<%BANNER%>

Novel Heavy Fermion Behavior in Praseodymium-Based Materials: Experimental Study of PrOs4Sb12

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101209_AAAABC INGEST_TIME 2010-12-09T09:40:14Z PACKAGE UFE0017620_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 55815 DFID F20101209_AAATOG ORIGIN DEPOSITOR PATH rotundu_c_Page_014.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
61875ea9090d96d710b68b954e74ba33
SHA-1
6305db4b332cb309590f34a9b81f1ddf1ecf180e
1053954 F20101209_AAATNR rotundu_c_Page_140.tif
95fbfc8fa8b8b1bb48c08f621899c672
6f76e7f077e2ef3814e0ea020b504fd42108e06a
26558 F20101209_AAATOH rotundu_c_Page_016.pro
ce62c65717af48c69fa3832f6a5fed03
9ef51936c3a8e9666976fc4d2f8570df6da79436
F20101209_AAATNS rotundu_c_Page_142.tif
438a1576437c5423a6c711ef425611c7
0d51f32e9d4c9c0cee36591f37e5035ca80680f6
47509 F20101209_AAATOI rotundu_c_Page_018.pro
4e8036be0fa8cd3d227f71765f1f9efa
a1303962e7db957163b1d13ea41a42e501d44f41
F20101209_AAATNT rotundu_c_Page_143.tif
43638526e2d35ce6bc0131b0ab3826b5
7e3bf5882cdd5e5c710c459f7fa55033791d8f1f
F20101209_AAATNU rotundu_c_Page_144.tif
a6baca9d290631fe6190cf05e8c06e15
dd2d0da2a777aa606911f4a876b3eae2a90bdec2
31003 F20101209_AAATOJ rotundu_c_Page_019.pro
846ad37f14b61674abecc2b8ecdd6460
eb644f6389767c9795f96bb05a0863fb6d847089
8738 F20101209_AAATNV rotundu_c_Page_001.pro
9398f460742d450a64db1bb4e6580c1f
e7c66ee65c3ef795cd1278702c079030645727c5
45230 F20101209_AAATOK rotundu_c_Page_020.pro
93259d515fd4a3db3a2b14c1b4ef8b08
82eb440e81d4aa295528e8f1d4c4f3e7df9d4520
1306 F20101209_AAATNW rotundu_c_Page_002.pro
ba63423a37c90190591402c957d8c95d
f629afd2d0356cfeb4adf1a77aa3b5cb720335ae
20878 F20101209_AAATOL rotundu_c_Page_021.pro
0259994a6a779163f3f178b55e810aaf
de096c030019be554246e0d19d6e10fab4019b9f
2617 F20101209_AAATNX rotundu_c_Page_003.pro
205d9aac407e85e41653541f43c1daab
db5a05e3af38fe10f919ca84b4401a7cb2fb43bf
7526 F20101209_AAATPA rotundu_c_Page_041.pro
835ffd1994c77016e40836876eaf9d72
f0b9555f33c9bdd89b8352a6a039b04eea39af8c
53654 F20101209_AAATOM rotundu_c_Page_022.pro
972cd23dcfc2773e20d09fd09509ea49
5b66efe9d5386542e3c8fc96a63047264551fc21
48758 F20101209_AAATNY rotundu_c_Page_004.pro
1c0844f958a02dec79cb98aa68df13d7
b11d8f870e10a43b363a06a666d90aa2771485c2
22803 F20101209_AAATPB rotundu_c_Page_042.pro
dfb17ca555303b52335fa32f49e1eda5
2e814cb191bd83146dcb14f838ba7b290bb886f1
56836 F20101209_AAATON rotundu_c_Page_024.pro
6fe5b1826822e2471f0de8130b50672c
40d3acb4bebb4f3926af11af02eac3313d9433e6
65578 F20101209_AAATNZ rotundu_c_Page_006.pro
a406bbb46d1991e73177d54ba793d236
259761c88112bcf113a81e9f26478d40d9dae33d
13516 F20101209_AAATPC rotundu_c_Page_043.pro
a3784b02341d645199ebd3188c85d588
2db57cf8d2190570b495606779998d680bd6d4ca
51884 F20101209_AAATOO rotundu_c_Page_025.pro
55a66167db08d2146e0e8ae0985f2985
f60bb1c268d70becbfb131377812873e98c75a6b
14635 F20101209_AAATPD rotundu_c_Page_044.pro
c3fe7ffcfc84cc96c68155bc3744cf9b
606bc17890567941f6473f12d5a1afc6f8e9938a
51401 F20101209_AAATOP rotundu_c_Page_026.pro
67a1dfacdd9f17d8cc05d5639ef08891
b82bbcb375356a88d92c68ea9cef6b44a60d7b0b
4064 F20101209_AAATPE rotundu_c_Page_045.pro
1baaf9776126a14da3a8db2a77bd9ae9
04fc9e2e7b9969e5a876c5aff79660bbf9bda8a0
43780 F20101209_AAATOQ rotundu_c_Page_027.pro
e4076abf520e26d10c67d78c5b1fe6e7
2be13dfab97eb972a8c82b0c737f940a233a706e
27542 F20101209_AAATPF rotundu_c_Page_046.pro
d7686ea4955009e7d502f6dfd6b7f9d1
60fd0269606f9ae7d82a73bcf0d90a1226779837
18431 F20101209_AAATOR rotundu_c_Page_028.pro
9a456cf0aa257d58f9003f37f6d90d49
8ff099492d82593eb44b11b0deb55e1d1f2a7dc1
17867 F20101209_AAATPG rotundu_c_Page_048.pro
3cf4b231e6897275251ea17ec482c378
2c753c7c23dba11348cfadb464121d53332c26d5
56013 F20101209_AAATOS rotundu_c_Page_030.pro
7458c3ff499d19eb6890c36c1270b74e
fe606cf650e91af1d22e69c6814a92b27c114944
47829 F20101209_AAATPH rotundu_c_Page_052.pro
29c1440d1f34d1f4758bedc0ba3ec817
b60165c5648bcb108512384e22625dd5c6e00532
53223 F20101209_AAATOT rotundu_c_Page_031.pro
36197b47e2c563de07cc0d7cd1c16fcc
f8a81dd03b530d77a886c6291500513b7412542a
60524 F20101209_AAATPI rotundu_c_Page_053.pro
560a860ba85f5e6cb7f7556b4858b7cc
efec21933f154b2a65add2083e4e4b0ade6b88ff
53526 F20101209_AAATOU rotundu_c_Page_033.pro
7b952d8c4a8ae55a25036f4968b0b1d3
5b8e28cf518d63455c2ac065e1f21303d2eb3ac6
58337 F20101209_AAATPJ rotundu_c_Page_054.pro
7713628162f0a24089210ea88823915f
6488a0e23d78e386b060a6737d3776d079d88a53
54669 F20101209_AAATOV rotundu_c_Page_034.pro
eb82bf96c91a9033e87d59dc37959090
d711d2fba7b9704727f79b667212600f13bdc056
48822 F20101209_AAATOW rotundu_c_Page_035.pro
77b2503e317e7b2cf06eb336160f0cfb
7022742ff3f1ddde30f6da8047e6c8c8b0ee9fcc
56142 F20101209_AAATPK rotundu_c_Page_055.pro
d9459bed4e8b2cf59c02f85ed114a7a8
326bd162e11cdf3b9a892a7390c5a22f24f260ed
53059 F20101209_AAATOX rotundu_c_Page_036.pro
f74b15754b55132c7c97b0f409affba2
9d99e19a393ec5359daecbed99fd2371067905b3
9533 F20101209_AAATQA rotundu_c_Page_079.pro
ea407b35eb9ca3134e5d1245c98e9adf
a746442e111d8b3a1eb4e085bdc5c0e59ac136a7
39698 F20101209_AAATPL rotundu_c_Page_056.pro
ec688053ad0ee44163adac4d51ee74cb
8c46c8ea7653aa061e1a84c1a70da7195656d852
52086 F20101209_AAATOY rotundu_c_Page_039.pro
3193ffed3daa8bfd45c16879d749aa22
d1668742318b704b73434aa9572e64fb29424288
11821 F20101209_AAATQB rotundu_c_Page_080.pro
9f012598e79467208e55b6afaac33722
0f9a58a12fcd31cc0486d6cd828716af2e816103
58552 F20101209_AAATPM rotundu_c_Page_058.pro
32a05342e18c0318038df0ad664adadb
b49f699f2e83a94a45c524fdb4d90f85a8b51749
53987 F20101209_AAATOZ rotundu_c_Page_040.pro
743f5cb85a1e96f1b676000b892e59cd
1e2bb1a0f87cc5001bae6b0c356de24cd7a0cc53
9917 F20101209_AAATQC rotundu_c_Page_081.pro
91b1e7589147cad9cdc634b55eb47053
d301711cab720cdaa7144517d1965da81976215e
53042 F20101209_AAATPN rotundu_c_Page_059.pro
7fb57cdcc675f5aa39a574ae9aefa042
032ff9dd68073abee03bf8722ed5ac2ea0a0328b
15107 F20101209_AAATQD rotundu_c_Page_082.pro
e64b2db021a10d9698750b9bf9454aca
37218f3d29baf0b748512268664cf195652d1cc3
12791 F20101209_AAATPO rotundu_c_Page_061.pro
df082ef5fcbeaa606c38824f8f0a77ed
24afe1b03a941fac93ac6d3d4ee7e786b2845438
17634 F20101209_AAATQE rotundu_c_Page_083.pro
5fc5a0bb04996ed9c54cff0dc4e2ed70
25ae00135c6666eec89da489e9ab6f81e393387d
10691 F20101209_AAATPP rotundu_c_Page_062.pro
3f696e9e15133cbabcf7ed841ab55bbb
1b0d80a050063a89a83aadf33adf17ced2554563
12991 F20101209_AAATQF rotundu_c_Page_084.pro
7f79c392f860021ca3fd683e93fd1647
fce4c40a815c5e1e11e7420bb0b6f7cd232350f1
9633 F20101209_AAATPQ rotundu_c_Page_064.pro
6d8f622eab37a5c1952f754fae52cd11
dc1f021e24a9a1b99e844cc5a6c97cd72036aa20
11528 F20101209_AAATQG rotundu_c_Page_086.pro
50e33af7ee14f21f6c940d6345e1135b
cbde7f4f360f2b3a89948794b18f18d4a64836d9
52617 F20101209_AAATPR rotundu_c_Page_065.pro
b19e68502f1daf3136bc5ff79380a3d3
07a282b146d77e223b3d053884198efc98d1ab1e
16762 F20101209_AAATQH rotundu_c_Page_087.pro
9dc3b788ae062ab257512ec587ea8873
3b92695e402637d0f143c92da1e3e15de0952e89
14395 F20101209_AAATPS rotundu_c_Page_066.pro
6e02c8b2793d7190855799ad92db3e35
5d0632d7c54503912178ca2429d8be17379e0792
6821 F20101209_AAATQI rotundu_c_Page_089.pro
81f9890884e64661047b0ddd6266e3c0
50ed200fab2a62bea8447aaf0ac1b86077e4cd6f
56341 F20101209_AAATPT rotundu_c_Page_068.pro
e2ffdc5bb6c4b31f9905703128fe5278
6e8a15118091bce21fc9d21fab29e0ac018f3c92
12797 F20101209_AAATQJ rotundu_c_Page_090.pro
bd4028a159ce5309fa2dafdd0ad5efdb
a95fa278763af737104c624c37f9d2b50c0d37be
57731 F20101209_AAATPU rotundu_c_Page_069.pro
4d70ab14cf65280f8aecc86ae2c210d4
66fa0ecb79d47d4beef8656945fe107127994fbb
4785 F20101209_AAATQK rotundu_c_Page_091.pro
17fb0a0e363eb14da9288dceb0239a20
a9a52bcf2bfe634d8052e450fe2727c342c01f36
57158 F20101209_AAATPV rotundu_c_Page_070.pro
8f1e485fe5ae29defacd476c5c4e61e5
8012776b28f34050a847c6ba28a2b75282180de9
60392 F20101209_AAATPW rotundu_c_Page_072.pro
33428d6c1d4b99f14c2208e0ee4d37a9
1160e1cc97496a119dae837b76a5d1314739f0b4
55171 F20101209_AAATRA rotundu_c_Page_108.pro
98cded8513eaf03ee2960c35314df457
4c8a36ad33f0a6375263a3c1d20541e94a9e7291
16473 F20101209_AAATQL rotundu_c_Page_092.pro
a4ab32d7551b90eefccc03521c4ef9e5
88ceb875a7af0a598e1eb4f64e8912cc09877058
62016 F20101209_AAATPX rotundu_c_Page_075.pro
c3572331c01114abf2a1fe5ac7ba78a8
914fb752686f9157e7dd8c112dab46607ba7c48f
62033 F20101209_AAATRB rotundu_c_Page_109.pro
76c2a875777601f44d15db9caae6345c
beba559ac7c0a82f522a97d7ae1f8f356e7eeae8
57451 F20101209_AAATQM rotundu_c_Page_094.pro
647344ebc3d01c099c7c6de7ae463f11
2a217ad65e26ad38bac8baf1d5d578e19df00dd0
44201 F20101209_AAATPY rotundu_c_Page_076.pro
ad162ec423ba101d6123860d626b7b47
9635548dc76ab40268eacd0b7d216e8a4a750fe4
59513 F20101209_AAATRC rotundu_c_Page_110.pro
8b343b49ed0661e52b157ca4c412080e
a81233d0a059ae945bda2dfdec3dfe6038d5e3a8
56369 F20101209_AAATQN rotundu_c_Page_095.pro
05fd0e6688136a0a4937f48fa9f81962
23a7047336acc8a271565511ed757dc08ac3edd7
23731 F20101209_AAATPZ rotundu_c_Page_077.pro
fe75c9cd3532991614c68d12539abb51
e2eace0464b7be022e9ba37b11dfd880e6130d1a
58027 F20101209_AAATRD rotundu_c_Page_111.pro
84bdd78586bfc20bccb0d23c62c39eeb
a699743b0b615254fed6114c3e0478878999c2bb
58766 F20101209_AAATQO rotundu_c_Page_096.pro
ddb6e59139b105b268ff5c27af53397a
4af160b77f828dadd1b35e8665c84fe261aa65aa
24902 F20101209_AAATRE rotundu_c_Page_112.pro
cc30b4aacfca7d9e5ed55e5c353a0788
6fcefb9284198cdb2021683315d8f378eebee5dc
56848 F20101209_AAATQP rotundu_c_Page_097.pro
d00e8158fc59f5f1f020a3acb19e4c63
9713052988fce5581603ad155205b26c4b8da653
24781 F20101209_AAATRF rotundu_c_Page_114.pro
396413138f02a25fa0d4099618c81eee
8c925599d7176260a90a7326704c6d30dc3b4088
57156 F20101209_AAATQQ rotundu_c_Page_098.pro
0413043373fbcd852d4c676061e70d87
c00206b38b9882ec8731cbe3e0385651b59e9517
10051 F20101209_AAATRG rotundu_c_Page_116.pro
25025561a7a718d5f2ce912db436c461
bd30f807070eb68dca343a4dee83907a5a5aa68f
58889 F20101209_AAATQR rotundu_c_Page_099.pro
47d4d73219bdd5623772ea12330804f9
9abd09736f38db31f920da787faa1d0206285d76
4445 F20101209_AAATRH rotundu_c_Page_117.pro
5e8922e92178129e9f64c4de92aea7ad
6eed2a6541f07c94cee7ffd3d39f74c6eff708d5
57829 F20101209_AAATQS rotundu_c_Page_100.pro
62d0671f4e6c8d3d0dfa3b443101420e
00fce7f4df07e4af58dc333d2454218842a73524
8891 F20101209_AAATRI rotundu_c_Page_119.pro
0bba16a0af265fc9b6035c193a07ac59
9f00428e1f753722878885dc5e16faf1cb0d62c8
59168 F20101209_AAATQT rotundu_c_Page_101.pro
d4ae3050bdf31a7a835bf2505ca19e3a
781e68f36fba62745cfdc1dda63601c191531006
13845 F20101209_AAATRJ rotundu_c_Page_120.pro
05f569cb3a6b616b949e559932737b77
4b15f2c83d2205ea8a8869a23c0196aa1346cd43
61835 F20101209_AAATQU rotundu_c_Page_102.pro
49d5c20921134fe3c1a4a124524c4acd
feed5f246b2f5dc38cd6e52ee7262bce968c1170
13736 F20101209_AAATRK rotundu_c_Page_121.pro
07222bd41185405a2d57716a62b09fa5
4fc79d2fba60c504f1c9cd21254939b724d22208
59307 F20101209_AAATQV rotundu_c_Page_103.pro
acdc0b78fc6f94ef2e651c9dc7955d22
0c2e449861836537740a0c254ba29a290cb93855
13328 F20101209_AAATRL rotundu_c_Page_122.pro
64abc0f3d882a483086bf6002057c6b3
a0ce6bc6fd998cf7f8164ce36f0260a30560641a
59238 F20101209_AAATQW rotundu_c_Page_104.pro
e5f3e4e124fd181feba34987bf7d6b19
044a68366ccaadd8a48729a790a48f3bda87d7de
58598 F20101209_AAATQX rotundu_c_Page_105.pro
029e9795efed3a548472751787539abc
2047dbee82f54e6b9130db327329010d62fa1535
55528 F20101209_AAATSA rotundu_c_Page_142.pro
37a8e7766f97fc730e35f54d28b24220
e1dfa194a2da01d80dd93d944ebc203f4166a0fc
18516 F20101209_AAATRM rotundu_c_Page_123.pro
ad752156448a36e8729cc43c4eeb463d
6eac081c37cffd9b620735fa444d95c1a72937f5
55235 F20101209_AAATQY rotundu_c_Page_106.pro
672c558b0ec23408cb43b1933644e3f6
fbec4bad10a999e05ae170a27bb4ff3544257e87
50844 F20101209_AAATSB rotundu_c_Page_143.pro
9d6d262676ec5e30fed587255bb15b33
eff34287febb16651d6d0c17ba848f3375650f12
14235 F20101209_AAATRN rotundu_c_Page_124.pro
dd898cde86720138d1d3eeffa8409a51
f0a02de27aa9ce00c531a170c698eed86f0c9a83
58446 F20101209_AAATQZ rotundu_c_Page_107.pro
8015b1ee5fc96c278c1593d105446d62
f80e1494fc5102621df20d77d5f4716f18467b9c
53480 F20101209_AAATSC rotundu_c_Page_144.pro
f914d3be1398d6ba1ec6f4d00bec136f
159a1ea7de7ef79487d7b4ba2cbcb0f7c10678d4
8065 F20101209_AAATRO rotundu_c_Page_125.pro
06da29467c5fe43953a83ebec853b023
2280ef421e5ae6ad3020cf91b87065937f084c75
32624 F20101209_AAATSD rotundu_c_Page_145.pro
1fffff2ba1e0bdb267e63e19ee106973
eb3532f4916cab92621822fc53ca0406f52fe362
121 F20101209_AAATSE rotundu_c_Page_002.txt
392e11fb6e74e6267f2eecf6bf2befa0
ebf07b9dcc1d95149f7124ce3ffcf116a679126b
11162 F20101209_AAATRP rotundu_c_Page_126.pro
818e4dfa0e8be6bed0cfdbd419e0a835
69f92c7b066bf483b599fc81a3b52db91d4bcd07
161 F20101209_AAATSF rotundu_c_Page_003.txt
8a931bd7430d33d79dfda454ac9c140f
bec5279ee358739ffc95b7b7c9be773620ebb67a
16398 F20101209_AAATRQ rotundu_c_Page_129.pro
9514238faec1d5d94589b52b2bd2a1fb
0e9e3c4955cec35d8c88d00cc792b4bb93ee4a4f
2549 F20101209_AAATSG rotundu_c_Page_005.txt
da958d203b1d27514e4d1279c9565b0f
dcc7753a1518a6db9fbc9b0716d2819ce571fd74
9959 F20101209_AAATRR rotundu_c_Page_131.pro
fa549133a09725664e49add7d8e8e095
9f9a92ea8665f92eca27184fd4270dde22ff84f0
2846 F20101209_AAATSH rotundu_c_Page_006.txt
17bed5c4729dce90c75d2af3aee5e645
29a821a9d8e329319be24e3e29ffa31224379f1e
21121 F20101209_AAATRS rotundu_c_Page_133.pro
2e22b74627d1967318d7c70c52a101a8
cf79dc965f08d1e62065770e14ac2e587755444b
602 F20101209_AAATSI rotundu_c_Page_007.txt
0b1cbb348d1cadc8dcddd5612391aa30
775b1596eaaf48b0d3d2e5bfa416c173c8b28728
21691 F20101209_AAATRT rotundu_c_Page_134.pro
9d0de29f5a6b2dce245db0b2b358fc00
38eafd89cf85d8011628b1ed6f082b8ce0b2d087
2696 F20101209_AAATSJ rotundu_c_Page_008.txt
ff96b745ca6161fa6925b91e2955a04f
18a55ddb0b1ec3f037c695b9c22d1e8d44abab29
9794 F20101209_AAATRU rotundu_c_Page_135.pro
0c814d4c77882c92fe5993fd7c9dd1b1
ce78d29321637dc1fa464a79e7b4a4b8d4388df8
F20101209_AAATSK rotundu_c_Page_009.txt
f80a67b4e32ee8fb09a361de91fe15ee
e4de4ca93b639785b0188820b27b508a641e086b
58424 F20101209_AAATRV rotundu_c_Page_137.pro
b3052e6f10dd185c18198d33fd802c37
4b8637e8f0d28d9d8446f945cfef81826e33eb52
1159 F20101209_AAATSL rotundu_c_Page_011.txt
402ff9e36635229a487a9a1648d9039d
ec1467b8e7c585e4bbf1bef5c69834420b7317b1
34398 F20101209_AAATRW rotundu_c_Page_138.pro
7206505e1d98829920499e4f3fa3dd16
22fa81855c8675764a18908646ef78e30f5f181d
1980 F20101209_AAATTA rotundu_c_Page_035.txt
5f635f21ed46a6e400726605b810455f
128aedd9cfb5da855fb484677fd7975aefb7d3d7
480 F20101209_AAATSM rotundu_c_Page_013.txt
0d17a28cfa3e25bbf8e5d61e86dfff15
ab9b5dcf5af8ebb9cc0e95b306c37c7b830bc7ef
55355 F20101209_AAATRX rotundu_c_Page_139.pro
d67b7c1417f9166a48fccd2be4d3b247
1d6f73a2b5944384625e9d3ffc326019807defee
2199 F20101209_AAATTB rotundu_c_Page_038.txt
a29b0497039ee875bdef980bcb4e91b7
7e9d80573e4c365fa733b0446582ddce5c75ada7
53478 F20101209_AAATRY rotundu_c_Page_140.pro
60750fe0b8ab3cde07c0e15dabeca374
8c1151cf7a04f78b95bbf59e7b3c928f07e765ac
339 F20101209_AAATTC rotundu_c_Page_041.txt
9d5bd4bff52249c35ba009d1378fe3b7
4a1040e89edac78805170b269c3592ef6e4ae9d8
2267 F20101209_AAATSN rotundu_c_Page_014.txt
08be2b78e5e7a4e8807b6fb519401796
7f472f07e21ddd2d11061fff15ec97f0c719cd4a
54716 F20101209_AAATRZ rotundu_c_Page_141.pro
d34942b46a1be46798873d8818ac36dd
a2124ea2a7ef74c18bd4dda4da71df668867aec5
601 F20101209_AAATTD rotundu_c_Page_043.txt
32d40d94b80e10f6c585e4c9da9405f4
9cf49d9b6b4c76a964f28d92e8410f8d9085873f
2270 F20101209_AAATSO rotundu_c_Page_015.txt
46caa27a7ca734a145371d29f4942b70
028a6c4acf04244701b2dec12ca37aa8fc95bb0c
1180 F20101209_AAATTE rotundu_c_Page_044.txt
e6a547a6a489df60eeae41c88ef171f5
67cf330b3161da6b56611fa87f237acecfd9b11d
1058 F20101209_AAATSP rotundu_c_Page_016.txt
fd171a2a63553b3f70d9390cd41ec1f0
95e477a4e6257956ed536682584c57e35add0308
218 F20101209_AAATTF rotundu_c_Page_045.txt
0b8ed19480484c4ea83ff216d7f23e15
0434c7e656f9a572257fe2548b8f3fa58478aea4
2212 F20101209_AAATSQ rotundu_c_Page_017.txt
822a3a15b3ba2fd254c94e3aa2051c5f
ba5740db28326bc24204d3f54373429e13d0746d
1281 F20101209_AAATTG rotundu_c_Page_046.txt
87fd47db59cc6e8607093f03aa4a9e42
20e390b5d1bb829c9f347f3c6b7433d6e5a89349
1616 F20101209_AAATSR rotundu_c_Page_019.txt
f22a993e715db0cc3758b5a8b9f2a5d8
a8e367f7a232958d73ff086e0924b309a7c411d0
976 F20101209_AAATTH rotundu_c_Page_047.txt
a027f49aebd5433dd912ea43dc558a59
b70d1a3df4119c94affe96530f5f71084c8e484b
2195 F20101209_AAATSS rotundu_c_Page_020.txt
cbbe228dc758bc833d1553d01e449b03
2dfde7474e12411c720db43ba50ca1fa23c276a8
2316 F20101209_AAATTI rotundu_c_Page_049.txt
5b44bdc0d9a58edec16783fb26efad3b
b8129d824795b70ae0858f33db7d75956a5e294e
1441 F20101209_AAATST rotundu_c_Page_021.txt
468b010713347ac6debd735c2fd6393b
d7d611b7b1337ce9e795399fa6f38e631da8cb23
2402 F20101209_AAATTJ rotundu_c_Page_050.txt
024e37eb24ee8c93c33eef87d343d7d5
6c0ea08af7a403feeca02e7ae3f8df4b5434711b
2272 F20101209_AAATSU rotundu_c_Page_024.txt
741206876c0dbdaef24fa668072993e8
32eae8b832ae6ec371aaf24700e9e53b416b8245
2324 F20101209_AAATTK rotundu_c_Page_051.txt
83fffaf35cce57a414953b11e56e2967
4b1ad6b63ad6940e8f156cc9f7b0072a1cee837e
2158 F20101209_AAATSV rotundu_c_Page_026.txt
25d5d9435a120fd0717ee75200edcc89
558b791b7bff67d02ae73e04076da8fc5d5b861a
2044 F20101209_AAATTL rotundu_c_Page_052.txt
49a404abd461d143d6070481d6f54530
96c5668ac982e902a6655f64abd397774c7a70e8
743 F20101209_AAATSW rotundu_c_Page_028.txt
5b68542028d3d74042072a796c9109ae
93d1bb62d6d2311d1cbadf209a676cd3ab2a465b
2288 F20101209_AAATTM rotundu_c_Page_054.txt
299255a7c127a0b0d0c6227d6b92c499
80d4b75725500029611314518adfa3275e2c7199
1028 F20101209_AAATSX rotundu_c_Page_029.txt
43094c659a4ce51c24d9abf3fc84cfe0
30060853e1f406ede2671873290090557aecea19
2433 F20101209_AAATUA rotundu_c_Page_075.txt
28989b0b533c55b89b6e55d83afdee44
2983bc1b56c03d8d49912f8b28dc5ab7a4b54a62
2204 F20101209_AAATTN rotundu_c_Page_055.txt
eeee4e4da695ad2c9730c1d059c164ba
871d1968bab69f7e862d76c4f3553c9c2200d0c0
2099 F20101209_AAATSY rotundu_c_Page_031.txt
a44d94698f60725ba1712c7543c2b623
beda6a5350e1a738a60686102a1ac259a575a021
2135 F20101209_AAATUB rotundu_c_Page_076.txt
1ce4eaa7005e5b9c01f40e41756f9ad1
a0ed772e86028ac3f74102f74ef93efc619c7015
2147 F20101209_AAATSZ rotundu_c_Page_033.txt
736a5a83ba3577b58b2b28e70e9fd319
1ff91255ef98fa79b5a2d52e41ff797408007a39
21052 F20101209_AAASRA rotundu_c_Page_132.pro
032b1ee53e99b7986fe55d04bbb69c5b
133275bc8b6a92f41d9f086db58a19c96f7cd348
947 F20101209_AAATUC rotundu_c_Page_077.txt
a0895fdec2e0acdd042e770b04462087
bb217970ba04aeb42f14de3bbcd15878653b42f2
2290 F20101209_AAATTO rotundu_c_Page_058.txt
894279a9b46f0d859017e3f7da032065
d11fe1ab77180d2887deff4da2ba90b779792ed0
25271604 F20101209_AAASRB rotundu_c_Page_076.tif
b5782ad407c495bc03cfa3e26418ec80
52357130fae82a08fb7c41c5403de12d926d51a7
1257 F20101209_AAATUD rotundu_c_Page_078.txt
8aa98e812e2b9b10aacf06ac198bdc37
26d21269c1230546f9b9552321d520b33de070aa
2125 F20101209_AAATTP rotundu_c_Page_059.txt
20178e782a403203cdc0629f06fe13be
4e0ae3921e7ca0dfb9337d2add6af41e2735b9e1
7074 F20101209_AAASRC rotundu_c_Page_102thm.jpg
bfd97d21a3f9769383dd7342c94d7f55
717182c7fba51ea72591ce5b9f97d7f23e588fe2
730 F20101209_AAATUE rotundu_c_Page_079.txt
de00085bc0f63170be9cce3235e8f5ca
da2f87d68ae261dbc740b04b8b9dd782d028e82f
443 F20101209_AAATTQ rotundu_c_Page_060.txt
a3c2ed3b49b87bbdb548bb0e222a4f49
8e760cc9c5d6cf4c0187de857b56de86fa3058b2
F20101209_AAASRD rotundu_c_Page_086.tif
248db954be2cc953c1c3bb05a5c0345d
520e9d2348ece11c7812747877ca4350a24f99ee
1157 F20101209_AAATUF rotundu_c_Page_080.txt
82c8a57639a1b265971af51ee31db9cd
905d55fbee1af5a037cd920e099cd39bb69ef7d2
3440 F20101209_AAAUAA rotundu_c_Page_016thm.jpg
9d776d20be4733264dcaed491f90c5a5
4076f3764e97da9e8186477a469d6825d6906809
395 F20101209_AAATTR rotundu_c_Page_063.txt
adcfef8cfa439a41cfb4dae33cc02381
9829fc359fe5dc17e912a9c4d4b5c60bc65ea8e7
84796 F20101209_AAASRE rotundu_c_Page_108.jpg
d5fa927b01ed6452f52c39e833be8f26
6373142e78890b7653cf5961e16cc08794eadf1c
1037 F20101209_AAATUG rotundu_c_Page_082.txt
ad6ca150fb2d2bfd5d25b5772a6a99d9
dd138040c0e04f810b25b620b8eac89b8c8e48ee
6195 F20101209_AAAUAB rotundu_c_Page_017thm.jpg
3f2e286b41e13f47e84ea240bdc842fb
2b07f403cbf0f510ba6c5d61d25d0ea7424f2832
2145 F20101209_AAATTS rotundu_c_Page_065.txt
afebbef7450252749711e5010b4a5311
518c05664aab84ca83b2d21db0b604cf92d8c1da
12910 F20101209_AAASRF rotundu_c_Page_016.QC.jpg
a22fec4f0e0147c292b1bda2fb1eb409
1ab0dade9591d8b14db1ef5354050d3758c689c8
711 F20101209_AAATUH rotundu_c_Page_084.txt
b952f79408beb1ce3b337c3dc98ec871
9709510583a1118b034e7d38db18424e071b54ae
22938 F20101209_AAAUAC rotundu_c_Page_018.QC.jpg
8d01f2ee6cf1479e22ac5dfcc0d42004
ef64f6c5ba6ac400de8f2df9bfa94c9cab97ccc0
914 F20101209_AAATTT rotundu_c_Page_066.txt
dcfc5a3b5a4fc7f88f67e2ac4bce65c0
5a088bfbe3f3fd38da992cf2b943519558c6b288
F20101209_AAASRG rotundu_c_Page_069.tif
4298b3e1fdfdc50edd63d1a0d45481cf
25d6178d44557e47965b09fc98d7c6d1a952af87
1033 F20101209_AAATUI rotundu_c_Page_085.txt
21e8851bd814c9948d8f4fe0aa2e8e0f
b04593afd2961c046e6bef439c70219a533dcce2
15893 F20101209_AAAUAD rotundu_c_Page_019.QC.jpg
f82667105ed12b2dd56ebd57388987a4
a278618ce2410fe784291e1d67999080b0208020
2231 F20101209_AAATTU rotundu_c_Page_068.txt
e8d7db17ff78b1b1ecc683d8ceec369c
353dd3ffb9213ea8b60c316f9a15ff9e2584e309
34835 F20101209_AAASRH rotundu_c_Page_082.jpg
25784d3c6f4fba4dbd2d970b184a0a7a
d32b95c57334a7f721afcc0c31ba1c438d5f57e8
992 F20101209_AAATUJ rotundu_c_Page_086.txt
8b36ddf37ac7d33976d069a148bf67cc
19a9b43a54b4b9409e1ae2d9aeabae63abf7bd3c
3702 F20101209_AAAUAE rotundu_c_Page_021thm.jpg
4a2b13495c653c4c7ab5e4bfdea9cc14
8a35d81b45b6ee339d4d3790b2da15d5a524c38e
2278 F20101209_AAATTV rotundu_c_Page_069.txt
fb503af1666869c0b4cd38c09082dc17
9336ed7277a9ebb115617158e063db1f447e348a
256648 F20101209_AAASRI rotundu_c_Page_135.jp2
b8e38d01eb89c942d54169948a1f297f
d69d5468daf77370599ba6fa0b84154471d458a5
1051 F20101209_AAATUK rotundu_c_Page_090.txt
19825c6e45ef60c81a195e3a8a98d97f
e729f73c8d750be4f7247c24d9c8a1b2d65236b8
5904 F20101209_AAAUAF rotundu_c_Page_023thm.jpg
765046b4db695fddfa36b446dfe846b5
5a85b1d14a4f671ca846c2b7269543bbe262ad04
2276 F20101209_AAATTW rotundu_c_Page_070.txt
d97d458dafd73bdd12fee032627f541c
efc64d0402425978235a3bbeba9b85ecd1ae9bff
2126 F20101209_AAASRJ rotundu_c_Page_022.txt
e2d0182cb1efc94a80bc33bc62dfaf00
5f7de9e54645fb7c8054cab5fc75af5f81eedc99
305 F20101209_AAATUL rotundu_c_Page_091.txt
e7365079f52cc5041fcaa3174ce2b43d
938284739de9d3477d5b1604e0e5eabdcabf13f8
25650 F20101209_AAAUAG rotundu_c_Page_025.QC.jpg
336949bb68b54fabaa4281839cc76994
bcdad5c18d4283d5ce5dcf79166c95b18f326295
2372 F20101209_AAATTX rotundu_c_Page_072.txt
af9031b4c1ff1041000cb368cacd9bff
58fbc52701b06d733815c9a4411b9ea6c0d6ca46
988 F20101209_AAATVA rotundu_c_Page_112.txt
f981b3fb362db428f6ab30750974fd16
6d3c9beaa2be82e5800d7675a925bd98506302e6
4114 F20101209_AAASRK rotundu_c_Page_066thm.jpg
b32dcb891dfcf784e36d13bb55715a9e
65f6d8436f3bc91eb8033078bfae3d0fd77b2b25
1200 F20101209_AAATUM rotundu_c_Page_092.txt
71c8f4878d4e799dc3c638a7da0b0e95
6a939952842a17ffbd9733215ff248d76aaf936c
6347 F20101209_AAAUAH rotundu_c_Page_025thm.jpg
2259067557c5bf60a47f631c2f9268c4
f319032a00a594755ad7a727dc7be82eccabf9dc
2119 F20101209_AAATTY rotundu_c_Page_073.txt
4761b3794ece96cc535f9f1429ba9fb9
92fefc5cf32806f8672a1380d37bb5f49e9c7c53
416 F20101209_AAATVB rotundu_c_Page_113.txt
2130cdb47d3a2cd249bcb7aa831b789b
6f8e0ccf5123cf276219f7598410679ecdc6d4c2
265948 F20101209_AAASRL rotundu_c_Page_086.jp2
7bf2db3644f80c21abd274cdc879e388
d3a1fcf9c636fa557cb037e03dbdd8d87a08eea2
2318 F20101209_AAATUN rotundu_c_Page_093.txt
bcc0b75f9453fa4d1553a807638e7a9d
f5cd6a78f2b9d1ff8cd6057caa4546bd08b0f8fc
25043 F20101209_AAAUAI rotundu_c_Page_026.QC.jpg
879419a1b08ad5962df238ac57414d17
cc306588d80015aa5d3c19dfe09ceac585a57139
2299 F20101209_AAATTZ rotundu_c_Page_074.txt
18dc8c44545cefd87bdac843bcaa47a8
3a8d94e50749349bcae7e240c7d5d48052c3264c
F20101209_AAASSA rotundu_c_Page_082.tif
549630a7e8ea0a5275a49b49daee6982
e2dc96e8142efd6c3f5c581500d2270f36ff297e
961 F20101209_AAATVC rotundu_c_Page_116.txt
22e1b4d2761ddd033c3087cce45279de
fad93b147c40752aa1110251a00443bb47efe6bf
11541 F20101209_AAASRM rotundu_c_Page_088.pro
ff7260b51157ee273d4cb1f3075509be
7ec734acfbc85d98e37abb3802d46837b2d97173
2317 F20101209_AAATUO rotundu_c_Page_096.txt
861c280e2fabd906ee27801b050596ae
bb76da8bef939a5091d259999f73908259283d6b
6380 F20101209_AAAUAJ rotundu_c_Page_026thm.jpg
09753bf13fd6eefc7cf4ac602943d6e9
6ae2957c6a6ea66d63ee17c9b087d3675ac800d9
6779 F20101209_AAASQY rotundu_c_Page_095thm.jpg
fde9ceb98e3def971cc6d94789eb89d4
1267df96fd4ccf463687583b9543f671b4b3f681
25901 F20101209_AAASSB rotundu_c_Page_010.QC.jpg
f5722045757962c1a3e50928211ea67a
a8df987d2bd87e3ada3bd893bb403f29e2de06a3
306 F20101209_AAATVD rotundu_c_Page_117.txt
ee793b5bd24acdcd376174109318f02a
d0c25c85ad6551473c2b06cd438f068b83188e9f
16707 F20101209_AAAUAK rotundu_c_Page_029.QC.jpg
dd4c1a3666f1d380dc554a57b45a1e38
0ebe3cffebadd7ecac8798b2e1aa27ae74cc0821
1115 F20101209_AAATVE rotundu_c_Page_118.txt
416536dee32ccd7f1d761bd1b0f87dfb
c07b84a38aade8468e7d1c93aba972bf4d9d812f
10701 F20101209_AAASQZ rotundu_c_Page_118.QC.jpg
674473aaa4eba2d3bde4825ea25f3330
17d8db90f7633ba1c6e42291cb0ad666aae14aeb
59124 F20101209_AAASSC rotundu_c_Page_071.pro
80632618e1826417285749d6245bc04f
6d9c2de88ae9f8537881d091f5ef66c169612308
206676 F20101209_AAASRN rotundu_c_Page_079.jp2
47da685ffc9bb841d12af639691a6cd9
fb2ce486042f7ad885e2594916c93a23b8abca0b
2259 F20101209_AAATUP rotundu_c_Page_097.txt
c1ee585ab68e5c0a2e660dbf9f63d610
ac22838af8633a4b5d315633efebc8c02ea2a1d3
4882 F20101209_AAAUAL rotundu_c_Page_029thm.jpg
111dccd6595807ab8f73f6cf3f74243f
9f18e9a90eea5025b94bcd1fc04de1707b705ad8
890 F20101209_AAATVF rotundu_c_Page_120.txt
74c6a70c199a032e90936139573deb76
b483203b260aaf675580444a73de88e2dc78652a
6104 F20101209_AAASSD rotundu_c_Page_076thm.jpg
56379656f42a3bf1f7539709cdf6dc01
5ceb047430afbdf29e84fc11b9d505f01445d139
15499 F20101209_AAASRO rotundu_c_Page_078.pro
6c6b98f5fd7201c3afb30e5d685c5695
9b15a1a8556ffcd25d3d75847267896cd6ded916
2251 F20101209_AAATUQ rotundu_c_Page_098.txt
8b84d9215fa669aecc7ce09cd7ff11ec
521aa79d66adf1179ac98223314fec50dc19b56d
25632 F20101209_AAAUBA rotundu_c_Page_053.QC.jpg
88242c4f7cf0e020f4d7e9142a55a8fd
354669ccd895eb168353e18fe827546331fa8218
26810 F20101209_AAAUAM rotundu_c_Page_030.QC.jpg
fac98d29dc1266402370df521f16aa6d
f7a5d7ab33430abb56f7e636434af75e5de8a240
707 F20101209_AAATVG rotundu_c_Page_121.txt
d1931abbba63630346f12e75a92d63e9
3a95ff92cc35876e69dd1b06fc8a8093ec3297dd
56344 F20101209_AAASSE rotundu_c_Page_093.pro
9e71f79a557fb548274b71e834dd8c5c
c62c4c6c8f9794fd42c7cbd1a13e02e77f02ba1e
61266 F20101209_AAASRP rotundu_c_Page_050.pro
80a9a5b151cece6f9bc299ef885d4df9
52e52c9ab5a25589f5ea58281aa3da1840c4ae53
2308 F20101209_AAATUR rotundu_c_Page_099.txt
f80c1f21125c3e3bf648865c4c1b1b1d
2b65544358ce9f82f8a094a61a9733ea1e887820
6504 F20101209_AAAUBB rotundu_c_Page_053thm.jpg
0ef71c3a3d8de286773114511d2fe1f3
75434b8737a71d86eb881c493812ed2542a7e092
6697 F20101209_AAAUAN rotundu_c_Page_030thm.jpg
d46d0d24a486a80d6c50a43a8b23c82a
ea5982c10e7a427b7d351c84f52d66b369eac095
906 F20101209_AAATVH rotundu_c_Page_122.txt
ff3e0c87363b9adea6bd36bdcb822d3a
324f4d4a8b7385d9714ac4423e2dcab6c0634384
3324 F20101209_AAASSF rotundu_c_Page_113thm.jpg
78f67c719ac9edb52cb7c653d3690766
8b32d4716299e5479205863f5213baab43cd739c
7171 F20101209_AAASRQ rotundu_c_Page_013.QC.jpg
6bdb6e9d6b82f247cfce8cb755d01e1b
239f47357e6c90ef75caf9fa0fa0d5acc1260b9a
2271 F20101209_AAATUS rotundu_c_Page_100.txt
2ebdf70a1a997c1dcdd879e63ee1c5df
037fa57eee6f57d6e12f3142a3651d992247e674
25028 F20101209_AAAUBC rotundu_c_Page_054.QC.jpg
d3a75eb67b64188b383e8fa1b0c5a4c1
fb7373c605aff69f9fed77711d3e05fe99aefbbb
25715 F20101209_AAAUAO rotundu_c_Page_031.QC.jpg
18d5c48250cd75c8ed86bf9eec3d5dbd
1ffb2dbe27536aac0d79862c71dcca1419f16bb0
1182 F20101209_AAATVI rotundu_c_Page_123.txt
d6a0834968b2a2aba9bb5169d4cb5b9d
0560c9a356454fe48eddce179728c03e9dae57e2
51929 F20101209_AAASSG rotundu_c_Page_037.pro
c9a3c8da96e1617e39d3d066d845db30
92759cbbfad1a499ba4260568947f898fbe91b3b
2325 F20101209_AAASRR rotundu_c_Page_071.txt
fd6d55f6fd95d6591fb2a4f6a592c0f9
53575fd3ba7329df824839ac0bf8cbdc0eefb584
2347 F20101209_AAATUT rotundu_c_Page_101.txt
56ebeb5621cf5f055eea18e753ff3a2d
fcfeaa6162ecf8faee74c6a1009a24023023b9b7
6256 F20101209_AAAUBD rotundu_c_Page_054thm.jpg
9904b5d12811bf791a6719ecfda671ad
b26db62ec24b46762045245af44c4406a979f5a2
6603 F20101209_AAAUAP rotundu_c_Page_033thm.jpg
8c90f5a965313a6fcc83f0a7a23a22fd
f9c9d349c35a91dc8b1aad386dca8af4385495ad
880 F20101209_AAATVJ rotundu_c_Page_124.txt
dbc63c0e2ffef6f7b3e290612f3f9631
d0ea145051aa555dc9113baf28e3e17ed9e2dbc4
418707 F20101209_AAASSH rotundu_c_Page_085.jp2
09796076ea27d84ba1fb19fe5947aa39
7a427b4a9410a33f42870eeefebb33c189d6ed61
2164 F20101209_AAASRS rotundu_c_Page_144.txt
70ca79a9a6edb4675ae04f49f4cce474
e01ac77e94f7587ed00d2405be4a248cd16af0d5
2345 F20101209_AAATUU rotundu_c_Page_103.txt
5870aa5c0391a2e4c51cd94ec2065cee
d8b270e872c1d7c2a29144e82d9f08528da9a443
27752 F20101209_AAAUBE rotundu_c_Page_055.QC.jpg
e4eeeb5ade7d54315b4d5bacede6c853
1098a68e510eb45b804a140d34c4c2da314e3079
6391 F20101209_AAAUAQ rotundu_c_Page_035thm.jpg
b7af37d00a172e8e859f54a782299ead
be5cbea559af5ceec627b03789f92301a2954f21
419 F20101209_AAATVK rotundu_c_Page_125.txt
5aea05d30eb42bade1d03dd99335742c
03adaff313c83cc43d61508898a15706ad49e8f2
23174 F20101209_AAASSI rotundu_c_Page_142.QC.jpg
662addef575d7b4fe5839c9eb9618489
4b14511e599972d31131930ac56b6c9e58cd4a5b
28418 F20101209_AAASRT rotundu_c_Page_072.QC.jpg
c395c0fadc81561b20d59cb1a7ebccc9
265d3b449c4616360af4655ff8f989f8f515f056
2330 F20101209_AAATUV rotundu_c_Page_104.txt
cb1bb95b6b43b06d9bf740b860c94c00
0dc85333ee74a92f2aee091c2124df8f49378567
4899 F20101209_AAAUBF rotundu_c_Page_056thm.jpg
18c7701d7c169fe78c01490b810150d1
75b6ea8eb7d3a3076d0aeb1eb5abc55d2a66118e
25424 F20101209_AAAUAR rotundu_c_Page_036.QC.jpg
fef7f0ec308ba714c42aff6c68ce2791
398a1bfd24ba55783150d15315823621f1660843
607 F20101209_AAATVL rotundu_c_Page_127.txt
70f9eedcb0e777f64ec24f9e239ef0ba
5bf2311fdce8d4fc81a574ce9717a819b132d66e
24698 F20101209_AAASSJ rotundu_c_Page_001.jpg
14568a23be7e5cd3bf2b2cc410b7100b
c40655855f4c822fb5bb0b56473d85341475b141
1051865 F20101209_AAASRU rotundu_c_Page_074.jp2
e3b4746ba9b9cae771fc6f47ac27f376
c01d24d5253ad70fe7f1812ce3828dea4489ecfc
F20101209_AAATUW rotundu_c_Page_107.txt
b9be54f58f4a04a4e6c0abe5cf6f5487
aacafb007ceced3edfba8d74d8c0cb4a8403f6a1
6209 F20101209_AAAUBG rotundu_c_Page_057thm.jpg
8279acf8490e7eec019f6b75aa5373c3
ba9a2f281638497fbb97a415219ea6c3931366a6
6618 F20101209_AAAUAS rotundu_c_Page_036thm.jpg
7c6261ae5215e154e09d7df6d5a4b9e3
bed043cba083b6d0967c26e55fa647b46d7b605f
2254 F20101209_AAATWA rotundu_c_Page_001thm.jpg
f2689d40a4838661b968850e008e6afd
87872bf1dd58b75d6393ed32d4fd93c541f36e24
504 F20101209_AAATVM rotundu_c_Page_128.txt
8db16f7f25a0fb45724439c13d6e3c6b
d06c3318b6f19656733868dd22e90a70d442f7b0
F20101209_AAASSK rotundu_c_Page_016.tif
ac951bc32866aa2e3966d74c48933877
a8e853b1f49cbe8eef4b555cb438e76763ecc777
7667 F20101209_AAASRV rotundu_c_Page_081.QC.jpg
33777f424a3cf6ddbd4903186b3f9eda
de2ab67900a4043551684144276c9a0a48d41f49
2181 F20101209_AAATUX rotundu_c_Page_108.txt
8d44f019ef65a65430cd5d789f91a629
e70d8a96a3970df7bb4895ebc3f124db84d9ca33
11714 F20101209_AAAUBH rotundu_c_Page_060.QC.jpg
e15bea7bcedad62e5036f4151c11cbb0
4d696a6a4585779175949a000664ddc2dd0e9397
25495 F20101209_AAAUAT rotundu_c_Page_037.QC.jpg
0ab25ec23528946af0bbe73b40fda1c0
32c436d89c00df9de51af63f35bd6a78d21872b6
3470728 F20101209_AAATWB rotundu_c.pdf
295f041671f199749e3bc4f883201df5
826ac8e60cc625ece0def99f82509ea8c7ff96f9
1136 F20101209_AAATVN rotundu_c_Page_129.txt
a278fb885819f2ddfa638f2a1f6c615a
d8792e94e5336b9e6d1a1601b7b0d2cc89c10515
F20101209_AAASSL rotundu_c_Page_121.tif
58c0a37b4cda42467e63270df5fa743e
921ffa49fe193227a35368afab30939dce98ac97
8054 F20101209_AAASRW rotundu_c_Page_127.pro
5aad36b78ef1c78fd6dee89ce238a31d
842181bf7219cad81c6508c03681fddc3d462867
2431 F20101209_AAATUY rotundu_c_Page_109.txt
6b4a6f94b831ad6869c8d271a305f416
6daf7dd6d9d2ddf84fee8f78f86cf86a24a4c197
3838 F20101209_AAAUBI rotundu_c_Page_060thm.jpg
e9b8e7a3f1bb8d2610c54b94bb07943c
9f3814f036d34b2a8a17752d20bd21603d785311
6038 F20101209_AAAUAU rotundu_c_Page_038thm.jpg
f673d8fc2f933ca59296c4ec6afeb40b
fd6acedef405752fd1d60c4005f918bfcb14257b
22806 F20101209_AAATWC rotundu_c_Page_038.QC.jpg
d2fa5d65a9cce0cf2adc657c628b9343
52630111e74af545b22c3357bfcdb91210b941cf
396 F20101209_AAATVO rotundu_c_Page_130.txt
75d6e0978e80cfe8ede47804cd131ffb
ad351727340f04c9e49d2086ff3610262e9f80c4
84004 F20101209_AAASTA rotundu_c_Page_106.jpg
07b033ce2aec1b5bc90654b0b0a87072
5053eaa483419e529c82ed7251e5e8dc2120fd6e
F20101209_AAASSM rotundu_c_Page_132.tif
66def8da243b9a6ec5d1b46132dd4192
41426397953fd4f9a847611e22e7fb86be143b80
F20101209_AAASRX rotundu_c_Page_137.QC.jpg
edd078440f2c6b4850854239822c5372
259e1c3d21c09f57d8962f0ae1554a6baa1b906a
2280 F20101209_AAATUZ rotundu_c_Page_111.txt
0b29608c8704881eb647a920cbd7e2ba
ffe2028a60fbf1f32a954650f74a4a08f59d2b16
8268 F20101209_AAAUBJ rotundu_c_Page_062.QC.jpg
fd54de196629e77dff5abc801c078bd8
7b5bb099aa682d3a31da869e3b84102cbb9dde20
6844 F20101209_AAAUAV rotundu_c_Page_040thm.jpg
fd4e0e31eb7933772b5239ab81a739ba
c2c09308039c85b76f7918dedf6a95e03c7f882d
6513 F20101209_AAATWD rotundu_c_Page_067thm.jpg
30507337282855acf8557c746d84fa1c
fc136826796da69305f6f83094f0d6b7cf6e6ce3
1468 F20101209_AAATVP rotundu_c_Page_132.txt
1aa2d22f7a2ee63fd388e7badf2d8f04
4fe12077ecf3e75ba1a03c7a5ec1f55f937df095
F20101209_AAASTB rotundu_c_Page_054.tif
3f560cc703f1ef20cc9d416bf246f925
d6cec61276e4cb0da81767c291c7765aa169dc54
114539 F20101209_AAASSN rotundu_c_Page_139.jp2
946fd4812bbd4566a9a53c5a565d6633
71d5aa88330454de09d1f0b5a10f28727b1abb8e
234700 F20101209_AAASRY rotundu_c_Page_127.jp2
96b8769a2ef5b74c62efe4a6a809ceb8
ff3caa9b000a8e7fc5270eea957d032c7c275027
2835 F20101209_AAAUBK rotundu_c_Page_062thm.jpg
2acb14c9c94d26b65d29fc6a51ffd1b8
d3eacc3e07e5650d1182a678f903347aefb69069
15123 F20101209_AAAUAW rotundu_c_Page_043.QC.jpg
eeec24d34b1980dc6d514399b1840c93
9e12a012a22f71388e9a4e47e2999b37295a3ddb
7078 F20101209_AAATWE rotundu_c_Page_109thm.jpg
7038081c72c9872fa8291cd17ad2ce32
aa1c00a09e8737b66625ac762f7067d77f69ad51
125632 F20101209_AAASRZ rotundu_c_Page_053.jp2
47d80b0d17d34eed5078ac54ab06b662
eff5591bf683acfa7151c47636bcb1a0139f362c
F20101209_AAASTC rotundu_c_Page_008.tif
ded71d20e0ef168563fe856dc2e0209d
3790fc09d5f4bdb978363c7219e4286fe5c7cf53
2509 F20101209_AAAUBL rotundu_c_Page_064thm.jpg
9e536e981f0d9012b31a2ec490cc8b4b
30dfb746f29f5e556abe5a7f2badee258efc2799
2774 F20101209_AAAUAX rotundu_c_Page_045thm.jpg
d7d72f3d10d6e1b0ffca3b3a63c957cc
0ff75d5461f420476e29d1788274e54cb720004f
8741 F20101209_AAATWF rotundu_c_Page_127.QC.jpg
b286c951d49d95d888e33f538374dfaa
a00339b57cfcdee80562eff015269499b8e6f3a3
1490 F20101209_AAATVQ rotundu_c_Page_133.txt
4aa25b2597344e175059a793963f64e0
9825190c21a236251b4573a246ad4d6e008c6099
99957 F20101209_AAASSO rotundu_c_Page_052.jp2
66c11deca4814c89712791405196a58e
151a9d77e8a102582eb61a1d862f4e06cd81e64c
4370 F20101209_AAASTD rotundu_c_Page_028thm.jpg
7a49e5ae4c1d5ef7c0458a7b2b56f7d0
bee43964d827ceffdfce4afed82359db25ca2f27
12123 F20101209_AAAUCA rotundu_c_Page_087.QC.jpg
0e0db70ae916ad39616dbfd71a1cdbb6
dc89febcfa35447f2ecf2a39be3619c6278a6b4e
6851 F20101209_AAAUBM rotundu_c_Page_068thm.jpg
14f85b9fb2c6c7767badea8db8d2ed35
1ea5fdc1b6cd28f9279ea6d4b0ba95b00f473239
17938 F20101209_AAAUAY rotundu_c_Page_046.QC.jpg
e82d5d23b90a216d373f37f5b4211105
200db299703755ea416aef1fd607ab7e3ac00930
12514 F20101209_AAATWG rotundu_c_Page_066.QC.jpg
615e1068c856800241191f845378ea18
1ee6b850849bc514c1073f8e53cd39f2e312c3eb
1256 F20101209_AAATVR rotundu_c_Page_134.txt
4c26fbc7002a5f8f43625fffedfb614a
235c0db1d4c7dbae7d8c8d4176e107f3f7d382bb
2367 F20101209_AAASSP rotundu_c_Page_023.txt
6dbeab0cc895c181c831a80ff4772269
b62f00670ddd6b793e4e7d2be532d243504bd48a
45972 F20101209_AAASTE rotundu_c_Page_092.jpg
d3e7f6f554fdf4c5fca359c5a57b404b
9a833c78a3149c9521c1cb3f530c223c271b766f
4112 F20101209_AAAUCB rotundu_c_Page_087thm.jpg
4d62c79af89c02957c61b145ef45e0aa
f5004e90af6aa08a1b61b27cf6fa5d5a558eb0ee
6940 F20101209_AAAUBN rotundu_c_Page_069thm.jpg
645a6a23dbcde055fcb2a5da99c20a8e
bea8d09272557770750941134dbe18df6cc4193c
6326 F20101209_AAAUAZ rotundu_c_Page_050thm.jpg
1f5d51d6bb84bd822daf6712ec020752
c07819ba91ec9579461989e41b6ca1436e492b79
26697 F20101209_AAATWH rotundu_c_Page_040.QC.jpg
2fa1ac43dc809d1be92937777f50d1e5
6a685f135f67f8273ecd90d31fb8d5c212c10ce4
525 F20101209_AAATVS rotundu_c_Page_135.txt
6312d812fe3fdaa970681bd49a8a54a0
f78ee04e427ef6d902b0caaf9754a27e57915fb2
14522 F20101209_AAASSQ rotundu_c_Page_129.QC.jpg
87f877f9e057196773b92cfafe65a492
f70fada47acfd7d850a09195efcc5064631b4157
8592 F20101209_AAASTF rotundu_c_Page_003.jp2
b5251d81a85357e78a82e74666e6d90c
1ddb6d812b6fa35d8c01ebf6c4c095d9f8051e32
9074 F20101209_AAAUCC rotundu_c_Page_089.QC.jpg
66d268f0869b9610ecfd5e923e9da2a4
c342e82f0e9b5856b8c0c2a5960e57434fa0cb9d
28115 F20101209_AAAUBO rotundu_c_Page_071.QC.jpg
85576fabfbbdcab219b06870e5f2615d
cce4b692ad84f04c3ff28c9557da4fea6721c983
24223 F20101209_AAATWI rotundu_c_Page_057.QC.jpg
4ce5dba415377784f3de30a771eaf825
f6341428d477c00425a5fd8c01cc7e7d4688b437
F20101209_AAATVT rotundu_c_Page_136.txt
e2270c080a0750c6c406d1be62e055c2
25bd4fa39c8f1c2535b42d4afa63a707cd89c68b
77994 F20101209_AAASSR rotundu_c_Page_038.jpg
8a48cc41bf9538dc0fda4de00d4add70
19d385f67ba7f1285840efc542becbcb91394783
2058 F20101209_AAASTG rotundu_c_Page_025.txt
534cc39d7b81f589a9eab577470454c9
47666325b470cb48a6668bbef7d19af4ef6cbd20
2946 F20101209_AAAUCD rotundu_c_Page_089thm.jpg
85d58b13e0f4497b2999ef45bb66da83
71d2b14eff006fd505379947d87c68821cd7367a
27879 F20101209_AAAUBP rotundu_c_Page_074.QC.jpg
61d610861507c88a5a9dc6662a59e890
46ed124c2c63f21d02777739fd8affaeeabcb2d1
3819 F20101209_AAATWJ rotundu_c_Page_044thm.jpg
e868a0a1938f7c5636648f9a0a8180c1
79a446d8911830d816b665664fd47d043935fb95
1367 F20101209_AAATVU rotundu_c_Page_138.txt
35c665b6f2c99a8d84839cd7ca8af202
2143c6748cbb67264e8e997703677bc4a99d8c2f
F20101209_AAASSS rotundu_c_Page_134.tif
8324dd28ade74edfa657031cec9ce172
c5fdefef4d94599646d537f5b472be57fb3534f9
6754 F20101209_AAASTH rotundu_c_Page_128.pro
2d481a891df22c31527b456ddba222f5
ff60f89839800af2d963c28a2844a417a89a8bc0
9280 F20101209_AAAUCE rotundu_c_Page_090.QC.jpg
9d63eff4ec66cbb91b83513f0f88a32e
65a5089c5b8ed317ad2b9af26f349638d210acf2
6895 F20101209_AAAUBQ rotundu_c_Page_074thm.jpg
4d762ba34e2766828193a612abbf1f35
aa15692f0776f917ca4cae52a158cfd3541d7aea
4272 F20101209_AAATWK rotundu_c_Page_121thm.jpg
5ed05101b347eaa8c2dbe92b431bf694
b36adb7f7278f635b537dbabcd66b473243f6434
2246 F20101209_AAATVV rotundu_c_Page_139.txt
8b158ae3fd695ab3923ff3503c787ddc
15a8147d7687141e22fa9451a11097187df0b363
796 F20101209_AAASST rotundu_c_Page_131.txt
b73c0dc73316f192dbc5052c4c9f2fb3
a4f231edf9f70632a2ba2f62fdd4fad47171b4f7
31550 F20101209_AAASTI rotundu_c_Page_115.jpg
6076883fddaca3288531a5c1eae9dc54
8768aa7f37c7b7ba5a5ae914655ec753b2fb252c
14534 F20101209_AAAUCF rotundu_c_Page_092.QC.jpg
ca96d9a861f29b3218bbd7c10a5c08c2
6002204920db2ba06bd578ad4452d71a77b329bf
11979 F20101209_AAAUBR rotundu_c_Page_077.QC.jpg
26d1a8afa29edac875496aeab26294d4
fee601e1a4785171107275f62728d500b847dc65
25538 F20101209_AAATWL rotundu_c_Page_039.QC.jpg
12b56b1fe9dc8d557c5da8e778207c6e
21dd5ff834d933b60463c6624018e4b493f096e6
2118 F20101209_AAATVW rotundu_c_Page_140.txt
224d48e0111960b50f720d3b5ce66ca5
eda5abf99279a73423dc425fbae189f3247339cb
1051944 F20101209_AAASSU rotundu_c_Page_096.jp2
c12224b7fae331c1901ddb235005cb15
aaf5231d19a73f9befa5e9ccb0bf13d4e6d00794
71667 F20101209_AAASTJ rotundu_c_Page_145.jp2
c9484967b2b596b13e28a9537a1904a1
2144f876e1deab72161744d7d4db032aa2c2ae14
26710 F20101209_AAAUCG rotundu_c_Page_093.QC.jpg
84f72f12cb39baee9e064cbe457e6e7e
a58f92c93beafbd5f55ad0d6a2bb988ec89d3b73
12736 F20101209_AAAUBS rotundu_c_Page_078.QC.jpg
4968ca27119b1422be9ea2d625d72526
3d854d33d9c833154183cc9bd3228915e6b862fa
7010 F20101209_AAATXA rotundu_c_Page_075thm.jpg
5db4c75b9ddd0064c0b09ba63d8f9eaa
ea5f9a509b059f886c9f5c1b7284bafbbd96a911
8253 F20101209_AAATWM rotundu_c_Page_135.QC.jpg
d91a95c2c00f1c09145299b78df40217
3c31d081f3bd7d22ab67e2c1d21505c1ed411fe2
2187 F20101209_AAATVX rotundu_c_Page_141.txt
5f8180e3535509565e877323de866751
9f8e960883a30e32047b57a3e212cbd664e0cc30
516982 F20101209_AAASSV rotundu_c_Page_132.jp2
ef177f213299466d1ada1cce96d9b876
6b99297fa1c97de40e29f567b724bf7be9b69ddd
F20101209_AAASTK rotundu_c_Page_094.txt
92d06e94217336944d028b497abbb062
2ec0654dc164f8da1e82b2936b65666cdda6e67b
27904 F20101209_AAAUCH rotundu_c_Page_094.QC.jpg
