Device.

























156


0.0 500.0 1000.0 1500.0 2000.0


















1200 0

1000 0
800 0-

6000

40 2
2000

001
00 2(D0 4(00 6000 Rnn i0om0D 12D0 14000 16n0n


7000 | 9
6000 -
5000


3000
2000 -
1000

00 20 40 0 0 10 12 140 16 1
00 2000 4000 BDO SO 1000012000140001600018DOO


)oD
000 --------- ^ ^-^ ^-------------
00ol//




iooo1
500 0


50 0


O 0 5
00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000


00 2000 4000 6000 8000 10000


o o -----------/ -------
00
00

00
00
00
00 2000 4000 6000 8000 10000 12000 14000 16000








7000
6000
5000
4000
300 0 --- ^ "----------------
2000
1000

00 2000 4000 6000 o8000 10000om 1200


00 5000 10000 15000


00 2000 4000 6000 8000 10000


Figure B-2. Direct Shear Test Results on Gator rock samples using Commercial Device.










157





12]


8














16


00 1000 2000 3000 4000 5000 6000


00 2000 4000 6000 8000



19
400 0
350 0
300 0
250 0
200 0
150 0
100 0
500
00
00 1000 2000 3000 4000 5000 6000


00 2000


4000


6000




18


UU


00 2000 4000 6000 8000


Figure B-3. Direct Shear Test Results on Gator rock samples using Commercial Device.
























158


* -


































y = 0.7285x + 309.62
2 = 0 9527


y = 0.768x + 336.21
R2= 0.8499


Normal Stress (psi)





Figure B-4. Prototype Device Representative Laboratory Test Results.


Shear Normal Shear Normal
Stress Stress Stress Stress
(psi (psi) (psi) (psi)
320.66 101.13 613.53 288.9
558.29 314.27 871.75 703.93
730.09 530.72 1026.29 915.56
928.73 719.22 1440.83 1099.9
925.28 904.39 556.72 330.77
1068.14 1100.15 739.09 555.59
944.4 825.92
974.03 991.06
1236.9 1293.29


1600


1400


1200


1000


800


C0 600


400


200


0




















I I


520




470
g
Q.
io

ti 420
w


370 -




320

F


2 /U
-06 -04 -02 0 02 04
Hor. Displ. (in)



Figure B-5. Mapping Results in Laboratory Contour Mold.


























160


I


* R-V~heeI
---- L-V~heeI


-



















Hor. dispel. (in)


3.40





3.90





4.40





S4.90





5.40





5.90

-0.6 -0.4 -0.2 0


- R-Wheel
-u L-WleeI


0.2 0.4 0.6 0.8


Mapping Results in Laboratory Contour Mold


Figure B-6.









APPENDIX C
FIELD AND REDUCTION DATA












Table C-1. Borehole #1 at 44 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration (calculated)
Height H20 (ft)
Length F ip-in i
Penetration Depth Ir.I
Stud Cap Area(in2)
No. of Studs
Weight of Insrum (Ibs).
LVDT Pressure Load Est. Load
I'Ii (volts) (volts) (psi)
0.0012 0.0125 0.0007 13.1031
0.0087 0.0126 0.0016 32.7464
-0.0023 0.0125 0.0005 9.8822
0-0412 0.0126 00049 101-7274
0-1112 0.0125 0.0055 10199723
0.1194 0.0125 0.0045 93.17
0-1227 0.0125 0.0056 100-8071
0.2138 0.0124 0.0069 127.158
0.2514 0.0124 0.0049 91.0879
0.2442 0.0123 0.0056 105.1375
0-2698 0.0124 0006 110-2182
0.3618 0.0123 0.0055 104.9961
0-3691 0.0124 0.0058 109-6231
03687 0.0124 0.0052 102-7319
0.4043 0.0124 0.0068 120.4907
0.4806 0.0123 0.0064 117.8761
0.4998 0.0121 0.0054 95.3391
0.5002 0.0123 0.0056 98.4947
0.5179 0.0122 0.005 115.4488
0.6064 0.0122 0.0068 118.6344
0-6192 0.0122 00059 105-8714
0.6297 0.0122 0.0063 108.8987
0-6269 0.0123 0.0062 113-0674
0-6854 0.0123 0007 120-1329
0.6577 0.0122 0.0064 112.5221
0.727 0.0124 0.0062 112.0803
0.6382 0.0124 0.0069 121.8166
0.7308 0.0123 0.0077 144.0097
0.6435 0.0123 0.0071 125.051
06883 0.0123 0.0068 1187618
0-7355 0.0124 0.0064 111-9886
0-6445 0.0123 006 111.345
0-6403 0.0124 0.0064 112-7411
0-7261 0.0124 00062 106-5732
0.7182 0.0122 0.006 106.8549
0.6687 0.0123 0.0058 103.6154
0.634 0.0123 0.006 108.0474
0.7362 0.0124 0.0059 109.5219
0.6516 0.0124 0.0061 105.5629
0-6295 00123 00061 105.198


26
44
0.0233
0.1964
42
38
Est. Press.
(psi)
25.0557
25.1595
25.0343
25.2602
24.9092
25.0526
24.958
24.8085
24.781
24.6345
24.7871
24.5216
24.8268
24.7078
24.7414
24.543
24.2622
24.5521
24.3721
24.3324
24_424
24.3171
24.5643
24.6406
24.427
24.723
24.7932
24.5247
24.6071
24.6437
24.7017
24.5979
24.7108
24.7444
24.4911
24.6925
24.6834
24.7169
24.8756
24.6345


0.011961528
Unit Wt H:') l:ll' ?
Unit Wt Rod (lblit)
Cylinder Bore Area (in2)
Shear Stud Area
Normal Stud Area
qu (psi)


Normal Force
(Ib)
2.6150
2.6403
2.6150
2.6403
2.6150
2.6150
2.6150
2.5896
2.5896
2.5542
2.5896
2.5642
2.5896
2.5896
2.5896
2.5642
2.5135
2.5642
2.5389
2.5389
2.5389
2.5389
2.5542
2.5542
2.5389
2.5896
2.5896
2.5642
2.5542
2.5542
2.5896
2.5642
2.5896
2.5896
2.5389
2.5642
2.5542
2.5896
2.5896
2.5542


Shear Force
(Ib)
-78.2670
-83.5448
-172.7537
184 0820
232 7415
151.6424
240 8514
346.2801
184.0820
240.8514
2732910
232.7415
257 0712
2084118
338.1702
305.7306
224.6316
240.8514
273.2910
338.1702
2651811
297.6207
289 5108
354 3900
305.7306
289.5108
346.2801
411.1594
362.4999
338 1702
305 7306
2732910
305 7306
289 5108
273.2910
257.0712
273.2910
265.1811
281.4009
281 4009


Max (0.0591)


62,4
2.96
4.72
0.165492416
0.001137173
1406.6
Normal Stress
(psi)
2299.5222
2321.8260
2299.5222
2321.8260
2299.5222
2299.5222
2299.5222
2277.2184
2277.2184
2254.9147
2277.2184
2254.9147
2277.2184
2277.2184
2277.2184
2254.9147
2210.3071
2254.9147
2232.6109
2232.6109
2232.6109
2232.6109
2254.9147
2254.9147
2232.6109
2277.2184
2277.2184
2254.9147
2254.9147
2254.9147
2277.2184
2254.9147
2277.2184
2277.2184
2232.6109
2254.9147
2254.9147
2277.2184
2277.2184
2254.9147


Shear Stress
(psi)
-472.9338
-504.8255
-1043.8771
1112.3292
1406.3573
916.3104
1455.3620
2092.4229
1112.3292
1455.3620
1651.3807
1406.3573
1553.3713
1259.3432
2043.4182
1847.3995
1357.3526
1455.3620
1651.3807
2043.4182
1602.3760
1798.3948
1749.3901
2141 4276
1847.3995
1749.3901
2092.4229
2484.4604
2190.4323
2043A4182
1847.3995
1651.3807
1847.3995
1749.3901
1651.3807
1553.3713
1651.3807
1602.3760
1700.3854
1700.3854












Table C-2. Borehole #1 at 44/30 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration


Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum
Load Est. Load


LVDT
(in)
-0.004
-0.009
-0.01
0.0808
0.1276
0.1265
0.1333
0.2226
02381
0.2337
0_2425
0.3105
0_3585
0.3558
03531
0.3837
0_4372
0.4514
0_4566
0.4611
0.4973
0.5263
0_5218
0.5109
0.5284
0.5866
0-5973
0.6
0.608
0.608
0.6574
0.6814
0.677
0.6797
0.6728
0.6711
0.6715
0.6788
0.7335
0.6477


Pressure
(volts)
0.0156
0.0157
0.0157
0.0157
0.0156
0.0154
0.0155
0.0154
0.0154
0.0154
0.0155
0.0154
0.0153
0.0153
0.0154
0.0154
0.0153
0.0154
0.0154
0.0154
0.0155
0.0154
0.0153
0.0153
0.0155
0.0154
0.0154
0.0154
0.0154
0.0155
0.0154
0.0155
0.0154
0.0155
0.0155
0.0155
0.0156
0.0155
0.0156
0.0155


0.0116 209.4308
0.0121 207.4A57
0.0108 203.2018
0.0107 189.9016
0.0108 185.7182
0 01 185.3981
0.0106 185.8834
0.0101 185.2568
0.0121 221.2384
00109 196.1621


26 (ft)
44 (ft)
0.0233 (in)
0.1964 (in2)
42
38
Est Press. Norr
(psi)
31.2937
31-4982
31.3272
31.37
31.1991
30.8664
31.0709
30.7108
30 7382
30.7199
309183
30.7566
30.546
30.6467
30 7749
30.8267
30 6772
30.8756
30 7382
30.723
30.903
30.8969
30 6894
30.5795
31.0739
30.7932
30 7138
30.8908
30.7596
31.0343
30.7321
31.0343
30.8023
31.0312
30.9061
30 9671
31.1411
30.9763
31.1136
31 0343


nal Force
(Ib)
3.8146
3.8533
3.8533
3.8533
3.8146
3.7372
3.7759
3.7372
3.7372
3.7372
3.7759
3.7372
3.6985
3.6985
3.7372
3.7372
3.6985
3.7372
3.7372
3.7372
3.7759
3.7372
3.6985
3.6985
3.7759
3.7372
3.7372
3.7372
3.7372
3.7759
3.7372
3.7759
3.7372
3.7759
3.7759
3.7759
3.8146
3.7759
3.8146
3.7759


Uni
Uni
Cylind
She;
Normn


(calculated) 0.017262341 M'l,.iIl I-S.1
tWtH 62.4 (IbM13)
tWt Rod 2.96 (lbtft)
er Bore Area 4,72 (in2)
ar Stud Area 0.165492416
al Stud Area 0.001137173
qu (psi) 1406.6
Shear Force Normal Stress Shear Str
(b) (psi) (
-132.2042 3354.4337 -798.8!
-75.4349 338844608 -455-8
-140.3141 3388.4608 -847.8!
151.6424 3388.4608 916.3
5.6642 3354.4337 34.Z
119.2028 3286.3794 720.2!
200.3018 3320.4066 1210.3:
346.2801 3286.3794 2092.4
240.8514 328633794 145531
232.7415 3286.3794 1406.3!
257.0712 3320-4066 1553_3
386.8296 3286.3794 2337.4
338.1702 3252-3523 2043_4
305.7306 3252.3523 1847.3!
305.7306 3286-3794 18473!
492.2584 3286.3794 2974.51
646.3466 3252-3523 3905_5!
565.2475 3286.3794 3415.5.
508.4782 3286-3794 3072_5
532.8079 3286.3794 3219.5;
735.5555 3320.4066 4444.6
597.6871 3286.3794 3611.51
638.2367 3252-3523 3856_5!
532.8079 3252.3523 3219.5;
638.2367 3320.4066 3856.5!
638.2367 3286.3794 3856.5!
638.2367 3286-3794 3856-5!
678.7862 3286.3794 4101.6
549.0277 3286.3794 3317.56
654.4565 3320.4066 3954.6
727.4456 3286.3794 4395.6
767.9951 3320.4066 4640.6I
662.5664 3286.3794 4003.61
654.4565 3320.4066 3954.61
662.5664 3320.4066 4003.61
597.6871 3320-4066 361151
646.3466 3354.4337 3905.5!
605.7970 3320.4066 3660.5
767.9951 3354.4337 4640.6I
670.6763 3320-4066 4052_6


I C 011 i
0.001
0-0017
0.0009
0.0045
0.0027
0.0041
0.0051
0.0069
0-0056
0.0055
0-0058
0.0074
0-0068
0.0064
0-0064
0.0087
00106
0.0096
0-0089
0.0092
0.0117
0.01
00105
0.0092
0.0105
0.0105
0-0105
0.011
0.0094
0.0107


17.8077
31.8123
17.4575
92.1535
55.3993
77.1109
103.1702
126.9984
108.6658
103.3552
106.5662
142.6636
127.8524
121.811
125.3115
159.4832
189.7855
169.9178
168.1431
165.1735
211.9687
196.145
185.227
166.1557
184.5349
189.6036
1841563
191.5948
178.5073
188.1496


ess
psi)
536
208
583
104
261
917
385
229
620
573
713
463
182
995
995
073
963
494
166
307
479
682
916
307
916
916
916
150
401
010
432
666
057
010
057
682
963
729
666
104












Table C-3. Borehole #1 at 44/36 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetraion
H-I,.rb FRO
Length Pipe
Peneration Depth
Stud Cap Area


(calculated) 0.0233393
26 (ft)
44 (ft)
0.0233 (in)
0.1964 iln2j


LVDT
(in)
-0.0153
-0.0068
-0.0108
0.0516
0.0957
0.0888
0.1003
0.1548
0.1937
0.1814
0.1859
0.2262
0.2747
0.2694
0.2717
0.2773
0.3318
0.3357
0.342
0.3522
0.3899
0.4078
0.4006
0.4019
0.4208
0.4388
0.457
0.4494
0.4457
0.458
0.4834
0.4768
0.4792
0.4841
0.4856
0.5223
0.5148
0.5185
0.5456
0.553
0.5515
0.5438
0.5546
0 5865


No. of Studs 42
Weight of Instrum 38
Pressure Load Est. Load
(volts) (volts) I c-l I
0.0193 00007 15.2841
0.0191 0.0007 14.3915
0.0193 0.0024 49.9021
0.0192 0-0067 141.5435
0.0191 0-0082 162.1631
0.019 0.0079 157.9871
0019 0-0082 154.8951
0.0189 0_0096 187.7463
0.0188 0.0092 178.2573
0.0188 0-0097 186.1988
0.0188 0.0092 171.36
0.0189 0.0106 194.6509
0.0188 0.0091 171.2183
0.0189 0.0093 168.3364
0.0189 0.0096 174.0109
0019 00093 187.7795
0.0188 0.011 203.9595
0.0189 0.0108 191.9929
0.0189 0.0103 186.2976
0.019 0.0102 188.5025
0.019 0.0124 239.9699
0.0191 0.0127 234.4101
0.0189 0.0133 250.2952
0.0189 0.0116 230.6797
0.019 0.0139 264.8365
0.0189 0.0155 272.5093
0.019 0.0146 257.5415
0.0189 00139 252.7445
0.0191 0.0132 249.6937
0.0191 0.0156 289.8108
.0019 0-0147 2776628
0.0191 0-0151 2828226
0.0191 0.0155 271.8486
0.019 00159 284.9286
0.019 0_014 266_994
0.019 0.0153 268.6705
0.0191 0-0139 264_301
0.0191 0-0145 267.2162
0.0191 0.0164 301.7502
0.0191 0.0168 292.9081
0.0191 00157 286.8157
0.0191 0.0156 286.8811
0.0191 0.0182 317.9979
0.0192 0-0186 324.7117


Unit Wr H0
Unit Wt Rod
C Iuder Bore Area


Max(0.0591)
62.4 ilb'lt3i
2.96 ilD111i
4.72 tirl2


Shear Stud Area 0.165492416
Normal StudArea 0.001137173


Est. Press.
(psi)
38.6395
38.2946
38.5022
38496
38.1817
38.0627
380688
37.7575
37.5103
37.6293
37.6843
37.7331
37.6171
37.8582
37.7117
37.9345
37.5713
37.7026
37.7636
37.9284
37.9131
38.1237
37.8948
37.9009
38.0932
37.8368
37.9894
37.8765
38.1634
38.197
38.0169
38.1176
38.1268
37.9406
37.9528
38.0169
38.2061
38.2488
38.2092
38.2153
38.2916
38.1664
38.2153
38.4564


qu(psi)
Normal Force
(lb)
5.2463
5.1689
5.2463
5.2076
5.1689
5.1302
5.1302
5.0915
5.0528
5.0528
5.0528
5.0915
5.0528
5.0915
5.0915
5.1302
5.0528
5.0915
5.0915
5.1302
5.1302
5.1689
5.0915
5.0915
5.1302
5.0915
5.1302
5.0915
5.1689
5.1689
5.1302
5.1689
5.1689
5.1302
5.1302
5.1302
5.1689
5.1689
5.1689
5.1689
5.1689
5.1689
5.1689
5.2076


1406.6
Shear Force
(Ib)
-156 5339
-156.5339
-18.6656
330 0603
451 7089
427.3792
451 7089
565 2475
532.8079
573 3574
532.8079
646.3466
524.6980
540.9178
565.2475
540 9178
678.7862
662.5664
622 0169
613.9070
792.3248
816 6546
865.3140
727.4456
913 9734
1043.7319
970.7427
913 9734
857.2041
1051.8418
978 8526
1011 2922
1043.7319
1076 1715
922 0833
1027.5121
913 9734
962 6328
1116.7210
1149.1606
1059 9517
1051.8418
1262.6993
1295 1389


Normal Stress Shear Stress
(psi) (psi)
4613.4378 -945 8677
4545.3836 -945.8677
4613.4378 -112.7880
4579.4107 19944135
4545.3836 2729 4838
4511.3564 2582.4698
4511.3564 27294838
4477.3293 3415 5494
4443.3021 3219.5307
4443.3021 3464 5541
4443.3021 3219.5307
4477.3293 3905.5963
4443.3021 3170.5260
4477.3293 3268.5354
4477.3293 3415.5494
4511.3564 32685354
4443.3021 4101.6150
4477.3293 4003.6057
4477.3293 3758 5822
4511.3564 3709.5776
4511.3564 4787.6807
4545.3836 4934 6947
4477.3293 5228.7228
4477.3293 4395.6432
4511.3564 5522 7510
4477.3293 6306.8259
4511.3564 5865.7838
4477.3293 5522 7510
4545.3836 5179.7182
4545.3836 6355.8306
4511.3564 5914 7885
4545.3836 6110 8072
4545.3836 6306.8259
4511.3564 6502 8447
4511.3564 5571 7556
4511.3564 6208.8166
4545.3836 5522 7510
4545.3836 5816 7791
4545.3836 6747.8681
4545.3836 6943.8869
4545.3836 6404 8353
4545.3836 6355.8306
4545.3836 7629.9525
4579.4107 78259712












Table C-4. Borehole #1 at 44/45 feet.

FULLER WARREN BRIDGE
SHEAR DE'..ICE TEST RESULTS
Penetration (calculated) 0.0315611


Height H20
Lni]irli Pipe
Penetration Depirl
Stud Cap Area
No. of Studi
Weight of Instrum.
LVDT Pressure Load
in I (volts) (volts)
00026 0.0236 0 0006
0.0092 0.0237 0.0012
0.0235 0.0236 0.0047
0.1163 0.0236 0.0071
0.1217 0.0236 0.0061
0_1196 0.0235 0-0066
0.1505 0.0235 0.0087
0.188 0.0235 0.0116
0.1914 0.0234 0.0102
0.1455 0.0234 0.0095
0-1713 0.0233 00117
0.2696 0.0231 0.0124
02592 0.0232 0_0113
026 0.0232 0 0126
0.2727 0.0234 0.0132
0-3007 0.0232 0_0131
0.2944 0.0231 0.0136
0.3033 0.0231 0.0122
0.3096 0.0232 0.0142
0_3459 0.0231 0_0134
03456 0.0231 0_0143
0.338 0.0232 0.0132
0_3454 0.0233 0_0126
0.376 0.0232 0.0152
0.3898 0.0231 0.0132
0.3843 0.0232 0.0138
0.3783 0.0232 0.013
0_4252 0.0233 0_0148
0.4282 0.0231 0.014
0_4371 0.0232 0_0133
0_4277 0.0232 0_0129
0.4437 0.0233 0.0149
0.4601 0.0232 0.0139
0.4696 0.0233 0.013
04676 0.0233 0_0127
0.4873 0.0233 0.0158
05147 0.0232 0_0161
0_5122 0.0233 0_0133
0.5196 0.0233 0.0141
0_5519 0.0233 0_0158
0.5585 0.0233 0.0154
0.5569 0.0232 0.0149
0_5537 0.0232 0 0142
0.5895 0.0233 0.0159
0_5911 0.0233 0_0154
0.5895 0.0233 0.0146


26 (ft)
44 (ft)
0.0233 (in)
0.1964 (in2)
42
38
Est. Load Est. Press-


(psi)
11.9246
25.1674
89.1012
131.0439
115.3806
133.5284
172.2599
213.1098
202.6044
190.8982
236.9665
249.7214
232.8547
226.9515
260.6091
251.8566
243.6903
236.2665
256.3954
258.5332
253 576
240.8365
243 335
276.3736
240.8771
246.9885
238.3798
275.3098
248.3121
245.2762
248.9544
270.8451
256.6567
255.426
248.5851
289.205
280.7951
249.1179
260.1634
290.6166
270.584
257.2718
258.2668
292.5502
280.0365
264.8821


(psi)
47.1114
47.4929
47.1084
47.2121
47.1694
47.0351
47.087
46.9741
46.7391
46.7269
46.6933
46.1928
46.4278
46.3454
46.8398
46.3424
46.2111
46.147
46.3149
46.147
46.1531
46.3485
46.6414
46.3637
46.26
46.3881
46.3668
46.5346
46.2996
46.4431
46.4492
46.5773
46.3973
46.6842
46.614
46.5377
46.4003
46.5499
46.559
46.556
46.5285
46.4248
46.4736
46.5438
46.6231
46.6323


Unit Wt H20
Unit Wt Rod


62.4 ii).n3j
2.96 Il:l. i


Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.165492416
Normal Stud Area 0.001137173
qu (psi) 1406.6
Normal Force Shear Force Normal Stress


(Ib)
6.9101
6.9488
6.9101
6.9101
6.9101
6.8715
6.8715
6.8715
6.8328
6.8328
6.7941
6.7167
6.7554
6.7554
6.8328
6.7554
6.7167
6.7167
6.7554
6.7167
6.7167
6.7554
6.7941
6.7554
6.7167
6.7554
6.7554
6.7941
6.7167
6.7554
6.7554
6.7941
6.7554
6.7941
6.7941
6.7941
6.7554
6.7941
6.7941
6.7941
6.7941
6.7554
6.7554
6.7941
6.7941
6.7941


(Ib)
-164.6438
-115.9844
167.8622
362.4999
281.4009
321.9504
492.2584
727.4456
613.9070
557.1376
735.5555
792.3248
703.1159
808.5446
857.2041
849.0942
889.6437
776.1050
938.3031
873_4239
9464130
857.2041
808.5446
1019.4022
857.2041
905.8635
840.9843
986.9625
922.0833
865.3140
832.8744
995.0724
913.9734
840.9843
816.6546
1068.0616
1092.3913
865.3140
930.1932
1068.0616
1035.6220
995.0724
938.3031
1076.1715
1035.6220
970.7427


(psi)
6076.6048
6110.6320
6076.6048
6076.6048
6076.6048
6042.5777
6042.5777
6042.5777
6008.5506
6008.5506
5974.5234
5906.4691
5940.4963
5940.4963
6008.5506
5940.4963
5906.4691
5906.4691
5940.4963
5906.4691
5906.4691
5940.4963
5974.5234
5940.4963
5906.4691
5940.4963
5940.4963
5974.5234
5906.4691
5940.4963
5940.4963
5974.5234
5940.4963
5974.5234
5974.5234
5974.5234
5940.4963
5974.5234
5974.5234
5974.5234
5974.5234
5940.4963
5940.4963
5974.5234
5974.5234
5974.5234


Shear Stress
(psi)
-994.8724
-700.8442
1014.3198
2190.4323
1700.3854
1945_4088
2974.5073
4395.6432
3709.5776
3366.5447
4444.6479
4787.6807
4248.6291
4885.6900
5179.7182
5130.7135
5375.7369
4689.6713
5669.7650
5277.7275
5718.7697
5179.7182
4885.6900
6159.8119
5179.7182
5473.7463
5081.7088
5963.7931
5571.7555
5228.7228
5032.7041
6012.7978
5522.7510
5081.7088
4934.6947
6453.8400
6600.8541
5228.7228
5620.7603
6453-8400
6257.8213
6012.7978
5669.7650
6502.8447
6257.8213
5865.7838












Table C-5. Borehole #1 at 45/26 feet.


Penetrafon
Height H20
Length Pipe
Penetration De-pin
Stud Cap Area
No. of Studs


LVDT Pressure


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.024255156


27 in
45 ,ini
0.0343 (in)
0.1964 (in2)
42


Weight of Instrum- 38
Load Est Load Est. Press- Normal Force


(in)
-0.0042
-0.0015
-0.0084
0.1149
0.1217
0.125
0.1706
0.2442
0.2453
0.2514
0.2926
0.3645
0.3694
0.3639
0.3988
0.4599
0.4867
0.4817
0.4885
0.4872
0.5185
0.5641
0.5754
0.592
0.5741
0.5755
0.5747
0.6344
0.6614
0.6647
0.6725
0.6762
0.7184
0.7383
0.6309
0.7026
0.661
0.7348
0.639
0.6853
0.697
0.6551
0.7119
0.6392
0.6351


(volts) (volts) (psi)
00142 0.0006 108756
0.0142 0.0006 12.0886
0.0141 0.0026 48.2052
0.014 0.0023 467701
0.0138 0.0025 45.8423
0.0138 0.0033 62.3443
0.0139 0.0046 93.1161
0.0137 0.0056 100.4495
0.0139 0.0052 95.7382
0.0139 0.0052 96.3034
0.0139 0.0076 140.1488
0.0138 0.0059 105.1545
0.0138 0.0056 104.0458
0.0137 0.0055 100.3506
0.0138 0.0057 111.4829
0.0138 0.007 134.1244
0.0139 0.0077 138.4545
0.0139 0.0083 154.4097
0.0139 0.0071 134.6775
0.0139 0.0073 144.4112
0.0139 0.0084 155.2005
0.014 0.009 1699558
0.014 0009 1606679
0.014 0.0085 148.5167
0.014 0.0077 1449526
0.0139 0.0077 139.0642
0-0139 0.0086 150.3101
00141 0.0101 172.8601
0.0139 0.0097 173.189
0.014 0.0089 163.0679
0.0139 0.0092 160.0975
0.014 0.009 170.2833
0.0139 0.0102 181.3629
0.0139 0.008 139.9316
0.0139 0.0075 136.6767
0.0139 0.0076 139.2209
0.014 0.008 141.5216
0.0139 0.008 138.2833
0.014 0.0072 126.8708
0.0139 0.0077 136.4671
0.014 0.0079 136.4839
0.0139 0.0071 125.0566
0.014 0.0082 146.8155
0.0139 0.0071 131.0414
0.0139 0.0066 122.7966


(psi)
28.3883
28.3639
28.1869
28.0465
27.6833
27.6345
27.7322
27.4606
27.7352
27.8268
27.7108
27.5399
27.5552
27.485
27.5246
27.5735
27.8359
27.7871
27.842
27.8268
27.8176
27.9794
28.0038
27.9153
28.0313
27.8573
27.8756
28.1533
27.8817
28-077
27.8756
28.0404
27.8726
27.9
27.7078
27.7291
27.9885
27.7261
27.9702
27.8085
27.9366
27.7749
27.9855
27.8512
27.8878


Unit Wt H20


62.4 (IbMt3)


Unit Wt Rod 2.96 (lb/fl)
CvnIlmer 6ore Area 4.72 in2)
Shear Stud Area 0.358636506
Normal Stud Area 0.002464352
qu (psi) 822.8
Shear Force irmal Stud Stress Shear Stress


(Ib)
3 1877
3.1877
3.1490
3 1103
3.0330
3.0330
3.0717
2.9943
3.0717
3.0717
3.0717
3.0330
3.0330
2.9943
3.0330
3.0330
3.0717
3.0717
3.0717
3-0717
3.0717
3 1103
3-1103
3-1103
3 1103
3.0717
3-0717
3 1490
3.0717
3 1103
3.0717
3.1103
3.0717
3.0717
3.0717
3.0717
3.1103
3.0717
3.1103
3.0717
3.1103
3.0717
3.1103
3.0717
3.0717


(Ib)
-175_7137
-167.6038
-5.4058
-29_7355
-13.5157
51.3636
156.7923
237.8914
205.4518
205.4518
400.0894
262.2211
237.8914
229.7815
246.0013
351.4300
408.1994
456.8588
359.5399
375_7597
464.9687
513_6281
513_6281
473_0786
408 1994
408.1994
481_1885
602_8370
570.3974
505_5182
529.8479
513.6281
610.9470
432.5291
391.9795
400.0894
432.5291
432.5291
367.6498
408.1994
424.4192
359.5399
448.7489
359.5399
318.9904


(psi)
1293.5396
1293.5396
1277.8378
1262.1360
1230.7324
1230.7324
1246.4342
1215.0307
1246.4342
1246.4342
1246.4342
1230.7324
1230.7324
1215.0307
1230.7324
1230.7324
1246.4342
1246.4342
1246.4342
12464342
1246.4342
12621 360
1262.1360
1262.1360
1262.1360
1246.4342
12464342
1277.8378
1246.4342
1262.1360
1246.4342
1262.1360
1246.4342
1246.4342
1246.4342
1246.4342
1262.1360
1246.4342
1262.1360
1246.4342
1262.1360
1246.4342
1262.1360
1246.4342
1246.4342


(psi)
489.9494
467.3362
-15.0731
-82.9125
-37.6862
143.2190
437.1901
663.3217
572.8690
572.8690
1115.5848
731.1612
663.3217
640.7085
685.9348
979.9059
1138.1980
1273.8769
1002.5190
1047.7454
1296.4901
1432.1691
1432.1691
1319.1033
1138.1980
1138.1980
1341.7164
1680.9138
1590.4612
1409.5559
1477.3954
1432.1691
1703.5269
1206.0375
1092.9717
1115.5848
1206.0375
1206.0375
1025.1322
1138.1980
1183.4243
1002.5190
1251.2638
1002.5190
889.4533












Table C-6. Borehole #1 at 45/33 feet.


Penetrabon
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.03433834


27 (ft)
45 (ft)
0.0343 (in)
0.1964 llnir
42


Weight of Instrum. 38
LVDT Pressure Load Es Est.Lod st. Press. Normal Force


in. (volts) (volts) (psi) (psi)
-0.0061 0.0174 0.0007 14.1348 34.7056
-0.0079 0.0174 0.001 18.5748 34.7514
-0.0048 0.0175 0.0008 17.2563 34.959
-0.0071 0.0175 0.0006 12.7962 34.9284
0.0225 0.0174 0.0052 97.942 34.7331
0.1272 0.0173 0.0068 123.4599 34.6263
0.1122 0.0174 0.0057 112.6102 34.7392
0.1117 0.0172 0.0053 107.4548 34.4859
0.1838 0.0172 0.0069 140.1526 34.3913
0.238 0.0172 0.0068 129.1198 34.4249
0.2342 0.0173 0.0072 129.9371 34.6477
0.2453 0.0173 0.007 132.8959 34.5714
0.2668 0_0173 0.0085 165-4359 34.5805
0.3257 0.0173 0.0098 172.9646 34.5988
0-3275 0_0174 0.0093 165-7208 34.7179
0.3281 0.0173 0.0083 163.0702 34.55
0.3297 0.0173 0.0086 172.1915 34.5866
0-3712 0.017 0.01 197-7999 33.961
0.4115 0.0173 0.0092 171.5376 34.5683
0-4308 0_0173 0.0097 169-2533 34.6263
0.4171 0.0172 0.0097 174.7152 34.3486
0.4295 0_0172 0.0103 181-5469 34.3883
0.4695 0_0172 0-013 233-8465 34.3944
0482 0_0172 0.0126 2279329 34.3089
0-4859 0_0172 0.0116 2238285 34.4493
0.4756 0_0173 0.0126 236_451 34.669
0.4758 0_0172 0.0129 231-1589 34.3638
0.5048 0_0172 0.0137 259-8396 34.4035
0-5216 0_0173 0.0141 258-4233 34.5164
0-5173 0_0172 0.0145 257-5492 34.4401
0.5153 0_0172 0.0146 2573252 34.4096
0.5152 0_0173 0.0159 283-6475 34.5714
0.545 0.0173 0.0173 303.1055 34.6751
05392 0_0173 0.0156 291-0062 34.6446
0.5535 0.0173 0.0166 292.4792 34.6812
0-5422 0_0173 0.0159 296-6811 34.611
0.534 0.0172 0.016 302.7328 34.3181
0-5723 0_0173 0-018 317-7336 34.5714
0_569 0_0172 0.0169 302-3458 34.376
0.5718 0.0173 0.0163 297.7067 34.5744
0.5685 0_0173 0.0171 294-4115 34.6202
0.5789 0.0173 0.0158 297.3001 34.6721
0-5648 0_0174 0.0157 295.115 34.7362
0.562 0.0174 0.0164 292.2525 34.7911
0.5623 0.0173 0.0166 287.4036 34.5744
0.5704 0.0173 0.0159 301.658 34.6965
0.5763 0.0172 0.0168 298.7283 34.4981


(1b)
4.4260
4.4260
4.4647
4.4647
4.4260
4.3873
4.4260
4.3486
4.3486
4.3486
4.3873
4.3873
4 3873
4.3873
4 4260
4.3873
4.3873
4-2712
4.3873
4 3873
4.3486
4 3486
4 3486
4 3486
4 3486
4 3873
4 3486
4 3486
4 3873
4 3486
4 3486
4 3873
4.3873
4 3873
4.3873
4 3873
4.3486
4 3873
4 3486
4.3873
4 3873
4.3873
4 4260
4.4260
4.3873
4.3873
4.3486


Unit Wt H20 62.4 (lb/f3)
Unit Wt Rod 2.96 (lb/ft)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.358636506
Normal Stud Area 0.002464352
qu (psi) 822.8
Shear Force Normal Stress Shear Stress
(Ib) (psi) (psi)
-159.4939 1795.9967 -444.7231
-135.1642 1795.9967 -376.8836
-151.3840 1811.6985 -422.1099
-157.6038 1811.6985 -467.3362
205.4518 1795.9967 572.8690
335.2102 1780.2949 934.6796
246.0013 1795.9967 685.9348
213.5617 1764.5932 595.4822
343.3201 1764.5932 957.2927
335.2102 1764.5932 934.6796
367.6498 1780.2949 1025.1322
351.4300 1780.2949 979.9059
473.0786 1780.2949 1319-1033
578.5073 1780.2949 1613.0743
537.9578 1795.9967 1500-0085
456.8588 1780.2949 1273.8769
481.1885 1780.2949 1341.7164
594.7271 1733.1896 1658-3006
529.8479 1780.2949 1477.3954
570.3974 1780.2949 15904612
570.3974 1764.5932 1590.4612
619.0569 1764.5932 1726-1401
838.0243 1764.5932 2336-6954
805.5846 1764.5932 2246-2427
724.4856 1764.5932 2020-1112
805.5846 17802949 2246-2427
829.9144 1764.5932 2314-0822
894.7936 1764.5932 2494-9875
927.2332 1780.2949 2585-4401
959.6728 1764.5932 2675-8927
967.7827 1764.5932 2698-5059
1073.2115 1780.2949 29924770
1186.7501 1780.2949 3309.0512
1048.8818 1780.2949 2924-6375
1129.9808 1780.2949 3150.7691
1073.2115 1780.2949 29924770
1081.3214 1764.5932 3015.0901
1243.5195 1780.2949 34673533
1154.3105 1764.5932 321 86085
1105.6511 1780.2949 3082.9296
1170.5303 1780.2949 3263-8349
1065.1016 1780.2949 2969.8638
1056.9917 1795.9967 2947-2506
1113.7610 1795.9967 3105.5428
1129.9808 1780.2949 3150.7691
1073.2115 1780.2949 2992.4770
1146.2006 1764.5932 3195.9954












Table C-7. Borehole #1 at 45/39 feet.


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
(in) (volts) (volts) (psi)
-0.0017 0.0204 0.0009 18.0007
-0.009 0.0203 0.0005 9.0128
0.0016 0.0202 0.0018 364394
0.0705 0.0202 0.0052 103.9519
0.126 0.0203 0.0045 86.0187
0.1213 0.0202 0.0051 93.3752
0.1304 0.0202 0.0045 81.2669
0.1425 0.0202 0.0066 122.3438
0.213 0.0201 0.009 170.7768
0.2248 0.0203 0.0091 166.6667
0.2168 0.0202 0.009 165.56
0.2199 0.0202 0.0083 162.9046
0.2286 0 0202 0 0106 202 0996
0.2784 0.0202 0.0132 244.7826
0.2672 0-0203 00131 242-6481
0.2809 0.0202 0.0129 245.0369
0.274 0.0202 0.0135 255.0398
03018 0-0202 00152 293_3985
0.3137 0.0202 0.015 289.5548
0.3185 0-0202 00151 282_6727
0.3083 0.0201 0.0154 289.2337
03144 0 0201 00146 277.363
0.3181 0.0202 0.0157 303.9568
0.3316 0-0202 00154 286_3892
0.338 0-0201 0.015 274_3739
03469 0-0202 00151 269a8826
0.3401 002022 00162 2884029
0.367 0.0203 0.0179 323.9788
0.3724 0-0201 00154 298_8204
0.3769 0-0201 00147 289_3223
03714 0-0202 00157 287_1106
0.3653 0-0201 00151 287_3784
0.3909 00201 0 0185 330_1784
0.3972 0-0202 00161 299_8179
0.397 0.0202 0.0151 285.2541
04024 0-0201 0.015 284_3672
0.4027 0.0202 0.0147 278.1827
0.4022 0.0202 00169 298_3616
04267 0.02 00169 309A4919
0.4185 0.0201 0.0152 285.5259
0.4367 0-0202 0.016 280_3941
0.4241 0.0201 0.0155 285.8511
0.4303 00201 00155 277.196
0.4208 0.0201 0.0157 290.9388
0.418 0.0201 0.0144 268.3226
0.4204 0.0201 0.0149 272.779
0.4247 0.0202 0.0144 273.9945


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.04319932


27 (ft)
45 (ft)
0.0343 (in)
0.1964 (in2)
42
38
Est. Press. NormalForce


(psi)
40.8063
40.5652
40.4889
40.4889
40.6507
40.4981
40.4096
40.3211
40.2844
40.5866
40.379
40.4035
40_492
40.3363
40 5438
40.4157
40.4614
40 3974
40.3455
40-5011
40.2509
40 2753
40.4218
40-3119
40 1288
40-4126
40-4431
40.5133
40 2753
40 2112
40 3363
40-2142
40.199
40 3577
40.4187
40 1654
40.4553
40-3516
40.083
40.1715
40 4248
40.2326
40 1959
40.2264
40.1715
40.2753
40.3363


(Ib)
5.5868
5.5481
5.5094
5.5094
5.5481
5.5094
5.5094
5.5094
5.4707
5.5481
5.5094
5.5094
5 5094
5.5094
5.5481
5.5094
5.5094
5 5094
5.5094
5.5094
5.4707
5 4707
5.5094
5 5094
5 4707
5.5094
5 5094
5.5481
5 4707
5 4707
5.5094
5 4707
5 4707
5 5094
5.5094
5.4707
5.5094
5.5094
5.4320
5.4707
5.5094
5.4707
5.4707
5.4707
5.4707
5.4707
5.5094


Unit Wt HO 62.4 ilbh'n ii
Unit Wt Rod 2.96 ,bni
Cylinder Bore Area 4.72 I n2P
Shear Stud Area 0.358636506
Normal Stud Area 0.002464352
qu (psi) 822.8
Shear Force Normal Stress Shear Stress
(Ib) (psi) (psi)
-143.2741 2267.0503 -399.4968
-175.7137 2251.3485 489.9494
-70.2850 2235.6467 -195.9783
205.4518 2235.6467 572.8690
148.6824 2251.3485 414.5769
197.3418 2235.6467 550.2559
148.6824 2235.6467 414.5769
318.9904 2235.6467 889.4533
513.6281 2219.9449 1432.1691
521.7380 2251.3485 1454.7822
513.6281 2235.6467 1432.1691
456.8588 2235.6467 1273.8769
643.3866 2235.6467 1793.9796
854.2441 2235.6467 2381.9217
846.1342 2251.3485 2359 3085
829.9144 2235.6467 2314.0822
878.5738 2235.6467 2449.7612
1016.4422 2235.6467 2834.1849
1000.2223 2235.6467 2788.9585
1008.3322 2235.6467 2811.5717
1032.6620 2219.9449 2879.4112
967.7827 2219.9449 2698.5059
1056.9917 2235.6467 2947.2506
1032.6620 2235.6467 2879.4112
1000.2223 2219.9449 2788.9585
1008.3322 2235.6467 2811 5717
1097.5412 2235.6467 3060-3164
1235.4096 2251.3485 3444.7401
1032.6620 2219.9449 2879.4112
975.8926 2219.9449 2721.1191
1056.9917 2235.6467 2947-2506
1008.3322 2219.9449 2811-5717
1284.0690 2219.9449 3580.4191
1089.4313 2235.6467 3037.7033
1008.3322 2235.6467 2811.5717
1000.2223 2219.9449 2788-9585
975.8926 2235.6467 2721.1191
1154.3105 2235.6467 3218.6085
1154.3105 2204.2431 3218.6085
1016.4422 2219.9449 2834.1849
1081.3214 2235.6467 3015.0901
1040.7719 2219.9449 2902.0243
1040.7719 2219.9449 2902.0243
1056.9917 2219.9449 2947.2506
951.5629 2219.9449 2653.2796
992.1124 2219.9449 2766.3454
951.5629 2235.6467 2653.2796













Table C-8. Borehole #1 at 45/46 feet.


Penetration
Height HzO
Len: th Pipe
Penetration [Ci in
Stud Cap Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est Load
Inr (volts) (volts) (psi)
0.0027 0.0238 0.0009 17.0546
0.0067 0.0238 0.001 20.3846
-0.0097 0.0238 0.0011 22.8635
0-0389 0.0238 0.0071 134.4253
0.1053 0.0236 0.0088 165.8751
0101 0.0236 0.0083 152.8496
0.1071 0.0236 0.0082 155.5695
01486 0.0236 0.0112 202.5342
0-1799 0.0235 0.012 222.3525
0.1658 0.0235 0.0112 214.015
0-1792 0.0234 0.0113 213.259
0.1797 0.0235 0.0122 233.3427
02108 0.0236 0.0154 284.488
0.2203 0.0236 0.0135 281.8974
0.2165 0.0236 0.0141 271.5561
0.2099 0.0236 0.0136 270.409
0 228 0.0236 0.0179 329.8588
0-2393 0.0237 0.0176 328.0824
0-2477 0.0237 0.0154 306.7877
0-2382 0.0237 0.0175 318.2552
0.2443 0.0236 0.0163 327.8407
0-2583 0.0238 0.0184 347.8351
0.2695 0.0236 0.0171 310.8159
0.2698 0.0236 0.015 299.111
0.2662 0.0237 0.0162 300.2422
0.2903 0.0237 0.0175 331.3935
022947 0.0236 0.017 332.956
0-2979 0.0237 0.0181 331.0117
0-2917 0.0236 0.018 336.1613
0.2993 0.0237 0.0167 320.8638
0-3076 0.0237 0.0201 375.0085
0.3162 0.0238 0.0186 367.4275
0.3226 0.0237 0.0197 370.6838
0.322 0.0238 0.0203 366.6501
0.3223 0.0236 0.019 373.7692
0.3384 0.0238 0.0234 427.6709
0.3459 0.0237 0.0233 413.7968
0-3454 0.0237 0.0221 404.2489
0.3479 0.0237 0.0218 409.3723
0-3568 0.0238 0.023 423.0291
0.3659 0.0237 0.0258 459.1105
0-3691 0.0237 0.0225 443.3224
0.3695 0.0237 0.0243 437.4182
0.3757 0.0238 0.024 467.2595
0.3873 0.0238 0.0251 484.3594
0.4056 0.0238 0.0254 456.3329
0-4044 0.0238 0.0247 463.2296


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.053588055
27 (ft) UnitWt H2O
45 (ft) Unit Wt Rod
0.0343 (in) CGlin.ier Bore A
0.1964 (in2) Mhear Stud Area
42 Normal Stud Area
38 qu (psi)
Est. Press Normal Force Shear Force


(psi)
47.5814
47.676
47.5997
47.6272
47.2182
47.2213
47.2488
47.2121
46.9558
47.0931
46.8978
47.0229
47.1725
47.2427
47.148
47.2091
47.2274
47.3342
47.3861
47.322
47.1908
47.5692
47.3006
47.1877
47.3922
47.3189
47.1877
47.3525
47.3006
47.3159
473159
47.5356
47.3342
47.5051
47.2976
47.5631
47.4471
47496
47.3891
47.56
47.4624
47.4227
47.3098
47.5021
47.5051
47.5051
47.5509


(1))
6.9024
6.9024
6.9024
6.9024
6.8250
6.8250
6.8250
6.8250
6.7863
6.7863
6.7477
6.7863
6.8250
6.8250
6.8250
6.8250
6.8250
6.8637
6.8637
6.8637
6.8250
6.9024
6.8250
6.8250
6.8537
6.8637
6.8250
6.8637
6.8250
6.8637
6.8637
6.9024
6.8637
6.9024
6.8250
6.9024
6.8637
6.8637
6.8637
6.9024
6.8637
6.8637
6.8637
6.9024
6.9024
6.9024
6.9024


(Ib)
-143.2741
-1351642
-127.0543
359 5399
497.4083
456 8588
448.7489
692 0460
756 9252
692.0460
700 1559
773.1450
1032 6620
878.5738
927.2332
886.6837
12354096
1211 0798
1032 6620
1202 9699
1105.6511
1275 9591
1170.5303
1000.2223
1097.5412
1202.9699
1162 4204
1251 6294
1243 5195
1138.0907
1413 8274
1292.1789
1381.3878
1430.0473
1324.6185
1681.4543
1673.3444
1576 0255
1551.6958
1649 0147
1876.0920
1608 4651
1754.4434
1730.1137
1819.3226
1843.6524
1786 8830


62.4 (Ibt3)
2.96 (lblt)
4.72 (in2)
0.358636506
0.002464352
822.8
Normal tress Shear Stress
(psi) (psi)
2800.9110 -399.4968
2800.9110 -376.8836
2800.9110 -354.2704
2800.9110 1002.5190
2769.5074 1386.9427
2769.5074 1273.8769
2769.5074 1251.2638
2769.5074 1929.6585
2753.8056 2110.5638
2753.8056 1929.6585
2738.1039 1952.2717
2753.8056 2155.7901
2769.5074 2879.4112
2769.5074 2449.7612
2769.5074 2585.4401
2769.5074 2472.3743
2769.5074 3444.7401
2785.2092 3376.9006
2785.2092 2879.4112
2785.2092 3354.2875
2769.5074 3082.9296
2800.9110 3557.8059
2769.5074 3263.8349
2769.5074 2788.9585
2785.2092 3060.3164
2785.2092 3354.2875
2769.5074 3241.2217
2785.2092 3489.9664
2769.5074 3467.3533
2785.2092 3173.3822
2785.2092 3942.2296
2800.9110 3603.0322
2785.2092 3851.7770
2800.9110 3987.4559
2769.5074 3693.4849
2800.9110 4688.4638
2785.2092 4665.8507
2785.2092 4394.4928
2785.2092 4326.6533
2800.9110 4598.0112
2785.2092 5231.1796
2785.2092 4484.9454
2785.2092 4891.9822
2800.9110 4824.1428
2800.9110 5072.8875
2800.9110 5140.7270
2800.9110 4982.4349












Table C-9. Borehole #1 at 47/25 feet.


FULLER WARREN BRIDGE
SHEAR DEL'IC E TEST RESULTS


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Insrum.


LVDT Pressure
(in) (volts)
0.0067 00132
-0.0047 0.0132
00096 0_0132
0.1130 0.0131
0.1267 00131
0.1271 0.0131
0.1855 00131
0.2446 0.0130
0.2515 0.0129
0.2422 00130
0.2506 0.0129
0.3100 00131
0.3575 0.0130
0.3583 0.0130
0.3537 0.0130
0.3673 00130
0.4231 0.0131
0.4525 00129
0.4386 00130
0.4400 0.0129
0.4491 00129
0.5140 0.0128
0.5450 00130
0.5425 0.0129
0.5316 0.0130
0.5544 0.0130
0.5465 00130
0.5468 0.0130
0.5753 0.0130
06445 00131
0.6515 0.0130
0.6553 0_0130
0.6708 0.0131
0.6589 0.0130
0.6806 0.0131
0.6751 00131
0.6583 0.0130
0.6670 00131
0.6691 00130
0.6692 0.0131
0.6638 00131
0.6700 0.0130
0.6625 00131
0.6585 0.0130
0.6736 0.0132


(calculated) 0.017275202
29 ([ft)
47.5 (ft)
0.026 (in)
0.1964 (in2)
42


Load Est Load Est Press. Normal Force


(volts) (psi)
0.0009 17.0622
0.0008 16.7240
0.0045 90.6639
0.0057 114.4188
0.0048 90.4872
0.0042 89.7356
0.0061 118.7179
0.0050 92.4762
0.0052 98.1772
0.0054 99.7603
0.0063 117.7712
0.0069 124.9599
0.0056 105.9564
0.0052 98.1342
0.0056 103.8271
0.0067 130.1214
0.0064 119.8456
0.0052 101.3626
0.0054 99.2372
0.0051 97.3190
0.0051 102.2270
0.0068 129.5539
0.0057 107.5287
0.0058 105.2979
0.0057 102.8633
0.0058 102.7754
0.0054 1067937
0.0056 103.8464
0.0069 132.8875
0.0074 143.7661
0.0068 120.8808
0.0067 129.9672
0.0067 119.0669
0.0066 118.7574
0.0068 120.7871
0.0061 117.9747
0.0061 112.9485
0.0064 111.9538
0.0069 123.5274
0.0068 125.7872
0.0061 114.9327
0.0059 115.1984
0.0065 116.0826
0.0062 113.8119
0.0062 116.7544


(psi)
26.3009
26.4901
26.4840
26.2764
26.2215
26.1147
26.2917
25.9102
25.8614
25.9041
25.8705
26.2795
26.0140
25.9529
26.0750
26.0933
26.1147
25.8400
25.9255
25.8248
25.7820
25.6874
26.0414
25.8950
25.9224
26.0933
26.0109
25.9224
25.9346
26.1177
25.9316
25.9774
26.2642
25.9957
26.1483
26.1116
25.9285
26.1544
25.9285
26.1971
26.1177
26.0537
26.1391
26.0811
26.3283


119)
2.6306
2.6306
2.6306
2.5919
2.5919
2.5919
2.5919
2.5532
2.5145
2.5532
2.5145
2.5919
2.5532
2.5532
2.5532
2.5532
2.5919
2.5145
2.5532
2.5145
2.5145
2.4758
2.5532
2.5145
2.5532
2.5532
2.5532
2.5532
2.5532
2.5919
2.5532
2.5532
2.5919
2.5532
2.5919
2.5919
2.5532
2.5919
2.5532
2.5919
2.5919
2.5532
2.5919
2.5532
2.6306


Unit Wt H20


Unit Wt Rod 2.96 lb: l I
Cylinder Bore Area 4.72 in 2)
Shear Stud Area 0.206069136
Normal Stud Area 0.001415993


qu i I.- 945.7
Shear Forcenal Stud Stress Shear Stress
(Ib) (psi) (psi)
-150.6741 1857.7604 -731.1824
-158.7840 1857.7604 -770.5376
141.2824 1857.7604 685.6069
238.6013 1830.4335 1157.8700
165.6121 1830.4335 803.6727
116.9527 1830.4335 567.5411
271.0409 1830.4335 1315.2910
181.8319 1803.1066 882.3832
198.0518 1775.7797 961.0937
214.2716 1803.1066 1039.8042
287.2607 1775.7797 1394.0016
335.9201 1830.4335 16301331
230.4914 1803.1066 1118.5147
198.0518 1803.1066 961.0937
230.4914 1803.1066 1118.5147
319.7003 1803.1066 1551.4226
295.3706 1830.4335 1433.3568
198.0518 1775.7797 961.0937
214.2716 1803.1066 1039.8042
189.9418 1775.7797 921.7385
1899418 17757797 921.7385
327.8102 1748.4527 1590.7778
238.6013 1803.1066 1157.8700
246.7112 1775.7797 1197.2253
238.6013 1803.1066 1157.8700
246.7112 1803.1066 1197.2253
214.2716 1803.1066 1039.8042
230.4914 1803.1066 1118.5147
335.9201 1803.1066 1630.1331
376.4696 1830.4335 18269094
327.8102 1803.1066 1590.7778
319.7003 1803.1066 1551.4226
319.7003 1830.4335 1551.4226
311.5904 1803.1066 1512.0673
327.8102 1830.4335 1590.7778
271.0409 1830.4335 1315.2910
271.0409 1803.1066 1315.2910
295.3706 1830.4335 1433.3568
3359201 1803.1066 16301331
327.8102 1830.4335 1590.7778
271.0409 1830.4335 1315.2910
254.8211 1803.1066 1236.5805
303.4805 1830.4335 1472.7121
279.1508 1803.1066 1354.6463
279.1508 1857.7604 1354.6463


62.4 ill: fji












Table C-10. Borehole #1 at 47.5/32 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.026048009
Height H20 29 (it) Unit Wt H20 62.4 (llft13)
Length Pipe 47.5 (It) Unit Wt Rod 2.96 (IbLft)
Penetration Depth 0.026 (in) Cylinder Bore Arei 4.72 in2)
Stud Cap Area 0.1964 in2) Shear Stud Area 0.206069136
No of Studs 42 Normal Stud Area 0.001415993
Weight of Instrun. 38 qu (psi) 945.7
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress
(in) (volts) (veots) (psi) (psi) (Ib) (Ib) (psi) (psi)
0.0011 0.0166 0.0011 22.0773 33.2682 3.9462 -134.4543 2786.8755 -652.4719
-0.0071 0.0167 00008 15.924 334544 3.9849 -158.7840 2814.2024 -770.5376
-0.0007 0.0165 00008 16.0911 33.1004 3.9075 -158.7840 2759.5486 -770.5376
0.08 0.0166 0.007 148.0045 33.2896 3.9462 344.0300 2786.8755 1669.4884
0.1176 0.0161 00062 125.0951 32.2214 3.7527 279.1508 2650.2409 1354.6463
0.1034 0.0163 00057 112.4791 32.6273 3.8301 238.6013 2704.8947 1157.8700
0.109 0.0163 00053 113.4049 32.6975 3.8301 206.1617 2704.8947 1000.4490
0.1295 0.0165 00063 138.772 32.9173 3.9075 287.2607 2759.5486 1394.0016
0.2062 00162 0 0077 146.2524 324168 3.7914 400.7994 2677.5678 1944.9752
0.2203 0.0161 00065 131.2089 32.1787 3.7527 303.4805 2650.2409 1472.7121
0.2217 0.0162 00064 122.3797 32.3099 3.7914 295.3706 2677.5678 1433.3568
0.224 0.0162 00065 123.7186 323405 3.7914 303.4805 2677.5678 1472.7121
0.2262 0.0163 0.0062 123.5121 32.5053 3.8301 279.1508 2704.8947 1354.6463
0.2276 0.0164 00074 150.8242 32.7525 3.8688 3764696 2732.2216 1826.9094
0.2912 0.0162 0.0073 144.7264 32.3893 3.7914 368.3597 2677.5678 1787.5541
0.3349 0.0162 00078 141.3278 32.3069 3.7914 408.9093 2677.5678 1984.3304
0.313 0.0163 0.0071 133.9235 32.5877 3.8301 352.1399 2704.8947 1708.8436
0.3173 0.0164 00068 133.2264 32.8043 3.8688 327.8102 2732.2216 1590.7778
0.3159 0.0163 0.007 132.0888 32.5999 3.8301 344.0300 2704.8947 1669.4884
0.3292 0.0163 0.0075 148.7943 32.6975 3.8301 384.5795 2704.8947 1866.2647
0.4124 0.0162 00078 150.7633 32.3679 3.7914 408.9093 2677.5678 1984.3304
0.4245 0.0163 0.0074 131.3915 32.6243 3.8301 376.4696 2704.8947 1826.9094
0.4189 0.0162 0 0067 129.5483 324931 3.7914 319.7003 2677.5678 1551.4226
0.4245 0.0162 0.0077 138.2446 32.4778 3.7914 400.7994 2677.5678 1944.9752
0.4353 0.0163 0.0082 157.4969 32.609 3.8301 441.3489 2704.8947 2141.7515
0.4795 0.0163 0.0085 161.4143 32.5053 3.8301 465.6786 2704.8947 2259.8172
0.5143 0.0163 0.0086 155.3401 32.5114 3.8301 473.7885 2704.8947 2299.1725
0.5013 0.0162 0.0084 153.0765 32.487 3.7914 457.5687 2677.5678 2220.4620
0.5074 0.0163 0.0073 146.1663 32.5724 3.8301 368.3597 2704.8947 1787.5541
0.5075 0.0165 0.0081 150.0418 32.902 3.9075 433.2390 2759.5486 2102.3962
0.518 0.0164 0.009 170.7098 32.8501 3.8688 506.2281 2732.2215 2456.5935
0.5558 0.0163 0.0105 190.0166 32.5816 3.8301 627.8767 2704.8947 3046.9224
0.5798 0.0163 0.0096 169.0635 32.5449 3.8301 554.8875 2704.8947 2692.7251
0.584 0.0163 0.0083 160.8192 32.5205 3.8301 449.4588 2704.8947 2181.1067
0.5827 0.0164 0.0094 173.2262 32.844 3.8688 538.6677 2732.2216 2614.0146
0.5837 0.0164 0.0094 165.1366 32.8562 3.8688 538.6677 2732.2216 2614.0146
0.5854 0.0164 0.0088 158.3812 32.8135 3.8688 490.0083 2732.2216 2377.8830
0.5838 0.0165 0.0084 160.5918 32.9142 3.9075 457.5687 2759.5486 2220.4620
0.5839 0.0165 00082 154.4777 32.9539 3.9075 441.3489 2759.5486 2141.7515
0.5963 0.0164 0.0073 143.9852 32.8684 3.8688 368.3597 2732.2216 1787.5541
0.5854 0.0164 0.008 157.9001 32.899 3.8688 425.1291 2732.2216 2063.0409
0.5846 0.0164 0.0089 156.6019 32.7464 3.8688 498.1182 2732.2216 2417.2383
0.5843 0.0164 0.0089 163.0991 32.8715 3.8688 498.1182 2732.2216 2417.2383
0.5833 0.0165 00082 156.6797 33.0638 3.9075 441.3489 2759.5486 2141.7515
0.5813 0.0165 0.0084 156.5794 33.0454 3.9075 457.5687 2759.5486 2220.4620
0.5849 0.0165 0.008 156.1849 32.9905 3.9075 425.1291 2759.5486 2063.0409












Table C-11. Borehole #1 at 47.5/40 feet.


