<%BANNER%>

Petrogenesis of Andesites and Dacites from the Southern Juan de Fuca Ridge


PAGE 1

1 PETROGENESIS OF ANDESITES AND DACITES FROM THE SOUTHERN JUAN DE FUCA RIDGE By LAURIE ANN COTSONIKA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006

PAGE 2

2 Copyright 2006 by Laurie A. Cotsonika

PAGE 3

3 To my family.

PAGE 4

4 ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Mi chael Perfit, for his patience and guidance throughout this project, and Dr. Ma tthew Smith for the support and help hes given me in order to complete this. I would also like to thank th e Monterey Bay Research Aquarium Institute for providing use of their equipment and fac ilities and the crew and officers of the Western Flyer as well as the pilots of the ROV Tiburon for the hard work they put in during the cruise to the Juan de Fuca Ridge. I would like to thank Dr. Debr a Stakes and Dr. Jim Gill for lending their support and expertise on the cruise and with interpreting my data. Dr. W. Ian Ridley deserves my thanks for all the help and analytical support provided in Denver and Dr. Paul Wallace for providing the volatile data. I would also like to thank George Kamenov for th e help and analytical support given while processing my trace element data. I would like to thank my famil y, especially my parents, Art and Linda, and my brother and sister, Nick and Elizabeth, who provided much needed emotional support and understanding. I would also like to thank all my friends in the Geological Sciences depart ment at University of Florida.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES................................................................................................................ .........8 ABSTRACT....................................................................................................................... ............10 CHAPTER 1 INTRODUCTION..................................................................................................................12 Regional Geology............................................................................................................... ....13 Previous Studies of Highly Fracti onated Suites Recovered at MOR.....................................14 2 STUDY AREA AND SAMPLE RECOVERY......................................................................20 T735 Dive Observations.........................................................................................................21 3 ANALYTICAL METHODS..................................................................................................27 Major Elements................................................................................................................. ......27 Trace Elements................................................................................................................. ......28 4 PETROGRAPHY AND MINERAL CHEMISTRY..............................................................32 Basalts........................................................................................................................ .............32 Andesites and Dacites.......................................................................................................... ...32 5 MAJOR AND TRACE ELEMENTS.....................................................................................48 Basalts........................................................................................................................ .............48 Major and Minor Elements..............................................................................................48 Trace Elements................................................................................................................50 Andesites and Dacites.......................................................................................................... ...52 Major and Minor Elements..............................................................................................53 Trace Elements................................................................................................................53 6 DISCUSSION..................................................................................................................... ....62 Comparison to Other Evolved Suites.....................................................................................62 Dive T735 Samples.............................................................................................................. ...64 Fractional Crystallization..................................................................................................... ...67 Magma Mixing................................................................................................................... ....70 Partial Melting/Assimilation Frac tional Crystallization (AFC).............................................72

PAGE 6

6 7 CONCLUSIONS....................................................................................................................84 APPENDIX A T735 DIVE LOGS................................................................................................................. .86 B PHASE CHEMISTRY FOR T735 LAVAS.........................................................................100 C MAJOR AND TRACE ELEMENT DATA FOR T735 LAVAS.........................................159 D PETROLOG RESULTS.......................................................................................................165 LIST OF REFERENCES.............................................................................................................178 BIOGRAPHICAL SKETCH.......................................................................................................188

PAGE 7

7 LIST OF TABLES Table page 1: Accepted values for ma jor element standards...........................................................................30 2: ICP Trace element standards. 2005-2006 an alyses of ENDV (ran as sample) together with other MORB samples (d rift 1 first sample after the standards)...............................31 B-1: Pyroxene compositions determ ined from microprobe analyses..........................................101 B-2: Plagioclase compositions determ ined from microprobe analyses.......................................132 B-3: Olivine compositions determin ed from microprobe analyses.............................................154 C-1: Major and trace element data for Dive T735 samples.........................................................160 D-1: Results from Petrolog. Results assume QF M at 200 bars of pressure and sample T735G35 as the parent composition.........................................................................................166

PAGE 8

8 LIST OF FIGURES Figure page 1 Map of the Juan de Fuca Ridge..........................................................................................17 2 Overview of MBARI dives and rock core s on the southern Cleft segment since 2000....18 3 Overview of the dive trac k taken during Tiburon Dive 735..............................................24 4 Profile map of dacite dome morphol ogies and evolved sample locations.........................26 5 Examples of basaltic lava mo rphologies seen during dive T735.......................................36 6 Plain polarized and cross polar views of glomeroporphyritic texture in T735-G23..........36 7 Dacite dome lava morphologes..........................................................................................37 8 Plagioclase oikocryst surrounding seve ral randomly orient ed clinopyroxene chadacrysts in sample T735-G10.......................................................................................37 9 Element map of poikilitic texture seen in T735-G10, in this case, a plagioclase oikocryst surrounding low-Ca pyroxenes..........................................................................38 10 Point compositions of pyroxene phenocrysts in T735-G9 and T735-G12 are plotted to show zoning patterns.....................................................................................................39 11 Oscillatory zoned clinopyr oxene in sample T735-G9.......................................................40 12 Skeletal clinopyroxene grain with a lacey reaction rim surrounding th e crystal, this is also indicative of rapid crystal growth...............................................................................41 13 Populations of zoned pyroxenes........................................................................................42 14 Olivine and plagioclas e glomerophyric cluster..................................................................43 15 Element map of skeletal fayalite crystal in sample T735-G12..........................................43 16 Rare (<1% of the sample) euhedral zi rcon phenocrysts seen in samples T735-G12 and T735-G19 were discovered th rough microprobe analyses..........................................44 17 Plain polarized light (left) and crossed polarized light (right) views of a basaltic xenolith in sample T735-G11............................................................................................45 18 Element maps of a basaltic xenolith in sample T735-G12................................................45 19 A coarser grained xenolith, found in T735G10, is composed of plagioclase, An34 An35, and fayalitic olivine, Fo15........................................................................................46

PAGE 9

9 20 Myrmekitic intergrowth of quartz and plagioclase............................................................47 21 AFM Diagram comparing Smith, 1994 and Stakes, 2006 samples to dive T735 samples........................................................................................................................ .......55 22 Major element plots comparing previous st udies of the Cleft segment (Smith et al., 1994; Stakes et al., 2006) to dive T735 samples................................................................56 23 Trace element plots comparing previous studi es of the Cleft segment (Smith et al., 1994; Perfit, unpublished) to dive T735 samples..............................................................58 24 The primitive mantle normalized (McDonough and Sun, 1995) spider diagram displays the depletion of several key trace elements in the evolved glasses compared to the basalt compositions..................................................................................................60 25 The primitive mantle normalized (McDonough and Sun, 1995) REE plot shows the two distinct groupings within the sample group................................................................61 26 Comparing major element variations in the T735 lavas to other evolved suites...............75 27 Major element liquid lines of descent................................................................................77 28 Cumulative percentage of phases plot ted against melt temperature (C)..........................79 29 Trace element liquid lines of descent.................................................................................81 30 Mixing models calculated using a standa rd mass balance equation (Langmuir et al., 1978).......................................................................................................................... ........82 31 Comparison of T735 Cland Cl/K ratios versus MgO......................................................83

PAGE 10

10 Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science PETROGENESIS OF ANDESITES AND DACITES FROM THE SOUTHERN JUAN DE FUCA RIDGE By Laurie A. Cotsonika December 2006 Chair: Michael R. Perfit Major: Geology The Cleft segment and the ridge-transform inters ection (RTI) of the Southern Juan de Fuca Ridge have been investigated during three cruises of Mont erey Bay Aquarium Research Institutes (MBARI) Research Vessel (R/V) Western Flyer beginning in 2000. A total of 53 rock cores and 276 precisely located ro ck or glass samples were colle cted during sixteen dives with the remotely operated vehicle (ROV) Tiburon These ROV dive samples and observations allow us to test models regarding the magmatic evolut ion of this segment and the relationships between specific tectonic and morphologic feat ures and magmatic processes. An extremely wide range of N-type mid-ocean ridge basalt (MORB) lavas were recovered which are, on average, more evolved (lower MgO) off-axis, away from the present neovolcanic zone, and towards the RTI. During dive T735 we investigated a region of unfaulted, curved volcanic ridges that overshoot the Blanco Transform and 39 samples of lava ra nging from ferrobasalt to andesite and dacite (SiO2 = 50.1 to 66.9 wt.%; Mg# = 49.9 to 9.7) were recovered. The highly evolved lavas were recovered from two large constructional domes co mprised of unusually large pillow flows, and extremely blocky, vesicular flows similar to so me terrestrial silicic domes. Some of the andesite-dacite hand samples are extremely vesicu lar with elongate vesicles (1-10 cm) in a glassy matrix. Mineral assemblages are dom inated by microphenocrysts of ferroaugite and

PAGE 11

11 ferropigeonite, with lesser amounts of sodic plag ioclase and FeTi oxides. Rare zircon, fayalite and myrmekitic intergrowths of plagioclase and qua rtz are present. A few of the more magnesian phenocrysts (xenocrysts?) exhibit fine normal zoni ng whereas more Fe-rich crystals exhibit fine reverse zoning. Additionally, inclusions of quenched basaltic material appear within some of the evolved lavas. These samples represent an extens ive and unique set of so me of the most highly fractionated ocean floor rocks that have ever be en recovered; particularly from such a welldocumented setting. Fractional crystallization m odels which predict over 80% crystallization do not adequately explain the major element chemistry of the silicic lavas and most incompatible trace elements exhibit significant enrichments relative to predicted c oncentrations. The highly evolved nature of the dacites, crystal zoning pa tterns and the presence of basaltic inclusions suggest the lavas are the result of mixing between two crystal bear ing end-members, i.e. a typical basalt and a rhyolite likely generated by extreme amounts of fractional crystallization. The andesitic and dacitic lavas also have elevated Cllevels that range from 4000-6000 ppm. While the Cl-/K levels are enriched they do not indicat e that significant amounts of crustal assimilation have occurred.

PAGE 12

12 CHAPTER 1 INTRODUCTION Over 60% of the Earths magma flux, > 21 km 3/yr, ~3 km3/yr extrusive and ~18 km3/yr intrusive, takes place at mi d-ocean ridges (MOR) (Chadwick and Embley, 1994; Perfit, 2001), however less than 1% of the total seafloor tota l area has been sampled or studied in much detail (Perfit and Chadwick, 1998) and that 1% has been concentrated upon ridge crests. Only a few studies have focused on the broader area surroundi ng the immediate region of the ridge axis, and therefore most investigations ha ve been focused within a narrow neovolcanic zone centered at the ridge axis. Studies centered on the ridge ax is have generally not directly addressed the processes that occur away from the ridge axis and at ridge-transform intersections (RTI). It has recently been hypothesized that the areas 5-20 km off of the ridge axis possibly make a greater contribution to the overall magma flux than previ ously thought (Goldstein et al., 1994; Graham et al., 1996; Hekinian et a., 1999; Johnson et al., 2000; Klingel hofer et al., 2001; Zou et al., 2002). Though published data regarding lavas erupted off-axis and at RTIs is sparse, it has been suggested that greater amounts of fractional crystallization and assimilation can occur at these locations. Limited magma recharge can lead to less homogenization of magmas at these locations compared to the main axial magma bod y, allowing for more diverse and evolved lava compositions to be erupted onto the oceanic fl oor (Christie and Sinton, 1981; Fornari et al., 1983; Perfit and Fornari, 1983; Perfit and Fornari, 1983; Juster et al., 1989; Perfit et al.., 1994; Perfit et al.., 1999; St offers et al., 2002). In this thesis, field observations together with petrologic, ma jor and trace element data are utilized to determine the geochemical character istics and petrogenesis of highly evolved lavas recovered from the region of the intersection of the Juan de Fuca Ridge (JdFR) with Blanco

PAGE 13

13 Fracture Zone (BFZ) (Figure 1). Lava sample s recovered in 2004 during dive T735 of the ROV Tiburon operated by the Monterey Bay Aquarium Research Institute (MBARI) represent an extensive and unique set of some of the most hi ghly fractionated oceanic rocks that have been recovered from such a well-documented setting. This, in conjunction with the extensive sampling of the Cleft segment of the southern JdFR and the associated geochemical database, make it an ideal sample set to explore the magm atic processes involved in the petrogenesis of samples from the RTI. Regional Geology The JdFR in the northeast Pacific is an inte rmediate spreading rate ridge (56 mm/yr full rate) that has been extensively studied begi nning in the 1960s (Raff et al., 1961; Johnson and Holmes, 1989; Embley et al., 1991; Smith, 1993; Pe rfit et al., 1994; Smith et al., 1994; Perfit et al., 1998; Perfit, 2001; Karson et al., 2002; Tierney, 2003; Stakes et al., 2006). It is located approximately 440 km (~238 nm) off of the coas t of Washington and Oregon and spans almost 500 km between the Blanco and Sovanco Fracture Zones. The JdFR has been divided into seven secondorder ridge segments that have distinct morphological characteristics (Embley et al., 199 1; Embley et al., 2000; Smith et al., 1994; Chadwick et al., 2005). The Cleft segment (Figur e 2) is the southernmost segment with its northern terminus at ~45N and its southern terminus at 44N where it intersects the Blanco Fracture Zone (BFZ) (Embley et al., 199 1; Smith et al., 1994). The Cleft segment has recently been volcanically active and has prove d to be an important area for detailed investigations of submarin e volcanology, hydrothermal activ ity, eruption rates, and MOR petrogenetic processes. Chadwick and Embley (1994) summarized studies of several mid-ocean ridge basalt (MORB) lava flow s believed to have erupted in 1983 and 1987 along the axis of the Cleft segment and estimated, following Crisp, (1984) that the average extrusive output along the

PAGE 14

14 whole Cleft segment is 0.003 km3/yr. Extrusive activity was determined to be bimodal with sheet flows preceding a voluminous eruption of pillow flows (Embley and Chadwick, 1994). The overall extrusive layer of the Cleft segment has an averag e thickness of 350 m and varies from 200 to 550 m in thickness (McDonald et al., 1994) while depth to the axial magma chamber (AMC) varies from 1.9 km under the southern Cl eft hydrothermal vent systems to 2.23 km under the northern hydrothermal fields (Canales, 2006). There is a st rong correlation in the Cleft segment between degree of fractionation and latit ude, as lavas are generally more mafic to the north and more evolved toward the southern te rminus (Christie and Sinton, 1981; Smith et al., 1994, Stakes et al.. 2006). Since 2000, 53 rock cores and 276 rock and glas s samples have been recovered from the Cleft segment using the Remotely Operated Ve hicle (ROV) Tiburon (Stake s et al., 2006; Figure 2). Overall, a wide range of normal incomp atible element depleted MORB (N-MORB) lavas were recovered from the entire length of the Cl eft segment. The most highly evolved basalts and a few high-silica lavas were recovered off-axis, away from the neovolcanic zone, and near the RTI. In 2000, a sample of MOR, low-potassium d acite was recovered by rock core from a small topographic dome in an area of the Cleft segmen t characterized by what appear to be curved ridges and volcanic cones that overlap the wester nmost part of the Blanco Transform and appear to extend on to the Pacific plate. The extremely ra re occurrence (or at least recovery) of dacite in a MOR setting was the impetus for a ROV dive in 2004 that explored these features at the RTI, in a common yet poorly studied MOR setting. Previous Studies of Highly Frac tionated Suites Recovered at MOR Highly fractionated suites of at ypically high silica MOR lavas have been recovered in few other locations around the globe; these include the Galapagos Spreading Center (GSC), Iceland, the Pacific-Antarctic Ridge and a few places on th e East Pacific Rise. Hypotheses put forth to

PAGE 15

15 explain the formation of these petrologically ev olved suites on the oceanic floor include the cold edge effect (Christie a nd Sinton, 1981; Fornari et al., 1983; Perfit et al., 1983; Johnson and Holmes, 1989; Juster et al., 1989; Embley et al., 1991; Smith, 1993; Smith et al., 1994; Juteau et al., 1995; Tierney, 2003; Herzburg, 2004), bimodal volcanism, similar to that occurring in intrusive suites in the western United States (Reid et al., 1982; Barbarin, 1990; Ratajeski et al., 2001), and, more recently, crustal assimilation (Kerr et al., 1996; Bohrson and Reid, 1998; Garcia et al., 1998; Gee et al ., 1998; Hoernle, 1998; OHara, 1998; Weis et al., 1998; Perfit et al.., 1999). The eastern GSC at ~85W has been extensivel y studied since the late seventies (Christie and Sinton, 1981; Anderson et al., 1982; Fornari et al ., 1983; Perfit and Forn ari, 1983; Perfit and Fornari, 1983; Juster et al., 1989). The discovery of chemically fractionated (high-silica) lavas along the GSC first led to the development of the cold edge effect hypothesis (Christie and Sinton, 1981; Fornari et al., 1983; Perf it et al., 1983; Juster et al., 1989). This type of cold edge effect occurs along a propagating ri dge axis as the advancing ridge magmatic system intersects older, relatively cool oceanic lithosphere locat ed on the opposite side of a fracture zone. This intrusion presumably leads to greater extents of cooling in magma bodi es causing the magma to undergo more extensive crystallization than woul d occur in typical ridge axis settings where magma chambers are believed to be more steady-state. This hypothesis is proposed to account for the common occurrence of MOR fe rrobasalts and FeTi basalts at propagating rift tips in the Galapagos Spreading Center (Chris tie and Sinton, 1981) and lavas as evolved as andesites at the RTI at ~85W (Fornari et al., 1983; Perf it et al., 1983; Juster et al., 1989). Silicic volcanism has also recently been doc umented on the Pacific Antarctic Ridge (PAR) (Hekinian et al., 1997, 1999; Stoffe rs et al., 2002; Haase et al., 2005). Stoffers and others (2002)

PAGE 16

16 discovered different populations of evolved lavas, some consistent with crystal fractionation at low and high oxygen fugacities, and others resulting from the magma mixing of highly fractionated magmas and unevolved basaltic melt s. They hypothesize that extensive crystal fractionation occurred in a so lidification zone surrounding a ma gma chamber (e.g. Nielson and Delong, 1992). Residual silicic magma is proposed to migrate upward along the margin of the magma chamber and assimilate al tered basaltic wall-rock, increas ing its oxidation state (Stoffers et al., 2002). Haase and others (2005), associate the silicic lavas with a ridge axial high; a location where large volumes of magma are found and where ther e is associated hydrothermal venting. They further hypothesize that extensive fractional crystallizati on, facilitated by cooling from the hydrothermal vent fields, as well as assimilation of hydrotherm ally altered crustal material is responsible for the petrogenesis of the andesites and dacites found on the PacificAntarctic Rise. Recent studies have also considered the ro les of fractional crysta llization and crustal assimilation in hotspot environments such as the Galapagos Islands (Geist et al., 1998) and Iceland where crustal assimilation has been hypothesized to, in part, contribute for the heterogeneous nature of Icelandic volcanism (N icholson et al., 1991; Furman et al., 1995; Gee et al., 1998).

PAGE 17

17 Figure 1: Map of the Juan de Fuca Ridge. The Juan de Fuca medium-rate spreading ridge in located between the Pacific Plate and Juan de Fuca. It is located approximately 440 km (~238 nm) off of the coast of Washington and Oregon and spans almost 500 km between the Blanco and Sovanco Fracture Zones. The samples descri bed in the thesis were recovered from the southern intersection of the Juan de Fuca Ridge with the Blanco Fracture Zone, as highlighted by the yellow box. Map created using the open s ource java application at www.geomapapp.org.

PAGE 18

18 Figure 2: Overview of MBARI dives and rock cores on the southern Cleft segment since 2000. 53 rock cores and 276 rock and glass samples have been recovered from the Cleft segment using the Remotely Operated Vehicle (R OV) Tiburon (Stakes et al., 2006). In 2000, a sample of dacite

PAGE 19

19 was recovered by rock core from a small topogr aphic dome in an area of the Cleft segment characterized by what appear to be curved ridges and volcanic c ones that overlap the westernmost part of the Blanco Transform. Di ve T735 covered the area where the dacite rock core was taken (Stakes et al., 2006).

PAGE 20

20 CHAPTER 2 STUDY AREA AND SAMPLE RECOVERY In 1998 the Cleft segment was surveyed us ing a hull-mounted 30 kHz Simrad EM300 multibeam sonar and using 2 degree by 2 degree beam resolution, the EM300 achieved a ~30 m lateral resolution over a 3 km swath width (Stakes et al ., 2006). The mapping program was supplemented by a series of in situ observations made from the ROV Tiburon, operated from the Research Vessel Western Flyer during July 2000, August 2002 and August 2004 (Stakes et al., 2006). A total of 16 ROV dives were completed acr oss the Cleft spreadin g center; five dives across the axis near the South Cleft hydrothermal fields; five dives on the southernmost part of the segment; two dives on the northern wall of the intersection with the BFZ and dive T735, the focus of this thesis, on the hooked ridges that de fine the western side of the nodal basin where the ridge axis intersects the BFZ (Figure 2). Dive T735 utilized the ROV Tiburon in order to observe and sample the area where a dacitic glass was recovered by piston core in 2000 (Figure 3). The dive was dedicated to investigating the dome-like featur es observed in the bathymetry and recovering samples along a dive traverse that began south of the core location a nd ended to the west of the southernmost portion of the Cleft axial valley. A detailed sa mpling program was carried out as part of the ROV and surface ship operations during the dive Lava samples were recovered with the Tiburon manipulator and details of each sampling locality were documented by the scientists in charge of observations and sampling during ea ch dive. The ROV observations, contemporaneous magnetic field measurements, digital still and video images and geologic samples were all located with respect to the EM300 bathymetry through a real-time ArcView-based navigation and GIS system using the EM300 bathymetric base map (Stakes et al., 2006). The bathymetric

PAGE 21

21 data, ship locations and ROV US BL (ultra-short baseline) navi gation used a common GPS datastream with real-time depth (from the ROV) pr oviding consistent positio n information within 1020 meters of bathymetric features on the EM300 bathymetry. Below, the bathymetric, observational and sample data are integrated to provide a detailed acc ount of the geology along dive T735. T735 Dive Observations Dive T735 began at 14:49 Greenwich Mean Ti me (GMT) on a talus sl ope at the southern end of the dive track (Figure 4) but soon crossed an area dominated by lightly sedimented, intact, basaltic pillow flows, crosscut by several N-S trending fissures. Basalt samples T735-G1, at 2187 m, through T735-G6, at 2216 m, were recovered from this area, before Tiburon began to traverse upslope. At 16:05 GMT an area of la va drain-back was observed, with moderate sediment cover in between the pillows and lobate flows. At 16:13 an area of more blocky flows was observed and sample T745-G7, a basalt, wa s recovered from the top of a small knoll (2213 m). At 16:25 GMT Tiburon dropped over the edge of a fissure and moved into an area of thick sediment cover with isolated pillows basalts. Sample T735-G8 was recovered from this area at 16:39 GMT at 2232 m depth. Tiburon then moved through an area of isolated pillows with <50% sediment cover, before reaching an area of light ly sediment covered, large striated pillows and associated sheet flows. Sample T735-G9, a dacite, was recovered at 16:45 GMT from a friable sheet flow at the base of the first of the domes. Samples T 735-G10 and G11, both dacitic in composition, were recovered from large (> 1m in diameter), glassy, striated pillows lightly covered with sediment observed in conjunction in the sh eet flows that flowed down the slope to the southwest. As Tiburon continued to traverse upslope the flows became more blocky and massive, with vapor pockets and cavities observed between the layers of rock and very little sediment cover. T735-

PAGE 22

22 G12, one of the most evolved dacitic samples, was collected at 16:59 GMT from one of the vapor pockets observed in the area at 2211 m dept h and was extremely glassy in appearance. Tiburon then passed over an area with more local re lief, in the form of big, sediment-coated pillows with bread-crust textures surrounded by smoother pillow tubes. At 17:06 GMT Tiburon moved into an area of fractur ed sheet flows where andesite samples T735-G13 (17:09 GMT) and G14 ( 17:22 GMT) were collected. At 17:27 GMT, smoother pillow forms and tube morphologies do minate with more massive flows between. Then sample T735-G15, another andesite, was re covered from a region of highly vesicular (1015% vesicles), blocky flows on top of what appear ed to be a constructional dome at 17:32 GMT. The interior of the blocky flows was sampled at 17:46 GMT (T745-G16) at 2216 m and is dacitic in composition. After collecting T735-G16 Tiburon began to traverse down-slope to the east. Pillows with bread-crust texture were observed under moderate (<30%) sediment cover. Down the slope of the dome at 18:06 GMT sample T735 -G17, a dacitic pillow fragment, was recovered from a saddle at 2221 m. To the east, up, out of the sa ddle, another dome structure wa s encountered. At 18:16 GMT, two small pieces of andesitic pillo w crust were collected at 2206 m. Continuing upslope, smaller pillow forms (< 1 m in diameter) were observed up to the top of the dome at 2198 m where the morphology was dominated by flattened lobate tube s, some of which appeared to flow downslope to the south. Sample T735-G19, an andes ite was recovered from the top of the dome construct at 18:25 GMT. At 18:29 GMT Tiburon began the slow descent down-slope over a structurally undisturbed area consisting of well-formed pillows and tubes with only moderate sediment cover. At 18:36 GMT blockier, broken pillows and tubes were observed along a shallow slope. At 2234 m,

PAGE 23

23 18:35 GMT, sample T735-G20, a dacite, was recovered from a small pile of talus near an in situ pillow flow. This flow front of pillows over talu s continued for a few 10s of meters before the slope began to steepen towards the east. Sample T735-G21, a large basaltic fragment fr om an intact pillow, was recovered from the base of the steep slope at a depth of 2275 m at 19:01 GMT. A region of heavy sediment cover with isolated pillows was then traversed. Sample T735-G22, was recovered at 19:16 GMT, 2256 m, from an area of extensive collapse (likely drainback) that was associ ated with sheet flows under moderate sediment cover. A sample of an isolated basaltic pillow, T735-G23, was recovered at 19:26 GMT from 2250 m in depth. Afterwards, pillows began to dominate the landscape once more; recovery of samples G24 and G25 began at 19:37 GMT and they were both collected from a haystack at a depth of 2249 m. The northern portio n of the dive covered much more tectonized terrain with in a zone of pillow ridges sepa rated by N-S trending fissures. Samples T735-G26 through G39, all basalts, were r ecovered from pillow to lobate flows within this region.

PAGE 24

24 Figure 3: Overview of the dive track taken during Tiburon Dive 735. Yellow dots denote sample locations, while yellow bulls eyes denote th e 2000 rock cores. The 2000 rock core was

PAGE 25

25 recovered near the T735-G15 sample site. The evolved sample set is represented by samples T735-G9 through T735-G20.

PAGE 26

26 Figure 4: Profile map of dacite dome morphol ogies and evolved sample locations. Profile estimated from the depth of the ROV. Basa lt samples are designated by the blue diamonds, andesitic samples are designated by orange triangles and dacites by red circles, with every fifth sample being numbered. Large changes in the ROVs heading are noted.

PAGE 27

27 CHAPTER 3 ANALYTICAL METHODS Thirty-nine lava samples were collected from the RTI of the JdFR and the BFZ during dive T735 of the ROV Tiburon during th e MBARI research cruise in 2004. Thin-sections were made of a representative suite of the evolved samp les and one basalt recovered during the dive. Natural glasses were separated and coarsely cr ushed, and crystal-free glass separates were handpicked under a binocular microscope. Evolved lava s had fairly crystalline glass and in picking those glass chips, crystal clots and phenocrysts were avoided and the least crystalline chips were chosen for analysis. The crushed glass chips we re then ultrasonically cleaned for 10-20 minutes, in a solution made from equal part s 2.5N reagent grade HCl and 30% H2O2 in order to remove any surficial coatings, such as MnO, adhered to the sample. Major Elements Clean glass chips were mounted to thin sec tions for microprobe anal ysis, with glass from UF internal standard 2392-9, an N-MORB from th e East Pacific Rise at 9 50 N, included on each slide. Major element concentrations we re determined on natural glasses using JOEL electron microprobes at the United States Geologi cal Survey (USGS) in Denver, CO, with the help of Dr. Ian Ridley, and at Florida Internat ional University (FIU) by Dr. Michael Perfit. Traditional mineral standards were used to calib rate the microprobe analyses and secondary (offline) normalizations were completed using the UF standard 2392-2, and the USGS standard GSC, a synthetic andesite microbeam glass (Rie hle et al., 1999). Accepted values for these standards are given in Table 1. Operating condi tions for the microprobe were an accelerating voltage of 15 keV and a beam current of 20 nA. Probe diameter for mineral analyses was set to <10 m and defocused to 20 m for glass analyses.

PAGE 28

28 Typical precision was evaluated by comparing re peat analysis of UF standard glass 2392-9 (Table 1) which was mounted and analyzed on ev ery probe slide. Percen t variation in the 2392-9 analytical values was low, ranging from a one-sigma standard deviation of 6.4% in K2O to 0.13% in the SiO2. SiO2 values showed strong linear correlati ons with analysis total and were corrected to using the foll owing formula, [raw SiO2 value + ((99.7 raw total)*0.4505)], where the raw silica value has an addi tional factor added to it consis ting of an assumed total (99.7) minus the raw total multiplied by the slope of the trend-line of raw SiO2 versus the raw total (0.4505). Trace Elements Trace element concentrations were determined at the University of Florida using an Element 2 Inductively Coupled PlasmaMass Spectrometer (ICP-MS). Dr. George Kamenov developed the dissolution and analytical proced ures (see below). Sa mple preparation was performed at UF in a class 1000 clean lab f acility. Standards used included the wellcharacterized internal UF standards 2392-9 and ENDV, as well as the USGS standard BHVO-1, the surface layer of a 1919 Hawaiian pahoehoe fl ow (Flanagan, 1976). Trace elements measured by the UF ICP-MS have been determined to be accurate and precise to be tter than % of their concentration (Table 2). Phase one of the dissolution process require s that two to three standards encompassing the likely potential range of the unknown sample concentrations be chosen; for the T735 run AGV-1 and BCR-2 were used and compared alon g with two in-house standards, ENDV and 2392-9. Next, tall, clean, hex-cap Savillex Teflon vials were labeled for each sample, including one blank. Two drops of 4x water were placed in each vial and the scale was zeroed before ~.04 g of either clean glass chips were added to each vial and the precise weight was recorded. In the clean lab, 1 mL of optima grade HF and 2 mL of optima grade HNO3 were added to each vial

PAGE 29

29 and then the vials were tightly capped and pl aced in a 100C oven for approximately 48 hours. Samples were then dried down on a hot plate (car efully rinsing the caps into the vials with 4x water) for 12 to 24 hours. In phase two of the dissolution process, 4 mL of an internal standard (5%HNO3, with Re and Rh) was measured into each vial. The vials were then capped and heated on the hot plate overnight. In order to dilute the samples for analysis 200 L of solution was pipetted from each vial and transferred to a clean auto sampler tube and we ighed. Four mL of the same internal standard was added to each tube and the samples were weighed again. The final dilution factor was approximately 2000x. Samples were introduced into the ICP-MS in one-minute uptake times followed by twominute washes for each sample. The specific isotopes analyzed were: Sc45, V51, Cr52, Co59, Ni60, Cu63, Zn66, Ga69, Rb85, Sr88, Y89, Zr90, Nb93, Rh103, Ba137, La139, Ce140, Pr141, Nd143, Sm149, Eu153, Gd157, Tb159, Dy163, Ho165, Er166, Tm169, Yb172, Lu175, Hf178, Ta181, Re185, Pb208, Th232 and U238. Four runs were made with four passes pe r analysis in Medium Resolution mode. Data were reduced on-line using calibration cu rves of the standard data acquired during analyses and drift corrections were mathematica lly calculated off-line. The ENDV standard was used for drift corrections duri ng each analytical run; one measurement was taken at the beginning of the sample series, one in the middle and one at the end of the series. Accuracy and precision for the T735 analytical run was evaluated by analyzi ng ENDV standard as a sample and comparing the results to rece nt runs of the standard using the same ICP-MS instrumentation (Table 2). One-sigma standard deviations from the accepted values were less than or equal to 3.6% during these analyses.

PAGE 30

30 Table 1: Accepted values for major element standards. Internal UF Standard 2392-9 Correction Factors SiO2 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Clfor the averages of each group average 50 49.49 1.28 15.41 8.99 0.15 8.23 12.04 2.62 0.10 0.11 0.004 std dev 0 0.20 0.02 0.19 0.05 0.01 0.08 0.06 0.03 0.01 0.01 0.001 % var 0 0.41 1.57 1.22 0.50 5.13 0.96 0.53 1.33 6.43 5.59 22.79 2392-9 50.04 50.04 1.31 15.48 9.38 0.18 8.50 12.15 2.56 0.09 0.12 correction factor 1.00 1.01 1.03 1.00 1.04 1.18 1.03 1.01 0.98 0.92 1.07 for all analyses together average 50 49.52 1.28 15.41 8.99 0.15 8.24 12.05 2.62 0.10 0.11 0.004 std dev 0 0.29 0.04 0.20 0.10 0.02 0.14 0.13 0.06 0.01 0.03 0.003 % var 1 0.58 0.04 1.32 1.07 14.73 1.69 1.06 2.39 11.77 27.06 71.99 2392-9 50.04 50.04 1.31 15.48 9.38 0.18 8.50 12.15 2.56 0.09 0.12 correction factor 1.01 1.01 1.03 1.00 1.04 1.17 1.03 1.01 0.98 0.92 1.07 GSC Andesitic Glass Correction Factors SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Claverage 62.11 0.01 13.71 6.27 0.02 3.77 4.99 3.58 3.63 0.04 0.01 std dev 0.45 0.02 0.21 0.10 0.01 0.07 0.05 0.33 0.05 0.02 0.00 % var 0.73 146.27 1.56 1.57 56.90 1.73 1.10 9.11 1.30 49.46 73.04 GSC 62.05 0.01 14.20 6.33 0.03 3.89 5.00 4.06 3.60 correction factor 1.00 0.85 1.04 1.01 1.75 1.03 1.00 1.13 0.99 Final Correction Factors Used SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 ClEvolved RX 1.01 1.1 Basalts 1.03 1.04 1.1 1.03 0.97 1.07

PAGE 31

31 Table 2: ICP Trace element standards. 2005-2006 analyses of ENDV (ran as sample) together with other MORB samples (drift 1 first sample after the standards). ENDV Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Avg Std dev % error (ppm) (g/mL) (g/mL) (g/mL) ( g/mL) (g/mL) (g/mL) (g/mL) Sc 38.00 39.20 39.30 37.63 38.41 37.55 36.66 39.18 38.27 1.02 2.67 V 275.60 278.82 278.53 269.72 268.44 268.33 262.17 275.48 271.64 6.17 2.27 Cr 290.20 297.94 292.23 279.24 285.96 264.80 262.94 277.86 280.14 13.13 4.69 Co 34.40 35.06 34.82 34.32 35.28 35.06 34.74 35.84 35.02 0.48 1.36 Ni 76.20 77.93 77.24 75.36 76.13 76.13 75.21 78.85 76.69 1.36 1.77 Cu 72.40 72.86 73.02 70.64 72.69 71.41 70.83 72.38 71.98 1.00 1.39 Zn 73.15 78.03 79.20 78.95 78.93 77.45 78.75 77.78 2.13 2.74 Ga 17.20 17.19 16.76 16.91 16.73 17.07 16.86 17.02 16.93 0.17 0.99 Rb 4.38 4.54 4.40 4.37 4.53 4.24 4.26 4.38 4.39 0.12 2.68 Sr 155.80 162.21 156.59 155.15 154.02 153.99 155.42 154.84 156.03 2.87 1.84 Y 32.40 31.65 32.62 32.47 31.96 31.31 31.23 32.81 32.01 0.64 1.99 Zr 113.40 112.58 114.04 112.39 111.96 110.72 110.07 105.06 110.98 2.91 2.62 Nb 6.46 6.62 6.47 6.39 6.34 6.29 6.26 6.46 6.40 0.12 1.93 Ba 64.20 69.90 73.28 70.87 72.80 71.86 71.27 68.19 71.17 1.74 2.44 La 6.02 6.01 6.02 5.97 5.92 5.93 5.90 6.00 5.96 0.05 0.78 Ce 15.60 15.90 15.69 15.40 15.41 15.49 15.52 15.72 15.59 0.18 1.18 Pr 2.46 2.52 2.53 2.44 2.44 2.46 2.44 2.49 2.47 0.04 1.59 Nd 12.60 12.63 12.56 12.60 12.43 12.49 12.21 12.78 12.53 0.18 1.43 Sm 3.76 3.85 3.78 3.76 3.75 3.79 3.74 3.78 3.78 0.04 0.94 Eu 1.34 1.36 1.33 1.33 1.32 1.34 1.33 1.33 1.34 0.01 0.92 Gd 4.88 4.80 4.94 4.88 4.83 4.77 4.76 4.97 4.85 0.08 1.71 Tb 0.86 0.84 0.86 0.86 0.85 0.84 0.83 0.86 0.85 0.01 1.54 Dy 5.28 5.31 5.35 5.29 5.21 5.18 5.21 5.36 5.27 0.07 1.41 Ho 1.10 1.13 1.13 1.10 1.09 1.13 1.11 1.13 1.12 0.02 1.75 Er 2.98 3.13 3.08 2.97 3.03 2.99 2.99 3.02 3.03 0.06 1.84 Tm 0.48 0.48 0.50 0.48 0.49 0.48 0.48 0.49 0.48 0.01 1.51 Yb 3.12 3.12 3.14 3.11 3.15 3.10 3.05 3.12 3.11 0.03 1.03 Lu 0.48 0.49 0.47 0.49 0.49 0.46 0.46 0.48 0.48 0.01 2.83 Hf 2.88 2.85 2.95 2.88 2.83 2.79 2.78 2.63 2.81 0.10 3.56 Ta 0.38 0.37 0.37 0.39 0.37 0.38 0.38 0.39 0.38 0.01 2.34 Pb 2.00 2.06 2.05 1.97 1.97 1.97 1.99 2.07 2.01 0.05 2.26 Th 0.46 0.47 0.46 0.46 0.46 0.46 0.46 0.45 0.46 0.01 1.45 U 0.19 0.20 0.19 0.18 0.19 0.19 0.19 0.19 0.19 0.00 2.07

PAGE 32

32 CHAPTER 4 PETROGRAPHY AND MINERAL CHEMISTRY Basalts Approximately two thirds of the samples re covered from dive T735 were basaltic in composition, although all are moderately to highly evolved compared to previously published Cleft MORB lava compositions. Basaltic lava morphologies ranged from pillow tubes to sheet flows (Figure 5). Basalt hand samples have a th in glass rind with a microcrystalline interior containing macroscopic plagioclase laths and pyroxene crystals. A thin section was made of sample T735G23 going from the surface of the hand sample into the microcrystalline interior. The thin section average ~80% glass with ~20% quenched microphenocrysts of plagioclase, ranging from 2 3 to 2 mm in length, with the average being ~ 1mm in the groundmass. Larger glomeroporphyr itic clusters comprised of euhedral to subhedral, 1mm long plagioclase laths, An64-An70, with simple Carlsbad twins and stepped, irregularly spaced twinning, and inter-grown anhedr al crystals of augitic clinopyroxene (Figure 6) are present, with an Mg# of ~81.3, with the Mg# being defined as 100*[Mg/[Mg+Fe]]. Andesites and Dacites Of the 39 lava samples collected, 12 were found to be high-silica lavas, five of which are andesitic (52% < SiO2 <63%) and seven are da citic (63%
PAGE 33

33 with small crystals and crystallites (~20 30 %) of swallowtail plagioclase, pyroxene and fayalitic olivine as well as larger semi-circular fragments of darker basa ltic xenoliths scattered throughout. Phase chemical data are presented in Appendix 2. Andesite and dacite assemblages are dominated by microphenocrysts of ferroaugite and ferropigeonite, lesser amounts of sodic plagioclase and FeTi oxides, and rare fayalite, zircon and myrmekitic intergrowths of plagioclase and quartz. Fine-grained basaltic xenoliths ar e included within all of the evolved lavas. Matrix glass is variable in color ranging fr om light to dark brown, nearly opaque, in proximity to the basaltic xenolit hs. Individual euhedral to rou nded, subhedral plagioclase laths, An18 An59, were found scattered throughout the thin-s ections and comprise ~5 10% of the volume of the samples. Crystals have lower fi rst order colors and simp le Carlsbad twins or stepped, irregularly spaced twins. Rare plagioclase oikocrysts with clinopyroxe ne chadacrysts are present in one sample, T735-G10 (Figure 8, 9) Plagioclase crystals have two distinct compositional groupings in the evolved samples. Plagioclase ranging from An69 to An83, occur in xenolithic clots and as large xenocrysts that appear to be in disequilibrium. More sodic plagioclase, An38 An66, occurs in the smaller, equilibrium crystals and in the myrmekitic clot. Most individual clinopyroxene crystals ex hibit finely zoned rims surrounding a more massive core. Several examples of both nor mal and reverse zoning are observed in the clinopyroxene grains in the e volved rocks (Figure 10). Rare clinopyroxene crystals with oscillatory zoning, or hourgla ss sector zoning were also obs erved in these samples, a phenomenon that has been associated with rapid crystal growth (Carpenter, 1980; Shelley, 1993). Additionally, the observed sector zoning is commonly combined with fine concentric zoning of crystal rims (Figure 11). Skelet al clinopyroxene crystals, also i ndicative of rapid crystal growth, exhibit lacey, almost spongy, reaction rims (Figur e 12). The cores of the pyroxene crystals fall

PAGE 34

34 into two distinct groupings, with one group exhi biting cores that range from Mg# of 56.0 58.6, and the other range in core Mg# from 8.24 12.6. In addition to these two groupings, there is also a population of individual pyroxenes, Mg# ranging from 29.3 30.21, whose compositions correspond with those of the rims in the zoned pyroxenes (Figure 13). Rare fayalite crystals, Fo5 Fo15, were found in several of the evolved lavas. In plain polarized light (PPL) these crysta ls are rounded or embayed and have a deep green color (Figure 14). In crossed polars (XPL) the fayalite crysta ls displayed high second order colors and a low 2V angle of ~50. Skeletal fayalite crystals ha ve lacey to spongy reaction rims similar to those seen on the quenched clinopyroxe ne crystals (Figure 15). Rare (occurring <1% by volume of the sample ) subhedral zircon crystals were found in several of the dacitic to rhyodacitic samples (Figure 16). Zircons were first discovered through microprobe analyses and later identified by their hi gh relief and very high birefringence in thin section. Zircon grains occur almost exclusively as individual grains with no apparent connection to xenoliths or crystal clots. Two populations of xenoliths were found in th e evolved samples. Rounded xenoliths of basaltic composition with chilled margins and microcrystalline interiors (Figure 17; Fiigure 18) and coarse-grained xenoliths composed entirely of large crystals, 1mm, with rough, irregular shaped edges. The basaltic xenoliths are composed of plagioclase, An32 An71, and pyroxene, Mg# ranging from 56.7 to 80.9, and range in size from <1 mm to several mm in diameter. Larger crystals (>0.5 mm in length) are usually confined to the center of the xenoliths and can become subophitic in texture with large pyroxene crystals partially enclosing smaller plagioclase laths. Basaltic xenolithic inclusions have very dark, glassy to microcryst alline interior edges that

PAGE 35

35 extend around the circumference of the inclusio ns. An optically clearer (PPL) and less crystalline and darker zone, ~.1-.5 mm thick, surrounds many of the xenoliths. The coarser grained xenolith, found in T735-G10, an andesite, is composed of plagioclase, An34 An35, and fayalitic olivine, Fo15 (Figure 19). It exhibits no mineralogical reactions along the margin, but the edges of the xenolith are ragg ed and look like they were ripped from the country rock. A single, resorbed myrmekite of plagioclase, An27 An30, and quartz was found in sample T735-G19 (Figure 20). This is typically a pluton ic texture that occurs primarily through grainboundary reactions in slowly changing condition s (Shelley, 1993). The myrmekite is rounded and ~1 mm in diameter, with worm-like intertwining of plag ioclase and quartz.

PAGE 36

36 Figure 5: Examples of basaltic lava morphologies seen during dive T735. Left: Lobate flows at the top of a fissure. Lobates usually form at the edges of sheet flows when the lava flow slows enough to form a fluid core under a solid crust. Right: Pillows, ~1m or less in diameter, and pillow buds under moderate sediment cover. Pillows form when the extrusion rate of the lava is slow enough to form a thick outer crust around the erupting lava. Figure 6: Plain polarized and cross polar views of glomeropor phyritic texture in T735-G23. Thin sections average ~80% glass with quenc hed microphenocrysts of plagioclase scattered throughout the groundmass. The larger glomeroporphyri tic clusters were comprised of euhedral to subhedral, 1mm long plagioclase laths, An64-An70, and inter-grown anhedral crystals of augitic clinopyroxene, with an Mg# of ~81.3.

PAGE 37

37 Figure 7: Dacite dome lava morphologies. The dacite domes display much different types of lava morphologies then those seen where basaltic samples were recovered. Left: Blocky, vesicular flow at the edge of one of the dacite domes. Th e large amount of vesicles seen is a by-product of the degassing lava. Right: Extremely large pillow tubes (>1.5m in diameter) were also noted cascading down-slope on the domes. Figure 8: Plagioclase oikocryst surrounding several randomly oriented clinopyroxene chadacrysts in sample T735-G10. This poikilitic texture can be indicative of plutonic origins and it indicates that the oikocryst mineral had a much more rapid growth rate then the enclosed chadacrysts (Shelle y, 1983; Higgins, 1998).

PAGE 38

38 Figure 9: Element map of poikilitic texture s een in T735-G10, in this case, a plagioclase oikocryst surrounding low-Ca pyroxenes. Element map were completed using X-ray imaging on the JOEL microprobe. Element labels are under each picture and count scales are located on the right-hand side of the images. Brighter colors indicate higher concentrat ions of a particular element. The gray-scale image is the backscatter image in whic h elements with higher mass are displayed brighter.

PAGE 39

39 Zoning Patterns0 5 10 15 20 25 30 35 40 00.20.40.60.811.2 Relative Distance from Core to RimMg# Figure 10: Point compositions of pyroxene phenocr ysts in T735-G9 and T735-G12 are plotted to show zoning patterns. Oscillatory (points 1-4; blue line) and re verse (points 5and 6; pink line) zoning can be seen in the pyr oxene from T735-G12 (right). The pyroxene from sample T735-G9 (left) also demonstrates compositi onal zoning through its hourglass pattern.

PAGE 40

40 Figure 11: Oscillatory zoned clinopy roxene in sample T735-G9. This crystal texture is indicative of rapid crystal growth. Note the fine concen tric zoning on the edges of the crystal and the reversely zoned pyroxene to the upper left of the large crystal. Mapping details in Figure 9.

PAGE 41

41 Figure 12: Skeletal clinopyroxene grain with a lacey reaction rim surrounding the crystal, this is also indicative of rapid crystal growth. Mapping details in Figure 9.

PAGE 42

42 T735-120 10 20 30 40 50 60 70 00.20.40.60.811.2 Relative Distance from Core to RimMg# T735-90 10 20 30 40 50 60 70 00.20.40.60.811.2 Relative Distance from Core to RimMg# Figure 13: Populations of zoned pyroxenes. Th ere are two distinct populations of zoned pyroxenes. One group exhibits co res that range from Mg# of 56.0 58.6, and the other range in core Mg# from 8.24 12.6. In addition to these two groupings, there is also a population of individual pyroxenes, Mg# ranging from 29.3 30.21, whose compositions correspond with those of the rims in the zoned pyroxenes.

PAGE 43

43 Figure 14: Olivine and plagioclase glomerophyric cluster. Olivine is fayalitic in composition. Figure 15: Element map of skeletal fayalite crystal in sample T735-G12. Note the lacey reaction rim. Mapping details in Figure 9.

PAGE 44

44 Figure 16: Rare (<1% of the sample) euhedral zircon phenocrysts seen in samples T735-G12 and T735-G19 were discovered thr ough microprobe analyses. Zirconium concentrations in the evolved samples range from 397 to 672 ppm. They were later able to be recognized in thin section due to their high re lief and birefringence.

PAGE 45

45 Figure 17: PPL (left) and XPL (right) views of a ba saltic xenolith in sample T735-G11. Basaltic xenoliths typically are rounded w ith slightly coarse grained interiors and chilled margins. Figure 18: Element maps of a basaltic xenolith in sample T735-G12. Note the high Mg content, indicating the basaltic na ture of the xenolith. Mapping details in Figure 9.

PAGE 46

46 Figure 19: A coarser grained xenolith, found in T735-G10, is composed of plagioclase, An34 An35, and fayalitic olivine, Fo15. The edges of the coarse grai ned xenolith are rough and there are no signs of mineralo gical reactions. Mapping details in Figure 9.

PAGE 47

47 Figure 20: Myrmekitic intergrowth of quartz an d plagioclase. The PPL view of myrmekitic intergrowth of plagioclase, An27 An30, and quartz found in sample T735-G19. Element maps of the myrmekite display the wormy intergrown texture of the quartz a nd sodic plagioclase. Mapping details in Figure 9.

PAGE 48

48 CHAPTER 5 MAJOR AND TRACE ELEMENTS Basalts Mid-ocean rdge basalts recovered from the Cleft segment exhibit geochemical characteristics consistent with typical normal, incompatible element-depleted MORB (NMORB). Representative basaltic glass compositions are given in Table 3, with the complete data presented in Appendix 3. Major and Minor Elements Basalt compositions are fairly evolved overall with nineteen of the twenty-three basalts recovered being ferrobasalts (FeOT > 12.0 wt.%). Basalt compositions are tightly grouped with MgO ranging from 7.55 weight % in the most pr imitive basalts to 6.29 wt% in the most evolved basalt recovered (Table 3). The Al2O3 values decrease from 13.8 wt%, in the most primitive basalt sampled, to 12.8 wt% in the most evolve d. The CaO concentrations also fall, with abundances decreasing from 11.8 wt% to 10.9 with decreasing MgO. The FeOT and TiO2 values increase with decreasing MgO from 10.8 to 12.9 wt% and 1.61 to 2.26 wt% respectively. Concentrations of Na2O, K2O and P2O5 also increase with decrea sing MgO, rising from 2.45 to 2.69 wt%, 0.12 to 0.20 wt% and 0.14 to 0.25 wt% resp ectively. Lastly, MnO shows a loose overall decline, from 0.24 to 0.18 wt% with decr easing MgO, the trend is scattered due to the low concentration of the oxide in the samples. The major elements within the recovered basalt suite all plot smoothly relative to MgO (a nd each other) with no major inflection points. The T735 basalts have compositions similar to other southern JdF basalts but have limited variation compared to the all of Cleft segment basalts, of which two hundred and eighty-six samples were analyzed for major elements (S mith, 1994; Stakes et al., 2006; Figure 21). Overall, Cleft segment MORB show relatively lit tle major element chemical variation at any

PAGE 49

49 given MgO content, forming welldefined geochemical trends cons istent with differentiation via low-pressure fractional crystall ization of similar parental lavas (Smith, 1994; Figure 22). Previously published data for Cleft segment la vas range in MgO from 10.5 wt% in the most primitive basalts, to 4.41 wt% in the most evol ved samples and reported Mg#s range from 70.8 to 32.6. However, the majority of reported data exhibit MgO contents greater than 6 wt%, with sixty samples extending the compositional range to the more evolved compositions. The major elements for the T735 basalts all plot near the center of the overa ll range of MgO values (Figure 22). The Al2O3 values of the T735 basalts are lower at a given MgO than in the existing Cleft data set which ranges from 17.7 to 12.2 wt% with falling MgO (Smith, 1994; Stakes et al., 2006). For example, at an MgO of ~7 wt% Clef t basalts range from 13.5 to 14.9 wt%, whereas T735 samples range from 13.1 to 13.3 wt%. Similarly, FeOT concentrations of T735 samples, which range from 12.9 to 10.8 wt%, form a trend w ithin the Cleft data trend which ranges form 7.92 to 16.3 wt% with falling MgO (Smith, 1994; Stak es et al., 2006). At an MgO of ~7 wt% FeO ranges from 11.5 to 13.1 wt% in Cleft basalts, while T735 samples have a range of 11.07 to 11.22 wt%. Within the overall Cleft segment data a group of 2 basalts, 8 ferrobasalts and one andesite form an apparent subs idiary trend towards lower FeOT concentrations, from 13.4 to 11.6 wt%, at values of MgO, ranging from 5.98 to 4.46 wt % (Figure 22) while most of the Cleft data exhibits an increase in FeO to ~16 wt%. It is important to note th at the group of low FeO samples exhibits a trend with decreasing MgO towards the compositions of the andesite and dacite samples described below. The TiO2 values for dive T735 basalts and ferroba salts are relatively high particularly the more evolved end of the ferrobasalts, wh ich have values from 1.60 to 1.99 wt% TiO2 at a MgO

PAGE 50

50 value of ~7 wt% and ranges from 2.02 to 2.18 in the T735 dive samples. In both the Cleft basalts, which range from 0.89 to 3.15 wt% TiO2 with falling MgO, and the T735 samples the TiO2 trend in the basalts is one of increasing concentration with decreasing MgO. As with the FeO data discussed above, there are several Cleft samples in the ferro-basalt/andesite range that display relatively low TiO2 concentrations tr ending towards the compositions of andesites and dacites recovered in dive T735. The CaO and Na2O data for T735 basalts and ferrobasalts fall in the center of the data trends established by the Cleft samples, which range from 12.6 to 8.47 and 2.11 to 3.38, respectively, with decreasing MgO. The observed trends of decreasing CaO and increasing Na2O with decreasing MgO are also sm ooth, without inflection points. Overall, the major element trends observed in the data support fractiona l crystallization of plagioclase and olivine, indicate d by the trend of decreasing Al2O3, with decreasing MgO coupled with a trend of increasing CaO/Al2O3 with decreasing MgO obser ved in the most mafic samples. It is likely that clinopyroxene enters as a crystallizing phase when the magma reached approximately 7.9 wt% MgO, as indicat ed by the inflection point in CaO/Al2O3 (Figure 22) which steadily decreases thereafter. Water and CO2 concentrations for two of the T 735 basaltic lavas, T735-G23, and T735G35, the most mafic sample recovered, are 0.27 and 0.17 wt. % and 118 and 101 ppm, respectively. Chlorine concentrations for th e T735 basalts range from 90 to 410 ppm with decreasing MgO. Trace Elements Trace element concentrations in the T735 basal tic lavas lie within the compositional ranges of other Cleft basalts (Figure 23) While the T735 basalts displa y little to no trend on their own, when included with the reported Cl eft data overall trends are apparent. Zirconium increases in a tight, smooth pattern with decreasing MgO from 102 to 142 ppm in the T735 basalts and from

PAGE 51

51 51.4 to 607 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Yttrium also displays an increasing concentration with decreasi ng MgO ranging from 37.6 to 53.4 ppm in the T735 samples and from 21 to 220 in the Cleft samples. Tantalum values plot in a tight group ranging from 0.15 to 0.29 ppm in the T735 data with a sl ight, but poorly define d, increasing trend vs. decreasing MgO while the Cleft sa mples range in Ta concentration from 0.11 to 0.90 ppm, with most samples plotting within ~.1 ppm at given Mg O contents. Lanthanum, Sm and Lu all show well defined increasing trends plotted against decr easing MgO when incl uded with the Cleft samples. Lanthanum ranges from 3.40 to 5.24 ppm in the T735 samples and from 1.9 to 21 ppm in the Cleft samples, respectively, Samarium ranges from 3.49 to 4.87 ppm and from 1.8 to 17.6 ppm respectively, and Lu ranges from 0.58 to 0.81 ppm in the T735 basaltic samples and from 0.30 to 3.44 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Rubidium and Nb show increasing trends that are le ss well-defined and show greater scatter than the trace elements discussed above (Figure 23) when plotted against decreasing Mg O. Rubidium ranges from 0.73 to 1.31 pmm in the T735 basaltic samples, wh ile ranging from 0.24 to 5.8 ppm in the Cleft samples and vary by ~2 pmm at ~7 wt% MgO ~ 2.7 ppm at an MgO of ~5 wt%. Niobium ranges from 2.88 to 4.76 ppm in the T735 basalts and from 1.4 to 18.7 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Strontium and Cr both decrease in concen tration with decreasing MgO (Figure 23). Strontium shows an overall decrease with decr easing MgO, ranging from 118 to 99.7 ppm in the T735 basalts and from 150 to 82.4 ppm in the Cl eft samples (Smith, 1994; Perfit, unpublished). The spread of the main body of data is fairly wi de with the Sr ranging from 98 to 128 ppm at an MgO of ~7.2 wt. percent. Chromium shows a clearer trend ranging from 287 to 98.3 ppm with

PAGE 52

52 decreasing MgO in the T735 samples and from 584 to 11 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Vanadium shows an increasing trend in the Cl eft data until ~6 wt. pe rcent MgO (full range: 8.69 to 3.41 wt. percent MgO) when there is an in flection point and a downward trend toward the more evolved compositions. Vanadium ranges from 395 to 330 ppm in the T735 basalts and from 569 to 185 in the Cleft samples (Smith, 1994; Perfit, unpublished). The inflection point seen is consistent with the introduction of titano-magnetite as a crystallizing phase. On a trace element primitive mantle-nor malized plot (McDonough and Sun, 1995; Figure 24), the samples show highly incompatible elemen t depletions and negative Sr (4.73 to 5.6 times primitive mantle) and Pb (6.44 to 9.26 times primitiv e mantle) anomalies. Concentrations of the most highly incompatible trace elements ar e at 10 times primitive mantle or below. Primitive mantle-normalized Rare Earth Elements (REE) diagrams (Figure 25), (McDonough and Sun, 1995), show that the samples ha ve Light Rare Earth Element depleted smooth patterns with concentrations at about 5 to 10 times primitive mantle. The light REE show a slight depletion in rela tion to the heavy REE, and slight Eu anomalies, attributed to plagioclase crystallization. Lanthanum/Samarium ratios rang e from 0.63 to 0.74 in the MORB samples recovered, while Ce/Yb ranges from 0.78 to 0.89. Overall, there is an increase in total REE with decreasing MgO content. Andesites and Dacites The more evolved rocks create an extension of the tholeiitic differentiation trend seen in the recovered MORB. Representative evolved gl ass compositions are given in Table 3, with the complete data presented in Appendix 3.

PAGE 53

53 Major and Minor Elements In the chemically fractionated lava suite, SiO2 ranges from 62.0 to 66.9 wt%, over an MgO wt% range from 1.94 to 0.6, with an Mg # ra nge of 15.9 to 6.1; significantly lower than the nearby basalts and all of the previously recovere d samples from the Cleft ridge axis. Aluminum oxide values range from 13.6 to 12.2 wt% with decreasing MgO and are slightly scattered (Figure 22). Titanium oxide values range from 1.4 to 0.81 wt% and FeOT ranges from 7.28 to 10.3 wt%, both oxides falling in loosely constraine d trends with MgO content. The offshoots from the FeTi-basalts found in the overall Cl eft dataset, are most pronounced in the TiO2 and FeOT variation diagrams as they trend towards the more evolved compositions. Calcium oxide falls from 5.4 to 3.4 wt% with MgO, in a very tig ht trend along the same line as the basalts. The Na2O also has a tightly constrai ned grouping with a range in we ight percent from 4.36 to 5.07 that plots very smoothly along the same trend line as the basalt values. The K2O values increase from 1.02 to 1.30 wt% with falling MgO concentration. H2O concentrations in the evolved samp les range from 1.5 to 2.0 wt% while CO2 concentrations were below det ectable limits. Chlorine concen trations range from 4100 to 6100 ppm with decreasing MgO. Trace Elements Incompatible trace elements increase in c oncentration in the evol ved lava samples as MgO concentrations fall and form a trend wherein th e single dacite glass, that was recovered in a rock core taken in 2000 (RC10) is comparable and is therefore in cluded in the discussion of the evolved samples from Dive T735. Zirconium rises from 397 to 737 ppm in evolved samples with decreasing MgO. Yttrium rises from 158 to 240 ppm and Ta concentr ations rise from 0.927 to 1.6 ppm with falling MgO in the evolved samples. Lanthanum concentrations rise with falling MgO from 22.4 to 33.8 ppm in the evolved lavas. The concentration of Sm ranges from 13.8 to

PAGE 54

54 21.1 ppm with falling MgO and Lu ranges from 2.38 to 3.65 ppm in the evolved lavas. The Rb and Nb concentrations increase as well with fal ling MgO in the evolved samples with Rb rising from 9.17 to 12.7 ppm and Nb rising from 14.0 to 21.2 ppm in the samples. Strontium and Cr concentrations both decr ease with decreasing Mg O in the T735 samples (Figure 23). Strontium falls from 92 to 67.4 in a loosely defined trend an d Cr falls from 54.1 to 1.84 ppm in the evolved lavas, overall the trend is much tighter and mo re distinct then seen in the Sr. Scandium and V both decrease in concentrati on in well-defined trends and extend the trends in the Cleft samples after the inflection point at ~6 wt. percent MgO. Scandium falls from 23.4 to 15.9 ppm in the T735 samples, and the V falls from 178 to 47.6 ppm. Trace element concentrations show much mo re variation in the mantle-normalized and REE diagrams than observed in the T735 basalts, consistent with certa in phases differentiating out of the melt (Figure 24). Large negativ e anomalies in Sr (3 .19 to 4.12 times primitive mantle), P (5.13 to 19.3 times primitive mantle) and Ti (3.62 to 6.21 times primitive mantle) are consistent with the crystallization of plagiocl ase, apatite and titanomagnetite, respectively, from the melt. All of these phases are present in the evolved samples. The primitive mantle-normalized REE diagram displays an overall smooth, flat pattern within the evolved samples (Figure 25). La nthanum/Samarium ratios range from 0.98 to 1.12, while Ce/Y ranges from 1.0 to 1.1. Europium di splays an increasing negative anomaly (7.03 to 9.16 times primitive mantle) as MgO decreases which is consistent with the continued crystallization of plagio clase out of the magma.

PAGE 55

55 AFM Diagram MgO 0102030405060708090100 FeO 0 10 20 30 40 50 60 70 80 90 100 Na2O+K2O 0 10 20 30 40 50 60 70 80 90 100 Smith, 1994; Stakes, 2006 Dive T735 Figure 21: AFM Diagram comparing Smith, 1994 and Stakes, 2006 samples to dive T735 samples. Basalts follow a typical tholeiitic diffe rentiation trend. The evolved samples from dive T735 form an extension of the t holeiitic trend taken to >80% cr ystallization, after a gap of no data. The evolved samples have lower concentrati ons of FeO due to the cr ystallization of FeTi oxides out of the melt.

PAGE 56

56 Figure 22: Major element plots co mparing previous studies of th e Cleft segment (Smith et al., 1994; Stakes et al., 2006) to dive T735 samples.

PAGE 57

57 Figure 22: Continued.

PAGE 58

58 Figure 23: Trace element plots comparing previous studies of the Cleft segment (Smith et al., 1994; Perfit, unpublished) to dive T735 samples.

PAGE 59

59 Figure 23: Continued.

PAGE 60

60 Figure 24: The primitive mantle normalized (McDonough and Sun, 1995) spider diagram displays the depletion of severa l key trace elements in the evolve d glasses compared to the basalt compositions. Strontium is incorporated into the structure of plagioclase crystals, while the Ti depletion is due to the crystallization of titanomagnetite. The P depletion is due to the crystallization of apatite in the evolved sample s. Sample 99RC99 (-) is an andesite recovered from the coaxial segment and shows the same trend as the evolved samples recovered from the RTI.

PAGE 61

61 Figure 25: The primitive mantle normalized (McDonough and Sun, 1995) REE plot shows the two distinct groupings within th e sample group. The basalt sample s show the typical flat REE pattern while the evolved glasses have a ch aracteristic Eu depletion from plagioclase crystallization. The black outline displays th e REE range of the Smith, 1994, samples. The LREE in the evolved glasses are slightly enriched compared to the basalt glasses. Sample 99RC99 shows a similar enrichment trend.

PAGE 62

62 CHAPTER 6 DISCUSSION The lavas recovered during dive T735 repres ent one of the most complete and evolved suites recovered from a MOR environment. The atypical composition of the T735 suite provides an opportunity to investigate petrogenetic proces ses of MORB evolution that have been well addressed by traditional magma chamber models cr eated for on-axis volcanism that do not fully explain the petrogenesis of these andesites and dacites. Here we explore several hypotheses in an attempt to constrain the potential petroge netic history of this unique suite. One of the prevailing hypotheses for the petroge nesis of evolved MOR lavas is that they are formed by extreme fractional crystallization of basaltic magmas, in part due to the cold edge effect, an effect associated with MOR lavas er upted close to an oceanic transform fault or an area where a ridge is propagati ng into older oceanic crust (Chr istie and Sinton, 1981; Fornari et al., 1983; Perfit et al., 1983; J ohnson and Holmes, 1989; Juster et al., 1989; Embley et al., 1991; Smith, 1993; Smith et al., 1994; Juteau et al ., 1995; Tierney, 2003; He rzburg, 2004). The ridgetransform intersection (RTI) of the JdFR and the BF Z is an area where the cold edge effect is likely to affect the petrogenesis of MOR lavas (Stakes et al., 2006). The Blanco Transform is approximately ~345 km long from the southern term inus of the JdFR to the northern terminus of the Gorda Ridge (Chadwick et al., 1998) that results in the axis of the southern Cleft segment abutting old and cold lithosphere that is approximately 6.3 million years old; hence providing an environment for extensive cooling. Comparison to Other Evolved Suites Although relatively rare in MOR environments highly evolved lavas and plutonic rocks (generally known as plagiogranite s) have been found in a number of diverse environments that

PAGE 63

63 include fast, intermediate and sl ow spreading ridges, back-arc ba sins, and quite a few ophiolites. A wide range of samples from these environments are compared to the T735 suite in Figure 26. These samples include lavas from the Galapagos Rift (Fornari et al ., 1983) volcanic samples from the Mid-Atlantic Ridge (Hekinian et al., 1997) back arc basin (BAB) samples from the Southwest Pacific (Nakada et al., 1994), the La u Basin (Falloon et al., 1992) and the western Pacific (Bloomer, Smithsonian Institution Volcan ic Glass Individual An alysis File, VG no# 9772 9777). Geochemical comparisons have also been made with evolved plutonic samples from supra-subduction zone ophiolites from California (Beard, 1998), Greece (Tsikouras and Hatzipanagiotou, 1998; Bbien, 1991), Norway (Pedersen and Malpas, 1984), Newfoundland (Malpas, 1979), Oregon (Phelps and Ave Lallema nt, 1980), Chile (Saunder s et al., 1979), Crete (Koepke, 1986), and Canada (Flagler and Spra y, 1991). Four experimental plagiograntic residual melt compositions were also compared to the T735 samples; residual melts from a gabbro heated to 900 C and 940 C (Koepke et al., 2004) the partial me lt of a MORB protolith heated to 955 C (Dixon-Spul ber and Rutherford, 1983) and th e partial melt from a hydrous MORB heated to 950 C (Berndt, 2002). SiO2 values for the T735 lavas are generally lo wer those of plagiogranite compositions at similar MgO concentrations (Figure 26). SiO2 values of the evolved T735 suite range from 62.0 to 66.9 wt% in samples containing less than 2 wt% MgO compared to plagiogranite samples that have values that mostly ra nge from 64.5 to 68.13 wt% SiO2. Experimental partial melts of wet and dry MORB protoliths (~ 900 955C) have quite variable SiO2 values, (60.9 to 65.8 wt% SiO2) but they all generally display higher MgO then the T735 evolved lavas, with the lowest MgO value, 1.29 wt%, in the partial me lt generated from the dry MORB parent.

PAGE 64

64 In general the T735 evolved lavas have lower concentrations of Al2O3 compared to the majority of evolved samples. The T735 evol ved lavas have a very limited range of Al2O3 from 13.6 to 12.23 wt% compared the global volcanic su ite that has values ranging 16.0 to 11.4 wt%, including some subvolcanic rocks having the highest values at 16.0 and 15.83 wt%. Al2O3 in the plutonic suite ranges from 18.1 to 10.4 wt%. Th e experimentally derived melts all have comparatively high concentrations of Al2O3 ranging from 20.1 (gabbro protolith) to 15.41 (dry MORB protolith) wt% Al2O3. The T735 evolved lavas are enriched in TiO2 relative to the bulk of the compared evolved samples. The T735 evolved lavas range from 1.39 to 0.81 wt% TiO2 while within the volcanic suites, the only one with samples of higher value, range from 2.44 to 0.34 wt%. The plutonic suite displays very low TiO2 values, which range from 0.84 to 0.30 wt%. Such low TiO2 values could be indicative of an island arc signal given that many of these rocks were believed have been formed in supra-subduction zone envi ronments. The evolved liquid from the MORB protoliths have TiO2 values of 1.25 and 1.17 wt%, which lie within the field outlined by the T735 evolved lavas. The gabbroic prot oliths both have very low TiO2 values, 0.36 and 0.12 wt% TiO2. K2O is extremely enriched in the T735 evolved lavas relative to any of the plagiogranite comparison suites, ranging from 1.02 to 1.30 wt%. Only one sample, a volcanic sample from the MAR (Hekinian et al 1997), lies within the field create d by the T735 samples, with its value being 1.09 wt% K2O. Dive T735 Samples During dive T735, we documented the presence of two constructive volcanic mounds that are comprised of massive pillow s to blocky, vesicular, silicic lavas. Morphology ranges from large (>2 m in diameter) pillow tubes, to extr emely vesicular (~20% elongate vesicles), blocky

PAGE 65

65 flows, a drastic change in morphology from the small (~1m in diameter), rounded non-vesicular pillows observed in the surrounding areas where only basalts were recovered. The petrography and phase chemistry of the e volved samples recovered are indicative of a complex petrogenetic process. Two populations of phenocrysts were found within the evolved samples, each exhibiting chemical zoning. Iron-ri ch pyroxenes, that have core Mg# from 8.24 to 12.6, were reversely zoned while those with Mg-rich cores, ~Mg# of 57.2, exhibit normal zoning. The rims of both populations approach similar compositions with Mg# ranging from 27.7 to 37.5. Significantly, the rims approach th e microphenocryst compositions in the glass matrix. This petrographic evid ence suggests two things; Mixing between a relatively mafic (basaltic ) magma and a highly evolved magma, likely rhyodacitic, each of which crystallized pyroxene before mixing occurred (Barbarin, 1990; Furman et al., 1995; Perfit et al., 1999; Grove, 20 00; Ratajeski et al., 2001 ). The silicic magma was relatively dry when it erupted, indicated by the presence of fayalite and Fe-rich pyroxene in the recovered rocks rather than amphibole (Dixon-Spulber and Ru therford, 1983; Koepke et al., 2004; Berndt et al., 2005). Several xenoliths with coarser-grained textures, indicative of slower, crystallization conditions, are also present in the andesites a nd dacites. These include rare plagioclase oikocrysts containing low-Ca pyroxene chadacrysts as well as a coarse-grained xenolith comprised of plagioclase (An34 An35) and fayalitic olivine, (Fo15), present in sample T735-G10. A quartz-plagioclase myrmekitic intergrowth is present in sample T735-G19. The presence of these textural features indicates that that the erupted lava interacted with an evolved plutonic body or mush zone.

PAGE 66

66 Rounded basalt xenoliths are also present in the evolved lavas. They range in size from <1 mm to several mm in diameter, and have fine-g rained to opaque rims. These presence and texture of these xenoliths basa ltic magma intruded/recharged an evolving magma body. The fresh, mafic material would have been at a much higher temperature then the evolved, viscous melt it intruded into/mixed with. The high viscos ity of the evolved melts would have inhibited large scale mixing with the fresh mafic materi al and the temperature difference between the melts (basaltic >1200 C; dacitic <1000 C) coul d explain the fine-grained textures of the basaltic xenoliths and chilled margins. Major and trace element variations observed in the entire T735 suite indicate a bimodal sample set, that has no samples of intermed iate composition (Figure 22; Figure 23) although it should be noted that most of the basaltic sa mples recovered around the andesite/dacite domes have fairly fractionated compositions with many being ferrobasalts (FeO >12 wt.%). There are a number of different ways that these kinds of rock suites have been hypothesized to form; the extreme fractional crystallization of a MO R magma (Fornari et al., 1983; Perfit et al., 1983; Juster et al., 1989; Geist et al ., 1998; Perfit et al., 1999; Grove, 2000); magma mixing between an extremely evolve d, possibly rhyodacitic end-member and a ferrobasalt (Barbarin, 1990; Perf it et al., 1983; Furman et al., 1995; Hekinian et al., 1999; Perfit et al., 1999; Grove, 2000; Ratajeski et al., 2001); partial melting of the hydrated oceanic crust (Dixon et al., 1995; Brandriss et al., 1999; Berndt et al., 2005); assimilation of oceanic crust and assimilation fractional crystallization (AFC) (Bohrson et al., 1998; Garcia et al., 1998; Gee et al ., 1998; Hornle et al., 1998; Grove, 2000).

PAGE 67

67 Fractional Crystallization Silica rich rocks found in oceanic environm ents may be formed by extreme amounts of fractional crystallization (Perfit et al., 1983, Juster et al.., 1989). The Galapagos are a prime example of an area where the ev olved lavas recovered fit the extreme fractional crystallization model well. Juster et al., 1989, used experimentally determined phase boundaries to model the fractionation of lavas recovered at 85 W. The results of the experiments determined that the range of compositions found there were the result of shallow-leve l differentiation processes and the higher levels of fracti onation and silica enrichment were due to the higher fO2, which allowed for a titanomagnetite bearing assemblage to begin to crystallize earlier, driving the concentrations of SiO2 up and FeO and TiO2 down. To test a fractional crystallization model fo r the Cleft suite, liquid lines of decent (LLD) (Appendix 4) were calculated using the progr am Petrolog (Danyushevsky, 2001) under various starting conditions (e.g. pressure, oxygen fugaci ty, different mineral assemblages). Sample T735-G35 was chosen as the composition of the pa rent melt because it is the most mafic sample recovered in the area were the evolved samples were recovered. The mineral-melt models of Danyushevsky (1999) were chosen for calculating th e compositions of olivine, plagioclase and clinopyroxene; Ariskin (1993) fo r orthopyroxene and Ariskin and Barmina (1999) were used for magnetite compositions. Melt oxidation states along the QFM buffer were determined using the conditions of Borisov and Shapkin, 1990. Calculations were run at 200 bars and 1 kb of pressure, in order to simulate the pressure at the seafl oor and within the shallow crust (~3 km). All calculations were executed assuming perfect frac tional crystallization in 0.1 wt% incremental crystallization steps and were typically termin ated ~88% total crys tallization when certain components were expended. Using the 200 bar mode l, which started at 1185 C and was run at QFM, the calculated major element trends (Figur e 27) are fairly smooth with a major inflection

PAGE 68

68 point seen in SiO2, Al2O3, TiO2, and FeO at an MgO of ~3 wt% when titanomagnetite enters as a crystallizing phase, after ~65% cr ystallization of the parental melt. Oxidation state affects the temperature and composition at which titanomagne tite (and ilmenite) crystallizes; higher oxygen fugacity causes earlier (higher T, less total cr ystallization) stabilizat ion of oxide phases. Consequently, the modeled inflection point occurs earlier in the chemical evolution when using an oxygen buffer higher than QFM. Figure 28 show s the relationship between temperature and percentages of mineral phases in the crystall izing assemblage from a successful model. The modeled order of crystallization al ong a QFM buffer at 200 bars is olivine olivine + clinopyroxene olivine + plagiocl ase + clinopyroxene plagioclase + clinopyroxene + orthopyroxene plagioclase + clinopyroxene + ort hopyroxene + magnetite (Figure 28). The modeled LLD at QFM corresponds well to the interpreted crystallization order based on petrographic examination of sample thin sectio ns. The order of crysta llization is olivine + plagioclase plagioclase + clinopyroxene olivine plagioclase + clinopyroxene + FeTi oxides olivine plagioclase + pigeonite (or orthopyroxene) + FeTi oxides. Dacite compositions are predic ted to form after approximately 80% crystallization, even though the phase equilibria used in the Petrolog pr ogram are not very well constrained in such evolved compositions. The results of the models generally agree with the major element trends observed in the dacites. SiO2 values in the evolved rocks ar e slightly higher than model predictions and K2O is over-enriched, while TiO2, Al2O3 and P2O5 are lower relative to the calculated abundances (Figure 27). Variations in the trace element abundances were modeled for selected elements using the Raleigh fractionation equation, pha se proportions predicted by the major element models and published trace element Kds (Bougault and Heki nian, 1974; Shimizu and Kushiro, 1975; Duke,

PAGE 69

69 1976; Matsui et al., 1977; Mysen, 1978; Kravuch uk, 1981; Villemant et al., 1981; Colson et al., 1988; Kloeck and Palme, 1988; Agee, 1990; Mc Kenzie and ONions, 1991; Keleman and Dunn, 1992; Hart and Dunn, 1993; Hauri et al., 1994; Nikogosian and S obolev, 1997; Bindeman et al., 1998) and also by assuming Kds of zero for the mo st incompatible elements. Calculated trends for several of the incompatible trace elements also seem to follow calculated fractional crystallization trends (Figure 29) although in order to re ach the concentration levels of the most evolved compositions greater than ~90% crystallization is requi red. The enrichments observed in some of the most incompatible trace elem ents could not be mode led even if the bulk distribution coefficient was assumed to be zero. Trace element variations generated with publishe d Kds are only slightly below the actual trends of the lavas recovered (Figure 29). Zr, Y and Sm concentrations are well-modeled using the Rayleigh fractionation equati on with a D of zero and the propor tions of minerals determined from the Petrolog models. The La, K and Rb values of the evolved lavas, on the other hand, are significantly higher than the calculated abundances even using an assumed D of zero, which would give the maximum enrichment. Modeled vari ations for Cr, Ni and V compare favorably to the actual evolved compositions, but the Cr and Ni concentrations of some intermediate to evolved basalt samples are lower than those in th e calculated model. Kds for Ni and Cr are not well-constrained for basaltic systems though. Sr and Sc are significantly lower in the evolved samples when compared to the modeled concentrations. In general, fractional crystal lization seems to adequately (t hough not entirely) explain the elemental trends, although mode ls suggest extreme amounts of crystallization (>80%) of an already evolved basalt parent in order to duplicat e the major element compos itions of the dacites. With such extreme amounts of crystallizat ion needed in order to model the evolved

PAGE 70

70 compositions, there would be a problem with a crys tal-laden melt being able to erupt, as the melt has progressed well past the soli dification front predicted at 40 % crystallization (Marsh, 2000). Magma Mixing Petrographic evidence supports magma mixing was involved in the petrogenesis of the evolved suite, and might help to explain some of the discrepancies in the elemental trends as well as the compositions of some basaltic andesites recovered along the axis of the Cleft segment north of this study area. Clear ly the bimodal pyroxene compos tions and extensive amounts of zoning, as well as chilled basaltic xenoliths observed in all of the evolved samples, point to some type of magma mixing event or events. The phase chemical variations suggest there was mixing between a basaltic end-member, possibly as evolve d as a ferrobasalt, and a very evolved magma, possibly as evolved as a rhyodacite or rhyolite, to create the an desitic and dacitic lava samples recovered. There is no evidence of evolved magma mixing with mafic basaltic liquids. In order to evaluate the potential role of magma mixing, mass bala nce mixing calculations were performed between likely mixing end-member compositions. As the most evolved silicic end-member(s) is unknown, all mixing lines were calculated using the composition of dacite sample T735-G12 (Mg# of 6.14), the most evolve d lava recovered. The three basaltic endmembers chosen were T735-G35 (Mg# of 37.5, MgO = 7.55 wt%), the most mafic basalt recovered during the dive, T735-G7 (Mg# of 32.3, MgO = 6.79 wt%), a moderately evolved basalt and T735-G32 (Mg# of 29.8, MgO = 6.29 wt%), the most evolved basalt recovered on the dive. Increments of mixing were calculated for every 10% portion (i.e. 10% of A and 90% of B, 20% of A and 80% of B, etc.) using a standard mass balance equation (Langmuir et al., 1978). The calculated mixing lines (Figur e 30) represent a few of the pot ential mixing models that are possible.