da3b495e1bc6ebf17f58d2640713d7ad
7dfee14f1e0c8390ed94ef868c095cf97253539d
2848 F20101209_AAAUBT rotundu_c_Page_079thm.jpg
2e28f960da0b40828d6cb8f9d0584609
b0b2114e40081cdb79b83d9847c56c747b799355
5495 F20101209_AAATXB rotundu_c_Page_004thm.jpg
9afea8a3668e3d96c6a701116fb1f73b
ca67857c213e1ee3d03fb9743c80dd8e79a7d5c9
3196 F20101209_AAATWN rotundu_c_Page_131thm.jpg
d2fe119ca2023b1c7ca86ba0653fed53
349f0d2346b4ec9dafea8e1ae2cb105f00fef75a
2227 F20101209_AAATVY rotundu_c_Page_142.txt
9b293f4ae9fd993771209044693d1016
abbda7ff93ffccdfc2b28ff0a617d7dbfb476de5
113673 F20101209_AAASSW rotundu_c_Page_142.jp2
4beb5c645c721028b562050bae7d7d1b
8ab566664ce0b5c7fdca02b31b15d666320e009b
4699 F20101209_AAASTL rotundu_c_Page_123thm.jpg
66d0e887b2e9853b4bbaa0f843afe492
749d939d2677e3ff991743176f92d60a24521854
27278 F20101209_AAAUCI rotundu_c_Page_095.QC.jpg
c9628525222e81b5f7f0ad880ab528d4
f7e0b4467723ad88edffc125d3329c35e841856d
8487 F20101209_AAAUBU rotundu_c_Page_080.QC.jpg
b7b8e428ba047d7670c0a28878f9561a
cc6f0bcfdbba50beb57cd02ae8ed988250ba969e
4518 F20101209_AAATXC rotundu_c_Page_043thm.jpg
a0353018591a1c516c372a45a4d4bfdc
a81a762973f7225fc1837dc8cc1c66d5b5b01fed
17028 F20101209_AAATWO rotundu_c_Page_056.QC.jpg
d6d8fab0c79e373831cb1e989271f2cb
80bf2018d8d1a3fd519e42dad7c8d57e2e159c0b
2035 F20101209_AAATVZ rotundu_c_Page_143.txt
14b41b178631d01360f374dfa52d9fe7
3bde18aadf52eece8fe4457b74ae1fefc3c7b7d4
F20101209_AAASSX rotundu_c_Page_126.tif
2861e97339c552895b3935609620e910
2169edaa03e5abda8a9e87e1880edf19a46234b8
2021 F20101209_AAASUA rotundu_c_Page_018.txt
f25effa167b46aab786353222e202544
fa2c92ae20906d472b76479d5ec7f06b4a6b0a9c
11518 F20101209_AAASTM rotundu_c_Page_003.jpg
24bf9e3ba6c5906648793501db1ba304
43114c66af6dee7cb69d10efe673a5b3435d0d46
28291 F20101209_AAAUCJ rotundu_c_Page_096.QC.jpg
34e62754322b6a7aa28c3d31a5d629a5
4b366ab049763459504655dce235e3768499df93
2893 F20101209_AAAUBV rotundu_c_Page_081thm.jpg
7bc2d390b1725f8a45c62fd68b02ff64
0f84d4c90add4067feae968f74da1e43ea148e61
6373 F20101209_AAATXD rotundu_c_Page_031thm.jpg
7c331015dddab5cfb92cc0dd745ffd8c
4e69bccb0a3a83b90e29288a1ddfa5035af22e95
21340 F20101209_AAATWP rotundu_c_Page_020.QC.jpg
8b8191dfa7f6a36dd4b3e8ccfdcd1213
b6b59909cc149c155dacd41dc3f67c49b1c4ea99
24863 F20101209_AAASSY rotundu_c_Page_029.pro
03efe1e799e75241ace638105967f071
a5abb2617bddae01b3184bc7ed544aea23d4be13
33517 F20101209_AAASUB rotundu_c_Page_118.jpg
95ccf385c48e4b21f7084f47d18ff035
b1d86e954d573d3e812cd8464e4877510fa238e7
20473 F20101209_AAASTN rotundu_c_Page_052.QC.jpg
514f45b9732e367f8230e693225e7cee
cdb2714528c234514608eee0e90a58e931afa0a6
7067 F20101209_AAAUCK rotundu_c_Page_096thm.jpg
5c440ee3c67a1431997d6ee9d8c29d0c
828dccca59cab7c3b15222396aa6b8a35799a620
10542 F20101209_AAAUBW rotundu_c_Page_082.QC.jpg
47964663b219d05e105cb856791ab6b7
261b7c5e32ee2296b1bad52cbe5245a005279f61
6904 F20101209_AAATXE rotundu_c_Page_055thm.jpg
71859965a050ecd0054078d85b57ddc6
c2228737630751501ae9205993516eb969745622
21738 F20101209_AAATWQ rotundu_c_Page_006.QC.jpg
98ae0a4d2868e4c91314752195f6fd85
05a78767effce39fd5e5a7d25f84333c8dd364d7
F20101209_AAASSZ rotundu_c_Page_071.tif
5afaee196b3c3dd337803a59d36957cc
0b2b0987f30919ab54e4e91ad0df35219e73cfe8
F20101209_AAASUC rotundu_c_Page_041.tif
da08473ae83412085cd1d70703dd6632
1b593488e0de0acdf239e5b9f0d157b15f59d8a4
8060 F20101209_AAASTO rotundu_c_Page_045.QC.jpg
8d04d33c19bd2029aaae5ec3f259d56e
616279472ac450f1117b7a429fbc6ac8f450087b
6819 F20101209_AAAUCL rotundu_c_Page_097thm.jpg
c0df6da7e976d71996641523fe49e472
73af986af5891d2264fb6fce3711229929c6f290
11895 F20101209_AAAUBX rotundu_c_Page_084.QC.jpg
2ec5299c7ba83791a044a5c5c1c6f35d
ed8589bcf09553f531701f5eedeef4354aea9307
27614 F20101209_AAATXF rotundu_c_Page_069.QC.jpg
5266d051631d4a0004f5e94e7d726924
70817be2be0138922a274582a77bb9affb0ee84b
489836 F20101209_AAASUD rotundu_c_Page_131.jp2
0da8728e3275ae644c6c460cbd6e5d6d
1d5f6b870e4bf56f88a56894d17ff25fdf0be75e
6575 F20101209_AAAUDA rotundu_c_Page_111thm.jpg
38433f368968b3219e5181cd0c6e4fb4
321b1263842a68b06a0d0fa2f81f30fbd6e0a66d
25840 F20101209_AAAUCM rotundu_c_Page_099.QC.jpg
c576564888abfce8c1a9564c3f1fd972
88bfe4a37d60ed6a9dadbb7e45c8446f7e22e573
3775 F20101209_AAAUBY rotundu_c_Page_084thm.jpg
f41cd21e2bb276fef34ce73364a65254
63eea29b0e1c7612b59aceb2f0f79af05d496c2b
5681 F20101209_AAATXG rotundu_c_Page_052thm.jpg
bdfd9acd4952fcfdd36de5e534b719d2
9e18526a7451c6380cac610fa6a99e8ddf952edd
9312 F20101209_AAATWR rotundu_c_Page_088.QC.jpg
e1c60d63ab4de1e15eca87d691cf9051
d48a09c2ed78174a0bb92e6ee52a363f1bb1c976
26184 F20101209_AAASUE rotundu_c_Page_106.QC.jpg
a63cdafd12b48da54465a77ede9fb3a0
d294976bc6381316677d29c182195cb466e572f6
123700 F20101209_AAASTP rotundu_c_Page_099.jp2
b97cf890507d34c06cb63352724b1fb8
43d0c3b8867c90dc89ccaa9a2c2f0a18d4017ff5
3599 F20101209_AAAUDB rotundu_c_Page_112thm.jpg
cfab7d588b0cc089cffafb23dcf10786
43f308270f088ca7a7d111e8b5204d506daa4a40
6283 F20101209_AAAUCN rotundu_c_Page_099thm.jpg
23c5f9f16e77f58a5b4b7199b0da7977
22a0bf160e1bce7153f9ff73d3d6e6fd919b2ab0
3014 F20101209_AAAUBZ rotundu_c_Page_086thm.jpg
11008082e9d55370a4267869383f4a2f
0147d263404a46f1d1852adebd1d3a9eb2348341
5384 F20101209_AAATXH rotundu_c_Page_046thm.jpg
ca25171bc30b9adeaf50e2043a87cf9f
ada7cdef98d0c4659deb3e6c7ede558f2e285da8
29188 F20101209_AAATWS rotundu_c_Page_075.QC.jpg
54f38ca445fb4620db2f7cb923d437c6
4ab3d0840973fcb52732d02d9ef8c97a7ee0f5f8
F20101209_AAASUF rotundu_c_Page_043.tif
4e3f47bb4d4bb82cff365cd44e459ab2
7fbf5145a4261e01fa66cbad066b5b923d9d2443
59623 F20101209_AAASTQ rotundu_c_Page_005.pro
6966267ce2e4101a8aedafcf54754ede
b521c36a7b6a081dab0e55c52caec0eef3e55733
4629 F20101209_AAAUDC rotundu_c_Page_114thm.jpg
1842b4fb22b9c31d4fb7c2afb10b1d93
dfbd32b2344cecfde00230e3c83658fe26328aa1
6840 F20101209_AAAUCO rotundu_c_Page_100thm.jpg
ed04b629c1e182ddd238837f429cb374
ca5320749e49b0f8d2f5c1a344a35fc38ea89d93
28101 F20101209_AAATXI rotundu_c_Page_049.QC.jpg
c98c4148eb665d86cb1f84bdc571c251
ed95c0e2a52cb6f4e39acac55e076ac608c00427
4196 F20101209_AAATWT rotundu_c_Page_133thm.jpg
98343cf6c9ee5249b583e9938c63e62c
78dd65a0c276b0290c7e37a7005092e3524375c6
658 F20101209_AAASUG rotundu_c_Page_119.txt
0dad568141a126588329691e369123eb
de98d23d1e8aada2ee100009526f2537fec76e2a
35344 F20101209_AAASTR rotundu_c_Page_120.jpg
ddc50d594d5c14db63aa2b7ddb05658c
3676dd17e4e5efc7916c87cfd8627bce3cff2dca
F20101209_AAATAA rotundu_c_Page_045.tif
33ada4726e6ec358c88021443a501e42
e24dc9aac32740698c4671da2827b8175178008e
3250 F20101209_AAAUDD rotundu_c_Page_115thm.jpg
459e442d311d111c6e90ea14a84545db
31653b903091c7deff99edde2580b29668886a1d
28293 F20101209_AAAUCP rotundu_c_Page_101.QC.jpg
fa905a0a1899897034910aeb5690a785
4eb8dfb8a79dcc01f7c8de763ecf43fb25ad9d57
9482 F20101209_AAATXJ rotundu_c_Page_131.QC.jpg
50ffc5caf0a2cc71e984c281d0dbea8e
e4c853ddd94e38fb03162b7a0ac7d374c8e478ea
6594 F20101209_AAATWU rotundu_c_Page_093thm.jpg
8cc3de71e9cb00c31cbb1bd6057882c7
f187f44f644f760b39297e1b9840f4f651457b0e
4135 F20101209_AAASUH rotundu_c_Page_134thm.jpg
feeda9c0cc718ae3607a15906fe8f2da
ba13f4567137e0532f02a767e3a3f7f91f8811da
7350 F20101209_AAASTS rotundu_c_Page_063.pro
ead17b17a0aea80fdc4cbbf35e5263bb
45d619a85da9bf365549f1d6a184ea2aea4ca401
575 F20101209_AAATAB rotundu_c_Page_089.txt
e1351cd45b8fd632f06c23ba35c630fd
04df8f3022b7ed1138b6e7d52de1a840fa151d03
2871 F20101209_AAAUDE rotundu_c_Page_116thm.jpg
ab5aa4a05b3f858a97f06b4ed827da92
815d023b91f02523092a50ff34e6b11b992f4401
6972 F20101209_AAAUCQ rotundu_c_Page_103thm.jpg
32d11efc89793c0834f4d55eadf11fef
0a41a08eeecd20736cbd762b6e5c69bdadd68293
6395 F20101209_AAATXK rotundu_c_Page_073thm.jpg
060a0d8384da3bb9a918151fc8ab6337
faa6fe57d3c58fc2b51c9481b844e5ce2f00a729
6856 F20101209_AAATWV rotundu_c_Page_071thm.jpg
3419c6a583b752ab5a2841aacbbaa8be
1304263f575552735c14e1c17dccb5415914d8c0
4409 F20101209_AAASUI rotundu_c_Page_047thm.jpg
bb48b748fcdb352a6eac29696fd684d9
4aed9dcdabe33fa349ff847ebe5857d7eb930ea7
51022 F20101209_AAASTT rotundu_c_Page_023.pro
fdbef0e867c6b77bdf3b7a4f2f896fc5
4b56dce40c7a81221d248d2c19cbc06edfa0a66a
10967 F20101209_AAATAC rotundu_c_Page_021.QC.jpg
2f5f9776473ef57755dbc947821002c2
78e6ff2b1746abf795f7c2d1e42e5f80847f0d02
6455 F20101209_AAAUDF rotundu_c_Page_117.QC.jpg
cabed63599ca03a87f9eeda099014ec6
b966210a0bfc71cbc2851531faa73b87b313b6f0
25435 F20101209_AAAUCR rotundu_c_Page_104.QC.jpg
c4b8e86c37b0eed03974329c1f44b771
dba2f690748f0ef17c5006da6c4baeb4b7c19723
3968 F20101209_AAATXL rotundu_c_Page_138thm.jpg
0c59a64651385e3f901e6c7a060ce483
dcc3393df4823bd76598a4f615c8fa054e38ad0d
25335 F20101209_AAATWW rotundu_c_Page_067.QC.jpg
59d289ac35a5cb34b0cfbea209b1c7b1
e7e5d45f1eaa4a1042ad1faa97d1d774a7dad759
12012 F20101209_AAASUJ rotundu_c_Page_013.pro
633196045f5f74a3c658350034511574
77880c5c1e25e2ddb0cf953c5223231d0fc18adf
14886 F20101209_AAASTU rotundu_c_Page_028.QC.jpg
25dcd65f02084f174a82dc4f7767f3fe
dcf31bb4af2f698ae7432616274e147034088bcd
F20101209_AAATAD rotundu_c_Page_050.tif
0f36c56aca30cabb0f4b4b1eca1bc0ef
72a2c08874091633ceadb1f0a5037729c4bec75e
3391 F20101209_AAAUDG rotundu_c_Page_118thm.jpg
730461ba78c19e69944decab5b3382ff
79d07b7eb7c651e933f39a72fba6cbca2438313d
6266 F20101209_AAAUCS rotundu_c_Page_104thm.jpg
8696ee57e90a807beca25fecc5f9a4f0
6f780d803c698c88700f2f212b333af82885e907
6282 F20101209_AAATYA rotundu_c_Page_091.QC.jpg
91bff24576b0753e9a314768c1d1c8df
8e7936984b50d4d54c79cfc1bc698a6502da1a07
29683 F20101209_AAATXM rotundu_c_Page_102.QC.jpg
07db2d5ec66b73d71ee74246e69f38f6
124d4b4e0f0e03235e756bdbc4ef865ff0bcd852
28242 F20101209_AAATWX rotundu_c_Page_058.QC.jpg
e5eb281260d989f749acb77ac648853d
f138ae4561391aff411400482c555628ded91cbe
3229 F20101209_AAASUK rotundu_c_Page_090thm.jpg
a2c3b5337e6d18b548bd7655fd7da9a1
319a1ae34612b35f7a4407aeab2a0207cff2dfe3
57457 F20101209_AAASTV rotundu_c_Page_015.pro
a8f52e7562a3e6d7b9ec9733eb64e4f9
a5a7c10bb416dcbea926c9783820b7d932bcbea3
3077 F20101209_AAATAE rotundu_c_Page_127thm.jpg
ffb3a17ed323ca3db25c9c42e711b6af
af2f9d223cd3c79bdf4eac6922fdf6b8c7926343
8804 F20101209_AAAUDH rotundu_c_Page_119.QC.jpg
62906e6a665610077366c072d963b824
91f70e8e10d0c8516fa99325b2727d250eb8efba
27383 F20101209_AAAUCT rotundu_c_Page_105.QC.jpg
71b21b24e422c91f39a582d2a7d78381
4e0dc3dc223ee59d0a226d4febdc8bd2d7bc2abf
22075 F20101209_AAATYB rotundu_c_Page_144.QC.jpg
8b070f53dd7f127660c30c3394d6617b
8547a3fc8bfeaed40ed7b7f52075405318764a7d
5760 F20101209_AAATXN rotundu_c_Page_143thm.jpg
156a9da3ab6e000ed51614510beed111
5ef88df076e88b27c43f6040fb51530572e18c70
4761 F20101209_AAATWY rotundu_c_Page_019thm.jpg
be69e48c9291a739f6872ffd5710b407
7a0f75fbcfc6a6c3695b988c0c51e138f8c26a16
70836 F20101209_AAASUL rotundu_c_Page_143.jpg
c653c1ecae294390bd84d92a262a92e2
2f4ef8a9a6ccc2b561d58d1792aec406d329a9b1
1020 F20101209_AAASTW rotundu_c_Page_083.txt
c18a66ee72348269c897fc7cd4f0ba25
d5864576136c91a51ff8304160fe3d57657acc08
1960 F20101209_AAATAF rotundu_c_Page_027.txt
c4249366db19d29df63f5cd15804846c
3daaeb0606964c8f03b10e68e561d0b2e9cd0177
3073 F20101209_AAAUDI rotundu_c_Page_119thm.jpg
889f2c2d58ed27aaf596d7fb48b8101a
df3883daf0523de66de397d32dacbf7f51a33133
6501 F20101209_AAAUCU rotundu_c_Page_106thm.jpg
73cf5b16b3b5ff9c821593acd6c47258
325787421072b6848a495ea40b1241a9f5ba7268
4566 F20101209_AAATYC rotundu_c_Page_092thm.jpg
3996ac5f35146dfeafcacc7f9d1b9bfb
23e271c7cad2bce59742c4cba7424f2b805202c0
25012 F20101209_AAATXO rotundu_c_Page_051.QC.jpg
abd1f5e8ec1c3d33121475773be8e537
cec64ee92f23afcfeeb3255e0cd0957e197a4b65
13623 F20101209_AAATWZ rotundu_c_Page_112.QC.jpg
218f39be2042a446463d3a255badb047
7524d9b819d71c2e6aec25717c1d545dc47aee68
364679 F20101209_AAASVA rotundu_c_Page_045.jp2
9d2cefc3ed64edccfc56ba5018823285
f280f3af684c2c0ac85965e25311536d4cd020d1
21860 F20101209_AAASUM rotundu_c_Page_076.QC.jpg
3cffa6abc3447ea7c9b96604e13a295a
4436e42250bb8161e96682f968e7b11bf4882a4a
385667 F20101209_AAASTX rotundu_c_Page_007.jp2
45aefde917efe96e7c66bd826b65b56b
16c474b51856180db60a2437ddb7a12f47859cec
F20101209_AAATAG rotundu_c_Page_012.txt
dbabe9f9ba7b83fc8642b6dc30090449
28e7f16c8b91eb654691eea686522d970907f7c1
11971 F20101209_AAAUDJ rotundu_c_Page_121.QC.jpg
b264636838cdf52633d86b62017fec55
41380cf9090cc0c2b7a3aaa3dc531a3a03089205
7019 F20101209_AAAUCV rotundu_c_Page_107thm.jpg
b846e30e37f6a50824db0af84c2c1fa5
7056494c099159d74e9ac441baac173e28fb360c
24444 F20101209_AAATYD rotundu_c_Page_008.QC.jpg
5a33c6fe1c7a5a4fe5c1139c4014612e
9c35ab4f9c9e587a04b1ecef50c666fc45a06c18
3175 F20101209_AAATXP rotundu_c_Page_082thm.jpg
c482c4e2ecdd31669276f5b5a28b5de9
e44e16d6eba639c78108d1ca2f6947750e672165
5359 F20101209_AAASVB rotundu_c_Page_130.pro
895f43895a23fd5af26dde9e18be0665
971afb4b5d9df4ebc7f176e7a2dbae4b0acb22e4
13750 F20101209_AAASUN rotundu_c_Page_085.pro
6901da26c79a50b965ebf81d739f12f7
5333596919e9604c4a8694b69427b3663d4d30ff
1051973 F20101209_AAASTY rotundu_c_Page_068.jp2
f0f2de80e7cc0b82a918e8ffd5fcb078
c59a50b46a4030ace467ba9a919fb62af539b290
F20101209_AAATAH rotundu_c_Page_113.tif
ce465531e5c2e5406e996ad39adff09e
96536962d8ac0b2ec8f9013807f33866ec250b78
14187 F20101209_AAAUDK rotundu_c_Page_123.QC.jpg
fb424f32cd932d6400680d0052ac7f74
008d692fae2fe9bb22d37d27bc44b8ee5db33f8c
26622 F20101209_AAAUCW rotundu_c_Page_108.QC.jpg
4fee1af3e537e1bd55c334e9b276465c
bfb95923ff67c126a730fe6b0286dea44f078e56
13640 F20101209_AAATYE rotundu_c_Page_048.QC.jpg
a78d9ee155fe784f16bc6359868729a1
a9adc03e09fe18831b8f9a41a68d797002e8513d
3406 F20101209_AAATXQ rotundu_c_Page_063thm.jpg
d05bf374be1ad43b0b7721e4590ce320
2b779c32710eef329501df3e75031e2acb706e54
F20101209_AAASVC rotundu_c_Page_036.tif
10818be9b41926ad65398d02737bc4f2
2799c6cc494e54683d2d2b96189384f5142e137c
3246 F20101209_AAASUO rotundu_c_Page_085thm.jpg
65c047be6d94fe607c8d314dd2fa4c21
a2483ed187fd2ed4937c757398b89bf7c26622ce
11611 F20101209_AAASTZ rotundu_c_Page_120.QC.jpg
27e96b30c31af97682bd13ff8f6b82f6
aa27748ac3f3499b9af128d2c5a02ce3536dbaac
55599 F20101209_AAATAI rotundu_c_Page_057.pro
6206b3692f63c2aaecac3a35032ce94e
fb73688aa6f771e50886d4b3b252af08f76cb034
3870 F20101209_AAAUDL rotundu_c_Page_124thm.jpg
f9279be4d34a297a4e715fe36f0f502f
92d113dbb67d3e0e4585af0f902739b8974f1ff9
6498 F20101209_AAAUCX rotundu_c_Page_108thm.jpg
a85062d9882d4d10c352eb1017ef1e9e
b4312ba395b5d43f12bcbb0e15275c00cc16a479
21905 F20101209_AAATYF rotundu_c_Page_140.QC.jpg
6764efac88743a0a8ad71cdba78a729e
5d9e5786fb1400646b2cfde32d68ed67498bbb13
9617 F20101209_AAATXR rotundu_c_Page_041.QC.jpg
44c48df9fa2b8ddc243be584376c369d
f6a74b34be099254c96be3409b3aabb351117a6e
11741 F20101209_AAASVD rotundu_c_Page_044.QC.jpg
865305e284ab744498a72804b6deb992
70b9f4f96a5608fbc944ff76834531e7eb3e3c8f
52240 F20101209_AAASUP rotundu_c_Page_043.jpg
a0e901f6e492f5c3266fb9b774ffebca
8a80f6dfc040da6a68b67efc64396d0934943a29
F20101209_AAATAJ rotundu_c_Page_021.tif
647145395a4dbfefadc76c91f90c0ee5
6d3f455bb2249b915f6b2aec162918b046307e6f
6194 F20101209_AAAUEA rotundu_c_Page_141thm.jpg
097fd59c1c45584d5534a85eab66eec3
67c21b536c09141917e5072e3d7e338bfe1c6fb7
11661 F20101209_AAAUDM rotundu_c_Page_125.QC.jpg
97a81ce8f103eeef80cac857e4dc095e
8ba112de19141d602fd351aa190237d04d35f741
29058 F20101209_AAAUCY rotundu_c_Page_109.QC.jpg
9e74519ab290af8b1e9e563f0737219a
581fa9e01efbc70886ee8bef92de47fc2417016e
23992 F20101209_AAATYG rotundu_c_Page_035.QC.jpg
7352db78f62b8a7d2f591deb11fe4753
add973770d731b54880bc9d4d7f27e9dd90dfb29
F20101209_AAASVE rotundu_c_Page_090.tif
b19ec309d1380eb0251814487afd3f3a
b7a30fe9f1689018d0a4c9de31bc659dc8855789
481772 F20101209_AAATAK rotundu_c_Page_120.jp2
0666607be7e8a3c2e880178724417e73
d7167c24f2d6dcfff8ebc3f80e45200d071d71a3
21987 F20101209_AAAUEB rotundu_c_Page_143.QC.jpg
4adaeae1658cbbe74851b5275d57500d
a106f6ca456fe6f65581e854a9205dd60c321635
3891 F20101209_AAAUDN rotundu_c_Page_125thm.jpg
ad99bf591d9f16dc72185f6c744e65d5
5de4c2f721bbcbe27d78cf65230c331d086b44b2
28196 F20101209_AAAUCZ rotundu_c_Page_110.QC.jpg
393b569a9f78db38f5b26d8326311a40
e0add7258cbe5e0d62dec3dcd7f9f7e8c001bf54
3327 F20101209_AAATYH rotundu_c_Page_077thm.jpg
5c0b82653f5d410ef08ee75af9816530
bf9f8a4bd36833d66e9b1aed0d5faf06e3a7c001
6157 F20101209_AAATXS rotundu_c_Page_018thm.jpg
a88a99b4dd18d637a8a02533b2e87a83
960b0f5f84d81573ce4d5ff08ccda78dffdda5cf
13497 F20101209_AAASVF rotundu_c_Page_011.QC.jpg
bb39d5687cb7f03f934c95df7fb56219
d35cbee57181dc5ea46d4fb9b32c27150f96567c
111384 F20101209_AAASUQ rotundu_c_Page_144.jp2
7c7794a1d4fd4a4870143fd18230b385
5aea73b1ef1895a6d51811d6d7aeff4472047aca
943 F20101209_AAATAL rotundu_c_Page_081.txt
4abfe6e02b581472fdd37796281adc5d
89534c6336710b8546f4b885e7245e9c13085baa
15543 F20101209_AAAUEC rotundu_c_Page_145.QC.jpg
0a90adaa066b4d8dc6b001eafd0e6db4
206d6c5978771816ed28f5e8d602f53409c8ef4a
7840 F20101209_AAAUDO rotundu_c_Page_126.QC.jpg
5ee4bdb28f2b6465620a411279b9d2c2
73daa1b94167f107a43728f22134608d959737a5
3801 F20101209_AAATYI rotundu_c_Page_122thm.jpg
542f02a32329fbd0c790a3f19ef82bf7
77aa1636fedfc6500e1430dba55d38c3651eee56
3243 F20101209_AAATXT rotundu_c_Page_132thm.jpg
10ef855c2c0f84caefd49a403a52b977
76627c0208954bd3d226943be1cf9960705169b4
2268 F20101209_AAASVG rotundu_c_Page_117thm.jpg
1414c68b0366a1ed6c002060e539e0d1
eace6a73d1b16f257eef5e82f06ea8e59d137a98
555484 F20101209_AAASUR rotundu_c_Page_042.jp2
7e7ec093626df046a5954b1b7e63b4c1
0f4e553b02e75434000f8eb778860d45e0938342
2036 F20101209_AAATBA rotundu_c_Page_056.txt
3771269a899cc937d5d97da18890b888
ed07ab4e452b725d8cb63eadb710925ba14fb41b
81492 F20101209_AAATAM rotundu_c_Page_037.jpg
de98c6facd5ff99ba19754000445cd92
4c9a642177c800fd68d4cd91e80e37068f79ce88
4081 F20101209_AAAUED rotundu_c_Page_145thm.jpg
e7a326d4d0e33858779e46f042385195
de55544487220720ccb15bd938aada591011024d
2917 F20101209_AAAUDP rotundu_c_Page_126thm.jpg
c11755fd0a57c006eec6d2b17a79afca
6c33ff2c5f9955d0fcf1a1cd43de48b88173f8a1
6918 F20101209_AAATYJ rotundu_c_Page_072thm.jpg
2d4d0d08d58ae0bd55911fa1db6b476d
f866a1d3fb936e7ba3e0fbd3f3264e4a99893a36
25645 F20101209_AAATXU rotundu_c_Page_065.QC.jpg
3bcb79fd3e5f2d3c35f7c86be5722e3b
04f30cd53be988e396f01a67324606b3d14bbbdd
420014 F20101209_AAASVH rotundu_c_Page_124.jp2
37897dc17755cd51078a1efc5a5c6515
e82a5716a0526d1c09a6765e3c6eebb012d4de56
27096 F20101209_AAASUS rotundu_c_Page_068.QC.jpg
36ae925588af76067bad1474f6b1a5c7
6ff41fa2199963bf5dfbceedf8837ad52bf35f15
514 F20101209_AAATBB rotundu_c_Page_126.txt
53971e7755aa29effcb0fd18ce73f4db
48d3b71f38eac65f5849326a65b6b101493d3ad9
77887 F20101209_AAATAN rotundu_c_Page_137.jpg
83a91f65c46f2279fd8d6fec7d8f5f88
8a035016ac3a062154ccd1bf9b80bf4f2a0f39a0
3042 F20101209_AAAUDQ rotundu_c_Page_128thm.jpg
a18f2c6466767131d256ef57982498bd
8eebb71177a4dca929566aaca725a2c5629b45e7
4332 F20101209_AAATYK rotundu_c_Page_048thm.jpg
f5d2eed476ba968c8348395ea25632d5
bd298d372b8cdca30275b1a2cef786de6b211c9b
F20101209_AAATXV rotundu_c_Page_144thm.jpg
95eb4a051df8df9cbd6222fed48c448e
be7a139074628f58953a1636326bf25915f52067
4508 F20101209_AAASVI rotundu_c_Page_042thm.jpg
fe5aa7aa54149e8f853f7034165d7f06
c4320c69e17253955e43f6a315968d67bd93cf76
2189 F20101209_AAASUT rotundu_c_Page_067.txt
d98a806aec0f1c6be95a5a88ae5abb03
c8707315e26431dea5c7185335ae44e95af465f1
36673 F20101209_AAATBC rotundu_c_Page_084.jpg
06edece876cde34d06cfa8804e31e45a
095674dfe9a51735f9b52600a5d8a77079c9fd8b
2136 F20101209_AAATAO rotundu_c_Page_040.txt
6566a5749318194e2b26c49ec75f408f
8ab6d742801e86cd35a842906db4abb0813c3844
6264 F20101209_AAAUDR rotundu_c_Page_130.QC.jpg
4bd5820710e48755fe56c0b1880dd6ca
8cf0448a3fef1c4487e2e7dcfa4697a66010acdd
5896 F20101209_AAATYL rotundu_c_Page_059thm.jpg
362619ea3af33c3e907d7fc11ff73095
13ae28f1c7d96b97a4fc2ae32f5a34815b9ed7b5
27072 F20101209_AAATXW rotundu_c_Page_034.QC.jpg
eee3a569b12eea9fee0f03a7963d578c
2f34cad960d4bbd6ed5ec841e5434c08e5f3c418
F20101209_AAASVJ rotundu_c_Page_056.tif
740721a7ecd8d8817296fda5fb00ef4c
a315ad65c8736bd4206a982de47dc16aa4eed372
89927 F20101209_AAASUU rotundu_c_Page_136.jpg
0d016666c98eef6b079cee3a56b590b0
533362cea8bc68791b1594a04e382bed379702e5
53071 F20101209_AAATBD rotundu_c_Page_073.pro
1f6612c65ecbd2ba9c758d784df71c79
10b8f1f69958aa2d9689f7bc9e023f5217806ee6
F20101209_AAATAP rotundu_c_Page_111.tif
7fe1b60d16b054d9b75a1e0480b5c015
c4122e2a70f0c58ea3fba026d141b6f1ed57d471
10464 F20101209_AAAUDS rotundu_c_Page_132.QC.jpg
cc3229d002aa801cc37bb0a6865fdc42
944a7a596b2d4dd4167856f90397178de6da1c48
9682 F20101209_AAATZA rotundu_c_Page_115.QC.jpg
c878df0be5b9763652411dab8bc54d35
55723699f51fc8ce6df5a962a154da47a7411c84
26289 F20101209_AAATYM rotundu_c_Page_033.QC.jpg
5059cffa5f6663f98305535b322324c7
73b64c0ba8ced8349684be787e6fbc06f5abc47c
25806 F20101209_AAATXX rotundu_c_Page_050.QC.jpg
2bd8c7d1692e2b3afb789434a9f0e9b6
2ca83fa695cfeb6bee1ea088248c4b6397258aae
F20101209_AAASVK rotundu_c_Page_013.tif
d52c8ecc38cde5e967e0494f231570a5
a372f9f17875db2c43d8c80ff36899b58ea5f0b2
F20101209_AAASUV rotundu_c_Page_135.tif
80a3d4462b3302375559682b6dcd4737
8869b88be74309ade26fbb5946b9d59bdbcadded
498649 F20101209_AAATBE rotundu_c_Page_078.jp2
f0a183032075cd1111f1416afc963e09
5060d19b37b76591dea93d62e2c43b97397b58be
73225 F20101209_AAATAQ rotundu_c_Page_141.jpg
f75729b387a73b0ca79422b0f3c6576b
0d12688e208b76184df5acca0cee31f9799dea68
2753 F20101209_AAAUDT rotundu_c_Page_135thm.jpg
25d2bca1c28771871945ac44e3588533
00b232f9383cebd281a75498f0bf518c1d54db21
11332 F20101209_AAATZB rotundu_c_Page_061.QC.jpg
92fad64b02d8edf284fdb96b43ccc7f2
b438541d9ad15abcf0f3cbe42b991c0b7a4dace9
11512 F20101209_AAATYN rotundu_c_Page_124.QC.jpg
262bcd2d9bc8dc4fa5ee5fb5f382c28a
0fb4d890a46289ae8bd7ae84a8a71e4679b7ca9d
5541 F20101209_AAATXY rotundu_c_Page_006thm.jpg
31ebc78baf44a893d066cb9f91baf341
8f026c6f047f9880720c1aeace6a6a1a460b3b44
7677 F20101209_AAASVL rotundu_c_Page_079.QC.jpg
746c0ff38d9bc281bb456a8146797c73
7f04defb45e619bd0bc4819cdb7c5066515bdc89
6759 F20101209_AAASUW rotundu_c_Page_070thm.jpg
9bdd22cbdb8f62ede93245c322695de3
f508e5c6720c5aaf367e4f5ee1b4e488bd2dcb17
F20101209_AAATBF rotundu_c_Page_006.tif
4c3710e0c6e5f684f1959ac7f53d8ee6
bb7ee59da1c4f0342cc09974395895f6b79226b8
921 F20101209_AAATAR rotundu_c_Page_115.txt
df989ccb8b8bb0b519471bb65fdf8c24
901617b553d1f97c5b821a3cf80fadf40cab5686
27443 F20101209_AAAUDU rotundu_c_Page_136.QC.jpg
a8ade46cb46d8797f17f239573974113
8a548fecbfadb38a9b9a4807be4f93687ade75a3
6679 F20101209_AAATZC rotundu_c_Page_034thm.jpg
b72c8a973553d3d6bef450a4e165f690
c27f864e5ac8d00bfc896e06a65807e6028cc521
6205 F20101209_AAATYO rotundu_c_Page_037thm.jpg
1c1492c077165571d3ee2d2a58aebe43
9ca2e7a3136be986550775ad9e8a2c6d65a3ea2a
9777 F20101209_AAATXZ rotundu_c_Page_085.QC.jpg
fa8d240944479234b682712002071153
94d840ce719a324617b10d4adcc0ea6c44ac5333
951 F20101209_AAASVM rotundu_c_Page_064.txt
9f8c5856afe641ff0f36474ba79529ab
88a9022d6d334191e25ddfda8e49a3c19e3e7323
2131 F20101209_AAASUX rotundu_c_Page_032.txt
6f90a410efc5570622b71f367e3bb9cc
b3a422e5cf0fdf25e732127262206b9f22acba8b
6785 F20101209_AAATBG rotundu_c_Page_022thm.jpg
27bbe1eef292086d82609f1a6fe656e7
85a114dc54f84875b2d1bf779d2184b157f7b5cd
11141 F20101209_AAASWA rotundu_c_Page_113.QC.jpg
1be050353be0cb19d2aaea2fae055dcb
4afb05efa46d88b5edaaf65f625242ec87c608b7
52196 F20101209_AAATAS rotundu_c_Page_067.pro
f6e720e5526b94e0d75dadbfae8aa17b
6391ec0b19f150c587197c011d37aebea661f46c
6206 F20101209_AAAUDV rotundu_c_Page_137thm.jpg
09fee7513fd6fadb8819f8270e53e9c2
80ebe45fd28b328bfb3b68d14ef04774d426b306
28426 F20101209_AAATZD rotundu_c_Page_103.QC.jpg
91825b625f6d14b98977b6215e8792da
4fd5d3918b3bb97acd0b99517d1b8aa24e602465
3655 F20101209_AAATYP rotundu_c_Page_083thm.jpg
5e7039d13fac780bc322c038509dd57b
8750f6161e64abc0f6bcbc112d52fed49f1f316c
F20101209_AAASVN rotundu_c_Page_114.tif
e50f0af56e615d8e2d22201ddf5077b4
2315f12440e5616527d8510f64aea12555c2504f
6950 F20101209_AAASUY rotundu_c_Page_105thm.jpg
cca16a691e3b087561a4960f1eb89456
565a58df715ef19e002fc4f4efee58c148823dc6
5916 F20101209_AAATBH rotundu_c_Page_142thm.jpg
864437ed840a33c3a5f3a8fbb1fd6e08
1962ce8748307f5cfa542a9d9cb5e7c318403acb
F20101209_AAASWB rotundu_c_Page_080.tif
c8e878d9e0eb34405f1e88554a3826b7
d4caffc8c4598fde7f2b7026b5f8f5af19bdf42e
53607 F20101209_AAATAT rotundu_c_Page_032.pro
2701b0cf508295ce3bad82fd951d41b4
9a37324b5b66671438347f5b542e9b6815e94269
15665 F20101209_AAAUDW rotundu_c_Page_138.QC.jpg
33c0e881edf207a559e95a8cc8e815a2
f26f804c2705834164bb21f41e0b5a8bfe828c2f
3883 F20101209_AAATZE rotundu_c_Page_078thm.jpg
597db201b827e0ebedcc11b00b4fc89c
dbf7e267a76276822aa320a97394916baa14cdf7
12895 F20101209_AAATYQ rotundu_c_Page_134.QC.jpg
3a316c0a0e84fed8798f356526353485
2602edc4465394b5395edb0b00a916c26ce5dfe0
852303 F20101209_AAASVO rotundu_c_Page_046.jp2
9884bcc3ee03422282836c25433c9dca
bb22b8f48b8ab53052df0817fa730dcada1fcace
F20101209_AAASUZ rotundu_c_Page_034.txt
769e3c1246fd96a5b0d26a6874b83435
6fae71c42eb4794647e97dd08e416adbb5be0ecf
8544 F20101209_AAATBI rotundu_c_Page_086.QC.jpg
a016c7e79117eee1793a60dabb6bee5f
33bffe4e2c28bcdd32e17bd19f55b2ce7c8cc0a4
F20101209_AAASWC rotundu_c_Page_005.tif
cfa7afb83b553f5d8839b2dc7742874f
df04d173c1730e9b01f988c34da743edef5a5adf
6853 F20101209_AAATAU rotundu_c_Page_110thm.jpg
a2e3af83d3a7d32adf01c68582409287
3ba3f2cd616c9af62b895c1ec0cc225abb5b6036
5930 F20101209_AAAUDX rotundu_c_Page_139thm.jpg
481c0ba5dbdfb1abb239f38b3cf9c9c9
f2280e9ce1dfbdbd8b50423e3139e4409e36acf8
7252 F20101209_AAATZF rotundu_c_Page_064.QC.jpg
edd0b7ec9d20a7278f5046976162f17c
d7fed33fc08fa39ddbe52b9543920d5c6870cce3
7455 F20101209_AAATYR rotundu_c_Page_116.QC.jpg
a8a2060a113ab0cee5f8edbad12a655d
778bc94ec3456a68ca3d16f0842ad9749da84fc9
2182 F20101209_AAASVP rotundu_c_Page_106.txt
d96079be050b3e0053c935e862ca7705
8e830dadfeb4890677117e3c3b3e16b7ce991620
2305 F20101209_AAATBJ rotundu_c_Page_105.txt
9ab1dd1cb666b8c77edd57525ab60ca6
4179725fe419af9998e3558cf5f020566d825b1e
1163 F20101209_AAASWD rotundu_c_Page_114.txt
245b5fc8890149d9bf6836f970be60cc
2514ed380094e25027285134131a96fc3f179278
F20101209_AAATAV rotundu_c_Page_064.tif
d5d255adb7d966299840e348330fd26a
ab9645c1507da8b4ab4710a9c4fb021ca971021f
5782 F20101209_AAAUDY rotundu_c_Page_140thm.jpg
41c9bbecb55c076b2389c46b3c29f1c6
a9da94381f0a608b4a782605a4c3e9f290c701b6
2386 F20101209_AAATZG rotundu_c_Page_091thm.jpg
6f9c25834129c0008e2aa96ab72655e1
9ed21b3fa663079f2a66d5a50ab285abe26c8e51
6880 F20101209_AAATYS rotundu_c_Page_049thm.jpg
58c28184db10e1e8f1e4e02b48ef5e6d
558510677737a5b94e1b1e33a43ab453ad7ed7c1
F20101209_AAASVQ rotundu_c_Page_131.tif
bfa68f7cf7fec9ff9cfb087f0305f210
e23c1301dc49f0fd845aacdfed789c602e04001b
35595 F20101209_AAATBK rotundu_c_Page_060.jpg
7a035eb92f75933d675fb7af640632f8
284f3cac303f1e321baf69201478a33955be2c2c
56929 F20101209_AAASWE rotundu_c_Page_049.pro
08591bd5a2b4936bdedd0dfe6f7b3afc
b20409f730a2e6ee2bdd2441464befc7f17706b5
85698 F20101209_AAATAW rotundu_c_Page_022.jpg
2693f58b979cae0155feda8fb9614c95
a64b7c9c00d083df0f5d85b309998e7f19fa127d
22708 F20101209_AAAUDZ rotundu_c_Page_141.QC.jpg
73c8ef5f5d305a2bc1423647d84c2867
ede199141adb98eb94bc2a704fb477565da069e7
27070 F20101209_AAATZH rotundu_c_Page_024.QC.jpg
022ba717003d5970c75f1eeca875b9c2
233d99e5905f776f6580ac901d847b2640b268f8
F20101209_AAATBL rotundu_c_Page_094.tif
f4f4f66accabf30c2f51cee6e36c7ff8
f1911214fcdc900b3812abf7d8a1e9e960edfa04
6421 F20101209_AAASWF rotundu_c_Page_007.QC.jpg
846a0aae6d58a6608b33e2db5290bf65
974dc8930bb74336983321a4ab3f35ad9e29cb2a
5574 F20101209_AAATAX rotundu_c_Page_027thm.jpg
9d59ae5d9565d0271f53011658360079
4f28db408666688d576baf287b7acc5d0ea6aa0d
4507 F20101209_AAATZI rotundu_c_Page_129thm.jpg
8c93b89894022f090303bdadc1b0d66e
1e42015d89e184e3867b4bb9cc4688f6898f011f
2514 F20101209_AAATYT rotundu_c_Page_130thm.jpg
b51ecd6063d82943a1beb65df21c744e
2d7300c1c250af1f46b81ccbaed750f31efc0a87
59321 F20101209_AAASVR rotundu_c_Page_051.pro
c1ddeb096328653c99952b774ad061f5
9a952386d04caac192247453e245814eb6df68e0
13548 F20101209_AAATCA rotundu_c_Page_118.pro
4546df48b46ce32ee4dc1d077ad821b1
868be2213d52f19c536c2fcaf5d5ae17a9b69789
80324 F20101209_AAATBM rotundu_c_Page_006.jpg
6c0d858cb401db49422b1b877c5d0dca
d88099c5f46b2a45456b39556b5dddd5447126b8
6989 F20101209_AAASWG rotundu_c_Page_024thm.jpg
6613cb6cc7e63b58321a4a19935a9959
8c25a7fa7434f6ad32f626d515872b7db533180c
34259 F20101209_AAATAY rotundu_c_Page_121.jpg
d1a5e936c93e8c4e7018cfabf5d6ad5a
05aedb6416645a40e92a4c050ba3ddc39b382603
217978 F20101209_AAATZJ UFE0017620_00001.xml FULL
771dd16994b0d4890eede155002a0cc4
2a28e6160d119e2ca1bf791370f2b90261f2ff72
3545 F20101209_AAATYU rotundu_c_Page_061thm.jpg
11236eb9f73a2bd2b749af3003a0614e
682f3f95e6c4d4d2aea915d31e5e428cb6abce30
26973 F20101209_AAASVS rotundu_c_Page_022.QC.jpg
04159762b1e5474b3d2f2b019d25fb4b
fc9811c4d4f27dd6c9d8fe9e318ece7a649a06ad
45318 F20101209_AAATCB rotundu_c_Page_048.jpg
379dd305af6fa5307f1682fde719d99e
b3bb564a35fc0e7e5570a1c030ffc5f8444b72c6
6088 F20101209_AAATBN rotundu_c_Page_113.pro
a82a7253517a436678304356d5e479f8
471ebe9316c47ce7f73fc5f954be8742e694717d
86099 F20101209_AAASWH rotundu_c_Page_068.jpg
06b38654b21e1f9322df5294842201ec
bdac9c16d8b629e84e5de5509a1d8f6f379e32a9
1213 F20101209_AAATAZ rotundu_c_Page_087.txt
aa4a04a0109673bcca539e190488cdd4
4f8e3272b3d210b90fc921d5c594bb3b2d58c5a4
7514 F20101209_AAATZK rotundu_c_Page_001.QC.jpg
100a848985dadc9f645a68c5aa9acd79
c9b0f72c71f1b21cc729abb1b58f4048fe022d76
23148 F20101209_AAATYV rotundu_c_Page_059.QC.jpg
92d54bbf768d8485ce17ffd6a1e5d102
0254382385699e482aa8e36532c88eb70fceda01
1051977 F20101209_AAASVT rotundu_c_Page_103.jp2
7660de42b7ce10b348633cd0845d621e
d88c0b00145b17efb69e53c18aafa08e669bdfa5
580857 F20101209_AAATCC rotundu_c_Page_113.jp2
461eb6377173c953595f1d6c1fb58960
daafd01bbacab82b601263ae2aa53adb029c2458
44885 F20101209_AAATBO rotundu_c_Page_129.jpg
aab05885c313926689794291426a7a8e
36fb8b388aa2e71e7a899599534528dd7532065f
F20101209_AAASWI rotundu_c_Page_026.tif
5fb57c367b7402936834f3b3ef997287
cec2bff4a16d92a1e90db9d33ada354160699593
3207 F20101209_AAATZL rotundu_c_Page_002.QC.jpg
23b81eded243bdd49cb460eac361e919
f395787a60a52081d31a920532d040f01f11fd86
6279 F20101209_AAATYW rotundu_c_Page_008thm.jpg
0b30eef4e1e31495a6655dc2d71acc9e
e6abab4c38d1d7fdbc5df7cb63b67c48f0b6be40
80970 F20101209_AAASVU rotundu_c_Page_031.jpg
c002ee42c74bd9013c34247dd6cd5151
2de76fc60f19630de386ae9cf42129bec93d2000
F20101209_AAATCD rotundu_c_Page_092.tif
0aae889705f9d48bf775b93b75a45064
3292ad98f9d6387cc843db0dcde40f9f7546d60e
F20101209_AAATBP rotundu_c_Page_037.tif
c7ca36a2a207b99fa1dce4e8a8a9f59d
c096399777ece0ba926f2e12c5d4fe901187200b
26933 F20101209_AAASWJ rotundu_c_Page_111.QC.jpg
c813745f0e17e948e5a7f0b9fa46e0fb
c2a2197cea31afb8502c6372eedf0d8d2a192ebf
1431 F20101209_AAATZM rotundu_c_Page_002thm.jpg
7e8cad75b12ce026bdd6f6436041d531
d9afc77d3b9735cb5e45219276fc8ef21b06d6a4
20575 F20101209_AAATYX rotundu_c_Page_027.QC.jpg
be3bcf28b451c143f5344fc494b47aa8
63fb95961b98d4072d2a6ebf89ad470c2bd76c7a
F20101209_AAASVV rotundu_c_Page_060.tif
c71b0f311e81b25d5bd1574a401786f2
ff3d2a6f3344644767d0473dc65de12cb7614e91
216653 F20101209_AAATCE rotundu_c_Page_064.jp2
235e9266a8ec31b635d3e8ceb97f9bbf
670568336761d3027921d7da7093fba8e538858d
692 F20101209_AAATBQ rotundu_c_Page_061.txt
77f1e84486b6dbf78821a10c3d2c6b35
e6347b6a299134db8275638369b8425b256e7cd1
3846 F20101209_AAASWK rotundu_c_Page_120thm.jpg
05c2f4774c3307d5f16158d0578ca454
79849c0526c973978cd1fa65c9f26164baab509c
1545 F20101209_AAATZN rotundu_c_Page_003thm.jpg
51a290373a59b69b4482304da2779e4e
9999010d09a07cf634bf62790eced1d4768141e0
6984 F20101209_AAATYY rotundu_c_Page_101thm.jpg
a851b9556874601c5304382d46e98eee
8a60795bd37b39ae3bb190fc38e620ea347e674c
F20101209_AAASVW rotundu_c_Page_012thm.jpg
73cbeb47f61067051eeedab60337b5b3
d40027682d67c1168ed019bb9801c9c89164a997
168318 F20101209_AAATCF UFE0017620_00001.mets
cbc741094a2786b08d819c919842dbe2
e79aeae3c5b56cf1ce09eebe2baecd0ddde8f481
1051965 F20101209_AAATBR rotundu_c_Page_037.jp2
1effd2a5455a72d870d996b99076ff85
24846588e04535a803514f0acb288d43d4716437
68304 F20101209_AAASWL rotundu_c_Page_017.jpg
42c9852610f35aa3024eb402f98de930
c56fd637f94fe5514da7ef48ac896a1525e89e38
21994 F20101209_AAATZO rotundu_c_Page_004.QC.jpg
61c06dd07e29b39636ff4e7c9dc90390
7411c652fa466214c3dd3191fbea3859bc99919d
11799 F20101209_AAATYZ rotundu_c_Page_083.QC.jpg
68e735264d981f893c53492fed58e9a4
447c8c66a90cea90f2d26ceab0ba8010f38984ca
F20101209_AAASVX rotundu_c_Page_110.txt
515c777451bc02cbcd3e7dddfb22fc4f
51f8601d42d6c43840d80e82d054442aa2ccb6d5
6538 F20101209_AAASXA rotundu_c_Page_032thm.jpg
b3fe0997b0de68813b1bd457bbd7a584
e539b9b9ecc281c32c2a970d7ca26231efece9a2
F20101209_AAATBS rotundu_c_Page_136.tif
827d68e7bf4e602ca5f9b4226a2741eb
81702e818b93f96d4fd1b09ac899762d6860521b
85107 F20101209_AAASWM rotundu_c_Page_095.jpg
f8d934f9b96bd14a7f658e8fc37ba827
ac670565b75457c7ea100e8d4bacbacc9c8e7e77
22424 F20101209_AAATZP rotundu_c_Page_005.QC.jpg
d6b603cba3ca3300ec47d66234ae4035
8aa6bd0a11348e0db2113208be7897b88f6370fd
2247 F20101209_AAASVY rotundu_c_Page_095.txt
575ba796d9308b6aaeef45bc2693b539
06ba07281e627d88232d41b50beecff4d952c208
6246 F20101209_AAASXB rotundu_c_Page_051thm.jpg
581d65c51be78cf6846af984fa74cb43
cf3ac4497819ce800d9d29c09a595e4fc5682c47
713114 F20101209_AAATBT rotundu_c_Page_129.jp2
d43dd943bb7f9e0e451314e66fb70dca
243e8ed51787004366d7fde51f54608a18160926
2292 F20101209_AAASWN rotundu_c_Page_030.txt
829478ac51c4a229619a9c1c85506e10
7b1d7f93ac83a19f79b21002dca3c195e327dab4
5459 F20101209_AAATZQ rotundu_c_Page_005thm.jpg
d42cbf78e36c17a802ee4d694efd9a28
a0da9d5b11869e43d55bbe9b0495b6eeffd159ec
61538 F20101209_AAASVZ rotundu_c_Page_046.jpg
27d0dd235fbeb281cd63ed78ae8e4982
1602351efc7dac6dd93474b213473ffa4d150b9a
10334 F20101209_AAATCI rotundu_c_Page_002.jpg
410002165fb2ecdc932ef452431df7cc
a961a081bd5d96e7c34f56c2542341cb92c4d154
14216 F20101209_AAASXC rotundu_c_Page_114.QC.jpg
2d74f2a596407d6fd77ad7e007be3c52
f9aef942bd34604fff9a3ec84d376d9a1a9792e3
27471 F20101209_AAATBU rotundu_c_Page_098.QC.jpg
5845cd0e783b97ab940587ff682e8726
18b3f67e8b53a0c977359d667f7d5276ede84fe7
26012 F20101209_AAASWO rotundu_c_Page_073.QC.jpg
55ff63efaddcc25008a875b0609111fd
a956f1c6e837233fe98fa15ed402d5c1237284b2
2295 F20101209_AAATZR rotundu_c_Page_007thm.jpg
cff01ad4abb9749d64f2eb53e5630c45
18f5fb0a6d32de98590783dfdfcebc40b6172d8e
67130 F20101209_AAATCJ rotundu_c_Page_004.jpg
b948013bd4a2b1cb30c1ca4333378bd5
8d77cace5e4882178e9714dff527538dc3277c39
F20101209_AAASXD rotundu_c_Page_111.jp2
0787e9674035e4d974cb86d7e3d3f471
3409e14443be0918d22e367c075ee8562441227f
45385 F20101209_AAATBV rotundu_c_Page_011.jpg
1ae82071062f62ce5e0d7a2085b3ba73
9487e17c43fc43dc7229caf6c876f0d5a954304d
2851 F20101209_AAASWP rotundu_c_Page_088thm.jpg
36fa77b11ab5d20270e133ad854f204d
530331e4509e1a9b10cc868267503ea92e04956a
F20101209_AAATZS rotundu_c_Page_009thm.jpg
af9d12e42490a4a113d26d901c73b520
c79e9c9fcfacc454bd546e29e1182dba1757876b
85074 F20101209_AAATCK rotundu_c_Page_005.jpg
f97a1186090ca7f4db8d023b955f4aca
12db59c5e73ef2a24eeef3a29344d55e156990d9
1330 F20101209_AAASXE rotundu_c_Page_145.txt
e43b100b8be74ae02d906e47913c9168
32331a23a9a85c0b4c951ca3e36ea66a3656feb3
6672 F20101209_AAATBW rotundu_c_Page_065thm.jpg
b406c8641c17cc18f99f6c27a3ac7586
bf1e131727f329657f99cf2f167933ee8c448ccb
875195 F20101209_AAASWQ rotundu_c_Page_029.jp2
00fc25212d92ee9cde99202aca3d87e7
c84277d5ba13d3b44a7fa0fbec10a1775cc60275
3454 F20101209_AAATZT rotundu_c_Page_011thm.jpg
536b481188e4f1bbf5f537c0fafcaf7c
8399a1ce738845fc54d697e35cf7b294b3e545e9
20412 F20101209_AAATCL rotundu_c_Page_007.jpg
1fff3b66d5c8f0517f15bd0ab68bafa4
bb31082e8513299a5c87b70008811d98993bcd8f
25890 F20101209_AAASXF rotundu_c_Page_009.QC.jpg
33823c925c7af7ceb9e97f7c1d18700e
22415eedd1cc688dc1596a2d175fcb7790a9a834
22342 F20101209_AAATBX rotundu_c_Page_047.pro
e00aaf9bc5a2350b614e04b7cb8f6ba3
41087bb904b45cf4339994867d1979dd418d0c95
1051975 F20101209_AAASWR rotundu_c_Page_055.jp2
d7f4372e70567931afa1887d6491bb9f
c5fc05ead2c135d6fc09e71c3641f8ab8417a4d6
88194 F20101209_AAATCM rotundu_c_Page_008.jpg
4ce9b4b0179989de638901148cf5da85
70fe035d62f4223780834a9c315567f49a98edac
1051985 F20101209_AAASXG rotundu_c_Page_065.jp2
40ba431753e499141e76bca3bac1315e
ea09d9b8948ed41e4593d38bf0af591814ffc527
F20101209_AAATBY rotundu_c_Page_037.txt
0c41ae2cc95988dd4dbd21cf0b9e872c
6d4a82938b41700dde195bc8a7770fc47a1e946d
85991 F20101209_AAATDA rotundu_c_Page_030.jpg
1d31c00405683fbf4eef69943be4531a
ac1bc2965eee02c622a703644ff6ff84d0dea61c
22962 F20101209_AAATZU rotundu_c_Page_012.QC.jpg
0ec4a61e4ea8ef9ebc4a7a73c5ae2992
09e1f31ca835bfab53c09343d6d2e2f884301d5a
89982 F20101209_AAATCN rotundu_c_Page_010.jpg
d2ee4acbb0b9ecb4dc08259737d5f567
3729b82cee2a546ca2a1188aec970319e329c917
2301 F20101209_AAASXH rotundu_c_Page_137.txt
3085d26df3885a13c0996b12812dbcac
fe44bd984a292ce9e01e4118eef702a4de0f0550
13031 F20101209_AAATBZ rotundu_c_Page_133.QC.jpg
12befdd389c6efa24933d45d9295a417
5e6d537aad2c143a24e177ccaf151ed8eb0a127c
109809 F20101209_AAASWS rotundu_c_Page_140.jp2
418b51888fb300bdda96d854aa387af6
ca57552dcfc56ff6447fc49845e012348ebcc757
81517 F20101209_AAATDB rotundu_c_Page_032.jpg
364e4734d860771f7357b016e3c07ab0
1cc374dbc63a7fc6a633618481809e68d963e538
F20101209_AAATZV rotundu_c_Page_013thm.jpg
ff01ecf8a64d3732f9a128982ada7c96
7ac85a036cce1d9fba8f47fda48359d9e07dce5f
74871 F20101209_AAATCO rotundu_c_Page_012.jpg
0c832fa4b122d1b6b97affe485c7d986
56dccf2381f7bfed0b5cc72ca86b456192fff98a
F20101209_AAASXI rotundu_c_Page_027.jp2
c191e554297b08621411c139e876f99e
bc11d030e7f26e53b6e3a846d6f98c8abf5d3edc
6435 F20101209_AAASWT rotundu_c_Page_039thm.jpg
76f682ad26b3ca6444696ef23bee652c
1359ea3d05a324f422809052c4a6458d7f8782f9
84968 F20101209_AAATDC rotundu_c_Page_033.jpg
7e849abc24ac8c4ce2fb3259fcf4c8a9
ba9804c67dd4c1206e271ee6d6ad81ac546910bb
26650 F20101209_AAATZW rotundu_c_Page_014.QC.jpg
4e0222137311518a4ca5bb458c8e89b5
fc5b27d840011e9e4ebaafdef5bb7e8fc21d30c5
22087 F20101209_AAATCP rotundu_c_Page_013.jpg
e23796729140fbb5ba25cbe6bec3c28f
f021612ba42aa8c75b43bbccdc13f314f67b6075
22051 F20101209_AAASXJ rotundu_c_Page_017.QC.jpg
8848c7a343ee5df7a50d84289f09f03d
708b167cc412afe4146313ae40dd7a331c141f65
10954 F20101209_AAASWU rotundu_c_Page_122.QC.jpg
4307c35d0b778810c7e09d4374ff2491
854d83fff49607ede9b09a89c2f9e73a1a83c128
86527 F20101209_AAATDD rotundu_c_Page_034.jpg
8f7613cd759e794a836adf32b1170d80
403dfafcf981c31fc37d1a78aea9f2eac8a3a7f3
6805 F20101209_AAATZX rotundu_c_Page_014thm.jpg
fecbae8ddf30aaf6ea6a823dcf8137bb
90442b07dfa2e97d88d46acc93a6941c11d4c7d5
85536 F20101209_AAATCQ rotundu_c_Page_014.jpg
8cc4e72ad1cbb27a22765ba6ba5d1c5e
365b635be39f28b7e39352e490de29c6a946032e
6646 F20101209_AAASXK rotundu_c_Page_010thm.jpg
37392ce26e1c9555df13f850fbe614d2
d128d06569b6abf3e5e2b780f8a8a6d437fad878
2429 F20101209_AAASWV rotundu_c_Page_102.txt
0fcdb2d5644ca6db566cc7d01bec7986
ec97db201035a2911dbb79d8508e1b038ed817b5
76664 F20101209_AAATDE rotundu_c_Page_035.jpg
03314ffe9eaa4c0c32d496377bcdee6b
54792af222b73e57c4971d3f83da99ab39e61a73
27010 F20101209_AAATZY rotundu_c_Page_015.QC.jpg
39c21674c6633c1f5b33276a9f14ea5f
0390dc70a3728fd456d25cc25c6c95d9c445ac6e
86811 F20101209_AAATCR rotundu_c_Page_015.jpg
dcc8e1e04665e6c3e574a32c58a39498
e710d6d7dc4a133ae5d5984c154bdf2176e6c5e4
57607 F20101209_AAASXL rotundu_c_Page_016.jp2
a4d3040f74b68442a34bc9746d5e7f9b
5389239691628623f4de195cd0111a2263b6729d
F20101209_AAASWW rotundu_c_Page_053.txt
e7a2deebc8eabd9b4a523504bd1917d5
d2468094fcf5d431fe24153c51922db962f25f16
81435 F20101209_AAATDF rotundu_c_Page_036.jpg
6a0cd4bb14eb5f2495e551962ecab7c3
a25ac3db702907f27abb2c420173231f9324e66c
6764 F20101209_AAATZZ rotundu_c_Page_015thm.jpg
438c1d0eeeb4f6028755e469924b353e
8bace9007a119926f71f582986876eeab88a8109
40514 F20101209_AAATCS rotundu_c_Page_016.jpg
6813816e5c8bcef0790c36e3cc8eca8c
2bb23876f7e8caa6bb24833f7c71606ef7fa1fd8
89354 F20101209_AAASXM rotundu_c_Page_058.jpg
ef7de6d43b4b8014ee69e1926b526c92
ed107802deace499e62667df7fd149d77ff5a42a
F20101209_AAASWX rotundu_c_Page_145.tif
adc36deeb82eb87115e10c02e6eb4376
a628efa48841b5ef04ff2c44cffc3ac240cb339b
82086 F20101209_AAATDG rotundu_c_Page_039.jpg
d230fb07a05d763a11c65a6edf1e43ea
80920936173095de470e3c91b4045781fc092712
8315 F20101209_AAASYA rotundu_c_Page_128.QC.jpg
24fc0c52ad0c6caf42879e2a93f6a9c6
b69e8c01dcb0d3320c5d28aaf45afc8b6964aa3d
72679 F20101209_AAATCT rotundu_c_Page_018.jpg
cd431f7179b1fef9a4061f02d5fa74fa
f0162db704241154f6bda413af8096ed9466e6e4
321914 F20101209_AAASXN rotundu_c_Page_062.jp2
0a29eb211427f7d88c89fc3b373fc6fc
49b8f3c069f560c19a37796f00577573e459611c
492 F20101209_AAASWY rotundu_c_Page_001.txt
4dab42e636060460a1681606615f3cd6
d50f8b76258e65a1e6773de75f41dfcb5672ad61
86149 F20101209_AAATDH rotundu_c_Page_040.jpg
2b3116c98d614b9a240cd1598679360d
da50419ececf8130ab447099b64e8a9f19c2e95f
10492 F20101209_AAASYB rotundu_c_Page_063.QC.jpg
f8228199db2b06acfa2bcfe15d801fd3
