<%BANNER%>

Attention and Self-Concept in Adolescents with Spina Bifida

Permanent Link: http://ufdc.ufl.edu/UFE0018122/00001

Material Information

Title: Attention and Self-Concept in Adolescents with Spina Bifida
Physical Description: 1 online resource (90 p.)
Language: english
Creator: Preston, Andrew S
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: adolescence, attention, self, spina
Clinical and Health Psychology -- Dissertations, Academic -- UF
Genre: Psychology thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Spina bifida is a neural tube defect that occurs in approximately 1 to 2 of every 2,000 live births in the United States and causes numerous physical and cognitive deficits. Due to improved medical treatments and high rates of long-term survival, health care providers are learning more about issues of adolescence and later adulthood. The current study compared young adolescents with spina bifida to healthy controls on measures of attention and self-concept. The current study is unique because it examined attentional performance while controlling for motor demands. Additionally, no studies to date have assessed the relationship between cognitive deficits and self-concept in this population. This study hypothesized that children with spina bifida would perform significantly lower on tests of selective attention, attentional control, sustained attention, and parent-reported attention, even after controlling for motor demands. A second hypothesis was that children with spina bifida would have less positive self-concept on academic performance, social relationships, and physical appearance. In addition, it was hypothesized that there would be significant relationships between performance on attentional tests and self-concept. Results demonstrated that after controlling for motor demands, adolescents with spina bifida performed worse than healthy controls on tests of sustained and selective attention, but not attentional switching. Additionally, parents rated adolescents with spina bifida as having more attentional problems than healthy controls. Adolescents with spina bifida reported significantly lower social, academic, and physical self-concepts. However, the hypothesized potential role of attentional problems in report of self-concept was not supported. These findings support prior research suggesting that adolescents with spina bifida have greater attentional deficits and lower self-concept. Future studies should continue to explore the potential relationship between attention and self-concept, including exploration of related constructs, such as self-awareness.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Andrew S Preston.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Fennell, Eileen B.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0018122:00001

Permanent Link: http://ufdc.ufl.edu/UFE0018122/00001

Material Information

Title: Attention and Self-Concept in Adolescents with Spina Bifida
Physical Description: 1 online resource (90 p.)
Language: english
Creator: Preston, Andrew S
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2007

Subjects

Subjects / Keywords: adolescence, attention, self, spina
Clinical and Health Psychology -- Dissertations, Academic -- UF
Genre: Psychology thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Spina bifida is a neural tube defect that occurs in approximately 1 to 2 of every 2,000 live births in the United States and causes numerous physical and cognitive deficits. Due to improved medical treatments and high rates of long-term survival, health care providers are learning more about issues of adolescence and later adulthood. The current study compared young adolescents with spina bifida to healthy controls on measures of attention and self-concept. The current study is unique because it examined attentional performance while controlling for motor demands. Additionally, no studies to date have assessed the relationship between cognitive deficits and self-concept in this population. This study hypothesized that children with spina bifida would perform significantly lower on tests of selective attention, attentional control, sustained attention, and parent-reported attention, even after controlling for motor demands. A second hypothesis was that children with spina bifida would have less positive self-concept on academic performance, social relationships, and physical appearance. In addition, it was hypothesized that there would be significant relationships between performance on attentional tests and self-concept. Results demonstrated that after controlling for motor demands, adolescents with spina bifida performed worse than healthy controls on tests of sustained and selective attention, but not attentional switching. Additionally, parents rated adolescents with spina bifida as having more attentional problems than healthy controls. Adolescents with spina bifida reported significantly lower social, academic, and physical self-concepts. However, the hypothesized potential role of attentional problems in report of self-concept was not supported. These findings support prior research suggesting that adolescents with spina bifida have greater attentional deficits and lower self-concept. Future studies should continue to explore the potential relationship between attention and self-concept, including exploration of related constructs, such as self-awareness.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Andrew S Preston.
Thesis: Thesis (Ph.D.)--University of Florida, 2007.
Local: Adviser: Fennell, Eileen B.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2007
System ID: UFE0018122:00001


This item has the following downloads:


Full Text





ATTENTION AND SELF-CONCEPT IN ADOLESCENTS WITH SPINA BIFIDA


By

ANDREW S. PRESTON















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007






































O 2007 Andrew S. Preston

































To the families and children affected by spina bifida.















ACKNOWLEDGE1VENTS

I would like to thank all of the people who have contributed to this proj ect. First and

foremost, I would like to thank my wife, daughter, and parents for their love and support

throughout my graduate training. Dr. Eileen Fennell deserves my sincerest gratitude for

mentoring my clinical neuropsychology graduate training as well as guidance in professional life

and on this proj ect. Dr. Shelley Heaton deserves my gratitude for her tutelage throughout my

graduate career as well as assistance with resources and guidance during this project. I would

like to thank Rosellen Dedlow for her dedication to this proj ect and willingness to help me every

time I faced a new challenge in recruitment. Dr. Siraj Siddiqui deserves my thanks for his

assistance with this proj ect. I would like to thank my other committee members, Drs. Jim

Johnson, Regina Bussing, and Fonda Eyler, for their assistance throughout the many phases of

this proj ect. Finally, I would like to thank my fellow lab mates and research assistants for their

assistance and dedication to this proj ect.












TABLE OF CONTENTS


page

ACKNOWLEDGE MENT S ............_ ..... ..__ ...............4....


LI ST OF T ABLE S ............_...... .__ ...............7....


AB S TRAC T ......_ ................. ............_........8


CHAPTER


1 INTRODUCTION ................. ...............10.......... ......


General Background .............. ... ......... ................ .............1
Attention: Definitions and Neuroanatomical Substrates ................. ......... ................11
Definitions of Self-Concept and Relationship with Attention ................. .......................12
Spina Bifida .............. ... ........... ......... ...............16..
Physical Complications in Spina Bifida ................. ...............16........... ...
Neuroanatomical Sequelae in Spina Bifida ................. ...............18........... ...
Intellectual and achievement performance ................. ...............20................
Visual-motor and vi sual-constructional abilities ........._..._... ............_...............21

Language .............. ...............21....
Memory and learning .............. ............. ...........2
Attention and executive functions in SB/H .....__.....___ ..........._ ...........2
Self-Concept and SB/H .............. ...............24....
The Current Study............... ...............27.
Hypotheses............... ...............2
Specific Aim 1 .............. ...............28....
Specific Aim 2............... ...............29...
Specific Aim 3 .............. ...............29....

2 MATERIALS AND METHODS .............. ...............30....


Participants .............. ...............30....
M measures ............... .... ....._ ............... 1....

Demographic Information ............ ..... .__ ............... 1....
Screening M measures ............... ...... ... .._ .......... .. ........... ..........3
Peabody Picture Vocabulary Test- Third Edition (PPVT-III) ................. ...............31
Wechsler Individual Achievement Test, Second Edition (WIAT-II): Word
Reading subtest............... .... .............3
Evaluation of Attention: Parent-report ................. .. .......... ...... ...... ....... ........ 3
Behavior Assessment System for Children Parent Rating Scales: 12-18 or 6-
11 (BASC: PRS-A) or (BASC: PRS-C) .............. ...............33....
Neuropsychological Measures of Attention ................... ...............34................
Test of Everyday Attention for Children (TEA-Ch) ................. ... ........ ..... ..........34
Deli s-Kaplan Executive Function System (D-KEF S): Trailmaking Test............._3 5
Self-Concept ............ ..... ._ ...............36....












Multi-Dimensional Self-Concept Scale (MSC S) .............. ..... ............... 3
M ood .................... .. .......... ....... .... ..... ......... ......... .......3
Revised Children's Manifest Anxiety Scale (RCMAS)............... .................3
Children' sDepression Inventory (CDI) ................... ........... ..... ..... ......... .......3
Behavior Assessment System for Children Self-Report Scales: 8-11 or 12-
18 (BASC: SRP-C) or (BASC: SRP-A) .............. ...............38....
Procedure .............. ...............3 9....


3 RE SULT S .............. ...............42....


Data Analysis............... ...............42
Demographics ................. ...............42......... ......
Statistical Analyses ................. ...............44......... ......
H ypothesis 1 ............... .... .. ... .. ....... .........4
Comparison of attentional performance without controls for motor demands ........44
Comparison of attentional performance with controls for motor demands .............45
Hypothesis 2 .............. ...............46....
Hypothesis 3 .............. .. ....... ... .. .......4
Additional Calculations and Exploratory Analyses .............. ...............47....
Differences in mood ........._.__....... .__. ...............47...
Differences in Behavior Problems .............. ...............48....

Age differences .............. ...............49....
Gender differences .............. ...............50....
Effect of hydrocephalus ........._.._.._ ...._.. ....._.. ...._. ............... .50
Effect of ADHD ........._ ....__ ...._ .......__ ....._ .............51


4 DI SCUS SSION ............ ............ ...............62..


Overview ............. .. ........... .... ...............62.
Attentional Differences Between Groups ................. ...._ ....__ ............6
Differences in Self-Concept ............... ......... .... ............6
Relationship Between Attention and Self-Concept ......___ ...... .. __ ......... ........6
Additional Results .............. ...............70....
Limitations ............ .... __ ...............72..


5 FUTURE WORK............... ...............75..


LIST OF REFERENCES ............ ...... __ ...............78..


BIOGRAPHICAL SKETCH .............. ...............90....










LIST OF TABLES


Table page

3-1 Demographic Characteristics of SB and Healthy Control groups .................. ...............53

3-2 Variables Used in Primary Analyses .............. ...............54....

3-3 Mean Group Scores on Attenti onal Measure s with no Motor Control C orrecti on............5 5

3-4 Mean Group Scores on Attentional Measures with Motor Control Corrections ........._....56

3-5 Mean Group Scores on Self-Concept Domains ...._ ......_____ ...... .....__........5

3-6 Correlations between Tests of Attention and Self-Concept for the Total Sample
(Controls and Spina Bifida) .............. ...............58....

3-7 Group Mean Scores on Mood Symptom Scales .............. ...............59....

3-8 Age Differences on Self-Concept domains within Spina Bifida group ...........................60

3-9 Gender Differences on Self-Concept domains within Spina Bifida group.............._._. .....61












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ATTENTION AND SELF-CONCEPT IN ADOLESCENTS WITH SPINA BIFIDA

By

ANDREW S. PRESTON

August, 2007

Chair: Eileen B. Fennell
Major: Psychology

Spina bifida is a neural tube defect that occurs in approximately 1 to 2 of every 2,000 live

births in the United States and causes numerous physical and cognitive deficits. Due to

improved medical treatments and high rates of long-term survival, health care providers are

learning more about issues of adolescence and later adulthood. The current study compared

young adolescents with spina bifida to healthy controls on measures of attention and self-

concept. The current study is unique because it examined attentional performance while

controlling for motor demands. Additionally, no studies to date have assessed the relationship

between cognitive deficits and self-concept in this population. This study hypothesized that

children with spina bifida would perform significantly lower on tests of selective attention,

attentional control, sustained attention, and parent-reported attention, even after controlling for

motor demands. A second hypothesis was that children with spina bifida would have less

positive self-concept on academic performance, social relationships, and physical appearance. In

addition, it was hypothesized that there would be significant relationships between performance

on attentional tests and self-concept. Results demonstrated that after controlling for motor

demands, adolescents with spina bifida performed worse than healthy controls on tests of









sustained and selective attention, but not attentional switching. Additionally, parents rated

adolescents with spina bifida as having more attentional problems than healthy controls.

Adolescents with spina bifida reported significantly lower social, academic, and physical self-

concepts. However, the hypothesized potential role of attentional problems in report of self-

concept was not supported. These Eindings support prior research suggesting that adolescents

with spina bifida have greater attentional deficits and lower self-concept. Future studies should

continue to explore the potential relationship between attention and self-concept, including

exploration of related constructs, such as self-awareness.









CHAPTER 1
INTTRODUCTION

General Background

Numerous studies have demonstrated a variety of physical and cognitive deficits related to

spina bifida and comorbid hydrocephalus, including weakness or paralysis of the legs, poor

bladder/bowel control, poor Eine and gross motor skills, poor language content, visual-motor

deficits, and visual-spatial deficits (Hetherington and Dennis, 1999; Barnes and Dennis, 1998;

Fletcher, Brookshire et al., 1995). Additionally, studies indicate that children with spina bifida

and hydrocephalus have learning deficits, encoding and retrieval deficits, and deficits in attention

and executive functions (Fletcher, Brookshire et al., 1995; Jacobs, 2001; Scott, 1998; Yeates

1995). However, many previous studies of attention are confounded by motor demands within

the tests. In addition, many studies suggest that self-concept and mood are poor in children with

spina bifida, but these studies have been inconsistent and have not attempted to analyze the

impact of cognitive functioning on self-concept. Since attention and executive functions are

likely to impact academic, social, and other areas of an adolescent' s life, it is critical to take these

abilities into consideration when researching self-concept in adolescents with spina bifida. My

study addressed two limitations in previous literature.

To address the confounds of motor skills on attentional tasks used in prior studies, tests

were used that either had limited motor demands or were able to factor out this motor component

for a purer assessment of attention. It was hypothesized that adolescents with spina bifida would

perform more poorly on cognitive tests of attention and executive functioning than healthy

adolescents, even after factoring out the motor component. It was predicted that adolescents

with spina bifida would perform more poorly than healthy controls on measures of selective

attention, sustained attention, and attentional control/switching, even when motor demands are









minimized or factored out of the measure. Consistent with some prior research, it was

hypothesized that adolescents with spina bifida would have lower self-concepts in the academic,

social, and physical domains. It was also predicted that increases in attentional performance

would correlate with more positive self-concept in areas that benefit from attentional abilities,

specifically academic, social, and competence domains. The competing hypothesis was that

poorer cognitive performance would predict more positive self-concept more broadly. Although

this seems counter-intuitive, some studies have suggested that children with more severe

disabilities experience less stress and are better adjusted than children with mild or moderate

disabilities. A discussion of neuroanatomical, cognitive, and physical sequelae of spina bifida

follows. A discussion of attention, self-concept, and the relationship between cognitive

functions and self-concept is included.

Attention: Definitions and Neuroanatomical Substrates

Although there are numerous models of attention, the current study used Mirsky's (1989,

1991) definition of attention as a construct with three components: sustained attention, selective

attention, and shifting attention/attentional control. Sustained attention is the ability to

concentrate or stay on-task, specifically when a task is long and/or provides little stimulation.

Selective attention is defined as focusing attention on a target in the presence of distracters.

Finally, shifting attention/ attentional control is the ability to adapt to a changing response set.

There are numerous studies attempting to localize these various attentional components.

Although most studies demonstrate significant interconnections between areas responsible for

these components of attention, some specific brain regions have been implicated. Sustained

attention is theorized to be mediated by the prefrontal cortex (Cohen, Malloy, & Jenkins, 1999;

Cohen, 1993; Mirsky, 1989; Goldman-Rakic, 1988; Luria, 1966). This theory is supported by

both imaging studies and studies of patients with frontal lobe lesions. The caudate also appears










to play a role as a gateway between the thalamus and the cortex (van Zomeren and Brouwer,

1994; Mirsky, 1989; Hassler, 1978).

Most studies of selective attention rely on visual stimuli, which are processed primarily by

the posterior parietal cortex (Cohen and O'Donnell, 1993; Mirsky, 1989; Mesulam, 1985). In

addition, the pulvinar nucleus of the thalamus appears to play a role in ignoring irrelevant

information (LaBerge, 1995; Posner, Petersen, Fox, & Raichle, 1988), the superior colliculus is

responsible for eye movement while scanning (Posner et al., 1988), and the posterior temporal

cortex integrates sensory information and attends to specific features of stimuli (Mirsky, 1989).

Finally, split-brain experiments suggest that the corpus callosum integrates information between

hemispheres during selective attention tasks (Luck, Hillyard, Mangun, and Gazzinaga, 1994).

Shifting attention has been studied less than sustained or selective attention, but appears to

overlap structurally with both sustained and selective attention, involving the prefrontal cortex,

posterior parietal cortex, pulvinar, and superior colliculus (Cohen et al., 1999; Petersen, Fox,

Mintur, Posner, and Raichle, 1989; Posner et al., 1988).

Definitions of Self-Concept and Relationship with Attention

As with the construct of attention, there are numerous models of self-concept. The

proposed study will use a model proposed by Shavelson (1976), which defined self-concept on

seven features. These features were used to design the Multi-dimensional Self-Concept Scale

(MSCS) (Bracken, 1992) and are as follows:

Organization self-concept is developed in an organized way through evaluation
of themselves through past behaviors and experiences.

Multi-faceted nature self-concept is not unidimensional although there may be
overlap between contexts.

Hierarchical dimensionality a generalized self-concept exists at the center of the
multiple dimensions, with other concepts equal to one another.










Stability as a learned behavioral response pattern, self-concept is stable for well-
learned behaviors. It changes only gradually as it accumulates new information
from the environment and roles change within the environment.

Developmental characteristics self-concept becomes increasingly differentiated
with age and experiences in different domains.

Evaluative underpinnings Individuals automatically evaluate their actions and
outcomes in the moment based on personal perspective and others perspectives.
Evaluations are based on standards that change as children become older.

Differentiality self-concept is related to other domains but is also distinct.

In short, self-concept develops as an individual evaluates: a) how they behaved in a certain

situation and b) how others responded to that behavior. If the behavior and feedback is

consistent over time, the individual internalizes these behaviors as part of their "self."

As children develop, self-concept changes. Specifically, there is greater differentiation of

self-concept with age (Crain & Bracken, 1994), and these different domains appear to be

influenced by the environment (Cauce, 1987; Guay, Marsh, & Boivin, 2003). There is some

disagreement whether differentiation continues through adolescence (Crain & Bracken, 1994) or

reaches adult levels by preadolescence (Marsh, 1989). A number of studies have examined

changes in self-concept as children progress from preadolescence through late adolescence.

Results to date are somewhat inconsistent across studies. Within academic and social domains,

some research has found that children experience increases in self-concept as they progress from

grades 3-6 (Cole et al., 2001), followed by a drop in the transition to middle school (Cole et al.,

2001; Wigfield, Eccles, Iver, Reuman, & Midgley, 1991), and then an increase to previous levels

and stabilization in grades 8-11 (Cole, 2001). However, other studies report that children

experience higher levels of self-concept in 7th grade followed by a drop in grades 8-9 and an

increase in grades 10-11 and into young adulthood (Marsh, 1989). Other studies have found

increases in some areas with age, such as social skills, and decreases in others, such as school










competence (Shapka & Keating, 2005). Still others found no relationship between age and self-

concept as children progress from grades 5-12 (Crain & Bracken, 1994).

The development of self-concept, as described above, involves one's behavior in various

environments and feedback from that environment, which modifies those behaviors and

gradually establishes how someone perceives themselves in that environment (Bracken, 1992).

As such, it requires attention to one's behavior, the specific environment, and the responses their

behavior evokes in other people. It is expected that deficits in attention would affect self-concept

development. In fact, Barkley's (1992) model of ADHD proposes that poor attentional

functioning is related to poor social perspective taking, response to feedback, self-questioning,

and reflection, all of which could affect self-concept. This theory is supported by a number of

studies. Although some studies have found lower self-concept in children with ADHD or

hyperactive symptoms (Barber, Grubbs, & Cottrell, 2005; Dumas & Pelletier, 1999), other

studies have shown that children with ADHD have comparable self-concepts to healthy controls,

not only in scholastic competence but also in general self-worth (Wilson & Marcotte, 1996;

Bussing, Zima, & Perwien, 2000; Hoza, Pelham, Milich, Pillow, & McBride, 1993).

Other research has shown that children with ADHD overestimate their self-perceptions

compared to healthy controls relative to parent and teacher ratings in multiple domains, most in

domains of greatest deficit (Hoza et al.2004, Hoza, Pelham, Dobbs, Owens, & Pillow, 2002).

Additionally, a study by Owens & Hoza (2003) found that more severe ADHD-

hyperactive/impul sive symptoms, but not inattention, were related to greater overestimates in

scholastic competence. These deficits appear to be related to poor ability to evaluate their own

performance, as demonstrated by the fact that children with ADHD were less accurate in judging

their performance on specific tasks in a study by Hoza, Pelham, Waschbusch, Kipp, and Owens









(2001). A study by Milich, Licht, Murphy, & Pelham (1989) found that children' s estimates of

performance on a continuous performance test (CPT) improved while taking stimulant

medication compared to estimates on placebo, suggesting that inaccurate estimates of

performance are due to poor attention. However, it is also possible that these overestimates

serve as a self-protective factor. Ohan & Johnston (2002) found that estimates of social

performance in boys with ADHD decreased with positive feedback. Academic self-concept

improved with positive feedback, however. Importantly, difficulties with self-concept may

result in poor levels of social competence due to poor attention to other' s feedback. Common

social difficulties in ADHD include difficulty keeping friends, annoying and intrusive behavior,

and difficulty encoding and responding to social cues (Semrud-Clikeman et al., 2000; Matthys et

al., 1999; Landau et al., 1997; Landau et al., 1991).

Neurological studies have provided further evidence that attentional systems are involved

in the development of self-concept. Loss of insight and sense of self have been linked to the

extent of frontal lobe damage in patients with frontal-temporal dementia (Mendez & Shapira,

2002), schizophrenia (Laroi et al., 2002), and Capgras Syndrome (Feinberg & Keenan, 2005).

Imaging studies in healthy adults have also demonstrated that the frontal cortex is active during

self-referential thinking (Kelly et al., 2002) and support the theory that frontal lobes are

important for self-awareness, self-monitoring, and insight (Shallice, 1982; Shimamura, 1995; &

Stuss & Benson, 1986). Additionally, a number of imaging studies suggest that a sense of self is

sub served by a network between prefrontal and parietal regions (Gusnard, 2005). For example,

PET and fMLRI studies have shown functional connectivity between prefrontal and/or anterior

cingulate with parietal and/or posterior cingulate regions during retrieval of episodic memory

(Schmidt et al., 2002; Krause et al., 1999), resting state consciousness (Gusnard & Raichle,









2001; Kj aer & Lou, 2000), and during reflection of own personality traits (Johnson et al., 2002;

Kjaer, Nowak, & Lou, 2001).

Spina Bifida

Spina bifida is a neural tube defect that affects approximately 1 to 2 of every 2,000 live

births in the United Stated (Varni & Wallander, 1988). Spina bifida occurs early in the gestation

process when the neural tube fails to close properly, leaving an opening in the spinal column that

is covered by a fluid filled sac. As a result, spina bifida can occur at any level of the spinal

column, with higher lesions typically resulting in more severe impairment (Elias & Hobbs,

1998). Forms of spina bifida include myelomeningocele (meninges and spinal cord collapse into

fluid-filled sac), meningocele (only meninges collapse into sac), or spina bifida occulta (neither

meninges nor cord collapse into sac). Additionally, approximately 80-90% of children with

spina bifida experience hydrocephalus due to malformation of the cerebellar vermis, aqueductal

stenosis, or herniation of the cerebellar vermis through the foramen magnum. These

malformations block the 4th ventricle from properly draining cerebrospinal fluid, thus causing

build-up of the fluid and pressure to the brain. Hydrocephalus can be progressive or become

arrested and is typically treated with a ventricular shunt early in infancy to drain the excess fluid.

If left untreated, hydrocephalus can cause permanent damage, including irreversible mental

retardation or death. Although shunts are highly successful in reducing the severity of

hydrocephalus, children with hydrocephalus may still experience physical and cognitive

impairments after the shunt is implanted.

Physical Complications in Spina Bifida

The physical presentation of spina bifida is diverse due to the various subtypes (occulta,

meningocele, myelomeningocele) and levels of the lesion on the spinal cord. In general, occulta

is the least severe, often with no symptoms, and myelomeningocele is the most severe. Lesions










higher in the spinal column (cervical, thoracic, lumbar, or sacral) typically affect spinal cord

functions below the level of the lesion. Additionally, hydrocephalus, shunts, and other

malformations may increase the number of complications.

Although the specific profile of children with spina bifida varies, one common physical

impairment is leg weakness or paralysis, often requiring leg braces or a wheelchair (Elias &

Hobbs, 1998). Other lower motor impairments include club feet, hip dislocation, poor posture

due to spine curvature, muscle contracture, loss of sensation, and other gait abnormalities (Elias

& Hobbs, 1998; Baron, Fennell, & Voeller, 1995; Hetherington & Dennis, 1999). The upper

limbs may also be impaired due to upper level lesions and/or hydrocephalus. Hetherington and

Dennis (1999) found children with hydrocephalus to have poorer persistent motor control,

dexterity, and strength in their upper limbs compared to healthy controls. Eye movements may

also be impaired due to pressure on the cranial nerves and other abnormalities, resulting in ocular

palsies, astigmatism, and visual perceptual deficits (Lollar, 1993).

In addition to motor impairments, children with spina bifida experience numerous physical

impairments due to reduced innervation of the lower body. For example, many children with

spina bifida experience difficulty emptying the bowel and bladder. This may result in

incontinence, constipation, urinary tract infection, and possibly renal damage if infections are

untreated (Elias & Hobbs, 1998). Children may also experience skin infections due to poor

sensation or injury to a limb with diminished sensation.

Finally, numerous complications can contribute to further physical impairments. Shunt

malfunction, for example, can cause vomiting, irritability, headache, and sunsetting of the eyes

(Elias & Hobbs, 1998), as well as increases in infection and cognitive problems. The Arnold-

Chiari II malformation, sometimes associated with spina bifida, occurs when the skull fuses










prematurely and pushes the brainstem and cerebellum through the foramen magnum, causing

swallowing difficulties, sleep apnea, and upper extremity weakness (Elias & Hobbs, 1998).

Neuroanatomical Sequelae in Spina Bifida

Due to the high comorbidity rate between spina bifida and hydrocephalus, it is difficult to

differentiate their unique effects. Hydrocephalus affects brain development due to enlargement

of the lateral ventricles which increases pressure on neural tissue, particularly in the

periventricular cortex (including the temporal lobes) and white matter proximal to the ventricles.

This pressure can result in hypoxia effects on white matter pathways, altered architecture and

brain structure, disrupted myelination, thinner cortex, and maldevelopment of specific brain

structures (Barkovich, 1992; Del Bigio, 1993; Dennis et al., 1981; Fletcher, 2000). For

example, the corpus callosum may be abnormal, stretched, or torn. In some cases, the corpus

callosum may be missing, most often in the splenium or rostrum (Barkovich, 1992). Other white

matter, including other periventricular pathways, optic pathways, subcortical white matter, and

fimbria/fornix proj sections to the hippocampus may also be damaged by stretching or hypoxic

ischemic injuries.

In addition to white matter changes, hydrocephalus can cause changes to brain structures.

Brain mass is often reduced and cortical mantle may be thinned in all areas of the cortex,

although posterior regions are affected more (Fletcher, 2000; Del Bigio, 1993). The

hippocampus may also undergo vacuolization and degeneration (Del Bigio, 1993).

Subcortically, the diencephalon is often compressed and the membrane of the caudate and

thalamus may be disrupted. Finally, the architecture of the brain may be disrupted by microgyri

and polygyri that are comorbid developmental abnormalities (Fletcher, 2000; Del Bigio, 1993).

Blood flow and transportation of neurotransmitters and waste are also disrupted as a result

of hydrocephalus. Blood vessels are reduced in the frontal lobes and capillaries are reduced in









the corpus callosum (Del Bigio, 1993). A study by Shirane et al.(1992) found that the frontal,

parietal, and visual association areas surrounding the periventricular areas were hypoperfused in

4 infants with hydrocephalus. Additionally, the extracelluar spaces in the periventricular region

may be blocked due to edema, preventing the normal transfer of neurotransmitters and waste

(Del Bigio, 1993).

Although it is difficult to separate spina bifida and hydrocephalus, there are certain

characteristics that are more prominent in spina bifida with hydrocephalus than other forms of

hydrocephalus, including cerebellar deformation, cerebellar tonsil herniation, elongation of the

pons and medulla, stretching of the cerebral aqueduct and 4th ventricle, and fusing or stretching

of the inferior and superior colliculi due to breaking of the tectum (Fletcher 2000).

Fortunately, shunting procedures may reduce or reverse some of the damage discussed

above. Shunting procedures done soon after birth can reduce ventricle size and edema and may

allow for remyelinization and return to normal for arteries.

A number of studies have demonstrated the link between neuroanatomical damage and

cognitive functioning. Fletcher et al.(1992) analyzed MRI images in children with

hydrocephalus and found a correlation between a larger right lateral ventricle and poorer

performance on nonverbal tasks. A smaller corpus callosum also correlated with poorer

nonverbal performance. In a second study, Fletcher (1996) reported that the size of the corpus

callosum correlated with both nonverbal performance and motor performance. Del Bigio (2002)

reported that larger ventricles in rats were also associated with worse motor performance.

Cognitive Profiles in Spina Bifida

Children with spina bifida and hydrocephalus (SB/H) may exhibit a number of

neurobehavioral problems, many of which are improved but remain at least somewhat impaired









after shunting. These include poor fine and gross motor skills, poor language content, visual-

motor deficits and visual-spatial deficits, learning deficits, and encoding and retrieval deficits

(Hetherington and Dennis, 1999; Barnes and Dennis, 1998; Fletcher, Brookshire et al., 1995).

Intellectual and achievement performance

Early research on SB/H suggested that children with cortical mantle less than 2.8 cm thick

were very likely to have an IQ below 80 (Young, 1973). As shunts and shunt placement

improved (including placing shunts in the right side rather than the left), the number of shunt

failures and revisions decreased, resulting in improved prognosis for cognitive functioning.

Some research suggests that children with spina bifida and hydrocephalus may demonstrate IQs

in the low average to average range (Willis, 1993). Still, most research indicates that children

with SB/H have statistically lower IQ scores than healthy controls (Appleton, 1994; Brewer,

2001; Willis, 1990). Many of these studies support the theory that children with SB/H have

greater impairment in performance IQ (PIQ) with relatively intact verbal IQ (VIQ) (Riddle,

2005; Fletcher, 1992; Shaffer, 1985), even on tasks without motor demands (Fletcher, 1992).

This discrepancy was explored further by Yeates, (2003), who reported that 50% of children with

spina bifida in his study sample met criteria for nonverbal learning disability. However, many

studies have not found a discrepancy between VIQ and PIQ, but report that both are lower than

the comparison group or below normative means (Jacobs, 2001; Holler et al., 1995; Friedrich,

1991; Wills, 1990).

Studies of achievement generally suggest that children with SB/H perform poorly on

arithmetic or mathematical tasks (Dennis & Barnes, 2002; Jacobs, 2001; Friedrich, 1991; Wills,

1990; Shaffer, 1985). Performance on reading and spelling has been less consistent, with some

studies finding deficits in reading but not spelling (Jacobs, 2001), others finding deficits in










spelling but not reading (Shaffer, 1985), and still others finding deficits in both areas (Tew &

Laurence, 1975).

Visual-motor and visual-constructional abilities

As discussed previously, it is well-established that children with SB/H have motor deficits,

including eye movements. Studies consistently report that children with SB/H perform poorly on

visual-motor or visual-constructional tasks such as visual pursuit, drawing, and mazes (Dennis,

2002; Holler et al., 1995; Friedrich, 1991; Wills, 1990). On motor-free tasks, findings suggest

preservation of basic visual perception on simple tasks such as face recognition and simple visual

discrimination (Fletcher, Brookshire, et al., 1995; Dennis 2002) but impairments on more

complex tasks such as figure-ground distinction, spatial memory, form consistency, and line

orientation (Dennis, 2002; Fletcher, Brookshire et al., 1995). Furthermore, research

demonstrates that the degree of visual-perceptual difficulties is related to the size of the right

lateral ventricle (Fletcher, Bohan, et al., 1992).

Language

Although basic language skills such as grammar and comprehension in children with SB/H

are typically intact (Horn et al., 1985; Schwartz, 1974; Parsons, 1968) a number of recent studies

suggest that children with SB/H experience a number of language-related impairments including

hyperverbal behavior (Dennis & Jacennik, 1994; Wills, 1993; Tew & Laurence, 1979), which

consists of irrelevant information or less cohesive and less meaningful content (Barnes &

Dennis, 1998; Dennis & Jacennik, 1994; Wills, 1993), inappropriate verbalization or social

disinhibition (Wills, 1993), poor comprehension for figures of speech, inferences, or other more

complex language (Barnes & Dennis, 1998; Wills, 1993), and poor descriptions or explanations

of stories (Barnes & Dennis, 1998; Wills, 1993). Furthermore, children with SB/H have slower

response speed on timed word finding or word fluency tasks (Barnes, 2004; Huber-Okrainec,









2002; Jacobs, 2001;Holler et al., 1995; Fletcher, 1995; Wills, 1993). Additionally, Huber-

Okrainec et al.(2002) found that children with SB/H had numerous motor speech deficits,

including speech rate impairments, dysarthria for prosody and articulation, and dysfluency in

speech, suggesting that language problems are compounded by motor deficits.

Memory and learning

Only a small number of studies have addressed memory functions in children with SB/H.

The studies that have been conducted can be divided by the material (verbal or nonverbal) and

the process involved (leaming, encoding/recognition, retrieval/recall). To date, findings

suggest that children with SB/H leamn verbal information at a slower rate and recall less verbal

information after a delay than healthy controls (Jacobs, 2001; Scott, 1998; Yeates 1995; Cull &

Wyke, 1984), although this deficit may only occur when children must apply their own structure

or semantic strategy to the information. For example, Cull & Wyke (1984) found deficits on

memory for word lists but not story recall. Additionally, some studies suggest that encoding or

recognition is intact for verbal information (Yeates, 1995), whereas others suggest it is impaired

(Scott, 1998). With visual material, studies are also less consistent. Scott (1998) found

differences on nonverbal memory for both recall and recognition, but Cull & Wyke (1984) did

not find these differences after matching for IQ. Jacobs (2001) reported that the SB/H group

approached significant differences from healthy controls on visual learning tasks. Finally, a

study by Mammarella (2003) found that children's working memory was not worse on memory

for spatial positions of blocks and matrix designs, but was worse for memory of obj ects.

Mammarella (2003) suggested that children's memory was better in active processing tasks.

However, this finding is not supported by other studies that have found intact memory for obj ects

(Cull & Wyke, 1984).