PAGE 71

71 Results of the mixing calculations show that the compositions of some of the outlying samples on the major element plots that did not fit the fractional crystallization models are better explained by magma mixing. In pa rt, the group of 2 basalts, 8 ferr obasalts and one andesite from the entire S. Cleft suite that show a trend of decreasing FeO concentrations with decreasing MgO fall along the mixing line from T735-G7 to T735G12. Mixing lines calculated using the two more mafic basalt samples as end-members don t seem to include any outlying basaltic and andesitic samples in their trends. It could be in terpreted that, if mixing was involved in creating these intermediate outliers, and the evolved compos itions they trend towards, that one of the endmembers involved in the mixing woul d have to be a fairly evolve d ferrobasalt or FeTi-basalt, since the most evolved sample recovered provid es the best end-member to explain elemental trends in the full dataset. The mixing calculations suggest a mix of 30 40% of the ferrobasalt (T735-G32) with 60 70% of the dacite (T735-G12) would be requ ired in order to crea te the observed evolved compositions in the T735 suite. The moderately evolved andesites observed in the larger Cleft dataset would require only about 30% of the dacitic end-member to be mixed with the ferrobasaltic liquid. The petrology of the samples, and the presence of the myrmekite, zircons, fayalite as well as sodic plagioclase (An18 ) and iron-rich pyroxene (Mg# of 8.24) crystals, as well as the fine magnesian rims surround Fe-rich pyroxene (Figures 11 and 12) and fayalite (Figure 15) cores, strongly sugge st that there is the possibility of an even more evolved endmember then T735-G12 was involved that was mixe d back to create the compositions recovered. Based upon the trajectory of the mixing lines dr awn between the evolved samples and possible basaltic end-members, the projected evolved end member might be expected to have a composition similar to this: ~67 wt% SiO2, ~12 wt% Al2O3, 0.75 wt% TiO2, 7.5 wt% FeOT, ~3.0

PAGE 72

72 wt% CaO, ~5.2 wt% Na2O and K2O ~1.4 wt%. All these values were estimated by extrapolating the current mixing model to an MgO of almost zero. The trace element compositions also seem to be more supportive of a mixing model, as crystal fractionation cannot accoun t for over-enrichments seen in highly incompatible elements such as La, Sm, Zr, and Y where a Kd of zero is needed to approximate the observed values in the most fractionated lavas (Figure 29). This would however, require that the evolved endmember was formed by extreme amounts of fractional crysta llization (>90%). Partial Melting/Assimilation Fr actional Crystallization (AFC) Another hypothesis for generating highly evolve d melts is to partially melt the basaltic crust (Petford et al., 2001; Cast illo et al., 2002; Coogan et al., 2003) or assimilate country rock into the melt (Nicholson et al ., 1991; Bohrson et al., 1998; Garc ia et al., 1998; Gee, 1998; Hoernle, 1998; OHara et al., 1998 ; Weis et al., 1998; Grove, 2000). Several studies have shown it possible to produce silicic melts from partially melting hydrous mafic protoliths (Holloway and Bur nham, 1972; Helz, 1973; Beard and Lofgren, 1991; Kawamoto, 1996, Koepke et al., 2003; Koepke et al., 2004). There is also evidence of anatexis in plagiogranitic rocks found in ophiolite sequences (Malpas, 1979; Pederson and Malpas, 1984; Flagler and Spray, 1991) as well young oceanic crust (Mvel, 1988) although the exact compositions of the protoliths in these studies has not been well constrained and may include gabbros and sheeted dikes that may have been altered due to hydrotherm al activity. Water is usually assumed to be a component of the melting process due to the presence of amphibole found in samples of felsic oceanic crus t (Bbien, 1991; Beard, 1998; Tsikouras and Hatzipanagiotou, 1998; Koepke et al., 2002), often in poikilitic textures, suggesting a magmatic origin (Koepke, 1986).

PAGE 73

73 Phase chemical data from melting experime nts (Koepke,. 2004) also demonstrated an increase in olivine Fo content in the restite due to increasing temperatur e and the influence of water. Residual plagioclase were also more An-rich in the experiments due to the effect of water (Sisson and Grove, 1993; Berndt, 2002) and am phibole was present in all systems at temperatures < ~980 C. Assimilation of crustal material has also been hypothesized as a method to create evolved compositions. Assimilation in a MOR regime most likely involves oceanic crust that has been hydrothermally altered and this has been substant iated by direct field obs ervations of xenolithic basaltic material in ophiolites (Castillo, 2002). The addition of altered material into a MORB magma results in an over-enrichmen t of chlorine, relative to other incompatible elements such as K2O and TiO2 (Jambon et al., 1985; Michael and Schill ing, 1989; Michael and Cornell, 1998; Castillo, 2002; Coogan, 2003). When compared with the phase chemistry of the resulting melts from the Koepke, 2004, experiments, the phase chemistries of evolved la vas from dive T735 are conspicuously free of any signal of water activity. No evidence of amphibole is present in the T735 lavas, nor is there evidence that amphibole was present in the residu e of melting due to the absence of a LREE to HREE enrichment in the REE pattern of the T 735 glasses, as the Kd values for REE in amphiboles decrease in value for the lighter elements (McKenzie et al., 1991). The phase compositions of the T735 lavas and the absence of evidence of hydrous phases would seem to preclude the notion of the silicic end-member being the result of a partial melt of hydrous oceanic crust. While small batches of xenolith material are present in the T735 evolved lavas none contain amphibole. In addition, there is no elevated chlorine signal (Cl/K ratios remain

PAGE 74

74 fairly constant; Figure 31), prec luding large amounts of assimila tion of altered crust taking place in the petrogenesis of the evolved lavas. Strontium and oxygen isotope values for the e volved T735 are identical to those in MORB from the Cleft segment, consistent with a lack of any seawater alteration or contamination (Perfit, personal communication). If high-temperat ure altered crust were melted to form dacitic partial melts, the values of 87Sr/86Sr would be higher than fr esh basalts and oxygen isotopic values would be lower. In both cases this is not tr ue instead values well within the range of JdFR fresh, unaltered lavas.

PAGE 75

75 Comparison of SiO2 values 50 52 54 56 58 60 62 64 66 68 70 012345678 MgOSiO2 Volcanic Plutonic Experimental T735 samples Comparison of TiO2 values0 0.5 1 1.5 2 2.5 00.511.522.533.5 MgOTiO2 Volcanic Plutonic Experimental T735 evolved lavas Figure 26: Comparing major element variations in the T735 lavas to other evolved suites. Other suites are from varied locations a nd petrogenetic origins, including lavas from the Galapagos Rift (Fornari et al., 1983) an d Mid-Atlantic Ridge (Hekinian et al., 1997), back arc basin (BAB) samples from the Southwest Pacific (Nakada et al., 1994), the Lau Basi n (Falloon et al., 1992) and the western Pacific (Bloomer, Smithsonian In stitution Volcanic Glass Individual Analysis File, VG no# 9772 9777), plutonic samples from supr a-subduction zone ophiol ites in California (Beard, 1998), Greece (Tsikouras and Hatzipanagio tou, 1998; Bbien, 1991), Norway (Pedersen and Malpas, 1984), Newfoundland (Malpas, 1979) Oregon (Phelps and Ave Lallemant, 1980), Chile (Saunders et al., 1979), Cr ete (Koepke, 1986), and Canada (F lagler and Spray, 1991). The experimental plagiograntic residual melt compositions compared were from a gabbro taken to 900 C and 940 C (Koepke et al., 2004) the part ial melt of a MORB protolith taken to 955 C (Dixon-Spulber and Rutherford, 1983) and the partial melt from a hydrous MORB heated to 950 C (Berndt, 2002). SiO2 values were plotted with the recovered T735 basalt as well as the evolved samples in order to demons trate the amount of differentiation.

PAGE 76

76 Comparison of K2O values0 0.2 0.4 0.6 0.8 1 1.2 1.4 00.511.522.533.5 MgOK2O Volcanic Plutonic Experimental T735 evolved lavas Figure 26: Continued.

PAGE 77

77 Figure 27: Major element liquid lines of descen t. Liquid lines of decent are modeled using Petrolog (Danyushevsky, 2001) using a QFM buffer at 200 bars of pressure and were run to ~88% crystallization. Sample T735-G35 was used as the starting composition, as it was the most mafic sample recovered during the dive. SiO2 values in the evolved rock s are slightly higher than model predictions and K2O is over-enriched, while TiO2, Al2O3 and P2O5 are lower relative to the calculated abundances.

PAGE 78

78 Figure 27: Continued.

PAGE 79

79 Figure 28: Cumulative percentage of phases plot ted against melt temperature (C). This figure illustrates the changing mineral assemblage as the modeled parent composition cools. Model assumes QFM and 200 bars of pressure.

PAGE 80

80 Figure 29: Trace element liquid lines of descent. Liquid lines of dece nt are modeled using calculated Kds and the results of a Petrolog model run using a QFM buffer at 200 bars of pressure, run to ~88% crystallization. Sample T735-G35 was used as the starting composition, as it was the most mafic sample recovered during th e dive. While most trace elements follow the calculated trends, La and Lu show over-enrichmen ts, even when LLDs are calculated using a Kd of zero. Zr and Sm also show slight enrichme nts relative to the calculated Kds, but can be predicted using a D of zero.

PAGE 81

81 Figure 29: Cotinued.

PAGE 82

82 Figure 30: Mixing models calculated using a st andard mass balance equation (Langmuir et al., 1978). Figure 26: Mixing lines we re calculated to T735-G12, th e most evolved end-member recovered during the dive, the three mafic end-me mbers chosen were T735-G35 (black Xs), the most mafic end-member recovered during the di ve, T735-G32 (pink triangles), a member of intermediate basaltic composition recovered during dive T735 and T735-G7 (orange circles), the most evolved basalt recovered on the dive. Ou tlying samples from Stakes, 2006, which are well constrained in a fractional crystallization model, can be predicted usi ng the dacite (T735-12) ferrobasalt (T735-G7) mixing model.

PAGE 83

83 Figure 31: Comparison of T735 Cland Cl/K ratios versus MgO. The Cl/K ratio of entire T735 suite remains fairly constant over the full range of MgO. While the Clconcentration increases with decreasing MgO the ratio of Cl-/K in the T735 samples (green diamonds) does not show the same rate of increase seen in the Southern Clef t samples (Stakes et al., 2006), the GSC (Perfit et al., 1999) and the EPR (le Roux et al., 2006) wher e assimilation takes on a much larger role.

PAGE 84

84 CHAPTER 7 CONCLUSIONS Low pressure fractional crystallization models adequately reproduce th e observed trends in major elements and some of the minor/trace elements. There are slight discrepancies between the predicted and observed co mpositions though, most notably with K2O being very over enriched, while TiO2, Al2O3 and P2O5 are lower relative to the predicted abundances (Figure 20). Calculated trace el ement LLDs for La, Rb and K, even assuming Kd's of zero, do not fully predict the concentrat ions seen in the evol ved samples, which are over-enriched to models values. The calculated models require fractional crystallization of gr eater than 80% in order to duplicate the evolved lava compositions recove red on Dive T735; well past the amount of crystallization required to form an imperm eable solidification front predicted by Marsh, 2000. Petrographic evidence strongly s upports mixing as a significant petrogenetic process that created the evolved lavas. Chilled basaltic xenol iths as well as disequilibrium crystals are prolific in all the evolved samples, as well as complex normal and reverse zoning seen in pyroxene and plagioclase crystals. The petrog raphy and chemistry suggest that that a possible recharge event between and evolve d, rhyodacitic melt and a ferrobasalt created the andesitic and dacitic lavas recovered. Large amounts of assimilation or partial melting of altered oceanic crust do not seem to be involved in the petrogenesis of these e volved lavas. Signals expected from the assimilation/incorporation of hydrothermally altered oceanic crust, such as over enrichment of Cl-, due to the interaction of seawater with the crust ( Coogan et al.l 2003), or a sloped REE pattern, due to the lower Kds of the LREE in amphiboles causing an enrichment of them in the melt ( McKenzie et al. 1991), are not seen in the T735 evolved lavas. The evolved lavas recovered from dive T735, at the southern terminus of the JdFR, have had an extremely complex petrogenesis. While la rge scale amounts of assimilation and/or partial melting of hydrous crust can be ruled out as met hods of creating this part icular suite of rocks magma mixing between two distinct magma types that formed by different amounts of fractional crystallization is certain. The fe rrobasaltic xenoliths pr ovide a good estimate as to what the more mafic end-member composition might be, but the extremely evolved end-member is much more difficult to constrain.

PAGE 85

85 These highly evolved melts would have been extremely viscous and had very limited mobility. Due to the fact they the lavas were loca ted at the RTI, propagating dikes, composed of much hotter, ferrobasaltic material, from the larger magma bodies found up-ridge could have provided the necessary heat to mobilize the dacitic melts, allowing them to exsolve H2O and CO2 through decompression, lowering the density enough to allow them to erupt on the ocean floor.

PAGE 86

86 APPENDIX A T735 DIVE LOGS

PAGE 87

87 DATE: 31AUG04 J-Day: 244 Dive objectives: Explore RTI near southern Cleft 13:31 0m rov entered water, start dive T735 14:51 2192m on bottom for past 2 minutes, talus slope 14:55 setting down to sample, pillow fragme nts, some microbial growth on fragments 14:57 2190m sample T735-G1, from pile of pillow debris, placed in S3 in rov drawer, slightly Mn coated 15:00 2190 looking around, some po ssibly intsct pilows present 15:01 2187m starting traver se along curved ridge 15:03 2187m pillow talus, crossing dome summit 15:06 2187m can see glassy remains on many of the fragments 15:08 2193m larger pillows here, no convincing in-place pillows 15:11 2200m possible in-place mo und, looking for place to sample 15:12 2202m small pillow fragment, T735-G2, brownish, placed in S3 15:13 see flows pointing downhill, pillows appear vesicular, small hornito in area, turning around to look at hornito 15:16 2201m spatter mound-tube th ing, or vapor escape tube??, 15:19 trying to grab sample, fractured in place, highly altered, glassy 15:22 2202m grab samplefrom tube thing, T735-G3, placed in S3, broken off from top of tube 15:23 underway again, some flow s appear inplace, heading 341 15:24 2205m crossing partially covered fissure by pillows

PAGE 88

88 15:25 contact to almost all intact flows 15:26 2204m intact pillow flows, slight sed covered, flows appe ar to be draping topography, glassy 15:27 2202m collapse features, mod se d cover in interstices of flows 15:28 2203m stop to sample 15:31 2205m looking for piece to pickup 15:33 2205m collected sample of crust, T735-G4, in S3 again thin piece from lobate flow 15:36 2201m stepping down to west going to look at rigde in s onar, crossing faultsteps, 15:38 2201m fault scarp, razorback ridge series separate by crevas ses slightly wider than the rov, flows on top are intact, head ing 336, pie shape wedge of crust betrween fissures, flattened lobates, this is the wall from the sonar 15:42 2200m fissures seemed to join, its much wide r here, about as deep as it is wide, fissure wall has clean surface, apears pulled apart 15:43 2199m two fissure walls are cl osing in according to the sonar 15:51 2220m stopping for sample from lobates 15:54 2221m smal pillow wedge collected, sample T735-G5, also in S3 15:57 2217m another fissure, buried by overlying p illows, hard to tell if flowing in or out 15:59 2215m another fissure, pillows neatly broken along edge 16:03 2216m collect sample of p illow crust, intact?, T735-G6, placed in S3, blocky reddish sample 16:05 2214m drainback, area of pillows, mod sed between pillows, very plastic flows covering lder terrain

PAGE 89

89 16:06 2210m crack fissure starting here, pillows are knobby, older terrain a ppeared to be large pillows 16:09 2215m still intact flows, fissure off to port 16:13 2212m stopping for sample, differe nt looking stuff, more blocky 16:18 2213m collected grab sample T735-G7, from fl at area at near top of knoll, placed in front of S7 16:20 2209m intact pillows, mod sed cover between 16:22 2207m apears more constructional, fissure to west side, sharp drop, bottom a few meters down, approx. 5m wide 16:23 2207m dropping down over edge of fissure, top of wall is intact, base has lots of debris, appears sed covered even on talus and pillows, appears old 16:25 2214m thick sed cover, few pillows sticking up from sed 16:27 2216m mixture of intact pillows and broken pilow debris 16:34 2225m 50-60% sed cover, good sed cover on pillows too 16:36 2231m more pillows, tubular, somewhat smaller than previous, stopping for sample 16:39 2232m sample T735-G8, blocky pillow frag, placed in S4 16:41 2229m scattered pillows, <50%s sed cover 16:42 2231m tube and sheet flow down to SW, stopping to sample 16:44 2232m sampling sheet, too friable need to put in biotube, must be glassy 16:45 2232m sample sheet flow?, T735-G9, fragments placed in BT5 16:48 2227m pillow tubes appear different, ve ry large well formed tubes, striations 16:50 2226m stopped to sample 16:52 2226m collected sample T735-G11 from la rge pillows, very glassy, placed in S4

PAGE 90

90 16:54 2219m very well formed pillows flowing dow nslope, very little sed on top, very glassy surface 16:57 2213m 16:58 2212m, vapor pockets and cav ities between layers of basalt 16:59 2211m, picking sample of vapor pocket, T735-G12 17:022213m, sample looked glassy, still passi ng over breadcrust texture, sed coating on all 17:03 2211m, lots of local relief, big pillows surrounding by smoother tubes 17:06 2211m, turining on to ne xt line, sheetier appearance 17:07 2209m, large flat broken up sheet fl ow, perhaps a silicic constructional dome 17:08 2210m, trying to sample at top of constructional feature, slabby flow 17:09 2210m, collected sample of striat ed top of slabby flow, in BT4, T735-G13 17:12 2211m, was broken from beneath, top is flat but sides are tilted 17:13 2214m, still same flow, very straited, bl ocky iand angular n some places, plus few big pillows 17:16 lost my comment 17:18 2214m, turned to the left, and are back in the straited, sheety thick flow 17:19 2214m, collecting another piece of striated flow 17:20 2214m, sample of sheet fl ow, won't fit into bio tube 17:22 2214m, sample was collected in betw een the P/S boxes, T735 G14, another piece collected at same time 17:24 2213m, finished collecting another samp le of what is hopefully a dacite flow 17:26 2214m, nav jumpy because we're tunring, lots of pillows 17:27 2216m, large broken pillows, tubular

PAGE 91

91 17:28 2209m, between the tubes and pillows still getting massive flows (layered) 17:30 2209m, pillow texture is smoother 17:31 2212m, stopping to collect anot her sample, lots of gas cavities 17:32 2212m, sample going into biotube 3, T735 G15 17:34 2211m, back on the line, hdg 62, this area had lots of vesicles, and dome-like feature had both angular blocky rocks and pillows 17:38 2213m, tilted slab block, probably from eruption 17:40 2219m, still in the same general area of geology and morphology, still looking at domelike structure, probably not basalt 17:42 2215m 17:44 2215m, going to sample in this area 17:45 2216m, sample will be taken from the interior, more broken 17:46 2216m, sample T735-G16, from interior of flow, S5, should be smallest piece in S5 17:50 2215m, coming down slope of construct, hdg back to line 17:52 2216m, still at pillows with bread crust texture, moderate sed cover 17:53 2218m, very evolved rocks, broken up large pillow, no tectonic fissures on sonar 17:57 octopod, red Dumbo 17:58 2216m, large striated pillow, broken down the middle 18:002216m, heading back to line, irregualr terrain 18:012216m, irregular terrai n, with broken up blocky lava 18:042221m, collect a sample of broken pillow, to see if it's the same as the previous samples or it it's less viscous 18:06 2221m, taking a pillow sample

PAGE 92

92 18:06 2221m, S1 pillow sample with lots of vesicles, T735-G17 18:09 2221m, at bottom of saddle, will soon be heading upslope 18:10 2214m, coming up constructional slop e, pillows flowing downhill radially 18:12 2207m, attempting to sample the crus t of these pillows, looking for small piece 18:14 2205m, continued to move upslope looking for a breakable pillow crust 18:16 2206m, collected two pieces of p illow crust, small, in S1, T735-G18, 18:17 2192m, moving upslope, smaller pillows, reached a bench 18:19 2199m, moving up feature, more relief than dacite mound 18:21 2198m, tublar, flattene d pillows, probably at top 18:22 2198m, much less blocky than last dome, collecting sample 18:25 2198m, picking up sample previously dsropped, near top of slope, P5, T735-G19 18:26 2198m, this may have been sample site, nav jump 18:28 2199m, tubes flowing off to right, south 18:29 2201m, crabbing downslope, ve ry little tectonic features 18:31 2208m, well-formed pillows and tubes, heading downslope to south 18:33 2205m, stepping downslope mod sediment on pillows 18:34 2206m, elongate tubes look like they're flowing south 18:35 2199m 18:36 2199m, tubes and broken pillows pillows are more fragmented 18:40 2203m, still see some blocky, angular flows, on shallow slope 18:41 2204m, slow progress on hdg because of current 18:43 2205m 18:45 2209m

PAGE 93

93 18:46 2216m, heding downslope, flattened tubular pillows 18:49 2216m, still elongate tubes 18:50 2234m, looking at in place pillows, attempting to sample, also smaller rubble 18:52 2235m, collected rock sample from talus near in place pillows 18:35 2234m, T735 G20, P5 18:57 2258m flow fron talu s, large bocky boulders 19:01 2275m collect large fragment of intact p illow, T735-G21, from base of steep slope, slope continues down to east, skinny pillows 19:07 2263m heavy sed cover in gully betw en two knolls, isolated exposed pillows 19:08 2258m heading 93 degrees 19:10 2256m much less sed cover, pillows sticking out of mod sed cover 19:13 2254m pillows with heavy sed cover 19:14 2252m collapse feature showing sheet flows beneath pillows 19:16 2256m collect sheet flow samp le T735-G22 from collapse feature 19:18 2251m large pillow with inner drain features, pillows more bulbous, mod sed 19:21 2249m picking of fragment of pillow from top of sed, too big! 19:24 2249m looking for sample to collect, pillows in thick sed cover 19:26 2250m collect large pill ow fragment from top of sed, T735-G23, put in P5 19:28 2247m constructional pillows in sed cover 19:29 2246m veered off course to NE heading back S to top of knoll 19:31 2249m closer pillows, everything appears intact, possibly big hornito, all pillows flow downhill from top of mound 19:37 2249m collect sample T735-G24 in S2, greenish-white looking inside

PAGE 94

94 19:41 2250m collect basalt sample from same area, T735-G25 19:44 2248m heading down mound to nort h, bulbous pillows poking up through sed 19:45 2249m field of unsedimented pillow surfaces slightly more gentle slope than the west slope 19:49 2252m mostly jumbled rubble, some intact pillows heading downslope to saddle between knolls, 50% sed cover with e qual amounts of pillow rubble 19:53 2254m crossing fissure almost N-S severa l meters deep, broken pillow pieces, appears tectonic, sed on walls and at base, all pillows exposed in fissure wall 19:56 2260m folowing same fissure to north along trackline, star ting to shallow out 20:03 2266m collect grab sample from more massive unit, T735-G26, in S5 20:05 2265m massive flow overlain by pillow, lo west most exposed unit, well fissured with pillows on top, pillows appears to possibly flow inside indicating pillows post-date fissure, N-S fissure 20:07 2264m crossing massive flow, large fissure also to righ of ROV (east), possibly moving into the transition from hooked ridge to normal ridge morphology 2008 2265m following fissure, series of fissures N-S cutting massive flow, columnar talus in fissure 20:09 2265m some evidence of uplif t along this section of fissure 20:13 2258m very heavy sed cover 20:16 2265m more pillows, less sed 20:22 2271m thick sed cover, large pilows sticking up 20:24 stopped for sample, cow patty looking pillow 20:26 2271m sample from cowpatty pillow, crust, T735-G27, in P2

PAGE 95

95 20:31 2274m drifting to port towards large depr ession, some broken pillows with spill-outs, some tubular 20:32 2275m fissure heading N-S, shows well on sonar, looks deep, tectonic 20:35 2268m, mound in depression near fisure, constructional 20:38 2275m small hornito, drippy fl ows, ~1m relief on structure 20:39 2271m appears like old fissure, sed f illed, some truncated pillows???, narrow constructional ridge??? 20:42 2270m crossing fissure, just pa st linear series of small constructs, ~1m in relief, dropped down crossing fissure to west 20:45 2272m shallow fissure, sed co vering talus, orientation ~340 20:46 2271m another fissure, slight downdrop to east 20:48 2269m possible eruptive fissu re, N-S, east side dropped down 20:50 2269m sample from pillow along fissure, T735-G28, pie shaped, in P2 20:57 2268m, hdg to east, 100% sediment cover 20:58 2267m, crossed a fissure trending N-S 20:59 2267m, still in region of pillow and heavy sediment 21:01 2270m, sparse pillow/lobate outcrops with heavy sed between 21:02 lost comment 21:05 2272m, moved over small fissure trace, pillows 21:07 2274m, typical deep sea biology 21:09 2268m, many more outcrops right now, small ridge of broken pillows 21:11 2264m, many more broken pillow outcrops 21:12 2259m, slope is shallowing to the north

PAGE 96

96 21:15 2261m, on edge of slope with pillows outcropping, slope steepens to S 21:17 2261m, on the edge of large escarpment 21:18 2263m, fissure runs N-S, regional fissure system 2:120 2266m, lots of broken pillows exposed here, much less sediment 21:22 2264m, back to isloated pillows and heavy sediment, flat 21:24 2259m, climbing toward top of dome, pillows loo tectonized, but broken in place 21:25 2258m, shallow depresion filled in partially 21:27 2260m, at 2257m, maybe reached the summ it of this feature, as bathy dropped off afterward 21:29 2254m, pillow tubes, many going downslope to N(?) 21:30 2253m, crossing over smaler N-S fissure, can see both si des, sedimented on inside 21:32 2249m, continuing to move upward, most pillow tubes in place, plus rubble 21:33 2248m, in place pillows and a small rubble-filled fissure 21:35 2249m, collecting pieces of pillow crust near top of dome 21:36 2246m, T735-G29 will be in P3, looks old and oxidized 21:39 2242m, at top of mound, several fi ssures dissecting the top, running NS 21:42 2246m, running along a small N-S fi ssure, many on sonar, hdg is now 345ish 21:43 2251m, inside fissure, blocky and talus inside fissure, 20-30m wide 21:45 2250m, flying along the fissure, walls on bot h sides, small fissures wihtin main wall 21:47 2252m 21:49 2257m, irregular, tectonized terrain, lots of rubble, some in tact pillows on edge of small fisure 21:50 2264m, mod sediment covered, more fractured terrain, filled in fissures

PAGE 97

97 21:53 2270m, vehicle depth has been c onsistent;y 10m shallow than bathy 21:54 collectin a sample for biotube 2, T735-G30, hopefully at intersection bewteen regional fabric and local valley fabric 21:57 2272m, dropped first sample, looking for another piece of pillow crust 21:58 got another sample T735-G30, triangular piece of pillow crust, into biottube2 22:01 2272m, back to heavy sediment, flat, small isolated outcrops 22:032270m, 40m to E is a fissu re, flat-lying, 100% sed cover 22:05 2272m, 100% sed cover, isolated pillow outcrop 22:07 2276m, more of the same 22:09 2285m, more exposure of small bulbous pillows, still lots of sed 22:11 2293m, continuing to get deeper, still heavily sed 22:17 2294 heading to the ridge parallel wall, sediments 100% 22:19 2294 sed. continue, tape change, type 8 22:24 2295 pilow ridges, about to get sample 22:24 same depth, sample T735-G31 taken from the pillow ridge 22:29 2296, sed. again, some pillow ridges again 22:29 2296, sed. again, some pillow ridges again 22:34 2296 still 90% sed. some flow tos brocken 22:36 2290 fissure 337 orientation, ta lus on the sides on the fissure, 22:39 2287, more pillow terrane, heavily fissured 22:41 2289, still fissures, h eavily sed. between fissues 22:43 2280, compl. tectonized big pile of debrii pillows 22:46 2291 old fault (fault sl iver) heavily tectonised

PAGE 98

98 22:47 2290 approaching the oppposite wall, cove red with talus, another fault sliver 22:49 2287 wedging out fault sliver, two intersecting faults 22:51 2294 still old tectonized terrane 22:53 2297 materail changes, more collapsed pillows 22:54 2298 about to get sample 22:56 2298 sample G32 from the base of the wall 22:59 2296 ROV loosing main comp. going toward the wall 23:01 2291 base of the wall fl at sheets, tectonised ridge 23:03 2291 small pillows with buds on the side base of the wall 23:04 2294 moderate sed. cover, lobates, pillows with buds, still intact, gradually going uphill 23:05 2293, fissure parallel to the wall 23:07 2293 first ridge pare llel tectonised zone 23:08 2290 into the real fault, big step up 23:10 2288 intact colapse pit, not consistent wall 23:12 2281 change headings to 300 up the fault 23:14 2276 intact pillows and lobate flows downhill from us, 23:15 2274 remarkably little fractionation on pillows, constractional part of the wall? 23:17 2269 tectonised area 23:19 2263 heavily tectonized zone, small fragments nothing intact 23:20 2260 coming to relativ. flat artea, sedimented 23:23 2257 continue flat area, c overed with sheety flow debri 23:25 2257 sample from the sheety glassy flow -G33 23:26 2257 sample G33 very altered glassy, taken another piece

PAGE 99

99 23:31 2248 intact flows and lobate s, going down parallel to the wall 23:33 2244 half-way up the wall, flows align down 23:34 2242 sedim. area, covered with th in sheeted flows, contiune up the wall 23:36 2239 approaching steep wall.. 23:38 2239 escarpment pillow debrii, series of fault stpes, brocken sheets 23:40 2233 moving into area of intact lobate flows 23:40 2232 still intact flow 23:41 2225 alteranting talus and flows 23:42 2226 samples from the flow sheet and lobate flows 23:45 2228 sample G34 from lobate flow 23:45 2228 second sample G35 from the same area 23:48 2230 near the top of the wall coherent flows 23:50 2231 sample G36 23:53 2231 G37 and G 38 samples 23:55 2231 G 39 sample 23:59 ROV is coming up 01:26 0m end dive T735

PAGE 100

100 APPENDIX B PHASE CHEMISTRY FOR T735 LAVAS

PAGE 101

101 Table B-1: Pyroxene compositions de termined from microprobe analyses. Phase chemistry for lavas re covered during Dive T735. Pyroxenes Sample T735-G9 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. core rim interior in terior rim interior interior xeno/pheno? pheno xeno pheno pheno pheno pheno q pheno SiO2 51.15 51.82 50.67 51.69 50.33 50.26 52.34 TiO2 0.48 0.93 1.34 0.97 0.94 0.36 0.80 Al2O3 0.92 4.13 3.59 2.68 1.97 0.73 1.73 FeO 26.34 9.14 11.18 10.17 17.57 24.01 15.72 MnO 0.68 0.24 0.29 0.30 0.45 0.58 0.44 MgO 13.82 16.55 14.82 15.34 10.83 6.51 16.50 CaO 7.31 17.44 17.96 18.60 18.03 18.16 12.93 K2O 0.01 0.00 0.00 0.00 0.01 0.00 0.00 Na2O 0.11 0.34 0.31 0.25 0.29 0.24 0.19 P2O5 Cl Total 100.83 100.79 100.22 100.11 100.48 100.90 100.67 Number of cations per 6 oxygens Si 1.97 1.88 1.88 1.91 1.92 1.98 1.94 Ti 0.01 0.03 0.04 0.03 0.03 0.01 0.02 Al 0.05 0.21 0.19 0.14 0.11 0.04 0.09 Fe 0.85 0.28 0.35 0.31 0.56 0.79 0.49 Mn 0.02 0.01 0.01 0.01 0.01 0.02 0.01 Mg 0.79 0.90 0.82 0.85 0.62 0.38 0.91 Ca 0.30 0.68 0.71 0.74 0.74 0.77 0.51 Na 0.01 0.02 0.02 0.02 0.02 0.02 0.01 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.00 4.01 4.00 4.01 4.00 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xeno-xenocryst; phenol-phenocryst

PAGE 102

102 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? q pheno xeno xeno xeno xeno xeno xeno SiO2 49.90 51.50 50.70 53.39 51.52 51.36 53.91 TiO2 1.33 1.10 1.11 0.58 1.10 1.09 0.42 Al2O3 2.56 3.00 3.34 1.30 3.32 2.78 1.32 FeO 16.37 12.02 13.04 11.94 9.04 10.94 16.25 MnO 0.42 0.34 0.31 0.34 0.23 0.28 0.41 MgO 12.74 17.04 16.85 18.79 16.27 15.38 22.84 CaO 15.42 14.80 14.48 13.95 18.55 18.10 4.87 K2O 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.27 0.25 0.26 0.16 0.26 0.29 0.11 P2O5 Cl Total 99.06 100.11 100.22 100. 55 100.41 100.33 100.25 Number of cations per 6 oxygens Si 1.91 1.90 1.88 1.96 1.89 1.90 1.97 Ti 0.04 0.03 0.03 0.02 0.03 0.03 0.01 Al 0.14 0.15 0.17 0.07 0.17 0.14 0.07 Fe 0.52 0.37 0.40 0.37 0.28 0.34 0.50 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.73 0.94 0.93 1.03 0.89 0.85 1.24 Ca 0.63 0.58 0.57 0.55 0.73 0.72 0.19 Na 0.02 0.02 0.02 0.01 0.02 0.02 0.01 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.00 4.02 4.00 4.01 4.01 3.99 interiorinterior of crystal; q phenoquen ched phenocryst; xeno-xenocryst; phenol-phenocryst

PAGE 103

103 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior core core core rim xeno/pheno? xeno xeno pheno quench pheno quench pheno quench pheno quench pheno SiO2 51.06 50.99 50.61 49.71 53.38 53.33 51.93 TiO2 1.06 0.50 0.47 0.90 0.84 1.03 0.88 Al2O3 3.09 1.49 0.95 2.77 2.66 2.98 1.86 FeO 11.13 18.61 25.24 10.67 10.44 10.05 16.24 MnO 0.32 0.37 0.68 0.27 0.25 0.22 0.36 MgO 15.84 21.12 8.73 16.70 15.96 15.10 11.39 CaO 16.74 5.86 14.15 15.91 17.28 18.66 17.46 K2O 0.00 0.00 0.03 0.00 0.02 0.00 0.00 Na2O 0.25 0.09 0.21 0.27 0.26 0.31 0.24 P2O5 Cl Total 99.63 99.16 101.10 97. 19 101.08 101.68 100.35 Number of cations per 6 oxygens Si 1.90 1.92 1.97 1.89 1.94 1.93 1.96 Ti 0.03 0.01 0.01 0.03 0.02 0.03 0.03 Al 0.16 0.08 0.05 0.15 0.13 0.15 0.10 Fe 0.35 0.59 0.82 0.34 0.32 0.30 0.51 Mn 0.01 0.01 0.02 0.01 0.01 0.01 0.01 Mg 0.88 1.18 0.51 0.95 0.86 0.81 0.64 Ca 0.67 0.24 0.59 0.65 0.67 0.72 0.71 Na 0.02 0.01 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.03 4.00 4.02 3.98 3.98 3.97 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 104

104 Table B-1: Continued. Pyroxenes Sample T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. core rim core rim core interior rim xeno/pheno? quench pheno quench pheno quench pheno quench pheno pheno pheno pheno SiO2 48.16 51.18 53.99 51.34 50.71 51.34 50.22 TiO2 2.57 0.75 0.66 1.07 0.62 0.49 0.99 Al2O3 5.27 1.61 1.59 2.59 1.54 1.23 2.27 FeO 16.68 21.45 17.65 16.31 18.56 17.35 18.03 MnO 0.39 0.49 0.43 0.36 0.47 0.40 0.47 MgO 12.09 12.14 20.33 13.75 11.51 10.99 10.22 CaO 14.51 12.94 5.71 15.15 16.13 17.96 17.65 K2O 0.04 0.01 0.02 0.01 0.00 0.00 0.02 Na2O 0.41 0.22 0.10 0.27 0.25 0.24 0.34 P2O5 Cl Total 100.12 100.79 100.47 100.84 99.79 99.99 100.20 Number of cations per 6 oxygens Si 1.81 1.95 1.98 1.92 1.95 1.97 1.92 Ti 0.07 0.02 0.02 0.03 0.02 0.01 0.03 Al 0.28 0.09 0.08 0.14 0.08 0.07 0.12 Fe 0.52 0.68 0.54 0.51 0.60 0.56 0.58 Mn 0.01 0.02 0.01 0.01 0.02 0.01 0.02 Mg 0.68 0.69 1.11 0.77 0.66 0.63 0.58 Ca 0.58 0.53 0.22 0.61 0.66 0.74 0.72 Na 0.03 0.02 0.01 0.02 0.02 0.02 0.03 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 3.99 3.97 4.00 4.00 4.00 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 105

105 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 51.68 52.32 51.05 52.53 52.01 52.29 52.15 TiO2 0.66 0.31 0.15 0.29 0.16 0.38 0.30 Al2O3 1.22 1.03 0.43 0.42 0.54 1.00 0.57 FeO 17.21 19.98 30.66 30.85 29.53 17.69 28.96 MnO 0.35 0.51 0.70 0.77 0.75 0.38 0.70 MgO 12.00 12.26 13.98 14.41 14.27 11.36 13.81 CaO 16.77 14.14 3.20 3.30 3.75 17.76 4.57 K2O 0.00 0.01 0.00 0.01 0.00 0.02 0.00 Na2O 0.26 0.23 0.03 0.05 0.06 0.25 0.04 P2O5 Cl Total 100.16 100.76 100.20 102.62 101.07 101.13 101.10 Number of cations per 6 oxygens Si 1.97 1.99 1.99 2.00 2.00 1.98 2.00 Ti 0.02 0.01 0.00 0.01 0.00 0.01 0.01 Al 0.06 0.05 0.02 0.02 0.03 0.05 0.03 Fe 0.55 0.63 1.00 0.98 0.95 0.56 0.93 Mn 0.01 0.02 0.02 0.02 0.02 0.01 0.02 Mg 0.68 0.69 0.81 0.82 0.82 0.64 0.79 Ca 0.68 0.58 0.13 0.13 0.15 0.72 0.19 Na 0.02 0.02 0.00 0.00 0.00 0.02 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 3.99 3.99 3.99 3.98 3.99 3.98 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 106

106 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno chadacryst SiO2 52.90 51.76 51.91 52.11 48.79 51.93 50.81 TiO2 0.20 0.28 0.40 0.51 0.49 0.36 0.18 Al2O3 0.32 0.73 1.21 1.11 1.33 1.08 0.32 FeO 30.76 21.42 16.67 17.70 17.26 18.21 30.11 MnO 0.70 0.49 0.39 0.42 0.48 0.42 0.69 MgO 14.85 12.53 11.34 11.70 11.47 11.57 14.49 CaO 3.26 13.05 18.39 16.68 17.29 17.02 3.08 K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Na2O 0.08 0.20 0.24 0.23 0.25 0.28 0.00 P2O5 Cl Total 103.06 100.45 100.56 100.45 97.36 100.87 99.67 Number of cations per 6 oxygens Si 2.00 1.98 1.97 1.98 1.93 1.97 1.99 Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Al 0.02 0.04 0.06 0.06 0.07 0.06 0.02 Fe 0.97 0.69 0.53 0.56 0.57 0.58 0.99 Mn 0.02 0.02 0.01 0.01 0.02 0.01 0.02 Mg 0.84 0.72 0.64 0.66 0.68 0.66 0.85 Ca 0.13 0.54 0.75 0.68 0.73 0.69 0.13 Na 0.01 0.01 0.02 0.02 0.02 0.02 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 4.00 3.99 3.99 4.03 4.00 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 107

107 Table B-1: Continued. Pyroxenes Sample T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior core core core core core interior xeno/pheno? chadacryst pheno pheno pheno pheno pheno pheno SiO2 52.18 49.21 49.31 49.14 49.78 50.24 49.95 TiO2 0.09 0.29 0.23 0.46 0.43 0.42 0.45 Al2O3 0.33 0.60 0.61 0.76 0.76 0.90 1.09 FeO 29.92 33.11 32.74 29.70 29.89 24.26 22.94 MnO 0.73 0.83 0.75 0.69 0.75 0.58 0.56 MgO 14.72 8.48 8.42 8.18 8.43 7.43 8.20 CaO 3.26 7.75 8.00 10.25 10.66 15.80 16.38 K2O 0.00 0.00 0.01 0.00 0.02 0.00 0.00 Na2O 0.00 0.08 0.10 0.11 0.10 0.22 0.23 P2O5 Cl Total 101.23 100.35 100.16 99.29 100.81 99.85 99.80 Number of cations per 6 oxygens Si 2.00 1.97 1.98 1.98 1.97 1.98 1.97 Ti 0.00 0.01 0.01 0.01 0.01 0.01 0.01 Al 0.02 0.03 0.03 0.04 0.04 0.05 0.06 Fe 0.96 1.11 1.10 1.00 0.99 0.80 0.75 Mn 0.02 0.03 0.03 0.02 0.03 0.02 0.02 Mg 0.84 0.51 0.50 0.49 0.50 0.44 0.48 Ca 0.13 0.33 0.34 0.44 0.45 0.67 0.69 Na 0.00 0.01 0.01 0.01 0.01 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 4.00 4.00 3.99 4.00 3.99 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 108

108 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior rim rim interi or interior interior interior xeno/pheno? pheno pheno pheno xeno xeno xeno xeno SiO2 50.20 49.63 50.43 51.53 49.95 50.57 50.45 TiO2 0.46 0.51 0.49 1.03 1.22 0.92 0.88 Al2O3 1.14 1.03 0.92 3.09 3.98 4.02 3.77 FeO 22.99 22.75 26.34 8.56 8.95 9.30 9.70 MnO 0.50 0.59 0.71 0.19 0.22 0.23 0.24 MgO 8.13 8.25 8.68 16.33 14.78 15.56 15.63 CaO 16.58 15.53 13.34 17.47 18.52 16.81 17.22 K2O 0.00 0.01 0.02 0.00 0.00 0.00 0.00 Na2O 0.18 0.17 0.19 0.21 0.25 0.27 0.23 P2O5 Cl Total 100.17 98.46 101.12 98.41 97.86 97.68 98.12 Number of cations per 6 oxygens Si 1.97 1.97 1.97 1.91 1.87 1.89 1.89 Ti 0.01 0.02 0.01 0.03 0.03 0.03 0.02 Al 0.06 0.06 0.05 0.16 0.21 0.21 0.20 Fe 0.75 0.76 0.86 0.27 0.28 0.29 0.30 Mn 0.02 0.02 0.02 0.01 0.01 0.01 0.01 Mg 0.47 0.49 0.51 0.90 0.83 0.87 0.87 Ca 0.70 0.66 0.56 0.69 0.74 0.67 0.69 Na 0.01 0.01 0.01 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 3.99 4.00 3.99 4.00 3.99 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 109

109 Table B-1: Continued. Pyroxenes Sample T735G10 T735-G10 T735-G11 T735-G 11 T735-G11 T735-G11 T735-G11 Analy. Loc. rim rim interior interior interior core rim xeno/pheno? xeno pheno xeno xeno pheno pheno pheno SiO2 49.43 50.27 51.40 50.30 49.35 50.71 50.11 TiO2 1.22 1.14 0.86 1.30 1.51 1.11 0.90 Al2O3 2.88 2.12 3.05 3.96 3.10 2.24 1.82 FeO 18.23 16.70 10.77 9.20 15.78 16.52 17.65 MnO 0.46 0.38 0.28 0.20 0.38 0.45 0.43 MgO 14.28 10.19 18.65 15.87 14.14 15.88 11.10 CaO 12.21 17.19 14.58 18.54 15.09 13.11 17.92 K2O 0.02 0.01 0.00 0.01 0.01 0.01 0.02 Na2O 0.24 0.30 0.23 0.27 0.26 0.20 0.31 P2O5 0.00 0.01 0.10 0.00 0.06 Cl 0.00 0.00 0.00 0.01 0.01 Total 98.97 98.29 99.81 99. 65 99.72 100.22 100.32 Number of cations per 6 oxygens Si 1.89 1.95 1.89 1.86 1.87 1.90 1.92 Ti 0.04 0.03 0.02 0.04 0.04 0.03 0.03 Al 0.15 0.11 0.16 0.20 0.16 0.12 0.10 Fe 0.58 0.54 0.33 0.28 0.50 0.52 0.57 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.81 0.59 1.02 0.87 0.80 0.89 0.63 Ca 0.50 0.71 0.57 0.73 0.61 0.53 0.74 Na 0.02 0.02 0.02 0.02 0.02 0.01 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.01 3.97 4.02 4.01 4.02 4.01 4.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 110

110 Table B-1: Continued. Pyroxenes Sample T735G11 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. core interior inte rior rim rim interior core xeno/pheno? xeno pheno pheno pheno pheno pheno pheno SiO2 53.52 49.25 50.98 49.34 49.90 50.32 49.83 TiO2 0.38 0.41 1.18 1.83 0.78 0.88 1.05 Al2O3 0.72 0.77 2.14 3.38 1.39 1.25 1.55 FeO 19.13 28.53 13.31 19.91 22.08 21.46 19.94 MnO 0.46 0.74 0.35 0.54 0.59 0.57 0.47 MgO 21.45 4.45 13.31 10.31 11.13 12.12 11.81 CaO 4.54 16.35 18.72 14.87 13.04 12.82 13.62 K2O 0.01 0.00 0.00 0.04 0.02 0.01 0.00 Na2O 0.06 0.24 0.29 0.30 0.16 0.17 0.22 P2O5 Cl Total 100.34 100.75 100.37 100.56 99.09 99.64 98.49 Number of cations per 6 oxygens Si 1.98 1.98 1.91 1.88 1.95 1.95 1.94 Ti 0.01 0.01 0.03 0.05 0.02 0.03 0.03 Al 0.04 0.04 0.11 0.18 0.08 0.07 0.08 Fe 0.59 0.96 0.42 0.64 0.72 0.69 0.65 Mn 0.01 0.03 0.01 0.02 0.02 0.02 0.02 Mg 1.18 0.27 0.74 0.59 0.65 0.70 0.69 Ca 0.18 0.70 0.75 0.61 0.55 0.53 0.57 Na 0.00 0.02 0.02 0.02 0.01 0.01 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.00 4.01 3.99 4.00 4.00 3.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 111

111 Table B-1: Continued. Pyroxenes Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. core rim core co re rim interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 50.12 52.52 48.79 49.49 50.93 50.96 50.42 TiO2 1.13 0.60 0.53 0.36 0.95 1.04 1.27 Al2O3 1.78 2.61 1.09 0.72 1.65 2.42 2.99 FeO 20.64 17.64 25.64 27.49 16.76 13.92 13.51 MnO 0.54 0.46 0.59 0.73 0.44 0.36 0.30 MgO 12.65 9.77 4.66 5.12 12.96 14.69 14.36 CaO 12.65 16.25 18.19 16.74 16.11 16.03 16.52 K2O 0.00 0.11 0.00 0.01 0.00 0.00 0.01 Na2O 0.21 0.41 0.24 0.19 0.26 0.26 0.36 P2O5 Cl Total 99.75 100.45 99.78 100.90 100.07 99.76 99.85 Number of cations per 6 oxygens Si 1.93 1.98 1.96 1.97 1.93 1.91 1.89 Ti 0.03 0.02 0.02 0.01 0.03 0.03 0.04 Al 0.10 0.14 0.06 0.04 0.09 0.13 0.16 Fe 0.66 0.56 0.86 0.92 0.53 0.44 0.42 Mn 0.02 0.01 0.02 0.02 0.01 0.01 0.01 Mg 0.73 0.55 0.28 0.30 0.73 0.82 0.80 Ca 0.52 0.66 0.78 0.72 0.66 0.64 0.66 Na 0.02 0.03 0.02 0.01 0.02 0.02 0.03 K 0.00 0.01 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 3.95 4.00 4.00 4.00 4.00 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 112

112 Table B-1: Continued. Pyroxenes Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 50.93 52.00 51.85 51.17 51.83 51.68 51.40 TiO2 1.21 0.88 0.82 1.13 0.95 1.02 1.16 Al2O3 2.83 2.65 2.94 3.54 3.26 3.25 3.55 FeO 13.42 9.60 8.85 9.48 9.54 9.69 9.97 MnO 0.34 0.27 0.26 0.29 0.21 0.26 0.27 MgO 14.65 16.85 17.33 16.70 17.27 17.16 17.36 CaO 16.25 17.51 17.28 17.18 16.53 16.92 16.06 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.26 0.23 0.24 0.28 0.27 0.29 0.26 P2O5 Cl Total 100.01 100.29 99.80 99.93 100.07 100.44 100.30 Number of cations per 6 oxygens Si 1.90 1.91 1.91 1.88 1.90 1.89 1.88 Ti 0.03 0.02 0.02 0.03 0.03 0.03 0.03 Al 0.15 0.14 0.15 0.18 0.17 0.17 0.18 Fe 0.42 0.30 0.27 0.29 0.29 0.30 0.31 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.82 0.92 0.95 0.92 0.94 0.94 0.95 Ca 0.65 0.69 0.68 0.68 0.65 0.66 0.63 Na 0.02 0.02 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.00 4.01 4.01 4.00 4.01 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 113

113 Table B-1: Continued. Pyroxenes Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior interi or interior interior rim interior xeno/pheno? pheno xeno xeno xeno xeno xeno xeno SiO2 52.57 49.17 50.75 49.98 49.01 52.80 52.86 TiO2 0.75 2.06 1.18 1.52 1.64 0.99 0.67 Al2O3 2.89 4.00 2.71 3.15 3.34 5.49 2.28 FeO 11.65 16.48 11.93 14.56 15.82 20.53 10.70 MnO 0.31 0.37 0.32 0.35 0.41 0.51 0.28 MgO 20.06 12.10 14.21 14.11 14.79 5.18 19.09 CaO 12.16 16.43 18.40 15.78 13.79 13.02 14.49 K2O 0.00 0.01 0.01 0.00 0.01 0.27 0.01 Na2O 0.15 0.42 0.31 0.28 0.23 0.99 0.22 P2O5 0.00 Cl 0.00 Total 100.72 101.10 99.86 99.74 99.06 101.25 100.58 Number of cations per 6 oxygens Si 1.91 1.84 1.90 1.88 1.86 1.99 1.92 Ti 0.02 0.06 0.03 0.04 0.05 0.03 0.02 Al 0.15 0.21 0.14 0.17 0.18 0.29 0.12 Fe 0.35 0.52 0.37 0.46 0.50 0.65 0.33 Mn 0.01 0.01 0.01 0.01 0.01 0.02 0.01 Mg 1.08 0.68 0.79 0.79 0.84 0.29 1.04 Ca 0.47 0.66 0.74 0.64 0.56 0.53 0.57 Na 0.01 0.03 0.02 0.02 0.02 0.07 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.01 0.00 Total Cation 4.00 4.01 4.01 4.00 4.01 3.88 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 114

114 Table B-1: Continued. Pyroxenes Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G13 T735-G13 Analy. Loc. interior interior co re rim interior interior core xeno/pheno? xeno pheno pheno pheno pheno pheno pheno SiO2 51.13 49.50 48.92 51.01 50.69 51.52 48.50 TiO2 1.18 0.34 0.40 0.78 0.87 0.68 0.86 Al2O3 3.39 0.57 0.98 1.39 1.81 1.27 2.11 FeO 9.41 28.27 28.35 17.40 20.86 17.39 13.33 MnO 0.25 0.69 0.66 0.53 0.57 0.39 0.38 MgO 16.48 5.26 3.29 12.47 12.01 18.96 15.56 CaO 18.47 16.15 18.51 16.22 13.17 8.01 14.48 K2O 0.00 0.00 0.00 0.02 0.04 0.01 0.02 Na2O 0.25 0.17 0.27 0.25 0.21 0.16 0.22 P2O5 0.00 0.02 0.01 0.02 0.02 Cl 0.00 0.00 0.00 0.00 0.00 Total 100.55 100.97 101.39 100.07 100.24 98.38 95.44 Number of cations per 6 oxygens Si 1.87 1.98 1.96 1.95 1.94 1.95 1.90 Ti 0.03 0.01 0.01 0.02 0.03 0.02 0.03 Al 0.17 0.03 0.05 0.07 0.10 0.07 0.12 Fe 0.29 0.94 0.95 0.56 0.67 0.55 0.44 Mn 0.01 0.02 0.02 0.02 0.02 0.01 0.01 Mg 0.90 0.31 0.20 0.71 0.69 1.07 0.91 Ca 0.72 0.69 0.79 0.66 0.54 0.32 0.61 Na 0.02 0.01 0.02 0.02 0.02 0.01 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.02 4.00 4.01 4.00 3.99 4.00 4.03 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 115

115 Table B-1: Continued. Pyroxenes Sample T735G13 T735-G13 T735-G13 T735-G 13 T735-G13 T735-G13 T735-G13 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno xeno xeno xeno xeno xeno pheno SiO2 48.50 47.10 48.98 52.33 48.79 54.38 50.04 TiO2 1.11 1.96 0.81 0.90 0.88 0.87 0.28 Al2O3 3.26 5.22 2.35 2.34 3.28 4.09 0.96 FeO 10.94 9.85 10.90 11.17 10.61 16.31 25.77 MnO 0.23 0.20 0.31 0.28 0.25 0.45 0.63 MgO 17.62 14.87 15.59 14.97 15.85 10.66 6.29 CaO 14.44 16.93 17.59 17.39 14.01 12.91 16.49 K2O 0.00 0.01 0.01 0.00 0.00 0.07 0.04 Na2O 0.24 0.37 0.31 0.24 0.25 1.22 0.22 P2O5 Cl Total 96.34 96.49 96.84 99. 61 93.91 100.94 100.74 Number of cations per 6 oxygens Si 1.86 1.80 1.89 1.94 1.90 1.99 1.98 Ti 0.03 0.06 0.02 0.03 0.03 0.02 0.01 Al 0.17 0.28 0.13 0.12 0.18 0.21 0.05 Fe 0.35 0.31 0.35 0.35 0.35 0.50 0.85 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.02 Mg 1.01 0.85 0.89 0.83 0.92 0.58 0.37 Ca 0.59 0.69 0.73 0.69 0.59 0.51 0.70 Na 0.02 0.03 0.02 0.02 0.02 0.09 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.03 4.02 4.04 3.98 3.99 3.92 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 116

116 Table B-1: Continued. Pyroxenes Sample T735G13 T735-G13 T735-G13 T735-G 13 T735-G13 T735-G13 T735-G13 Analy. Loc. core rim inte rior core core rim rim xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 50.13 49.50 51.21 52.17 53.61 49.97 50.63 TiO2 0.57 0.36 1.10 1.13 0.29 0.79 1.50 Al2O3 1.55 0.94 1.98 3.02 0.45 2.25 3.27 FeO 25.00 25.19 17.47 14.86 22.78 19.87 13.93 MnO 0.53 0.57 0.43 0.37 0.51 0.48 0.36 MgO 6.23 6.07 16.47 14.90 19.65 12.94 14.80 CaO 17.84 16.51 10.36 12.18 3.90 12.11 15.11 K2O 0.00 0.01 0.46 0.05 0.02 0.02 0.01 Na2O 0.33 0.27 0.27 0.27 0.11 0.23 0.33 P2O5 Cl Total 102.18 99.44 99.73 98.95 101.32 98.66 99.93 Number of cations per 6 oxygens Si 1.95 1.98 1.93 1.95 1.99 1.93 1.89 Ti 0.02 0.01 0.03 0.03 0.01 0.02 0.04 Al 0.08 0.05 0.10 0.16 0.02 0.12 0.17 Fe 0.81 0.84 0.55 0.46 0.71 0.64 0.43 Mn 0.02 0.02 0.01 0.01 0.02 0.02 0.01 Mg 0.36 0.36 0.92 0.83 1.09 0.75 0.82 Ca 0.74 0.71 0.42 0.49 0.16 0.50 0.60 Na 0.03 0.02 0.02 0.02 0.01 0.02 0.02 K 0.00 0.00 0.02 0. 00 0.00 0.00 0.00 Total Cation 4.01 3.99 4.01 3.95 4.00 4.00 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 117

117 Table B-1: Continued. Pyroxenes Sample T735G13 T735-G13 T735-G13 T735-G 13 T735-G13 T735-G14 T735-G14 Analy. Loc. rim core rim ri m interior interior core xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 50.83 50.74 51.05 49.92 49.11 49.29 49.41 TiO2 0.68 0.52 0.49 0.38 0.38 0.49 0.46 Al2O3 1.86 1.24 1.18 0.91 0.81 1.00 0.79 FeO 15.12 18.75 19.49 24.62 28.03 26.19 26.67 MnO 0.37 0.46 0.42 0.58 0.72 0.67 0.62 MgO 13.09 8.33 8.58 9.47 4.52 4.35 6.14 CaO 17.10 17.30 18.93 13.01 16.72 18.47 16.88 K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.27 0.26 0.25 0.25 0.19 0.24 0.16 P2O5 0.00 Cl 0.00 Total 99.32 97.60 100.38 99. 14 100.51 100.71 101.13 Number of cations per 6 oxygens Si 1.93 2.00 1.97 1.97 1.97 1.97 1.96 Ti 0.02 0.02 0.01 0.01 0.01 0.01 0.01 Al 0.10 0.07 0.06 0.05 0.05 0.06 0.04 Fe 0.48 0.62 0.63 0.81 0.94 0.87 0.88 Mn 0.01 0.02 0.01 0.02 0.02 0.02 0.02 Mg 0.74 0.49 0.49 0.56 0.27 0.26 0.36 Ca 0.70 0.73 0.78 0.55 0.72 0.79 0.72 Na 0.02 0.02 0.02 0.02 0.01 0.02 0.01 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.01 3.96 3.99 4.00 4.00 4.00 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 118

118 Table B-1: Continued. Pyroxenes Sample T735G14 T735-G14 T735-G14 T735-G 14 T735-G14 T735-G14 T735-G14 Analy. Loc. rim core rim co re core core interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 50.51 49.12 49.93 52.13 50.94 50.89 51.80 TiO2 0.66 1.86 1.45 0.92 0.88 0.87 0.70 Al2O3 1.36 4.99 6.73 3.35 1.84 1.87 1.66 FeO 20.33 11.64 16.70 14.45 17.65 17.04 15.73 MnO 0.51 0.29 0.38 0.35 0.44 0.42 0.43 MgO 12.46 15.62 6.83 16.67 14.13 14.61 15.15 CaO 14.19 15.88 15.79 11.82 14.27 14.09 14.58 K2O 0.03 0.02 0.24 0.07 0.02 0.00 0.01 Na2O 0.24 0.31 1.03 0.33 0.20 0.19 0.24 P2O5 0.00 0.05 0.11 0.00 0.01 0.00 0.05 Cl 0.01 0.00 0.09 0. 04 0.00 0.00 0.01 Total 100.29 99.77 99.24 100. 11 100.38 99.97 100.35 Number of cations per 6 oxygens Si 1.94 1.82 1.89 1.92 1.93 1.92 1.94 Ti 0.02 0.05 0.04 0.03 0.03 0.02 0.02 Al 0.07 0.26 0.36 0.17 0.10 0.10 0.09 Fe 0.65 0.36 0.53 0.44 0.56 0.54 0.49 Mn 0.02 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.71 0.86 0.38 0.91 0.80 0.82 0.85 Ca 0.58 0.63 0.64 0.47 0.58 0.57 0.59 Na 0.02 0.02 0.08 0.02 0.01 0.01 0.02 K 0.00 0.00 0.01 0. 00 0.00 0.00 0.00 Total Cation 4.02 4.01 3.94 3.98 4.01 4.01 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 119

119 Table B-1: Continued. Pyroxenes Sample T735G15 T735-G15 T735-G15 T735-G 15 T735-G15 T735-G15 T735-G15 Analy. Loc. interior interior inte rior interior core interior rim xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 49.73 50.88 50.01 54.15 51.22 49.33 49.40 TiO2 0.33 1.09 1.41 0.58 0.95 0.37 0.20 Al2O3 0.54 3.47 3.45 2.12 2.29 0.73 0.63 FeO 29.42 8.99 12.29 13.51 12.08 26.66 28.05 MnO 0.79 0.22 0.31 0.33 0.32 0.57 0.66 MgO 4.68 15.89 16.38 23.86 16.05 5.00 5.05 CaO 15.61 19.32 15.43 5.92 16.59 17.82 16.60 K2O 0.00 0.00 0.00 0.01 0.00 0.00 0.01 Na2O 0.19 0.28 0.28 0.14 0.25 0.20 0.20 P2O5 0.00 0.02 0.02 0.00 0.01 0.00 Cl 0.00 0.00 0. 00 0.00 0.00 0.00 Total 101.31 100.13 99.58 100.66 99.77 100.69 100.80 Number of cations per 6 oxygens Si 1.99 1.87 1.86 1.94 1.91 1.97 1.98 Ti 0.01 0.03 0.04 0.02 0.03 0.01 0.01 Al 0.03 0.18 0.18 0.11 0.12 0.04 0.04 Fe 0.98 0.28 0.38 0.41 0.38 0.89 0.94 Mn 0.03 0.01 0.01 0.01 0.01 0.02 0.02 Mg 0.28 0.87 0.91 1.28 0.89 0.30 0.30 Ca 0.67 0.76 0.62 0.23 0.66 0.76 0.71 Na 0.02 0.02 0.02 0.01 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.02 4.02 3.99 4.01 4.01 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 120

120 Table B-1: Continued. Pyroxenes Sample T735G15 T735-G15 T735-G16 T735-G 16 T735-G16 T735-G16 T735-G16 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno clot clot clot SiO2 50.62 50.88 52.56 47.74 51.08 48.96 48.50 TiO2 1.10 1.10 0.60 2.29 0.97 0.60 0.58 Al2O3 3.19 3.02 1.71 4.27 3.32 1.02 1.07 FeO 8.84 10.60 18.74 16.34 10.70 25.87 28.21 MnO 0.18 0.26 0.47 0.43 0.26 0.56 0.68 MgO 15.98 17.37 20.58 12.73 16.58 5.57 5.87 CaO 19.16 16.44 5.47 15.51 17.15 17.60 15.28 K2O 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Na2O 0.27 0.25 0.10 0.35 0.28 0.23 0.21 P2O5 0.01 0.03 0.00 0.14 0.03 0.03 0.00 Cl 0.02 0.01 0.00 0. 00 0.00 0.00 0.00 Total 99.36 99.94 100.23 99. 79 100.37 100.44 100.38 Number of cations per 6 oxygens Si 1.88 1.88 1.94 1.81 1.88 1.95 1.95 Ti 0.03 0.03 0.02 0.07 0.03 0.02 0.02 Al 0.17 0.16 0.09 0.23 0.17 0.06 0.06 Fe 0.27 0.33 0.58 0.52 0.33 0.86 0.95 Mn 0.01 0.01 0.01 0.01 0.01 0.02 0.02 Mg 0.88 0.96 1.13 0.72 0.91 0.33 0.35 Ca 0.76 0.65 0.22 0.63 0.68 0.75 0.66 Na 0.02 0.02 0.01 0.03 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.02 4.02 4.00 4.02 4.02 4.01 4.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 121

121 Table B-1: Continued. Pyroxenes Sample T735G16 T735-G16 T735-G16 T735-G 16 T735-G17 T735-G17 T735-G17 Analy. Loc. interior core rim core core interior interior xeno/pheno? clot pheno pheno pheno pheno pheno pheno SiO2 48.81 50.73 49.62 49.31 51.52 49.72 47.86 TiO2 0.47 1.04 1.25 1.74 1.05 1.33 1.98 Al2O3 0.89 1.89 2.16 3.25 2.61 2.78 4.65 FeO 29.06 16.72 20.60 15.60 11.18 16.15 15.42 MnO 0.75 0.44 0.55 0.42 0.25 0.41 0.36 MgO 5.71 15.53 11.83 12.16 16.00 13.29 12.10 CaO 14.58 13.08 14.07 17.37 17.20 15.84 16.98 K2O 0.01 0.00 0.01 0.00 0.01 0.00 0.00 Na2O 0.16 0.20 0.22 0.34 0.23 0.28 0.32 P2O5 0.03 0.04 0.00 0.03 0.06 Cl 0.00 0.00 0.00 0.00 0.00 Total 100.45 99.67 100.30 100.28 100.18 99.82 99.73 Number of cations per 6 oxygens Si 1.96 1.92 1.91 1.87 1.91 1.89 1.82 Ti 0.01 0.03 0.04 0.05 0.03 0.04 0.06 Al 0.05 0.10 0.12 0.17 0.13 0.15 0.25 Fe 0.98 0.53 0.66 0.49 0.35 0.51 0.49 Mn 0.03 0.01 0.02 0.01 0.01 0.01 0.01 Mg 0.34 0.88 0.68 0.69 0.88 0.75 0.68 Ca 0.63 0.53 0.58 0.70 0.68 0.64 0.69 Na 0.01 0.01 0.02 0.03 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.01 4.01 4.01 4.01 4.01 4.01 4.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 122

122 Table B-1: Continued. Pyroxenes Sample T735G17 T735-G17 T735-G17 T735-G 17 T735-G17 T735-G17 T735-G17 Analy. Loc. core rim interior core interior rim interior xeno/pheno? pheno pheno pheno pheno pheno pheno xeno SiO2 49.48 50.71 50.96 51.82 51.82 47.87 48.18 TiO2 0.23 0.59 0.64 0.76 0.83 1.31 2.31 Al2O3 0.36 1.11 1.04 2.50 2.10 2.62 5.72 FeO 36.78 25.05 21.93 10.58 12.75 22.50 12.67 MnO 0.93 0.72 0.59 0.27 0.35 0.50 0.29 MgO 8.29 14.57 15.24 18.17 17.82 10.36 14.25 CaO 4.56 6.95 9.43 15.37 13.91 13.65 16.93 K2O 0.00 0.01 0.02 0.00 0.01 0.02 0.00 Na2O 0.04 0.10 0.13 0.20 0.21 0.26 0.40 P2O5 0.00 0.06 0.00 0.00 0.01 0.00 0.02 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 100.67 99.86 99.98 99.67 99.80 99.09 100.77 Number of cations per 6 oxygens Si 1.99 1.96 1.95 1.91 1.92 1.88 1.78 Ti 0.01 0.02 0.02 0.02 0.02 0.04 0.06 Al 0.02 0.06 0.06 0.13 0.11 0.14 0.30 Fe 1.24 0.81 0.70 0.33 0.40 0.74 0.39 Mn 0.03 0.02 0.02 0.01 0.01 0.02 0.01 Mg 0.50 0.84 0.87 1.00 0.98 0.61 0.78 Ca 0.20 0.29 0.39 0.61 0.55 0.57 0.67 Na 0.00 0.01 0.01 0.01 0.02 0.02 0.03 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 4.00 4.01 4.01 4.01 4.02 4.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 123

123 Table B-1: Continued. Pyroxenes Sample T735G17 T735-G18 T735-G18 T735-G 18 T735-G18 T735-G18 T735-G18 Analy. Loc. interior core rim core interior rim interior xeno/pheno? xeno pheno pheno pheno pheno pheno xeno SiO2 48.90 50.83 52.89 54.30 51.50 52.03 51.84 TiO2 2.20 0.21 0.50 0.45 1.02 0.79 0.75 Al2O3 5.55 0.56 1.46 1.83 3.99 2.95 3.04 FeO 12.37 23.10 11.69 11.58 9.48 12.60 8.51 MnO 0.28 0.57 0.29 0.31 0.30 0.33 0.21 MgO 14.55 7.16 15.98 25.06 18.27 15.35 17.48 CaO 17.16 18.56 17.79 6.73 15.72 16.13 18.20 K2O 0.01 0.00 0.00 0.00 0.00 0.05 0.01 Na2O 0.35 0.21 0.20 0.09 0.22 0.32 0.23 P2O5 0.08 0.00 0.00 0.00 0.00 0.01 0.00 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 101.44 101.20 100.81 100.34 100.50 100.56 100.28 Number of cations per 6 oxygens Si 1.79 1.98 1.95 1.94 1.87 1.92 1.89 Ti 0.06 0.01 0.01 0.01 0.03 0.02 0.02 Al 0.28 0.03 0.08 0.09 0.20 0.15 0.16 Fe 0.38 0.75 0.36 0.35 0.29 0.39 0.26 Mn 0.01 0.02 0.01 0.01 0.01 0.01 0.01 Mg 0.79 0.42 0.88 1.34 0.99 0.84 0.95 Ca 0.67 0.78 0.70 0.26 0.61 0.64 0.71 Na 0.02 0.02 0.01 0.01 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.02 4.00 4.00 4.00 4.01 4.00 4.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 124

124 Table B-1: Continued. Pyroxenes Sample T735G18 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior core interior interior rim interior interior xeno/pheno? xeno pheno pheno pheno pheno pheno pheno SiO2 48.28 48.80 50.79 50.91 52.08 50.75 49.36 TiO2 1.72 0.40 0.11 0.18 0.44 0.12 0.28 Al2O3 5.83 0.86 0.39 0.35 1.48 0.30 0.93 FeO 13.05 25.57 22.85 22.70 10.48 22.77 25.11 MnO 0.29 0.68 0.66 0.67 0.30 0.60 0.61 MgO 15.18 6.33 7.20 7.18 16.36 7.35 6.51 CaO 15.10 16.02 18.28 18.29 17.02 18.44 16.38 K2O 0.01 0.00 0.00 0.02 0.00 0.00 0.00 Na2O 0.25 0.26 0.17 0.17 0.23 0.18 0.21 P2O5 0.07 Cl 0.00 Total 99.77 98.91 100.45 100.47 98.39 100.51 99.39 Number of cations per 6 oxygens Si 1.79 1.97 2.00 2.00 1.96 1.99 1.97 Ti 0.05 0.01 0.00 0.01 0.01 0.00 0.01 Al 0.30 0.05 0.02 0.02 0.08 0.02 0.05 Fe 0.41 0.86 0.75 0.75 0.33 0.75 0.84 Mn 0.01 0.02 0.02 0.02 0.01 0.02 0.02 Mg 0.84 0.38 0.42 0.42 0.92 0.43 0.39 Ca 0.60 0.69 0.77 0.77 0.68 0.78 0.70 Na 0.02 0.02 0.01 0.01 0.02 0.01 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.02 4.01 4.00 3.99 4.00 4.00 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 125

125 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. rim interior interior interior interior core interior xeno/pheno? pheno q pheno q pheno xeno xeno xeno xeno SiO2 52.20 47.68 51.23 51.22 51.80 52.90 50.71 TiO2 0.42 1.91 0.71 0.74 0.63 0.60 0.98 Al2O3 1.73 8.07 3.18 3.09 3.39 2.68 3.60 FeO 10.99 9.99 8.98 7.18 7.22 7.87 8.17 MnO 0.32 0.21 0.20 0.24 0.22 0.20 0.20 MgO 15.48 13.84 17.98 15.98 15.83 16.14 15.77 CaO 17.18 17.04 15.47 18.52 19.64 18.68 18.43 K2O 0.00 0.01 0.00 0.16 0.03 0.04 0.01 Na2O 0.20 0.31 0.20 0.40 0.30 0.26 0.34 P2O5 Cl Total 98.52 99.05 97.96 97.52 99.04 99.37 98.22 Number of cations per 6 oxygens Si 1.96 1.76 1.90 1.92 1.91 1.94 1.89 Ti 0.01 0.05 0.02 0.02 0.02 0.02 0.03 Al 0.09 0.42 0.16 0.16 0.17 0.14 0.19 Fe 0.35 0.31 0.28 0.22 0.22 0.24 0.25 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.87 0.76 1.00 0.89 0.87 0.88 0.88 Ca 0.69 0.67 0.62 0.74 0.78 0.73 0.74 Na 0.01 0.02 0.01 0.03 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 01 0.00 0.00 0.00 Total Cation 3.99 3.99 4.00 4.00 4.00 3.98 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 126

126 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. rim core rim core core core core xeno/pheno? xeno xeno xeno pheno pheno pheno pheno SiO2 52.71 53.85 46.83 51.83 51.37 51.39 51.35 TiO2 0.31 0.56 2.51 0.53 0.67 0.69 0.92 Al2O3 2.12 1.84 7.67 2.02 1.79 3.41 3.24 FeO 7.93 7.32 11.05 10.52 10.13 9.70 9.63 MnO 0.25 0.21 0.21 0.26 0.26 0.18 0.22 MgO 17.88 17.26 13.92 14.49 14.58 17.10 15.40 CaO 16.49 18.11 16.56 18.71 18.55 15.57 17.86 K2O 0.00 0.01 0.03 0.00 0.00 0.03 0.01 Na2O 0.24 0.26 0.40 0.25 0.24 0.30 0.30 P2O5 Cl Total 97.91 99.42 99.17 98.61 97.59 98.37 98.94 Number of cations per 6 oxygens Si 1.96 1.97 1.74 1.95 1.95 1.91 1.91 Ti 0.01 0.02 0.07 0.02 0.02 0.02 0.03 Al 0.11 0.09 0.40 0.11 0.10 0.18 0.17 Fe 0.25 0.22 0.34 0.33 0.32 0.30 0.30 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.99 0.94 0.77 0.81 0.83 0.95 0.85 Ca 0.66 0.71 0.66 0.75 0.75 0.62 0.71 Na 0.02 0.02 0.03 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 3.98 4.01 3.99 3.99 4.00 3.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 127

127 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interior core interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 51.91 50.90 52.09 51.89 51.06 51.49 51.92 TiO2 0.57 0.61 0.81 0.58 0.66 0.61 0.74 Al2O3 2.02 2.08 3.55 2.70 2.74 2.25 1.57 FeO 9.10 11.21 12.96 7.38 7.70 8.86 12.37 MnO 0.29 0.31 0.29 0.22 0.18 0.24 0.29 MgO 16.03 14.02 12.54 16.90 16.11 16.23 14.58 CaO 17.96 18.03 16.94 17.68 18.15 17.27 17.00 K2O 0.00 0.00 0.06 0.00 0.00 0.00 0.00 Na2O 0.23 0.29 0.31 0.29 0.23 0.22 0.22 P2O5 Cl Total 98.12 97.45 99.55 97.64 96.83 97.18 98.67 Number of cations per 6 oxygens Si 1.94 1.94 1.94 1.93 1.93 1.94 1.96 Ti 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Al 0.11 0.11 0.19 0.14 0.14 0.12 0.08 Fe 0.28 0.36 0.40 0.23 0.24 0.28 0.39 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.90 0.80 0.70 0.94 0.91 0.91 0.82 Ca 0.72 0.74 0.68 0.71 0.73 0.70 0.69 Na 0.02 0.02 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.99 4.00 3.96 3.99 3.99 3.99 3.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 128

128 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interi or interior interior interior rim xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 48.32 50.33 50.43 50.19 49.99 50.22 50.17 TiO2 0.66 0.24 0.26 0.31 0.32 0.31 0.33 Al2O3 2.20 0.66 0.70 0.64 0.80 0.82 0.84 FeO 14.15 24.54 24.38 23.71 25.01 24.90 24.82 MnO 0.37 0.63 0.61 0.60 0.66 0.62 0.64 MgO 14.94 6.71 6.69 6.79 6.27 5.92 5.74 CaO 14.21 17.00 17.28 18.04 17.28 17.65 17.61 K2O 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.28 0.19 0.22 0.21 0.22 0.21 0.23 P2O5 Cl Total 95.13 100.31 100.55 100. 54 100.56 100.72 100.38 Number of cations per 6 oxygens Si 1.91 1.99 1.99 1.98 1.98 1.98 1.99 Ti 0.02 0.01 0.01 0.01 0.01 0.01 0.01 Al 0.12 0.04 0.04 0.04 0.04 0.05 0.05 Fe 0.47 0.81 0.80 0.78 0.83 0.82 0.82 Mn 0.01 0.02 0.02 0.02 0.02 0.02 0.02 Mg 0.88 0.39 0.39 0.40 0.37 0.35 0.34 Ca 0.60 0.72 0.73 0.76 0.73 0.75 0.75 Na 0.02 0.01 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.03 3.99 3.99 4.00 4.00 3.99 3.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 129

129 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. rim interior core inte rior interior in terior interior xeno/pheno? pheno xeno xeno pheno pheno pheno pheno SiO2 50.36 53.21 50.25 51.80 52.40 50.49 52.45 TiO2 0.34 0.09 1.10 0.83 0.72 0.73 0.66 Al2O3 0.80 28.20 3.28 2.74 2.50 3.53 1.75 FeO 23.18 1.00 11.66 8.57 7.80 7.70 11.02 MnO 0.64 0.00 0.31 0.19 0.19 0.20 0.34 MgO 7.28 0.16 15.14 16.84 16.88 16.63 16.47 CaO 17.55 12.84 17.64 18.61 18.79 18.05 16.83 K2O 0.02 0.08 0.00 0.00 0.00 0.00 0.01 Na2O 0.21 4.26 0.24 0.24 0.23 0.24 0.22 P2O5 Cl Total 100.36 99.87 99. 78 99.99 99.70 97.87 99.82 Number of cations per 6 oxygens Si 1.98 1.73 1.88 1.90 1.92 1.89 1.94 Ti 0.01 0.00 0.03 0.02 0.02 0.02 0.02 Al 0.04 1.28 0.17 0.14 0.13 0.18 0.09 Fe 0.76 0.03 0.36 0.26 0.24 0.24 0.34 Mn 0.02 0.00 0.01 0.01 0.01 0.01 0.01 Mg 0.43 0.01 0.84 0.92 0.92 0.93 0.91 Ca 0.74 0.45 0.71 0.73 0.74 0.72 0.67 Na 0.02 0.27 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 3.76 4.02 4.01 4.00 4.01 4.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 130

130 Table B-1: Continued. Pyroxenes Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G23 T735-G23 T735-G23 Analy. Loc. core core interior inte rior interior in terior interior xeno/pheno? pheno pheno xeno xeno pheno pheno pheno SiO2 51.29 51.74 49.16 52.41 51.21 52.12 51.56 TiO2 0.88 0.78 1.74 0.51 0.79 0.75 0.86 Al2O3 2.21 2.21 5.71 1.03 3.38 3.26 3.31 FeO 12.60 12.90 11.69 14.24 6.78 7.89 6.83 MnO 0.37 0.35 0.27 0.39 0.18 0.21 0.18 MgO 15.00 15.38 14.98 15.75 16.71 18.14 16.55 CaO 16.88 16.63 16.53 14.87 19.42 17.44 20.18 K2O 0.00 0.01 0.01 0.02 0.00 0.00 0.00 Na2O 0.25 0.25 0.32 0.18 0.24 0.25 0.26 P2O5 0.02 0.02 0.00 Cl 0.00 0.00 0.00 Total 99.54 100.32 100.54 99.40 98.72 100.07 99.72 Number of cations per 6 oxygens Si 1.92 1.92 1.81 1.97 1.89 1.90 1.89 Ti 0.02 0.02 0.05 0.01 0.02 0.02 0.02 Al 0.12 0.12 0.29 0.05 0.17 0.17 0.17 Fe 0.39 0.40 0.36 0.45 0.21 0.24 0.21 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mg 0.84 0.85 0.82 0.88 0.92 0.98 0.90 Ca 0.68 0.66 0.65 0.60 0.77 0.68 0.79 Na 0.02 0.02 0.02 0.01 0.02 0.02 0.02 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.00 4.01 4.01 3.99 4.01 4.01 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 131