0ee9b9a583b1833a2910c1a0f6df3cbbca231ffb
34858 F20101209_AAATCU rotundu_c_Page_021.jpg
e2ec11593568df5a5aeeacd4d4c29274
45b7041a975c5f1d57d06dc6ebd62c53c04103a6
F20101209_AAASXO rotundu_c_Page_098.jp2
67a35116757091671e50437b1a06e774
6a89bd23a9efc4efd65e022301bac65e7c0b474e
2552 F20101209_AAASWZ rotundu_c_Page_010.txt
e334de72aacf6ddb2a9c668d77ba7cdb
a2eace02d07aad4e12d9c9f50979aacec695d2d2
28542 F20101209_AAATDI rotundu_c_Page_041.jpg
5dce6beb1b31b54c1e3aa54e4ab9db88
568468f9d1402212f4bd00d5cf7b94c50be38842
35024 F20101209_AAASYC rotundu_c_Page_063.jpg
a3472977fcf774886ffdd1154789dd11
adcc64a911699bca4b458c9b9a24240fb2572679
84965 F20101209_AAATCV rotundu_c_Page_024.jpg
6ca0aca1cff6acb33f5518388f80540b
3a9d68505b283ed6d70820ccc69c5c8c226d05eb
66627 F20101209_AAASXP rotundu_c_Page_020.jpg
91977ff3ae99e50f668375050faecd1c
93b364b28317f4c79cdf2993426dbe8247e594a5
48825 F20101209_AAATDJ rotundu_c_Page_042.jpg
fdfabe6f3eb7a9dd1e82df86773137cd
f2dc1e2858373ee4b556f072aca174f77e66057e
219729 F20101209_AAASYD rotundu_c_Page_119.jp2
a02c02abc3642937bdd51980e010f8f7
3f877b5ca2d7fe5f6870412c3a73357204b5af5b
79410 F20101209_AAATCW rotundu_c_Page_026.jpg
75046aa8ec14b7ba13b9e6446557016e
a5bf2270e80463dcee8d5099dadb8eec72370dcd
F20101209_AAASXQ rotundu_c_Page_108.tif
16d6c36f9fa360a8141b5ac848a2a610
ea2c59866bbe03883be0cef449f72524b7ef7801
37162 F20101209_AAATDK rotundu_c_Page_044.jpg
656bb1e11806a3683b0f26201fd5dfb8
882f67c433b21f348ba1467bb972342bd23cd608
3147 F20101209_AAASYE rotundu_c_Page_080thm.jpg
739145b4469d99b102e59da34cf88dec
e0eecd0030d479ee0e2361ebb947ebbf2ea1698d
70558 F20101209_AAATCX rotundu_c_Page_027.jpg
086b7a0ab83ef4c41117dc004a19093d
b4e65c413ee857141e668611dfc5a662e979c456
7005 F20101209_AAASXR rotundu_c_Page_058thm.jpg
40f8fa41802bebf00f110cdda5538726
868a32d65d13d1357ec4787128651ebd3d0f340a
28211 F20101209_AAATDL rotundu_c_Page_045.jpg
b0e2820cffbe6b65c82af29f535e1852
779b26e125c5c82e49563971f4ec1248aead1947
13923 F20101209_AAASYF rotundu_c_Page_047.QC.jpg
9ab5bc9315f0e9ad996bacaf0e424189
2db9d7ea3ee109bc231bdefc412fbb2fa473d221
1051939 F20101209_AAASXS rotundu_c_Page_025.jp2
a899f88f22ca11035513b081754e13a1
5b57a80f86955b1560d03823502e0b98c8c92eb0
88661 F20101209_AAATEA rotundu_c_Page_069.jpg
cf7e4d87e03d66ea1ea974e69388d4bf
68efa90f768f7cb01cc36fa9ec06858a3d166faf
79761 F20101209_AAATDM rotundu_c_Page_050.jpg
459c011b25964f20c2469b6257687975
69c1cd53220ebb8ad6615a43138ab34a295574e6
27500 F20101209_AAASYG rotundu_c_Page_070.QC.jpg
27afe975ba39e63513e924072c3fc875
fb7ddff5c5052babe3b134e516206723559c8e88
48323 F20101209_AAATCY rotundu_c_Page_028.jpg
a3ffb7b4b33c45d11bc5c4dffe1ad7f1
98c226e02d9c5008e464147ec014f7d1c2edb3a0
89393 F20101209_AAATEB rotundu_c_Page_070.jpg
f12dd6eb1ca2a7d50d93cd55af879751
4ef14f98128febb55e0040fbda4273f32b2b332e
61226 F20101209_AAATDN rotundu_c_Page_052.jpg
3cbf19712b05f97876e1f68e112c7143
5592b9033d959d0a3f27ecb85a40c921f0093ae7
1485 F20101209_AAASYH rotundu_c_Page_042.txt
dbbdb0751e3fd35adf0d42bc6ce2bd76
4b10113beac207e7a3a247202fc51cfe6dceb929
57618 F20101209_AAATCZ rotundu_c_Page_029.jpg
bf84f0a5dd0f3c548d64e56c7434b586
40b5dc39954a580b5e5180381fd8ba14cb4c407d
14063 F20101209_AAASXT rotundu_c_Page_115.pro
3c4026340ebdba2cd0c8b7775f6c5ccf
4c02f346257f8e8769ce31b8fb207e91cfe8e3bf
89620 F20101209_AAATEC rotundu_c_Page_071.jpg
d8f6dcd846ae6707ad992c754c1cba61
29d575f7319d05e7e52725c73d0925b7c356b37f
79866 F20101209_AAATDO rotundu_c_Page_053.jpg
2ccb59491236a36db18c757c0af52521
2f1f95b2d012a6595983f541e9cb048036552e7a
3681 F20101209_AAASYI rotundu_c_Page_003.QC.jpg
0701eb8efb2e51674d3d33c8ed80269e
2bbf0ca868d8b3164fe933ba539e313164915c1e
2096 F20101209_AAASXU rotundu_c_Page_036.txt
17296eded64f0937d492705984b6e77c
3d1984d25b400e84acde07b9b362d6d9c821b925
91103 F20101209_AAATED rotundu_c_Page_072.jpg
e386dcd86cf8b58b5a7dffd96820745d
603ee516d46d647f86c2a2cdc00ff333598af586
77727 F20101209_AAATDP rotundu_c_Page_054.jpg
1b7aaf93f6e91facdf6038c27ed19b4d
f58a265806496395e40ad7358f2f2174272e7f4c
58239 F20101209_AAASYJ rotundu_c_Page_074.pro
4f0ad1a2a9a2023211a9fae9d15002c6
10dd6d7ba2321e1c4b4026401858eb98c095cfd7
25736 F20101209_AAASXV rotundu_c_Page_090.jpg
b117cf990d033b41df813f40fd7c0379
e6bf048b94375c2708b6a2df119875fe9a846a94
83662 F20101209_AAATEE rotundu_c_Page_073.jpg
bb7e572d3bebbfd2a186a076c028762a
4dfe0a9532c67d31b7868de431c34797f7acbb92
86425 F20101209_AAATDQ rotundu_c_Page_055.jpg
3e70ad4fd8ba0be19f6106332195880e
695d917bbbfc283e76691c27cdd7ae3d89832915
48238 F20101209_AAASYK rotundu_c_Page_047.jpg
802afc584955d3eec4dc78229f49e3fc
b595b6b0784b0ddfecc5de86d9f3fa2687873894
1970 F20101209_AAASXW rotundu_c_Page_004.txt
30cc4df17015723b143c3f0eca3b74d3
5d6b06116e9cf251b5d1f9181a288e6b3627ce07
88640 F20101209_AAATEF rotundu_c_Page_074.jpg
1a3a50a8b52adde49d16c8545b20638d
8e79a806e455c1fc5346e2b62516938ac441a259
52136 F20101209_AAATDR rotundu_c_Page_056.jpg
6ab3dd271634626e6eb7edc396e21795
8c9581b8bc7de892fa473a7a8ea9322aed98a5f7
F20101209_AAASYL rotundu_c_Page_059.tif
e003557f8b2637dbe79e98ec937c6ab3
2ae97e6d2f6aa8fb587b9f6373f6b0776fc0d830
91195 F20101209_AAASXX rotundu_c_Page_110.jpg
d91c79268fa82b2788f97af0925c5e1a
9d3c27cc0f18fe62dbf9f51fb31efc3596967915
93799 F20101209_AAATEG rotundu_c_Page_075.jpg
45e16834a8344a5d5e8c6b197554ceb1
3fa0a56190c6bdb2fea8459ea6422796bce18e36
2209 F20101209_AAASZA rotundu_c_Page_057.txt
5fe3512ac860ff3c0b0718a0efc1f283
ef0aaac4912fc0778fdd0f8e9e1162cfb99c3214
73914 F20101209_AAATDS rotundu_c_Page_057.jpg
1660f75b81ddeeb7bb5cbe9fc9842437
2f7caef24dd96acf3e1152070afaf10c8d11b1ea
F20101209_AAASYM rotundu_c_Page_010.jp2
a99b6dd2e0163e3a5cb199d8255b1d4c
3d30c81e47bdd2a4470d0e6dd85ccf7ee60bc28b
978 F20101209_AAASXY rotundu_c_Page_048.txt
7f1b4f715b57883c89c970b7aec5beb8
ceb9364ada76e27277b9a48eebfbfcf217921dce
68049 F20101209_AAATEH rotundu_c_Page_076.jpg
397ae3d0adf949d14695476e44b88f58
43177e8b6bf626ae1fcb7214a256f6ccdc9605a4
52239 F20101209_AAASZB rotundu_c_Page_019.jpg
324936e1e01e588f4bde996b9d980c78
2b8a34fcb175374c6bfed78b328a927d0b272a2e
72092 F20101209_AAATDT rotundu_c_Page_059.jpg
d3b9b5ec83ba3d3b13301eabd0a1cda6
0dcfc354a390ea793ac06b11bbfec0288ad416b0
89420 F20101209_AAASYN rotundu_c_Page_009.jpg
bce7ecf982fdd91b3a4d60c12afee9e0
7d88e3b6ad78851967c7b3621275ae95d5be047a
F20101209_AAASXZ rotundu_c_Page_094thm.jpg
03c274ff832970b8eb27237b9df4a5bc
417b30de74d0fda6a24c57c2a7a34dcf2a45dcd6
37445 F20101209_AAATEI rotundu_c_Page_077.jpg
4a136716b0ad7a218e7f3158431bee24
b4d896c01705845c2e6b8befebf8e24301c7197e
14992 F20101209_AAASZC rotundu_c_Page_042.QC.jpg
ec2ffd98dad257d339a26c439ca58970
12b4e3797fe253a790e823a66d77ce7c28d8dd66
35115 F20101209_AAATDU rotundu_c_Page_061.jpg
a7ccb56cd31e40778e2a2a91d0e09535
1ee88a73b5c9144fb8c90ccb0111036a770be97e
186961 F20101209_AAASYO rotundu_c_Page_117.jp2
c7b735fbf792ef3f4785cfb04f1da606
fbdfcf27ffc0d58623b5a0ce7e3b2b46a47fc7b3
41249 F20101209_AAATEJ rotundu_c_Page_078.jpg
f92aa7295bf150b4dbbb970fd528fa34
e5371bf135ca60b5783abb0953b5a211c67d8549
27648 F20101209_AAASZD rotundu_c_Page_097.QC.jpg
e3980d54685e547df49fdf9509463154
d9676869ddc2c441d70fb831cfb71bde90853ad6
28665 F20101209_AAATDV rotundu_c_Page_062.jpg
ce993a0330956794719d76cda30b1876
6f0250368ea74a11b0da2f83198a25cc383f5a07
F20101209_AAASYP rotundu_c_Page_023.jpg
ae45c2e87dd9cafa85924f44a047ad37
d591ecbdfd078da58654e02d8dba7996cdfcc800
24777 F20101209_AAATEK rotundu_c_Page_079.jpg
ceb0e5cf88d76ac2387ab5f90d2d3722
e2f2b2190b23644e7c3aec64e3891ded96e78987
F20101209_AAASZE rotundu_c_Page_088.txt
7cbeaa3efec7647305ffa2f2f48026e7
6a4c76c9e42d606f9c1518e0dd0dd8ca1c6015ad
22918 F20101209_AAATDW rotundu_c_Page_064.jpg
9ce2965b2b757d89653718dd0c7d29e3
48f9a75bbd2b55b0da0c8db07809d0725602323b
90000 F20101209_AAASYQ rotundu_c_Page_049.jpg
542600d18ce0821c39c0a3ecf3c2c45b
961dee293b391bafaabd0d92075a5a9fa591f3a9
25563 F20101209_AAATEL rotundu_c_Page_080.jpg
d4b32b40cc1b7cfcb29b1188440b03eb
918b67cf8f65c931de44cbfab0802a3cead281b9
478877 F20101209_AAASZF rotundu_c_Page_041.jp2
04b5cc087d9ba7dc9cc0246eaa5ab5e1
8585fca82e7a104044c25d5366dd636814cce3dc
81758 F20101209_AAATDX rotundu_c_Page_065.jpg
c591241f5c5150d9338688be4ea84599
d6af533c39c7d710c3fe71c4196c9e060145cda4
F20101209_AAASYR rotundu_c_Page_141.tif
bc22f8ac5e8681263678947c92c7d72f
a1c90bd7fb5c5f2fbaf3f263d3c004af24389ffc
22749 F20101209_AAATEM rotundu_c_Page_081.jpg
26ef44162a0c82b10011b37d01af4678
07dedde90df497782d8d5a0b7faf4922c01366bc
F20101209_AAASZG rotundu_c_Page_067.jp2
74a44bf75532bfc5e0be00b53480926f
79393411cd99366f645dc155fd668816c9825cf5
39549 F20101209_AAATDY rotundu_c_Page_066.jpg
bf6566a8adbb2f7dca9d60701a7114b8
8093451e475c7b98c1f3b16d35fe8b34cea7dcd4
804 F20101209_AAASYS rotundu_c_Page_062.txt
a435b56cc804bb7cbd77f6f13ab6ca46
f04365bd1477b67da8ca58ebc1173858e08ccd30
89624 F20101209_AAATFA rotundu_c_Page_101.jpg
afa97062bed2ba1cd775f6a9c7b7659b
56a659a371efcba70b6b2dc570191d348ea37d25
36687 F20101209_AAATEN rotundu_c_Page_083.jpg
1daa827cac1d7a3a1e8c6020d210e8a7
855a92f7e28318f285394d3740c4367477d4f949
1051980 F20101209_AAASZH rotundu_c_Page_107.jp2
a937aaebb1be831e3157e64faf42dfe9
a6753844ca850b5cc68993b39c5760896a9618f6
80131 F20101209_AAATDZ rotundu_c_Page_067.jpg
e1a4954775fa3a9bf2a09d257fb57e7f
3fe05930d786a944d04567ff73e5b4ccc29102de
8182 F20101209_AAASYT rotundu_c_Page_060.pro
ee96e3368cdae4367cd294b720b7d4f1
efad01a58cea4d04604e95812d44fea53a0239a8
94745 F20101209_AAATFB rotundu_c_Page_102.jpg
89949160bd2d16bf465653b3bdbc8e45
c736636e4a37306481f098cedd2184a9995fb3d3
32009 F20101209_AAATEO rotundu_c_Page_085.jpg
9935d70d128758a63a3e8082bdde08bc
6b2f239ed170f7bd7c1187e56e833ac3973e503e
F20101209_AAASZI rotundu_c_Page_136thm.jpg
a95485921cf82800c1523ea50927c2bd
fd0f43ca9366060d667552964a93de7ffe102faf
89471 F20101209_AAATFC rotundu_c_Page_103.jpg
c958a3e116339f6f4d88a9b57917ad82
ba34ebf03792f757c603fbfb46ec0dcd573c4fde
25191 F20101209_AAATEP rotundu_c_Page_086.jpg
eec582fab78d67ea963228d9d3e47f3a
3370c408ea18c4bee38e4048476bd95860793b39
F20101209_AAASZJ rotundu_c_Page_097.tif
9e3b1bfd36b2dad1cf01e456efe8f289
3d7b721bb51131c61e2fb41b0f0d3ad1ddbcf086
F20101209_AAASYU rotundu_c_Page_085.tif
be554ba6eabba1c4f812c1f2b5121fc1
4263ebb36b7b3c433fd00d50b83d098b48a62d16
78307 F20101209_AAATFD rotundu_c_Page_104.jpg
63486beb1b1d79a523932a9819fe62fe
070c9545d8bb8ec4d93c66b37b9ee0dea576a185
38755 F20101209_AAATEQ rotundu_c_Page_087.jpg
1f19e59cea8888e455ac3391f2fbeee5
bffc5f0d03a0cfbc40bd01bac7a8d32996556658
F20101209_AAASZK rotundu_c_Page_047.tif
2c4e0c509eddef2298d6a610a27fa7c3
754a765b00a49bc4a57cd8b2eae2d7575bf2d086
32215 F20101209_AAASYV rotundu_c_Page_122.jpg
ae507cb6e39de9cdb53efb532efa293b
b7fcc4e4b2d93ad6bdcd8fcf1207b9a4391f2778
88260 F20101209_AAATFE rotundu_c_Page_105.jpg
bf46934bee8b84f69d01e9c8c6c92d13
fc74ab9b39fb2d8c219d55ba736493410a5d7934
28393 F20101209_AAATER rotundu_c_Page_088.jpg
e737d80b8141bdc77f164e676e53fc15
2f33daa16a720ab1c973364301fd5adaaf69549a
57973 F20101209_AAASZL rotundu_c_Page_136.pro
8b255cc1d17e8efc6903f069d3d04449
36ca9f4b0fdfc6e6e62f0b8a7a27c10f8cc778f9
3337 F20101209_AAASYW rotundu_c_Page_041thm.jpg
be2829cd55d47205de3ba4b99dac039c
125057eb4e0fde9ea102f25be7d31b251528349e
86563 F20101209_AAATFF rotundu_c_Page_107.jpg
500f820d71f8d1ab4aaba5575d84dd84
6a2c7fd09b90a4f335354ae9c3f5c0c1cd1ee14c
26745 F20101209_AAATES rotundu_c_Page_089.jpg
4deba2cf73adc61556fe760686d10e89
6469d27c5557b5dead1751063f78f7f09722119f
47233 F20101209_AAASZM rotundu_c_Page_017.pro
2ce45cea774a3b4b8d0a780d97a4eef8
7c6eb007a0a78a32bbcc3cef868a228f9e2e9b73
F20101209_AAASYX rotundu_c_Page_027.tif
9e5c9fc9680825b6e83a61b21f410ab3
4556318bf587e1d0db68d94c0735152af4c5d40a
92966 F20101209_AAATFG rotundu_c_Page_109.jpg
79c2cacdf95d838149b9cad7d1e513c3
7e97534e7ed869787f77e4ac1f8ab8b698a52dcc
86764 F20101209_AAATET rotundu_c_Page_093.jpg
12e6d3ed986fbebfeab3eedec096fb45
a92fdd76f8749ccd91ac7643e3fb8b8748f6856f
25522 F20101209_AAASZN rotundu_c_Page_032.QC.jpg
a5561c2f38f6f320b7cf9093a1ef421c
047138395bc726bf4e8b1ce770aed4e1ed1220b5
27615 F20101209_AAASYY rotundu_c_Page_107.QC.jpg
c99932661d3334bfbfe0679092ec621b
3061851592cf2b49620ab8002d6080bb3106e540
87337 F20101209_AAATFH rotundu_c_Page_111.jpg
e437e4ec42ffdc6aafbd1b07a12ae56d
da2add19714e81833e5639f1ba852e338b540177
87946 F20101209_AAATEU rotundu_c_Page_094.jpg
78b2d06846fbf07a25668490ddfe4ef7
7cabbe9f7a8e833e6a9dadc2edfb0a4aba0ed18c
48259 F20101209_AAASZO rotundu_c_Page_038.pro
b4d59387b31faf30175306c383f3a2ae
775ac5aa1c3a5deeed9af5d7adfa03020c553afd
27133 F20101209_AAASYZ rotundu_c_Page_100.QC.jpg
f18b66b55f5b343bdece1146e999113c
06553192528e299e2f944be531b40df2f35fa6a4
44001 F20101209_AAATFI rotundu_c_Page_112.jpg
bdd9fa2ce3950b1bc58ff4d17e204ae2
00e6d7fb6d952dbee1e3e05464ccbee7c7c4f4cb
90131 F20101209_AAATEV rotundu_c_Page_096.jpg
7875e1338b031f554477626b2da8bdbb
24dac56eb29031e64264b342ef6588e601e8d480
6901 F20101209_AAASZP rotundu_c_Page_098thm.jpg
9a3f85eaa8668dd7fbf3e6d945aa734f
07babaa6e7ea4a623dfd4c1c74f1ce403b9c7d21
34884 F20101209_AAATFJ rotundu_c_Page_113.jpg
7e3bd9d22c2578412e52c94762f6a964
522737c48523f74e626b80bcf3f7f0a7434185ef
88093 F20101209_AAATEW rotundu_c_Page_097.jpg
9fd362e00aa2277984dd7c19acaf5f2d
ae0c766e992fe4275f3afc452e97c946f5dc66ec
23017 F20101209_AAASZQ rotundu_c_Page_139.QC.jpg
f5561625465dd321b9cd5c0a450cec42
6ed1d6db5ef6df779d23c2272aecf814fafb3eb0
46101 F20101209_AAATFK rotundu_c_Page_114.jpg
29a0286ae428161c34fd43f467f76fd6
fc33103b12efbb8e7453bf55c6b29a03bb634b13
90165 F20101209_AAATEX rotundu_c_Page_098.jpg
c23a8ad3647c71809526ac8e79292e08
a91d48bc503568aa89fc9506fae7b193bd35c281
1051967 F20101209_AAASZR rotundu_c_Page_101.jp2
34c79bf9e44be792a93208cdf446ac3e
24be5b4a62e0ad169f51d09ccf8c77a24a902d08
48032 F20101209_AAATGA rotundu_c_Page_138.jpg
5625897a2c74ff0c382388bc5f8fe907
001ead10bb4ed6ec27fb72d53df50f507ea60fb5
23909 F20101209_AAATFL rotundu_c_Page_116.jpg
92c171dd3d1c7f5ed73036aa08e0bc14
6b6b5d72279ab3f34a563239a7ebe10a43a118ca
77892 F20101209_AAATEY rotundu_c_Page_099.jpg
3e185efc5879e905d5bc8981cf7e723c
e7134084e39354c409d043561d4ab4b0239c2a7a
17382 F20101209_AAASZS rotundu_c_Page_091.jpg
ed46bba3cb65bd06a8033875669f2b63
44e905da2207c2dacbd323b461f138fa699168b1
18781 F20101209_AAATFM rotundu_c_Page_117.jpg
469bd6552807bab7b4cb13cf5e6e5cd6
300c3ae1a4fbbd98c39f9a38896c156f36984cd3
87505 F20101209_AAATEZ rotundu_c_Page_100.jpg
5ed23d05a5045a69358489d59a22e53c
984a107bafc41fb465671309e7df60dd6b1a1768
F20101209_AAASZT rotundu_c_Page_029.tif
b31bcbea62ff0d27352e493184753803
5c9a254fae9e07f70dcfb8fffe585733668ca31c
75972 F20101209_AAATGB rotundu_c_Page_139.jpg
9e80d3a64f7ebee9c735c9a141d0c4a5
b900920ade909bc92f829c493056120622b4761d
25008 F20101209_AAATFN rotundu_c_Page_119.jpg
4d511dc4eb66e1914586bf876b0c270b
e7302522c1e7880ab45b2ebd6a89fb6ce4dec8e2
77853 F20101209_AAASZU rotundu_c_Page_051.jpg
232f35197713ffb28d77068e9d359df7
83844665d1d5b588e08e4ff0264ea7642cc04351
69814 F20101209_AAATGC rotundu_c_Page_140.jpg
8747cac2b25ca654ed4c1a7274d50e36
a6950a5acf7661ceb9a59e2ee7dcbfff80196c2a
42143 F20101209_AAATFO rotundu_c_Page_123.jpg
b3de6ff1b050f4fc09011e6e9c56fd08
f1bdeebd789ba95c01cbee4d047a3e84e5f6b3ab
78106 F20101209_AAATGD rotundu_c_Page_142.jpg
e842d28df00286cf8f12eb58a7e955dc
599c84cff590c34ef7659629ef1616693a83385f
33329 F20101209_AAATFP rotundu_c_Page_124.jpg
f6222e06523ca9f9c520bd73daab4595
6e116d5c34165d39a2147f66bf30fd4feeb4a721
F20101209_AAASZV rotundu_c_Page_087.tif
dd47968b0fe9916f381af3ff0e823267
b70a36acf6abfe4fab7748acd16303d2eff30c1b
73507 F20101209_AAATGE rotundu_c_Page_144.jpg
9738e73b4e279cdbdcbe2639db94a858
250bf2cb88c635f1711c215d94707072a89dfe11
34290 F20101209_AAATFQ rotundu_c_Page_125.jpg
472331f660a4d294fafd375e2163e45d
2779acceacf728ace6a2a02db27684e9769e0d63
22046 F20101209_AAASZW rotundu_c_Page_023.QC.jpg
a13d7010aa12d2988b8dd3238fa5652f
696f865224c6e29af4b785aba6bc0c50af7acefa
48745 F20101209_AAATGF rotundu_c_Page_145.jpg
08653fcdf7df69033d37cd9d4951620d
e7a6fb29d8c285067f3a795da1bd9edca32c518f
25198 F20101209_AAATFR rotundu_c_Page_126.jpg
f71d14839101330a98787e1a73183a81
639e264f911035362f382336f16d3a8694781933
2056 F20101209_AAASZX rotundu_c_Page_039.txt
d103080817014b597ae03418b6db4489
8a99cce805bdf9841d9f1c722f2238ca04239581
26704 F20101209_AAATGG rotundu_c_Page_001.jp2
e5038c43995f6d968907eec5715dd23e
0f18ef235f7db27401d6702fa985db8f8d1013a8
27735 F20101209_AAATFS rotundu_c_Page_127.jpg
272c951672e2c9d25eff7288d9d4c9c2
046c68e045ca3829bee0dc60110b37143bb03681
82418 F20101209_AAASZY rotundu_c_Page_025.jpg
981c68cfd0384c79f2b0a9395d2259da
f3d1e14f361c0945ce67e617361e94a11b5069de
6158 F20101209_AAATGH rotundu_c_Page_002.jp2
237890c3d61c9053cbd6b912d51cd563
8c794cac9d53b168be513e232be59766e91ec09c
24140 F20101209_AAATFT rotundu_c_Page_128.jpg
6ce899234ec1d3b984fff597ccace1b4
40e5b5bd4ae1ddaba289574614afef3ccad30b51
6090 F20101209_AAASZZ rotundu_c_Page_020thm.jpg
6bb8ccd81b0a0e7422e9a14d613db332
7b0aecfcb32f2b97d7d5ba300f1dfcad4749e0be
103733 F20101209_AAATGI rotundu_c_Page_004.jp2
a4a64e94ab8039d2d50cfabd218ba562
150fdb6689a94c243239f559ed87efd3d7563c40
19634 F20101209_AAATFU rotundu_c_Page_130.jpg
2c2fbcdf31cad7725a6fa4dc0a571bf7
f4b4431566a5db93839fb83c0651f9900abe58e1
1051968 F20101209_AAATGJ rotundu_c_Page_005.jp2
d81385e566f4d7401fde47f17bcc6ef8
def9b59f77bbe8b0dbe2989a88698929c87f4df4
31725 F20101209_AAATFV rotundu_c_Page_131.jpg
154a170e20ed2548ea15bd021d6251cf
5c0c8a2bf81ce007a1f0eb66a3aedda43e06777e
F20101209_AAATGK rotundu_c_Page_006.jp2
4c1c15a866116337c386e210279a6097
d1e110d9f30cf1def96caa59066cfa1bff6be61d
36109 F20101209_AAATFW rotundu_c_Page_132.jpg
f1b56e2bf01c93c47d6ee9b3f7db6717
f8e07fd67d29529bc2d75563ab4b19ec35d844e3
1051979 F20101209_AAATHA rotundu_c_Page_026.jp2
9bf81e7ae645986940a3e8055311f21f
6d58713c362c8fb88bc2ce3f84d1eead957fe2b3
F20101209_AAATGL rotundu_c_Page_008.jp2
d2fb9fd9942ef1c7e7d65ceb33823666
9619a6641f2710f9b7d4f36ae397fff134d425ae
40611 F20101209_AAATFX rotundu_c_Page_133.jpg
002879827e948a47dd7d4e74629a8068
caf8bf6be61332a920d559c28c21bbf762459300
659806 F20101209_AAATHB rotundu_c_Page_028.jp2
b774f6a22c1a44a3e8ae68e6536f3839
4f3a017bba976deaa2e8dc6cc7084347cf5c9f84
1051982 F20101209_AAATGM rotundu_c_Page_009.jp2
b0a4c483bc918789b24886fb5652127f
7a4aa65265c999f227166db7c9430c431107a71a
42177 F20101209_AAATFY rotundu_c_Page_134.jpg
6e5bea3308a71cf993cfaa0040a7c35b
8a3dbb817ba7a27bffb532b0a63bbf548d0cd98a
1051954 F20101209_AAATGN rotundu_c_Page_011.jp2
ee31117bd156c47e7fd838192d337330
4918263bbf4cf10c9706908f31b665b3359a8b6d
25831 F20101209_AAATFZ rotundu_c_Page_135.jpg
21aad2974aa200f0e6030f502da5368a
5b25e2a557235b413f2b7a209c8c980e4d9f96ed
1051970 F20101209_AAATHC rotundu_c_Page_030.jp2
f3d8fb169eb160aefd1cbc60a1c49904
57882a5c3a21e6a1c313381a8b0a4c781bf69302
113463 F20101209_AAATGO rotundu_c_Page_012.jp2
ddde59a9912089020e08fa628a71790e
cee6fe0ed327093cfdca02755b2beb28cf77810f
F20101209_AAATHD rotundu_c_Page_031.jp2
c3ac29bd4dc14a713f35048b492c4110
22783c4f0db94f247c28d229b81319241347348f
29073 F20101209_AAATGP rotundu_c_Page_013.jp2
dec95e7205a7eaaae00a760c5308d1f0
9860ce59880fe54a77413465d119954df988a333
F20101209_AAATHE rotundu_c_Page_032.jp2
fe8f9babd63ebdb9c5fdfa3ce67f2409
e2233176d5aae31ac68e1c059240db0c7a104032
1051919 F20101209_AAATGQ rotundu_c_Page_014.jp2
219276a575061daecc7c8463ef8efed4
91c1643235e122d65d6ed674c5e7c41805f45b07
1051978 F20101209_AAATHF rotundu_c_Page_033.jp2
6d55a0c0c375332c844e60b22793d3fd
804ae861080d523173019655bb936febb13baf63
1051926 F20101209_AAATGR rotundu_c_Page_015.jp2
79d334bc52962effd30112b6345a36b8
930350bd5237298b48f851c8d182ddbf83fc8c94
F20101209_AAATHG rotundu_c_Page_034.jp2
a68b401a555694e3a6e07f9f35c967c7
39c6431da6a92c6b42bcefb3ae3c7bf994c24421
993765 F20101209_AAATGS rotundu_c_Page_017.jp2
4d241fd95a4184ab53b7a054709e0fe6
ece46bb683926106557fa25adcf1d299d8db97fa
1051976 F20101209_AAATHH rotundu_c_Page_035.jp2
1a34d47cf8df1b0cacaa9f87cb8cd34f
e0105c7382c763f416026561f2b194362698bc12
1042074 F20101209_AAATGT rotundu_c_Page_018.jp2
c30f1d5ccb425cfb03b62e984e57f4c3
67342b2df86b23b71f63d514aa2c89a0319439fd
F20101209_AAATHI rotundu_c_Page_036.jp2
57f07f09042a19fe7174cb06bf74c2c1
b6bba291642a764155f767b618ca187aee022ac6
666208 F20101209_AAATGU rotundu_c_Page_019.jp2
5b2777652f5d4bbc02925879154b2ed8
c526e995367b99ace27e10ea5bbd8d83169911dd
F20101209_AAATHJ rotundu_c_Page_038.jp2
48b8f6505e718869bbe48dd6ff5ebbd5
24aeb7579dfbaca18a88c90ddf14ac2b0f620891
959640 F20101209_AAATGV rotundu_c_Page_020.jp2
c8357309dfc7849dbca96d4985107aa4
40f00f64643b2ede283ec0ad509f8617fd89e709
1051961 F20101209_AAATHK rotundu_c_Page_039.jp2
7f6facaef4c2336f11405e4b32bec9e6
27ca0d9f303cca22557ba1fac31d56374890cc7a
421338 F20101209_AAATGW rotundu_c_Page_021.jp2
abdd23d19accce1d7cffd49b2106f601
d5ce5bb34b8bbbddaff1620b9d6211906c1cc377
1051956 F20101209_AAATHL rotundu_c_Page_040.jp2
93c9e5faed80d99931588ca2648b141e
90cf6afcf32c475b447781b8b3a4cd486d3e4a7e
1051974 F20101209_AAATGX rotundu_c_Page_022.jp2
92c5d5c91e51933770a11c35d9d9b8be
8bcd6fe40ffc309e85eb2df0771d0e47dd6ea95a
375903 F20101209_AAATIA rotundu_c_Page_063.jp2
d59a5ad069f9d2a3e9080df3ec7ad329
f7d1b92b57ef7fda9f48e4a6211d858d8a76771b
757546 F20101209_AAATHM rotundu_c_Page_043.jp2
c48a7a92ef41e47bd339eee02e70c848
60d25cf1634e3b6fcbd534098daa2c48fe2b0b9d
1013824 F20101209_AAATGY rotundu_c_Page_023.jp2
23a34c1333312f8c8d94465ae0166179
e5d5c95ababa6828d44d596f73755c2acaaae154
433648 F20101209_AAATIB rotundu_c_Page_066.jp2
94c44a0bd82df4c247d5718542e815db
0f49b6e8f4a855a260360ff14d4285b0a7095b16
406181 F20101209_AAATHN rotundu_c_Page_044.jp2
39974783c3ed2882909fd9b208dc4f92
91dbf2667c6b2e29569b8fb7078aaeafa672642f
1051964 F20101209_AAATGZ rotundu_c_Page_024.jp2
61c3738368dbc309ef8fb1bf47f6c238
625d323f0b0708a9fa045408f520debf7cf29e96
1051955 F20101209_AAATIC rotundu_c_Page_069.jp2
76a83e33bc89f8ea47e9aa7d81f59132
817898dcd47e78e8b804b51f6f762b890324c98d
889483 F20101209_AAATHO rotundu_c_Page_047.jp2
dd04fc3262448e92ce0c836be228fd0a
05d895de578a5c99da7d877d62e193deb73e90ff
589063 F20101209_AAATHP rotundu_c_Page_048.jp2
62b2cd502dd82ed0416727b6e9bd0da1
c64a06de777d00984d652aead0ce96033ed4cdef
F20101209_AAATID rotundu_c_Page_070.jp2
46e0bcfa3f8af8976ecec6448d0b6240
3e6eaac488e34cac3f641339ea1a0a815f4f1614
F20101209_AAATHQ rotundu_c_Page_049.jp2
ec3973ef2dea4171f4ea6ca46576f39d
32e9b67059c7f6b3bb2a2ac358da76a9e31329b4
1051981 F20101209_AAATIE rotundu_c_Page_071.jp2
488e842b4402d8a9945b52d33ffc4e58
418a1364889c3567a674198dd76e3110fc1da654
125263 F20101209_AAATHR rotundu_c_Page_050.jp2
17ec98ab0981cf91c22e598ea1b8c923
6d350f4a610a164b7e9bf8ca7c99a4c5b20624ce
F20101209_AAATIF rotundu_c_Page_072.jp2
c004afa3a9d58b1fa6919a2d3ff49904
7de28b1a8455e588dfe13af189c76e23da3113a2
122108 F20101209_AAATHS rotundu_c_Page_051.jp2
bded0fa801d78a41f874f22a9cf44ab8
be052c2e51e2a0f554c2bfea8dba92d384dc5f2a
F20101209_AAATIG rotundu_c_Page_073.jp2
2e4aaf704713527c58f47b2e40d72da3
288716a059e2596c7cd292d8dbbb81f9aaf3a7cd
119840 F20101209_AAATHT rotundu_c_Page_054.jp2
ff14fa9212382f1fffee83d2af70d50d
cd9d60bea649678f6e730af6584928a85dd8d9ab
F20101209_AAATIH rotundu_c_Page_075.jp2
7386f65003a358bf75f3619d3fd9690d
ef18c4f0f6ea41e445c1b86b866006a12d96bf06
79338 F20101209_AAATHU rotundu_c_Page_056.jp2
045ee58db3e79547306eb339c259d9ac
a6aadedd9da5c9f5db81ad01021f84210e41ca81
974796 F20101209_AAATII rotundu_c_Page_076.jp2
dcd71a917d6dafa29a75ceb840eab828
b0c7ed4c0f3bb00c34822918b2d94300c4e47f5b
51677 F20101209_AAATIJ rotundu_c_Page_077.jp2
1f26e2fc6600d3562f9414701fde7b55
115000efac27d89dab5066f07b78a0e2690112af
118154 F20101209_AAATHV rotundu_c_Page_057.jp2
bc3503203be7e59ed52333bb1ee98355
d09d86b9471e818fc466ac042980f99387a69608
25596 F20101209_AAATIK rotundu_c_Page_080.jp2
e90643e8ca1e0c7bfdfdfef20d1213b2
6e070568ed08d8a1863f899dbb54508a0e0d7127
F20101209_AAATHW rotundu_c_Page_058.jp2
00004d83fe11fc4a7de7cd463045ffb8
8798a37a56838eb39cbce355385d8fc17ebc0ef5
1051963 F20101209_AAATJA rotundu_c_Page_102.jp2
8bf06a30ace25c485ec8a02151b3b137
7f2f0092025da10da037c900c3f9fc4e2a291e19
21624 F20101209_AAATIL rotundu_c_Page_081.jp2
8a71116638ad596d051641224a6cb831
fd7d516bd21998bb3052ae609f1dfa78de286561
112061 F20101209_AAATHX rotundu_c_Page_059.jp2
6858c322744d13181a40d4b4412c8af6
6c9f8ac32892a0ef029ca3b5e35a1580a12cff21
122132 F20101209_AAATJB rotundu_c_Page_104.jp2
ce7750e7d8292e63c64f5e97a3edc733
4e2f798cddcd8daaa0660ec75a1468fab5feb513
418031 F20101209_AAATIM rotundu_c_Page_082.jp2
e150bf589e8efe058b65fa6c18fe66c5
2ba04374cb2caf65537b0dfcc8ddd7692ca12be2
614806 F20101209_AAATHY rotundu_c_Page_060.jp2
831ccab9b7235d4a6b6e1a314caa065f
ee34b75cda4f77e1c77da56ae8ccc87891ef7771
1051936 F20101209_AAATJC rotundu_c_Page_105.jp2
b44d01101b33520b2639ee840bd1621c
2f58351ea1b5f9cfa363ccfd5afbcca632de2bd5
376628 F20101209_AAATIN rotundu_c_Page_083.jp2
26fc8849442ee0f8aa0fd0a82e2bef5d
19351fef1309ab21a5db195870decd527160c8da
548770 F20101209_AAATHZ rotundu_c_Page_061.jp2
b5624229caa4db7f69565886a6705bd5
7839aba5407fa153aeaa8485abdb75133d4130d3
1051949 F20101209_AAATJD rotundu_c_Page_106.jp2
aca6ced885098d0e2f37affc4c0edae4
2fe6c2de875f946a594a998db3dba1cc6e0e1908
373320 F20101209_AAATIO rotundu_c_Page_084.jp2
02f0b13686dd834c590d93c32a4aab66
a24ab4626aef4989cc40958430919bf9d1d0c97c
437051 F20101209_AAATIP rotundu_c_Page_087.jp2
ca9d024cd39d2818002e35548b26d8f3
49aa1e7538cb056d92c9495281f4d192902a24ac
1051910 F20101209_AAATJE rotundu_c_Page_108.jp2
5711aee21391cb09f9656b8f249fdae4
7a094dbd74d14b869a57b97b0f91d0736b71e922
281961 F20101209_AAATIQ rotundu_c_Page_088.jp2
9e78a1e7401d431a277535222f167005
916ea725e993741597468c07a94114a486692369
F20101209_AAATJF rotundu_c_Page_109.jp2
775f40c79a5a78249f03c2326c6b31ee
7ec21d9a8bfacfc7fa82e4579e2fd0c2cfd3bb6d
408327 F20101209_AAATIR rotundu_c_Page_089.jp2
f8a74e0be282769b5c550d3dd134cbb9
3af138d8ab68323b1d7c1986a69c7c7855f24300
1051984 F20101209_AAATJG rotundu_c_Page_110.jp2
1bd029e6aae032a0c1e45a40468e789d
226328812455b9b04fcfb9e5e51689c7da8a2096
26354 F20101209_AAATIS rotundu_c_Page_090.jp2
21802cb4c96440a01b29b484fd69d55f
a7d6bec85e8e7df1fe671c613ec4f47c21b27fae
561138 F20101209_AAATJH rotundu_c_Page_112.jp2
17b358e6ac45ccc80407e8c5dff743d0
fcb92680bfbc0726bc368b4b87d3f48e587a64a2
13786 F20101209_AAATIT rotundu_c_Page_091.jp2
141a61511ade4c53a847203f3678ccd4
9527c5498b52ecee419b64e2af0e8a360e2015f8
606344 F20101209_AAATJI rotundu_c_Page_114.jp2
17f82c976b1b65c83e28184c863e1e86
d2b332c2bec6291ddb2bd0a767e8aab038a2ece8
537538 F20101209_AAATIU rotundu_c_Page_092.jp2
15c2444b73405ccce0316f7dac18e530
52f56dbbb207f97db8a5ade7a6ad18819dad4d0d
321213 F20101209_AAATJJ rotundu_c_Page_115.jp2
aae219d2d95461b2ccf91c52a3ed95a6
e6c324679294be4d0939c251ff45a71c7590db43
1051958 F20101209_AAATIV rotundu_c_Page_093.jp2
b33c7c71f8be32f22d5850c894067f76
e196c99a2dd9f61a88fc825e5cb29747c00feb97
265750 F20101209_AAATJK rotundu_c_Page_116.jp2
283ea37d30b09db210fce6d9c30b203b
d4a147b4a1613fb007f9c6e16705988a53e208c5
F20101209_AAATIW rotundu_c_Page_094.jp2
05ba05b160c4092c092def1f55eef803
b6e073dd2314ecba4e6d81c0d50c41d66512bf4b
493609 F20101209_AAATJL rotundu_c_Page_118.jp2
6ee2306ebaee8f8955cd5933252c4ff0
766b6bce16fa6e85d376c50a97bfffc69f72761d
1051952 F20101209_AAATIX rotundu_c_Page_095.jp2
fde113d3b1fddaeadea6af978851e2df
8c825b8844da1de341023fbc0c4318deecabdb65
F20101209_AAATKA rotundu_c_Page_001.tif
93307f2963f48f238e0745437c1dccbd
bd650ef44808d15e42374c1a6a62609fc1fcd604
405304 F20101209_AAATJM rotundu_c_Page_121.jp2
6772e79a6cd53a88ea55ac64eaed5a84
d558121e2b3a8663e77cfb68b7c4e6cdb14a800f
1051942 F20101209_AAATIY rotundu_c_Page_097.jp2
af68393832cb98f3d2abf9c27f93286e
2dcf412d6bfffca7b339c0c2a4d513f886edddca
F20101209_AAATKB rotundu_c_Page_002.tif
ca43111f64bc9291db90be5e11db14de
713c40182a049336df3ca01f1e48ac3a7571f691
377992 F20101209_AAATJN rotundu_c_Page_122.jp2
6529b6895e16502624aa00d05558380d
c8cb817b06e21ec2f42c432d1a1f19884c2e1867
1051934 F20101209_AAATIZ rotundu_c_Page_100.jp2
1488609ff64a95ae81218e656dd8fd6c
b56de4b71be6de1761f88c300030f4fdb63c60b6
F20101209_AAATKC rotundu_c_Page_003.tif
79110fb3267bad126301d26678b9e6af
27919f3975234945d66bcd4a6f5c06dcd8aefd4c
567142 F20101209_AAATJO rotundu_c_Page_123.jp2
269f124cb239e11926bc98d2e14cc491
7dab885a5fc80200950530d1045c1348c244c930
F20101209_AAATKD rotundu_c_Page_004.tif
a12636ec132dc636dfca754de95c2227
77591b1c709cf6d8a742a40e9615b1e7e5875fcf
395612 F20101209_AAATJP rotundu_c_Page_125.jp2
8201f2cdeee68f6b849320d8b8dd61fb
1271b63e6ec699eb3e365ef59afbea19ea8c0d89
F20101209_AAATKE rotundu_c_Page_007.tif
634535c7719d394d70b98eaecf88c437
5729e2b3714f3e62ee3446810da096633f092214
290844 F20101209_AAATJQ rotundu_c_Page_126.jp2
790508a9932f32d961399833857529d9
19151745d0c36a4efb24acf91e4130a508069282
21523 F20101209_AAATJR rotundu_c_Page_128.jp2
7c26bf593cbd463c2be62138e2bac253
7bfa396a402b58c75d92fe4c441cb3ead67b48e5
F20101209_AAATKF rotundu_c_Page_009.tif
e4c58790c92c9f8500d00e58f6f20a13
0b36cf82ef9cc329e396105d5a442aa8f5549173
151230 F20101209_AAATJS rotundu_c_Page_130.jp2
8e3e660df9e91b7f917e75ff203eda72
e4fe7c42ea3320c1fc11c8a40196a61b3b21d9f9
F20101209_AAATKG rotundu_c_Page_010.tif
f178a413b1f7510d1132a35043ed19c5
185ff7cadadef6cb6e885ea16e86ea82cf956bb9
545123 F20101209_AAATJT rotundu_c_Page_133.jp2
bfd5d9d29f78bbce25cd4682d4ee69af
2437b8bfa3f4d0fce2200168fe7401df981faf0d
F20101209_AAATKH rotundu_c_Page_011.tif
eb9fcd92fd608e2b362ba89a591f0803
ac09921c57edba499e1cbe5c3ab671aabd2f89c2
538684 F20101209_AAATJU rotundu_c_Page_134.jp2
13361372fb56138d042c278f66381839
b25fc458bdf47c9aaa932ea3aeb3e856daa23b2d
F20101209_AAATKI rotundu_c_Page_012.tif
d224ed4e7f758539c8db2e697bd41138
8acf8b3e70d5037841c84d5a5468171bb4d08ea0
1051972 F20101209_AAATJV rotundu_c_Page_136.jp2
ea155fa10418f4ee07fc7d2d31df8915
4a8fd63f620ec08a4978e760bc1809282d781b00
F20101209_AAATKJ rotundu_c_Page_014.tif
f08526d2a262be5c938e9f47f6f99738
1d427bb47c38521c85c55f6e8438b8e85178fae4
121948 F20101209_AAATJW rotundu_c_Page_137.jp2
6e513c453d6a3e46b0ee552593aafc8a
5706b1545fa2809ad825df36984176fa4ca67886
F20101209_AAATKK rotundu_c_Page_015.tif
885a0f826003dd1ef15eadaa591d0474
7848f712c8d38b6866dd93c215a0d59df99113fe
73585 F20101209_AAATJX rotundu_c_Page_138.jp2
e25421b79fb133d80f01b0d82cf1926d
095ce4c0d69be4bfe002d2d6b3dcd1c1a48a3cc4
F20101209_AAATLA rotundu_c_Page_038.tif
213ae812e6d271e3547b19e268560e9e
6f607f56bc32ad382e2c5446598139ab87ee4cd6
F20101209_AAATKL rotundu_c_Page_017.tif
1a5a150d3b782d27c9303f68fe28cdb2
411199ad7a3d9c4971016f9a32b69802a5040de7
114563 F20101209_AAATJY rotundu_c_Page_141.jp2
452c8c42e40e988768227fc1a09565a3
81608cff8937b821298aae4e368cc4a3819c970b
F20101209_AAATLB rotundu_c_Page_039.tif
952a69175c5341b0518b53848a333af7
7ceb5cfd353273df864e0d6f55e5a6e85bf30314
F20101209_AAATKM rotundu_c_Page_018.tif
5fa9c795788d57543cfa1894dc808b96
1b7d615625e3177c0776a22598b848c63b08e8c1
108943 F20101209_AAATJZ rotundu_c_Page_143.jp2
a8a33e2c1bcf2eb6e7f95ae62a710dfe
9a35305900fd5d671aeb5d56d1c5db2e940f1d78
F20101209_AAATLC rotundu_c_Page_040.tif
9d3146c28c3330d8385a29f3b5d63bc4
67c8ca0fef0ca0ecc75b89983f70d648803baab3
F20101209_AAATKN rotundu_c_Page_019.tif
545e51479c018c10170f0338851f8814
d4c7e22b621468a12a6f2d1ff4ae7932f96b9233
F20101209_AAATLD rotundu_c_Page_042.tif
dff00c7c594b3a55d3821fe18c4fae26
1fbf0f20468d9fc603d8c501b9e2b0be86aa6f7d
F20101209_AAATKO rotundu_c_Page_020.tif
59173fe55df988cb34c43a49b2b72598
9b0b87907a82959039b51278065956e9d2862c3a
F20101209_AAATLE rotundu_c_Page_044.tif
96ce436c3548437d8ec8980e2653ee14
c843e79bf9a029d635a368f6ae16f1115cc3d27f
F20101209_AAATKP rotundu_c_Page_022.tif
38849a473bd79fa2b4d5679757daaf13
d3030d86b05c9d3457b9a7cfaa7ed3f82145cb54
F20101209_AAATLF rotundu_c_Page_046.tif
015a69c6c24c5a8488ff26ddf6b340e8
d1c72e18b06640ceef8bb3eb79fd5cf1ecf4fd78
F20101209_AAATKQ rotundu_c_Page_023.tif
756f3f2f05bfe14d9cc5fd047b4bb440
abf153d259ac19d4f3898f12f1058cd43a446e26
F20101209_AAATKR rotundu_c_Page_024.tif
4204983bbf8913657015dcec2882c416
6db2e10e9fa081f1b09add733c17915e93d9f6a5
F20101209_AAATLG rotundu_c_Page_048.tif
5f40e6fa602242abaf5ae4edd0056aef
c1416c0e05c0afcca0b575757af707df72446b8e
F20101209_AAATKS rotundu_c_Page_025.tif
4ecbdcd7eccfb29dcabeba0781e5fb58
dbcddd374392524bc019b9d8b89690db61124aa2
F20101209_AAATLH rotundu_c_Page_049.tif
e2086cf860013aedd758f92de143caf4
96d24ebf06fea683a11bdce4af1b50ac44ff2383
F20101209_AAATKT rotundu_c_Page_028.tif
9bd86c27d2419cdb21fc71cf95d063d6
11fffc6245e635e50c87e1eacdd29cbf22d45440
F20101209_AAATLI rotundu_c_Page_051.tif
7b7e595cc685a92d5eceb304dac7b30f
9c15172b973358d2c3a0751c57d0003eda8b2a36
F20101209_AAATKU rotundu_c_Page_030.tif
21b307882352959fa8995dd156ceefb4
d262aae529a81d753111958273b8270c96acf095
F20101209_AAATLJ rotundu_c_Page_052.tif
8fb5d5bae99f67a7ece7b50070b4971b
f942a59df63c650608b67f7ba6674d842aa66a51
F20101209_AAATKV rotundu_c_Page_031.tif
e0d61e5d68cac7394c44a87ede3763ec
5b73ed5e26913c4e99cda43aa4264cbe3d4f6dce
F20101209_AAATLK rotundu_c_Page_053.tif
1a22957260c9695a87277b9414860fd5
5e7a25013d1bfda36033860f34a6ce9ab582a613
F20101209_AAATKW rotundu_c_Page_032.tif
78ee31fb4dea7ee1612e3b071c2b9e8b
04362045f08a9838cd33e31f19f238cd227e149b
F20101209_AAATMA rotundu_c_Page_077.tif
48cba333c74f69b736783d06274b6da3
c9cd6294498b6b47591321f3e25796aa4c7dd93d
F20101209_AAATLL rotundu_c_Page_055.tif
17274eee7b5a8bc82fe2c17da2be6f7e
3c31d0142e361287795876f93c551d61ce7b3fee
F20101209_AAATKX rotundu_c_Page_033.tif
39303286d531291690f9310e81c611e1
ce827f8989a9b3119a6d9332b3815c7df22040c7
F20101209_AAATMB rotundu_c_Page_078.tif
960809a6fcab55bc6229a8b67043d225
a206f5e3bc49a6fd803b46fb590b1624af705a47
F20101209_AAATLM rotundu_c_Page_057.tif
70f4bb40ac6d908bb61cc6a7043ca25e
df18d60a68c6e05c9a9595f6165ddd57dd0c02f7
F20101209_AAATKY rotundu_c_Page_034.tif
dad8a242471f46632010a5dbac12d4ab
3333f7bb65dafd548033398ab04237a527b79412
F20101209_AAATMC rotundu_c_Page_079.tif
41af906e6766bcd2cfa599e39c4b89b2
69beea728b09d789e14fdd2def9468ce6f9e3657
F20101209_AAATLN rotundu_c_Page_058.tif
3412bb3add6c64ac03c854419245daf8
ef290864331df9d22984011b7c03d1f02a972570
F20101209_AAATKZ rotundu_c_Page_035.tif
4be23b75decb7618fa09e835228fa0ac
84b3faf280b7e99d0fe93376fa47d5ad91e5c164
F20101209_AAATMD rotundu_c_Page_081.tif
36e2834ae3e6e7a7cda19947a30d7760
bd43527a2ffd62419be29ba41dd3216caca85b2e
F20101209_AAATLO rotundu_c_Page_061.tif
de5115f352c2a153cb63f5de4cf8c674
20b89336a02228c2e055cab60f16438bf24b237f
F20101209_AAATME rotundu_c_Page_083.tif
a52bd53d6db4e80b5b69f85e3cc452cc
7a16c79809b1a35318d282793a22376e487ae26c
F20101209_AAATLP rotundu_c_Page_062.tif
d89f1b78f7c88c024d1d8eb84e2bcad5
2bcf1045b715d5038603e2d399d70af357e8eb71
F20101209_AAATMF rotundu_c_Page_084.tif
d6851c577aa4027cb0ced5c1045d195e
abc28dc3aa46e62e2acafbce28bfaa91e79154b5
F20101209_AAATLQ rotundu_c_Page_063.tif
61b9675bf93bb46fba855348b2b600e5
49b79e687007919b31f273abc6c13ee7ea8b89f5
F20101209_AAATMG rotundu_c_Page_088.tif
0c2c0bea77f95fd3210bf9dbbe00e356
f8be52e5b9258f167800127734badd72845b9651
F20101209_AAATLR rotundu_c_Page_065.tif
e3babba6759dba8b3e4b1cb74c1e28be
24ebe6384981d3a4ea981e60468aca1b50544a97
F20101209_AAATLS rotundu_c_Page_066.tif
cbaea890b6894463e21719773ea982ce
fd089e053cb46f766d26dad696bc4431837a813b
F20101209_AAATMH rotundu_c_Page_089.tif
dab8fa2f52a79d369494132014786a60
4eb56583e109a1cda797942f41855446f99545de
F20101209_AAATLT rotundu_c_Page_067.tif
a9e81685d4b77c8ea09facf9dda94d13
4665272be5a7581bfdc1bc0fadb4dcec476f6dc4
F20101209_AAATMI rotundu_c_Page_091.tif
8211a10a6bc24f05c97674381beb6f42
a7ca062e906d211aaa52b55e41837e345e59ba48
F20101209_AAATLU rotundu_c_Page_068.tif
607898eed9fba2aae2122ec2ed97f34c
1731bed3d34ce27e3aad56dbee109d244eacca96
F20101209_AAATMJ rotundu_c_Page_093.tif
99e3f51279841498e616415faf24f8f9
1df7bffab720c63319682e69f8e45697050a208b
F20101209_AAATLV rotundu_c_Page_070.tif
e4b787ddb9e65be06b265b0f5b2a0d21
00db0cfa55dab9d312300320f3f54b05d7d6fcac
F20101209_AAATMK rotundu_c_Page_095.tif
6a1b198a4cae67dce1a2bf2a066e589b
83c92cd10b7c1fdb76299b0dce72603a14fa4916
F20101209_AAATLW rotundu_c_Page_072.tif
45dee5c97420f9c1ffdf7811aa7f80c9
53018f8a99b0d145ee6208a3add079e05fd89899
F20101209_AAATML rotundu_c_Page_096.tif
f8025ad50f0f8ef9e30c63cb66536cfb
24b720e8083816f2b8a20124cd67f18e60dd90db
F20101209_AAATLX rotundu_c_Page_073.tif
5f9a32725d664d2d4b3519620b1aad46
a8534c15149babcb641e24ce4ab6c18d328b6b88
F20101209_AAATNA rotundu_c_Page_116.tif
f7fcd49ef5a7848d25d3d7601a9f1f73
09638a6a4d3394c470f02e700d021a1117dd9cd7
F20101209_AAATMM rotundu_c_Page_098.tif
deb582db06ca0e53167291ce5c86b330
7ae2905b5e5b91aea7c55af39cbf7ab879a33e45
F20101209_AAATLY rotundu_c_Page_074.tif
2b2653e17b5d4ebb680a63bc94bad11e
eac6f50893a9b2d9da128f7f5e96555063793c3f
F20101209_AAATNB rotundu_c_Page_117.tif
9bc8a6dfbf2158a8c7de00d267c5d758
9d2cc26b67e44b3f0d07e56446089e862eab18e0
F20101209_AAATMN rotundu_c_Page_099.tif
5f9f9fc45014eb07f26f8cfc87a2c1c2
ecf9f3c0fe393d02cdeb44492491dcca25c33b42
F20101209_AAATLZ rotundu_c_Page_075.tif
0567aaa8dbd80e7bbf655f698e5fb911
6082a856d332d1dcb9e4152a91dafb33a89c8870
F20101209_AAATNC rotundu_c_Page_118.tif
fd548c51dd3b6d29f8c21c5d857a8638
9e684654e29c40b153482c828bdbea080db469c4
F20101209_AAATMO rotundu_c_Page_100.tif
9d0c60c03db9f8072535592a62e06908
28cecb522c574652c16ad8694bc46745b759e423
F20101209_AAATND rotundu_c_Page_119.tif
f1bd40023977a9816579d6662c7a533f
3e0992df6906238da7178055122d8d44aaa15209
F20101209_AAATMP rotundu_c_Page_101.tif
9a089370ddf0e0bbeb600e9a87048c37
a5fbc8c2c5cc8738497ae301255516c334df9d03
F20101209_AAATNE rotundu_c_Page_120.tif
2da40dec649655ea4e1e9de5f1c69af9
2fcbbe8391d513929eb5b2fd77dbb478993f6017
F20101209_AAATMQ rotundu_c_Page_102.tif
f33129efa890dcf249b6cf449884f077
a56055a7757b301bdfc70a35a3fd68c5fe2b242d
F20101209_AAATNF rotundu_c_Page_122.tif
8606858d396fbb10f148c1d161332021
2f828cd7f88884a48a47425d729dec5677515e3f
F20101209_AAATMR rotundu_c_Page_103.tif
bb9021301e5797d96ac009c9bc0a2e39
98564d06e1f52e6c5e47f589cbef9b96c94b92bc
F20101209_AAATNG rotundu_c_Page_123.tif
d8efcbd289bb05bc03471dec778d26d6
24ae912b804474bde796b5f641113f2f854aef92
F20101209_AAATNH rotundu_c_Page_124.tif
4586cf2ae499cf3d5a3293b409d855de
36314a03e7ae4b6f57f3a397c5a1d11118b5333d
F20101209_AAATMS rotundu_c_Page_104.tif
100588ed286e1a481319e2a634dbf62d
4481fc6cacad7aeb0795940de0d7828ea0358c5d
F20101209_AAATMT rotundu_c_Page_105.tif
c90cd95b7757009e4afee94f3cfa7611
21d1f352dc64e1dcbb88b17ada5496444e4857d7
F20101209_AAATNI rotundu_c_Page_125.tif
e0493ff503284301f5c4ea5ed24d8fc2
b092317adee576b267ef2876df7cd0f78bb91a6b
F20101209_AAATMU rotundu_c_Page_106.tif
05d422f53ce7ef91715ece3e61bed582
aeb02c6ecb6652736fedc70425668434e237f0bf
F20101209_AAATNJ rotundu_c_Page_127.tif
37488168a88dcdef2485a55103beef90
d70f7f5ce189583c98657766d1b8891527220865
F20101209_AAATMV rotundu_c_Page_107.tif
0641ca2472961d8f4fc9e85778afb897
9d47e28dfe7ba95ef614805146ce7d5f0caf6ccd
F20101209_AAATNK rotundu_c_Page_128.tif
27b582ee20deb6aa128231fce7161a20
449bf249c0a6214bb9d068e0707a5692c187c2ac
F20101209_AAATMW rotundu_c_Page_109.tif
6c46da54e79b7c031045320b6f8d56de
e7b476d45ede694f61b184c8970d17b800220984
12946 F20101209_AAATOA rotundu_c_Page_007.pro
8b19d63cbbb5c53c3cec2265291a123f
a2765685b874e2c0feb9397af6d5fc7ab302da12
F20101209_AAATNL rotundu_c_Page_129.tif
5253ec94769a52e33cb14e09ac125d33
5fb61e7a35d94eb8c53178a41124bcbeaeecf381
F20101209_AAATMX rotundu_c_Page_110.tif
479da31dbe3220db0b8a770a09b63495
fd256a32a52309b3f2f62d1ad9abcfa335665c8b
65455 F20101209_AAATOB rotundu_c_Page_008.pro
3f9ee4d24ac750c9b259377de75e3d99
a1cc3805382605dd28b530122c09c48fa1ff427e
F20101209_AAATNM rotundu_c_Page_130.tif
d75cf2a2b44b95e96af6396a17002cbf
4cb2e40a115067197a3ad6ffda9e063930ccbe69
F20101209_AAATMY rotundu_c_Page_112.tif
ed4a0112fc3cc980a2e85883fe442716
3f4375f7acb15f6774dc1a715caab91463e1c9f8
64230 F20101209_AAATOC rotundu_c_Page_009.pro
a5fdafb88e29b1c3b70d6bae8b063d36
60d3220c2c6339827c5231636a8d31c603a76f09
F20101209_AAATNN rotundu_c_Page_133.tif
c48c7eb63a7f5b2f3ed1868ca7686942
f0b405c85ea47457a7342af1946ba449489ca976
F20101209_AAATMZ rotundu_c_Page_115.tif
d2c99b86e321e5659e04d50cbe6174ef
e6fcab246fbf23361273149592198f56207fdaee
64295 F20101209_AAATOD rotundu_c_Page_010.pro
76ce2176a80956fbc8b00303ea7c573c
5afbe377db155edf3cdbab4ade6386c20d749bef
F20101209_AAATNO rotundu_c_Page_137.tif
ca61f8a9f8cef0316666e27464da9087
794408860ad0c0a635b91acf484f30a2106db613
28359 F20101209_AAATOE rotundu_c_Page_011.pro
d9d78889e6b02195037d2b76a00f7ae9
24e32b3202156b88865aae076a1752ddd4029be2
F20101209_AAATNP rotundu_c_Page_138.tif
99ceba097b91ef16240053d50e0d9581
10afd4131971fbed99b4aa7d7e30a497249673ed
52967 F20101209_AAATOF rotundu_c_Page_012.pro
9c409257a0b1cca08e993c054d469a6a
cbf65e27630d55992c715e00c8a73f0a6213bf03
F20101209_AAATNQ rotundu_c_Page_139.tif
a2a671eb47de11deefbbdc28855cee5c
346f57828ee4b369753fdaff543fb3f7463c60c9



PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

Iamdedicatingthisworktomydearesthumanbeings,myparentsElenaandConstantinRotundu.Icannotndanadequatewaytoexpressmyloveandgratitudetothem.Ithankthemfortheirinnitesupportinordertocompletemyeducation.IamgratefultomymotherandmybrotherRomulusNeculaiRotunduforbelievinginme.Iowemuchtomyadviser,Dr.BohdanAndraka.Hehasbeenanincrediblesourceofguidanceandinspiration.Hewasagreatadviserwithendlesspatience.Myeducationwouldnothavebeenpossiblewithouthisnancialhelp(throughDOEandNSF).Iamdeeplyindebtedtohim.SpecialthanksgotoProf.YasumasaTakanoforteachingmesomanyexperimentaltricks;andfordiscussions,support,andgreatcollaboration,especiallyattheNationalHighMagneticFieldLaboratory(NHMFL).Hewasanendlesssourceofenergy.IwouldliketothankProf.GregoryR.Stewartforlettingmeusehislaboratory.Ithankmyothersupervisorycommitteemembers(Profs.BohdanAndraka,GregoryR.Stewart,YasumasaTakano,PradeepKumarandIonGhiviriga)forreadingthisworkandfortheiradvices.IreceivedhelpwithmanyexperimentsatNHMFLandourlabfromDr.HiroyukiTsujii.IthankDrs.JungsooKimandDanielJ.MixsonIIfortheirtechnicaladvice.OtherpeopleintheeldIwouldliketoacknowledgeareProf.PeterHirschfeld,thenestprofessorIeverhad,whogavemeinsightonthetheoryofcondensedmatterphysics;andDrs.EricC.PalmandTimP.Murphyfortheirhelpandsupportovermorethan4yearsattheSCM1/NHMFL.IthankCenterofCondensedMatterSciencesforthenancialsupportthroughtheSeniorGraduateStudentFellowship.Lastandnotleast,Iwouldliketothankmyhighschoolphysicsteacher(DumitruTatarcan),whoencouragedandguidedmyrststepsinphysics. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 12 CHAPTER 1INTRODUCTION .................................. 14 2THEORETICALBACKGROUND ......................... 17 2.1TheCrystallineElectricField(CEF)forCubicGroup ............ 17 2.2ConductionElectronMassEnhancement(m)MechanisminPrOs4Sb12 22 2.2.1QuadrupolarKondoEect ....................... 22 2.2.1.1ThermodynamicPropertiesoftheQuadrupolarKondoModel ............................. 24 2.2.1.2RelevancefortheCaseofPr3+IoninPrOs4Sb12 25 2.2.2Fulde-JensenModelformEnhancementinPrMetal ........ 26 2.2.3FluctuationsoftheQuadrupolarOrderParameter .......... 26 3PROPERTIESREVIEWOFTHEPrOs4Sb12 30 3.1CrystallineStructure .............................. 30 3.1.1RattlingofPraseodymiumAtom .................... 30 3.1.2Valence .................................. 31 3.1.3CrystallineElectricFields ....................... 31 3.2Normal-StateZero-FieldProperties ...................... 33 3.2.1SpecicHeat ............................... 33 3.2.2deHaasvanAlphenMeasurements .................. 33 3.2.3Resistivity ................................ 34 3.2.4DCMagneticSusceptibility ....................... 35 3.3TheLong-RangeOrderinMagneticFields .................. 35 3.4Superconductivity ................................ 35 3.4.1UnconventionalSuperconductivity ................... 36 3.4.1.1TheDoubleTransition .................... 36 3.4.1.2TemperatureDependenceofSpecicHeatBelowTc 37 3.4.1.3NuclearMagneticResonance(SbNQR) .......... 39 3.4.1.4MuonSpinRotation(SR) ................. 39 3.4.2ConventionalSuperconductivity .................... 40 3.4.2.1NuclearMagneticResonance(SR) ............. 40 3.4.2.2PenetrationDepthMeasurements()bySR ....... 40 3.4.2.3Low-TemperatureTunnelingMicroscopy .......... 40 5

PAGE 6

........................... 49 4.1TheSamples:SynthesisandCharacterization ................ 49 4.1.1Synthesis ................................. 49 4.1.2X-RaysDiractionCharacterization .................. 51 4.2SpecicHeatMeasurements .......................... 52 4.2.1Equipment ................................ 52 4.2.1.1Cryogenics ........................... 52 4.2.1.2SamplePlatform ....................... 55 4.2.2ThermalRelaxationMethod ...................... 55 4.3MagneticMeasurements ............................ 57 4.3.1DCSusceptibility ............................ 57 4.3.2ACSusceptibility ............................ 58 4.4Resistivity .................................... 59 5MATERIALSCHARACTERIZATION ....................... 65 6PrOs4Sb12 67 6.1InvestigationofCEFCongurationbySpecicHeatinHighMagneticFields 67 6.2MagnetoresistanceofPrOs4Sb12 73 7Pr1XLaXOs4Sb12 93 7.1LatticeConstant ................................ 93 7.2DCMagneticSusceptibility .......................... 94 7.3ZeroFieldSpecicHeat ............................ 95 7.3.1SpecicHeatofPrOs4Sb12:SampleDependence ........... 95 7.3.2ZeroFieldSpecicHeatofPr1xLaxOs4Sb12 96 7.3.2.1EvolutionofTcwiththeLaDoping ............. 97 7.3.2.2TheDiscontinuityinC=TatTc 98 7.3.2.3TheSchottkyAnomaly .................... 99 7.4SpecicHeatinLargeFields .......................... 101 7.5MagnetoresistanceofPr1xLaxOs4Sb12 103 7.6UpperCriticalFieldHc2 107 7.6.1ACSusceptibility ............................ 107 7.6.2DeterminationofHc2(T)bySpecicHeatMeasurementsinSmallMagneticFields ............................. 108 8CONCLUSION .................................... 136 REFERENCES ....................................... 139 BIOGRAPHICALSKETCH ................................ 145 6

PAGE 7

Table page 2-1TherelevantstatesforthequadrupolarKondoeect. ............... 23 3-1Thevaluesreportedbydierentgroups,extractedfromtsofspecicheatbelowTc. ....................................... 38 3-2Thevaluesreportedbydierentgroupsfromothermeasurementsthanspecicheat. .......................................... 38 7

PAGE 8

Figure page 2-1CubicpointgroupsymmetryTh. .......................... 27 2-2Lea,Leask,andWol0srepresentationofCEFforJ=4(Leaetal.,1962). .... 28 2-3RepresentationoftheU4+ionsincubicsymmetryundergoingquadrupolarKondoeect. ......................................... 28 2-4MappingofthequadrupolarKondoHamiltonianontothetwo-channelKondomodel. ......................................... 29 2-5S,C,C=T,andversusT=TKofthequadrupolarKondomodel(SacramentoandSchlotmann,1991). ............................... 29 3-1CrystalstructureofPrOs4Sb12. ........................... 41 3-2Fitsof(T)toeither3or1CEFgroundstate,andCttedbyatwo-levelSchottkyanomaly(Baueretal.,2002). ....................... 42 3-3Fitsof(T)toeither3or1CEFgroundstatemodel,calculatedS(T)inboth3and1CEFgroundstatemodels(Tayamaetal.,2003),andthemeasuredS(T)(Aokietal.,2002). ............................... 43 3-4(T),(T)andC(T)ofPrOs4Sb12(Baueretal.,2002). ............. 44 3-5FermisurfaceofPrOs4Sb12(Sugawaraetal.,2002) ................ 45 3-6H-TphasediagramofPrOs4Sb12bydM(T)=dTanddM(H)=dHmeasurements(Tayamaetal.,2003) ........................ 46 3-7C(T)ofPrOs4Sb12(Vollmeretal.,2003;Meassonetal.,2004)andtherealpartoftheacsusceptibility(Meassonetal.,2004)presentingdoubleSCtransition. 46 3-8ThetwosuperconductingphasesofPrOs4Sb12:phaseAandphaseB(Izawaetal.,2003).TheplotoftheSCgapfunctionwithnodesforbothphases(Makietal.,2003). ...................................... 47 3-9TwoSCtransitionsin(T)ofPrOs4Sb12(Oeschleretal.,2003). ......... 47 3-10Tdependenceoftherate1/T1atthe2Qtransitionof123SbforPrOs4Sb12andLaOs4Sb12(Kotegawaetal.,2003). ......................... 48 3-11TunnelingconductancebetweenPrOs4Sb12andanAutip(Suderowetal.,2004).Thegapiswelldevelopedwithnolow-energyexcitations,signofnonodesintheFermisurfacegap. ................................ 48 4-1PictureofPrOs4Sb12largecrystal(about50mg). ................. 60 8

PAGE 9

.................................. 60 4-3Schematicviewofthe3HecryostatusedinthemeasurementsperformedatUniversityofFlorida. ................................. 61 4-4SchematicviewofthecalorimeterusedintheSuperconductingMagnet1(SCM1),NationalHighMagneticFieldLaboratory. ................... 62 4-5Thesample-platform/Cu-ringassembly. ....................... 63 4-6SpecicheatCmeasurementprocessusingtherelaxationtimemethod. ..... 64 5-1(T)ofPrOs4Sb12.Thehightemperatureeectivemomentis3.65B,veryclosetotheonecorrespondingtofreePr3+,whichis3.58B. .............. 66 5-2(T)ofthenon-fequivalentLaOs4Sb12. ...................... 66 6-1CofPrOs4Sb12ineldsupto8Tfor~H//(100)(upperpanel),andH-Tphasediagramineldsupto8Tfor~H//(100)(lowerpanel)(Aokietal.,2002). ... 78 6-2CofPrOs4Sb12in10and12TinthevicinityofFIOPtransitionfor~H//(100). 79 6-3CofPrOs4Sb12inmagneticelds13,13.5,and14T,for~H//(100). ...... 80 6-4CofPrOs4Sb12in16,20,and32T,for~H//(100). ................ 81 6-5H-TphasediagramofPrOs4Sb12for~H//(100)(H>8T). ............ 82 6-6ZeemaneectcalculationsforPrOs4Sb12inthe1CEFgroundstatescenario. 83 6-7ZeemaneectforPrOs4Sb12inthe3CEFgroundstatescenario. ........ 84 6-8CofPrOs4Sb12for~H//(110). ............................ 85 6-9CofPrOs4Sb12inH=12T,for~H//(100)(upperpanel),and~H//(110)(lowerpanel). ......................................... 86 6-10H-TphasediagramofPrOs4Sb12for~H//(110)(H>8T). ............ 87 6-11versusT2,andversusTforPrOs4Sb12. ..................... 87 6-12(T)ofPrOs4Sb12in3,10,15,16,17,and18T,between20mKandabout0.9K. 88 6-13versusT2ofPrOs4Sb12for3.5,5.5,7,10,and13T. ............... 89 6-14a(=0+aTn)versusHforPrOs4Sb12eldsupto18T(upperpanel).Theresidualresistivity0(H)(lowerpanel). ........................... 90 6-15A(=0+AT2)versusH. .............................. 91 9

PAGE 10

...................................... 92 7-1X-raydiractionpatternsofPr1xLaxOs4Sb12versusLacontentxforx=0,0.1,0.2,0.4,and1. .................................... 113 7-2LatticeconstantaofPr1xLaxOs4Sb12versusLacontentx. ........... 114 7-3(T)ofPr1xLaxOs4Sb12normalizedtoPrmolebetween1.8and10K,measuredin0.5T. ........................................ 114 7-4(T)ofPr0:33La0:67OsSb12versusT.TheCurie-Weisstathightemperature(T>150K)giveseff=3.62B/Prmole. ...................... 115 7-5C=TversusTforthreedierentPrOs4Sb12samplesfromdierentbatches. ... 116 7-6C=TversusT2aboveTcofLaOs4Sb12. ....................... 117 7-7C=TversusTnearTcforPr1xLaxOs4Sb12forx=0,0.05,0.1,and0.2. ..... 118 7-8C=TversusTnearTcofPr1xLaxOs4Sb12forx0.3 ............... 119 7-9TcversusxofPr1xLaxOs4Sb12. ........................... 120 7-10Total(C=T)atTcand0versusxofPr1xLaxOs4Sb12for0x1.0isat1.8KfromFig.7-3. ................................. 120 7-11C=TversusTofPr0:33La0:67Os4Sb12ttedby15Schottky. ......... 121 7-12C=TversusTofPr0:33La0:67Os4Sb12ttedby35Schottky. ......... 121 7-13C=TversusTofPr0:33La0:67Os4Sb12ttedbysinglet-singletSchottky. ...... 122 7-14Cforx=0(10T)and0.02(8and9.5T). ..................... 122 7-15f-electronspecicheatofPr0:9La0:1Os4Sb12inmagneticelds. .......... 123 7-16f-electronspecicheatofPr0:8La0:2Os4Sb12inmagneticelds. .......... 123 7-17f-electronspecicheatofPr0:4La0:6Os4Sb12inmagneticelds. .......... 124 7-18H-TphasediagramfromCmeasurementsforx=0,0.02,0.1,and0.2. ...... 124 7-19(H)ofPr0:95La0:05Os4Sb12atT=20mKfor~H//Iand~H?I(I//(001)). .... 125 7-20(H)ofPr0:95La0:05Os4Sb12for~H?I//(001)atT=20and300mK. ....... 125 7-21(H)ofPr0:95La0:05Os4Sb12for~H?I//(001)atT=20,310,and660mK. .... 126 7-22versusT2ofPr0:7La0:3Os4Sb12in0and0.5T. .................. 127 7-23versusT2ofPr0:7La0:3Os4Sb12in9and13T. .................. 128 10

PAGE 11

..................................... 129 7-25(H)ofPr0:7La0:3Os4Sb12when~H//I//(001)at20,310,660,and1100mK. .. 129 7-26(H)ofPr0:33La0:67Os4Sb12at0.35K. ....................... 130 7-27ACsusceptibilityversusT=TcofPr1xLaxOs4Sb12,forx=0,0.05,0.4,0.8,and1. 131 7-28C=TversusTnearTcfortwoPrOs4Sb12samplesfromdierentbatchesinlowmagneticelds. .................................... 132 7-29C=TversusT,nearTc,ofPr0:95La0:05Os4Sb12inlowmagneticelds. ....... 133 7-30C=TversusT,nearTc,ofPr0:9La0:1Os4Sb12insmallmagneticelds. ...... 133 7-31C=TversusT,nearTc,ofPr0:7La0:3Os4Sb12inmagneticelds. .......... 134 7-32dHc2=dTversusx. ................................. 134 7-33p ............................... 135 11

PAGE 12

PrOs4Sb12istherstdiscoveredPr-basedheavyfermionmetalandsuperconductor.Ourhighmagneticeldspecicheatmeasurementsprovidedclearevidenceforthenon-magneticsingletcrystallineelectriceld(CEF)groundstate.ThisCEFgroundstateprecludestheconventionalKondoeectastheoriginoftheheavyfermionbehavior.ThesuperconductivityinPrOs4Sb12isunconventional,asinferredfromthedoublesuperconductingtransitioninthespecicheat.Pr1xLaxOs4Sb12(0x1)crystalsweresynthesizedandinvestigatedinordertoprovideadditionalevidencesforapostulatedCEFconguration,todiscriminatebetweendierentconductionelectronmassenhancement(m)mechanismsproposed,andtoprovideinsightintothenatureofthesuperconductivity.Lanthanumdopinginducesanomalouslysmallincreaseofthelatticeconstant.ThespecicheatresultsinhighmagneticeldsindicatedthatCEFschemeisunalteredbetweenx=0andatleast0.2,followedbyanabrupt(butsmall)changesomewherebetweenx=0.2and0.4.MagnetoresistancemeasurementsonLa-dopedsampleswereconsistentwithasingletCEFgroundstateofPr.InvestigationofthespecicheatdiscontinuityatTcandoftheuppercriticaleldslopeatTcindicatedthattheelectroniceectivemass,m,isstronglyreducedwithx,betweenx=0andxcr0.2{0.3,followedbyaweakdependenceonxforx>xcr.Therefore,wehavepostulatedthatsingle-impuritytypemodelscannotaccountfortheheavyfermionbehaviorofPrOs4Sb12.Investigationofthemagneticphasediagramandmagnetoresistanceprovidedstrongcorrelationsbetween 12

PAGE 13

13

PAGE 14

Intherareearth(Ce,Yb)-andactinide(U,Np)-basedalloystheelectronicstateshaveanenergyordersofmagnitudesmallerthaninordinarymetals,andsince(k)=~2k2=2m,theeectivemassmisordersofmagnitudelargerthanthefree-electronvalue,hencethetermheavyfermion.Thereareseveralexcellentexperimentalandtheoreticalreviews[ 1 { 5 ]onheavyfermions.OnehallmarkoftheheavyfermioncharacteristhelargeSommerfeldcoecientofthespecicheat.ThespecicheatofmetalsinthenormalstateatlowtemperatureisapproximatedbyC=T+T3,whereTistheelectronicspecicheatandT3isthelattice(Debye)contribution.Foranormalmetalisoforderof1mJ/K2mol,andforheavyfermionisfromseveralhundredtoseveralthousandmJ/K2mol.ThemagneticsusceptibilityathightemperaturesfollowstheCurie-Weissform=C/(T+CW),whereCisaconstant,andCWistheCurie-Weisstemperature.Atlowtemperatures(0)rangesfrom10to100memu/mol.Inthemajorityofheavyfermionmetals,theelectricalresistivityatverylowtemperatureshasaT2dependence:=0+AT2,where0istheresidualresistivityandAisontheorderoftensofcm/K2,muchlargerthanthatofnormalmetals. Thereareabout20heavyfermionsystemsthataresuperconductorsandalmostallofthemareCe-orU-based(thereisonePu-basedheavyfermionsuperconductor:PuCoGa5[ 6 ]). ThelledskutteruditePrOs4Sb12istherstdiscoveredPr-basedheavyfermioncompoundthatisasuperconductor[ 7 ]. Intheconventionalheavyfermions,theonlymicroscopictheoriessomewhatsuccessfulinaccountingfortheeectivemassenhancement(m)asmeasuredbythespecicheataretheS=1/2andS=3/2Kondomodels.ThesemodelswereinitiallyproposedforCe-basedsystems,whoseeectivedegeneraciesoff-electronsincrystallineelectriceldsareeither2or4.TheKondoeectinthesesystemsisanomalousbecauseofstrongspin-orbitcoupling.ThereisonefelectronperCeatomandaccordingtoHund'srules 14

PAGE 15

8 9 ]aremoreconsistentwiththef2conguration,allowingforasimilarCEFschemeasthatforPr.Therefore,theinvestigationofPrOs4Sb12withPrhaving2f-electronsmightberelevantandhelptotheunderstandingofthelargeclassofU-basedheavyfermions,sinceCEFcongurationsareusuallyknownforPr.Thenon-magneticcrystallineelectriceldgroundstate(thoughtaseithersingletordoublet[ 7 ])excludestheconventionalKondoeectastheoriginoftheheavy-fermionbehaviorinPrOs4Sb12,whichisconsideredtobethesourceofheavyfermionbehaviorinCe-andU-basedmetals.ThesuperconductivityinPrOs4Sb12isunconventional,butdierentfromthatinCe-andU-basedmaterials.Marksoftheunconventionalityofsuperconductivitycanbeinferredfromthedoublesuperconductingtransitionandpowerlowdependenceofthespecicheatbelowthetransition. Themaingoalsofthisworkare:tosettlethecrystallineelectriceldgroundstateinPrOs4Sb12, 15

PAGE 16

16

PAGE 17

whereqjisthechargeatthejthneighboringion,at~Rj.Ifthemagneticionhaschargeqiat~ri,thenthecrystallineelectriceldHamiltonianHCEFis ThesumPiistakenoverelectronsinunlledshells[ 10 ]. TheCEFpotentialcanbeevaluatedintermsofCartesiancoordinatesorintermsofsphericalharmonics.Hutchings[ 10 ]evaluatedthepotential(2{1)forthesimplest3arrangementsofchargesgivingacubiccrystallineelectriceld.Thethreecasesanalyzedwerewhenthechargesareplacedatthecornersofanoctahedron(sixfoldcoordination),atthecornersofacube(eightfoldcoordination),andatthecornersofatetrahedron(fourfoldcoordination).InCartesiancoordinatesthepotential(2{1)canbewrittenas[ 10 ] 5r4]+D6[(x6+y6+z6)+15 4(x2y4+x2z4+y2x4+y2z4+z2x4+z2y4)15 14r6]; wheredisthedistanceofthepointchargeqfromtheoriginineach3cases.C4andD6are70q/(9d5)and224q/(9d7)fortheeightfoldcoordination,+35q/(4d5)and 17

PAGE 18

Inthesphericalcoordinatesthesamepotentialiswritten[ 10 ]as 14[Y44(;)+Y44(;)]g+D06fY06(;)r 2[Y46(;)+Y46(;)]g; whereD04andD06are56qp Thereare2generalrulesthatcantellusthenumberofnonzerotermsintheCFpotential.Ifthereisacenterofinversionattheionsitetherewillbenoodd-nterms.Secondly,ifthezaxisisnotanm-foldaxissymmetry,thepotentialwillcontainVmn[ 10 ]. However,calculatingthepotentialtermsinCartesiancoordinatesandeveninsphericalcoordinatesistedious.AmoreconvenientmethodisthesocalledoperatorequivalentorStevens0operatortechnique[ 11 12 ].TheHamiltonian(2{2)isofformHCEF=PijejV(xi;yi;zi).Iff(x;y;z)isaCartesianfunction,inordertondtheequivalentoperatortosuchtermsasPif(xi,yi,zi),thecoordinatesx,y,andzarereplacedbyangularmomentumoperatorsJx,Jy,andJzrespectively,takingintoaccountthenon-commutativityofJ0is.Thisisdonebyreplacingproductsofx,y,andzbycombinationsofJ0isdividedbythetotalnumberofcombinations.Asanexamplewecanconsider whereJ=JxiJy. 18

PAGE 19

5r4]+D6[(x6+y6+z6)+15 4(x2y4+x2z4+y2x4+y2z4+z2x4+z2y4)15 14r6]: Usingtheequivalentoperatorrepresentation,theHamiltonianwillbe[ 10 ] or whereB04andB06are+7jejqJhr4i/(18d5)andjejqJhr6i/(9d7)foreightfoldcoordination,7jejqJhr4i/(16d5)and3jejqJhr6i/(64d7)forsixfoldcoordination,and+7jejqJhr4i/(30d5)andjejqJhr6i/(18d7)forfourfoldcoordinationrespectively.Also,hr4iandhr6iarethemeanfourthandsixthpoweroftheradiiofthemagneticelectrons,andthemultiplicityfactorsJ,J,andJareforPr3+(f2)2213/(325112),22/(325112),and2217/(345711213)respectively[ 10 ].Also, 19

PAGE 20

13 ].TheHamiltonianiswrittenas InordertocoverallpossiblevalueoftheratiobetweenthefourthandsixthdegreetermsareintroducedthescalefactorWandtheparameterx,proportionaltotheratioofthetwoterms where1
PAGE 21

15 ] 1:p 12(j+4i+j4i)+p 6j0i(2{19) 23:r 24(j+4i+j4i)r 24j0ir 2(j+2i+j2i) (2{20) (1)4:a1j4ia2j2i+a2j+2i+a1j+4ib1j3i+b2j1i+b3j1i+b4j3i (2)4:a2j4ia1j2i+a1j+2ia2j+4ib2j3ib1j1ib4j1i+b3j3i Ify=0,theeigenstatesarethoseforOhsymmetry[ 13 ] 1:p 12(j+4i+j4i)+p 6j0i(2{23) 3:r 24(j+4i+j4i)r 24j0ip 2(j+2i+j2i) (2{24) 4:r 8j3ir 8j1ir 2(j+4ij4i) (2{25) 5:r 8j3ir 8j1ir 2(j+2ij2i) (2{26) 21

PAGE 22

Theeigenfunctionsandeigenvaluesof1(Th)and23(Th)arethesameasthoseof1(Oh)and3(Oh),thereforearenotaectedbyOt6fromtheHamiltonian.Wheny=0,(1)4(Th)hasthesameeigenfunctionsandeigenvaluesas4(Oh),and(2)4asthosefor5(Oh).Wheny6=0,4and5mixresultingintwo(1;2)(Th)[ 15 ].Therefore,theeigenfunctionsandeigenvaluesofCEFforThandOharedierent.TheOt6terminHamiltonianaectsomeeigenfunctionsandeigenvalues,resultinginachangeofthetransitionprobabilitiesofneutronscatteringinPr3+. 16 17 ].Barnes[ 18 ]foundthatCu2+ionsinthecupratesuperconductorscouldleadtosuchaKondoeectaswell.Later,newevidencebelievedtobehallmarksofaquadrupolarKondoeecthasbeenfoundinthealloysY1xUxPd3[ 19 { 22 ]forx=0.1and0.2. InUBe13,thetotalangularmomentumofU4+(5f2conguration)isJ=4.Thisleads[ 13 ]toa3CEFgroundstateforabouthalfthecrystaleldparameterrange(Fig.2-2).Thef2congurationisexpectedalsoforPr3+inPrOs4Sb12,and,accordingtoCEFcalculationsofLea,Leask,andWolf[ 13 ],a3doubletCEFgroundstateisveryprobable(Fig.2-2).Therefore,theheavyfermionbehaviorinPrOs4Sb12couldbeinprincipleduetoaQKeect.Also,thephysicalpropertiesofUBe13(andU1xThxBe13)arehighly 22

PAGE 23

TherelevantstatesforthequadrupolarKondoeectforU4+.Thelasttwocolumnsaretheprojectionsofthemagneticandquadrupolarmomentsrespectively(ReprintedwithpermissionfromCoxandZavadowski[ 23 ]). Cong. StateJEigenstatehJzih3J2zJ(J+1)i 24[j4ij4i]q 12j0i0+8 2[j2i+j2i]08 2q 6j5 2iq 6j3 2i+5 60 2q 6j5 2iq 6j3 2i5 60 2q 6j5 2i+q 6j3 2i+11 6+8 2q 6j5 2i+q 6j3 2i11 6+8 2j1 2i+1 28 2j1 2i1 28 reminiscentofthoseofPrOs4Sb12.Thus,sincethediscoveryoftheHFstateinPrOs4Sb12itsnormalpropertieshavebeenassociatedwiththeQKeect. ThestatesinvolvedinthequadrupolarKondoeectforU4+aregiveninTable2-1.Thedoublydegenerategroundstatecanbetreatedasatwo-levelsystem(amanifoldwithapseudo-spinof1 2).Theprojectedvalueoftheelectricquadrupolemomentontothe3basisisjQzzj=j3J2zJ(J+1)j=8andtheprojectedvalueofthemagneticdipolemomentiszero,i.e.jJzj=0(Table2-1).Therefore,thecouplingisbetweentheelectricquadrupolemomentandtheconductionelectrons. TheAndersonmodelfortherelevantstatesofthequadrupolarKondoeect(sinceitconsidersonly3,7,and8)iscalledthe3-7-8model.Figure2-3showsaschematicrepresentationoftheAndersonmodelrelevantforU4+ionsinthecubicsymmetry.Thegroundstate3(J=4,4f2)andrstexcited7(J=5/2,5f1)mixonlyviatheconductionpartialwaves8(J=5/2,c1).Thetransitionf1!f2isdonebyremovingaconductionelectronandthetransitionf2!f1isdonebyemittingaconductionelectron.Itcan 23

PAGE 24

23 ](or,inthegrouptheoryframework,37=8). Applyingacanonicaltransformation(SchrieerandWol[ 24 ])tothe3-7-8model,thehybridizationtermcanbeeliminated.Also,thetransformationyieldstoaneectiveexchangeinteractionbetweenpseudospin-1 2andelectricquadrupolemomentsoftheform where3isapseudospin-1 2matrixforthe3quadrupole,8(8)arethepseudospinsformedfromthe8+2,8+1(82,81)partialwaves(Table2-1).TheexchangeintegralJexchangeisproportionalto=fN(0)andisnegative. TheHamiltonianhasatwo-channelKondoform;twodegeneratespeciesofconductionelectronscouplewithidenticalexchangeintegralsJexchangetothelocal3=1 2object.Thechannelindicesarethemagneticindicesofthelocalconductionpartialwavestates.Figure2-4showsschematicallythemappingofthequadrupolarKondotothetwo-channelKondomodel.Thetwo-channelquadrupolarformoftheHamiltoniantellusthattheconductionelectronorbitalmotioncanscreentheU4+quadrupolemomentequallywellformagneticspin-upandmagneticspin-downelectrons. 25 { 27 ].Thesusceptibility(Fig.2-5,lowerpanel)divergeslogarithmicalatT=0,=(eTH)1ln(H=TH),whereTH=(=e)TK[ 28 29 ].Here,eisthebaseofln,i.e.2.71...InthequadrupolarKondomodelthiscorrespondstoadivergentquadrupolarsusceptibility.ForT!0,thefreeenergyinzeroeldisF=1 2Tln2.Therefore,thezero-temperaturezero-eldentropyisequalto1 2ln2[ 25 ].Thenon-zeroentropyatT!0isconsistentwiththedivergenceinsusceptibilityandarguesinfavorofanon-singletgroundstate(asingletisthegroundstateforthestandardKondomodel).Asexpected,theentropyincreasesmonotonicallywithtemperatureandreachesasymptoticallytheln2 24

PAGE 25

2spin)athighT.Also,theT=0entropyincreaseswiththeeld.SincetheS(T=0)decreaseswithHthespecicheatincreaseswithHatintermediateTresultinginlargevaluesof,commonforheavyfermionsystems.AthighTthepseudo-spinisfree,thereforeS=ln2.TheentropychangeS(H)=S(T=1;H)S(T=0;H)increaseswithHfrom1 2ln2toln2forlargeH.IntheC=TplotstheKondopeakscanbeseen. Theinitialmeasurementsofspecicheat[ 16 ]werenotconclusiveforaquadrupolarKondoeectinUBe13.Also,morerecentmeasurementsofnonlinearsusceptibility[ 30 ]areinconsistentwiththequadrupolar(5f2)groundstateoftheuraniumion,indicatingthatthelow-lyingmagneticexcitationsofUBe13arepredominantlydipolarincharacter. 7 ].Laterexperiments[ 31 { 33 ]establishedthecrystallineelectriceld(CEF)groundstateofthePr3+ioninthecubicsymmetryenvironmentofPrOs4Sb12(Thpointgroupsymmetry)asthenon-magneticsinglet1.TheconsequenceofthisisthattheoriginalformulationofthequadrupolarKondoeectcannotbeappliedtotheconductionelectronmassenhancementinPrOs4Sb12. 1isnearlydegeneratewiththe(2)4triplet.Though1itselfdoesn0tcarryanydegreesoffreedom,thepseudo-quadrupletconstitutedby1and(2)4isspeculatedtohavemagneticandquadrupolardegreesoffreedom[ 34 ],andthereforeamagneticorquadrupolarKondoeectisinvokedtoexplaintheenhancementoftheeectivemassofthequasi-particles. Ontheotherhand,themodeldoesnotseemtoberelevantsincethepredictedpropertiesofthequadrupolarKondoeectareindisagreementwiththemeasurements.Butthisisasingle-ionmodel.Possibly,intersiteeectsareresponsibleforthedisagreements.Thereisnolatticequadrupolarmodel. 25

PAGE 26

35 ]. Goremychkinetal.[ 32 ]proposedthatthemassenhancementinPrOs4Sb12canbeexplainedbyabalancebetweentwotypesofinteractions,magneticdipolarandquadrupolarbetweenconductionandthefelectronsofPr.ThetheoryofFuldeandJensen[ 36 ]ofconductionelectronmassenhancementascribesthistotheinelasticscatteringbycrystaleldtransitionsinasingletground-statesystem.Themassenhancementoftheconductionelectronsareduetotheirinteractionwiththemagneticexcitations. TherelevantHamiltoniandescribingtheinteractionbetweentheconductionelectronsandtherare-earthlocalizedmomentsis[ 36 ] whereIsfistheexchangeintegral,gListheLandefactor,~Jnisthetotalangularmomentumofarare-earthionatsite~Rn,and~arePaulimatrices. Themassenhancementduetotheinelastictransitionatenergybetweentwolevels,jiiandjji,is wheregJistheLandefactor,Isfistheexchangeintegralcouplingtheconductingelectronstothef-electrons,N(0)istheconductionelectrondensityofstatesattheFermilevel,andhijJjjiisthemagneticdipolematrixelementcalculatedusingthederivedcrystaleldparameters.Thisformulashowsthatforasmallexcitationenergyleadstoalargeenhancementinm. 37 ],Millis[ 38 ], 26

PAGE 27

39 ](acompletereviewisgivenbyStewart[ 40 41 ]).Allthesemodelsexhibitdivergenceofthelowtemperaturespecicheat. Byanalogy,inPrOs4Sb12,thequadrupoleuctuationsofPrionsarebelievedtoplayanimportantroleintheHF-SCproperties.Therefore,anothermodelproposed(acollective-typemodel)forthemassenhancementmechanismareduetotheuctuationsoftheantiferroquadrupolarorderparameterduetotheproximitytotheAFQorderedphase. PrOs4Sb12exhibitsanantiferroquadrupolarorderedphaseineldsbetweenabout4.5and14T.Forelds5{13TthetwolowestCEFlevelsaresucientlyclosetoformapseudo-doubletwithquadrupolarandmagneticdegreesoffreedom,resultinginalongrangeorder. Thereisnotheory(tothismoment)thatdescribesthemassenhancementduetotheuctuationsofthequadrupolarorderparameter.OurmagnetoresistivitydataofPrOs4Sb12andLaalloyspresentedinChapters6and7seemtosupportthismassenhancementmechanism. Figure2-1. RotationalsymmetryTh.Intheleft(a),thesmallboldbluesegmentisassimilatewiththedistancebetweentwoantimonyatomsbelongingtothesameicosahedra.Arotationwithrespectto(100)anda2 42 ]). 27

PAGE 28

Lea,Leask,andWol0srepresentationofCEFforJ=4(RedrawnwithpermissionfromLeaetal.[ 13 ]). Figure2-3. RepresentationoftheU4+ionsincubicsymmetryundergoingquadrupolarKondoeect.Themodelinvolvesadoubletgroundstateineachofthetwoelectroniclowest-lyingcongurations:f2havingthequadrupolarornon-Kramers3doublet,andf1congurationhavingthemagneticorKramers7doublet.Theconductionelectronsmixthetwocongurationsthroughahybridizationprocess.The8conductionstatecouplesthesetwodoublets(RedrawnwithpermissionfromCoxandZavadowski[ 23 ]). 28

PAGE 29

MappingofthequadrupolarKondoHamiltonianontothetwo-channelKondomodel.a)Thestandardtwo-channelKondomodelinspinspace:twoconductionelectronssc+andsccoupleantiparalleltotheimpurityspinSI.b)InthequadrupolarKondocase,thespinisduebythequadrupolarororbitaldeformations.Thetwochannelscomefromtherealmagneticspinoftheconductionelectrons.TheorbitalmotionoftheelectronsproducesthescreeningoftheU4+orbitaluctuations(RedrawnwithpermissionfromCoxandZavadowski[ 23 ]). Figure2-5. 27 ]). 29

PAGE 30

43 ](a=9.30311A[ 44 ]aftermorerecentmeasurements),spacegroupIm 45 ].LaOs4Sb12isthenon-fequivalentofPrOs4Sb12withasimilarcrystalstructure.AlltheexoticphenomenaofPrOs4Sb12arethoughttobeassociatedwithitsuniquecrystalstructure.Inparticular,thelargecoordinationnumberofPrionssurroundedby12Sband8Osionsleadstostronghybridizationbetweenthe4fandconductionelectrons[ 46 ].Thisstronghybridizationresultsinarichvarietyofstronglycorrelatedelectrongroundstatesandphenomena. 47 ].Theconsequenceisareductionofthethermalconductivity.Thelledskutteruditeswiththecagearefavorableforathermoelectricdevicepossessingahighcoecientofmerit[ 48 ]. TheamplitudeofthisvibrationofthePrioninPrOs4Sb12isabout8timesbiggerthantheamplitudeofOs.EXAFSdata[ 49 ]supportstheideaofarattlingPrllerion(basedonthelowEinsteintemperatureE75K)withinafairlysticageinthismaterial.Besidesthedynamicmovement,astaticdisplacementwasdetectedinwhich 30

PAGE 31

49 ].Gotoetal.[ 50 ],basedonatheoryofCoxetal.[ 23 ],suggestedthatthetunneleectbetweenthetwopositionsofthePrionscouldbelinkedtotheappearanceofthesuperconductivity. 7 ],oreff=3.5BasreportedbyTayamaetal.[ 51 ],andaCurie-WeisstemperatureCW=16K[ 7 ].TheeectivemomentfoundissomewhatlowerthanthemomentofafreeionPr3+whichhaseff=3.58B[ 52 ]. X-ray-absorptionne-structure(XAFS)measurements[ 49 ]carriedoutatthePrLIIIandOsLIIIedgesonPrOs4Sb12suggestthatthePrvalenceisverycloseto3+.EachPrionhastwoelectronsonthefshell(4f2electronicstructure). 13 ]intermsoftheratioofthefourthandsixthordertermsofangularmomentumoperatoroftheCEFpotential,x,andanoverallenergyscalefactorW.Formorethantwodecades,thesymmetrywasthoughtasOh,insteadofTh. Baueretal.[ 7 ]ttedthemagneticsusceptibilitydata(seeFig.3-2)byaCEFmodelinwhichthegroundstatewaschosentobeeitherthenon-magnetic1singlet(W>0)orthenon-magnetic3doublet(W<0).Thepeakpresentinthe(T)datawasthoughttobeproducedwhentherstexcitedstateisatriplet5withaenergy<100Kabove 31

PAGE 32

53 ]andBaueretal.[ 54 ] TheseauthorsusetheconventionalcubiccrystaleldmodelwhichisapplicabletotheO,TdandOhsymmetries.IntheThsymmetry,thenon-Kramersdoublet3correspondstothedegenerate2and3singletstates(denotedas23)and4and5statescoincidewith(1)4and(2)4tripletstates,respectively,whenlasttermiszerointhecrystaleldHamiltonian(2-17).Thesingletstate1isthesameforbothcases. Thelasttermofequation(2-17)isuniquetotheThsymmetryofthismaterialcomingfromtheatomiccongurationofSbionsinthecrystal[ 15 ]andisabsentintheconventionalcubiccrystaleldHamiltonianthatMapleetal.[ 53 ]andBaueretal.[ 54 ]used.TheomittingofthelasttermintheHamiltonian(seeequation2-17)hasimplicationsintheinterpretationoftheinelasticneutronscatteringdata. Theabovementionedtreproducestheoverallshapeofthelowtemperaturepeak,andalsothevalueofthevanVleckparamagneticsusceptibilitywithaneectivemomentcloseto,butsomewhatlowerthanthat,ofthefreePr3+ion.Baueretal.[ 7 ]ttedCassumingadegeneratespectrum Specicheatdatawastted[ 7 ]byasystemwithtwolevelsofequaldegeneracysplitbyanenergy=6.6K(ithasbeenassumedthatthedegeneracyofanylevelisliftedbyCEFwhenthelocalsitesymmetryofthePr3+ionsisnotcubicasaresultofsomekindoflocaldistortion). Theentropyinthe3-5casewasfoundtobeS35=Rln27.6J/(molK)[ 7 ].ThetotalentropyofthebroadpeakjustabovethetransitionisS=R(C(T)=T)dT10.3J/(molK).TheclosenessinvaluesmadeBaueretal.[ 7 ]tofavorthe3groundstatescenario. 32

PAGE 33

53 ]consideringOhsymmetrysuggestthat3istheCEFgroundstateinPrOs4Sb12.Theresistivitydatameasurementswerealsointerpretedintheframeworkofa3CEFgroundstate[ 55 ]. Incontrast,Tayamaetal.[ 51 ]obtainedasomewhatbettertofthemagneticsusceptibility(T)databya1CEFgroundstatemodel(Fig.3-3(a)).Also,thetheoreticalcurvesofS(T)basedon1groundstatemodelshowincreaseofentropywithelds(lowerpanelofFig.3-3(b)).Thistrendisconrmedbymagneticeldspecicheatmeasurements(Fig.3-3(c))byAokietal.[ 56 ]. Therefore,zeroorsmallmagneticeldsdataarecontradictory,moreexperimentsaretobedoneinordertoestablishthetrueCEFgroundstateinPrOs4Sb12. 3.2.1SpecicHeat 43 ],andthenbyBraunetal.[ 57 ].Itwasin2002whenBaueretal.[ 7 ]discoveredsuperconductivityinPrOs4Sb12.Sincethediscontinuityinspecicheatisoftheorderof,thislargevaluediscontinuity((C=T)jTc=1:85K500mJ/K2mol[ 7 ])impliesthepresenceofheavyfermionsbothinthenormalandsuperconductingstates. Thereisnoconsensusregardingtheprecisevalueof,butallthereportedvaluesimplyheavyfermionbehavior.Actually,thisisperhapsthestrongestevidenceforHFstatesinPrOs4Sb12.Consideringtherelation(C=Tc)=1.43theSommerfeldcoecientisfoundtobe350mJ/K2mol.Thephonon(lattice)contributiontothespecicheatCdatacanbedescribedbyT3thatisidentiedwithspecicheatofLaOs4Sb12withD=304K.isrelatedtoDby=(1944103)n=3D,wherenisthenumberofatomsintheformulaunit(e.g.,n=17inLaOs4Sb12). 44 ]comparativewiththebandsstructure(LDA+Umethod[ 58 ])arepresentedin 33

PAGE 34

44 ](whichleaks4felectrons).Thisindicatesthatthe4f2electronsinPrOs4Sb12arewelllocalized.ThesimilartopologyoftheFSforthetwocompoundsissupportedalsobysimilarangulardependenceofthedHvA.ThreeFermisurfacesheets,includingtwoclosed(practicallysphericalshaped)andonemulti-connected,wereidentiedinagreementwiththecalculations. TheeectivemassesmeasuredbydHvAarebetween2.4and7.6m0(m0isthefreeelectronmass).Thesevaluesarewellbelowtheonesreportedfromthespecicheatmeasurements.Theselowvalueshavebeenexplained[ 59 ]intheframeworkofthetwo-bandsuperconductivitymodelinwhichband2correspondstothelightbanddetectedbydHvAmeasurements.Band1isaheavybandhavingmostofthedensityofstates.Theheaviestquasiparticlesareseeninthermodynamicmeasurements(CorHc2)only.However,theapplicabilityofthetwo-bandmodeltoPrOs4Sb12isnotestablished.Furthermore,ourresultspresentedinsection7.6shedssomedoubtsintheinterpretation. 7 ].Thisimplies0116A,vF=1.65106cm/s,andm50m0.ThiscalculationassumesasphericalFermisurface. Theresistivitydatabetween8and40KrevealedaT2dependence0+AT2,withA=0.009cm/K2[ 7 ].TheAcoecientisabouttwoordersofmagnitudesmallerthanthevalueexpectedforaheavyfermioncompound.ConsideringtheKadowaki-Woodsuniversalrelation[ 60 ]betweenAand,A/2=1105cmmol2K2mJ2.Thevalue 34

PAGE 35

7 ],andthisisatypicalvaluefornormalmetalsandismuchsmallerthanofLaOs4Sb12. 7 ]asT!0.Thisisthehallmarkofanonmagneticgroundstate.Above150K,(T)ofPrOs4Sb12canbedescribedbyaCurie-Weisslaw.Thereisalargediscrepancybetweenthehightemperatureeectivemomentreportedbyvariousresearchgroups.TheeectivemomentaccordingtoBaueretal.[ 7 ]iseff=2.97B,andeff=3.5BisthevaluereportedbyTayamaetal.[ 51 ]ThefreeionPr3+hasahightemperatureeectivemomentof3.58B[ 52 ].TheCurie-WeisstemperatureisCW=15K[ 51 ]. Fromthediamagneticonset(inset(ii),Fig.3-4(a))itisfoundthatthetemperatureofthesuperconductingtransitionTcisequaltothevaluefoundfromthespecicheatmeasurements. 56 ]ineldsupto8Tandresistivity[ 55 ]inmagneticeldsuptoabout10Trevealedtheexistenceofaeldinducedorderedphase(FIOP)above4.5T.InthisChapteradiscussionofthenatureoftheFIOPwillbepresentedalongwiththespecicheatdatathatcompletesthemagneticphasediagram.Asimilarphasediagramhasbeenobtainedlaterbymagnetization[ 51 61 ](seeFig.3-6)andbythermalexpansionandmagnetostrictionmeasurements[ 62 ]. 35