Penetration
H .] ni H20
Length Pipe
Penetration Depth
Stud a' Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
Iini (volts) (volts) (psi)
-0.0014 0.0214 0.0006 12.4916
0.0201 0.0214 0.0043 92.7744
0.1203 0.021 0.0074 140.6428
0.1048 0.0211 0.0069 132.1643
0.1116 0.021 0.0073 135.1198
0.1115 0.021 00078 148.4106
0-1378 0-0212 0.0089 171.9182
0.1937 0.0209 0.0089 183.8926
0.2075 0.0208 0.008 161.8831
0.2055 0.021 0.0081 161.358
0.1986 0.021 0.0076 155.6869
0.206 0.021 0.0092 176.7251
0.2496 0.021 0.0093 193.1818
0.2733 00208 0.0082 165.5727
0.2719 00209 0.0093 176.4101
0.273 0.021 0.0081 166.5917
0.2892 0.021 0.0101 195.1841
0.3468 0.0208 0.0107 200.1307
0.3603 0.0208 0.0105 188.8995
0.3492 0.021 0.0107 195.0709
0.3522 0.0209 0.0101 197.9129
0.3703 0.021 0.0114 214.1865
0.402 0-0211 0.0109 198.3429
0_4274 00209 0.0099 186.7048
0.4203 0.021 0.0092 182.3559
0.4208 0.021 0.0093 182.1097
0.4123 0.0211 0.0103 184.5784
0.4397 0.0211 0.0104 206.8607
0.4912 0.021 0.0104 202.3188
04913 00209 0.0103 194.4917
04851 0.021 0.0096 187.0131
04822 0-0211 0.0096 190.7696
0.5026 0.021 0.0115 219.8489
0.5494 0.021 0.0136 239.8021
0.5505 0.021 0.0118 222.5972
0.5488 0.0211 0.0125 224.5565
0.5555 0.0212 0.0128 226.824
0.55 0.0211 0.0131 234.838
05523 0-0211 0.0126 225.5158
0.5539 0-0213 0.0123 220.1129
0.5489 0.0212 0.011 209.661
0.5594 0.0211 0.0117 223.4878
0.5568 0.0212 0.0121 222.0877
0.5498 0.0211 0.0118 219.6862


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
.alcula lli 0.038276771


29 (ft)
47,5 (ft)
0.026 in.~
0.1964 iin2 I
42
38
Est. Press. Normal Force


PSll
42.8022
42.7564
41.9568
42.1278
42.024
42.0331
42.3139
41.8195
41.554
41.9813
41.9111
42.0362
41.9263
41.551
41.847
42.0026
42.0606
41.6822
41.6639
41.9752
41.8622
41.9202
42.1522
41.7249
42.0454
41.9904
42.1735
42.2681
41.9416
41.8622
42.0118
42.2498
42.0606
42.0698
42.0942
42.1949
42.3841
42.201
42.1979
42.5855
42.378
42.2376
42.3383
42.2864


(Ib)
5.8035
5.8035
5.6488
5.6875
5.6488
5.6488
5.7262
5.6101
5.5714
5.6488
5.6488
5.6488
5.6488
5.5714
5.6101
5.6488
5.6488
5.5714
5.5714
5.6488
5.6101
5.6488
5.6875
5.6101
5.6488
5.6488
5.6875
5.6875
5.6488
5.6101
5.6488
5.6875
5.6488
5.6488
5.6488
5.6875
5.7262
5.6875
5.6875
5.7648
5.7262
5.6875
5.7262
5.6875


Unit Wt HO 62.4 iAiib
Unit Wt Rod 2,96 til'
Cylinder Bore Area 4,72 (in2)
Shear Stud Area 0206069136
Nornal Stud Area 0.001415993
qu p.s' 945.7
Shear Force Normal Stress Shear Stress
(lb) (psi) (psi)
-175.0038 4098.5673 -849.2481
125.0626 4098.5673 606.8964
376.4696 3989.2597 1826.9094
335.9201 4016.5866 1630.1331
368.3597 3989.2597 1787.5541
408.9093 3989.2597 1984.3304
498.1182 4043.9135 2417.2383
498.1182 3961.9328 2417.2383
425.1291 3934.6058 2063.0409
433.2390 3989.2597 2102.3962
392.6894 3989.2597 1905.6199
522.4479 3989.2597 2535.3040
530.5578 3989.2597 2574.6593
4413489 3934.6058 2141.7515
530.5578 3961.9328 2574.6593
433.2390 3989.2597 2102.3962
595.4370 3989.2597 2889.5014
644.0965 3934.6058 3125.6329
627.8767 3934.6058 3046.9224
644.0965 3989.2597 3125.6329
595.4370 3961.9328 2889.5014
700.8658 3989.2597 3401.1197
660.3163 4016.5866 3204.3434
5792172 3961.9328 2810.7908
522.4479 3989.2597 2535.3040
530.5578 3989.2597 2574.6593
611.6569 4016.5866 2968.2119
619.7668 4016.5866 3007.5671
619.7668 3989.2597 3007.5671
611.6569 3961.9328 2968.2119
554.8875 3989.2597 2692.7251
5548875 4016.5866 2692.7251
708.9757 3989.2597 3440.4750
879.2837 3989.2597 4266.9354
733.3054 3989.2597 3558.5407
790.0747 4016.5866 3834.0275
814.4045 4043.9135 3952.0933
838.7342 4016.5866 4070.1591
798.1846 4016.5866 3873.3828
773.8549 4071.2404 3755.3170
668.4262 4043.9135 3243.6987
725.1955 4016.5866 3519.1855
757.6351 4043.9135 3676.6065
733.3054 4016.5866 3558.5407












Table C-12. Borehole #1 at 47.5/40 feet.


Penetration
H .] ni H20
Length Pipe
Penetration Depth
Stud a' Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
Iini (volts) (volts) (psi)
-0.0014 0.0214 0.0006 12.4916
0.0201 0.0214 0.0043 92.7744
0.1203 0.021 0.0074 140.6428
0.1048 0.0211 0.0069 132.1643
0.1116 0.021 0.0073 135.1198
0.1115 0.021 00078 148.4106
0-1378 0-0212 0.0089 171.9182
0.1937 0.0209 0.0089 183.8926
0.2075 0.0208 0.008 161.8831
0.2055 0.021 0.0081 161.358
0.1986 0.021 0.0076 155.6869
0.206 0.021 0.0092 176.7251
0.2496 0.021 0.0093 193.1818
0.2733 00208 0.0082 165.5727
0.2719 00209 0.0093 176.4101
0.273 0.021 0.0081 166.5917
0.2892 0.021 0.0101 195.1841
0.3468 0.0208 0.0107 200.1307
0.3603 0.0208 0.0105 188.8995
0.3492 0.021 0.0107 195.0709
0.3522 0.0209 0.0101 197.9129
0.3703 0.021 0.0114 214.1865
0.402 0-0211 0.0109 198.3429
0_4274 00209 0.0099 186.7048
0.4203 0.021 0.0092 182.3559
0.4208 0.021 0.0093 182.1097
0.4123 0.0211 0.0103 184.5784
0.4397 0.0211 0.0104 206.8607
0.4912 0.021 0.0104 202.3188
04913 00209 0.0103 194.4917
04851 0.021 0.0096 187.0131
04822 0-0211 0.0096 190.7696
0.5026 0.021 0.0115 219.8489
0.5494 0.021 0.0136 239.8021
0.5505 0.021 0.0118 222.5972
0.5488 0.0211 0.0125 224.5565
0.5555 0.0212 0.0128 226.824
0.55 0.0211 0.0131 234.838
05523 0-0211 0.0126 225.5158
0.5539 0-0213 0.0123 220.1129
0.5489 0.0212 0.011 209.661
0.5594 0.0211 0.0117 223.4878
0.5568 0.0212 0.0121 222.0877
0.5498 0.0211 0.0118 219.6862


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Ialcula lli 0.038276771


29 (ft)
47,5 (ft)
0.026 in.i
0.1964 iin2 I
42
38
Est. Press. Normal Force


PSll
42.8022
42.7564
41.9568
42.1278
42.024
42.0331
42.3139
41.8195
41.554
41.9813
41.9111
42.0362
41.9263
41.551
41.847
42.0026
42.0606
41.6822
41.6639
41.9752
41.8622
41.9202
42.1522
41.7249
42.0454
41.9904
42.1735
42.2681
41.9416
41.8622
42.0118
42.2498
42.0606
42.0698
42.0942
42.1949
42.3841
42.201
42.1979
42.5855
42.378
42.2376
42.3383
42.2864


(Ib)
5.8035
5.8035
5.6488
5.6875
5.6488
5.6488
5.7262
5.6101
5.5714
5.6488
5.6488
5.6488
5.6488
5.5714
5.6101
5.6488
5.6488
5.5714
5.5714
5.6488
5.6101
5.6488
5.6875
5.6101
5.6488
5.6488
5.6875
5.6875
5.6488
5.6101
5.6488
5.6875
5.6488
5.6488
5.6488
5.6875
5.7262
5.6875
5.6875
5.7648
5.7262
5.6875
5.7262
5.6875


Unit Wt HO 62.4 iAiib
Unit Wt Rod 2,96 til'
Cylinder Bore Area 4,72 (in2)
Shear Stud Area 0206069136
Nornal Stud Area 0.001415993
qu p.s' 945.7
Shear Force Normal Stress Shear Stress
(lb) (psi) (psi)
-175.0038 4098.5673 -849.2481
125.0626 4098.5673 606.8964
376.4696 3989.2597 1826.9094
335.9201 4016.5866 1630.1331
368.3597 3989.2597 1787.5541
408.9093 3989.2597 1984.3304
498.1182 4043.9135 2417.2383
498.1182 3961.9328 2417.2383
425.1291 3934.6058 2063.0409
433.2390 3989.2597 2102.3962
392.6894 3989.2597 1905.6199
522.4479 3989.2597 2535.3040
530.5578 3989.2597 2574.6593
4413489 3934.6058 2141.7515
530.5578 3961.9328 2574.6593
433.2390 3989.2597 2102.3962
595.4370 3989.2597 2889.5014
644.0965 3934.6058 3125.6329
627.8767 3934.6058 3046.9224
644.0965 3989.2597 3125.6329
595.4370 3961.9328 2889.5014
700.8658 3989.2597 3401.1197
660.3163 4016.5866 3204.3434
5792172 3961.9328 2810.7908
522.4479 3989.2597 2535.3040
530.5578 3989.2597 2574.6593
611.6569 4016.5866 2968.2119
619.7668 4016.5866 3007.5671
619.7668 3989.2597 3007.5671
611.6569 3961.9328 2968.2119
554.8875 3989.2597 2692.7251
5548875 4016.5866 2692.7251
708.9757 3989.2597 3440.4750
879.2837 3989.2597 4266.9354
733.3054 3989.2597 3558.5407
790.0747 4016.5866 3834.0275
814.4045 4043.9135 3952.0933
838.7342 4016.5866 4070.1591
798.1846 4016.5866 3873.3828
773.8549 4071.2404 3755.3170
668.4262 4043.9135 3243.6987
725.1955 4016.5866 3519.1855
757.6351 4043.9135 3676.6065
733.3054 4016.5866 3558.5407












Table C-13. Borehole #1 at 47.5/45 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.044922837
Height H20 29 (ft) Unit Wt H20 62.4 (Ih/ft3)
Length Pipe 47.5 (ft) Unit Wt Rod 2.96 (Ibl/t)
FEnrt-I ci.ri Decin 0.026 (in) Cylinder Bore Ares 4.72 (in2)
Stud Cap Area 0.1964 (in2) Shear Stud Area 0.206069136
No of Studs 42 Normal Stud Area 0.001415993
Weight of Instrum. 38 qu [.sa 945.7
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress
(in) (volts) (volts) (psi) (psi) (Ib) (Ib) (psi) (psi)
-0.0149 0.0239 0.0005 11.2259 47.8439 6.7709 -183.1137 4781.7402 -888.6034
-00049 0.0238 0-0007 14-8651 47.5211 6-7322 -166.8939 4754.4133 -809 8929
-0 0033 0.0238 0-0022 43-6162 47.5509 6-7322 -45.2454 4754.4133 -219 5640
00237 0.0238 0005 105-2506 47.676 6.7322 181.8319 4754.4133 882 3832
0.1289 0.0236 0.004 78.1474 47.2701 6.6548 100.7329 4699.7594 488.8306
0.1207 0.0237 0.0041 86.6654 47.3525 6.6935 108.8428 4727.0863 528.1859
01185 0.0236 0.005 99.74 47.2518 6-6548 181.8319 4699.7594 8823832
0.1774 0.0237 0.0073 157.7493 47.4013 6.6935 368.3597 4727.0863 1787.5541
02145 0.0233 0-0101 184-6404 46.614 6-5387 595.4370 4617.7787 28895014
0 2057 0.0234 0-0077 160-0086 46.8825 6 5774 400.7994 4645.1056 1944 9752
0.2216 0.0234 0.0085 163.6175 46.7544 6.5774 465.6786 4645.1056 2259.8172
0.2106 0.0234 0.0093 170.5542 46.8581 6.5774 530.5578 4645.1056 2574.6593
0.258 0.0234 0-0108 1995856 46.8245 65774 652.2064 4645.1056 31649882
0 2986 0.0232 0-0107 200-2844 46.5011 65000 644.0965 4590.4518 31256329
0.2899 0.0233 0.0096 196.9306 46.5804 6.5387 554.8875 4617.7787 2692.7251
02973 0.0233 0-0091 181-0566 46.6933 6.5387 514.3380 4617.7787 24959488
02954 0.0235 0.011 199-8255 46.9741 6-6161 668.4262 4672.4325 32436987
0.3326 0.0234 0.0112 222.7915 46.8459 6.5774 684.6460 4645.1056 3322.4092
0.3535 0.0232 0.0109 217.0316 46.3546 6.5000 660.3163 4590.4518 3204.3434
03534 0.0233 0-0112 214-7375 46.617 65387 684.6460 4617.7787 33224092
03572 0.0234 0-0118 212-1626 46.8123 6.5774 733.3054 4645.1056 3558 5407
0.3483 0.0234 0.0116 231.8482 46.8184 6.5774 717.0856 4645.1056 3479.8302
0 3932 0.0233 0-0127 243-2444 46.6445 6.5387 806.2946 4617.7787 3912 7381
0.4031 0.0231 0.0117 224.5409 46.1135 6.4614 725.1955 4563.1249 3519.1855
0.4097 0.0232 0.0115 221.816 45.4431 6.5000 708.9757 4590.4518 3440.4750
03967 0.0231 0-0122 221-5057 46.1837 6-4614 765.7450 4563.1249 37159618
04085 0.0232 0-0126 229-9071 46.321 6-5000 798.1846 4590.4518 3873 3828
04247 0.0232 0-0131 236-2618 46.3576 6.5000 838.7342 4590.4518 40701591
0.4451 0.0232 0.0128 228.0659 46.4431 6.5000 814.4045 4590.4518 3952.0933
0.436 0.0233 0-0119 214.598 46.5499 6.5387 741.4153 4617.7787 35978950
0.4511 0.0233 0.0115 216.1388 46.5475 6.5387 708.9757 4617.7787 3440.4750
0.4494 0.0234 0.011 213.8433 46.8062 6.5774 668.4262 4645.1056 3243.6987
04667 0.0234 0-0122 238M6342 46.849 6-5774 765.7450 4645.1056 37159618
04937 0.0232 0-0125 229-4427 464675 6 5000 790.0747 4590.4518 3834 0275
0.4992 0.0233 0.0121 225.5861 46.5475 6.5387 757.6351 4617.7787 3676.6065
0.4948 0.0234 0.0116 221.6753 46.7513 6.5774 717.0856 4645.1056 3479.8302
04931 0.0234 0-0113 2223586 46.8276 6-5774 692.7559 4645.1056 33617645
0.5073 0.0235 0.0128 248.1423 46.9741 6.6161 814.4045 4672.4325 3952.0933
0.5252 0.0234 0.0152 270.2996 46.8001 6.5774 1009.0422 4645.1056 4896.6195
05179 0.0235 0-0136 264-5616 46.9863 66161 879.2837 4672.4325 42669354
05268 0.0235 0014 251-8775 46.9283 6-6161 911.7233 4672.4325 44243564
0.5273 0.0236 0.0137 256.0786 47.1328 6.6548 887.3936 4699.7594 4306.2906
0.5411 0.0236 0.0142 257.3403 47.145 6.6548 927.9431 4699.7594 4503.0669
05278 0.0236 0-0129 258-7346 47.1999 66548 822.5144 4699.7594 3991 4486
0.5321 0.0236 0.0129 255.6732 47.148 6.6548 822.5144 4699.7594 3991.4486
0.531 0.0235 0-0136 253.9465 47.0748 66161 879.2837 4672.4325 4266 9354
0 543 0.0237 0 0151 266 0529 47_4868 6.6935 1000 9322 4727 .863 4857 2643












Table C-14. Borehole #1 at 48/23 feet.


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
(in) (volts) v:lls (psi)
-0.0155 0.0127 0.0006 11.6648
0.0028 0.0126 0.0006 11.8272
0.063 0.0126 0.0053 98.4859
0.1144 0.0125 0.0049 94.4793
0.1155 0.0124 0.0049 96.1665
0.1103 0.0125 0.0051 100.8922
0.2138 0.0125 0.0061 126.3656
0.2412 0.0124 0.0051 94.0132
0.2377 0.0125 0.0046 86.2137
0.2599 0.0124 0.0062 125.1053
0.3417 0.0124 0.0059 119.4428
0.3695 0.0125 0005 98 9112
0.3873 0.0126 0.0062 111.4791
0.3696 0.0124 0006 1178174
0.4433 0.0125 0.0061 120.584
0.4927 0.0124 0.0053 101.2321
0.49 0.0124 0.0058 1090286
0.4866 0.0124 0.0061 116.1264
0.5293 0.0124 0.0062 1204061
0.6211 0.0123 0.0058 113.2121
0.6226 0.0124 0.0062 111.957
0.6234 0.0125 0006 1076105
0.6234 0.0123 0.0065 1155215
0.6473 0.0123 0.0071 1300132
0.6779 0.0124 0.0067 1201013
0.7093 0.0124 0006 1049032
0.6534 0.0125 0.0054 103.3167
0.7267 0.0124 0.0057 101 3813
0.6423 0.0124 0.0065 120 9567
0.7201 0.0124 0.0071 125 1327
0.6942 0.0124 0.0066 121 0372
0.6377 0.0123 0.006 105.7783
0.7157 0.0124 0.0062 1075107
0.6288 0.0125 0.0053 97.5762
0.6876 0.0124 0.0062 1084396
0.7215 0.0124 0.0057 99.4472
0.7146 0.0124 0.006 107.5955
0.6214 0.0124 0.0057 103.9088
0.662 0.0124 0.0057 106.9622
0.7408 0.0124 0.0063 1113476
0.6575 0.0125 0.0056 105.554
0.6429 0.0124 0.0058 103.8594
0.7048 0.0125 0.0054 101.0517
0.7367 0.0125 0.0058 107.9664
0.7228 0.0125 0.0054 101.7749
0.6598 0.0125 0.0053 102.8628
0.645 0.0125 0.0064 115.6365


(calculated) 0.011725305
30 (ft)
48 (ft)
0.025 (in)
0.1964 (in2)
42
38
Est. Press. Normal Force


(psi)
25.4036
25.2632
25.2083
24.9031
24.8848
24.9794
24.9855
24.8115
24.9641
24.8695
24.8146
24.9062
25.132
24.8482
24.9245
24.8177
24.7719
24.8634
24.8787
24.6834
24.7169
24.9458
24.6956
24.6864
24.7749
24.778
24.9092
24.8329
24.8817
24.897
24.8085
24.6406
24.8909
24.9062
24.723
24.8665
24.7444
24.8787
24.7993
24.8085
24.9062
24.9001
25.0496
24.9672
24.9245
25.0313
25.0649


(Ib)
2.3520
2.3133
2.3133
2.2746
2.2359
2.2746
2.2746
2.2359
2.2746
2.2359
2.2359
2.2746
2.3133
2.2359
2.2746
2.2359
2.2359
2.2359
2.2359
2.1972
2.2359
2.2746
2.1972
2.1972
2.2359
2.2359
2.2746
2.2359
2.2359
2.2359
2.2359
2.1972
2.2359
2.2746
2.2359
2.2359
2.2359
2.2359
2.2359
2.2359
2.2746
2.2359
2.2746
2.2746
2.2746
2.2746
2.2746


Unit Wt HzO 62,4 (Ibt3)
UnitWt Rod 2.96 (Ibft)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.1905225
Normal Stud Area 0.001309165


qu I.'5 1 1260,4
Shear Force Normal Stress Shear Stress
I.I1 (psi) (psi)
-176.4838 1796.5614 -926.3149
-176.4838 1767.0046 -926.3149
204.6817 1767.0046 1074.3175
172.2420 1737.4478 904.0509
172.2420 1707.8910 904.0509
188.4618 1737.4478 989.1842
269.5609 1737.4478 1414.8507
188.4618 1707.8910 989.1842
147.9123 1737.4478 776.3510
277.6708 1707.8910 1457.4173
253.3411 1707.8910 1329.7174
180.3519 1737.4478 946.6176
277.6708 1767.0046 1457.4173
261.4510 1707.8910 1372.2840
269.5609 1737.4478 1414.8507
204.6817 1707.8910 1074.3175
245.2312 1707.8910 1287.1507
269.5609 1707.8910 1414.8507
277.6708 1707.8910 1457.4173
245.2312 1678.3342 1287.1507
277.6708 1707.8910 1457.4173
261.4510 1737.4478 1372.2840
302.0005 1678.3342 1585.1173
350.6599 1678.3342 1840.5171
3182203 1707.8910 1670.2506
261.4510 1707.8910 1372.2840
212.7916 1737.4478 1116.8841
237.1213 1707.8910 1244.5841
302.0005 1707.8910 1585.1173
3506599 1707.8910 1840.5171
310.1104 1707.8910 1627.6839
261.4510 1678.3342 1372.2840
277.6708 1707.8910 1457.4173
204.6817 1737.4478 1074.3175
277.6708 1707.8910 1457.4173
237.1213 1707.8910 1244.5841
261.4510 1707.8910 1372.2840
237.1213 1707.8910 1244.5841
237.1213 1707.8910 1244.5841
285.7807 1707.8910 1499.9840
229.0114 1737.4478 1202.0174
245.2312 1707.8910 1287.1507
212.7916 1737.4478 1116.8841
245.2312 1737.4478 1287.1507
212.7916 1737.4478 1116.8841
204.6817 1737.4478 1074.3175
293.8906 1737.4478 1542.5506













Table C-15. Borehole #1 at 48/31 feet.


Penetration
Height H20
Length Pipe
Penetration De in
Stud Cap Area
No. of Studs
Weight of Instrum.


LVDT Pressure
(in) (volts)
-0.0018 0.0164
-0.0068 0.0164
-0.0049 0.0164
-0 0056 0.0165
00052 00164
0.0397 0.0165
0.1266 0.0161
0.1152 0.0162
0.1415 0.0161
02351 0.016
02321 00161
02341 0-0161
02861 00161
0.3303 0.0161
0.3231 0.0162
0.3282 0.0162
04125 0-0161
0.426 0.0161
0.4297 0.0162
04265 0.0162
0.4805 0.0161
0.5245 0.0161
05213 00161
0.5246 0.0161
05426 00161
06021 0-0161
0.5866 0.0161
0.5959 0.0162
0.5994 0.0162
06588 00162
06791 00161
0.6701 0.0162
06823 00161
0.6738 0.0163
0.7005 0.0162
06761 00162
0.6897 0.0163
0 7102 0-0162
0.6659 0.0162
0.6949 0.0161
0.6964 0.0163
0.6353 0.0162
06905 00162
0.73 0.0162
0.635 00161
0 7033 0.0163
0.6922 0.0162


Load
(volts)
0.0008
0.0007
0.0007
0 0007
0 0005
0.0049
0.0048
0.0045
0.0067
0 0073
0-0067
0 008
00099
0.0083
0.0082
0.0088
001
00095
0.0096
0-0102
0.0103
0.0088
00083
0.0088
00103
0-0122
0.0111
0.0111
0.0113
0-0111
00096
0.0097
00099
0.0104
0.0116
00116
0.0108
0-0113
0.0115
0.0112
0.0123
0.0116
0-0111
00105
0 0108
0-0105
0.0099


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.018906093


30 (ft)
48 (ft)
0.025 (in)
0.1964 (in2)
42


Est. Load Est. Press. Normal Force


(psi)
16.4515
13.2425
15.4315
13.9856
11.5495
97.3178
92.9428
89.1234
130.5766
145.6005
132.3459
148.1182
189.7926
157.9638
160.8629
169.9231
188.1601
176.6357
172.4129
186.1252
183.5158
165.0358
161.2464
162.8522
190.2699
213.7962
201.4263
197.9865
216.5587
211.2884
181.308
174.6373
177.3113
185.6336
209.9657
203.1552
202.6294
208.8966
199.0278
213.0422
219.3297
200.5918
195.8282
188.4115
194.1713
191.1555
188.3558


(psi)
32.8867
32.8928
32.8074
32.9325
32.8318
32.9478
32.2275
32.4107
32.1787
32.0536
32.2703
32.2764
32.2581
32.2581
32.3435
32.4625
32.2733
32.3008
32.3771
32.4595
32.1604
32.2275
32.2947
32.2642
32.1665
32.2611
32.2398
32.4168
32.4229
32.4259
32.3008
32.4137
32.3008
32.6487
32.4381
32.432
32.5541
32.4381
32.374
32.2947
32.6029
32.4442
32.3496
32.3679
32.2092
32.5816
32.4961


I ii I
3.7837
3.7837
3.7837
3.8224
3.7837
3.8224
3.6676
3.7063
3.6676
3.6289
366676
3.6676
3.6676
3.6676
3.7063
3.7063
3.6676
366676
3.7063
3.7063
3.6676
3.6676
3.6676
3.6676
3.6676
3.6676
3.6676
3.7063
3.7063
3.7063
3.6676
3.7063
3.6676
3.7450
3.7063
3_7063
3.7450
3.7063
3.7063
3.6676
3.7450
3.7063
3_7063
3_7063
3.6676
3.7450
3.7063


Unit Wt H20 62.4 (Ib3)
Unit Wt Rod 2.96 (Ibt)
i: ,IIri r Eare Area 4.72 (in2)
Shear Stud Area 0.1905225
Normal Stud Area 0.001309165
qu (psi) 1260.4
Shear Force Normal Stress Shear Stress


(Ib)
-160.2640
-168.3739
-168.3739
-168_3739
-184_5937
172.2420
164.1321
139.8024
318.2203
366_8797
318_2203
423_6491
577_7372
447.9788
439.8689
488.5283
585_8471
545_2976
553.4075
602_0670
610.1769
488.5283
447_9788
488.5283
610-1769
76422650
675.0561
675.0561
691.2759
675_0561
5534075
561.5174
577_7372
618.2868
715.6056
715_6056
650.7264
691 2759
707.4957
683.1660
772.3749
715.6056
675_0561
626-3967
650_7264
626_3967
577.7372


(psi)
2890.1626
2890.1626
2890.1626
2919 7194
28901626
2919.7194
2801.4922
2831.0490
2801.4922
2771 9354
2801 4922
2801 4922
28014922
2801.4922
2831.0490
2831.0490
2801 4922
28014922
2831.0490
2831 0490
2801.4922
2801.4922
2801 4922
2801.4922
2801 4922
2801 4922
2801.4922
2831.0490
2831.0490
2831 0490
28014922
2831.0490
2801 4922
2860.6058
2831.0490
2831 0490
2860.6058
2831 0490
2831.0490
2801.4922
2860.6058
2831.0490
2831 0490
2831 0490
2801 4922
2860 6058
2831.0490


(psi)
-841.1816
-883.7483
-883.7483
-883.7483
-968.8816
904.0509
861.4843
733.7843
1670.2506
1925.6504
1670.2506
2223.6170
3032.3833
2351.3169
2308.7503
2564.1501
3074.9499
2862.1167
2904.6833
3160.0832
3202.6498
2564.1501
2351.3169
2564.1501
3202.6498
4011.4161
3543.1830
3543.1830
3628.3163
3543.1830
2904.6833
2947.2500
3032.3833
3245.2165
3756.0163
3756.0163
3415.4831
3628.3163
3713.4496
3585.7497
4053.9828
3756.0163
3543.1830
3287.7831
3415.4831
3287.7831
3032.3833













Table C-16. Borehole #1 at 48/37 feet.


LVDT
Ilrl i
-0.0152
-0.0041
00486
0.0954
0.0956
0.1053
0.1766
01867
0.1835
01818
0.2424
0.2538
0.259
0.2649
0.2822
0.3182
0.3279
0.308
0.3321
0.3685
0.3731
0.3704
0.3678
0.4203
0.4336
0.4015
0.4352
0.4382
04548
0.4529
0.4493
0.4529
0.4665
0.4839
0.4806
0.4852
0.4906
0.4894
0.488
04932
0.4819
04945
0.4875
04874
0.491
014887
0.4883


FULLER WARREN BRIDGE
EAR DEVICE TEST RESULTS
(calculated) 0.025488483
30 (ft)
48 (ft)
0.025 in.
0.1964 ,r.
42
38
Est Press. Normal Force


Penetration
Height HO
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instnim-
Pressure Load Est. Load
(volts) (volts) (psi)
0.0197 00009 17_0021
0.0197 00009 19.4993
0.0196 00071 1467478
0.0194 0-0078 159.0269
0.0194 0.008 155.4138
0.0195 0-0086 175.1442
0.0193 0.0113 206.854
0.0193 0_0101 191.2829
0.0194 0.0103 190.7736
0.0194 00098 199.0775
0.0193 0.0123 232.1926
0.0194 00116 215.7153
0.0193 0.0108 210.7177
0.0194 00116 221.7851
0.0195 0.0111 229.2901
0.0193 0.0112 213.1099
0.0193 0.0114 213.8288
0.0193 0.0105 210.9705
0.0194 0.0122 237.018
0.0194 0.012 237.4128
0.0194 0.0115 220.1
0.0195 0.0115 211.1705
0.0195 0.0124 232.5528
0.0194 0.0135 257.4749
0.0195 0.0126 245.9143
0.0195 0.0124 245.6341
0.0194 0.0134 245.8851
0.0195 0.0149 270.4661
0.0194 00145 277.5055
0.0196 0.0139 265.7998
0.0194 0.0147 265.3817
0.0196 0.0141 276.0351
0.0195 0.0155 276.1432
0.0196 0.0171 307.9311
0.0195 0.016 287.8513
0.0195 0.0162 302.2954
0.0196 0.014 274.1926
0.0197 0.0154 280.3351
0.0196 0.0147 278.3382
0.0196 00146 277.6325
0.0196 0.0151 283.6362
0.0196 00143 279.1094
0.0196 0.0151 280.0345
0.0196 00149 277.6545
0.0196 0.0146 272.3146
0.0197 0014 274.9569
0.0196 0.0144 284.0889


(psi)
394421
39.3994
39.2865
38.7249
38.8073
38966
38.5998
38.5266
38.8684
38847
38.6883
38.7921
38.6059
38_7402
38.9111
38.5846
38.6029
38.6639
38.8012
38.7524
38.7738
38.9843
38.9813
38.7829
39.0667
38.9203
38.8958
38.9172
38.8836
39.1369
38.8867
39.1186
39.0454
39.1156
38.9355
39.0179
39.2865
394513
39.1491
39.1491
39.1583
39.2987
39.2743
39.1522
39.2224
39.3292
39.1858


Unit Wt H20
Unit Wt Rod
Cylinder Bore Area


62.4 (lbft3)
2.96 (lbfft)
4.72 (In2)


(Ib)
50606
50606
50219
49445
4.9445
4 9832
4.9058
49058
4.9445
49445
4.9058
49445
4.9058
49445
4.9832
4.9058
4.9058
4.9058
4.9445
4.9445
4.9445
4.9832
4.9832
4.9445
4.9832
4.9832
4.9445
4.9832
49445
5.0219
4.9445
5.0219
4.9832
5.0219
4.9832
4.9832
5.0219
5.0606
5.0219
50219
5.0219
50219
5.0219
50219
5.0219
50606
5.0219


Shear Stud Area 0.1905225
Normal Stud Area 0.001309165
qu (psi) 1260.4
Shear Force Normal Stress Shear Stress
(Ib) (psi) (psi)
-1521541 3865_5367 -7986150
-1521541 386555367 -7986150
3506599 3835_9799 18405171
4074293 37768663 21384837
423.6491 3776.8663 2223.6170
4723085 3806_4231 24790169
691.2759 3747.3095 3628.3163
593 9570 3747_3095 3117 5166
610.1769 3776.8663 3202.6498
5696273 37768663 29898166
772.3749 3747.3095 4053.9828
715 6056 37768663 37560163
650.7264 3747.3095 3415.4831
715 6056 37768663 37560163
675.0561 3806.4231 3543.1830
683.1660 3747.3095 3585.7497
699.3858 3747.3095 3670.8830
626.3967 3747.3095 3287.7831
764.2650 3776.8663 4011.4161
748.0452 3776.8663 3926.2828
707.4957 3776.8663 3713.4496
707.4957 3806.4231 3713.4496
780.4848 3806.4231 4096.5494
869.6938 3776.8663 4564.7826
796.7046 3806.4231 4181.6827
780.4848 3806.4231 4096.5494
861.5839 3776.8663 4522.2159
983.2324 3806.4231 5160.7156
9507928 3776_8663 49904490
902.1334 3835.9799 4735.0491
967.0126 3776.8663 5075.5823
918.3532 3835.9799 4820.1824
1031.8919 3806.4231 5416.1155
1161.6503 3835.9799 6097.1818
1072.4414 3806.4231 5628.9487
1088.6612 3806.4231 5714.0820
910.2433 3835.9799 4777.6158
1023.7820 3865.5367 5373.5488
967.0126 3835.9799 5075.5823
9589027 3835_9799 50330157
999.4522 3835.9799 5245.8489
9345730 3835_9799 49053157
999.4522 3835.9799 5245.8489
9832324 3835_9799 51607156
958.9027 3835.9799 5033.0157
9102433 3865_5367 47776158
942.6829 3835.9799 4947.8824













Table C-17. Borehole #1 at 47.5/40 feet.


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs


FULLER WARREN BRIDGE
SHEAR DEV'.ICE TEST RESULTS
(calculated) 0.03167194


30 (ft)
48 (ft)
0.025 (in)
0.1964 (in2)
42


Weight of Instrum. 38
Load Est. Load Est. Press. Normal Force


LVDT
(in)
0O0049
-0_0027
0.0563
0.0904
0.0896
0_0796
0-1412
0.1526
0_1338
0.1503
0.185
0.185
0_1762
0-1985
0_2217
0.2297
0_2245
0_2254
0_2491
0_2531
0.2487
0.2298
0.284
0.2777
0_2732
0_2772
0.3071
0.3216
0.3149
0_3165
0_3208
0.3347
0_3314
0.3462
0.358
0_3678
0-3688
0_3583
0.3657
0.373
0.36
0_3578
0-3765
0_3718
0.3664
0.3609
0_3672


Pressure
(volts)
0 0226
0 0226
0.0226
0.0225
0.0225
0 0226
0 0226
0.0224
0 0225
0.0224
0.0223
0 0223
0 0223
0 0223
0 0223
0.0224
0 0224
0 0224
0 0223
0 0223
0.0223
0.0223
0.0223
0.0223
0 0224
0 0223
0.0224
0.0223
0.0224
0 0224
0 0224
0.0224
0 0224
0.0224
0.0224
0 0223
0 0225
0 0224
0.0224
0.0223
0 0224
0 0225
0 0225
0 0225
0.0225
0.0224
0.0226


Unit Wt O20 62.4 (Ibft3)
Unit Wt Rod 2.96 (Ibift)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.1905225
Normal Stud Area 0.001309165
qu (psi) 1260.4
Shear Force Normal Stress Shear Stress


(volts) (psi) (psi)
0 0012 25.731 452284
0 D009 17.296 452071
0.0082 172.3013 45.1674
0.0103 194.1372 45.0728
0.0098 205.5985 44.908
0 0096 191.3601 451186
00127 268.3267 451308
0.0143 263.4574 44.7371
0 0136 256.786 44 9568
0.0144 275.8173 44.8988
0.0158 291.8485 44.6242
0 0143 266.9547 44 5631
0 0128 262.1228 44 6577
0 0149 300.8985 44 6303
S0146 293.1793 445448
0.0142 290.1117 44.7645
0 014 282.8531 44 7066
00149 299.1107 44.789
0 0166 322.4409 44 6394
0 0163 309.4171 445814
0.015 301.5555 44.5631
0.0153 312.348 44.6791
0.0158 293.282 44.5204
0.0151 281.5904 44.6181
S0154 289.9799 447127
0 0143 282.6218 44 6364
0.0173 312.7413 44.8256
0.0162 299.7499 44.7005
0.0144 290.2857 44.7035
S0155 291.3076 448042
0 0171 315.6694 44 8378
0.0152 299.6844 44.7554
0 0154 288.6144 44 7951
0.0154 293.012 44.7066
0.0171 325.7502 44.7798
0 0155 305.9301 44 6821
0016 299.6084 44 9232
0 0153 297.3945 44 8958
0.0168 300.4479 44.8378
0.0156 291.2257 44.676
S0149 291.3069 448469
0 0145 290.9557 45.085
00155 291.717 449232
0 0145 287.9789 44 9965
0.0154 286.4619 44.9019
0.0153 287.9257 44.8439
S0154 289.1582 451125


(lb)
61828
61828
6.1828
6.1441
6.1441
61828
61828
6.1054
6 1441
6.1054
6.0667
60667
60667
60667
60667
6.1054
6 1054
6 1054
60667
60667
6.0667
6.0667
6.0667
6.0667
61054
60667
6.1054
6.0667
6.1054
61054
61054
6.1054
61054
6.1054
6.1054
60667
6 1441
61054
6.1054
6.0667
61054
6 1441
61441
61441
6.1441
6.1054
61828


(Ib)
-127.8244
-152.1541
439.8689
610.1769
569.6273
553_4075
804.8146
934.5730
877.8037
942.6829
1056.2216
934.5730
812.9245
983-2324
958.9027
926.4631
910.2433
983.2324
1121.1008
1096.7711
991.3423
1015.6721
1056.2216
999.4522
1023.7820
934.5730
1177.8701
1088.6612
942.6829
1031.8919
1161.6503
1007.5622
1023.7820
1023.7820
1161.6503
1031 8919
1072_4414
1015.6721
1137.3206
1040.0018
983-2324
950.7928
1031.8919
950.7928
1023.7820
1015.6721
1023.7820


(psi) (psi)
4722.6836 -670 9150
4722.6836 -798 6150
4722.6836 2308.7503
4693.1268 3202.6498
4693.1268 2989.8166
4722.6836 2904 6833
4722.6836 4224 2494
4663.5700 4905.3157
4693.1268 4607 3492
4663.5700 4947.8824
4634.0132 5543.8154
4634.0132 49053157
4634.0132 4266 8160
4634.0132 51607156
4634.0132 50330157
4663.5700 4862.7491
4663.5700 4777 6158
4663.5700 51607156
4634.0132 5884 3486
4634.0132 5756 6487
4634.0132 5203.2823
4634.0132 5330.9822
4634.0132 5543.8154
4634.0132 5245.8489
4663.5700 5373 5488
4634.0132 49053157
4663.5700 6182.3151
4634.0132 5714.0820
4663.5700 4947.8824
4663.5700 54161155
4663.5700 6097 1818
4663.5700 5288.4156
4663.5700 5373 5488
4663.5700 5373.5488
4663.5700 6097.1818
4634.0132 54161155
4693.1268 5628 9487
4663.5700 5330 9822
4663.5700 5969.4819
4634.0132 5458.6821
4663.5700 51607156
4693.1268 4990 4490
4693.1268 54161155
4693.1268 4990 4490
4693.1268 5373.5488
4663.5700 5330.9822
4722.6836 5373 5488












Table C-18. Borehole #1 at 49/2



Penetration
Height H20
Length Pipe
Penetration Deptt
Stud Cap Area
No. of Studs


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.012873465


31 (ft)
49 (ft)
0.022 (in)
0.1964 (in2)
42


Weight of Instrum. 38
LVDT Pressure Load Est. Load Est Press. Normal Force


(in)
-0.0001
-0.0088
0.0039
0.0249
0.1074
0.1057
0.1066
0.1598
0.2196
0 207
0.2228
0.2493
0.3005
0.309
0 307
0.3276
0.3883
0.4147
0.4038
0.4087
0.4221
0.4766
0.5095
0.5117
0.5052
0.5348
0.5995
0.6163
0.6118
0.6107
0.6585
0.7154
0.7046
0.7141
0.7218
0.708
0.6391
0.6363
0.6784
0.7439
0.6526
0.6557
0.7384
0.7236
0.6502
0.6498
0.6767


(volts) (volts) (psi)
0.0141 0.0011 22.9909
0.0141 0.0008 16.7551
0.0141 0.0009 17.4727
0.0141 0.0057 112.8811
00141 0.0072 135.7789
00139 0.0065 124.431
0.014 0.0059 121.7232
0.0139 0.0077 156.6054
0-0141 0.0077 144.3241
0014 0.008 154.5632
0.014 0.0072 132.332
0.0139 0.0085 167.4611
0.0139 0.009 163.0814
0.014 0.0071 143.5945
0-0139 0.0079 151.8031
0014 0.0088 167.6449
0014 0.0088 168.9726
0.0139 0.0083 155.6814
0.0139 0.0081 145.6409
0014 0.0073 147.4929
0.014 0.0088 166.684
0.0139 0.0088 157.811
00139 0.0081 143.4302
0.0139 0.0075 147.7831
0.0141 0.0077 149.2828
0014 0.0094 170.4501
00139 0.0087 156.5419
0-0139 0.0071 138.5949
0.014 0.0081 141.1506
0.014 0.0071 134.7688
0014 0.0087 168.1917
0.0139 0.0097 177.4578
0.0139 0.0083 153.1079
00139 0.008 1496367
0.0139 0.0092 159.1278
0.0139 0.0091 174.0959
0014 0.0097 185.3737
00139 0.0089 166.2448
0-0138 0.0089 166.9185
0.0139 0.009 159.0734
0.0139 0.0081 157.7021
0.0139 0.0082 159.7034
0.0139 0.0096 168.5429
00139 0.0088 1602393
00139 0.0086 1572479
0.0139 0.0095 165.6787
0.0139 0.0087 161.874


(psi)
28.2083
28.251
28.254
28.2235
282601
27.897
28.0648
27.8726
28.1137
27.9244
27.9977
27.8817
27.7688
27.9366
27.8695
27.9489
28.0526
27.7749
27.8542
280831
28.0129
27.72
27.8817
27.8115
28.1808
27.9397
27.8817
27.8451
27.9977
27.9092
27.9733
27.8634
27.7688
27.7474
27.723
27.8207
27.9458
27.8146
27.6589
27.8726
27.7108
27.8573
27.8787
27.7596
27.723
27.8542
27.7139


(Ib)
2.8086
2.8086
2.8086
2.8086
2.8086
2.7312
2.7699
2.7312
2.8086
2.7699
2.7699
2.7312
2.7312
2.7699
2.7312
2.7699
2.7699
2.7312
2.7312
2.7699
2.7699
2.7312
2.7312
2.7312
2.8086
2.7699
2.7312
2.7312
2.7699
2.7699
2.7699
2.7312
2.7312
2.7312
2.7312
2.7312
2.7699
2.7312
2.6925
2.7312
2.7312
2.7312
2.7312
2.7312
2.7312
2.7312
2.7312


Unit Wt H20
Unit Wt Rod
i lirlr6r Sore Area
Shear Stud Area
Normal Stud Area
qu (psi)
Shear Force
(Ib)
-138.8943
-163.2240
-155.1141
234.1613
355.8098
299.0405
250.3811
396.3594
396.3594
420.6891
355.8098
461.2386
501.7881
347.6999
412.5792
485.5683
485.5683
445.0188
428.799C
363.9197
485.5683
485.5683
428.7990
380.1395
396.3594
534.2277
477.4584
347.6999
428.799C
347.6999
477.4584
558.5574
445.0188
420.6891
518.0079
509.8980
558.5574
493.6782
493.6782
501.7881
428.799C
436.9089
550.4475
485.5683
469.3485
542.3376
477.4584


62.4 (lbtf3)
2.96 (lbft)
4.72 (in2)
0.147540624
0.001013818
1417.5
Normal Stress Shear Stress
(psi) 'Ps .
2770.3359 -941.3971
2770.3359 -1106.2989
2770.3359 -1051.3316
2770.3359 1587.0969
2770.3359 2411.6059
2694.0012 2026.8350
2732.1685 1697.0315
2694.0012 2686.4422
2770.3359 2686.4422
2732 1685 2851.3439
2732.1685 2411.6059
2694.0012 3126.1802
2694.0012 3401.0155
2732.1685 2356.6386
2694.0012 2796.3767
2732 1685 3291.0820
2732 1685 3291.0820
2694.0012 3016.2457
2694.0012 2906.3112
2732-1685 2466.5731
2732.1685 3291.0820
2694.0012 3291.0820
2694.0012 2906.3112
2694.0012 2576.5076
2770.3359 2686.4422
2732.1685 3620.8856
2694.0012 3236.1148
2694.0012 2356.6386
2732.1685 2906.3112
2732.1685 2356.6386
2732.1685 3236.1148
2694.0012 3785.7874
2694.0012 3016.2457
2694.0012 2851.3439
2694.0012 3510.9511
2694.0012 3455.9838
2732.1685 3785.7874
2694.0012 3346.0493
2655.8338 3346.0493
2694.0012 3401.0155
2694.0012 2906.3112
2694.0012 2961.2785
2694.0012 3730.8201
2694.0012 3291.0820
2694.0012 3181.1475
2694.0012 3675.8529
2694.0012 3236.1148













Table C-19. Borehole #1 at 49/32 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.016775379


Height H20
LErn.lh Fir.?
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
(in) (volts) (volts) 'sl.
0.0017 0.0165 0.0006 11.7464
-0.0037 0.0166 00007 13.9538
0.0647 0.0165 0.0067 133.5735
0.1042 0.0162 0.006 120.2145
0097 0.0164 0-0078 144.8276
0.1178 0.0163 0.0078 156.5942
01822 0.0163 0 0096 176.9037
01997 0.0161 0-0088 166.1722
0.2119 0.0163 0.0088 165.9739
0.2029 0.0162 0-0093 174.4372
0.2616 0.0162 0.0107 198.9046
0.2866 0.0161 0.0087 172.7247
0.2743 0.0162 0.0086 171.9779
0.2872 0.0163 0.0098 187.9572
0.3193 0.0163 0.0107 213.6124
0.3462 0.0164 0.0099 203.8462
0.3496 0.0164 0.0103 189.1793
0.3482 0.0164 O 01 188.7837
0.3653 0.0163 0.0102 206.1266
0.4146 0.0162 0.0105 209.7777
0.4388 0.0162 0.0108 194.4702
04281 0.0162 00101 197.2567
0.4253 0.0162 0-0099 201.7367
0.4719 0.0164 0.0112 213.2482
0.4985 0.0162 0.0099 191.3648
0.4927 0.0162 0.0097 190.0632
0.5096 0.0163 0.0097 198.2393
0.5039 0.0164 0.0106 204.3836
0.5319 0.0164 0.0119 217.7615
0.5504 0.0163 0.0105 198.3935
0.5575 0.0163 0.0113 199.0575
0.5541 0.0164 0.0105 200.4392
0.5915 0.0164 0.013 240.1664
0.6013 0.0163 0-0125 222.0683
0.6068 0.0164 0.0113 208.5725
0.6114 0.0163 0.0105 202.6543
0.6156 0.0163 0.0103 200.2356
0.6074 0.0164 0-0104 192.2053
0.6051 0.0164 0-0115 202.1042
0.6081 0.0164 0.011 206.3825
0.6101 0.0164 0.012 211.1197
0.6146 0.0164 0.011 205.1815
0.6131 0.0164 0.0104 197.1196
0.6232 0.0164 0.0109 193.3955
0.613 0.0166 0.0107 195.2335
0.6167 0.0165 0011 201.5917
06116 0 0165 0 0103 1928733


31 (ft)
49 (ft)
0.022 In.
0.1964 ir,.
42


38
Est Press. Normal Force


(psi)
33.0393
33.1065
33.0119
32.4717
32.725
32.6334
32.5816
32.2123
32.5449
32.3862
32.4137
32.2947
32.4442
32.5266
32.551
32.8837
32.786
32.7189
32.6884
32.374
32.3099
32.4503
32.4961
32.7189
32.4046
32.4137
32.6518
32.7403
32.7219
32.6121
32.667
32.7921
32.7036
32.6823
32.8593
32.5999
32.6701
32.7708
32.8379
32.7799
32.8837
32.7555
32.8288
32.8471
33.1156
32.9142
32 9478


(Ib)
3.7373
3.7760
3.7373
3.6212
3.6986
3.6599
3.6599
3.5825
3.6599
3.6212
3.6212
3.5825
3.6212
3.6599
3.6599
3.6986
3.6986
3.6986
3.6599
3.6212
3.6212
3.6212
3.6212
3.6986
3.6212
3.6212
3.6599
3.6986
3.6986
3.6599
3.6599
3.6986
3.6986
3.6599
3.6986
3.6599
3.6599
3.6986
3.6986
3.6986
3.6986
3.6986
3.6986
3.6986
3.7760
3.7373
37373


Unit Wt H20 62.4 (Ib1f3)
UnitWt Rod 2.96 (Ib/ft)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.147540624
Normal Stud Area 0.001013818


qu ,511 1417.5
Shear Force Normal Stress Shear Stress
II, (psi) (psi)
-179.4438 3686.3521 -1216.2334
-1713339 37245194 -1161.2661
315.2603 3686.3521 2136.7695
258.4910 3571.8500 1751.9987
404.4693 3648 1847 2741 4094
404.4693 3610.0174 2741.4094
5504475 36100174 3730.8201
485.5683 3533 6827 3291 0820
485.5683 3610.0174 3291.0820
526.1178 3571 8500 35659183
639.6565 3571.8500 4335.4600
477.4584 3533.6827 3236.1148
469.3485 3571.8500 3181.1475
566.6673 3610.0174 3840.7546
639.6565 3610.0174 4335.4600
574.7772 3648.1847 3895.7219
607.2169 3648.1847 4115.5909
582.8871 3648 1847 3950.6892
599.1070 3610.0174 4060.6237
623.4367 3571 8500 4225 5255
647.7664 3571 8500 4390 4272
590.9970 3571 8500 4005 6564
574.7772 3571 8500 3895.7219
580.2060 3648.1847 4610.2963
574.7772 3571.8500 3895.7219
558.5574 3571.8500 3785.7874
558.5574 3610.0174 3785.7874
631.5466 3648.1847 4280.4927
736.9753 3648.1847 4995.0671
623.4367 3610.0174 4225.5255
688.3159 3610.0174 4665.2636
623.4367 3648.1847 4225.5255
826.1843 3648 1847 5599.7070
785.6347 36100174 5324.8707
688.3159 36481847 4665-2636
623.4367 36100174 42255255
607.2169 3610.0174 4115.5909
6153268 36481847 4170-5582
704.5357 36481847 4775.1981
563.9862 3648.1847 4500.3618
745.0852 3648.1847 5050.0344
663.9862 3648.1847 4500.3618
615.3268 3648.1847 4170.5582
655.8763 3648.1847 4445.3945
639.6565 3724.5194 4335.4600
663.9862 3686 3521 4500 3618
6072169 3686 3521 4115 5909












Table C-20. Borehole #1 at 49/38 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.022805609
Height H20 31 (ft) Unit Wt H20 62.4 (Iblt3)
Len )th F Ipe 49 (ft) Unit Wt Rod 2.96 (Ib/ft)
Penetration Depth 0.022 (in) Cylinder Bore Ares 4.72 (in2)
Stud Cap Area 0.1964 (in2) Shear Stud Area 0.147540624
No. of Studs 42 Nornal Stud Area 0.001013818
Weight of Instrurn 38 qu -rs 1417.5
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress
i in (volts) (volts) (psi) (psi) (Ib) (Ib) (psi) (psi)
-0.0148 0.0201 0.001 20.0071 40.1013 5.1303 -147.0042 5060.3764 -996.3643
-0_0076 0.02 0 0001 1.0677 39-9792 5.0916 -219 9934 5022.2090 -1491.0697
-0_0004 0.0199 0.0037 697599 39-8694 5.0529 719632 4984.0417 487.7517
0.0703 0.0199 0.0081 152.4564 39.8785 5.0529 428.7990 4984.0417 2906.3112
0.0989 0.0199 0.008 169.7322 39.7992 5.0529 420.6891 4984.0417 2851.3439
0.0963 0.0199 0.0081 164.5126 39.7046 5.0529 428.7990 4984.0417 2906.3112
0_1011 0.0199 0.0091 175.8779 397504 5.0529 5098980 4984.0417 3455.9838
0.1343 0.0198 0.0108 224.7828 39.552 5.0142 647.7664 4945.8744 4390.4272
0.1654 0.0197 0.0102 204.4979 39.4299 4.9755 599.1070 4907.7070 4060.6237
0.1753 0.0198 0.0097 200.5471 39.5337 5.0142 558.5574 4945.8744 3785.7874
01849 0.0196 0.012 227.0507 39-2773 4.9368 7450852 4869.5397 5050.0344
0.2382 0.0198 0.0121 241.5504 39.5093 5.0142 753.1951 4945.8744 5105.0016
0.2265 0.0197 0.0116 234.3131 39.4565 4.9755 712.6456 4907.7070 4830.1653
0.2337 0.0198 0.0126 238.9565 39.5764 5.0142 793.7446 4945.8744 5379.8379
0_2275 0.0198 0.0132 246.1447 39-5306 5.0142 842 4041 4945.8744 5709.6415
0.2482 0.0198 0.0141 261.5714 39.5337 5.0142 915.3932 4945.8744 6204.3469
0.2572 0.0197 0.0141 255.354 39.4177 4.9755 915.3932 4907.7070 6204.3469
0.2528 0.0198 0.0119 245.9851 39.5032 5.0142 736.9753 4945.8744 4995.0671
0.2609 0.0198 0.0122 245.2314 39.5856 5.0142 761.3050 4945.8744 5159.9689
0-2721 0.0198 0.0142 267.7575 39-5154 5.0142 9235031 4945.8744 6259.3141
0.2975 0.0197 0.0137 260.5 39.4574 4.9755 882.9536 4907.7070 5984.4778
0.2915 0.0197 0.0131 255.1081 39.4482 4.9755 834.2942 4907.7070 5654.6743
0.3098 0.0198 0.0124 254.0296 39.5825 5.0142 777.5248 4945.8744 5269.9034
0_3042 0.0197 0.0142 257.9087 394565 4.9755 9235031 4907.7070 6259.3141
0.3029 0.0198 0.0152 275.3528 39.6039 5.0142 1004.6022 4945.8744 6808.9867
0.3258 0.0198 0.0139 276.2533 39.5703 5.0142 899.1734 4945.8744 6094.4123
0.3239 0.0197 0.0137 257.577 39.4504 4.9755 882.9536 4907.7070 5984.4778
0.3441 0.0199 0.0138 248.3219 39.8938 5.0529 891.0635 4984.0417 6039.4451
0.323 0.0198 0.0133 244.1109 39.5734 5.0142 850.5140 4945.8744 5764.B088
0.3338 0.0198 0.0129 261.2536 39.61 5.0142 818.0744 4945.8744 5544.7397
0.3635 0.0198 0.0137 277.819 39.552 5.0142 882.9536 4945.8744 5984.4778
0.3631 0.0198 0.0134 264.4196 39.5215 5.0142 858.6239 4945.8744 5819.5760
0-3739 0.0197 0.0138 256.6561 39-3078 4.9755 891 0635 4907.7070 6039.4451
0.3735 0.0197 0.0135 258.3333 39.3872 4.9755 866.7338 4907.7070 5874.5433
0.3685 0.0198 0.0142 270.2829 39.6832 5.0142 923.5031 4945.8744 6259.3141
0.3931 0.0197 0.015 286.0346 39.4726 4.9755 988.3823 4907.7070 6699.0522
0-3907 0.0197 0.015 284.6327 39-3323 4.9755 988 3823 4907.7070 6699.0522
0.3902 0.0197 0.0141 269.3004 39.4177 4.9755 915.3932 4907.7070 6204.3469
0.4121 0.02 0.0152 273.0471 40.0952 5.0916 1004.6022 5022.2090 6808.9867
0.4011 0.0197 0.0143 286.6441 39.4504 4.9755 931.6130 4907.7070 6314.2814
0.414 0.0198 0.0162 301.7241 39.5123 5.0142 1085.7012 4945.8744 7358.6593
0.4162 0.0196 0.0148 292.6324 39.259 4.9368 972.1625 4869.5397 6589.1177
0.4317 0.0197 0.0146 286.8526 39.4504 4.9755 955.9427 4907.7070 6479.1832
0.4191 0.0197 0.015 285.0535 39.4543 4.9755 988.3823 4907.7070 6699.0522
0.4263 0.0198 0.0151 299.3173 39.5062 5.0142 996.4922 4945.8744 6754.0195
0.4155 0.0197 0.0149 282.2306 39.3017 4.9755 980.2724 4907.7070 6644.0850
0.413 0.0197 0.0159 286.0122 39.4596 4.9755 1061.3715 4907.7070 7193.7576













Table C-21. Borehole #1 at 49/47 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.030609436
Height H20 31 (ft)
Length Pipe 49 (ft)
Penetration Depth 0.022 (in) Cyli
Stud Cap Area 0.1964 (in2) S


No. of Studs 42
Weight of Instrum. 38
LVDT Pressure Load Est. Load Est Press.


inn I
0.0015
-0.0006
0.0005
0.0507
0.1035
0.0937
0.0982
0.1255
0.1564
0.1535
0.1607
0.1649
0.1984
0.2075
0.2075
0.2044
0.2207
0.2351
0.2318
0.2315
0.2348
0.2499
0.1999
0.2621
0.2526
0.2579
0.2809
0.286
0.2767
0.2855
0.2965
0.3093
0.3178
0.3118
0.3059
0.3234
0.3362
0.3368
0.3352
0.3457
0.3617
0.3704
0.3785
0.3757
0.3754
0.3842
0.3958


