<%BANNER%>

Studies of the Adeno-Associated Virus Capsid

Permanent Link: http://ufdc.ufl.edu/UFE0019360/00001

Material Information

Title: Studies of the Adeno-Associated Virus Capsid
Physical Description: 1 online resource (193 p.)
Language: english
Creator: Vanvliet, Kim
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: adeno, associated, capsid, dynamics, mass, protease, spectrometry, virus
Genetics (IDP) -- Dissertations, Academic -- UF
Genre: Medical Sciences thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Adeno-associated virus (AAV) is a promising gene transfer vector that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The AAV capsid plays an essential role in cell binding, internalization, and trafficking, which are critical processes for gene delivery to specific cells. The structural proteins of the capsid spontaneously self-assemble into preformed shells, and then DNA packaging occurs. Although the viral capsid proteins self-assemble, little is known about this process. Potential subunits of assembly have been isolated by other investigators and this data was utilized to develop the two general models for Parvovirus assembly discussed here. Specific interactions that comprise the AAV-2 capsid subunit interfaces are analyzed with respect to several capsid mutants and their impact on the formation of a macromolecular structure. A better understanding of specific interactions required for AAV capsid assembly will allow for the development of customized targeting AAV vectors in the future. The AAV capsid is remarkably stable, which is a desirable characteristic for gene therapy vectors; however, the work presented here demonstrates that AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern upon limited proteolysis, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition, protease susceptibility is utilized to study dynamic structural changes of intact capsids in solution. A high-throughput method for AAV capsid serotype identification (AAV-CSI) utilizing denatured capsid proteins was also developed. This will be useful to verify customized gene therapy vectors that will be produced in the future, which may contain components of more than one AAV serotype.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Kim Vanvliet.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Snyder, Richard O.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0019360:00001