Attention and executive functions in SB/H

To date, a number of studies have suggested that children with SB/H have deficits in

attentional tasks. For example, children with SB/H have been found to participate in less goal-

directed behavior than healthy children (Landry, 1990), to perform worse on vocabulary tasks

when distracting stimuli are present (Horn, 1985), and to be verbose (Barnes & Dennis, 1998;

Baron & Fennell, 1995). Parent report studies show that over 30% of parents endorse high levels

of attentional problems for their children with SB/H, mostly related to inattention (Burmeister,

2005; Davidovitch, 1999). Furthermore, parent ratings on the Behavior Rating Inventory of

Executive Function (BRIEF) demonstrated greater concerns regarding executive functions

compared to controls (Burmeister, 2005), including the ability to initiate, plan, and monitor their

behavior (Mahone, 2002). Importantly, these problems were reported despite adequate (average

to low average) verbal intellectual functioning.

A number of studies have assessed attention with neuropsychological tests. The most

consistent result has been a deficit in selective attention, which was found on tasks such as the

Trailmaking test parts A and B (Snow, 1999; Loss, 1998), Coding on the WISC-III (Loss, 1998),

the Stroop test (Fletcher et al., 1996), and visual orienting (Brewer et al., 2001). These findings

are consistent with neuroanatomical studies that indicate damage to posterior cortex, and the

superior colliculus which are implicated in selective attention. In further support of a selective

attention deficit, Dennis et al.(2005a) demonstrated that children with spina bifida were slower

orienting to a visual stimulus after a cue, which was associated with structural abnormalities

(tectal breaking In a second study by Dennis (2005b), children with spina bifida demonstrated

neglect of the right side which corresponded to corpus callosum damage and superior visual field

deficits in line bisection tasks which corresponded to right posterior and midbrain damage.









Whereas selective attention deficits are well supported, findings are less consistent for

other areas of attention. Dennis et al. (2005a) found that children with spina bifida were slower

to disengage from an invalid cue, suggesting that attentional switching or shift was impaired.

Poor performance on the Trails B could also be interpreted as difficulty with attentional

switching (Loss, 1998; Snow, 1999). Studies by Snow (1999), Loss et al. (1998), and Fletcher

(1996) also found that children with spina bifida were worse than healthy controls on a test of

attentional switching, the Wisconsin Card Sorting Test (WCST). Additionally, Loss (1998) and

Brewer (2001) found that children with spina bifida were worse on a test of sustained attention,

the Continuous Performance Test (CPT). However, a study by Lollar (1990) did not find

significant differences between children with hydrocephalus (many with spina bifida) and

normal controls on a CPT, suggesting that children with spina bifida do not have deficits in

sustained attention.

One limitation of the current literature is that many tests of attention have a motor

component such as reaction time, which could confound the results in this population since it is

clear that children with spina bifida have deficits in fine and gross motor skills as well visual

motor speed. Fletcher et al. (1996) suggested that the selective attention deficits the authors

found were largely due to slower motor performance. Additionally, many of the measures used

to assess attention are often different and may be used to assess broader functions such as

problem-solving, as is the case with the WCST. Clearly, there are important confounds and a

lack of consensus in the selection and interpretation of measures used to assess attentional

function in children with SB/H.

Self-Concept and SB/H

To date, a number of studies have examined mood and self-concept in children with SB/H,

with varying results. Although a number of studies suggest that children with SB/H have poorer









self-concept and higher rates of depression (Appleton, 1997; Dorner, 1976), others report no

differences in self-concept or mood compared to healthy same-age peers (Holmbeck, 2003;

Edwards-Beckett, 1995; Landry, 1993). Additionally, many studies report that children with

SB/H have positive self-concept related to general topics such as global self-worth or hope for

the future, but report greater concerns for specific issues (Buran, 2004; Appleton, 1994; Fletcher

1995). Some common issues that are concerning to children and adolescents with spina bifida

include: physical appearance, physical competence, social acceptance, academic performance,

job competence, and romantic relationships.

Social support appears to be the most significant protective factor for positive self-concept

in children with SB/H. Parents often rate psychosocial functioning as a significant concern

(Hommeyer, 1999; Donders, 1992; Wallander, 1989; Lavigne, 1988). In child or adolescent self-

report studies, support by peers and family, age appropriate treatment by parents, and low family

conflict are positive predictors of positive self-concept (Antle, 2004; Wolman, 1994; Murch,

1989; Kolin, 1971). Furthermore, children with SB/H whose families encourage more

independence and age appropriate social activities are more likely to have more positive long-

term outcomes regarding occupations, community involvement, and social activities in young

adulthood (Loomis, 1997). Unfortunately, studies have consistently shown that children and

adolescents with SB/H are more dependent on parents, have fewer household responsibilities, are

more immature socially, and have fewer or more limited social interactions with peers (Buran,

2004; Holmbeck, 2003; Buran, 2001; Monsen, 1992; Blum, 1991). With the exception of one

study that suggested children had more distress with greater independence, it seems that age

appropriate permissiveness by parents and encouragement for social interaction are protective

factors for self-concept in children with SB/H.









Interestingly, several parent and self-report studies have not found a consistent relationship

between severity of physical impairment and parental stress or self-esteem in children or

adolescents with spina bifida (Antle, 2004; Sawin, Brei, Buran, & Fasteneau, 2002; Wallander,

1998; Landry, 1993; Donders, 1992; McAndrew, 1979; Kolin, 1971). In fact, some studies

found higher ratings of self-concept with greater physical impairment and greater stress and

mood disorders with less severe disability (Padua et al., 2004; Padua et al., 2002; Minchom et al.,

1995; Holmbeck et al., 1995). Of course, some studies have demonstrated a connection between

poorer self-rated mood or psychosocial maladjustment and increased severity (Zurmhole, 2001;

Hommeyer, 1999; MacBriar, 1983), as well as poorer Quality of Life ratings with increased

severity (Shoenmakers, Uiterwaal, Gulmans, Gooskens, & Helders, 2005), but severity is clearly

not a consistent predictor of self-concept or distress.

Based on these findings, it is unclear what role attention plays in the development of self-

concept in children with spina bifida. It is possible that poor attention could disrupt numerous

aspects of life, including social, academic, and occupational situations, thereby resulting in

lowered self-concept due to poor outcomes in these areas. In a study by Warschusky (2003),

poor social problem-solving was correlated with poor performance on the WCST, a test that

requires attentional switching and monitoring responses. However, as discussed previously,

attentional deficits may reduce insight or awareness into negative feedback, thereby not

decreasing self-concept. If individuals are unable to accurately judge their abilities or social

feedback from others in a given arena, they may also not be negatively affected by this feedback.

Given the fact that children with spina bifida have been shown to have poor attention and given

the neurological impact of SB/H on the parietal lobes and blood supply to the frontal lobes, it is










possible that children with SB/H experience similar deficits in self-concept as children with

ADHD and other neurological disorders described above.

The Current Study

The current study will compare young adolescents with spina bifida to healthy controls on

measures of attention and self-concept. This study was unique in a number of ways. First, it

assessed attention and executive functioning with the Tests of Everyday Attention in Children

(TEA-Ch) and the Trailmaking Test from the Delis-Kaplan Executive Function System (D-

KEFS). These measures are unique because they control for motor demands that may confound

performance. Additionally, the subtests of the TEA-Ch assess each domain of attention

(sustained, selective, attentional switching) individually, minimizing confounds or overlap

between these domains. The current study assessed selective attention with the TEA-Ch Sky

Search. Sustained attention was measured with the TEA-Ch Score! subtest. Finally, attentional

control/switching was measured with the TEA-Ch Opposite Worlds vs. Same Worlds score and

the Number-Letter Switching vs. Motor score on the D-KEFS Trailmaking test. In order to

further strengthen the design, parent-rating scales of attention were included from the Behavior

Assessment System for Children (BASC) to measure attention more generally.

Second, the studies that have examined self-concept in children with spina bifida have

reported inconsistent results, and few studies have specifically compared young adolescents with

spina bifida to healthy controls. The current study attempted to resolve some questions about

these children by using a normal control comparison group, an age range that focuses on young

adolescents (ages 10 -16) whose self-concept is likely more developed than that of younger

children, and by using the Multi-Dimensional Self-Concept Scale (MSCS), a measure that

provides a total score and six domains of self-concept, including: Social, Competence, Affect,

Academic, Family, and Physical domains. Based on previous research, it was expected that









there would be differences on social, academic, and physical domains. Previous research

suggests that family self-concept will not significantly differ between groups. It was not

expected that there would be differences on the more general competence scale, since children

with spina bifida do not report lower self-concept on more general topics. The expected results

for the affect domain was unclear; whereas some research suggests that affect is worse, other

studies do not.

Third, although studies have individually examined attention in children with SB/H and

self-concept in children with SB/H, past research has not analyzed the impact attention has on

self-concept. It is likely that attention has a significant general impact on self-concept and mood,

specifically related to those domains that would benefit from good attentional skills, including

self-concept for academic performance, social skills, and general competence. This study

attempted to provide a better understanding about how attention affects self-concept as well as

inform treatment recommendations to improve attention and self-concept in children and

adolescents with spina bifida.

Hypotheses

Specific Aim 1

Compare performance on attentional tasks and parent rating scales of attention among

children with spina bifida and healthy controls. It was predicted that children with spina bifida

would perform worse than controls on tasks of selective attention, sustained attention, and

attentional switching. It was also predicted that parent-reported general attention would be lower

in children with spina bifida compared to healthy controls.










Specific Aim 2

Compare self-concept in children with spina bifida to healthy controls. It was predicted

that self-concept would be lower in children with spina bifida than healthy controls, specifically

in academic, social, and physical domains.

Specific Aim 3

Determine relationship between self-concept and attention in children with spina bifida

and healthy controls. It was predicted that poor attentional performance would be correlated

with lower self-concept in children with spina bifida, because the attentional deficits are likely to

negatively impact areas of life that influence self-concept, specifically social relationships,

academic performance, and competence.









CHAPTER 2
MATERIALS AND IVETHODS

Participants

The Einal sample of participants included 13 children diagnosed with any spina bifida

myelomeningocele or meningocele and 17 healthy controls. Only children between the ages of

10-16 were asked to participate. The upper age limit was chosen based on the available

normative data for the proposed neuropsychological measures.

Children were included in the spina bifida group if they had been previously diagnosed

with spina bifida myelomeningocele or spina bifida meningocele, as defined by the Spina Bifida

Association of America (SBAA) and diagnosed by a physician. Healthy controls were required

to have no significant medical or psychiatric diagnosis. All participants were required to be

between the ages of 10-16.

Participants with a verbal IQ less than 80 on the Peabody Picture Vocabulary Test, Third

Edition (PPVT-III) were excluded from the study in order to ensure that children did not meet

criteria for mental retardation, a potential confound. Additionally, in order to ensure that

participants could read and comprehend self-report questionnaire items on the self-concept and

mood measures, children with a standard score below 70 for their age (-2.0 Standard Deviations

below the average range) as demonstrated on the Wechsler Individual Achievement Test-II:

Word Reading subtest were excluded from the study. Children were also excluded if they were

diagnosed with comorbid medical or psychiatric conditions that confounded the results, as

determined by study investigators. Participants in the Spina Bifida group were not excluded due

to comorbid learning disabilities, or attention deficit hyperactivity disorder. Participants with

these diagnoses were not excluded because the difficulties in attention and learning were

diagnosed after the diagnosis of spina bifida and may have resulted from the neurological effects










of spina bifida. Within the current group, 3 participants had been diagnosed with ADHD (2

Predominantly Inattentive, 1 Combined-Type) and 2 were diagnosed with an unspecified

Learning Disability, 1 of whom also had ADHD.

Measures

Demographic Information

All parents of participants completed a short demographic questionnaire (see Appendix

A). The questionnaire provided basic demographic data such as age, sex, and race/ethnicity of

the child. Information was also collected on medical/psychological history, including previous

diagnoses, hospitalizations, surgeries, etc. Additionally, educational history was collected,

including current grade, whether the child repeated or skipped grades, difficulties in school, and

whether the child was in mainstream or special education classes. Finally, information about

activities and social relationships was collected.

For children with spina bifida, information was collected from parents and health care

providers regarding level and type of spina bifida, presence of hydrocephalus, and additional

medical conditions secondary to spina bifida or hydrocephalus. Additionally, parents were asked

about the child's mobility, incontinence, self-care, and other concerns related to independence

and quality of life.

Screening Measures

Peabody Picture Vocabulary Test- Third Edition (PPVT-III)

The PPVT-III is a screener for verbal ability consisting of 204 test items divided into 17

sets of 12 that are progressively more difficult. The child is presented with four black-and-white

drawings and is asked to choose which picture best represents the meaning of a word read aloud

by the examiner. The test produces age-based norms for children and adults age 2.5-90. Scores

are converted into standard scores with a mean of 100 and a standard deviation of 15. As









indicated, children with standard scores below 80 were excluded from the study due to concerns

about developmental delays or comorbid mental retardation.

The PPVT-III was standardized on 2,725 examinees aged 2-1/2 through 90 years, tested at

268 sites nationwide. The PPVT-III has excellent test-retest reliability (coeffcients range from

.91-.94). Internal reliability is also good, with alpha coeffcients ranging from .92-.98.

Convergent validity correlations with other measures of oral language range from .63-.83.

Correlations with measures of cognitive ability, such as the WISC-III, are also acceptable. The

correlations between the WISC-III verbal IQ and PPVT-III is .91, with WISC-III performance

IQ is .82, and with WISC-III full scale IQ is .82.

Wechsler Individual Achievement Test, Second Edition (WIAT-II): Word Reading subtest

This is a screening test for reading level. Children are instructed to read a list of words of

increasing dimfculty until a baseline and ceiling are established. This test produces age and

grade-based norms for ages 4-adult. Raw scores are converted into standard scores with a mean

of 100 and a standard deviation of 15. As indicated, children with standard scores below 70

were excluded from the study due to concerns about their ability to complete self-report

questionnaires of self-concept and mood.

The WIAT-II age-based standardization sample included 2,950 participants ranging from

age 4 years, O months to 19 years, 11 months. The sample was divided into two groups: ages 4-

14: 11 and 15-19: 11. There were 2,400 participants in the 4-14: 11 group and 550 in the 15-

19:11 group. 1,806 of the participants were female, 1,477 were male. The number of

participants from different racial and ethnic groups was based on racial/ethnic group proportions

of students in the U.S. Test-retest reliability is high, with coeffcients ranging from .97-.99.

Word Reading correlates highly with Basic Reading scores on the WIAT-II (coeffcient = .88),

the WRAT-3 (coeffcient = .73), and other reading measures. Additionally, the WIAT-II









correlates with teacher grades in reading at a .40 level and children with learning disabilities in

reading perform significantly worse than matched controls, making it an acceptable screening

tool (The Psychological Corporation, 2001).

Evaluation of Attention: Parent-report

Behavior Assessment System for Children Parent Rating Scales: 12-18 or 6-11 (BASC:
PRS-A) or (BASC: PRS-C)

This is a broadband, multi-dimensional parent-report measure of child behaviors on 130

items using a Likert scale. The measure was created to aid in clinical diagnosis of disorders that

are first apparent in childhood and adolescence. Parents rate their child's behavior on four

composite scores: Externalizing Problems (scales: Aggression, Hyperactivity, Conduct),

Internalizing Problems (scales: Anxiety, Depression, Somatization), School Problems (scales:

Attention, Learning Problems), and Adaptive Skills (scales: Adaptability, Leadership, Social

Skills, Study Skills). Composite scores and scores for individual scales are available. This

measure is standardized by gender. Scores are converted into standard scores with a mean of

100 and standard deviation of 15.

The BASC: PRS was standardized in three age groups: 4-5, 6-11, and 12-18. The 6-11

age group included 2,084 children, whereas the 12-18 age group included 1,090 children.

Within the 6-11 age group, 51% were male and 49% were female. Within the 12-18 age group,

42% were male and 58% were female. Substantial numbers of minority children were included

at all age levels, and samples of children were taken throughout 157 sites in the U.S. and Canada.

Internal reliability of composites ranged from .85 -.93. Internal reliability for individual scales

ranged from .58-.89 across scales. The attention scale's internal reliability ranged from .73-.83.

Test-retest reliability of composites ranged from .71-.94. The attention scale specifically ranged

from .78-.92. Interrater reliability for composites ranged from .53 -.76, with the attention scale










ranging from .56-.73. Test items were created with the help of teachers, parents, psychologists,

and other references, and scales were based on factor analyses. Additionally, BASC scales

correlate highly with scores on other test measures such as the Achenbach Child Behavior

Checklist (Achenbach & Edelbrock, 1983), and the Personality Inventory for Children- Revised

(PIC-R) (Lachar, 1982).

Neuropsychological Measures of Attention

Test of Everyday Attention for Children (TEA-Ch)

The TEA-Ch is a test of three domains of attention: Selective attention (finding a target

among distracters), sustained attention (maintaining attention over time), and attentional control/

switching (shifting attention as needed). Of the 9 subtests available, three subtests were selected

for inclusion in evaluation of attention for study subjects. Sky Search is a selective attention task

that requires the child to find target spaceships among distracters. Children are presented with a

practice sheet and then given a large sheet with target spaceships and distracters. Children are

scored for accuracy and speed, and there is a motor control task that consists of a sheet of only

target ships. This allows the examiner to account for confounds of motor speed. Score! is a

sustained attention task in which children must count the number of sounds they hear on a tape

recording over time. Children are scored on accuracy in this task. Opposite Worlds is an

attentional switching/control task in which children must say '1' when they see a '2' and vice

versa. This tests the ability to inhibit the prepotent response and switch to the correct response.

Children are scored on speed for this test. Raw scores are converted to scaled scores, with a

mean of 10 and standard deviation of 3.

The TEA-Ch is standardized for ages 6-16. The normative sample consisted of 293

Australian children between the ages of 6-16. Test-retest correlation coefficients were .75-. 80

for Sky Search variables, .76 for Score!, and .85 for Opposite Worlds. Validity of the separate









attentional domains was supported with a structural equation model of the normative sample and

demonstrated that Sky Search, Score!, and Opposite Worlds fit into distinct domains with other

TEA-Ch tests of selective attention, sustained attention, and attentional control/switching,

respectively. Convergent validity with other measures of attention, such as the Stroop,

Trailmaking Test, and Matching Familiar Figures Test was high. Additionally, the TEA-Ch

subtests used in this study were not significantly related to performance on the WISC-III

measures of Vocabulary, Similarities, Block Design, or Object Assembly, suggesting that

performance on the TEA-Ch requires attentional systems distinct from intellectual ability.

Furthermore, TEA-Ch subtests did not show strong relationships to the WRAT Reading subtest.

There were no significant relationships between WRAT reading and TEA-Ch Sky Search and

Opposite Worlds. A small but significant relationship between WRAT reading and TEA-Ch

Score! performance was found at the .18 level. Additionally, children with documented

attentional problems, such as ADHD, have been found to perform more poorly on TEA-Ch

subtests than healthy controls (Manly, Anderson, Robertson, Nimmo-Smith, 1999) and clinical

controls (Heaton et. al, 2001).

Delis-Kaplan Executive Function System (D-KEFS): Trailmaking Test

This test is a variation of the traditional trailmaking test designed to evaluate executive

functions and processing speed. In each test, children are instructed to quickly draw a line from

one dot to another in a specified order. The D-KEFS Trailmaking test includes Hyve conditions:

line cancellation (draw a line through a target number), letter sequencing (connect letters in

alphabetical order), number sequencing (connect numbers in order), letter-number sequencing

(switch between numbers and letters), and a motor task (connect along a dotted line). The test is

designed so that letter-number sequencing, which requires cognitive flexibility, can be compared

to other tasks of basic motor speed or visual scanning. This allows the examiner to account for










possible motor or visual scanning confounds. The test is standardized for ages 8-89. Raw

scores are converted to scaled scores with a mean of 10 and a standard deviation of 3.

The D-KEFS was standardized with 1750 children and adults, including 75 10-year-olds,

75 11-year-olds, 100 children for each year between 12-15, and 175 children between 16-19.

The male to female ratio is roughly 50-50 and proportions of the sample of racial/ethnic groups

were stratified to approximate the 2000 U.S. Census population estimates. Additionally, the

proportion of the sample is approximately 25% per region of the U. S., including the North

Central, North East, South, and West. The Trailmaking Test specifically has good internal

consistency (between .57-.79 across ages 10-6). Test-retest reliability varies from .20 for

Condition 4 (Switching) to .82 for Condition 5 (Motor speed).

Self-Concept

Multi-Dimensional Self-Concept Scale (MSCS)

This is a child self-report of self-concept. Self-concept is measured on six 25-item scales

representing differing aspects of self-concept: physical appearance/ability, social relationships,

family relationships, academic performance, affect, and general competence. A total score is

also derived. Children answer questions on a Likert 4-point scale. This scale is standardized for

ages 9-19.

The MSCS scales were standardized on 2,501 children between grades 5-12 and ages 9-

19, although the majority of children were from ages 10-17. The test was administered at 17

locations in the South, West, North Central, and Northeastern United States. The sample was

selected to represent the demographic characteristics of the U. S. population based on the 1990

U.S. Census. The internal consistency of the MSCS as high, with coefficients ranging from .97-

.99 for the total score and .85-.97 for individual scales. Test-retest reliability after four weeks

was also high, with coefficients of .90 for the total score and ranging from .73-.81 for the










individual scales. Content validity was demonstrated by review of literature of past self-concept

scales. Concurrent validity was good between the MSCS and Piers-Harris Children's Self-

Concept Scale (Piers, 1984) as well as the Coopersmith Self-Esteem Inventory (Coopersmith,

1984), with coefficients ranging from .44-.85 between theoretically similar scales. Additionally,

the test authors report that children with previously documented low self-esteem have been

shown to score lower on the MSCS than children without such a designation.

Mood

Revised Children's Manifest Anxiety Scale (RCMAS)

This is a self-report instrument designed to measure anxiety in children aged 6-19. It

consists of 37 yes/no questions. The scales include a Total Anxiety scale, a Lie Scale,

Physiological Anxiety, Worry-Oversensitivity, and Social Concerns/Concentration. Children

read each statement and circle "yes" or "no" depending on how well the statement describes

them .

This measure was standardized on 4,972 children between the ages of 6-19. The sample

including 44% white males, 44% white females, 5.8% black males, and 6% black females. The

sample was collected over 13 states in the U. S. in all maj or geographic regions. Internal

consistency for each age level ranged from .42-.87. Test-retest reliability for Total Anxiety was

.68 for children tested 9 months apart. Additionally, the Total Anxiety score was found to

correlate with other measures of trait anxiety at a .67 level.

Children's Depression Inventory (CDI)

The CDI is a self-report measure of depressive symptoms for children age 7-17. It

includes 27 items in which the child reads three statements and selects the statement that is most

representative of their thoughts or behaviors in the past two weeks. It includes a Total Score and









five subscales: Negative Mood, Interpersonal Problems, Ineffectiveness, Anhedonia, and

Negative Self-Esteem.

The CDI was standardized with 1266 students from Florida grades 2-8. The sample

included 592 males and 674 females. 77% of the sample was white and 23% were from other

minority groups. Internal consistency demonstrated that coefficients ranged from .71-.89, and

test-retest reliability estimates were acceptable over time.

Behavior Assessment System for Children Self-Report Scales: 8-11 or 12-18 (BASC:
SRP-C) or (BASC: SRP-A)

In order to assess mood difficulties, participants completed the Behavior Assessment

System for Children Self-Report of Personality: 12-18 or 8-11 (BASC: SRP-A) or (BASC:

SRP-C) (Reynolds and Kamphaus, 1992). This is a broadband, multi-dimensional self-report

measure of child behaviors using a True/False response choice. The measure was created to aid

in clinical diagnosis of disorders that are first apparent in childhood and adolescence.

Participants' ratings of behavior result in three composite scores: Clinical Maladjustment (scales:

Anxiety, Atypicality, Locus of Control, Social Stress, and Somatization), School Maladjustment

(scales: Attitude to School, Attitude to Teachers, and Sensation Seeking), and Personal

Adjustment (scales: Relations with Parents, Interpersonal Relations, Self-Esteem, and Self-

Reliance). Additionally, there is an "Other Problems" composite that consists of "Depression"

and "Sense of Inadequacy" scales. Composite scores and scores for individual scales are

available. This measure is standardized by gender. Scores are converted into standard scores

with a mean of 100 and standard deviation of 15.

The BASC: SRP was standardized in two age groups: 8-11 and 12-18. The 8-11 age

group included 2,728 children, whereas the 12-18 age group included 2,393 children. Within

the 8-11 age group, 50% were male and 50% were female. Within the 12-18 age group, 46%









were male and 54% were female. Substantial numbers of minority children were included at all

age levels, and samples of children were taken throughout 157 sites in the U.S. and Canada.

Internal reliability of composites ranged from high .80 to mid .90s. Internal reliability for

individual scales ranged from the .70s to the .80s across scales. Test-retest reliability of

composites and individual scales ranged from the .70s to the mid .80s. Test items were created

with the help of teachers, parents, psychologists, and other references, and scales were based on

factor analyses. Additionally, BASC scales correlate highly with scores on other test measures

such as the Achenbach Child Behavior Checklist-Youth Self-Report (Achenbach & Edelbrock,

1983).

Procedure

Children with spina bifida were recruited in one of three ways: during a routine visit to the

spina bifida clinic at the Shands Medical Plaza in Gainesville, Florida, via phone contact by their

treating nurse, Rosellen Dedlow, or via flyers sent to Spina Bifida Association in Jacksonville,

Florida, the Spina Bifida Association in Orlando, Florida, and Shriner' s Hospital in Tampa,

Florida. After a patient expressed interest to their physician or responded to an investigation

flyer, parents of potential participants who met inclusion/exclusion criteria were consented and

participants were assented.

The initial spina bifida sample included 19 participants. Approximately 18 children were

approached by their treating physician at the spina bifida clinic and 13 children agreed to

participate. Approximately 6 children were contacted via a phone call by Rosellen Dedlow and

3 agreed to participate. Finally, 3 children agreed to participate in response to flyers. It is unclear

how many families were provided flyers since these were provided by the directors of the

associations, although it is estimated that the participation rate from flyers was low, probably

below 5-10%.









Of the 19 participants recruited for the spina bifida group, 13 were included in the final

analyses. Two participants with spina bifida initially consented to the study but then declined

the study when asked to schedule a date to complete the testing. Two participants with spina

bifida were removed from the final group because they did not meet the cut-off score inclusion

criteria on the WIAT-II word reading component of the screening. One participant was removed

because they did not meet the cut-off score inclusion criteria on the PPVT-II. One participant

was removed when the study design was adjusted from ages 9-16 to 10-16 to more accurately

reflect the young adolescent age group.

Our healthy control group consisted of 17 participants. Sixteen of the healthy controls were

recruited via flyers posted at Shands Hospital in Gainesville, Florida, local day care centers, and

local pediatric clinics, although it is unclear how many people saw the flyers. One healthy

control was identified and recruited because they were the sibling of a participant with spina

bifida. None of the healthy controls were removed from the final sample.

Participants in both groups completed a brief neuropsychological test battery that lasted

approximately 20 minutes and consisted of the Peabody Picture Vocabulary Test- Third Edition

(PPVT-III) (Dunn & Dunn, 1997) and the Wechsler Individual Achievement Test, Second

Edition (WIAT-II) Word Reading subtest (The Psychological Corporation, 2001). Participants

who met performance requirements on the screener completed the study test battery either during

their regular visit to the Spina Bifida Clinic or at a later date in the UF/Shands Psychology

Clinic, in the UF/Shands Pediatric Neuropsychology Lab, or at the participant' s home. Eileen B.

Fennell, PhD., a licensed clinical psychologist, supervised and was available for further

instruction during testing.









The test battery consisted of one visit and lasted approximately 90 minutes for each child.

Participants first completed the TEA-Ch subtests and the D-KEFS Trailmaking test. After

completing these tests, participants completed the MSCS questionnaire, the CDI, and the

RCMAS. Due to changes in the protocol, a small number of children also completed the

Behavior Assessment System for Children, Self-report (BASC-SRP). Parents completed the

Demographic Questionnaire and the Behavior Assessment System for Children Parent Rating

Scales (BASC: PRS). After completing the test battery, participants received $10.00 for their

participation.









CHAPTER 3
RESULTS

Data Analysis

For all statistical tests, the level of significance was set at oc = 0.05. All statistical tests

were performed using the SPSS statistical analysis package. Among the Einal 30 participants,

there were no missing data points for screening measures, neuropsychological tests, parent-report

measures, or the MSCS, CDI, and RCMAS. However, only 14 participants completed the

BASC-SRP due to changes in the protocol. Raw scores were converted to Standard Scores, T-

scores, or Scaled Scores for statistical analyses. All dependent variables were evaluated for

evidence of symmetry in its distribution by using a test of skewness. A cut-off point of 2.0 was

applied to the test of skewness as an indication for normality. Based on these criteria, all

dependent variables were normally distributed. Therefore, no further normalization calculations

were necessary.

Demographics

Demographic variables between groups were compared using ANOVAs and Chi-square

analyses. A comparison of the two groups' demographic information is presented in Table 3-1.

The mean age of the Spina Bifida group was 13 years, O months (range 10 years, O months to 16

years, 9 months). The mean age of the Healthy Control group was 12 years, 8 months (range 10

years, 3 months to 15 years, 10 months). The mean grade of the Spina Bifida group was 6th

(range 3rd to 11th). The Healthy Control group was also in 6th grade on average (range 4th to

10th). The Spina Bifida group consisted of 8 males and 5 females. The Healthy Control group

consisted of 8 males and 9 females. Within the Spina Bifida group, 7 of the participants

described themselves as Caucasian, 4 as African-American, 1 as Hispanic, and 1 as Asian-

American. Within the Healthy Control group, 16 of the participants described themselves as









Caucasian and 1 described their ethnicity as 'other.' Between-groups ANOVAs did not reveal

any significant differences between the groups on age or grade. Chi-square analyses revealed no

significant difference between groups in male: female ratio. However, Chi-square analyses

revealed that the Spina Bifida group had a significantly higher proportion of participants from

minority groups than the Healthy Control group.

In addition to the demographics reported above, medical data specific to the Spina Bifida

group was collected. Within the Spina Bifida group, 12 of the participants were diagnosed with

myelomeningocele and 1 was diagnosed with meningocele. Eight of the participants in the Spina

Bifida group had been diagnosed with hydrocephalus. Eleven of the participants in the Spina

Bifida group were diagnosed with spina bifida at the lumbar level, 1 at the thoracic level, and 1

at the sacral level. In terms of mobility, 6 were wheelchair bound, 5 used an assistive device,

and 2 required no assistance. In terms of incontinence, 2 required assistance, 9 were able to

self-catheterize, and 2 were not incontinent.

Scores on the screening measures including the Peabody Picture Vocabulary Test, Third

Edition (PPVT-III) and the Wechsler Individual Achievement Test, Second Edition (WIAT-II)

were also compared between the two groups (see Table 3-1). The mean score on the PPVT-III of

the Spina Bifida group was significantly lower than the mean score of the Healthy Control group

(t (28) = 15.146, 12 < .001). Although the two groups differed significantly on this measure, this

variable was not entered into further analyses as a covariate because this test was used primarily

to exclude children who were suspected of comorbid developmental delay or mental retardation

rather than a test of intellectual ability per se. Additionally, previous research suggests that

Verbal IQ is not related to performance on the TEA-Ch (Manly, Anderson, Robertson, Nimmo-

Smith, 1999). The mean score on the WIAT-II Word Reading subtest of the Spina Bifida group









was also significantly lower than the mean score of the Healthy Control group (t (28) = 26.227, p

< .001). The WIAT-II Word Reading scores were not used as a covariate in further analyses

because this test was used as a screener to ensure that children could read questionnaire items.

Additionally, children with learning disabilities were not excluded from the Spina Bifida group

since these difficulties may be related to the spina bifida diagnosis. As noted previously, two

participants were excluded from the study because they did not meet the reading requirement

necessary to complete the questionnaire.

Statistical Analyses

A summary of the primary hypotheses and analyses is depicted in Table 3-2.

Hypothesis 1

Comparison of attentional performance without controls for motor demands

In order to test whether children with spina bifida perform more poorly on attentional tests,

an Independent-Samples T-Test, with two levels of the independent variable (Spina Bifida vs.

Healthy Control group) was employed. Initially the five dependent variables were the TEA-Ch

Sky Search time per target score (Selective Attention), TEA-Ch Score! number correct

(Sustained Attention), the TEA-Ch Opposite Worlds timing score (Attentional

Control/Switching), the D-KEFS Number/Letter Switching timing score (Attentional

Control/Switching), and the BASC-PRS Attentional Problems score. Attentional performance

on tests of selective attention without controlling for motor demands were initially counted to

determine whether attentional difficulties existed in these areas as had been reported in previous

studies that did not have controls for visual-motor integration or eye movement, such as the

Trailmaking test A and B, WISC-III Coding, and Stroop tests (Snow, 1999; Loss, 1998; Fletcher

et al., 1996). Similarly, performance on tests of attentional control/switching without motor

controls was initially counted in order to determine whether deficits in attentional










control/switching are apparent when motor demands are not considered. Since the sustained

attention score was an auditory task without a visual or motor component, the same variable was

used in both the initial and "motor-control" calculations. Similarly, the same parent-rating

variable was used in both calculations. The Independent Samples T-Test revealed significant

differences on all five variables at the p < .001 level. The means for the Spina Bifida group were

also in the clinically significant range for each variable, whereas they were in the average range

for each variable in the Healthy Control group. Effect sizes were large and were calculated with

Cohen's d (Cohen, 1988) with the pooled standard deviation used for between-group

comparisons (Rosnow & Rosenthal, 1996). A summary of these findings is depicted in Table

3-3.

Comparison of attentional performance with controls for motor demands

In order to test whether children with spina bifida perform more poorly on attentional tests,

even after motor demands are removed or controlled, an Independent-Samples T-Test, was

employed with the same independent variables (Spina Bifida group vs. Healthy Control group).

However, the five dependent variables were adjusted for motor demands when necessary.

Specifically, the TEA-Ch Sky Search attention score was used rather than the time per target.

The attention score is calculated by subtracting the time per target during the visual search task

from the time per target during a motor control task that has targets with no distracters.

Additionally, potential motor confounds from the TEA-Ch Opposite Worlds task were reduced

by calculating the difference between the scaled score on the Opposite Worlds task and the

scaled score for the Same Worlds task, which requires children to simply read numbers without

the switching component. Finally, the D-KEFS Number/Letter Switching score was replaced

with the Number/Letter Switching vs. Motor score. This score compares the time taken on the

attentional switching task with a task that only requires a child to connect circles along a dotted









line. As noted previously, no changes were made in the calculations for the TEA-Ch Score! test

and the BASC-PRS Attention Problems scale, since these did not have visual-motor demands.