(volts) (volts) (psi)
0.0245 0.001 19.1885
0.0245 0.0009 17.1695
00245 0.0008 15_0562
00245 0.0062 131_6185
00242 0.0083 169_0676
0.0242 0.0088 162_9194
00242 0.0082 154_6827
0.0242 0.0113 216_8287
00241 0013 244_5437
0.0241 0.0121 234.8171
00242 0.0118 229_1882
0.0242 0.0134 249.671
0.024 0.0135 275_5324
0.0241 0.0136 279.7916
00241 0.0139 272.957
0.0241 0.0146 278.2249
0.0242 0.0158 309.0912
0.0242 0.0151 306.9458
0.0241 0.0148 301.4118
0.0242 0.015 298.6462
0.0242 0.0175 318.1742
0.0242 0.0182 338.5878
0.0241 0.0143 293_8285
0.0242 0.0165 306.7565
0.0242 0.0156 3000282
0.0243 0.016 323.4196
0.0242 0_016 324_0655
0.0242 0_016 312_2653
0.0242 0_016 3003266
0.0242 0.0155 301.4779
0.0243 0_018 331_1991
0.0241 0.0152 305.0209
0.0243 0.0142 288_2526
0.0243 0.0139 284.1601
00242 0.0146 270_3774
0.0242 0.0171 316.3141
00242 0_016 318_5819
0.0241 0.0159 293.7966
0.0243 0.0167 308.0716
0.0243 0.0147 292.7321
0.0243 0.0169 318.7382
0.0243 0.016 311.0679
00242 0.0155 302.452
0.0242 0.0167 305.3265
00243 0.0177 322_4456
0.0243 0.0192 354.5103
00243 0.0185 330_0806


No


(psi)
49.0005
48.909
49.031
49.0158
48.3566
48.4115
48.3688
48.3383
48.1582
48.2284
48.3963
48.4878
47.9812
48.1948
48.1521
48.1185
48.3535
48.381
48.2681
48.4756
48.3474
48.4298
48.2437
48.3779
48.3413
48.5885
48.4725
48.4695
48.3657
48.4207
48.5794
48.2864
485122
48.5977
48.4146
48.4359
48.3596
48.2406
48.5061
48.6312
48.677
48.616
48.4664
48.3657
48.6862
48.6099
485733


Jnit Wt H1O 62.4 (lb/ft3)
nit Wt Rod 2.96 (Ibft)
under Bore Area 4.72 ,ri I
hear Stud Area 0.147540624
rmal Stud Area 0.001013818
qu (psi) 1417.5
Shear Force Normal Stress Shear Stress


Normal Force
(Ib)
6.8329
6.8329
6-8329
6_8329
6_7168
6_7168
6_7168
6_7168
6_6781
6.6781
6_7168
6.7168
6_6394
6.6781
6_6781
6.6781
6.7168
6.7168
6.6781
6.7168
6.7168
6.7168
6_6781
6.7168
6_7168
6.7555
6_7168
6_7168
6_7168
6.7168
6_7555
6.6781
6_7555
6.7555
6_7168
6.7168
6_7168
6.6781
6.7555
6.7555
6.7555
6.7555
6_7168
6.7168
6_7555
6.7555
6 7555


(Ib)
-147.0042
-155.1141
-163_2240
274_7108
445_0188
485-5683
436_9089
688_3159
826 1843
753.1951
728a8654
858.6239
866_7338
874.8437
899_1734
955.9427
1053.2616
996.4922
972.1625
988.3823
1191.1299
1247.8993
931 6130
1110.0309
1037_0418
1069.4814
1069A4814
1069A4814
1069A4814
1028.9319
1231 6795
1004.6022
923_5031
899.1734
955-9427
1158.6903
1069_4814
1061.3715
1126.2507
964.0526
1142.4705
1069.4814
1028_9319
1126.2507
1207_3498
1328.9983
1272_2290


(psi)
6739.7395
6739.7395
6739.7395
6739.7395
6625.2374
6625.2374
6625.2374
6625.2374
6587.0701
6587.0701
5625.2374
6625.2374
6548.9027
6587.0701
6587.0701
6587.0701
6625.2374
6625.2374
6587.0701
6625.2374
6625.2374
6625.2374
6587.0701
6625.2374
6625.2374
6663.4048
6625.2374
6625.2374
6625.2374
6625.2374
6663.4048
6587.0701
6663.4048
6663.4048
6625.2374
6625.2374
6625.2374
6587.0701
6663.4048
663.4048
6663.4048
6663.4048
6625.2374
6625.2374
6663.4048
6663.4048
6663.4048


(psi)
-996.3643
-1051.3316
-1106.2989
1861.9332
3016.2457
3291.0820
2961.2785
4665.2636
5599.7070
5105.0016
4940.0999
5819.5760
5874.5433
5929.5106
6094A4123
6479.1832
7138.7903
6754.0195
6589.1177
6699.0522
8073.2337
8458.0046
6314.2814
7523.5611
7028.8558
7248.7248
7248.7248
7248.7248
7248.7248
6973.8885
8348.0700
6808.9867
6259.3141
6094.4123
6479.1832
7853.3647
7248.7248
7193.7576
7633.4957
6534.1504
7743.4302
7248.7248
6973.8885
7633.4957
8183.1683
9007.6772
8622.9064













Table C-22. Borehole #1 at 54/28 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.077861918
Height H20 36 (ft)
Length Pipe 54 (ft)
I-iene& riarin rifj n 0.078 (in)
Stud Cap Area 0.1964 (in2)
No. of Studs 42
Weightoflnstrun. 38
LVDT Pressure Load Est. Load Est Press. Normal Force


(in)
-00129
0.0019
0.021
0.1057
0.1049
0.0988
0.1384
0_2137
0.232
0.2187
0 2385
0.3287
0.3379
0 3376
0.3335
0.399
0.4419
0.4546
0.4541
0.4985
0 5542
0.552
0 5569
0 5552
0.5945
0.6417
0.6576
0 6576
0 6543
0.6526
0 6579
0.6809
0.6779
0 7426
0.727
0.6356
0.7148
0.6653
066
0.7035
0.7283
0.6639
0.6747
0.7345
0.7355
0.6814
0.6265


,:.,ls5 (volts) Ip-l I (psi)
0.015 00005 8.758 30.0729
0.015 0.0007 13.4255 30.079
0.015 0005 98.5349 29.9417
0.015 0.0049 106.6152 29.9478
0.0149 0.0048 91.536 29.7708
0.0148 0.0046 90.4655 29.667
0.0148 0.0058 115.5025 29.5969
0.0147 0 0059 1124448 29.4931
0.0147 00058 105.1344 29.4504
0.0148 0.0052 100.8253 29.5175
0.0147 00061 117.5862 29.3252
0.0147 0.0063 118.6902 29.3435
0.0148 0.0054 110.2645 29.5938
0.0147 00056 105.1811 29.4015
0.0147 0.0063 126.6607 29.3954
0.0147 0 0071 131.3794 29.371
0.0147 0.0059 111.9416 29.4046
0.0147 0.0066 131.5249 29.4076
0.0146 0.0059 114.102 29.2611
0.0147 0.008 149.0503 29.3558
0.0147 0 0092 165.8281 29.313
0.0146 0 0082 145.3369 29.2703
0.0147 0 0073 137.7585 29.3771
0.0147 0 0072 128.9246 29.3771
0.0147 0.008 156.0127 29.487
0.0146 0.0087 163.0697 29.2734
0.0147 0.0079 146.1092 29.4504
0.0147 00077 139.5212 29.4259
0.0147 00069 135.1689 29.4229
0.0146 0.0073 136.5605 29.2856
0.0147 0081 144.1975 29.313
0.0147 0.0082 156.1701 29.3771
0.0147 0.0082 158.8928 29.31
0.0146 0 0077 137.0476 29.2886
0.0147 0.0072 135.1636 29.313
0.0147 0 0076 132.8961 29.3344
0.0147 0 0083 1574625 29.4748
0.0146 0.0082 158.298 29.3008
0.0147 0 0077 140.9799 29.3863
0.0147 0.0075 139.4674 29.313
0.0147 0 0081 140.9736 29.3497
0.0148 0079 137.0819 29.5175
0.0147 0.008 142.976 29.3863
0.0147 0 0077 133.2325 29.4931
0.0148 0.0069 131.4673 29.5206
0.0147 0.0071 137.2273 29.4534
0.0147 0 0074 129.3849 29.4534


Unit Wt H2O 62.4 (lbft3)
Unit Wt Rod 2.96 (Ilbt)
l, Inr- Bore Area 4.72 (in2)
Shear Stud Area 1.854622224
Normal Stud Area 0.01214394
qu(psi) 218.23
Shear Force Normal Stress Shear Stress


(Ib)
2.7313
2.7313
2.7313
2.7313
2.6926
2.6539
2.6539
2.6153
2.6153
2.6539
2.6153
2.6153
2.6539
2.6153
2.6153
2.6153
2.6153
2.6153
2.5766
2.6153
2.6153
2.5766
2.6153
2.6153
2.6153
2.5766
2.6153
2.6153
2.6153
2.5766
2.6153
2.6153
2.6153
2.5766
2.6153
2.6153
2.6153
2.5766
2.6153
2.6153
2.6153
2.6539
2.6153
2.6153
2.6539
2.6153
2.6153


(Ib)
-202.3537
-186.1339
162.5919
154.4820
146.3721
130.1523
227.4712
235.511
227.4712
178.8118
251.8009
268.0207
195.0316
211.2514
268.0207
332.8999
235.5811
292.3504
235.5811
405.8891
503.2079
422.1089
349.1197
341.0098
405.8891
462.6584
397.7792
381.5594
316.6801
349.1197
413.9990
422.1089
422.1089
381.5594
341.0098
373.4494
430.2188
422.1089
381.5594
365.3395
413.9990
397.7792
405.8891
381.5594
316.6801
332.8999
357.2296


(psi)
214.3242
214.3242
214.3242
214.3242
211.2879
208.2516
208.2516
205.2152
205.2152
208.2516
205.2152
205.2152
208.2516
205.2152
205.2152
205.2152
205.2152
205.2152
202.1789
205.2152
205.2152
202.1789
205.2152
205.2152
205.2152
202.1789
205.2152
205.2152
205.2152
202.1789
205.2152
205.2152
205.2152
202.1789
205.2152
205.2152
205.2152
202.1789
205.2152
205.2152
205.2152
208.2516
205.2152
205.2152
208.2516
205.2152
205.2152


(psi)
-109 1078
-100.3622
87 6685
83.2957
78.9229
70.1773
122.6509
1270238
122 6509
96.4141
135 7694
144.5150
105.1597
113 9053
144.5150
179 4974
127.0238
157.6334
127.0238
218.8527
271 3264
227 5983
188 2430
183 8702
218.8527
249.4623
214.4799
205 7343
170 7518
188.2430
2232255
227.5983
227.5983
205 7343
183.8702
201 3615
231 9711
227.5983
205 7343
196.9887
2232255
214 4799
218.8527
205 7343
170.7518
179.4974
1926159












Table C-23. Borehole #1 at 54/34 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.109982669
Height H20 36 (ft) Unit Wt H20 62.4 (Ib)fft3
Length Pipe 54 (ft) Unit Wt Rod 2.96 (Ibfft)
Penetration Decin 0.0591 (in) :iri]er eore Ares 4.72 (in2)
Stud Cap Area 0.1964 (in2) Shear Stud Area 1.064734229
No. of Studs 42 Normal Stud Area 0.007316266
Weight of Instrum. 38 qu (psi) 218.5
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force NormalStress Shear Stress
(in) (volts) (volts) (psi] (psi) (Ib) (Ib) (psi) (psi]
-0.0152 0.018 0.0017 32.4251 36.0881 3.8922 -105.0349 531.9895 -98.6489
-0.0138 0.0181 0.0017 33.6045 36.1766 3.9309 -105.0349 537.2784 -98.6489
0.002 0.018 0.0005 11.2057 36.0179 3.8922 -202.3537 531.9895 -190.0509
0.0486 00181 0.0069 128_8332 36.1278 3_9309 3166801 5372784 297.4264
0.1002 00176 0.0068 127_4611 35.2855 3_7374 3085702 5108341 2898096
0.0884 0.0177 0.0057 118.7499 35.3374 3.7761 219.3613 516.1229 206.0244
0.101 0.0177 0.0072 142.6578 35.3191 3.7761 341.0098 516.1229 320.2770
0.1656 00176 0.0076 160_6211 35.2397 3_7374 3734494 510-8341 350.7443
0.1999 00175 0.0077 1552883 35.0383 3_6987 3815594 505-5452 358.3611
0.1942 0.0175 0.008 142.6604 35.0841 3.6987 405.8891 505.5452 381.2116
0.2144 0.0176 0.0083 151.3884 35.1604 3.7374 430.2188 510.8341 404.0621
0.3042 0.0175 0.0083 159.0962 34.9498 3.6987 430.2188 505.5452 404.0621
0.3078 0.0175 0.0078 145.3989 35.0322 3.6987 389.6693 505.5452 365.9780
0.3043 0 0175 0.0078 144 4573 34.9498 3_6987 389 6693 505-5452 365.9780
0.3274 0 0176 0.0081 165 8528 35.2458 3_7374 4139990 510-8341 388.8285
0.3766 0.0175 0.01 189.3637 35.0719 3.6987 568.0871 505.5452 533.5483
0.3878 0.0175 0.0096 171.583 34.9559 3.6987 535.6475 505.5452 503.0810
0.4072 0.0176 0.009 165.4311 35.1695 3.7374 486.9881 510.8341 457.3800
0.403 00176 0.0101 196_0296 35.2306 3_7374 5761970 510-8341 541.1651
0.4711 00176 0.0109 207_5772 35.1848 3_7374 641 0763 510-8341 602.0998
0.4758 0.0176 0.0087 175.1268 35.2458 3.7374 462.6584 510.8341 434.5295
0.4798 0.0175 0.009 170.2429 35.0261 3.6987 486.9881 505.5452 457.3800
0.5005 00177 0.0102 189_7746 35.3191 3_7761 584 3070 5161229 5487820
0.5521 00176 0.0108 205.711 35.1482 3_7374 6329664 5108341 5944830
0.5635 0.0176 0.0092 174.7158 35.2184 3.7374 503.2079 510.8341 472.6136
0.5666 0.0176 0.0099 170.3002 35.2519 3.7374 559.9772 510.8341 525.9315
0.5585 0.0176 0.0088 167.4488 35.2947 3.7374 470.7683 510.8341 442.1463
0.5937 00178 0.0108 2011799 35.5358 3_8148 6329664 521-4118 594.4830
0.6233 00177 0.0111 197a3293 35.4686 3_7761 6572961 5161229 617.3335
0.6234 0.0177 0.0105 191.5712 35.4076 3.7761 608.6367 516.1229 571.6325
0.6284 0.0176 0.0089 170.5844 35.2977 3.7374 478.8782 510.8341 449.7631
0.6251 0.0177 0.0091 167.4721 35.316 3.7761 495.0980 516.1229 464.9968
0.6312 0.0176 0.0106 181.8239 35.2947 3.7374 616.7466 510.8341 579.2493
0.6901 00177 0.0109 200_9385 35-371 3_7761 641 0763 5161229 602.0998
0-716 00177 0.0098 172_8423 35-435 3_7761 5518673 5161229 518.3146
0.7098 0.0177 0.009 158.589 35.4747 3.7761 486.9881 516.1229 457.3800
0.7152 0.0177 0.0084 155.2271 35.435 3.7761 438.3287 516.1229 411.6790
0.7004 0 0177 0.0088 157 5567 35.3618 3_7761 470 7683 516 1229 442.1463
0.722 0.0177 0.0082 152.075 35.4106 3.7761 422.1089 516.1229 396.4453
0.709 0.0177 0.0086 151.688 35.4045 3.7761 454.5485 516.1229 426.9126
0.7054 0.0177 0.0084 149.4313 35.4137 3.7761 438.3287 516.1229 411.6790
0.7163 0.0178 0.0088 161.0013 35.548 3.8148 470.7683 521.4118 442.1463
0.7135 00178 0.0085 147.174 35.6426 3_8148 4464386 5214118 4192958
0.7063 0 0177 0.0082 149 1351 35-493 3_7761 422 1089 516-1229 396.4453
0.7164 0.0178 0.0079 148.8054 35.6029 3.8148 397.7792 521.4118 373.5948
0.7003 0.0178 0.0085 148.1499 35.5998 3.8148 446.4386 521.4118 419.2958
0.7175 0.0179 0.0088 152.0947 35.8074 3.8535 470.7683 526.7006 442.1463












Table C-24. Borehole #1 at 54/38 feet.

FULLER WARREN BRIDGE
SHEAR DE'V'ICE TEST RESULTS
Penetration (calculated) 0.132994787
Height H20 36 (ft) Unit Wt H20 62.4 (Ilbt3)
Length Pipe 54 (ft) Unit Wt Rod 2.96 (Ibft)
Penetration Depth 0.0591 (in) Cylinder Bore Area 4.72 iir. I
Sluo C r, ea 0.1964 (in2) Shear Stud Area 1.064734229
No- of Studs 42 Normal Stud Area 0.D07316266
Weight of Instrum 38 qu (psi) 218.5
LVDT Pressure Load Est. Load Est Press. Normal Force Shear Force Normal Stress Shear Stress


(in) (vots) (volts) (psi) (psi)
-0.0134 0.02 0.0006 13.3975 39.9213
-0.0075 0.02 0.0006 13.4261 40.0403
-0.0022 0.0199 0.0003 7.4147 39.7137
0.0726 0.0198 0.0037 79.5586 39.6374
0.1129 00197 0.0028 59.7715 39.3872
0.1239 00196 0.0035 66.9172 39.2132
0.1337 0.0197 0.0044 88.6276 39.3719
0.231 00195 0.0052 96.8652 39.079
0.2648 0.0195 0.0048 87.7978 39.079
0.2451 0.0197 0.0045 82.8984 39.32
0.267 0196 0.0058 114.321 39.2773
0.3481 0.0196 0.0062 114.8383 39.1827
0.3726 00197 0.0055 100.3841 39.3536
0.3936 00197 0.0062 122.2492 39.3658
0.4961 0.0197 0.0058 105.9847 39.3811
0.5009 0.0197 0.0054 109.4539 39.3475
0.49 0.0197 0.0055 106.9383 39.3262
0.5215 0.0197 0.0066 126.5354 39.3231
0.6124 0.0197 0.007 134.813 39.378
0.6172 00197 0.0069 123.183 39.4024
0.6184 00197 0.0068 121.7758 39.4879
0.625 00197 0.0065 119.2367 39.4208
0.6591 00197 0.0089 157.8714 39.378
0.7107 0.0198 0.0082 150.4177 39.552
0.6804 0.0198 0.007 133.5079 39.5428
0.701 0.0197 0.0076 134.3202 39.4696
0.7039 0.0197 0.0068 127.8794 39.4696
0.6923 0.0198 0.0084 150.4908 39.5917
0.7276 00197 0.0083 158.1399 39.3506
0.6536 00197 0.0087 157.2363 39.4848
0.6286 0.0197 0.0078 135.972 39.433
0.6791 00197 0.0086 149.9995 39.3323
0.6606 0.0197 0.009 155.915 39.3811
0.6516 0.0197 0.0091 160.3343 39.3994
0.6209 00197 0.0084 151.4523 39.4177
0.6887 0.0197 0.0081 145.9782 39.4848
0.7106 00197 0.0092 158.2315 39.3231
0.7172 00197 0.0081 141.3757 39.4055
0.6834 00197 0.0079 141.5167 39.3658
0.7416 0.0197 0.0074 141.676 39.4574
0.6374 0.0198 0.0081 138.8452 39.6039
0.6311 0.0197 0.0089 153.672 39.4269
0.6941 0.0198 0.0082 149.7374 39.5672
0.6933 00197 0.0077 139.6274 39.494
0.6277 00198 0.0076 137.3386 39.5367
0.6556 00198 0.0083 152.4335 39.6924
0.6347 00197 0.0076 136.9416 39.4452


(Ib)
4.5661
4.6661
4.6274
4.5887
4.5500
4.5113
4.5500
4.4726
4.4726
4.5500
4.5113
4.5113
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5887
4.5887
4.5500
4.5500
4.5887
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5500
4.5887
4.5500
4.5887
4.5500
4.5887
4.5887
4.5500


(Ib)
-194.2438
194.2438
-218.5735
57.1632
-15.8259
40.9434
113.9325
178.8118
146.3721
122.0424
227.4712
259.9108
203.1415
259.9108
227.4712
195.0316
203.1415
292.3504
324.7900
316.6801
308.5702
284.2405
478.8782
422.1089
324.7900
373.4494
308.5702
438.3287
430.2188
462.6584
389.6693
454.5485
486.9881
495.0980
438.3287
413.990
503.2079
413.9990
397.7792
357.2296
413.9990
478.8782
422.1089
381.5594
373.4494
430.2188
373.4494


(psi) (psi)
637.7668 -182.4341
637.7658 -182.4341
632.4779 -205.2846
627.1890 53.6878
621 9002 -14.8638
6166113 38.4541
621.9002 107.0056
6113224 167.9403
611.3224 137.4729
621.9002 114.6224
616 6113 213.6413
616.6113 244.1086
6219002 190.7908
621 9002 244.1086
621.9002 213.6413
621.9002 183.1739
621.9002 190.7908
621.9002 274.5759
621.9002 305.0433
621 9002 297.4264
621 9002 289.8096
621 9002 266.9591
621 9002 449.7631
627.1890 396.4453
627.1890 305.0433
621.9002 350.7443
621.9002 289.8096
627.1890 411.6790
621 9002 404.0621
621 9002 434.5295
621.9002 365.9780
621 9002 426.9126
621.9002 457.3800
621.9002 464.9968
6219002 411.6790
621.9002 388.8285
6219002 472.6136
621 9002 388.8285
621 9002 373.5948
621.9002 335.5106
627.1890 388.8285
621.9002 449.7631
627.1890 396.4453
6219002 358.3611
627 1890 350.7443
627 1890 404.0621
621 9002 350.7443













Table C-25. Borehole #1 at 54/43 feet.


Penetration
Heght H20
Length Pipe
F.rn irarihn DEDin
Stud Cap Area
No. of Studs
Weight of Instrurn
LVDT Pressure Load
(in) (volts) (volts)
-0.0083 0.0225 0.0006
-0.0016 0.0225 0.0007
0.0015 0.0226 0.0008
0.0511 0.0225 0.0064
0.0989 0.0222 0.0078
01033 0.0222 00071
0.1041 0.0222 0.007
0.1426 0.0221 0.009
02 0.0218 0.0091
0.1969 0.0219 0.0083
0.1992 0.0219 0.0088
0.2447 0.0219 0.0095
0.2784 0.0219 0.0093
0.2696 0.0219 0.0093
0.2671 0.022 0.0095
0.315 0.022 0.0095
0.3518 0.0219 00099
0.3475 0.0221 0.0106
0.3462 0.0221 0.0106
0.38 0.022 0.0126
0.405 0.0221 0.0121
0.4038 0.0221 0.0119
0.4011 0.0221 0.0107
0.4176 0.0221 0.0119
0.4371 0.0221 0.0138
0.4575 0.0221 0.0126
0.4435 0.0221 0.0108
0.4487 0.0222 00114
0.4738 0.0222 0.0137
0.4952 0.0222 0.0121
0.4931 0.0221 0.0123
0.5052 0.0222 0.0115
0.501 0.0223 0.011
0.5542 0.0222 0.013
0.565 0.0222 0.0121
0.5636 0.0221 0.0126
0.5673 0.0222 0.0114
0.5768 0.0222 0.0137
0.6075 0.0223 0.0126
0.6116 0.0223 0.0124
0.6063 0.0222 0.0126
0.6116 0.0222 0012
0.604 0.0223 0.0125
0.6106 0.0223 0.0114
0.6062 0.0223 0.0116
0.6076 0.0223 0.0123
0.6042 0.0223 0.0131


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.159458722
36 (ft) Unit Wt H20 62
54 (ft) Unit Wt Rod 2,
0.0591 (in) : hirer or. r 4,
0.1964 (in2) Shear Stud Area 1.0647342


42
38
Est- Load
(psi)
13.4488
13.5301
15.1398
124.0953
147.4669
143.5173
148.4538
187.4784
188.3642
174.6062
162.5776
195.9493
185.9026
178.5798
178.0024
196.2622
206.7179
198_459
194.2985
228.1522
227.1346
231.757
208.8162
219.1302
250.937
225.0415
212.7404
212.3524
251.953
237.0502
230.7299
216.54
218.6517
246.6903
228.0245
223.4832
216.8599
254.1393
244.4674
234.4515
220.9177
228.9374
234.7059
225.5388
220.2383
221.5606
232.3159


Normal Stud Area 0.007316266
qu (psi) 218.5
Est. Press Normal Force Shear Force


(psi)
45.0545
44.9477
45.1125
44.9934
44.4349
44.3922
44.4502
44.2457
43.6445
43.7239
43.8246
43.7513
43.7452
43.8093
44.0016
43.9436
43.8826
44.145
44.1084
43.965
44.1359
44.2091
44.3007
44.1542
44.1206
44.2671
44.2824
44.319
44.3617
44.4227
44.2274
44.319
44.5509
44.322
44.4624
44.2579
44.4472
44.3892
44.554
44.615
44.4563
44.3434
44.5662
44.5387
44.5967
44.6425
44.5479


(Ib)
5.6334
5.6334
5.6721
5.6334
5.5174
5.5174
5.5174
5.4787
5.3626
5.4013
5.4013
5.4013
5.4013
5.4013
5.4400
5.4400
54013
5.4787
5.4787
5.4400
5.4787
5.4787
5.4787
5.4787
5.4787
5.4787
5.4787
5.5174
5.5174
5.5174
5.4787
5.5174
5.5560
5.5174
5.5174
5.4787
5.5174
5.5174
5.5560
5.5560
5.5174
55174
5.5560
5.5560
5.5560
5.5560
5.5560


(Ib)
-194.2438
-186.1339
-178.0240
276.1306
389.6693
332.8999
324.7900
535.6475
495.0980
430.2188
470.7683
527.5376
511.3178
511.3178
527.5376
527.5376
559.9772
616.7466
616.7466
778.9446
738.3951
722.1753
624.8565
722.1753
876.2635
778.9446
632.9664
681.6258
868.1536
738.3951
754.6149
689.7357
649.1862
811.3843
738.3951
778.9446
681.6258
868 1536
778.9446
762.7248
778.9446
730.2852
770.8347
681.6258
697.8456
754.6149
819.4942


.4 (llbft3)
96 (Ibit)
72 (in2)
29


Normal Stress Shear Stress
(psi) (psi)
769.9883 -182.4341
769 9883 -174.8173
775.2772 -167.2004
769 9883 259.3423
754.1217 365.9780
754 1217 312.6601
754.1217 305.0433
7488329 503.0810
732 9663 464.9968
738.2551 404.0621
738 2551 442.1463
738.2551 495.4641
738 2551 480.2305
738.2551 480.2305
743.5440 495.4641
743.5440 495.4641
738 2551 525.9315
748 8329 579.2493
748 8329 579.2493
743 5440 731.5860
748.8329 693.5018
748 8329 678.2682
748.8329 586.8661
748.8329 678.2682
748.8329 822.9880
748.8329 731.5860
748 8329 594.4830
754 1217 640.1840
754 1217 815.3712
754.1217 693.5018
748 8329 708.7355
754.1217 647.8008
759.4106 609.7166
754.1217 762.0533
754.1217 693.5018
748.8329 731.5860
754.1217 640.1840
754 1217 815.3712
759.4106 731.5860
7594106 716.3523
754.1217 731.5860
754 1217 685.8850
759.4106 723.9692
759.4106 640.1840
759.4106 655.4177
759.4106 708.7355
7594106 769.6702













Table C-26. Borehole #1 at 55/22 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


LVDT
(in)
-0 0039
0.0041
0 0031
-00128
-0.0065
-0 0094
-0.0057
0 0394
0.0343
0.0335
0.0372
0.1259
0.1616
0.1513
01603
0.1655
0.2311
0 2806
0.2812
0.287
0.3059
0.372
04152
0 4047
04141
0.4275
0 4882
0.538
0 5349
0 5349
0.5464
05513
0.6162
0.6731
0.6787
0.6789
0.6788
0.7238
0.697
0.7243
0.643
0 6753
0.628
06342
0.6777
0 6821
0 6907


(calculated) 0.028344991
37 (ft) Unit Wt HZO 62.4 (IMt3)
55 (ft) Unit Wt Rod 2.96 (IMbt)
0.0591 (in) Cylinder Bore Area 4.72 (in2)
0.1964 (in2) Shear Stud Area 1.064734229
42 Normal Stud Area 0.007316266
38 *IL .';Dr 305
Est. Press. Normal Force Shear Force Normal Stress Shear Stress


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.
Pressure Load Est Load
(volts) (volts) (psi)
00116 0.0009 16.9245
0.0115 0.0007 12.5781
00116 0.0007 12.9635
00116 0.0005 10.0515
0.0116 0.0006 11.3251
00116 0.0006 118736
0.0116 0.0028 53.3999
00116 0.004 82.2796
0.0116 0.0042 86.7184
0.0115 0.0046 95.6762
0.0116 0.0055 103.408
0.0116 0.0045 85.2407
0.0116 0.004 84.1223
0.0116 0.0049 93.1104
00116 0.0043 78.7406
0.0117 0.0042 85.9668
0.0116 0.0047 93.4943
00116 0.0037 75.7717
0.0116 0.0044 81.3848
00117 0.0043 824829
0.0116 0.0047 94.4471
00116 0.005 97.9112
00115 0.0045 89.7526
00116 0.0054 105.4611
00116 0.0046 84.8155
0.0116 0.0054 99.1092
00116 0.0054 936111
00117 0.0046 85.1958
00116 0.005 91.4797
00116 0.005 87.9799
0.0116 0.0046 88.7765
00116 0.0055 95.6136
0.0116 0.0063 117.3257
0.0116 0.0053 93.7777
0.0116 0.0049 93.0088
0.0117 0.0051 91.922
0.0117 0.0053 98.5605
0.0115 0.0068 116.0808
0.0116 0.0057 104.6154
0.0117 0.0055 95.3356
0.0117 0.0048 90.3214
00116 0.0074 128.8368
0.0115 0.0059 107.407
00117 0.0053 101.813
0.0116 0.0056 99.9838
00115 0.0054 97.2632
00116 0.0048 85.2022


(psl)
23.1574
23.0781
23.1361
23.2917
23.1361
23.2002
23.1819
23.2765
23.2795
23.0628
23.1086
23.1727
23.1697
23.2765
23.1971
23.3039
23.1941
23.2551
23.2002
23.4382
23.1452
23.2521
23.0689
23.2673
23.249
23.1727
23.1178
23.3375
23.249
23.1941
23.1056
23.1483
23.1208
23.1941
23.2521
23.3711
23.3985
23.014
23.2826
23.3558
23.307
23.2734
23.0811
23.4474
23.1361
23.0384
23.2246


(Ib)
1 3306
1.2919
1 3306
1 3306
1.3306
1 3306
1.3306
1 3306
1.3306
1.2919
1.3306
1.3306
1.3306
1.3306
1 3306
1.3693
1.3306
1 3306
1.3306
1.3693
1.3306
1 3306
1.2919
1 3306
1 3306
1.3306
1 3306
1 3693
1 3306
1 3306
1.3306
1 3306
1.3306
1.3306
1.3306
1.3693
1.3693
1.2919
1.3306
1.3693
1.3693
1 3306
1.2919
1.3693
1.3306
1 2919
1 3306


(Ib)
-1728741
-189.0939
-189 0939
-2053137
-197.2038
-197 2038
-18.7859
78 5329
94.7527
127.1923
200.1815
119.0824
78.5329
151.5220
102 8626
94.7527
135.3022
54 2032
110.9725
102 8626
135.3022
159 6319
119 0824
192 0716
1271923
192.0716
192 0716
1271923
159 6319
159 6319
127.1923
200 1815
265.0607
183.9617
151.5220
167.7418
183.9617
305.6102
216.4013
200.1815
143.4121
354 2696
232.6211
1839617
208.2914
1920716
1434121


(psi) (psi)
181.8697 -1623636
176.5809 -177.5973
181.8697 -1775973
181.8697 -1928310
181.8697 -185.2141
181.8697 -1852141
181.8697 -17.6438
181.8697 737582
181.8697 88.9919
176.5809 119.4592
181.8697 188.0107
181.8697 111.8424
181.8697 73.7582
181.8697 142.3097
181.8697 966087
187.1586 88.9919
181.8697 127.0761
181.8697 509077
181.8697 104.2256
187.1586 966087
181.8697 127.0761
181.8697 1499266
176.5809 1118424
181.8697 1803939
181.8697 1194592
181.8697 180.3939
181.8697 1803939
187.1586 1194592
181.8697 1499266
181.8697 1499266
181.8697 119.4592
181.8697 1880107
181.8697 248.9454
181.8697 172.7771
181.8697 142.3097
187.1586 157.5434
187.1586 172.7771
176.5809 287.0296
181.8697 203.2444
187.1586 188.0107
187.1586 134.6929
181.8697 3327306
176.5809 218.4781
187.1586 1727771
181.8697 195.6276
176.5809 1803939
181.8697 1346929













Table C-27. Borehole #1 at 55/31 feet.


Penetration
Height H2O
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum


LVDT Pressure Load
(in) (volts) (volts)
-0.0051 0.0167 0.0007
-0.0075 0.0167 0.0007
0 0058 0.0167 00006
0.0047 0.0167 0.0012
0 0345 0.0167 0_0058
0.0535 0.0166 0.0056
0054 0.0166 00049
0.0539 0.0166 0.0055
0.1298 0.0165 0.0068
0.1804 0.0162 0.0069
0.1725 0.0164 0.006
0 1888 0.0163 00065
0.2519 0.0163 0.0079
0-2749 0.0162 0_0073
02765 0.0162 0_0074
0281 0.0163 0_0077
0.3465 0.0162 0.0086
0.39 0.0163 0.0077
0.3875 0.0164 0.0074
0.4051 0.0162 0.0076
0464 0.0162 0_0094
0.4797 0.0163 0.0084
0-4895 0.0162 0_0082
0.5039 0.0163 0.0082
0 561 0.0163 0_0095
05745 0.0163 0_0085
0.5752 0.0162 0.0085
0.5913 0.0163 0.0086
0.6573 0.0163 0.0096
0.6753 0.0163 0.0093
0.6793 0.0163 0.008
06827 0.0163 0_0082
0.6901 0.0163 0.0097
06934 0.0163 00095
06532 0.0163 0_0087
0-6602 0.0163 00086
06452 0.0163 00075
0.7195 0.0163 0.0099
0.7345 0.0162 0.0095
0.7244 0.0163 0.0089
07305 0.0163 00085
0.7361 0.0163 0.0082
0-6536 0.0163 00076
06835 0.0163 00099
0-7035 0.0163 0_0088
07385 0.0163 0_0088
0.707 0.0163 0.0085


FULLER WARREN BRILIGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.06873503


37 (it)
55 (n)
0.0591 (in)
0.1964 (in2)
42
38


Est Load Est. Press. Normal Force


(psi)
14.0439
14.5171
11.9734
23.0847
111.115
107.0331
95.7937
113.1576
136.9392
127.7884
123.6073
128.8638
154.6448
133.798
134.688
151.1515
158.1592
146.3296
136.4302
147.0553
172.0784
155.7789
150.0629
156.7355
173.8375
156.8222
151.9259
154.4341
169.8196
169.3701
152.7093
146.5022
170.9478
176.1449
164.9272
156.2914
147.572
173.6825
176.5144
165.2627
149.752
155.0119
143.937
175.6178
167.5848
154.9529
153.4668


(psi)
33.4849
33.3811
33.3659
33.3506
334574
33.2896
33.2621
33.1828
32.9478
32.4717
32.7464
32.6151
32.6426
324503
32_4351
32.5358
32.4717
32.5755
32.7708
32.4747
32 432
32.5114
324839
32.6487
32551
32.5236
32.4595
32.6579
32.5694
32.551
32.6518
32.6853
32.5541
32.6487
32.6518
32.6151
32.5755
32.6914
32.487
32.5694
32.6212
32.6426
32 667
32.5144
32.6365
32.6395
32.6548


(Ib)
3.3040
3.3040
3_3040
3.3040
3_3040
3.2653
3_2653
3.2653
3.2266
3.1106
3.1880
3_1493
3.1493
3_1106
3_1106
3_1493
3.1106
3.1493
3.1880
3.1106
3_1106
3.1493
3_1106
3.1493
3_1493
3_1493
3.1106
3.1493
3.1493
3.1493
3.1493
3_1493
3.1493
3_1493
3_1493
3_1493
3_1493
3.1493
3.1106
3.1493
3_1493
3.1493
3_1493
3_1493
3_1493
3_1493
3.1493


Unit Wt HO2 62.4 -'l11.T31
Unit Wt Rod 2.96 .,'il,
:,ir,]-i 6ore Area 4.72 (in2)
Shear Stud Area 1.064734229
Normal Stud Area 0.007316266
qu (psi) 305
Shear Force Normal Stress Shear Stress


(Ib)
-189.0939
-189.0939
-197.2038
-148.5444
224.5112
208.2914
151.5220
200.1815
305.6102
313.7201
240.7310
281.2805
394.8192
346.1597
354.2696
378.5994
451.5885
378.5994
354.2696
370.4894
516.4677
435.3687
419.1489
419.1489
524.5776
443.4786
443.4786
451.5885
532.6875
508.3578
402.9291
419.1489
540.7974
524.5776
459.6984
451.5885
362.3795
557.0172
524.5776
475.9182
443.4786
419.1489
370.4894
557.0172
467.8083
467.8083
443.4786


(psi)
451.6018
451.6018
451-6018
451.6018
451 6018
446.3129
446-3129
446.3129
441.0240
425.1574
435.7352
430-4463
430.4463
425-1574
425-1574
430-4463
425.1574
430.4463
435.7352
425.1574
425-1574
430.4463
425-1574
430.4463
430-4463
430-4463
425.1574
430.4463
430.4463
430.4463
430.4463
430-4463
430.4463
430-4463
430-4463
430-4463
430-4463
430.4463
425.1574
430.4463
430-4463
430.4463
430-4463
430-4463
430-4463
430-4463
430.4463


(psi)
-177.5973
-177.5973
-185.2141
-139.5131
210.8612
195.6276
142.3097
188.0107
287.0296
294.6464
226.0949
254.1791
370.8148
325.1137
332.7306
355.5811
424.1326
355.5811
332.7306
347.9643
485.0673
408.8989
393.6653
393.6653
492.6841
416.5158
416.5158
424.1326
500.3009
477.4504
378.4316
393.6653
507.9178
492.6841
431.7494
424.1326
340.3474
523.1514
492.6841
446.9831
416.5158
393.6653
347.9643
523.1514
439.3663
439.3663
416.5158


.













Table C-28. Borehole #1 at 55/39 feet.


Penetration


FULLER WARREN BRI 'CE
SHEAR DEVICE TEST RESULTS
(calculated) 0.096760772


Height H20 37 (ft)
Length Pipe 55 (ft)
Penetration Depth 0.0591 (in)
Stud Cap Area 0.1964 (in2)
No. of Studs 42
Weight of Instrum. 38
LVDT Pressure Load Est. Load Est Press. Normal Force


(in)
-0.0013
-0.0033
-0.003
0.0194
0.0764
0.0759
0.0771
0.1344
0.1703
0.1745
0.1658
0.2243
0.2454
0.257
0.2664
0.3208
0.3525
0.35
0.3521
0.4133
0.4311
0.439
0.4341
0.5068
0.5313
0.5389
0.5327
0.5878
0.6404
0.6322
0.6499
0.6446
0.7
0.6604
0.723
0.6425
0.6925
0.6722
0.6321
0.6772
0.7387
0.635
0.695
0.7117
0.6406
0.6446
0.6662


(volts) (volts) (psi)
0.0205 0.0015 31.6769
00204 0 0005 10.0866
.00205 00006 11.2216
00204 00055 111.1296
00202 00068 135.2453
0.0202 0 0073 145.0734
0.0202 0.0073 149.2159
0.02 00082 165.6761
0.0199 0.0086 154.5305
0.0199 0.008 147.3869
0.02 00082 159.7573
0.0199 0.0086 174.2084
0.0198 00089 170.2168
00198 00086 157.0552
0.02 00092 170.6188
0.0199 00093 179.2889
00198 0088 164.8113
0.0199 0.0086 161.7133
0.02 00091 174.9485
0.02 0.0093 186.2598
0.0198 0.0094 170.5579
0.0198 00095 181.8969
0.02 0.009 165.0077
0.0199 00097 1793513
0.0199 0 0079 1490245
0.0199 00081 156.2739
00198 00086 150.6283
0.0199 00092 1686739
0.0197 0.0068 131.7853
0.0197 00073 137.9185
0.0197 0.0074 133.9978
0.0198 0.0088 151.1134
0.0197 0.008 146.65
0.0195 0.0075 130.7806
0.0196 0 0074 1299094
00197 0.007 124.4589
0.0197 00078 152.1041
0.0196 00072 128.8133
0.0196 00076 131.8916
0.0197 0.0076 132.5063
0.0197 0 0069 125.4866
0.0198 0.0071 130.1051
0.0198 0.0074 128.5953
0.0198 0.007 133.8257
0.0199 0.0072 132.3998
0.0199 0 0073 128.0269
0.0199 00074 131.7068


(psi)
40.9223
40.8612
40.9253
40.8002
40.376
40.3668
40.3638
39.9915
39.732
39.8694
40.0952
39.7839
39.6435
396191
39.9274
39.7259
39.5917
39.8999
399213
39.9304
39.5947
39.6802
39.9213
39.7412
39.7473
39.8022
39.6863
39.787
39.5001
39.4238
39.4848
39.5184
39.3689
39.0881
391186
393231
39.3262
39.1827
39.2773
39.3262
39.4879
39.552
39.5184
39.555
39.7778
39.7565
39.7595


Unit Wt H20 62.4 (Ibit3)
Unit Wt Rod 2.96 (lbi t)
Cylinder Bore Area 4.72 n r';
Shear Stud Area 1.064734229
Normal Stud Area 0.007316266
ou lps, 305
Shear Force Normal Stress Shear Stress


(Ib)
4.7744
4.7357
4 7744
4.7357
4.6584
4 6584
4.6584
4.5810
4.5423
4.5423
4-5810
4.5423
4 5036
4 5036
4.5810
4 5423
4 5036
4.5423
4-5810
4.5810
4.5036
4 5036
4.5810
4.5423
4 5423
4 5423
4.5036
4 5423
4.4649
4 4649
4.4649
4.5036
4.4649
4.3875
4 4262
4.4649
4.4649
4 4262
4.4262
4.4649
446549
4.5036
4.5036
4.5036
4.5423
4.5423
4.5423


(Ib)
-124.2147
-205.3137
-197.2038
200.1815
305.6102
346.1597
346.1597
419.1489
451.5885
402.9291
419.1489
451.5885
475.9182
451.5885
500.2479
508.3578
467.8083
451.5885
492.1380
508.3578
516.4677
524.5776
484.0281
540.7974
394.8192
411.0390
451.5885
500.2479
305.6102
346.1597
354.2696
467.8083
402.9291
362.3795
354.2696
321.8300
386.7093
338.0498
370.4894
370.4894
313.7201
329.9399
354.2696
321.8300
338.0498
346.1597
354.2696


(psi)
652.5786
647.2897
652.5786
647.2897
636.7120
636.7120
636.7120
626.1342
620.8454
620.8454
626.1342
620.8454
615.5565
615.5565
626.1342
620.8454
615.5565
620.8454
626.1342
626.1342
615.5565
615.5565
626.1342
620.8454
620.8454
620.8454
615.5565
620.8454
610.2676
610.2676
610.2676
615.5565
610.2676
599.6899
604.9788
610.2676
610.2676
604.9788
604.9788
610.2676
610.2676
615.5565
615.5565
615.5565
620.8454
620.8454
620.8454


(psi)
-116.6626
-192.8310
-185.2141
188.0107
287.0296
325.1137
325.1137
393.6653
424.1326
378.4316
393.6653
424.1326
446.9831
424.1326
469.8336
477.4504
439.3663
424.1326
462.2168
477.4504
485.0673
492.6841
454.5999
507.9178
370.8148
386.0484
424.1326
469.8336
287.0296
325.1137
332.7306
439.3663
378.4316
340.3474
332.7306
302.2632
363.1979
317.4969
347.9643
347.9643
294.6464
309.8801
332.7306
302.2632
317.4969
325.1137
332.7306












Table C-29. Borehole #1 at 54/48 feet.

SH
Penetration (calcu
Height HOIl
Length Pipe
Penetration CDeiri 0
Stud Cap Area 0
No- of Studs
Weight of Instrum.


LVDT Pressure
(in) (volts)
0.0049 0.0248
-0.007 0 0248
0_0073 00249
0.0718 0.0248
0.0835 0.0247
0.0826 0.0247
0_0932 0-0247
0.159 0.0245
0.1679 0.0245
0_1719 00245
0.1822 0.0244
0.2324 0.0245
0.2491 0.0245
0.2563 0.0245
0_2541 00245
0.3335 0.0245
0.3449 0.0245
0.3443 0.0245
0.3483 0.0244
0_3764 00245
0.4298 0.0245
0_4364 00245
0_4362 0-0245
0.4347 0.0245
0.5013 0.0245
0.5114 0.0245
0_5103 00245
0_5138 0-0245
0.5291 0.0245
0_5745 0-0245
0.584 0.0246
0.5874 0.0245
0_5852 0-0246
0.5856 0.0246
0_6154 0-0246
0.633 0.0246
0.6492 0.0246
0.6529 0.0247
0.605 0.0246
0_6514 0-0246
0.6287 0.0247
0.6961 0.0246
06449 00246
0.6887 0.0246
0.7291 0.0246
0.7216 0.0246
0.6686 0.0246


Load
(volts)
0.0006
0 0007
0.0056
0.0082
0.0072
0.0075
0 0075
0.0089
0.0084
0.0081
0.0097
0.01
0.0081
0.0085
0.0093
0.0097
0.0097
0.0093
0.0092
0.0092
0.0104
0.0092
0 009
0.0094
0.0105
0.0104
0.0094
0 0098
0.0108
00107
0.0106
0.0101
0 0092
0.0092
00102
0.0111
0.0097
0.0102
0.0096
0.01
0.0097
0.0126
0-0123
0.0112
0.0104
0.0133
0.0126


FULLER WARREN BRIDGE
EAR DEVICE TEST RESULTS
lated) 0.134677951 (Max 0.0591)
37 (it) Unit Wt H20 62.4 (Ibftl3)
55 :ft) Unit Wt Rod 2.96 (Ib/ft)
.0591 (in) Cylinder Bore Area 4.72 inn2
.1964 (in2) Shear Stud Area 1.064734229
42 Normal Stud Area 0.007316266


Est. Load Est. Press. Normal Force


[sI1
12.3138
13.1521
106 077
159.1172
145.3795
143.9524
161.2224
186.2043
165.2116
166.4049
176.8519
197.6317
152.6468
165.7764
177 339
192.2307
175.8046
182.7462
177.2577
186.9295
200.0739
176.6739
175.3278
180.4763
193.9602
182.245
176.7355
173.3677
189.1363
202.3471
197.409
178.1209
179.2288
168.3902
188.4193
192.7025
192.9395
184.2486
182.7053
177.5534
180.3338
219.2969
213 308
207.8514
198.396
236.8101
217.6804


(psi)
49.6658
49.5987
49.736
49.5163
49.3667
49.3698
49.4034
49.0585
48.9456
48.9792
48.851
49.028
48.9334
48.9608
48.9883
48.9364
48.9303
48.9578
48.8937
49.0249
49.0127
49.1012
49.0127
49.0249
49.0005
49.0829
49.0738
49.0066
48.97
49.0432
49.1958
49.031
49.2325
49.2935
49.2355
49.263
49.1562
49.3515
49.1287
49.1531
49.3759
49.2477
49.2538
49.2294
49.2599
49.2294
49.2355


(Ib)
6.4383
6.4383
6.4770
6.4383
6.3996
6.3996
6.3996
6.3222
6.3222
6 .3222
6.2835
6.3222
6.3222
6.3222
6 .3222
6.3222
6.3222
6.3222
6.2835
6 .3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3222
6.3609
6.3222
6.3609
6.3609
6.3609
6.3609
6.3609
6.3996
6.3609
6.3609
6.3996
6.3609
6.3609
6.3609
6.3609
6.3609
6.3609


qu (psi) 305
Shear Force Normal Stress Shear Stress


(Ib)
-197.2038
-189.0939
208.2914
419.1489
338.0498
362.3795
362.3795
475.9182
435.3687
411.0390
540.7974
565.1271
411.0390
443.4786
508.3578
540.7974
540.7974
508.3578
500.2479
500.2479
597.5668
500.2479
484.0281
516.4677
605.6767
597.5668
516.4677
548.9073
630.0064
621.8965
613.7866
573.2370
500.2479
500.2479
581.3470
654.3361
540.7974
581.3470
532.6875
565.1271
540.7974
775.9846
751.6549
662.4460
597.5668
832.7540
775.9846


(psi)
879.9997
879 9997
885 2885
879.9997
874.7108
874.7108
874 7108
864.1331
864.1331
864 1331
858.8442
864.1331
864.1331
864.1331
864 1331
864.1331
864.1331
864.1331
858.8442
864 1331
864.1331
864 1331
864 1331
864.1331
864.1331
864.1331
864 1331
864 1331
864.1331
864 1331
869.4219
864.1331
869 4219
869.4219
869 4219
869.4219
869.4219
874.7108
869.4219
869 4219
874.7108
869.4219
869 4219
869.4219
869.4219
869.4219
869.4219


(psi)
-185.2141
-177.5973
195.6276
393.6653
317.4969
340.3474
340.3474
446.9831
408.8989
386.0484
507.9178
530.7683
386.0484
416.5158
477.4504
507.9178
507.9178
477.4504
469.8336
469.8336
561.2356
469.8336
454.5999
485.0673
568.8524
561.2356
485.0673
515.5346
591.7029
584.0861
576.4693
538.3851
469.8336
469.8336
546.0019
614.5534
507.9178
546.0019
500.3009
530.7683
507.9178
728.8060
705.9555
622.1703
561.2356
782.1238
728.8060












Table C-30. Borehole #2 at 43/25 feet.


Penetration
Height I-F.
Length Pipe


22 (ft)
43 (fl)


Penetration Depth 0.0291 (in)
Stud Cap Area 0.1964 (in2)
No. of Studs 42
Weightof Instrum. 38
LVDT Pressure Load Est. Load Est. Press.
[in) (volts) (volts) (psi) (psi)
0.0023 0.0128 0.0001 1.9837 25.6569
-0_0009 0.0128 0 0.7375 25.5135
0.0265 0.0128 0.007 116.25 25.605
0.0895 0.0128 0.008 132.73 25.5776
0.0896 0.0127 0.0076 127.466 25.4189
0.1352 0.0127 0.0102 169.632 25.3548
01998 0.0128 0_0064 106.306 25.5654
0.2023 0.0126 0.0085 142.038 25.2571
022 0.0126 000091 151.931 25.2663
0.3069 0.0126 0.0088 147.404 25.2846
0-3263 0.0126 0_0074 123.803 25.1961
0.3154 0.0125 0.0079 131.611 25.0679
0.341 0.0125 0.0092 152.949 25.0801
0.3935 0.0125 0.0095 158.518 24.9977
0.404 0.0125 0.0085 142.14 25.0008
0.424 0.0125 00082 136.087 25.0649
0.4185 0.0125 0.0093 155.238 24.9916
04856 0.0125 00086 142.521 24.9886
0.5095 0.0125 0.0083 137.817 24.9397
0.49 0.0125 0.0078 130.568 24.9947
0.4976 0.0124 0.0093 155.288 24.8115
0.5216 0.0124 0.0086 144.047 24.7932
0.5708 0.0124 0.0092 153 24.7475
0.5918 0.0123 0.0083 138.249 24.6467
0.5819 0.0124 0.0081 134.18 24.7597
0.5892 0.0125 0.0088 145.879 24.9275
0_5907 0.0123 00085 141.123 24.6223
0.6001 0.0123 0.0085 141.479 24.6681
0.5838 0.0123 0.0086 143.081 24.5827
0.5934 0.0123 0.0078 129.5 24.6254
0.5849 0.0123 0.0082 136.265 24.5094
0.5863 0.0123 0.0077 129.093 24.6864
0.5807 0.0122 0.008 133.162 24.485
0.5838 0.0122 0.0089 148.345 24.4881


Unit Wt H20 62.4 (lb/ft3)
Unit Wt Rod 2.96 (Ib/ft)
Cylinder Bore Are, 4.72 (in2)
Shear Stud Area 0.258138173
Normal Stud Area 0.001773783
qu (psi) 884
Normal Force Shear Force Normal Stress Shear Stress


(Ib)
3.0715
3.0715
3.0715
3.0715
3.0328
3.0328
3.0715
2.9942
2.9942
2.9942
2.9942
2.9555
2.9555
2.9555
2.9555
2.9555
2.9555
2.9555
2.9555
2.9555
2.9168
2.9168
2.9168
2.8781
2.9168
2.9555
2.8781
2.8781
2.8781
2.8781
2.8781
2.8781
2.8394
2.8394


(Ib)
-202.2334
-210a3433
357.3500
438.4491
406.0094
616.8670
308.6906
478.9986
527.6580
503.3283
389.7896
430.3392
535.7679
560.0976
478.9986
454.6689
543.8778
487.1085
462.7788
422.2293
543.8778
487.1085
535.7679
462.7788
446.5590
503.3283
478.9986
478.9986
487.1085
422.2293
454.6689
414.1194
438.4491
511.4382


(psi)
1731.6346
1731.6346
1731.6346
1731.6346
1709.8198
1709.8198
1731.6346
1688.0050
1688.0050
1688.0050
1688.0050
1666.1902
1666.1902
1666.1902
1666.1902
1666.1902
1666.1902
1666.1902
1666.1902
1666.1902
1644.3754
1644.3754
1644.3754
1622.5606
1644.3754
1666.1902
1622.5606
1622.5606
1622.5606
1622.5606
1622.5606
1622.5606
1600.7458
1600.7458


(psi)
-783.4306
-814 8475
1384.3362
1698.5053
1572.8377
2389.6774
1195 8348
1855.5899
2044 0914
1949.8406
1510 0039
1667.0884
2075.5083
2169.7590
1855.5899
1761 3392
2106.9252
1887 0068
1792.7561
1635.6715
2106.9252
1887.0068
2075.5083
1792.7561
1729.9222
1949.8406
1855 5899
1855.5899
1887.0068
1635.6715
1761.3392
1604.2546
1698.5053
1981.2575


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.022006359 Max. jj0 051)












Table C-31. Borehole #2 at 43/29 feet.


Penetration
Height H20
Length FiD~
Penetration Depth
Stud Cap Area
No of Studs
Weight of Instrum.
LVDT Pressure Load Est. I
(in) (volts) vr:,11,s
-0.0023 0.0151 0.0005 7._
-0.0094 0.0151 0.0003 4J(
0.0535 0.0151 0.0107 177
0.0697 0.0151 0.0116 193..
0.0676 0-015 0.0109 181:
0.0836 0.015 0.0151 251.(
0.132 0_015 0.0119 1981(
0.0832 0.015 0.0111 184.-
0.0843 0.0151 0.0121 201
0.1679 0.015 0.0118 196
0.1871 0.015 0.0123 204.-
0.1939 0.015 0.0129 214.'
0.1956 0.015 0.0126 209.
0.2455 0.0149 0.0136 226.'
0.2598 0.015 0.0102 169.1
0.2758 0.0149 0.0103 171..
0.2689 0.0149 0.0104 173
0.3228 0.0148 0.0115 192.1
0.3536 0.0149 0.0102 170
0.3413 0.0149 0.0096 159.
0.3445 0.0149 0.0103 171 _
0.3666 0.0149 0.0113 188.1
0.4038 0.0149 0.0106 177.
0_4099 0_015 0.0111 185-1
0.4099 0.0149 0.01 166.'
0_4058 0.0149 0.0104 172!.
0.4056 0.015 0.0105 175.1
0.4039 0.015 0.0097 161.:
0_4082 0_015 0.0111 185(
0.4069 0.015 0.0109 182.:
0_4032 0-015 0.0094 156-(
0.3996 0.015 0.0106 176.(
0.4005 0.0151 0.0099 165.;


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.029116297
22 (ft)
43 (ft)
0.0291 ini
0.1964 in i
42
38
Load Est. Press. Normal Force


(psi)
30.1828
30.2622
30.1828
30.1157
30.0516
30.079
29.9905
30.079
30.1279
30.018
29.9051
29.9326
29.9997
29.8746
29.9203
29.8441
29.8868
29.5701
2978
29.8959
29.8318
29.7922
29.8837
29.9478
29.8532
29.8441
29.9661
29.9265
30.015
30.0546
30.0089
29.9905
30.1645


(Ib)
3.9615
3.9615
3.9615
3.9615
3.9228
3.9228
3.9228
3.9228
3.9615
3.9228
3.9228
3.9228
3.9228
3.8841
3.9228
3.8841
3.8841
3.8454
3.8841
3.8841
3.8841
3.8841
3.8841
3.9228
3.8841
3.8841
3.9228
3.9228
3.9228
3.9228
3.9228
3.9228
3.9615


Max (00591)
Unit Wt H20 62,4 (Ib/ft3)
Unit Wt Rod 2.96 (Ibt)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.258138173
Normal Stud Area 0.001773783
qu (psi) 884
Shear Force Normal Stress Shear Stress
II ;psi l
-169.7937 2233.3751 -557.7630
-186.0135 22333751 -720.5968
657.4165 2233.3751 2546.7619
730.4056 2233.3751 2829.5141
673.6363 22115603 2609.5958
1014.2522 2211.5603 3929.1060
754.7353 2211 5603 2923.7649
689.8561 2211.5603 2672.4296
770.9551 2233.3751 2986.5987
746.6254 2211.5603 2892.3480
787.1749 2211.5603 3049.4325
835.8344 2211.5603 3237.9340
811.5046 2211.5603 3143.6832
892.6037 21897455 3457.8523
616.8670 2211.5603 2389.6774
624.9769 2189.7455 2421.0943
633.0868 2189.7455 2452.5112
730.4056 2167.9307 2829.5141
616.8670 2189 7455 2389.6774
568.2075 2189.7455 2201.1759
624.9769 21897455 2421.0943
706.0759 2189.7455 2735.2634
649.3066 2189.7455 2515.3450
689.8561 22115603 2672.4296
600.6471 2189.7455 2326.8436
633.0868 21897455 2452.5112
641.1967 2211.5603 2483.9281
576.3174 2211.5603 2232.5928
689.8561 22115603 2672.4296
673.6363 2211.5603 2509.5958
551.9877 22115603 2138.3421
649.3066 2211.5603 2515.3450
592.5372 2233.3751 2295.4266













Table C-32. Borehole #2 at 43/33 feet.