Permanent Link: http://ufdc.ufl.edu/UFE0019360/00001

Material Information

Title: Studies of the Adeno-Associated Virus Capsid
Physical Description: 1 online resource (193 p.)
Language: english
Creator: Vanvliet, Kim
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: adeno, associated, capsid, dynamics, mass, protease, spectrometry, virus
Genetics (IDP) -- Dissertations, Academic -- UF
Genre: Medical Sciences thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Adeno-associated virus (AAV) is a promising gene transfer vector that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The AAV capsid plays an essential role in cell binding, internalization, and trafficking, which are critical processes for gene delivery to specific cells. The structural proteins of the capsid spontaneously self-assemble into preformed shells, and then DNA packaging occurs. Although the viral capsid proteins self-assemble, little is known about this process. Potential subunits of assembly have been isolated by other investigators and this data was utilized to develop the two general models for Parvovirus assembly discussed here. Specific interactions that comprise the AAV-2 capsid subunit interfaces are analyzed with respect to several capsid mutants and their impact on the formation of a macromolecular structure. A better understanding of specific interactions required for AAV capsid assembly will allow for the development of customized targeting AAV vectors in the future. The AAV capsid is remarkably stable, which is a desirable characteristic for gene therapy vectors; however, the work presented here demonstrates that AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern upon limited proteolysis, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition, protease susceptibility is utilized to study dynamic structural changes of intact capsids in solution. A high-throughput method for AAV capsid serotype identification (AAV-CSI) utilizing denatured capsid proteins was also developed. This will be useful to verify customized gene therapy vectors that will be produced in the future, which may contain components of more than one AAV serotype.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Kim Vanvliet.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Snyder, Richard O.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0019360:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101112_AAAABQ INGEST_TIME 2010-11-12T10:15:24Z PACKAGE UFE0019360_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 57182 DFID F20101112_AAAXHL ORIGIN DEPOSITOR PATH vanvliet_k_Page_046.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
ad5f35899206e9489a7b84a1ff1680ea
SHA-1
29e2071f2773304610e41999dd65ffe5ce8bf90b
2118 F20101112_AAAXGW vanvliet_k_Page_089.txt
1e8b81034107feb80428fa5774c305fc
20e03631a2d40fc6c2978befd3baba7a87cf6a80
1168 F20101112_AAAWEJ vanvliet_k_Page_067.txt
6ff2306cbf00150cf006e69ac61eebf7
9f07f6aef176031b3b187f8dfec8aaf32ed9ab9a
3822 F20101112_AAAVZD vanvliet_k_Page_135.txt
af631e9d17aaf0156fecc9d1dbf4f80f
a4748684ef3f37d13d69fcc4cec6fa4a007f3f62
18911 F20101112_AAAWDU vanvliet_k_Page_001.jpg
d0b357c9e3786e8d88bd63512352e4ed
5406d14e8a7c96e3aa27903f15c9ef54ba384b56
86725 F20101112_AAAXIA vanvliet_k_Page_020.jpg
5e61c66d6a9089bb1b6675693e78a69f
9786a8a173f0e7ffe116354185f01f72d9ba7407
2847 F20101112_AAAXHM vanvliet_k_Page_159thm.jpg
93b38a2b227f0dc4f1db35230e4b559f
b045d8b9e2002d2c1291e4d0d83b687f026a7226
88698 F20101112_AAAXGX vanvliet_k_Page_052.jpg
254c705fc3ad4ad994b469f1518828f8
b18108487511fcb6adf9961238677cde04e68724
2744 F20101112_AAAWEK vanvliet_k_Page_136thm.jpg
5d72f5e3bfe377999b5afaec0765dc76
d6f24f2510995085ecd69dc225082545b66ec94a
25271604 F20101112_AAAVZE vanvliet_k_Page_050.tif
bcda01d46be1b82efcda9228ae8d6bc0
ea94f4ac85270b3b26330b2535cf7b00da3e423b
23205 F20101112_AAAWDV vanvliet_k_Page_040.pro
a2542a6a95e1585070a346eb81fc752f
14558b685e1846fc91c2f1919a98baaad11ce5b7
21663 F20101112_AAAXIB vanvliet_k_Page_023.jpg
43f2c3f7f95bf1b552f8af5285997959
2bfa051f07584a873a61859935f6f772b0e51c7f
36113 F20101112_AAAXHN vanvliet_k_Page_071.pro
0efee98d7f5d8cf8840134432b354160
e9a0e4654337444af280511a9ff5e177ede075bd
8924 F20101112_AAAXGY vanvliet_k_Page_015.jp2
c2a37b79c5785e3419690456892f5675
d0782c54c34cbc49cbdab961b06d371108519260
119712 F20101112_AAAWEL vanvliet_k_Page_111.jp2
ab20308b1bdce4e65dce1c732f5a83a1
ced091d0bdbc61c3ce32d57fc89ba2ee748753aa
106512 F20101112_AAAVZF vanvliet_k_Page_024.jp2
d05d8f299e5a51a307c3974b74c580bd
cac01b9e6fa95ddc6fd922107015d19b3ff1aecb
93488 F20101112_AAAWDW vanvliet_k_Page_100.jpg
559d5e854c746384026a4808b7b063b2
e17b42cf03446a3871407d679e13d0cb05fb2208
93323 F20101112_AAAXIC vanvliet_k_Page_027.jpg
66d78a47e43c639bb19272f1e0a0871b
74848531411064b24d4dc1bb23cbd0e585b2533d
F20101112_AAAXHO vanvliet_k_Page_010.tif
e1f1d84f70a8de7f978d18619b46324f
d27d64d211777070270d0d6d82e77d44357fb47f
122196 F20101112_AAAXGZ vanvliet_k_Page_098.jp2
a992ea8a8a16e441e13bfea1f16106db
9922205d9fd6b1b27559636392fbe64b6aae16ad
95955 F20101112_AAAWFA vanvliet_k_Page_048.jpg
c5ad42746c8a7d73b77d80f54310d5de
0fb213b9cc4eaa834f1e19684e1170b0622ee152
72963 F20101112_AAAWEM vanvliet_k_Page_118.jpg
98ad9508a30441756969b200acd022e0
a72a5108e3f9a0fdc2c35d1f9e9ba5b94331b197
15634 F20101112_AAAVZG vanvliet_k_Page_153.QC.jpg
519ae6b2f9c8937a82d0283ed1e33a53
0842dcde324651afb0917f1a81caa1bc392d6813
2711 F20101112_AAAWDX vanvliet_k_Page_173thm.jpg
5f48d79f8245c2e79462bfd7b89067e7
d95e4cae3249497b0249c3b89e1f689a6b3adc94
835 F20101112_AAAVYR vanvliet_k_Page_034thm.jpg
3fa27849d7f462c307d4ac86cd00e126
ee60453a610e96373372580c53ad2b5aadaa3a92
90784 F20101112_AAAXID vanvliet_k_Page_029.jpg
a7628b316355301c8af3f555ef4355b3
eff9136daec6187de74810367a8d635b710c496e
F20101112_AAAXHP vanvliet_k_Page_076.tif
22ea84dc1db4277ba4d9d4c4a7ce8239
d3ad8c69250e8b58c732eb2a036aba1a9babb176
61772 F20101112_AAAWFB vanvliet_k_Page_122.jpg
037bcfb32c1b6669e17adc446228b7b9
f69d25a0934a548d29a86689f1c5b67b4bc2d5a2
63176 F20101112_AAAWEN vanvliet_k_Page_069.pro
0a37d8090f11d956d9ee13ff0a27daba
39ae2d16f9334e81a7216a3678156cc310b5c68a
70670 F20101112_AAAVZH vanvliet_k_Page_145.jpg
0ee62cc07a515eeeb435f2f6a35acb81
7381bec3596765659183097e026706095abc3107
22800 F20101112_AAAWDY vanvliet_k_Page_001.jp2
361393d2b264595b03bbe2116769bd94
65021133b95e06c1131a57d5ccce63bc0256cbb4
1028315 F20101112_AAAVYS vanvliet_k_Page_067.jp2
06e062b181f7adc5a73f56f2f366bfe6
15bd1f583c6cbb37f9078a3935e1a4c0e0f91d35
90598 F20101112_AAAXIE vanvliet_k_Page_033.jpg
aa397acd36a11d6c0525e6c4fc9d3217
63a11f9215b1df0ee485425577f6e35d666517d0
67921 F20101112_AAAXHQ vanvliet_k_Page_067.jpg
18f0eb0bf3e7a4097dfb43e3d279c62f
1a0d76f65c0bd086540cd1e68d1a751c52bc0507
153317 F20101112_AAAWFC vanvliet_k_Page_132.jp2
11e4ba88f789e8778be0ef7ce7f56423
9d740cf8fc2a501c75e4e381b245f6b50170c81c
22365 F20101112_AAAWEO vanvliet_k_Page_041.pro
3c2f4b5870d22ff202ee168b0884d4d6
b01655fcd32ed22b4ef75a6b3ae65d2355c25dfb
1053954 F20101112_AAAVZI vanvliet_k_Page_193.tif
2a9b2c7128fdf7d9f3d64be6873520fd
9dd223813fd498d72f5831e517c683cfdd141d5c
3927 F20101112_AAAWDZ vanvliet_k_Page_114thm.jpg
851e97c6a425cb29514cca9dc470c652
35d93b68c0030e4971e2dc2c34664f07e67581e5
34819 F20101112_AAAVYT vanvliet_k_Page_076.pro
fc8b79fb4df1c428ea7d260a2fed12a9
3cdb16983f854fc99cd3713e0d6aece17579be1e
8505 F20101112_AAAXIF vanvliet_k_Page_034.jpg
829453e0dec5cdd1a79ba1ae8bfd7e1e
d04173bec0258fe2f531eb9ccafd83412fee6916
2824 F20101112_AAAXHR vanvliet_k_Page_156thm.jpg
d8a9e5302636659cb3f82ce72d720db8
aab11647e084f7a55c13b72d1f23a60df75efd41
111729 F20101112_AAAWFD vanvliet_k_Page_176.jp2
3d8b7488dd84d2f03ee5b9ddf21cf11d
75c3cd607da4d5ba9c3104c614f7ee927a68f261
F20101112_AAAWEP vanvliet_k_Page_080.tif
c52f471fd0d75428431702d6d7f762ab
d862072c1bf9ce13be5475d968c2e7f18e898203
173120 F20101112_AAAVYU vanvliet_k_Page_173.jp2
fadab21643574448bbf1daa7c3deb34b
aa187d924db22900602760d545b4cbb595bb142f
56679 F20101112_AAAXIG vanvliet_k_Page_037.jpg
32961c5b58f9db5c3691a1f63e200979
bfdc3547e8c325070cccafd18f02e128304f1159
290056 F20101112_AAAXHS UFE0019360_00001.xml FULL
bb043d12e33525644245b105228b2146
5eed813481532ea5dbff60a09e253a0c8ced2047
6549418 F20101112_AAAWFE vanvliet_k.pdf
b1dcfeb7afc6bb2e8c2fbb821815ba4e
4075f26f10f2b009a37e0225f1c71cbf5206e5c8
163605 F20101112_AAAWEQ vanvliet_k_Page_145.jp2
5e62dc5da491f868cd6be5423a5fb073
ae58109cb8c522dc6487eba9a9c6f3fe9d4844e0
74425 F20101112_AAAVZJ vanvliet_k_Page_072.jpg
f5f891a9cf0253526c267b300acfad17
39f309a7ca2ddd36b5e1882ea06422db2f08788b
28508 F20101112_AAAVYV vanvliet_k_Page_103.QC.jpg
8b3db9cca8c05cb6090e27676ca72135
cd717075276ae0383981963b4013752369ba0ca5
51266 F20101112_AAAXIH vanvliet_k_Page_038.jpg
245f06c8288f62996ec21c2e16377eba
fc6db2b22cab14f8e197b9ae2ef964dacf12ebab
2061 F20101112_AAAWER vanvliet_k_Page_177thm.jpg
855f8e5111f73fa23a06d06df3497550
1f13e2a45c667888615df83ec48fe6fb22191147
1054428 F20101112_AAAVZK vanvliet_k_Page_173.tif
ed4c5eaefdc07eeaad5cfce929734219
a7aa999da7b5ca46622d9be2cf9b39901032d52a
5530 F20101112_AAAVYW vanvliet_k_Page_011thm.jpg
f36ebc1bc8fe35356f7f05e6b86e7b43
e9231ae9099f4a71adbb9b00f1d1b153df2c0e9b
147600 F20101112_AAAWFF vanvliet_k_Page_175.jp2
dc2bb8b6f0cd681287c01b1b7bd5feee
7b91e04d5856fab24827f639d27830d6d1d6ac8c
102177 F20101112_AAAXII vanvliet_k_Page_039.jpg
13b0c7aa5745cbe416803ef53d83a76c
796d3b5e147e7b26f696bef9bb3bf9bff28d8f03
81863 F20101112_AAAWES vanvliet_k_Page_170.pro
11373b1f7d6a83fdd8ebfea42c350d41
05f412dd120d0cfd9c956626736f7d2e4bc060ca
15216 F20101112_AAAVZL vanvliet_k_Page_154.QC.jpg
e370210f490a2807ee6a0857684197bc
2185ef13eac89e45bf88cfc464b2df63eb97fd56
83345 F20101112_AAAVYX vanvliet_k_Page_089.jpg
bdf46e2ba80c8244f50416b63e6f99f4
f36f46abdecd56606139ccda5ef4a63f8058f11e
51813 F20101112_AAAWFG vanvliet_k_Page_110.pro
804d1f4ad639ea07613a440e8cbe2be3
3e6718794584b2986a02dea6968b78d519ff22dd
49466 F20101112_AAAXIJ vanvliet_k_Page_040.jpg
8cef5655868282b7dd4b83fa3f0d9042
d7835512fca45ed57a4cfcda1cb0c728607f15b8
28253 F20101112_AAAVZM vanvliet_k_Page_018.QC.jpg
d7484fd2ec610071e7b9f26428237e2a
ee4d987089f42fc08371751aa0460fbcce460fb7
624773 F20101112_AAAVYY vanvliet_k_Page_083.jp2
977ba16bd08ea90f4a836f6b914f8231
1e8c56826fe104a9b5fb2b08c8599ea3aabdbd24
118035 F20101112_AAAWFH vanvliet_k_Page_108.jp2
a9b6cd423411d8fc0a67e6b24a486b8d
dd66895b307c825c412fe8f5b86a65ea61ebd836
84392 F20101112_AAAXIK vanvliet_k_Page_049.jpg
85ac6727d678160c3e674c7c08729939
449a0df090d5d28c9fc6bda91b624d7fc3a4ad75
86867 F20101112_AAAXHV vanvliet_k_Page_004.jpg
4738ea34b6bf942a1f3ab49d7237a19f
709f1be19f1d9cd45450537098a9e11fe7c80f3e
2861 F20101112_AAAWET vanvliet_k_Page_073.txt
8aa4ae8faf1bb64975317613200f834e
bc7d8fe41cd235fe4c1256d7dc14f711e50ea896
1052 F20101112_AAAVZN vanvliet_k_Page_003thm.jpg
2f6186db6ad6311c2bb3713d736fda3f
9be6077977ccdc586d1dac64f4f823cdc1660330
6621 F20101112_AAAVYZ vanvliet_k_Page_103thm.jpg
3098fd8c83ea0a3bee280249fb123b6a
ad2ea6d9d475a2ba5e99a274f342b798dd34797f
9992 F20101112_AAAWFI vanvliet_k_Page_008.pro
2839eb062be92e2ed50c5fd80651d350
ff1a79b59569f2cdcb80fb760104d18863633c95
74030 F20101112_AAAXIL vanvliet_k_Page_057.jpg
859e674efbccb139ed43e40987fd6aee
0b14be48de3f56d59deac1b69ade99306ee6333f
94704 F20101112_AAAXHW vanvliet_k_Page_012.jpg
140b28dc73087d6d44fd6f9d131410aa
8ee0f6eff235d1b7ac3a21bc982deefd6f2e566d
74876 F20101112_AAAWEU vanvliet_k_Page_168.jpg
c85be2a3a11c6c872aa4b5a07dede2c0
889549c90d670885fa92db4e2943a2875a9c138a
6505 F20101112_AAAVZO vanvliet_k_Page_110thm.jpg
c2c878b1458e0039a451d639cacb3b5a
39fce70ad89937d5dba17e74d03abe5f9876acf8
82052 F20101112_AAAWFJ vanvliet_k_Page_044.jpg
b54721a1fa78f357a3dabae90677cfe9
1c10d1398fea612122244d1ad3676b1b9f0ade90
87595 F20101112_AAAXJA vanvliet_k_Page_091.jpg
b6d27e053965ca93f3a4a591d275b877
8c99baba3f99334e058ed4bbf13e5d69a6b43155
96780 F20101112_AAAXIM vanvliet_k_Page_058.jpg
d635ff8aaa5a31dd3dfe4b621f9c636c
9fbd738a44f0b502b40589cc997cd2838a54ac5b
76250 F20101112_AAAXHX vanvliet_k_Page_013.jpg
ae89bec3d2854e9dbe52250221fbb080
1ef1ebdef3bd2ba7d9ab042129f9a388d12416fb
6823 F20101112_AAAWEV vanvliet_k_Page_045thm.jpg
1d2fe6c87537960d095ef836cdf46482
103a25d890a75641c08e1430f30486c290559d7e
88649 F20101112_AAAVZP vanvliet_k_Page_185.jpg
2b6073c2b5c9d0ce5ab9432301371974
9c61b8ddad298881b0ade60a66b6da9ff9bda416
23287 F20101112_AAAWFK vanvliet_k_Page_017.jpg
839f0dcb81197a5c4c06f275fd0c2637
c5a6593fff868bfa07d1adf696e6dc6f37edceca
98297 F20101112_AAAXJB vanvliet_k_Page_093.jpg
d62b20d978188cff5029971baff1fd89
adfd2d4962b34cf8cb4f1aa44fbda24f4e6af214
99052 F20101112_AAAXIN vanvliet_k_Page_060.jpg
5a0a39b0ae4a8bd16c9089cb995a1a65
302f380478aa163669dc055e20e8ae496b1c3141
38527 F20101112_AAAXHY vanvliet_k_Page_014.jpg
2520a7786d00ff63db3e717cf13dcd5c
7a2b16eb6bd4526168764cb388ad572114bd2453
2869 F20101112_AAAWEW vanvliet_k_Page_064.txt
5a7b26a7ad640ff4914f43a7cbce82db
7b338868730f1ac4895a4830de7cedc37ea01cd6
30359 F20101112_AAAVZQ vanvliet_k_Page_058.QC.jpg
e8ed793a9f3a1dc9b9424fb0e8e66d7e
ecfd6da69e91392a9cce5ff406a751b6a98d111a
6169 F20101112_AAAWFL vanvliet_k_Page_101thm.jpg
ec2507e17d4c939615bd1d4c2f34e053
b42e85ed526e41b7c20e0a00b1a4fa581b71a1c2
91421 F20101112_AAAXJC vanvliet_k_Page_094.jpg
e768ddad8ae1c9df58fe899c637e6edf
660d69f12bf5778a235387bdd77749684d976480
43132 F20101112_AAAXIO vanvliet_k_Page_063.jpg
bd0e43733f6ee8525b3bc9d17ec58e9b
24a80fc367ef7c0e95a40465cfbe53778248a082
89468 F20101112_AAAXHZ vanvliet_k_Page_018.jpg
693de9a152002cb3a88960573072fc4f
f59d4aa9d053079d0a3ecf0d69198a676218bf02
3140 F20101112_AAAWEX vanvliet_k_Page_130.txt
636450fdbf954d0bc8ba8ea5a6de83c9
5ff7faec44e560319284d76ee41f8a6edc7788f2
2157 F20101112_AAAVZR vanvliet_k_Page_190.txt
6f8a75ced06e44abec150f6c18ff19ae
b4540db57744e0f4251cba422aaf93f1440674a7
24360 F20101112_AAAWGA vanvliet_k_Page_113.QC.jpg
2de6227c246c468fcb0f01fb2145b6b8
85d683fadf09f8fb37f190561aab438b5b836670
2114 F20101112_AAAWFM vanvliet_k_Page_110.txt
0d31680ae61f09659fce1e4d3df2ef1f
8d166b919a34700dfc3647beb5620d79f2363cac
90808 F20101112_AAAXJD vanvliet_k_Page_095.jpg
41402bdf4916cde3f088965aec03fcda
eae43a05871217d26f9ec341561f75262111f7fc
91350 F20101112_AAAXIP vanvliet_k_Page_065.jpg
d6c9423bf67d28c0c3aee49228edfb5e
f3058c5b998c013587f27055639176b716ff4fdf
69798 F20101112_AAAWEY vanvliet_k_Page_028.jpg
4de6b44ebc25e332593137212e154239
d42b35a8c42b3cc48f26daa25385b84222bea24e
F20101112_AAAVZS vanvliet_k_Page_061.tif
aab308c3ca2e8e33c28a77d9988b671f
28f53aaf25682d44cad7d46492a084f2790dc9be
16913 F20101112_AAAWGB vanvliet_k_Page_003.jp2
2a1517ae6b95a7b4b6bce7ef9cb5fcd1
9e91fd1867caeec9a1e454fc255cb88aab101dfe
2764 F20101112_AAAWFN vanvliet_k_Page_171thm.jpg
32e65adeefcb740967b6774f029a14a8
3d25239dacaccd1b534922a00706b99728af7631
94308 F20101112_AAAXJE vanvliet_k_Page_096.jpg
a04d9f5f68a8707f1c4c5446c8be0f47
93836f81c08b90967c8b5b43ee7633e18f4419dc
64305 F20101112_AAAXIQ vanvliet_k_Page_068.jpg
fdb29cb9376df1e525a2829f09410e1a
d0d1e2e5f9aff0c20823545b3c42d72ad7ea071a
F20101112_AAAWEZ vanvliet_k_Page_178.tif
8a10e97656f49301e70ebdd9e38d9d66
ab43a350a728a718bce3f0d5b296a988f167c66d
F20101112_AAAVZT vanvliet_k_Page_043.tif
4a651d1502cf806a1ffc5615abb2f025
029445ccfb6176a16b0aaf1ab8fbb2343e83ab23
31934 F20101112_AAAWGC vanvliet_k_Page_010.pro
360f764923d265d7a1db0e9871ce8e6f
5baf535a799a3602f86d3ba83e57c63f023809e9
F20101112_AAAWFO vanvliet_k_Page_156.tif
a56cb3c90ff3f2f6d38fcec5cf5ba69c
036fdd4305f67a6050eac478510ebec9de17da94
88959 F20101112_AAAXJF vanvliet_k_Page_099.jpg
b300087ca7a8dc18fb6043e44cd12d3c
ffda654e6823e58aa4bfe63fd33da9d86bcf7193
105268 F20101112_AAAXIR vanvliet_k_Page_071.jpg
6ae9a925d3e4ee651200649387a67c5d
6ede62cd61fa3638df683b2ce35a03c771d12d08
3716 F20101112_AAAVZU vanvliet_k_Page_155.txt
b0c910ee515e2dbad3cd58685361372a
2b370d7c55e5d13a510cdb172dbed9b3e0f017d4
116556 F20101112_AAAWGD vanvliet_k_Page_022.jp2
46f91b130cf858ae1ed826f27c2b7e0f
ce3d737f7d38d39f18c3bc8d9139b1866dda903b
89668 F20101112_AAAWFP vanvliet_k_Page_087.jpg
87d561e413f7c6cb5b991971b46d2fa3
96240ada91da55e1ea053d64feb7b89e8c63feb2
91993 F20101112_AAAXJG vanvliet_k_Page_103.jpg
cc2d0a11999855a1f51f0d6189c37e4e
bd1df6d59cb4ff49dc7feb3d09ff9afd4d7ccb3e
114852 F20101112_AAAXIS vanvliet_k_Page_073.jpg
8e7ebe1760e067c97b005b86b3e90842
71d8f38539e1a8bb1622d53c9190d2bc252e7fb9
F20101112_AAAVZV vanvliet_k_Page_063.tif
5ec9d53d031646a4e6c8daa0bd55ae22
efb8af2a668b2f8375307fb42a555cfc65aaa14e
2183 F20101112_AAAWGE vanvliet_k_Page_100.txt
1817e94346f1490de45580c651392e8b
42dfc2ef19bd33e79699eab967a0cf6d4b6a4c5c
F20101112_AAAWFQ vanvliet_k_Page_071.tif
c9a13052da457bf5bc10daa10b2293d0
5f5a21586e7cb80fcb29fb666650da970d2caf6b
94307 F20101112_AAAXJH vanvliet_k_Page_106.jpg
ff65742bae3643d980d36d4c86ceb286
246df8c700b24fae09bdfe0afcb92639298ba75b
80786 F20101112_AAAXIT vanvliet_k_Page_075.jpg
b557548ccfdb85c1155b0e1dec0f6409
78621e6f74001ae40e60af778956c972c89e8301
28388 F20101112_AAAVZW vanvliet_k_Page_006.QC.jpg
cb4716d11bbe1f99d1fc1bbe96a9b572
e34edb29158ae1a3ef396c7ec06861f5ecb3a628
322 F20101112_AAAWGF vanvliet_k_Page_003.txt
76cbb26372f82f69d78271b5f6973229
ea2f9e4e3affce9d4ee1a2563eb50dbb67475f96
1051967 F20101112_AAAWFR vanvliet_k_Page_091.jp2
3e1129755e30a1be097f5598d5eec045
c8568e7b3afcca582b93261d2f5068761d6dd20b
87689 F20101112_AAAXJI vanvliet_k_Page_110.jpg
0732ae9878d2080183849c2d92d641e9
0a3e7ae2d1507ced7cfb80700f75a8776a148471
92911 F20101112_AAAXIU vanvliet_k_Page_077.jpg
c26870a0da60c03fab3945264c668536
3ca46da614efe8c804ad5bc2463955c29ddabe08
94616 F20101112_AAAVZX vanvliet_k_Page_098.jpg
f7f2783ace337a625aaf547f55c57355
bb81306ab659a518a9dda501b215990fd3b31113
F20101112_AAAWGG vanvliet_k_Page_044.tif
d144449618758763778f1abd90779fa5
c007b079d3c1948e88d9d03faa2cf3165103c76c
F20101112_AAAWFS vanvliet_k_Page_003.tif
4e53bf163ddbe9a39054acd3db47bde9
e85f6b4296d79dabeccb68dca896285fdb3f4cdd
92352 F20101112_AAAXJJ vanvliet_k_Page_112.jpg
809a69f24f233a11dc2d92b21fc86cc6
f48cb1177665090a54dc88aa02abd51f5ac858ca
94154 F20101112_AAAXIV vanvliet_k_Page_078.jpg
85c640b9fc79a6af5891ccff4324c293
67c738c0b98e71cb5d914892ffb3771102263324
106262 F20101112_AAAVZY vanvliet_k_Page_016.jp2
6e20bd288eb871de9df433346e99d7b6
1f28e98a2fc6ac969272b52a4d974298202d54e8
F20101112_AAAWGH vanvliet_k_Page_100.tif
52027584653e74d33de98da7aa3e7edb
46ceb9ed3a8164d25941038d57a96b33d461ad17
107044 F20101112_AAAWFT vanvliet_k_Page_180.jpg
e93b6e2ed4c9e3c6990fa3795aa3a214
e4bb1dca8d0eb5b4c590d7a0fbd61a847f14d8e9
77869 F20101112_AAAXJK vanvliet_k_Page_113.jpg
8c7af9bd9e8c68e5e9a6ea19f75a6d87
f5788d901a66ef8d904c401ff570142921ffb64b
26096 F20101112_AAAVZZ vanvliet_k_Page_089.QC.jpg
b386cca9c429283447ab454b5e618cc4
30b30117e7487992aa486911cba9dfb0f3fa9bcb
2257 F20101112_AAAWGI vanvliet_k_Page_027.txt
1aecfbbc7b4c23efc23bd5ce12efd057
16d3fe4c662f5f39c869e7bb3c2c4891d0060303
74601 F20101112_AAAXJL vanvliet_k_Page_117.jpg
f9569213b9e574146c35c41edd3ced7f
432a68287366d8907715ed4aadac0e714f7ca02c
86628 F20101112_AAAXIW vanvliet_k_Page_080.jpg
1dd4f317acaa29f024c07e1646d06c66
36189cd468e0442b3a92654239c4f0848fa30a67
2782 F20101112_AAAWGJ vanvliet_k_Page_150thm.jpg
db147d4861ccf1b27cf661ddd631a0fd
c83506c285976fb86d26cbe72219498db40bc756
81623 F20101112_AAAWFU vanvliet_k_Page_134.pro
2e5619b409fba8a941c4288dfabb2090
f8053359d6194e0b08485b7a31a4a09280e1418a
74667 F20101112_AAAXKA vanvliet_k_Page_156.jpg
c05f9d22e85603111ef6677422a492ba
42fd4c7974a7ee8aeee050690d418dd8036c9d2c
90868 F20101112_AAAXJM vanvliet_k_Page_120.jpg
7f2f8ac43aad2de26a11e720ff07b98e
113e638ec31007f57eb3e4f2f4c0f4ea7f2589f3
46480 F20101112_AAAXIX vanvliet_k_Page_083.jpg
d85c2917190bd2d55d1704279f7300ea
f38bbe92d1ce0f0863a5b3527ef13664a126c525
6983 F20101112_AAAWGK vanvliet_k_Page_023.QC.jpg
2c4f9c0897c5eea7da39951a594afd98
23d600c1055acb26281b788cca8d13e52759f802
F20101112_AAAWFV vanvliet_k_Page_140.tif
55bad07d3e9e28edd7282bb96ae92725
7a4549a5ba89982724e0e490b6ead54040828da6
74622 F20101112_AAAXKB vanvliet_k_Page_165.jpg
c6d5d3f1109c9b2c92301c6c3847acab
8a44a5380045c2b7c3dad1c50cb951b16a8d4832
93190 F20101112_AAAXJN vanvliet_k_Page_123.jpg
841899db7cefbc1f95c378d074e8e170
f9c2f4b50b0787f1fba098450ad82be43ac4ede7
88678 F20101112_AAAXIY vanvliet_k_Page_086.jpg
7c07c06c328d8504803d786a4f0f4ef0
e466b485f7e4458637599fd83d20b366870a21e0
53648 F20101112_AAAWGL vanvliet_k_Page_018.pro
f83598de1d8325b83a28a156a999ae89
e8cf3d0d9e2cd65cc86ee2c80e4385cd881d4469
1051854 F20101112_AAAWFW vanvliet_k_Page_116.jp2
acc959849bddb26d8c2bffdb3f4cd01c
0f5f60e22b5dbd3befdeebcc2cd3faff46201397
72760 F20101112_AAAXKC vanvliet_k_Page_167.jpg
6edb970ae492cccb4e7f772195cbc9f8
128b241b65411cf440dbf2d5c1d554b8b1546569
85043 F20101112_AAAXJO vanvliet_k_Page_124.jpg
710726123f4f93bc73df04a77cbd0f36
6667ea0e3ba1659076abd28ec1cc3e3b51d0c914
95670 F20101112_AAAXIZ vanvliet_k_Page_088.jpg
4422973720d1038103969255719f2162
808827709dfcd89c0f8c48146ec4c148d5fa5cc5
113438 F20101112_AAAWHA vanvliet_k_Page_064.jpg
96ad2cd38931deec32c1768936991eaa
528725cd8816eec53e49e320d1ac16d6c5096032
83364 F20101112_AAAWGM vanvliet_k_Page_160.pro
eb7b02489e90f75716422dcca8972f91
d4bee80b7a5c3db9a93dd6c3c84f576e6e951eb1
2713 F20101112_AAAWFX vanvliet_k_Page_170thm.jpg
e213973c541714471e8486cc1bea53e9
5ea35a1730bc5a3ca69ecd967846ed05ae43c082
71432 F20101112_AAAXKD vanvliet_k_Page_172.jpg
e8e588f97c04994cdecad321ca3f782e
eba7be7e91634f511aa3547231fdfa5acab4c5d4
86656 F20101112_AAAXJP vanvliet_k_Page_125.jpg
49ee2fe8c66dab9c9a73b9d3390b72bc
6fb48c20bed1d971fc62b1320dcb5fc4b41b3fb2
2860 F20101112_AAAWHB vanvliet_k_Page_165thm.jpg
024e8976e5d8faa90e8d92727a93905d
618a210fe2dc3b1bc08225b9ebe892764b15991f
1810 F20101112_AAAWGN vanvliet_k_Page_097.txt
ca0985893ce09a8039f7b68091de5aaa
65598f5a3773115042eb123aee7430427c80aaba
7089 F20101112_AAAWFY vanvliet_k_Page_098thm.jpg
041047c670ce7d70af9d29f4fe3be0a0
7282c2d2af4c30e1947fb6a71f81f8c57da64d8a
64483 F20101112_AAAXKE vanvliet_k_Page_175.jpg
a4053a644dfed7dc257e162521fc8202
ef967ae07c5746fd71f063aae9ff18bda527cbf2
45369 F20101112_AAAXJQ vanvliet_k_Page_127.jpg
df2b9b9a2bdca5d503b459bc6c79e535
10d32f788e94d3c859b12eb1369877832c6f5d39
F20101112_AAAWHC vanvliet_k_Page_039.tif
66febed22e94b60151ef96b424c28e8d
7693cdaebefb53265b5205185b84ad9c524a770e
6055 F20101112_AAAWGO vanvliet_k_Page_044thm.jpg
ffb9abfab3370b5a64e04f199e0ff7f0
7fa68d1234c9c5d7cd27ca2b8baf5fc40a987976
F20101112_AAAWFZ vanvliet_k_Page_077.tif
bcc405ec33302ea9978e0a570bef1a6d
cecad474278c241d7a31539aca6fd37e4abbe2e9
50880 F20101112_AAAXKF vanvliet_k_Page_176.jpg
3507490ae6d0f297c765fc0a6cad19e2
191c98ecf6b556bfb52765b1e0bf0d5673259c8d
62734 F20101112_AAAXJR vanvliet_k_Page_130.jpg
992990a2c5a6e47beab8b440aac0015a
064b5fc4478ecc469e792543799aa6ff1598a3f9
F20101112_AAAWHD vanvliet_k_Page_176.tif
994716223a27104f2dfa7119b0145c20
a322c3fa695876b0c2afc5830df8045e08048b5c
72076 F20101112_AAAWGP vanvliet_k_Page_146.jpg
7f4d971c036d23b27df199ea6db77675
35ef80b671e567d6062188647ed538d5c87d8790
35771 F20101112_AAAXKG vanvliet_k_Page_178.jpg
f58c09803f1e49d5c664c75132bcad1b
1b59420b4b1638a1ec570e8032c530dee55a199e
70919 F20101112_AAAXJS vanvliet_k_Page_136.jpg
5ba9a7aca687719e6852c5763b6fc496
f957b2b1ee1e9277a1bf86e7eaf3a703161cd976
F20101112_AAAWHE vanvliet_k_Page_089.tif
7ed85fbdedbec5d6252c0232d51e393f
9d0fa24e150b923ebb67da3504143013aef88995
F20101112_AAAWGQ vanvliet_k_Page_096.tif
2b67713180df8f7416266a51751e2dce
f39d8d474a0770b0f04e8e4b321144678fd4e689
98124 F20101112_AAAXKH vanvliet_k_Page_186.jpg
a2f877c18db67ef040e885cbc379d6d6
6db2b64b28eedc9322466897c0b29db4fd1ec99d
72202 F20101112_AAAXJT vanvliet_k_Page_140.jpg
7835e7770a370ad493a463c08669b214
398c1f5c1c28674e6a2ca0af1d39520020400d0b
96511 F20101112_AAAWHF vanvliet_k_Page_117.jp2
d82e737541d28079cbf1021aa631b310
54c3eee219b130ae37d53068bdd3ec8e7778fb6c
747 F20101112_AAAWGR vanvliet_k_Page_102.txt
c5e66ee8f55b0e67ed8b3051687cbf72
5512bcb9ba5b41c17ced50eece000e591c8a5fe9
98080 F20101112_AAAXKI vanvliet_k_Page_189.jpg
c8e69aa98acda5dd82f220a534bab9fa
dca4916b39da1799e962e57935c8f50d98eee6a5
73148 F20101112_AAAXJU vanvliet_k_Page_141.jpg
1e2df79f3a120bcfcb5be18f113ce218
0df894494ffe9fb3ecf736dd054d2e9d22e38894
F20101112_AAAWHG vanvliet_k_Page_082.tif
d4ce54c152ab1e1542e727dd8ebcd54c
72bf82fe48cc38ae25ffe6ca27bb939cf5ff9e95
14855 F20101112_AAAWGS vanvliet_k_Page_055.pro
4581e16dfa128a61eed538ad7cece4e2
296b298e3e2db448b4d940ab82247ea0468d215f
112703 F20101112_AAAXKJ vanvliet_k_Page_007.jp2
a87da319b24ad1dccd28eb599641dc02
b2693aee99d648791533b6f956f95a787f751e54
70643 F20101112_AAAXJV vanvliet_k_Page_142.jpg
6616d05f6d8f35dbb1c31f5add60d9a0
150ae375eaa28c57cfd9612921d3ec6d3d1a1ee2
6620 F20101112_AAAWHH vanvliet_k_Page_183thm.jpg
40e1756936b155fb703813d29f392cdd
3bdf1f1debaf256a027e6785705c9cec803a753a
164588 F20101112_AAAWGT vanvliet_k_Page_140.jp2
84158aaef56756eb24d4d10ccbc46d5d
5ce259e0c5844601f87015d707b0b00b82a0459d
1051980 F20101112_AAAXKK vanvliet_k_Page_012.jp2
caf9ac10b2933fb15766dabb22b21b83
76762be568b00571dcca1bacb0e6d3e2176c9928
F20101112_AAAXJW vanvliet_k_Page_150.jpg
b21d6405d95a5392cf23e8115a7aa1de
44ad9dfb313ee20d36afa8704a9367098e9d8974
2156 F20101112_AAAWHI vanvliet_k_Page_005.txt
96ee6964da66fafb70b113cb7ee9b8e4
7ca8e9c99f5388d716f60c4936627c9c9ea1fb30
54253 F20101112_AAAWGU vanvliet_k_Page_029.pro
30cb18c38940f1f6a3732fc3925ec072
dddd0ef94a6022ee0743a0df8002031086e1e3f2
49861 F20101112_AAAXKL vanvliet_k_Page_014.jp2
0cedcc93e342ac63b0167b64ba0bf9ef
926d0c5fded4f257e236114e6e3129ac270cbd4e
57364 F20101112_AAAWHJ vanvliet_k_Page_179.pro
caf9b25b3ab5b108cac58316df303304
bd8f54baf8239fd21c7a84032cf48137567d39b7
124104 F20101112_AAAXLA vanvliet_k_Page_058.jp2
00e4b24896a3a8940645962a05957375
5c9020096192109b4e0ce63600286ee9818b194e
29993 F20101112_AAAXKM vanvliet_k_Page_017.jp2
9dbbc12b3a70ac708642e0d0a981840c
c62964101797fd004fd7bbc5cdbfb3f337867a22
72121 F20101112_AAAXJX vanvliet_k_Page_152.jpg
25cdaaf9a9e4381cb98c114d527cfd5a
9c19f621dd97414d18ce4c8c87f5da99b8d07e2e
83966 F20101112_AAAWHK vanvliet_k_Page_133.pro
b0ae5998fc8408dda842c7b2dd82a8a5
60f34a9f7080fadcd7d49e0fde1e36433538b43f
14845 F20101112_AAAWGV vanvliet_k_Page_063.QC.jpg
862ac8d68f9ecf275fea31a03b969baa
6199a49757c9258e3afe98216a4137b1eac219a4
1051975 F20101112_AAAXLB vanvliet_k_Page_059.jp2
c6fe6352938fb783d25c3140a41ac68c
d87fbbb15fd6bcd122347310717a420e5932675f
114228 F20101112_AAAXKN vanvliet_k_Page_018.jp2
0a70794ceccc91ed4985416872ecb2d6
a1894a35e53412afa79e3e74bc9244159d929820
73887 F20101112_AAAXJY vanvliet_k_Page_153.jpg
ce00d0e0646ffc9fe527e20e0efd6315
4312b63bd628b99f72f69f5565f17a46b6a10c11
127756 F20101112_AAAWHL vanvliet_k_Page_180.jp2
7fb1857785c6bbfbffe16b0de6848491
c43b2ea055c41708ff16b6e976d411989e80935f
2792 F20101112_AAAWGW vanvliet_k_Page_010thm.jpg
49d49fe4fd189e75a381c7713205624d
052696f739cdf5face8a88d3c629ea2a055e10ec
1025632 F20101112_AAAXLC vanvliet_k_Page_068.jp2
2cad5219cb4f3422b380ad176ec21a98
62d5423c55eeb854ee8984facbd7b496e31d95fc
27789 F20101112_AAAXKO vanvliet_k_Page_023.jp2
f85f1f976cfef656409c564406a7a65e
cc085c56a48ace4fdc6b9fcc414c38b1afe6d761
72372 F20101112_AAAXJZ vanvliet_k_Page_155.jpg
f0ee820b2e3f53e78ca403cdd720323c
45522778f3f4289af2623b5f63cfb5aa273c3f61
28300 F20101112_AAAWHM vanvliet_k_Page_005.QC.jpg
4b3ad7a2dbf2c21a3c04df7e73841065
05c3ae786fe5e9a5d7d0f9eeb73667ac4673d9c5
27986 F20101112_AAAWGX vanvliet_k_Page_105.QC.jpg
1b6f0e7005649284cefb693805395ada
96096867a4be41e39566e6607d43008d18b0b3cc
F20101112_AAAWIA vanvliet_k_Page_078.tif
62557cbc8ff9d8448c89d6c5638a75aa
e1eb2deec02690b9a58990320ebb33e32e517606
1051982 F20101112_AAAXLD vanvliet_k_Page_070.jp2
df9d76b83a80d776ac074d5dc1408f57
21c56f6b1c678bc34504c6a1f2263b31adf2d5d1
1051977 F20101112_AAAXKP vanvliet_k_Page_025.jp2
76fbad836a99701d4e3eca0b6cc94e1a
de3b518de1115787bfb5d69de63962611c1c1fbf
39392 F20101112_AAAWHN vanvliet_k_Page_097.pro
dc4f33f831f7ef0d5fe21caa86dc21db
904541ef2a8895c91dfd60633925609e95be843b
2173 F20101112_AAAWGY vanvliet_k_Page_086.txt
ed218a670187cacd2449e785397fab86
ccf2619d00af472fcc47c2da953fcfcb27ef5f37
3723 F20101112_AAAWIB vanvliet_k_Page_161.txt
05e9d06ca5e43aed5aaa6a3e29325058
d7286141457b3744faf687791b43562eb23b558c
1051970 F20101112_AAAXLE vanvliet_k_Page_075.jp2
22c878627da731db2cfc95f19d3a1fb2
95232633276f97ad3648144d0c256826b9d6108f
120541 F20101112_AAAXKQ vanvliet_k_Page_027.jp2
d55aab869a45f5ef4d9084a6287e84ca
4705596d093d89ec44929f52afd48fa1fef67b40
1354 F20101112_AAAWHO vanvliet_k_Page_070.txt
12534946f8cdbd02de4fc5d5b088dfe2
c78c4b21593a444e116004e9ff1b1fa0e31088f2
2550 F20101112_AAAWGZ vanvliet_k_Page_129thm.jpg
1e09248d6b12590782c7f25cf72ff0fa
1cba2ee79ec69d29bb2b2633c675a9316bc2da0a
110313 F20101112_AAAWIC vanvliet_k_Page_124.jp2
88c472b379125f81cdab5bfe0d97712c
f17c82f1a7b0380bcf30629c31e58a1c023563fc
1051971 F20101112_AAAXLF vanvliet_k_Page_076.jp2
90792c73abbbf5de3ce04d4646385ac8
0c4c3b840eb5278700665c21b4d5a1ad1a70c53d
116426 F20101112_AAAXKR vanvliet_k_Page_029.jp2
81a4c921b869db045162c45dcd6add3e
a048cf0fb3ad738427725e32a618321cbf698f88
F20101112_AAAWHP vanvliet_k_Page_062.tif
1a9f95408a05cbf2991d45b638b40d1b
2bb00c633b11dbe78e6626b9f346f179663eea5d
117819 F20101112_AAAWID vanvliet_k_Page_105.jp2
fab8ed6f5ee0da9dca7667169c5ddf26
065b89e5bb9dd10d6a199d4285fed459f535a4a2
120023 F20101112_AAAXLG vanvliet_k_Page_078.jp2
0440e025b268687ae77402143ae95706
1c33918a3a9e80ed6ffbe603b21c1e03553db65f
106733 F20101112_AAAXKS vanvliet_k_Page_032.jp2
23b8461de9e2d90ce0644009f2bca3c9
f46c5bddd9d0f8cec853bd87202fdba6572ab995
F20101112_AAAWHQ vanvliet_k_Page_006.tif
37f8f5ccd200f04407f7f01c56895081
51f0271bade681051752e47dda10abf08f549f37
27220 F20101112_AAAWIE vanvliet_k_Page_183.QC.jpg
fc248f7d4fa1bb0511c39a5e50f708df
7d8e0fea5539f9f32037475fea92b6d37d26f3ae
117612 F20101112_AAAXLH vanvliet_k_Page_081.jp2
f9cdd5651a12a073cda2327a5865e8a3
30b3e519fe31244c58a990547bff95f4daf6532e
63483 F20101112_AAAXKT vanvliet_k_Page_042.jp2
712e091ba8a93e7e11e0447038f087b7
52ad58239dfd1045c509a8cdf4a99a16c0c7ce31
82856 F20101112_AAAWHR vanvliet_k_Page_016.jpg
fc9b3459e7fb0db905416a87d145bdc3
be60ebfc4bd24de78675b16e9977b87acf5c6509
25265604 F20101112_AAAWIF vanvliet_k_Page_104.tif
f506796d522eea85a4dcfb9af2e91b41
b4217840af8aa1ec0d1409bde1f02b7ad80d5eec
F20101112_AAAXLI vanvliet_k_Page_082.jp2
523c145d1ed7a1b890c465de2760760a
c52e0badaea80763df604f0b0d43ce940a8e026d
97912 F20101112_AAAXKU vanvliet_k_Page_044.jp2
f08618cd4d99f53a0a8cccf9c885b210
343f7c744a3dbc2cf705f2d8956fc00be7b732f6
F20101112_AAAWHS vanvliet_k_Page_120.txt
d8b5570b93ac2eac95395487eda1de47
42ee3f5156463b0ead93a4fbfd4f7a9df5e600ef
28780 F20101112_AAAWIG vanvliet_k_Page_056.QC.jpg
1b652e124308c2da21022613f7c38dd2
4c66bf53f5dd250faff8a47d28000e5639f3619b
117482 F20101112_AAAXLJ vanvliet_k_Page_087.jp2
5d45e48d068201c4d9e80ae7e5c367ed
93f17f9776c68f98795024789a161e596a6ef5b8
122383 F20101112_AAAXKV vanvliet_k_Page_048.jp2
cbf440d402fa7587f9a1bbaf72d91e35
c179c296d746126b1e3a4870e3a74a58bdf49c7c
49465 F20101112_AAAWHT vanvliet_k_Page_122.pro
8eb0e2406340a64f031f31bf1d0eb2c6
bfe6846e34665967ceb4fe74f32f60cfd5f00d3b
F20101112_AAAWIH vanvliet_k_Page_093.tif
5bc7a08200776c1352c23599191ad48c
43d141eb7d3ceceb541a571e6025696d9309f370
F20101112_AAAXLK vanvliet_k_Page_089.jp2
751f6b8db911616bc0a91756592ab4c7
6e616209d509eed7e3aadb3daee1de436297580d
103974 F20101112_AAAXKW vanvliet_k_Page_049.jp2
5c3c81db33062fe071fe5125c0016920
84f3489fcc2bcc7a791dccdb60f015d6229da11c
54954 F20101112_AAAWHU vanvliet_k_Page_098.pro
18532701779c780be4a88bfaf6728a2b
dc270e9f2fa6deb776eae31257cbc56dd7fc7141
2794 F20101112_AAAWII vanvliet_k_Page_144thm.jpg
e01819b6e23d69c6b79ed4dacdced7d4
1a438cf0ea5dcbf5c7e0cf7f552205fe0cf7e421
827417 F20101112_AAAXLL vanvliet_k_Page_090.jp2
71f8fc0d77906adbd2fa9df874e51c19
1079970f28838ff0a8dbcdef314efd1bace13602
1051953 F20101112_AAAXKX vanvliet_k_Page_050.jp2
8c7aa7476b316868ca8548ec314539e8
c93c9274480ee5d41143d2a41f4e72f8435ceb2b
F20101112_AAAWHV vanvliet_k_Page_098.tif
ac0f75c08c97b02a0adc286519f1e1f8
8808361c700018c3c55dcdeadf57a1c990a83226
118491 F20101112_AAAWIJ vanvliet_k_Page_056.jp2
2a21b78eafdd56a85888b0f9fce57010
cc82e9e22c0f88278d2cc36855f732206ba80163
160023 F20101112_AAAXMA vanvliet_k_Page_154.jp2
b2a22990acad6098761046b730a23e4c
5ec1cab97288f3c9dac9679c4262c0928683c7b1
120134 F20101112_AAAXLM vanvliet_k_Page_092.jp2
0a0f578fea86f04d1f6b0d7f3c8e8716
1a87b40f55ef822bba117866050c96eb4f63b8c4
F20101112_AAAWIK vanvliet_k_Page_145.tif
c12f858057efac8826283df264c385ad
b594b344081ea4b3da74ed897d8fd8e098608777
171798 F20101112_AAAXMB vanvliet_k_Page_156.jp2
a03be0250b5213ddc754187186697872
f46d9e37b2c6fb928857e77db72f1a29dd6c51a7
1051966 F20101112_AAAXLN vanvliet_k_Page_093.jp2
d1c8eef01a37eaa396b91f868dba20e5
7ed821cefbf410df641c6902185abd80b039eabc
1051961 F20101112_AAAXKY vanvliet_k_Page_051.jp2
0fe23de901d26b690f1df6f4e706c0cb
732e430c1c1cd2bd2cf5d3be358a407e4923423a
F20101112_AAAWHW vanvliet_k_Page_169.QC.jpg
6b725368e6426d70ab2a368b88f53263
9710912e6d0df9f5bcb3afd2d8c7858a1d3dff6b
3634 F20101112_AAAWIL vanvliet_k_Page_134.txt
d95061f72924ff71e680803a95728290
aa917a3fd04ef1f71466f90f91eddf5fcae18edd
163076 F20101112_AAAXMC vanvliet_k_Page_157.jp2
c3934dad1a33d7e1ad9017f8fef1eb99
211d04a45d16df991d0bb1974f55e65b20ac971b
118210 F20101112_AAAXLO vanvliet_k_Page_094.jp2
b6e4be448afbd956911138c70a44de48
1425f095d9968f2bc545bed5516b10bad4d42334
F20101112_AAAXKZ vanvliet_k_Page_053.jp2
7e1e603f17323f2983a568be00546d1e
a4becbbe073bb5907315bfe064fd1debb6368964
28766 F20101112_AAAWHX vanvliet_k_Page_111.QC.jpg
56d5595c9b23f5a1409eddedcb7eb5bc
73af68f2e8a49a6498c8d9673463115079d54031
F20101112_AAAWJA vanvliet_k_Page_169thm.jpg
56fac02ba3f74c5e5c671045baab4368
76349209872343c6e82e787e7de39775e1225a02
13758 F20101112_AAAWIM vanvliet_k_Page_003.jpg
3817fbb4fd1b392d9867e5976f0141ea
10bdbd3af68e683af66fa72a314386c61808aa24
172678 F20101112_AAAXMD vanvliet_k_Page_159.jp2
98ac263e0239105509fe1695c9a8363c
80d0c01c5514ae8472d8e4c0f0db67481186b4ee
120568 F20101112_AAAXLP vanvliet_k_Page_100.jp2
7d214d78736ee5cf4db22965e59c00b6
941786c35cd970e35e17af3ad64099c8c904004f
F20101112_AAAWHY vanvliet_k_Page_126.tif
cd7cdaabbf80ea6430559cf8c5a4ed2b
c9e849fa6c9fc34aeffbc66e74cb9f8a6e092655
6530 F20101112_AAAWJB vanvliet_k_Page_015.jpg
0eb2f879f45a4feeb388d7b92d377e08
b54ae61739144e7473037d2b5497e0b5b5927b3d
F20101112_AAAWIN vanvliet_k_Page_005.tif
e9ad67ad8beca0003449ecbabb376002
779aadb4f5dfc8672bd275dddd712f0bac42568e
162213 F20101112_AAAXME vanvliet_k_Page_169.jp2
09a7359d676910b4dd448d7ab5141e2c
b8789de4c9c556a77d8eb195c8f9fd050e822254
1051917 F20101112_AAAXLQ vanvliet_k_Page_101.jp2
629cf57202bf27c6ed975d0ac07898ff
2584c87a4f3b710b47854214a876d54ffce51ede
59850 F20101112_AAAWHZ vanvliet_k_Page_047.jpg
f9b982adc8d2760bbf5060af5c9750b8
6368b6b8089155968fe2a68f91bba15723c4ae8b
15106 F20101112_AAAWJC vanvliet_k_Page_146.QC.jpg
9e51b1453af6f363a2405d96863fb3bc
f77345ac4c4c7645f1a1f1addc51f7aad83e5684
73201 F20101112_AAAWIO vanvliet_k_Page_137.jpg
4d6664ad581d5c9cab422a56616048fd
e5f615ebe012f44336f03e1ce8a2ebe91d86c793
164357 F20101112_AAAXMF vanvliet_k_Page_171.jp2
d67b80f11270948229efd4939d99c028
70029457294a8cbf1e473f6400d980c982471c1e
F20101112_AAAXLR vanvliet_k_Page_104.jp2
7561623de58053b934437686c7a95a52
bff3bb2b9fec1b228c86c651ae5e5976fa9434f7
19245 F20101112_AAAWJD vanvliet_k_Page_043.QC.jpg
966dfd1cf325ddda18b40bfa498540c3
70f5d115c2d977275a961da73075f087cfdfaf68
2337 F20101112_AAAWIP vanvliet_k_Page_187.txt
23e9c4270b49776c111bc29a749e63dd
182f1ecf53415739982ab4e12d96ebf0eefb6945
120996 F20101112_AAAXMG vanvliet_k_Page_179.jp2
a87a6f211797157443c2d998a4332ad5
1a002d2c43a8a6297e0ce902c4de2033a6142c66
994460 F20101112_AAAXLS vanvliet_k_Page_118.jp2
5c747538c28562661231f7f11804580d
8bbad1f5e7bf1ecc36121ca58208c2f4b2f81680
26948 F20101112_AAAWJE vanvliet_k_Page_031.QC.jpg
547b8028079354022456786025f499a7
e27c0169cd81995fb97105ce53dc230475d27cec
F20101112_AAAWIQ vanvliet_k_Page_012.tif
c6bed5e1fb383853f601d6ac5272a4de
af606a46df216a7e400b94fa4a12e65a70cb4e6d
116700 F20101112_AAAXMH vanvliet_k_Page_183.jp2
b6469fc693a8e94a621a833e88e1a37f
0dddbd5b644ee697edf2d988b19ce695127e3103
1051984 F20101112_AAAXLT vanvliet_k_Page_122.jp2
c5c19bc68307fdecd495b5cc0dfe7660
ed6cdbf0b65d59ce18c6e4ff74aa3323ef60d159
27731 F20101112_AAAWJF vanvliet_k_Page_020.QC.jpg
85a3bfc58dc6a5403cc4f65b9e7c4bbf
8d7dace9cea99e30c8c5f297429268b987182761
73474 F20101112_AAAWIR vanvliet_k_Page_135.jpg
6007e33d9b7f0ea5d7a670288fedd585
678eada76b0af55b89f7021bf18a133bd264898a
111985 F20101112_AAAXMI vanvliet_k_Page_190.jp2
d6960bbdd056fe35c6e7f632dc34aaa1
139a64e6137ddbb6ff714cd6ed8116a1827d86c9
97097 F20101112_AAAXLU vanvliet_k_Page_127.jp2
360799a828bc3b42edf4fe63499de1cd
36853d287a8f1a2320dd4b42f832495c81ca2c3a
F20101112_AAAWJG vanvliet_k_Page_079.tif
73f7e627fe056858814e35b33adfb2b0
d21966599a3b3b2772d2023e353a4f1f0f04bb1c
6208 F20101112_AAAWIS vanvliet_k_Page_035thm.jpg
cbe3548a468e1de19d71f1322c966967
0f7815f760e2be33d6fda748347293cad559f67c
117084 F20101112_AAAXMJ vanvliet_k_Page_191.jp2
0e8bc68aeb8f9fd0d30d5e68dac9ae41
81861a9a53f2f9f44318f341ae5814d3c12f525b
122702 F20101112_AAAXLV vanvliet_k_Page_129.jp2
de2a7b26bc098d354347744504fb3351
25bb52550ea54378c52a48bd253f437a25af6684
F20101112_AAAWJH vanvliet_k_Page_029.tif
96b443d473cbae7b88f21112870158f1
3a8cba2a8b601b3721e3601e31b3d55b7f9b3a33
74444 F20101112_AAAWIT vanvliet_k_Page_138.jpg
2630e52aa9a99c7e100fe013866eac98
647012cda6759caac02524212bcc385883d0b05b
F20101112_AAAXMK vanvliet_k_Page_008.tif
410d474803f77ba8fb902416c781b0f1
9004665cb8ca388b2aaac225a29b5e7b15da6b45
135666 F20101112_AAAXLW vanvliet_k_Page_130.jp2
c3a98f881326c23ef810512c7b6bc23e
d30571c1121c4d7db8f70ea1a55945d7dc62e23a
2247 F20101112_AAAWJI vanvliet_k_Page_127.txt
2c1d16c4ed331b0e59d4cce88442a3e6
139aec436dacf28b1df3188b19c3581db1790893
2369 F20101112_AAAWIU vanvliet_k_Page_015.pro
ae71fa46ca8f41937a359879fbe966c4
26e9d28c3a744b614f85253427af5682f6fafe2a
F20101112_AAAXML vanvliet_k_Page_009.tif
85500b16c96929194e7a037914fbee07
713856772466b699f8d53c3e2753eb643e467b36
152115 F20101112_AAAXLX vanvliet_k_Page_133.jp2
ceceb2517fa1f1f759a428c54953b426
da7d7412ad1e11f5306b771ec17ed56472deede4
55458 F20101112_AAAWJJ vanvliet_k_Page_056.pro
a5a3a34b5f970b332f0b3cd073bd7a6d
daa18e850789851200c76485a84082bf36a1632d
26528 F20101112_AAAWIV vanvliet_k_Page_109.QC.jpg
de57c6e5640cc01996ebdc0a79bb4293
3d109273cb9a719213a2b4a3c650fde55cef5794
F20101112_AAAXNA vanvliet_k_Page_051.tif
66018a969d68d31b92ece0271efba476
071c280f7b2ccbf936d568b465c9b7f619e9ecf4
F20101112_AAAXMM vanvliet_k_Page_011.tif
52207e28f124c8fa89d833e5d6d7cec5
34e27e8bedb6eb2ad450a27f672591ed287fd99d
160526 F20101112_AAAXLY vanvliet_k_Page_134.jp2
c47779721112743b0761915e984951f6
12e23c153d36e4f116519ff643677bb3c7ed0b72
14222 F20101112_AAAWJK vanvliet_k_Page_041.QC.jpg
2a86e04683492d1c92d1a6ce32935d4d
f969fd9125f8e12dcb0216026bb5597c26b73def
F20101112_AAAWIW vanvliet_k_Page_026.tif
82942e94b9667e3d47e9a056bbf85e7e
87bf5b5fef4f12b6dbc25e3129d252cda717b1a7
F20101112_AAAXNB vanvliet_k_Page_052.tif
bb65491e9c8566203d0f39cd78af00f3
7036542ba624d38e4b9fe683a8619de244335a10
F20101112_AAAXMN vanvliet_k_Page_013.tif
f688a53f995b1b480553f8edca459c52
0bed69ca9dd738594fcc1355b147003d37e9fa84
F20101112_AAAWJL vanvliet_k_Page_144.tif
1504d9909d9da6024124e0ac1523192e
b48275c2b7a962265c1106fa62dee93c38f5b1a2
F20101112_AAAXNC vanvliet_k_Page_057.tif
7d323174983a8830dc0eef338354d3a4
7bcb00e9850ba4766d6723b0896b19e4ac783ca1
F20101112_AAAXMO vanvliet_k_Page_015.tif
6ad030bca01a90924d2ee514785bf3e4
d04bbaaba837a6cf2ed967f0341e0fb8ecb4fa79
161358 F20101112_AAAXLZ vanvliet_k_Page_151.jp2
86d597e53df37086c1ba08aa72cb8348
14d1d7fefc7a4e7ab74e8083854445ff0d39249f
125761 F20101112_AAAWKA vanvliet_k_Page_039.jp2
76ea888cdcf45d628b59d02dfbd7414b
e95c2eab01780f6b923ea7e823865b844e99d387
90122 F20101112_AAAWJM vanvliet_k_Page_150.pro
86062c3c98b0b9aeacba07655e76e89e
e6248d0e9839dc9b7f470cd0d91846be8f556598
6307 F20101112_AAAWIX vanvliet_k_Page_031thm.jpg
188a2826f90898a20c79a8b644a2940c
3416543a4207a5a7980cf4595281c0e6af359a50
F20101112_AAAXND vanvliet_k_Page_058.tif
c5392d0dd23b4e3fc319e9eea632b032
dbd5d7a8ef97d231434ab19c7e5b6eac2663fa76
F20101112_AAAXMP vanvliet_k_Page_017.tif
5454881e34bcca30e49e98729af99a6c
3ccd075e2030364e708f189a64b766921a55dbbc
29377 F20101112_AAAWKB vanvliet_k_Page_180.QC.jpg
a83ebc7e5279c5896d590d561f3f65ae
3af013860bca2d740b22781ab120e449cdd6cf13
86866 F20101112_AAAWJN vanvliet_k_Page_007.jpg
4e61c585ef397697e576db47a29023fa
58788d0b79ae5c57b9de199f4dac4dbf3ff99299
116769 F20101112_AAAWIY vanvliet_k_Page_033.jp2
7e2078398ca18cbf64db227c6d00fdd4
492db0b7bb832ea1b4cdc73d52be06eb4e96e61a
F20101112_AAAXNE vanvliet_k_Page_064.tif
6b36422966d482ad3012b7dbcef4c445
8d20af37ef801d9904d286db6327c2cf69243ca3
F20101112_AAAXMQ vanvliet_k_Page_019.tif
1e6e68d5774025f4f4996fc87397364b
fb073d8c6d732e8fcf655c061084995c03a2d160
56017 F20101112_AAAWJO vanvliet_k_Page_128.jpg
05529979e2e93901c56a2bdef68202cb
13bb30421084bc99df7f9d1baf6d2dfb40158648
3561 F20101112_AAAWIZ vanvliet_k_Page_136.txt
1b8cbfa755c3258db82e84b417a1bf8e
78d335589576ee84ccd6a9e94d5c1396e68016b4
27481 F20101112_AAAWKC vanvliet_k_Page_051.QC.jpg
25fc18c38102ada1bc89a412ef02d899
3641a72fd40f1b0a04c77b174a24c9d8f3e67f8e
F20101112_AAAXNF vanvliet_k_Page_066.tif
c679f5c00729d9e583ad1127130c2584
ae9aaf6a65f1001d5e1e4299f8e5d0b4272e1f2d
F20101112_AAAXMR vanvliet_k_Page_021.tif
f1ebd1a9cd5c24c9c56dca512f8ff19c
da3519caae8d181018e0d4e5d2bcfaeb01a84c34
49890 F20101112_AAAWJP vanvliet_k_Page_035.pro
6646cd2b90e4fa0b60cae790a53e2503
7e9763bbe2effd051bd1efd2a3afd8e9ebcf5179
167925 F20101112_AAAWKD vanvliet_k_Page_165.jp2
f64462a63847f00423ed54362b0d9577
e838ddf05afe9ff1b017ef25c7d2d113d7a3750d
F20101112_AAAXNG vanvliet_k_Page_068.tif
36f2c9c789603507230b217b4f110bf3
7e04920841efd92ff40a3645d93352c840ed40b6
F20101112_AAAXMS vanvliet_k_Page_032.tif
b95957c48f4e5840a10f23bafbcec61a
0c1cfdd5b1dc8ee17a00b6261566730c76a3e92f
90568 F20101112_AAAWJQ vanvliet_k_Page_144.pro
718bea0a320edefb157dd5584e77bcf7
c9022177df5c9a9278ae01bacee0777c2263c7c3
6546 F20101112_AAAWKE vanvliet_k_Page_052thm.jpg
4ccbc3326326188e7f1b6fc7bde757b3
032877683a28bec6a65b93a20e3440515e3be095
F20101112_AAAXNH vanvliet_k_Page_069.tif
52c33c7a45f5125f93b6270926e2f6ad
50cee88c789fabe91e796056211ae68f03c7b8f5
F20101112_AAAXMT vanvliet_k_Page_033.tif
4a80dca984f1687f24c5348932dfd7f6
cddb5d2c6821654e383124701b827b849a9f1b9f
16225 F20101112_AAAWJR vanvliet_k_Page_062.pro
cd757160c8202f05e67a32435cae827f
074ec2554a1aa2b380e458f11c59fed64b7fdd13
7415 F20101112_AAAWKF vanvliet_k_Page_075thm.jpg
8c865c93f65d5303e84211437236de26
c2adcc0251c0d32420c225a43c717b5d0d9436b5
F20101112_AAAXNI vanvliet_k_Page_070.tif
dbeb04bbd5fed9e96e63eb8edb4aa1a2
c9f71e6976b65c92f21ad59f48cd28e517f498f4
F20101112_AAAXMU vanvliet_k_Page_038.tif
b623b7b42490f2a80df0a8737502c536
ab7261da622f5914a529c9133a813cd193508489
72046 F20101112_AAAWJS vanvliet_k_Page_164.jpg
a5c4def12c50cf7437bbfe0b4c2ab69d
b2f434d4cb357f47229b6831b06ed4ab83d9e38d
960889 F20101112_AAAWKG vanvliet_k_Page_028.jp2
7c5dd8ec87c75c8dd96d5a0acd2b11f5
115acc000c0045ec1235fcc281e87f45d8f3969e
F20101112_AAAXNJ vanvliet_k_Page_081.tif
0c9d200de912dbeadc688a85e7d65eef
68b7638616b10cc3fb7cd226f16a7096e6ea0eab
F20101112_AAAXMV vanvliet_k_Page_041.tif
4e0ae140eb3e20ac2cb64d257b7eb2cb
15a8ac78103f0195f291264b35e7d6955e2ea20e
F20101112_AAAWJT vanvliet_k_Page_177.tif
bc3d4f604a71a8114df74b2d4c38d5d3
68ca9a32c73fc0d7c63615e742dfaa2ac8588197
433 F20101112_AAAWKH vanvliet_k_Page_023.txt
fb717dbe792a46a9caf9653a099d1a28
49779952036255ab219fc96dfa3b95d040b3165b
F20101112_AAAXNK vanvliet_k_Page_084.tif
0b7788bcfff7df6669697650dbf31f27
026fccff4c942026e81452d8e2d6fef4a540830f
F20101112_AAAXMW vanvliet_k_Page_042.tif
3a38fd08192a0721f2ff18a00fcf6324
0348fbaaedbe443a7beac66668a155cc10088ac5
29916 F20101112_AAAWJU vanvliet_k_Page_071.QC.jpg
97dddd000fa87fae14ebcf0dd3a3624d
30fd79d85a1934f9158bcf9aad6577ae06e2240d
F20101112_AAAWKI vanvliet_k_Page_074.tif
72047dd3a12f25fb78712c273d4fd707
8d278fea923ace845351f87097c2f0cec77951ac
F20101112_AAAXNL vanvliet_k_Page_095.tif
5737ae807e4b6b663ca33dd82f8a9865
3fd1a439886409e28a27e729bcdacb8c426a51a6
F20101112_AAAXMX vanvliet_k_Page_047.tif
4a172ae3b375a9e28e3fe882b343dc3a
04423bbe3ece80cd7d35f4526a448ee7e12c8a21
24474 F20101112_AAAWJV vanvliet_k_Page_181.QC.jpg
6db7002b3de2bc0a01534d1d1d3d869a
4aa0b6548191336127b14e515a881d1e3351b185
2048 F20101112_AAAWKJ vanvliet_k_Page_020.txt
b316a5a4705a2fa66143d0778545c2e0
e9bf915e5b71b1d03b0d53581c7ce41e008ec8a7
F20101112_AAAXOA vanvliet_k_Page_147.tif
a408f9734fee62cedfe97ac1c3d0b4d6
d38701c4895c1e523a53ae9e88769aad746c9827
F20101112_AAAXNM vanvliet_k_Page_101.tif
85837a08d975ebe1d71e36aa28cca503
0a11fead883be7660742220b8c3e4892e4a51385
F20101112_AAAXMY vanvliet_k_Page_048.tif
160de2b763ac702fe7f1dabf420c3f4c
27734f49cf00035e5aefe5cd0abaa2b119302dc2
165823 F20101112_AAAWJW vanvliet_k_Page_155.jp2
29889c2edb8599f4b7f1bb495dbd2155
62c7fcc035af1e5fe736dd58c724f6236683257e
26168 F20101112_AAAWKK vanvliet_k_Page_184.QC.jpg
c927134939032e699f3a9795712cab3c
4b4ebd7ccdea01a12386853891c60dccd9efd4bd
F20101112_AAAXOB vanvliet_k_Page_148.tif
08c92773a70b333acae1876874dc758b
0e449ae94058978f24fbd4001186f5c54100616e
F20101112_AAAXNN vanvliet_k_Page_102.tif
2ca9bb8dd7ccc866d869c3e83a7c0624
78dd824dea10fabd81d95477c742c9254d33cf17
F20101112_AAAXMZ vanvliet_k_Page_049.tif
23208818e27603755b69c488342eaf2d
749e213e0f6a9c3de778c53fabe10f2432534dd1
3525 F20101112_AAAWJX vanvliet_k_Page_034.pro
244454f1787ecd32ca4b3d3061c23a29
f749f3d159e92a941dadc8e3d22b9358e55fef47
7221 F20101112_AAAWKL vanvliet_k_Page_186thm.jpg
a4b52394734d928e2a4e780d13b459af
b55bd2bd91da0fa54f1b1af742e0b572de13d5e3
F20101112_AAAXOC vanvliet_k_Page_149.tif
66ea8f2ea6ae60b9e99723169d2aa181
42876a011e2bc5c9803348f606c9bfb85f98f750
F20101112_AAAXNO vanvliet_k_Page_103.tif
1e15c7622132fe0684d4b3078bbb5508
b1b57a35f8a433ef0c966b1bffff65476f428e85
691 F20101112_AAAWLA vanvliet_k_Page_083.txt
a27af7db075c4d12a0090578f125c022
5e45373f7677a3a40740b54cdebee647f93b2559
41036 F20101112_AAAWKM vanvliet_k_Page_099.pro
e1a0858797277103a4172d4321976589
6d8214b6856bf238837dfdcc189f19750b84960c
F20101112_AAAXOD vanvliet_k_Page_150.tif
34c32502bb1c72390605b660c21126f4
bd58d1a5c7374f144ba2d3f259252a1fc3245be0
F20101112_AAAXNP vanvliet_k_Page_105.tif
412c4846fe80eead1722b4fcdcf76af0
542c152143150b0dbaa2839e150ae75c02f159c2
17663 F20101112_AAAWJY vanvliet_k_Page_114.QC.jpg
92ba00cf52d9ef91f4472302ae749df8
a9940bd144f0d2e3e69e5912d75daec8522412dd
3765 F20101112_AAAWLB vanvliet_k_Page_041thm.jpg
34f9f4e204e82e090fe4ea1d51fe4614
1963ed19a598ff57c5eb2f77c32702f03c54d97d
84919 F20101112_AAAWKN vanvliet_k_Page_151.pro
bce4306c8b1dea29c53b3fb651894735
f0969bd4dc60d0223489e26308d1be5cb2ca285a
F20101112_AAAXOE vanvliet_k_Page_151.tif
bb4228dd330a128e4f86b00bf7ab49ea
d2abc6da8f2db33827ba248cfc6a0100ef5926f1
F20101112_AAAXNQ vanvliet_k_Page_107.tif
01c5b6baa54d2f099045705defcb0862
1c35d8b7c3f22b3dbaf9c83a5ce99de369196d62
57259 F20101112_AAAWJZ vanvliet_k_Page_187.pro
0c56ea904e73f334cbf7aed8a2b0bfae
6e2ff5e050b0d48de6489bbb28624a3c5b8267db
15332 F20101112_AAAWLC vanvliet_k_Page_149.QC.jpg
5c9ed59257787bec0f9bbfb3bd617dc3
89bec30b8ef5c649ade1c3c73c22414f879fef2f
1051956 F20101112_AAAWKO vanvliet_k_Page_071.jp2
4871639811947f15abfe8da54b4a415e
00eea3bbc469600e179977530d620c4ba719d447
F20101112_AAAXOF vanvliet_k_Page_160.tif
b1cae7752c4bac8920729e5d20ac737b
c347e30c732d1a04a749fe6c14453101be360b85
F20101112_AAAXNR vanvliet_k_Page_108.tif
89d08ff08cce366f0eb9dee2edab69e6
8c03edfae9edb3811d9524dd4e598132eef1e50e
15180 F20101112_AAAWLD vanvliet_k_Page_139.QC.jpg
8fc3e79b78e0600d25508d174bca679e
8dc5971e0b8d9a19f14a21079d69da30357a144a
2063 F20101112_AAAWKP vanvliet_k_Page_035.txt
9683ee629291954c3fb3fa8a3ae9ab4f
4c24fe4659acbd3f65760e936836cb5410012d41
F20101112_AAAXOG vanvliet_k_Page_162.tif
d7d6c63fc437e22d668c60ba7d34891d
83dbb3e8f02e87979c4502273ab416d15719f0d9
F20101112_AAAXNS vanvliet_k_Page_114.tif
759b2847fdccc05873df3070a5480762
c508ecb69a57c83a94c9089f48ec2346396f98fe
7117 F20101112_AAAWLE vanvliet_k_Page_061thm.jpg
2d1392dac3921d6e47bcd732f145d1af
5ed185b996553dd66e95fd171e52b2b61178af9a
58140 F20101112_AAAWKQ vanvliet_k_Page_119.jpg
809f625b72bbf09e1cbc4ba792fcd6a2
f055720f4bf628a8bfba153ae81207572dd5450e
F20101112_AAAXOH vanvliet_k_Page_167.tif
f45a8912640ac7038f7c74f1ca08dd72
1859175b553ef6b743de3de5e0edbcfb4bb5569c
F20101112_AAAXNT vanvliet_k_Page_118.tif
1b216f5b554f961cc137b46785606efe
199ead0925711a80b55ac3a519db521112ad6903
85834 F20101112_AAAWLF vanvliet_k_Page_155.pro
2dbe4a5e8a63155687e4b0c6e547a221
0c064b1debf045e26676ce5d401e32c6bc2646f1
1487 F20101112_AAAWKR vanvliet_k_Page_053.txt
3e5e12359f6dd44765f151a1e6f520ca
931c74716fdab29fe327fbbc96c912ac5a6dc487
F20101112_AAAXOI vanvliet_k_Page_170.tif
d10a56b5b6fb44c553bc08ff67c325c9
1863234d49dbe9dc587d4da23bdb9938c90775dd
F20101112_AAAXNU vanvliet_k_Page_125.tif
c6178b62fc1de886343133815c348156
7b91dd12bedacd7d7d2825b379e10527de0cfc12
104064 F20101112_AAAWLG vanvliet_k_Page_182.jp2
e0d485bbcff8936bfc39e484e4005b8d
9d974eeca7ffd9d7aab43d000e406348163e9076
123036 F20101112_AAAWKS vanvliet_k_Page_026.jp2
e59f69344bead12ac3bf087c7a763b8e
9742ebe8f2fd55a144734764deaa39db9c184f76
F20101112_AAAXOJ vanvliet_k_Page_171.tif
40faa4aac384bd2979987f8a49797d74
f5c8c12f0e02eb8479205c3d82f252fef9a39554
F20101112_AAAXNV vanvliet_k_Page_132.tif
0c4c565d4873bdd4a939f6a8be55a63d
53ea6eb41ce59c48b016469e071d4d9f3f924633
113288 F20101112_AAAWLH vanvliet_k_Page_110.jp2
1978dfaeac5201e316529dd42cebbca4
1c21648d5ffad48bcae46facfa744787192615af
2311 F20101112_AAAWKT vanvliet_k_Page_123.txt
e501aba373618128daad50779b919d98
7ed31fa7d2454471c24e1a2d343cacf0dd59ab0e
F20101112_AAAXOK vanvliet_k_Page_175.tif
a9906ca55467349239dd546416b412cc
173a4ec386160b1c7c94a4054af51a95c7ed4e8e
F20101112_AAAXNW vanvliet_k_Page_136.tif
d748bddec8fd8395b201e1e3bf0de60f
b9804a1bffe21ae0601346b97bb3d40ad191bfbf
16689 F20101112_AAAWLI vanvliet_k_Page_093.pro
a6494f11abf50570a131d953dbf5b102
507b65d8f6985462d711faf9ab8cd383822f1d5a
102994 F20101112_AAAWKU vanvliet_k_Page_074.jpg
56550dd85bde95f39112c700287564d8
a895dd2fef0ac136470bd2934a6fa2cc64240d5b
F20101112_AAAXOL vanvliet_k_Page_179.tif
9ef36d388c342b909796165a700e698e
cd591ef6f233c6f66a58f6d4ef6d525e609efe40
F20101112_AAAXNX vanvliet_k_Page_139.tif
182c72bea23991c3b2aa49cc24717b1e
5400e1265542e503a5b170a3c725b1eb39834df9
111849 F20101112_AAAWLJ vanvliet_k_Page_004.jp2
99cdfbb8e24d06e28f78d428916af94a
0f7df916e93111eab6ebd2e3022e980fdad06de5
F20101112_AAAWKV vanvliet_k_Page_122.tif
039973b78c4774661dc5d965026261ab
49b61403d3f48c84a25971567a180375b9e8179f
54243 F20101112_AAAXPA vanvliet_k_Page_022.pro
57817eeaef527ad844c0da611756f74d
f28d678f00becc318ef86f7ccdd975e8ceff3eda
F20101112_AAAXOM vanvliet_k_Page_180.tif
a6adba2a6049c75cef7981c38760329b
71eb1a2c7916795b19e9710b3c3a8d2bb1496332
F20101112_AAAXNY vanvliet_k_Page_141.tif
30433fd74b9a32b2a8e0478e16dc6658
f217f7a1a93ca2b896fb50a4eecded46491fe6a7
84947 F20101112_AAAWLK vanvliet_k_Page_154.pro
1efc390ec7daf9f87c8569a53b36603f
c39edf141edd8e616cb597f57da3ba9741bed312
1051940 F20101112_AAAWKW vanvliet_k_Page_119.jp2
3c41c4b4f72c4a938803a3cfc1248834
02b4557e87ad52262976a08a807cbcd77ecb883e
10850 F20101112_AAAXPB vanvliet_k_Page_023.pro
4962a675692077992851187dbb00a41c
d199723b387d193dcf3aa1c7f3700576786cb9e9
F20101112_AAAXON vanvliet_k_Page_182.tif
3ef86e514b30fc10683d3462241ba6f1
02152301e1421edd6305883f7236450f60fc9a2f
F20101112_AAAXNZ vanvliet_k_Page_143.tif
b8adcdf848c08b5001cabe9442818852
99d92b36ded2a2accc088d4f231002293f267716
89966 F20101112_AAAWLL vanvliet_k_Page_005.jpg
8b80955631954ca24c34725cf27d2337
578bf27188bc5f507cbd76be3e835a870cd13f70
5558 F20101112_AAAWKX vanvliet_k_Page_091thm.jpg
39d6e6d31059f30ca7abcbf046756036
d40b57fb181e12b01093e0aaef869cabe62b9472
56751 F20101112_AAAXPC vanvliet_k_Page_027.pro
cd0a1922bbe372fcfb3d3e1e5456babe
c51df4cbc2e0e578db8ea0d926897dc3db6db259
F20101112_AAAXOO vanvliet_k_Page_184.tif
2acd1a845185ab4dc7c507e5fb5b9e28
3bcc94eb9819a8823e2432898b5e9b47a9f6e7ba
F20101112_AAAWMA vanvliet_k_Page_157.tif
78dbf5c1aef2c01f927b3b1d81e8719f
1d00c59d9fa1adefd28e1de1e927406b9c086496
6781 F20101112_AAAWLM vanvliet_k_Page_030thm.jpg
6500c6af72c29316362a9615e4443daf
6895c2489c83982b921bcae6aa1cdd33e604f9da
106806 F20101112_AAAWKY vanvliet_k_Page_035.jp2
7938db7332759e02396503f954ec4c04
d692c7ed8b976ec401a53e930026506ca40cc1a9
26968 F20101112_AAAXPD vanvliet_k_Page_028.pro
e11e9d1fba0ee015c7e992795c0c9cbe
14e6e2e5e3964cc25e05d2a23e2f5959d0d9d823
F20101112_AAAXOP vanvliet_k_Page_185.tif
a531e821e31da37a3c8c4945d4c7d902
4b25c1313dd2aaddc42fda22318efc744c0c5cbf
F20101112_AAAWMB vanvliet_k_Page_135.tif
8aa58cd7c678c3504b155fbb0c6eb188
d96f898b12f46b451173fc438af599e71b2372ad
15511 F20101112_AAAWLN vanvliet_k_Page_137.QC.jpg
16ee43842b78133f731ba92a72c1bd90
6b1e4eba4b37bc5194e0fae0f017726a064367ca
53455 F20101112_AAAXPE vanvliet_k_Page_036.pro
1119da790c6354c7ad5e36019dc83729
1271494b029347aa6edac2f9ef2459901e3a3c92
F20101112_AAAXOQ vanvliet_k_Page_187.tif
3897d351e2243f87dbf8fb17873bcad0
d21e89c5b4f8c95852d1f275f0d3a90be6f83ae5
53029 F20101112_AAAWMC vanvliet_k_Page_051.pro
817b8498f1346c1947b19ac804cea47c
43c0ecdf28ae6d415f879d46b90e3850a600df57
F20101112_AAAWLO vanvliet_k_Page_115.tif
fd840664e041b3d21c63b8c67fc456f3
aef1889a704df72625c53b110f0a348fb3331aea
F20101112_AAAWKZ vanvliet_k_Page_031.tif
61022246088d9c174dfd926cdd24011e
af6e19ed4264d1b194ae10052e4f5ee299e9580d
26451 F20101112_AAAXPF vanvliet_k_Page_037.pro
8cb2ad5211681aaf2b6c8420e5bc2912
a0bd8f2867ac5ac0e9ee74791a62043ab3184430
F20101112_AAAXOR vanvliet_k_Page_190.tif
51a43318af582748f5f8a7df7cac0899
b1f03069b013d1fec278d459d486c7ee74a1c699
72413 F20101112_AAAWMD vanvliet_k_Page_134.jpg
adfe5a2c0c84bbf8f7dd5d213d9932ee
3f5bde4717b746798bc7e7121bfa6ef5d3cec2ff
162463 F20101112_AAAWLP vanvliet_k_Page_166.jp2
fa5636c9ef9e29016624e936f357fee0
23881b596778ca822bcc59deb7f371b57ec8b609
62054 F20101112_AAAXPG vanvliet_k_Page_039.pro
2fc4598791d09f7270aae82fef27eda1
c8def52e6a1d39301e7914263d2956bd3133c195
54747 F20101112_AAAXOS vanvliet_k_Page_005.pro
0227e1319a868a3ad7bc2fb9f64cabe9
048f2421be6ba6d2440da6872fd90559ad51e8f4
27459 F20101112_AAAWME vanvliet_k_Page_189.QC.jpg
d6bc9f4d57e30ad7d1d42cbe5f7570e8
b1f97eb70992f26a0e6714b7ff46098fd258d265
1051981 F20101112_AAAWLQ vanvliet_k_Page_011.jp2
fd707084fe4dac3294fe0bad85160b54
7e3e9938aaa530b9aeb87707fcf5440dad37b121
26822 F20101112_AAAXPH vanvliet_k_Page_042.pro
d77cef6d77bc016e0b8f0d162eb86a08
b3c1ccff853ede8c16636d45e22d41f196a5555e
54412 F20101112_AAAXOT vanvliet_k_Page_006.pro
651289120f266c437eb02ccaf63410be
fed1b77c240a0c1ecb504f0941ce8e23dbc4577c
6230 F20101112_AAAWMF vanvliet_k_Page_182thm.jpg
9749d412822104d01c3c213a798fa29b
06f04c7599936e4e857910b132583c93451c6038
F20101112_AAAWLR vanvliet_k_Page_066.jp2
1133f44777ad85ca6aaa749236c491b8
b525b4e8db0d19b2e609164b3ea3e9e4bf6cb4de
44432 F20101112_AAAXPI vanvliet_k_Page_044.pro
524c5a8f1a62ca5456a6cd25a944dab1
fd667f7f9826589ff6a73ca91e3970545ed77982
65291 F20101112_AAAXOU vanvliet_k_Page_012.pro
1088b7d7a1627863f7b843c8f8ea36c0
ad9bc4ac732aaf37d1d8dcc1855cb23f919d1946
3474 F20101112_AAAWMG vanvliet_k_Page_192thm.jpg
d1757fcaffc826c242a1e8cea3bce230
4d9aaec79599adbbccdbf27a6aca34878700b5ab
910 F20101112_AAAWLS vanvliet_k_Page_014.txt
92890d0026ecbdd772ca61d193925d37
4a49114920bc638938ffc084c6db0a6506e178fc
63789 F20101112_AAAXPJ vanvliet_k_Page_050.pro
def3888bba182d2fbd4a9fcf9c126d61
d66f11a0bece87035c0949a22bb26abe2841b308
50613 F20101112_AAAXOV vanvliet_k_Page_013.pro
9659a3c7096222300307632f138f5029
300c5d4f17b41d18a447cf75e024dc50030f9205
6589 F20101112_AAAWMH vanvliet_k_Page_107thm.jpg
4174d597ba7b1bc6356770294e53c179
5623b2c5153ef8a224f23d522924bd3d8769e5d5
2538 F20101112_AAAWLT vanvliet_k_Page_175thm.jpg
df33df808400fcb6bcb3ff0ab2af8165
1f71251ea61230385a8da97185448fcd2e394351
36606 F20101112_AAAXPK vanvliet_k_Page_053.pro
451a282d09686c501d0a884200fd1310
cc19a67270595d84c49f2239cc544f73c63f8d0e
12358 F20101112_AAAXOW vanvliet_k_Page_017.pro
78f42173e2be219c6e10a380b76af8ff
2548c68d5b7b5c090e8cb4ec4613d244df9d7998
52881 F20101112_AAAWMI vanvliet_k_Page_086.pro
3b5351b6fdf0f9fddcb794a7e6f3dd1e
c977d5eefc599c071d0b4088781dffda310780ef
F20101112_AAAWLU vanvliet_k_Page_025.tif
ca15c2ccb9b4f4fe8acb09a0727481ce
f0079fd1792ff8fc3bce3f785b29d6128d0f1702
27169 F20101112_AAAXPL vanvliet_k_Page_054.pro
ca413d738c7cf9106f9b90678d88d87f
09abec166b0359578c2fb80d69566c791ab92d30
56668 F20101112_AAAXOX vanvliet_k_Page_019.pro
cdf0df2f87c7dd41e40e986e3f6ea05a
d092deaacd2f4d0a8a73acbe949f3b444bee1417
158886 F20101112_AAAWMJ vanvliet_k_Page_136.jp2
bffb64ed9cb92795eb4f2c6bddde2a6c
3ecf2c24eff270d5e5c91bd659c8adf376a233d3
775 F20101112_AAAWLV vanvliet_k_Page_057.txt
8fe91cd25bf238c8fc5746a0466b3bdc
ba01e8f04f1ef0d17f46fb3d4fbd50232d5ac367
32987 F20101112_AAAXQA vanvliet_k_Page_082.pro
6ad8d809b695c638088997412d504d1a
a032d7041a44be02b84ab3e545d4eeea61130af6
59159 F20101112_AAAXPM vanvliet_k_Page_058.pro
c414a9a61e8f084af4c1da98fb5af02b
cc88f961bad237b746ad490fb4ff39af8e11f8cf
51147 F20101112_AAAXOY vanvliet_k_Page_020.pro
1d4faf19dedd72f14989632bfd7069cd
cad575685d9013eee35d0ff17d31060940b62389
62731 F20101112_AAAWMK vanvliet_k_Page_037.jp2
19167b80a54b86f31970c4322708e8bb
c9944dfb4cdce26db0d492f6072c7cee04830f69
1051973 F20101112_AAAWLW vanvliet_k_Page_072.jp2
3979d8524bf4a61c7c9390442ae122cf
9abfc4f587c71f10a517e7189606841a05d78c2d
18553 F20101112_AAAXQB vanvliet_k_Page_085.pro
a1729041bde983aeda400a29150b8561
df8ebe3690c6cd24af800ea477b83b61543fd408
30833 F20101112_AAAXPN vanvliet_k_Page_059.pro
1bf3c49efa0ce173029bb9987ed3b125
e49c7e8cb12f89e4217d050b0937ac73d44aa51b
35664 F20101112_AAAXOZ vanvliet_k_Page_021.pro
122f7423d188700889238686d9dda9d1
11eaf8dffc4232b2923ce5802727ca2d07d6ce73
2750 F20101112_AAAWML vanvliet_k_Page_145thm.jpg
a4d673af076d003caa4bd978f46e4aa2
84a6e54d387e641dc93799a7169e94b89d97d5ec
3786 F20101112_AAAWLX vanvliet_k_Page_141.txt
e3671815f1c01da19bd27b9bf06d777d
02b5a71fa86530f6ffcf94deb4d040bcfc94d2f7
54448 F20101112_AAAXQC vanvliet_k_Page_087.pro
343e21007740862bf1a1b829e495de8b
b74b8d8ae889a7861bb4cdec883d0aaddd405149
32725 F20101112_AAAXPO vanvliet_k_Page_060.pro
2ef3b6a19ff9197563adf55b1c78ad96
408c2e589a2153334c5287e34fe88f353c7a559d
51409 F20101112_AAAWMM vanvliet_k_Page_185.pro
60feb9c7300efe8f919016c1641512af
db82346774a5f385888ac1882df3bcda5038b1a8
10768 F20101112_AAAWLY vanvliet_k_Page_176.QC.jpg
f0e2edaccbff76c7a633f2367bca14a1
9791bec9537473830d5f4cfc1003ee6ddc916b6a
2592 F20101112_AAAWNA vanvliet_k_Page_012.txt
04c03319906ca5ed173b00cb93e15062
4439fe8d3adab9ffcfd83cd828dea1e0b5bc3cd8
56935 F20101112_AAAXQD vanvliet_k_Page_088.pro
b03f945dcd16226d9308759f3f89aa01
3e5d5e02f52adc44482f8603768264e4e6624f31
13400 F20101112_AAAXPP vanvliet_k_Page_061.pro
156f49dcd05fb6e9be55c27433abb6a7
c588993c29b61d66c38ac410060203fd09065e9f
3777 F20101112_AAAWMN vanvliet_k_Page_149.txt
9d488c32f1c34e079c9132250f6fbd62
51d3cfa8c1fa861db580e5c0d9554c0b81d8985c
66986 F20101112_AAAWLZ vanvliet_k_Page_129.pro
b6b77ae474495122c7108f5b9f5f61e2
89d3451e64fd420ee5fb08c205f42f4212affd64
F20101112_AAAWNB vanvliet_k_Page_073.tif
6732ad862a7b9a2fea0d417e1de0e242
e778cb294e1392422b65da40b74295681575f2c6
45400 F20101112_AAAXQE vanvliet_k_Page_089.pro
4bd620259bcae8bfb09845c468d70a49
7679c371fb70c512343c8f4da314a2677940731a
68713 F20101112_AAAXPQ vanvliet_k_Page_064.pro
11b1c3d17b208d08c30b02fdb6a07a54
fbc2082d2d57c1101f7442c2a4c99954c5f289a8
121927 F20101112_AAAWMO vanvliet_k_Page_187.jp2
dfddf7bff79536973e84228278dfb52e
8d6bdcf8f294f4b54044c58524b84ecb41dca576
84797 F20101112_AAAWNC vanvliet_k_Page_172.pro
e40f839b4c89bad42c55807a15243488
f4a5e59a0efe0859783236c45d5723fca9089059
43728 F20101112_AAAXQF vanvliet_k_Page_091.pro
4aaa09f212635a2550388c8d71ddefe6
2bed977b98233349e5aaea1446f2f3070c9649e4
20512 F20101112_AAAXPR vanvliet_k_Page_065.pro
e7e295d0f66e32b4828ca7d43bbc83be
fe01726b832b7a822db0253cbd6146c994208b99
114853 F20101112_AAAWMP vanvliet_k_Page_177.jp2
9bfe6d72089622a33e39500eeb640764
a43ab5757aa20eb74d785c2d915fb964af429ece
99771 F20101112_AAAWND vanvliet_k_Page_126.jp2
0d6c9a5709b0cdeab638f5bf23ca11a2
34fc4efdfdc55dcac7507cab46a5dcfae1c820b5
53646 F20101112_AAAXQG vanvliet_k_Page_095.pro
fe2a92450544924259c2ce5f4c30adf5
5c376d36a09f9dca1b69bcce19bcdef4a63b54f5
28310 F20101112_AAAXPS vanvliet_k_Page_067.pro
94fdc374a2df1ca4559d6ff2706bba71
d6719fe8af3755a77212119b080a1b0fc7ee49b4
2829 F20101112_AAAWMQ vanvliet_k_Page_174thm.jpg
5534b65176f836c06b462a4a29181e0c
d6dc928e61b74d4db186315df350297df3c730a4
F20101112_AAAWNE vanvliet_k_Page_137.tif
42be837f911e0d063b9b1f892d42fa97
3da4b585cfc817b7a28a04f08e695d704ea4f57c
18210 F20101112_AAAXQH vanvliet_k_Page_102.pro
d1a97e8fad73fdb9d2780b83a3d29670
8b5eb1fda12c9850b071530c2b2c2aa4f9a7fe8d
25871 F20101112_AAAXPT vanvliet_k_Page_068.pro
095802170e9dbc87f40bf72e728cecfa
96424dd605418b73687273bd95f1f42c83af1df1
8166 F20101112_AAAWMR vanvliet_k_Page_072thm.jpg
73a58886ad5dd622c7042e6674e5150a
e58af6fb5158644141f5714cdeafbd3032977ea4
1984 F20101112_AAAWNF vanvliet_k_Page_031.txt
09212e274b7f8ce1285de7303e54ef8f
1a0633cec6bd20540207bc4ad6f3de294c64a235
55441 F20101112_AAAXQI vanvliet_k_Page_103.pro
f7b5a82ebd1b2415b5edd3a4b614b516
9ea4d27cf2e3c1b40bb7b5bb67de76e596753c58
32828 F20101112_AAAXPU vanvliet_k_Page_070.pro
0b9cf516873572835667c970a72036b1
b61631dd5cb7b937f5a0dfe6415bfb23672b7c50
119699 F20101112_AAAWMS vanvliet_k_Page_188.jp2
0c3de1e7e37e242db6bfd96e25a2aa09
90188425c208ff01d3c4df4e8060ed04d4accbe8
71912 F20101112_AAAWNG vanvliet_k_Page_161.jpg
979f808dbe380abef475ce528cb2b9da
ed50a922b83f33f8237ad54daa247e440c4c37f2
54302 F20101112_AAAXQJ vanvliet_k_Page_105.pro
7370f8fcde1e0e2c993a200c4bdfc73a
b3a9a84c9a9cbac6b27cd438cf5a07246e556451
9409 F20101112_AAAXPV vanvliet_k_Page_072.pro
03a90137d3e7eb04896d8a3c361b76e0
efca8659931fc4184acb493bb01cea51e990fa0a
F20101112_AAAWMT vanvliet_k_Page_109.tif
8581275095920d1bc74a637bd72c4e63
932c09a3edf1d34767ee922d42633894c8b3e373
72995 F20101112_AAAWNH vanvliet_k_Page_173.jpg
064b2b0d00adb4a1b2c068c7cbdbd020
6b70e60abaeb113f3243526dbe14d3463ead119a
53597 F20101112_AAAXQK vanvliet_k_Page_108.pro
9c49432c59344a8d74d0df88a8dd62e8
6aa07ae80062ebefee46063f6960c2d4fa00a354
69582 F20101112_AAAXPW vanvliet_k_Page_073.pro
3cffdc00d808dc64b416c68123c5f6c5
7aa0e37c194c3cc6e7695cb96ee08bb9eda1ac38
F20101112_AAAWMU vanvliet_k_Page_053.tif
ed8eb3c632e8e51b0f2a5941234afac5
bd508a6f120172a21d89f8fecedf4fceb9573d70
26730 F20101112_AAAWNI vanvliet_k_Page_076.QC.jpg
bb7587f1e8952a34996f07d47c2b1c07
27913a2ce37f2a58ff83d6604cebdc9876694a9a
44214 F20101112_AAAXQL vanvliet_k_Page_109.pro
2c6dee410b1d327e7a9e534e2638e271
11e2ed41ff232ce43fcc8c81564b961932995f70
36419 F20101112_AAAXPX vanvliet_k_Page_074.pro
f4a929158c3c5b0097f990b089068acb
430abb1d893b14b40bf95427122216ff98fab082
2099 F20101112_AAAWMV vanvliet_k_Page_052.txt
77b5f6c786f1ee35dd325b5da3092526
4ee3da7a20fa3d899c3ddf300872e5eb173493d2
F20101112_AAAWNJ vanvliet_k_Page_128.tif
59b58f1582be8f8704b1a7f89c701f5a
1d4220f814c37f22444007e359211f577afeea2c
82026 F20101112_AAAXRA vanvliet_k_Page_163.pro
4079a70a3a8f62d61d2ab89d5224d5bc
3a1626e95fce852f8b28e423c82a7b4240b4f260
54212 F20101112_AAAXQM vanvliet_k_Page_111.pro
ba27fa36e3376ed438479157a4e25071
5a8a422fb106ba20babd59217f958c7f10a2751f
31994 F20101112_AAAXPY vanvliet_k_Page_075.pro
d6bbb22b84046c9ed5be4ab5c335b25f
7477ee3fe6816d8329fb3fcd81f3df0b620c7fad
5953 F20101112_AAAWMW vanvliet_k_Page_115thm.jpg
236bc2552b9aa3aea5c9faf1c1e34cad
e69bb40518821b1a05fb65025394265e7c0f8f9f
2201 F20101112_AAAWNK vanvliet_k_Page_078.txt
1e9b24efeb99223e6d47e4dd671c786a
c4f0e616c34276f9cbfc4aee4242dba306327036
86771 F20101112_AAAXRB vanvliet_k_Page_164.pro
69fad2c38fa679fa8e2f47738395b93c
1baf355edb5a604ba4d2b1891c778f42133acc35
56170 F20101112_AAAXQN vanvliet_k_Page_112.pro
2071b25db576c0d5ebe7abf0e27c8cb7
9fabf4f34d3978076760949aaefae6122467c637
55648 F20101112_AAAXPZ vanvliet_k_Page_077.pro
ea1181800133aef856bf2e447f84cb4a
be4a7cc7ad4221336c4a248189795b9584545c87
165836 F20101112_AAAWMX vanvliet_k_Page_137.jp2
216b7e08506a74a8d8c4f374fc7139c1
04040f3ff16a4acac38483f761ee36c721a60eed
28050 F20101112_AAAWNL vanvliet_k_Page_033.QC.jpg
5afe7810a03c7c6c0fcea20bb876682f
851387a80e6cac423ba94bbac6e499da068fc5de
84358 F20101112_AAAXRC vanvliet_k_Page_171.pro
25bffff0201052e021a0eb3fa3dc0ae0
484ae6e61fae99d9367abeadbd57afee78a66cde
27274 F20101112_AAAXQO vanvliet_k_Page_114.pro
e28df9a832f89b654ec726082fcfb61e
db5ebca08649cafba9e097ab1611d8f799bfa426
1523 F20101112_AAAWMY vanvliet_k_Page_025.txt
6a34f530e1890fa39adccaa6a261cd6d
9c946e1b907b4032c82a9e7eb95c19ac9fb31a43
F20101112_AAAWOA vanvliet_k_Page_090.tif
48892f8ef4b4de8b35414f999d8c4d3b
c04b850d14d928ef1bbd8500120e25bfa1e835c8
6503 F20101112_AAAWNM vanvliet_k_Page_050thm.jpg
f52d29c622dbc6e81af0213706cc7353
2b03ac3a9d0b73d29cf215cc2ed7f4f697bc57f3
86249 F20101112_AAAXRD vanvliet_k_Page_173.pro
9330e3864912d5f44ad9685ee8638cb1
63945d62bddcdf7a7fb087fb112db8da1729752c
45531 F20101112_AAAXQP vanvliet_k_Page_116.pro
8245eb1f671b399833b4948bae268e9c
dd0fb64725dff4eeb1de70dfe11673ba7137f654
20426 F20101112_AAAWMZ vanvliet_k_Page_014.pro
85c8c93737849ce55bfa4e73d74eecc1
8d1240523701536e254bab56827f65ff76aeaf70
F20101112_AAAWOB vanvliet_k_Page_129.tif
6b18000b699c790e743e022202a34670
c88c9c64f7cd197e9a8baa26caeab7900863bc7f
56652 F20101112_AAAWNN vanvliet_k_Page_192.jp2
c267b2172f254e2807ff7417ec0cd3b1
2446d054269a93ad8d3188a369d2ee9a6c77d7ae
77127 F20101112_AAAXRE vanvliet_k_Page_175.pro
e0e1d7ec9dfd6512e3d2422f49bc977b
bea2e7087c3f93bdcf9dffbac2cc5e1658d28598
50262 F20101112_AAAXQQ vanvliet_k_Page_125.pro
578669066e04694107c65ca47fbd428c
c62af2d14b41bda149adf77d728c1df22ff88449
111725 F20101112_AAAWOC vanvliet_k_Page_125.jp2
fb7ec5a55ed1d841b74fba9927bd774e
77c1dc45bc139da3e869cc56de261546b513fac0
84015 F20101112_AAAWNO vanvliet_k_Page_031.jpg
894c8f0a1ac82713c3b28444911fd6f9
340c35757e9cea2104af1829490074e3c1a03a19
59029 F20101112_AAAXRF vanvliet_k_Page_176.pro
9c6b23413bb901d7b7a5dae4907087a1
cfb0947b8c8887de0c02668e9332581fdeec95f7
83798 F20101112_AAAXQR vanvliet_k_Page_131.pro
53c23047eb62c581816d19f0b0c632ac
de43945fed06f085f2902318fca837a42f0dba5c
7023 F20101112_AAAWOD vanvliet_k_Page_026thm.jpg
7d9899f0c56a3ab31f9a84e84c7fc094
2b2c57c0419f26fd61db32a05c05ba5751ea456b
6941 F20101112_AAAWNP vanvliet_k_Page_094thm.jpg
7983291d7a04d6ab2213e41577949b67
3d6ba1e08d6b90444e8f588241a6cd20ae949aa6
42646 F20101112_AAAXRG vanvliet_k_Page_178.pro
a5c22a019b0b21e20deadb80afa08ff5
263fbb79e24e0f7d7e7be06292e81d65572e211d
87125 F20101112_AAAXQS vanvliet_k_Page_132.pro
b5d2a1885e8244d3bc94879895957e2d
64b9f1b6b15469a1874c863d0522ab4b08caf40b
22346 F20101112_AAAWOE vanvliet_k_Page_067.QC.jpg
708876a26d0464f13c7bafa8c65ace5b
6f9d7b8b29d7a14dcea5d407bf16c4a5e678111f
1051962 F20101112_AAAWNQ vanvliet_k_Page_046.jp2
d3edc60d62f2ee7e57b3f8258e3a3d86
8ecec60d0eaa0828e4e3aa47ac5616bda1052292
61390 F20101112_AAAXRH vanvliet_k_Page_180.pro
ff783fee3a6f34f5c33f63a69619b062
4c475b62263e30146ea116450e5caed31293175e
90259 F20101112_AAAXQT vanvliet_k_Page_135.pro
432bfdc5bcc8599962a07775592675ee
1151db11f40517377ba871e2b0c2e8b9e83f9ed0
120949 F20101112_AAAWOF vanvliet_k_Page_066.jpg
2557f4047e8176cc2da14705eb6bbeed
54290b5c6276f528120fd7aeb1a6e6a8025ef372
122026 F20101112_AAAWNR vanvliet_k_Page_123.jp2
2adf6c5b71b7f85533d595a6691ada08
61398d1db99e405e585bf0e707a251bcd40127d0
55011 F20101112_AAAXRI vanvliet_k_Page_183.pro
bde598b2f0d84d6c64a6c7737f53c206
87e164130c12ca5929424e5d312ddd35aa63f7fe
83845 F20101112_AAAXQU vanvliet_k_Page_137.pro
fcfcf39e712bfb3b9a5186171604b693
bb2e4e92fdd5e80eb2339a0070c21206a16580fb
55513 F20101112_AAAWOG vanvliet_k_Page_191.pro
0ef21455fe3b80fc427905be0afe034f
684ec5f07b7a14420aa2df27e164b22b58eadff2
26248 F20101112_AAAWNS vanvliet_k_Page_012.QC.jpg
46e554eee62f71ff1650e8a91f60407b
2b11837c8de53a6ea5443918a41481938d19ecbb
52813 F20101112_AAAXRJ vanvliet_k_Page_190.pro
13a438371bfc947fdcb5236e31186c52
5898c61e3069448a7fd64ddd09b731f3f9d083dc
84787 F20101112_AAAXQV vanvliet_k_Page_139.pro
f57d6c1d189aee83c43121db01792cb7
639d448867471b2b78176b4603bb74d9d7d96919
4552 F20101112_AAAWOH vanvliet_k_Page_042thm.jpg
91396f5c6d405875d875fc9d0d67d0b6
f104f2485c1aade3f89c9f0e37d2a29a7f932d89
1167 F20101112_AAAWNT vanvliet_k_Page_114.txt
93ab73681dbee2d04971ef619c7a8cfe
848e5ce70e97be5e9cc8fbb213e67de43232fb04
24647 F20101112_AAAXRK vanvliet_k_Page_192.pro
3332b08651c3a48c74fe25c391d05ba0
92a908cbde3d366604b11555bc39fb335c42c9f3
86684 F20101112_AAAXQW vanvliet_k_Page_143.pro
a97bf9da1fb2790a523224de55989010
5ae15d89680498233ec7ac665ce778c30c2bca83
72155 F20101112_AAAWOI vanvliet_k_Page_170.jpg
5a8638db6e2477d99865cd829f1664fa
25f47568b9529cdf00ced218db2f8c085817cb97
74377 F20101112_AAAWNU vanvliet_k_Page_144.jpg
4176fd60172ba32f7a12109bde5c0349
ba9e067fc4d95a11e6a8cbbf0c8086e90b99abb9
409 F20101112_AAAXRL vanvliet_k_Page_001.txt
7369a081c5732b7288269d50fedf1c33
0fc07379bda4b41b7c82ff9bd114aea6968e884c
85360 F20101112_AAAXQX vanvliet_k_Page_146.pro
b2de975bcf5c066d7fd853ee0d8d3c04
97faaff23d3f76e28ae274f6bc125b0985c361d7
85089 F20101112_AAAWOJ vanvliet_k_Page_032.jpg
dcd9a2a7d9c765d888cd30fc079d2f31
f9810cecc3c9f4ad6c2166c886907ae0894a38d8
F20101112_AAAWNV vanvliet_k_Page_091.tif
e052a857adb7afbfe26ee5cef641b389
e4fa25049d1ce79ed8edd057a4332ccbf7991503
1095 F20101112_AAAXSA vanvliet_k_Page_054.txt
c2b1ecd511749cb8a4ea1818bf3bb401
9f3b80b5c36e9a2f51cd30d0b59828c9f89b0795
2775 F20101112_AAAXRM vanvliet_k_Page_009.txt
8629642d9deb52d665ec39a0eea5aeef
ccceb14e835e31a3ed7435cc4fa5a1693f8d8d0b
87464 F20101112_AAAXQY vanvliet_k_Page_156.pro
5397d30fae06c679ffafb613962a79a2
1121e31c4430e1d205c73bd15c03ec4c184960e8
6661 F20101112_AAAWOK vanvliet_k_Page_070thm.jpg
915ffb62dfe996091c780b4dba51e321
df69963de32a544f878ead19386d3a8640e4d170
72554 F20101112_AAAWNW vanvliet_k_Page_143.jpg
d11e613891277c624afe2248e876eeca
bd9ae63f34203cb8f827d5f0fb85f594996820fc
2176 F20101112_AAAXSB vanvliet_k_Page_056.txt
5e3c29f012cff2d0b2d98bb6b25fd396
819a7b0f58237ac1a66d09c9d46595e9c785cc44
2060 F20101112_AAAXRN vanvliet_k_Page_011.txt
abeedb62af987a833599d9fbd18f7ca9
2765dfde79234739a8aca53a75bb10f9b814004d
85268 F20101112_AAAXQZ vanvliet_k_Page_157.pro
895d31ced46dc11d4e6ae5243948d59e
b9aa911408bb6dda70f586f145a7edec92c8f695
87759 F20101112_AAAWOL vanvliet_k_Page_159.pro
ba362916fe2f3629a44d44649f4e9c23
11be2f7adb324234aa80c431e75cc5b7ecc20acd
3857 F20101112_AAAWNX vanvliet_k_Page_174.txt
59703429c40da432cd0cb53ba88e8809
e94630816d107a751a6b55fd1d2cd98325131e63
1334 F20101112_AAAXSC vanvliet_k_Page_060.txt
4844bc7e3e42be0892b2fd22263b32b7
1bf52b4759f05823afc436474ac7666214a7716e
102 F20101112_AAAXRO vanvliet_k_Page_015.txt
fedecf08f8aa845eadac2be9182bdb8a
cb7c6d3ea020550451cdfafebe06158541fbe7e5
6186 F20101112_AAAWOM vanvliet_k_Page_039thm.jpg
2e7f28f025bee40a09dcb35ab3bad1d9
3ee2e28338307d4378cc768be27f158c1a258f83
6913 F20101112_AAAWNY vanvliet_k_Page_006thm.jpg
2e21b5f6106371ff99e9a13724803b7d
53930c3f1f810464c64ea5db99d670af3fbaad87
514312 F20101112_AAAWPA vanvliet_k_Page_084.jp2
6a38f63ad17bbb266f38da5fc767c135
f871820dd453a3e81ac95fa7d7756e81a3292899
854 F20101112_AAAXSD vanvliet_k_Page_065.txt
aabc4f9f4adf01ab19b8b4c9c2753b19
3f313d9d6d409fe7cfff9659050859948bf5d6ba
491 F20101112_AAAXRP vanvliet_k_Page_017.txt
08a31a499eb85b6cf18acfabd8785891
51552ad9c6462e8880798649840e44fc911ba6ca
91699 F20101112_AAAWON vanvliet_k_Page_006.jpg
0a32a52ce54c9ac98e43623b52d3a7d9
0f78d424ff584d7d96249b6c624169a0ce4ba0b2
159879 F20101112_AAAWNZ vanvliet_k_Page_172.jp2
04a70a91bcaa06d146283ae040bc5dd8
a3275f4315409fbade519c349381d45a7ed9e6b9
1051964 F20101112_AAAWPB vanvliet_k_Page_057.jp2
9dad907540b9decef592952f56531cf6
b12e30f2061292dd5c2569ccf630e6fd253eeb05
1624 F20101112_AAAXSE vanvliet_k_Page_066.txt
aea04370faedb9b483e293ecc997286e
cc6de8e8c4be646bafe20391f78c6719dbc0e38d
2214 F20101112_AAAXRQ vanvliet_k_Page_018.txt
d9b1a99b56c8939e4b33626fe5e2e32c
db48f499b498600fc44881fb659168f625946982
1541 F20101112_AAAWOO vanvliet_k_Page_010.txt
dd25a8b003e0c9d6f675a02ebe2dccd0
8b4276f95d4553b64ad21c2ff26dcd56f1783e30
49695 F20101112_AAAWPC vanvliet_k_Page_024.pro
e72a05958cbb44407fb5253cc6b5ffc5
67c56b24654a7c2ab9ffd4f38f8b263fe6baa13c
1082 F20101112_AAAXSF vanvliet_k_Page_068.txt
9bfc9fe4ca4fe9f21058b7757ff0e594
b6e1fa3c5cd08b1fa9128903a87fedd3fc4d83af
2130 F20101112_AAAXRR vanvliet_k_Page_022.txt
2cfd3bcaaca70d4a6c7cf0485ae3e9d0
134d56ba4e35c929e7f096c824ba1b96a32ffde9
92701 F20101112_AAAWOP vanvliet_k_Page_056.jpg
e95d96abfa52cad770ea5574a04a0c10
bd9d142124ea6ffb42db56c7279938f7d09b962d
6058 F20101112_AAAWPD vanvliet_k_Page_008.QC.jpg
ed4f69af7bbc517186d8ce1a1991cba5
61e7c5a1425906dff15c13f7333dfa23dd67ed33
2607 F20101112_AAAXSG vanvliet_k_Page_069.txt
92dd7df011144a6542e3673b25922316
8de23e31292ffc5809f43732a03d0cfcbb97213a
2058 F20101112_AAAXRS vanvliet_k_Page_024.txt
8691e1ad2714bea84c1c3aae70eee219
3db708c8068986ac87474d42a1e7dce2f917b4d4
57249 F20101112_AAAWOQ vanvliet_k_Page_189.pro
ccad620eaecba1dbd7af5ac9f473238a
ea9b4405552c578579e4b996a0734a3e7a5cdd1b
52109 F20101112_AAAWPE vanvliet_k_Page_007.pro
cad6e901416fca0fcbec6ae21baf19bd
dfe1db386bf9977fb66218c61ea5751e28d52e8d
2181 F20101112_AAAXSH vanvliet_k_Page_077.txt
d3562f3d13b0607b156fdf1da5e6be15
536b724401deacc7e3d9fb66e2b969550409c47f
2237 F20101112_AAAXRT vanvliet_k_Page_026.txt
bb4afb4fa66ec4f537ae12c2cd76e690
7f6518e56c900bb8c5ac4eaedceb5793b53d2ce7
54671 F20101112_AAAWOR vanvliet_k_Page_094.pro
d085e6e3eaef580da05d3f38fd0aaf63
e9fcebee6398b73e3bbc06064968a41afe45d28e
F20101112_AAAWPF vanvliet_k_Page_030.tif
3028cd13af281b3b8f46b2efb1aaac27
64c3c1ca9476f7fbd766adddef33cc42eaadd448
2168 F20101112_AAAXSI vanvliet_k_Page_081.txt
0d11ac0319ca01098639d619f8ca59f2
4e227620ea9b61c243ade2315ad8015513022267
2328 F20101112_AAAXRU vanvliet_k_Page_029.txt
a3973a22840c283af7a21e1f0de69881
45480501c25699906e9106c0034c71e3db97b788
F20101112_AAAWOS vanvliet_k_Page_110.tif
dae26779d4203ddc74abeb07763334c6
358f8c8eaea3f6e60aa0b8241c599d8076244dc4
51493 F20101112_AAAWPG vanvliet_k_Page_004.pro
f1d69f0a84d19c31db2c026e8e202068
a1ad20d32d5950f2a85946531c93b1f025c3945d
829 F20101112_AAAXSJ vanvliet_k_Page_085.txt
e2ef24b1b14eee55fe4c87a89b6f59bf
6cec251e588627ada308085a5999848a69ba2967
1648 F20101112_AAAXRV vanvliet_k_Page_030.txt
4395dc8bdd52fe86ced95141068d94b5
185905d84786cd12c5b2cdfabf06046ba5cc7d79
46882 F20101112_AAAWOT vanvliet_k_Page_049.pro
aadc4085975c7792fd581e5af674f902
fa6cf8936d00efc135b845a537ed130159edfae5
574296 F20101112_AAAWPH vanvliet_k_Page_040.jp2
b2c684f6345b626becff6878cf5f82a9
ec212af183566ec66af978bacf38fdddb8bdc781
2145 F20101112_AAAXSK vanvliet_k_Page_087.txt
b8b55395d623188dc470d75c28d62e94
f42bfdac74372ad25992f7a318ec7a4e8a140e77
1642 F20101112_AAAXRW vanvliet_k_Page_032.txt
d3255fe832b58f191edcc0975cf5ffc9
e71534fe319516470cae53cce448ce9b05da96cc
F20101112_AAAWOU vanvliet_k_Page_169.tif
eeca7b6163aa8e74cfd9bf167a6d49d3
16c112761b00a7996ae0398fb705c9309e3f8ab4
85990 F20101112_AAAWPI vanvliet_k_Page_009.jpg
857da0301b88f400eaa60a6c4da3b954
5592b0220c3140a61b8f35e2f6042ae16cb6c136
3049 F20101112_AAAXTA vanvliet_k_Page_129.txt
76237394cd2315bd9c5f549f8b6ee576
da203ac1df3415fd07a09f06b489d387ae29c335
2222 F20101112_AAAXSL vanvliet_k_Page_088.txt
adc665eeb74086cac30f810469a51b80
bff6307013f67b5c76333afb895ab26b750eac95
1467 F20101112_AAAXRX vanvliet_k_Page_037.txt
d3a195a1c42bb2e5cfc629255fe47b08
57b73de13f35281d4d7f7c72c0f1f014145d1012
27623 F20101112_AAAWOV vanvliet_k_Page_099.QC.jpg
9959a9561a237c26aa81df1c3677e6ba
d32472077a679ea4493df57f19b59a7990119ccc
1485 F20101112_AAAWPJ vanvliet_k_Page_042.txt
2aded47b17056e4e47c61854bcf479b2
b0a46dbec0d18c4d9f667393fbe9a8b37ebea36e
1537 F20101112_AAAXSM vanvliet_k_Page_090.txt
ed1b6fcf60429a7c8b127783419a81ba
88431c754315638a476e07c7e0d33ebb8f84ae7e
1959 F20101112_AAAXRY vanvliet_k_Page_044.txt
ce6c50785234336245ca423ec557b17d
6acef4029d06c9a903a32a30f79ecc89f5464179
F20101112_AAAWOW vanvliet_k_Page_045.tif
9284535f7b70ec21e25daaef562859ae
7a06172291ba011114423451d53c43d377b5d763
177718 F20101112_AAAWPK vanvliet_k_Page_174.jp2
ea7a47250fbfe8a0d9b34ad21dfc285b
6d91fe20fea9350216a56eb7d2b673c574fbb10e
3694 F20101112_AAAXTB vanvliet_k_Page_132.txt
cf676c791e0df0a7005d6f5769426e75
a1162da8ae9b22d51c10f59dae4fb184a619afa9
2147 F20101112_AAAXSN vanvliet_k_Page_091.txt
0e6cbb01e69c7f07db636a04c6cb1574
420b83df317713d3718cd35d455b75a7c028f3ca
2482 F20101112_AAAXRZ vanvliet_k_Page_046.txt
f65773018f3ed6e285b1669c1d8fe5cf
1b333f8522041545fa7e79bd43ffeda6a349bd52
1051963 F20101112_AAAWOX vanvliet_k_Page_010.jp2
5f9662ce40b60d22e0e231d5e6dadd69
dca558c4550c497bc61be2b3fbe198646939f5dd
2659 F20101112_AAAWPL vanvliet_k_Page_130thm.jpg
8e8240c675268a4adf01f60acfc0af1b
6ad4049fc3db7eda85fb2f1edf4e02d1bde77b1a
3775 F20101112_AAAXTC vanvliet_k_Page_138.txt
daf29d006895af07428e671fb8295bfe
41710a18faab09607eb46da93ff1493f0b5abec4
2178 F20101112_AAAXSO vanvliet_k_Page_092.txt
5dfd9b8e1cc992ac5090a9cf9371b170
7a4d2c267fe9dd43e540b94a247be3938aee68b5
120388 F20101112_AAAWOY vanvliet_k_Page_189.jp2
1c1868765b23730e4552e304793cfe69
19edf982e95bf905b1b36f8cba7a796a89a30156
144 F20101112_AAAWQA vanvliet_k_Page_034.txt
cbdd232e2c2e2d0bdf2938578c7599d1
0038f8da00f24c5a682a084c2cb7e8316a36e2cc
18434 F20101112_AAAWPM vanvliet_k_Page_047.QC.jpg
ad332bb42728ed6b2024dca35afcc71c
2284c57b723f74050f2abf57dfa28abb2669ebfe
3779 F20101112_AAAXTD vanvliet_k_Page_140.txt
66e8c232f387ce00cfdaeaca16384fdc
b523346a12aba1435ad3154fd6b23715e23f02fb
840 F20101112_AAAXSP vanvliet_k_Page_093.txt
6fe14a8d113db47cd01e16bb23e1eb07
dfd106b98146a9f5d317d73af4fdacbe477ec743
F20101112_AAAWOZ vanvliet_k_Page_057.pro
9ecc6515c229cc6c87fa78c0965d4ce8
39d7ac87363a7f95e28206dcf01050018d6970b2
29783 F20101112_AAAWQB vanvliet_k_Page_106.QC.jpg
85e9281e50bb115847ec4436356726ff
d0568cc2e96ae1fd13764777d3d016f307100092
14978 F20101112_AAAWPN vanvliet_k_Page_145.QC.jpg
b10cdca67ab1dc2db9e99dd122e5d75a
dfd43aedd0f2785e35d2af361275c565e27e5c5c
3810 F20101112_AAAXTE vanvliet_k_Page_143.txt
653b6c7029450baca229d029367b4c9e
08558777924e69f504c54f2133e888e77f6d40fa
F20101112_AAAXSQ vanvliet_k_Page_094.txt
5f32da2e8c88ed2e021e1d4073bbda40
66e7a334cb2f64fada8f49cacc3c3331452d4fb5
85565 F20101112_AAAWQC vanvliet_k_Page_165.pro
93a640bfdeb34394a6724eec817e31d6
06d113ee4747031a08a7eba90ec233fc5e1b4481
15377 F20101112_AAAWPO vanvliet_k_Page_158.QC.jpg
83cab0389bb463a0f596a31028879de1
a45374ec5f90fd1c462752a0f5aa79d65654dc62
3733 F20101112_AAAXTF vanvliet_k_Page_146.txt
709533936343512d03e851d5729dc3c2
7e6f46bc7e9e2c280c36dc42cbe8eb984ff4e4a3
1837 F20101112_AAAXSR vanvliet_k_Page_099.txt
80042a22e3f44b3bd3d4ba13e3adf397
2c0a255b121e62ce6819fe4fd19622e13e7cd64c
F20101112_AAAWQD vanvliet_k_Page_094.tif
7cdbe2e1804a76b0068e9bc57330c4c4
620bfbc63c62cabc21c43c43bfcb56a4fce3de87
15076 F20101112_AAAWPP vanvliet_k_Page_143.QC.jpg
f86bd5e61d48e97c5221c4da7e759609
c91efe710a8fec597ac6b0284c476d3ce49a6b04
3854 F20101112_AAAXTG vanvliet_k_Page_147.txt
025d6a2bcee7ad68f808dd77fd1f3c62
4cd9dc017f0cc0fe8464e55614d12a7fce99ec15
1489 F20101112_AAAXSS vanvliet_k_Page_101.txt
77b95c1fb37b2693607609cb00ec4dd2
34ff2c526b3c69cfb7065beed14d655c3b40f29c
164277 F20101112_AAAWQE vanvliet_k_Page_152.jp2
50dd0b9ae746c28305aff56839df8166
fa7638d1c1d14897e46468eeb19b40d29ed4eb49
7845 F20101112_AAAWPQ vanvliet_k_Page_063.pro
f0ff0ac21997e73017792e6ac3b0fbf7
026f9b6c138bac19f8b089e81cda0ad401fb5660
3790 F20101112_AAAXTH vanvliet_k_Page_152.txt
ecd0789c1e288f5c51bc36edc6e70153
555c3aefb8d942e7cb2698f2ddeb0444a4317f4b
2131 F20101112_AAAXST vanvliet_k_Page_105.txt
664fc6dddca7d65b1f9a0b9932bdc3e8
3db3e16590dcb224af9b5185cd01fc08105b3431
115922 F20101112_AAAWQF vanvliet_k_Page_095.jp2
a25b78d4c0fc125679e72297e9c1bfdc
340a8bc0af0e6ae998f5c900ba7f1014c1289a74
54025 F20101112_AAAWPR vanvliet_k_Page_079.pro
116fe89466be429435e8097d71892453
0fc5b35717c05740299145cb5dff58bd0a40b6d5
3868 F20101112_AAAXTI vanvliet_k_Page_153.txt
fa090f9fa0c0bf644c6d6525c7364d24
0da73fd9919addb286032b528bfcf665edd22866
2142 F20101112_AAAXSU vanvliet_k_Page_106.txt
0a963f273bba20c242b3dbc56b31f9a5
7cb111ed91b5d8a52b06d275becc85181ca2bd22
1276 F20101112_AAAWQG vanvliet_k_Page_040.txt
aaf23b87e1a360a91e28b245f601d103
cf45a9cf0d8ef41861089ffe084ef6a5dcf6d61a
7961 F20101112_AAAWPS vanvliet_k_Page_055thm.jpg
2d7a4b27680370d8fa22cad6d540f2df
d390d15061b4616b0efec0b581fd66e290923e0d
3578 F20101112_AAAXTJ vanvliet_k_Page_154.txt
6c53219b8d4d9c07298b14af662bfafb
aee84c75a6becb4ce0e8bb357de068d7372f1dfe
2128 F20101112_AAAXSV vanvliet_k_Page_111.txt
8ae0501354780727cd07787f328bc003
39c86d045a56c05e602c3f4c25cc408fa2ebf0c3
71294 F20101112_AAAWQH vanvliet_k_Page_151.jpg
049b0157a76b6eff89b1dc0dc8a8bedb
0109a051501a6dda5a0dc80f7713359c11fd1f29
17292 F20101112_AAAWPT vanvliet_k_Page_062.QC.jpg
ce332578d4a90c692d830dd4c206622c
8e283c2c8675570525f104c20ed52f855bb8fcc0
3948 F20101112_AAAXTK vanvliet_k_Page_156.txt
eda99ca40422236ca26a3016c8818002
54192082303363e82af16428cf4c46bc8cb94624
1447 F20101112_AAAXSW vanvliet_k_Page_118.txt
46867adebe80e92131a37814ed1dc6dd
cd46878b393abf41e5cde6992fb964ac7c5714fc
120540 F20101112_AAAWQI vanvliet_k_Page_112.jp2
259223ed4d7f4f641b11d2555c115b6c
a654eace48b51ef8f90790ea6aa072ce67dd7c12
18204 F20101112_AAAWPU vanvliet_k_Page_104.pro
ed168488d9e63f3b7c569cdc919ff682
f68a83dbb59c38564e8bcb7fc0b2b6c0c2557bba
223554 F20101112_AAAXUA UFE0019360_00001.mets
7c40139915a91ac8c125cec0083ddd55
1326eafaa79523d62c7bdfd0f74b5a4345411cdd
3638 F20101112_AAAXTL vanvliet_k_Page_158.txt
7fc7260ccf2ea62c150866ff74d20483
a01a48f80e8fb3e810cf7bc20c21b80e20b90a51
F20101112_AAAXSX vanvliet_k_Page_121.txt
bc5b6d6b5828f6e582b5f80597cf7a44
8873a6dbeeef80a9851711545b2a6329260d1b3b
3597 F20101112_AAAWQJ vanvliet_k_Page_157.txt
48058df212cb6a9b719c3e6283391f37
ec9cd59bc59966f5a96ac922d975c78c7e39a6a6
841 F20101112_AAAWPV vanvliet_k_Page_038.txt
68303deb48294e4beaee646093d27529
70b3d14ab8097655df3862b95bf9d3e77fc06de9
5729 F20101112_AAAXUB vanvliet_k_Page_001.QC.jpg
bb1c6a8551e449d9ca981997bc044aa2
a03bd73744db3917ea9284285c748831f30a5318
3959 F20101112_AAAXTM vanvliet_k_Page_159.txt
e05fb3ce4a5137c63597d8c703a08571
0c58d4fa8c65561256e9439a31edb76cebe45a07
1735 F20101112_AAAXSY vanvliet_k_Page_126.txt
3d422cb8cf468e146ac68dc7eec65c8d
971184ea42b1f286cb7cd141621edbd018706ee0
6880 F20101112_AAAWQK vanvliet_k_Page_096thm.jpg
2130cee74160eeeb376bc63683eae4be
e179d24b70df0205561252536b7f7eb13360dc2c
17603 F20101112_AAAWPW vanvliet_k_Page_193.pro
4d7e3761e7ade2d321a78f0fdcbc43c6
ae7590051f644b5c182308891057232850cd0bb0
3870 F20101112_AAAXTN vanvliet_k_Page_162.txt
bef39debb81026bd0f352676eae3e10c
6b9ec17215c6378f4e1b011be2e4e1c214d93cb0
F20101112_AAAXSZ vanvliet_k_Page_128.txt
256c6d78fa4eb9ebb956a30365eb7b62
cd91cec09945a4b007fd16cb6f4363762ecd2797
10353 F20101112_AAAWQL vanvliet_k_Page_193.QC.jpg
44d18b6c9c8cbad49689274e985419e9