The Independent Samples T-Test revealed significant differences on the TEA-Ch Sky Search

attention variable at the p < .05 level, although the Spina Bifida group was no longer in the

clinically significant range. Before calculating the difference scores for the two attentional

switching variables, Independent Samples T-Tests were calculated between the groups for the

TEA-Ch Same Worlds and D-KEFS Motor Speed scores. Significant differences were found

between the groups on both measures at the p < .001 level. No significant differences were

found between the groups on TEA-Ch Opposite Worlds vs. Same Worlds or the D-KEFS

Number/Letter Switching vs. Motor variables. Effect sizes were large for all variables except D-

KEFS Number/Letter Switching vs. Motor, which were medium, and TEA-Ch Opposite Worlds

vs. Same Worlds, which were small. These findings suggest that the Spina Bifida group was

generally slower than the Healthy Control group and did not experience a significant decrement

with the additional demands of attentional switching. Means and effect sizes are depicted in

Table 3-4.

Hypothesis 2

In order to test whether children with spina bifida had different self-concepts than healthy

controls, an Independent-Samples T-Test, with two levels of the independent variable (Spina

Bifida group vs. Healthy Control group) was employed. The dependent variables were the

Social, Competence, Affect, Academic, Family, and Competence domains from the Multi-

Dimensional Self-Concept Scale (MSCS). The Independent Samples T-Test revealed significant

differences on the MSCS Social, Affect, Academic, and Physical domains at the e < .05 level.

No differences were found between groups on the Family or Competence domains. The domain

scores were generally in the low average or lower end of the average range. Additionally, large









effect sizes were found on all variables except Family and Competence domains, which were

medium. Means and effect sizes are depicted in Table 3-5.

Hypothesis 3

In order to test whether there were significant relationships between performance on

attentional tests and self-concept, a Pearson correlation was computed with the attentional and

self-concept variables. Results demonstrated that there was a significant negative relationship

between BASC-PRS scores and a number of self-concept variables; specifically Social, Affect,

and Physical domains. There were no other significant relationships between any of the

attentional variables and any of the self-concept variables. Within domains, however, TEA-Ch

Score was significantly positively correlated with the TEA-Ch Sky Search! variable and

significantly negatively correlated with the BASC- PRS Attention Problems score. Similarly,

each of the MSCS domains was significantly correlated with each other. Unfortunately,

correlations could not be conducted with the Spina Bifida group alone due to small sample size.

Correlations are depicted in Table 3-6.

Additional Calculations and Exploratory Analyses

Differences in mood

In addition to the primary analyses, the Spina Bifida and Healthy Control groups were

compared on measures of mood. These measures were not included in the primary analyses

which focused on self-concept rather than mood per se. Clearly, self-concept and mood are

related, but since the MSCS already includes a broad measure of mood, these additional mood

measures were included in the secondary analyses so that the primary comparison of self-concept

and the relationship between self-concept and attention were not too heavily weighted or affected

by differences in mood. In order to test whether children with spina bifida had different levels

of mood problems than healthy controls, an Independent-Samples T-Test, with two levels of the










independent variable (Spina Bifida vs. Healthy Control group) was employed. The dependent

variables were the total score from the Child Depression Inventory (CDI), the total score from

the Revised Children's Manifest Anxiety Scale (RCMAS), and the Anxiety and Depression

scales of the Behavior Assessment System for Children Parent Rating Scales (BASC-PRS).

The Independent Samples T-Test revealed significant differences on the CDI and BASC-PRS

Anxiety and Depression scales at the p < .05 or greater level. The groups did not differ on the

RCMAS scale with a p-value of .07. Additionally, the effect sizes were large for all variables

except for the RCMAS, which was in the medium range. Finally, only the BASC-PRS

Depression Scale was in the clinically elevated range.

In order to further explore the relationship between self-concept and mood, a Pearson

correlation was computed with the MSCS Total Score and each of the mood variables listed

above. A significant negative correlation (higher self-concept, lower depression or anxiety) was

found between MSCS Total Self-Concept and the CDI, RCMAS, and BASC-PRS: Depression

scale. Means, effect sizes, and correlation with the MSCS are depicted in Table 3-7.

In addition to the mood measures reported above, group differences on the BASC-SRP for

the Depression, Anxiety, Self-esteem, and Social Stress scales were calculated. There were 7

children with spina bifida and 7 healthy controls who completed the BASC-SRP. Independent

Samples T-Tests revealed a significant difference for the Depression scale (t = 2.82, p < .05).

Effect sizes were large for the Depression scale (ES = 1.54) and Self-esteem (ES = .95), medium

for Social Stress (ES = .78), and small for Anxiety (ES = .15).

Differences in Behavior Problems

In order to determine whether the groups differed in other areas of behavior problems, an

Independent-Samples T-Test, with two levels of the independent variable (Spina Bifida vs.

Healthy Control group) was employed. The dependent variables were the BASC-PRS










Hyperactivity, Aggression, and Conduct Problems scores. The Independent Samples T-Test did

not reveal significant differences any of these scales at the p < .05 level. Additionally, neither

the spina bifida group nor the healthy control group were clinically elevated on any of these

scales.

Age differences

In order to determine whether there were any changes in self-concept with age, a linear

regression analysis was employed with age-in-years as the dependent variable and the self-

concept domains as the predictor variables. The self-concept domains did not predict a

significant amount of variance in this analysis (F (6, 23) = .85, p_= NS, R2 = .1 8). Since the

sample size was small for a regression analysis approach, the age effects were also compared by

dividing the sample into two age groups: ages 10-12 and ages 13-16. In the total group, there

were 18 participants in the 10-12 group and 12 in the 13-16 year-old group. In order to test

whether younger children had different self-concepts than older children, an Independent-

Samples T-Test, with two levels of the independent variable (young vs. older adolescents) was

employed. The dependent variables were the domains from the MSCS. The Independent

Samples T-Test did not reveal any significant differences with any variables. Additionally, the

effect sizes were small for each variable.

In order to determine whether children with spina bifida experienced unique age effects

related to reported self-concept, a second Independent-Samples T-Test with only the 13 children

with spina bifida was computed. Seven participants were in the young child group age 6 were in

the older child group. The Independent Samples T-Test did not reveal any significant

differences with any variables. However, effect sizes were large for all domains except the

Academic domain, which had a medium effect size, and the Physical domain, which had a small

effect size. In each case, the children in the older age group reported higher self-concepts than










younger children. Additionally, the younger children reported self-concepts in the low average

range whereas older children reported average ranges except for the Physical domain which was

low average in both groups. Means and effect sizes are depicted in Table 3-8.

Gender differences

In order to examine gender differences in self-concept, an Independent-Samples T-Test,

with two levels of the independent variable (males vs. females) was employed. The dependent

variables were the domains from the MSCS. The Independent Samples T-Test revealed a

significant difference on the Competence domain (t = 2.97, p < .05), with females having

significantly higher ratings than males. The other variables were not significantly different

between groups. Additionally, the effect size was large for the Competence variable (ES = 1.12)

and medium for the other variables, ranging from .58 to .74.

In order to determine whether there were unique gender effects on self-concept in the

Spina Bifida group, a second Independent-Samples T-Test with only children from the Spina

Bifida group was calculated. There were 8 males and 5 females in the analysis. The

Independent Samples T-Test revealed a significant difference on the Competence domain (t =

2.23, p2 < .05), with females having significantly higher ratings than males. The other variables

were not significantly different between groups. However, large effect sizes were found for the

Competence, Academic, and Physical domains, with higher scores for females than males.

Additionally, males' self-concepts were in the low average range whereas females were in the

average range. Means and effect sizes are depicted in Table 3-9.

Effect of hydrocephalus

In order to determine differences between the children with and without hydrocephalus in

the Spina Bifida group, two levels of the independent variable (children with spina bifida with

and without hydrocephalus) were employed. The dependent variables were the attentional and









self-concept variables used in the primary analyses. There were 8 children with hydrocephalus

and 5 children without hydrocephalus used in these analyses. The Independent Samples T-Test

revealed a significant difference only on the TEA-Ch Opposite Worlds vs. Same Worlds score (t

= 2.32, p_< .05), with children without hydrocephalus showing greater decrement between the

Opposite Worlds and Same Worlds variables than children with hydrocephalus. This finding is

likely due to the fact that the group with hydrocephalus completed both the Same Worlds and

Opposite Worlds tasks slowly, although differences between the groups on these variables was

not significant. Additionally the other variables were not significantly different between groups.

Within the self-concept domains, the effect sizes ranged from small (Social domain = .17,

Academic = .24, Physical domain = .29, Competence domain = .36), medium (Affect domain =

.50), to large (Family domain = 1.13). Additionally, the hydrocephalus group generally rated

their self-concept in the low average range whereas the non-hydrocephalus group rated their self-

concept in the average range. Within the attention variables, effect sizes were small for D-KEFS

Number/Letter Switching vs. Motor (ES = .01), Sky Search attention score (ES = .20), and

BASC-PRS Attention score (ES = .43). Effect sizes were large for Score! (ES = .92) and

Opposite Worlds vs. Same Worlds (ES = 1.24). Additionally, both groups were clinically

significant on the BASC-PRS Attention score and the Number/letter switching vs. Motor score.

Only the hydrocephalus group was clinically elevated on the Score! subtest.

Effect of ADHD

In order to address concerns that the group differences in attention and self-concept were

due to a comorbid ADHD-diagnosis in 3 participants in the Spina Bifida group, an Independent-

samples t-test was run with these 3 participants removed. Therefore there were 10 children with

spina bifida and 17 healthy controls. The Independent Samples T-Test revealed that significant

differences remained between the groups on the TEA-Ch_ Score variable (t = 3.47, p < .01) as










well as the Parent-reported BASC-PRS Attention domain (t = 3.07, p_< .01). The TEA-Ch_ Sky

Search Attention score was no longer significant (t = 1.88, p_= .07), although this appeared to be

due to reduced statistical power with the smaller sample, since the actual change in scaled scores

without the ADHD participants was nominal (scaled score = 8.4 with ADHD participants, 8.8

without ADHD participants). Within the self-concept domains, the groups remained different in

the Social (t = 2.1, p <.05), Affect (t = 2.1, p <.05), Academic (t = 2.5, p < .05), and Physical (t

= 2.9, p < .05) domains but not in the Competence (t = 1.1, p = NS) or Family (t = 1.4, p = NS)

domains.












Table 3-1: Demographic Characteristics of SB and Healthy


Control groups


Spina Bifida
(N=13)


156.77
(25.92)


6.46
(2.18)


Healthy Control
(N=17)


152.24
(18.15)

6.88
(1.45)


Test
Stati stic



.32'


.40'


Variable




Age (months)


Grade


p-value



NS


NS


.432


10.172


15.151


26.231


Gender (# males)


Ethnicity (# Caucasian)


PPVT-II Standard Score


WIAT-II Standard Score


7


100.08
(15.59)

91.31
(13.97)


16


117.11
(8.05)

113.18
(9.42)


Note. Values are presented as mean (jD unless otherwise noted.
1 F-value
2 X2-ValUe









Table 3-2: Variables Used in Primary Analyses
Hypothesis Statistical Test IV /Predictor

1 Independent Samples Group (Spina Bifida
T-Test vs. Healthy Control)








2 Independent Samples Group (Spina Bifida
T-Test vs. Healthy Control)

3 Correlation Scores on Selective,
Sustained, and
Control/Switching


Dependent Variables

Selective: TEA-Ch Sky Search attention score

Sustained: TEA-Ch Score! total correct score

Control/Switching: TEA-Ch Opposite Worlds vs. Same Worlds,
D-KEFS Number- Letter Switching vs. Motor score

General Attention: BASC-PRS Attention Problems scale

MSCS domains: Social, Competence, Affect, Academic, Family,
Physical scores

MSCS domains: Social, Competence, Affect, Academic, Family,
Physical scores










Table 3-3: Mean Group Scores on Attentional Measures with no Motor Control Correction


Spina Bifida
(N=13)


Healthy Control
(N=17)


Domain


Van able


P -value


Effect Size


Sky Search
Time per Target


Score! number correct



Opposite Worlds
timing score


D-KEFS Number/Letter
Switching


BASC-PRS Attention
Problems


6.85*
(2.88)


7.00*
(3.03)


4.69*
(3.12)


5.62*
(4.15)


67.08*
(12.44)


9.94
(1.14)


11.18
(2.48)


9.41
(2.53)


10.59
(3.24)


50.94
(9.63)


Selective Attention



Sustained Attention



Attentional
Control/Switching


.001


1.59


.001


1.75


.001
1.41



.001
1.53


General Attention


Note: indicates rating that is clinically elevated










Table 3-4: Mean Group Scores on Attentional Measures with Motor Control Corrections


Spina Bifida
(N= 131


Healthy Control
(N= 171


Effect Size


Domain


Variable


P -value


Sky Search
Attention Score



Score! number correct



Opposite Worlds vs.
Same Worlds


D-KEFS Number/Letter
Switching vs. Motor


BASC-PRS Attention
Problems


8.38
(3.71)


7.00*
(3.03)


-0.15
(1.21)


6.62*
(3.07)


67.08*
(12.44)


10.41
(1.12)


11.18
(2.48)


-0.18
(2.07)


7.94
(2.61)


50.94
(9.63)


Selective Attention



Sustained Attention



Attentional
Control/Switching


1.59


.001


.49
NS



1.53
.001


General Attention


Note: indicates rating that is clinically elevated










Table 3-5: Mean Group Scores on Self-Concept Domains


Spina Bifida
(N= 13)


89.92*
(22.99)


Healthy Control
(N= 17)


105.71
(12.41)


Domain


P -value




.023


Effect Size



.92


Social


91.46
(26.39)


92.62
(22.84)


91.54
(21.92)


93.00
(15.08)


86.92*
(18.62)


101.82
(15.46)


108.29
(13.23)


111.24
(10.69)


102.12
(11.93)


105.71
(13.69)


Competence



Affect



Academic



Family




Physical


1.24


1.22


.004


Note: indicates rating that is low average or below










Table 3-6: Correlations between Tests of Attention and Self-Concept for the Total Sample (Controls and Spina Bifida)

Sky Score Opp. N-L BASC MSCS MSCS MSCS MSCS MSCS MSCS
Search Wlds switch vs. Attn Social Comp Affect Academic Family Physical
motor
Sky Search1

Score 1.524* 1


Opposite Worlds vs. 1.086 -.177 1
Same World

D-KEFS Switching 1-.213 .217 .1961
vs. motor

BASC Attention 1-.169 -.481** .008 -.111 1


MSCS Social 1.003 .321 -. 154 .082 -.446* 1


MSCS Competence 1.040 .260 -.153 .047 -.228 .807**


MSCS Affect i.146 .327 -. 165 -.008 -.429* .786** .816** 1


MSCS Academic 1.137 .318 -. 159 .081 -.350 .676** .616** .413*


MSCS Family 1.130 .089 -.046 .024 -.335 .502** .409* .527** .399* 1


MSCS Physical i.165 .218 .122 -.077 -.460* .649** .645** .757** .548** .427*


Note: indicates si nificant values at the e<. 05 level. ** indicates si nificant values at the <.01 level.










Table 3-7: Group Mean Scores on Mood Symptom Scales


Correlation with
MSCS



-.71



64


Spina Bifida
(N= 13)


51.54
(11.59)


50.92
(11.99)


Healthy Control
(N= 17)


41.47
(4.14)


43.65
(9.10)


Scale


P -value




.002



NS


Respondent



Child



Child


Effect Size



1.27



.72


CDI


RCMAS


BASC-PRS
Depression


BASC-PRS
Anxiety


60.00*
(18.40)


58.38
(13.28)


44.65
(7.72)


47.42
(9.75)


Parent



Parent


1.18


.004



.014


1.00


Note: indicates rating that is clinically elevated










Table 3-8: Age Differences on


Self-Concept domains within Spina Bifida group


Age 10-12
(N = 7)


Age 13-16
(N = 6)


102.50
(18.5 8)


103.83
(26.8 1)


10 1.50
(22.83)


99.33
(25.29)


99.33
(14.36)


8 8.50*
(6.35)


Domain


P -value


Effect
Size


79.14*
(21.81)


80.86*
(22.58)


85.00*
(21.51)


84.86*
(17.74)


87.57*
(14.43)


85.57*
(25.60)


1.24


Social


1.02


Competence



Affect



Academic


Family




Physical


Note: indicates rating that is low average or below












Table 3-9: Gender Differences on Self-Concept domains within Spina Bifida group


Effect
Size


Males
(N = 8)


83.75*
(25.69)


80.25*
(22.13)


88.50*
(23.21)


82.50*
(15.38)


90.88
(17.95)


79.63*
(16.88)


Females
(N 5)


99.80
(15.25)


109.40
(24.06)


99.20
(23.11)


106.00
(24.54)


96.40
(9.74)


98.60
(16.27)


Domain


P -value


Social


1.39


Competence



Affect



Academic


1.33


Family




Physical


1.23


Note: indicates rating that is low average or below









CHAPTER 4
DISCUSSION

Overview

The current study was designed to examine the attentional performance of adolescents with

spina bifida compared to healthy controls. Whereas previous studies have found attentional

deficits in children with spina bifida (Snow, 1999; Loss, 1998; Brewer et al., 2001; Fletcher et

al., 1996), this study was unique in that it controlled or accounted for potential motor confounds,

examined multiple domains of attention individually, and focused on young adolescents.

Furthermore, the TEA-Ch allowed examination of multiple domains of attention with

comparable psychometric properties, since the subtests of the TEA-Ch are part of the same

battery and were standardized together.

Additionally, differences in self-concept were examined between adolescents with spina

bifida and healthy controls. Previous studies have been inconsistent but suggest that children

with spina bifida have lower self-concept in some areas, specifically physical, social, and

academic self-concept (Appleton, 1994; Appleton, 1997; Dorner, 1976; Buran, 2004; Fletcher

1995). The current study attempted to add to this literature by comparing children in multiple

domains of self-concept, focusing on young adolescents rather than children of all ages, and

using healthy controls as a comparison group to determine whether aspects of self-concept are

unique to people with spina bifida.

Finally, the relationship between attention and self-concept were examined within these

groups. Previous literature suggests links between attention and the 'self,' including:

overestimation of self-perceptions in children with ADHD compared to healthy controls (Hoza et

al., 2004, Hoza, Pelham, Dobbs, Owens, & Pillow, 2002), loss of insight related to frontal lobe

lesions and related disorders (Mendez & Shapira, 2002; Laroi et al., 2002; Feinberg & Keenan,










2005), frontal lobe activity during self-referential thinking and self-awareness (Kelly et al., 2002;

Shallice, 1982; Shimamura, 1995; & Stuss & Benson, 1986), theories that attention is a

necessary function in the detection and response to feedback (Barkley, 1992), and theories that

attention is needed to organize and integrate numerous pieces of information from one's

experiences and feedback from others in order to create a cohesive sense of self (Bracken, 1992).

To date, no studies have specifically examined the relationship between attentional tests and self-

concept reports.

Attentional Differences Between Groups

As expected, children with spina bifida performed worse than healthy controls on a test of

visual selective attention. These findings are consistent with prior research demonstrating that

children with spina bifida performed worse on Trailmaking Tests (Snow, 1999; Loss, 1998),

coding on the WISC-III (Loss, 1998), and visual orienting (Brewer et al., 2001). However,

unlike previous research, the present study was able to demonstrate that the differences in

selective attention existed even after the motor component of the test was factored out of the

performance. Given the fact that the condition of spina bifida results in significant

abnormalities to areas that are important for visual attention, including the parietal lobe and

superior colliculus as well as posterior corpus callosum, optic pathways, and cerebellum (Cohen

and O'Donnell, 1993; Mirsky, 1989; Mesulam, 1985; Posner et al., 1988; Luck, Hillyard,

Mangum, and Gazzinaga, 1994; Barkovich, 1992; Fletcher- 2000, Del Bigio 1993; Fletcher

2000), these findings are consistent with underlying anatomical pathology.

Additionally, children with spina bifida performed worse than healthy controls on a test of

auditory sustained attention that had no motor component, further supporting the hypothesis that

the attentional problems in children with spina bifida are not solely due to motor slowing. These

findings are supported by previous literature showing that children with spina bifida perform









worse on CPTs (Loss, 1998, Brewer, 2001), although other research has suggested that there are

no differences between children with spina bifida and controls on the CPT (Lollar, 1990). As

noted above, one strength of the current study is that motor confounds, which may explain some

of the inconsistent findings in past research, were reduced or removed in the current study.

Whereas the deficits in selective attention can be attributed to posterior abnormalities, deficits in

sustained attention are generally thought to be related to more frontally mediated systems. There

is some evidence that blood flow to the frontal lobes is reduced in children with spina bifida (Del

Bigio, 1993; Shirane et al., 1992) and that frontal lobes are thinned, although to lesser degree

than posterior regions (Fletcher, 2000; Del Bigio 1993). Additionally, membranes around the

caudate may be disrupted (Del Bigio, 1993). Finally, it is likely that frontal lobe functions are

affected indirectly by disrupted white matter connections cortically and subcortically, which are

necessary for effective communication between frontal lobes and other areas of the brain

(Barkovich, 1992; Del Bigio, 1993; Dennis et al., 1981; Fletcher, 2000).

Interestingly, differences in attentional control/switching were highly significant when

motor confounds were not taken into consideration but were no longer significant when motor

confounds were removed from the calculation of performance. Previous literature has suggested

that children with spina bifida experience deficits in attentional control/switching, including the

time taken to shift from invalid cues (Dennis 2005a) and performance on Trailmaking Part B

(Loss, 1998; Snow 1999). Although each of these tests has a motor component that could have

confounded previous studies, studies by Snow (1999), Loss et al., (1998), and Fletcher (1996)

have also reported that children with spina bifida were worse than healthy controls on the

Wisconsin Card Sorting Test (WCST), which requires attentional switching but does not include

a motor speed component. At this time, it is unclear why the study's results were not significant









in this domain. The most parsimonious explanation is that children with spina bifida are simply

slower, regardless of demands on attentional switching. Whereas attentional switching may be

burdensome to someone who works quickly, the burden may be reduced when someone

completes tasks more slowly. Another possibility is that attentional control/switching is a

complex cognitive function that consists of more than one component. For example, on the

WCST, the demands on attentional switching are not related to speed but rather the ability to

effectively inhibit one response set and switch to a different response set. These demands are

very different from tests such as the Opposite Worlds or the Trailmaking test, where the rules are

clear but there is a high demand on speed and inhibition of other responses. A second possible

explanation is that the WCST involves many different cognitive functions other than attentional

switching, including abstract reasoning, working memory to remember and implement feedback,

and implementation of strategy based on feedback.

Finally, parent rated attention was significantly worse in the Spina Bifida group compared

to healthy controls. These findings demonstrated that the neuropsychological tests given were at

least generally supported by real observed problems in attention in daily life and are supported

by previous research demonstrating parent-reported deficits in inattention, poor executive

functions, less goal-directed behaviors, distractibility, and verbosity (Landry, 1990; Horn, 1985;

Burmeister, 2005; Davidovitch, 1999; Mahone, 2002).

Taken together, these findings demonstrate that children with spina bifida experience

significant attentional deficits in multiple domains, and these deficits appear to negatively impact

their daily life. These difficulties are not completely accounted for by motor difficulties in

selective and sustained attention, although deficits in attentional switching appear to be related

primarily to poor motor speed and motor control. However, whereas this distinction may be









important in order to better understand and treat children with spina bifida, it is impossible to

parse out motor demands from most real-world situations that require attentional shifting or

control. Therefore, attentional shifting and control are significant problems for children with

spina bifida and should be addressed accordingly.

Differences in Self-Concept

As predicted, children with spina bifida reported poorer self-concept in social, academic,

and physical domains. This finding is consistent with past research (Buran, 2004; Appleton,

1994; Fletcher 1995). Affect was also significantly lower in children with spina bifida, a finding

that has been supported by some previous studies (Appleton, 1997; Dorner, 1976) but not others

(Holmbeck, 2003; Edwards-Beckett, 1995; Landry, 1993). Additionally, no differences were

found between the groups for ratings of family relationships or a more general competence

domain, although this lack of differences appeared to be due to variations in the Healthy Control

group rather than higher self-concept in the Spina Bifida group. These results suggest that

children with spina bifida define themselves as having worse social relationships, less academic

success, fewer physical abilities or worse appearance, and greater mood problems than healthy

controls. Given the number of physical and cognitive problems that are reported in children with

spina bifida, it is likely that these lower ratings are based at least somewhat on experiences and

feedback from others. For example, children with spina bifida actually do have greater physical

difficulties than their healthy peers. Similarly, given the cognitive deficits experienced in spina

bifida, these children likely have real academic problems.

These results show that children with spina bifida are aware of their deficits and are

negatively affected by them. Initially, it was suggested that children with spina bifida might

actually have better self-concepts than healthy adolescents due to a lack of awareness about

personal difficulties. If children with spina bifida did not process and incorporate feedback from









their experiences into their self-concept in the same way that self-concept develops in healthy

children, they could have higher, or inflated self-concepts compared to healthy controls who are

aware of their own strengths and weaknesses. Furthermore, this possibility was supported by

evidence that children with more severe conditions of spina bifida have better ratings of mood

and stress (Padua et al., 2004; Padua et al., 2002; Minchom et al., 1995; Holmbeck et al., 1995).

Additionally, a number of studies show that children with ADHD have greater positive distortion

in their self-concept and performance estimates (Hoza et al., 2004; Hoza et al., 2002; Owens &

Hoza, 2003; Hoza, et al., 2001). However, the current results demonstrate that rather than

creating a protective effect due to poor awareness of their shortcomings, it seems that

adolescents with spina bifida are aware of their difficulties and incorporate them into their sense

of self.

It is also important to note that although adolescents with spina bifida reported lower self-

concepts, their scores were generally in the lower end of the average range. This suggests that

self-concept is negatively impacted but that there is also a degree of resiliency among these

adolescents that prevents even lower self-concepts from developing. This finding is promising

because it suggests that protective factors exist. If these factors were identified, they could be

used in treatments to further improve self-concept.

The current study adds to previous literature because it specifically focused on young

adolescents with spina bifida, whereas many other studies include both adolescents and young

children. Of the past studies that have focused on adolescent populations, many did not have a

Healthy Control group, an important variable since adolescence is a challenging stage of

development and self-concept undergoes natural increases and decreases.









Based on the current results, self-concept is clearly an area that requires attention when

treating adolescents with spina bifida. Self-concept likely affects many areas important for

healthy adjustment into adulthood, including mood, motivation, and confidence which in turn are

likely to impact later independence, as well as perseverance and willingness to face challenges in

medical care, academic performance, occupational settings, and relationships. Clearly,

adolescence is an important stage in development of self-concept, likely impacts later adjustment

in adulthood, and should be considered as an important component of any treatment plan for

adolescents with spina bifida. In addition, poorer ratings of self-concept should not always be

dismissed as low confidence or poor self-esteem, but may reflect accurate estimations of ability.

In this way, self-concept ratings may alert providers and families to weaknesses recognized by

the child and thus allow for a more effective treatment plan that focuses on specific concerns.

For example, low ratings in academic performance may result in increased support at school, or

low ratings on social skills may alert parents to involve their child in more socially rewarding

events or social skills training classes. Finally, instead of focusing solely on areas that are worse

in children with spina bifida, it is important to recognize areas that could serve protective roles.

For example, previous research suggests that family relationships and the attitudes of parents

have significant impact on later independence (Antle, 2004; Wolman, 1994; Murch, 1989; Kolin,

1971; Loomis, 1997). Therefore, these areas should not be overlooked and may provide valuable

tools for improving self-concept in other areas.

Relationship Between Attention and Self-Concept

Statistical analyses did not find a significant relationship between performance on

attentional measures and self-concept. The current study predicted that poorer attentional

performance would be related to poorer self-concept, particularly in areas that attentional

demands were high or where attention would be a valuable asset, including academic, social, and










competence domains. A competing hypothesis, as discussed above, was that greater deficits in

attention would lead to reduced awareness of personal shortcomings and thereby result in an

inflated self-concept or inverse relationship between attentional deficits and self-concept.

Unfortunately, the small sample size limited the ability to make conclusive statements about

these results, since the lack of a relationship may have been related to low statistical power.

Additionally, the small sample size prevented analysis of the Spina Bifida Group alone, which

may have more directly addressed the hypothesis. However, it is promising that within the

domains, each of the self-concept domains correlated with each other, as did some of the

attentional measures, suggesting that the statistical power was sufficient for at least some

predictable relationships. It is also important to note that parent ratings of Attentional Problems

on the BASC-PRS were negatively correlated with the social, physical, and affect domains of

self-concept. These findings suggest that a potential relationship exists between attention and

self-concept that is not measured with the neuropsychological tests used in the current study, and

lends promise to the theory that attention and self-concept are related such that attentional

difficulties negatively impact self-concept.

An additional explanation for the lack of relationship between attentional performance and

self-concept is that the type of attention studied is not necessarily related to the type of attention

required for development of self-concept. Instead of sustaining, selecting, and switching

attention, it may be that there is a stronger relationship between self-concept and other cognitive

functions related to attention, such as awareness. Awareness is required in order to respond to

and incorporate feedback, but this was not addressed during the current study. Past research

suggests that awareness of self is related to both frontal and parietal lobe functions (Gusnard,

2005; Schmidt et al., 2002; Krause et al., 1999; Johnson et al., 2002; Kjaer, Nowak, & Lou,










2001) and may be reduced in children with ADHD, as evidenced by inaccurate estimates of

performance as well as discrepancies between estimates of self-concept by children with ADHD

and ratings of by teachers or parents (Hoza et al., 2004; Hoza et al., 2002; Owens & Hoza, 2003;

Hoza, et al., 2001). Future studies may address awareness of performance more accurately by

having children with spina bifida rate and predict their performance on various tests.

Additionally, it is possible that other cognitive functions such as memory, use of language, and

processing speed impact development of self-concept. At any rate, it is important to recognize

that there are many cognitive functions, both within the domain of attention and in other domains

that are likely to impact the development of self-concept.

Additional Results

In addition to the primary hypotheses, the effect of hydrocephalus was examined within

the Spina Bifida group and found that the children without hydrocephalus had a greater

decrement between the TEA-Ch Opposite Worlds vs. Same Worlds calculation than those with

hydrocephalus. This finding is likely due to the fact that the group with hydrocephalus

completed both tasks slowly. Within the self-concept variables, there were no significant

differences although there was a large effect size difference on the Family domain, with the

hydrocephalus group rating lower family self-concept. Additionally, no other variables were

significant between the hydrocephalus conditions for other self-concept or attentional variables

and sample size was small, suggesting that any findings should be interpreted with caution.

Furthermore, given the fact that previous studies suggest that the presence of hydrocephalus is a

significant factor to cognitive performance in multiple areas including attention (Iddon, Morgan,

Loveday, Sahakian, & Pickard, 2004; Verhoef, Post, van Asbeck, Gooskens, & Prevo, 2004), it

is likely that the lack of significant differences is related to the small sample size.









In addition to the effects of hydrocephalus, mood differences were compared between the

Spina Bifida and Healthy Control groups as well as age and gender effects of self-concept. As

expected, the Spina Bifida group reported more symptoms of depression and parents of children

with spina bifida reported higher levels of depression and anxiety. Additionally, there were

significant correlations between self-concept and mood, suggesting that symptoms of anxiety and

depression decreased with increases in self-concept. However, it is important to note that these

scores were not clinically elevated, suggesting that differences existed but were not so severe as

to meet diagnostic criteria for depression or anxiety. Although it is not surprising that mood and

self-concept are related, it is important to recognize the relationship between these two areas

when developing treatment plans, since addressing either self-concept or mood may help

improve the other.

Although the small sample size limited the power of statistical analyses, the current study

found large or medium effect sizes on each of the self-concept domains except Physical self-

concept. As children with spina bifida aged from 10-12 years-old to 13-16, their self-concept

improved from low levels to average levels. This finding is promising and further research

should be conducted to determine whether the finding is replicated in a larger sample and to

explore what variables contribute to these improvements.

Finally, the current results found that females in both healthy control and Spina Bifida

groups had higher self-concept, specifically in the Competence domain, but also in other

domains including Academic and Physical self-concept. These findings were somewhat

surprising, given previous research that suggests that older girls have lower self-concept and

higher self-reported psychological problems (Appleton et al., 1997; Appleton et al., 1994;

Zurmhole et al., 1998). A study by Antle et al., (2004) did not find gender differences in self-









concept. As noted above, the small sample size limits the generalizability of the current Eindings

and prevented any age by gender comparisons. However, if replicated with a larger sample,

these Eindings may suggest that females do not always have lower self-concepts and may have

strengths in certain areas. Additionally, a replication with a larger sample suggests that gender is

an important factor in the development of self-concept in adolescents with spina bifida.

Limitations

Although the study had numerous strengths, a number of limitations should be addressed.

First, although there was sufficient power to Eind group differences on attentional performance

and self-concept, the sample size was relatively small and limited the ability to make conclusive

assessments of other questions, including the relationship between attention and self-concept and

the effects of age and gender. For example, one obj ective of the current study was to determine

whether there was a relationship between attention and self-concept in children with spina bifida.

Since the sample size was limited, the current study compared the relationship between attention

and self-concept within the entire sample. Thus, a lack of significant differences may be due to

the performance of healthy controls rather than children with spina bifida. Additionally, other

important relationships, such as the relationship between age and gender, could not be studied

with the current sample size. Similarly, it would be helpful to look at age effects more linearly

rather than separating groups based on an arbitrary cutoff, but the sample size did not provide

enough power to make these calculations.

Second, children with spina bifida are very diverse in their presentation, severity, and

complications. The current study did not separate children with spina bifida based on type of

spina bifida (myelomeningocele vs. meningocele), lesion level, infection rates, shunt revisions,

mobility, or other medical complications. In order to effectively address the hypothesis that

greater disease severity would lead to worse attentional performance and lower self-concept, it is









necessary to compare children within the Spina Bifida Group with different levels of severity.

However, the current sample size was too small for this calculation. One possible confound, the

comorbid ADHD diagnosis, was addressed by demonstrating that the spina bifida group

performed significantly lower than healthy controls on sustained attention and parent-reported

attention even after children with ADHD were removed from the Spina Bifida Group. Although

selective attention differences were no longer significant after removing children with ADHD

from the Spina Bifida Group, this was likely due to statistical limitations (i.e. sample size) since

the selective attention score in the Spina Bifida Group did not substantially change.

Unfortunately, other findings such as the effects of hydrocephalus were limited due to the small

sample sizes of the groups. Therefore, when applying these results to individual cases any

conclusions that are taken from this study must be considered within the context of the multiple

other variables that could impact cognition and self-concept.