131 Table B-1: Continued. Pyroxenes Sample T735G23 T735-G23 Analy. Loc. interior interior xeno/pheno? pheno pheno SiO2 51.69 51.76 TiO2 0.64 0.71 Al2O3 2.91 3.18 FeO 6.88 6.74 MnO 0.18 0.18 MgO 17.32 16.87 CaO 19.13 19.78 K2O 0.00 0.00 Na2O 0.24 0.23 P2O5 0.00 0.00 Cl 0.00 0.00 Total 98.99 99.46 Number of cations per 6 oxygens Si 1.90 1.90 Ti 0.02 0.02 Al 0.15 0.16 Fe 0.21 0.21 Mn 0.01 0.01 Mg 0.95 0.92 Ca 0.75 0.78 Na 0.02 0.02 K 0.00 0.00 Total Cation 4.01 4.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 132

132 Table B-2: Plagioclase compositions de termined from microprobe analyses. Phase chemistry for lavas recovered during Dive T735. Plagioclase Sample T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 54.47 58.12 57.75 57.6858.2658.02 58.30 TiO2 0.04 0.06 0.08 0.050.050.02 0.09 Al2O3 28.84 25.43 25.38 26.0025.5125.01 25.51 FeO 0.54 0.46 0.55 0.430.560.46 0.42 MnO 0.02 0.01 0.01 0.000.010.03 0.02 MgO 0.03 0.03 0.03 0.010.020.01 0.02 CaO 9.08 8.81 9.25 9.569.039.06 8.93 Na2O 5.96 6.42 6.31 6.126.426.42 6.40 K2O 0.13 0.12 0.11 0.100.130.15 0.15 P2O5 Cl Total 99.14 99.50 99.48 99.95100.0299.20 99.85 Number of cations per 8 oxygens Si 2.35 2.50 2.49 2.472.502.51 2.50 Ti 0.00 0.00 0.00 0.000.000.00 0.00 Al 1.74 1.53 1.53 1.561.531.51 1.53 Fe 0.02 0.02 0.02 0.020.020.02 0.02 Mn 0.00 0.00 0.00 0.000.000.00 0.00 Mg 0.00 0.00 0.00 0.000.000.00 0.00 Ca 0.42 0.41 0.43 0.440.420.42 0.41 Na 0.50 0.54 0.53 0.510.530.54 0.53 K 0.01 0.01 0.010. 010.010.01 0.01 Total Cation 5.03 5.00 5.015.005.015.01 5.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 133

133 Table B-2: Continued. Plagioclase Sample T735G9 T735-G9 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno pheno xeno xeno xeno pheno pheno SiO2 51.66 61.25 59.36 62.23 61.01 57.74 59.82 TiO2 0.06 0.01 0.03 0.00 0.08 0.06 0.00 Al2O3 28.54 23.49 25.74 25.42 25.97 27.79 26.81 FeO 0.73 0.36 0.36 0.32 0.40 0.48 0.37 MnO 0.00 0.00 0.02 0.00 0.02 0.00 0.00 MgO 0.19 0.00 0.01 0.00 0.00 0.02 0.03 CaO 14.11 6.39 7.40 6.43 7.11 8.80 8.22 Na2O 3.63 7.85 7.66 8.03 7.57 5.46 6.98 K2O 0.03 0.23 0.19 0.17 0.20 0.15 0.19 P2O5 Cl Total 98.98 99.57 100.77 102. 60 102.37 100.50 102.41 Number of cations per 8 oxygens Si 2.26 2.63 2.52 2.58 2.54 2.44 2.49 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.75 1.41 1.53 1.47 1.51 1.64 1.56 Fe 0.03 0.01 0.01 0.01 0.01 0.02 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.66 0.29 0.34 0.29 0.32 0.40 0.37 Na 0.31 0.65 0.63 0.65 0.61 0.45 0.56 K 0.00 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.02 5.00 5.04 5.01 5.01 4.96 5.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 134

134 Table B-2: Continued. Plagioclase Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 59.67 57.47 58.43 58.27 57.30 57.56 57.64 TiO2 0.00 0.07 0.08 0.00 0.05 0.00 0.00 Al2O3 26.12 27.13 27.58 27.78 27.47 27.75 27.33 FeO 0.38 0.46 0.32 0.43 0.43 0.54 0.47 MnO 0.01 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.04 0.04 0.05 0.04 0.02 0.03 0.02 CaO 7.69 8.88 9.23 9.38 9.22 9.15 8.94 Na2O 7.21 6.90 6.42 6.47 6.45 6.60 6.58 K2O 0.18 0.13 0.17 0.16 0.14 0.14 0.18 P2O5 Cl Total 101.29 101.08 102.27 102.53 101.08 101.77 101.18 Number of cations per 8 oxygens Si 2.51 2.44 2.44 2.43 2.43 2.42 2.44 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.54 1.61 1.61 1.62 1.63 1.63 1.62 Fe 0.01 0.02 0.01 0.02 0.02 0.02 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.35 0.40 0.41 0.42 0.42 0.41 0.41 Na 0.59 0.57 0.52 0.52 0.53 0.54 0.54 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.02 5.04 5.01 5.02 5.03 5.03 5.03 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 135

135 Table B-2: Continued. Plagioclase Sample T735G10 T735-G10 T735-G10 T735-G 10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interi or interior interior interior rim xeno/pheno? pheno pheno pheno q pheno q pheno q pheno q pheno SiO2 59.16 56.47 57.33 59.64 60.28 60.97 62.05 TiO2 0.09 0.00 0.00 0.04 0.45 0.08 0.24 Al2O3 27.01 27.46 27.74 26.16 21.93 25.56 22.55 FeO 0.47 0.48 0.47 0.96 2.00 0.92 1.69 MnO 0.02 0.00 0.03 0.01 0.00 0.00 0.02 MgO 0.04 0.03 0.03 0.00 0.08 0.08 0.12 CaO 8.33 9.15 9.49 7.62 5.58 6.81 6.07 Na2O 6.94 6.50 6.37 7.51 7.03 7.76 6.95 K2O 0.16 0.11 0.14 0.17 0.35 0.19 0.27 P2O5 Cl Total 102.21 100.21 101.62 102.10 97.71 102.35 99.96 Number of cations per 8 oxygens Si 2.47 2.41 2.42 2.50 2.65 2.55 2.66 Ti 0.00 0.00 0.00 0.00 0.02 0.00 0.01 Al 1.58 1.64 1.64 1.54 1.35 1.49 1.35 Fe 0.02 0.02 0.02 0.03 0.07 0.03 0.06 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Ca 0.37 0.42 0.43 0.34 0.26 0.30 0.28 Na 0.56 0.54 0.52 0.61 0.60 0.63 0.58 K 0.01 0.01 0.01 0. 01 0.02 0.01 0.01 Total Cation 5.02 5.04 5.03 5.04 4.97 5.02 4.96 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 136

136 Table B-2: Continued. Plagioclase Sample T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? coarse xeno coarse xeno coarse xeno pheno pheno xeno xeno SiO2 58.95 60.83 60.88 60.10 59.59 54.71 56.90 TiO2 0.04 0.03 0.00 0.03 0.04 0.08 0.12 Al2O3 26.97 24.00 24.34 24.62 25.30 27.57 26.50 FeO 0.34 0.32 0.31 0.50 0.33 0.91 1.05 MnO 0.00 0.00 0.01 0.00 0.00 0.00 0.00 MgO 0.00 0.00 0.01 0.00 0.00 0.16 0.09 CaO 7.23 7.11 7.12 7.67 7.94 11.86 10.36 Na2O 7.31 7.47 7.58 7.27 6.95 4.78 5.83 K2O 0.15 0.18 0.17 0.15 0.16 0.07 0.09 P2O5 Cl Total 101.00 99.95 100.44 100. 36 100.32 100.16 100.98 Number of cations per 8 oxygens Si 2.49 2.60 2.59 2.56 2.54 2.36 2.43 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.59 1.43 1.45 1.47 1.51 1.66 1.58 Fe 0.01 0.01 0.01 0.02 0.01 0.03 0.04 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.01 0.01 Ca 0.33 0.33 0.32 0.35 0.36 0.55 0.47 Na 0.60 0.62 0.62 0.60 0.57 0.40 0.48 K 0.01 0.01 0.01 0. 01 0.01 0.00 0.01 Total Cation 5.02 5.00 5.01 5.01 5.00 5.01 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 137

137 Table B-2: Continued. Plagioclase Sample T735G10 T735-G10 T735-G 10 T735-G10 T735-G10 735-11 clot1 plag1 735-11 clot1 plag2 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno xeno xeno xeno xeno xeno xeno SiO2 53.48 53.45 53.55 54.38 54.26 52.88 52.56 TiO2 0.07 0.08 0.08 0.10 0.09 0.08 0.06 Al2O3 27.01 28.07 27.89 27.00 27.53 29.29 29.59 FeO 0.84 0.73 0.84 0.97 0.92 0.88 0.88 MnO 0.01 0.02 0.02 0.02 0.00 0.01 0.01 MgO 0.15 0.19 0.21 0.21 0.24 0.19 0.18 CaO 12.32 12.81 12.78 12.41 12.40 12.98 13.29 Na2O 4.66 4.37 4.42 4.66 4.65 4.28 4.12 K2O 0.07 0.05 0.04 0.05 0.05 0.05 0.05 P2O5 0.05 0.02 Cl 0.00 0.00 Total 98.62 99.77 99.81 99. 79 100.16 100.69 100.75 Number of cations per 8 oxygens Si 2.35 2.31 2.32 2.36 2.34 2.27 2.25 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.66 1.70 1.69 1.64 1.66 1.76 1.77 Fe 0.03 0.03 0.03 0.04 0.03 0.03 0.03 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.01 0.01 0.02 0.01 0.01 Ca 0.58 0.59 0.59 0.58 0.57 0.60 0.61 Na 0.40 0.37 0.37 0.39 0.39 0.36 0.34 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 5.02 5.02 5.02 5.02 5.02 5.03 5.03 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 138

138 Table B-2: Continued. Plagioclase Sample T735G11* T735-G11* T735-G 11* T735-G11* T735-G11* T735-G11* T735-G11* Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 58.14 58.27 57.78 58.20 58.30 58.50 57.85 TiO2 0.05 0.02 0.06 0.01 0.00 0.05 0.01 Al2O3 25.93 26.02 26.11 25.85 25.98 25.81 25.86 FeO 0.44 0.48 0.46 0.42 0.47 0.41 0.39 MnO 0.01 0.00 0.00 0.00 0.02 0.01 0.01 MgO 0.02 0.03 0.00 0.02 0.03 0.02 0.03 CaO 8.51 8.59 8.69 8.54 8.52 8.45 8.71 Na2O 6.75 6.62 6.67 6.59 6.72 6.54 6.59 K2O 0.13 0.14 0.11 0.13 0.13 0.13 0.14 P2O5 0.01 0.00 0.00 0.01 0.03 0.02 0.00 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 99.99 100.17 99.86 99.78 100.18 99.95 99.59 Number of cations per 8 oxygens Si 2.49 2.49 2.48 2.49 2.49 2.50 2.49 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.55 1.55 1.56 1.55 1.55 1.54 1.55 Fe 0.02 0.02 0.02 0.02 0.02 0.01 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.39 0.39 0.40 0.39 0.39 0.39 0.40 Na 0.56 0.55 0.55 0.55 0.56 0.54 0.55 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.02 5.01 5.02 5.01 5.01 5.00 5.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 139

139 Table B-2: Continued. Plagioclase Sample T735G11* T735-G11* T735-G 11* T735-G11* T735-G11* T735-G11* T735-G11* Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 58.00 58.33 56.84 51.43 58.09 57.96 57.06 TiO2 0.00 0.03 0.08 0.05 0.02 0.07 0.00 Al2O3 25.97 25.86 26.33 24.31 25.72 25.96 26.34 FeO 0.42 0.40 0.44 0.55 0.46 0.46 0.46 MnO 0.00 0.00 0.00 0.02 0.00 0.03 0.00 MgO 0.01 0.03 0.04 0.04 0.03 0.02 0.01 CaO 8.74 8.57 8.27 7.49 8.52 8.63 8.81 Na2O 6.64 6.60 6.45 5.99 6.74 6.70 6.48 K2O 0.11 0.13 0.13 0.14 0.11 0.13 0.13 P2O5 0.03 0.01 0.02 0.03 0.03 0.02 0.04 Cl 0.00 0.00 0.00 0. 05 0.00 0.00 0.01 Total 99.91 99.97 98.59 90.10 99.73 99.98 99.34 Number of cations per 8 oxygens Si 2.49 2.50 2.46 2.44 2.49 2.48 2.46 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.56 1.55 1.59 1.61 1.54 1.55 1.59 Fe 0.01 0.01 0.02 0.02 0.02 0.02 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.40 0.39 0.38 0.38 0.39 0.40 0.41 Na 0.55 0.55 0.54 0.55 0.56 0.56 0.54 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.02 5.01 5.01 5.03 5.02 5.02 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 140

140 Table B-2: Continued. Plagioclase Sample T735G11* T735-G11* T735-G11* T735-G 11* T735-G11* T735-G11* T735-G12 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 57.63 58.02 58.01 57.91 57.84 57.69 61.33 TiO2 0.05 0.00 0.02 0.04 0.05 0.05 0.02 Al2O3 26.19 25.93 26.14 25.88 26.02 26.11 24.03 FeO 0.41 0.47 0.45 0.44 0.46 0.58 0.48 MnO 0.01 0.02 0.00 0.01 0.00 0.01 0.00 MgO 0.03 0.03 0.03 0.02 0.07 0.01 0.00 CaO 8.81 8.61 8.66 8.69 8.70 8.56 6.40 Na2O 6.43 6.69 6.52 6.61 6.43 6.66 7.94 K2O 0.15 0.14 0.14 0.13 0.14 0.13 0.20 P2O5 0.06 0.03 0.00 0.02 0.00 0.01 0.02 Cl 0.00 0.00 0.00 0. 00 0.00 0.01 0.00 Total 99.75 99.93 99.98 99.75 99.72 99.82 100.42 Number of cations per 8 oxygens Si 2.47 2.49 2.48 2.49 2.48 2.48 2.61 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.57 1.55 1.56 1.55 1.56 1.57 1.43 Fe 0.01 0.02 0.02 0.02 0.02 0.02 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.41 0.40 0.40 0.40 0.40 0.39 0.29 Na 0.54 0.56 0.54 0.55 0.53 0.55 0.65 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.01 5.02 5.01 5.01 5.01 5.02 5.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 141

141 Table B-2: Continued. Plagioclase Sample T735G12 T735-G12 T735-G12 T735-G12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno xeno xeno pheno pheno SiO2 61.29 61.03 60.88 53.32 52.22 59.69 61.28 TiO2 0.06 0.02 0.02 0.08 0.05 0.02 0.01 Al2O3 23.78 24.13 24.29 27.88 29.74 25.41 24.34 FeO 0.50 0.34 0.40 0.82 0.76 0.34 0.38 MnO 0.00 0.00 0.00 0.03 0.00 0.00 0.00 MgO 0.01 0.00 0.00 0.12 0.18 0.00 0.00 CaO 6.59 6.44 6.65 11.69 13.52 7.73 6.61 Na2O 7.49 7.93 7.81 4.79 3.88 7.11 7.69 K2O 0.23 0.17 0.19 0.08 0.05 0.13 0.18 P2O5 0.00 0.09 0.00 0.01 0.00 0.02 0.01 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 99.94 100.14 100.24 98.83 100.41 100.46 100.48 Number of cations per 8 oxygens Si 2.62 2.60 2.59 2.33 2.25 2.54 2.60 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.42 1.44 1.45 1.70 1.79 1.51 1.44 Fe 0.02 0.01 0.01 0.03 0.03 0.01 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.01 0.01 0.00 0.00 Ca 0.30 0.29 0.30 0.55 0.62 0.35 0.30 Na 0.62 0.66 0.64 0.41 0.32 0.59 0.63 K 0.01 0.01 0.01 0. 00 0.00 0.01 0.01 Total Cation 4.99 5.01 5.01 5.03 5.02 5.00 5.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 142

142 Table B-2: Continued. Plagioclase Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 60.24 59.80 60.21 61.28 60.70 58.58 59.60 TiO2 0.03 0.02 0.00 0.04 0.04 0.05 0.03 Al2O3 24.78 23.70 24.00 23.26 23.89 25.15 24.45 FeO 0.35 0.34 0.39 0.31 0.33 0.53 0.41 MnO 0.01 0.02 0.00 0.03 0.02 0.00 0.03 MgO 0.00 0.00 0.00 0.01 0.00 0.03 0.00 CaO 7.16 6.86 7.37 6.48 6.93 8.73 7.90 Na2O 7.48 7.54 7.54 7.93 7.64 6.56 7.13 K2O 0.17 0.17 0.14 0.17 0.16 0.13 0.16 P2O5 0.00 Cl 0.00 Total 100.22 98.47 99. 68 99.52 99.70 99.81 99.77 Number of cations per 8 oxygens Si 2.57 2.59 2.58 2.63 2.60 2.52 2.56 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.48 1.44 1.44 1.40 1.43 1.51 1.47 Fe 0.01 0.01 0.01 0.01 0.01 0.02 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.33 0.32 0.34 0.30 0.32 0.40 0.36 Na 0.62 0.63 0.63 0.66 0.63 0.55 0.59 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.01 5.01 5.01 5.01 5.01 5.00 5.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 143

143 Table B-2: Continued. Plagioclase Sample T735G12 T735-G12 T735-G12 T735-G 12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 59.49 59.40 58.51 57.61 61.68 62.09 61.69 TiO2 0.03 0.04 0.00 0.16 0.00 0.02 0.02 Al2O3 24.79 24.73 24.45 24.97 22.78 22.96 23.10 FeO 0.33 0.36 0.38 1.31 0.38 0.38 0.46 MnO 0.00 0.01 0.00 0.00 0.00 0.00 0.00 MgO 0.03 0.00 0.01 0.10 0.00 0.00 0.01 CaO 8.11 8.16 8.45 9.30 6.04 6.07 6.71 Na2O 7.01 6.93 6.88 6.30 8.06 8.10 7.67 K2O 0.12 0.13 0.14 0.12 0.22 0.23 0.23 P2O5 Cl Total 99.94 99.81 98.83 99.89 99.19 99.87 99.89 Number of cations per 8 oxygens Si 2.55 2.55 2.54 2.49 2.65 2.65 2.64 Ti 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Al 1.48 1.48 1.48 1.51 1.37 1.37 1.38 Fe 0.01 0.01 0.01 0.05 0.01 0.01 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Ca 0.37 0.37 0.39 0.43 0.28 0.28 0.31 Na 0.58 0.58 0.58 0.53 0.67 0.67 0.64 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.00 5.00 5.01 5.02 5.00 5.00 4.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 144

144 Table B-2: Continued. Plagioclase Sample T735G13 T735-G13 T735-G13 T735-G 14 T735-G14 T735-G15 T735-G15 Analy. Loc. interior core interior in terior interior in terior interior xeno/pheno? pheno q pheno xeno pheno pheno pheno pheno SiO2 59.40 52.80 52.92 47.07 58.17 53.38 52.00 TiO2 0.01 0.01 0.11 0.05 0.01 0.10 0.03 Al2O3 24.11 28.32 29.04 35.05 25.81 28.75 29.49 FeO 0.31 0.91 0.76 3.66 0.50 0.94 0.76 MnO 0.00 0.00 0.00 0.00 0.00 0.03 0.04 MgO 0.02 0.12 0.23 0.08 0.01 0.16 0.19 CaO 6.14 10.73 12.17 6.55 8.40 12.51 13.31 Na2O 7.89 5.51 4.73 5.06 6.73 4.62 4.00 K2O 0.20 0.10 0.07 0.11 0.12 0.06 0.05 P2O5 0.00 0.04 0.00 0.02 Cl 0.17 0.00 0.00 0.00 Total 98.08 98.50 100.02 97.75 99.79 100.56 99.90 Number of cations per 8 oxygens Si 2.58 2.31 2.28 2.06 2.50 2.29 2.25 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.47 1.73 1.75 2.14 1.55 1.73 1.78 Fe 0.01 0.03 0.03 0.13 0.02 0.03 0.03 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.01 0.01 0.01 0.00 0.01 0.01 Ca 0.29 0.50 0.56 0.31 0.39 0.58 0.62 Na 0.67 0.47 0.40 0.43 0.56 0.39 0.33 K 0.01 0.01 0.00 0. 01 0.01 0.00 0.00 Total Cation 5.02 5.06 5.04 5.09 5.01 5.03 5.03 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 145

145 Table B-2: Continued. Plagioclase Sample T735G15 T735-G15 T735-G15 T735-G 15 T735-G15 T735-G15 T735-G16 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno xeno SiO2 52.53 51.94 61.18 52.46 59.99 60.00 58.02 TiO2 0.06 0.05 0.00 0.09 0.03 0.01 0.00 Al2O3 29.18 29.70 24.17 28.85 24.98 24.67 24.62 FeO 0.81 0.72 0.29 0.83 0.32 0.39 0.55 MnO 0.03 0.00 0.00 0.02 0.01 0.00 0.00 MgO 0.19 0.19 0.00 0.18 0.00 0.01 0.01 CaO 12.94 13.58 6.36 12.67 7.29 6.64 7.34 Na2O 4.21 3.93 7.98 4.31 7.57 7.43 7.17 K2O 0.05 0.06 0.16 0.04 0.16 0.23 0.16 P2O5 0.00 0.01 0.00 0.00 0.04 0.01 0.03 Cl 0.00 0.00 0.00 0. 00 0.00 0.01 0.00 Total 99.99 100.17 100.15 99.45 100.41 99.40 97.89 Number of cations per 8 oxygens Si 2.27 2.24 2.60 2.28 2.55 2.57 2.54 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.76 1.79 1.44 1.75 1.49 1.48 1.50 Fe 0.03 0.03 0.01 0.03 0.01 0.01 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.00 0.01 0.00 0.00 0.00 Ca 0.60 0.63 0.29 0.59 0.33 0.31 0.34 Na 0.35 0.33 0.66 0.36 0.62 0.62 0.61 K 0.00 0.00 0.01 0. 00 0.01 0.01 0.01 Total Cation 5.03 5.03 5.01 5.03 5.02 5.00 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 146

146 Table B-2: Continued. Plagioclase Sample T735G16 T735-G16 T735-G16 T735-G 16 T735-G16 T735-G16 T735-G17 Analy. Loc. interior interior interior interior interior interior core xeno/pheno? xeno pheno xeno xeno xeno pheno xeno SiO2 59.61 60.27 59.05 58.39 59.23 60.73 60.32 TiO2 0.00 0.04 0.01 0.04 0.00 0.01 0.00 Al2O3 24.93 24.75 25.29 25.07 25.23 24.58 24.66 FeO 0.40 0.38 0.35 0.46 0.43 0.32 0.53 MnO 0.01 0.00 0.00 0.01 0.00 0.03 0.04 MgO 0.00 0.00 0.01 0.01 0.01 0.01 0.00 CaO 7.17 7.05 7.91 7.73 7.61 7.06 6.78 Na2O 7.59 7.70 7.16 7.16 7.24 7.61 7.74 K2O 0.16 0.17 0.15 0.17 0.14 0.15 0.16 P2O5 0.00 0.02 0.00 0.07 0.04 0.02 0.00 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 99.88 100.36 99.93 99.09 99.94 100.52 100.23 Number of cations per 8 oxygens Si 2.55 2.57 2.53 2.52 2.53 2.58 2.57 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.49 1.47 1.51 1.51 1.51 1.46 1.47 Fe 0.01 0.01 0.01 0.02 0.02 0.01 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.33 0.32 0.36 0.36 0.35 0.32 0.31 Na 0.63 0.64 0.59 0.60 0.60 0.63 0.64 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.02 5.02 5.02 5.02 5.02 5.01 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 147

147 Table B-2: Continued. Plagioclase Sample T735G17 T735-G17 T735-G17 T735-G 17 T735-G18 T735-G18 T735-G18 Analy. Loc. rim core interior inte rior interior in terior interior xeno/pheno? xeno xeno xeno xeno xeno xeno xeno SiO2 62.36 60.69 56.47 55.54 53.79 50.78 54.35 TiO2 0.50 0.00 0.15 0.11 0.08 0.08 0.10 Al2O3 20.56 24.94 26.23 27.21 28.62 30.59 27.42 FeO 2.05 0.40 1.29 1.04 1.02 0.66 1.22 MnO 0.03 0.01 0.00 0.00 0.01 0.00 0.02 MgO 0.00 0.00 0.10 0.11 0.11 0.20 0.41 CaO 6.59 7.05 10.13 10.91 12.23 14.65 11.94 Na2O 5.41 7.52 5.47 5.32 4.60 3.23 4.54 K2O 0.38 0.17 0.12 0.09 0.12 0.04 0.07 P2O5 0.03 0.07 0.03 0.02 0.02 0.03 0.03 Cl 0.11 0.00 0.00 0. 00 0.00 0.00 0.00 Total 98.00 100.84 99.98 100. 36 100.60 100.26 100.09 Number of cations per 8 oxygens Si 2.73 2.57 2.43 2.39 2.31 2.19 2.35 Ti 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.26 1.48 1.58 1.63 1.72 1.84 1.66 Fe 0.07 0.01 0.05 0.04 0.04 0.02 0.04 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.01 0.01 0.01 0.01 0.03 Ca 0.31 0.32 0.47 0.50 0.56 0.68 0.55 Na 0.46 0.62 0.46 0.44 0.38 0.27 0.38 K 0.02 0.01 0.01 0. 00 0.01 0.00 0.00 Total Cation 4.87 5.01 5.00 5.02 5.02 5.02 5.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 148

148 Table B-2: Continued. Plagioclase Sample T735G18 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno xeno xeno xeno xeno xeno xeno SiO2 52.29 78.76 60.05 62.26 78.47 52.82 53.25 TiO2 0.07 0.00 0.00 0.00 0.05 0.08 0.10 Al2O3 29.22 12.07 22.98 24.97 12.07 30.59 30.64 FeO 0.95 1.08 0.29 0.31 1.47 0.86 0.77 MnO 0.00 0.02 0.00 0.00 0.07 0.02 0.00 MgO 0.24 0.15 0.00 0.00 0.17 0.22 0.21 CaO 13.39 1.41 5.42 6.01 1.67 12.79 12.24 Na2O 3.88 0.74 7.68 8.42 0.71 4.23 4.29 K2O 0.05 1.35 0.24 0.20 1.26 0.06 0.04 P2O5 0.00 Cl 0.00 Total 100.07 95.57 96.65 102. 17 95.94 101.67 101.53 Number of cations per 8 oxygens Si 2.26 3.37 2.64 2.60 3.35 2.24 2.25 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.76 0.72 1.41 1.46 0.72 1.81 1.81 Fe 0.03 0.04 0.01 0.01 0.05 0.03 0.03 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.02 0.01 0.00 0.00 0.01 0.01 0.01 Ca 0.62 0.06 0.26 0.27 0.08 0.58 0.55 Na 0.32 0.06 0.65 0.68 0.06 0.35 0.35 K 0.00 0.07 0.01 0. 01 0.07 0.00 0.00 Total Cation 5.02 4.34 4.99 5.02 4.35 5.03 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 149

149 Table B-2: Continued. Plagioclase Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interi or interior interior interior rim xeno/pheno? xeno q pheno q pheno q pheno pheno pheno pheno SiO2 50.65 55.02 56.21 56.87 62.62 61.92 60.97 TiO2 0.01 0.12 0.13 0.33 0.11 0.12 0.02 Al2O3 31.09 27.30 27.97 25.29 24.89 24.91 25.11 FeO 0.84 1.10 0.86 1.48 0.26 0.31 0.42 MnO 0.05 0.00 0.02 0.02 0.01 0.00 0.00 MgO 0.16 0.18 0.10 0.16 0.00 0.00 0.00 CaO 13.00 9.94 10.26 8.92 5.73 5.53 6.32 Na2O 3.85 5.12 5.55 5.26 8.30 8.63 8.04 K2O 0.03 0.14 0.13 0.27 0.19 0.19 0.16 P2O5 Cl Total 99.69 98.93 101.23 98. 60 102.10 101.60 101.03 Number of cations per 8 oxygens Si 2.19 2.39 2.38 2.48 2.61 2.59 2.57 Ti 0.00 0.00 0.00 0.01 0.00 0.00 0.00 Al 1.88 1.66 1.66 1.54 1.45 1.46 1.48 Fe 0.03 0.04 0.03 0.05 0.01 0.01 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.01 0.01 0.00 0.00 0.00 Ca 0.60 0.46 0.47 0.42 0.26 0.25 0.29 Na 0.32 0.43 0.46 0.44 0.67 0.70 0.66 K 0.00 0.01 0.01 0. 02 0.01 0.01 0.01 Total Cation 5.03 5.00 5.01 4.97 5.00 5.03 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 150

150 Table B-2: Continued. Plagioclase Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno xeno xeno xeno xeno xeno xeno SiO2 53.21 53.30 59.16 55.08 57.30 52.67 53.28 TiO2 0.09 0.08 0.42 0.18 0.27 0.09 0.10 Al2O3 28.20 28.39 22.56 25.53 23.79 28.58 27.47 FeO 1.00 0.97 2.16 1.23 1.58 0.88 1.07 MnO 0.00 0.00 0.01 0.00 0.00 0.02 0.02 MgO 0.16 0.14 0.29 0.27 0.26 0.16 0.19 CaO 12.84 12.89 8.55 11.00 9.54 12.99 12.61 Na2O 4.26 4.34 4.78 4.66 5.46 4.15 4.34 K2O 0.08 0.07 0.25 0.12 0.17 0.06 0.07 P2O5 Cl Total 99.87 100.17 98. 30 98.10 98.44 99.63 99.15 Number of cations per 8 oxygens Si 2.30 2.30 2.59 2.42 2.52 2.29 2.33 Ti 0.00 0.00 0.01 0.01 0.01 0.00 0.00 Al 1.71 1.71 1.38 1.57 1.46 1.73 1.68 Fe 0.04 0.04 0.08 0.05 0.06 0.03 0.04 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.02 0.02 0.02 0.01 0.01 Ca 0.60 0.60 0.40 0.52 0.45 0.60 0.59 Na 0.36 0.36 0.41 0.40 0.46 0.35 0.37 K 0.00 0.00 0.01 0. 01 0.01 0.00 0.00 Total Cation 5.02 5.02 4.91 4.99 4.98 5.02 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 151

151 Table B-2: Continued. Plagioclase Sample T735G19 T735-G19 T735-G19 T735-G 19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? xeno pheno pheno pheno myrmekite myrmekite myrmekite SiO2 51.51 50.64 52.43 52.49 62.50 60.09 62.71 TiO2 0.07 0.04 0.07 0.09 0.02 0.02 0.00 Al2O3 29.18 29.51 28.48 27.39 23.60 24.93 23.11 FeO 0.68 0.63 0.71 0.81 0.33 0.22 0.35 MnO 0.01 0.03 0.04 0.00 0.01 0.00 0.03 MgO 0.20 0.18 0.22 0.22 0.00 0.01 0.00 CaO 14.12 14.71 13.55 13.24 6.35 6.12 5.65 Na2O 3.40 3.18 3.79 4.04 7.75 7.01 8.22 K2O 0.04 0.03 0.04 0.05 0.24 0.25 0.25 P2O5 Cl Total 99.26 98.99 99.37 98. 35 100.84 98.69 100.32 Number of cations per 8 oxygens Si 2.24 2.21 2.28 2.31 2.64 2.58 2.66 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.78 1.80 1.73 1.69 1.39 1.50 1.37 Fe 0.02 0.02 0.03 0.03 0.01 0.01 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.01 0.01 0.01 0.01 0.00 0.00 0.00 Ca 0.66 0.69 0.63 0.62 0.29 0.28 0.26 Na 0.29 0.27 0.32 0.35 0.64 0.58 0.68 K 0.00 0.00 0.00 0. 00 0.01 0.01 0.01 Total Cation 5.01 5.02 5.01 5.02 4.98 4.97 5.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 152

152 Table B-2: Continued. Plagioclase Sample T735G19 T735-G19 T735-G19 T735-G19 T735-G19 T735-G19 T735-G19 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? myrmekite myrmekite myrmekite myrmekite myrmekite myrmekite myrmekite SiO2 62.72 62.21 61.99 61.76 62.22 61.79 62.67 TiO2 0.01 0.00 0.01 0.02 0.02 0.02 0.03 Al2O3 23.42 23.65 23.47 23.69 23.32 23.79 22.27 FeO 0.33 0.31 0.30 0.28 0.25 0.28 0.24 MnO 0.01 0.01 0.00 0.01 0.00 0.02 0.00 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 5.79 6.10 6.21 6.27 5.80 6.18 5.61 Na2O 8.25 8.06 7.97 7.93 8.26 8.07 8.36 K2O 0.23 0.22 0.23 0.23 0.23 0.23 0.25 P2O5 Cl Total 100.78 100.56 100.20 100.20 100.10 100.39 99.45 Number of cations per 8 oxygens Si 2.65 2.64 2.64 2.63 2.65 2.62 2.69 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.38 1.40 1.40 1.41 1.39 1.41 1.34 Fe 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.26 0.28 0.28 0.29 0.26 0.28 0.26 Na 0.68 0.66 0.66 0.65 0.68 0.66 0.69 K 0.01 0.01 0.01 0. 01 0.01 0.01 0.01 Total Cation 5.00 5.00 5.00 5.00 5.00 5.01 5.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 153

153 Table B-2: Continued. Plagioclase Sample T735G19 T735-G23 T735-G23 T735-G23 T735-G23 T735-G23 T735-G23 Analy. Loc. interior interior interior interior interior interior interior xeno/pheno? myrmekite pheno pheno pheno pheno pheno pheno SiO2 62.88 51.70 52.13 52.50 50.81 51.97 51.31 TiO2 0.00 0.03 0.11 0.04 0.04 0.08 0.11 Al2O3 22.63 29.66 29.50 29.41 30.46 29.53 29.85 FeO 0.29 0.62 0.91 0.63 0.65 0.60 0.60 MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.00 0.24 0.26 0.23 0.21 0.23 0.23 CaO 6.09 13.69 13.48 13.15 14.45 13.73 14.10 Na2O 7.80 3.78 3.82 4.01 3.42 3.76 3.46 K2O 0.25 0.06 0.03 0.04 0.04 0.05 0.03 P2O5 0.00 0.02 0.03 0.02 0.04 0.03 Cl 0.00 0.00 0. 00 0.00 0.00 0.00 Total 99.96 99.77 100.27 100.04 100.08 99.99 99.71 Number of cations per 8 oxygens Si 2.68 2.24 2.25 2.26 2.19 2.24 2.22 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.35 1.79 1.78 1.77 1.84 1.78 1.81 Fe 0.01 0.02 0.03 0.02 0.02 0.02 0.02 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.02 0.02 0.02 0.01 0.01 0.01 Ca 0.28 0.63 0.62 0.61 0.67 0.64 0.65 Na 0.64 0.32 0.32 0.33 0.29 0.32 0.29 K 0.01 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 4.97 5.03 5.02 5.02 5.03 5.02 5.02 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst *, line of analyses run on same plagioclase crystal

PAGE 154

154 Table B-3: Olivine compositions determined from microprobe analyses. Olivine phase chemistry for lava s recovered during Dive T735. Olivine Sample T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 T735-G9 Analy. Loc. interior interior interi or rim interior interior interior xeno/pheno? pheno pheno pheno pheno pheno pheno pheno SiO2 31.57 31.30 29.25 31.98 31.38 31.32 31.25 TiO2 0.02 0.05 0.00 0.12 0.02 0.00 0.01 Al2O3 0.03 0.02 0.00 0.00 0.00 0.03 0.03 FeO 65.25 65.86 64.31 66.38 66.14 65.94 62.56 MnO 1.28 1.39 1.30 1.38 1.30 1.33 1.34 MgO 3.85 3.93 3.99 3.80 3.88 3.90 6.26 CaO 0.31 0.26 0.36 0.27 0.27 0.32 0.32 Na2O 0.01 0.04 0.01 0.00 0.03 0.00 0.04 K2O 0.01 0.00 0.00 0.00 0.00 0.00 0.01 P2O5 Cl Total 102.32 102.85 99.22 103. 91 103.02 102.84 101.81 Number of cations per 4 oxygens Si 1.01 1.00 0.98 1.01 1.00 1.00 0.99 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 1.75 1.76 1.80 1.75 1.77 1.76 1.66 Mn 0.03 0.04 0.04 0.04 0.04 0.04 0.04 Mg 0.18 0.19 0.20 0.18 0.18 0.19 0.30 Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 2.99 3.00 3.02 2.99 3.00 3.00 3.01 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 155

155 Table B-3: Continuted. Olivine Sample T735-G9 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. rim interior interior in terior interior in terior interior xeno/pheno? pheno xeno xeno xeno xeno xeno xeno SiO2 30.88 32.99 32.68 31.72 32.00 31.17 32.14 TiO2 0.00 0.02 0.02 0.06 0.00 0.02 0.08 Al2O3 0.01 0.00 0.00 0.04 0.03 0.04 0.01 FeO 66.30 58.96 63.65 63.47 64.75 62.43 63.59 MnO 1.31 0.99 1.21 1.14 1.14 1.15 1.10 MgO 4.15 5.49 5.84 5.80 5.80 5.72 5.67 CaO 0.28 0.30 0.37 0.29 0.34 0.34 0.32 Na2O 0.00 0.03 0.05 0.00 0.00 0.01 0.06 K2O 0.00 0.00 0.02 0.00 0.00 0.00 0.00 P2O5 Cl Total 102.92 98.79 103.84 102. 53 104.05 100.88 102.95 Number of cations per 4 oxygens Si 0.99 1.06 1.01 1.00 1.00 1.00 1.01 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 1.78 1.58 1.65 1.68 1.69 1.68 1.67 Mn 0.04 0.03 0.03 0.03 0.03 0.03 0.03 Mg 0.20 0.26 0.27 0.27 0.27 0.27 0.27 Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.01 2.94 2.99 3.00 3.00 3.00 2.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 156

156 Table B-3: Continuted. Olivine Sample T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 T735-G10 Analy. Loc. rim rim core core interi or interior interior xeno/pheno? xeno xeno xeno xeno xeno xeno xeno SiO2 31.95 31.56 32.20 32. 47 53.22 50.59 32.20 TiO2 0.04 0.09 0.04 0. 00 0.22 0.29 0.02 Al2O3 0.00 0.00 0.03 0. 02 0.30 0.44 0.00 FeO 63.28 63.88 63.87 63. 03 31.50 29.43 62.13 MnO 1.11 1.15 1.20 1. 18 0.74 0.78 1.25 MgO 5.78 6.04 5.64 5. 80 14.27 13.81 6.01 CaO 0.33 0.32 0.31 0. 32 3.12 4.24 0.29 Na2O 0.00 0.00 0.01 0. 03 0.07 0.06 0.00 K2O 0.00 0.00 0.00 0. 00 0.00 0.01 0.00 P2O5 Cl Total 102.49 103.04 103.29 102. 84 103.43 99.64 101.93 Number of cations per 4 oxygens Si 1.01 0.99 1.01 1. 02 1.34 1.32 1.02 Ti 0.00 0.00 0.00 0. 00 0.00 0.01 0.00 Al 0.00 0.00 0.00 0. 00 0.01 0.02 0.00 Fe 1.67 1.68 1.67 1. 65 0.66 0.64 1.64 Mn 0.03 0.03 0.03 0. 03 0.02 0.02 0.03 Mg 0.27 0.28 0.26 0. 27 0.53 0.54 0.28 Ca 0.01 0.01 0.01 0. 01 0.08 0.12 0.01 Na 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 2.99 3.00 2.99 2. 98 2.65 2.67 2.98 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 157

157 Table B-3: Continuted. Olivine Sample T735-G10 T735-G10 T735-G10 T735-G12 T735-G12 T735-G12 T735-G12 Analy. Loc. interior interior inte rior rim rim interior interior xeno/pheno? xeno xeno xeno xeno pheno pheno pheno SiO2 31.79 31.47 31.76 32.55 32.33 31.08 30.94 TiO2 0.03 0.04 0.09 0.05 0.07 0.04 0.02 Al2O3 0.03 1.82 0.00 0.00 0.00 0.00 0.00 FeO 61.70 61.27 61.95 56.46 59.16 65.48 65.65 MnO 1.14 1.23 1.22 1.08 1.23 1.42 1.38 MgO 5.93 5.87 5.89 10.59 8.09 2.86 2.65 CaO 0.26 0.29 0.29 0.35 0.41 0.38 0.39 Na2O 0.01 0.00 0.02 0.03 0.00 0.03 0.00 K2O 0.00 0.00 0.00 0.01 0.01 0.00 0.00 P2O5 Cl Total 100.90 102.00 101.29 101.15 101.34 101.29 101.07 Number of cations per 4 oxygens Si 1.01 0.98 1.01 1.01 1.01 1.01 1.01 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 0.00 0.08 0.00 0.00 0.00 0.00 0.00 Fe 1.65 1.60 1.65 1.46 1.55 1.78 1.79 Mn 0.03 0.03 0.03 0.03 0.03 0.04 0.04 Mg 0.28 0.27 0.28 0.49 0.38 0.14 0.13 Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 2.98 2.98 2.99 2.99 2.99 2.99 2.99 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 158

158 Table B-3: Continuted. Olivine Sample T735-G12 T735-G16 T735-G16 T735-G16 T735-G16 T735-G16 T735-G16 Analy. Loc. interior interior inte rior rin rim interior interior xeno/pheno? pheno xeno xeno pheno pheno pheno pheno SiO2 32.34 30.96 29.87 30.88 32.01 30.93 31.03 TiO2 0.02 0.06 0.00 0.04 0.04 0.01 0.07 Al2O3 0.00 0.00 0.01 0.00 0.03 0.00 0.00 FeO 58.60 65.31 64.23 64.91 58.00 65.15 65.39 MnO 1.06 1.24 1.31 1.26 1.05 1.32 1.29 MgO 9.87 3.80 4.04 3.87 9.23 3.82 3.99 CaO 0.29 0.40 0.32 0.36 0.37 0.38 0.36 Na2O 0.02 0.02 0.03 0.00 0.00 0.01 0.02 K2O 0.00 0.00 0.00 0.00 0.01 0.00 0.01 P2O5 0.04 0.03 0.00 0.02 0.00 0.00 0.00 Cl 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total 102.24 101.81 99.80 101. 35 100.72 101.61 102.15 Number of cations per 4 oxygens Si 1.00 1.00 0.99 1.00 1.00 1.00 1.00 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe 1.51 1.77 1.78 1.76 1.52 1.76 1.76 Mn 0.03 0.03 0.04 0.03 0.03 0.04 0.04 Mg 0.45 0.18 0.20 0.19 0.43 0.18 0.19 Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 Total Cation 3.00 3.00 3.01 3.00 3.00 3.00 3.00 interiorinterior of crystal; q phenoquen ched phenocryst; xenoxenocryst; phenophenocryst

PAGE 159

159 APPENDIX C MAJOR AND TRACE ELEMENT DATA FOR T735 LAVAS

PAGE 160

160 Table C-1: Major and trace element data for Dive T735 samples. Sample 735-G01 735-G02 735-G03 735-G04 735-G05 735-G06 735-G07 SiO2 50.48 50.39 50.42 50.59 50.47 50.48 TiO2 2.12 2.06 2. 12 1.87 2.09 2.12 Al2O3 13.31 13.32 13. 33 13.48 13.38 13.12 FeOT 12.31 12.30 12. 32 11.96 12.21 12.29 MnO 0.21 0.20 0.21 0.22 0.20 0.20 MgO 6.87 7.04 6.94 6.86 6.94 6.78 CaO 11.27 11.18 11.17 11.25 11.24 11.17 Na2O 2.53 2.51 2.54 2.69 2.56 2.52 K2O 0.17 0.17 0.17 0.18 0.17 0.17 P2O5 0.22 0.22 0.20 0.23 0.22 0.24 Cl 0.02 0.02 0.02 0.03 0.02 0.03 Total (wt.%) 99.81 99. 69 99.74 99.68 99.80 99.41 H2O* CO2 (ppm) Sc 41.18 41.96 41.80 40.38 V 382.11 340.30 390.88 377.74 Cr 173.26 188.16 179.64 169.88 Co 37.56 38.02 38.47 37.19 Ni 57.21 53.81 59.75 57.45 Cu 55.40 64.76 56.20 54.84 Zn 99.24 89.24 101.87 98.31 Ga 18.05 17.40 18.34 17.61 Rb 1.23 1.21 1.23 1.19 Sr 102.40 118.06 104.22 99.75 Y 50.41 44.19 51.22 49.73 Zr 135.84 125.07 136.91 133.86 Nb 4.47 4.34 4.59 4.42 Rh 0.00 0.00 0.00 0.00 Ba 15.10 16.69 15.44 14.92 La 4.93 4.75 5.02 4.87 Ce 15.69 14.74 15.94 15.47 Pr 2.51 2.36 2.54 2.48 Nd 13.80 12.59 13.99 13.46 Sm 4.68 4.18 4.72 4.55 Eu 1.51 1.36 1.52 1.47 Gd 5.46 4.73 5.51 5.34 Tb 1.17 1.04 1.19 1.15 Dy 7.74 6.78 7.82 7.57 Ho 1.80 1.56 1.83 1.77 Er 5.13 4.37 5.21 5.01 Tm 0.69 0.61 0.70 0.67 Yb 4.97 4.34 5.01 4.83 Lu 0.77 0.67 0.77 0.75 Hf 3.80 3.40 3.83 3.72 Ta 0.28 0.24 0.28 0.28 Re 0.00 0.00 0.00 0.00 Pb 0.37 0.35 0.37 0.36 Th 0.27 0.27 0.28 0.27 U 0.11 0.11 0.11 0.11

PAGE 161

161 Table C-1: Continued. Sample 735-G08 735-G09 735-G10 735-G11 735-G12 735-G13 735-G14 SiO2 50.38 63.73 63.98 63.36 66.89 62.82 62.90 TiO2 2.10 1.20 1.17 1.22 0.81 1.39 1.33 Al2O3 13.13 12.42 12. 43 12.38 12.23 12.35 12.36 FeOT 12.22 9.45 9.35 9.87 7.95 9.81 9.80 MnO 0.20 0.17 0. 17 0.19 0.14 0.16 0.19 MgO 6.92 1.04 1. 00 1.03 0.60 1.40 1.38 CaO 11.13 4.39 4. 29 4.43 3.41 4.85 4.80 Na2O 2.54 4.76 4. 76 4.79 5.01 4.52 4.57 K2O 0.17 1.14 1. 15 1.10 1.30 1.09 1.08 P2O5 0.21 0.33 0. 33 0.40 0.18 0.34 0.37 Cl 0.02 0.55 0. 55 0.51 0.61 0.52 0.53 Total (wt.%) 99.33 99.47 99.48 99.56 99. 44 99.55 99.59 H2O* 1.86 1.96 1.73 1.98 1.63 0.35 CO2 (ppm) det det det det det 224.88 Sc 41.09 18.09 21.12 20.09 15.86 19.57 19.95 V 383.67 73.12 108.77 66. 65 48.11 110.02 113.42 Cr 173.32 5.37 20.63 4.10 1.83 10.87 10.89 Co 37.78 12.61 15.86 13.61 10.02 14.95 15.22 Ni 59.28 4.50 10.40 3. 37 1.74 7.92 8.05 Cu 54.96 15.89 23.20 15.92 13.47 18.73 19.02 Zn 99.72 137.90 136.15 152. 33 144.49 134.31 134.59 Ga 18.03 26.62 25.92 27.98 27.62 25.84 26.07 Rb 1.23 10.29 9.40 10.62 12.04 10.25 10.10 Sr 101.96 86.18 90.13 92.94 80.06 86.01 87.26 Y 50.39 214.67 197.17 229.99 240.37 202.57 201.21 Zr 134.66 637.21 585.34 671. 98 663.67 590.09 580.29 Nb 4.49 19.29 17.40 20.10 21.20 17.82 17.72 Rh 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ba 16.23 82.57 77.40 87.69 95.39 83.83 79.17 La 4.98 29.97 26.79 30. 59 33.78 28.28 28.15 Ce 15.63 82.13 74.50 84.39 91.20 77.50 77.34 Pr 2.49 11.33 10.43 11.84 12.79 10.80 10.74 Nd 13.78 64.59 59.10 68.05 72.82 61.17 61.05 Sm 4.64 18.89 17.38 20.19 21.15 17.96 17.73 Eu 1.48 3.94 3.67 4.20 4.15 3.67 3.65 Gd 5.34 20.89 19.08 22.01 23.23 19.72 19.55 Tb 1.17 4.46 4.11 4.75 4.99 4.20 4.16 Dy 7.66 29.37 27.02 31.08 32.88 27.73 27.59 Ho 1.79 7.19 6.61 7.67 8.09 6.81 6.77 Er 5.11 21.99 20.16 23.25 24.87 20.82 20.67 Tm 0.68 2.46 2.29 2.59 2.78 2.35 2.34 Yb 4.94 20.64 19.23 22.00 23.63 19.92 19.55 Lu 0.76 3.19 2.97 3. 41 3.65 3.08 2.99 Hf 3.73 18.32 16.83 19.06 19.62 17.18 16.77 Ta 0.27 1.27 1.14 1.35 1.45 1.22 1.16 Re 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pb 0.40 2.48 2.29 2.63 2.91 3.11 2.35 Th 0.27 2.82 2.54 2.83 3.28 2.80 2.73 U 0.11 1.07 0.97 1. 07 1.24 1.05 1.03

PAGE 162

162 Table C-1: Continued. Sample 735-G15 735-G16 735-G17 735-G18 735-G19 735-G20 735-G21 735-G22 SiO2 62.70 66.43 64.33 62. 16 61.95 65.75 50.63 50.09 TiO2 1.33 0.85 1.21 1. 26 1.34 0.98 2.26 2.22 Al2O3 12.33 12.44 12.56 13.32 13.59 12. 88 12.89 12.77 FeOT 10.25 8.02 9.16 8. 89 8.94 7.28 12.70 12.79 MnO 0.19 0.16 0.18 0.16 0.16 0.12 0.22 0.22 MgO 1.15 0.60 0.76 1.94 1.73 1.33 6.68 6.69 CaO 4.60 3.57 4.03 5.40 5.38 4. 32 11.11 11.03 Na2O 4.76 5.07 5.04 4.36 4.62 4.71 2.58 2.62 K2O 1.07 1.28 1.17 1.02 1.03 1.28 0.18 0.16 P2O5 0.42 0.30 0.35 0.18 0.17 0.11 0.25 0.23 Cl 0.49 0.61 0.55 0.41 0.42 0.52 0.02 0.03 Total (wt.%) 99.58 99.63 99. 63 99.43 99.65 99. 60 99.80 99.12 H2O* 2.00 1.77 1.97 2.01 1.51 CO2 (ppm) det det det det det Sc 19.52 16.12 18.16 22. 58 23.43 17.15 41.54 41.13 V 70.97 47.59 66.11 178.05 179. 52 123.38 391.22 389.33 Cr 7.42 2.54 5.76 43.90 54.10 31.62 151.73 147.55 Co 13.92 10.39 12.26 19. 13 19.65 14.07 38.83 38.15 Ni 4.27 2.24 3.74 18.94 20.40 13.82 58.50 55.25 Cu 15.36 13.58 14.17 27. 46 27.90 21.70 54.81 54.74 Zn 146.00 144.35 142.37 116.10 116.66 113.45 102.27 102.69 Ga 27.26 27.76 27.17 23. 27 23.06 24.28 18.18 18.21 Rb 9.90 11.83 10.67 9. 37 9.17 12.66 1.27 1.31 Sr 93.34 82.33 87.72 78.97 79.13 67.40 102.48 102.08 Y 212.61 238.81 219.95 160.04 158.38 194.22 52.89 53.37 Zr 636.42 671.63 641.86 440.76 439.80 396.77 140.88 141.97 Nb 18.62 21.01 19.47 14. 09 13.96 17.03 4.68 4.76 Rh 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00 Ba 78.15 93.54 84.95 70. 55 69.20 88.70 16.25 16.50 La 29.13 33.47 30.18 22.60 22.36 29.38 5.21 5.24 Ce 80.08 91.83 83.32 61. 40 60.66 78.75 16.28 16.39 Pr 11.22 12.60 11.59 8. 51 8.41 10.71 2.60 2.61 Nd 64.26 71.67 66.59 47. 36 46.82 59.18 14.31 14.55 Sm 18.89 20.97 19.47 13. 86 13.76 16.98 4.78 4.87 Eu 4.10 4.14 4.05 2. 81 2.79 3.01 1.52 1.54 Gd 20.77 22.82 21.31 15. 10 14.96 18.40 5.48 5.52 Tb 4.43 4.91 4.55 3. 27 3.24 3.97 1.20 1.21 Dy 29.32 32.59 30.13 21. 69 21.56 26.49 7.95 8.01 Ho 7.14 8.02 7.40 5. 31 5.29 6.53 1.86 1.88 Er 21.87 24.58 22.67 16. 26 16.13 19.96 5.26 5.33 Tm 2.46 2.75 2.55 1. 88 1.86 2.29 0.70 0.71 Yb 20.71 23.37 21.52 15. 73 15.57 19.15 5.16 5.22 Lu 3.16 3.56 3.29 2.40 2.38 2.90 0.80 0.81 Hf 18.21 19.71 18.68 13. 00 12.96 13.10 3.89 3.92 Ta 1.23 1.40 1.30 0. 96 0.93 1.17 0.27 0.29 Re 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00 Pb 2.43 2.85 2.59 2. 14 2.07 2.74 0.40 0.41 Th 2.63 3.21 2.85 2. 32 2.29 3.14 0.29 0.29 U 1.02 1.21 1.09 0.87 0.85 1.15 0.12 0.12

PAGE 163

163 Table C-1: Continued. Sample 735-G23 735-G24 735-G25 735-G26 735-G27 735-G28 735-G29 735-G30 SiO2 50.53 50.54 50.46 50. 65 50.46 50.47 50.64 50.66 TiO2 2.19 2.22 2.22 2. 18 2.13 2.13 2.13 2.11 Al2O3 13.02 12.91 13.02 13.08 13.05 13. 11 13.04 12.93 FeOT 12.66 12.78 12.72 12. 64 12.44 12.42 12.90 12.58 MnO 0.22 0.21 0.22 0.23 0.24 0.22 0.24 0.21 MgO 6.74 6.67 6.68 6.92 7.05 7.13 6.82 6.69 CaO 11.17 11.11 11.10 11.19 11.19 11. 20 10.94 10.86 Na2O 2.62 2.57 2.63 2.60 2.53 2.54 2.62 2.57 K2O 0.16 0.17 0.17 0.16 0.16 0.15 0.16 0.17 P2O5 0.23 0.23 0.20 0.22 0.19 0.20 0.23 0.20 Cl 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 Total (wt.%) 99.85 99.72 99.73 100.16 99.76 99.88 100.02 99.28 H2O* 0.27 CO2 (ppm) 117.74 Sc 41.99 41.60 41.09 V 395.07 391.98 387.75 Cr 159.09 169.28 100.59 Co 38.36 37.96 38.28 Ni 54.66 55.89 45.63 Cu 55.48 55.00 53.64 Zn 103.05 100.67 103.36 Ga 18.58 18.27 18.34 Rb 1.28 1.24 1.28 Sr 105.32 103.98 108.60 Y 53.06 51.73 52.31 Zr 142.27 137.85 142.01 Nb 4.71 4.59 4.68 Rh 0.00 0.00 0.00 Ba 15.99 16.17 16.48 La 5.17 5.06 5.19 Ce 16.28 15.89 16.44 Pr 2.61 2.54 2.63 Nd 14.48 14.01 14.40 Sm 4.86 4.73 4.82 Eu 1.53 1.50 1.53 Gd 5.51 5.38 5.49 Tb 1.21 1.19 1.19 Dy 8.02 7.79 7.94 Ho 1.87 1.82 1.85 Er 5.31 5.21 5.22 Tm 0.70 0.69 0.70 Yb 5.21 5.07 5.16 Lu 0.81 0.79 0.79 Hf 3.89 3.76 3.89 Ta 0.27 0.27 0.28 Re 0.00 0.00 0.00 Pb 0.39 0.39 0.41 Th 0.28 0.28 0.29 U 0.12 0.11 0.11

PAGE 164

164 Table C-1: Continued. Sample 735-G31 735-G32 735G33 735-G34 735-G35 735G36 735-G37 735-G38 735G39 SiO2 51.57 50.32 50.46 50.67 50.67 50.72 TiO2 1.67 2.15 1. 61 1.61 2.11 2.09 Al2O3 13.38 12.81 13. 60 13.76 13.05 13.05 FeOT 11.30 12.77 10. 78 10.86 12.76 12.69 MnO 0.20 0.24 0.19 0.19 0.23 0.22 MgO 6.78 6.29 7.43 7.55 6.68 6.70 CaO 10.98 10.92 11.81 11.84 10.95 10.94 Na2O 2.65 2.63 2.45 2.47 2.63 2.61 K2O 0.20 0.15 0.12 0.12 0.15 0.15 P2O5 0.16 0.21 0.16 0.14 0.18 0.18 Cl 0.04 0.02 0.01 0.01 0.02 0.02 Total (wt.%) 99.22 98.78 98.93 99.54 99.71 99.66 H2O* 0.17 CO2 (ppm) 101.00 Sc 40.74 40.52 V 391.91 329.94 Cr 98.28 286.58 Co 39.15 38.03 Ni 46.45 69.96 Cu 53.54 63.30 Zn 105.24 84.75 Ga 18.48 16.59 Rb 1.13 0.73 Sr 101.05 101.07 Y 51.70 37.64 Zr 134.30 101.70 Nb 4.14 2.88 Rh 0.00 0.00 Ba 14.65 11.21 La 4.67 3.40 Ce 15.04 11.43 Pr 2.44 1.92 Nd 13.52 9.98 Sm 4.64 3.49 Eu 1.48 1.18 Gd 5.34 4.00 Tb 1.18 0.88 Dy 7.76 5.88 Ho 1.83 1.35 Er 5.22 3.73 Tm 0.69 0.54 Yb 5.07 3.72 Lu 0.79 0.58 Hf 3.73 2.82 Ta 0.24 0.15 Re 0.00 0.00 Pb 0.37 0.25 Th 0.25 0.17 U 0.10 0.07

PAGE 165

165 APPENDIX D PETROLOG RESULTS

PAGE 166

166 Table D-1: Results from Petrol og. Results assume QFM at 200 bars of pressure and sample T735-G35 as the parent composition. Petrolog Results for sample T735-G35 SiO2 51.58 51.64 51.6451.6451.6651.67 51.68 TiO2 1.64 1.65 1.651.661.671.69 1.70 Al2O3 14.01 14.09 14.1114.1114.0714.04 14.01 FeOT 9.95 9.91 9.929.9410.0010.06 10.12 MnO 0.19 0.19 0.190.190.190.19 0.19 MgO 7.68 7.49 7.467.467.437.40 7.37 CaO 12.05 12.12 12.1012.0912.0512.00 11.96 Na2O 2.52 2.53 2.542.542.552.56 2.57 K2O 0.12 0.12 0.120.120.120.13 0.13 P2O5 0.15 0.15 0.150.150.150.15 0.15 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1185.30 1179.30 1178.801178.701178.101177.50 1176.90 lgfO2 -8.47 -8.54 -8.55-8.55-8.55-8.56 -8.57 Fo 82.69 82.35 -1.00-1.0082.0981.94 81.77 An -1.00 -1.00 70.3470.3070.1169.91 69.72 CpxMG# -1.00 83.91 83.8483.8183.6683.51 83.36 OpxMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.68 2.68 2.682.682.682.68 2.68 Ln 7.04 7.13 7.147.147.147.15 7.15 Melt% 100.00 99.45 99.1999.0097.9996.99 95.98 Olv% 0.00 0.55 0.550.550.610.66 0.70 Plg% 0.00 0.00 0.000.090.571.05 1.52 Cpx% 0.00 0.00 0.260.370.831.31 1.79 Opx% 0.00 0.00 0.000.000.000.00 0.00 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.99 1.001.000.990.99 0.99 Inst % ol 1.00 0.000.000.060.05 0.04 Inst % plg 0.00 0.000.450.480.48 0.47 Inst % cpx 0.00 1.000.550.460.48 0.48 Inst % opx 0.00 0.000.000.000.00 0.00 Inst % mgt 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 167

167 Table D-1: Continued. SiO2 51.70 51.71 51.7151.7151.7151.71 51.70 TiO2 1.72 1.74 1.751.771.791.80 1.82 Al2O3 13.98 13.94 13.9113.8813.8513.82 13.78 FeOT 10.19 10.27 10.3210.3810.4410.51 10.58 MnO 0.19 0.20 0.200.200.200.20 0.20 MgO 7.33 7.30 7.267.227.177.12 7.08 CaO 11.92 11.86 11.8511.8311.8111.79 11.78 Na2O 2.58 2.59 2.602.612.622.63 2.64 K2O 0.13 0.13 0.130.130.130.14 0.14 P2O5 0.15 0.16 0.160.160.160.16 0.16 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1176.30 1175.60 1175.001174.301173.601172.80 1172.00 lgfO2 -8.57 -8.58 -8.59-8.60-8.61-8.61 -8.62 Fo 81.60 81.39 -1.00-1.00-1.00-1.00 -1.00 An 69.52 69.27 69.1268.9168.7068.49 68.28 CpxMG# 83.20 82.99 82.8682.6882.4882.29 82.09 OpxMG# -1.00 82.76 82.6582.5082.3582.19 82.03 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.68 2.68 2.682.682.682.68 2.68 Ln 7.16 7.16 7.177.177.187.18 7.19 Melt% 94.98 93.72 92.9891.9790.9689.96 88.96 Olv% 0.76 0.82 0.820.820.820.82 0.82 Plg% 2.00 2.59 2.953.443.914.39 4.88 Cpx% 2.26 2.87 3.093.383.693.99 4.30 Opx% 0.00 0.00 0.170.390.610.84 1.05 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.99 1.00 0.990.990.990.99 0.99 Inst % ol 0.06 0.04 0.000.000.000.00 0.00 Inst % plg 0.48 0.46 0.480.490.470.48 0.49 Inst % cpx 0.47 0.50 0.290.290.310.30 0.31 Inst % opx 0.00 0.00 0.230.220.220.23 0.21 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 168

168 Table D-1: Continued. SiO2 51.70 51.70 51.7051.6951.6951.69 51.68 TiO2 1.84 1.86 1.901.921.941.96 1.98 Al2O3 13.75 13.71 13.6513.6113.5813.54 13.51 FeOT 10.64 10.71 10.8510.9210.9911.07 11.14 MnO 0.20 0.21 0.210.210.210.21 0.22 MgO 7.03 6.98 6.886.836.786.73 6.67 CaO 11.75 11.73 11.6911.6711.6511.62 11.60 Na2O 2.65 2.66 2.682.692.702.71 2.72 K2O 0.14 0.14 0.140.140.150.15 0.15 P2O5 0.17 0.17 0.170.170.180.18 0.18 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1171.20 1170.40 1168.701167.801166.901166.00 1165.00 lgfO2 -8.63 -8.64 -8.66-8.67-8.68-8.69 -8.71 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 68.07 67.85 67.4167.1966.9666.74 66.51 CpxMG# 81.88 81.67 81.2381.0180.7880.54 80.29 OpxMG# 81.87 81.70 81.3681.1881.0080.81 80.62 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.68 2.69 2.692.692.692.69 2.69 Ln 7.19 7.20 7.217.217.227.23 7.23 Melt% 87.95 86.94 84.9383.9382.9381.92 80.92 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 5.35 5.84 6.787.267.738.20 8.66 Cpx% 4.61 4.93 5.575.896.216.55 6.88 Opx% 1.26 1.47 1.892.102.312.51 2.72 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.99 0.99 0.990.990.990.99 0.99 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.47 0.48 0.470.480.470.47 0.46 Inst % cpx 0.31 0.31 0.320.320.320.34 0.33 Inst % opx 0.21 0.21 0.210.210.210.20 0.21 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 169

169 Table D-1: Continued. SiO2 51.68 51.67 51.6751.6651.6651.65 51.65 TiO2 2.01 2.03 2.052.102.122.15 2.18 Al2O3 13.48 13.44 13.4113.3413.3013.27 13.24 FeOT 11.22 11.30 11.3711.5311.6211.70 11.78 MnO 0.22 0.22 0.220.230.230.23 0.23 MgO 6.62 6.56 6.516.396.336.27 6.21 CaO 11.58 11.55 11.5211.4611.4311.40 11.37 Na2O 2.73 2.74 2.762.782.792.81 2.82 K2O 0.15 0.15 0.160.160.160.16 0.17 P2O5 0.18 0.18 0.190.190.190.20 0.20 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1164.10 1163.10 1162.001159.901158.701157.60 1156.40 lgfO2 -8.72 -8.73 -8.74-8.77-8.78-8.79 -8.81 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 66.28 66.04 65.8165.3465.0964.84 64.60 CpxMG# 80.03 79.78 79.5178.9578.6578.35 78.04 OpxMG# 80.43 80.23 80.0379.6179.3979.17 78.93 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.69 2.69 2.692.692.692.69 2.69 Ln 7.24 7.25 7.267.277.287.29 7.30 Melt% 79.91 78.91 77.9175.9074.9073.90 72.89 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 9.13 9.60 10.06 10.9811.4411.90 12.35 Cpx% 7.21 7.55 7.908.618.969.31 9.69 Opx% 2.92 3.11 3.313.703.884.08 4.26 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.99 0.99 0.990.990.990.99 0.99 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.47 0.47 0.460.460.460.46 0.45 Inst % cpx 0.33 0.34 0.350.350.350.35 0.38 Inst % opx 0.20 0.19 0.200.200.180.20 0.18 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 170

170 Table D-1: Continued. SiO2 51.64 51.64 51.6351.6251.6151.61 51.60 TiO2 2.20 2.23 2.262.292.352.38 2.41 Al2O3 13.20 13.17 13.1313.1013.0313.00 12.97 FeOT 11.87 11.96 12.0512.1412.3312.42 12.52 MnO 0.23 0.24 0.240.240.250.25 0.25 MgO 6.15 6.08 6.025.955.825.75 5.68 CaO 11.33 11.30 11.2611.2211.1411.09 11.05 Na2O 2.83 2.85 2.862.872.902.92 2.93 K2O 0.17 0.17 0.170.180.180.18 0.19 P2O5 0.20 0.21 0.210.210.220.22 0.22 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1155.20 1153.90 1152.601151.301148.501147.00 1145.50 lgfO2 -8.82 -8.84 -8.85-8.87-8.90-8.92 -8.94 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 64.35 64.10 63.8463.5863.0562.78 62.51 CpxMG# 77.72 77.39 77.0576.7075.9675.57 75.17 OpxMG# 78.70 78.46 78.2177.9677.4377.16 76.87 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.70 2.70 2.702.702.702.70 2.70 Ln 7.31 7.32 7.337.347.377.38 7.40 Melt% 71.88 70.88 69.8768.8766.8665.85 64.85 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 12.80 13.25 13.70 14.1515.0415.48 15.92 Cpx% 10.06 10.44 10.82 11.2012.0012.39 12.80 Opx% 4.43 4.61 4.794.965.295.45 5.62 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.99 0.99 0.990.990.990.98 0.98 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.45 0.45 0.450.450.440.44 0.43 Inst % cpx 0.37 0.38 0.380.380.410.39 0.40 Inst % opx 0.17 0.18 0.180.170.160.16 0.17 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 171

171 Table D-1: Continued. SiO2 51.59 51.59 51.5851.5751.5751.55 51.54 TiO2 2.44 2.47 2.512.542.582.65 2.69 Al2O3 12.93 12.90 12.8712.8312.8012.74 12.71 FeOT 12.62 12.72 12.8212.9313.0313.25 13.37 MnO 0.25 0.26 0.260.260.260.27 0.27 MgO 5.60 5.53 5.465.385.315.15 5.07 CaO 11.00 10.95 10.8910.8410.7810.66 10.59 Na2O 2.95 2.97 2.983.003.023.06 3.07 K2O 0.19 0.19 0.200.200.200.21 0.21 P2O5 0.23 0.23 0.230.240.240.25 0.26 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1143.90 1142.40 1140.801139.001137.301133.60 1131.70 lgfO2 -8.96 -8.98 -9.00-9.02-9.04-9.09 -9.11 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 62.24 61.96 61.6861.3961.1060.52 60.21 CpxMG# 74.76 74.33 73.8973.4372.9671.97 71.45 OpxMG# 76.59 76.29 75.9975.6775.3574.68 74.33 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.70 2.70 2.702.702.702.71 2.71 Ln 7.41 7.43 7.447.467.487.51 7.53 Melt% 63.84 62.84 61.8460.8359.8357.83 56.82 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 16.36 16.79 17.22 17.6518.0818.93 19.35 Cpx% 13.21 13.63 14.06 14.4914.9315.82 16.28 Opx% 5.77 5.92 6.066.216.346.61 6.73 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.98 0.98 0.980.980.980.98 0.98 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.44 0.43 0.430.430.430.42 0.42 Inst % cpx 0.41 0.42 0.430.430.440.45 0.46 Inst % opx 0.15 0.15 0.140.150.130.13 0.12 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 172

172 Table D-1: Continued. SiO2 51.54 51.53 51.5251.5151.5151.50 51.49 TiO2 2.73 2.77 2.812.852.902.94 3.03 Al2O3 12.68 12.65 12.6112.5812.5612.53 12.46 FeOT 13.48 13.60 13.7213.8413.9614.09 14.34 MnO 0.27 0.28 0.280.280.290.29 0.30 MgO 4.99 4.90 4.824.734.654.56 4.38 CaO 10.52 10.44 10.3710.2910.2010.11 9.92 Na2O 3.09 3.12 3.143.163.183.20 3.25 K2O 0.22 0.22 0.230.230.230.24 0.25 P2O5 0.26 0.26 0.270.270.280.29 0.30 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1129.80 1127.70 1125.601123.501121.301119.00 1114.20 lgfO2 -9.13 -9.16 -9.18-9.21-9.24-9.27 -9.33 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 59.91 59.60 59.2858.9658.6458.30 57.61 CpxMG# 70.91 70.35 69.7769.1868.5567.92 66.58 OpxMG# 73.97 73.61 73.2372.8472.4472.03 71.18 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.71 2.71 2.712.712.712.71 2.71 Ln 6.91 6.93 6.966.987.017.04 7.09 Melt% 55.82 54.82 53.8152.8151.8150.81 48.81 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 19.77 20.18 20.60 21.0221.4321.84 22.65 Cpx% 16.75 17.22 17.70 18.1918.7019.20 20.22 Opx% 6.84 6.95 7.067.167.257.34 7.50 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.98 0.98 0.980.980.980.98 0.98 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.42 0.41 0.420.420.410.41 0.41 Inst % cpx 0.47 0.47 0.480.490.500.50 0.52 Inst % opx 0.11 0.11 0.110.100.090.09 0.07 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 173

173 Table D-1: Continued. SiO2 51.48 51.48 51.4751.4751.4651.46 51.45 TiO2 3.08 3.13 3.193.243.293.35 3.41 Al2O3 12.44 12.41 12.3812.3512.3112.29 12.25 FeOT 14.48 14.61 14.7514.8915.0315.18 15.33 MnO 0.30 0.30 0.300.310.310.31 0.32 MgO 4.29 4.20 4.104.013.923.82 3.72 CaO 9.81 9.71 9.599.479.359.22 9.08 Na2O 3.28 3.30 3.333.353.383.41 3.44 K2O 0.25 0.26 0.260.270.280.28 0.29 P2O5 0.30 0.31 0.320.320.330.34 0.35 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1111.70 1109.10 1106.501103.801101.001098.10 1095.10 lgfO2 -9.36 -9.39 -9.43-9.46-9.50-9.54 -9.57 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 57.26 56.90 56.5356.1455.7655.36 54.94 CpxMG# 65.87 65.15 64.4063.6362.8462.01 61.18 OpxMG# 70.74 70.29 69.8269.3568.8768.37 67.87 MgtMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 Density 2.71 2.71 2.712.712.712.71 2.71 Ln 7.12 7.15 7.197.227.257.29 7.32 Melt% 47.80 46.80 45.8044.8043.8042.80 41.79 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 23.06 23.46 23.87 24.2724.6725.07 25.48 Cpx% 20.76 21.29 21.84 22.3922.9623.53 24.11 Opx% 7.56 7.62 7.687.727.767.79 7.80 Mgt% 0.00 0.00 0.000.000.000.00 0.00 inst F 0.98 0.98 0.980.980.980.98 0.98 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.41 0.40 0.400.400.400.40 0.41 Inst % cpx 0.53 0.54 0.540.560.560.57 0.58 Inst % opx 0.06 0.06 0.060.040.040.03 0.01 Inst % mgt 0.00 0.00 0.000.000.000.00 0.00 Ln = viscosity

PAGE 174

174 Table D-1: Continued. SiO2 51.45 51.44 51.4451.4451.4451.44 51.72 TiO2 3.54 3.60 3.673.743.823.83 3.77 Al2O3 12.18 12.15 12.1212.0912.0612.05 12.11 FeOT 15.64 15.80 15.9516.1116.2716.29 16.11 MnO 0.32 0.33 0.330.330.340.34 0.34 MgO 3.53 3.43 3.333.223.113.10 3.01 CaO 8.78 8.63 8.478.308.138.11 8.03 Na2O 3.50 3.53 3.573.603.643.65 3.70 K2O 0.30 0.31 0.320.330.340.34 0.35 P2O5 0.36 0.37 0.380.390.410.41 0.42 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1088.90 1085.60 1082.201078.501074.601074.00 1072.50 lgfO2 -9.66 -9.70 -9.75-9.79-9.85-9.85 -9.88 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 54.07 53.62 53.1552.6852.2052.13 51.86 CpxMG# 59.43 58.51 57.5556.5455.4855.32 54.78 OpxMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 MgtMG# -1.00 -1.00 -1.00-1.00-1.009.65 9.39 Density 2.71 2.71 2.712.712.712.71 2.71 Ln 7.40 7.44 7.497.537.587.59 7.67 Melt% 39.79 38.78 37.7836.7835.7835.64 34.78 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 26.29 26.69 27.09 27.4927.8927.94 28.17 Cpx% 25.29 25.89 26.49 27.1027.7027.79 28.23 Opx% 7.82 7.82 7.827.827.827.82 7.82 Mgt% 0.00 0.00 0.000.000.000.00 0.19 inst F 0.98 0.97 0.970.970.971.00 0.98 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.41 0.40 0.400.400.400.36 0.27 Inst % cpx 0.59 0.60 0.600.600.600.64 0.51 Inst % opx 0.00 0.00 0.000.000.000.00 0.00 Inst % mgt 0.00 0.00 0.000.000.000.00 0.22 Ln = viscosity

PAGE 175

175 Table D-1: Continued. SiO2 52.07 52.82 53.2253.6454.0954.56 55.05 TiO2 3.70 3.54 3.453.353.253.13 3.01 Al2O3 12.18 12.35 12.4412.5312.6412.75 12.87 FeOT 15.88 15.41 15.1614.8914.6214.33 14.02 MnO 0.35 0.36 0.360.370.370.38 0.39 MgO 2.90 2.68 2.562.442.312.18 2.05 CaO 7.92 7.70 7.577.437.287.11 6.93 Na2O 3.76 3.90 3.974.054.134.22 4.32 K2O 0.36 0.38 0.390.410.420.44 0.45 P2O5 0.43 0.46 0.470.490.500.52 0.54 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1070.60 1066.50 1064.201061.901059.401056.70 1053.80 lgfO2 -9.90 -9.96 -9.99-10.02-10.05-10.09 -10.13 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 51.53 50.86 50.5050.1249.7349.32 48.90 CpxMG# 54.08 52.50 51.5950.5949.4948.27 46.91 OpxMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 MgtMG# 9.07 8.40 8.057.687.306.89 6.48 Density 2.70 2.69 2.682.672.672.66 2.65 Ln 7.78 8.01 8.138.268.408.54 8.70 Melt% 33.77 31.77 30.7729.7728.7727.77 26.77 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 28.44 28.97 29.24 29.5029.7730.03 30.29 Cpx% 28.75 29.81 30.34 30.8831.4331.98 32.54 Opx% 7.82 7.82 7.827.827.827.82 7.82 Mgt% 0.40 0.82 1.021.211.401.59 1.76 inst F 0.97 0.97 0.970.970.970.97 0.96 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.27 0.26 0.270.260.270.26 0.26 Inst % cpx 0.52 0.53 0.530.550.540.55 0.57 Inst % opx 0.00 0.00 0.000.000.000.00 0.00 Inst % mgt 0.21 0.21 0.200.190.190.19 0.17 Ln = viscosity

PAGE 176

176 Table D-1: Continued. SiO2 55.58 56.13 57.3458.0158.7159.46 60.27 TiO2 2.88 2.74 2.432.262.091.92 1.74 Al2O3 13.00 13.15 13.4713.6513.8414.05 14.28 FeOT 13.70 13.36 12.6112.1911.7411.24 10.69 MnO 0.39 0.40 0.410.420.430.44 0.44 MgO 1.91 1.76 1.461.301.150.99 0.83 CaO 6.73 6.52 6.025.735.425.07 4.69 Na2O 4.42 4.54 4.784.925.075.24 5.42 K2O 0.47 0.49 0.530.560.580.61 0.65 P2O5 0.56 0.59 0.640.670.700.74 0.77 Cr2O3 0.00 0.00 0.000.000.000.00 0.00 H2O 0.00 0.00 0.000.000.000.00 0.00 T(C) 1050.70 1047.40 1039.901035.601031.001025.90 1020.30 lgfO2 -10.17 -10.22 -10.33-10.39-10.45-10.53 -10.61 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 An 48.46 47.99 46.9646.4045.7945.14 44.42 CpxMG# 45.43 43.74 39.7937.4734.8731.99 28.79 OpxMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 -1.00 MgtMG# 6.05 5.60 4.674.193.703.20 2.71 Density 2.64 2.63 2.612.602.592.58 2.56 Ln 8.86 9.04 9.439.659.8810.13 10.40 Melt% 25.77 24.77 22.7621.7620.7619.76 18.76 Olv% 0.82 0.82 0.820.820.820.82 0.82 Plg% 30.55 30.81 31.34 31.6031.8732.13 32.40 Cpx% 33.11 33.69 34.87 35.4736.0936.72 37.36 Opx% 7.82 7.82 7.827.827.827.82 7.82 Mgt% 1.94 2.10 2.402.532.652.75 2.84 inst F 0.96 0.96 0.960.960.950.95 0.95 Inst % ol 0.00 0.00 0.000.000.000.00 0.00 Inst % plg 0.26 0.26 0.260.260.270.26 0.27 Inst % cpx 0.56 0.58 0.590.610.610.64 0.64 Inst % opx 0.00 0.00 0.000.000.000.00 0.00 Inst % mgt 0.18 0.16 0.150.130.120.10 0.09 Ln = viscosity

PAGE 177

177 Table D-1: Continued. SiO2 61.13 62.05 63.0665.8667.8170.15 TiO2 1.56 1.39 1.230.750.390.01 Al2O3 14.52 14.77 15.0416.1516.9617.75 FeOT 10.09 9.39 8.605.733.470.74 MnO 0.45 0.46 0.470.470.460.45 MgO 0.67 0.53 0.390.120.040.00 CaO 4.27 3.81 3.322.141.470.76 Na2O 5.61 5.83 6.076.787.287.86 K2O 0.68 0.72 0.770.880.951.03 P2O5 0.82 0.87 0.921.061.141.24 Cr2O3 0.00 0.00 0.000.000.000.00 H2O 0.00 0.00 0.000.000.000.00 T(C) 1014.20 1007.30 999.60969.70935.00812.20 lgfO2 -10.70 -10.80 -10.92-11.38-11.94-14.23 Fo -1.00 -1.00 -1.00-1.00-1.00-1.00 An 43.62 42.74 41.7340.10-1.00-1.00 CpxMG# 25.34 21.60 17.728.273.950.94 OpxMG# -1.00 -1.00 -1.00-1.00-1.00-1.00 MgtMG# 2.24 1.79 1.370.540.240.05 Density 2.55 2.53 2.512.462.422.39 Ln 10.69 11.00 11.3412.4413.3615.38 Melt% 17.76 16.76 15.7613.7612.7611.75 Olv% 0.82 0.82 0.820.820.820.82 Plg% 32.68 32.96 33.2633.5233.5233.52 Cpx% 38.01 38.67 39.3341.0141.9842.97 Opx% 7.82 7.82 7.827.827.827.82 Mgt% 2.92 2.98 3.023.083.103.12 inst F 0.95 0.94 0.940.930.930.92 Inst % ol 0.00 0.00 0.000.000.000.00 Inst % plg 0.28 0.28 0.300.000.000.00 Inst % cpx 0.64 0.66 0.660.970.980.98 Inst % opx 0.00 0.00 0.000.000.000.00 Inst % mgt 0.08 0.06 0.040.030.020.02 Ln = viscosity

PAGE 178

178 LIST OF REFERENCES Agee, C.B., 1990, A new look at differentiation of the Earth from melting experiments on the Allende Meteorite, Nature vol. 346(6287), pp. 834-837. Anderson, R.N., et al.., 1982, DSDP Hole 504B, th e first reference sect ion over 1 km through Layer 2 of the oceanic crust, Nature v. 300, pp. 589-594. Barbarin, B., 1990, Plagioclase xeno crysts and mafic magmatic encl aves in some granitoids of the Sierra Nevada batholith, California, Journal of Geophysical Research vol. 95, pp. 17,747-17,756. Beard, J.S. and Lofgren, G.E., 1991, Dehydration me lting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb, Journal of Petrology vol. 32, pp. 365-401. Beard, J.S., 1998, Polygenetic tonalite-trondhjem ite-granodiorite (TTG) magmatism in the Smartville Complex, northern California with a note on LILE depletion in plagiogranites, Mineralogy and Petrology vol. 64, pp. 15. Bbien, J., 1991, Enclaves in plagiogranites of the Guevgueli ophioli tic complex, Macedonia, Greece, In: Didier J, Barbarin B (eds) Enclaves and granite petrology, developments in petrology vol 13. Elsevier, Amsterdam, pp. 205. Berndt, J., 2002, Differentiation of MOR Basalt at 200 MPa: Experiment al techniques and influence of H2O and fO2 on phase relations and liquid line of descent, PhD Thesis, Universitaet Hannover, p. 118. Berndt, J., Koepke, J. and Holtz, F., 2005, An expe rimental Investigation of the Influence of Water and Oxygen Fugacity on Differentiation of MORB at 200 MPa, Journal of Petrology v. 46, no. 1, pp. 135-167. Bindeman, I.N., Davis, A.M. and Drake, M.J., 1 998, Ion microprobe study of plagioclase-basalt partition experiments at natural concen tration levels of trace elements, Geochimica et Cosmochimica Acta vol. 62, no. 7, pp. 1,175-1,193. Bohrson, W.A. and Reid, M.R., 1998, Genesis of evolved ocean island magmas by deepand shallow-level basement recycling, Socorro Isla nd, Mexico: Constraints from Th and other isotope signatures, Journal of Petrology v. 39, no. 5, pp. 995-1,008. Bougault, H. and Hekinian, R., 1974, Rift Va lley in the Atlantic Ocean near 36 50 N: petrology and geochemistry of basaltic rocks, Earth and Planetary Science Letters vol. 24, p. 249.