c8c45491d0ec4f2342ba63fa5f54b01a49a71beb
55251 F20101112_AAAWPX vanvliet_k_Page_033.pro
c79b1d0fd67878c73339c1e2467d61dc
c2160a3704ef04555a715f5f40ff36aab9ace3a6
1114 F20101112_AAAXUC vanvliet_k_Page_002.QC.jpg
4ef46a7a1f3c5e50991a7302391af25e
f7ece7855c491712f27d3b5736aaa0d9886f6fb6
3485 F20101112_AAAXTO vanvliet_k_Page_163.txt
4b4f5dc53ebac111fa21cbf9aa23b6ce
3ff5bbca3f9f1f05d6b1859c2b62e7d759e404e5
39706 F20101112_AAAWRA vanvliet_k_Page_119.pro
e6043d87f2d8235295847ea7e4091c57
5dd6eda6fafbee5f41f871e777014544137a57b0
5021 F20101112_AAAWQM vanvliet_k_Page_043thm.jpg
f9321ce25d8896bf3e833941768a8baf
23e39ac96680251ab8b0128e04573f1ae7572110
403 F20101112_AAAWPY vanvliet_k_Page_063.txt
5433df2a44da2109dd535cc678487a53
ac8398b68a3496c7eb4a2892711f79f92f8be401
20986 F20101112_AAAXUD vanvliet_k_Page_013.QC.jpg
244abf33bbeb6bae21a575353b992a96
e1f733f200be0f09fe5d7e054485c313204a6a44
3653 F20101112_AAAXTP vanvliet_k_Page_166.txt
06869f72c6560b68dbae2569f362aad7
7062695921fea1e7dff56912853db5770a711fd6
2064 F20101112_AAAWRB vanvliet_k_Page_007.txt
a0692e3bf1be616e3baaa3a1704c42eb
6876de1c64dbc4ed3f04a8ce8f77189775e7f888
1716 F20101112_AAAWQN vanvliet_k_Page_117.txt
6273a7e9a458ce9e00c362b7642668b6
f91c44f582261491f05aeb106f61696fbdab9ff1
3572 F20101112_AAAWPZ vanvliet_k_Page_151.txt
9b3931a38c84dfb1fb953409bba9239b
f827284162705f4322665b89ef37f351d9234ebb
13884 F20101112_AAAXUE vanvliet_k_Page_014.QC.jpg
3a23e5d511e9b7da6563ce00f650e96c
169cb6766fd64cdd0b0cad0bb711d5176e2e66f0
3679 F20101112_AAAXTQ vanvliet_k_Page_167.txt
61e5f2c7553252a9b003ba3e0e2bf0b3
6f80b866a98e0fcaa7e73b4f072f3483f6ff3363
62547 F20101112_AAAWRC vanvliet_k_Page_104.jpg
cea453cbe0e697a28fbc9171f38f985a
4918c56070d248f6130047e0ecbb0c6a72700a89
89338 F20101112_AAAWQO vanvliet_k_Page_174.pro
49da1c5919d9f2aeb01953ae2c04a638
d7a56dffbf5defc151ed1b8381869d5790cdbc8c
2349 F20101112_AAAXUF vanvliet_k_Page_015.QC.jpg
a86116d7c4291b65a332d659fe16b3e8
525938bc72b5cb53932e0ad773369c031613d322
3659 F20101112_AAAXTR vanvliet_k_Page_169.txt
f5b3e7052974d5b3f1815774423e2c37
020b3bb0fb8cc04764cfd775b71bf3ce297b4bd6
73922 F20101112_AAAWRD vanvliet_k_Page_130.pro
30d0835d8be7bebede34dfb9cb4d2188
be6400129319e16b7077eebd5676ce65f78e4c53
3932 F20101112_AAAWQP vanvliet_k_Page_003.QC.jpg
988d0baa52d78d48d7ff0ae5cb45bbac
b58bc75b8ffe083364ee4aa4a388c2348879f6d5
25461 F20101112_AAAXUG vanvliet_k_Page_016.QC.jpg
73133ae5ed75b9f1ff46f2e18811aaef
e9504ee9ff0f1299d727c2c3409ced24010d00aa
3422 F20101112_AAAXTS vanvliet_k_Page_170.txt
c1d86517e223811fca23cf6294e4eb03
1c7c2f59f6169f1cb8bb4ef0b1a3ce24b8736c95
169474 F20101112_AAAWRE vanvliet_k_Page_161.jp2
23a5124eb7a4a79a7d1c1c76079b476a
c9672f231211528a83ad8218863be398ccb778e6
92322 F20101112_AAAWQQ vanvliet_k_Page_051.jpg
1cb2318243b3b85a25acfd45ebf53663
4287d315723743a8aa3b9019699cf9cf47b21b22
1782 F20101112_AAAXUH vanvliet_k_Page_017thm.jpg
d69840b221f96559f08fbf54b1a163b9
7b828a33f1adcb0162c0b09e7f9fe65dbca49066
3772 F20101112_AAAXTT vanvliet_k_Page_171.txt
6e1e654a940e4622fb93117f9efbd247
0d78d52f0ba20a52bc78b8deb383b9ae67820ca4
71264 F20101112_AAAWRF vanvliet_k_Page_148.jpg
3573fbd62d86f20b267321f9f8e1ebe5
7e6abc664d10717581c5877088c21b9bec6878ce
F20101112_AAAWQR vanvliet_k_Page_059.tif
115cb5d2393a355ebcc17e971f2aa5ec
fcd382c9244daaf0c0d41884287698a49baf0f55
23446 F20101112_AAAXUI vanvliet_k_Page_021.QC.jpg
57cc17c54ed95978bc302fbeceb1f5bb
bfd7afc79fcb54be2f4951d9eaa9d2a97588bc98
3674 F20101112_AAAXTU vanvliet_k_Page_173.txt
11b93adc627035cdae2f904528c90b32
fdae9cf56aeb43a9efeb37dc4b06d448e9adb109
F20101112_AAAWRG vanvliet_k_Page_166.tif
b6d4ec1f116a3efa3bc616a57f8d06af
dcd8adcdcb56d5bc13bbcc940ca24d712370efaa
2108 F20101112_AAAWQS vanvliet_k_Page_095.txt
abecbf7f27dba70f75d498fc10267fd0
347f2776cec925e94eff9bc7201745579c70e631
28092 F20101112_AAAXUJ vanvliet_k_Page_022.QC.jpg
6e3ad82e27415633734ab3b59a2b9402
b3fc6d020001143973157102952ce0c7660a86ec
2539 F20101112_AAAXTV vanvliet_k_Page_176.txt
2f1ff8d264674450af70692270ead1cf
910d26f458bade3ffe3b7574dff18df5eb192f6c
92723 F20101112_AAAWRH vanvliet_k_Page_054.jpg
20a3a3cd9e3c79ba6340d1f2ef6506df
26c7deaaef58d69b0fcd0eb89a61486c7253001b
56756 F20101112_AAAWQT vanvliet_k_Page_188.pro
28b74d8283333c877b79c7b556bb1e56
3b699199debb847745bc423759c85bce3251d305
1753 F20101112_AAAXUK vanvliet_k_Page_023thm.jpg
5936cd1298c49bdccf5bd52e845ae01c
83c5e5ff82436db7188c59e931c87c71ed8ef2ba
F20101112_AAAXTW vanvliet_k_Page_178.txt
4f546e6c1b1e53d3c875a0fb82aa14b9
c822ed53993bf6c059af980bf771b2b7f7460f9f
25922 F20101112_AAAWRI vanvliet_k_Page_024.QC.jpg
20d1390835cd163918e4ac0120897fae
f170b0cfdfacc2387c41e7a9f34208382c5f4a4d
75094 F20101112_AAAWQU vanvliet_k_Page_174.jpg
8e79d9a61563e74f6724d17cca1d46b4
b0f79bd9fa202ff769d6e970d4a3f6e865535448
6679 F20101112_AAAXVA vanvliet_k_Page_051thm.jpg
7730ecf077685b44d32fa2cb82b2b93b
1b1abd33a26e3de66d7bb167b2cf4e905d4bccfd
6111 F20101112_AAAXUL vanvliet_k_Page_024thm.jpg
0daaf3728f7f5a15a6ccded3ec1b768e
895fbc3961637c4fd46c249e83b96ca47684e003
2342 F20101112_AAAXTX vanvliet_k_Page_179.txt
a5303d5101e97e5a1c5484e9a3a7690b
fcfeb770e92386dc0b663e1430c507c4ce63a5c9
23930 F20101112_AAAWRJ vanvliet_k_Page_091.QC.jpg
3cebe1fa2a0ca0edab13143283b216bb
449828c5abec953c802a89eebc84f9f2e5001949
26689 F20101112_AAAWQV vanvliet_k_Page_025.QC.jpg
f2a4233425647315bb55c69358ad3a6f
5e44d68ae00ad798ed88e4ef8397ab9c22407d75
28034 F20101112_AAAXVB vanvliet_k_Page_052.QC.jpg
babe2faa960bfbc06314dbc0e33ddcd8
652490c3c89314b11c28f79984db9dee2b9c675d
6631 F20101112_AAAXUM vanvliet_k_Page_025thm.jpg
9294deb453c2c5f30240f6adbd735e00
feca5672153ab421460d12390041b0652898ef45
2249 F20101112_AAAXTY vanvliet_k_Page_183.txt
ded3cef41f3d969910e2cc22816a739f
bef193364d6865f263299cdfebd640affcc58e9b
49088 F20101112_AAAWRK vanvliet_k_Page_115.pro
be1e25fe1c857a98f0a6296b5a9b9658
8633cbdedcf98595dd199e94cf8259819b758313
39362 F20101112_AAAWQW vanvliet_k_Page_030.pro
cbed343aedc33abdc30a59a8109aacc7
718b2ecdea75ab8099c7ce2708bd3ecc04368b67
24190 F20101112_AAAXVC vanvliet_k_Page_057.QC.jpg
912d1bb0d2b4a29a9783e2e876400172
0a182428160f2ba3dafcf121e830c6c17841b903
30062 F20101112_AAAXUN vanvliet_k_Page_026.QC.jpg
cf67ca428345c328b87ccc42e1e345e8
8dcf1f889d2333bc4d16cf77d40ba026ddd3054e
2294 F20101112_AAAXTZ vanvliet_k_Page_186.txt
2fedc5f8b4ad6433da82085a678616ae
08a85abf3b6c17f806236138f43c83ec5dc9b2ce
166958 F20101112_AAAWRL vanvliet_k_Page_138.jp2
115ca115d2f11eec115f8029b9d06fae
3bccf8e066d730a2f2fd69002f00d9bcb8b1b93b
F20101112_AAAWQX vanvliet_k_Page_083.tif
ad018d07560ae6f661b307c70829eaf2
410bd5f1e7391c2771c39bbb86e13b86d202960b
6845 F20101112_AAAWSA vanvliet_k_Page_108thm.jpg
fe9d0d4ad0c7c12d0a941ae072e4e737
e981b74cff445699bc0b3a0084981afc1ea3034f
29422 F20101112_AAAXUO vanvliet_k_Page_027.QC.jpg
451d527c37f898abf9bbbf8d5e7cd5f3
51235969b2a961c4f4a30d9d0671c18f135f7873
24192 F20101112_AAAWRM vanvliet_k_Page_065.QC.jpg
3032ba1564a0904c5a6419282ea1a992
8b6169598916b5fb3d9af8e97c73c5875bd44034
51978 F20101112_AAAWQY vanvliet_k_Page_011.pro
61fb3840e586001841459d4fb862bb6c
218472e9bd8cbb855f5ddc8eeae4dcfc59ffb75d
7536 F20101112_AAAXVD vanvliet_k_Page_057thm.jpg
ed8a317cda4012cea9a1289a0ac75b1c
6bd2a489a4c50e28ceda44039b653cf29229fe72
25801 F20101112_AAAXUP vanvliet_k_Page_032.QC.jpg
e148e1c3eb9d3f51fe648d07ea6fed64
4bd0959968d9c2212c69b9fcece7b5ec68f4e9cb
F20101112_AAAWRN vanvliet_k_Page_172.tif
c6aece47c6af2ca542e1c8d438f3ee21
7a3b792c02c681473addc43f1de2972059a6b188
122620 F20101112_AAAWQZ vanvliet_k_Page_019.jp2
e336fb29d791f79305a4b374e1407971
788806062a2ddd143aa9983d05f9783070f46017
27753 F20101112_AAAWSB vanvliet_k_Page_080.QC.jpg
a74207206e84652f3e91e9e50de12eea
3917c79a75cb75e7d4d14b8e82a6b7478c68756a
29287 F20101112_AAAXVE vanvliet_k_Page_060.QC.jpg
a5ece66bf22953a4f2059907917da38e
cfc762eb4ffc3d359afa4fc5f5c56953b9862e23
3003 F20101112_AAAXUQ vanvliet_k_Page_034.QC.jpg
3a90a8c59b5edd90789e6cfb4b287298
893d8a065a5a565c4e91c8e61170f4867973d72e
2762 F20101112_AAAWRO vanvliet_k_Page_132thm.jpg
86e01c4c405d5cb74321809e716ef675
7fa787a8f0bbb96e352eea867d9faaaef8356308
74216 F20101112_AAAWSC vanvliet_k_Page_171.jpg
907f15d89ca9fa52891e3a727e941b4e
fe861419ef6fc88a65fd11bdb7d6f42b56e996ed
5278 F20101112_AAAXVF vanvliet_k_Page_062thm.jpg
6477cf02c349321fd02987953a872bd4
3ee584fbfb28770c39787a449ca9629323209c56
4297 F20101112_AAAXUR vanvliet_k_Page_037thm.jpg
25d661f01f090e9df58f991728363ce2
0bece8e381ee92f9602046e36379cb521663902c
21878 F20101112_AAAWRP vanvliet_k_Page_028.QC.jpg
8d8dff2c88cca67e61aca206f9291a8f
cb6e144b0aaa52b7784b140d5809f86992d7e318
3799 F20101112_AAAWSD vanvliet_k_Page_131.txt
2911a9ca5aa337de6a9d4a253a902330
ddd6288651fbd4a00bb295a3dd83c9b9c6c4aa8b
30840 F20101112_AAAXVG vanvliet_k_Page_064.QC.jpg
bd67d32fbc2878ea8d738c0b320bd1d3
66fed1266e10669c777881dfb2a9628a0dab6eb9
13993 F20101112_AAAXUS vanvliet_k_Page_040.QC.jpg
5081360f50478b1e631a2b4046a9b534
4bbfe0992a6973f7e226b7093b88b68c1932349d
49255 F20101112_AAAWRQ vanvliet_k_Page_016.pro
1d2475815b57ee33ddc6fe154188774e
f44aac7002effff87981f111c3540c72247f2960
7315 F20101112_AAAWSE vanvliet_k_Page_099thm.jpg
1f704f559972195c4f6d9e55609a26f9
df4aa406bf333eb763e550708ccd52d9fcc06318
5939 F20101112_AAAXVH vanvliet_k_Page_065thm.jpg
956acc274a909a8b0d84b17dc14ede20
b3078a04eac69092868c2cec9cb29f9c0f03948e
17301 F20101112_AAAXUT vanvliet_k_Page_042.QC.jpg
1b984cacb0c11ae510eb97e0414bb6b9
29f4e696965cb730dd52a39ccee3fb9232ef8e1a
1051935 F20101112_AAAWRR vanvliet_k_Page_074.jp2
36bca8ab038d55a79c4e8f5bef1080e9
9f6e0f33c918cc161750a4966f457c23cbfb1bf8
7341 F20101112_AAAWSF vanvliet_k_Page_017.QC.jpg
f82e3db9b660bdf20a40d5554bbca554
9659dd8281e0160d6a10b588ce6bf2c5fd27d199
34430 F20101112_AAAXVI vanvliet_k_Page_066.QC.jpg
8c4b91e899b89d6bce80cdf888e943d9
10efb9c861746c1610da0bc8ce5fba1d149ff689
25289 F20101112_AAAXUU vanvliet_k_Page_044.QC.jpg
3f59d5964b5c1e69593f44b20c9aada7
4609b522377d228848c4b57abc4db75498adbb93
F20101112_AAAWRS vanvliet_k_Page_060.tif
95c28d4c1e1d6045708c92ecc79ac207
37abc37f76df9e6688c4816a852d8f4a51cf29f8
2823 F20101112_AAAWSG vanvliet_k_Page_148thm.jpg
617bef1c639b50780494bab5bddc36d3
e921702d523d160b59875df704280dcc926794a0
8299 F20101112_AAAXVJ vanvliet_k_Page_066thm.jpg
c9af2c80218cb2d81c0376b40868de43
ed3eb235b7b814350318731278b101f90bcccecd
29110 F20101112_AAAXUV vanvliet_k_Page_045.QC.jpg
85bf4735a4bc1d9e47310aa719b49536
db2bc736e03509495cd3f765a6493e4c3e35a188
26741 F20101112_AAAWRT vanvliet_k_Page_054.QC.jpg
6b1751c84e1c8d8805cc9b990577f724
0bfd320b3f133122db09d81c827609e5ae846abb
1220 F20101112_AAAWSH vanvliet_k_Page_059.txt
eaec6fac004dd2993bcebd20d04605d7
be877fa574c8185be6e035a5fac31c3596a1d3bb
6303 F20101112_AAAXVK vanvliet_k_Page_067thm.jpg
c6c08e2bd82feab93f0ddd46e3fc8549
172dfd3458d9756fbdbd67ebb82288e4b506db96
5948 F20101112_AAAXUW vanvliet_k_Page_046thm.jpg
8a5db0f566e79c440f5f2f9b70fb2c2a
8198241e5774f83e7837b167ca69d45ac0d9445b
F20101112_AAAWRU vanvliet_k_Page_111.tif
b29a95d586b81e6470b199d9f231a4d0
32209afa50acc95bbafae33bb29d6647296c8357
15122 F20101112_AAAWSI vanvliet_k_Page_170.QC.jpg
3d1ececbaa7512040cb701238fee6410
23685c8568a76d9ed54cae41a3caf6d6b2c1958f
27752 F20101112_AAAXWA vanvliet_k_Page_087.QC.jpg
4e8a08060441bd77740b7795dd9db309
cb7fb9c8c52dac7e01905de37ba4d8c7a5f8d96e
21442 F20101112_AAAXVL vanvliet_k_Page_068.QC.jpg
8f587e86d0f8dedce5c37c6f36717775
d7ac6f20be5293cea55f99512eb51587d8731b3c
30074 F20101112_AAAXUX vanvliet_k_Page_048.QC.jpg
617df99547db2712d31e3b5a8c0eebfa
3f4ba73512a51bb0190f94a671719c280de57aa9
121820 F20101112_AAAWRV vanvliet_k_Page_106.jp2
400488ac9150838c3cefab5274ee652d
004126065ec9c558c41b0d6ba15e28eb968b5936
133770 F20101112_AAAWSJ vanvliet_k_Page_069.jp2
c7799deb868f2a6822dd33b6c929b80b
088db4eaf4e5296ee46a0879690d8e8ec4a43b1f
6586 F20101112_AAAXWB vanvliet_k_Page_087thm.jpg
3c66dff3dd16a81662cc59ea93978a1e
3ab2297b575b3b0c38a469cf7cb7ff86ac1a3a4b
6248 F20101112_AAAXVM vanvliet_k_Page_068thm.jpg
fd0b1b5698b04368c5e1a3ea3edee9ba
ff12e8084a61283a0972bb1e68bee24b02797901
6959 F20101112_AAAXUY vanvliet_k_Page_048thm.jpg
eb83c348c6ecf3e7eb92035d6aed4447
b33594e07cf846a2d13130fd231e84d7da98769c
F20101112_AAAWRW vanvliet_k_Page_120.tif
2135c986e9eb7642c8558d543fcb5ad1
b9119089e387f9d6fb8773838ffcabec25c0a72c
139032 F20101112_AAAWSK vanvliet_k_Page_064.jp2
42f203ce2352bd2fd917f7732a8e7ac9
e45fe3453a066e569217b469fae7463765eec39d
30125 F20101112_AAAXWC vanvliet_k_Page_088.QC.jpg
29fb1ed6a7edea37d62aea755d0291ec
a8d58b3508f29da3e4bba1bf42b9ce6f909851ca
6517 F20101112_AAAXVN vanvliet_k_Page_069thm.jpg
df9c70a8579f99ce1f8de27306c819ec
8fc24b1be4b5962503a2378e64079f375619fc8c
5766 F20101112_AAAXUZ vanvliet_k_Page_049thm.jpg
ad0bdf2508108b88278464b763aba6d7
91dd9670e297db2922c5c1f9ab414a0807235e8b
82164 F20101112_AAAWRX vanvliet_k_Page_158.pro
e52bf27f98a186de3d9918ce9fca34f8
e0d8078d2f8a30c5c59946b5ed27d486560cb097
878749 F20101112_AAAWTA vanvliet_k_Page_021.jp2
a343073093cf20758766a622ef8e39be
46a0d5ae8ba1d2a32942552da1d4325998ce2108
72604 F20101112_AAAWSL vanvliet_k_Page_158.jpg
37aa01862cda84f95e9d2849eff6c031
4dfee8ce9014770d0b99bf541a1c48f7b8d51f6a
6370 F20101112_AAAXWD vanvliet_k_Page_089thm.jpg
0c8ae1c797e58037783810faf2cfe3a2
67ae3d3d28b58ad4d29999f889376d7d32c549ba
26259 F20101112_AAAXVO vanvliet_k_Page_072.QC.jpg
9c55158652216bc42d0966c76b97d9f1
eb9058eec868913b03b07b4def25857b973e55ea
70491 F20101112_AAAWTB vanvliet_k_Page_163.jpg
202355d3b1f1510554724d81920060e2
0c0c0834089f4b6ff044f20f15a1d2c653537138
92794 F20101112_AAAWSM vanvliet_k_Page_108.jpg
49204a2e832815ab80b9d814e87263ef
a94171566da47441e67369bc98b6b4e2e0189964
2274 F20101112_AAAWRY vanvliet_k_Page_191.txt
77d4c9d3d378fa37ffdb8bbffb261d92
a04c67f989b700a6cce865118afcc158caeb2c06
7311 F20101112_AAAXVP vanvliet_k_Page_074thm.jpg
613ff6c08c46ad9cd941815a886767e3
ff25edbf8f06bdf0729673faa0323dbba8573e62
163260 F20101112_AAAWSN vanvliet_k_Page_148.jp2
701517629eb9a32c12a4c5afdf914ac9
567b822b3c36b062c313e3e426775dad44d94338
52338 F20101112_AAAWRZ vanvliet_k_Page_177.jpg
89859cb9c4670f3a4715e7ed277b1476
35d0bbaaca1d2d4912d11f34f9927b8199a86906
29056 F20101112_AAAXWE vanvliet_k_Page_092.QC.jpg
1479e8b59f549ad21790ac5c4890b9bc
e1b27f2d4b8ac377d53bbd2969d531a3b7161a42
7529 F20101112_AAAXVQ vanvliet_k_Page_076thm.jpg
2661a66fff4389117e14243df631fb7c
5464c2b0d267d0ee1d6e2e520dcc6b91844c7a99
3605 F20101112_AAAWTC vanvliet_k_Page_148.txt
91e53c72603c814c631cbef8cfd1621f
1115ffc1aa080ff88b2aa8f9dba8345eff528266
47650 F20101112_AAAWSO vanvliet_k_Page_182.pro
440fdd14e1a95f1b72d18750e7ef2159
18f71d9049f9ff3e9cd7b43ed96f322e2470800e
27832 F20101112_AAAXWF vanvliet_k_Page_093.QC.jpg
85818549a1f20abe512f87a10a118381
ae608a4f570ec1974cb2208ae76b1cb4b3cb13e9
28919 F20101112_AAAXVR vanvliet_k_Page_077.QC.jpg
3c1bda7dcc9c464de4d7b117be1160f5
b7505b0c23251f16b5a19b0f7b30d663adc966af
169127 F20101112_AAAWTD vanvliet_k_Page_149.jp2
da668236c3c72712940f06c6e9be2bd2
ffb312c5b78a2783930a637cefa6d1704022f24a
2756 F20101112_AAAWSP vanvliet_k_Page_157thm.jpg
79c7b22f38cef94b4061f0d01213b911
7d2f9d285dd2599990b8cd1b629d1edf67be0ca4
28210 F20101112_AAAXWG vanvliet_k_Page_095.QC.jpg
e906cb2a08615ca61bc5f60abbb957ad
18b0551cc386e87368cf8515d86ba3d47d290de4
29255 F20101112_AAAXVS vanvliet_k_Page_078.QC.jpg
71e253e6805807ae34b326da7f99f6fb
686476ae73297eacd37dc6f731046e3399c1bee7
55782 F20101112_AAAWTE vanvliet_k_Page_048.pro
d1b12f5af818f5135945372ae94f102b
fc72bdc86ec6108841af9dda944c2ff0bfda7d46
12383 F20101112_AAAWSQ vanvliet_k_Page_128.QC.jpg
19abe4603a0df25fe8e8ec7ca7ba8cc5
17cfb42bc03d53171e1742f4a7a2ef425a87e84a
29601 F20101112_AAAXWH vanvliet_k_Page_096.QC.jpg
011164faf3dcf5700d4d38a236517dd4
8fb341bff99046993fa66da63d3f124148cf3d29
6856 F20101112_AAAXVT vanvliet_k_Page_078thm.jpg
5e7b397e07365b97a07eb3c397ff9fdc
9f1165ebcc62cd5104524be4c637e2189b0db106
1424 F20101112_AAAWTF vanvliet_k_Page_082.txt
79bdbee1cc8bb5a638bc87cabca7565a
9f56dda7341a829df44ff82f335481375dc7f930
5797 F20101112_AAAWSR vanvliet_k_Page_113thm.jpg
0a8c3db80d1be090a4dde5c78af325ef
41ea091d7bab1b8ea5cc146b8ad13018c1b85d48
24431 F20101112_AAAXWI vanvliet_k_Page_097.QC.jpg
c65e72dd708912122ffdee80332b85f6
6b0240c97ec898ba9de8aa134cb361d891faca47
28045 F20101112_AAAXVU vanvliet_k_Page_081.QC.jpg
6ea2e0bc048a1e495487d6f7997df54f
8c61f5c614ca0090b9d0988b25c9e26424ad60da
2121 F20101112_AAAWTG vanvliet_k_Page_184.txt
0f17445cdb12400e7f33e456db947dc8
60ff3c43b23468032e7b544cb63211a25bf9c11e
F20101112_AAAWSS vanvliet_k_Page_164.tif
59d8f1de8e6a48ef4ee89f8a64325cbe
58b9e3dfd143b7387317b2efb9b7e2bfe8ce0ed7
29564 F20101112_AAAXWJ vanvliet_k_Page_098.QC.jpg
957aaff829d01210d07f19ea157aeacc
44c763667f2f7d249b6394f99c0766f21554c7b7
6700 F20101112_AAAXVV vanvliet_k_Page_081thm.jpg
884ea6275c09f8718ccc8e9aa9946877
09a107814e6ee58eb3d11bc00938d5dc43ccc86f
51787 F20101112_AAAWTH vanvliet_k_Page_184.pro
5c87beb2d77b7e89a68a392c428446d8
89ec7c016048cacb1a8a4de8214bf37ed98566e3
15348 F20101112_AAAWST vanvliet_k_Page_147.QC.jpg
29edcbdfbfc91750f10f8c94b0ef7492
5624940a22dd389d0706a5978291e818346a4f1a
29173 F20101112_AAAXWK vanvliet_k_Page_100.QC.jpg
6a71dfdd8d170f7e3367315ec5b6263f
b392d94e4be6725d7f68ba8acc0fab52963206f9
6651 F20101112_AAAXVW vanvliet_k_Page_082thm.jpg
f060d96ec6a98a6c1b42de13356055fe
386dfc46b64edd29b53db25ecf41ebe5076b3888
75782 F20101112_AAAWTI vanvliet_k_Page_126.jpg
da899b6b669f9cac4e0b3327cb333ac4
e0ffdb5512a1bc30ca2cd7d707ce5f5cd4da7641
107500 F20101112_AAAWSU vanvliet_k_Page_031.jp2
0a61d8ba498ce919eb25cd4b9b5e0360
182ca8726122b816c37a9123eba8feae99c129f3
3979 F20101112_AAAXXA vanvliet_k_Page_122thm.jpg
7323951ecccc3bdb2180192f196d441d
f5a994b7a45071cd561b8676044cfd5ef8f52bee
7087 F20101112_AAAXWL vanvliet_k_Page_100thm.jpg
94c81209e552a95df5e67666df28d5c4
fc97e327bc9ebcc4f7eb0ac74370863c704ac91f
15007 F20101112_AAAXVX vanvliet_k_Page_083.QC.jpg
0a31ae5c12fe34f1cb211d69797c4064
f9d37ad801e6cbd0b0097fe452340c7657c7db58
117638 F20101112_AAAWTJ vanvliet_k_Page_079.jp2
86907863a979921025712b2ed34a7510
aa00851671f00493a87640a5745f9bf136f807e2
648 F20101112_AAAWSV vanvliet_k_Page_055.txt
1379e4c3f2491959f6e75a78d477bf76
522e915ba996c9f08e7659588e671b77354715f7
7007 F20101112_AAAXXB vanvliet_k_Page_123thm.jpg
32d5c1bec0c2280eafc25d3de81a2b5b
e89f330a8bda04a89bfe5f740c8c7718234210f9
21385 F20101112_AAAXWM vanvliet_k_Page_102.QC.jpg
879fc730de0cccd2c70815450b670d0f
8d4cd93cb5b7ec4d8773cc955092f188dfe7f147
4101 F20101112_AAAXVY vanvliet_k_Page_084thm.jpg
6150ae10172d696e828744575e162a97
e527cec77a447366af6e37838dd95c6699432945
167750 F20101112_AAAWTK vanvliet_k_Page_141.jp2
a36922bd8e0c6349749dcb89975d5a3f
c1130a1398043e43d5ff3604fd0a96d536cc93a2
133433 F20101112_AAAWSW vanvliet_k_Page_114.jp2
514eb382a76a2cddd135b0ec3e814cf9
41b80afc4be093beb647df96798a34167c929332
6300 F20101112_AAAXXC vanvliet_k_Page_124thm.jpg
8c2a9dc0a147b4f6f4887337359e2538
038746f5edcf0b4a57dc9d8d2fee95a67b85af31
5704 F20101112_AAAXWN vanvliet_k_Page_102thm.jpg
69abaac6e4ce6e82357bec4886221bec
77e4cd75e0d195b3a9990c1fcbaa1c571007e06f
28338 F20101112_AAAXVZ vanvliet_k_Page_086.QC.jpg
6b513fa3f70778961a45c524a48e734c
1bfa86d3c43f62385e34b1a3ba15ddd9b3d5c2ae
F20101112_AAAWTL vanvliet_k_Page_018.tif
c82918a4e914e06075c68a93882d7bbb
dea1029c62bb1fcfef563ec3437e78c9314880ab
F20101112_AAAWSX vanvliet_k_Page_127.tif
c6769083c99e08a64a8675072bf2b571
cf15ed084beea3f3096d98be5b4df09a1b4d8209
3949 F20101112_AAAWUA vanvliet_k_Page_168.txt
0886cae25d5b3930271614bb37fad06e
c4a134bcaf3fb4defb892cb7d9ee2d828754cc41
27418 F20101112_AAAXXD vanvliet_k_Page_125.QC.jpg
91113859de5024486abab8b98dc5afe7
85299903b06038a39191e81978066963ba931646
4710 F20101112_AAAXWO vanvliet_k_Page_104thm.jpg
ad5471017718a9626672f3d2629ab2f6
f71affb9ff827b43e6f5e343eaab068729ef4565
167225 F20101112_AAAWTM vanvliet_k_Page_146.jp2
b61bfcfd5a55d724e0b6875ac40a78aa
8de8e9cce2d25d3eefbdeaf777976e9d00aeb9c9
F20101112_AAAWSY vanvliet_k_Page_154.tif
e581a9e477f8d932e4d909cc345fa238
784fab80719f581654b801eb6a3f9cd8b3a2c9b6
115951 F20101112_AAAWUB vanvliet_k_Page_107.jp2
abe5df174f518c0f5f6b2f825c14d1ae
ca182a51fdb9b958cb3e31ee5cdca95cb6411d35
5601 F20101112_AAAXXE vanvliet_k_Page_126thm.jpg
78c6ffc3454ca062c5746ed7c51f9e9d
02cc8636faad32e68796db896933a71db97f7c62
6645 F20101112_AAAXWP vanvliet_k_Page_105thm.jpg
d849398d41f48257e1c30938f293bdf7
b1719eaed1044229df92256fdd39ffee20d10356
11255 F20101112_AAAWTN vanvliet_k_Page_034.jp2
a15a416b708d6c83a4f062bd0b9db057
47ad46ab979a661b5eb1e7b84abfe137f9cf157a
749 F20101112_AAAWSZ vanvliet_k_Page_015thm.jpg
a56036eba72532168eb285faff01506c
faebfc660be4dc494e02bbb1a4176e2e44c352ec
6549 F20101112_AAAWUC vanvliet_k_Page_097thm.jpg
a0c38ba0def0d944054d9eabce5d9cf6
3584762488df67ac4577429a91f417086050c061
6257 F20101112_AAAXWQ vanvliet_k_Page_109thm.jpg
318b7212dfbb9ed6038439339eb066ed
c877b30ada103d18b6555283f69414c2112f9bbb
3941 F20101112_AAAWTO vanvliet_k_Page_038thm.jpg
29f1feb36141c3deb4d600e3c0678c19
a95c4c0a5ba439ef15414a1507e6169fcf7b77ca
2208 F20101112_AAAXXF vanvliet_k_Page_127thm.jpg
cf527f9f27b9cef0354b821475ea727b
372127236c87a917cb22cec4017d490a507edd9d
24151 F20101112_AAAXWR vanvliet_k_Page_115.QC.jpg
60cde6ccfce6737c8d0acd52680e2e58
d4a4f37b775250637e2e40d20882d354c7f53beb
6519 F20101112_AAAWTP vanvliet_k_Page_004thm.jpg
707e953e63accae25c2775ffdf1a5d7f
a34e5c11ec8d52a0a2d259eec1cb22e94c2af36b
F20101112_AAAWUD vanvliet_k_Page_037.tif
2426a19128bdd35272d90676d809c80d
0115d5703c1bb2d2dc28e2d73757f549c5ce3e83
2862 F20101112_AAAXXG vanvliet_k_Page_131thm.jpg
14deae442b9ded903b401d6bf8de196c
2f64371ffc5890e49523048226f68b5c35cf9340
23293 F20101112_AAAXWS vanvliet_k_Page_117.QC.jpg
64758a2b7f5c8d1d7e032f648ca2b32b
55c880a8e5cee8aecea816c756bc356c374ee646
F20101112_AAAWTQ vanvliet_k_Page_099.tif
4eeebd77ef59de42c6ad902dffae5be9
9fdb9271a29db30bed10ccd35e399ed8827f6351
7419 F20101112_AAAWUE vanvliet_k_Page_053thm.jpg
65148d349611b01894310e2b17f255e8
50e66a42d493e922e1aac10abb75902b61e0b1cd
2751 F20101112_AAAXXH vanvliet_k_Page_133thm.jpg
75208df79753fa61d154b94957f2bf01
b30da0f0b3fa77bd797b084758694bc63ec50c38
5510 F20101112_AAAXWT vanvliet_k_Page_117thm.jpg
817064139a6b7b74e9f1fac4548312db
68a721f6b83f31e307c6a9ac5d1ba0a6449e862b
4507 F20101112_AAAWTR vanvliet_k_Page_047thm.jpg
231c41780d7ee927b5a77ce3047c0811
33ee5a2361f67bcf4af04bbb68c2dd51dd680a00
163400 F20101112_AAAXAA vanvliet_k_Page_142.jp2
cfd883154a5ae410f4eb4bc7b660ef04
9a7159f44fe2eec35d55cb20e841fbef5260bb70
10920 F20101112_AAAWUF vanvliet_k_Page_010.QC.jpg
a55ae8c2982c1269ec4f91044bd48488
47290180e0d56247c7bea18a9823ee3c7a728cc8
15224 F20101112_AAAXXI vanvliet_k_Page_134.QC.jpg
4cd14733f8dba586fb8c86df6b1ba0e6
60ec3367954785772d76db0b6fae641b88c4acf4
6039 F20101112_AAAXWU vanvliet_k_Page_118thm.jpg
45a2069460fc72338e9f56dc13e23e0d
04688bed35b7f790e7015b07574cc90289177143
67923 F20101112_AAAWTS vanvliet_k_Page_009.pro
e43ee2636c3f6fb7c76ece62d5bddb80
be1f7f5d181ae243b64da09fc4a52d78b4ff97a5
71115 F20101112_AAAXAB vanvliet_k_Page_169.jpg
3a5f671aaae24d662fa0b3c5f5434035
394e526d91fdf5e87b4cfb1290a5eb4c3d3369e0
F20101112_AAAWUG vanvliet_k_Page_065.tif
6559d6ad1e742fa143044402e7270e37
dd823ca1f7de3332f024bcd850e20498f0f2c723
15109 F20101112_AAAXXJ vanvliet_k_Page_135.QC.jpg
642c6d91ff1eb837a0d97779e7d8bfaa
5b1d9459111ee468448b645a0540f2df31f699d1
28394 F20101112_AAAXWV vanvliet_k_Page_120.QC.jpg
d8921f2a5c19be269932049b942f9dd2
f61171f3afb2fe515f88b72100294d187d6ac55a
1212 F20101112_AAAWTT vanvliet_k_Page_041.txt
b895ea4aec614112d91493ba85317d6b
80a28814df5e3491c7ccd4de51a44170c379d1b8
F20101112_AAAXAC vanvliet_k_Page_166thm.jpg
0ab71de7e81487f12ee219794462e190
0dac29ea6ba94e74eba51d06da44e9f8f6ed0761
2068 F20101112_AAAWUH vanvliet_k_Page_004.txt
22314704c88ba81dc2b8de0b772f8330
2c55daedaff35e959477dd10851123c2e453d2b8
14763 F20101112_AAAXXK vanvliet_k_Page_136.QC.jpg
38c8b04a121e3b1b563915eb60c977f1
2b51031863da3398fecf7110aa7357b988a4e9fe
7077 F20101112_AAAXWW vanvliet_k_Page_120thm.jpg
fe1484a563d8040e989a0e05f059e25b
21ea5a8b4b1083ede0c150dda39aa29b8e773ebd
6618 F20101112_AAAWTU vanvliet_k_Page_020thm.jpg
84a4c45005f80fd59574c004e6c0e0af
4c3266ed1eb86f5e1c2cc9da2409a7ebcfe6da26
30405 F20101112_AAAXAD vanvliet_k_Page_123.QC.jpg
a1305292c897a1d578b60fdedfd3c9f4
af8d66be991f0c15dda58d678e1500f4e44567b0
F20101112_AAAWUI vanvliet_k_Page_061.jp2
f485cd77ff3fb89941ecd394bf437dd9
6682c4abc59cd30f2ad914908e1174b2e7200914
2867 F20101112_AAAXYA vanvliet_k_Page_162thm.jpg
3b161e8d84b266cbf38436a5d5a37c45
d1d6e707b9e98e051084c69dd426ddc1431b4df3
2738 F20101112_AAAXXL vanvliet_k_Page_137thm.jpg
bbf5e69dafcfe7c742ed7803283577f6
d1fcc214c7b23b08ac20f20e178fc08bcf2e09b7
27726 F20101112_AAAXWX vanvliet_k_Page_121.QC.jpg
0aef6512f1dacd8613dbc283a3bfffda
f30810beaed1e632964587bdc49521f2f008beae
F20101112_AAAWTV vanvliet_k_Page_016.tif
ce2694852744f5e2d095ecb9554e3fea
986cc8a0fe685d5ea401fd6b30f1282431644023
84956 F20101112_AAAXAE vanvliet_k_Page_142.pro
f4aad02377194c7774186da4fd8541c2
8472ebd14a1aacd714da34d7156fb83d565b4948
109100 F20101112_AAAWUJ vanvliet_k_Page_036.jp2
330ad1390f707b7d20bdb2520fc7e388
5c830b7b55cf3f942273bd4805e215c8bf30a3df
14620 F20101112_AAAXYB vanvliet_k_Page_163.QC.jpg
510bc93a4c49fad64c442231bc3a591e
eabbc78c8b4ecf0aa393f677a0d327a9ddd11da7
2644 F20101112_AAAXXM vanvliet_k_Page_138thm.jpg
5219bf8a533137dbabc37336bf80629d
4783324550d7ea430f639026552c0efd22a830ba
6619 F20101112_AAAXWY vanvliet_k_Page_121thm.jpg
f2d5017a69aa4dd2a06e43c328aaab10
e9ba5cf0ae4a86c2629e29069c066955b992a059
F20101112_AAAWTW vanvliet_k_Page_158.tif
1195425a0a262bc1d9b3af8f359f00c4
f9af9831a2d8193ef655515049c72439ad1573b4
166628 F20101112_AAAXAF vanvliet_k_Page_158.jp2
79c82efdff201a470713fe2a2e6e73b7
d441cdb2730cfec204de5b0d15ff5c99af0ce41e
22911 F20101112_AAAWUK vanvliet_k_Page_118.QC.jpg
db5d3c37ff8ecc2300677610de76da73
ae36ec83908ca2d0aed3fa47da7e4c57c0b2b9f0
14911 F20101112_AAAXYC vanvliet_k_Page_164.QC.jpg
fb67b83cc0a28b9fa7d3131369211886
37a98db8731110a9e0abf83879e57f0477280fa3
2679 F20101112_AAAXXN vanvliet_k_Page_139thm.jpg
fc4045a246989a9d441988b353f16407
14276af38f6b6148ffb95e2e45f53432878ed28b
16439 F20101112_AAAXWZ vanvliet_k_Page_122.QC.jpg
3fdd1ae49922be85e97b97c26f7439e8
cf8bb5e02d139a246071403158b948c1ad7417ce
120327 F20101112_AAAWTX vanvliet_k_Page_186.jp2
ee9cb922d9216d414ffa2cb737df09ce
03a70b20cc4b6abafae9017e651936790e6aeeb8
15431 F20101112_AAAXAG vanvliet_k_Page_167.QC.jpg
88b29f6041c2070f30162baf56b091eb
80a9579869d841cb0497c9616144177fed83e491
55486 F20101112_AAAWVA vanvliet_k_Page_078.pro
01324f6ce92961e3dd6ae9e75d451d0b
567f172b9d3aa21d1f198bf1446a1f39c62c9008
1450 F20101112_AAAWUL vanvliet_k_Page_178thm.jpg
de668dcfd45f429e7b6f2039c1e72081
550e3368ff775a0876373ea8a6ef5ca73a68c576
15335 F20101112_AAAXYD vanvliet_k_Page_165.QC.jpg
156e04880ac1663a02b9ce5b12c38753
247351b51bab6f327094f958b37b416697dffc67
15346 F20101112_AAAXXO vanvliet_k_Page_140.QC.jpg
dca79a7d15cc999e50f7e4f4223a14ab
6a7d50e9ba23b6e46de9820d3a0666c0524612f5
2755 F20101112_AAAWTY vanvliet_k_Page_155thm.jpg
7f599d3b77456ffb9010ef3ce8065e14
2344bfc91ac4ee92b5e1eafaf197b97e4a0ff9c8
F20101112_AAAXAH vanvliet_k_Page_174.tif
856cef03c4daf5ff0e1bedb1c32bce7c
44c2572f4d86e5d83adbecc8f884ebe28e8f648f
2001 F20101112_AAAWVB vanvliet_k_Page_107.txt
1972c44ca7eedbeb3b8efa6e01ca68e1
e2ecb91fe51e5f1facab89b38548e21803d588e6
2798 F20101112_AAAWUM vanvliet_k_Page_154thm.jpg
d016554442981e3447fac75f8f6b122f
8a57d8b90c2eb23c494ee99b6bb79b7ca305d8b7
15777 F20101112_AAAXYE vanvliet_k_Page_168.QC.jpg
90f1cc9f4231725c6eecdb818ec38172
a404425121f6a19d81f364b60cf086710fe1418c
2797 F20101112_AAAXXP vanvliet_k_Page_140thm.jpg
bc04274d9524afa3101c5bf7beda2b90
9e63db6272f9b09237c68e3d023380f578cbd7ef
F20101112_AAAWTZ vanvliet_k_Page_014.tif
81e6de62584d2999017577e67338290e
8175dfcffbc603ae3a39ad58f5daca1b5784b7cc
F20101112_AAAXAI vanvliet_k_Page_163.tif
c008cc3c0cdde6deb9b2e37840817428
8d29c009b169a208ddabafe2e9d6834fc2095aa9
52522 F20101112_AAAWVC vanvliet_k_Page_052.pro
dfca27f842776d2ece213c6d3dc5b967
49eeb84a06ba2cb379555dd9673a65bf0131fd37
69896 F20101112_AAAWUN vanvliet_k_Page_133.jpg
a288f919b37b5ae56a51fd1d910bf584
d5b55b4323a49008aba3ba0dd866bcdfa26593ab
15237 F20101112_AAAXYF vanvliet_k_Page_173.QC.jpg
234dc670d49c555a55e50c8965b483b8
483837d46415d06272b1d4d31dc67157d061aa16
F20101112_AAAXXQ vanvliet_k_Page_141thm.jpg
22704f0e047c9a9fcebe55f11a85a0ff
5ba0c4ccb9c72a75b3a37b20abdf4ec9e43150b8
162597 F20101112_AAAXAJ vanvliet_k_Page_163.jp2
fc833dd9bae70f4069e0e1a79e3cd0ea
ed7c9032860d2e1685dc75ce25768876c591e3dc
6197 F20101112_AAAWVD vanvliet_k_Page_012thm.jpg
30dd9fe81a0edde3cac9278c06bfc46c
5fbb508e16c39eb8d01af70aae882dcad3394971
F20101112_AAAWUO vanvliet_k_Page_131.tif
2f6b68a88167093d684ba511b4b8a435
23d273ff8b358b745a504d9a7b1e83141a481525
F20101112_AAAXXR vanvliet_k_Page_142thm.jpg
e04a40aae4f8b954199c1edd62b5708c
9d064e5c4bf8123faaab8ac120f2a1558a723c96
90672 F20101112_AAAXAK vanvliet_k_Page_184.jpg
308106c4e380c868c5d6777cdfc2c773
cf4a93a9ba9ec12786526c12061d1da887176fea
1254 F20101112_AAAWUP vanvliet_k_Page_028.txt
c0050027d352d9da57254b177c7cb90e
769055b9067465c3dbbd2c6877db6f044fefaff7
7672 F20101112_AAAXYG vanvliet_k_Page_178.QC.jpg
6466b4636c5c513f342e1600d4f20f17
6cb5c526f7963f6eaa768edf6614c5abbe62720e
15448 F20101112_AAAXXS vanvliet_k_Page_144.QC.jpg
3e63cf9d56c2d81beaf440799426a9ab
060170d28047d2b0e7b2757a69347d00de875bc3
14609 F20101112_AAAXAL vanvliet_k_Page_142.QC.jpg
37aa155576629c5e013b95ff0934418d
6a335205a0e726c6597646077fada442330f28e6
F20101112_AAAWVE vanvliet_k_Page_121.tif
c8fd937f7ea21759fab102f93c0d47a6
55107e290a8caa677da56e5e0019ef2b11c28d9d
852 F20101112_AAAWUQ vanvliet_k_Page_104.txt
5ce2575d0cc8dac3516cdf7ec10c24de
9b030cfde5be80f8b910173c504d0c54e8a53171
27160 F20101112_AAAXYH vanvliet_k_Page_179.QC.jpg
5fb1077fef7ace8e6f1fb3efed63932f
41e68300fa2e8951ee8087de61e0fdf4cc3459da
2801 F20101112_AAAXXT vanvliet_k_Page_146thm.jpg
e0d0fa9edeee21fa8b83133bef82d642
01e1fb027afb11bcdf31fdf87337697debe6be26
85767 F20101112_AAAXAM vanvliet_k_Page_166.pro
85d4e7b4a229f6137785c45fc3a240e4
119b8eec3905622ccdd4a26458761d09d3ee2a49
1941 F20101112_AAAWVF vanvliet_k_Page_181.txt
6cdb3c7e4d29069d8811c07c548bb59c
160440347d0140c2f9eaff78b57f9b8f9cbbbf21
96093 F20101112_AAAWUR vanvliet_k_Page_183.jpg
84b01fdf5a24f4c2b1f902d0563b54ed
45d9c34eac086e7992f4e1c446a71a240a865cb4
15519 F20101112_AAAXBA vanvliet_k_Page_119.QC.jpg
3ec801d359c38fc71ba141751cdf6e15
72b3d5904a160c0e708fa4e61a2cc0165e902c2e
7026 F20101112_AAAXYI vanvliet_k_Page_180thm.jpg
9ead1215d4fed717d3c016caea3f1394
f0beef240baad085af472a23d35cf01ccd64353f
F20101112_AAAXXU vanvliet_k_Page_148.QC.jpg
6156795ac04d8bbc7ce8836006ab0b31
3bb4935610e8fc0442ae409387fa5504ee0c3c82
29369 F20101112_AAAXAN vanvliet_k_Page_107.QC.jpg
df6a796c6e74722cb142bd8ccdd24aa7
6f1e67b0e292ce6d03b88a71b176480d1ace4237
70657 F20101112_AAAWVG vanvliet_k_Page_160.jpg
604e33f6d142cf11ffabfc5ecb303f6a
8d16b34c4d1991a1aa30a969fe45af61709481cf
F20101112_AAAWUS vanvliet_k_Page_146.tif
3d558dcae54203bdc66b082ea09077a5
0163ef0c69856eef5cb0dc139215183b4200263b
78285 F20101112_AAAXBB vanvliet_k_Page_097.jpg
85ff08214d33b8efe193d2799857445e
2237b5fc3460693be7a751e06fc4034082a6dbaa
6066 F20101112_AAAXYJ vanvliet_k_Page_181thm.jpg
9dbbfbd6fb8cc2c0179051c0d712090b
5df06ec86f456334c927a99cb3bf0a30b8dfbbfa
15095 F20101112_AAAXXV vanvliet_k_Page_151.QC.jpg
a1fb1c24a022421e52db79d589ef50de
bdf9afcb0ac679cd0756858bdc85e337ae920131
15547 F20101112_AAAWVH vanvliet_k_Page_150.QC.jpg
210e774983994e233f0359bad18e2bb4
952d060f044d7c7425b13ae1cb979541a4deace3
5405 F20101112_AAAWUT vanvliet_k_Page_090thm.jpg
39b14e10ff0261098155dc7cf4851987
602dbf16bd239dcf94b0bf63e58a46ca78b1477d
1051820 F20101112_AAAXBC vanvliet_k_Page_099.jp2
52ec49ea5cf2a39bd7a06221030a9b9b
dd316800240a0bdef670d008702891c3f7264fc1
24601 F20101112_AAAXYK vanvliet_k_Page_182.QC.jpg
911e6bc112c713f3c7ce8771e17de41a
a342b489abeea716e6d35df0ef2645073ef5a5ae
2770 F20101112_AAAXXW vanvliet_k_Page_151thm.jpg
bdd625961c0e0a09cc81bf36ffa43030
472f4dced6657275d6e061f30bb75f15c2de5158
2102 F20101112_AAAXAO vanvliet_k_Page_108.txt
ea291fc784421f91514b7fecb36e2647
abc91aeb600fdc43f4d25a0e34dda30d09a47ee2
F20101112_AAAWVI vanvliet_k_Page_134.tif
d15c3664a35cb782a5b19f5cfa9d8db6
6249cfb1037cc18b0c35319498c14eae3c347e5d
957940 F20101112_AAAWUU vanvliet_k_Page_097.jp2
3800cc43a62b256f945b6e5bc1c19f17
7db930108ba8ea50bf3ec0a82a42bc305adbec67
569 F20101112_AAAXBD vanvliet_k_Page_061.txt
f6af92d3847f8f563c1d9d6ed28c075f
209688561cd08deb9f7adf2e35552ac99fa6d0af
25739 F20101112_AAAXYL vanvliet_k_Page_185.QC.jpg
da19b9fbe5cfbe89e802054c1936d3b6
ee1a2013398c8489ee6ef23ea37bbfe52aa7cddf
F20101112_AAAXXX vanvliet_k_Page_153thm.jpg
8556e52157d86f405520b2849b09a18e
9dcc9e68aae137c6c4b35f4f298f3ecc0dd98f28
F20101112_AAAXAP vanvliet_k_Page_123.tif
3cec1cb40212c6a9bc91d6e1137ac005
f05762953ab27e6c94af29387bcb35b65eefb152
85771 F20101112_AAAWVJ vanvliet_k_Page_140.pro
face622b0a579e92fe8ab755f49c6ec6
7766364dd751e0ac8294a308405374998c52c4d5
F20101112_AAAWUV vanvliet_k_Page_142.tif
64a74921e0e26649a8f10ab7316ee8a1
35b66a9479cdc4ff6664905f91e5eb68aa016e40
6568 F20101112_AAAXBE vanvliet_k_Page_007thm.jpg
b3ee17f47404620166ce10dc9ef1c888
86f3691b69769d326e7cdd4e20d4caa7d34dbdd5
27598 F20101112_AAAXYM vanvliet_k_Page_186.QC.jpg
f048a703245611ee8955305a8ac01b68
7a0566dbcd951f9589c1470d1513c7a5bb0e7bf8
15228 F20101112_AAAXXY vanvliet_k_Page_155.QC.jpg
e322de8991a5561ac0a6adaa585f2346
f1155a4344d96e19c228c623de8fef92a2e09583
2593 F20101112_AAAXAQ vanvliet_k_Page_128thm.jpg
6671b01cabc1f90a68285616f3d28236
d942ea38725a2d282c463315d8d44c894c3802c7
16711 F20101112_AAAWVK vanvliet_k_Page_037.QC.jpg
5a3cc224569089946d3b5ff881a245cd
5aab0c42f82129ca11bf10cf751186e6acf7862b
1754 F20101112_AAAWUW vanvliet_k_Page_109.txt
3d3e83880e181c2ec1f299abf5056956
98d2a19b146715036d740acc76cc4610e0a8cfe9
15571 F20101112_AAAXBF vanvliet_k_Page_171.QC.jpg
b4168283f84241487a5bb1949d808744
a5204e1cd63a22a01a9e470a642041104311c019
28285 F20101112_AAAXYN vanvliet_k_Page_187.QC.jpg
fbb5263c2525e4198f04cf08c1ec489f
ce5084e36bf9c4c6292906cfbb00b0d3d943636b
15630 F20101112_AAAXXZ vanvliet_k_Page_156.QC.jpg
8899a2a986cd0b84edcfb6113b0060f2
36d34069e779a83ad104b934623c1ebfe8710aba
117187 F20101112_AAAWWA vanvliet_k_Page_006.jp2
87628c9980f179f34688748591fce707
bf95ab97ba39e74440bfd1276f3047fa07fd2adf
F20101112_AAAXAR vanvliet_k_Page_007.tif
4c7a2da559c5ce55a9116953e2a51667
38170b5d956bed43ac29730b1d43331d39726a09
112946 F20101112_AAAWVL vanvliet_k_Page_052.jp2
15f9f5d5dca52b531ad7f637c52a3c9a
8c8c02cbefda9c3dbd87a4b9bb088405f883ad7a
23658 F20101112_AAAWUX vanvliet_k_Page_036.QC.jpg
cd6fe271275a12846cc7713d71de525b
042dfff0a751cd69f1265dc2b0a6686bf700e520
800 F20101112_AAAXBG vanvliet_k_Page_084.txt
31b0f162e7954cf0dc14befb766bf016
9b9c859cb4ae429e8490bd6cf68198de7d67e7c0
27822 F20101112_AAAXYO vanvliet_k_Page_188.QC.jpg
28ed9d11e6efa510c511494cbd9add36
9c00d9b8deec6c0949f4c5c74f15b74a07430b71
14922 F20101112_AAAWWB vanvliet_k_Page_133.QC.jpg
b05c7d3ca42773d25d76793f8b4894c0
9c2d110f056c5ec38bc15d6095f9a15a53bfbb67
14857 F20101112_AAAXAS vanvliet_k_Page_157.QC.jpg
b14b407c851090166a049414a86b1a9a
f2476dbe798fe5aac8d899233203ba0ada3cf115
50760 F20101112_AAAWVM vanvliet_k_Page_107.pro
6e347d4af29e79e43f65903edabebcb0
bd7cbbe0d05e1f1ddfe0b0b7435ddc784c7dd50d
7008 F20101112_AAAWUY vanvliet_k_Page_092thm.jpg
05226db39d90dbfbf11f661f6d25a199
ac9fd3f05a41d9aae6b966cdf15e9277fc44d2db
168408 F20101112_AAAXBH vanvliet_k_Page_153.jp2
94c1ba10cc1f98193072db2e5fc86f46
e72a0861e9147473e0902bcec606964d2c4ffe4d
6897 F20101112_AAAXYP vanvliet_k_Page_188thm.jpg
58e611059e2c196fec810a04ff1d803f
30762d53c5e79afcf2df1860eb0f7a05e9836de5
1051951 F20101112_AAAWWC vanvliet_k_Page_109.jp2
a5eddcd53c137b5bde297deddd83c8d1
bd6f4a353b6ecbe8c24a73d9f19ec267de416930
70490 F20101112_AAAXAT vanvliet_k_Page_154.jpg
46be857ed5194a0cca9d6488abf7b6de
ae9a3dd477dc90279d0a6d02aaae3b76634be3bc
49995 F20101112_AAAWVN vanvliet_k_Page_124.pro
8935cdf936e7b33fe7893efcc4723704
882b56a369cd2cd32e16210a8aca83b076275c12
43234 F20101112_AAAWUZ vanvliet_k_Page_117.pro
9cfdfdb7529c137f498b65e5bea44f51
e8791ee15c1029753d5f38ffa7b16c57caecf2f2
6462 F20101112_AAAXBI vanvliet_k_Page_125thm.jpg
671fd3742f39f357ce4cd80b7960e7d1
b7f8144e87a7b2894c474ca05e2cbbab36f9bf64
6734 F20101112_AAAXYQ vanvliet_k_Page_189thm.jpg
f6ed9c86bca731ba8842394147f79789
7bb8332aa127ed8a295094d23150c56a0394b4ab
102467 F20101112_AAAWWD vanvliet_k_Page_181.jp2
cb0c601a89b08ba8a6f0606f50293334
3d681013db761bc399c76f3ed53be7684dafed46
1051968 F20101112_AAAXAU vanvliet_k_Page_065.jp2
c276074a36703acec0e07e6eca42e60f
5f6e56baea70b350d7ae9af167157fd19e0021ee
112211 F20101112_AAAWVO vanvliet_k_Page_050.jpg
7d6a8bcc2d852976b686a51f70155fe0
5b2c4bed55e4d6478df126934120d0f305c37fb2
1710 F20101112_AAAXBJ vanvliet_k_Page_047.txt
e61d5e9d493226d64f95a63002b7c4c3
590ab6ae61c7c79d5aabcb19e2cd0df31eff6769
6828 F20101112_AAAXYR vanvliet_k_Page_190thm.jpg
58302a7244131127a280fa3fb28743c0
d6ead1aa7b35bbc33a5fa4bba2e48887397040d4
6912 F20101112_AAAWWE vanvliet_k_Page_077thm.jpg
b615a5cfe363902d31eb471335e131ab
ee8bdc15a78a1e1dcd97d7840375cec5294ae3b9
34306 F20101112_AAAXAV vanvliet_k_Page_193.jpg
3d2c173c1b2d67e9ebc37e01bfcd60e7
d8e89c6f75b7c42a9bc538c1d8160727e1cab712
55099 F20101112_AAAWVP vanvliet_k_Page_120.pro
c35113559456f70f35fa2ef79618a082
fdfccbbaaa0e1aa6dc0448dabba485db7a2941fb
23782 F20101112_AAAXBK vanvliet_k_Page_011.QC.jpg
d5579b6dff05f37728a22c5f6fb779a9
bf1fdaba39eb406d825bd1544a6d73f22855c9bd
27891 F20101112_AAAXYS vanvliet_k_Page_191.QC.jpg
9a4bf583f4e3a97a1442d67885f6a466
73b032e5ac83bb7a08ff03c7c3537e4025f02740
2212 F20101112_AAAXAW vanvliet_k_Page_019.txt
22ecfe4e62ef1ba4e6f6f8361331a02c
097556a842f9d1484818734f4a9d8efdd638975d
45493 F20101112_AAAWVQ vanvliet_k_Page_113.pro
b02d175a91e8834faac6dec85db52bd0
d43543f93e06aafe9a451e4f8101c78a9c0a2539
158642 F20101112_AAAXBL vanvliet_k_Page_170.jp2
23719a79798135bd5f428740c9d22a09
cdf6d1f23877054681b41705ed3cb0b2c0ff91a7
13685 F20101112_AAAXYT vanvliet_k_Page_192.QC.jpg
232156196965bde638d721e04d5cea8c
7827eb3f24a1b1cb7f3739e4b4172ed2286362ab
F20101112_AAAWWF vanvliet_k_Page_036.tif
94c146e463fecbaa140083f6479e43f9
50b1b111c869fed34fffb76347f1e7c60f3305cd
6744 F20101112_AAAXAX vanvliet_k_Page_079thm.jpg
b8441fd611d2f3c225c0903c74668841
8f4a5eb6a23b7b57cd60b8dbc499d86ffca4832d
6441 F20101112_AAAWVR vanvliet_k_Page_029thm.jpg
68597d758c37b5f023b62ec1f0e4cce0
64a6ab3d05879db0a94ad796d973f1d6ffc4f487
27504 F20101112_AAAXCA vanvliet_k_Page_004.QC.jpg
3a41f4715f0080f8e7ce06f65da3ba2d
ead511941c2f8ea916ec7dc0b11aae773780d896
15327 F20101112_AAAXBM vanvliet_k_Page_141.QC.jpg
79548cb7dd0dfff5ab5783d9ff7b71ea
ce20e5f41a33c27a8368d49b996b29248cada753
2574 F20101112_AAAXYU vanvliet_k_Page_193thm.jpg
d1e6ee7e3fb1dbd88069f7793f6b062f
a78bdc6176df86b2019798a40b7394e0444bca8d
26504 F20101112_AAAWWG vanvliet_k_Page_039.QC.jpg
2e68a55a45f0c6a66be4ff4fd50cef88
817f7c0e4a683dfad8c013b61fec66866352a85e
51492 F20101112_AAAXAY vanvliet_k_Page_127.pro
7b4b1d011cda023bca3fdfa8cbc2eac8
9b7dac5fd54e769048524b3d2733ba48d0ac50e2
171946 F20101112_AAAWVS vanvliet_k_Page_143.jp2
864da0b2f611c3314eb686e0950b96b2
285e95c80e2fe7798b94591208ceb1d195021046
15424 F20101112_AAAXCB vanvliet_k_Page_138.QC.jpg
2a9a4a690ba93173d9970b3190acceef
baeaeb93d45e6b58b673e81c265855d55985a653
F20101112_AAAXBN vanvliet_k_Page_061.QC.jpg
3f9b49e14f5f9cc56bc45b0248aa05c4
5ed44f49488ec1de7eec6a01a0ebec74c21ab9e4
29929 F20101112_AAAWWH vanvliet_k_Page_053.QC.jpg
7d6a0f5037cc47f4b4cefcc06e03e46c
6b7021ea6cdf802d4bb0c553edaa5c9c635bf97d
7371 F20101112_AAAXAZ vanvliet_k_Page_001.pro
2419dafe545059b6ad4fb9e5524540f6
63ed2a97b7be06bfb2ee2e73a18c305441000c63
F20101112_AAAWVT vanvliet_k_Page_035.tif
530de57a49e5ab6c4e67c2067be85ef0
c2353c05c442ca3fc6e0f0011cdecfd6124dfeb2
90295 F20101112_AAAXCC vanvliet_k_Page_147.pro
37b4678718f9bef9bf76fa9cff50200c
9b29f0480a79fed66b5863dd5639644ad913b008
2809 F20101112_AAAXBO vanvliet_k_Page_161thm.jpg
9e44129b3be01b9e99e41c706b7e9c87
3443f67e5b5cf053e45350264d72b7d490253bdc
13678 F20101112_AAAWWI vanvliet_k_Page_175.QC.jpg
631fa0a99e1e3195e2d47a9a99ac10bc
83f73c606acd5b770da3f284574f1c13c00ed983
F20101112_AAAWVU vanvliet_k_Page_086.tif
8f6cd5e01db8eb9e1089db6b89f013c5
888b4531aacc6db0fae377ba4f02efa792ef3f45
F20101112_AAAXCD vanvliet_k_Page_028.tif
c112fc5583316a62e257b2a9b9d6a52e
0f14e1a7a6e05012741bca5f9a7ceffcb45f7af6
2199 F20101112_AAAWWJ vanvliet_k_Page_112.txt
53a1c45647699ea79edd3f6d3fe3d2c6
a53771df7b83446dba38b9c54e63eb9f2c7201eb
F20101112_AAAWVV vanvliet_k_Page_188.txt
e5c0ce6e5043282bae0e29c3df1fc77d
5d6c2f46280064c3b65d686ac78321bd51d68925
F20101112_AAAXCE vanvliet_k_Page_181.tif
14b3db631171267f7ed4e52fdb24b0e3
9d355399a75187e8aa2b7dae2af5130a3fe9d769
70809 F20101112_AAAXBP vanvliet_k_Page_139.jpg
da2f13e3532e9088ee625ca5458cf85d
f3a35e842f7e26e49a3122edd2199a94943cc985
57458 F20101112_AAAWWK vanvliet_k_Page_129.jpg
46520e21ef50ee8e62d2661fb7159dca
faafe567a9e140437480ffc4f6fa19fa694da4ea
87244 F20101112_AAAWVW vanvliet_k_Page_168.pro
20a4d50809aea45866908e090b554ccb
5d8f92b35cce19aec00234fbfa17fefa9c79c755
100989 F20101112_AAAXCF vanvliet_k_Page_179.jpg
e9263f3a78e02c1e032f34739a84c30e
637a5e896f1777104b54d55bd67bca4b2f02a97d
28753 F20101112_AAAXBQ vanvliet_k_Page_069.QC.jpg
19b779fccdc5db69d767cf7e1c23f911
11fed78ab03cd11568de5e275f5d96928f0fb0c7
2804 F20101112_AAAWWL vanvliet_k_Page_158thm.jpg
0ec15f2a360513d0109810b5fbef38b6
7618c2977d3ac7ddd66c804664b32799a094c7d5
25945 F20101112_AAAWVX vanvliet_k_Page_046.QC.jpg
44c37024ad4616819c960ea489e44d5d
ae99d95139d25c886407666d501ca7852297714f
83040 F20101112_AAAXCG vanvliet_k_Page_024.jpg
b7a85ced452e91e7a77bce9bbb31c0a5
4d96c00aa32af7873a1ceead69f06da141cedcd9
3689 F20101112_AAAWXA vanvliet_k_Page_164.txt
77387e941c10bf436cddfb80f607e3e2
ee9b4d7575ab4ce73cae294e5e11aa6216eb336c
22768 F20101112_AAAXBR vanvliet_k_Page_101.QC.jpg
83211851e39d62a65fe7c2564118b278
41ffed78fb3c966a658b64ec42136d99a375b0f9
735 F20101112_AAAWWM vanvliet_k_Page_193.txt
f03b22053bfe4de50fd0d6a130b22918
9580f4b0132cdb11fba0cda1df7ea7caa5f2c1b8
F20101112_AAAWVY vanvliet_k_Page_023.tif
3de93d6b272c273d44a304b88f143c77
7970b0a9dda29c0c2bf054fa2cd56554d3a64259
1501 F20101112_AAAXCH vanvliet_k_Page_074.txt
10fac5791b93e68f6fcc6ac1949ec851
739a44c7e9d6c2f6f9e202bc9c19b243dab330ac
18928 F20101112_AAAWXB vanvliet_k_Page_008.jpg
2b6e52349ba55e079cbbf7ab509abf46
c08fb5d1d25f68d65ead21779eeb44b7c04d5113
28522 F20101112_AAAXBS vanvliet_k_Page_110.QC.jpg
1d406d18a89333d53934e61bf3666dc5
ad57c6a609cafdcbcc741ca6137ddee93f05f14d
3856 F20101112_AAAWWN vanvliet_k_Page_002.jpg
140670500b4e4b975f5d0c5a50ca29f1
3ef9101d090c585a90c2ca8f6b9a0a1a56959d57
2828 F20101112_AAAWVZ vanvliet_k_Page_163thm.jpg
6813c84bf9c7f816ee41737a393e4ede
02d649b6f3cd20129d13d88c0da3782a33b50051
56881 F20101112_AAAXCI vanvliet_k_Page_123.pro
b567be28d4e96d300ac8f9255698487b
9069cb5c6c4ddde4d62fea0c67921be4ecd7cb59
34930 F20101112_AAAWXC vanvliet_k_Page_118.pro
5223a23be6e01e9402b358c1b3b92ab5
ed744df993e75f9a53897e0e11c30eeffd5897c9
2822 F20101112_AAAXBT vanvliet_k_Page_160thm.jpg
5698803aa0d6b950bc1ab102de868756
741d4745f20231c4f242a26008e19d77194faddd
174861 F20101112_AAAWWO vanvliet_k_Page_168.jp2
c2bad305de50a632861d1aad12c0cf7f
dc8f7386c611364e4df8d9794dd3c5424f16874b
72623 F20101112_AAAXCJ vanvliet_k_Page_132.jpg
515387bf10ebea7e1c8057f8fb52716c
13a9fc37901a848ab65aae53afc4a4a172a909f5
696778 F20101112_AAAWXD vanvliet_k_Page_047.jp2
91dcee4d9e29a596e3e1c36d9c0e43ad
bfaae49a57c4673e98c6f1e841b812f7346614a6
15242 F20101112_AAAXBU vanvliet_k_Page_152.QC.jpg
7dec4a94e093bd472a9005bea49b9b05
3591c6377c4c91e6bd6bfa91cf3e6fb833f78a13
2725 F20101112_AAAWWP vanvliet_k_Page_135thm.jpg
9743a0033a827c9e91dc46edb0c8f86b
4df3add0188200ca21b25a91ac45508f4ab25882
7232 F20101112_AAAXCK vanvliet_k_Page_059thm.jpg
73c65077fdd4f8327d11c545bb1b0069
da5fc9965935c1cb9bb158486c0547ea6e0b0364
47173 F20101112_AAAWXE vanvliet_k_Page_181.pro
7a72208e38566f2e0db0e58730725927
c5901c51af4b626efe61ff2aa116289d4907d7c6
14535 F20101112_AAAXBV vanvliet_k_Page_085.QC.jpg
f2c2b32f18f479575383280b00997281
24e4f2dc3940466b81c0997f1f6bf390c4bb4741
53805 F20101112_AAAWWQ vanvliet_k_Page_121.pro
1388a9847aee1110047c7f3537733e98
5751fca656e7f89d0311a6e2876423265bc72716
F20101112_AAAXCL vanvliet_k_Page_056.tif
471546cefa8b5ca320a0b83c105439ea
74c1bb818c2c1a2ac6f5614df960104da376514f
1491 F20101112_AAAWXF vanvliet_k_Page_071.txt
24290d228c2bcca7e2fe66acca7f8f7d
eceac0ba4b47c7cc11bdd4ac81bc9c0c23bd33b2
F20101112_AAAXBW vanvliet_k_Page_106.tif
e03fec88ff4f3543b55fc2093a8570f0
17f1dd5d807768a6ce8bba0dfd8c1f4ed33b0230
86914 F20101112_AAAXDA vanvliet_k_Page_152.pro
803d54882c0f714f6ae395fa5acbf87d
f98c195c9c92450287300e946ea034a51ecb2131
6808 F20101112_AAAWWR vanvliet_k_Page_056thm.jpg
dec12f9452f17e0cfd4cb4faafc7b944
1352a4be287747b9972cba1ee9cc32ba40a442bb
2811 F20101112_AAAXCM vanvliet_k_Page_167thm.jpg
3e52bdb4b644a3da313437c324ad0390
cc6222beffc0c874c6b9cc609704c29fe310b898
816527 F20101112_AAAXBX vanvliet_k_Page_063.jp2
f67c509f7f7428f37ff6ca97ea8b9964
a8b3183af8e9b9d89907a26dedc364f8867371d4
1051942 F20101112_AAAXDB vanvliet_k_Page_055.jp2
53b1d3a52fc11909bb47a3e50b6881db
a8008adcb098ee863dd317ccb7ce683ed440b60f
1999 F20101112_AAAWWS vanvliet_k_Page_176thm.jpg
f9a69830f5d0b286053a78100917882f
3b8bece204bbfb582d1ffebca0f427d07550ffc3
F20101112_AAAXCN vanvliet_k_Page_138.tif
29b0b5e9e7a337de0a50dcb11596e4d1
8ef81bf1de465ecc3c58cd7b5526e3cfd1d3c5c3
4063 F20101112_AAAWXG vanvliet_k_Page_119thm.jpg
a09e5affeba8438a40374a765c6c9633
4aee8542064493750e207f04508a9e2391ecb2fe
F20101112_AAAXBY vanvliet_k_Page_067.tif
1f722aa648d4a171950aff1dbede1f85
cbff5b11be17bacb858513ce53e91f5c492ff579
2167 F20101112_AAAXDC vanvliet_k_Page_033.txt
adfa30ebbb98a5a06796858341697cc9
785a5e011f871135b9312d205545168a16b7f412
17389 F20101112_AAAWWT vanvliet_k_Page_104.QC.jpg
6dc543768c46ee15a97e3c50c53a9de8
f77ccd05875bc7d1fe69f6513927f86ba1687f7d
36178 F20101112_AAAWAA vanvliet_k_Page_025.pro
281d3dd13673c2f4116d57135e660083
51cf8bf0b876a5d86412fb174934e15e15933e0d
F20101112_AAAXCO vanvliet_k_Page_034.tif
012a2e6555ca657324ba4d5b2bcd1b0a
efcd70cada74f931bd7046bc35a662444e875329
83744 F20101112_AAAWXH vanvliet_k_Page_109.jpg
8fb3d0ce1d663c0a3f4fc8c32c3514bb
755919528bcb50c5bf019bdc6227fcc442907b39
F20101112_AAAXBZ vanvliet_k_Page_080.pro
c80deadd8b17c8890dabce5ecc7733f7
dd65015339c5a9bc82d95fbfa6fc9cee63cad141
70270 F20101112_AAAXDD vanvliet_k_Page_114.jpg
2d6c750f168d1c517d2e499cae8cac35
27fab0dd1c8c557f11eb7f47c0dfd6a5de0a0286
31169 F20101112_AAAWWU vanvliet_k_Page_043.pro
9ae4620d5d51cbf74616d28cff4a1b5c
a8055decedf8d44c3c673b214fcf7bdd596c8054
94173 F20101112_AAAWAB vanvliet_k_Page_019.jpg
d7745ecd30ef5d25b85c8fc0e756be15
cb53e8f4f26eb886d4355920fd5bd6dfc9f0c28a
71825 F20101112_AAAXCP vanvliet_k_Page_043.jp2
212aea28b696427198c2cac743f9dc0f
c094e796b475835036428e674aa5c9b3fa6e0385
F20101112_AAAWXI vanvliet_k_Page_165.tif
7c02ac65b6590384afbeaccfa217661b
cbfa5d7737f233d089cd76b88922dd9bbdd77830
5898 F20101112_AAAXDE vanvliet_k_Page_016thm.jpg
862f5dfca1b619337af57a8fa1935522
a7c025703a8339f51afdc69128aea48eb641c8ed
F20101112_AAAWAC vanvliet_k_Page_153.tif
7e967ebe859a9d49a4da4c7ccbd8ad88
ebfa5f354802bd40c885eb51c3da267a58cb8e8c
28444 F20101112_AAAWXJ vanvliet_k_Page_094.QC.jpg
60f7302c4da68a37860d7f8e75317f37
93a505aaa406807d2fed1886707bb237914940d6
F20101112_AAAWWV vanvliet_k_Page_020.tif
9b3a1bfb9664613f752a51e0dab7ca34
01f3c4718a739c079273f783c1e7b486b9270a8c
478 F20101112_AAAXDF vanvliet_k_Page_002thm.jpg
e7bccd533a6a03c7c7997967a6720c3a
9805a92a90b77fd421685dbe5f3ce8fc89f01551
1806 F20101112_AAAWAD vanvliet_k_Page_113.txt
b9dd538c52f2560e95524a439c341dbc
14ce43364f3e525f3a186b490715f683b401c646
1051897 F20101112_AAAXCQ vanvliet_k_Page_054.jp2
a91f17bb49af51ed5b1616e95d76d5a1
833740fa0e0967307379ca89c37d9703ad720937
47732 F20101112_AAAWXK vanvliet_k_Page_010.jpg
032cac9a18da39384d41c613e20a7470
fb3fb0760bf6e329bffd6ef8bc816e35072710e3
40394 F20101112_AAAWWW vanvliet_k_Page_032.pro
3b58e9301cef9585eded8f5a127f4ffc
4c7e3dfccddfe13ceecee0ea20d77c9775016b82
6443 F20101112_AAAXDG vanvliet_k_Page_018thm.jpg
6125f8edbc56cd101031b658c8fbdb2d
3353d593af79409f452a1eb20496854f133927aa
55195 F20101112_AAAWAE vanvliet_k_Page_081.pro
0de51d2927042f54ef2a67645e80ac7d
7558c03bc41e927cde30ac085fc9d85001f89512
92392 F20101112_AAAWYA vanvliet_k_Page_111.jpg
6562d02cf42b29df667ed5cd325f74e5
bc11ef0cb524c8931f3a81a37d0db2ae36480065
50535 F20101112_AAAXCR vanvliet_k_Page_038.jp2
5430a3189e7b3566e237e665a7c50a9b
901b99bdc8cb012f5d527014bfa98e58460c3fae
12455 F20101112_AAAWXL vanvliet_k_Page_129.QC.jpg
61debc55d198732b35f6c1fddf70e5ad
bd6aedc62cdda630091356c204f82a92b4fec20d
89713 F20101112_AAAWWX vanvliet_k_Page_105.jpg
6a70c84af67d9a2e2b5c8fddc037045c
576751df0560dedde0f88cbf40f210916f68870a
42447 F20101112_AAAXDH vanvliet_k_Page_193.jp2
251aa8b4b5bb00dda48b5012851d64bd
a0cfe0319d901205ef1127016316a97173c229d1
29120 F20101112_AAAWAF vanvliet_k_Page_108.QC.jpg
acfc3b3bac125158e4788c2ae69cc6d8
e882303d06d9fd406c808981ad428b66b3814384
F20101112_AAAWYB vanvliet_k_Page_022.tif
83a93468ebc5eb7c5b40d12698d7b230
6dc2724a6212ba24213cfe069112e334cc0c20ad
2038 F20101112_AAAXCS vanvliet_k_Page_122.txt
c208cc371fcd8941d81a6c88d13082d7
810ed14ba70e0d753369e6d388a0e71196e95e9b
86657 F20101112_AAAWXM vanvliet_k_Page_116.jpg
6678df14a21bf8fe7c6e41510f89bac4
2fd1cabbbb64c0fef3025ba0d22dc9358617a71e
172725 F20101112_AAAWWY vanvliet_k_Page_150.jp2
c0303c4f940e1067a17584e5a685ba2e
fddc2b94c2a02b6e20bbbf796ca2b1c13b7c3e8a
1051978 F20101112_AAAXDI vanvliet_k_Page_030.jp2
b61728559fd083f5215dda8e72b31d5b
b5d5adc12149d9c81de0a35d5bbfec1bd30e4c90
4244 F20101112_AAAWAG vanvliet_k_Page_085thm.jpg
8363381c65f69b5aefc378d9d477ffba
21d28776f9d0dd9b69c9bc68470e7c17af35d8bf
92169 F20101112_AAAWYC vanvliet_k_Page_030.jpg
fd5982d2cf929e9962f291df9a34b585
9b47bf28acbd78055c7e70a97fce14ca46776227
50169 F20101112_AAAXCT vanvliet_k_Page_085.jpg
808a28b44d0b4f1d02c74f34850c6d86
20459c3104305a409ab475eb24cdaf64b743b565
63283 F20101112_AAAWXN vanvliet_k_Page_177.pro
00ca026886005b31a02465e6a0785b35
1f804b5a45ec6765aad460653b35a5533331cced
98532 F20101112_AAAWWZ vanvliet_k_Page_187.jpg
92fa9847c6ca64e4710ccbad8ee8ced8
af53a9dd619bed1b5dc8af1b034048c214657dbe
F20101112_AAAXDJ vanvliet_k_Page_159.tif
3b38d9bff90649765af86846b2f234d5
3c893b572a5bf9e2d7889554a3b3b049de5bbfa5
7396 F20101112_AAAWAH vanvliet_k_Page_185thm.jpg
da15d6525680a7094bb86ccb2bea7ae9
bf1af0745e5f857931e75eeb1abf9eb1114f1405
2127 F20101112_AAAWYD vanvliet_k_Page_079.txt
fde5ff492e4a0af487c8260976531c79
d98a56b15c404265be476f5908b8e21493c5b4d3
2265 F20101112_AAAXCU vanvliet_k_Page_051.txt
d083e4b2bdca2555f3d12367e1a6a2d9
503496e4334cb5e9aafd84f9a151539b92f27a80
115502 F20101112_AAAWXO vanvliet_k_Page_005.jp2
2f97af8541ba3e7cf3f8d556879acabd
6b8a58d6f0d041ec5d66a716d81ddcb290c6d50d
73047 F20101112_AAAXDK vanvliet_k_Page_082.jpg
8f83859bcec6885c6ab7e3a0be3a1bc2
92b198ea95d6ae08ab1be8fb503862e0dc6924ea
1051969 F20101112_AAAWYE vanvliet_k_Page_060.jp2
5d0bb0937ff889b1b8d4d5111ab90371
0df67fa008ee23998ccf58c8131cd85921c7a41b
1982 F20101112_AAAXCV vanvliet_k_Page_125.txt
d0cfeb3dcb481b306a286023428295ff
4f44345200086b0fb9d4d59a65f0c05d834475a9
2154 F20101112_AAAWXP vanvliet_k_Page_098.txt
83c36157c0887d10fec3e7f6e25da22b
01b0042245388c4aef52f6c0e478203e1bdfc208
172571 F20101112_AAAWAI vanvliet_k_Page_147.jp2
59500b0990f5db23aab8b8bae9d72a10
654db465bfd14e7ec5c8a4cfe5aab58b0270cde6
82897 F20101112_AAAXDL vanvliet_k_Page_181.jpg
24144e2ddf3e5553d9fe21a9639bc616
cf203dc049cd6d27e040efcdade9944ead4da2e2
6415 F20101112_AAAWYF vanvliet_k_Page_032thm.jpg
e688c18eafefa09f31a7a4d1f0a62024
8b4bb33fa87cb99a69397dbc502f6ebdf1c90c43
121624 F20101112_AAAXCW vanvliet_k_Page_088.jp2
93a0a4affe4c7a6ab26020ffb5022490
121c136edb225cd51b86bd4f5b47115fdf6656b7
28915 F20101112_AAAWXQ vanvliet_k_Page_112.QC.jpg
30270a3975c6a7cbcf2b03a8bb0fb47c
29eb8e333d8ae37c0c1b7aef60c1df7f73281afc
F20101112_AAAWAJ vanvliet_k_Page_087.tif
47d31411659e9772e1a8890163913984
9987c08422014047b037d42ceb2e90f8d9a12803
78703 F20101112_AAAXEA vanvliet_k_Page_115.jpg
fe63711452c32e5ab1817f37224cde59
f45071d70559145903c01cc8f64006f0f804b6bd
2498 F20101112_AAAXDM vanvliet_k_Page_180.txt
b3004967a7e4b68ba83f658b6f59ff87
cb0d8bf68231aabd61e656f89e54989a06867b62
15558 F20101112_AAAXCX vanvliet_k_Page_174.QC.jpg
a12016f4dbe9802f1b7e82f4cea2db5d
57407df74b56b439ae841a335f82b58e85342095
F20101112_AAAWYG vanvliet_k_Page_024.tif
a29e42e411292f034462365d5de42cc8
53d5a1c49baf0d9d56e7abd345164fe9d89a1195
104717 F20101112_AAAWXR vanvliet_k_Page_069.jpg
3caa0136171683a19d3adbd1a8fa7153
4c1031a34cf1e8d2dec6f26fe0153bd5568bb83a
1577 F20101112_AAAWAK vanvliet_k_Page_008thm.jpg
8714b1e99060f0c2a05b7d4d2348f753
ab57e31971c47f18138c4309af4c991e4597f70a
75086 F20101112_AAAXEB vanvliet_k_Page_159.jpg
7c5687df71634ac6fa86c1efc3c27c1e
8d3b5c346b07b2f85bb2510db95bd1810435b895
26473 F20101112_AAAXDN vanvliet_k_Page_070.QC.jpg
846c939acbb81934b69e56eff017367d
927e4ccd7a5150c7233bf02596a9646ebcbc3014
102468 F20101112_AAAXCY vanvliet_k_Page_055.jpg
7fe10f70b40e20492b101761825f9237
05e4c7f2a1d9e002b6374622d4715e6a32ebd798
2211 F20101112_AAAWXS vanvliet_k_Page_096.txt
627ac131c31fa6ae416dc2508d097b9a
93d97310198ec8b9c150d133595e86c29fb528ce
F20101112_AAAWAL vanvliet_k_Page_169.pro
f13e4204e949350e7352bb9a6a5f2bfa
126b3a78cbea5bdf2e8a10cefdc6d3e53632a715
F20101112_AAAXEC vanvliet_k_Page_112.tif
97f6e921d88486925eb3bb44da15f414
f2ade2f5c09a976258032ec8fc7cee6bb433303a
1671 F20101112_AAAXDO vanvliet_k_Page_021.txt
331686d3e50866f34a1fc7056a5393e2
1c9f7855782e972b59f4396ba602e5560feac34c
26589 F20101112_AAAXCZ vanvliet_k_Page_075.QC.jpg
7b10fc098470a38d7d0a1740ce44b3b6
5c3e8ff12cdbe606cd891c12734153fb7862157d
108670 F20101112_AAAWYH vanvliet_k_Page_061.jpg
7605e8730e638aff219ba05384eda112
22354a068fbe3390c200b3ecf9461617801f7b94
173395 F20101112_AAAWXT vanvliet_k_Page_167.jp2
8ed65d8d31fb545bd7b9234f22965e96
68df4ff90cc338833d98e543512886b8a672759a
85823 F20101112_AAAWBA vanvliet_k_Page_161.pro
8d81e7befbf950f297edc4ba077124fc
f0c7d36be0515026f364a3d9ffdcd3fcae45203c
3620 F20101112_AAAWAM vanvliet_k_Page_172.txt
b7646b0d91318afc6067827b7d776885
3e2540d891cad1f93052a4707e5c17be7d37f2c7
6684 F20101112_AAAXED vanvliet_k_Page_003.pro
82567084c156f8dfb106aa14e73ed2e6
1c0137335f320ffd3e6905084872693dff2556ed
F20101112_AAAXDP vanvliet_k_Page_088.tif
9eb5017b7f67ef037c1e1b7ad058dd07
a951efa493357ff0b8d1b28bb5a32761ca50173b
F20101112_AAAWYI vanvliet_k_Page_116.tif
1a43fd2ec63b5110fe695031a7c06d7f
33f93f564bb2746a72f861672e381a5692ffd6e0
1965 F20101112_AAAWXU vanvliet_k_Page_182.txt
619c72d496521b2bdee9a54391343f75
f8b3fa9faa1e6eb546070fcf64bf29300a8b55ce
1309 F20101112_AAAWBB vanvliet_k_Page_075.txt
cef670ca0b6f48ce07dfd17aac121d2f
d488b2931607b0ef34ee80124b3b2b288239d0b4
96333 F20101112_AAAWAN vanvliet_k_Page_045.jpg
52b3df18a00003904377a23f5c5396d4
d04a6e3bb8302af37aeb216e22c06ff9569e3df5
F20101112_AAAXEE vanvliet_k_Page_161.tif
8395fa9f155e63fc9591861e51a66d8f
92ebdac869d524dd7f056bdfd719549aa710544c
15894 F20101112_AAAXDQ vanvliet_k_Page_038.QC.jpg
997f8b6840e41e4ccf41aadf7572dfbf
5c067c1abc415dbfa6904d63779b312d3cb29ca0
15427 F20101112_AAAWYJ vanvliet_k_Page_160.QC.jpg
26c5ff912c46ee0f7c51d28ff7f79d15
5909a2ed0612097afed371fe6e10861be0f20fc9
46073 F20101112_AAAWXV vanvliet_k_Page_192.jpg
98dd3579da246bb84ab6343d2fadcec7
b648af463d0761d99938d52fb828fca85d7f334f
7414 F20101112_AAAWBC vanvliet_k_Page_071thm.jpg
ba05ed19e9ac73519b002c416711719b
ab58ed309b9c99f998f6d2c558d6170c6c24383a
91387 F20101112_AAAWAO vanvliet_k_Page_190.jpg
962c9c88cf7a598b87812945c3c83ed4
af989e1166ec896c7453a86657b3ecc67f29efef
6924 F20101112_AAAXEF vanvliet_k_Page_064thm.jpg
63881b9f2029b5622da7b299dbd9d5fc
276a752ba61fbe71ea40ff7ce51a85fcb12f0fd6
F20101112_AAAWYK vanvliet_k_Page_072.tif
e298428d2f4b9b7cafde20d4daa02744
2905f1307633b583626a05201c2f501fafddbe35
2135 F20101112_AAAWXW vanvliet_k_Page_006.txt
b783b164d248eb360a297cf242d253b5
70104d645b0da140a6db5159083abe93a23706f4
90694 F20101112_AAAWBD vanvliet_k_Page_036.jpg
eece069358316c38c1ecb6029b07cf9b
d847e43d3f0bd72b47b5b97249189ed9d09cdd15
94495 F20101112_AAAXEG vanvliet_k_Page_046.jpg
0d4a140f33abc550ff63214b9afaaa38
48ebbbb2886c0b73cadf5ac3414313bb43ff92af
27408 F20101112_AAAXDR vanvliet_k_Page_047.pro
82a00d8e21348e8c2f6c4b05ae1e5184
de3022595c157a42c8d8f89de4b54c3248fac060
101143 F20101112_AAAWYL vanvliet_k_Page_113.jp2
a569d7bf6f0a214b7e5d2baac873d874
1451896dbab60bad573a74f3e1f0e1948fa52974
161878 F20101112_AAAWXX vanvliet_k_Page_135.jp2
b81d6f3079a0948b1c914a584faeb589
4aeeb47b2e004322a016fe5fd8fae27ce941baa0
70882 F20101112_AAAWBE vanvliet_k_Page_157.jpg
4f81411eda998677e60d032e3e5bd700
c89a34da6defce79bfa3b34b5034b4b4e14e7a03
15254 F20101112_AAAWAP vanvliet_k_Page_161.QC.jpg
cf0052accc730f3e4b113efce6ca9a43
490ae797f39acd2aa79cded1053090044228609c
F20101112_AAAWZA vanvliet_k_Page_189.tif
b730114109de8bce766aabdfb72d58bf
6ea1f4c118d776789152022dbf55a928a49fe20d
3610 F20101112_AAAXEH vanvliet_k_Page_142.txt
813066f52dcb451c053b5b6d7f849b30
fe547b0b256084c59bb9206ac1853087e6dcd030
72363 F20101112_AAAXDS vanvliet_k_Page_102.jpg
280861c1078ec372da17e00b39133c2e
9f0874016b9f511c22c5e602312195707a22abd9
F20101112_AAAWYM vanvliet_k_Page_155.tif
a188ddb021b409bd2b33d7a663dd4f37
cd3ad150006462deae9e25c7ea9da9ab00920681
1531 F20101112_AAAWXY vanvliet_k_Page_001thm.jpg
e20ace1e02122cf35e93839c410d1a76
632cf27db93301e1c96c8d692a1aff78d5597d94
3045 F20101112_AAAWBF vanvliet_k_Page_050.txt
743ef8dd99902b1c8ed01190d3061492
23f8fe7d097274829a01f4ad04d28e1b7658466b
15801 F20101112_AAAWAQ vanvliet_k_Page_159.QC.jpg
b4cd06fe3735f91e562fe71dd77dbf1f
fed5245ede707fd07d4ff9cfe20fae6f7038bdea
56597 F20101112_AAAWZB vanvliet_k_Page_186.pro
1c8677b3a6182e596dd14c356adc3399
ee249a20bd7015327478a6915174972942e4d823
21224 F20101112_AAAXEI vanvliet_k_Page_090.QC.jpg
facbf319823bcd92ff22cbbc62de1ce6
c15bad08c83423285d9dc377479f6573c6f028e4
73627 F20101112_AAAXDT vanvliet_k_Page_021.jpg
5564831a8157274854a5c2f5b2629ca0
6ebedf376079cffe42bbcd75a737211a508ebdb2
F20101112_AAAWYN vanvliet_k_Page_133.tif
ec8c38cd95b671b09715589c8fd24c2c
8884c629a243835ec4c7f56280616fffff853be4
7074 F20101112_AAAWXZ vanvliet_k_Page_088thm.jpg
c115a0e117349ea8f799eb1e7243cadf
4fec21572e5859099e98d72bd7d11858c7228e1b
26487 F20101112_AAAWBG vanvliet_k_Page_190.QC.jpg
4535f6e3c6bb07e4cc30d9add2157a32
e37971732134bbf129f5dc175c22c66d2ec1d24b
89666 F20101112_AAAWAR vanvliet_k_Page_022.jpg
22485e5fc01d086be0722756dd4f14d9
ae9f90fdebe495852142f1472b3053ab19bb2d95
30725 F20101112_AAAWZC vanvliet_k_Page_073.QC.jpg
c1ae76ad9fe31199b3bb12254e6fcdfd
f53d16fb091e2fcc76bd70b41f1929af94385baa
85184 F20101112_AAAXEJ vanvliet_k_Page_148.pro
f18583dacb88875aea5001731c59b683
74f1d7a6c4629e6fa1ff7b79bd6b789710381388
F20101112_AAAXDU vanvliet_k_Page_102.jp2
a89365d8db6cfed36dc24aa0fc7addc5
d5419884dc56f247ed771cd8e3d472d384c3ae4b
6930 F20101112_AAAWYO vanvliet_k_Page_187thm.jpg
b94f340acf9e7c6cdb51d800b0538c89
3a8618b41f026a4ece6a521aeff8cd1938faa6a1
6901 F20101112_AAAWBH vanvliet_k_Page_095thm.jpg
9943134d4bfecc0e737a36dd45832e2d
d7d22f52cc65bc969381d62c89269000b2518140
83148 F20101112_AAAWAS vanvliet_k_Page_035.jpg
43a0ab76498c04d348225be9c051c896
f38ba711a5c8d6ec8ac564133519fb41a979ed9a
F20101112_AAAWZD vanvliet_k_Page_183.tif
770ac0ce78ceb0e42d60300a80d5a9f6
907f01d1500b90fc26e85a16358151ff35192edb
85911 F20101112_AAAXEK vanvliet_k_Page_182.jpg
1e212aeb42d4dd9f13d397ae11544fb5
b73f83b9a1507d06d652b5c543bd279b8c71cc44
31369 F20101112_AAAXDV vanvliet_k_Page_101.pro
94d540ce392c9965b55e6aa16411ebe6
57302d936919b6e4755a0d844a905ae84d15e75f
2786 F20101112_AAAWYP vanvliet_k_Page_164thm.jpg
2410bc14dd6d420c973f68725f32a9b0
87f81860d493e7ab05cd1f88cec917a4530e1144
2032 F20101112_AAAWBI vanvliet_k_Page_080.txt
5fbf2bce7002815ae13bf5bf45ee4643
a7028cb5ef6bf0570fd2b090a230577a5946237a
2013 F20101112_AAAWAT vanvliet_k_Page_124.txt
0b5534df63538f1997c1e31f35c4b6f7
7e2af7cadb96b65604f095a33891fef231bd821e
4751 F20101112_AAAWZE vanvliet_k_Page_009thm.jpg
e4670537ddd49e4d8c65e8de487ce905
5d140f8dc93541a2199d1867111caaaf96100350
58296 F20101112_AAAXEL vanvliet_k_Page_045.pro
bdd3cfc4da970f6bc313c59afbd2d57a
0a023e733f085cb41ab7d4fb4afa25964158e944
F20101112_AAAXDW vanvliet_k_Page_168.tif
a0b19a588760b6a54707696819fea9bb
cc923500c02fca9fc9c83d93682cfb4145e8d192
54705 F20101112_AAAWYQ vanvliet_k_Page_106.pro
50d1a81fa2248a78c4c4d139319d46f6
a708e9a7ec8c746e30ba680758210e8a11a423d9
58516 F20101112_AAAWBJ vanvliet_k_Page_042.jpg
64f2febfaa7cb6bd2b4e8a62f33a3ce4
e239d3b68db417ae98cff69b06417af46cfaed4b
14619 F20101112_AAAWAU vanvliet_k_Page_083.pro
b6f95bdffbb2ae77a223363b7c8b7468
ca0f6a6d23412df6de2339f3c9264fd2bbf2a657
56426 F20101112_AAAWZF vanvliet_k_Page_096.pro
2d89ab648637d4d7516809fef4d2b5a5
4e7da45fc9c07905f47ff7779e023638effc15b4
101774 F20101112_AAAXFA vanvliet_k_Page_059.jpg
0d14293fb8946826b699cade6497ae4f
3eead748ea70c656d7648231418fa8d659af22db
84409 F20101112_AAAXEM vanvliet_k_Page_076.jpg
2a4c36f47f8105579c6eb28db195af86
12381ce5593819e55dc3071b7b05021694545cf3
F20101112_AAAXDX vanvliet_k_Page_004.tif
1c352cbf1b816806774f1cf38dd011a2
7e205765feb5000c1ead0f793af3b550bb6315e4
97 F20101112_AAAWYR vanvliet_k_Page_002.txt
f05ccf8f08c17768b5fd45c1d3874b09
754d9a1f092b11d23a56c054b3b4f697b1c21d70
5086 F20101112_AAAWBK vanvliet_k_Page_013thm.jpg
5e82e4c50247683ef1a139779e97c267
b18a13b0cf83972ee3fbe8b7c744f3fc726d8f65
90091 F20101112_AAAWAV vanvliet_k_Page_079.jpg
4ded781a0d4f139ef3e8a796f4ba8a37
1cc0587b920e1a7ad93b44e8e3d3ba59637453cc
408 F20101112_AAAWZG vanvliet_k_Page_008.txt
3bba9d5d90d520418f2e062377f67f92
70629295f175a8567b9f26027850fa6fb36fbf31
154020 F20101112_AAAXFB vanvliet_k_Page_131.jp2
9967aca1e226fdf2181944ba1a68d4dd
0ed87158cfb455132e6a47f91fa45ee2b9a5e44e
85733 F20101112_AAAXEN vanvliet_k_Page_025.jpg
5fe178e74ca434dacb31ff5258f4dcb8
b64c589ac731759f5a65850c447acdd66354a0de
23716 F20101112_AAAXDY vanvliet_k_Page_126.QC.jpg
a6f1c29856514bd50414e82d7f5aa722
978331ce9a8206225fec634df27c4a1ce1765d00
3847 F20101112_AAAWYS vanvliet_k_Page_150.txt
7905b5fc95d783c15a6e648b9ff22b36
311a5f741ded65787114fae0e8b4f38d3fa06a27
F20101112_AAAWBL vanvliet_k_Page_192.tif
3f454b840ecf0978a863cc1907c97fad
b807b5a37e7f9c5f2f504ce50353b087c83cb66a
6980 F20101112_AAAWAW vanvliet_k_Page_106thm.jpg
6abf4a8229bb906f4abcb5884de1995d
eb1c7bf0486529eb2ce8c2b553add03c3bd14256
F20101112_AAAWZH vanvliet_k_Page_046.tif
804ae7549ba5bf8aae20b284402b5643
d20e6242e551d183caae75d3f9ed67907a2272d0
F20101112_AAAXFC vanvliet_k_Page_113.tif
084771abfe207a7d5ad4e2c5ecf188bc
23a5ce4b3c8d8c630842cf8dc96c5aab10fda103
95624 F20101112_AAAXEO vanvliet_k_Page_026.jpg
c2cc8b7d61eefd2177a7e5cac717501e
155b16207ce8516251c5b13248830501b901e290
7498 F20101112_AAAXDZ vanvliet_k_Page_060thm.jpg
557aca1078a4d405844f00415213a912
de0f7db7aa7c92014bcc633eefba83a2c49d3362
86236 F20101112_AAAWYT vanvliet_k_Page_167.pro
edf9c3de06c733d47c876e38d4243750
8c846a2afaa58aff8a129eb70d4c21323ea5766f
6759 F20101112_AAAWCA vanvliet_k_Page_112thm.jpg
e364f56e7063995dd7c8a60a936cedea
3f4a87f2998be14f7c740001b9ce2675c70041fb
F20101112_AAAWBM vanvliet_k_Page_172thm.jpg
a0f91561996095aece065c1d51a8062f
3c765014a77e4febdce1a4f283d968ff5af1da9e
6895 F20101112_AAAWAX vanvliet_k_Page_022thm.jpg
728977fb40b7a4a460209a8ae8747f34
d5b8f4b4f57f1bb7b1e1f818a94339939f89c409
3883 F20101112_AAAXFD vanvliet_k_Page_165.txt
973b79639810206155264738c88bea7a
916f17ecc8f3a9940b89bae5ab6e8610d359452c
F20101112_AAAXEP vanvliet_k_Page_119.tif
d3bc44695d298595d22845d893091852
38646250f6fd395bdecdff3a4ffcb5cbbf31cc6b
6553 F20101112_AAAWYU vanvliet_k_Page_080thm.jpg
cdf0fc5c52b05a2122ca3096dcad7e04
c0a1f3be6e68c19ea5a616e2f833181db67b62bd
5452 F20101112_AAAWCB vanvliet_k_Page_028thm.jpg
bcfe7f504608747559703b685fb301ed
d0c1d1240f75dc4da97be06296ebb33164cf6817
2619 F20101112_AAAWBN vanvliet_k_Page_039.txt
3f3362e6cdd5adc2a4827749563e5df5
b654e409ceb85e9e25cd9fa2c00b2ac6a6a49927
113173 F20101112_AAAWAY vanvliet_k_Page_086.jp2
081d54700ab27164f1c3f97b7371979c
84be0ce610589ccc9011ea46a711b4d87b15ccfc
28687 F20101112_AAAWZI vanvliet_k_Page_059.QC.jpg
51f6fde4a295c2307b16a65999417e08
a451d5d383decaab66c6fbece511029047e13bd7
29290 F20101112_AAAXFE vanvliet_k_Page_019.QC.jpg
077208375c97203ca2bacb332e70b707
868f18ad0b3a254823c685faff642d9235d1e911
69574 F20101112_AAAXEQ vanvliet_k_Page_090.jpg
7d084d5d483720ff72c146cb331d7778
fcec5370cb902530d98e4e158c7699d6eb885be0
77959 F20101112_AAAWYV vanvliet_k_Page_101.jpg
c19b4571289006b32cd4ecf4033d2736
e996bdcf2f51bcfa447792b916c156035cad9972
173255 F20101112_AAAWCC vanvliet_k_Page_144.jp2
4622d3b1573926eb6c99024d5faa7987
3b665b27e655c3be2885407fec27e5ee8d89f0a7
6656 F20101112_AAAWBO vanvliet_k_Page_073thm.jpg
63f8a074ab1e71aa2a0ba054b53ccec2
b56a823a835be9106e88fefc80c5eb03861d9ce7
1903 F20101112_AAAWAZ vanvliet_k_Page_116.txt
8675663b6a93e63dc60c9dbbf5f7c2b0
de269a4c04d5caf5cce6072f3504452155c5fc0d
2059 F20101112_AAAWZJ vanvliet_k_Page_013.txt
e7ed51cf05431a6787faf3393155c753
fcc33325f413b6ef9a09b31bca2a503d735b8797
F20101112_AAAXFF vanvliet_k_Page_186.tif
b6ee3dd160ee725ac4bf0b1feccc107a
08eec8802529cbef3bd5f02cd3f0d6dc137c241a
6827 F20101112_AAAXER vanvliet_k_Page_027thm.jpg
c60c9f34ec5483ee5108fef9c197c30d
0ad6ec08e15729ad1b64b0b002795c33c9a9131e
F20101112_AAAWYW vanvliet_k_Page_097.tif
cb40a582b386c7489578f4dd5ca5841c
d70dfee8979bdab9d1e22f807c4c3f9315a83237
1964 F20101112_AAAWCD vanvliet_k_Page_049.txt
f8eee8f60ad75adb774c2d4accb39846
76e12b9ed57ced06bcb76150033f3fec73445866
2169 F20101112_AAAWBP vanvliet_k_Page_103.txt
0a7e39b4331450a6817e4e5930091a9b
88412cbfa8646fa2980d3c803898a6581881facf
4750 F20101112_AAAWZK vanvliet_k_Page_083thm.jpg
cfe1d2b5326226329060cd1a3a0dc443
2be41fb000287ca5afd82a25bc1f8090fc00aa26
91465 F20101112_AAAXFG vanvliet_k_Page_070.jpg
60b1caeb425da8ffe1f5ffb8512eec39
dadbed8db0286381ede6583457300d144db030f9
120977 F20101112_AAAWYX vanvliet_k_Page_096.jp2
d99c4e61519ba49f0fa18614f4e07969
adb0c372d72d945dcf93b28d153563ffdc874ebc
1637 F20101112_AAAWCE vanvliet_k_Page_119.txt
546f6ff2394fca28d590139f6f465283
66ed06b7588a081fea143d84ba3c837536642a4c
26526 F20101112_AAAWZL vanvliet_k_Page_035.QC.jpg
c1fa94bf71f46891c6f353ad983e4243
7ba83549bdc35b71750a5a70acde3c6d56101c7a
70808 F20101112_AAAXFH vanvliet_k_Page_166.jpg
d90e1c078edde4ae83c48be5da0fafdf
cfad248047bd639903a033f963e922b82bdd659e
6329 F20101112_AAAXES vanvliet_k_Page_179thm.jpg
b6febc6ad9bbe8ec5b620608097f8a56
2f0e8e8d388f7610a767ac8ddf409de99f1a6227
15069 F20101112_AAAWYY vanvliet_k_Page_132.QC.jpg
cf09fc309892b620bf758df8b521dcfc
16ae67aaef763f0aa2011889e8dc7580eac5650e
978192 F20101112_AAAWCF vanvliet_k_Page_062.jp2
6e6b334be00ffd6599c0fd19bfbceace
d6be670b0a114fd6e1687418a623970cccf4c88d
27955 F20101112_AAAWBQ vanvliet_k_Page_124.QC.jpg
37a01a9eb9bf45a2c90447d0aa15db81
3d6c77b6d3f834a71d82a9babf721c3751fa659b
118335 F20101112_AAAWZM vanvliet_k_Page_103.jp2
aaa099129b8f3dd8b50bb1ae04ac42fd
007f76ad4615854d695bfcfe190e44f35650bba2
6811 F20101112_AAAXFI vanvliet_k_Page_111thm.jpg
8804d021bd0077ea436e614cc6c66c94
9dad57c66e4d97ca588c6bcd00c136c5d19382e3
F20101112_AAAXET vanvliet_k_Page_152.tif
d1b728ca21a8123c6f74e243c41ed897
b34ff792a58c03e91cabb759be64bdeab6c121ee
90080 F20101112_AAAWYZ vanvliet_k_Page_153.pro
afa927d1b02bca7809627e60e7f1aef2
bfc2db080318823e83fdc8752fe20081a70f7048
162388 F20101112_AAAWCG vanvliet_k_Page_139.jp2
c81029496f3efc1aee2069bb2b6af755
b9dfc53b3aed9c958530370c94cafb49ea5cf7a0
15425 F20101112_AAAWBR vanvliet_k_Page_084.pro
89229274c3076a83ed24c959c8f384ba
57e5b84fd6c99d1f3ee54f27b82e656868b0a651
F20101112_AAAWZN vanvliet_k_Page_055.tif
4c81edd8eb765dd7fea7152ec8128848
40097b32d3fc44d19cefb56431baa3ee5db399c8
90350 F20101112_AAAXFJ vanvliet_k_Page_107.jpg
12580aa38e751a12beb1b77e2d37b230
288c0fd2b41b82004972f36ac48bd4d5ec119ea7
85343 F20101112_AAAXEU vanvliet_k_Page_011.jpg
fab0fd25fd1effb3a3b8f408538152a8
26f67d96c6c5303a3ec38e4ed6defb6a451567d8
15820 F20101112_AAAWCH vanvliet_k_Page_162.QC.jpg
a525627a9f036828b738984f36bb3cdb
ebe2c28bb02896558fa89b22dda75c91e1632722
2439 F20101112_AAAWBS vanvliet_k_Page_115.txt
aa584b029866a69d9c455656f4c9a47f
de3c3ee685e3702bc85e4f3f4156ffeb56c06aa7
24413 F20101112_AAAWZO vanvliet_k_Page_049.QC.jpg
ab654f49d22003afafe3370f4342da5d
5267450bb04ed787dd59c7570c4c730a7d5dd6d7
123136 F20101112_AAAXFK vanvliet_k_Page_045.jp2
c1e4f10c95a758ccc75225ff0ac32b7e
b185322f3f65b1bcf475e85a64f0986566306caf
6878 F20101112_AAAXEV vanvliet_k_Page_184thm.jpg
4c0d23b989e76aa4b6e8175ad85e4406
4101e170957a60fb638a616ae4cb3982a0493440
F20101112_AAAWCI vanvliet_k_Page_040.tif
1439b9ddd1235d980af239061c9fb751
8c521872aa48e78606057d2b5a6ea3664666abca
90470 F20101112_AAAWBT vanvliet_k_Page_081.jpg
8f5f9124760ca92fa2b801f03cb81434
5f0f99d5fa327cc4ad8b2f927674837438c695b4
6949 F20101112_AAAWZP vanvliet_k_Page_019thm.jpg
7b5d843cdc52e859ba59b71b9abeac31
4b027c8aa36cf619047ee717218acb53699ebe35
28164 F20101112_AAAXFL vanvliet_k_Page_050.QC.jpg
43d6e3429b30badc1dfdfdcdd6ba89bf
2668f819e586ef7c83d2a3aa0fc536d44b24f55d
28324 F20101112_AAAXEW vanvliet_k_Page_030.QC.jpg
5a4f66826a2fef674ca54bf5e966c3c9
165cf9969e0ea5177e376f1309e6d8a5ed0fc350
113565 F20101112_AAAWCJ vanvliet_k_Page_184.jp2
88a926929d2ad52136bef4f8e74104c2
0ecf73adf1fef484b6216f7c7e7a0c89b99ec586
6928 F20101112_AAAWBU vanvliet_k_Page_058thm.jpg
e51bdc083aedf4509612db8c31fa076a
b4dedb52ac7c7c892b4eb314643b698d14e92077
6220 F20101112_AAAWZQ vanvliet_k_Page_021thm.jpg
83920bdfce3a8061cf03dce85fb63d6c
b5ddbc9c2776eb5ebf033197058e7b257737565b
147701 F20101112_AAAXGA vanvliet_k_Page_073.jp2
f12a5f4b47b825b5a17ef91ec9228a9d
6a199bd96fb66d1ae729319feb1011803e2a9159
F20101112_AAAXFM vanvliet_k_Page_009.jp2
1dfa8273e0c2e5e349cd01f7de2b3628
a157b3f976e0c9dde65ed2da35f063dd81469483
55481 F20101112_AAAXEX vanvliet_k_Page_092.pro
55ffff165af5c8efc2be20fb8a453244
eeef404b07f2f1f3074aafba828d7f3f0d52bab0
822011 F20101112_AAAWCK vanvliet_k_Page_085.jp2
6c2a14cf4685f046388240f50695aa11
91ccaa39d09d5106c5b5a9c08059794b3e4184d6
112012 F20101112_AAAWBV vanvliet_k_Page_020.jp2
0c5a2628a02e147c640b7a913c57332b
e25a5e8ef8d3a80110f86fb586f7550156786e69
109967 F20101112_AAAWZR vanvliet_k_Page_185.jp2
0a451ab384b26a0e47b37be75d5e3fb5
e144b9385eae57b9e011ffe6afdfee1e3ed59096
2332 F20101112_AAAXGB vanvliet_k_Page_189.txt
d78eb46bd7efd95fd55966e2bdb45a7b
924fa98b0fd80144b71f0f324ec7da527838730a
2771 F20101112_AAAXFN vanvliet_k_Page_177.txt
feeab991779f7e80c95e62f5409799ad
37d959eef4b4c80d5a3d3357850ffd55a0eb01b7
3598 F20101112_AAAXEY vanvliet_k_Page_145.txt
ea75d7fe0494e683aad4554702839193
4e600f15ce6eb1b1f1b94b2dbaa7f0bdbf68a0ee
11161 F20101112_AAAWCL vanvliet_k_Page_177.QC.jpg
58a0a2985a3cac2c86904dbc22a6d91d
7580921c1a14f3366c711511f06b2d1ed8549d51
164254 F20101112_AAAWBW vanvliet_k_Page_164.jp2
261cebf700594b8a80811d483af18df6
8bdef7c71943f7eec69681562b93b53e19ce69c0
2123 F20101112_AAAWZS vanvliet_k_Page_016.txt
b81efd2b07bb76a0800f733f89eb115e
4bc0fe241bd96767b92f1e4ce50f8fb33c17f52e
92407 F20101112_AAAXGC vanvliet_k_Page_092.jpg
e9b7c22ebd2e4930ad88cdbb360061d5
cf0da5e4e32e75e683cfc2aadbc00c44cc4eed81
39930 F20101112_AAAXFO vanvliet_k_Page_066.pro
bf7330b0de190e6f814f11c7f6ba39bf
b72cf4c015ae02e2f3df19a178537d1aa97aa487
5409 F20101112_AAAXEZ vanvliet_k_Page_036thm.jpg
3862b14ad4e8a1c041ebc076bd6b7e4b
38f34b2d317de3035b281260b7e7623e52bc80c7
F20101112_AAAWCM vanvliet_k_Page_188.tif
a876e2a95d1450a9f8f9659680466612
ad33cd5f3c4ddc89f413ff735ce863e87f3f03d4
50203 F20101112_AAAWBX vanvliet_k_Page_031.pro
cf0ddea89c69a9123d71c8ba9723d0ab
e163b7e660bc54d1a444aeb54cfe5f0880c25feb
28162 F20101112_AAAWZT vanvliet_k_Page_079.QC.jpg
b1e07cb4f00996d19032ab83d2b5f648
f547c23e3ec0b17769831e6c4ded137eb783c05a
88700 F20101112_AAAWDA vanvliet_k_Page_141.pro
193d9f60578860d3246c109eda41885b
002e567a7a6b0954ef54c16f937bd7f31abe2a68
2307 F20101112_AAAXGD vanvliet_k_Page_058.txt
f8e1b7e3c721ae4f16969e66f67c717f
2d763703fffaab6dfa82e55e0582dcf9c53cba8e
2412 F20101112_AAAXFP vanvliet_k_Page_036.txt
83514907699f3747159b8f7f1d1dca58
a73226e4a76bfed93bef1b17aaa538bc9abeba13
26465 F20101112_AAAWCN vanvliet_k_Page_029.QC.jpg
d9531a87dea09e38c5aab30b0f8af460
4079e2077bb472d0ac6dfb1dea9e665eb470754a
163587 F20101112_AAAWBY vanvliet_k_Page_160.jp2
ebe314e35bef809f371082a475a56e73
aefdd837ee4857b4496d433ba07f51f3414e9efc
6988 F20101112_AAAWZU vanvliet_k_Page_093thm.jpg
711ec46e86e5f07aca866c718f2ed143
d1dfdb240e95a71f9af4053dca437312af15326a
15146 F20101112_AAAWDB vanvliet_k_Page_131.QC.jpg
8432467179430a6e108df6631c939916
73ad79d2585f7bad362070c2fea4ef0e5b6a1436
73789 F20101112_AAAXGE vanvliet_k_Page_147.jpg
cef1b48790a8c63d24c2b7875bf954d5
61b0b4d6714f446ff0cf1533ae9172e688758f90
43505 F20101112_AAAXFQ vanvliet_k_Page_126.pro
d658c1d6bf843f8d83f01181bbfe4785
7d854e8dca87c15148dc2782f5da3410c78423c1
F20101112_AAAWCO vanvliet_k_Page_115.jp2
7e15f8d1fd54be211d8eb26b47ac0221
df62d4d782282ea8c0c01fbe06aa390bd92d766d
19487 F20101112_AAAWBZ vanvliet_k_Page_009.QC.jpg
509bf0a8405336f8ee66bb80ac4f8956
c662a344b6f1b1a538a66016e592124b6888adfd
2778 F20101112_AAAWZV vanvliet_k_Page_143thm.jpg
415b2bcd4ee04c3cfb5463e6bc2a2288
60d512116fc8b56bcc560f1d2adefaf9e04da0b4
3725 F20101112_AAAWDC vanvliet_k_Page_040thm.jpg
621a83d8e2910f08ff1a56c4199a24f7
236e335edd7f5a06734d0b2ec762a40a11a2bb1f
962 F20101112_AAAXGF vanvliet_k_Page_002.pro
b6d520a49fc627368c3c6b850a197ba5
f74fef4bf4d5aa2476a07e6211d32156ea7603e4
42118 F20101112_AAAXFR vanvliet_k_Page_084.jpg
f80559fcf5db595ad00bcdcfdec90d77
a574b7f59fa47642fb4cc9f8170c47cf2c38b5e8
85494 F20101112_AAAWCP vanvliet_k_Page_162.pro
ef3a0b0eab377f5763ce44e3143c8fa2
742df62890d92b1d095419bb7eec8f48e23003d0
29026 F20101112_AAAWZW vanvliet_k_Page_055.QC.jpg
f69cda3591431d40bd5814b42e97e714
e95eb27b000869cecb0d5a5ee1aeff889a706f6d
55696 F20101112_AAAWDD vanvliet_k_Page_100.pro
9027fdf20f95b21c83146b5528598447
8e2ddab04fa9c829836aff0c33689971aa34a1d2
F20101112_AAAXGG vanvliet_k_Page_002.tif
2e966e1a49b0e3cb96f3c4c7269c4e6b
38fb9721d680bd397bb5db117df5b88d3679d1ed
2766 F20101112_AAAXFS vanvliet_k_Page_152thm.jpg
ffbbd02bd31b115ab973cf649a86e12a
61e2ca38b14bd0b5af23c24eacd0db807bbce67e
88647 F20101112_AAAWCQ vanvliet_k_Page_138.pro
c9a94950b34d4aade1d6f3b15ddeb542
d91b02a14586e10a37d40a7509ac8ba9e650cee4
89131 F20101112_AAAWZX vanvliet_k_Page_121.jpg
4cfafd34b2e1dc461b69b0ed8a888880
4e2c3cffd3551b1120a68eee165723ffdd6ec73a
1015 F20101112_AAAWDE vanvliet_k_Page_192.txt
f37f33e97cef97c2f84aa4c3932cdd2f
98d24a205218fc5e8b0d40d6565b8e5dca1e7f19
3565 F20101112_AAAXGH vanvliet_k_Page_139.txt
eced4ff5d97f4390154bac7c5c0e70e9
ae61f36d00dc4b102daadafd48ad359ac19e47f0
F20101112_AAAWZY vanvliet_k_Page_085.tif
4772673089bd6d81d1497f569b31f0f8
17df2f5bae0db88e87f76005f92d3dc8588dbc1d
15186 F20101112_AAAWDF vanvliet_k_Page_172.QC.jpg
de910fce8e620e754b42bf6e1d437e6f
8d6ccd8b84100a65bef0cbc76593b33c83916fce
760 F20101112_AAAXGI vanvliet_k_Page_062.txt
eb3635f68eb5d920b4c356f1a10a4552
5303befc2add8080c0c3948910c61e67e0939535
57322 F20101112_AAAXFT vanvliet_k_Page_026.pro
552fa9407406fb2a873b90a4fe911b5a
01d0353e8109e04e6fe11233a79dd70875757bf1
15103 F20101112_AAAWCR vanvliet_k_Page_166.QC.jpg
7efb756375a0b1224650b32431442a9b
00fdfaaf7e64f765171756884776def8518d3730
120633 F20101112_AAAWZZ vanvliet_k_Page_128.jp2
fb68441cb137befed135465ec63ec52e
4f3a2b2203cd7c176374024b445806c7859c6b6d
F20101112_AAAWDG vanvliet_k_Page_116thm.jpg
2552a54a691a148ad638ac94f04d1fb3
46770f213202bc1c6feac0ad580a022f0ac0edda
6512 F20101112_AAAXGJ vanvliet_k_Page_191thm.jpg
9e0dcaea45bb74b1271d018cfcfde3e5
e8492f5df2bac4d113a708ad97164af2af075fb8
5630 F20101112_AAAXFU vanvliet_k_Page_002.jp2
b387802e1035446128858641b135f4d1
a4ae23982abe538131aea2923a5f536345ff85d8
3412 F20101112_AAAWCS vanvliet_k_Page_014thm.jpg
07cb0d7d3a602d6dde4c451a2de06f8d
650ec926b2af7aa6df4a99abe93690320654158a
67237 F20101112_AAAWDH vanvliet_k_Page_043.jpg
7b599ea555fc3f6c0bb477d7a6acd9bb
43947b24ec2e77e96722bc7bee0ad50bb888476e
25812 F20101112_AAAXGK vanvliet_k_Page_116.QC.jpg
5c5d11fcf984387ee620ed4b6db28832
3406683981c6efbf5b5cbbc2ca711ac51c957b49
444 F20101112_AAAXFV vanvliet_k_Page_072.txt
f5097402d780a83002f5e31bca281c07
bc803c7c4a78bf7492e77ddd7ea5e59beb874682
6663 F20101112_AAAWCT vanvliet_k_Page_086thm.jpg
ef9e10e439682fa7ef5d2f65f569466f
53de5b23c1ff1a3b13511487d6c2633c18fbb6b9
84726 F20101112_AAAWDI vanvliet_k_Page_145.pro
0cb941659c88da9909df5f43f17df5a7
37c2b3ee666017bc31c76d24b5021f4514baa832
28948 F20101112_AAAXGL vanvliet_k_Page_074.QC.jpg
4c2fee89c6c694a2d6ae4c64a5c79472
364eb85ceda7f887c127408e396eedc40fbc0b2e
115217 F20101112_AAAXFW vanvliet_k_Page_121.jp2
9d00ff67bf411baa16680902d7334a4f
d8db5f400ef212bd40276da727513e14afbb182b
F20101112_AAAWCU vanvliet_k_Page_075.tif
74c28f227e3398df955e28c6dc0ea0db
526bb5c018b627d2be513e34faf065291f4e029d
64109 F20101112_AAAWDJ vanvliet_k_Page_128.pro
63fedc43cd1633d4101d01789ee605a0
ca682526ffe1b086ad34c5d822b68c3444e27849
F20101112_AAAXHA vanvliet_k_Page_001.tif
7607a8d8358561a23dc91ee3ee7e1c8b
7ebe24ef13250a11b8364e2dcfdf534d21f47854
74673 F20101112_AAAXGM vanvliet_k_Page_162.jpg
a57434eb348dc4101d3323ba4a8aad43
99582126b0acab20c2a9f08b5c384364ece8feb2
35386 F20101112_AAAXFX vanvliet_k_Page_090.pro
7d9b629f3a8e3e189231b81b4fb82495
d51f69693d71b1b89bf22b92b736308074d76891
13317 F20101112_AAAWCV vanvliet_k_Page_084.QC.jpg
c057d28ab7871eaf5c39633734b8318a
d02b0254cdc99f9e1444a529c3e3e5846890ef03
10323 F20101112_AAAWDK vanvliet_k_Page_127.QC.jpg
e73fba6ed3ccea98b0154a15ed502618
bc19a5adb9437bcdd9280f45d7b0cf525ee2a2b1
F20101112_AAAXHB vanvliet_k_Page_092.tif
72db6d2dee3eb14221f8851fc76160dc
140c73ce3e41a7d49e4e37e1cba4b2698d37c7e3
1414 F20101112_AAAXGN vanvliet_k_Page_076.txt
c4c6a3d76fd18ccf488012a621b56bde
2570ac1dd0798d91d9c4b464bafd59e1952cd36a
3553 F20101112_AAAXFY vanvliet_k_Page_133.txt
65886696435fefbdf21e14e63f6c40dd
45aa5bde14902b043adb1ab2a56bb3f9bfaebb30
97253 F20101112_AAAWCW vanvliet_k_Page_188.jpg
aebe9c7dd5581d3761e48146519030cc
d482e6cdb1b255c3313cc11800d04b40f5572fe0
2816 F20101112_AAAWDL vanvliet_k_Page_134thm.jpg
433ecc8969ed7322006ac1534bc68972
c41ca29f13e79c277e75919f584ec49836969c1c
13322 F20101112_AAAXHC vanvliet_k_Page_130.QC.jpg
6f4e3187459552a8b2f283cf56e0d4cc
05e4b77389bc67ac8bb97678a2a397d90c3da960
2850 F20101112_AAAXGO vanvliet_k_Page_168thm.jpg
abc99f1fffe12bf1310b049059014e11
31986ca16cf370eff1fed34aeb3692eedd797b97
77563 F20101112_AAAXFZ vanvliet_k_Page_178.jp2
2c764ccc04d9e440636da5e7e7ecfd8d
d7d595c5d48beff40feede8fa362840d0ae48ef3
2777 F20101112_AAAWCX vanvliet_k_Page_149thm.jpg
7823893a48e36bba921c018e61060eff
5a419b1bcb0bea458608e78173df9def4b3b2607
85020 F20101112_AAAWEA vanvliet_k_Page_136.pro
c9a09f63ea399d1acf86f00d4ffde815
1c44dcfc40e5ef9d2053ba2a1aebeb5e95fddbc1
6582 F20101112_AAAWDM vanvliet_k_Page_054thm.jpg
f51dd5e6f6a43b644f49ca56b913c44a
5f3d3769c496699ef76ad7287400032db7315f0d
2363 F20101112_AAAXHD vanvliet_k_Page_045.txt
45422fac3b097de3e42661ab65db9fbf
386a328be85518b75b96def5ac8d7586fb5f58cf
174964 F20101112_AAAXGP vanvliet_k_Page_162.jp2
011cc2eb875e01301d0708bb3ba95331
18dfb4e054cca230403aea1f13daacc8218463b3
49146 F20101112_AAAWCY vanvliet_k_Page_041.jpg
08ef3a1d6db4179aea76b9336f94b65a
becd3c357025955001fd97047feb7a50835ebd3f
24849 F20101112_AAAWEB vanvliet_k_Page_008.jp2
08385d39f35c84aa9a80c2bbcc7d5939
dfdeed93983933e28eabb43f521747bf13325ca8
2815 F20101112_AAAWDN vanvliet_k_Page_147thm.jpg
d18f64768a03ff3664480a05579b9e37
12a9d3df85a3d9258ae3aba5909afd81654fb323
4845 F20101112_AAAXHE vanvliet_k_Page_063thm.jpg
bd85d7849133735be671416abee46ebf
3ca16daaffa2a7ae1b7abbe6205ffccdb5e46c60
6753 F20101112_AAAXGQ vanvliet_k_Page_005thm.jpg
260d73222022d77e39279931d00d9904
cafe8fb234d5662d61d05296403f38ff22efe401
2215 F20101112_AAAWCZ vanvliet_k_Page_048.txt
a12dd674a07c67c5e281607940ad08aa
cfb07e058fa4210a7ac5faa4f6e753ef4de92f78
71662 F20101112_AAAWEC vanvliet_k_Page_131.jpg
880aa57c3631b42d2b2f92e6037c421f
2e2df79f6863b96bdadd8c182774378bf8c10d46
118869 F20101112_AAAWDO vanvliet_k_Page_077.jp2
e5c5db5392b0eb6fa28d858252d20119
5f27b5c142a8bf8535ee048f2e823094adb8962c
3818 F20101112_AAAXHF vanvliet_k_Page_137.txt
8e1f25ec0f5721430127bc342bf9828d
c828de079780eb511ef3cb0ab8a708f7464ff6af
3517 F20101112_AAAXGR vanvliet_k_Page_160.txt
f4daa62a38653ac0cab8b419d7c6e509
46fe5e9583ab17c098f0faed4b8022b7e2f34010
105382 F20101112_AAAWED vanvliet_k_Page_053.jpg
9f5ec163da610617ed9003fb38385325
13ab2ae4264abcae035ace55f6a25605a9664188
113137 F20101112_AAAWDP vanvliet_k_Page_080.jp2
f7439f90203b7210c0b5d7d954a9cf79
6378583bf2e5dff7f3bc52e20284a61ed5197948
F20101112_AAAXHG vanvliet_k_Page_124.tif
db169ff7b03422089da0a06b44256611
3169f4d396890167e85cbfb196723bccc97f34dc
F20101112_AAAXGS vanvliet_k_Page_033thm.jpg
5b2e40286ab493fde98ae63407e1b188
a929f1bae267281e18bbddd2112ffd053abcbdc9
72755 F20101112_AAAWEE vanvliet_k_Page_149.jpg
54850b7dc9cdfdf16e7218b1d9563ff5
49d999276ee358b48a87bf3d0013a457e5d01a92
F20101112_AAAWDQ vanvliet_k_Page_117.tif
32a9c814654844a0fedb3b33b59fe6e5
ab423b971071bacaaba6f6c1ffa317c8a34c2740
23889 F20101112_AAAXHH vanvliet_k_Page_082.QC.jpg
6f198a0f673f26de902e40cc2d6565ff
4d13d37de50e8bbff2aea5c0380aea735691824e
2101 F20101112_AAAXGT vanvliet_k_Page_185.txt
b449eb3e99fb61d9417d232899f9a384
956b6cb6c537ba7c148a9f2e94a94bb5735e474c
F20101112_AAAWEF vanvliet_k_Page_130.tif
1527ff7748a9383d3f7e3914a95405e5
82d6829d8d9db7295fabe6ee3641e415e9ddb326
3885 F20101112_AAAWDR vanvliet_k_Page_144.txt
e7820ea1e5a6dcffbdac00d50ae00378
0d5cad717dde7dc9d185fc9288dabd0412bb15ef
117738 F20101112_AAAXHI vanvliet_k_Page_120.jp2
fb0f4ae8bdae96a547d542860d591e25
d5df69a437deb0690d8bbf544782d487fe62ccbe
85270 F20101112_AAAWEG vanvliet_k_Page_149.pro
5348710f96f5345e07405285fec13f2e
93fc7ab7bceb7a9523f706ced5d7bb9ec77b8b13
56243 F20101112_AAAVZA vanvliet_k_Page_062.jpg
f5703779303b6d9581b29d8685123834
bcbbb25dbd0adb6e4063b02eb1c20eb25e10cf4a
F20101112_AAAXHJ vanvliet_k_Page_191.tif
2e740f2569bb16d77a36bf29d9ffc0e1
28a03456ccad23a685388e10447eb93fb6f83ca2
27384 F20101112_AAAXGU vanvliet_k_Page_007.QC.jpg
05fa2839e564accf759b3442d4830b17
342f088adc8a80d457f69237ad2a82fd2acb65be
F20101112_AAAWEH vanvliet_k_Page_013.jp2
48b8397826317bfe2078f01c89887f00
0f46aab4df59297c78ec8030fed9d59c6d7b5bde
3256 F20101112_AAAVZB vanvliet_k_Page_175.txt
5ba5eb9d7432062bfd281f618773182c
842e5f7607a77d7f448a803caa1f58fe190497ce
555479 F20101112_AAAWDS vanvliet_k_Page_041.jp2
b51fcf69408e8903cc13447aa251a0e9
2654097c0f0174ca3f9060ba67e32a929f907430
F20101112_AAAXHK vanvliet_k_Page_054.tif
121bbe8e503713e098ea037d7b7c2cd1
3fdccf98bc5298985803a770f76afcbafc358ddd
1408 F20101112_AAAXGV vanvliet_k_Page_043.txt
980b53bf7abd72cd9eb32691fee9c034
ce8e0e4c93fa89f248cdacb2b8fceade6556471f
16323 F20101112_AAAWEI vanvliet_k_Page_038.pro
e1d5e841b607e0e91669303c936edace
f3e94b8fe6937385c24ded2a3868d1226e738800
98447 F20101112_AAAVZC vanvliet_k_Page_191.jpg
f41a7cdea0dc682f82757877de616996
502d49c1105fba9158bf1a07388ee25fe0dd7fe6
F20101112_AAAWDT vanvliet_k_Page_027.tif
6489a6aeb13a301d6c0ab3741115efd9
5a74a7d3bf95e0b03da69b857fc2ac844f1b4692