FULLER WARREN BRIDGE,
SHEAR DEVICE TEST RESULTS
Penetrabon (calculated) 0.035088644


Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.


LVDT
(in)
-0.0085
-0.0057
0.0177
0.0568
0.0714
0.0755
0-0688
0.0776
0.0944
0.0935
0.0966
0.1261
0.127
0.1181
0-1262
0.1466
0.1622
0.1479
0.1528
0.1567
0.1666
0.1771
0.1812
0.1858
0.184
0.1998
0.2157
0.2168
0.2136
0.2068
0.224
0.2358
0.2512
0.24
0.2626
0.2804
0.2723
0.2809
0.2668
0.2421
0.2744
0.2761
0.275
0.2699
0.2801
0.2774
0.2802


Pressure Load
(volts) (volts)
0.0173 0
0.0174 -0.0001
0.0173 0.0067
0.0172 0.0134
0.0172 0.0116
0.0172 0.012
0.0172 0.0155
0.0171 0.0156
0.0172 0.0163
0.0173 0.0165
0.0173 0.0183
0.0171 0.0182
0.0172 0.0184
0.0172 0.0187
0.0172 0.0188
0.0172 0.0183
0.0172 0.0169
0.0172 0.0169
0.0172 0.0162
0.0171 0.0182
0.0172 0.0172
0.0172 0.017
0.0172 0.0164
0.0173 0.0166
0.0171 0.0173
0.0172 0.0169
0.0172 0.0169
0.0172 0.017
0.0172 0.0163
0.0172 0.0184
0.0173 0.0171
0.0172 0.0167
0.0172 0.0151
0.0173 0.0159
0.0172 0.0182
0.0172 0.0153
0.0172 0.0159
0.0172 0.0159
0.0172 0.0171
0.0172 0.0144
0.0172 0.0151
0.0171 0.0153
0.0172 0.0153
0.0172 0.0165
0.0172 0.016
0.0172 0.0141
0.0172 0.0152


22 (ft)
43 (ft)
0.0291 (in)
0.1964 (in2)
42
38
Est. Press. Normal Force


Est Load
(psi)
-0.1017
-1.119
111.8758
223.014
193.996
199.5402
258.9241
260.4246
271.1315
275.5821
304.2441
302.7182
306.9145
312.3824
313.8574
305.1851
281.5587
281.4824
270.8263
303.8118
286.6197
283.6187
273.4967
277.1335
288.9086
281.7367
281.3044
282.6014
271.5384
307.0671
284.3816
277.9219
251.4725
265.0278
303.3031
255.5417
264.3666
254.7481
285.6787
240.8165
252.3372
255.796
255.1347
274.7683
267.1896
235.7809
252.7441


[.s l I
34.6202
34.8094
34.5531
34.4493
34.4035
34.4279
344615
34.2418
34.4157
34.5042
34.5836
34.2112
34.3181
34.3699
34.4676
34.4737
34.4157
34.4127
34.3944
34.2692
34.4554
34.4096
34.3455
34.5103
34.2845
34.4859
34.4584
34.4737
34.3059
34.3608
34.6263
34.4493
34.315
34.5653
34431
34.434
34.3852
34.4096
34.4005
34.3547
34.4432
34.2448
34.4279
34.3455
34.3486
34.3211
34.4462


Max. (0.0591)
Unit Wt H20 62.4 (lbt3)
Unit Wt Rod 2.96 (lb/ft)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.258138173
Normal Stud Area 0.001773783
Ju .'ps'i 884
Shear Force Norral Stress Shear Stress


(Ib)
4.8128
4.8515
4.8128
4.7741
4.7741
4.7741
4.7741
4.7354
4.7741
4.8128
4.8128
4.7354
4.7741
4.7741
4.7741
4.7741
4.7741
4.7741
4.7741
4.7354
4.7741
4.7741
4.7741
4.8128
4.7354
4.7741
4.7741
4.7741
4.7741
4.7741
4.8128
4.7741
4.7741
4.8128
4.7741
4.7741
4.7741
4.7741
4.7741
4.7741
4.7741
4.7354
4.7741
4.7741
4.7741
4.7741
4.7741


'11-1
-210.3433
-218.4532
333 0203
876 3839
730 4056
762 8452
1046 6919
10548018
1111 5711
1127.7909
1273 7692
1265.6593
1281 8791
1306.2088
13143187
1273.7692
1160.2305
1160.2305
1103.4612
1265.6593
1184.5602
1168.3404
11196810
1135.9008
1192 6701
1160.2305
11602305
11683404
1111 5711
1281.8791
11764503
1144.0107
10142522
1079.1315
1265 6593
1030.4721
1079 1315
1079.1315
1176.4503
957.4829
1014.2522
1030.4721
1030 4721
1127.7909
1087 2414
933.1532
1022 3622


(psi) rs51,
2713.3008 -814.8475
2735.1156 -846.2645
27133008 1290 0855
2691.4860 33950185
2691 4860 2829 5141
2691.4860 2955 1818
2691 4860 40547737
26696712 4086 1906
2691 4860 4306 1089
2713.3008 4368.9428
2713.3008 49344472
2669.6712 4903.0303
2691 4860 4965 8641
2691.4860 5060.1148
2691 4860 5091 5317
2691.4860 4934.4472
2691.4860 4494.6104
2691.4860 4494.6104
2691.4860 4274.6920
2669.6712 4903.0303
2691.4860 4588.8611
2691.4860 4526.0273
2691.4860 43375259
2713.3008 4400.3597
2669.6712 4620 2781
2691.4860 4494.6104
2691.4860 44946104
2691 4860 45260273
2691.4860 4306 1089
2691.4860 4965.8641
2713.3008 4557 4442
2691.4860 4431.7766
2691.4860 3929 1050
2713.3008 4180.4413
2691 4860 4903 0303
2691.4860 3991.9398
2691.4860 4180 4413
2691.4860 4180.4413
2691.4860 4557.4442
2691.4860 3709.1876
2691.4860 3929.1060
2669.6712 3991.9398
2691 4860 3991 9398
2691.4860 4368.9428
2691 4860 4211 8582
2691.4860 3614.9369
2691.4860 39605229












Table C-33. Borehole #2 at 43/36 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.038729092
Height HO0 23 (ft)
Length Pipe 43 (ft)
Penetration Depth 0.03873 (in)
Stud Cap Area 0.1964 (in2)
No. of Studs 42


LVDT Pressure


Weight of Instrum. 38
Load Est. Load Est Press NormalForce


ni (volts) (volts) (psi) (psi)
-0.0054 0.0187 0.0003 5.3662 37.4676
-00105 0.0187 0 -05595 37.318
-0.0086 0.0188 -0.0001 -1.4496 37.5622
0.0039 0.0187 0.0055 92.0896 37.3302
0.0693 0.0186 0.0126 210.1454 37.2051
0073 00186 0.0132 219.9876 37.2356
0.0677 0.0186 0.0115 191.3765 37.1502
0.091 0.0185 0.0191 317.5451 37.0891
01006 00187 0.0192 320.4444 37.3241
0.1099 0.0186 0.018 300.175 37.1838
0.1178 0.0185 0.02 333.1095 37.0922
0.1212 0.0185 0.0202 336.67 37.0983
0.1311 0.0186 0.0203 337.611 37.2173
0.1372 0.0186 0.0209 348.9537 37.1258
0.1455 0.0186 0.0213 354.7014 37.1593
0.1636 0.0186 0.0191 319.0202 37.1441
0.158 0.0186 0.0177 295.5718 37.257
0.1642 0.0186 0.0183 304.5239 37.1654
0.1746 0.0186 0.0201 334.7372 37.1166
0.1863 0.0186 0.0201 335.5019 37.2997
0.1878 0.0186 0.0178 296.7416 37.2509
0.1961 0.0185 0.0196 326.5244 37.0128
0.197 00186 0.0202 336.6192 37.1593
0.2315 0.0186 0.0176 293.3592 37.1929
0.2186 0.0186 0.017 283.2372 37.1593
0.2241 0.0186 0.0176 293.9695 37.196
0.2238 0.0186 0.019 316.4769 37.1899
0.2669 0.0186 0.0182 303.1505 37.1502
0.2519 0.0186 0.0189 315.7903 37.1441
0.2446 0.0186 0.0172 286.2128 37.1868
0.252 0.0186 0.0177 294.4273 37.1929
0.2532 0.0186 0.0175 291.4009 37.1258
02526 0.0185 0.0181 302.235 37.083
0.2486 0.0186 0.0172 286.9503 37.2845
0.2519 0.0186 0.0174 289.697 37.141
0.2525 00186 0.0183 305.0579 37.2631
0.2452 0.0186 0.0186 310.653 37.1349
0.2461 0.0185 0.0175 291.1212 37.0708
0.2511 0.0185 0.0177 294.3765 37.0891
0.2583 0.0185 0.0182 302.7691 37.0617
0.2589 0.0185 0.0159 265.511 37.0617
0.2501 0.0186 0.0174 289.875 37.1105


(Ib)
5.2694
5.2694
5.3081
5.2694
5.2307
5.2307
5.2307
5.1920
5.2694
5.2307
5.1920
5.1920
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.1920
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.2307
5.1920
5.2307
5.2307
5.2307
5.2307
5.1920
5.1920
5.1920
5.1920
5.2307


Max. (0.05i. 1
Unit Wt H_
Unit Wt Rod
Cylinder Bore Area
Shear Stud Area
Normal Stud Area
qu (psi)
Shear Force
(Ib)
-186.0135
-210.3433
-218.4532
235.7015
811.5046
860.1641
722.2957
1338.6484
1346.7583
1249.4395
1411.6375
1427.8574
1435.9673
1484.6267
1517.0663
1338.6484
1225.1098
1273.7692
1419.7474
1419.7474
1233.2197
1379.1979
1427.8574
1216.9998
1168.3404
1216.9998
1330.5385
1265.6593
1322.4286
1184.5602
1225.1098
1208.8899
1257.5494
1184.5602
1200.7800
1273.7692
1298.0989
1208.8899
1225.1098
1265.6593
1079.1315
1200.7800


62.4 (Mb3)
2.96 (Ibfft)
4.72 (in2)
0.457257932
0.003142024
884
Normal Stress Shear Stress
(psi) (psi)
1677.0802 -406.8022
1677-0802 -460.0101
1689.3954 -477.7460
1677.0802 515.4672
1664.7650 1774.7197
16647650 1881.1354
1664.7650 1579.6242
1652.4498 2927.5564
1677-0802 2945.2924
1664.7650 2732.4610
1652.4498 3087.1800
1652.4498 3122.6519
1664.7650 3140.3879
1664.7650 3246.8036
1664.7650 3317.7474
16647650 2927.5564
1664.7650 2679.2531
1664.7650 2785.6688
1664.7650 3104.9160
1664.7650 3104.9160
1664.7650 2696.9891
1652.4498 3016.2362
16647650 3122.6519
1664.7650 2661.5172
1664.7650 2555.1015
164647650 2661.5172
1664.7650 2909.8205
1664.7650 2767.9329
1664.7650 2892.0845
164647650 2590.5734
1664.7650 2679.2531
1664.7650 2643.7812
165284498 2750.1969
1664.7650 2590.5734
1664.7650 2626.0453
16647650 2785.6688
1664.7650 2838.8767
1652.4498 2643.7812
1652.4498 2679.2531
1652-4498 2767.9329
1652.4498 2360.0060
1664.7650 2626.0453












Table C-34. Borehole #2 at 44/25 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTED
Penetration (calculated) 0.022461715
Height H20 24 (ft)
Length Pipe 44 (ft)
Penetration DeDrl 0.0281 (in)
Stud Cap Area 0.1964 (in2)


LVDT Pressure
(in) (volts)
0.003 0.0134
0-0017 0.0135
-0.0063 0.0135
0-0305 0.0132
0.0799 0.0134
0-0848 0.0133
0.1208 0.0133
0.1984 0.0132
0.2142 0.0132
0.2034 0.0132
0.2885 0.0132
0.3145 0.0132
0-2983 0.0132
0.3212 0.0133
0-4197 0.0132
0.4175 0.0132
0.417 0.0132
0.4349 0.0131
0-5106 0.0133
0.5199 0.0132
0.5291 0.0132
0.5208 0.0132
0.5549 0.0132
0.6113 0.0132
0.612 0.0132
0-6221 0.0131
0.6154 0.0132
0.6138 0.0131
0.6167 0.0131
06147 0.0132
0.6277 0.0131
0-6148 0.0131
0.6192 0.0131
0-6193 0.0132
0.6133 0.0131


No. of Studs 42
Weight of Instrum. 38
Load Est. Load Est. Press.
(volts) (psi) (psi)
0.0004 6.002 26.896
0.0001 2 0427 27.0882
0 -0.4323 26.9875
0.0083 138 3506 26.4657
0.0076 126.5755 26.7098
0.0067 111-3671 26.5694
0.008 132.5266 26.5999
0.0069 114.7242 26.4657
0.0071 117.8269 26.4107
0.0091 151.855 26.4016
0.0083 137.5368 26.4657
0.0074 124.0323 26.4443
0.0085 142-0128 26.4016
0.0088 147.2009 26.6396
0.0076 127-4148 26.3894
0.0078 130.0089 26.3436
0.0077 127-5165 26.3527
0.01 166.453 26.2642
0.0093 155-5172 26.5358
0.009 149.1847 26.4168
0.0088 145.9293 26.4077
0.0089 148.9812 26.4718
0.0092 153.915 26.426
0.0098 162.6128 26.4168
0.0098 162.8671 26.3558
0.0093 155 7461 26.2001
0.0088 146.5143 26.4351
0.0091 151.3718 26.2825
0.0091 151.2701 26.2001
0.0087 145.319 26.3405
0.009 150.5071 26.2581
0.0085 140 8684 26.2673
0.0081 134.2306 26.249
0.0086 143 3861 26.4351
0.0086 142.6232 26.1971


Normal Force
(lb)
3.1335
3.1722
3.1722
3.0561
3.1335
3.0948
3.0948
3.0561
3.0561
3.0561
3.0561
3.0561
30561
3.0948
30561
3.0561
3.0561
3.0174
3.0948
3.0561
3.0561
3.0561
3.0561
3.0561
3.0561
3.0174
3.0561
3.0174
3.0174
3.0561
3.0174
3.0174
3.0174
3.0561
3.0174


Max. 10 0591)
Unit Wt H20
Unit Wt Rod
Cylinder Bore Area
Shear Stud Area
Normal Stud Area
qu (psi)
Shear Force
(Ib)
-180.8636
-205 1934
-213.3033
459 8188
403.0494
330 0603
435.4891
346.2801
362.4999
524.6980
459.8188
386.8296
476 0386
500.3683
403 0494
419.2693
411 1594
597.6871
540 9178
516.5881
500.3683
508.4782
532.8079
581.4673
581.4673
540 9178
500.3683
524.6980
524.6980
492 2584
516.5881
476 0386
443.5990
484 1485
484.1485


62.4 (lbf3)
2.96 (lbtft)
4.72 (in2)
0.240701554
0.001653968
884
Normal Stress Shear Stress
(psi) (psi)
1894.5341 -751.4020
1917-9292 -852.4804
1917.9292 -886.1732
1847-7439 1910.3274
1894.5341 1674.4780
1871-1390 1371.2430
1871.1390 1809.2491
1847.7439 1438.6285
1847.7439 1506.0141
1847.7439 2179.8696
1847.7439 1910.3274
1847.7439 1607.0924
1847-7439 1977.7130
1871.1390 2078.7913
1847-7439 1674.4780
1847.7439 1741.8635
1847-7439 1708.1707
1824.3488 2483.1046
1871-1390 2247.2552
1847.7439 2146.1769
1847.7439 2078.7913
1847.7439 2112.4841
1847.7439 2213.5624
1847.7439 2415.7191
1847.7439 2415.7191
1824-3488 2247.2552
1847.7439 2078.7913
1824.3488 2179.8696
1824.3488 2179.8695
1847-7439 2045.0985
1824.3488 2146.1769
18243488 1977.7130
1824.3488 1842.9419
1847-7439 2011.4057
1824.3488 2011.4057












Table C-35. Borehole #2 at 44/29 feet.
FULLER WiARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration cai.;ula.-il, 0.02814966 Max. (0.0591)
Height H2O 24 (ft) Unit Wt HzO
Length Pipe 44 111 Unit Wt Rod
Penetration Depth 0.0281 nr, Cylinder Bore Area
Stud Cap Area 0.1964 in2 Shear Stud Area
No of Studs 42 Normal Stud Area
Weight of Instrum. 38 qu (psi)
LVDT Pressure Load Est Load Est. Press. Normal Force
(in) (volts) I,1 I r SI (psi) I lb
0.0021 0.0154 -0.0001 -2.1872 30.7627 3.9074
-0.0069 0.0154 -0.0005 -8.9521 30.7382 3.9074
0.048 0.0154 0.0042 69.1753 30.7291 3.9074
0 1089 0.0153 0_005 831121 30.5948 3.8687
00952 00152 00046 76 1691 30.4086 3.8300
0.1364 0.0153 0.0104 173.7521 30.5368 3.8687
0.1779 0.0152 0.0124 207.1444 30.4605 3.8300
0.1813 0.0152 0.0109 181.4071 30.4514 3.8300
0.1839 0.0152 0.0115 191.9869 30.4147 3.8300
0.2455 0.0151 0.0119 198.3703 30.2316 3.7913
0.2737 0.0152 0.0105 174.6167 30.4025 3.8300
0.2463 0.0151 0.009 150.4308 30.1889 3.7913
0.3012 0.0152 0.0117 194.5046 30.4209 3.8300
0G3478 0.0151 0.0102 1699627 30.2469 3.7913
0.357 00152 0-0115 1920632 30.3232 3.8300
0.36 0.0152 0.01 166.0207 30.3323 3.8300
0.3522 0.0151 0.0125 209.1535 30.2622 3.7913
0.4258 0.0152 0.0124 206.7375 30.3964 3.8300
0.434 0.0151 0.0119 197.6582 30.2561 3.7913
0.4269 0.0151 0.0106 176.4479 30.2316 3.7913
0_4267 00151 0_012 199.998 30.2927 3.7913
0_4563 00151 0_013 2161728 30.2957 3.7913
0_5004 00151 0-0119 198.879 30.2927 3.7913
0_5102 0.0151 0.0118 1961832 30.2896 3.7913
0.5134 0.0151 0.0109 181.4325 30.2988 3.7913
0.491 0.0151 0.0116 192.7753 30.1706 3.7913
0.5158 0.0152 0.0127 211.1118 30.3171 3.8300
0.5409 0.0152 0.0122 203.3041 30.311 3.8300
0.5437 0.0152 0.0113 188.2992 30.3171 3.8300
0_5469 00151 0_012 1993113 30.2377 3.7913
05454 00151 0.0121 2024649 30.2561 3.7913
0.5494 0.0152 0.0119 197.5311 30.3232 3.8300
0_5472 00151 0_012 2001506 30.1859 3.7913
0.5514 0.0152 0.011 184.1538 30.311 3.8300
0.5472 0.0152 0.0117 194.5046 30.3079 3.8300
0.5517 0.0151 0.0122 203.3296 30.2927 3.7913
0.5593 0.0151 0.012 199.6165 30.2072 3.7913
0.5515 0.0151 0.0117 194.9624 30.2347 3.7913
05498 0.0151 0.0118 1972767 30.2072 3.7913


62.4 lb.)i i
2.96 lb ili
4.72 in2,
0.240701554
0.001653968
884
Shear Force Normal Stress
(Ib) (psi)
-221.4132 2362.4358
-253.8528 2362.4358
127.3127 2362.4358
192.1919 2339.0407
1597523 2315.6456
630.1268 2339.0407
792.3248 2315.6456
670.5763 2315.6456
719.3357 2315.6456
751.7753 2292.2506
638.2367 2315.6456
516.5881 2292.2506
735.5555 2315.6456
613.9070 22922506
719.3357 2315.6456
597.6871 2315.6456
800.4347 2292.2506
792.3248 2315.6456
751.7753 2292.2506
646.3466 2292.2506
759.8852 2292.2506
840.9843 2292.2506
751.7753 2292.2506
743.6654 2292.2506
670.6763 2292.2506
727.4456 2292.2506
816.6546 2315.6456
776.1050 2315.6456
703.1159 2315.6456
759.8852 2292.2506
7679951 2292.2506
751.7753 2315.6456
759.8852 2292.2506
678.7862 2315.6456
735.5555 2315.6456
776.1050 2292.2506
759.8852 2292.2506
735.5555 2292.2506
743.6654 2292.2506


Shear Stress
(psi)
-919.8659
-1054.6370
528.9235
7984657
663.6946
2617.8757
3291.7313
2785.3396
2988.4963
3123.2674
2651.5685
2146.1769
3055.8819
25504902
29884963
2483.1046
3325.4241
3291.7313
3123.2674
2685.2613
315659602
3493.8880
3123.2674
3089.5746
2785.3396
3022.1891
3392.8096
3224.3457
2921.1107
315659602
319056530
3123.2674
315659602
2820.0324
3055.8819
3224.3457
3156.9602
3055.8819
3089.5746












Table C-36. Borehole #2 at 44/32 feel



Penetration
Height H20
Length Pipe
F eneialorn D,-lin
Stud Cap Area
No. of Studs


LVDT Pressure
(in) (vols)
-0.0009 0.017
-0.0081 0.017
0.0382 0.0169
0.0992 00169
0.1125 0.0169
0.1186 0-0169
0.1458 0.0168
0.1802 0-0168
0.1792 0.0168
0.1912 0-0168
0.2371 0.0167
0.2257 00168
0.239 0.0167
0.2398 00167
0.2516 0.0167
0.2654 00167
0.2693 0.0167
0.2527 00166
0.2817 0.0167
0.3081 00166
0.3151 0.0166
0.3223 00166
0.3109 0.0166
0.3572 00166
0.3658 0.0166
0.3655 00166
0.376 0.0166
0.3724 0.0167
0.4072 0.0166
0.4185 0.0165
0.4157 0.0166
0.4104 0.0166
0.4164 0.0167
0.4213 0.0166
0.4183 0.0167
0.4263 0.0166
0.424 0.0166
0.4086 0.0166
0.4156 0-0166
0.4217 0.0166
0.4088 0.0166
0.4336 0.0165
04215 0.0166
0.4282 0.0165
04164 0.0165


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.032700025 Max. (0.0591)
24 (ft) Unit Wt HfO
44 (ft) Unit Wt Rod
0.0281 inr Cylinder Bore Are
0,1964 iin: Shear Stud Area
42 Normal Stud Area


Weight of Instrum. 38
Load Est. Load Est. Press. Normal Force


(volts) (psi)
-0.0001 0.8901
0 -0.5595
0.0039 64.1906
0.0052 86.3674
0.0052 85.8587
0.0072 120.77
0.0143 239.0871
0.0134 222.836
0.014 232.8817
0.0141 2356283
0.0127 211.5187
0.0131 2184108
0.0147 245.1908
0.0157 261.7217
0.0158 262.9933
0.0135 2257861
0.015 250.735
0.0148 2469456
0.014 232.9834
0.0146 2440464
0.014 233.7718
0.0133 2223273
0.0146 242.7747
0.0141 2344076
0.0142 236.2133
0.0137 2286599
0.0133 221.9459
0.015 250.4552
0.0145 240.8928
0.0145 241.1725
0.0142 237.2814
0.0147 244.5041
0.0144 240.5113
0.0133 222.3782
0.0132 219.7841
0.013 216.478
0.0133 221.539
0.013 215.8676
00135 225.6335
0.0136 227.4646
0014 234.0515
0.0137 228.3548
00129 215.4607
0.0141 234.611
0013 2161219


"'5sis
33.964
33.9854
33.8511
33 8633
33.8481
33 8237
33.6741
33 6467
33.5032
33 5673
33.488
335124
33.3567
33_314
33.433
333811
33.3048
33 2865
33.3262
33 2286
33.2743
33_198
33.1797
33 285
33.1614
33 2072
33.2438
33.3201
33.1187
33.0882
33.2224
33.1187
33.3598
33.1095
33.3964
33.1553
33.1339
33.1187
33 1767
33.1614
33 1431
33.0973
33 1584
33.0515
33 0668


II.,0
4.5265
4.5265
4.4878
4-4878
4.4878
4-4878
4.4491
4-4491
4.4491
4-4491
4.4104
4-4491
4.4104
4-4104
4.4104
4-4104
4.4104
4-3717
4.4104
4-3717
4.3717
4-3717
4.3717
4-3717
4.3717
4-3717
4.3717
4.4104
4.3717
4.3330
4.3717
4.3717
4.4104
4.3717
4.4104
4.3717
4.3717
4.3717
43717
4.3717
43717
4.3330
43717
4.3330
4 3330


'lu (Cr s
Shear Force
(lb)
-221.4132
-213.3033
102.9830
2084118
208.4118
370 6098
946.4130
8734239
922.0833
930 1932
816.6546
8490942
978.8526
1059 9517
1068.0616
881 5338
1003.1823
986 9625
922.0833
970 7427
922.0833
865 3140
970.7427
930 1932
938.3031
897 7536
865.3140
1003.1823
962.6328
962.6328
938.3031
978.8526
954.5229
865.3140
857.2041
840.9843
865.3140
840.9843
881 5338
889.6437
922 0833
897.7536
832 8744
930.1932
840 9843


62.4 (lbft3)
2.96 -liwil,
4.72 (in2)
0240701554
0.001653968
884
Normal Stress Shear Stress
(psi) (psi)
2736.7572 -919.8659
2736.7572 -886.1732
2713.3621 427.8452
2713.3621 865.8513
2713.3621 865.8513
2713.3621 1539.7069
2689.9670 3931.8941
2689.9670 3628.6591
2689.9670 3830.8158
2689.9670 3864.5085
2666.5719 3392.8096
2689.9670 3527.5807
2666.5719 4066.6652
2666.5719 4403.5930
2666.5719 4437.2858
2666.5719 3662.3519
2666.5719 4167.7435
2643.1768 4100.3580
2666.5719 3830.8158
2643.1768 4032.9724
2643.1768 3830.8158
2643.1768 3594.9663
2643.1768 4032.9724
2643.1768 3864.5085
2643.1768 3898.2013
2643.1768 3729.7374
2643.1768 3594.9663
2666.5719 4167.7435
2643.1768 3999.2796
2619.7818 3999.2796
2643.1768 3898.2013
2643.1768 4066.6652
2666.5719 3965.5869
2643.1768 3594.9663
2666.5719 3561.2735
2643.1768 3493.8880
2643.1768 3594.9663
2643.1768 3493.8880
2643.1768 3662.3519
2643.1768 3696.0446
2643.1768 3830.8158
2619.7818 3729.7374
2643.1768 3460.1952
2619.7818 3864.5085
2619 7818 3493 8880












Table C-37. Borehole #2 at 44/36 feet.


FULLER WAARREN BRIDGE
SHEAR IE'/ICE TEST RESULTS
Penetration (calculated) 0.03895677
Height H20 24 (ft)
Length Pipe 44 (ft)
P-neri 3ll;ri D&pin 0.0281 (in)
Stud Cap Area 0.1964 (in2)
No. of Studs 42
Weight of Instrum. 38
Load Est. Load Est. Press. NormalForce


in (volts) (volts) (psi)
-0.0032 0_0191 -0-0001 -2.0346
0.011 0.0191 0 -0.1017
00556 0.019 00102 170.039
0_0679 0.019 0.012 200.7609
0.0583 0.019 0.0121 201.9308
0.0932 0.0189 0.018 299.9451
0.1105 0.0189 0.0189 314.1881
0.1082 0.019 0.0184 307.3468
0_1044 0.019 0.0204 339.8236
0_1145 00188 0.0201 335.5256
0.1406 0.0189 0.0194 322.6824
0.113 0.0189 0.0183 305.3886
0.1381 0.0189 0.0202 337.4839
0.1425 0.0189 0.0211 351.7767
01607 0_0189 0 02 333.491
0_1518 0_0189 0-0193 321.7668
0.158 0.0189 0.0196 326.014
0.155 0_0189 0.019 317.0619
0.165 0_0189 0-0205 341.0444
0.1839 0.0189 0.0188 313.1453
0.1868 0.019 0.0176 294.1221
0.2002 0.0188 0.0189 315.6886
0.1946 0.0189 0.0175 291.4518
0_1824 00189 0.0187 312.4332
0.207 0_0189 0.018 300-353
0.2149 0.0188 0.0191 318.5624
0_2142 00189 0.0175 291.7061
0_2075 00188 0.0178 296.3093
0.2208 0.0189 0.0172 286.2382
0.2303 0.0189 0.0205 342.0871
0_2447 0_0189 00198 330.1086
0.2383 0.0189 0.0185 308.771
02357 0_0189 0-0172 286.5179
0_2514 0_0188 0-0193 321.3599
0.2354 0.0188 0.0177 295.6735
0.2434 0.0189 0.0193 321.5888
0.2385 0.0188 0.0179 298.3439
0.2533 0.0189 0.0195 325.3782
0.2456 0.0189 0.0195 325.1747
0.242 0_0189 0.019 317.0365
0.2472 0.0189 0.0179 298.1913
0_2445 00188 0.018 299.8444
0_2433 00188 0.0178 295.8515
0.246 0.0189 0.0167 278.7866


(psi)
38.1451
38.1787
38.0322
38.0291
37.9406
37.846
37.7514
38.0749
37.9284
37.6873
37.7392
37.7392
37.8246
37.7789
37.7483
37.7636
37.8246
37.8552
37.8979
37.7331
37.907
37.6751
37.785
37.7178
37.7026
37.6812
37.7514
37.6293
37.727
37.7483
37.7697
37.7483
37.843
37.6598
37.5317
37.8399
37.6995
37.8002
37.7514
37.7087
37.8918
37.6263
37.6141
37.7026


(Ib)
5.3391
5.3391
5.3004
5.3004
5.3004
5.2617
5.2617
5.3004
5.3004
5.2230
5.2617
5.2617
5.2617
5.2617
5.2617
5.2617
5.2617
5.2617
5.2617
5.2617
5.3004
5.2230
5.2617
5.2617
5.2617
5.2230
5.2617
5.2230
5.2617
5.2617
5.2617
5.2617
5.2617
5.2230
5.2230
5.2617
5.2230
5.2617
5.2617
5.2617
5.2617
5.2230
5.2230
5.2617


LVDT Pressure


Max. I 00-51 I
Unit Wt H20 62.4 (lbft3)
Unit Wt Rod 2.96 (Ibft)
Cylinder Bore Area 4.72 iinl I
Shear Stud Area 0.240701554
Normal Stud Area 0.001653968
qu (psi) 884
Shear Force NormalStress Shear Stress
(Ib) (psi) (psi)
-221 4132 3228.0540 -919.8659
-213.3033 3228.0540 -886.1732
613.9070 3204.6589 2550.4902
759.8852 3204.6589 3156.9602
767.9951 3204.6589 3190.6530
1246.4795 3181.2638 5178.5269
1319.4686 3181.2638 5481.7619
1278.9191 3204.6589 5313.2980
1441.1172 3204.6589 5987.1535
1416.7874 3157.8687 5886.0752
1360.0181 3181.2638 5650.2258
1270.8092 3181.2638 5279.6052
1424.8974 3181.2638 5919.7680
1497.8865 3181.2638 6223.0030
1408.6775 3181.2638 5852.3824
1351.9082 3181.2638 5616.5330
1376.2379 3181.2638 5717.6113
1327.5785 3181.2638 5515.4546
1449.2271 3181.2638 6020.8463
1311.3587 3181.2638 5448.0691
1214.0398 3204.6589 5043.7558
1319.4686 3157.8687 5481.7619
1205.9299 3181.2638 5010.0630
1303.2488 3181.2638 5414.3763
12464795 3181.2638 5178.5269
1335.6884 3157.8687 5549.1474
1205.9299 3181.2638 5010.0630
1230.2597 3157.8687 5111.1413
1181.6002 3181.2638 4908.9846
1449.2271 3181.2638 6020.8463
13924577 3181.2638 5784.9969
1287.0290 3181.2638 5346.9908
1181.6002 3181.2638 4908.9846
1351.9082 3157.8687 5616.5330
1222.1498 3157.8687 5077.4485
1351.9082 3181.2638 5616.5330
1238.3696 3157.8687 5144.8341
1368.1280 3181.2638 5683.9185
1368.1280 3181.2638 5683.9185
1327.5785 3181.2638 5515.4546
1238.3696 3181.2638 5144.8341
1246_4795 3157.8687 5178.5269
1230.2597 3157.8687 5111.1413
1141.0507 3181.2638 4740.5208












Table C-38. Borehole #2 at 45/30 feet.
FULLER WARREN BRIDGE
SH-EAR DEVICE TEST RESULTS
Penetration [calculated) 0.01971815 Max (0.0591)
Height H2O 24 (t) Unit Wt H20 62.4 (Ib/ft3)
Length Pipe 45 (ft) Unit Wt Rod 2.96 (lb/t)
Penetration Depth 0.0241 (in) Cylinder Bore Area 4.72 (in2)
Stud Cap Area 0.1964 (in2) Shear Stud Area 0.177051797
No. of Studs 42 Normal Stud Area 0.001216602
Weight of Instrum. 38 qu (psi) 1287.5
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress
(in) (volts) I,'I. j (psi) (psi) '11i (lb) (psi) (psi)
-0.0045 0.0157 0.0001 2.4415 31.3791 4.0235 -208.1534 3307.1433 -1175.6636
-0.0138 0.0157 060001 1 3988 31 3547 4.0235 -208 1534 33,071433 -11756636
-0.0029 0.0156 0.0002 3.7385 31.2571 3.9848 -200.0434 3275.3378 -1129.8583
0.0601 0.0154 0.0086 142.9029 30.8023 3.9074 481.1885 3211.7266 2717.7837
0.0777 0.0153 0.0068 114.0375 30.5429 3.8687 335.2102 3179.9210 1893.2890
0.088 0.0154 0.0071 117.8014 30.7749 3.9074 359.5399 3211.7266 2030.7048
0.0948 0.0154 0.0093 155.4664 30.8512 3.9074 537.9578 3211.7266 3038.4205
0.1604 0.015 0.0096 160.0442 30.7688 3.9074 562.2875 3211.7266 3175.8363
0.1625 0.0154 0.0096 159.5355 30.7047 3.9074 562.2875 3211.7266 3175.8363
0.1726 0.0154 0.0094 156.8143 30.8145 3.9074 546.0677 3211.7266 3084.2258
0.1754 0.0155 0.0094 156.4582 30.9122 3.9461 546.0677 3243.5322 3084.2258
0.1696 0.0155 0.0103 172.2007 30.9671 3.9461 619.0569 3243.5322 3496.4732
0.1994 0.0154 0.0115 190.8933 30.8878 3.9074 716.3757 3211.7266 4046.1363
0.2311 0.0154 0.0103 171.7429 30.8512 3.9074 619.0569 3211.7266 3496.4732
0.2351 0.0155 0.0102 170.2933 31.0068 3.9461 610.9470 3243.5322 3450.6679
0.2244 0.0155 0.0105 174.8965 31.0984 3.9461 635.2767 3243.5322 3588.0837
0.2204 0.0156 0_0102 170.0898 31_1136 3.9848 6109470 3275_3378 3450-6679
0.2497 0.0155 0.012 199.8454 31.016 3.9461 756.9252 3243.5322 4275.1626
0.2652 0.0156 0_0128 214.1382 31-1655 3.9848 8218045 3275_3378 4641 6047
0.281 0.0156 0.0121 201.8291 31.1594 3.9848 765.0351 3275.3378 4320.9679
0.2858 0.0156 0_0114 190.6898 31_1899 3.9848 7082658 3275_3378 40003310
0.2785 0.0157 0.0105 175.7358 31.3517 4.0235 635.2767 3307.1433 3588.0837
0.2819 0.0156 0_0113 188_757 31_1045 3.9848 7001559 3275_3378 3954-5258
0.3099 0.0155 0.0145 241.2488 30.9702 3.9461 959.6728 3243.5322 5420.2942
0.3109 0.0156 0_0141 235374 31-1655 3.9848 9272332 3275_3378 5237-0731
0.2844 0.0156 0.0132 219.4281 31.1014 3.9848 854.2441 3275.3378 4824.8258
0.3206 0.0156 0_0145 242.3678 31_1167 3.9848 9596728 3275_3378 5420-2942
0.3213 0.0156 0.0133 221.3864 31.2601 3.9848 862.3540 3275.3378 4870.6310
0.3156 0.0156 0_0129 214.8757 31_1319 3.9848 8299144 3275_3378 4687-4100
0.33 0.0156 0.0158 262.6881 31.2052 3.9848 1065.1016 3275.3378 6015.7626
0.364 0.0156 0_0154 256.3046 31-1808 3.9848 1032 6620 3275_3378 5832-5415
0.3483 0.0156 0.0138 229.5501 31.1319 3.9848 902.9035 3275.3378 5099.6573
0.3537 0.0156 0_0131 218.5125 31.318 3.9848 8461342 3275_3378 47790205
0.3528 0.0156 0.0141 234.8998 31.2021 3.9848 927.2332 3275.3378 5237.0731
0.3567 0.0156 0_0134 223.3701 31.254 3.9848 870 4639 3275_3378 4916-4363
0.3661 0.0156 0.0143 238.6039 31.1991 3.9848 943.4530 3275.3378 5328.6836
0.3487 0.0156 0_0125 209.0772 31_1869 3.9848 7974747 3275_3378 45041889
0.3486 0.0156 0.0139 231.4066 31.254 3.9848 911.0134 3275.3378 5145.4626
0.3457 0.0156 0.0135 224.7434 31.2784 3.9848 878.5738 3275.3378 4962.2415
0.3558 0.0156 0.0144 239.1888 31.193 3.9848 951.5629 3275.3378 5374.4889
0.3502 0.0156 0.0129 215.4352 31.1899 3.9848 829.9144 3275.3378 4687.4100
0.3446 0.0156 0.0135 224.4636 31.2449 3.9848 878.5738 3275.3378 4962.2415
0.3629 0.0156 0.013 217.4444 31.2326 3.9848 838.0243 3275.3378 4733.2152













Table C-39. Borehole #2 at 45/33 feet.


LVDT Pressure


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.024130875 Max. 10 0.-.1'
Height H20 21 (ft) Unit Wt H20 62.4 (Ibtt3)
Length Pipe 45 (ft) Unit Wt Rod 2.96 (Ibtft)
Penetration Depth 0.0241 (in) Cylinder Bore ) 4.72 (in2)
Stud Cap Area 0.1964 (in2) lear Stud Area 0.177051797
No. of Studs 42 Normal Stud Area 0.001216602
Weight of Instrn.i 38 qu (psi) 1287.5
Load Est- Load Est. Press Normal Force Shear Force Normal Stress Shear Stress


(in) (volts) (volts) (psi) (psi)
-00003 00173 0.0001 2.1872 34.6538
0.0061 0.0173 0 0.1017 34.5683
-0.0016 00173 0.0001 0.941 34.5927
0.0327 0.0173 0.0092 153.6353 34.5592
0.0718 0.017 0.0097 161.5955 34.0831
0.0685 0.0171 0.0102 169.9118 34.1227
0.0644 0_0171 0009 149.3118 34.1533
0.0951 0.017 0.0122 203.355 33.9366
0.11 0.017 0.0124 205.9999 34.0861
0.1236 0_0169 0.0122 203.8128 33.8511
0.1188 0.0171 0.0111 185.756 34.2112
0.1215 0.017 0.0122 203.4822 34.0587
0.1561 0.017 0.0138 230.491 34.0007
0.1673 0_0171 0.0126 210.0691 34.2357
0.1733 0.017 0.0132 219.3518 34.0098
0.1706 0_0171 0.0131 217.5461 34.135
0.1616 0.017 0.0136 227.1594 34.0617
0.2053 0.017 0.0163 271.6656 34.077
0.2029 0_0171 0.0142 237.1797 34.2021
0.2063 0.017 0.0136 225.8878 34.077
0.2017 00171 0.0131 218.1819 34.1288
0.2203 0.0171 0.0132 220.2673 34.1685
0.2459 0.017 0017 283.3389 34.0831
0.2582 0.0171 0.0156 259.5091 34.1227
0.2544 0.017 0.0155 257.7797 34.0709
0.2445 0.0171 0.0159 265.5619 34.1166
0.2493 0.0171 0.0146 243.2834 34.1838
0.2697 00171 0.0169 281.4315 34.1441
0.2666 00171 0016 265.9942 34.254
0.2779 00171 0.0146 243.9192 34.1502
0.2813 0.017 0.0145 240.9436 34.0526
0.2776 0_0171 0.0151 251.8286 34.1746
0.2862 0.0172 0.0168 279.9819 34.3608
0.3019 0.0171 0.0179 298.9034 34.2082
0.3155 0.017 0.0147 244.3007 34.0403
0.3094 0.0171 0.0144 240.3078 34.1136
0.3156 0.0171 0.0134 223.7261 34.1624
0.3117 0.017 0.0151 252.2355 34.0526
0.3085 00171 0.0147 244.6567 34.1044
0.3171 0.017 0.014 232.8308 34.077
0.302 00171 0.0152 253.6088 34.1411
0.3052 0.017 0.0154 257.4999 34.019
0.3111 0_0171 0.0141 235.1451 34.1563
0.3247 0.0171 0.0145 241.7829 34.2051
0.3013 0.017 0.0145 242.3678 34.0678
0.3053 0.0171 0.0147 244.2752 34.1563
0.3053 0.0172 0.015 250.2009 34.3028


(Ib) 11 i
4 8979 -208.1534
4.8979 -216.2633
4 8979 -208.1534
4.8979 529.8479
47818 5703974
4.8205 610.9470
48205 513.6281
4.7818 773.1450
47818 7893648
4 7431 773.1450
4.8205 683.9361
4 7818 773.1450
4.7818 902.9035
4 8205 805.5846
4.7818 854.2441
4 8205 846.1342
4.7818 886.6837
4 7818 1105.6511
4 8205 935.3431
4 7818 886.6837
4 8205 846.1342
4.8205 854.2441
47818 1162.4204
4.8205 1048.8818
4.7818 1040.7719
4.8205 1073.2115
4.8205 967.7827
48205 1154.3105
48205 1081.3214
4 8205 967.7827
4.7818 959.6728
48205 1008.3322
4.8592 1146.2006
4.8205 1235.4096
4.7818 975.8926
4.8205 951.5629
4.8205 870.4639
4.7818 1008.3322
4 8205 975.8926
4.7818 919.1233
48205 1016.4422
4.7818 1032.6620
4 8205 927.2332
4.8205 959.6728
4.7818 959.6728
4.8205 975.8926
4.8592 1000.2223


(psi) (psi)
40258956 -1175.6636
4025.8956 -1221.4689
40258956 -1175.6636
4025.8956 2992.6153
3930 4789 3221.6416
3962.2845 3450.6679
3962 2845 2901.0047
3930.4789 4366.7731
3930 4789 4458.3837
38986734 4366.7731
3962.2845 3862.9153
3930 4789 4366.7731
3930.4789 5099.6573
3962 2845 4549.9942
3930.4789 4824.8258
3962 2845 4779.0205
3930.4789 5008.0468
3930 4789 6244.7889
3962 2845 5282.8784
3930 4789 5008.0468
3962 2845 4779.0205
3962.2845 4824.8258
3930 4789 6565.4257
3962.2845 5924.1521
3930.4789 5878.3468
3962.2845 6061.5678
3962.2845 5466.0994
3962 2845 6519.6205
39622845 6107.3731
3962 2845 5466.0994
3930.4789 5420.2942
3962 2845 5695.1257
3994.0901 6473.8152
3962.2845 6977.6731
3930.4789 5511.9047
3962.2845 5374.4889
3962.2845 4916.4363
3930.4789 5695.1257
39622845 5511.9047
3930.4789 5191.2679
3962 2845 5740.9310
3930.4789 5832.5415
39622845 5237.0731
3962.2845 5420.2942
3930.4789 5420.2942
3962.2845 5511.9047
3994.0901 5649.3205













Table C-40. Borehole #2 at 45/36 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.02616199 Max. (0.0591)


Height HO2
Length Pipe
Penetration Depth
Stud Cap Area
No- of Studs
Weight of Instrurm


LVDT Pressure
in i (volts)
-0.0109 0.019
-0.0063 0.019
0.0072 0.0191
0.0762 0.0188
0.0549 0.0188
0.0601 0.0188
0.0769 0.0188
0.0987 0.0187
0.0968 0.0187
0.1031 0.0186
00956 0.0187
0.1298 0.0187
0.1316 0.0186
01418 0.0186
0.1403 0.0187
0.1648 0.0186
0.1816 0.0186
0.1948 0.0186
0.1881 0.0186
0.1843 0.0186
0.2378 0.0186
0.2478 0.0185
0.2454 0.0186
0.2537 0.0186
0.2437 0.0187
0.2476 0.0186
0.2773 0.0186
0.3043 0.0185
0.2936 0.0186
0.2952 0.0185
0.305 0.0186
0.3083 0.0185
0.3393 0.0185
0.3383 0.0185
0.3471 0.0186
0.3413 0.0186
0.3637 0.0186
0.368 0.0185
0.3793 0.0185
0.385 0.0186
0.3793 0.0185
0.3654 0.0185
0.382 0.0185
0.3668 0.0186
0.3807 0.0186
0.3831 0.0185
0.3686 0.0187


24 (ft)
45 (ft)
0.0241 (in)
0.1964 (in2)
42


Load Est. Load Est. Press. Normal Force


.,:'lIsl (psi) (psi)
-0.0001 -1.704 38.02
0 -0.2035 38.0963
00071 117.6234 38.2336
0.0112 187.4345 37.6354
0.0113 189.113 37.611
00106 177.4651 37.6415
00131 218.0548 37.6141
0.0158 263.6291 37.3791
0.0129 215.1555 37.3058
00127 211.1118 37.2875
00135 225.6844 37.3058
0.0155 258.9496 37.3394
0.0149 247.912 37.1288
00155 258.1103 37.1807
0 0142 236.4676 37.4279
0.0143 239.1534 37.2784
0.0112 187.053 37.1593
0.0113 187.994 37.2204
00107 178.2535 37.2448
00127 211.7222 37.1319
0.0133 221.7933 37.1807
0.0117 194.5555 37.0037
00117 195.6745 37.138
00122 2036856 37.1746
0.0121 201.9054 37.3363
0.0129 215.4607 37.1868
00141 235.6538 37.199
0.0132 220.3436 37.0373
0.011 183.0093 37.2448
0.0123 205.0844 37.0312
0.0114 189.3928 37.1105
00146 244.1481 37.0434
00152 2533036 36.9915
0.0143 237.5357 37.0861
0.0138 230.2622 37.1258
00139 231.6609 37.2845
00148 247.4543 37.1075
0.0142 236.671 36.9671
00129 215.6387 37.0434
0.013 2163762 37.1136
0.0143 239.0617 36.9793
0.0131 218.3345 37.0373
0.0143 237.8409 37.0891
0.0143 238.8582 37.1166
00136 226.7017 37.1136
0 0143 237.6375 37.0525
0.0135 225.7352 37.3119


(lb)
5.3004
5.3004
53391
5.2230
5.2230
5.2230
5.2230
5.1843
5.1843
5.1456
5.1843
5.1843
5.1456
5.1456
5.1843
5.1456
5.1456
5.1456
5.1456
5.1456
5.1456
5.1069
5.1456
5.1456
5.1843
5.1456
5.1456
5.1069
5.1456
5.1069
5.1456
5.1069
5.1069
5.1069
5.1456
5.1456
5.1456
5.1069
5.1069
5.1456
5.1069
5.1069
5.1069
5.1456
5.1456
5.1069
5.1843


Unit Wt H20 62.4 (Ibft3)
Unit Wt Rod 2.96 (Ibft)
CIIrllnr Ecre Area 4.72 in:Z
Shear Stud Area 0.177051797
Normal Stud Area 0.001216602
qu -ps, 1287.5
Shear Force Normal Stress Shear Stress


(Ib)
-224.3732
-216.2633
359.5399
692.0460
700.1559
643.3866
846.1342
1065.1016
829.9144
813.6946
878.5738
1040.7719
992.1124
1040.7719
935.3431
943.4530
692.0460
700.1559
651.4965
813.6946
862.3540
732.5955
732.5955
773.1450
765.0351
829.9144
927.2332
854.2441
675.8262
781.2549
708.2658
967.7827
1016.4422
943.4530
902.9035
911.0134
984.0025
935.3431
829.9144
838.0243
943.4530
846.1342
943.4530
943.4530
886.6837
943.4530
878.5738


(psi)
4356.7272
4356.7272
4388 5327
4293.1160
4293.1160
4293 1160
4293 1160
4261.3105
4261.3105
4229 5049
4261 3105
4261.3105
4229.5049
4229 5049
4261 3105
4229.5049
4229.5049
4229.5049
4229 5049
4229 5049
4229.5049
4197.6993
4229 5049
4229 5049
4261.3105
4229.5049
4229 5049
4197.6993
4229.5049
4197.6993
4229.5049
4197 6993
4197 6993
4197.6993
4229.5049
4229 5049
4229 5049
4197.6993
4197 6993
4229 5049
4197.6993
4197.6993
4197.6993
4229.5049
4229 5049
4197 6993
4261.3105


(psi)
-1267.2741
-1221.4689
2030-7048
3908.7205
3954.5258
3633-8889
4779-0205
6015.7626
4687.4100
4595-7994
4962-2415
5878.3468
5603.5152
5878-3468
5282-8784
5328.6836
3908.7205
3954.5258
3679-6942
4595-7994
4870.6310
4137.7468
4137-7468
4366-7731
4320.9679
4687.4100
5237-0731
4824.8258
3817.1100
4412.5784
4000.3310
5466 0994
5740-9310
5328.6836
5099.6573
5145-4626
5557-7100
5282.8784
4687-4100
4733-2152
5328.6836
4779.0205
5328.6836
5328.6836
5008-0468
5328 6836
4962.2415












Table C-41. Borehole #2 at 50/25 feet.
FULLER WARREN BRIDGE
SHEAR DE'.' ICE TEST RESULTS


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No of Studs
Weight of Instrum.