Third, the current study did not thoroughly evaluate the presence of other comorbid

disorders that could potentially confound the results. Some concerns were addressed by

demonstrating that the groups did not differ on parent-reported behaviors, including

hyperactivity, conduct problems, or aggression. However, future research should more

thoroughly assess other cognitive and behavioral problems that could confound the results.

Finally, although the groups did not differ in age, grade, or gender ratio, the group

differences on the PPVT-II and the WIAT-II reading score are a significant limitation of the

current study. Although previous research suggests that verbal IQ is not related to attentional

tests, specifically the TEA-Ch, (Manly, Anderson, Robertson, Nimmo-Smith, 1999), it is ideal to

have two groups that are equal on all measures except for the test variables in order to reduce

confounding results. Similarly, the fact that the Spina Bifida group had a greater percentage of










children from different ethnicities could potentially confound the results and should be corrected

in future studies.









CHAPTER 5
FUTURE WORK

In order to further understand the nature of attentional deficits and self-concept

development in adolescents with spina bifida, future studies should focus on the relationship

between attention and other cognitive functions and self-concept development. Although the

current results did not Eind a relationship between performance on attentional measures and self-

concept, a number of relationships between parent-rated attention and self-concept suggest that

poorer attention leads to lower self-concept and is a promising result for future research. Other

than attentional performance per se, a number of approaches could examine the effects of

reduced awareness and self-concept. For example, future research should examine the

relationship between awareness, or metacognition, and self-concept, by studying the relationship

between estimates of performance on specific tasks and self-concept ratings by children with

spina bifida. Additionally, studies should compare self-reported self-concept, behavior, and

performance ratings between adolescents, parents, teachers, and peers to determine whether there

is greater discrepancy or variability in the self-reports of adolescents with spina bifida compared

to healthy controls. A large amount of discrepancy between self-reported abilities and ratings by

others would suggest that adolescents with spina bifida have a less accurate appraisal of

themselves. It is important to understand whether adolescents with spina bifida have inaccurate

appraisals of themselves in order to develop an effective treatment plan. Treatment goals may

include attempts to improve awareness of difficulties so that children with spina bifida seek

assistance when needed. For example, children could seek assistance in academics, self-care,

and other areas if they were able to recognize difficulties in these areas. It is important to also be

aware that some inaccurate estimations may not be helpful to address in treatment. For example,

overestimates in physical attributes may be protective and not helpful to address.









Future studies should also continue to explore factors that predict successful transition into

later adolescence and adulthood. It is interesting that even though the Spina Bifida group had

statistically lower self-concept and mood, their scores were generally in the lower end of the

average range and not clinically significant. This finding suggests a certain level of resiliency in

adolescents with spina bifida that should be examined in order to develop methods to further

improve self-concept. Longitudinal studies that follow children through adolescence and later

adulthood may be able to determine which factors predict successful or unsuccessful outcomes,

including protective and risk factors that could be addressed by parents and health care

professionals.

Additionally, more research is needed to determine the impact of self-concept on other

variables, such as mood, behavior problems, social relationships, and academic or occupational

success. Although it is logical that self-concept impacts these areas, little research has directly

studied the relationship between self-concept and other domains of functioning. Therefore, more

conclusive evidence is needed.

It is also important to note that children in the spina bifida group demonstrated a large

amount of variability in their reported self-concept. This is not surprising given the varied

presentation of this disease and suggests that future research should attempt to determine which

factors lead to higher or lower self-concept. Furthermore, it may be the case that children with

lower self-concept fit a different attentional profile than those with higher self-concept. In other

words, it is unclear whether the relationship between attention and self-concept is the same for

children with higher self-concept as it is for those with lower self-concept. The current study

was unable to explore these questions but future research should explore the possibility that

different cognitive and emotional/self-concept profiles exist within the spina bifida population.









Future research should expand the current research to other disorders that are known to

have impairments in cognition or low self-concept, such as children with ADHD, chronic

disorders, and mood disorders. If important relationships exist between attention and self-

concept, it is possible that these relationships apply more generally to other disorders.

Finally, future research should focus on developing effective treatment strategies to

improve self-concept. If attention is related to self-concept, one approach may include

improving attention with medication or behavior management techniques. Additionally,

treatment approaches may include positive social experiences, additional academic supports, and

medical management training to increase independence and confidence in these children. A

handful of studies have reported positive improvements in self-concept after interventions that

included lessons in social skills for children with assorted externalizing and internalizing

problems, (Haney & Durlak, 1998), and social empowerment treatment for preadolescent

children with ADHD (Frame, Kelly, & Bayley, 2003), and a group therapy program that focused

on communication and cooperation among healthy adolescents (Gaigordobil, 2004). These are

promising developments and future research should continue to focus on effective treatments that

help children with spina bifida successfully transition into adulthood.










LIST OF REFERENCES


Achenbach, T.M. & Edelbrock, C.S. (1983). Manual for the Child Behavior Checklist and
Revised Child Behavior Profile. Burlington, VT. Department of Psychiatry, University of
Vermont.

Antle, B.J. (2004). Factors associated with self-worth in young people with physical
disabilities. Health & Social Work, 29, 3, 167-175.

Appleton, P.L., Minchom, P.E., Ellis, N.C., Elliot, C.E., Boll, V., & Jones, P. (1994). The self-
concept of young people with spina bifida: a population-based study. Developmental
Medicine and Child Neurology, 36, 198-215.

Appleton, P.L., Ellis, N.C., Minchom, P.E., Lawson, V., Boll, V., & Jones, P. (1997).
Depressive symptoms and self-concept in young people with spina bifida. Journal of
Pediatric Psychology, 22, 5, 707-722.

Barber, S., Grubbs, L., & Cottrell, B. (2005). Self-perception in children with attention
deficit/hyperactivity disorder. Journal of Pediatric Nursing, 20, 4, 235-245.

Barkley, R.A. (1997). Behavioral inhibition, sustained attention, and executive functions:
constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65-94.

Barkovich, A.J. & Edwards, M. S. (1992). Applications of neuroimaging in hydrocephalus.
Pediatric Neurosurgery, 18, 2, 65-83.

Barnes, M., Dennis, M., & Hetherington, R. (2004). Reading and writing skills in young adults
with spina bifida and hydrocephalus. Journal of the International Neuropsychological
Society, 10, 655-663.

Barnes, M.A. & Dennis, M. (1998). Discourse after early-onset hydrocephalus: core deficits in
children of average intelligence. Brain and Language, 61, 309-334.

Baron, I.S., Fennell, E.B., & Voeller, K.K.S. (1995). Hydrocephalus and myelomenigocele. In:
Pediatric Neuropsychology in the M~edical Setting. Baron, I.S., Fennell, E.B., & Voeller,
K.K.S. (Eds.): Oxford University Press, New York. 221-240.

Blum, R.W., Resnick, M.D., Nelson, R., & St. Germaine, A. (1991). Family and peer issues
among adolescents with spina bifida and cerebral palsy. Pediatrics, 88, 280-285.

Bracken, B.A. (1992). Examiner 's manual for the M~ultidimensional Self-Concept Scale. Austin,
TX: Pro-Ed.

Brewer, V., Fletcher, J.M., & Hiscock, M. (2001) Attentional skills in children with
hydrocephalus versus children with attention deficit/hyperactivity disorder.
Neuropsychology, 15, 2, 185-98.










Buran C.F., Sawin K.J., Brei T.J., & Fastenau P.S. (2004). Adolescents with myelomeningocele:
activities, beliefs, expectations, and perceptions. Developnzental medicine & Child
Neurology, 46, 4, 244-52.

Burmeister, R., Hannay, H.J., Copeland, K., Fletcher, J.M., Boudousquie, A., & Dennis, M.
(2005). Attention problems and executive functions in children with spina bifida and
hydrocephalus. Child Neuropsychology, 11, 265-283.

Bussing, R., Zima, B.T., & Perwien, A.R. (2000). Self-esteem in special education children
with ADHD: relationship to disorder characteristics and medication use. Journal of the
American Academy of Child and Adolescent Psychiatry, 39, 10, 1260-1270.

Cauce, A.M. (1987). School and peer competence in early adolescence: a test of domain-specific
self-perceived competence. Developnzental Psychology, 23, 2, 287-291.

Cohen, R.A., Malloy, P.F., & Jenkins, M.A. (1998). Disorders of attention. In: Cllinical Neuropsychology: 4 Pocket
Handbook for assessment. Snyder, P.J., Nussbaum, P.D (Eds.). Washington, DC, US: American; Psychological
Association, 1998. 541-572.

Cohen, R.A. (1993). Toward an integrated neuropsychological framework of attention. The
Neuropsychology ofAttention. New York: Plenum Press, 459-481.

Cohen, J. (1977). Statistical power analysis for the behavioral sciences, revised edition.
Orlando: Academic Press, Inc.

Cole, D.A., Maxwell, S.E., Martin, J.M., Peeke, L.G., Seroczynski, A.D., Tram, J.M., Hoffman,
K.B., Ruiz, M.D., & Jacquez, F., Maschman. (2001). The development of multiple domains
of child and adolescent self-concept: a cohort sequential longitudinal design. Child
Development, 72, 6, 1723-1746.

Coopersmith, S. (1984). SEI: Self-esteent inventories. Palo Alto, California: Consulting
Psychologists Press.

Crain, M.R. & Bracken, B.A. (1994). Age, race and gender differences in child and adolescent
self-concept: evidence from a behavioral acquisition, context-dependent model. School
Psychology Review, 23, 3, 496-512.

Cull, C. & Wyke, M.A. (1984). Memory function of children with spina bifida and shunted
hydrocephalus. Developmental M~edicine & Child Neurology, 26, 1 77-1 83.

Davidovitch, M., Manning-Courtney, P., Hartmann, L.A., Watson, J., Lutkenhoff, M., &
Oppenheimer, S. The prevalence of attentional problems and the effect of methylphenidate
in children with myelomeningocele. Pediatric Rehabilitation, 3, 1, 29-35.

Del Bigio, M.R. (1993). Neuropathological changes caused by hydrocephalus. Acta
Neuropatologica, 85, 573-585.










Del Bigio, M.R., Wilson, M.J., & Enno, T. (2002). Chronic hydrocephalus in rats and humans:
white matter loss and behavior changes. Annals ofNeurology, 53, 337-346.

Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis Kaplan Executive Function System (D-
KEFS). The Psychological Corporation: San Antonio, TX.

Dennis M., Fitz, C.R., Netley, C.T., Sugar, J., Harwood-Nash, D.C., Hendrick, E.B., Hoffman,
H.J., & Humphreys, R.P. (1981). The intelligence of hydrocephalic children. Archives of
Neurology, 38, 10, 607-615.

Dennis, M., & Barnes, M. (2002). Math and numeracy in young adults with spina bifida and
hydrocephalus. Developmental Neuropsychology, 21, 2, 141-155.

Dennis, M.D., Fletcher, J.M., Rogers, T., Hetherington, R., & Francis, D.J. (2001). Object-based
and action-based visual perception in children with spina bifida and hydrocephalus. Journal
of the International Neuropsychological Society, 8, 95-106.

Dennis, M.D., Edelstein, K., Copeland, K., Frederick, J., Francis, D.J., Hetherington, R., Blaser,
S.E., Kramer, L.A., Drake, J.M., Brandt, M.E., & Fletcher, J.M. (2005a). Covert orienting
to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43, 976-
987.

Dennis, M., Edelstein, K., Frederick, J., Copeland, K., Francis, D., Blaser, S.E., Kramer, L.A.,
Drake, J.M., Brandt, M., Hetherington, R., & Fletcher, J.M. (2005b). Peripersonal spatial
attention in children with spina bifida: associations between horizontal and vertical line
bisection and congenital malformations of the corpus callosum, midbrain, and posterior
cortex. Neuropsychologia, 43, 14, 2000-2010.

Dennis, M., Jacennik, B., & Barnes, M.A. (1994). The content of narrative discourse in children
and adolescents after early-onset hydrocephalus and in normally developing age peers. Brain
and Language, 46, 129-165.

Dorner, S. (1976). Adolescents with spina bifida. How they see their situation. Archives of
Disabled Child, 51, 6, 439-444.

Donders, J., Rourke, B.P., & Canady, A.I. (1992). Emotional adjustment of children with
hydrocephalus and of their parents. Journal ofChildNeurology, 7, 375-380.

Dumas, D. & Pelletier, L. (1999). A study of self-perception in hyperactive children. The
American Journal of2aternal/Child Nursing, 24, 1, 12-19.

Dunn, L.M. & Dunn, L.M. (1997). Peabody Picture Vocabulary Test Third Edition.
Bloomington, MN: Pearson Assessments.

Edwards-Beckett, J. (1995). Parental expectations and child's self-concept in spina bifida.
Children 's Health Care, 24, 4, 257-267.











Elias, R.E. & Hobbs, N. (1998). Spina bifida: sorting out the complexities of care.
Contensporary Pediatrics, 15, 4, 156-171.

Feinberg, T.E. & Keenan, J.P. (2005). Where in the brain is the self! Consciousness and
Cognition, 14, 661-678.

Fletcher, JM., Dennis, M., & Northrup, H. (2000). Hydrocephalus. In, Pediatric
Neuropsychology: Research, Theory, and Practice. Yeates K.O., Ris, M.D., & Taylor, H.G.
(Eds.): The Guilford Press, New York. 25-46.

Fletcher, J.M., Bohan, T.P., Brandt, M.E., Brookshire, B.L., Beaver, S.R., Francis, D.J.,
Davidson, K.C., Thompson, N.M., & Miner, M.E. (1992). Cerebral white matter and
cognition in hydrocephalic children. Archives ofNeurology, 49, 8, 818-824.

Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., Davidson, K.C., Francis, D.J.,
Thompson, N.M., & Miner, M.E. (1995). Behavioral adjustment of children with
hydrocephalus: relationships with etiology, neurological, and family status. Journal of
Pediatric Psychology, 20, 1, 109-125.


Fletcher, J.M., Bohan, T.P., Brandt, M.E., Kramer, L.A., Brookshire, B.L., Thorstad, K.,
Davidson, K.C., Francis, D.J., Mccauley, S.R., & Baumgarner, J.E. (1996). Morphometric
evaluation of the hydrocephalic brain: relationships with cognitive development. Child's
Nervous System, 12, 192-199.


Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., Davidson, K.C., Francis, D.J.,
Levin, H.S., Brandt M.E., Kramer, L.A., & Morris, R. (1996). Attentional skills and
executive functions in children with early hydrocephalus. Developnzental Neuropsychology,
12, 1, 53-76

Frame, K., Kelly, L., & Bayley, E. (2003). Increasing perceptions of self-worth in
preadolescents diagnosed with ADHD. Journal of Nursing Scholarship, 35, 3, 225-229.

Friedrich, W.N., Lovejoy, M.C., Shaffer, J., & Shurtleff, D.B. (1991). Cognitive abilities and
achievement status of children with myelomeningocele: a contemporary sample. Journal of
Pediatric Psychology, 16, 4, 423-428.

Gaigordobil, M. (2004). Effects of a psychological intervention on factors of emotional
development during adolescence. European Journal of Psychological Assessment, 20, 1, 66-
80.

Goldman-Rakic, P.S. (1988). Topography of cognition: parallel distributed networks in primate
association cortex. Annual Review ofNeuroscience, 11, 137-156.










Guay, F., Marsh, H.W., & Boivin, M. (2003). Academic self-concept and academic
achievement: developmental perspectives on their causal ordering. Journal of Educational
Psychology, 95, 1, 124-136.

Gusnard, D.A. (2005). Being a self: considerations from functional imaging. Consciousness
and Cognition, 14, 679-697.

Gusnard, D.A., & Raichle, M.E. (2001). Searching for a baseline: functional imaging and the
resting human brain. National Review of Neuroscience, 2, 685-694.

Haney, P. & Durlak, J.A. (1998). Changing self-esteem in children and adolescents: a meta-
analytic review. Journal of Clinical Child Psychology, 27, 4, 423-433.

Hassler, R. (1978). Striatal control of locomotion, intentional actions and of integrating and
perceptive activity. Journal of the Neurological Sciences, 36, 2, 187-224.

Hetherington, R. & Dennis, M. (1999). Motor function profile in children with early onset
hydrocephalus. Developmental Neuropsychology, 15, 1, 25-51

Holler, K.A., Fennell, E.B., Crosson, B., Boggs, S.R., & Mickle, J.P. (1995).
Neuropsychological and adaptive functioning in younger versus older children shunted for
early hydrocephalus. ChildNeuropsychology, 1, 1, 63-73.

Holmbeck, G.N., Westhoven, V.C., Phillips, W.S., Bowers, R., Gruse, C., Nikolopoulos, T.,
Totura, C.M.W., & Davison, K. (2003). A multi-method, multi-informant, and
multidimensional perspective on psychosocial adjustment in preadolescents with spina bifida.
Journal of Consulting and Clinical Psychology, 71, 4, 782-796.

Holmbeck, G.N. & Faier-Routman, J. (1995). Spinal lesion level, shunt status, family
relationships, and psychosocial adjustment in children and adolescents with spina bifida
myelomeningocele. Journal of Pediatric Psychology, 20, 6, 817-832.

Hommeyer, J.S., Holmbeck, G.N., Wills, K.E., & Coers, S. (1999). Condition severity and
psychosocial functioning in pre-adolescents with spina bifida: disentangling proximal
functional status and distal adjustment outcomes. Journal of Pediatric Psychology, 24, 6,
499-509.

Horn, D.G., Lorch, E.P., & Culatta, B. (1985). Distractibility and vocabulary deficits in children
with spina bifida and hydrocephalus. Developmental M~edicine & Child Neurology, 2 7, 7 13 -
720.

Hoza, B., Gerdes, A.C., Hinshaw, S.P., Arnold, L.E., Pelham, W.E., Molina, B.S.G., Abikoff,
H.B., Epstein, J.N., Greenhill, L.L., Hechtman, L., Odbert, C., Swanson, J.M., & Wigal, T.
(2004). Self-perceptions of competence in children with ADHD and comparison children.
Journal of Consulting and Clinical Psychology, 72, 3, 3 82-3 91 .










Hoza, B., Pelham, W.E., Dobbs, J., Owens, J.S., & Pillow, D.R. (2002). Do boys with attention-
defieit/hyperactivity disorder have positive illusory self-concepts? Journal ofAbnormal
Psychology, 111, 2, 268-278.

Hoza, B., Pelham, W.E., Waschbusch, D.A., Kipp, H., & Owens, J.S. (2001). Academic task
persistence of normally achieving ADHD and control boys: performance, self-evaluations,
and attributions. Journal ofAbnormal Psychology, 69, 2, 271-283.

Hoza, B., Pelham, W.E., Milich, R., Pillow, D., & Mcbride, K. (1993). The self-perceptions and
attributions of attention deficit hyperactivity disordered and nonreferred boys. Journal of
Abnormal Child Psychology, 21, 3, 271-286.

Huber-Okrainec, J., Dennis, M., Brettschneider, J., & Spiegler, B.J. (2002). Neuromotor speech
deficits in children and adults with spina bifida and hydrocephalus. Brain and Language, 80,
592-602.

Iddon, J.L., Morgan, D.J.R., Loveday, C., Sahakian, B.J., & Pickard, J.D. (2004).
Neuropsychological profie of young adults with spina bifida with or without hydrocephalus.
Journal ofNeurology Neurosurgery and Psychiatry, 75, 1112-1118.

Jacobs, R., Northam, E., & Anderson, V. (2001). Cognitive outcome with myelomeningocele
and perinatal hydrocephalus: a longitudinal perspective. Journal ofDevelopmental &
Physical Disabilities, 13, 4, 389-405.

Johnson, S.C., Baxter, L.C., Wilder, L.S., Pipe, J.G., Heiserman, J.E., & Prigatano, G.P. (2002).
Neural correlates of self-reflection. Brain, 125, 1808-1814.

Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S., & Heatherton, T.F. (2002).
Finding the self! An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 5,
785-794.

Kjaer, T.W., Nowak, M., & Lou, H.C. (2002). Reflective self-awareness and conscious states:
PET evidence for a common midline parietofrontal core. Neuroimage, 17, 1080-1086.

Kjaer, T.W., & Lou, H.C. (2000). Interaction between precuneus and dorsolateral prefrontal
cortex may play a unitary role in consciousness. A principal component analysis of Rcbf.
Consciousness and Cognition, 9, 859.

Kolin, I.S., Scherzer, A.L, New, B., & Garfield, M. (1971). Studies of the school-age child with
meningomyelocele: social and emotional adaptation. Journal ofPediatrics, 78, 6, 1013-1019.

Kovacs, M. (1992). Children 's Depressionlnventory (CDI). Maria Kovacs and Multi-Health
Systems Inc.: North Tonawanda, NY










Krause, B.J., Horwitz, B., Taylor, J.G., Schmidt, D., Mottaghy, F.M., Herzog, H., Halsband, U.,
and Muller-Gartner, H.W. (1999). Network analysis in episodic encoding and retrieval of
word-pair associates: A PET study. European Journal ofNeuroscience, 11, 3293-3301.

Laberge, D. (1995). Computational and anatomical models of selective attention in object
identification. In: The Cognitive Neurosciences. Gazzaniga, M.S. (Ed.). The MIT Press: Cambridge, MA, US.
649-663.

Lachar, D., Gadowski, C.L., & Snyder, D.K. (1982). Broad-band dimensions of
psychopathology: Factor scales for the Personality Inventory for Children. Journal of
Consulting and Clinical Psychology, 50, 634-642.

Landau, S., & Moore, L.A. (1991). Social skill deficits in children with attention-deficit hyperactivity
disorder. SchoolPsychologyReview, 20, 2, 235-251.

Landau, S., Milich, R., Diener, M. (1998). Peer relations of children with attention-deficit hyperactivity
disorder. Reading & Writing Quarterly: Overcoming Learning Dit/kcu/rit\. 14, 1, 83-105.

Landry, S.H., Copeland, D., Lee, A.L., & Robinson, S. (1990). Goal-directed behavior in
children with spina bifida. Developmental and Behavioral Pediatrics, 11, 6, 306-3 11.

Landry, S.H., Robinson, S.S., Copeland, D., & Garner, P.W. (1993). Goal-directed behavior and
perception of self-competence in children with spina bifida. Journal ofPediatric
Psychology, 18, 3, 389-396.

Laroi, F., Fannemel, M., Ronneberg, U., Flekkoy, K., Opjordsmoen, S., Dullerud, R., &
Haakonsen, M. (2000). Unawareness of illness in chronic schizophrenia and its relationship
to structural brain measures and neuropsychological tests. Psychiatry Research, 100, 49-58.

Lavigne, J.V., Nolan, D., & Mclone, D.G. (1988). Temperament, coping, and psychological
adjustment in young children with myelomeningocele. Journal of Pediatric Psychology, 13,
3, 363-378.

Loss, N., Yeates, K.O., & Enrile, B.G. (1998). Attention in children with myelomeningocele.
Child Neuropsychology, 4, 1, 7-20.

Lollar, D.L. (1993). Educational issues among children with spina bifida. Spina Bifida
Spotlight: Spina Bifida Association of America, 1-4.

Loomis, J.W., Javornisky, J.G., Monahan, J.J., Burke, G., & Lindsay, A. (1997). Relations
between family environment and adjustment outcomes in young adults with spina bifida.
Developmental M~edicine and Child Neurology, 39, 9, 620-627.

Luck, S.J., Hillyard, S.A., Mangun, G.R., & Gasszniga, M.S. (1994). Independent attentional
scanning in the separated hemispheres of split-brain patients. Journal of Cognitive
Neuroscience, 6, 1, 84-91.










Luria, A.R. (1966). Human brain and psychological processes. New York: Harper and Row.

Macbriar, B.R. (1983). Self-concept of preadolescent and adolescent children with a
meningomyelocele. Issues in Comprehensive Pediatric Nursing, 6, 1, 1-11.

Mahone, E.M., Zabei, T.A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report
ratings of executive function in adolescents with myelomeningocele and hydrocephalus.
Child Neuropsychology, 8, 4, 25 8-270.

Mammarella, N., Cornoldi, C., & Donadello, E. (2003). Visual but not spatial working memory
deficit in children with spina bifida. Brain and Cognition, 53, 31 1-314.

Manly, T., Robertson, I.H., Anderson, V. & Nimmo-Smith, I. (1999). TEA-Ch: The Test of
Everyday Attention for Children manual. Bury St. Edmunds, England, Thames Valley Test
Company Limited.

Marsh, H.W. (1989). Age and sex effects in multiple dimensions of self-concept:
preadolescence to early adolescence. Journal of~ducationalPscyhology, 81, 3, 417-430.

Matthys, W., Cuperus, J.M., & Van Engeland, H. (1999). Defieient social problem-solving in
boys with ODD/CD, with ADHD, and with both disorders. Journal of the American Academy
of Child and Adolescent Psychiatry, 38, 3, 3 1 1-321.

McAndrew, I. (1979). Adolescents and young people with spina bifida. Developnzental medicine
and Child Neurology, 21, 5, 619-629.

Mendez, M.F., & Shapira, J.S. (2005). Loss of insight and functional neuroimaging in
frontotemporal dementia. The Journal ofNeuropsychiatry and Clinical Neurosciences, 1 7,
413-416.

Mesulam, M. (1985). Principles of behavioral neurology. Philadelphia: F.A. Davis.

Milich, R., Licht, B.G., Murphy, D.A., & Pelham, W.E. (1989). Attention-deficit hyperactivity
disordered boys' evaluations of and attributions for task performance on medication versus
placebo. Journal ofAbnornzal Psychology, 98, 3, 280-284.

Minchom, P.E., Ellis, N.C., Appleton, P.L., Lawson, V., Boll, V., Jones, P., & Elliot, C.E.
(1995). Impact of functional severity on self concept in young people with spina bifida.
Archives of Disease in Childhood, 73, 48-52.

Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., & Kellam, S.G. (1991). Analysis of
the elements of attention: a neuropsychological approach. Neuropsychology Review, 2, 2,
109-145.










Mirsky, A.F. (1989). The neuropsychology of attention. elements of a complex behavior. In:
Integrating theory and practice in clinical neuropsychology. Pereeman E, (Ed.). Hillsdale,
NJ: Erlbaum. 75-91.

Monsen, R.B. (1992). Autonomy, coping, and self-care agency in healthy adolescents and in
adolescents with spina bifida. Journal of Pediatric Nursing, 7, 1, 9-13.

Murch, R.L., & Cohen, L.H. (1989). Relationships among life stress, perceived family
environment, and the psychological distress of spina bifida adolescents. Journal of Pediatric
Psychology, 14, 2, 193-214.

Owens, J.A., & Hoza, B. (2003). The role of inattention and hyperactivity/impul sivity in the
positive illusory bias. Journal of Consulting and Clinical Psychology, 71. 4, 680-69 1.

Ohan, J.L. & Johnston, C. (2002). Are the performance overestimates given by boys with
ADHD self-protective? Journal of Clinical Child Psychology, 31, 2, 230-241.

Padua, L., Rendeli, C., Ausili, E., Aprile, I., Caliandro, P., Tonali, P., & Salvaggio, E. (2004).
Relationship b between the clini cal -neurophy si ologi c pattern, di ability, and quality of life in
adolescents with spina bifida. Journal ofChildNeurology, 19, 952-957.

Padua, L., Rendeli, C., Rabini, A., Girardi, E., Tonali, P., & Salvaggio, E. (2002). Health-related
quality of life and disability in young patients with spina bifida. Archives of Physical
Medicine and Rehabilitation, 83, 1384-1388.

Parsons, J.G. (1968). An investigation into the verbal facility of hydrocephalic children, with
special reference to vocabulary, morphology, and fluency. Developmental M'edicine and
Child Neurology, Suppl 16, 109.

Petersen, S.E., Robinson, D.L., & Morris, J.D. (1987). Contributions of the pulvinar to visual spatial
attention. Neuropsychologia, 25, 1-A, 97-105.

Piers, E.V. (1984). Piers-H~arris Children's Self-Concept Scale. Los Angeles,
CA: Western Psychological Services.

Posner, M.I., Petersen, S.E., Fox, P.T., & Raichle, M.E. (1988). Localization of cognitive
operations in the human brain. Science, 240, 4859, 1627-1631.

Reynolds, C.R. & Kamphaus, R.W. (1992). The Behavior Assessment System for Children,
Parent Rating Scales (BASC-PRS). Circle Pines, MN: American Guidance Service (AGS),
Inc.

Reynolds, C. R. & Kamphaus, R. W. (1992). The Behavior Assessment System for Children, Self-
Report ofPersonality (BASC-SRP). Circle Pines, MN: American Guidance Service (AGS),
Inc.










Reynolds, C.R. & Richmond, B.O. (1978) "What I think and feel: a revised measure of
children' s manifest anxiety", Journal ofAbnormal Psychology, 6, 2, 271-280.

Riddle, R., Morton, A., Sampson, J.D., Vachha, R., & Adams, R. (2005). Performance on the
NEPSY among children with spina bifida. Archives ofClinicalNeuropsychology, 20, 243-
248.

Rosnow, R.L. & Rosenthal, R. :L2 IIi. Effect sizes for experimenting psychologists. Canadian Joumnal of Experimental
Psychology, 57, 3, 221-237.

Sawin, K.J., Brei, T.J., Buran, C.F., & Fasteneau, P.S. (2002). Factors associated with quality of
life in adolescents with spina bifida. Journal of Holistic Nursing, 20, 3, 279-304.

Schwartz, E.R. (1974). Characteristics of speech and language development in the child with
myelomeningocele and hydrocephalus. Journal of Speech & Hearing Disorders, 39, 4, 465-468.

Schoenmakers, M.A.G.C., Uiterwaal, C.S.P.M., Gulmans, V.A.M., Gooskens, R.H.J.M., &
Helders, P.J.M. (2005). Determinants of functional independence and quality of life in
children with spina bifida. Clinical Rehabilita~tion, 19, 677-685.

Schmidt, D., Krause, B. J., Mottaghy, F.M., Halsband, U., Herzog, H., Tellmann, L., & Muller-
Gartner, H.W.(2002). Brain systems engaged in encoding and retrieval of word-pair
associates independent of their imagery content or presentation modalities.
Neuropsychologia, 20: 457-470.

Scott, M.A., Fletcher, J.M., Brookshire, B.L., Davidson, K.C., Landry, S.H., Bohan, T.C.,
Kramer, L.A., & Brandt, M.E. (1998). Memory functions in children with early
hydrocephalus. Neuropsychology, 12, 4, 578-589.

Semrud-Clikeman, M. & Schafer, V. :L2 III: Social and emotional competence in children with ADHD and/or
learning disabilities. Journal of Psychotherapy in hulependent Practice, 1, 4, 3-19.

Shaffer, J., Friedrich, W.N., Shurtleff, D.B., & Wolf, L. (1985). Cognitive and achievement
status of children with myelomeningocele. Journal of Pediatric Psychology, 10, 3, 325-336.

Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal
Society ofLond'on, Series B, 298, 199-209.

Shapka, J.D. & Keating, D.P. (2005). Structure and change in self-concept during adolescence.
Canad'ian Journal ofBehavioural Science, 37, 2, 83-96.

Shavelson, R.J., Hubner, J.J., & Stanton, G.C. (1976). Self-concept: validation of construct
interpretations. Review of Educational Research, 46, 407-441.

Shimamura, A.P. (1995). Memory and the prefrontal cortex. Annals of the New York Acad'emy of
Sciences, 769, 151-159.










Shirane, R., Sato, S., Sato, K., Kameyama, M., Ogawa, A., Yoshimoto, T., Hatazawa, J., & Ito,
M. (1992). Cerebral blood flow and oxygen metabolism in infants with hydrocephalus.
Child's Nervous System, 8, 118-123.

Snow, JH. (1999). Executive processes for children with spina bifida. Children 's Health Care,
28, 3, 241-253.

Stuss, D.T. & Benson, D.F. (1986). The f~ontallobes. New York: Raven Press.

Wheeler, M.A., Stuss, D.T., & Tulving, E. (1995). Towards a theory of episodic memory. The
frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331-354.

Tabassam, W. & Grainger, J. (2002). Self-concept, attributional style and self-efficacy beliefs
of students with learning disabilities with and without attention deficit hyperactivity disorder.
Learning Disabiity/ Quarterly, 25, 141-151.

Tew, B. & Laurence, K.M. (1979). Differences in reading achievement between spina bifida
children attending normal schools and those attending special schools. Child: care, health,
anddevelopnzent, 4, 5, 317-326.

Tew, B. & Laurence, K.M. (1975). The effects of hydrocephalus on intelligence, visual
perception and school attainment. Developmental M~edicine and Child Neurology, 1 7, Suppl
35, 129-134.

The Psychological Corporation (200 1). Wechsler hIdividual Achievement Test- Second Edition
(WZA T-II): San Antonio, TX.

Van Zomeren, A.H. & Brouwer, W.H. (1994). Clinical neuropsychology of attention. Oxford University Press: New
York, NY, US.

Varni, J.W. & Wallander, J.L. (1988). Pediatric chronic disabilities: hemophilia and spina bifida
as examples. In: Handbook of Pediatric Psychology. Routh, D.K. (Ed.). Guilford Press:
New York, NY US.

Verhoef, M., Post, M.W.M., Van Asbeck, F.W.A., Gooskens, R.H.J.M., & Prevo, A.J.H. (2004).
Secondary impairments in young adults with spina bifida. Developnzental medicine & Child
Neurology, 46, 420-427.

Wallander, J.L. & Varni, J.W. (1998). Effects of pediatric chronic physical disorders on child
and family adjustment. Journal of Child Psychology and Psychiatry, 39, 1, 29-46.

Wallander, J.L., Feldman, W.S., & Varni, J.W. (1989). Physical status and psychosocial
adjustment in children with spina bifida. Journal of Pediatric Psychology, 14, 1, 89-102.

Warschausky, S., Argento, A.G., Hurvitz, E., & Berg, M. (2003). Neuropsychological status and
social problem solving in children with congenital or acquired brain dysfunction.
Rehabilitation Psychology, 48, 4, 250-254.











Wigfield, A,. Eccles, J.S., Iver, D.M, Reuman, D.A., & Midgley, C. (1991). Transitions during
early adolescence: changes in children's domain-specific self-perceptions and general self-
esteem across the transition to junior high school. Developmental Psychology, 2 7, 4, 552-
565.

Willis, K.E. (1993). Neuropsychological functioning in children with spina bifida and/or
hydrocephalus. Journal of Clinical Child Psychology, 22, 2, 247-265.