STUDIES OF THE ADENO-ASSOCIATED VIRUS CAPSID


By

KIM MARIE VAN VLIET















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007




































O 2007 Kim Marie Van Vliet






























To those individuals who have provided inspiration for me in leading by example, striving to
perform to the highest standard of excellence in whatever work they agree to do while still
adhering to the core values of honesty, integrity and ethics










ACKNOWLEDGMENTS

This section of my dissertation should probably be its own chapter because there are so

many individuals who have been instrumental in assisting me with finding the needed elements

to complete this work. First, I thank the Vector Core Lab at the University of Florida. Mark

Potter for providing some of the initial virus preps used for the experiments described in Chapter

4 to map the AAV capsid in solution. When these samples were needed, I had already learned

how to prepare and purify AAV, but having some virus samples to start the preliminary

experiments allowed me to begin purifying additional virus while the preliminary data was being

collected. I thank Tina and Glenn Philipsburg, Deana Sanders, Irina Korytov, Stefanie Shoj a and

Jenna Potter for their technical advice and training when I first arrived. During the course of

experiments, numerous technical issues often arose that need to be sorted out at that particular

moment, and the availability of a group of AAV production and purification specialists who

were willing to share their knowledge, as well as equipment, was very much appreciated.

I also thank Sergei Zolotukhin and George Aslinidi for their assistance, advice and

training. Being in the same lab space provided the opportunity to watch and learn new

techniques, as well as provided the use of their equipment for transforming electrically

competent bacteria, the use of the DNA sequencing gel apparatus, the Bio-Rad econo-FPLC

system, as well as other equipment that comes standard in most labs, like a pH meter. I also

learned that even though they both speak the Russian language, Ukrainians and Russians are not

the same. This is especially true during World Cup Soccer season.

"GOOOOOOOOOOOAAAAAAAAL!i!!!!!!"

I thank Dr. Greg Erdos and the Interdisciplinary Center for Biotechnology Research

(ICBR) Electron Microscopy Core Lab for the use of the electron microscope. I thank Karen









Kelley and Lynda Schneider for electron microscopy training, as well as for shooting publication

quality images of my grids. I thank the ICBR Proteomics Core Lab for mass spectrometry and

protein sequencing. I thank Stanley Stevens and Scott McClung for the mass spectrometry work

described in Chapter 4. I thank Sofie Alvarez, Scott McClung and Cindy Croft for the great

scientific environment in the ICBR Proteomics Core Lab and assistance with the mass

spectrometry work described in Chapter 5. I thank Li Liu for bioinformatics assistance with

setting up a protein database that will be useful in the future.

I thank Dr. Barry Byrne's Lab for sharing the liquid nitrogen dewar for cryo-storage of our

cell lines, their plate reader for determining the concentration of purified proteins, as well as for

allowing me to use the incubators and tissue culture hoods in their lab. I thank Denise Coutier for

allowing me to use their rotor for the ultracentrifuge to purify AAV on cesium chloride. I thank

Dr. Terry Flotte's Lab for allowing me to use their spectrophotometer, especially after the

Muzyczka Lab and their equipment moved to the Genetics Institute.

I thank Kevin Nash for allowing me to use the dot/slot blot apparatus as well as for digging

through the -80 oC freezer to Eind the constructs used in this work. I thank both Kevin Nash and

Wei Jun for allowing me to temporarily borrow equipment that was needed for this work. The

Muzyczka lab functioned as a "supply center" for this work as most protocols that were

performed are done routinely in their lab and they were usually the first stop in the game of

scientifice Go Fish", which starts with the words "Do you have a .

I thank Bert Flanagan, and Brian O'Donnell for providing me access to the polio virus

room, as well as allowing me to incubate my ssDNA virus in the same room as their RNA virus

work. The use of several incubators at various temperatures. was very useful for the limited data

that was generated for the temperature sensitive mutants of AAV. This also corrected the









problem of CO2 lines blowing off incubators, the temperature mysteriously being increased, and

other issue that occurred in prior shared space. The polio virus room is a limited access room,

and interestingly my streak of bad luck ended when I moved my sensitive experiments to their

tissue culture room. Special thanks to Greg Tyler for providing access to the microscope with the

camera in the Genetics Institute to image cells transduced with AAV vectors harboring the gene

for green fluorescent protein. A picture really is worth a thousand words.

I thank the members of the Snyder Lab past and present, Shalini Ahnand, Traci Mayfield,

Veronique Blouin, Imran Mohiuddin, and Yasmin Mohiuddin. Special thanks to Veronique

Blouin for her scientific curiosity and the gift of gab, particularly for informing me that the

AAV4 virus that she sent to me had a mutation, which everyone else was aware of except for me.

I was asked to expand the number of serotypes for AAV capsid serotype identification to include

AAV4 and AAV8, in addition to AAV1, AAV2, and AAV5. The mutation in the AAV4 virus

was in a basic residue and these amino acids were critical for the experiment that I was

performing. After I gave my AAV8 prep to Nicole Brument for her use when she arrived, and

spent my time and efforts training her on how to produce AAV8, I thank her for proving an

aliquot of AAV8 for this work.

I thank Mavis Agbandj e-McKenna for providing scientific discussions as well as serving

as a co-mentor. I thank her also for providing a highly pure, highly concentrated sample of wild-

type AAV4 when I learned that the AAV4 that I received from Veronique had a mutation. I was

expecting to search through crystal trays for AAV4 samples that did not crystallize or samples

that partially crystallized that could be rehydrated and instead was given a pure sample of wild

type AAV4 which is a very valuable reagent. I also thank Lakshmanan Govindasamy for his

training and advice, as well as Hyun Joo Nam. I thank the members of the McKenna Lab both









past and present for the collegial atmosphere and scientific environment that their lab afforded.

Mavis for tolerating my lit reviews arriving the minute before they were due, and Rob McKenna

for providing a critical review of my work as well as insightful discussions regarding capsid

assembly and sharing his knowledge of bacteriophage OX174 assembly.

I thank Nick Muzyczka for providing technical advice, for providing precise concise

information regarding this work, as well as providing insightful discussions that guided this

work. I thank Jorg Bungert for his time and advice. I thank Richard Snyder for the resources to

perform this work, as well as for the opportunity to work in his lab.

I acknowledge the great support that I have received from the Department of Molecular

Genetics and Microbiology, particularly Joyce Conners, the best graduate student support person

ever, and for always having my back. Special thanks to the fiscal office for helping me to get the

reagents that I needed for this work, particularly Michele Ramsey, Jeanine Spencer, and Elisha

Richey. I thank Carolyn Baum for her assistance with ordering reagents, as well as helping me to

find the appropriate people to handle various things that I needed to get done.

I thank my mentor, Dr. Michael Roner of the University of Texas, for providing advice and

helping to guide my decisions. For never saying I told you so, as well as for standing by me

through the really brilliant experiments and the other ones.

Special thanks to the men of Bio-Rad, Al Guarino (aka Alberto) and Scott Moore (aka

Alej andro), for providing numerous reagents and equipment that we purchased, as well as that

we borrowed for various aspects of this work. I also thank Scott Jameson from Invitrogen for

providing reagents for this work, and for providing more when I hadn't quite decided if I liked

the first set. I also thank Steve Muir for providing reagents and samples used in Western blotting










applications from Pierce Biotechnology early in this work, as well as samples from Millipore

used later in this work.

Finally, I thank my parents, family and friends for always being supportive of my

decisions, even when financially they don't make very much sense. I thank them for always

being there when I needed to vent, as well as for understanding my busy schedule.












TABLE OF CONTENTS


page

ACKNOWLEDGMENTS .............. ...............4.....


LIST OF TABLES ...._ ................ ...............11......


LIST OF FIGURES .............. ...............12....


AB S TRAC T ............._. .......... ..............._ 16...


CHAPTER


1 INTRODUCTION ................. ...............18.......... ......


The Family Parvoviridae .............. ...............18....
The AAV Genome ................. ...............20........... ....
Vectors ................. ...............21.................


2 MODELS OF AAV CAPSID ASSEMBLY................ ...............2


Capsid Structure.................. .............2
Capsid Assembly and Packaging ................. ...............25................
Virus Assembly for ssDNA Viruses ........._...... ...............27._.___.....
Assembly via a Pentameric Intermediate .............. ...............28....
Assembly via a Trimeric Intermediate .............. ...............29....


3 AAV-2 ASSEMBLY AND SUBUNIT INTERACTIONS ................ .........................35


Introducti on ................. ...............35.................
AAV-2 Mutant Studies ........._.__....... .__. ...............48...
Amino Acid Alignment .............. ...............49....
M odeling ........._.__....... .__ ...............51....
The Mutants ........._..... ............_.. ............._. .............5
Mut 19 228 232 WHCDS WACAS ................. ...............52........... .
Mut24 291 -295 FSPRD FSPAA .............. ...............58....
Mut26 320 324 VKEVT VAAVT ............. .....__ ...............64
Mut33 469 472 DIRD AIAA............... ...............69..
Mut46 681 683 EIE AAA .............. ...............73....
Methods for Mutant Studies .............. ...............78....


4 STUDIES OF THE AAV CAPSID INT SOLUTION .............. ...............86....


Introducti on .................. ......... ...............86.......
Proteolytic structural mapping .............. ...............86....
Trypsin digestion of AAV-2 ............. ...... ._ ...............87...












Fine mapping of the trypsin cleavage site. ............_....._ ....__ ..........8
Trypsin-Treated Virons Remain Intact ................. ...............92................

5 MASS SPECTROMETRY FOR AAV CAPSID SEROTYPE IDENTIFICATION ...........110


AAV-CSI Introduction ................. ...............110......... ......
Results and Discussion ................ ...............115................
M materials and M ethods .............. ...............123....
Viruses and cell lines............... ...............123.
Protein gel electrophoresis .............. ...............124....
Mass Spec In-gel digestion protocol .............. ...............124....
M ass spec protocol .............. ...............125....
Database Searching ................. ...............126..
Criteria For Protein Identification ................. ......... ...............126 ....


APPENDIX: AAV CAPSID ALIGNMENT ....._ .....___ ........__ .............2


LIST OF REFERENCES ............ .......__ ...............179.


BIOGRAPHICAL SKETCH ............ ...... ._ ...............193..












































10











LIST OF TABLES


Table page

2-1 Parvovirus subunit association energies .............. ...............29....

3-1 The Hyve strongest interactions at the icosahedral 5-fold axis of symmetry ......................36

3-2 Specific amino acid interactions at the icosahedral 5-fold axis of symmetry ........._.........36

3-3 The Hyve strongest interactions at the icosahedral 3-fold axis of symmetry ......................39

3-4 Specific amino acid interactions at the icosahedral 3-fold axis of symmetry ........._._........39

3-5 The Hyve strongest interactions at the icosahedral 2-fold axis of symmetry ......................45

3-6 Specific amino acid interactions at the icosahedral 2-fold axis of symmetry ........._._........45

3-7 plM45 based plasmids for the production of mutant AAV-2 capsids .............. .............49

3-8 Amino acid alignment data for the amino acid sequence in the region of Mut33 .............49

3-9 Parvovirus structural capsid protein alignment for Mutl9 residues .............. .................50

3-10 Parvovirus structural capsid protein alignment for Mut24 residues .............. .................50

3-11 Parvovirus structural capsid protein alignment for Mut26 residues .............. .................50

3-12 Parvovirus structural capsid protein alignment for Mut33 residues .............. .................50

3-13 Parvovirus structural capsid protein alignment for Mut46 residues .............. ..............51

3-14 Evaluation of the effect of the mutations in Mut24 on amino acid interactions ................64

3-15 Evaluation of the effect of the mutations in Mut26 on amino acid interactions ................69

3-16 Evaluation of the effect of the mutations in Mut3 3 on amino acid interactions ................73

4-1 Predicted AAV VP I tryptic fragment mass from cleavage in the G-H loop ................... ..91

5-1 AAV Serotype Amino Acid Identity Table for AAV Serotypes 1 11 ................... .......114











LIST OF FIGURES


Figure page
1-1 The single-stranded DNA genome of AAV-2 ................. ....__ ......_.............21

2-1 The structure of a monomeric subunit of AAV-2, as determined by Xie, et al .................25

2-2 Icosahedral virus particle diagram from VIPERdb ................. ............... ......... ...28

2-3 Model of Parvovirus Assembly through a Pentameric Intermediate. .............. .... ........._..30

2-4 Model of Parvovirus Assembly through a Trimeric Intermediate ................. .................3 2

3-1 Residues at the five fold symmetry axis that are changed in Mutl9. ............... ...............53

3-2 Residues at the two fold symmetry axis that are changed in Mutl9. ............. .................54

3-3 The predicted subunit as a result of the mutations made in Mutl9 is a trimer. .................55

3-4 Residues that may be responsible for the phenotype of Mutl 9 ................ ................ ...5 5

3-5 Intermolecular residues that play a role in the phenotype of Mutl9 ................. ...............57

3-6 Asp231 has been changed to Ala231, as in Mutl9 ................. ...............57..........

3-7 Residues at the 5-fold symmetry axis that are changed in Mut24 .............. ...................59

3-8 Residues at the 2-fold symmetry axis that are changed in Mut24 .............. ...................60

3-9 The predicted subunit as a result of the mutations made in Mut24 is a trimer. .................61

3-10 Intermolecular and intramolecular residues that are disrupted ................. ............... ....62

3-11 Mut24 interactions that are effected by the mutation .............. ...............63....

3-12 Residues at the 5-fold symmetry axis that are changed in Mut26.. ............ ...................65

3-13 Cut-away view of the 5-fold axis of symmetry ................. ...............66........... .

3-14 Interactions with the residues involved in Mut26 ................. ..............................67

3-15 Model of Mut26 after the mutation ................. ...............68........... ..

3-16 Mut33 pentamer ................. ...............70........... ....

3-17 Mut3 3 residues ................. ...............71................

3-18 Interactions in the region of Mut33 .............. ...............72............. ...

3-19 Model of residues mutated in Mut3 3 ............... .............72...............











3-20 The location of residues that are mutated in Mut46. ............__....._ ................74

3-21 Intramolecular interactions with the residues that are changed in Mut46,. .......................75

3 -22 Intramolecular interactions after the residues in Mut46 have been changed ................... ..76

3-23 Transfection of Mut 33. ........._._ ........... ...............82.....

3-24 Green cell assay of transfections at 320 C. ............. ...............83.....

3-25 Transfections at 37 OC............... ...............84...

3-26 Green cell assay after transfection at 39.5 OC.. ............ ...............85.....

4-1 Western blot of several AAV-2 preps............... ...............89.

4-2 Tryptic mapping of full AAV-2 capsids ..........._ ..... ._ ....__ ............. ...90

4-3 Trypsinized AAV-2 virions remain intact .............. ...............93....

4-4 Proteolysis distinguishes full and empty AAV-2 particles ................. .. ....._ ..........97

4-5 AAV-2, AAV-1 and AAV-5 capsids can be distinguished proteolytically ................... ....99

4-6 AAV-2, AAV-1, and AAV-5 have different susceptibility to Chymotrypsin. ................101

4-7 Capsid structure .............. ...............102....

4-8 AAV-1, AAV-2 and AAV-5 Homology models. ............ .....__. .........._.. ....0

5-1 Phylogenetic Tree of AAV Serotypes 1 1 1................ .......... ........ .............1 15

5-2 Coomassie stained samples for mass spectrometry ................. ............................116

5-3 Coomassie stained samples for mass spectrometry identification ................. ...............118

5-4 Mass spec data analyzed using the software program Scaffold............... .................1

5-5 Mass spectrometry data for K544E AAV-4 mutant and wt AAV-4 ............... .... .........._.122










LIST OF ABBREVIATIONS

Acidic amino acid interaction

Angstrom

Adeno-Associated Virus

Adeno-Associated Virus-Capsid Serotype Identification

Basic amino acid interaction

Canine Parvovirus

Cryo-Electron Microscopy

cold-sensitive

Defective Interfering Particle

Deoxyribonucleic acid

Feline Parvovirus

Hydrophobic amino acid integration

heparin negative, virus is unable to bind heparin

heparin positive, virus binds heparin

heat-sensitive

Low infectious particle phenotype

Mass Spectrometry

Mutant

Minute Virus of Mice

non-infectious

Polar, uncharged amino acid interaction

partially defective

Pentamers of Trimers

Porcine Parvovirus


A

a

AAV

AAV-CSI

B

CPV

Cryo-EM

cs

DI particle

DNA

FPV

H

hep-

hep+

hs

lip mutant

MS

Mut

MVM

ni

P

pd

POTs

PPV









TOPs Trimers of Pentamers

VIPERdb Virus Particle Explorer Database

wt wild-type










Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

STUDIES OF THE ADENO-ASSOCIATED VIRUS CAPSID

By

Kim Marie Van Vliet

August 2007

Chair: Richard O. Snyder
Maj or: Medical Sciences Molecular Genetics and Microbiology

Adeno-associated virus (AAV) is a promising gene transfer vector that has been shown to

effect long-term gene expression and disease correction with low toxicity in animal models, and

is well tolerated in human clinical trials. The AAV capsid plays an essential role in cell binding,

internalization, and trafficking, which are critical processes for gene delivery to specific cells.

The structural proteins of the capsid spontaneously self-assemble into preformed shells, and then

DNA packaging occurs. Although the viral capsid proteins self-assemble, little is known about

this process. Potential subunits of assembly have been isolated by other investigators and this

data was utilized to develop the two general models for Parvovirus assembly discussed here.

Specific interactions that comprise the AAV-2 capsid subunit interfaces are analyzed with

respect to several capsid mutants and their impact on the formation of a macromolecular

structure. A better understanding of specific interactions required for AAV capsid assembly will

allow for the development of customized targeting AAV vectors in the future.

The AAV capsid is remarkably stable, which is a desirable characteristic for gene therapy

vectors; however, the work presented here demonstrates that AAV serotypes exhibit differential

susceptibility to proteases. The capsid fragmentation pattern upon limited proteolysis, as well as

the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each









serotype that can be used for capsid identity validation. In addition, protease susceptibility is

utilized to study dynamic structural changes of intact capsids in solution. A high-throughput

method for AAV capsid serotype identification (AAV-CSI) utilizing denatured capsid proteins

was also developed. This will be useful to verify customized gene therapy vectors that will be

produced in the future, which may contain components of more than one AAV serotype.









CHAPTER 1
INTTRODUCTION

The Family Parvoviridae

Adeno-associated virus (AAV) is a member of the family Parvoviridae. The family

Parvoviridae is divided into two subfamilies, Densovirinae, which are parvoviruses that infect

arthropods, and Parvovirinae,~PP~~PP~~PP~~P which are parvoviruses that infect vertebrates. The subfamily

Parvovirinae is further subdivided into five genera: 1) ParvovirusPP~~PP~~~PP~~PP which includes MVM and

CPV 2) El~rr ph~il ims, which includes Bl9 3) Amdovirus, which includes Aleutian Mink Disease

Virus (AMD) 4) Bocavirus, which includes Bovine Parvovirus (BPV), Minute Virus of Canines

(MVC) and human Bocavirus (HBoV) [1], and 5) Dependovirus, which includes AAV. A newly

discovered parvovirus, parv4, has been shown to be unrelated to the known parvoviruses, and

may become a new genus [2]. The recently discovered parvoviruses, parv4 and HBoV, are

considered emerging infectious pathogens and like Bl9 are implicated in disease in humans.

Unlike parv4, HBoV and Bl9, AAV is not associated with disease in humans. Dependoviruses,

like AAV are unique in that the virus is replication deficient and except under special

circumstances, it requires a helper virus, such as adenovirus or herpes virus for replication [3].

AAV is currently being utilized for gene therapy applications and has been well tolerated

in human clinical trials. Additional features of AAV vectors that make them promising gene

therapy vectors include: 1) Stable long-term expression of transgenes in several tissues including

the lung, liver, brain, muscle, vacular endothelium and hematopoietic cells [4-11]. 2) Ability to

transduce both dividing and non-dividing cells [12]. 3) Episomal maintenance: wild-type AAV

exhibits site-specific integration of its genome into chromosome 19; however, the maj ority of

vector genomes appear to be maintained episomally [13-15]. Therefore, the risk of integration is

minimal as compared to retroviral vectors that require integration for gene expression, exhibit









random integration into the host genome, and have the potential to activate proto-oncogenes [16-

18]. 4) Low immunogenicity in animal models recently, it was reported that AAV2 vectors can

activate functional cytotoxic CD8+ T cells specific to the AAV2 capsid in mice after

intramuscular inj section [19, 20]. Recent clinical trial data suggests that T cell mediated immunity

to AAV capsid antigens caused destruction of AAV-2 transduced hepatocytes in humans [6, 21].

Studies in mice have shown that AAV-2 capsids are able to activate cytotoxic T cells but did not

render the transduced hepatocytes as effective cytolytic targets [22]. This suggests that currently

available animal models may not be suffcient for studying the immune response to the AAV

capsid that has been shown to occur in human patients. In addition, humoral immune responses

are generated to the AAV capsid that may result in viral neutralization [21]. There are 11 known

serotypes of AAV with nearly 100 recently discovered genotypic variants [23-27]. The use of

other serotypes of AAV may circumvent the humoral response and allow for repeated treatments

if necessary [28]. However, immune suppressive therapy may be needed during treatment with

AAV to mitigate the host immune response in human patients, as well as animals[29]. Recent

data in a canine model of Duchenne Muscular Dystrophy demonstrated that a brief course of an

immunosuppressive regimen was well tolerated and sumfcient to permit sustained AAV-

mediated dystrophin expression [30]. A recent study evaluating the immune response to AAV-8

expressing F.IX in rhesus macaques, the natural host for AAV-8, evaluated preexisting

neutralizing antibodies to AAV-8, a standard T-cell immunosuppressive regimen, as well as

effcacy and safety of administration. This study showed that low titers of preexisting antibody

abrogate transduction, and the use of an immunosuppressive regimen did not induce toxicity, or

impair AAV transduction or F.IX synthesis [29]. AAV vectors may also be useful for providing

long term gene expression in immunocompromised hosts, which is an advantage over other









vector systems. 5) Physiochemical stability: AAV virions are highly stable over a wide range of

pH and temperature, a feature that is important for production and purification methods for

clinical grade AAV vectors, as well as for stability of the final vector product [31i].

The AAV Genome

The genome of AAV-2 is composed of 4679 bases of linear, single-stranded DNA. There

are two genes, rep and cap, which are flanked by the inverted terminal repeats, ITRs. The ITRs

consist of 145 nucleotides on the 3' end and 5' end of the genome, which due to base pairing,

forms a Y or a T-shaped structure. These are the only sequences required in cis for viral DNA

replication and packaging. The rep gene encodes four non-structural proteins, Rep78, Rep68,

Rep52 and Rep40, which play a role in viral genome replication, transcriptional regulation [32],

as well as packaging. Rep78 and Rep68 are translated from mRNAs transcribed from the p5

promoter, while Rep52, and Rep40 are derived from mRNAs transcribed from the pl9 promoter.

Alternative splicing replaces a 92 amino acid C-terminal element in Rep78 and Rep52 with a 9

amino acid element in Rep68 and Rep40 [33]. The cap gene encodes the three structural proteins

of the AAV capsid, VPI (87 kDa), VP2 (72 kDa), and VP3 (63 kDa) translated from the pl9

promoter. Differential splicing yields maj or and minor spliced products. VP I is translated from

the minor spliced mRNA, yielding less VPI protein. VP2 and VP3 are both translated from the

more abundant maj or spliced mRNA; however, VP2 is translated less efficiently because it

initiates at an ACG codon, while VP3 is translated very efficiently because of a favorable Kozak

context [34]. As a result, the AAV capsid proteins, which differ only in their N-terminal region,

are present in the mature virion in a ratio of 1:1:10 (VPl:VP2:VP3). The single stranded DNA

genome of AAV and its products are depicted in Figure 1-1.























I _~Rep68





Figure 1-1. The single-stranded DNA genome of AAV-2. The inverted terminal repeats (ITRs)
flank the two open reading frames rep and cap. The rep gene encodes four nonstructural
proteins, Rep78, Rep68, Rep52 and Rep40. The cap gene encodes three structural proteins
VP1, VP2 and VP3. The location of the promoters, p5, pl9, and p40 are depicted by arrows.
Vectors

Three features of AAV-2 which may limit its use as a gene therapy vector include: 1) its

small size, with an ability to package approximately 4.7 kb, 2) the difficulty and expense of

production of large quantities of high titer virus for clinical trials, and 3) the wide range of tissue

tropism of AAV-2, as a result of using heparin sulfate proteoglycan as a receptor, which could

result in expression of the transgene in non-target tissues. Studies have addressed the small size

of the AAV capsid and an evaluation of the packaging limits of AAV has shown that the AAV

capsid is capable of packaging and protecting DNA up to 6.0 kb; however, post-entry, capsids

with DNA larger than the AAV genome are preferentially degraded by the proteosome. It has

been shown that proteosome inhibitors can be used to overcome this barrier [35]. The


ITR
p5


LI


I ~1 78'

7:

~VP376:

I ~Re 78


ITR
PolyA

Cap-C~


7 U
2 kDa

3 kDa


pl9 p40


Rep









development of self-complementary vectors in order to introduce larger DNA sequences than can

be packaged in a single AAV capsid has provided a method to overcome the packaging limit of

the AAV capsid [36-3 8]. This provides a mechanism to potentially expand the number of

diseases that AAV may be utilized to treat.

Improved production methods for AAV have resulted in the ability to produce the large

amounts of virus required for clinical trials. Although virus for clinical trials is currently

produced by transient transfection of monolayers of cells, improved production methods have

allowed for AAV to be produced in other systems such as baculovirus and herpes virus [39],

which provide scalability, and will allow for virus to be produced with higher titers and greater

yields [40-45]. Studies have also evaluated the natural tropism for AAV serotypes, as well as

specific targeting of AAV vectors. A greater understanding of the AAV capsid structure, and the

interaction of the subunits that assemble to form the capsid, as well as the regions of the capsid

surface that play a role in the various stages of the life cycle of the virion, including attachment

to the cellular receptor, intracellular trafficking, as well as specific requirements for viral

packaging, will aid in the production of customized and improved viral vectors, with higher titers

and specific targeting.

The chapters that follow provide an in depth analysis of the AAV capsid, beginning with

parvovirus capsid assembly models (Chapter 2), as well as data regarding several AAV capsid

mutants (Chapter 3) and their phenotypes. The 11 capsid serotypes of AAV exhibit different

tissue tropism and different transduction efficiencies. Chapters 4 and 5 provide methods to verify

the AAV capsid of the final vector product that will be administered to patients. Intact AAV

capsids were evaluated in solution using limited proteolysis to determine the AAV serotype

based on the fragmentation pattern [46]. This method was also used to evaluate the structural









dynamics of the virion (Chapter 4). Chapter 5 describes AAV Capsid Serotype Identification

(AAV-CSI). Denatured AAV capsids are subj ected to proteolysis and the AAV capsid serotype

is determined based on the fragmentation pattern. This provides a high throughput method for

capsid identity testing. Overall, the data presented provides a biophysical, biochemical, and

genetic analysis of the AAV capsid.









CHAPTER 2
MODELS OF AAV CAPSID ASSEMBLY

Capsid Structure

The adeno-associated virus capsid is approximately 25 nm in diameter and is composed of

60 subunits arranged in T=1 icosahedral symmetry. Because AAV has a number of features that

make it attractive as a gene transfer vector, many studies have focused on the basic biology of

the virus, including studies that address the structural characteristics. Cryo-EM or crystal

structures for AAV-2, AAV-4, and AAV-5 have been determined [47-51], and the crystal

structure for AAV-8 is currently in progress [45]. Dependoviruses share the same capsid subunit

fold as the other members of the family Parvoviridae,~PP~~PP~~PP~~P including the insect densoviruses, and the

autonomously replicating parvoviruses such as canine parvovirus (CPV) and minute virus of

mice (MVM), even though AAV shares low capsid primary sequence identity (7-22%) [52-54].

The monomeric subunit of AAV has a conserved P-barrel core that is common in viral capsid

proteins. The structure of a monomeric subunit of AAV-2 as determined by Xie, et al. [48] is

shown in Figure 2-1.

The motif is an eight-stranded anti-parallel P-barrel motif (j elly-roll P-barrel), with the beta

strands labeled B-I [52]. The P-strand labeled A is also present in all parvoviruses, including

AAV. AAV has long loop insertions between the strands of the core P-barrel that are labeled

according to the beta strands that they flank. These long interstrand loops contain beta ribbons

and elements of secondary structure that form much of the outer surface features of the AAV

capsid. The GH loop is the longest interstrand loop and three VP's interact extensively at each

icosahedral 3-fold axis of symmetry forming a prominent spike. Five DE loops from each viral

protein form antiparallel beta ribbons at the 5-fold axis of symmetry that results in a cylindrical































Figure 2-1. The structure of a monomeric subunit of AAV-2, as determined by Xie, et al. [55].
The beta ribbons are depicted in black and labeled A through I, and helices are shown
in grey. This image was produced using the AAV-2 coordinates from the Protein
Databank, (PDB Accession #11p3), with the molecular modeling software PyMOL
(www.pymol.org) provided by DeLano Scientific, Palo Alto, CA [56].

structure that surrounds a canyon-like depression. At the 2-fold axis of symmetry there is a small

depression, often referred to as the 2-fold dimple [57, 58]. Analysis of newly discovered AAV

genotypes identified a total of 12 hypervariable regions on the AAV capsid [59]. Overlaying

these regions onto the X-ray crystallographic model of AAV-2 showed that these regions are

exposed on the capsid surface. Most of the variability is located between the G and H P strands,

which are implicated in the formation of the valley at the icosahedral 3-fold axis of symmetry

and the protrusions that surround it. These surface features of the virus are responsible for the

interactions of the capsid with cellular receptors, as well as antibodies.

Capsid Assembly and Packaging

In 1980, Myers and Carter' s work provided evidence that the structural proteins for AAV

assemble into empty capsids, and then the genome is packaged into these preformed capsids









[60]. Pulse-chase experiments showed that empty particles rapidly accumulate (10 20 minutes),

but that mature "full" virions accumulated more slowly (4 to 8 hours). They also showed that the

number of empty viral particles decreases at the same rate as the number of DNA-containing

mature virions increases over the course of infection. Additionally, de la Maza and Carter

showed that DI particles, AAV genomes with deletions, are packaged into apparently normal

capsids, indicating that full-length viral genomic DNA is not required for the assembly or

structural integrity of the AAV capsid [61]. In the absence of capsid assembly, ssDNA does not

accumulate, further suggesting that empty capsids form first. Interactions between the preformed

AAV capsid and Rep52 provides a mechanism where the nonstructural protein's helicase activity

inserts the viral DNA [62]. Data based on MVM and AAV suggest that the DNA is inserted into

the capsid at the 5-fold pore [63, 64]. Within the cell, capsid assembly occurs at centers within

the nucleus where Rep proteins, capsid proteins and DNA are co-localized [65]. Empty AAV

capsids can be produced by expressing the AAV cap gene in insect cells using a baculovirus

expression system [66] or in mammalian cells utilizing a recombinant adenovirus expressing the

AAV capsid proteins. These systems have advanced structural studies of the AAV capsid as a

result of the large amount of empty capsids or virus-like particles (VLPs) that can be produced.

Studies of AAV assembly have demonstrated that VP3 alone is sufficient to form VLPs [67], but

VP I is required for infectivity [68]. Subsequently, it was shown that the unique N-terminus of

VPI has phospholipase A2 activity and contains a nuclear localization signal (NLS) [69]. Studies

have demonstrated that the unique N-terminus of VP I is inside the capsid near the 2-fold axis of

symmetry and becomes externalized through the 5-fold pore during viral trafficking in the cell

[70]. The N-terminus of VP2 also has a NLS and may play a role in transporting VP3 into the

nucleus; however, it has been shown that the N-terminus of VP2 is nonessential and that









infectious virus can be produced that lack VP2 entirely [71]. Additionally, the N-terminus of

VP2 has been replaced with green fluorescent protein and these capsids still assemble and

maintained infectivity. This demonstrates that VP2 can tolerate peptide insertions and may be

useful for incorporating peptides into the capsid for cell-specific targeting of AAV.

Virus Assembly for ssDNA Viruses

Spontaneous assembly of macromolecular structures such as a virus capsid is a process

that is not clearly understood. For a T=1 icosahedral capsid, such as AAV, 60 subunits must

come together in the correct orientation to provide a stable capsid, and AAV assembles with high

fidelity. There are features on the surface of the AAV capsid that distinguish the icosahedral 5-

fold, 3-fold or 2-fold axis of symmetry, for example, the 5-fold pore, the 3-fold mounds or the 2-

fold dimple. These regions on the capsid are important for various steps in the virus life cycle.

The 3-fold mounds are implicated in receptor binding, and the 5-fold pore has been implicated in

both externalization of the unique N-terminus of VP I as well as DNA packaging. In vitro studies

have identified a number of potential assembly intermediates [60, 72].

Studies of CPV structure estimating the free energy of association have revealed that the

formation of 3-fold and 5-fold contacts likely takes precedence over 2-fold interactions [52, 53].

For AAV-2, the crystal structure is known, and the individual amino acid interactions at the

interface between subunits have been analyzed and will be discussed further in Chapter 3. The

strongest interactions for AAV-2 are at the 3-fold axis of symmetry, followed by the 5-fold axis

of symmetry, and the weakest interactions are at the 2-fold axis of symmetry. The image in

Figure 2-2 depicts an icosahedral virus particle (taken from VIPERdb) [73]. The subunit

association energies for AAV-2 and other parvoviruses are shown in Table 2-1. This data verifies

that the subunit association energies for other parvoviruses for the 5-fold, 3-fold and 2-fold

interactions are comparable (data from VIPERdb) [73].










The potential intermediates of assembly for AAV could include pentameric subunits, 12 of

which must come together to make an intact capsid, trimeric subunits, 20 of which comprise an

intact capsid, or dimeric subunits, 30 of which must come together to produce an intact capsid.

The two favored hypotheses for intermediates in assembly are: 1. Assembly via a pentameric

intermediate or 2. Assembly via a trimeric intermediate.

Assembly via a Pentameric Intermediate

If a pentameric intermediate is the assembly intermediate, pentamers form first

(intrapentameric interactions), and then interpentameric interactions form and subsequent

pentamers are added. This model requires a trimer of pentamers or TOPs, to produce the 5-fold,

2-fold and 3-fold interactions. In (DX174, a ssDNA bacteriophage, the first detectable

intermediates in assembly are pentamers of the F protein [74]. If the mechanism of assembly for

ssDNA viruses is conserved, the hypothesis regarding AAV assembly is that pentamers form






lb 10X


5 1








A7.7









Table 2-1. Parvovirus Subunit Association Energies expressed in kcal/mol and Buried Interface
Surface in 2', calculated in VIPERdb [73]. For the parvoviruses listed in this table,
the strongest interactions occur at the icosahedral 3-fold axis of symmetry, followed
by the icosahedral 5-fold axis of symmetry, followed by the weakest interactions,
which are at the icosahedral 2-fold axis of symmetry. Protein Databank accession
numbers are listed in parentheses below the virus abbreviation.
5-fold 2-fold 3-fold 5-fold 2-fold 3-fold
(Al:A2) (Al:A6) (Al:A7) Buried Buried Buried
Association Association Association Surface Surface Surface
energies energies energies (12) 2a (2)
kcal/mol kcal/mol kcal/mol
AAV-2 -98.0 -64.0 -209.0 4961.0 3127.0 10437.0
(11p3)
CPV -95.0 -76.0 -233.0 4654.0 3873.0 10899.0
(2cas)
MVM -97.0 -73. 0 -218.0 4875.0 3749.0 10614.0
(1mvm)
FPV -98.0 -78.0 -236.0 4793. 0 3908.0 10971.0
(1fpy)
PPV -94.0 -76.0 -23 5.0 4577.0 3914.0 11153.0
(1k3v)

first, then the 3-fold interactions, followed by the 2-fold interactions. Due to the 5-fold symmetry

inherent in icosahedral geometry, pentamer formation is likely to be a common feature in

initiation of assembly of several other small icosahedral viruses. This was suggested to be the

case for assembly of bacteriophage MS2 [75], and Norwalk virus [76]. Additionally, for the

assembly of blue tongue virus core protein vp3, Grimes et al. [77] proposed that 5-fold decamers

preassemble, and then associate to form the inner capsid. Zlotnick et al. [78] also describe the

mechanism of capsid assembly for an icosahedral plant virus as occurring via a pentameric

intermediate. Assembly via a pentameric intermediate is shown in Figure 2-3.

Assembly via a Trimeric Intermediate

If a trimeric intermediate is the assembly intermediate, trimers form first, and then

intertrimeric interactions form and then subsequent trimers are added. This model requires

pentamers of trimers or POTs, to produce the 5-fold, 3-fold and 2-fold interactions. There is data









for other parvoviruses such as MVM that suggest that trimers are the intermediate, and that VP I

and VP2 are both capable of translocating into the nucleolus where virus assembly occurs [79]

when singly expressed in transfected cells; however, only VP2 is able to assemble into capsid by

itself. Recent data for MVM suggests that trimers are actually transported through the nuclear

pore complex, not intact capsids [80]. For MVM, there are 2 proteins, VPI and VP2, present in a

ratio of 1:5 in the assembled capsid. Because trimers are more stable than pentamers and dimers,

it is thought that this energetically expensive subunit forms first and is transported through the

nuclear pore. How the stoichiometry of the viral structural proteins (1 VPl: 5 VP2) is maintained

in the assembled MVM capsid is unclear. If pentamers are the structural intermediate, as in

OX174, then the stoichiometry of 1 VPl: 4 VP2 would approximate the observed 1:5 ratio;

however, recent data does not support the hypothesis that MVM assembles via a pentameric















Mlonomeric Subunits
Pentameric Trimers of Pentamers Mlacromolecular
Intermediate Assembly
Figure 2-3. Model of Parvovirus Assembly through a Pentameric Intermediate. In this model,
monomeric subunits come together to form pentamers, and then 3 of these pentamers
come together to form trimers of pentamers (TOPs), and then pentamers add on to
form the capsid. This is the favored model for Adeno-Associated Virus (AAV)
assembly.









intermediate. The model for assembly via a trimeric intermediate is shown in Figure 2-4. A

trimeric intermediate for MVM would ensure that a macromolecular capsid was produced before

DNA could be packaged, since the 5-fold pore where DNA packaging occurs, requires

pentamers of trimers for its formation.

For AAV, if pentamers are the intermediate in assembly and are transported across the

nuclear pore complex as pentamers or as dimers of pentamers, with 1 VP1, or 1 VP2 subunit

contained in each pentamer, this would be consistent with a stoichiometry of 1:1:8 (6 VPl: 6

VP2: 48 VP3). This model also would allow for the N-terminus of VP I and VP2 to be at the 2

fold axis. For example, in Figure 2-2, VPI might be subunit Al or AS, and VP2 might be subunit

A6 or A7. Ruffing, et al. [66] showed that coexpression of VPI or VP2 with VP3 in insect cells

resulted in accumulation of VP3 in the nucleus. This suggests that capsid proteins need to form

complexes for efficient nuclear accumulation and particle assembly. If the intermediate in AAV

assembly is a trimer, it is unclear how the stoichiometry of VPl1:VP2:VP3 is maintained.

Girod, et al. [69] showed that the unique region of VP I contains a phospholipase A2

domain (PLA2) that is required for infectivity. While assembly and packaging were not affected

by mutations in this region, infectivity was reduced in these lip mutants [68]. It has also been

suggested by Zadori, et al. [81] that the PLA2 domain is sometimes exposed, possibly through

the 5-fold channel. Recent studies with capsid mutants also support the N-terminus of VPI or

VP2 being exposed through the 5-fold pore [82]. VP3 is transcribed more efficiently than VP1,

or VP2 and it has been proposed that the lack of availability of more significant quantities of

VP I and VP2 results in the ratio of 1:1:10 in intact particles; however, a more ordered, less

stochastic
























vV V Pentamers
Mlonomeric Subunits Trimeric Intermediate of Trimers

Figure 2-4. Model of Parvovirus Assembly through a Trimeric Intermediate. In this model,
monomeric subunits come together to form trimers, and then five trimers come
together to form pentamers, and then pentamers add on to form the capsid. This is the
favored model for Minute Virus of Mice (MVM) assembly.

mechanism for assembly would ensure that the particles that are produced contain VPI and

would result in the formation of infectious particles. Alternatively, for every particle produced,

approximately 1 in 100 is infectious; therefore, the incorporation of VPI and VP2 in assembled

particles might be a stochastic process, as has been suggested. For AAV, since pentameric

interactions require less energy to form, these would be favored over trimers. If the virus were to

assemble its most expensive and most stable subunit first, it would risk using its resources to

build subunits and potentially never attain an intact capsid. Additionally, trimers, as the most

stable subunit, should be easy to isolate if they were the intermediate of assembly, even though

they are short-lived species. If pentamers are the intermediate of assembly for AAV, this

suggests that the site on the surface of the capsid where the nonstructural Rep protein interacts

for packaging must either not be present in pentameric intermediates or perhaps is present but

some cellular protein that is part of the packaging complex is not available at this step.









In terms of building a macromolecular structure, both of the models, either pentamers of

trimers (POTs), or trimers of pentamers (TOPs) demonstrate that the important interactions for

achieving an intact capsid are the two-fold interactions. Although they are the weakest

interactions, there are many of them. In addition, when either the pentamer or the trimer is added,

these weak two-fold interactions would enable a new subunit to attach, detach, reattach, in effect

allowing it to be sampled so that it is added in the correct orientation (like a puzzle piece). The

assembly model favored for AAV based on all of the data is trimers of pentamers (TOPs). This

model allows for two pentamers to come together, so intrapentameric interactions form first, then

interpentameric interactions second, which are stabilized by the two-fold interactions at the

pentameric interfaces, and as the trimer of pentamers come together, these interactions allow for

the energentically expensive three-fold intratrimeric interactions. This model of AAV assembly

incorporates what is currently known about assembly, capsid stability and disassembly. The

AAV capsid is stable over a wide range of pH and temperature. It has been shown that upon

treating the AAV capsid at 65 OC for 30 minutes that it' s possible to expose the unique N-

terminus of VP 1, and VP2 [70]. However, upon heat treatment of the AAV capsid, experiments

to date to isolate an assembly intermediate have been unsuccessful. This suggests that this is an

all-or-none phenomenon. The energy required to break the strong interactions at the 3-fold axis

of symmetry results in complete disruption of the AAV capsid. This is consistent with a

pentameric intermediate, where the strongest interaction at the 3-fold axis of symmetry would

form last, and for capsid disassembly to occur, would need to be disrupted first. If trimers are the

assembly intermediate, and they form pentamers of trimers, and then the weak 2-fold interactions

form last, in a disassembly model, these should be relatively easy to disrupt giving either a









pentameric or trimeric subunit. Computer modeling data for AAV also supports pentamers as the

intermediate in assembly [83].









CHAPTER 3
AAV-2 ASSE1VBLY AND SUBUNIT INTERACTIONS

Introduction

Understanding the capsid subunit interactions that are critical for AAV virion assembly

will allow for the production of customized vectors in the future. An analysis of the types of

residues located at the 5-fold axis of symmetry, the 3-fold axis of symmetry, as well as the 2-fold

axis of symmetry provides a starting point for evaluating residues that are important for virus

assembly. The interactions at the 5-fold axis of symmetry are shown in Table 3-1, with the

strongest interactions listed first. The specific amino acids involved in the strongest

intrapentermic interactions at the 5-fold axis of symmetry are shown in Table 3-2. For the

mutants produced by Wu, et al. [84], an analysis of the phenotype when that amino acid has been

mutated is also included.

The strongest interaction energies for the 3-fold axis of symmetry are listed in Table 3-3.

The specific residues involved in these interactions, as well as the phenotype of capsids with

mutations in these residues are listed in Table 3-4. The mutations at the 3-fold axis may provide

information regarding assembly and packaging since mutants have been constructed in which the

strongest interactions at the 3-fold axis have been disrupted. One of these mutants (Mut3 1)

results in the formation of empty particles but is unable to package DNA. This would be

consistent with a conserved mechanism for packaging in small DNA viruses, like OX174 where

DNA is inserted at the 3-fold, and exits the virion thru the 5-fold pore. However, due to other

mutant studies, the most likely site for DNA packaging for AAV is through the 5-fold pore [85].

The interactions at the 3-fold axis of symmetry are very strong and would represent a significant

barrier to packaging. These interactions are probably responsible for the remarkable stability of










Table 3-1. The Hyve strongest interactions at the icosahedral 5-fold axis of symmetry (VIPERdb).
The amino acids that are the strongest at the icosahedral 5-fold axis of symmetry are
listed, using VPI numbering. This refers to interactions between subunits Al and A2
in the icosahedral virus particle in Figure 2-2. The type of interactions are indicated,
B = basic, H = hydrophobic, P= Polar, uncharged. The phenotype of AAV mutants
generated by Wu, et al. [84] are listed, wt = wild type.

Amino VP I Energy
Acid numbering Type (kcal/mol) Wu, et al. mutant phenotype [84]
ARG 404 B -3.76
LYS 665 B -3.57 Mut45, wt
PHE 661 H -3.11
TYR 397 P -3.07
MET 402 H -2.14

Table 3-2. Specific amino acid interactions at the icosahedral 5-fold axis of symmetry
(VIPERdb). Specific amino acids at the icosahedral 5-fold axis of symmetry are
listed, using VPI numbering, with the strongest interactions listed first, and the
weakest interactions listed last. This list includes all interactions between subunits Al
and A2 in the icosahedral virus particle depicted in Figure 2-2. The type of
interactions are indicated, A = acidic, B = basic, H = hydrophobic, P = Polar,
uncharged. The phenotype of AAV mutants generated by Wu, et al. are listed, either
in the column to the left of the amino acid list if the mutation was made in the 1st
amino acid of the pair listed, or in the column to the right of the amino acid list if the
mutation was made in the 2nd amino acid of the pair listed. cs cold-sensitive, hep+
= heparin positive, hs = heat-sensitive, ni = non-infectious, pd = partially defective,
wt = wild-type. Amino acids that were not mutated by Wu, et al. [84], but flank the
mutated amino acids are designated unchanged.
Type of Mutant Phenotype VP I Mutant Phenotype
Interaction (Wu, et al.[84]) numbering (Wu, et al.[84])
B -H R404:V221
B -H R404: G222
B -P R404: S224
B -P R404: S225
B -P R404:N317
B -P R404:Q319
B -P R404:T405
B A Mut45 wt K665:D368
H-P F661:Y252
H H F661:G360
H H F661:M371
H -H F661:P373










Table 3-2 Continued
P-H
P A
P-P
P-P
P A
P-H
H-P
H-P
H P
H-P
H-P
H-P
H H
H-P
H H
P-P
P-P
P-P
H A
H-H
H-H
H H
H-P
A H
A-H
A-H
A H
H-H
H H
H-P
P--H
P H
P-P
P--B
P-P
P--H
P-P
P-P
H-H
H H
H H
B-P
H-P
H-B
H H


'[397 :C230
Y397 :D231
Y397 : S232
Y397 : S292
Y397 :D295
Y397:1P366
M402: S224
34402:N227
M402:W228
M402:F316
34402:N317
M402:4Q677
F392:F365
F392:T713
F392:V714
T337:4Q319
T337:N334
T337:T405
P399:D231
P657:A248
P657:1P250
P657:M371
P657:Y673
E396:W228
E396:1F365
E396:1P366
E396:A367
P654:A248
P654:V369
P654:T675
19656:V323
N656:I332
N656:Y673
IQ385:K706
Q385:S707
IQ385:V708
Q259:N709
Q259:T716
F666:A248
F666:V369
F666:M371
R389:Y704
A663:4Q359
I670:K321
I670:I332


Mhttl9 -unchanged
Mutl9 ni, no capsid
Mkitl9 -unchanged
Matt24 -unchanged
Mut24 ni, no capsid




Mutl9 unchanged











Mutl9 ni, no capsid


Mutl9 unchanged







Matt26 -unchanged


Matt48 -pd, hep+











Matt26 -hs


Mut:28 -cs









Matt29 --wa











































Mutl9 -unchanged








Mutl9 -unchanged


Table 3-2 Continued
P-P
P-P
P-H
P-H
P-H
H-P
H H
H H
B-H


T651:T246
T651:Q677
Y257:F365
Y257:A367
Y257:V714
P652:T246
P652:V369
L336:V221
K258:G718

A386:V710
V387:Y704
L256:43718
V221:'V221
N382:K706
N326:T329
N326:T331
Y275:'V710
Y275:T713
Y275:'V714
Q401:N227
N335:K321
N3 3 5 N334
S338:4Q319
A218:N223
C394:F365
C394:P366
S400:W228
S662:M371
N407:N223
F669:V369
S390:V710
T339:S224
T339:N317
A655:I332
Q341:W228
F273: V710


Mut21 unchanged






Mut21 -pd, unstable
cap sid


Mut21 unchanged


Matt48 -pd, hep+







Matt26 -hs


Mkitl8 -unchanged





Table 3-3. The Hyve strongest interactions at the icosahedral 3-fold axis of symmetry (VIPERdb).
The amino acids that are the strongest at the icosahedral 3-fold axis of symmetry are
listed, using VPI numbering. This refers to interactions between subunits Al and A7
in the icosahedral virus particle in Figure 2-2. The type of interactions are indicated,
B = basic, H = hydrophobic, P = Polar, uncharged. The phenotype of AAV mutants
generated by Wu, et al. [84]are listed, wt = wild type.