PAGE 179

179 Canales, J.P., Singh, S.C., Detrick, R.S., Carbotte S.M., Harding, A., Kent, G.M., Diebold, J.B., Babcock, J. and Nedimovic, M.R., 2006, Seismic evidence for variations in axial magma chamber properties along the Juan de Fuca Ridge, Earth and Planetary Science Letters vol. 246, pp. 353-366. Carpenter, M.A., 1980, Composition and cation order variations in a sector-zoned blueschist pyroxene, American Mineralogist v. 65, pp. 313-320 Castillo, P. R., Hawkins, J. W., Lonsdale, P. F., Hilton, D.R., Shaw, A.M. and Glascock, M.D., 2002, Petrology of Alarcon Rise lavas, Gulf of California: Nascent intracontinental ocean crust, Journal of Geophysical Research vol. 107, no. B10, p. 2222. Chadwick, J., Perfit, M.R., Ridley, W.I., J onasson, I., Kamenov, G., Chadwick, W.W., Embley, R., le Roux, P. and Smith, M., 2005, Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge, Journal of Geophysical Research v. 110, no.B3, pp. 12,713-12,733. Chadwick, W.W., Embley, R.W. and Sha nk, T.M., 1998, The 1996 Gorda Ridge eruption: geologic mapping, sidescan sonar, and SeaBeam comparison results, Deep-Sea Research II vol. 45, pp. 2,547-2,569. Chadwick, W.W. and Embley, R.W., 1994, Lava flows from a mid-1980s submarine eruption on the Cleft segment, Juan de Fuca Ridge, Journal of Geophysical Research v. 99, no. B3, pp. 4,761-4,776. Christie, D.M. and Sinton, J.M., 1981, Evolution of abyssal lavas along propagating segments of the Galapagos spreading center, Earth and Planetary Science Letters v. 56, pp. 321-335. Colson, R.O., Mckay, G.A. and Taylor, L.A., 1988, Temperature and Composition Dependencies of Trace-Element Partitioning Olivine Melt and Low-Ca Pyroxene Melt, Geochimica et Cosmochimica Acta vol. 52(2), pp. 539-553. Coogan, L.A., Jenkin, G.R.T. and Wilson, R.N., 2002, Constraining the cooling rate of the lower oceanic crust: a new approach applied to the Oman ophiolite, Earth and Planetary Science Letters v. 199, pp. 127-146. Coogan, L. A., Mitchell, N. C. and O'Hara, M. J., 2003, Roof assimilation at fast spreading ridges: An investigation combining geophys ical, geochemical, and field evidence, Journal of Geophysical Research vol. 108, no. B1, pp. 1-12. Crisp, J.A., 1984, Rates of magma emplacement and volcanic output, Journal of Volcanological and Geothermal Research v. 20, pp. 177-211. Danyushevsky, L.V., 2001, The effect of small am ounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas, Journal of Volcanology and Geothermal Research 110, pp. 265. Dixon-Spulber, S. and Rutherford, M.J., 1983, Th e origin of rhyolite and plagiogranite in oceanic crust: an experimental study, Journal of Petrology vol. 24, no. 1, pp. 1.

PAGE 180

180 Duke, J.M., 1976, Distribution of the period four transition elements among olivine, calcic clinopyroxene and mafic silicate liquid; experimental results, Journal of Petrology vol. 17, no.4, pp. 499-521. Embley, R.W., Chadwick, W.W., Perfit, M.R. and Baker, E.T., 1991, Geology of the northern Cleft segment, Juan de Fuca Ridge: Recent lava flows, sea-floor spreading, and the formation of megaplumes, Geology v. 19, pp. 771-775. Embley, R.W. and Chadwick, W.W., 1994, Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft segment: Juan de Fuca Ridge, Journal of Geophysical Research v. 99, no. B3, pp. 4,741-4,760. Embley R.W., Jonasson I.R., Perfit M.R., Frank lin J.M., Tivey M.A., Malahoff A., Smith M.F. and Francis T.J.G., 1988, Submersible investigat ions of an extinct hydrothermal system on the Galapagos Ridge: Sulfide mound, stoc kwork zone, and differentiated lavas, Canadian Mineralogy, vol. 26, pp. 517. Embley, R.W., Chadwick, W.W., Perfit, M.R ., Smith, M.C. and Delaney, J.R., 2000, Recent eruptions on the CoAxial segment of the Juan de Fuca Ridge: Implications for mid-ocean ridge accretion processes, Journal of Geophysical Research vol. 105, no. B7, pp. 16,501 16,525. Falloon, T.J., Malahoff, A., Zonenshai n, L.P. and Bogdanov, Y., 1992, Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15 degree, 18 degree and 19 degree S., Mineralogy and Petrology vol. 47, pp. 1. Fornari, D.J., Perfit, M.R., Malahoff, A. a nd Embley, R.U., 1983, Geochemical studies of abyssal lavas recovered by DSRV Alvin from the Eastern Gala pagos Rift, Inca Transform, and Ecuador Rift. 1. Major element variations in natural glasses and sp atial distri bution of lavas, Journal of Geophysical Research vol. 88, pp. 10,159-10,529. Flagler, P.A., Spray, J.G., 1991, Generation of plagiogranite by amphibolite anatexis in oceanic shear zones, Geology vol. 19, pp. 70. Flanagan, F.J., 1976, Descriptions and Analysis of Eight New USGS Rock Standards U.S. Geological Survey Prof essional Paper 840, p. 192. Furman, T., Frey, F. and Park, K., 1995, The scal e of source heterogeneity beneath the Eastern neovolcanic zone, Iceland, Journal of the Geological Society v. 152, no. 6, pp. 997-1,002. Garcia, M.O., Ito, E., Eiler, J.M. and Pietrusz ka, A.J., 1998, Crustal Contamination of Kilauea Volcano Magmas Revealed by Oxygen Isotope Analyses of Glass and Olivine from Puu Oo Eruption Lavas, Journal of Petrology v.39, no. 5, pp. 803-817. Gee, M.A.M., Thirlwall, M.F., Taylor, R. N., Lowry, D. and Murton, B.J., 1998, Crustal Processes: Major Controls on Reykjanes Peninsula Lava Chemistry, SW Iceland, Journal of Petrology v. 39, no. 5, pp. 819-839.

PAGE 181

181 Geist, D., Naumann, T. and Larson, P., 1998, E volution of Galapagos Magmas: Mantle and Crustal Fractionation without Assimilation, Journal of Petrology v.39, no. 5, pp. 953-971. Goldstein, S.J., Perfit, M.R., Batiza, R., Fo rnari, D.J. and Murrel, M.T., 1994, Off-axis volcanism at the East Pacific Rise detect ed by uranium-series dating of basalts, Nature v. 367 p. 157. Graham, D.W., Castillo, P.R., Lupton, J.E. and Batiza, R., 1996, Correlated He and Sr isotope ratios in South Atlantic n ear-ridge seamounts and impli cations for mantle dynamics, Earth Planetary Science Letters 144 pp. 491-503. Haase, K.M., Stroncik, N.A, Hkinian, R. And St offers, P., 2005, Nb-depleted andesites from the Pacific-Antarctic Rise as analogs for early continential crust, Geology v. 33, no. 12, pp. 921-924. Hart, S.R. and Dunn, T., 1993, Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology vol. 113, pp. 1-8. Hauri, E.H., Wagner, T.P. and Grove, T.L., 1994, Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts, Chemical Geology vol. 117, pp. 149-166. Hekinian, R., Stoffers, P., Devey, C.W., Ackerma n, D. Hemond, C. OConner, J., Bihard, N. and Maia M., 1997, Intraplate ve rsus ridge volcanism on the P acific Antarctic Ridge near 37S-111W, Journal of Geophysical Research v. 102, pp. 12,265-12,286. Hekinian, R., Stoffers, P., Ackermand, D., Revillon, S., Maia, M. and Bohn, 1999, Marcel Ridge-hotspot interaction; the Pacific-An tarctic Ridge and the Foundation seamounts, Marine Geology v. 160 pp.199-223 Helz, R.T., 1973, Phase relations of basalt in their melting ranges at P H2O=5 kb. Part II: melt compositions, Journal of Petrology vol. 14, pp. 249-302. Herzberg, C., 2004, Partial Crystallization of MidOcean Ridge Basalts in the Crust and Mantle, Journal of Petrology Advance Access published on August 5, 2004. Higgins, M.D., 1998, Origin of Anorthosite by Text ural Coarsening: Quantitative Measurements of a Natural Sequence of Textural Development, Journal of Petrology v. 39, no. 7. pp. 1,307-1,323. Hoernle, K., 1998, Geochemistry of Jurassic Oceanic Crust beneath Gran Canaria (Canary Islands): Implications for Crustal Recycling and Assimilation, Journal of Petrology v. 39, no. 5, pp. 859-880. Holloway, J.R. and Burnham, C.R., 1972, Melting relations of basalt with equilibrium water pressure less then total pressure, Journal of Petrology vol. 13, pp. 1-29.

PAGE 182

182 Jambon, A., and J. L. Zimmerman, 1990, Water in oceanic basalts: Evidence for dehydration of recycled crust, Earth and Planetary Science Letters vol. 101, pp. 323. Johnson, H.P., and Holmes, M.L., 1989, Chapter 5: Evolution in plate tectonics; The Juan de Fuca Ridge, in The Eastern Pacific Ocean and Hawaii pp. 73-91, Winterer, E.L., Hussong, D.M., and Decker, R.W., eds., Geologi cal Society of America, Boulder, CO, pp. 73-91. Johnson, K.T.M., Graham, D.W., Rubin, K.H., Nico laysen, K., Scheirer, D.S., Forsyth, D.W., Baker, E.T. and Douglas-Priebe, L.M., 2000, Boomerang Seamount; the active expression of the Amsterdam-St. Paul Ho tspot, Southeast Indian Ridge, Earth and Planetary Science Letters v. 183, pp. 245-259. Juster, T.C., Grove, T.L. and Perfit, M.R., 1989, Experimental Constraints on the Generation of FeTi Basalts, Andesites, and Rhyodacites at the Galapogos Spreading Center, 85W, and 95W, Journal of Geophysical Research v. 94, pp. 9,251-9,274. Juteau, T., Bideau, D., Dauteuil, O., Manach, G. Naidoo, D.D., Nehlig, P., Ondreas, H., Tivey, M.A., Whipple, K.X. and Delaney, J.R., 1995, A submersible study in the western Blanco Fracture Zone, N.E. Pacific: Structur e and evolution duri ng the last 1.6 Ma, Marine Geophysical Researches v. 17, i. 5, pp. 399-430. Karson, J.A., Tivey, M.A. and Delaney, J.R., 2002, In ternal structure of uppermost oceanic crust along the Western Blanco Transform Scarp: Implications for subaxial accretion and deformation at the Juan de Fuca Ridge, Journal of Geophysical Research v. 107, pp. 1-24. Kawamoto, T., 1996, Experimental cons traints on differentiation and H2O abundance of calcalkaline magmas, Earth and Planetary Science Letters vol. 144, pp. 577-589. Keleman, P.B. and Dunn, J.T., 1992, Depletion of Nb relative to other highly incompatible elements by melt/rock reaction in the upper mantle. EOS vol. 73, pp. 656-657. Kerr, A.C., Tarney, J., Marriner, G.F., Klaver, G.T., Saunders, A.D. and Thirlwall, M.F., 1996, The geochemistry and petrogenesis of the late -Cretaceous picrites and basalts of Curacao, Netherlands Antilles: a remnant of an oceanic plateau, Contributions to Mineralogy and Petrology v. 124, pp. 29-43. Klingelhofer, F., Minshull, T.A., Blackman, D.K., Harben, P. and Childers V., 2001, Crustal structure of Ascension Island fr om wide-angle seismic data: implications for the formation of near-ridge volcanic islands, Earth and Planetary Science Letters v. 190, pp. 41-56. Kloeck, W. and Palme, H., 1988, Partitioning of siderophile and chalcophile elements between sulfide, olivine, and glass in a naturally reduced basalt from Disko Island, Greenland. In: Proceedings of the Lunar and Planetary Science Conference vol.18. Ryder, G. (Editors), Pergamon, New York. 18, pp. 471-483. Koepke, J., 1986, Die Ophiolithe de r su da ga ischen Inselbru cke, PhD Thesis, Technische Universitaet Braunschweig, p. 204.

PAGE 183

183 Koepke, J., Seidel, E. and Kruzer, H., 2002, Ophi oliteson the southern Ae gean islands, Crete, Karpathos and Rhodes: composition, geochronol ogy and position within the ophiolite belts of the Eastern Mediterranean, Lithosphere vol. 65, pp. 183-203. Koepke, J., Berndt, J. and Bussy, F., 2003, An experimental study on the shallow-level migmatization of ferrogabbros from the Fu erteventura Basal complex, Canary Islands, Lithosphere vol. 69, pp. 105-125. Koepke, J., Feig, S.T., Snow, J. And Freise, M ., 2004, Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study, Contributions to Mineralogy and Petrology vol. 146, pp. 414-432. Kravuchuk, I.K., Chernysheva, I. and Urosov, S., 1981, Element distribution between plagioclase and groundmass as an indicator for crystallization condition s of the basalts in the southern vent of Tolbachik, Geochemistry International, vol 17, pp. 18-24 Langmuir, C.H., Vocke Jr, R.D. and Hans on, G.N., 1978, A general mixing equation with applications to Icelandic basalts, Earth and Planetary Science Letters vol. 37, pp. 380392. Le Roux, P.J., Shirey, S.B., Hauri, E.H., Perfit, M.R. and Bender, J.F., 2006, The effects of variable sources, processes and contaminan ts on the composition of northern EPR MORB (8N and 12N): Evidence from volatiles (H 2O, CO2, S) and halogens (F, Cl), Earth and Planetary Science Letters vol. 251, pp. 209-231. Malpas, J., 1979, Two contrasti ng trondhjemite associations from transported ophiolites in Western Newfoundland: Initial report, In: Barker F (ed) Trondhjemites, dacites, and related rocks, Elsevier, Amsterdam, pp. 465. Marsh, B. D., 2000, Magma Chambers, Encyclopedia of Volcanoes Academic Press, pp. 191206. Matsui, Y., Onuma, N., Nagasawa, H., Higuc hi, H. and Banno, S., 1977, Crystal structure control in trace element partition between crystal and magma, Tectonics vol. 100, pp. 315324. McDonald, M.A., Webb, S.C., Hildebrand, J.A. a nd Cornuelle, B.D., 1994, Seismic structure and anisotropy of the Juan de Fuca Ridge at 45N, Journal of Geophysical Research v. 99, no. B3, pp. 4857-4873. McGarvie, D., 1984, Torfajkull: A volcano dominated by magma mixing, Geology v. 12, pp.685-688. McGarvie, D.W., MacDonald, R., Pinkerton H. a nd Smith, R.L., 1990, Petrogenetic evolution of the Torfajkull Volcanic Complex, I celand II, the role of magma mixing, Journal of Petrology v. 31, no. 2, pp. 461-481.

PAGE 184

184 McKenzie, D. and ONions, R.K., 1991, Partial melt distributions fr om inversion of rare Earth element concentrations, Journal of Petrology vol. 32, pp. 1,021-1,091. Mvel, C., 1988, Metamorphism in ocean layer 3, Gorringe Bank, Eastern Atlantic, Contributions to Mineralogy and Petrology vol. 100, pp. 496-509. Michael, P. J., and J.G. Schilling, 1989, Chlori ne in mid-ocean ridge magmas: Evidence for assimilation of seawater-influenced components, Geochim. Cosmochim. Acta vol. 53, pp. 3,131,143. Michael, P. J., and W. C. Cornell, 1998, In fluence of spreading ra te and magma supply on crystallisation and assimilation beneath midocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts, Journal of Geophysical Research vol. 103, no. 18, pp. 18,325,356. Mysen, B, 1978, Experimental determination of ni ckel partition coeffi cients between liquid, pargasite and garnet peridotite minerals and co ncentration limits of behavior according to Henry's Law at high pressure and temperature, American Journal of Science, vol. 278, pp. 217-243. Nakada, S., Maillet, P., Monjaret, M.C., Fujinaw a, A. and Urabe, T., 1994, High-Na dacite from the Jean Charcot Trough (Vanuatu), Southwest Pacific, Marine Geology vol. 116, pp. 197. Nicholson, H., Condomines, M ., Fitton, J.G., Fallick, A.E., Grnvold, K. and Rogers, G., 1991, Geochemical and isotopic evidence for crus tal assimilation beneath Krafla, Iceland, Journal of Petrology v. 32, pp. 1005-1020. Nielsen, R.L., and Delong, S.E., 1992, A numerical approach to boundary layer fractionation: Application to differentiation in natural magma systems, Contributions to Mineralogy and Petrology v. 110, p. 355-369. Nikogosian, I.K. and Sobolev, A.V., 1997, Ion-microprobe analysis of melt Inclusions in olivine: experience in estimating the olivine-melt pa rtition coefficients of trace elements, Geochemistry International vol. 35, pp. 119-126. OHara, M.J., 1998, Volcanic plumbing and the space problem-thermal and geochemical consequences of large-scale assim ilation in ocean island development, Journal of Petrology v. 39, no. 5, pp. 1,077-1,089. Pedersen, R.B., Malpas, J., 1984, The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway, Contributions to Mi neralogy and Petrology vol. 88, pp. 36 52. Perfit, M.R. and Fornari, D.J., 1983, Geochemical studies of abyssal lava s recovered by DSRV Alvin rrom Eastern Galapagos Rift, Inca Transf orm, and Ecuador Rift 2. Phase chemistry and crystallization history, Journal of Geophysical Research v. 88, pp. 10,530-10,550.

PAGE 185

185 Perfit, M.R. and Fornari, D.J., 1983, Geochemical Studies of abyssal la vas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Tran sform, and Ecuador Rift 3. Trace element abundances and petrogenesis, Journal of Geophysical Research v. 88, pp. 10,551-10,572. Perfit, M.R., Fornari, D.J., Smith M.C., Bende r, J.F., Langmuir, C.H. and Haymon, R.M., 1994, Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes, Geology v. 22, pp. 375-379. Perfit, M.R. and Chadwick, W.W., 1998, Magma tism at mid-ocean ridges: Constraints from volcanological and geochemical iiinvestigations, Faulting and Magmatism at Mid-Ocean Ridges Geophysical Monograph 106 pp. 59-115. Perfit, M.R., Ridley, W.I. and Jonasson, I.R. m 1999, Geologic, petrologic, and geochemical relationships between magmatism and massive sulfide mineralizati on along the Eastern Galapagos Spreading Center, in Barrie, C.T. and Hannington, M.D.., eds., Volcanicassociated massive sulfide deposits: Proce sses and examples in modern and ancient settings: Society of Economic Geologi sts Reviews Economic Geology, vol. 10, pp. 75-100. Perfit, M.R., 2001, Mid-Ocean Ridge Geochemistry and Petrology, in J. Steel, S. Thorpe and K. Turekian, eds., Encyclopedia of Ocean Sciences Academic Press, San Diego, CA, pp. 1,778-1,788. Phelps, D. and Ave Lallemant, H.G., 1980, The Sparta ophiolite comple x, northeast Oregon: a plutonic equivalent to low K2O island-arc volcanism, American Journal of Science vol. 280-A, pp. 345. Raff, A.D. and Mason, R.G., 1961, Magnetics survey off the west coast of North America, 40N latitude to 52N latitude, Geological Society of America Bulletin v. 72, pp. 1,267-1,270. Ratajeski, K., Glazner, A.F. and Miller, B.V., 2001, Geology and geochemistry of mafic to felsic plutonic rocks in the Cretaceous intrusiv e suite of Yosemite Valley, California, GSA Bulletin v. 113, pp. 1,486-1,502. Reid, J.B., Evans, O.C. and Fates, D.G., 1982, Ma gma mixing in granitic rocks of the central Sierra Nevada, California, Earth and Planetary Science Letters v. 66, pp. 243-261. Riehle, J.R., Meyer, C.E., and Miyaoka, R.T ., 1999, Data on holocene tephra (Volcanic Ash) deposits in the Alaska Peninsula and lower Cook Inlet Region of the Aleutian Volcanic Arc, Alaska, USGS Open-File Report pp. 99-135 Saunders, A.D., Tarney, J., Stern, C.R. and Dalz iel, I.W.D., 1979, Geochemistry of mesozoic marginal basin floor igneous rocks from southern Chile, Geological Society of America Bulletin Part I 90, pp. 237. Shelley, David, 1993, Igneous and Metamorphic Rocks Under the Microscope Chapman and Hall, London, UK.

PAGE 186

186 Shimizu, N. and Kushiro, I., 1975, The partitioning of rare earth elements between garnet and liquid at high pressures: Preliminary experiments, Geophysical Research Letters vol. 2, issue 10, pp. 413-416. Sigurdsson, H. and Sparks, R.S.J., 1981, Petrolo gy of Rhyolitic and Mixed Magma Ejecta from the 1875 Eruption of Askja, Iceland, Journal of Petrology v. 22, no. 1, pp. 41-84. Smith, M.C., 1993, Petrologic and geochemical investigations of basalts from the southern Juan de Fuca Ridge masters thesis, University of Florida, pp. 193. Smith, M.C., Perfit, M.R. and Jonasson, I.R., 1994, Petrology and geochemistry of basalts from the Southern Juan de Fuca Ridge: Controls on the spatial and temporal evolution of midocean ridge basalt, Journal of Geophysical Research v. 99, pp. 4,787-4,812. Stakes, D. S., W. W. Chadwic k, Jr., N. Maher, and D. S. Sc heirer, Results of nested high resolution mapping of the southern Cl eft segment, Juan de Fuca Ridge, Eos Transactions American Geophysical Union 79 45, Fall Meeting Supplement, F810, 1998. Stakes, D.S., Perfit, M.R., Tivey, M.A., Caress, D., Ramirez, T.M. and Maher, N., 2006, The Cleft Revealed: Geologic, magnetic and mor phologic evidence for construction of upper oceanic crust along the sout hern Juan de Fuca Ridge, Geochemistry Geophysics Geosystems vol. 7. Stoffers, P., Worthington, T., Hekinian, R., Peterson, S., Hannington, M., Trkay, M., and the SO 157 Shipboard Scientific Party, 2002, S ilicic volcanism and hydrothermal activity documented at the Pacific-Antarctic Ridge, EOS v. 83, no. 28, p. 301, 304. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes, Magmatism in the ocean basins Saunders, A.D. and Norry, M.J. (Editors), Geological Society of London, London, pp. 313345. Tierney, S. E., 2003, Distribution and compositi on of lavas from the sout hern Cleft segment of the Juan de Fuca Ridge: Tectonomagnetic evolu tion of a ridge-transform intersection masters thesis, University of Florida, pp. 195. Tsikouras, B., Hatzipanagiotou, K., 1998, Plagiogr anite and leucogranite relationships in an ophiolite on the Thethys Ocean (S amothraki, N. Aegean, Greece), Neues Jahrb Miner Monatsh vol. 1, pp. 13. Villemant, B., Jaffrezic, H., Joron, J.L. and Tr euil, M.,1981, Distribution Coefficients of Major and Trace-Elements Fractional Crystallization in the Alkali Basalt Series of Chaine-DesPuys (Massif Central, France), Geochimica et Co smochimica Acta, vol. 45(11), pp. 1,9972,016.

PAGE 187

187 Weis, D., Frey, F.A., Giret, A. and Cantagrel, J.-M., 1998, Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguele n Archipelago: Inferences for magma flux, lithosphere assimilation and compos ition of the Kerguelen Plume, Journal of Petrology v. 39, no. 5, pp. 973-994. Wilson, M., 1989, Igneous Petrogenesis: A Gl obal Tectonic Approach Kluwer Academic Publishers, Dordrecht/Boston/London. Zou, H., Zindler, A. and Niu, y., 2002, Constraints on melt movement beneath the East Pacific Rise from 230Th-238U Disequilibrium, Science, vol. 295, p. 107

PAGE 188

188 BIOGRAPHICAL SKETCH Laurie A. Cotsonika attended the University of Michigan from the fall of 1998 through the spring of 2002, at which time she earned a Bachelor of Science in oceanography. She then began graduate study at the University of Florida in the fall of 2003, and earned her Masters of Science in December of 2006.