LVDT
(in)
-00113
0-0047
0-0113
0-0676
0.115
0-1191
0-1289
0.115
0-1872
0-2404
0-2531
0-2531
0.2523
0-2636
0.3249
0-3814
0-3689
0-3753
0-3864
0-3803
0-4141
0.4805
0-5066
0.5031
0-5085
0.5021
0.511
0-5534
0-6092
0-6452
0.6481
0-6159
0.6435
0-6299
0.6018
0-6918
0.7353
0-6501
0-7302
0-6311
0-7229
0.6863
0-7381
0.6356
0-7389
0.633
0-7131


Pressure
(volts)
0-0137
0 0137
0 0137
0-0134
0 0133
0-0133
0-0134
0-0134
0-0134
0 0133
0-0134
0-0133
0.0133
0-0133
0.0133
0 0133
0-0134
0-0133
0-0133
0 0133
0-0134
0.0133
0 0133
0.0133
0-0133
0.0134
0-0134
0-0133
0-0134
00134
0.0134
0-0134
0.0134
0 0133
0.0134
0-0134
0.0134
0-0134
0-0134
0-0134
00134
0.0135
0-0134
0.0134
0-0134
0.0135
0-0134


(calculated) 0.024171171
29 (ft)
50 (ft)
0.0293 (in)
0.1964 (n2)


Load
-.:.s11 1
0-001
0.0009
0.0014
0.0049
0.0035
0.0034
0.0035
0.0037
0.0047
0.0047
0.0039
0.0041
0.0041
0.0052
0.0056
0.0045
0.0047
0.0046
0.0047
0.0051
0.0052
0.006
0.0057
0.0051
0.0051
0.0046
0.0055
0.0063
0.0067
0-006
0.0061
0.0051
0.0057
0.0056
0.0063
0.0068
0.0061
0-006
0.0059
0-006
0.0065
0.0057
0.0056
0.0058
0.0056
0.0057
0.0053


Est- Load
(psi)
16.4037
14.8778
25.0467
82.1965
58.8499
55.9252
59.155
62.2106
78.3054
78.8395
65.4368
68.9718
68.6158
86.5708
93.1069
75.0755
77.7968
76.576
79.0429
84.638
86.3928
99.3378
95.5229
84.7397
84.8923
77.0847
91.7844
105.238
111.2908
100177
102.2116
84.3074
94.2768
93.9207
104.7294
113.5289
102.4659
99.6175
97.8881
99.4395
108.9511
95.294
93.0306
97.0489
93.7427
94.938
87.6136


42
38
Est- Press-
(psi)
27.3324
27.308
27.3415
26.7953
26.6152
26.6549
26.7464
26.8288
26.7067
26.5358
26.8288
26.5328
26.6366
26.6549
26.5816
26.5084
26.7129
26.5847
26.5694
26.6671
26.8197
26.5236
26.606
26.6366
26.6121
26.7434
26.7098
26.7006
26.7129
26.7373
26.722
26.7312
26.8258
26.6243
26.8929
26.7312
26.841
26.8105
26.8288
26.8227
26.783
26.9265
26.8441
26.8777
26.8868
26.9295
26.8929


Normal Force
(Ib)
2.8241
2.8241
2.8241
2.7080
2.6693
2.6693
2.7080
2.7080
2.7080
2.6693
2.7080
2.6693
2.6693
2.6693
2.6693
2.6693
2.7080
2.6693
2.6693
2.6693
2.7080
2.6693
2.6693
2.6693
2.6693
2.7080
2.7080
2.6693
2.7080
2.7080
2.7080
2.7080
2.7080
2.6693
2.7080
2.7080
2.7080
2.7080
2.7080
2.7080
2.7080
2.7467
2.7080
2.7080
2.7080
2.7467
2.7080


Max. (0.0591)
Unit Wt H20
Unit Wt Rod
Cylinder Bore Area
Shear Stud Area
Normal Stud Area
qu (psi)
Shear Force
(Ib)
-149.9642
-158.0741
-117.5246
166.3220
52.7834
44.6735
52.7834
69.0032
150.1022
150.1022
85.2230
101.4428
101.4428
190.6518
223.0914
133.8824
150.1022
141.9923
150.1022
182.5418
190.6518
255.5310
231.2013
182.5418
182.5418
141.9923
214.9815
279.8607
312.3003
255.5310
263.6409
182.5418
231.2013
223.0914
279.8607
320.4102
263.6409
255.5310
247.4211
255.5310
296.0805
231.2013
223.0914
239.3112
223.0914
231.2013
198.7617


62.4
2,96
4.72
0.261698658
0.001798249
727.9
Normal Stress

1570.4446
1570.4446
1570.4446
1505.8906
1484.3726
1484.3726
1505.8906
1505.8906
1505.8906
1484.3726
1505.8906
1484.3726
1484.3726
1484.3726
1484.3726
1484.3726
1505.8906
1484.3726
1484.3726
1484.3726
1505.8906
1484.3726
1484.3726
1484.3726
1484.3726
1505.8906
1505.8906
1484.3726
1505.8906
1505.8906
1505.8906
1505.8906
1505.8906
1484.3726
1505.8906
1505.8906
1505.8906
1505.8906
1505.8906
1505.8906
1505.8906
1527.4086
1505.8906
1505.8906
1505.8906
1527.4086
1505.8906


(lb/ft3)
(lb/ft)
(in2)




Shear Stress
(psi)
-573.0416
-6040311
-449.0837
635.5479
201.6953
170.7058
201.6953
263.6742
573.5690
573.5690
325.6532
387.6321
387.6321
728.5164
852.4743
511.5900
573.5690
542.5795
573.5690
697.5269
728.5164
976.4322
883.4637
697.5269
697.5269
542.5795
821.4484
1069.4006
1193.3585
976.4322
1007.4216
697.5269
883.4637
852.4743
1069.4006
1224.3480
1007.4216
976.4322
945.4427
976.4322
1131.3795
883.4637
852.4743
914.4532
852.4743
883.4637
759.5058












Table C-42. Borehole #2 at 50/29 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetralon (calculated) 0.02935198 Max. (0.0591)
Height H20 29 (ft) Unit Wt H20 62.4 (Ilift3)
Length Pipe 50 (ft) UnitWt Rod 2.96 (Ibl/t)
Penetration 0.0293 (in) Cylinder Bore AreE 4.72 (in2)
Stud Cap Ai 0.1964 (in2) Shear Stud Area 0.261698658
No. of Studs 42 Normal Stud Area 0.001798249
Weight of Instrum. 38 qu (psi) 727.9
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress
(in) (volts) (volts) (ps,) (psi) (Ib) (Ib) (psi) 'ps I
0.2792 0.0157 0.0012 20.0471 31.3395 3.5979 -133.7444 2000.8048 -511.0626
0.2744 0.0156 0.0002 4.0691 31.1716 3.5592 -2148434 1979_2867 -8209574
0.2737 0.0156 0.0002 3.3316 31.251 3.5592 -214.8434 1979.2867 -820.9574
0.2887 0.0157 0.0039 64.8518 31.3028 3.5979 5 2230 20008048 3256532
0.3897 0.0153 0.0036 59.562 30.6436 3.4432 60.8933 1914.7327 232.6848
0.3869 0.0154 0003 50.6353 30.839 3.4819 122339 193652507 46 7479
0.3926 0.0154 0.0029 49.5747 30.8145 3.4819 4.1240 1936.2507 15.7584
0.4017 0.0155 0.0042 70.4469 30.9336 3.5206 109 5527 1957_7687 4186216
0.5212 0.0149 0.0049 81.8405 29.7708 3.2884 166.3220 1828.6607 635.5479
0.5156 0.0149 0.0045 74.7195 29.8929 3.2884 1338824 182856607 511 5900
0.5337 0.015 0.0041 68.4886 29.9966 3.3271 101.4428 1850.1787 387.6321
0.5271 0.0151 0.0047 78.6869 30.195 3.3658 150.1022 1871.6967 573.5690
0.6051 0.015 0.0068 113.9358 29.96 3.3271 320.4102 1850.1787 1224.3480
0.6474 0.015 0.0055 91.2758 29.9448 3.3271 214.9815 1850.1787 821.4848
0.6522 0.015 0.0044 74.0328 30.0546 3.3271 125.7725 1850.1787 480.6006
0.6401 0.0151 0.0048 80.1874 30.1279 3.3658 158.2121 1871.6967 604.5585
0.6714 0.0151 0.0062 102.8474 30.2011 3.3658 271.7508 1871.6967 1038.4111
0.7218 0015 0.0067 111.0874 30.0394 3.3271 3123003 1850_1787 11933585
0.7701 0.015 0.0062 103.3815 30.0668 3.3271 271.7508 1850.1787 1038.4111
0.7663 0.0151 0.0065 109.0528 30.1553 3.3658 2960805 187156967 1131 3795
0.772 0.0151 0.0059 98.2696 30.2713 3.3658 247.4211 1871.6967 945.4427
0.7726 0.0151 0.0062 104.0427 30.2988 3.3658 2717508 187156967 10384111
0.7822 0.0151 0.0065 109.1037 30.2072 3.3658 296.0805 1871.6967 1131.3795
0_845 0.0151 0.0073 121.5908 30.134 3.3658 3609597 187156967 13792953
0_885 0.0151 0.0065 108.9511 30.1309 3.3658 2960805 187156967 1131 3795
0.8885 0.0151 0.0058 96.7182 30.1553 3.3658 2393112 187156967 9144532
0.8859 0.0152 0.0061 101.9318 30.3262 3.4045 263 6409 1893_2147 10074216
0_898 0.0152 0_006 100.5331 30.4361 3.4045 2555310 1893_2147 9764322
0.9138 0.0151 0.0068 113.1474 30.2194 3.3658 320.4102 1871.6967 1224.3480
0.9594 0.015 0.007 117.1148 30.0974 3.3271 336.6300 1850.1787 1286.3269
0.979 0.0151 0.0072 119.8869 30.2927 3.3658 352.8498 1871.6967 1348.3059
1.0157 0.0152 0.0065 107.654 30.314 3.4045 296.0805 1893.2147 1131.3795
0.925 0.0152 0.0069 115.1311 30.314 3.4045 328.5201 1893.2147 1255.3374
0.9331 0.0151 0.0069 114.9531 30.2835 3.3658 328.5201 1871.6967 1255.3374
0.9985 0.0152 0.0062 103.3306 30.4636 3.4045 271.7508 1893.2147 1038.4111
0.9441 0.0152 0.0073 121.3111 30.3629 3.4045 360.9597 1893.2147 1379.2953
0.9877 0.0151 0.0072 119.3528 30.192 3.3658 352.8498 1871.6967 1348.3059
0.9751 0.0152 0.0064 107.4252 30.4117 3.4045 287.9706 1893.2147 1100.3901
0.9318 0.0151 0.006 100.6348 30.1981 3.3658 255.5310 1871.6967 976.4322
09667 0.0152 0.0067 111.1128 30.4514 3.4045 3123003 1893_2147 11933585
1.0064 0.0152 0.0062 102.9491 30.4056 3.4045 271.7508 1893.2147 1038.4111
0_938 0.0152 0.0062 103.8138 30.4056 3.4045 2717508 1893_2147 10384111
0.9829 0.0153 0006 100.5331 30.5307 3.4432 2555310 1914_7327 9764322
0.9695 0.0152 0.0059 98.0916 30.4422 3.4045 2474211 1893_2147 9454427
09284 0.0152 0.0065 108.2644 30.4636 3.4045 2960805 1893_2147 1131 3795
1-013 0.0153 0.0058 97.0997 30.5277 3.4432 2393112 1914_7327 9144532
0.9059 0.0153 0.0061 101.3469 30.6131 3.4432 2636409 1914_7327 10074216













Table C-43. Borehole #2 at 50/35 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


LVDT Pressure
(in) (volts)
0_2718 0.0182
0.2701 0.0183
0_2728 0.0183
0_3078 0.0182
0.3491 0.018
0_3699 0.0181
0.3638 0.018
0-3607 0.018
0.3669 0.018
0.381 0.0181
0.4362 0.0179
0.4618 0.018
04633 0018
0.4498 0.0181
04732 0.018
0.4558 0.0181
0.4766 0.018
0_5116 0.018
0.5425 0.0179
0.553 0.0179
0_5526 0.018
0_5555 0.018
0_5527 0.018
0_5554 0018
0_5869 0.018
0.6245 0.018
056356 0.0181
056383 0.018
0.6425 0.018
0_6423 0.0181
0.6364 0.0181
056365 0.0182
0.6838 0.018
0.726 0.018
0.7356 0.018
0.7384 0.0181
0_7288 0018
0.7379 0.018
0.7294 0.0182
0.7386 0.0181
0.7328 0.0181
0.734 0.0181
0.7355 0.0181
0_7301 0018
0_7485 0.0181
0_7406 0.018
0_7374 0018


Penetratin
Height HaO
Lirn1h FI I i
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum-
Load Est. Load
(volts) (psi)
0.0003 4.3065
0.0004 6.1037
00001 1.3733
0.0069 114.5232
0.0075 127.1427
0.0072 122.8582
0.007 116.5553
0.0065 109.1037
0.0061 107.249
0.0084 140.2326
0.0074 124.1891
0.008 132.6538
0.0077 128.7118
0.0088 146.3108
0.0084 139.495
0.0072 123.1553
0.0089 147.8876
0.0083 139.1135
0.008 133.5185
0_007 116.6824
0.0073 1224047
0.0065 111.9598
0.0083 138.8847
0.0086 143.437
0.0095 158.213
0.0092 152.5671
0.0089 147.9893
0.0081 134.6884
0.0081 135.2479
0008 133.5185
0.008 133.0098
0.0085 141.2498
0.0082 136.4177
0.008 133.5948
0.0089 147.6587
0.0076 126.5755
00083 138.0454
0.0087 144.8866
0.0079 132.3232
0.0086 143.4116
0.0074 123.2185
0.0079 132.1706
0.0072 119.5563
0.0077 128_4066
0.0076 126.1177
0.0082 136.3669
0.0078 130.1614


(calculated) 0.040058985 Max. (0.0591)
29 UnitWtH20
50 (ft) Unit Wt Rod
0.0293 r.i Cylinder Bore Area
0.1964 ."') ShearStud Area
42 Normal Stud Area
38 qu (psi)
Est- Press NonmalForce Shear Force
(psi) (Ib) (Ib)
36_4635 45653 -206.7335
36.5307 4.6040 -198.6236
36.5154 46040 -222.9534
36.3292 45653 328.5201
35.963 4.4879 377.1795
36.2163 45266 352.8498
36.0881 4.4879 336.6300
36.0851 44879 296.0805
36.079 4.4879 263.6409
36.2682 4.5266 450.1687
35.8745 4.4492 369.0696
35.9966 4.4879 417.7291
35.9569 44879 393.3994
36.1614 4.5266 482.6083
36.0118 44879 450.1687
36.1858 4.5266 352.8498
36.0668 4.4879 490.7182
36.0271 44879 442.0588
35.8806 4.4492 417.7291
35.8592 44492 33656300
35.9081 44879 360.9597
36.0118 44879 29650805
36.0088 4 479 442.0588
35.9905 4 4879 466.3885
359508 44879 539.3776
35.9569 4.4879 515.0479
36.1644 45266 490.7182
36.0759 44879 425.8390
36.0363 4.4879 425.8390
36.1248 45266 417.7291
36.2621 4.5266 417.7291
36.3048 4 5653 458.2786
36.0759 4.4879 433.9489
36.0881 4.4879 417.7291
35.9233 4.4879 490.7182
36.1156 4.5266 385.2894
35 96 4 4879 442.0588
36.0057 4.4879 474.4984
36.3567 4.5653 409.6192
36.1278 4.5266 466.3885
36.1095 4.5266 369.0696
36.1522 45266 409.6192
36.2072 4.5266 352.8498
36.0393 4 4879 393.3994
36.1736 45266 385.2894
36.0851 44879 433.9489
36.0454 44879 401.5093


62.4 (Ibf3)
2.96 (Ibrt)
4.72 (in2)
0.261698658
0.001798249
727.9
Normal Stress Shear Stress
(psi) (psi)
2538.7549 -789.9679
2560.2729 -758.9784
2560.2729 -851.9469
2538.7549 1255.3374
2495.7189 1441.2743
2517.2369 1348.3059
2495.7189 1286.3269
2495.7189 1131.3795
2495.7189 1007.4216
2517.2369 1720.1796
2474.2009 1410.2848
2495.7189 1596.2217
2495.7189 1503.2532
2517.2369 1844.1375
2495.7189 1720.1796
2517.2369 1348.3059
2495.7189 1875.1269
2495.7189 1689.1901
2474.2009 1596.2217
2474.2009 1286.3269
2495.7189 1379.2953
2495.7189 1131.3795
2495.7189 1689.1901
2495.7189 1782.1585
2495.7189 2061.0638
2495.7189 1968.0954
2517.2369 1875.1269
2495.7189 1627.2111
2495.7189 1627.2111
2517.2369 1596.2217
2517.2369 1596.2217
2538.7549 1751.1690
2495.7189 1658.2006
2495.7189 1596.2217
2495.7189 1875.1269
2517.2369 1472.2638
2495.7189 1689.1901
2495.7189 1813.1480
2538.7549 1565.2322
2517.2369 1782.1585
2517.2369 1410.2848
2517.2369 1565.2322
2517.2369 1348.3059
2495.7189 1503.2532
2517.2369 1472.2638
2495.7189 1658.2006
2495.7189 1534.2427












Table C-44. Borehole #2 at 50/40 feet.


Penetration


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
(calculated) 0.049384441 Max-.0 0i:jl.


Heignt H2U 29 (ft) Unit Wt H20 62.4 (lfMt3)
Length Pipe 50 (ft) Unit Wt Rod 2.96 (Illft)
Penetration Depth 0.0293 (in) 2 irler Bor., 4.72 ,nzi
Stud Cap Area 0.1964 (in2) lear Stud Area 0.261698658
No of Studs 42 Normal Stud Area 0.001798249
Weight of Instrum. 38 qu is.i 727.9
LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress


(in) (volts) (volts) (psi)
0.2778 0.0209 0.001 17.5077
0.2784 0.0208 0_0003 4.3743
0.2811 0.0208 0 0.5086
0.2929 0.0208 0_0075 125_991
0.34 0.0207 0.0092 152.821
0.3559 0.0207 0.0095 158.086
0.3505 0.0207 0_0092 154_042
0.362 0.0207 0G0089 149_134
0.384 0.0207 0.0115 190.995
0.4298 0.0207 0.0103 172.124
0.4286 0.0207 0.0102 170.115
0.4271 0.0207 0.0092 153.305
0.4405 0.0207 0_0093 155_797
0.4782 0.0207 0_0109 181433
0.5261 0.0205 0.0085 143.641
0.5218 0.0206 0.0089 147.735
0.5348 0.0206 0.0081 135.807
0.5162 0.0206 0G0085 141_402
0.5571 0.0206 0G0095 158696
0.5865 0.0206 0.01 167.013
0.6092 0.0206 0.0094 155.975
0.6067 0.0205 0.0082 137.308
0.6049 0.0206 0.009 149.414
0.6112 0.0206 0_0086 143_641
0.6308 0.0207 0_0105 175_253
0.6508 0.0206 0.0108 180.314
0.6635 0.0206 0.0103 172.175
0.6812 0.0206 0.0109 181.127
0.6727 0.0206 0.0098 163.91
0.684 0.0206 0.0087 145.37
0.6758 0.0207 0_0091 152_186
0.6957 0.0206 0_0111 185_197
0.7602 0.0206 0.0085 142.14
0.7546 0.0206 0.0086 143.284
0.7556 0.0206 0_0088 145082
0.7525 0.0206 0_0083 138_859
0.7554 0.0206 0.0082 136.672
0.7469 0.0207 0.009 149.744
0.7638 0.0206 0.0081 134.892
0.7579 0.0206 0.0085 140.868
0.7507 0.0207 0.0089 148.167
0.7469 0.0207 0_0088 147_226
0.7511 0.0207 0_0087 145_014
0.7622 0.0207 0.0079 132.196
0.7507 0.0207 0.0084 139.368
07484 00208 0 0086 143437


(psi)
41.789
41.6517
41.6364
41.6913
41.3862
41.4747
41.4563
41.4624
41.3587
41.4075
41.4563
41.435
41.4228
41.4106
41.0932
41.2122
41.1206
41.2976
41.139
41.2397
41.1878
41.0901
41.1481
41.261
41.3068
41.1451
41.1176
41.2305
41.2915
41.2946
41.3099
41.1878
41.1145
41.1054
41.2519
41.2
41.2946
41.3709
41.2702
41.2366
41.4075
41.3221
41.3739
41.3465
41.4899
41 551


(lb) (Ib)
5.6101 -149.9642
5.5714 -206 7335
5.5714 -231 0633
5.5714 385.2894
5.5327 515.0479
5.5327 539.3776
5.5327 515.0479
5.5327 490.7182
5.5327 701.5757
5.5327 504.2569
5.5327 596.1470
5.5327 515.0479
5.5327 523.1578
5.5327 652.9163
5.4553 466.3885
5.4940 490.7182
5.4940 425.8390
54940 458.2786
54940 5393776
5.4940 579.9271
5.4940 531.2677
5.4553 433.9489
5.4940 498.8281
54940 46683885
5.5327 620.4767
5.4940 644.8064
5.4940 604.2569
5.4940 652.9163
5.4940 563.7073
5.4940 474.4984
5.5327 506.9380
54940 669.1361
5.4940 458.2786
5.4940 466.3885
5_4940 482.6083
5.4940 442.0588
5.4940 433.9489
5.5327 498.8281
5.4940 425.8390
5.4940 458.2786
5.5327 490.7182
5.5327 482.6083
5.5327 474.4984
5.5327 409.6192
5.5327 450.1687
5 5714 466 3885


(psi)
3119.7411
3098_2231
3098_2231
3098_2231
3075.7051
3076.7051
307657051
307657051
3075.7051
3075.7051
3076.7051
3076.7051
307567051
307567051
3033.6691
3055.1871
3055.1871
3055_1871
3055_1871
3055.1871
3055.1871
3033.6691
3055.1871
3055_1871
30767051
3055.1871
3055.1871
3055.1871
3055.1871
3055.1871
30767051
3055_1871
3055.1871
3055.1871
3055_1871
3055_1871
3055.1871
3076.7051
3055.1871
3055.1871
3076.7051
307567051
307567051
3076.7051
3076.7051
3098 2231


-573.0416
-789 9679
-882 9363
1472 2638
1968.0954
2061.0638
1968 0954
1875 1269
2680.8533
2308.9796
2277.9901
1968.0954
1999 0848
24949164
1782.1585
1875.1269
1627.2111
1751 1690
2061 0638
2216.0112
2030.0743
1658.2006
1906.1164
1782 1585
2370 9585
2463.9270
2308.9796
2494.9164
2154.0322
1813.1480
1937 1059
2556 8954
1751.1690
1782.1585
1844 1375
1689 1901
1658.2006
1906.1164
1627.2111
1751.1690
1875.1269
1844 1375
1813 1480
1565.2322
1720.1796
1782 1585













Table C-45. Borehole #2 at 54/26 feet.


Penetralon
Height HO
Length Pipe
Penetration Depth
Stud Cap Area
No of Studs
Weight of Insltum


LVDT Pressure Load
(in) (volts) (volts)
0.2802 0.0141 0 0008
0.2643 0.0141 0.0009
0.2743 0.0141 0.0005
0.3087 0.014 0.0048
0.3787 0.014 0 0038
0.3968 0.014 0.0036
0.3809 0.0139 0 0037
0.3901 0.0139 0 0047
0.4646 0.0139 0.0052
0.5223 0.0139 0 0045
0.5131 0.014 0.0049
0_52 0.0139 0 0047
0.5179 0.0139 0.0046
0.5902 0.0138 0.0053
0.6391 0.0138 0.0048
0.6464 0.0139 0 0052
0.6503 0.0138 0 0043
0.6416 0.0139 00044
0.6551 0.0138 0 0047
0.6798 0.0138 0.0058
0.7408 0.0139 0-005
0.7731 0.0138 0.0052
0.7755 0.0139 0.0042
0.7682 0.0138 0.0051
0.7733 0.0138 0.0047
0.7795 0.0139 0-005
0.8011 0.0138 0.0063
0.8336 0.0137 0 0056
0.8733 0.0138 0.0062
0.9036 0.0137 0 0057
0.9095 0.0137 0.0052
0.908 0.0138 0.005
0.9105 0.0137 0.0049
0.904 0.0138 0.0054
0.9186 0.0138 0.0055
0.9653 0.0137 0.0061
0.9891 0.0137 0 0066
0.9764 0.0137 0.0054
0.9347 0.0137 0-006
1.0015 0.0138 0.0061
0.9271 0.0137 0 0058
1.0002 0.0136 0.0054
0.9129 0.0137 0.0056
0.9909 0.0137 0.0062
0.9631 0.0137 0.0061
0.9262 0.0138 0 0063
0.9983 0.0138 0.0054


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
i ai; ulaiei i 0.044253756 Max. ,0 0E. l.


33 (ft)


54 (ft)
0.044 (in)
0.1964 ir :
42


Est. Load Est. Press. Normal Force


(psi) a,.s
12.6966 28.2723
14.8269 28.2235
8.8935 28.2296
80.0094 27.9489
65.8556 28.0068
62.1938 27.9214
63.5433 27.7963
80.9319 27.8939
86.8252 27.7444
75.1264 27.7779
82.2728 27.9672
81_4647 27.7688
77.2881 27.8115
87.995 27.546
80.2891 27.5643
86.6217 27.7169
72.278 27.665
72.6086 27.8817
78.7886 27.6528
95.9299 27.6376
84.1294 27.8146
86.9523 27.5216
69.7857 27.8298
84.282 27.5887
79.0175 27.6437
83.1121 27.7413
105.2634 27.5033
93.1323 27.4789
103.5849 27.5643
94_4039 27.4026
86.8252 27.4911
83.2647 27.6772
81.6116 27.4697
89.4447 27.5216
91.3521 27.546
102.4913 27.3965
110.6042 27.4331
90.1313 27.4819
100_4822 27.3629
102.4659 27.5918
96.6165 27.4789
89.6481 27.2835
93.1323 27.4941
102.7457 27.3415
102.1607 27.4728
105.0854 27.5063
90.1059 27.5491


(lb)
26384
2.6384
2.6384
2.5997
2 5997
2.5997
25610
25610
2.5610
25610
2.5997
25610
2.5610
2.5223
2.5223
25610
25223
25610
25223
2.5223
25610
2.5223
2.5610
2.5223
2.5223
25610
2.5223
24836
2.5223
24836
2.4836
2.5223
2.4836
2.5223
2.5223
2.4836
24836
2.4836
24836
2.5223
24836
2.4449
2.4836
2.4836
2.4836
25223
2.5223


.


Unit Wt H20 62.4 (lb/ft3)
Unit Wt Rod 2.96 (Ib/ft)
Cylinder Bore Are; 4.72 ,,,
Shear Stud Area 0.590162496
Normal Stud Area 0.004055271
qu [s,, 376
Shear Force Normal Stress Shear Stress
(Ib) (psi) (psi)
-1780240 650.6106 -301.6526
-169.9141 650.6106 -287.9107
-202.3537 650.6106 -342.8780
146.3721 641.0688 248.0201
652731 641.0688 110.6019
49.0533 641.0688 83.1183
571632 631.5269 96.8601
1382622 631.5269 234.2782
178.8118 631.5269 302.9873
1220424 631.5269 206.7946
154.4820 641.0688 261.7519
1382622 631.5269 234.2782
130.1523 631.5269 220.5364
186.9217 621.9851 316.7291
146.3721 621.9851 248.0201
1788118 631.5269 302.9873
105 8226 621 9851 179.3110
1139325 631.5269 193.0528
138 2622 621.9851 234.2782
227.4712 621.9851 385.4382
1625919 631.5269 275.5037
178.8118 621.9851 302.9873
97.7127 631.5269 165.5592
170.7018 621.9851 289.2455
138.2622 621.9851 234.2782
1625919 631.5269 275.5037
268.0207 621.9851 454.1473
2112514 612.4433 357.9546
259.9108 621.9851 440.4055
2193613 612.4433 371.6964
178.8118 612.4433 302.9873
162.5919 621.9851 275.5037
154.4820 612.4433 261.7619
195.0316 621.9851 330.4709
203.1415 621.9851 344.2128
251.8009 612.4433 426.6637
292 3504 612.4433 495.3727
195.0316 612.4433 330.4709
243 6910 612.4433 412.9218
251.8009 621.9851 426.6637
227 4712 612.4433 385.4382
195.0316 602.9014 330.4709
211.2514 612.4433 357.9546
259.9108 612.4433 440.4055
251.8009 612.4433 426.6637
2680207 621.9851 454.1473
195.0316 621.9851 330.4709













Table C-46. Borehole #2 at 54/32 feet.


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.060969673
Height HO 33 (It)
Length Pipe 54 (It)
Penetration Depth 0.044 (in)
Stud Cap Area 0.1964 (in2)
No of Studs 42
Weight of Instrum. 38 (Ibs.)
Load Est. Load Est Press. Normal Force


(in) (volts) (voCs) (psi)
0.2798 0.0168 -0.0002 -2.8196
0.2608 0.0169 0.0009 14.6489
0.2657 00158 0 0.763
0.2786 0.0168 0.001 16.3274
0.3243 0.0165 0.0068 113.0202
0.3782 00165 0.0061 102.415
0.3822 00165 0.0062 1040681
0.368 0.0165 0.006 99.5666
0.3888 00154 0.0071 1186153
0.4443 0.0164 0.0084 140.6395
0.4777 0.0164 0.0075 124.4392
0_4832 00165 0.007 116.301
0_4853 00166 0.0064 1064587
0.4903 0.0165 0.0068 112.7913
0.4999 0.0166 0.0072 120.1412
0.5218 00165 0.0075 1255837
0.5577 0.0165 0.0077 127.6691
0.5839 0.0166 0.0083 137.5113
0.5875 0.0165 0.0072 120.421
0.6025 0.0165 0.0068 113.9103
0.5963 00166 0.0069 1144698
0.608 00166 0.0072 1202429
0.6034 0.0166 0.0071 118.4881
0.6295 0.0166 0.0084 140.3597
0.6554 00165 0.0087 1443526
0.6752 00165 0.0088 1464888
0.6964 0.0165 0.0081 134.9935
0.6827 0.0166 0.008 133.137
0.6899 0.0166 0.0075 124.1849
0.6892 00167 0.007 1172928
0.683 00165 0.0082 1362906
0.7171 0.0165 0.0093 155.6444
0.7518 0.0167 0.0092 153.6607
07835 00165 0.0088 1468703
0.7768 00166 0.0086 1439965
0.7718 0.0166 0.008 132.8064
0.778 0.0166 0.0085 140.8429
0.7762 0.0166 0.0083 138.7575
0.7907 00166 0.0084 1407158
0.8012 00166 0.0097 1618244
0.8298 0.0166 0.01 166.6565
0.8486 0.0166 0.0098 163.7827
0.8465 00166 0.0089 147.735
0.8456 00165 0.0092 153 0503
0.8476 0.0166 0.0092 152.5926
0.8462 0.0166 0.0085 142.4197
0.8429 00166 0.0095 1583402


(psi)
33.6711
33.7718
33.6222
33.6222
33.0699
32.9112
32.9997
32.9997
32.899
32.8318
32.8471
32.9844
33.1309
33.0576
33.2347
32.9936
32.9875
33.1553
32.902
33.0821
3314
33.1248
33.2102
33.2255
33.0851
32.9722
33.0302
33.1736
33.1462
33.3079
33.0973
33.0576
33.3323
33.0851
33.1706
33.2316
33.137
33.198
33.2224
33.1675
33.1339
33.1339
33.1614
33.0638
33.2469
33.1767
33.2041


(Ib)
3.6832
3.7219
3.6832
3.6832
3.5671
3.5671
3.5671
3.5671
3.5284
3.5284
3.5284
3.5671
3.6058
3.5671
3.6058
3.5671
3.5671
3.6058
3.5671
3.5671
3.6058
3.6058
3.6058
3.6058
3.5671
3.5671
3.5671
3.6058
3.6058
3.6445
3.5671
3.5671
3.6445
3.5671
3.6058
3.6058
3.6058
3.6058
3.6058
3.6058
3.6058
3.6058
3.6058
3.5671
3.6058
3.6058
3.6058


Max. 10 0"1: 1 i
Unit Wt H20 62.4 (Ibilt3)
Unit Wt Rod 2.96 (Ibift)
Cylinder Bore Area 4.72 (in2)
Shear Stud Area 0.590162496
Normal Stud Area 0.004055271


qu (psi) 376
Shear Force Normal Stress


(Ib)
-259.1231
-169.9141
-242.9033
-161.8042
308.5702
251.8009
259.9108
243.6910
332.8999
438.3287
365.3395
324.7900
276.1306
308.5702
341.0098
365.3395
381.5594
430.2188
341.0098
308.5702
316.6801
341.0098
332.8999
438.3287
462.6584
470.7683
413.9990
405.8891
365.3395
324.7900
422.1089
511.3178
503.2079
470.7683
454.5485
405.8891
446.4386
430.2188
438.3287
543.7574
568.0871
551.8673
478.8782
503.2079
503.2079
446.4386
527.5376


(pSI)
908.2402
917.7820
908.2402
908.2402
879.6147
879.6147
879.6147
879.6147
870.0728
870.0728
870.0728
879.6147
889.1565
879.6147
889.1565
879.6147
879.6147
889.1565
879.6147
879.6147
889.1565
889.1565
889.1565
889.1565
879.6147
879.6147
879.6147
889.1565
889.1565
898.6983
879.6147
879.6147
898.6983
879.6147
889.1565
889.1565
889.1565
889.1565
889.1565
889.1565
889.1565
889.1565
889.1565
879.6147
889.1565
889.1565
889.1565


LVDT Pressure


Shear Stress
(psi)
-439.0707
-287.9107
-411 5871
-274.1689
522.8564
426 6637
440 4055
412.9218
564 0818
742.7254
619.0491
550 3400
467 8891
522.8564
577.8236
619 0491
646.5327
728.9836
577.8236
522.8564
536 5982
577 8236
564.0818
742.7254
783 9509
797 6927
701.5000
687.7581
619.0491
550 3400
7152418
866.4017
852.6599
797 6927
770 2090
687.7581
756.4672
728.9836
7427254
921 3690
962.5945
935.1108
811 4345
852 6599
852.6599
756.4672
893 8854













Table C-47. Borehole #2 at 54/35 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


LVDT Pressure
(in) (volts)
0.2754 0.0187
0.2616 0.0187
0.2734 0.0186
0.345 0.0186
0.3507 0.0185
0.3585 0.0185
0.3509 0.0186
0 369 0.0186
0.4135 0.0185
0.4341 0.0185
0.4241 0.0186
0.445 0.0185
0.4318 0.0185
0.4548 0.0185
0.476 0.0184
0.4851 0.0185
0.4886 0.0185
0.4827 0.0185
0.4869 0.0184
0.4988 0.0185
0.5314 0.0185
0.5294 0.0185
0.5263 0.0185
0.5284 0.0185
0.5255 0.0185
0.5661 0.0184
0.5769 0.0185
0.5968 0.0185
0.5807 0.0184
0.5876 0.0184
0.5827 0.0184
0.5944 0.0186
0 641 0.0184
0.6413 0.0184
0.6377 0.0185
0.6387 0.0184
0.629 0.0184
0.6361 0.0184
0.6461 0.0183
0.672 0.0184
0.6722 0.0184
0.6823 0.0184
0.6796 0.0184
0.7151 0.0183
0.7341 0.0184
0.7362 0.0184
0.7221 0.0185


Penetration
Height HO0
Length Pipe
Penetration Depth
Stud Cap Area
No of Studs
Weight of Instrum.
Load Est. Load
(volts) (psi)
0.0003 4.8321
00009 15_7679
00059 98_4985
0.0076 132.933
00079 131 001
0.0078 129.805
00077 127898
00092 154428
0.0113 188.325
0.0117 194.912
0.011 184001
0.0104 173.854
0.01 166835
0.013 215995
0.0125 208.619
00109 187 071
00108 180.1
00112 186951
00112 186951
0.0118 196.972
0.0131 217.572
00134 222531
00112 186875
00119 199082
00118 196768
0.0126 209.179
0.0139 231.356
00122 203737
0.0118 197.455
00111 185425
0.0126 210.044
0.0135 224.845
00131 218716
00125 208492
0.0131 218.741
0.0111 184.459
0.0113 188.528
0.0132 219.962
00129 214672
0.0129 214.443
0.012 199.973
0.0112 186.036
0.0122 203.253
00149 247963
00126 210451
0.0131 218.64
0.0112 187.155


(calculated) 0.075011043 Max. (0.0591)
33 (ft) Unit Wt H20
54 (ft) Unit Wt Rod
0.044 (in) Cylinder Bore/
0.1964 (in2) hear Stud Area
42 Normal Stud Area


38
Est. Press. Normal Force


(psi)
37.4218
37.4371
37.2326
37.141
37.0678
37.0586
37 141
37.1776
36.9701
36.9762
37.2021
37.0037
37.0525
37 022
36.8603
36.9945
36.9335
36.9243
36.8938
37.0861
37.0251
37.0251
37019
37.0708
37.0434
36.8694
36.9579
36.9366
36.8236
36.8908
36.7687
37.1014
36.8908
36 845
36.9182
36.8969
36.8908
36.8938
36.6802
36.7992
36.8725
36.8084
36.8358
36.6985
36 726
36.7046
36.9274


(Ib)
4.4184
44184
43797
4.3797
43410
4.3410
43797
43797
4.3410
4.3410
4 3797
4.3410
43410
43410
4.3023
43410
43410
43410
43023
4.3410
4.3410
43410
43410
43410
43410
4.3023
4.3410
43410
4.3023
4 3023
4.3023
4.3797
43023
43023
4.3410
4.3023
4.3023
4.3023
42636
4.3023
4.3023
4.3023
4.3023
42636
43023
4.3023
4.3410


qu (psi)
Shear Force
(Ib)
-218.5735
-169.9141
235.5811
373.4494
397.7792
389.6693
381.5594
503.2079
673.5159
705.9555
649.1862
600.5268
568.0871
811.3843
770.8347
641.0763
632.9664
665.4060
665.4060
714.0654
819.4942
843.8239
665.4060
722.1753
714.0654
778.9446
884.3734
746.5050
714.0654
657.2961
778.9446
851.9338
819.4942
770.8347
819.4942
657.2961
673.5159
827.6041
803.2744
803.2744
730.2852
665.4060
746.5050
965.4724
778.9446
819.4942
665.4060


62.4 (lbl)t3
2.96 :ii.1t
4.72 (in2)
0.590162496
0.004055271
376
Normal SStress Shear Stress
(psi) (psi)
1089.5350 -370.3616
108995350 -287.9107
1079.9932 399.1800
1079.9932 632.7909
1070-4514 674.0163
1070.4514 660.2745
1079.9932 646.5327
1079-9932 8526599
1070.4514 1141.2380
1070.4514 1196.2053
10799932 1100.0126
1070.4514 1017.5617
1070.4514 9625945
1070.4514 1374.8489
1060.9095 1306.1398
10704514 1086.2708
1070-4514 1072.5290
10704514 1127.4962
1060-9095 11274962
1070.4514 1209.9471
1070.4514 1388.5907
10704514 1429.8162
1070-4514 1127.4962
1070-4514 1223.6889
1070.4514 1209.9471
1060.9095 1319.8816
1070.4514 1498.5252
1070.4514 12649144
1060.9095 1209.9471
1060 9095 1113.7544
1060.9095 1319.8816
1079.9932 1443.5580
1060-9095 13885907
1060.9095 1306.1398
1070.4514 1388.5907
1060.9095 1113.7544
1060.9095 1141.2380
1060.9095 1402.3325
1051 3677 1361.1071
1060.9095 1361.1071
1060.9095 1237.4308
1060.9095 1127.4962
1060.9095 1264.9144
1051.3677 16359434
1060 9095 1319.8816
1060.9095 1388.5907
1070.4514 1127.4962













Table C-48. Borehole #2 at 54/42 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.096407416 Max. (0.0591)
Height H2C 33 (ft) Unit Wt H20 62.4 (Ibft3)
Length Pipt 54 (ft) Unit Wt Rod 2.96 (Iblft)
Penetratio 0.044 (in) Cylinder Bore Are4 4.72 i1n; I
Stud Cap, 0.1964 (in2) Shear Stud Area 0.590162496
No of Stu4 42 Normal Stud Area 0.004055271


Weight of Instrun. 38
LVDT Pressure Load Est. Load Est. Press. Normal Force


(in) (volts) (volts) r'pj (psi)
0.2676 0.0218 0 -0.356 43.6079
0.2758 0.0218 0.0003 4.4252 43.6323
0.2821 0.0218 0 0.5099 43.6201
0.2798 0.0219 0 -0.2948 43.8093
0.3018 0.0218 0.0047 81.7802 43.6659
0.353 0.0217 0.0087 145.8022 43.3302
0.3584 0.0216 0.0085 141.0464 43.2173
0.3685 0.0216 0.0078 130.136 43.2966
0.3648 0.0217 0.0075 128.4514 43.3515
0.3725 0.0216 0.0102 175.8198 43.2386
0.4116 0.0215 0.0122 203.7111 43.0799
0.4224 0.0215 0.0101 167.8009 42.9609
04263 0.0216 0.0104 172.5313 43.1654
0_4227 0.0216 0.0104 174.1081 43.2051
0.4201 0.0216 0.0089 152.5818 43.2844
0.4325 0.0216 0.0115 192.0632 43.2051
0.4655 0.0216 0.0114 189.5454 43.1227
0.4823 0.0215 0.0116 192.9533 43.0311
0.4776 0.0215 0.0106 177.3125 43.0219
04831 0.0216 00096 1648058 43.1837
0_4863 0.0216 0.0103 171.5649 43.1898
0.4836 0.0216 0.0109 181.1019 43.2356
0.5021 0.0216 0.0111 186.7173 43.2478
0.5408 0.0217 0.0118 1974548 43.3302
0.5348 0.0218 0.0119 198.879 43.5255
0.5467 0.0216 0.0112 187.1802 43.2722
0.5467 0.0217 0.01 167.038 43.3058
0.5394 0.0217 0.0105 175.0745 43.3546
0.5391 0.0216 0.0098 163.5283 43.2264
0.565 0.0217 0.0112 186.8496 43.3515
0.5931 0.0216 0.0116 193.5891 43.2386
0.5947 0.0217 0.0117 194.4029 43.3088
0.5928 0.0216 0.011 182.9076 43.2783
0.5905 0.0217 0.0109 181.1782 43.3241
0.5972 0.0217 0.0102 170.6748 43.3454
0.5928 0.0217 0.01 166.9871 43.3729
0.5993 0.0216 0.0106 177.338 43.2752
0.6199 0.0216 0.0114 1894437 43.2386
0.5489 0.0216 0.0119 199.1333 43.263
0.6479 0.0217 0.0113 188.7061 43.3485
0.6416 0.0216 0.0107 177.694 43.1715
0.6357 0.0216 0.0108 180.695 43.2814
0.6397 0.0217 0.0103 171.7683 43.3729
056345 0.0217 0.0112 187.2565 43.3607
0.638 0.0217 0.012 200.6592 43.44
0.6669 0.0217 0.0123 204.5775 43.4797
0.6884 0.0217 0.0122 203.8891 43.3149


(lb)
5.6179
5.6179
5.6179
5.6566
5.6179
5.5792
5.5405
5.5405
5.5792
5.5405
5.5018
5.5018
5.5405
5.5405
5.5405
5.5405
5.5405
5.5018
5.5018
5.5405
5.5405
5.5405
5.5405
5.5792
5.6179
5.5405
5.5792
5.5792
5.5405
5.5792
5.5405
5.5792
5.5405
5.5792
5.5792
5.5792
5.5405
5.5405
5.5405
5.5792
5.5405
5.5405
5.5792
5.5792
5.5792
5.5792
5.5792


qu 5.sIn 376
Shear Force Normal Stress Shear Stress


(Ib)
-242.9033
-218.5735
-242.9033
-242.9033
138.2622
462.6584
446.4386
389.6693
365.3395
584.3070
746.5050
576.1970
600.5268
600.5268
478.8782
689.7357
681.6258
697.8456
616.7466
535.6475
592.4169
641.0763
657.2961
714.0654
722.1753
665.4060
568.0871
608.6367
551.8673
665.4060
697.8456
705.9555
649.1862
641.0763
584.3070
568.0871
616.7466
681.6258
722.1753
673.5159
624.8565
632.9664
592.4169
665.4060
730.2852
754.6149
746.5050


;re,. (psi)
1385.3319 -411.5871
1385.3319 -370.3616
1385.3319 -411.5871
1394.8738 -411.5871
1385.3319 234.2782
1375.7901 783.9509
1366.2483 756.4672
136.2483 6602745
1375.7901 619.0491
1366.2483 990.0781
1356.7064 1264.9144
1356.7054 976.3363
1366.2483 1017.5617
1366.2483 1017.5617
1366.2483 811.4345
1366.2483 1168.7217
1366.2483 1154.9799
1356.7064 1182.4635
1356.7054 1045.0453
1366.2483 907.6272
1366.2483 1003.8199
1366.2483 1086.2708
1366.2483 1113.7544
1375.7901 1209.9471
1385.3319 1223.6889
1366.2483 1127.4962
1375.7901 962.5945
1375.7901 10133035
1366.2483 935.1108
1375.7901 1127.4962
1366.2483 1182.4635
1375.7901 1196.2053
1366.2483 1100.0126
1375.7901 10862708
1375.7901 990.0781
1375.7901 962.5945
136.2483 1045.0453
1366.2483 1154.9799
136.2483 1223.6889
1375.7901 1141.2380
1366.2483 1058.7872
1366.2483 1072.5290
1375.7901 1003.8199
1375.7901 1127.4962
1375.7901 1237.4308
1375.7901 1278.6562
1375.7901 1264.9144











Table C-49. Borehole #2 at 55/30 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration
Height HO2
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum.
LVDT Pressure Load Est. Load
(in) (volts) (volts) (psi)
0.2707 0.0154 0.0008 14.0639
0.2692 0.0153 0.001 15.8951
0.2654 0.0153 0.0015 24.3639
0.348 0.015 0.0049 83.8341
0.3805 0.015 0.0041 68.6124
0.3746 0.0151 0.0053 87.6899
0.3829 0.015 0.0042 70.5995
0-4198 0.0149 0.0051 90_2242
0.5125 0.0149 0.0049 82.8746
0.5118 0.015 0.0045 77.8002
0.5005 0.015 0.0045 77.6942
0-5133 0.0149 0.0048 8034
0.5465 0.015 0.0056 95.3858
0.6244 0.0148 0.0059 99.0071
0.6342 0.0148 0.0047 78.9992
0653 0.0148 0.0053 87_8933
0.6382 0.0148 0.0055 91.0723
0.658 0.0149 0.0065 107.7303
0.739 0.0149 0.0068 112.9694
0-7745 0.0148 0.0064 106_8148
0.7786 0.0149 0.0053 88.5037
0.7716 0.0148 0.0063 105.7212
0.7826 0.0149 0.0058 96.6419
0.8043 0.0148 0.0064 106.7131
0.8566 0.0147 0.0068 112.6387
0.8885 0.0147 0.0061 101.2197
0.8691 0.0148 0.0061 101.5758
0.8896 0.0148 0.0059 98.9817
0.9121 0.0148 0.0058 96.1842
0.9024 0.0148 0.0061 102.1861
0.892 0.0148 0.006 100.6348
0.8939 0.0149 0.006 99.6429
0.894 0.0148 0.0065 107.9084
0.8909 0.0149 0.0057 94.4294
0-8975 0.0149 0.0054 90_6908
0.8923 0.0148 0.0058 97.3032
0.8943 0.0149 0.0054 89.6736
0.8974 0.0149 0.0059 98.4222
0-8967 0.0149 0.0057 94-76
0.8964 0.0149 0.0057 94.6074
0.8983 0.0149 0.0055 91.6827
0.8979 0.0149 0.0053 88.9106


(calculated) 0.049469498 Max. 0i 05-1)


34 (it)
55 (it)
0.0591 (in)
0.1964 (in2)
42


38
Est. Press. Normal Force


(psi)
30.7413
30.5216
30.5429
29.957
29.9692
30.1309
30.0272
29.8166
29.8013
29.9295
29.9112
29.8105
29.9112
29.6884
29.6823
29.6457
29.6579
29.7983
29.7098
29.6793
29.7189
29.6213
29.7128
29.6274
29.3527
29.4931
29.6945
29.7006
29.5694
29.6945
29.5755
29.8044
29.6884
29.7281
29.7372
29.6701
29.8349
29.8105
29.8135
29.841
29.8532
29.8685


(Ib)
3.0563
3.0176
3.0176
2.9015
2.9015
2.9402
2.9015
2-8629
2.8629
2.9015
2.9015
2-8629
2.9015
2.8242
2.8242
2-8242
2.8242
2.8629
2.8629
2-8242
2.8629
2.8242
2.8629
2.8242
2.7855
2.7855
2.8242
2.8242
2.8242
2.8242
2.8242
2.8629
2.8242
2.8629
2-8629
2.8242
2.8629
2.8629
2-8629
2.8629
2.8629
2.8629


Unit Wt HO2 62.4 (lbft3)
Unit Wt Rod 2.96 (Ib/ft)
C ylnd r Bore Are 4.72 (in2)
Shear Stud Area 1.064734229
Normal Stud Area 0.007316266


qu i

Shear Force Normal Stress Shear Stress


(Ib)
-180.9840
-164.7642
-124.2147
151.5220
86.6428
183.9617
94.7527
167.7418
151.5220
119.0824
119.0824
143.4121
208.2914
232.6211
135.3022
183.9617
200.1815
281.2805
305.6102
273.1706
183.9617
265.0607
224.5112
273.1706
305.6102
248.8409
248.8409
232.6211
224.5112
248.8409
240.7310
240.7310
281.2805
216.4013
192.0716
224.5112
192.0716
232.6211
216.4013
216.4013
200.1815
183.9617


(psi) (psi)
417.7441 -169.9805
412.4553 -154.7468
412.4553 -116.6626
396.5887 142.3097
396.5887 81.3751
401.8775 172.7771
396.5887 88.9919
391-2998 157.5434
391.2998 142.3097
396.5887 111.8424
396.5887 111.8424
391 2998 134.6929
396.5887 195.6276
386.0109 218.4781
386.0109 127.0761
386_0109 172.7771
386.0109 188.0107
391.2998 264.1791
391.2998 287.0296
386_0109 256.5622
391.2998 172.7771
386.0109 248.9454
391.2998 210.8612
386.0109 256.5622
380.7221 287.0296
380.7221 233.7117
386.0109 233.7117
386.0109 218.4781
386.0109 210.8612
386.0109 233.7117
386.0109 226.0949
391.2998 226.0949
386.0109 264.1791
391.2998 203.2444
391 2998 180.3939
386.0109 210.8612
391.2998 180.3939
391.2998 218.4781
391 2998 203.2444
391.2998 203.2444
391.2998 188.0107
391.2998 172.7771













Table C-50. Borehole #2 at 55/35 feet.


LVDT Pressure


FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration (calculated) 0.070865871 Max. (0 0591)
Height HO 34 (ft) Unit Wt H1O 62.4 (lbft3)
Length Pipe 55 (ft) Unit Wt Rod 2.96 (lb/ft)
Penetration Depth 0.0591 Ini Cylinder Bore 4.72 (in2)
Stud Cap Area 0.1964 in' I hear Stud Area 1.064734229
No. of Studs 42 Normal Sud Area 0.007316266
Weight of Instrun. 38 qu (psi) 376
Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress


in (volts) (volts) (psi)
0-3126 00186 00021 369337
0.2978 0.0185 0.0022 37.7377
0-3178 00185 00027 44 3027
0.3061 0.0185 0.0023 40.0032
0.3227 0.0185 0.0026 42.675
0.3242 0.0185 0.0059 101.0889
0.3803 0.0181 0.0072 128.6053
0403 00181 00079 1318145
0.4198 0.0181 0.0073 120.9296
0-4131 00181 00075 1271943
0-4139 00181 00082 1365195
0-4721 0018 00094 1564582
0-4999 00181 00086 1429538
0.5108 0.0181 0.0076 132.3385
0-4935 00182 00089 1490575
0.5049 0.0181 0.0078 130.8227
0-5159 00181 00081 1354005
0-5429 00181 00099 1650288
0-5645 0.018 00111 1849676
0-5667 00181 00097 1623839
0.5746 0.0181 0.0096 160.3748
0-5628 00182 00094 1567125
0.5723 0.0181 0.0091 150.8632
0.602 0.0181 0.0099 154.2404
0.6177 0.0181 0.0115 191.6054
0.6358 0.0181 0.0104 172.633
0-6315 00181 00095 1581876
0-6261 00182 00096 1601713
0-6419 00183 00098 1631723
0.6396 0.0181 0.0098 163.8335
0.6402 0.0182 0.0099 165.3409
0.6566 0.0182 0.0109 181.8903
0.6709 0.0183 0.0111 185.1965
0-6758 00182 00101 1676483
0.6844 0.0182 0.0102 169.3269
0-6729 00181 00094 1564582
0.675 00182 00096 1604765
06942 00182 00106 1761172
0.7048 0.0182 0.0107 179.0419
0.7063 0.0183 0.0104 174.0827
0.7104 0.0183 0.01 165.9698
0.7165 0.0183 0.0103 171.6921
07187 00182 00104 1737521
0-7027 00183 00101 1583859
07077 00182 00109 1822464
07234 00183 00113 1890622
0.7071 0.0182 0.0108 180.6696


(psi)
372326
36.964
37 0739
37.0617
37.0678
37.08
36.2255
362011
36.1797
36 1492
361705
36 0393
361095
36.195
363292
36.2896
362743
361644
36 0149
362621
36.2041
36314
36.198
36.2041
36.2438
36.1339
361858
364513
365642
36.256
36.3079
36.4635
36.5734
36 3292
36.4025
36 2896
363964
364391
36.4269
36.5825
36.5093
36.5673
364696
36 6253
364055
36 5032
36.3933


(Ib)
42946
4.2559
42559
4.2559
4.2559
4.2559
4.1011
41011
4.1011
41011
41011
40624
41011
4.1011
41398
4.1011
41011
41011
40624
41011
4.1011
41398
4.1011
4.1011
4.1011
4.1011
41011
41398
41785
4.1011
4.1398
4.1398
4.1785
41398
4.1398
41011
41398
41398
4.1398
4.1785
4.1785
4.1785
4 1398
41785
4 1398
41785
4.1398


(Ib)
-75.5553
-67.4454
-26.8958
-59.3355
-35.0058
232.6211
338.0498
394.8192
346.1597
362.3795
419.1489
516.4677
451.5885
370.4894
475.9182
386.7093
411.0390
557.0172
654.3361
540.7974
532.6875
516.4677
492.1380
557.0172
686.7757
597.5668
524.5776
532.6875
548.9073
548.9073
557.0172
638.1163
654.3361
573.2370
581.3470
516.4677
532.6875
613.7866
621.8965
597.5668
565.1271
589.4569
597.5668
573.2370
638.1163
670.5559
630.0064


(psi)
586.9877
581.6989
581.6989
581.6989
581.6989
581.6989
560.5434
560.5434
560.5434
560.5434
560.5434
555.2546
560.5434
560.5434
565.8323
560.5434
5605434
5605434
555.2546
5605434
560.5434
565.8323
560.5434
560.5434
560.5434
560.5434
560.5434
565.8323
571.1211
560.5434
565.8323
565.8323
571.1211
565.8323
565.8323
560-5434
565.8323
565.8323
565.8323
571.1211
571.1211
571.1211
565.8323
571.1211
565.8323
571.1211
565.8323


(psi)
-70_9616
-63.3448
-25.2606
-55.7280
-32.8775
218.4781
317.4969
370.8148
325.1137
340.3474
393.6653
485.0673
424.1326
347.9643
446.9831
363.1979
386.0484
523.1514
614.5534
507.9178
500.3009
485.0673
462.2168
523.1514
645.0208
561.2356
492.6841
500.3009
515.5346
515.5346
523.1514
599.3198
614.5534
538.3851
546.0019
485.0673
500.3009
576A4693
584.0861
561.2356
530.7683
553.6188
561.2356
538.3851
599.3198
629.7871
591.7029













Table C-51. Borehole #2 at 55/40 feet.

FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS


Penetration
Height H20
Length Pipe
Penetration Depth
Stud Cap Area
No. of Studs
Weight of Instrum


LVDT
(in)
0.2772
0.2751
0.2623
02913
0.3246
0.3328
0.3374
0.3351
0.342
0.3568
0.389
0.3811
0.387
0.3813
0.3981
0.41
04188
0.4215
0.4285
0.4145
0.4233
0.4325
0.445
0.4622
0.4529
0.446
0.4439
0.4591
0.4807
0.4732
0.4866
0.4833
0.4737
0.5001
0.4984
05313
0.52
0.5224
0.5079
05118
05229
0.546
0.5507
05431
05431
0.5507
0.5492


Pressure
(volts)
0_0209
0.021
0.021
0.021
0.0208
0.0207
0_0207
0_0207
0_0207
0_0207
0.0207
0.0207
0_0206
0_0207
0.0206
0_0206
0_0206
0.0207
0_0206
0.0207
0.0207
0_0207
0_0207
0.0207
0.0207
0_0206
0_0207
0.0207
0.0206
0.0207
0_0207
0_0207
0.0207
0.0207
0_0206
0_0205
0.0205
0_0206
0.0205
0_0206
0_0206
0.0206
0.0206
0_0206
0_0206
0.0206
0.0205


(calculated) 0.088250424
34 (It)
55 (ft)
0.0591 (in)
0.1964 (in2)


Load
(volts)
0.0003
0.0001
0.001
0.0062
0.0089
0.0096
0.0094
0.0098
0.0091
0.0115
0.0129
0.0124
00133
0.0118
0.0126
0.0143
0.0143
0.0132
00136
0.0139
0.0136
0.0142
0.0149
0.0128
0.0121
0.0132
0.0122
0.0146
0.0151
0.0141
0.0123
00125
0.013
0.0142
00138
0.0158
0.0142
0.0143
0.0135
0.0126
00146
0.015
0.0132
00139
00136
0.0118
0.0137


Est Load
(psi)
4 6795
0.8542
16.4291
1054584
148.6251
160.7817
155 9242
1633758
152 1093
191 6308
214.8503
206.5086
221 2846
196 6409
210.2725
238 2224
238 5785
220.598
227 1849
232.1696
227.4646
237.256
248 3952
219.7161
213.0183
2196061
203 7111
243.7666
252.2864
235.1706
2074851
209 9562
216.3762
237.2051
231 5514
2631967
236.3404
238 6039
224.6162
2103743
244 1226
250.735
219.8859
231 0506
226 4473
197.3785
228.1259


42
38
Est Press.
(psi)
41.8073
41.9111
42.0301
42.0118
41.6364
41.4838
41.3343
41.4808
41.4686
41.3343
41.3221
41.3517
41.2061
41.438
41.2885
41 2763
41.2915
41.3495
41.2275
41.3923
41.319
41.4289
41.4258
41.496
41.377
41.2427
41.3221
41.3517
41.261
41.3831
41.3578
41.435
41.3068
41.3099
41.1969
41.0962
41.0718
41.2244
41.0901
41.1786
41 2
41.2061
41.1115
41.1512
41.1145
41.1451
41.0321


Normal Force
(Ib)
5.1845
5.2232
5.2232
5.2232
5.1458
5.1071
5.1071
5.1071
5.1071
5.1071
5.1071
5.1071
5.0685
5.1071
5.0685
50685
50685
5.1071
50685
5.1071
5.1071
5.1071
5.1071
5.1071
5.1071
50685
5.1071
5.1071
5.0685
5.1071
5.1071
5.1071
5.1071
5.1071
50685
5-0298
5.0298
5.0685
5.0298
5.0685
5.0685
5.0685
5.0685
50685
50685
5.0685
5.0298


Max (0.0591)
Unit Wt H20
Unit Wt Rod
Cylinder Bore Area
Shear Stud Area
Normal Stud Area
qu (psi)
Shear Force
(lb)
-221.5335
-237.7534
-164.7642
256.9508
475.9182
532.6875
516.4677
548.9073
492.1380
686.7757
800.3144
759.7648
832.7540
711.1054
775.9846
913.8530
913.8530
824.6441
857.0837
881.4134
857.0837
905.7431
962.5124
792.2045
735.4351
824.6441
743.5450
938.1827
978.7322
897.6332
751.6549
767.8747
808.4243
905.7431
873.3035
1035.5016
905.7431
913.8530
848.9738
775.9846
938.1827
970.6223
824.6441
881.4134
857.0837
711.1054
865.1936


62.4 II:T:i I
2.96 (libft)
4.72 (1n2)
1.064734229
0.007316266
376
Normal Stess Shear Stress
(psi) (psi)
708_6316 -208.0646
713.9204 -223.2983
713.9204 -154.7468
713_9204 241.3286
703.3427 446.9831
698.0539 500.3009
698_0539 485.0673
698_0539 515.5346
698_0539 462.2168
698_0539 645.0208
698.0539 751.6565
698.0539 713.5723
6927650 782.1238
698_0539 667.8713
692.7650 728.8060
6927650 8582921
6927650 8582921
698.0539 774.5070
6927650 804.9743
698.0539 827.8248
698.0539 804.9743
698-0539 850.6753
69860539 903.9931
698.0539 744.0396
698.0539 690.7218
6927650 774.5070
698_0539 698.3386
698.0539 881.1426
692.7650 919.2268
698.0539 843.0585
698_0539 705.9555
698_0539 721.1891
698.0539 759.2733
698.0539 850.6753
6927650 820.2080
6874761 972.5446
687.4761 850.6753
6927650 8582921
687.4761 797.3575
6927650 728.8060
6927650 881.1426
692.7650 911.6100
692.7650 774.5070
6927650 827.8248
6927650 804.9743
692.7650 667.8713
687.4761 812.5911













Table C-52. Borehole #2 at 55/45 feet.
FULLER WARREN BRIDGE
SHEAR DEVICE TEST RESULTS
Penetration -.alul.?le a 0.106303614 x penet(0.0591)
Height H20 34 (ft) Unit Wt H2O 62.4 (Ibfft3)
Lr ,,_h Pipe 55 (ft) Unit Wt Rod 2.96 (Ibflt)
Penetration Depth 0.0591 (in) Cylinder Bore A 4.72 (in2)
Stud Cap Area 0.1964 (in2) hear Stud Area 1.064734229
No. of Studs 42 Normal Stud Area 0.007316266
Weight of Instrum. 38 qu (psi) 376
LVDT Pressure Load Est Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress


(in) (volts) (volts) (psi) :;[r3
0.2742 0.0235 0.0002 3.5096 47.0595
0.2781 0.0236 0.0003 4.7304 47.1084
0.2608 00236 0.0008 13.3518 47.2304
0.3154 0.0234 0.01 165.8935 46.8886
0.3224 0.0235 0.0141 234.5348 46.9253
0.3303 00234 0.0113 195.2931 46.8307
0.3213 0.0234 0.0112 192.1358 46.8062
0.3217 0.0235 0.0131 218.4617 46.9314
0.328 0.0234 0.0119 197.9125 46.8368
0.3419 0.0234 0.0147 245.496 46.852
0.3464 00234 0.0143 247.6601 46.8276
0.3633 0.0234 0.0159 264.1886 46.8398
0.364 0.0234 0.0153 254.2192 46.794
0.3581 0.0234 0.0144 239.5449 46.7544
0.3551 0.0234 00136 228.3084 46.8001
0.3643 0.0234 0.0173 288.1955 46.8215
0.3676 00233 0.0179 298.6745 46.5896
0.3842 0.0233 0.0165 275.1752 46.5316
0.3803 0.0234 0.0141 237.4657 46.791
0.3813 0.0234 0.0154 256.6607 46.8276
0.3726 0.0234 0.0151 251.7014 46.8703
0.3991 0.0233 0.0174 290.231 46.6597
0.4142 0.0234 0.0159 264.3157 46.8123
0.4177 0.0234 0.014 233.0088 46.7055
0.4116 0.0233 0.0148 247.1745 46.6262
0.4182 0.0233 0.0139 232.017 46.614
0.4267 0.0234 0.0145 241.5031 46.7116
0.4418 0.0233 0.0167 278.3797 46.5987
0.4512 0.0233 0.0154 256.2029 46.5651
0.4467 00233 0.0146 243.6649 46.6079
0.4421 0.0234 0.0147 245.4705 46.7818
0.4459 0.0233 0.0137 228.6091 46.6872
0.4471 0.0233 0.0134 222.7088 46.6872
0.4535 0.0234 0.0147 245.1399 46.791
0.4734 00233 0.0147 244.6059 46.5133
0.4795 0.0233 0.0155 258.3392 46.5407
0.4886 0.0233 0.0147 244.733 46.6018
0.4909 00233 0.0138 230.6436 46.6079
0.482 0.0233 0.0133 222.0222 46.5255
0.492 0.0233 0.0143 238.375 46.5957
0-502 00232 0.0158 263.3239 46.4431
0.5219 0.0232 0.0145 240.8419 46.4553
0.5078 0.0232 0.0136 226.7271 46.4766
0.5118 0.0232 0.0157 261.798 46.4492
0.5109 0.0232 0.0139 231.3303 46.4705
0.5187 0.0232 0.0137 228.5582 46.3088
0.5449 0.0232 0.0161 268.156 46.3607


(Ib) (lb)
6.1906 -229.6434
6.2293 -221.5335
6-2293 -180.9840
6.1519 565.1271
6.1906 897.6332
6-1519 670.5559
6-1519 662.4460
6.1906 816.5342
6.1519 719.2153
6-1519 946.2926
6-1519 913.8530
6.1519 1043.6115
6.1519 994.9521
6-1519 921.9629
6-1519 857.0837
6.1519 1157.1501
6-1132 1205.8096
6-1132 1092.2709
6.1519 897.6332
6.1519 1003.0620
6-1519 978.7322
6-1132 1165.2600
6.1519 1043.6115
6.1519 889.5233
6.1132 954.4025
6.1132 881.4134
6.1519 930.0728
6.1132 1108.4907
6.1132 1003.0620
6-1132 938.1827
6-1519 946.2926
6.1132 865.1936
6.1132 840.8639
6-1519 946.2926
6-1132 946.2926
6.1132 1011.1719
6.1132 946.2926
6-1132 873.3035
6.1132 832.7540
6.1132 913.8530
60745 1035.5016
6-0745 930.0728
6.0745 857.0837
6.0745 1027.3917
6-0745 881.4134
6-0745 865.1936
6.0745 1059.8313


(psi)
846.1420
851.4309
851.4309
840.8532
846.1420
840.8532
840.8532
846.1420
840.8532
840.8532
840.8532
840.8532
840.8532
840.8532
840.8532
840.8532
835.5643
835.5643
840.8532
840.8532
840.8532
835.5643
840.8532
840.8532
835.5643
835.5643
840.8532
835.5643
835.5643
835.5643
840.8532
835.5643
835.5643
840.8532
835.5643
835.5643
835.5643
835.5643
835.5643
835.5643
830.2754
830.2754
830.2754
830.2754
830.2754
830.2754
830.2754


(psi)
-215.6815
-208.0646
-169.9805
530.7683
843.0585
629.7871
622.1703
766.8901
675.4881
888.7595
858.2921
980.1615
934.4605
865.9090
804.9743
1086.7972
1132.4982
1025.8625
843.0585
942.0773
919.2268
1094.4140
980.1615
835.4416
896.3763
827.8248
873.5258
1041.0962
942.0773
881.1426
888.7595
812.5911
789.7406
888.7595
888.7595
949.6941
888.7595
820.2080
782.1238
858.2921
972.5446
873.5258
804.9743
964.9278
827.8248
812.5911
995.3952









APPENDIX D
OPERATIONS AND MAINTENANCE

Rock Shear Testing Device: Components and Descriptions

The following are the main components of the equipment
* The Shear Device
* The 10,000 psi Hydraulic Jack and Cylinder with 1" thick steel base plate containing
threaded steel hook (circular)
* The Winch (60' capacity) with tripod attachment and pulley with closing hook connector
* Data Collection System (includes Laptop, Electronic Box, NIDAQ Hardware and Software
* 1 1/4" Steel Rods (60' 5'lengths)
* 1" Threaded Rod (5')
* Steel Rod to Threaded rod connector
* Shear Device adaptor with cable connector for winch and threaded connector to Steel Rods
* Inverter
* Marine Rechargeable Batteries (2)
* 12 volt DC Supply
* 200 psi Regulator
* 60' air conduit with male and female detachable connectors (2)
* Air Compressor (175 psi capacity)
* Sturdy Aluminum Tripod (5' high)
* Specialized Tool Kit with key tools assembled for all required activities


Component Description

* The RSTD is comprised of the upper and lower chambers. The upper chamber and
connectors house the electronic measurement instruments and the lower chamber houses
the expandable rubber bladder, steel sheet Chinese lantern and steel hardened shear studs
with stainless steel springs. The cylindrical lower chamber is made in two halves that are
held together by screws and both ends. The two halves facilitate easy assembly and
maintenance.