Amino


VPI


Energy
Type (kcal/mol)


Acid numbering


Wu, et al. [84] mutant phenotype
Mut47, ni, A20- (Hartladge, Warrington,
Muzyczka, unpublished data)
Mut31, ni, empty particle
Mut33, hs


LYS
ARG
ARG
TYR
PRO


-4.88
-3.92
-3.79
-3.44
-3.07


Table 3-4. Specific amino acid interactions at the icosahedral 3-fold axis of symmetry
(VIPERdb). Specific amino acids at the icosahedral 3-fold axis of symmetry are
listed, using VPI numbering, with the strongest interactions listed first, and the
weakest interactions listed last. This list includes all interactions between subunits Al
and A7 in the icosahedral virus particle depicted in Figure 2-2. The type of
interactions are indicated, A = acidic, B = basic, H = hydrophobic, P = Polar,
uncharged. The phenotype of AAV mutants generated by Wu, et al. [84] are listed,
either in the column to the left of the amino acid list if the mutation was made in the
1st amino acid of the pair listed, or in the column to the right of the amino acid list if
the mutation was made in the 2nd amino acid of the pair listed. ala ins = alanine
insertion, cs = cold-sensitive, hep- = heparin negative, hep+ = heparin positive, hs =
heat-sensitive, ni = non-infectious, pd = partially defective, wt = wild-type. Amino
acids that were not mutated by Wu, et al.[84], but flank the mutated amino acids are


designated unchanged.
Type of Mutant Phenotypes
Interaction (Wu, et al. [84])
B P Mut47 ni, A20
B P
B H
B P Mut31 ni, empty
B -H particle
B P
B B
B P
B -P Mut33 -hs
B A
B P
B H


VPI
numbering
K692:Q349
K692:Y397
K692:F398
R432:Y272
R432:L378
R432:N3 81
R432:R513
R432:S515
R471: S267
R471:D269
R471:N270
R471:W502


Mutant Phenotype
(Wu, et al. [84])



Mut22 unchanged


Mut3 6
Mut3 6

Mut22
Mut22


pd, hep+
unchanged

ni, full particle
unchanged










Table 3-4 Continued
P B
P--H
P-P
P H
P-H
P H
H--FI
H-H
H H
H-H
H-B
H-B
H-P
H-B
H-P
H-A
H-H
H H
H-H
H-H
H-H
H-P
H-P
H-P
H-P
H-P
H H
H H
H-P
H-H
P H
P H
P-P
P--H
P--H
H H
H H
H H
H H
H P
H-1B
H-P
H-P
H-P


Y441:R286
Y441:A357
Y441:Q359
Y441:C361
Y441:F542
Y441:P616
P602:1P481
P602:V600
P602:W606
P602:1F628
P602:H629
L583:R484
L583:Q486
L583:R487
L583:T573
L583:E574
W477:A619
W477:I1621
W477:1P632
W477:1P630
W477:L633
W694:1F392
W694:C394
W694:Y397
L437:S276
L437:Q374
L437:G376
L460:V488
L460:N495
L460:I554
Y443:I1541
Y443:G543
Y443:S547
Y443:V552
Y443:V557
F462:I541
F462:I554
F462:V557
F462:I559
V579:Y483
T/579:11484
V579:T506
V579:N596
V579:T597


Mut23 ni, no capsid










Mut43 unchanged
























Nhtt3 9 -unchanged



Mut3 8 -unchanged

Matt3 9 -unchanged

Mut3 9 unchanged
Mut3 9 unchanged










Table 3-4 Continued
H-H
H-H
H-H
H--FI
H-P
H-B
H-P
H H
H H
H P
H H
H H
H H
H-P
H H
H H
H H
H-P
H-P
B-B
B-P
P-P
P-P
P-P
P P
B-P
B P
A P
A P
P--B
P-P
P--H
P H
P H
P H
P-P
P-P
P--A
P-P
P-P
P-P
P--H
P--B
P-P
P--H


L442:A357
L442:L540
L442:1F542
L442:M634
I43 8:Y281
I43 8:H3 58
I43 8:4Q359
I438:P373
P436:I260
P436:Y272
P436:G376
P436:L378
L601:P481
L601:Y483
L601:P521
L601:G599
L445:V488
L445:S501
L445:Q536
R566:R389
R566:N511
Q584:4Q486
IQ584:N495
IQ584:N496
Q584:Y500
R475:Y508
R475:S515
D528:N382
D528:N511
S580:R484
S580:4Q486
N476:A619
N476:P632
N476:L633
N476:M634
S458:N495
S458:N497
T448:E499
T448:Y500
T448:S501
N43 5:Y281
N435:V353
N43 5:H3 58
N43 5:Y375
N435:G376


Mut22 unchanged











Matt29 --wt








Mut3 6 unchanged


Mut37 ni, full
particle




















































Mut3 8 -unchanged
Mut39 pd, unstable





Mut43 -unchanged


Mut41 -unchanged


Table 3-4 Continued
P-P
P-H
P-P
P-P
H P
H-H
H-H
H-H
H-H
H B
H-H
H-P
H B
H P
H P
H-P
H-H
H P
H-B
H H
B P
B P
P-H
P-H
P-P
A H
A-H
A P
A-H
A-B
A P
H-P
P-P
P A
P-P
P-H
P H
H-H
H-H
B-B
A B


S427:T379
S427:L380
S427:S391
S427:Y393
L478:Y508
L478: V517
L478:1P521
L478:1L633
L735:]P622
I698:R389
V605:]P622
V605:T624
V605:H627
A590:Q486
A590:Y500
P479:Y508
P479:L510
M434:S356
M434:H358
M434:L378
R693:S391
R693:Y393
Q428:1P351
19734:1P351
N734:Y393
D472:W5 02
D472:L516
D431:Y508
D431:L510
D431:R513
D431: S515
G586:N496
IQ461:N551
Q461:D553
S474:N518
S474:1P519
S474:M634
V600:V600
V600:1F628
R733 :H623
E574:H509

D439:Q359
D439:K549


M~ut3 6 -unchanged




Mut29 wt

Mut43 -unchanged
Mut43 wt
















]kht3 6 -unchanged



]kht36 -pd, hep+
Mut3 6 unchanged


Mut47 ni, A20





Mut33 hs


Mut35 -
surface


Ala ins, cs, hep-


A P
A B


Mut38 wt





























































Mut35 ala ins, cs, hep-,
surface
Mut3 8 unchanged


B -P R447:N551 Abd3 8 -unchanged
H-P W606:T624 Mut43 -unchanged
H-H W606:G626 Mtt43 -unchanged
A -P Mut37 ni, full D529:N3 82
B -A R459:D553 Mut39 -pd, unstable
P--F T592:G504
P--H Y444:L5 16 Mut3 6 -unchanged
H-H Mut43 -wt F628:F628 Mut43 -unchanged


1-4 Continued
B-A


P-P
P H
B H
P--FI
P--B
P--B.
P-P
P-P
P-P
P P
P-A
P-P
P-P
P B
P--B
P-P
P P
P P


Table 3


R447:1B499


N695:S391
N695:F392
K527: G512
IQ440:A357
IQ440:H358
S578:K507
Y576:Y483
Y576:Y508
Q589:N496
Q589: S498
19449:1B499
N449:N497
Q464:4Q359
Q464:K549
T581:R484
T581:N596
S463:T550
S463 :N551

E564:R389

I470:N270
I470:Y272
A467:Y272
19690:E347
N690:Q349
G603:L633
T456:N497
Q598:Y483
Q598:T597
IQ598:G599
Q575:H509

S446:N551
G599:G599


Mut37 ni, full


Mut38 wt



Mut3 8 unchanged
Mut3 8 unchanged


A B

FI-P
H-P
H-P
P--A
P-P
H-H
P-P
P-P
P-P
P--FI
P B

P P
H-H


Mut40 ni, hep-, full
particle, surface
Abd33 -hs



Mut47 -ni, A2(T


Mut32 --wa


Mut29 wt


Mut:1:1
Mtt22
Mtt22
Mut:27


unchanged
unchanged
unchanged
hs






































the AAV capsid, and disassembly experiments to date suggest it is not possible to gently disrupt

the capsid and isolate an intermediate of assembly. The energy required to disrupt the 3-fold

interactions results in the capsids being broken down completely into monomers when heated

and treated with SDS (data not shown). For MVM, one study evaluated critical residues

involved in inter-trimeric contacts and showed that both hydrophobic interactions and hydrogen

bonding between interfacial side chains could potentially make maj or contributions toward

holding trimeric subassemblies together. These inter-trimeric contacts were nearly identical for

both strains of MVM, MVMi which is pathogenic and MVMp which is nonpathogenic [86].

The five strongest interactions at the icosahedral 2-fold axis of symmetry are listed in

Table 3-5. The specific residues and types of interactions that occur at the icosahedral 2-fold axis

of symmetry are listed in Table 3-6. While the strongest interaction at the 2-fold axis is a

hydrophobic interaction, electrostatic interactions contribute 13.63 kcal/mol per subunit at the 2-


V


Mut47 unchanged
Mut42 ni, no capsid

Mut42 ni, no capsid


Table 3-4 Continued
H B
P A
B H
P B
B -P
H P
H P
P P
A A
P-P
P P
P A
H P
H H
H B
P B
P P
P P
B A


A425:R389
S422:D625
H629: G626
Y424 :H623
H426:T624
V595:Y483
V595:T597
S691:Y393
D608:D625
T732:S391
Q607:T624
Q607:D625
L430:Y508
L430:L510
G466:K549
Q473 :H3 58
N582:Q486
T568:T624
R729:D625


Mut29
Mut43
Mut43

Mut43


wt
wt
unchanged

unchanged


Mut43

Mut43


Mut3 8 wt


Mut43
Mut43


unchanged
wt









fold axis. Hydrophobic interactions contribute -12.79 kcal/mol per subunit at the 2-fold axis and

there are nearly twice as many interactions as compared with electrostatic interactions. This is

consistent with the suggestion that weak electrostatic interactions provide capsid stability. Polar

interactions contribute -8.75 kcal/mol per subunit and there are a similar number of polar

interactions as hydrophobic interactions. Based on this analysis, the maj ority of interactions at

the 2-fold axis of symmetry are hydrophobic interactions and polar hydrogen bonding

interactions; however, although fewer in number, the electrostatic interactions have a greater

energy contribution at the 2-fold axis of symmetry. In addition, for both Mutl9 and Mut24, when

charged residues are changed to alanine, the resulting phenotype is the absence of capsids, and

no infectious particles. Particularly with the residues involved in Mut24, the residues in Mut24

that are unchanged in this mutant (FSPRD FSPAA), S292 and P293 (VPI numbering),

Table 3-5. The five strongest interactions at the icosahedral 2-fold axis of symmetry (VIPERdb).
The amino acids that are the strongest at the icosahedral 2-fold axis of symmetry are
listed, using VPI numbering. This refers to interactions between subunits Al and A6
in the icosahedral virus particle in Figure 2-2. The type of interactions are indicated,
B = basic, H = hydrophobic. The phenotype of AAV mutants generated by Wu, et al.
[84] are listed, ni = non-infectious.
Amino VPI Energy
Acid numbering Type (kcal/mol) Wu, et al. mutant phenotype [84]
TRP 694 H -4.22
PRO 696 H -3.08
LYS 692 B -2.79 Mut47, ni, A20-
ARG 294 B -2.14 Mut24, ni, no capsid
ARG 298 B -1.91

participate in the strongest interaction at the icosahedral 2-fold axis of symmetry, yet the

phenotype of this mutant is the absence of capsids. While R294 (VPI numbering) is the 4th

strongest interaction at the 2-fold axis, the inability of this mutant to make capsids suggests that

this electrostatic interaction, while weaker than the primary hydrophobic interaction, is required

for capsid formation at the 2-fold axis of symmetry. With Mutl9, the interaction that is changed










at the 2-fold axis of symmetry effects the 3rd strongest interaction and the resulting phenotype is

the absence of capsids, and no infectious virions. The residue involved in this interaction (K692

VP I numbering), only interacts with D231 (VPI numbering), whereas other amino acid residues

involved in the 3 strongest interactions at the 2-fold axis interact with several amino acids that

could perhaps compensate for a change. This is consistent with the models of assembly presented

in Chapter 2, which suggest that the interactions at the 2-fold axis of symmetry are critical for

assembling into a macromolecular structure.

Table 3-6. Specific amino acid interactions at the icosahedral 2-fold axis of symmetry
(VIPERdb). Specific amino acids at the icosahedral 2-fold axis of symmetry are
listed, using VPI numbering, with the strongest interactions listed first, and the
weakest interactions listed last. This list includes all interactions between subunits Al
and A6 in the icosahedral virus particle depicted in Figure 2-2. The type of
interactions are indicated, A = acidic, B = basic, H = hydrophobic, P = Polar,
uncharged. The phenotype of AAV mutants generated by Wu, et al. [84] are listed,
either in the column to the left of the amino acid list if the mutation was made in the
1st amino acid of the pair listed, or in the column to the right of the amino acid list if
the mutation was made in the 2nd amino acid of the pair listed. ala ins = alanine
insertion, cs = cold-sensitive, hep- = heparin negative, hep+ = heparin positive, hs =
heat-sensitive, ni = non-infectious, pd = partially defective, wt = wild-type. Amino
acids that were not mutated by Wu, et al. [84], but flank the mutated amino acids are
designated unchanged.
Type of Mutant Phenotype VPI Mutant Phenotype
Interaction (Wu, et al. [84]) numbering (Wu, et al. [84])
H -P W694:S292 Mut24 unchanged
H -H W694:P293 Mut24 unchanged
H -H W694:F365
H H W694:P366
H H W694:F712
H -P W694:Y720
H -H P696:P293 Mut24 unchanged
H -B P696:R294 Mut24 ni, no capsid
H -P P696:Q297
H -P P696:Y700
H -P P696:S702
H H P696:F712
B -A Mut47 ni, A20 K692:D231 Mutl9 ni, no capsid

















































Mutl9 ni, no capsid D231:K692 Mut47 ni, A20-
Q297:1P696
Q297:4Q699
F712:W694
F712:P696
F365:W694
]kht40 -ni, hep-, full E563:Y704
N301: Q699
Y700:1P696
Mut47 -ni, A20T R693:R294 Mut24 -ni, no capsid
Y720:W694
T713:N695


Table 3-6 Continued
B-A
B-B
B -FI
B-A
B-A
H P
H P
H-P
P A
P H
A-B
A-B
P P
P-P
P P
P-P
P-H
P-P
P H
P-P
P-P
P--H
P H
P--FI
11-H1
H-H
H P
P-P
H H
A B
A B
P--H
P-P
H H
H H
H H
A-P
P P
P--H
B-1B
P--H
P-P


Mut24 -ni, no capsid











]kht47 -ni, A20f















Mut24 -unchanged
Idid24 -unchanged
Mut24 -unchanged


R294:E689
R294:R693
IL294:1P696
R294:E697
R298:E689
I698:T701
I698:S702
I698:Y704
Y704:E563
Y704:I698
E689:R294
E689:R298
Q699: Q297
Q699:N301
Q699:Q699
Q699:T701
19695:V710
N695:T713
T701:I698
T701:Q699
T701:T701
S702:1P696
S702:I698
S292:W694
P293:W694
P293:P696
V710:N695
N3 02:N3 02
P366:W694
E697:R294


Mut47 -ni, A20Y
]kht47 -ni, AOR


Mut47 -ni, AOR




Mut40 ni, hep-, full

Mut24 -ni, no capsid


Mut24 ni, no capsid









AAV-2 Mutant Studies

Five AAV-2 mutants (Mutl9, Mut24, Mut26, Mut33, and Mut46), described by Wu, et

al. [84] were analyzed in these studies. These are listed in Table 3-7. Amino acid alignments

were performed to determine if these residues are highly conserved for AAV serotype 1 through

AAV serotype 8. The AAV capsid sequences for AAV serotype 1 through AAV serotype 8 have

been aligned using several software programs, including Clustal W, and Palign (Pcgene), as

described by Chiorini, et al. [87], Gao, et al. [24], and Hauck, et al. [88]. In evaluating the capsid

sequence for Mutl9 (WHCDS), this sequence is conserved for AAV serotype 1 through AAV

serotype 8. The capsid sequence in the region of Mut24 (FSPRD) is also conserved for AAV

serotype 1 through AAV serotype 8, except for AAV-5, which has the sequence WSPRD. The

amino acid that is different in AAV-5 when compared to the other AAV serotypes, is still a

hydrophobic amino acid with a large bulky aromatic side group. The amino acid sequence in the

region of Mut26 (VKEVT) is also conserved for AAV serotype 1 through AAV serotype 8,

except for AAV-3, which has the sequence VRGVT. Instead of a lysine, AAV serotype 3 has an

arginine in that position, which is still a basic, positively charged amino acid. The most

significant change in the region of Mut26 is the use of a glycine instead of the negatively

charged glutamic acid that the other serotypes use. The amino acid sequence in the region of

Mut33 (DIRD) is highly divergent, as shown in Table 3-8, with isoleucine in AAV-2 being the

most conserved residue when compared to the other AAV serotypes. While the other AAV

serotypes use an amino acid other than isoleucine, which is used in AAV-2, all of the AAV

serotypes maintain a hydrophobic amino acid here. The amino acid sequence in the region of

Mut46 (EIE) is conserved for AAV serotype 1 through AAV serotype 8, with the exception of

AAV4 which has a glutamine instead of a glutamic acid. Unlike glutamic acid, glutamine is an

uncharged amino acid; however, like glutamic acid, it is a hydrophilic residue.









Table 3-7. plM45 based plasmids containing alanine substitutions for the production of mutant
AAV-2 capsids produced by Wu, et al. [89]. Ala sub = alanine substitution; ni = non-
infectious; hs = heat sensitive; pd = partially defective; hep+ = heparin positive
Mutant Type Mutation Class Phenotype
Mutl19 Ala Sub 228-232 WHCDS WACAS 4b ni; no capsid
Mut24 Ala Sub 291-295 FSPRD FSPAA 4b ni; no capsid
Mut26 Ala Sub 320-324 VKEVT VAAVT 3a hs
Mut3 3 Ala Sub 469-472 DIRD AIAA 3a hs
Mut46 Ala Sub 681-683 EIE AAA 4b Ni; no capsid

Amino Acid Alignment

A structural alignment in the region of Mutl9 with other parvovirus sequences is shown in

Table 3-9. This stretch of amino acids is not conserved among other parvoviruses. A structural

alignment in the region of Mut 24 is shown in Table 3-10. The structural alignment for Mut26

with other parvoviruses is shown in Table 3-11. The structural alignment for the amino acids

involved in Mut33 is shown in Table 3-12. The parvovirus structural capsid alignment for Mut46

are shown in Table 3-13. Additionally, an amino acid alignment was performed for the known

AAV serotypes, as well as the newly reported AAV genotypic variants. This alignment has been

included as an appendix.

For the five AAV-2 mutants listed in Table 3-7, theoretical molecular replacement was

used to generate models of the AAV mutants. Models were evaluated to determine the potential

Table 3-8. Amino acid alignment data for the specific amino acid sequence in the region of
Mut33. Amino acid sequence alignment for the capsid protein of AAV-1 through
AAV-8 that align with amino acid 469 472 of AAV-2 (VP I numbering).
Serotype Sequence
AAV 1 GMSV
AAV 2 DIRD
AAV 3 SMSL
AAV 3B SMSL
AAV 4 RPTN
AAV 5 RYAN
AAV 6 GMSV
AAV 7 TMAE
AAV 8 TMAN









Table 3-9. Parvovirus structural capsid protein alignment for Mutl9 residues. A structural
alignment was performed in DALI for other parvoviruses whose structures have been
solved and the amino acids were evaluated to determine if the region is highly
conserved. The amino acids are color coded based on general properties, pink are
aromatic amino acids, green are neutral amino acids, grey are aliphatic amino acids,
red are acidic amino acids and aqua are basic amino acids.
Parvovirus Sequence
AAV2 (PDB#11p3) W CDS
Porcine Parvovirus (PDB#1k3v) FNNQT
MVM (PDB#1mvm) YDNQT
CPV (PDB#4dpy) FNNQT

Table 3-10. Parvovirus structural capsid protein alignment for Mut24 residues. A structural
alignment was performed in DALI for other parvoviruses whose structures have been
solved and the amino acids were evaluated to determine if the region is highly
conserved. The amino acids are color coded based on general properties, pink are
aromatic amino acids, green are neutral amino acids, grey are aliphatic amino acids,
red are acidic amino acids and aqua are basic amino acids.
Parvovirus Sequence
AAV2 (PDB#11p3) FSP D
Porcine Parvovirus (PDB#1k3v) FNPAD
MVM (PDB#1mvm) LQPSD
CPV (PDB#4dpy) FNPGD

Table 3-11. Parvovirus structural capsid protein alignment for Mut26 residues. A structural
alignment was performed in DALI for other parvoviruses whose structures have been
solved and the amino acids were evaluated to determine if the region is highly
conserved. The amino acids are color coded based on general properties, pink are
aromatic amino acids, green are neutral amino acids, grey are aliphatic amino acids,
red are acidic amino acids and aqua are basic amino acids.
Parvovirus Sequence
AAV2 (PDB#11p3) V EVT
Porcine Parvovirus (PDB#1k3v) L T IT
MVM (PDB#1mvm) L TVT
CPV (PDB#4dpy) L TVS
Table 3-12. Parvovirus structural capsid protein alignment for Mut33 residues. A structural
alignment was performed in DALI for other parvoviruses whose structures have been
solved and the amino acids were evaluated to determine if the region is highly
conserved. The amino acids are color coded based on general properties, pink are
aromatic amino acids, green are neutral amino acids, grey are aliphatic amino acids,
red are acidic amino acids and aqua are basic amino acids.
Parvovirus Sequence
AAV2 (PDB#11p3) DI D
Porcine Parvovirus (PDB#1k3v) T EAT
MVM (PDB#1mvm) S EA I
CPV (PDB#4dpy) T EAT









Table 3-13. Parvovirus structural capsid protein alignment for Mut46 residues. A structural
alignment was performed in DALI for other parvoviruses whose structures have been
solved and the amino acids were evaluated to determine if the region is highly
conserved. The amino acids are color coded based on general properties, pink are
aromatic amino acids, green are neutral amino acids, grey are aliphatic amino acids,
red are acidic amino acids and aqua are basic amino acids.
Parvovirus Sequence
AAV2 (PDB#11p3) EIE
Porcine Parvovirus (PDB#1k3v) TLT
MVM (PDB#1mvm) LT
CPV (PDB#4dpy) LV

effect of the mutation. This allows for a prediction of the role that these regions of the capsid

play in assembly and/or packaging.

Modeling

The structure of AAV-2 capsid mutants were modeled and evaluated based on the

available coordinates for wild-type AAV-2 VP3 (11p3) to visualize the location of the mutation

on the capsid. The resources provided by the European Bioinformatics Institute (EBI) -

European Molecular Biology Laboratory (EMBL) were utilized to generate these models. The

primary program utilized for this was Deep View, also called Swiss PDB Viewer, or SPDBV.

Deep View provides a user friendly interface for viewing and analyzing protein and nucleic acid

structures. It also provides some advanced features including an interface for theoretical

modeling, and visualization of electron density maps and electrostatic surfaces. Deep View

provides automatic structure retrieval by PDB-ID, as well as measurement of bonds, angles, and

distances between atoms. Using Deep View, it is possible to compare structural details, to

superimpose a structure onto another structure for comparison, as well as model amino acid

mutations. Swiss PDB Viewer is the primary tool for accessing Swiss-Model, which is an

automated homology modeling server at Glaxo Welcome Experimental Research in Geneva.

Utilizing both Swiss PDB Viewer and Swiss-Model, it is possible to model mutations as well as










build in and modify surface loops for evaluating the impact of potential modifications that may

be used for specific targeting of AAV vectors, as well as to build in missing amino acids on the

N-terminus of VP3, or VP2, or VPl. Available data suggests that the N-terminus of VP-2 is

located inside at the 2-fold axis; however, it has also been reported that the N-terminus is on the

outside of the capsid.

Utilizing the model of AAV-2 (PDB accession #11p3), the appropriate mutations (Mutl9,

Mut24, Mut26, Mut3 3, and Mut46, from Wu, et al.[89]) were modeled, and the various structural

units, dimer, trimer, pentamer and intact capsids, were built from the monomer. A comparison

was made between the wild-type capsid and the mutants to correlate the effect of the mutation on

capsid assembly and/or packaging. This may become a useful tool in the area of AAV targeting,

as the current data suggests that regions of the capsid that tolerate some mutations do not tolerate

others.

The Mutants

Mut 19 228 232 WHCDS WACAS

Mutl9 is an alanine substitution mutation, where the charged residues His229 and Asp231

have been changed to alanine [89]. Utilizing the molecular modeling software DeepView, as

well as PyMOL, the residues that are mutated in Mutl9 were evaluated. Since the phenotype of

Mutl9 is an inability to make capsids, this molecular modeling software was used as a tool to

predict the structural subunit that is formed. The location of this mutation affects both the 2-fold

axis and the 5-fold axis of symmetry. As a result of the 5-fold interaction, it is unlikely that

pentamers would be a stable subunit, as the mutations are at the interface between the monomers

that make up the 5-fold axis of symmetry. This is demonstrated in Figure 3-1. The interaction at

the 2-fold axis of symmetry between Asp231 and Lys692 is shown in Figure 3-2. Interestingly,

when Lys692 was changed to alanine, which is Mut47 [89], capsids were unable to be detected































Figure 3-1. Residues at the five fold symmetry axis that are changed in Mutl9. The aqua residue
is His229. The pink residue is Asp231i. Yellow arrows point to the location of the
mutation. This figure was generated using the molecular modeling software
DeepView.

using the conformational antibody A20; however, capsid proteins were subsequently detected

using B1 antibody and the buoyant density in cesium chloride for these capsid proteins was

consistent with the production of intact capsids (Hartladge, Warrington and Muzyczka,

unpublished data). Figure 3-3 shows that the 3-fold interactions are still intact as a result of the

amino acid changes in Mutl9. Based on this, the predicted subunit of assembly that should be

produced from Mutl9 is a trimer. To determine what interactions were disrupted by changing

His229 and Asp231 to alanine, the amino acids WHCDS were selected in the model.Amino acids

were added to the view within 4 A+ of the selected residues. Based on this, intermolecular

distances and intramolecular distances were determined. The model shows several

intramolecular interactions between His229 and Thr242, Thr243 and Thr244, as seen in Figure

3-4; however, when His229 was changed to an alanine, these interactions are still maintained

(data not shown). This suggests that the lack of capsids is probably not due to disrupting the









intramolecular interactions that are involved in proper protein folding. Mutl9 occurs at the

beginning of the first beta-sheet structure in VP3. If an intramolecular interaction was

responsible for the lack of capsids, the prediction would be that monomers would be formed that

are unable to associate into a capsid structure. The intermolecular interactions that may be

disrupted in Mutl9 are shown in Figure 3-5. In addition to Lys692, the interaction with Pro399

may also be disrupted as a result of Asp23 1 being changed to alanine.


Figure 3-2. Residues at the two fold symmetry axis that are changed in Mutl9. The aqua residue
is His229. The pink residue is Asp231. The residue shown in yellow is Lys692. The
residues that are mutated in Mutl9 are colored differently than the main chain,
usually white, except where they would not be visible, in which case they are aqua.
Yellow arrows point to the region of the mutation. This figure was generated using
the molecular modeling software Deep View.






























Figure 3-3. The predicted subunit as a result of the mutations made in Mutl9 is a trimer. Yellow
arrows point to the region of the mutation. The pink, peach and dark blue subunits
comprise a trimer.


Figure 3-4. Residues that may be responsible for the phenotype of Mutl9. Lys692 is shown in
purple, His229 is aqua, and Asp231 is pink. The blue chain shows intramolecular
interactions. The yellow and purple chains demonstrate intermolecular interactions.
This figure was generated using the molecular modeling software Deep View.









This interaction also involves the 2-fold axis of symmetry. If this interaction is responsible for

the phenotype of Mutl9, the expected subunit would also be a trimer. Another possibility is that

both Lys592 and Pro399 are needed to interact with Asp231. Using the methods established here,

it is not possible to determine if both interactions are required for intact capsid formation.

However, Pro399 is 3.60 A+ away from Asp231, while Lys692 is only 2.78 A+ away. The model of

Mutl9 after the amino acids are changed to alanine is shown in Figure 3-6.

Another approach to evaluating the effect of the alanine mutation is to do a structural

alignment of several parvovirus capsid proteins and look at whether or not the residues that are

changed in Mutl9 are conserved. The capsid proteins of several parvoviruses were aligned, and

then evaluated to determine if the residues that were mutated in Mutl9 are conserved among

other parvoviruses. These are shown in Table 3-9. The table includes AAV, Porcine Parvovirus,

MVM, and CPV. Based on the table, the residues in Mutl9 appear to be unique to AAV. AAV

residue in this position. Based on the structural alignment, the prediction would be that this

residue might be able to be changed without affecting the overall structure, since there is such a

wide range of amino acids in this position for other parvoviruses. AAV is also the only

parvovirus in the table that has a negatively charged acidic residue at Asp231. Based on this, the

prediction would be that changing Asp231 to alanine, should be tolerated by AAV, as the other

parvoviruses listed have neutral amino acids in this position. However, the model indicates that

the negatively charged Asp231 interacts with the positively charged Lys692. In the capsid

protein alignment, amino acid 692 in porcine parvovirus and MVM are neutral residues, N and T

respectively, while CPV, like AAV-2 also has a positively charged basic residue (H) in this

position. Based on the data, the charge-charge interaction between Asp231 and Lys692 is

probably necessary for AAV capsid stability.































Figure 3-5. Intermolecular residues are shown between the yellow chain, and the Asp231.
Residues that also may play a role in the phenotype of Mutl9 include Tyr397 and
Pro3 99. This figure was generated using the molecular modeling software Deep
View.


Figure 3-6. Asp231 has been changed to Ala231, as in Mutl9. Note that the primary interaction
that is disrupted is the intermolecular interaction with Lys692; however, an
intermolecular interaction with Pro399 is also disrupted. One or both interactions may
result in the inability to form intact capsids. This figure was generated using the
molecular modeling software Deep View.









Mut24 291 -295 FSPRD FSPAA

Mut24 is an alanine substitution mutation, where the charged residues Arg294 and Asp295,

have been changed to alanine [89]. Utilizing the same methods described for Mutl9, the residues

that are mutated in Mut24 were evaluated. Like Mutl9, the phenotype for Mut24 is an inability

to make capsids. The molecular modeling software was used as a tool to predict the structural

subunit that is formed. The location of this mutant affects both the 2-fold axis and the 5-fold axis

of symmetry. Based on the location of the mutations at the 5-fold axis, pentamers may not be

able to be formed. This mutation is further from the 5-fold pore than Mutl9, so due to the

location of the mutation, there may be enough significant interactions at the 5-fold axis to

perhaps hold pentamers together. This is demonstrated in Figure 3-7. The 2-fold axis of

symmetry is shown in Figure 3-8. The residues that have been mutated are likely to produce

significant changes at the 2-fold axis. The mutation at the 2-fold axis occurs at a place in the

capsid where three different chains come together, the two that make up the 2-fold, (light blue

and dark blue residues) one of which is also a part of the 3-fold axis (dark blue), and a second

chain of the 3-fold axis (orange) that sits above the residue that makes up the 2-fold axis (light

blue). If the second chain of the 3-fold axis is disrupted then trimers would not be stable and the

predicted subunit formed would be either monomers or pentamers, if the other interactions at the

5-fold axis are significant enough to hold a pentamer together. Alternatively, the mutation may

only affect the residues at the 2-fold axis and the second chain of the 3-fold axis (orange) may be

unaffected. If this is the case, then trimers will be the predicted subunit. This is shown in Figure

3-9. Based on the information in Figure 3-10, there are quite a few residues that interact with

Arg294 and Asp295. These are also shown in Table 3-14. Based on the information in this table,

there are a couple of things to note. First, Arg294 is a positively charged basic residue that

interacts with two negatively charged glutamic acid residues. Changing Arg294 to an Ala294









disrupts these interactions, as the side chain in alanine is much smaller and is now not in close

enough proximity to interact. In addition, this charge:charge interaction is also disrupted and

may be required to hold the monomers together.


Figure 3-7. Residues at the 5-fold symmetry axis that are changed in Mut24. The view is from
the inside of the capsid. The aqua residue is Arg294. The pink residue is Asp295.
This figure was generated using the molecular modeling software Deep View.

When Glu689 was changed to an alanine in Mut47 [89], the phenotype is a non-infectious

capsid that is A20 negative. The lack of infectivity provides further evidence for the importance

of the interaction between Arg294 and Glu689. When Asp295 is changed to an alanine, the

intermolecular interaction between it and Tyr397 is disrupted. This residue is from the light pink

chain that is part of the 3-fold axis of symmetry shown in Figure 3-11i. Based on this, the

predicted subunits formed by Mut24 are monomers, assuming that the mutation at the 5-fold axis

of symmetry prevents pentameric interactions. To further evaluate the mutations that were made










in Mut24, the parvovirus capsid alignment data was used to evaluate if these residues are

conserved. This is shown in Table 3-10.

























Figure 3-8. Residues at the 2-fold symmetry axis that are changed in Mut24. The aqua residue is
Arg294. The pink residue is Asp295. This figure was generated using the molecular
modeling software Deep View.

Generally, there is an aromatic phenylalanine residue at position 291, with the exception of

MVM which has a lysine in that position. Next there is a neutral residue at position 292, then a

proline at 293, and then Asp at 295, for all of the amino acids in the table. While the aspartic acid

residue is conserved when compared to other parvoviruses in the table, the residue that it

interacts with, Tyr397, is unique to AAV-2. Based on the alignment data at residue 397, the other

parvoviruses in the table have an N at that position. In addition, AAV-2 is the only parvovirus in

the table that has a charged basic residue at position 294. Porcine parvovirus has an alanine in

this position, and because of this it might be expected that an alanine at this position in AAV-2

would be tolerated. Residue 689 in the alignment is an arginine for all of the parvoviruses listed










in the table except AAV-2. Residue 697 is an aliphatic residue, isoleucine for CPV, or valine for


MVM, while this is a glutamic acid residue in AAV-2.


Figure 3-9. The predicted subunit as a result of the mutations made in Mut24 is a trimer. The
residues that are mutated in Mut24 are colored differently than the main chain,
usually white, except where they would not be visible, in which case they are aqua.
Inside view. This figure was generated using the molecular modeling software Deep
View.


































Figure 3-10. Intermolecular and intramolecular residues that are disrupted as a result of changing
Arg294 and Asp295 to alanine residues. Arg294 is shown in yellow, Asp295 is
shown in white, the chain that they are attached to is shown in light blue, residues
from other chains are shown in pink or dark blue respectively. Intramolecular
interactions that are disrupted include the interaction with Ser292 and Trp234. This is
a close up of the specific interactions in Figure 3-9. Note: Tyr397 is pink, Glu689 and
Gu697 are dark blue. This figure was generated using the molecular modeling
software Deep View.









































Figure 3-11i. Mut24 interactions that are effected by the mutation. Theoretical model of the
interactions that are changed in Mut24 when Arg294 is changed to Ala294 (yellow)
and Asp295 is changed to Ala295 (white). This figure was generated using the
molecular modeling software Deep View.









Table 3-14. Evaluation of the effect of the mutations introduced in Mut24 on amino acid
interactions. The amino acids that interact with Arg294 and Asp295 were modeled
using SPDB Viewer and the distances before the mutation were introduced were
determined. The type of interaction, either intermolecular or intramolecular, was
evaluated. The amino acids were mutated using the molecular modeling software
Deep View for visualization. The interactions were evaluated after the mutations were
introduced to determine which interactions were disrupted as a result of the mutation.
Figure 3-10 and Figure 3-11 show the interactions before and after the mutation
respectively, and the colors in parenthesis above refer to the residues in these figures.
Amino Acid Distance (A+) Interacting Was interaction Type of
that is changed residue disrupted? interaction
Arg294 2.75 AGlu689 (lue) Yes Intermolecular
Arg294 2.91 AGlu697 (lue) Yes Intermolecular
Arg294 3.36 AGlu697 (lue) Yes Intermolecular
Arg942.79 ATp9(bu) No Intermolecular
Arg294 2.66 ASer292 (t blue) No Intramolecular
Arg294 2.54 APro293 (It blue) No Intramolecular
Arg294 2.85 AGln297 (t blue) No Intramolecular
Arg942.98 AAg9(tbu)No Intramolecular
Asp295 2.2ATyr397 (pink) YsItroeua
Asp295 2.76 A Tr234 (Itblue) Yes Intramolecular
Asp295 2.83 ASer292 (It blue) Yes Intramolecular
Asp295 2.44 ASer292 (It blue) No Intramolecular
Asp295 3.0ASer292 (It blue)NoIta leur
Asp295 2.6AArg298(It blue)NoIta leur


Mut26 320 324 VKEVT VAAVT

Mut26 is an alanine substitution mutation, where the charged residues Lys321 and Glu322,

have been changed to alanine [89]. Utilizing the same methods described for Mutl9 and Mut24,

the residues that are mutated in Mut26 were evaluated. Mut26 is located near the pore at the 5-

fold axis of symmetry as shown in Figure 3-12 and Figure 3-13, and is NOT involved in the loop

region of the 5-fold monomers that interact with the neighboring residue. There is a surface loop

that proj ects from the surface of the capsid, and Mut26 is at the base of this loop. This capsid

mutant was determined to be heat sensitive using the GFP fluorescent cell assay to determine

infectious titer. Mut26 has a titer that is about 1 log lower than wt when the crude lysate is used

to infect 293 cells at 32 oC. There is no titer at 39.5 OC [89]. Based on this, it can be assumed that









Mut26 is able to package viral DNA, although recently other investigators have produced data

using 5-fold pore mutants that suggest that mutations in this region of the capsid effect DNA

packaging. It is unknown where the nonstructural Rep proteins interact with the capsid for


Figure 3-12. Residues at the 5-fold symmetry axis that are changed in Mut26. The aqua residue
is Lys321. The pink residue is Glu322. Yellow arrows point in the direction of the
residues that have been mutated, but the amino acids that have been mutated are at the
5-fold pore. Note: The orientation on this figure is different from Mutl9 and Mut24.
This figure is from outside of the capsid looking at the 5-fold pore. This figure was
generated using the molecular modeling software Deep View.





























Figure 3-13. This is a cut away view of three of the chains that make up the 5-fold axis of
symmetry. The red and aqua chains of Figure 3-12 have been removed to show the
location of the mutations. Lys321 is in aqua or white, and Glu322 is in pink. This
figure was generated using the molecular modeling software Deep View.

packaging, but this is assumed to involve residues in the region of the 5-fold pore since the

proposed model for AAV packaging suggests that the DNA is inserting into the capsid through

the 5-fold pore. Alternatively, mutating the residues at the 5-fold pore may have disrupted an as

yet undetermined site on the capsid that is required for the Rep proteins to dock. This mutation is

interesting in that infectious particles are not produced at 39.5 oC. Physical particle titer using

A20 ELISA was not obtained for this mutant so it is not known whether the lack of infectious

particles at 39.5 oC is due to a lack of capsid assembly at 39.5 OC, or an inability to package at

39.5 OC; however, based on the location of the mutation, the mutation is predicted to effect DNA

packaging. Based on the model, this mutation does not affect the 2-fold or the 3-fold axis. EM on

capsids produced at 39.5 oC would help to determine if this is a packaging mutant versus an

assembly mutant.

In this region of the capsid, there is an intermolecular interaction between Asn33 5 (yellow)

and Asn334 (blue), as shown in Figure 3-14. Although the intermolecular interaction between










Lys321 and Asn335 (yellow) is disrupted, there is an intermolecular interaction between Asn335

(yellow) and Asn334 (blue 2.77 A, and 3.83 A). This interaction may maintain the position of

Asn335 and compensate for the intermolecular interaction that is disrupted between Lys321 and

Asn335, allowing for capsids to be produced at the permissive temperature. The intramolecular

interactions between Glu322 and Ala333 (2.56 A, 3.18 A, 3.56 A, and 3.60 A) are maintained

when Glu322 is changed to Ala322, as shown in Figure 3-15. The interaction between Ala333

that is maintained is connected to Asn334, and therefore probably helps to preserve the

interaction between Asn335 (yellow) and Asn334 (blue), even though the interaction between

Lys321 and Asn3 55 is disrupted. The intra- and intermolecular interactions for Mut26 are listed

in Table 3-15.






















Figure 3-14. Interactions with the residues involved in Mut26. Lys321 is white, Glu322 is pink,
Asn335 is yellow, Ile332 is green. This figure was generated using the molecular
modeling software Deep View.






























Figure 3-15. Model of Mut26 after the mutation. This figure was generated using the molecular
modeling software Deep View.

The protein capsid alignment data suggests that Lys321 is conserved among the parvoviruses

listed in Table 3-11. In addition there is an aliphatic residue before Lys321, usually leucine but

for AAV-2 it's a valine residue, and a neutral residue (Threonine) follows Lys321 for all

parvoviruses listed except AAV-2 which has a charged Glutamic acid in this position.

Residue 323 in the alignment is an aliphatic residue, usually valine, except for MVM

which has an isoleucine. Residue 324 is a neutral residue either serine or threonine. The

alignment data further confirms that Lys321 is conserved and therefore important for AAV

capsid stability. However, due to the compensating interaction with Asn334, capsids are able to

be produced at the permissive temperature. Interestingly, Asn334 is conserved for all of the

parvoviruses listed in Table 3-11.









Table 3-15. Evaluation of the effect of the mutations introduced in Mut26 on amino acid
interactions. The amino acids that interact with Lys321 and Glu322 were modeled
using SPDB Viewer and the distances before the mutations were introduced were
determined. The type of interaction, either intermolecular or intramolecular, was
evaluated. The amino acids were mutated using the molecular modeling software
Deep View for visualization. The interactions were evaluated after the mutations were
introduced to determine which interactions were disrupted as a result of the mutation.
Figure 3-14 and Figure 3-15 show the interactions before and after the mutation
respectively, and the colors in parenthesis above refer to the residues in these figures.
Amino Acid Distance (A+) Interacting Was interaction Type of
that is changed residue di srup~ted? interaction
Lys321 3.16 AAsn3 3 5(yellow) Yes Intermolecular
Lys321 4.30 A Asn3 35(yellow) Yes Intermolecular
Lys321 3.41 A Ala333 No Intramolecular
Lys321 2.38 1 Val320 No Intramolecular
Lys321 3.39 A Val320 No Intramolecular
Lys321 2.96 1 Tyr734 No Intramolecular
Lys321 31 Tyr734 No Intramolecular
Glu322 3.90 a l~e332 (green) Yes Intermolecular
Glu3 22 2.78 A~ Asn3 35 Yes Intramolecular
Glu3 22 2.98 a Asn3 35 Yes Intramolecular
Glu3 22 3.65 a Asn3 35 Yes Intramolecular
Glu3 22 3.82 a Asn3 35 Yes Intramolecular
Glu322 3.38 1 Thr732 No Intramolecular
Glu322 2.59 a Ala333 No Intramolecular
Glu322 3.56 a Ala333 No Intramolecular
Glu322 3.18 1 Ala333 No Intramolecular
Glu322 3.60 a Ala333 No Intramolecular

Mut33 469 472 DIRD AIAA

Mut33 is an alanine substitution mutation, where the charged residue Asp469, Arg471, and

Asp472 have been changed to alanine. Utilizing the same methods described for Mutl9, Mut24

and Mut26, the residues that are mutated in Mut33 were evaluated. Mut33 is not involved in the

5-fold axis of symmetry or the 2-fold axis of symmetry. The lack of an effect at the 5-fold axis of

symmetry is shown in Figure 3-16. The mutations are located at the 3-fold axis of symmetry in

Mut33 as shown in Figure 3-17. There are two intramolecular interactions that are disrupted in

Asp469 as a result of the mutation, as shown in Figure 3-18. However, as shown in Figure 3-19,

intermolecular interactions, as well as intramolecular interactions are disrupted as a result of the
































Figure 3-16. Mut33 pentamer demonstrating that this mutation is not involved in the interactions
that make up the icosahedral 5-fold symmetry axis; therefore, as a result of this
mutation, pentamers will still be formed. This view is from the outside looking in.
This figure was generated using the molecular modeling software Deep View.

mutation in Asp472, and this is probably the reason for the phenotype. The interactions that are

disrupted are summarized in Table 3-16.

This capsid mutant was determined to be heat sensitive using the GFP fluorescent cell

assay to determine infectious titer. Mut33 has a titer that is about 1 log lower than wild-type

when the crude lysate was used to infect 293 cells at 32 oC. There was no titer at 39.5 OC [89].

Based on this, it can be assumed that Mut33 is able to package viral DNA. Since at the

permissive temperature packaging can occur, this suggests that an interaction between Rep and

VP3 that is needed for packaging is not disrupted as a result of these mutations. For this mutant,

the prediction would be that pentamers would be stable, as would dimers, but that trimers would

not be stable. This supports the model of assembly for AAV that was presented in Chapter Two






























Figure 3-17. Mut33 residues. The yellow residue is Asp469, aqua is Arg471, pink is Asp472.
Note: for the pink chain, Asp472 is white. This view is from the outside looking in
three fold axis. The mutation effects where the monomers come together at the
icosahedral 3-fold axis of symmetry. This figure was generated using the molecular
modeling software Deep View.

which suggests that capsid assembly probably occurs in the following order: 5-fold interactions

first, then the 2-fold interactions occur, followed by the 3-fold interactions. The 3-fold

interactions in the AAV capsid are the strongest interactions. Because the thermodynamic cost is

greater, these probably form last. This mutant should provide the basis for validating this

hypothesis.

The alignment of several parvovirus capsid proteins in the region of Mut33 is shown in

Table 3-12. The capsid protein alignment for the residues involved in this mutant suggests that

this region is not highly conserved among parvoviruses. The residue that was not changed in

Mut33, Ile470 is an aliphatic residue for AAV2, Porcine Parvovirus and MVM. In CPV the

residue at position 470 is an aromatic residue, while in the next position there is an Ile, Ile471.

MVM and CPV have a neutral residue at position 469, while AAV-2 is unique in that it has an

acidic negatively charged residue.


































Figure 3-18. Interactions in the region of Mut33. The yellow residue is Asp469, the aqua residue
is Arg471, and the white residue is Asp472. This figure was generated using the
molecular modeling software Deep View.


Figure 3-19. Model of residues mutated in Mu
modeling software Deep View.


.is figure was generated using the molecular









Table 3-16. Evaluation of the effect of the mutations introduced in Mut33 on amino acid
interactions. The amino acids that interact with Asp469, Asp471, and Asp472 were
modeled using SPDB Viewer and the distances before the mutations were introduced
were determined. The type of interaction, either intermolecular or intramolecular, was
evaluated. The amino acids were mutated using the molecular modeling software
Deep View for visualization. The interactions were evaluated after the mutations were
introduced to determine which interactions were disrupted as a result of the mutation.
Figure 3-18 and Figure 3-19 show the interactions before and after the mutation
respectively, and the colors in parenthesis above refer to the residues in these figures.
Amino Acid that Distance (A) Interacting Was interaction Type of
is changed residue di srpted? interaction
Asp469(Yellow) 3.61 Asp269 (Blue) No Intermolecular
Asp469(Yellow) 2.46 A, Tyr444 (Pink) Yes Intramolecular
Asp469(Yellow) 2.73 A Asp472 (White) No Intramolecular
Asp469(Yellow) 3.77 A Gln464 (Pink) Yes Intramolecular
Asp469(Yellow) 2.69 A, Arg471 (Aqua) No Intramolecular
Asp469(Yellow) 2.73 A, Asp472 (White) No Intramolecular
Arg471 (Aqlua) 2.9_5 Leu516 (Blue) No Intermolecular
Arg471 (Aqlua) 2.60 A Asn270 (Blue) No Intermolecular
Arg471 (Aqua) 3.81 A, Asn270 (Blue) No Intermolecular
Arg471 (Aqua) 3.45 A, Asp269 (Blue) No Intermolecular
Asp472 (White) 3.32 A Trp502 (Blue) Yes Intermolecular
Asp472 (White) 3.36 A Trp502 (Blue) Yes Intermolecular
Asp472 (White) 3.77 A, Asn5 18 (Blue) No Intermolecular
Asp472 (White) 2.98 A, Tyr444 (Pink) Yes Intramolecular
Asp472 (White) 3.10 A Arg471 (Aqlua) Yes Intramolecular
Asp472 (White) 3.20 A Asp469(Yellow) Yes Intramolecular
Asp472 (White) 3.05 A, Arg471 (Aqua) Yes Intramolecular
Asp472 (White) 3.69 A, Arg471 (Aqua) Yes Intramolecular
Asp472 (White) 3.17 A Arg471 (Aqlua) Yes Intramolecular

Mut46 681 683 EIE AAA

Mut46 is an alanine substitution mutation, where the charged residues Glu681, Glu683,

and the aliphatic residue Ile682, have been changed to alanine [89]. Utilizing the same methods

described for the other mutants, the residues that are mutated in Mut46 were evaluated. Like

Mutl9, the phenotype for Mut46 is an inability to make capsids. The location of Mut46 lies in

the middle of a P-sheet, which is part of the main structural motif of the capsid protein, and is

conserved among members of the family Parvoviridae.~PP~~PP~~PP~~P Mut46 is not located at an interface at

either the 2-fold axis of symmetry, or the 3-fold axis of symmetry, or the 5-fold axis of










symmetry, as shown in Figure 3-20. This suggests that the mutation disrupts the interaction in

the P-sheet structure. Because the mutation occurs in one of the P-sheets, the mutation probably

effects the proper folding of the monomers. Due to improper folding and the potential instability

in a critical structural component of the capsid, the predicted subunit that Mut46 will produce, if

























Figure 3-20. The location of residues that are mutated in Mut46. This figure provides a view
from inside the capsid, with both the 5-fold pore as well as the 3-fold pore included.
The residues that are mutated in Mut46 are colored white, except where they would
not be visible, in which case they are aqua. This figure was generated using the
molecular modeling software Deep View.

any at all, is a misfolded monomer. Upon closer inspection, it should be noted that this mutation

does not appear to involve any intermolecular interactions; however, intramolecular interactions

are affected as shown in Figure 3-21 and Figure 3-22. While it may appear from Figure 3-20 that

this mutation is near the loop region that intrudes from one monomer into another, these residues

are actually further apart than they appear. The intermolecular distances between the residues

that are mutated in Mut46 and the next chain are approximately 20 A+ away. This further supports









the hypothesis that it is the improper folding of the monomeric subunits that result in the

phenotype of Mut46, which is the inability to produce intact capsids. Figure 3-21 shows the

intramolecular interactions that occur in the wild-type capsid monomers. It should be noted

however that when Glu681, Ile682, and Glu683 were changed to alanine, that many of these

intramolecular interactions are still maintained. In Figure 3-22, these residues have been mutated

to alanine and intramolecular distances have been calculated. Based on this model, the primary

interaction that is disrupted in this mutant involves interactions with Glu683. Upon changing this

residue to Ala683, there is a 2.81 A+ interaction with Arg23 8 that is disrupted. After the mutation

this distance is approximately 7 A+. There is also an interaction between Arg683 and Val239 that

is disrupted as a result of the mutation. Interestingly, in Mut20 [89] Arg23 8 is mutated and the























Figure 3-21. Intramolecular interactions with the residues that are changed in Mut46, Glu681,
Ile682, and Glu683. Glu681 is pink, Ile682 is blue, and Glu683 is aqua. This figure
was generated using the molecular modeling software Deep View.






























Figure 3-22. Intramolecular interactions after the residues involved in Mut46 have been changed
to alanine. Ala681 is pink, Ala682 is blue, and Ala683 is aqua. This figure was
generated using the molecular modeling software Deep View.

phenotype is also an inability to make capsids. Mut20 involves residues 235 -239 where the

sequence MGDRV was changed to MGAAV and is not a focus of this study; however it provides

further evidence that the interaction between Glu683 and Arg23 8 may be responsible for the

phenotype of this capsid mutant.

The alignment of several parvovirus capsid proteins for this region are shown in Table 3-

13. For the other parvoviruses in the table, residue 681 is a charged residue, with the exception of

Porcine Parvovirus which has a neutral residue in that position. It should be noted that while

AAV has an acidic negatively charged residue for residue 681, MVM and CPV have a basic

positively charged residue. For residue 682, all of the parvoviruses listed have an aliphatic

residue. Both MVM and AAV have a charged residue for residue 683; although, as with residue

681, AAV utilizes an acidic negatively charged residue at that position, while MVM utilizes a

basic positively charged residue at that position. CPV has an aliphatic residue at that position,









while Porcine Parvovirus has a neutral residue at that position. So for residue 683, there is quite a

bit of variability among parvoviruses at that position.

As discussed in Chapter 2, data for MVM indicates that trimers are the intermediate

subunit of assembly. Conventional nuclear localization sequences have been described in the N-

terminal unique region of VP I for MVM, as well as for AAV2. The major capsid protein, VP2

for MVM or VP3 for AAV does not possess these N-terminal sequences. In theory, parvoviruses

are small enough with a capsid diameter of approximately 25 nm to traverse the nuclear pore

complex intact. It is unclear whether structural protein subunits are assembled prior to traversing

the nuclear pore complex or whether the structural protein subunits are transported across the

nuclear pore complex for capsid assembly inside the nucleus. For MVM, it has been shown that

when singly expressed in transfected cells, VPI and VP2 were able to enter the nucleus; although

only VP2 assembled into capsids, which suggested that both VPI and VP2 have nuclear

localization signals (NLS) whose activity is independent of capsid assembly [90]. Lombardo, et

al. [91] showed that for MVM, singly expressed VP2, as well as VP1/VP2 oligomers target the

nucleus by a structural nonconventional nuclear localization motif (NLM), which is located in

the Pl strand, one of the 8 P-barrel structural motifs that are conserved for parvoviruses (Chapter

2, Figure 2-1). For AAV, Ruffing, et al. have shown that there is also cooperativity in nuclear

transport [66]. Lombardo, et al. [91] have shown that the MVM capsid proteins interact

cooperatively in the cytoplasm to pass through the nuclear pore complex. The sequence

528KGKLTMRAKLR538 near the C-terminus of VP2 in MVM is a nonconventional nuclear

localization signal. For MVM, it has been suggested that the Pl conformation is necessary for

proper protein folding of VP2 and assembly of trimeric intermediates. Inactivation of the NLM

through mutations resulted in only VPI containing trimers being able to translocate into the









nucleus. Functional NLM' s depend on a correct three-dimensional protein conformation. For

AAV2, the sequence KGKLTMRAKLR is not present in the C-terminal region of VP3;

however, an alignment of the MVM capsid protein with the AAV2 capsid protein sequence

reveals that this is the location of the mutations introduced in Mut46. This further supports the

suggestion that the phenotype of Mut46 is the result of improper protein folding which disrupts

the intrastrand hydrogen bonding interactions of the P-sheet, which also may result in a defect in

protein trafficking through the nuclear pore complex. Other mutations introduced into Mut46 by

Wu et al. [89], such as a serine substitution at amino acid position 682 (Mut46subserl5), and a

FLAG substitution at amino acid position 682 (Mut46subfigll1) also resulted in a noninfectious,

no capsid phenotype.

Methods for Mutant Studies

The capsid mutants were evaluated biochemically in an effort to determine their

properties with respect to capsid assembly and packaging. DNA for the mutant AAV capsids was

transfected and analyzed in an attempt to isolate and identify an assembly intermediate. For

AAV, isolating an intermediate of assembly is complicated due to the requirement of a helper

virus such as adenovirus for production of AAV. Adenovirus assembly is known to proceed via

pentameric intermediates and hexon and penton proteins isolated from AAV preps can easily be

mistaken for pentameric AAV intermediates by electron microscopy. Baculovirus produced

AAV vectors do not require a helper virus; however, the baculovirus proteins that are providing

the helper function for AAV production have not yet been elucidated and few antibodies are

available for baculovirus proteins (anti-gp64). The method developed and described in Chapter 5

for AAV Capsid Serotype Identification (AAV-CSI) will be useful for verifying and validating

that the assembly intermediate isolated is an actual AAV intermediate and not a contaminating

subunit from the helper virus used to produce the AAV. Of the capsid mutants described here,









the temperature sensitive mutant, Mut33, provides the best opportunity for isolating an assembly

intermediate since it is able to assemble into capsids at the permissive temperature, and once

assembled has been shown to remain intact after cesium gradients.

For transfections, nearly confluent HEK 293 cells were split 1:3 the day before the

transfection so that they could reach 70% confluency the next day. Mutant capsid proteins were

produced by triple-transfecting HEK 293 cells with plM45, UF5, and XX6 by Calcium

Phosphate precipitation. The UF5 vector contains the gene for GFP, flanked by the AAV ITR' s.

XX6 contains the Adenovirus helper genes required for AAV replication. plM45 contains the

AAV rep and cap genes. plM45 was used to generate baseline data for wild-type capsids and

serves as a control for these experiments. For the transfection, flasks were transfected at 37 OC,

using the calcium phosphate mediated DNA transfection protocol and incubated at 37 oC.

The capsid mutants were built into the plM45 backbone [89]. To generate the mutants,

HEK 293 cells were transfected with the plM45 mutant plasmid (Mutl9, Mut24, Mut26, Mut33,

or Mut46), and UF5 and XX6. For the temperature sensitive mutants, Mut26 and Mut33,

transfections were done at 32 OC, 37 OC and 39.5 oC.

At 60 hours the cells were harvested by centrifugation at 1,140 x g for 10 minutes. The

supernatant was removed and the pellets were resuspended in lysis buffer (150 mM NaC1, 50

mM Tris-HC1, pH 7.5). The virus was subj ected to 3 cycles of freezing and thawing. The

resuspended pellets were frozen in an ethanol dry ice bath, and then thawed at 37 oC. During the

3rd thaw, the crude lysates were treated with Benzonase at a final concentration of 50 U/ml at 37

oC for 30 minutes to degrade DNA that is not encapsidated. Crude lysates were clarified by

centrifugation at 3,700 X g for 20 minutes to remove the cellular debris. The supernatant was

collected and an aliquot of the lysate was flash frozen and stored at -80 OC. The lysate was









subject to cesium chloride gradients, AAV fractions were identified based on refractive index on

cesium chloride. These fractions were dialyzed and analyzed by green cell assay on C12 cells

[92].

Additional methods of production were explored by co-transfecting plM45 or the plM45

based mutant plasmid and UF5, followed by infecting the cells with adenovirus to provide the

helper function. The temperature sensitive phenotype was still present when using adenovirus to

supply the helper function. This production method was evaluated because other investigators

[64] have used this method for their temperature sensitive mutant studies.

Briefly, flasks were transfected for 5-7 hours and then infected with adenovirus (MOI=2)

and incubated at 32 OC, or 37 OC or 39.5 oC. Plates were incubated for 48 to 60 hours and cells

were harvested by aspirating them off the cell surface. Cells were pelleted by centrifugation.

Pellets were resuspended in 30 mls Lysis buffer. The cell lysate was prepared by repeated freeze

thaw cycles of the cell pellet.

The lysate was brought to 25% with Ammonium sulfate in an oakridge tube and a 25%

ammonium sulfate precipation was performed. This was incubated on ice for 1 hour, then

centrifuged 10 minutes at 5000 x g (8000 rpm). The supernatant was transferred to new oakridge

tubes and brought to 50% saturation with ammonium sulfate to precipitate rAAV and

adenovirus. These were incubated on ice for 1 hour and then centrifuged for 20 minutes at

12,000 X g (12,000 rpm). After removing the supernatant, pellets were centrifuged one more

time for 5 minutes at 5000 X g (8,000 rpm) and residual liquid was removed. This pellet

contained AAV and Ad and was dissolved in 1.37 g/ml CsC1. Cesium gradients were setup and

underlayed with 1.5 g/ml CsC1. Centrifugation was performed for 36 hours at 288,000 X g

(41,000 rpm). The CsCl gradient was dripped and fractions were collected. Refractometry was










performed on the fractions. Positive fractions were dialyzed into column buffer to prepare the

samples for heparin chromatography. Virus was purified on a heparin column and fractions were

collected. Green cell assays were performed on the column fractions. Mut33 that formed capsids

at the permissive temperature we purified by heparin chromatography; however, Mut33

produced at the non-permissive temperature, did not bind to the heparin column. This could

occur for a number of reasons in addition to the possibility that this mutant may form pentamers

at the nonpermissive temperature.

Images of the tranfected cells at 32 OC, 37 OC and 39.5 OC for Mut33 and plM45 controls

are shown in Figure 3-23. This data shows that the transfection efficiency is similar under the

conditions described. Green cell assays at 32 OC and 37 OC of the cell lysate was performed for

each of the conditions. Cells transfected at 32 OC were lysed and the infectivity assay was

performed at 32 OC and 37 oC. As shown in Figure 3-24, virus was produced under these

conditions. Images of the transfections at 37 OC prior to harvest are shown in Figure 3-25. The

green cell assay after transfection at 39.5 OC is shown in Figure 3-26. For plM45 virus is

produced, but for Mut33, no virus is produced at the nonpermissive temperature.

Studies of Mut33 have been ongoing, as Mut33 may provide the best opportunity for the

isolation of a potential pentameric assembly intermediate for AAV-2 that will be useful as a

substrate in an in vitro assembly assay. One issue with developing an in vitro assembly assay is

the substrate that is used as the starting material. One cannot be certain that the intermediate

isolated for use in developing an in vitro assembly assay is not a dead-end product of assembly.

If the substrate is a dead-end product of assembly, then regardless of the conditions tested, those

subunits will never be able to be built into a macromolecular capsid. For Mut33, the ability to

produce capsids at the permissive temperature but not at the nonpermissive temperature may










suggest that these intermediates, if they can be isolated may be able to be subj ected to conditions

that will allow for an in vitro assembly assay. This would be useful in shedding light on the role

that the nonstructural Rep proteins play in AAV capsid assembly. Based on available data on

assembly and packaging, with DNA packaging occurring at the 5-fold axis of symmetry, the

nonstructural Rep proteins could play a stabilizing role at the weak 2-fold axis of symmetry and

it is also possible that these weak interactions allow for structural changes to occur in the capsid

during the virus life cycle while the capsid integrity is maintained by the stronger interactions at

the 3-fold and 5-fold axis of symmetry.



Transfection

32 oC 37 oC 39.5 oC




MIut33









plM145





Figure 3-23. Transfection of Mut 33. Cells were transfected with either plM45 and UF5, or
Mut33 and UF5, and infected with adenovirus at an MOI = 2 at either 32 OC, 37 OC,
or 39.5 oC. Transfection efficiencies were similar under all conditions. Panel A.
Mut33 transfection at 32 oC. B. Mut 33 transfection at 37 oC. C. Mut33 rransfection
at 39.5 oC. D. plM45 transfection at 32 oC. E. plM45 transfection at 37 oC. F. plM45
transfection at 39.5 oC.





Green Cell Assay Infectivity Data
Transfections at 32 oC

320C Inf 370C Inf




Mut33
32 oC
Tnf


plM45
32 oC
Tnf


Figure 3-24. Green cell assay of transfections at 320 C. Lysates were prepared from the cells
transfected in Figure 3-23 and a green cell assay for infectivity was performed at 320
C, or 370 C. A. Green cell assay at 320 C of Mut33 produced at 320 C. B. Green cell
assay at 370 C of Mut33 produced at 320 C. C. Green cell assay at 320 C of plM45
produced at 320 C. D. Green cell assay at 370 C of plM45 produced at 370 C.






































Figure 3-25.Transfections at 37 oC. Green cell assay of transfections at 37 oC. Lysates were
prepared from cells transfected at 37 OC and a green cell assay for infectivity was
performed at 32 OC, or 37 oC. A. Green cell assay at 32 OC of Mut33 produced at 37
OC was not performed. B. Green cell assay at 37 OC of Mut33 produced at 37 oC. C.
Green cell assay at 32 OC of plM45 produced at 37 oC. D. Green cell assay at 37 OC
of plM45 produced at 37 oC.


Green Cell Assay Infectivity Data
Transfections at 37 oC

320C Inf 370C Inf




Mut33
37 oC
Tnf


plM45
37 oC
Tnf





32 oC Inf 37 oC Inf



MIut33
39.5 oC
Tnf


plM145
39.5 oC
Tnf


Transfections at 39.5 ag

Figure 3-26. Green cell assay after transfection at 39.5 oC. Green cell assay of transfections at
39.5 oC. Lysates were prepared from cells transfected at 39.5 OC and a green cell
assay for infectivity was performed at 32 OC, or 37 oC. A. Green cell assay at 32 OC of
Mut33 produced at 39.5 oC. B. Green cell assay at 37 OC of Mut33 produced at 39.5
oC. C. Green cell assay at 32 OC of plM45 produced at 39.5 oC. D. Green cell assay at
37 OC of plM45 produced at 39.5 oC. E. Image of cells after infection with Mut33 that
was produced at 39.5 OC and incubated at 32 oC.


Green Cell Assay for Infectivity









CHAPTER 4
STUDIES OF THE AAV CAPSID IN SOLUTION

Introduction

Proteolytic structural mapping. The three-dimensional structure of several autonomous

parvoviruses [53, 93, 94], plus those of AAV-2 [48], AAV-4 [50], and AAV-5 [51], have been

determined by X-ray crystallography or cryoelectron microscopy (cryo-EM). Several features of

the virus cannot be determined based on the crystal structure. For example, the unique N-

terminus of VP 1, as well as the unique N-terminus of VP2, are not present in the crystal

structures of AAV. This is likely due to the fact that these monomers are present in the AAV

capsid in low abundance, (~5 copies each), and icosahedral averaging is used to solve the crystal

structure. In addition to being present in low abundance, as discussed in Chapter 2, the N-

terminus of VPI and VP2 may be disordered in assembled capsids which would preclude

crystallographic structure determination of these regions.

In the near future, customized AAV gene therapy vectors may consist of modified capsids

that allow for specific targeting to treat patients with various diseases. The 3D structures of the

AAV capsids will provide a basis for rational vector design, however, the 3D structures available

for autonomous parvoviruses and dependoviruses only provide a "snapshot" of the capsid

topology in a low energy conformation. Our knowledge about the AAV viral capsid structure in

solution is limited; however, this structure must be dynamic to carry out the various functions

required for viral attachment and entry, as well as trafficking within the cell. AAV-2 has been

shown to utilize heparin sulfate proteoglycan as a cell surface receptor, and the specific amino

acid residues involved in this interaction have been mapped to basic amino acids at the three-fold

axis of symmetry on the capsid surface, including R585 and R588 [95, 96]. Studies of the AAV

capsid proteins have shown that the unique N-terminus of VP I is required for infectivity [69].










Cryo-EM studies have shown that the unique N-terminus of VP I is internal to the capsid based

on additional density at the 2-fold axis of symmetry [97]. In vitro, upon heat treatment of AAV

capsids, it has also been shown that this region can be externalized. Mutagenesis experiments

have shown that this externalization occurs through the pore at the 5-fold axis of symmetry [70].

The high resolution x-ray crystallography data is unable to address these dynamic changes which

must occur as part of the virus life cycle.

For several viruses, peptide mapping has been used to address structural changes that occur

in solution. Peptide mapping was first used in 1979 to study the major capsid protein of

bacteriophage T4 [98]. Since this study, peptide mapping has been utilized to study the capsid

structure of DNA viruses, such as herpes virus, and canine parvovirus, as well as for many RNA

viruses, such as reovirus, rotavirus, vescicular stomatitis virus, influenza virus and tetraviruses.

Peptide mapping has been utilized to demonstrate that certain amino acids are surface associated.

In addition, peptide mapping has been utilized to evaluate dynamic structural changes that occur

in the capsid. In this study, peptide mapping of the AAV virion is developed as a tool for

identifying regions of the AAV capsid that are flexible, accessible, and surface associated.

Mapping of these regions of the capsid may provide a valuable tool for predicting locations on

the capsid surface that can tolerate insertions, which may be useful for improved targeting of

AAVserotypes. With 11 known AAV serotypes and up to 100 genotypic variants, this method

may provide a starting point for identifying locations on the capsid to mutate, especially if the

crystal structure is not available.

Trypsin digestion of AAV-2. Historically, AAV has been shown to be remarkably stable

and generally resistant to proteases [99]. However, occasionally, AAV-2 vector preps had

additional protein bands when analyzed for purity when assayed on polyacrylamide gels and









stained. To determine if these additional bands were degradation products or smaller proteins

that co-purified with the AAV structural proteins, a western blot was performed and probed with

polyclonal antibody to AAV-2. This is shown in Figure 4-1. This assay verifies that the

fragments are degradation products of AAV-2 that co-purified with the intact virus. The

classical method for purifying AAV-2 vectors included using trypsin, deoxycholate and the

performing cesium chloride gradients followed by heparin chromatography. To determine if

trypsin was responsible for the additional bands, AAV2-GFP vector virions were produced as

described in the materials and methods and digested with trypsin. For proteolyic mapping of the

AAV-2 capsid, several antibodies are available that detect various regions of the AAV capsid

proteins [65, 100]. The B1 antibody epitope is on the C-terminal end of the capsid protein, and is

primarily internal at the 2-fold axis of symmetry in assembled capsids. This antibody is useful in

detecting denatured AAV proteins and the epitope is highly conserved among the AAV

serotypes. Al antibody recognizes the unique N terminal region of VP 1, while the A69 epitope is

in the N-terminal region of VP2 for AAV-2. Polyclonal antibodies have been produced to AAV-

2 capsids, as well as other serotypes. Figure 4-2 is a western blot of AAV2-GFP digested with

trypsin as described in the materials and methods. Odd lanes (lane 1, 3, 5 and 7) are undigested

AAV2-GFP. Even lanes (lane 2, 4, 6 and 8) have been digested with trypsin. Lanes 1 and 2 are

probed with polyclonal antisera to AAV-2 resulting in the detection of two digestions products at

~40 kDa, and a smaller 15 to 20 kDa fragment. Lanes 3 and 4 are probed with B l. This shows

that the smaller 15 to 20 kDa fragment is derived from the C-terminal region that is common to

all three of the structural proteins, VP 1, VP2, and VP3. This fragment was named VP 1,2,3T. The

~40 kDa N-terminal fragment is not detectable since the N-terminal fragment no longer harbors

the B1 epitope. This fragment was designated VP3T. Lanes 5 and 6 are probed with A69











250 kDa
150 kDa
-- 100 kDa

-75 kDa

-50 kDa

S -37 kDa


-25 kDa
e 1 2 3 4 20 kDa
Figure 4-1. Western blot of several AAV-2 preps. Lane 1 AAV-2 standard. Lane 2 AAV-2
sample. Lane 3 AAV-2 sample. Lane 4 AAV-2 sample. Using polyclonal
antibody, AAV fragments are detectable in the sample lanes.

antibody. This detects the unique N-terminal region that is common in VPI and VP2. Lane 6

shows that upon cleavage with trypsin there is a unique fragment that runs just smaller than VP3.

A69 does not recognize VP3, so this fragment is the result of a C-terminal trypsin cleavage event

that results in the N-terminal fragment shifting in size after proteolysis to approximately 50 kDa.

This fragment was designated VP2T. Lanes 7 and 8 are probed with Al antibody. Lane 8 shows

a shift after proteolysis in the size of VP l. Because it is detectable by Al and the epitope for the

antibody is on the N-terminus of VP 1, this fragment was designated VP 1T. Figure 4-2 also

shows a diagram of the approximate locations of the epitopes for the various antibodies to the

AAV structural proteins, as well as and arrow which indicates the trypsin cleavage site.

Fine mapping of the trypsin cleavage site. Trypsin cleavage sites of AAV-2 VP I were

determined using the program Peptide Cutter on the ExPASy server (www.expasy.org). Based

on the potential basic residues where trypsin can cleave, these sequences were entered into the

program Peptide Mass on the ExPASy server and the mass of each trypsin fragment was

determined. This is shown in Table 4-1. Theoretical prediction of trypsin sites in the capsid G-H

loop [48], comprising amino acid residues 416 to 645, and fragment masses for AAV-2






































IVP3


P
AB


AB


A69
AB


AB


-VP1
- VP2, VP1T


-VP3T


25 kDa
2 0 kDka

15 kDa


-a
1 2 3 4 SGC


-VP1,2,3 T


Af A69
I I


IVP1


Figure 4-2. Tryptic mapping of full AAV-2 capsids. Purified full AAV-2 virions (F-
T/iodixanol/Heparin) were treated with trypsin, and the capsid proteins were probed
with the indicated anti-AAV antibodies (AAV-2 polyclonal, Al, B l, A69). The
epitope locations of the monoclonal antibodies and the likely trypsin digestion site are
indicated on the schematic diagram. A, AAV-2 full capsids; B, AAV-2 full capsid
digested with trypsin for 24hours. The assignment of the tryptic fragments are given
on the right. VP IT is the digestion product of VP 1, VP2T is the digestion product of
VP2, VP3T is the digestion product of VP3, and VP 1,2,3T is the common C-terminal
trypsin digestion product of VP 1, VP2, and VP3.

VP I indicated that trypsin digestion at amino acid R566, R585, and R588 would produce

fragments of 18.8, 16.8, and 16.4 kDa, respectively, which are within the range expected for the

VP 1,2,3T C-terminal fragment that is recognized by B1 antibody (Figure 4-2, lane 4). The mass

of thi s fragment was confirmed to b e 1 6,46 1 Da by matrix-as si sted laser desorpti on/i onizati on


150 kDa
100 kDa
75 kDa -

50 kDa

37 kDa-


-
rl- 4 As










time-of-flight mass spectroscopy (MALDI-TOF) analysis, which is close to the theoretical mass

of the C-terminal peptide that results from cleavage at R588 (Table 4-1). The R588 tryptic site

was confirmed by N-terminal sequencing, which mapped residueS 589QAATADVNTQGV600 as

the terminal peptide for the VP1,2,3T fragment.

Table 4-1. Predicted AAV VP I tryptic fragment mass from cleavage in the G-H loop. Trypsin
cleavage sites of AAV-2 VP I were determined using the program Peptide Cutter
found on the ExPASy server (www.expasy.org). Based on the sites where trypsin
cleaves, these sequences were entered into the program Peptide Mass on the ExPASy
server and the mass of each tysin frament was determined.
Fragment Averag~e Mass Peptide

VPI 81944.65 All Cys in reduced form

1 549 61112.40 VPI start to 549
137 549 45757.24 VP2 start to 549
203 549 39231.12 VP3 start to 549
550 -735 20850.26 C terminal end
1 556 61912.28 VPI start to 556
137 556 46557.12 VP2 start to 556
203 556 40031.00 VP3 start to 556
557 -735 20050.38 C terminal end
1 566 63128.65 VPI start to 566
137 566 47773.49 VP2 start to 566
203 566 41247.37 VP3 start to 566
567 -735 18834.01 C terminal end
1 585 65176.85 VPI start to 585
137 585 49821.69 VP2 start to 585
203 585 43295.57 VP3 start to 585
586 -735 16785.81 C terminal end
1 588 65504.19 VPI start to 588 (VPT)
137 588 50149.03 VP2 start to 588 (VP2T)
203 588 43 622.91 VP3 start to 588 (VP3T)
589 -735 16458.47 C terminal end (VP1,2,3T)
1 609 67743.68 VPI start to 609
137 609 52388.52 VP2 start to 609
203 609 45862.40 VP3 start to 609
610 -735 14218.98 C terminal end









Trypsin-Treated Virons Remain Intact. The presence of tryptic fragments in the AAV2-

GFP vector preps indicated that the cleaved products remain tightly associated with the capsid,

as these fragments are still present after virions are subj ected to cesium chloride gradients. The

buoyant density of these capsids are ~1.40 g/cm3, indicating a protein and DNA composition that

is similar to other vector preps. The value is slightly less than the density of wt AAV-2 (1.41 -

1.45 g/cm3) because the rAAV2-GFP vector is smaller (4331 nucleotides) than the wt AAV

genome (Genbank AFO43303). Figure 4-3A shows Negative-stain EM analysis of the trypsin-

treated and untreated purified rAAV2-GFP samples. This confirmed the intact nature of the

treated capsids (Figure 4-3A). However, the negative staining pattern suggested a difference

between the samples in their permeability to uranyl acetate, indicating a possible structural

rearrangement or flexibility due to the cleavage event.

Antibodies, such as A20, are available that recognize conformational epitopes that are

present only on assembled capsids for AAV-2. Native immuno-dot blot analysis with the A20

anti-capsid antibody showed that virions remain intact following 24 hours of trypsin digestion.

Figure 4-3B is a native immuno-dot blot of AAV2-GFP virions that have been digested with

trypsin in a time course experiment for the various times indicated. Control samples were heated

at 650C or 750C for 30 minutes. Previously, it had been shown that treating AAV-2 650C,

capsids were still intact and recognized by A20, but that at 75 OC, capsids are no longer intact as

shown by a loss of signal when probed with A20. An immunodot bot was also performed after

exposing AAV2-GFP to SDS and Methanol (MeOH). This is shown in Figure 4-3C. AAV-2

virions were digested with trypsin for 5 hours or 12 hours (TS and T12) and treated with 0.1%

SDS and 20% MeOH for 2 hours at 37 or 45 OC, transferred to nitrocellulose and probed with B1

antibody. The B1 epitope was not recognized until the virions were trpsinized and treated with