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101203_AAAAEY INGEST_TIME 2010-12-04T02:08:18Z PACKAGE UFE0017936_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 7941 DFID F20101203_AACCBG ORIGIN DEPOSITOR PATH cotsonika_l_Page_017thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
3150d97f4c02f93c37f1224c517c4e15
SHA-1
379dc0cba25a68197be13076345ab85296d8c035
24938 F20101203_AACCAR cotsonika_l_Page_005.QC.jpg
f37d55f05ea80245f85e628476fbe043
8abd6a39af41fe53bb9c91bf8fc7af22b5b78605
1759 F20101203_AACBVL cotsonika_l_Page_154.txt
7598366cc4c88cfeb1ec4111bf9c7e31
9e5770160059c98799e65c3a46ead06a2f661056
1624 F20101203_AACBUX cotsonika_l_Page_140.txt
13a015bae85d26cc7d294066c00cf277
70bc61d6315dea40e330673c80e2d77f1271db89
79054 F20101203_AACARV cotsonika_l_Page_090.jpg
b7501a03b8cb1bc509f1d055006da99b
2b31ee3cbb44bc75e856c9f4725404b53ec05a81
55969 F20101203_AACASJ cotsonika_l_Page_105.jpg
b1d43e1bfaf3e99c48e2d9ecf4dd75a8
cd966b59ef32c848236da0078d91871cfae45e8f
41300 F20101203_AACCBH cotsonika_l_Page_018.QC.jpg
70c219912b4aaca604144ee074d6bb3b
6960b604b8147d158693a2a8ec29c0875ba25c8b
6278 F20101203_AACCAS cotsonika_l_Page_005thm.jpg
e25d8c844c6de7fbd7f440e3182c365a
6b1cb1fa3fc87dc47d876eb42c515bf9236553b1
1567 F20101203_AACBWA cotsonika_l_Page_170.txt
41e6e92cb35163ae9701f8f8449209ab
d02edb001e181286ea5aa64c3f9d371290238539
1889 F20101203_AACBVM cotsonika_l_Page_156.txt
0236912305de626659885de346cc7045
ab1f8ada77f9ac49f83055f6cb8193bcc8909929
1968 F20101203_AACBUY cotsonika_l_Page_141.txt
3294d04c32045521afccba5f1983eb1b
1a738b544092d23f32ff1a6e377309aca1802c28
75454 F20101203_AACARW cotsonika_l_Page_091.jpg
c832b0790230f5b9c5e4dcfc3c8a02b1
88cb1970a751173d4667815bd1dddd5ea273e0ec
56191 F20101203_AACASK cotsonika_l_Page_106.jpg
fbe6ea09bb9e531f6ecf992c44a9fec8
4d6b3f0335502944e8bdfda46e44d3c855e8ac35
10796 F20101203_AACCBI cotsonika_l_Page_018thm.jpg
a9189fa207a6622e7682f6da5bee114e
659ad726d8c613835d9704be42cda951bc15bd5c
2652 F20101203_AACCAT cotsonika_l_Page_006thm.jpg
24ca83c44a846e6fc2ac1a00f9b86c5a
67e1de68e1133598b74dab08540645463daf10e0
F20101203_AACBWB cotsonika_l_Page_171.txt
cb2da98d8a38f495cb58b8be026924cb
18862c9bef46d724e1622e4ffa3189e988c5c46b
1852 F20101203_AACBVN cotsonika_l_Page_157.txt
2d500bacc2f7358e1d905f5b539424a6
55d8fb69b7f0d9586048b74da6b91ecba6f34664
1515 F20101203_AACBUZ cotsonika_l_Page_142.txt
da7425e04c48a85bfad71121b3a0d565
391b07760455b57ef3ce6cdf809e61ecbb231e8b
77812 F20101203_AACARX cotsonika_l_Page_092.jpg
2f48c82523e7b56157e815e256ef6446
7def5ae347caec45b150ee80f17b240118aea9e3
56217 F20101203_AACASL cotsonika_l_Page_107.jpg
6144f84ebe15b79c2b81f412f27f38b1
8202e3f5826a8390a5184513941466714453b236
14620 F20101203_AACCAU cotsonika_l_Page_007.QC.jpg
d7fd1cd1395e12f8c5e5271e07b7d1ed
ef05b4acb3f514116e8eabe6562b02f3ddb6f779
1566 F20101203_AACBWC cotsonika_l_Page_172.txt
dc80a2bb306f201916422f43b86c16dd
a1265d85016a6e604c888cd5226860122e01d32c
2410 F20101203_AACBVO cotsonika_l_Page_158.txt
76f203af4a5d1d6b1e7ad5a8bc8680be
aec632b4cd391a0b83e89273bd85092384e77869
81836 F20101203_AACARY cotsonika_l_Page_094.jpg
e59055b8aba5e256063a1c537b0cdb2a
723d2b1264b385a5f57f0006dbafd7d7d5a8e070
58006 F20101203_AACATA cotsonika_l_Page_122.jpg
faab288bd4ac338b051a36328899d2c2
a2a8d24978da4db1c25eb797992d3747c414f4e1
55091 F20101203_AACASM cotsonika_l_Page_108.jpg
ed5eb7928763081591231d35adb15f1f
4847dfaec6e0c835fbb214e26945c80211277384
1387 F20101203_AACCBJ cotsonika_l_Page_019thm.jpg
02405caaa4f170d11f14bfe81215571f
e22c5d31f16b81c68997468ece024106f74a2db4
31340 F20101203_AACCAV cotsonika_l_Page_010.QC.jpg
3c9511e69e8da2a118ec26b8d67e9f49
d32e36e4f2a93d8594d71df0bb59bb95c86950a7
1560 F20101203_AACBWD cotsonika_l_Page_173.txt
c9a35c6c56b808921e2235d080388b9a
dac689e5bb87d6dcb77528b2023f04814e427a70
87 F20101203_AACBVP cotsonika_l_Page_159.txt
e9cac2a9d27034667d4f441dab03dfb4
856032fdac89d03333f430032dffadc410ab76ae
73942 F20101203_AACARZ cotsonika_l_Page_095.jpg
dc0ca9ae60d080be0e4e0fa42c486b6a
fa2f798269b7e7e06ec7ecb56fd2052b4af45c64
58171 F20101203_AACATB cotsonika_l_Page_123.jpg
74f2aadacffd8197372366248a1a851f
9588995453e222a0dd7664e523b420b11c635111
56998 F20101203_AACASN cotsonika_l_Page_109.jpg
1a1e7edb72fe9afb6e9d3a65b9b0a9d3
0fea1e288ef4d30ed9b93b1d4740cd85783c93a0
35550 F20101203_AACCBK cotsonika_l_Page_020.QC.jpg
4b92a8e1146f4a5efca00fe3f2beeb96
83248bd8f45cbce38bbc065e235e26a35e5544bf
7827 F20101203_AACCAW cotsonika_l_Page_010thm.jpg
e90ded821f13fce0b9c9e787805d357e
c72c91bc1288f89b5386f89275c296c3e76a3f82
1558 F20101203_AACBWE cotsonika_l_Page_174.txt
3dbff7adf5e0493ad71903df3f9fb329
e4bb46abb5880244c3685d4b85236caa0abc1368
2518 F20101203_AACBVQ cotsonika_l_Page_160.txt
ab0432a407ec340e5326cdf8b8cdba52
a3d0573fa1ba9b66bd03139851955820d18d0684
55882 F20101203_AACATC cotsonika_l_Page_124.jpg
22c1c265a56f3cc37995d54a8361d9a7
e1a96b2c7c1497f69360615cdbe22609fb2ac6e9
55201 F20101203_AACASO cotsonika_l_Page_110.jpg
712713e67791981518ad2abb2873a6f8
0c8d84e06c3711f3cdff1a354d2b4addcb456fb2
9094 F20101203_AACCCA cotsonika_l_Page_033thm.jpg
702b45af8c51c16c87b0e05b84176305
74e4137c9eeb5cd94bc0aa597b30dd44ecbfd473
8573 F20101203_AACCBL cotsonika_l_Page_020thm.jpg
7c06f6402e2708c584a59c70c10e38b7
a868dad4959734bd7b8a40ea3864ba95b5d7bfc8
24092 F20101203_AACCAX cotsonika_l_Page_011.QC.jpg
e237535281242029f35848f86a521137
fb09c1ba55271cc35bbb75010db2ce8b355f92f9
1557 F20101203_AACBWF cotsonika_l_Page_175.txt
22fe333203a8a56e884304ee20acb974
35d1ff36e3ab631616b8a2ede3493c7f41e7cc94
4286 F20101203_AACBVR cotsonika_l_Page_161.txt
ac02fb04180b1efdd0270b277dcab35d
b5d2e74071aceb425bc27067d83a6ab0aec6c7fc
55148 F20101203_AACATD cotsonika_l_Page_125.jpg
22d140492f8da758490c319b18711e4a
d1439dcfb2fe5c80b09efb2eb6f1027b3bf801bb
55617 F20101203_AACASP cotsonika_l_Page_111.jpg
d3bbfa68cb1bfec8fe591bc9ab8f14fd
d1abdd9e31241a1bcfd27db1706117d9e6ba6a2a
34447 F20101203_AACCCB cotsonika_l_Page_034.QC.jpg
deaa71f9e6c286fbbba6c86b6a036610
ff8af33d50ed6fa2e030195ae4180c84a4c4fa9c
21823 F20101203_AACCBM cotsonika_l_Page_023.QC.jpg
68fd5b2d37d296f5788e4196b8ff3b6d
18a8f76d23f98939826ba4aab1d2a814259a7496
34928 F20101203_AACCAY cotsonika_l_Page_012.QC.jpg
e82b674eb3fbf3f0c5bd1bfa309b4490
1cc9c3c5ccefbb541d22ba08a7a5b7c0a04a033a
1563 F20101203_AACBWG cotsonika_l_Page_176.txt
32c7980e13b75a2dd801c961cd1e1775
226bdbc55510355b57e5416ae4a455fdaa335344
3462 F20101203_AACBVS cotsonika_l_Page_162.txt
2e5bb41cd22cbbde5eb0453e2d5fa2fe
7707945b7fd1c87ea75cc5b342e3dc1630a5123f
55536 F20101203_AACATE cotsonika_l_Page_127.jpg
b277b8df0caf14dd7be7bb7ed5e95ddb
cd18809b096717bfb171414c2148d4f99c1e8f50
55551 F20101203_AACASQ cotsonika_l_Page_112.jpg
594dd26faa126460d92787039608e10c
90cd1b165ce808aa0b3f1e41d5a5c705ff9d7b02
8521 F20101203_AACCCC cotsonika_l_Page_034thm.jpg
ee1f6103fa8c77f8cd9915d6fe317722
b7ef45dc7f4c05c8bfa0c11f61cc1c124215c2ad
5420 F20101203_AACCBN cotsonika_l_Page_023thm.jpg
098e51f5c6af62519e838c69539571f9
68ba6cc553539c7cf2a588033120aa0456d85fac
37059 F20101203_AACCAZ cotsonika_l_Page_013.QC.jpg
2aa608a7b563461721973445011a636c
4d06e2b7fec139a6a3110bc6af75eb1355aeb7b8
1374 F20101203_AACBWH cotsonika_l_Page_177.txt
863fee3a4cbc85673652985375ae13d1
2a22dfdcd345670c017f925974b92561791cb627
2381 F20101203_AACBVT cotsonika_l_Page_163.txt
68eb0bafd5a394807ce4d33c65076101
01e63808a4869235eebde7ae2732fab157f48973
55383 F20101203_AACATF cotsonika_l_Page_129.jpg
21810ad62d7471ed7e91587157172d57
efc68f6685f5a19eb69682eed63cc899b20bb644
55783 F20101203_AACASR cotsonika_l_Page_113.jpg
e3520f5ec4108d0067026cc518465bdc
335c2acfb7309a33ee77874dd11e08726adc4a01
9272 F20101203_AACCCD cotsonika_l_Page_036thm.jpg
db9d2ab3d7c2e0846b00273fbcc5d4ef
d523a48601b5f46bb6f1ab00f709f3bf2185a51f
7668 F20101203_AACCBO cotsonika_l_Page_024thm.jpg
1df2e94bb9c3f70f71cb13986e39b791
0f2d1e76bbb2f87b260f9a9fed810748667e86de
2431 F20101203_AACBWI cotsonika_l_Page_178.txt
7b7ce51d590856cfb30681bdc02955ed
b5f5c4038a3649b8559f65fddf82fcb1bd7e9355
1401 F20101203_AACBVU cotsonika_l_Page_164.txt
abbac61c1f3a6e2a1c51e925b96f2a62
32a393d0e96a2ed1005e85d558053bcf0805c893
56670 F20101203_AACATG cotsonika_l_Page_130.jpg
4628b22f0bdb69bc183446e238a1dc19
b28f2e6d59227ce70cc85a1df3cd87188aab98bd
57228 F20101203_AACASS cotsonika_l_Page_114.jpg
5a66679205a8def5f213a4a1da28c800
572bae1135cc6d908f10ca43f7ac4593d38a8d06
32838 F20101203_AACCCE cotsonika_l_Page_037.QC.jpg
95cd52efcc5cc174eab51f0a392656bb
9d36bb755ccf3cbcc2c19ef65fec95d33250f933
3351 F20101203_AACCBP cotsonika_l_Page_025.QC.jpg
1388707e43a1470d96b55a1df34f3b21
67f5c12794a29258a8db8f909cb330fd2fac1fb9
2906 F20101203_AACBWJ cotsonika_l_Page_179.txt
b3d9fc3cceff06315f28a81cc32c726d
47385aea9c3d3ac6b280fe212a00f2b2e36aa810
48 F20101203_AACBVV cotsonika_l_Page_165.txt
fdf27641f0b6b372a88ed56d7584b1cd
b6893cfbd5fccf03f7a7adddff201d448f47901e
28899 F20101203_AACATH cotsonika_l_Page_131.jpg
56b6ca074efe064f930ec6c85e40efb2
0e463d471b6a1fc82a05ca675f4b4e6a27ec0636
55496 F20101203_AACAST cotsonika_l_Page_115.jpg
dc7c85dbd6c0bd3becde8f7d7b140df3
12b07233c5d5b5c99b268abaf496d05eafd4b6b7
9284 F20101203_AACCCF cotsonika_l_Page_037thm.jpg
47a9e97e27911000bc134e20d2d8af23
46f19571c57df4ecf860ff863ac5ce6491287778
5877 F20101203_AACCBQ cotsonika_l_Page_026thm.jpg
ef44b95b0c9d1aac6ac9975693eba416
1337004dd89aa8ee823a95dae90a4ba2b544fabe
2960 F20101203_AACBWK cotsonika_l_Page_180.txt
9c4f4c8136f9143215a97fc71a53d716
e1f0e5e95129eb20503e4d395a9c70ec950057a5
2383 F20101203_AACBVW cotsonika_l_Page_166.txt
2a4bac36e12bbabb37470c48c0669813
f4e585343e47e52c2328599879b39770a3419fed
67140 F20101203_AACATI cotsonika_l_Page_132.jpg
4922c7bf65ab874203249955765b62e8
adb66ef19a994fb47c78d7da1dfe6f463c013b61
55029 F20101203_AACASU cotsonika_l_Page_116.jpg
75010db286515d3aaa4ae7d6fac3a119
451bd6d34ca138dc7147cd2191c49777e8bf078d
33137 F20101203_AACCCG cotsonika_l_Page_038.QC.jpg
784129701373afb506caaf0885cc8b62
9d1166069cfd760f998a19b9a9422ecd05a9d0f4
33419 F20101203_AACCBR cotsonika_l_Page_027.QC.jpg
efd7c18c233051c9fee607ee542f52ae
4353f13ade8a114874e5716eab5299a155f5f4e6
2691 F20101203_AACBWL cotsonika_l_Page_181.txt
4ec177f178531824482640ed07a75dac
f1086a90fb4e55760776ee8e54961c090af7331d
1553 F20101203_AACBVX cotsonika_l_Page_167.txt
9c98cf79dfeeb23793880f24cfcf5aa1
6565a00ebfb329a0040f66598978a56f89a5edd0
57396 F20101203_AACATJ cotsonika_l_Page_133.jpg
08fdcb7e577eb8ed28bac4fffe8a22b1
e8d45985dd26890bdc79a91af4a6bf3f1f602ff8
55673 F20101203_AACASV cotsonika_l_Page_117.jpg
99010275962b66a7177b3fc0904c45e9
3551d3eee74d5bf6e061c8ec46c96acccc63c5a0
9155 F20101203_AACCCH cotsonika_l_Page_038thm.jpg
24aabd31ac0c7597215e126609f119e7
4e5033cf126fad141f20867abb238c2c7c20337a
8225 F20101203_AACCBS cotsonika_l_Page_027thm.jpg
6358581ac0717699006ba0169543592a
f8e75f3f63561ccc12d1ab8c32e98fff596bc430
5134 F20101203_AACBXA cotsonika_l_Page_141thm.jpg
9957cc3e96cea4e0b93b43327ca75e74
b3f8d85969cf546adec137abbfcb9395266dbf85
3133 F20101203_AACBWM cotsonika_l_Page_182.txt
94bb13e948c39ffe8f541bbfb0f6dd89
117b8b2e39d2c2ccaccb63e60bce0372e2395ead
F20101203_AACBVY cotsonika_l_Page_168.txt
a716f73cd400f5eed836a2849a7eaa24
be3512bdb84738ee428c5677e8d4b4d66d0e8f05
58357 F20101203_AACATK cotsonika_l_Page_134.jpg
60b6ab41f3c6ebde3efa38a6783f1dc7
c10917d474015c17401144cf5ba5e2019e1b7896
58242 F20101203_AACASW cotsonika_l_Page_118.jpg
5df2ae8dc95adf3884ff66d6c41f796d
27a11a2ea29e5c1535bdb67b18f30d4968e77c99
21060 F20101203_AACCCI cotsonika_l_Page_039.QC.jpg
7dd926a72b8176404282282e8311d176
24bffed9c10655c10e1762cab484a7ef99e2343f
8765 F20101203_AACCBT cotsonika_l_Page_028thm.jpg
7358ca743be771b1901bc9aaa29fc9e7
0bd227e19aed074ee96d5c5eb84a80b2917a733e
5251 F20101203_AACBXB cotsonika_l_Page_119thm.jpg
6e2febec139e0cffaad7912c9706e5b8
333a11ea101d86b6f22fb5288b6de463571becf7
2635 F20101203_AACBWN cotsonika_l_Page_183.txt
2a25a8986eaa23872175bc7b4f467348
70351b875b917a07176457cb4430f2acfe1b5e19
F20101203_AACBVZ cotsonika_l_Page_169.txt
98783b0910abc02345fa500c18f131f7
c14e38ff2b8663027c04a8ea7423f1d7fdede6d3
58335 F20101203_AACATL cotsonika_l_Page_135.jpg
0578194f1a8fe4c8ea2985a7fb5dc2dd
1f06c0d4d8f29383270bc1ee814b3a72d1f126dc
58062 F20101203_AACASX cotsonika_l_Page_119.jpg
b1121c6a942dd97a046af9048e795653
390a1cd9fb8dc77e353c1d2d002d7def675a97b3
6040 F20101203_AACCCJ cotsonika_l_Page_039thm.jpg
2360926f9f2d302f7050e73b237e692d
15f2504b463870114d2acede9702e6603ae80ba2
8578 F20101203_AACCBU cotsonika_l_Page_029thm.jpg
80894f6d0124bd58d69e684032b966fe
79a6fd032e9c39f42acbc5d2fce6834eca6e741f
5540 F20101203_AACBXC cotsonika_l_Page_154thm.jpg
f1ea0d56bdba8fb0fc1bb25bb86c7d26
00d9c0519780cd7f79d1f66e3990c6bc85bd5bc1
2806 F20101203_AACBWO cotsonika_l_Page_184.txt
91d6d37fce131489bddf407b704678f4
22dacd6040fc1cfdef3c615991d1a71342fa9963
58730 F20101203_AACAUA cotsonika_l_Page_151.jpg
16f72303568a19bb1473c772768ff2bd
9739876bdcaeba873231035a3518fd9a14e7ac2a
58941 F20101203_AACATM cotsonika_l_Page_136.jpg
af1f036603c8a00c3ed47de7811f50ef
5995e525dba3a01dfc6aa61ad52fba8f0235238e
58410 F20101203_AACASY cotsonika_l_Page_120.jpg
27fec30ebe909bcf8c78524c212f59ce
4eac24031487ab49dcddf6ac94455aa03183670b
24889 F20101203_AACCBV cotsonika_l_Page_030.QC.jpg
3880b937115e80fd11d49e4432358010
41a5a3ad74755b711527fd2acf00a0038f62556c
5219 F20101203_AACBXD cotsonika_l_Page_115thm.jpg
7be24da5b876bc1c5e320cc89ac1ff03
fe9f97209674db26e149820c89f2d68b779cbe2d
2848 F20101203_AACBWP cotsonika_l_Page_185.txt
738c443b6726f5381058c2c15e120ab5
f957831aeabd427e05b0b9f1ba5edcd4543ddd97
61344 F20101203_AACAUB cotsonika_l_Page_152.jpg
77ac01b5996c918f82172984bcac8c73
038bc5ad9b8e14c74f3eb4b4ab3c3316808c8c76
61209 F20101203_AACATN cotsonika_l_Page_138.jpg
827da442bf2c5575ab5ad43c022b7bad
be826d63b58a3579d648f4868877638b677f97e4
57439 F20101203_AACASZ cotsonika_l_Page_121.jpg
e825cb3181d0eec5916f85145f10c047
48feb9a5cf7c20dc20b8fe80ac57a25451e133c5
25425 F20101203_AACCCK cotsonika_l_Page_040.QC.jpg
34fcb4068317d5d8f13cf27d5d079227
df7d3137a259e9f47491e70ab378bc0dd38357a7
6798 F20101203_AACCBW cotsonika_l_Page_030thm.jpg
762cd9c18b0e3da4857b067b944810c1
d601808962adf4c3e494bfe194c1396c7e0955b1
18007 F20101203_AACBXE cotsonika_l_Page_103.QC.jpg
6e7079eb97dfd30b54277e9ed9960779
43d55b8f160fa6022d43a79397d74916d7d17fb6
2778 F20101203_AACBWQ cotsonika_l_Page_186.txt
bce248a0198a776a0aea81016479b0fc
cb0d8e3676da091e3ab7bd74f9235995cad9f4f2
61028 F20101203_AACAUC cotsonika_l_Page_153.jpg
65f67b80a604688c17c9b61efcfdf72a
8497b0160e580883170ab35037d2b706a39ba523
61250 F20101203_AACATO cotsonika_l_Page_139.jpg
1986a854a16dfcdeb65d81dec2bf7d6b
55a2491d619b080b24cf7b3ce71e3f5f52c79e0c
9024 F20101203_AACCDA cotsonika_l_Page_051thm.jpg
6038b41ad4be0b89287e4094e95e5535
a96162bd032818b49e46800f9f829e95d745c255
7228 F20101203_AACCCL cotsonika_l_Page_040thm.jpg
0f1a9f12092d80e50d38cd69d7254393
187f6da9e12766309d76920706ba004970f4f828
7498 F20101203_AACCBX cotsonika_l_Page_031thm.jpg
accda2066d5a7034247b81e7c0e39345
fe05cfae0b35042ce4836907720922205d626fe2
6677 F20101203_AACBXF cotsonika_l_Page_171thm.jpg
b99646784bfd847680dc6ac87eefb43a
07385d3dbf677816d4610544c3c1ca559b22e9b6
628 F20101203_AACBWR cotsonika_l_Page_187.txt
6fa3d81a4ce10176463f68d74bb17dad
405502d2ba30a54585faff62893fefda0f76ff1b
64703 F20101203_AACAUD cotsonika_l_Page_154.jpg
f1d1d0c6c673d3f0a17f73f9cee091d3
476639d987e7ac0ebacd438d5bd7afe1c6f51c53
61321 F20101203_AACATP cotsonika_l_Page_140.jpg
7edcbe910406253c2a8e464324111b6b
0d72140739f91a8e2bcfd0728e3a7a67cf163a00
30752 F20101203_AACCDB cotsonika_l_Page_052.QC.jpg
63467ab8618e10b10e9e3e2bb8cfabd7
58b934622af724f1a61506a5b8d202a5d65e288d
8324 F20101203_AACCCM cotsonika_l_Page_041thm.jpg
bedec7f779c910b7f2769cb58449589d
316366460d4a764d65b06c81c033395c348a0c4a
8312 F20101203_AACCBY cotsonika_l_Page_032thm.jpg
8ff279ed687a305a3d4d7c4f85a3b2bc
6c51c864ae477436f9fe4eae865cd8352cf4d8df
8905 F20101203_AACBXG cotsonika_l_Page_021thm.jpg
b59e16fe25a45703a852feda8cf5d2f2
5c50371ddd13e75fcf1c96956b8ac859ea8fba92
388 F20101203_AACBWS cotsonika_l_Page_188.txt
0caf76c2bf875bbd265adcedeb4ac3a8
705a1c26426a26d5cdf2024f6575ffca6b71d7c0
54831 F20101203_AACAUE cotsonika_l_Page_155.jpg
50d0cece36f08a6396d31e82f9cd95b0
eaa45cd6dbdb6b1a36f87ede4aa67d7602fd7443
61403 F20101203_AACATQ cotsonika_l_Page_141.jpg
b7482561460da900ff4d3beca5e3d7a5
90568fdd554e5566bd70507d9d27f6139403c3eb
7904 F20101203_AACCDC cotsonika_l_Page_052thm.jpg
881325e3d79f2b2019e80a1ba7445e69
27dccfd94bf111114abc8ba91d6026346685312a
19507 F20101203_AACCCN cotsonika_l_Page_042.QC.jpg
8aae818377cfe69b6e9344aed33fbe90
4574579e7dd096baf85517b90068bd089d5d4f53
36717 F20101203_AACCBZ cotsonika_l_Page_033.QC.jpg
913ac3332c32a500083905a6538db958
bcd2aa9c75406fe8b05fc4728d2eb6f4f6c1acc4
899 F20101203_AACBXH cotsonika_l_Page_025thm.jpg
ca237668645c070cf37595b4b54aaf34
328def77b022c73f16a05f2334a26741ea949b0b
1854 F20101203_AACBWT cotsonika_l_Page_001thm.jpg
f081cf125fc9100247426b5385f614aa
aedbecf2dac51bf673fee0bfa2ec46a686823f40
55625 F20101203_AACAUF cotsonika_l_Page_156.jpg
2b2f652274e4e8fbaa692e7765217b42
0fdc6670c4d7b45477879a813a368b8e4aff5f9b
58377 F20101203_AACATR cotsonika_l_Page_142.jpg
bae2e85cebf31d16fe5a3ddf633497ac
201866d5fce3722160a51b972c243eefcdde8b74
33963 F20101203_AACBAA cotsonika_l_Page_131.jp2
5258ddd48e69e99d42f1c5c7c32575b8
e3c1407005522446ef8d19d01cd74d080e67a114
36045 F20101203_AACCDD cotsonika_l_Page_053.QC.jpg
05097e66d80075a03caa1eef072dfa58
8269c85c8e7999a71ceabf8483d30b2ef4154392
5707 F20101203_AACCCO cotsonika_l_Page_042thm.jpg
b84c52b77dbb0dbf32e7064ed05d9f9d
46fe7db484cb20732a546702b54e54d859f57335
4940 F20101203_AACBXI cotsonika_l_Page_061thm.jpg
b32d10840946e953833d4cb3f102a54e
57306ec3a16778a1a83c66e56221c41cb5e27c25
5148742 F20101203_AACBWU cotsonika_l.pdf
93d39da61916a7de95f6bd080c1f0aff
55f60f91f472eea1f89e5394ea9da779d27e4c18
54893 F20101203_AACAUG cotsonika_l_Page_157.jpg
888ada815e9fc72a739408437a892533
120136a4cc4b1b2521d250cc9df77b87e077a39e
58002 F20101203_AACATS cotsonika_l_Page_143.jpg
3586c8717077c8b3f109961a818b3855
1cfcdc1e8c6a0dc12bc1616a3dc8a3c3b8ddd546
72040 F20101203_AACBAB cotsonika_l_Page_132.jp2
81a1d9b95390384574d71e506d00164e
c401bc5eff04b8ddd1f9909e814594aeef33d74d
7737 F20101203_AACCDE cotsonika_l_Page_054thm.jpg
0a16f505ae3070aedde0db409085e407
166fac7d52995eb6847b3a4d06e68366d048fd67
39242 F20101203_AACCCP cotsonika_l_Page_043.QC.jpg
96077d6efceafe52b55b47ca2986f53b
e914557cbdf9396405bb1a88e3a870f7cd1e2762
16915 F20101203_AACBXJ cotsonika_l_Page_044.QC.jpg
94f3198099738a7beb1db637d30cb6be
812d17eb1dd840f37e2c57d357c126ff0fe1a299
17828 F20101203_AACBWV cotsonika_l_Page_061.QC.jpg
e128b69a024b53bffc01793b10addc17
35baec4ad8c796737bd0841aa5d2ef92183bce3e
57646 F20101203_AACAUH cotsonika_l_Page_158.jpg
a46a65cc139b0594d16aa87a3fc29f8c
bafffbb5e5fe36b767bef013c88a0bde13a2541a
59794 F20101203_AACATT cotsonika_l_Page_144.jpg
44d5eaee6321ab0e52c5d3a5a3800bef
e1fee17b69a65948480b434e3f251f90c45dcd62
67117 F20101203_AACBAC cotsonika_l_Page_133.jp2
b347205451c2f9581eeff1e19e1c5e50
af841c55fd9529eb241178ae90547befe4ea451d
19910 F20101203_AACCDF cotsonika_l_Page_056.QC.jpg
5096fb078bca444fcbcbb1930123ccdf
b886444e0b9cb5df8d1f7c5c8b1e5313f814e7fd
10548 F20101203_AACCCQ cotsonika_l_Page_043thm.jpg
fdb698189f2c879a00a0365041a1739d
f9042dcf5cd68918d834f0153f5248c59b9e7e4f
5851 F20101203_AACBXK cotsonika_l_Page_011thm.jpg
dcb76b56341302be24f71a409adf5d4c
e00c799b3924d5fb83e40906d9e83c40aef9e129
14922 F20101203_AACBWW cotsonika_l_Page_035.QC.jpg
55cafcc39c6698349020612f5c84ac9d
e35e7f75c7e0352cd27b234645bb4670c8572ad8
7548 F20101203_AACAUI cotsonika_l_Page_159.jpg
5c0ee5f2975da75b4a02c9fc0e00ce8c
25089947bad71ad542676fcda5342b45a27a3211
61269 F20101203_AACATU cotsonika_l_Page_145.jpg
a9f4f87b03cf4471a0043e8cef6d0841
f9d178de23c7579aabdccdc2a969292b78a181f9
66559 F20101203_AACBAD cotsonika_l_Page_134.jp2
962e424bf5c52acd3e8612b2c154da32
45a8d5ea34c750b4c4c8307dd5948f222ec89b5a
5421 F20101203_AACCDG cotsonika_l_Page_056thm.jpg
26ed116a95e4623e5013f0a30e19c1f3
665412cbd96788f62741b93130231aa2d19af54d
47614 F20101203_AACCCR cotsonika_l_Page_045.QC.jpg
48b72ee8dd1a4d31242e495735e03709
89ec0c016e0a6f8417174c8c7ac62ef266ba22e4
18082 F20101203_AACBYA cotsonika_l_Page_150.QC.jpg
5509b124de0ec812f7942aa56616eabc
8519c1fbe7f1ace2ffc2ac0c5cc2c2f526fd951d
36847 F20101203_AACBXL cotsonika_l_Page_028.QC.jpg
de30290fcc3c14d6bf281f06cc4bef68
2cb2d234b247bd436a9dbc503de61f98a91f939c
25249 F20101203_AACBWX cotsonika_l_Page_009.QC.jpg
3f159137f169b6e9b0ba847e13eaa704
841452be23d701218600941b0ed2e04ad25b5372
68774 F20101203_AACAUJ cotsonika_l_Page_160.jpg
2b3aa1a81ca81539f89969a4a7c74dd1
39df9735100f5b523a1ffe84c8f19f5dd744b86e
60444 F20101203_AACATV cotsonika_l_Page_146.jpg
3024c678f5f61a04ae6177ced97d18ef
36c5c69744faee3cfda8d3b27b77c4e85ba1a715
67277 F20101203_AACBAE cotsonika_l_Page_135.jp2
5a9141a2728f5dd30ba39b70ff387619
3afb91d565733910447eda0f982c817b4aca3042
22144 F20101203_AACCDH cotsonika_l_Page_058.QC.jpg
46e52ed998489fc70e6228cb8243cabb
c705c3f4847d6176c1860094e15738b57d21758f
12296 F20101203_AACCCS cotsonika_l_Page_045thm.jpg
95a0f4de1dcfc5a7682df5bae9777ffe
e0dc21f1c256eda0dfbac1a2a601e9e28914f712
18205 F20101203_AACBXM cotsonika_l_Page_152.QC.jpg
f9aa4bf89fc71aa059c0bb7405b0b3b5
2f253eaa6150f7f02be2d3a14c795a2c1fb1eb37
8599 F20101203_AACBWY cotsonika_l_Page_053thm.jpg
589df20b51540ffcb50879b0c48326f3
da70ab36d0546f278f02da776d3f2f71ad62277c
98431 F20101203_AACAUK cotsonika_l_Page_161.jpg
4b5accd6b0f3222ef300cb73711f886a
75b19353e38884bdc2fe99742aa65aece517d406
60791 F20101203_AACATW cotsonika_l_Page_147.jpg
584f77e3fe668fa21fea08051cea550c
f9ca308a115031dd2ee62040bde90ea26bca2be0
69768 F20101203_AACBAF cotsonika_l_Page_136.jp2
71527cedf1d15dfc291da2d02228c76e
6e87e0d2c8dc1f069dbd69c8b7919dea2dfbeaf3
6109 F20101203_AACCDI cotsonika_l_Page_058thm.jpg
26b28b5daba0af4782e11cbe4e97163e
7809db0ec80e6e917e859a947872077e5d26af4c
29051 F20101203_AACCCT cotsonika_l_Page_046.QC.jpg
845ebe94ce71c8e093d350a0f70cb65d
c724e3253265cf011f776b387503fc991dc2b342
31518 F20101203_AACBYB cotsonika_l_Page_054.QC.jpg
f7e942278e2d800c5322f0123b889c0a
95d85ab642b64def7fb5c0e1c8029d4da6925fcc
8675 F20101203_AACBXN cotsonika_l_Page_063thm.jpg
2bbe8ce8006713e790ec9d4eb5cfc473
c5f1aca3ae4c00bf131be28bb695d881cee767f3
5201 F20101203_AACBWZ cotsonika_l_Page_116thm.jpg
1847b65029f36ed11162fccec89c518b
ae0f75c939ac7168e96e142a36b45d9ae39931d1
108831 F20101203_AACAUL cotsonika_l_Page_162.jpg
536a95326ead5010aff0707384136c42
dfccbaaf64d4ece8440f51e641b7152d760340be
58165 F20101203_AACATX cotsonika_l_Page_148.jpg
cc07c0ae0c3a8f1f38d8167b5b6f0e09
efe17278b9387a59afa9f78d8b44aaf3e83fa644
69725 F20101203_AACBAG cotsonika_l_Page_137.jp2
6f95ce59a8b50afa5767302635647dcc
6b66d041e363cf2e8b1fdabcb4fa8099f80d36d7
15174 F20101203_AACCDJ cotsonika_l_Page_059.QC.jpg
5ce53edeab1e4aae659ef9a87894b716
c919f59c9a3322e0d7cc79bec4ca68222bbb41d8
33987 F20101203_AACCCU cotsonika_l_Page_047.QC.jpg
6e5f7f86f3e21fcfb41d363cf7fcbf98
2eea39504c88f72fcfd305dfbbd989950b098fc8
6424 F20101203_AACBYC cotsonika_l_Page_095thm.jpg
cef394ecc2a6815ee570391bec476516
d14f18fbdf9160e613f91c9a2def6cea4551da67
6553 F20101203_AACBXO cotsonika_l_Page_097thm.jpg
6960cb5fd6a73a83af2a55d633c418d4
5f95ae856a9428da43a80ad876f29291a8a50148
63483 F20101203_AACAUM cotsonika_l_Page_163.jpg
86792dfc3b443113b53ac6c5b20f93df
ac94a59d6c9e28db928e789e55dc0b4bd74ea7ee
58289 F20101203_AACATY cotsonika_l_Page_149.jpg
42a25e499f8e1eeb9bab7e8b3d20f9e3
8985afa8754a685f81e8ce8f88c6555b720f8b15
70698 F20101203_AACBAH cotsonika_l_Page_138.jp2
10d3ae18fb4d6726d3cb9b08646e93b2
bc940fcb771275d52d984590c3bc2ce64c8dd190
120920 F20101203_AACAVA cotsonika_l_Page_178.jpg
ff36092af59631a904cea3279bd8f9ae
8a2ca74026aaa85f56868d581b1f22eb40e4a4aa
4424 F20101203_AACCDK cotsonika_l_Page_059thm.jpg
e2514abedf5bac2b60c0945542562fe3
053ad5537d5916cef6975465e9983e39ca7e1086
8220 F20101203_AACCCV cotsonika_l_Page_048thm.jpg
32d59a99f403825ddef185e76627854a
ea4d6c42a1cad14c75516c9b71d0d07b65c82458
646 F20101203_AACBYD cotsonika_l_Page_002thm.jpg
c9dc029517ce2ace33876f64f49a903b
ad7d2e069070b5ca802196c87773632174f286cb
18236 F20101203_AACBXP cotsonika_l_Page_151.QC.jpg
450c68236eff233cc78263b7f0608a44
bc4135f9fc06690f137d02a429f30a2362813be8
51982 F20101203_AACAUN cotsonika_l_Page_164.jpg
1235b38f58780ab9c56308df1f75ae49
4ce0e2d9ea0ab257167348743054416e16de1055
58051 F20101203_AACATZ cotsonika_l_Page_150.jpg
dd1bad96f1cc380c9206aa6d60d5d430
fcc438387e437143b4d02c6a757febb69e7d3011
70313 F20101203_AACBAI cotsonika_l_Page_139.jp2
c586178006959147bad01a8ffa913146
8909e7954b07216941b9b34642b6667a79b4277e
141452 F20101203_AACAVB cotsonika_l_Page_179.jpg
7bae9e5ab816dbab4b429154248fe4f8
c3b1d360d4b1b40d2dffb1160997cb016ef4408c
36378 F20101203_AACCCW cotsonika_l_Page_049.QC.jpg
d63867d429ee26100c9de7f87b5d7e9b
6d9b8f14da43d986fa14ea675210f3ab6015185a
5220 F20101203_AACBYE cotsonika_l_Page_136thm.jpg
d41c62c75db32efc76b5be0c8251a11c
0d8a3689ab077b41fccfee020d7ef8414047a677
1628 F20101203_AACBXQ cotsonika_l_Page_086.QC.jpg
4b1c11b72b54e5e739c5b2714c3f5d6c
7a9198d9ed21a6639083dedb99cc0080abb9a30b
5117 F20101203_AACAUO cotsonika_l_Page_165.jpg
386920edcf34ecfdb1ee5012f521e0e9
1b1c83018e8398b7dec068d5997908c781c4968f
143557 F20101203_AACAVC cotsonika_l_Page_180.jpg
c380778d1eef9f0252171fa9846d7dd6
72c959b2c3baa46243fc094e7c303e3c2517367b
33547 F20101203_AACCEA cotsonika_l_Page_073.QC.jpg
754c48465ef0f17cc557d4142122f8e1
faac58ea6fa752eae9c8c88429b8b618992f6601
17806 F20101203_AACCDL cotsonika_l_Page_060.QC.jpg
dc7b2c96ca00ef74b412e22980eeec9b
adcb5caced206079daf1b2f2fe5f95a57c6705d6
8773 F20101203_AACCCX cotsonika_l_Page_049thm.jpg
1e4067a2e5307b826bb07af2a57d1897
4c5c9fdddbe33f22ba695c55d8341f4ffdae42a9
28438 F20101203_AACBYF cotsonika_l_Page_094.QC.jpg
f161155b18f976955907154db2d86123
cb3cd9e84081f6a36f8cbf8fcd7c48da1b255edc
6139 F20101203_AACBXR cotsonika_l_Page_087thm.jpg
b73961d8003e860f4e86856d9d4208cb
31063dadeba17d95b0eed886236a66ef9a9420fa
88165 F20101203_AACAUP cotsonika_l_Page_166.jpg
52d8bfc13c1b5b1a09cab558c82bbeed
940976240ab565b03e4d3c3e5f5a70a06fd4b5ff
70278 F20101203_AACBAJ cotsonika_l_Page_140.jp2
ac474a6c20be34140263464add8fb787
1a9a46ab277a3b46f48738aff10361f4d3774489
130755 F20101203_AACAVD cotsonika_l_Page_181.jpg
f514d779c61dce9b663361fe5e16d387
cb3b72e7c95725c41fc622d1e6949d7284d6a580
8404 F20101203_AACCEB cotsonika_l_Page_073thm.jpg
f4b5ff524a2fb9b125855b6d20fa79d0
b7be491dc1ccafcf59b3b67e48cf5246a4ee12c4
34077 F20101203_AACCDM cotsonika_l_Page_062.QC.jpg
21ece45a4f6b18e5899395d1736b73c0
fdebc4551112db187de648e3faf57dfe218b4eae
35793 F20101203_AACCCY cotsonika_l_Page_050.QC.jpg
94c288ba106dbdbf4d1c26f8609849e4
a2e3023351317d1cb3c40daba166ea53a8d21612
5042 F20101203_AACBYG cotsonika_l_Page_158thm.jpg
a72ea1f50fd9085311eb08ef6627fa09
6f36ff01efbce1316555f893728cb94c2bfbcd04
25657 F20101203_AACBXS cotsonika_l_Page_173.QC.jpg
d08268f0616f719ff7a3579aec15dbca
42383bc244cd529afd61dbd6ee71663e7d030b60
82019 F20101203_AACAUQ cotsonika_l_Page_167.jpg
722fd0d4da0da355369a12d01e88c193
b7066e20067910ae37b61baad612fdf1f34a854a
70397 F20101203_AACBAK cotsonika_l_Page_141.jp2
361d1bdabba12c507fc8516f6e6cbe99
098c0ec0f5e1ad92f37893a298541296c4b20278
151223 F20101203_AACAVE cotsonika_l_Page_182.jpg
d1a66c8c67a9f39481bceec0773f1b99
b08e3ed60b873b772e0b6735ac082f378aef5df2
12349 F20101203_AACCEC cotsonika_l_Page_074.QC.jpg
18509ad7c50e37b19a1485807ea32075
739e42a593b6e178898a7a3a8dd45ea69e2af4b9
35527 F20101203_AACCDN cotsonika_l_Page_063.QC.jpg
9e00af8a894be57ee047774f13f70281
c5ed9669194f3a8d99f11f32dc4efb67ee351090
36029 F20101203_AACCCZ cotsonika_l_Page_051.QC.jpg
2f9d29715a6e777556b3972be0711543
bb92c1c8efccc3f0e22a5bea4d682337afdec485
4493 F20101203_AACBYH cotsonika_l_Page_079thm.jpg
38ea5d8a271e52722788ffc05dbe8f58
1d62540c7f3f7cff8b955cf5b54f015eee1ac4ac
20296 F20101203_AACBXT cotsonika_l_Page_154.QC.jpg
e3e5b72d2f1303d770b37ee1ac34ae1c
7ce02c8074c65da72a3f9b62c0a5e040e985795a
81954 F20101203_AACAUR cotsonika_l_Page_169.jpg
ea0e1b3b58c8fd515947db5b763e1cfd
e870cef640e8c5a4a0a9eb4ecfde1639a7373cad
61856 F20101203_AACBBA cotsonika_l_Page_158.jp2
aab570290aece66508227ea1f2b51348
ed72b2cb20bf0d4228fa91f60089492604610493
67254 F20101203_AACBAL cotsonika_l_Page_142.jp2
286cd994a7d6518043db885960ebd006
f37e01793d95fb51872ec933ca7d0f8892a2185d
131475 F20101203_AACAVF cotsonika_l_Page_183.jpg
d9bbd8763db5c68106c541c3555e4603
1978641a76f5876fc996d556633f8c5d0ddbd56b
3170 F20101203_AACCED cotsonika_l_Page_074thm.jpg
b2e6bcb0b6d32379113e8201aaaed345
54295d7b6c49ab756cb43253b3f0fdd09acca486
34316 F20101203_AACCDO cotsonika_l_Page_064.QC.jpg
1b349787673d8b5075522966076b7190
8e26f1123c92787efb68957130807f89a2a0dac1
33067 F20101203_AACBYI cotsonika_l_Page_036.QC.jpg
d7454c78b1dd6894d393cd56fa883816
a3a23152a47c2e4d345a0c4be07e6732aa24f284
8128 F20101203_AACBXU cotsonika_l_Page_062thm.jpg
eb906cd14736422ae2923d76161a9ae7
7319c6e020ba2ad0b855997f1150c00bbb0da3c2
82284 F20101203_AACAUS cotsonika_l_Page_170.jpg
ba4eead2ac68740bdebd2fc86af32470
0b90c5e06b720a7706ba632d9ed57f0ab2aadf01
8093 F20101203_AACBBB cotsonika_l_Page_159.jp2
3deb330d26a6ec4cc15394e6aa1047ea
12ac7a4ee317fcb8864b25ef4b4d071a5af0bfd0
66932 F20101203_AACBAM cotsonika_l_Page_143.jp2
5092febadfd1ae0f1312d0d48db24421
60a18bfd64a30aeb91c4d4e7ad121fad6d1097d9
135157 F20101203_AACAVG cotsonika_l_Page_184.jpg
bfbb4aff48246fedb15b5658b37bf936
ffcc6627d48ea4369f12b096f544fa0ae2c171e5
26105 F20101203_AACCEE cotsonika_l_Page_075.QC.jpg
9f1d3eb49a831a16a173fe16966a2028
c5d1470842f1a512a2cf1cb8c93fa0c09f67cefe
8394 F20101203_AACCDP cotsonika_l_Page_064thm.jpg
ad95a3ef9756346603f1c1d397290810
03c7403df7e7cd2792616e829fdc374254732401
7870 F20101203_AACBYJ cotsonika_l_Page_046thm.jpg
a8a8c5d1fd9dd075c0aee5c86360ed03
7e8e8e7393883736a2c73c3ab268b889e5f36dbd
8406 F20101203_AACBXV cotsonika_l_Page_178thm.jpg
5678caa542497f8dab3ba58023b9e115
fb3d9bda6362e5c1b33ceeb9eb24f097292a0027
82360 F20101203_AACAUT cotsonika_l_Page_171.jpg
4e31c547db9c46110ba75a968b0226eb
2d96fd4accbb1046d5375a9020670bacb3f06038
704084 F20101203_AACBBC cotsonika_l_Page_160.jp2
a0d0d42e9fd45464953287c62022bfbc
b9d9047eefe30664eed5aabe5dd96b6f0272ca58
68788 F20101203_AACBAN cotsonika_l_Page_144.jp2
130de5206a30ec3bee512dedd0782344
a1688866b9ee504033383f0714ef6c773c8ab96b
145190 F20101203_AACAVH cotsonika_l_Page_185.jpg
e3102aa96b5acf7d203985d3200eb429
aadc2b9cd64511a2dc2b674fba8c651ee3ccb9e9
7109 F20101203_AACCEF cotsonika_l_Page_075thm.jpg
6ca6575f26c3cb6ad24d7b1bc697cfb6
349424f95a6a0ed7e5b69bb5d7b306cf553095e9
8136 F20101203_AACCDQ cotsonika_l_Page_065thm.jpg
4a67a9637a6f6581694ecc547b16e933
330c99e53859e44ecc8b7358bbbc595e06c9172e
5451 F20101203_AACBYK cotsonika_l_Page_152thm.jpg
96bb1df951b2d71b85a72c7398a6d7fd
fa5fe4109157c060185275c1fa204fb3ed522061
3673 F20101203_AACBXW cotsonika_l_Page_007thm.jpg
810b002f36f012de853ef9df60817248
1960047e5f7d0a55c5ace36a55c66785e33c822e
82183 F20101203_AACAUU cotsonika_l_Page_172.jpg
418efb3bc27bfdd7e68571944a420fc6
d73f9b3dd127eaa2acd97f20729a969ce75df1eb
112217 F20101203_AACBBD cotsonika_l_Page_161.jp2
cff1feb1b4581b3802f53a553addea33
d542aa2eebdb02fe4957b7927d5a2647019c6520
70237 F20101203_AACBAO cotsonika_l_Page_145.jp2
e73411416c9677871869b88ff897fae0
ac7278631ac6f05a3aa188f8eccd8e452173db58
135902 F20101203_AACAVI cotsonika_l_Page_186.jpg
a49611764c0b5561742a5cec46c6afa6
371b7c9b30997788aaf493b51e2af9476aafcda6
4122 F20101203_AACCEG cotsonika_l_Page_076thm.jpg
075051e3502ef872d2369f214f2df506
45b6a815ec83e0814689a38fab2c4de97152edaf
31250 F20101203_AACCDR cotsonika_l_Page_066.QC.jpg
6f6dbcabb14f25dc271d42a1be3612e9
903f0655bdee9b288869530d1c2d6d88969e1048
6762 F20101203_AACBZA cotsonika_l_Page_077thm.jpg
192607539100ab62e560d87c69d41b1c
d4fae9861931d640084071f14f7bc94222f6c7f6
18171 F20101203_AACBYL cotsonika_l_Page_158.QC.jpg
c35ddd83bace27a611a379df48e88390
668d76d7f40d2d6480b5b7e424a7e9ce60b0ac44
2331 F20101203_AACBXX cotsonika_l_Page_085thm.jpg
a96762bdfb37ea8f779b38193754cdba
9c343f740aab093ffaf129dccdf74b396edfff7d
82288 F20101203_AACAUV cotsonika_l_Page_173.jpg
67d0a51dec3b6473cc4f49b927a6f2b6
a10b102548c1f682a87f397a01286471b9103c95
124642 F20101203_AACBBE cotsonika_l_Page_162.jp2
2dda1049e027956c3045b13d2fd04ebe
ad32407e2b302b9ecfed4ab2dfb17e133df2f557
69776 F20101203_AACBAP cotsonika_l_Page_146.jp2
cae81106a07685c689dd666aebf6bd5a
f76e1d8ed59314ea79bb964b5aa23383fb1f22dc
37227 F20101203_AACAVJ cotsonika_l_Page_187.jpg
2378387de1a4b467ffe953541bb75215
721c72d7147b2822940a1d881aae81952b199105
24170 F20101203_AACCEH cotsonika_l_Page_077.QC.jpg
f99ff450acd44359780cc57c36718b03
3e064544e77cde7a6a56e4efd43fedd762ae3991
7367 F20101203_AACCDS cotsonika_l_Page_066thm.jpg
9dafa8efa872d9a639d094ffe7232763
1d138e06b488cc3085105239f18dc98f5dbafa7e
40584 F20101203_AACBZB cotsonika_l_Page_180.QC.jpg
1e80bc28f1b308443b716545edcc5d06
0162fa81317164097d2c8ac5145547b86d6d26c2
5765 F20101203_AACBYM cotsonika_l_Page_083thm.jpg
4995fe1f594d9493378b052505698e15
12a08ee73ad573e746b4603c0a827342923d6dd7
32815 F20101203_AACBXY cotsonika_l_Page_065.QC.jpg
095db3e0c785f7462e1cb2346338ccc2
e9d32ae431538b482728f9306f70baba4a71168d
82110 F20101203_AACAUW cotsonika_l_Page_174.jpg
9639fb2bc097c3fa741c058e07564af7
871a8d7af2362ba386b7fc39de933539c70bd9e7
73490 F20101203_AACBBF cotsonika_l_Page_163.jp2
21fd1f72e045134ab32660957e68d469
de5f7a937d3f043e431ae41c55e4aec472341a2c
69396 F20101203_AACBAQ cotsonika_l_Page_147.jp2
8c3606009cdb4ce15a492ed47e3f378b
a9f9f617d490242a118a1de99c28271538ce9ca6
22536 F20101203_AACAVK cotsonika_l_Page_188.jpg
90007c661d39b6ea2a8fbacc8177aea9
a7a04fd23b617543f6a21e2bc95ac0c368b2569d
18093 F20101203_AACCEI cotsonika_l_Page_078.QC.jpg
5ee2ce081651b25b8b06ea3413600205
055d1a58705b96bdd74caed8b068bd939e94f445
37260 F20101203_AACCDT cotsonika_l_Page_067.QC.jpg
43186d1f2deb5e36651e6f05bb92b981
3e4a9a02a0d6aaa282ddbe152aa7814f7975f5fc
5252 F20101203_AACBYN cotsonika_l_Page_147thm.jpg
818e3bb55de19856459f5362b983c382
142b4552676c657fdcb5af88625018c884bf07f5
8820 F20101203_AACBXZ cotsonika_l_Page_068thm.jpg
e78e44532bdd3dde3a18422a79fb96f0
e20a8b097f9b9211c44a4c2598ac61e705d90fa9
82308 F20101203_AACAUX cotsonika_l_Page_175.jpg
5f361461d17b8ccf00b5510840afa021
283a18ac824d15b7bbf2cb0ceacbaab4e19507f4
520475 F20101203_AACBBG cotsonika_l_Page_164.jp2
7d9ae1bcb5399bc9606b6f0759867131
9ba1ce16ec6f82d48c292b45dd1e8693969ea7d3
67501 F20101203_AACBAR cotsonika_l_Page_148.jp2
3c6ed04176927f099ec3faf492ff7c5d
b23a159a674a35ea6c292dafb00cc4b14ebc5478
23687 F20101203_AACAVL cotsonika_l_Page_001.jp2
d53fa11cd5773becebd867fbe17d9bd5
6664f58dc5165fbdfa500660246fdab5ac3e9b06
5249 F20101203_AACCEJ cotsonika_l_Page_078thm.jpg
0cfc126b4ec75f7ed71e0f5cdbf7e6cc
e38648c2a7afc9beded6c4ec597b5efdf030b5e5
8964 F20101203_AACCDU cotsonika_l_Page_067thm.jpg
9f8895ae11c5c1707235b7d2c1d1130c
15625cf21908bf253e9c942fd37be099603d4259
35636 F20101203_AACBZC cotsonika_l_Page_008.QC.jpg
e67e462a76a0c5cb09a0ac054326b5fa
a387bcc4bf53402c4f062de92d8ac436bee7fe75
25444 F20101203_AACBYO cotsonika_l_Page_168.QC.jpg
a604c938eae184b79e8f0b0038c15434
7b50f6f7cfee63026976ed25d758d89189da4419
82248 F20101203_AACAUY cotsonika_l_Page_176.jpg
75e32aaa01e84dcdbd904fabd0702f86
61e315b612fb29933de354af04565bcb6f873def
5680 F20101203_AACBBH cotsonika_l_Page_165.jp2
f98cefca675b8e3f2219537b7cd7e145
b87c0fb3923f6ea427ab7a8291d0ec4531c63753
1051926 F20101203_AACAWA cotsonika_l_Page_018.jp2
9e17619e9ee35c81a073f753a56d6292
d8d47d47d15e877a1c36dda1ad562d0dbbf4e7c9
67058 F20101203_AACBAS cotsonika_l_Page_149.jp2
13a6405dc92005df8b38edf80893523b
97f4c5e8ef9665995afce9c17724c317075a7163
6072 F20101203_AACAVM cotsonika_l_Page_002.jp2
38270bb03c6da8d58f70d95e6d8951f8
19fd0025e5104fb5e4ddac3793bf251978b24abd
15130 F20101203_AACCEK cotsonika_l_Page_079.QC.jpg
c38db21f6eac506be2bf85b2098680f4
870c4442551b44cc6ff7ca5c3f7d2c0f68ab0c95
8998 F20101203_AACCDV cotsonika_l_Page_069thm.jpg
78f53abd5e28b7ff5175f7a4f98c91c4
81cb3684f9b4c67422773d1da3afb75a0ac1dfaf
28341 F20101203_AACBZD cotsonika_l_Page_082.QC.jpg
dbcf8ab51d47d6210e1667b450a4becf
38932ea18c2b1d6f6cf5959ec015c15bf55982d6
36390 F20101203_AACBYP cotsonika_l_Page_069.QC.jpg
7f2a006cc9157baf6aa105b7cbe983ce
c5dd6c44142a7f52bb7a8d4a8bcecfd6864784fb
72144 F20101203_AACAUZ cotsonika_l_Page_177.jpg
6cb4a54c6b9744752567034589effdd5
5423b48294b801bc843e0eafefcb57b9a45529ea
82790 F20101203_AACBBI cotsonika_l_Page_166.jp2
619568926abe5f1d36886550315f504f
c6e179fa8fe860634b110e7ed9f0403ecee5a5bc
20604 F20101203_AACAWB cotsonika_l_Page_019.jp2
2d9ce8c1f408a4093f2fe269f6bd55d1
1307df3b74a7a66417e15571e67806055be6296e
66949 F20101203_AACBAT cotsonika_l_Page_150.jp2
e30acc9cc719849f24b4f29ad1947453
e4c949c0195b2767586a2e0d92e60c981fcfd6be
4372 F20101203_AACAVN cotsonika_l_Page_003.jp2
31f3db42a5f128d3b9c9ebdd391b1122
5fb9ce20a8c34659950e9706fcaf6deba06fa4d6
28876 F20101203_AACCEL cotsonika_l_Page_080.QC.jpg
969847f9a366936c4c80c2d73fe3ba8f
6098db9e1285cb805a8648a36f958c8b8d73d0e8
35405 F20101203_AACCDW cotsonika_l_Page_070.QC.jpg
3a3b27c32a75516363046eb37ddccb74
b76818304e003d5d66089b4b0cccea9a6c644646
27528 F20101203_AACBZE cotsonika_l_Page_093.QC.jpg
867523717f45820993498132b8544c0b
bdd0a60ece6ee51e88ddc1e4a0f79768fcc275ef
25685 F20101203_AACBYQ cotsonika_l_Page_090.QC.jpg
b70b9ad851f3cc7d26a06600b350432c
26f7e4839a4ea09e4bf5945095ac5050fec0f930
77892 F20101203_AACBBJ cotsonika_l_Page_167.jp2
4d534d5dd6dc256da3186ae14f382c6f
1e320c83b66c06fd145ed22049ef2b273ead3cfb
113912 F20101203_AACAWC cotsonika_l_Page_020.jp2
1859b60ac10344650c2e2f523b6ee794
c3d9419b6bcb444dde8a464efc15cd26f27f7a4d
66120 F20101203_AACBAU cotsonika_l_Page_152.jp2
74439f48dde6d040a26e51cb781ef99c
0538d0f2e5733c5b27f343600b913ec8fdec8ec0
70124 F20101203_AACAVO cotsonika_l_Page_004.jp2
2a4fa8af02aee62f0016b81180d8425e
9d793500ab4aa87bf6437298694f5b54c062b260
6616 F20101203_AACCFA cotsonika_l_Page_091thm.jpg
092a87be4d91aecb0a6311a17fdb2fb0
316219102f7f579f55eda1c68587ecb7c7a1b01b
8797 F20101203_AACCDX cotsonika_l_Page_070thm.jpg
fa2c8fdbfa111a097a270acbdfddebdc
01608b96576221edca4bdcba03350ca7b5a0c980
32699 F20101203_AACBZF cotsonika_l_Page_029.QC.jpg
3662b6ba71aece19448b44c90d743c81
debe98fcf160d91b289db2a10188269e1db4e383
7949 F20101203_AACBYR cotsonika_l_Page_161thm.jpg
100c78f79d89c2ec3c8726cbf4c67bbb
aaa39516bf941d24b9912467ffa6aa28f2023d45
117098 F20101203_AACAWD cotsonika_l_Page_021.jp2
fd9ce3b0bfe2b82145083693271aa41c
83223fcc4d8deead476a35c7dc6d82b49fc89433
70834 F20101203_AACBAV cotsonika_l_Page_153.jp2
dc59bd109c66baa451f15776db778b61
b738cd818145913b875b966d4094e3b67a4da6c7
585944 F20101203_AACAVP cotsonika_l_Page_006.jp2
39e93b0b4eb28becf87db1579e071368
e8cefb1c392767d00f309a587378a94dc4e793f7
26735 F20101203_AACCFB cotsonika_l_Page_092.QC.jpg
3155ec4612fd32ad1d73283064beb87b
6ff619cb4b5a45bcea7fca54e4298e4c64e4b7a2
7436 F20101203_AACCEM cotsonika_l_Page_080thm.jpg
46a509b4d60d7bb152727c9072a2c7dd
214d4e304a6af4c34cb5197609487f81d2fa8de0
36610 F20101203_AACCDY cotsonika_l_Page_071.QC.jpg
b51ffd9136d002713497698f00a25259
62f38abb4ebef3831c9e689c638b9b26af753dc9
3872 F20101203_AACBZG cotsonika_l_Page_099thm.jpg
a45386e5a7199fad9333a12fecc68fa3
29be353b81ca4463e8e9b98be901d3a5f1703541
18237 F20101203_AACBYS cotsonika_l_Page_135.QC.jpg
cc769908d0302c15f5a35149dc57e5b2
9fa6510937f6de9acd605d611d26fcc3cc79c5c6
77308 F20101203_AACBBK cotsonika_l_Page_168.jp2
21c0af38f74d0be04c548d9bf2ba893b
3c0014b27812b37d2419c9586ce3fe524306de85
113059 F20101203_AACAWE cotsonika_l_Page_022.jp2
b980772d224a097472fcafdd6014b09e
d877b3493d79edb9fde682155402e5fa5dbde544
73268 F20101203_AACBAW cotsonika_l_Page_154.jp2
752959b8f77c055685482307a87e5c78
42468b95d0b8de988b5fb603ff901dd3d54cdfa0
1051965 F20101203_AACAVQ cotsonika_l_Page_008.jp2
8bbb588de312bbfaf4e81b16f3f415d8
8eea145b94f1fe96c42d5df074eedbca65710fd7
6610 F20101203_AACCFC cotsonika_l_Page_092thm.jpg
04762bd592b7c3e291df689cb2f7ac4e
980f6b402d80aa6642d4c1c81c6069b494ffe21c
16410 F20101203_AACCEN cotsonika_l_Page_081.QC.jpg
cf6091a2622257dee3d896237b7315b0
4111424655c755a6d817a624a049c6b9beaeb0b3
35065 F20101203_AACCDZ cotsonika_l_Page_072.QC.jpg
f6db0ff56512a915c64ea5db8d58a33a
8b108dce42f4dd32002ff823c8a64cdff3751981
8647 F20101203_AACBZH cotsonika_l_Page_050thm.jpg
717a7df30cb3257d55661d0c083f2f2d
a0125bdcd7448a22750122468a3e05f1b3f97c48
4616 F20101203_AACBYT cotsonika_l_Page_044thm.jpg
2daa7c55520749a6799bece193af9997
468b3170f09f21d2a7d21893cf2efba71fc5ea1c
77943 F20101203_AACBBL cotsonika_l_Page_169.jp2
5e3e0bc45f6d77b1ffb37b77685f5197
bca0b3808c18b63c41aec526c519a95122b0be59
69766 F20101203_AACAWF cotsonika_l_Page_023.jp2
c586c0fabcf87ef0b37cb488df119747
f2372d553a14fa198c13ffba1f22bb24d1f0f4a9
59620 F20101203_AACBAX cotsonika_l_Page_155.jp2
f2b3d7f8c7e2c94c2f19a9ac404b16f3
10a314b9c3bb811d998356d86a202edf61e3a7c1
1051971 F20101203_AACAVR cotsonika_l_Page_009.jp2
ab44c314d880ebb748c0ffbfdafc4a2d
bbd8a659b9cd82eaffa914ff3758f20a17e350fa
354849 F20101203_AACBCA cotsonika_l_Page_187.jp2
1a1b56615edb0999df12cf64b98aef53
aa68d32120ca057e53c13fb9c4f61644971f6b78
7015 F20101203_AACCFD cotsonika_l_Page_093thm.jpg
5e20212933c1ee5e0927b9d111d67bb8
ccd0ebea39c90bd15e03ed75e0419df0d485f9b2
4590 F20101203_AACCEO cotsonika_l_Page_081thm.jpg
7540aa9adaf1f7366b8dc2e74d8ed663
c8757953d559bf886b314e31005d33acf5ea81de
4895 F20101203_AACBZI cotsonika_l_Page_060thm.jpg
04a5378b5b886521c5653443bf9dcf50
7e305c6b3ed02800f6151efe842e52cb4c4873b9
27885 F20101203_AACBYU cotsonika_l_Page_096.QC.jpg
1f3e2070579d40f8e6cc900689f0658e
d84392233ca06d6d6e38fc5a31d0353468bb8ce0
78113 F20101203_AACBBM cotsonika_l_Page_170.jp2
5175fcd8264d5578e2fc2c9e310bf9d6
bb05525618331a73bb3e94f6a898497feeef2fdc
F20101203_AACAWG cotsonika_l_Page_024.jp2
9814cc1fc9c62b5ef80e09c17600c745
ff47e7d026f0f16e134d331aeb936f9da514aba9
63487 F20101203_AACBAY cotsonika_l_Page_156.jp2
7a742800fd8dd5f5f5ebdf5c7ae951ae
34c16b753aa1a58e8997eeec0c4c79d95a1080cf
106803 F20101203_AACAVS cotsonika_l_Page_010.jp2
04983dcd622f98eaba9cb9159166cad8
dd7bded7c3febf441313cd9b4ec85cd9b8ce3681
23337 F20101203_AACBCB cotsonika_l_Page_188.jp2
4ff2493becbcaa24ffa41dbaf209bc25
a9b6ba0b6a3ba684354386da951d3ee5ded7a09f
7264 F20101203_AACCFE cotsonika_l_Page_094thm.jpg
e11f4983e6798f1a49554e1365bb5b61
bfd904a079bfaabf5a266722bd56925a8063cc5a
7923 F20101203_AACCEP cotsonika_l_Page_082thm.jpg
e60ecca576681218756769c03fa01f30
f7fb1dabe10b7ebf46e61a5cdffd273d6010151c
35782 F20101203_AACBZJ cotsonika_l_Page_021.QC.jpg
f0088eb5524ad7827071a1fe15eb898f
6722608fce147e5535936fdc48bb8a8d26f9675a
9256 F20101203_AACBYV cotsonika_l_Page_131.QC.jpg
64941fcb6f1d1d82c7ed6c4e5c90b30d
e4709114a476a43040626c55c77db8f5edef68ef
78686 F20101203_AACBBN cotsonika_l_Page_171.jp2
8c5891ddc68365c78d5731daa8a0d986
432cb77e158a607fce9a137358864610e44e988f
10988 F20101203_AACAWH cotsonika_l_Page_025.jp2
75a14fe6ce74e08ea8d089aa9de4f90f
740f8e4d481fed7daebea947ee92568803bc5fde
59616 F20101203_AACBAZ cotsonika_l_Page_157.jp2
1754ab5ce652ba0c573ff97122f4b9b5
45781b17a4eb697602daeaeda0812c81d826f1e9
79073 F20101203_AACAVT cotsonika_l_Page_011.jp2
75fff88e5fec9abf0e0a6e9ff14adb32
d25d2fa46610ac1d8988d2548e6faf7a1ca08299
1053954 F20101203_AACBCC cotsonika_l_Page_001.tif
8eaee34d4e545322c4019f8d0e33ac2c
c6fea5353e5ecabc91c81b1ce2a0fe8f1c84e9df
26184 F20101203_AACCFF cotsonika_l_Page_097.QC.jpg
5be2c3e58993e1ee949495cbd6b1da12
5bee10401158db7791e177fe11b5b296ee239181
20381 F20101203_AACCEQ cotsonika_l_Page_083.QC.jpg
233cc923028a00fd1779c72fc2bbdb1f
5bf297d7f3cd092e8d0925044e4cdc2cc199ffd7
31812 F20101203_AACBZK cotsonika_l_Page_031.QC.jpg
372c9b6114ab8943575b5ba5a398e54e
f7732c0cde701657eeff48c4c21b36c3754dddeb
5144 F20101203_AACBYW cotsonika_l_Page_149thm.jpg
c74e3e412865b588be00cb2b20261deb
220f66a5e99588fafeee17a2d3128596174c01e2
78510 F20101203_AACBBO cotsonika_l_Page_172.jp2
bfe63f3c770801b54d4a918ed3222be2
150672fa386c6c67b99616ac872d24234978f5b2
637359 F20101203_AACAWI cotsonika_l_Page_026.jp2
60efe3782ee635f9dc8f086f2ac16af0
0d721f96c61413305fb69b091c988a146f4c9a6a
112093 F20101203_AACAVU cotsonika_l_Page_012.jp2
0946416c2928172103129928a3dee247
f64865354b6dc791f22cbabeb68abc70d9af578a
F20101203_AACBCD cotsonika_l_Page_002.tif
142aec539a83b368652322a0658b4d10
fa031cc628e1d4d3217d4169e47af6187a42f5d0
24447 F20101203_AACCFG cotsonika_l_Page_098.QC.jpg
d01818be9a693f8e58739891d3682423
3e4f4a6869c2ee1e19eff0dea8663334ae02f32c
9311 F20101203_AACCER cotsonika_l_Page_085.QC.jpg
71f7b6cffd889fe2557278444e8b4fac
72445ed9e9e19e120bfa160ce44af8ed0a9245f2
39485 F20101203_AACBZL cotsonika_l_Page_179.QC.jpg
64d96f4c7c4ea2905997cfc9afe1fd9e
47b10feac9b0a0626cc3d2af5c3c9da153838eab
3940 F20101203_AACBYX cotsonika_l_Page_035thm.jpg
53db0bb6e269af74fcba4780cdf55f69
5777e2ecc8dd8749f8c8e8202d7977bfdfd879fa
78700 F20101203_AACBBP cotsonika_l_Page_173.jp2
735c2c0afdf24c5bf77b1893b2c48c4d
fbf30a07486342e50ba59c3ce1bd6255ca084365
115474 F20101203_AACAWJ cotsonika_l_Page_028.jp2
c1ccc93047c73f072c1bd562554e6e9e
ca790320e7832da2754f03a9ab73bd52c78e4310
117678 F20101203_AACAVV cotsonika_l_Page_013.jp2
a50d444c665ca868418d870698fdb183
30388cc39ffd4be10af82b5c442c1e66a0d07e82
F20101203_AACBCE cotsonika_l_Page_003.tif
54c293387b8b21d1a09174455ddc2a35
6de89f5442d0aef15f10e16435cb3ac5c6d04816
6432 F20101203_AACCFH cotsonika_l_Page_098thm.jpg
d5ad324b5fe902cc82b944c2bf4de232
7b9cc14763f69b82e289a052b78cc5fded85d628
495 F20101203_AACCES cotsonika_l_Page_086thm.jpg
b1042cf578a6f1c90588d15f3bf13cb2
46dbf9fc0c892207d89e8953810362eddf532157
5211 F20101203_AACBZM cotsonika_l_Page_127thm.jpg
efd96518e18a74b5e4c82add73bda8e7
197d9c2cb028cbca6532c5da3d806643d0f1153d
35170 F20101203_AACBYY cotsonika_l_Page_032.QC.jpg
2d3927365d9158a0de74768a8a16f90e
7a6bea1aa3edd3e9b4e991be8b67c9f161760af1
78368 F20101203_AACBBQ cotsonika_l_Page_174.jp2
8e2db7e58c953cd7135fef13022bd1d6
41a349593cd114e9b9bf3905f1d7806a9c84c3b4
105822 F20101203_AACAWK cotsonika_l_Page_029.jp2
d792cc249926237165dece29f93e897e
10a90dfb5dfd6b35048e86ee6c0a65364fe085e9
121463 F20101203_AACAVW cotsonika_l_Page_014.jp2
11e102337bd24ee37f17e25fb7df777b
91ae907100a59fbbc686c9aa33c4eda858c9809b
F20101203_AACBCF cotsonika_l_Page_004.tif
a51a479b6891093ec698a11ea6e795c8
ef0b249e0059992a13e8daa719a1b38a680aa4de
15486 F20101203_AACCFI cotsonika_l_Page_099.QC.jpg
49eca4e35e884c837981076cd5587fd7
2e1a1da1fde60a61eb3b35a0e66df3a7c0e15b90
23309 F20101203_AACCET cotsonika_l_Page_087.QC.jpg
204f7beeccff5575a7a87ce808390c38
aedec86c3e0684b92fc3d63dd2d6a4d209623f21
4385 F20101203_AACBZN cotsonika_l_Page_055thm.jpg
03c5171309a2220774dfb4b20f62e20b
61828c28cc422c117c977be0ff80b7e0da27b70a
27722 F20101203_AACBYZ cotsonika_l_Page_024.QC.jpg
c9a4d7d1d4746f84f66174e2dd41364c
1c3880bb8dd86416c9dca906df3cb3e5e9f65357
1051699 F20101203_AACAXA cotsonika_l_Page_045.jp2
91c992a97529a389f5f25cb170390e1c
e83cf08db553af48db0c19026883b5f27d71b2c5
78888 F20101203_AACBBR cotsonika_l_Page_175.jp2
d80b3a4c8a10c11adf162e1000e0304c
a97633fa053e74994fc482d3d76b991967b304c3
76021 F20101203_AACAWL cotsonika_l_Page_030.jp2
16b5daf8e1c607af435ef9581e398892
b07237079c6c26abbc5c76d0a23768d0518d136d
119010 F20101203_AACAVX cotsonika_l_Page_015.jp2
03ac64f4a9ee10fdeffd5fbba2a9fb00
88384801fe3b726de928e9620f876f0daeb0f091
25271604 F20101203_AACBCG cotsonika_l_Page_005.tif
4129ba94099fea7fccf0400ef3c518f3
d31d4ed7945843be7696376fc62770c19e1c483a
2256 F20101203_AACCFJ cotsonika_l_Page_100.QC.jpg
61544502513f42b04ed234a33bd65cb1
6e927e688f914119388f159c1d1a0e37fa6c9ff2
25005 F20101203_AACCEU cotsonika_l_Page_088.QC.jpg
24d0d3c253f20f9dd26560fef318191c
7fa9ab56378f5c244ad6aa5cb6621bf3ec7b495f
17251 F20101203_AACBZO cotsonika_l_Page_125.QC.jpg
82c26c81255fc80c98b2d3c49f66f6f8
d5aaf34116b7ea0caa71d204a874c56cff4c813c
78759 F20101203_AACBBS cotsonika_l_Page_176.jp2
f727419d9eb7827fbafedce05712e36b
dda9517c61b240f0e1f67935fe4bcf1ee75c7146
115153 F20101203_AACAWM cotsonika_l_Page_031.jp2
214f7a6692cab415f968609e4828325d
2f1603df1e5d722285650622cecefcc751fc7625
83839 F20101203_AACAVY cotsonika_l_Page_016.jp2
04783ab10ae78e90191bbedfabc06b0a
3349e32c87dd724daf5d49d1be614fb642907da7
F20101203_AACBCH cotsonika_l_Page_006.tif
ce6c3f5c40ccc08202abd527adc244a7
2301ce3f21536fdee6b72c3deaa4a80c3f923163
637 F20101203_AACCFK cotsonika_l_Page_100thm.jpg
287845f83e678631b4c2a71a5a5601fd
0b17d3fe708907136cb4527d41685e73ae950867
6772 F20101203_AACCEV cotsonika_l_Page_088thm.jpg
ba1eb7f9691854f2dd77c254d0da724d
38baeed1b033baa01dfc61087e5787bd656ea862
7205 F20101203_AACBZP cotsonika_l_Page_096thm.jpg
c5423406ff80dbf1efe7d198cd1d7298
5dd0998d7eeb21f9a148d001c64866471af028ae
1051900 F20101203_AACAXB cotsonika_l_Page_046.jp2
763b2d04868b0121b4cf1d37a496a9b3
bc4461e727d6e86cda3ad613275bf1ceb91176fb
152149 F20101203_AACBBT cotsonika_l_Page_179.jp2
b8ba37455d6f65e3f3913fef7d5b0883
6e375ddd3d2b93bb05c4b7eb733897c0ce999cde
111469 F20101203_AACAWN cotsonika_l_Page_032.jp2
4fb9016fa9aa2fb3aa3eec94a43b0b03
71b9fcde9add9cbb1e1d2e6b3a8eb3620b5883f8
1051970 F20101203_AACAVZ cotsonika_l_Page_017.jp2
b6058dc6422bae399a62b81dae1add67
1f2e98cad6ba9dc02bea3ae8db46071be1e26468
F20101203_AACBCI cotsonika_l_Page_008.tif
aee7a2e66ab092026f7d0096965119d1
64dc8614e95fc13d564150dde33cf33ba4cc8c95
20478 F20101203_AACCFL cotsonika_l_Page_101.QC.jpg
e0b6120f61ebe9f730de6a627bdfae52
b8668d57e2bf8f95312adf248bd398fa41fb45bd
27145 F20101203_AACCEW cotsonika_l_Page_089.QC.jpg
db0480347c1b2507501aad1c74d75e18
36a406fe6ad418b31e96659bc04979659095af5f
38709 F20101203_AACBZQ cotsonika_l_Page_014.QC.jpg
4c283cef95ebfbdd18961fd8c4ab1f00
8493ad4a88650de68bf21cd131481c333eab1311
1051944 F20101203_AACAXC cotsonika_l_Page_047.jp2
4128925c8c1fc8af2cc8dcf1184bb69d
29df53745ae2f0185559309c3aabb8da65b42f5e
151637 F20101203_AACBBU cotsonika_l_Page_180.jp2
b57f18c4b4874d2ac088440f3e922b5b
f39e55e5991d9a95c3bcde9d0ab5b10dd85da8aa
122571 F20101203_AACAWO cotsonika_l_Page_033.jp2
21ae0396e2af9679509bcd69496d89ee
2c5aebda233d9271315f12f1a0d169ca89c0f09c
F20101203_AACBCJ cotsonika_l_Page_009.tif
05bf693329a38049c700bf5d91229f7f
046598e7cf969a940dcdfebe7f5bdf70c842c561
17472 F20101203_AACCGA cotsonika_l_Page_112.QC.jpg
408b584e7c7121f25dfa811da3d89a67
647f5ac20281064c9c3fca84b41349ea57a1a549
5798 F20101203_AACCFM cotsonika_l_Page_101thm.jpg
f6082a6d2eb7e2e92df29f335d68b032
78d9c46006873336cf9d8b53ffa4932967fbcf34
7233 F20101203_AACCEX cotsonika_l_Page_089thm.jpg
dccab526b61017fe2ce2fdae26fe2de9
73e40011281f4338e473f3c86574bb3644267e70
17623 F20101203_AACBZR cotsonika_l_Page_155.QC.jpg
d47a8ce1870c623ebd46b089927caf7b
3ffb72c6b5e50215504e852e57aa05d71059aed3
107410 F20101203_AACAXD cotsonika_l_Page_048.jp2
2c7367623df28c3ba1234ce564ae0b87
988a1777bd9b9e439c403c6f8be62ac8640e00d8
137600 F20101203_AACBBV cotsonika_l_Page_181.jp2
f7cb9622b9e8094072f9e12e0085d562
e78fe6bf908105bcb338ac09904640c93341fa6f
112001 F20101203_AACAWP cotsonika_l_Page_034.jp2
69be03a3de2ab91b188af7fae5a01a96
bd7ca3df0502e2d01e4f58e38c14f7136eb496d8
F20101203_AACBCK cotsonika_l_Page_010.tif
1ee04baaaf0c912b59007330d2e3d0e3
19abe296cc96db8d35fb9e636d52b1405ff67683
5153 F20101203_AACCGB cotsonika_l_Page_112thm.jpg
17217c511c5e5fe967e7beb2cc15c6df
0a66c61c4fc3f2efa49ded430747f5ecd33538bd
6660 F20101203_AACCEY cotsonika_l_Page_090thm.jpg
42d74b630868e451ef5bdefa53950eaf
58ffbb310b2de199cfb931080f98bd1cb51fec70
9485 F20101203_AACBZS cotsonika_l_Page_047thm.jpg
8bb2d7caca44f377cf6959414ab083dc
f321fd56d28f4e607b7ee8e4b49c0b2c7d4f9df1
158110 F20101203_AACBBW cotsonika_l_Page_182.jp2
74816a1e2684fee0fb81e6c90339de8c
1cdf9f13497d39c3b61ccfed9bb8990bc93fe3d2
49320 F20101203_AACAWQ cotsonika_l_Page_035.jp2
b8df0a3a0b2ea50a8f54cda37dff1836
72a62d25fc209f727df67138a2f6736b0bbbd42b
116212 F20101203_AACAXE cotsonika_l_Page_049.jp2
6fbbbaf5883b257e61c279ffa2d14c56
6338148ab50572bc6ad2b07e447622f5be538c8b
17476 F20101203_AACCGC cotsonika_l_Page_113.QC.jpg
414db30ff607e9da41e3271b0d9cbcd3
d3ba6dcf633f417c9cf1f075018a9e31915b408f
17616 F20101203_AACCFN cotsonika_l_Page_102.QC.jpg
885fd50f8ddc94145c32d1159e8ad1ea
6dfdd753e8b481d90db2726976a97617931dec95
25250 F20101203_AACCEZ cotsonika_l_Page_091.QC.jpg
e88dd3ff26220d231d624e1448b503ef
f200798e46a8dd72da06dc1d39246543328f7eb5
6662 F20101203_AACBZT cotsonika_l_Page_175thm.jpg
18ac03a0764cec5124522e80519c5e38
36e9a103bbfb27efe7acbb10db3e8fa0beab9db3
144131 F20101203_AACBBX cotsonika_l_Page_184.jp2
1a80e52051edf45ee7ff913d05c1da74
68bb6522c5f85285b3a67c7554886206a5563671
1051975 F20101203_AACAWR cotsonika_l_Page_036.jp2
95eb48cb26c3d709b12c6ac50acafee1
3c479996b606352ae99d7ac37ef86353bd07f9df
F20101203_AACBDA cotsonika_l_Page_026.tif
3510eb336e962ffebcd0e76731b26ad7
052a1e7ccf8c200d1aa1d393961964a8784cf466
F20101203_AACBCL cotsonika_l_Page_011.tif
a3310f4312c738b97ae5d1ee07e6fd37
face9d9551480dd72e89aa341344b9e4061114bb
116680 F20101203_AACAXF cotsonika_l_Page_050.jp2
8cdc7db73899acb31e0010a07ce4a9d3
a354f96b46751f1485487b0f4510a3c40cb1a33b
5191 F20101203_AACCGD cotsonika_l_Page_113thm.jpg
0e0cad76721056b73cc7643859040911
8d505c62dbb29c6f74799ad76156eea2cf3150d6
5481 F20101203_AACCFO cotsonika_l_Page_103thm.jpg
d012c2d2cb05d65b0b528ba135538816
91ad58cc4a978f47e37ccea767bbf0ad9a7d41fc
12219 F20101203_AACBZU cotsonika_l_Page_076.QC.jpg
79d7f71f95cb2887e3d5cfaf68385e3b
bfcbcfa6f1639f2628629d703e9a1849be67b36b
148725 F20101203_AACBBY cotsonika_l_Page_185.jp2
4f427a2378c176c1876a814c55093b57
2bbc5b9282b649f949477e662c014dccfd0bffe8
1051962 F20101203_AACAWS cotsonika_l_Page_037.jp2
01b1c03101f021b6d8c2e17569031af3
67d713b277a793c225e016a7dd3fee3bf4b7cb7c
F20101203_AACBDB cotsonika_l_Page_027.tif
441044b5fe9cdaa0c5d350e2f87c6305
346199abe14f6e990363f94e53dde7dd8ea84667
F20101203_AACBCM cotsonika_l_Page_012.tif
7510064509a5889d0c3dccc5beb28993
e2903e0b4452c636b1907714065f5b5dde4c920c
113831 F20101203_AACAXG cotsonika_l_Page_051.jp2
aaf0550bc9f81fedb2b6cf2a421e04a8
2b219d44e9c32a99d0162ded8135ebdf590d4629
17893 F20101203_AACCGE cotsonika_l_Page_114.QC.jpg
dceaaa0889dc57825e754934aa0b735e
383588df963b1650e3bfe67be6203d2cdd27051b
18073 F20101203_AACCFP cotsonika_l_Page_104.QC.jpg
2996f6262a71c2814275f6d368d23fd4
115ebcf67f458244750875344f924d0e28be1387
5504 F20101203_AACBZV cotsonika_l_Page_137thm.jpg
1dbc9d4440123036671b08f9cae18e6c
80272cd26d08fdedf0d9442945d86fba38f44540
143454 F20101203_AACBBZ cotsonika_l_Page_186.jp2
e573fcaf120bd7fec27eaebe36d9e6e5
84397978f29f0d2e836b598aa3bf27d6eac6d74e
1051898 F20101203_AACAWT cotsonika_l_Page_038.jp2
0bdffc404fce4e8fe3c8c5918ed6db8b
51a1bac092a85bce95f4648c07e28976c0615daa
F20101203_AACBDC cotsonika_l_Page_029.tif
a5b935af8ad9517574a1f57b9eb5ea33
26bd2918ffb791830cd2cbcbdd1dbbf39c9a9c42
F20101203_AACBCN cotsonika_l_Page_013.tif
2588470027ed19e9d63f9d50953c29e2
872751d9ab37b94486e1ffe2cf4fb3df6e6ecc5a
102306 F20101203_AACAXH cotsonika_l_Page_052.jp2
03767b8f32c4947f545b38a0cfa03738
b5d802dbd238b67336f07844c4197c6b2dd2f562
5223 F20101203_AACCGF cotsonika_l_Page_114thm.jpg
88e6fbab0b0a9088c5de8f9e01572a5b
cbac5efa52eafee1fc2333e5597a1239a9c9e657
17596 F20101203_AACCFQ cotsonika_l_Page_105.QC.jpg
4831e87679a27af8418ee2a27c072c2d
d47013a854b8bee4d73be69f3156f8901c3cba30
5147 F20101203_AACBZW cotsonika_l_Page_156thm.jpg
e7ddd236e07cab2a01da0217d098061c
d93c4fd8b4047790f1f2b1508fb337ad297d77e7
911023 F20101203_AACAWU cotsonika_l_Page_039.jp2
e170a82b55c874aeb4be33ee837e2003
59be5087edb4e174733584dd213eb35bdd508ead
F20101203_AACBDD cotsonika_l_Page_030.tif
83841dcc25f2957791214c5deb920ab6
d399f9eba497d2e5c677437dd151e659df80755e
F20101203_AACBCO cotsonika_l_Page_014.tif
be9cfffbeac726edf289910a4ce1e005
8094fc4471ecae78c432e030076bd0af20aa4e7e
114896 F20101203_AACAXI cotsonika_l_Page_053.jp2
3543ab550224b8f13306f7009603e5b6
20aac469fcd605207c36951630c7edee8d835986
17299 F20101203_AACCGG cotsonika_l_Page_115.QC.jpg
427eb8bcf1361202b02645f5fb0c5d15
73741a95b888579fd2229df820752dd36e9baf2b
5213 F20101203_AACCFR cotsonika_l_Page_106thm.jpg
034b1039be3b0f37be10d7daac9b6cae
86a0692f714744fa26d4602eba6132ace63b9751
29461 F20101203_AACBZX cotsonika_l_Page_041.QC.jpg
4be9fe4349479c5267f9575ed21875d3
433ef0a6a6f30acfd569821b0c8dc8789bfbdbe8
1051914 F20101203_AACAWV cotsonika_l_Page_040.jp2
a0d44ac20211022b52ca76844730098f
427e3024f19d9f28b361bd08f66acbc33aa84094
F20101203_AACBDE cotsonika_l_Page_031.tif
d8e660b305d87e658ec57200cfb54974
40976f117c923fa39901d60a284a29ed5498b302
F20101203_AACBCP cotsonika_l_Page_015.tif
ac3f127f6a6a64a2b2a1fb7ca71a6b99
6d14250bdb6142810c1bbd7d555f5ba31990bd8a
99276 F20101203_AACAXJ cotsonika_l_Page_054.jp2
e8d2db92857d0dd090024ba0978b06e0
69e78470feb572398f083fb4fc9159c911cab810
17469 F20101203_AACCGH cotsonika_l_Page_116.QC.jpg
fc275b6eb04110a3dcd5d7586cbbb02a
2768fc398ac1c88dc6ba22874a5d83544fba5a74
17979 F20101203_AACCFS cotsonika_l_Page_107.QC.jpg
9cfc15922a5bc03014c8665d138a70aa
dd51885f38eacbfd27dbb17542a36cdf7e3cfe29
6162 F20101203_AACBZY cotsonika_l_Page_177thm.jpg
298af00fc05e8e7533ad101c211a2896
5e47e0bb252887e12757ce2e823922c40e497f03
1051982 F20101203_AACAWW cotsonika_l_Page_041.jp2
986aa208cbeceebfda68b7e6e0ebe77d
356c06f8cbfb6ab1ce62ed1ad994b638a839cf6b
F20101203_AACBDF cotsonika_l_Page_032.tif
98d4b37aa49d1348c52eea3cf23fee7f
8b84f15f8ead976a209c7381da40f4882fecc06d
F20101203_AACBCQ cotsonika_l_Page_016.tif
1dcbf7334d58af2febd66107d87902cb
0a1ecf255afabb87f9bc246682c47ba258752ef2
526990 F20101203_AACAXK cotsonika_l_Page_055.jp2
63c30279719c37d5cfe22753009027f5
30e023e53b829fd26847d51d9b633fa76a61bdfe
17613 F20101203_AACCGI cotsonika_l_Page_117.QC.jpg
d8022cfaaa2c14fdc41730259710caab
633e608dca5eb3cafb54ed8813465e922fc2d4ef
5085 F20101203_AACCFT cotsonika_l_Page_107thm.jpg
70a6eb479585b9d70a47b48f72ab707e
9ff4a54c649414c5f6ceb7e9c200486b42c1b15a
9042 F20101203_AACBZZ cotsonika_l_Page_183thm.jpg
cbd43423e3f2d235f5965473326222a8
540494d6e22cf30fc5c628413ca80f114b676e46
638682 F20101203_AACAWX cotsonika_l_Page_042.jp2
0fe4e6dcab6bcae2f2f4a1bd5164775c
2cdf192e72188cb26245e9f309165799fe4992eb
F20101203_AACBDG cotsonika_l_Page_033.tif
4143655ad0a2b7c04c6b71d3e79f3e66
79d67f291f62276272fb1eff30acd9f0e3e56e32
112642 F20101203_AACAYA cotsonika_l_Page_072.jp2
7bbb562ec5dddfeddf4f5a95a2297343
dd3fe8c9abf7293aad1f5b4db6c9602cae193c30
F20101203_AACBCR cotsonika_l_Page_017.tif
515c40dc00b315822bdfc8d4f9d3c2e6
a4a4c816e2dd4696d113ad949bf4a02bae58fbb1
924026 F20101203_AACAXL cotsonika_l_Page_056.jp2
73c82548e0c05cc4470ffbb5481e5f45
5e658fdd9760194123f4fe3a4077333fe7fd63d6
F20101203_AACCGJ cotsonika_l_Page_117thm.jpg
69900b65349ed2d7e777db27866e5739
07242fdd685d5288b1b91ba6a57710bcb2774a26
17369 F20101203_AACCFU cotsonika_l_Page_108.QC.jpg
7c2725915a101c24344021bb9a8968b1
7357163a0092d4669096687b96b4e68aeb3c1c88
1051934 F20101203_AACAWY cotsonika_l_Page_043.jp2
62f7da9fb2c8daae9791653f6f151cdb
90c48afde9b73f08a4ab0cce185971380be082f0
F20101203_AACBDH cotsonika_l_Page_034.tif
79f42d3506d3ceefec2902d3bcbf3a85
f3fb6a8ff0fa4719e8d0a734344522f8b4b25f10
109146 F20101203_AACAYB cotsonika_l_Page_073.jp2
86cbceba39ccf394be69a33c861d46e7
37d93e9aea03c749f49780d029e80c9a563dd075
F20101203_AACBCS cotsonika_l_Page_018.tif
e17770b3dbd999e1fa40da08eb845072
ebaf081465cc8c04f2b20dc85f7a700a05b29342
835628 F20101203_AACAXM cotsonika_l_Page_057.jp2
55e4b1c9afe74c0965aa8ceb249bcceb
ab45002f1dc31d5e69d0809d81bb01fb6d9476f0
18070 F20101203_AACCGK cotsonika_l_Page_118.QC.jpg
d0151e08ba722a93675de4e89c54d5a2
8cd78726700aca4ff6508633e029ecb14c4d5b58
17671 F20101203_AACCFV cotsonika_l_Page_109.QC.jpg
70b0cfc153551bebe2f098bed16cf979
b0124ef9bed0aa9e8773ef4c6eda826931a18536
836298 F20101203_AACAWZ cotsonika_l_Page_044.jp2
8bc29a6b6eaa73760ec81f82f006f731
0699e784affa01b9f8943adc1569c97c6270be55
F20101203_AACBDI cotsonika_l_Page_035.tif
99ce1e9af2ddcfdc6692b801a51b084f
4a114b0cceda2aed56fadbe906264bd51253d5e3
F20101203_AACBCT cotsonika_l_Page_019.tif
dad4f4c18fd1750058fc377f72a2262b
0169d3b34fb8665465e0e1987427a0b6536ebc16
F20101203_AACAXN cotsonika_l_Page_058.jp2
c7b41a41cc49f22b37c2aa535ead7b1a
fd36fb958852b74929e4e4ea4e4fdf0b85c3c18d
5284 F20101203_AACCGL cotsonika_l_Page_118thm.jpg
0993bba9ff5572875c6e22769557f03e
66dd2ff9910043f4f684ef94410343f8d9156615
5204 F20101203_AACCFW cotsonika_l_Page_109thm.jpg
eab88d265d5150043b0203504ea42af3
795af9f463da5e5dd9f5a062539977c78095bea7
F20101203_AACBDJ cotsonika_l_Page_037.tif
416a661d9e0a89d867190849f905d02f
5b97594f4413f8a15856eb559e1c03200e5d459d
39916 F20101203_AACAYC cotsonika_l_Page_074.jp2
cf52578628c30a643691cbf21ae183ff
a225d656e69baf210708d2e028158e507c8143e9
F20101203_AACBCU cotsonika_l_Page_020.tif
73af44d043b947803f696cb019534249
ce16f842a14cdd19400dbb3da7c3d9bf53bebbea
777541 F20101203_AACAXO cotsonika_l_Page_059.jp2
c11b47da14b256bdbe304ac64343dfdd
979e7dec990fb223955b025156203279ae25decc
5236 F20101203_AACCHA cotsonika_l_Page_128thm.jpg
3ad688128c0549610585caa964b86a04
8c298e0e05d4bce28404739a14dc9963b1c99928
18050 F20101203_AACCGM cotsonika_l_Page_120.QC.jpg
13240670e8c445941caa97130c1f2556
a0bd12f72d6a3892b41212cc8bae5cd3f0c65e04
5222 F20101203_AACCFX cotsonika_l_Page_110thm.jpg
ebb817b66b124f94cd55950b3929a419
f6cbe25fe2b66ece05b28175687b688b743b9447
F20101203_AACBDK cotsonika_l_Page_038.tif
e000133ab1b09aac0d793f2a562afc9f
a2754b1a3c5785fb81699c1370bb707e2ba2f7cc
997123 F20101203_AACAYD cotsonika_l_Page_075.jp2
42122b4c535c720565e20fb8531dfc10
c16809633a138b8e4a922a693060b5f965750f7b
F20101203_AACBCV cotsonika_l_Page_021.tif
c6097bd2726d1b67288760a862e1de11
24f687f227164e5a216e73b8b2ee9e40ea08928f
853791 F20101203_AACAXP cotsonika_l_Page_060.jp2
f9bf27e1eb99fb6e264d6380acffbd71
55d9e29dc19cbbb7727a68290da3379deda6f547
17379 F20101203_AACCHB cotsonika_l_Page_129.QC.jpg
f98f6c17b78dd24596f1062d2c3017cf
2f1f12a4ed3bf33e91f4eb6475ae6efc9c598646
5291 F20101203_AACCGN cotsonika_l_Page_120thm.jpg
b2923666e4b79a8c140c98561fce2ea5
7242bd389eb6c022cec9c3e95eecdc94469e3b86
F20101203_AACCFY cotsonika_l_Page_111.QC.jpg
e2c156d0dfc2f49761ababceefb8be8d
32a640586451273d97a5bc34c34a92c68e4286bc
F20101203_AACBDL cotsonika_l_Page_039.tif
638bbc7712ae20ff96ed1f37ae94af88
2e61d9bf589bcde2c6a6c3a1a1e64baf247c76dd
951961 F20101203_AACAYE cotsonika_l_Page_077.jp2
d888e8f0664688937e4213db7a5dacd3
9bfa62373a187995a8f5be05cda71b35b15ca713
F20101203_AACBCW cotsonika_l_Page_022.tif
0309f50196ce9032e3d816aecaefb8fc
36a383d3dcca780feaa152f8d15f2ece834fc058
108007 F20101203_AACAXQ cotsonika_l_Page_062.jp2
c06d1359a2639e36b616736d44e260d9
45a38a127f41f9a53ec74d1fe38000ef1ba75254
5200 F20101203_AACCHC cotsonika_l_Page_129thm.jpg
c596f1b9f6a56921d1dc7bc102d744eb
a9701c1aa4bd17148e04c8d4ab2c2bf3e3862395
F20101203_AACCFZ cotsonika_l_Page_111thm.jpg
0746d51a3722324cc03f89a5233b9fd4
bcd9ef184d89fa9a86cf1df78b804d61cfb51ca8
8423998 F20101203_AACBEA cotsonika_l_Page_055.tif
8683f0bf294601386c63f1fb69134aff
34d186aa97808a12abe6da8e94256b7915fc4deb
656098 F20101203_AACAYF cotsonika_l_Page_078.jp2
d480e375a0324f52ef8840ad3480e141
134583f33e140f950dee4f8cd8a865bc169c6cf1
F20101203_AACBCX cotsonika_l_Page_023.tif
63f8f7982519029acdc700016e8c3053
46399fb98e8fabb8433c737b1956428acba04e1e
116017 F20101203_AACAXR cotsonika_l_Page_063.jp2
3d93c95ca1114e01cdb35dd07fabcb7b
644059a2b4231da582b000479187f5dea8503d03
17707 F20101203_AACCHD cotsonika_l_Page_130.QC.jpg
02e0749e6c776e3bcc00a05f03901f7c
b065dd508d981b20ae3e3e7e5b1a4f919a139e05
17954 F20101203_AACCGO cotsonika_l_Page_121.QC.jpg
2f3cbd29d07d909fe80d53ee1796b5f3
98b6928b58b23f291f683074e2ee01e3f65e1f12
F20101203_AACBEB cotsonika_l_Page_056.tif
a595990291fda77a709029feeff78305
33fc38891b03644e2c30caec48799dbcfb780c16
F20101203_AACBDM cotsonika_l_Page_040.tif
94c68e29d93a684b707db53aaad2efcc
68523e5263bb4bfbf9faa1cc7b0882d608963253
642761 F20101203_AACAYG cotsonika_l_Page_079.jp2
32f66bea211dba022087a3e5b3ab10b0
af65eec3e081701bd5ffc37cd1b9589c195665ae
F20101203_AACBCY cotsonika_l_Page_024.tif
1c48892fc9c1aeeeaaa73764948d0f32
d7320261e7e4cbd58380b6339ab8dd700948a6a9
111066 F20101203_AACAXS cotsonika_l_Page_064.jp2
a906fe19dc79dd82d66594d2da9da0c7
ebc1e3d097b91feb7cf270d6c19f7e86187cf1ad
3057 F20101203_AACCHE cotsonika_l_Page_131thm.jpg
0669b0c006dbb43e4557234424f4dd53
ba0228fff1f01f20175ea8591f9ed44e8d0c0fbe
5241 F20101203_AACCGP cotsonika_l_Page_121thm.jpg
0ed4d67c3c96d53fde640c78439f24b2
f27b0b3cafae6e6fe5000f6fc233177288cc56df
F20101203_AACBDN cotsonika_l_Page_041.tif
98028cb4088002325726602e60912d32
a4cca39f2574b020f75a12501b7522127e624b84
F20101203_AACAYH cotsonika_l_Page_080.jp2
b9fe1bb80028312c0db1e7f6e8dbf4fc
d29f1fb2d0ff18c8e0c2b37cb42d872d868ff870
F20101203_AACBCZ cotsonika_l_Page_025.tif
977fc80ead994f93c0d1c6ae8e2d2428
a3fa10bfa8cd7198ef93bf9ff689a7718fb72a6a
107741 F20101203_AACAXT cotsonika_l_Page_065.jp2
ef4acf08b90576ee853c48cdd50ecf59
db90e1f056be39aff9a31e3568720e7b44dfc7ca
F20101203_AACBEC cotsonika_l_Page_057.tif
fe7484cb785e7c71af422a6fd635c239
9c652bc8091518478aea157a8852d2cfa0b0b579
21136 F20101203_AACCHF cotsonika_l_Page_132.QC.jpg
067114d6af7da3c69b4d924e5334999c
da8290f83120d351345ee56320ac5d9798d3e3c4
18009 F20101203_AACCGQ cotsonika_l_Page_122.QC.jpg
c30cf49a2f5d7c9ca4bc4b05e387a0f9
0112719f8f1ecb4b2dde40b03c1c88f67d1f399a
F20101203_AACBDO cotsonika_l_Page_042.tif
cbc15b23d11ee88eb3d0d6fbb3a78c1f
c23730ee7ba9bc4600e22625186fa6e3dd86a466
632251 F20101203_AACAYI cotsonika_l_Page_081.jp2
73d29090841f6319799bb577c1e1b537
06c46ada7dca7de0acf3d287104bf8b36d7f3d1d
104765 F20101203_AACAXU cotsonika_l_Page_066.jp2
402cbe03956141b1d1379598507b2210
76ca849ce385d76671b677afe6fa52a7627b2dbd
F20101203_AACBED cotsonika_l_Page_058.tif
d6e136f8c82d3a453b66cd0bb7058fc3
cb79ae611ce4bea3237eb9950fdb403e117bf3bd
6285 F20101203_AACCHG cotsonika_l_Page_132thm.jpg
5e42de8dc8f8e0ec4ccb6765592a8589
7ea19cf1567f664e99cf2eaf2634b5eedbdd276d
5263 F20101203_AACCGR cotsonika_l_Page_122thm.jpg
42355d74e611e9a88f36678cc44db61a
6f460b7265a57d75b4693143ac0b139e32af5526
F20101203_AACBDP cotsonika_l_Page_043.tif
a9cdd64139fd49d404163ad26d1c7a6c
eed07a9a815b9e4377eabb66119ebb379575d9e0
F20101203_AACAYJ cotsonika_l_Page_082.jp2
d27590dc7df7336b454acd4d73dfc8a7
0f0d04594769a233b39def85819398be188a0226
122528 F20101203_AACAXV cotsonika_l_Page_067.jp2
70b78b07bdecfe36ea55fd23742ca82f
0c75884ac6570e125fa38eff8a522e53a10deca9
F20101203_AACBEE cotsonika_l_Page_059.tif
7d905e0212d47cab564af295db02ff08
8dd749c4dae5c5338d27dbb7362dfb93f585b1cc
17944 F20101203_AACCHH cotsonika_l_Page_133.QC.jpg
ecc3d733f9abc220d34a00934e165d02
e6f6e493947bd986a40c3fab643729954e3cfa6d
5239 F20101203_AACCGS cotsonika_l_Page_123thm.jpg
a0bf39bef9996d8fd5d60ff4d95e1dff
48cf2c94045aa13f614689a6d484e95e3bc2f56c
F20101203_AACBDQ cotsonika_l_Page_044.tif
5ef7cec26a7402892f656dc47557cb34
7f323d84dcc4a2d0991d3e495b77746ed4cf1470
969620 F20101203_AACAYK cotsonika_l_Page_083.jp2
1e0349a5a3d9a0ad491e4b9bef39375c
2f4e4337697b0a1e76df42800f466b3cf9e8fb1a
117372 F20101203_AACAXW cotsonika_l_Page_068.jp2
edbcd50e2f65d96c20e7070ebb892794
14dabf0411bc98789cb3cd870b4729b828bb8e3a
F20101203_AACBEF cotsonika_l_Page_060.tif
bcf27052243a64c7b45060e516a83b28
50fdb45ffad74d64c45741a2d659f282d7c9405b
5342 F20101203_AACCHI cotsonika_l_Page_133thm.jpg
463bf8a1f2d667495a6c029513d99c94
454ab5ea76dcd1797b27b8bbc09b60cacf02106d
17584 F20101203_AACCGT cotsonika_l_Page_124.QC.jpg
d4a3abeab420fa3ffd844feb941f1708
9eb845defdbac570cf7dd3e8dad8ec728c3ab3e4
70993 F20101203_AACAZA cotsonika_l_Page_101.jp2
9389f1151621bde50ba276cc9efd3ff3
7baae4cb17f8b0e6297dab5fd7ace8fc5e69f02a
F20101203_AACBDR cotsonika_l_Page_045.tif
731e5f33bf06e64b679848762fe106e5
2268014b24ae28ffa853cd363eca826e9852c4fb
136264 F20101203_AACAYL cotsonika_l_Page_084.jp2
783ceffce278ff98be05846b41bb5ce0
9bdcf42791ee9b59578cb9235d2aa686fe8893fd
117672 F20101203_AACAXX cotsonika_l_Page_069.jp2
97c1d1365e439ac597c636285c2b32b4
78a57e5841c5d334f8c6ffbe33c0afa3b07d5cb4
F20101203_AACBEG cotsonika_l_Page_061.tif
1dd56d7732e7bf7c4cad365f0a5b005c
65b991aaddc5935ece9fca7755da71af45e1c0d2
18162 F20101203_AACCHJ cotsonika_l_Page_134.QC.jpg
ec8d90f985cb2931d7fc471a6b74fe3b
3aa106cb264f1d7cdad02a4518203a4d5b66acb4
5230 F20101203_AACCGU cotsonika_l_Page_124thm.jpg
e1033b474cb9524a07e5f88fdbf19eaa
e281e4c25f3697c35af1bf0104602a7aa8f7518d
63784 F20101203_AACAZB cotsonika_l_Page_102.jp2
888be199bd77e63aa5a6d9e2ee751b6c
8d9e534226e6f40be8ea38c8b33af781a754ec18
F20101203_AACBDS cotsonika_l_Page_046.tif
5f0cc1bd8728d20737facd2047bf682c
225e210c4e2134941333a14ac7155c96489a7e5b
30219 F20101203_AACAYM cotsonika_l_Page_085.jp2
27adf0ab9bf71dfacb1b4181dd53668c
9bc9ead21f577540719331990715700042c62e77
116593 F20101203_AACAXY cotsonika_l_Page_070.jp2
d48034a219f407ae70b304e85736af4e
ef2fd433e0fb941b7164a2bb23f1ace1a47fb078
F20101203_AACBEH cotsonika_l_Page_062.tif
3a75d6e58fb9c1dc32de2c3128e58a5e
e03c7eed8ab47eedeb9c30faf446120d53d636d5
5149 F20101203_AACCHK cotsonika_l_Page_134thm.jpg
0c9c6e3fcb59c6aedb5758fc4172f138
17703530ad6adfba80a5703d7473e9941a6d0499
5176 F20101203_AACCGV cotsonika_l_Page_125thm.jpg
073ab60114b1a360adc5a39e6d88bf08
792d3e2a1a91bc29118cb8580729eb3245fbd433
65934 F20101203_AACAZC cotsonika_l_Page_104.jp2
0264c2a4f9411d92256abd942c2c54ee
6250018e18f6511423b965cfc51721ff80d13e0f
F20101203_AACBDT cotsonika_l_Page_047.tif
7b14801947cb4166457f1dee52487e12
7a0e42a1d22554a47a0d651e1f36d4136dd1f271
5511 F20101203_AACAYN cotsonika_l_Page_086.jp2
34158601a3fd512c6e6a720b773fe886
e96de0e2b8b10727937663369f03c2018452c255
118767 F20101203_AACAXZ cotsonika_l_Page_071.jp2
f164b1519587d9ef0f02d8469043b02b
a0582054b66f36e63884b628a97af459add6dbd8
F20101203_AACBEI cotsonika_l_Page_063.tif
ccc9ff558b21ee49f5cd1a5e474ca2df
9c4d7f55ca46fd72b47c17ead5ef7faab0195923
5166 F20101203_AACCHL cotsonika_l_Page_135thm.jpg
49d6f635300bdd464f338275314ad870
b5f6ae1a8c0f51a2cd2d8ee21a6950c577eb4ce7
17201 F20101203_AACCGW cotsonika_l_Page_126.QC.jpg
d61821d8ec348b74df781aa196c1e589
6c3a68b51e86eb2211fa3e4775bd8643589df4d3
F20101203_AACBDU cotsonika_l_Page_049.tif
f7ed9ce4ee4f3330d6053819dacb7283
4e935d537e21f97f384ef1d29313d396f34a9efb
75978 F20101203_AACAYO cotsonika_l_Page_087.jp2
bc3b813cdb160164a9c67350272a7cf1
95377645644bfa009d06857f434b8aa8929e2445
F20101203_AACBEJ cotsonika_l_Page_064.tif
05c052594825b8774c6d608c7bc061c1
2427127b26d6284361f7cc96d08daf696280c3ea
F20101203_AACCIA cotsonika_l_Page_145thm.jpg
038f82c556461c2611da88d72e861db1
2ab5dfb5a2c079ce81f0cc5cfeab0a296ea4a265
18668 F20101203_AACCHM cotsonika_l_Page_136.QC.jpg
93bde3befb877393e77378faa0a827c6
37c62f292fc47a2dffb314dd29b07237ccca84f3
5164 F20101203_AACCGX cotsonika_l_Page_126thm.jpg
f6918a04474f63c56d59d49f798d88b2
f8c291a991c3f1c36c00ee8c7ddabdaa18c4dedf
65441 F20101203_AACAZD cotsonika_l_Page_105.jp2
033cbcc76558fea9b91d576bd5af4f45
6f794ed503dd07c0cbd6c96da7ad1b21004beb2a
F20101203_AACBDV cotsonika_l_Page_050.tif
2c21dc21238fc8162ea7a67e64f8732c
e6658ed1ca0c59bbc9215dc00990a820974ab8a0
83304 F20101203_AACAYP cotsonika_l_Page_088.jp2
4fbfc4239129047e1c71cc66d4d5d170
35b3e1186bb09b8000a01d716fdea61ff6f413d2
F20101203_AACBEK cotsonika_l_Page_065.tif
4c95373fef1b44228f08cc1dd2150117
a5fb3be89eed8d9983994b29d6fa96dc939be7d2
18471 F20101203_AACCIB cotsonika_l_Page_146.QC.jpg
e07998290df1e9324ac5cdf8788d8fc1
f4acd43f33ade498b60e1d58ebcf84c043775d29
18358 F20101203_AACCHN cotsonika_l_Page_137.QC.jpg
1cfd067615fae124e9bfba0f3fed6e09
9e5b05f2f680255c54c1929b9140c27e4cc8af69
17419 F20101203_AACCGY cotsonika_l_Page_127.QC.jpg
5bcf9889da1add284d68ae000ef8dca0
c0bea4c95c46eba73cc1537f3d0b983e3c8c31e0
65296 F20101203_AACAZE cotsonika_l_Page_106.jp2
8110710ce313c04ac3739a4c9fe333e1
508c3921dd8c459b5bba1f96ff91c9f9c5914634
F20101203_AACBDW cotsonika_l_Page_051.tif
9a46403ab176a42b9f7c40ed8b54a883
5ab83867659aef02f08edb38479ab1fe25506d8d
82816 F20101203_AACAYQ cotsonika_l_Page_090.jp2
e8ec9d0014cb37a5127333671f96022c
88dfebaae291acc564221e2b7f675766e21b7190
F20101203_AACBEL cotsonika_l_Page_066.tif
58842da8dccf01af1946334cc9ccc18b
0e327d049ba9e9847f2f0178490ba6faad312093
5182 F20101203_AACCIC cotsonika_l_Page_146thm.jpg
cff9778651f543be019bf8ffe8c1ddd9
2e95342597b6a49f93cb98b027f05b63e0475fe7
18591 F20101203_AACCHO cotsonika_l_Page_139.QC.jpg
a023ef6309d77fd92d5e4dad145c77fc
17ea1962f1ccdde81ae0e20ae9e14f2bac259ac0
F20101203_AACCGZ cotsonika_l_Page_128.QC.jpg
5b4d7fb9374bbbda92f757d7ff877535
f2945597b22426385a6733e3960631b5c3b470e0
61128 F20101203_AACAZF cotsonika_l_Page_107.jp2
1210477c267eacd290bc84bf42630b6d
5893f31100a5bc8e6bb6c6dd3b11d9e9c9d11568
F20101203_AACBDX cotsonika_l_Page_052.tif
5899c6be7145b59c0b515394990bb823
f11bba3dd5a6bd5794e968cc9f68a5f2e3667bfc
80514 F20101203_AACAYR cotsonika_l_Page_091.jp2
b869cd337599e3b92fa1faab6d0f1a16
76c99ad2b9aa10efff4aa921d0cc14dba057a9e6
F20101203_AACBFA cotsonika_l_Page_082.tif
6db175ecf8d0f8027b8c0d7a5d2c4dd8
39fa6fbdeb0e89c633cc427b0263db6f6532d3f5
F20101203_AACBEM cotsonika_l_Page_067.tif
9d26a126551743b73a5aaf3a676788d4
ca2b9d6b91ac2888b83561e9ca007013f874157f
18564 F20101203_AACCID cotsonika_l_Page_147.QC.jpg
b32c4c2e85f0461a26cb4009048158c3
b261b661382592e86ff6ee5eb789f9ecb6bf6339
64559 F20101203_AACAZG cotsonika_l_Page_108.jp2
2fe2279079b8442c4092bd8b7a6d4e5e
e4b0103546b4653fd6ed52b49993713ec2c27013
F20101203_AACBDY cotsonika_l_Page_053.tif
9338d3fc7adc963a2e31c6ada903ac12
c10d89d40e4078544c528ff34aa2f2cb20c56685
82539 F20101203_AACAYS cotsonika_l_Page_092.jp2
dc7e7fa411c66f5434415dc4018d2810
5a23a9d0a728a33a7865a82fdf0ab2574ba4bdda
F20101203_AACBFB cotsonika_l_Page_083.tif
1f2d489daedc7b141cb16547b166e973
ea6a8a91dcdcdc35b3ee7eaaeeb67ccc3173e477
18063 F20101203_AACCIE cotsonika_l_Page_148.QC.jpg
6a9b2a79eb1fa178b880d39325d00320
83b0ddb02957c260c008a546b1c5f2eb14862830
5092 F20101203_AACCHP cotsonika_l_Page_139thm.jpg
e2d72b35de5b5fe54ebb748353e4092c
7e8338fe9b0b34e7d4581d07b2dcd59c1bd39414
65347 F20101203_AACAZH cotsonika_l_Page_109.jp2
f454bc56e5c2bb9739b156e38551bc1a
fb60abf3e5a4ca1fcbc9b666aacaedefa42b3f61
F20101203_AACBDZ cotsonika_l_Page_054.tif
559e4951041788b289b2218e30f94256
d78079862efbdfec3b8328cd03f302dbaa23e003
90379 F20101203_AACAYT cotsonika_l_Page_094.jp2
b1811c25a39df500e2bc68362dcc6c5c
a6737ff0b9d514afedbc9796cc3762a095d62b93
F20101203_AACBFC cotsonika_l_Page_084.tif
bc15414d2773ec6565532637d8f542d7
d00f6536bb2f0343ec533957ed08f365d737b951
F20101203_AACBEN cotsonika_l_Page_068.tif
ad9ce0c9de6d67b78c077451f9d101c3
7cbddea3808b1269d1fdd24efaf86dea4b9a0679
18209 F20101203_AACCIF cotsonika_l_Page_149.QC.jpg
9b980a016dce2b95d2da9fae813dd6da
0915ca3596eaf60d5a00d827590035fc80183aef
18558 F20101203_AACCHQ cotsonika_l_Page_140.QC.jpg
f8cea9bb74c46bd8012f98006f4c53af
114cacc4618baac26a878c9ceebe7327ba54f6cd
64038 F20101203_AACAZI cotsonika_l_Page_110.jp2
f3c58478a2d4820f93e5da03b23b3338
71ad1a4b384b3c32d9ba99dc686b87ae9c7dfdef
80141 F20101203_AACAYU cotsonika_l_Page_095.jp2
59f5f9114636321a14463895d3dd5033
f060ca2d66d82a47faee5cd8b37bc9b1c6864672
F20101203_AACBFD cotsonika_l_Page_085.tif
f3f6c500dfdf0808c93524aa323bbf5a
42b76144f8d4f227d91149336ea6bbd51fd05f42
F20101203_AACBEO cotsonika_l_Page_069.tif
62dca9df3a2610a5162ec3075aa04473
5226cccce4b6ddfd0ad8908cd6a8824c0fabd982
5226 F20101203_AACCIG cotsonika_l_Page_150thm.jpg
c028272eb5b64376e9d93b763b523594
a13e74fc86444b2afb147eae06f6733327f386e0
5099 F20101203_AACCHR cotsonika_l_Page_140thm.jpg
0f6e56ac1d99c4a36a923b3ed356bce3
db370c6094226a316d1f6775e0e044bff8e962c6
64664 F20101203_AACAZJ cotsonika_l_Page_111.jp2
bf9ca1178d71c9483d5040728adc622d
a599441d4067e67e4ec8347aa6e34141c8310852
89023 F20101203_AACAYV cotsonika_l_Page_096.jp2
e4ebf2130ef7558965cc2bd734f9e801
81a466f3cbdbc537e25cdc4311bd8044d2d4717f
F20101203_AACBFE cotsonika_l_Page_086.tif
a5503a92704eac77c091c39439990fdf
6f90e9255d45463d197f68a3b92456518be4ead8
F20101203_AACBEP cotsonika_l_Page_071.tif
ef49090ab2975d7014b5f47000489432
b06157cfe7f38b65040b2411f5e960b85e4de171
5180 F20101203_AACCIH cotsonika_l_Page_151thm.jpg
f490f72c716465fcaf221318cec94817
afde201a94c80fca07b4a1fc66eafc778711b81c
18674 F20101203_AACCHS cotsonika_l_Page_141.QC.jpg
7bda79c04ec435093b66a1ee38be946d
0d510b3efeb3f1fbc6d074f687729a150800bd5f
65004 F20101203_AACAZK cotsonika_l_Page_112.jp2
b8fb0fc111afdc128dedb771892a0864
e9dc4a6b8f80d3ae98c4f89a40ccf190f2aa3235
82913 F20101203_AACAYW cotsonika_l_Page_097.jp2
3eb3cc2cc60c5d7f5dc6a4446aec9fe6
6f81252d3dbb474a0f3224dd9b9d67f1ba7d1b06
F20101203_AACBFF cotsonika_l_Page_087.tif
b2164b6257903d14de057c0044d6a266
97625f406753e2b062e29fd1e969555bc8d9ee0c
F20101203_AACBEQ cotsonika_l_Page_072.tif
067f86b8bab5eaf4d17a820a810890f4
d4fa3af045d2131b7ff5147e7566443f85337bc1
5277 F20101203_AACCII cotsonika_l_Page_153thm.jpg
af64f596d37431513b9691c26b6c21d7
bdb092e6c94bff1c1f277492175d25a36d28df4e
18129 F20101203_AACCHT cotsonika_l_Page_142.QC.jpg
f501fe9a4a0f785a2eb83b4f637e197b
c476dc691d45311d44dea3d95db32e434e72ef86
64800 F20101203_AACAZL cotsonika_l_Page_113.jp2
01209873c2e712d116dba2c7ccd1e193
c97c9b11993ddad62fea6bbf0ff1d65e619b46ed
79656 F20101203_AACAYX cotsonika_l_Page_098.jp2
e662676eda1f2a62a6b72e0059dd04a3
5422c6a0c252e834a6c5019c085a3d10544dba42
F20101203_AACBFG cotsonika_l_Page_088.tif
804439f39c2df5119dfdc8d405ca6fef
497c3ba9a492f06d153f1b6cc7324ee36a854c29
F20101203_AACBER cotsonika_l_Page_073.tif
7676c56caf0d241a956bf9c404d03d6c
f7474cabb9499f3e91f6b8848b71ba80622cc628
5007 F20101203_AACCIJ cotsonika_l_Page_155thm.jpg
c7bf7b5b6802955d3a53c0c0a7d4bd4d
df6f0e88aee76b7855cb4fbc887043e02195e0bf
F20101203_AACCHU cotsonika_l_Page_142thm.jpg
b867e3a5eedd2ab9617d3d31bb64717f
9b0475c8b5e9e20fae260e4bfcaaa564975472da
64710 F20101203_AACAZM cotsonika_l_Page_115.jp2
5c8d7fa62c1688eccb4370346004d074
dbc02c65aeb9b012419a3bfc8ef50229d79c403e
49331 F20101203_AACAYY cotsonika_l_Page_099.jp2
0d2b85b99d8c4922f9f70d4802657472
05f6ecd9865dcb97104085db4bc9f7b6c6d6d589
F20101203_AACBFH cotsonika_l_Page_089.tif
5f872180a95a8beb9ee952e6bcb5427c
e6b021b52545a344ffc543520442d647d4cbaf52
F20101203_AACBES cotsonika_l_Page_074.tif
87aea694cdd871545a83a8ede0fb8655
aab3c66599ebe38a34f38d979ea0fc45e2d9adfd
18156 F20101203_AACCIK cotsonika_l_Page_156.QC.jpg
a0f5df9874926e164d405d69ada2dbfb
5c3e7009bf12c04ce612586ad0448ebec9fd1b0a
17982 F20101203_AACCHV cotsonika_l_Page_143.QC.jpg
a14283ed2e62d141d13fa50d527464d5
b6a5369c1b2288ebeb6684708f8b19d4dd607d92
64181 F20101203_AACAZN cotsonika_l_Page_116.jp2
4081be2721c5cacdaec69b424a86fc75
2e09e6a748fadbd730ca7dc877f704e32715b977
7074 F20101203_AACAYZ cotsonika_l_Page_100.jp2
eb491be3f02d88ae91c8d2de24a97d97
ebfc75c3973b34c53fed6a3a2f87dc5833639a10
F20101203_AACBFI cotsonika_l_Page_090.tif
bd008c0dc458a5565acec6c80e0f2993
01b74da445fac2147e3873a8515ad5361a5f0b13
F20101203_AACBET cotsonika_l_Page_075.tif
77de184598a4452822cbe978c460895a
b3d00daf6270d6230e402b004169d256f9d3eaef
17680 F20101203_AACCIL cotsonika_l_Page_157.QC.jpg
bd97b332e1d74299c58b3e12988fba02
53b3f31307a0e0a3dfd9546f04df30de8415f1c9
5165 F20101203_AACCHW cotsonika_l_Page_143thm.jpg
2f893a49f9ac54fc88bbb976cf805808
0a07de90020c0c13f9abc0495e1fa4d3b1b00ffc
64737 F20101203_AACAZO cotsonika_l_Page_117.jp2
7929e63c1bdbfbc41ba318abf2af0875
363a1c55795ee590d3cff940eae7d19b6a6871c5
F20101203_AACBFJ cotsonika_l_Page_091.tif
3083a0d2a28ea4ac422b348456304d0d
622949d101dc91a4dc412bcd307aa00934870d7f
F20101203_AACBEU cotsonika_l_Page_076.tif
dbeca47d733f8d232f6c99ec1a6adce1
2072ff178174fc96f8d5efeafc3ef16237955ed8
25552 F20101203_AACCJA cotsonika_l_Page_167.QC.jpg
67e1f6b3d65eb248f6e42e48e36a02aa
d41f020815a00c74c0752e1ceb8cf9b25e6d8e61
5014 F20101203_AACCIM cotsonika_l_Page_157thm.jpg
0ff846dd3b0e402d6b549fa660009a4c
6f200282e76c3484438e176003594d4d4f5a3d81
18505 F20101203_AACCHX cotsonika_l_Page_144.QC.jpg
26cf7ad9e9959428f9e5823a67243db1
c1e204033bbdd1d27747429ad041b3352c004331
67149 F20101203_AACAZP cotsonika_l_Page_118.jp2
1226b01a8662c36520f0cd9e4e4fbdaf
0e35f9551458362849693c1fd28f51297417356d
F20101203_AACBFK cotsonika_l_Page_092.tif
b2af596bffed4b3778f6e2968a4390ed
f3df6d198f0b21da928c26f7da5c2f479b6defd9
F20101203_AACBEV cotsonika_l_Page_077.tif
92b71ace6d65defbc0c638c3e8ca9df0
d3b7c7bea9ab432314b8aa0664daaa5c29b020a6
6609 F20101203_AACCJB cotsonika_l_Page_167thm.jpg
034d3b93c6d948c300c58b81db9222fd
7212592befbeccb259d473a3dddc4bb669cf2ad3
2837 F20101203_AACCIN cotsonika_l_Page_159.QC.jpg
32e5ee42e347761767b1a0fa77d19d41
5f6d4c20857f5df0d1ccd4d7bfc881eea0e999f1
5217 F20101203_AACCHY cotsonika_l_Page_144thm.jpg
defe0dd989e32e40679aa1dc76c29c52
1a4f4287bfe69ca8d6062b8e392d9fcf77589a14
68061 F20101203_AACAZQ cotsonika_l_Page_120.jp2
0ed39abce8134159b132e5d6419baf23
68d659d29377ffd4147b5ef4d614cee9ac0c1aaa
F20101203_AACBFL cotsonika_l_Page_093.tif
8680273e7b294f0044b43b7fa39dcbce
1e12f3e87abf0d208cda8dcf7a041c910fea00b3