Willis, K.E., Holmbeck, G.N., Dillon, K., & Mclone, D.G. (1990). Intelligence and achievement
in children with myelomeningocele. Journal of Pediatric Psychology, 15, 2, 161-176.

Wilson, J.W. & Marcotte, A.C. (1996). Psychosocial adjustment and education outcome in
adolescents with a childhood diagnosis of attention deficit disorder. Journal of the American
Academy of Child and Adolescent Psychiatry, 35, 5, 579-587.

Wolman, C., & Basco, D.E. (1994). Factors influencing self-esteem and self-consciousness in
adolescents with spina bifida. Journal of Adolescent Health, 15, 7, 543-548.

Yeates, K.O., Enrile, B.G., Loss, N., & Blumenstein, E. (1995). Verbal learning and memory in
children with myelomeningocele. Journal of Pediatric Psychology, 20, 6, 801-815.

Yeates, K.O., Loss, N., Colvin, A.N., & Enrile, B.G. (2003). Do children with
myelomeningocele and hydrocephalus display nonverbal learning disabilities? An empirical
approach to classification. Journal of the International Neuropsychological Society, 9, 653-
662.

Young, H.F., Nulsen, F.E., Weiss, M.H., & Thomas, P. (1973). The relationship of intelligence
and cerebral mantle in treated infantile hydrocephalus. Pediatrics, 52, 1, 38-44.

Zurmohle, U., Homann, T., Schroeter, C., Rothgerber, H., Hommel, G., & Ermert, J.A. (2001).
Psychosocial adjustment of children with spina bifida. Journal ofChildNeurology, 13, 64-
70.









BIOGRAPHICAL SKETCH

Andrew S. Preston was raised in Lockport, NY by his parents, Tarrell and Susan Preston.

He is the oldest of three children, one brother and one sister. He graduated from Lockport High

School in 1995. He then went to Davidson College in North Carolina, where he earned a B.A. in

Psychology with a concentration in Neuroscience. In 2001 he enrolled in the University of

Florida's doctoral program in Clinical and Health Psychology. His primary area of study is

neuropsychology with a focus on pediatric populations. Following completion of graduate

studies at the University of Florida, he completed a predoctoral internship in the Clinical

Neuropsychology Track at the Brown University School of Medicine. He is currently pursuing a

postdoctoral fellowship in clinical neuropsychology with a continued focus on pediatric

populations.





PAGE 1

1 ATTENTION AND SELF-CONCEPT IN ADOLESCENTS WITH SPINA BIFIDA By ANDREW S. PRESTON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007

PAGE 2

2 2007 Andrew S. Preston

PAGE 3

3 To the families and childre n affected by spina bifida.

PAGE 4

4 ACKNOWLEDGEMENTS I would like to thank a ll of the people who have contributed to this project. First and foremost, I would like to thank my wife, daught er, and parents for their love and support throughout my graduate training. Dr. Eileen Fennell deserves my sincerest gratitude for mentoring my clinical neuropsycho logy graduate training as well as guidance in professional life and on this project. Dr. Shelley Heaton deserves my gratitude for her tutelage throughout my graduate career as well as assistance with resour ces and guidance during th is project. I would like to thank Rosellen Dedlow for her dedication to this project and willin gness to help me every time I faced a new challenge in recruitment. Dr Siraj Siddiqui deserves my thanks for his assistance with this project. I would like to thank my other committee members, Drs. Jim Johnson, Regina Bussing, and Fonda Eyler, for their assistance throughout the many phases of this project. Finally, I would lik e to thank my fellow lab mates and research assistants for their assistance and dedication to this project.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGEMENTS.............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 ABSTRACT....................................................................................................................... ..............8 CHAPTER 1 INTRODUCTION..................................................................................................................10 General Background............................................................................................................. ..10 Attention: Definitions and Neuroanatomical Substrates.......................................................11 Definitions of Self-Concept and Relationship with Attention................................................12 Spina Bifida................................................................................................................... .........16 Physical Complications in Spina Bifida..........................................................................16 Neuroanatomical Sequelae in Spina Bifida.....................................................................18 Intellectual and achievement performance......................................................................20 Visual-motor and visual-c onstructional abilities.............................................................21 Language....................................................................................................................... ..21 Memory and learning......................................................................................................22 Attention and executive functions in SB/H.....................................................................23 Self-Concept and SB/H...................................................................................................24 The Current Study.............................................................................................................. .....27 Hypotheses..................................................................................................................... .........28 Specific Aim 1.................................................................................................................28 Specific Aim 2.................................................................................................................29 Specific Aim 3.................................................................................................................29 2 MATERIALS AND METHODS...........................................................................................30 Participants................................................................................................................... ..........30 Measures....................................................................................................................... ..........31 Demographic Information...............................................................................................31 Screening Measures.........................................................................................................31 Peabody Picture Vocabulary TestThird Edition (PPVT-III).................................31 Wechsler Individual Achievement Te st, Second Edition (WIAT-II): Word Reading subtest.....................................................................................................32 Evaluation of Attenti on: Parent-report............................................................................33 Behavior Assessment System for Childr en Parent Rating Scales: 12 or 6 11 (BASC: PRS-A) or (BASC: PRS-C)...............................................................33 Neuropsychological Measures of Attention....................................................................34 Test of Everyday Attention for Children (TEA-Ch)................................................34 Delis-Kaplan Executive Function Syst em (D-KEFS): Trailmaking Test................35 Self-Concept................................................................................................................... .36

PAGE 6

6 Multi-Dimensional Self-Concept Scale (MSCS).....................................................36 Mood........................................................................................................................... .....37 Revised Childrens Manifest Anxiety Scale (RCMAS)...........................................37 Childrens Depression Inventory (CDI)...................................................................37 Behavior Assessment System for Chil dren Self-Report Scales: 8 or 12 18 (BASC: SRP-C) or (BASC: SRP-A)...............................................................38 Procedure...................................................................................................................... ..........39 3 RESULTS........................................................................................................................ .......42 Data Analysis.................................................................................................................. ........42 Demographics................................................................................................................... ......42 Statistical Analyses........................................................................................................... ......44 Hypothesis 1................................................................................................................... .44 Comparison of attentional performance without controls for motor demands........44 Comparison of attentional performance with controls for motor demands.............45 Hypothesis 2................................................................................................................... .46 Hypothesis 3................................................................................................................... .47 Additional Calculations a nd Exploratory Analyses........................................................47 Differences in mood.................................................................................................47 Differences in Behavior Problems...........................................................................48 Age differences........................................................................................................49 Gender differences...................................................................................................50 Effect of hydrocephalus...........................................................................................50 Effect of ADHD.......................................................................................................51 4 DISCUSSION..................................................................................................................... ....62 Overview....................................................................................................................... ..........62 Attentional Differences Between Groups...............................................................................63 Differences in Self-Concept...................................................................................................66 Relationship Between Attention and Self-Concept................................................................68 Additional Results............................................................................................................. .....70 Limitations.................................................................................................................... ..........72 5 FUTURE WORK....................................................................................................................75 LIST OF REFERENCES............................................................................................................. ..78 BIOGRAPHICAL SKETCH.........................................................................................................90

PAGE 7

7 LIST OF TABLES Table page 3-1 Demographic Characteristics of SB and Healthy Control groups.....................................53 3-2 Variables Used in Primary Analyses.................................................................................54 3-3 Mean Group Scores on Attentional Meas ures with no Motor Control Correction............55 3-4 Mean Group Scores on Attentional M easures with Motor Control Corrections...............56 3-5 Mean Group Scores on Self-Concept Domains.................................................................57 3-6 Correlations between Test s of Attention and Self-Concept for the Total Sample (Controls and Spina Bifida)...............................................................................................58 3-7 Group Mean Scores on Mood Symptom Scales................................................................59 3-8 Age Differences on Self-Concept domains within Spina Bifida group.............................60 3-9 Gender Differences on Self-Concept domains within Spina Bifida group........................61

PAGE 8

8 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ATTENTION AND SELF-CONCEPT IN ADOLESCENTS WITH SPINA BIFIDA By ANDREW S. PRESTON August, 2007 Chair: Eileen B. Fennell Major: Psychology Spina bifida is a neural tube defect that occurs in approxi mately 1 to 2 of every 2,000 live births in the United States a nd causes numerous physical and c ognitive deficits. Due to improved medical treatments and high rates of l ong-term survival, health care providers are learning more about issues of adolescence and later adulthoo d. The current study compared young adolescents with spina bifida to healthy controls on measures of attention and selfconcept. The current study is unique because it examined attentional performance while controlling for motor demands. Additionally, no st udies to date have assessed the relationship between cognitive deficits and self-concept in this population. This study hypothesized that children with spina bifida would perform signi ficantly lower on tests of selective attention, attentional control, sustained attention, and pare nt-reported attention, even after controlling for motor demands. A second hypothesis was that ch ildren with spina bifida would have less positive self-concept on academic perf ormance, social relationships, and physical appearance. In addition, it was hypothesized that th ere would be significant rela tionships between performance on attentional tests and self-concept. Results demonstrated that afte r controlling for motor demands, adolescents with spina bifida perfor med worse than healthy controls on tests of

PAGE 9

9 sustained and selective attenti on, but not attentional switching. Additionally, parents rated adolescents with spina bifida as having more attentional problems th an healthy controls. Adolescents with spina bifida reported signifi cantly lower social, academic, and physical selfconcepts. However, the hypothesized potential role of attentional proble ms in report of selfconcept was not supported. These findings suppor t prior research sugges ting that adolescents with spina bifida have greater attentional defici ts and lower self-concept. Future studies should continue to explore the potential relationshi p between attention and self-concept, including exploration of related construc ts, such as self-awareness.

PAGE 10

10 CHAPTER 1 INTRODUCTION General Background Numerous studies have demonstrated a variety of physical and cognitive deficits related to spina bifida and comorbid hydrocephalus, incl uding weakness or paraly sis of the legs, poor bladder/bowel control, poor fi ne and gross motor skills, poor language content, visual-motor deficits, and visual-spatial de ficits (Hetherington and Dennis, 1999; Barnes and Dennis, 1998; Fletcher, Brookshire et al., 1995). Additionally, studies indicate that children with spina bifida and hydrocephalus have learning defi cits, encoding and retrieval defi cits, and deficits in attention and executive functions (Fletcher, Brookshire et al., 1995; Jacobs, 2001; Scott, 1998; Yeates 1995). However, many previous studies of at tention are confounded by motor demands within the tests. In addition, many studies suggest that self-c oncept and mood are poor in children with spina bifida, but these studies have been incons istent and have not attempted to analyze the impact of cognitive functioning on self-concept. Since attention and executive functions are likely to impact academic, social, and other areas of an adolescents life, it is critical to take these abilities into consideration when researching self -concept in adolescents with spina bifida. My study addressed two limitations in previous literature. To address the confounds of motor skills on atte ntional tasks used in prior studies, tests were used that either had limited motor demands or were able to factor out this motor component for a purer assessment of attention. It was hypothe sized that adolescents w ith spina bifida would perform more poorly on cognitive tests of atte ntion and executive functioning than healthy adolescents, even after factoring out the motor component. It was predicted that adolescents with spina bifida would perfor m more poorly than healthy cont rols on measures of selective attention, sustained attention, a nd attentional control/switching, even when motor demands are

PAGE 11

11 minimized or factored out of the measure. Consistent with some prior research, it was hypothesized that adolescents with spina bifida would have lower self-concepts in the academic, social, and physical domains. It was also predicted that increas es in attentional performance would correlate with more positive self-concept in areas that benefit from attentional abilities, specifically academic, social, and competence do mains. The competing hypothesis was that poorer cognitive performance w ould predict more positive self-c oncept more broadly. Although this seems counter-intuitive, some studies have suggested that children with more severe disabilities experience less stress and are better adjusted than children with mild or moderate disabilities. A discussion of neuroanatomical, cognitive, and physical sequelae of spina bifida follows. A discussion of attention, self-con cept, and the relationship between cognitive functions and self-conc ept is included. Attention: Definitions a nd Neuroanatomical Substrates Although there are numerous models of attent ion, the current study used Mirskys (1989, 1991) definition of attention as a construct with three components: sustained attention, selective attention, and shifting attention/attentional cont rol. Sustained atten tion is the ability to concentrate or stay on-task, specifically when a ta sk is long and/or provid es little stimulation. Selective attention is defined as focusing attentio n on a target in the presence of distracters. Finally, shifting attention/ attenti onal control is the ability to adap t to a changing response set. There are numerous studies attempting to loca lize these various attentional components. Although most studies demonstrate significant in terconnections between areas responsible for these components of attention, some specific br ain regions have been implicated. Sustained attention is theorized to be mediated by the prefrontal cortex (Cohe n, Malloy, & Jenkins, 1999; Cohen, 1993; Mirsky, 1989; Goldman-Rakic, 1988; Lu ria, 1966). This theory is supported by both imaging studies and studies of patients with frontal lobe lesions. The caudate also appears

PAGE 12

12 to play a role as a gateway between the thal amus and the cortex (van Zomeren and Brouwer, 1994; Mirsky, 1989; Hassler, 1978). Most studies of selective atte ntion rely on visual stimuli, which are processed primarily by the posterior parietal cortex (Cohen and ODonnell, 1993; Mirsky, 1989; Mesulam, 1985). In addition, the pulvinar nucleus of the thalamus a ppears to play a role in ignoring irrelevant information (LaBerge, 1995; Posner, Petersen, F ox, & Raichle, 1988), the superior colliculus is responsible for eye movement while scanning (P osner et al., 1988), and th e posterior temporal cortex integrates sensory inform ation and attends to specific fe atures of stimuli (Mirsky, 1989). Finally, split-brain experiments s uggest that the corpus callosum integrates information between hemispheres during selective attention task s (Luck, Hillyard, Mangun, and Gazzinaga, 1994). Shifting attention has been studi ed less than sustained or sele ctive attention, but appears to overlap structurally with both sustained and sele ctive attention, involving the prefrontal cortex, posterior parietal cortex, pulvi nar, and superior colliculus (C ohen et al., 1999; Petersen, Fox, Mintur, Posner, and Raichle, 1989; Posner et al., 1988). Definitions of Self-Concept and Relationship with Attention As with the construct of a ttention, there are numerous m odels of self-concept. The proposed study will use a model proposed by Shav elson (1976), which defined self-concept on seven features. These features were used to design the Multi-dimensional Self-Concept Scale (MSCS) (Bracken, 1992) and are as follows: Organization self-concept is developed in an organized way through evaluation of themselves through past behaviors and experiences. Multi-faceted nature self -concept is not unidimensional although there may be overlap between contexts. Hierarchical dimensionality a generalized self-concept exists at the center of the multiple dimensions, with other concepts equal to one another.

PAGE 13

13 Stability as a learned behavioral respons e pattern, self-concept is stable for welllearned behaviors. It changes only gra dually as it accumulates new information from the environment and roles ch ange within the environment. Developmental characteristics self-con cept becomes increasingly differentiated with age and experiences in different domains. Evaluative underpinnings Individuals au tomatically evaluate their actions and outcomes in the moment based on personal perspective and others perspectives. Evaluations are based on st andards that change as ch ildren become older. Differentiality self-concept is related to other domains but is also distinct. In short, self-concept develops as an individual evaluates: a) how they behaved in a certain situation and b) how others responded to that behavior. If the beha vior and feedback is consistent over time, the individual internalizes these behaviors as part of their self. As children develop, self-concept changes. Specifically, there is greater differentiation of self-concept with age (Crain & Bracken, 1994), and these different dom ains appear to be influenced by the environment (Cauce, 1987; Gu ay, Marsh, & Boivin, 2003). There is some disagreement whether differentiation continue s through adolescence (Crain & Bracken, 1994) or reaches adult levels by preadolescence (Marsh, 1 989). A number of studies have examined changes in self-concept as children progress fr om preadolescence through late adolescence. Results to date are somewhat inconsistent acro ss studies. Within academic and social domains, some research has found that child ren experience increa ses in self-concept as they progress from grades 3 (Cole et al., 2001), followed by a drop in the transition to middle school (Cole et al., 2001; Wigfield, Eccles, Iver, Reum an, & Midgley, 1991), and then an increase to previous levels and stabilization in grades 8 (Cole, 2001). However, other studies report that children experience higher levels of self-concept in 7th grade followed by a drop in grades 8 and an increase in grades 10 and into young adult hood (Marsh, 1989). Ot her studies have found increases in some areas with age, such as social skills, and decr eases in others, such as school

PAGE 14

14 competence (Shapka & Keating, 20 05). Still others found no rela tionship between age and selfconcept as children progress from grades 5 (Crain & Bracken, 1994). The development of self-concept, as describe d above, involves ones behavior in various environments and feedback from that envir onment, which modifies those behaviors and gradually establishes how someone perceives them selves in that environment (Bracken, 1992). As such, it requires attention to ones behavior, the sp ecific environment, and the responses their behavior evokes in other people. It is expected that deficits in attention would a ffect self-concept development. In fact, Barkleys (1992) m odel of ADHD proposes that poor attentional functioning is related to poor so cial perspective taking, response to feedback, self-questioning, and reflection, all of which could affect self-concept. This theo ry is supported by a number of studies. Although some studies have found lowe r self-concept in children with ADHD or hyperactive symptoms (Barber, Grubbs, & Co ttrell, 2005; Dumas & Pe lletier, 1999), other studies have shown that children with ADHD have comparable self -concepts to healthy controls, not only in scholastic competen ce but also in general self-worth (Wilson & Marcotte, 1996; Bussing, Zima, & Perwien, 2000; Hoza, Pelham, Milich, Pillow, & McBride, 1993). Other research has shown th at children with ADHD overestim ate their self -perceptions compared to healthy controls relative to parent and teacher ratings in multiple domains, most in domains of greatest deficit (H oza et al.2004, Hoza, Pelham, Dobbs, Owens, & Pillow, 2002). Additionally, a study by Owens & Hoza (2003) found that more severe ADHDhyperactive/impulsive symptoms, but not inattenti on, were related to greater overestimates in scholastic competence. These defici ts appear to be related to poor ability to evaluate their own performance, as demonstrated by the fact that children with ADHD were less accurate in judging their performance on specific tasks in a st udy by Hoza, Pelham, Waschbusch, Kipp, and Owens

PAGE 15

15 (2001). A study by Milich, Licht, Murphy, & Pelham (1989) found that childrens estimates of performance on a continuous performance te st (CPT) improved while taking stimulant medication compared to estimates on placebo, suggesting that inaccu rate estimates of performance are due to poor attention. However, it is also possible that these overestimates serve as a self-protective f actor. Ohan & Johnston (2002) found that estimates of social performance in boys with ADHD decreased with positive feedback. Academic self-concept improved with positive feedback, however. Importantly, difficulties with self-concept may result in poor levels of social competence due to poor attention to ot hers feedback. Common social difficulties in ADHD include difficulty ke eping friends, annoying a nd intrusive behavior, and difficulty encoding and responding to social cu es (Semrud-Clikeman et al., 2000; Matthys et al., 1999; Landau et al., 1997; Landau et al., 1991). Neurological studies have provi ded further evidence that atte ntional systems are involved in the development of self-concep t. Loss of insight and sense of self have been linked to the extent of frontal lobe damage in patients with frontal-temporal dementia (Mendez & Shapira, 2002), schizophrenia (Laroi et al., 2002), and Capgras Syndrome (Feinberg & Keenan, 2005). Imaging studies in healthy adults have also demons trated that the frontal cortex is active during self-referential thinking (Kelly et al., 2002) and support the th eory that frontal lobes are important for self-awareness, self-monitoring, an d insight (Shallice, 1982; Shimamura, 1995; & Stuss & Benson, 1986). Additionally, a number of imag ing studies suggest that a sense of self is subserved by a network between prefrontal and parietal regions (Gusna rd, 2005). For example, PET and fMRI studies have shown functional conn ectivity between prefront al and/or anterior cingulate with parietal and/or posterior cingulate regions duri ng retrieval of episodic memory (Schmidt et al., 2002; Krause et al., 1999), re sting state consciousness (Gusnard & Raichle,

PAGE 16

16 2001; Kjaer & Lou, 2000), and during reflection of own personality traits (Johnson et al., 2002; Kjaer, Nowak, & Lou, 2001). Spina Bifida Spina bifida is a neural tube defect that affects approximately 1 to 2 of every 2,000 live births in the United Stated (Var ni & Wallander, 1988). Spina bifida occurs early in the gestation process when the neural tube fails to close properly, leaving an ope ning in the spinal column that is covered by a fluid filled sac. As a result, sp ina bifida can occur at any level of the spinal column, with higher lesions typically resulting in more severe impairment (Elias & Hobbs, 1998). Forms of spina bifida include myelomeni ngocele (meninges and spin al cord collapse into fluid-filled sac), meningocele (onl y meninges collapse into sac), or spina bifida occulta (neither meninges nor cord collapse into sac). Add itionally, approximately 80% of children with spina bifida experience hydroce phalus due to malformation of th e cerebellar vermis, aqueductal stenosis, or herniation of the cerebellar vermis through the foramen magnum. These malformations block the 4th ventricle from properly draining cerebrospinal flui d, thus causing build-up of the fluid and pressure to the brai n. Hydrocephalus can be progressive or become arrested and is typically treated with a ventricular shunt early in infancy to drain the excess fluid. If left untreated, hydrocephalus can cause permanent damage, including irreversible mental retardation or death. Although shunts are high ly successful in reducing the severity of hydrocephalus, children with hydrocephalus may still experience physical and cognitive impairments after the shunt is implanted. Physical Complications in Spina Bifida The physical presentation of spin a bifida is diverse due to the various subtypes (occulta, meningocele, myelomeningocele) and levels of the lesion on the spinal cord. In general, occulta is the least severe, often with no symptoms, and myelomeningocele is the most severe. Lesions

PAGE 17

17 higher in the spinal column (cervi cal, thoracic, lumbar, or sacral ) typically affect spinal cord functions below the level of the lesion. Additionally, hydrocephalus, shunts, and other malformations may increase the number of complications. Although the specific profile of children with spina bifida varies, one common physical impairment is leg weakness or paralysis, of ten requiring leg braces or a wheelchair (Elias & Hobbs, 1998). Other lower motor impairments in clude club feet, hip dislocation, poor posture due to spine curvature, muscle contracture, lo ss of sensation, and other gait abnormalities (Elias & Hobbs, 1998; Baron, Fennell, & Voeller, 199 5; Hetherington & Dennis, 1999). The upper limbs may also be impaired due to upper level lesions and/or hydrocepha lus. Hetherington and Dennis (1999) found children with hydrocephalus to have poorer persistent motor control, dexterity, and strength in thei r upper limbs compared to healt hy controls. Eye movements may also be impaired due to pressure on the cranial ne rves and other abnormalities, resulting in ocular palsies, astigmatism, and visual perceptual deficits (Lollar, 1993). In addition to motor impairments, children w ith spina bifida experience numerous physical impairments due to reduced innervation of th e lower body. For exampl e, many children with spina bifida experience difficulty emptying th e bowel and bladder. This may result in incontinence, constipation, urinary tract infection, and possibly renal damage if infections are untreated (Elias & Hobbs, 1998). Children may al so experience skin in fections due to poor sensation or injury to a limb with diminished sensation. Finally, numerous complications can contribute to further physical impairments. Shunt malfunction, for example, can cause vomiting, irritability, headache, and sunsetting of the eyes (Elias & Hobbs, 1998), as well as in creases in infection and cogni tive problems. The ArnoldChiari II malformation, sometimes associated with spina bifida, occurs when the skull fuses

PAGE 18

18 prematurely and pushes the brainstem and cer ebellum through the foramen magnum, causing swallowing difficulties, sleep apnea, and upper extremity weakness (Elias & Hobbs, 1998). Neuroanatomical Sequelae in Spina Bifida Due to the high comorbidity rate between spina bifida and hydrocephalus, it is difficult to differentiate their unique effects. Hydrocephalus affects brain development due to enlargement of the lateral ventricles which increases pre ssure on neural tissue, particularly in the periventricular cortex (inc luding the temporal lobes) and white ma tter proximal to the ventricles. This pressure can result in hypoxia effects on wh ite matter pathways, altered architecture and brain structure, disrupted mye lination, thinner cortex, and ma ldevelopment of specific brain structures (Barkovich, 1992; De l Bigio, 1993; Dennis et al., 1981; Fletcher, 2000). For example, the corpus callosum may be abnormal, st retched, or torn. In some cases, the corpus callosum may be missing, most of ten in the splenium or rost rum (Barkovich, 1992). Other white matter, including other periventricular pathways optic pathways, subcor tical white matter, and fimbria/fornix projections to the hippocampus may also be damaged by stretching or hypoxic ischemic injuries. In addition to white matter changes, hydrocepha lus can cause changes to brain structures. Brain mass is often reduced and cortical mantle may be thinned in al l areas of the cortex, although posterior regions are affected mo re (Fletcher, 2000; Del Bigio, 1993). The hippocampus may also undergo vacuolizati on and degeneration (Del Bigio, 1993). Subcortically, the diencephalon is often comp ressed and the membrane of the caudate and thalamus may be disrupted. Finally, the architect ure of the brain may be disrupted by microgyri and polygyri that are comorbid developmental abnormalities (Fletcher, 2000; Del Bigio, 1993). Blood flow and transportation of neurotransmitte rs and waste are also disrupted as a result of hydrocephalus. Blood vessels are reduced in the frontal lobe s and capillaries are reduced in

PAGE 19

19 the corpus callosum (Del Bigio, 1993). A study by Shirane et al.(1992) found that the frontal, parietal, and visual associati on areas surrounding the periventricu lar areas were hypoperfused in 4 infants with hydrocephalus. Additionally, the ex tracelluar spaces in th e periventricular region may be blocked due to edema, preventing the normal transfer of neurotransmitters and waste (Del Bigio, 1993). Although it is difficult to se parate spina bifida and hydro cephalus, there are certain characteristics that are more prominent in spina bifida with hydrocephalu s than other forms of hydrocephalus, including cerebe llar deformation, cerebellar t onsil herniation, elongation of the pons and medulla, stretching of the cerebral aqueduct and 4th ventricle, and fu sing or stretching of the inferior and superior colliculi due to beak ing of the tectum (Fletcher 2000). Fortunately, shunting procedures may reduce or reverse some of the damage discussed above. Shunting procedures done soon after birth can reduce ventricle size and edema and may allow for remyelinization and return to normal for arteries. A number of studies have demonstrated th e link between neuroanatomical damage and cognitive functioning. Fletch er et al.(1992) analyzed MR I images in children with hydrocephalus and found a correlation between a larger right lateral ventricle and poorer performance on nonverbal tasks. A smaller co rpus callosum also correlated with poorer nonverbal performance. In a second study, Fletcher (1996) reported that th e size of the corpus callosum correlated with both nonverbal performan ce and motor performance. Del Bigio (2002) reported that larger ventricles in rats were also associated with worse motor performance. Cognitive Profiles in Spina Bifida Children with spina bifida and hydroce phalus (SB/H) may exhibit a number of neurobehavioral problems, many of which are improved but remain at least somewhat impaired

PAGE 20

20 after shunting. These include poor fine and gros s motor skills, poor langu age content, visualmotor deficits and visual-spatial deficits, learning deficits, and encoding and retrieval deficits (Hetherington and Dennis, 1999; Barnes and Dennis, 1998; Fletcher, Brookshi re et al., 1995). Intellectual and achievement performance Early research on SB/H suggested that children with cortical mantle less than 2.8 cm thick were very likely to have an IQ below 80 (Young, 1973). As shunts and shunt placement improved (including placing shunts in the right side rather than the left), the number of shunt failures and revisions decreased, resulting in improved prognosis for cognitive functioning. Some research suggests that children with spin a bifida and hydrocephalus may demonstrate IQs in the low average to average range (Willis, 1993). Still, most research indicates that children with SB/H have statistically lower IQ scores than healthy controls (Appleton, 1994; Brewer, 2001; Willis, 1990). Many of these studies support the theory that children with SB/H have greater impairment in performance IQ (PIQ) with relatively intact verbal IQ (VIQ) (Riddle, 2005; Fletcher, 1992; Shaffer, 1985), even on task s without motor demands (Fletcher, 1992). This discrepancy was explored further by Yeates (2003), who reported that 50% of children with spina bifida in his study sample met criteria for nonverbal lear ning disability. However, many studies have not found a discrepa ncy between VIQ and PIQ, but report that both are lower than the comparison group or below normative means (Jacobs, 2001; Holler et al., 1995; Friedrich, 1991; Wills, 1990). Studies of achievement generally suggest that children with SB /H perform poorly on arithmetic or mathematical tasks (Dennis & Barnes, 2002; Jacobs, 2001; Friedrich, 1991; Wills, 1990; Shaffer, 1985). Performance on reading and sp elling has been less consistent, with some studies finding deficits in read ing but not spelling (Jacobs, 2 001), others finding deficits in

PAGE 21

21 spelling but not reading (Shaffer, 1985), and still others finding deficits in both areas (Tew & Laurence, 1975). Visual-motor and visual-c onstructional abilities As discussed previously, it is we ll-established that children with SB/H have motor deficits, including eye movements. Studies consistently report that children with SB/H perform poorly on visual-motor or visual-constructi onal tasks such as visual pursu it, drawing, and mazes (Dennis, 2002; Holler et al., 1995; Friedrich, 1991; Wills, 1990) On motor-free tasks, findings suggest preservation of basic visual perception on simple tasks such as face recognition and simple visual discrimination (Fletcher, Brookshire, et al ., 1995; Dennis 2002) but impairments on more complex tasks such as figure-ground distincti on, spatial memory, form consistency, and line orientation (Dennis, 2002; Flet cher, Brookshire et al., 1995). Furthermore, research demonstrates that the degree of visual-perceptual difficulties is related to the size of the right lateral ventricle (Fletcher, Bohan, et al., 1992). Language Although basic language skills such as grammar and comprehension in children with SB/H are typically intact (Horn et al., 1985; Schwartz, 1974; Parsons, 1968) a number of recent studies suggest that children with SB/H experience a nu mber of language-related impairments including hyperverbal behavior (Dennis & Jacennik, 1994; Wills, 1993; Tew & Laurence, 1979), which consists of irrelevant information or less c ohesive and less meaningful content (Barnes & Dennis, 1998; Dennis & Jacennik, 1994; Wills, 1993) inappropriate verbalization or social disinhibition (Wills, 1993), poor comprehension for figures of speech, inferences, or other more complex language (Barnes & Dennis, 1998; Wills, 1993), and poor descriptions or explanations of stories (Barnes & Dennis, 1998; Wills, 1993). Fu rthermore, children with SB/H have slower response speed on timed word finding or word fl uency tasks (Barnes, 2004; Huber-Okrainec,

PAGE 22

22 2002; Jacobs, 2001;Holler et al., 1995; Flet cher, 1995; Wills, 1993). Additionally, HuberOkrainec et al.(2002) found that children with SB/H had numerous motor speech deficits, including speech rate impairments, dysarthria for prosody and articulation, and dysfluency in speech, suggesting that language proble ms are compounded by motor deficits. Memory and learning Only a small number of studies have addresse d memory functions in children with SB/H. The studies that have been conducted can be di vided by the material (v erbal or nonverbal) and the process involved (learning, encoding/recogniti on, retrieval/recall). To date, findings suggest that children with SB/H l earn verbal information at a slow er rate and recall less verbal information after a delay than healthy controls (Jac obs, 2001; Scott, 1998; Yeates 1995; Cull & Wyke, 1984), although this deficit may only occur when children must apply their own structure or semantic strategy to the information. For example, Cull & Wyke (1984) found deficits on memory for word lists but not story recall. A dditionally, some studies suggest that encoding or recognition is intact for verbal information (Yeates, 1995), whereas ot hers suggest it is impaired (Scott, 1998). With visual material, studies ar e also less consistent. Scott (1998) found differences on nonverbal memory for both recall and recognition, but Cull & Wyke (1984) did not find these differences after matching for IQ. Jacobs (2001) reported that the SB/H group approached significant differences from healthy controls on visual learning tasks. Finally, a study by Mammarella (2003) found that childrens working memory was not worse on memory for spatial positions of blocks and matrix designs, but was worse for memory of objects. Mammarella (2003) suggested that childrens me mory was better in active processing tasks. However, this finding is not s upported by other studies that have found intact memory for objects (Cull & Wyke, 1984).

PAGE 23

23 Attention and executive functions in SB/H To date, a number of studies have suggested that children with SB/H have deficits in attentional tasks. For example, children with SB/H have been found to participate in less goaldirected behavior than hea lthy children (Landry, 1990), to pe rform worse on vocabulary tasks when distracting stimuli are present (Horn, 1985) and to be verbose (Barnes & Dennis, 1998; Baron & Fennell, 1995). Parent re port studies show that over 30% of parents endorse high levels of attentional problems for their children with SB/H, mostly rela ted to inattention (Burmeister, 2005; Davidovitch, 1999). Furthermore, parent ratings on the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated great er concerns regardi ng executive functions compared to controls (Burmeister, 2005), including the ability to initiate, plan, and monitor their behavior (Mahone, 2002). Importantly, these proble ms were reported despite adequate (average to low average) verbal in tellectual functioning. A number of studies have assessed attention with neuropsychological tests. The most consistent result has been a defi cit in selective attention, which was found on tasks such as the Trailmaking test parts A and B (Snow, 1999; Loss, 1998), Coding on the WISC-III (Loss, 1998), the Stroop test (Fletcher et al., 1996), and visual orienting (B rewer et al., 2001). These findings are consistent with neuroanatomi cal studies that indicate damage to posterior cortex, and the superior colliculus which are implicated in selec tive attention. In further support of a selective attention deficit, Dennis et al.( 2005a) demonstrated that children w ith spina bifida were slower orienting to a visual stimulus after a cue, which was associat ed with structural abnormalities (tectal beaking). In a second study by Dennis (2 005b), children with spina bifida demonstrated neglect of the right side which corresponded to co rpus callosum damage and superior visual field deficits in line bisection tasks which corresponded to right post erior and midbrain damage.