Not treated Trypsin treated













-~t -S', ++++D
~~~ -~ + ++MO



'r1 *r
37~~~~rrr 37 3 3 7 745 4 40

Figure ~ ~ ~ ~ lf 4-3 Trysinze AA- viron reai itc.AEltrnmroop.Ngivstai
eletro mcroraps f utrete rA V2-FPcapid (FTidxnlHp ri)o
trypsi-trea ed rAAV2~R-GFP virons Th samples wer viwe n itch -70
trnsisinelcro icocoeat3,00 mg ifain Eac hihpw red
insert~C is 7000.B m uodtbo.rA 2GPvr in wer di ese wit
trpi n smlswre ae t th nictdtmepit (hus. An imun dot





codiiosAA -2viios TO) wer diese with t rysi forC 75 ad12hur T

an T2 rseciel),ad ratdwih0.1 D n 0 eHfr2husa


37oC~ or 45C trnfre to nircluoe an rbe ih atioy









SDS and MeOH at 45 oC. Undigested control virions treated with SDS and MeOH at 450C, and

trypsinized virions treated with SDS and MeOH at 37 OC were not detectable by the B1

antibody.

This data indicates that the digested AAV-2 capsids appear intact by EM, buoyant density

on cesium chloride gradients, as well as A20 native dot blot analysis. The internal disposition of

the maj ority of the C-terminal proteolytic fragment (~70% of residues 589 73 5, Figure 4-7)

ensures that the fragment remains associated with the capsid in 3.3 M CsCl during purification,

as well as in 0.1% SDS and 20% MeOH used in the immuno-dot blot (Figure 4-3C), and during

heparin chromatography. However, heating the trypsinized virions in the presence of 0.6M DTT

for mass spectroscopy and N-terminal sequencing, or heating in the presence of SDS and

reducing agent for denaturing gel electrophoresis was able to dissociate the VP1,2,3T fragment

from the core capsid. Since no cysteine residues are found in the VP1,2,3T C-terminal fragment,

the interaction of this fragment with the capsid is due to non-covalent interactions that are

disrupted when the capsid structure is denatured by heat and reducing agent.

The crystal structure of AAV-2 did not show a break in the polypeptide chain at position

R588. This suggests that the maj ority of the 60 R588 sites remain uncleaved by the mild trypsin

treatment used during the purifications reported here, and for samples used for crystallization of

AAV-2, which generated the additional bands observed in Figures 4-1 and 4-2. The capsids thus

maintain the properties and structure of the native virus while in the crystalline state but appear

to have increased flexibility as shown by differential staining in EM, and exposure of the B 1

epitope in the presence of SDS and MeOH at 450C (Fig. 4-3C). However, for future studies, it

may be prudent to avoid incorporating proteases into AAV purification schemes for structural

studies or gene therapy applications where proteolysis may not only alter the capsid structure,









but also chromatographic properties and vector potency. In retrospect, the use of trypsin during

purification of rAAV-2 vectors and the heat inactivation of the helper adenovirus at 56oC, which

can expose the N-terminus of AAV VP-1 [70], may have been responsible for the low vector

titers and low transduction efficiencies obtained during the initial evaluations of this vector

sy stem.

Proteolytic digestion can distinguish genome-full and empty capsids. To determine if

genome-full (ie. virions) and empty capsids can be distinguished by proteolysis, purified full

rAAV2-GFP virions and empty AAV-2 capsids were digested with trypsin. Similar to the

differential proteolytic sensitivity reported for members of the autonomous parvoviruses [101],

the full and empty AAV-2 capsids differed in their sensitivity to trypsin cleavage (Figure 4-4).

The unique proteolytic fragment (VP2T) derived from VP2 of the full capsids was seen

migrating slightly ahead of VP3 when probed with the polyclonal sera (Fig. 4-4A, lane 2) or the

A69 monoclonal antibody (Fig. 4-4A, lane 10), but was not observed in the digested empty

capsids (Fig. 4-4A, lanes 3 and 11). In addition to the absence of the VP2T fragment in empty

capsids, full length VP2 was not detected, indicating complete digestion of this protein (Figure 4-

4A, lanes 3 and 11). A trypsin digestion timecourse showed that VP2 and the VP2T fragment

are more sensitive to digestion in empty capsids compared to full capsids (Figure 4-4B). During

the time course, less VP2T is seen in empty capsids than full capsids, and by 12 hours VP2T is

not detected in empty capsids, whereas the VP2T fragment is still detected in full capsids even

after 24 hours of digestion, as seen in Figure 4-4A.

Chymotrypsin, with a different cleavage site specificity (W, F, Y, M, L) than trypsin, was

also able to differentiate between the full rAAV2-GFP capsids and the AAV2 empty capsids

(Figure 4-4C). The empty capsids were digested more rapidly than full capsids, as observed with









trypsin treatment, but with this protease all of the VPs were digested within 2 hours to fragments

that were either too small to be resolved by 10% SDS-PAGE or recognized by polyclonal sera

(Figure 4-4C). Comparison of the proteolytic susceptibility of full and empty AAV-2 capsids

indicated that there are recognizable structural differences between these capsids in solution that

involves VP2 (Figure 4-4). This may be due to stabilization of the capsid by packaged DNA, in

addition to different conformations of the capsid surface loops. In addition, the AAV-2 VPI and

VP2 N-termini become accessible in full particles at 65oC, as A69 and Al antibody reactivity is

seen in the 110S (full) virus species but not in empty capsids [65, 70]. It is also interesting to

note that Bleker et al. [85] were able to cleave the N-termini of AAV-2 VP I with trypsin

following heating of full capsids resulting in a fragment that maintained the A69 and B1

antibody epitopes. Since we do not detect the VP2 or VP2T bands following digestion of empty

capsids, trypsin digestion for 24 hours may degrade the VP2 protein to the point where it is not

recognized by either the polyclonal, B l, or A69 antibodies. Alternatively, the cleavage of both

the VP2 C- and N-termini of empty capsids may result in a fragment that is indistinguishable

from VP3T. Since differences in the parvovirus capsid surface, consisting of the overlapping

capsid protein region, is indistinguishable in full and empty capsid structures determined using

X-ray crystallographic or cryo-EM techniques (except for differences in internal regions that

contact ordered DNA) [57, 58], the use of proteolysis and specific antigenic mapping of cleavage

products provides a means to distinguish these species in solution. In addition, proteolytic

distinction between full and empty capsids can be used in conjuction with quantitative methods

used to determine full and empty capsid ratios [102].

Proteolytic digestion can distinguish AAV serotypes. To further confirm that R588 is

the only specific site on the AAV-2 capsid surface susceptible to tryptic cleavage during











Poly
ABCD


B1
ABCD


A69 Al
ABCD ABCD



*- 4
I.p


150
100
75


kDa
kDa
kDa -


-VP1
- VP2, VP1T

TVP2T
-VP3T


50 kDa

37 kDa


25 kDa
2 0 kDka


15 kDa
1 2 54


1M


-VP1,2,3 T


9 10 11 12 15 14 15 1C


Full Empy
0 1 5 12 24 0 1 5 12 24
100 kDa -I
-~ VP1
75ik~aa-3 ....-- --- --- VP2,VP1T~
L C~~~_ I ~f_ C~ VP3
5~~~ k~ VP3T
37rkDa -


Fu~ll....... Empty
0 0.65 2 0 0.5 2


- 100 k~a
- 75 kD~a
- 50 kMa

-- 37 krDa


25 kDa


-- 25 kcDa


Trypsin


Chymotrypsin


Figure 4-4. Proteolysis distinguishes full and empty AAV-2 particles. A. Trypsin. Purified full
(F-T/iodixanol/heparin) and empty AAV-2 capsids were treated with 0.02% trypsin,
and the capsid proteins were probed with the indicated antibodies (AAV-2 polyclonal,
Al, Bl, A69). Lanes A, AAV-2 full capsids; lanes B, AAV-2 full capsids digested
with trypsin for 24 hours; lanes C, AAV-2 empty capsids digested with trypsin for 24
hours; lanes D, AAV-2 empty capsids. B. Trypsin time course. Purified full (F-
T/iodixanol/heparin) and empty AAV-2 virions were treated with trypsin for the time
(hours) indicated above each lane and probed with anti-AAV2 polyclonal antisera. C.
Chymotrypsin time course. Purified full (F-T/iodixanol/heparin) and empty AAV-2
capsids were treated with chymotrypsin for the time (hours) indicated above each lane
and the capsid proteins were probed with anti-AAV2 polyclonal antisera.


* b- -h I *
... Ce .


\~ r









proteolysis, we compared the susceptibility of rAAV1-GFP, rAAV2-GFP, and rAAV5-GFP

virions to proteolytic cleavage (Fig. 4-5A). AAV-1 provided an example of a highly

homologous serotype to AAV-2 (83%) that does not contain R588 and AAV-5 provides an

example of a less homogolous (59%) serotype to AAV-2 (Figure 4-5B). As seen in Figure 4-5A,

AAV-1 and AAV-5 are resistant to trypsin digestion after 24 hours of incubation, even though

AAV-1 VPI has 65 potential cleavage sites and AAV-5 VPI has 60 potential cleavage sites;

further supporting the identification of R588 as the specific trypsin cleavage site in AAV-2. The

lack of trypsin digestion of AAV-1 at other possible tryptic sites within the C-terminal stretch of

VP amino acids, for example, K567, R610, and K621 was not unexpected because of the lack of

AAV-2 digestion at the equivalent locations, R566, R609, and K620 (Figure 4-5B).

A difference in the susceptibility and sensitivity of the AAV1-GFP, AAV2-GFP, and

AAV5-GFP virions to proteolytic cleavage was also evident from digestion with chymotrypsin.

Chymotrypsin digestion of AAV-2 (Figure 4-5C) generated similar fragments to those seen with

trypsin treatment (Figure 4-5A) and a novel 27 kDa fragment was detected by polyclonal antisera

at 5 hours that was not B1 antibody reactive. AAV-1 was more resistant to chymotryptic

cleavage compared to AAV2, with all fragments of AAV-2 being undetectable, except for the C-

terminal 18kDa fragment, at 24 hours. Five C-terminal AAV-1 fragments were generated at 12

hours, ranging in size from 30kDa to 50kDa, that are recognized by polyclonal sera; two of these

fragments harbor the B1 antibody epitope, with the 30kDa fragment as the most C-terminal

fragment (Figure 4-5C). Based on primary sequence, chymotrypsin is expected to cleave

denatured AAV-1 VPI 148 times and AAV-2 VPI 145 times, but as shown, only a limited

number of cleavage sites are accessible. Additionally, AAV-5 with 139 potential cleavage sites

was not cleaved by chymotrypsin (Figure 4-5C). The proteolytic data was confirmed by









AAV2 AAV1

0 1 5 24 0 5 24

150 kDa
VPI -- 100 kDa
VP2, VP .. -- 75 kDa
VP2T .. 50 kDa
VP3T -'
37 kDa


AAV5
0 5 12 24


-150
-100


-37


-25
-20


- 25 kDa
- 20 kDa
- 15 kDa


VP1,2,3 T -


AAV Serotype
5 6 7 8 9 10 11 A


Position
556
566
585
588
609
620


21 3 4


KNNTNNNDKSNQ
RKRAQKRKKKAR
RSSSSSAQSQNS
R TT NT TT TA TT T
R RR RR RR RR RR R
K KK KK KK KK KK K


Figure 4-5. AAV-2, AAV-1 and AAV-5 capsids can be distinguished proteolytically. A.
Trypsin time course. Purified AAV-1 (F-T/iodixanol/Q), AAV-2 (F-
T/iodixanol/heparin), and AAV-5 (F-T/iodixanol/Q) virions were incubated at 37oC
without trypsin (0), or treated with 0.02% trypsin for the time (hours) indicated above
each lane. The capsid proteins of AAV-1 and AAV-2 were probed with anti-AAV2
polyclonal and AAV-5 was probed with anti-AAV5 polyclonal sera. B. Alignment.
Amino acid alignment of the G-H loop [50] region 556-620 of AAV serotypes 1 to 1 1
and Avian AAV. Arginine or Lysine (R or K) residues, the target residues for
trypsin, are shown in blue. Amino acid position numbering is based on VPI of AAV-


correlating the effect of digestion on infectivity (Figure 4-6) where the infectious titers of the

vectors following 24 hours of digestion with trypsin or chymotrypsin resulted in AAV-2 losing

3-4 logs of infectivity, but AAV-1 and AAV-5 lost less than 1 log, indicating that chymotrypsin

cleavage of AAV-1 is at a site(s) less important for infectivity. The predictive power of the










primary sequence and 3D structuredata was limited with respect to identifying protease cleavage

sites on AAV intact capsids. Numerous potential trypsin and chymotrypsin cleavage sites exist

in the AAV-1, AAV-2, and AAV-5 VPI primary sequences, but access to these sites could be

dictated by their stable or transient presence on the virion surface. In some cases, surface loops

in solution may not be exactly positioned as in the 3D structures. Analysis of the primary

sequence of AAV-1, AAV-2, and AAV-5 predicted numerous tryptic and chymotryptic sites, but

the actual proteolysis generated a pattern of products resulting from cleavage at specific sites. In

addition, a search for the position of K and R residues on the AAV-2 crystal structure and a 3D

model generated for AAV-1 showed residues, other than R588 in AAV-2, believed to be

accessible on the capsid surface that were not cleaved (Figure 4-7A and B), which may be due to

inaccessibility or steric hindrance in solution.

Proteolytic analysis complements 3D-structure analysis. The available crystal

structure of AAV-2 [48] and homologous VP3 models, generated for AAV-1 and AAV-5 based

on a structural alignment with AAV-2 [50], provided a means to visualize the solution data

through mapping of the trypsin cleavage site onto the capsid surface (Figure 4-7). The R588

mapped by N-terminal sequencing as the trypsin cleavage site is located on the capsid surface in

the "finger-like" proj sections surrounding the icosahedral 3-fold axis, and forms part of the basic

patch that is responsible for AAV-2's heparin binding interaction [95, 96]. The visualization of

AAV-1 and AAV-5 with AAV-2 capsids in this region clearly showed that the cleavage event

was specific, since adj acent basic residues were not susceptible, and AAV-1 and AAV-5, which

do not contain R588, are resistant. The cleaved residue R588 of AAV-2 is located in the G-H

loop that protrudes from the capsid surface where it is accessible to heparin binding and trypsin

cleavage (Figure 4-7). Capsid protein loops, including the G-H loop, are able to tolerate



















Polyclonal


AAV1 A~AV2 AAV1
0 1 5 12 24 0 1 5 12 24 0 1 5 12 24
100 kDa-



25 kDa, J- -
20 kDa -


AAV2 AAV5
0 1 5 12 24 0 1 5 12 24
-100



25
--20
Polyclonal


1.00E+11


1.00E+10



1.00E+09


1.00E+08


1.00E+07



1.00E+06


1.00E+05


5 10 15


Hours


Figure 4-6. AAV-2, AAV-1, and AAV-5 have different susceptibility to Chymotrypsin. A.
Chymotrypsin time course. Purified AAV-1, AAV-2, and AAV-5 were incubated at
37oC without chymotrypsin (0) or digested with chymotrypsin at 37oC for the time
(hours) indicated above each lane. The capsid proteins of AAV-1 and AAV-2 were
probed with anti-AAV2 polyclonal or B1 antisera, and AAV-5 was probed with anti-
AAV5 polyclonal sera. The asterisk indicates an additional AAV-2 band observed
with chymotrypsin that was not seen following trypsin digestion in Fig. 6A. B.
Infectivity. Infectious titering of rAAV1-GFP, rAAV2-GFP, and rAAV5-GFP
virions was performed following digestion with trypsin or chymotrypsin by infecting
C12 cells in the presence of Adenovirus (reported as the average + SDEV from three
separate infections). AAV-1 and AAV-5 infect C12 cells less efficiently than AAV-2
[103].










R588


B1 epitope


Figure 4-7. Capsid structure. A. Capsid monomer. Ribbon representation of an AAV-2 VP3
monomer (amino acids 217-73 5) rotated 900 from standard icosahedral orientation.
P-strands and co-helices are represented as arrows and coils, respectively. Small
arrows indicate the location of R588 (blue spheres) and the B 1 epitope at the extreme
C-terminus (green). The 2-fold (oval), 3-fold (triangle) and 5-fold (pentamer) axes
are indicated. B. Side view of an AAV-2 VP3 trimer. Amino acids R585 and R588
in the three G-H loops from three VP3 monomers (gray, salmon, wheat) are
represented as blue spheres and indicated by arrows.









differences in conformation when the AAV capsid structures are compared [50]. These loops

intertwined to form the characteristic AAV surface protrusions that decorate the core capsid and

provide the immunogenic, tropic, and proteolytic determinants. The cleaved AAV-2 C-terminal

protein fragment, residues 589 to 735, is able to remain associated with the capsid because

thecleavage site is on the outer surface of a 3-fold protrusion, not part of the core. The eight

stranded beta barrel forms the core stable capsid that remain intact following trypsin cleavage.

Of note are the surface accessible R and K residues in the G-H loop that are common in AAV-1,

AAV-2, and AAV-5 (Figure 4-8), but are not cleaved by trypsin. Thus it is possible that

proteolytic digestion may be limited by steric constraints to those residues found on loops that

protrude from the surface. Results in solution confirm that the region of the G-H loop containing

residue R588 is surface accessible as seen in the crystal structure, and the presence of heparin is

not required for exposure. The B1 epitope (residues 726-733) is located on the "wall/floor" of

the dimple at the icosahedral 2-fold axis of the AAV-2 capsid, close to a "buried" stretch of G-H

loop amino acids leading up to the tryptic cleavage site (Figure 4-8 I-III). Interestingly, the B1

epitope, found on the thinnest region of the AAV-2 capsid, contains residues that are exposed on

both the interior and exterior surfaces (Figure 4-8 III). The isolation of numerous AAV serotypes

and genotypic variants [23-26, 104], and the observation that each virus serotype has unique

cellular recognition and transduction phenotypes dictated by the capsid protein sequence has

generated a need to fully characterize the capsids of these viruses, including their structural

features. Here we use proteolytic digestion combined with available information on antigenic

epitopes and mass spectroscopy to analyze the AAV capsid in solution. We show that

proteolysis is able to generate a characteristic cleavage pattern that can be used to distinguish full












AAV1 AAV2 AAV5



















RS85

Figue 48. AV-1 AA-2 nd AV-5Homlogymodls.A. apsi sufac basc ainoacid. AV-1 AAV2, nd AV-
capidsufae trctre a te -fld xi o smmtr wthth idiatd asi ain aid o te alonreernc
moomr iglihtd n lu. AV2 P dme vewd ow te -fldaxs.() olglcie rae,(I) urac, n
(II)Cos-u ie o hesrfceeteio to)an itrir bttm)o a AV2 P dme cynan ga) hoig h
loain fR8 adteB ptp (oo ceea n ,B n ) h reside nteG- opaecooe io

and rane i therefrene mnomrad2fl eae ooersetvey h oriaeflsue nADwr
basd o te Xra crstalorapicstrctre f A V- [4] PDBaccsson o.1LP) nd omoogus odls er


geerte for AA n A sn tutrebsdain etwt A -.Coriaeflsfrtehmlgu
models8 were7~ gnrtduigVPR[0]FiuewreeerateduinyML









from empty AAV-2 capsids and differentiate between two highly homologous serotypes, such as

AAV-1 and AAV-2, as well as between less homologous serotypes (AAV-5). The size and

sequence of the proteolytic products in addition to the origin of the products (i.e. VP1, VP2, or

VP3) were determined. Furthermore, available structural information enabled the 3D

visualization of the location of the AAV-2 cleavage and B 1 antigenic sites on the surface of the

V1T10H.

Proteolytic analysis has practical applications. AAV-2 is currently being evaluated in a

variety of human clinical trials [106] and clinical trials are being planned that utilize other

serotypes. Prior to use in the clinic, an important product release test is the confirmation of

product identity to comply with current Good Manufacturing Practices (cGMP) regulations.

Identity release testing involves not only confirmation of the vector genome that is packaged, but

also the serotype of the capsid. Since immunologic reagents generated to one serotype have the

potential to cross react with other serotypes, screening different proteases on different AAV

serotypes may generate a capsid fingerprint database that could distinguish the 11 serotypes, as

well as the more than 100 genotypic variants that have been recently isolated [23]. We have

shown that the highly homologous AAV1 and AAV2 capsids can be distinguished from each

other and from AAV5 by comparing their trypsin and chymotrypsin digestion patterns (Figure 4-

5). An assay capable of distinguishing different serotypes that utilizes the commercially

available reagents applied in these studies will be useful to the gene therapy community.

In addition, vector targeting has gained a great deal of interest, and is intended to reduce

non-specific uptake by non-target organs and increase the efficiency of uptake into target tissue.

Cell-specific epitopes and receptors have been engineered into the AAV capsids and have

resulted in efficient targeting [107-109]. The sites in the AAV capsid sequence that can









accommodate insertions have been identified mainly through mutagenesis studies. In the absence

of 3D structure, proteolytic mapping in combination with mass spectroscopy and N-terminal

sequencing, as is demonstrated in these studies, can identify exposed, flexible loops of the AAV

capsid. These regions can be tested for their ability to accommodate epitope/peptide insertions,

as has been shown for AAV-2 at R587, see Girod, et al. [109]. The first mutant generated for

AAV-8 is an AAV-8 capsid with His residues inserted after amino acid 590 in the AAV8 capsid

protein, which is the region in AAV-8 that is homologous to R587 in AAV2[110]. Having an

additional approach to identifying insertion sites in the capsid of any AAV serotype can aid in the

generation of new targeting vectors.

Viruses and cell lines. Full (DNA-containing) rAAV2-GFP vector virions were produced

by transient transfection of HEK293 cells, lysed with 0.5% deoxycholate (DOC), and purified on

sequential CsCl density gradients (designated as DOC/CsC1). Purification methods incorporated

the use of Benzonase at 50U/ml for 30 minutes at 37oC and additionally utilized a Einal heparin

chromatography step for concentration [111] (designated as DOC/CsCl/Heparin). rAAV2-GFP,

rAAV1-GFP, rAAV5-GFP vector virions were also produced by transient transfection of

HEK293 cells, lysed by freeze/thaw, and purified on iodixanol gradients followed by heparin

affinity or Q-sepharose chromatography (designated as F-T/Iodixanol/Heparin or F-

T/Iodixanol/Q [111]. Alternatively, rAAV2-GFP and rAAV1-GFP vector virions were purified

by freeze/thaw and CsCl gradients followed by heparin affinity or Q-sepharose chromatography

(designated as F-T/CsCl/heparin or F-T/CsCl/Q). Infectivity of the AAV vectors were assayed

on C12 cells in the presence of adenovirus as previously described [92]. Empty AAV-2 capsids

were made by infecting HEK293 cells with an Adenoviral vector expressing the AAV2 cap ORF

(MOI=2). The cells were lysed by 3 freezing/thawing cycles, the cell debris was removed by









centrifugation (3000g for 10 minutes), and DOC was added to the supernatant to a Einal

concentration of 0.5%. The supernatant was digested with 50U/ml benzonase for 30 minutes at

37oC, filtered (Acrodisc 25mm PF, Pall), and purified by heparin affinity chromatography.

Virions and empty capsid preparations were dialyzed into 50mM Tris-Cl pH 8 containing

100mM NaCl using a 10,000 MWCO membrane (Pierce), aliquoted, and stored frozen at -20oC

or -80oC.


Proteolytic digestion. 0.8Clg of virions (equivalent to ~1.2X1011 capsids) were digested

with 5 Cg (0.02% Einal concentration) of trypsin (Gibco) or 80ug of co-chymotrypsin (Sigma) in a

25 Cl reaction at 37oC for up to 24 hours. The products of proteolysis were denatured at 100oC

using Laemmli sample buffer at final concentrations of 1% SDS and 655mM P-mercaptoethanol,

and separated by SDS-PAGE. After transferring the proteins to nitrocellulose (25mM

Tris/192mM Glycine/0. 1% (w/v) SDS/20%MeOH for 2 hours at 0.5 Amp in a Criterion-transblot

apparatus (Bio Rad) that reached 45oC), they were probed with antisera to AAV-2 polyclonall,

Al, Bl, A69 [65, 100]) and AAV-5 from Progen at dilutions of 1:250 polyclonall) to 1:2000

(monoclonal). The AAV-2 polyclonal antiserum cross-reacts with other AAV serotypes, but

cross-reacts weakly with AAV-5 under our conditions. Based on the peptides used to generate

the monoclonal antisera, B1 (antibody epitope IGTRYLTR) recognizes AAV1-3, and AAV5-10;

A69 (antibody epitope LNFGQTGDADSV) is specific for AAV-2; and Al (antibody epitope

KRVLEPLGL) recognizes AAV-1, AAV-2, AAV-4, AAV-7, AAV-8, AAV-10, and AAV-11.

Bands were visualized by chemiluminescence using HRP-conjugated secondary antibodies

(Amersham) and captured on X-ray film.

Mass spectroscopy and N-terminal sequencing. For mass spectroscopy and N-terminal

sequencing, DOC/CsCl/heparin purified rAAV2-GFP virions were digested with trypsin (0.02%









trypsin for 24 hours at 37oC) and heated to 100oC for 5 minutes in the presence of 0.6M

dithiothreitol (DTT). The common C-terminal trypsin digestion product of VP 1, VP2, and VP3

(designated as the VP1,2,3T fragment) was isolated by HPLC on a Vydac C4 5pm 150mm

2.1mm ID column eluted using a 15% A to 80% B buffer gradient (Buffers: A is 0.1% Tri Fluoro

Acetic Acid (TFA) in H20 and B is 0.1% TFA in Acetonitrite (CH3CN)) over 30min at a flow

rate of 200pl/min. Detection was at 215 nm and column peak #3 of 5 peaks (~0.5ml fractions)

contained VP1,2,3T as verified by Western blotting with polyclonal and B1 antisera. For matrix

assisted laser desorptiondlonization time of flight mass spectroscopy (MALDI-TOF), the

VP 1,2,3T fragment was reconstituted in 50% acetonitrile/0. 1% acetic acid and evaluated using

an Applied Biosystems QSTAR with electrospray ionization and the Bayesian Protein

Reconstruction algorithm was used to deconvolute the mass. N-terminal sequence of the

VP 1,2,3T fraction was obtained using an Applied Biosystems 494/HT PROCISE Protein

Sequencing System with standard liquid blot cycles.

Electron microscopy (EM). Purified rAAV2-GFP virions were digested with 0.02%

trypsin for 24 hours at 37oC. 3-5C1l of treated and untreated samples (at approximately

0.05mg/ml) were loaded onto 400 mesh carbon-coated former copper grids (Ted Pella, Inc.,

Redding, CA), and negatively stained with 2% uranyl acetate. The grids were viewed on a

Hitachi H1-7000 transmission electron microscope at 30,000X and 70,000X magnifieation.

Immune dot-blot. The immune dot-blot procedure was essentially as described in Bleker,

et al. [112]. Whatman fi1ter paper No. 3 (Whatman International, Ltd., Maidstone, England) and

supported nitrocellulose, 0.2 Cpm pore size, (Bio-Rad, Hercules, CA) were soaked briefly in TBS

(50 mM Tris, 100 mM NaC1, pH 8.0) prior to assembling the dot-blot manifold (Schleicher and

Schuell). After proteolysis, 25Cl samples were directly applied to the wells of the dot-blot









manifold and allowed to adsorb to the membrane. In some cases, the trypsinized virions were

treated with 0.1% SDS and 20% MeOH for 2h at 37oC or 45oC and then applied. Excess fluid

was drawn through the membrane by vacuum filtration. Each well was washed with 100ul of

TBS. The membrane was removed from the manifold and blocked with TBS/0.05% Tween 20

(TTBS) + 5% milk for 1 hour. Membranes were then probed with antisera to AAV-2 for 1 hour,

in TTBS+5% milk at antibody dilutions of 1:2000, washed 3 times for 5 minutes each with

TTB S + 0.05% milk, and were probed with secondary antibody, HRP-linked anti-mouse

antibody diluted 1:5000 in TTBS+5% milk for 1 hour. Membranes were washed 3 times for 5

minutes each with TTBS + 0.05% milk prior to detection using Pierce SuperSignal West Pico

Chemiluminescent Substrate.

3D-structure analysis. Potential protease cleavage sites were analyzed using the protein

sequences of AAV-1 (NPO49542), AAV-2 (AACO3780), AAV-3 (NPO43941), AAV-4

(NPO44927), AAV-5 (YPO68409), AAV-6 (NPO45758), AAV-7 (YPO77178), AAV-8

(YPO77180), AAV-9 (AAS99264), AAV-10 (AAT46337), AAV-11 (AAT46339), and AAAV

(AAT48613). Structure analysis to map potential tryptic cleavage sites on the AAV-2 and AAV-

1 capsids utilized available coordinates for the AAV-2 VP3 monomer [48] (PBD Accession No.

1LP3) and homologous models were generated for AAV-1 VP3 and AAV-5 VP3 based on a

structure-guided sequence alignment with AAV-2 [50]. VIPER was used to apply icosahedral

symmetry operators to the VP3 coordinates to generate 3D models [73]. The coordinates were

visualized using the program PyMOL (http://www.pymol_ org, DeLano Scientific, San Carlos,

CA).









CHAPTER 5
MASS SPECTROMETRY FOR AAV CAPSID SEROTYPE IDENTIFICATION

AAV-CSI Introduction

There are 11 serotypes of AAV, each with unique properties. AAV-2 was the first to be

discovered, is the most studied and the maj ority of clinical trial data has come from studies with

AAV-2. Currently, there are two Phase 1 clinical trials with AAV-2, one to deliver RPE65 to eye

in patients, which was shown to restore vision in animal models, and one to provide aromatic L-

amino acid decarobxylase to patients with Parkinson's disease. However, serotypes other than

AAV-2 have been shown to have unique cellular receptors and different transduction

efficiencies. AAV-4 has also been utilized to deliver transgenes to the retina of the eye. In

addition, AAV-8 has been shown to have higher transduction efficiency than AAV-2. AAV-1

has been shown to be superior for transducing skeletal muscle and is currently in Phase 1 clinical

trials to investigate its use in the treatment of limb girdle muscular dystrophy type 2D

(LGMD2D), as well as for the treatment of alphal-antitrypsin (AAT) deficiency. Recently, over

100 AAV genotypic variants have been discovered [23, 26, 104], which provide the potential for

an expanding number of AAV serotypes that could be developed into gene therapy vectors in the

future.

A PCR-based assay using unique primers to the cap genes of different serotypes has been

developed to distinguish the serotype of wt virus for AAV-2, AAV-3B or AAV-6 [1 13];

however, in gene therapy vectors, the rep and cap genes have been removed and replaced with a

therapeutic gene, so this assay cannot be used to determine the capsid serotype. For patient

safety, the therapeutic transgene is sequenced from viral DNA to demonstrate that the gene

therapy vector harbors the correct transgene. However, there are very few methods available to

verify the capsid serotype of the therapeutic AAV vector. One recently developed method for









verifying the capsid serotype involves partial proteolysis of the capsid and analyzing the

fragments [46] as described in Chapter 4, or alternatively, other investigators have developed a

serotype specific ELISA utilizing antibodies that react to intact capsid proteins [114]. Several

monoclonal antibodies for AAV-2 capsids have been described, such as A20 which recognizes

intact AAV-2 or AAV-3 capsids [72], mAb C37 and C24 which selectively react with AAV-2

[100], and mAb D3 which shows broad reactivity with different serotypes [100]. Antibody B4 is

a monoclonal antibody that recognizes intact AAV-5 capsids; however, it has not been tested for

serotype specificity [115]. Other monoclonal antibodies have recently been generated that

recognize AAV1/6 (ADKla and b), AAV-4 (ADK4) and AAV-5 (ADK~a and b) [114] for the

purpose of serotype identity testing. ADKla and b, ADK4 or ADK~a and b were each shown to

recognize a serotype specific conformational epitope and do not cross-react with serotypes

AAV1-6, 8 and 9, with the exception of ADKla and b which also reacts with AAV-6, whose

primary sequence differs from AAV-1 by six amino acids. In 1999, Grimm, et al. developed a

capture ELISA for AAV-2 using the monoclonal antibody A20 [116]. Recently, newly generated

monoclonal antibodies have been utilized to develop a capture ELISA assay for serotypes 1/6, 4

and 5. However, with the potential of over a hundred AAV serotypes, it will be difficult to

generate unique conformational antibodies that do not cross-react with other serotypes. In

addition to using different serotypes, capsids may be specifically altered for improved targeting

to transduce specific cells and capsids have been modified to express peptide fragments on the

AAV surface.

Methods for determining AAV serotype identity utilizing intact capsids were described in

Chapter 4. The focus of this chapter includes techniques to determine the AAV capsid serotype

identity using denatured viral capsid proteins. The western blot assay for evaluating proteolytic









cleavage fragments of intact capsids described in Chapter 4 is dependent upon an available

antibody, as well as the antibody epitope(s) not being the site of cleavage. This assay, while

highly reproducible, is dependent on the AAV capsid concentration (substrate concentration),

enzyme concentration and the length of the digest. The specific activity of the protease can also

vary between lots or between suppliers. Additionally, the purity of the preparation can effect

digestion conditions. This assay relies on differential proteolytic cleavage of the capsid of

different AAV serotypes and the resulting unique fragmentation patterns provide capsid

identification; however, capsids of serotypes that are resistant to several proteases or capsids that

are cleaved to such an extent that the antibody epitopes are not distinguishable, will not be able

to be differentiated. The methods described in Chapter 4, as well as the AAV ELISA that has

been developed by other investigators are valuable assays and are the only methods developed to

date that allow for an evaluation of intact capsids.

Recently, mass spectrometry (MS) techniques have been shown to provide useful, robust

and rapid proteomics approaches to identify viral proteins. It has been used to identify viral

proteins produced during the course of infection for Marek' s Disease Virus (MDV), an alpha

herpes virus [117]. Recent advances in MS techniques have allowed for its use as a method to

detect viruses that are human pathogens, like Norovirus [118]. MS applications have been used

to identify the viral proteins associated with viral particles for mimivirus [119], the vaccinia

virus mature virion [120], murine cytomegalovirus virions [121], bacteriophage MS2 [122] and

Sulfolobus turreted icosahedral virus (STIV) [123]. It was also demonstrated that mass

spectrometry could be used to monitor hepatitis C virus (HCV) genotype la, which exists within

as a heterogeneous population of quasispecies, in a clinical patient [124]. Mass spectrometry

methods have also been used to investigate dynamic interactions that occur for viruses in









solution, such as Cowpea chlorotic mottle virus (CCMV), which has a dynamic structural

transition in response to changes in pH, ionic strength, and divalent cation concentrations, which

results in swelling of the CCMV capsid. Closed and swollen CCMV capsid particles subj ected to

trypsin digestion provides information regarding protein dynamics, and allowed for a comparison

of the solution phase properties of the particles [125]. For AAV, we have utilized protease

digestion to evaluate the solution phase properties of intact empty and full (DNA-containing)

capsids, as well as shown that different serotypes display differential susceptibility to proteases

[46]. For AAV-2, high resolution mass spectrometry has been utilized to characterize capsid

protein glycosylation [126]; however, for AAV, spectrometry has not been previously utilized to

evaluate the capsid serotype.

Currently, we are developing methods for AAV serotype identity testing that incorporate

the need for a quick and reliable assay to confirm serotype identity. In this work, we show that

denatured capsid proteins digested with trypsin and subj ected to mass spectrometry can be

utilized for serotype identity testing. Differences in the primary amino acid sequence of AAV

serotypes provide fragments of different masses when digested with trypsin, and these unique

fragments are detectable by mass spectrometry. A serotype identity table for AAV-1, AAV-2,

AAV-4, AAV-5 and AAV-8 is shown in Table 5-1. A phylogenetic tree of AAV-1 through

AAV-1 1, which depicts relatedness of AAV serotypes, is shown in Figure 5-1. We show that the

highly homologous serotypes, AAV-1 and AAV-2 can be distinguished from each other, as well

as from less homologous























STable 5-1. AAV Serotype Amino Acid Identity Table for AAV Serotypes 1 -11. AAV Seroty es were aisne ad4aon ildeen it table
e ~was constructed using Vector NTI (Invitrogen). Numeric values represent percent dniy AAV- is 65% identical to AV1 4
AAV-8, and 83% identical to AAV-2, representing highly homologous serotypes. oA- s6%ie tia e. AAV-5, is
identical to AAV-8, 61% identical to AAV-2, 54% identical to AAhV-.5 represserino ya le Aes oolongo smsb rs fprproteins
54 59% identical to the other serotypes, also representin95a le d homm 7oou 7,o e whichaesidentcl AAV-2 VorPrtin
used in the alignment are. AAV-1 VPI sequences AAV-354 StainH AAC275504 which are identical, AAV-3B VPI
AACO3780, AAV-3 VPI sequences NP 044927 and AAC58045 which are identical, AAV-5 VPI sequences YP 068408
a AD35 hc r dnia AV V AAB95452, AAV-4 VPI sequencesNPa AANO3855 and YP 077178 which
aedide 1ial A6AwV 8c r s ATee 6P 7780 And A4N50 8A Vwh ch alre ide t al AAV-9 VPI AAS99264, AAV-10
AAT46337, AAV-11 AAT46339.











1~ NPD4942 P.OG#}
1l r4PI MD27757 (0.0CCD)
AsAY VPX PAAB9C5450{0.03
AAV~2 VP1 MC03780L {0C.0720
cAAY3 P_C143941 (?0.0000
AA1Ga Stain, H M9C~554 {.0000}
BAAVJBVP AA B95452(0.IX)9}
AA~Vf T AT463 a39(.81)~
AA4 NP_44827 (&CO#
AAV4VPT AACMO45 (0.0@
AAV VPI BAD1J375 (03.000T)
AAVB~ YPG640 {.000)
AAV10 ir9aAT433 (.009
AV8 VPI As~hD3857 (0.0000
AAV8Y;P_077180 (0.000}
AAV VpIP AND3855 {0.0000)0
PAYf YP_077778 P.090)~
AAV5 VPI AAS92B4 0.a203}


Figure 5-1. Phylogenetic Tree of AAV Serotypes 1 1 1.

serotypes such as AAV-4, AAV-5 and AAV-8. Unique fragments were detected for all AAV

serotypes tested which allowed for serotype identification.

Results and Discussion

Prior to generating an AAV vector, one factor that should be considered is the desired target

since different AAV serotypes have unique tissue tropisms. After the AAV vector has been


produced, it harbors the therapeutic gene and the ITR' s, and is lacking other viral DNA

sequences. As a result, there are few methods available for capsid serotype identification (CSI)

of the final AAV vector. Upon evaluation of several different AAV serotypes in an SDS-PAGE


gel, the electrophoretic mobility of the VPs in the gel can provide some limited information

about the AAV serotype. The electrophoretic mobility of viral proteins for AAV-1, and AAV-2

run faster than the viral proteins for AAV-5 in an SDS-PAGE gel [111]. In a 10% Criterion


minigel format (Bio-Rad, Hercules, CA), VP3 of AAV-4 and AAV-8 migrate similarly to AAV-

5, this is shown in Figure 5-2. To obtain information about the serotype, this requires a

comparison of several AAV samples run in parallel, with known serotype samples for

comparison. From an unknown sample, this would not be sufficient to allow for AAV serotype

identification, but this could enable one to narrow down the possibilities to a smaller group of









potential serotypes, such as either AAV-1/AAV-2, or AAV-4/AAV-5/AAV-8, based on the

migration of VP3 in a gel. An ideal assay for AAV serotype identification would allow for a

single sample to be identified on the basis of the characteristics of the sample.

Other desirable features of an assay for AAV capsid serotype identification (CSI) include

the development of a relatively fast and simple assay that is able to be easily incorporated into

current methods in a vector core or cGMP facility. Based on these features, we have developed

an LC/MS/MS method for determining AAV serotype identification. SDS PAGE gels of viral

protein samples are routinely run and silver stained to assess the final vector products for purity.



AAV1 AAV2 AAV4 AAV5 AAV8 AAV8




VP1+,
VP2+
VP3+ 1VP3





Figure 5-2. Coomassie stained samples for mass spec identification of AAV serotype. AAV-1,
AAV-2, AAV-4, AAV-5 and AAV-8. VP3 for different serotypes migrate differently
in a 10% Criterion SDS-PAGE minigel, with AAV-1 and AAV-2 VP3 migrating
faster than AAV-4, AAV-5 or AAV-8. The minigel format was used for this assay
instead of the larger 15 cm gel format which has better resolution because vector core
and GMP facilities routinely run gels of this size after production and purification of
AAV vectors to demonstrate purity of the final product.

Many silver stain products interfere with mass spec applications; therefore, Coomassie

bluestaining was utilized for this assay. Initially, the method was evaluated using VP1, VP2 and

VP3 of AAV-1, AAV-2 and AAV-5 to assess for feasibility. Upon correct serotype identification

for all three serotypes, the assay was expanded to include AAV-4 and AAV-8. VP3 bands shown









in Figure 5-2 and Figure 5-3, were cut from the gel, and LC/MS/MS was performed. The SDS-

PAGE gel functions as a separation step for the viral proteins; therefore, samples of varying

levels of purity were analyzed. Samples of AAV-4 and AAV-5 that were less pure were run in

parallel with pure AAV-4 and AAV-5, as well as additional samples of AAV-8. After isolating

the VP1, VP2 and VP3 protein bands from the gel, samples were coded and evaluated blindly by

MS. Because there is considerable overlap with the AAV viral proteins VP1, VP2, and VP3, and

since VP3 is present in the largest amount in intact capsids, VP3 was utilized for the blind study.

The N-terminus of VP3 of different serotypes was predicted to provide a unique fragment after

in gel trypsin digestion that might be useful when analyzed by mass spectrometry; however,

previously it has been shown that this region is acetylated [127].

Mass spec data was analyzed using Mascot and X! Tandem. Mascot was set to search the

NCBI database and limited to viral proteins. The proteomics software Scaffold was used to

validate MS/MS based peptide and protein identifications. Peptide identifications were accepted

if they could be established at greater than 95.0% probability as specified by the Peptide Prophet

algorithm. Protein identifications were accepted if they could be established at greater than

99.0% probability and contained at least 2 identified peptides. Protein probabilities were

assigned by the Protein Prophet algorithm. The software Scaffold provides a user friendly

interface for the evaluation of samples and is shown in Figure 5-4. The unknown sample codes


















VP3+ VP3










Figure 5-3. Coomassie stained samples for mass spec identification. Samples of AAV-4 and
AAV-5 that were less pure were run in parallel with purified AAV-4 and AAV-5, as
well as additional samples of AAV-8 to determine if purity is an important parameter
for this assay.

are listed across the top of the table. The column on the left hand side are the theoretical proteins,

the accession number, and the protein molecular mass. Numbers highlighted in green indicate the

number of unique fragments with a probability of over 95% upon which the AAV serotype

identification was based.

The samples that were less pure, LLL (AAV-4), MMM (AAV-4), QQ (AAV-5 VP2),

QQQ (AAV-5 VP3), RR (AAV-5 VP2), RRR (AAV-5 VP3) had detectable levels of

contaminating proteins, such as cellular and helper virus proteins used in production. In the

initial experiment to determine feasibility of this assay, LC/MS/MS was performed on VP 1, VP2

and VP3 of three AAV serotypes, AAV-1, AAV-2 and AAV-5 (impure). This method can be

used to identify contaminants; for example, the AAV Rep78 was identified in one impure prep

since it migrated with similar molecular weight as VP2 (72 kDa). This assay may be useful for

verifying that new purification methods have eliminated proteins that are similar in size to the





Proabii~Leondover 95% 80% to 94%b~~~ i~~ ~ o19


1007~0J21 kV vi~ru:.i; DI:-plaing3 f urnbe~i :r Un;que Peptidej~
Protegin narni- Iurn ArCse:.:-ionPiotgin rniCAAA BBB
AAV5 1ao~ gia53384;? u
cAAV8 1 gllf1199499 o1739 6 8
AAV4 1 gll9E29E.3 Y0622.5
AAV4~ unnamed p 1 91~122923 E.<><
AAV2 VP3 1 5'1221426 56698 1

HSP70[IAcanthan-1gl 69trua9'7-1
E2A; DNA binding 1 gll9626179 5906; 2
Thioredoxin 1 g1l230;11 1165d.0. 2
AAV2 VP1 1 qll16.16.1 j's 167 6
Goose VP3 4gl422 191dP 4
Goose Parvovirus L JI1737E.2L 1-1.


CCC EEE GGG
1 1 11


HHH KKK LLL MMM PPP QQ QQQ RR
6 5 9 9 8

1 14
10 14


17 1
1 1


2 2
3


1 3
5 4


2 1


1 2
1


Figure 5-4. Mass spec data analyzed using the software program Scaffold enabled unambiguous serotype identification for 13/17
samples (76%) and the correct serotype assignment was made for 17/17 samples (100%) based on the serotype with the
largest number of unique fragments. The viral proteins, accession numbers, and protein mass are the result of the database
search. The unknown samples are listed as their alphabetic code, and the values in the table are the number of unique
trypsin fragments. This value was used to correctly assign the serotype. Codes: AAA AAV-1; BBB AAV-8; CCC -
AAV-8; EEE AAV-4; GGG AAV-5; HHH AAV-2; KKK AAV-4; LLL AAV-4; IV1V1V AAV-4; PPP AAV-1;
QQ AAV-5; QQQ AAV-5; RR AAV-5; RRR AAV-5; SSS AAV-8; XXX AAV-8; ZZZ AAV-5


RRR SSS XXX Z.ZZ
7 10
7E 10rr









AAV viral proteins which would not be distinguishable in an SDS page gel to assess purity. In

Chapter 4, we showed that proteolysis of AAV-2 VP I results in a degradation product, VP IT,

that is similar in size to VP2, which were detected using available antibodies for AAV-2. Fewer

antibodies are available for other serotypes, and the A69 antibody that recognizes the N-terminus

VP2 is unique for AAV serotype 2. For AAV-2, the site of proteolytic cleavage mapped to a

critical region in the capsid required for heparin binding and as a result, capsids with a cleavage

in the GH loop are removed during heparin chromatography; however, if the cleavage had not

been in a critical region, or for other serotypes such as AAV-8 that may be less stable, this

technique will be useful for detecting degradation products of VP I that are similar in size to

VP2 .

Another goal of this work was to determine if a capsid mutation has occurred, if it could be

identified using this method. Because the raw data utilized for mass spec is based on the

fragmentation pattern of a known protein, this method will not be able to identify if a capsid

mutation has occurred during production. For example, a mutation in AAV-4 that resulted in the

change of a basic amino acid at amino acid 544 to an acidic amino acid would no longer have a

trypsin cleavage site at this position and the resulting fragment would be much larger than

expected. However, in the database search, this larger fragment would not be present in the

database. Therefore, for this region of the AAV capsid, there is a lack of coverage in the MS data

for these amino acids. Figure 5-5 is LC/MS/MS data for wt AAV-4 and AAV-4 R544E mutant

which shows partial coverage for wt AAV-4 in the region of the mutation which allows

verification that R544 is a basic residue in the wild type virus, and a lack of coverage in R544E,

which is due to a known mutation in the starting material used in this assay. Coverage or the

number of amino acids detected after mass spec analysis is rarely 100%, so the lack of coverage









itself is not sufficient to assume that a mutation has occurred. However, for AAV capsids like

AAV-2, many alanine scanning capsid mutants have been generated. These sequences are

currently not in the database. If a modified AAV capsid with a known mutation is added to the

database, there is the potential for identifying that this sequence as been incorporated into the

capsid and in the correct region based on this method, provided that the data obtained shows

coverage in that specific region; however, a lack of coverage would not verify that the capsid

does not contain that mutation. This might be useful for AAV-2 capsids that have been

engineered to target specific tissue based on insertion at amino acid 587.

For the AAV-4 mutant capsid used in this study, the result of the mutation at the trypsin

cleavage site is a very large fragment, which is too big to be detected in the mass spectrometry

studies performed here. MS relies on matching the fragment sizes obtained to predicted

fragments of known sequences in the database. This large fragment if it were detectable would

be unexpected when compared to the known sequence of AAV-4. First attempts at trying to

identify this mutation in AAV-4 involved building a database that included the AAV-4 sequence

with the mutation. Unfortunately, due to the use of trypsin, which relies on a basic residue

and the primary sequence of AAV-4, there isn't another basic residue within a reasonable

distance and the resulting fragment was too large to detect. In the wt AAV-4 sample, we detect

the fragment flanking the mutation, but this is not detectable in the mutant AAV-4 sample.

Although lack of coverage could be from acetylation or post-translational modification, or poor

ionization of the fragment, as well as other reasons, coverage for wt AAV-4 in that region and a

consistent lack of coverage for mutant AAV-4 sample may suggest that there is a mutation. If the

mutation in this sample was a change in an amino acid that was not a basic residue which trypsin













gl 12292030 (100%'), 58~391. D &
u~nnamedcl proterjr product [Alderinassociated vlru -4]~
14 unllue popteder. 21 unl~que aspect, 27 total speCtr.~fa, 181 amblec acidrs (405 coverage)

GADGVONASG DWHODSTWSE GMVTTtTSftT WVLPTYHNNH
YERLGESLON NTYNGFSTPW GYFDFNRFMC HP5PRDWORL
INNNWGMRPK AMRVklFNIO VkEVTTSBNE TTVANNLTST
VQlFADSSYE LPYVMDAGOE GSLPPFPNDV FM'!POYGYCG
LVTGNTSQQQ TDRNAFYCLE YFPSGMLRTG NNFEITYSFE
HYPFHsMYAH BSQLDRLMNP LIDPYLWOLQ ~TTTGTTLNA
CTATTNFTML WPTNFSNFRK NWLPCPSIM KaGFCSI (IIP TGSD LI r IM:TL DGFWSA TP PPMAL ~TACPAD
ITDM/.OILPG OD., Msf4LF rUF TALGAV PG VWPhRDI
Y~CDFGLRn PPPQIF IIrT
PVPANPATTF SSTPVNSFIT PYSTGOVSVO IDWE QKERS
KRWNPEVQFT SMYGGQNSLL WAPDAAGKYT EPRAIGTRYL



gill22S2030~B 100%|x, 68351.7 Da
unnamed pretain product [Adeno-associatd viwru -4]
10i unique psptides, it urtlque spectra, 20 loada sp~ectr 184A524 aninQttle dS (1%3) coversage

GADOVONASO DWHODSTWSE HVfTTTsTRT WVLPTYNMML
YKRLECELOS NTYNGFBTPW GYFDFNRFHC HFSPRDWORL
INNNWGMRPR AMRV~ FNIQ VMEVTTSNGE TTVANNLTST
ValFhADSSY LPYVMDAGQE GSLPPFPNOV FMVPOYGYCG
LVTGNTSQQQ TDRRNFYCLE YFPSQMLRTG NNFEITYSFE
KVPFMSMYAM SQSLDRLMNP LIDPYLWGLO 5TTTOTTLNA
STATTNFTML RPTNFSNKKK NWLPOPSIKG QGFSKTANON
vIPATCSCS L nrET~fL GC-GWSALTPG PP ATACPAD




KRWNPEVOFT SNYOQQNSLL WAPOAAGKYT EPRAIGTRYL
THHL


Figure 5-5. Mass spectrometry data for K544E AAV-4 mutant and wt AAV-4. A. For the K544E AAV-4 mutant, the mutation results
in a lack of trypsin digestion at amino acid 544, which results in a much larger fragment than expected (red box). There
was a lack of coverage for the amino acids in this region as a result of the mutation for both K544E samples tested (LLL
and MMM). B. For wt AAV-4 there is coverage in a portion of this region, which verifies that for the wt AAV-4 control,
amino acid 544 is a basic residue and was cut by trypsin (red box). This fragment was detected for both samples of wt
AAV-4 (sample EEE, and KKK).









relies on for cleavage (K or R), this would not substantially change the number of amino acids in

the fragment that would result in a fragment too large to detect. The software Mascot which was

utilized to analyze the mass spec data can potentially detect this mutation. This experiment will

be repeated utilizing a different protease that doesn't rely on basic residues and the software

Mascot will be used determine if the fragment containing the mutation can be identified.

A database has been built that includes all of the viral proteins for all of the known

serotypes. For the studies presented in this chapter, the MS data was searched thru the NCBI

database, which was limited to ALL viral proteins. We have built a database that includes only

the AAV sequences, as well as the mutant sequence for AAV-4. This is currently being further

developed and this will be useful for customized gene therapy vectors in the future that have

been modified. These sequences can be deposited into the database, and clinical grade preps can

be tested and verified. Several investigators have shown that single amino acid mutations in the

AAV capsid can effect tropism [128]. For AAV-2, mutation of several amino acids has been

shown to result in vector vector targeting to cardiac tissue. A vector like this could potentially be

utilized in clinical trials and AAV Capsid Serotype Identifieation (AAV-CSI) would be useful

for validating that the therapeutic gene has been packaged into the correct capsid.

Materials and Methods

Viruses and cell lines. rAAV2-GFP vector virions were produced by transient transfection

of HEK293 cells, cells were harvested, then lysed with 0.5% deoxycholate (DOC), incubated for

30 minutes at 370C with 50 U/ml ofbenzonase, and purified on sequential CsCl density

gradients. Cesium fractions were dialyzed and heparin chromatography was performed as a

concentration step [111] rAAV1-GFP, rAAV4-GFP, rAAV5-GFP and rAAV8-GFP vector

virions were purified by freeze/thaw and CsCl gradients followed by Q-sepharose

chromatography. Infectivity of the AAV vectors were assayed on C12 cells in the presence of

123









adenovirus as previously described [92]. Virions were dialyzed into 50mM Tris-Cl pH 8.0

containing 100mM NaCl using a 10,000 MWCO membrane (Pierce), aliquoted, and stored

frozen at -200C or -800C.

Protein gel electrophoresis

SDS-PAGE. Samples were boiled for 3 minutes at 100 OC, centrifuged briefly and loaded

on a 10% polyacrylamide gel. SDS-PAGE polyacrylamide gel was performed at 125 V for 90

minutes [129].

SDS-PAGE gel staining protocol A 1% stock solution of Coomassie blue R-250 was

prepared in dH20. Gels were stained in a solution consisting of 12.5% Stain stock, 10% acetic

acid and 50% methanol for one hour. Gels were detained in destain solution consisting of 10%

acetic acid and 50% methanol overnight. AAV bands were cut from the gel and gel slices were

stored in destain until the samples were prepped for mass spec.

Mass Spec In-gel digestion protocol

Gel slices were washed to remove SDS. Gel slices were washed with 50% acetonitrile in

dd water and vortexed 2 times for 15 minutes each. Wash solution was removed and discarded.

Gel slices were covered with neat acetonitrile until the gel is dehydrated. The liquid was

removed after 5 10 minutes. The gel was rehydrated in just enough ABC to cover the gel for 5

minutes (20 to 50 Cl). An equal volume of acetonitrile was added to give a 1:1 ratio of

acetonitrile to ABC and vortexed for 15 minutes. Wash solution was removed and the gel was

dried down in a speedvac for 10 15 minutes. Next, reduction and alkylation of protein in the

gel was performed. The gel piece was rehydrated in 100 Cl1 of 45 mM DTT at 550C for 30

minutes. The gel was submerged in the reducing buffer. The buffer was discarded after

incubation. Tubes were chilled to room temperature. The liquid was removed and replaced

quickly with 100 Cl1 of freshly made 100 mM iodoacetamide, and incubated in the dark for 30

124









minutes at room temperature. The buffer was removed. The gel was washed 3 times with 100 Cl1

50% ACN/50 mM ABC with agitation each for 15 minutes. The gel wash washed until it was

colorless. The gel pieces were dried in a speed vac until they were completely dry, 10 15

minutes. Next, the proteins were digested with trypsin. Promega Trypsin was prepared at a

concentration of 12.5 ng/Cl~ reconstituded in 50 mM ABC, pH 8.4, with 5 mM CaCl2. Enzyme

and buffer were kept cold in an ice bucket and the ratio of enzyme to protein was approximately

1:20. The dried gel piece was chilled on ice, and the gel pieces were covered with ice cold

trypsin digestion buffer. The tube was kept on ice for 45 minutes. The enzyme solution was

removed and replaced with 5 to 20 Cl1 of 50 mM ABC and 5 mM CaCl2 without enzyme. Tubes

were incubated overnight at 370C in a water bath. The supernatant was pipetted into a clean tube.

Stop the reaction with 5.0% glacial acetic acid to a final concentration of 0.5% acetic acid.

Mass spec protocol

Capillary rpHPLC separation of protein digests was performed on a 15 cm x 75 um i.d.

PepMap C18 column (LC Packings, San Francisco, CA) in combination with an Ultimate

Capillary HPLC System (LC Packings, San Francisco, CA) operated at a flow rate of 200

nL/min. Inline mass spectrometric analysis of the column eluate was accomplished by a hybrid

quadrupole time-of-flight instrument (QSTAR, Applied Biosystems, Foster City, CA) equipped

with a nanoelectrospray source.

Fragment ion data generated by Information Dependent Acquisition (IDA) via the QSTAR

were searched against the NCBI nr sequence database using the Mascot (Matrix Science,

London, UK) database search engine. Probability-based MOWSE scores above the default

significant value were considered for protein identification in addition to validation by manual

interpretation of the tandem MS data.









Database Searching Tandem mass spectra were extracted, charge state deconvoluted and

deisotoped by BioWorks version 2.0. All MS/MS samples were analyzed using Mascot (Matrix

Science, London, UK; version 2.0.01) and X! Tandem (www.thegpm.org; version 2006.04.01.2).

X! Tandem was set up to search a subset of the NCBInr_20061201 database also assuming

trypsin. Mascot was set up to search the NCBInr_20070202 database (selected for Viruses,

unknown version, 375509 entries) assuming the digestion enzyme trypsin. Mascot and X!

Tandem were searched with a fragment ion mass tolerance of 0.30 Da and a parent ion tolerance

of 0.30 Da. Iodoacetamide derivative of cysteine was specified in Mascot and X! Tandem as a

fixed modification. S-carbamoylmethylcysteine cyclization (N-terminus) of the n-terminus,

deamidation of asparagine and glutamine and oxidation of methionine were specified in Mascot

and X! Tandem as variable modifications.

Criteria For Protein Identification Scaffold (version Scaffold-01_06_13, Proteome

Software Inc., Portland, OR) was used to validate MS/MS based peptide

and protein identifications. Peptide identifications were accepted if they could be established at

greater than 90.0% probability as specified by the Peptide Prophet algorithm [130]. Protein

identifications were accepted if they could be established at greater than 95.0% probability and

contained at least 1 identified peptide. Protein probabilities were assigned by the Protein Prophet

algorithm [131]. Proteins that contained similar peptides and could not be differentiated based on

MS/MS analysis alone were grouped to satisfy the principles of parsimony.















APPENDIX
AAV CAPSID ALIGNMENT


PileUp

MSF: 778 Type: P Check: 1667


Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
SName:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
VP1 isolate hu48 AAS99296
AAV6 VP1 AAB95450
VP1 isolate hu43 AAS99291
VP1 isolate hu44 AAS99292
VP1 isolate hu46 AAS99294
AAV10 AAT46337
VP1_isolate rh40_AAS99244
VP1 isolate hu37 AAS99285
VP1 isolate hu42 AAS99290
VP1 isolate hu40 AAS99288
VP1 isolate hu67 AAS99312
VP1 isolate rh38 AAS99243
VP1 isolate hu41 AAS99289
VP1 isolate hu66 AAS99311
VP1 isolate hul7 AAS99267
VP1 isolate hu6 AAS99306
VP1 isolate rh25 AAS99242
VP1 isolate hu39 AAS99286
VP1 isolate rh49 AAS99247
VP1 isolate rh50 AAS99248
VP1 isolate rh51 AAS99249
VP1 isolate rh52 AAS99250
VP1 isolate rh64 AAS99259
VP1 isolate rh53 AAS99251
VP1 isolate rh61 AAS99257
VP1 isolate rh58 AAS99255
VP1 isolate rh57 AAS99254


Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:


778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778


Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:


7040 Weight:
6641 Weight:
7598 Weight:
7598 Weight:
7947 Weight:
7905 Weight:
7388 Weight:
8584 Weight:
8181 Weight:
8318 Weight:
8189 Weight:
9370 Weight:
9751 Weight:
31 Weight:
8662 Weight:
9071 Weight:
9596 Weight:
7948 Weight:
9358 Weight:
8523 Weight:
9311 Weight:
596 Weight:
9799 Weight:
1643 Weight:
1980 Weight:
2067 Weight:
1835 Weight:
1695 Weight:
1423 Weight:
455 Weight:
832 Weight:












Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:


AAV8 VP1 AANO3857
AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049


Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:


778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778


Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:


8558 Weight:
8558 Weight:
8051 Weight:
3364 Weight:
3123 Weight:
3263 Weight:
5271 Weight:
7315 Weight:
7315 Weight:
7391 Weight:
6254 Weight:
8552 Weight:
8226 Weight:
6021 Weight:
6375 Weight:
6990 Weight:
7109 Weight:
6971 Weight:
3824 Weight:
3824 Weight:
5658 Weight:
5658 Weight:
8027 Weight:
8027 Weight:
7023 Weight:
7023 Weight:
7290 Weight:
4579 Weight:
3058 Weight:
3058 Weight:
3058 Weight:
453 Weight:
453 Weight:
3002 Weight:
233 Weight:
3002 Weight:
5241 Weight:
6211 Weight:
6211 Weight:
69 Weight:
69 Weight:












Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
9 am:
SName:
Nae:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:


AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293
VP1 isolate hu58 AAS99305
VP1 isolate hu49 AAS99297
VP1 isolate hu56 AAS99303
VP1 isolate hu57 AAS99304
VP1 isolate hu28 AAS99278
VP1 isolate hu29 AAS99279
VP1 isolate huT70 AAU05364
VP1 isolate hul3 AAS99263
VP1 isolate hu63 AAS99309
VP1 isolate hu64 AAS99310
VP1 isolate huT40 AAU05362
VP1 isolate huLG15 AAU05371
VP1 isolate huT17 AAU05358
VP1 isolate huT41 AAU05372
VP1 isolate huT71 AAU05366


Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:


778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778
778


Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:


1343 Weight:
1391 Weight:
1303 Weight:
1141 Weight:
2673 Weight:
1875 Weight:
1690 Weight:
772 Weight:
1483 Weight:
2044 Weight:
2981 Weight:
996 Weight:
2978 Weight:
2837 Weight:
1894 Weight:
1757 Weight:
57 Weight:
9885 Weight:
1727 Weight:
3108 Weight:
2718 Weight:
2744 Weight:
3098 Weight:
4413 Weight:
4162 Weight:
4008 Weight:
2430 Weight:
3468 Weight:
4209 Weight:
1345 Weight:
3099 Weight:
2731 Weight:
3586 Weight:
1295 Weight:
2301 Weight:
2688 Weight:
1971 Weight:
590 Weight:
1851 Weight:
2922 Weight:
2922 Weight:












Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate


huT88 AAU05368
huT32 AAU05360
hu27 AAS99277
hul9 AAS99269
hu20 AAS99271
hu21 AAS99272
hu24 AAS99275
hu22 AAS99273
hu23 AAS99274


Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:


778
778
778
778
778
778
778
778
778


Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:
Check:


1757
2563
2017
2261
1010
1674
1674
2008
1124


Weight:
Weight:
Weight:
Weight:
Weight:
Weight:
Weight:
Weight:
Weight:


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MVADGY
.MAADGY
.MAADGY
.MAADGY


LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDT..
LPDWLEDT..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..


.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW


DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
KLRPGPPPPK
KLKPGPPPPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK


ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
PAERHK.
PAERHK.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.
ANQQKQ!.


AAV1 VP1
VP1 isolate hu48
AAV6 VP1
VP1 isolate hu43


AAD27757
AAS 992 9 6
AAB9 54 50
AAS 992 91
AAS 992 92
AAS 992 9 4
AAT4 63 3 7
AAS 992 4 4
AAS 992 8 5
AAS 992 90
AAS 992 8 8
AAS 9 9312
AAS 992 4 3
AAS 992 8 9
AAS 9 9311
AAS 992 67
AAS9 93 0 6
AAS 992 4 2
AAS 992 8 6
AAS 992 4 7
AAS 992 4 8
AAS 992 4 9
AAS 992 50
AAS 992 59
AAS 992 51


VP1
VP1

VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu44
isolate hu46
AAV10
isolate rh40
isolate hu37


isolate
isolate
isolate
isolate
isolate
isolate
isolate


hu42
hu40
hu67
rh38
hu41
hu66
hul7


VP1 isolate hu6


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate


rh25
hu39
rh49
rh50
rh51
rh52
rh64
rh53












VP1 isolate rh61 AAS99257
VP1 isolate rh58 AAS99255
VP1 isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178


...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MAADGY
...MTDGY
...MTDGY
...MSFVDH
...MSFVDH
.. .MS
.. .MS
.. .MS
.. .MS
.. .MS
.. .MS
MSLISDAIPD
MSLISDAIPD
MSLISDAIPD
MSLISDAIPD
MSLISDAIPD
.MST


LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDT..
LPDWLEDT..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
PPDWLES...
PPDWLES...
FVDHPPDWLE
FVDHPPDWLE
FVDHPPDWLE
FVDHPPDWLE
FFDWIG...R
FFDWLGKQ..
WLERLVKK..
WLERLVKK..
WLERLVKK..
WLERLVKK..
WLERLVKK..
FLEKFEDW. .


.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIHEWW
.LSEGIREWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIREWW
.LSEGVREWW
.LSEGVREWW
.IGDGFREFL
.IGDGFREFL
EVGEGLREFL
EVGEGLREFL
EVGEGLREFL
EVGEGLREFL
KYAN GAAE FW
.YAQGAAEFW
.GVNAAADFY
.GVNAAADFY
.GVNAAADFY
.GVNAAADFY
.GVNAAADFY
.YETAAASWR


DLKPGAPKPK
DLKPGAPKPK
ALKPGAPKPK
ALKPGAPKPK
ALKPGAPKPK
DLKPGAPKPK
ALKPGAPQPK
ALKPGAPQPK
ALKPGAPQPK
ALKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DLKPGAPKPK
DPKPGAPKPK
ALKPGAPQPK
KLKPGPPPPK
KLKPGPPPPK
DLKPGAPKPK
ALQPGAPKPK
ALQPGAPKPK
GLEAGPPKPK
GLEAGPPKPK
GLEAGPPKPK
GLEAGPPKPK
GLEAGPPKPK
GLEAGPPKPK
DLEPGPPKPK
DLKSGPPAPK
HLESGPPRPK
HLESGPPRPK
HLESGPPRPK
HLESGPPHPK
HLESGPPHPK
HLKAGAPKPK


ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQKQ!....
ANQQHQ ....
PAERHK....
PAERHK....
ANQQKQ!....
ANQQHQ ....
ANQQHQ ....
ANQQKQ!....
ANQQKQ!....
PNQQ.......
PNQQ.......
PNQQ.......
PNQQ.......
..KA......
KARKDG ....
ANQQTQ ....
ANQQTQ ....
ANQQTQ ....
ANQQTQ ....
ANQQTQ ....
SNQQSQSVST


VP1
VP1
VP1
VP1


isolate rh48
isolate rh62
isolate rh55
isolate rh54


AAS 992 4 6
AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81
AAS 992 8 2


VP1 isolate rh60
AAV9 VP1
VP1 isolate hu31
VP1 isolate hu32


AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT PAY VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230


.........MS .......... .......... .......... ..........

.......MST FLEKFEDW.. .YETAAASWR HLKAGAPKPK SNQQSQSVST












GOOSE AAV VP1 NP 043515
AAV3 NP 043941


... .MST
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY


FLDSFEEW..
LPDWLEDN..
LPDWLEDN..
LPDWLEDN..
LPDWLEDT..
LPDWLEDT..
PPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLKDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..


.YETAAASWR
.LSEGIREWW
.LSEGIREWW
.LSEGIREWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQRW
.LSEGIRQRW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW


NLKAGAPQPK
ALKPGVPQPK
ALKPGVPQPK
ALKPGVPQPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPE
KLKPGPPPPE
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPP.K
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK


PNQQ~SQSVS
ANQQHQ ....
ANQQHQ ....
ANQQHQ ....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
LAERHQ....
PAERHQ....
PAERHQ....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHR....
PAERHR....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....
PAERHK....


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15












VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24


AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5


.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY
.MAADGY


LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..
LPDWLEDT..


.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW
.LSEGIRQWW



LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG


KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK
KLKPGPPPPK


PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.
PAERHK.


VP1 isolate hu22 AAS99273
VP1 isolate hu23 AAS99274


....MAADGY LPDWLEDT..
....MAADGY LPDWLEDT..


KLKPGPPPPK PAERHK....
KLKPGPPPPK PAERHK....


100
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


...DDG
...DDG
...DDG
...DDG
...DDG
...DDG


RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY


EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNEADAAA
EPVNEADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA


AAV1 VP1
VP1 isolate hu48
AAV6 VP1


AAD27757
AAS 992 9 6
AAB9 54 50
AAS 992 91
AAS 992 92
AAS 992 9 4
AAT4 63 3 7
AAS 992 4 4
AAS 992 8 5
AAS 992 90
AAS 992 8 8
AAS 9 9312
AAS 992 4 3
AAS 992 8 9
AAS 9 9311
AAS 992 67
AAS9 93 0 6
AAS 992 4 2
AAS 992 8 6
AAS 992 4 7
AAS 992 4 8
AAS 992 4 9
AAS 992 50
AAS 992 59


VP1
VP1
VP1

VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu43
isolate hu44
isolate hu46
AAV10
isolate rh40
isolate hu37


.......DDG RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLLGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGCKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......GDG RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DDG RGLVLPGYKY


isolate
isolate
isolate
isolate
isolate
isolate
isolate


hu42
hu40
hu67
rh38
hu41
hu66
hul7


VP1 isolate hu6


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate rh25
isolate hu39
isolate rh49


isolate
isolate
isolate
isolate


rh50
rh51
rh52
rh64












VP1
VP1
VP1
VP1



VP1
VP1
VP1
VP1


isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
isolate rh43 AAS99245
isolate pil AAS99238
isolate pi3 AAS99240
isolate pi2 AAS99239


....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY
....DDG RGLVLPGYKY


LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPFNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDRG
LGPGNGLDRG
LGPGNGLDRG
LGPGNGLDRG
LGPGNGLDRG
LGPGNSLDRG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
VGPGNGLDKG


EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
EPVNAADAAA
DPVNFADEVA
DPVNFADEVA
EPVNRADEVA
EPVNRADEVA
EPVNRADEVA
EPVNRADEVA
EPVDADDAAA
DPVDADDAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
KPVNEADAAA
KPVNEADAAA
PPVNKADSVA


LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHGKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
REHDLSYQKQ!
REHDLSYQKQ!
REHDISYNEQ!
REHDISYNEQ!
REHDISYNEQ!
REHDISYNEQ!
QKHDQEYQAL
QKHDQSYQEQ
LEHDKAYDLE
LEHDKAYDLE
LEHDKAYDLE
LEHDKAYDLE
LEHDKAYDLE
LEHDKAYDQQ


VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178


...DDG
...DNG
...DNG
...DDG
...DDG
...DDG
...DDG
...DDG
...DNA
...DDS


RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY


VP1
VP1
VP1
VP1


isolate rh48
isolate rh62
isolate rh55
isolate rh54


AAS 992 4 6
AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81


VP1 isolate rh60
AAV9 VP1
VP1 isolate hu31


VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN PArVATCC VR865 AAO32087
AVIAN PArVATCC VR865 AAT48613
AVIAN PArVATCC VR865 NP 852781
AVIAN PArV Strain DA1 AAT48615
AVIAN PArV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413


.......DDS RGLVLPGYKY
.......DDG RGLVLPGYKY
.......DNA RGLVLPGYKY
.......DNA RGLVLPGYKY
.......DNA RGLVLPGYKY
.......DNA RGLVLPGYKY
.....HQDQA RGLVLPGYNY
.....HQDQA RGLVLPGYNY
.....HQDQA RGLVLPGYNY
.....HQDQA RGLVLPGYNY
.....RVDDS AGFNFPGHKY
.........S AGFNFPGHKY
..ESLEKDDS RGLVFPGYNY
..ESLEKDDS RGLVFPGYNY
..ESLEKDDS RGLVFPGYNY
..ESPEKDDS RGLVFPGYKY
..ESPEKDDS RGLVFPGYKY
DRKPQRKDNN RGFVLPGYKY


DRKPQRKDNN RGFVLPGYKY VGPGNGLDKG PPVNKADSVA LEHDKAYDQQ












Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


DREPERKDNN
DREPERKDNN
....DNR
....DNR
....DNR
.DDS
.DDS
.DDS
.DDS
.DDS


RGFVLPGYKY
RGFVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY
RGLVLPGYKY


LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPGNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLYKG
LGPFNGLYKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPSNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG


PPVNKADSVA
PPVNKADSVA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVDEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA


LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDQQ
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEYDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62


.......DDS RGLVLPGYKY
.......DGS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DNS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS GGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40












VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYRY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY
.......DDS RGLVLPGYKY


LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG
LGPFNGLDKG



RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTPFGG
RLKEDTSFGG
RLKEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG


EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA
EPVNEADAAA



NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK


LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!
LEHDKAYDRQ!

150
KRVLEPFG.L
KRVLEPFG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPFG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.P
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


hu27
hul9
hu20
hu21


isolate hu24
isolate hu22
isolate hu23


101
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYPR
LDSGDNPYLK
LDSGDNPYLK
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPHLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAELQE
YNHADAEFQE


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
,late hu6 AAS99306
ate rh25 AAS99242
ate hu39 AAS99286
ate rh49 AAS99247
ate rh50 AAS99248
ate rh51 AAS99249
ate rh52 AAS99250


VP1 iso
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol











VP1
VP1
VP1
VP1
VP1



VP1
VP1
VP1


isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
isolate rh43 AAS99245
isolate pil AAS99238
isolate pi3 AAS99240


LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LQAGDNPYLR
LQAGDNPYLR
LQAGDNPYLR
LEAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LQAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLR
LKAGDNPYLK
LKAGDNPYLK
LKAGDNPYLK
LKAGDNPYLR
LKAGDNPYLK
LKAGDNPYLK
LEAGDNPYLK
LEAGDNPYLK
LEAGDNPYLK
LEAGDNPYLK
LEAGDNPYLK
LEAGDNPYLK
LESGENPYLT
LEAGDNPYLK
IKDGHNPYFE
IKDGHNPYFE
IKDGHNPYFE
LKDGHNPYFE
LKDGHNPYFE
LKAGDNPYIK


YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQQ
YNHADAEFQQ
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
FNHADRQLQK
YNHADREFQE
YNEADRRFQE
YNEADRRFQE
YNEADRRFQE
YNEADRRFQE
YNEADRRFQE
FKHADQEFID


RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLQEDTSFGG
RLQGDTSFGG
RLQGDTSFGG
KLASDTSFGG
KLASDTSFGG
KLADDTSFGG
KLADDTSFGG
KLADDTSFGG
KLADDTSFGG
DLAEDQSFEG
ALKDDTSFEG
RLKDDTSFGG
RLKDDTSFGG
RLKDDTSFGG
RLKDDTSFGG
RLKDDTSFGG
NLQGDTSFGG


NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGKAVFQAK
NLGKAVFQAK
NLGKAVFQAK
NLGKAVFQAK
NLGKAVFQAK
NLGKAVFQAK
NLARGLFEAK
NLARGLFEAK
NLGKAIFQAK
NLGKAIFQAK
NLGKAIFQAK
NLGKAIFQAK
NLGKAIFQAK
NLGKAVFQAK


KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRLLEPLG.L
KRLLEPLG.L
KRLLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRILEPLG.L
KRILEPLG.L
KRVLEPFG.L
KRVLEPFG.L
KRVLEPFG.L
KRVLEPFG.L
KLAAQVVG.V
KLVAEPLG.L
KRVLEPFG.L
KRVLEPFG.L
KRVLEPFG.L
KRVLEPFG.L
KRVLEPFG.L
KRILEPLG.L


VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411


LKAGDNPYIK FKHADQEFID NLQGDTSFGG NLGKAVFQAK KRILEPLG.L











MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


..........
LKAGDNPYIK
LKAGDNPYIK
LKAGDNPYLK
LKAGDNPYLK
LKAGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LNSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LESGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LESGDNPYLK
LDSGDNPYLK

LDGGDNPYLK


..........
FNHADQDFID
FNHADQDFID
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHAGAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YDHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE


..........
SLQDDQSFGG
SLQDDQSFGG
RLQEDTSFGG
RLQEDTSFGG
RLQEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG


..........
NLGKAVFQAK
NLGKAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK


..........
KRILEPFG.L
KRILEPFG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLRG.
KRVLEPLRPG
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLS.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L
KRVLEPLG.L


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64












VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK
LDSGDNPYLK

151
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEAAKTAPG
VEEGAETAPG
VEEGAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG


YNHADAEFQE
YNHADAKFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHVDAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE
YNHADAEFQE



KK.RPVEQSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEPSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPPP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP


RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKEDTSFGG
RLKGDTSFGG
RLKEDTSFGG



QE.PDSSSGI
QE.PDSSSGI
QE.PDSSSGI
QE.PDSSSGI
QE.PDSSSGI
QE.PDSSSGI
QRSPDSSTGI
QG.PDSSSGI
QE.PDSPSGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSAGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI


NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK
NLGRAVFQAK



GKTG.QQPAK
GKSG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKKG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKKG.QQPAK
GKKG.QQPAK
GKKG.QQPAK
GKKG.QQPAK
GKKG.QQPAK
GKKG.QQPAK
GKKG.QRPAK
GKKG.QQPAK
GKKG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKTG.QQPAK
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAG
GKKG.QQPAR


KRVLEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L
KRILEPLG.L

200
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLSFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGRT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate


hu27
hul9
hu20


isolate hu21
isolate hu24
isolate hu22
isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
late hu6 AAS99306
ate rh25 AAS99242
ate hu39 AAS99286
ate rh49 AAS99247
ate rh50 AAS99248
ate rh51 AAS99249


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol


VP1 iso
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol












VP1
VP1
VP1
VP1
VP1
VP1


isolate rh52
isolate rh64
isolate rh53
isolate rh61
isolate rh58
isolate rh57
AAV8 VP1


AAS 992 50
AAS 992 59
AAS 992 51
AAS 992 5 7
AAS 992 5 5
AAS 992 54
AANO03857


VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEAAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPG
VEEGAKTAPA
VEEGAKTAPA
VEEAAKTAPG
AEEAAKTAPG
VEEGAKTAPG
VEEAAKTAPG
VEEGAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEGAKTAPG
VEQAGETAPG
VEQAGETAPG
VETPDKTAPA
VETPDKTAPA
VEEGAKTAPT
VEEGAKTAPT
VEEGAKTAPT
VEEGAKTAPT
EEPELAPPVK
VEPELAPPSG
VED.SKTAPT
VED.SKTAPT
VED.SKTAPT
IEQPDNTAGT
IEQPDNTAGT
VEEPVNMAPA
..... .MAPA


KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEQSP
KK.RPVEP..
KK.RPVEP..
KK.RPVEP..
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEPSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPVEQSP
KK.RPLE.SP
KK.RPLIESP
KK.RPLIESP
AKKRPLEQSP
AKKRPLEQSP
GKRID.....
GKRID.....
GKRID.....
GKRID.....
RPHSP. ....
RK.RPVQ...
GDKRKGEDEP
GDKRKGEDEP
GDKRKGEDEP
GEKR.....P
GEKR.....P
KKSS. .....
KKSS. .....


QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QE.PDSSSGI
....DSSSGI
....DSSSGI
....DSSSGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QRSPDSSTGI
QE.PDSSAGI
QE.PDSSAGI
QE.PDSSAGI
QE.PDSSSGI
QQ.PDSSTGI
QQ.PDSSTGI
QE.PDSSSGV
QE.PDSSSGV
DHFPKRKK..
DHFPKRKK..
DHFPKRKK..
DHFPKRKK..
EKTPENQKGQ
.... .SSQES
.RLPDTSSQT
.RLPDTSSQT
.RLPDTSSQT
.ERVDDFFPK
.ERVDDFFPK
.GKLTDHDPI
.GKLTDHDPI


GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKSG.QQPAK
GKSG.QQPAK
GKSG.RQPAK
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKKG.QQPAR
GKSG.AQPAK
GKSG.SQPAK
GKSG.SQPAK
GKKG.KQPAR
GKKG.KQPAK
GKKG.KQPAK
GKKG.KQPAR
GKKG.KQPAR


KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGPT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KKLNFGQT..
KKLNFGQT..
KRLNFEED..
KKLVFEDE..
KKLVFEDE..
KRLNFDDE..
KRLNFDDE..
ARTEEDSKPS
ARTEEDSKPS
ARTEEDSKPS
ARTEEDSKPS
KRLEFSDQPG
PNLDVDEE..
ERPSGGAE..
ERPSGGAE..
ERPSGGAE..
KAPAQTGE ..
KAPAQTGE ..
NSPSP. ....
NSPSP. ....


AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238


VP1
VP1
VP1



VP1
VP1
VP1
VP1
VP1

VP1
VP1


iso
iso
iso



isol
isol
isol
isol
isol

isol
isol


,late pi3 AAS99240
,late pi2 AAS99239
,late rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
ate rh48 AAS99246
ate rh62 AAS99258
ate rh55 AAS99253
ate rh54 AAS99252
ate rh60 AAS99256
AAV9 VP1 AAS99264
ate hu31 AAS99281
ate hu32 AAS99282
AAV11 AAT46339


AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN PArV Strain DA1 AAT48615
AVIAN PArV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412


PRPDPRTPAK
GYSS.SQDKR
PKKN.KKPRK
PKKN.KKPRK
PKKN.KKPRK
KKKA.KTEQG
KKKA.KTEQG
VKKP.KLSEE
VKKP.KLSEE












MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


VEEPVNMAPA KKSS...... .GKLTDHDPI VKKP.KLSEE NSPSP.....


..........
VEDPVNTAPA
VEDPVNTAPA
VEEAAKTAPG
VEEAAKTAPG
VEEAAKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
LRKPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VGEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEGPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VGEPVKTAPG
VGEPVKTAPG
VGEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG


.N.........
KKNT. .....
KKN...... P
KK.GAVDQSP
KK.GAVDQSP
KK.RPVDQSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSPP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP


..........
.GKLTDHYPV
Q.GKLDHYPGV
QE.PDSSSGV
QE.PDSSSGV
QE.PDSSSGV
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
AE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
AE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT


.KK........
VKKP.KLTEE
VKKP.KLTEE
GKSG.KQPAR
GKSG.KQPAR
GKSG.KQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QRPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.NQPAR
GKAG.NQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.HQPAR
GKAG.HQPAR
GKAG.HQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKSG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.NQPAR
GKAG.QQPAR
GKAG.NQPAR
GKAG.NQPAR
GKSG.NQPAR
GKSG.NQPAR
GKSG.NQPAR
GKAG.QQPAR


...........
VSAGG.....
VSANGG....
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63












VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKAAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG
VEEPVKTAPG

201
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GESESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ


KK.RPVEHSL
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
EK.RPVEHSP
EK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP
KK.RPVEHSP


AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
VE.PDSSSGT
VE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT
AE.PDSSSGT



TPAAVGPTTM
TPAALGPTTM
TPAAVGPTTM
TPAAVGPTTM
TPAAVGPTTM
TPAAVGPTTM
GPSGLGSGTM
TPAAVGPTTM
TPAAVGPTTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
APSSVGSGTM
APSSVGSGTM
APSSVGSGTM


GKAG.QQPAR
GKAG.NQPAR
GKSG.QQPAR
GKSG.QQPAR
GKSG.QQPAR
GKSG.QQPAR
GKSG.QQPAR
GKSG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR
GKAG.QQPAR



ASGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
AAGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD


RRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..
KRLNFGQT..

250
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu27
isolate hul9
isolate hu20
isolate hu21
isolate hu24
isolate hu22
isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
VP1 isolate hu48 AAS99296
AAV6 VP1 AAB95450
VP1 isolate hu43 AAS99291
VP1 isolate hu44 AAS99292
VP1 isolate hu46 AAS99294
AAV10 AAT46337
VP1 isolate rh40 AAS99244
VP1 isolate hu37 AAS99285
VP1 isolate hu42 AAS99290
VP1 isolate hu40 AAS99288
VP1 isolate hu67 AAS99312
VP1 isolate rh38 AAS99243
VP1 isolate hu41 AAS99289
VP1 isolate hu66 AAS99311
VP1 isolate hul7 AAS99267
VP1 isolate hu6 AAS99306
VP1 isolate rh25 AAS99242
VP1 isolate hu39 AAS99286
VP1 isolate rh49 AAS99247
VP1 isolate rh50 AAS99248


PLG. .
PLG. .
PLG. .
PLG. .
PLG. .
PLG. .
PIG..
PLG. .
PLG. .
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
LIG..
PIG..


.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA












VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857


GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDTESVPDPQ
GDTESVPDPQ
GDTESVPDPQ
TGAGDGPP..
TGAGDGPP..
TGAGDGPP..
PGAGDGPPP.
PGAGDGPPP.
TSSDAEAGPS
TSSDAEAGPS
TSSDAEAGPS
TSSDAEAGPS
SSADLPASSQ
DREFAAAAAE
DPGEGTSSNA
DPGEGTSSNA
DPGEGTSSNA
DPGEGTSSNA
DPGEGTSSNA
.SNSGGEASA


PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PIG..
PLG..
PLG..
PLG..
PLS..
PLS..
PLS..
PLG..
PLG..
PLG..
PIG..
PIG..
PIG..
PLG..
PIG..
PIG..
PIG..
PIG..


.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EPPA
.EGSD
.EGST
.EGST
.EGPS
.EGPS


APSSVGSGTM
APSSVGSGTM
APSSVGSGTM
APSSVGSGTM
APSSVGSGTM
APSSVGSGTM
APSSVGSGTM
APSGVGPNTM
APSGVGPNTM
APSGVGPNTM
GPSGLGSGTM
GPSGLGSGTM
GPSGLGSGTM
APSGVGPNTM
APSSVGSGTV
APSSVGSGTV
GPSGLGSGTM
GPSGLGSGTM
APSSVGSGTM
GPSGLGSGTM
APSSVGSGTM
APSGVGSLTM
APSGVGSLTM
APSGVGSLTM
TSAMSSDIEM
SGAMSDDSEM
SGAMSDDSEM
SGAMSTETEM
SGAMSTETEM
PASSLGADTM
PASSLGADTM
PASSLGADTM
PASSLGADTM
GVPGVVPGTM
PTGNLGPGTM
S...VGSSIM
S...VGSSIM
S...VGSSIM
....VGSSVM
....VGSSVM
P...VAAPNM


AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
AAGGGAPMAD
ASGGGAPVAD
ASGGGAPVAD
ASGGGAPVAD
RAAPGGNAVD
RAAAGGAAVE
RAAAGGAAVE
RAAAGGNGGD
RAAAGGNGGD
SAGGGGPLGD
SAGGGGPLGD
SAGGGGPLGD
SAGGGGPLGD
SAGGGAPVDD
AGGGSAPIDD
AEGGGGPVGD
AEGGGGPVGD
AEGGGGPVGD
AEGGGGPMGD
AEGGGGPMGD
AEGGSGAMGD


NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNKGADGVGN
NNKGADGVGN
NNEGADGVGS
NNEGADGVGN
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
NNEGADGVGS
AGQGSDGVGN
GGQGADGVGN
GGQGADGVGN
AGQGAEGVGN
AGQGAEGVGN
NNQGADGVGN
NNQGADGVGN
NNQGADGVGN
NNQGADGVGN
AQQGADGVGN
GSYGADGVGN
AGQGADGVGN
AGQGADGVGN
AGQGADGVGN
AGQGADGVGN
AGQGADGVGN
SAGGADGVGN


AAV8 YP 077180
VP1 isolate rh43 AAS99245


VP1
VP1
VP1
VP1



VP1
VP1
VP1
VP1


isolate pil AAS99238
isolate pi3 AAS99240
isolate pi2 AAS99239
isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
solate rh48 AAS99246
solate rh62 AAS99258
solate rh55 AAS99253
solate rh54 AAS99252


i
i
i
i


VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225


GSQQLQIPAQ
GSQQLQIPAQ
GSQQLQIPAQ
GSQQLQIPAQ


QSQ. .
TET..
GAA ..
GAA ..
GAA ..
GSS. .
GSS. .
AAT ..


..PPA
.GSAP
.APAS
.APAS
.APAS
.APSS
.APSS
.EGSE












MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


.SNSGGEASA AAT...EGSE P...VAAPNM
.SNSGGEASA AAT...EGSE P...VAAPNM


AEGGSGAMGD
AEGGSGAMGD
AEGGSGAMGD
AEGGGGAMGD
AEGGGGAMGD
ASGGGAPMAD
ASGGGAPMAD
ASGGGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPVAD
ATGSGAPVAD
ASGSGAPVAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ASGGGAPVAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ASGSGAPMAD


SAGGADGVGN
SAGGADGVGN
SAGGADGVGN
SSGGADGVGN
SSGGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNDGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN


........ .M
P...VAASEM
P...VAASEM
APTSLGSNTM
APTSLGSNTM
APTSLGSNTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APSGLGSTTM
APTSLGSTTM
APTSLGSTTM
APTSLGSTTM
APTSLGSTTM
APTSLGSTTM
APTSLGSTTM
APTSLGSTTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
SPSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM


..........
.GSSAVQDGG
.GDSSAVQDGG
GDSESVPDPQ
GDSESVPDPQ
GDSESVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDSDSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDSDSVPDPQ
GDSDSVPDPQ

GDADSVPDPQ


.T...
ATA..
ATA..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLR..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..


.....
.EGTE
.EGTE
.EPPA
.EPPA
.EPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA





.QPPA
.EPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3












AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDADSVPDPQ
GDAD SVPDPR
GDAD SVPDPR
GDADSVPDPQ
GDADSVPDPQ

251
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDSA
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST


PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..
PLG..


.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA
.QPPA


APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM
APSGLGTNTM


ATGSGAPMAD
ATGSGAPMAD
ATGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD
ASGSGAPMAD


NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN
NNEGADGVGN

300
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
ST. GASNDNH
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT


VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
VP1 isolate hu48 AAS99296
AAV6 VP1 AAB95450
VP1 isolate hu43 AAS99291
VP1 isolate hu44 AAS99292
VP1 isolate hu46 AAS99294
AAV10 AAT46337
VP1 isolate rh40 AAS99244
VP1 isolate hu37 AAS99285
VP1 isolate hu42 AAS99290
VP1 isolate hu40 AAS99288
VP1 isolate hu67 AAS99312
VP1 isolate rh38 AAS99243
VP1 isolate hu41 AAS99289
VP1 isolate hu66 AAS99311
VP1 isolate hul7 AAS99267
VP1 isolate hu6 AAS99306
VP1 isolate rh25 AAS99242
VP1 isolate hu39 AAS99286
VP1 isolate rh49 AAS99247


WLGDRVITTS TRTWALPTYN NHLYKQISSA
WLGDRVITTS TRTWALPTYN NHLYKQISSA


WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS


TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRPWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN


NHLYKQISSA
NHLYKQISSA
NHLYKQISST
NHLYKQISSA
NHLYKQISSA
NHLYKQISSA
NHLYKQISSA
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG












VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate rh50 AAS99248
isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180


SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
VSGNWHCDST
VSGNWHCDST
ASGNWHCDST
SSGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
ASGNWHCDST
SSGNWHCDST
ASGNWHCDST
SSGNWHCDST
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDST
ASGDWHCDSK
ASGDWHCDST
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ


WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
RLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WSEGKVTTTS
WSEGHVTTTS
WSEGHVTTTS
WSESHVTTTS
WSESHVTTTS
WMGDRVVTKS
WMGDRVVTKS
WMGDRVVTKS
WMGDRVVTKS
WLGNRVLTRS
WLDNCVITRT
WLENGVVTRT
WLENGVVTRT
WLENGVVTRT
WLDNGVVTRT
WLDNGVVTRT


TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTHN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWVLPTYN
TRTWVLPTYN
TRTWVLPTYN
TRTWVLPTYN
TRTWVLPTYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWNLPTYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN


NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQTSNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISNG
NHLYKQISSE
NHLYKQISSE
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISNG
NHLYKQISNS
NHLYKQISNS
NHLYKQISNS
NHLYLRLGTT
NHLYKRLGES
NHLYKRLGES
NHLYLRLGSS
NHLYLRLGSS
NHQYREIKSG
NHQYREIKSG
NHQYREIKSG
NHQYREIKSG
NHLYKQISDA
NHIYKRLNGT
NHLYKRIQGP
NHLYKRIQGP
NHLYKRIQGP
NHLYKRIQGP
NHLYKRIQGP


TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGSTNDNT
TSGGATNDNT
TSGGATNDNT
TSGGATNDNT
TSGGSSNDNT
TSGGSSNDNT
TSGGSSNDNT
TSGGSTNDNT
T.AGSTNDNT
T.AGSTNDNT
S.AGSTNDNV
S.AGSTNDNV
S.AGSTNDNV
S.AGSTNDNV
TSGGSTNDNV
TSGGSSNDNA
TSGGSSNDNA
TSGGSSNDNA
S.....SSNT
L.....QSNT
L.....QSNT
N.....ASDT
N.....ASDT
S.VDGSNANA
S.VDGSNANA
S.VDGSNANA
S.VDGSNANA
SGVHSLPGSR
T....SGDQS
S..GGDNNNK
S..GGDNNNK
S..GGDNNNK
G..GTDPNNK
G..GTDPNNK


VP1 i
VP1
VP1
VP1
VP1



VP1 i
VP1 i
VP1 i


solate rh43 AAS99245
isolate pil AAS99238
isolate pi3 AAS99240
isolate pi2 AAS99239
isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
solate rh48 AAS99246
solate rh62 AAS99258
solate rh55 AAS99253


VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183












DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


ASGNWHCDSQ
ASGNWHCDSQ
ASGNWHCDSQ
ASGNWHCDSQ
ASGNWHCDSQ
ASGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDSQ
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNRHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGSWHCDST
SSGNWHCDST
SSGDWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST


WLGDTVITKT
WLGDTVITKT
WLGDTVITKT
WLGDTVITKT
WMGNTVITKT
WMGNTVITKT
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLDDRVIATS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WLGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVVTTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS


TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWVLPSYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN


NHMYQAITSG
NHMYQAITSG
NHMYQAITSG
NHMYQAITSG
NHIYKAITSG
NHIYKAITSG
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYRQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ


T..NPDSNTQ!
T..NPDSNTQ!
T..NPDSNTQ!
T..NPDSNTQ!
T..SQDANVQ!
T..SQDANVQ!
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GACNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDSH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70












VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4



ABA71699
ABA71701


SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWYCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST
SSGNWHCDST

301
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYGTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY


WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGDRVITTS
WMGGRVITTS
WMGDRVITTS



FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
LDFNRFHCHF


TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTYN
TRTWALPTCN



SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN


NHLYKQISSQ
NHLYKQISSQ
NHLYRQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ
NHLYKQISSQ



NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL


S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH
S..GASNDNH

350
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVE
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKPFNIQVK
SFKLFNIQVK
SFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
SFKLFNIQVK


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


hu27
hul9
hu20
hu21


isolate hu24
isolate hu22
isolate hu23


AAV VR195
AAV VR355


AAV1 NP 049542
AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
late hu6 AAS99306
ate rh25 AAS99242
ate hu39 AAS99286


VP1 isol


VP1
VP1
VP1

VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isol
isol
isol

isol
isol
isol
isol
isol
isol
isol
isol
isol


VP1 iso
VP1 isol
VP1 isol











VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate rh49 AAS99247
isolate rh50 AAS99248
isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180


YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YNGFSTPWGY
YNGFSTPWGY
YNGFSTPWGY
FNGFSTPWGY
FNGFSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGFSTPWGY
FFGFSTPWGY
FFGFSTPWGY
FFGFSTPWGY
FFGFSTPWGY


FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHSHW
FDFNRFHSHW
FDFNRFHSHW
FDFNRFHSHW
FDFNRFHCHF
FDFNRFHCHF
FDYNRFHCHF
FDYNRFHCHF
FDYNRFHCHF
FDYNRFHCHF


SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRPIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDRQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLVN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN


NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKKL
NNWGFRPKKL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKKL
NNWGFRPKKL
SNWGFRPKKL
NNWGFRPKKL
NNWGFRPKKL
NNWGFRPKKL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGLRPKAM
NNWGMRPKAM
NNWGMRPKAM
NHWGLRPKSM
NHWGLRPKSM
NYWGFRPRSL
NYWGFRPRSL
NYWGFRPRSL
NYWGFRPRSL
NHWGFRPKRL
NNWGLRPKSL
NNWGIRPKAM
NNWGIRPKAM
NNWGIRPKAM
NNWGIRPKAM


SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
RFKLFNIQVK
RFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
SFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
RVKI FN IQVK
RVKI FN IQVK
RVKI FN IQVK
QVRIFNIQVK
QVRIFNIQVK
RVKI FN IQVK
RVKI FN IQVK
RVKI FN IQVK
RVKI FN IQVK
RVKL FN IQVK
RFKIFNIQVK
RFRLFNIQVK
RFRLFNIQVK
RFRLFNIQVK
RFRLFNIQVK


VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615











AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


FFGFSTPWGY
YAGYSTPWGY
YAGYSTPWGY
YAGYSTPWGY
YAGYSTPWGY
YAGYSTPWGY
YAGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGCSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY


FDYNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCRF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF


SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLVN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDRQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN


NNWGIRPKAM
NHWGIRPKAL
NHWGIRPKAL
NHWGIRPKAL
NHWGIRPKAL
NHWGIRPKSL
NHWGIRPKSL
NNWGFRPKKL
NNWGFRPKKL
NNWGFRPKKL
NNWGFRPKRL
NNRGFRPKRL
NNWGFRPKRL
SNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NSWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL


RFRLFNIQVK
KFKIFNVQVK
KFKIFNVQVK
KFKIFNVQVK
KFKIFNVQVK
KFKIFNVQVK
KFKIFNVQVK
SFKLFNIQVR
SFKLFNIQVR
SFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVR
NFKLFNIQVK
NFKLFNIQVK
NLKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9


VP1 isolate
VP1 isolate
VP1 islolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate
VP1 isolate


hu34
hu35
hu51
hu52
hu47
hu45
hu58
hu49
hu56
hu57
hu28
hu29











VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGH
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY
YFGYSTPWGY

351
EVTTSDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTQNEGTKT
EVTQDEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTET
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT


FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF
FDFNRFHCHF



IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
VANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ


SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN
SPRDWQRLIN


VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP


NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGSRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL
NNWGFRPKRL



YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGR
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC


NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
NFKLFNIQVK
SFKLFNIQVK
GFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK
SFKLFNIQVK

400
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
PPPFPADVFM
PPPFPADVFM
PPPFPADVFM


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


hu27
hul9
hu20
hu21


isolate hu24
isolate hu22
isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
,late hu6 AAS99306
ate rh25 AAS99242


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 iso
VP1 isol











VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate
isolate


hu39
rh49
rh50
rh51
rh52
rh64
rh53
rh61
rh58
rh57


AAS 992 8 6
AAS 992 4 7
AAS 992 4 8
AAS 992 4 9
AAS 992 50
AAS 992 59
AAS 992 51
AAS 992 5 7
AAS 992 5 5
AAS 992 54


EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTQNEGTKT
EVTTNEGTKT
EVTTNDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTTGDGVTT
EVTTNDGVTT
EVTTNDGVTT
EVTQNEGTKT
EVTDNNGVKT
EVTDNNGVKT
EVTDNNGVKT
EVTTSNGETT
EVTTSNGETT
EVTTSNGETT
EVTTSNGETT
EVTTSNGETT
EVTVQDSTTT
EVTVQDSTTT
EVTVQDSTTT
EVTVQDSTTT
EVTTTDSTTT
EVTTQDSTKI
EVTVQDFNTT
EVTVQDFNTT
EVTVQDFNTT


IANNLASTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANSLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTVQ
TANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTIQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
VANNLTSTVQ
VANNLTSTVQ
VANNLTSTVQ
VSNNLTSTVQ
VSNNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
VSNNLTSTVQ
ISNNLTSTVQ
IGNNLTSTVQ
IGNNLTSTVQ
IGNNLTSTVQ


VFTDSEYQPP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSKYQLP
VFTDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFSDSEYQLP
VFTDSEYQLP
VFTDSDYQLP
VFTDSDYQLP
VFTDSDYQLP
IRADSSYELP
IRADSSYELP
IRADSSYELP
IRADSTYELP
IRADSTYELP
VFTDDDYQLP
VFTDDDYQLP
VFTDDDYQLP
VFTDDDYQLP
VFTDDEYQLP
VFADTEYQLP
VFADKDYQLP
VFADKDYQLP
VFADKDYQLP


YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHEGC
YVLGSAHEGC
YVLGSAHEGC
YVMDAGQEGS
YVMDAGQEGS
YVMDAGQEGS
YVMDAGQEGS
YVMDAGQEGS
YVVGNGTEGC
YVVGNGTEGC
YVVGNGTEGC
YVVGNGTEGC
YVCGNATEGC
YVIGSAHEGC
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT


LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
QPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPNDVFM
LPPFPNDVFM
LPPFPNDVFM
LPPFPNDVFM
LPPFPNDVFM
LPAFPPQVFT
LPAFPPQVFT
LPAFPPQVFT
LPAFPPQVFT
LPPFPPDVFT
LPPFPADVFM
FPPFPADIYT
FPPFPADIYT
FPPFPADIYT


AAV8 VP1 AANO3857
AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246


VP1
VP1
VP1
VP1

VP1
VP1


isolate rh62
isolate rh55
isolate rh54
isolate rh60
AAV9 VP1
isolate hu31
isolate hu32
AAV11


AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81
AAS 992 8 2
AAT4 63 3 9


AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
























AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3
VP1 isolate hu60
VP1 isolate hu61
VP1 isolate hu25
VP1 isolate hul5
VP1 isolate hul6
VP1 isolate hul8
VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1
VP1 isolate hu34
VP1 isolate hu35
VP1 islolate hu51
VP1 isolate hu52
VP1 isolate hu47
VP1 isolate hu45
VP1 isolate hu58
VP1 isolate hu49
VP1 isolate hu56
VP1 isolate hu57
VP1 isolate hu28


AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


EVTVQDSNTT
EVTVQDSNTT
EVTTQDQTKT
EVTTQDQTKT
EVTTQDQTKT
EVTTQDQTKT
EVTTQDQTKT
EVTTQDQTKT
GVTQNDGTTT
GVTQNDGTTT
EVTQNDGTTT
EVTQNGGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT


IANNLTSTVQ
IANNLTSTVQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTIQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ


VFADKDYQLP
VFADKDYQLP
IFTDNEHQLP
IFTDNEHQLP
IFTDNEHQLP
IFTDNEHQLP
VFTDDEHQLP
VFTDDEHQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSGYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYPLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSGYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDLEYQLP
VFTDLEYQLP
VFTDSEYQLP


YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSATEGT
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVPGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGLAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVPGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC


FPPFPADIYT
FPPFPADIYT
MPPFPSDVYA
MPPFPSDVYA
MPPFPSDVYA
MPPFPSDVYA
MPPFPSDVYA
MPPFPSDVYA
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFT
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM


AAV3 Stra


iin H


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8











VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT
EVTQNDGTTT

401
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN


IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ
IANNLTSTVQ



NG...SQAVG
NG...SKAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG


VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSGYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP
VFTDSEYQLP


RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSSYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF


YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC
YVLGSAHQGC



PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMRRTGNN
PSQMRRTGNN


LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM
LPPFPADVFM

450
FTFSYTFEEV
FTFSYTFEEV
FTFSYTFEEV
FTFSYTFEEV
FTFSYTFEEV
FTFSYTFEDV
FTFSYTFEEV
FTFSYTFEEV
FTFSYTFEEV
FEFSYTFEDV
FEFSYTFEDV
FEFSYTFEDV
FEFSYTFEDV
SEFSYTFEDV
FEFSYTFEDV
FEFSYTFEDV
FEFSYTFEDV
FEFSYTFEDV
FEFSYQFEDV
FEFSYQFEDV


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


hu27
hul9
hu20
hu21


isolate hu24
isolate hu22
isolate hu23


PAY VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
,late hu6 AAS99306


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 iso











VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate rh25 AAS99242
isolate hu39 AAS99286
isolate rh49 AAS99247
isolate rh50 AAS99248
isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857


IPQYGYLTLN
IPQYGYLTLN
IPQYGNLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTPN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
VPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
IPQYGYLTLN
VPQYGYCGIV
VPQYGYCGLV
VPQYGYCGLV
VPQYGYCGLV
VPQYGYCGLV
LPQYGYATLN
LPQYGYATLN
LPQYGYATLN
LPQYGYATLN
LPQYGYATLN
LPQYGYCTRQ
IPQYGYCTLN
IPQYGYCTLN


NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQALG
NG...SQSVG
NG...SQSVG
NG...SQSVG
ND...SQSVG
NG...SQSVG
NG...SQSVG
NG...SQAVG
DG...SQAVG
DG...GQAVG
DG...SQAVG
TG.ENQNQTD
TGNTSQQQTD
TGNTSQQQTD
TGGSSQNQTD
TGGSSQNQTD
RD.NTENPTE
RD.NTENPTE
RD.NGDNPTE
RD.NGDNPTE
DS.NNGNPTN
DG.NSNNPTP
YN.N..EAVD
YN.N..EAVD


RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RNAFYCLEYF
RNAFYCLEYF
RNAFYCLEYF
RNAFYCLEYF
RNAFYCLEYF
RSSFFCLEYF
RSSFFCLEYF
RSSFFCLEYF
RSSFFCLEYF
RSSFFCLEYF
RSAFYCLEYF
RSAFYCLDYF
RSAFYCLDYF


PSQMRRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQVLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSKMLRTGNN
PSKMLRTGNN
PSKMLRTGNN
PSKMLRTGNN
PSKMLRTGNN
PSKMLRTGNS
PSDMLRTGNN
PSDMLRTGNN


FEFSYQFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYTFEDV
FSFSYPFEDV
FSFSYTFEDV
FSFSYTFEDV
FQFTYTFEDV
FQFTYTFEDV
FQFTYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FQFSYTFEDV
FEFSYSFEDV
FEFSYSFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FSFSYTFEDV
FQFSYEFENV
FQFSYEFENV
FQFSYEFENV
FEMAYNFEKV
FEITYSFEKV
FEITYSFEKV
FEMVYKFENV
FEMVYKFENV
FEFTYNFEEV
FEFTYNFEEV
FEFTYSFEEV
FEFTYSFEEV
FEFTFEFEDV
FEFTYNFEKV
FEFTYTFEDV
FEFTYTFEDV


AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178


VP1
VP1
VP1
VP1
VP1

VP1
VP1


isolate rh48
isolate rh62
isolate rh55
isolate rh54
isolate rh60
AAV9 VP1
isolate hu31
isolate hu32
AAV11


AAS 992 4 6
AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81
AAS 992 8 2
AAT4 63 3 9


AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN PArVATCC VR865 AAO32087
AVIAN PArVATCC VR865 AAT48613











AVIAN PArVATCC VR865 NP 852781
AVIAN PArV Strain DA1 AAT48615
AVIAN PArV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293
VP1 isolate hu58 AAS99305
VP1 isolate hu49 AAS99297
VP1 isolate hu56 AAS99303
VP1 isolate hu57 AAS99304


IPQYGYCTLN
IPQYGYCTLN
IPQYGYCTLN
LPQYGYCTMH
LPQYGYCTMH
LPQYGYCTMH
LPQYGYCTMH
LPQYGYCTMH
LPQYGYCTMH
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLS
VPQYGYLTLN
VPQYGYPTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN


YN.N..EAVD
YN.N..EAVD
YN.N..EAVD
TNQSGARFND
TNQSGARFND
TNQSGARFND
TNQSGARFND
TNQNGARFND
TNQNGARFND
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NE...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG


RSAFYCLDYF
RSAFYCLDYF
RSAFYCLDYF
RSAFYCLEYF
RSAFYCLEYF
RSAFYCLEYF
RSAFYCLEYF
RSAFYCLEYF
RSAFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSPFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLECF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCPEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF


PSDMLRTGNN
PSDMLRTGNN
PSDMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN


FEFTYTFEDV
FEFTYTFEDV
FEFTYTFEDV
FEFSFEFEEV
FEFSFEFEEV
FEFSFEFEEV
FEFSFEFEEV
FEFTFDFEEV
FEFTFDFEEV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
LTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FQFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV











VP1 isolate hu28
VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN
VPQYGYLTLN

451
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PLHSSYAHSQ
PFHSSYAHSQ
PLHSSCAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSGYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSCAHSQ
PFHSSYAHSQ


NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG
NG...SQAVG


SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SSDRLMNPLI
SLDRLMNPLI


RSSFYCLEYF
RSSFYCLGYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF
RSSFYCLEYF



DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
VQYLYYLNRT
DQYLYYPNRT
DQYLYYLNRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLHYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT


PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQMLRTGNN
PSQTLRTGNN
PSQMLRTGNN



Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
Q.NQSGSAQN
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
QSTGG.TQGT
RSTGG.TQGT
QSTGG. TAGT


FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV
FTFSYTFEDV

500
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
KDLLFSRGSP
RDLLFSRGSP
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG
QQLLFSQGPG


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu27
isolate hul9
isolate hu20
isolate hu21


isolate
isolate
isolate


hu24
hu22
hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267


VP1 isol

VP1 isol
VP1 isol
VP1 isol


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isol
isol
isol
isol
isol
isol
isol
isol
isol











VP1 isolate hu6 AAS99306
VP1 isolate rh25 AAS99242
VP1 isolate hu39 AAS99286
VP1 isolate rh49 AAS99247
VP1 isolate rh50 AAS99248
VP1 isolate rh51 AAS99249
VP1 isolate rh52 AAS99250
VP1 isolate rh64 AAS99259
VP1 isolate rh53 AAS99251
VP1 isolate rh61 AAS99257
VP1 isolate rh58 AAS99255
VP1 isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087


PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLV
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYVHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSSYAHSQ SLDRLMNPLI
PFHSMYAHSQ SLDRLMNPLL
PFHSMYAHSQ SLDRLMNPLI
PFHSMYAHSQ SLDRLMNPLI
PFHSMYAHSQ SLDRLMNPLL
PFHSMYAHSQ SLDRLMNPLL
PFHSSFAPSQ NLFKLANPLV
PFHSSFAPSQ NLFKLANPLV
PFHCSFAPSQ NLFKLANPLV
PFHCSFAPSQ NLFKLANPLV
PFHTGFAPCQ NLFKLSNPLV
PFHSMWAHNQ SLDRLMNPLI
PFHSMFAHNQ TLDRLMNPLV


DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSRAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLSSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QSTGG.TAGT QQLLFSQAGP
DQYLYYLSRT QTTGG.TANT QTLGFSQGGP
DQYLYYLSRT QTTGG.TANT QTLGFSQGGP
DQYLYYLSRT QTTGG.TANT QTLGFSQGGP
DQYLYYLSRT QTNG..TNAT QTLLEAQAGP
DQYLYYLSRT QTNG..TNAT QTLLEAQAGP
DQYLYYLSRT QTNG..TNAT QTLLEAQAGP
DQYLYYLVRT QTTG..TGGT QTLAFSQAGP
DQYLYYLART QSNPGGTAGN RELQFYQGGP
DQYLYYLART QSNPGGTAGN RELQFYQGGP
DQYLYYLART QSNAGGTAGN RELQFYQGGP
DQYLYYLART QSNAGGTAGN RELQFYQGGP
DQYLYYLART QSNAGGTAGN RELQFYQGGP
DQYLYYLART QSNPGGTSGN RELQFYQGGP
DQYLYYLSRT QSTEG.TAGT QQLLFSQAGP
DQYLYYLSKT INGSG..QNQ QTLKFSVAGP
DQYLYYLSKT INGSG..QNQ QTLKFSVAGP
DQYLYYLSKT INGSG..QNQ QTLKFSVAGP
DQYLWHLQST TSGETLNQGN AATTFGKIRS
DQYLWGLQST TTGTTLNAGT ATTNFTKLRP
DQYLWGLQST TTGTTLNAGT ATTNFTKLRP
DQYLWELQST TSGGTLNQGN SATNFAKLTK
DQYLWELQST TSGGTLNQGN SATNFAKLTK
DQYLYRFVST NNT....... GGVQFNKNLA
DQYLYRFVST NNT....... GGVQFNKNLA
DQYLYRFVST SAT....... GAIQFQKNLA
DQYLYRFVST SAT....... GAIQFQKNLA
DQYLYRFQGT DNSSS..STP GVVKFEKCVA
DQYLYYLDVT SSTG...... ..FTYQKGVH
DQYLWAFSSV SQAGS...SG RALHYSRATK











AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293
VP1 isolate hu58 AAS99305
VP1 isolate hu49 AAS99297
VP1 isolate hu56 AAS99303


PFHSMFAHNQ
PFHSMFAHNQ
PFHSMFAHNQ
PFHSMFAHNQ
PFHSMFAHSQ
PFHSMFAHSQ
PFHSMFAHSQ
PFHSMFAHSQ
PFHSMFAHSQ
PFHSMFAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHCQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSGYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ


TLDRLMNPLV
TLDRLMNPLV
TLDRLMNPLV
TLDRLMNPLV
DLDRLMNPLL
DLDRLMNPLL
DLDRLMNPLL
DLDRLMNPLL
DLDRLMNPLV
DLDRLMNPLV
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLV
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLLNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
GLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLGRLMNPLI
SLGRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI


DQYLWAFSSV
DQYLWAFSSV
DQYLWAFSSV
DQYLWAFSSV
DQYLWNFSEV
DQYLWNFSEV
DQYLWNFSEV
DQYLWNFSEV
DQYLWNFNEV
DQYLWNFNEV
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNKT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNRT
DQYLYYLNKT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSTT
DQYLYYLSTT
DQYLYYLSTT
DQYLYYLSTT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT


SQAGS...SG
SQAGS...SG
SQTGS...SG
SQTGS...SG
NGG.......
NGG.......
NGG.......
NGG.......
DSS. ......
DSS. ......
QGTTSGTTNQ
QGTTSGTTNQ
QGTTSGTTNQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.TNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.SNSGTLQQ
Q.TASGTQQ.
Q.TASGTQQ.
Q.TASGTQQ.
Q.SASGTVQQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ


RALHYS RAT K
RALHYS RAT K
RALNYS RAT K
RALNYS RAT K
RNAQFKKAVK
RNAQFKKAVK
RNAQFKKAVK
RNAQFKKAVK
RNAQFKKAVK
RNAQFKKAVK
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLLFSQAGP
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA











VP1 isolate hu57
VP1 isolate hu28
VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23


AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHGQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ
PFHSSYAHSQ

501
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
AGMSVQPKNW
ANMSAQAKNW
ANMSARAKNW
ANMSAQAKNW
ANMSAQAKNW
ANMSAQAKNW
ANMSAQAKNW
ANMSAQAKNW
ANMSAQAKNW
ANMSAQAKNW


SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLV
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI
SLDRLMNPLI



LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR


DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT
DQYLYYLSRT


VSKTKTGNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSKTKTDNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQSNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN


N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTQ
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM
N.TPSGTTTM


SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA
SRLQFSQAGA

550
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGASKYNLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


...NFTW
...NFTW
...NFTW
...NFTW
...NFTW
...NFTW
...NFTW
...NFTW
...NFTW
...NFAW
...NFAW
...NFAW
...NFAW
...NFAW
...NFAW
...NFAW
...NFAW
...NFAW


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290
ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol



















































AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672


isolate hul7 AAS99267
isolate hu6 AAS99306
isolate rh25 AAS99242
isolate hu39 AAS99286
isolate rh49 AAS99247
isolate rh50 AAS99248
isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
isolate rh43 AAS99245
isolate pil AAS99238
isolate pi3 AAS99240
isolate pi2 AAS99239
isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178


NNMSAQAKNW
NNMSAQAKNW
NNMSAQAKNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
SNMSAQARNW
NTMANQAKNW
NTMANQAKNW
NTMANQAKNW
QNMSAQAKNW
QNMSAQAKNW
QNMSAQAKNW
SSMANQARNW
STMAEQAKNW
STMAEQAKNW
TTMAEQAKNW
TTMAEQAKNW
TTMAEQAKNW
STMAEQAKNW
SNMSAQARNW
SNMAVQGRNY
SNMAVQGRNY
SNMAVQGRNY
GDFAFYRKNW
TNFSNFKKNW
TNFSNFKKNW
TNFSGYRKNW
TNFSGYRKNW
GRYANTYKNW
GRYANTYKNW
GRYANTYKNW
GRYANTYKNW
HNYAQQYKNW
TNLPEQERNW


LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
VPGPCYRQQR
LPGPCFRQQR
LPGPCFRQQR
LPGPCFRQQR
LPGPCFRQQR
LPGPCFRQRR
LPGPCFRQQR
LPGPCYRQQR
IPGPSYRQQR
IPGPSYRQQR
IPGPSYRQQR
LPGPCVKQQR
LPGPSIKQQG
LPGPSIKQQG
LPGPMMKQQR
LPGPMMKQQR
FPGPMGRTQG
FPGPMGRTQG
FPGPMGRTQG
FPGPMGRTQG
LTGAFQRNQD
LPGPGIRNQA


VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTLSQNNN
VSTTTGQNNN
VSTTTGQNNN
VSTTTGQNNN
VSTTVSQNNN
VSTAVSQNNN
VSTTVSQNNN
VSTTTNQNNN
VSKTLDQNNN
VSKTLDQNNN
VSKTLDQNNN
VSKTLDQNNN
VSKTLDQNNN
VSKTLDQNNN
VSTTLSQNNN
VSTTVTQNNN
VSTTVTQNNN
VSTTVTQNNN
FSKTASQNYK
FSKTANQNYK
FSKTANQNYK
FSKTASQNYK
FSKTASQNYK
WNLGSG..VN
WNLGSG..VN
WNTSSGSSTN
WNTSSGSSTN
YNYVSG.TSN
WFNSATGNNP


S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFTW
S.....NFTW
S.....NFTW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....NFAW
S.....EAW
S.....EFAW
S.....EFAW
IPAS GGNALL
IPATGSDSLI
IPATGSDSLI
IPQGRNNSLL
IPQGRNNSLL
RASVSAF ...
RASVSAF ...
RVSVNNF. ..
RVSVNNF. ..
YKGVVGS. ..
LTG.....TW


TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TAGTKYHLNG
TAGTKYHLNG
TAGTKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGAAKFKLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
PGASSWALNG
PGASSWALNG
PGASSWALNG
KYDTHYTLNN
KYETHSTLDG
KYETHSTLDG
HYETRTTLDG
HYETRTTLDG
ATTNRMELEG
ATTNRMELEG
SVSNRMNLEG
SVSNRMNLEG
NQNNLQRIEN
QYSNKYVLEN


isolate rh48
isolate rh62
isolate rh55
isolate rh54


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1



VP1
VP1
VP1
VP1
VP1



VP1
VP1
VP1
VP1
VP1


AAS 992 4 6
AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81
AAS 992 8 2
AAT4 63 3 9


AAV9 VP1
VP1 isolate hu31
VP1 isolate hu32
AAV11


isolate rh60












AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293
VP1 isolate hu58 AAS99305
VP1 isolate hu49 AAS99297


TNMAAQYRNW
TNMAAQYRNW
TNMAAQYRNW
TNMATQYRNW
TNMATQYRNW
GAFGAMGRNW
GAFGAMGRNW
GAFGAMGRNW
GAFGAMGRNW
GAYGTMGRNW
GAYGTMGRNW
QSMSLQARNW
QSMSLQARNW
QSMSLQARNW
TNMSLQAKNW
TNMSLQAKNW
TNMSLQAKNW
TNMSLQAKNW
TNMSLQAKNW
TNMSLQAKNR
TNMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
TSMSLQAKNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW


LPGPFFRDQQ
LPGPFFRDQQ
LPGPFFRDQQ
LPGPFVRDQQ
LPGPFVRDQQ
LPGPKLLDQR
LPGPKLLDQR
LPGPKLLDQR
LPGPKLLDQR
LPGPKFLDQR
LPGPKFLDQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR


IFTGASNITK
IFTGASNITK
IFTGASNITK
IFTGASNITQ
IFTGASNITQ
VRAYSGGTDN
VRAYSGGTDN
VRAYSGGTDN
VRAYSGGTDN
VRAYTGGTDN
VRAYTGGTDN
LSKTANDNNN
LSKTANDNNN
LSKTANDNNN
LSKQANGNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANDNNN
LSKQANENNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTAADNNN


..NVFSVW
..NVFSVW
..NVFSVW
..NVFNVW
..NVFNVW
..ANWSIW
..ANWSIW
..ANWSIW
..ANWSIW
..ANWNIW
..ANWNIW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....NFPW
....EYSW
....EYSW
....EYSW
....EYSW
....EYSW
....EYSW
....EYSW
....EYSW
....EYSW


EKGKQWELDN
EKGKQWELDN
EKGKQWELDN
DKGKQWVIDN
DKGKQWVIDN
SKGNKVFLKD
SKGNKVFLKD
SKGNKVFLKD
SKGNKVFLKD
SNGNKVNLKD
SNGNKVNLKD
TAASKYHLNG
TAASKYHLNG
TAASKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYHLNG
TAATKYRLNG
TAATKYHLNG
TGATKYYLNG
TGATKYHLNG
TGATKYHLNG
TAATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
IGATKYHLNG
TGATKYHLNG












VP1 isolate hu56
VP1 isolate hu57
VP1 isolate hu28
VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23


AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


SDIRDQSRNW
SDIRDQSRNW
SDIQDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDVRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW
SDIRDQSRNW

551
HESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RESIINPGTA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA


LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPSYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR
LPGPCYRQQR



MASHKDDEDK
MASHKDDEDK
MASHKDDEDK
MASHKDDEDK
VASHKDDEDK
MASHKDDKDK
MASHKDDEDK
MASHKDDEDK
MASHKDDEDK
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER


VSKTAADNNN
VSKTAADNNN
VSKTSADNNN
VSKTSADNNN
VSKTPADNNN
VSKTSADNNN
VSKTSADNNN
VSKTSADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN
VSKTAADNNN


...EYSW
...EYSW
...EYSW
...EYSW
...EYSW
...EYSW
...EYSW
...EYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW
...DYSW


TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG
TGATKYHLNG


VSKTAADNNN S.....DYSW TGATKYHLNG
VSKTAADNNN S.....DYSW TGATKYHLNG


600
SNTALDNVMI
SNTALDNVMI
SNTALDNVMI
SNTALDNVMI
SSTALDNVMI
SNTALDNVMI
SNTALDNVMI
SNTALDNVMI
SNTALDNVMI
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
isolate hu48 AAS99296
AAV6 VP1 AAB95450
isolate hu43 AAS99291
isolate hu44 AAS99292
isolate hu46 AAS99294
AAV10 AAT46337
isolate rh40 AAS99244
isolate hu37 AAS99285
isolate hu42 AAS99290
isolate hu40 AAS99288
isolate hu67 AAS99312
isolate rh38 AAS99243
isolate hu41 AAS99289


FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPMSGVMIF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF


GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKESA. .
GKQGA..
GKQGA..
GKQGA..
GKQGA..
GKQGA..
GKQGA..
GKQGA..
GKQGA..


VP1


VP1
VP1
VP1

VP1
VP1
VP1
VP1
VP1
VP1
VP1












VP1 isolate hu66
VP1 isolate hul7
VP1 isolate hu6
VP1 isolate rh25
VP1 isolate hu39
VP1 isolate rh49
VP1 isolate rh50
VP1 isolate rh51
VP1 isolate rh52
VP1 isolate rh64


AAS 9 9311
AAS 992 67
AAS9 93 0 6
AAS 992 4 2
AAS 992 8 6
AAS 992 4 7
AAS 992 4 8
AAS 992 4 9
AAS 992 50
AAS 992 59


RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNSGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLVNPGVA
RNSLANPGIA
RNSLANPGIA
RNSLANPGIA
RDSLVSPGVA
RDSLVNPGVA
RDSLVNPGVA
RDSLMNPGVA
RNSLVNPGVA
RNSLVNPGVA
RNSLVNPGVA
RNSLVNPGVA
RNSLVNPGVA
RNSLVNPGVA
RDSLVNPGVA
RNSLMNPGPA
RNSLMNPGPA
RNSLMNPGPA
RWSNIAPGPP
RWSALTPGPP
RWSALTPGPP
RW SNAP GTA
RW SNAP GTA
ASYQVPPQPN
ASYQVPPQPN
ASYQVNPQPN
ASYQVNPQPN
VQFAIAPDVP


MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATNKDDEDR
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEER
MASHKDDEDR
MATHKDDEDR
MATHKDDEDR
MATHKDDEER
MATHKDDEER
MATHKDDEER
MATHKDDEDR
MATHKDDEER
MASHKEGEDR
MASHKEGEDR
MASHKEGEDR
MATAGPSDGD
MATAG PADSK
MATAG PADSK
MATAANDATD
MATAANDATD
GMTNNLQGSN
GMTNNLQGSN
GMTNTLQGSN
GMTNTLQGSN
SMCNHLEGTN


FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSSGILMF
FFPSNGILIF
FFPSNGILIF
FFPVTGSCFW
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLMF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPSSGVLIF
FFPLSGSLIF
FFPLSGSLIF
FFPLSGSLIF
FS.NAQLIFP
FS.NSQLIFA
FS.NSQLIFA
FS.QAQLIFA
FS.QAQLIFA
TYALENTMIF
TYALENTMIF
RYALENTMIF
RYALENTMIF
MIALDNSLIF


GKQGA...GR
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQNA...AR
GKQNA...AR
.QQNA...AR
GKQGA...GK
GKQGA...GK
GKQGA...GK
GKQGA...GN
GKTGA...TN
GKTGA...TN
GKTGA...1UJ
GKTGA...1UJ
GKTGA...1UJ
GKTGA...TN
GKTGA...1UJ
GKQGT...GR
GKQGT...GR
GKQGT...GR
GPSVT...GN
GPKQN...GN
GPKQN...GN
GPNIT...GN
GPNIT...GN
NSQPANPGTT
NSQPANPGTT
NAQNATPGTT
NAQNATPGTT
RDVSTAPGDT


DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSSVML
DNVDYSNVML
DNMGYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNVDYSNVML
DNADYSDVML
DNADYSDVML
DNADYSDVML
DNVEYTNVML
DNVEYTNVML
DNVEYTNVML
DGVDYSQVLI
KTT.LENVLM
KTT.LENVLM
KTT.LENVLM
KTT.LENVLM
KTT.LENVLM
KTT.LENVLM
KTT.LENVLM
DNVDADKVMI
DNVDADKVMI
DNVDADKVMI
TTTSANNLLF
TATVPGTLIF
TATVPGTLIF
TTTDANNLMF
TTTDANNLMF
ATYLEGNMLI
ATYLEGNMLI
SVYPEDNLLL
SVYPEDNLLL
TQYNINQVIV


VP1
VP1
VP1
VP1



VP1
VP1
VP1
VP1


isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
isolate rh43 AAS99245
isolate pil AAS99238
isolate pi3 AAS99240
isolate pi2 AAS99239


VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178


VP1
VP1
VP1
VP1


isolate rh48
isolate rh62
isolate rh55
isolate rh54


AAS 992 4 6
AAS 992 5 8
AAS 992 5 3
AAS 992 52
AAS 992 5 6
AAS 992 64
AAS 992 81
AAS 992 8 2
AAT4 63 3 9


VP1 isolate rh60
AAV9 VP1
VP1 isolate hu31
VP1 isolate hu32
AAV11


AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676












MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293
VP1 isolate hu58 AAS99305


RAS KIAP GPA
RTNLMQPGPA
RTNLMQPGPA
RTNLMQPGPA
RINMMQPGPA
RINMMQPGPA
REYLLQPGPV
REYLLQPGPV
REYLLQPGPV
REYLLQPGPV
RQYLLQPGPV
RQYLLQPGPV
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
GDSLVNPGPA
RDSLVNPGPP
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA


MG....IEST
AATTFSGEPD
AATTFSGEPD
AATTFSGEPD
AATTFSGEPD
AATTFSGEPD
ATTHTEDQAS
ATTHTEDQAS
ATTHTEDQAS
ATTHTEDQAS
SATYTEGEAS
SATYTEGEAS
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDNEEK
MASHKDNEEK
MASHKDNEEK
VASHKDDEEK
MASHKDDEEK


KFDGNGIIFS
RQAMQNTLAF
RQAMQNTLAF
RQAMQNTLAF
RQAMQNTLAF
RQAMQNTLAF
SVPAQNIIGI
SVPAQNIIGI
SVPAQNIIGI
SVPAQNIIGI
SLPAQNILGI
SLPAQNILGI
FFPMHGNLIF
FFPMHGNLIF
FFPMHGNLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPMHGTLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF


KEYIT...NV
SRTVYDQ.TT
SRTVYDQ.TT
SRTVYDQ.TT
SRTVYDQ.TT
SRTVYDQ.TT
AKDPYRS.GS
AKDPYRS.GS
AKDPYRS.GS
AKDPYRS.GS


NTANPNQVNI
ATTDRNQILI
ATTDRNQILI
ATTDRNQILI
STTDRNQLLI
STTDRNQLLI
TLAGISDIMV
TLAGISDIMV
TLAGISDIMV
TLAGISDIMV


AKDPYRS.GS TTAGISDIMV
AKDPYRS.GS TTAGISDIMV


GKEGT. .
GKEGT. .
GKEGT. .
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKQGT..
GKEGT. .
GKEGT. .
GKEGT. .
GKEGT. .
GKQGS..
GKQGS..
GKQGS..
GKQGS..
GKQGS..
GKQGS..
GKQGS..
GKQGS..


SNAELDNVMI
SNAELDNVMI
SNAELDNVMI
NDADLENVMI
NDADLENVMI
NDADLENVMI
NDADLENVMI
NDADLENVMI
NDADLENVMI
NDADLENVMI
NDADLDNVMI
NDADLDNVMI
NDADLDNVMI
NDADLDNVMI
NDADLEHVMI
NDADLEHVMI
NDADLEHVMI
TNAELENVMI
TNAELENVMI
TNAELENVMI
NNAELENVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI
TNVDIEKVMI












VP1 isolate hu49
VP1 isolate hu56
VP1 isolate hu57
VP1 isolate hu28
VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA
RDSLVNPGPA

601
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TDEEEIKATN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN


MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK
MASHKDDEEK



PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATERFGTV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV


FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
FFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
FFPQSGVLIF
YFPQSGVLVF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF
YFPQSGVLIF



AVNFQ!S S STH
AVNFQSSSTD
AVNFQSSSTD
AVNFQSSSTD
AVNFQSSSTD
AVNLQSSSTD
AVNFQSSSTD
AVNFQSSSTD
AVNFQSSSTD
ADNLQQANTG
ADNLQQANTG
ADNLQQTNTG
ADNLQQTNTG
ADNLQQTNTG
ADNLQQTNTG
ADNLQQTNTG


GKQGS..
GKQGS..
GKQGS..
GKQGS..
GKQGP..
GKQGS..
GKQGS..
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .
GKQDS. .


.EK TNVDIEKVMI
.EK TNVDIEKVMI
.EK TNVDIEKVMI
.EK TNVDIEKVMI
.EK TNVDIEKVMI
.EK TNVDIEKVMI
.EK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDTEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI
.GK TNVDIEKVMI


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


hu27
hul9
hu20
hu21


isolate hu24
isolate hu22
isolate hu23


650
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQGR
ALPGMVWQDR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
VP1 isolate hu48 AAS99296
AAV6 VP1 AAB95450
VP1 isolate hu43 AAS99291
VP1 isolate hu44 AAS99292
VP1 isolate hu46 AAS99294
AAV10 AAT46337
VP1 isolate rh40 AAS99244
VP1 isolate hu37 AAS99285
VP1 isolate hu42 AAS99290
VP1 isolate hu40 AAS99288
VP1 isolate hu67 AAS99312
VP1 isolate rh38 AAS99243


PATGDVHVMG
PATGDVHVMG
PATGDVRAMG
PATGDVRAMG
PATGDVRAMG
PATGDVHVMG
PATGDVRAMG
PATGDVRAMG
PATGDVRAMG
PIVGNVNSQG
PIVGNVNSQG
PIVGNVNSQG
PIVGNVNSQG
PIVGNVNSQG
PIVGNVNSQG
PIVGNVNSQG











VP1 isolate hu41
VP1 isolate hu66
VP1 isolate hul7
VP1 isolate hu6
VP1 isolate rh25
VP1 isolate hu39
VP1 isolate rh49
VP1 isolate rh50
VP1 isolate rh51
VP1 isolate rh52


AAS 992 8 9
AAS 9 9311
AAS 992 67
AAS9 93 0 6
AAS 992 4 2
AAS 992 8 6
AAS 992 4 7
AAS 992 4 8
AAS 992 4 9
AAS 992 50
AAS 992 59
AAS 992 51
AAS 992 5 7
AAS 992 5 5
AAS 992 54
AANO03857


TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TSEEEIKTTN
TDEEEIKATN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIRPTN
TNEEEIKTTN
TNEEEIKTTN
TNEEEIKTTN
TSEEEIAATN
TSEEELAATN
TSEEELAATN
TSEDELRATN
TSEDELRATN
TSESETQPVN
TSESETQPVN
TSESETQPVN
TSESETQPVN


PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEEYGIV
PVATEEYGIV
PVATEEYGIV
PVATEQYGVV
PVATEQYGVV
PVATEQYGVV
PVATEEYGAV
PVATEEYGIV
PVATEEYGIV
PVATEEYGTV
PVATEEYGTV
PVATEEYGTV
PVATEEYGIV
PVATEEYGTV
PVATESYGQV
PVATESYGQV
PVATESYGQV
PRDTDMFGQI
ATDTDMWGNL
ATDTDMWGNL
PRDTDLFGHL
PRDTDLFGHL
RVAYNVGGQM
RVAYNVGGQM
RVAYNTGGQM
RVAYNTGGQM


ADNLQQTNTG
ADNLQQTNTG
ADNLQQQNAA
ADNLQQQNAA
ADNLQQQNAA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQDTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQQNTA
ADNLQQTNSA
ADNLQQTNSA
ADNLQQTNSA
AINNQAANTQ
SSNLQAANTA
SSNLQAANTA
SSNLQAANTA
SSNLQAANTA
SSNLQAANTA
SSNLQAANTA
SSNLQAANTA
ATNHQSAQAQ
ATNHQSAQAQ
ATNHQSAQAQ
ADNNQNATTA
PGGDQSNSNL
PGGDQSNSNL
ATNQQNATTV
ATNQQNATTV
ATNNQSSTTA
ATNNQSSTTA
ATNAQNATTA
ATNAQNATTA


PIVGNVNSQG
PIVGNVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PTVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
PQIGTVNSQG
PQIGTVNSQG
PQIGTVNSQG
PIVGAVNSQG
PIVGAVNSQG
PIVGAVNSQG
AQTGLVHNQG
AQTQVVNNQG
AQTQVVNNQG
AQTQVVNNQG
AQTQVVNNQG
AQTQVVNNQG
AQTQVVNNQG
AQTQVVNNQG
AQTGWVQNQG
AQTGWVQNQG
AQTGWVQNQG
PITGNVTAMG
PTVDRLTALG
PTVDRLTALG
PTVDDVDGVG
PTVDDVDGVG
PATGTYNLQE
PATGTYNLQE
PTVGTYNLQE
PTVGTYNLQE


ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
VIPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ILPGMVWQDR
ILPGMVWQDR
ILPGMVWQDR
VLPGMVWQNR
AVP GMVWQN R
AVP GMVWQN R
VYPGMVWQDR
VYPGMVWQDR
IVPGSVWMER
IVPGSVWMER
VLPGSVWMER
VLPGSVWMER


VP1
VP1
VP1
VP1
VP1


isolate rh64
isolate rh53
isolate rh61
isolate rh58
isolate rh57
AAV8 VP1


AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726











RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295
VP1 isolate hu45 AAS99293


TSEAETQSVN
TRETEINSTN
TNEDEIRPTN
TNEDEIRPTN
TNEDEIRPTN
TNEDEIRPTN
TNEDEIRPTN
TDEQEIAPTN
TDEQEIAPTN
TDEQEIAPTN
TDEQEIAPTN
TEEQEVAPTN
TEEQEVAPTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRATN
TDEEEIRATN
TDEEEIRATN
TDEEEIRPTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN


AYSGDTCGRI
PLAGGSLGAH
SVGIDAWGAV
SVGIDAWGAV
SVGIDAWGAV
SVGIDTWGVV
SVGIDTWGVV
GVGWRPYGLT
GVGWRPYGLT
GVGWRPYGLT
GVGWRPYGLT
GVGWKPYGRT
GVGWKPYGRT
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGTV
PVATEQYGYV
PVATEQYGYV
PVATEQYGYV
PVATEQYGYV
PVATEQYGNV
PVATEQYGNV
PVATEQYGNV
PVATEQYGYV
PVATEQYGYV
PVATEQYGYV
PVATEQYGNV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV


VNNSQNSGTN
ANNSQNTTTA
PTNNQSIVTP
PTNNQSIVTP
PTNNQSIVTP
PNNNQSKVTA
PNNNQSKVTA
VTNEQNTTTA
VTNEQNTTTA
VTNEQNTTTA
VTNEQNTTTA
VTNEQNTTTA
VTNEQNTTTA
ANNLQSSNTA
ANNLQSSNTA
ANNLQSSNTA
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQDSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTG
SNNLQNSNTA
SNNLQNSNTA
SNNLQNSNTA
SNNLQNSNTA
STNLQRGNRQ
STNLQRGNRQ
STNLQRGNRQ
STNLQRGNRQ
STNLQRGNRQ
STNLQRGNRQ
STNLQRGNRQ


AGTTGINYKG
PTLDHTNVMG
GTRAAVNNQG
GTRAAVNNQG
GTRAAVNNQG
GTRAAINNQG
GTRAAINNQG
PTNAELEVLG
PTNAELEVLG
PTNAELEVLG
PTNAELEVLG
PTSSDLDVLG
PTSSDLDVLG
PTTGTVNHQG
PTTGTVNHQG
PTTRTVNDQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNRQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTGTVNHQG
PTTENVNHQG
PTTENVNHQG
PTTENVNHQG
ASTETVNHQG
ASTETVNHQG
ASTETVNHQG
PSTGTVNHQG
AATADVNTQG
AATADVNTQG
AATADVNTQG
AATADVNTQG
AATADVNTQG
AATADVNTQG
AATADVNTQG


TMPSSVWMDR
VFPGSVWQDR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQNR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
ALPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR











AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN
TDEEEIRTTN

651
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA


PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGTV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGAV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PAATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV
PVATEQYGSV


KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGNFH
KIPHTDGNFH
KIPHTDGNFH
KIPHTDGNFH
KIPHTDGNFH
KIPHTDGNFH


STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTR
STNLQSGNTQ
STNLQSGNTQ
STNLQSSNTQ
STNLQGGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STNLQSGNTQ
STYLQSGNTQ


PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGLGL
PSPLMGGFGL
PSPLMGGFGL


ASTADVNTQG
AATADVNTQG
AAT SDVNTQG
AAT SDVNTQG
AATADVNTQG
AATADVNTQG
AAT SDVNTQG
AATADVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AATADVNTQG
AATADVNTQG
AATADVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG
AAT SDVNTQG



KHPPPQILIK
KHPPPQILIK
KNPPPQILIK
KNPPPQILIK
KNPPPQILIK
KHPPPQILIK
KNPPPQILIK
KNPPPQILIK
KNPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK


VLPGMVWQDR
VLPGMVWQDR
VLPERVWQDR
VLPERVWQDR
VLPGMVGQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPERVWQDR
VLPERVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPGMVWQDR
VLPERVWQDR
VLPERVWQDR
VLPERVWQDR
VLPERVWQDR
VLPERVWQDR
VLPERVWQDR
VLPERVWQDR

700
NTPVPANPPA
NTPVPANPPA
NTPVPANPPA
NTPVP.ANPPA
NTPVP.ANPPA
NTPVP.ANPPA
NTPVP.ANPPA
NTPVP.ANPPA
NTPVP.ANPPA
NTPVPADPPT
NTPVPADPPT
NTPVPADPPT
NTPVPADPPT
NTPVPADPPT
NTPVPADPPT


VP1 isolate hu58
VP1 isolate hu49
VP1 isolate hu56
VP1 isolate hu57
VP1 isolate hu28
VP1 isolate hu29
VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32


VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate


hu27
hul9
hu20


isolate hu21
isolate hu24
isolate hu22
isolate hu23


PArVVR195 ABA71699
PArVVR355 ABA71701
AAV1 NP 049542


AAV1 VP1
VP1 isolate hu48
AAV6 VP1
VP1 isolate hu43
VP1 isolate hu44
VP1 isolate hu46
AAV10
VP1 isolate rh40
VP1 isolate hu37
VP1 isolate hu42
VP1 isolate hu40
VP1 isolate hu67


AAD27757
AAS 992 9 6
AAB9 54 50
AAS 992 91
AAS 992 92
AAS 992 9 4
AAT4 63 3 7
AAS 992 4 4
AAS 992 8 5
AAS 992 90
AAS 992 8 8
AAS 9 9312











VP1 isolate rh38 AAS99243
VP1 isolate hu41 AAS99289
VP1 isolate hu66 AAS99311
VP1 isolate hul7 AAS99267
VP1 isolate hu6 AAS99306
VP1 isolate rh25 AAS99242
VP1 isolate hu39 AAS99286
VP1 isolate rh49 AAS99247
VP1 isolate rh50 AAS99248
VP1 isolate rh51 AAS99249
VP1 isolate rh52 AAS99250
VP1 isolate rh64 AAS99259
VP1 isolate rh53 AAS99251
VP1 isolate rh61 AAS99257
VP1 isolate rh58 AAS99255
VP1 isolate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE PAY YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409
CAPRINE AAV1 AAU84890


DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQVLIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK STPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPV
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPV
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPV
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPADPPL
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHPPPQILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGL KHP..QILIK NTPVPANPPE
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGM KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGM KHPPPQILIK NTPVPADPPT
DVYLQGPIWA KIPHTDGNFH PSPLMGGFGM KHPPPQILIK NTPVPADPPT
DIYYQGPIWA KIPHADGHFH PSPLIGGFGL KHPPPQIFIK NTPVPANPAT
DIYYQGPIWA KIPHTDGHFH PSPLIGGFGL KHPPPQIFIK NTPVPANPAT
DIYYQGPIWA KIPHTDGHFH PSPLIGGFGL KHPPPQIFIK NTPVPANPAT
DIYYQGPIWA KIPHTDGHFH PSPLIGGFGL KSPPPQIFIK NTPVPANPAT
DIYYQGPIWA KIPHTDGHFH PSPLIGGFGL KSPPPQIFIK NTPVPANPAT
DVYLQGPIWA KIPETGAHFH PSPAMGGFGL KHPPPMMLIK NTPVPGN.IT
DVYLQGPIWA KIPETGAHFH PSPAMGGFGL KHPPPMMLIK NTPVPGN.IT
DVYLQGPIWA KIPETGAHFH PSPAMGGFGL KHPPPMMLIK NTPVPGN.IT











GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941
AAV3 Strain H AAC55049
AAV3B VP1 AAB95452
VP1 isolate hul AAS99260
VP1 isolate hu4 AAS99287
VP1 isolate hu2 AAS99270
VP1 isolate hu3 AAS99280
VP1 isolate hu60 AAS99307
VP1 isolate hu61 AAS99308
VP1 isolate hu25 AAS99276
VP1 isolate hul5 AAS99265
VP1 isolate hul6 AAS99266
VP1 isolate hul8 AAS99268
VP1 isolate hu7 AAS99313
VP1 isolate hul0 AAS99261
VP1 isolate hull AAS99262
VP1 isolate hu9 AAS99314
VP1 isolate hu53 AAS99300
VP1 isolate hu55 AAS99302
VP1 isolate hu54 AAS99301
VP1 isolate huS17 AAU05370
AAV2 VP1 AACO3780
VP1 isolate hu34 AAS99283
VP1 isolate hu35 AAS99284
VP1 islolate hu51 AAS99298
VP1 isolate hu52 AAS99299
VP1 isolate hu47 AAS99295


DVYLQGPIWA KIPETGAHFH PSPAMGGFGL KHPPPMMLIK NTPVPGN.IT
DVYLQGPIWA KIPHTGAHFH PSPMMGGFGL RNPPPMMLIK NTPVPGN.VT
DIYLQGQIWA KIPHTDGHFH PSPLMGGFGL KNPPPQILIK NTPVPADPPT
DIYPTGTHLA KIPDTDNHFH PSPLIGRFGC KHPPPQIFIK NTPVPANPSE
DIYPTGTHLA KIPDTDNHFH PSPLIGRFGC KHPPPQIFIK NTPVPANPSE
DIYPTGTHLA KIPDTDNHFH PSPLIGRFGC KHPPPQIFIK NTPVPANPSE
DIYLQGPIWA KIPDTDNHFH PSPLIGGFGC KHPPPQIFIK NTPVPANPSE
DIYLQGPIWA KIPDTDNHFH PSPLIGGFGC KHPPPQIFIK NTPVPANPSE
DIYLQGPIWA KIPKTDGKPH PSPNLGGFGL HNPPPQVFIK NTPVPADPPL
DIYLQGPIWA KIPKTDGKPH PSPNLGGFGL HNPPPQVFIK NTPVPADPPL
DIYLQGPIWA KIPKTDGKPH PSPNLGGFGL HNPPPQVFIK NTPVPADPPL
DIYLQGPIWA KIPKTDGKPH PSPNLGGFGL HNPPPQVFIK NTPVPADPPL
DIYLQGPIGA KIPKTDGKFH PSPNLGGFGL HNPPPQVFIK NTPVPADPPV
DIYLQGPIGA KIPKTDGKFH PSPNLGGFGL HNPPPQVFIK NTPVPADPPV
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLTGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK STPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLVGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLRGPIWA KIPHADGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQIMIK NTPVPANPPT
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQILIK NTPVPANPST
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQILIK NTPVPANPST
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQILIK NTPVPANPST
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQILIK NTPVPANPST
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGP KHPPPQILIK NTPVPANPST
DVYLQGPIWA KIPHTDGHFH PSPLMGGFGL KHPPPQILIK NTPVPANPST











VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu45
isolate hu58


AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


DVYLQGPIWA
DVYLQGPIWA
DVHLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPTWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLQGPIWA
DVYLRGPIWA

701
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
EFSATKEASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF


KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFY
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH
KIPHTDGHFH



ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSAGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS


PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLVGGFGL
PSPPMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL
PSPLMGGFGL



VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE


KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK
KHPPPQILIK



NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEVQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ


NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST
NTPVPANPST

750
YTSNYAKSAN
YTSNYAKSAN
YTSNYAKSAN
YTSNYAKSAN
YTSNYAKSAN
YTSNYAKSAN
YTSNYAKSAS
YTSNYAKSAN
YTSNYAKSAN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN


isolate
isolate
isolate
isolate
isolate


hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542
AAV1 VP1 AAD27757
VP1 isolate hu48 AAS99296
AAV6 VP1 AAB95450
VP1 isolate hu43 AAS99291
VP1 isolate hu44 AAS99292
VP1 isolate hu46 AAS99294
AAV10 AAT46337
VP1 isolate rh40 AAS99244
VP1 isolate hu37 AAS99285
VP1 isolate hu42 AAS99290
VP1 isolate hu40 AAS99288











VP1 isolate hu67
VP1 isolate rh38
VP1 isolate hu41
VP1 isolate hu66
VP1 isolate hul7
VP1 isolate hu6


AAS 9 9312
AAS 992 4 3
AAS 992 8 9
AAS 9 9311
AAS 992 67
AAS9 93 0 6
AAS 992 4 2
AAS 992 8 6
AAS 992 4 7
AAS 992 4 8


TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
TFSQAKLASF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
AFNQAKLNSF
TFNQSKLNSF
TFNQSKLNSF
TFNQSKLNSF
NFTDAKLASF
NFTDAKLASF
NFTDAKLASF
TFNQAKLNSF
VFTPAKEASF
VFTPAKEASF
VFTPAKEASF
VFTPAKEASF
VFTPAKEASF
VFTPAKEASF
VFTPAKEASF
AFNKDKLNSF
AFNKDKLNSF
AFNKDKLNSF
TFTAARVDSF
TFSSTPVNSF
TFSSTPVNSF
TFSPARINSF
TFSPARINSF
SFSDVPVSSF
SFSDVPVSSF


ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
IAQYSTGQVS
ITQYGTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVA
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVA
ITQYSTGQVA
ITQYSTGQVT
ITQYSTGQVT


VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWEPQKE
VEIEWELQKE
VEIVWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
AEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VQIEWEIEKE
VQIDWEIQKE
VQIDWEIQKE
VKIEWEIQKE
VKIEWEIQKE
VEMEWELKKE
VEMEWELKKE


NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWSPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRRNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKCWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
RSKRWNPEVQ
RSKRWNPEVQ
RSKRWNPEVQ
RSKRWNPEVQ
RSKRWNPEVQ
NSKRWNPEIQ
NSKRWNPEIQ


YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYNKSVN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTN
YTSNYYKSTS
YTSNYYKSTS
YTSNYYKSTS
YTSNYYKSAN
YTSNYYKSAN
YTSNYYKSAN
YTSNYYKSTN
YTSNFEKQTG
YTSNFEKQTG
YTSNFDKQTG
YTSNFDKQTG
YTSNFDKQTG
YTSNFDKQTG
YTSNFDKQTG
YTSNYYKSNN
YTSNYYKSNN
YTSNYYKSNN
FTSNYGNQSS
FTSNYGQQNS
FTSNYGQQNS
FTSNYGAQDS
FTSNYGAQDS
YTNNYNDPQF
YTNNYNDPQF


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate
isolate
isolate
isolate


rh25
hu39
rh49
rh50


isolate rh51 AAS99249
isolate rh52 AAS99250
isolate rh64 AAS99259
isolate rh53 AAS99251
isolate rh61 AAS99257
isolate rh58 AAS99255
isolate rh57 AAS99254
AAV8 VP1 AANO3857


AAV8 YP 077180
VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756
AAV5 YP 068409











CAPRINE AAV1 AAU84890
GOAT AAV VP1 ABC69726
RAT AAV1 AAZ79676
MOUSE AAV1 AAZ79672
AVIAN AAV ATCC VR865 AAO32087
AVIAN AAV ATCC VR865 AAT48613
AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


SFSDVPVSSF
SFSDVPVSSF
TFTEVKVNQF
EFNANKISSF
TFQTAKVASF
TFQTAKVASF
TFQTAKVASF
TFQTAKVASF
TFQTAKVASF
EYVNQKWNSY
EYVNQKWNSY
EYVNQKWNSY
EYVNQKWNSY
EYVHQKWNSY
EYVHQKWNSY
TFSPAKEASF
TFSPAKEASF
TFSPAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASS
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSSKEASF
NFSSAKEASF
NYSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSSAKEASF
NFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF


ITQYSTGQVT
ITQYSTGQVT
ITQYSTGQIT
ITQYSTGQVT
INQYSTGQCT
INQYSTGQCT
INQYSTGQCT
INQYSTGQCT
INQYSTGQCT
ITQYSTGQCT
ITQYSTGQCT
ITQYSTGQCT
ITQYSTGQCT
ITQYSTGQCT
ITQYSTGQCT
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS


VEMEWELKKE
VEMEWELKKE
VDVEWELQKE
VEMEWELQKE
VEIFWELKKE
VEIFWELKKE
VEIFWELKKE
VEIFWELKKE
VEIFWELKKE
VEMVWELRKE
VEMVWELRKE
VEMVWELRKE
VEMVWELRKE
VEMVWELRKE
VEMVWELRKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELRKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE


NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
TSKRWNPEIQ
TSKRWNPEIQ
TSKRWNPEIQ
TSKRWNPEIQ
TSKRWNPEIQ
TSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
DSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ


YTNNYNDPQF
YTNNYNDPQF
YTNNYSNNTF
YSDDSSSTSG
FTSNFGNAAD
FTSNFGNAAD
FTSNFGNAAD
FTSNFGNAAD
FTSNFGNAAD
FTSNFGNRTS
FTSNFGNRTS
FTSNFGNRTS
FTSNFGNRTS
FTSNFSNRTS
FTSNFSNRTS
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKPVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8
AAS 992 9 9


VP1
VP1
VP1
VP1
VP1
VP1


isolate hu60
isolate hu61
isolate hu25
isolate hul5
isolate hul6
isolate hul8


VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1
VP1 isolate hu34
VP1 isolate hu35
VP1 islolate hu51
VP1 isolate hu52











VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu47


AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKFVSF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF
TFSAAKEASF

751
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFTVDNN
..VDFAVNTE
..VDFAVNSE
..VDFAVNTE
..VDFAVNTE


ITQYSTGQVS
ITQYSTGQVS
ITQYSTGRVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS
ITQYSTGQVS


GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GLYTEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG


VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE
VEIEWELQKE

778
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL


NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ
NSKRWNPEIQ


YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN
YTSNYNKSVN


isolate
isolate
isolate
isolate
isolate
isolate
isolate


hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23


AAV VR195 ABA71699
AAV VR355 ABA71701
AAV1 NP 049542


AAV1 VP1 AAD27757
ate hu48 AAS99296
AAV6 VP1 AAB95450
ate hu43 AAS99291
ate hu44 AAS99292
ate hu46 AAS99294
AAV10 AAT46337
ate rh40 AAS99244
ate hu37 AAS99285
ate hu42 AAS99290


VP1 isol

VP1 isol
VP1 isol
VP1 isol

VP1 isol
VP1 isol
VP1 isol












VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 isol
VP1 iso


ate hu40 AAS99288
ate hu67 AAS99312
ate rh38 AAS99243
ate hu41 AAS99289
ate hu66 AAS99311
ate hul7 AAS99267
,late hu6 AAS99306
ate rh25 AAS99242
ate hu39 AAS99286
ate rh49 AAS99247
ate rh50 AAS99248
ate rh51 AAS99249
ate rh52 AAS99250
ate rh64 AAS99259
ate rh53 AAS99251
ate rh61 AAS99257
ate rh58 AAS99255
ate rh57 AAS99254
AAV8 VP1 AANO3857
AAV8 YP 077180


.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFTVDTN
.VDFAVNTE
.VDFAVNTE
.ADEAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDFAVNTE
.VDEAVNAD
.VDEAVNAD
.VDEAVNAD
.VDFAVNTE
.VDEAVDSQ
.VDEAVDSQ
.VDEAVDSQ
.VDEAVDSQ
.VDEAVDSQ
.VDEAVDSQ
.VDEAVDSQ
.VEFAVNTE
.VERAVSTE
.VEFAVNTE
.MLWAPDTT
.LLWAPDAA
.LLWAPDAA
.LLWAPDNA
.LLWAPDNA
.VDFAPDST


GTYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GVYSEPRPIG
GTYSEPRPIG
GTYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GKYTEPRVIG
GKYTEPRAIG
GKYTEPRAIG
GAYKEP RAIG
GAYKEP RAIG
GEYRTTRPIG


TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYPTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
SRYLTNHL
TRYLTHHL
TRYLTHHL
SRYLTNHL
SRYLTNHL
TRYLTRPL


VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isol
isol
isol
isol
isol
isol
isol
isol
isol
isol
isol


VP1 isolate rh43 AAS99245
VP1 isolate pil AAS99238
VP1 isolate pi3 AAS99240
VP1 isolate pi2 AAS99239
VP1 isolate rh1 AAS99241
AAV7 VP1 AANO3855
AAV7 YP 077178
VP1 isolate rh48 AAS99246
VP1 isolate rh62 AAS99258
VP1 isolate rh55 AAS99253
VP1 isolate rh54 AAS99252
VP1 isolate rh60 AAS99256
AAV9 VP1 AAS99264
VP1 isolate hu31 AAS99281
VP1 isolate hu32 AAS99282
AAV11 AAT46339
AAV4 NP 044927
AAV4 VP1 AAC58045
BOVINE AAV AAR26465
BOVINE AAV YP 024971
AAV5 VP1 AAD13756












AAV5 YP 068409


..VDEAPDST
..VDEAPDGS
..VDEAPDGS
..VDEAPNAN
SILHFAPDDV
..IQFAVSDT
..IQFAVSDT
..IQFAVSDT
..IQFAVSDT
..IQFAVSDT
..TMEAPNET
..TMEAPNET
..TMEAPNET
..TMEAPNET
..IMEAPNET
..IMEAPNET
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDNN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN
..VDFTVDTN


GEYRTTRPIG
GEYRTTRAIG
GEYRTTRAIG
GDYQMTRPIG
GNYKEFRSIG
GSYSEPRPIG
GSYSEPRPIG
GSYSEPRPIG
GSYSEPRPIG
GSYSEPRPIG
GGYVEDRLIG
GGYVEDRLIG
GGYVEDRLIG
GGYVEDRLIG
GGYVEDRLIG
GGYVEDRLIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPCPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG


TRYLTRPL
TRYLTRPL
TRYLTRPL
TRYPTRPP
TRYLTRPL
TRYLTKPL
TRYLTKPL
TRYLTKPL
TRYLTKPL
TRYLTKPL
TRYLTQNL
TRYLTQNL
TRYLTQNL
TRYLTQNL
TRYLTQNL
TRYLTQNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYPTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL


CAPRINE AAV1
GOAT AAV VP1
RAT AAV1
MOUSE AAV1
AVIAN AAV ATCC VR865
AVIAN AAV ATCC VR865


AAU8 48 90
ABC69726
AAZ 7 967 6
AAZ 7 967 2
AAO32087
AAT 4 8613


AVIAN AAV ATCC VR865 NP 852781
AVIAN AAV Strain DA1 AAT48615
AVIAN AAV Strain DA1 YP 077183
DUCK AAV Strain FM AAA83225
MUSCOVY DUCK PARVOVIRUS YP 068412
MUSCOVY DUCK VP1 YP 068411
MUSCOVY DUCK PARVOVIRUS YP 068413
Goose AAV VP1 AAA83230
GOOSE AAV VP1 NP 043515
AAV3 NP 043941


AAV3 Strain H
AAV3B VP1
VP1 isolate hul
VP1 isolate hu4
VP1 isolate hu2
VP1 isolate hu3


AAC55049
AAB 9 54 52
AAS 992 60
AAS 992 8 7
AAS 992 70
AAS 992 80
AAS9 93 0 7
AAS9 93 0 8
AAS 992 7 6
AAS 992 65
AAS 992 6 6
AAS 992 6 8
AAS 9 9313
AAS 992 61
AAS 992 62
AAS 9 9314
AAS 9 9 30
AAS9 9 302
AAS9 9 301
AAU 05370
AAC O37 80
AAS 992 8 3
AAS 992 8 4
AAS 992 9 8


VP1
VP1
VP1
VP1
VP1
VP1


isolate hu60
isolate hu61
isolate hu25
isolate hul5
isolate hul6
isolate hul8


VP1 isolate hu7
VP1 isolate hul0
VP1 isolate hull
VP1 isolate hu9
VP1 isolate hu53
VP1 isolate hu55
VP1 isolate hu54
VP1 isolate huS17
AAV2 VP1
VP1 isolate hu34
VP1 isolate hu35
VP1 islolate hu51












VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1
VP1


isolate hu52
isolate hu47


AAS 992 9 9
AAS 992 9 5
AAS 992 9 3
AAS9 93 0 5
AAS 992 9 7
AAS9 93 0 3
AAS9 93 0 4
AAS 992 7 8
AAS 992 7 9
AAU 05364
AAS 992 63
AAS9 93 0 9
AAS 9 9310
AAU 053 62
AAU 05371
AAU 05358
AAU 05372
AAU 05366
AAU 05368
AAU 05360
AAS 992 7 7
AAS 992 6 9
AAS 992 71
AAS 992 7 2
AAS 992 7 5
AAS 992 7 3
AAS 992 7 4


.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN
.VDFTVDTN


GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG
GVYSEPRPIG


TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
ARYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL
TRYLTRNL


isolate
isolate
isolate
isolate
isolate
isolate
isolate


hu45
hu58
hu49
hu56
hu57
hu28
hu29


VP1 isolate huT70
VP1 isolate hul3
VP1 isolate hu63
VP1 isolate hu64
VP1 isolate huT40
VP1 isolate huLG15
VP1 isolate huT17
VP1 isolate huT41
VP1 isolate huT71
VP1 isolate huT88
VP1 isolate huT32
VP1 isolate hu27
VP1 isolate hul9
VP1 isolate hu20
VP1 isolate hu21
VP1 isolate hu24
VP1 isolate hu22
VP1 isolate hu23









LIST OF REFERENCES


1. Allander T, Tammi MT, Eriksson M, Bj erkner A, Tiveljung-Lindell A, Andersson B:
Cloning of a human parvovirus by molecular screening of respiratory tract samples.
Proc NatlAcadSci USA 2005, 102: 12891-12896.


2. Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E: New DNA viruses
identified in patients with acute viral infection syndrome. J Virol 2005, 79:8230-8236.


3. Berns KI, Bohenzky RA: Adeno-associated viruses: an update. Adv Virus Res 1987,
32:243-306.


4. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J,
Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J: Long-term clinical
improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol1
Ther 2006, 14:564-570.


5. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P, Souweidane M,
Hosain S, Heier L, Ballon D, Dinner M, Wisniewski K, Kaplitt M, Greenwald BM, Howell
JD, Strybing K, Dyke J, Voss H: Clinical protocol. Administration of a replication-
deficient adeno-associated virus gene transfer vector expressing the human CLN2
cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum
Gene Ther 2004, 15: 1131-1154.


6. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K,
Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H,
Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A,
Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA: Successful transduction of
liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune
response. Nat M~ed 2006, 12:342-347.


7. During MJ, Kaplitt MG, Stern MB, Eidelberg D: Subthalamic GAD gene transfer in
Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene
Ther 2001, 12:1589-1591.


8. Stedman H, Wilson JM, Finke R, Kleckner AL, Mendell J: Phase I clinical trial utilizing
gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-
sarcoglycan gene delivered with intramuscular instillations of adeno-associated
vectors. Hum Gene Ther 2000, 11:777-790.










9. Srivastava A: Hematopoietic stem cell transduction by recombinant adeno-associated
virus vectors: problems and solutions. Hum Gene 7Jher 2005, 16:792-798.


10. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N, Leike K, Odenthal M,
Drebber U, Hallek M, Baker AH: Vascular bed-targeted in vivo gene delivery using
tropism-modified adeno-associated viruses. Mol1 Ther 2006, 13:683-693.


11. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J, Pierre L, Gao G, Wilson JM,
Crystal RG: High levels of persistent expression of alphal-antitrypsin mediated by the
nonhuman primate serotype rh.10 adeno-associated virus despite preexisting
immunity to common human adeno-associated viruses. Mol1 Ther 2006, 13:67-76.


12. Kauffman SL: Cell proliferation in the mammalian lung. Int Rev Exp Pathol 1980,
22:131-191.


13. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, Fisher KJ, Engelhardt JF: Circular
intermediates of recombinant adeno-associated virus have defined structural
characteristics responsible for long-term episomal persistence in muscle tissue. J Virol
1998, 72:8568-8577.


14. McCarty DM, Young SM, Jr., Samulski RJ: Integration of adeno-associated virus
(AAV) and recombinant AAV vectors. Annu Rev Genet 2004, 38:819-845.


15. Schnepp BC, Jensen RL, Chen CL, Johnson PR, Clark KR: Characterization of adeno-
associated virus genomes isolated from human tissues. J Virol 2005, 79:14793-14803.


16. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch
P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI,
de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D,
Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F,
Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-
Calvo M: LMO2-associated clonal T cell proliferation in two patients after gene
therapy for SCID-X1. Science 2003, 302:415-419.


17. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH,
Howe SJ, Reinders MJ, Thrasher AJ, Wagemaker G, van Dongen JJ, Staal FJ: Ectopic
retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell
development from CD34+ cells: implications for leukemogenesis in gene therapy.
Leukemia 2007, 21:754-763.










18. Strauss BE, Costanzi-Strauss E: Combating oncogene activation associated with
retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency.
Braz J2~ed Biol Res 2007, 40:601-613.


19. Chen J, Wu Q, Yang P, Hsu HC, Mountz JD: Determination of specific CD4 and CD8 T
cell epitopes after AAV2- and AAV8-hF.IX gene therapy. Mol1 Ther 2006, 13:260-269.


20. Jooss K, Yang Y, Fisher KJ, Wilson JM: Transduction of dendritic cells by DNA viral
vectors directs the immune response to transgene products in muscle fibers. J Virol
1998, 72:4212-4223.


21. Zaiss AK, Muruve DA: Immune responses to adeno-associated virus vectors. Curr
Gene Ther 2005, 5:323-331.


22. Wang L, Figueredo J, Calcedo R, Lin J, Wilson JM: Cross-presentation of adeno-
associated virus serotype 2 capsids activates cytotoxic T cells but does not render
hepatocytes effective cytolytic targets. Hum Gene Ther 2007, 18:185-194.


23. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM: Clades of
Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004,
78:6381-6388.


24. Gao G, Vandenberghe LH, Wilson JM: New recombinant serotypes of AAV vectors.
Curr Gene 7Jher 2005, 5:285-297.


25. Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA: Identification and
characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol
2006, 80:5082-5085.


26. Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R, Sferra TJ, Bartlett JS, Clark KR,
Johnson PR: Molecular characterization of adeno-associated viruses infecting
children. J Virol 2005, 79:14781-14792.


27. Rutledge EA, Halbert CL, Russell DW: Infectious clones and vectors derived from
adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998, 72:309-
319.










28. Peden CS, Burger C, Muzyczka N, Mandel RJ: Circulating anti-wild-type adeno-
associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-
mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004, 78:6344-
6359.


29. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, Zhou S, Scallan CD,
Sommer J, Vijay S, Mingozzi F, High KA, Pierce GF: Effects of transient
immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer
in rhesus macaques and implications for human gene therapy. Blood 2006, 108:3321-
3328.


30. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, Tapscott SJ,
Storb R: Sustained AAV-mediated dystrophin expression in a canine model of
Duchenne muscular dystrophy with a brief course of immunosuppression. Mol1 Ther
2007, 15: 1160-1166.


31. Snyder RO, Francis J: Adeno-associated viral vectors for clinical gene transfer studies.
Curr Gene 7ler 2005, 5:311-321.


32. Snyder RO: Adeno-associated virus-mediated gene delivery. J Gene M~ed 1999, 1:166-
175.


33. Timpe J, Bevington J, Casper J, Dignam JD, Trempe JP: Mechanisms of adeno-
associated virus genome encapsidation. Curr Gene 7ler 2005, 5:273-284.


34. Becerra SP, Koczot F, Fabisch P, Rose JA: Synthesis of adeno-associated virus
structural proteins requires both alternative mRNA splicing and alternative
initiations from a single transcript. J Virol 1988, 62:2745-2754.


35. Grieger JC, Samulski RJ: Packaging capacity of adeno-associated virus serotypes:
impact of larger genomes on infectivity and postentry steps. J Virol 2005, 79:9933-
9944.


36. Halbert CL, Allen JM, Miller AD: Efficient mouse airway transduction following
recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol
2002, 20:697-701.










37. Wu J, Zhao W, Zhong L, Han Z, Li B, Ma W, Weigel-Kelley KA, Warrington KH,
Srivastava A: Self-complementary recombinant adeno-associated viral vectors:
packaging capacity and the role of rep proteins in vector purity. Hum Gene 7Jher 2007,
18:171-182.


38. Ren C, Kumar S, Shaw DR, Ponnazhagan S: Genomic stability of self-complementary
adeno-associated virus 2 during early stages of transduction in mouse muscle in vivo.
Hum Gene Ther 2005, 16:1047-1057.


39. Conway JE, Rhys CM, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ:
High-titer recombinant adeno-associated virus production utilizing a recombinant
herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther 1999,
6:986-993.


40. Aucoin MG, Perrier M, Kamen AA: Improving AAV vector yield in insect cells by
modulating the temperature after infection. BiotechnolBioeng 2007.


41. Aucoin MG, Perrier M, Kamen AA: Production of adeno-associated viral vectors in
insect cells using triple infection: optimization of baculovirus concentration ratios.
BiotechnolBioeng 2006, 95: 1081-1092.


42. Okada T, Nomoto T, Yoshioka T, Nonaka-Sarukawa M, Ito T, Ogura T, Iwata-Okada M,
Uchibori R, Shimazaki K, Mizukami H, Kume A, Ozawa K: Large-scale production of
recombinant viruses by use of a large culture vessel with active gassing. Hum G~ene
Ther 2005, 16:1212-1218.


43. Sollerbrant K, Elmen J, Wahlestedt C, Acker J, Leblois-Prehaud H, Latta-Mahieu M, Yeh
P, Perricaudet M: A novel method using baculovirus-mediated gene transfer for
production of recombinant adeno-associated virus vectors. J Gen Virol 2001, 82:2051-
2060.


44. Urabe M, Ding C, Kotin RM: Insect cells as a factory to produce adeno-associated virus
type 2 vectors. Hum Gene Ther 2002, 13: 193 5-1943.


45. Lane MD, Nam, H-J., Padron, E., Gurda-Whitaker, B., Kohlbrenner, E., Aslanidi, G.,
Byrne, B., McKenna, R., Muzyczka, N., Zolotukhin, S, and Agbandj e-McKenna, M.:
Production, purification, crystallization and preliminary X-ray analysis of adeno-
associated virus serotype 8. Acta Cryst F 2005, F61:558 561.










46. Van Vliet K, Blouin V, Agbandj e-McKenna M, Snyder RO: Proteolytic Mapping of the
Adeno-associated Virus Capsid. Mol1 Ther 2006, 14:809 821.


47. Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, Agbandj e-
McKenna M: Structurally mapping the diverse phenotype of adeno-associated virus
serotype 4. J Virol 2006, 80: 11556-11570.


48. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS: The atomic
structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc
Natl AcadSci U SA 2002, 99: 10405-10410.


49. DiMattia M, Govindasamy L, Levy HC, Gurda-Whitaker B, Kalina A, Kohlbrenner E,
Chiorini JA, McKenna R, Muzyczka N, Zolotukhin S, Agbandj e-McKenna M:
Production, purification, crystallization and preliminary X-ray structural studies of
adeno-associated virus serotype 5. Acta Crystallograph Sect F Struct Biol Cryst Commun
2005, 61:917-921.


50. Padron E, Bowman V, Kaludov N, Govindasamy L, Levy H, Nick P, McKenna R,
Muzyczka N, Chiorini JA, Baker TS, Agbandj e-McKenna M: Structure of adeno-
associated virus type 4. J Virol 2005, 79:5047-5058.


51. Walters RW, Agbandj e-McKenna M, Bowman VD, Moninger TO, Olson NH, Seiler M,
Chiorini JA, Baker TS, Zabner J: Structure of adeno-associated virus serotype 5. J Virol
2004, 78:3361-3371.


52. Chapman MS, Rossmann MG: Structure, sequence, and function correlations among
parvoviruses. Virology 1993, 194:491-508.


53. Xie QaC, M.S.: Canine Parvovirus Capsid Structure, Analyzed at 2.9 A Resolution. J
M~olBiol 1996, 264:497 520.


54. Llamas-Saiz AL, Agbandj e-McKenna M, Wikoff WR, Bratton J, Tattersall P, Rossmann
MG: Structure determination of minute virus of mice. Acta Crystallogr D Biol
Crystallogr 1997, 53:93-102.


55. Xie Q, Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M.S.: The
atomic structure of adeno-associated virus (AAV-2), a vector for human gene
therapy. PNAS 2002, 99: 10405 10410.










56. DeLano WL: The PyMOL Molecular Graphics System on the world wide web. 2002.


57. Agbandj e-McKenna M, and Chapman, M. S.: Correlating structure with function in the
viral capsid. In Parvoviruses.~PP~~PP~~PP~~P Edited by Kerr JR, S. F. Cotmore, M. E. Bloom, R. M.
Linden, and C. R. Parrish. New York: Edward Arnold, Ltd.; 2006: 125 139


58. Chapman MS, and Agbandj e-McKenna, M: Atomic structure of viral particles. In
Parvoviruses.~PP~~PP~~PP~~P Edited by Kerr JR, S. F. Cotmore, M. E. Bloom, R. M. Linden, and C. R.
Parrish. New York: Edward Arnold, Ltd. ; 2006: 107-123


59. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R,
Sanmiguel J, Abbas Z, Wilson JM: Adeno-associated viruses undergo substantial
evolution in primates during natural infections. Proc NatlAcad Sci U SA 2003,
100:6081-6086.


60. Myers MW, Carter BJ: Assembly of adeno-associated virus. Virology 1980, 102:71-82.


61. de la Maza LM, Carter BJ: Molecular structure of adeno-associated virus variant DNA.
JBiol Chem 1980, 255:3194-3203.


62. King JA, Dubielzig R, Grimm D, Kleinschmidt JA: DNA helicase-mediated packaging of
adeno-associated virus type 2 genomes into preformed capsids. Embo J 2001, 20:3282-
3291.


63. Farr GA, Tattersall P: A conserved leucine that constricts the pore through the capsid
fivefold cylinder plays a central role in parvoviral infection. Virology 2004, 323:243-
256.


64. Bleker S, Pawlita M, Kleinschmidt JA: Impact of capsid conformation and Rep-capsid
interactions on adeno-associated virus type 2 genome packaging. J Virol 2006, 80:810-
820.


65. Wistuba A, Kern A, Weger S, Grimm D, Kleinschmidt JA: Subcellular
compartmentalization of adeno-associated virus type 2 assembly. J Virol 1997,
71:1341-1352.


66. Ruffing M, Zentgraf H, Kleinschmidt JA: Assembly of viruslike particles by
recombinant structural proteins of adeno-associated virus type 2 in insect cells. J Virol
1992, 66:6922-6930.









67. Steinbach S, Wistuba A, Bock T, Kleinschmidt JA: Assembly of adeno-associated virus
type 2 capsids in vitro. J Gen Virol 1997, 78 ( Pt 6): 1453-1462.


68. Hermonat PL, Labow MA, Wright R, Berns KI, Muzyczka N: Genetics of adeno-
associated virus: isolation and preliminary characterization of adeno-associated virus
type 2 mutants. J Virol 1984, 51:329-339.


69. Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tij ssen P, Kleinschmidt JA, Hallek M:
The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase
A2 domain required for virus infectivity. J Gen Virol 2002, 83:973-978.


70. Kronenberg S, Bottcher B, von der Lieth CW, Bleker S, Kleinschmidt JA: A
conformational change in the adeno-associated virus type 2 capsid leads to the
exposure of hidden VP1 N termini. J Virol 2005, 79:5296-5303.


71. Warrington KH, Jr., Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N:
Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate
large peptide insertions at its N terminus. J Virol 2004, 78:6595-6609.


72. Wistuba A, Weger S, Kern A, Kleinschmidt JA: Intermediates of adeno-associated virus
type 2 assembly: identification of soluble complexes containing Rep and Cap proteins.
J Virol 1995, 69:5311-5319.


73. Shepherd CM, Borelli IA, Lander G, Nataraj an P, Siddavanahalli V, Baj aj C, Johnson JE,
Brooks CL, 3rd, Reddy VS: VIPERdb: a relational database for structural virology.
Nucleic Acids Res 2006, 34:D3 86-3 89.


74. Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG:
Structure of a viral procapsid with molecular scaffolding. Nature 1997, 389:308-313.


75. Golmohammadi R, Valegard K, Fridborg K, Lilj as L: The refined structure of
bacteriophage MS2 at 2.8 A resolution. J2~ol Biol 1993, 234:620-63 9.


76. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK: X-ray
crystallographic structure of the Norwalk virus capsid. Science 1999, 286:287-290.


77. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart
DI: The atomic structure of the bluetongue virus core. Nature 1998, 395:470-478.










78. Zlotnick A, Aldrich R, Johnson JM, Ceres P, Young MJ: Mechanism of capsid assembly
for an icosahedral plant virus. Virology 2000, 277:450-456.


79. Lombardo E, Ramirez JC, Garcia J, Almendral JM: Complementary roles of multiple
nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice
during assembly and onset of infection. J Virol 2002, 76:7049-7059.


80. Riolobos L, Reguera J, Mateu MG, Almendral JM: Nuclear transport of trimeric
assembly intermediates exerts a morphogenetic control on the icosahedral parvovirus
capsid. J2~ol Biol 2006, 357: 1026-103 8.


81. Zadori Z, Szelei J, Lacoste MC, Li Y, Gariepy S, Raymond P, Allaire M, Nabi IR, Tij ssen
P: A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 2001,
1:291-302.


82. Grieger JC, Johnson JS, Gurda-Whitaker B, Agbandj e-McKenna M, Samulski RJ: Surface
exposed Adeno-associated virus Vpl-NLS capsid fusion protein rescues infectivity of
non-infectious wild-type Vp2/Vp3 and Vp3-only capsids, but not 5-fold pore mutant
virions. J Virol 2007.


83. Sitharam M, Agbandj e-McKenna M: Modeling virus self-assembly pathways: avoiding
dynamics using geometric constraint decomposition. J Comput Biol 2006, 13: 1232-
1265.


84. Wu P, Xiao, W., Conlon, T., Hughes, J., Agbandj e-McKenna, M., Ferkol, T., Flotte, T.,
and Muzyczka, N.: Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2)
Capsid Gene and Construction of AAV2 Vectors with Altered Tropism. Journal of
Virology 2000, 74:8635 8647.


85. Bleker S, Sonntag, F., and Kleinschmidt, J.A.: Mutational Analysis of Narrow Pores at
the Fivefold Symmetry Axes of Adeno-Associated Virus Type 2 Capsids Reveals a
Dual Role in Genome Packaging and Activation of Phospholipase A2 Activity. Journal
of Virology 2005, 79:2528 2540.


86. Reguera J, Carreira A, Riolobos L, Almendral JM, Mateu MG: Role of interfacial amino
acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc
NatlAcad'Sci USA 2004, 101:2724-2729.


87. Chiorini JA, Kim F, Yang L, Kotin RM: Cloning and characterization of adeno-
associated virus type 5. J Virol 1999, 73: 1309-1319.










88. Hauck B, and Xiao, W.: Characterization of Tissue Tropism Determinants of Adeno-
Associated Virus Type 1. Journal of Virology 2003, 77:2768 2774.


89. Wu P, Xiao W, Conlon T, Hughes J, Agbandj e-McKenna M, Ferkol T, Flotte T, Muzyczka
N: Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and
construction of AAV2 vectors with altered tropism. J Virol 2000, 74:8635-8647.


90. Tullis GE, Burger LR, Pintel DJ: The minor capsid protein VP1 of the autonomous
parvovirus minute virus of mice is dispensable for encapsidation of progeny single-
stranded DNA but is required for infectivity. J Virol 1993, 67:131-141.


91. Lombardo E, Ramirez JC, Agbandj e-McKenna M, Almendral JM: A beta-stranded motif
drives capsid protein oligomers of the parvovirus minute virus of mice into the
nucleus for viral assembly. J Virol 2000, 74:3 804-3 814.


92. Clark KR, Voulgaropoulou F, Johnson PR: A stable cell line carrying adenovirus-
inducible rep and cap genes allows for infectivity titration of adeno-associated virus
vectors. Gene 7lher 1996, 3:1124-1132.


93. Agbandj e M, McKenna R, Rossmann MG, Strassheim ML, Parrish CR: Structure
determination of feline panleukopenia virus empty particles. Proteins 1993, 16: 155-
171.


94. Tsao J, Chapman MS, Agbandj e M, Keller W, Smith K, Wu H, Luo M, Smith TJ,
Rossmann MG, Compans RW, et al.: The three-dimensional structure of canine
parvovirus and its functional implications. Science 1991, 251:1456-1464.


95. Opie SR, Warrington KH, Jr., Agbandj e-McKenna M, Zolotukhin S, Muzyczka N:
Identification of amino acid residues in the capsid proteins of adeno-associated virus
type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 2003, 77:6995-
7006.


96. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King
JA, Kleinschmidt JA: Identification of a heparin-binding motif on adeno-associated
virus type 2 capsids. J Virol 2003, 77: 11072-11081.


97. Kronenberg S, Kleinschmidt JA, Bottcher B: Electron cryo-microscopy and image
reconstruction of adeno-associated virus type 2 empty capsids. EM~BO Rep 2001,
2:997-1002.










98. Steven AC, Carrascosa JL: Proteolytic cleavage and structural transformation: their
relationship in bacteriophage T4 capsid maturation. JSupramnolStruct 1979, 10:1-11.


99. Berns KI, Rose JA: Evidence for a single-stranded adenovirus-associated virus
genome: isolation and separation of complementary single strands. J Virol 1970,
5:693-699.


100. Wobus CE, Hugle-Dorr B, Girod A, Petersen G, Hallek M, Kleinschmidt JA: Monoclonal
antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping
and identification of capsid domains involved in AAV-2-cell interaction and
neutralization of AAV-2 infection. J Virol 2000, 74:9281-9293.


101. Weichert WS, Parker JS, Wahid AT, Chang SF, Meier E, Parrish CR: Assaying for
structural variation in the parvovirus capsid and its role in infection. Virology 1998,
250:106-117.


102. Sommer JM, Smith PH, Parthasarathy S, Isaacs J, Vijay S, Kieran J, Powell SK,
McClelland A, Wright JF: Quantification of adeno-associated virus particles and empty
capsids by optical density measurement. Mol1 Ther 2003, 7: 122-128.


103. Mohiuddin I, Loiler S, Zolotukhin I, Byrne BJ, Flotte TR, Snyder RO: Herpesvirus-based
infectious titering of recombinant adeno-associated viral vectors. Mol1 Ther 2005,
11:320-326.


104. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM: Novel adeno-associated
viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U
SA 2002, 99: 11854-11859.


105. Reddy VS, Nataraj an P, Okerberg B, Li K, Damodaran KV, Morton RT, Brooks CL, 3rd,
Johnson JE: Virus Particle Explorer (VIPER), a website for virus capsid structures
and their computational analyses. J Virol 2001, 75: 11943-11947.


106. Francis JD, and Snyder, R.O. : Production of Research and Clinical Grade
Recombinant Adeno-associated Viral Vectors. In Laboratory Techniques in
Biochemistry & M~olecular Biology. Volume 31. Edited by Berns KI, and Flotte, T.R. .
Amsterdam: Elsevier, ; 2005: 19-56


107. Muzyczka N, Warrington KH, Jr.: Custom adeno-associated virus capsids: the next
generation of recombinant vectors with novel tropism. Hum Gene 7Jher 2005, 16:408-
416.










108. Douar AM, Poulard, K., and Danos, O.: Deleterious effect of peptide insertions in a
permissive site of the AAV2 capsid. Virology 2003, 309:203 208.


109. Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, Deleage G, Hallek M:
Genetic capsid modifications allow efficient re-targeting of adeno-associated virus
type 2. Nat M~ed 1999, 5: 1052-1056.


110. Koerber JT, Jang JH, Yu JH, Kane RS, Schaffer DV: Engineering adeno-associated virus
for one-step purification via immobilized metal affinity chromatography. Hum G~ene
Ther 2007, 18:367-378.


111. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ, Jr., Chiodo VA,
Phillipsberg T, Muzyczka N, Hauswirth WW, Flotte TR, Byrne BJ, Snyder RO:
Production and purification of serotype 1, 2, and 5 recombinant adeno-associated
viral vectors. Methods 2002, 28: 158-167.


112. Bleker S, Sonntag F, Kleinschmidt JA: Mutational analysis of narrow pores at the
fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in
genome packaging and activation of phospholipase A2 activity. J Virol 2005, 79:2528-
2540.


113. Mitchell DA, O'Donnell J, Hare JT, Chapman MS: Serotype-specific detection of adeno-
associated virus during laboratory preparation. J Virol2~ethods 2006, 136:277-282.


114. Kuck D, Kern A, Kleinschmidt JA: Development of AAV serotype-specific ELISAs
using novel monoclonal antibodies. J Virol2~ethods 2007, 140: 17-24.


115. Georg-Fries B, Biederlack S, Wolf J, zur Hausen H: Analysis of proteins, helper
dependence, and seroepidemiology of a new human parvovirus. Virology 1984,
134:64-71.


116. Grimm D, Kern A, Pawlita M, Ferrari F, Samulski R, Kleinschmidt J: Titration of AAV-2
particles via a novel capsid ELISA: packaging of genomes can limit production of
recombinant AAV-2. Gene Ther 1999, 6:1322-1330.


117. Liu HC, Soderblom EJ, Goshe MB: A mass spectrometry-based proteomic approach to
study Marek's Disease Virus gene expression. J Virol2~ethods 2006, 135:66-75.










118. Colquhoun DR, Schwab KJ, Cole RN, Halden RU: Detection of norovirus capsid protein
in authentic standards and in stool extracts by matrix-assisted laser desorption
ionization and nanospray mass spectrometry. Appl Environ 2icrobiol 2006, 72:2749-
2755.


119. Renesto P, Abergel C, Decloquement P, Moinier D, Azza S, Ogata H, Fourquet P, Gorvel
JP, Claverie JM: Mimivirus giant particles incorporate a large fraction of anonymous
and unique gene products. J Virol 2006, 80: 11678-11685.


120. Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B: Protein composition of the
vaccinia virus mature virion. Virology 2007, 358:233-247.


121. Kattenhorn LM, Mills R, Wagner M, Lomsadze A, Makeev V, Borodovsky M, Ploegh HL,
Kessler BM: Identification of proteins associated with murine cytomegalovirus
virions. J Virol 2004, 78: 11187-11197.


122. Swatkoski S, Russell S, Edwards N, Fenselau C: Analysis of a model virus using residue-
specific chemical cleavage and MALDI-TOF mass spectrometry. Anal Chem 2007,
79:654-658.


123. Maaty WS, Ortmann AC, Dlakic M, Schulstad K, Hilmer JK, Liepold L, Weidenheft B,
Khayat R, Douglas T, Young MJ, Bothner B: Characterization of the archaeal
thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link
among double-stranded DNA viruses from all domains of life. J Virol 2006, 80:7625-
7635.


124. Yea C, Bukh J, Ayers M, Roberts E, Kraj den M, Tellier R: Monitoring of hepatitis C
virus quasispecies in chronic infection by matrix-assisted laser desorption ionization-
time of flight mass spectrometry mutation detection. J Clin M~icrobiol 2007, 45: 1053-
1057.


125. Speir JA, Bothner B, Qu C, Willits DA, Young MJ, Johnson JE: Enhanced local
symmetry interactions globally stabilize a mutant virus capsid that maintains
infectivity and capsid dynamics. J Virol 2006, 80:3582-3591.


126. Murray S, Nilsson CL, Hare JT, Emmett MR, Korosteley A, Ongley H, Marshall AG,
Chapman MS: Characterization of the capsid protein glycosylation of adeno-
associated virus type 2 by high-resolution mass spectrometry. J Virol 2006, 80:6171-
6176.









127. Becerra SP, Rose JA, Hardy M, Baroudy BM, Anderson CW: Direct mapping of adeno-
associated virus capsid proteins B and C: a possible ACG initiation codon. Proc Natl
Acad'Sci USA 1985, 82:7919-7923.


128. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandj e-McKenna M, Samulski RJ:
Single amino Acid changes can influence titer, heparin binding, and tissue tropism in
different adeno-associated virus serotypes. J Virol 2006, 80: 11393-11397.


129. Laemmli UK: Cleavage of structural proteins during the assembly of the head of
bacteriophage T4. Nature 1970, 227:680-685.


130. Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate
the accuracy of peptide identifications made by MS/MS and database search. Anal
Chem 2002, 74:5383-5392.


131. Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying
proteins by tandem mass spectrometry. Anal Chem 2003, 75:4646-4658.









BIOGRAPHICAL SKETCH

Kim Van Vliet was born in Cleveland, Ohio. She moved to Orlando, Florida and attended

Lake Mary High School. After graduation, she attended the University of Central Florida (UCF)

where she earned her B.S. in Biology and her B.S. in Psychology. She moved to Boca Raton,

Florida and studied at Florida Atlantic University (FAU). Kim earned her M. S. in Biological

Sciences at FAU. Kim moved to Gainesville, Florida to continue her studies at the University of

Florida and earned her Ph.D. in Medical Sciences through the Department of Molecular Genetics

and Microbiology. Upon completion of her Ph.D. program, Kim will continue to do research.





PAGE 1

1 STUDIES OF THE ADENO-ASSOCIATED VIRUS CAPSID By KIM MARIE VAN VLIET A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Kim Marie Van Vliet

PAGE 3

3 To those individuals who have provided inspira tion for me in leading by example, striving to perform to the highest standard of excellence in whatever work they agree to do while still adhering to the core values of honesty, integrity and ethics

PAGE 4

4 ACKNOWLEDGMENTS This section of my dissertation should probabl y be its own chapter because there are so many individuals who have been instrumental in assisting me with finding the needed elements to complete this work. First, I thank the Vector Core Lab at the Univer sity of Florida. Mark Potter for providing some of the initial virus prep s used for the experiments described in Chapter 4 to map the AAV capsid in solution. When thes e samples were needed, I had already learned how to prepare and purify AAV, but having so me virus samples to start the preliminary experiments allowed me to begin purifying additional virus while the preliminary data was being collected. I thank Tina and Glenn Philipsburg, D eana Sanders, Irina Korytov, Stefanie Shoja and Jenna Potter for their technical advice and training when I firs t arrived. During the course of experiments, numerous technical issues often arose that need to be sorted out at that particular moment, and the availability of a group of AAV production a nd purification specialists who were willing to share their knowledge, as well as equipment, was very much appreciated. I also thank Sergei Zolotukhin and George Aslinidi for their a ssistance, advice and training. Being in the same lab space provi ded the opportunity to watch and learn new techniques, as well as provided the use of th eir equipment for tran sforming electrically competent bacteria, the use of the DNA sequenc ing gel apparatus, the Bio-Rad econo-FPLC system, as well as other equipment that comes st andard in most labs, lik e a pH meter. I also learned that even though they both speak the Ru ssian language, Ukrainians and Russians are not the same. This is especially true during World Cup Soccer season. GOOOOOOOOOOOAAAA AAAAL!!!!!!! I thank Dr. Greg Erdos and the Interdiscip linary Center for Biotechnology Research (ICBR) Electron Microscopy Core Lab for the us e of the electron microscope. I thank Karen

PAGE 5

5 Kelley and Lynda Schneider for electron microsc opy training, as well as for shooting publication quality images of my grids. I thank the ICBR Proteomics Core Lab for mass spectrometry and protein sequencing. I thank Stanley Stevens and Scott McClung for the mass spectrometry work described in Chapter 4. I thank Sofie Alvarez, Scott McClung and Cindy Croft for the great scientific environment in the ICBR Proteomi cs Core Lab and assistance with the mass spectrometry work described in Chapter 5. I th ank Li Liu for bioinformatics assistance with setting up a protein database that will be useful in the future. I thank Dr. Barry Byrnes Lab for sharing the liquid nitrogen dewar fo r cryo-storage of our cell lines, their plate reader for determining the c oncentration of purified proteins, as well as for allowing me to use the incubators and tissue cult ure hoods in their lab. I th ank Denise Coutier for allowing me to use their rotor for the ultracentrifuge to purif y AAV on cesium chloride. I thank Dr. Terry Flottes Lab for allowing me to use their spectrophotometer, especially after the Muzyczka Lab and their equipment moved to the Genetics Institute. I thank Kevin Nash for allowing me to use the do t/slot blot apparatus as well as for digging through the -80 C freezer to find the constructs used in this wo rk. I thank both Kevin Nash and Wei Jun for allowing me to temporarily borrow equipment that was needed for this work. The Muzyczka lab functioned as a supply center fo r this work as most protocols that were performed are done routinely in th eir lab and they were usually the first stop in the game of scientific Go Fish, which starts with the words Do you have a ______. I thank Bert Flanagan, and Brian ODonnell for providing me access to the polio virus room, as well as allowing me to incubate my ssDNA virus in the same room as their RNA virus work. The use of several incubators at various te mperatures was very useful for the limited data that was generated for the temperature sensi tive mutants of AAV. This also corrected the

PAGE 6

6 problem of CO2 lines blowing off incubators, th e temperature mysterious ly being increased, and other issue that occurred in prior shared spac e. The polio virus room is a limited access room, and interestingly my streak of bad luck ended when I moved my sensitive experiments to their tissue culture room. Special thanks to Greg Tyle r for providing access to the microscope with the camera in the Genetics Institute to image cells transduced with AAV vectors harboring the gene for green fluorescent protein. A pictur e really is worth a thousand words. I thank the members of the Snyder Lab past and present, Shalini Ahnand, Traci Mayfield, Veronique Blouin, Imran Mohiuddin, and Yasmin Mohiuddin. Special th anks to Veronique Blouin for her scientific curiosity and the gift of gab, particular ly for informing me that the AAV4 virus that she sent to me had a mutation, wh ich everyone else was aware of except for me. I was asked to expand the number of serotypes fo r AAV capsid serotype identification to include AAV4 and AAV8, in addition to AAV1, AAV2, and AAV5. The mutation in the AAV4 virus was in a basic residue and these amino acids we re critical for the experiment that I was performing. After I gave my AAV8 prep to Nico le Brument for her use when she arrived, and spent my time and efforts training her on how to produce AAV8, I thank her for proving an aliquot of AAV8 for this work. I thank Mavis Agbandje-McKenna for providing scientific discussions as well as serving as a co-mentor. I thank her also for providing a highly pure, highly concentrated sample of wildtype AAV4 when I learned that the AAV4 that I received from Veronique had a mutation. I was expecting to search through crys tal trays for AAV4 samples that did not crystallize or samples that partially crystallized that could be rehydrated and instead was given a pure sample of wild type AAV4 which is a very valuable reagent. I also thank Lakshmanan Govindasamy for his training and advice, as well as Hyun Joo Nam. I thank the members of the McKenna Lab both

PAGE 7

7 past and present for the collegial atmosphere and scientific envi ronment that their lab afforded. Mavis for tolerating my lit reviews arriving the mi nute before they were due, and Rob McKenna for providing a critical review of my work as well as insightful discussions regarding capsid assembly and sharing his knowledge of bacteriophage X174 assembly. I thank Nick Muzyczka for providing techni cal advice, for providing precise concise information regarding this work, as well as prov iding insightful discussions that guided this work. I thank Jorg Bungert for his time and advi ce. I thank Richard Snyder for the resources to perform this work, as well as for th e opportunity to work in his lab. I acknowledge the great support that I have r eceived from the Department of Molecular Genetics and Microbiology, particul arly Joyce Conners, the best gr aduate student support person ever, and for always having my back. Special thanks to the fiscal office for helping me to get the reagents that I needed for this work, particular ly Michele Ramsey, Jeanine Spencer, and Elisha Richey. I thank Carolyn Baum for her assistance w ith ordering reagents, as well as helping me to find the appropriate people to handle various things that I needed to get done. I thank my mentor, Dr. Michael Roner of the Un iversity of Texas, for providing advice and helping to guide my decisions. For never sayi ng I told you so, as well as for standing by me through the really brill iant experiments and the other ones. Special thanks to the men of Bio-Rad, Al Gu arino (aka Alberto) and Scott Moore (aka Alejandro), for providing numerous reagents and equipment th at we purchased, as well as that we borrowed for various aspects of this work. I also thank Scott Jameson from Invitrogen for providing reagents for this work, and for providing more when I hadnt quite decided if I liked the first set. I also thank Steve Muir for providi ng reagents and samples used in Western blotting

PAGE 8

8 applications from Pierce Biotec hnology early in this work, as well as samples from Millipore used later in this work. Finally, I thank my parents, family and friends for always being supportive of my decisions, even when financially they dont make very much sense. I thank them for always being there when I needed to vent, as we ll as for understanding my busy schedule.

PAGE 9

9 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ........11 LIST OF FIGURES................................................................................................................ .......12 ABSTRACT....................................................................................................................... ............16 CHAPTER 1 INTRODUCTION..................................................................................................................18 The Family Parvoviridae........................................................................................................18 The AAV Genome................................................................................................................. .20 Vectors........................................................................................................................ ............21 2 MODELS OF AAV CAPSID ASSEMBLY...........................................................................24 Capsid Structure............................................................................................................... .......24 Capsid Assembly and Packaging............................................................................................25 Virus Assembly for ssDNA Viruses.......................................................................................27 Assembly via a Pentam eric Intermediate...............................................................................28 Assembly via a Trimeric Intermediate...................................................................................29 3 AAV-2 ASSEMBLY AND SUBUNIT INTERACTIONS....................................................35 Introduction................................................................................................................... ..........35 AAV-2 Mutant Studies...........................................................................................................48 Amino Acid Alignment..........................................................................................................49 Modeling....................................................................................................................... ..........51 The Mutants.................................................................................................................... ........52 Mut 19 228 232 WHCDS WACAS...........................................................................52 Mut24 291 -295 FSPRD FSPAA.................................................................................58 Mut26 320 324 VKEVT VAAVT.............................................................................64 Mut33 469 472 DIRD AIAA.....................................................................................69 Mut46 681 683 EIE AAA..........................................................................................73 Methods for Mutant Studies...................................................................................................78 4 STUDIES OF THE AAV CAPSID IN SOLUTION .............................................................86 Introduction................................................................................................................... ..........86 Proteolytic structural mapping........................................................................................86 Trypsin digestion of AAV-2............................................................................................87

PAGE 10

10 Fine mapping of the trypsin cleavage site.......................................................................89 Trypsin-Treated Virons Remain Intact............................................................................92 5 MASS SPECTROMETRY FOR AAV CAPSID SEROTYPE IDENTIFICATION...........110 AAV-CSI Introduction.........................................................................................................110 Results and Discussion.........................................................................................................115 Materials and Methods.........................................................................................................123 Viruses and cell lines.....................................................................................................123 Protein gel electrophoresis............................................................................................124 Mass Spec In-gel digestion protocol.............................................................................124 Mass spec protocol........................................................................................................125 Database Searching.......................................................................................................126 Criteria For Protei n Identification.................................................................................126 APPENDIX: AAV CAPSID ALIGNMENT...............................................................................127 LIST OF REFERENCES.............................................................................................................179 BIOGRAPHICAL SKETCH.......................................................................................................193

PAGE 11

11 LIST OF TABLES Table page 2-1 Parvovirus subunit association energies............................................................................29 3-1 The five strongest interactions at th e icosahedral 5-fold axis of symmetry......................36 3-2 Specific amino acid interactions at th e icosahedral 5-fold axis of symmetry....................36 3-3 The five strongest interactions at th e icosahedral 3-fold axis of symmetry......................39 3-4 Specific amino acid interactions at th e icosahedral 3-fold axis of symmetry....................39 3-5 The five strongest interactions at th e icosahedral 2-fold axis of symmetry......................45 3-6 Specific amino acid interactions at th e icosahedral 2-fold axis of symmetry....................45 3-7 pIM45 based plasmids for the production of mutant AAV-2 capsids...............................49 3-8 Amino acid alignment data for the ami no acid sequence in the region of Mut33.............49 3-9 Parvovirus structural capsid protein alignment for Mut19 residues..................................50 3-10 Parvovirus structural capsid protein alignment for Mut24 residues..................................50 3-11 Parvovirus structural capsid protein alignment for Mut26 residues..................................50 3-12 Parvovirus structural capsid protein alignment for Mut33 residues..................................50 3-13 Parvovirus structural capsid protein alignment for Mut46 residues..................................51 3-14 Evaluation of the effect of the muta tions in Mut24 on amino acid interactions................64 3-15 Evaluation of the effect of the muta tions in Mut26 on amino acid interactions................69 3-16 Evaluation of the effect of the muta tions in Mut33 on amino acid interactions................73 4-1 Predicted AAV VP1 tryptic fragment mass from cleavage in the G-H loop.....................91 5-1 AAV Serotype Amino Acid Identity Table for AAV Serotypes 1 11..........................114

PAGE 12

12 LIST OF FIGURES Figure page 1-1 The single-stranded DNA genome of AAV-2...................................................................21 2-1 The structure of a monomeric subunit of AAV-2, as determined by Xie, et al.................25 2-2 Icosahedral virus partic le diagram from VIPERdb............................................................28 2-3 Model of Parvovirus Assembly th rough a Pentameric Intermediate.................................30 2-4 Model of Parvovirus Assembly through a Trimeric Intermediate.....................................32 3-1 Residues at the five fold symmetr y axis that are changed in Mut19.................................53 3-2 Residues at the two fold symmetry axis that are changed in Mut19.................................54 3-3 The predicted subunit as a result of th e mutations made in Mut19 is a trimer..................55 3-4 Residues that may be responsible for the phenotype of Mut19.........................................55 3-5 Intermolecular residues that play a role in the phenotype of Mut19.................................57 3-6 Asp231 has been changed to Ala231, as in Mut19............................................................57 3-7 Residues at the 5-fold symmetry axis that are changed in Mut24.....................................59 3-8 Residues at the 2-fold symmetry axis that are changed in Mut24.....................................60 3-9 The predicted subunit as a result of th e mutations made in Mut24 is a trimer..................61 3-10 Intermolecular and intramolecu lar residues that are disrupted..........................................62 3-11 Mut24 interactions that are effected by the mutation........................................................63 3-12 Residues at the 5-fold symmetry axis that are changed in Mut26.....................................65 3-13 Cut-away view of the 5-fold axis of symmetry.................................................................66 3-14 Interactions with the residues involved in Mut26..............................................................67 3-15 Model of Mut26 after the mutation....................................................................................68 3-16 Mut33 pentamer............................................................................................................ .....70 3-17 Mut33 residues............................................................................................................ .......71 3-18 Interactions in th e region of Mut33...................................................................................72 3-19 Model of residues mutated in Mut33.................................................................................72

PAGE 13

13 3-20 The location of residues that are mutated in Mut46..........................................................74 3-21 Intramolecular interactio ns with the residues that are changed in Mut46,........................75 3-22 Intramolecular interactio ns after the residues in Mut46 have been changed.....................76 3-23 Transfection of Mut 33.................................................................................................... ..82 3-24 Green cell assay of transfections at 32 C.........................................................................83 3-25 Transfections at 37 C.................................................................................................... ....84 3-26 Green cell assay after transfection at 39.5 C....................................................................85 4-1 Western blot of several AAV-2 preps................................................................................89 4-2 Tryptic mapping of full AAV-2 capsids............................................................................90 4-3 Trypsinized AAV-2 virions remain intact.........................................................................93 4-4 Proteolysis distinguishes full and empty AAV-2 particles................................................97 4-5 AAV-2, AAV-1 and AAV-5 capsids can be distinguished proteolytically.......................99 4-6 AAV-2, AAV-1, and AAV-5 have different susceptibility to Chymotrypsin.................101 4-7 Capsid structure........................................................................................................... ....102 4-8 AAV-1, AAV-2 and AAV-5 Homology models.............................................................104 5-1 Phylogenetic Tree of AAV Serotypes 1 11...................................................................115 5-2 Coomassie stained samp les for mass spectrometry.........................................................116 5-3 Coomassie stained samples for mass spectrometry identification...................................118 5-4 Mass spec data analyzed using the software program Scaffold.......................................119 5-5 Mass spectrometry data for K544E AAV-4 mutant and wt AAV-4................................122

PAGE 14

14 LIST OF ABBREVIATIONS A Acidic amino acid interaction Angstrom AAV Adeno-Associated Virus AAV-CSI Adeno-Associated Virus-Ca psid Serotype Identification B Basic amino acid interaction CPV Canine Parvovirus Cryo-EM Cryo-Electron Microscopy cs cold-sensitive DI particle Defective Interfering Particle DNA Deoxyribonucleic acid FPV Feline Parvovirus H Hydrophobic amino acid interation hepheparin negative, viru s is unable to bind heparin hep+ heparin positive, virus binds heparin hs heat-sensitive lip mutant Low infectious particle phenotype MS Mass Spectrometry Mut Mutant MVM Minute Virus of Mice ni non-infectious P Polar, uncharged amino acid interaction pd partially defective POTs Pentamers of Trimers PPV Porcine Parvovirus

PAGE 15

15 TOPs Trimers of Pentamers VIPERdb Virus Particle Explorer Database wt wild-type

PAGE 16

16 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STUDIES OF THE ADENO-ASSOCIATED VIRUS CAPSID By Kim Marie Van Vliet August 2007 Chair: Richard O. Snyder Major: Medical Sciences Mol ecular Genetics an d Microbiology Adeno-associated virus (AAV) is a promising ge ne transfer vector that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The AAV capsid plays an essential role in cell binding, internalization, and trafficking, which are critical processes for gene delivery to specific cells. The structural proteins of the capsid spontaneously self-assemble into preformed shells, and then DNA packaging occurs. Although the viral capsid pr oteins self-assemble, little is known about this process. Potential subunits of assembly have been isolated by other investigators and this data was utilized to develop the two general m odels for Parvovirus assembly discussed here. Specific interactions that co mprise the AAV-2 capsid subunit in terfaces are analyzed with respect to several capsid muta nts and their impact on the formation of a macromolecular structure. A better understanding of specific inte ractions required for AAV capsid assembly will allow for the development of customized targeting AAV vectors in the future. The AAV capsid is remarkably stable, which is a desirable characteristic for gene therapy vectors; however, the work presented here dem onstrates that AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentat ion pattern upon limited proteolysis, as well as the susceptibility of the serotype s to a series of proteases, provid es a unique fingerprint for each

PAGE 17

17 serotype that can be used for capsid identity va lidation. In addition, prot ease susceptibility is utilized to study dynamic structural changes of intact capsids in solution. A high-throughput method for AAV capsid serotype identification ( AAV-CSI) utilizing denatured capsid proteins was also developed. This will be useful to verify customized gene therapy vectors that will be produced in the future, which may contain components of more than one AAV serotype.

PAGE 18

18 CHAPTER 1 INTRODUCTION The Family Parvoviridae Adeno-associated virus (AAV) is a member of the family Parvoviridae The family Parvoviridae is divided into two subfamilies, Densovirinae which are parvoviruses that infect arthropods, and Parvovirinae which are parvoviruses that infect vertebrates. The subfamily Parvovirinae is further subdivided into five genera: 1) Parvovirus which includes MVM and CPV 2) Erythrovirus which includes B19 3) Amdovirus which includes Aleutian Mink Disease Virus (AMD) 4) Bocavirus which includes Bovine Parvovirus (BPV), Minute Virus of Canines (MVC) and human Bocavirus (HBoV) [1], and 5) Dependovirus which includes AAV. A newly discovered parvovirus, parv4, has been shown to be unrelated to the known parvoviruses, and may become a new genus [2]. The recently discovered parvoviruses, parv4 and HBoV, are considered emerging infectious pathogens and like B19 are implicated in disease in humans. Unlike parv4, HBoV and B19, AAV is not associat ed with disease in humans. Dependoviruses, like AAV are unique in that the virus is rep lication deficient and except under special circumstances, it requires a helper virus, such as adenovirus or herpes virus for replication [3]. AAV is currently being utilized for gene ther apy applications and ha s been well tolerated in human clinical trials. Add itional features of AAV vectors that make them promising gene therapy vectors include: 1) Stable long-term expre ssion of transgenes in several tissues including the lung, liver, brain, muscle, vacular endothelium and hematopoietic cells [4-11]. 2) Ability to transduce both dividing and non-dividing cells [ 12]. 3) Episomal maintenance: wild-type AAV exhibits site-specific integration of its genome into chromosome 19; however, the majority of vector genomes appear to be maintained episomally [13-15]. Therefore, the risk of integration is minimal as compared to retroviral vectors that require integration for gene expression, exhibit

PAGE 19

19 random integration into the host genome, and ha ve the potential to activ ate proto-oncogenes [1618]. 4) Low immunogenicity in animal models recently, it was reported that AAV2 vectors can activate functional cytotoxic CD8+ T cells specific to the AAV2 capsid in mice after intramuscular injection [19, 20]. Rece nt clinical trial data suggests that T cell mediated immunity to AAV capsid antigens caused de struction of AAV-2 transduced hepatocytes in humans [6, 21]. Studies in mice have shown that AAV-2 capsids are able to activat e cytotoxic T cells but did not render the transduced hepatocytes as effective cyto lytic targets [22]. This suggests that currently available animal models may not be sufficient for studying th e immune response to the AAV capsid that has been shown to occur in human patients. In addition, humoral immune responses are generated to the AAV capsid that may result in viral neutralization [21]. There are 11 known serotypes of AAV with nearly 100 recently discov ered genotypic variants [23-27]. The use of other serotypes of AAV may circum vent the humoral response and allow for repeated treatments if necessary [28]. However, im muno suppressive therapy may be needed during treatment with AAV to mitigate the host immune response in hu man patients, as well as animals[29]. Recent data in a canine model of Duchenne Muscular Dy strophy demonstrated that a brief course of an immunosuppressive regimen was well tolerate d and sufficient to permit sustained AAVmediated dystrophin expression [30]. A recent st udy evaluating the immu ne response to AAV-8 expressing F.IX in rhesus macaques, the na tural host for AAV-8, evaluated preexisting neutralizing antibodies to AAV-8, a standard T-cell immunosuppressive regimen, as well as efficacy and safety of administration. This st udy showed that low titers of preexisting antibody abrogate transduction, and the use of an immuno suppressive regimen did not induce toxicity, or impair AAV transduction or F.IX synthesis [29] AAV vectors may also be useful for providing long term gene expression in immunocompromi sed hosts, which is an advantage over other

PAGE 20

20 vector systems. 5) Physiochemical stability: AAV virions are highly stable over a wide range of pH and temperature, a feature that is importa nt for production and purification methods for clinical grade AAV vectors, as well as for stability of the final vector product [31]. The AAV Genome The genome of AAV-2 is composed of 4679 ba ses of linear, single-stranded DNA. There are two genes, rep and cap which are flanked by the inverted terminal repeats, ITRs. The ITRs consist of 145 nucleotides on the 3 end and 5 end of the genome, which due to base pairing, forms a Y or a T-shaped structure. Th ese are the only sequences required in cis for viral DNA replication and packaging. The rep gene encodes four non-stru ctural proteins, Rep78, Rep68, Rep52 and Rep40, which play a role in viral genome replication, transcrip tional regulation [32], as well as packaging. Rep78 and Rep68 are transl ated from mRNAs transcribed from the p5 promoter, while Rep52, and Rep40 are derived fro m mRNAs transcribed from the p19 promoter. Alternative splicing replaces a 92 amino acid C-te rminal element in Rep78 and Rep52 with a 9 amino acid element in Rep68 and Rep40 [33]. The cap gene encodes the three structural proteins of the AAV capsid, VP1 (87 kDa), VP2 (72 kDa), and VP3 (63 kDa) translated from the p19 promoter. Differential splicing yi elds major and minor spliced pr oducts. VP1 is translated from the minor spliced mRNA, yielding less VP1 protei n. VP2 and VP3 are both translated from the more abundant major spliced mRNA; however, VP 2 is translated less efficiently because it initiates at an ACG codon, while VP3 is translated very efficiently because of a favorable Kozak context [34]. As a result, the AAV capsid proteins which differ only in their N-terminal region, are present in the mature virion in a ratio of 1:1:10 (VP1:VP2:VP3). The single stranded DNA genome of AAV and its products ar e depicted in Figure 1-1.

PAGE 21

21 Figure 1-1. The single-stranded DNA genome of AAV-2. The inverted terminal repeats (ITRs) flank the two open reading frames rep and ca p. The rep gene encodes four nonstructural proteins, Rep78, Rep68, Rep52 and Rep40. The cap ge ne encodes three structural proteins VP1, VP2 and VP3. The location of the promoters, p5, p19, and p40 are depicted by arrows. Vectors Three features of AAV-2 which may limit its use as a gene therapy vector include: 1) its small size, with an ability to package approxi mately 4.7 kb, 2) the difficulty and expense of production of large quantities of high titer virus for clinical trials, and 3) the wide range of tissue tropism of AAV-2, as a result of using heparin su lfate proteoglycan as a receptor, which could result in expression of the transgene in non-target tissues. Studies have ad dressed the small size of the AAV capsid and an evaluation of the pack aging limits of AAV has shown that the AAV capsid is capable of packagi ng and protecting DNA up to 6.0 kb; however, post-entry, capsids with DNA larger than the AAV genome are prefer entially degraded by the proteosome. It has been shown that proteosome inhibitors can be used to overcome this barrier [35]. The p5 p19 p40 ITR ITR Rep Cap 87 kDa 72 kDa 63 kDa PolyA VP1 VP2 VP3 Rep78 Rep68 Rep52 Rep40

PAGE 22

22 development of self-complementary vectors in or der to introduce larger DNA sequences than can be packaged in a single AAV capsid has provide d a method to overcome the packaging limit of the AAV capsid [36-38]. This provides a mech anism to potentially expand the number of diseases that AAV may be utilized to treat. Improved production methods for AAV have resu lted in the ability to produce the large amounts of virus required for clinical trials. Al though virus for clinical trials is currently produced by transient transfec tion of monolayers of cells, im proved production methods have allowed for AAV to be produced in other systems such as baculovirus and herpes virus [39], which provide scalability, and will allow for virus to be produced with higher titers and greater yields [40-45]. Studies have al so evaluated the natural tropism for AAV serotypes, as well as specific targeting of AAV vectors. A greater understanding of the AAV capsid structure, and the interaction of the subunits that assemble to form the capsid, as well as th e regions of the capsid surface that play a role in the various stages of the life cycle of the virion, including attachment to the cellular receptor, intrace llular trafficking, as well as sp ecific requirements for viral packaging, will aid in the production of customized and improved viral vect ors, with higher titers and specific targeting. The chapters that follow provide an in de pth analysis of the AAV capsid, beginning with parvovirus capsid assembly models (Chapter 2) as well as data regarding several AAV capsid mutants (Chapter 3) and their phenotypes. Th e 11 capsid serotypes of AAV exhibit different tissue tropism and different trans duction efficiencies. Chapters 4 a nd 5 provide methods to verify the AAV capsid of the final vector product that will be admininstered to patients. Intact AAV capsids were evaluated in solution using limite d proteolysis to determine the AAV serotype based on the fragmentation pattern [46]. This met hod was also used to evaluate the structural

PAGE 23

23 dynamics of the virion (Chapter 4). Chapter 5 describes AAV Capsid Serotype Identification (AAV-CSI). Denatured AAV capsids are subjected to proteolysis and the AAV capsid serotype is determined based on the fragmentation pa ttern. This provides a high throughput method for capsid identity testing. Overall, the data pres ented provides a biophysical, biochemical, and genetic analysis of the AAV capsid.

PAGE 24

24 CHAPTER 2 MODELS OF AAV CAPSID ASSEMBLY Capsid Structure The adeno-associated virus capsid is approximate ly 25 nm in diameter and is composed of 60 subunits arranged in T=1 icosahedral symmetr y. Because AAV has a number of features that make it attractive as a gene tr ansfer vector, many studies have focused on the basic biology of the virus, including studies that address the structural characteristics. Cryo-EM or crystal structures for AAV-2, AAV-4, and AAV-5 have b een determined [47-51], and the crystal structure for AAV-8 is currently in progress [45]. Dependoviruses share the same capsid subunit fold as the other members of the family Parvoviridae including the insect densoviruses, and the autonomously replicating parvoviru ses such as canine parvovirus (CPV) and minute virus of mice (MVM), even though AAV shares low capsid primary sequence identity (7-22%) [52-54]. The monomeric subunit of AAV has a conserved -barrel core that is common in viral capsid proteins. The structure of a monomeric subunit of AAV-2 as determined by Xie, et al. [48] is shown in Figure 2-1. The motif is an eight-stranded anti-parallel -barrel motif (jelly-roll -barrel), with the beta strands labeled B-I [52]. The -strand labeled A is also presen t in all parvoviruses, including AAV. AAV has long loop insertions between the strands of the core -barrel that are labeled according to the beta strands that they flank. These long interstrand loops contain beta ribbons and elements of secondary structure that form much of the outer su rface features of the AAV capsid. The GH loop is the longest in terstrand loop and three VPs interact extensively at each icosahedral 3-fold axis of symmetry forming a pr ominent spike. Five DE loops from each viral protein form antiparallel beta ribbons at the 5-fold axis of symmetry that results in a cylindrical

PAGE 25

25 A B D C E F G H I B I DB C 1C0 EF 2G H 3G H 2GH12 G H 1 3 A B D C E F G H I B I DB C 1C0 EF 2G H 3G H 2GH12 G H 1 3 Figure 2-1. The structure of a monomeric subunit of AAV-2, as determined by Xie, et al. [55]. The beta ribbons are depicted in black a nd labeled A through I, and helices are shown in grey. This image was produced using the AAV-2 coordinates from the Protein Databank, (PDB Accession #1lp3), with th e molecular modeling software PyMOL (www.pymol.org ) provided by DeLano Scientif ic, Palo Alto, CA [56]. structure that surrounds a canyon-like depression. At the 2-fold axis of symmetry there is a small depression, often referred to as the 2-fold di mple [57, 58]. Analysis of newly discovered AAV genotypes identified a total of 12 hypervariable regions on the AAV capsid [59]. Overlaying these regions onto the X-ray crystallographic m odel of AAV-2 showed that these regions are exposed on the capsid surface. Most of the va riability is located between the G and H strands, which are implicated in the formation of the vall ey at the icosahedral 3-fold axis of symmetry and the protrusions that surround it. These surface features of the virus are responsible for the interactions of the capsid with cellula r receptors, as well as antibodies. Capsid Assembly and Packaging In 1980, Myers and Carters work provided evid ence that the structural proteins for AAV assemble into empty capsids, and then the genom e is packaged into these preformed capsids

PAGE 26

26 [60]. Pulse-chase experiments showed that empty particles rapidly accumu late (10 20 minutes), but that mature full virions accumulated more sl owly (4 to 8 hours). They also showed that the number of empty viral particles decreases at the same rate as the number of DNA-containing mature virions increases over the course of in fection. Additionally, de la Maza and Carter showed that DI particles, AAV genomes with de letions, are packaged in to apparently normal capsids, indicating that full-length viral genom ic DNA is not required for the assembly or structural integrity of the AAV capsid [61]. In the absence of capsid assembly, ssDNA does not accumulate, further suggesting that empty capsids fo rm first. Interactions between the preformed AAV capsid and Rep52 provides a mechanism where th e nonstructural protei ns helicase activity inserts the viral DNA [62]. Data based on MVM and AAV suggest that the DNA is inserted into the capsid at the 5-fold pore [63, 64]. Within the cell, capsid assembly occurs at centers within the nucleus where Rep proteins, capsid protei ns and DNA are co-localized [65]. Empty AAV capsids can be produced by expressing the AAV cap gene in insect cells using a baculovirus expression system [66] or in mammalian cells utilizing a recombinant adenovirus expressing the AAV capsid proteins. These systems have advanced structural studies of the AAV capsid as a result of the large amount of empty capsids or virus-like particles (VLPs) that can be produced. Studies of AAV assembly have demonstrated that VP3 alone is sufficient to form VLPs [67], but VP1 is required for infectivity [68]. Subsequently it was shown that the unique N-terminus of VP1 has phospholipase A2 activity and contains a nuclear localization signa l (NLS) [69]. Studies have demonstrated that the unique N-terminus of VP 1 is inside the capsid near the 2-fold axis of symmetry and becomes externalized through the 5-fold pore during viral trafficking in the cell [70]. The N-terminus of VP2 also has a NLS and may play a role in transporting VP3 into the nucleus; however, it has been shown that the N-terminus of VP2 is nonessential and that

PAGE 27

27 infectious virus can be produced that lack VP 2 entirely [71]. Additiona lly, the N-terminus of VP2 has been replaced with green fluorescent protein and these capsids still assemble and maintained infectivity. This demonstrates that VP2 can tolerate peptide insertions and may be useful for incorporating peptides into the cap sid for cell-specific ta rgeting of AAV. Virus Assembly for ssDNA Viruses Spontaneous assembly of macromolecular stru ctures such as a virus capsid is a process that is not clearly understood. For a T=1 icosah edral capsid, such as AAV, 60 subunits must come together in the correct orientation to provi de a stable capsid, and AAV assembles with high fidelity. There are features on th e surface of the AAV capsid that distinguish the icosahedral 5fold, 3-fold or 2-fold axis of symmetry, for exam ple, the 5-fold pore, the 3-fold mounds or the 2fold dimple. These regions on the capsid are impo rtant for various steps in the virus life cycle. The 3-fold mounds are implicated in receptor bi nding, and the 5-fold pore has been implicated in both externalization of the unique N-terminus of VP1 as we ll as DNA packaging. In vitro studies have identified a number of potential assembly intermediates [60, 72]. Studies of CPV structure estimating the free en ergy of association have revealed that the formation of 3-fold and 5-fold contacts likely takes precedence over 2-fold interactions [52, 53]. For AAV-2, the crystal structure is known, and the individual am ino acid interactions at the interface between subunits have be en analyzed and will be discussed further in Chapter 3. The strongest interactions for AAV-2 are at the 3-fold axis of symmetry, followed by the 5-fold axis of symmetry, and the weakest inte ractions are at the 2-fold axis of symmetry. The image in Figure 2-2 depicts an icosahedral virus partic le (taken from VIPERdb) [73]. The subunit association energies for AAV-2 and other parvoviruses ar e shown in Table 2-1. This data verifies that the subunit association ener gies for other parvoviruses for the 5-fold, 3-fold and 2-fold interactions are comparable (data from VIPERdb) [73].

PAGE 28

28 The potential intermediates of assembly for AAV could include pentameric subunits, 12 of which must come together to make an intact capsid, trimeric subunits, 20 of which comprise an intact capsid, or dimeric subunits 30 of which must come together to produce an intact capsid. The two favored hypotheses for intermediates in assembly are: 1. Assembly via a pentameric intermediate or 2. Assembly via a trimeric intermediate. Assembly via a Pentameric Intermediate If a pentameric intermediate is the asse mbly intermediate, pentamers form first (intrapentameric interactions), and then interpentameric inte ractions form and subsequent pentamers are added. This model requires a trimer of pentamers or TOPs, to produce the 5-fold, 2-fold and 3-fold interactions. In X174, a ssDNA bacteriophage, the first detectable intermediates in assembly are pentamers of the F protein [74]. If the mechanism of assembly for ssDNA viruses is conserved, the hypothesis rega rding AAV assembly is that pentamers form Figure 2-2. Icosahedral virus part icle diagram from VIPERdb [73] The 5-fold interactions are the interactions between A1 and A2, the 2-fold interactions are the interactions between A1 and A6, and the 3-fold interac tions are the interactions between A1 and A7.

PAGE 29

29 Table 2-1. Parvovirus Subunit Association Energies expressed in kcal/mol and Buried Interface Surface in 2, calculated in VIPERdb [73]. For the parvoviruses listed in this table, the strongest interactions occur at the icos ahedral 3-fold axis of symmetry, followed by the icosahedral 5-fold axis of symmetry, followed by the weakest interactions, which are at the icosahedral 2-fold axis of symmetry. Protein Databank accession numbers are listed in parenthese s below the virus abbreviation. 5-fold (A1:A2) Association energies kcal/mol 2-fold (A1:A6) Association energies kcal/mol 3-fold (A1:A7) Association energies kcal/mol 5-fold Buried Surface ( 2) 2-fold Buried Surface ( 2) 3-fold Buried Surface ( 2) AAV-2 (1lp3) -98.0 -64.0 -209.0 4961.0 3127.0 10437.0 CPV (2cas) -95.0 -76.0 -233.0 4654.0 3873.0 10899.0 MVM (1mvm) -97.0 -73.0 -218.0 4875.0 3749.0 10614.0 FPV (1fpv) -98.0 -78.0 -236.0 4793.0 3908.0 10971.0 PPV (1k3v) -94.0 -76.0 -235.0 4577.0 3914.0 11153.0 first, then the 3-fold interactions, followed by the 2-fold interactions. Due to the 5-fold symmetry inherent in icosahedral geomet ry, pentamer formation is like ly to be a common feature in initiation of assembly of severa l other small icosahedral viruses. This was suggested to be the case for assembly of bacteriophage MS2 [75], and Norwalk virus [76]. Additionally, for the assembly of blue tongue virus core protein vp3, Gr imes et al. [77] proposed that 5-fold decamers preassemble, and then associate to form the inner capsid. Zlotnick et al. [ 78] also describe the mechanism of capsid assembly for an icosahedra l plant virus as occurring via a pentameric intermediate. Assembly via a pentameric intermediate is shown in Figure 2-3. Assembly via a Trimeric Intermediate If a trimeric intermediate is the assembly intermediate, trimers form first, and then intertrimeric interactions form and then subs equent trimers are added. This model requires pentamers of trimers or POTs, to produce the 5-fol d, 3-fold and 2-fold interactions. There is data

PAGE 30

30 for other parvoviruses such as MV M that suggest that trimers are the intermediate, and that VP1 and VP2 are both capable of translocating into th e nucleolus where virus assembly occurs [79] when singly expressed in transfec ted cells; however, only VP2 is ab le to assemble into capsid by itself. Recent data for MVM suggests that trimer s are actually transported through the nuclear pore complex, not intact capsids [80]. For MVM, there are 2 proteins, VP1 and VP2, present in a ratio of 1:5 in the assembled capsid. Because trim ers are more stable than pentamers and dimers, it is thought that this energetical ly expensive subunit forms firs t and is transported through the nuclear pore. How the stoichiometry of the viral stru ctural proteins (1 VP1: 5 VP2) is maintained in the assembled MVM capsid is un clear. If pentamers are the structural intermediate, as in X174, then the stoichiometry of 1 VP1: 4 VP 2 would approximate the observed 1:5 ratio; however, recent data does not support the hypothesis that MVM assembles via a pentameric Figure 2-3. Model of Parvovirus Assembly through a Pentameric Intermedia te. In this model, monomeric subunits come together to form pentamers, and then 3 of these pentamers come together to form trimers of pentamers (TOPs), and then pentamers add on to form the capsid. This is the favored m odel for Adeno-Associated Virus (AAV) assembly. Monomeric Subunits Pentameric Intermediate Trimers of Pentamers Macromolecular Assembly

PAGE 31

31 intermediate. The model for assembly via a trim eric intermediate is shown in Figure 2-4. A trimeric intermediate for MVM would ensure th at a macromolecular capsid was produced before DNA could be packaged, since the 5-fold pore where DNA packaging occurs, requires pentamers of trimers for its formation. For AAV, if pentamers are the intermediate in assembly and are transported across the nuclear pore complex as pentamers or as dimers of pentamers, with 1 VP1, or 1 VP2 subunit contained in each pentamer, this would be consis tant with a stoichiometry of 1:1:8 (6 VP1: 6 VP2: 48 VP3). This model also would allow for th e N-terminus of VP1 and VP2 to be at the 2 fold axis. For example, in Figure 2-2, VP1 might be subunit A1 or A5, and VP2 might be subunit A6 or A7. Ruffing, et al. [66] showed that coexpr ession of VP1 or VP2 with VP3 in insect cells resulted in accumulation of VP3 in the nucleus. Th is suggests that capsid proteins need to form complexes for efficient nuclear accumulation and pa rticle assembly. If th e intermediate in AAV assembly is a trimer, it is unclear how the st oichiometry of VP1:VP2:VP3 is maintained. Girod, et al. [69] showed th at the unique region of VP1 contains a phospholipase A2 domain (PLA2) that is required for infectivity. While assembly a nd packaging were not affected by mutations in this region, inf ectivity was reduced in these lip mutants [68]. It has also been suggested by Zadori, et al. [ 81] that the PLA2 domain is so metimes exposed, possibly through the 5-fold channel. Recent studies with capsid mutants also support the N-terminus of VP1 or VP2 being exposed through the 5-fold pore [82]. VP 3 is transcribed more efficiently than VP1, or VP2 and it has been proposed that the lack of availability of more significant quantities of VP1 and VP2 results in the ratio of 1:1:10 in intact particles; howev er, a more ordered, less stochastic

PAGE 32

32 Figure 2-4. Model of Parvovirus Assembly through a Trimeric Intermediate. In this model, monomeric subunits come together to form trimers, and then five trimers come together to form pentamers, and then pentamers add on to form the capsid. This is the favored model for Minute Virus of Mice (MVM) assembly. mechanism for assembly would ensure that th e particles that are produced contain VP1 and would result in the formation of infectious part icles. Alternatively, for every particle produced, approximately 1 in 100 is infectious; therefore, the incorporation of VP1 and VP2 in assembled particles might be a stochastic process, as has been suggested. For AAV, since pentameric interactions require less energy to form, these would be favored over trimers. If the virus were to assemble its most expensive and most stable subu nit first, it would risk using its resources to build subunits and potentially neve r attain an intact capsid. Additionally, trimers, as the most stable subunit, should be easy to isolate if they were the intermediate of assembly, even though they are short-lived species. If pentamers ar e the intermediate of assembly for AAV, this suggests that the site on the surface of the capsi d where the nonstructura l Rep protein interacts for packaging must either not be present in pent americ intermediates or perhaps is present but some cellular protein that is pa rt of the packaging complex is not available at this step. Monomeric Subunits Trimeric Intermediate Pentamers of Trimers

PAGE 33

33 In terms of building a macromolecular structur e, both of the models, either pentamers of trimers (POTs), or trimers of pentamers (TOPs) demonstrate that the important interactions for achieving an intact capsid are the two-fold interactions. Although th ey are the weakest interactions, there are many of them In addition, when either the pe ntamer or the trimer is added, these weak two-fold interactions would enable a new subunit to attach, deta ch, reattach, in effect allowing it to be sampled so that it is added in the correct orientation (like a puzzle piece). The assembly model favored for AAV based on all of th e data is trimers of pentamers (TOPs). This model allows for two pentamers to come together, so intrapentameric interactions form first, then interpentameric interactions second, which are st abilized by the two-fold interactions at the pentameric interfaces, and as the trimer of pentam ers come together, these interactions allow for the energentically expensive three-fold intratri meric interactions. This model of AAV assembly incorporates what is currently known about a ssembly, capsid stability and disassembly. The AAV capsid is stable over a wide range of pH and temperature. It has been shown that upon treating the AAV capsid at 65 C for 30 minutes that its possible to expose the unique Nterminus of VP1, and VP2 [70]. However, upon h eat treatment of the AAV capsid, experiments to date to isolate an assembly intermediate have been unsuccessful. This s uggests that this is an all-or-none phenomenon. The energy required to break the strong inte ractions at the 3-fold axis of symmetry results in complete disruption of the AAV capsid. This is consistant with a pentameric intermediate, where the strongest inte raction at the 3-fold ax is of symmetry would form last, and for capsid disassembly to occur, woul d need to be disrupted first. If trimers are the assembly intermediate, and they form pentamers of trimers, and then the weak 2-fold interactions form last, in a disassembly model, these should be relatively easy to disrupt giving either a

PAGE 34

34 pentameric or trimeric subunit. Computer mode ling data for AAV also supports pentamers as the intermediate in assembly [83].

PAGE 35

35 CHAPTER 3 AAV-2 ASSEMBLY AND SUBUNIT INTERACTIONS Introduction Understanding the capsid subunit interactions that are critical for AAV virion assembly will allow for the production of customized vectors in the future. An analysis of the types of residues located at the 5-fold axis of symmetry, the 3-fold axis of symmetry, as well as the 2-fold axis of symmetry provides a starting point for evaluating residues that are important for virus assembly. The interactions at the 5-fold axis of symmetry are shown in Table 3-1, with the strongest interactions listed first. The specific amino acids involved in the strongest intrapentermic interactions at the 5-fold axis of symmetry are shown in Table 3-2. For the mutants produced by Wu, et al. [84], an analysis of the phenotype when that amino acid has been mutated is also included. The strongest interaction energies for the 3-fo ld axis of symmetry are listed in Table 3-3. The specific residues involved in these interac tions, as well as the phenotype of capsids with mutations in these residues are listed in Table 34. The mutations at the 3-fold axis may provide information regarding assembly and packaging sin ce mutants have been constructed in which the strongest interactions at the 3-fold axis have been disrupted. One of these mutants (Mut31) results in the formation of empty particles but is unable to package DNA. This would be consistent with a conserved mechanism for packaging in small DNA viruses, like X174 where DNA is inserted at the 3-fold, and exits the viri on thru the 5-fold pore. However, due to other mutant studies, the most likely site for DNA packaging for AAV is through the 5-fold pore [85]. The interactions at the 3-fold axis of symmetry are very strong and would represent a significant barrier to packaging. Thes e interactions are probab ly responsible for the re markable stability of

PAGE 36

36 Table 3-1. The five strongest interactions at the icos ahedral 5-fold axis of symmetry (VIPERdb). The amino acids that are the strongest at th e icosahedral 5-fold axis of symmetry are listed, using VP1 numbering. This refers to interactions between subunits A1 and A2 in the icosahedral virus particle in Figure 2-2. The type of inter actions are indicated, B = basic, H = hydrophobic, P= Polar, uncharged. The phenotype of AAV mutants generated by Wu, et al. [84] are listed, wt = wild type. Amino Acid VP1 numbering Type Energy (kcal/mol)Wu, et al. mutant phenotype [84] ARG 404 B -3.76 LYS 665 B -3.57 Mut45, wt PHE 661 H -3.11 TYR 397 P -3.07 MET 402 H -2.14 Table 3-2. Specific amino acid interactions at the icosahedral 5-fold axis of symmetry (VIPERdb). Specific amino acids at the icos ahedral 5-fold axis of symmetry are listed, using VP1 numbering, with the stronge st interactions listed first, and the weakest interactions listed la st. This list include s all interactions between subunits A1 and A2 in the icosahedral virus particle depicted in Figure 2-2. The type of interactions are indicate d, A = acidic, B = basic, H = hydrophobic, P = Polar, uncharged. The phenotype of AA V mutants generated by Wu, et al. are listed, either in the column to the left of the amino aci d list if the mutation was made in the 1st amino acid of the pair listed, or in the column to the right of the amino acid list if the mutation was made in the 2nd amino acid of the pair listed. cs = cold-sensitive, hep+ = heparin positive, hs = heat-sensitive, ni = non-infectious, pd = partially defective, wt = wild-type. Amino acids that were not mutated by Wu, et al. [84], but flank the mutated amino acids are designated unchanged. Type of Interaction Mutant Phenotype (Wu, et al.[84]) VP1 numbering Mutant Phenotype (Wu, et al.[84]) B H B H B P B P B P B P B P R404:V221 R404:G222 R404:S224 R404:S225 R404:N317 R404:Q319 R404:T405 B A Mut45 wt K665:D368 H P H H H H H H F661:Y252 F661:G360 F661:M371 F661:P373

PAGE 37

37 Table 3-2 Continued P H P A P P P P P A P H Y397 :C230 Y397 :D231 Y397 :S232 Y397 :S292 Y397 :D295 Y397:P366 Mut19 unchanged Mut19 ni, no capsid Mut19 unchanged Mut24 unchanged Mut24 ni, no capsid H P H P H P H P H P H P M402:S224 M402:N227 M402:W228 M402:F316 M402:N317 M402:Q677 Mut19 unchanged H H H P H H F392:F365 F392:T713 F392:V714 P P P P P P T337:Q319 T337:N334 T337:T405 H A P399:D231 Mut19 ni, no capsid H H H H H H H P P657:A248 P657:P250 P657:M371 P657:Y673 A H A H A H A H E396:W228 E396:F365 E396:P366 E396:A367 Mut19 unchanged H H H H H P P654:A248 P654:V369 P654:T675 P H P H P P N656:V323 N656:I332 N656:Y673 Mut26 unchanged P B P P P H Mut28 cs Q385:K706 Q385:S707 Q385:V708 Mut48 pd, hep+ P P P P Q259:N709 Q259:T716 H H H H H H F666:A248 F666:V369 F666:M371 B P Mut29 wt R389:Y704 H P A663:Q359 H B H H I670:K321 I670:I332 Mut26 hs

PAGE 38

38 Table 3-2 Continued P P P P T651:T246 T651:Q677 P H P H P H Mut21 unchanged Y257:F365 Y257:A367 Y257:V714 H P H H P652:T246 P652:V369 H H L336:V221 B H Mut21 pd, unstable capsid K258:G718 H H A386:V710 H P V387:Y704 H H Mut21 unchanged L256:G718 H H V221:V221 P B N382:K706 Mut48 pd, hep+ P P P P N326:T329 N326:T331 P H P P P H Y275:V710 Y275:T713 Y275:V714 P P Q401:N227 P B P P N335:K321 N335:N334 Mut26 hs P P S338:Q319 H P Mut18 unchanged A218:N223 H H H H C394:F365 C394:P366 P H S400:W228 Mut19 unchanged P H S662:M371 P P N407:N223 H H F669:V369 P H S390:V710 P P P P T339:S224 T339:N317 H H A655:I332 P H Q341:W228 Mut19 unchanged H H F273:V710

PAGE 39

39 Table 3-3. The five strongest interactions at the icos ahedral 3-fold axis of symmetry (VIPERdb). The amino acids that are the strongest at th e icosahedral 3-fold axis of symmetry are listed, using VP1 numbering. This refers to interactions between subunits A1 and A7 in the icosahedral virus particle in Figure 2-2. The type of inter actions are indicated, B = basic, H = hydrophobic, P = Polar, uncharged. The phenotype of AAV mutants generated by Wu, et al. [84] are listed, wt = wild type. Amino Acid VP1 numbering Type Energy (kcal/mol)Wu, et al. [84] mutant phenotype LYS 692 B -4.88 Mut47, ni, A20(Hartladge, Warrington, Muzyczka, unpublished data) ARG 432 B -3.92 Mut31, ni, empty particle ARG 471 B -3.79 Mut33, hs TYR 441 P -3.44 PRO 602 H -3.07 Table 3-4. Specific amino acid interactions at the icosahedral 3-fold axis of symmetry (VIPERdb). Specific amino acids at the icos ahedral 3-fold axis of symmetry are listed, using VP1 numbering, with the stronge st interactions listed first, and the weakest interactions listed la st. This list include s all interactions between subunits A1 and A7 in the icosahedral virus particle depicted in Figure 2-2. The type of interactions are indicate d, A = acidic, B = basic, H = hydrophobic, P = Polar, uncharged. The phenotype of AAV mutants ge nerated by Wu, et al. [84] are listed, either in the column to the left of the am ino acid list if the mutation was made in the 1st amino acid of the pair listed, or in the co lumn to the right of the amino acid list if the mutation was made in the 2nd amino acid of the pair listed. ala ins = alanine insertion, cs = cold-sensitive, hep= hepari n negative, hep+ = heparin positive, hs = heat-sensitive, ni = non-infectious, pd = pa rtially defective, wt = wild-type. Amino acids that were not mutated by Wu, et al.[ 84], but flank the mutated amino acids are designated unchanged. Type of Interaction Mutant Phenotypes (Wu, et al. [84]) VP1 numbering Mutant Phenotype (Wu, et al. [84]) B P B P B H Mut47 ni, A20K692:Q349 K692:Y397 K692:F398 B P B H B P B B B P Mut31 ni, empty particle R432:Y272 R432:L378 R432:N381 R432:R513 R432:S515 Mut22 unchanged Mut36 pd, hep+ Mut36 unchanged B P B A B P B H Mut33 hs R471:S267 R471:D269 R471:N270 R471:W502 Mut22 ni, full particle Mut22 unchanged

PAGE 40

40 Table 3-4 Continued P B P H P P P H P H P H Y441:R286 Y441:A357 Y441:Q359 Y441:C361 Y441:F542 Y441:P616 Mut23 ni, no capsid H H H H H H H H H B P602:P481 P602:V600 P602:W606 P602:F628 P602:H629 Mut43 unchanged H B H P H B H P H A L583:R484 L583:Q486 L583:R487 L583:T573 L583:E574 H H H H H H H H H H W477:A619 W477:I621 W477:P632 W477:P630 W477:L633 H P H P H P W694:F392 W694:C394 W694:Y397 H P H P H H L437:S276 L437:Q374 L437:G376 H H H P H H L460:V488 L460:N495 L460:I554 Mut39 unchanged P H P H P P P H P H Y443:I541 Y443:G543 Y443:S547 Y443:V552 Y443:V557 Mut38 unchanged Mut39 unchanged H H H H H H H H F462:I541 F462:I554 F462:V557 F462:I559 Mut39 unchanged Mut39 unchanged H P H B H P H P H P V579:Y483 V579:R484 V579:T506 V579:N596 V579:T597

PAGE 41

41 Table 3-4 Continued H H H H H H H H L442:A357 L442:L540 L442:F542 L442:M634 H P H B H P H H I438:Y281 I438:H358 I438:Q359 I438:P373 H H H P H H H H P436:I260 P436:Y272 P436:G376 P436:L378 Mut22 unchanged H H H P H H H H L601:P481 L601:Y483 L601:P521 L601:G599 H H H P H P L445:V488 L445:S501 L445:Q536 B B B P R566:R389 R566:N511 Mut29 wt P P P P P P P P Q584:Q486 Q584:N495 Q584:N496 Q584:Y500 B P B P R475:Y508 R475:S515 Mut36 unchanged A P A P Mut37 ni, full particle D528:N382 D528:N511 P B P P S580:R484 S580:Q486 P H P H P H P H N476:A619 N476:P632 N476:L633 N476:M634 P P P P S458:N495 S458:N497 P A P P P P T448:E499 T448:Y500 T448:S501 P P P H P B P P P H N435:Y281 N435:V353 N435:H358 N435:Y375 N435:G376

PAGE 42

42 Table 3-4 Continued P P P H P P P P S427:T379 S427:L380 S427:S391 S427:Y393 H P H H H H H H L478:Y508 L478:V517 L478:P521 L478:L633 Mut36 unchanged H H L735:P622 H B I698:R389 Mut29 wt H H H P H B V605:P622 V605:T624 V605:H627 Mut43 unchanged Mut43 wt H P H P A590:Q486 A590:Y500 H P H H P479:Y508 P479:L510 H P H B H H M434:S356 M434:H358 M434:L378 B P B P Mut47 ni, A20R693:S391 R693:Y393 P H Q428:P351 P H P P N734:P351 N734:Y393 A H A H Mut33 hs D472:W502 D472:L516 Mut36 unchanged A P A H A B A P D431:Y508 D431:L510 D431:R513 D431:S515 Mut36 pd, hep+ Mut36 unchanged H P Mut41 unchanged G586:N496 P P P A Q461:N551 Q461:D553 Mut38 unchanged Mut39 pd, unstable P P P H P H S474:N518 S474:P519 S474:M634 H H H H V600:V600 V600:F628 Mut43 unchanged B B R733:H623 A B E574:H509 Mut35 Ala ins, cs, hepsurface A P A B D439:Q359 D439:K549 Mut38 wt

PAGE 43

43 Table 3-4 Continued B A B P R447:E499 R447:N551 Mut38 unchanged H P H H W606:T624 W606:G626 Mut43 unchanged Mut43 unchanged A P Mut37 ni, full D529:N382 B A R459:D553 Mut39 pd, unstable P H T592:G504 P H Y444:L516 Mut36 unchanged H H Mut43 wt F628:F628 Mut43 unchanged P P P H N695:S391 N695:F392 B H Mut37 ni, full K527:G512 P H P B Q440:A357 Q440:H358 P B S578:K507 P P P P Y576:Y483 Y576:Y508 P P P P Q589:N496 Q589:S498 P A P P N449:E499 N449:N497 P P P B Q464:Q359 Q464:K549 Mut38 wt P B P P T581:R484 T581:N596 P P P P S463:T550 S463:N551 Mut38 unchanged Mut38 unchanged A B Mut40 ni, hep-, full particle, surface E564:R389 Mut29 wt H P H P Mut33 hs I470:N270 I470:Y272 Mut22 unchanged Mut22 unchanged H P A467:Y272 Mut22 unchanged P A P P Mut47 ni, A20N690:E347 N690:Q349 Mut27 hs H H G603:L633 P P Mut32 wt T456:N497 P P P P P H Q598:Y483 Q598:T597 Q598:G599 P B Q575:H509 Mut35 ala ins, cs, hep-, surface P P S446:N551 Mut38 unchanged H H G599:G599

PAGE 44

44 Table 3-4 Continued H B A425:R389 Mut29 wt P A S422:D625 Mut43 wt B H H629:G626 Mut43 unchanged P B Y424:H623 B P H426:T624 Mut43 unchanged H P H P V595:Y483 V595:T597 P P Mut47 unchanged S691:Y393 A A Mut42 ni, no capsid D608:D625 Mut43 wt P P T732:S391 P P P A Mut42 ni, no capsid Q607:T624 Q607:D625 Mut43 wt H P H H L430:Y508 L430:L510 H B G466:K549 Mut38 wt P B Q473:H358 P P N582:Q486 P P T568:T624 Mut43 unchanged B A R729:D625 Mut43 wt the AAV capsid, and disassembly experiments to date suggest it is not possi ble to gently disrupt the capsid and isolate an intermediate of assemb ly. The energy required to disrupt the 3-fold interactions results in the capsi ds being broken down completely into monomers when heated and treated with SDS (data not shown). For MVM, one study evaluate d critical residues involved in inter-trimeric cont acts and showed that both hyd rophobic interactions and hydrogen bonding between interfacial side chains could potentially make major contributions toward holding trimeric subassemblies together. These inter-trimeric contacts were nearly identical for both strains of MVM, MVMi which is pathoge nic and MVMp which is nonpathogenic [86]. The five strongest interactions at the icosahedral 2-fold axis of symmetry are listed in Table 3-5. The specific residues and t ypes of interactions that occur at the icosahedral 2-fold axis of symmetry are listed in Table 3-6. While the strongest interaction at the 2-fold axis is a hydrophobic interaction, electrostati c interactions contribute 13.63 kcal/mol per subunit at the 2-

PAGE 45

45 fold axis. Hydrophobic interactions contribute -12.79 kcal/mol per subunit at the 2-fold axis and there are nearly twice as many interactions as co mpared with electrostatic interactions. This is consistent with the suggestion that weak electrostatic in teractions provide ca psid stability. Polar interactions contribute -8.75 kcal/mol per subun it and there are a sim ilar number of polar interactions as hydrophobic interactions. Based on this analysis, the majority of interactions at the 2-fold axis of symmetry are hydrophobic interactions and pol ar hydrogen bonding interactions; however, although fewer in number, th e electrostatic interact ions have a greater energy contribution at the 2-fold axis of symmetry. In additio n, for both Mut19 and Mut24, when charged residues are changed to alanine, the resulting phenotype is the abse nce of capsids, and no infectious particles. Particularly with the re sidues involved in Mut24, the residues in Mut24 that are unchanged in this mutant (FSPRD FSPAA), S292 and P293 (VP1 numbering), Table 3-5. The five strongest interactions at the icos ahedral 2-fold axis of symmetry (VIPERdb). The amino acids that are the strongest at th e icosahedral 2-fold axis of symmetry are listed, using VP1 numbering. This refers to interactions between subunits A1 and A6 in the icosahedral virus particle in Figure 2-2. The type of inter actions are indicated, B = basic, H = hydrophobic. The phenotype of AAV mutants generated by Wu, et al. [84] are listed, ni = non-infectious. Amino Acid VP1 numbering Type Energy (kcal/mol) Wu, et al. mutant phenotype [84] TRP 694 H -4.22 PRO 696 H -3.08 LYS 692 B -2.79 Mut47, ni, A20ARG 294 B -2.14 Mut24, ni, no capsid ARG 298 B -1.91 participate in the strongest interaction at the icosahedral 2-fold axis of symmetry, yet the phenotype of this mutant is the absence of capsids. While R294 (VP1 numbering) is the 4th strongest interaction at the 2-fold axis, the inabilit y of this mutant to make capsids suggests that this electrostatic interaction, while weaker than the primary hydrophobic interaction, is required for capsid formation at the 2-fold axis of symmet ry. With Mut19, the inter action that is changed

PAGE 46

46 at the 2-fold axis of symmetry effects the 3rd strongest interaction and the resulting phenotype is the absence of capsids, and no inf ectious virions. The residue i nvolved in this interaction (K692 VP1 numbering), only interacts with D231 (VP1 numbering), wh ereas other amino acid residues involved in the 3 strongest interac tions at the 2-fold axis interact with several amino acids that could perhaps compensate for a change. This is c onsistent with the models of assembly presented in Chapter 2, which suggest that the interactions at the 2-fold axis of symmetry are critical for assembling into a macromolecular structure. Table 3-6. Specific amino acid interactions at the icosahedral 2-fold axis of symmetry (VIPERdb). Specific amino acids at the icos ahedral 2-fold axis of symmetry are listed, using VP1 numbering, with the stronge st interactions listed first, and the weakest interactions listed la st. This list include s all interactions between subunits A1 and A6 in the icosahedral virus particle depicted in Figure 2-2. The type of interactions are indicate d, A = acidic, B = basic, H = hydrophobic, P = Polar, uncharged. The phenotype of AAV mutants ge nerated by Wu, et al. [84] are listed, either in the column to the left of the am ino acid list if the mutation was made in the 1st amino acid of the pair listed, or in the co lumn to the right of the amino acid list if the mutation was made in the 2nd amino acid of the pair listed. ala ins = alanine insertion, cs = cold-sensitive, hep= hepari n negative, hep+ = heparin positive, hs = heat-sensitive, ni = non-infectious, pd = pa rtially defective, wt = wild-type. Amino acids that were not mutated by Wu, et al. [84], but flank the mutated amino acids are designated unchanged. Type of Interaction Mutant Phenotype (Wu, et al. [84]) VP1 numbering Mutant Phenotype (Wu, et al. [84]) H P H H H H H H H H H P W694:S292 W694:P293 W694:F365 W694:P366 W694:F712 W694:Y720 Mut24 unchanged Mut24 unchanged H H H B H P H P H P H H P696:P293 P696:R294 P696:Q297 P696:Y700 P696:S702 P696:F712 Mut24 unchanged Mut24 ni, no capsid B A Mut47 ni, A20K692:D231 Mut19 ni, no capsid

PAGE 47

47 Table 3-6 Continued B A B B B H B A Mut24 ni, no capsid R294:E689 R294:R693 R294:P696 R294:E697 Mut47 ni, A20Mut47 ni, A20B A R298:E689 Mut47 ni, A20H P H P H P I698:T701 I698:S702 I698:Y704 P A P H Y704:E563 Y704:I698 Mut40 ni, hep-, full A B A B Mut47 ni, A20E689:R294 E689:R298 Mut24 ni, no capsid P P P P P P P P Q699:Q297 Q699:N301 Q699:Q699 Q699:T701 P H P P N695:V710 N695:T713 P H P P P P T701:I698 T701:Q699 T701:T701 P H P H S702:P696 S702:I698 P H Mut24 unchanged S292:W694 H H H H Mut24 unchanged Mut24 unchanged P293:W694 P293:P696 H P V710:N695 P P N302:N302 H H P366:W694 A B E697:R294 Mut24 ni, no capsid A B Mut19 ni, no capsid D231:K692 Mut47 ni, A20P H P P Q297:P696 Q297:Q699 H H H H F712:W694 F712:P696 H H F365:W694 A P Mut40 ni, hep-, full E563:Y704 P P N301:Q699 P H Y700:P696 B B Mut47 ni, A20R693:R294 Mut24 ni, no capsid P H Y720:W694 P P T713:N695

PAGE 48

48 AAV-2 Mutant Studies Five AAV-2 mutants (Mut19, Mut24, Mut26, Mut33, and Mut46), described by Wu, et al. [84] were analyzed in these studies. These are listed in Table 3-7. Amino acid alignments were performed to determine if these residues are highly conserved for AAV serotype 1 through AAV serotype 8. The AAV capsid sequences for AAV serotype 1 through AAV serotype 8 have been aligned using several soft ware programs, including Clusta l W, and Palign (Pcgene), as described by Chiorini, et al. [87] Gao, et al. [24], and Hauck, et al. [88]. In evaluating the capsid sequence for Mut19 (WHCDS), this sequence is conserved for AAV serotype 1 through AAV serotype 8. The capsid sequence in the region of Mut24 (FSPRD) is also conserved for AAV serotype 1 through AAV serotype 8, except fo r AAV-5, which has the sequence WSPRD. The amino acid that is different in AAV-5 when comp ared to the other AAV serotypes, is still a hydrophobic amino acid with a large bulky aromatic side group. The amino acid sequence in the region of Mut26 (VKEVT) is also conserve d for AAV serotype 1 through AAV serotype 8, except for AAV-3, which has the sequence VRGVT. Instead of a lysine, AAV serotype 3 has an arginine in that position, which is still a basic, positively charged amino acid. The most significant change in the region of Mut26 is th e use of a glycine instead of the negatively charged glutamic acid that the other serotypes use. The amino acid sequ ence in the region of Mut33 (DIRD) is highly divergen t, as shown in Table 3-8, with isoleucine in AAV-2 being the most conserved residue when compared to the other AAV serotypes. While the other AAV serotypes use an amino acid other than isoleu cine, which is used in AAV-2, all of the AAV serotypes maintain a hydrophobic amino acid here The amino acid sequence in the region of Mut46 (EIE) is conserved for AAV serotype 1 through AAV serotype 8, with the exception of AAV4 which has a glutamine instead of a glutam ic acid. Unlike glutamic acid, glutamine is an uncharged amino acid; however, like glutam ic acid, it is a hydrophilic residue.

PAGE 49

49 Table 3-7. pIM45 based plasmids containing alanine substitutions for the production of mutant AAV-2 capsids produced by Wu, et al. [89]. Al a sub = alanine substitution; ni = noninfectious; hs = heat sensitive; pd = partially defective; hep+ = heparin positive Mutant Type Mutation Class Phenotype Mut19 Ala Sub 228-232 WHCDS WACAS 4b ni; no capsid Mut24 Ala Sub 291-295 FSPRD FSPAA 4b ni; no capsid Mut26 Ala Sub 320-324 VKEVT VAAVT 3a hs Mut33 Ala Sub 469-472 DIRD AIAA 3a hs Mut46 Ala Sub 681-683 EIE AAA 4b Ni; no capsid Amino Acid Alignment A structural alignment in the region of Mut19 with other parvovirus sequences is shown in Table 3-9. This stretch of amino acids is not conserved among other parv oviruses. A structural alignment in the region of Mut 24 is shown in Table 3-10. The structural alignment for Mut26 with other parvoviruses is show n in Table 3-11. The structural alignment for the amino acids involved in Mut33 is shown in Table 3-12. The parvovirus structur al capsid alignment for Mut46 are shown in Table 3-13. Additionally, an ami no acid alignment was performed for the known AAV serotypes, as well as the newly reported AAV genotypic variants. This alignment has been included as an appendix. For the five AAV-2 mutants listed in Tabl e 3-7, theoretical molecular replacement was used to generate models of the AAV mutants. Mode ls were evaluated to determine the potential Table 3-8. Amino acid alignment data for the specific amino acid sequence in the region of Mut33. Amino acid sequence alignment for the capsid protein of AAV-1 through AAV-8 that align with amino acid 469 472 of AAV-2 (VP1 numbering). Serotype Sequence AAV 1 GMSV AAV 2 DIRD AAV 3 SMSL AAV 3B SMSL AAV 4 RPTN AAV 5 RYAN AAV 6 GMSV AAV 7 TMAE AAV 8 TMAN

PAGE 50

50 Table 3-9. Parvovirus structural capsid protein alignment for Mut19 residues. A structural alignment was performed in DALI for other parvoviruses whose structures have been solved and the amino acids were evaluate d to determine if the region is highly conserved. The amino acids are color code d based on general properties, pink are aromatic amino acids, green are neutral ami no acids, grey are aliphatic amino acids, red are acidic amino acids and aqua are basic amino acids. Parvovirus Sequence AAV2 (PDB#1lp3) W H C D S Porcine Parvovirus (PDB#1k3v) F NNQT MVM (PDB#1mvm) Y D NQT CPV (PDB#4dpv) F NNQT Table 3-10. Parvovirus structural capsid protein alignment for Mut24 residues. A structural alignment was performed in DALI for other parvoviruses whose structures have been solved and the amino acids were evaluate d to determine if the region is highly conserved. The amino acids are color code d based on general properties, pink are aromatic amino acids, green are neutral ami no acids, grey are aliphatic amino acids, red are acidic amino acids and aqua are basic amino acids. Parvovirus Sequence AAV2 (PDB#1lp3) F S P R D Porcine Parvovirus (PDB#1k3v) F N P A D MVM (PDB#1mvm) L Q P S D CPV (PDB#4dpv) F N PG D Table 3-11. Parvovirus structural capsid protein alignment for Mut26 residues. A structural alignment was performed in DALI for other parvoviruses whose structures have been solved and the amino acids were evaluate d to determine if the region is highly conserved. The amino acids are color code d based on general properties, pink are aromatic amino acids, green are neutral ami no acids, grey are aliphatic amino acids, red are acidic amino acids and aqua are basic amino acids. Parvovirus Sequence AAV2 (PDB#1lp3) V K E V T Porcine Parvovirus (PDB#1k3v) L K T I T MVM (PDB#1mvm) L K T V T CPV (PDB#4dpv) L K T V S Table 3-12. Parvovirus structural capsid protein alignment for Mut33 residues. A structural alignment was performed in DALI for other parvoviruses whose structures have been solved and the amino acids were evaluate d to determine if the region is highly conserved. The amino acids are color code d based on general properties, pink are aromatic amino acids, green are neutral ami no acids, grey are aliphatic amino acids, red are acidic amino acids and aqua are basic amino acids. Parvovirus Sequence AAV2 (PDB#1lp3) D I R D Porcine Parvovirus (PDB#1k3v) T E A T MVM (PDB#1mvm) S E A I CPV (PDB#4dpv) T E A T

PAGE 51

51 Table 3-13. Parvovirus structural capsid protein alignment for Mut46 residues. A structural alignment was performed in DALI for other parvoviruses whose structures have been solved and the amino acids were evaluate d to determine if the region is highly conserved. The amino acids are color code d based on general properties, pink are aromatic amino acids, green are neutral ami no acids, grey are aliphatic amino acids, red are acidic amino acids and aqua are basic amino acids. Parvovirus Sequence AAV2 (PDB#1lp3) E I E Porcine Parvovirus (PDB#1k3v) T L T MVM (PDB#1mvm) K L T CPV (PDB#4dpv) K LV effect of the mutation. This allows for a predicti on of the role that th ese regions of the capsid play in assembly and/or packaging. Modeling The structure of AAV-2 capsid mutants we re modeled and evaluated based on the available coordinates for wild-type AAV-2 VP3 (1l p3) to visualize the lo cation of the mutation on the capsid. The resources provided by the European Bioinformatics Institute (EBI) European Molecular Biology Laboratory (EMBL) we re utilized to generate these models. The primary program utilized for this was Deep Vi ew, also called Swiss PDB Viewer, or SPDBV. Deep View provides a user friendly interface for viewing and analyzing protein and nucleic acid structures. It also provides some advanced features including an in terface for theoretical modeling, and visualization of electron density maps and elect rostatic surfaces. Deep View provides automatic structure retrieval by PDB-ID as well as measurement of bonds, angles, and distances between atoms. Using Deep View, it is possible to compare st ructural details, to superimpose a structure onto a nother structure for comparison, as well as model amino acid mutations. Swiss PDB Viewer is the primary t ool for accessing Swiss-Model, which is an automated homology modeling server at Glaxo Welcome Experimental Research in Geneva. Utilizing both Swiss PDB Viewer and Swiss-Model, it is possible to model mutations as well as

PAGE 52

52 build in and modify surface loops for evaluating the impact of potential modifications that may be used for specific targeting of AAV vectors, as well as to build in missing amino acids on the N-terminus of VP3, or VP2, or VP1. Available da ta suggests that the N-terminus of VP-2 is located inside at the 2-fold axis; however, it has also been reported that the N-terminus is on the outside of the capsid. Utilizing the model of AAV-2 (PDB accession #1lp3), the appropriate mutations (Mut19, Mut24, Mut26, Mut33, and Mut46, from Wu, et al.[ 89]) were modeled, and the various structural units, dimer, trimer, pentamer and intact cap sids, were built from the monomer. A comparison was made between the wild-type ca psid and the mutants to correlate the effect of the mutation on capsid assembly and/or packaging. This may beco me a useful tool in the area of AAV targeting, as the current data suggests that regions of the cap sid that tolerate some mutations do not tolerate others. The Mutants Mut 19 228 232 WHCDS WACAS Mut19 is an alanine substitution mutation, where the charged residues His229 and Asp231 have been changed to alanine [89]. Utilizing the molecular modeling software DeepView, as well as PyMOL, the residues that are mutated in Mut19 were evaluated. Since the phenotype of Mut19 is an inability to make capsids, this mole cular modeling software was used as a tool to predict the structural subunit that is formed. The location of this mutation affects both the 2-fold axis and the 5-fold axis of symm etry. As a result of the 5-fold interaction, it is unlikely that pentamers would be a stable subunit, as the muta tions are at the interf ace between the monomers that make up the 5-fold axis of symmetry. This is demonstrated in Figure 3-1. The interaction at the 2-fold axis of symmetry between Asp231 and Lys692 is shown in Figure 3-2. Interestingly, when Lys692 was changed to alanine, which is Mut 47 [89], capsids were unable to be detected

PAGE 53

53 Figure 3-1. Residues at the five fo ld symmetry axis that are changed in Mut19. The aqua residue is His229. The pink residue is Asp231. Yello w arrows point to the location of the mutation. This figure was generated using the molecular modeling software DeepView. using the conformational antibody A20; however, capsid proteins were subsequently detected using B1 antibody and the buoyant density in ces ium chloride for thes e capsid proteins was consistent with the production of intact capsids (Hartladge, Warrington and Muzyczka, unpublished data). Figure 3-3 shows that the 3-fold in teractions are still inta ct as a result of the amino acid changes in Mut19. Based on this, the predicted subunit of asse mbly that should be produced from Mut19 is a trimer. To determine what interactions were disrupted by changing His229 and Asp231 to alanine, the amino acids WH CDS were selected in the model.Amino acids were added to the view within 4 of the se lected residues. Based on this, intermolecular distances and intramolecular distances we re determined. The model shows several intramolecular interactions be tween His229 and Thr242, Thr243 a nd Thr244, as seen in Figure 3-4; however, when His229 was changed to an alan ine, these interactions are still maintained (data not shown). This suggests th at the lack of capsids is prob ably not due to disrupting the

PAGE 54

54 intramolecular interactio ns that are involved in proper prot ein folding. Mut19 occurs at the beginning of the first beta-sheet structure in VP3. If an intramol ecular interaction was responsible for the lack of capsi ds, the prediction would be that monomers would be formed that are unable to associate into a capsid structure. The intermolecular inte ractions that may be disrupted in Mut19 are shown in Figure 3-5. In addition to Lys692, the interaction with Pro399 may also be disrupted as a result of Asp231 being changed to alanine. Figure 3-2. Residues at the two fold symmetry axis that are changed in Mut19. The aqua residue is His229. The pink residue is Asp231. The residue shown in yellow is Lys692. The residues that are mutated in Mut19 are colored differently than the main chain, usually white, except where they would not be visible, in which case they are aqua. Yellow arrows point to the region of the mutation. This figure was generated using the molecular modeling software Deep View.

PAGE 55

55 Figure 3-3. The predicted subunit as a result of the mutations made in Mut19 is a trimer. Yellow arrows point to the region of the mutation. The pink, peach and dark blue subunits comprise a trimer. Figure 3-4. Residues that may be responsible fo r the phenotype of Mut19. Lys692 is shown in purple, His229 is aqua, and Asp231 is pi nk. The blue chain shows intramolecular interactions. The yellow and pur ple chains demonstrate inte rmolecular interactions. This figure was generated using the mo lecular modeling software Deep View.

PAGE 56

56 This interaction also involves the 2-fold axis of symmetry. If this inter action is responsible for the phenotype of Mut19, the expected subunit would al so be a trimer. Anothe r possibility is that both Lys592 and Pro399 are needed to interact wi th Asp231. Using the methods established here, it is not possible to determine if both interactions are require d for intact capsid formation. However, Pro399 is 3.60 away from Asp231, while Lys692 is only 2.78 away. The model of Mut19 after the amino acids are change d to alanine is shown in Figure 3-6. Another approach to evaluating the effect of the alanine mutation is to do a structural alignment of several parvovirus cap sid proteins and look at whethe r or not the residues that are changed in Mut19 are conserved. The capsid protei ns of several parvoviruses were aligned, and then evaluated to determine if the residues th at were mutated in Mut19 are conserved among other parvoviruses. These are s hown in Table 3-9. The table in cludes AAV, Porcine Parvovirus, MVM, and CPV. Based on the table, the residues in Mut19 appear to be unique to AAV. AAV residue in this position. Based on the structural alignment, the prediction would be that this residue might be able to be changed without affec ting the overall structure, since there is such a wide range of amino acids in this position for other parvoviruses. AAV is also the only parvovirus in the table that has a negatively ch arged acidic residue at Asp231. Based on this, the prediction would be that changing Asp231 to alan ine, should be tolerated by AAV, as the other parvoviruses listed have neutral am ino acids in this position. Howe ver, the model indicates that the negatively charged Asp231 interacts with th e positively charged Lys692. In the capsid protein alignment, amino acid 692 in porcine pa rvovirus and MVM are neut ral residues, N and T respectively, while CPV, like AAV-2 also has a positively charged basic residue (H) in this position. Based on the data, the charge-charg e interaction between Asp231 and Lys692 is probably necessary for AAV capsid stability.

PAGE 57

57 Figure 3-5. Intermolecular residues are show n between the yellow chain, and the Asp231. Residues that also may play a role in the phenotype of Mut19 include Tyr397 and Pro399. This figure was generated using th e molecular modeling software Deep View. Figure 3-6. Asp231 has been changed to Ala231, as in Mut19. Note that the primary interaction that is disrupted is the intermolecula r interaction with Lys692; however, an intermolecular interaction with Pro399 is al so disrupted. One or both interactions may result in the inability to form intact ca psids. This figure was generated using the molecular modeling software Deep View.

PAGE 58

58 Mut24 291 -295 FSPRD FSPAA Mut24 is an alanine substitution mutation, where the charged residues Arg294 and Asp295, have been changed to alanine [89]. Utilizing the same methods described for Mut19, the residues that are mutated in Mut24 were evaluated. Like Mut19, the phenotype for Mut24 is an inability to make capsids. The molecular modeling software was used as a tool to predict the structural subunit that is formed. The location of this mutant affects both the 2-fold axis and the 5-fold axis of symmetry. Based on the location of the mutati ons at the 5-fold axis, pentamers may not be able to be formed. This mutation is further from the 5-fold pore than Mut19, so due to the location of the mutation, there may be enough signif icant interactions at the 5-fold axis to perhaps hold pentamers together. This is demons trated in Figure 3-7. The 2-fold axis of symmetry is shown in Figure 3-8. The residues that have been mutate d are likely to produce significant changes at the 2-fold axis. The mutation at the 2-fold axis occurs at a place in the capsid where three different chains come together the two that make up the 2-fold, (light blue and dark blue residues) one of which is also a pa rt of the 3-fold axis (dark blue), and a second chain of the 3-fold axis (orange) that sits above the residue that makes up the 2-fold axis (light blue). If the second chain of the 3-fold axis is disrupted then tr imers would not be stable and the predicted subunit formed would be either monomers or pentamers, if the ot her interactions at the 5-fold axis are significant enough to hold a pent amer together. Alternatively, the mutation may only affect the residues at the 2fold axis and the second chain of the 3-fold axis (orange) may be unaffected. If this is the case, then trimers will be the predicted subunit. This is shown in Figure 3-9. Based on the information in Figure 3-10, ther e are quite a few residue s that interact with Arg294 and Asp295. These are also shown in Table 314. Based on the information in this table, there are a couple of th ings to note. First, Arg294 is a pos itively charged ba sic residue that interacts with two negatively charged glutam ic acid residues. Changing Arg294 to an Ala294

PAGE 59

59 disrupts these interactions, as the side chain in alanine is much smaller and is now not in close enough proximity to interact. In addition, this ch arge:charge interaction is also disrupted and may be required to hold th e monomers together. Figure 3-7. Residues at the 5-fold symmetry axis that are change d in Mut24. The view is from the inside of the capsid. The aqua resi due is Arg294. The pink residue is Asp295. This figure was generated using the mo lecular modeling software Deep View. When Glu689 was changed to an alanine in Mut47 [89], the phenotype is a non-infectious capsid that is A20 negative. The lack of infectivity provides furt her evidence for the importance of the interaction between Ar g294 and Glu689. When Asp295 is changed to an alanine, the intermolecular intera ction between it and Tyr397 is disrupted. This residue is from the light pink chain that is part of the 3-fold axis of symmetry shown in Figure 3-11. Based on this, the predicted subunits formed by Mut24 are monomers, assuming that the mutation at the 5-fold axis of symmetry prevents pentameric interactions. To further evaluate the mu tations that were made

PAGE 60

60 in Mut24, the parvovirus capsid alignment data was used to evaluate if these residues are conserved. This is shown in Table 3-10. Figure 3-8. Residues at the 2-fold symmetry axis that are changed in Mut24. The aqua residue is Arg294. The pink residue is Asp295. This fi gure was generated using the molecular modeling software Deep View. Generally, there is an aromatic phenylalanine residue at position 291, with the exception of MVM which has a lysine in that position. Next ther e is a neutral residue at position 292, then a proline at 293, and then Asp at 295, for all of the am ino acids in the table. While the aspartic acid residue is conserved when compared to other parvoviruses in the table, the residue that it interacts with, Tyr397, is unique to AAV-2. Based on the alignment data at residue 397, the other parvoviruses in the table have an N at that pos ition. In addition, AAV-2 is the only parvovirus in the table that has a charged basic residue at position 294. Porcine parvovirus has an alanine in this position, and because of this it might be ex pected that an alanine at this position in AAV-2 would be tolerated. Residue 689 in the alignment is an arginine for all of the parvoviruses listed

PAGE 61

61 in the table except AAV-2. Residue 697 is an aliphatic residue, isoleu cine for CPV, or valine for MVM, while this is a glutam ic acid residue in AAV-2. Figure 3-9. The predicted subunit as a result of the mutations made in Mut24 is a trimer. The residues that are mutated in Mut24 are colored differently than the main chain, usually white, except where they would not be visible, in which case they are aqua. Inside view. This figure was generated us ing the molecular modeling software Deep View.

PAGE 62

62 Figure 3-10. Intermolecular and in tramolecular residues that are di srupted as a result of changing Arg294 and Asp295 to alanine residues. Arg294 is shown in yellow, Asp295 is shown in white, the chain that they are att ached to is shown in light blue, residues from other chains are shown in pink or dark blue respectively. Intramolecular interactions that are disrupt ed include the interaction w ith Ser292 and Trp234. This is a close up of the specific interactions in Figure 3-9. Note: Tyr397 is pink, Glu689 and Gu697 are dark blue. This figure was generated using the molecular modeling software Deep View.

PAGE 63

63 Figure 3-11. Mut24 interactions that are effected by the muta tion. Theoretical model of the interactions that are change d in Mut24 when Arg294 is changed to Ala294 (yellow) and Asp295 is changed to Ala295 (white). This figure was generated using the molecular modeling software Deep View.

PAGE 64

64 Table 3-14. Evaluation of the effect of the mutations introduced in Mut24 on amino acid interactions. The amino aci ds that interact with Arg294 and Asp295 were modeled using SPDB Viewer and the distances befo re the mutation were introduced were determined. The type of interaction, eith er intermolecular or intramolecular, was evaluated. The amino acids were mutated using the molecular modeling software Deep View for visualization. The interactions were evalua ted after the mutations were introduced to determine which interactions we re disrupted as a result of the mutation. Figure 3-10 and Figure 3-11 show the intera ctions before and after the mutation respectively, and the colors in parenthesis above refer to the residues in these figures. Amino Acid that is changed Distance () Interacting residue Was interaction disrupted? Type of interaction Arg294 2.75 Glu689 (blue) Yes Intermolecular Arg294 2.91 Glu697 (blue) Yes Intermolecular Arg294 3.36 Glu697 (blue) Yes Intermolecular Arg294 2.79 Trp694 (blue) No Intermolecular Arg294 2.66 Ser292 (lt blue) No Intramolecular Arg294 2.54 Pro293 (lt blue) No Intramolecular Arg294 2.85 Gln297 (lt blue)No Intramolecular Arg294 2.98 Arg298(lt blue) No Intramolecular Asp295 2.52 Tyr397 (pink) Yes Intermolecular Asp295 2.76 Trp234 (lt blue) Yes Intramolecular Asp295 2.83 Ser292 (lt blue) Yes Intramolecular Asp295 2.44 Ser292 (lt blue) No Intramolecular Asp295 3.30 Ser292 (lt blue) No Intramolecular Asp295 2.66 Arg298(lt blue) No Intramolecular Mut26 320 324 VKEVT VAAVT Mut26 is an alanine substitution mutation, where the charged residues Lys321 and Glu322, have been changed to alanine [89]. Utilizing th e same methods described for Mut19 and Mut24, the residues that are mutated in Mut26 were evalua ted. Mut26 is located near the pore at the 5fold axis of symmetry as shown in Figure 3-12 and Figure 3-13, and is NOT involved in the loop region of the 5-fold monomers that interact w ith the neighboring residue. There is a surface loop that projects from the surface of the capsid, and Mut26 is at the base of this loop. This capsid mutant was determined to be heat sensitive using the GFP fluorescent cell assay to determine infectious titer. Mut26 has a titer that is about 1 log lower than wt when the crude lysate is used to infect 293 cells at 32 C. There is no titer at 39.5 C [89]. Based on this, it can be assumed that

PAGE 65

65 Mut26 is able to package viral DNA, although rece ntly other investigator s have produced data using 5-fold pore mutants that suggest that muta tions in this region of the capsid effect DNA packaging. It is unknown where the nonstructural Re p proteins interact with the capsid for Figure 3-12. Residues at the 5-fo ld symmetry axis that are cha nged in Mut26. The aqua residue is Lys321. The pink residue is Glu322. Yellow arrows point in the direction of the residues that have been mutated, but the ami no acids that have been mutated are at the 5-fold pore. Note: The orientation on this figure is different from Mut19 and Mut24. This figure is from outside of the capsid looking at the 5-fold pore. This figure was generated using the molecular modeling software Deep View.

PAGE 66

66 Figure 3-13. This is a cut away view of three of the chains that make up the 5-fold axis of symmetry. The red and aqua chains of Figur e 3-12 have been removed to show the location of the mutations. Lys321 is in aqua or white, and Glu322 is in pink. This figure was generated using the molecular modeling software Deep View. packaging, but this is assumed to involve resi dues in the region of th e 5-fold pore since the proposed model for AAV packaging suggests that the DNA is inserting into the capsid through the 5-fold pore. Alternatively, mutating the residues at the 5-fold pore may have disrupted an as yet undetermined site on the capsid that is required for the Rep proteins to dock. This mutation is interesting in that infectious pa rticles are not produced at 39.5 C Physical particle titer using A20 ELISA was not obtained for this mutant so it is not known wh ether the lack of infectious particles at 39.5 C is due to a lack of capsid assembly at 39.5 C or an inability to package at 39.5 C; however, based on the location of the muta tion, the mutation is predicted to effect DNA packaging. Based on the model, this mutation does not affect the 2-fold or the 3-fold axis. EM on capsids produced at 39.5 C would help to determ ine if this is a packaging mutant versus an assembly mutant. In this region of the capsid, there is an in termolecular interaction between Asn335 (yellow) and Asn334 (blue), as shown in Figure 3-14. Al though the intermolecular interaction between

PAGE 67

67 Lys321 and Asn335 (yellow) is disrupted, there is an intermolecular interaction between Asn335 (yellow) and Asn334 (blue 2.77 A, and 3.83 A). This interaction may maintain the position of Asn335 and compensate for the intermolecular inte raction that is disrup ted between Lys321 and Asn335, allowing for capsids to be produced at th e permissive temperature. The intramolecular interactions between Glu322 and Ala333 (2.56 A, 3.18 A, 3.56 A, and 3.60 A) are maintained when Glu322 is changed to Ala322, as shown in Figure 3-15. The inte raction between Ala333 that is maintained is connected to Asn334, a nd therefore probably he lps to preserve the interaction between Asn335 (yellow) and Asn334 (blue), even though the interaction between Lys321 and Asn355 is disrupted. The intraand inte rmolecular interactions for Mut26 are listed in Table 3-15. Figure 3-14. Interactions with the residues involved in Mut26. Lys321 is white, Glu322 is pink, Asn335 is yellow, Ile332 is green. This figure was generated using the molecular modeling software Deep View.

PAGE 68

68 Figure 3-15. Model of Mut26 afte r the mutation. This figure was generated using the molecular modeling software Deep View. The protein capsid alignment data suggests that Lys321 is conserved among the parvoviruses listed in Table 3-11. In addition th ere is an aliphatic residue be fore Lys321, usually leucine but for AAV-2 its a valine residue, and a neutral residue (Threonine) follows Lys321 for all parvoviruses listed except AAV-2 which has a ch arged Glutamic acid in this position. Residue 323 in the alignment is an aliphati c residue, usually valine, except for MVM which has an isoleucine. Residue 324 is a neut ral residue either serine or threonine. The alignment data further confirms that Lys321 is conserved and therefore important for AAV capsid stability. However, due to the compensati ng interaction with Asn334, capsids are able to be produced at the permissive temperature. In terestingly, Asn334 is c onserved for all of the parvoviruses listed in Table 3-11.

PAGE 69

69 Table 3-15. Evaluation of the effect of the mutations introduced in Mut26 on amino acid interactions. The amino acids that interact with Ly s321 and Glu322 were modeled using SPDB Viewer and the distances befo re the mutations were introduced were determined. The type of interaction, eith er intermolecular or intramolecular, was evaluated. The amino acids were mutated using the molecular modeling software Deep View for visualization. The interactions were evalua ted after the mutations were introduced to determine which interactions we re disrupted as a result of the mutation. Figure 3-14 and Figure 3-15 show the intera ctions before and after the mutation respectively, and the colors in parenthesis above refer to the residues in these figures. Amino Acid that is changed Distance () Interacting residue Was interaction disrupted? Type of interaction Lys321 3.16 Asn335(yellow)Yes Intermolecular Lys321 4.30 Asn335(yellow)Yes Intermolecular Lys321 3.41 Ala333 No Intramolecular Lys321 2.38 Val320 No Intramolecular Lys321 3.39 Val320 No Intramolecular Lys321 2.96 Tyr734 No Intramolecular Lys321 3.16 Tyr734 No Intramolecular Glu322 3.90 Ile332 (green) Yes Intermolecular Glu322 2.78 Asn335 Yes Intramolecular Glu322 2.98 Asn335 Yes Intramolecular Glu322 3.65 Asn335 Yes Intramolecular Glu322 3.82 Asn335 Yes Intramolecular Glu322 3.38 Thr732 No Intramolecular Glu322 2.59 Ala333 No Intramolecular Glu322 3.56 Ala333 No Intramolecular Glu322 3.18 Ala333 No Intramolecular Glu322 3.60 Ala333 No Intramolecular Mut33 469 472 DIRD AIAA Mut33 is an alanine substitution mutation, where the charged residue Asp469, Arg471, and Asp472 have been changed to alanine. Utilizin g the same methods described for Mut19, Mut24 and Mut26, the residues that are mutated in Mut33 were evaluated. Mut33 is not involved in the 5-fold axis of symmetry or the 2-fold axis of symm etry. The lack of an effect at the 5-fold axis of symmetry is shown in Figure 3-16. The mutations ar e located at the 3-fold axis of symmetry in Mut33 as shown in Figure 3-17. There are two intr amolecular interactions that are disrupted in Asp469 as a result of the mutation, as shown in Figure 3-18. However, as shown in Figure 3-19, intermolecular interactions, as well as intramolecula r interactions are disrup ted as a result of the

PAGE 70

70 Figure 3-16. Mut33 pentamer demons trating that this mutation is not involved in the interactions that make up the icosahedral 5-fold symmetry axis; therefore, as a result of this mutation, pentamers will still be formed. Th is view is from the outside looking in. This figure was generated using the mol ecular modeling software Deep View. mutation in Asp472, and this is probably the reas on for the phenotype. The interactions that are disrupted are summarized in Table 3-16. This capsid mutant was determined to be heat sensitive using the GFP fluorescent cell assay to determine infectious titer. Mut33 has a titer that is about 1 l og lower than wild-type when the crude lysate was used to infect 293 cells at 32 C. Th ere was no titer at 39.5 C [89]. Based on this, it can be assumed that Mut33 is able to package viral DNA. Since at the permissive temperature packaging can occur, this suggests that an inte raction between Rep and VP3 that is needed for packaging is not disrupted as a result of these mutations. For this mutant, the prediction would be that pentamers would be stable, as would dimers, but that trimers would not be stable. This supports the model of assembly for AAV that was presented in Chapter Two

PAGE 71

71 Figure 3-17. Mut33 residues. The yellow re sidue is Asp469, aqua is Arg471, pink is Asp472. Note: for the pink chain, Asp472 is white. This view is from the outside looking in three fold axis. The mutation effects where the monomers come together at the icosahedral 3-fold axis of symmetry. This figure was generated using the molecular modeling software Deep View. which suggests that capsid assembly probably occurs in the following order: 5-fold interactions first, then the 2-fold interactions occur, followed by the 3-fold interactions. The 3-fold interactions in the AAV capsid ar e the strongest interactions. Be cause the thermodynamic cost is greater, these probably form last. This mutant should provide the basis for validating this hypothesis. The alignment of several parvovirus capsid prot eins in the region of Mut33 is shown in Table 3-12. The capsid protein alignment for the resi dues involved in this mutant suggests that this region is not highly cons erved among parvoviruses. The resi due that was not changed in Mut33, Ile470 is an aliphatic residue for AAV2, Porcine Parvovirus and MVM. In CPV the residue at position 470 is an arom atic residue, while in the next position there is an Ile, Ile471. MVM and CPV have a neutral re sidue at position 469, while AAV-2 is unique in that it has an acidic negatively charged residue.

PAGE 72

72 Figure 3-18. Interactions in th e region of Mut33. The yellow re sidue is Asp469, the aqua residue is Arg471, and the white residue is Asp472. This figure was generated using the molecular modeling software Deep View. Figure 3-19. Model of residues mutated in Mut33. This figure was generated using the molecular modeling software Deep View.

PAGE 73

73 Table 3-16. Evaluation of the effect of the mutations introduced in Mut33 on amino acid interactions. The amino acids that in teract with Asp469, Asp471, and Asp472 were modeled using SPDB Viewer and the distances before the mutations were introduced were determined. The type of interaction, e ither intermolecular or intramolecular, was evaluated. The amino acids were mutated using the molecular modeling software Deep View for visualization. The interactions were evalua ted after the mutations were introduced to determine which interactions we re disrupted as a result of the mutation. Figure 3-18 and Figure 3-19 show the intera ctions before and after the mutation respectively, and the colors in parenthesis above refer to the residues in these figures. Amino Acid that is changed Distance () Interacting residue Was interaction disrupted? Type of interaction Asp469(Yellow) 3.61 Asp269 (Blue) No Intermolecular Asp469(Yellow) 2.46 Tyr444 (Pink) Yes Intramolecular Asp469(Yellow) 2.73 Asp472 (White) No Intramolecular Asp469(Yellow) 3.77 Gln464 (Pink) Yes Intramolecular Asp469(Yellow) 2.69 Arg471 (Aqua) No Intramolecular Asp469(Yellow) 2.73 Asp472 (White) No Intramolecular Arg471 (Aqua) 2.95 Leu516 (Blue) No Intermolecular Arg471 (Aqua) 2.60 Asn270 (Blue) No Intermolecular Arg471 (Aqua) 3.81 Asn270 (Blue) No Intermolecular Arg471 (Aqua) 3.45 Asp269 (Blue) No Intermolecular Asp472 (White) 3.32 Trp502 (Blue) Yes Intermolecular Asp472 (White) 3.36 Trp502 (Blue) Yes Intermolecular Asp472 (White) 3.77 Asn518 (Blue) No Intermolecular Asp472 (White) 2.98 Tyr444 (Pink) Yes Intramolecular Asp472 (White) 3.10 Arg471 (Aqua) Yes Intramolecular Asp472 (White) 3.20 Asp469(Yellow)Yes Intramolecular Asp472 (White) 3.05 Arg471 (Aqua) Yes Intramolecular Asp472 (White) 3.69 Arg471 (Aqua) Yes Intramolecular Asp472 (White) 3.17 Arg471 (Aqua) Yes Intramolecular Mut46 681 683 EIE AAA Mut46 is an alanine substitution mutation, where the charged residues Glu681, Glu683, and the aliphatic residue Ile682, have been chan ged to alanine [89]. U tilizing the same methods described for the other mutants, the residues th at are mutated in Mut46 were evaluated. Like Mut19, the phenotype for Mut46 is an inability to make capsids. The location of Mut46 lies in the middle of a -sheet, which is part of the main structur al motif of the capsid protein, and is conserved among members of the family Parvoviridae Mut46 is not located at an interface at either the 2-fold axis of symmetry, or the 3-fo ld axis of symmetry, or the 5-fold axis of

PAGE 74

74 symmetry, as shown in Figure 3-20. This suggests th at the mutation disrupts the interaction in the -sheet structure. Because the mutation occurs in one of the -sheets, the mutation probably effects the proper folding of the monomers. Due to improper folding and the potential instability in a critical structural compone nt of the capsid, the predicted s ubunit that Mut46 will produce, if Figure 3-20. The location of residues that are mutated in Mut46. This figure provides a view from inside the capsid, with both the 5-fold pore as well as the 3-fold pore included. The residues that are mutated in Mut46 ar e colored white, except where they would not be visible, in which case they are aqua. This figure was generated using the molecular modeling software Deep View. any at all, is a misfolded mono mer. Upon closer inspection, it s hould be noted that this mutation does not appear to involve any intermolecular inte ractions; however, intr amolecular interactions are affected as shown in Figur e 3-21 and Figure 3-22. While it may appear from Figure 3-20 that this mutation is near the loop region that intrudes from one monomer into a nother, these residues are actually further apart than they appear. The intermolecula r distances between the residues that are mutated in Mut46 and the next chain ar e approximately 20 away. This further supports

PAGE 75

75 the hypothesis that it is the improper folding of the monomeric subunits that result in the phenotype of Mut46, which is the inability to pr oduce intact capsids. Figure 3-21 shows the intramolecular interactio ns that occur in the wild-type cap sid monomers. It should be noted however that when Glu681, Ile682, and Glu683 were changed to alanine, that many of these intramolecular interactions are st ill maintained. In Figure 3-22, these residues have been mutated to alanine and intramolecular distances have been calculated. Based on this model, the primary interaction that is disrupted in this mutant involves interactio ns with Glu683. Upon changing this residue to Ala683, there is a 2.81 interaction with Arg238 that is disrupted. After the mutation this distance is approx imately 7 There is also an inte raction between Arg683 and Val239 that is disrupted as a result of the mutation. Intere stingly, in Mut2 0 [89] Arg238 is mutated and the Figure 3-21. Intramolecular inte ractions with the residues th at are changed in Mut46, Glu681, Ile682, and Glu683. Glu681 is pi nk, Ile682 is blue, and Gl u683 is aqua. This figure was generated using the molecular modeling software Deep View.

PAGE 76

76 Figure 3-22. Intramolecular interactions after the residues invo lved in Mut46 have been changed to alanine. Ala681 is pink, Ala682 is blue and Ala683 is aqua. This figure was generated using the molecular modeling software Deep View. phenotype is also an inability to make capsi ds. Mut20 involves residues 235 -239 where the sequence MGDRV was changed to M GAAV and is not a focus of this study; however it provides further evidence that the inte raction between Glu683 and Arg238 may be responsible for the phenotype of this capsid mutant. The alignment of several parvovirus capsid prot eins for this region are shown in Table 313. For the other parvoviruses in the table, residue 681 is a charged residue, with the exception of Porcine Parvovirus which has a neutral residue in that position. It should be noted that while AAV has an acidic negatively charged residue for residue 681, MVM and CPV have a basic positively charged residue. For residue 682, all of the parvoviruses listed have an aliphatic residue. Both MVM and AAV have a charged resi due for residue 683; although, as with residue 681, AAV utilizes an acidic negatively charged re sidue at that position, while MVM utilizes a basic positively charged residue at that positi on. CPV has an aliphatic residue at that position,

PAGE 77

77 while Porcine Parvovirus has a neutral residue at th at position. So for residue 683, there is quite a bit of variability among pa rvoviruses at that position. As discussed in Chapter 2, data for MVM i ndicates that trimers are the intermediate subunit of assembly. Conventional nuclear localization sequences have been described in the Nterminal unique region of VP1 for MVM, as we ll as for AAV2. The major capsid protein, VP2 for MVM or VP3 for AAV does not possess these Nterminal sequences. In theory, parvoviruses are small enough with a capsid diam eter of approximately 25 nm to traverse the nuclear pore complex intact. It is unclear wh ether structural protei n subunits are assembled prior to traversing the nuclear pore complex or whether the structur al protein subunits are transported across the nuclear pore complex for capsid assembly inside the nucleus. For MVM, it has been shown that when singly expressed in transfec ted cells, VP1 and VP2 were able to enter the nucleus; although only VP2 assembled into capsids, which suggest ed that both VP1 and VP2 have nuclear localization signals (NLS) whose act ivity is independent of capsid assembly [90]. Lombardo, et al. [91] showed that for MVM, singly expresse d VP2, as well as VP1/VP2 oligomers target the nucleus by a structural nonconven tional nuclear localizat ion motif (NLM), which is located in the I strand, one of the 8 -barrel structural motifs that are conserved for parvoviruses (Chapter 2, Figure 2-1). For AAV, Ruffing, et al. have shown that there is also c ooperativity in nuclear transport [66]. Lombardo, et al. [91] have shown that the MVM capsi d proteins interact cooperatively in the cytoplasm to pass thr ough the nuclear pore complex. The sequence 528KGKLTMRAKLR538 near the C-terminus of VP2 in MVM is a nonconventional nuclear localization signal. For MVM, it has been suggested that the I conformation is necessary for proper protein folding of VP2 and assembly of tr imeric intermediates. Inactivation of the NLM through mutations resulted in onl y VP1 containing trimers being able to translocate into the

PAGE 78

78 nucleus. Functional NLMs depend on a correct three-dimensional protein conformation. For AAV2, the sequence KGKLTMRAKLR is not presen t in the C-terminal region of VP3; however, an alignment of the MVM capsid pr otein with the AAV2 capsid protein sequence reveals that this is the location of the mutations introduced in Mut46. This further supports the suggestion that the phenotype of Mut46 is the result of imprope r protein folding which disrupts the intrastrand hydrogen bondi ng interactions of the -sheet, which also may result in a defect in protein trafficking through the nuclear pore co mplex. Other mutations introduced into Mut46 by Wu et al. [89], such as a serine substituti on at amino acid position 682 (Mut46subser15), and a FLAG substitution at amino acid position 682 (Mut46s ubflg11) also resulted in a noninfectious, no capsid phenotype. Methods for Mutant Studies The capsid mutants were evaluated biochemi cally in an effort to determine their properties with respect to capsid assembly and packaging. DNA for the mutant AAV capsids was transfected and analyzed in an attempt to isolate and identify an assembly intermediate. For AAV, isolating an intermediate of assembly is complicated due to the requirement of a helper virus such as adenovirus for production of AAV. Adenovirus assembly is known to proceed via pentameric intermediates and hexon and penton prot eins isolated from AAV preps can easily be mistaken for pentameric AAV intermediates by electron microscopy. Baculovirus produced AAV vectors do not require a helper virus; however the baculovirus protei ns that are providing the helper function for AAV produ ction have not yet been elucidated and few antibodies are available for baculovirus proteins (anti-gp64). The method developed and described in Chapter 5 for AAV Capsid Serotype Identification (AAV-CSI) will be useful for verifying and validating that the assembly intermediate isolated is an actual AAV intermediate and not a contaminating subunit from the helper virus used to produce th e AAV. Of the capsid mutants described here,

PAGE 79

79 the temperature sensitive mutant, Mut33, provides the best opportuni ty for isolating an assembly intermediate since it is able to assemble into capsids at the permissive temperature, and once assembled has been shown to remain intact after cesium gradients. For transfections, nearly confluent HEK 293 cells were split 1:3 the day before the transfection so that they could reach 70% confluency the next da y. Mutant capsid proteins were produced by triple-transfecting HEK 293 cel ls with pIM45, UF5, and XX6 by Calcium Phosphate precipitation. The UF5 v ector contains the gene for GFP, flanked by the AAV ITRs. XX6 contains the Adenovirus helper genes requ ired for AAV replication. pIM45 contains the AAV rep and cap genes. pIM45 was used to genera te baseline data for wild-type capsids and serves as a control for these expe riments. For the transfection, fl asks were transfected at 37 C, using the calcium phosphate mediated DNA transf ection protocol and incubated at 37 C. The capsid mutants were built into the pIM 45 backbone [89]. To generate the mutants, HEK 293 cells were transfected with the pI M45 mutant plasmid (Mut19, Mut24, Mut26, Mut33, or Mut46), and UF5 and XX6. For the temper ature sensitive mutants, Mut26 and Mut33, transfections were done at 32 C, 37 C and 39.5 C. At 60 hours the cells were harvested by cen trifugation at 1,140 x g for 10 minutes. The supernatant was removed and the pellets were resuspended in lysis buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.5). The virus was subjecte d to 3 cycles of freezing and thawing. The resuspended pellets were frozen in an ethanol dr y ice bath, and then thaw ed at 37 C. During the 3rd thaw, the crude lysates were treated with Benz onase at a final concentr ation of 50 U/ml at 37 C for 30 minutes to degrade DNA that is not encapsidated. Crude lysa tes were clarified by centrifugation at 3,700 X g for 20 minutes to rem ove the cellular debris. The supernatant was collected and an aliquot of the lysate was flas h frozen and stored at -80 C. The lysate was

PAGE 80

80 subject to cesium chloride gr adients, AAV fractions were iden tified based on refractive index on cesium chloride. These fractions were dialyzed and analyzed by green cell assay on C12 cells [92]. Additional methods of production were explor ed by co-transfecting pIM45 or the pIM45 based mutant plasmid and UF5, followed by infec ting the cells with adenovirus to provide the helper function. The temperature sensitive phenotype was still present when using adenovirus to supply the helper function. This production me thod was evaluated because other investigators [64] have used this method for their temperature sensitive mutant studies. Briefly, flasks were transfected for 5-7 hours and then infected with adenovirus (MOI=2) and incubated at 32 C, or 37 C or 39.5 C. Plat es were incubated for 48 to 60 hours and cells were harvested by aspirating them off the cell surface. Cells were pelle ted by centrifugation. Pellets were resuspended in 30 mls Lysis buffer. The cell lysate was prepared by repeated freeze thaw cycles of the cell pellet. The lysate was brought to 25% with Ammonium sulfate in an oakridge tube and a 25% ammonium sulfate precipation was performed. This was incubated on ice for 1 hour, then centrifuged 10 minutes at 5000 x g (8000 rpm). The s upernatant was transferred to new oakridge tubes and brought to 50% satu ration with ammonium sulf ate to precipitate rAAV and adenovirus. These were incubated on ice for 1 hour and then centrifuged for 20 minutes at 12,000 X g (12,000 rpm). After removing the supernat ant, pellets were centrifuged one more time for 5 minutes at 5000 X g (8,000 rpm) a nd residual liquid was removed. This pellet contained AAV and Ad and was diss olved in 1.37 g/ml CsCl. Cesi um gradients were setup and underlayed with 1.5 g/ml CsCl. Centrifuga tion was performed for 36 hours at 288,000 X g (41,000 rpm). The CsCl gradient was dripped and fractions were collected. Refractometry was

PAGE 81

81 performed on the fractions. Positive fractions were dialyzed into column buffer to prepare the samples for heparin chromatography. Virus was puri fied on a heparin column and fractions were collected. Green cell assays were performed on the column fractions. Mut33 that formed capsids at the permissive temperature we purified by heparin chromatography; however, Mut33 produced at the non-permissive te mperature, did not bind to th e heparin column. This could occur for a number of reasons in addition to the possibility that this mutant may form pentamers at the nonpermissive temperature. Images of the tranfected cells at 32 C, 37 C and 39.5 C for Mut33 and pIM45 contols are shown in Figure 3-23. This da ta shows that the transfection efficiency is similar under the conditions described. Green cell assays at 32 C and 37 C of the cell ly sate was performed for each of the conditions. Cells tran sfected at 32 C were lysed and the infectivity assay was performed at 32 C and 37 C. As shown in Figure 3-24, virus wa s produced under these conditions. Images of the transfections at 37 C prior to harvest are shown in Figure 3-25. The green cell assay after transfec tion at 39.5 C is shown in Figure 3-26. For pIM45 virus is produced, but for Mut33, no virus is produ ced at the nonpermissive temperature. Studies of Mut33 have been ongoing, as Mut 33 may provide the best opportunity for the isolation of a potential pentameric assembly in termediate for AAV-2 that will be useful as a substrate in an in vitro assembly assay. One issu e with developing an in vitro assembly assay is the substrate that is used as the starting material. One cannot be certain that th e intermediate isolated for use in developing an in vitro assemb ly assay is not a dead-end product of assembly. If the substrate is a dead-end product of assembly then regardless of the conditions tested, those subunits will never be able to be built into a macromolecular capsid. For Mut33, the ability to produce capsids at the permissive temperature but not at the nonpermissive temperature may

PAGE 82

82 suggest that these intermediates, if they can be isolated may be ab le to be subjected to conditions that will allow for an in vitro assembly assay. This would be useful in sh edding light on the role that the nonstructural Rep protei ns play in AAV capsid assembly. Based on available data on assembly and packaging, with DNA packaging occu rring at the 5-fold axis of symmetry, the nonstructural Rep proteins could play a stabilizing role at the weak 2-fold axis of symmetry and it is also possible that these weak interactions allow for structural changes to occur in the capsid during the virus life cycle while the capsid integrity is mainta ined by the stronger interactions at the 3-fold and 5-fold axis of symmetry. Figure 3-23. Transfection of Mut 33. Cells were transfected with either pIM45 and UF5, or Mut33 and UF5, and infected with adenoviru s at an MOI = 2 at either 32 C, 37 C, or 39.5 C. Transfection efficiencies were similar under all conditions. Panel A. Mut33 transfection at 32 C. B. Mut 33 tr ansfection at 37 C. C. Mut33 rransfection at 39.5 C. D. pIM45 transfection at 32 C. E. pIM45 transfection at 37 C. F. pIM45 transfection at 39.5 C. 32 C 37 C 39.5 C Mut33 pIM45 Transfection A B C D E F

PAGE 83

83 Figure 3-24. Green cell assay of transfections at 32 C. Lysates were prepared from the cells transfected in Figure 3-23 and a green cell assay for infectivity was performed at 32 C, or 37 C. A. Green cell assay at 32 C of Mut33 produced at 32 C. B. Green cell assay at 37 C of Mut33 produ ced at 32 C. C. Green cell assay at 32 C of pIM45 produced at 32 C. D. Green cell assay at 37 C of pIM45 produced at 37 C. Mut33 32 C Tnf Green Cell Assay Infectivity Data Transfections at 32 C pIM45 32 C Tnf 453232 333232 333237 32 C Inf 37 C Inf A B C D 453237