F20101203_AACBEW cotsonika_l_Page_078.tif
bdef9da1f4be1aaf66456a5c17737dbf
c49638698bf9b7ac4e45d985f3921c0262ffa521
6632 F20101203_AACCJC cotsonika_l_Page_168thm.jpg
15bc159c1c5b867d1dd9b6b89fbc6c2d
fadb0a2d34226d648378589c26baad995354a4cd
761 F20101203_AACCIO cotsonika_l_Page_159thm.jpg
d4c795973a12285853edfdca2c04360f
d2b954ad6f5a0e29a1303128af85bd227162016a
18740 F20101203_AACCHZ cotsonika_l_Page_145.QC.jpg
e0c5f712ebab40df0762a5a9d4c139bb
8dffbf3f019daa3dcf92249a73b1b614b49d9dd2
66429 F20101203_AACAZR cotsonika_l_Page_121.jp2
68b7f4b781146b6d7c971d2271d6f374
664c614b585aa82f833b79f872b9dff6587a16fe
F20101203_AACBGA cotsonika_l_Page_111.tif
2e868878d4d1f6997eaa6d5c91670e87
b394e7f2de7177e7add72aea5a0076eb6c87c214
F20101203_AACBFM cotsonika_l_Page_095.tif
40bc6613d22c561852f7027f392a4d59
cdad38c4516932ad20458a475cae69c313c0bef6
F20101203_AACBEX cotsonika_l_Page_079.tif
a98158c0c855c6c8cf1eedd4ea537f33
42e33ba1c0c06c2d7823ad8024c311e866acfec5
25607 F20101203_AACCJD cotsonika_l_Page_169.QC.jpg
bcd457c484c4fc5bdeb56e2636b3b7b6
ff57b52d40ced2eff2e4c911160c5724e057c534
21432 F20101203_AACCIP cotsonika_l_Page_160.QC.jpg
6da76be84e89c2e7fbdab6e736585e11
fd575f5f6f289e44cf02437167e2de2fa26b537f
67393 F20101203_AACAZS cotsonika_l_Page_122.jp2
62358cc10a0c26ce9158f4e9adab7a9d
eb9194a3952b25a62dc9763ad852a4d154676788
F20101203_AACBGB cotsonika_l_Page_112.tif
bbdeff6757ccdcf71bdfd3c43c8fbab0
1c16b3ab5a07549db9ccd879c9667e755df7784e
F20101203_AACBFN cotsonika_l_Page_096.tif
f3765c4e4841f9983fd4cb9e612ea2fa
3b6291d1530a461933831dd94989206d65e54009
F20101203_AACBEY cotsonika_l_Page_080.tif
54e55e8216377f6df424bb3025674403
3f082329983bc78285c8fc78d372c1c0902aa33e
F20101203_AACCJE cotsonika_l_Page_169thm.jpg
d204053c1d1076ffbbaab47c8ea998cb
fb5ca9155a8a7c1f0a7e2eab590d05ad8d7d40c3
67527 F20101203_AACAZT cotsonika_l_Page_123.jp2
aeb10a5a55d67b81599ce9193717dd68
c809310fe078d9ef5b29863a625b5b3b4a7191de
F20101203_AACBGC cotsonika_l_Page_113.tif
f17a8e497e7c2118ffa3512b5c54c6aa
aba0af7e54ad12474fa98b47b472abdf09ed5e37
F20101203_AACBEZ cotsonika_l_Page_081.tif
8caf097b22ad688704dd71cb57c48f23
aa27cad5d1b833eee259060b331e414b233d4cea
25815 F20101203_AACCJF cotsonika_l_Page_170.QC.jpg
1d994d1899e5d128d0bd51ceb1d3b63d
b7ed62bfa3789fba62c37b58849140ca260b9d6d
5075 F20101203_AACCIQ cotsonika_l_Page_160thm.jpg
dc7c71506d98f90898c133a4859f6ea7
7747710f6fcaec551177125ddecc299f884d4bab
65330 F20101203_AACAZU cotsonika_l_Page_124.jp2
7860ad9a1ee0aa4a2250de9f9d70f869
f64ee6f38b6d3ef0b5bbe9db28b21b41ba207630
F20101203_AACBGD cotsonika_l_Page_114.tif
d854b16abb79de65078e7188cd58c3b8
264897a6c29f0d0d7504b01221274398b3b44561
F20101203_AACBFO cotsonika_l_Page_097.tif
c7c91da4c0bc6208d9c1f7ff1af1c640
8a9c97b849a693a3f00b7dda187dfc2f33d77c39
6682 F20101203_AACCJG cotsonika_l_Page_170thm.jpg
5223a99235b6cc1d425389244f889b93
87dd2c733d2e65e176c444453925f33b0a56cc85
F20101203_AACCIR cotsonika_l_Page_162.QC.jpg
ce4bad7e418eee195012a320bb339950
9ca76cfd577022a5b3a684ffb1e6ce1769511859
63833 F20101203_AACAZV cotsonika_l_Page_126.jp2
06dc8f32f3438c0de4e2ab232f0750a2
da43dc0806f10d0ae78c9a37137e22096e8c60db
F20101203_AACBGE cotsonika_l_Page_115.tif
1f63260583d41b6be6174a468db7cbf3
d4d1a3dc7d269544f7331bb27a44bd1a94c4da53
F20101203_AACBFP cotsonika_l_Page_098.tif
b50d24bc3d1eb718a3d48346fad42ba6
1a252a4bff81c91751ab1a50ffd0c86f0d31ca5e
25727 F20101203_AACCJH cotsonika_l_Page_171.QC.jpg
3399fce527d08443d44a23ad54621c40
b8c3acd8960d9e93d7ab0a6fe5f64c24a1523c9b
8471 F20101203_AACCIS cotsonika_l_Page_162thm.jpg
9941a7977c45fc7194fb6a24f35f4285
757bddd195883673b319526a3e6fb35fc1905631
64906 F20101203_AACAZW cotsonika_l_Page_127.jp2
3121fc23a8e2db7bd7bc1f3f0f0a1b3f
05b47c0b180ac2193eed0ec9a93684227df72ed5
F20101203_AACBGF cotsonika_l_Page_116.tif
70f228062fae16e6d1d260147dacd689
94477a01c9864fbab002eb971e1ff7d573903088
F20101203_AACBFQ cotsonika_l_Page_099.tif
cfee4db07239ed11bdd0fafdc4c2dc0a
79bad03b45648704e6cf176f45f5a20a87673397
25773 F20101203_AACCJI cotsonika_l_Page_172.QC.jpg
cbd4755e56dcc3eb0070fd6decdeeff0
097def3e09244c2aed0d114e24fbcd30c7f9aad7
19068 F20101203_AACCIT cotsonika_l_Page_163.QC.jpg
85e4803e9cfceb9d96a14eef6e7b5659
37280518b8a9032d78daf4945226b1dab6cc5ba0
65236 F20101203_AACAZX cotsonika_l_Page_128.jp2
4cf8234ca4201622c487948e56a7d821
202c12dcc240e0cdd1ce7ad28bc6be99a97bfdb6
F20101203_AACBGG cotsonika_l_Page_117.tif
5bd5b40b9d6ed3d8265a6ed5d2b850bd
f51d783f7906fbc4c9eae663294fdb6f091623cd
F20101203_AACBFR cotsonika_l_Page_100.tif
d43578d2982751cf9de72960fa89a1e2
7dc5354816f3cd3f75b7a0941eab47d67ac41678
6657 F20101203_AACCJJ cotsonika_l_Page_172thm.jpg
cdf04e877e989a0c452cb79bb5610bec
ebcb30eaeb93717df2bfcb270663a6cc402f8e1d
15371 F20101203_AACCIU cotsonika_l_Page_164.QC.jpg
95ff420799ede8e41e54c236d83a9b64
2f69f0a893ac6907c9716857ec2ad08b9b6f1eb7
64585 F20101203_AACAZY cotsonika_l_Page_129.jp2
8b32311a8dcaeae18d876ff785135198
fe371df09ea3d631347fb971fd1a2971523d582c
F20101203_AACBGH cotsonika_l_Page_118.tif
4bd9bedebec81999e5e6b6545ad8dbb0
c02310d81a9b57953ce93a123313274f9ba920b6
F20101203_AACBFS cotsonika_l_Page_101.tif
12ef8e156e7245503375fb83cb6d94f7
2fff593759c8342026c150b66a141345bb8352aa
6652 F20101203_AACCJK cotsonika_l_Page_173thm.jpg
c4f4b7e30ffeb2326160232058e49790
ca09391238a4f1e6078b5aacbbd8e4a249de74e5
4396 F20101203_AACCIV cotsonika_l_Page_164thm.jpg
bea4d282f89255dc7c97ccee7e844246
529826acfdfc1529bbe8a1b56f09ed73d66cf81e
65816 F20101203_AACAZZ cotsonika_l_Page_130.jp2
a9712b3be7a51c97e22196563723d1eb
6efcb2614bc48d42de5bd9e8510e4a163456fad5
F20101203_AACBGI cotsonika_l_Page_119.tif
84d7fea21e23d69cd755dffb081dcf2b
904a4646680b1956eb0200204215db251dec226c
F20101203_AACBFT cotsonika_l_Page_103.tif
add7d503b47935a1d2b5443951edfe27
2baaa14767166aefcf7653def4f22da11f2f255a
25610 F20101203_AACCJL cotsonika_l_Page_174.QC.jpg
b93aff5fce606b268be283cc0a62edf6
867d3cfe121684482f74e6b344c619aab4107320
1808 F20101203_AACCIW cotsonika_l_Page_165.QC.jpg
b4725507d967a458aa898d6caae5623a
aec9ca0a4531855a93ffb124253de1bc01507bd9
F20101203_AACBGJ cotsonika_l_Page_121.tif
cfb40bedb1df27a5d0e4bb7e5d86b8f6
165eb07f4a2bdac99cce051f9327433d463f25a8
F20101203_AACBFU cotsonika_l_Page_104.tif
08a501043c5c4b0cf312bc5bfecef47b
5c2a57d2a47f07ed26c872d3c36cf8b27d5ec2c5
10815 F20101203_AACCKA cotsonika_l_Page_187.QC.jpg
9890c4b2b350d63dcfeb5ca58091450b
ffbc7adf793e8a1dcd656aa9dbb563fb0c5fbdb3
25680 F20101203_AACCJM cotsonika_l_Page_176.QC.jpg
2121ea631ba486648db70a383c928650
8558e9741e3795f115bd99545ab03f2ba90273db
552 F20101203_AACCIX cotsonika_l_Page_165thm.jpg
3acc736dba1df3463c593f2256e66598
06a944b0d6a5c3c8181f6cd4c604093dc167e67e
F20101203_AACBGK cotsonika_l_Page_122.tif
ba8e1efd9e5aa73e09f6d3c500091f48
72295d63bff8597f244628ec686b082437a34979
F20101203_AACBFV cotsonika_l_Page_105.tif
d4d9217e466f9a44768f2659dfcf43a8
b64aee2fe03325d090ba5084cfee95963625f497
2870 F20101203_AACCKB cotsonika_l_Page_187thm.jpg
b7ddf2b92d2228cfde72a817ab5216d6
9b4801ad209d93d313282932370fde0b69ec22e1
6663 F20101203_AACCJN cotsonika_l_Page_176thm.jpg
e21a8323be426d439293cd85377d5834
29e3f90c540d68085bb2478a613bef23847fd3b4
27588 F20101203_AACCIY cotsonika_l_Page_166.QC.jpg
30e6eb8717eb845d58c69347dab82dbc
114c3b6f99d159045c5d1e731541e456e1d178f7
F20101203_AACBGL cotsonika_l_Page_123.tif
9fd34073589a0412b3ba8b24b76d3918
9d45c5754b4b6fea0b09e1532d1b52822a94291b
F20101203_AACBFW cotsonika_l_Page_107.tif
ba1a15082f6232ce12555bd5b5cb3ac3
05a6fbb11dfe8d0cfe575ac2f58715b69b701578
6887 F20101203_AACCKC cotsonika_l_Page_188.QC.jpg
9b762d07ab5a8834cd40e1437e5d8a20
2b72f9d90990d97c977f86744df08177eb4d08ea
22384 F20101203_AACCJO cotsonika_l_Page_177.QC.jpg
62d027d118865007fd801b68f57cdf01
a4edba621c0ebf7509a585b2caeb4a344798f81c
6797 F20101203_AACCIZ cotsonika_l_Page_166thm.jpg
fe14c914328fb60effe527d58d1edcbb
16f6208336ad51b5c1505c4270558dc52b66e603
F20101203_AACBGM cotsonika_l_Page_124.tif
507cde0501ddfa96ed50f29a018b5686
41d4658c79c14f5c4ae16c33562a9416615d0338
F20101203_AACBFX cotsonika_l_Page_108.tif
4387b07a8f9a0f73045a1ad656a01d5f
723d32e53f010c6a72f824cf62b3952e032fb0ca
F20101203_AACBHA cotsonika_l_Page_138.tif
c57c34528bf1819c9efc663a18b6ffe9
2bc9dff1f50260472cfcba3161a7e5b0948f284d
33786 F20101203_AACCJP cotsonika_l_Page_178.QC.jpg
2d528a72cce94f1c403057d76a045ae4
db2de21823bb2ef4ef545df82749cdd8808ff097
F20101203_AACBGN cotsonika_l_Page_125.tif
b37e0a33c527bb89a690f1e5fde814bd
d3bdf51753cd5bae57fbc6dc8838813721c2fe8f
F20101203_AACBFY cotsonika_l_Page_109.tif
12b907e523adcbaa537e83f791997174
2bf9b1693ea7eae8599707ecc71da4ec7de37d95
F20101203_AACBHB cotsonika_l_Page_139.tif
9f0269cff7701685a7baa6bf615ab738
4708ddaf3e7069b20ef8bb31ee49527afb5d4af2
9686 F20101203_AACCJQ cotsonika_l_Page_179thm.jpg
3be6fec28fa5e82a4d95ab0e342b47e2
9152e6b2120be1cbf0f8326f95a0e7f8c5e9d1bb
F20101203_AACBGO cotsonika_l_Page_126.tif
68bbca48f0228da30a531d5965816bbf
7d274783584fe8e1575c5527f9c6bef0f49a6797
F20101203_AACBFZ cotsonika_l_Page_110.tif
d7a328f05945850d944c4a41268f900a
ff78fc5522f18e736245bec8a89a2ab3cf143176
F20101203_AACBHC cotsonika_l_Page_140.tif
e69dbd9b63cc7c332888150fcc80c720
a848a67319724db370f176c09f04a4bddae024ee
F20101203_AACBHD cotsonika_l_Page_141.tif
63b4604d1e13a9bfcf1fc9c6e1bc588e
69f581eca51519b03c84b9171dbf788fe5b202ca
9550 F20101203_AACCJR cotsonika_l_Page_180thm.jpg
405c3df494e8a9ddfcab50da03e601e8
2faa716fd286d8a99ac9306c8c258e424e1e9290
F20101203_AACBGP cotsonika_l_Page_127.tif
4ea4a34d21f8d0f9f9c64777603d4a4e
f7c1e7113e2f44eb04c36807b4e1b79c66fee259
F20101203_AACBHE cotsonika_l_Page_142.tif
12222ebeb025bb52c1364fb28e320af0
8bf635afd3b9390adaad1f035519a32ae7a31393
37518 F20101203_AACCJS cotsonika_l_Page_181.QC.jpg
b582ae0fa813734a4ee5a59597baf0ed
6f980ecbce9b9c8e2f94d8e15503d0a7670254d6
F20101203_AACBGQ cotsonika_l_Page_128.tif
bf805b20734cf5a5e8dc3484f8d12828
0fbc73d4074e4eab02c2390d9ac2c5af6ce9135a
F20101203_AACBHF cotsonika_l_Page_143.tif
23d19b9d008d65bdd69f7357f3ce2a50
af8deb3b48416c0d3578843d6c9a2cba21d29aca
9144 F20101203_AACCJT cotsonika_l_Page_181thm.jpg
e2cfb1ad8d7ab9315ee052f1a8eaa1f8
61f21bb2ec6f648074b66246076abd566da00b01
F20101203_AACBGR cotsonika_l_Page_129.tif
166a0452583dc0e1af93bd44346f3513
5b3eb68881583f23531474dc5b133163be0f618c
F20101203_AACBHG cotsonika_l_Page_144.tif
8fd6469063e88c54495152ae4845781e
fe415018dcc930f09fa33e42acc0753f78ebf1b6
41640 F20101203_AACCJU cotsonika_l_Page_182.QC.jpg
17d961e0b5cdfd4e555170a0c23ec23a
ab2eab8bab2a7f11a69781190a32639b0180ef7f
F20101203_AACBGS cotsonika_l_Page_130.tif
d2d3a2f2268d00122f5b995051165e7c
5643f9c1da6037f00a57cfd504b10779cf646179
F20101203_AACBHH cotsonika_l_Page_145.tif
dcf0464f92d8be4e9e6c24a367f4b466
2dae667e827b08a54de23f7df4931cfdca1b2580
37121 F20101203_AACCJV cotsonika_l_Page_183.QC.jpg
364a21b7a5c91489f88016e11fde0d42
89cb0ded188372a46f2ac5e609ea3ef74028e300
F20101203_AACBGT cotsonika_l_Page_131.tif
bb1d4ebd70da8b490e0b31301a6ab091
16cefdf32a06a7e92210f3df87912484a56f4147
F20101203_AACBHI cotsonika_l_Page_146.tif
f4778c52b820ecdc15edd02bcdba48b6
478eb58deea754669956711d033c44296e4ba16f
39881 F20101203_AACCJW cotsonika_l_Page_185.QC.jpg
8c7605642eb0a645d27e6b4038efad02
0d7152ba560317fbe8c98c2c9f4879c2decd1f8e
F20101203_AACBGU cotsonika_l_Page_132.tif
42edb4495a9afec7d6e4afcb5358cd70
2c98170a8d4f9787d43eaa3764ee9224a8619dd0
F20101203_AACBHJ cotsonika_l_Page_147.tif
9e3aa086a9bede281d1e02089cb73191
405ed3d5aed50079ea520dbaf92bdfab7e78561a
9149 F20101203_AACCJX cotsonika_l_Page_185thm.jpg
624a91b9dbc68e36720756f53bcbcf23
a190477b2d0ee5153953de0b45e2e552c24a3064
F20101203_AACBGV cotsonika_l_Page_133.tif
35d0e077fab6e6390f3adc812dbd6b96
c268b0bb692893c85c14bebbcb86e03ab4217312
F20101203_AACBHK cotsonika_l_Page_148.tif
70ff7ccc619b0f079f6273b9584d94aa
b4eb4affb895ed78a132db8762148658da1a6cdd
37089 F20101203_AACCJY cotsonika_l_Page_186.QC.jpg
62ae568ac1f3253a5dd4b2acec44782a
99608d2bb75e75f9f5627379e5d45874b9d70fb7
F20101203_AACBGW cotsonika_l_Page_134.tif
58c6e24f1c52f6e475c62a012c4b49e9
0da839a1bad45339d41968dafc59af0e88a4057b
F20101203_AACBHL cotsonika_l_Page_149.tif
ef89a11bfb7ac1e5a33cee732db1ec20
599e6f008d0f3afa89c6e19a4e9bf7396341f6a3
8740 F20101203_AACCJZ cotsonika_l_Page_186thm.jpg
7a3803b4c1bb95d416025d94f144b39d
23ec415e26ee77215485baec5ad7e2422889b36e
F20101203_AACBGX cotsonika_l_Page_135.tif
81fbdeb08bdc83c668d5fe7811d9d9d5
21d294db58f8c3e07075614a959825e9501a5446
F20101203_AACBIA cotsonika_l_Page_164.tif
2cf904d3cf7d01f49f6d051d1758f807
289fe793ab4493bfe445774e58f956079c4bc652
F20101203_AACBHM cotsonika_l_Page_150.tif
0236219bf0984c4c88db333d8b03c27e
7f1ba30a523e1f80b660ca92ac27eec7a2a95010
F20101203_AACBGY cotsonika_l_Page_136.tif
9328974ebc44d213958bb6e3abdc0b83
572829ec73d93f00cc7f3bdf05ed6741fd35be38
F20101203_AACBIB cotsonika_l_Page_165.tif
248ab247e0691ffa115fa300a004bcd8
c057d35b6aebda653d9f6dc0b5f319ffd7d92117
F20101203_AACBHN cotsonika_l_Page_151.tif
0bc409660c9b7404bf1be3e860109bdf
962d4097f7b63455c6efb8e00255ac0c87d9919c
F20101203_AACBGZ cotsonika_l_Page_137.tif
6e9c7f8f00bc9d5e5eded3856932321e
8141cbd93e708c287a500fccaa7d2184e10d6399
F20101203_AACBIC cotsonika_l_Page_166.tif
2ac3cf82770318a4b03fd9ee907f8c1b
236bd9e3826b206811a4c363c196c88e9208f313
F20101203_AACBHO cotsonika_l_Page_152.tif
83b5e94370223bac00d384752bf4bca0
af550eb1ecabc9141f2490855ed0b23d725fdee5
F20101203_AACBID cotsonika_l_Page_167.tif
5b52c6c04071a814e1e60b2cf33438ad
67e2e62c5e10c6c2fb4b6d7b9b5820cbb81e553e
F20101203_AACBHP cotsonika_l_Page_153.tif
f0b8bd42781d9e19d64d7119ecfb443b
9a2a29e3f716dc1afaa778322b23bf8893532e4f
F20101203_AACBIE cotsonika_l_Page_168.tif
803262261d7c0bb906c5a61c655f8734
c2635cc1af3d4bb800898d5e51f8b98154e08812
F20101203_AACBIF cotsonika_l_Page_169.tif
6ad268d997dcb556b23774cc20e3c18d
ba7771fa768c87668b561084b33b5fd6fd5921d8
F20101203_AACBHQ cotsonika_l_Page_154.tif
86b35b64953cad625e0f61991f5fa81f
cf6505af4c7db73f3b952b216a3a71e4d3f30d63
F20101203_AACBIG cotsonika_l_Page_170.tif
ae6ef98a96a51dfd0efca70faa020aad
f9f4e988dc8da7b8dfa1bb9697aac0bab850f2d2
F20101203_AACBHR cotsonika_l_Page_155.tif
000744da6889c0dc1ed4b66b8d6fb0b6
0ebc37afa49f5a3e88ec1e4b50d91e73bd2f089d
F20101203_AACBIH cotsonika_l_Page_171.tif
b8c287a3d7f5161cd3064cdec5cfd08c
3a4ef014027eb25220619557a53c712e8eda8409
F20101203_AACBHS cotsonika_l_Page_156.tif
40f3e019eff3a9a2b86f265c595450d0
7a8e60a3f06a418c19574b830ce9365ed742a4b0
F20101203_AACBII cotsonika_l_Page_172.tif
9d8be21b772dab7284ee8362d5958fdf
5623ea87c3aec2f2f6688d05fbd24039e59491de
F20101203_AACBHT cotsonika_l_Page_157.tif
623ffd1c4ad63f1acd7322541c84a9d4
0e21a1ecadcb1889cea18779c4af3717721df6b1
F20101203_AACBIJ cotsonika_l_Page_173.tif
3db40572488ae93c4f0166cd0ac2894f
41f0e1c67a74eb89ea83fc639e05e9c24d7d0d70
F20101203_AACBHU cotsonika_l_Page_158.tif
c8daac1e932df7d74ce2655fbc3a7f97
6e15e6a91c651c2a4481d0e5235da26d569eeeb9
F20101203_AACBIK cotsonika_l_Page_174.tif
e57838491aed5b835789750383509a40
5f4e7706709aace53388dc5d07f526d708e7e73f
F20101203_AACBHV cotsonika_l_Page_159.tif
66e2f8228c4f2ecd03f8acbd97206d8f
47b4356f7bf35b523f23e24f2c98423412923155
F20101203_AACBIL cotsonika_l_Page_175.tif
dfc33c48a3f36624482ff7698fcf3d64
265fed5846403976c6fd12a7fd295d79c1ccd19e
F20101203_AACBHW cotsonika_l_Page_160.tif
ea758309797ba5693b1873d17290de9d
e4e4f74525dbdab51844bb865917a177d12dba0b
F20101203_AACBIM cotsonika_l_Page_176.tif
8f993de78fee77a94ee7f56bf219d05a
ea9e67bbe9874d1689985b680a4f6d60f73fa05c
F20101203_AACBHX cotsonika_l_Page_161.tif
f24a1db43fcbf9f9bfda03fbc26fc3e1
c509b6c798714a19da8b76915296a2acf4eb85d8
31801 F20101203_AACBJA cotsonika_l_Page_004.pro
294da70691ce1a2daf59b8f1b21a916d
9a859eb855281ddd140f5345ccfb632e76b50650
F20101203_AACBIN cotsonika_l_Page_177.tif
915a057607515d4656f3416ef9e57013
b830c94a0c6b1ca193f707e5e1ca447f82caadca
F20101203_AACBHY cotsonika_l_Page_162.tif
021aafd972508d1a167189560c51ad95
b24c54f6ba8af860cdf19337c3cc6b10ee1c1661
63943 F20101203_AACBJB cotsonika_l_Page_005.pro
9838c380bdf436d9ad94678090424129
29fc6cc1afea3c11ec59d6eefcad6dd9706fa559
F20101203_AACBIO cotsonika_l_Page_178.tif
b558bb30d4d451c199c40bb67bfb2b6e
e9aef29acf08244f3fbe4201a3c3697d8b44f860
F20101203_AACBHZ cotsonika_l_Page_163.tif
2e426a4d6a1a05e46c6bc8efe25dfdca
0f241f1fbdc0f8d2bb0b4bf5b520decfcee16c2f
14594 F20101203_AACBJC cotsonika_l_Page_006.pro
d67cbdd828a0adf464c83d8fe21d1714
c885fb551957191fcf23363b52692b8d683078fe
F20101203_AACBIP cotsonika_l_Page_179.tif
e5aaa2291062cfad362e69b3a22df00b
ba9c670b54ace94d8657b8799fea7810a3d6395b
23616 F20101203_AACBJD cotsonika_l_Page_007.pro
939fdba574c740497d95df33c8cb4521
bbf7857dc3cb7f0763017bed8d7646e4711654f5
F20101203_AACBIQ cotsonika_l_Page_180.tif
7ec92bc9c3a407440bda8888a4d7b4b3
60371efdb5b9eb4154c7cfb0da1467f679ffa94c
42438 F20101203_AACBJE cotsonika_l_Page_009.pro
49c038651f119d9d0f3d5cf937e29578
18420df027bf3de291eeab1066fab58a1f048299
47531 F20101203_AACBJF cotsonika_l_Page_010.pro
34c3d02b6f8094eef061dc33332bef40
57e31468dc67fd5cfd16bcde594240298b323244
F20101203_AACBIR cotsonika_l_Page_181.tif
c5b0a9d3fde680deeceaf3a787a1fd1c
324246bd5d893c9366cc306d777714078e835423
35693 F20101203_AACBJG cotsonika_l_Page_011.pro
913bea0f5b7d65d8ff3dd4667fd1d038
0ac841ddafc24f78f69d0dba8f1cbc5999657f55
F20101203_AACBIS cotsonika_l_Page_182.tif
43dd59508b9179716fc924f2c93dde53
42fdfc232a7ec3e14a963b05fe9163968f013819
51883 F20101203_AACBJH cotsonika_l_Page_012.pro
f2ad9c0b855fa53c4974e077ec661400
3cc7602ff0db17e0a67c935f2322a0263b14eebe
F20101203_AACBIT cotsonika_l_Page_183.tif
423fabe9cbc68f60a56236e718a2e3b8
da8729710c13446a9de75eba30d98e0c7dfded77
53802 F20101203_AACBJI cotsonika_l_Page_013.pro
2561912a91baf38b2289471c765d31fd
b10f8ec69d08cffc419e127c3bc51b39b6624f1e
F20101203_AACBIU cotsonika_l_Page_184.tif
cdfbe451ad58a92f1d32b52e484eb12a
22174a230c44a66e54b67e731a22b55cda341548
55624 F20101203_AACBJJ cotsonika_l_Page_014.pro
548a0595779648ab0e392e471fd34257
d86e20624ce1383e25d37b15d5aff46abd266cd9
F20101203_AACBIV cotsonika_l_Page_186.tif
cb397e97dabb09662b2ff63a537f54eb
db6a97072b94e3094e1c6b7ce382d4cbe74dcc6a
55903 F20101203_AACBJK cotsonika_l_Page_015.pro
713179d4370346c9c24838bdbc8f7bef
1e6fb0c133230108d941368038f2be5d2dc7aebb
F20101203_AACBIW cotsonika_l_Page_187.tif
abaadee19c1f544c6445bac4095a0169
da7367e64ee037e1a8e3c2e337e625aa29e6a18d
37546 F20101203_AACBJL cotsonika_l_Page_016.pro
b92fb32039e84d902bf7355b318e355e
c0076902743a53e21d83123f63d6f88aa9c1ba62
F20101203_AACBIX cotsonika_l_Page_188.tif
6ee061a094b236918c88a014ad9bc97a
ffe6f49f7083941c75d9a69d219f7195733ff6f6
51816 F20101203_AACBKA cotsonika_l_Page_034.pro
471038a8dc874107ceb8f0e46d367a7e
a41ba3da87394cb2b79c720d98abf4e98f75c0f2
15153 F20101203_AACBJM cotsonika_l_Page_017.pro
c46ee3f3a838d10f5b6c3e00b8e5f260
14c1f493e04203c176f048d081a84e73f5bf275a
7707 F20101203_AACBIY cotsonika_l_Page_001.pro
aec3c3437bb1cec3f8df51f18d955e51
b8aa716b441726fcd889ddf87ca1dad4473aca78
21651 F20101203_AACBKB cotsonika_l_Page_035.pro
17f11f4ebce867a0278fe5b2837eb427
5f5da1988cffc4471148384c12d7fae89f602178
8210 F20101203_AACBJN cotsonika_l_Page_019.pro
29551707315e4ad67a84a0ca2faf11a4
53e59ba2b77784467eb81a2d6add93c4c9f036e1
625 F20101203_AACBIZ cotsonika_l_Page_003.pro
fda5a1c68a871dd568c9faeb8cf58497
5381e4633819a74759e6fec910f171c9dc2d2ea9
19622 F20101203_AACBKC cotsonika_l_Page_037.pro
13396e6d69c9fe3c689762bf7f907883
e1cdc62419218d09b470cc18c86570762ab5ff29
51180 F20101203_AACBJO cotsonika_l_Page_020.pro
5fac369264501a7e8829f24d3f3bd043
1865728fd7a3e04f6c331db9c8913f54d7f8b6d2
12918 F20101203_AACBKD cotsonika_l_Page_038.pro
6d31500e597e96c2021bdb9a11e63b6b
66b94df5bdc66fdec49dad2ac29ada0a96429268
30590 F20101203_AACBJP cotsonika_l_Page_023.pro
753704241f515277aa0673e34bce0dde
04b3f17ece073cbade15618801db80aaeb4b20a4
12330 F20101203_AACBKE cotsonika_l_Page_039.pro
83caf1cb1593bcaec713ca4a40623bb7
03fda162bafaea7ee367bf578cf3b341a0070bd4
8864 F20101203_AACBJQ cotsonika_l_Page_024.pro
5db56239d8c7de1a30a37ffa524b6a74
47addd74e187e4fd3c1f4d03f375db8164d50a0e
7672 F20101203_AACBKF cotsonika_l_Page_040.pro
78b465cc3438f04617e1804c637ca603
f9375f264c2be8e77203130733af7c98f7d843d6
3344 F20101203_AACBJR cotsonika_l_Page_025.pro
96e3a9442589a71f02322c7a0f64db7f
f625ff16e688d0648724e294b1a6a70e896e0f01
4669 F20101203_AACBKG cotsonika_l_Page_041.pro
9b8f2069da004942dd841d5bbe39b75a
4f6bd8e4a7fc8dc8e76e4c47c015985443676cd6
14484 F20101203_AACBKH cotsonika_l_Page_042.pro
38afc1f3d368f949c05f424efcc1d215
7d855ba77314cc594bff58c3bd381d4c671c47d0
6017 F20101203_AACBJS cotsonika_l_Page_026.pro
7c5e5021d271544ed9f2b6d2c773084b
20df77bd43f87ead983b5968aa08bfb552e47a6a
6492 F20101203_AACBKI cotsonika_l_Page_043.pro
dda0851aafaf99569d5169702be169f5
98a9479b01864b460d0d3691f3c1b470ae7dc19b
48539 F20101203_AACBJT cotsonika_l_Page_027.pro
5a5d953d6cfbade6c4f46ac131d8d811
fa76e103a3687a17daefbdb13bdf17587bf93c1d
8713 F20101203_AACBKJ cotsonika_l_Page_044.pro
8423228ba4c28395a7aa009bd35f1d20
ae2023c2b1ba949b2a3842e3d187c77b0edc83d3
52478 F20101203_AACBJU cotsonika_l_Page_028.pro
0640c43006762a80c85f196c8831d47a
9b1805831b6951997bb089c0790d16c08aaacd5c
13693 F20101203_AACBKK cotsonika_l_Page_045.pro
eac60a03fa323ccf1668c1ab944a6aa4
2f6c39c06342c51e6f6384083a900f18d90cf9d6
48598 F20101203_AACBJV cotsonika_l_Page_029.pro
dfe9e5d816ca6e18a80e8c62428c55c6
40ffde5525323c878ba046e0dd72c51fee490dda
7075 F20101203_AACBKL cotsonika_l_Page_046.pro
580b6d6f7f53529f0f8f1b9826434a69
c139e599d606277e25907b70f2cfca80b695c528
38835 F20101203_AACBJW cotsonika_l_Page_030.pro
86469d94515404f9e3040825dd05e499
e44b26eae97a0c0a2554471a5ba35a29fdb2c980
20295 F20101203_AACBLA cotsonika_l_Page_061.pro
d17505d6519e0ceef21e69c1c1d86f55
e00056279591f87cbc9e8c77b9ae8cc3a6e42206
8762 F20101203_AACBKM cotsonika_l_Page_047.pro
8240225f4777a720576dcae80f158af0
899317e815230675a46ced5a469e02bb7cefe0c7
60004 F20101203_AACBJX cotsonika_l_Page_031.pro
ef5223d7508877df68048d8ab8847099
7b692bbd5bc2f83949686c37cada553e17a912e6
51755 F20101203_AACBLB cotsonika_l_Page_063.pro
f95894d2d89ea899d2cd7eeff2757f76
4747337f59d8c1e60e1c99df7883a66b27205f3d
48244 F20101203_AACBKN cotsonika_l_Page_048.pro
cb25bd5dc83d839b4d6e7172ccf1def9
a81a899a3676ab615bad7c4cb0ee889963e25862
49922 F20101203_AACBJY cotsonika_l_Page_032.pro
0eb5078066634f7d0da72027e9da3889
ebd90f1cfa30ca6ef159d675b28436855e93f37d
50842 F20101203_AACBLC cotsonika_l_Page_064.pro
6ecab07b2a2f96e454e1314bdc1f10ef
c1f36a4ab684285ffec6f3cb7b3b5c15a46c9850
52839 F20101203_AACBKO cotsonika_l_Page_049.pro
a6d4aaea8ad9b84020361c37f71d5cb5
3817e61ae5a97206f29a12a22851d25d21792ad1
56564 F20101203_AACBJZ cotsonika_l_Page_033.pro
1987e88c6c36aad796ebdc2346eaa703
1d7c6f29de49d8a8d9c770de0d9b062635fa2fb8
48654 F20101203_AACBLD cotsonika_l_Page_065.pro
bf2de246b9a306ebe9127de6d748ab22
634f6dca41210953b9650372a1aed51974145852
53511 F20101203_AACBKP cotsonika_l_Page_050.pro
0d9b4d291e84a3938183339f2a6f56e7
361269b37cd52d32ba2a2de10f1438777eae1278
48847 F20101203_AACBLE cotsonika_l_Page_066.pro
77c4cb309364370f2e048ca68de55716
817ea6decf2e7c97621e8583190f9c3a5794dd11
52235 F20101203_AACBKQ cotsonika_l_Page_051.pro
0bf60482a2d802cfce9ee5d3d85d7f34
6bfff2b0895715eacbf909a86c7ff12946e30c3e
56770 F20101203_AACBLF cotsonika_l_Page_067.pro
e0236719ee184bee39a0103da98149a0
f2942abf0180c5f8f66b537b4006fcbe6b0bcbf4
46258 F20101203_AACBKR cotsonika_l_Page_052.pro
616979f5680c5bb50ec715f3671c4a0c
5c88a2ea29b60b81e922b5a56e7d5ae010068ecf
53986 F20101203_AACBLG cotsonika_l_Page_068.pro
11a9c271e2a3d060fd64417952bf4637
fe36e39d267e8c094ee4677286c27216981242a7
52383 F20101203_AACBKS cotsonika_l_Page_053.pro
1dd47a8891cb0162012898dc065104b7
3240e2a3103f6ca43aa759f0c2e32d356b22632a
54457 F20101203_AACBLH cotsonika_l_Page_069.pro
19a76c0b04569a714c689fa703ee5296
dc5374cb7b62bc3631e901d5f863feba1b9c86cf
52246 F20101203_AACBLI cotsonika_l_Page_070.pro
084ae4591926c50c7f7263fe7d2a7122
106eaa5fabf21674853a90bfaf0b6ff10c343cda
45973 F20101203_AACBKT cotsonika_l_Page_054.pro
6a21290b626903dfbce2479d77badaae
787baea1af282ea0efbd82c5d7f72218d51c20d9
55085 F20101203_AACBLJ cotsonika_l_Page_071.pro
40c80c221a4bf54708e831b35b0e6287
22ef4292d28c13284f362ee8bdde5ae13bac1253
13640 F20101203_AACBKU cotsonika_l_Page_055.pro
8ad38193b2d4b29c7c0eea3bf7bcdb0e
ccd41242279558ca0614fbb6bcf31956a3e9d91c
51114 F20101203_AACBLK cotsonika_l_Page_072.pro
c0dcc107418ca4e5f2dbf88f63160afa
58e961bac3e65d1aec620628da520b577c5861dd
15965 F20101203_AACBKV cotsonika_l_Page_056.pro
4616cc1ab68f8d28c5f32aa10047a6c7
825b6b275d892fb578e9c4e4af288f2d2358aba2
50394 F20101203_AACBLL cotsonika_l_Page_073.pro
c088f4609192cdb6f6675bf15bcd7922
1df36cc3a1c68d475092432237b26e7d4bf9c346
13200 F20101203_AACBKW cotsonika_l_Page_057.pro
03fc97977f4eb7cbc4b40adc072ad0d0
8f737835944669645b887a7063dae97258fee1aa
16820 F20101203_AACBLM cotsonika_l_Page_074.pro
d56489bcc8c78beb8c62e740f4d88971
945c1096aa5f49e61061bb2c17803ba9ea2a384e
19274 F20101203_AACBKX cotsonika_l_Page_058.pro
04227bce47cc2c9043e5af0341fb426a
891f5368fbb0e9a39efa4fdb2fad8b232d07b178
39588 F20101203_AACBMA cotsonika_l_Page_089.pro
29dc4e42f8aa280e00864259da0ac982
e21cf3dadd380ee84dca4ef02cb75ce6c74799b3
43157 F20101203_AACBLN cotsonika_l_Page_075.pro
cb744ecbecf5e1453a5b10ef3e56e2d1
48ddda9e540995b1288d48b2a0dd128c041d91b2
4524 F20101203_AACBKY cotsonika_l_Page_059.pro
06e7070e31cb0dba686dd9102ac35c11
9e01acb5b8762c8c509810f51fc010c03cb68aef
38144 F20101203_AACBMB cotsonika_l_Page_090.pro
f86eeca81babc37e0fdc767b42afa36c
ca439c8bcf56065a2357c2c3b65301a9f692fc66
8140 F20101203_AACBLO cotsonika_l_Page_076.pro
9b2cee2a222426f51b10ddea3ca54aa1
dfbdba42cdb5a6e5fdf1b0738aae43bffc502182
17952 F20101203_AACBKZ cotsonika_l_Page_060.pro
21c75429cb59212e8b6bf59a9b03a073
65c3fcfca5f28ff66ae43e8d774cb84ca6c78cc0
37019 F20101203_AACBMC cotsonika_l_Page_091.pro
33495c87635704c4fd50a53872696e7d
f802fe19760779dbd989b5d050eb49b66438f684
14810 F20101203_AACBLP cotsonika_l_Page_077.pro
2bb7716c5a3531696b8643af4f76218d
471ce5ed65dd63620960ed04d03626cd0dd7a167
36985 F20101203_AACBMD cotsonika_l_Page_092.pro
cac59bb5fde92d3b90e74722a3095c72
f96747dcb4b9f56d3614d814e9bac2b59a134825
6691 F20101203_AACBLQ cotsonika_l_Page_078.pro
166cc5a94a73905e4203df3cb04d76d7
eddb29379a4aca9004d933878119143c8bae60d1
39342 F20101203_AACBME cotsonika_l_Page_093.pro
e779b746009e0261b9f675f4f2bc857b
57d4b4be3ba585c88d69861032f3c1c22c6cc3ce
7897 F20101203_AACBLR cotsonika_l_Page_079.pro
5eedc72dc768b3b21aff8b3e51da995a
564b40804f7c7b4c02daf632deee4517298d6729
39815 F20101203_AACBMF cotsonika_l_Page_094.pro
ea20d82180da4554a81cedc98e108322
cbf90e20a3c20989c8e5e61b4323e53fb0ac3028
21416 F20101203_AACBLS cotsonika_l_Page_080.pro
ef474447655da5177a9a6797682fe225
1ea09b744334b2178bddce9075268cd37e93e380
35604 F20101203_AACBMG cotsonika_l_Page_095.pro
a10bf0d9471dc4d4975fe4ddb9c0efed
532e482366d5a516b67b9f9cbc1b30ce578cc7a8
4958 F20101203_AACBLT cotsonika_l_Page_081.pro
3f34b57f463ee8fcf907c57f891e8247
d0028ce45025e160bd1a6bf9baa356b4976b3033
40423 F20101203_AACBMH cotsonika_l_Page_096.pro
d63a921d9e0b04b3f865fcfd45023309
4e3aac4ebb046e82f766dcfe65951bc946222662
37321 F20101203_AACBMI cotsonika_l_Page_097.pro
6cf77c426e229a0532596868c58dfc08
c7d673b7c8f358cfc2844664b52a462824f33411
10314 F20101203_AACBLU cotsonika_l_Page_082.pro
3c4fae87da6f45bfed95e37aa99602df
d4cd557053d6bf1eebcc4aa0bc31c4eb9156764c
35912 F20101203_AACBMJ cotsonika_l_Page_098.pro
f2a6dffec930aa96ae15f29649c9647d
4f5ba24e943992e1e0cc6819796b886211537dbf
24599 F20101203_AACBLV cotsonika_l_Page_083.pro
b748f8d2533401daab64a8f308080ca7
cc91c4948d94d8c47769a0082eeb9a6f86c3173d
20730 F20101203_AACBMK cotsonika_l_Page_099.pro
fe21b72cf72d016654dbee3ac835b73b
2d681c73be1af8a372802e00a21ff640f28cf7cb
65326 F20101203_AACBLW cotsonika_l_Page_084.pro
d857500b3e8d92ee297a36b0a80ae95b
70e6e3a142ab740eaae58930f86f546c96d621aa
1394 F20101203_AACBML cotsonika_l_Page_100.pro
eb7dd6e6f041debb962c095200ebd8be
a8d833714b9a5803c32074b99e570cb054467512
31161 F20101203_AACBNA cotsonika_l_Page_115.pro
90a8d8ba87a6955b0824007121a0e995
819d6bcff21a704a13a9d0406e6bd020fb883f9c
33119 F20101203_AACBMM cotsonika_l_Page_101.pro
0da109eb2f276b0e888a5cbb7abcb631
0911eab08538d41b12a03b242a1e1754210fe73a
978 F20101203_AACBLX cotsonika_l_Page_086.pro
9e9f69e051bd9eb6e2432408f4316309
8befd4196d96e9646195a81a460bafb1a0786353
30554 F20101203_AACBNB cotsonika_l_Page_116.pro
a0361786fc8d15a53cd7a3ba0cd9315d
7a6169de114b087ffdb7105da8383118a1ce7561
29714 F20101203_AACBMN cotsonika_l_Page_102.pro
b91ed9c753f7fab8fa4a029d1dd48576
aa7b4cc103b51169fe739cc2c8c82bd9116cb185
34280 F20101203_AACBLY cotsonika_l_Page_087.pro
778ea72b27cc4a9a9b6f9a9542ac329a
5376b68142548d93e0623a1550437cdc1b14ce6c
30894 F20101203_AACBNC cotsonika_l_Page_117.pro
df826b5697f42193e7c78f737c496dc1
22b54c01c9468064ec5fc96c0e73ff44c191c93c
31495 F20101203_AACBMO cotsonika_l_Page_103.pro
c614e387e582dfefa2f8e1e80049f894
eda5a63bab172c886a5da8bc442617f9f27c4b3e
37155 F20101203_AACBLZ cotsonika_l_Page_088.pro
12f64fd0c42b4d3391b4ea60df4b7b49
3381d76bb74fddec2d433bb2069fc2ccc5c99a8b
32428 F20101203_AACBND cotsonika_l_Page_119.pro
9551f5999fde6c697d460af76d237dfa
9bcd44f72d4e11898e1e87698ffe2e0597045755
32146 F20101203_AACBMP cotsonika_l_Page_104.pro
55a7dcfe8ab0aa99292dcc1513df6342
83a1f1dc5a565e22d7199b63cb753fe7f2aa5657
32855 F20101203_AACBNE cotsonika_l_Page_120.pro
dae4cfe6410f590ce36413b2daacd807
b7f6e2120474d6053ad56dd5e1f6e3860ed624ac
29806 F20101203_AACBMQ cotsonika_l_Page_105.pro
6913cd1cd70791447b97eb05f4252cea
691e31e8edd153426bd9534bb261ae97c0b15b61
31997 F20101203_AACBNF cotsonika_l_Page_121.pro
b5d5df8ec2ac9ab5cc21976f48f3fc31
1a359d601dbea158e3d6c8f21e412e52fefb1eb8
30008 F20101203_AACBMR cotsonika_l_Page_106.pro
d15ab54f2e85563cf8fa7960cfd3f0f5
d9a13dc9d0536f347751a3739e10559882fc65e0
32407 F20101203_AACBNG cotsonika_l_Page_122.pro
768cbba9cbeb5167a4df776923e27033
e751b6dc4a35d3d2c2422809ae4f36a9e7a49f82
30723 F20101203_AACBMS cotsonika_l_Page_107.pro
f8220d4749c21bb9d627e4d0fd38f3f0
74bed89056c1d9dbf91242553d7f4b9d6bbad329
32506 F20101203_AACBNH cotsonika_l_Page_123.pro
6ebf8ca8f3286e03ee1dd0d589992b4f
bb0fc0b03b2387b0ce63ea6ece3503df9a0132a9
30760 F20101203_AACBMT cotsonika_l_Page_108.pro
2ac1fe92db3ace2b25a0f3f3c99157bd
87bd6654f6bc83f3931699f47e48e97948cb3c9b
30143 F20101203_AACBNI cotsonika_l_Page_124.pro
25bca3f4c803adabe9194ca191838dc1
aa9cd7fbf4321b0d3212d4d24c1303a1ba169b20
31845 F20101203_AACBMU cotsonika_l_Page_109.pro
589e31a3a83e6a135126f60f20590a9e
932d3268f298c3ea9e29189a636b08e118b563f8
30566 F20101203_AACBNJ cotsonika_l_Page_125.pro
e40a8000e9d482ee37c536163f95def0
aef5589229b6219063ea2a5ca43cd1c4f63c8441
30326 F20101203_AACBNK cotsonika_l_Page_126.pro
9ab0c0481e37f974824a185df1747a5f
6d9398282b7a3bc81e8bae67509b612627907003
29335 F20101203_AACBMV cotsonika_l_Page_110.pro
4bcce7c025be7bcc70000bbf92ab1fb3
d438331f293011b744ff7d33529826e976f2ab04
31054 F20101203_AACBNL cotsonika_l_Page_127.pro
48a217ab98d79c52adb6679cbc93550a
65b6fb6989f989742e1ec80d42f83b26aa27d4ed
29288 F20101203_AACBMW cotsonika_l_Page_111.pro
bc3eae084434a4bcfdcac32b4d736435
ce9cf7ee1e22e63ccae96c70cc012c9f13652ba0
29606 F20101203_AACBNM cotsonika_l_Page_128.pro
cc5c24436060deeadad06492ef140884
1e6c8310e12dd379b7d52aca43d3be632832a7b8
31276 F20101203_AACBMX cotsonika_l_Page_112.pro
3b4b287ce09bf3dad11cc1c58c61b8a2
3e3b3053fefcaa4ffb9d6f3e3b12e83366012828
32181 F20101203_AACBOA cotsonika_l_Page_143.pro
795d72e9dbcc34e7bfc8932df90c5fc6
8bd7edf73fcc095fea66fb114a5e2220e082e1bf
31920 F20101203_AACBNN cotsonika_l_Page_129.pro
1506a193c7ddc45b32e8c69e9d67d730
a220a9e59b276dd20ccbcfacdb0de562ce4d26ab
30511 F20101203_AACBMY cotsonika_l_Page_113.pro
905af11983984b12449383461c2303b6
cc7bef6d1fa40999dfe26b85d961c6d496c5b4db
33497 F20101203_AACBOB cotsonika_l_Page_144.pro
77858833956dd14e9f4584f8a5b4c191
fd525df40a22f0260d12422035e8a7266128d34b
31702 F20101203_AACBNO cotsonika_l_Page_130.pro
f1253cd5ee94f5807c43e29a7fc6eb90
ace42b3ca48393edfdf189108955ce565b6bb4aa
32047 F20101203_AACBMZ cotsonika_l_Page_114.pro
9c2f61240b065e74954422926494313f
c0f567dc8f7438ca4c0ad564f394c65be853d950
34074 F20101203_AACBOC cotsonika_l_Page_145.pro
108c7af4544e7a31c3b3100fbdadf92d
aed2e14ac5a19c7e177240c70f216724fa7d83e5
14805 F20101203_AACBNP cotsonika_l_Page_131.pro
fb9025b2e856d2e6c5311036ad3ca31d
6dc60a46e5de515e726957f7317c05912355141f
33845 F20101203_AACBOD cotsonika_l_Page_146.pro
79eaf2b737e112b8eb55697e1c05d532
3bcfc736b57b6e2885b3d9556985d57bc3be4a3e
35115 F20101203_AACBNQ cotsonika_l_Page_132.pro
94c69bd2ef8287341c073b4e4ab80a1f
e58145abf27bd8ee6fb483e9a9b3eb3c42c6bfcf
34028 F20101203_AACBOE cotsonika_l_Page_147.pro
e11bc2eeeb96dce7f34989d071511d19
5a22fa757e8bc1578bc34d6b4c9a038be49dc206
32510 F20101203_AACBNR cotsonika_l_Page_133.pro
137ca87729f572164736ee4bf3a4be24
3c9d22d72428583513d80d5de713c7441934f3e3
31148 F20101203_AACBOF cotsonika_l_Page_148.pro
4f371ac95536e312c79aeb7430778589
38bd0cb406a93106dd1004ca711015d631924a5a
31139 F20101203_AACBNS cotsonika_l_Page_135.pro
ae0c0dd1ba2bf700872199d238b8ca44
95968b6f8ce033a1184ea210ea60d74ea34282a8
31177 F20101203_AACBOG cotsonika_l_Page_151.pro
65a67bdb042f3dae03f050fccccc7c78
4bfe2eeee4c90b8447042d5e5ac5ed335cb4990a
35717 F20101203_AACBNT cotsonika_l_Page_136.pro
854b52032a1a424b6b46494e17db80f9
7eb333dfdd7fdade775ade6e43f353a14dcd138f
32012 F20101203_AACBOH cotsonika_l_Page_152.pro
3d27dc5a6213e934198e21ef8d14ccc7
313d24571dcb9cdde1859d4346f002ddb8fa9972
31828 F20101203_AACBNU cotsonika_l_Page_137.pro
9be76d235c1a8f492d892149be00173c
9982043f8e72e8212c4350e7b456e99ccc11ab25
35553 F20101203_AACBOI cotsonika_l_Page_153.pro
fa5007fadb7495fd3f999e94ab44a606
c33d07e7a6f80b2e5fe2c2dc581a50d6c0f33fa6
35831 F20101203_AACBNV cotsonika_l_Page_138.pro
255989f06ab37473c8e4205310ab7141
c17a9ef7870fc0567bc780464eb375071e595930
35262 F20101203_AACBOJ cotsonika_l_Page_154.pro
4b4beddd57b7c7c7b98ec9ac5cf01b91
6241f59e767684ef7a48b678269482300383a4f7
F20101203_AACALI cotsonika_l_Page_119.QC.jpg
165f0f90f6fe9b1c0534d7ac59eae10f
be39f10ee1ffd66a75c5f0355bd56d392619bcb1
32198 F20101203_AACBOK cotsonika_l_Page_155.pro
0575c15fb61d3e6537208e0a3c4d7868
94651206140aaf87fcf03b60b041e99a1246c7c1
35653 F20101203_AACBNW cotsonika_l_Page_139.pro
49b29fc6cf5b390fa9bb8e8ffee2b60d
596bcc49e1c5735f4ada4a804f619cfac47e175c
24301 F20101203_AACALJ cotsonika_l_Page_095.QC.jpg
b2665c1ba62899d3dec30ab38f8dfa0c
4dbc5c5d8a1e39acca0c386226f1ad09f4749933
31868 F20101203_AACBOL cotsonika_l_Page_156.pro
b557738786837a61197b8fd2a83f6a5c
8ef3752a1194454feb52444ed6f28dfe3a10e8fa
35679 F20101203_AACBNX cotsonika_l_Page_140.pro
9e29ed9104e75ccbc632a6e5eccdb49d
4a62bedd0012fb667e0098156032d1036f343e76
39903 F20101203_AACBPA cotsonika_l_Page_172.pro
7790183cc7997d3ccf831f089caadf34
e1e57743aee98fc14051fd2020351c9073aa5a9f
64438 F20101203_AACALK cotsonika_l_Page_125.jp2
910d70bc8932a53039dcc945b9d26a02
55a56cd7ad4f1b0f1dfd37d412435d236d530480
32061 F20101203_AACBOM cotsonika_l_Page_157.pro
7fa3de200ab059378100d2e9cfcbd16e
0fa0e3dc7f943a8c25b14fe43e5bc0126f545647
35948 F20101203_AACBNY cotsonika_l_Page_141.pro
91b3664157a1f313f1366f181c28c908
39b2b3d71f965950869009dcab7c23519960af23
39747 F20101203_AACBPB cotsonika_l_Page_173.pro
6f6c20704b30cf1dd916937ed3628d22
9530a8fe31e2d83e45c77c6bab98c83c2ea062ea
1279 F20101203_AACALL cotsonika_l_Page_002.pro
13ef60e2f806059361345ce9b67136bb
f803bf35cc61dcd6205eafbdb858a03405f57330
35329 F20101203_AACBON cotsonika_l_Page_158.pro
58ad7969827857cd40350b4a270aa559
76f022f991c7fcbc832471a02d0dfa7f3e5f4cef
32486 F20101203_AACBNZ cotsonika_l_Page_142.pro
9c0269aac1c86af28fcd3ea462910df3
e3c56310188721cd058fe84403849b12ba0ed7e4
9065 F20101203_AACAMA cotsonika_l_Page_071thm.jpg
f770c81cbca84293d3791531a9ddb309
4031e8a34fc9f6027abadd8c91318b8fd2819160
39695 F20101203_AACBPC cotsonika_l_Page_174.pro
e17768801cc8e08c0d48d6f01baf100a
31447fdff9cd24e0d4c89d7463cefd0b2dd32425
19066 F20101203_AACALM cotsonika_l_Page_026.QC.jpg
c5e048c3a27c443d0b3736d639b26102
af0de4bd68f7d88812bb18adb62763f54aaec2fd
1706 F20101203_AACBOO cotsonika_l_Page_159.pro
7ace1f099c6246eea12bc9065694d2af
38fd79ef6e9ceb4d8e391ca9d90e3a0ec55cf06a
F20101203_AACAMB cotsonika_l_Page_102thm.jpg
67d3da0cea6565211ad35a938636c11a
49d637c2bb02891d70d4decb2c9f3a4b043dc4df
39669 F20101203_AACBPD cotsonika_l_Page_175.pro
b1ba4a09f528f2f58165f08bfbaa2294
621ec0bb5c7a3bab18582cc0143b4e874bbf739f
136587 F20101203_AACALN cotsonika_l_Page_183.jp2
9c1b0f5989f562fd39e2eed4fb7a912a
9c5657687bec7d014013413297614e05284e872a
42422 F20101203_AACBOP cotsonika_l_Page_160.pro
1087ec17a59d1d401e66e9d0e5cd0a2d
c41af7d3204e0d3ae926eec84ee310400d6b9496
106919 F20101203_AACAMC cotsonika_l_Page_027.jp2
824bb08b8369c34c81048624175c2d15
ed2d43a0a726b205a23e5e25f9e738537413a4bc
39825 F20101203_AACBPE cotsonika_l_Page_176.pro
93446e7dbf92fefc1e2b0ebea379de5c
78dac8ffb7c62a22953267de816a7e524f908b80
18078 F20101203_AACALO cotsonika_l_Page_123.QC.jpg
64d899c1575c77b85f48ebffd23b85f1
0e09465259e043d923cd9c224cac6603e1dd7dd9
62111 F20101203_AACBOQ cotsonika_l_Page_161.pro
bf31934abea66f37defea287c4b6a332
83f7b179b4c186e7cd1b1728323ac23977450ee1
F20101203_AACAMD cotsonika_l_Page_120.tif
7ad31525728267fb1c59899a67ead0d9
c747ddf119330cca91702872f12da6d675c0b3b3
34911 F20101203_AACBPF cotsonika_l_Page_177.pro
de72368640e88098da61cc84c2e781da
dc116d911654446d5f9ead4d96347559ec3b512a
56055 F20101203_AACALP cotsonika_l_Page_026.jpg
20335023a82a99310c02dcd4d8afe351
c6d0758a89308bb245c769b165bf7600555224bf
68273 F20101203_AACBOR cotsonika_l_Page_162.pro
1db2b554031386889c778f29aab5699b
98f2acbbe5fb0a348e52deec2b0e9f6bbe0c0df8
46215 F20101203_AACAME cotsonika_l_Page_166.pro
10203c2642f35e025f9cffd42ece5aad
d4ef90a60ea9ee9af8de479e47cbe22843655ae4
59997 F20101203_AACBPG cotsonika_l_Page_178.pro
77802af056006422ba6bfce23d430f04
175b747e2f3fcab029ac00bb7fa70c196a465052
34180 F20101203_AACALQ cotsonika_l_Page_048.QC.jpg
3622c24aaa3ebe36bf89e238683e3466
76b845205b8c6bf2ef16d41f85ad11c13e80b02a
40162 F20101203_AACBOS cotsonika_l_Page_163.pro
9afa378fc3d85436c5cd6848696c522a
a20a10e64a9bb25c780d823e4810685713c12b9c
34674 F20101203_AACAMF cotsonika_l_Page_022.QC.jpg
6d78a81abda60a0d1c419362f1749248
a15a0e0d2a58a7579c94ded161d67d5ab7c3651f
72278 F20101203_AACBPH cotsonika_l_Page_179.pro
4871b369e0714b95a9c2ff9b668809a5
cb357e4224ebf92ddb8f0fd2ea0cc36f31d3b2c3
8977 F20101203_AACALR cotsonika_l_Page_015thm.jpg
7fe37e7bd08c255e79701ceecdb24bfa
49ce2eed27c0b6f58dd86a9e4a08818281cecfae
28051 F20101203_AACBOT cotsonika_l_Page_164.pro
443103732d9c886b13509382865b0aa0
dcee49c943701a32f4bac57b27fd3670564ae774
9894 F20101203_AACAMG cotsonika_l_Page_006.QC.jpg
d2ea6a2db6b3404d02f78d0514d2a631
141076a18c279d5b0350caa291c1da0c85dc430e
73531 F20101203_AACBPI cotsonika_l_Page_180.pro
881421ed681228dfa6117e0b5a816ef9
41aacf6c21fe5c555dc1d145ce3c12e1a4cece4d
69 F20101203_AACALS cotsonika_l_Page_100.txt
4c0bee1da2cbc7c41b2c3aa782d04c7a
94754154973fda9883fd931ceb0845103a8a25cf
1004 F20101203_AACBOU cotsonika_l_Page_165.pro
9efb2dba877e9bbb9983c3c8f00c3bc5
4b4019450482a859f2d9b69152de4f35e88152c9
59523 F20101203_AACAMH cotsonika_l_Page_056.jpg
00ee4df46c96aa269838a4a51c45ae82
1f85463402f7f27d1dca11932b373eb4bf790d8c
66528 F20101203_AACBPJ cotsonika_l_Page_181.pro
8b16c7676e7220fc430dd0527e856137
c46c6809a9047784773d0c3c27f93bfd8deac686
5358 F20101203_AACALT cotsonika_l_Page_104thm.jpg
d945fc194053efd0c247a9ab7410e33f
9eeb0bc18a04d6ebefd2df0448ba502bcd7e68e5
39566 F20101203_AACBOV cotsonika_l_Page_167.pro
2fd8a7f75126d178033cdd920d75555a
125926e3bbe49be44060d3c38fae00d427e26840
148888 F20101203_AACAMI cotsonika_l_Page_018.jpg
180c9a5d5faa3e2771f147cb8851dcd9
e8ccbef6bc86c4ace8de2cbadd4c6bdfea804797
77977 F20101203_AACBPK cotsonika_l_Page_182.pro
385baba318149a2142dc9e20ae1cbda1
4f29fd68d0fefa64630fe74b61c32d5e3b627f9b
8580 F20101203_AACALU cotsonika_l_Page_022thm.jpg
adce74e49fdd6d3c4183c43e3c4fd97c
a465ed4e294cc20186d5dbb46f921013f36068f1
39565 F20101203_AACBOW cotsonika_l_Page_168.pro
1e4b887386f66345c22bde0de44424c7
92cec3b2d4b9415d48f6aaf6a5dde09a50cd6760
51766 F20101203_AACAMJ cotsonika_l_Page_007.jpg
ec8fd5d73332544ac7853e5a422829c4
e1c19ccc1583638c26aaa55531ae54fab6af6210
64986 F20101203_AACBPL cotsonika_l_Page_183.pro
b1c8a403d8dcfcde4ffe5e97f567b164
32a07c8f09457e9b940a6dc709ca7ebc7947d6f2
2076 F20101203_AACBQA cotsonika_l_Page_010.txt
5f57556bedacb6b084ea718acbe55e06
2e468476a8f91b6789a7edab94c7a864352bb6f3
9316 F20101203_AACAMK cotsonika_l_Page_184thm.jpg
2b6bd5e439ad9dea73540b917b25d3b0
04759e2edb3fd8f6a7ba209e0dfc040150ad3398
69180 F20101203_AACBPM cotsonika_l_Page_184.pro
3bc08bfd0391540165eb71b3a2d13c58
03124633aa2d7a95d62edadff12b8aa2ec733e29
5183 F20101203_AACALV cotsonika_l_Page_105thm.jpg
2d8e44ee1e64893ea2a748d5559bc2c0
cc96b594c8f17959de3ef09b690467ce02999144
F20101203_AACBOX cotsonika_l_Page_169.pro
ada66abac9b7395dc591e50c6d311177
7ecf52664d3539d7640597e158318639d25bb42f
1413 F20101203_AACBQB cotsonika_l_Page_011.txt
ae7e17ee3d6742a09508964ecd670a7a
731814631c79494a53bfe06673b9c53a99ba1a43
32369 F20101203_AACAML cotsonika_l_Page_149.pro
927ffc693672a66a2493c472a9487736
0bd90408b6b95789d1b3553836ebb79b93ecc75f
70372 F20101203_AACBPN cotsonika_l_Page_185.pro
43602efb8abdc1b5fb98c2b3be3abd32
5f6c32e34d33281bb378f293bc3ed73ffd140ba7
32358 F20101203_AACALW cotsonika_l_Page_118.pro
388a86d511f1e0722806e9fb351cd0af
487c640cadc5f4a3696d3d6f0160a77c3e7fe717
39929 F20101203_AACBOY cotsonika_l_Page_170.pro
cf82590d70b32fb73bd09c6357e6776c
b723e734981d1aa6ba29418c596f9c4b54c673af
2118 F20101203_AACBQC cotsonika_l_Page_012.txt
11cbef24e4cdde3430ba4df637ad39fe
ac117244abd188bf91a97c32836b0f373090b988
68641 F20101203_AACBPO cotsonika_l_Page_186.pro
7e5cbf0ef7713245b0b28a29e20e1312
5f791c91f04f10c7415584371148492b4949b58e
51081 F20101203_AACANA cotsonika_l_Page_022.pro
4c135533496d6607a7369432a0bda9eb
b15e33b5d5f5d041726f05c42c34651fa5a53a52
87236 F20101203_AACAMM cotsonika_l_Page_093.jp2
bf35aa83bc84f93728f9df121092b1c5
7b90e3e44be4f6d1cbfbf9bcc6db5700c59ec75f
62870 F20101203_AACALX cotsonika_l_Page_008.pro
c5718fb692a3ccb42b09940d48e62f45
b15aa3a799bd809834852de8b3eb03a303141109
F20101203_AACBOZ cotsonika_l_Page_171.pro
7b8d1317e9001412735855ae92415a04
fed5ea56bd85836fda1946b52930e0d7fd006b49
2144 F20101203_AACBQD cotsonika_l_Page_013.txt
8425c8f17ee7e7bd0cab770f4e319504
b07719f7516ec480a121746600e82132757bbc61
15283 F20101203_AACBPP cotsonika_l_Page_187.pro
85d6cbd17613577e874f3be6e27d79eb
1692d2255da5538038ae3503cf7ba18f72179b3c
54522 F20101203_AACANB cotsonika_l_Page_126.jpg
4f2e194c0934dbccd55f6e2b53a74f93
a97ad97f210854a2e7d9b4cec9bfe246ba372f76
8519 F20101203_AACAMN cotsonika_l_Page_072thm.jpg
0f90c5bfe7134ba6ab4b769f744d911b
e2d53d5160ae78c38307b2bf1120bf4f6a7feb4f
35722 F20101203_AACALY cotsonika_l_Page_068.QC.jpg
7b77e7e4c69d866e912edd225733f694
9413782cbb3984124e0558453a7fcf12d5502487
2195 F20101203_AACBQE cotsonika_l_Page_014.txt
f49b06435ec433cdea02a92a9ad15d89
88811e56013483a7b21ac7111fda11b2cf95c95b
8771 F20101203_AACBPQ cotsonika_l_Page_188.pro
1faddf23ba8d6ec12edd5a58c751ed6d
03efa6957ff35c950a894c75de55208c0e99426d
88384 F20101203_AACANC cotsonika_l_Page_089.jp2
b41acf484c5a0c6521d43bd9a8d996e5
f56b2f4dc6a9e9244f3fbdd45cab7329bd882991
22891 F20101203_AACAMO cotsonika_l_Page_036.pro
3448d2e1c2fe3c9436aa6d327141d1f5
591a01348054490495f211a6f614227cd1d60478
F20101203_AACALZ cotsonika_l_Page_070.tif
ce12f2acf7ddd84217dfd904785cc5ec
1cb9fe9e32de4bdbff60a4bb0d61c62bf8f67c39
2197 F20101203_AACBQF cotsonika_l_Page_015.txt
1139f16cc9ce237eb85bea0561494b0d
ce8a5848fcfbee0d19f64693c9f9b264bec52721
433 F20101203_AACBPR cotsonika_l_Page_001.txt
21688daedf877ecd3ace667cbd3c5c4c
855d0553cb2f666e9d885de8d257b7390ba05734
F20101203_AACAND cotsonika_l_Page_028.tif
c801550d2dc149c37dd978533c16fbfa
7232f113958f9549a58666ba6e4e746dcd3fe0e9
76694 F20101203_AACAMP cotsonika_l_Page_088.jpg
caef4c3747126fecb5cf937cfc037560
4daf94915c339cf7444153299e3ce745032727ea
1496 F20101203_AACBQG cotsonika_l_Page_016.txt
051110a7667842b7c816893da8dae94e
5c2b7dfdcecb2caabb8fcbc5858345c7205c8ca3
118 F20101203_AACBPS cotsonika_l_Page_002.txt
2b9b64b9c492770c854302634066c298
db1d23c13f8587c9e8854eb36d536418355846e0
55801 F20101203_AACANE cotsonika_l_Page_128.jpg
897fb0164ad90212c6014ee962cfa030
36f0467c52b901a0155fdb3f8c8837a724355bec
873 F20101203_AACAMQ cotsonika_l_Page_035.txt
c0cf6b40c4e4ae835f2f8cb0b56e3477
7a4e297e4bc0ebd1345a7e3901f692fb2af9d62e
649 F20101203_AACBQH cotsonika_l_Page_017.txt
9926b7002d0652a12505d5207241b969
80985893fbce1715a5e9ded7860799e7cc2a023b
80 F20101203_AACBPT cotsonika_l_Page_003.txt
107f54ab7a71f456d7d0f68b1eb9c8df
2e6e34cd504cbd9e0f35bfb406bc526ceb058f9b
834211 F20101203_AACANF cotsonika_l_Page_061.jp2
35e471a7d358fcb9bb634200073610b0
faccf16ca6209046441528d12adb8c9428ff02b2
F20101203_AACAMR cotsonika_l_Page_094.tif
00ee2481f9a406739ff1f7fc0022bebc
4ee0f62fcc59c944c942f8069809a270715fc481
371 F20101203_AACBQI cotsonika_l_Page_018.txt
09889abde5f8ef3ee602ca11442d3ffc
4abd72b273484795a694c18304b25627ac893f3b
1305 F20101203_AACBPU cotsonika_l_Page_004.txt
8484e640d3e472eb8ceaf65652dc907d
fb9e598b788de4d47a1b474556717cdcf05b2b5c
68005 F20101203_AACANG cotsonika_l_Page_151.jp2
e5c6c6712bd9a9fb491ddc569240c048
fd53278cfd791fe404d0d1f8475f6febc8337e20
5010 F20101203_AACAMS cotsonika_l_Page_057thm.jpg
7ac1ad6685d3b4daa0a3c15c987fcf2a
af8db0133a039309e0f55911bca4880bf69cf13a
323 F20101203_AACBQJ cotsonika_l_Page_019.txt
08459b0586677abb4c076462cabdb69b
1b90fe2cb8305af55030429d28c9184b0cde85b2
2746 F20101203_AACBPV cotsonika_l_Page_005.txt
dd7effef789238719f5538a0343d871c
bcadd9be05384da03d82947e60ec843d182efbca
53385 F20101203_AACANH cotsonika_l_Page_021.pro
1e7d02c671852178cf68286411d7857b
bde214ff62ce9e73edd1bb29d6469c5412acfb34
81637 F20101203_AACAMT cotsonika_l_Page_168.jpg
997b520e295cfcb0de3f598a425d28d9
2c7b87fcadf59d5f20d684903ceb066f2e62c17b
2075 F20101203_AACBQK cotsonika_l_Page_020.txt
0ed1324e447cf31efbf6812cf8e01cb7
227cab960f798dd51e37f510e613924997f68a98
616 F20101203_AACBPW cotsonika_l_Page_006.txt
d596e444cac326b69122a86aeac98523
cba0f0cf7657d64049c23e452c9c6a808ddfc4cd
37514 F20101203_AACANI cotsonika_l_Page_184.QC.jpg
d18fe62c88afab70ba2f63d9781a5bdd
5a82ea3bdb434996475bec92900828963035d333
66784 F20101203_AACAMU cotsonika_l_Page_114.jp2
52b5b848f0f8cdfebebfae59dea9bb26
b0850f61dd3dd9d3499cfd11268947429c743c07
2127 F20101203_AACBQL cotsonika_l_Page_021.txt
2ecf990010e58df5cdd29f5739696936
c0600d7ca26eacce58550d0058a868815e5f71bb
958 F20101203_AACBPX cotsonika_l_Page_007.txt
93c8bb51cc84589f98f99de6237bfd03
e9c431cd0952958e4a913db0179a709cbaf21802
34609 F20101203_AACANJ cotsonika_l_Page_084.QC.jpg
141e24fe399026a3ee0179464458eefd
8d3cde8b7112e115af0730114f06cdb5a6f1b067
53096 F20101203_AACAMV cotsonika_l_Page_055.jpg
cbe960dd310f6638d306f4b30c63ce32
724a0366660206d2421ee76aef20e02c865f0244
827 F20101203_AACBRA cotsonika_l_Page_037.txt
10eb073c1a257f9dfc58a71adbf8165f
f2aae106ab1e7e15bde30dff8b4261153e286f61
2019 F20101203_AACBQM cotsonika_l_Page_022.txt
077168d2896168482b8b7e60687f8073
7951fe37bee302619037e2f9fd67199301f26570
F20101203_AACANK cotsonika_l_Page_036.tif
918c4b4eb10b449eba65bd9ec566f086
d167f40f6cd394c43b187fc6be19c2770ef5c97c
565 F20101203_AACBRB cotsonika_l_Page_038.txt
db0958194cd3f28f60f8e02584c6a939
10490a0bd96af42391d474d54fa1a5b862c29986
1220 F20101203_AACBQN cotsonika_l_Page_023.txt
e650ed31860f6f453f9858f68a53c9e2
90bc4c67ae31b4b937e5802711c9ab1e9a786dbf
2566 F20101203_AACBPY cotsonika_l_Page_008.txt
ae372b720cff50fd82225bac80954473
5f1f378394003d98c0b7098e53fd83bc96bcfbf4
2100 F20101203_AACAMW cotsonika_l_Page_070.txt
dbebe89dc1d40a8e4ad14a25e51d6261
d3bad2e74941ffd5b093363b0e06275146fae1a2
31930 F20101203_AACANL cotsonika_l_Page_150.pro
13255253343a7c923d0f6f467c1016f1
0ff3ee86f8630433047208f7fbdd90a897696408
610 F20101203_AACBRC cotsonika_l_Page_039.txt
c21574fe9fb036acc5787e8f1c4c49dc
c07b4f41ebbd3f97dcee03723897a3a4af1fd94d
355 F20101203_AACBQO cotsonika_l_Page_024.txt
e7d6caadcb04243569fc2daaab060548
554f67bb1126a47ff463e71a263c2dd373b84d76
1768 F20101203_AACBPZ cotsonika_l_Page_009.txt
f3e2eb77886c3049eb783d7e4087f6f6
52fae8c0e3d5ab9e02769f3e253dcbfc463133af
9513 F20101203_AACAMX cotsonika_l_Page_018.pro
e448ffeaed26574b2872c0cc0cb1f91d
20375e618a3ec90cd52e0367a41124811fe41f8e
F20101203_AACAOA cotsonika_l_Page_007.tif
1cc7a5416b990263b7fa1d8c4de09c29
6672d311f5ca5e33d07f5009db252dbc79805b9d
18572 F20101203_AACANM cotsonika_l_Page_138.QC.jpg
740f0550a0e8efda6b8c9f9e336cb167
040f0a8d88970453b43e7f5dd23775ed9222269a
358 F20101203_AACBRD cotsonika_l_Page_040.txt
b000e6601d68a3b83ab21186b28aab2e
ebfcab4785f2419edb56a091f22786ae97f44e6b
135 F20101203_AACBQP cotsonika_l_Page_025.txt
731b1ef12789315bf790a0fdef351676
9da3a80a03899afc2639b19233893997b67766ce
12303 F20101203_AACAMY cotsonika_l_Page_085.pro
db83d1318bd9ebea1167a9bb8b5ded89
b78a237499c5c9cfd032a9428cdb09516d0a8e3a
F20101203_AACAOB cotsonika_l_Page_102.tif
9ec69b3acbc54edcd59cb5c840fb5683
afa49f34306a5c0e0544f89a0dea3304559850f4
31854 F20101203_AACANN cotsonika_l_Page_076.jpg
70d14b5308afedcc8e974693af0938d0
e257549df1af89183380b17b3e65abff5a75acf0
246 F20101203_AACBRE cotsonika_l_Page_041.txt
1c647d3a65f9e30b010ffd60d98e95c4
6127c2467d7fdaa3a4428a5295665992e3a66543
368 F20101203_AACBQQ cotsonika_l_Page_026.txt
b00c75fac56f44b8cfe097fec83a6e94
319c034ef784c9891570ba8740165acb0803524d
F20101203_AACAMZ cotsonika_l_Page_005.jp2
6a73342a3717086a2d06ed9a7c434526
4c101d9b02663439ce3221219e4b46bb6e4a9a3d
126528 F20101203_AACAOC cotsonika_l_Page_178.jp2
12d56c6a7ac1bf669c7f0847420095d8
cc5dec9310b76cc6145ef11921cb9f6636774a04
F20101203_AACANO cotsonika_l_Page_185.tif
b6897489e8868a1ab891659e59c409d5
959cbed7b77fbd2b84fff79a7cd570bf134a2d9f
679 F20101203_AACBRF cotsonika_l_Page_042.txt
a7003585fbeb7c11d830ae07043a43ca
8c88ab72af38a2af2e0bc3077d5c72fc80df609d
2022 F20101203_AACBQR cotsonika_l_Page_027.txt
7dcfa60fb65c05e628f16772850b5c53
6cec7abf58292a080e7913437a18cba1fdf048e4
69161 F20101203_AACAOD cotsonika_l_Page_177.jp2
6acb16452f21d42c92c9e481b02362e9
06b632bc9bb71172d2b5521749059e9b24585f1e
9904 F20101203_AACANP cotsonika_l_Page_182thm.jpg
572483398e8aa7e24e099228f0cb3c87
a4adb4207aa3207961bb4b54a4c78c622ce7db8a
280 F20101203_AACBRG cotsonika_l_Page_043.txt
7aebaf33a836eb7d0129afcbfe841f54
6b90c3cb521a3fb96ea8324a2ca109be28839696
2105 F20101203_AACBQS cotsonika_l_Page_028.txt
59952abf6138b2d12a2883735be0a248
1944c2590a10f6bdbdcf46ee03590d826ba0fa8a
6631 F20101203_AACAOE cotsonika_l_Page_174thm.jpg
08a264789c78df7075f9ab3bfff32535
7f47779d64ed764d37e04a0f1155693e8cf66e8f
67691 F20101203_AACANQ cotsonika_l_Page_119.jp2
00845e0b308fa446f29e40759f0a86c9
8d6ea142fcd5b9b0bc0fe2549c7a34eb0ba375ca
332 F20101203_AACBRH cotsonika_l_Page_044.txt
3a5d49c48ba653469480d09d93c90576
c9a16a5cc680477897788371b880ed7e71df3b2d
1936 F20101203_AACBQT cotsonika_l_Page_029.txt
00d09ea4c9718face8b1abc99e3c32a1
359c02f20a16659c04c1a0006c2319c50b322b14
16199 F20101203_AACAOF cotsonika_l_Page_055.QC.jpg
79ddf347e9b05ebf7e1f9595752df84b
311e00f645ef92f19c260356ba0020f0d65d90dc
F20101203_AACANR cotsonika_l_Page_155.txt
f2953b3e466b8018e4fc25512e94efa0
6c4212796045b2e977d1cf0ee7ec51c7d8d16d76
825 F20101203_AACBRI cotsonika_l_Page_045.txt
f779e0bc70ddefe51eedb08aff73b6db
031d759ea543741cd6e51fb334e5b042d66aa4e4
F20101203_AACBQU cotsonika_l_Page_030.txt
a067c1b95ac2229df3f700717a9848ae
abe2d395230f84144d4dfd3d26e2262b4284cdd5
18088 F20101203_AACAOG cotsonika_l_Page_057.QC.jpg
2fdf22794ac53021a787eaa97cdf74cd
891277491ea2bb8ed0beed2091856db255e85460
F20101203_AACANS cotsonika_l_Page_106.tif
85dc7bceebb5728149b6fb25a53f1f65
2d56d5f08b386d0e8699f3deaf61d474aa896109
341 F20101203_AACBRJ cotsonika_l_Page_046.txt
1fddf70cc2941fec39d861a9ffa02601
3409d69adeb7cbff600e8e168f2b1197b8287c12
2558 F20101203_AACBQV cotsonika_l_Page_031.txt
94ab8c0bc908464a95792608b7cc9b60
be17aa9ffc039e84240112efd3bd0f36a06cec88
59921 F20101203_AACAOH cotsonika_l_Page_137.jpg
31b44e94dd063cc632943f096de7a418
da79e700cb5fa314dafb16fd0e506e90072ac071
281168 F20101203_AACANT cotsonika_l_Page_076.jp2
4dbb24b883b1e2d983478ffc686a9131
75be043ac21ade825c6b4dbbbb4965f93a8ecf63
464 F20101203_AACBRK cotsonika_l_Page_047.txt
9acc28b481b4f5ad93ba58dca8e6ff1a
b1b67a3dfa9ac026b80699e54203c26035d09a3e
2104 F20101203_AACBQW cotsonika_l_Page_032.txt
9721ec010ae5e42032eb219379e25778
5a7994f02ab11e5eb6ff5ff2cbcf97f3f1425ad5
29218 F20101203_AACAOI cotsonika_l_Page_161.QC.jpg
3f00edf229a1c2f7cfd4ceb9c2ce691c
e7dbbf98f822c0f32326de06f2eba31b479dbfc2
F20101203_AACANU cotsonika_l_Page_108thm.jpg
6483a1edac3242efb079b1f02c0eec5e
4586c069f9bb17d6b6fa14031987d1d851f29d82
2008 F20101203_AACBRL cotsonika_l_Page_048.txt
7e349e0f3c8e7ebc9e1d6df913fe5eec
96e3bc8cbe90c8e6acd59d4d6d23c2b495ac5ef3
2220 F20101203_AACBQX cotsonika_l_Page_033.txt
598c88f37366c0b94419ccb12b93aa19
4b86fd2000c380511a39040844ab26001bba5a26
27736 F20101203_AACAOJ cotsonika_l_Page_085.jpg
5f0b6a61d9a1132bb20b8bcc4a22a721
c9797d834cb5c561a0c86dfcb60727cfaf8f3dea
31141 F20101203_AACANV cotsonika_l_Page_134.pro
a93c4e09c2ed3347a433f2550b77cac9
54f298801256f2e57d88a58409948ccf3072b7e2
2036 F20101203_AACBSA cotsonika_l_Page_063.txt
2699ec792d15a884105d847a102874b7
7f6589a228ca1667ecd8f5c46b9c01ba366b997c
2080 F20101203_AACBRM cotsonika_l_Page_049.txt
b70bb2abf342f9383d0c13e9f3de137f
a829d356881ea62e617770880656533f850aa43a
2047 F20101203_AACBQY cotsonika_l_Page_034.txt
99ae87df833b4ad253f5f6a674b18e49
e9717dfff481c738d019fcb59846213a57c7353c
F20101203_AACAOK cotsonika_l_Page_048.tif
b705d6fa1eb4db6535d67f4f0f02b3f2
74e46b1eda16c32bb7293cfff49a9c5763436a6e
17609 F20101203_AACANW cotsonika_l_Page_106.QC.jpg
b42d7e637575b67c913917d42f3dc2aa
d028f691ad2445627ea2e53e9a81b17a610f534b
2053 F20101203_AACBSB cotsonika_l_Page_064.txt
10ea9cc748de6ee6375d0f44aa6bed36
a311a540731d79fd9513d503de9cdc7c27fedc94
2108 F20101203_AACBRN cotsonika_l_Page_050.txt
60a4ea352334f75bb9c4dd4241b36507
ec47e440bfbe9086c73cdd4e7e0cbb1c891993c7
963383 F20101203_AACAOL cotsonika_l_Page_007.jp2
750ba5227feddbd4e6c9a87d2c18558f
bf7e3a4f759eb31097db476431d975b07844517b
1932 F20101203_AACBSC cotsonika_l_Page_065.txt
8cf02b919983ed5022d4f1ee932736e4
cd7618d9ac057e77a596d4904af00544359295ec
2052 F20101203_AACBRO cotsonika_l_Page_051.txt
3ac65c9696c2102067b3bc79a3c48b5e
0e61f44cabf90dd1bebe9a20214c82f34e87f6ad
950 F20101203_AACBQZ cotsonika_l_Page_036.txt
5431b681b1cc1c814b98f7350e2f377f
6e9ba5630733f8c9f2d189ff12a5534afb7baa76
89929 F20101203_AACAPA cotsonika_l_Page_009.jpg
8d0aada5b01ffb2d12345c1e8bc615b7
412d0dc88478c44bc3012cd0670c845bc521c70f
49495 F20101203_AACAOM cotsonika_l_Page_062.pro
5a107c3b7db8ad2a77f229d99edd2aca
0cbc6bffc471237f0b47c8a3f33c5ecb4f4db361
7964 F20101203_AACANX cotsonika_l_Page_084thm.jpg
3f00dee3fc76ce8dceb054d84c2af7cf
f4230fefe6a991ff4e0b12a0d1116168ec98da68
1963 F20101203_AACBSD cotsonika_l_Page_066.txt
152aa573195e85bc9ffcada47136f41d
f19884d6334b33a3201e1fcd6a3876e95f8487ba
1880 F20101203_AACBRP cotsonika_l_Page_052.txt
88a5877ad3925c858c21bedfefea319a
05867670f33a2a36cb0d83fb457a4bf595911001
101059 F20101203_AACAPB cotsonika_l_Page_010.jpg
56ce191bd268e4c4ce43731fb6701db7
7c833ebd8eb1c5175147ce1c0cc559578b5936bd
6443 F20101203_AACAON cotsonika_l_Page_009thm.jpg
99a9810194e334a1766d4495a40662fd
81b679b05140c3a7007e9aa91e63485c016e31f9
5198 F20101203_AACANY cotsonika_l_Page_148thm.jpg
392fde39ed9c3f92b573af2c458871c7
6a3e65c279257dfed4b44f99cf8ae79f2704c295
2257 F20101203_AACBSE cotsonika_l_Page_067.txt
243103359e2a641294e6fb308b420f0f
db388c942fdad372c5b94aef497b20025a6c07ef
2068 F20101203_AACBRQ cotsonika_l_Page_053.txt
218b276027d373f5574202e60100ab27
a8b59422984f1e6b20db5cdae244d04a6b2d5683
73369 F20101203_AACAPC cotsonika_l_Page_011.jpg
03aece02a7dbcfd0dcb75bb1d0644513
9609c3a7a87f67b2b0d4b4fcf998725dc76baeba
81971 F20101203_AACAOO cotsonika_l_Page_093.jpg
ca9107be2ff485f4630de613e59f2c2a
0d8d86aa27e21761332860d89108256310c87658
67674 F20101203_AACANZ cotsonika_l_Page_103.jp2
b20c6ae6aa81538f62e9ead2355b14d8
f0b163b13bce68f24ffcceabff3d1e1feac10257
2145 F20101203_AACBSF cotsonika_l_Page_068.txt
bab8ab11afd0d8fbd5910e26ae6ccedd
314e2a363ecab2178f283892883888003cd9aebc
1837 F20101203_AACBRR cotsonika_l_Page_054.txt
22e12a9082f4de732141f7f0c10dc01e
05d19f19bd759fe771f2c45d37e967ce3370d7a8
106449 F20101203_AACAPD cotsonika_l_Page_012.jpg
f340b743d07039bc02b21aa3ab734d1a
741cc270e9c4571ae9c5ab05bf0085a588d61cec
95289 F20101203_AACAOP cotsonika_l_Page_054.jpg
2c273a88284f494e4179655c1ce5218f
283e2095c6d34e5e8e83ac8e82f1430a5a6e3f91
2140 F20101203_AACBSG cotsonika_l_Page_069.txt
d51ea557ddbecfca76be6ccb06ec35b9
5b55d234c12f5589b8d10ee404a8e09475f3f45d
626 F20101203_AACBRS cotsonika_l_Page_055.txt
284779eea5d4b6c78880906af3e85910
c95ac15fe22644d842274c9bc08eaed48466d0f7
110243 F20101203_AACAPE cotsonika_l_Page_013.jpg
9297b51bd57e85e9fb08a632bf787855
ce96f2feeb6406b4118d42c8b392cb124e82840c
218909 F20101203_AACAOQ UFE0017936_00001.mets FULL
6c78a53fb084e4b0962b5168de864ae8
8ddea9eb6b4ae729530398e61d1bcc392fb7139b
2164 F20101203_AACBSH cotsonika_l_Page_071.txt
4f3fb5cf5fd523ea77487766b834ce54
cd0256f507dc9d3d7e9aeed324e2a00a10326524
1181 F20101203_AACBRT cotsonika_l_Page_056.txt
2788d7acf37eaf534ff5b74d40ba3c1b
0e74528931132c6b0405d0341f557121f6c647fe
114533 F20101203_AACAPF cotsonika_l_Page_014.jpg
f53a919563444340b9a3c113720a6f37
7a1ff176b720c8eff995b3d94ac8f3235d9006e6
2038 F20101203_AACBSI cotsonika_l_Page_072.txt
d2fce775ebb686b205c42f3250c260f9
418653ef517b78110a0781712c77e8e73599bd06
990 F20101203_AACBRU cotsonika_l_Page_057.txt
417f2c91428476b192afe9cd077a0f0c
c8e06f118de99f29a4dbcc331795266651df4a06
112224 F20101203_AACAPG cotsonika_l_Page_015.jpg
ba4b3bd257e1b30cbfb72c3c0119d43c
0b6f42810c2a6264f538a2237e63228eb28ec8a1
1993 F20101203_AACBSJ cotsonika_l_Page_073.txt
0fbc79e375ba543eb843d48d1e69cdd1
71c3e70f2e2fda6c7718c3ff97cd923ccaf3b2a8
1778 F20101203_AACBRV cotsonika_l_Page_058.txt
8645351c42e53a3d09bd0d48dfbaabe2
900e566896dc1a6e9543677c8bd016c3c76c8724
77528 F20101203_AACAPH cotsonika_l_Page_016.jpg
c662e6fcee5938c4607354c572dc3f67
6248c8db2c7079781a439f290dcc508a7dd24550
26094 F20101203_AACAOT cotsonika_l_Page_001.jpg
903e6af4eca63eee148153eada99b84b
87e4c90a16436e2685a91787c3f8431f8881b6a2
676 F20101203_AACBSK cotsonika_l_Page_074.txt
0e90b9d2b128036c0840f8f0763e4f41
af9ecacb45992fdea495d7e55e4ff3e2f06e4a7e
339 F20101203_AACBRW cotsonika_l_Page_059.txt
3ca8dcc8129688e1c93bf7ee4bd7b49c
4b38bd8f204d6f4b35995f034ba34b573eaef9d7
108923 F20101203_AACAPI cotsonika_l_Page_017.jpg
5f72703e056c166a098cb2e1b68fb625
cca76d89ca3e79176c1a2a14e69914519bf54efb
4994 F20101203_AACAOU cotsonika_l_Page_002.jpg
7c19380195941941a7db7b4dc86cfc33
97de1682fa65618e131c8761d6c83d91fa5cd07b
1976 F20101203_AACBSL cotsonika_l_Page_075.txt
980c9059b5216a1bcbd763203b2d6f88
e416b8267131727d287298091f0156525cc0dcb2
727 F20101203_AACBRX cotsonika_l_Page_060.txt
845a632c5456c8dd38ae3ed0d77574d3
44cdb38e4d25c0f1ec53460a83b33fa7d9de52a1
20092 F20101203_AACAPJ cotsonika_l_Page_019.jpg
01bd0b7cfa97e99075c20fbacc24ff45
3f9fcbffc900df00dcb2c6338c0b8f6864a39649
3202 F20101203_AACAOV cotsonika_l_Page_003.jpg
1a6c034b125a0634c2a75d2c8f4e2e7e
bda8b9ca9c57f831c24685578e5267c1e501a6db
1512 F20101203_AACBTA cotsonika_l_Page_090.txt
a685612c4718ad213261b745079234bf
8850365196e711c1c61b87fddf995d47260e2962
598 F20101203_AACBSM cotsonika_l_Page_076.txt
4a8b8dfe6ac9bd6bc5ad48c653e17790
4cb4835f165a634f7de8237e1eee98aefe17ac2a
F20101203_AACBRY cotsonika_l_Page_061.txt
c63ded067a722c7bf229c2f2a7468c2d
06fe3f4d467e08984b791e287c4edb473845f5f9
106530 F20101203_AACAPK cotsonika_l_Page_020.jpg
b466c1410e296add034c68dad7828d83
20a3eedb2bc160063cd0f840e16f98dccd441757
68537 F20101203_AACAOW cotsonika_l_Page_004.jpg
a55a4c0a112c3264507a560d3e71df65
3f313fe1c0c66b126b49c4d495becbc95c755c31
1469 F20101203_AACBTB cotsonika_l_Page_091.txt
19b2929231c49e66edde8de6f0c484f2
7cbe2575e21a082489f3e428f9e7e7c35fc9010e
643 F20101203_AACBSN cotsonika_l_Page_077.txt
3dfbbca038bfdca8732489d9db967811
cf655a07c2c9db51cb468a995aad012677354469
2069 F20101203_AACBRZ cotsonika_l_Page_062.txt
1b11c1cdb6489e5e4ba6f9b6b77875ee
36eed696ba14e5f5950a892781632ee6344ac09e
110198 F20101203_AACAPL cotsonika_l_Page_021.jpg
8d51d7c90352b88006eaa0b712b9a053
f98a7dc003ab1222acc6cbf2bb7af45d04a1821a
102519 F20101203_AACAOX cotsonika_l_Page_005.jpg
652ac06fad08f83b53f55e8a5edb40d2
7b5e374a1c86edb9ffcf260401e2d6855388b8c6
1473 F20101203_AACBTC cotsonika_l_Page_092.txt
dcc88a3c86bf33fa9c74dc6b9e8c3ae6
8b512b4c623213ece060cf06312afa35f4bf8c00
F20101203_AACBSO cotsonika_l_Page_078.txt
502043aa475e99d6fe03161d724dca2d
02eab09ab13eb732a8eab55027a4da27d1c7e2cb
106376 F20101203_AACAPM cotsonika_l_Page_022.jpg
900c6d505d24836c01f537538f3f22b4
bff03308e431ef6a3b267ee554441191a0b22e69
111799 F20101203_AACAQA cotsonika_l_Page_037.jpg
bee887894b6e068f5a062c9356edb119
dd175c254ceb171802515eb4d892259dba0447c7
F20101203_AACBTD cotsonika_l_Page_093.txt
9bc707ad38073b0f6723c227dbf9531b
8a695384e9bd753ffa45fdeaeb9e7cda090584a5
400 F20101203_AACBSP cotsonika_l_Page_079.txt
580811d0a8ed37d67ba031c8b7ab8c76
747b101a7d7c2af6d650870aa8d9683bd87ca14b
66084 F20101203_AACAPN cotsonika_l_Page_023.jpg
1c029ccd631b48be5b160811e526566a
c991f0b3b2fd3d627f103782dc123f0b8f81c39d
34687 F20101203_AACAOY cotsonika_l_Page_006.jpg
fa6b26d4d43ff72c022c0939b9612857
24154631161f9073d5d5eebeb13eb4944e18bd21
108956 F20101203_AACAQB cotsonika_l_Page_038.jpg
92648396d18680517fcce17b16916058
59253d7125ec871f871a22dd4d67e11c2f8e3d61
1577 F20101203_AACBTE cotsonika_l_Page_094.txt
081ced0981e741698cfd1c0ab7257710
ecd237c072f1d92666070060ccee8bad0a39d413
1153 F20101203_AACBSQ cotsonika_l_Page_080.txt
2bfb186ffbfa2d8b71a32129eff76fb9
0b35578b15b1dfee3e64041d8e5b8ec9b312a4fe
97466 F20101203_AACAPO cotsonika_l_Page_024.jpg
49d6758517e81c832684ef6ede46491f
ecf88d4b5372a8d6ee00440efc9babb3c0f8ea15
125244 F20101203_AACAOZ cotsonika_l_Page_008.jpg
2e69faf7de5229ef6717c19595f139ea
122574d3096d29911e51247920bc7e8fdb9c0f4d
71150 F20101203_AACAQC cotsonika_l_Page_039.jpg
2ba6dfee93bec8d579034de911121827
3fcb81d79cabc0ad986f0596d6bce67c89cb1c37
1415 F20101203_AACBTF cotsonika_l_Page_095.txt
037758699a02a38e68af109583312b3f
5a446546cae4943c18fd3b21cbf1648fb1e80636
F20101203_AACBSR cotsonika_l_Page_081.txt
8ec25bf1f47ad22fcba6161b4761ccc2
5b28dbf39c975851e1dd030258c37db087a2175b
9672 F20101203_AACAPP cotsonika_l_Page_025.jpg
47577a714e73799a4def1699e6699242
977a9e63bc0cc90e50b8f5cc448d4252946d6ac2
83398 F20101203_AACAQD cotsonika_l_Page_040.jpg
c397d6094ec56a3e62c6ba8753687d6d
a2cbe6eb32a1b0d4c29ffb13c3f4682c54678d2a
1601 F20101203_AACBTG cotsonika_l_Page_096.txt
dd656e463dc51dba6be0be3d3c17e3f4
e9bfdb4251941a7a95996fe88b088b1eaeda0404
597 F20101203_AACBSS cotsonika_l_Page_082.txt
ebcbabc81c61d9eddedd0ed444665bff
f86f63e194ec2502a4135be27c679cc0bbe774bd
101061 F20101203_AACAPQ cotsonika_l_Page_027.jpg
10a7810bfc3f8595ad51f3ca4eaf07c7
41e41175f2967b6585d390b2d5f3bddd3425539f
100044 F20101203_AACAQE cotsonika_l_Page_041.jpg
c66993a87942e7e94bd8def84cee593f
d821a50285fda74f9db7a11d30320c1330cbf8fe
1478 F20101203_AACBTH cotsonika_l_Page_097.txt
98717fdd49c5961c21a06aa9fb9b1efb
11c78dea42612cfffbec56a9bb9740bba20bc633
1241 F20101203_AACBST cotsonika_l_Page_083.txt
e9a2701afc8c5dc5057e5af940dac126
70e8ad9fd8d32f11d9fb8b54cb34a354e51e0e2b
108374 F20101203_AACAPR cotsonika_l_Page_028.jpg
c42d6bdf42b0ffe3389039a14d5799dc
d2b808420d845d2a8a754d7903b56fd7a9d95570
60690 F20101203_AACAQF cotsonika_l_Page_042.jpg
dd448b69b85a6b370cfdf3cf06efea1a
ed01978fbc3fa3099a03572c236d73c4a6326c6f
1423 F20101203_AACBTI cotsonika_l_Page_098.txt
5d54331b2fc890cb28c6b058bdb5be92
c90f1fe80760677cc32f269c52eba206d88c9aa2
2737 F20101203_AACBSU cotsonika_l_Page_084.txt
61cd358c883ee08bdf88a073b0131563
f40990e1a4c453af7f035bba922789ee08b6b1cc
101222 F20101203_AACAPS cotsonika_l_Page_029.jpg
d25ab00a1443752e34f24231512ba2bf
f1c98482766ed9f82625f88bea413844bf6b623d
134790 F20101203_AACAQG cotsonika_l_Page_043.jpg
dc42b492a126ae9c5940a8fc3debf82f
cca222b74c385e1d002bea5b3bec5b040a186741
842 F20101203_AACBTJ cotsonika_l_Page_099.txt
e18f51038897f102a5185094ef5746b8
1f4408cbab1279b210e0c2d4abf3d8b342c2a6d5
F20101203_AACBSV cotsonika_l_Page_085.txt
989d8f3ac9c4fe1f95496823be76e790
243fb066d35ef792f11d371306d81265ecc47cee
73697 F20101203_AACAPT cotsonika_l_Page_030.jpg
fbde32916615c766c8bea3948c166e2b
8a41b69a4335a6d5ea3283ebe8b928cca3962729
56573 F20101203_AACAQH cotsonika_l_Page_044.jpg
917d8864fb46fd4d58d4e0de7d7c42d5
c20b440607993899761102d880ac3afcc7d4466e
1766 F20101203_AACBTK cotsonika_l_Page_101.txt
98a5c3a3bdeb5bf44ce38ffbfe3b0010
f3d70d0f11e02bf7851e4f4e31d428bd488741f7
44 F20101203_AACBSW cotsonika_l_Page_086.txt
6b292d5faafc9c450c389ab6449004ad
e3f4d10843d0c31d9be325e2126bccd7a177e549
108457 F20101203_AACAPU cotsonika_l_Page_031.jpg
c07cf37b663de4a60c50dea0482e9423
8c22e795152dde47522a9b2604a5a4cbb08ad83b
171151 F20101203_AACAQI cotsonika_l_Page_045.jpg
6d0922abba67ef3194db40af69679981
ccb3b39e211194c2a09df57e6eaa681db639a598
1717 F20101203_AACBTL cotsonika_l_Page_102.txt
3702e176bc44ea60b650ad4fca31b55b
e4b9d6f6b59fe18fefb4354b3573224f48a7c4a6
1358 F20101203_AACBSX cotsonika_l_Page_087.txt
8b9682ce20f0b663d20f579a136ea2a0
f3ac0257d761065b5a9a38edbb60f94b74bbf5fd
104278 F20101203_AACAPV cotsonika_l_Page_032.jpg
4f4e99aa87e730db00823c53691b3b4c
8192fb9f5f44ca495aecffe7a2c01c27baa5600e
103601 F20101203_AACAQJ cotsonika_l_Page_046.jpg
61897471fc2e7dc346da99dea9fd20b8
9a7bb9a41db2cf22058de446c35d0ddcf03ece99
1739 F20101203_AACBUA cotsonika_l_Page_117.txt
9980beac35dc9349d4898f41ec2374bf
c91702d602d08e1e04db99c86e17993d122dfc55
1710 F20101203_AACBTM cotsonika_l_Page_103.txt
420d3c373e6f7cdb1c9d960c8cdccf4f
571922a5920d3641f0e8a86fbae51a8a84384eaa
1477 F20101203_AACBSY cotsonika_l_Page_088.txt
bab667292c4d78a9e725be4d8af4de63
e831b59de2878b0a2830aa0e20aef165689d2f04
113652 F20101203_AACAPW cotsonika_l_Page_033.jpg
4636f4c05555eb6c7d421ee0f73c81b3
796356c8ba11b745c17ee2fba8bab537a5d566cf
116089 F20101203_AACAQK cotsonika_l_Page_047.jpg
9f2be8156e0861bec828db43007f27d9
4b6a7fa47124be184de1b43250f4081419434081
2005 F20101203_AACBUB cotsonika_l_Page_118.txt
afdcbd4724d4acfde1dd72a76792f1ac
4a1a3cb7fecfd0678df4bc39e7a936866186c42f
1600 F20101203_AACBTN cotsonika_l_Page_104.txt
ae0a5c5243dd1d6f2c5beba911b6d8c6
00c046ca0851f4ff528b4408a7e448a1da9a2d96
1564 F20101203_AACBSZ cotsonika_l_Page_089.txt
8739c6b61e1aa556b1d83cbd18464249
a049dc0e21bdbb1cc144524a18fb1492337134f4
106315 F20101203_AACAPX cotsonika_l_Page_034.jpg
cb8030090bce4b6a5b117feaa90e51b3
948a251ac649b48564247b90ed446620ba78e967
101532 F20101203_AACAQL cotsonika_l_Page_048.jpg
3064264b92cf610e87c0546e64b86527
fb668c3dc01eaaa9eb52b1f14bf6b48bee2e8e3a
1997 F20101203_AACBUC cotsonika_l_Page_119.txt
d68f191a22b5cd8d22c6d15827dfdafa
125cbc2d74bc577e300a2a2f9980c8713e742596
1687 F20101203_AACBTO cotsonika_l_Page_105.txt
f8f7c1c073e64c2f277ce9b3f1bc5a88
a951c0993fa50ab6ef226711c6b4345217a8a030
46597 F20101203_AACAPY cotsonika_l_Page_035.jpg
bba0596b9a3f8cb835313314c092c436
b5d47a6a4599fa2505f87afcfca9d7b6d4a61e94
98521 F20101203_AACARA cotsonika_l_Page_066.jpg
48c1a92a764b9e5319780f7ad18fb849
bae821b6380b9d88d3c1be67ca23daea641d2b83
109326 F20101203_AACAQM cotsonika_l_Page_049.jpg
4b421ba7be3d21f939a556e8ebd5d928
7bc476c6c5ff6739b5a83ebb1e3a222ddc09a156
2051 F20101203_AACBUD cotsonika_l_Page_120.txt
bc98cdd69df21c500e938c058c3227db
b4c76cf8f9a6bcd052f092db671ccab87122621e
1699 F20101203_AACBTP cotsonika_l_Page_106.txt
3874c68699aa84527520f96ea1fe1e52
483b5d5f0c245212310520c52f1e5030b47a492f
114772 F20101203_AACARB cotsonika_l_Page_067.jpg
09e447a6d5934c4151c7d71850f06541
f308085f76147f21a717016a198d42e9c64562f2
110507 F20101203_AACAQN cotsonika_l_Page_050.jpg
873f07cca3a0074f2de50ee82d6a8158
1b5284ba5d6df79ae975a4820927252b4f60ca6f
2033 F20101203_AACBUE cotsonika_l_Page_121.txt
c407d5b20eee94e16422e5c69dc5ed29
4e864a860d734facc08d05a9f387417a2a17199f
1737 F20101203_AACBTQ cotsonika_l_Page_107.txt
ed4aeaaeadea819d151385c34388a2f1
cede5cae87208dbc351a38a2ff58bf829dca9fa2
112456 F20101203_AACAPZ cotsonika_l_Page_036.jpg
7e64bede6075d323379fda5a0a685932
286e01f268bbc5a914bdd65f1e3e79bc329c863e
110019 F20101203_AACARC cotsonika_l_Page_068.jpg
60f464fc63b35d294e7e5848722a3453
e4178d55fa333a4d4ba8f3f87d80e8cf9a036fe6
109483 F20101203_AACAQO cotsonika_l_Page_051.jpg
8977a713a9807bcc9eabe387b9fa5db6
b075fe59c2f2b24900386677896e1b260883d241
18578 F20101203_AACCAA cotsonika_l_Page_153.QC.jpg
ea6f81ed6746afde31dd3bddcfeda290
0825f0a1de95a095efd170563b672504a4c83b6b
1979 F20101203_AACBUF cotsonika_l_Page_122.txt
da6280871edccb0d6d759e035f5adde5
83602aedb98f06a5abfa909367dfc9c2b60cde65
F20101203_AACBTR cotsonika_l_Page_108.txt
1fe23f809ced7309a59b9314a8e4ae03
57fc933c2afecc6202c505932880e4d418dd7dce
110820 F20101203_AACARD cotsonika_l_Page_069.jpg
f895fd8cfeeba8a03edf3bf686a15d77
cd1d24e4a384d44895831b065227aaab425dbeb6
95542 F20101203_AACAQP cotsonika_l_Page_052.jpg
7df8700cdd8cce20890622d7259eed30
b9c18c8a20c6ead71671053af8a0ef4b09f524be
5321 F20101203_AACCAB cotsonika_l_Page_163thm.jpg
255de05d3363bf485e394e6430ac19f3
e3da2cc78976b23e8f8a6ff08985221de7b53afc
2021 F20101203_AACBUG cotsonika_l_Page_123.txt
b6a43d819446048884eecf1d79349c9d
661aee9087cc4696f6cf19517f835f60aff0afec
2009 F20101203_AACBTS cotsonika_l_Page_109.txt
837a6b7b671050d9b2df137537b394aa
84fa36ed6a92df771d3965378540f3fec4179d2b
108237 F20101203_AACARE cotsonika_l_Page_070.jpg
2fd1dcdd57a20177ce05eb7bd8fded0f
48923359700a7efb35c142e9cf27d69c666878f8
108678 F20101203_AACAQQ cotsonika_l_Page_053.jpg
8857b1252483503fc368525f89a4d99e
324eec8aeac99ac364f73afd609f6765251b7fee
5216 F20101203_AACCAC cotsonika_l_Page_130thm.jpg
6d49bcb2d0fba3873b645f578d31e2f2
63689e53a2995c29159187271919c59b5c1d7f22
1365 F20101203_AACBUH cotsonika_l_Page_124.txt
7db6fc74286fba46720b8359b169f6ac
386f7571be3cb02265baf67dd129733b72c16fb0
1676 F20101203_AACBTT cotsonika_l_Page_110.txt
94af3684b8695948166808c5e1094e12
5101b275b0b806d027de76f980b925e037bd06ca
112517 F20101203_AACARF cotsonika_l_Page_071.jpg
504ba20159a7cf863c32092a27bb5b7e
5a6ffb2c04d141d3d7e98e6a5a99549aa0e8c44a
53946 F20101203_AACAQR cotsonika_l_Page_057.jpg
41a4a462c26431dde6938adc5aba12d3
43f6f82c78409b60f48986191305ca9903a667ff
25631 F20101203_AACCAD cotsonika_l_Page_175.QC.jpg
caa998b523076419f1d1a2f684e63605
a48a4cbe82dd4f7655e1872a8d0d92b7740872e9
1485 F20101203_AACBUI cotsonika_l_Page_125.txt
feab92fc8629e284c30e3e237e465a16
1e03e3af299a23ab4589a9833b9664e60be8567f
1678 F20101203_AACBTU cotsonika_l_Page_111.txt
58697bf2732f283bc5e6b7db59890f80
911d985ab5895e13a22a8b88daefe8136a27e560
103952 F20101203_AACARG cotsonika_l_Page_072.jpg
b5cc55ad1dec007edeb9bffb58118efe
9fcdfe357eb4e03ca7dea09c64ed0ac60250bf2e
69055 F20101203_AACAQS cotsonika_l_Page_058.jpg
76d6c0e431c147487b980fa48304ec95
db9f827739b1fbab31b531e2b2ac072dd52dd869
5100 F20101203_AACCAE cotsonika_l_Page_138thm.jpg
68992d4c5658955aaea818f018b82b48
f1c8cf098029f2ff2bf5f6674be7f0056fe5cdb6
1713 F20101203_AACBUJ cotsonika_l_Page_126.txt
777ff46d409cc47da31c305d0bde4367
475fdcc33aa002b5647ca0ae4c77210d2aed69ce
F20101203_AACBTV cotsonika_l_Page_112.txt
d54a16f16ee326a2bb4a33bcd72c0457
8697e8c021f342362b05e1bdb83d8dc776610bf0
104021 F20101203_AACARH cotsonika_l_Page_073.jpg
0406e1012e7ce548414201a1647e53b1
baf9760783dcc9aa69282d50ccc75f95ae131bcb
45100 F20101203_AACAQT cotsonika_l_Page_059.jpg
2ad7f94dcb9e1102aa8f5fbace89557a
ba736a67719f42ad3e8cc1e2dca735785156fa26
1848 F20101203_AACCAF cotsonika_l_Page_188thm.jpg
c21694a12ab3d6b258e40f494859d01b
1ed6544e9d5750f6188a94922a4b82e9964fca2d
1770 F20101203_AACBUK cotsonika_l_Page_127.txt
959684f71e9001eaa09314c5f4c4dddc
6b8a42f0fd05a8f92b4bfc521dbb99bad5b52bfe
1397 F20101203_AACBTW cotsonika_l_Page_113.txt
436e2036001ea1579336511c0fec508a
e857dfd7b7907d9ab20ac8a8a176926ab117e0f9
36258 F20101203_AACARI cotsonika_l_Page_074.jpg
1083801748b60b6e8055fcfd77d2a46e
3e73563b04849cbcbee8d3dfc58bec7c5e1c6811
61869 F20101203_AACAQU cotsonika_l_Page_060.jpg
89cf21bb732bc3ff03efb4edd190388f
410f6c37eca6d10b27bb97324d94fb94b3ec6828
17545 F20101203_AACCAG cotsonika_l_Page_110.QC.jpg
c48500dcaed896e2ff1ecbe695de0de0
f29314b4835e2748f84b7d6e89db9e8b534e7f38
1679 F20101203_AACBUL cotsonika_l_Page_128.txt
44f90b01bbc76716068c6bef2f11b295
e8a5bd056dbcf05d2ff2a5750de11ac2b1928c6a
1973 F20101203_AACBTX cotsonika_l_Page_114.txt
c98be11844e47cd515902b051185db19
8e5c29bdc40d82ca39d903aec0aa3f9e55e11c62
94176 F20101203_AACARJ cotsonika_l_Page_075.jpg
abcd45cf68f274854be385d0464783d0
a2d81aab017f50a4207ee6a7546769123fc3c032
59278 F20101203_AACAQV cotsonika_l_Page_061.jpg
7ce6c65257b8dcc0f5e88bfc5dc33cf7
200c65faa62e65f8ea927b1ad50cb4026e73c4a9
7862 F20101203_AACCAH cotsonika_l_Page_001.QC.jpg
cd9adb24748d8fab457acc19f85d9f16
9cb3cfb9f5e72bb0e773c79de7d891117557ebc8
1488 F20101203_AACBVA cotsonika_l_Page_143.txt
58d96668b864393c64f43e9f7801a6c3
e44282fb3d184f243447009e82b890a7bf8b0859
1491 F20101203_AACBUM cotsonika_l_Page_129.txt
7af54f327baf4369a4e50e841493e010
585b752a574e1753ef39b5fe99fc7c1be0395b6d
1777 F20101203_AACBTY cotsonika_l_Page_115.txt
b1dc1e8512018a717823797c0f40f578
275053a30238391e0dd8b7f5622968c5f479a33e
77233 F20101203_AACARK cotsonika_l_Page_077.jpg
246b986ba4a6e96645e994f0bbcf29fe
efe73ed1a596d68be1fa32c67784ff6b95c830c7
102853 F20101203_AACAQW cotsonika_l_Page_062.jpg
2304e1bb0c4a3ea7033b516b0de80826
903d7d0c260c275e431903cbd75daee1a6a8d268
F20101203_AACBVB cotsonika_l_Page_144.txt
0def37b68d908b0a2835d1b19ce57f60
57a4741c733ae6124fe289e4a33267ac67ff01e1
1856 F20101203_AACBUN cotsonika_l_Page_130.txt
bdd122c6600da179fa0a0eaadac5628b
45837713eec61a04ef00d6987467441d7e889e84
1729 F20101203_AACBTZ cotsonika_l_Page_116.txt
cc720661fadac0e35a70ccd08ae9af99
88b47c9402afba0561e8c08ec1c0575d1d3b8932
52978 F20101203_AACARL cotsonika_l_Page_078.jpg
0ba665a671a3e7bcd2ad3b41c15c2120
8970f214ce7f0abd808ced7351b9dbde3869f548
108749 F20101203_AACAQX cotsonika_l_Page_063.jpg
911ab9fe632b1f3f325de1400f37ce95
e428f27b673c01a0b785b333bea2fa3b6571ac68
8853 F20101203_AACCAI cotsonika_l_Page_008thm.jpg
a7c2c07530a00867a76ddc155ce14554
26156cd05180e48733cdd0e8493445f99756a6fe
1680 F20101203_AACBVC cotsonika_l_Page_145.txt
61bf2dfac4952ff88ba4bd620d584106
e752229f2a5f864c09f5ef4d94f1812300387113
841 F20101203_AACBUO cotsonika_l_Page_131.txt
024281038cb02272a8da0c94e2e60a4e
c50edd5d96bb886db9b88c474fd420a8332366bc
82926 F20101203_AACASA cotsonika_l_Page_096.jpg
176305690c1ae9ee8edf6ece2bc2f8e8
50320b66de518ac935660cf50a98caa8141c25e7
50889 F20101203_AACARM cotsonika_l_Page_079.jpg
4e8a3e1bc13a9b259b547202831e931e
ed75a9b1d3073588040cfa4333797f6fb80ddef6
105618 F20101203_AACAQY cotsonika_l_Page_064.jpg
be517de99f79deb9d87c9457250ee359
36b1ebc5975d9e73738c66a49a9422beda73fae0
8429 F20101203_AACCAJ cotsonika_l_Page_012thm.jpg
f896184739d54f9514d28d654cb76647
6378d05bd8e5a82a7664c417b158ba65d2846e76
1598 F20101203_AACBVD cotsonika_l_Page_146.txt
569f66cc78bfcd594bce90e0b60f728f
de31313c925b5fc84f8fc7fdfc2fa15fad3de45f
1690 F20101203_AACBUP cotsonika_l_Page_132.txt
615b29b235ed0465288d9cb5f9e463b8
febdefb689120e72e60db24f545992781acef5a4
77288 F20101203_AACASB cotsonika_l_Page_097.jpg
be00afa6849ccdaa9312b202fd2eab9d
f0737e2a24d85e1474cebfa9188e80dba2fb8ea9
93147 F20101203_AACARN cotsonika_l_Page_080.jpg
01b90f0b2d501d5e1f8ddc23a9c57ef5
c4bd816782da922b9f6305e447ddfa581a5e86fc
99935 F20101203_AACAQZ cotsonika_l_Page_065.jpg
6d2d41b0d9a0b42eed1620b028e37447
cf3eaf439c946d6570ca86b0c17e23ac16fb5b37
5644 F20101203_AACCAK cotsonika_l_Page_019.QC.jpg
e7254f0c7b2657fd3a801d1de916b99e
28849330fb054fd34d64a2fa02751dd191f65be3
2084 F20101203_AACBVE cotsonika_l_Page_147.txt
0b05fb940b102bc01972b2d8d7711221
40f911d204bac12b811bc3ac9a9b24e3da5735f9
1506 F20101203_AACBUQ cotsonika_l_Page_133.txt
83ab5dd643b7f98ea150a3b135755739
9c3773d284b5fadbdec556c4d5765753d0aca8f3
73447 F20101203_AACASC cotsonika_l_Page_098.jpg
94a459a7c9e437cead95b7059a3f6378
fe64a99efd39cf87b3c3e48e8ff47458453a2298
47439 F20101203_AACARO cotsonika_l_Page_081.jpg
67bcb77f20ef4c0a05a1ba6436ede3c8
df9ef052ae69aeca1a67cddb4ee17ca5f3c5833a
F20101203_AACCBA cotsonika_l_Page_013thm.jpg
2777408393394875408bd8adb75a2456
6d637f5c69c0c74120bb07d1921ff1746ba6e13f
283906 F20101203_AACCAL UFE0017936_00001.xml
995272fe62646468935205e70bac4024
3a3723a1a510006c5a411b5c13f8a1c64baf510d
1408 F20101203_AACBVF cotsonika_l_Page_148.txt
fd979d5adfee95d33f422a66833ffd0f
1dc5cf2e0fbab04491cba1e8cb056c2c9c9a4c99
1407 F20101203_AACBUR cotsonika_l_Page_134.txt
ac3a7f371b0ca1027715a8327b3d93ef
0ab8b015f4f4cce068d1af9f2c881807f4e5af1c
45039 F20101203_AACASD cotsonika_l_Page_099.jpg
e92cc9788003e19b57364e562a6113a0
70d491cdd3d89f96e3325e27983defa5e06f994e
97883 F20101203_AACARP cotsonika_l_Page_082.jpg
3e149f93991eeb93362999661032f63a
cb94632c2724d5edb26acf8bb9549ed66496b48c
9114 F20101203_AACCBB cotsonika_l_Page_014thm.jpg
195925bf361c16d86999f311df67c431
f3002ebccad2a881c307d6ba0dff513e84c7bec6
1692 F20101203_AACCAM cotsonika_l_Page_002.QC.jpg
47b71d8b4ee2b814edee3d148eb8cdb4
0a7cfe72b18b1461308a59db71896d8a3491f224
F20101203_AACBVG cotsonika_l_Page_149.txt
683f1fcbca759a3cde45a865218a4278
969613a59a2d1f5753f8f1a81c9123e19fca22ec
1442 F20101203_AACBUS cotsonika_l_Page_135.txt
2b9ceca325b8ed7022c04653cc7a2c50
a249b781be27fb96a10df3c19fc977a3861a6bc3
6249 F20101203_AACASE cotsonika_l_Page_100.jpg
27f297c293eb3d6a68b13df8293ab9f1
ad25c4fb4b0df6ad31e3941542faf8e411796975
67613 F20101203_AACARQ cotsonika_l_Page_083.jpg
3db19aa9f3fec133beaf4321ca0b6b0d
da8aca82b6364afdff7947e7385c330a5d2239f8
37079 F20101203_AACCBC cotsonika_l_Page_015.QC.jpg
ff43bcc20041fb99b88c18237ea51734
1ff01e7955916ffba9cf1870bb3ef9bb363e7554
986 F20101203_AACCAN cotsonika_l_Page_003.QC.jpg
40e74d70d33f916a13f53d364302b92d
fd575c814b3e5a2e7f45d2539c1b3954b20c4111
F20101203_AACBVH cotsonika_l_Page_150.txt
ac4c1db437892aca923fc8427533ea67
6fe7d3619046ea3c2e3478eb42b00b111b837fb8
1942 F20101203_AACBUT cotsonika_l_Page_136.txt
60b6a74e033756b347af8d4b1c67a49b
ab2f3e4be060a8576850e99c8818ab6c17a818a1
63495 F20101203_AACASF cotsonika_l_Page_101.jpg
2d890416e97361af748cda844f139c60
d969be11c121439635d9341f6009f9e4083ed2da
123418 F20101203_AACARR cotsonika_l_Page_084.jpg
1f9b16e74f50e3dbdde22263bbfc8fef
be362cfbee60d57d23c151ebd0183cb21e271e2c
26024 F20101203_AACCBD cotsonika_l_Page_016.QC.jpg
32c53c4f6467df91934cd18e3b69baeb
4ba229e19ad91c7701557b2c7d461ef080872d16
448 F20101203_AACCAO cotsonika_l_Page_003thm.jpg
e0b24cc99e98bd9949927fb4a8508cc4
d7f87c3de62663a116d3f861db547434bbdf5723
1495 F20101203_AACBVI cotsonika_l_Page_151.txt
2d2a95edb0de92187aedc6bfb6ed93cc
f8de2b148dbbbfa06f9117599c3348156afc38f1
1638 F20101203_AACBUU cotsonika_l_Page_137.txt
4f44dd253847bd630b6a0177613c41b3
08584c2d85bc14ffef52afa0009496e0322b3c09
55772 F20101203_AACASG cotsonika_l_Page_102.jpg
ecc424c6613b7fbf97d437568b844bd3
52c22ffcf4d292dbf97b1a5aa2ee7219e87c4754
4757 F20101203_AACARS cotsonika_l_Page_086.jpg
e4c43be128214693ff78a5642a0b1b26
9f86dae17ec22267c0c7fa9342142c0347adb433
6340 F20101203_AACCBE cotsonika_l_Page_016thm.jpg
09f1b509641d4887f9a0db8752da4e3d
c888b9aff2c353f77da4f805b58bf409a4007453
22042 F20101203_AACCAP cotsonika_l_Page_004.QC.jpg
49a70abad9400af8fa7ea648b0c4e065
b252ede09c381555c842bd926c5e7dcc7b5e822f
1441 F20101203_AACBVJ cotsonika_l_Page_152.txt
79bf34c44b27050c32b5ca871cce5935
6501c55178562fcb08960ede41b6c19a440aa5ff
1668 F20101203_AACBUV cotsonika_l_Page_138.txt
c1ea307e8e142950093a217706e4dad4
7d0f5fe28d5c8f669bc29c2eb11c4b1043717e51
71403 F20101203_AACART cotsonika_l_Page_087.jpg
c43b490f4cdf4fbedf8f0a7e287acefe
b9d1c5713d50c625d3335dcad9bea3964ab5fc6c
56798 F20101203_AACASH cotsonika_l_Page_103.jpg
8b96404849f78e8b680fe9fc29a0f1c5
65932f834629dbcf203a3e757ba8297408e23b2e
32588 F20101203_AACCBF cotsonika_l_Page_017.QC.jpg
3d93a6b45d13e70ac96f4cc80fd8b594
4be43f80bf0013a637f3423a2a655c76d51fe64f
5647 F20101203_AACCAQ cotsonika_l_Page_004thm.jpg
2d6a7a9ded5cf70ec8d87e82d4c55ff2
09d82dd245146a45ea12829f072dea9761d1d3d2
1724 F20101203_AACBVK cotsonika_l_Page_153.txt
9cc2d13669441685f913658d52612a67
74e68986cc28f0737ff94273c268121d829a08f5
1603 F20101203_AACBUW cotsonika_l_Page_139.txt
a789ff70b9b4931aab4494ffcfccceb5
18ab7ab84510057623043cd6d9c97e75bc97e81e
81487 F20101203_AACARU cotsonika_l_Page_089.jpg
0bec268259c42c5eab27bebdfd886963
96795b4befb31b53fa3ee82cd8951b92aa60702b
57805 F20101203_AACASI cotsonika_l_Page_104.jpg
c22ce7efd5753c6f24e8019459ee9eeb
a35e420de11596d903dab2de2b4f35b11713e56c