PAGE 24

24 Whereas selective attention deficits are well supported, findings are less consistent for other areas of attention. Dennis et al. (2005a) found that children w ith spina bifida were slower to disengage from an invalid cue, suggesting that attentional switching or shift was impaired. Poor performance on the Trails B could also be interpreted as difficu lty with attentional switching (Loss, 1998; Snow, 1999). Studies by S now (1999), Loss et al. (1998), and Fletcher (1996) also found that children with spina bifida were worse than healthy controls on a test of attentional switching, the Wisconsin Card Sorting Test (WCS T). Additionally, Loss (1998) and Brewer (2001) found that children with spina bifi da were worse on a test of sustained attention, the Continuous Performance Test (CPT). However, a study by Lollar (1990) did not find significant differences between children with hydrocephalus (many w ith spina bifida) and normal controls on a CPT, suggesting that childre n with spina bifida do not have deficits in sustained attention. One limitation of the current literature is that many tests of attention have a motor component such as reaction time, which could co nfound the results in this population since it is clear that children with spina bifida have deficits in fine and gross motor skills as well visual motor speed. Fletcher et al. ( 1996) suggested that the selective attention deficits the authors found were largely due to slower motor performa nce. Additionally, many of the measures used to assess attention are often different and may be used to assess broa der functions such as problem-solving, as is the case with the WCST. Clearly, there are important confounds and a lack of consensus in the selec tion and interpretation of measures used to assess attentional function in children with SB/H. Self-Concept and SB/H To date, a number of studies have examined mood and self-concept in children with SB/H, with varying results. Although a number of studies suggest that children with SB/H have poorer

PAGE 25

25 self-concept and higher rates of depression (Appleton, 1997; Dorner, 1976), others report no differences in self-concept or mood compared to healthy same-age peers (Holmbeck, 2003; Edwards-Beckett, 1995; Landry, 1993). Additionall y, many studies report that children with SB/H have positive self-concept rela ted to general topics such as global self-worth or hope for the future, but report greater concerns for speci fic issues (Buran, 2004; Appleton, 1994; Fletcher 1995). Some common issues that are concerning to children and adolescents with spina bifida include: physical appearance, physic al competence, social accepta nce, academic performance, job competence, and romantic relationships. Social support appears to be the most signifi cant protective factor fo r positive self-concept in children with SB/H. Parents often rate psychosocial functioning as a significant concern (Hommeyer, 1999; Donders, 1992; Wallander, 1989; La vigne, 1988). In child or adolescent selfreport studies, support by peers and family, age a ppropriate treatment by pa rents, and low family conflict are positive predictors of positive se lf-concept (Antle, 2004; Wolman, 1994; Murch, 1989; Kolin, 1971). Furthermore, children w ith SB/H whose families encourage more independence and age appropriate social activities are more likely to have more positive longterm outcomes regarding occupations, community involvement, and soci al activities in young adulthood (Loomis, 1997). Unfort unately, studies have consiste ntly shown that children and adolescents with SB/H are more dependent on pa rents, have fewer household responsibilities, are more immature socially, and have fewer or more limited social interactions with peers (Buran, 2004; Holmbeck, 2003; Buran, 2001; Monsen, 1992; Blum, 1991). With the exception of one study that suggested children had more distress with greater independe nce, it seems that age appropriate permissiveness by pare nts and encouragement for social interaction are protective factors for self-concept in children with SB/H.

PAGE 26

26 Interestingly, several parent and self-report studies have not found a consistent relationship between severity of physical impairment and pa rental stress or self-e steem in children or adolescents with spina bifida (Antle, 2004; Sawin, Brei, Bura n, & Fasteneau, 2002; Wallander, 1998; Landry, 1993; Donders, 1992; McAndrew, 1979; Kolin, 1971). In fact, some studies found higher ratings of self-con cept with greater phys ical impairment and greater stress and mood disorders with less severe disability (Padua et al., 2004; Padua et al., 2002; Minchom et al., 1995; Holmbeck et al., 1995). Of course, some st udies have demonstrated a connection between poorer self-rated mood or psychosocial maladjus tment and increased severity (Zurmhole, 2001; Hommeyer, 1999; MacBriar, 1983), as well as poor er Quality of Life ratings with increased severity (Shoenmakers, Uiterwaal, Gulmans, Goos kens, & Helders, 2005), but severity is clearly not a consistent predictor of self-concept or distress. Based on these findings, it is unclear what role attention plays in the development of selfconcept in children with spina bifida. It is po ssible that poor attention could disrupt numerous aspects of life, including social, academic, and occupational situations, thereby resulting in lowered self-concept due to poor outcomes in these areas. In a study by Warschusky (2003), poor social problem-solving was correlated with poor performa nce on the WCST, a test that requires attentional switching a nd monitoring responses. Howeve r, as discussed previously, attentional deficits may reduce insight or aw areness into negative feedback, thereby not decreasing self-concept. If indi viduals are unable to accurately judge their abilities or social feedback from others in a given arena, they may al so not be negatively affected by this feedback. Given the fact that children with spina bifida ha ve been shown to have poor attention and given the neurological impact of SB/H on the parietal lobes and blood s upply to the frontal lobes, it is

PAGE 27

27 possible that children with SB/H experience sim ilar deficits in self-concept as children with ADHD and other neurological di sorders described above. The Current Study The current study will compare young adolescents with spina bifida to healthy controls on measures of attention an d self-concept. This study was uni que in a number of ways. First, it assessed attention and executive functioning with the Tests of Everyday Attention in Children (TEA-Ch) and the Trailmaking Test from th e Delis-Kaplan Executive Function System (DKEFS). These measures are unique because they control for motor demands that may confound performance. Additionally, the subtests of the TEA-Ch assess each domain of attention (sustained, selective, atten tional switching) individually, minimizing confounds or overlap between these domains. The current study assess ed selective attenti on with the TEA-Ch Sky Search. Sustained attention was measured with th e TEA-Ch Score! subtest. Finally, attentional control/switching was measured with the TEA-Ch Opposite Worlds vs. Same Worlds score and the Number-Letter Switching vs. Motor score on the D-KEFS Trailmaking test. In order to further strengthen the design, parent-rating scales of attention were included from the Behavior Assessment System for Children (BASC) to measure attention more generally. Second, the studies that have examined self-c oncept in children with spina bifida have reported inconsistent results, and few studies ha ve specifically compared young adolescents with spina bifida to healthy controls. The current study attempted to resolve some questions about these children by using a norma l control comparison group, an age range that focuses on young adolescents (ages 10 ) whose self-concept is likely more developed than that of younger children, and by using the Multi-Dimensional Self-Concept Scale (MSCS), a measure that provides a total score and six domains of self-c oncept, including: Social, Competence, Affect, Academic, Family, and Physical domains. Base d on previous research, it was expected that

PAGE 28

28 there would be differences on social, academic and physical domains. Previous research suggests that family self-concept will not sign ificantly differ between groups. It was not expected that there would be differences on th e more general competence scale, since children with spina bifida do not report lower self-concep t on more general topics. The expected results for the affect domain was unclear; whereas some re search suggests that affect is worse, other studies do not. Third, although studies have indi vidually examined attention in children with SB/H and self-concept in children with SB /H, past research has not anal yzed the impact attention has on self-concept. It is lik ely that attention has a significant general impact on self-concept and mood, specifically related to those dom ains that would benefit from good attentional skills, including self-concept for academic performance, social skills, and general competence. This study attempted to provide a better understanding about how attention affects se lf-concept as well as inform treatment recommendations to improve attention and self-concept in children and adolescents with spina bifida. Hypotheses Specific Aim 1 Compare performance on attentional tasks a nd parent rating scales of attention among children with spina bifida and healthy controls. It was predicted that children with spina bifida would perform worse than contro ls on tasks of selective atte ntion, sustained attention, and attentional switching. It was also predicted that parent-reported general attention would be lower in children with spina bifida compared to healthy controls.

PAGE 29

29 Specific Aim 2 Compare self-concept in children with spina bifi da to healthy controls It was predicted that self-concept would be lower in children with spina bifida than healthy controls, specifically in academic, social, and physical domains. Specific Aim 3 Determine relationship between self-concept and attention in children with spina bifida and healthy controls. It was predicted that poor attentional performance would be correlated with lower self-concept in children with spina bifi da, because the attentional deficits are likely to negatively impact areas of life that influence se lf-concept, specifically social relationships, academic performance, and competence.

PAGE 30

30 CHAPTER 2 MATERIALS AND METHODS Participants The final sample of particip ants included 13 children dia gnosed with any spina bifida myelomeningocele or meningocele and 17 healthy c ontrols. Only children between the ages of 10 were asked to participate. The upper age limit was chosen based on the available normative data for the proposed neuropsychological measures. Children were included in the spina bifida gr oup if they had been previously diagnosed with spina bifida myelomeningocele or spina bifi da meningocele, as defined by the Spina Bifida Association of America (SBAA) and diagnosed by a physician. Healthy controls were required to have no significant medical or psychiatric diagnosis. All pa rticipants were required to be between the ages of 10. Participants with a verbal IQ less than 80 on the Peabody Picture Vocabulary Test, Third Edition (PPVT-III) were excluded from the study in order to ensure that children did not meet criteria for mental retardation, a potential c onfound. Additionally, in or der to ensure that participants could read and co mprehend self-report questionnaire items on the self-concept and mood measures, children with a st andard score below 70 for their age (.0 Standard Deviations below the average range) as demonstrated on th e Wechsler Individual Achievement Test-II: Word Reading subtest were excluded from the stu dy. Children were also excluded if they were diagnosed with comorbid medical or psychiat ric conditions that confounded the results, as determined by study investigators. Participants in the Spina Bifida group were not excluded due to comorbid learning disabilities, or attention de ficit hyperactivity disorder Participants with these diagnoses were not excluded because the difficulties in atten tion and learning were diagnosed after the diagnosis of spina bifida and may have resulted from the neurological effects

PAGE 31

31 of spina bifida. Within the current group, 3 participants had been diagnosed with ADHD (2 Predominantly Inattentive, 1 Combined-Type) and 2 were dia gnosed with an unspecified Learning Disability, 1 of whom also had ADHD. Measures Demographic Information All parents of participants completed a s hort demographic questionnaire (see Appendix A). The questionnaire provided basi c demographic data such as ag e, sex, and race/ethnicity of the child. Information was also collected on me dical/psychological histor y, including previous diagnoses, hospitalizations, surgeries, etc. Additionally, educational history was collected, including current grade, whether the child repeated or skipped gr ades, difficulties in school, and whether the child was in mainstr eam or special education classes. Finally, information about activities and social relati onships was collected. For children with spina bifida, information wa s collected from parents and health care providers regarding level and type of spina bi fida, presence of hydrocephalus, and additional medical conditions secondary to spina bifida or hydrocephalus. Additionally, parents were asked about the childs mobility, incont inence, self-care, and other c oncerns related to independence and quality of life. Screening Measures Peabody Picture Vocabulary TestThird Edition (PPVT-III) The PPVT-III is a screener for verbal ability c onsisting of 204 test items divided into 17 sets of 12 that are progressively more difficult. The child is pr esented with four black-and-white drawings and is asked to choose which picture best represents th e meaning of a word read aloud by the examiner. The test produces age-based norms for children and adults age 2.5. Scores are converted into standard scores with a mean of 100 and a standard deviation of 15. As

PAGE 32

32 indicated, children with standard scores below 80 were excluded from the study due to concerns about developmental delays or comorbid mental retardation. The PPVT-III was standardized on 2,725 examinees aged 2-1/2 through 90 years, tested at 268 sites nationwide. The PPVT-III has excellent te st-retest reliability (coefficients range from .91.94). Internal reliability is also good, with alpha coefficients ranging from .92.98. Convergent validity correlations with other measures of oral language range from .63.83. Correlations with measures of cognitive ability, such as the WISC-III, are also acceptable. The correlations between the WISC -III verbal IQ and PPVT-III is .91, with WISC-III performance IQ is .82, and with WISC-III full scale IQ is .82. Wechsler Individual Achievement Test, Second Edition (WIAT-II): Word Reading subtest This is a screening test for reading level. Ch ildren are instructed to read a list of words of increasing difficulty until a baseline and ceiling are established. This test produces age and grade-based norms for ages 4-adult. Raw scores are converted into standard scores with a mean of 100 and a standard deviation of 15. As i ndicated, children with standard scores below 70 were excluded from the study due to concerns about their ability to complete self-report questionnaires of self-concept and mood. The WIAT-II age-based standardization sample included 2,950 participants ranging from age 4 years, 0 months to 19 years, 11 months. The sample was divided into two groups: ages 4 14:11 and 15:11. There were 2,400 participan ts in the 4:11 group and 550 in the 15 19:11 group. 1,806 of the participants were female, 1,477 were male. The number of participants from different ra cial and ethnic groups was based on racial/e thnic group proportions of students in the U.S. Test-retest reliabil ity is high, with coeffici ents ranging from .97.99. Word Reading correlates highly with Basic Read ing scores on the WIAT-II (coefficient = .88), the WRAT-3 (coefficient = .73), and other reading measures. A dditionally, the WIAT-II

PAGE 33

33 correlates with teacher grades in reading at a .40 level and children with learning disabilities in reading perform significantly worse than matc hed controls, making it an acceptable screening tool (The Psychological Corporation, 2001). Evaluation of Atte ntion: Parent-report Behavior Assessment System for Children Parent Rating Scales: 12 or 6 (BASC: PRS-A) or (BASC: PRS-C) This is a broadband, multi-dimensional parent -report measure of child behaviors on 130 items using a Likert scale. The measure was created to aid in clinical diag nosis of disorders that are first apparent in childhood a nd adolescence. Parents rate th eir childs behavior on four composite scores: Externalizing Problems (s cales: Aggression, Hyperactivity, Conduct), Internalizing Problems (scales: Anxiety, Depres sion, Somatization), School Problems (scales: Attention, Learning Problems), and Adaptive Skills (scales: Adaptability, Leadership, Social Skills, Study Skills). Composite scores and scores for individual scales are available. This measure is standardized by gender. Scores are converted into st andard scores with a mean of 100 and standard deviation of 15. The BASC: PRS was standardized in three age groups: 4, 6, and 12. The 6 age group included 2,084 childre n, whereas the 12-18 age group included 1,090 children. Within the 6 age group, 51% were male and 49% were female. Within the 12 age group, 42% were male and 58% were female. Substan tial numbers of minority children were included at all age levels, and samples of children were taken throughout 157 sites in the U.S. and Canada. Internal reliability of composites ranged from .85 .93. Intern al reliability for individual scales ranged from .58.89 across scales. The attention s cales internal reliability ranged from .73.83. Test-retest reliability of composites ranged from .71.94. The attention scale specifically ranged from .78.92. Interrater reliability for compos ites ranged from .53 .76, with the attention scale

PAGE 34

34 ranging from .56.73. Test items we re created with the help of teachers, parents, psychologists, and other references, and scales were based on factor analys es. Additionally, BASC scales correlate highly with scores on other test m easures such as the Achenbach Child Behavior Checklist (Achenbach & Edelbroc k, 1983), and the Personality I nventory for ChildrenRevised (PIC-R) (Lachar, 1982). Neuropsychological Measures of Attention Test of Everyday Attention for Children (TEA-Ch) The TEA-Ch is a test of three domains of atte ntion: Selective atte ntion (finding a target among distracters), sustained attent ion (maintaining attention over time), and attentional control/ switching (shifting atte ntion as needed). Of the 9 subtests available, three subtests were selected for inclusion in evaluation of atte ntion for study subjects. Sky Search is a selective attention task that requires the child to find ta rget spaceships among distracters. Children are presented with a practice sheet and then given a large sheet with ta rget spaceships and distracters. Children are scored for accuracy and speed, and there is a moto r control task that consists of a sheet of only target ships. This allows the examiner to acc ount for confounds of motor speed. Score! is a sustained attention task in which children must count the number of sounds they hear on a tape recording over time. Children are scored on accu racy in this task. Opposite Worlds is an attentional switching/control task in which child ren must say when they see a and vice versa. This tests the ability to inhibit the prepotent response and switch to the correct response. Children are scored on speed for this test. Raw scores are converted to scaled scores, with a mean of 10 and standa rd deviation of 3. The TEA-Ch is standardized for ages 6. The normative sample consisted of 293 Australian children between the ages of 6. Test-retest correlation coefficients were .75.80 for Sky Search variables, .76 for Score!, and .85 for Opposite Worlds. Validity of the separate

PAGE 35

35 attentional domains was supported with a structur al equation model of the normative sample and demonstrated that Sky Search, Score!, and Opposite Worlds fit into distinct domains with other TEA-Ch tests of selective atte ntion, sustained attention, and attentional control/switching, respectively. Convergent validity with other measures of attention, such as the Stroop, Trailmaking Test, and Matching Familiar Figure s Test was high. Additionally, the TEA-Ch subtests used in this study were not significantly related to performance on the WISC-III measures of Vocabulary, Similarities, Block Design, or Object Assembly, suggesting that performance on the TEA-Ch requires attentional sy stems distinct from intellectual ability. Furthermore, TEA-Ch subtests did not show strong relationships to the WRAT Reading subtest. There were no significant rela tionships between WRAT readi ng and TEA-Ch Sky Search and Opposite Worlds. A small but significant relationship betw een WRAT reading and TEA-Ch Score! performance was found at the .18 leve l. Additionally, children with documented attentional problems, such as ADHD, have b een found to perform more poorly on TEA-Ch subtests than healthy contro ls (Manly, Anderson, Robertson, Nimmo-Smith, 1999) and clinical controls (Heaton et. al, 2001). Delis-Kaplan Executive Function Syst em (D-KEFS): Trailmaking Test This test is a variation of the traditional tr ailmaking test designed to evaluate executive functions and processing speed. In each test, ch ildren are instructed to quickly draw a line from one dot to another in a specified order. The DKEFS Trailmaking test in cludes five conditions: line cancellation (draw a line through a target number), letter sequencing (connect letters in alphabetical order), number seque ncing (connect numbers in or der), letter-number sequencing (switch between numbers and letters), and a motor task (connect along a dotte d line). The test is designed so that letter-number sequencing, which requires cognitive flexibility, can be compared to other tasks of basic motor speed or visual s canning. This allows the examiner to account for

PAGE 36

36 possible motor or visual scanning confounds. Th e test is standardized for ages 8. Raw scores are converted to scaled scores with a mean of 10 and a standard deviation of 3. The D-KEFS was standardized with 1750 child ren and adults, including 75 10-year-olds, 75 11-year-olds, 100 children for each year between 12, and 175 ch ildren between 16. The male to female ratio is roughly 50 and pr oportions of the sample of racial/ethnic groups were stratified to approximate the 2000 U.S. Census population estimates. Additionally, the proportion of the sample is approximately 25 % per region of the U.S., including the North Central, North East, South, and West. The Tr ailmaking Test specifically has good internal consistency (between .57.79 across ages 10). Te st-retest reliability varies from .20 for Condition 4 (Switching) to .82 for Condition 5 (Motor speed). Self-Concept Multi-Dimensional Self-Concept Scale (MSCS) This is a child self-report of self-concept. Self-concept is measured on six 25-item scales representing differing aspects of self-concept: physical appearance /ability, social relationships, family relationships, academic performance, affe ct, and general competence. A total score is also derived. Children answer questions on a Likert 4-point scale. This scale is standardized for ages 9. The MSCS scales were standardized on 2,501 children between grades 5 and ages 9 19, although the majority of child ren were from ages 10. The test was administered at 17 locations in the South, West, No rth Central, and Northeastern United States. The sample was selected to represent the demographic charac teristics of the U.S. population based on the 1990 U.S. Census. The internal consistency of the MS CS as high, with coefficients ranging from .97 .99 for the total score and .85.97 for individual scal es. Test-retest reliabi lity after four weeks was also high, with coefficients of .90 fo r the total score and ranging from .73.81 for the

PAGE 37

37 individual scales. Content validi ty was demonstrated by review of literature of past self-concept scales. Concurrent validity was good between the MSCS and Piers-Harris Childrens SelfConcept Scale (Piers, 1984) as well as the C oopersmith Self-Esteem Inventory (Coopersmith, 1984), with coefficients ranging from .44.85 between theoretically simila r scales. Additionally, the test authors report that ch ildren with previously documen ted low self-esteem have been shown to score lower on the MSCS than children without such a designation. Mood Revised Childrens Manifest Anxiety Scale (RCMAS) This is a self-report instrument designed to measure anxiety in children aged 6. It consists of 37 yes/no questions. The scales include a Total Anxiety scale, a Lie Scale, Physiological Anxiety, Worry-Oversensitivity, and Social Concerns/Concentration. Children read each statement and circle yes or no depending on how well the statement describes them. This measure was standardized on 4,972 child ren between the ages of 6. The sample including 44% white males, 44% white females, 5.8% black males, and 6% black females. The sample was collected over 13 states in the U. S. in all major geographic regions. Internal consistency for each age level ranged from .42.87. Test-retest reliability for Total Anxiety was .68 for children tested 9 months apart. Add itionally, the Total Anxiety score was found to correlate with other measures of trait anxiety at a .67 level. Childrens Depression Inventory (CDI) The CDI is a self-report measure of depr essive symptoms for children age 7. It includes 27 items in which the child reads three stat ements and selects the statement that is most representative of their thoughts or behaviors in th e past two weeks. It includes a Total Score and

PAGE 38

38 five subscales: Negative Mood, Interpersonal Problems, Ineffectiveness, Anhedonia, and Negative Self-Esteem. The CDI was standardized with 1266 student s from Florida grades 2. The sample included 592 males and 674 females. 77% of the sample was white and 23% were from other minority groups. Internal consistency demonstr ated that coefficients ranged from .71.89, and test-retest reliability estimates were acceptable over time. Behavior Assessment System for Children Self-Report Scales: 8 or 12 (BASC: SRP-C) or (BASC: SRP-A) In order to assess mood diffi culties, participants comple ted the Behavior Assessment System for Children Self-Report of Persona lity: 12 or 8 (BASC: SRP-A) or (BASC: SRP-C) (Reynolds and Kamphaus, 1992). This is a broadband, multi-dimensional self-report measure of child behaviors using a True/False re sponse choice. The measure was created to aid in clinical diagnosis of diso rders that are first apparent in childhood and adolescence. Participants ratings of behavior result in three composite scores: Clinical Maladjustment (scales: Anxiety, Atypicality, Locus of Control, Social Stress, and Somatization), School Maladjustment (scales: Attitude to School, Attitude to T eachers, and Sensation Seeking), and Personal Adjustment (scales: Relations with Parents, In terpersonal Relations, Self-Esteem, and SelfReliance). Additionally, there is an Other Prob lems composite that consists of Depression and Sense of Inadequacy scales. Composite scores and scores for individual scales are available. This measure is standardized by gender. Scores are converted into standard scores with a mean of 100 and standard deviation of 15. The BASC: SRP was standardized in two age groups: 8 and 12. The 8 age group included 2,728 children, whereas the 12 age group included 2,393 children. Within the 8 age group, 50% were male and 50% were female. Within the 12 age group, 46%

PAGE 39

39 were male and 54% were female. Substantial nu mbers of minority children were included at all age levels, and samples of children were taken throughout 157 sites in the U.S. and Canada. Internal reliability of composites ranged from high .80 to mid .90s. Internal reliability for individual scales ranged from the .70s to the .80s across scales. Test-r etest reliability of composites and individual scales ranged from the .70s to the mid .80s. Test items were created with the help of teachers, parents, psychologists, and other references, and scales were based on factor analyses. Additionally, BASC scales correl ate highly with scores on other test measures such as the Achenbach Child Behavior Checkli st-Youth Self-Report (Achenbach & Edelbrock, 1983). Procedure Children with spina bifida were recruited in one of three ways: during a routine visit to the spina bifida clinic at the Shands Medical Plaza in Gainesville, Florida, via phone contact by their treating nurse, Rosellen Dedlow, or via flyers sent to Spina Bifi da Association in Jacksonville, Florida, the Spina Bifida Association in Orla ndo, Florida, and Shriners Hospital in Tampa, Florida. After a patient expr essed interest to their physician or responded to an investigation flyer, parents of potential partic ipants who met inclusion/exclusi on criteria were consented and participants were assented. The initial spina bifida sample included 19 pa rticipants. Approximately 18 children were approached by their treating physic ian at the spina bifida clinic and 13 children agreed to participate. Approximately 6 children were contacted via a phone cal l by Rosellen Dedlow and 3 agreed to participate. Finally, 3 children agreed to participate in re sponse to flyers. It is unclear how many families were provided flyers since these were provided by the directors of the associations, although it is estimated that the par ticipation rate from flyers was low, probably below 5-10%.

PAGE 40

40 Of the 19 participants recruited for the spina bifida group, 13 were included in the final analyses. Two participants with spina bifida in itially consented to the study but then declined the study when asked to schedule a date to comple te the testing. Two pa rticipants with spina bifida were removed from the final group because they did not meet the cut-off score inclusion criteria on the WIAT-II word reading component of the screening. One participant was removed because they did not meet the cut-off score in clusion criteria on the PPVT-II. One participant was removed when the study design was adjusted from ages 9 to 10 to more accurately reflect the young adolescent age group. Our healthy control group consis ted of 17 participants. Sixteen of the healthy controls were recruited via flyers posted at Sha nds Hospital in Gainesville, Florid a, local day care centers, and local pediatric clinics, although it is unclear how many people saw the flyers. One healthy control was identified and recruited because they were the sibling of a participant with spina bifida. None of the healthy controls were removed from the final sample. Participants in both groups completed a brief neuropsychological test battery that lasted approximately 20 minutes and consisted of th e Peabody Picture Vocabulary TestThird Edition (PPVT-III) (Dunn & Dunn, 1997) and the Wechsler Individual Achievement Test, Second Edition (WIAT-II) Word Reading subtest (The Psychological Corporation, 2001). Participants who met performance requirements on the screener completed the study test battery either during their regular visit to th e Spina Bifida Clinic or at a late r date in the UF/Shands Psychology Clinic, in the UF/Shands Pediatri c Neuropsychology Lab, or at the pa rticipants home. Eileen B. Fennell, PhD., a licensed clinical psychologist supervised and was available for further instruction during testing.

PAGE 41

41 The test battery consisted of one visit and la sted approximately 90 minutes for each child. Participants first completed the TEA-Ch subtes ts and the D-KEFS Trailmaking test. After completing these tests, participants complete d the MSCS questionnaire, the CDI, and the RCMAS. Due to changes in the protocol, a sm all number of children also completed the Behavior Assessment System for Children, Self -report (BASC-SRP). Parents completed the Demographic Questionnaire and th e Behavior Assessment System for Children Parent Rating Scales (BASC: PRS). After completing the test battery, participants received $10.00 for their participation.

PAGE 42

42 CHAPTER 3 RESULTS Data Analysis For all statistical tests, the level of significance was set at = 0.05. All stat istical tests were performed using the SPSS statistical analys is package. Among the final 30 participants, there were no missing data points for screening m easures, neuropsychological tests, parent-report measures, or the MSCS, CDI, and RCMAS. However, only 14 participants completed the BASC-SRP due to changes in the protocol. Raw scores were converted to Standard Scores, Tscores, or Scaled Scores for st atistical analyses. All dependent variables were evaluated for evidence of symmetry in its distri bution by using a test of skewne ss. A cut-off point of 2.0 was applied to the test of skewne ss as an indication for normality. Based on these criteria, all dependent variables were normally distributed. Therefore, no fu rther normalization calculations were necessary. Demographics Demographic variables between groups were compared using ANOVAs and Chi-square analyses. A comparison of the two groups demogr aphic information is presented in Table 3-1. The mean age of the Spina Bifida group was 13 year s, 0 months (range 10 years, 0 months to 16 years, 9 months). The mean age of the Health y Control group was 12 years, 8 months (range 10 years, 3 months to 15 years, 10 months). Th e mean grade of the Spina Bifida group was 6th (range 3rd to 11th). The Healthy Control group was also in 6th grade on average (range 4th to 10th). The Spina Bifida group consisted of 8 male s and 5 females. The Healthy Control group consisted of 8 males and 9 females. Within the Spina Bifida group, 7 of the participants described themselves as Caucasian, 4 as Afri can-American, 1 as Hispanic, and 1 as AsianAmerican. Within the Healthy Control group, 16 of the participants described themselves as

PAGE 43

43 Caucasian and 1 described their ethnicity as oth er. Between-groups ANOVAs did not reveal any significant differences between the groups on age or grade. Chi-square analyses revealed no significant difference between groups in male: fe male ratio. However, Chi-square analyses revealed that the Spina Bifida group had a sign ificantly higher proportion of participants from minority groups than the Healthy Control group. In addition to the demographics reported abov e, medical data specific to the Spina Bifida group was collected. Within the Spina Bifida gr oup, 12 of the participants were diagnosed with myelomeningocele and 1 was diagnosed with meningocel e. Eight of the participants in the Spina Bifida group had been diagnosed with hydrocephalu s. Eleven of the part icipants in the Spina Bifida group were diagnosed with spina bifida at the lumbar level, 1 at the thoracic level, and 1 at the sacral level. In term s of mobility, 6 were wheelchair bound, 5 used an assistive device, and 2 required no assistance. In terms of inc ontinence, 2 required assist ance, 9 were able to self-catheterize, and 2 we re not incontinent. Scores on the screening measures including the Peabody Picture Vocabulary Test, Third Edition (PPVT-III) and the Wechsler Individua l Achievement Test, Second Edition (WIAT-II) were also compared between the two groups (see Table 3-1). The mean score on the PPVT-III of the Spina Bifida group was significantly lower than the mean score of the Healthy Control group (t (28) = 15.146, p < .001). Although the two groups differe d significantly on this measure, this variable was not entered into furt her analyses as a covariate becaus e this test was used primarily to exclude children who were suspected of comorb id developmental delay or mental retardation rather than a test of intellectual ability per se Additionally, previous research suggests that Verbal IQ is not related to performance on the TEA-Ch (Manly, Anderson, Robertson, NimmoSmith, 1999). The mean score on the WIAT-II Word Reading subtest of the Spina Bifida group

PAGE 44

44 was also significantly lower than the m ean score of the Healthy Control group (t (28) = 26.227, p < .001). The WIAT-II Word Reading scores were not used as a covariate in further analyses because this test was used as a screener to ensu re that children could read questionnaire items. Additionally, children with learni ng disabilities were not excluded from the Spina Bifida group since these difficulties may be related to the spin a bifida diagnosis. As noted previously, two participants were excluded from the study becau se they did not meet the reading requirement necessary to complete the questionnaire. Statistical Analyses A summary of the primary hypotheses and an alyses is depicted in Table 3-2. Hypothesis 1 Comparison of attentional performan ce without controls for motor demands In order to test whether children with spina bi fida perform more poorly on attentional tests, an Independent-Samples T-Test, with two levels of the independent variable (Spina Bifida vs. Healthy Control group) was employ ed. Initially the five depende nt variables were the TEA-Ch Sky Search time per target score (Selective Attention), TEA-Ch Score! number correct (Sustained Attention), the TEA-Ch O pposite Worlds timing score (Attentional Control/Switching), the D-KEFS Number/L etter Switching timing score (Attentional Control/Switching), and the BASC -PRS Attentional Problems scor e. Attentional performance on tests of selective attention without controllin g for motor demands were initially counted to determine whether attentional difficulties existed in these areas as had been reported in previous studies that did not have controls for visual-motor integration or eye movement, such as the Trailmaking test A and B, WISC-III Coding, and Stroop tests (Snow, 1999; Loss, 1998; Fletcher et al., 1996). Similarly, performance on tests of attentional control/sw itching without motor controls was initially counted in order to determine whether deficits in attentional

PAGE 45

45 control/switching are apparent wh en motor demands are not cons idered. Since the sustained attention score was an auditory task without a visual or motor component, the same variable was used in both the initial and motor-control calculations. Similarly, the same parent-rating variable was used in both calculations. The Independent Samples T-Test revealed significant differences on all five variables at the p < .001 level. The means for the Spina Bifida group were also in the clinically significan t range for each variable, whereas they were in the average range for each variable in the Healthy Control group. E ffect sizes were large a nd were calculated with Cohens d (Cohen, 1988) with the pooled standa rd deviation used for between-group comparisons (Rosnow & Rosenthal, 1996). A su mmary of these findings is depicted in Table 3-3. Comparison of attentional performan ce with controls for motor demands In order to test whether children with spina bi fida perform more poorly on attentional tests, even after motor demands are removed or cont rolled, an Independent-Samples T-Test, was employed with the same independent variables (S pina Bifida group vs. H ealthy Control group). However, the five dependent variables were ad justed for motor demands when necessary. Specifically, the TEA-Ch Sky Search attention score was used rather than the time per target. The attention score is calculated by subtracting the time per target during the visual search task from the time per target during a motor control task that has targets with no distracters. Additionally, potential motor confounds from th e TEA-Ch Opposite Worlds task were reduced by calculating the difference between the scaled score on the Opposite Worlds task and the scaled score for the Same Worlds task, which re quires children to simply read numbers without the switching component. Finally, the D-KEFS Number/Letter Switchin g score was replaced with the Number/Letter Switching vs. Motor score. This score compares the time taken on the attentional switching task with a task that only require s a child to connect circles along a dotted

PAGE 46

46 line. As noted previously, no changes were ma de in the calculations for the TEA-Ch Score! test and the BASC-PRS Attention Problems scale, si nce these did not have visual-motor demands. The Independent Samples T-Test revealed signi ficant differences on the TEA-Ch Sky Search attention variable at the p < .05 level, although the Spina Bi fida group was no longer in the clinically significant range. Before calculati ng the difference scores for the two attentional switching variables, Independent Samples T-Test s were calculated between the groups for the TEA-Ch Same Worlds and D-KEFS Motor Speed scores. Significant differences were found between the groups on both measures at the p < .001 level. No signi ficant differences were found between the groups on TEA-Ch Opposite Wo rlds vs. Same Worlds or the D-KEFS Number/Letter Switching vs. Motor variables. E ffect sizes were large for all variables except DKEFS Number/Letter Switching vs. Motor, which were medium, and TEA-Ch Opposite Worlds vs. Same Worlds, which were small. These fi ndings suggest that the Spina Bifida group was generally slower than the Healthy Control group and did not experience a significant decrement with the additional demands of attentional switch ing. Means and effect sizes are depicted in Table 3-4. Hypothesis 2 In order to test whether children with spina bi fida had different self -concepts than healthy controls, an Independent-Samples T-Test, with two levels of th e independent variable (Spina Bifida group vs. Healthy Cont rol group) was employed. The dependent variables were the Social, Competence, Affect, Academic, Family, and Competence domains from the MultiDimensional Self-Concept Scale (MSCS). The Inde pendent Samples T-Test revealed significant differences on the MSCS Social, Affect, A cademic, and Physical domains at the p < .05 level. No differences were found between groups on the Family or Competence domains. The domain scores were generally in the low average or lo wer end of the average ra nge. Additionally, large