PAGE 36

3.4.1.1TheDoubleTransition 7 ]showedasinglesuperconductingtransitionatTcof1.85K.Higherqualitymaterialsrevealedactuallytwosuperconductingtransitions(Vollmeretal.[ 63 ],Mapleetal.[ 53 ],Oeschleretal.[ 64 ]).InFigure3-7panels(a)and(b)areshownspecicheatofPrOs4Sb12presentingtwosuperconductingtransitions,Tc2=1.75KandTc1=1.85KbyVollmeretal.[ 63 ],andTc2=1.716KandTc1=1.887KbyMeassonetal.[ 59 ],respectively.TwosuperconductingtransitionsatthesametemperatureshavebeenreportedbyCichoreketal.[ 65 ]alongwithaspeculationforathirdsuperconductingtransitionat0.6KinferredfromHc1measurements.ItisbelievedthatinclusionsofthefreeOsinthesinglecrystalcannotberesponsiblefortheenhancementofHc1,thoughTcofpureOsis0.66K[ 66 ]basedonsensitiveX-rayandelectronmicroprobestudies[ 65 ]. Therearetwoclassesofexplanationsofthenature(intrinsicornot)ofthedoubletransition.Onearguesinfavoroftwodierentpartsofthesamplewithtwodierentsuperconductingphases,andthereforewithdierentTc's.Thus,thequalityofthesamplesiscrucial.Forinstanceithasbeenconsidered[ 59 ]thatdespitethesharpspecicheattransitions,thesamplesstillpresentspatialinhomogeneities.OnepossibilitywouldbeaninhomogeneouscoexistenceoftwoelectroniccongurationsofPr,4f1and4f2.Thehightemperaturemagneticsusceptibilitymeasurementsareinfavorof4f2,sincetheyhavefound[ 51 ]aneectivemomenteff=3.6B/Pr(theexpectedvaluefor4f1is2.54Bandfor4f2is3.58B). Anotherpossiblescenariothatispresentedinthisdissertationistheexistenceofinhomogeneitiesduetotheclosenessofthesystemtoalongrangeantiferro-quadrupolarorder:clusterswithashort-rangeorderwouldhavedierentsuperconductingparametersthantheremainingpartofthesample. 36

PAGE 37

59 ].Thenatureofthetwotransitionsisnotyetestablished.Thewidthofthetransitionasmeasuredbyspecicheatandac-susceptibilityisthesame,about0.2K. ThesuperconductinggapstructureinvestigatedusingthermaltransportmeasurementsinmagneticeldrotatedrelativetothecrystalaxesbyIzawaetal.[ 67 ]providesanotherevidencefortheunconventionalcharacterofsuperconductivityinPrOs4Sb12.Thechangeinthesymmetryofthesuperconductinggapfunctionthatoccursdeepinsidethesuperconductingstategivesaclearindicationofthepresenceoftwodistinctsuperconductingphaseswithtwofoldandfourfoldsymmetries(Fig.3-8).Thegapfunctionsinbothphaseshaveapointnodesingularitywhichisincontrasttothelinenodesingularityobservedinalmostallunconventionalsuperconductors.Thetwo-bandsuperconductivity(similartothatobservedinMgB2)isobservedinnewerthermalconductivitymeasurements[ 68 ]. Adoubletransitioncanbeseeninthethermalexpansion[ 64 ]experiment(Fig.3-9).Thetwotransitionsareatthesametemperaturesatwhichthespecicheatdiscontinuitiesoccur.UsingtheEhrenfestequation@Tc=@P=VmTc=C,whereVmisthemolarvolume,calculationsshowthatthesuperconductingtransitionsTc2isdecreasedtwotimesfasterunderpressurethanTc1.Thisisinfavorofintrinsicnatureofthetwosuperconductingtransitions. 37

PAGE 38

Thevaluesreportedbydierentgroups,extractedfromtsofspecicheatbelowTc(ReprintedwithpermissionfromGrubeetal.[ 70 ]). Specicheatdata Grubeetal.[ 70 ] 3.70.2 Vollmeretal.[ 63 ] 2.60:2(3) Fredericketal.[ 71 ] 3.10:2(1) Fredericketal.[ 71 ] 3.60:2(3) Table3-2. Thevaluesreportedbydierentgroupsfrommeasurementsotherthanspecicheat(ReprintedwithpermissionfromGrubeetal.[ 70 ]). Experiment GapFunction Tunnelingspectroscopy[ 72 ] 1.7 Nearlyisotropic 73 ] 2.1 Nearlyisotropic 74 ] 2.6 Pointnodes SbNQR[ 75 ] 2.7 Isotropic Inallreporteddatathespecic-heatmeasurementsexhibitarapiddecreaseofCbelowthesuperconductingtransition.Thispointstopronouncedstrong-couplingsuperconductivity. Thesocalled-model[ 69 ]assumesthatthesuperconductivepropertieswhicharemainlyinuencedbythesizeofthegapandthequasiparticle-stateoccupancycouldbeapproximatedbysimplyusingthetemperaturedependenceoftheweak-couplingBCSgap.ThesizeofthegapintheFermisurfaceisafreelyadjustableparameter=(0)/kBTc,where(0)isFermi-surfaceaveragedgapatT=0.Table3-1presentscomparativevaluesobtainedbydierentgroups.Ananalysisusingthe-modelresultsinanextremelylargegapratioof=(0)/kBTc=3.7andahugespecicheatjumpofC/(c)5[ 70 ]. AsummaryofthepublishedsuperconductivegapratiosandgapanisotropyofPrOs4Sb12fromothermeasurementsthanspecicheatarepresentedinTable3-2. Fredericketal.[ 71 ]succeededinmakingabettertforthespecicheatdataofPrOs4Sb12usingapower-lawfunctionbelowthesuperconductingtemperature.Thets, 38

PAGE 39

75 ]inzeroeldshowsaheavyfermionbehaviorandcontroversialconclusionsregardingthenatureofthesuperconductivityinPrOs4Sb12.IntheSCstate,1/T1showsneitheracoherencepeakjustbelowTcnoraT3-likepower-lawbehaviorobservedforanisotropicHFsuperconductorswiththeline-nodegap.Theabsenceofthecoherencepeakin1/T1supportstheideaofunconventionalsuperconductivityinPrOs4Sb12(Fig.3-10).Theisotropicenergygapwithitssize/kB=4.8KseemstoopenupacrossTcbelowT=2.3K.Theverylargeandisotropicenergygap2/kBTc5.2indicatesanewtypeofunconventionalstrong-couplingregime. 76 ]revealaspontaneousappearanceofstaticinternalmagneticeldsbelowthesuperconductingtransitiontemperature,providingunambiguousevidenceforthebreakingoftime-reversalsymmetryinthesuperconductingstate.Thiswillfavorthemultiplesuperconductingphasetransitionsobservedbyspecicheatandthermalconductivitystudiesandsupportthereforetheunconventionalityofsuperconductivity. MagneticpenetrationdepthdatainsinglecrystalsofPrOs4Sb12downto0.1K,withtheaceldappliedalongthea,b,andcdirectionswassuccessfullytted[ 74 ]bythe3HeA-phase-likegapwithmultidomains,eachhavingtwopointnodesalongacubeaxis,andparameter(0)/kBTc=2.6,suggestingthatPrOs4Sb12isastrong-couplingsuperconductorwithtwopointnodesontheFermisurface.Thesemeasurementsconrmedthetwosuperconductingtransitionsat1.75and1.85Kseeninothermeasurements. 39

PAGE 40

3.4.2.1NuclearMagneticResonance(SR) 75 ](Fig.3-10,fullsymbol),whichisthesignatureofaconventionaltypeofsuperconductivity. Figure3-10(opensymbols)alsoplotsthedatafortheconventionalsuperconductorLaOs4Sb12.Forans-wavecasethatisactuallyseenintheTdependenceof1/T1forLaOs4Sb12withTc0.75K,intheSCstate,1/T1showsthelargecoherencepeakjustbelowTc,followedbyanexponentialdependencewiththegapsizeof2/kBTc3:2atlowT.ThisisaclearevidencethatLaOs4Sb12istheconventionalweak-couplingBCSs-wavesuperconductor. 73 ]anexponentialtemperaturedependenceofthemagneticpenetrationdepth,indicativeofanisotropicornearlyisotropicenergygap,indicatingaconventionalsuperconductivitymechanism. Thisisnotseen,todate,inanyotherHFsuperconductorandisasignatureofisotropicpairingsymmetry(eithers-orp-wave,indistinguishablebythermodynamicorelectrodynamicmeasurements),possiblyrelatedtoanovelnonmagneticquadrupolarKondoHFmechanisminPrOs4Sb12.Also,theestimatedmagneticpenetrationdepth=3440(20)A[ 73 ]wasconsiderablyshorterthaninotherHFsuperconductors. 72 ]intheheavy-fermionsuperconductorPrOs4Sb12demonstratesthatthesuperconductinggapiswelldevelopedoveralargepartoftheFermisurface.Theconductancehasbeensuccessfullyttedbyas-wavesuperconductivity 40

PAGE 41

Figure3-1. CrystalstructureofPrOs4Sb12(ReprintedwithpermissionfromAokietal.[ 77 ]) 41

PAGE 42

(a)Fitsofthemagneticsusceptibility(T)ofPrOs4Sb12toCEFmodelwitheither3(solidline)or1(dashedline)groundstate.Thesamesymbolsareusedintheinset,whichshows(T)bellow30K.Intheinset,thesolidlinetsaturatesjustabove=0.06cm3/mol.(b)Cttedbyatwo-levelSchottkyanomaly(ReprintedwithpermissionfromBaueretal.[ 7 ]). 42

PAGE 43

(a)Fitsofthemagneticsusceptibility(T)ofPrOs4Sb12toCEFmodelwitheither3(dashedline)or1(dotedline)groundstate.Thesolidlanerepresentstheexperimentaldata(takenfromTayamaetal.[ 51 ]).(b)ThecalculatedentropyS(T)for~H//(100)inboth3and1CEFgroundstatemodels(takenfromTayamaetal.[ 51 ]).(c)ThemeasuredentropyS(T)for~H//(100)(ReprintedwithpermissionfromAokietal.[ 56 ]). 43

PAGE 44

(a)Resistivity(T)andsusceptibility(T)ofPrOs4Sb12(b)SpecicheatC(T)upto20K[ 7 ](ReprintedwithpermissionfromBaueretal.[ 7 ]). 44

PAGE 45

FermisurfaceofPrOs4Sb12(ReprintedwithpermissionfromSugawaraetal.[ 44 ]). 45

PAGE 46

51 ]).OpenandclosedsymbolsweredeterminedbythedM(T)=dTanddM(H)=dHdata,respectively.Rightpanel,thePrchargedistributionsinducedintheantiferroquadrupolarorderedphaseinmagneticeld(ReprintedwithpermissionfromMeasson[ 45 ]). Figure3-7. (a)C(T)ofPrOs4Sb12presentingdoublesuperconductingtransition(ReprintedwithpermissionfromVollmeretal.[ 63 ])(b)C(T)ofPrOs4Sb12presentingtwosuperconductingtransitions(ReprintedwithpermissionfromMeassonetal.[ 59 ])(c)TherealpartoftheacsusceptibilityofPrOs4Sb12presentingtwodistinctsuperconductingtransitions(ReprintedwithpermissionfromMeassonetal.[ 59 ]). 46

PAGE 47

ThetwosuperconductingphasesforPrOs4Sb12(ReprintedwithpermissionfromIzawaetal.[ 67 ]).ThegapfunctionhasafourfoldsymmetryinAphaseandtwofoldsymmetryinBphase.Right:TheplotofthegapfunctionwithnodesforAphaseandB-phase(ReprintedwithpermissionfromMakietal.[ 78 ]). Figure3-9. TwosuperconductingtransitionsinthethermalexpansioncoecientofPrOs4Sb12.Thetwotransitionsarevisibleforthesametemperaturesofthetwotransitionsinspecicheat(ReprintedwithpermissionfromOeschleretal.[ 64 ]). 47

PAGE 48

Temperaturedependenceoftherate1/T1atthe2Qtransitionof123SbforPrOs4Sb12(closedcircles)andLaOs4Sb12(opencircles)(ReprintedwithpermissionfromKotegawaetal.[ 75 ]). Figure3-11. TunnelingconductancebetweenPrOs4Sb12andanAutip.Thegapiswelldevelopedwithnolow-energyexcitations.ThelineingureisthepredictionfromconventionalisotropicBCSs-wavetheoryusing=270eVandT=0.19K(ReprintedwithpermissionfromSuderowetal.[ 72 ]). 48

PAGE 49

Thischapterdescribesthesamplesynthesis,characterizationandtheexperimentalproceduresused:dcandacsusceptibilities,resistivity,andspecicheatmeasurements.Abriefdescriptionoftheperformedmeasurementsisgiven. 4.1.1Synthesis 54 57 ].Sincetheuxisoneoftheconstituentelementsofthecompounds(i.e.Sb)themethodiscalledself-uxgrowth.High-puritystartingelements(PrandLafromAMESLaboratory,99.99%puritypowderOsfromColonial,Inc.,and99.999%puritySbingotfromAlfaAESAR)areusedintheproportionR:Os:Sb=1:4:20,whentherare-earthelementRisPrandLainvariousproportions.TheRalloysusedascomponentsintheuxgrowthweresynthesizedeventuallybymeltingitsconstituentelementsinanEdmund-BuhlerArcMelterunderahighpurityargonatmosphere.First,smallchunksofSbwereplacedinsideofaquartztube.AbovethatwereplacedtheOsandtheRcomponentsthatwerepre-meltedseparatelytoeliminateanytraceofoxidefromthesurfaceoftheelements.TheOspowderwaspressedinsmallpelletsandthenmelted.ThequartztubewassealedunderlowpressureAratmosphere(20mTorr)afterthetubeispumpedandushed3to5times.ThetubewiththemixturewasplacedinaLindberg51333programablefurnace(digitalcontrolled,Tmax=1200C)usingthefollowingheattreatmentsequence:temperaturerampingto980Cwitharateof200C/hfollowedbyT=980Cfor24h,thencoolingatarateof3C/hdownto650C.Thelaststepwasafastcoolinginthefurnacetoroomtemperatureata200C/hrate.Thesinglecrystalswerethenremovedfromtheantimonyuxexcessbyetchinginaquaregia(HCl:HNO3=1:1).Thecrystalswerecubicorrectangularupto50mginweight(upto3mminsize)dependingontheamountofthestartingelementsandthecoolingrate.Forinstance,using1gofOsandacooling 49

PAGE 50

Thepoly-crystallineRalloys(usedasoneofthestartingcomponentsinthesynthesisofthesinglecrystals)werepreparedbymeltingitsconstituentelementsinanEdmund-BuhlerArcMelterAMunderahalfatmospherehighpurityAr.Theapparatusconsistsofastainlesssteelvacuumchamberwhichsitstightonawatercooledgroovecruciblesinacopperbaseplateandwithanelectrodeatthetop.Thetungstenelectrodeismotordrivenwhichcanbemovedfreelyabovethecrucible.Themeltingprocesscanbeobservedthroughadarkglasswindow.Allimportantcontrolfunctionsareintegratedintheheadoftheelectrodeandensuresafeandconvenientoperation.Whenfedatthemaximumcurrentthetemperatureoftheelectricarcinthemeltercangoashighas4000Candmelts500gofmetals.Thearcmelterhasaipper,amanipulatorforturningthesamplesinsitu.Thisgivesthepossibilitytoipandagainmeltthesample,ensuringitshomogeneity,withoutopeningthechamber.Beforeoperating,thecopperbaseplatewasthoroughlycleanedwithacetonetoavoidanycontaminationofthesamplewithimpurities.Rightatthebeginning,eachoftheconstituentelementswerewellcleanedtoeliminatetheoxidelayeronthesurface.Theprecisioninmassmeasurementswas0.02mg.Startingwiththeradioactiveorthehardestelementwecanadjusttherelativemassesoftheothercomponentstogainthewantedstoichiometricratio.Thetotalmasswasfromteensofmilligramto1g,thesizeofthesamplebeadwasupto1cm.Rightbeforetheelementsweremeltedtogether,azirconiumbuttonwhichwasalsousedforignitionofthearc,wasmeltedjusttoensureaevenhigherpurityoftheAr,whichwaslteredthroughapurierbeforeenteringintothearcchamber.Zirconiumiswellknownasaoxygenabsorber.Theelementwiththehighestvaporpressurewasthenplacedonthecopperplaterightbelowtheelementswithlowervaporpressures.Theaimofthis 50

PAGE 51

51

PAGE 52

whereishalfofthereectionangle,nisaninteger(n=1fortherstorderspectrum),distheinter-planedistance,andisthewavelengthoftheincidentradiation.ThelatticeconstantsarethencalculatedfromdandtheintersectionpointsofthelatticeplanesfromthedesiredspacegroupnumberisgivenintermsoftheMillerindices(hkl).ForacubicsymmetrythesameBraggequationcanberewrittenas sin2=2 whichisderivedfromd(hkl)=a=p 4.2.1Equipment 4.2.1.1Cryogenics Inhouse(StewartLab.,PhysicsDepartmentatUniversityofFlorida)measurementsofspecicheatwereperformedinthetemperaturerangeof0.3to2Kusually,andinsomecasesupto10K.Ahomemade3Hecryostatwasused.TheschematicdrawingisgiveninFig.4-3.Thisprobewasusedforthemeasurementsofspecicheatinmagneticeldsaswell.AspeciallydesigneddewarfromCryogenicConsultantsLimitedwasalsoused.Thesuperconductingmagnetreached14Tat4.2Kbathtemperature.Fortheac 52

PAGE 53

SpecicheatmeasurementsatlowertemperatureandhighermagneticeldswereperformedattheMillikelvinFacility(SuperconductingMagnet1{SCM1),HighMagneticFieldNationalLaboratory,Tallahassee,Floridausingatoploadingdilutionrefrigeratorwhichispermanentlyinstalledina18/20Tsuperconductingmagnet.Themeasurementtemperaturerangewas20mKto2Kcombinedwithamagneticeldofupto20T.Thesmallhomemadecalorimeter(Fig.4-5)wasconnectedtothegeneralpurposesamplemountprovidedbythefacility.Resistivitymeasurementsperformedatthesamefacilityweredoneinthetemperaturerangeof20mKto0.9K.Anothersampleholder,aso-called16pinamplerotator,wasused.Thisallowsthechangeoforientationofthesampleineldduringtheexperiment.Thisholderhas16pins(16connectionwirestothetopoftheprobe)thatallowsuptoamaximumoffourdierentsamplestobemeasuredwithoutpullingouttheprobefromthedilutionrefrigerator,savingprecioustime.Takesupto6hourstoinserttheprobeintotherefrigeratorandcoolthesampleto20mK.Specicheatmeasurementsinmagneticeldsupto32Twereperformedatthe33T,32mmboreresistivemagnet(Cell9),atthesameNationalLaboratory.Anotherhomemade3Heprobesimilartotheonementionedearlierbutwithslightlydierentdimensionsinordertotintothemagnetandalsotoaccommodatethesampleinthemaximumeldstrengthregionwasused.Rightbeforetheinsertionoftheprobeintothemagnetanelectricalcheckwasdoneonwireconnections.ThequalityofvacuumandsealingwascheckedalsousinganAlcatelASM10LeakDetector.Forboth33Tand45Tmeasurements,aspecialpositioningsystemmadeitpossibletocentertheprobeinsidethemagnetsuchthatitdid 53

PAGE 54

Becauseofthelargeamountofheatthathadtoberemoved,theprobewascooledinliquidnitrogen(LN)downtotheboilingpoint(77.35K).Afterabout2hours,whentheprobewasatthermalequilibriumwiththeliquidnitrogen,itwastransferredquicklyintoadewarinwhichittstight.ThedewarwascooledinadvanceinLNaswell.Thedewar(withtheprobeinside)waslledwithliquid4He(LHe)andafterseveralhours(dependingonthevolumeofthecan)thetemperatureoftheprobereached4.2K.After4.2Kwasattainedfollowingtheproceduredescribedabove,the4HepotwaslledwithLHefromthebathbyopeningtheneedlevalve,and3Hegas(alighterisotopeofHe)wastransferredintothe3Hepot+probelineusingahome-made3Hehandlingsystem.Thehandlingsystemconsistsofatanklledwith3He,apumpwhichhelpstotransfertoandbackfromthe3Hepotline,andpressuregaugestodisplaytheamountof3Heleftinthetankandinthetransferlines.Afterclosingtheneedlevalveandpumpinginthe4Helineatemperaturebetween1and2Kwasobtained.Itwasnecessarytorellthe4Hepotbyopeningtheneedlevalveonceinseveralhours.Inordertoattain0.3Kacompletelycontained3Hecoolingpartusingasorptionpumpwasrequired.Whencooled,gasesgenerallyadsorbtosolidsurfaces.Thesorptionpumpisbasedontheideathatat10Kalmostallofthe3Hegasmoleculesareadsorbed,whereasat35Kallofthemoleculesdesorb.ThesorptionpumpconsistsofaCucylinderthatcontainsactivatedcharcoal,whichhasanenormoussurfacearea(tensofsquaremeterspergram).Thecylinderisattachedtothelowerendofametallicrod.Thewholesystem,rod+cylinderwithcharcoal,wasplacedinsidethe3He-gasenclosure.Asthecharcoalwasloweredtowardthe3Hepot,the3Hewasabsorbedbythecharcoalreducingthevaporpressureandloweringthetemperatureofthe3Hepot.Afterthecharcoalbecamesaturatedwith3He,thecharcoalwaswarmedup(byraisingtherodwiththecharcoal),andthegaswas 54

PAGE 55

79 { 81 ].Thethermalrelaxationmethodconsistsofmeasuringthetimeconstantofthetemperaturedecayofthesampleconnectedtotheheatbathbyasmallthermallink.ApowerPisapplied(Fig.4-6)(thermalpowerbyasmallcurrentoftheorderofA)totheplatform-samplesystem.Thetemperatureofthesample,initially 55

PAGE 56

Thetimeconstant1isproportionaltotheCtotal(sample+platform): whereisthethermalconductanceofthewireslinkingthesample+platformatT=T0+TandtheringatT=T0.Theblocktemperatureisregulatedbyablockheater(abundleofmanganinwire)andmeasuredbyathermometerattachedtotheblock.Thetimeconstantisobtainedbymeasuringthetimedecayoftheo-balancevoltagesignalfromaWheatstonebridgeusingalock-inamplier.TwoarmsoftheWheatstonebridgeareavariableresistanceboxandtheplatformthermometer.Thebridgeisbalancedbyadjustingtheresistanceoftheresistancebox.Thismadeitpossibletondtheresistanceofthethermometer.FromaninitialcalibrationofthethermometerRversusT: 1 itispossibletondthetemperaturecorrespondingtotheplatformthermometerresistance.Thethermalconductanceisgivenby: whereP=IVisthepowerappliedtotheplatformheater.Equation(4{3)isvalidifthethermalcontactbetweensampleandplatformisideal(i.e.,sample1).Ifthecontactispoor(i.e.,sample),then 56

PAGE 57

57

PAGE 58

82 ]andtwosecondarycoilsmadefromcopperwire,woundinbothsidesinoppositedirectionsof2700turns.ThecoilsareattachedtotheCublock(whichisinthermalcontactwiththe3Hepot).Theapparatususesthemutualinductanceprinciple.Thesampleissubjecttoanalternatingmagneticeldof0.1Oeproducedbytheprimarycoil(andalsotheEarth'smagneticeld).Theresultingelectromotiveforce(EMF)inducedinthesecondarycoilisdetected.Thebackgroundsignalisnulledbytheidenticalsecondarycoil,connectedinseriesopposition.Forthesamereasonthetwoscrewsareidenticallybuilt.ThesampleisgluedtoonescrewwithGeneralElectric(GE)varnish7031whichensuresagoodthermalandmechanicalcontactatlowtemperatureandalsocanberemovedeasilyusingacetone.Theacsusceptibilitymeasurementswereperformedattwodierentfrequencies:27Hertz(Hz)and273Hz.Itwasdeliberatelyusedthesefrequencies(notintegermultiplesof60Hz)inordertoavoidthenoisecomingfromthecommonelectricaloutlet.Ingeneral,B=0(H+MV)=0H(1+),withHthemagneticeld,MVthevolumemagnetizationand=MV/Histhemagneticsusceptibility.IftheappliedeldHhasasinusoidalform,thetimedependentmagnetizationMV(t)canbeexpressedasaFourierseriesofthenon-linearcomplexacsusceptibility.ApplyingtheinverseFouriertransformtoMV(t)itcanbefoundthenthharmonicofbothrealandimaginaryacsusceptibility.Thefundamentalrealcomponent 58

PAGE 59

59

PAGE 60

PrOs4Sb12largecrystal,about50mg(right).Intheleft,anOsballwithPrOs4Sb12singlecrystalsattached,waitingtobeetchedout. Figure4-2. PrOs4Sb12samplespreparedfor(leftpanel)resistivityand(rightpanel)specicheatmeasurements. 60

PAGE 61

Schematicviewofthe3HecryostatusedinthemeasurementsperformedatUniversityofFlorida. 61

PAGE 62

SchematicviewofthecalorimeterusedintheSuperconductingMagnet1(SCM1),NationalHighMagneticFieldLaboratory. 62

PAGE 63

(a)Topviewofthesample-platform/Cu-ringassembly.(b)Lateralviewofthesapphireplatformandsample. 63

PAGE 64

SpecicheatCmeasurementprocessusingtherelaxationtimemethod(RedrawnwithpermissionfromMixson[ 83 ]). 64

PAGE 65

Allsamplesweresynthesizedusingtheself-uxgrowthmethod,describedinChapter4.Thesamplesarecubicshapedandofsizesrangingfrom1/2mmto3mmandweightingfrom1mgtoabout50mg.X-raydiractionwasperformedtoverifythedesiredcrystalstructure.Fromthediractionpatternitwasalsopossibletodeterminethelatticeconstants.Inadditiontothis,theX-raysconrmedthatthesamplesweresingle-phasewithinanaccuracyof5%. Thequalityofthesampleisalsogivenbythesharpnessofthetransitioninthespecicheat.AmorequantitativelymeasureofthequalityofthesampleistheresidualresistivityratioRRR=(300K)/(T!0).Thisratiorangesfrom50toabout170(PrOs4Sb12samplesstudiedbyMeassonetal.[ 59 ]haveRRR40.) Duetotheverysmallsizeofthesamplesused,thesusceptibilitiesmeasuredforallconcentrationsandthebackground(susceptibilityofthesampleholderconsistingfromaplasticdrinkingstraw)werecomparableat10K.Atroomtemperaturethesusceptibilitywasevensmallerthanthebackground,especiallyfordiluteconcentrations.Inordertoavoidthisbackgroundcontribution,magneticsusceptibilitywereremeasured(forx=0,0.05,0.3,0.67,0.8and0.95)usingbiggersamples.Also,inthesemeasurements,thematerialwaspressedinbetweentwolongconcentrictubessuchthatnobackgroundsubtractionwasneeded. AlltheseadditionalmeasurementsyieldedtoaCurie-Weisstemperaturedependenceabove150K,correspondingtoaneectivemagneticmomentclosetotheoneexpectedforPr3+(Fig.5-1),muchclosertotheexpectedvalueforPr3+thantheinitiallyreportedeff=2.97B[ 7 ]forPrOs4Sb12.TheeectivemomentofthefreePr3+iseff=3.58B[ 52 ].NewmeasurementsbyTayamaetal.[ 51 ]revealedaneectivemomentclosetothisvalue.ThissupportsthenotionofanessentiallytrivalentstateofPrinallPr1xLaxOs4Sb12alloys. 65

PAGE 66

Figure5-2. 66

PAGE 67

7 ](either3or1CEFgroundstate)forPrOs4Sb12implynon-magneticgroundstatesandexcludeaconventionalKondoeect,believedtobethesourceofHFbehaviorinCe-andsomeU-basedmetals. Thecontroversybetweenthetwoschemeswasbroughtaboutbydierentexperimentsthatseemtofavoreitherconguration. AspresentedinChapter3,therstpublishedresultssuchasthezeroeldspecicheat,magneticsusceptibilitydata[ 7 ],resistivityinsmallmagneticelds[ 55 ],inelasticneutronscatteringdatainterpretedusingOhsymmetry[ 53 ]favoredthe3doubletastheCEFgroundstate. Ontheotherhand,magneticsusceptibilitydataofTayamaetal.[ 51 ]andentropychangesinsmallmagneticeldsmeasuredbyAokietal.[ 56 ]werebetterttedbya1CEFgroundstatemodel. ThezeroeldSchottkyanomalyoccurringat3.1Kcanberelatedtothe3-5model,assumingthesetwolevelsaresplitby6.5K,or1-5modelwiththesplittingof8.4K.Thedicultyininterpretingtheselowtemperature,loweldresultsisrelatedtoastronghybridizationof4fandconductionelectrons,inferredfromthelargeelectronic 67

PAGE 68

Inordertopresentourresultsinaproperperspectivewestartfromrecallingthespecicheatdataforeldssmallerthan8TobtainedbyAokietal.[ 56 ] Figure6-1,upperpanel,showsthelowtemperaturespecicheatto8TobtainedbyAokietal.[ 56 ],thelowerpanelacomprehensivephasediagramknownbeforeourmeasurements.4.5TisthelowesteldatwhichasignatureofFIOPisdetectableasasmallkink(at0.7K).Thiskinkevolvesintoasharppeakat0.98Kin6T.TheC(T)peakgrowsandmovesalsotohighertemperaturesforhigherelds. TheFIOPwasconrmedbyspecicheatofVollmeretal.[ 63 ]andmagnetizationstudyofTayamaetal.[ 51 ]. AnumberofobservationsbroughtforwardtheinterpretationofFIOPintermsofantiferroquadrupolar(AFQ)order.Theseobservationsincludedalargeanomalyinthespecicheat(correspondingtoalargeentropyremovedbythetransition)andtheverysmallvalueoftheordered(antiferromagnetic)moment(about0.025Bat0.25Kin8T[ 84 ])measuredbyneutrondiraction,andalsosimilaritiestosystemsdisplayingquadrupolarorder(e.g.,PrPb3[ 85 ]). Figures6-2,6-3,and6-4showthespecicheatineldsrangingfrom10to32T.Thespecicheatmeasurementsineldsupto14TweredoneusingCryogenicConsultantLimitedsuperconductingmagnetattheUniversityofFlorida.Measurementsineldslargerthan14TwerecarriedoutattheNationalHighMagneticFieldLaboratory,Tallahassee,FloridausingaresistiveBittermagnet.Theeldwasappliedalongthecrystallographic(100)direction. Thespecicheatdatainallthreeguresareaftersubtractingthephononbackground(T3with=(1944103)n/3D[ 1 ])correspondingtoaDebyetemperature(D)of165K,proposedbyVollmeretal.[ 63 ]ThisvalueofDobtainedfromthetemperature 68

PAGE 69

7 ]),320K(Aokietal.[ 56 ]),and259K(Mapleetal.[ 53 ])arebasedonspecicheatmeasurementsofLaOs4Sb12. Thelowesttemperatureoftheheatcapacitymeasurements,actualvalue,ischosenrelativelyhighinordertoavoidcomplicationsassociatedwithanuclearcontributionofPr.Thiscontributionisstronglyenhancedbycouplingwithorbitalmomentsoffelectrons[ 86 87 ].Itisdiculttomeasurespecicheatbyaconventionalrelaxationmethodattemperatureswherenucleardegreesoffreedomdominatebecauseofadditionalthetimescaleenteringtheexperiment,nuclearspin-latticerelaxationtimeT1[ 88 ].Stronglynon-exponentialtemperaturedecaysatthelowesttemperatures(e.g.,below0.5Kintheeldof10Tandbellow1.5Kintheeldof32T)indicatetheimportanceofnucleardegreesoffreedomandcannotbeanalyzedusingtheso-called2correction.Therefore,theselowesttemperaturepointscarrylargeuncertainty.Whenthemagneticeldappliedalongthe(100)crystallographicdirectionis10T,thetemperatureofthesharpFIOPpeakappearsat1K(Fig.6-2).Whenincreasingtheeldfrom10Teldto12and13T(Figs.6-2and6-3)theorderingtemperatureTxdecreasesonlyslightlybutC(Tx)issuppressedinastrongmanner. Theresultspresentedhere[ 31 ]combinedwiththoseofAokietal.[ 56 ]andVollmeretal.[ 63 ]showthatTx(peakpositioninC)reachesamaximumvaluearound9T.Also,CatTxismaximumsomewherebetween8and10T. In13TashoulderappearsonthehightemperaturesideoftheFIOPanomaly.Thespecicheatvalueatthisshoulderisabout3400mJ/Kmol.ThisshoulderevolvesintoabroadmaximumforH=13.5T.Above13.5TtheFIOPcannotbeobservedanymoreinthespecicheat.Thus,theseresultsstronglyimplythedisappearanceofFIOPbeforeTxreaches0. Thebroadmaximumthatappearsin13Texistsatalleldsstudieduptoatleast32T.Thetemperatureofthemaximumincreaseswiththestrengthoftheeld(Fig.6-4). 69

PAGE 70

89 ].Theuncertaintyofthespecicheatmeasurementsintheseelds(andattemperatureswherenuclearcontributionissmall)isabout10%.IncreasingDfrom165K,usedinthesubtractionofthephononterm,totheotherextremalvalueproposed,320KwouldraisetheestimateoftheelectronicpartofCbyabout290mJ/Kmolat3.5K.Thus,theextractedvaluesatthemaximumarewellwithintherealisticerrorbarofthetheoretical3650mJ/Kmolforthetwo-levelSchottkyanomaly.Thehighesteldusedof32Tislargeenoughtosplitanydegeneratelevels,thereforetheobservedSchottkyanomalyisduetotheexcitationsbetweentwosinglets.TmisrelatedtotheenergyseparationofthetwolevelsbyTm=0.417[ 89 ].AnextrapolationofTmtoT=0(Fig.6-5)determinestheeldatwhichthetwolevelscross,whichissomewherebetween8and9T. TheseresultcanbeusedtoinfernewinformationregardingtheplausiblecrystaleldcongurationofPr.Prcanbemodeledbythefollowingsingle-sitemean-eldHamiltonian[ 84 ]: whereHCEF,JandOirepresenttheCEFHamiltonianforthecubicThsymmetry,thetotalangularmomentum,andthei-thquadrupolemomentofPrinasublattice,respectively,wheretherearevetypesofquadrupolarmomentoperators:O02,O22,Oxy,Oyz,andOzx.JandQiaretheinter-sublatticemoleculareldcouplingconstantsofspin(exchange)andquadrupolarinteractions,respectively.ThethermalaveragesoftheangularmomentumandquadrupolemomentofthePrinthecounterpartsublatticearehJ0iandhO0ii. UsingtheCEFparametersproposedbyKohgi[ 84 ]forthe1-5CEFconguration,Tm(withQi=0)andtheOyz-typequadrupolarorderingtemperatureTxwerecalculatedfor(100)directionbyAokietal.[ 90 ]AsitisdemonstratedinFig.6-5,themeasured 70

PAGE 71

However,thelevelcrossingforeld(100)directionisalsoexpectedfor3-4model,althoughatsomewhatdierenteld,asdemonstratedbyVollmeretal.[ 63 ]. MoreconclusiveargumentsregardingtheCEFcongurationcanbeobtainedfromthestudyoftheanisotropyoftheZeemaneect.ResultsofourcalculationsfortheZeemaneectfor~H==(100),~H==(110),and~H==(111)areshowninFig.6-6for1CEFgroundstate.TheplotsshowonlythefourlowestCEFlevels.Thehigherlevelsareatabove100Kand200Kfromthegroundstate,andthereforeplaynoroleinthelowtemperatureproperties.ThecalculationsweredoneneglectingexchangeandquadrupolarinteractionsandconsideringtheThsymmetry.Neglectingorretainingthelasttwotermsin(6{1)forthe(100)directionleadtoalmostidenticalresultsforeigenvalues(Aokietal.[ 90 ]andourresults). Thereisacrossingbetween1andthelowest5level(splitbymagneticeld)atabout9Twhen~H==(100)or~H==(111)andanti-crossingwhen~H==(110)aroundthesameeld.Therefore,thecrossingeld,extrapolatedfromthetemperatureoftheSchottkyanomalyathigheldsshouldbeindependentoftheelddirection. Figure6-7showsthesamecalculationsforthe3CEFgroundstatemodel.For~H==(100)thereisacrossingbetweenthetwolowestCEFlevels,althoughataeldsomewhatlargerthantheoneexpectedforthe1CEFgroundstate.However,thereisnocrossingexpectedinvolvingthelowestCEFlevelswhentheeldisappliedalongthe(110)or(111)directioninthe3-5model(Fig.6-7).Therefore,measurementsofspecicheatwhenmagneticeldisappliedinanydirectiondierentthan(100)dierentiatebetweenthetwoscenarios.Measurementsofthespecicheatineldsto14 71

PAGE 72

TheH-TphasediagramispresentedinFigure6-10.For~H//(110)directionweobserveadecreaseofTxvalueswithrespecttothe(100)directionforthecorrespondingelds,consistentwiththepreviousmagnetizationmeasurements[ 51 ](Fig.3-6).Ontheotherhand,withintheuncertaintyofthemeasurement,thereisnochangeinthepositionoftheSchottkyanomalyat13and14T,asexpectedforthe1CEFgroundstateandinconsistentwiththe3scenario.Moreover,forthe(110)orientationtheSchottkyanomalycanbeclearlyseenalreadyat12T.ThislowereldlimitfortheSchottkymaximumisprobablyduetocompetitionbetweenthetwotypesofanomaliesandlowervaluesofTxforthe(110)direction(Fig.6-9). AstraightlinetforthethreeTmpointsresultsinthecrossingeldvalueof91T.Thisvalueagrees,withintheerrorbar,withtheestimateforthe(100)direction.Theexistenceofthecrossingeldforthe(110)directionprovidesanunambiguousevidenceforthe1-5model.Asmallmisalignmentofthesamplewithrespecttotheeldineitherofthemeasurementscannotexplainessentiallyidenticalcrossingeldsforbothdirections.Infact,themeasureddierenceinTxvaluesfor(100)and(110)directionsprovidesanadditionalcheckofthealignment.Similartothe(100)direction,thereseemstobeaclosecorrelationbetweenthecrossingeldandtheeldcorrespondingtoTxmaximum. Figures6-5and6-10implyastrongcompetitionbetweentheeld-inducedorderandtheSchottkypeak.TheFIOPtransitioninthespecicheatabruptlydisappearsbefore 72

PAGE 73

44 51 ],ontheotherhand,wereabletomapTxasafunctionofthemagneticeldallthewaytoTx0.ThisapparentcontradictioncanbeexplainedbyaverysmallentropyavailablefortheFIOPtransitionabove13and12Tforeldsparalleltothe(100)and(110)directions,respectively.Specicheat,beingabulkmeasurement,canbelesssensitivethanmagnetizationtechniquesinthissituation.Astrongcompetitionistobeexpectedinthe1-5scenario.Thegroundstatepseudo-doubletformedatthelevelcrossingcarriesbothmagneticandquadrupolarmoments.Sinceaquadrupolarmomentoperatordoesnotcommutewithadipolarone,thequadrupolarinteractionsleadingtoFIOPcompetewiththemagneticZeemaneect. Therefore,thehighmagneticeldsmeasurementsofspecicheat[ 31 ]providedtherstunambiguousevidenceforthesingletCEFgroundstateofPrinPrOs4Sb12.Thisresultwasconrmedbyrecentinelasticneutronscatteringexperiments[ 32 ]analyzedintheThsymmetry,andourmagnetoresistivityresultsdescribedinSections6.2and7.2. ThemainindicationofheavyelectronsinPrOs4Sb12isthelargediscontinuityinC=TatTc.Themassenhancementinferredfromspecicheatmeasurementsisoftheorderof50[ 7 ].Thisvalueisanestimateandthereisnoconsensusonaprecisevalue.Anuncertaintyexistsinevaluationoftheeectivemassdirectlyfromthelowtemperaturezero-eldspecicheat,becausethereisnostraightforwardmethodofaccountingfortheCEFspecicheat.ThecorrespondingSchottkyanomalyisstronglymodiedbecauseofthehybridizationbetweenthefandconductionelectrons.Thezero-eldspecicheatjustaboveTcisdominatedbyCEFeects. 73

PAGE 74

32 ]suggestedmenhancementtobeabout20.However,theirestimatewasbasedontheFulde-Jensenmodel,whichwedonotbelieveisrelevanttoPrOs4Sb12.Thisenhancementis3{7,accordingtothedeHaas-vanAlphenmeasurements[ 44 ].However,dHvAeectwasanalyzedoverawiderangeofelds3{17TanddidnottakeintoaccountmbeingdependentofH[ 44 ]. TheresidualresistivityratioRRR=(300K)/(T!0)oftheinvestigatedsamplewasabout150.Thisvalueisamongthehighestreported,implyinghighqualityofoursample.Boththecurrentandthemagneticeldwereparalleltothe(100)direction(longitudinalmagnetoresistance).Themeasurementsweredoneusingthe18T/20TsuperconductingmagnetattheMillikelvinFacility,NationalHighMagneticFieldLaboratory,Tallahassee,Florida.Thetemperaturerangewas20mKto0.9K,themaximumeldused20T.MeasurementsattheUniversityofFloridaweredoneineldsupto14Tdownto0.35K. Thezero-eldelectricalresistivity,anotherimportantcharacteristicsofheavyfermionmetals,doesnotprovideastraightforwardsupportforthepresenceofheavyelectrons.Mapleetal.[ 91 ]foundthattheresistivity,between8and40K,followsafermi-liquidtemperaturedependence(=0+AT2).Ourresistivitydatabetween8and16Kfollowstheabovementioneddependence(Fig.6-11)withA0.009cm/K2(inagreementwithAfoundbyMapleetal.[ 91 ]).AsinferredfromKadowaki-Woods(KW)relation(A/21105cm(molK/mJ)2)[ 60 ]thisvalueofAimpliesasmallelectronicspecic-heatcoecient30mJ/K2mol,comparabletotheonemeasuredforLaOs4Sb12.So,evidentlythereisanuppertemperaturelimit(lessthan8K)fortheheavyfermionbehavior. Figure6-12showstheresistivityofPrOs4Sb12inH=3,10,15,16,17and18Tinatemperaturerangeof20mKto0.9K.Theresistivitybelow200mKsaturatesforallelds.Thistemperaturedependenceatthelowesttemperaturewasalsoobservedbyothergroups[ 91 92 ].Therefore,theresistivityforallotherintermediateeldswasmeasuredto 74

PAGE 75

Mapleetal.[ 91 ]proposedthefollowingtemperaturedependenceforxedmagneticeld:=0+aTn,withn>2.Intheirstudy(transversalmagnetoresistivity)nwas3for3Tand2.6for8T.Inourlongitudinalcasetheseexponentsareslightlylarger(e.g.,3.9for3T).Theexponentsdependonthetemperaturerangeofthet,i.e.,nbecomessmallerwhentheuppertemperaturelimitofthetdecreases.Theresidualresistivity0valuesresultedfromthetondierenttemperatureranges(includedinthe350mKand0.9Kinterval)wereclosetoat20mK.Theresidualresistivity0attainsamaximumnearH=10T,eldcorrespondingtothecrossingbetweenthetwolowest-energyCEFlevelsofPr(Fig.6-14,lowerpanel).Inthisregion(around9{10T)thelowesttwosingletsformaquasidoubletpossessingquadrupolardegreeoffreedom.Theseelectricquadrupolesorderatsucientlylowtemperatures[ 56 ]withtheorderingtemperaturehavingmaximuminthecrossingeld[ 31 56 ].ResistivityisdominatedthereforebytheCEFeectsorthequadrupolarordering.Thisorderingiscompletelysuppressedbyeldshigherthan15T.AsitcanbenoticedfromFigs.6-12and6-14theresidualresistivity0doesnotchangesubstantiallyineldshigherthan15T.Infact,itcanbeseenthantheresidualresistivity0versusHeldcanmaptheboundaryoftheAFQphase,i.e.asharpincreaseof0indeedcoincideswiththeAFQboundary,indicatedbyarrowsinFig.6-14,lowerpanel. Thesameconclusioncanbedrawnfromresistivitymeasurementsforhighmagneticeldsperpendiculartothecurrent[ 55 ].Therateoftheincreaseoftheresistivitywithtemperatureisstillchangingabove15T(Fig.6-12).ItcanbeconcludedthatthereductionofthetemperatureratecorrelateswithanincreaseoftheenergybetweenthelowestCEFlevels.Apreciseaccountingofthesechangesisdicultsinceneitherofthefunctionscheckedoutdescribeaccuratelythevariation(T)inaxedeld. AlineardependenceofonT2isaccountedbyresistivity(=0+AT2)indierenttemperatureranges(above0.4and0.5K),asseeninFigs.6-13.UsingtheKWratio[ 60 ] 75

PAGE 76

Acharacteristicelddependenceoftheresidualresistivity(Fig.6-14,lowpanel)wasassociatedbothtoCEFeectsandlongrangeAFQorder.TheCEFeectontheresistivitywasconsideredbyFrederickandMaple[ 93 ]usingthefollowingexpression: Thersttermrepresentsacontributionduetoexchangescattering,andthesecondtermisthecontributionduetoaspherical(orquadrupolar)scattering.TheasphericalCoulombscatteringisduetothequadrupolarchargedistributionofthePr3+.MatricesPij,QMijandQAijaredenedasfollows: 1e(EiEj);(6{3) 2jhijJ+jjij2+1 2jhijJjjij2;(6{4) IntheaboverelationsEiaretheeigenvalueoftheCEFeigenstates,thejii0saretheCEFeigenstates,=1/(kBT),andtheym20saretheoperatorequivalentsofthesphericalharmonicsforL=2(i.e.,quadrupolarterms)[ 94 ].TheQij-matricesarenormalizedtoeachother[ 95 ]suchthat 76

PAGE 77

FurthermoreAseemstohaveamaximumvalueneartheeldseparatingorderedandnon-orderedphases.NotethatthisisnotthecrossingeldforthelowestCEFlevels.Thus,theseresultssuggestapossibilityofmenhancementduetostronguctuationoftheAFQorderparameter. 77

PAGE 78

SpecicheatCofPrOs4Sb12ineldsupto8Tfor~H//(100)(upperpanel).ThemagneticeldphasediagramH-TofPrOs4Sb12ineldsupto8Tfor~H//(100)(lowerpanel)(ReprintedwithpermissionfromAokietal.[ 56 ]). 78

PAGE 79

SpecicheatCofPrOs4Sb12in10and12TinthevicinityofFIOPtransitionfor~H//(100)(ReprintedwithpermissionfromRotunduetal.[ 31 ]). 79

PAGE 80

SpecicheatCofPrOs4Sb12in13,13.5,and14T,for~H//(100).Ashoulderappearsatabout1.2{1.3Kat13TandtheFIOPtransitionissuppressedat13.5T. 80

PAGE 81

SpecicheatCofPrOs4Sb12inmagneticeldsof16,20,and32T,for~H//(100). 81

PAGE 82

MagneticeldphasediagramH-TofPrOs4Sb12for~H//(100)(H>8T).FilledsquaresrepresenttheFIOPtransition.OpensquarescorrespondtotheSchottkyanomaly.TheinsetisthemodelcalculationoftheSchottkyanomalyassumingthesingletasthegroundstate[ 90 ].ThesolidlinerepresentstheFIOPboundary;thedashedlinecorrespondstoamaximuminC(ReprintedwithpermissionfromRotunduetal.[ 31 ]). 82

PAGE 83

ZeemaneectcalculationsforPrOs4Sb12inthe1CEFgroundstatescenario.Thereiscrossingofthetwolowestlevelsfor~H//(100)or~H//(111)ataround9Tandanti-crossingatthesameeldfor~H//(110).Thegureshowsonlythetwolowestlevels,i.e.thesinglet1andthetriplet5. 83

PAGE 84

ZeemaneectforPrOs4Sb12inthe3CEFgroundstatescenario.Theeectinstronglyanisotropic.ThereisnocrossingofthetwolowestCEFlevelsfor~H//(110)or~H//(111).Thegureshowsonlythetwolowestlevels,i.e.thedoublet3andthetriplet5. 84

PAGE 85

SpecicheatCofPrOs4Sb12for~H//(110),H=10,12,13,and14T.TheinsetshowsCversusTneatTxfor8,9,9.5,10,10.5,and11T. 85

PAGE 86

SpecicheatCofPrOs4Sb12inH=12T,for~H//(100)(upperpanel),and~H//(110)(lowerpanel).ThearrowindicatestheAFQtransition. 86

PAGE 87

ThemagneticeldphasediagramH-TofPrOs4Sb12for~H//(110)(H>8T).TheinsetshowsthespecicheatCmaxofAFQversusH.ForadenitionofsymbolsseeFig.6.5. Figure6-11. ElectricalresistivityversusT2forPrOs4Sb12.IntheinsetisversusTshowingthesuperconductingtransitionatTc=1.85K. 87

PAGE 88

Resistivity(T)between20mKandabout0.9KofPrOs4Sb12in3,10,15,16,17,and18T(ReprintedwithpermissionfromRotunduandAndraka[ 96 ]). 88

PAGE 89

ResistivityversusT2ofPrOs4Sb12for3.5,5.5,7,10,and13T. 89

PAGE 90

Coecienta(=0+aTn)versusHforPrOs4Sb12eldsupto18Tisinupperpanel.Theresidualresistivity0(H)isshowninlowerpanel. 90

PAGE 91

CoecientA(=0+AT2)versusH. 91

PAGE 92

Thecalculated(H)ofPrOs4Sb12,forboth3and1scenarios.TheverticallineindicatestheeldcrossingofthetwolowestCEFlevels.Notethatthecrossingeldforthe1groundstatewasassumedat3T(lowerpanel)(ReprintedwithpermissionfromFrederickandMaple[ 93 ]). 92

PAGE 93

7 16 ]orvirtualCEFexcitations[ 32 36 ],tocooperativemodelsinvokingproximitytoalong-rangeorder(proximitytothelowtemperaturestateofAFQorder)[ 56 ].Whileinvestigatingtheapplicabilityofthesemodels,closeattentionwaspaidtowhetherthesingle-ionparameterssuchastheCEFspectrumandhybridizationparametersvarywiththealloying. 57 ]andalmostnon-existentlanthanidecontractioninternaryskutteruditescontainingSb,ofageneralformLnT4Sb12,whereTandLnaretransitionelementandlightlanthanide,respectively. TopresentthischangeinaproperperspectivewerecallthatthechangeofthelatticeconstantacrossPr(Os1xRux)4Sb12[ 97 ]is10timeslarger.ThisisdespitethefactthattheatomicradiiofOsandRuarealmostidentical(1.35and1.35AforOsandRurespectively),whileLaismuchlargerthanPr(1.88versus1.82A).InPr(Os1xRux)4Sb12theCEFparametersincreasemonotonicallywithx.VerysmallchangesinlatticeconstantinPr1xLaxOs4Sb12suggestsmall,ifany,changesintheCEFparameters 93

PAGE 94

Figure7-3showsthesusceptibilitiesonlyintherange1.85to10K.AlldataarenormalizedtoaPrmole.Duetotheverysmallsizeofthesamplesusedintheinitialmeasurements,themeasuredmomentofmostofthesamplesandthebackground(themagneticmomentofthesampleholderconsistingofapieceofaplasticdrinkingstraw)werecomparableat10K.Atroomtemperaturethemagneticmomentofthesampleswasevensmallerthanthebackground,especiallyfordiluteconcentrations.Inordertoavoidthisbackgroundcontribution,themagneticsusceptibilitieswereremeasured(forx=0,0.05,0.3,0.8and0.95)usingseveralcrystalsandholdingthembetweentwolongconcentricstraws.Nobackgroundsubtractionwasneededthistime.TheCurie-Weisstemperaturewasfoundabove150Kandtheeectivemagneticmomentintherange3.2{3.6B/Pratom.ThevaluesareintherangeofmomentsreportedforpurePrOs4Sb12.SomediscrepancybetweenthesevaluesandthatexpectedforPr3+,3.58B[ 52 ],canbeduetoanerrorinmassdetermination.Becauseoftheveryfragilenatureofthesecrystals,someofthembrokeoduringthemeasurementandsmallfractionsmovedinbetweenthetwotubes.Afurthercheckofthemagneticmomentwasperformedononelargecrystalforx=0.67(20mgeach).Figure7-4showsthesusceptibilityandtheinverseofsusceptibilityforx=0.67.FromtheCurie-Weisstthehightemperatureeectivemomentisfoundtobe3.62B/Prmol,closetothevalueexpectedforPr3+. 94

PAGE 95

31 ],andneutron[ 32 84 ]measurementsestablished1singletastheCEFgroundstateseparatedbyabout8Kfromtherstexcited5triplet.VerysmallchangesinthepositionofthesemaximainthesusceptibilityaretherstindicationthatCEFareessentiallyunalteredbythedopingasexpectedfromthemeasurementofthelatticeconstant. Anotherinterestingaspectofthesusceptibilityisastronginitialreductionofthelow-temperaturevaluesof(normalizedtoamoleofPr)byLa.Thereductionofthemaximumsusceptibilityfromapproximately100forx=0toabout50memu/Prmolforx=0.4isclearlyoutsidetheerrorbar.Theaforementionedmeasurementsonassembliesofcrystalsforx=0.8and0.95alsoresultedina4Kvalueofabout505memu/Prmolforbothcompositions.SomebroadeninganddecreaseinmagnitudeoftheCEFsusceptibilityareexpectedinmixedalloysduetoincreasedatomicdisorder.However,theverylargeinitialdropinthesusceptibilityandlackofvariationabovex=0.4mightindicatethatsomecharacteristicelectronicenergy(analogoustoaKondotemperature)increasessharplyuponsubstitutingLaforPr.Asimilarsuppressionofthecorrespondingmaximumisobservedinthespecicheatdatadiscussedinthenextsection. 7.3.1SpecicHeatofPrOs4Sb12:SampleDependence 7 ].Morerecentspecicheatmeasurementsrevealedtwosuperconductingtransitions(Vollmeretal.[ 63 ],Mapleetal.[ 53 ],Oeschleretal.[ 64 ],Cichoreketal.[ 65 ]). 95

PAGE 96

Ourobservationsareconsistentwithother,particularlymorerecent,reports.Almostallrecentinvestigationsndtwosuperconductinganomalies,morepronouncedatTc2andlessdenedatTc1.AnexceptiontothisruleareunpublisheddatabyAokietal.[ 98 ]thatshowasharppeakatTc1,andonlyachangeofslopeinC=TatTc2.Thewidthofthetransition,0.2K,denedabove,isquitesimilarforallpublisheddata.Thereisalargedistributionofreported(C=T)atTc,from500to1000mJ/K2mol.Ausualdeterminationof(C=T)byanequalarea(conservationofentropy)constructioncannotbeappliedduetothepresenceoftwosuperconductingtransitions.Applyingourmethod,C=T(Tc2)C=T(T3),resultsinanaverage(C=T)of800mJ/K2molforthemostrecentresults. 96

PAGE 97

whereC=TisexpressedinmJ/(K2mol)andTinK(Fig.7-6).AsignicantnonlinearityinC=TversusT2isprobablyduetotherattlingmotionoflooselyboundLaatoms[ 99 ].ValuesofandforLaOs4Sb12reportedbyotherresearchgroupsare:of36[ 54 ],55mJ/K2mol[ 100 ],56[ 44 ]and=0.98mJ/K3mol[ 101 ]. Figures7-7and7-8presentthef-electronspecicheatofPr1xLaxOs4Sb12alloys,i.e.thespecicheatofLaOs4Sb12and,normalizingtoamoleofPr.NotethatthephononspecicheatofpurePrOs4Sb12inChapter6wastakenfromVollmeretal.[ 63 ],whichwasderivedbyttingthetotalspecicheatCtoafunctionrepresentingphonon,conductionelectrons,andSchottkycontributions.However,usingtheLaOs4Sb12specicheatseemstobemorejustiableformoderatelyandstronglyLa-dopedalloysandthereforethiswayofaccountingforphononsisconsistentlyusedinthischapteronLaalloying. 97

PAGE 98

102 ]substitutedforU.Furthermore,sincePrOs4Sb12isclearlyanunconventionalsuperconductor(e.g.,timereversalsymmetrybreaking)whileLaxOs4Sb12ispresumablyaconventionalsuperconductorwewouldexpect,whilevaryingx,asuppressionofonetypeofsuperconductivitybeforetheothertypeemerges.Figure7-10showsthatthereissmoothevolutionofTc(andsuperconductivity)betweentheend-compounds.AsomewhatstrongersuppressionisobservedinthecaseofRureplacingOs[ 71 97 ].Buteveninthiscase,theTcreductionrateissmallifcomparedwiththemajorityofCe-andU-basedheavyfermionsandconsideringthefactthatRualloyingdrasticallyaectsCEFenergiesandhybridizationparameters. 63 ])oftheanomaliesatTc1andTc2precludesapopularspeculationthatoneofthesetransitionsisassociatedwithsurfacesuperconductivity. Asitwasalreadystressed,this(C=T)iscurrentlythemainevidenceforthepresenceofheavyelectrons.ThepresenceofamodiedSchottkyanomalynearTcmakes 98

PAGE 99

WerecallthatLaOs4Sb12isalsoasuperconductor,thereforefordilutePrconcentrationsthenormalizationofC=TtoPrmole(usedinFig.s7-7and7-8)hasnomeaning.Therefore,Fig.7-10showsthetotal(C=T)performulaunit.Thereisadrasticdecreaseof(C=T)withxfor0x0.2(Fig.7-7).ThediscontinuityofC=Tissuppressedfrom800forx=0to280forx=0.2andfurthertoabout160mJ/(K2Prmol)forx=0.3(C=Tissevenfoldreducedwithx,forxbetween0and0.3).(C=T)staysapproximatelyconstantwithxfor0.3
PAGE 100

Inordertostudyfurtherthisspecicheatreduction,alargecrystalofPr0:33La0:67Os4Sb12,forwhichaddendaheatcapacityisnegligiblebelow6K,wasinvestigated.Firstofall,theeectivemagneticmomentmeasuredatroomtemperatureforthisparticularcrystalisveryclosetotheexpectedvalueforPr3+.Thus,thereducedspecicheatcannotbeexplainedbyincorrectPrstoichiometry,norbysomePrionsbeinginamixed-valentstate.Theresults,aftersubtractingthespecicheatofLaOs4Sb12anddividingby0.33,areshowninFig.7-11intheformofC=T.ThisgraphshowsalsoattothefunctiondescribingaSchottkyspecicheatforasinglet-tripletexcitations,scaledbyafactora=0.44.AsimilarscalingwasusedbyFredericketal.[ 71 ]toaccountforthespecicheatdataofPr(Os1xRux)4Sb12intermsofthesingletCEFgroundstate.AnecessitytousesuchasmallscalingfactorforthismodelofCEF(ofabout0.5)wasusedbyFredericketal.[ 71 ]toargueforadoubletCEFgroundstate.However,ascanbeseenfromFig.7-12,areasonablettothedoubletCEFmodelalsorequiresascalingfactor,althoughsomewhatlarger(a=0.73).Finally,attothesinglet-to-singletscatteringrequiresnoscalingatall.ThetshowninFig.7-13obtainedwithaasanadjustableparameter,resultedina=1.009(within1%). 100

PAGE 101

103 ]suggestpresenceoftheeldinducedAFQorderformuchhigherLa-concentrations,ashigh0.3. 101