Permanent Link: http://ufdc.ufl.edu/UFE0017936/00001

Material Information

Title: Petrogenesis of Andesites and Dacites from the Southern Juan de Fuca Ridge
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0017936:00001

Permanent Link: http://ufdc.ufl.edu/UFE0017936/00001

Material Information

Title: Petrogenesis of Andesites and Dacites from the Southern Juan de Fuca Ridge
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0017936:00001


This item has the following downloads:


Full Text





PETROGENESIS OF ANDESITES AND DACITES
FROM THE SOUTHERN JUAN DE FUCA RIDGE




















By

LAURIE ANN COTSONIKA


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2006

































Copyright 2006

by

Laurie A. Cotsonika


































To my family.









ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Michael Perfit, for his patience and guidance

throughout this proj ect, and Dr. Matthew Smith for the support and help he' s given me in order

to complete this. I would also like to thank the Monterey Bay Research Aquarium Institute for

providing use of their equipment and facilities and the crew and officers of the Western Flyer, as

well as the pilots of the ROV Tiburon, for the hard work they put in during the cruise to the Juan

de Fuca Ridge. I would like to thank Dr. Debra Stakes and Dr. Jim Gill for lending their support

and expertise on the cruise and with interpreting my data. Dr. W. Ian Ridley deserves my thanks

for all the help and analytical support provided in Denver and Dr. Paul Wallace for providing the

volatile data. I would also like to thank George Kamenov for the help and analytical support

given while processing my trace element data.

I would like to thank my family, especially my parents, Art and Linda, and my brother and

sister, Nick and Elizabeth, who provided much needed emotional support and understanding. I

would also like to thank all my friends in the Geological Sciences department at University of

Florida.












TABLE OF CONTENTS


page

ACKNOWLEDGMENTS .............. ...............4.....


LIST OF TABLES .........._.... ...............7....__........


LIST OF FIGURES .............. ...............8.....


AB S TRAC T ............._. .......... ..............._ 10...


CHAPTER


1 INTRODUCTION ................. ...............12.......... ......


Regional G eology ................. .... ... .... ........... ...............1
Previous Studies of Highly Fractionated Suites Recovered at MOR ................ ..................14


2 STUDY AREA AND SAMPLE RECOVERY ................. ...............20...............


T73 5 Dive Ob servations ................. ...............21........... ...


3 ANALYTICAL METHODS .............. ...............27....


Maj or Elements ................. ...............27........... ....
Trace Elements .............. ...............28....


4 PETROGRAPHY AND MINERAL CHEMISTRY .............. ...............32....


Basalts ................. ........... ...............32.......
Andesites and Dacites ................. ...............32........... ....


5 MAJOR AND TRACE ELEMENTS .............. ...............48....


Basalts ............... .. ....._ ...............48...

Maj or and Minor Elements ........._...... ...............48..__... ....
Trace Elements .............. ...............50....
Andesites and Dacites ........._...... ...............52...__........

Maj or and Minor Elements ........._._.. ..... .___ ...............53....
Trace Elements .............. ...............53....


6 DI SCUS SSION ........._._.. ..... .___ ...............62.....


Comparison to Other Evolved Suites .............. ...............62....
Dive T73 5 S ampl es............... ...............64
Fractional Cry stallization............... ............6
M agm a M ixing ................ .. .. ... .... ............ ...............7
Partial Melting/Assimilation Fractional Crystallization (AFC) .............. ....................7












7 CONCLUSIONS .............. ...............84....


APPENDIX


A T73 5 DIVE LOGS ............ ..... ._ ...............86..


B PHASE CHEMISTRY FOR T735 LAVAS ...._.. ...._._._._ ......._.__. ...........0


C MAJOR AND TRACE ELEMENT DATA FOR T73 5 LAVAS ........._._ ..... ....._..........159


D PETROLOG RESULT S .............. ...............165....


LIST OF REFERENCES ............ ..... ..__ ...............178..


BIOGRAPHICAL SKETCH ............ _...... ._ ...............188...










LIST OF TABLES


Table page

1: Accepted values for maj or element standards. ................ ......... ...................3

2: ICP Trace element standards. 2005-2006 analyses of ENDV (ran as sample) together
with other MORB samples (drift 1 first sample after the standards)............... ...............3

B-1: Pyroxene compositions determined from microprobe analyses. ............. ....................10

B-2: Plagioclase compositions determined from microprobe analyses. .................. ...............132

B-3: Olivine compositions determined from microprobe analyses. ............. ......................154

C-1: Maj or and trace element data for Dive T73 5 samples ................. ............... 160..........

D-1: Results from Petrolog. Results assume QFM at 200 bars of pressure and sample T73 5-
G35 as the parent composition............... ..............16










LIST OF FIGURES


Figure page

1 Map of the Juan de Fuca Ridge ................. ...............17..............

2 Overview of MBARI dives and rock cores on the southern Cleft segment since 2000. ...18

3 Overview of the dive track taken during Tiburon Dive 73 5 ................ .. ......_. ........24

4 Profile map of dacite dome morphologies and evolved sample locations............._._.. ......26

5 Examples of basaltic lava morphologies seen during dive T73 5........._.. ..........._.......3 6

6 Plain polarized and cross polar views of glomeroporphyritic texture in T73 5-G23..........36

7 Dacite dome lava morphologes............... ..............3

8 Plagioclase oikocryst surrounding several randomly oriented clinopyroxene
chadacrysts in sample T73 5-G10 ........._._.._......_.. ...............37..

9 Element map of poikilitic texture seen in T73 5-G10, in this case, a plagioclase
oikocryst surrounding low-Ca pyroxenes .............. ...............38....

10 Point compositions of pyroxene phenocrysts in T73 5-G9 and T73 5-Gl2 are plotted
to show zoning patterns. ............. ...............39.....

11 Oscillatory zoned clinopyroxene in sample T73 5-G9. ....._.._.._ ......_.._ ........._.....40

12 Skeletal clinopyroxene grain with a lacey reaction rim surrounding the crystal, this is
also indicative of rapid crystal growth. ....__ ......_____ .......__ ...........4

13 Populations of zoned pyroxenes ................ ......................... .................42

14 Olivine and plagioclase glomerophyric cluster ................. ...............43...............

15 Element map of skeletal fayalite crystal in sample T73 5-Gl2 ........._.._.. ....._.._.........43

16 Rare (<1% of the sample) euhedral zircon phenocrysts seen in samples T73 5-Gl2
and T73 5-Gl9 were discovered through microprobe analyses ................. ................ ...44

17 Plain polarized light (left) and crossed polarized light (right) views of a basaltic
xenolith in sample T73 5-Gl l....._.. ............... ...............45. ...

18 Element maps of a basaltic xenolith in sample T73 5-Gl2 .........._.._.. .......__. ..........45

19 A coarser grained xenolith, found in T73 5-G10, is composed of plagioclase, An34 -
An35, and fayalitic olivine, Fols............... ...............46..










20 Myrmekitic intergrowth of quartz and plagioclase .................... ............... 4

21 AFM Diagram comparing Smith, 1994 and Stakes, 2006 samples to dive T735
samples............... ...............55

22 Maj or element plots comparing previous studies of the Cleft segment (Smith et al.,
1994; Stakes et al., 2006) to dive T735 samples............... ...............56

23 Trace element plots comparing previous studies of the Cleft segment (Smith et al.,
1994; Perfit, unpublished) to dive T735 samples. ............. ...............58.....

24 The primitive mantle normalized (McDonough and Sun, 1995) spider diagram
displays the depletion of several key trace elements in the evolved glasses compared
to the basalt compositions. .............. ...............60....

25 The primitive mantle normalized (McDonough and Sun, 1995) REE plot shows the
two distinct groupings within the sample group. .............. ...............61....

26 Comparing maj or element variations in the T73 5 lavas to other evolved suites ..............75

27 Maj or element liquid lines of descent. .............. ...............77.....__.__ ..

28 Cumulative percentage of phases plotted against melt temperature (oC). .................. .......79

29 Trace element liquid lines of descent ................. ...............81........... ..

30 Mixing models calculated using a standard mass balance equation (Langmuir et al.,
1978). ............. ...............8 2....

31 Comparison of T73 5 C1V and Cl/K ratios versus MgO. ........._._......___ ........._....83









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

PETROGENESIS OF ANDESITES AND DACITES
FROM THE SOUTHERN JUAN DE FUCA RIDGE

By

Laurie A. Cotsonika

December 2006

Chair: Michael R. Perfit
Major: Geology

The Cleft segment and the ridge-transform intersection (RTI) of the Southern Juan de Fuca

Ridge have been investigated during three cruises of Monterey Bay Aquarium Research

Institutes' (MBARI) Research Vessel (R/V) Western Flyer beginning in 2000. A total of 53 rock

cores and 276 precisely located rock or glass samples were collected during sixteen dives with

the remotely operated vehicle (ROV) Tiburon. These ROV dive samples and observations allow

us to test models regarding the magmatic evolution of this segment and the relationships between

specific tectonic and morphologic features and magmatic processes. An extremely wide range of

N-type mid-ocean ridge basalt (MORB) lavas were recovered which are, on average, more

evolved (lower MgO) off-axis, away from the present neovolcanic zone, and towards the RTI.

During dive T73 5 we investigated a region of unfaulted, curved volcanic ridges that overshoot

the Blanco Transform and 39 samples of lava ranging from ferrobasalt to andesite and dacite

(SiO2 = 50.1 to 66.9 wt.%; Mg# = 49.9 to 9.7) were recovered. The highly evolved lavas were

recovered from two large constructional domes comprised of unusually large pillow flows, and

extremely blocky, vesicular flows similar to some terrestrial silicic domes. Some of the

andesite-dacite hand samples are extremely vesicular with elongate vesicles (1-10 cm) in a

glassy matrix. Mineral assemblages are dominated by microphenocrysts of ferroaugite and









ferropigeonite, with lesser amounts of sodic plagioclase and FeTi oxides. Rare zircon, fayalite

and myrmekitic intergrowths of plagioclase and quartz are present. A few of the more magnesian

phenocrysts (xenocrysts?) exhibit fine normal zoning whereas more Fe-rich crystals exhibit fine

reverse zoning. Additionally, inclusions of quenched basaltic material appear within some of the

evolved lavas. These samples represent an extensive and unique set of some of the most highly

fractionated ocean floor rocks that have ever been recovered; particularly from such a well-

documented setting. Fractional crystallization models which predict over 80% crystallization do

not adequately explain the maj or element chemistry of the silicic lavas and most incompatible

trace elements exhibit significant enrichments relative to predicted concentrations. The highly

evolved nature of the dacites, crystal zoning patterns and the presence of basaltic inclusions

suggest the lavas are the result of mixing between two crystal bearing end-members, i.e. a typical

basalt and a rhyolite likely generated by extreme amounts of fractional crystallization. The

andesitic and dacitic lavas also have elevated C1f levels that range from 4000-6000 ppm. While

the Cl-/K levels are enriched they do not indicate that significant amounts of crustal assimilation

have occurred.









CHAPTER 1
INTTRODUCTION



Over 60% of the Earth' s magma flux, > 21 km3/yr, ~3 km3/yr extrusive and ~18 km3/yr

intrusive, takes place at mid-ocean ridges (MOR) (Chadwick and Embley, 1994; Perfit, 2001),

however less than 1% of the total seafloor total area has been sampled or studied in much detail

(Perfit and Chadwick, 1998) and that 1% has been concentrated upon ridge crests. Only a few

studies have focused on the broader area surrounding the immediate region of the ridge axis, and

therefore most investigations have been focused within a narrow neovolcanic zone centered at

the ridge axis. Studies centered on the ridge axis have generally not directly addressed the

processes that occur away from the ridge axis and at ridge-transform intersections (RTI). It has

recently been hypothesized that the areas 5-20 km off of the ridge axis possibly make a greater

contribution to the overall magma flux than previously thought (Goldstein et al., 1994; Graham

et al., 1996; Hekinian et a., 1999; Johnson et al., 2000; Klingelhofer et al., 2001; Zou et al.,

2002). Though published data regarding lavas erupted off-axis and at RTI's is sparse, it has been

suggested that greater amounts of fractional crystallization and assimilation can occur at these

locations. Limited magma recharge can lead to less homogenization of magmas at these

locations compared to the main axial magma body, allowing for more diverse and evolved lava

compositions to be erupted onto the oceanic floor (Christie and Sinton, 1981; Fomari et al.,

1983; Perfit and Fomari, 1983; Perfit and Fomari, 1983; Juster et al., 1989; Perfit et al.., 1994;

Perfit et al.., 1999; Stoffers et al., 2002).

In this thesis, field observations together with petrologic, major and trace element data are

utilized to determine the geochemical characteristics and petrogenesis of highly evolved lavas

recovered from the region of the intersection of the Juan de Fuca Ridge (JdFR) with Blanco









Fracture Zone (BFZ) (Figure 1). Lava samples recovered in 2004 during dive T735 of the ROV

Tiburon operated by the Monterey Bay Aquarium Research Institute (MBARI) represent an

extensive and unique set of some of the most highly fractionated oceanic rocks that have been

recovered from such a well-documented setting. This, in conjunction with the extensive

sampling of the Cleft segment of the southern JdFR and the associated geochemical database,

make it an ideal sample set to explore the magmatic processes involved in the petrogenesis of

samples from the RTI.

Regional Geology

The JdFR in the northeast Pacific is an intermediate spreading rate ridge (56 mm/yr full

rate) that has been extensively studied beginning in the 1960s (Raff et al., 1961; Johnson and

Holmes, 1989; Embley et al., 1991; Smith, 1993; Perfit et al., 1994; Smith et al., 1994; Perfit et

al., 1998; Perfit, 2001; Karson et al., 2002; Tiemey, 2003; Stakes et al., 2006). It is located

approximately 440 km (~23 8 nm) off of the coast of Washington and Oregon and spans almost

500 km between the Blanco and Sovanco Fracture Zones.

The JdFR has been divided into seven second-order ridge segments that have distinct

morphological characteristics (Embley et al., 1991; Embley et al., 2000; Smith et al., 1994;

Chadwick et al., 2005). The Cleft segment (Figure 2) is the southernmost segment with its

northern terminus at ~45003'N and its southern terminus at 44027'N where it intersects the

Blanco Fracture Zone (BFZ) (Embley et al., 1991; Smith et al., 1994). The Cleft segment has

recently been volcanically active and has proved to be an important area for detailed

investigations of submarine volcanology, hydrothermal activity, eruption rates, and MOR

petrogenetic processes. Chadwick and Embley (1994) summarized studies of several mid-ocean

ridge basalt (MORB) lava flows believed to have erupted in 1983 and 1987 along the axis of the

Cleft segment and estimated, following Crisp, (1984) that the average extrusive output along the









whole Cleft segment is 0.003 km3/yr. Extrusive activity was determined to be bimodal with

sheet flows preceding a voluminous eruption of pillow flows (Embley and Chadwick, 1994).

The overall extrusive layer of the Cleft segment has an average thickness of 3 50 m and varies

from 200 to 550 m in thickness (McDonald et al., 1994) while depth to the axial magma chamber

(AMC) varies from 1.9 km under the southern Cleft hydrothermal vent systems to 2.23 km under

the northern hydrothermal fields (Canales, 2006). There is a strong correlation in the Cleft

segment between degree of fractionation and latitude, as lavas are generally more mafic to the

north and more evolved toward the southern terminus (Christie and Sinton, 1981; Smith et al.,

1994, Stakes et al.. 2006).

Since 2000, 53 rock cores and 276 rock and glass samples have been recovered from the

Cleft segment using the Remotely Operated Vehicle (ROV) Tiburon (Stakes et al., 2006; Figure

2). Overall, a wide range of normal incompatible element depleted MORB (N-MORB) lavas

were recovered from the entire length of the Cleft segment. The most highly evolved basalts and

a few high-silica lavas were recovered off-axis, away from the neovolcanic zone, and near the

RTI. In 2000, a sample of MOR, low-potassium dacite was recovered by rock core from a small

topographic dome in an area of the Cleft segment characterized by what appear to be curved

ridges and volcanic cones that overlap the westernmost part of the Blanco Transform and appear

to extend on to the Pacific plate. The extremely rare occurrence (or at least recovery) of dacite in

a MOR setting was the impetus for a ROV dive in 2004 that explored these features at the RTI,

in a common yet poorly studied MOR setting.

Previous Studies of Highly Fractionated Suites Recovered at MOR

Highly fractionated suites of atypically high silica MOR lavas have been recovered in few

other locations around the globe; these include the Galapagos Spreading Center (GSC), Iceland,

the Pacific-Antarctic Ridge and a few places on the East Pacific Rise. Hypotheses put forth to










explain the formation of these petrologically evolved suites on the oceanic floor include the

"cold edge effect" (Christie and Sinton, 1981; Fornari et al., 1983; Perfit et al., 1983; Johnson

and Holmes, 1989; Juster et al., 1989; Embley et al., 1991; Smith, 1993; Smith et al., 1994;

Juteau et al., 1995; Tiemey, 2003; Herzburg, 2004), bimodal volcanism, similar to that occurring

in intrusive suites in the western United States (Reid et al., 1982; Barbarin, 1990; Ratajeski et al.,

2001), and, more recently, crustal assimilation (Kerr et al., 1996; Bohrson and Reid, 1998;

Garcia et al., 1998; Gee et al., 1998; Hoernle, 1998; O'Hara, 1998; Weis et al., 1998; Perfit et

al.., 1999).

The eastern GSC at ~850W has been extensively studied since the late seventies (Christie

and Sinton, 1981; Anderson et al., 1982; Fornari et al., 1983; Perfit and Fornari, 1983; Perfit and

Fomari, 1983; Juster et al., 1989). The discovery of chemically fractionated (high-silica) lavas

along the GSC first led to the development of the "cold edge effect" hypothesis (Christie and

Sinton, 1981; Fornari et al., 1983; Perfit et al., 1983; Juster et al., 1989). This type of "cold edge

effect" occurs along a propagating ridge axis as the advancing ridge magmatic system intersects

older, relatively cool oceanic lithosphere located on the opposite side of a fracture zone. This

intrusion presumably leads to greater extents of cooling in magma bodies causing the magma to

undergo more extensive crystallization than would occur in typical ridge axis settings where

magma chambers are believed to be more steady-state. This hypothesis is proposed to account

for the common occurrence of MOR ferrobasalts and FeTi basalts at propagating rift tips in the

Galapagos Spreading Center (Christie and Sinton, 1981) and lavas as evolved as andesites at the

RTI at ~850W (Fomari et al., 1983; Perfit et al., 1983; Juster et al., 1989).

Silicic volcanism has also recently been documented on the Pacific Antarctic Ridge (PAR)

(Hekinian et al., 1997, 1999; Stoffers et al., 2002; Haase et al., 2005). Stoffers and others (2002)









discovered different populations of evolved lavas, some consistent with crystal fractionation at

low and high oxygen fugacities, and others resulting from the magma mixing of highly

fractionated magmas and unevolved basaltic melts. They hypothesize that extensive crystal

fractionation occurred in a solidification zone surrounding a magma chamber (e.g. Nielson and

Delong, 1992). Residual silicic magma is proposed to migrate upward along the margin of the

magma chamber and assimilate altered basaltic wall-rock, increasing its oxidation state (Stoffers

et al., 2002). Haase and others (2005), associate the silicic lavas with a ridge axial high; a

location where large volumes of magma are found and where there is associated hydrothermal

venting. They further hypothesize that extensive fractional crystallization, facilitated by cooling

from the hydrothermal vent fields, as well as assimilation of hydrothermally altered crustal

material is responsible for the petrogenesis of the andesites and dacites found on the Pacific-

Antarctic Rise.

Recent studies have also considered the roles of fractional crystallization and crustal

assimilation in hotspot environments such as the Galapagos Islands (Geist et al., 1998) and

Iceland where crustal assimilation has been hypothesized to, in part, contribute for the

heterogeneous nature of Icelandic volcanism (Nicholson et al., 1991; Furman et al., 1995; Gee et

al., 1998).


















































Figure 1: Map of the Juan de Fuca Ridge. The Juan de Fuca medium-rate spreading ridge in
located between the Pacific Plate and Juan de Fuca. It is located approximately 440 km (~23 8
nm) off of the coast of Washington and Oregon and spans almost 500 km between the Blanco
and Sovanco Fracture Zones. The samples described in the thesis were recovered from the
southern intersection of the Juan de Fuca Ridge with the Blanco Fracture Zone, as highlighted by
the yellow box. Map created using the open source java application at www.geomapapp.org.













13?94' 130"52' 131~SO'


O hm

13WB' ~30r6' ~50114'


Figure 2: Overview of MBARI dives and rock cores on the southern Cleft segment since 2000.
53 rock cores and 276 rock and glass samples have been recovered from the Cleft segment using
the Remotely Operated Vehicle (ROV) Tiburon (Stakes et al., 2006). In 2000, a sample of dacite









was recovered by rock core from a small topographic dome in an area of the Cleft segment
characterized by what appear to be curved ridges and volcanic cones that overlap the
westernmost part of the Blanco Transform. Dive T73 5 covered the area where the dacite rock
core was taken (Stakes et al., 2006).









CHAPTER 2
STUDY AREA AND SAMPLE RECOVERY



In 1998 the Cleft segment was surveyed using a hull-mounted 30 k
multibeam sonar and using 2 degree by 2 degree beam resolution, the EM300 achieved a ~30 m

lateral resolution over a 3 km swath width (Stakes et al., 2006). The mapping program was

supplemented by a series of in situ observations made from the ROV Tiburon, operated from the

Research Vessel Western Flyer, during July 2000, August 2002 and August 2004 (Stakes et al.,

2006). A total of 16 ROV dives were completed across the Cleft spreading center; Hyve dives

across the axis near the South Cleft hydrothermal Hields; Hyve dives on the southernmost part of

the segment; two dives on the northern wall of the intersection with the BFZ and dive T73 5, the

focus of this thesis, on the hooked ridges that define the western side of the nodal basin where

the ridge axis intersects the BFZ (Figure 2).

Dive T73 5 utilized the ROV Tiburon in order to observe and sample the area where a

dacitic glass was recovered by piston core in 2000 (Figure 3). The dive was dedicated to

investigating the dome-like features observed in the bathymetry and recovering samples along a

dive traverse that began south of the core location and ended to the west of the southernmost

portion of the Cleft axial valley. A detailed sampling program was carried out as part of the

ROV and surface ship operations during the dive. Lava samples were recovered with the

Tiburon manipulator and details of each sampling locality were documented by the scientists in

charge of observations and sampling during each dive. The ROV observations, contemporaneous

magnetic field measurements, digital still and video images and geologic samples were all

located with respect to the EM300 bathymetry through a real-time ArcView-based navigation

and GIS system using the EM300 bathymetric basemap (Stakes et al., 2006). The bathymetric










data, ship locations and ROV USBL (ultra-short baseline) navigation used a common GPS data-

stream with real-time depth (from the ROV) providing consistent position information within 10-

20 meters of bathymetric features on the EM300 bathymetry. Below, the bathymetric,

observational and sample data are integrated to provide a detailed account of the geology along

dive T735.

T735 Dive Observations

Dive T73 5 began at 14:49 Greenwich Mean Time (GMT) on a talus slope at the southern

end of the dive track (Figure 4) but soon crossed an area dominated by lightly sedimented, intact,

basaltic pillow flows, crosscut by several N-S trending fissures. Basalt samples T735-Gl, at

2187 m, through T73 5-G6, at 2216 m, were recovered from this area, before Tiburon began to

traverse upslope. At 16:05 GMT an area of lava drain-back was observed, with moderate

sediment cover in between the pillows and lobate flows. At 16: 13 an area of more blocky flows

was observed and sample T745-G7, a basalt, was recovered from the top of a small knoll (2213

m). At 16:25 GMT Tiburon dropped over the edge of a fissure and moved into an area of thick

sediment cover with isolated pillows basalts. Sample T73 5-G8 was recovered from this area at

16:39 GMT at 2232 m depth. Tiburon then moved through an area of isolated pillows with <50%

sediment cover, before reaching an area of lightly sediment covered, large striated pillows and

associated sheet flows.

Sample T73 5-G9, a dacite, was recovered at 16:45 GMT from a friable sheet flow at the

base of the first of the domes. Samples T73 5-G10 and G11i, both dacitic in composition, were

recovered from large (> Im in diameter), glassy, striated pillows lightly covered with sediment

observed in conjunction in the sheet flows that flowed down the slope to the southwest. As

Tiburon continued to traverse upslope the flows became more blocky and massive, with vapor

pockets and cavities observed between the layers of rock and very little sediment cover. T73 5-










Gl2, one of the most evolved dacitic samples, was collected at 16:59 GMT from one of the

vapor pockets observed in the area at 2211 m depth and was extremely glassy in appearance.

Tiburon then passed over an area with more local relief, in the form of big, sediment-coated

pillows with bread-crust textures surrounded by smoother pillow tubes.

At 17:06 GMT Tiburon moved into an area of fractured sheet flows where andesite

samples T735-Gl3 (17:09 GMT) and Gl4 (17:22 GMT) were collected. At 17:27 GMT,

smoother pillow forms and tube morphologies dominate with more massive flows between.

Then sample T73 5-Gl5, another andesite, was recovered from a region of highly vesicular (10-

15% vesicles), blocky flows on top of what appeared to be a constructional dome at 17:32 GMT.

The interior of the blocky flows was sampled at 17:46 GMT (T745-Gl6) at 2216 m and is dacitic

in composition. After collecting T735-Gl6 Tiburon began to traverse down-slope to the east.

Pillows with bread-crust texture were observed under moderate (<30%) sediment cover. Down

the slope of the dome at 18:06 GMT sample T735-Gl7, a dacitic pillow fragment, was recovered

from a saddle at 2221 m.

To the east, up, out of the saddle, another dome structure was encountered. At 18:16 GMT,

two small pieces of andesitic pillow crust were collected at 2206 m. Continuing upslope, smaller

pillow forms (< 1 m in diameter) were observed up to the top of the dome at 2198 m where the

morphology was dominated by flattened lobate tubes, some of which appeared to flow down-

slope to the south. Sample T73 5-Gl9, an andesite was recovered from the top of the dome

construct at 18:25 GMT.

At 18:29 GMT Tiburon began the slow descent down-slope over a structurally undisturbed

area consisting of well-formed pillows and tubes with only moderate sediment cover. At 18:36

GMT blockier, broken pillows and tubes were observed along a shallow slope. At 2234 m,









18:3 5 GMT, sample T73 5-G20, a dacite, was recovered from a small pile of talus near an in situ

pillow flow. This flow front of pillows over talus continued for a few 10's of meters before the

slope began to steepen towards the east.

Sample T73 5-G21, a large basaltic fragment from an intact pillow, was recovered from the

base of the steep slope at a depth of 2275 m at 19:01 GMT. A region of heavy sediment cover

with isolated pillows was then traversed. Sample T735-G22, was recovered at 19:16 GMT, 2256

m, from an area of extensive collapse (likely drainback) that was associated with sheet flows

under moderate sediment cover. A sample of an isolated basaltic pillow, T735-G23, was

recovered at 19:26 GMT from 2250 m in depth. Afterwards, pillows began to dominate the

landscape once more; recovery of samples G24 and G25 began at 19:37 GMT and they were

both collected from a haystack at a depth of 2249 m. The northern portion of the dive covered

much more tectonized terrain within a zone of pillow ridges separated by N-S trending fissures.

Samples T73 5-G26 through G39, all basalts, were recovered from pillow to lobate flows within

this region.













DIVE T735 (Cleft Dive #1) AUGUST 31, 2004
13P28'30" 130~'2BDD 1305t730' 13057'00'


13P28'31"


1302B'00" 1302730" 130'27'00"


Figure 3: Overview of the dive track taken during Tiburon Dive 735. Yellow dots denote sample
locations, while yellow bulls' eyes denote the 2000 rock cores. The 2000 rock core was









recovered near the T735-Gl5 sample site. The evolved sample set is represented by samples
T73 5-G9 through T73 5-G20.




















B*























(u pd g

Figure 4:Poiempo aiedm opooie n vle apelctos rfl
esimte frmt edetofteR VBaatsmlsaedsgaebyteludi ons

andeiti sape r eintdb rng rage n aie yre icewt vr it

sample ben nubrd ag hne nth O shaigaentd









CHAPTER 3
ANALYTICAL METHODS



Thirty-nine lava samples were collected from the RTI of the JdFR and the BFZ during dive

T73 5 of the ROV Tiburon during the MBARI research cruise in 2004. Thin-sections were made

of a representative suite of the evolved samples and one basalt recovered during the dive.

Natural glasses were separated and coarsely crushed, and crystal-free glass separates were hand-

picked under a binocular microscope. Evolved lavas had fairly crystalline glass and in picking

those glass chips, crystal clots and phenocrysts were avoided and the least crystalline chips were

chosen for analysis. The crushed glass chips were then ultrasonically cleaned for 10-20 minutes,

in a solution made from equal parts 2.5N reagent grade HCI and 30% H202 in Order to remove

any surficial coatings, such as MnO, adhered to the sample.

Major Elements

Clean glass chips were mounted to thin sections for microprobe analysis, with glass from

UJF internal standard 2392-9, an N-MORB from the East Pacific Rise at 90 50' N, included on

each slide. Major element concentrations were determined on natural glasses using JOEL

electron microprobes at the United States Geological Survey (USGS) in Denver, CO, with the

help of Dr. Ian Ridley, and at Florida International University (FIU) by Dr. Michael Perfit.

Traditional mineral standards were used to calibrate the microprobe analyses and secondary (off-

line) normalizations were completed using the UF standard 2392-2, and the USGS standard

GSC, a synthetic andesite microbeam glass (Riehle et al., 1999). Accepted values for these

standards are given in Table 1. Operating conditions for the microprobe were an accelerating

voltage of 15 keV and a beam current of 20 nA. Probe diameter for mineral analyses was set to

<10 pm and defocused to 20 pm for glass analyses.










Typical precision was evaluated by comparing repeat analysis of UF standard glass 2392-9

(Table 1) which was mounted and analyzed on every probe slide. Percent variation in the 2392-9

analytical values was low, ranging from a one-sigma standard deviation of 6.4% in K20 to

0.13% in the SiO2. SiO2 ValUeS showed strong linear correlations with analysis total and were

corrected to using the following formula, [raw SiO2 value + ((99.7 raw total)*0.4505)], where

the raw silica value has an additional factor added to it consisting of an assumed total (99.7)

minus the raw total multiplied by the slope of the trend-line of raw SiO2 VeTSus the raw total

(0.4505).

Trace Elements

Trace element concentrations were determined at the University of Florida using an

Element 2 Inductively Coupled Plasma- Mass Spectrometer (ICP-MS). Dr. George Kamenov

developed the dissolution and analytical procedures (see below). Sample preparation was

performed at UF in a class 1000 clean lab facility. Standards used included the well-

characterized internal UF standards 2392-9 and ENDV, as well as the USGS standard BHVO-1,

the surface layer of a 1919 Hawaiian pahoehoe flow (Flanagan, 1976). Trace elements measured

by the UF ICP-MS have been determined to be accurate and precise to better than 15% of their

concentration (Table 2).

Phase one of the dissolution process requires that two to three standards encompassing

the likely potential range of the unknown sample concentrations be chosen; for the T735 run

AGV-1 and BCR-2 were used and compared along with two in-house standards, ENDV and

2392-9. Next, tall, clean, hex-cap Savillex Teflon vials were labeled for each sample, including

one blank. Two drops of 4x water were placed in each vial and the scale was zeroed before ~.04

g of either clean glass chips were added to each vial and the precise weight was recorded. In the

clean lab, 1 mL of optima grade HF and 2 mL of optima grade HNO3 were added to each vial









and then the vials were tightly capped and placed in a 1000C oven for approximately 48 hours.

Samples were then dried down on a hot plate (carefully rinsing the caps into the vials with 4x

water) for 12 to 24 hours.

In phase two of the dissolution process, 4 mL of an internal standard (5%HNO3, with Re

and Rh) was measured into each vial. The vials were then capped and heated on the hot plate

overnight.

In order to dilute the samples for analysis 200 CLL of solution was pipetted from each vial

and transferred to a clean auto sampler tube and weighed. Four mL of the same internal standard

was added to each tube and the samples were weighed again. The final dilution factor was

approximately 2000x.

Samples were introduced into the ICP-MS in one-minute uptake times followed by two-

minute washes for each sample. The specific isotopes analyzed were: Sc45, V 1, Cr52, CO59, Ni60,

Cu63, Zn66, Ga69, RbsS, Srss, Y89, Zr90 N 93, Rhl03, Bal137, Lal139, C140, Prl41, Ndl43, Sml49, Eul53,

Gd 5, Tbl59, Dyl63, Hol65, Erl66, Tml69 ybl72, Lu 7, Hf 7, Ta s, Re s, Pb208, Th232 and U238

Four runs were made with four passes per analysis in Medium Resolution mode.

Data were reduced on-line using calibration curves of the standard data acquired during

analyses and drift corrections were mathematically calculated off-line. The ENDV standard was

used for drift corrections during each analytical run; one measurement was taken at the

beginning of the sample series, one in the middle and one at the end of the series. Accuracy and

precision for the T735 analytical run was evaluated by analyzing ENDV standard as a sample

and comparing the results to recent runs of the standard using the same ICP-MS instrumentation

(Table 2). One-sigma standard deviations from the accepted values were less than or equal to

3.6% during these analyses.











Table 1: Accepted values for maj or element standards.


Internal UF Standard 2392-9 Correction Factors


SiO2 SiO2 TiO2 Al203 FeO MnO


MgO CaO Na20 K20 P205


for the averages of each group
average 50 49.49
std dev 0 0.20
% var 0 0.41
2392-9 50.04 50.04
correction
factor 1.00 1.01


for all analyses together
average 50 49.52
std dev 0 0.29


1.28 15.41 8.99 0.15
0.02 0.19 0.05 0.01
1.57 1.22 0.50 5.13
1.31 15.48 9.38 0.18

1.03 1.00 1.04 1.18



1.28 15.41 8.99 0.15
0.04 0.20 0.10 0.02
0.04 1.32 1.07 14.73
1.31 15.48 9.38 0.18


8.23 12.04
0.08 0.06
0.96 0.53
8.50 12.15

1.03 1.01



8.24 12.05
0.14 0.13
1.69 1.06
8.50 12.15

1.03 1.01


2.62 0.10 0.11 0.004
0.03 0.01 0.01 0.001
1.33 6.43 5.59 22.79
2.56 0.09 0.12

0.98 0.92 1.07



2.62 0.10 0.11 0.004
0.06 0.01 0.03 0.003
2.39 11.77 27.06 71.99
2.56 0.09 0.12

0.98 0.92 1.07


% var
2392-9
correction
factor


1 0.58
50.04 50.04


1.01 1.01 1.03 1.00 1.04 1.17


GSC Andesitic Glass Correction Factors


SiO2 TiO2 Al203 FeO MnO MgO CaO Na20 K20 P205 C1V
average 62.11 0.01 13.71 6.27 0.02 3.77 4.99 3.58 3.63 0.04 0.01
std dev 0.45 0.02 0.21 0.10 0.01 0.07 0.05 0.33 0.05 0.02 0.00
% var 0.73 146.27 1.56 1.57 56.90 1.73 1.10 9.11 1.30 49.46 73.04
GSC 62.05 0.01 14.20 6.33 0.03 3.89 5.00 4.06 3.60
correction
factor 1.00 0.85 1.04 1.01 1.75 1.03 1.00 1.13 0.99


Final Correction Factors Used


SiO2 TiO2 Al203 FeO MnO MgO CaO Na20 K20 P205


Evolved
RX
Basalts


1.1
0.97


1.04 1.1 1.03


1.07











Table 2: ICP Trace element standards. 2005-2006 analyses of ENDV (ran as sample) together
with other MORB samples (drift 1 first sample after the standards).