* The Hydraulic Jack and hollow cylinder is used to lift the device and connecting rods
during testing. A 500 psi pressure transducer is connected to the jack via pipe threads at
the chamber designated for housing a measuring device. The cylinder contains a 1.06"
central hole which facilitates the threaded rods connected to the steel rods. The inner tube
of the cylinder moves up under pressure from the jack and applies the pressure to the rods.
The inner tube is also connected to an LVDT via a removable split connector controlled by
screws. The base Figure of the cylinder sits on an aluminum top plate fixed to the tripod.
The top plate contains a central hole about 3 12" in diameter with two slots to allow for
shifting of the cylinder to expose the central hole when necessary.

* The winch is used to lower and lift the device and connecting rods at the start and end of
testing respectively or to lift the device to a new testing location in the core hole. It is









remote control operated and is capable of lifting over 10 tons. It is secured to the tripod
via "I" sections and threaded bolts along with chains for added security. It has an
operating capacity of 60' with an additional 3' wrapped around the core that should never
be unwounded during use. The top of the winch cable is connected to a close ended hook
that runs over a pulley that is secured to the top plate of the tripod via a circular closed
hook threaded to the 1" thick steel base plate of the cylinder.

* The data collection system includes a laptop computer with the NIDAQ/Labview data
collecting software along with Microsoft Excel for storage of the raw data. The NIDAQ
hardware was configured to run the required measuring instruments for use in both the
shear test and the mapping device. The transducers etc. are connected to the Hardware and
an electronic box containing filters, resistors and connections to a 12 volt supplier.

* The 1 1/4" outer diameter steel rods supplied in 5' lengths are used to provide a rigid
extension of the device to the testing depths. The rods have removable double ended
threads convenient and flexible for use with other connectors.

* The 5' thread rod is used through the hollow cylinder for adjustment of the device at any
depths within 5 foot i.e., 2.1' or 43.4'. This is required for the flexibility of testing at the
encountered depth of the rock.

* One of the removable tapered box threads of the steel rods was used to form the connector
to the 1" threaded rods by welding a cut end to 3" nut that fits the threaded rod.

* The RSTD adaptor has a 1/2 28 female threaded end connected to a male box thread that
connects to the rods. This piece also carries a swinging "U" hook that is connected to a 2
foot cable with metal loops at both ends. The free end is connected to the winch by the
hook.

* The voltage supply on site is provided by 2 low maintenance marine batteries; one supplies
the winch and the other supplies the electronic data collection system. An inverter is used
to convert the DC voltage supplied from the battery to an AC voltage to the computer and
the voltmeter.

* The battery operated compressed air supply is connected to a 200psi regulator that controls
the two pressure lines to the device. The regulated pressure is connected to the device via
two 60' long air conduits that have reusable snap connectors at both ends.

* The aluminum framed tripod has been upgraded be more user-friendly; it now carries a
mount for the jack, the string pot and winch in a more convenient manner with respect to
assembling and disassembling.

* The customized tool kit carries all the necessary tools for assembling the setup on site and
also tools for maintenance and repairs. It has two compartments; the lower one is used for
all the sensitive data collection hardware and wires and the upper used for basic tools such
as spanners, wrenches, pliers, screw drivers, hammers allen-keys, plumbing and electrical
tapes etc. The kit has a retractable handle and can be carried around on its two rear wheels.











Rock Shear Testing: Field Operation


Guidelines to the proper operation and use of the device are listed below. For safety of use it is
important that the following guidelines and sequence of operations be observed;
* Load the compressor and the tripod into the back of the pickup truck using a fork-lift.
Check and ensure that all relevant tools are replaced in the tool kit and placed the kit inside
the pickup on the back seat. Lay the shear device and the mapping device gently on the
floor of the pickup alongside the back seat. Load the rods, winch, batteries and jack and
air conduits in the back of the pickup in an orderly manner conducive for quick setup.
Before mobilizing to site ensure that the batteries are fully charged, that the motor for the
compressor meet the required oil and gas levels. Take along an additional supply of oil
and gasoline sufficient for the compressor to carryout a day's work. Ensure that the
vehicle has a tarpaulin or similar plastic cover in case of inclement weather.

* On reaching the site, backup pickup truck about 10' from corehole location. Carefully
unload the tripod (heavy, may require two people) from the back and setup over corehole.
Use the 2x12 inch lumbers below each base plate and level tripod (this process could
require more lumber). Check that the center hole in the top plate of tripod is centrally
aligned with the corehole (the use of a plumb line may be necessary). Unload the tool kit
from the pickup rear seat and place beside the tripod and open.

* Mount the winch at the right corner horizontal support of the tripod using the three
threaded rods and steel sections attached to the winch. The winch is secured with a lock
wrench and the large adjustable spanner. Use the provided chain to wrap around the body
of the winch as close as possible without covering the cable outlet area for added security.

* Mount the Jack on the right leg of the tripod using the provided 4" screws and the
connection plates. Place the cylinder on the top plate over the center hole and connect the
pressure hose from the jack to the cylinder and secure. Ensure that the circular hook
screwed into the cylinder base plate is inside one of the slots in the top plate; this slot
allows the sliding movement of the cylinder from the center hole when required. The
small adjustable spanner is required here.

* Mount the String Potentiometer on the center leg of the tripod by sliding the groves from
the attached support plate through the two exposed nuts and then tighten. Ensure that the
small rod with the attached string pulley is fully retracted. Small adjustable spanner is
required here.

* Unload the two batteries from the truck and place them at the base of the tripod below the
laptop platform. Connect one battery directly to the winch using the battery leads from the
winch and ensure that the positive and negative leads from the winch go to the positive and
negative terminal of the battery respectively. Connect the inverter to the other battery via
the positive and negative leads, again ensuring proper connection. Plug the surge protector
into the inverter and ensure that both are in the off positions.









* Connect the regulator to the top plate using the provided mount and the two screws; a
Phillips screw driver is required here.

* Connect the hose from the Air Compressor to the regulator and secure (click sound).
Check the valve under the cylinder of the compressor to ensure that it is closed (not
tightened).

* Remove the laptop from its case and place on the platform connected to the tripod. Plug
the power cord into the computer and the other end into the surge protector. Place the
NIdaq hardware onto the platform along with the electronic black box and the 12 volt
power supply. Plug the mouse into the laptop and place on the platform with the mouse
pad. Plug the power cords from the NIdaq hardware and the 12 volt supply into the surge
protector. Connect the power line from the black box to the 12 volt supply ensuring that
the red and black wires connect to the red and black terminals respectively.

* Connect the 200psi pressure transducer from the regulator to the black box using the eight
connector end on the right side of the box. Connect the 500psi pressure transducer to the
black box using the eight connector end on the left side of the black box. Connect the
LVDT end cap to the LVDT which is secured on the Cylinder and the other end to the
black box using the three pin end connector. Connect the eight pin (with double wires)
male connector from the Nidaq hardware to the black box and secure. Connect the four
pin single wire from the Nidaq hardware to the four pin round connector on the black box.

* Turn on the inverter and the surge protector. Power on the computer and wait until
Microsoft windows is completely loaded. Plug in the white cord from the Nidaq hardware
into the laptop and power on the hardware. Turn on the 12 volt supply. Double click the
Icon labeled Shear Test on the desktop front panel and wait until the screen shows the
static graph plots. Click on the "arrow" icon to start a test run to ensure that all
instrumentation are engaged; notice a pause and then the generation of the active graphs
reflecting the waveforms produced by noise. If static lines are seen in any of the graphs
then something is wrong and the connections and wires need checking. Stop the test by
clicking the red "stop" icon and saving as checkk" etc. At this stage zero the graphs
using the allotted boxes on the screen for zeroing. The electronic setup is now complete
and ready for testing.

* Slide the hollow cylinder to the side of the top plate center hole along one of the slots to
allow the rods to be lowered through there. Extend the cable from the winch and connect
the pulley to the circular steel hook attached to the cylinder base Figure.

* Place the shear device beside the core hole between the tripod legs and screw the "rod to
shear device" adaptor to the top of the shear device. Connect the closed hook from the
winch to the adaptor (with 2' cable end) at the end of the cable hook. Connect the 60' air
lines to the air lines of the device and the other ends to the regulator. Plug the winch
remote control in and lift the device up and then lower into the hole until only the rod
connector is above ground.









* Lower one of the rods through the center hole of the top plate and screw onto the rod
adaptor from the device. With the first rod secured, use plastic clips to tie the air lines to
the rods as the device is lowered down the hole with the winch remote. Make at least one
tie on each 5' length of rod until the required depth is reached. Slide the cylinder back to
the center (this will require some effort), and lower the 5' threaded rod onto the rods
connected to the device. Connect these rods using the provided rod adaptor and place the
depth adjusting cross piece on the top then whine it down to the top of the cylinder. The
setup is now ready for testing.

* Turn the key on the compressor to the on position and slide the choke forward to ignite the
engine then return it to its original rest position; the key will return to the run position once
the engine is started. Allow the compressor to stabilize to its maximum pressure before
opening the compressor valve to the regulator. Push the "on" button on the electronic dial
gauge attached to the regulator and set the initial test pressure; make sure to allow for the
water pressure at the depth of testing.

* Open the regulator valve then push the adjusting knob down and turn to the right to set the
test pressure. Allow 10 seconds for the pressure to be stabilized in the system and for the
shear studs to be fully engaged by the expanding pressurized bladder.

* Click the "arrow" button on the front panel of the laptop and begin testing and
simultaneously start applying load to the shear device via the jack. Carefully note the
LVDT reading while loading; stop loading when the LVDT reading indicate about 0.75 to
0.9 inch displacement. Click the "stop" button on the front panel and open the pressure
valve on the jack to lower the cylinder piston back to its zero position. Return the jack
valve to its closed position and prepare the handle for the next test.

* Turn the regulator pressure adjusting knob to the left and zero the shear device pressure
(the threaded rod should then fall back to its zero position on the cylinder). Use the handle
bar on the threaded rod to lift the shear device about 1V2" from its original position by
turning it about two revolutions to the right.

* Set the second test pressure (increase by about 5 psi) and repeat the testing procedure. For
each location carry out at least 4 tests about 1/2" apart. At the end of testing a location, use
the winch to lift the shear device to its new testing location. If necessary unscrew the
threaded rod and remove one of the 5' rods and then replace the threaded rod. This will
require shifting the cylinder to remove the 5' rod through the center hole of the top plate.

* At the end of testing remove each rod and cut all plastic clip and place rods on the back of
the truck; use a rag to wipe the water off the rods as they are lifted by the winch so as to
reduce rusting.









BMD: Components and Descriptions


The components and their corresponding descriptions are similar to the direct shear device
except for the following:
* This is replaced by the mapping device

* The jack and cylinder is not used in this test; the cylinder is kept in the shifted position
throughout the test.

* The 5' threaded rod is completely removed from setup during this test.

* A pressure directional regulator is included to extend and retract the measuring

wheels.

BMD Test: Field Operation

Items 1 to 8 are repeated for the mapping test. The following is the remaining steps for carrying
out the mapping operation:
* Remove the laptop from its case and place on the platform connected to the tripod. Plug
the power cord into the computer and the other end into the surge protector. Place the
NIdaq hardware onto the platform along with the electronic blue box and the 12 volt
power supply. Plug the mouse into the laptop and place on the platform with the mouse
pad. Plug the power cords from the NIdaq hardware and the 12 volt supply into the surge
protector. Connect the power line from the blue box to the 12 volt supply ensuring that the
red and black wires connect to the red and black terminals respectively.

* Connect the String Pot to the blue box using the four connector end on the right side of the
box. Connect the electrical cord from the mapper to the blue box using the six connector
end on the left side of the black box. Connect the male ended connector from the Nidaq
hardware to the blue box and secure.

* Turn on the inverter and the surge protector. Power on the computer and wait until
Microsoft windows is completely loaded. Plug in the white cord from the Nidaq hardware
into the laptop and power on the hardware. Turn on the 12 volt supply. Double click the
Icon labeled Mapping Test on the desktop front panel and wait until the screen shows the
static graph plots. Click on the "arrow" icon to start a test run to ensure that all
instrumentation are engaged; extend the string from the pot and check if the height of the
graph varies with the extension. If the graph remains in one vertical level during this test
then something is wrong and the connections and wires need checking. Otherwise stop
the test by clicking the red "stop" icon and save it as "mapl" etc. The electronic setup is
now complete and ready for testing.

* Slide the hollow cylinder to the side of the top Plate center hole along one of the slots to
allow the rods to be lowered through there. Extend the cable from the winch and connect
the pulley to the circular steel hook attached to the cylinder base Figure.









* Place the BMD beside the core hole between the tripod legs and connect the string pot to
the closed hook on the adaptor. Connect the closed hook from the winch to the adaptor
(with 2' cable end) at the end of the cable hook. Connect the 60' air lines to the air lines of
the device and the other ends to the regulator. Plug the winch remote control in and lift the
device up and then lower into the hole until only the rod connector is above ground.

* Lower one of the rods through the center hole of the top plate and screw onto the rod
adaptor from the device. With the first rod secured, use plastic clips to tie the air lines to
the rods as more rods are added and the device is lowered down the hole with the winch
remote. Make at least one tie on each 5' length of rod until the required depth is reached.

* Turn the key on the compressor to the on position and slide the choke forward to ignite the
engine then return it to its original rest position; the key will return to the run position once
the engine is started. Allow the compressor to stabilize to its maximum pressure before
opening the compressor valve to the regulator. Push the "on" button on the electronic dial
gauge attached to the regulator and set the air spring pressure; make sure to allow for the
water pressure at the depth of testing.

* Open the regulator valve then push the adjusting knob down and turn to the right to set the
test pressure. Allow 10 seconds for the pressure to be stabilized in the system and for the
measuring wheels to be in full contact to the core wall surface.

* Click the "arrow" button on the front panel of the laptop and begin testing by
simultaneously clicking the winch remote into the lifting operational position. Allow the
mapping to occur slowly and be alert for any abrupt stopping of the device due to
extension of the mapping or positioning wheels into a crack or void. At the end of a five
foot run stop the test, save the data and remove the extended rod above the top plate.
While testing, carefully observe the displacement graph and note where full extension of
the mapping wheels has occurred (about 34" extension). If necessary, reduce the air spring
pressure as the device is lifted to allow for the reduced water pressure (about 2 psi every 5'
run).

* At the end of testing remove each rod and cut all plastic clips and place rods on the back of
the truck; use a rag to wipe the water off the rods as they are lifted by the winch so as to
reduce rusting.

Rock Shear Testing Device: Maintenance

On completion of the field testing, the likely hood is that the device would have been

submerged. The device is not water sealed and soil suspensions and would have gotten inside

the chamber wetting all the parts including the rubber bladder and the hardened studs. The other

parts are all stainless steel and would not be affected by the moisture however the rubber will

lose its elasticity and become brittle if the soil in suspension is left to dry on its surface









persistently and the studs would begin to rust within 24 hrs. of exposure to moisture without

immediate (within 2 to 3 hrs. after testing) cleaning and drying.

The device should be given an initial power wash to remove mud etc. from the internal

and external surfaces, wiped and dried. Place the device on a table and open the split chamber

at the top and bottom connections using a Phillips screw driver. The studs with the springs

attached should be placed in a bucket of water and allow to be soaked free of mud. Remove the

springs from the studs, wipe and dry with a clean piece of cloths and replace the dried springs.

Take the body of the device to the power hose and wash cleanly; this will require making space

between the Chinese Lantern steel sheets and washing the rubber bladder as best as possible. Dry

the body of the device and place it on the table along side the spilt chamber semi circular covers.

Use the wooden stud templates to hold the spring fitted studs inplace during the assembling of

the two semi-circular chamber covers. When assembling the chamber covers make sure to

match the dotted marks on the covers to those on the circular supporting Figures at the top and

bottom. This is very important otherwise the screws will not match nor fit the respective

threaded holes.

Borehole Mapping Device: Maintenance


Maintenance of this device generally does not require disassembling; all the relevant parts are

either aluminum or stainless steel. For continuing operation the collection of mud particles on

parts such as the traveling rods will affect the sliding mechanism of the wheel support. Clogging

of the instrument with lumps of mud (wet or dry) could also affect the movement of the

measuring wheel. Areas around the spring controlled guiding wheels should be power washed

periodically (after every set of tests) to allow for unobstructed movement.









The distance between the magnetic field sensor (Hall Sensor) and the magnet is fixed; the

embedded sensor in the plastic rod and the glued magnet in the arms of the measuring wheel

should not be interfered with or adjusted. This distance was set by calibration and it allows the

instrument to operate within the linear portion of the sinusoidal wave produced when the Hall

Sensor passes through the magnetic field.

To disassemble, the arms of the measuring wheels have to be unscrewed and removed from both

sides. The top Figure which supports the core of the instrument can then be unscrewed and lifted

out from the cylindrical body to expose (but not separate) the compressed air conduits, the

electrical wiring and the air spring cylinders. This should not be pressure washed but should be

wiped with a wet cloth where necessary and brushed and cleaned (from clogs) with an

appropriate small tool.




























































A,


Figure D-1. Picture Showing Complete Component Setup in the Field.



















































Figure D-2. Picture showing Shear Device Taped and Ready for Testing.















































Figure D-3. Picture Showing Hydraulic Jack Connected to Leg of Tripod.
















































Figure D-4. Pictures Showing Remote Controlled Winch with Tripod Connector.




































Figure D-5. Pictures Showing Data Collection System with Laptop Computer Black and Blue
Box and NiDaq Hardware.











































I.
-*" :" : :'



t *- ,

:, ..i ." .1 1


Figure D-6. Showing 6 foot Threaded Rod used for Closer Testing Depths












229
































Figure D-7. Picture Showing Shear Device Adaptor with Cable and Connector.


Figure D-8. Picture Showing Power Supply System including Batteries, Inverter etc.































Figure D-9. Picture Showing Air Regulator with Pressure Transducer and Digital Dial Gauge
and Electronic Connector to Black Box.


LOP-M: i






































Figure D-10. Picture Showing 175 psi Air Compressor.






















































Figure D-11. Pictures Showing Mobile Tool Kit.





















































Figure D-12. Picture showing Data Collection connection Setup in Field.














































Figure D-13. Picture Showing Winch Cable and Pulley Setup on Tripod.






235


(II




















Figure D-14. Picture Showing Disassembled RSTD with metal sheet Chinese Lantern and Split
Chamber Cylinder.


r^


J


R


lrop


V
/4


.5


Figure D-15. Picture Showing Tapered Springs and on and off Studs.
















Bt~4 a g~P~


Figure D-16. Pictures Showing Wooden Template Used to Aid in Reassembling the Device.
















Bt~4 a g~P~


Figure D-17. Pictures Showing Wooden Template Used to Aid in Reassembling the Device.































Figure D-18. Picture Showing Partially Reassembled Device.


Figure D-19. Picture Showing Cylinder with Base plate, Closed Hook and LVDT.


























1,


)
* I


Figure D-20. Picture Showing String Pot and Pulley Connection.















240



















































Figure D-21. Picture Showing Jack and LVDT with Steel Base Plate attached to Tripod Top.















































Figure D-22. Picture Showing Pressure Reversible Unit attached to Regulator.









LIST OF REFERENCES

Briaud, Jean-Louis, The Pressuremeter. A.A. Balkema, Rotterdam (1992).

Chan, S. K., Tuba, I. S. & Wilson, W. K., On the finite element method in linear fracture
mechanics. Engng Frac. Mech. 2, 1-17 (1970).

Crapps, D.K., Design, construction and inspection of drilled shafts in limerock and limestone,
Annual Meeting ofFlorida Section, A.S.C.E., (1986).

Davis, E. H. Theories of plasticity and the failure of soil masses. SoilMechanics Selected
Topics (ed. Lee, I. K.), pp. 341-380. London: Butterworths (1968).

Drennon, C.B. and R. L. Handy, Stick-slip of lightly loaded limestone,
Internal Journal ofRock Mechnics and mining Science, Vol. 9 pp. 603-615, (1972).

Duncan Fama M.E. and Pender M. J. Analysis of the hollow inclusion technique for
measuring in situ rock stress. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 137-146
(1980).

Engle, Lawrence, E., (1976), Application of borehole shear for insitu shear strength of soft
rock, unpublished M.S. Thesis, Iowa State University library, Ames, 133 pp.

Evans, L. and Murrell, The forces required to penetrate a brittle material with wedge-shaped
tool, Mechanical Properties ofNon-metallic Brittle Materials, pp.432-450, (1958).

Ewy, R.T. Deformation and fracture around cylindrical openings in rock. Ph.D. Dissertation,
University of Califonia, Berkeley, Dept. MSME (1989).

Gnirk, P.F. and J.B. Cheatham, JR., Indentation experiments on dry rocks under pressure,
Journal Petroleum Technology, September, pp. 1031-1039, (1963).

Gupton, C. and Logan, T., Design guidelines for drilled shafts in the weak rocks of South
Florida Annual A.S.C.E. meeting, (1984).

Haberfield, C. M. & Johnston, I. W., Model studies of Pressuremeter testing in soft rock.
ASTM Geotech. TestingJ., 12, No. 2, 150-156, (1989).

Handy, R. L., Measurement of the insitu Shear Strength, Proceedings of the Conference on in
situMeasurement of Soil Properties, ASCE, Vol. II pp. 143-149, (1975).

Ingraffea, A. R. & Heuze, F. E., Finite element models for rock Fracture mechanics. Int. J.
Num. & Anal. Meth. In Geomech. 4, 25-43, (1980).

Johnston, I. W., Testing and interpretation for soft rock. Proc. Spec. Geomech. Symp. On
Interpretation of Field Testing for Design Parameters, Adelaide, pp. 61-75. Canberra:
1.E.Aust., (1987).











Johnston, I. W. and Chiu, H.K., The Consolidation Properties of soft rock, Proceedings of the
10th International Conference on Soil Mechanics and Foundation Engineering, The
International Society of Soil Mechanics and Geotechnical Engineering, Stockholm, (1), pp.
661-664, (1981).

Mair R. J. and Wood D.M., Pressuremeter Testing, Butterworth England, (1987).

McVay, M.C. and, Townsend, F.C., Design of socketed drilled shafts in limestones, IX
Panamerican Conference on Soil Mechanics and Foundation Engineering, Vina del Mar,
Chile, (1991) (in press).

Meyerhoff, G. G., The ultimate bearing capacity of wedge-shaped foundations, Proceedings
of the Fifth International Conference on Soil Mechanics Foundation Engineering, Vol. II pp.
105-109, (1961).

Parra, F. Townsend, F.C., McVay, M.C., Martinez, R., Design guidelines for shaft
foundations, Final Report, submitted by the department of Civil Engineering, University of
Florida to the Department of Transportation, July 1990.

Patton, F. D., Multiple modes of Shear Failure in Rock Proceedings of the First International
Conference on Rock Mechanics, Lisbon, Vol. I pp. 509-514, (1966).

Protod'Yakonov, N. M., Methods of determining the shear strength of rocks, Mechanical
Properties ofRocks, Jerusalem; Isreal Program for Scientific Translation, pp. 15-27, (1966)

Rowe, R.K., and Armitage, H.H., A design method for drilled piers in soft rock, Canadian
Geotechnical Journal, Vol. 24, (1987), pp. 126-142.

Schmertmann, J.H., Report of development of a lime rock tension-shear test to guide drilled
shaft foundation design for the DOTKeys bridge project, submitted to Florida DOT and
Girdler Exploration Co., Inc., Dec. 1977.

Schmidt, W., (1978), Regional structure and stratigraphy of limestone outcrop belt in the
Florida Panhandle Tallahassee; Bureau of Geology.

Schmidt, W., Hoeinstine, N.W., Knapp, M.S., Lave, E., Ogden, G.M. and Scott, T.M., The
limestone, dolomite and coquina resources of Florida, Florida Geological Survey, Report of
Investigation No. 88, (1979).









BIOGRAPHICAL SKETCH

The author was born in 1965 and is the eleventh of eleven children born to Mr. and Mrs.

Lester Hay in the parish of St. Thomas, Jamaica.

He attended Morant Bay High School (1st to 5th form), and Wolmers Boys School (6

form), in Jamaica, and the University of the West Indies where he completed his undergraduate

study in the Spring of 1989 with a Bachelor of Science in Civil Engineering at the St. Augustine

Campus in Trinidad. He enrolled at the University of Florida in the Spring of 1995 to pursue a

master'degree in Civil Engineering and completed the program in the fall of 1995 specializing in

Geotechnical Engineering.

He is presently on leave of absence from the consulting engineering firm he formed in

1997 specializing in geotechnical engineering and laboratory testing. Prior to 1995 he worked

with Jentech Consultants Ltd., for over six years where he gained invaluable experience in

structural designing, civil and infrastructural works, materials and geotechnical designs.

Carlton was awarded the status of Professional Engineer by the Jamaican Institue of

Engineering in 1994.

His immediate plan is to return home to Jamaica to spend time with his family and

expand his consulting firm.





PAGE 1

1 DEVELOPMENT OF AN INSITU RO CK SHEAR TESTING DEVICE By CARLTON A. HAY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Carlton A. Hay

PAGE 3

3 To my mother, my son and da ughter, my sisters a nd brothers and very special friends Nothing is what it appears but everything is what it is. Carlton Hay 1992

PAGE 4

4 ACKNOWLEDGMENTS I am most thankful to Dr. Dave Bloomquist Chairman of my supervisory committee and Dr. Micheal MacVay, Committee member, for thei r guidance throughout th e entire study. I am appreciative of Dr. Frank Townsend and Dr. Sa nkar for serving as members of my committee. I am also grateful to Chen Yu, Zhihong Hu and George Dunlop for their invaluable assistance. Danny, Sydney, Vick, a nd Junior (JJ) are greatly tha nked for their help with the design and construction of the shear device a nd supporting equipment; fo r laboratory work and all other assistance required at the Coastal laboratory. Appreciation is also extended to the admini strative staff; Doretha, Sonya, Debra and Nancy for the invaluable service they provide year to year not only administratively but for their support and encouragement throughout my stay at the University of Florida. Finally, I am deeply indebted to my family and very special friends for their love and support.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES................................................................................................................ .......10 ABSTRACT....................................................................................................................... ............17 CHAPTER 1 INTRODUCTION..................................................................................................................19 Background..................................................................................................................... ........19 Florida Limestone and Geology...............................................................................19 Composition of Florida Limestone..................................................................................20 Mechanical Properties of Floridas Limestone................................................................21 Limestone Drainage Conditions......................................................................................22 Scope.......................................................................................................................... .............24 2 REVIEW OF LITERATURE.................................................................................................25 Review of Previous Insitu and Empirical Determination of Rock Shear Strength.................25 Insitu Measurements Using Handys Rock Borehole Shear Test...................................25 Pull Out Test.................................................................................................................. ..27 Theoretical Prediction Usi ng Laboratory Test Results...................................................29 3 PROPOSED EQUIPMENT....................................................................................................39 Proposed Devices............................................................................................................... .....39 The Rock Shear Device..........................................................................................................42 4 TESTING PHASE..................................................................................................................61 Rock Shear Device (RSD)......................................................................................................61 Borehole Mapping Device (BMD).........................................................................................63 FEM Theoretical Model.........................................................................................................64 5 LABORATORY AND PSEUDO FIELD TES T RESULTS, OBSERVATIONS AND CONCLUSIONS....................................................................................................................71 Direct Shear Device Testing...................................................................................................71 Pseudo Field Rock Shear Device Tests..................................................................................72 Borehole Mapping Device (BMD) Testing............................................................................73 Observations................................................................................................................... ........74

PAGE 6

6 Laboratory Testing Results..............................................................................................74 Item 1 Direct shear tests....................................................................................74 Item 2 Tests using protot ype device in cored gator rock.....................................75 Item 3 Laboratory tests result s using the borehole mapping device.....................76 Conclusions.................................................................................................................... .........77 6 FIELD TESTS, OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS......82 Rock Shear Device: Full er Warren Bridge Site.....................................................................82 Testing........................................................................................................................ .....83 Test Results at the Fuller Warren Bridge, Jacksonville..................................................84 Conclusions.................................................................................................................... .........88 Recommendations................................................................................................................ ...90 APPENDIX A GRAPHICAL REPRESENTATI ON OF REDUCED DATA.............................................118 B SAMPLES OF lABORATORY TESTI NG AND DATA REDUCTION RESULTS.........153 C FIELD AND REDUCTION DATA.....................................................................................162 D OPERATIONS AND MAINTENANCE.............................................................................215 Rock Shear Testing Device: Components and Descriptions................................................215 Rock Shear Testing: Field Operation...................................................................................217 BMD: Components a nd Descriptions...................................................................................220 BMD Test: Field Operation..................................................................................................220 Rock Shear Testing De vice: Maintenance............................................................................221 Borehole Mapping Device: Maintenance.............................................................................222 LIST OF REFERENCES.............................................................................................................243 BIOGRAPHICAL SKETCH.......................................................................................................245

PAGE 7

7 LIST OF TABLES Table page 5-1 Summary of Results using La boratory Direct Shear Machine..........................................79 6-1 Section of data reduction table for Borehole 1 at 47......................................................104 6.2 Showing Correlation between Rock Strengt h and Penetration within Normal Force testing ranges used in the field ........................................................................................111 B-1 Sample FDOT Laboratory Test Results for Borehole #1................................................154 C-1 Borehole #1 at 44 feet..................................................................................................... .163 C-2 Borehole #1 at 44/30 feet.................................................................................................164 C-3 Borehole #1 at 44/36 feet.................................................................................................165 C-4 Borehole #1 at 44/45 feet.................................................................................................166 C-5 Borehole #1 at 45/26 feet.................................................................................................167 C-6 Borehole #1 at 45/33 feet.................................................................................................168 C-7 Borehole #1 at 45/39 feet.................................................................................................169 C-8 Borehole #1 at 45/46 feet.................................................................................................170 C-9 Borehole #1 at 47/25 feet.................................................................................................171 C-10 Borehole #1 at 47.5/32 feet..............................................................................................172 C-11 Borehole #1 at 47.5/40 feet..............................................................................................173 C-12 Borehole #1 at 47.5/40 feet..............................................................................................174 C-13 Borehole #1 at 47.5/45 feet..............................................................................................175 C-14 Borehole #1 at 48/23 feet.................................................................................................176 C-15 Borehole #1 at 48/31 feet.................................................................................................177 C-16 Borehole #1 at 48/37 feet.................................................................................................178 C-17 Borehole #1 at 47.5/40 feet..............................................................................................179 C-18 Borehole #1 at 49/26 feet.................................................................................................180

PAGE 8

8 C-19 Borehole #1 at 49/32 feet.................................................................................................181 C-20 Borehole #1 at 49/38 feet.................................................................................................182 C-21 Borehole #1 at 49/47 feet.................................................................................................183 C-22 Borehole #1 at 54/28 feet.................................................................................................184 C-23 Borehole #1 at 54/34 feet.................................................................................................185 C-24 Borehole #1 at 54/38 feet.................................................................................................186 C-25 Borehole #1 at 54/43 feet.................................................................................................187 C-26 Borehole #1 at 55/22 feet.................................................................................................188 C-27 Borehole #1 at 55/31 feet.................................................................................................189 C-28 Borehole #1 at 55/39 feet.................................................................................................190 C-29 Borehole #1 at 54/48 feet.................................................................................................191 C-30 Borehole #2 at 43/25 feet.................................................................................................192 C-31 Borehole #2 at 43/29 feet.................................................................................................193 C-32 Borehole #2 at 43/33 feet.................................................................................................194 C-33 Borehole #2 at 43/36 feet.................................................................................................195 C-34 Borehole #2 at 44/25 feet.................................................................................................196 C-35 Borehole #2 at 44/29 feet.................................................................................................197 C-36 Borehole #2 at 44/32 feet.................................................................................................198 C-37 Borehole #2 at 44/36 feet.................................................................................................199 C-38 Borehole #2 at 45/30 feet.................................................................................................200 C-39 Borehole #2 at 45/33 feet.................................................................................................201 C-40 Borehole #2 at 45/36 feet.................................................................................................202 C-41 Borehole #2 at 50/25 feet.................................................................................................203 C-42 Borehole #2 at 50/29 feet.................................................................................................204 C-43 Borehole #2 at 50/35 feet.................................................................................................205

PAGE 9

9 C-44 Borehole #2 at 50/40 feet.................................................................................................206 C-45 Borehole #2 at 54/26 feet.................................................................................................207 C-46 Borehole #2 at 54/32 feet.................................................................................................208 C-47 Borehole #2 at 54/35 feet.................................................................................................209 C-48 Borehole #2 at 54/42 feet.................................................................................................210 C-49 Borehole #2 at 55/30 feet.................................................................................................211 C-50 Borehole #2 at 55/35 feet.................................................................................................212 C-51 Borehole #2 at 55/40 feet.................................................................................................213 C-52 Borehole #2 at 55/45 feet.................................................................................................214

PAGE 10

10 LIST OF FIGURES Figure page 2-1 Schematic of Rock Borehole Shear Tester .......................................................................33 2-2 Schematic of Pull-Out Test Se tup and Anchor Casting Detail..........................................34 2-3 Typical Pressuremeter Curve.............................................................................................35 2-4 Pressuremeter Curve Illustrating Peak and Ultimate Shear Strength................................36 2-5 Showing Cohesion and Shear St rength at Rock/Shaft Interface........................................37 2-6 Strength Envelope for Moh r-Coulomb Florida Limestone ...............................................38 3-1 Electronic Direct Shear Machine.......................................................................................45 3-2 Vertical Loading Cross Arm, Hori zontal Load Cell and Dial Guages..............................45 3-3 Modified Upper Specimen Frame sh owing Wire Mesh Shear Element............................46 3-4 Load Assembly Showing Flat Head Shear Stud Arrangement...................................46 3-5 Load Assembly Showing Multiple Head Shear Stud Arrangement............................47 3-6 Load Assembly Showing Point Head Shear Stud Arrangement.................................47 3-7 Load Assembly Showing Po int Head Shear Stud Arrangement...............................48 3-8 Direct Sheared Sample Showing Predet ermined Shear Plane (Red) and End Effects (Blue)......................................................................................................................... ........48 3-9 Wire Mesh Sheared Gator Rock Sample Showing some Edge effects..............................49 3-10 Multiple Head Sheared Gator Rock Sample Showing End Effects...................................49 3-11. Fracture Pattern developi ng under a Cone or Wedge...........................................................50 3-12 Shear Studs Used in Tests from left to right: Flat Head, Seregated Head, Pointed Head, and Multiple Head ..................................................................................................51 3-13 Rubber Bladder and Shear Studs.......................................................................................51 3-14 Lightweight Tripod Assembly...........................................................................................52 3-15 Jack and Cylinder Arrangement.........................................................................................53 3-16 Probe Head with Instrumentation......................................................................................54

PAGE 11

11 3-17 Probe and Inner Rubber Bladde r/Chinese Lantern Assembly...........................................54 3-18 Expanded Hardened Metal Studs.......................................................................................55 3-19 Compressed Air Supply Regulator....................................................................................55 3-20 Extended Steel Spikes used for Displacement Measurements..........................................56 3-21 Tripod, Hydraulic Jack and Rod Setup..............................................................................56 3-22 Probe and the electronic ha rdware used for Calibration....................................................57 3-23 Initial Design Schematic of the Borehole Mapper.............................................................58 3-24 Prototype of Borehole Mapping Device (BMD) Showing Measuring and Feeler Wheels......................................................................................................................... .......59 3-25 Air Cylinder Controlled Meas uring Wheels Being Calibrated..........................................60 4-1 Shear Testing Probe........................................................................................................ ...66 4-2 Laboratory Testing Setup...................................................................................................67 4-3 Borehole Mapping Device.................................................................................................68 4-4 Laboratory Mapper Setup..................................................................................................69 4-5 Showing Finite Element Model of Shear Test...................................................................70 5-2 Wider Spring Steel Sheeting with Screwed End Connections...........................................80 5-3 Mapping Device Setup for Gator Rock Test Hole.............................................................80 5-4 Showing Mapping Test Set up in Transparent Tube..........................................................81 6-1 Comparison of McVays Shear Strength Prediction with those of the Device for Borehole No. 1................................................................................................................. ..93 6-2 Comparison of McVays Shear Strength Prediction with those of the Device for Borehole No. 2................................................................................................................. ..94 6-3 % Differences and Typical Bar Chart Show ing Variation with Depth of Results for Borehole 1..................................................................................................................... .....95 6-4 % Differences and Typical Bar Chart Show ing Variation with Depth of Results for Borehole 2..................................................................................................................... .....96 6-5 Shear Stress vs Displacement (Plot Repres entation ) showing Peak Stress Location .....97

PAGE 12

12 6-6 Shear Stress vs Displacement (Plot Representation ) showing Peak Stress Determination.................................................................................................................. ..98 6-7 Shear Stress vs Displacement (Plot Repr esentation ) showing Peak Stress Location.......99 6-8 Shear Stress vs Displacement (Plot Re presentation) showing problematic Results........100 6-9 Stud to Rock Typical Scenarios.......................................................................................101 6-10 Effective Area Determination During Penetration........................................................102 6-11 Effective Area Determination During Shear.................................................................103 6-12 Peak Shear Stress vs Displacement Curve.......................................................................105 6-13 Determination of Peak Shear Stress using Load vs Time Curve.....................................106 6-14 Shear Stress vs Normal St ress Curve (Failure Envelope)................................................107 6-15 Non-effect of 50% Decrease and Incr ease in Depth of Penetration on Failure Envelope....................................................................................................................... ...108 6-16 Predicted and Experimental Penetr ation Same Locations (Gator Rock).........................109 6-17 Predicted and Experimental Penetration Virgin Locations...........................................110 6-18 Field Coring at the Kanapaha Site...................................................................................112 6-19 Rock Sample quality and Recovery at the Kanahapa Site...............................................113 6-20 Piers at the Fuller Warren Bridge Site.............................................................................113 6-21 Corehole Layout with Respect to Br idge Pier and Load Test Location..........................114 6-22 Coring at the Fuller Warren Bridge Site..........................................................................115 6-23 Cored Sample with Alterna ting Rock and Clay intrusion...............................................116 6-24 Field Setup of Compressor, J ack and Data Collection System........................................116 6-25 Field Setup of Winch, Batteries and Compressed Air Regulator....................................117 A-1 Load vs Time: BH1@44(Norm Pressure = 23psi).........................................................118 A-2 Load vs Time: BH1@44(Norm Pressure = 30psi).........................................................118 A-3 Load vs Time: BH1@44(Norm Pressure = 36psi).........................................................119 A-4 Load vs Time: BH1@44(Norm Pressure = 45psi).........................................................119

PAGE 13

13 A-5 Load vs Time: BH1@45(Norm Pressure = 26psi).........................................................120 A-6 Load vs Time: BH1@45(Norm Pressure = 33psi).........................................................120 A-7 Load vs Time: BH1@45(Norm Pressure = 39psi).........................................................121 A-8 Load vs Time: BH1@45(Norm Pressure = 46psi).........................................................121 A-9 Load vs Time: BH1@47(Norm Pressure = 25psi).........................................................122 A-10 Load vs Time: BH1@47(Norm Pressure = 32psi).........................................................122 A-11 Load vs Time; BH1@47(Norm Pressure = 40psi).........................................................123 A-12 Load vs Time: BH1@47(Norm Pressure = 45psi).........................................................123 A-13 Load vs Time: BH1@48(Norm Pressure = 23psi).........................................................124 A-14 Load vs Time: BH1@48(Norm Pressure = 31psi).........................................................124 A-15 Load vs Time: BH1@48(Norm Pressure = 37psi).........................................................125 A-16 Load vs Time: BH1@48(Norm Pressure 43psi)............................................................125 A-17 Load vs Time: BH1@49(Norm Pressure = 25psi).........................................................126 A-18 Load vs Time: BH1@49(Norm Pressure = 32psi).........................................................126 A-19 Load vs Time: BH1@49(Norm Pressure = 38psi).........................................................127 A-20 Load vs Time: BH1@49(Norm Pressure = 47psi).........................................................127 A-21 Load vs Time: BH1@54(Norm Pressure = 26psi).........................................................128 A-22 Load vs Time: BH1@54(Norm Pressure = 34psi).........................................................128 A-23 Load vs Time: BH1@54(Norm Pressure = 38psi).........................................................129 A-24 Load vs Time: BH1@54(Norm Pressure = 43psi).........................................................129 A-25 Load vs Time: BH1@54(Norm Pressure = 47psi).........................................................130 A-26 Load vs Time: BH1@55(Norm Pressure = 22psi).........................................................130 A-27 Load vs Time: BH1@55(Norm Pressure = 31psi).........................................................131 A-28 Load vs Time: BH1@55(Norm Pressure = 39psi).........................................................131 A-29 Load vs Time: BH1@55(Norm Pressure = 48psi).........................................................132

PAGE 14

14 A-30 Load vs Time: BH2@43(Norm Pressure = 25psi).........................................................132 A-31 Load vs Time: BH2@43(Norm Pressure = 29psi).........................................................133 A-32 Load vs Time: BH2@43(Norm Pressure = 33psi).........................................................133 A-33 Load vs Time: BH2@43(Norm Pressure = 36psi).........................................................134 A-34 Load vs Time; BH2@44(Norm Pressure = 25psi).........................................................134 A-35 Load vs Time: BH2@44(Norm Pressure = 29psi).........................................................135 A-36 Load vs Time: BH2@44(Norm Pressure = 32psi).........................................................135 A-37 Load vs Time: BH2@44(Norm Pressure = 36psi).........................................................136 A-38 Load vs Time: BH2@45(Norm Pressure = 30psi).........................................................136 A-39 Load vs Time: BH2@45(Norm Pressure = 33psi).........................................................137 A-40 Load vs Time: BH2@45(Norm Pressure = 36psi).........................................................137 A-41 Load vs Time: BH2@50(Norm Pressure = 25psi).........................................................138 A-42 Load vs Time: BH2@50(Norm Pressure = 29psi).........................................................138 A-43 Load vs Time: BH2@50(Norm Pressure = 35psi).........................................................139 A-44 Load vs Time: BH2@50(Norm Pressure = 40psi).........................................................139 A-45 Load vs Time: BH2@54(Norm Pressure = 26psi).........................................................140 A-46 Load vs Time: BH2@54(Norm Pressure = 32psi).........................................................140 A-47 Shear Stress vs Displacemen t; BH2@54(Norm Pressure = 35psi)................................141 A-48 Load vs Time: BH2@54(Norm Pressure = 42psi).........................................................141 A-49 Load vs Time: BH2@55(Norm Pressure = 30psi).........................................................142 A-50 Load vs Time: BH2@55(Norm Pressure = 35psi).........................................................142 A-51 Load vs Time: BH2@55(Norm Pressure = 40psi).........................................................143 A-52 Load vs Time: BH2@55(Norm Pressure = 45psi).........................................................143 A-53 Shear Stress vs Normal Stress; BH1@44.......................................................................144 A-54 Shear Stress vs Normal Stress; BH1@45.......................................................................144

PAGE 15

15 A-55 Shear Stress vs Normal Stress; BH1@47.5....................................................................145 A-56 Shear Stress vs Normal Stress; BH1@48.......................................................................145 A-57 Shear Stress vs Normal Stress; BH1@49.......................................................................146 A-58 Shear Stress vs Normal Stress; BH1@54.......................................................................146 A-59 Shear Stress vs Normal Stress; BH1@55.......................................................................147 A-60 Shear Stress vs Normal Stress; BH2@43.......................................................................147 A-61 Shear Stress vs Normal Stress; BH2@44.......................................................................148 A-62 Shear Stress vs Normal Stress; BH2@45.......................................................................148 A-63 Shear Stress vs Normal Stress; BH2@50.......................................................................149 A-64 Shear Stress vs Normal Stress; BH2@54.......................................................................149 A-65 Shear Stress vs Normal Stress; BH2@55.......................................................................150 A-66 Mapping Results Borehole 3 @ 51.................................................................................151 A-67 Mapping Results Borehole 3 @ 49.................................................................................152 B-1 Direct Shear Test Results on Gator ro ck samples using Commercial Device ................156 B-2 Direct Shear Test Results on Gator ro ck samples using Commercial Device ................157 B-3 Direct Shear Test Results on Gator ro ck samples using Commercial Device ................158 B-4 Prototype Device Representa tive Laboratory Test Results.............................................159 B-5 Mapping Results in Laboratory Contour Mold................................................................160 B-6 Mapping Results in Laboratory Contour Mold................................................................161 D-1 Picture Showing Complete Co mponent Setup in the Field.............................................224 D-2 Picture showing Shear Device Taped and Ready for Testing..........................................225 D-3 Picture Showing Hydraulic Jack Connected to Leg of Tripod........................................226 D-4 Pictures Showing Remote Contro lled Winch with Tripod Connector.............................227 D-5 Pictures Showing Data Collection Syst em with Laptop Computer Black and Blue Box and NiDaq Hardware................................................................................................228 D-7 Picture Showing Shear Device Ad aptor with Cable and Connector................................230

PAGE 16

16 D-8 Picture Showing Power Supply System including Batteries, Inverter etc.......................230 D-9 Picture Showing Air Regulat or with Pressure Transducer and Digital Dial Gauge and Electronic Connector to Black Box.................................................................................231 D-10 Picture Showing 175 psi Air Compressor........................................................................232 D-11 Pictures Showing Mobile Tool Kit..................................................................................233 D-12 Picture showing Data Collec tion connection Setup in Field...........................................234 D-13 Picture Showing Winch Cabl e and Pulley Setup on Tripod............................................235 D-14 Picture Showing Disassembled RSTD with metal sheet Chinese Lantern and Split Chamber Cylinder............................................................................................................236 D-15 Picture Showing Tapered Springs and on and off Studs..................................................236 D-16 Pictures Showing Wooden Template Us ed to aid in Reassembling the Device..............237 D-17 Pictures Showing Wooden Template Us ed to aid in Reassembling the Device..............238 D-18 Picture Showing Partia lly Reassembled Device..............................................................239 D-19 Picture Showing Cylinder with Base plate, Closed Hook and LVDT.............................239 D-20 Picture Showing String Pot and Pulley Connection........................................................240 D-21 Picture Showing Jack and LVDT with St eel Base Plate attached to Tripod Top............241 D-22 Picture Showing Pressure Revers ible Unit attached to Regulator...................................242

PAGE 17

17 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy DEVELOPMENT OF AN INSITU RO CK SHEAR TESTING DEVICE By Carlton A. Hay August 2007 Chair: Dave Bloomquist Major: Civil Engineering Our study involved the development and testing of an insitu rock shear testing device. Foreseeable problems associated with the rock formation led to the development of a second device designed specifically to pr ovide data on the irregularities, caverns and voids anticipated within the test holes. The process of development was dynamic and extensive laboratory tests were performed on simulated rock samples (Gator rock) to ar rive at the present pr ototype designs. The prototypes were built and tested in the laboratory and showed encouraging results. However preliminary field tests exposed minor problem s with the instrumentation and mechanical attributes. Thus the necessary adjustments to th e designs were made and the devices have been successfully tested at the Fuller Warren Bridge in Jacksonville. The success of the program was evaluated based on the following criteria: the efficiency of the equipment with regards to their ease of operation, their limitations and possible areas for future development. the validity of the results, based on the equi pment designs and accura cy of the measuring instruments used to produce re sults acceptable margins of errors. the validity of the results based on theoreti cal assumptions made versus actual test conditions whether in the fi eld or in the laboratory.

PAGE 18

18 With respect to (i), the operation is relatively simple, requiring two tech nician level staff. The data reduction and interpretation will however require the involvement of an experienced engineer. Considering (ii), the instrumentati on and data collection system needs only minor improvement regarding electrical noise from the output signal. With respect to (iii), the le vel of accuracy of input inform ation such as the depth of penetration has been shown to be insignificant in the determination of the strength envelope as long as the penetration remains constant with change in norma l pressure application. The approaches used to arrive at the contact area of the studs for stress determination were based on assumed penetration values and those proposed from modeling. The comparative results of McVays theoretical prediction and the field test s (using both approaches) show minor variation but generally trend towards a reasonable range of consistency (10%, one exception at 17.9%). This indicates that the philosophy of using a cons tant penetration with va rying applied pressures is sound. Both sets of determinations show a general re duction in shear strength from a high of about 300psi to a low of about 20 psi. The upper 53 ft. of the rock formation had shear strength values typically above 100 psi (one ex ception) with a high of about 310 psi from one method of predictions. Below the 53 ft depth range the shear strength of the formation tumbled to an average value of about 40 psi. These ranges are typical of Florida Limest one strength properties and the levels of variation are consistent with those seen in the core samples with intermittent clay intrusion. The values from the field test generally a ppear slightly lower th an those predicted by McVays model and could be considered a more conservative estimation of the rock strength.

PAGE 19

19 CHAPTER 1 INTRODUCTION Background The following provides an overview of the ge neral characteristics and geology of Florida limestone formations that influe nces its load response behavior. Florida Limestone and Geology The upper stratum of soil material of Florida is generally made up of sand with some clay fraction overlying limestone. This simplifica tion however was made more complicated by numerous climatic and geological events due pr edominantly by the hydraulic forces. The Ice Age and other climatic events induced changes in the sea levels that resulted in the submergence and exposure of the Florida basin. These processe s lead to the depositi on of carbonate sediments that formed limestone which were further altere d by the outwash sediment depositions from the mountains and periodic erosion and weathering. The highlands of the northern peninsula and pa nhandle of Florida cons ist of the dissected, sedimentary remains of Neogene fluvial, delta ic, and shallow water marine systems. Transported southward from the southeastern coasta l plain and the southern Appalachians, siliciclastic sediments filled the Gulf trough and spille d onto the carbonate platform of Florida. This silici-clastic invasion into the clear, carbonate producing, shallo w waters, covered the limestone platform and formed a spine of clayey sand on the peninsula. Subsequent sea level fluctuations and associated near-shore, coast parallel currents reworked and reshaped these deposits, leaving the elongated system of upland ri dges we see today. (Schmidt, 1997). The Florida peninsula acquired its presen t shape during the last ice age, some 15,000 20,000 years ago. A north to south river orientat ion dominates the peninsula, reflecting near shore marine environment that contributed to the basic landform present today. Relict beach

PAGE 20

20 ridges separate swales previously occupied by shallow lagoons. When the sea level dropped, these lagoons became valleys, and streams eroded the sands and clays, creating several coastparallel river systems seen today as the St Johns, Kissimmee, and Withlacoochee Rivers (Schmidt, 1997). The topography of south Florida is typical of peninsular Floridas general geology. Biscayne Bay separates Miami Beach, located on the Atlantic Ridge, from the mainland (downtown Miami sits on a western ridge). To the west of southeaste rn coastal counties of Dade, Broward and Palm Beach and the east of the Gulf coast of Florida (where the Gulf Coast ridge is located) sits the immense shallow lago on of the Everglades. Similar features, on a smaller scale, occur in many areas of Florida. Composition of Florida Limestone Sedimentary rocks, including Florida limestone formed as wind water and ice transported minerals, fragmented rock, and the remains of certain organisms which were deposited into sedimentary layers. As sediments accumulate, pr essure and/or chemical reactions harden the deposits. The sedimentary rocks include two major divisions, detrital and chemical. Pressure on deposited solid products of chemical and mechanical weat hering, generally form detrital sedimentary rocks. Limestone belongs to the ch emical sedimentary rock, composed primarily of the mineral calcite (calcium carbonate, CaCO3) hardened underwater by chemical cementing action, rather than pressure. Li mestone represents about 10% of all sedimentary rocks, and most formations, including Florida limestone, have a marine biochemical origin. Because of the varied deposition and erosi on processes that occurred during Floridas geologic history, Florida limestone has a highly heterogeneous nature. Even within the same formation, it may include coral, shell, chert, strongly cemented carbonates, crystalline deposits, oolites, and lime mud. It may also include zones of weak cementation, poor consolidation,

PAGE 21

21 detrital weathering products, and inclusions of clay, sand, and or ganic matter deposited in karst features and/or interbedded layers. The carbonate matrix may also contain impurities, including iron, silica, and magnesium. The dol omitic limestone (dolomite, CaMg(CO3)2) sometimes found in Florida forms when magnesium ions, tran sported through limestone beds by ground water, replace some of the calcium in the calcite matrix. Groundwater may convey carbonic acids (dissolved carbon dioxide) and organic acids th at dissolve the calcite matrix, forming karst features such as cavities and fissures. Because of the greater influence of weathering processes and lesser consolidation stresses Florida limestone found near th e surface tends to be weaker than that found at depth. Mechanical Properties of Floridas Limestone Generally weaker than many other sediment ary rocks, and often including zones of unconsolidated carbonates and kars t features, the mechanical pr operties of Florida limestone vary significantly. Properties may vary between and within recognized formation units, and both laterally and vertically at the given site, often almost randoml y. Because of this inherent variability, the FDOT performs a detailed investig ation of the limestone at each site when it may affect the structure under design. This investigat ion typically consists of the STP and strength tests of core samples. The competency of the limestone also plays an important role in core retrieval and in the excavation of a borehole in which to perform insitu tests, both of which may affect the quality of the respective test resu lts. Testing and sampling techniques add further variation. Reported parameters usually include the SPT N-value, (ASTM D1586), core recovery (%), rock quality designation (%) and laboratory te sts. Laboratory tests are usually limited to the unconfined compressive strength, qu (ASTM D2938) and splitting tensile strength, qt (ASTM D3967). Unconfined compressive strengths vary from less than 100 psi to as much as 10,000 psi, but the majority of values fall between 500 psi and 2000 psi. A few projects have included

PAGE 22

22 pullout tests of small diameter (< 6) concrete plugs used to mode l the shaft side shear. Drilled shafts designed using these test results typical ly have a high capacity, and the FDOT routinely performs load tests during the construction phase of each project to verify design assumptions. Limestone Drainage Conditions Many engineers assume Florida Limestone be haves as a drained material. Limestone typically has a permeability similar to very fine sand, in the range of 10 -3 to 10-5 ft./sec., and a porosity of 5 to 15 %. According to Johnst on and Chiu (1981) the dissipation of porewater pressure caused by loading may be describe d by the coefficient of consolidation, cv which varies inversely with the co efficient of volume change, mv, and directly with permeability. For a relatively incompressible material like soft limestone, the coefficient of volume change (mv), the reciprocal of the constrained modulus, may be se veral orders of magnitude smaller than clay. This combination results in a cv value that is several orders of magnitude larger than for clays Johnston and Chui (1981), and leads to a more ra pid porewater dissipatio n rate. Johnston and Chui (1981) further indicated that their laboratory specimens did not contain the fissures, joints and seams encountered in the field, which will lead to further increase in drainage. Of course, the presence of clay in the limestone matrix, a common occurrence in Florida, will significantly reduce drainage. Load Response: Drill Shaft Socketed in Limestone The ultimate drill shaft capacity is generally expressed as: Qu = Qs + Qp W Where Qs is the side friction, Qp the point re sistance and W the weight of the shaft. The ultimate side resistance in rock is found from th e unit side shear, fs, multiplied by the perimeter area of the shaft. The ultimate point resistance in rock is found from a representative value of tip bearing pressure, qtip multiplied by the cross sectional end area of the shaft. The spatial

PAGE 23

23 variation of Floridas limestone with respec t to formation depth and strength has created uncertainties for designers regarding the relative contribution of end bearing for socketed drill shafts resistance. The prediction of unit side shear on socketed dri ll shaft is therefore of utmost importance for design. An accurate value for unit si de shear is required so that the strength of the rock is properly represented in the design ca lculations. This will offset the necessity of including large safety factors that significantly in crease the diameter and or length of the shaft, resulting in unnecessary co st of construction. The method presently used by the Florida Depa rtment of Transportation incorporates the recommendation by Professor McVay (1992) which rela tes the ultimate side friction to the rock material properties; qu and qt (unconfined compression strength and split tensile strength respectively). The qu and qt values are determined in the laboratory and a statistical approach is used to determine the mean, upper bound and lower bound values for these two parameters for design. To account for the high spat ial variability of the rock quality, the percent recovery is applied to the ultimate side fric tion as an uncertainty factor to obtain the design ultimate side friction. The accuracy of this method is dependent on th e level of recovery and the quality of the rock samples recovered. In far too frequent situ ations (locations, dept hs etc.), inadequate number of samples is recovered and/or very poor sa mple recoveries are made. In either case, the laboratory determination of qu and qt is suspect. The designer is therefore left to make value judgments regarding what design values to use. The cost of these valu e judgments could result in the loss of money. The objective of the FDOT was to develop an insitu approach to determine the ultimate side friction of borehole rock surfaces. Three current methods have been found which attempted

PAGE 24

24 to measure the shear strength of rock insitu ; the Iowa Borehole Shear Testing Device, the Pressuremeter Test and the Pull-Out Test. Some levels of success have been obtained with these instruments, however their limitations (discusse d in chapter 2) led to the development and implementation of a new insitu rock shear strength testing device. Scope The goal of our study was to design and build a borehole device cap able of measuring insitu, the direct shear strength of Florida Limestone. The operation involves the axial pulling of a laterally pressurized cylinder composed of retractable shear st uds. It can provide a direct measurement of the mobilized sh ear strength mobilized along the borehole wall as input for the design of drilled shafts. Due to the presence of voids and inconsis tencies in the borehole walls, a second device was to be built to detect a nd map their locations. The proposed study was divided into the following six tasks: Literature review Design/modify laboratory equipment for preliminary testing Perform laboratory test Design/build the rock shear device Perform field testing Analyze final tests results and prepare final report

PAGE 25

25 CHAPTER 2 REVIEW OF LITERATURE Review of Previous Insitu and Empirica l Determination of Rock Shear Strength Several references have been found that investig ate the measurement of rock shear strength. The following are the ones most often noted in the literature: the insitu measurement of shear strength of rocks by R.L. Handy; Iowa University using borehole direct shear equipment. the insitu measurement of shear strength of rocks by Townsend et. al, using the pull out test. the insitu measurement of shear strength of ro cks by Bullock et. al, us ing the pressuremeter test. the theoretical prediction of rock shear stre ngth for design of drilled shafts by McVay et. al. Insitu Measurements Using Handys Rock Borehole Shear Test Using the Rock Borehole Shear Test (RBST) Handy et al. (17th Symposium on Rock Mechanics Paper 4B, pp. 1-11), concluded that: The test requires a borehole, in which are expanded two diametrically opposed serrated plates. The plates engage the rock with a contro lled pressure, while a separately controlled force is applied to cause shearing displacement axially along the hole (See Fig. 2-1 below). In the Rock Borehole Shear Test (RBST) the shear plate contact pressure is maintained constant while the shearing stress is increased to failure, at which time the normal and shear stress (forces) are read and tabulated. The hydraulic gauge pr essures are converted to normal shearing stresses by means of ca libration data; the expansion fo rces divided by one plate area equals the normal stress, and the shearing for ce divided by two plate ar eas equal the nominal shearing stress. The plate is then removed cleaned rota ted and the test repeated.