PAGE 102

Thus,theseresults,togetherwithpreviouslydiscussedevolutionofzeroeldproperties,particularlyweaksensitivityofthetemperatureofthemagneticsusceptibilitymaximum,providestrongargumentsforCEFenergiesandeigenstatesbeingunaectedbyLaalloying,atleasttox=0.2.Ontheotherhand,thetemperaturesoftheSchottkyanomalyin13and14Tforx=0.6areabout0.3Klowerthanthoseforx0.2,suggestingapossibilitythattheCEFenergiesandthecrossingeldforx=0.4increasebyapproximately20%.Veryrecentresultsofthehigheldspecicheatstudyofx=0.67byAndraka[ 116 ]alsoimplytheCEFenergiestobe20{25%largerthanintheundopedmaterial.Thus,thereisapossibilityofanabrupt(butsmall)changeofCEFenergiessomewherebetweenx=0.2and0.67.However,towithinourexperimentaluncertainty,weclaimCEFenergies(andeigenstates)tobeidenticalbetweenx=0and0.2,thusintheconcentrationrangewheredramaticchangesofmareanticipatedbasedonmeasurementsof(C=T). Thesehigheldresultsallowustocommentonwhethertheagreementbetweenthemagnitudeofthezeroeldanomalyinmoderatelyandstrongly(x=0.67)dilutedalloysandtheSchottkyspecicheatcorrespondingtosinglet-singletexcitationsisaccidentalormeaningful.Thespecicheatmaximumforx=0.4in14Tisapproximately1500mJ/Kmol(200mJ/Kmol).ThisvalueissignicantlysmallerthanthetheoreticalvaluefortheSchottkymaximum(3650mJ/Kmol).SimilarlythespecicheatofPr0:33La0:67Os4Sb12inmagneticeldsashighas18Tshowsamaximumwhosevalue 102

PAGE 103

103 ]. TheresistivitiesofPr1xLaxOs4Sb12forx=0.05,0.3and0.7ineldsupto18Tweremeasuredintemperaturedownto20mK.Theuncertaintyinthedeterminationoftheabsolutevalueoftheresistivitywasupto30%.Theroomtemperatureresistivitywasapproximatelyequalforallthreecrystals.Therefore,weassumedthattheresistivityatroomtemperatureis300cmforallcrystals,consistentwiththepublishedvalueforbothendcompounds,PrOs4Sb12andLaOs4Sb12[ 92 ].TheratiooftheroomtemperatureresistancetotheresistanceextrapolatedtoT=0(RRR)was50,180,and170forx=0.05,0.3,and0.7,respectively.Withtheexceptionwiththeresultforx=0.05,thesevaluesbelongtothehighesteverreportedforpureanddopedPrOs4Sb12,suggestinggoodqualitiesofoursamples.Thex=0.05crystalwasfromthesamebatchwhoseresultsofspecicheatandsusceptibilityweredescribedinpreviousSections. 103

PAGE 104

Longitudinalmagnetoresistanceforx=0.05attwotemperatures,20and300mK,isshowninFig.7-20.Thetransversemagnetoresistanceforthesamealloyatfortemperatures20,310,and660mKisshowninFig.7-21.ThetwocurvesinFig.7-20showexcellentoverlap,implyinganabsenceoftemperaturedependenceoftheresistivitybelow300mKforanyeldbetween2and18T.Thisoverlapisconsistentwithourresistivitymeasurementsofthepurecompound(Fig.6-12)forwhichtheresistivitywasatbelow300mKforalleldsbetween3and18T. Thus,the20mKresistivityabovethecriticaleldisessentiallyidenticaltotheresidualresistivity,0.0forx=0.05increasesbyafactorof2between2and10T(Fig.7-21).Thisincreaseissignicantlylargerthanthecorrespondingincreaseforx=0whichwasabout25%.Thislargerincreasein0forx=0.05coincideswithsomesuppressionoftheAFQorderwithLa,asdemonstratedbyspecicheatmeasurementinmagneticelds.Alarger0at10Tforx=0.05isduetoasmallerdegreeoftheAFQorder.Thedropin0above10T,ontheotherhand,islesspronouncedforx=0.05thanx=0.ThesetrendscontinuewithfurtherLadoping,x=0.3. Theelectricalresistivityforx=0.3inzeroeld,justaboveTc,isproportionaltothesquareoftemperature,withA=0.16cm/K2(Fig.7-22,upperpanel).ByapplyingtheKadowaki-Woodsformula,A/2=105(withAincm/K2andinmJ/K2mol),wearriveatoforder100mJ/K2mol.However,theapplicationofjust0.5T(approximatelyHc2forthisconcentration)againrevealsthesaturationofresistivityatthelowesttemperatureswhichwasseeninthepurecompound(Fig.6-12).Inhighermagneticelds,thelinearvariationinT2isgraduallyrestrainedtonarrowertemperatureintervals 104

PAGE 105

Figure7-24showstheresistivityat20mKforx=0.3upto18Tforeldsparallelto(001),(011),and(010)andI//(001).Allthreeisothermsexhibitastepcenterednear9{10Tsuperimposedonalinearbackground.Intheinvestigatedeldrangewedonotndthedomestructurecharacteristicofx=0or0.05.Notetheapproximatelyequalslopesofthecurvesbelow3Tandabove14T.Interestingly,Sugawaraetal.[ 92 ]foundthatthemagnetoresistanceofLaOs4Sb12at0.36KisapproximatelylinearinmagneticeldandhasasimilarorientationasthatshowninFig.7-24.ThelargermagnetoresistanceofLaOs4Sb12for(011)thanforthe(001)directioncorrelateswiththelargermagnetoresistanceofx=0.3for(011)thanfor(001)direction(Fig.7-24).Therefore,wecanassumethattheapproximatelylinearinHmagnetoresistanceofPr0:7La0:3Os4Sb12below3Tandabove14Tisduetonormal(non-f)electrons.Subtractingsuchlinearcontributionsresultsinidenticalcurves,almostatbelow6Tandabove13T(insettoFig.7-24).Furthermore,theresultingcurvesareidenticalforallthreedirections,arguingforveryisotropicf-electronmagnetoresistance.ThisisotropicbehaviorisconsistentwiththesingletandinconsistentwiththedoubletCEFgroundstateofPr. TheeldvariationoftheresistivityshownintheinsettoFig.7-24isconsistentwithmodelcalculationsoftheresistivityforthe1-5modelbyFrederickandMaple[ 93 ].Accordingtothesecalculationsthattakeintoaccountmagneticandquadrupolardegreesoffreedom,theresistivityshouldexhibitasharpjumpatthecrossingeld.Theindependenceofthecrossingeldonthecrystallographicdirectionisalsoconsistentwiththe1-5CEFmodel(Fig.6-6).RecallthatCEFlevelcrossinginthe3-5CEFmodeloccursforthe(100)directiononly(Fig.6-7). Figure7-25showsrawdataforthesamesamplewhen~H//I//(100)forseveraltemperatures,20,310,660,and1100mK.Nobackgroundsubtractionhasbeendone. 105

PAGE 106

93 ]. Themorediluteconcentration,x=0.67wasinvestigatedtoabout0.35Kintemperatureandineldsupto14T.Itsresistivityatthelowesttemperaturesexhibitsasimilarmagneticelddependencetothatforx=0.3(Fig.7-26). ThepresentedresistivitydatashowthatthereisnosignofFIOPorderedphaseinthex=0.3material.OurpreviousspecicheatmeasurementsindicatedthattheFIOPphasedisappearssomewherenearx=0.2.However,themaineectoftheLadopingontheAFQanomalyisthesuppressionofitssize,withasomewhatsmallereectonthetransitiontemperatureitself.Thus,itispossiblethatthiseld-inducedAFQorderpersiststoconcentrationslargerthanx=0.2,butitssignaturesinthespecicheatareundetectableduetosmallentropiesinvolved.Thecalculationsoftheresistivitypredictingthestepinthemagnetoresistancewereperformedinasingleimpuritylimit,i.e.,assumingindependentscatteringfromeachPrion.ForPrOs4Sb12thescatteringinbothsmallandlargeeldsshouldbecoherent;i.e.,onemightexpectsmallcontributionfromfionsawayfromthecrossingeldofabout9T.Atthecrossingeld,thePrlatticelosesitscoherencesincesomeoftheionswillbeintheexcitedstate;i.e.,thetranslationalperiodicityislost.Webelieve,thiscoherencemechanismisresponsibleforthedomeshapeof(H)inPrOs4Sb12andthedierencebetweenpureandLa-dopedalloys. Theunchangedeldvalueforthestepintheresistivitybetweenx=0.3and0.67suggeststhatCEFenergiesarenotsignicantlyalteredbytheLadoping.ThisisinagreementwiththealmostunchangedtemperaturepositionofthemaximuminthemagneticsusceptibilityandspecicheatbelievedtobedueexcitationsbetweenthelowestCEFlevels. 106

PAGE 107

59 65 104 ].Thetemperatureseparationbetweenthetwostepsinacsusceptibilityforx=0isabout0.14Kandisapproximatelyequaltothatbetweenthepeaksinthespecicheat.TheeldcooleddcmagnetizationofsamplesperformedbyMeassonetal.[ 59 ]showedaMeissnereectof50%,indicating(likespecicheat)bulksuperconductivity.Therefore,thereisapossibilitythatthetwotransitionsareduetoinhomogeneouscoexistenceoftwosuperconductingphasesinPrOs4Sb12.Forx=0.05bothtransitionsarevisibleandtheoverallwidthofthetransitionisabout0.13K.Theonsettemperatureisapproximatelythesameasforx=0.Fromx=0.2to0.8theacsusceptibilitydataaresimilar.Thereisanincreaseofthetransitionwidth(inthereduced 107

PAGE 108

Themostprobableoriginofthewidesuperconductingtransitionsisinhomogeneities,whoseoriginisnotclear.PrOs4Sb12andLaOs4Sb12areisostructural,butLaOs4Sb12exhibitsaverysharptransition.Therefore,theinhomogeneitiesseemtobeassociatedratherwith4felectronsofPr.OneplausiblescenarioisamixtureoftwoelectroniccongurationsofPr,4f1and4f2.However,hightemperaturemagneticsusceptibilitydatawereingeneralconsistentwith4f2congurationofPr.Also,theLIIIabsorption[ 49 ]andinelasticneutronscattering[ 32 105 ]resultsagreewithavalenceofPrcloseto+3.Anotherscenariofortheexistenceofinhomogeneitiesistheclosenessofthesystemtoalongrangeantiferroquadrupolarorder[ 56 ].Thismeansthatclusterswithashort-rangeorderwouldhavedierentsuperconductingparametersthantheremainingpartofthesample. 108

PAGE 109

71 ].IfthesetwopeaksinC=Tarerelatedtotwodierentsuperconductingphases,thencrystalNo.1hasarelativelylargefractioncorrespondingtothehigherTcphase.Theevolutionofthesespecicheatpeaksinmagneticeldsindicatesthatthereisacorrelationbetweenthesetwophases. ThetwoinsetstoFig.7-28showthecriticaleldversusTdeterminedbyspecicheatforbothsamples.ForsampleNo.1bothsuperconductingtransitionsarevisibleineldsupto0.5T.OpensymbolsmarkthehighertransitiontemperatureTc1andtheclosedcirclesmarkTc2.Thelinesrepresentingthetwotransitionsremainapproximatelyparallel,withatemperatureseparationofabout0.12K.ThemostinterestingfeatureisapositivecurvatureinHc2versusTforH<2000Oe.TheinitialslopeofHc2versusTisdHc2=dT=1T/K.However,forH>2000OetheHc2islinearinT(insettoupperpanelofFig.7-28)andtheslopeisabouttwiceaslarge,i.e.dHc2=dT=2.1T/K.ApositivecurvatureinHc2versusTnearTc,wasalsodetectedinmeasurementsofelectricalresistivity,magneticsusceptibility,andspecicheat[ 7 55 63 67 ].Thisconsistencywasusedtoargueforintrinsicproperty,andnotduetosomeartifactoftransportmeasurementsorcomingfrominhomogeneitiesinthesamples.Meassonetal.[ 59 ]consideredthispositivecurvaturetobeahallmarkofthetwo-bandsuperconductivity.Thetwo-bandsuperconductivitydescription,inwhichtwodierentbandscorrespond 109

PAGE 110

106 ]inmagneticelds. InsampleNo.2wewereunabletodeterminetheevolutionofTc1inelds,thereforeonlyonelineispresentedintheinsettolowerpanel.Withintheresolutionofourmeasurements,thereisnocurvatureinHc2versusTnearTc2,andtheslopeisfoundequaltothatofsampleNo.1foreldshigherthan2000Oe,i.e.2.1T/K.Toourknowledge,thisistheonlymeasurementofHc2(T)nearTcthatdoesnotndthispositivecurvature. Forallconcentrationsotherthanx=0onlyasinglesuperconductinganomalyinthespecicheatmeasurementscouldbeclearlydetected(mostprobablycorrespondingtoTc2inx=0).Ourx=0.02and0.05alloysexhibitasmallbutdetectablecurvature(insettoFig.7-29forx=0.05).Forx=0.05,theinitialslopedeterminedforeldssmallerthan1000Oeisabout0.9T/K.Foreldshigherthan1000Oetheslopeis1.6T/K.QuitepossiblythereisasmallcurvatureinHc(T)forx=0.1,butitcannotbeclearlyresolved(insettoFig7-30).Forx=0.3(Fig.7-31)andalloyswithx>0.3wehaveaconventionalvariationofHc2(T),i.e.,withnopositivecurvaturenearTc.Forx=0.3dHc2=dT=0.5T/K. TheevolutionofdHc2=dTisofgreatinterestsincetheslopeofHc2versusTatTc2isrelatedtotheeectivemassofCooperpairs.Figure7-32showsthedHc2=dTversusLaconcentration.Forconcentrationsx=0,0.02,and0.05twosetsofdHc2=dTvalueshavebeendetermined:theinitialslope(opencircles)andthatforsucientlylargeelds,forwhichHc2isclearlylinearinT(H>2000Oeforx=0andH>1000Oeforx=0.02and0.05)(lledcircles).ThisdHc2=dT,markedbyclosedcircles,isabout2.1T/Kforx=0anddecreasesrapidlywithx,withmostofthereductiontakingplaceforsmallvaluesofx.ThisimpliesthattheeectivemassofcarriersisrapidlyreducedbysmallamountofLa. Inthecleanlimitofsuperconductivity(l),whichisthecaseforPrOs4Sb12andLaalloys,theeectivemassdependsonp 110

PAGE 111

Bothp Usingthetwobandsuperconductivityframework,thetwoslopesinHc2(T)(Fig.7-32)forx
PAGE 112

59 108 ].However,insuchacaseonlytheuppertransitionshouldshowupinthespecicheat.Anotherpossibility,notyetconsideredinliterature,isthattheuppersuperconductingtransitionisrelatedtothephasetransitionwithanorderhigherthan2[ 109 { 111 ].Atwo-steptransitionisexpectedinthiscase.Ahigherorderphasetransition(suchasthethirdorder)wouldbeverysusceptibletoimpuritiesandimperfectionsleadingtoasecondordertransitioninsucientlyimperfectcrystals.TheexpulsionofmagneticuxwouldbeweakwhenloweringTfromTc1toTc2,followedbyamorerapidexpulsionbelowTc2.Thisscenariomyaccountforthedierentmagneticeldresponseinmagneticeldsofthetwosamples.Thepossibilityofthethirdorderphasetransitionremainsspeculativesincefewmaterialswerereportedtoexhibitphasetransitionswithanorderhigherthan2[ 109 { 111 ]. 112

PAGE 113

X-raydiractionpatternsofPr1xLaxOs4Sb12versusLacontentxforx=0,0.1,0.2,0.4,and1.Theintensitiesarenormalizedtothehighestpeak. 113

PAGE 114

LatticeconstantaofPr1xLaxOs4Sb12versusLacontentx.Thesolidlineisalinearleast-squaresttoaversusx. Figure7-3. Magneticsusceptibility(T)ofPr1xLaxOs4Sb12normalizedtoPrmolebetween1.8and10K,measuredintheeldof0.5T.Themeasurementswereperformedonindividualcrystalswithmassesrangingbetween1and5mg.Largeuncertaintyareduetolargebackground(ReprintedwithpermissionfromRotunduetal.[ 112 ]). 114

PAGE 115

Magneticsusceptibility(T)ofPr0:33La0:67OsSb12versustemperatureT.IntheinsetistheCurie-Weisstofthehightemperaturedata(T>150K)fromwhichaneectivemomentof3.62B/Prmolehasbeencalculated. 115

PAGE 116

116

PAGE 117

117

PAGE 118

112 ]). 118

PAGE 119

112 ]). 119

PAGE 120

SuperconductingtransitiontemperatureTcversusxofPr1xLaxOs4Sb12(ReprintedwithpermissionfromRotunduetal.[ 112 ]). Figure7-10. TotalC=TdiscontinuityatTcand0versusxofPr1xLaxOs4Sb12for0x1(ReprintedwithpermissionfromRotunduetal.[ 112 ]). 120

PAGE 121

Figure7-12. 121

PAGE 122

Figure7-14. 122

PAGE 123

113 ]). Figure7-16. 113 ]). 123

PAGE 124

Figure7-18. 124

PAGE 125

Figure7-20. 125

PAGE 126

114 ]). 126

PAGE 127

114 ]). 127

PAGE 128

128

PAGE 129

Figure7-25. 129

PAGE 130

114 ]). 130

PAGE 131

ACsusceptibilityversusT=TcofPr1xLaxOs4Sb12,forx=0,0.05,0.4,0.8,and1.SampleNo.1exhibitonesuperconductingtransitionwhilesampleNo.2havetwo(ReprintedwithpermissionfromRotunduetal.[ 115 ]). 131

PAGE 132

115 ]). 132

PAGE 133

115 ]). Figure7-30. 115 ]). 133

PAGE 134

115 ]). Figure7-32. 115 ]). 134

PAGE 135

115 ]). 135

PAGE 136

ThischaptersummarizestheresultsofthermodynamicmeasurementsonPr1xLaxOs4Sb12(0x1)asafunctionoflanthanumconcentration(x),temperature,andmagneticeld.Specicheatmeasurementsineldsbetween8and32TofPrOs4Sb12extendedthepreviouslymeasuredH-Tphasediagramupto8T[ 56 ].TheSchottkyanomaly,duetoexcitationsbetweentwolowestcrystallineelectriceld(CEF)levels,wasfoundforboth~H//(100)and~H//(110)abovetheeldwheretheeld-inducedorderedphase(FIOP)(identiedwithanantiferroquadrupolarorderedphase[ 56 ])iscompletelysuppressed.TheH-TphasediagramshowsweakmagneticanisotropyandimpliesacrossingofthetwoCEFlevelsatabout9{10Tforbothelddirections.CalculationsoftheZeemaneectinthe1CEFgroundstatescenariopredictacrossingbetween1andthelowest5energylevel,betweenbetween9and10T,whichisalmostindependentontheelddirectionSimilarcalculationsforthe3CEFgroundstatemodelpredictbothstronganisotropyofthephasediagramandnocrossingforthe(110)direction.Thus,thisworkhasestablishedthenon-magnetic1singletbeingtheCEFgroundstate.Furthermore,ourinvestigationoftheeld-inducedorderedphase(FIOP)hasprovidedevidencesforthe(near)levelcrossingasthedrivingmechanismofFIOP.Thenon-magneticsinglet1CEFgroundstatecontradictstheideaofaquadrupolarKondoeect,atleastinthepresentformulation,astheoriginoftheheavyfermionbehaviorinPrOs4Sb12. TheLa-alloystudywasperformedtoprovideinsightontheoriginoftheelectronicmassenhancement.ZeroeldspecicheatofPr1xLaxOs4Sb12showedthatthetotal(C=T)atTcisreducedmorethansevenfoldfromabout800mJ/K2molbetweenx=0and0.3andstaysapproximatelyconstantandaboutequaltothatofLaOs4Sb12,whichisaconventionalsuperconductor,forx>0.3.Similarly,measurementsoftheuppercriticaleldsuggestedtheexistenceofacrossoverconcentration,xcr0.2{0.3.TheuppercriticaleldslopenearTcdecreasesrapidlywithxforx
PAGE 137

Inordertoverifythatsingle-ionparameters,suchashybridizationandCEFspectrum(consideredbysingleimpuritymodels),arenotseverelyaectedthealloying,measurementsofthelatticeconstantandhigheldspecicheatwereperformed.X-raypowderdiractionofPr1xLaxOs4Sb12revealedananomalouslysmallincreaseoflatticeconstantwithx(0.04%betweentheendcompounds).Thelow-temperaturemagneticsusceptibilityshowedalmostnonexistentconcentrationdependenceofthelowtemperaturemaximum,believedtobeduetoexcitationsbetweenthelowestCEFlevels.Specicheatinmagneticeldsupto14Tforx=0,0.02,0.1,and0.2showedthatthetemperatureoftheSchottkyanomalyhasasimilarelddependenceforalltheseconcentrations.Therefore,CEFenergiesandeigenstatesofPrareunchangedbetweenx=0andatleast0.2,i.e.,inthealloyparameterrangewherealargechangeoftheelectroneectivemassisobserved.Theseresultsreinforceourconclusionofanon-singleimpurityoriginoftheheavyfermionbehaviorofPrOs4Sb12.Inparticular,theyareinconsistentwiththecurrentlyprevailingFulde-Jensenmodel. Ourresultsimplyastrongcorrelationbetweentheparameterscharacterizingtheeld-inducedantiferroquadrupolarorder,suchasthetransitiontemperature,thesizeofthecorrespondingspecicheatanomaly,andm,suggestingapossibilitythattheheavyfermionstateisduetouctuationsofthequadrupolarorderparameter.Thispossibilityisconsistentwithourmagnetoresistanceresults,suggestingthatmincreaseswiththemagneticeldupthetheeldvalueforwhichthelong-rangeorderisobserved. ThestudyofthemagnetoresistanceonLa-dopedsamplesconrmedthesingletCEFgroundstate.Furthermore,theyprovidedanexplanationforafew-yearoldpuzzleofanunusualmagnetoresistanceofthepurecompound,previouslyusedtoargueforadoubletCEFgroundstate. 137

PAGE 138

138

PAGE 139

[1] G.R.Stewart.Rev.Mod.Phys.,56:755,1984. [2] Z.Fisk,H.R.Ott,T.M.Rice,andJ.L.Smith.Nature,320:124,1986. [3] N.GreweandF.Steglich.HeavyFermions.InHandbookonthePhysicsandChemistryofRareEarths.vol.14,page343,ElsevierScience.EditedbyK.A.GschneiderJr.andL.Eyring,Amsterdam,1991. [4] H.R.Ott.ProgressinLowTemperaturePhysics.vol.11,page215,Elsevier,Amsterdam,1987. [5] P.A.Lee,T.M.Rice,J.W.Serene,L.J.Shan,andJ.W.Wilkins.CommentsCondens.MatterPhys.,12:99,1986. [6] J.L.Sarrao,L.A.Morales,J.D.Thompson,B.L.Scott,G.R.Stewart,F.Wastin,J.Rebizant,P.Boulet,E.Colineau,andG.H.Lander.Nature,420:297,2002. [7] E.D.Bauer,N.A.Frederick,P.-C.Ho,V.S.Zapf,andM.B.Maple.Phys.Rev.B.,65:100506(R),2002. [8] M.Melamud,N.Shamir,andH.Shaked.J.Mag.Magn.Mater.,7:290,1978. [9] C.Broholm,H.Lin,P.T.Matthews,T.E.Mason,W.J.L.Buyers,M.F.Collins,A.A.Menovsky,J.A.Mydosh,andJ.K.Kjems.Phys.Rev.B,43:12809,1991. [10] M.T.Hutchings.Pointchargecalculationsofenergylevelsofmagneticionsincrys-tallineelectricelds,SolidStatePhysics,AdvancesinResearchandApplications.vol.16,AcademicPress,NewYorkandLondon,1964. [11] K.W.Stevens.Proc.Phys.Soc.,A65:209,1952. [12] B.BleaneyandK.W.Stewens.Rept.Progr.Phys.,16:108,1953. [13] K.R.Lea,M.J.K.Leask,andW.P.Wolf.J.Phys.Chem.Solids,23:1381,1962. [14] T.Inui,Y.TanabeandY.Onodera.GroupTheoryandItsApplicationsinPhysics.Springer,Berlin,1996. [15] K.Takegahara,H.Harima,andA.Yanase.J.Phys.Soc.Jpn.,70:1190,2001. [16] D.L.Cox.Phys.Rev.Lett.,59:1240,1987. [17] D.L.Cox.PhysicaC,153:1642,1988. [18] S.E.Barnes.Phys.Rev.B,37:3671,1988. [19] B.AndrakaandA.M.Tsvelik.Phys.Rev.Lett.,67:2886,1991. [20] C.L.Seaman,M.B.Maple,B.W.Lee,S.Ghamaty,M.S.Torikachvili,J.S.Kang,L.Z.Liu,J.W.Allen,andD.L.Cox.Phys.Rev.Lett.,67:2882,1991. 139

PAGE 140

C.L.Seaman,M.B.Maple,B.W.Lee,S.Ghamaty,M.S.Torikachvili,J.S.Kang,L.Z.Liu,J.W.Allen,andD.L.Cox.J.AlloysCompounds,181:327,1992. [22] L.Z.Liu,J.W.Allen,C.L.Seaman,M.B.Maple,Y.Dalichaouch,J.S.Kang,M.S.Torikachvili,andM.A.LopezdelaTorre.Phys.Rev.Lett.,68:1034,1992. [23] D.L.CoxandA.Zawadowski.Adv.Phys.,47:599,1998. [24] J.R.SchrieerandP.A.Wol.Phys.Rev.,149:491,1966. [25] P.D.SacramentoandP.Schlottmann.Phys.Lett.A,142:245,1989. [26] P.D.SacramentoandP.Schlottmann.PhysicaB,163:231,1990. [27] P.D.SacramentoandP.Schlottmann.Phys.Rev.B,43:13294,1991. [28] P.B.WiegmannandA.M.Tsvelick.Pis'maZh.Eksp.Teor.Fiz.,38:489,1983. [29] A.M.TsvelickandP.B.Wiegmann.Z.Phys.,54:201,1984. [30] A.P.Ramirez,P.Chandra,P.Coleman,Z.Fisk,J.L.Smith,andH.R.Ott.Phys.Rev.Lett.,73:3018,1994. [31] C.R.Rotundu,H.Tsujii,Y.Takano,B.Andraka,H.Sugawara,Y.Aoki,andH.Sato.Phys.Rev.Lett.,92:037203,2004. [32] E.A.Goremychkin,R.Osborn,E.D.Bauer,M.B.Maple,N.A.Frederick,W.M.Yuhasz,F.M.Woodward,andJ.W.Lynn.Phys.Rev.Lett.,93:157003,2004. [33] E.D.Bauer,P.-C.Ho,M.B.Maple,T.Schauerte,D.L.Cox,andF.B.Anders.Phys.Rev.B.,73:094511,2006. [34] T.Hotta.Phys.Rev.Lett.,94:067003,2005. [35] E.M.Forgan.Physica(Utrecht)B,107:65,1981. [36] P.FuldeandJ.Jensen.Phys.Rev.B,27:4085,1983. [37] J.A.Hertz.Phys.Rev.B,14:1165,1976. [38] A.J.Millis.Phys.Rev.B,48:7183,1993. [39] T.MoriyaandT.Takimoto.J.Phys.Soc.Jpn.,64:960,1995. [40] G.R.Stewart.Rev.Mod.Phys.,73:797,2001. [41] G.R.Stewart.Rev.Mod.Phys.,78:743,2006. [42] D.VuHung.Etudetheoriquedel0etatdevortexdansdenouveauxsupraconducteurs:MgB2etPrOs4Sb12.PhDthesis,JosephFourierUniversity-GrenobleI,2006. [43] W.JeitschkoandD.J.Braun.ActaCrystallogr.B,33:3401,1977. 140

PAGE 141

H.Sugawara,S.Osaki,S.R.Saha,Y.Aoki,H.Sato,H.Inada,H.Shishido,R.Settai,Y.Onuki,H.Harima,andK.Oikawa.Phys.Rev.B.,66:220504(R),2002. [45] M.-A.Measson.LaSkutteruditePrOs4Sb12:Supraconductiviteetcorrelations.PhDthesis,CEAGrenoble,2005. [46] H.Sato,Y.Aoki,T.Namiki,T.D.Matsuda,K.Abe,S.Osaki,S.R.Saha,andH.Sugawara.PhysicaB,328:34,2003. [47] V.Keppens,D.Mandrus,B.C.Sales,B.C.Chakoumakos,P.Dai,R.Coldea,M.B.Maple,D.A.Gajewski,E.J.Freeman,andS.Bennington.Nature,395:876,1998. [48] L.Mihaly.Nature,395:839,1998. [49] D.Cao,F.Bridges,S.Bushart,E.D.Bauer,andM.B.Maple.Phys.Rev.B,67:180511,2003. [50] T.Goto,Y.Nemoto,K.Sakai,T.Yamaguchi,M.Akatsu,T.Yanagisawa,H.Hazama,K.Onuki,H.Sugawara,andH.Sato.Phys.Rev.B,69:180511,2004. [51] T.Tayama,T.Sakakibara,H.Sugawara,Y.Aoki,andH.Sato.J.Phys.Soc.Jpn.,72:1516,2003. [52] N.W.AshcroftandN.D.Mermin.SolidStatePhysics.W.B.SaundersCo.,Philadelphia,1976. [53] M.B.Maple,P.-C.Ho,E.D.Bauer,W.M.Yuhasz,F.M.WoodwardV.S.Zapf,N.A.Frederick,andJ.W.Lynn.J.Phys.Soc.Jpn.,S71:23,2002. [54] E.D.Bauer,A.Slebarski,E.J.Freeman,C.Sirvent,andM.B.Maple.J.Phys.:Condens.Matter,13:4495,2001. [55] P.-C.Ho,N.A.Frederick,V.S.Zapf,E.D.Bauer,T.D.Do,andM.B.Maple.Phys.Rev.B,67:180508(R),2003. [56] Y.Aoki,T.Namiki,S.Ohsaki,S.R.Saha,H.Sugawara,andH.Sato.J.Phys.Soc.Jpn.,71:2098,2002. [57] D.J.BraunandW.Jeitschko.J.Less-CommonMet.,72:147,1980. [58] H.HarimaandK.Takegahara.PhysicaB,359-361:920,2005. [59] M.-A.Measson,D.Braithwaite,J.Flouquet,G.Seyfarth,J.P.Brison,E.Lhotel,C.Paulsen,H.Sugawara,andH.Sato.Phys.Rev.B,70:064516,2004. [60] K.KadowakiandS.B.Woods.SolidStateCommun.,58:507,1986. [61] T.Sakakibara,T.Tayama,T.Onimaru,D.Aoki,Y.Onuki,H.Sugawara,Y.Aoki,andH.Sato.PhysicaB,163:231,1990. 141

PAGE 142

N.Oeschler,P.Gegenwart,F.Weickert,I.Zerec,P.Thalmeier,F.Steglich,E.D.Bauer,N.A.Frederick,andM.B.Maple.Phys.Rev.B,69:235108,2004. [63] R.Vollmer,A.Fait,C.Peiderer,H.v.Lohneysen,E.D.Bauer,P.-C.Ho,V.Zapf,andM.B.Maple.Phys.Rev.Lett.,90:057001,2003. [64] N.Oeschler,P.Gegenwart,F.Steglich,N.A.Frederick,E.D.Bauer,andM.B.Maple.ActaPhys.Pol.B,34:959,2003. [65] T.Cichorek,A.C.Mota,F.Steglich,N.A.Frederick,W.M.Yuhasz,andM.B.Maple.Phys.Rev.Lett.,94:107002,2005. [66] J.K.HulmandB.B.Goodman.Phys.Rev.B,106:659,1957. [67] K.Izawa,Y.Nakajima,J.Goryo,Y.Matsuda,S.Osaki,H.Sugawara,H.Sato,P.Thalmeier,andK.Maki.Phys.Rev.Lett.,90:117001,2003. [68] G.Seyfarth,J.P.Brison,M.-A.Measson,J.Flouquet,K.Izawa,Y.Matsuda,H.Sugawara,andH.Sato.J.AlloysCompounds,95:107004,2005. [69] N.Padamsee,J.E.Neighbor,andC.A.Shiman.J.LowTemp.,12:387,1973. [70] K.Grube,S.Drobnik,C.Peiderer,H.v.Lohneysen,E.D.Bauer,andM.B.Maple.Phys.Rev.B,73:104503,2006. [71] N.A.Frederick,T.A.Sayles,andM.B.Maple.Phys.Rev.B,71:064508,2005. [72] H.Suderow,S.Vieira,J.D.Strand,S.Budko,andP.C.Caneld.Phys.Rev.B,69. [73] D.E.MacLaughlin,J.E.Sonier,R.H.Hener,O.O.Bernal,B.-L.Young,M.S.Rose,G.D.Morris,E.D.Bauer,T.D.Do,andM.B.Maple.Phys.Rev.Lett.,89:157001,2002. [74] E.E.M.Chia,M.B.Salamon,H.Sugawara,andH.Sato.Phys.Rev.Lett.,91:247003,2003. [75] H.Kotegawa,M.Yogi,Y.Imamura,Y.Kawasaki,G.-q.Zheng,Y.Kitaoka,S.Ohsaki,H.Sugawara,Y.Aoki,andH.Sato.Phys.Rev.Lett.,90:027001,2003. [76] Y.Aoki,A.Tsuchiya,T.Kanayama,S.R.Saha,H.Sugawara,H.Sato,W.Higemoto,A.Koda,K.Ohishi,K.Nishiyama,andR.Kadono.Phys.Rev.Lett.,91:067003,2003. [77] Y.Aoki,H.Sugawara,H.Hisatomo,andH.Sato.J.Phys.Soc.Jpn.,74:209,2005. [78] K.Maki,S.Haas,P.Parker,H.Won,K.Izawa,andY.Matsuda.Europhys.Lett.,68(5):720,2004. 142

PAGE 143

R.Bachmann,F.J.DiSalvoJr.,T.H.Geballe,R.L.Greene,R.E.Howard,C.N.King,H.C.Kirsch,K.N.Lee,R.E.Schwall,H.U.Thomas,andR.B.Zubeck.Rev.Sci.Instrum.,43:205,1972. [80] R.E.Schwall,R.E.Howard,andG.R.Stewart.Rev.Sci.Instrum.,46:1054,1975. [81] G.R.Stewart.Rev.Sci.Instrum.,54:1,1983. [82] J.S.Kim.DopingExperimentsinHeavyFermionSuperconductors.PhDthesis,UniversityofFlorida,1992. [83] D.J.MixsonII.DieringRolesofDisorder:non-Fermi-LiquidBehaviorinUCu5xNixandCurieTemperatureEnhancementinUCu2Si2xGex.PhDthesis,UniversityofFlorida,2005. [84] M.Kohgi,K.Iwasa,M.Metoki,S.Araki,N.Bernhoeft,J.M.Mignot,A.Gukasov,H.Sato,Y.Aoki,andH.Sugawara.J.Phys.Soc.Jpn.,72:1002,2003. [85] T.Tayama,T.Sakakibara,K.Kitami,M.Yokoyama,K.Tenya,H.Amitsuka,D.Aoki,Y.Onuki,andZ.Kletowski.J.Phys.Soc.Jpn.,70:248,2001. [86] J.Kondo.J.Phys.Soc.Jpn.,16:1690,1961. [87] B.Bleaney.J.Appl.Phys.,34:1024,1963. [88] B.AndrakaandY.Takano.Rev.Sci.Instr.,67:4256,1996. [89] E.S.R.Gopal.SpecicHeatatLowTemperatures.PlenumPress,NewYork,1966. [90] Y.Aokietal:Unpublished,Privatecommunication. [91] M.B.Maple,E.D.Bauer,V.S.Zapf,E.J.Freeman,N.A.Frederick,andR.P.Dickey.ActaPhys.Pol.B,32:3291,2001. [92] H.Sugawara,M.Kobayashi,S.Osaki,S.R.Saha,T.Namiki,Y.Aoki,andH.Sato.Phys.Rev.B,72:014519,2005. [93] N.FrederickandM.B.Maple.J.Phys.Condens.Matter,15:4789,2003. [94] P.FuldeandM.Loewenhaupt.Adv.Phys.,34:589,1986. [95] Z.FiskandD.C.Johnston.SolidStateCommun.,22:359,1977. [96] C.R.RotunduandB.Andraka.J.Appl.Phys.,97:10A927,2005. [97] N.A.Frederick,T.D.Do,P.-C.Ho,N.P.Butch,V.S.Zapf,andM.B.Maple.Phys.Rev.B,69:024523,2004. [98] Y.Aokietal:Unpublished. 143

PAGE 144

W.Schnelle,A.Leithe-Jasper,M.Schmidt,H.Rosner,H.Borrmann,U.Burkhardt,J.A.Mydosh,andY.Grin.Phys.Rev.B,72:020402(R),2005. [100] S.Sanada,Y.Aoki,H.Aoki,A.Tsuchiya,D.Kikuchi,H.Sugawara,andH.Sato.J.Phys.Soc.Jpn.,74:246,2005. [101] T.Namiki,Y.Aoki,H.Sugawara,andH.Sato.ActaPhysicaPolonicaB,34:1161,2003. [102] U.Ahlheim,M.Winkelmann,P.vanAken,C.D.Bredl,F.Steglich,andG.R.Stewart.J.Magn.Magn.Mater.,76-77:520,1988. [103] Y.Yonezawa,S.Toda,Y.Aoki,K.Kuwahara,D.Kikichuchi,H.Sugawara,andH.Sato.Abstract23pPSA-1,FallMeetingoftheJapan.Phys.Soc.,2006. [104] S.Drobnik,K.Grube,C.Peiderer,H.v.Lohneysen,E.D.Bauer,andM.B.Maple.PhysicaB,359-361:901,2005. [105] K.Kuwahara,K.Iwasa,M.Kohgi,K.Kaneko,N.Metoki,S.Raymond,M.-A.Measson,J.Flouquet,H.Sugawara,Y.Aoki,andH.Sato.Phys.Rev.Lett.,95:107003,2005. [106] G.Seyfarth,J.P.Brison,M.-A.Measson,J.Flouquet,K.Izawa,Y.Matsuda,H.Sugawara,andH.Sato.Phys.Rev.Lett.,95:107004,2005. [107] G.Bruls,D.Weber,B.Wolf,P.Thalmeier,B.Luthi,A.deVisser,andA.Menovsky.Phys.Rev.Lett.,65:2294,1990. [108] D.M.Broun,P.J.Turner,G.K.Mullins,D.E.Sheehy,X.G.Zheng,S.K.Kim,N.A.Frederick,M.B.Maple,W.N.Hardy,andD.A.Bonn.cond-mat/0310613. [109] P.Kumar,D.Hall,andR.G.Goodrich.Phys.Rev.Lett.,82:4532,1999. [110] P.Kumar.Phys.Rev.B,68:064505,2003. [111] R.WernerandV.J.Emery.Phys.Rev.B,67:014504,2003. [112] C.R.Rotundu,P.Kumar,andB.Andraka.Phys.Rev.B,73:014515,2006. [113] C.R.RotunduandB.Andraka.AIPConferenceProceedings,24thInternationalConferenceonLowTemperaturePhysics,Orlando,FL,August10-17,2005(850:653,2006). [114] C.R.RotunduandB.Andraka.cond-mat/0610520. [115] C.R.Rotundu,H.Tsujii,P.Kumar,B.Andraka,H.Sugawara,Y.Aoki,andH.Sato.cond-mat/0606730. [116] B.Andraka.Privatecommunication. 144

PAGE 145

CostelRemusRotunduwasbornMarch3,1974inD^ngeni,Romania.RaisedinHulubandthenTrusesti,hewenttoBotosanitoattendtheA.T.LaurianNationalCollege,mathematics-physicssection,wherehegraduatedfromhighschoolinJune1992.HegraduatedwithaBachelorofSciencedegreeinphysics(specializingintheoreticalphysics)fromRomania'soldestuniversity,Al.I.CuzaUniversity,inJune1997.OneyearandahalflaterhegraduatedfromthesameuniversitywithMastersofScienceinphysics(specializinginnonlineartheoryphenomena).Afterworking2yearsasaresearchassistant(theorist)attheNationalInstituteofResearchandDevelopmentforTechnicalPhysicsfromthesamecity,heleftfortheU.S.tocontinuehisgraduatestudiesatUniversityofFlorida,wherehepursuedaPh.D.degreeinexperimentalcondensedmatterphysics.HeworkedunderDr.BohdanAndraka'supervisionintheheavy-fermionarea.DuringhisstayatUniversityofFloridahewasalsoappointedasPhysicsIandIIlaboratoryinstructor.AftergraduationhegotaResearchAssociatepositionwithDr.RichardGreene,attheCenterforSuperconductivityResearch(CSR)-UniversityofMarylandCollegePark. 145


Permanent Link: http://ufdc.ufl.edu/UFE0017620/00001

Material Information

Title: Novel Heavy Fermion Behavior in Praseodymium-Based Materials: Experimental Study of PrOs4Sb12
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0017620:00001

Permanent Link: http://ufdc.ufl.edu/UFE0017620/00001

Material Information

Title: Novel Heavy Fermion Behavior in Praseodymium-Based Materials: Experimental Study of PrOs4Sb12
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0017620:00001


This item has the following downloads:


Full Text





NOVEL HEAVY FERMION BEHAVIOR IN PRASEODYMIUM-BASED MATERIALS:
EXPERIMENTAL STUDY OF PrOs4Sbl2



















By

COSTEL REMUS ROTUNDU


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2007

































Copyright 2007

by

Costel Remus Rotundu


































To my parents, Constantin and Elena Rotundu,

for their sacrifices to ensure my education.









ACKNOWLEDGMENTS

I am dedicating this work to my dearest human beings, my parents Elena and

Constantin Rotundu. I cannot find an adequate way to express my love and gratitude to

them. I thank them for their infinite support in order to complete my education. I am

grateful to my mother and my brother Romulus Neculai Rotundu for believing in me.

I owe much to my adviser, Dr. Bohdan Andraka. He has been an incredible source

of guidance and inspiration. He was a great adviser with endless patience. My education

would not have been possible without his financial help (through DOE and NSF). I am

deeply indebted to him. Special thanks go to Prof. Yasumasa Takano for teaching me so

many experimental tricks; and for discussions, support, and great collaboration, especially

at the National High Magnetic Field Laboratory (NHMFL). He was an endless source of

energy. I would like to thank Prof. Gregory R. Stewart for letting me use his laboratory.

I thank my other supervisory committee members (Profs. Bohdan Andraka, Gregory R.

Stewart, Yasumasa Takano, Pradeep Kumar and Ion Ghiviriga) for reading this work and

for their advices. I received help with many experiments at NHMFL and our lab from Dr.

Hiroyuki Tsujii. I thank Drs. Jungsoo Kim and Daniel J. Mixson II for their technical

advice. Other people in the field I would like to acknowledge are Prof. Peter Hirschfeld,

the finest professor I ever had, who gave me insight on the theory of condensed matter

physics; and Drs. Eric C. Palm and Tim P. Murphy for their help and support over more

than 4 years at the SC\ I / NHMFL. I thank Center of Condensed Matter Sciences for the

financial support through the Senior Graduate Student Fellowship. Last and not least, I

would like to thank my high school physics teacher (Dumitru Tatarcan), who encouraged

and guided my first steps in physics.









TABLE OF CONTENTS


page


ACKNOW LEDGMENTS .................................

LIST O F TABLES . . . . . . . . . .

LIST OF FIGURES . . . . . . . . .

A B ST R A C T . . . . . . . . . .


CHAPTER


1 INTRODUCTION ..................................

2 THEORETICAL BACKGROUND .........................

2.1 The Crystalline Electric Field (CEF) for Cubic Group ............
2.2 Conduction Electron Mass Enhancement (m*) Mechanism in PrOs4Sb12 .
2.2.1 Quadrupolar Kondo Effect .......................
2.2.1.1 Thermodynamic Properties of the Quadrupolar Kondo


2.2.2
2.2.3


M odel . . . . . . .
2.2.1.2 Relevance for the Case of Pr3+ Ion in PrOs4Sb12 .
Fulde-Jensen Model for m* Enhancement in Pr Metal .
Fluctuations of the Quadrupolar Order Parameter ......


3 PROPERTIES REVIEW OF THE PrOs4Sb12 .............

3.1 Crystalline Structure .. .. .. .. ... .. .. .. .. ... .
3.1.1 Rattling of Praseodymium Atom .. .............
3.1.2 V alence . . . . . . . .
3.1.3 Crystalline Electric Fields .. ...............
3.2 Normal-State Zero-Field Properties .. ...............
3.2.1 Specific H eat . . . . . . .
3.2.2 de Haas van Alphen Measurements .. ...........
3.2.3 R esistivity . . . . . . .
3.2.4 DC Magnetic Susceptibility .. ................
3.3 The Long-Range Order in Magnetic Fields .. ...........
3.4 Superconductivity . . . . . . .
3.4.1 Unconventional Superconductivity .. ............
3.4.1.1 The Double Transition .. .............
3.4.1.2 Temperature Dependence of Specific Heat Below Tc
3.4.1.3 Nuclear Magnetic Resonance (Sb NQR) ......
3.4.1.4 Muon Spin Rotation (pSR) .. ..........
3.4.2 Conventional Superconductivity .. .............
3.4.2.1 Nuclear Magnetic Resonance (pSR) .. .......
3.4.2.2 Penetration Depth Measurements (A) by pSR .
3.4.2.3 Low-Temperature Tunneling Microscopy ......









4 EXPERIMENTAL METHODS ...........


4.1 The Samples: Synthesis and ('!C i o :terization ....... ......... 49
4.1.1 Synthesis ................. . . .... 49
4.1.2 X-Rays Diffraction ('!I i o :terization ...... . ..... 51
4.2 Specific Heat Measurements .................. ..... .. 52
4.2.1 Equipment .................. ............. .. 52
4.2.1.1 Cryogenics. .................. .. .... .. .. 52
4.2.1.2 Sample Platform ................ .... .. 55
4.2.2 Thermal Relaxation Method ................. . .. 55
4.3 Magnetic Measurements .................. ......... .. 57
4.3.1 DC Susceptibility .................. ......... .. 57
4.3.2 AC Susceptibility .................. . .. 58
4.4 Resistivity .................. ................. .. 59

5 MATERIALS CHARACTERIZATION ................ .... .. 65

6 PrOs4Sb12 . . . . . . ... . . . 67

6.1 Investigation of CEF Configuration by Specific Heat in High Magnetic Fields 67
6.2 Magnetoresistance of PrOs4Sbi2 ................... ... 73

7 PrlxLaxOs4Sbl2 ............... ............ .. 93

7.1 Lattice Constant ............... ........... .. 93
7.2 DC Magnetic Susceptibility ............... .... .. 94
7.3 Zero Field Specific Heat .......... . . .... 95
7.3.1 Specific Heat of PrOs4Sb12: Sample Dependence . .... 95
7.3.2 Zero Field Specific Heat of Pr1_-LaOs4Sb12 . . 96
7.3.2.1 Evolution of T, with the La Doping . . ... 97
7.3.2.2 The Discontinuity in C/T at T . . ...... 98
7.3.2.3 The Schottky Anomaly .............. .. .. 99
7.4 Specific Heat in Large Fields .................. ..... 101
7.5 Magnetoresistance of Pr1_-La1Os4Sb12 .............. .. .. 103
7.6 Upper Critical Field H,2 .................. ....... .. 107
7.6.1 AC Susceptibility ....... . . ........ 107
7.6.2 Determination of Hc2(T) by Specific Heat Measurements in Small
M agnetic Fields .................. ........ .. 108

8 CONCLUSION .................. ................. .. 136

REFERENCES .................. ................ .. .. 139

BIOGRAPHICAL SKETCH ................... . ... 145









LIST OF TABLES
Table page

2-1 The relevant states for the quadrupolar Kondo effect ...... . .... 23

3-1 The a values reported by different groups, extracted from fits of specific heat
below T,. ....... .............. .............. .. .. .. 38

3-2 The a values reported by different groups from other measurements than specific
heat. . . . . . . .. . . . . 38









LIST OF FIGURES
Figure page

2-1 Cubic point group symmetry Th. .................... ...... 27

2-2 Lea, Leask, and Wolff's representation of CEF for J 4 (Lea et al., 1962). . 28

2-3 Representation of the U4+ ions in cubic symmetry undergoing quadrupolar Kondo
effect . . . . . .. . . . 28

2-4 Mapping of the quadrupolar Kondo Hamiltonian onto the two-channel Kondo
m odel. .. ... .. .. .. ... . . .. .. .. ....... .. .. 29

2-5 S, C, C/T, and x versus T/TK of the quadrupolar Kondo model (Sacramento
and Schlotmann, 1991). .................. .. ........ 29

3-1 Crystal structure of PrOs4Sb12. ................ ....... 41

3-2 Fits of X(T) to either F3 or F1 CEF ground state, and C fitted by a two-level
Schottky anomaly (Bauer et al., 2002). .................. .... 42

3-3 Fits of X(T) to either F3 or F1 CEF ground state model, calculated S(T) in both
F3 and F1 CEF ground state models (Ti 11i i et al., 2003), and the measured
S(T) (Aoki et al., 2002). .................. .. ....... 43

3-4 p(T), x(T) and C(T) of PrOs4Sb12 (Bauer et al., 2002). .. . ..... 44

3-5 Fermi surface of PrOs4Sb12 (Sugawara et al., 2002) ............... ..45

3-6 H-T phase diagram of PrOs4Sb12 by dM(T)/dT and dM(H)/dH
measurements (T iv ii i et al., 2003) .................. .... 46

3-7 C(T) of PrOs4Sbl2 (Vollmer et al., 2003; M6asson et al., 2004) and the real part
of the ac susceptibility (\ !' i.- .. et al., 2004) presenting double SC transition.. 46

3-8 The two superconducting phases of PrOs4Sb12: phase A and phase B (Izawa et
al., 2003). The plot of the SC gap function with nodes for both phases (\! ,.1:
et al., 2003) ................... ................... .. 47

3-9 Two SC transitions in 3(T) of PrOs4Sb12 (Oeschler et al., 2003) . .... 47

3-10 T dependence of the rate 1/Ti at the 2vQ transition of 123Sb for PrOs4Sb12 and
LaOs4Sb12 (Kotegawa et al., 2003). .................. .... 48

3-11 Tunneling conductance between PrOs4Sb12 and an Au tip (Suderow et al., 2004).
The gap is well developed with no low-energy excitations, sign of no nodes in
the Fermi surface gap .............. ............ .. 48

4-1 Picture of PrOs4Sb12 large ( i-- .I (about 50 mg). ............... 60









4-2 PrOs4Sb12 samples prepared for (left panel) resistivity and (right panel) specific
heat measurements. .................. ............ ..60

4-3 Schematic view of the 3He cryostat used in the measurements performed at
University of Florida. ............... ............ .. .. 61

4-4 Schematic view of the calorimeter used in the Superconducting Magnet 1 (SC' \
1), National High Magnetic Field Laboratory. .................. 62

4-5 The sample-platform/Cu-ring assembly. .............. ... 63

4-6 Specific heat C measurement process using the relaxation time method. . 64

5-1 y(T) of PrOs4Sb12. The high temperature effective moment is 3.65PB, very close
to the one corresponding to free Pr3+, which is 3.58PB. . . ..... 66

5-2 x(T) of the non-f equivalent LaOs4Sb2. ................ ..... 66

6-1 C of PrOs4Sb12 in fields up to 8 T for H//(1 00) (upper panel), and H-T phase
diagram in fields up to 8 T for H//(1 00) (lower panel) (Aoki et al., 2002). .. 78

6-2 C of PrOs4Sbl2 in 10 and 12 T in the vicinity of FIOP transition for H//(10 0). 79

6-3 C of PrOs4Sbl2 in magnetic fields 13, 13.5, and 14 T, for //(10 0). . 80

6-4 C of PrOs4Sbl2 in 16, 20, and 32 T, for //(10 0). .. . . ....... 81

6-5 H-T phase diagram of PrOs4Sbl2 for H//(1 00) (H>8 T). . . .. 82

6-6 Zeeman effect calculations for PrOs4Sbl2 in the F1 CEF ground state scenario. .83

6-7 Zeeman effect for PrOs4Sb12 in the F3 CEF ground state scenario. . ... 84

6-8 C of PrOs4Sb12 for f//(1 10). .................. ......... .. 85

6-9 C of PrOs4Sbl2 in H=12 T, for H//(1 00) (upper panel), and H//(1 10) (lower
panel) ...................... ........ ... .... ... 86

6-10 H-T phase diagram of PrOs4Sb12 for H//(1 1 0) (H>8 T). . . ... 87

6-11 p versus T2, and p versus T for PrOs4Sbl2 .................. .. 87

6-12 p(T) of PrOs4Sbl2 in 3, 10, 15, 16, 17, and 18 T, between 20 mK and about 0.9 K. 88

6-13 p versus T2 of PrOs4Sbl2 for 3.5, 5.5, 7, 10, and 13 T . . ...... 89

6-14 a (p po+aT") versus H for PrOs4Sbl2 fields up to 18 T(upper panel). The residual
resistivity po(H) (lower panel). .................. .... 90

6-15 A (p=po+AT2) versus H. .................. .. ....... 91









6-16 The calculated p(H) of PrOs4Sb12 (Frederick and Maple, 2003), for both F3 and
FL scenarios .................. ................... .. 92

7-1 X-ray diffraction patterns of Pr1_-La0Os4Sb12 versus La content x for x=0, 0.1,
0.2, 0.4, and 1 .................. ................. .. 113

7-2 Lattice constant a of Pr1_-LaOs4Sb12 versus La content x. . .... 114

7-3 x(T) of Pr1_-LaOs4Sb12 normalized to Pr mole between 1.8 and 10 K, measured
in 0.5 T ..................... ........ ... .... 114

7-4 X(T) of Pro.33Lao.670sSb12 versus T. The Curie-Weiss fit at high temperature
(T>150 K) gives pMff 3.62/B/Pr mole. ................ ...... 115

7-5 C/T versus T for three different PrOs4Sb12 samples from different batches. 116

7-6 C/T versus T2 above T, of LaOs4Sb12 .................. .. 117

7-7 C/T versus T near T, for Pr1_-LaxOs4Sb12 for x=0, 0.05, 0.1, and 0.2. ..... ..118

7-8 C/T versus T near T, of Pr1_-La0Os4Sb12 for x>0.3 .............. .119

7-9 T, versus x of Pr1_-La0Os4Sbl2 .................. ........ .. 120

7-10 Total A(C/T) at T, and Xo versus x of Pr1_-La0Os4Sbl2 for 0>x>l. Xo is X at
1.8 K from Fig. 7-3. .................. ............. 120

7-11 C/T versus T of Pro.33Lao.670s4Sb12 fitted by F1 F5 Schottky. . ... 121

7-12 C/T versus T of Pro.33Lao.670s4Sb12 fitted by F3 F5 Schottky. . ... 121

7-13 C/T versus T of Pro.33Lao.670s4Sb12 fitted by singlet-singlet Schottky. ..... .122

7-14 C for x=0 (10 T) and 0.02 (8 and 9.5 T). .................. ... 122

7-15 f-electron specific heat of Pro.9Lao.1Os4Sb12 in magnetic fields. . ... 123

7-16 f-electron specific heat of Pro.sLao.20s4Sb12 in magnetic fields. . ... 123

7-17 f-electron specific heat of Pro.4La0.60s4Sb12 in magnetic fields. . ... 124

7-18 H-T phase diagram from C measurements for x=0, 0.02, 0.1, and 0.2. ....... .124

7-19 p(H) of Pro.95Lao.o50s4Sb12 at T 20 mK for H//I and HII (I//(00 1)). ... .125

7-20 p(H) of Pro.95Lao.osO4Sbi2 for HlI//(O0 1) at T 20 and 300 mK. ...... .125

7-21 p(H) of Pro.95Lao.0osO4Sb12 for Hil//(0 0 1) at T-20, 310, and 660 mK. . 126

7-22 p versus T2 of Pro.7La0.30s4Sb12 in 0 and 0.5 T. ................ 127

7-23 p versus T2 of Pro.7La0.30s4Sb12 in 9 and 13 T. ...... . . 128









7-24 p(H) of Pro.7Lao.30s4Sb12 for H parallel with all three ( i --1 1,graphic directions
and 1//(001) ................... .... ...... ...... 129

7-25 p(H) of Pro.7Lao.3OS4Sb12 when H//I//(O0 1) at 20, 310, 660, and 1100 mK. 129

7-26 p(H) of Pro.33Lao.670s4Sb12 at 0.35 K. ............. .... 130

7-27 AC susceptibility versus T/T, of Prl_-LaOs4Sbl2, for x=0, 0.05, 0.4, 0.8, and 1. 131

7-28 C/T versus T near T, for two PrOs4Sb12 samples from different batches in low
magnetic fields .................. ................. .. 132

7-29 C/T versus T, near Tc, of Pro.95Lao.o50s4Sb12 in low magnetic fields ....... .133

7-30 C/T versus T, near Tc, of Pro.9Lao.lOs4Sb12 in small magnetic fields. ..... ..133

7-31 C/T versus T, near Tc, of Pro.7Lao.30s4Sb12 in magnetic fields. . ... 134

7-32 -dH2V/dT versus x. .................. ............ 134

7-33 -dH21/dT/Tc versus x with the critical x,,r0.25. The inset shows A(C/T)
at T, with x,,r 0.25-0.3. .................. ........... 135









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

NOVEL HEAVY FERMION BEHAVIOR IN PRASEODYMIUM-BASED MATERIALS:
EXPERIMENTAL STUDY OF PrOs4Sb12

By

Costel Remus Rotundu

May 2007

C'!h ,i: Bohdan Andraka
Major Department: Physics

PrOs4Sb12 is the first discovered Pr-based heavy fermion metal and superconductor.

Our high magnetic field specific heat measurements provided clear evidence for the

non-magnetic singlet < iv-i iii., electric field (CEF) ground state. This CEF ground

state precludes the conventional Kondo effect as the origin of the heavy fermion

behavior. The superconductivity in PrOs4Sb12 is unconventional, as inferred from

the double superconducting transition in the specific heat. Prl_-La1Os4Sb12 (0
crystals were synthesized and investigated in order to provide additional evidences for a

postulated CEF configuration, to discriminate between different conduction electron mass

enhancement (m*) mechanisms proposed, and to provide insight into the nature of the

superconductivity. Lanthanum doping induces anomalously small increase of the lattice

constant. The specific heat results in high magnetic fields indicated that CEF scheme

is unaltered between x=0 and at least 0.2, followed by an abrupt (but small) change

somewhere between x=0.2 and 0.4. Magnetoresistance measurements on La-doped samples

were consistent with a singlet CEF ground state of Pr. Investigation of the specific heat

discontinuity at T, and of the upper critical field slope at T, indicated that the electronic

effective mass, m*, is strongly reduced with x, between x=0 and xce0.2-0.3, followed by

a weak dependence on x for x>xr. Therefore, we have postulated that single-impurity

type models cannot account for the heavy fermion behavior of PrOs4Sb12. Investigation of

the magnetic phase diagram and magnetoresistance provided strong correlations between









a closeness to the long-range order (antiferroquadrupolar type) and m*, -ii-_-, -ri-; a

possibility of fluctuations of the antiferroquadrupolar order parameter responsible for

m* enhancement. Lanthanum has very weak effect on the superconducting transition

temperature in a stark contrast to other known heavy fermion superconductors. The study

of superconductivity provided constraints on proposed theoretical models, including the

two band model.