PAGE 47

47 effect sizes were found on all va riables except Family and Competence domains, which were medium. Means and effect sizes are depicted in Table 3-5. Hypothesis 3 In order to test whether there were signi ficant relationships between performance on attentional tests and self-concep t, a Pearson correlation was com puted with the attentional and self-concept variables. Results demonstrated that there was a significa nt negative relationship between BASC-PRS scores and a nu mber of self-concept variables; specifically Social, Affect, and Physical domains. There were no other significant relationships between any of the attentional variables and any of the self-concept variables. Within domains, however, TEA-Ch Score was significantly positively correlated with the TEA-Ch Sky Search! variable and significantly negatively correlated with the BASCPRS Attention Problems score. Similarly, each of the MSCS domains was significantly co rrelated with each other. Unfortunately, correlations could not be conducted with the Spina Bifida group alone due to small sample size. Correlations are depicted in Table 3-6. Additional Calculations and Exploratory Analyses Differences in mood In addition to the primary analyses, the Sp ina Bifida and Healthy Control groups were compared on measures of mood. These measures were not included in the primary analyses which focused on self-concept rather than mood per se. Clearly, self-concept and mood are related, but since the MSCS already includes a broad measure of mood, these additional mood measures were included in the secondary analyses so that the primary co mparison of self-concept and the relationship between self-concept and atten tion were not too heavily weighted or affected by differences in mood. In order to test whethe r children with spina bifida had different levels of mood problems than healthy controls, an Inde pendent-Samples T-Test, with two levels of the

PAGE 48

48 independent variable (Spina Bifida vs. Healt hy Control group) was empl oyed. The dependent variables were the total score from the Child De pression Inventory (CDI), the total score from the Revised Childrens Manifest Anxiety Scale (RCMAS), and the Anxiety and Depression scales of the Behavior Assessment System for Children Parent Rating Scales (BASC-PRS). The Independent Samples T-Test revealed si gnificant differences on the CDI and BASC-PRS Anxiety and Depression scales at the p < .05 or greater level. The groups did not differ on the RCMAS scale with a p -value of .07. Additionally, the effect sizes were large for all variables except for the RCMAS, which was in the me dium range. Finally, only the BASC-PRS Depression Scale was in the clinically elevated range. In order to further explore the relationshi p between self-concept and mood, a Pearson correlation was computed with the MSCS Total Score and each of th e mood variables listed above. A significant negative corr elation (higher self-c oncept, lower depression or anxiety) was found between MSCS Total Self -Concept and the CDI, RCMAS, and BASC-PRS: Depression scale. Means, effect sizes, and correlation with the MSCS are depicted in Table 3-7. In addition to the mood measures reported a bove, group differences on the BASC-SRP for the Depression, Anxiety, Self-esteem, and Social Stress scales were cal culated. There were 7 children with spina bifida and 7 healthy contro ls who completed the BASC-SRP. Independent Samples T-Tests revealed a significan t difference for the Depression scale (t = 2.82, p < .05). Effect sizes were large for the Depression scal e (ES = 1.54) and Self-esteem (ES = .95), medium for Social Stress (ES = .78), and small for Anxiety (ES = .15). Differences in Behavior Problems In order to determine whether the groups diffe red in other areas of behavior problems, an Independent-Samples T-Test, with two levels of the independent variable (Spina Bifida vs. Healthy Control group) was em ployed. The dependent vari ables were the BASC-PRS

PAGE 49

49 Hyperactivity, Aggression, and Conduct Problems scores. The Independent Samples T-Test did not reveal significant differences any of these scales at the p < .05 level. A dditionally, neither the spina bifida group nor the he althy control group were clini cally elevated on any of these scales. Age differences In order to determine whether there were any changes in self-concept with age, a linear regression analysis was employed with age-in-yea rs as the dependent va riable and the selfconcept domains as the predictor variables. The self-concept domains did not predict a significant amount of varian ce in this analysis (F (6, 23) = .85, p = NS, R = .18). Since the sample size was small for a regression analysis approach, the age effects were also compared by dividing the sample into two age groups: ag es 10 and ages 13. In the total group, there were 18 participants in the 10 group and 12 in the 13 year-old group. In order to test whether younger children had different self-con cepts than older children, an IndependentSamples T-Test, with two levels of the indepe ndent variable (young vs. older adolescents) was employed. The dependent variables were the do mains from the MSCS. The Independent Samples T-Test did not reveal a ny significant differences with any variables. Additionally, the effect sizes were small for each variable. In order to determine whether children with spina bifida experienced unique age effects related to reported self -concept, a second Independent-Samples T-Test with only the 13 children with spina bifida was computed. Seven particip ants were in the young child group age 6 were in the older child group. The Independent Samp les T-Test did not reveal any significant differences with any variables. However, eff ect sizes were large for all domains except the Academic domain, which had a medium effect size, and the Physical domain, which had a small effect size. In each case, the ch ildren in the older age group re ported higher self-concepts than

PAGE 50

50 younger children. Additionally, the younger children reported self-concepts in the low average range whereas older children reported average ranges except for the Physical domain which was low average in both groups. Means and e ffect sizes are depicted in Table 3-8. Gender differences In order to examine gender differences in se lf-concept, an Independent-Samples T-Test, with two levels of the independent variable (m ales vs. females) was employed. The dependent variables were the domains from the MSCS. The Independent Samples T-Test revealed a significant difference on the Competence domain (t = 2.97, p < .05), with females having significantly higher ratings than males. The ot her variables were not significantly different between groups. Additionally, th e effect size was larg e for the Competence variable (ES = 1.12) and medium for the other variables, ranging from .58 to .74. In order to determine whether there were unique gender effects on self-concept in the Spina Bifida group, a second Independent-Samples T-Test with only children from the Spina Bifida group was calculated. There were 8 ma les and 5 females in the analysis. The Independent Samples T-Test revealed a si gnificant difference on the Competence domain (t = 2.23, p < .05), with females having significantly higher ratings than males. The other variables were not significantly different between groups. However, large effect sizes were found for the Competence, Academic, and Physical domains, w ith higher scores for females than males. Additionally, males self-concepts were in the low average range whereas females were in the average range. Means and effect sizes are depicted in Table 3-9. Effect of hydrocephalus In order to determine differences between the children with and wit hout hydrocephalus in the Spina Bifida group, two levels of the independ ent variable (children with spina bifida with and without hydrocephalus) were employed. The dependent variables were the attentional and

PAGE 51

51 self-concept variables used in the primary anal yses. There were 8 children with hydrocephalus and 5 children without hydrocepha lus used in these analyses. Th e Independent Samples T-Test revealed a significant difference only on the TEA-C h Opposite Worlds vs. Same Worlds score (t = 2.32, p < .05), with children without hydrocephalu s showing greater decrement between the Opposite Worlds and Same Worlds variables than children with hydrocephalu s. This finding is likely due to the fact that the group with hydr ocephalus completed both the Same Worlds and Opposite Worlds tasks slowly, although differen ces between the groups on these variables was not significant. Additionally the other variables were not signif icantly different between groups. Within the self-concept domains, the effect sizes ranged from small (Social domain = .17, Academic = .24, Physical domain = .29, Competence domain = .36), medium (Affect domain = .50), to large (Family domain = 1.13). Additionally, the hydrocephalus group generally rated their self-concept in the low average range wher eas the non-hydrocephalus group rated their selfconcept in the average range. Within the attenti on variables, effect sizes were small for D-KEFS Number/Letter Switching vs. Mo tor (ES = .01), Sky Search atte ntion score (ES = .20), and BASC-PRS Attention score (ES = .43). Effect sizes were la rge for Score! (ES = .92) and Opposite Worlds vs. Same Worlds (ES = 1.24). Additionally, both groups were clinically significant on the BASC-PRS Atte ntion score and the Number/letter switching vs. Motor score. Only the hydrocephalus group was clinica lly elevated on the Score! subtest. Effect of ADHD In order to address concerns that the group di fferences in attention and self-concept were due to a comorbid ADHD-diagnosis in 3 particip ants in the Spina Bifida group, an Independentsamples t-test was run with these 3 participants removed. Therefore there were 10 children with spina bifida and 17 healthy contro ls. The Independent Samples T-Te st revealed that significant differences remained between the groups on the TEA-Ch Score variable (t = 3.47, p < .01) as

PAGE 52

52 well as the Parent-reported BA SC-PRS Attention domain (t = 3.07, p < .01). The TEA-Ch Sky Search Attention score wa s no longer significant (t = 1.88, p = .07), although this appeared to be due to reduced statistical power with the smaller sa mple, since the actual change in scaled scores without the ADHD participants was nominal (scaled score = 8.4 with ADHD participants, 8.8 without ADHD participants). Within the self-concep t domains, the groups remained different in the Social (t = 2.1, p <.05), Affect (t = 2.1, p <.05), Academic (t = 2.5, p < .05), and Physical (t = 2.9, p < .05) domains but not in the Competence (t = 1.1, p = NS) or Family (t = 1.4, p = NS) domains.

PAGE 53

53 Table 3-1: Demographic Characteristic s of SB and Healthy Control groups Variable Spina Bifida (N=13) Healthy Control (N=17) Test Statistic p -value Age (months) 156.77 (25.92) 152.24 (18.15) .321 NS Grade 6.46 (2.18) 6.88 (1.45) .401 NS Gender (# males) 8 8 .432 NS Ethnicity (# Caucasian) 7 16 10.172 .038 PPVT-II Standard Score 100.08 (15.59) 117.11 (8.05) 15.151 .001 WIAT-II Standard Score 91.31 (13.97) 113.18 (9.42) 26.231 .001 Note. Values are presented as mean (SD ) unless otherwise noted. 1 F -value 2 X 2-value

PAGE 54

54Table 3-2: Variables Used in Primary Analyses Hypothesis Statistical Test IV / Predictor Dependent Variables 1 Independent Samples T-Test Group (Spina Bifida vs. Healthy Control) Selective : TEA-Ch Sky Search attention score Sustained : TEA-Ch Score! total correct score Control/Switching: TEA-Ch Opposite Worlds vs. Same Worlds, D-KEFS NumberLetter Switching vs. Motor score General Attention : BASC-PRS Attention Problems scale 2 Independent Samples T-Test Group (Spina Bifida vs. Healthy Control) MSCS domains: Social, Competen ce, Affect, Academic, Family, Physical scores 3 Correlation Scores on Selective, Sustained, and Control/Switching MSCS domains: Social, Competen ce, Affect, Academic, Family, Physical scores

PAGE 55

55Table 3-3: Mean Group Scores on Attentional Measures with no Motor Control Correction Domain Variable Spina Bifida (N=13) Healthy Control (N=17) P value Effect Size Selective Attention Sky Search Time per Target 6.85* (2.88) 9.94 (1.14) .001 1.54 Sustained Attention Score! number correct 7.00* (3.03) 11.18 (2.48) .001 1.59 Attentional Control/Switching Opposite Worlds timing score 4.69* (3.12) 9.41 (2.53) .001 1.75 D-KEFS Number/Letter Switching 5.62* (4.15) 10.59 (3.24) .001 1.41 General Attention BASC-PRS Attention Problems 67.08* (12.44) 50.94 (9.63) .001 1.53 Note: indicates rating that is clinically elevated

PAGE 56

56Table 3-4: Mean Group Scores on Attentional Measures with Motor Control Corrections Domain Variable Spina Bifida (N=13) Healthy Control (N=17) P value Effect Size Selective Attention Sky Search Attention Score 8.38 (3.71) 10.41 (1.12) .041 .81 Sustained Attention Score! number correct 7.00* (3.03) 11.18 (2.48) .001 1.59 Attentional Control/Switching Opposite Worlds vs. Same Worlds -0.15 (1.21) -0.18 (2.07) NS .02 D-KEFS Number/Letter Switching vs. Motor 6.62* (3.07) 7.94 (2.61) NS .49 General Attention BASC-PRS Attention Problems 67.08* (12.44) 50.94 (9.63) .001 1.53 Note: indicates rating that is clinically elevated

PAGE 57

57Table 3-5: Mean Group Scor es on Self-Concept Domains Domain Spina Bifida (N=13) Healthy Control (N=17) P value Effect Size Social 89.92* (22.99) 105.71 (12.41) .023 .92 Competence 91.46 (26.39) 101.82 (15.46) NS .51 Affect 92.62 (22.84) 108.29 (13.23) .025 .90 Academic 91.54 (21.92) 111.24 (10.69) .003 1.24 Family 93.00 (15.08) 102.12 (11.93) NS .71 Physical 86.92* (18.62) 105.71 (13.69) .004 1.22 Note: indicates rating that is low average or below

PAGE 58

58Table 3-6: Correlations between Tests of Attention and Self -Concept for the Total Sample (Controls and Spina Bifida) Note: indicates signifi cant values at the p <. 05 level. ** indicates si gnificant values at the p <.01 level. Sky Search Score Opp. Wlds N-L switch vs. motor BASC Attn MSCS Social MSCS Comp MSCS Affect MSCS Academic MSCS Family MSCS Physical Sky Search 1 Score .524* 1 Opposite Worlds vs. Same World .086 -.177 1 D-KEFS Switching vs. motor -.213 .217 .196 1 BASC Attention -.169 -.481** .008 -.111 1 MSCS Social .003 .321 -.154 .082 -.446* 1 MSCS Competence .040 .260 -.153 .047 -.228 .807** 1 MSCS Affect .146 .327 -.165 -.008 -.429* .786** .816** 1 MSCS Academic .137 .318 -.159 .081 -.350 .676** .616** .413* 1 MSCS Family .130 .089 -.046 .024 -.335 .502** .409* .527** .399* 1 MSCS Physical .165 .218 .122 -.077 -.460* .649** .645** .757** .548** .427* 1

PAGE 59

59Table 3-7: Group Mean Scor es on Mood Symptom Scales Scale Respondent Spina Bifida (N=13) Healthy Control (N=17) P value Effect Size Correlation with MSCS CDI Child 51.54 (11.59) 41.47 (4.14) .002 1.27 -.71 RCMAS Child 50.92 (11.99) 43.65 (9.10) NS .72 -.64 BASC-PRS Depression Parent 60.00* (18.40) 44.65 (7.72) .004 1.18 -.53 BASC-PRS Anxiety Parent 58.38 (13.28) 47.42 (9.75) .014 1.00 -.32 Note: indicates rating that is clinically elevated

PAGE 60

60Table 3-8: Age Differences on Self-Con cept domains within Spina Bifida group Domain Age 10-12 (N =7) Age 13-16 (N = 6) P value Effect Size Social 79.14* (21.81) 102.50 (18.58) NS 1.24 Competence 80.86* (22.58) 103.83 (26.81) NS 1.02 Affect 85.00* (21.51) 101.50 (22.83) NS .81 Academic 84.86* (17.74) 99.33 (25.29) NS .73 Family 87.57* (14.43) 99.33 (14.36) NS .88 Physical 85.57* (25.60) 88.50* (6.35) NS .16 Note: indicates rating that is low average or below

PAGE 61

61 Table 3-9: Gender Differences on Self-Con cept domains within Spina Bifida group Domain Males (N =8) Females (N = 5) P value Effect Size Social 83.75* (25.69) 99.80 (15.25) NS .78 Competence 80.25* (22.13) 109.40 (24.06) .05 1.39 Affect 88.50* (23.21) 99.20 (23.11) NS .50 Academic 82.50* (15.38) 106.00 (24.54) NS 1.33 Family 90.88 (17.95) 96.40 (9.74) NS .39 Physical 79.63* (16.88) 98.60 (16.27) NS 1.23 Note: indicates rating that is low average or below

PAGE 62

62 CHAPTER 4 DISCUSSION Overview The current study was designed to examine the a ttentional performance of adolescents with spina bifida compared to healthy controls. Whereas previous studies have found attentional deficits in children with spina bifida (Snow, 1999; Loss, 1998; Brewer et al., 2001; Fletcher et al., 1996), this study was unique in that it controlled or accounted for potential motor confounds, examined multiple domains of attention indivi dually, and focused on young adolescents. Furthermore, the TEA-Ch allowed examination of multiple domains of attention with comparable psychometric propertie s, since the subtests of the TEA-Ch are part of the same battery and were standardized together. Additionally, differences in se lf-concept were examined be tween adolescents with spina bifida and healthy controls. Prev ious studies have been inconsis tent but suggest that children with spina bifida have lower self-concept in some areas, specifically physical, social, and academic self-concept (Appleton, 1994; Applet on, 1997; Dorner, 1976; Buran, 2004; Fletcher 1995). The current study attempted to add to th is literature by comparing children in multiple domains of self-concept, focusing on young adolescen ts rather than children of all ages, and using healthy controls as a comparison group to determine whether aspects of self-concept are unique to people with spina bifida. Finally, the relationship between attention and self-concept were examined within these groups. Previous literature suggests links be tween attention and the self, including: overestimation of self-perceptions in children with ADHD compared to healthy controls (Hoza et al., 2004, Hoza, Pelham, Dobbs, Owens, & Pillow, 2002) loss of insight related to frontal lobe lesions and related disorders (Mendez & Shapir a, 2002; Laroi et al., 2002 ; Feinberg & Keenan,

PAGE 63

63 2005), frontal lobe activity during self-referential thinki ng and self-awareness (Kelly et al., 2002; Shallice, 1982; Shimamura, 1995; & Stuss & Benson, 1986), theories that attention is a necessary function in the detecti on and response to feedback (Bar kley, 1992), and theories that attention is needed to organize and integrat e numerous pieces of information from ones experiences and feedback from others in order to create a cohesive sense of self (Bracken, 1992). To date, no studies have specifically examined th e relationship between atte ntional tests and selfconcept reports. Attentional Differences Between Groups As expected, children with spina bifida perfor med worse than healthy controls on a test of visual selective attention. Thes e findings are consistent with pr ior research demonstrating that children with spina bifida performed wors e on Trailmaking Tests (Snow, 1999; Loss, 1998), coding on the WISC-III (Loss, 1998), and visual orienting (Brewer et al., 2001). However, unlike previous research, the present study was ab le to demonstrate that the differences in selective attention existed even after the motor component of the test was factored out of the performance. Given the fact that the c ondition of spina bifida results in significant abnormalities to areas that are important for visu al attention, including th e parietal lobe and superior colliculus as well as posterior corpus callosum, optic pathways, and cerebellum (Cohen and ODonnell, 1993; Mirsky, 1989; Mesulam, 1985; Posner et al., 1988; Luck, Hillyard, Mangum, and Gazzinaga, 1994; Barkovich, 1992; Fletcher2000, Del Bigio 1993; Fletcher 2000), these findings are c onsistent with underlying anatomical pathology. Additionally, children with spina bifida performed worse than h ealthy controls on a test of auditory sustained attention th at had no motor component, furthe r supporting the hypothesis that the attentional problems in childr en with spina bifida are not sole ly due to motor slowing. These findings are supported by previous literature showing that child ren with spina bifida perform

PAGE 64

64 worse on CPTs (Loss, 1998, Brewer, 2001), although other research has suggested that there are no differences between children with spina bifida and controls on the CPT (Lollar, 1990). As noted above, one strength of the current study is that motor confounds, which may explain some of the inconsistent findings in past research, were reduced or removed in the current study. Whereas the deficits in selective attention can be attributed to posterior abnormalities, deficits in sustained attention are generally th ought to be related to more front ally mediated systems. There is some evidence that blood flow to the frontal lobe s is reduced in children with spina bifida (Del Bigio, 1993; Shirane et al., 1992) an d that frontal lobes are thinne d, although to lesser degree than posterior regions (Fletcher, 2000; Del Bigio 1993). Additionally, membranes around the caudate may be disrupted (Del Bigio, 1993). Fina lly, it is likely that fron tal lobe functions are affected indirectly by disrupted white matter connections cortica lly and subcortically, which are necessary for effective communication between frontal lobes and other areas of the brain (Barkovich, 1992; Del Bigio, 1993; Denni s et al., 1981; Fletcher, 2000). Interestingly, differences in attentional c ontrol/switching were highly significant when motor confounds were not taken into considera tion but were no longer significant when motor confounds were removed from the calculation of pe rformance. Previous literature has suggested that children with spina bifida experience deficits in attentio nal control/switching, including the time taken to shift from invalid cues (Denni s 2005a) and performance on Trailmaking Part B (Loss, 1998; Snow 1999). Although each of these tests has a motor component that could have confounded previous studies, studies by Snow (1999), Loss et al., (1998) and Fletcher (1996) have also reported that children with spina bi fida were worse than healthy controls on the Wisconsin Card Sorting Test (WCST), which re quires attentional switchi ng but does not include a motor speed component. At this time, it is unc lear why the studys resu lts were not significant

PAGE 65

65 in this domain. The most parsimonious explanati on is that children with spina bifida are simply slower, regardless of demands on attentional sw itching. Whereas attentio nal switching may be burdensome to someone who works quickly, the burden may be reduced when someone completes tasks more slowly. A nother possibility is that atte ntional control/switching is a complex cognitive function that consists of more than one component. For example, on the WCST, the demands on attentional switching are not related to speed but rather the ability to effectively inhibit one response set and switch to a different re sponse set. These demands are very different from tests such as the Opposite Wo rlds or the Trailmaking test, where the rules are clear but there is a high demand on speed and inhi bition of other responses. A second possible explanation is that the WCST involves many differ ent cognitive functions other than attentional switching, including abstract reasoning, working me mory to remember and implement feedback, and implementation of strategy based on feedback. Finally, parent rated attention was significantl y worse in the Spina Bifida group compared to healthy controls. These findings demonstrated that the neuropsychological tests given were at least generally supported by real observed problems in attention in daily life and are supported by previous research demonstrat ing parent-reported deficits in inattention, poor executive functions, less goal-directed behaviors, distra ctibility, and verbosity (Landry, 1990; Horn, 1985; Burmeister, 2005; Davidovitch, 1999; Mahone, 2002). Taken together, these findings demonstrate th at children with spina bifida experience significant attentional deficits in multiple domains, and these deficits appear to negatively impact their daily life. These difficulties are not co mpletely accounted for by motor difficulties in selective and sustained attention, although deficits in attentional sw itching appear to be related primarily to poor motor speed and motor control. However, whereas th is distinction may be

PAGE 66

66 important in order to better understand and treat children with spina bifida, it is impossible to parse out motor demands from most real-world si tuations that require attentional shifting or control. Therefore, attentiona l shifting and control are signifi cant problems for children with spina bifida and should be addressed accordingly. Differences in Self-Concept As predicted, children with spina bifida re ported poorer self-concep t in social, academic, and physical domains. This finding is consiste nt with past research (Buran, 2004; Appleton, 1994; Fletcher 1995). Affect was al so significantly lower in childre n with spina bifida, a finding that has been supported by some previous stud ies (Appleton, 1997; Dorner, 1976) but not others (Holmbeck, 2003; Edwards-Beckett, 1995; Landr y, 1993). Additionally, no differences were found between the groups for ratings of family relationships or a more general competence domain, although this lack of differe nces appeared to be due to va riations in the Healthy Control group rather than higher self-concept in the Spina Bifida gr oup. These results suggest that children with spina bifida define themselves as having worse social relati onships, less academic success, fewer physical abilities or worse appearance, and greater mood problems than healthy controls. Given the number of physical and cogn itive problems that are reported in children with spina bifida, it is likely that these lower ratings are based at least somewhat on experiences and feedback from others. For example, children with spina bifida actually do have greater physical difficulties than their healthy peers. Similarly, given the cognitive deficits experienced in spina bifida, these children likely have real academic problems. These results show that children with spina bifida are aware of their deficits and are negatively affected by them. Initially, it was sugg ested that children with spina bifida might actually have better self-concepts than healthy adolescents due to a l ack of awareness about personal difficulties. If children with spina bifi da did not process and in corporate feedback from

PAGE 67

67 their experiences into their self-concept in the same way that self-concept develops in healthy children, they could have higher, or inflated self -concepts compared to healthy controls who are aware of their own strengths and weaknesses. Furthermore, this possibility was supported by evidence that children with more severe conditio ns of spina bifida have better ratings of mood and stress (Padua et al., 2004; Padua et al., 2002 ; Minchom et al., 1995; Holmbeck et al., 1995). Additionally, a number of studies show that chil dren with ADHD have greater positive distortion in their self-concept and performance estimates (Hoza et al., 2004; Hoza et al., 2002; Owens & Hoza, 2003; Hoza, et al., 2001). However, the cu rrent results demonstrat e that rather than creating a protective effect due to poor awar eness of their shortc omings, it seems that adolescents with spina bifida are aware of their difficulties and incorporate them into their sense of self. It is also important to note that although adolescents with sp ina bifida reported lower selfconcepts, their scores were generally in the lower end of the average range. This suggests that self-concept is negatively impacted but that th ere is also a degree of resiliency among these adolescents that prevents even lower self-concep ts from developing. This finding is promising because it suggests that protective factors exist. If these factors were identified, they could be used in treatments to further improve self-concept. The current study adds to previous literatu re because it specifically focused on young adolescents with spina bifida, whereas many other studies include both adolescents and young children. Of the past studies that have focu sed on adolescent populati ons, many did not have a Healthy Control group, an important variable since adolescence is a challenging stage of development and self-concept undergoes na tural increases and decreases.

PAGE 68

68 Based on the current results, self-concept is cl early an area that requires attention when treating adolescents with spina bifida. Self-c oncept likely affects many areas important for healthy adjustment into adulthood, including mood, motivation, and confidence which in turn are likely to impact later independence, as well as perseverance and willingness to face challenges in medical care, academic performance, occupati onal settings, and relationships. Clearly, adolescence is an important stage in development of self-concept, likely impacts later adjustment in adulthood, and should be considered as an important component of any treatment plan for adolescents with spina bifida. In addition, poore r ratings of self-concep t should not always be dismissed as low confidence or poor self-esteem, but may reflect accurate estimations of ability. In this way, self-concept ratings may alert providers and families to weaknesses recognized by the child and thus allow for a more effective tr eatment plan that focuses on specific concerns. For example, low ratings in academic performance may result in increased support at school, or low ratings on social skills may alert parents to involve their ch ild in more socially rewarding events or social skills training classes. Finally, instead of focusi ng solely on areas that are worse in children with spina bifida, it is important to recognize areas that coul d serve protective roles. For example, previous research suggests that fa mily relationships and th e attitudes of parents have significant impact on la ter independence (Antle, 2004; Wo lman, 1994; Murch, 1989; Kolin, 1971; Loomis, 1997). Therefore, these areas should not be overlooked and may provide valuable tools for improving self-c oncept in other areas. Relationship Between Attention and Self-Concept Statistical analyses did not find a signi ficant relationship between performance on attentional measures and self-concept. The current study predicted th at poorer attentional performance would be related to poorer self-conc ept, particularly in areas that attentional demands were high or where attention would be a valuable asset, including academic, social, and

PAGE 69

69 competence domains. A competing hypothesis, as discussed above, was that greater deficits in attention would lead to reduced awareness of personal shortcomings a nd thereby result in an inflated self-concept or inverse relationship be tween attentional defici ts and self-concept. Unfortunately, the small sample size limited the ab ility to make conclusive statements about these results, since the lack of a relationship may have been re lated to low statistical power. Additionally, the small sample size prevented anal ysis of the Spina Bifida Group alone, which may have more directly addresse d the hypothesis. However, it is promising that within the domains, each of the self-con cept domains correlated with each other, as did some of the attentional measures, suggesting that the statistical power was sufficient for at least some predictable relationships. It is also important to note that parent ratings of Attentional Problems on the BASC-PRS were negatively correlated with the social, physical, an d affect domains of self-concept. These findings suggest that a pote ntial relationshi p exists between attention and self-concept that is not measured with the neur opsychological tests used in the current study, and lends promise to the theory that attention and self-concept are related such that attentional difficulties negatively impact self-concept. An additional explanation for the lack of relationship between attentional performance and self-concept is that the type of a ttention studied is not necessarily related to the type of attention required for development of self-concept. In stead of sustaining, selecting, and switching attention, it may be that there is a stronger relationship betwee n self-concept and other cognitive functions related to attention, su ch as awareness. Awareness is required in order to respond to and incorporate feedback, but this was not addr essed during the current study. Past research suggests that awareness of self is related to both frontal and pa rietal lobe functions (Gusnard, 2005; Schmidt et al., 2002; Kr ause et al., 1999; Johnson et al., 2002; Kjaer, Nowak, & Lou,

PAGE 70

70 2001) and may be reduced in children with ADH D, as evidenced by inaccurate estimates of performance as well as discrepancies between es timates of self-concept by children with ADHD and ratings of by teachers or parents (Hoza et al., 2004; Hoza et al., 2002; Owens & Hoza, 2003; Hoza, et al., 2001). Future studies may addre ss awareness of performance more accurately by having children with spina bifida rate and pr edict their performance on various tests. Additionally, it is possibl e that other cognitive functions su ch as memory, use of language, and processing speed impact development of self-concept. At any rate, it is important to recognize that there are many cognitive functions, both within the domain of attention and in other domains that are likely to impact the development of self-concept. Additional Results In addition to the primary hypotheses, the e ffect of hydrocephalus was examined within the Spina Bifida group and found that the ch ildren without hydroce phalus had a greater decrement between the TEA-Ch Opposite Worlds vs Same Worlds calculation than those with hydrocephalus. This finding is likely due to the fact that the gr oup with hydrocephalus completed both tasks slowly. Within the self-concept variables, there were no significant differences although there was a la rge effect size difference on the Family domain, with the hydrocephalus group rating lower family self-con cept. Additionally, no other variables were significant between the hydrocepha lus conditions for other self-con cept or attentional variables and sample size was small, suggesting that any findings should be inte rpreted with caution. Furthermore, given the fact that previous studies suggest that the presence of hydrocephalus is a significant factor to cognitive performance in mu ltiple areas including attention (Iddon, Morgan, Loveday, Sahakian, & Pickard, 2004; Verhoef, Post, van Asbeck, Gooskens, & Prevo, 2004), it is likely that the lack of si gnificant differences is related to the small sample size.

PAGE 71

71 In addition to the effects of hydrocephalus, mood differences were compared between the Spina Bifida and Healthy Control groups as well as age and gender effects of self-concept. As expected, the Spina Bifida group reported more symptoms of depression and parents of children with spina bifida reported higher levels of depression and anxiety. Additionally, there were significant correlations between self-concept and mood, suggesting that symptoms of anxiety and depression decreased with increase s in self-concept. However, it is important to note that these scores were not clinically elevat ed, suggesting that differences exis ted but were not so severe as to meet diagnostic criteria for depression or anxiety. Although it is not surprising that mood and self-concept are related, it is im portant to recognize the relati onship between these two areas when developing treatment plans, since addre ssing either self-concept or mood may help improve the other. Although the small sample size limited the power of statistical analyses, the current study found large or medium effect sizes on each of the self-concept domains except Physical selfconcept. As children with spina bifida aged from 10 years-old to 13, their self-concept improved from low levels to average levels. This finding is promising and further research should be conducted to determine whether the findi ng is replicated in a larger sample and to explore what variables contribu te to these improvements. Finally, the current results found that female s in both healthy control and Spina Bifida groups had higher self-concept, specifically in the Competence domain, but also in other domains including Academic and Physical self -concept. These findings were somewhat surprising, given previous research that suggests that older girl s have lower self-concept and higher self-reported psychologica l problems (Appleton et al., 1997; Appleton et al., 1994; Zurmhole et al., 1998). A study by An tle et al., (2004) did not find gender differences in self-

PAGE 72

72 concept. As noted above, the small sample size li mits the generalizability of the current findings and prevented any age by gender comparisons. Ho wever, if replicated with a larger sample, these findings may suggest that females do not al ways have lower self-concepts and may have strengths in certain areas. Additi onally, a replication with a larger sample suggests that gender is an important factor in the development of se lf-concept in adolescents with spina bifida. Limitations Although the study had numerous strengths, a nu mber of limitations should be addressed. First, although there was sufficient power to find group differences on attentional performance and self-concept, the sample size was relatively small and limited the ability to make conclusive assessments of other questions, including the re lationship between attention and self-concept and the effects of age and gender. For example, one objective of the current study was to determine whether there was a relationship be tween attention and self-concept in children with spina bifida. Since the sample size was limited, the current st udy compared the relationship between attention and self-concept within the entire sample. Thus, a lack of significant differences may be due to the performance of healthy contro ls rather than children with sp ina bifida. Additionally, other important relationships, such as the relationshi p between age and gender, could not be studied with the current sample size. Si milarly, it would be helpful to l ook at age effects more linearly rather than separating groups base d on an arbitrary cutoff, but th e sample size did not provide enough power to make these calculations. Second, children with spina bifida are very diverse in their presentation, severity, and complications. The current study did not separate children with spina bi fida based on type of spina bifida (myelomeningocele vs meningocele), lesion level, inf ection rates, shunt revisions, mobility, or other medical complications. In order to effectively address the hypothesis that greater disease severity would lead to worse atte ntional performance and lower self-concept, it is

PAGE 73

73 necessary to compare children within the Spina Bi fida Group with different levels of severity. However, the current sample size was too small for this calculation. One possible confound, the comorbid ADHD diagnosis, was addressed by demonstrating that the spina bifida group performed significantly lower than healthy cont rols on sustained attention and parent-reported attention even after ch ildren with ADHD were removed fr om the Spina Bifida Group. Although selective attention differences were no longer significant afte r removing children with ADHD from the Spina Bifida Group, this was likely due to statistical limitations (i .e. sample size) since the selective attention score in the Spina Bifida Group di d not substantially change. Unfortunately, other findings such as the effect s of hydrocephalus were limited due to the small sample sizes of the groups. Therefore, when applying these results to individual cases any conclusions that are taken from this study must be considered within the context of the multiple other variables that could impact cognition and self-concept. Third, the current study did not thoroughly evaluate the pr esence of other comorbid disorders that could potentially confound the results. Some concerns were addressed by demonstrating that the groups did not diffe r on parent-reported behaviors, including hyperactivity, conduct problems, or aggression. However, future research should more thoroughly assess other cognitive and behavioral problems that could confound the results. Finally, although the groups di d not differ in age, grade, or gender ratio, the group differences on the PPVT-II and the WIAT-II readi ng score are a significant limitation of the current study. Although previous research suggests that verbal IQ is no t related to attentional tests, specifically the TEA-Ch, (Manly, Anders on, Robertson, Nimmo-Sm ith, 1999), it is ideal to have two groups that are equal on all measures except for the test variables in order to reduce confounding results. Similarly, the fact that the Spina Bifida group had a greater percentage of

PAGE 74

74 children from different ethnicities could potentially confound the results and should be corrected in future studies.