PAGE 26

26 Sequential RBSTs at different normal stresses of closely spaced intervals within a test produced linear failure envelope s when compared with most laboratory tests. In homogenous rocks the correlation coefficient r of the linear envelopes is generally about 0.99. In highly varied rocks the RBST generates multiple failure envelopes and allows evaluations of both c and for which the means, standard deviations, a nd confidence limits on the means and individual values can be obtained. The following are some of the inferences and principles by which the RBST operates: Linear Mode of failure envelopes stemming fr om different modes of rock behavior, i.e. dilatant, nondilatant, and ductile, may be defi ned as a function of applied normal stress Comparative Triaxial tests show cl ose agreement of friction angles ( ), but some loss of cohesion ( c) in the RBST, probably due to in complete seating of th e shear plate teeth. This loss amounts to about 25%, and either may be corrected or left as an additional safety factor in design. The minimum seating force required, af ter Evans and Murre ll (1962) is: F = 2bdqu(f + tan ) Where; F is the force to cause penetration, b is wedge length, d is penetration depth, qu is the unconfined compression strength, f is the coefficient of friction between rock and steel and is half the wedge angle The measured extent of the rock damage from wedge penetrations appears to be less than predicted from theory. Even with full plasti c failure, the tooth spacing of 10 times the tooth depth leaves about 60% to 80% of the confined (by adjacent teeth) surface unfractured, depending on the friction angle ( ). Since friction stil l develops along the fractures, only cohesion should be appreciably affected. The ex tent of the plastic failure during seating will be reduced if the rock is compressible. The ratio of shear to normal force for teet h to slip along the tooth surfaces may be found using Patton (1966). The a ngle of inclination I = (90), where is half the apical angle. Then; Tan ( s + i) = tan ( s + 90 ) = max/ n Where max is the nominal normal stress, and s is the friction angle between the wedge surface and the rock. Substituting = 30o and max = c + n tan slip may occur if n/c < 1/((tan ( s = 60o ) tan ) For an estimated value of s = 20o and a value of = 35o,

PAGE 27

27 n/c < 0.2 for slip, or the normal stress need only to exceed one fifth of the rock cohesion for tooth slip to be prevented. Pull Out Test This research involves the assessment of the maximum side friction along a rock socket using a small scale anchor cast with a fluid gr out (Figure 2-2). The assessment is done by pulling the anchor and measuring the pulling fo rce and the displacement and developing a T-Z curve at the required locations. The method esse ntially applies the same principles used to perform in situ load testing of sock eted drill shafts. In the pullout test an anchor is cast (between 2 to 6 feet long) at a specified depth, allowing th ree to five days of setting for the designed grout to achieve maximum strength and then pulling the plug to failure (defined as the force required to overcome resisting force). It is assumed that the scale eff ect (difference of side shear of anchor compared to full size shaft) is negligible provided th e diameter of the anchor exceeded about 5 inches. It is not known however the extent to which the anchors length diameter ratio affects the maximum side shear developed (note, the authors commented that this aspect needs further investigation). Some agreements were observed with the T-Z va lues obtained from pullout tests and load tests. Similar results were seen with the di splacements to mobilize the maximum side shear. The observed range was between 0.1 a nd 0.2 inches. The results of th e pullout test also appeared to compare reasonably well with McVays theoretic al prediction model. Concerns however have been expressed about the effect s of increased side shear read ings during the pullout due to Poisson effects; the application of the pulli ng force on the plate resulted in a vertical compression of the grout which results in a late ral expansion of the pl ug. This increased the normal contact between plug and th e borehole, resulting in higher fr iction and hence an increase in the observed shear resistance.

PAGE 28

28 The Pressuremeter Test The Pressuremeter is comprised of two main parts; the down hole probe and the surface control unit. The probe consists of expandable tubing that is pressu rized using water, its pressure controlled by the surface unit. Both volume and pressure is recorded with each increase in pressure at the test depth. The pressure is generally increased at regular intervals and held for a minute. The readings are usually recorded every 30 seconds be fore moving to the next test depth. The pressure is measured using a pressu re transducer at the surface and the volume measured using an LVDT in the probe. The re sulting plot of pressure versus Volume/Volume Change is shown in Figure 2-3. Th e plot is typically S shaped with clear points of inflexion; AB Portion over which the membrane expands to the surface of the core wall BC Linear Elastic expansion pha se (the Initial Pressure po is represented by point B) CD Phase of Plastic deformation (the Yield Pressure py is defined by point C) The pressure approached after yielding is considered the Limiting Pressure pL. The initial at rest horizontal stress can be theoretically determined us ing the straight line por tions of the curve AB and BC and is defined by their point of intersection. The current design procedure for determining unit side shear for drill sh aft design involves the use of empirical data that relates the unit side sh ear to limit pressure us ing factors such as; the soil type, the method of installation and the ty pe of pile /shaft. The limit pressures are used to obtain equivalent pressures representative of similar layers. The equation for the equivalent limited pressure, PLe (Briaud, 1992), is given by: PLe = 1 2a PL (z) dz from a to +a

PAGE 29

29 where a is the height of the layer. For drill sh aft a is estimated from th e diameter of the shaft as a = B/2. The average unit side shear can now be determined and the ultimate side resistance derived from; Qs = P fsu dz from 0 to h, where P is the perimeter of the drill shaft. A plot of the pressuremeter data on the log scal e (Figure 2-4) can also be used to determine the undrained shear strength of the rock as proposed by Gibson and Anderson and later refined by Mair and Wood (1987). Theoretical Prediction Using Laboratory Test Results Drill shafts are generally socket into the limest one rock to carry large axial and or lateral loads. Florida Limestone has been known to be highly variable with respect to depth and the concentration of caverns and voids within very small spatial areas. These factors have created uncertainties for designers resulting in only nominal use of tip resistance and a more significant reliance on skin resistance. The fact that de termination of the mean skin friction along the length of the drill shaft is more reliably acquired compared to the tip resistance has also been an important factor in drilled shaft design. The accurate prediction of skin resistance is therefore key to a successful d eep foundation design. A number of relationships invol ving the skin resistance of rocks have been reviewed and correlated with field data from load tests by McVay et. al. 1992. The relationships (by correlation of field and or laborat ory data with strength data ava ilable) indicated that the skin friction (fsu) can be expressed as a constant times the unconfined compressive strength (qu). This assumes a constant angle of internal fricti on or a power curve relati onship for a variable angle of internal friction. The constant and variable methods are used depending on the databases location and type of rock under investigation. The resu lting correlations assume that

PAGE 30

30 the characteristics of the rock material can be represented by Coulombic parameters ( and C) while the value of the skin friction is assumed to be approximately equal to the rocks cohesion. A numerical analysis looked at the maximum skin friction mobilized at the rock-shaft interface. A simple elasto-plastic bi-linear m odel was used to characterize the rock by assigning a constant element stiffness with Youngs Modulus and Poissons Ratio. Failure was determined from a significant reduction in element stiffn ess and was described by a Mohr-Coulomb strength envelop in cohesion versus fr iction angle stress space. The results are summarized in Figure 2-5. The initi al and final stress st ates are illustrated; starting at the top of the shaf t where the overburden stresses are minimal to the bottom of the shaft where the geostatic stresses are maximum. The elements are failed through shear from the top (where the load is applied) and progress to the bottom of the shaft as each successive element has reached its minimum stiffness and the load is transferred downward. The growths of the Mohr circles can be seen to be limited to a single strength envelop. As shown the pole is used to determine the maximum shear stress on the vertical plane (since rock/shaft interface is vertical) and shown to be in close agreement with th e rocks cohesion (between 5% and 10%). By verifying that the skin friction is in cl ose agreement with the cohesion, the problem now becomes that of predicting the cohesion valu e for the rock. This can be accomplished by performing multiple triaxial tests on representative rock samples at different confining pressures. A less expensive method is to utilize unconfined compression tests and split tension tests, both simpler to perform and far less time consumi ng. By representing these values on a Mohrs circle, and using basic trigonome try, a relationship for the skin friction can be derived with respect to c and See Figure. 2-6. From the above figure the follo wing relationship was derived;

PAGE 31

31 fsu = qu qt The rocks skin friction can therefore be de termined (predicted) w ith knowledge of its unconfined compressive strength an d its split tension st rength. In the development of the above relationship, the tensile strength (qt) determined from the split tensile test agreed with the uniaxial tension test which assumes a major pr incipal stress of zero (Jaeger and Cook 1969). The high variability rock strengths require that sufficient sampling be performed in the vicinity of the shafts embedment depth to quantify the mean of the formation. The recommendation is that a relationship be used to evaluate the expected error in the mean in order to assess the level of accuracy of the prediction for skin friction design values. The following is the recommended error relationship: E =t / n Where E= standard error in the mean; n = number of laboratory specimens tested; = standard deviation of strength test; and t = confidence level from st udent t distribution. For design purposes, the % reco very obtained from the rock core sampling is used as a reduction factor to account for the spatial variability of the formation in th e vicinity of the drill shaft, that is; (fsu)design = %REC x fsu. To reduce the predicti on error and to obtain a reliable and conservative value for the design skin fricti on, the following method has been recommended: Find the mean values and standard deviati ons of both the qu and qt strength tests. Establish the upper and lower bounds of each ty pe of strength tests by using the mean values +/the standard deviations. Discount all the data that are larger or smaller than the established upper and lower bounds, respectively. Recalculate the mean values of each strength using the data set that fall within the boundaries. Establish the upper and lo wer bounds of qu and qt. Use the new qu and qt obtained above to calculate the ultimate skin friction, fsu.

PAGE 32

32 Multiply the derived ultimate skin friction fsu by the mean REC (in decimal) to account for spatial variability. The allowable or design skin friction can th en be obtained by appl ying an appropriate factor of safety or load factor. While each of the above methods have proven to contribute to foundation design methodologies, FDOT was interested in the furt her development of a complementary source for rock strength data. This was the impetus for this project. The proposed device discussed herein is expected to: Reduce the problem of borehole irregular ity and nonconformance that affects the pressuremeter test. In addition to measurements of normal and shear forces, the device will measure shear displacement. The device will eliminate the e ffects of normal force reducti on along the length of shear plate (due to length/stiffn ess ratio of plate) as experienced in the IBST. The need to acquire and test a sufficient quant ity and quality of laboratory samples that in practice, has not been consisten tly possible. This can result in insufficient design data at a particular location.

PAGE 33

33 Figure 2-1. Schematic of Rock Bo rehole Shear Tester (Handy/Fox 1963) Borehole Rock Rock Expansion Cylinders Shearing Teeth & Plate Pulling Jack Shearing Surface Pull Rod

PAGE 34

34 Figure 2-2. Schematic of Pull-Out Te st Setup and Anchor Casting Detail Corehole (6 diam. typ.) Dywidag bar (attached to bottom plate Anchor (typ. length 2 to 6 ft.) Pullout Force PVC Pipe used to isolate bar from Dywidag Bar screwed in bottom nut Dywidag bottom nut welded to bottom plate Rebar Cage with stirrups Steel bottom plate Plexiglass container Upper plastic lid PVC pipe attached to upper lid Bottom Plate Side Shear

PAGE 35

35 Figure 2-3. Typical Pressuremeter Curve. A B C D Relative change in Probe Radius Pressure P R/Ro

PAGE 36

36 Figure 2-4. Pressuremeter Curve Illustrating Peak and Ultimate Shear Strength (Mair & Wood 1987). Relative change in Probe Radius Pressure P P V / V o Cupeak Cuult

PAGE 37

37 Figure 2-5. Showing Cohesion and Shear Strength at Rock/Shaft Interface (McVay et al. 1992)

PAGE 38

38 Figure 2-6. Strength Envelope for Mohr-Coulomb Florida Li mestone (McVay et al. 1992).

PAGE 39

39 CHAPTER 3 PROPOSED EQUIPMENT Proposed Devices The previous chapter established the importa nce of determining th e shear strength of Florida limestone in the design of drilled shafts. The recognition of this fact led to the scope of this research, i.e., the design and construction of a borehole shear device capable of measuring the shear strength of Florida limestone. This requires acquiring data from the axial pulling force of a laterally pressurized cylinder with shear stud s. It provides a direct measure of the shear strength mobilized at the borehol e wall and can be used as input for the design of drilled shafts. The proposed device development process wa s divided into the following six tasks: 1. Literature review 2. Design/modify laboratory equipment for preliminary testing 3. Perform laboratory test 4. Design/build direct shear device 5. Perform laboratory/field testing 6. Analyze final tests results and prepare final report For Task 2, the following eff ects were being investigated: The contact shape of the shear studs The spacing and arrangement of the shear studs The size of the shear studs Displacement and its measurement The requirement of normal load (seating force) for stud biting into a variety of rock Seating damage Surface Irregularities Figures 3-1 to 3-12 show the Direct Shear laboratory equipment and setup used in conjunction with Gator rock (mix design by weig ht of crushed limestone; 20% cement and 20% water by weight of sand aggregate having a Coef ficient of Uniformity of 4 and passing the #10 sieve ) along with the various load ing heads and shear boxes to make th e above determinations. For Task 3 Perform laboratory Direct Shear Tests, the list of tests done is as follows:

PAGE 40

40 Direct Shear tests; these were initially done with little success until th e samples were sawn to initiate the failu re surface (simulation of discontinuities). Direct Shear tests using Wire Mesh Shear tests using Studs; the tests were carried out using four different types (shape of contact surface) of studs. Details of the testing procedure can be seen in Chapters 4 and 5. The objective at this phase of the research was to design a stud that would penetrate into a borehole using reasonable operating normal pressu res with constraints that would limit the penetration in lower strength rocks. This is to avoid a bearing rather than a shear failure. Reference was also made to the work done by I. Evans and S.A.F. Murrell regarding the response of rocks (soft and hard shale, limestone and diorite) to loading (static and dynamic) using circular rods with pointed ends. Several pointed end sh apes were tested; 30o, 60o, 90o and 120o apex angle. Quasi static indentation te sts were conducted using an Instron Universal Testing Machine at the loading speed of 0.0254 mm/min. in conjunction with displacement probes and force transducer arrangements. The force penetration relationships were analyzed and the indentation process was observed by means of a 500 power microscope that permitted a clear distinction between chipping and crushing processes. The target penetration depth was measured by means of a profilometer. In soft rock, crater volume is consid ered to be that of the pointed end embedded to its maximum. In the harder rocks, the volum e and net surface area of the craters were determined by stereotatic measurements (op tical) and a program written to compute the penetration depth/volume. A number of observations and conclusions were made regarding this research. Pertinent were the following:

PAGE 41

41 1. Rock penetration occurs as a result of cr ushing and chipping (see Figure 3-11) with an initial fracture in the direc tion of loading. Small angle points (heads) lead to larger chipping zones and smaller crushing zones with minute secondary radial fractures. Large angle points substantially suppr ess the chipping regime and in crease the size of the other features of penetration (for example crushing). 2. The force required to produce the same penetr ation in all three rock types increase significantly with point angle, i.e., from 60o to 120o. 3. Increased loading at the same location increa se penetration but significantly less than the initial penetration caused by the first load. 4. Increase loading at different location produced very marginal increase in penetration for all three point angles and rock strength. Th e author stated, A te nfold increase in the input energy for a 60o conical penetrator acting on a virg in shale or limestone resulted in a 5 to 1 ratio for the peak force, but nearly identical values of the maximum penetration for the two cases. 5. The above results confirmed the existence of an optimal input energy level to achieve a given penetration in a particular rock and point head configuration. 6. Conical point heads produced significantly hi gher penetration than wedge shaped heads for the same input energy levels for both limestone and shale but less significant in diorite. 7. Based on the above the decision was therefore made to use conical point heads for the prototype design of our studs. In additi on a configuration was formulated to limit maximum penetration regardless of applied pr essure. That is to say, once the conical points reached their maximum penetration de pth, the surface area of the studs increases

PAGE 42

42 dramatically, thereby reducing c ontact stress. It was found that the stud point pattern that would produce minimal deleterious effect on the shearing process (regardless of the orientation of the points with respect to th e direction of shearing) consists of four conically shaped point heads equa lly spaced on the studs surface. With respect to Task 4, Design and Build the Prototype Borehole Shear Devise, the instrument that was ultimately designed and constructed was based pr imarily on the literature review, laboratory tests and the performa nce of a mock-up laboratory model. It is important to note that there was a legi timate concern by the FDOT that one or more studs might not make contact with the rock face due to the presence of fiss ures in the surface of the borehole. This concern lead to the developm ent of an additional piec e of equipment referred to as a Borehole Mapping Device (BMD). The rationa le is that this will allow pre-evaluation of a boreholes surface condition prior to shear testing. Constructability issues (in particular, asse mbling) were addressed in the laboratory by using transparent plastic pipes to create a 1:1 scale model/prototype This effort helped ensure construction of the actual prot otype was not encumbered by unanticipated problems. The Rock Shear Device The rock shear device includes a jack for applic ation of the vertical force pressure, strain instrumentation inside the cell/probe, pressure transducers for the cell pressure and the shear element, electrical cables and pressure tubing, an d digitized recording da ta. For the prototype device, data collection was obtai ned using a laptop computer and a commercial data logger. A number of adjustments have been made throughout the design/construction and preliminary testing phase which ha ve led to a more robust design. The main features of the field devi ce are shown in Figures 3-13 to 3-25. The following are changes and or enhancem ent made during the initial testing:

PAGE 43

43 the reaction beam and assembly has been repl aced by a sturdy but relatively light weight tripod assembly capable supporting over 10,000 lbs. the pressure supply jack has been replaced by a hollow cylinder with a remote controlled winch and pulley system necessary for loweri ng and retracting the pr obe. It includes an assembly of drill rods co nnected to the probe and jack via threaded adapters. the hydraulic hollow cylinder (controlled by the hydr aulic jacks) applies a vertical force to the probe via 1.25 inch diameter AW rods. The AW rods are atta ched to a load cell nut that measures the correspondi ng force during probe movement. the above arrangement has subsequently been altered for field testing. The pressure supplied by the jack is now being measured directly from the jack using a pressure transducer. This pressure is converted to fo rce using the area of the jacks inner cylinder. the transducer, load cell and LVDT were in itially located in th e upper cylinder of the probe. However while field testing below th e water table, signal drift due to water pressure/temperature led to th e relocation of these instrument s at the surface to ensure reproducible results. However all electrical leads from these instruments to the data collecting system were spliced and sealed to allow for subm erged testing. the metal strips (spring steel, aka Chinese la ntern), shown in Figure 3-17, now completely protect the rubber membrane from puncture wh ile possessing flexibility. This allows for the non-uniform movement of the studs resulting from borehole wall imperfections the steel studs shown in Figure 3-18 were prec isely machined with four contact points each with apex shaped at 60o from point to base. The studs were case hardened to protect from wear and surface damage.

PAGE 44

44 the compressed air supply is controlled by regulat ors to provide air pressures to the shear studs and to the fixing spikes located within the datum base. the data collection system was setup usi ng a laptop computer. The system, NIDAQ 6.3, is user friendly, compatible with Labvie w and commonly used spreadsheet softwares such as excel and can be operable by field t echnicians. The data from the pressure transducers and LVDT are disp layed in three windows that are converted to stresses and displacement respectively using vo ltage calibrations relationships.

PAGE 45

45 Figure 3-1. Electronic Direct Shear Machine. Figure 3-2. Vertical Loadi ng Cross Arm, Horizontal Load Cell and Dial Guages.

PAGE 46

46 Figure 3-3. Modified Upper Specimen Fram e showing Wire Mesh Shear Element. Figure 3-4. Load Assembly showing Flat Head Shear Stud Arrangement.

PAGE 47

47 Figure 3-5. Load Assembly showing Multiple Head Shear Stud Arrangement. Figure 3-6. Load Assembly showing Point Head Shear Stud Arrangement.

PAGE 48

48 Figure 3-7. Load Assembly showing Point Head Shear Stud Arrangement. Figure 3-8. Direct Sheared Samp le Showing Predetermined Shear Plane (Red) and End Effects (Blue).

PAGE 49

49 Figure 3-9. Wire Mesh Sheared Gator Rock Sample Showing some Edge effects Figure 3-10. Multiple Head Sheared Gato r Rock Sample Showing End Effects.

PAGE 50

50 Figure 3-11. Fracture Pattern de veloping under a Cone or Wedge. Chipping Crushing Region NormalLoad Rock

PAGE 51

51 Figure 3-12. Shear Studs Used in Tests from le ft to right: Flat Head, Seregated Head, Pointed Head, and Multiple Head (bird eye view). Figure 3-13. Rubber Bladder and Shear Studs.

PAGE 52

52 Figure 3-14. Lightweig ht Tripod Assembly.

PAGE 53

53 Figure 3-15. Jack and Cylinder Arrangement.

PAGE 54

54 Figure 3-16. Probe Head with Instrumentation. Figure 3-17. Probe and Inner Rubber Bladder/Chinese Lantern Assembly.

PAGE 55

55 Figure 3-18. Expanded Hardened Metal Studs. Figure 3-19. Compresse d Air Supply Regulator.

PAGE 56

56 Figure 3-20. .Extended Steel Spikes used for Displacement Measurements. Figure 3-21. Tripod, Hydrau lic Jack and Rod Setup.

PAGE 57

57 Figure 3-22. Probe and the electron ic hardware used for Calibration.

PAGE 58

58 Figure 3-23. Initial Design Sche matic of the Borehole Mapper.

PAGE 59

59 Figure 3-24. Prototype of Borehole Mapping Device (BMD) S howing Measuring and Feeler Wheels.

PAGE 60

60 Figure 3-25. Air Cylinder Controlle d Measuring Wheels Being Calibrated.

PAGE 61

61 CHAPTER 4 TESTING PHASE In order to accomplish the stat ed objectives, two series of te sts were performed. The first involved laboratory testing usi ng the Gator Rock cement/sand mixture (20% cement/20% water by weight of aggregate; crushed limestone pass ing #10 standard sieve with Cu of 4) designed specifically to simulate the pr operties of Floridas soft limes tone. The second was to conduct field tests using the equipment in boreholes at br idge locations that also had drilled shaft load testing data. A computer model of the stud/rock loading environment to determine the stress distribution was also performed to ai d in the validation of the device. At the conclusion of this research program it is envisaged that suffi cient data will be generated to arrive at conclusions regarding; The efficiency of the equipment in regard s to their ease of operation, limitations and possible areas for future development. The validity of the results, based on the equipm ent designs and accuracy of the measuring instruments acceptable margins of errors. The validity of the results based on theoreti cal assumptions made versus true testing conditions whether in the fi eld or in the laboratory Rock Shear Device (RSD) The scope and the sequence of work were as follows; Build the device as shown in Figure 4-1 Setup instrumentation and data co llection software and electronics Calibrate measuring instruments including, lo ad cell, pressure transducer and LVDT Prepare existing gator rock samples in a stee l drum for testing by coring appropriate size holes to accommodate probe Measure load and displacement at f our different normal pressures. Compare the relationship between ve rtical load and displacement

PAGE 62

62 Compare relationship between normal stress and vertical (shear) stress Determine the shear strength of rock (cohesion and angle of internal friction) and compare it to the theoretical deri vation (McVay, ASCE, 1993). The following section will briefly look at the me thods and procedures used to address the above objectives. Details of the devices operations can be seen in Appendix D. Testing Procedures Summary The laboratory setup is as shown in Figure 4-2. The compressed air supply is connected to the regulator with the valves closed. The s upply lines from the regula tor are connected to the appropriate lines on the probe (one to the lower datum spikes and one to the central expandable chamber). The data collection system is setup to the computer and connected to the probe. The cylinder from the hydraulic jack is placed on top of the tripod with the threaded steel rod suspended through the center hole of the cylinder. The threaded rod is then connected to the pr obe adapter rod and the probe lowered into the test hole. On the desktop, the sh ear-test icon is clicked and opened to initiate the data collecting system. A zero reading is taken (by clicking the st art button) prior to the application of pressure and force to ensure that all the measuring in struments are connected and activated (e.g., low waveform and not flat lines in the respect ive windows indicate active instruments). The valve to the pressure chamber is now opened and the first normal pressure of about 10 psi is applied to the studs a nd allowed to seat for about 20 s econds. The start button is again clicked and the pressure immediatel y applied to the jack until the cylinder inne r tube extends to about above its initial position correspondin g to the displacement of the probe. The stop button is clicked and the data collection terminated and saved. The jack valve is released to deflate the inner tube of the cylinder for the next test. The process is repeated for 3 additional

PAGE 63

63 pressure levels using 5 psi increments. At the comp letion of the four tests, the probe is raised to another level in the borehole. Using the calibration relationships derived earlier for each instrument, the stresses are calculated and plots of sh ear stress versus normal stresses are computed to determine the strength parameters. This is repeated in all the test holes and the data analyzed and comparisons made. Borehole Mapping Device (BMD) The scope and the sequence of work were as follows; Build the device as shown in Figure 4-3. Setup instrumentation and data co llection software and electronics Calibrate measuring instruments including, the Hall Sensors and the String Potentiometer. Prepare gator rock samples by coring appropriate size holes to accommodate the BMD Measure wheel deflection and height at tw o orthogonal positions within the hole by rotating the BMD 90 degrees after the first test (a test starts at the bottom of the hole and is completed at the top) The data display window shows a plot of the wheel defection ve rsus height/depth Check for abnormally high deflections (voids). Determine all the locations w ithin the run where deflectio ns are abnormally large and ensure that these locations ar e avoided during shear testing. The following section reviews the methods a nd procedures used to accomplish the above procedures. Brief Testing Procedures The laboratory setup is as shown in Figure 4-4. The compressed air supply is connected to the regulator with the valves clos ed. The supply line from the re gulator is connected to the dual action valve that controls the direction of the ai r springs attached to the measuring wheel. The

PAGE 64

64 String Potentiometer is extended over the small pu lley and attached to the BMD via a nut at the base of the extended threaded rod adapter. The data collection system is connected to th e computer and BMD. The cylinder from the hydraulic jack is placed on top of the tripod with the threaded steel rod suspended through the center hole of the cylinder. On the desktop, the mapper-test icon is clicked and opened to initiate the data collecting system. The initial plots are noted showing the tw o vertical axes and the initial ground or datum level. The valve is then opened and the pressure adju sted to about 10 psi to ensure that the wheels are fully extended outwards i.e., that the dual action valve is in the outward position. The BMD is lowered to the bottom of the testing hole and the start button clicked while raising the device slowly to the top of the borehole. The stop button is clicked and the data collection terminated and saved. The process is repeated by rotating the device 90 degrees and lowering it back to the bottom of the hole. At the comple tion of the two tests the plots are analyzed for depressions and/or voids for fu ture shear test reference. FEM Theoretical Model A two dimensional model of the test was done as shown schematically in Figure 4-5 below. The modeling was done using the Adina Finite Element Software. The Boundary conditions are as shown in the figure. The rock is assumed to be coulombic, homogenous and isotropic and infinite in relation to the loadin g surface. To ensure rigidity of the stud th e elastic modulus was inputted approximately 10 times the typical modulus of steel. Displacement control loading was modeled to ensure that under the loading environment, no element within the stud was displ aced relative to each other, i.e., that actual movement of the stud relative to the rock acts as a rigid body.

PAGE 65

65 Typical normal stresses were applied and a predetermined displacement was programmed into the model for analysis. The resulting shear st resses within the rock material at each normal pressure were plotted and surface to surface cont act (contact pairs) compared to the Mohrs failure envelope derived from the laboratory and field test results. To date the models have not converged to a solution, due to the large strain levels produced. More work needs to be done in this area and another program, FLAC 3D is currently being evaluated.

PAGE 66

66 Figure 4-1. Shear Testing Probe.

PAGE 67

67 Figure 4-2. Laborat ory Testing Setup.

PAGE 68

68 Figure 4-3. Borehole Mapping Device.

PAGE 69

69 Figure 4-4. Laborat ory Mapper Setup.

PAGE 70

70 Figure 4-5. Showing Finite Element Model of Shear Test. Rock Modeled as Coulombic Material

PAGE 71

71 CHAPTER 5 LABORATORY AND PSEUDO FIELD TES T RESULTS, OBSERVATIONS AND CONCLUSIONS Direct Shear Device Testing Preliminary Testing Setup The tests were performed on Gator rock coupons carefully shaped to fit the 2.5 diameter direct shear sample housing. The samples we re soaked and placed in the sample box of the device. The vertical loading ar m was secured and lowered in c ontact with the sample via the upper frame containing the various shear studs. The dial gauge was zeroed and a vertical load applied to the sample. The horizontal dial gua ge was adjusted in place using clamps and a horizontal load applied with a preset rate of strain of 0.14 cm/s. The horizontal load was measured using a load cell and digital readings of pressure load and displacement were recorded with each successive increase in th e vertical load application. The results were, for the most part, consistent with direct shear theory as it relates to normal and shear stresses (see Appendi x B and Table 5-1 for results). The minor inconsistencies observed in severa l of the results were attributed to the following: End effects due to stress concentration around the circumference of the sample (see Figure 3-10). Edge effects due to stress concentration create d by the vertically load ed studs at the edge of the samples (see Figure 3-9). Non-symmetrical application of the normal load via the cross arm of the instrument. This could be observed during some tests w ith the tilting of the loading head.

PAGE 72

72 Pseudo Field Rock Shear Device Tests The preliminary tests were carried out at the Coastal Engineering Laboratory. The setup is as shown in Figure 4-2. During the testing, several problems we re identified and addressed; 1. The steel drum containing the gator rock was being lifted up with the application of the vertical load during testing 2. Deflections at the support of the tripod were affecting the measurement of vertical load and displacement 3. Leaks were detected at the connections of several pressure lines (horizontal pressure) 4. At the initial stage of testing, the dial gauge used to detect slippage of the probe from its base position was not yet inst alled. A number of readings indicated that the LVDT was not engaged while testing, i.e. slipping was occurring. 5. The spring steel used to construct the Chin ese lantern was deforming after a number of use. This affects the sliding mechanism designed to prevent problems with the spring action of the studs. The problem was confir med when a number of the shear stud heads were observed in direct contact w ith the expanding rubber membrane. 6. The spring steels strips were in itially welded in place at both ends. Thus, any damage to the rubber chamber by the shear studs could not be repaired in the field. Repair would involve cutting and discarding of the spri ng steels and re-welding the attachments leading to delays and associated costs. 7. Reduction of the data collected indicated th at there was sensor drift in zero reading (compared to that at calibration) in a number of the test results. The following measures were subsequently taken to solve the above problems: Item (1): I beams were placed above welded plate extensions on the drums and bolted down to the concrete floor. Item (2): the legs of the tripod that are s upported across the side wa ll were reinforced and placed in contact with the spanning I beams to eliminate the observed deflections. Item (3): all pneumatic tubing were redone and checked for leaks. Item (4): the contact spike pressure a nd fixity of the spikes was improved. A potentiometer was added to measur e and record any displacement.

PAGE 73

73 Items (5 & 6): the entire pressure chamber w ith a protective spring st eel Chinese lantern was redesigned and rebuilt. The width and thickness of the individual steel sheet has been increased to improve resistance to yield and to allow for more overlapping of each steel sheet during expansion thus preventing direct contact between the studs and the expanding rubber. The ends of each spring steel sheet is now connected to the sliding mechanism by screws (instead of welding) to allow for field repairs to be made. With the above listed adjustments made, a numbe r of tests were again carried out and the results analyzed. A linear relationship was found to exist between the applied normal stress and the shear stress. This relationship can be used to derive the strengt h parameters (apparent cohesion and angle of internal fric tion) of the rock. The indications are that this particular Gator Rock mix has a cohesion value ranging from 240 psi to 300 psi, and angle of internal friction ranging from 32 degrees to 34 degrees. The oper ation of the equipment is discussed in more detail in Appendix D Borehole Mapping Device (BMD) Testing The device was tested in two phases. The fi rst involved testing in the boreholes created in the Gator Rock for the rock shear device and the other in a Plexiglas transparent tube lined with man-made undulations (Figure 5-4). The pneumatic fittings were secured to the device and compressed ai r set to an initial pressure of 8 psi. The direction control level is adjusted to ensure that the wheels are in the out position so that as they travel al ong the walls of the borehole, the air pressure acts as a spring. The String Potentiometer was connected near th e top of the device via a small pulley and the data collection system initialized. The test was performed by clicki ng the start button on the

PAGE 74

74 acquisition screen and slowly raising the BMD to th e top of the hole very slowly with care taken to ensure that the alignment of the mapper is maintained vertically. The results indicated that for the majority of the tests, the cont our lines of the plots mimicked the surface contour of the test holes. However, there were sections on the plots that varied slightly from the actual wall surface geomet ry. The reason was that the probe could tilt, thereby creating spurious data. The alignment problem was addressed by adding another set of feeler wheels at the top of the pr obe to reduce the tilting problem. Observations Laboratory Testing Results The results of the laboratory tests were divided into three different sections: 1. Direct shear tests of the Ga tor rock coupons for the development and design of the shear studs, 2. Prototype equipment tests at the Coas tal lab (the Pseudo-field tests). 3. Mapping device tests in both the gator rock and plexi-glass contour ed container. Item 1 Direct shear tests The results are shown in Appendix B and summar ized in Table 5-1. As expected, an increase in the normal stress resulted in an increa se in the shear stress at failure in all cases. There were however limitations regarding the applie d normal stresses associated with the loading environment. That is to say, the problem with end and edge effects dominated at the higher vertical loading ranges. The adverse effects were due to problems associated with the proximity of the loaded area to the boundary of the sample and container. In addition, end effects were primarily caused by stress concentration created during loading between the sample and the rigid wall, edge effects on the other hand is caused by th e proximity of the load (stud) to the sample edge. Both effects have lead to apparent failures and deflections that appeared to have

PAGE 75

75 compromised the results. The loading arm a pplication of the normal load could not be maintained at a horizontal position throughout some of the test resulti ng in an unsymmetrical load application leading to uneve n distribution of the load on the respective shear heads. This resulted in erroneous assumption of stre ss distribution during data reduction. The measurements of vertical displacements wh ich could have been used to estimate stud penetration and hence contact areas for stress calculations ap peared inconsistent with expectations especially at the higher load a pplications where edge and end effects were significant and the loading arm tilting. The penetration results are also shown in tables; the values ranged from 0.1mm to 0.5 mm depending on the stud type used and the number of stud arrangement. From the plots of the Shear Stress versus No rmal Stress, the apparent cohesion (shear strength) of the gator rock ranged from 150 psi to 230 psi with a mean of about 200psi. The angle of internal friction was deduced to range from 17 degrees to 34 degrees with a mean of 27.9 degrees. Though no obvious trends were seen in these results, the arrangements that involved 9 studs or more (studs close to edge of sample) appeared to have resulted in more deviation from the trend lines or contained discarded data points (boundary effects). Item 2 Tests using prototype device in cored gator rock The tests were carried out as discussed earlier and a representative pl ot of the results is shown in Figure B-4 of Appendix B. The figure in cludes plots of deduced shear stresses versus normal stresses. The variation of load pressure and displacement versus time are consistent with expectation; where the load and displacement peaks at a point (then decrease or remain constant) and the pressure held relatively c onstant throughout the test. The shear stress versus normal stress plots, re present the shear envelope of the sample and are used to determine the appare nt cohesion (shear stre ngth) and the angle of internal friction.

PAGE 76

76 The deduced average penetration at the operation pressures were used to calculate areas of contact from the normal loads and the shear fo rces. This average penetration value was obtained from the load versus penetration relationship developed by modeling using the laboratory commercial shear machine, the gator rock and the studs used in the prototype. The cohesion values ranged from 185 psi to 300 psi and the angle of internal friction ranged from 22 degrees to 36 degrees. These va lues as expected are comparable to those obtained using the direct shear m achine with the gator rock. The data points showed very good cluster about the trend line. This is reflected in Rsquared values in excess of 95%. The varia tions seen in the deduction of the coulombic parameters are significant enough to warrant a discussion ; notwithstanding the fact that the rock samples are hardly likely to have the same prope rties throughout (due to inconsistencies in the mix and its compaction), the differences could be attributed to the unaccounted for variations in the penetration depths of the studs during testing. The determination of the penetration depth and hence the contact area calculations is essential to the accuracy of the data reduction. The relationship between the applied force and penetration depth was investigat ed/modeled in the labor atory using available rock samples with known unconfined compressive strengths and the re sults are discussed in Chapter 6 below. Item 3 Laboratory tests results using the borehole mapping device The measuring wheels are limited to total di splacement on either side of the device and the wheels will not detect fractures or voids less than in width. This level of detection is adequate for the purposes of identifying voids/fractur es that could affect th e use of the shear test device at a particular depth. The alternative use of the device is to iden tify or map voids within a rock formation through the use of boreholes around an existing or proposed drill sh aft location. The logs of the

PAGE 77

77 coring would give the general areas where cavitie s or voids may exist in the rock formation (based on recoveries versus core run) but w ould not necessarily identify an area that is significantly fractured. Theoretically the BMD would identify within the low recovery areas (known from the logs) the actual height and dist ribution of the voids in an area, however the depth and continuity of the void cannot be esta blished beyond The correlation of the mapping information obtained at all the cored locations could lead to some presumptive extrapolation of the data. This information coul d prove useful in determining the frequency and distribution of cavities/voids for estimation of an applicable factor of safety. The anticipated problem in the field is the possible effect of the ground water and suspended fines on the sliding mechanisms of the testing wheels. During the tests, the sliding motion of the wheels is dependent on the air sp ring pressure and a smooth travel rod (stainless steel). If the rod is smeared by fines between th e rods and the bearings (as is expected in the field), the accuracy of the recorded defections could be affected. Conclusions Laboratory The laboratory Direct Shear equipment can be used successfully to demonstrate the relationship between normal and shear stress to the cohesion or shear strength of Florida Limestone. The accuracy of the deduced shear strength is dependent on the proximity of the applied normal stress to the edge of the sample due to problem of stress concentration that lead to undesirable edge damage (edge effects). The contact surface of the metallic stud needs a relatively sharp edge to cause damage to the surface of the rock for shearing (pre dominantly) to occur during testing. The depth of penetration with normal load a pplication is controlled in part by the apex angle of the teeth of the stud which also mini mize the problem of slipping (the use of a 60o apex angle requires only about 25% of the shear strength of the rock for normal loading to prevent slipping Patton 1966).

PAGE 78

78 The coefficient of friction between Florida Li mestone and steel was not known and a value of 0.4 was used based on general information available on the relationship between various material and steel. This value is expected to vary with the mechanical property of the rock and its surface condition under fi eld testing environment. The preliminary design of the rock shear devi ce particularly the measuring instrumentation was suitable under laboratory environment but was not so under field conditions due to problems with the water pressure and temperatur e changes at depth, leading to drifting and general mechanical ware. The determination of the point of shear failure in the laboratory is significantly more defined in the laboratory than in the field due primarily to the condition of the shear surface of the rock; the equipment used to core the gator rock in the laboratory produced a relatively smoother surface than that used in the field. With respect to the BMD, the use of the Hall E ffect theory that indicated the production of a sinusoidal wave form when a Hall sensor is passed across a magnetic field was chosen because of its simplicity and si ze and the fact that it would be functional under water. The calibration curves show the distance from th e magnetic source that the sensor would operate within the linear portion of the wave form. The 3rd order fit was used with the best R2 results, however for our purpose a nd the level of accuracy required, the 1st order fit was found adequate. The movement of the measuring wheels is cont rolled by air springs (reversible) that use a sliding mechanism to facilitate displacem ent measurements. Under the controlled environment of the laboratory, this mechanis m is quite adequate and produces fairly accurate mapping of the test surf ace as long as the central axis of the cylinder remains near vertical. For the laboratory testing this is one of the limiting factors controlling the accuracy of the results. The measuring wheels are controlled by two air springs that allow sliding along a horizontal rod through self lubr icating cylindrical bearings. The wheels extend with the opening of the air valves to the air springs. One of the wheels is known to extend at a higher pressure (2 psi) than the other due to faults with the alignment of the sliding mechanism that produce more friction on one than the other. This a ffects the accuracy of the displacement measurement since the displ acement of either wheel is not symmetrical under the extension or co mpression of the spring.

PAGE 79

79 Table 5-1. Summary of Results usin g Laboratory Direct Shear Machine Stud Stud Estimated Cohesion Estimated Phi Type Arrangement (psi) (deg) Mesh 195.00 27.40 195.00 32.60 190.00 29.90 200.00 33.50 Pointed Head 21 200.00 34.00 21 200.00 34.90 9 200.00 24.70 5 175.00 21.80 Multiple Head 21 175.00 20.50 21 190.00 17.70 5 230.00 34.90 5 250.00 27.70 Seregated Head 9 195.00 26.60 9 210.00 24.20 9 200.00 33.00 11 200.00 28.80 5 160.00 16.70 Flat Head 5 175.00 24.20

PAGE 80

80 Figure 5-2. Wider Spring Steel Shee ting with Screwed End Connections. Figure 5-3. Mapping Device Setup for Gator Rock Test Hole.

PAGE 81

81 Figure 5-4. Showing Mapping Test Setup in Transparent Tube.

PAGE 82

82 CHAPTER 6 FIELD TESTS, OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS Rock Shear Device: Fuller Warren Bridge Site The site is an existing bridge spanning across Park Avenue in Jacksonville. A number of load tests were done prior to construction however we chose a load test location that indicated that the rock formation was about 12m below existing ground level. The site is shown schematically in Figure 6-21, three boreholes were positioned around the pier in close proximity to the test shaft to assess the variability of the rock strength and quality around the pier. Each borehole was taken to a depth of 24m and was done by Universal Drillers in Jacksonville. Figure 6-22 shows the drilling in progress and the samples from one core run, respectively. Between the depth range of 12m and 18m, the recoveries varied between 58 and 92% but were about 76% with infrequent areas of discontinuities/cav ities filled with clay s/silts (Figure 6-23). The soils encountered were si milar in all three locations; the upper 12m was predominantly clayey sands with the water ta ble about 6.2m below existing ground level. The rock formation was encountered at about 12.1m and although rec overy was good to the maximum depth (appr. 75%) there were intermittent thin layers where the recovery was primarily sandy clays. The upper 12.1m was therefore cased to prevent corewall failure. The samples were taken to the FDOT laboratory for testing and the results used to predict theoretically the insitu shear strength of the ro ck for future comparison with that of the rock shear testing device. The equipment includi ng the air compressor and other electrical devices such as invertors etc., were mobilized on site and setup as shown in Figures 6-24 and 6-25. Details of the testing procedures can be seen in Appendix D. The preliminary attempts at testing were not successful for a number of reas ons; the borehole had to be widen, the wires extending from the load cell, the pressure tran sducer and the air c onduits got tangled and

PAGE 83

83 damaged, the electronic connectors kept breaking at the soldered ends, the winch support failed resulting in difficulties in lifting the rods out of the hole (15m). The sensor drift in the instrumentation (load cell and pressure transducer ) were very significant (possibly due to low water temperature and high pressure at depths) resulting in unstable and unreadable signals. The corrections required re-wiring of the instrument and a change of instrume ntation; the load cell and pressure transducer were removed from the in strument and transducers were taken out of the problem environment (the test hole), and placed on the jack and air regulator respectively. With regards to the drifting and changes in the excitation volt age, the method of measurement has been adjusted to a ratiometric one where the ratio of the output voltage and the excitation voltage is used with the full scale vo ltage reading to offset the problem. This adjustment was made within the software and th e real time data and graph reflects this output. The new setup however has not yet been modified to prevent the amplification of noises in the output; this will have to be done in the future us ing filters. Some mechanical problems had to be corrected including th e use of stiffer springs that are able to retract the studs upon release of the chamber pressure; the fines suspended in the wa ter clog the shaft of the studs and affect their sliding (retracting) mechanism unde r the influence of the springs. Testing The BMD was first lowered to a depth of 17m and the operation pressure applied accounting for the hydrostatic pressure at that depth; this pressure is adjusted as the device is lifted. The mapping is examined real time and the full deflection of the wheels noted. The test was done at 0.75m intervals i.e., two sets with each 1.5m length of rod which is removed as it emerged from the hole and reached the top of th e Tripod. The remote control of the winch was used to advance the BMD to the t op of the hole with a smooth rate of ascent. Fo r the purpose of this set of testing, the instrume nt was severely clogged during testing and the results deemed

PAGE 84

84 insignificant. With all the rods removed, and th e cable still connected to the end adapter, the BMD was unscrewed, removed and the end adapte r screwed onto the top of the rock shear testing device. The device was then lowered to a depth of 17m and the test started. The test was done at each depth location at le ast 4 times with different normal pressures and the results saved. The device was then lifted to another test dept h and the procedure repeated (see Appendix D for detail testing procedures). The real time pl ots of pressure with time load with time and displacement with time are examined during the tests. Each test was performed by using the manual loading jack to displace the shear devi ce by a maximum of before the test was stopped. Situations that prevented this displacem ent usually involved the extension of the studs into voids or clay filled voids; this was corrected by lifting the entire devi ce above the problem area. Test Results at the Fuller Warren Bridge, Jacksonville The comparative results of McVays theoretic al prediction and that of the device are shown in Figures 6-1 and 6-2. The values show some vertical variation but generally are within a reasonable range of consistency. Both sets of determinations show a general reduction in shear strength from a high of about 300psi to a low of about 20psi. The upper 53 ft. of the rock formation had shear strength values typically ab ove 100psi (one exception) with a high of about 310psi from both methods of predictions. Below th e 53ft depth range the sh ear strength of the formation tumbled to an average value of about 40psi. These ranges are typical of Florida Limestone strength properties and the levels of variati on are consistent with those seen in the core samples with intermittent clay intrusion. The unconfined compression and split tension test results of the samples obtained from all three bore holes are shown in Appendix D. These values were used to determine the shear strength of th e rock with depth based on McVays theoretical

PAGE 85

85 prediction that relates the shear strength of the rock with its unconfined compression strength and split tension properties. The variation with depth of the comparison shown in Figures 6-1 and 6-2 refers to Boreholes 1 and 3 respectively. Only one set of device data was obtained from Borehole number 2 due to problems with equipment blocking and clogging during the time of testing. The conformance is good (generally within the 10% of each other) although a number of areas show some differences as shown in Figures 6-3 and 64, their order of magnitude are very similar. These variations are expected and could be attrib uted to sectional clay contributions within the test/contact area of the device while testing. The values from the field test appear marginally lower than those predicted by McVays model a nd could be considered a marginally more conservative estimation of the rock strength. To determine the stresses at contact between the stud and the rock/gator rock, the depth of penetration of the apex of th e stud into the sample surface should be measured or otherwise scientifically deduced. This penetration depth will vary with the strength of the rock and the applied pressure. There are empi rical relationships available that relate the penetration to the shape of the stud point and the strength of a rock (Evans a nd Murrell,1962), however, we have done our own laboratory modeling and the results are shown in Figures 6-16 and 6-17. The modeling was done using the Direct Shea r Machine in the Labor atory; the loading plate was modified to accommodate five of the st uds used in the prototype device. An electronic dial gauge was attached to the top of the plate and zeroed. Vertical load s were applied via the loading arm at the same locations (Figure 6-16) and at virgin locations (Figure 6-17) and the loads and corresponding pene trations (dial gauge r eadings) recorded.

PAGE 86

86 Not withstanding some error dial gage readings that have b een discarded, the results show excellent conformance with Evan s/Murrell Model at the pressure range used (Figure 6-16 ) using samples of Gator Rock and applying pressures at the same location (gator rock samples only). In Figure 6-17 (various strength samples), the pressu res were applied at virgin locations (method used in the field) and with samples of vary ing unconfined compressive strength. The results generally indicated that the penetrat ions are fairly constant and that the variation of pressure with depth is more significant in the fairly soft lim estone (Qu < 200 psi). This is consistent with previous work done (Evans and Murrell 1962) that suggested that unless a certain energy/force threshold is reached, the measured penetrations would remain relatively constant with increased normal force/pressure. A correlation between ro ck strength and penetr ation (within our test pressure range), has been deduced and adapted ba sed on the samples tested so far and is shown in Table 6.2. This data base could be improved with additional testing on more variety of rock strengths. This analytical approach uses the laboratory model derived as shown in Figure 6-17. The important application of this model is the use of a constant depth of pe netration with varying normal force at each test level. This expl ains the good comparison obtained using a single average penetration depth for data reduction (Figure 6-3 to 6-4) and penetration depths obtained from the model. Figure 6-15 shows that the strength envelope is not sensitive to the level of accuracy of the depth of penetra tion used in its determination. A sensitivity analysis was done on the shear strength determination by increa sing/decreasing by 50% the depth of penetration (Figure 6-15) used for data reduc tion. All the points are shown to have clustered along the same strength envelop. The indications ar e that as long as a single depth of penetration is used at each

PAGE 87

87 test level the strength envelope will not be affected by an inaccu rate estimation of the penetration depth. The results generally showed good compatibility, however in situations where the studs have penetrated stratified cl ayey inlayers within the rock formation, the approach shows erroneously very high shear stre ngth, owing to significant beari ng effects (e.g., Borehole 2 at 44 ft.). This anomaly is not reflected in the McVa ys prediction since its de termination is based on tests of intact rock samples in the laboratory. The results when properly analyzed can al so be used to determine locations where unusually high penetrations are resulting from signifi cant presences of clays or very soft rocks. In theses cases bearing problems are typical and the normal stresses are significantly lower than the shear stresses resulting in erroneously large or negative shear strengths as seen in red numbers in Figures 6-3 and 6-4. The problems encountered in the field were li mited to mechanical issues; the cored holes were only marginally larger than the device and its relevant attachme nts (clearance issues). This resulted in difficulties to move the devi ce up and down the hole freely and could have contributed to friction related e rrors (considered minor) between th e sections of the device (not the studs) and the walls of the hole. The fines in suspension at depth (mud intrusion) affected the free retraction of the studs by the sp rings and the expansion of the in ternal bladder. These effects are not quantifiable however steps we re taken to keep the instrument as water tight as possible to minimize these problems. By and large, there are a number of factors that may have aff ected the observed results but within the limits of these experi mental errors it would appear th at the validity of the method and simple theories that governs quantita tively the derivation of the stre ngth envelope of the rock are

PAGE 88

88 relatively sound based on the satis factory conformance of the methods used to determining the rock shear strength. The Finite element model shown in Figure 4-5 is supposed to simulate the testing conditions in the laboratory and field. The pre liminary results however have not been consistent with expectation for the following reason; The boundary conditions are difficult to model to represent the conditions of loading in the field; in the field/laboratory, the normal loads dictates the re quired shear force required for failure during the displacement, in the model, the normal and shear forces are applied to achieve a displacement. The result of this is undesirable rotation about the surface/surface contact. A number of combinations of loads ha ve been use with the same result. The studs are modeled as a rigid elastic body to ensure that translation of the elements is uniform. The rock is modeled as a Coulombic material (c/ ) with two fixed boundaries and translation of the elements free only along the loading axis. The result of the rotation about the surface/surface contact point is a si gnificant reduction in developed shear stresses in the contact elements. The model would best represent field condition under strain controlled loading however, to da te the solution does not conver ge under this c ondition. Conclusions The field and laboratory tests at the drill shaft location tested indicate that the variation in rock strength with depth is fairly high how ever the spatial variation and mechanical properties of the rock formation at that location is relatively small. This information is location specific and does not in anyway sugge st that similar results can be expected at other shaft locations. The determination of the rock shear strength is not significantly affected by an inaccurate estimation of the depth of penetration (of sh ear stud) as long as a constant penetration depth is used at each test level for data reduction. The undulating rock surface in the field and unf iltered noise in the instrumentation has resulted in a more erratic data point di stribution and multiple failure surface, the interpretation of which requires a very cl ear understanding of th e surface and loading conditions for derivation of the peak stress. The simplest approach to determining the peak stresses is to plot the load versus time graph and deduce the peak load from which the corresponding peak stresses are determined. From the results, the failure point was generally found between 0.1 and 0.3 of displacement. For this particular testing exercise, after the boreholes were made, the contractor had to use a tricone bit which wobbled at high speed to open the holes a little wide r to facilitate ease of movement of the device duri ng testing in an effort to mi nimize jamming of unretracted

PAGE 89

89 studs (due to clogging) while lifting. The result of this widening has lead to further undulating and possible opening of fractures along the borehole which could have affected the production of classical failure curves. The prior determination of rock unconfined compression strength before testing is important to the determination of the operati on pressures used during testing which also helps to reduce stud penetration into the rock surface and hence limits bearing influence on results and jamming of the equipment. In accordance with Item 10, the level of mud residue and soil suspension in the hole is highest immediately after coring and their presence also helps to increase the problem of clogging and jamming of the equipment. The measuring instruments used in the prelim inary design of the devi ce were not reliable in the field conditions and th e adjustments made to keep all instrumentation above the surface has eliminated the problems associat ed with the changes in temperature and pressure of the ground water with depth. A couple of filters are however required to reduce the level of noise seen in the data. The setup on site involves the lifting and moveme nt of a relatively he avy tripod to the test locations, the attachment of various inst ruments to the tripod and the wiring and connection of the data collec tion systems. These operations require manual and technical inputs and can be time consuming; the average time of setup and take down is about 2 hours using one operator. The studs are made of hardened steel and will start rusting within a few hours after testing. This affects the shear surface of the studs and also prevents easy movement of the springs for stud retraction leading to possi ble jamming of the equipment. The winch has a length capacity of only sixt y feet and therefore can only test to a maximum depth of 55 feet (need at least 5 feet to remain on the winch to prevent slippage). The rods are also limited to a testing depth of 60 feet. The current sliding mechanism used for th e displacement measurement of the mapper wheels is unsuitable for an environment that has significant suspension of soil material in the ground water. The tests were terminated after only one attempt in the borehole due to clogging and jamming of the wheels. The re sults indicated that the wheels underwent minimal movement during testing. An adjustme nt to the mechanical sliding systems is required. With respect to the finite element model furt her assessment is required on its development, logistics and also its simulation.

PAGE 90

90 Recommendations For data reduction and analysis, the use of a limiting penetration approach based on the penetration correlation proposed (Table 6.2) in th is report, appears to be a technically sound method in the derivation of contact areas for stress calculations. The table should be used as a guide however inaccuracies in th e penetration prediction have been shown to be insignificant in the estimation of the rock strength. The designs of the both devices have been dynamic and have undergone a series of changes based on foreseen and unforeseen problems The instrumentation changes to the shear device for example rendered a number of areas on the present device obsolete; the lower chamber with the spikes is no longer required since the displacem ent is now being measured at the jack cylinder; the upper chamber which hous ed the pressure transducer and LVDT is no longer required since they have been removed to the surface (as shown in later figures). The inner tube that is used to transport the compressed air to the spikes through the outer tube is no longer required along w ith the seals and self lubricating bearings that separated both tubes to facilitate relative movement for displacement measurements. The problem of fines suspension in the gr ound water that affects the spring controlled retraction of the studs can be so lved either by increasing the sti ffness of the spring to a point where the fines are unlikely to have much effect (this would also means an increased pressure application to the chamber to expand the bladde r and extend the stud for te sting not advisable), or design a thin rubber sheeting with holes at the stud locations with diameters similar to that of the stud or slightly less. This would allow the shear surface of the stud to contact the rock but prevents fines intrusion. The sheeting must be removable for maintenance purposes and must be durable and ware resistant unde r the testing environment.

PAGE 91

91 The size of the borehole is criti cal to the operation of the devi ce; allowances must be given to the possibility of the studs becoming jamm ed so sufficient clearance is required. The recommendation is that the hole be between 4 and 4 inches in diameter (can be done by advancing the casings to the dept h of the coring and retracting) and that the coring be done at a controlled low gear to reduce wobbling of the core barrel that would produce too much undulation in the rock surface. During the application of the shear force, the ope rator has to be very cognizant of the rate and amount of jacking (loading) based on the level of resistance being felt in addition to keeping a watchful eye on the monitor. Th e possibility of encountering clay filled holes is likely and they cannot be detected by the BMD. This situation if not recognized can lead to the complete retraction of the affected stud a nd damage to the equipment. A constant increase in load with minimal displacement is a clear indication of this problem and the test at that location needs to be terminated and the equipment repositioned (see Appendix D Operation and Maintenance). A study of previous bore logs a nd the present core logs of th e test location should be done prior to testing. In areas where the recoveries are relatively low (less th an 70%), the possibility of encountering problematic ar eas are likely and care should be taken during the test. During the lowering of the device (by the winch), it is critical th at the air hoses be secured to the rods with plastic ties at every rod length to prevent sagging of the hose within the hole; these can become entangled with the device when its being lifted up and cause it to jam. The setup and operation is time consuming and sh ould be done by at least two technicians. For future improvement, the device could be set up and operated from the drill rig or from a truck similar to the cone truck without th e need for the tripod setup and movement.

PAGE 92

92 The mechanical problem (wheel sensitivity) a nd field limitation (soil suspension clogging) are issues to be addressed with the BMD, the so lution at the moment include realignment of the sliding rods for the wheels and the covering of the ope n areas with a rubber sheeting to minimize fines intrusion. The finite element models using ADINA and the ABACUS softwares have not converged so far and another FEM model considered more appropriate for the 3 dimensional and dynamic modeling has been bought and being tested at present.