PAGE 84

84 Figure 3-25.Transfections at 37 C. Green cell assa y of transfections at 37 C. Lysates were prepared from cells transfected at 37 C and a green cell assay for infectivity was performed at 32 C, or 37 C. A. Green cell assay at 32 C of Mut33 produced at 37 C was not performed. B. Green cell assay at 37 C of Mut33 produced at 37 C. C. Green cell assay at 32 C of pIM45 produced at 37 C. D. Green cell assay at 37 C of pIM45 produced at 37 C. 453732 333737 Mut33 37 C Tnf Green Cell Assay Infectivity Data Transfections at 37 C pIM45 37 C Tnf 32 C Inf 37 C Inf B C D 453737

PAGE 85

85 Green Cell Assay for Infectivity Figure 3-26. Green cell assay afte r transfection at 39.5 C. Green cel l assay of transfections at 39.5 C. Lysates were prepared from cells transfected at 39.5 C and a green cell assay for infectivity was performed at 32 C, or 37 C. A. Green cell assay at 32 C of Mut33 produced at 39.5 C. B. Green cell a ssay at 37 C of Mut33 produced at 39.5 C. C. Green cell assay at 32 C of pIM45 produced at 39.5 C. D. Green cell assay at 37 C of pIM45 produced at 39.5 C. E. Image of cells after infec tion with Mut33 that was produced at 39.5 C and incubated at 32 C. 4539537 4539532 3339537 Mut33 39.5 C Tnf pIM45 39.5 C Tnf 32 C Inf 37 C Inf A B C D Transfections at 39.5 C 3339532 3339532 E

PAGE 86

86 CHAPTER 4 STUDIES OF THE AAV CAPSID IN SOLUTION Introduction Proteolytic structural mapping The three-dimensional struct ure of several autonomous parvoviruses [53, 93, 94], plus t hose of AAV-2 [48], AAV-4 [50] and AAV-5 [51], have been determined by X-ray crystallography or cryoelect ron microscopy (cryo-EM). Several features of the virus cannot be determined based on the cr ystal structure. For example, the unique Nterminus of VP1, as well as the unique N-term inus of VP2, are not present in the crystal structures of AAV. This is likely due to the f act that these monomers are present in the AAV capsid in low abundance, (~5 copies each), and icos ahedral averaging is used to solve the crystal structure. In addition to bei ng present in low abundance, as discussed in Chapter 2, the Nterminus of VP1 and VP2 may be disordered in assembled capsids which would preclude crystallographic structure dete rmination of these regions. In the near future, customized AAV gene ther apy vectors may consist of modified capsids that allow for specific targeting to treat patients with various diseases. The 3D structures of the AAV capsids will provide a basis fo r rational vector design, however, the 3D structures available for autonomous parvoviruses and dependoviruse s only provide a snapshot of the capsid topology in a low energy conformation. Our knowle dge about the AAV viral capsid structure in solution is limited; however, this structure must be dynamic to carry out the various functions required for viral attachment and entry, as well as trafficking within the cell. AAV-2 has been shown to utilize heparin sulfate proteoglycan as a cell surface receptor, and the specific amino acid residues involved in this inte raction have been mapped to basi c amino acids at the three-fold axis of symmetry on the capsid surface, includi ng R585 and R588 [95, 96]. Studies of the AAV capsid proteins have shown that the unique N-terminus of VP1 is required for infectivity [69].

PAGE 87

87 Cryo-EM studies have shown that the unique N-term inus of VP1 is internal to the capsid based on additional density at the 2-fo ld axis of symmetry [97]. In vitro upon heat treatment of AAV capsids, it has also been shown that this regi on can be externalized. Mutagenesis experiments have shown that this externalizat ion occurs through the pore at the 5-fold axis of symmetry [70]. The high resolution x-ray crystallography data is unable to address these dynamic changes which must occur as part of the virus life cycle. For several viruses, peptide mapping has been us ed to address structural changes that occur in solution. Peptide mapping was first used in 1979 to study the majo r capsid protein of bacteriophage T4 [98]. Since this study, peptide mapping has b een utilized to study the capsid structure of DNA viruses, such as herpes virus, and canine parvovirus, as well as for many RNA viruses, such as reovirus, rotavirus, vescicular stomatitis virus, influenza virus and tetraviruses. Peptide mapping has been utilized to demonstrate that certain amino acids are surface associated. In addition, peptide mapping has been utilized to evaluate dynamic structur al changes that occur in the capsid. In this study, peptide mapping of the AAV virion is developed as a tool for identifying regions of the AAV capsid that are flexible, accessible, a nd surface associated. Mapping of these regions of the capsid may provide a valuable tool for predicting locations on the capsid surface that can tolerate insertions, which may be useful for improved targeting of AAVserotypes. With 11 known AAV serotypes and up to 100 genotypic va riants, this method may provide a starting point for identifying locations on the capsid to mutate, especially if the crystal structure is not available. Trypsin digestion of AAV-2. Historically, AAV has been shown to be remarkably stable and generally resistant to pr oteases [99]. However, occasio nally, AAV-2 vector preps had additional protein bands when analyzed for pur ity when assayed on polyacrylamide gels and

PAGE 88

88 stained. To determine if these additional bands were degradation products or smaller proteins that co-purified with the AAV stru ctural proteins, a western blot was performed and probed with polyclonal antibody to AAV-2. This is shown in Figure 4-1. This assay verifies that the fragments are degradation products of AAV-2 that co-purified with the intact virus. The classical method for purifying AAV-2 vectors in cluded using trypsin, deoxycholate and the performing cesium chloride gradients followed by heparin chromatography. To determine if trypsin was responsible for the additional band s, AAV2-GFP vector virion s were produced as described in the materials and methods and digest ed with trypsin. For proteolyic mapping of the AAV-2 capsid, several antibodies are available that detect various regions of the AAV capsid proteins [65, 100]. The B1 antibody epitope is on the C-terminal end of the capsid protein, and is primarily internal at the 2-fold ax is of symmetry in assembled capsids. This antibody is useful in detecting denatured AAV proteins and the epitope is highly conserved among the AAV serotypes. A1 antibody recognizes the unique N terminal region of VP1, while the A69 epitope is in the N-terminal region of VP2 for AAV-2. Polyclonal antibodies have been produced to AAV2 capsids, as well as other serotypes. Figure 42 is a western blot of AAV2-GFP digested with trypsin as described in the mate rials and methods. Odd lanes (lan e 1, 3, 5 and 7) are undigested AAV2-GFP. Even lanes (lane 2, 4, 6 and 8) have been digested w ith trypsin. Lanes 1 and 2 are probed with polyclonal antisera to AAV-2 resulting in the detection of two digestions products at ~40 kDa, and a smaller 15 to 20 kDa fragment. La nes 3 and 4 are probed with B1. This shows that the smaller 15 to 20 kDa frag ment is derived from the C-terminal region that is common to all three of the structural proteins, VP1, VP 2, and VP3. This fragment was named VP1,2,3T. The ~40 kDa N-terminal fragment is not detectable since the N-terminal fragment no longer harbors the B1 epitope. This fragment was designate d VP3T. Lanes 5 and 6 are probed with A69

PAGE 89

89 Figure 4-1. Western blot of se veral AAV-2 preps. Lane 1 AAV-2 standard. Lane 2 AAV-2 sample. Lane 3 AAV-2 sample. Lane 4 AAV-2 sample. Using polyclonal antibody, AAV fragments are detectab le in the sample lanes. antibody. This detects the unique N-terminal re gion that is common in VP1 and VP2. Lane 6 shows that upon cleavage with trypsin there is a unique fragment th at runs just smaller than VP3. A69 does not recognize VP3, so this fragment is the result of a C-terminal trypsin cleavage event that results in the N-terminal fragment shifting in size after proteolysis to approximately 50 kDa. This fragment was designated VP2T. Lanes 7 an d 8 are probed with A1 antibody. Lane 8 shows a shift after proteolysis in the size of VP1. Because it is detectab le by A1 and the epitope for the antibody is on the N-terminus of VP1, this fr agment was designated VP1T. Figure 4-2 also shows a diagram of the approximate locations of the epitopes for the various antibodies to the AAV structural proteins, as we ll as and arrow which indicates the trypsin cleavage site. Fine mapping of the trypsin cleavage site. Trypsin cleavage sites of AAV-2 VP1 were determined using the program Peptide Cutter on the ExPASy server (www.expasy.org ). Based on the potential basic residues wher e trypsin can cleave, these sequences were entered into the program Peptide Mass on the ExPASy server and the mass of each trypsin fragment was determined. This is shown in Table 4-1. Theoreti cal prediction of trypsin sites in the capsid G-H loop [48], comprising amino acid residues 416 to 645, and fragment masses for AAV-2 100 kDa 75 kDa 50 kDa 37 kDa 25 kDa 250 kDa 150 kDa 20 kDa 1 2 3 4

PAGE 90

90 Figure 4-2. Tryptic mapping of full AAV-2 cap sids. Purified full AAV-2 virions (FT/iodixanol/Heparin) were tr eated with trypsin, and the cap sid proteins were probed with the indicated antiAAV antibodies (AAV-2 polyclonal, A1, B1, A69). The epitope locations of the monoc lonal antibodies and the likely trypsin digestion site are indicated on the schematic diagram. A, AAV-2 full capsids; B, AAV-2 full capsid digested with trypsin for 24hours. The assi gnment of the tryptic fragments are given on the right. VP1T is the digestion product of VP1, VP2T is the digestion product of VP2, VP3T is the digestion product of VP 3, and VP1,2,3T is the common C-terminal trypsin digestion product of VP1, VP2, and VP3. VP1 indicated that trypsin digestion at amino acid R566, R585, and R588 would produce fragments of 18.8, 16.8, and 16.4 kDa, respectively, wh ich are within the ra nge expected for the VP1,2,3T C-terminal fragment th at is recognized by B1 antibody (Figure 4-2, lane 4). The mass of this fragment was confirmed to be 16,461 Da by matrix-assisted laser desorption/ionization

PAGE 91

91 time-of-flight mass spectroscopy (M ALDI-TOF) analysis, which is close to the theoretical mass of the C-terminal peptide that results from cleavage at R588 (Tab le 4-1). The R588 tryptic site was confirmed by N-terminal se quencing, which mapped residues 589QAATADVNTQGV600 as the terminal peptide for the VP1,2,3T fragment. Table 4-1. Predicted AAV VP1 tryptic fragment mass from cleavage in the G-H loop. Trypsin cleavage sites of AAV-2 VP1 were determined using the program Peptide Cutter found on the ExPASy server (www.expasy.org ). Based on the sites where trypsin cleaves, these sequences were entered into the program Peptide Mass on the ExPASy server and the mass of each trypsin fragment was determined. Fragment Average Mass (Da) Peptide VP1 81944.65 All Cys in reduced form 1 549 61112.40 VP1 start to 549 137 549 45757.24 VP2 start to 549 203 549 39231.12 VP3 start to 549 550 735 20850.26 C terminal end 1 556 61912.28 VP1 start to 556 137 556 46557.12 VP2 start to 556 203 556 40031.00 VP3 start to 556 557 735 20050.38 C terminal end 1 566 63128.65 VP1 start to 566 137 566 47773.49 VP2 start to 566 203 566 41247.37 VP3 start to 566 567 735 18834.01 C terminal end 1 585 65176.85 VP1 start to 585 137 585 49821.69 VP2 start to 585 203 585 43295.57 VP3 start to 585 586 735 16785.81 C terminal end 1 588 65504.19 VP1 start to 588 (VP1T) 137 588 50149.03 VP2 start to 588 (VP2T) 203 588 43622.91 VP3 start to 588 (VP3T) 589 735 16458.47 C terminal end (VP1,2,3T) 1 609 67743.68 VP1 start to 609 137 609 52388.52 VP2 start to 609 203 609 45862.40 VP3 start to 609 610 735 14218.98 C terminal end

PAGE 92

92 Trypsin-Treated Virons Remain Intact. The presence of tryptic fragments in the AAV2GFP vector preps indicated that the cleaved pro ducts remain tightly associated with the capsid, as these fragments are still present after virions are subjected to cesium chloride gradients. The buoyant density of these capsids are ~1.40 g/cm3, indicating a protein and DNA composition that is similar to other vector preps. The value is slightly less than the de nsity of wt AAV-2 (1.41 1.45 g/cm3) because the rAAV2-GFP vector is sma ller (4331 nucleotides) than the wt AAV genome (Genbank AF043303). Figure 4-3A shows Nega tive-stain EM analysis of the trypsintreated and untreated purified rAAV2-GFP samples. This confirmed the intact nature of the treated capsids (Figure 4-3A). However, the ne gative staining pattern suggested a difference between the samples in their permeability to ur anyl acetate, indicating a possible structural rearrangement or flexibility due to the cleavage event. Antibodies, such as A20, are available that recognize conformational epitopes that are present only on assembled capsids for AAV-2. Na tive immuno-dot blot analysis with the A20 anti-capsid antibody showed that virions remain intact following 24 hours of trypsin digestion. Figure 4-3B is a native immuno-dot blot of AAV2-GFP virions that have been digested with trypsin in a time course experiment for the vari ous times indicated. Control samples were heated at 65C or 75C for 30 minutes. Previously, it had been shown that treating AAV-2 65C, capsids were still intact and rec ognized by A20, but that at 75 C, capsids are no longer intact as shown by a loss of signal when probed with A20. An immunodot bot was also performed after exposing AAV2-GFP to SDS and Methanol (MeOH) This is shown in Figure 4-3C. AAV-2 virions were digested with trypsin for 5 hours or 12 hours (T5 and T12) and treated with 0.1% SDS and 20% MeOH for 2 hour s at 37 or 45 C, transferred to n itrocellulose and probed with B1 antibody. The B1 epitope was not recognized until th e virions were trpsini zed and treated with

PAGE 93

93 Figure 4-3. Trypsinized AAV-2 viri ons remain intact. A. Elect ron microscopy. Negative stain electron micrographs of untreated rAAV2 -GFP capsids (F-T/iodixanol/Heparin) or trypsin-treated rAAV2-GFP virions. The sa mples were viewed on a Hitachi H-7000 transmission electron microscope at 30,000X magnification. Each high-powered insert is 70,000X. B. Immuno dot-blot. rAAV2-GFP virions were digested with trypsin and samples were taken at the i ndicated time points (hours). An immuno dotblot was performed on undigested sample (T 0), as well as sample digested for 1, 5, 12, or 24 hours with trypsin (T1, T5, T12, T24, respectively). Duplicate samples were probed with either A20 or B1 antibodi es. Also included are native virions heated at 65oC or 75oC for 30 minutes, treatments that are known to expose the B1 epitope [70]. C. Immuno dot-blot with SDS and MeOH. To mimic the Western transfer conditions, AAV-2 virions (T0) were digested with trypsin for 5 and 12 hours (T5 and T12, respectively), and treated with 0.1% SDS and 20% MeOH for 2 hours at 37oC or 45oC, transferred to nitrocellulo se, and probed with B1 antibody. Not treated Trypsin treated

PAGE 94

94 SDS and MeOH at 45 C. Undigested control viri ons treated with SDS and MeOH at 45C, and trypsinized virions treated w ith SDS and MeOH at 37 C we re not detectable by the B1 antibody. This data indicates that th e digested AAV-2 capsids appear intact by EM, buoyant density on cesium chloride gradients, as well as A20 nativ e dot blot analysis. The internal disposition of the majority of the C-terminal proteolytic fr agment (~70% of residues 589 735, Figure 4-7) ensures that the fragment remains associated with the capsid in 3.3 M CsCl during purification, as well as in 0.1% SDS and 20% MeOH used in the immuno-dot blot (Fig ure 4-3C), and during heparin chromatography. However, heating the tryps inized virions in the presence of 0.6M DTT for mass spectroscopy and N-terminal sequencing, or heating in the presence of SDS and reducing agent for denaturing ge l electrophoresis was able to dissociate the VP1,2,3T fragment from the core capsid. Since no cysteine residue s are found in the VP1,2,3T C-terminal fragment, the interaction of this fragment with the capsi d is due to non-covalent interactions that are disrupted when the capsid structure is de natured by heat and reducing agent. The crystal structure of AAV-2 did not show a break in the polypeptide chain at position R588. This suggests that the majority of the 60 R588 sites remain uncleaved by the mild trypsin treatment used during the purifica tions reported here, and for sample s used for crystallization of AAV-2, which generated the additional bands observe d in Figures 4-1 and 4-2. The capsids thus maintain the properties and structure of the nativ e virus while in the crystalline state but appear to have increased flexibility as shown by differe ntial staining in EM, and exposure of the B1 epitope in the presence of SDS and MeOH at 45C (Fig. 4-3C). However, for future studies, it may be prudent to avoid incor porating proteases into AAV purifi cation schemes for structural studies or gene therapy applica tions where proteolysis may not onl y alter the caps id structure,

PAGE 95

95 but also chromatographic propertie s and vector potency. In retros pect, the use of trypsin during purification of rAAV-2 vectors and the heat inactivation of the helper adenovirus at 56oC, which can expose the N-terminus of AAV VP-1 [70], ma y have been responsible for the low vector titers and low transduction effici encies obtained during the initial evaluations of this vector system. Proteolytic digestion can distingu ish genome-full and empty capsids To determine if genome-full (ie. virions) and empty capsids can be distinguished by proteolysis, purified full rAAV2-GFP virions and empty AAV-2 capsids were digested with trypsin. Similar to the differential proteolytic sensitiv ity reported for members of th e autonomous parvoviruses [101], the full and empty AAV-2 capsids differed in their sensitivity to trypsin cleavage (Figure 4-4). The unique proteolytic fragment (VP2T) deri ved from VP2 of the full capsids was seen migrating slightly ahead of VP3 when probed with the polyclonal sera (Fig. 4-4A, lane 2) or the A69 monoclonal antibody (Fig. 4-4A, lane 10), bu t was not observed in the digested empty capsids (Fig. 4-4A, lanes 3 and 11) In addition to the absence of the VP2T fragment in empty capsids, full length VP2 was not de tected, indicating complete diges tion of this protein (Figure 44A, lanes 3 and 11). A trypsin digestion timec ourse showed that VP2 and the VP2T fragment are more sensitive to digestion in empty capsids compared to full capsids (Figure 4-4B). During the time course, less VP2T is seen in empty capsids than full capsids, and by 12 hours VP2T is not detected in empty capsids, whereas the VP2T fr agment is still detected in full capsids even after 24 hours of digestion, as seen in Figure 4-4A. Chymotrypsin, with a different cleavage site sp ecificity (W, F, Y, M, L) than trypsin, was also able to differentiate between the full rAAV2-GFP capsids and the AAV2 empty capsids (Figure 4-4C). The empty capsids were digested more rapidly than full capsids, as observed with

PAGE 96

96 trypsin treatment, but with this pr otease all of the VPs were dige sted within 2 hours to fragments that were either too small to be resolved by 10% SDS-PAGE or recogn ized by polyclonal sera (Figure 4-4C). Comparison of the proteolytic susceptibility of full and empty AAV-2 capsids indicated that there are recognizab le structural differences between these capsids in solution that involves VP2 (Figure 4-4). This may be due to stabilization of the capsid by packaged DNA, in addition to different conformations of the capsi d surface loops. In addition, the AAV-2 VP1 and VP2 N-termini become accessible in full particles at 65oC, as A69 and A1 antibody reactivity is seen in the 110S (full) virus sp ecies but not in empty capsids [65, 70]. It is also interesting to note that Bleker et al. [85] were able to cleave the N-termini of AAV-2 VP1 with trypsin following heating of full capsids resulting in a fragment that maintained the A69 and B1 antibody epitopes. Since we do not detect the VP 2 or VP2T bands following digestion of empty capsids, trypsin digestion for 24 hours may degrade the VP2 protein to the point where it is not recognized by either the polyclona l, B1, or A69 antibodies. A lternatively, the cleavage of both the VP2 Cand N-termini of empty capsids may re sult in a fragment that is indistinguishable from VP3T. Since differences in the parvoviru s capsid surface, consisting of the overlapping capsid protein region, is i ndistinguishable in full and empty cap sid structures determined using X-ray crystallographic or cryo-EM techniques (except for differen ces in internal regions that contact ordered DNA) [57, 58], the use of proteoly sis and specific antigenic mapping of cleavage products provides a means to distinguish thes e species in solution. In addition, proteolytic distinction between full and empty capsids can be used in conjuction with quantitative methods used to determine full and empty capsid ratios [102]. Proteolytic digestion can distinguish AAV serotypes. To further confirm that R588 is the only specific site on the AAV-2 capsid su rface susceptible to tr yptic cleavage during

PAGE 97

97 Figure 4-4. Proteolysis distinguis hes full and empty AAV-2 particles. A. Trypsin. Purified full (F-T/iodixanol/heparin) and empty AAV-2 cap sids were treated with 0.02% trypsin, and the capsid proteins were probed with th e indicated antibodies (AAV-2 polyclonal, A1, B1, A69). Lanes A, AAV-2 full capsids; lanes B, AAV-2 full capsids digested with trypsin for 24 hours; lanes C, AAV-2 em pty capsids digested with trypsin for 24 hours; lanes D, AAV-2 empty capsids. B. Trypsin time course. Purified full (FT/iodixanol/heparin) and empty AAV-2 virions were treated with trypsin for the time (hours) indicated above each lane and probe d with anti-AAV2 polyclonal antisera. C. Chymotrypsin time course. Purified full (F-T/iodixanol/heparin) and empty AAV-2 capsids were treated with chymotrypsin for the time (hours) indicated above each lane and the capsid proteins were probed with anti-AAV2 polyclonal antisera.

PAGE 98

98 proteolysis, we compared the suceptibility of rAAV1-GFP, rAAV2-GFP, and rAAV5-GFP virions to proteolytic cleava ge (Fig. 4-5A). AAV-1 provi ded an example of a highly homologous serotype to AAV-2 (83%) that doe s not contain R588 a nd AAV-5 provides an example of a less homogolous (59%) serotype to AAV-2 (Figure 4-5B). As seen in Figure 4-5A, AAV-1 and AAV-5 are resistant to trypsin digest ion after 24 hours of incubation, even though AAV-1 VP1 has 65 potential cleavage sites and AAV-5 VP1 has 60 potential cleavage sites; further supporting the iden tification of R588 as the specific tr ypsin cleavage site in AAV-2. The lack of trypsin digestion of AAV1 at other possible tryptic sites w ithin the C-terminal stretch of VP amino acids, for example, K567, R610, and K621 was not unexpected because of the lack of AAV-2 digestion at the equivalent locatio ns, R566, R609, and K620 (Figure 4-5B). A difference in the susceptibility and se nsitivity of the AAV1-GFP, AAV2-GFP, and AAV5-GFP virions to proteolytic cl eavage was also evident from digestion with chymotrypsin. Chymotrypsin digestion of AAV-2 (Figure 4-5C) ge nerated similar fragments to those seen with trypsin treatment (Figure 4-5A) and a novel 27 kDa fragment was de tected by polyclonal antisera at 5 hours that was not B1 an tibody reactive. AAV-1 was more resistant to chymotryptic cleavage compared to AAV2, with all fragments of AAV-2 being undetectable, except for the Cterminal 18kDa fragment, at 24 hours. Five Cterminal AAV-1 fragment s were generated at 12 hours, ranging in size from 30kDa to 50kDa, that are recognized by polycl onal sera; two of these fragments harbor the B1 antibody epitope, with the 30kDa fragment as the most C-terminal fragment (Figure 4-5C). Base d on primary sequence, chymotryps in is expected to cleave denatured AAV-1 VP1 148 times and AAV-2 VP1 145 times, but as shown, only a limited number of cleavage sites are ac cessible. Additionally, AAV-5 with 139 potential cleavage sites was not cleaved by chymotrypsin (Figure 4-5C). The proteolytic data was confirmed by

PAGE 99

99 AAV Serotype Position2 1 3 4 5 6 7 8 910 11A 556 K N N T N N N D K S N Q 566 R K R A Q K R K K K A R 585 R S S S S S A Q S Q N S 588 R T T N T T T T A T T T 609 R R R R R R R R R R R R 620 K K K K K K K K K K K K Figure 4-5. AAV-2, AAV-1 and AAV5 capsids can be distinguish ed proteolytically. A. Trypsin time course. Purified AAV-1 (F-T/iodixanol/Q), AAV-2 (FT/iodixanol/heparin), and AAV-5 (F-T/iodi xanol/Q) virions were incubated at 37oC without trypsin (0), or treated with 0.02% trypsin for the time ( hours) indicated above each lane. The capsid proteins of AAV-1 and AAV-2 were probed with anti-AAV2 polyclonal and AAV-5 was probed with anti-A AV5 polyclonal sera. B. Alignment. Amino acid alignment of the G-H loop [50] region 556-620 of AAV serotypes 1 to 11 and Avian AAV. Arginine or Lysine (R or K) residues, the target residues for trypsin, are shown in blue. Amino acid position numbering is based on VP1 of AAV2. correlating the effect of digestion on infectivity (Figure 4-6) where the infectious titers of the vectors following 24 hours of digestion with tr ypsin or chymotrypsin resulted in AAV-2 losing 3-4 logs of infectivity, but AAV-1 and AAV-5 lost less than 1 log, indicating that chymotrypsin cleavage of AAV-1 is at a site(s) less important for infectivity. The predictive power of the

PAGE 100

100 primary sequence and 3D structuredata was limited with respect to identify ing protease cleavage sites on AAV intact capsids. Numerous potential trypsin and chymotrypsin cleavage sites exist in the AAV-1, AAV-2, and AAV-5 VP1 primary sequen ces, but access to these sites could be dictated by their stable or transient presence on the virion surface. In some cases, surface loops in solution may not be exactly positioned as in the 3D structures. Analysis of the primary sequence of AAV-1, AAV-2, and AAV-5 predicted numer ous tryptic and chymotryptic sites, but the actual proteolysis generated a pattern of produc ts resulting from cleavage at specific sites. In addition, a search for the position of K and R re sidues on the AAV-2 crystal structure and a 3D model generated for AAV-1 showed residues, other than R588 in AAV-2, believed to be accessible on the capsid surface that were not clea ved (Figure 4-7A and B), which may be due to inaccessibility or steric hindrance in solution. Proteolytic analysis compleme nts 3D-structure analysis. The available crystal structure of AAV-2 [48] and homologous VP3 models, generated for AAV-1 and AAV-5 based on a structural alignment with AAV-2 [50], provi ded a means to visua lize the solution data through mapping of the trypsin cleavage site onto the capsid surface (Figure 4-7). The R588 mapped by N-terminal sequencing as the trypsin cl eavage site is located on the capsid surface in the finger-like projections surr ounding the icosahedral 3-fold axis, and forms part of the basic patch that is responsible for AAV2s heparin binding interaction [ 95, 96]. The visualization of AAV-1 and AAV-5 with AAV-2 capsids in this region clearly show ed that the cleavage event was specific, since adjacent basic residues we re not susceptible, and AAV-1 and AAV-5, which do not contain R588, are resistant. The cleaved residue R588 of AAV-2 is located in the G-H loop that protrudes from the capsid surface where it is accessible to hepa rin binding and trypsin cleavage (Figure 4-7). Capsid protein loops, including the G-H loop, are able to tolerate

PAGE 101

101 Figure 4-6. AAV-2, AAV-1, and AAV5 have different susceptib ility to Chymotrypsin. A Chymotrypsin time course. Purified AAV-1, AAV-2, and AAV-5 were incubated at 37oC without chymotrypsin (0) or di gested with chymotrypsin at 37oC for the time (hours) indicated above each lane. The capsid proteins of AAV-1 and AAV-2 were probed with anti-AAV2 polyclonal or B1 antisera, and AAV-5 was probed with antiAAV5 polyclonal sera. The asterisk indi cates an additional AAV-2 band observed with chymotrypsin that was not seen fo llowing trypsin digestion in Fig. 6A. B. Infectivity. Infectious titering of rAAV1-GFP, rAAV2-GFP, and rAAV5-GFP virions was performed following digestion wi th trypsin or chymotrypsin by infecting C12 cells in the presence of Adenovirus (reported as the average SDEV from three separate infections). AAV-1 and AAV-5 inf ect C12 cells less e fficiently than AAV-2 [103]. 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11 0510152025HoursTiter (IU/ml) AAV1 Trypsin AAV2 Trypsin AAV5 Trypsin AAV1 Chymotrypsin AAV2 Chymotrypsin AAV5 Chymotrypsin

PAGE 102

102 Figure 4-7. Capsid structure. A. Capsid mono mer. Ribbon representation of an AAV-2 VP3 monomer (amino acids 217-735) rotated 90o from standard icosahedral orientation. -strands and -helices are represented as arrows and coils, respectively. Small arrows indicate the location of R588 (blue s pheres) and the B1 epitope at the extreme C-terminus (green). The 2-fold (oval), 3fold (triangle) and 5-fold (pentamer) axes are indicated. B. Side view of an AAV-2 VP3 trimer. Amino acids R585 and R588 in the three G-H loops from three VP3 monomers (gray, salmon, wheat) are represented as blue spheres and indicated by arrows.

PAGE 103

103 differences in conformation when the AAV capsid structures are compared [50]. These loops intertwined to form the characte ristic AAV surface protrusions that decorate the core capsid and provide the immunogenic, tropic, and proteolytic determinants. The cleaved AAV-2 C-terminal protein fragment, residues 589 to 735, is able to remain associated with the capsid because thecleavage site is on the outer su rface of a 3-fold protrusion, not part of the core. The eight stranded beta barrel forms the core stable capsi d that remain intact following trypsin cleavage. Of note are the surface accessible R and K residu es in the G-H loop that are common in AAV-1, AAV-2, and AAV-5 (Figure 4-8), but are not cleaved by trypsin. Thus it is possible that proteolytic digestion may be lim ited by steric constraints to th ose residues found on loops that protrude from the surface. Results in solution c onfirm that the region of the G-H loop containing residue R588 is surface accessible as seen in the cr ystal structure, and the presence of heparin is not required for exposure. The B1 epitope (residues 726-733) is located on the wall/floor of the dimple at the icosahedral 2-fold axis of th e AAV-2 capsid, close to a buried stretch of G-H loop amino acids leading up to the tryptic cleavage site (Figure 4-8 I-III). Interestingly, the B1 epitope, found on the thinnest regi on of the AAV-2 capsid, contains residues that are exposed on both the interior and exterior surfaces (Figure 4-8 III ). The isolation of numerous AAV serotypes and genotypic variants [23-26, 104], and the obs ervation that each virus serotype has unique cellular recognition and transduction phenotypes dictated by the capsid protein sequence has generated a need to fully charac terize the capsids of these viru ses, including their structural features. Here we use proteoly tic digestion combined with available information on antigenic epitopes and mass spectroscopy to analyze the AAV capsid in solution. We show that proteolysis is able to generate a characteristic cleavage pattern that can be used to distinguish full

PAGE 104

104 Figure 4-8. AAV-1, AAV-2 and AAV-5 Homology m odels. A. Capsid surface basic amino acids. AAV-1, AAV-2, and AAV-5 capsid surface structures at the 3-fold axis of symmetry w ith the indicated basic amino acids of the salmon reference monomer highlighted in blue. B. AAV-2 VP3 dimer viewed down the 2-fold axis. (I) Polyglycine trace, (II) Surface, and (III) Close-up view of the surface exterior (top) and interior (bottom) of an AAV-2 VP3 dimer (cyan and gray) showing the locations of R588 and the B1 epitope (color scheme as in A, B, and C). The re sidues in the G-H l oop are colored limon and orange in the reference monomer and 2-fold related monomer, respectively. Th e coordinate files used in A-D were based on the X-ray crystallographic st ructure of AAV-2 [48] (PDB accession N o. 1LP3) and homologous models were generated for AAV-1 and AAV-5 using a st ructure-based alignment with AAV-2. Co ordinate files for the homologous models were generated using VIPER [105]. Figures were generated using PyMOL.

PAGE 105

105 from empty AAV-2 capsids and diffe rentiate between two highly homologous serotypes, such as AAV-1 and AAV-2, as well as between less homo logous serotypes (AAV-5). The size and sequence of the proteolytic products in addition to the origin of the products (i.e. VP1, VP2, or VP3) were determined. Furthermore, availa ble structural information enabled the 3D visualization of the location of the AAV-2 cleavag e and B1 antigenic sites on the surface of the virion. Proteolytic analysis has practical applications. AAV-2 is currently being evaluated in a variety of human clinical trials [106] and clinical trials are be ing planned that utilize other serotypes. Prior to use in th e clinic, an important product rele ase test is the confirmation of product identity to comply with current Good Manufacturing Pract ices (cGMP) regulations. Identity release testing involves not only confirmation of the vector genome that is packaged, but also the serotype of the capsid. Since immunologi c reagents generated to one serotype have the potential to cross react with other serotypes, screening diffe rent proteases on different AAV serotypes may generate a capsid fi ngerprint database that could di stinguish the 11 serotypes, as well as the more than 100 genotypi c variants that have been recently isolated [23]. We have shown that the highly homologous AAV1 and A AV2 capsids can be distinguished from each other and from AAV5 by comparing their trypsin and chymotrypsin digestion patterns (Figure 45). An assay capable of distinguishing differe nt serotypes that utilizes the commercially available reagents applied in these studies wi ll be useful to the gene therapy community. In addition, vector targeting has gained a great deal of interest, and is intended to reduce non-specific uptake by non-target organs and increase the efficiency of uptake into target tissue. Cell-specific epitopes and recepto rs have been engineered in to the AAV capsids and have resulted in efficient targeti ng [107-109]. The sites in the AAV capsid sequence that can

PAGE 106

106 accommodate insertions have been identified main ly through mutagenesis studies. In the absence of 3D structure, proteolytic mapping in combin ation with mass spectroscopy and N-terminal sequencing, as is demonstrated in these studies, can identify exposed, flexible loops of the AAV capsid. These regions can be tested for their ab ility to accommodate epit ope/peptide insertions, as has been shown for AAV-2 at R587, see Girod, et al. [109]. The first mutant generated for AAV-8 is an AAV-8 capsid with His residues inse rted after amino acid 590 in the AAV8 capsid protein, which is the region in AAV-8 that is homologous to R587 in AAV2[110]. Having an additional approach to identifying insertion sites in the capsid of any AAV serotype can aid in the generation of new targeting vectors. Viruses and cell lines Full (DNA-containing) rAAV2-GFP vector virions were produced by transient transfection of HE K293 cells, lysed with 0.5% deoxyc holate (DOC), and purified on sequential CsCl density gradient s (designated as DOC/CsCl). Pu rification methods incorporated the use of Benzonase at 50U/ml for 30 minutes at 37oC and additionally utilized a final heparin chromatography step for concentration [111] (d esignated as DOC/CsCl/Heparin). rAAV2-GFP, rAAV1-GFP, rAAV5-GFP vector vi rions were also produced by transient transfection of HEK293 cells, lysed by freeze/thaw, and purified on iodixanol gradients followed by heparin affinity or Q-sepharose chromatography (d esignated as F-T/Iodixanol/Heparin or FT/Iodixanol/Q [111]. Alternatively, rAAV2-G FP and rAAV1-GFP vector virions were purified by freeze/thaw and CsCl gradients followed by hepa rin affinity or Q-sepharose chromatography (designated as F-T/CsCl/heparin or F-T/CsCl/Q). Infectivity of the AAV vectors were assayed on C12 cells in the presence of adenovirus as pr eviously described [92]. Empty AAV-2 capsids were made by infecting HEK293 cells with an Adenoviral vector expressing the AAV2 cap ORF (MOI=2). The cells were lysed by 3 freezing/th awing cycles, the cell debris was removed by

PAGE 107

107 centrifugation (3000g for 10 minutes), and DOC wa s added to the supernatant to a final concentration of 0.5%. The supernatant was dige sted with 50U/ml benzonase for 30 minutes at 37oC, filtered (Acrodisc 25mm PF, Pall), and purified by heparin affinity chromatography. Virions and empty capsid preparations were di alyzed into 50mM Tr is-Cl pH 8 containing 100mM NaCl using a 10,000 MWCO membrane (Pie rce), aliquoted, and stored frozen at -20oC or -80oC. Proteolytic digestion. 0.8g of virions (equivalent to ~1.2X1011 capsids) were digested with 5g (0.02% final concentratio n) of trypsin (Gibco) or 80ug of -chymotrypsin (Sigma) in a 25l reaction at 37oC for up to 24 hours. The products of proteolysis were denatured at 100oC using Laemmli sample buffer at final concentrations of 1% SDS and 655mM -mercaptoethanol, and separated by SDS-PAGE. After transferri ng the proteins to nitrocellulose (25mM Tris/192mM Glycine/0.1% (w/v) SDS/20%MeOH for 2 hours at 0.5 Amp in a Criterion-transblot apparatus (Bio Rad) that reached 45oC), they were probed with an tisera to AAV-2 (polyclonal, A1, B1, A69 [65, 100]) and AAV-5 from Progen at dilutions of 1:250 ( polyclonal) to 1:2000 (monoclonal). The AAV-2 polyclonal antiserum cross-reacts with ot her AAV serotypes, but cross-reacts weakly with AAV-5 under our conditions. Based on th e peptides used to generate the monoclonal antisera, B1 (antibody epit ope IGTRYLTR) recognizes AAV1-3, and AAV5-10; A69 (antibody epitope LNFGQTGDADSV) is sp ecific for AAV-2; and A1 (antibody epitope KRVLEPLGL) recognizes AAV-1, AAV-2, AAV-4, AAV-7, AAV-8, AAV-10, and AAV-11. Bands were visualized by chemiluminescence using HRP-conjugated secondary antibodies (Amersham) and captured on X-ray film. Mass spectroscopy and N-terminal sequencing For mass spectroscopy and N-terminal sequencing, DOC/CsCl/heparin purified rAAV2-GFP virions were digested with trypsin (0.02%

PAGE 108

108 trypsin for 24 hours at 37 C) and heated to 100oC for 5 minutes in the presence of 0.6M dithiothreitol (DTT). The comm on C-terminal trypsin digestio n product of VP1, VP2, and VP3 (designated as the VP1,2,3T fragment) wa s isolated by HPLC on a Vydac C4 5 m 150mm 2.1mm ID column eluted using a 15% A to 80% B buffer gradient (Buffers : A is 0.1% Tri Fluoro Acetic Acid (TFA) in H2O and B is 0.1% TFA in Acetonitrite (CH3CN)) over 30min at a flow rate of 200 l/min. Detection was at 215 nm and column peak #3 of 5 peaks (~0.5ml fractions) contained VP1,2,3T as verified by Western blotting with polyclonal and B1 antisera. For matrix assisted laser desorption ionization time of flight ma ss spectroscopy (MALDI-TOF), the VP1,2,3T fragment was reconstitu ted in 50% acetonitrile/0.1% acetic acid and evaluated using an Applied Biosystems QSTAR with electros pray ionization and the Bayesian Protein Reconstruction algorithm was used to deconvolut e the mass. N-terminal sequence of the VP1,2,3T fraction was obtained using an Applied Biosystems 494/HT PROCISE Protein Sequencing System with sta ndard liquid blot cycles. Electron microscopy (EM) Purified rAAV2-GFP virions were digested with 0.02% trypsin for 24 hours at 37oC. 3-5 l of treated and untreated samples (at approximately 0.05mg/ml) were loaded onto 400 mesh carbon-coat ed formar copper grids (Ted Pella, Inc., Redding, CA), and negatively stained with 2% ur anyl acetate. The grids were viewed on a Hitachi H-7000 transmission electron microscope at 30,000X and 70,000X magnification. Immuno dot-blot. The immuno dot-blot procedure was esse ntially as described in Bleker, et al. [112]. Whatman filter paper No. 3 (Whatman International, Ltd., Maidstone, England) and supported nitrocellulose, 0.2 m pore size, (Bio-Rad, Hercules, CA) were soaked briefly in TBS (50 mM Tris, 100 mM NaCl, pH 8.0) prior to as sembling the dot-blot manifold (Schleicher and Schuell). After proteolysis, 25 l samples were directly applied to the wells of the dot-blot

PAGE 109

109 manifold and allowed to adsorb to the membrane In some cases, the trypsinized virions were treated with 0.1% SDS and 20% MeOH for 2h at 37oC or 45oC and then applied. Excess fluid was drawn through the membrane by vacuum filtr ation. Each well was washed with 100ul of TBS. The membrane was removed from the ma nifold and blocked with TBS/0.05% Tween 20 (TTBS) + 5% milk for 1 hour. Membranes were then probed with antisera to AAV-2 for 1 hour, in TTBS+5% milk at antibody dilutions of 1:2000, washed 3 times for 5 minutes each with TTBS + 0.05% milk, and were probed with secondary antibody, HRP-linked anti-mouse antibody diluted 1:5000 in TTBS+5% milk for 1 hour Membranes were washed 3 times for 5 minutes each with TTBS + 0.05% milk prior to de tection using Pierce S uperSignal West Pico Chemiluminescent Substrate. 3D-structure analysis Potential protease cleavage sites were analyzed using the protein sequences of AAV-1 (NP049542), AAV-2 (AAC03780), AAV-3 (NP043941), AAV-4 (NP044927), AAV-5 (YP068409), AAV-6 (NP045758), AAV-7 (YP077178), AAV-8 (YP077180), AAV-9 (AAS99264), AAV-10 (A AT46337), AAV-11 (AAT46339), and AAAV (AAT48613). Structure analysis to map potential tr yptic cleavage sites on the AAV-2 and AAV1 capsids utilized available coordinates for the AAV-2 VP3 m onomer [48] (PBD Accession No. 1LP3) and homologous models were generated for AAV-1 VP3 and AAV-5 VP3 based on a structure-guided sequence alignment with AAV-2 [50]. VIPER was used to apply icosahedral symmetry operators to the VP3 coordinates to ge nerate 3D models [73]. The coordinates were visualized using the program PyMOL (http://www.pymol.org DeLano Scientific, San Carlos, CA).

PAGE 110

110 CHAPTER 5 MASS SPECTROMETRY FOR AAV CAPSID SEROTYPE IDENTIFICATION AAV-CSI Introduction There are 11 serotypes of AAV, each with unique properties. AAV-2 was the first to be discovered, is the most studied and the majority of clinical trial data has come from studies with AAV-2. Currently, there are two Phase 1 clinical tr ials with AAV-2, one to deliver RPE65 to eye in patients, which was shown to restore vision in animal models, and one to provide aromatic Lamino acid decarobxylase to patients with Parkins ons disease. However, serotypes other than AAV-2 have been shown to have unique ce llular receptors and different transduction efficiencies. AAV-4 has also been utilized to deliver transgenes to the retina of the eye. In addition, AAV-8 has been shown to have highe r transduction efficiency than AAV-2. AAV-1 has been shown to be superior for transducing skel etal muscle and is currently in Phase 1 clinical trials to investigate its use in the treatmen t of limb girdle muscular dystrophy type 2D (LGMD2D), as well as for the treatment of alpha 1-antitrypsin (AAT) deficiency. Recently, over 100 AAV genotypic variants have been discovered [23, 26, 104], which provide the potential for an expanding number of AAV serotypes that could be developed into gene therapy vectors in the future. A PCR -based assay using unique primers to the cap genes of different serotypes has been developed to distinguish th e serotype of wt virus fo r AAV-2, AAV-3B or AAV-6 [113]; however, in gene therapy vectors, the rep and cap genes have been removed and replaced with a therapeutic gene, so this assa y cannot be used to determine the capsid serotype. For patient safety, the therapeutic transgene is sequenced from viral DNA to demonstrate that the gene therapy vector harbors th e correct transgene. However, there are very few methods available to verify the capsid serotype of the therapeuti c AAV vector. One recently developed method for

PAGE 111

111 verifying the capsid serotype involves partia l proteolysis of the cap sid and analyzing the fragments [46] as described in Chapter 4, or al ternatively, other investig ators have developed a serotype specific ELISA utilizing antibodies that react to intact capsid proteins [114]. Several monoclonal antibodies for AAV-2 capsids have b een described, such as A20 which recognizes intact AAV-2 or AAV-3 capsids [72], mAb C37 and C24 which selectively react with AAV-2 [100], and mAb D3 which shows br oad reactivity with different serotypes [100]. Antibody B4 is a monoclonal antibody that recognizes intact AAV-5 capsids; however, it has not been tested for serotype specificity [115]. Ot her monoclonal antibodies have recently been generated that recognize AAV1/6 (ADK1a and b), AAV-4 (ADK4) and AAV-5 (ADK5a and b) [114] for the purpose of serotype identity testing. ADK1a and b, ADK4 or ADK5 a and b were each shown to recognize a serotype specific conformational epitope and do not cross-react with serotypes AAV1-6, 8 and 9, with the exception of ADK1 a and b which also reacts with AAV-6, whose primary sequence differs from AAV-1 by six am ino acids. In 1999, Grimm, et al. developed a capture ELISA for AAV-2 using the monoclona l antibody A20 [116]. Recently, newly generated monoclonal antibodies have been utilized to de velop a capture ELISA assay for serotypes 1/6, 4 and 5. However, with the potential of over a hundred AAV serotypes, it will be difficult to generate unique conformational an tibodies that do not cross-re act with other serotypes. In addition to using different serot ypes, capsids may be specifically altered for improved targeting to transduce specific cells and capsids have been modified to express peptide fragments on the AAV surface. Methods for determining AAV serotype identity utilizing intact capsids were described in Chapter 4. The focus of this chapter includes techniques to determine the AAV capsid serotype identity using denatured viral capsid proteins. Th e western blot assay fo r evaluating proteolytic

PAGE 112

112 cleavage fragments of intact cap sids described in Chapter 4 is dependent upon an available antibody, as well as the antibody ep itope(s) not being the site of cleavage. This assay, while highly reproducible, is depende nt on the AAV capsid concentrati on (substrate concentration), enzyme concentration and the length of the digest. The specific ac tivity of the protease can also vary between lots or between suppliers. Addition ally, the purity of the preparation can effect digestion conditions. This assay relies on differe ntial proteolytic cleavag e of the capsid of different AAV serotypes and the resulting unique fragmentation patter ns provide capsid identification; however, capsids of serotypes that are resistant to se veral proteases or capsids that are cleaved to such an extent th at the antibody epitopes are not dis tinguishable, will not be able to be differentiated. The methods described in Chapter 4, as well as the AAV ELISA that has been developed by other investigators are valuable assays and are the only methods developed to date that allow for an eval uation of intact capsids. Recently, mass spectrometry (MS) techniques have been shown to provide useful, robust and rapid proteomics approaches to identify vira l proteins. It has been used to identify viral proteins produced during the c ourse of infection for Mareks Disease Virus (MDV), an alpha herpes virus [117]. Recent advanc es in MS techniques have allowed for its use as a method to detect viruses that are human pa thogens, like Norovirus [118]. MS applications have been used to identify the viral proteins a ssociated with viral particles fo r mimivirus [119], the vaccinia virus mature virion [120], murine cytomegalovi rus virions [121], bacter iophage MS2 [122] and Sulfolobus turreted icosahedral virus (STIV) [123]. It was also demonstrated that mass spectrometry could be used to monitor hepatitis C virus (HCV) genotype 1a, which exists within as a heterogeneous population of quasispecies, in a clinical patient [ 124]. Mass spectrometry methods have also been used to investigate dynamic interactions that occur for viruses in

PAGE 113

113 solution, such as Cowpea chlorotic mottle viru s (CCMV), which has a dynamic structural transition in response to changes in pH, ionic strength, and divale nt cation concentrations, which results in swelling of the CCMV capsid. Closed and swollen CCMV capsid pa rticles subjected to trypsin digestion provides info rmation regarding protein dynamics, and allowed for a comparison of the solution phase properties of the particle s [125]. For AAV, we have utilized protease digestion to evaluate the solution phase propert ies of intact empty a nd full (DNA-containing) capsids, as well as shown that different serotypes display differential susceptibility to proteases [46]. For AAV-2, high resolution mass spectrometry has been utilized to characterize capsid protein glycosylation [126]; however, for AAV, spect rometry has not been previously utilized to evaluate the capsid serotype. Currently, we are developing methods for AAV se rotype identity testi ng that incorporate the need for a quick and reliable assay to confirm serotype identit y. In this work, we show that denatured capsid proteins digested with tryps in and subjected to mass spectrometry can be utilized for serotype identity testing. Differen ces in the primary amino acid sequence of AAV serotypes provide fragments of different masses when digested with tr ypsin, and these unique fragments are detectable by mass spectrometr y. A serotype identity table for AAV-1, AAV-2, AAV-4, AAV-5 and AAV-8 is shown in Tabl e 5-1. A phylogenetic tree of AAV-1 through AAV-11, which depicts relatedness of AAV serotypes, is shown in Figure 5-1. We show that the highly homologous serotypes, AAV-1 and AAV-2 can be distinguished from each other, as well as from less homologous

PAGE 114

114 AAV1 AAV2 AAV3 AAV3B AAV4 AAV5 AAV6 AAV7 AAV8 AAV9 AAV10 AAV11 AAV1 100% 83% 87% 87% 64% 58% 99% 85% 84% 82% 85% 68% AAV2 83% 100% 87% 88% 61% 58% 84% 83% 83% 82% 84% 64% AAV3 87% 87% 100% 99% 63% 59% 87% 84% 86% 84% 86% 65% AAV3B 87% 88% 99% 100% 64% 59% 87% 85% 86% 84% 86% 66% AAV4 64% 61% 63% 64% 100% 54% 64% 65% 64% 64% 65% 82% AAV5 58% 58% 59% 59% 54% 100% 58% 59% 58% 57% 58% 55% AAV6 99% 84% 87% 87% 64% 58% 100% 85% 84% 82% 85% 68% AAV7 85% 83% 84% 85% 65% 59% 85% 100% 88% 82% 88% 68% AAV8 84% 83% 86% 86% 64% 58% 84% 88% 100% 85% 93% 67% AAV9 82% 82% 84% 84% 64% 57% 82% 82% 85% 100% 86% 65% AAV10 85% 84% 86% 86 % 65% 58% 85% 88% 93% 86% 100% 68% AAV11 68% 64% 65% 66 % 82% 55% 68% 68% 67% 65% 68% 100% Table 5-1. AAV Serotype Amino Acid Identity Table for AAV Serot ypes 1 11. AAV Serotypes were aligned and an identity table was constructed using Vector NTI (Invitr ogen). Numeric values represent perc ent identity. AAV-1 is 84% identical to AAV-8, and 83% identical to AAV-2, repres enting highly homologous serotypes. AAV-4 is 65% identical to AAV-1, 64% identical to AAV-8, 61% identical to AAV-2, 54% identical to AAV-5 representi ng a less homologous serotype. AAV-5 is 54 59% identical to the othe r serotypes, also representing a less homologous serotype. Accession numbers for proteins used in the alignment are: AAV-1 VP1 sequences NP_049542 and AAD27757, which are identical, AAV-2 VP1 AAC03780, AAV-3 VP1 sequences NP_043941 and AAV-3 Strain H AAC55049 whic h are identical, AAV-3B VP1 AAB95452, AAV-4 VP1 sequences NP_044927 and AAC58045 whic h are identical, AAV-5 VP1 sequences YP_068408 and AAD13756 which are identical, AAV-6 VP1 AAB 95450, AAV-7 VP1 sequences AAN03855 and YP_077178 which are identical, AAV-8 VP1 sequences YP_077180 and AAN0 3857 which are identical, AAV-9 VP1 AAS99264, AAV-10 AAT46337, AAV-11 AAT46339.

PAGE 115

115 Figure 5-1. Phylogenetic Tree of AAV Serotypes 1 11. serotypes such as AAV-4, AAV-5 and AAV-8. Uni que fragments were detected for all AAV serotypes tested which allowed for serotype identification. Results and Discussion Prior to generating an AAV vector, one factor th at should be considered is the desired target since different AAV serotypes have unique tissu e tropisms. After the AAV vector has been produced, it harbors the therapeutic gene a nd the ITRs, and is lacking other viral DNA sequences. As a result, there are few methods ava ilable for capsid serotype identification (CSI) of the final AAV vector. Upon evaluation of seve ral different AAV serot ypes in an SDS-PAGE gel, the electrophoretic mobility of the VPs in the gel can provide some limited information about the AAV serotype. The electrophoretic mo bility of viral proteins for AAV-1, and AAV-2 run faster than the viral prot eins for AAV-5 in an SDS-PAGE gel [111]. In a 10% Criterion minigel format (Bio-Rad, Hercules, CA), VP 3 of AAV-4 and AAV-8 migrate similarly to AAV5, this is shown in Figure 5-2. To obtain info rmation about the serotype, this requires a comparison of several AAV samples run in pa rallel, with known serotype samples for comparison. From an unknown sample, this would not be sufficient to allow for AAV serotype identification, but this could en able one to narrow down the po ssibilities to a smaller group of

PAGE 116

116 potential serotypes, such as either A AV-1/AAV-2, or AAV-4/AAV-5/ AAV-8, based on the migration of VP3 in a gel. An ideal assay fo r AAV serotype identification would allow for a single sample to be identified on the basis of the characteristics of the sample. Other desirable features of an assay for AAV capsid serotype identi fication (CSI) include the development of a relatively fast and simple assay that is able to be easily incorporated into current methods in a vector core or cGMP fac ility. Based on these features, we have developed an LC/MS/MS method for determining AAV serot ype identification. SDS PAGE gels of viral protein samples are routinely run and silver stai ned to assess the final v ector products for purity. Figure 5-2. Coomassie stained samples for ma ss spec identification of AAV serotype. AAV-1, AAV-2, AAV-4, AAV-5 and AAV-8. VP3 for diff erent serotypes migrate differently in a 10% Criterion SDS-PAGE minigel, with AAV-1 and AAV-2 VP3 migrating faster than AAV-4, AAV-5 or AAV-8. The mi nigel format was used for this assay instead of the larger 15 cm gel format whic h has better resolution because vector core and GMP facilities routinely run gels of this size after production and purification of AAV vectors to demonstrate purity of the final product. Many silver stain products inte rfere with mass spec applica tions; therefore, Coomassie bluestaining was utilized for this assay. Initially, the method was evaluated using VP1, VP2 and VP3 of AAV-1, AAV-2 and AAV-5 to assess for feas ibility. Upon correct se rotype identification for all three serotypes, the assay was expanded to include AAV-4 and AAV-8. VP3 bands shown AAV1 AAV2 AAV4 AAV5 AAV8 AAV8 VP3 VP3 VP2 VP1

PAGE 117

117 in Figure 5-2 and Figure 5-3, were cut from th e gel, and LC/MS/MS was performed. The SDSPAGE gel functions as a separati on step for the viral proteins; therefore, samples of varying levels of purity were analyzed. Samples of AAV-4 and AAV-5 that were less pure were run in parallel with pure AAV-4 and AAV-5, as well as additional samples of AAV-8. After isolating the VP1, VP2 and VP3 protein bands from the gel, samples were coded and evaluated blindly by MS. Because there is considerable overlap wi th the AAV viral proteins VP1, VP2, and VP3, and since VP3 is present in the largest amount in in tact capsids, VP3 was utilized for the blind study. The N-terminus of VP3 of different serotypes wa s predicted to provide a unique fragment after in gel trypsin digestion that might be useful when analyzed by mass spectrometry; however, previously it has been shown that th is region is acetylated [127]. Mass spec data was analyzed using Mascot and X! Tandem. Mascot was set to search the NCBI database and limited to viral proteins. Th e proteomics software Scaffold was used to validate MS/MS based peptide and protein identifi cations. Peptide identifications were accepted if they could be established at greater than 95.0% probability as specified by the Peptide Prophet algorithm. Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm. The software Scaffold provides a user friendly interface for the evaluation of samples and is shown in Figure 5-4. The unknown sample codes

PAGE 118

118 Figure 5-3. Coomassie stained samples for ma ss spec identification. Samples of AAV-4 and AAV-5 that were less pure were run in parallel with purified AAV-4 and AAV-5, as well as additional samples of AAV-8 to dete rmine if purity is an important parameter for this assay. are listed across the top of the table. The column on the left hand side are the theoretical proteins, the accession number, and the protein molecular mass. Numbers highlighted in green indicate the number of unique fragments with a probabi lity of over 95% upon which the AAV serotype identification was based. The samples that were less pure, LL L (AAV-4), MMM (AAV-4), QQ (AAV-5 VP2), QQQ (AAV-5 VP3), RR (AAV-5 VP2), RRR (AAV-5 VP3) had detectable levels of contaminating proteins, such as cellular and he lper virus proteins us ed in production. In the initial experiment to determine feasibility of this assay, LC/MS/MS was performed on VP1, VP2 and VP3 of three AAV serotypes, AAV-1, AAV2 and AAV-5 (impure). This method can be used to identify contaminants; for example, the AAV Rep78 was identified in one impure prep since it migrated with similar mo lecular weight as VP2 (72 kDa). This assay may be useful for verifying that new purification methods have elimin ated proteins that are similar in size to the AAV4 AAV4 AAV4 AAV5 AAV5 AAV5 AAV8 AAV8 VP3 VP3

PAGE 119

119 Figure 5-4. Mass spec data analyzed using th e software program Scaffold enabled una mbiguous serotype identification for 13/17 samples (76%) and the correct serotype assignment was made for 17/17 samples (100%) based on the serotype with the largest number of unique fragments. The viral proteins, accession numbers, and protei n mass are the result of the database search. The unknown samples are listed as th eir alphabetic code, and the values in the table are the number of unique trypsin fragments. This value was used to correctly assign the serotype. Codes: AAA AAV-1; BBB AAV-8; CCC AAV-8; EEE AAV-4; GGG AAV-5; HHH AAV-2; KKK AAV-4; LLL AAV-4; MMM AAV-4; PPP AAV-1; QQ AAV-5; QQQ AAV-5; RR AAV5; RRR AAV-5; SSS AAV-8; XXX AAV-8; ZZZ AAV-5

PAGE 120

120 AAV viral proteins which would not be distinguishable in an SD S page gel to assess purity. In Chapter 4, we showed that proteolysis of AAV-2 VP1 results in a degradation product, VP1T, that is similar in size to VP2, which were dete cted using available antibodies for AAV-2. Fewer antibodies are available for other serotypes, a nd the A69 antibody that recognizes the N-terminus VP2 is unique for AAV serotype 2. For AAV-2, th e site of proteolytic cleavage mapped to a critical region in the capsid required for hepari n binding and as a result, capsids with a cleavage in the GH loop are removed during heparin chroma tography; however, if the cleavage had not been in a critical region, or for other serotype s such as AAV-8 that may be less stable, this technique will be useful for det ecting degradation products of VP1 that are similar in size to VP2. Another goal of this work was to determine if a capsid mutation has occurred, if it could be identified using this method. Because the ra w data utilized for mass spec is based on the fragmentation pattern of a known protein, this me thod will not be able to identify if a capsid mutation has occurred during produ ction. For example, a mutation in AAV-4 that resulted in the change of a basic amino acid at amino acid 544 to an acidic amino acid would no longer have a trypsin cleavage site at this pos ition and the resulting fragment would be much larger than expected. However, in the database search, this larger fragment would not be present in the database. Therefore, for this region of the AAV capsi d, there is a lack of co verage in the MS data for these amino acids. Figure 5-5 is LC/MS/MS data for wt AAV-4 a nd AAV-4 R544E mutant which shows partial coverage for wt AAV-4 in the region of the mutation which allows verification that R544 is a basic re sidue in the wild type virus, and a lack of coverage in R544E, which is due to a known mutation in the starting ma terial used in this assay. Coverage or the number of amino acids detected after mass spec anal ysis is rarely 100%, so the lack of coverage

PAGE 121

121 itself is not sufficient to assume that a muta tion has occurred. However, for AAV capsids like AAV-2, many alanine scanning capsid mutants ha ve been generated. These sequences are currently not in the da tabase. If a modified AAV capsid with a known mutation is added to the database, there is the potential for identifying that this sequence as been incorporated into the capsid and in the correct region based on this method, provided that th e data obtained shows coverage in that specific region; however, a lack of coverage would not verify that the capsid does not contain that mutation. This might be useful for A AV-2 capsids that have been engineered to target specific tissu e based on insertion at amino acid 587. For the AAV-4 mutant capsid used in this st udy, the result of the mu tation at the trypsin cleavage site is a very large fragment, which is too big to be detected in the mass spectrometry studies performed here. MS relies on matchi ng the fragment sizes ob tained to predicted fragments of known sequences in th e database. This large fragment if it were detectable would be unexpected when compared to the known seque nce of AAV-4. First attempts at trying to identify this mutation in AAV-4 involved buildin g a database that included the AAV-4 sequence with the mutation. Unfortunately, due to the us e of trypsin, which relies on a basic residue and the primary sequence of AAV-4, there isn t another basic residue within a reasonable distance and the resulting fragment was too large to detect. In the wt AAV-4 sample, we detect the fragment flanking the mutation, but this is not detectable in the mutant AAV-4 sample. Although lack of coverage could be from acetyla tion or post-translationa l modification, or poor ionization of the fragment, as well as other reas ons, coverage for wt AAV-4 in that region and a consistant lack of coverage fo r mutant AAV-4 sample may suggest that there is a mutation. If the mutation in this sample was a change in an ami no acid that was not a basi c residue which trypsin

PAGE 122

122 Figure 5-5. Mass spectrometry data for K 544E AAV-4 mutant and wt AAV4. A. For the K544E AAV-4 mutant, the mutation results in a lack of trypsin digestion at amino acid 544, which results in a much larger fragment th an expected (red box). There was a lack of coverage for the amino acids in this region as a result of the mutation for both K544E samples tested (LLL and MMM). B. For wt AAV-4 there is covera ge in a portion of this region, which ve rifies that for the wt AAV-4 control, amino acid 544 is a basic residue and was cut by trypsin (red box). This fragment was detected for both samples of wt AAV-4 (sample EEE, and KKK).

PAGE 123

123 relies on for cleavage (K or R), this would not su bstantially change the nu mber of amino acids in the fragment that would result in a fragment too large to detect The software Mascot which was utilized to analyze the mass spec data can potentia lly detect this mutation. This experiment will be repeated utilizing a different protease that doesnt rely on basic residues and the software Mascot will be used determine if the fragment containing the mutation can be identified. A database has been built that includes all of the viral proteins for all of the known serotypes. For the studies presented in this chap ter, the MS data was searched thru the NCBI database, which was limited to ALL viral protei ns. We have built a database that includes only the AAV sequences, as well as the mutant sequen ce for AAV-4. This is currently being further developed and this will be useful for customized gene therapy vectors in the future that have been modified. These sequences can be deposited into the database, and clinical grade preps can be tested and verified. Several investigators ha ve shown that single amino acid mutations in the AAV capsid can effect tropism [128]. For AAV-2, mutation of several amino acids has been shown to result in vector vector targeting to cardiac tissue. A vect or like this could potentially be utilized in clinical trials and AAV Capsid Se rotype Identification ( AAV-CSI) would be useful for validating that the therapeutic gene has been packaged into the correct capsid. Materials and Methods Viruses and cell lines. rAAV2-GFP vector viri ons were produced by transient transfection of HEK293 cells, cells were harvested, then ly sed with 0.5% deoxycholate (DOC), incubated for 30 minutes at 37C with 50 U/ml of benzona se, and purified on sequential CsCl density gradients. Cesium fractions were dialyzed and heparin chromatography was performed as a concentration step [111] rAAV1-GFP, rAAV4-GFP, rAAV5-GFP and rAAV8-GFP vector virions were purified by fr eeze/thaw and CsCl gradients followed by Q-sepharose chromatography. Infectivity of the AAV vectors were assayed on C12 cells in the presence of

PAGE 124

124 adenovirus as previously desc ribed [92]. Virions were dialyzed into 50mM Tris-Cl pH 8.0 containing 100mM NaCl using a 10,000 MWCO me mbrane (Pierce), aliquoted, and stored frozen at -20C or -80C. Protein gel electrophoresis SDS-PAGE. Samples were boiled for 3 minutes at 100 C, centrifuged briefly and loaded on a 10% polyacrylamide gel. SDS-PAGE polyacrylamide gel was performed at 125 V for 90 minutes [129]. SDS-PAGE gel staining protoc ol A 1% stock solution of Coomassie blue R-250 was prepared in dH2O. Gels were stained in a solution c onsisting of 12.5% Stain stock, 10% acetic acid and 50% methanol for one hour. Gels were de tained in destain solu tion consisting of 10% acetic acid and 50% methanol overnight. AAV bands were cut from the gel and gel slices were stored in destain until the samples were prepped for mass spec. Mass Spec In-gel digestion protocol Gel slices were washed to remove SDS. Gel slices were washed with 50% acetonitrile in dd water and vortexed 2 times for 15 minutes eac h. Wash solution was removed and discarded. Gel slices were covered with neat acetonitrile until the ge l is dehydrated. The liquid was removed after 5 10 minutes. The gel was rehydra ted in just enough ABC to cover the gel for 5 minutes (20 to 50 l). An equal volume of acetonitrile wa s added to give a 1:1 ratio of acetonitrile to ABC and vortexed for 15 minutes. Wash solution was removed and the gel was dried down in a speedvac for 10 15 minutes. Next reduction and alkylation of protein in the gel was performed. The gel piece was rehydrated in 100 l of 45 mM DTT at 55C for 30 minutes. The gel was submerged in the reduc ing buffer. The buffer was discarded after incubation. Tubes were chilled to room temper ature. The liquid was removed and replaced quickly with 100 l of freshly made 100 mM iodoacetamide, and incubated in the dark for 30

PAGE 125

125 minutes at room temperature. The buffer was removed. The gel was washed 3 times with 100 l 50% ACN/50 mM ABC with agitation each for 15 minutes. The gel wash washed until it was colorless. The gel pieces were dried in a speed vac until they were completely dry, 10 15 minutes. Next, the proteins were digested with trypsin. Promega Trypsin was prepared at a concentration of 12.5 ng/ l reconstituded in 50 mM ABC, pH 8.4, with 5 mM CaCl2. Enzyme and buffer were kept cold in an ice bucket and the ratio of enzyme to protein was approximately 1:20. The dried gel piece was chilled on ice, a nd the gel pieces were covered with ice cold trypsin digestion buffer. The tube was kept on ice for 45 minutes. The enzyme solution was removed and replaced with 5 to 20 l of 50 mM ABC and 5 mM Ca Cl2 without enzyme. Tubes were incubated overnight at 37C in a water bath The supernatant was pipetted into a clean tube. Stop the reaction with 5.0% glacia l acetic acid to a final concen tration of 0.5% acetic acid. Mass spec protocol Capillary rpHPLC separation of protein di gests was performed on a 15 cm x 75 um i.d. PepMap C18 column (LC Packings, San Franci sco, CA) in combination with an Ultimate Capillary HPLC System (LC Packings, San Fran cisco, CA) operated at a flow rate of 200 nL/min. Inline mass spectrometric analysis of the column eluate was accomplished by a hybrid quadrupole time-of-flight instrument (QSTAR, A pplied Biosystems, Foster City, CA) equipped with a nanoelectrospray source. Fragment ion data generated by Information Dependent Acquisition (IDA) via the QSTAR were searched against the NCBI nr sequence database using the Mascot (Matrix Science, London, UK) database search engine. Probabil ity-based MOWSE scores above the default significant value were considered for protein identification in addition to validation by manual interpretation of the tandem MS data.

PAGE 126

126 Database Searching Tandem mass spectra were extracte d, charge state deconvoluted and deisotoped by BioWorks version 2.0. All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.0.01) and X! Tandem (www.thegpm.org; version 2006.04.01.2). X! Tandem was set up to search a subset of the NCBInr_20061201 data base also assuming trypsin. Mascot was set up to search the NCBInr_20070202 database (selected for Viruses, unknown version, 375509 entries) assuming the di gestion enzyme trypsin. Mascot and X! Tandem were searched with a fragment ion mass tolerance of 0.30 Da and a parent ion tolerance of 0.30 Da. Iodoacetamide derivative of cysteine was specified in Mascot and X! Tandem as a fixed modification. S-carbamoylmethylcysteine cyclization (N-terminus) of the n-terminus, deamidation of asparagine and glutamine and oxid ation of methionine were specified in Mascot and X! Tandem as variable modifications. Criteria For Protein Identification Scaffold (version Scaffold-01_06_13, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. Peptid e identifications were accepted if they could be established at greater than 90.0% probability as specified by the Peptide Prophe t algorithm [130]. Protein identifications were accepted if they could be es tablished at greater than 95.0% probability and contained at least 1 identified peptide. Protein probabilities were assigned by the Protein Prophet algorithm [131]. Proteins that cont ained similar peptides and coul d not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony.

PAGE 127

127 APPENDIX AAV CAPSID ALIGNMENT PileUp MSF: 778 Type: P Check: 1667 .. Name: AAV_VR195_ABA71699 Len: 778 Check: 7040 Weight: 0 Name: AAV_VR355_ABA71701 Len: 778 Check: 6641 Weight: 0 Name: AAV1_NP_049542 Len: 778 Check: 7598 Weight: 0 Name: AAV1_VP1_AAD27757 Len: 778 Check: 7598 Weight: 0 Name: VP1_isolate_hu48_AAS99296 Len: 778 Check: 7947 Weight: 0 Name: AAV6_VP1_AAB95450 Len: 778 Check: 7905 Weight: 0 Name: VP1_isolate_hu43_AAS99291 Len: 778 Check: 7388 Weight: 0 Name: VP1_isolate_hu44_AAS99292 Len: 778 Check: 8584 Weight: 0 Name: VP1_isolate_hu46_AAS99294 Len: 778 Check: 8181 Weight: 0 Name: AAV10_AAT46337 Len: 778 Check: 8318 Weight: 0 Name: VP1_isolate_rh40_AAS99244 Len: 778 Check: 8189 Weight: 0 Name: VP1_isolate_hu37_AAS99285 Len: 778 Check: 9370 Weight: 0 Name: VP1_isolate_hu42_AAS99290 Len: 778 Check: 9751 Weight: 0 Name: VP1_isolate_hu40_AAS99288 Len: 778 Check: 31 Weight: 0 Name: VP1_isolate_hu67_AAS99312 Len: 778 Check: 8662 Weight: 0 Name: VP1_isolate_rh38_AAS99243 Len: 778 Check: 9071 Weight: 0 Name: VP1_isolate_hu41_AAS99289 Len: 778 Check: 9596 Weight: 0 Name: VP1_isolate_hu66_AAS99311 Len: 778 Check: 7948 Weight: 0 Name: VP1_isolate_hu17_AAS99267 Len: 778 Check: 9358 Weight: 0 Name: VP1_isolate_hu6_AAS99306 Len: 778 Check: 8523 Weight: 0 Name: VP1_isolate_rh25_AAS99242 Len: 778 Check: 9311 Weight: 0 Name: VP1_isolate_hu39_AAS99286 Len: 778 Check: 596 Weight: 0 Name: VP1_isolate_rh49_AAS99247 Len: 778 Check: 9799 Weight: 0 Name: VP1_isolate_rh50_AAS99248 Len: 778 Check: 1643 Weight: 0 Name: VP1_isolate_rh51_AAS99249 Len: 778 Check: 1980 Weight: 0 Name: VP1_isolate_rh52_AAS99250 Len: 778 Check: 2067 Weight: 0 Name: VP1_isolate_rh64_AAS99259 Len: 778 Check: 1835 Weight: 0 Name: VP1_isolate_rh53_AAS99251 Len: 778 Check: 1695 Weight: 0 Name: VP1_isolate_rh61_AAS99257 Len: 778 Check: 1423 Weight: 0 Name: VP1_isolate_rh58_AAS99255 Len: 778 Check: 455 Weight: 0 Name: VP1_isolate_rh57_AAS99254 Len: 778 Check: 832 Weight: 0

PAGE 128

128 Name: AAV8_VP1_AAN03857 Len: 778 Check: 8558 Weight: 0 Name: AAV8_YP_077180 Len: 778 Check: 8558 Weight: 0 Name: VP1_isolate_rh43_AAS99245 Len: 778 Check: 8051 Weight: 0 Name: VP1_isolate_pi1_AAS99238 Len: 778 Check: 3364 Weight: 0 Name: VP1_isolate_pi3_AAS99240 Len: 778 Check: 3123 Weight: 0 Name: VP1_isolate_pi2_AAS99239 Len: 778 Check: 3263 Weight: 0 Name: VP1_isolate_rh1_AAS99241 Len: 778 Check: 5271 Weight: 0 Name: AAV7_VP1_AAN03855 Len: 778 Check: 7315 Weight: 0 Name: AAV7_YP_077178 Len: 778 Check: 7315 Weight: 0 Name: VP1_isolate_rh48_AAS99246 Len: 778 Check: 7391 Weight: 0 Name: VP1_isolate_rh62_AAS99258 Len: 778 Check: 6254 Weight: 0 Name: VP1_isolate_rh55_AAS99253 Len: 778 Check: 8552 Weight: 0 Name: VP1_isolate_rh54_AAS99252 Len: 778 Check: 8226 Weight: 0 Name: VP1_isolate_rh60_AAS99256 Len: 778 Check: 6021 Weight: 0 Name: AAV9_VP1_AAS99264 Len: 778 Check: 6375 Weight: 0 Name: VP1_isolate_hu31_AAS99281 Len: 778 Check: 6990 Weight: 0 Name: VP1_isolate_hu32_AAS99282 Len: 778 Check: 7109 Weight: 0 Name: AAV11_AAT46339 Len: 778 Check: 6971 Weight: 0 Name: AAV4_NP_044927 Len: 778 Check: 3824 Weight: 0 Name: AAV4_VP1_AAC58045 Len: 778 Check: 3824 Weight: 0 Name: BOVINE_AAV_AAR26465 Len: 778 Check: 5658 Weight: 0 Name: BOVINE_AAV_YP_024971 Len: 778 Check: 5658 Weight: 0 Name: AAV5_VP1_AAD13756 Len: 778 Check: 8027 Weight: 0 Name: AAV5_YP_068409 Len: 778 Check: 8027 Weight: 0 Name: CAPRINE_AAV1_AAU84890 Len: 778 Check: 7023 Weight: 0 Name: GOAT_AAV_VP1_ABC69726 Len: 778 Check: 7023 Weight: 0 Name: RAT_AAV1_AAZ79676 Len: 778 Check: 7290 Weight: 0 Name: MOUSE_AAV1_AAZ79672 Len: 778 Check: 4579 Weight: 0 Name: AVIAN_AAV_ATCC_VR865_AAO32087 Len: 778 Check: 3058 Weight: 0 Name: AVIAN_AAV_ATCC_VR865_AAT48613 Len: 778 Check: 3058 Weight: 0 Name: AVIAN_AAV_ATCC_VR865_NP_852781 Len: 778 Check: 3058 Weight: 0 Name: AVIAN_AAV_Strain_DA1_AAT48615 Len: 778 Check: 453 Weight: 0 Name: AVIAN_AAV_Strain_DA1_YP_077183 Len: 778 Check: 453 Weight: 0 Name: DUCK_AAV_Strain_FM_AAA83225 Len: 778 Check: 3002 Weight: 0 Name: MUSCOVY_DUCK_PARVOVIRUS_YP_068412 Len: 778 Check: 233 Weight: 0 Name: MUSCOVY_DUCK_VP1_YP_068411 Len: 778 Check: 3002 Weight: 0 Name: MUSCOVY_DUCK_PARVOVIRUS_YP_068413 Len: 778 Check: 5241 Weight: 0 Name: Goose_AAV_VP1_AAA83230 Len: 778 Check: 6211 Weight: 0 Name: GOOSE_AAV_VP1_NP_043515 Len: 778 Check: 6211 Weight: 0 Name: AAV3_NP_043941 Len: 778 Check: 69 Weight: 0 Name: AAV3_Strain_H_AAC55049 Len: 778 Check: 69 Weight: 0

PAGE 129

129 Name: AAV3B_VP1_AAB95452 Len: 778 Check: 1343 Weight: 0 Name: VP1_isolate_hu1_AAS99260 Len: 778 Check: 1391 Weight: 0 Name: VP1_isolate_hu4_AAS99287 Len: 778 Check: 1303 Weight: 0 Name: VP1_isolate_hu2_AAS99270 Len: 778 Check: 1141 Weight: 0 Name: VP1_isolate_hu3_AAS99280 Len: 778 Check: 2673 Weight: 0 Name: VP1_isolate_hu60_AAS99307 Len: 778 Check: 1875 Weight: 0 Name: VP1_isolate_hu61_AAS99308 Len: 778 Check: 1690 Weight: 0 Name: VP1_isolate_hu25_AAS99276 Len: 778 Check: 772 Weight: 0 Name: VP1_isolate_hu15_AAS99265 Len: 778 Check: 1483 Weight: 0 Name: VP1_isolate_hu16_AAS99266 Len: 778 Check: 2044 Weight: 0 Name: VP1_isolate_hu18_AAS99268 Len: 778 Check: 2981 Weight: 0 Name: VP1_isolate_hu7_AAS99313 Len: 778 Check: 996 Weight: 0 Name: VP1_isolate_hu10_AAS99261 Len: 778 Check: 2978 Weight: 0 Name: VP1_isolate_hu11_AAS99262 Len: 778 Check: 2837 Weight: 0 Name: VP1_isolate_hu9_AAS99314 Len: 778 Check: 1894 Weight: 0 Name: VP1_isolate_hu53_AAS99300 Len: 778 Check: 1757 Weight: 0 Name: VP1_isolate_hu55_AAS99302 Len: 778 Check: 57 Weight: 0 Name: VP1_isolate_hu54_AAS99301 Len: 778 Check: 9885 Weight: 0 Name: VP1_isolate_huS17_AAU05370 Len: 778 Check: 1727 Weight: 0 Name: AAV2_VP1_AAC03780 Len: 778 Check: 3108 Weight: 0 Name: VP1_isolate_hu34_AAS99283 Len: 778 Check: 2718 Weight: 0 Name: VP1_isolate_hu35_AAS99284 Len: 778 Check: 2744 Weight: 0 Name: VP1_islolate_hu51_AAS99298 Len: 778 Check: 3098 Weight: 0 Name: VP1_isolate_hu52_AAS99299 Len: 778 Check: 4413 Weight: 0 Name: VP1_isolate_hu47_AAS99295 Len: 778 Check: 4162 Weight: 0 Name: VP1_isolate_hu45_AAS99293 Len: 778 Check: 4008 Weight: 0 Name: VP1_isolate_hu58_AAS99305 Len: 778 Check: 2430 Weight: 0 Name: VP1_isolate_hu49_AAS99297 Len: 778 Check: 3468 Weight: 0 Name: VP1_isolate_hu56_AAS99303 Len: 778 Check: 4209 Weight: 0 Name: VP1_isolate_hu57_AAS99304 Len: 778 Check: 1345 Weight: 0 Name: VP1_isolate_hu28_AAS99278 Len: 778 Check: 3099 Weight: 0 Name: VP1_isolate_hu29_AAS99279 Len: 778 Check: 2731 Weight: 0 Name: VP1_isolate_huT70_AAU05364 Len: 778 Check: 3586 Weight: 0 Name: VP1_isolate_hu13_AAS99263 Len: 778 Check: 1295 Weight: 0 Name: VP1_isolate_hu63_AAS99309 Len: 778 Check: 2301 Weight: 0 Name: VP1_isolate_hu64_AAS99310 Len: 778 Check: 2688 Weight: 0 Name: VP1_isolate_huT40_AAU05362 Len: 778 Check: 1971 Weight: 0 Name: VP1_isolate_huLG15_AAU05371 Len: 778 Check: 590 Weight: 0 Name: VP1_isolate_huT17_AAU05358 Len: 778 Check: 1851 Weight: 0 Name: VP1_isolate_huT41_AAU05372 Len: 778 Check: 2922 Weight: 0 Name: VP1_isolate_huT71_AAU05366 Len: 778 Check: 2922 Weight: 0

PAGE 130

130 Name: VP1_isolate_huT88_AAU05368 Len: 778 Check: 1757 Weight: 0 Name: VP1_isolate_huT32_AAU05360 Len: 778 Check: 2563 Weight: 0 Name: VP1_isolate_hu27_AAS99277 Len: 778 Check: 2017 Weight: 0 Name: VP1_isolate_hu19_AAS99269 Len: 778 Check: 2261 Weight: 0 Name: VP1_isolate_hu20_AAS99271 Len: 778 Check: 1010 Weight: 0 Name: VP1_isolate_hu21_AAS99272 Len: 778 Check: 1674 Weight: 0 Name: VP1_isolate_hu24_AAS99275 Len: 778 Check: 1674 Weight: 0 Name: VP1_isolate_hu22_AAS99273 Len: 778 Check: 2008 Weight: 0 Name: VP1_isolate_hu23_AAS99274 Len: 778 Check: 1124 Weight: 0 // 1 50 AAV_VR195_ABA71699 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV_VR355_ABA71701 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV1_NP_049542 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV1_VP1_AAD27757 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu48_AAS99296 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV6_VP1_AAB95450 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu43_AAS99291 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu44_AAS99292 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLRPGPPPPK PAERHK.... VP1_isolate_hu46_AAS99294 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... AAV10_AAT46337 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh40_AAS99244 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu37_AAS99285 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu42_AAS99290 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu40_AAS99288 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu67_AAS99312 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh38_AAS99243 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu41_AAS99289 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu66_AAS99311 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu17_AAS99267 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu6_AAS99306 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh25_AAS99242 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_hu39_AAS99286 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh49_AAS99247 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh50_AAS99248 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh51_AAS99249 ....MVADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh52_AAS99250 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh64_AAS99259 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh53_AAS99251 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ....

PAGE 131

131 VP1_isolate_rh61_AAS99257 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh58_AAS99255 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh57_AAS99254 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPKPK ANQQKQ.... AAV8_VP1_AAN03857 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPKPK ANQQKQ.... AAV8_YP_077180 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPKPK ANQQKQ.... VP1_isolate_rh43_AAS99245 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_pi1_AAS99238 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPQPK ANQQKQ.... VP1_isolate_pi3_AAS99240 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPQPK ANQQKQ.... VP1_isolate_pi2_AAS99239 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPQPK ANQQKQ.... VP1_isolate_rh1_AAS99241 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPKPK ANQQKQ.... AAV7_VP1_AAN03855 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV7_YP_077178 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh48_AAS99246 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh62_AAS99258 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh55_AAS99253 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh54_AAS99252 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... VP1_isolate_rh60_AAS99256 ....MAADGY LPDWLEDN.. .LSEGIHEWW DPKPGAPKPK ANQQKQ.... AAV9_VP1_AAS99264 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGAPQPK ANQQHQ.... VP1_isolate_hu31_AAS99281 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu32_AAS99282 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... AAV11_AAT46339 ....MAADGY LPDWLEDN.. .LSEGIREWW DLKPGAPKPK ANQQKQ.... AAV4_NP_044927 .....MTDGY LPDWLEDN.. .LSEGVREWW ALQPGAPKPK ANQQHQ.... AAV4_VP1_AAC58045 .....MTDGY LPDWLEDN.. .LSEGVREWW ALQPGAPKPK ANQQHQ.... BOVINE_AAV_AAR26465 ....MSFVDH PPDWLES... .IGDGFREFL GLEAGPPKPK ANQQKQ.... BOVINE_AAV_YP_024971 ....MSFVDH PPDWLES... .IGDGFREFL GLEAGPPKPK ANQQKQ.... AAV5_VP1_AAD13756 ........MS FVDHPPDWLE EVGEGLREFL GLEAGPPKPK PNQQ...... AAV5_YP_068409 ........MS FVDHPPDWLE EVGEGLREFL GLEAGPPKPK PNQQ...... CAPRINE_AAV1_AAU84890 ........MS FVDHPPDWLE EVGEGLREFL GLEAGPPKPK PNQQ...... GOAT_AAV_VP1_ABC69726 ........MS FVDHPPDWLE EVGEGLREFL GLEAGPPKPK PNQQ...... RAT_AAV1_AAZ79676 ........MS FFDWIG...R KYANGAAEFW DLEPGPPKPK ..KA...... MOUSE_AAV1_AAZ79672 ........MS FFDWLGKQ.. .YAQGAAEFW DLKSGPPAPK KARKDG.... AVIAN_AAV_ATCC_VR865_AAO32087 MSLISDAIPD WLERLVKK.. .GVNAAADFY HLESGPPRPK ANQQTQ.... AVIAN_AAV_ATCC_VR865_AAT48613 MSLISDAIPD WLERLVKK.. .GVNAAADFY HLESGPPRPK ANQQTQ.... AVIAN_AAV_ATCC_VR865_NP_852781 MSLISDAIPD WLERLVKK.. .GVNAAADFY HLESGPPRPK ANQQTQ.... AVIAN_AAV_Strain_DA1_AAT48615 MSLISDAIPD WLERLVKK.. .GVNAAADFY HLESGPPHPK ANQQTQ.... AVIAN_AAV_Strain_DA1_YP_077183 MSLISDAIPD WLERLVKK.. .GVNAAADFY HLESGPPHPK ANQQTQ.... DUCK_AAV_Strain_FM_AAA83225 .......MST FLEKFEDW.. .YETAAASWR HLKAGAPKPK SNQQSQSVST MUSCOVY_DUCK_PARVOVIRUS_YP_068412 .......... .......... .......... .......... .......... MUSCOVY_DUCK_VP1_YP_068411 .......MST FLEKFEDW.. .YETAAASWR HLKAGAPKPK SNQQSQSVST MUSCOVY_DUCK_PARVOVIRUS_YP_068413 .......... .......... .......... .......... .......... Goose_AAV_VP1_AAA83230 .......MST FLDSFEEW.. .YETAAASWR NLKAGAPQPK PNQQSQSVSP

PAGE 132

132 GOOSE_AAV_VP1_NP_043515 .......MST FLDSFEEW.. .YETAAASWR NLKAGAPQPK PNQQSQSVSP AAV3_NP_043941 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGVPQPK ANQQHQ.... AAV3_Strain_H_AAC55049 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGVPQPK ANQQHQ.... AAV3B_VP1_AAB95452 ....MAADGY LPDWLEDN.. .LSEGIREWW ALKPGVPQPK ANQQHQ.... VP1_isolate_hu1_AAS99260 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu4_AAS99287 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu2_AAS99270 ....MAADGY PPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu3_AAS99280 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu60_AAS99307 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu61_AAS99308 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu25_AAS99276 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu15_AAS99265 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu16_AAS99266 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu18_AAS99268 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu7_AAS99313 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu10_AAS99261 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK LAERHQ.... VP1_isolate_hu11_AAS99262 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHQ.... VP1_isolate_hu9_AAS99314 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHQ.... VP1_isolate_hu53_AAS99300 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu55_AAS99302 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu54_AAS99301 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huS17_AAU05370 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... AAV2_VP1_AAC03780 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu34_AAS99283 ....MAADGY LPDWLEDT.. .LSEGIRQRW KLKPGPPPPE PAERHK.... VP1_isolate_hu35_AAS99284 ....MAADGY LPDWLEDT.. .LSEGIRQRW KLKPGPPPPE PAERHK.... VP1_islolate_hu51_AAS99298 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu52_AAS99299 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu47_AAS99295 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHR.... VP1_isolate_hu45_AAS99293 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHR.... VP1_isolate_hu58_AAS99305 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu49_AAS99297 ....MAADGY LPDWLKDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu56_AAS99303 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu57_AAS99304 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPP.K PAERHK.... VP1_isolate_hu28_AAS99278 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu29_AAS99279 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT70_AAU05364 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu13_AAS99263 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu63_AAS99309 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu64_AAS99310 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT40_AAU05362 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huLG15_AAU05371 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK....

PAGE 133

133 VP1_isolate_huT17_AAU05358 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT41_AAU05372 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT71_AAU05366 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT88_AAU05368 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_huT32_AAU05360 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu27_AAS99277 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu19_AAS99269 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu20_AAS99271 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu21_AAS99272 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu24_AAS99275 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu22_AAS99273 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... VP1_isolate_hu23_AAS99274 ....MAADGY LPDWLEDT.. .LSEGIRQWW KLKPGPPPPK PAERHK.... 51 100 AAV_VR195_ABA71699 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV_VR355_ABA71701 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV1_NP_049542 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV1_VP1_AAD27757 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu48_AAS99296 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV6_VP1_AAB95450 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu43_AAS99291 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu44_AAS99292 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu46_AAS99294 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ AAV10_AAT46337 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh40_AAS99244 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu37_AAS99285 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu42_AAS99290 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu40_AAS99288 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu67_AAS99312 .......DDG RGLVLLGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh38_AAS99243 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu41_AAS99289 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu66_AAS99311 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu17_AAS99267 .......DDG RGLVLPGCKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu6_AAS99306 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh25_AAS99242 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu39_AAS99286 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh49_AAS99247 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh50_AAS99248 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh51_AAS99249 .......GDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh52_AAS99250 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh64_AAS99259 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ

PAGE 134

134 VP1_isolate_rh53_AAS99251 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh61_AAS99257 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh58_AAS99255 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh57_AAS99254 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV8_VP1_AAN03857 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV8_YP_077180 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh43_AAS99245 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_pi1_AAS99238 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDQQ VP1_isolate_pi3_AAS99240 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDQQ VP1_isolate_pi2_AAS99239 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDQQ VP1_isolate_rh1_AAS99241 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHGKAYDQQ AAV7_VP1_AAN03855 .......DNG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV7_YP_077178 .......DNG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh48_AAS99246 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh62_AAS99258 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh55_AAS99253 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh54_AAS99252 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_rh60_AAS99256 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV9_VP1_AAS99264 .......DNA RGLVLPGYKY LGPGNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu31_AAS99281 .......DDS RGLVLPGYKY LGPGNGLDKG EPVNAADAAA LEHDKAYDQQ VP1_isolate_hu32_AAS99282 .......DDS RGLVLPGYKY LGPGNGLDKG EPVNAADAAA LEHDKAYDQQ AAV11_AAT46339 .......DDG RGLVLPGYKY LGPFNGLDKG EPVNAADAAA LEHDKAYDQQ AAV4_NP_044927 .......DNA RGLVLPGYKY LGPGNGLDKG EPVNAADAAA LEHDKAYDQQ AAV4_VP1_AAC58045 .......DNA RGLVLPGYKY LGPGNGLDKG EPVNAADAAA LEHDKAYDQQ BOVINE_AAV_AAR26465 .......DNA RGLVLPGYKY LGPGNGLDKG DPVNFADEVA REHDLSYQKQ BOVINE_AAV_YP_024971 .......DNA RGLVLPGYKY LGPGNGLDKG DPVNFADEVA REHDLSYQKQ AAV5_VP1_AAD13756 .....HQDQA RGLVLPGYNY LGPGNGLDRG EPVNRADEVA REHDISYNEQ AAV5_YP_068409 .....HQDQA RGLVLPGYNY LGPGNGLDRG EPVNRADEVA REHDISYNEQ CAPRINE_AAV1_AAU84890 .....HQDQA RGLVLPGYNY LGPGNGLDRG EPVNRADEVA REHDISYNEQ GOAT_AAV_VP1_ABC69726 .....HQDQA RGLVLPGYNY LGPGNGLDRG EPVNRADEVA REHDISYNEQ RAT_AAV1_AAZ79676 .....RVDDS AGFNFPGHKY LGPGNGLDRG EPVDADDAAA QKHDQEYQAL MOUSE_AAV1_AAZ79672 .........S AGFNFPGHKY LGPGNSLDRG DPVDADDAAA QKHDQSYQEQ AVIAN_AAV_ATCC_VR865_AAO32087 ..ESLEKDDS RGLVFPGYNY LGPFNGLDKG EPVNEADAAA LEHDKAYDLE AVIAN_AAV_ATCC_VR865_AAT48613 ..ESLEKDDS RGLVFPGYNY LGPFNGLDKG EPVNEADAAA LEHDKAYDLE AVIAN_AAV_ATCC_VR865_NP_852781 ..ESLEKDDS RGLVFPGYNY LGPFNGLDKG EPVNEADAAA LEHDKAYDLE AVIAN_AAV_Strain_DA1_AAT48615 ..ESPEKDDS RGLVFPGYKY LGPFNGLDKG KPVNEADAAA LEHDKAYDLE AVIAN_AAV_Strain_DA1_YP_077183 ..ESPEKDDS RGLVFPGYKY LGPFNGLDKG KPVNEADAAA LEHDKAYDLE DUCK_AAV_Strain_FM_AAA83225 DRKPQRKDNN RGFVLPGYKY VGPGNGLDKG PPVNKADSVA LEHDKAYDQQ MUSCOVY_DUCK_PARVOVIRUS_YP_068412 .......... .......... .......... .......... .......... MUSCOVY_DUCK_VP1_YP_068411 DRKPQRKDNN RGFVLPGYKY VGPGNGLDKG PPVNKADSVA LEHDKAYDQQ MUSCOVY_DUCK_PARVOVIRUS_YP_068413 .......... .......... .......... .......... ..........

PAGE 135

135 Goose_AAV_VP1_AAA83230 DREPERKDNN RGFVLPGYKY LGPGNGLDKG PPVNKADSVA LEHDKAYDQQ GOOSE_AAV_VP1_NP_043515 DREPERKDNN RGFVLPGYKY LGPGNGLDKG PPVNKADSVA LEHDKAYDQQ AAV3_NP_043941 .......DNR RGLVLPGYKY LGPGNGLDKG EPVNEADAAA LEHDKAYDQQ AAV3_Strain_H_AAC55049 .......DNR RGLVLPGYKY LGPGNGLDKG EPVNEADAAA LEHDKAYDQQ AAV3B_VP1_AAB95452 .......DNR RGLVLPGYKY LGPGNGLDKG EPVNEADAAA LEHDKAYDQQ VP1_isolate_hu1_AAS99260 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu4_AAS99287 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu2_AAS99270 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu3_AAS99280 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu60_AAS99307 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu61_AAS99308 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu25_AAS99276 .......DGS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu15_AAS99265 .......DDS RGLVLPGYKY LGPFNGLYKG EPVDEADAAA LEHDKAYDRQ VP1_isolate_hu16_AAS99266 .......DDS RGLVLPGYKY LGPFNGLYKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu18_AAS99268 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu7_AAS99313 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu10_AAS99261 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu11_AAS99262 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu9_AAS99314 .......DNS RGLVLPGYKY LGPSNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu53_AAS99300 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu55_AAS99302 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu54_AAS99301 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huS17_AAU05370 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ AAV2_VP1_AAC03780 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu34_AAS99283 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu35_AAS99284 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_islolate_hu51_AAS99298 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu52_AAS99299 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu47_AAS99295 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu45_AAS99293 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu58_AAS99305 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu49_AAS99297 .......DDS GGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEYDKAYDRQ VP1_isolate_hu56_AAS99303 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu57_AAS99304 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu28_AAS99278 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu29_AAS99279 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT70_AAU05364 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu13_AAS99263 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu63_AAS99309 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu64_AAS99310 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT40_AAU05362 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ

PAGE 136

136 VP1_isolate_huLG15_AAU05371 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT17_AAU05358 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT41_AAU05372 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT71_AAU05366 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT88_AAU05368 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_huT32_AAU05360 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu27_AAS99277 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu19_AAS99269 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu20_AAS99271 .......DDS RGLVLPGYRY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu21_AAS99272 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu24_AAS99275 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu22_AAS99273 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ VP1_isolate_hu23_AAS99274 .......DDS RGLVLPGYKY LGPFNGLDKG EPVNEADAAA LEHDKAYDRQ 101 150 AAV_VR195_ABA71699 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPFG.L AAV_VR355_ABA71701 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPFG.L AAV1_NP_049542 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV1_VP1_AAD27757 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu48_AAS99296 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV6_VP1_AAB95450 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPFG.L VP1_isolate_hu43_AAS99291 LKAGDNPYPR YNHADAEFQE RLQEDTPFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu44_AAS99292 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu46_AAS99294 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV10_AAT46337 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh40_AAS99244 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu37_AAS99285 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu42_AAS99290 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu40_AAS99288 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu67_AAS99312 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh38_AAS99243 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu41_AAS99289 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.P VP1_isolate_hu66_AAS99311 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu17_AAS99267 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu6_AAS99306 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh25_AAS99242 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu39_AAS99286 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh49_AAS99247 LKAGDNPHLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh50_AAS99248 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh51_AAS99249 LKAGDNPYLR YNHADAELQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh52_AAS99250 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L

PAGE 137

137 VP1_isolate_rh64_AAS99259 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh53_AAS99251 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh61_AAS99257 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh58_AAS99255 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh57_AAS99254 LQAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV8_VP1_AAN03857 LQAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV8_YP_077180 LQAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh43_AAS99245 LEAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_pi1_AAS99238 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_pi3_AAS99240 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_pi2_AAS99239 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh1_AAS99241 LQAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV7_VP1_AAN03855 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV7_YP_077178 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh48_AAS99246 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh62_AAS99258 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh55_AAS99253 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh54_AAS99252 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_rh60_AAS99256 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV9_VP1_AAS99264 LKAGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRLLEPLG.L VP1_isolate_hu31_AAS99281 LKAGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRLLEPLG.L VP1_isolate_hu32_AAS99282 LKAGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRLLEPLG.L AAV11_AAT46339 LKAGDNPYLR YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV4_NP_044927 LKAGDNPYLK YNHADAEFQQ RLQGDTSFGG NLGRAVFQAK KRVLEPLG.L AAV4_VP1_AAC58045 LKAGDNPYLK YNHADAEFQQ RLQGDTSFGG NLGRAVFQAK KRVLEPLG.L BOVINE_AAV_AAR26465 LEAGDNPYLK YNHADAEFQE KLASDTSFGG NLGKAVFQAK KRILEPLG.L BOVINE_AAV_YP_024971 LEAGDNPYLK YNHADAEFQE KLASDTSFGG NLGKAVFQAK KRILEPLG.L AAV5_VP1_AAD13756 LEAGDNPYLK YNHADAEFQE KLADDTSFGG NLGKAVFQAK KRVLEPFG.L AAV5_YP_068409 LEAGDNPYLK YNHADAEFQE KLADDTSFGG NLGKAVFQAK KRVLEPFG.L CAPRINE_AAV1_AAU84890 LEAGDNPYLK YNHADAEFQE KLADDTSFGG NLGKAVFQAK KRVLEPFG.L GOAT_AAV_VP1_ABC69726 LEAGDNPYLK YNHADAEFQE KLADDTSFGG NLGKAVFQAK KRVLEPFG.L RAT_AAV1_AAZ79676 LESGENPYLT FNHADRQLQK DLAEDQSFEG NLARGLFEAK KLAAQVVG.V MOUSE_AAV1_AAZ79672 LEAGDNPYLK YNHADREFQE ALKDDTSFEG NLARGLFEAK KLVAEPLG.L AVIAN_AAV_ATCC_VR865_AAO32087 IKDGHNPYFE YNEADRRFQE RLKDDTSFGG NLGKAIFQAK KRVLEPFG.L AVIAN_AAV_ATCC_VR865_AAT48613 IKDGHNPYFE YNEADRRFQE RLKDDTSFGG NLGKAIFQAK KRVLEPFG.L AVIAN_AAV_ATCC_VR865_NP_852781 IKDGHNPYFE YNEADRRFQE RLKDDTSFGG NLGKAIFQAK KRVLEPFG.L AVIAN_AAV_Strain_DA1_AAT48615 LKDGHNPYFE YNEADRRFQE RLKDDTSFGG NLGKAIFQAK KRVLEPFG.L AVIAN_AAV_Strain_DA1_YP_077183 LKDGHNPYFE YNEADRRFQE RLKDDTSFGG NLGKAIFQAK KRVLEPFG.L DUCK_AAV_Strain_FM_AAA83225 LKAGDNPYIK FKHADQEFID NLQGDTSFGG NLGKAVFQAK KRILEPLG.L MUSCOVY_DUCK_PARVOVIRUS_YP_068412 .......... .......... .......... .......... .......... MUSCOVY_DUCK_VP1_YP_068411 LKAGDNPYIK FKHADQEFID NLQGDTSFGG NLGKAVFQAK KRILEPLG.L

PAGE 138

138MUSCOVY_DUCK_PARVOVIRUS_YP_068413 .......... .......... .......... .......... .......... Goose_AAV_VP1_AAA83230 LKAGDNPYIK FNHADQDFID SLQDDQSFGG NLGKAVFQAK KRILEPFG.L GOOSE_AAV_VP1_NP_043515 LKAGDNPYIK FNHADQDFID SLQDDQSFGG NLGKAVFQAK KRILEPFG.L AAV3_NP_043941 LKAGDNPYLK YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRILEPLG.L AAV3_Strain_H_AAC55049 LKAGDNPYLK YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRILEPLG.L AAV3B_VP1_AAB95452 LKAGDNPYLK YNHADAEFQE RLQEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu1_AAS99260 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu4_AAS99287 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu2_AAS99270 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu3_AAS99280 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLRPG VP1_isolate_hu60_AAS99307 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu61_AAS99308 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu25_AAS99276 LNSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu15_AAS99265 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu16_AAS99266 LDSGDNPYLK YNHAGAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu18_AAS99268 LESGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu7_AAS99313 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu10_AAS99261 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu11_AAS99262 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu9_AAS99314 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu53_AAS99300 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu55_AAS99302 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu54_AAS99301 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_huS17_AAU05370 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L AAV2_VP1_AAC03780 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu34_AAS99283 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu35_AAS99284 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_islolate_hu51_AAS99298 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu52_AAS99299 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu47_AAS99295 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu45_AAS99293 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu58_AAS99305 LDSGDNPYLK YDHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu49_AAS99297 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu56_AAS99303 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu57_AAS99304 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu28_AAS99278 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLS.L VP1_isolate_hu29_AAS99279 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_huT70_AAU05364 LESGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu13_AAS99263 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu63_AAS99309 LDSGDNPYPK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_hu64_AAS99310 LDGGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L

PAGE 139

139 VP1_isolate_huT40_AAU05362 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRVLEPLG.L VP1_isolate_huLG15_AAU05371 LDSGDNPYLK YNHADAKFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_huT17_AAU05358 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_huT41_AAU05372 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_huT71_AAU05366 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_huT88_AAU05368 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_huT32_AAU05360 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu27_AAS99277 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu19_AAS99269 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu20_AAS99271 LDSGDNPYLK YNHVDAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu21_AAS99272 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu24_AAS99275 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu22_AAS99273 LDSGDNPYLK YNHADAEFQE RLKGDTSFGG NLGRAVFQAK KRILEPLG.L VP1_isolate_hu23_AAS99274 LDSGDNPYLK YNHADAEFQE RLKEDTSFGG NLGRAVFQAK KRILEPLG.L 151 200 AAV_VR195_ABA71699 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKTG.QQPAK KRLNFGQT.. AAV_VR355_ABA71701 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKSG.QQPAK KRLNFGQT.. AAV1_NP_049542 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKTG.QQPAK KRLNFGQT.. AAV1_VP1_AAD27757 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_hu48_AAS99296 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKTG.QQPAK KRLNFGQT.. AAV6_VP1_AAB95450 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_hu43_AAS99291 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu44_AAS99292 VEEGAETAPG KK.RPVEQSP QG.PDSSSGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_hu46_AAS99294 VEEGAKTAPG KK.RPVEQSP QE.PDSPSGI GKTG.QQPAK KRLNFGQT.. AAV10_AAT46337 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_rh40_AAS99244 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu37_AAS99285 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu42_AAS99290 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu40_AAS99288 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLSFGQT.. VP1_isolate_hu67_AAS99312 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_rh38_AAS99243 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QRPAK KRLNFGQT.. VP1_isolate_hu41_AAS99289 VEEAAKTAPG KK.RPVEPPP QRSPDSSTGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu66_AAS99311 VEEAAKTAPG KK.RPVEPSP QRSPDSSAGI GKKG.QQPAK KRLNFGQT.. VP1_isolate_hu17_AAS99267 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_hu6_AAS99306 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_rh25_AAS99242 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKTG.QQPAK KRLNFGQT.. VP1_isolate_hu39_AAS99286 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGRT.. VP1_isolate_rh49_AAS99247 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh50_AAS99248 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAG KRLNFGQT.. VP1_isolate_rh51_AAS99249 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT..

PAGE 140

140 VP1_isolate_rh52_AAS99250 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh64_AAS99259 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh53_AAS99251 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh61_AAS99257 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh58_AAS99255 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh57_AAS99254 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. AAV8_VP1_AAN03857 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. AAV8_YP_077180 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh43_AAS99245 VEEGAKTAPG KK.RPVEQSP QE.PDSSSGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_pi1_AAS99238 VEEGAKTAPG KK.RPVEP.. ....DSSSGI GKSG.QQPAK KRLNFGQT.. VP1_isolate_pi3_AAS99240 VEEGAKTAPG KK.RPVEP.. ....DSSSGI GKSG.QQPAK KRLNFGPT.. VP1_isolate_pi2_AAS99239 VEEGAKTAPG KK.RPVEP.. ....DSSSGI GKSG.RQPAK KRLNFGQT.. VP1_isolate_rh1_AAS99241 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. AAV7_VP1_AAN03855 VEEGAKTAPA KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. AAV7_YP_077178 VEEGAKTAPA KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh48_AAS99246 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh62_AAS99258 AEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh55_AAS99253 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh54_AAS99252 VEEAAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. VP1_isolate_rh60_AAS99256 VEEGAKTAPG KK.RPVEPSP QRSPDSSTGI GKKG.QQPAR KRLNFGQT.. AAV9_VP1_AAS99264 VEEAAKTAPG KK.RPVEQSP QE.PDSSAGI GKSG.AQPAK KRLNFGQT.. VP1_isolate_hu31_AAS99281 VEEAAKTAPG KK.RPVEQSP QE.PDSSAGI GKSG.SQPAK KKLNFGQT.. VP1_isolate_hu32_AAS99282 VEEAAKTAPG KK.RPVEQSP QE.PDSSAGI GKSG.SQPAK KKLNFGQT.. AAV11_AAT46339 VEEGAKTAPG KK.RPLE.SP QE.PDSSSGI GKKG.KQPAR KRLNFEED.. AAV4_NP_044927 VEQAGETAPG KK.RPLIESP QQ.PDSSTGI GKKG.KQPAK KKLVFEDE.. AAV4_VP1_AAC58045 VEQAGETAPG KK.RPLIESP QQ.PDSSTGI GKKG.KQPAK KKLVFEDE.. BOVINE_AAV_AAR26465 VETPDKTAPA AKKRPLEQSP QE.PDSSSGV GKKG.KQPAR KRLNFDDE.. BOVINE_AAV_YP_024971 VETPDKTAPA AKKRPLEQSP QE.PDSSSGV GKKG.KQPAR KRLNFDDE.. AAV5_VP1_AAD13756 VEEGAKTAPT GKRID..... DHFPKRKK.. .......... ARTEEDSKPS AAV5_YP_068409 VEEGAKTAPT GKRID..... DHFPKRKK.. .......... ARTEEDSKPS CAPRINE_AAV1_AAU84890 VEEGAKTAPT GKRID..... DHFPKRKK.. .......... ARTEEDSKPS GOAT_AAV_VP1_ABC69726 VEEGAKTAPT GKRID..... DHFPKRKK.. .......... ARTEEDSKPS RAT_AAV1_AAZ79676 EEPELAPPVK RPHSP..... EKTPENQKGQ PRPDPRTPAK KRLEFSDQPG MOUSE_AAV1_AAZ79672 VEPELAPPSG RK.RPVQ... .....SSQES GYSS.SQDKR PNLDVDEE.. AVIAN_AAV_ATCC_VR865_AAO32087 VED.SKTAPT GDKRKGEDEP .RLPDTSSQT PKKN.KKPRK ERPSGGAE.. AVIAN_AAV_ATCC_VR865_AAT48613 VED.SKTAPT GDKRKGEDEP .RLPDTSSQT PKKN.KKPRK ERPSGGAE.. AVIAN_AAV_ATCC_VR865_NP_852781 VED.SKTAPT GDKRKGEDEP .RLPDTSSQT PKKN.KKPRK ERPSGGAE.. AVIAN_AAV_Strain_DA1_AAT48615 IEQPDNTAGT GEKR.....P .ERVDDFFPK KKKA.KTEQG KAPAQTGE.. AVIAN_AAV_Strain_DA1_YP_077183 IEQPDNTAGT GEKR.....P .ERVDDFFPK KKKA.KTEQG KAPAQTGE.. DUCK_AAV_Strain_FM_AAA83225 VEEPVNMAPA KKSS...... .GKLTDHDPI VKKP.KLSEE NSPSP..... MUSCOVY_DUCK_PARVOVIRUS_YP_068412 ......MAPA KKSS...... .GKLTDHDPI VKKP.KLSEE NSPSP.....

PAGE 141

141 MUSCOVY_DUCK_VP1_YP_068411 VEEPVNMAPA KKSS...... .GKLTDHDPI VKKP.KLSEE NSPSP..... MUSCOVY_DUCK_PARVOVIRUS_YP_068413 .......... .......... .......... .......... .......... Goose_AAV_VP1_AAA83230 VEDPVNTAPA KKNT...... .GKLTDHYPV VKKP.KLTEE VSAGG..... GOOSE_AAV_VP1_NP_043515 VEDPVNTAPA KKNT...... .GKLTDHYPV VKKP.KLTEE VSAGG..... AAV3_NP_043941 VEEAAKTAPG KK.GAVDQSP QE.PDSSSGV GKSG.KQPAR KRLNFGQT.. AAV3_Strain_H_AAC55049 VEEAAKTAPG KK.GAVDQSP QE.PDSSSGV GKSG.KQPAR KRLNFGQT.. AAV3B_VP1_AAB95452 VEEAAKTAPG KK.RPVDQSP QE.PDSSSGV GKSG.KQPAR KRLNFGQT.. VP1_isolate_hu1_AAS99260 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu4_AAS99287 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu2_AAS99270 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QRPAR KRLNFGQT.. VP1_isolate_hu3_AAS99280 LRKPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu60_AAS99307 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu61_AAS99308 VEEPVKTAPG KK.RPVEHPP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu25_AAS99276 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu15_AAS99265 VGEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_hu16_AAS99266 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_hu18_AAS99268 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu7_AAS99313 VEGPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu10_AAS99261 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.HQPAR KRLNFGQT.. VP1_isolate_hu11_AAS99262 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.HQPAR KRLNFGQT.. VP1_isolate_hu9_AAS99314 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.HQPAR KRLNFGQT.. VP1_isolate_hu53_AAS99300 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu55_AAS99302 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu54_AAS99301 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_huS17_AAU05370 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.QQPAR KRLNFGQT.. AAV2_VP1_AAC03780 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu34_AAS99283 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu35_AAS99284 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_islolate_hu51_AAS99298 VGEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu52_AAS99299 VGEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu47_AAS99295 VGEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu45_AAS99293 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu58_AAS99305 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_hu49_AAS99297 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu56_AAS99303 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_hu57_AAS99304 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_hu28_AAS99278 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.NQPAR KRLNFGQT.. VP1_isolate_hu29_AAS99279 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.NQPAR KRLNFGQT.. VP1_isolate_huT70_AAU05364 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.NQPAR KRLNFGQT.. VP1_isolate_hu13_AAS99263 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu63_AAS99309 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT..

PAGE 142

142 VP1_isolate_hu64_AAS99310 VEEPVKTAPG KK.RPVEHSL AE.PDSSSGT GKAG.QQPAR RRLNFGQT.. VP1_isolate_huT40_AAU05362 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.NQPAR KRLNFGQT.. VP1_isolate_huLG15_AAU05371 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_huT17_AAU05358 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_huT41_AAU05372 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_huT71_AAU05366 VEEPVKTAPG KK.RPVEHSP VE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_huT88_AAU05368 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_huT32_AAU05360 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKSG.QQPAR KRLNFGQT.. VP1_isolate_hu27_AAS99277 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu19_AAS99269 VEEPVKTAPG EK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu20_AAS99271 VEEPVKAAPG EK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu21_AAS99272 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu24_AAS99275 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu22_AAS99273 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. VP1_isolate_hu23_AAS99274 VEEPVKTAPG KK.RPVEHSP AE.PDSSSGT GKAG.QQPAR KRLNFGQT.. 201 250 AAV_VR195_ABA71699 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN AAV_VR355_ABA71701 GDSESVPDPQ PLG...EPPA TPAALGPTTM ASGGGAPMAD NNEGADGVGN AAV1_NP_049542 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN AAV1_VP1_AAD27757 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN VP1_isolate_hu48_AAS99296 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN AAV6_VP1_AAB95450 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN VP1_isolate_hu43_AAS99291 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGN VP1_isolate_hu44_AAS99292 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN VP1_isolate_hu46_AAS99294 GDSESVPDPQ PLG...EPPA TPAAVGPTTM ASGGGAPMAD NNEGADGVGN AAV10_AAT46337 GESESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh40_AAS99244 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu37_AAS99285 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu42_AAS99290 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu40_AAS99288 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu67_AAS99312 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh38_AAS99243 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu41_AAS99289 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu66_AAS99311 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu17_AAS99267 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu6_AAS99306 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh25_AAS99242 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_hu39_AAS99286 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh49_AAS99247 GDSESVPDPQ LIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh50_AAS99248 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS

PAGE 143

143 VP1_isolate_rh51_AAS99249 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh52_AAS99250 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh64_AAS99259 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh53_AAS99251 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh61_AAS99257 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh58_AAS99255 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh57_AAS99254 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS AAV8_VP1_AAN03857 GDSESVPDPQ PLG...EPPA APSGVGPNTM AAGGGAPMAD NNEGADGVGS AAV8_YP_077180 GDSESVPDPQ PLG...EPPA APSGVGPNTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh43_AAS99245 GDSESVPDPQ PLG...EPPA APSGVGPNTM AAGGGAPMAD NNEGADGVGS VP1_isolate_pi1_AAS99238 GDSESVPDPQ PLS...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGN VP1_isolate_pi3_AAS99240 GDSESVPDPQ PLS...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGN VP1_isolate_pi2_AAS99239 GDSESVPDPQ PLS...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGN VP1_isolate_rh1_AAS99241 GDSESVPDPQ PLG...EPPA APSGVGPNTM AAGGGAPMAD NNEGADGVGN AAV7_VP1_AAN03855 GDSESVPDPQ PLG...EPPA APSSVGSGTV AAGGGAPMAD NNEGADGVGN AAV7_YP_077178 GDSESVPDPQ PLG...EPPA APSSVGSGTV AAGGGAPMAD NNEGADGVGN VP1_isolate_rh48_AAS99246 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNKGADGVGN VP1_isolate_rh62_AAS99258 GDSESVPDPQ PIG...EPPA GPSGLGSGTM AAGGGAPMAD NNKGADGVGN VP1_isolate_rh55_AAS99253 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS VP1_isolate_rh54_AAS99252 GDSESVPDPQ PLG...EPPA GPSGLGSGTM AAGGGAPMAD NNEGADGVGN VP1_isolate_rh60_AAS99256 GDSESVPDPQ PIG...EPPA APSSVGSGTM AAGGGAPMAD NNEGADGVGS AAV9_VP1_AAS99264 GDTESVPDPQ PIG...EPPA APSGVGSLTM ASGGGAPVAD NNEGADGVGS VP1_isolate_hu31_AAS99281 GDTESVPDPQ PIG...EPPA APSGVGSLTM ASGGGAPVAD NNEGADGVGS VP1_isolate_hu32_AAS99282 GDTESVPDPQ PIG...EPPA APSGVGSLTM ASGGGAPVAD NNEGADGVGS AAV11_AAT46339 TGAGDGPP.. ......EGSD TSAMSSDIEM RAAPGGNAVD AGQGSDGVGN AAV4_NP_044927 TGAGDGPP.. ......EGST SGAMSDDSEM RAAAGGAAVE GGQGADGVGN AAV4_VP1_AAC58045 TGAGDGPP.. ......EGST SGAMSDDSEM RAAAGGAAVE GGQGADGVGN BOVINE_AAV_AAR26465 PGAGDGPPP. ......EGPS SGAMSTETEM RAAAGGNGGD AGQGAEGVGN BOVINE_AAV_YP_024971 PGAGDGPPP. ......EGPS SGAMSTETEM RAAAGGNGGD AGQGAEGVGN AAV5_VP1_AAD13756 TSSDAEAGPS GSQQLQIPAQ PASSLGADTM SAGGGGPLGD NNQGADGVGN AAV5_YP_068409 TSSDAEAGPS GSQQLQIPAQ PASSLGADTM SAGGGGPLGD NNQGADGVGN CAPRINE_AAV1_AAU84890 TSSDAEAGPS GSQQLQIPAQ PASSLGADTM SAGGGGPLGD NNQGADGVGN GOAT_AAV_VP1_ABC69726 TSSDAEAGPS GSQQLQIPAQ PASSLGADTM SAGGGGPLGD NNQGADGVGN RAT_AAV1_AAZ79676 SSADLPASSQ QSQ....PPA GVPGVVPGTM SAGGGAPVDD AQQGADGVGN MOUSE_AAV1_AAZ79672 DREFAAAAAE TET...GSAP PTGNLGPGTM AGGGSAPIDD GSYGADGVGN AVIAN_AAV_ATCC_VR865_AAO32087 DPGEGTSSNA GAA...APAS S...VGSSIM AEGGGGPVGD AGQGADGVGN AVIAN_AAV_ATCC_VR865_AAT48613 DPGEGTSSNA GAA...APAS S...VGSSIM AEGGGGPVGD AGQGADGVGN AVIAN_AAV_ATCC_VR865_NP_852781 DPGEGTSSNA GAA...APAS S...VGSSIM AEGGGGPVGD AGQGADGVGN AVIAN_AAV_Strain_DA1_AAT48615 DPGEGTSSNA GSS...APSS ....VGSSVM AEGGGGPMGD AGQGADGVGN AVIAN_AAV_Strain_DA1_YP_077183 DPGEGTSSNA GSS...APSS ....VGSSVM AEGGGGPMGD AGQGADGVGN DUCK_AAV_Strain_FM_AAA83225 .SNSGGEASA AAT...EGSE P...VAAPNM AEGGSGAMGD SAGGADGVGN

PAGE 144

144MUSCOVY_DUCK_PARVOVIRUS_YP_068412 .SNSGGEASA AAT...EGSE P...VAAPNM AEGGSGAMGD SAGGADGVGN MUSCOVY_DUCK_VP1_YP_068411 .SNSGGEASA AAT...EGSE P...VAAPNM AEGGSGAMGD SAGGADGVGN MUSCOVY_DUCK_PARVOVIRUS_YP_068413 .......... .......... .........M AEGGSGAMGD SAGGADGVGN Goose_AAV_VP1_AAA83230 .GSSAVQDGG ATA...EGTE P...VAASEM AEGGGGAMGD SSGGADGVGN GOOSE_AAV_VP1_NP_043515 .GSSAVQDGG ATA...EGTE P...VAASEM AEGGGGAMGD SSGGADGVGN AAV3_NP_043941 GDSESVPDPQ PLG...EPPA APTSLGSNTM ASGGGAPMAD NNEGADGVGN AAV3_Strain_H_AAC55049 GDSESVPDPQ PLG...EPPA APTSLGSNTM ASGGGAPMAD NNEGADGVGN AAV3B_VP1_AAB95452 GDSESVPDPQ PLG...EPPA APTSLGSNTM ASGGGAPMAD NNEGADGVGN VP1_isolate_hu1_AAS99260 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu4_AAS99287 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu2_AAS99270 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu3_AAS99280 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu60_AAS99307 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu61_AAS99308 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu25_AAS99276 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu15_AAS99265 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPVAD NNEGADGVGN VP1_isolate_hu16_AAS99266 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPVAD NNEGADGVGN VP1_isolate_hu18_AAS99268 GDADSVPDPQ PLG...QPPA APSGLGSTTM ASGSGAPVAD NNEGADGVGN VP1_isolate_hu7_AAS99313 GDADSVPDPQ PLG...QPPA APSGLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu10_AAS99261 GDADSVPDPQ PLG...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu11_AAS99262 GDADSVPDPQ PLG...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu9_AAS99314 GDADSVPDPQ PLG...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu53_AAS99300 GDADSVPDPQ PLR...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu55_AAS99302 GDADSVPDPQ PLG...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu54_AAS99301 GDADSVPDPQ PLG...QPPA APTSLGSTTM ATGSGAPMAD NNEGADGVGN VP1_isolate_huS17_AAU05370 GDSDSVPDPQ PLG...EPPA APTSLGSTTM ASGGGAPVAD NNEGADGVGN AAV2_VP1_AAC03780 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu34_AAS99283 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu35_AAS99284 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_islolate_hu51_AAS99298 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu52_AAS99299 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu47_AAS99295 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu45_AAS99293 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu58_AAS99305 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNDGADGVGN VP1_isolate_hu49_AAS99297 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu56_AAS99303 GDADSVPDPQ PLG...QPPA SPSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu57_AAS99304 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu28_AAS99278 GDSDSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu29_AAS99279 GDSDSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_huT70_AAU05364 GDSDSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu13_AAS99263 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN

PAGE 145

145 VP1_isolate_hu63_AAS99309 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_hu64_AAS99310 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_huT40_AAU05362 GDADSVPDPQ PLG...QPPA APSGLGTNTM ATGSGAPMAD NNEGADGVGN VP1_isolate_huLG15_AAU05371 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_huT17_AAU05358 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_huT41_AAU05372 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_huT71_AAU05366 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_huT88_AAU05368 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_huT32_AAU05360 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu27_AAS99277 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu19_AAS99269 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu20_AAS99271 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu21_AAS99272 GDADSVPDPR PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu24_AAS99275 GDADSVPDPR PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu22_AAS99273 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN VP1_isolate_hu23_AAS99274 GDADSVPDPQ PLG...QPPA APSGLGTNTM ASGSGAPMAD NNEGADGVGN 251 300 AAV_VR195_ABA71699 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH AAV_VR355_ABA71701 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH AAV1_NP_049542 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH AAV1_VP1_AAD27757 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH VP1_isolate_hu48_AAS99296 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISST ST.GASNDNH AAV6_VP1_AAB95450 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH VP1_isolate_hu43_AAS99291 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH VP1_isolate_hu44_AAS99292 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH VP1_isolate_hu46_AAS99294 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSA ST.GASNDNH AAV10_AAT46337 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh40_AAS99244 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu37_AAS99285 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu42_AAS99290 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu40_AAS99288 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu67_AAS99312 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh38_AAS99243 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu41_AAS99289 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu66_AAS99311 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu17_AAS99267 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu6_AAS99306 SSGNWHCDSA WLGDRVITTS TRPWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh25_AAS99242 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_hu39_AAS99286 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh49_AAS99247 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT

PAGE 146

146 VP1_isolate_rh50_AAS99248 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh51_AAS99249 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh52_AAS99250 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh64_AAS99259 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh53_AAS99251 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh61_AAS99257 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh58_AAS99255 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT VP1_isolate_rh57_AAS99254 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQTSNG TSGGSTNDNT AAV8_VP1_AAN03857 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGATNDNT AAV8_YP_077180 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGATNDNT VP1_isolate_rh43_AAS99245 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGATNDNT VP1_isolate_pi1_AAS99238 VSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSSNDNT VP1_isolate_pi3_AAS99240 VSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSSNDNT VP1_isolate_pi2_AAS99239 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSSNDNT VP1_isolate_rh1_AAS99241 SSGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISNG TSGGSTNDNT AAV7_VP1_AAN03855 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSE T.AGSTNDNT AAV7_YP_077178 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSE T.AGSTNDNT VP1_isolate_rh48_AAS99246 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSQ S.AGSTNDNV VP1_isolate_rh62_AAS99258 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSQ S.AGSTNDNV VP1_isolate_rh55_AAS99253 SSGNWHCDST RLGDRVITTS TRTWALPTYN NHLYKQISSQ S.AGSTNDNV VP1_isolate_rh54_AAS99252 ASGNWHCDST WLGDRVITTS TRTWALPTYN NHLYKQISSQ S.AGSTNDNV VP1_isolate_rh60_AAS99256 SSGNWHCDST WLGDRVITTS TRTWALPTHN NHLYKQISNG TSGGSTNDNV AAV9_VP1_AAS99264 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISNS TSGGSSNDNA VP1_isolate_hu31_AAS99281 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISNS TSGGSSNDNA VP1_isolate_hu32_AAS99282 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISNS TSGGSSNDNA AAV11_AAT46339 ASGDWHCDST WSEGKVTTTS TRTWVLPTYN NHLYLRLGTT S.....SSNT AAV4_NP_044927 ASGDWHCDST WSEGHVTTTS TRTWVLPTYN NHLYKRLGES L.....QSNT AAV4_VP1_AAC58045 ASGDWHCDST WSEGHVTTTS TRTWVLPTYN NHLYKRLGES L.....QSNT BOVINE_AAV_AAR26465 ASGDWHCDST WSESHVTTTS TRTWVLPTYN NHLYLRLGSS N.....ASDT BOVINE_AAV_YP_024971 ASGDWHCDST WSESHVTTTS TRTWVLPTYN NHLYLRLGSS N.....ASDT AAV5_VP1_AAD13756 ASGDWHCDST WMGDRVVTKS TRTWVLPSYN NHQYREIKSG S.VDGSNANA AAV5_YP_068409 ASGDWHCDST WMGDRVVTKS TRTWVLPSYN NHQYREIKSG S.VDGSNANA CAPRINE_AAV1_AAU84890 ASGDWHCDST WMGDRVVTKS TRTWVLPSYN NHQYREIKSG S.VDGSNANA GOAT_AAV_VP1_ABC69726 ASGDWHCDST WMGDRVVTKS TRTWVLPSYN NHQYREIKSG S.VDGSNANA RAT_AAV1_AAZ79676 ASGDWHCDSK WLGNRVLTRS TRTWVLPSYN NHLYKQISDA SGVHSLPGSR MOUSE_AAV1_AAZ79672 ASGDWHCDST WLDNCVITRT TRTWNLPTYN NHIYKRLNGT T....SGDQS AVIAN_AAV_ATCC_VR865_AAO32087 SSGNWHCDSQ WLENGVVTRT TRTWVLPSYN NHLYKRIQGP S..GGDNNNK AVIAN_AAV_ATCC_VR865_AAT48613 SSGNWHCDSQ WLENGVVTRT TRTWVLPSYN NHLYKRIQGP S..GGDNNNK AVIAN_AAV_ATCC_VR865_NP_852781 SSGNWHCDSQ WLENGVVTRT TRTWVLPSYN NHLYKRIQGP S..GGDNNNK AVIAN_AAV_Strain_DA1_AAT48615 SSGNWHCDSQ WLDNGVVTRT TRTWVLPSYN NHLYKRIQGP G..GTDPNNK AVIAN_AAV_Strain_DA1_YP_077183 SSGNWHCDSQ WLDNGVVTRT TRTWVLPSYN NHLYKRIQGP G..GTDPNNK

PAGE 147

147 DUCK_AAV_Strain_FM_AAA83225 ASGNWHCDSQ WLGDTVITKT TRTWVLPSYN NHMYQAITSG T..NPDSNTQ MUSCOVY_DUCK_PARVOVIRUS_YP_068412 ASGNWHCDSQ WLGDTVITKT TRTWVLPSYN NHMYQAITSG T..NPDSNTQ MUSCOVY_DUCK_VP1_YP_068411 ASGNWHCDSQ WLGDTVITKT TRTWVLPSYN NHMYQAITSG T..NPDSNTQ MUSCOVY_DUCK_PARVOVIRUS_YP_068413 ASGNWHCDSQ WLGDTVITKT TRTWVLPSYN NHMYQAITSG T..NPDSNTQ Goose_AAV_VP1_AAA83230 ASGNWHCDSQ WMGNTVITKT TRTWVLPSYN NHIYKAITSG T..SQDANVQ GOOSE_AAV_VP1_NP_043515 ASGNWHCDSQ WMGNTVITKT TRTWVLPSYN NHIYKAITSG T..SQDANVQ AAV3_NP_043941 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH AAV3_Strain_H_AAC55049 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH AAV3B_VP1_AAB95452 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu1_AAS99260 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu4_AAS99287 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu2_AAS99270 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu3_AAS99280 SSGNWHCDSQ WLDDRVIATS TRTWALPTYN NHLYKQISSQ S..GACNDNH VP1_isolate_hu60_AAS99307 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu61_AAS99308 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu25_AAS99276 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu15_AAS99265 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu16_AAS99266 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu18_AAS99268 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu7_AAS99313 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu10_AAS99261 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu11_AAS99262 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu9_AAS99314 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu53_AAS99300 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu55_AAS99302 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu54_AAS99301 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huS17_AAU05370 SSGNWHCDSQ WLGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH AAV2_VP1_AAC03780 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu34_AAS99283 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu35_AAS99284 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_islolate_hu51_AAS99298 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu52_AAS99299 SSGNRHCDST WMGDRVITTS TRTWALPTYN NHLYRQISSQ S..GASNDNH VP1_isolate_hu47_AAS99295 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDSH VP1_isolate_hu45_AAS99293 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu58_AAS99305 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu49_AAS99297 SSGSWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu56_AAS99303 SSGNWHCDST WMGDRVVTTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu57_AAS99304 SSGDWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu28_AAS99278 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu29_AAS99279 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT70_AAU05364 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH

PAGE 148

148 VP1_isolate_hu13_AAS99263 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu63_AAS99309 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu64_AAS99310 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYRQISSQ S..GASNDNH VP1_isolate_huT40_AAU05362 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huLG15_AAU05371 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT17_AAU05358 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT41_AAU05372 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT71_AAU05366 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT88_AAU05368 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_huT32_AAU05360 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu27_AAS99277 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu19_AAS99269 SSGNWYCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu20_AAS99271 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu21_AAS99272 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu24_AAS99275 SSGNWHCDST WMGDRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu22_AAS99273 SSGNWHCDST WMGGRVITTS TRTWALPTYN NHLYKQISSQ S..GASNDNH VP1_isolate_hu23_AAS99274 SSGNWHCDST WMGDRVITTS TRTWALPTCN NHLYKQISSQ S..GASNDNH 301 350 AAV_VR195_ABA71699 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV_VR355_ABA71701 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV1_NP_049542 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV1_VP1_AAD27757 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu48_AAS99296 YFGYGTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVE AAV6_VP1_AAB95450 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu43_AAS99291 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu44_AAS99292 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu46_AAS99294 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV10_AAT46337 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh40_AAS99244 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu37_AAS99285 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu42_AAS99290 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu40_AAS99288 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu67_AAS99312 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh38_AAS99243 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKPFNIQVK VP1_isolate_hu41_AAS99289 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu66_AAS99311 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu17_AAS99267 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu6_AAS99306 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_rh25_AAS99242 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu39_AAS99286 YFGYSTPWGY LDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK

PAGE 149

149 VP1_isolate_rh49_AAS99247 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh50_AAS99248 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh51_AAS99249 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh52_AAS99250 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh64_AAS99259 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh53_AAS99251 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh61_AAS99257 YFGYSTPWGY FDFNRFHCHF SPRDWQRPIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh58_AAS99255 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh57_AAS99254 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK AAV8_VP1_AAN03857 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK AAV8_YP_077180 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_rh43_AAS99245 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_pi1_AAS99238 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL NFKLFNIQVK VP1_isolate_pi3_AAS99240 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL NFKLFNIQVK VP1_isolate_pi2_AAS99239 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_rh1_AAS99241 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV7_VP1_AAN03855 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL RFKLFNIQVK AAV7_YP_077178 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL RFKLFNIQVK VP1_isolate_rh48_AAS99246 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN SNWGFRPKKL NFKLFNIQVK VP1_isolate_rh62_AAS99258 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL NFKLFNIQVK VP1_isolate_rh55_AAS99253 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL NFKLFNIQVK VP1_isolate_rh54_AAS99252 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL NFKLFNIQVK VP1_isolate_rh60_AAS99256 YFGYSTPWGY FDFNRFHCHF SPRDRQRLIN NNWGFRPKRL SFKLFNIQVK AAV9_VP1_AAS99264 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu31_AAS99281 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu32_AAS99282 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV11_AAT46339 YNGFSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGLRPKAM RVKIFNIQVK AAV4_NP_044927 YNGFSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGMRPKAM RVKIFNIQVK AAV4_VP1_AAC58045 YNGFSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGMRPKAM RVKIFNIQVK BOVINE_AAV_AAR26465 FNGFSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGLRPKSM QVRIFNIQVK BOVINE_AAV_YP_024971 FNGFSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGLRPKSM QVRIFNIQVK AAV5_VP1_AAD13756 YFGYSTPWGY FDFNRFHSHW SPRDWQRLIN NYWGFRPRSL RVKIFNIQVK AAV5_YP_068409 YFGYSTPWGY FDFNRFHSHW SPRDWQRLIN NYWGFRPRSL RVKIFNIQVK CAPRINE_AAV1_AAU84890 YFGYSTPWGY FDFNRFHSHW SPRDWQRLIN NYWGFRPRSL RVKIFNIQVK GOAT_AAV_VP1_ABC69726 YFGYSTPWGY FDFNRFHSHW SPRDWQRLIN NYWGFRPRSL RVKIFNIQVK RAT_AAV1_AAZ79676 YFGYSTPWGY FDFNRFHCHF SPRDWQRLVN NHWGFRPKRL RVKLFNIQVK MOUSE_AAV1_AAZ79672 YFGFSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGLRPKSL RFKIFNIQVK AVIAN_AAV_ATCC_VR865_AAO32087 FFGFSTPWGY FDYNRFHCHF SPRDWQRLIN NNWGIRPKAM RFRLFNIQVK AVIAN_AAV_ATCC_VR865_AAT48613 FFGFSTPWGY FDYNRFHCHF SPRDWQRLIN NNWGIRPKAM RFRLFNIQVK AVIAN_AAV_ATCC_VR865_NP_852781 FFGFSTPWGY FDYNRFHCHF SPRDWQRLIN NNWGIRPKAM RFRLFNIQVK AVIAN_AAV_Strain_DA1_AAT48615 FFGFSTPWGY FDYNRFHCHF SPRDWQRLIN NNWGIRPKAM RFRLFNIQVK

PAGE 150

150 AVIAN_AAV_Strain_DA1_YP_077183 FFGFSTPWGY FDYNRFHCHF SPRDWQRLIN NNWGIRPKAM RFRLFNIQVK DUCK_AAV_Strain_FM_AAA83225 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKAL KFKIFNVQVK MUSCOVY_DUCK_PARVOVIRUS_YP_068412 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKAL KFKIFNVQVK MUSCOVY_DUCK_VP1_YP_068411 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKAL KFKIFNVQVK MUSCOVY_DUCK_PARVOVIRUS_YP_068413 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKAL KFKIFNVQVK Goose_AAV_VP1_AAA83230 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKSL KFKIFNVQVK GOOSE_AAV_VP1_NP_043515 YAGYSTPWGY FDFNRFHCHF SPRDWQRLIN NHWGIRPKSL KFKIFNVQVK AAV3_NP_043941 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL SFKLFNIQVR AAV3_Strain_H_AAC55049 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL SFKLFNIQVR AAV3B_VP1_AAB95452 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKKL SFKLFNIQVK VP1_isolate_hu1_AAS99260 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu4_AAS99287 YFGYSTPWGY FDFNRFHCHF SPRDWQRLVN NNRGFRPKRL NFKLFNIQVK VP1_isolate_hu2_AAS99270 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu3_AAS99280 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN SNWGFRPKRL NFKLFNIQVK VP1_isolate_hu60_AAS99307 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu61_AAS99308 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu25_AAS99276 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu15_AAS99265 YFGYSTPWGY FDFNRFHCHF SPRDRQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu16_AAS99266 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu18_AAS99268 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NSWGFRPKRL NFKLFNIQVK VP1_isolate_hu7_AAS99313 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu10_AAS99261 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu11_AAS99262 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu9_AAS99314 YFGCSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu53_AAS99300 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu55_AAS99302 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu54_AAS99301 YFGYSTPWGY FDFNRFHCRF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_huS17_AAU05370 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK AAV2_VP1_AAC03780 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu34_AAS99283 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu35_AAS99284 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_islolate_hu51_AAS99298 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu52_AAS99299 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu47_AAS99295 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu45_AAS99293 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu58_AAS99305 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVR VP1_isolate_hu49_AAS99297 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu56_AAS99303 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu57_AAS99304 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NLKLFNIQVK VP1_isolate_hu28_AAS99278 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu29_AAS99279 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK

PAGE 151

151 VP1_isolate_huT70_AAU05364 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu13_AAS99263 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu63_AAS99309 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL NFKLFNIQVK VP1_isolate_hu64_AAS99310 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGSRPKRL NFKLFNIQVK VP1_isolate_huT40_AAU05362 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_huLG15_AAU05371 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL GFKLFNIQVK VP1_isolate_huT17_AAU05358 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_huT41_AAU05372 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_huT71_AAU05366 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_huT88_AAU05368 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_huT32_AAU05360 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu27_AAS99277 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu19_AAS99269 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu20_AAS99271 YFGYSTPWGH FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu21_AAS99272 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu24_AAS99275 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu22_AAS99273 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK VP1_isolate_hu23_AAS99274 YFGYSTPWGY FDFNRFHCHF SPRDWQRLIN NNWGFRPKRL SFKLFNIQVK 351 400 AAV_VR195_ABA71699 EVTTSDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM AAV_VR355_ABA71701 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM AAV1_NP_049542 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM AAV1_VP1_AAD27757 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu48_AAS99296 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM AAV6_VP1_AAB95450 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu43_AAS99291 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu44_AAS99292 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu46_AAS99294 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGR LPPFPADVFM AAV10_AAT46337 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh40_AAS99244 EVTQDEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu37_AAS99285 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu42_AAS99290 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu40_AAS99288 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu67_AAS99312 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh38_AAS99243 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu41_AAS99289 EVTQNEGTKT VANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu66_AAS99311 EVTQNEGTET IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu17_AAS99267 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC PPPFPADVFM VP1_isolate_hu6_AAS99306 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC PPPFPADVFM VP1_isolate_rh25_AAS99242 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC PPPFPADVFM

PAGE 152

152 VP1_isolate_hu39_AAS99286 EVTQNEGTKT IANNLASTIQ VFTDSEYQPP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh49_AAS99247 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh50_AAS99248 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh51_AAS99249 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC QPPFPADVFM VP1_isolate_rh52_AAS99250 EVTQNEGTKT IANSLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh64_AAS99259 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh53_AAS99251 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh61_AAS99257 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh58_AAS99255 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh57_AAS99254 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV8_VP1_AAN03857 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV8_YP_077180 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh43_AAS99245 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_pi1_AAS99238 EVTQNEGTKT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_pi3_AAS99240 EVTQNEGTKT TANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_pi2_AAS99239 EVTQNEGTKT IANNLTSTVQ VFTDSKYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh1_AAS99241 EVTTNEGTKT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV7_VP1_AAN03855 EVTTNDGVTT IANNLTSTIQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM AAV7_YP_077178 EVTTNDGVTT IANNLTSTIQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh48_AAS99246 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh62_AAS99258 EVTTGDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh55_AAS99253 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh54_AAS99252 EVTTNDGVTT IANNLTSTVQ VFSDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_rh60_AAS99256 EVTQNEGTKT IANNLTSTIQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV9_VP1_AAS99264 EVTDNNGVKT IANNLTSTVQ VFTDSDYQLP YVLGSAHEGC LPPFPADVFM VP1_isolate_hu31_AAS99281 EVTDNNGVKT IANNLTSTVQ VFTDSDYQLP YVLGSAHEGC LPPFPADVFM VP1_isolate_hu32_AAS99282 EVTDNNGVKT IANNLTSTVQ VFTDSDYQLP YVLGSAHEGC LPPFPADVFM AAV11_AAT46339 EVTTSNGETT VANNLTSTVQ IFADSSYELP YVMDAGQEGS LPPFPNDVFM AAV4_NP_044927 EVTTSNGETT VANNLTSTVQ IFADSSYELP YVMDAGQEGS LPPFPNDVFM AAV4_VP1_AAC58045 EVTTSNGETT VANNLTSTVQ IFADSSYELP YVMDAGQEGS LPPFPNDVFM BOVINE_AAV_AAR26465 EVTTSNGETT VSNNLTSTVQ IFADSTYELP YVMDAGQEGS LPPFPNDVFM BOVINE_AAV_YP_024971 EVTTSNGETT VSNNLTSTVQ IFADSTYELP YVMDAGQEGS LPPFPNDVFM AAV5_VP1_AAD13756 EVTVQDSTTT IANNLTSTVQ VFTDDDYQLP YVVGNGTEGC LPAFPPQVFT AAV5_YP_068409 EVTVQDSTTT IANNLTSTVQ VFTDDDYQLP YVVGNGTEGC LPAFPPQVFT CAPRINE_AAV1_AAU84890 EVTVQDSTTT IANNLTSTVQ VFTDDDYQLP YVVGNGTEGC LPAFPPQVFT GOAT_AAV_VP1_ABC69726 EVTVQDSTTT IANNLTSTVQ VFTDDDYQLP YVVGNGTEGC LPAFPPQVFT RAT_AAV1_AAZ79676 EVTTTDSTTT VSNNLTSTVQ VFTDDEYQLP YVCGNATEGC LPPFPPDVFT MOUSE_AAV1_AAZ79672 EVTTQDSTKI ISNNLTSTVQ VFADTEYQLP YVIGSAHEGC LPPFPADVFM AVIAN_AAV_ATCC_VR865_AAO32087 EVTVQDFNTT IGNNLTSTVQ VFADKDYQLP YVLGSATEGT FPPFPADIYT AVIAN_AAV_ATCC_VR865_AAT48613 EVTVQDFNTT IGNNLTSTVQ VFADKDYQLP YVLGSATEGT FPPFPADIYT AVIAN_AAV_ATCC_VR865_NP_852781 EVTVQDFNTT IGNNLTSTVQ VFADKDYQLP YVLGSATEGT FPPFPADIYT

PAGE 153

153 AVIAN_AAV_Strain_DA1_AAT48615 EVTVQDSNTT IANNLTSTVQ VFADKDYQLP YVLGSATEGT FPPFPADIYT AVIAN_AAV_Strain_DA1_YP_077183 EVTVQDSNTT IANNLTSTVQ VFADKDYQLP YVLGSATEGT FPPFPADIYT DUCK_AAV_Strain_FM_AAA83225 EVTTQDQTKT IANNLTSTIQ IFTDNEHQLP YVLGSATEGT MPPFPSDVYA MUSCOVY_DUCK_PARVOVIRUS_YP_068412 EVTTQDQTKT IANNLTSTIQ IFTDNEHQLP YVLGSATEGT MPPFPSDVYA MUSCOVY_DUCK_VP1_YP_068411 EVTTQDQTKT IANNLTSTIQ IFTDNEHQLP YVLGSATEGT MPPFPSDVYA MUSCOVY_DUCK_PARVOVIRUS_YP_068413 EVTTQDQTKT IANNLTSTIQ IFTDNEHQLP YVLGSATEGT MPPFPSDVYA Goose_AAV_VP1_AAA83230 EVTTQDQTKT IANNLTSTIQ VFTDDEHQLP YVLGSATEGT MPPFPSDVYA GOOSE_AAV_VP1_NP_043515 EVTTQDQTKT IANNLTSTIQ VFTDDEHQLP YVLGSATEGT MPPFPSDVYA AAV3_NP_043941 GVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV3_Strain_H_AAC55049 GVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM AAV3B_VP1_AAB95452 EVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu1_AAS99260 EVTQNGGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu4_AAS99287 EVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu2_AAS99270 EVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_hu3_AAS99280 EVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVPGSAHQGC LPPFPADVFM VP1_isolate_hu60_AAS99307 EVTQNDGTTT IANNLTSTVQ VFTDSEYQLP YVLGSAHQGC LPPFPADVFM VP1_isolate_h