CHAPTER 1
INTRODUCTION

In the rare earth (Ce,Yb)- and actinide (U,Np)-based alloys the electronic states

have an energy orders of magnitude smaller than in ordinary metals, and since c(k)

h2k2/2m*, the effective mass m* is orders of magnitude larger than the free-electron value,

hence the term heavy fermion. There are several excellent experimental and theoretical

reviews [1-5] on heavy fermions. One hallmark of the heavy fermion character is the large

Sommerfeld coefficient 7 of the specific heat. The specific heat of metals in the normal

state at low temperature is approximated by C= T+3T3, where 7T is the electronic

specific heat and 3T3 is the lattice (Debye) contribution. For a normal metal 7 is of

order of 1 mJ/K2 mol, and for heavy fermion is from several hundred to several thousand

mJ/K2 mol. The magnetic susceptibility X at high temperatures follows the Curie-Weiss

form X=C/(T+Ocw), where C is a constant, and 6cw is the Curie-Weiss temperature.

At low temperatures X(0) ranges from ~10 to 100 memu/mol. In the 1ni iii lly of heavy

fermion metals, the electrical resistivity p at very low temperatures has a T2 dependence:

p po+AT2, where po is the residual resistivity and A is on the order of tens of /pcm/K2,

much larger than that of normal metals.

There are about 20 heavy fermion systems that are superconductors and almost all of

them are Ce- or U-based (there is one Pu-based heavy fermion superconductor: PuCoGas

[6]).
The filled skutterudite PrOs4Sb12 is the first discovered Pr-based heavy fermion

compound that is a superconductor [7].

In the conventional heavy fermions, the only microscopic theories somewhat successful

in accounting for the effective mass enhancement (m*) as measured by the specific heat

are the S=1/2 and S=3/2 Kondo models. These models were initially proposed for

Ce-based systems, whose effective degeneracies of f-electrons in ( i-I ,11 iiI" electric fields

are either 2 or 4. The Kondo effect in these systems is anomalous because of strong

spin-orbit coupling. There is one f electron per Ce atom and according to Hund's rules









the total angular moment is J=5/2, which corresponds to the degenerate 6 level case.

Crystalline electric fields split this multiple either in a) 3 doublets or b) one doublet and

one quartet. Case b) can be only for cubic symmetries. Thus Ce-based heavy fermions

with a doublet CEF ground state of Ce are described by the S=1/2 Kondo model while

those with Ce in a quartet CEF ground state are described by S=3/2 Kondo model. Thus

any understanding of heavy fermion behavior needs clarification of the CEF ground state.

Unfortunately, CEF scheme is not known for U-based heavy fermions. Furthermore the

valence of U (i.e., whether the electronic configuration is f2 or f3) is not known. The high

temperature effective moments for f2 and f3 configurations that could be extracted from

the high temperature susceptibility are almost identical. Studies of CEF's done directly by

inelastic neutron scattering [8, 9] are more consistent with the f2 configuration, allowing

for a similar CEF scheme as that for Pr. Therefore, the investigation of PrOs4Sb12 with

Pr having 2 f-electrons might be relevant and help to the understanding of the large

class of U-based heavy fermions, since CEF configurations are usually known for Pr. The

non-magnetic < i lv-I !i i electric field ground state (thought as either singlet or doublet

[7]) excludes the conventional Kondo effect as the origin of the l. i, -i-rermion behavior

in PrOs4Sb12, which is considered to be the source of heavy fermion behavior in Ce- and

U-based metals. The superconductivity in PrOs4Sb12 is unconventional, but different from

that in Ce- and U-based materials. Marks of the unconventionality of superconductivity

can be inferred from the double superconducting transition and power low dependence of

the specific heat below the transition.

The main goals of this work are:

to settle the crystalline electric field ground state in PrOs4Sb12,

to bring further evidences of the heavy fermion state in PrOs4Sb12,

to differentiate between several models proposed for the conduction electron

mass enhancement (m*) and to study the relationship between the correlation and the

superconductivity.









The outline of the dissertation is as follows: Chapter 2 presents the theoretical

framework of this thesis. This C'!i lpter begins with the theory of crystalline electric field

for the point group symmetry Th, followed by a presentation of the quadrupolar Kondo

effect. Other proposed models of the conduction electron mass enhancement are also

discussed. ('!i lpter 3 review the essential properties of PrOs4Sbl2. C'!i lter 4 gives a

brief description of the apparatus and experimental methods used. A characterization

of the materials synthesized and measured is given in Chapter 5. The experimental

data are presented and discussed in ('!i lpters 6 and 7. ('!i lpter 6 focus on PrOs4Sbl2

itself (specific heat and resistivity in high magnetic fields). ('!i lpter 7 presents the

study of Prl_-LaOs4Sbl2, 0
measurements are discussed. Finally, ('! Ilpter 8 summarizes the main findings and

contributions to the field of Pr-based L i,',-i--Fermions.









CHAPTER 2
THEORETICAL BACKGROUND

2.1 The Crystalline Electric Field (CEF) for Cubic Group

In rare earth compounds, the < ,i-- i i.: electric fields are responsible for a wide

v ii. I v of strongly correlated electron behaviors. The 4f-electrons in a rare earth ion

experience an electrostatic crystal field potential created by the surrounding electric charge

distribution (of the neighbor ions). The potential reflects the local point symmetry of the

site of the rare earth ion. In the point-charge ionic model the CEF potential at position F

due to the surrounding atoms is


VCEF (r) q (2-1)


where qj is the charge at the j"h neighboring ion, at Rj. If the magnetic ion has charge q,

at r, then the 1

HCEF q- (2-2)
i j i RjI

The sum Yi is taken over electrons in unfilled shells [10].

The CEF potential can be evaluated in terms of Cartesian coordinates or in terms

of spherical harmonics. Hutchings [10] evaluated the potential (2-1) for the simplest 3

arrangements of charges giving a cubic crystalline electric field. The three cases analyzed

were when the charges are placed at the corners of an octahedron (sixfold coordination),

at the corners of a cube (eightfold coordination), and at the corners of a tetrahedron

(fourfold coordination). In Cartesian coordinates the potential (2-1) can be written as [10]


V(x,y,z) = C4 + 4 + z4) 4] + D[(6 + + 6)

+ 5 2 4 2+ X4 2 X4 2+ 4 2+ Z24 24 6, (2-3)
+ -(xy +z +y +y +x +z )-y]), (23)
4 14

where d is the distance of the point charge q from the origin in each 3 cases. C4 and

D6 are -70q/(9d5) and -224q/(9d7) for the eightfold coordination, +35q/(4d5) and









-21q/(2d7) for the sixfold coordination, and -35q/(4d5) and -112q/(9d7) for the fourfold
coordination respectively.

In the spherical coordinates the same potential is written [10] as

V = D4{Y + [Y44( Y-4(, )]} + D'{Y6~ ( )

[Y ( ) + -4(0 )]}, (2-4)

where D' and D' are -56q v/(27d5) r4 and +32q /13/(9d7).r6 for the eightfold

coordination, +7q //(3d5).r4 and +3q V7/13/(2d7)r6 for the sixfold coordination, and

-28qv//(27d5).r4 and +16q G\ /13/(9d5).6 for the eightfold coordination respectively.
The potential contains therefore terms of order 4 and 6 in coordinates. In general, the less

symmetric is the site, the more potential terms occur in the expansion.
There are 2 general rules that can tell us the number of nonzero terms in the CF

potential. If there is a center of inversion at the ion site there will be no odd-n terms.

Secondly, if the z axis is not an m-fold axis symmetry, the potential will contain V,, [10].

However, calculating the potential terms in Cartesian coordinates and even in

spherical coordinates is tedious. A more convenient method is the so called operator

equivalent or Stevens' operator technique [11, 12]. The Hamiltonian (2-2) is of form

HcEF=- i elV(xi, Yi, Z). If f(x,y, z) is a Cartesian function, in order to find the
equivalent operator to such terms as 3 f(xj,yz,zt), the coordinates x, y, and z are

replaced by angular momentum operators J, Jy, and J respectively, taking into account
the non-commutativity of Jjs. This is done by replacing products of x, y, and z by

combinations of JJs divided by the total number of combinations. As an example we can

consider

(x- 6xf + ) [(x ,)4 (:/ -)4 ,, )4]/2 3j(,r4 + J4]
i ii i Yi
= p(r4)O{ (2-5)

where J6=J JiJ,.








The Hamiltonian is


34
HCEF C4[(4 +Y+ z4) r4] + D6[(6 +6 + z6)
5
15(2 4 +2z4 y2 4 y2z4 z24 2 14)_ 6]. (2-6)
4 14

Using the equivalent operator representation, the Hamiltonian will be [10]

HCEF (C4/20)3j(r4) [0 + 50 (D6/224),(r6) [O 2110], (2-7)

or

HCEF = B[O + 50] + B [O 210o], (2-8)


where B and BO are +71elq3j(r4)/(18d5) and -lelq'y(r6)/(9d7) for eightfold coordination,
-7|1elqj(r4) /(16d5) and -31elqyj(r6)/(64d7) for sixfold coordination, and +71|elqj3(r4)/(30d5)
and -lelq'j(r6) /(d7) for fourfold coordination respectively. Also, (r4) and (r6) are the
mean fourth and sixth power of the radii of the magnetic electrons, and the multiplicity
factors aj, 3j, and 7j are for Pr3+ (2) -22 13/(32 5 112), -22/(32 5. 11 2), and
-22 17/(34 5 7.112 13) respectively [10]. Also,

o0 35J4 [30J(J + 1) 25]J 6J(J + 1) + 3J2(J + 1), (2-9)

O = 1/2(J +4), (2-10)


0 = 231J6 105[3J(J + 1)- 7]J4 + [105J2( + )2- 525J(J + 1)

+ 294]J, 5J3(J + )3 + 40J2(J + )2 60J(J + 1), (2-11)


O4 1/4[11J J(J + 1) 38](J4 4) 1/4 4)

x [11J J(J + 1)- 38]. (2-12)









In order to keep the eigenvalues in the same numerical range for all ratios of the
fourth and sixth degree terms, F(4) and F(6) are introduced [13]. The Hamiltonian is
written as
4+5044 4 21 04
HCEF = BF(4) 4 + B F(6)o6 (2-13)
F (4) F (6)
In order to cover all possible value of the ratio between the fourth and sixth degree terms
are introduced the scale factor W and the parameter x, proportional to the ratio of the
two terms

B2F(4) Wx, (2-14)

BF(6) W(1- xl), (2-15)

where -l O + o50 O 21O]0
HCEF = W x + (t |x|) (2-16)
F(4) F(6)

The term in the square bracket is a matrix whose eigenvectors and eigenvalues (crystal
field energies levels) are determined by usual diagonalization.
Praseodymium ion Pr3+ in PrOs4Sb12 has a 4f2 configuration, and then the total
angular momentum is J=4. The site symmetry of Pr ions is Th (Fig. 2-1). This is
differentiated from the cubic Oh symmetry by the fact that do not contain two types
of symmetry operations of Oh: C4 (rotations through 7/2 about the fourfold symmetry
axis) and C' (rotation through 7 perpendicular to the principle rotation axis [14]). We
recall that if the z axis is not an m-fold axis symmetry, the potential will contain VJ [10].
Therefore, the Hamiltonian will a contain new term:
HCEF W x+ (1 6- 216 0- o (21 7)
F (4) F(6) Ft+ (6)

where the coefficients F(4), F(6), and Ft(6) are 40, 1260, and 30 respectively [15]. The
new term Oj-06 has the following symmetry in Cartesian coordinates:

2Y2(x2 2_ 2) + y2 (Y2 ) + 22(z2 2). (218)








When parameter y is zero, the system reduces to Oh symmetry. The eigenvalues are
tabulated for x=0.6 and several values of y by Shiina et al. [15]

Fr: (I + 4) + 4)) + 10) (2-19)
12 6


F23 : 4) + 4)) 0)

(| + 2) +-2)) (2-20)

1F) : 1 4|)-a2 -- 2) +a2l+ )+a +4)
biT F3) + b2| T1) + b3 1) + b4| 3) (2-21)


rF ) 2 4) ali- 2) + ai +2) a2 + 4)
b2| T 3) bil T 1) b4l 1) + b3 3) (2-22)

If y 0, the eigenstates are those for Oh symmetry [13]

Fr: (I + 4) + 4)) + v 0) (2-23)
12 6


3 : ( +4)+ -4))- 0)

1(I 2)+ 2)) (2-24)
2

F4 TV/I T3)T /i+F)

2t( +4) -- 4)) (2-25)


F5 : + / :| 3) T Ti )

(I + 2) -I- 2)) (2-26)









Depending on the sign of the W parameter (or E), the ground state can be thought

as either F23 or F1 (Fig. 2-2).

The eigenfunctions and eigenvalues of Fi(Th) and F23(Th) are the same as those

of Fi(Oh) and F3(Oh), therefore are not affected by O from the Hamiltonian. When

y=0, FP1)(Th) has the same eigenfunctions and eigenvalues as F4(Oh), and F(2) as those

for F5(Oh). When yO/, F4 and F5 mix resulting in two F(1'2)(Th) [15]. Therefore, the

eigenfunctions and eigenvalues of CEF for Th and Oh are different. The O0 term in

Hamiltonian affect some eigenfunctions and eigenvalues, resulting in a change of the

transition probabilities of neutron scattering in Pr3+

2.2 Conduction Electron Mass Enhancement (m*) Mechanism in PrOs4Sbl2

This Section gives a review on the mechanisms believed to be responsible for the

conduction electron mass enhancement: the single-ion models, such as quadrupolar Kondo

effect, or virtual CEF excitations (Fulde-Jensen model for m* enhancement in Pr metal)

and comment on the cooperative model invoking proximity to the long-range order.

2.2.1 Quadrupolar Kondo Effect

The quadrupolar Kondo (QK) model of HF was initially proposed by Cox to explain

weak field dependence of the specific heat of UBe13 [16, 17]. Barnes [18] found that Cu2+

ions in the cuprate superconductors could lead to such a Kondo effect as well. Later, new

evidence believed to be hallmarks of a quadrupolar Kondo effect has been found in the

alloys Yl-,UPd3 [19-22] for x=0.1 and 0.2.

In UBel3, the total angular momentum of U4+ (5f2 configuration) is J=4. This

leads [13] to a F3 CEF ground state for about half the ( i -I I field parameter range (Fig.

2-2). The f2 configuration is expected also for Pr3+ in PrOs4Sb12, and, according to CEF

calculations of Lea, Leask, and Wolf [13], a F3 doublet CEF ground state is very probable

(Fig. 2-2). Therefore, the heavy fermion behavior in PrOs4Sb12 could be in principle

due to a QK effect. Also, the physical properties of UBe13 (and U-1_Th1Bel3) are highly









Table 2-1. The relevant states for the quadrupolar Kondo effect for U4+. The last two
columns are the projections of the magnetic and quadrupolar moments
respectively (Reprinted with permission from Cox and Zavadowski [23]).

Config. State J Eigenstate (J) (3J J(J + 1))
f PI3+) J 4 7[14)- 4)] |0) 0 +8
f2 I3-) J4 2)+ 2)] 0 -8

fP \- J_ | +_ 0
f7+) j 5 1) 0
l IF7_) j 5 V/-I 5\ V/I 8\ 5 0
2 6 2/2 6

CI |I8 + 2) J 5 5) I 3 ) 11 +8
S|2 2 6
C1 I|F 2) J il 5 |3l 11 +8
1 Ir + 1) J 11) + -8
c IFs 1) J5 |- 1) -18
_2 2 2

reminiscent of those of PrOs4Sb12. Thus, since the discovery of the HF state in PrOs4Sb12
its normal properties have been associated with the QK effect.
The states involved in the quadrupolar Kondo effect for U4+ are given in Table 2-1.
The doubly degenerate ground state can be treated as a two-level system (a manifold with
a pseudo-spin of '). The projected value of the electric quadrupole moment onto the F3
basis is IQzzI=| 3J J(J + 1)| = 8 and the projected value of the magnetic dipole
moment is zero, i.e. J\ = 0 (Table 2-1). Therefore, the coupling is between the electric

quadrupole moment and the conduction electrons.
The Anderson model for the relevant states of the quadrupolar Kondo effect (since
it considers only F3, F7, and Fs) is called the 3-7-8 model. Figure 2-3 shows a schematic
representation of the Anderson model relevant for U4+ ions in the cubic symmetry. The
ground state F3 (J=4, 4f2) and first excited F7 (J=5/2, 5f') mix only via the conduction
partial waves Fs (J=5/2, c'). The transition fl f2 is done by removing a conduction
electron and the transition f2 f1 is done by emitting a conduction electron. It can









be shown that only Fs conduction quartet partial waves (Table 2-1) may couple to the

impurity through hybridization [23] (or, in the group theory framework, F3 0 F7 Fs).

Applying a canonical transformation (Schrieffer and Wolff [24]) to the 3-7-8 model,

the hybridization term can be eliminated. Also, the transformation yields to an effective

exchange interaction between pseudospin- and electric quadrupole moments of the form


Hexchange = -2Jexchange3 [a8(0) + a8(0)], (2-27)

where r3 is a pseudospin- matrix for the F3 quadrupole, a(s(as) are the pseudospins

formed from the Fs + 2, Fs + 1 (Fs 2, Fs 1) partial waves (Table 2-1). The exchange

integral Jexchange is proportional to F/TrcfN(0) and is negative.

The Hamiltonian has a two-channel Kondo form; two degenerate species of conduction

electrons couple with identical exchange integrals Jexcha"ne to the local a3 = object. The

channel indices are the magnetic indices of the local conduction partial wave states. Figure

2-4 shows schematically the mapping of the quadrupolar Kondo to the two-channel Kondo

model. The two-channel quadrupolar form of the Hamiltonian tell us that the conduction

electron orbital motion can screen the U4+ quadrupole moment equally well for magnetic

spin-up and magnetic spin-down electrons.

2.2.1.1 Thermodynamic Properties of the Quadrupolar Kondo Model

Figure 2-5 shows the thermodynamic properties of the quadrupolar Kondo model

[25-27]. The susceptibility (Fig. 2-5, lower panel) diverges logarithmical at T=0,

x=-(eTTH)-lln(H/TH), where TH (T/e)TK [28, 29]. Here, e is the base of In, i.e.

2.71... In the quadrupolar Kondo model this corresponds to a divergent quadrupolar

susceptibility. For T-0, the free energy in zero field is F -Tln2. Therefore, the

zero-temperature zero-field entropy is equal to ln2 [25]. The non-zero entropy at T --0

is consistent with the divergence in susceptibility and argues in favor of a non-singlet

ground state (a singlet is the ground state for the standard Kondo model). As expected,

the entropy increases monotonically with temperature and reaches .,-ii!.1 .i, ically the ln2









value (free spin) at high T. Also, the T=0 entropy increases with the field. Since the

S(T = 0) decreases with H the specific heat increases with H at intermediate T resulting

in large values of 7, common for heavy fermion systems. At high T the pseudo-spin is free,

therefore S= ln2. The entropy change AS(H)S(T = oo, H)-S(T = 0, H) increases with

H from 1 ln2 to ln2 for large H. In the C/T plots the Kondo peaks can be seen.

The initial measurements of specific heat [16] were not conclusive for a quadrupolar

Kondo effect in UBe13. Also, more recent measurements of nonlinear susceptibility [30] are

inconsistent with the quadrupolar (5f2) ground state of the uranium ion, indicating that

the low-lying magnetic excitations of UBe13 are predominantly dipolar in character.

2.2.1.2 Relevance for the Case of Pr + Ion in PrOs4Sbl2

PrOs4Sbl2 has been initially reported to have a P3 doublet CEF ground state [7].

Later experiments [31 33] established the < i iiii. electric field (CEF) ground state of

the Pr3+ ion in the cubic symmetry environment of PrOs4Sbl2 (Th point group symmetry)

as the non-magnetic singlet Fi. The consequence of this is that the original formulation

of the quadrupolar Kondo effect cannot be applied to the conduction electron mass

enhancement in PrOs4Sbl2.

F1 is nearly degenerate with the F(2) triplet. Though Fi itself doesn't carry any

degrees of freedom, the pseudo-quadruplet constituted by Fi and F2) is speculated to

have magnetic and quadrupolar degrees of freedom [34], and therefore a magnetic or

quadrupolar Kondo effect is invoked to explain the enhancement of the effective mass of

the quasi-particles.

On the other hand, the model does not seem to be relevant since the predicted

properties of the quadrupolar Kondo effect are in disagreement with the measurements.

But this is a single-ion model. Possibly, intersite effects are responsible for the disagreements.

There is no lattice quadrupolar model.









2.2.2 Fulde-Jensen Model for m* Enhancement in Pr Metal

The mass of the conduction electrons can be enhanced by the interactions with

various low-lying excitations in the solid. This explains the strong dependence of the

specific heat of the Pr metal in magnetic fields found by Forgan [35].

Goremychkin et al. [32] proposed that the mass enhancement in PrOs4Sb12 can

be explained by a balance between two types of interactions, magnetic dipolar and

quadrupolar between conduction and the f electrons of Pr. The theory of Fulde and Jensen

[36] of conduction electron mass enhancement ascribes this to the inelastic scattering by

crystal field transitions in a singlet ground-state system. The mass enhancement of the

conduction electrons are due to their interaction with the magnetic excitations.

The relevant Hamiltonian describing the interaction between the conduction electrons

and the rare-earth localized moments is [36]

Hi = Isf{9L t1) J(Ri) J, (2-28)


where If is the exchange integral, gL is the Land6 factor, J is the total angular

momentum of a rare-earth ion at site R., and a are Pauli matrices.

The mass enhancement due to the inelastic transition at energy A between two levels,

|i) and Ij), is
mn* 21 (i J 2 (229) 2
S1+ ( )2 N(0) (2-29)

where gj is the Land6 factor, Isf is the exchange integral coupling the conducting electrons

to the f-electrons, N(O) is the conduction electron density of states at the Fermi level,

and (i IJ Ij) is the magnetic dipole matrix element calculated using the derived crystal

field parameters. This formula shows that for a small excitation energy A leads to a large

enhancement in m*.

2.2.3 Fluctuations of the Quadrupolar Order Parameter

In general, models involving spin fluctuations in heavy fermions around their

antiferromagnetic instability were considered by authors such as Hertz [37], Millis [38],










Moriya and Takimoto [39] (a complete review is given by Stewart [40, 41]). All these

models exhibit divergence of the low temperature specific heat.

By analogy, in PrOs4Sbl2, the quadrupole fluctuations of Pr ions are believed to

pl iv an important role in the HF-SC properties. Therefore, another model proposed (a

collective-type model) for the mass enhancement mechanism are due to the fluctuations of

the antiferroquadrupolar order parameter due to the proximity to the AFQ ordered phase.

PrOs4Sbl2 exhibits an antiferroquadrupolar ordered phase in fields between about

4.5 and 14 T. For fields 5-13 T the two lowest CEF levels are sufficiently close to form

a pseudo-doublet with quadrupolar and magnetic degrees of freedom, resulting in a long

range order.

There is no theory (to this moment) that describes the mass enhancement due

to the fluctuations of the quadrupolar order parameter. Our magnetoresistivity data

of PrOs4Sbl2 and La alloys presented in C'!i lters 6 and 7 seem to support this mass

enhancement mechanism.


21/3, I H

------ -- ------
4- I 4

-- --I--------- ----- -- -----
I- ..
a) b)

Figure 2-1. Rotational symmetry Th. In the left (a), the small bold blue segment is
assimilate with the distance between two ,i 1inl lv7 atoms belonging to the
same icosahedra. A 7 rotation with respect to (100) and a 2 rotation with
respect to (111) are allowed. The rotation with respect to (1 00) will not
turn the structure into an equivalent one. Therefore, the axes x (or (1 00))
and y (or (0 1 0)) are not equivalent (Reprinted with permission from D. Vu
Hung [42]).






























Figure 2-2. Lea, Leask, and Wolff's representation of CEF for J=4 (Redrawn with
permission from Lea et al. [13]).


ff F 7


F3(E)


Figure 2-3.


Representation of the U4+ ions in cubic symmetry undergoing quadrupolar
Kondo effect. The model involves a doublet ground state in each of the
two electronic lowest-lying configurations: f2 having the quadrupolar or
non-Kramers F3 doublet, and fl configuration having the magnetic or Kramers
F7 doublet. The conduction electrons mix the two configurations through a
hybridization process. The Fs conduction state couples these two doublets
(Redrawn with permission from Cox and Zavadowski [231).















SIL
SO SI so-
spin


a)


Figure 2-4.


quadrupole



b)


Mapping of the quadrupolar Kondo Hamiltonian onto the two-channel
Kondo model. a) The standard two-channel Kondo model in spin space: two
conduction electrons s,+ and s,_ couple antiparallel to the impurity spin SI.
b) In the quadrupolar Kondo case, the spin is due by the quadrupolar or
orbital deformations. The two channels come from the real magnetic spin of
the conduction electrons. The orbital motion of the electrons produces the
screening of the U4+ orbital fluctuations (Redrawn with permission from Cox
and Zavadowski [231).


nD t2 -


0 30
0.25
o.20
O. IS


0, 10 0.1


0.05 7 0.3

to3


10-1
1 -I 0 1


10 -'
10- 10- 10- 10-' 13' "C' 10 101


Figure 2-5. S, C, C/T, and X versus T/TK of the quadrupolar Kondo model
with permission from Sacramento and Schlottmann [27]).


(Reprinted









CHAPTER 3
PROPERTIES REVIEW OF THE PrOs4Sb12

3.1 Crystalline Structure

PrOs4Sb12 praseodymiumm osmium antimonide) is a filled skutterudite that
into a LaFe4P12-type body-centered cubic structure with the lattice parameter a 9.3068

A[43](a 9.30311 A[44] after more recent measurements), space group Im3, and Th point

group symmetry. The < i i-- 1 .)graphic arrangement of the atoms is given in Fig. 3-1. The

mass of a mole of PrOs4Sb12 is 2363.1 g, the molar volume is 242.3-10-6 m3/mol Pr and

the mass density is 9.75 g/cm3 [45]. LaOs4Sb12 is the non-fequivalent of PrOs4Sb12 with

a similar crystal structure. All the exotic phenomena of PrOs4Sb12 are thought to be

associated with its unique crystal structure. In particular, the large coordination number

of Pr ions surrounded by 12 Sb and 8 Os ions leads to strong hybridization between the

4f and conduction electrons [46]. This strong hybridization results in a rich variety of

strongly correlated electron ground states and phenomena.

3.1.1 Rattling of Praseodymium Atom

In CoAs3-type skutterudites whose name come from the cobalt arsenide mineral

that was first found in Skutterud, Norway, an alkali metal, alkaline earth, rare earth, or

actinide ion, occupies an atomic cage. The icosahedron shaped atomic cage made of Sb

atoms accommodates a rare earth ion, and the size of this cage is bigger than the radius

of the ion. Therefore, the rare earth ion will vibrate as a result of the weakly bounded

rare-earth ion in the oversized cage made of Sb ions. This anharmonic oscillation is called

rattling [47]. The consequence is a reduction of the thermal conductivity. The filled

skutterudites with the cage are favorable for a thermoelectric device possessing a high

coefficient of merit [48].

The amplitude of this vibration of the Pr ion in PrOs4Sb12 is about 8 times 'i.-.-r

than the amplitude of Os. EXAFS data [49] supports the idea of a rattling Pr filler ion

(based on the low Einstein temperature OE ~75 K) within a fairly stiff cage in this

material. Besides the dynamic movement, a static displacement was detected in which









there are two equilibrium positions for the Pr ions. The Pr ions can freeze in one of these

two equilibrium positions, and at low temperature they can pass from one position to

another through tunnel effect. It has been estimated that this displacement is about 0.07

A [49]. Goto et al. [50], based on a theory of Cox et al. [23], -,:-:-, -1. that the tunnel

effect between the two positions of the Pr ions could be linked to the appearance of the

superconductivity.

3.1.2 Valence

At high temperature (above 150 K) the X(T) of PrOs4Sb12 can be described by a

Curie-Weiss law with an effective moment peff=2.97pB as reported by Bauer et al. [7], or

peff 3.5/B as reported by Ti- ii, et al. [51], and a Curie-Weiss temperature Ocw=-16
K [7]. The effective moment found is somewhat lower than the moment of a free ion Pr3+

which has peff=3.58/PB [52].

X-r-rv--.-..-rption fine-structure (XAFS) measurements [49] carried out at the Pr LIII

and Os LIII edges on PrOs4Sb12 sirl:., that the Pr valence is very close to 3+. Each Pr

ion has two electrons on the f shell (4f2 electronic structure).

3.1.3 Crystalline Electric Fields

In an ionic (localized) model, the cubic crystalline electric field of PrOs4Sb12

environment splits the J=4 Hund's rule multiple of non-Kramers Pr3+ into a singlet

(F1), a doublet (F3), and two triplets (F4 and s5) (in the Oh symmetry notation). The
CEF Hamiltonian in cubic symmetry was written [13] in terms of the ratio of the fourth

and sixth order terms of angular momentum operator of the CEF potential, x, and an

overall energy scale factor W. For more than two decades, the symmetry was thought as

Oh, instead of Th.
Bauer et al. [7] fitted the magnetic susceptibility data (see Fig. 3-2) by a CEF model

in which the ground state was chosen to be either the non-magnetic PF singlet (W>0)

or the non-magnetic F3 doublet (W<0). The peak present in the x(T) data was thought

to be produced when the first excited state is a triplet F5 with a energy <100 K above









the ground state and corresponds to a position x close to the crossing points on the LLW

diagram (see Fig. 2-2) where F1 or F3 are degenerate with Fs. The results are presented in

the upper panel of Fig. 3-2. The notation of the CEF energy levels corresponds with the

initially assumed Oh symmetry by Maple et al. [53] and Bauer et al. [54]

These authors use the conventional cubic < i --I I1 field model which is applicable to the

O, Td and Oh symmetries. In the Th symmetry, the non-Kramers doublet 3F corresponds

to the degenerate F2 and F3 singlet states (denoted as F23) and F4 and F5 states coincide

with F'1) and F 2) triplet states, respectively, when last term is zero in the < i -I I1 field

Hamiltonian (2-17). The singlet state F1 is the same for both cases.

The last term of equation (2-17) is unique to the Th symmetry of this material

coming from the atomic configuration of Sb ions in the crystal [15] and is absent in

the conventional cubic crystal field Hamiltonian that Maple et al. [53] and Bauer et

al. [54] used. The omitting of the last term in the Hamiltonian (see equation 2-17) has

implications in the interpretation of the inelastic neutron scattering data.

The above mentioned fit reproduces the overall shape of the low temperature peak,

and also the value of the van Vleck paramagnetic susceptibility with an effective moment

close to, but somewhat lower than that, of the free Pr3+ ion. Bauer et al. [7] fitted C

assuming a degenerate spectrum

Specific heat data was fitted [7] by a system with two levels of equal degeneracy split

by an energy 6=6.6 K (it has been assumed that the degeneracy of any level is lifted by

CEF when the local site symmetry of the Pr3+ ions is not cubic as a result of some kind of

local distortion).

The entropy in the 13-F5 case was found to be Sr3-_5=Rln2m7.6 J/(mol K) [7].

The total entropy of the broad peak just above the transition is S=f(C(T)/T)dT ,10.3

J/(mol K). The closeness in values made Bauer et al. [7] to favor the 3 ground state

scenario.









Initial inelastic neutron scattering measurements [53] considering Oh symmetry

-,i--.- -1 that F3 is the CEF ground state in PrOs4Sbl2. The resistivity data measurements

were also interpreted in the framework of a F3 CEF ground state [55].

In contrast, Tayama et al. [51] obtained a somewhat better fit of the magnetic

susceptibility x(T) data by a F1 CEF ground state model (Fig. 3-3 (a)). Also, the

theoretical curves of S(T) based on F1 ground state model show increase of entropy with

fields (lower panel of Fig. 3-3 (b)). This trend is confirmed by magnetic field specific heat

measurements (Fig. 3-3 (c)) by Aoki et al. [56].

Therefore, zero or small magnetic fields data are contradictory, more experiments are

to be done in order to establish the true CEF ground state in PrOs4Sbl2.

3.2 Normal-State Zero-Field Properties

3.2.1 Specific Heat

PrOs4Sb12 was synthesized for the first time by Jeitschko et al. [43], and then by

Braun et al. [57]. It was in 2002 when Bauer et al. [7] discovered superconductivity in

PrOs4Sbl2. Since the discontinuity in specific heat is of the order of 7, this large value

discontinuity (A(C/T) IT=1.85K -500 mJ/K2 mol [7]) implies the presence of heavy

fermions both in the normal and superconducting states.

There is no consensus regarding the precise value of 7, but all the reported values

imply heavy fermion behavior. Actually, this is perhaps the strongest evidence for HF

states in PrOs4Sb12. Considering the relation A(C/7TT)=1.43 the Sommerfeld coefficient

7 is found to be -350 mJ/K2 mol. The phonon (lattice) contribution to the specific heat

C data can be described by 3T3 that is identified with specific heat of LaOs4Sb12 with

OD 304 K. 3 is related to OD by /3(1944x103)n/O(, where n is the number of atoms in
the formula unit (e.g., n=17 in LaOs4Sb12).

3.2.2 de Haas van Alphen Measurements

The Fermi surface (FS) as reconstructed by de Haas van Alphen (dHvA) measurements

[44] comparative with the bands structure (LDA+U method [58]) are presented in









Fig. 3-5. The topology of the FS of PrOs4Sb12 is very similar to that of the reference

compound LaOs4Sb12 [44] (which leaks 4felectrons). This indicates that the 4f2 electrons

in PrOs4Sb12 are well localized. The similar topology of the FS for the two compounds

is supported also by similar angular dependence of the dHvA. Three Fermi surface

sheets, including two closed (practically spherical shaped) and one multi-connected, were

identified in agreement with the calculations.

The effective masses measured by dHvA are between 2.4 and 7.6mo (mo is the

free electron mass). These values are well below the ones reported from the specific

heat measurements. These low values have been explained [59] in the framework of the

two-band superconductivity model in which band 2 corresponds to the light band detected

by dHvA measurements. Band 1 is a heavy band having most of the density of states.

The heaviest quasiparticles are seen in thermodynamic measurements (C or H,2) only.

However, the applicability of the two-band model to PrOs4Sb12 is not established. Further

more, our results presented in section 7.6 sheds some doubts in the interpretation.

3.2.3 Resistivity

Additional evidence for heavy fermion behavior in PrOs4Sb12 is provided by an

analysis of the slope of the upper critical field Hc2 near Tc. The upper panel of Fig. 3-2(a)

shows resistivity versus T. From the resistivity data in small magnetic fields (data not

shown, fields up to about 30 kOe) and from the fit of the linear part of -(dHc2/dH)T,

curve, the initial slope has been measured using the BCS relations and shown to be ~19

kOe/K [7]. This implies o ~116 A, vF=1.65x106 cm/s, and m* ~50mo. This calculation

assumes a spherical Fermi surface.

The resistivity data between 8 and 40 K revealed a T2 dependence po+AT2, with

A=0.009 pQcm/K2 [7]. The A coefficient is about two orders of magnitude smaller than

the value expected for a heavy fermion compound. Considering the Kadowaki-Woods

universal relation [60] between A and 7, A/72 = 1 x 10-5/Qcm mol2K2mJ-2. The 7 value









is only ~6.5 mJ/mol K2 [7], and this is a typical value for normal metals and is much

smaller than 7 of LaOs4Sbl2.

3.2.4 DC Magnetic Susceptibility

The X(T) data (Fig. 3-2(a), lower panel) exhibits a peak at ~3 K and saturates to

a value of about 0.1 emu/mol [7] as T-+0. This is the hallmark of a nonmagnetic ground

state. Above 150 K, X(T) of PrOs4Sbl2 can be described by a Curie-Weiss law. There is

a large discrepancy between the high temperature effective moment reported by various

research groups. The effective moment according to Bauer et al. [7] is pIff 2.97PB, and

qeff 3.5/B is the value reported by Tli-v i, et al. [51] The free ion Pr3+ has a high
temperature effective moment of 3.58/B [52]. The Curie-Weiss temperature is Ocw=-15

K [51].

From the diamagnetic onset (inset (ii), Fig. 3-4(a)) it is found that the temperature

of the superconducting transition Tc is equal to the value found from the specific heat

measurements.

3.3 The Long-Range Order in Magnetic Fields

Measurements of specific heat [56] in fields up to 8 T and resistivity [55] in magnetic

fields up to about 10 T revealed the existence of a field induced ordered phase (FIOP)

above 4.5 T. In this ('! lpter a discussion of the nature of the FIOP will be presented

along with the specific heat data that completes the magnetic phase diagram. A similar

phase diagram has been obtained later by magnetization [51, 61](see Fig. 3-6) and by

thermal expansion and magnetostriction measurements [62].

3.4 Superconductivity

Experiments on PrOs4Sbl2 imply the possibility of unconventional superconductivity

(i.e., the existence of nodes in the gap of the Fermi surface). There is still some other

evidence that -,-.-.-I -I- an isotropic SC gap. We present below experimental evidence

favoring either unconventional or conventional superconductivity.









3.4.1 Unconventional Superconductivity

3.4.1.1 The Double Transition

Initial specific heat measurements [7] showed a single superconducting transition at

T, of 1.85 K. Higher quality materials revealed actually two superconducting transitions

(Vollmer et al. [63], Maple et al. [53], Oeschler et al. [64]). In Figure 3-7 panels (a) and

(b) are shown specific heat of PrOs4Sbl2 presenting two superconducting transitions,

Tc2=1.75 K and Tci=1.85 K by Vollmer et al. [63], and T,2=1.716 K and Tci=1.887

K by M6asson et al. [59], respectively. Two superconducting transitions at the same

temperatures have been reported by Cichorek et al. [65] along with a speculation for

a third superconducting transition at ~0.6 K inferred from Hc measurements. It is

believed that inclusions of the free Os in the single crystal cannot be responsible for the

enhancement of HaI, though T, of pure Os is 0.66 K [66] based on sensitive X-ray and

electron microprobe studies [65].

There are two classes of explanations of the nature (intrinsic or not) of the double

transition. One argues in favor of two different parts of the sample with two different

superconducting phases, and therefore with different T,'s. Thus, the quality of the samples

is crucial. For instance it has been considered [59] that despite the sharp specific heat

transitions, the samples still present spatial inhomogeneities. One possibility would be an

inhomogeneous coexistence of two electronic configurations of Pr, 4f1 and 4f2. The high

temperature magnetic susceptibility measurements are in favor of 4f2, since they have

found [51] an effective moment Peff 3.6pB/Pr (the expected value for 4f1 is 2.54pB and

for 4f2 is 3.58/B).

Another possible scenario that is presented in this dissertation is the existence of

inhomogeneities due to the closeness of the system to a long range antiferro-quadrupolar

order: clusters with a short-range order would have different superconducting parameters

than the remaining part of the sample.









Figure 3-7 (c) shows ac susceptibility after M6asson et al. [59]. The nature of the two

transitions is not yet established. The width of the transition as measured by specific heat

and ac-susceptibility is the same, about 0.2 K.

The superconducting gap structure investigated using thermal transport measurements

in magnetic field rotated relative to the crystal axes by Izawa et al. [67] provides

another evidence for the unconventional character of superconductivity in PrOs4Sbl2.

The change in the symmetry of the superconducting gap function that occurs deep

inside the superconducting state gives a clear indication of the presence of two distinct

superconducting phases with twofold and fourfold symmetries (Fig. 3-8). The gap

functions in both phases have a point node singularity which is in contrast to the line

node singularity observed in almost all unconventional superconductors. The two-band

superconductivity (similar to that observed in MgB2) is observed in newer thermal

conductivity measurements [68].

A double transition can be seen in the thermal expansion [64] experiment (Fig. 3-9).

The two transitions are at the same temperatures at which the specific heat discontinuities

occur. Using the Ehrenfest equation OTc/9P = VTcA//AC, where Vm is the molar

volume, calculations show that the superconducting transitions T2a is decreased two

times faster under pressure than T1i. This is in favor of intrinsic nature of the two

superconducting transitions.

3.4.1.2 Temperature Dependence of Specific Heat Below T,

In general, the specific heat C below T, exhibits different temperature dependence

according to the topology of the superconducting gap As(k). For an open gap the specific

heat dependence is the well known exponential e-Ao/T. Nodes in the gap, or zero points

in the gap, will be reflected in the T dependence of the specific heat as a power T3

dependence. And for zero line in the gap, the temperature dependence of C is T2









Table 3-1. The a values reported by different groups, extracted from fits of specific heat
below T, (Reprinted with permission from Grube et al. [70]).

Specific heat data a = A(0)/(kBT,)
Grube et al. [70] 3.70.2
Vollmer et al. [63] 2.60.2(F3)
Frederick et al. [71] 3.10.2(F1)
Frederick et al. [71] 3.60.2(F3)

Table 3-2. The a values reported by different groups from measurements other than
specific heat (Reprinted with permission from Grube et al. [70]).

Experiment a = A(0)/(kBTe) Gap Function
Tunneling spectroscopy [72] 1.7 Nearly isotropic
pSR [73] 2.1 Nearly isotropic
A(T) [74] 2.6 Point nodes
Sb NQR [75] 2.7 Isotropic

In all reported data the specific-heat measurements exhibit a rapid decrease of

C below the superconducting transition. This points to pronounced strong-coupling

superconductivity.

The so called a-model [69] assumes that the superconductive properties which are

mainly influenced by the size of the gap and the quasiparticle-state occupancy could be

approximated by simply using the temperature dependence of the weak-coupling BCS gap.

The size of the gap in the Fermi surface is a freely adjustable parameter a=A(0)/kBTc,

where A(0) is Fermi-surface averaged gap at T=0. Table 3-1 presents comparative a

values obtained by different groups. An analysis using the a-model results in an extremely

large gap ratio of

a=A(0)/kBT= 3.7 and a huge specific heat jump of C/(c)>5 [70].

A summary of the published superconductive gap ratios and gap anisotropy of

PrOs4Sb12 from other measurements than specific heat are presented in Table 3-2.

Frederick et al. [71] succeeded in making a better fit for the specific heat data of

PrOs4Sb12 using a power-law function below the superconducting temperature. The fits,









using both power-law and exponential functions, cannot be considered by themselves as

proof of the superiority of one fit over the other.

3.4.1.3 Nuclear Magnetic Resonance (Sb NQR)

The 121,123Sb Nuclear Quadrupole Resonance (Sb NQR) experiment [75] in zero field

shows a heavy fermion behavior and controversial conclusions regarding the nature of the

superconductivity in PrOs4Sbl2. In the SC state, 1/Ti shows neither a coherence peak just

below T, nor a T3-like power-law behavior observed for anisotropic HF superconductors

with the line-node gap. The absence of the coherence peak in 1/Ti supports the idea of

unconventional superconductivity in PrOs4Sbl2 (Fig. 3-10). The isotropic energy gap with

its size A/k=B4.8 K seems to open up across Tc below T*=2.3 K. The very large and

isotropic energy gap 2A/kBTc ~5.2 indicates a new type of unconventional strong-coupling

regime.

3.4.1.4 Muon Spin Rotation (pSR)

The broken time reversal symmetry has been reported in later muon-spin relaxation

measurements. The results [76] reveal a spontaneous appearance of static internal

magnetic fields below the superconducting transition temperature, providing unambiguous

evidence for the breaking of time-reversal symmetry in the superconducting state.

This will favor the multiple superconducting phase transitions observed by specific

heat and thermal conductivity studies and support therefore the unconventionality of

superconductivity.

Magnetic penetration depth data in single crystals of PrOs4Sb12 down to 0.1 K, with

the ac field applied along the a, b, and c directions was successfully fitted [74] by the 3He

A-phase-like gap with multidomains, each having two point nodes along a cube axis, and

parameter A(0)/kBT,= 2.6, -Ii.:.: -Iii-; that PrOs4Sb12 is a strong-coupling superconductor

with two point nodes on the Fermi surface. These measurements confirmed the two

superconducting transitions at 1.75 and 1.85 K seen in other measurements.









3.4.2 Conventional Superconductivity

3.4.2.1 Nuclear Magnetic Resonance (pSR)

The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/TI, and

NQR frequency unravel a low-lying CEF splitting below To~10 K. In addition, the

temperature dependence of 1/Ti in PrOs4Sbl2 is an exponential one [75] (Fig. 3-10, full

symbol), which is the signature of a conventional type of superconductivity.

Figure 3-10 (open symbols) also plots the data for the conventional superconductor

LaOs4Sbl2. For an s-wave case that is actually seen in the T dependence of 1/Ti for

LaOs4Sbl2 with T,-0.75 K, in the SC state, 1/Ti shows the large coherence peak just

below Te, followed by an exponential dependence with the gap size of 2A/kBTc, 3.2 at low

T. This is a clear evidence that LaOs4Sbl2 is the conventional weak-coupling BCS s-wave

superconductor.

3.4.2.2 Penetration Depth Measurements (A) by pSR

The transverse-field muon-spin rotation measurements in the vortex lattice of the

heavy fermion superconductor (HFSC) PrOs4Sb12 yields [73] an exponential temperature

dependence of the magnetic penetration depth A, indicative of an isotropic or nearly

isotropic energy gap, indicating a conventional superconductivity mechanism.

This is not seen, to date, in any other HF superconductor and is a signature of

isotropic pairing symmetry (either s- or p-wave, indistinguishable by thermodynamic

or electrodynamic measurements), possibly related to a novel nonmagnetic quadrupolar

Kondo HF mechanism in PrOs4Sb12. Also, the estimated magnetic penetration depth

A 3440(20) A [73] was considerably shorter than in other HF superconductors.

3.4.2.3 Low-Temperature Tunneling Microscopy

The spectra of a direct measurement of the superconducting gap through high-resolution

local tunneling spectroscopy [72] in the heavy-fermion superconductor PrOs4Sb12

demonstrates that the superconducting gap is well developed over a large part of the

Fermi surface. The conductance has been successfully fitted by a s-wave superconductivity









model. The presence of a finite distribution of values of the superconducting gap over the

Fermi surface argue in favor of isotropic BCS s-wave behavior.


Q Sb

001 Q Os

S[100]'


Figure 3-1. Crystal structure of PrOs4Sb12 (Reprinted with permission from Aoki et al.
[77])















0.08


0.06 PrOs4Sb12 0.:04: I

0 10 20 30
0.04 x =0.50. W = 1.9 K X =-0.72, W =-5.4 K
S 3 (111 K) r, (313 K)
Sr,,65 K) r (130 K)
0.02 r (6 K) r. ( 1 K)
r, (O K) T,(OK)


0 50 100 150 200 250 300
3.0
(b) t 1-=g0 12
2.5 S 6.6 K

2,0 I 4

S1.5 0 5 10 15 20

S10 o A_ AC(T)= C +(T)+y'T

0.5F PrOs Sb1

0 5 10 15 20
T (K)

Figure 3-2. (a) Fits of the magnetic susceptibility x(T) of PrOs4Sb12 to CEF model with
either F3 (solid line) or F, (dashed line) ground state. The same symbols are
used in the inset, which shows x(T) bellow 30 K. In the inset, the solid line
fit saturates just above X 0.06 cm3/mol. (b) C fitted by a two-level Schottky
anomaly (Reprinted with permission from Bauer et al. [7]).

























=3
F
0










4-



12
0


U,
64

2


Figure 3-3.


(a) Fits of the magnetic susceptibility x(T) of PrOs4Sb12 to CEF model
with either F3 (dashed line) or Fi (doted line) ground state. The solid lane
represents the experimental data (taken from Tayama et al. [51]). (b) The
calculated entropy S(T) for H//(10 0) in both F3 and Fl CEF ground state
models (taken from T.i ,ii i et al. [51]). (c) The measured entropy S(T) for
H//(1 00) (Reprinted with permission from Aoki et al. [56]).


T (K)
T (I)




















200
f 150 (a)
100-
010


0.06 PrOs Sb,, o 5 1 15

0.04 -
-0.5
H=200e (I) -
0.02- -1.0 ..
o 1,8 2.2 286 3.0

0 50 100 150 200 250 300
S2.50
3.0- (b) 2.25. (iii)
1`2 2.25 1
S2,000
2.5- 7,
I::;- 1,75 -
2.0 1,50 T., 1.76 K
ACITr 500 mJmol K
.51.25
1.- 1.0 1.5 2.0 2,5 -

1.0

0.5


O 5 10 15 20
T(K)

Figure 3-4. (a) Resistivity p(T) and susceptibility x(T) of PrOs4Sbl2 (b) Specific heat
C(T) up to 20 K [7] (Reprinted with permission from Bauer et al. [7]).


























(a) band 48-hole


(b) band 49-hole

Y


Figure 3-5. Fermi surface of PrOs4Sb12 (Reprinted with permission from Sugawara et al.
[44]).


, I,
































0 0.5 1
T(K)


z=0 plane










P C-
1.0.5, 0.5, 0.5)











Pr


1.5 2


Figure 3-6.


H-T phase diagram of PrOs4Sb12 (Reprinted with permission from T i,. iI
et al. [51]). Open and closed symbols were determined by the dM(T)/dT
and dM(H)/dH data, respectively. Right panel, the Pr charge distributions
induced in the antiferroquadrupolar ordered phase in magnetic field (Reprinted
with permission from MWasson [45]).


7o
I1.2


0.6


Figure 3-7.


1.8
T (K)


(C)
-0.02 /
S-0.03
-0.04
-0.05
.2 -0-06
-0.07
-0-08
1.5 1,8 1.7 1. TK)


(a) C(T) of PrOs4Sb12 presenting double superconducting transition
(Reprinted with permission from Vollmer et al. [63]) (b) C(T) of PrOs4SbI2
presenting two superconducting transitions (Reprinted with permission from
M6asson et al. [59]) (c) The real part of the ac susceptibility of PrOs4Sb12
presenting two distinct superconducting transitions (Reprinted with permission
from MWasson et al. [59]).


"/



I >I





PrOs4Sb12
1 1I


2













I I I


2.0


A- 1.5


^1.0 -
:z.

0.5


0.0-
0.0


Figure 3-8.


The two superconducting phases for PrOs4Sb12 (Reprinted with permission
from Izawa et al. [67]). The gap function has a fourfold symmetry in A phase
and twofold symmetry in B phase. Right: The plot of the gap function with
nodes for A phase and B-phase (Reprinted with permission from Maki et al.
[78]).


-0.5




b-1.0

i-


1.4
1.4


1.6 1.8 2.0
T (K)


Figure 3-9. Two superconducting transitions in the thermal expansion coefficient 3 of
PrOs4Sb12. The two transitions are visible for the same temperatures of the
two transitions in specific heat (Reprinted with permission from Oeschler et al.
[64]).


iionnnl state


0.5 1.0
T(K)


1.5 2.0


B-phase


T



e1


1 -;












102


gi LaOs4Sb12
100


10-1

10-2

10 I **
0.1 1 10 100
Temperature (K)

Figure 3-10. Temperature dependence of the rate 1/Ti at the 2VQ transition of 123Sb for
PrOs4Sbl2 (closed circles) and LaOs4Sbl2 (open circles) (Reprinted with
permission from Kotegawa et al. [75]).


-1000 -500 0 500
Bias voltage (IV)


1000


Figure 3-11. Tunneling conductance between PrOs4Sb12 and an Au tip. The gap is well
developed with no low-energy excitations. The line in figure is the prediction
from conventional isotropic BCS s-wave theory using A=270 peV and
T=0.19 K (Reprinted with permission from Suderow et al. [72]).









CHAPTER 4
EXPERIMENTAL METHODS

This chapter describes the sample synthesis, characterization and the experimental

procedures used: dc and ac susceptibilities, resistivity, and specific heat measurements. A

brief description of the performed measurements is given.

4.1 The Samples: Synthesis and Characterization

4.1.1 Synthesis

The filled skutterudite antimonides studied in this dissertation are prepared using

a molten-metal-flux growth method with an excess of Sb flux [54, 57]. Since the flux is

one of the constituent elements of the compounds (i.e. Sb) the method is called self-flux

growth. High-purity starting elements (Pr and La from AMES Laboratory, 99.9', .

purity powder Os from Colonial, Inc., and 99.9'' '. purity Sb ingot from Alfa AESAR)

are used in the proportion R:Os:Sb=1:4:20, when the rare-earth element R is Pr and

La in various proportions. The R alloys used as components in the flux growth were

synthesized eventually by melting its constituent elements in an Edmund-Biihler Arc

Melter under a high purity argon atmosphere. First, small chunks of Sb were placed

inside of a quartz tube. Above that were placed the Os and the R components that were

pre-melted separately to eliminate any trace of oxide from the surface of the elements.

The Os powder was pressed in small pellets and then melted. The quartz tube was sealed

under low pressure Ar atmosphere (~20 mTorr) after the tube is pumped and flushed

3 to 5 times. The tube with the mixture was placed in a Lindberg 51333 programable

furnace (digital controlled, Tma=12000C) using the following heat treatment sequence:

temperature ramping to 9800C with a rate of 2000C/h followed by T=9800C for 24 h, then

cooling at a rate of 3C/h down to 650C. The last step was a fast cooling in the furnace

to room temperature at a ~ 2000C/h rate. The single crystals were then removed from the

.irilrilir flux excess by etching in aqua regia (HCl:HNO3 1:1). The crystals were cubic

or rectangular up to 50 mg in weight (up to ~3 mm in size) depending on the amount of

the starting elements and the cooling rate. For instance, using ~ 1 g of Os and a cooling









rate of lC/h the single-crystal mass was about 50 mg (Fig. 4-1). This large < i--I I1 later

proved to be very useful for the dc-susceptibility measurements. In the case of R being

actually an alloy, such as Prl_-La1, Pr and La are previously melted together using the

arc-melter as further described.

The poly-< i --i 11,ii: R alloys (used as one of the starting components in the

synthesis of the single crystals) were prepared by melting its constituent elements in an

Edmund-Biihler Arc Melter AM under a half atmosphere high purity Ar. The apparatus

consists of a stainless steel vacuum chamber which sits tight on a water cooled groove

crucibles in a copper base plate and with an electrode at the top. The tungsten electrode

is motor driven which can be moved freely above the crucible. The melting process can

be observed through a dark glass window. All important control functions are integrated

in the head of the electrode and ensure safe and convenient operation. When fed at

the maximum current the temperature of the electric arc in the melter can go as high

as 4000C and melts ~500 g of metals. The arc melter has a flipper, a manipulator for

turning the samples in situ. This gives the possibility to flip and again melt the sample,

ensuring its homogeneity, without opening the chamber. Before operating, the copper base

plate was thoroughly cleaned with acetone to avoid any contamination of the sample with

impurities. Right at the beginning, each of the constituent elements were well cleaned

to eliminate the oxide 1. -r on the surface. The precision in mass measurements was

0.02 mg. Starting with the radioactive or the hardest element we can adjust the relative

masses of the other components to gain the wanted stoichiometric ratio. The total mass

was from teens of milligram to ~1 g, the size of the sample bead was up to 1 cm. Right

before the elements were melted together, a zirconium button which was also used for

ignition of the arc, was melted just to ensure a even higher purity of the Ar, which was

filtered through a purifier before entering into the arc chamber. Zirconium is well known

as a oxygen absorber. The element with the highest vapor pressure was then placed on

the copper plate right below the elements with lower vapor pressures. The aim of this









was to not strike with the arc on the element with a high vapor pressure resulting in

uncontrolled vaporization of the material. The element with the lowest vapor pressure

was melted first. This reduced the mass loss, and the discrepancy between predicted and

actual stoichiometries of the synthesized alloys. To ensure an even better control of the

temperature at which the elements were melted, the copper plate in the immediate vicinity

of the place where all elements were together was first heated with a slowly increasing

current. This was done until the element with the highest vapor pressure started to

melt and to suck all the other elements. Then flipping the resulting bead and remelting

it ensured its homogeneity. This process was repeated several times. Also, for dilute

concentrations, such as Pro.98Lao.020s4Sb12, Pro.98La0.02 was needed first. Therefore we

started with master alloys (Pro.gLao.1) in order to avoid handling of very small amounts of

materials.

4.1.2 X-Rays Diffraction Characterization

X-ray diffractions of the materials verified whether the arc melting plus annealing

or the flux growth processes led to the formation of the desired <( i--I I1 structure. From

the diffraction pattern it is possible to determine the lattice constants and the presence

of the secondary phases in the material (if present in a proportion greater than 5'.).

The measurements were performed using a Phillips XRD 3720 machine at the AT ij r

Analytical Instrumentation Center ( \ AIC) at the University of Florida. Single < iv-i ,1-

and poly-< i -i~1 ,11 !i. samples were crushed and ground out into a fine powder using

a ceramic mortar. On a glass slide, about 1 cm2 of powder was glued using 7:1 .irnil

acetate-collodion mixture. The machine uses two wavelengths in the measurements: Cu

K,,11.54056 A and Cu K2 ,1.54439 A. The intensity of the ac beam is twice as great

as the a2 beam. All the measurements were taken in a 20 angle range from 200 and 1200

with a 0.020 step and a scan speed of 6/min, the machine recording 1000 counts/sec.

20 is the angle between the incident beam and the reflected one. All measurements were

performed at room temperature. The computer controlled X-ray machine records the









relative intensities of the peaks which will be plotted/di- 11 i, iI (X-ray pattern) when the

scan is completed. Also, the precise angles corresponding to specific peaks were listed. The

angles corresponding to the peaks were found from Bragg's law:


n = 2d sin 0, (4-1)


where 0 is half of the reflection angle, n is an integer (n= 1 for the first order spectrum),

d is the inter-plane distance, and A is the wavelength of the incident radiation. The lattice

constants are then calculated from d and the intersection points of the lattice planes from

the desired space group number is given in terms of the Miller indices (hkl). For a cubic

symmetry the same Bragg equation can be rewritten as


sin2 0 h2 + k2 2) (4-2)
4

which is derived from d(hkl) = a//h2 + k2 + 2, where a is the lattice parameter. Using

a least-squares fitting program with the wavelength, structure type, (hkl) indices and the

angles 20 of the narrowest intensity lines as input, the lattice constant can be found. All

the X-ray diffractions were taken at room temperature.

4.2 Specific Heat Measurements

4.2.1 Equipment

4.2.1.1 Cryogenics

This sub-section describes the probes used in the specific heat, in house resistivity and

ac-susceptibility measurements.

In house (Stewart Lab., Physics Department at University of Florida) measurements

of specific heat were performed in the temperature range of 0.3 to 2 K usually, and in

some cases up to 10 K. A home made 3He cryostat was used. The schematic drawing is

given in Fig. 4-3. This probe was used for the measurements of specific heat in magnetic

fields as well. A specially designed dewar from Cryogenic Consultants Limited was also

used. The superconducting magnet reached 14 T at 4.2 K bath temperature. For the ac









susceptibility and resistivity measurements, another 3He cryostat was used. The resistivity

was measured between the lowest temperature of 0.3 K and the room temperature, while

the ac-susceptibility was measured between 0.3 K and about 2 K. The difference from the

one used for specific heat measurements is that this probe has no 4He pot, the pumping

being performed on the Dewar in order to reach 1.1 K for the use of the 3He cooling

system.