PAGE 93

93 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 0.0050.00100.00150.00200.00250.00300.00350.00 Shear Strength (psi)Depth (ft) McVay's Device Device-Penet. Figure 6-1. Comparison of McVa ys Shear Strength Prediction with those of the Device for Borehole No. 1.

PAGE 94

94 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 0.0050.00100.00150.00200.00250.00300.00350.00 Shear Strength (psi)Depth (ft) McVay's Device Device-Penet. Figure 6-2. Comparison of McVay s Shear Strength Prediction with those of the Device for Borehole No. 2.

PAGE 95

95 Average Penetration Model Penetration Average Penetration Model Penetration Depth Device Shear Device Shear McVays Device Shear Device Shear (ft) (psi) (psi) (psi) % diff. % diff. 44.00 175.00 170.00 183.5 95.37 92.64 45.00 230.00 195.00 237.5 96.84 82.11 47.00 145.00 130.00 139.28 104.11 93.34 48.00 195.00 230.00 235.67 82.74 97.59 49.00 240.00 220.00 229.15 104.73 96.01 54.00 50.00 45.00 47.73 104.76 94.28 55.00 40.00 50.00 47.55 84.12 105.15 Shear Comparison Device/McVay's050100150200250300 44.0000 45.0000 47.0000 48.0000 49.0000 54.0000Depth (ft)Shear Strength (psi) McVay's Device-Pen Device-Avg. Figure 6-3. % Differences and T ypical Bar Chart Showing Variati on with Depth of Results for Borehole 1.

PAGE 96

96 Average Penetration Model Penetration Avgerage Penetration Model Penetration Depth Device Shear Device Shear McVay's % Diff % Diff. (ft) (psi) (psi) (psi) 45.00 310.00 300.00 316.10 98.07 94.91 46.00 90.00 83.30 108.04 47.00 220.00 230.00 240.00 91.67 95.83 52.00 70.00 75.00 70.10 99.86 106.99 56.00 30.00 40.00 38.89 77.14 102.85 57.00 50.00 40.00 40.80 122.55 98.04 Shear Comparison Device/McVay's050100150200250300350 45.0000 46.0000 47.0000 52.0000 56.0000 57.0000Depth (ft)Shear Strength (psi) McVay's Device-Pen Device-Avg. Figure 6-4. % Differences and T ypical Bar Chart Showing Variati on with Depth of Results for Borehole 2.

PAGE 97

97 Figure 6-5. Shear Stress vs Displacement (Plot Representation ) showing Peak Stress Location

PAGE 98

98 Figure 6-6. Shear Stress vs Di splacement (Plot Representati on ) showing Peak Stress Determination.

PAGE 99

99 Figure 6-7. Shear Stress vs Displacement (Plo t Representation ) showing Peak Stress Location.

PAGE 100

100 Figure 6-8. Shear Stress vs Displacement (Plo t Representation) showing problematic Results

PAGE 101

101 Figure 6-9. Stud to Rock Typical Scenarios. Scenario relates to Figure 6.5 showing multiple small peaks to failure Scenario relates to Figure 6.6 showing high initial peak before normal shearing Scenario relates to Figure 6.7 showing erroneously high shear stresses and an increase in shear stress with constant normal stress due to significant bearing problems

PAGE 102

102 Figure 6-10. Effective Area Determination During Penetration. Penetration Projected Normal Effective Area Shear Direction Projected Effective Normal Area Shaded Effective Shear Area Stud Rock Enlargement of Stud Penetration in Rock 60o

PAGE 103

103 Figure 6-11. Effective Area Determination During Shear Shear Direction Projected Effective Normal Area Shaded Effective Shear Wedge formed by Shearing Back of Stud not involved with shearing or normal load resistance During Shearing 0.026 L 30 o

PAGE 104

104 Area calculation example : For a penetration of 0.026, based on Figure 6.10, the Effective normal area is; (4 x 3.142 x (tan30x0.026) 2 )/2= 0.001415993 sq. inch The force is exerted on 4 half conical x-section on each studs. Note also normal pressure Divided by the stud cap area of 0.1964 gives normal force and Accounting for water pressure at that depth gives a normal force = 5.6488 (lbs). The Normal stress is obtained by dividing this Force by the normal stud area = 5.6488/0.001415993 = 3989.28 psi Effective shear area is; {3.142 x (tan 30 x 0.026) x [(0.026)2 tan230 + 0.0262 ]x 4 x 42}/2 = 0.206017 For Shear force of 433.239, Shear Stress = 2102.93 psi Half Conical effective shear area ( rL/2) where L is the length of the sloping side. Each stud contai ns 4 conical contact surface (see Figure 6-10) and 42 studs in total. Table 6-1. Section of data re duction table for Borehole 1 at 47 (40psi applied pressure) FULLER WARREN BRIDGE SHEAR DEVICE TEST RESULTS Penetration (calculated) 0.03827677 Height H2O 29 (ft) Unit Wt H2O 62.4 (lb/ft3) Length Pipe 47.5 (ft) Unit Wt Rod 2.96 (lb/ft) Penetration Depth 0.026 (in) Cylinder Bore Area 4.72 (in2) Stud Cap Area 0.1964 (in2) Shear Stud Area 0.206069136 No. of Studs 42 Normal Stud Area 0.001415993 Weight of Instrum. 38 Qu (psi) 945.7 LVDT Pressure Load Est. Load Est. Press. Normal Force Shear Force Normal Stress Shear Stress (in) (volts) (volts) (psi) (psi) (lb) (lb) (psi) (psi) -0.001 0.0214 0.0006 12.4916 42.8022 5.8035 -175.0038 4098.5673 -849.2481 0.0201 0.0214 0.0043 92.7744 42.7564 5.8035 125.0626 4098.5673 606.8964 0.1203 0.021 0.0074 140.6428 41.9568 5.6488 376.4696 3989.2597 1826.9094 0.1048 0.0211 0.0069 132.1643 42.1278 5.6875 335.9201 4016.5866 1630.1331 0.1116 0.021 0.0073 135.1198 42.024 5.6488 368.3597 3989.2597 1787.5541 0.1115 0.021 0.0078 148.4106 42.0331 5.6488 408.9093 3989.2597 1984.3304 0.1378 0.0212 0.0089 171.9182 42.3139 5.7262 498.1182 4043.9135 2417.2383 0.1937 0.0209 0.0089 183.8926 41.8195 5.6101 498.1182 3961.9328 2417.2383 0.2075 0.0208 0.008 161.8831 41.554 5.5714 425.1291 3934.6058 2063.0409 0.2055 0.021 0.0081 161.358 41.9813 5.6488 433.2390 3989.2597 2102.3962 0.1986 0.021 0.0076 155.6869 41.9111 5.6488 392.6894 3989.2597 1905.6199 0.206 0.021 0.0092 176.7251 42.0362 5.6488 522.4479 3989.2597 2535.3040 0.2496 0.021 0.0093 193.1818 41.9263 5.6488 530.5578 3989.2597 2574.6593 0.2733 0.0208 0.0082 165.5727 41.551 5.5714 441.3489 3934.6058 2141.7515 0.2719 0.0209 0.0093 176.4101 41.847 5.6101 530.5578 3961.9328 2574.6593 0.273 0.021 0.0081 166.5917 42.0026 5.6488 433.2390 3989.2597 2102.3962 0.2892 0.021 0.0101 195.1841 42.0606 5.6488 595.4370 3989.2597 2889.5014

PAGE 105

105 Shear Stress vs Displacement0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 00.10.20.30.40.50.6Displacement (in)Shear stress (psi) BH1-47/40 Poly. (BH1-47/40) Figure 6-12. Peak Shear Stress vs Displacement Curve.

PAGE 106

106 0 50 100 150 200 250 300 05101520253035404550TimeLoad (lbs) bh1-47.5-40 Figure 6-13. Determination of Peak Shear Stress using Load vs Time Curve. Use 1stFailure Load 1s t 2n d

PAGE 107

107 0 500 1000 1500 2000 2500 3000 0500100015002000250030003500400045005000 Normal Stress (psi)Shear Stress (psi) BH1@47.5 ft Figure 6-14. Shear Stress vs Normal Stress Curve (Failure Envelope). Point shown in blue from example

PAGE 108

108 0 2000 4000 6000 8000 10000 12000 02000400060008000100001200014000160001800020000 Normal Stress (psi)Shear Stress (psi) BH1@47.5 ft Figure 6-15. Non-effect of 50% Decrease and Increase in Depth of Penetration on Failure Envelope. From the Peak Load (Fig. 6-13), the correspond ing Shear and Normal Stresses are determined and used as a point on the Shear vs Normal Stress Plot (Fig. 6-14) to Determine Su (Cohesion) and Phi.

PAGE 109

109 No. of Contact Points 4 No. of Studs 5 Area 4.91 sq.inch Qu 300 Psi Gator 1 Gator 2 Gator 3 Evan's 1962 Normal Laboratory Laboratory Laboratory Predicted Force Penetration Penetration Penetration Penetration (lb) (in) (in) (in) (in) 0.41 0.0094 0.0092 0.0091 0.0088 0.61 0.0140 0.0138 0.0135 0.0132 0.73 0.0167 0.0163 0.0159 0.0158 0.81 0.0190 0.0170 0.0170 0.0176 1.02 0.0250 0.0260 0.0230 0.0221 1.22 0.0290 0.0250 0.0270 0.0265 1.42 0.0340 0.0350 0.0310 0.0308 1.63 0.0350 0.0380 0.0340 0.0353 1.83 0.0410 0.0440 0.0380 0.0396 2.03 0.0460 0.0480 0.0440 0.0441 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.000.501.001.502.002.50Force (lbs)Penetration (in) Predicted Sample 1 Sample 2 Sample 3 Figure 6-16. Predicted and Experimental Penetration Same Loca tions (Gator Rock)

PAGE 110

110 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.000.501.001.502.002.503.003.50Force (lbs)Penetration (in) Gator pred B1-4U act. B1-3U act. B1-8U act. B1-4U pred. B1-3U pred. B1-8U pred. Gator act. Figure 6-17. Predicted and Experiment al Penetration Virgin Locations 4 Cont. Points 5 No. of Studs Area 4.91 sq.inch Qu(psi) 684.5 822 165 256 256 684.5 822 165 Kanahapa Fuller Warren Fuller Wa rren Gator Rock Gator Rock Normal B1 4U B1 3U B1 8U 20%/ 20% 20%/20% B1 4U B1 3U B1 8U Force Penetration Penetration Penetration Pene tration Prediction Predic tion Prediction Prediction (lb) (in) (in) (in) (in) (in) (in) (in) (in) 0.49 0.0116 0.0065 0.0330 0.0267 0.0125 0.0047 0.0039 0.0193 0.56 0.0132 0.0072 0.0352 0.0253 0.0143 0.0054 0.0045 0.0222 0.79 0.0137 0.0094 0.0414 0.0286 0.0199 0.0075 0.0062 0.0309 1.03 0.0159 0.0116 0.0465 0.0286 0.0262 0.0098 0.0081 0.0406 1.28 0.0174 0.0125 0.0463 0.0289 0.0324 0.0121 0.0101 0.0503 1.47 0.0192 0.0141 0.0471 0.0302 0.0374 0.0140 0.0116 0.0580 1.72 0.0235 0.0162 0.0486 0.0330 0.0436 0.0163 0.0136 0.0677 2.21 0.0231 0.0153 0.0511 0.0328 0.0561 0.0210 0.0175 0.0870 2.45 0.0247 0.0164 0.0532 0.0334 0.0623 0.0233 0.0194 0.0967 2.95 0.0251 0.0169 0.0558 0.0361 0.0748 0.0280 0.0233 0.1160

PAGE 111

111 Table 6.2. Showing Correlation between Rock Strength and Penetration within Normal Force testing ranges used in the field (Fn < 10 lbs) Unconfined Penetration Compression range Strength (psi) (in) 100 200 0.060 200 400 0.050 400 500 0.040 500 600 0.030 600 800 0.025 800 1000 0.022 1000 1400 0.017 Sample Calculations fo r Predicted Penetrations F = 2bdqu(f + tan ) Where; F = Seating/Penetration Force B = wedge Length = 0.07874 in. D = Penetration Depth = D qu = Unconfined Compressive Strength = 300 psi f = Coefficient of Friction between rock and steel = 0.4 = wedge angle = 30 deg. Rearranging D = F/[2x0.07874x qu (0.4+0.57735)] = 6.4972 F/ qu For F= 2.03 lbs & qu = 300psi, D = 0.04396 inch

PAGE 112

112 Figure 6-18. Field Coring at the Kanapaha Site.

PAGE 113

113 Figure 6-19. Rock Sample quality a nd Recovery at the Kanahapa Site. Figure 6-20. Piers at the Fuller Warren Bridge Site.

PAGE 114

114 Figure 6-21. Corehole Layout with Respect to Bridge Pier and Load Test Location.

PAGE 115

115 Figure 6-22. Coring at the Fuller Warren Bridge Site.

PAGE 116

116 Figure 6-23. Cored Sample with A lternating Rock and Clay intrusion. Figure 6-24. Field Setup of Compresso r, Jack and Data Collection System.

PAGE 117

117 Figure 6-25. Field Setup of Winch, Batteries and Compressed Air Regulator.

PAGE 118

118 APPENDIX A GRAPHICAL REPRESENTATION OF REDUCED DATA 0 20 40 60 80 100 120 140 160 051015202530354045TimeLoad (lbs) bh1-44-23 Figure A-1. Load vs Time: BH 1@44(Norm Pressure = 23psi) 0 50 100 150 200 250 0102030405060TimeLoad (lb) bh1-44-30 Figure A-2. Load vs Time: BH 1@44(Norm Pressure = 30psi)

PAGE 119

119 0 50 100 150 200 250 300 350 400 010203040506070TimeLoad (lbs) bh-44-36 Figure A-3. Load vs Time: BH 1@44(Norm Pressure = 36psi) 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-44-45 Figure A-4. Load vs Time: BH 1@44(Norm Pressure = 45psi)

PAGE 120

120 0 20 40 60 80 100 120 140 160 180 200 05101520253035404550TimeLoad (lbs) bh1-45-26 Figure A-5. Load vs Time: BH 1@45(Norm Pressure = 26psi) 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-45-33 Figure A-6. Load vs Time: BH 1@45(Norm Pressure = 33psi)

PAGE 121

121 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-45-39 Figure A-7. Load vs Time: BH 1@45(Norm Pressure = 39psi) 0 100 200 300 400 500 600 010203040506070TimeLoad (lbs) bh1-45-46 Figure A-8. Load vs Time: BH 1@45(Norm Pressure = 46psi)

PAGE 122

122 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 01020304050TimeLoad (lbs) bh1-47-25 Figure A-9. Load vs Time: BH 1@47(Norm Pressure = 25psi) 0 20 40 60 80 100 120 140 160 180 200 05101520253035404550TimeLoad (lbs) bh1-47.5-32 Figure A-10. Load vs Time: BH1@47(Norm Pressure = 32psi)

PAGE 123

123 0 50 100 150 200 250 300 05101520253035404550TimeLoad (lbs) bh1-47.5-40 Figure A-11. Load vs Time; BH1@47(Norm Pressure = 40psi) 0 50 100 150 200 250 300 0102030405060TimeLoad (lbs) bh1-47.5-45 Figure A-12. Load vs Time: BH1@47(Norm Pressure = 45psi)

PAGE 124

124 0 20 40 60 80 100 120 140 0102030405060TimeLoad (lbs) bh1-48-23 Figure A-13. Load vs Time: BH1@48(Norm Pressure = 23psi) 0 50 100 150 200 250 0102030405060TimeLoad (lbs) bh1-48-31 Figure A-14. Load vs Time: BH1@48(Norm Pressure = 31psi)

PAGE 125

125 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-48-37 Figure A-15. Load vs Time: BH1@48(Norm Pressure = 37psi) 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-48-43 Figure A-16. Load vs Time: BH1@48(Norm Pressure 43psi)

PAGE 126

126 0 20 40 60 80 100 120 140 160 180 200 0102030405060TimeLoad (lbs) bh1-49-23 Figure A-17. Load vs Time: BH1@49(Norm Pressure = 25psi) 0 50 100 150 200 250 300 0102030405060TimeLoad(lb) bh1-49-32 Figure A-18. Load vs Time: BH1@49(Norm Pressure = 32psi)

PAGE 127

127 0 50 100 150 200 250 300 350 0102030405060TimeLoad (lbs) bh1-49-38 Figure A-19. Load vs Time: BH1@49(Norm Pressure = 38psi) 0 50 100 150 200 250 300 350 400 010203040506070TimeLoad (lbs) bh1-49-47 Figure A-20. Load vs Time: BH1@49(Norm Pressure = 47psi)

PAGE 128

128 0 20 40 60 80 100 120 140 160 180 0102030405060TimeLoad (lbs) bh1-54-28 Figure A-21. Load vs Time: BH1@54(Norm Pressure = 26psi) 0 50 100 150 200 250 0102030405060TimeLoad (lbs) bh1-54-34 Figure A-22. Load vs Time: BH1@54(Norm Pressure = 34psi)

PAGE 129

129 0 20 40 60 80 100 120 140 160 180 0102030405060TimeLoad (lbs) bh1-54-38 Figure A-23. Load vs Time: BH1@54(Norm Pressure = 38psi) 0 50 100 150 200 250 300 0102030405060TimeLoad(lb) bh1@54-43 Figure A-24. Load vs Time: BH1@54(Norm Pressure = 43psi)

PAGE 130

130 0 50 100 150 200 250 300 01020304050607080TimeLoad(lb) bh1-54-47 Figure A-25. Load vs Time: BH1@54(Norm Pressure = 47psi) 0 20 40 60 80 100 120 140 010203040506070TimeLoad (lbs) bh1-55-22 Figure A-26. Load vs Time: BH1@55(Norm Pressure = 22psi)

PAGE 131

131 0 20 40 60 80 100 120 140 160 180 200 010203040506070TimeLoad (lbs) bh1-55-31 Figure A-27. Load vs Time: BH1@55(Norm Pressure = 31psi) 0 20 40 60 80 100 120 140 160 180 200 0102030405060TimeLoad (lbs) bh1-55-39 Figure A-28. Load vs Time: BH1@55(Norm Pressure = 39psi)

PAGE 132

132 0 50 100 150 200 250 010203040506070TimeLoad (lbs) bh1-55-48 Figure A-29. Load vs Time: BH1@55(Norm Pressure = 48psi) 0 20 40 60 80 100 120 140 160 180 0510152025303540TimeLoad (lbs) bh2-43-25 Figure A-30. Load vs Time: BH2@43(Norm Pressure = 25psi)

PAGE 133

133 0 50 100 150 200 250 300 05101520253035TimeLoad (lbs) bh2-43-29 Figure A-31. Load vs Time: BH2@43(Norm Pressure = 29psi) 0 50 100 150 200 250 300 350 05101520253035404550TimeLoad (lbs) bh2-43-33 Figure A-32. Load vs Time: BH2@43(Norm Pressure = 33psi)

PAGE 134

134 0 50 100 150 200 250 300 350 400 051015202530354045TimeLoad (lb) bh2-43-36 Figure A-33. Load vs Time: BH2@43(Norm Pressure = 36psi) 0 20 40 60 80 100 120 140 160 180 200 051015202530354045TimeLoad(lb) bh2@45-25 Figure A-34. Load vs Time; BH2@44(Norm Pressure = 25psi)

PAGE 135

135 0 50 100 150 200 250 051015202530354045TimeLoad (lbs) bh2-44-29 Figure A-35. Load vs Time: BH2@44(Norm Pressure = 29psi) 0 50 100 150 200 250 300 05101520253035404550TimeLoad (lbs) bh2-44-32 Figure A-36. Load vs Time: BH2@44(Norm Pressure = 32psi)

PAGE 136

136 0 50 100 150 200 250 300 350 400 05101520253035404550TimeLoad (lbs) bh2-44-36 Figure A-37. Load vs Time: BH2@44(Norm Pressure = 36psi) 0 50 100 150 200 250 300 05101520253035404550TimeLoad (lbs) bh2-45-30 Figure A-38. Load vs Time: BH2@45(Norm Pressure = 30psi)

PAGE 137

137 0 50 100 150 200 250 300 350 05101520253035404550TimeLoad (lbs) bh2-45-33 Figure A-39. Load vs Time: BH2@45(Norm Pressure = 33psi) 0 50 100 150 200 250 300 0102030405060TimeLoad (lbs) bh2-45-36 Figure A-40. Load vs Time: BH2@45(Norm Pressure = 36psi)

PAGE 138

138 0 20 40 60 80 100 120 0102030405060TimeLoad ( lbs ) bh2-50-25 Figure A-41. Load vs Time: BH2@50(Norm Pressure = 25psi) 0 20 40 60 80 100 120 140 0102030405060TimeLoad (lbs) bh2-50-29 Figure A-42. Load vs Time: BH2@50(Norm Pressure = 29psi)

PAGE 139

139 0 20 40 60 80 100 120 140 160 180 0102030405060TimeLoad (lbs) bh2-50-35 Figure A-43. Load vs Time: BH2@50(Norm Pressure = 35psi) 0 50 100 150 200 250 01020304050TimeLoad (lbs) bh2-50-40 Figure A-44. Load vs Time: BH2@50(Norm Pressure = 40psi)

PAGE 140

140 0 20 40 60 80 100 120 0102030405060TimeLoad (lbs) bh2-54-26 Figure A-45. Load vs Time: BH2@54(Norm Pressure = 26psi) 0 20 40 60 80 100 120 140 160 180 200 010203040506070TimeLoad (lbs) bh2-54-32 Figure A-46. Load vs Time: BH2@54(Norm Pressure = 32psi)

PAGE 141

141 0 50 100 150 200 250 300 010203040506070TimeLoad (lbs) bh2-54-35 Figure A-47. Shear Stress vs Displa cement; BH2@54(Norm Pressure = 35psi) 0 50 100 150 200 250 010203040506070TimeLoad (lbs) bh2-54-42 Figure A-48. Load vs Time: BH2@54(Norm Pressure = 42psi)

PAGE 142

142 0 20 40 60 80 100 120 051015202530354045TimeLoad (lbs) bh2-55-30 Figure A-49. Load vs Time: BH2@55(Norm Pressure = 30psi) 0 50 100 150 200 250 010203040506070TimeLoad (lbs) bh2-55-35 Figure A-50. Load vs Time: BH2@55(Norm Pressure = 35psi)

PAGE 143

143 0 50 100 150 200 250 300 010203040506070TimeLoad (lbs) bh2-55-40 Figure A-51. Load vs Time: BH2@55(Norm Pressure = 40psi) 0 50 100 150 200 250 300 350 010203040506070TimeLoad (lbs) bh2-55-45 Figure A-52. Load vs Time: BH2@55(Norm Pressure = 45psi)

PAGE 144

144 0 1000 2000 3000 4000 5000 6000 01000200030004000500060007000 Normal Stress (psi)Shear Stress (psi) BH1@44.0 ft Figure A-53. Shear Stress vs Normal Stress; BH1@44 0 500 1000 1500 2000 2500 050010001500200025003000 Normal Stress (psi)Shear Stress (psi) BH1@45.0 ft Figure A-54. Shear Stress vs Normal Stress; BH1@45

PAGE 145

145 0 500 1000 1500 2000 2500 3000 0500100015002000250030003500400045005000 Normal Stress (psi)Shear Stress (psi) BH1@47.5 ft Figure A-55. Shear Stress vs Normal Stress; BH1@47.5 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0500100015002000250030003500400045005000 Normal Stress (psi)Shear Stress (psi) BH1@BH1@48.0 ft Figure A-56. Shear Stress vs Normal Stress; BH1@48

PAGE 146

146 0 1000 2000 3000 4000 5000 6000 01000200030004000500060007000 Normal Stress (psi)Shear Stress (psi) BH1@49.0 ft Figure A-57. Shear Stress vs Normal Stress; BH1@49 0 100 200 300 400 500 600 0100200300400500600700800 Normal Stress (psi)Shear Stress (psi) BH1@54.0 ft Figure A-58. Shear Stress vs Normal Stress; BH1@54

PAGE 147

147 0 100 200 300 400 500 600 02004006008001000 Normal Stress (psi)Shear Stress (psi) BH1@55.0 ft Figure A-59. Shear Stress vs Normal Stress; BH1@55 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 050010001500200025003000 Normal Stress (psi)Shear Stress (psi) BH2@43 ft Figure A-60. Shear Stress vs Normal Stress; BH2@43

PAGE 148

148 0 1000 2000 3000 4000 5000 6000 0500100015002000250030003500 Normal Stress (psi)Shear Stress (psi) BH2@44 ft Figure A-61. Shear Stress vs Normal Stress; BH2@44 0 500 1000 1500 2000 2500 3000 3500 4000 4500 050010001500200025003000350040004500 Normal Stress (psi)Shear Stress (psi) BH2@45 ft Figure A-62. Shear Stress vs Normal Stress; BH2@45

PAGE 149

149 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0500100015002000250030003500Normal Stress (psi)Shear Stress (psi) BH2@50 ft Figure A-63. Shear Stress vs Normal Stress; BH2@50 0 100 200 300 400 500 600 700 800 02004006008001000120014001600 Normal Stress (psi)Shear Stress (psi) BH2@54 ft Figure A-64. Shear Stress vs Normal Stress; BH2@54

PAGE 150

150 0 100 200 300 400 500 600 700 0100200300400500600700800900 Normal Stress (psi)Shear Stress (psi) BH2@55 ft Figure A-65. Shear Stress vs Normal Stress; BH2@55

PAGE 151

151 BH-3 Mapping@51'49.80 50.00 50.20 50.40 50.60 50.80 51.00 51.20 51.40 -0.80-0.60-0.40-0.200.000.200.400.600.80 R-Wheel L-Wheel Horizontal Displ. (in) Vertical Displ. (m) Due to Clogging Figure A-66. Mapping Results Borehole 3 @ 51.

PAGE 152

152 BH-3 Mapping@49'47.4 47.6 47.8 48 48.2 48.4 48.6 48.8 49 49.2 49.4 00.050.10.150.20.250.30.35Hor. Displ. (in)Vert. Displ. (ft) R-Wheel L-Wheel Figure A-67. Mapping Results Borehole 3 @ 49

PAGE 153

APPENDIX B SAMPLES OF LABORATORY TESTING AND DATA REDUCTION RESULTS

PAGE 154

154 Table B-1. Sample FDOT Laborator y Test Results for Borehole #1

PAGE 155

155 Table B-2. Sample FDOT Laborat ory Test Results for Borehole #1

PAGE 156

156 Figure B-1. Direct Shear Test Results on Gator rock samples using Commercial Device 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0 0.0200.0400.0600.0800.01000.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 0.0500.01000.01500.02000.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 0.0200.0400.0600.0800.01000.01200.01400.01600.01800.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 0.0200.0400.0600.0800.01000.01200.01400.01600.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 0.0200.0400.0600.0800.01000.01200.01400.01600.0 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 0.0200.0400.0600.0800.01000.01200.01400.01600.0 1 2 3 4 5 6

PAGE 157

157 Figure B-2. Direct Shear Test Results on Gator rock samples using Commercial Device 0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 0.0200.0400.0600.0800.01000.01200.01400.01600.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 0.0200.0400.0600.0800.01000.01200.01400.01600.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 0.0200.0400.0600.0800.01000.01200.01400.01600.01800.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 0.0200.0400.0600.0800.01000.01200.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 0.050.0100.0150.0200.0250.0300.0350.0400.0450.0500.0 0.0 200.0 400.0 600.0 800.0 1000.0 0.0200.0400.0600.0800.01000.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 0.0500.01000.01500.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 0.0200.0400.0600.0800.01000.0 7 8 9 1 11 12 13 14

PAGE 158

158 Figure B-3. Direct Shear Test Results on Gator rock samples using Commercial Device 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 0.0100.0200.0300.0400.0500.0600.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 0.0200.0400.0600.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 0.0200.0400.0600.0800.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 0.0200.0400.0600.0800.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 0.0100.0200.0300.0400.0500.0600.0 15 16 17 18 19

PAGE 159

159 Figure B-4. Prototype Device Representative Laboratory Test Results.

PAGE 160

160 Laboratory Mapping2.70 3.20 3.70 4.20 4.70 5.20 5.70 -0.6-0.4-0.200.20.40.6Hor. Displ. (in)Vert. Displ. (ft) R-Wheel L-Wheel Figure B-5. Mapping Results in Laboratory Contour Mold.

PAGE 161

161 Laboratory Mapping3.40 3.90 4.40 4.90 5.40 5.90 -0.6-0.4-0.200.20.40.60.8Hor. displ. (in)Verti. Displ.(ft) R-Wheel L-Wheel Figure B-6. Mapping Results in Laboratory Contour Mold

PAGE 162

APPENDIX C FIELD AND REDUCTION DATA

PAGE 163

163 Table C-1. Borehole #1 at 44 feet.

PAGE 164

164 Table C-2. Borehole #1 at 44/30 feet.

PAGE 165

165 Table C-3. Borehole #1 at 44/36 feet.

PAGE 166

166 Table C-4. Borehole #1 at 44/45 feet.

PAGE 167

167 Table C-5. Borehole #1 at 45/26 feet.

PAGE 168

168 Table C-6. Borehole #1 at 45/33 feet.

PAGE 169

169 Table C-7. Borehole #1 at 45/39 feet.

PAGE 170

170 Table C-8. Borehole #1 at 45/46 feet.

PAGE 171

171 Table C-9. Borehole #1 at 47/25 feet.

PAGE 172

172 Table C-10. Borehole #1 at 47.5/32 feet.

PAGE 173

173 Table C-11. Borehole #1 at 47.5/40 feet.

PAGE 174

174 Table C-12. Borehole #1 at 47.5/40 feet.

PAGE 175

175 Table C-13. Borehole #1 at 47.5/45 feet.

PAGE 176

176 Table C-14. Borehole #1 at 48/23 feet.

PAGE 177

177 Table C-15. Borehole #1 at 48/31 feet.

PAGE 178

178 Table C-16. Borehole #1 at 48/37 feet.

PAGE 179

179 Table C-17. Borehole #1 at 47.5/40 feet.

PAGE 180

180 Table C-18. Borehole #1 at 49/26 feet.

PAGE 181

181 Table C-19. Borehole #1 at 49/32 feet.

PAGE 182

182 Table C-20. Borehole #1 at 49/38 feet.

PAGE 183

183 Table C-21. Borehole #1 at 49/47 feet.

PAGE 184

184 Table C-22. Borehole #1 at 54/28 feet.

PAGE 185

185 Table C-23. Borehole #1 at 54/34 feet.

PAGE 186

186 Table C-24. Borehole #1 at 54/38 feet.

PAGE 187

187 Table C-25. Borehole #1 at 54/43 feet.

PAGE 188

188 Table C-26. Borehole #1 at 55/22 feet.

PAGE 189

189 Table C-27. Borehole #1 at 55/31 feet.

PAGE 190

190 Table C-28. Borehole #1 at 55/39 feet.

PAGE 191

191 Table C-29. Borehole #1 at 54/48 feet.

PAGE 192

192 Table C-30. Borehole #2 at 43/25 feet.

PAGE 193

193 Table C-31. Borehole #2 at 43/29 feet.

PAGE 194

194 Table C-32. Borehole #2 at 43/33 feet.

PAGE 195

195 Table C-33. Borehole #2 at 43/36 feet.

PAGE 196

196 Table C-34. Borehole #2 at 44/25 feet.

PAGE 197

197 Table C-35. Borehole #2 at 44/29 feet.

PAGE 198

198 Table C-36. Borehole #2 at 44/32 feet.

PAGE 199

199 Table C-37. Borehole #2 at 44/36 feet.

PAGE 200

200 Table C-38. Borehole #2 at 45/30 feet.

PAGE 201

201 Table C-39. Borehole #2 at 45/33 feet.

PAGE 202

202 Table C-40. Borehole #2 at 45/36 feet.

PAGE 203

203 Table C-41. Borehole #2 at 50/25 feet.

PAGE 204

204 Table C-42. Borehole #2 at 50/29 feet.

PAGE 205

205 Table C-43. Borehole #2 at 50/35 feet.

PAGE 206

206 Table C-44. Borehole #2 at 50/40 feet.

PAGE 207

207 Table C-45. Borehole #2 at 54/26 feet.

PAGE 208

208 Table C-46. Borehole #2 at 54/32 feet.

PAGE 209

209 Table C-47. Borehole #2 at 54/35 feet.

PAGE 210

210 Table C-48. Borehole #2 at 54/42 feet.

PAGE 211

211 Table C-49. Borehole #2 at 55/30 feet.

PAGE 212

212 Table C-50. Borehole #2 at 55/35 feet.

PAGE 213

213 Table C-51. Borehole #2 at 55/40 feet.

PAGE 214

214 Table C-52. Borehole #2 at 55/45 feet.

PAGE 215

215 APPENDIX D OPERATIONS AND MAINTENANCE Rock Shear Testing Device: Components and Descriptions The following are the main components of the equipment The Shear Device The 10,000 psi Hydraulic Jack and Cylinder with 1 thick steel ba se plate containing threaded steel hook (circular) The Winch (60 capacity) with tripod attachment and pulle y with closing hook connector Data Collection System (includes Laptop, El ectronic Box, NIDAQ Hardware and Software 1 1/4 Steel Rods (60 5lengths) 1 Threaded Rod (5) Steel Rod to Threaded rod connector Shear Device adaptor with cable connector for winch and threaded conne ctor to Steel Rods Inverter Marine Rechargeable Batteries (2) 12 volt DC Supply 200 psi Regulator 60 air conduit with male and fe male detachable connectors (2) Air Compressor (175 psi capacity) Sturdy Aluminum Tripod (5 high) Specialized Tool Kit with key tools assembled for all required activities Component Description The RSTD is comprised of the upper and lower chambers. The upper chamber and connectors house the electronic measuremen t instruments and the lower chamber houses the expandable rubber bladder, steel sheet Chinese lantern an d steel hardened shear studs with stainless steel springs. The cylindrical lower chamber is made in two halves that are held together by screws and both ends. Th e two halves facilitate easy assembly and maintenance. The Hydraulic Jack and hollow cylinder is used to lift the device and connecting rods during testing. A 500 psi pressure transducer is connected to the jack via pipe threads at the chamber designated for housing a measuri ng device. The cyli nder contains a 1.06 central hole which facilitates the threaded rods connected to the steel rods. The inner tube of the cylinder moves up under pressure from the jack and applies the pr essure to the rods. The inner tube is also connected to an LVDT via a removable split connector controlled by screws. The base Figure of the cylinder sits on an aluminum top plate fixed to the tripod. The top plate contains a central hole about 3 in diameter with two slots to allow for shifting of the cylinder to expose the central hole when necessary. The winch is used to lower and lift the device and connecting rods at the start and end of testing respectively or to lift the device to a new testing location in th e core hole. It is

PAGE 216

216 remote control operated and is capable of lifti ng over 10 tons. It is secured to the tripod via I sections and threaded bolts along with chains for added security. It has an operating capacity of 60 with an additional 3 wrapped around the core that should never be unwounded during use. The top of the winc h cable is connected to a close ended hook that runs over a pulley that is secured to the top plate of th e tripod via a circular closed hook threaded to the 1 thick stee l base plate of the cylinder. The data collection system includes a lapt op computer with the NIDAQ/Labview data collecting software along with Microsoft Excel for storag e of the raw data. The NIDAQ hardware was configured to run the require d measuring instruments for use in both the shear test and the mapping device. The transdu cers etc. are connected to the Hardware and an electronic box containing filters, resist ors and connections to a 12 volt supplier. The 1 1/4 outer diameter steel rods supplied in 5 lengths are used to provide a rigid extension of the device to the testing dept hs. The rods have removable double ended threads convenient and flexible for use with other connectors. The 5 thread rod is used through the hollow cy linder for adjustment of the device at any depths within 5 foot i.e., 2.1 or 43.4. This is required for the flexib ility of testing at the encountered depth of the rock. One of the removable tapered box threads of the steel rods was used to form the connector to the 1 threaded rods by welding a cut end to 3 nut that fits the threaded rod. The RSTD adaptor has a 28 female threaded end connected to a male box thread that connects to the rods. This piece also carries a swinging U hook that is connected to a 2 foot cable with metal loops at both ends. Th e free end is connected to the winch by the hook. The voltage supply on site is provided by 2 lo w maintenance marine batteries; one supplies the winch and the other supplies the electronic data collection sy stem. An inverter is used to convert the DC voltage supplied from the ba ttery to an AC voltage to the computer and the voltmeter. The battery operated compressed air supply is co nnected to a 200psi regulator that controls the two pressure lines to the de vice. The regulated pressure is connected to the device via two 60 long air conduits that have re usable snap connectors at both ends. The aluminum framed tripod has been upgraded be more user-friendl y; it now carries a mount for the jack, the string pot and winch in a more conve nient manner with respect to assembling and disassembling. The customized tool kit carries all the necessa ry tools for assembling the setup on site and also tools for maintenance and repairs. It has two compartments; the lower one is used for all the sensitive data collecti on hardware and wires and the u pper used for basic tools such as spanners, wrenches, pliers, screw drivers, hammers allen-keys, plumbing and electrical tapes etc. The kit has a retractable handle a nd can be carried around on its two rear wheels.

PAGE 217

217 Rock Shear Testing: Field Operation Guidelines to the proper operation and use of the de vice are listed below. For safety of use it is important that the following guidelines and sequence of operations be observed; Load the compressor and the tr ipod into the back of the pi ckup truck using a fork-lift. Check and ensure that all relevant tools are repl aced in the tool kit a nd placed the kit inside the pickup on the back seat. Lay the shear device and the mapping device gently on the floor of the pickup alongside the back seat. Load the rods, winch, ba tteries and jack and air conduits in the back of th e pickup in an orderly manner conducive for quick setup. Before mobilizing to site ensure that the batteries are fully charged, that the motor for the compressor meet the required oil and gas leve ls. Take along an additional supply of oil and gasoline sufficient for the compressor to carryout a days work. Ensure that the vehicle has a tarpaulin or similar plastic cover in case of inclement weather. On reaching the site, backup pickup truck about 10 from corehole location. Carefully unload the tripod (heavy, may re quire two people) from the back and setup over corehole. Use the 2x12 inch lumbers below each base plate and level tripod (this process could require more lumber). Check that the center hole in the top plate of tripod is centrally aligned with the corehole (the use of a plumb lin e may be necessary). Unload the tool kit from the pickup rear seat and place beside the tripod and open. Mount the winch at the right corner horizo ntal support of the tr ipod using the three threaded rods and steel sections attached to the winch. The winch is secured with a lock wrench and the large adjustab le spanner. Use the provided chain to wrap around the body of the winch as close as possibl e without covering the cable outle t area for added security. Mount the Jack on the right le g of the tripod using the pr ovided 4 screws and the connection plates. Place the cylinder on the top pl ate over the center hole and connect the pressure hose from the jack to the cylinder and secure. Ensure that the circular hook screwed into the cylinder base plate is inside one of the slots in the top plate; this slot allows the sliding movement of the cylinde r from the center hole when required. The small adjustable spanner is required here. Mount the String Potentiometer on the center le g of the tripod by sliding the groves from the attached support plate thr ough the two exposed nuts and then tighten. Ensure that the small rod with the attached string pulley is fully retracted. Small adjustable spanner is required here. Unload the two batteries from the truck and pl ace them at the base of the tripod below the laptop platform. Connect one ba ttery directly to the winch us ing the battery leads from the winch and ensure that the positive and negativ e leads from the winch go to the positive and negative terminal of the battery respectively. Connect the inverter to th e other battery via the positive and negative leads, again ensuri ng proper connection. Plug the surge protector into the inverter and ensure th at both are in the off positions.

PAGE 218

218 Connect the regulator to the top plate using the provided mount and the two screws; a Phillips screw driver is required here. Connect the hose from the Air Compressor to the regulator and s ecure (click sound). Check the valve under the cylinder of the compre ssor to ensure that it is closed (not tightened). Remove the laptop from its case and place on the platform connected to the tripod. Plug the power cord into the computer and the ot her end into the surge protector. Place the NIdaq hardware onto the platform along w ith the electronic black box and the 12 volt power supply. Plug the mouse into the lapt op and place on the platform with the mouse pad. Plug the power cords from the NIdaq hard ware and the 12 volt supply into the surge protector. Connect the power line from the black box to the 12 volt supply ensuring that the red and black wires connect to the red and black terminals respectively. Connect the 200psi pressure transducer from th e regulator to the black box using the eight connector end on the right side of the box. C onnect the 500psi pressure transducer to the black box using the eight connector end on the left side of the black box. Connect the LVDT end cap to the LVDT which is secure d on the Cylinder and the other end to the black box using the three pin end connector. Connect the eight pin (with double wires) male connector from the Nidaq hardware to the black box and secure Connect the four pin single wire from the Nidaq hardware to th e four pin round connect or on the black box. Turn on the inverter and the surge protect or. Power on the computer and wait until Microsoft windows is completely loaded. Plug in the white cord from the Nidaq hardware into the laptop and power on the hardware. Turn on the 12 volt supply. Double click the Icon labeled Shear Test on the desktop front panel and wait until the screen shows the static graph plots. Click on the arrow icon to start a test run to ensure that all instrumentation are engaged; notice a pause a nd then the generation of the active graphs reflecting the waveforms produced by noise. If static lines are seen in any of the graphs then something is wrong and the connections and wires need checking. Stop the test by clicking the red stop icon and saving as check 1 etc. At this stage zero the graphs using the allotted boxes on the screen for zeroi ng. The electronic setup is now complete and ready for testing. Slide the hollow cylinder to the side of the top plate center hole along one of the slots to allow the rods to be lowered through there. Exte nd the cable from the winch and connect the pulley to the circular steel hook attached to the cylinder base Figure. Place the shear device beside the core hole betw een the tripod legs and screw the rod to shear device adaptor to the t op of the shear device. Conn ect the closed hook from the winch to the adaptor (with 2 cable end) at the end of the cable hook. Connect the 60 air lines to the air lines of the device and the ot her ends to the regula tor. Plug the winch remote control in and lift the device up a nd then lower into th e hole until only the rod connector is above ground.

PAGE 219

219 Lower one of the rods through the center hole of the top plate and screw onto the rod adaptor from the device. With the first rod s ecured, use plastic clips to tie the air lines to the rods as the device is lowered down the hol e with the winch remote. Make at least one tie on each 5 length of rod until the required depth is reached. Slide the cylinder back to the center (this will require some effort), a nd lower the 5 threaded rod onto the rods connected to the device. Connect these rods using the provided rod adaptor and place the depth adjusting cross piece on th e top then whine it down to th e top of the cylinder. The setup is now ready for testing. Turn the key on the compressor to the on positio n and slide the choke forward to ignite the engine then return it to its original rest posi tion; the key will return to the run position once the engine is started. Allow the compressor to stabilize to its maximum pressure before opening the compressor valve to the regulator. Push the on button on the electronic dial gauge attached to the regulator and set the init ial test pressure; make sure to allow for the water pressure at the depth of testing. Open the regulator valve then push the adjus ting knob down and turn to the right to set the test pressure. Allow 10 seconds for the pressure to be stabilized in the system and for the shear studs to be fully engaged by the expanding pressurized bladder. Click the arrow button on the front pane l of the laptop and begin testing and simultaneously start applying load to the sh ear device via the jack. Carefully note the LVDT reading while loading; stop loading wh en the LVDT reading indicate about 0.75 to 0.9 inch displacement. Click the stop butt on on the front panel and open the pressure valve on the jack to lower the cylinder piston back to its zero position. Return the jack valve to its closed position and prep are the handle for the next test. Turn the regulator pressure adjusting knob to the left and zero the shear device pressure (the threaded rod should then fall back to its zero position on the cylinder). Use the handle bar on the threaded rod to lift the shear de vice about from its original position by turning it about two revolutions to the right. Set the second test pressure (increase by about 5 psi) and repeat the te sting procedure. For each location carry out at least 4 tests about 1/2 apart. At the end of testing a location, use the winch to lift the shear device to its ne w testing location. If necessary unscrew the threaded rod and remove one of the 5 rods a nd then replace the thre aded rod. This will require shifting the cylinder to remove the 5 rod through the center hole of the top plate. At the end of testing remove each rod and cut all plastic clip and pl ace rods on the back of the truck; use a rag to wipe the water off the rods as they are lifted by the winch so as to reduce rusting.

PAGE 220

220 BMD: Components and Descriptions The components and their corresponding descripti ons are similar to the direct shear device except for the following: This is replaced by the mapping device The jack and cylinder is not used in this test; the cylinder is kept in the shifted position throughout the test. The 5 threaded rod is completely re moved from setup during this test. A pressure directional regul ator is included to extend and retract the measuring wheels. BMD Test: Field Operation Items 1 to 8 are repeated for the mapping test. The following is the remaining steps for carrying out the mapping operation: Remove the laptop from its case and place on the platform connected to the tripod. Plug the power cord into the computer and the ot her end into the surge protector. Place the NIdaq hardware onto the platfo rm along with the electronic blue box and the 12 volt power supply. Plug the mouse into the lapt op and place on the platform with the mouse pad. Plug the power cords from the NIdaq hard ware and the 12 volt supply into the surge protector. Connect the power line from the blue box to the 12 volt supply ensuring that the red and black wires connect to the red and black terminals respectively. Connect the String Pot to the bl ue box using the four connector end on the right side of the box. Connect the electri cal cord from the mapper to th e blue box using the six connector end on the left side of the black box. Connect the male ended connector from the Nidaq hardware to the blue box and secure. Turn on the inverter and the surge protect or. Power on the computer and wait until Microsoft windows is completely loaded. Plug in the white cord from the Nidaq hardware into the laptop and power on the hardware. Turn on the 12 volt supply. Double click the Icon labeled Mapping Test on the desktop front panel and wait until the screen shows the static graph plots. Click on the arrow icon to start a test run to ensure that all instrumentation are engaged; extend the string from the pot and check if the height of the graph varies with the extension. If the graph remains in one ve rtical level during this test then something is wrong and the connections and wires need checking. Otherwise stop the test by clicking the red stop icon and save it as map1 et c. The electronic setup is now complete and ready for testing. Slide the hollow cylinder to the side of the t op Plate center hole along one of the slots to allow the rods to be lowered through there. Exte nd the cable from the winch and connect the pulley to the circular steel hook attached to the cylinder base Figure.

PAGE 221

221 Place the BMD beside the core hole between th e tripod legs and connect the string pot to the closed hook on the adaptor. Connect th e closed hook from the winch to the adaptor (with 2 cable end) at the end of the cable hook. Connect the 60 air lines to the air lines of the device and the other ends to the regulator. Plug the winch remote control in and lift the device up and then lower into the hole until only the rod connector is above ground. Lower one of the rods through the center hole of the top plate and screw onto the rod adaptor from the device. With the first rod s ecured, use plastic clips to tie the air lines to the rods as more rods are added and the de vice is lowered down th e hole with the winch remote. Make at least one tie on each 5 length of rod until the required depth is reached. Turn the key on the compressor to the on positio n and slide the choke forward to ignite the engine then return it to its original rest posi tion; the key will return to the run position once the engine is started. Allow the compressor to stabilize to its maximum pressure before opening the compressor valve to the regulator. Push the on button on the electronic dial gauge attached to the regulator and set the ai r spring pressure; make sure to allow for the water pressure at the depth of testing. Open the regulator valve then push the adjus ting knob down and turn to the right to set the test pressure. Allow 10 seconds for the pressure to be stabilized in the system and for the measuring wheels to be in full contact to the core wall surface. Click the arrow button on the front pa nel of the laptop and begin testing by simultaneously clicking the winch remote into the lifting operationa l position. Allow the mapping to occur slowly and be alert for any abrupt stopping of the device due to extension of the mapping or positioning wheels in to a crack or void. At the end of a five foot run stop the test, save the data and remove the extended rod above the top plate. While testing, carefully observe the displacem ent graph and note where full extension of the mapping wheels has occurred (about exte nsion). If necessary, reduce the air spring pressure as the device is lifted to allow for th e reduced water pressure (about 2 psi every 5 run). At the end of testing remove each rod and cut all plastic clips and pl ace rods on the back of the truck; use a rag to wipe the water off the rods as they are lifted by the winch so as to reduce rusting. Rock Shear Testing Device: Maintenance On completion of the field testing, the likel y hood is that the device would have been submerged. The device is not wa ter sealed and soil suspensions and would have gotten inside the chamber wetting all the parts including the rubber bladder and the hardened studs. The other parts are all stainless steel and would not be affected by the mo isture however the rubber will lose its elasticity and become brittle if the soil in suspension is left to dry on its surface

PAGE 222

222 persistently and the stud s would begin to rust within 24 hr s. of exposure to moisture without immediate (within 2 to 3 hrs. after testing) cleaning and drying. The device should be given an initial power wa sh to remove mud etc. from the internal and external surfaces, wiped and dried. Place th e device on a table and open the split chamber at the top and bottom connections using a Phillip s screw driver. The st uds with the springs attached should be placed in a bucket of water an d allow to be soaked free of mud. Remove the springs from the studs, wipe and dry with a clean piece of cloths and replace the dried springs. Take the body of the device to the power hose a nd wash cleanly; this will require making space between the Chinese Lantern steel sheets and washi ng the rubber bladder as best as possible. Dry the body of the device and place it on the table along side the spilt chamber semi circular covers. Use the wooden stud templates to hold the spring fitted studs inplace during the assembling of the two semi-circular chamber c overs. When assembling the chamber covers make sure to match the dotted marks on the covers to those on the circular supporting Figures at the top and bottom. This is very important otherwise th e screws will not match nor fit the respective threaded holes. Borehole Mapping Device: Maintenance Maintenance of this device generally does not requi re disassembling; all the relevant parts are either aluminum or stainless steel. For con tinuing operation the collec tion of mud particles on parts such as the traveling rods will affect the sliding mechanis m of the wheel support. Clogging of the instrument with lumps of mud (wet or dry) could also affect the movement of the measuring wheel. Areas around the spring contro lled guiding wheels should be power washed periodically (after every set of tests) to allow for unobstructed movement.

PAGE 223

223 The distance between the magnetic field sensor (Hall Sensor) and the magnet is fixed; the embedded sensor in the plastic rod and the glue d magnet in the arms of the measuring wheel should not be interfered with or adjusted. This distance was se t by calibration a nd it allows the instrument to operate within the linear portion of the sinusoidal wave produced when the Hall Sensor passes through the magnetic field. To disassemble, the arms of the measuring wheels have to be unscrewed and removed from both sides. The top Figure which supports the core of the instrument can then be unscrewed and lifted out from the cylindrical body to expose (but not separate) the comp ressed air conduits, the electrical wiring and the air spring cylinders. This should not be pressure washed but should be wiped with a wet cloth where necessary and brushed and cleaned (from clogs) with an appropriate small tool.

PAGE 224

224 Figure D-1. Picture Showing Comple te Component Setup in the Field.

PAGE 225

225 Figure D-2. Picture show ing Shear Device Taped and Ready for Testing.

PAGE 226

226 Figure D-3. Picture Showing Hydraulic Jack Connected to Leg of Tripod.

PAGE 227

227 Figure D-4. Pictures Showing Remote C ontrolled Winch with Tripod Connector.

PAGE 228

228 Figure D-5. Pictures Showing Da ta Collection System with La ptop Computer Black and Blue Box and NiDaq Hardware.

PAGE 229

229 Figure D-6. Showing 6 foot Threaded Rod used for Closer Testing Depths

PAGE 230

230 Figure D-7. Picture Showi ng Shear Device Adaptor with Cable and Connector. Figure D-8. Picture Showing Power Supply Sy stem including Batteries, Inverter etc.

PAGE 231

231 Figure D-9. Picture Showing Air Regulator with Pressure Trans ducer and Digital Dial Gauge and Electronic Connector to Black Box.

PAGE 232

232 Figure D-10. Picture Showing 175 psi Air Compressor.

PAGE 233

233 Figure D-11. Pictures Showing Mobile Tool Kit.

PAGE 234

234 Figure D-12. Picture showing Data Co llection connection Setup in Field.

PAGE 235

235 Figure D-13. Picture Showing Winc h Cable and Pulley Setup on Tripod.

PAGE 236

236 Figure D-14. Picture Showing Disassembled RSTD with metal sheet Chinese Lantern and Split Chamber Cylinder. Figure D-15. Picture Showing Tape red Springs and on and off Studs.

PAGE 237

237 Figure D-16. Pictures Showing Wooden Template Used to Aid in Reassembling the Device.

PAGE 238

238 Figure D-17. Pictures Showing Wooden Template Used to Aid in Reassembling the Device.

PAGE 239

239 Figure D-18. Picture Showing Partially Reassembled Device. Figure D-19. Picture Showing Cylinder w ith Base plate, Closed Hook and LVDT.

PAGE 240

240 Figure D-20. Picture Showing St ring Pot and Pulley Connection.

PAGE 241

241 Figure D-21. Picture Showing Jack and LVDT w ith Steel Base Plate attached to Tripod Top.

PAGE 242

242 Figure D-22. Picture Showing Pressure Reversible Unit attached to Regulator.

PAGE 243

243 LIST OF REFERENCES Briaud, Jean-Louis, The Pressuremeter. A.A. Balkema, Rotterdam (1992). Chan, S. K., Tuba, I. S. & Wilson, W. K., On the finite element method in linear fracture mechanics. Engng Frac. Mech. 2, 1-17 (1970). Crapps, D.K., Design, construction and inspec tion of drilled shafts in limerock and limestone, Annual Meeting of Florida Section, A.S.C.E. (1986). Davis, E. H. Theories of plasticity and the failure of soil masses. Soil Mechanics Selected Topics (ed. Lee, I. K.), pp. 341-380. London: Butterworths (1968). Drennon, C.B. and R. L. Handy, Stick-s lip of lightly loaded limestone, Internal Journal of Rock Mechnics and mining Science Vol. 9 pp. 603-615, (1972). Duncan Fama M.E. and Pender M. J. Analys is of the hollow incl usion technique for measuring in situ rock stress. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 17, 137-146 (1980). Engle, Lawrence, E., (1976), Application of bor ehole shear for insitu shear strength of soft rock, unpublished M.S. Thesis, Iowa St ate University library, Ames, 133 pp. Evans, L. and Murrell, The forces required to penetrate a brittle material with wedge-shaped tool, Mechanical Properties of Non-metallic Brittle Materials pp.432-450, (1958). Ewy, R.T. Deformation and fracture around cylindr ical openings in rock. Ph.D. Dissertation, University of Califonia, Berkeley, Dept. MSME (1989). Gnirk, P.F. and J.B. Cheatham, JR., Indentat ion experiments on dry rocks under pressure, Journal Petroleum Technology, September pp. 1031-1039, (1963). Gupton, C. and Logan, T., Design guidelines fo r drilled shafts in th e weak rocks of South Florida Annual A.S.C.E. meeting (1984). Haberfield, C. M. & Johnston, I. W., Model stud ies of Pressuremeter testing in soft rock. ASTM Geotech. Testing J ., 12, No. 2, 150-156, (1989). Handy, R. L., Measurement of the insitu Shear Strength, Proceedings of the Conference on in situ Measurement of Soil Properties, ASCE, Vol. II pp. 143-149, (1975). Ingraffea, A. R. & Heuze, F. E., Finite el ement models for rock Fracture mechanics. Int. J. Num. & Anal. Meth. In Geomech 4, 25-43, (1980). Johnston, I. W., Testing and interpre tation for soft rock. Proc. Spec. Geomech. Symp. On Interpretation of Field Testing for Design Parameters, Adelaide pp. 61-75. Canberra: 1.E.Aust., (1987).

PAGE 244

244 Johnston, I. W. and Chiu, H.K., The C onsolidation Properties of soft rock, Proceedings of the 10th International Conference on Soil M echanics and Foundation Engineering, The International Society of So il Mechanics and Geotechnical Engineering, Stockholm,(1), pp. 661-664, (1981). Mair R. J. and Wood D.M., Pressureme ter Testing, Butterworth England, (1987). McVay, M.C. and, Townsend, F.C., Design of socketed drilled shafts in limestones, IX Panamerican Conference on Soil Mechanics and Foundation Engineering, Vina del Mar, Chile, (1991) (in press). Meyerhoff, G. G., The ultimate bearing capaci ty of wedge-shaped foundations, Proceedings of the Fifth International Conference on Soil Mechanics Foundation Engineering Vol. II pp. 105-109, (1961). Parra, F. Townsend, F.C., McVay, M.C ., Martinez, R., Design guidelines for shaft foundations, Final Report, submitted by the depart ment of Civil Engineering, University of Florida to the Department of Transportation, July 1990. Patton, F. D., Multiple modes of Shear Failure in Rock Proceedings of the First International Conference on Rock Mechanics, Lisbon, Vol. I pp. 509-514, (1966). ProtodYakonov, N. M., Methods of de termining the shear strength of rocks, Mechanical Properties of Rocks, Jerusalem; Isreal Program for Scientific Translation pp.15-27, (1966) Rowe, R.K., and Armitage, H.H., A de sign method for drilled piers in soft rock, Canadian Geotechnical Journal, Vol. 24 (1987), pp. 126-142. Schmertmann, J.H., Report of development of a lime rock tension-shear test to guide drilled shaft foundation design for the DOT Keys br idge project, submitted to Florida DOT and Girdler Exploration Co., Inc. Dec.1977. Schmidt, W., (1978), Regional structure and st ratigraphy of limestone outcrop belt in the Florida Panhandle Tallahassee; Bureau of Geology. Schmidt, W., Hoeinstine, N.W., Knapp, M.S., Lave, E., Ogden, G.M. and Scott, T.M., The limestone, dolomite and coquina resources of Florida, Florida Geological Survey, Report of Investigation No. 88, (1979).

PAGE 245

245 BIOGRAPHICAL SKETCH The author was born in 1965 and is the eleventh of eleven children born to Mr. and Mrs. Lester Hay in the parish of St. Thomas, Jamaica. He attended Morant Bay High School (1st to 5th form), and Wolmers Boys School (6 form), in Jamaica, and the University of the We st Indies where he completed his undergraduate study in the Spring of 1989 with a Bachelor of Sc ience in Civil Engineering at the St. Augustine Campus in Trinidad. He enrolled at the Univers ity of Florida in the Spring of 1995 to pursue a masterdegree in Civil Engineering and complete d the program in the fa ll of 1995 specializing in Geotechnical Engineering. He is presently on leave of absence from th e consulting engineering firm he formed in 1997 specializing in geotechnical engineering and laboratory testing. Prior to 1995 he worked with Jentech Consultants Ltd., for over six year s where he gained invaluable experience in structural designing, civil and infrastructural works, materials and geotechnical designs. Carlton was awarded the status of Professi onal Engineer by the Jamaican Institue of Engineering in 1994. His immediate plan is to return home to Jamaica to spend time with his family and expand his consulting firm.