PAGE 75

75 CHAPTER 5 FUTURE WORK In order to further understand the nature of attentional deficits and self-concept development in adolescents with spina bifida, future studies should focus on the relationship between attention and other c ognitive functions and self-conc ept development. Although the current results did not find a relationship between performance on attentional measures and selfconcept, a number of relationships between pare nt-rated attention and se lf-concept suggest that poorer attention leads to lower se lf-concept and is a promising resu lt for future research. Other than attentional performance pe r se, a number of approaches could examine the effects of reduced awareness and self-concept. For exam ple, future research should examine the relationship between awareness, or metacogniti on, and self-concept, by studying the relationship between estimates of performa nce on specific tasks and self-c oncept ratings by children with spina bifida. Additionally, studies should comp are self-reported self-concept, behavior, and performance ratings between adolescents, parents, teachers, and peers to determine whether there is greater discrepancy or variabil ity in the self-reports of adolescen ts with spina bifida compared to healthy controls. A large amount of discrepanc y between self-reported abilities and ratings by others would suggest that adol escents with spina bifida have a less accurate appraisal of themselves. It is important to understand whethe r adolescents with spina bifida have inaccurate appraisals of themselves in order to develop an effective treatment plan. Treatment goals may include attempts to improve awareness of difficu lties so that children with spina bifida seek assistance when needed. For example, children could seek assistance in academics, self-care, and other areas if they were able to recognize difficulties in these areas It is important to also be aware that some inaccurate estimations may not be helpful to address in treatment. For example, overestimates in physical attributes may be protective and not he lpful to address.

PAGE 76

76 Future studies should also continue to explore factors that predict succes sful transition into later adolescence and adulthood. It is interes ting that even though the Spina Bifida group had statistically lower self-concept and mood, their sc ores were generally in the lower end of the average range and not clinically si gnificant. This finding suggests a certain level of resiliency in adolescents with spina bifida that should be ex amined in order to develop methods to further improve self-concept. Longitudinal studies th at follow children through adolescence and later adulthood may be able to determine which factors predict successful or unsuccessful outcomes, including protective and risk f actors that could be addressed by parents and health care professionals. Additionally, more research is needed to determine the im pact of self-concept on other variables, such as mood, behavior problems, so cial relationships, and academic or occupational success. Although it is logical that self-concept impacts these areas, little research has directly studied the relationship between self-concept and other domains of functioning. Therefore, more conclusive evidence is needed. It is also important to note that children in the spina bifi da group demonstrated a large amount of variability in their reported self-concept. This is not surprising given the varied presentation of this disease and suggests that fu ture research should attempt to determine which factors lead to higher or lower self-concept. Furthermore, it may be the case that children with lower self-concept fit a different attentional profile than those with higher self-concept. In other words, it is unclear whether the relationship betw een attention and self-concept is the same for children with higher self-concept as it is for t hose with lower self-concep t. The current study was unable to explore these questions but future research should explore the possibility that different cognitive and emotional/self-concept prof iles exist within the spina bifida population.

PAGE 77

77 Future research should expand the current res earch to other disorders that are known to have impairments in cognition or low self-conc ept, such as children with ADHD, chronic disorders, and mood disorders. If important relationships exis t between attention and selfconcept, it is possible that thes e relationships apply more gene rally to other disorders. Finally, future research should focus on deve loping effective treatment strategies to improve self-concept. If atte ntion is related to self-concep t, one approach may include improving attention with medication or behavi or management techniques. Additionally, treatment approaches may include positive social experiences, additional academic supports, and medical management training to increase indepe ndence and confidence in these children. A handful of studies have reporte d positive improvements in self-c oncept after interventions that included lessons in social skills for children with assorted external izing and internalizing problems, (Haney & Durlak, 1998), and social empowerment treatment for preadolescent children with ADHD (Frame, Kelly, & Bayley, 2 003), and a group therapy program that focused on communication and cooperation among healthy a dolescents (Gaigordobil, 2004). These are promising developments and future research should continue to focus on effective treatments that help children with spina bifida su ccessfully transiti on into adulthood.

PAGE 78

78 LIST OF REFERENCES Achenbach, T.M. & Edelbrock, C.S. (1983). Manual for the Child Behavior Checklist and Revised Child Behavior Profile. Burlington, VT. Department of Psychiatry, University of Vermont. Antle, B.J. (2004). Factors associated w ith self-worth in you ng people with physical disabilities. Health & Social Work, 29, 3, 167-175. Appleton, P.L., Minchom, P.E., Ellis, N.C., Elliot, C.E., Boll, V., & Jones, P. (1994). The selfconcept of young people with spina bifida: a population-based study. Developmental Medicine and Child Neurology, 36, 198-215. Appleton, P.L., Ellis, N.C., Minchom, P.E., Lawson, V., Boll, V., & Jones, P. (1997). Depressive symptoms a nd self-concept in young people with spina bifida. Journal of Pediatric Psychology, 22, 5, 707-722. Barber, S., Grubbs, L., & Cottrell, B. (2005). Self-perception in ch ildren with attention deficit/hyperactivity disorder. Journal of Pediatric Nursing, 20, 4, 235-245. Barkley, R.A. (1997). Behavior al inhibition, sustained atte ntion, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65-94. Barkovich, A.J. & Edwards, M.S. (1992). App lications of neuroimaging in hydrocephalus. Pediatric Neurosurgery, 18, 2, 65-83. Barnes, M., Dennis, M., & Hetherington, R. (2004) Reading and writing skills in young adults with spina bifida and hydrocephalus. Journal of the Interna tional Neuropsychological Society, 10, 655-663. Barnes, M.A. & Dennis, M. (1998). Discourse afte r early-onset hydrocephalus: core deficits in children of average intelligence. Brain and Language, 61, 309-334. Baron, I.S., Fennell, E.B., & Voeller, K.K.S. ( 1995). Hydrocephalus a nd myelomenigocele. In: Pediatric Neuropsychology in the Medical Setting. Baron, I.S., Fennell, E.B., & Voeller, K.K.S. (Eds.): Oxford University Press, New York. 221-240. Blum, R.W., Resnick, M.D., Nelson, R., & St. Germ aine, A. (1991). Family and peer issues among adolescents with spina bifida and cerebral palsy. Pediatrics, 88, 280-285. Bracken, B.A. (1992). Examiner's manual for the Multid imensional Self-Concept Scale. Austin, TX: Pro-Ed. Brewer, V., Fletcher, J.M., & Hiscock, M. ( 2001) Attentional skills in children with hydrocephalus versus children with atte ntion deficit/hyperactivity disorder. Neuropsychology, 15, 2, 185-98.

PAGE 79

79 Buran C.F., Sawin K.J., Brei T.J., & Fastenau P. S. (2004). Adolescents with myelomeningocele: activities, beliefs, expect ations, and perceptions. Developmental Medicine & Child Neurology, 46 4, 244-52. Burmeister, R., Hannay, H.J., Copeland, K., Fl etcher, J.M., Boudousquie, A., & Dennis, M. (2005). Attention problems and executive functi ons in children with spina bifida and hydrocephalus. Child Neuropsychology, 11, 265-283. Bussing, R., Zima, B.T., & Perwien, A.R. (2000). Self-esteem in special education children with ADHD: relationship to disorder ch aracteristics and medication use. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 10, 1260-1270. Cauce, A.M. (1987). School and peer competence in early adolescence: a te st of domain-specific self-perceived competence. Developmental Psychology, 23, 2, 287-291. Cohen, R.A., Malloy, P.F., & Jenkins, M.A. (1998). Disorders of attention. In: Clinical Neuropsychology: A Pocket Handbook for Assessment. Snyder, P.J., Nussbaum, P.D (Eds.). Wa shington, DC, US: American Psychological Association, 1998. 541-572. Cohen, R.A. (1993). Toward an integrated neuropsychological framework of attention. The Neuropsychology of Attention New York: Plenum Press, 459-481. Cohen, J. (1977). Statistical power analysis for the behavioral sciences, revised edition. Orlando: Academic Press, Inc. Cole, D.A., Maxwell, S.E., Martin, J.M., Peeke, L.G., Seroczynski, A.D., Tram, J.M., Hoffman, K.B., Ruiz, M.D., & Jacquez, F., Maschman. (2001). The development of multiple domains of child and adolescent self-concept: a cohort sequential longitudinal design. Child Development, 72, 6, 1723-1746. Coopersmith, S. (1984). SEI: Self-esteem inventories. Palo Alto, California: Consulting Psychologists Press. Crain, M.R. & Bracken, B.A. (1994). Age, race and gender differences in child and adolescent self-concept: evidence from a behavioral acquisition, contextdependent model. School Psychology Review, 23, 3, 496-512. Cull, C. & Wyke, M.A. (1984). Memory functi on of children with spina bifida and shunted hydrocephalus. Developmental Medicine & Child Neurology, 26, 177-183. Davidovitch, M., Manning-Courtney, P., Hart mann, L.A., Watson, J., Lutkenhoff, M., & Oppenheimer, S. The prevalence of attentiona l problems and the effect of methylphenidate in children with myelomeningocele. Pediatric Rehabilitation 3, 1, 29-35. Del Bigio, M.R. (1993). Neuropathologi cal changes caused by hydrocephalus. Acta Neuropatologica, 85, 573-585.

PAGE 80

80 Del Bigio, M.R., Wilson, M.J., & Enno, T. (2002). Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Annals of Neurology, 53, 337-346. Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis Kaplan Executive Function System (DKEFS). The Psychological Corporat ion: San Antonio, TX. Dennis M., Fitz, C.R., Netley, C.T., Sugar, J ., Harwood-Nash, D.C., Hendrick, E.B., Hoffman, H.J., & Humphreys, R.P. (1981). The intelligence of hydr ocephalic children. Archives of Neurology, 38, 10, 607-615. Dennis, M., & Barnes, M. (2002). Math and nu meracy in young adults with spina bifida and hydrocephalus. Developmental Neuropsychology, 21, 2, 141-155. Dennis, M.D., Fletcher, J.M., Rogers, T., Hetheri ngton, R., & Francis, D.J. (2001). Object-based and action-based visual percep tion in children with spina bifida and hydrocephalus. Journal of the International Neur opsychological Society, 8, 95-106. Dennis, M.D., Edelstein, K., Copeland, K., Frederic k, J., Francis, D.J., Hetherington, R., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M.E., & Fletcher, J.M. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43, 976987. Dennis, M., Edelstein, K., Freder ick, J., Copeland, K., Francis, D., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M., Hetherington, R., & Fletcher, J.M. (2005b). Peripersonal spatial attention in children with spina bifida: associ ations between horizonta l and vertical line bisection and congenital malformations of th e corpus callosum, midbrain, and posterior cortex. Neuropsychologia, 43, 14, 2000-2010. Dennis, M., Jacennik, B., & Barnes, M.A. (1994). Th e content of narrative discourse in children and adolescents after early-ons et hydrocephalus and in normally developing age peers. Brain and Language, 46, 129-165. Dorner, S. (1976). Adolescents with spin a bifida. How they see their situation. Archives of Disabled Child, 51, 6, 439-444. Donders, J., Rourke, B.P., & Canady, A.I. (1992) Emotional adjustment of children with hydrocephalus and of their parents. Journal of Child Neurology, 7, 375-380. Dumas, D. & Pelletier, L. ( 1999). A study of self-perceptio n in hyperactive children. The American Journal of Ma ternal/Child Nursing, 24, 1, 12-19. Dunn, L.M. & Dunn, L.M. (1997). Peabody Picture Vocabulary Test Third Edition Bloomington, MN: Pearson Assessments. Edwards-Beckett, J. (1995). Parental expectat ions and childs self-c oncept in spina bifida Childrens Health Care, 24, 4, 257-267.

PAGE 81

81 Elias, R.E. & Hobbs, N. (1998). Spina bifi da: sorting out the complexities of care. Contemporary Pediatrics, 15, 4, 156-171. Feinberg, T.E. & Keenan, J.P. (2005). Where in the brain is the self? Consciousness and Cognition, 14, 661-678. Fletcher, JM., Dennis, M., & Northru p, H. (2000). Hydrocephalus. In, Pediatric Neuropsychology: Research, Theory, and Practice. Yeates K.O., Ris, M.D., & Taylor, H.G. (Eds.): The Guilford Press, New York. 25-46. Fletcher, J.M., Bohan, T.P., Brandt, M.E., Br ookshire, B.L., Beaver, S.R., Francis, D.J., Davidson, K.C., Thompson, N.M., & Miner, M.E. (1992). Cerebral white matter and cognition in hydrocephalic children. Archives of Neurology, 49, 8, 818-824. Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., Davidson, K.C., Francis, D.J., Thompson, N.M., & Miner, M.E. (1995). Be havioral adjustment of children with hydrocephalus: relationships with etio logy, neurological, and family status. Journal of Pediatric Psychology, 20, 1, 109-125. Fletcher, J.M., Bohan, T.P., Brandt, M.E., Kr amer, L.A., Brookshire, B.L., Thorstad, K., Davidson, K.C., Francis, D.J., Mccauley, S.R ., & Baumgarner, J.E. (1996). Morphometric evaluation of the hydrocephalic brain: rela tionships with cognitive development. Childs Nervous System, 12, 192-199. Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., Davidson, K.C., Francis, D.J., Levin, H.S., Brandt M.E., Kramer, L.A., & Morris, R. (1996). Attentional skills and executive functions in children with early hydrocephalus. Developmental Neuropsychology, 12, 1, 53-76 Frame, K., Kelly, L., & Bayley, E. (2003). Increasing perceptions of self-worth in preadolescents diagnosed with ADHD. Journal of Nursing Scholarship, 35, 3, 225-229. Friedrich, W.N., Lovejoy, M.C., Shaffer, J., & S hurtleff, D.B. (1991). Cognitive abilities and achievement status of children with myelomeningocele: a contemporary sample. Journal of Pediatric Psychology, 16, 4, 423-428. Gaigordobil, M. (2004). Effects of a psychol ogical intervention on fa ctors of emotional development during adolescence. European Journal of Psych ological Assessment, 20, 1, 6680. Goldman-Rakic, P.S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137-156.

PAGE 82

82 Guay, F., Marsh, H.W., & Boivin, M. (2003) Academic self-concept and academic achievement: developmental perspectives on their causal ordering. Journal of Educational Psychology, 95, 1, 124-136. Gusnard, D.A. (2005). Being a self: cons iderations from functional imaging. Consciousness and Cognition, 14, 679-697. Gusnard, D.A., & Raichle, M.E. (2001). Searchin g for a baseline: functional imaging and the resting human brain. National Review of Neuroscience, 2, 685-694. Haney, P. & Durlak, J.A. (1998). Changing self-e steem in children and adolescents: a metaanalytic review. Journal of Clinical Child Psychology, 27, 4, 423-433. Hassler, R. (1978). Striatal control of locomoti on, intentional actions a nd of integrating and perceptive activity. Journal of the Neurological Sciences, 36, 2, 187-224. Hetherington, R. & Dennis, M. (1999). Motor function profile in children with early onset hydrocephalus. Developmental Neuropsychology, 15, 1, 25-51 Holler, K.A., Fennell, E.B., Crosson, B., Boggs, S.R., & Mickle, J.P. (1995). Neuropsychological and adaptive functioning in younger versus older children shunted for early hydrocephalus. Child Neuropsychology, 1, 1, 63-73. Holmbeck, G.N., Westhoven, V.C., Phillips, W. S., Bowers, R., Gruse, C., Nikolopoulos, T., Totura, C.M.W., & Davison, K. (2003). A multi-method, multi-informant, and multidimensional perspective on psychosocial adjustment in preadolescents with spina bifida. Journal of Consulting and Clinical Psychology, 71, 4, 782-796. Holmbeck, G.N. & Faier-Routman, J. (1995). Sp inal lesion level, shunt status, family relationships, and psychosocial adjustment in children and adolescents with spina bifida myelomeningocele. Journal of Pediatric Psychology, 20, 6, 817-832. Hommeyer, J.S., Holmbeck, G.N., Wills, K.E., & Coers, S. (1999). Condition severity and psychosocial functioning in pre-adolescents with spina bifida: disentangling proximal functional status and distal adjustment outcomes. Journal of Pediatric Psychology, 24, 6, 499-509. Horn, D.G., Lorch, E.P., & Culatta, B. (1985). Di stractibility and vocabular y deficits in children with spina bifida and hydrocephalus Developmental Medicine & Child Neurology, 27, 713720. Hoza, B., Gerdes, A.C., Hinshaw, S.P., Arnold, L.E., Pelham, W.E., Molina, B.S.G., Abikoff, H.B., Epstein, J.N., Greenhill, L.L., Hechtman, L., Odbert, C., Swanson, J.M., & Wigal, T. (2004). Self-perceptions of competence in children with ADHD and comparison children. Journal of Consulting and Clinical Psychology, 72, 3, 382-391.

PAGE 83

83 Hoza, B., Pelham, W.E., Dobbs, J., Owens, J.S., & Pillow, D.R. (2002). Do boys with attentiondeficit/hyperactivity disorder have positive illusory self-concepts? Journal of Abnormal Psychology, 111, 2, 268-278. Hoza, B., Pelham, W.E., Waschbusch, D.A., Kipp, H., & Owens, J.S. (2001). Academic task persistence of normally achieving ADHD and cont rol boys: performance, self-evaluations, and attributions. Journal of Abnormal Psychology, 69, 2, 271-283. Hoza, B., Pelham, W.E., Milich, R., Pillow, D., & Mcbride, K. (1993). The self-perceptions and attributions of attention deficit hyperactivity disorder ed and nonreferred boys. Journal of Abnormal Child Psychology, 21, 3, 271-286. Huber-Okrainec, J., Dennis, M., Brettschneider, J ., & Spiegler, B.J. (2002). Neuromotor speech deficits in children and adults with spina bifida and hydrocephalus. Brain and Language, 80, 592-602. Iddon, J.L., Morgan, D.J.R., Loveday, C., Sa hakian, B.J., & Pickard, J.D. (2004). Neuropsychological profile of young adults with sp ina bifida with or without hydrocephalus. Journal of Neurology Neurosurgery and Psychiatry, 75, 1112-1118. Jacobs, R., Northam, E., & Anderson, V. ( 2001). Cognitive outcome with myelomeningocele and perinatal hydrocephalus: a longitudinal perspective. Journal of Developmental & Physical Disabilities, 13, 4, 389-405. Johnson, S.C., Baxter, L.C., Wilder, L.S., Pipe, J. G., Heiserman, J.E., & Prigatano, G.P. (2002). Neural correlates of self-reflection. Brain, 125, 1808-1814. Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar S., Inati, S., & Heatherton, T.F. (2002). Finding the self? An ev ent-related fMRI study. Journal of Cognitive Neuroscience, 14, 5, 785-794. Kjaer, T.W., Nowak, M., & Lou, H.C. (2002). Refl ective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage, 17, 1080-1086. Kjaer, T.W., & Lou, H.C. (2000). Interaction be tween precuneus and dorsolateral prefrontal cortex may play a unitary role in consciousne ss. A principal component analysis of Rcbf. Consciousness and Cognition, 9, 859. Kolin, I.S., Scherzer, A.L, New, B., & Garfield, M. (1971). Studies of the school-age child with meningomyelocele: social and emotional adaptation. Journal of Pediatrics, 78, 6, 1013-1019. Kovacs, M. (1992). Childrens DepressionInventory (CDI). Maria Kovacs and Multi-Health Systems Inc.: North Tonawanda, NY

PAGE 84

84 Krause, B.J., Horwitz, B., Taylor, J.G., Schmid t, D., Mottaghy, F.M., Herzog, H., Halsband, U., and Muller-Gartner, H.W. (1999). Network anal ysis in episodic encoding and retrieval of word-pair associates: A PET study. European Journal of Neuroscience, 11, 3293. Laberge, D. (1995). Computational and anatomical models of selective attention in object identification. In : The Cognitive Neurosciences Gazzaniga, M.S. (Ed.). The MIT Press: Cambridge, MA, US. 649-663. Lachar, D., Gadowski, C.L., & Snyder, D. K. (1982). Broad-band dimensions of psychopathology: Factor scales for the Personality Inventory for Children. Journal of Consulting and Clinical Psychology, 50, 634-642. Landau, S., & Moore, L.A. (1991). Social skill deficits in children w ith attention-deficit hyperactivity disorder. School Psychology Review, 20, 2, 235-251. Landau, S., Milich, R., Diener, M. (1998). Peer relations of children with attention-deficit hyperactivity disorder. Reading & Writing Quarterly: Overcoming Learning Difficulties, 14, 1, 83-105. Landry, S.H., Copeland, D., Lee, A.L., & Robins on, S. (1990). Goal-d irected behavior in children with spina bifida. Developmental and Behavioral Pediatrics, 11, 6, 306-311. Landry, S.H., Robinson, S.S., Copeland, D., & Garn er, P.W. (1993). Goal-directed behavior and perception of self-competence in children with spina bifida. Journal of Pediatric Psychology, 18, 3, 389-396. Laroi, F., Fannemel, M., Ronneberg, U., Flekkoy, K., Opjordsmoen, S., Dullerud, R., & Haakonsen, M. (2000). Unawareness of illness in chronic schizophrenia and its relationship to structural brain measures and neuropsychological tests. Psychiatry Research, 100, 49-58. Lavigne, J.V., Nolan, D., & Mclone, D.G. ( 1988). Temperament, coping, and psychological adjustment in young children with myelomeningocele. Journal of Pediatric Psychology, 13, 3, 363-378. Loss, N., Yeates, K.O., & Enrile, B.G. (1998). Attention in children wi th myelomeningocele. Child Neuropsychology, 4, 1, 7-20. Lollar, D.L. (1993). Educational i ssues among children with spina bifida Spina Bifida Spotlight : Spina Bifida Association of America, 1-4. Loomis, J.W., Javornisky, J.G., Monahan, J.J., Burke, G., & Lindsay, A. (1997). Relations between family environment and adjustment outcomes in young adults with spina bifida. Developmental Medicine and Child Neurology, 39, 9, 620-627. Luck, S.J., Hillyard, S.A., Mangun, G.R., & Gasszni ga, M.S. (1994). Independent attentional scanning in the separated hemispheres of split-brain patients. Journal of Cognitive Neuroscience, 6, 1, 84-91.

PAGE 85

85 Luria, A.R. (1966). Human brain and psychological processes. New York: Harper and Row. Macbriar, B.R. (1983). Self-c oncept of preadolescent and ad olescent children with a meningomyelocele. Issues in Comprehensiv e Pediatric Nursing, 6, 1, 1-11. Mahone, E.M., Zabei, T.A., Levey, E., Verda, M., & Kinsman, S. (2002). Pa rent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8, 4, 258-270. Mammarella, N., Cornoldi, C., & Donadello, E. ( 2003). Visual but not sp atial working memory deficit in children with spina bifida. Brain and Cognition, 53, 311-314. Manly, T., Robertson, I.H., Anders on, V. & Nimmo-Smith, I. (1999). TEA-Ch: The Test of Everyday Attention for Children manual Bury St. Edmunds, Engl and, Thames Valley Test Company Limited. Marsh, H.W. (1989). Age and sex effects in multiple dimensions of self-concept: preadolescence to early adolescence. Journal of Educational Pscyhology, 81, 3, 417-430. Matthys, W., Cuperus, J.M., & Van Engeland, H. (1999). Deficient social problem-solving in boys with ODD/CD, with ADHD, and with both disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 3, 311-321. McAndrew, I. (1979). Adolescents and young people with spina bifida. Developmental Medicine and Child Neurology, 21, 5, 619-629. Mendez, M.F., & Shapira, J.S. (2005). Lo ss of insight and functional neuroimaging in frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 17, 413-416. Mesulam, M. (1985). Principles of behavioral neurology. Philadelphia: F.A. Davis. Milich, R., Licht, B.G., Murphy, D.A., & Pelham, W.E. (1989). Attention-deficit hyperactivity disordered boys' evaluations of and attributi ons for task performance on medication versus placebo. Journal of Abnormal Psychology, 98, 3, 280-284. Minchom, P.E., Ellis, N.C., Appleton, P.L., Laws on, V., Boll, V., Jones, P., & Elliot, C.E. (1995). Impact of functional severity on self concept in young people with spina bifida. Archives of Disease in Childhood, 73, 48-52. Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., & Kellam, S.G. (1991). Analysis of the elements of attention: a neuropsychological approach. Neuropsychology Review, 2, 2, 109-145.

PAGE 86

86 Mirsky, A.F. (1989). The neuropsychology of atten tion. elements of a complex cehavior. In: Integrating theory and practice in clinical neuropsychology. Perecman E, (Ed.). Hillsdale, NJ: Erlbaum. 75. Monsen, R.B. (1992). Autonomy, coping, and selfcare agency in healthy adolescents and in adolescents with spina bifida. Journal of Pediatric Nursing, 7, 1, 9-13. Murch, R.L., & Cohen, L.H. (1989). Relationships among life stress, perceived family environment, and the psychological di stress of spina bifida adolescents. Journal of Pediatric Psychology, 14, 2, 193-214. Owens, J.A., & Hoza, B. (2003). The role of inattention and hyperactivity/impulsivity in the positive illusory bias. Journal of Consulting an d Clinical Psychology, 71 4, 680. Ohan, J.L. & Johnston, C. (2002). Are the pe rformance overestimates given by boys with ADHD self-protective? Journal of Clinical Child Psychology, 31, 2, 230-241. Padua, L., Rendeli, C., Ausili, E., Aprile, I., Ca liandro, P., Tonali, P., & Salvaggio, E. (2004). Relationship between the clinical-neurophysiologic pattern, disability, and quality of life in adolescents with spina bifida. Journal of Child Neurology, 19, 952-957. Padua, L., Rendeli, C., Rabini, A., Girardi, E., To nali, P., & Salvaggio, E. (2002). Health-related quality of life and disability in young patients with spina bifida. Archives of Physical Medicine and Rehabilitation, 83, 1384-1388. Parsons, J.G. (1968). An investigation into the verbal facility of hydr ocephalic children, with special reference to vocabulary, morphology, and fluency. Developmental Medicine and Child Neurology, Suppl 16, 109. Petersen, S.E., Robinson, D.L., & Morris, J.D. (1987). Contributions of the pulvi nar to visual spatial attention. Neuropsychologia, 25, 1-A, 97-105. Piers, E.V. (1984). Piers-Harris Children's Self-Concept Scale. Los Angeles, CA: Western Psychol ogical Services. Posner, M.I., Petersen, S.E., Fox, P.T., & Raic hle, M.E. (1988). Localization of cognitive operations in the human brain. Science, 240, 4859, 1627-1631. Reynolds, C.R. & Kamphaus, R.W. (1992). The Behavior Assessment System for Children, Parent Rating Scales (BASC-PRS) Circle Pines, MN: American Guidance Service (AGS), Inc. Reynolds, C. R. & Kamphaus, R. W. (1992). The Behavior Assessment System for Children, SelfReport of Personality (BASC-SRP) Circle Pines, MN: American Guidance Service (AGS), Inc.

PAGE 87

87 Reynolds, C.R. & Richmond, B.O. (1978) What I think and feel: a revised measure of childrens manifest anxiety, Journal of Abnormal Psychology 6, 2, 271-280. Riddle, R., Morton, A., Sampson, J.D., Vachha, R., & Adams, R. (2005). Performance on the NEPSY among children with spina bifida. Archives of Clinical Neuropsychology, 20, 243248. Rosnow, R.L. & Rosenthal, R. (2003). Effect sizes for experimenting psychologists. Canadian Journal of Experimental Psychology, 57, 3, 221-237. Sawin, K.J., Brei, T.J., Buran, C.F., & Fasteneau, P.S. (2002). Factors associated with quality of life in adolescents with spina bifida. Journal of Holistic Nursing, 20, 3, 279-304. Schwartz, E.R. (1974). Characteristics of speech and la nguage development in the child with myelomeningocele and hydrocephalus. Journal of Speech & Hearing Disorders, 39, 4, 465-468. Schoenmakers, M.A.G.C., Uiterwaal, C.S.P.M ., Gulmans, V.A.M., Gooskens, R.H.J.M., & Helders, P.J.M. (2005). Determinants of f unctional independence and quality of life in children with spina bifida. Clinical Rehabilitation, 19, 677-685. Schmidt, D., Krause, B. J., Mottaghy, F.M., Halsband, U., Herzog, H., Tellmann, L., & MullerGartner, H.W.(2002). Brain systems engaged in encoding and retrieval of word-pair associates independent of their imagery content or presentation modalities. Neuropsychologia, 20 : 457-470. Scott, M.A., Fletcher, J.M., Brookshire, B. L., Davidson, K.C., Landry, S.H., Bohan, T.C., Kramer, L.A., & Brandt, M.E. (1998). Me mory functions in children with early hydrocephalus. Neuropsychology, 12, 4, 578-589. Semrud-Clikeman, M. & Schafer, V. (2000). Social and emotional competence in children with ADHD and/or learning disabilities Journal of Psychotherapy in Independent Practice, 1, 4, 3-19. Shaffer, J., Friedrich, W.N., Shurtleff, D.B., & Wolf, L. (1985). Cognitive and achievement status of children with myelomeningocele. Journal of Pediatric Psychology, 10, 3, 325-336. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of t he Royal Society of London, Series B, 298, 199. Shapka, J.D. & Keating, D.P. (2005). Structure a nd change in self-concept during adolescence. Canadian Journal of Behavioural Science, 37, 2, 83-96. Shavelson, R.J., Hubner, J.J., & Stanton, G.C. (1976). Self-concept: va lidation of construct interpretations. Review of Educational Research, 46 407-441. Shimamura, A.P. (1995). Memory and the prefrontal cortex Annals of the New York Academy of Sciences, 769, 151.

PAGE 88

88 Shirane, R., Sato, S., Sato, K., Kameyama, M., Ogawa, A., Yoshimoto, T., Hatazawa, J., & Ito, M. (1992). Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nervous System, 8, 118-123. Snow, JH. (1999). Executive processes for children with spina bifida. Childrens Health Care, 28, 3, 241-253. Stuss, D.T. & Benson, D.F. (1986). The frontal lobes New York: Raven Press. Wheeler, M.A., Stuss, D.T., & Tulving, E. (1995). Towards a theory of episodic memory. The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331. Tabassam, W. & Grainger, J. (2002). Self-concep t, attributional style a nd self-efficacy beliefs of students with learning disabilities with and wi thout attention deficit hyperactivity disorder. Learning Disability Quarterly, 25, 141-151. Tew, B. & Laurence, K.M. (1979). Differences in reading achievement between spina bifida children attending normal schools and those attend ing special schools. Child: care, health, and development, 4, 5, 317-326. Tew, B. & Laurence, K.M. (1975). The eff ects of hydrocephalus on intelligence, visual perception and school attainment. Developmental Medicine and Child Neurology, 17, Suppl 35, 129-134. The Psychological Corporation (2001). Wechsler Individual Achievement TestSecond Edition (WIAT-II): San Antonio, TX. Van Zomeren, A.H. & Brouwer, W.H. (1994). Clinical neuropsychology of attention. Oxford University Press: New York, NY, US. Varni, J.W. & Wallander, J.L. (1988). Pediatric chronic disabilities: hemophilia and spina bifida as examples. In: Handbook of Pediatric Psychology. Routh, D.K. (Ed.). Guilford Press: New York, NY US. Verhoef, M., Post, M.W.M., Van Asbeck, F.W.A ., Gooskens, R.H.J.M., & Prevo, A.J.H. (2004). Secondary impairments in young adults with spina bifida. Developmental Medicine & Child Neurology, 46, 420-427. Wallander, J.L. & Varni, J.W. (1998). Effects of pediatric chronic physical disorders on child and family adjustment. Journal of Child Psychology and Psychiatry, 39, 1, 29-46. Wallander, J.L., Feldman, W.S., & Varni, J.W. (1989). Physical status and psychosocial adjustment in children with spina bifida. Journal of Pediatric Psychology, 14, 1, 89-102. Warschausky, S., Argento, A.G., Hurvitz, E., & Be rg, M. (2003). Neurops ychological status and social problem solving in children with congenital or acquired brain dysfunction. Rehabilitation Psychology, 48, 4, 250-254.

PAGE 89

89 Wigfield, A,. Eccles, J.S., Iver, D.M, Reuman, D. A., & Midgley, C. (1991). Transitions during early adolescence: changes in children's domain -specific self-perceptions and general selfesteem across the transition to junior high school. Developmental Psychology, 27, 4, 552565. Willis, K.E. (1993). Neuropsychological function ing in children with spina bifida and/or hydrocephalus. Journal of Clinical Child Psychology, 22, 2, 247-265. Willis, K.E., Holmbeck, G.N., Dillon, K., & Mclone D.G. (1990). Intelligence and achievement in children with myelomeningocele. Journal of Pediatric Psychology, 15, 2, 161-176. Wilson, J.W. & Marcotte, A.C. (1996). Psychos ocial adjustment and education outcome in adolescents with a childhood diagnosi s of attention deficit disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 5, 579-587. Wolman, C., & Basco, D.E. (1994) Factors influencing self-e steem and self-consciousness in adolescents with spina bifida. Journal of Adolescent Health, 15, 7, 543-548. Yeates, K.O., Enrile, B.G., Loss, N., & Blumenstei n, E. (1995). Verbal learning and memory in children with myelomeningocele. Journal of Pediatric Psychology, 20, 6, 801-815. Yeates, K.O., Loss, N., Colvin, A.N., & Enrile, B.G. (2003). Do children with myelomeningocele and hydrocephalus display no nverbal learning disabi lities? An empirical approach to classification. Journal of the International Ne uropsychological Society, 9, 653662. Young, H.F., Nulsen, F.E., Weiss, M.H., & Thomas P. (1973). The relationship of intelligence and cerebral mantle in treated infantile hydrocephalus. Pediatrics, 52, 1, 38-44. Zurmohle, U., Homann, T., Schroeter, C., Rot hgerber, H., Hommel, G., & Ermert, J.A. (2001). Psychosocial adjustment of children with spina bifida Journal of Child Neurology, 13, 6470.

PAGE 90

90 BIOGRAPHICAL SKETCH Andrew S. Preston was raised in Lockport, NY by his parents, Tarrell and Susan Preston. He is the oldest of three child ren, one brother and one sister. He graduated from Lockport High School in 1995. He then went to Davidson College in North Carolina, where he earned a B.A. in Psychology with a concentration in Neuroscience. In 2001 he enrolled in the University of Floridas doctoral program in Clinical and H ealth Psychology. His primary area of study is neuropsychology with a focus on pediatric popul ations. Following completion of graduate studies at the University of Fl orida, he completed a predoctoral internship in the Clinical Neuropsychology Track at the Brown University Sc hool of Medicine. He is currently pursuing a postdoctoral fellowship in clinical neuropsyc hology with a continued focus on pediatric populations.