<%BANNER%>

Air Bearing Kinematic Coupling

Baldwin Library of Historical Literature for Children at the University of Florida National Endowment for the Humanities ICDL CCLC UFSPEC
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110217_AAAACQ INGEST_TIME 2011-02-17T21:30:37Z PACKAGE UFE0014860_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 105896 DFID F20110217_AACCSN ORIGIN DEPOSITOR PATH tymianski_v_Page_13.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
2128e697edbf81de31673a023e11f56c
SHA-1
37a129a297f9768d2d6afdc20347ca1ebe7549ba
6099 F20110217_AACCNQ tymianski_v_Page_12thm.jpg
c9aeb9e52a7007e3caf3dc0649a30507
ef764f850ee60dd0da9e5f1f15c1bb2a8ac2048d
511114 F20110217_AACCXK tymianski_v_Page_08.jp2
55c1c6aa89aec236d5965c3e35a9cee7
2451ece555bbc03adeb532242a7fe897bfdbd7cd
191 F20110217_AACCSO tymianski_v_Page_55.txt
10bc8f8bc667bbaf5b3071d3d7a00e1f
2555b5531d46211589f2df67af88f1153ee28279
718352 F20110217_AACCNR tymianski_v_Page_47.jp2
dafcbfd1d249b356a68454dc3c72a6a7
70a0741fa346d1b8c379ff8e8deb58b98d0c2b79
99313 F20110217_AACCXL tymianski_v_Page_10.jp2
e2551bdb4488ff1169305d8db3818061
1ad7cba8f2b30e7ef91050b863c7e2cdc568de47
257 F20110217_AACCNS tymianski_v_Page_57.txt
74954ea9b4ad7932a0fe5d0f93047291
1069226e4afc4e94ae0b8e6b55a12b90135ad9f5
897524 F20110217_AACCXM tymianski_v_Page_12.jp2
1a2d94e9c896d74375f34a10b71d6530
02dadf0d56870d4a6defa0dccbc11fb3448826e9
6940 F20110217_AACCSP tymianski_v_Page_01.pro
e9123945e079758e1270daa528e708de
7d5f6c3827c9cd36cf8972e9d28aa00c3bafd8df
1419 F20110217_AACCNT tymianski_v_Page_11.txt
e07766631c9ef2df1501d72c5c7607f2
919c1a0dcaa098eb03870e9927f4bc2d5379832f
481280 F20110217_AACCXN tymianski_v_Page_15.jp2
eec8cd12b1032330a1b4c620ca2b4813
7cb7dc0328084afff3377da34364a35e2cd8cca0
669204 F20110217_AACCIV tymianski_v_Page_11.jp2
f51f35102ca232f11c1fd7d90bd0a669
59f245676c78aaea292e01feb6b4aa7ceb02153c
4232037 F20110217_AACCSQ tymianski_v.pdf
dbf692c327ce4a8497de1fa76c2b3d28
0372181e25c2b1c0711de2c3d37ee7d29a2dd6e4
70640 F20110217_AACCNU tymianski_v_Page_30.jpg
1d98d29cd7dc4671ed2c3ff564c79317
4c27c0a7ed4c6cdbf0bc89496d6495cabfb4f6a1
1028462 F20110217_AACCXO tymianski_v_Page_16.jp2
36005265ab3c97609f25d751c48ebfa2
6a5ee68089b35994478276b2fda6906be0fa1d1b
17681 F20110217_AACCIW tymianski_v_Page_18.QC.jpg
7654b924f143c8bd46ebae2ef2bbe851
907f4e47d5d7b92df906ba7f6bfd66d7588a2d50
34614 F20110217_AACCSR tymianski_v_Page_39.jpg
77e2c0173aa132ffd0c4ebd364616446
c84d30c1936ce38e5eb65bc382958e65c12b0fc8
5945 F20110217_AACCNV tymianski_v_Page_34thm.jpg
601d35dbdc25ca10cb941d550ac2a350
fd28f4659862d7c8f649c2a5ce5492ac4679479c
589969 F20110217_AACCXP tymianski_v_Page_22.jp2
5ca0246edccccf479b59dc2ee64bf6e7
bc6f4d35cd4e02eb7d4e38714e4600534215c5e5
8423998 F20110217_AACCIX tymianski_v_Page_25.tif
bd7ab990c74220ea6171449380656a7e
274deb8662f5479b49a270dcc05d181b9bdba23c
86942 F20110217_AACCSS tymianski_v_Page_25.jpg
76230913c032d06374b4d55fd23517e3