Specific heat measurements at lower temperature and higher magnetic fields were

performed at the Millikelvin Facility (Superconducting Magnet 1-SC'I 1), High Magnetic

Field National Laboratory, Tallahassee, Florida using a top loading dilution refrigerator

which is permanently installed in a 18/20 T superconducting magnet. The measurement

temperature range was 20 mK to 2 K combined with a magnetic field of up to 20 T. The

small home made calorimeter (Fig. 4-5) was connected to the general purpose sample

mount provided by the facility. Resistivity measurements performed at the same facility

were done in the temperature range of 20 mK to 0.9 K. Another sample holder, a so-called

16 pin ample rotator, was used. This allows the change of orientation of the sample in

field during the experiment. This holder has 16 pins (16 connection wires to the top of

the probe) that allows up to a maximum of four different samples to be measured without

pulling out the probe from the dilution refrigerator, saving precious time. Takes up to

6 hours to insert the probe into the refrigerator and cool the sample to 20 mK. Specific

heat measurements in magnetic fields up to 32 T were performed at the 33 T, 32 mm

bore resistive magnet (Cell 9), at the same National Laboratory. Another home made 3He

probe similar to the one mentioned earlier but with slightly different dimensions in order

to fit into the magnet and also to accommodate the sample in the maximum field strength

region was used. Right before the insertion of the probe into the magnet an electrical

check was done on wire connections. The quality of vacuum and sealing was checked also

using an Alcatel ASM 10 Leak Detector. For both 33 T and 45 T measurements, a special

positioning system made it possible to center the probe inside the magnet such that it did









not touch the inner walls of the magnet. The probe was to be perfectly centered into the

maximum strength field region.

Because of the large amount of heat that had to be removed, the probe was cooled

in liquid nitrogen (LN) down to the boiling point (77.35 K). After about 2 hours, when

the probe was at thermal equilibrium with the liquid nitrogen, it was transferred quickly

into a dewar in which it fits tight. The dewar was cooled in advance in LN as well. The

dewar (with the probe inside) was filled with liquid 4He (LHe) and after several hours

(depending on the volume of the can) the temperature of the probe reached 4.2 K. After

4.2 K was attained following the procedure described above, the 4He pot was filled with

LHe from the bath by opening the needle valve, and 3He gas (a lighter isotope of He)

was transferred into the 3He pot+probe line using a home-made 3He handling system.

The handling system consists of a tank filled with 3He, a pump which helps to transfer

to and back from the 3He pot line, and pressure gauges to display the amount of 3He

left in the tank and in the transfer lines. After closing the needle valve and pumping in

the 4He line a temperature between 1 and 2 K was obtained. It was necessary to refill

the 4He pot by opening the needle valve once in several hours. In order to attain 0.3 K a

completely contained 3He cooling part using a sorption pump was required. When cooled,

gases generally adsorb to solid surfaces. The sorption pump is based on the idea that

at ~10 K almost all of the 3He gas molecules are adsorbed, whereas at ~35 K all of the

molecules desorb. The sorption pump consists of a Cu cylinder that contains activated

charcoal, which has an enormous surface area (tens of square meters per gram). The

cylinder is attached to the lower end of a metallic rod. The whole system, rod+cylinder

with charcoal, was placed inside the 3He-gas enclosure. As the charcoal was lowered

toward the 3He pot, the 3He was absorbed by the charcoal reducing the vapor pressure

and lowering the temperature of the 3He pot. After the charcoal became saturated with

3He, the charcoal was warmed up (by raising the rod with the charcoal), and the gas was









released. In about 15 minutes the gas condensed and dripped into the 'He pot again.

Then the whole process was repeated.

4.2.1.2 Sample Platform

The sapphire platform is attached to the bottom of the probes to the 3He or 4He

pot, depending on the probe used (Fig. 4-5 (a)). The sample is attached to a small piece

of sapphire disc using H31LV silver epoxy cured at 150C for 1/2 h. The new assembly

of sample+sapphire sitting on the sapphire platform and attached by Wakefield grease

is shown in Fig. 4-5 (b). This ensured a good thermal contact between the sample and

the platform. The platform is thermally linked to a copper ring (silver in the case of

the platform of the calorimeter used at the SC\ I NHMFL) as schematically drawn

in Fig. 4-5. Two types of platforms were used. Each platform has four wires soldered

to silver pads attached to the ring by thermally-conductive Stycast. The two pairs of

wires are connected to the platform heater and thermometer, respectively, using EpoTek

H31LV silver epoxy. The wires ensure the mechanical support of the platform and the

thermal contact with the ring and the 3He or 4He pot by the case. They also provide the

electrical contact to a heater and a thermometer on the platform. The platform heater is

an evaporated 1li-. of 7'. Ti-Cr alloy. For measurements between 1-10 K, the platform

thermometer used was an elongated piece of doped Ge, and the platform wires were

made of a Au- 7' Cu alloy. A thin piece of Speer carbon resistor and Pt-i10'. Rh platform

wires (more mechanical resistant than the ones made from the Au-alloy) were used for

measurements between 0.4 and 2 K.

4.2.2 Thermal Relaxation Method

The specific heat was measured using the probes described earlier, employing the

thermal relaxation method [79-81]. The thermal relaxation method consists of measuring

the time constant of the temperature decay of the sample connected to the heat bath by a

small thermal link. A power P is applied (Fig. 4-6) (thermal power by a small current of

the order of pA) to the platform-sample system. The temperature of the sample, initially









at To, increases by a small amount, AT. When the current is turned off, the system

temperature T(t) decays exponentially to the base temperature To:


T(t) = To + ATexp (-t/ri). (4-3)


The time constant T1 is proportional to the Ctotai (sample+platform):

(Ctotal
T- Ctota, (4-4)


where K is the thermal conductance of the wires linking the sample+platform at

T=To+AT and the ring at T=To. The block temperature is regulated by a block heater

(a bundle of manganin wire) and measured by a thermometer attached to the block. The

time constant is obtained by measuring the time decay of the off-balance voltage signal

from a Wheatstone bridge using a lock-in amplifier. Two arms of the Wheatstone bridge

are a variable resistance box and the platform thermometer. The bridge is balanced by

adjusting the resistance of the resistance box. This made it possible to find the resistance

of the thermometer. From an initial calibration of the thermometer R versus T:

1 (45)
S A (In R)', (4-5)
i=0

it is possible to find the temperature corresponding to the platform thermometer

resistance. The thermal conductance is given by:

P
AP= (4-6)
AT'

where P=IV is the power applied to the platform heater. Equation (4-3) is valid if the

thermal contact between sample and platform is ideal (i.e., sample oc). If the contact is

poor (i.e., sample ~ e), then


T(t) = To + Aexp (-t/71) + Bexp (-t/7), (4 7)









where A and B are measurement parameters and T2 is the time constant between sample

and platform temperatures. Ctotla can be calculated from TI, T2, and t. The thermal

conductivity is measured by applying a power P=IV and calculating the AT as a result

of the power applied to the heater. The specific heat of the sample can be calculated

by subtracting the addenda contribution from the Ctotl. The result is multiplied by the

molecular weight and divided by the mass of the sample.

4.3 Magnetic Measurements

Magnetic susceptibility measurements were made in order to characterize the

magnetic properties of PrOs4Sb12 and its La alloys. The direct current (dc) magnetic

susceptibility was measured using a Superconducting Quantum Interference Device

(SQUID) made by Quantum Design which can perform measurements in magnetic

fields up to 5 T, and a temperature range from 1.8 K to 300 K (350 K with special

preparations). The alternating current (ac) susceptibility was measured using a home

made apparatus. The temperature range can run from about 0.3 K to 10 K, although

normally all the measurements were done up to 2 K. Both dc- and ac-magnetic susceptibility

methods are discussed in the next subsection.

4.3.1 DC Susceptibility

All the measurements were performed in 1 or 5 kOe magnetic fields. For small

samples (mass approximately a few mg), 1 T magnetic field was used since the signal of

the sample was comparable with the signal of the plastic straw holder. In any case, in

order to avoid the straws signal subtraction, the samples were kept tightly between two

drinking straws. The principle behind the magnetic susceptibility measurements is the

Lenz's law. The magnetic moment is measured by induction: the sample moves 4 cm

through a set of superconducting pickup coils and the SQUID instrument measure the

current induced in the pickup coils. The SQUID voltage is proportional to the change

in flux detected by the pickup coils. In order to get the magnetization data curve a set

of 48 points are taken during the movement of the sample. At a given temperature this









is repeated 4 times and the signals are averaged for a better accuracy. The magnetic

susceptibility for a fixed field is X = M/H (in emu/mol), where M is the magnetic

moment, and H is the magnetic field. This is obtained from the signal measured at a

fixed field by multiplying with molecular weight of the alloy, and dividing by mass and the

applied field. Beside the magnetization at fixed field and various temperatures the SQUID

can perform measurements of magnetization in different magnetic fields at constant

temperature.

4.3.2 AC Susceptibility

The apparatus consists of a primary coil of NbTi superconducting wire, 90/10 CuNi

of 0.004" with insulation, 185 turns [82] and two secondary coils made from copper

wire, wound in both sides in opposite directions of 2700 turns. The coils are attached

to the Cu block (which is in thermal contact with the 3He pot). The apparatus uses the

mutual inductance principle. The sample is subject to an alternating magnetic field of

0.1 Oe produced by the primary coil (and also the Earth's magnetic field). The resulting

electromotive force (EMF) induced in the secondary coil is detected. The background

signal is nulled by the identical secondary coil, connected in series opposition. For the

same reason the two screws are identically built. The sample is glued to one screw with

General Electric (GE) varnish 7031 which ensures a good thermal and mechanical contact

at low temperature and also can be removed easily using acetone. The ac susceptibility

measurements were performed at two different frequencies: 27 Hertz (Hz) and 273 Hz. It

was deliberately used these frequencies (not integer multiples of 60 Hz) in order to avoid

the noise coming from the common electrical outlet. In general, B=/o(H + Mv)=loH(1 +

X), with H the magnetic field, My the volume magnetization and = My/H is the
magnetic susceptibility. If the applied field H has a sinusoidal form, the time dependent

magnetization Mv(t) can be expressed as a Fourier series of the non-linear complex ac

susceptibility. Applying the inverse Fourier transform to My(t) it can be found the nh

harmonic of both real and imaginary ac susceptibility. The fundamental real component









is associated with the dispersive magnetic response which is in phase with the ac applied

magnetic field, and the fundamental imaginary component is associated with absorptive or

irreversible components which arise from energy dissipation within the sample, or in other

words the energy absorbed by the sample from the ac field. The induced EMF in coils

V(t)=-dl(t)/dt (complex, i.e. V=V'+iV") is proportional to the X = X' + iX". Therefore,

if the reference signal of the lock-in amplifier is derived from the primary driving signal,

then V' oc X", and V" oc X'. The superconducting transition temperature is determined

by a midpoint of the inductive signal deviation associated with the superconduction

transition.

4.4 Resistivity

The resistivity measurements used the same probe used for the ac susceptibility.

The sample was mounted to a sapphire disk. Four platinum wires (0.002" diameter) were

attached to the sample using silver paint (whose resistivity is much lower than that of

the sample itself) and then for a good mechanical contact with EPO-TEK H31LV silver

epoxy. The extra resistance introduced by the silver-epoxy contacts is avoided by the use

of the silver paint for electrical contacts and the epoxy just only for a good mechanical

contact between the wires and the sapphire disk. Then, the disk with the sample was

glued to the 3He block using GE varnish 7031 ensuring a good thermal contact. At each

temperature, the resistivity was obtained by averaging both absolute values for each

polarity of the current. The temperatures between 77.4 K and room temperature were

covered by measurements in liquid nitrogen (LN). The probe was immersed in LN and

the program starts collecting data, while the sample cooled towards 77.4 K. Thereafter, as

described in the previous section, the LN was removed, and liquid He was transferred. The

temperature dropped further toward 4.2 K. Further down, the resistivity was measured to

approximately 0.3 K, making use of 3He gas as described.































Figure 4-1. PrOs4Sb12 large crystal, about 50 mg (right). In the left, an Os ball with
PrOs4Sb12 single crystals attached, waiting to be etched out.














t t -I


Figure 4-2. PrOs4Sb12 samples prepared for (left panel) resistivity
specific heat measurements.


and (right panel)























Pumping line
for He3 pot-----


Pumping line
for He4 pot



Cu ring with
connection pins









He3 pot







Cu block -

Platform with
sample


Cu cylinder with
charcoal



Pumping line for vacuum can
and tube for wires


-Needle valve



SCapillary connecting
He4 pot and He4 bath





--He4 pot









Block heater

SHeat sinking and wire
connection pins

_ Vacuum can

~Block thermomet


Figure 4-3. Schematic view of the 3He cryostat used in the measurements performed at
University of Florida.




























Indium ring for
sealing


2 ___ Flange to connect to the
general purpose sample
holder (SCM1)


-Block heater




Ag block with .::::::::::..::::: Block thermomet
connection pins .......
T Vacuum can
Platform with -
sample --___
----~ _&Agrng



Figure 4-4. Schematic view of the calorimeter used in the Superconducting Magnet 1
(SCi\l 1), National High Magnetic Field Laboratory.

















































H31LV
Silver Epoxy


3/8 in.
sapphire disc


I\h


Wires:
Au-7%Cu or
Pt-10%Rh


Sample
/ Wakefield


tease

- Sapphire


\neater


Figure 4-5. (a) Top view of the sample-platform/Cu-ring assembly. (b) Lateral view of the
sapphire platform and sample.





























P

T Sample
Sapphire
CTotal = Ge thennometer
T + AT Silver epoxy
CSa mle+ CAddenda Wakefield grease




S= The four
AT An-Cu (or Pt-Rh)
wires


Cu (Ag) ring
T, heat reservoir





Figure 4-6. Specific heat C measurement process using the relaxation time method
(Redrawn with permission from Mixson [831).









CHAPTER 5
MATERIALS CHARACTERIZATION

All samples were synthesized using the self-flux growth method, described in

C! Ilpter 4. The samples are cubic shaped and of sizes ranging from 1/2 mm to 3 mm

and weighting from 1 mg to about 50 mg. X-ray diffraction was performed to verify the

desired i -I I1 structure. From the diffraction pattern it was also possible to determine

the lattice constants. In addition to this, the X-rays confirmed that the samples were

single-phase within an accuracy of 5'.

The quality of the sample is also given by the sharpness of the transition in the

specific heat. A more quantitatively measure of the quality of the sample is the residual

resistivity ratio RRR=p(300K)/p(T-+O). This ratio ranges from 50 to about 170

(PrOs4Sbi2 samples studied by M6asson et al. [59] have RRRw40.)

Due to the very small size of the samples used, the susceptibilities measured for all

concentrations and the background (susceptibility of the sample holder consisting from a

plastic drinking straw) were comparable at 10 K. At room temperature the susceptibility

was even smaller than the background, especially for dilute concentrations. In order to

avoid this background contribution, magnetic susceptibility were remeasured (for x=0,

0.05, 0.3, 0.67, 0.8 and 0.95) using bigger samples. Also, in these measurements, the

material was pressed in between two long concentric tubes such that no background

subtraction was needed.

All these additional measurements yielded to a Curie-Weiss temperature dependence

above 150 K, corresponding to an effective magnetic moment close to the one expected

for Pr3+ (Fig. 5-1), much closer to the expected value for Pr3+ than the initially reported

e/ff 2.97PB [7] for PrOs4Sbl2. The effective moment of the free Pr3+ is /eff 3.58/B [52].
New measurements by Tayama et al. [51] revealed an effective moment close to this value.

This supports the notion of an essentially trivalent state of Pr in all PrlxLaxOs4Sbl2

alloys.













0.12


0.10


0.08


0.06


0.04


0.02 H=b KUe


0.00
0 50 100 150 200 250 300
T(K)



Figure 5-1. X(T) of PrOs4Sb12. In the inset is the Curie-Weiss fit of high temperature
(T>150 K). The high temperature effective moment is Peff 3.65pB, very close
to the one corresponding to free Pr3+, which is 3.58pB.


0 50 100 150
T(K)


200 250 300


Figure 5-2. X(T) of the non-f equivalent LaOs4Sb12.


0.0009



0.0008



0.0007



0.0006



0.0005



0.0004 -


LaOs4Sb12 -




*
U"

U*
U*
U*
U*

U*









CHAPTER 6
PrOs4Sb12

Any understanding of heavy fermion (HF) behavior requires knowledge of the

crystalline electric field (CEF) configuration. Therefore, one of the main objectives of this

thesis was to establish the CEF scheme for PrOs4Sb12 and to see how the CEF ground

state is reflected in low temperature properties of this material. The C!i lpter starts with

results on the specific heat of PrOs4Sb12 in high magnetic fields. The magnetic phase

diagram (i.e. phases that exist at a given temperature and field) will allow us to determine

the CEF scheme of Pr. High magnetic field low temperature resistivity measurements will

be used to argue for a HF state in PrOs4Sb12.

6.1 Investigation of CEF Configuration by Specific Heat in High Magnetic
Fields

The initially proposed CEF schemes [7] (either 3F or F1 CEF ground state) for

PrOs4Sb12 imply non-magnetic ground states and exclude a conventional Kondo effect,

believed to be the source of HF behavior in Ce- and some U-based metals.

The controversy between the two schemes was brought about by different experiments

that seem to favor either configuration.

As presented in C(i lpter 3, the first published results such as the zero field specific

heat, magnetic susceptibility data [7], resistivity in small magnetic fields [55], inelastic

neutron scattering data interpreted using Oh symmetry [53] favored the F3 doublet as the

CEF ground state.

On the other hand, magnetic susceptibility data of Tayama et al. [51] and entropy

changes in small magnetic fields measured by Aoki et al. [56] were better fitted by a F1

CEF ground state model.

The zero field Schottky anomaly occurring at 3.1 K can be related to the P3-P5

model, assuming these two levels are split by 6.5 K, or F1-F5 model with the splitting of

8.4 K. The difficulty in interpreting these low temperature, low field results is related to

a strong hybridization of 4f and conduction electrons, inferred from the large electronic









specific heat coefficient and the size of the discontinuity in the specific heat C at Tc.

The idea behind specific heat measurements in high magnetic fields was to suppress this

coupling between f and conduction electrons to reveal the ionic character of Pr.

In order to present our results in a proper perspective we start from recalling the

specific heat data for fields smaller than 8 T obtained by Aoki et al. [56]

Figure 6-1, upper panel, shows the low temperature specific heat to 8 T obtained

by Aoki et al. [56], the lower panel a comprehensive phase diagram known before our

measurements. 4.5 T is the lowest field at which a signature of FIOP is detectable as a

small kink (at ~0.7 K). This kink evolves into a sharp peak at 0.98 K in 6 T. The C(T)

peak grows and moves also to higher temperatures for higher fields.

The FIOP was confirmed by specific heat of Vollmer et al. [63] and magnetization

study of T li- i,, et al. [51].

A number of observations brought forward the interpretation of FIOP in terms

of antiferroquadrupolar (AFQ) order. These observations included a large anomaly in

the specific heat (corresponding to a large entropy removed by the transition) and the

very small value of the ordered (antiferromagnetic) moment (about 0.025/B at 0.25 K

in 8 T [84]) measured by neutron diffraction, and also similarities to systems displaying

quadrupolar order (e.g., PrPb3 [85]).

Figures 6-2, 6-3, and 6-4 show the specific heat in fields ranging from 10 to 32 T. The

specific heat measurements in fields up to 14 T were done using Cryogenic Consultant

Limited superconducting magnet at the University of Florida. Measurements in fields

larger than 14 T were carried out at the National High Magnetic Field Laboratory,

Tallahassee, Florida using a resistive Bitter magnet. The field was applied along the

crystallographic (10 0) direction.

The specific heat data in all three figures are after subtracting the phonon background

(fiT3 with P=(1944x 103)n/(3 [1]) corresponding to a Debye temperature (GD) of 165

K, proposed by Vollmer et al. [63] This value of HD obtained from the temperature









dependence of the specific heat of PrOs4Sb12 is somewhat controversial. Other estimates

of the Debye temperature: 304 K (Bauer et al. [7]), 320 K (Aoki et al. [56]), and 259 K

(\! i!i. et al. [53]) are based on specific heat measurements of LaOs4Sb12.

The lowest temperature of the heat capacity measurements, actual value, is chosen

relatively high in order to avoid complications associated with a nuclear contribution of

Pr. This contribution is strongly enhanced by coupling with orbital moments of f electrons

[86, 87]. It is difficult to measure specific heat by a conventional relaxation method

at temperatures where nuclear degrees of freedom dominate because of additional the

time scale entering the experiment, nuclear spin-lattice relaxation time T1 [88]. Strongly

non-exponential temperature decays at the lowest temperatures (e.g., below 0.5 K in the

field of 10 T and bellow 1.5 K in the field of 32 T) indicate the importance of nuclear

degrees of freedom and cannot be analyzed using the so-called 72 correction. Therefore,

these lowest temperature points carry large uncertainty. When the magnetic field applied

along the (1 00) crystallographic direction is 10 T, the temperature of the sharp FIOP

peak appears at 1 K (Fig. 6-2). When increasing the field from 10 T field to 12 and 13

T (Figs. 6-2 and 6-3) the ordering temperature T, decreases only slightly but C(T,) is

suppressed in a strong manner.

The results presented here [31] combined with those of Aoki et al. [56] and Vollmer et

al. [63] show that T, (peak position in C) reaches a maximum value around 9 T. Also, C

at T, is maximum somewhere between 8 and 10 T.

In 13 T a shoulder appears on the high temperature side of the FIOP anomaly. The

specific heat value at this shoulder is about 3400 mJ/K mol. This shoulder evolves into a

broad maximum for H=13.5 T. Above 13.5 T the FIOP cannot be observed anymore in

the specific heat. Thus, these results strongly imply the disappearance of FIOP before T,

reaches 0.

The broad maximum that appears in 13 T exists at all fields studied up to at least 32

T. The temperature of the maximum increases with the strength of the field (Fig. 6-4).









The magnitude of this anomaly, in fields of 13 T and larger, li,,-; between 3300 and 3500

mJ/Kmol and it is field independent. These values are within about 10''. of the maximum

value for a Schottky anomaly of a two level system with identical degeneracies [89].

The uncertainty of the specific heat measurements in these fields (and at temperatures

where nuclear contribution is small) is about 1C'. Increasing 0D from 165 K, used in

the subtraction of the phonon term, to the other extremal value proposed, 320 K would

raise the estimate of the electronic part of C by about 290 mJ/K mol at 3.5 K. Thus, the

extracted values at the maximum are well within the realistic error bar of the theoretical

3650 mJ/K mol for the two-level Schottky anomaly. The highest field used of 32 T is large

enough to split any degenerate levels, therefore the observed Schottky anomaly is due to

the excitations between two singlets. Tm is related to the energy separation of the two

levels 6 by Tm=0.4176 [89]. An extrapolation of Tm to T=0 (Fig. 6-5) determines the field

at which the two levels cross, which is somewhere between 8 and 9 T.

These result can be used to infer new information regarding the plausible (i --I I1 field

configuration of Pr. Pr can be modeled by the following single-site mean-field Hamiltonian

[84]:

= -CEF gJ pBJ H J(J') J S- QL(O')O,' (6-1)

where -CEF, J and Oi represent the CEF Hamiltonian for the cubic Th symmetry,

the total angular momentum, and the i-th quadrupole moment of Pr in a sublattice,

respectively, where there are five types of quadrupolar moment operators: O0, O2, Oxy,

Oyz, and Oz j and Qi are the inter-sublattice molecular field coupling constants of

spin (exchange) and quadrupolar interactions, respectively. The thermal averages of the

angular momentum and quadrupole moment of the Pr in the counterpart sublattice are

(J') and (0O).

Using the CEF parameters proposed by Kohgi [84] for the 1F-F5 CEF configuration,

Tm (with Qi=0) and the Oy,-type quadrupolar ordering temperature T, were calculated

for (1 00) direction by Aoki et al. [90] As it is demonstrated in Fig. 6-5, the measured









phase diagram and the theoretical one (in the insets) expected for the Fj F5 model for

H//(1 0 0) are in very good agreement. In both diagrams, the crossing field is very close

to the one at which the transition temperature of the FIOP becomes maximum. Thus,

the observed correlation between the two characteristic fields constitutes a very strong

argument for the F1 singlet being the lowest CEF level.

However, the level crossing for field (1 0 0) direction is also expected for F3-F4 model,

although at somewhat different field, as demonstrated by Vollmer et al. [63].

More conclusive arguments regarding the CEF configuration can be obtained from the

study of the anisotropy of the Zeeman effect. Results of our calculations for the Zeeman

effect for 1//(100), f//(110), and Hf//(111) are shown in Fig. 6-6 for FP CEF ground

state. The plots show only the four lowest CEF levels. The higher levels are at above 100

K and 200 K from the ground state, and therefore p1 i, no role in the low temperature

properties. The calculations were done neglecting exchange and quadrupolar interactions

and considering the Th symmetry. Neglecting or retaining the last two terms in (6-1) for

the (10 0) direction lead to almost identical results for eigenvalues (Aoki et al. [90] and

our results).

There is a crossing between FP and the lowest F5 level (split by magnetic field) at

about 9 T when H//(1 00) or H//(1 1) and anti-crossing when H//(1 1 0) around

the same field. Therefore, the crossing field, extrapolated from the temperature of the

Schottky anomaly at high fields should be independent of the field direction.

Figure 6-7 shows the same calculations for the F3 CEF ground state model. For

H//(1 0 0) there is a crossing between the two lowest CEF levels, although at a field
somewhat larger than the one expected for the fl CEF ground state. However, there

is no crossing expected involving the lowest CEF levels when the field is applied along

the (1 0) or (111) direction in the 73-75 model (Fig. 6-7). Therefore, measurements

of specific heat when magnetic field is applied in any direction different than (1 00)

differentiate between the two scenarios. Measurements of the specific heat in fields to 14









T were done for H//(11 0) and are presented in Fig. 6-8. The inset to Fig. 6-8 shows the

specific heat in fields between 8 and 11 T around the AFQ transition. The specific heat

at the AFQ transition and the temperature at which AFQ occurs are maximum for 9 T.

Figure 6-10 and the inset to Fig. 6-8 -ir--.- -1 that between 9 and 12 T both the specific

heat maximum and the temperature at which this maximum occurs decrease. In H 12 T

both the AFQ transition and Schottky anomaly are visible. In fields higher than 12 T the

AFQ transition is completely suppressed. The broad anomalies from Figure 6-8 at 12, 13,

and 14 T are Schottky type.

The H-T phase diagram is presented in Figure 6-10. For H//(11 0) direction we

observe a decrease of T, values with respect to the (1 00) direction for the corresponding

fields, consistent with the previous magnetization measurements [51] (Fig. 3-6). On the

other hand, within the uncertainty of the measurement, there is no change in the position

of the Schottky anomaly at 13 and 14 T, as expected for the Fl CEF ground state and

inconsistent with the F3 scenario. Moreover, for the (1 10) orientation the Schottky

anomaly can be clearly seen already at 12 T. This lower field limit for the Schottky

maximum is probably due to competition between the two types of anomalies and lower

values of T, for the (1 0) direction (Fig. 6-9).

A straight line fit for the three Tm points results in the crossing field value of 91 T.

This value agrees, within the error bar, with the estimate for the (10 0) direction. The

existence of the crossing field for the (1 10) direction provides an unambiguous evidence

for the F1-F5 model. A small misalignment of the sample with respect to the field in either

of the measurements cannot explain essentially identical crossing fields for both directions.

In fact, the measured difference in T, values for (1 00) and (1 0) directions provides an

additional check of the alignment. Similar to the (10 0) direction, there seems to be a close

correlation between the crossing field and the field corresponding to T, maximum.

Figures 6-5 and 6-10 imply a strong competition between the field-induced order and

the Schottky peak. The FIOP transition in the specific heat abruptly disappears before









T, reaches zero. Precise magnetization measurements [44, 51], on the other hand, were

able to map T, as a function of the magnetic field all the way to Tz0. This apparent

contradiction can be explained by a very small entropy available for the FIOP transition

above 13 and 12 T for fields parallel to the (10 0) and (110) directions, respectively.

Specific heat, being a bulk measurement, can be less sensitive than magnetization

techniques in this situation. A strong competition is to be expected in the F1-F5 scenario.

The ground state pseudo-doublet formed at the level crossing carries both magnetic and

quadrupolar moments. Since a quadrupolar moment operator does not commute with a

dipolar one, the quadrupolar interactions leading to FIOP compete with the magnetic

Zeeman effect.

Therefore, the high magnetic fields measurements of specific heat [31] provided the

first unambiguous evidence for the singlet CEF ground state of Pr in PrOs4Sb12. This

result was confirmed by recent inelastic neutron scattering experiments [32] analyzed in

the Th symmetry, and our magnetoresistivity results described in Sections 6.2 and 7.2.

6.2 Magnetoresistance of PrOs4Sb12

Magnetoresistance of PrOs4Sb12 was measured to search for further experimental

evidences of the proposed CEF scheme and for possible signatures of heavy-fermion

behavior.

The main indication of heavy electrons in PrOs4Sb12 is the large discontinuity in

C/T at T,. The mass enhancement inferred from specific heat measurements is of the

order of 50 [7]. This value is an estimate and there is no consensus on a precise value. An

uncertainty exists in evaluation of the effective mass directly from the low temperature

zero-field specific heat, because there is no straightforward method of accounting for the

CEF specific heat. The corresponding Schottky anomaly is strongly modified because of

the hybridization between the f and conduction electrons. The zero-field specific heat just

above T, is dominated by CEF effects.









Several other estimates of m* have been proposed. For instance, Goremychkin et al.

[32] -,r-.-. -I. m* enhancement to be about 20. However, their estimate was based on the

Fulde-Jensen model, which we do not believe is relevant to PrOs4Sb12. This enhancement

is 3-7, according to the de Haas-van Alphen measurements [44]. However, dHvA effect

was analyzed over a wide range of fields 3-17 T and did not take into account m* being

dependent of H [44].

The residual resistivity ratio RRR=p(300K)/p(T-+O) of the investigated sample was

about 150. This value is among the highest reported, implying high quality of our sample.

Both the current and the magnetic field were parallel to the (1 00) direction (longitudinal

magnetoresistance). The measurements were done using the 18 T/20 T superconducting

magnet at the Millikelvin Facility, National High Magnetic Field Laboratory, Tallahassee,

Florida. The temperature range was 20 mK to ,0.9 K, the maximum field used 20 T.

Measurements at the University of Florida were done in fields up to 14 T down to 0.35 K.

The zero-field electrical resistivity, another important characteristics of heavy

fermion metals, does not provide a straightforward support for the presence of heavy

electrons. Maple et al. [91] found that the resistivity, between 8 and 40 K, follows a

fermi-liquid temperature dependence (p=po+AT2). Our resistivity data between 8 and

16 K follows the above mentioned dependence (Fig. 6-11) with A =0.009 cm/K2 (in

agreement with A found by Maple et al. [91]). As inferred from Kadowaki-Woods (KW)

relation (A/7l y x110-5 Rcm(mol K/mJ)2) [60] this value of A implies a small electronic

specific-heat coefficient 7 ,30 mJ/K2 mol, comparable to the one measured for LaOs4Sb12.

So, evidently there is an upper temperature limit (less than 8 K) for the heavy fermion

behavior.

Figure 6-12 shows the resistivity of PrOs4Sb12 in H=3, 10, 15, 16, 17 and 18 T in

a temperature range of 20 mK to 0.9 K. The resistivity below 200 mK saturates for all

fields. This temperature dependence at the lowest temperature was also observed by other

groups [91, 92]. Therefore, the resistivity for all other intermediate fields was measured to









350 inK. Figure 6-13 shows the resistivity between 350 mK and about 1.3 K for several

relevant fields (3.5, 5.5, 7, 10, and 13 T).

Maple et al. [91] proposed the following temperature dependence for fixed magnetic

field: p=po+aT", with n>2. In their study (transversal magnetoresistivity) n was ~3 for 3

T and 2.6 for 8 T. In our longitudinal case these exponents are slightly larger (e.g., 3.9 for

3 T). The exponents depend on the temperature range of the fit, i.e., n becomes smaller

when the upper temperature limit of the fit decreases. The residual resistivity po values

resulted from the fit on different temperature ranges (included in the 350 mK and 0.9 K

interval) were close to p at 20 mK. The residual resistivity po attains a maximum near

H=10 T, field corresponding to the crossing between the two lowest-energy CEF levels of

Pr (Fig. 6-14, lower panel). In this region (around 9-10 T) the lowest two singlets form a

quasidoublet possessing quadrupolar degree of freedom. These electric quadrupoles order

at sufficiently low temperatures [56] with the ordering temperature having maximum in

the crossing field [31, 56]. Resistivity is dominated therefore by the CEF effects or the

quadrupolar ordering. This ordering is completely suppressed by fields higher than 15 T.

As it can be noticed from Figs. 6-12 and 6-14 the residual resistivity po does not change

substantially in fields higher than 15 T. In fact, it can be seen than the residual resistivity

po versus H field can map the boundary of the AFQ phase, i.e. a sharp increase of po

indeed coincides with the AFQ boundary, indicated by arrows in Fig. 6-14, lower panel.

The same conclusion can be drawn from resistivity measurements for high magnetic

fields perpendicular to the current [55]. The rate of the increase of the resistivity with

temperature is still changing above 15 T (Fig. 6-12). It can be concluded that the

reduction of the temperature rate correlates with an increase of the energy between the

lowest CEF levels. A precise accounting of these changes is difficult since neither of the

functions checked out describe accurately the variation p(T) in a fixed field.

A linear dependence of p on T2 is accounted by resistivity (p po+AT2) in different

temperature ranges (above 0.4 and 0.5 K), as seen in Figs. 6-13. Using the KW ratio [60]









(however, there is no experimental or theoretical studies on A/72 for Pr-based systems)

the electronic specific heat coefficients for H=3, 10, and 18 T are about 200, 400, and

200 mJ/K2 respectively. The A coefficient deduced from the narrow range of temperature

(Fig. 6-15) increases sharply with the magnetic field and reaches a maximum near 6 T.

After a plateau between 6 and 12 T, a strong decrease is encountered. This establishes

a correlation between A and both AFQ order and CEFs with a strong increase when

approaching the AFQ boundary.

A characteristic field dependence of the residual resistivity (Fig. 6-14, low panel)

was associated both to CEF effects and long range AFQ order. The CEF effect on the

resistivity was considered by Frederick and Maple [93] using the following expression:


PCEF [Tr(PQM) + Tr(QA)]. (6-2)

The first term represents a contribution due to exchange scattering, and the second term

is the contribution due to aspherical (or quadrupolar) scattering. The aspherical Coulomb

scattering is due to the quadrupolar charge distribution of the Pr3+. Matrices Pij, QM and

Q j are defined as follows:

E p(E, Ej)
P = (63)
Z e- r 1- e-(E, -Es)' (6 3)
1 1
QJ J j2 (i j 2 J 2, (6-4)
+2
QAi 22
m=-2
In the above relations Ei are the eigenvalue of the CEF eigenstates, the Wi)'s are the

CEF eigenstates, 3=1/(kBT), and the yp's are the operator equivalents of the spherical

harmonics for L=2 (i.e., quadrupolar terms) [94]. The Qyi-matrices are normalized to each

other [95] such that


QYM = Q (2J+)J( 1 J+1)J4 180. (6-6)









The most intriguing conclusion is a strong enhancement of the A coefficient with the

magnetic field between 2 and 6 T. This could imply an enhancement of m* for fields in

this range. Low temperature resistivity calculation for F3 and Fl CEF ground state are

shown in Fig. 6-16 (upper and lower panel, respectively). Our residual resistivity (at

T=20 mK) seems to be in a better agreement with calculations for F3 than for F1 ground

state. Thus, CEF cannot account for the magnetoresistance of PrOs4Sb12. We will return

to this interesting problem while describing the magnetoresistivity of La-doped ( i--I '1-

Furthermore A seems to have a maximum value near the field separating ordered

and non-ordered phases. Note that this is not the crossing field for the lowest CEF levels.

Thus, these results -'ir-., -I a possibility of m* enhancement due to strong fluctuation of

the AFQ order parameter.























...[.. ..s.... .
4 H=
04
E 0".. T
"-" ..."" I" I '
3T
l TOP
6T










02 max. in M vs T
8 4T
0 2 2 K 4 6



















T i.i
6- TX

max. in M vs T


Smax. in dCfdH vs H


2 PrOsSb 1

#,oH <100>
Superconductivity H
01
0 1 2 3 4
T IK)

Figure 6-1. Specific heat C of PrOs4Sbl2 in fields up to 8 T for f//(10 0) (upper panel).
The magnetic field phase diagram H-T of PrOs4Sb12 in fields up to 8 T for
1H//(100) (lower panel) (Reprinted with permission from Aoki et al. [56]).























8000


6000


4000-

E *

| 2000- *** H=10 T
"3 H= 10T
v 6000 I ,- I ,- I ,- I
0U





4000-



S" 0* H=12T

20001
0 1 2 3 4 5
T (K)



Figure 6-2. Specific heat C of PrOs4Sbl2 in 10 and 12 T in the vicinity of FIOP transition
for //(10 0) (Reprinted with permission from Rotundu et al. [31]).



















8000



6000
*

4000



2000 H= 13 T
8000 I I I I i

o
E
S6000
E
O
4000
** m
U.
2000 H= 13.5 T
8000 I I I I



6000



4000 -



2000 H= 14 T

0 1 2 3 4 5
T (K)



Figure 6-3. Specific heat C of PrOs4Sb12 in 13, 13.5, and 14 T, for H//(100). A shoulder
appears at about 1.2-1.3 K at 13 T and the FIOP transition is suppressed at
13.5 T.




















4000


3000 -


2000


1000 H= 16 T
4000 I I I I I

i .*** .
E 3000 .





1000
2000 -


1000 H= 20 T
4000 I I I I I


3000


2000


1000 H= 32 T

0 1 2 3 4 5
T (K)



Figure 6-4. Specific heat C of PrOs4Sbl2 in magnetic fields of 16, 20, and 32 T, for
H//(1 00).



















I I II I

30 H/(100) i -
30
20


25 10 .


0
0123456
20 -
I



15




10 [



0 1 2 3 4
T (K)



Figure 6-5. Magnetic field phase diagram H-T of PrOs4Sbl2 for H//(1 00) (H>8 T).
Filled squares represent the FIOP transition. Open squares correspond to the
Schottky anomaly. The inset is the model calculation of the Schottky anomaly
assuming the singlet as the ground state[90]. The solid line represents the
FIOP boundary; the dashed line corresponds to a maximum in C (Reprinted
with permission from Rotundu et al. [31]).





















H//[100] H//[ 110] H//[111]
-60 -60 -60


-70 Z -70 --70


-80 / -80 -- -80


-90 -90 --90


-100 --100 --100


-110 -110 -110


-120 -120 -120
0 10 20 0 10 20 0 10 20
H (T)

Figure 6-6. Zeeman effect calculations for PrOs4Sb12 in the F1 CEF ground state scenario.
There is crossing of the two lowest levels for H//(1 0 0) or H//( 111) at
around 9 T and anti-crossing at the same field for H//(11 0). The figure
shows only the two lowest levels, i.e. the singlet F1 and the triplet F5.






















H// [100 ]


-60



-70



-80



-90



-100



-110



-120


H//[ 110]


0 10 20 0 10
H (T)


H//[ 111]
-60



-70 /



-80



-90



-100



110



-120
20 0 10 20


Figure 6-7.


Zeeman effect for PrOs4Sb12 in the F3 CEF ground state scenario. The effect
in strongly anisotropic. There is no crossing of the two lowest CEF levels for
H1//(11 0) or H//7(111). The figure shows only the two lowest levels, i.e. the
doublet F3 and the triplet F5.


-90



-100



-110



-120



























7000 ,
H /(116) A 8T A
A H=11T 600 9T
6000 H=12T 9.5T ,
e 10T
H=13T 5000 v 10.5T '.
H=14T 11T ..1 *
5000 .

40004000 :
4000 A 1 1 -
E t 3000
S0.6 0.7 0.8 0.9 1.0 1.1
3000


2000 w A.

0 1 2 3 4 5
T (K)



Figure 6-8. Specific heat C of PrOs4Sbl2 for H//( 1 0), H=10, 12, 13, and 14 T. The
inset shows C versus T neat T, for 8, 9, 9.5, 10, 10.5, and 11 T.























5000 H=12T
5000 -,
** H /(100)



T*
4000


3000 x
0 *
E
S 2000 I I I i | I | i |
3500 H//(110)-

0 as NO=Em

3000 ,

x

2500 -

0.0 0.5 1.0 1.5 2.0
T (K)


Figure 6-9. Specific heat C of PrOs4Sbl2 in H=12 T, for H//10 0) (upper panel), and
H//(1 1 0) (lower panel). The arrow indicates the AFQ transition.































1.0

T (K)


Figure 6-10. The magnetic field phase diagram H-T of PrOs4Sb12 for H//(l 1 0) (H>8 T).
The inset shows the specific heat Cma, of AFQ versus H. For a definition of
symbols see Fig. 6.5.


15 I I I I
T =1.85K
10
20 1O
5-

15 0 2 4 6 8 10 12 14 16
T (K)


2- 10 P=Po+AT2
A=0.009 pncm/K2

5




0 50 100 150 200 250
T2 (K2)



Figure 6-11. Electrical resistivity p versus T2 for PrOs4Sb12. In the inset is p versus T
showing the superconducting transition at T-=1.85 K.


0
U E
6000 *
E -E

5000 o

8 9 10 11
H (T)





H//(110)























4.2 I
H =10T
4.0

3.8

3.6 -H =15

o 3.4 H =16T-
3.2 H =17T
3.2
a. H =18T

3.0 H = 3T

2.8

2.6 I I
0.0 0.2 0.4 0.6 0.8 1.0
T(K)


Figure 6-12. Resistivity p(T) between 20 mK and about 0.9 K of PrOs4Sb12 in 3, 10, 15,
16, 17, and 18 T (Reprinted with permission from Rotundu and Andraka
[96]).





























5.5
7T

5.0 ^ 10T
5.05.5T

4.5
E00,0013T

S4.0


3.5 3.5 T
3.5


3.0


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
T (K2)



Figure 6-13. Resistivity p versus T2 of PrOs4Sbl2 for 3.5, 5.5, 7, 10, and 13 T.




















2.5 1 1 1 5

p=Po+ aT 4

2.0 n>2 C
3 .

2 -
S1.5 0 4 8 12 16

S. H(T)
EU
1.0 -



0.5 -
U

0.0
0 2 4 6 8 10 12 14 16 18








3.5 -





0C

3.0





0 2 4 6 8 10 12 14 16 18
H (T)




Figure 6-14. Coefficient a (p=po+aT") versus H for PrOs4Sb12 fields up to 18 T is in
upper panel. The residual resistivity po(H) is shown in lower panel.































I I I I I







U-







p=po +AT 2


0 2 4 6 8

H(T)


10 12 14


Figure 6-15. Coefficient A (p=po+AT2) versus H.


2.5 I-


0.5 -


IIIIIIIIIIIIII






















2 1.4 K
0.5(0.5pmaa + 0.5pACs)

S 0.35 K r. ground state
(a)
0 5 10 15 20
H (T)


41.4 K /
PrOs4 Sb12


Q 4.2 K --------
21
:3-






r. mag ACS
(b)
S0.35 K r ground state


0 1 I I I
0 5 10 15 20
H MT'

Figure 6-16. The calculated p(H) of PrOs4Sb12, for both F3 and Fi scenarios. The vertical
line indicates the field crossing of the two lowest CEF levels. Note that
the crossing field for the F1 ground state was assumed at 3 T (lower panel)
(Reprinted with permission from Frederick and Maple [93]).









CHAPTER 7
Pr1_xLaxOs4Sbl2

In this C'!I pter the La-alloying study of PrOs4Sb12 by dc and ac susceptibility,

specific heat and resistivity is presented. One of main objectives of this work was

to differentiate between different proposed models of the conduction electron mass

enhancement in PrOs4Sbl2. Mechanisms that have been considered range from single-ion

models, such as the quadrupolar Kondo effect [7, 16] or virtual CEF excitations [32, 36],

to cooperative models invoking proximity to a long-range order (proximity to the low

temperature state of AFQ order) [56]. While investigating the applicability of these

models, close attention was paid to whether the single-ion parameters such as the CEF

spectrum and hybridization parameters vary with the alloying.

7.1 Lattice Constant

The room temperature X-ray diffraction patterns for several La concentration are

given in Fig. 7-1. The results of the X-ray diffraction analysis were consistent with single

phase materials. A very small and monotonic increase of the lattice constant, a, with the

La content is detected (Fig. 7-2). The lattice constant is calculated from the high index

line (8 2 2) of the X-ray diffraction pattern. Calculations from smaller angle lines result

in the same dependence of a on x, but had a much larger scatter. These small changes

(about 0.0 :'.) between the end compounds is in agreement with previously reported [57]

and almost non-existent lanthanide contraction in ternary skutterudites containing Sb,

of a general form LnT4Sbl2, where T and Ln are transition element and light lanthanide,

respectively.

To present this change in a proper perspective we recall that the change of the

lattice constant across Pr(Osl-xRux)4Sbl2 [97] is 10 times larger. This is despite the fact

that the atomic radii of Os and Ru are almost identical (1.35 and 1.35 A for Os and Ru

respectively), while La is much larger than Pr (1.88 versus 1.82 A). In Pr(Osl-xRu1)4Sbl2

the CEF parameters increase monotonically with x. Very small changes in lattice

constant in PrlxLa1Os4Sbl2 sil--. -i small, if any, changes in the CEF parameters









and hybridization. These parameters depend on the position of ligand atoms with respect

to Pr. These small changes of the lattice constant in Prl_-LaOs4Sb12 provide a unique

opportunity for the alloying study of superconductivity and other phenomena that are

strongly influenced by microscopic inhomogeneities associated with the lattice constants'

mismatch.

7.2 DC Magnetic Susceptibility

Susceptibility measurements were done on single-crystal samples of masses ranging

between a few mg to 50 mg belonging to different batches. Specific heat measurements

were performed as well on samples characterized by the susceptibility.

Figure 7-3 shows the susceptibilities only in the range 1.85 to 10 K. All data are

normalized to a Pr mole. Due to the very small size of the samples used in the initial

measurements, the measured moment of most of the samples and the background (the

magnetic moment of the sample holder consisting of a piece of a plastic drinking straw)

were comparable at 10 K. At room temperature the magnetic moment of the samples

was even smaller than the background, especially for dilute concentrations. In order to

avoid this background contribution, the magnetic susceptibilities were remeasured (for

x=0, 0.05, 0.3, 0.8 and 0.95) using several < iv--I 1- and holding them between two long

concentric straws. No background subtraction was needed this time. The Curie-Weiss

temperature was found above 150 K and the effective magnetic moment in the range

3.2-3.6PB/Pr atom. The values are in the range of moments reported for pure PrOs4Sb12.

Some discrepancy between these values and that expected for Pr3+, 3.58pB [52], can be

due to an error in mass determination. Because of the very fragile nature of these < i --i i-

some of them broke off during the measurement and small fractions moved in between

the two tubes. A further check of the magnetic moment was performed on one large

crystal for x=0.67 (~20 mg each). Figure 7-4 shows the susceptibility and the inverse of

susceptibility for x=0.67. From the Curie-Weiss fit the high temperature effective moment

is found to be 3.62MB/Pr mol, close to the value expected for Pr3.









All low temperature susceptibility data (Fig. 7-3) exhibit a broad maximum at 3-5

K due to excitations between the lowest CEF states. Our high magnetic field specific

heat study [31], and neutron [32, 84] measurements established F1 singlet as the CEF

ground state separated by about 8 K from the first excited F5 triplet. Very small changes

in the position of these maxima in the susceptibility are the first indication that CEF

are essentially unaltered by the doping as expected from the measurement of the lattice

constant.

Another interesting aspect of the susceptibility is a strong initial reduction of the

low-temperature values of X (normalized to a mole of Pr) by La. The reduction of the

maximum susceptibility from approximately 100 for x=0 to about 50 memu/Pr mol for

x=0.4 is clearly outside the error bar. The aforementioned measurements on assemblies of

crystals for x=0.8 and 0.95 also resulted in a 4 K value of about 505 memu/Pr mol for

both compositions. Some broadening and decrease in magnitude of the CEF susceptibility

are expected in mixed alloys due to increased atomic disorder. However, the very large

initial drop in the susceptibility and lack of variation above x=0.4 might indicate that

some characteristic electronic energy (analogous to a Kondo temperature) increases

sharply upon substituting La for Pr. A similar suppression of the corresponding maximum

is observed in the specific heat data discussed in the next section.

7.3 Zero Field Specific Heat

7.3.1 Specific Heat of PrOs4Sb12: Sample Dependence

The main evidence for heavy fermion behavior in PrOs4Sb12 comes from a large

discontinuity of the specific heat at T,. Specific heat provides evidence for unconventional

superconductivity. The evidence includes a power low dependence of C below Te, and

the presence of two distinct superconducting transition. PrOs4Sb12 was initially reported

to have a single superconducting transition at T-=1.85 K [7]. More recent specific heat

measurements revealed two superconducting transitions (Vollmer et al. [63], Maple et al.

[53], Oeschler et al. [64], Cichorek et al. [65]).









Before discussing zero field specific heat measurements of Prl-La0Os4Sbl2 we need

to comment on the sample dependence of the specific heat of PrOs4Sb12. This is in order

to distinguish La-induced changes from variation related to sample quality. In Fig. 7-5

we present the specific heat near T, for three representative samples from three different

batches. All three samples were obtained in an identical way. All three samples have

pronounced lower temperature transitions. The upper temperature transition is less

distinct and sample dependent. Our convention of defining Tji and Tc2 (by local maxima

or shoulders in C/T versus T) is illustrated in Fig. 7-5. The upper transition temperature

T,~ is identical for all three samples. There seems to be some sample dependence for the

lower transition temperature Tc2. However, the variation is very small considering that

each C/T at a given T in Fig. 7-5 was obtained by integrating the specific heat over

0.04T interval. The width of the transition defined, for comparison reason, by T3-Tc (Fig.

7-5) is large and approximately equal for all the samples. Finally, A(C/T) defined as the

difference between C/T at Tc2 and T3 is about 800 mJ/K2 mol.

Our observations are consistent with other, particularly more recent, reports. Almost

all recent investigations find two superconducting anomalies, more pronounced at Tc2 and

less defined at Tci. An exception to this rule are unpublished data by Aoki et al. [98]

that show a sharp peak at T1I, and only a change of slope in C/T at Tc2. The width of

the transition, ~0.2 K, defined above, is quite similar for all published data. There is

a large distribution of reported A(C/T) at Tc, from 500 to 1000 mJ/K2 mol. A usual

determination of A(C/T) by an equal area (conservation of entropy) construction cannot

be applied due to the presence of two superconducting transitions. Applying our method,

C/T(Ta)-C/T(T3), results in an average A(C/T) of 800 mJ/K2 mol for the most recent

results.

7.3.2 Zero Field Specific Heat of Pr1_-LaOs4Sb12

In order to account for normal-electron and phonon contributions to the specific heat

of Pr1_-La1Os4Sb12 alloys, the specific heat of LaOs4Sb12 was measured. The normal state









specific heat between 1 and 10 K is shown in Fig. 7-6 in the format of C/T versus T2.

The results can be expressed by the following equation


C/T = 56 + 1.003T2 + 0.081T4 4.260 x 10-4T6, (71)


where C/T is expressed in mJ/(K2 mol) and T in K (Fig. 7-6). A significant nonlinearity

in C/T versus T2 is probably due to the rattling motion of loosely bound La atoms [99].

Values of 7 and / for LaOs4Sb12 reported by other research groups are: 7 of 36 [54], 55

mJ/K2 mol [100], 56 [44] and j=0.98 mJ/K3 mol [101].

Figures 7-7 and 7-8 present the f-electron specific heat of Pr1_-La0Os4Sb12 alloys, i.e.

the specific heat of LaOs4Sb12 and, normalizing to a mole of Pr. Note that the phonon

specific heat of pure PrOs4Sb12 in C'! Ilpter 6 was taken from Vollmer et al. [63], which was

derived by fitting the total specific heat C to a function representing phonon, conduction

electrons, and Schottky contributions. However, using the LaOs4Sb12 specific heat seems

to be more justifiable for moderately and strongly La-doped alloys and therefore this way

of accounting for phonons is consistently used in this chapter on La alloying.

7.3.2.1 Evolution of T, with the La Doping

Figure 7-7 shows the specific heat for x=0, 0.05, 0.1, and 0.2 near the superconducting

transition temperature. As already discussed, the pure compound has two superconducting

anomalies in the specific heat. The specific heat data for x=0.05 exhibit a shoulder which

seems to correspond to the anomaly at T,1 for x=0. The width of the transition (T3-Tc2)

for x=0 is about 0.2 K. This width becomes slightly smaller for x=0.05. The specific heat

for x>0.3 alloys (Fig. 7-8) exhibits one superconducting transition only. The width of the

transition for this group of materials is about a half of the width of the pure material.

This reduction cannot be accounted for by the reduction of T, itself. A similar conclusion

about a drastic reduction of the width of the transition can be derived from graphs in

which T is replaced by a reduced temperature T/T,. The reduction is probably related to

a disappearance of one superconducting transition (at TI,).









Open symbols in Fig. 7-9 denote the lower temperature superconducting transition,

and the filled squares symbolize the higher temperature superconducting transition

Tc2. Lanthanum doping has a surprisingly weak impact on Tc. This weak dependence

(approximately linear) of T, on x in Pr1_-LaxOs4Sb12 is unusual for heavy fermion alloys.

For instance, heavy fermion superconductivity in UBe13 is completely suppressed by only

. La [102] substituted for U. Furthermore, since PrOs4Sb12 is clearly an unconventional

superconductor (e.g., time reversal symmetry breaking) while LaxOs4Sb12 is presumably

a conventional superconductor we would expect, while varying x, a suppression of one

type of superconductivity before the other type emerges. Figure 7-10 shows that there is

smooth evolution of T, (and superconductivity) between the end-compounds. A somewhat

stronger suppression is observed in the case of Ru replacing Os [71, 97]. But even in this

case, the T, reduction rate is small if compared with the in i ii i iy of Ce- and U-based

heavy fermions and considering the fact that Ru alloying drastically affects CEF energies

and hybridization parameters.

7.3.2.2 The Discontinuity in C/T at Tc

Existence of two distinct superconducting transitions in PrOs4Sb12 makes the

determination of the discontinuity in C/T somewhat arbitrary. Furthermore, it also

complicates the interpretation of this discontinuity. Despite a substantial recent

improvement in sample quality, the question whether the two transitions correspond

to different regions of the sample becoming superconducting at different temperatures

or whether the lower transition corresponds to the change of the symmetry of the

superconducting order parameter in a homogeneous medium is not completely settled.

The comparable magnitude (equal as argued by Vollmer et al. [63]) of the anomalies at

T,~ and Th2 precludes a popular speculation that one of these transitions is associated with

surface superconductivity.

As it was already stressed, this A(C/T) is currently the main evidence for the

presence of heavy electrons. The presence of a modified Schottky anomaly near T, makes









a direct determination of the electronic specific heat coefficient unreliable. In a BCS-type

superconductor, AC/T, is related to the electronic specific heat coefficient 7. In general,

AC/T, and 7 are affected by the coupling strength of the Cooper pairs and can vary by a

factor of order of 2-3. Nevertheless, for lack of any other measure, we use this quantity as

an indication of heaviness of electrons in Pr1_,LaOs4Sbl2.

We recall that LaOs4Sb12 is also a superconductor, therefore for dilute Pr concentrations

the normalization of C/T to Pr mole (used in Fig.s 7-7 and 7-8) has no meaning.

Therefore, Fig. 7-10 shows the total A(C/T) per formula unit. There is a drastic decrease

of A(C/T) with x for 0
800 for x=0 to 280 for x=0.2 and further to about 160 mJ/(K2 Pr mol) for x=0.3 (C/T

is seven fold reduced with x, for x between 0 and 0.3). A(C/T) -1 i,-; approximately

constant with x for 0.3
LaOs4Sbl2. Therefore, these results -i,--.- -1 that the heavy fermion character disappears

above x=0.3. Therefore, there is a lack of strong correlation between the heavy-fermion

character as measured by A(C/T) at T, or AC/T, and the average T,. Thus, the results

argue also for different mechanisms responsible for the heavy fermion state and enhanced

value of T, in PrOs4Sb12.

7.3.2.3 The Schottky Anomaly

The evolution of Schottky-like anomaly in pure PrOs4Sb12 near 3 K with magnetic

fields provided important information on the CEF configuration of Pr. The discrepancy

between the theoretically predicted temperature dependence and the observed one has

been explained by mixing of f- and conduction-electrons degrees of freedom, reducing the

entropy associated with the pure Schottky anomaly. The results on the discontinuity of

C/T at T,, presented in the previous section, -Ii--.- -1 that the heavy fermion character is

strongly suppressed by the La alloying. Thus, one would expect the mixing to be reduced

for strongly La-doped samples and the Schottky anomaly to approach the theoretically

predicted temperature dependence. Recall that the maximum value of the specific heat









in PrOs4Sb12 is about 7100 mJ/K mol, smaller than the theoretical value of 8500 for

singlet to triplet excitations. However, as it can be inferred from Figs. 8.7 and 8.8 the

specific heat at the Schottky-like maximum decreases noticeably with the alloying. Some

reduction and broadening of such a maximum due to CEF excitations can be explained by

disorder effects induced by the alloying. However, this effect should be small. La does not

change the local symmetry of Pr nor the distances between Pr and its nearest neighbors.

Furthermore, the main reduction takes place between x=0 and x=0.2 and, within our

error bars, there is no appreciable change beyond x=0.3. This reduction, by a factor of 2,

is about the same as the decrease of the low temperature magnetic susceptibility, discussed

in Section 7.2.

In order to study further this specific heat reduction, a large crystal of Pr0.33La0.670S4Sb12,

for which addenda heat capacity is negligible below 6 K, was investigated. First of all, the

effective magnetic moment measured at room temperature for this particular crystal

is very close to the expected value for Pr3+. Thus, the reduced specific heat cannot be

explained by incorrect Pr stoichiometry, nor by some Pr ions being in a mixed-valent

state. The results, after subtracting the specific heat of LaOs4Sb12 and dividing by 0.33,

are shown in Fig. 7-11 in the form of C/T. This graph shows also a fit to the function

describing a Schottky specific heat for a singlet-triplet excitations, scaled by a factor

a=0.44. A similar scaling was used by Frederick et al. [71] to account for the specific heat

data of Pr(Osl-xRux)4Sbl2 in terms of the singlet CEF ground state. A necessity to use

such a small scaling factor for this model of CEF (of about 0.5) was used by Frederick

et al. [71] to argue for a doublet CEF ground state. However, as can be seen from Fig.

7-12, a reasonable fit to the doublet CEF model also requires a scaling factor, although

somewhat larger (a=0.73). Finally, a fit to the singlet-to-singlet scattering requires no

scaling at all. The fit shown in Fig. 7-13 obtained with a as an adjustable parameter,

resulted in a 1.009 (within 1 .).