Std %~
ENDV Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Avg dev error
(ppm) (g/mL) (g/mL) (g/mL) (g/mL) (pLg/mL) (pLg/mL) (pLg/mL)
Sc 38.00 39.20 39.30 37.63 38.41 37.55 36.66 39.18 38.27 1.02 2.67
V 275.60 278.82 278.53 269.72 268.44 268.33 262.17 275.48 271.64 6.17 2.27
Cr 290.20 297.94 292.23 279.24 285.96 264.80 262.94 277.86 280.14 13.13 4.69
Co 34.40 35.06 34.82 34.32 35.28 35.06 34.74 35.84 35.02 0.48 1.36
Ni 76.20 77.93 77.24 75.36 76.13 76.13 75.21 78.85 76.69 1.36 1.77
Cu 72.40 72.86 73.02 70.64 72.69 71.41 70.83 72.38 71.98 1.00 1.39
Zn 73.15 78.03 79.20 78.95 78.93 77.45 78.75 77.78 2.13 2.74
Ga 17.20 17.19 16.76 16.91 16.73 17.07 16.86 17.02 16.93 0.17 0.99
Rb 4.38 4.54 4.40 4.37 4.53 4.24 4.26 4.38 4.39 0.12 2.68
Sr 155.80 162.21 156.59 155.15 154.02 153.99 155.42 154.84 156.03 2.87 1.84
Y 32.40 31.65 32.62 32.47 31.96 31.31 31.23 32.81 32.01 0.64 1.99
Zr 113.40 112.58 114.04 112.39 111.96 110.72 110.07 105.06 110.98 2.91 2.62
Nb 6.46 6.62 6.47 6.39 6.34 6.29 6.26 6.46 6.40 0.12 1.93
Ba 64.20 69.90 73.28 70.87 72.80 71.86 71.27 68.19 71.17 1.74 2.44
La 6.02 6.01 6.02 5.97 5.92 5.93 5.90 6.00 5.96 0.05 0.78
Ce 15.60 15.90 15.69 15.40 15.41 15.49 15.52 15.72 15.59 0.18 1.18
Pr 2.46 2.52 2.53 2.44 2.44 2.46 2.44 2.49 2.47 0.04 1.59
Nd 12.60 12.63 12.56 12.60 12.43 12.49 12.21 12.78 12.53 0.18 1.43
Sm 3.76 3.85 3.78 3.76 3.75 3.79 3.74 3.78 3.78 0.04 0.94
Eu 1.34 1.36 1.33 1.33 1.32 1.34 1.33 1.33 1.34 0.01 0.92
Gd 4.88 4.80 4.94 4.88 4.83 4.77 4.76 4.97 4.85 0.08 1.71
Tb 0.86 0.84 0.86 0.86 0.85 0.84 0.83 0.86 0.85 0.01 1.54
Dy 5.28 5.31 5.35 5.29 5.21 5.18 5.21 5.36 5.27 0.07 1.41
Ho 1.10 1.13 1.13 1.10 1.09 1.13 1.11 1.13 1.12 0.02 1.75
Er 2.98 3.13 3.08 2.97 3.03 2.99 2.99 3.02 3.03 0.06 1.84
Tm 0.48 0.48 0.50 0.48 0.49 0.48 0.48 0.49 0.48 0.01 1.51
Yb 3.12 3.12 3.14 3.11 3.15 3.10 3.05 3.12 3.11 0.03 1.03
Lu 0.48 0.49 0.47 0.49 0.49 0.46 0.46 0.48 0.48 0.01 2.83
Hf 2.88 2.85 2.95 2.88 2.83 2.79 2.78 2.63 2.81 0.10 3.56
Ta 0.38 0.37 0.37 0.39 0.37 0.38 0.38 0.39 0.38 0.01 2.34
Pb 2.00 2.06 2.05 1.97 1.97 1.97 1.99 2.07 2.01 0.05 2.26
Th 0.46 0.47 0.46 0.46 0.46 0.46 0.46 0.45 0.46 0.01 1.45
U 0.19 0.20 0.19 0.18 0.19 0.19 0.19 0.19 0.19 0.00 2.07









CHAPTER 4
PETROGRAPHY AND MINERAL CHEMISTRY

Basalts

Approximately two thirds of the samples recovered from dive T73 5 were basaltic in

composition, although all are moderately to highly evolved compared to previously published

Cleft MORB lava compositions. Basaltic lava morphologies ranged from pillow tubes to sheet

flows (Figure 5). Basalt hand samples have a thin glass rind with a microcrystalline interior

containing macroscopic plagioclase laths and pyroxene crystals.

A thin section was made of sample T73 5-G23 going from the surface of the hand sample

into the microcrystalline interior. The thin section average ~80% glass with ~20% quenched

microphenocrysts of plagioclase, ranging from 2 3 CL to 2 mm in length, with the average being

~ Imm in the groundmass. Larger glomeroporphyritic clusters comprised of euhedral to

subhedral, Imm long plagioclase laths, An64-An7o, with simple Carlsbad twins and stepped,

irregularly spaced twinning, and inter-grown anhedral crystals of augitic clinopyroxene (Figure

6) are present, with an Mg# of~-81.3, with the Mg# being defined as 100* [Mg/[Mg+Fe]].

Andesites and Dacites

Of the 39 lava samples collected, 12 were found to be high-silica lavas, five of which are

andesitic (52% < SiO2 <63%) and seven are dacitic (63%
lavas were recovered from two large constructional domes, approximately 34m in height, ~200

to 500 m in diameter, comprised of atypically large vesicular pillow flows, and extremely

blocky, vesicular flows (Figure 7). The flows appeared to be fresh, due to the lack of significant

sediment cover and the thinness of the manganese coating on the recovered hand samples. Some

of the andesite-dacite hand samples are extremely vesicular (10 15%) with elongate vesicles

(1-10 cm) in a glassy matrix. In hand specimen, the samples are composed of a glassy matrix









with small crystals and crystallites (~20 30%) of swallowtail plagioclase, pyroxene and

fayalitic olivine as well as larger semi-circular fragments of darker basaltic xenoliths scattered

throughout. Phase chemical data are presented in Appendix 2. Andesite and dacite assemblages

are dominated by microphenocrysts of ferroaugite and ferropigeonite, lesser amounts of sodic

plagioclase and FeTi oxides, and rare fayalite, zircon and myrmekitic intergrowths of plagioclase

and quartz. Fine-grained basaltic xenoliths are included within all of the evolved lavas.

Matrix glass is variable in color ranging from light to dark brown, nearly opaque, in

proximity to the basaltic xenoliths. Individual euhedral to rounded, subhedral plagioclase laths,

Anls An59, WeTO found scattered throughout the thin-sections and comprise ~5 10% of the

volume of the samples. Crystals have lower first order colors and simple Carlsbad twins or

stepped, irregularly spaced twins. Rare plagioclase oikocrysts with clinopyroxene chadacrysts

are present in one sample, T735-G10 (Figure 8, 9). Plagioclase crystals have two distinct

compositional groupings in the evolved samples. Plagioclase ranging from An69 to An83, OCCUT

in xenolithic clots and as large xenocrysts that appear to be in disequilibrium. More sodic

plagioclase, An38 An66, Occurs in the smaller, equilibrium crystals and in the myrmekitic clot.

Most individual clinopyroxene crystals exhibit finely zoned rims surrounding a more

massive core. Several examples of both normal and reverse zoning are observed in the

clinopyroxene grains in the evolved rocks (Figure 10). Rare clinopyroxene crystals with

oscillatory zoning, or hourglass sector zoning were also observed in these samples, a

phenomenon that has been associated with rapid crystal growth (Carpenter, 1980; Shelley, 1993).

Additionally, the observed sector zoning is commonly combined with fine concentric zoning of

crystal rims (Figure 11). Skeletal clinopyroxene crystals, also indicative of rapid crystal growth,

exhibit lacey, almost spongy, reaction rims (Figure 12). The cores of the pyroxene crystals fall









into two distinct groupings, with one group exhibiting cores that range from Mg# of 56.0 58.6,

and the other range in core Mg# from 8.24 12.6. In addition to these two groupings, there is

also a population of individual pyroxenes, Mg# ranging from 29.3 30.21, whose compositions

correspond with those of the rims in the zoned pyroxenes (Figure 13).

Rare fayalite crystals, Fos Fols, were found in several of the evolved lavas. In plain

polarized light (PPL) these crystals are rounded or embayed and have a deep green color (Figure

14). In crossed polars (XPL) the fayalite crystals displayed high second order colors and a low

2V angle of ~500. Skeletal fayalite crystals have lacey to spongy reaction rims similar to those

seen on the quenched clinopyroxene crystals (Figure 15).

Rare (occurring <1% by volume of the sample) subhedral zircon crystals were found in

several of the dacitic to rhyodacitic samples (Figure 16). Zircons were first discovered through

microprobe analyses and later identified by their high relief and very high birefringence in thin

section. Zircon grains occur almost exclusively as individual grains with no apparent connection

to xenoliths or crystal clots.

Two populations of xenoliths were found in the evolved samples. Rounded xenoliths of

basaltic composition with chilled margins and microcrystalline interiors (Figure 17; Fiigure 18)

and coarse-grained xenoliths composed entirely of large crystals, > 1mm, with rough, irregular

shaped edges. The basaltic xenoliths are composed of plagioclase, An32 An71, and pyroxene,

Mg# ranging from 56.7 to 80.9, and range in size from <1 mm to several mm in diameter.

Larger crystals (>0.5 mm in length) are usually confined to the center of the xenoliths and can

become subophitic in texture with large pyroxene crystals partially enclosing smaller plagioclase

laths. Basaltic xenolithic inclusions have very dark, glassy to microcrystalline interior edges that









extend around the circumference of the inclusions. An optically clearer (PPL) and less

crystalline and darker zone, ~. 1-.5 mm thick, surrounds many of the xenoliths.

The coarser grained xenolith, found in T73 5-G10, an andesite, is composed of plagioclase,

An34 An35, and fayalitic olivine, Fols (Figure 19). It exhibits no mineralogical reactions along

the margin, but the edges of the xenolith are ragged and look like they were ripped from the

country rock.

A single, resorbed myrmekite of plagioclase, An27 An30, and quartz was found in sample

T735-Gl9 (Figure 20). This is typically a plutonic texture that occurs primarily through grain-

boundary reactions in slowly changing conditions (Shelley, 1993). The myrmekite is rounded

and ~1 mm in diameter, with worm-like intertwining of plagioclase and quartz.

























Figure 5: Examples of basaltic lava morphologies seen during dive T73 5. Left: Lobate flows at
the top of a fissure. Lobates usually form at the edges of sheet flows when the lava flow slows
enough to form a fluid core under a solid crust. Right: Pillows, ~lm or less in diameter, and
pillow buds under moderate sediment cover. Pillows form when the extrusion rate of the lava is
slow enough to form a thick outer crust around the erupting lava.



















Figure 6: Plain polarized and cross polar views of glomeroporphyritic texture in T73 5-G23.
Thin sections average ~80% glass with quenched microphenocrysts of plagioclase scattered
throughout the groundmass. The larger glomeroporphyritic clusters were comprised of euhedral
to subhedral, Imm long plagioclase laths, An64-An70, and inter-grown anhedral crystals of augitic
clinopyroxene, with an Mg# of ~81.3.

























Figure 7: Dacite dome lava morphologies. The dacite domes display much different types of lava
morphologies then those seen where basaltic samples were recovered. Left: Blocky, vesicular
flow at the edge of one of the dacite domes. The large amount of vesicles seen is a by-product of
the degassing lava. Right: Extremely large pillow tubes (>1.5m in diameter) were also noted
cascading down-slope on the domes.




















Figure 8: Plagioclase oikocryst surrounding several randomly oriented clinopyroxene
chadacrysts in sample T73 5-G10. This poikilitic texture can be indicative of plutonic origins and
it indicates that the oikocryst mineral had a much more rapid growth rate then the enclosed
chadacrysts (Shelley, 1983; Higgins, 1998).







































Figure 9: Element map of poikilitic texture seen in T73 5-G10, in this case, a plagioclase
oikocryst surrounding low-Ca pyroxenes. Element map were completed using X-ray imaging on
the JOEL microprobe. Element labels are under each picture and count scales are located on the
right-hand side of the images. Brighter colors indicate higher concentrations of a particular
element. The gray-scale image is the backscatter image in which elements with higher mass are
displayed brighter.





Zoning Patterns

40
35
30
25


15


10

0 0.2 0.4 0.6 0.8 1 1.2
Relative Distance from Core to Rim



Figure 10: Point compositions of pyroxene phenocrysts in T735S-G9 and T735S-Gl2 are plotted to
show zoning patterns. Oscillatory (points 1-4; blue line) and reverse (points Sand 6; pink line)
zoning can be seen in the pyroxene from T735S-Gl2 (right). The pyroxene from sample T735S-G9
(left) also demonstrates compositional zoning through its hourglass pattern.





































Figure 11: Oscillatory zoned clinopyroxene in sample T735-G9. This crystal texture is indicative
of rapid crystal growth. Note the fine concentric zoning on the edges of the crystal and the
reversely zoned pyroxene to the upper left of the large crystal. Mapping details in Figure 9.







































Figure 12: Skeletal clinopyroxene grain with a lacey reaction rim surrounding the crystal, this is
also indicative of rapid crystal growth. Mapping details in Figure 9.





fU
60
50

403

20
10

0 0.2 0.4 0.6 0.8 1 1.2
Relative Distance from Core to Rim



Figure 13: Populations of zoned pyroxenes. There are two distinct populations of zoned
pyroxenes. One group exhibits cores that range from Mg# of 56.0 58.6, and the other range in
core Mg# from 8.24 12.6. In addition to these two groupings, there is also a population of
individual pyroxenes, Mg# ranging from 29.3 30.21, whose compositions correspond with
those of the rims in the zoned pyroxenes.


T735-12


Relative Distance from Core to Rim


T735-9

























Figure 14: Olivine and plagioclase glomerophyric cluster. Olivine is fayalitic in composition.


Figure 15: Element map of skeletal fayalite crystal in sample T73 5-Gl2. Note the lacey reaction
rim. Mapping details in Figure 9.





Figure 16: Rare (<1% of the sample) euhedral zircon phenocrysts seen in samples T735-Gl2 and
T73 5-Gl9 were discovered through microprobe analyses. Zirconium concentrations in the
evolved samples range from 397 to 672 ppm. They were later able to be recognized in thin
section due to their high relief and birefringence.









;"I (gFi~hq" ~ *:i~Cr Q1;
't-r~rl r
.ei'?
.SC1~X:~
r
,2 \ \-~51''57~

:uF
~ilj
-r ~;PI LS~
? g-r
.r
!:I
r$,
_X;I Y:~1 r
r ; '1/+

Figure 17. PPL (left) and XPL (right) views of a basaltic xenolith in sample T73 5-G1 i. Basaltic
xenoliths typically are rounded with slightly coarse grained interiors and chilled margins.


Figure 18: Element maps of a basaltic xenolith in sample T73 5-Gl2. Note the high Mg content,
indicating the basaltic nature of the xenolith. Mapping details in Figure 9.








































Figure 19: A coarser grained xenolith, found in T73 5-G10, is composed of plagioclase, An34 -
An3 5, and fayalitic olivine, Fols. The edges of the coarse grained xenolith are rough and there
are no signs of mineralogical reactions. Mapping details in Figure 9.






















































Figure 20: Myrmekitic intergrowth of quartz and plagioclase. The PPL view of myrmekitic
intergrowth of plagioclase, An27 SO, and quartz found in sample T73 5-Gl9. Element maps
of the myrmekite display the wormy intergrown texture of the quartz and sodic plagioclase.
Mapping details in Figure 9.





47









CHAPTER 5
MAJOR AND TRACE ELEMENTS

Basalts

Mid-ocean rdge basalts recovered from the Cleft segment exhibit geochemical

characteristics consistent with typical normal, incompatible element-depleted MORB (N-

MORB). Representative basaltic glass compositions are given in Table 3, with the complete data

presented in Appendix 3.

Major and Minor Elements

Basalt compositions are fairly evolved overall with nineteen of the twenty-three basalts

recovered being ferrobasalts (FeOT > 12.0 wt.%). Basalt compositions are tightly grouped with

MgO ranging from 7.55 weight % in the most primitive basalts to 6.29 wt% in the most evolved

basalt recovered (Table 3). The Al203 ValUeS decrease from 13.8 wt%, in the most primitive

basalt sampled, to 12.8 wt% in the most evolved. The CaO concentrations also fall, with

abundances decreasing from 11.8 wt% to 10.9 with decreasing MgO. The FeOT and TiO2 ValUeS

increase with decreasing MgO from 10.8 to 12.9 wt% and 1.61 to 2.26 wt% respectively.

Concentrations of Na20, K20 and P20s also increase with decreasing MgO, rising from 2.45 to

2.69 wt%, 0.12 to 0.20 wt% and 0. 14 to 0.25 wt% respectively. Lastly, MnO shows a loose

overall decline, from 0.24 to 0.18 wt% with decreasing MgO, the trend is scattered due to the

low concentration of the oxide in the samples. The maj or elements within the recovered basalt

suite all plot smoothly relative to MgO (and each other) with no maj or inflection points.

The T735 basalts have compositions similar to other southern JdF basalts but have limited

variation compared to the all of Cleft segment basalts, of which two hundred and eighty-six

samples were analyzed for major elements (Smith, 1994; Stakes et al., 2006; Figure 21).

Overall, Cleft segment MORB show relatively little maj or element chemical variation at any









given MgO content, forming well-defined geochemical trends consistent with differentiation via

low-pressure fractional crystallization of similar parental lavas (Smith, 1994; Figure 22).

Previously published data for Cleft segment lavas range in MgO from 10.5 wt%/ in the most

primitive basalts, to 4.41 wt% in the most evolved samples and reported Mg#'s range from 70.8

to 32.6. However, the maj ority of reported data exhibit MgO contents greater than 6 wt%, with

sixty samples extending the compositional range to the more evolved compositions. The maj or

elements for the T73 5 basalts all plot near the center of the overall range of MgO values (Figure

22).

The Al203 ValUeS of the T73 5 basalts are lower at a given MgO than in the existing Cleft

data set which ranges from 17.7 to 12.2 wt% with falling MgO (Smith, 1994; Stakes et al.,

2006). For example, at an MgO of ~7 wt% Cleft basalts range from 13.5 to 14.9 wt%, whereas

T735 samples range from 13.1 to 13.3 wt%. Similarly, FeOT COncentrations of T735 samples,

which range from 12.9 to 10.8 wt%, form a trend within the Cleft data trend which ranges form

7.92 to 16.3 wt% with falling MgO (Smith, 1994; Stakes et al., 2006). At an MgO of ~7 wt%

FeO ranges from 11.5 to 13.1 wt% in Cleft basalts, while T735 samples have a range of 11.07 to

1 1.22 wt%. Within the overall Cleft segment data, a group of 2 basalts, 8 ferrobasalts and one

andesite form an apparent subsidiary trend towards lower FeOT COncentrations, from 13.4 to 11.6

wt%, at values of MgO, ranging from 5.98 to 4.46 wt. % (Figure 22) while most of the Cleft data

exhibits an increase in FeO to~-16 wt%. It is important to note that the group of low FeO

samples exhibits a trend with decreasing MgO towards the compositions of the andesite and

dacite samples described below.

The TiO2 ValUeS for dive T73 5 basalts and ferrobasalts are relatively high particularly the

more evolved end of the ferrobasalts, which have values from 1.60 to 1.99 wt% TiO2 at a MgO









value of ~7 wt% and ranges from 2.02 to 2. 18 in the T73 5 dive samples. In both the Cleft

basalts, which range from 0.89 to 3.15 wt% TiO2 with falling MgO, and the T73 5 samples the

TiO2 trend in the basalts is one of increasing concentration with decreasing MgO. As with the

FeO data discussed above, there are several Cleft samples in the ferro-basalt/andesite range that

display relatively low TiO2 concentrations trending towards the compositions of andesites and

dacites recovered in dive T735. The CaO and Na20 data for T735 basalts and ferrobasalts fall

in the center of the data trends established by the Cleft samples, which range from 12.6 to 8.47

and 2. 11 to 3.38, respectively, with decreasing MgO. The observed trends of decreasing CaO and

increasing Na20 with decreasing MgO are also smooth, without inflection points.

Overall, the maj or element trends observed in the data support fractional crystallization of

plagioclase and olivine, indicated by the trend of decreasing Al203, with decreasing MgO

coupled with a trend of increasing CaO/Al203 with decreasing MgO observed in the most mafic

samples. It is likely that clinopyroxene enters as a crystallizing phase when the magma reached

approximately 7.9 wt% MgO, as indicated by the inflection point in CaO/Al203 (Figure 22)

which steadily decreases thereafter.

Water and CO2 COncentrations for two of the T73 5 basaltic lavas, T73 5-G23, and T73 5-

G35, the most mafic sample recovered, are 0.27 and 0. 17 wt. % and 118 and 101 ppm,

respectively. Chlorine concentrations for the T735 basalts range from 90 to 410 ppm with

decreasing MgO.

Trace Elements

Trace element concentrations in the T735 basaltic lavas lie within the compositional ranges

of other Cleft basalts (Figure 23). While the T73 5 basalts display little to no trend on their own,

when included with the reported Cleft data overall trends are apparent. Zirconium increases in a

tight, smooth pattern with decreasing MgO from 102 to 142 ppm in the T735 basalts and from









51.4 to 607 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Yttrium also displays

an increasing concentration with decreasing MgO ranging from 37.6 to 53.4 ppm in the T73 5

samples and from 21 to 220 in the Cleft samples. Tantalum values plot in a tight group ranging

from 0. 15 to 0.29 ppm in the T735 data with a slight, but poorly defined, increasing trend vs.

decreasing MgO while the Cleft samples range in Ta concentration from 0. 11 to 0.90 ppm, with

most samples plotting within ~.1 ppm at given MgO contents. Lanthanum, Sm and Lu all show

well defined increasing trends plotted against decreasing MgO when included with the Cleft

samples. Lanthanum ranges from 3.40 to 5.24 ppm in the T735 samples and from 1.9 to 21 ppm

in the Cleft samples, respectively, Samarium ranges from 3.49 to 4.87 ppm and from 1.8 to 17.6

ppm respectively, and Lu ranges from 0.58 to 0.81 ppm in the T735 basaltic samples and from

0.30 to 3.44 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished). Rubidium and Nb

show increasing trends that are less well-defined and show greater scatter than the trace elements

discussed above (Figure 23) when plotted against decreasing MgO. Rubidium ranges from 0.73

to 1.3 1 pmm in the T73 5 basaltic samples, while ranging from 0.24 to 5.8 ppm in the Cleft

samples and vary by ~2 pmm at ~7 wt% MgO ~2.7 ppm at an MgO of ~5 wt%. Niobium ranges

from 2.88 to 4.76 ppm in the T735 basalts and from 1.4 to 18.7 ppm in the Cleft samples (Smith,

1994; Perfit, unpublished).

Strontium and Cr both decrease in concentration with decreasing MgO (Figure 23).

Strontium shows an overall decrease with decreasing MgO, ranging from 118 to 99.7 ppm in the

T735 basalts and from 150 to 82.4 ppm in the Cleft samples (Smith, 1994; Perfit, unpublished).

The spread of the main body of data is fairly wide with the Sr ranging from 98 to 128 ppm at an

MgO of ~7.2 wt. percent. Chromium shows a clearer trend ranging from 287 to 98.3 ppm with









decreasing MgO in the T735 samples and from 584 to 11 ppm in the Cleft samples (Smith, 1994;

Perfit, unpublished).

Vanadium shows an increasing trend in the Cleft data until ~6 wt. percent MgO (full range:

8.69 to 3.41 wt. percent MgO) when there is an inflection point and a downward trend toward the

more evolved compositions. Vanadium ranges from 395 to 330 ppm in the T735 basalts and

from 569 to 185 in the Cleft samples (Smith, 1994; Perfit, unpublished). The inflection point

seen is consistent with the introduction of titano-magnetite as a crystallizing phase.

On a trace element primitive mantle-normalized plot (McDonough and Sun, 1995; Figure

24), the samples show highly incompatible element depletions and negative Sr (4.73 to 5.6 times

primitive mantle) and Pb (6.44 to 9.26 times primitive mantle) anomalies. Concentrations of the

most highly incompatible trace elements are at 10 times primitive mantle or below.

Primitive mantle-normalized Rare Earth Elements (REE) diagrams (Figure 25),

(McDonough and Sun, 1995), show that the samples have Light Rare Earth Element depleted

smooth patterns with concentrations at about 5 to 10 times primitive mantle. The light REE

show a slight depletion in relation to the heavy REE, and slight Eu anomalies, attributed to

plagioclase crystallization. Lanthanum/Samarium ratios range from 0.63 to 0.74 in the MORB

samples recovered, while Ce/Yb ranges from 0.78 to 0.89. Overall, there is an increase in total

REE with decreasing MgO content.

Andesites and Dacites

The more evolved rocks create an extension of the tholeiitic differentiation trend seen in

the recovered MORB. Representative evolved glass compositions are given in Table 3, with the

complete data presented in Appendix 3.










Major and Minor Elements

In the chemically fractionated lava suite, SiO2 TangeS from 62.0 to 66.9 wt%, over an

MgO wt% range from 1.94 to 0.6, with an Mg # range of 15.9 to 6.1; significantly lower than the

nearby basalts and all of the previously recovered samples from the Cleft ridge axis. Aluminum

oxide values range from 13.6 to 12.2 wt% with decreasing MgO and are slightly scattered

(Figure 22). Titanium oxide values range from 1.4 to 0.81 wt% and FeOT TangeS from 7.28 to

10.3 wt%, both oxides falling in loosely constrained trends with MgO content. The offshoots

from the FeTi-basalts found in the overall Cleft dataset, are most pronounced in the TiO2 and

FeOT variation diagrams as they trend towards the more evolved compositions. Calcium oxide

falls from 5.4 to 3.4 wt%/ with MgO, in a very tight trend along the same line as the basalts. The

Na20 also has a tightly constrained grouping with a range in weight percent from 4.36 to 5.07

that plots very smoothly along the same trend line as the basalt values. The K20 values increase

from 1.02 to 1.30 wt% with falling MgO concentration.

H20 concentrations in the evolved samples range from 1.5 to 2.0 wt% while CO2

concentrations were below detectable limits. Chlorine concentrations range from 4100 to 6100

ppm with decreasing MgO.

Trace Elements

Incompatible trace elements increase in concentration in the evolved lava samples as

MgO concentrations fall and form a trend wherein the single dacite glass, that was recovered in a

rock core taken in 2000 (RC 10) is comparable and is therefore included in the discussion of the

evolved samples from Dive T735. Zirconium rises from 397 to 737 ppm in evolved samples

with decreasing MgO. Yttrium rises from 158 to 240 ppm and Ta concentrations rise from 0.927

to 1.6 ppm with falling MgO in the evolved samples. Lanthanum concentrations rise with falling

MgO from 22.4 to 33.8 ppm in the evolved lavas. The concentration of Sm ranges from 13.8 to









21.1 ppm with falling MgO and Lu ranges from 2.38 to 3.65 ppm in the evolved lavas. The Rb

and Nb concentrations increase as well with falling MgO in the evolved samples with Rb rising

from 9.17 to 12.7 ppm and Nb rising from 14.0 to 21.2 ppm in the samples.

Strontium and Cr concentrations both decrease with decreasing MgO in the T735 samples

(Figure 23). Strontium falls from 92 to 67.4 in a loosely defined trend and Cr falls from 54.1 to

1.84 ppm in the evolved lavas, overall the trend is much tighter and more distinct then seen in the

Sr. Scandium and V both decrease in concentration in well-defined trends and extend the trends

in the Cleft samples after the inflection point at ~6 wt. percent MgO. Scandium falls from 23.4

to 15.9 ppm in the T73 5 samples, and the V falls from 178 to 47.6 ppm.

Trace element concentrations show much more variation in the mantle-normalized and

REE diagrams than observed in the T73 5 basalts, consistent with certain phases differentiating

out of the melt (Figure 24). Large negative anomalies in Sr (3.19 to 4. 12 times primitive

mantle), P (5.13 to 19.3 times primitive mantle) and Ti (3.62 to 6.21 times primitive mantle) are

consistent with the crystallization of plagioclase, apatite and titanomagnetite, respectively, from

the melt. All of these phases are present in the evolved samples.

The primitive mantle-normalized REE diagram displays an overall smooth, flat pattern

within the evolved samples (Figure 25). Lanthanum/Samarium ratios range from 0.98 to 1.12,

while Ce/Y ranges from 1.0 to 1.1. Europium displays an increasing negative anomaly (7.03 to

9. 16 times primitive mantle) as MgO decreases which is consistent with the continued

crystallization of plagioclase out of the magma.











































*Smith, 1994; Stakes, 2006
O Dive T735


0 10 20 30 40 50 60 70 80 90 100 MgO


Na20+K20


Figure 21: AFM Diagram comparing Smith, 1994 and Stakes, 2006 samples to dive T735
samples. Basalts follow a typical tholeiitic differentiation trend. The evolved samples from dive
T73 5 form an extension of the tholeiitic trend taken to >80% crystallization, after a gap of no
data. The evolved samples have lower concentrations of FeO due to the crystallization of FeTi
oxides out of the melt.


AFM Diagram
FeO

o














0 Smith, 1994
SStakes,2006
+ Elve 735

















0 2 6 8 10 1:

MgO


S2 4 6 8 0 1

MgO

















+'i I f


S2 6 8 10 1:

MgO


70









45





.55














0.5


rl
+~-

'-

I
~:i

"""""""'""'"""'~

"""""""'""'"""'~


2


2


Figure 22: Maj or element plots comparing previous studies of the Cleft segment (Smith et al.,

1994; Stakes et al., 2006) to dive T735 samples.


______I______


______I______

______I______


______I______
*i
t
~......*...j..............

Pi


I:


C

fC
h

i~* '































2 6 8 10 12
MgO


















2 6 8 10 1;


) 2 4 6 8 10 12
MgO















Si .


Srnith, 1994
SStakes, 006
+ Elve 735
14

12 -- -- --

1 0 .. .. .. .. ..


L


1.4



1

O .8

0.6

0 .4


a.
D


2


Figure 22: Continued.


...


I
-


-~*........i..............

-I~F~:j~~~~~~~~~~~~~~
i


_............1............r

-17


I

I

______I_____

.~C..........i..............


bP~ ~il*



















E~mith,. 1994; Perfi unpublished
*Dhre T735


D 2 6 8 10 12








igo



















D 2 6 8 10 12


i 2 6 8 ID 12











oc k
















] 2 6 B 10 12

Mo






















It


~""""""'"""""""

rl
~""~"''""""""~

I


-*i







-~


I_







I_







I_
~C tt


7CQ


as


gg(


~Ug

XB


aB


Im


p





+s


xl


y


in


Is


ro





o





as



as


um






aB



ICCI



Ct


aJ



Is

E

Icl



s



o






xcl






Im



z 1~4L1


Im






o


D 2 6 B 10 12


Figure 23: Trace element plots comparing previous studies of the Cleft segment (Smith et al.,

1994; Perfit, unpublished) to dive T735 samples.


I


I


'P""""""""""""

*r' I
,~
























-C


1~~~ ....BII I









++





32 6 8 10 12


70



so


D 2 6 B 109 12


en








2m





IED


+5
















D


P 2


8 Io 12


Figure 23: Continued.


Smith, 194; Perfit unpublished





lma41






m
E
m
.L
;f: Clb~
.=
L



E


Rb Ba Th U K Nb Ta La Ce Pb Sr Nd P Hf 1 Sen Ti Tb Y MD


Figure 24: The primitive mantle normalized (McDonough and Sun, 1995) spider diagram
displays the depletion of several key trace elements in the evolved glasses compared to the basalt
compositions. Strontium is incorporated into the structure of plagioclase crystals, while the Ti
depletion is due to the crystallization of titanomagnetite. The P depletion is due to the
crystallization of apatite in the evolved samples. Sample 99RC99 (-) is an andesite recovered
from the coaxial segment and shows the same trend as the evolved samples recovered from the
RTI.


Spider Diagram



















REE Diagram


100 000


,---


_;,--------~ -"=;
C~' .. -==cc-
--h -
h_


_--+


~T~I-l i'jjf
iu --~ rjj
?7; 11 _rri' --i~jjl~~
?7:) i7ii


3'-13 i~3j I~ i-3ii
I~ -- i7 ~i i~~~ J
i c i-


1.000


I La 1.e Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Y




Figure 25: The primitive mantle normalized (McDonough and Sun, 1995) REE plot shows the

two distinct groupings within the sample group. The basalt samples show the typical flat REE

pattern while the evolved glasses have a characteristic Eu depletion from plagioclase

crystallization. The black outline displays the REE range of the Smith, 1994, samples. The

LREE in the evolved glasses are slightly enriched compared to the basalt glasses. Sample

99RC99 shows a similar enrichment trend.


ly
C
m
E
ru
.I:
- 10000
E
e

E
f,









CHAPTER 6
DISCUSSION



The lavas recovered during dive T73 5 represent one of the most complete and evolved

suites recovered from a MOR environment. The atypical composition of the T73 5 suite provides

an opportunity to investigate petrogenetic processes of MORB evolution that have been well

addressed by traditional magma chamber models created for on-axis volcanism that do not fully

explain the petrogenesis of these andesites and dacites. Here we explore several hypotheses in an

attempt to constrain the potential petrogenetic history of this unique suite.

One of the prevailing hypotheses for the petrogenesis of evolved MOR lavas is that they

are formed by extreme fractional crystallization of basaltic magmas, in part due to the "cold edge

effect", an effect associated with MOR lavas erupted close to an oceanic transform fault or an

area where a ridge is propagating into older oceanic crust (Christie and Sinton, 1981; Fornari et

al., 1983; Perfit et al., 1983; Johnson and Holmes, 1989; Juster et al., 1989; Embley et al., 1991;

Smith, 1993; Smith et al., 1994; Juteau et al., 1995; Tierney, 2003; Herzburg, 2004). The ridge-

transform intersection (RTI) of the JdFR and the BFZ is an area where the cold edge effect is

likely to affect the petrogenesis of MOR lavas (Stakes et al., 2006). The Blanco Transform is

approximately ~345 km long from the southern terminus of the JdFR to the northern terminus of

the Gorda Ridge (Chadwick et al., 1998) that results in the axis of the southern Cleft segment

abutting old and cold lithosphere that is approximately 6.3 million years old; hence providing an

environment for extensive cooling.

Comparison to Other Evolved Suites

Although relatively rare in MOR environments, highly evolved lavas and plutonic rocks

(generally known as plagiogranites) have been found in a number of diverse environments that









include fast, intermediate and slow spreading ridges, back-arc basins, and quite a few ophiolites.

A wide range of samples from these environments are compared to the T73 5 suite in Figure 26.

These samples include lavas from the Galapagos Rift (Fornari et al., 1983) volcanic samples

from the Mid-Atlantic Ridge (Hekinian et al., 1997) back arc basin (BAB) samples from the

Southwest Pacific (Nakada et al., 1994), the Lau Basin (Falloon et al., 1992) and the western

Pacific (Bloomer, Smithsonian Institution Volcanic Glass Individual Analysis File, VG no# 9772

9777). Geochemical comparisons have also been made with evolved plutonic samples from

supra-subduction zone ophiolites from California (Beard, 1998), Greece (Tsikouras and

Hatzipanagiotou, 1998; Bebien, 1991), Norway (Pedersen and Malpas, 1984), Newfoundland

(Malpas, 1979), Oregon (Phelps and Ave Lallemant, 1980), Chile (Saunders et al., 1979), Crete

(Koepke, 1986), and Canada (Flagler and Spray, 1991). Four experimental plagiograntic

residual melt compositions were also compared to the T73 5 samples; residual melts from a

gabbro heated to 900 OC and 940 oC (Koepke et al., 2004) the partial melt of a MORB protolith

heated to 955 OC (Dixon-Spulber and Rutherford, 1983) and the partial melt from a hydrous

MORB heated to 950 OC (Berndt, 2002).

SiO2 ValUeS for the T73 5 lavas are generally lower those of plagiogranite compositions at

similar MgO concentrations (Figure 26). SiO2 ValUeS of the evolved T73 5 suite range from 62.0

to 66.9 wt% in samples containing less than 2 wt% MgO compared to plagiogranite samples that

have values that mostly range from 64.5 to 68.13 wt% SiO2. Experimental partial melts of wet

and dry MORB protoliths (~ 9000 9550C) have quite variable SiO2 ValUeS, (60.9 to 65.8 wt%

SiO2) but they all generally display higher MgO then the T735 evolved lavas, with the lowest

MgO value, 1.29 wt%, in the partial melt generated from the dry MORB parent.









In general the T73 5 evolved lavas have lower concentrations of Al203 COmpared to the

maj ority of evolved samples. The T73 5 evolved lavas have a very limited range of Al203 frOm

13.6 to 12.23 wt% compared the global volcanic suite that has values ranging 16.0 to 11.4 wt%,

including some subvolcanic rocks having the highest values at 16.0 and 15.83 wt%. Al203 in the

plutonic suite ranges from 18.1 to 10.4 wt%/. The experimentally derived melts all have

comparatively high concentrations of Al203 Tanging fTOm 20. 1 (gabbro protolith) to 15.41 (dry

MORB protolith) wt% Al203.

The T73 5 evolved lavas are enriched in TiO2 relative to the bulk of the compared evolved

samples. The T735 evolved lavas range from 1.39 to 0.81 wt%/ TiO2 while within the volcanic

suites, the only one with samples of higher value, range from 2.44 to 0.34 wt%. The plutonic

suite displays very low TiO2 ValUeS, which range from 0.84 to 0.30 wt%. Such low TiO2 ValUeS

could be indicative of an island arc signal given that many of these rocks were believed have

been formed in supra-subduction zone environments. The evolved liquid from the MORB

protoliths have TiO2 ValUeS of 1.25 and 1.17 wt%, which lie within the field outlined by the T735

evolved lavas. The gabbroic protoliths both have very low TiO2 ValUeS, 0.36 and 0.12 wt% TiO2.

K20 is extremely enriched in the T73 5 evolved lavas relative to any of the plagiogranite

comparison suites, ranging from 1.02 to 1.30 wt%. Only one sample, a volcanic sample from the

MAR (Hekinian et al., 1997), lies within the field created by the T73 5 samples, with its value

being 1.09 wt% K20.

Dive T735 Samples

During dive T73 5, we documented the presence of two constructive volcanic mounds that

are comprised of massive pillows to blocky, vesicular, silicic lavas. Morphology ranges from

large (>2 m in diameter) pillow tubes, to extremely vesicular (~20% elongate vesicles), blocky









flows, a drastic change in morphology from the small (~lm in diameter), rounded non-vesicular

pillows observed in the surrounding areas where only basalts were recovered.

The petrography and phase chemistry of the evolved samples recovered are indicative of a

complex petrogenetic process. Two populations of phenocrysts were found within the evolved

samples, each exhibiting chemical zoning. Iron-rich pyroxenes, that have core Mg# from 8.24 to

12.6, were reversely zoned while those with Mg-rich cores, ~Mg# of 57.2, exhibit normal

zoning. The rims of both populations approach similar compositions with Mg# ranging from

27.7 to 37.5. Significantly, the rims approach the microphenocryst compositions in the glass

matrix. This petrographic evidence suggests two things;

Mixing between a relatively mafic basalticc) magma and a highly evolved magma, likely

rhyodacitic, each of which crystallized pyroxene before mixing occurred (Barbarin, 1990;

Furman et al., 1995; Perfit et al., 1999; Grove, 2000; Ratajeski et al., 2001). The silicic magma

was relatively dry when it erupted, indicated by the presence of fayalite and Fe-rich pyroxene in

the recovered rocks rather than amphibole (Dixon-Spulber and Rutherford, 1983; Koepke et al.,

2004; Berndt et al., 2005).

Several xenoliths with coarser-grained textures, indicative of slower, crystallization

conditions, are also present in the andesites and dacites. These include rare plagioclase

oikocrysts containing low-Ca pyroxene chadacrysts as well as a coarse-grained xenolith

comprised of plagioclase (An34 An35) and fayalitic olivine, (Fols), present in sample T73 5-G10.

A quartz-plagioclase myrmekitic intergrowth is present in sample T735-Gl9. The presence of

these textural features indicates that that the erupted lava interacted with an evolved plutonic

body or mush zone.









Rounded basalt xenoliths are also present in the evolved lavas. They range in size from <1

mm to several mm in diameter, and have fine-grained to opaque rims. These presence and

texture of these xenoliths basaltic magma intruded/recharged an evolving magma body. The

fresh, mafic material would have been at a much higher temperature then the evolved, viscous

melt it intruded into/mixed with. The high viscosity of the evolved melts would have inhibited

large scale mixing with the fresh mafic material and the temperature difference between the

melts basalticc >1200 oC; dacitic <1000 oC) could explain the fine-grained textures of the

basaltic xenoliths and chilled margins.

Maj or and trace element variations observed in the entire T73 5 suite indicate a bimodal

sample set, that has no samples of intermediate composition (Figure 22; Figure 23) although it

should be noted that most of the basaltic samples recovered around the andesite/dacite domes

have fairly fractionated compositions with many being ferrobasalts (FeO >12 wt.%).

There are a number of different ways that these kinds of rock suites have been

hypothesized to form;

* the extreme fractional crystallization of a MOR magma (Fornari et al., 1983; Perfit et al.,
1983; Juster et al., 1989; Geist et al., 1998; Perfit et al., 1999; Grove, 2000);

* magma mixing between an extremely evolved, possibly rhyodacitic end-member and a
ferrobasalt (Barbarin, 1990; Perfit et al., 1983; Furman et al., 1995; Hekinian et al., 1999;
Perfit et al., 1999; Grove, 2000; Ratajeski et al., 2001);

* partial melting of the hydrated oceanic crust (Dixon et al., 1995; Brandriss et al., 1999;
Berndt et al., 2005);

* assimilation of oceanic crust and assimilation fractional crystallization (AFC) (Bohrson et
al., 1998; Garcia et al., 1998; Gee et al., 1998; Hornle et al., 1998; Grove, 2000).









Fractional Crystallization

Silica rich rocks found in oceanic environments may be formed by extreme amounts of

fractional crystallization (Perfit et al., 1983, Juster et al.., 1989). The Galapagos are a prime

example of an area where the evolved lavas recovered fit the extreme fractional crystallization

model well. Juster et al., 1989, used experimentally determined phase boundaries to model the

fractionation of lavas recovered at 850 W. The results of the experiments determined that the

range of compositions found there were the result of shallow-level differentiation processes and

the higher levels of fractionation and silica enrichment were due to the higher fO2, which allowed

for a titanomagnetite bearing assemblage to begin to crystallize earlier, driving the

concentrations of SiO2 up and FeO and TiO2 down.

To test a fractional crystallization model for the Cleft suite, liquid lines of decent (LLD)

(Appendix 4) were calculated using the program Petrolog (Danyushevsky, 2001) under various

starting conditions (e.g. pressure, oxygen fugacity, different mineral assemblages). Sample

T73 5-G3 5 was chosen as the composition of the parent melt because it is the most mafic sample

recovered in the area were the evolved samples were recovered. The mineral-melt models of

Danyushevsky (1999) were chosen for calculating the compositions of olivine, plagioclase and

clinopyroxene; Ariskin (1993) for orthopyroxene and Ariskin and Barmina (1999) were used for

magnetite compositions. Melt oxidation states along the QFM buffer were determined using the

conditions of Borisov and Shapkin, 1990. Calculations were run at 200 bars and 1 kb of pressure,

in order to simulate the pressure at the seafloor and within the shallow crust (~3 km). All

calculations were executed assuming perfect fractional crystallization in 0.1 wt% incremental

crystallization steps and were typically terminated ~88% total crystallization when certain

components were expended. Using the 200 bar model, which started at 1185 oC and was run at

QFM, the calculated maj or element trends (Figure 27) are fairly smooth with a maj or inflection









point seen in SiO2, Al203, TiO2, and FeO at an MgO of ~3 wt% when titanomagnetite enters as a

crystallizing phase, after ~65% crystallization of the parental melt. Oxidation state affects the

temperature and composition at which titanomagnetite (and ilmenite) crystallizes; higher oxygen

fugacity causes earlier (higher T, less total crystallization) stabilization of oxide phases.

Consequently, the modeled inflection point occurs earlier in the chemical evolution when using

an oxygen buffer higher than QFM. Figure 28 shows the relationship between temperature and

percentages of mineral phases in the crystallizing assemblage from a successful model.

The modeled order of crystallization along a QFM buffer at 200 bars is olivine -olivine +

clinopyroxene -olivine + plagioclase + clinopyroxene -plagioclase + clinopyroxene +

orthopyroxene -plagioclase + clinopyroxene + orthopyroxene + magnetite (Figure 28). The

modeled LLD at QFM corresponds well to the interpreted crystallization order based on

petrographic examination of sample thin sections. The order of crystallization is olivine +

plagioclase -plagioclase + clinopyroxene 1 olivine -plagioclase + clinopyroxene + FeTi

oxides & olivine -plagioclase + pigeonite (or orthopyroxene) + FeTi oxides.

Dacite compositions are predicted to form after approximately 80% crystallization, even

though the phase equilibria used in the Petrolog program are not very well constrained in such

evolved compositions. The results of the models generally agree with the maj or element trends

observed in the dacites. SiO2 ValUeS in the evolved rocks are slightly higher than model

predictions and K20 is over-enriched, while TiO2, Al203 and P20s are lower relative to the

calculated abundances (Figure 27).

Variations in the trace element abundances were modeled for selected elements using the

Raleigh fractionation equation, phase proportions predicted by the maj or element models and

published trace element Kd's (Bougault and Hekinian, 1974; Shimizu and Kushiro, 1975; Duke,










1976; Matsui et al., 1977; Mysen, 1978; Kravuchuk, 1981; Villemant et al., 1981; Colson et al.,

1988; Kloeck and Palme, 1988; Agee, 1990; McKenzie and O'Nions, 1991; Keleman and Dunn,

1992; Hart and Dunn, 1993; Hauri et al., 1994; Nikogosian and Sobolev, 1997; Bindeman et al.,

1998) and also by assuming Kd's of zero for the most incompatible elements. Calculated trends

for several of the incompatible trace elements also seem to follow calculated fractional

crystallization trends (Figure 29) although in order to reach the concentration levels of the most

evolved compositions greater than ~90% crystallization is required. The enrichments observed

in some of the most incompatible trace elements could not be modeled even if the bulk

distribution coefficient was assumed to be zero.

Trace element variations generated with published Kd's are only slightly below the actual

trends of the lavas recovered (Figure 29). Zr, Y and Sm concentrations are well-modeled using

the Rayleigh fractionation equation with a D of zero and the proportions of minerals determined

from the Petrolog models. The La, K and Rb values of the evolved lavas, on the other hand, are

significantly higher than the calculated abundances even using an assumed D of zero, which

would give the maximum enrichment. Modeled variations for Cr, Ni and V compare favorably to

the actual evolved compositions, but the Cr and Ni concentrations of some intermediate to

evolved basalt samples are lower than those in the calculated model. Kd's for Ni and Cr are not

well-constrained for basaltic systems though. Sr and Sc are significantly lower in the evolved

samples when compared to the modeled concentrations.

In general, fractional crystallization seems to adequately (though not entirely) explain the

elemental trends, although models suggest extreme amounts of crystallization (>80%) of an

already evolved basalt parent in order to duplicate the maj or element compositions of the dacites.

With such extreme amounts of crystallization needed in order to model the evolved










compositions, there would be a problem with a crystal-laden melt being able to erupt, as the melt

has progressed well past the solidification front predicted at 40% crystallization (Marsh, 2000).

Magma Mixing

Petrographic evidence supports magma mixing was involved in the petrogenesis of the

evolved suite, and might help to explain some of the discrepancies in the elemental trends as well

as the compositions of some basaltic andesites recovered along the axis of the Cleft segment

north of this study area. Clearly the bimodal pyroxene compositions and extensive amounts of

zoning, as well as chilled basaltic xenoliths observed in all of the evolved samples, point to some

type of magma mixing event or events. The phase chemical variations suggest there was mixing

between a basaltic end-member, possibly as evolved as a ferrobasalt, and a very evolved magma,

possibly as evolved as a rhyodacite or rhyolite, to create the andesitic and dacitic lava samples

recovered. There is no evidence of evolved magma mixing with mafic basaltic liquids.

In order to evaluate the potential role of magma mixing, mass balance mixing calculations

were performed between likely mixing end-member compositions. As the most evolved silicic

end-member(s) is unknown, all mixing lines were calculated using the composition of dacite

sample T73 5-Gl2 (Mg# of 6. 14), the most evolved lava recovered. The three basaltic end-

members chosen were T73 5-G3 5 (Mg# of 37.5, MgO = 7.55 wt%), the most mafic basalt

recovered during the dive, T73 5-G7 (Mg# of 32.3, MgO = 6.79 wt%), a moderately evolved

basalt and T73 5-G32 (Mg# of 29.8, MgO = 6.29 wt%), the most evolved basalt recovered on the

dive. Increments of mixing were calculated for every 10% portion (i.e. 10% of A and 90% of B,

20% of A and 80% of B, etc.) using a standard mass balance equation (Langmuir et al., 1978).

The calculated mixing lines (Figure 30) represent a few of the potential mixing models that are

possible.









Results of the mixing calculations show that the compositions of some of the outlying

samples on the major element plots that did not fit the fractional crystallization models are better

explained by magma mixing. In part, the group of 2 basalts, 8 ferrobasalts and one andesite from

the entire S. Cleft suite that show a trend of decreasing FeO concentrations with decreasing MgO

fall along the mixing line from T73 5-G7 to T73 5-Gl2. Mixing lines calculated using the two

more mafic basalt samples as end-members don't seem to include any outlying basaltic and

andesitic samples in their trends. It could be interpreted that, if mixing was involved in creating

these intermediate outliers, and the evolved compositions they trend towards, that one of the end-

members involved in the mixing would have to be a fairly evolved ferrobasalt or FeTi-basalt,

since the most evolved sample recovered provides the best end-member to explain elemental

trends in the full dataset.

The mixing calculations suggest a mix of 30 40% of the ferrobasalt (T73 5-G32) with 60

- 70% of the dacite (T73 5-Gl2) would be required in order to create the observed evolved

compositions in the T735 suite. The moderately evolved andesites observed in the larger Cleft

dataset would require only about 30% of the dacitic end-member to be mixed with the

ferrobasaltic liquid. The petrology of the samples, and the presence of the myrmekite, zircons,

fayalite as well as sodic plagioclase (Anls) and iron-rich pyroxene (Mg# of 8.24) crystals, as

well as the fine magnesian rims surround Fe-rich pyroxene (Figures 11 and 12) and fayalite

(Figure 15) cores, strongly suggest that there is the possibility of an even more evolved end-

member then T73 5-Gl2 was involved that was mixed back to create the compositions recovered.

Based upon the traj ectory of the mixing lines drawn between the evolved samples and possible

basaltic end-members, the proj ected evolved end member might be expected to have a

composition similar to this: ~67 wt% SiO2, ~12 wt% Al203, 0.75 wt% TiO2, 7.5 wt% FeOT, ~3.0









wt% CaO, ~5.2 wt% Na20 and K20 ~1.4 wt%. All these values were estimated by extrapolating

the current mixing model to an MgO of almost zero.

The trace element compositions also seem to be more supportive of a mixing model, as

crystal fractionation cannot account for over-enrichments seen in highly incompatible elements

such as La, Sm, Zr, and Y where a Kd of zero is needed to approximate the observed values in

the most fractionated lavas (Figure 29). This would however, require that the evolved end-

member was formed by extreme amounts of fractional crystallization (>90%).

Partial Melting/Assimilation Fractional Crystallization (AFC)

Another hypothesis for generating highly evolved melts is to partially melt the basaltic

crust (Petford et al., 2001; Castillo et al., 2002; Coogan et al., 2003) or assimilate country rock

into the melt (Nicholson et al., 1991; Bohrson et al., 1998; Garcia et al., 1998; Gee, 1998;

Hoernle, 1998; O'Hara et al., 1998; Weis et al., 1998; Grove, 2000).

Several studies have shown it possible to produce silicic melts from partially melting

hydrous mafic protoliths (Holloway and Burnham, 1972; Helz, 1973; Beard and Lofgren, 1991;

Kawamoto, 1996, Koepke et al., 2003; Koepke et al., 2004). There is also evidence of anatexis in

plagiogranitic rocks found in ophiolite sequences (Malpas, 1979; Pederson and Malpas, 1984;

Flagler and Spray, 1991) as well young oceanic crst (Mevel, 1988) although the exact

compositions of the protoliths in these studies has not been well constrained and may include

gabbros and sheeted dikes that may have been altered due to hydrothermal activity. Water is

usually assumed to be a component of the melting process due to the presence of amphibole

found in samples of felsic oceanic crust (Bebien, 1991; Beard, 1998; Tsikouras and

Hatzipanagiotou, 1998; Koepke et al., 2002), often in poikilitic textures, suggesting a magmatic

origin (Koepke, 1986).









Phase chemical data from melting experiments (Koepke,. 2004) also demonstrated an

increase in olivine Fo content in the restite due to increasing temperature and the influence of

water. Residual plagioclase were also more An-rich in the experiments due to the effect of water

(Sisson and Grove, 1993; Berndt, 2002) and amphibole was present in all systems at

temperatures <~-980 oC.

Assimilation of crustal material has also been hypothesized as a method to create evolved

compositions. Assimilation in a MOR regime most likely involves oceanic crust that has been

hydrothermally altered and this has been substantiated by direct field observations of xenolithic

basaltic material in ophiolites (Castillo, 2002). The addition of altered material into a MORB

magma results in an over-enrichment of chlorine, relative to other incompatible elements such as

K20 and TiO2 (Jambon et al., 1985; Michael and Schilling, 1989; Michael and Cornell, 1998;

Castillo, 2002; Coogan, 2003).

When compared with the phase chemistry of the resulting melts from the Koepke, 2004,

experiments, the phase chemistries of evolved lavas from dive T73 5 are conspicuously free of

any signal of water activity. No evidence of amphibole is present in the T73 5 lavas, nor is there

evidence that amphibole was present in the residue of melting due to the absence of a LREE to

HREE enrichment in the REE pattern of the T73 5 glasses, as the Kd values for REE in

amphiboles decrease in value for the lighter elements (McKenzie et al., 1991). The phase

compositions of the T73 5 lavas and the absence of evidence of hydrous phases would seem to

preclude the notion of the silicic end-member being the result of a partial melt of hydrous

oceanic crust. While small batches of xenolith material are present in the T73 5 evolved lavas

none contain amphibole. In addition, there is no elevated chlorine signal (Cl/K ratios remain









fairly constant; Figure 31), precluding large amounts of assimilation of altered crust taking place

in the petrogenesis of the evolved lavas.

Strontium and oxygen isotope values for the evolved T735 are identical to those in MORB

from the Cleft segment, consistent with a lack of any seawater alteration or contamination

(Perfit, personal communication). If high-temperature altered crust were melted to form dacitic

partial melts, the values of sSr/86Sr would be higher than fresh basalts and oxygen isotopic

values would be lower. In both cases this is not true instead values well within the range of JdFR

fresh, unaltered lavas.














70
68 m1

66
64 q
62 x + Volcanic
60~ m Putonic
Experimental
58
m T735 samples
56
54
52

0 1 2 3 4 5 6 7 8
MgO


Comparison of TiO2 Values

2.5




1.5 Volcanic
o"~ Plutonic
Experimental
1-
I ~ I T735 evolved lavas

0.5


0 0.5 1 1 .5 2 2.5 3 3.5
MgO


Com prison of SiO2 ValUsS


Figure 26: Comparing maj or element variations in the T73 5 lavas to other evolved suites. Other
suites are from varied locations and petrogenetic origins, including lavas from the Galapagos Rift
(Fornari et al., 1983) and Mid-Atlantic Ridge (Hekinian et al., 1997), back arc basin (BAB)
samples from the Southwest Pacific (Nakada et al., 1994), the Lau Basin (Falloon et al., 1992)
and the western Pacific (Bloomer, Smithsonian Institution Volcanic Glass Individual Analysis
File, VG no# 9772 9777), plutonic samples from supra-subduction zone ophiolites in California
(Beard, 1998), Greece (Tsikouras and Hatzipanagiotou, 1998; Bebien, 1991), Norway (Pedersen
and Malpas, 1984), Newfoundland (Malpas, 1979), Oregon (Phelps and Ave Lallemant, 1980),
Chile (Saunders et al., 1979), Crete (Koepke, 1986), and Canada (Flagler and Spray, 1991). The
experimental plagiograntic residual melt compositions compared were from a gabbro taken to
900 oC and 940 oC (Koepke et al., 2004) the partial melt of a MORB protolith taken to 955 OC
(Dixon-Spulber and Rutherford, 1983) and the partial melt from a hydrous MORB heated to 950
oC (Berndt, 2002). SiO2 values were plotted with the recovered T73 5 basalt as well as the
evolved samples in order to demonstrate the amount of differentiation.























I +




.


Comparison of K20 values


1.1

1.2

1
Volcanic
O0.81 m Plutonic
0.6 m1 m &perimental
m T735 evohred lavas
0.4

0.2m


0 0.5 1 1 .5 2 2.5 3 3.5

MgO


22









1 4




10


S0.5 1 1.5 2 2.5 3 35

ht10


Figure 26: Continued.


Comparison of~ AIO, valus


* Vosican
5 Aulenic


* T735-evolved lave

















Ib


46




3.5





1.5


D 2 4 6
MgO


8 10 12


MgO


MgO


Figure 27: Maj or element liquid lines of descent. Liquid lines of decent are modeled using
Petrolog (Danyushevsky, 2001) using a QFM buffer at 200 bars of pressure and were run to
~88% crystallization. Sample T73 5-G3 5 was used as the starting composition, as it was the most
mafic sample recovered during the dive. Sio2 ValUeS in the evolved rocks are slightly higher than
model predictions and K20 is over-enriched, while TiO2, Al203 and P20s are lower relative to
the calculated abundances.





























X


0 2 4 6 8 10 12
MgO






$*














a 2 4 6 8 10 12
MgO


D 2 4 B 8 10 12


a Srnith, 1994
4 Stakes,2006
+ Eive T735
x Petr~log LLD


8

7







4

3 -

2
0 2 4 6 8 10 12


~P I


D


Y
I


2


1.4

1.2

1


r
a.B

a.4

0.2

a


Figure 27: Continued.






















S 60-






O + : +;



BOO 850 900 950 1000 1050 1100 1150 1200

T~oC)


Figure 28: Cumulative percentage of phases plotted against melt temperature (oC). This figure
illustrates the changing mineral assemblage as the modeled parent composition cools. Model
assumes QFM and 200 bars of pressure.


































































































Figure 29: Trace element liquid lines of descent. Liquid lines of decent are modeled using

calculated Kd's and the results of a Petrolog model run using a QFM buffer at 200 bars of

pressure, run to ~88% crystallization. Sample T735-G35 was used as the starting composition, as

it was the most mafic sample recovered during the dive. While most trace elements follow the

calculated trends, La and Lu show over-enrichments, even when LLD's are calculated using a

Kd of zero. Zr and Sm also show slight enrichments relative to the calculated Kd' s, but can be

predicted using a D of zero.


a


c


c

t


Cl 2 46 8 10 12






0


g


a


a


a


a


a


o


lg(


8 10 12


D 2 4 6


B ID 12


0240


2 6 g 10 12


ag


4~0


um


uxo


st


rm


D2r


nE


458


D 2


+6


ID1 I


B 1012

















SSmith, 1994; Perit, nulse
* Eiv T735
El Calculated Kd's


U ~O
Cr,


02+6SB


ID I2


Eon


aon


ucon


>son


D 2 + 9


ID 12


2 6 8 10 12


Figure 29: Cotinued.

























Ix
t


o Sm ith, 1994
+- Stakes, 2006
* Dive T735
x G35to 012
7 G32 to 012
= G7 inG1 2


-0


0 24 6
Mg O


8 10 12


0 2 46

Mg O


8 10 12


0 .5 i

OM O M O ~


Figure 30: Mxing modelscaluae sigasadadms alneeutin(aguita.
197).Figre26:Miinglies er cacuate t T735--Gl2, th ---e most evolve end-membe

reoerdduigthe die h he ai ndmmescoe eeT75G5(lc ') h










822

















EPR 9 10N (le Rour at al.)
SS. Cleft (StakeE, eat .)
.. ....... .. .......... .. T7 35 R TI
8 GSC BSiW Perrit etal.)














:I '




0 2 4 6 8 10~ 1;


mooewt%


14 ,





CI ~111.i


* EPR 9-10N (le Roux atal.)
S S. Cleft (Stakes 81 l.)
+ 735 RTI
O SC Bli W (Fedit aet al.}


O.B t


S2 4 6


8 10


Figure 3 1: Comparison of T73 5 Cl~ and Cl/K ratios versus MgO. The Cl/K ratio of entire T73 5
suite remains fairly constant over the full range of MgO. While the Cl- concentration increases

with decreasing MgO the ratio of Cl-/K in the T735 samples (green diamonds) does not show the

same rate of increase seen in the Southern Cleft samples (Stakes et al., 2006), the GSC (Perfit et

al., 1999) and the EPR (le Roux et al., 2006) where assimilation takes on a much larger role.


b
-e- ----a-- -- -- ---- -- -- -- --- -



I i

111 1~
............,.... ...........,...









CHAPTER 7
CONCLUSIONS

* Low pressure fractional crystallization models adequately reproduce the observed trends in
major elements and some of the minor/trace elements. There are slight discrepancies
between the predicted and observed compositions though, most notably with K20 being
very over enriched, while TiO2, Al203 and P20s are lower relative to the predicted
abundances (Figure 20). Calculated trace element LLDs for La, Rb and K, even assuming
Kd's of zero, do not fully predict the concentrations seen in the evolved samples, which are
over-enriched to models values.

* The calculated models require fractional crystallization of greater than 80% in order to
duplicate the evolved lava compositions recovered on Dive T73 5; well past the amount of
crystallization required to form an impermeable solidification front predicted by Marsh,
2000.

* Petrographic evidence strongly supports mixing as a significant petrogenetic process that
created the evolved lavas. Chilled basaltic xenoliths as well as disequilibrium crystals are
prolific in all the evolved samples, as well as complex normal and reverse zoning seen in
pyroxene and plagioclase crystals. The petrography and chemistry suggest that that a
possible recharge event between and evolved, rhyodacitic melt and a ferrobasalt created
the andesitic and dacitic lavas recovered.

* Large amounts of assimilation or partial melting of altered oceanic crust do not seem to be
involved in the petrogenesis of these evolved lavas. Signals expected from the
assimilation/incorporation of hydrothermally altered oceanic crust, such as over
enrichment of C1F, due to the interaction of seawater with the crust (Coogan2 et al. 1, 2003),
or a sloped REE pattern, due to the lower Kd' s of the LREE in amphiboles causing an
enrichment of them in the melt (M~cKenzie et al., 1991), are not seen in the T73 5 evolved
lavas.



The evolved lavas recovered from dive T73 5, at the southern terminus of the JdFR, have

had an extremely complex petrogenesis. While large scale amounts of assimilation and/or partial

melting of hydrous crust can be ruled out as methods of creating this particular suite of rocks

magma mixing between two distinct magma types that formed by different amounts of fractional

crystallization is certain. The ferrobasaltic xenoliths provide a good estimate as to what the more

mafic end-member composition might be, but the extremely evolved end-member is much more

difficult to constrain.









These highly evolved melts would have been extremely viscous and had very limited

mobility. Due to the fact they the lavas were located at the RTI, propagating dikes, composed of

much hotter, ferrobasaltic material, from the larger magma bodies found up-ridge could have

provided the necessary heat to mobilize the dacitic melts, allowing them to exsolve H20 and CO2

through decompression, lowering the density enough to allow them to erupt on the ocean floor.









APPENDIX A
T73 5 DIVE LOGS









DATE: 31AUGO4

J-Day: 244



Dive objectives: Explore RTI near southern Cleft



13:31 Om rov entered water, start dive T735

14:51 2192m on bottom for past 2 minutes, talus slope

14:55 setting down to sample, pillow fragments, some microbial growth on fragments

14:57 2190m sample T73 5-Gl, from pile of pillow debris, placed in S3 in rov drawer, slightly

Mn coated

15:00 2190 looking around, some possibly intset pilows present

15:01 2187m starting traverse along curved ridge

15:03 2187m pillow talus, crossing dome summit

15:06 2187m can see glassy remains on many of the fragments

15:08 2193m larger pillows here, no convincing in-place pillows

15:11 2200m possible in-place mound, looking for place to sample

15:12 2202m small pillow fragment, T735-G2, brownish, placed in S3

15:13 see flows pointing downhill, pillows appear vesicular, small hornito in area, turning

around to look at hornito

15:16 2201m spatter mound-tube thing, or vapor escape tube??,

15:19 trying to grab sample, fractured in place, highly altered, glassy

15:22 2202m grab samplefrom tube thing, T73 5-G3, placed in S3, broken off from top of tube

15:23 underway again, some flows appear inplace, heading 341

15:24 2205m crossing partially covered fissure by pillows









15:25 contact to almost all intact flows

15:26 2204m intact pillow flows, slight sed covered, flows appear to be draping topography,

glassy

15:27 2202m collapse features, mod sed cover in interstices of flows

15:28 2203m stop to sample

15:31 2205m looking for piece to pickup

15:33 2205m collected sample of crust, T735-G4, in S3 again thin piece from lobate flow

15:36 2201m stepping down to west going to look at rigde in sonar, crossing faultsteps,

15:38 2201m fault scarp, razorback ridge series separate by crevasses slightly wider than the

rov, flows on top are intact, heading 336, pie shape wedge of crust between fissures, flattened

lobates, this is the wall from the sonar

15:42 2200m fissures seemed to j oin, its much wider here, about as deep as it is wide, fissure

wall has clean surface, appears pulled apart

15:43 2199m two Hissure walls are closing in according to the sonar

15:51 2220m stopping for sample from lobates

15:54 2221m smal pillow wedge collected, sample T735-G5, also in S3

15:57 2217m another fissure, buried by overlying pillows, hard to tell if flowing in or out

15:59 2215m another fissure, pillows neatly broken along edge

16:03 2216m collect sample of pillow crust, intact?, T73 5-G6, placed in S3, blocky reddish

sample

16:05 2214m drainback, area of pillows, mod sed between pillows, very plastic flows covering

Ider terrain










16:06 2210m crack fissure starting here, pillows are knobby, older terrain appeared to be large

pillows

16:09 2215m still intact flows, fissure off to port

16:13 2212m stopping for sample, different looking stuff, more blocky

16: 18 2213m collected grab sample T73 5-G7, from flat area at near top of knoll, placed in front

of S7

16:20 2209m intact pillows, mod sed cover between

16:22 2207m appears more constructional, fissure to west side, sharp drop, bottom a few meters

down, approx. 5m wide

16:23 2207m dropping down over edge of fissure, top of wall is intact, base has lots of debris,

appears sed covered even on talus and pillows, appears old

16:25 2214m thick sed cover, few pillows sticking up from sed

16:27 2216m mixture of intact pillows and broken pilow debris

16:34 2225m 50-60% sed cover, good sed cover on pillows too

16:36 2231Im more pillows, tubular, somewhat smaller than previous, stopping for sample

16:39 2232m sample T73 5-G8, blocky pillow frag, placed in S4

16:41 2229m scattered pillows, <50%s sed cover

16:42 2231Im tube and sheet flow down to SW, stopping to sample

16:44 2232m sampling sheet, too friable need to put in biotube, must be glassy

16:45 2232m sample sheet flow?, T73 5-G9, fragments placed in BT5

16:48 2227m pillow tubes appear different, very large well formed tubes, striations

16:50 2226m stopped to sample

16:52 2226m collected sample T73 5-G1 1 from large pillows, very glassy, placed in S4










16:54 2219m very well formed pillows flowing downslope, very little sed on top, very glassy

surface

16:57 -2213m

16:58 2212m, vapor pockets and cavities between layers of basalt

16:59 2211Im, picking sample of vapor pocket, T73 5-Gl2

17:02- 2213m, sample looked glassy, still passing over breadcrust texture, sed coating on all

17:03 2211m, lots of local relief, big pillows surrounding by smoother tubes

17:06 2211m, twrining on to next line, sheetier appearance

17:07 2209m, large flat broken up sheet flow, perhaps a silicic constructional dome

17:08 2210m, trying to sample at top of constructional feature, slabby flow

17:09 2210m, collected sample of striated top of slabby flow, in BT4, T73 5-Gl3

17: 12 2211m, was broken from beneath, top is flat but sides are tilted

17:13 2214m, still same flow, very straited, blocky iand angular n some places, plus few big

pillows

17:16 lost my comment

17:18 2214m, turned to the left, and are back in the straited, sheety thick flow

17:19 2214m, collecting another piece of striated flow

17:20 2214m, sample of sheet flow, won't fit into bio tube

17:22 2214m, sample was collected in between the P/S boxes, T73 5 Gl4, another piece

collected at same time

17:24 2213m, finished collecting another sample of what is hopefully a dacite flow

17:26 2214m, nav jumpy because we're tunring, lots of pillows

17:27 2216m, large broken pillows, tubular










17:28 2209m, between the tubes and pillows still getting massive flows (layered)

17:30 2209m, pillow texture is smoother

17:3 1 2212m, stopping to collect another sample, lots of gas cavities

17:32 2212m, sample going into biotube 3, T735 Gl5

17:34 2211Im, back on the line, hdg 62, this area had lots of vesicles, and dome-like feature had

both angular blocky rocks and pillows

17:38 2213m, tilted slab block, probably from eruption

17:40 2219m, still in the same general area of geology and morphology, still looking at dome-

like structure, probably not basalt

17:42 -2215m

17:44 2215m, going to sample in this area

17:45 2216m, sample will be taken from the interior, more broken

17:46 2216m, sample T735-Gl6, from interior of flow, S5, should be smallest piece in S5

17:50 2215m, coming down slope of construct, hdg back to line

17:52 2216m, still at pillows with breadcrust texture, moderate sed cover

17:53 2218m, very evolved rocks, broken up large pillow, no tectonic fissures on sonar

17:57 octopod, red Dumbo

17:58 2216m, large striated pillow, broken down the middle

18:00- 2216m, heading back to line, irregualr terrain

18:01- 2216m, irregular terrain, with broken up blocky lava

18:04- 2221Im, collect a sample of broken pillow, to see if it's the same as the previous samples

or it it's less viscous

18:06 2221m, taking a pillow sample










18:06 2221m, S1 pillow sample with lots of vesicles, T735-Gl7

18:09 2221m, at bottom of saddle, will soon be heading upslope

18:10 2214m, coming up constructional slope, pillows flowing downhill radially

18:12 2207m, attempting to sample the crust of these pillows, looking for small piece

18:14 2205m, continued to move upslope looking for a breakable pillow crust

18:16 2206m, collected two pieces of pillow crust, small, in S1, T73 5-Gl8,

18:17 2192m, moving upslope, smaller pillows, reached a bench

18:19 2199m, moving up feature, more relief than dacite mound

18:21 2198m, tublar, flattened pillows, probably at top

18:22 2198m, much less blocky than last dome, collecting sample

18:25 2198m, picking up sample previously dropped, near top of slope, PS, T73 5-Gl9

18:26 2198m, this may have been sample site, nav jump

18:28 2199m, tubes flowing off to right, south

18:29 2201m, crabbing downslope, very little tectonic features

18:31 2208m, well-formed pillows and tubes, heading downslope to south

18:33 2205m, stepping downslope, mod sediment on pillows

18:34 2206m, elongate tubes look like they're flowing south

18:35 -2199m

18:36 2199m, tubes and broken pillows, pillows are more fragmented

18:40 2203m, still see some blocky, angular flows, on shallow slope

18:41 2204m, slow progress on hdg because of current

18:43 -2205m

18:45 -2209m









18:46 2216m, heading downslope, flattened tubular pillows

18:49 2216m, still elongate tubes

18:50 2234m, looking at in place pillows, attempting to sample, also smaller rubble

18:52 223 5m, collected rock sample from talus near in place pillows

18:35 -2234m, T735- G20, P5

18:57 2258m flow fron talus, large bocky boulders

19:01 2275m collect large fragment of intact pillow, T73 5-G21, from base of steep slope, slope

continues down to east, skinny pillows

19:07 2263m heavy sed cover in gully between two knolls, isolated exposed pillows

19:08 2258m heading 93 degrees

19: 10 2256m much less sed cover, pillows sticking out of mod sed cover

19:13 2254m pillows with heavy sed cover

19:14 2252m collapse feature showing sheet flows beneath pillows

19: 16 2256m collect sheet flow sample T73 5-G22 from collapse feature

19: 18 2251m large pillow with inner drain features, pillows more bulbous, mod sed

19:21 2249m picking of fragment of pillow from top of sed, too big!

19:24 2249m looking for sample to collect, pillows in thick sed cover

19:26 2250m collect large pillow fragment from top of sed, T73 5-G23, put in P5

19:28 2247m constructional pillows in sed cover

19:29 2246m veered off course to NE, heading back S to top of knoll

19:31 2249m closer pillows, everything appears intact, possibly big hornito, all pillows flow

downhill from top of mound

19:37 2249m collect sample T735-G24 in S2, greenish-white looking inside










19:41 2250m collect basalt sample from same area, T735-G25

19:44 2248m heading down mound to north, bulbous pillows poking up through sed

19:45 2249m Hield of unsedimented pillow surfaces, slightly more gentle slope than the west

slope

19:49 2252m mostly jumbled rubble, some intact pillows heading downslope to saddle between

knolls, 50% sed cover with equal amounts of pillow rubble

19:53 2254m crossing Eissure almost N-S several meters deep, broken pillow pieces, appears

tectonic, sed on walls and at base, all pillows exposed in fissure wall

19:56 2260m following same fissure to north along trackline, starting to shallow out

20:03 2266m collect grab sample from more massive unit, T735-G26, in S5

20:05 2265m massive flow overlain by pillow, lowest most exposed unit, well fissured with

pillows on top, pillows appears to possibly flow inside indicating pillows post-date fissure, N-S

fissure

20:07 2264m crossing massive flow, large fissure also to righ of ROV (east), possibly moving

into the transition from hooked ridge to normal ridge morphology

2008 2265m following fissure, series of fissures N-S cutting massive flow, columnar talus in

fissure

20:09 2265m some evidence of uplift along this section of fissure

20:13 2258m very heavy sed cover

20:16 2265m more pillows, less sed

20:22 2271m thick sed cover, large pilows sticking up

20:24 stopped for sample, cow patty looking pillow

20:26 2271m sample from cowpatty pillow, crust, T735-G27, in P2










20:31 2274m drifting to port towards large depression, some broken pillows with spill-outs,

some tubular

20:32 2275m fissure heading N-S, shows well on sonar, looks deep, tectonic

20:35 2268m, mound in depression near fisure, constructional

20:38 2275m small hornito, drippy flows, ~lm relief on structure

20:39 2271m appears like old fissure, sed filled, some truncated pillows???, narrow

constructional ridge???

20:42 2270m crossing fissure, just past linear series of small constructs, ~lm in relief, dropped

down crossing fissure to west

20:45 2272m shallow fissure, sed covering talus, orientation ~340

20:46 2271m another fissure, slight downdrop to east

20:48 2269m possible emuptive fissure, N-S, east side dropped down

20:50 2269m sample from pillow along fissure, T735-G28, pie shaped, in P2

20:57 2268m, hdg to east, 100% sediment cover

20:58 2267m, crossed a fissure trending N-S

20:59 2267m, still in region of pillow and heavy sediment

21:01 2270m, sparse pillow/lobate outcrops with heavy sed between

21:02 lost comment

21:05 2272m, moved over small fissure trace, pillows

21:07 2274m, typical deep sea biology

21:09 2268m, many more outcrops right now, small ridge of broken pillows

21:11 2264m, many more broken pillow outcrops

21:12 2259m, slope is shallowing to the north










21:15 2261m, on edge of slope with pillows outcropping, slope steepens to S

21:17 2261m, on the edge of large escarpment

21:18 2263m, fissure runs N-S, regional fissure system

2: 120 2266m, lots of broken pillows exposed here, much less sediment

21:22 2264m, back to isloated pillows and heavy sediment, flat

21:24 2259m, climbing toward top of dome, pillows loo tectonized, but broken in place

21:25 2258m, shallow depression filled in partially

21:27 2260m, at 2257m, maybe reached the summit of this feature, as bathy dropped off

afterward

21:29 2254m, pillow tubes, many going downslope to N(?)

21:30 2253m, crossing over smaller N-S fissure, can see both sides, sedimented on inside

21:32 2249m, continuing to move upward, most pillow tubes in place, plus rubble

21:33 2248m, in place pillows and a small rubble-filled fissure

21:35 2249m, collecting pieces of pillow crust near top of dome

21:36 2246m, T73 5-G29 will be in P3, looks old and oxidized

21:39 2242m, at top of mound, several fissures dissecting the top, running NS

21:42 2246m, running along a small N-S fissure, many on sonar, hdg is now 345ish

21:43 2251m, inside fissure, blocky and talus inside fissure, 20-30m wide

21:45 2250m, flying along the fissure, walls on both sides, small fissures wihtin main wall

21:47- 2252m

21:49 2257m, irregular, tectonized terrain, lots of rubble, some intact pillows on edge of small

fisure

21:50 2264m, mod sediment covered, more fractured terrain, filled in fissures









21:53 2270m, vehicle depth has been consistently 10m shallow than bathy

21:54 collection a sample for biotube 2, T73 5-G30, hopefully at intersection bewteen regional

fabric and local valley fabric

21:57 2272m, dropped first sample, looking for another piece of pillow crust

21:58 got another sample T73 5-G30, triangular piece of pillow crust, into biottube2

22:01 2272m, back to heavy sediment, flat, small isolated outcrops

22:03- 2270m, 40m to E is a fissure, flat-lying, 100% sed cover

22:05 2272m, 100% sed cover, isolated pillow outcrop

22:07 2276m, more of the same

22:09 2285m, more exposure of small bulbous pillows, still lots of sed

22:11 2293m, continuing to get deeper, still heavily sed

22: 17 2294 heading to the ridge parallel wall, sediments 100%

22:19 2294 sed. continue, tape change, type 8

22:24 2295 pilow ridges, about to get sample

22:24 same depth, sample T73 5-G3 1 taken from the pillow ridge

22:29 2296, sed. again, some pillow ridges again

22:29 2296, sed. again, some pillow ridges again

22:34 2296 still 90% sed. some flow tos broken

22:36 2290 fissure 337 orientation, talus on the sides on the fissure,

22:39 2287, more pillow terrane, heavily fissured

22:41 2289, still fissures, heavily sed. between issues

22:43 2280, compl. tectonized big pile of debrii pillows

22:46 2291 old fault (fault sliver) heavily tectonised









22:47 2290 approaching the opposite wall, covered with talus, another fault sliver

22:49 2287 wedging out fault sliver, two intersecting faults

22:51 2294 still old tectonized terrane

22:53 2297 materail changes, more collapsed pillows

22:54 2298 about to get sample

22:56 2298 sample G32 from the base of the wall

22:59 2296 ROV loosing main comp. going toward the wall

23:01 2291 base of the wall flat sheets, tectonised ridge

23:03 2291 small pillows with buds on the side base of the wall

23:04 2294 moderate sed. cover, lobates, pillows with buds, still intact, gradually going uphill

23:05 2293, fissure parallel to the wall

23:07 2293 first ridge parellel tectonised zone

23:08 2290 into the real fault, big step up

23:10 2288 intact collapse pit, not consistent wall

23:12 2281 change headings to 300 up the fault

23:14 2276 intact pillows and lobate flows downhill from us,

23:15 2274 remarkably little fractionation on pillows, constractional part of the wall?

23:17 2269 tectonised area

23:19 2263 heavily tectonized zone, small fragments nothing intact

23:20 2260 coming to relative. flat artea, sedimented

23:23 2257 continue flat area, covered with sheety flow debri

23:25 2257 sample from the sheety glassy flow -G33

23:26 2257 sample G33 very altered glassy, taken another piece









23:31 2248 intact flows and lobates, going down parallel to the wall

23:33 2244 half-way up the wall, flows align down

23:34 2242 sedim. area, covered with thin sheeted flows, contiune up the wall

23:36 2239 approaching steep wall..

23:3 8 2239 escarpment pillow debrii, series of fault stpes, broken sheets

23:40 2233 moving into area of intact lobate flows

23:40 2232 still intact flow

23:41 2225 alteranting talus and flows

23:42 2226 samples from the flow sheet and lobate flows

23:45 2228 sample G34 from lobate flow

23:45 2228 second sample G35 from the same area

23:48 2230 near the top of the wall coherent flows

23:50 2231 sample G36

23:53 2231 G37 and G 38 samples

23:55 2231 G 39 sample

23:59 ROV is coming up

01:26 Om end dive T735









APPENDIX B
PHASE CHEMISTRY FOR T73 5 LAVAS