d91f34cec7dcd3b5dd73fde4d003a900170feac0
24751 F20110217_AACCNW tymianski_v_Page_33.pro
8d2f854e7119e4ed7b66168c804e2c84
30b758bde2878da54d05bf70c80f453934036b9d
733463 F20110217_AACCXQ tymianski_v_Page_24.jp2
41370eedf7795a4f05e24fdff0167225
fe5d288554a8610f3a1f9e72c263db408707389f
952 F20110217_AACCIY tymianski_v_Page_15.txt
09d5cf7c088dabcddf319c6572431baf
8f95707e169324714312d9d491321b12c3d4823d
1639 F20110217_AACCST tymianski_v_Page_23.txt
9f194f1a746333e76cc923c450f6b36d
de3d656bc5840949f931aef2b7c6022251ef3f58
F20110217_AACCNX tymianski_v_Page_05.tif
3d7e51d35791439bb4090f583eaa53fc
abe2c863842b0aa46a89cfba7be9fbd91b980e47
651812 F20110217_AACCXR tymianski_v_Page_26.jp2
7bdc720792495cfc6d8e5a756e138380
e1d5aa2c5d24ae291f088bdfb0d87b706e95c222
74606 F20110217_AACCIZ tymianski_v_Page_33.jpg
5d55cea7b6cce6399c3ebfafd311141c
3cd2061ff3a1e04d864570b22c252d02c502f311
21640 F20110217_AACCSU tymianski_v_Page_15.pro
ff97a7f40d97fc386a245abcdb856492
d4039869ff7e7beb623e1e1301e4faa9f26d15ff
22975 F20110217_AACCNY tymianski_v_Page_33.QC.jpg
922e190e485aa3a7647ecbcde8813057
736a3d5d954d25e2800c0282d8e46af4fc8a8f77
616227 F20110217_AACCXS tymianski_v_Page_31.jp2
72258a40b23a1531ae62ff3e0e6ac07f
92cf513f3a9ff4c246ccc4ad0a1dd3ecc50f1bbd
2699 F20110217_AACCSV tymianski_v_Page_32thm.jpg
ee3e61f125d70e89af77ca82e1218aa0
5769e348b7cbd24b1cb27ec305394ebfbfe952d5
3978 F20110217_AACCLA tymianski_v_Page_21.pro
8bf4aa2355a03705938ce207d0ca60a9
0c09894cca4c296288ad963ad18bd534d13af424
1051962 F20110217_AACCNZ tymianski_v_Page_17.jp2
7f3470ba06a46f7b77f1d7bcd80bb119
94653130d5e5fc5c8a83145fa8e1c017b51647cc
924423 F20110217_AACCXT tymianski_v_Page_34.jp2
d2e84f3cb8519a60a752601868e1a2dc
169393c550ec48034ef32dfe65a9922a2ea75313
24537 F20110217_AACCSW tymianski_v_Page_36.pro
b0f425b99d93425dcdf1c8613c34f666
f71750aa017eefede1561cb1a390988d51a8738d
3452 F20110217_AACCLB tymianski_v_Page_57thm.jpg
1e79caa3fb3938fc63e066d4a261790e
899d489b914cb9720fccc4743fa478e355dd333d
505944 F20110217_AACCXU tymianski_v_Page_39.jp2
a7553380cf20cb9e8d173be536e80134
c5d27a05e5913d1ef9b58b33356de549e1e9f985
784 F20110217_AACCSX tymianski_v_Page_32.txt
2a03ec1830eb9b18634943dee4fc6f16
ad636fe88da516f2f2781609f38a300f0676655e
908742 F20110217_AACCXV tymianski_v_Page_40.jp2
8eda6b8f6f8817449d2d7b78475da639
2475c6a916c21cf1915ef2f3d506d64859ab36ac
1103 F20110217_AACCSY tymianski_v_Page_44.txt
0bd010b406f6ceab0da9c7656aae133d
396b5ff54d63d15062f0b5b10e871bb4efc1e42b
675 F20110217_AACCLC tymianski_v_Page_49.txt
0e04c43fe58cba48e08c11c561565aec
41fc4a12cf76689c8e0b5ba51546c99a3433aec4
591230 F20110217_AACCXW tymianski_v_Page_41.jp2
4654c6f5ef382482d8b305a237b1519e
bd48625f6cfa32de309643ee348efb8719f343c5
34091 F20110217_AACCQA tymianski_v_Page_42.pro
ffa2ec1e938b25b1272597ac26a027e4
84f18e4d949a403def9842467575a20462a054bf
F20110217_AACCSZ tymianski_v_Page_24.tif
f2ad313b3ba6959666fdcf08062a39ef
7ebacbbe112b22cf41cbf2c44e216fe324a7f45e
6287 F20110217_AACCLD tymianski_v_Page_40thm.jpg
9000590f02d81bcb9cd10741b8e11923
dfa11a4144600f7f6f151ae0ba9c9666912c93c5
798425 F20110217_AACCXX tymianski_v_Page_42.jp2
09b0ef3de9be8927b744668eef6a5da1
59ff6912acdfa918f7dc540094b6b14d6fd7d08b
4332 F20110217_AACCQB tymianski_v_Page_44thm.jpg
1b7094c7a96d406306b13476b7f186c8
abf4b194318a31ab00bd45ce0018d24b1a392374
5729 F20110217_AACCLE tymianski_v_Page_30thm.jpg
519a558c0c9aba8263deb04421d361f7
b5760a493b229bb22cfcf64c7d3432432e6810fe
1604 F20110217_AACCVA tymianski_v_Page_50.txt
3b71ac13dab5fb7125709320c3fc1dbd
fc1a93f58a87ba6b68da8d19d1ec6ae67274cb2f
424646 F20110217_AACCXY tymianski_v_Page_43.jp2
29bea1f27a032a8bbb328e4370145cb0
d8e66b649f59bbb30d380d11de947b3a907cc513
38878 F20110217_AACCQC tymianski_v_Page_12.pro
c1f313212d625a897130cbcd160604c5
1bfe5299d11a19a11add44508454e789d05d6f0c
1051932 F20110217_AACCLF tymianski_v_Page_61.jp2
3dae792f7233ae80f1cdd5684ea732fd
538cbdffd71797d6354085b1036be77b447b7149
530 F20110217_AACCVB tymianski_v_Page_58.txt
56b55dde6e2674ebfec1142430522123
24f2eeeb88ad020d4fb3e7898e49abf92b854bf9
682639 F20110217_AACCXZ tymianski_v_Page_46.jp2
1e264bc19df3642e61886b990956c2a4
8e727531a9858fad1c99e6ac3210bd54655fc685
1613 F20110217_AACCQD tymianski_v_Page_48.txt
b0f6cd26d8be9f58853624178ca24e3e
9d6d3bb9236eadf1a49da907c4b35798154aee21
3693 F20110217_AACCLG tymianski_v_Page_59thm.jpg
02d968fd88b24245c258c256e049cb8d
2ac7a6c028023d9c42a9754114a6a404b67d39e9
1641 F20110217_AACCQE tymianski_v_Page_42.txt
16c4c170fd4e9562b88589cb22714345
0b2bda682a201b8808b67bfcd72617671a0d5dba
26261 F20110217_AACCLH tymianski_v_Page_22.pro
b49f09e7021555ac9996217014f496dd
6aab69d3f3c4e2c445d81c53ce898ecc91543405
41113 F20110217_AACCVC tymianski_v_Page_05.pro
87527a258f2a5f341b0c9850ff2ac8a6
dcc37653638bd2a0823bfcbf8906a544de5e4799
477623 F20110217_AACCQF tymianski_v_Page_44.jp2
018e53bd63d891b6dd53ac6ec19ea3b5
d232f3ff6aa44aac89e8d605ab84243fbd7fa031
336145 F20110217_AACCLI tymianski_v_Page_06.jp2
d9774e981dfde95161eb3edc2fb94cab
61d2ff56cc0748a1bb1b78a69d192e5cc9e2b6e3
25745 F20110217_AACCVD tymianski_v_Page_06.pro
6341849c0a439b4fb2f80b8b9661a82d
8741f6674910a0f422186b1354e9c8c12bf1f39d
326633 F20110217_AACCQG tymianski_v_Page_63.jp2
5cfe1efff72f85db30164ecd86e078a8
964adce403afe80e67904aff4a9d703bf613c8d4
624226 F20110217_AACCLJ tymianski_v_Page_18.jp2
1d4897dce69b3479433dc70deb586f5f
d7b11695f9de14f8956d9c8370b39ce84011cdf2
35852 F20110217_AACCVE tymianski_v_Page_08.pro
80f1f3fe5a6b3b1278868e9d2ff85c25
b0f1fe56598e74317a5de9ff65d69c932824f294
4799 F20110217_AACCQH tymianski_v_Page_49thm.jpg
954bfc40cf22b45737102c46c1285016
86cc83cee3e1fcef398d5d855dc4c0d6de7b9f0a
F20110217_AACCLK tymianski_v_Page_58.tif
c41e41e725afae3f9672c78ffd86fc5e
a80b42737164e596cc4f4bf22cc761c1f01cbb09
43275 F20110217_AACCVF tymianski_v_Page_09.pro
594a334218305d1a796736bc5b534fae
beda1f5629185fbe13db3dac0e42235ce0a91a7e
5168 F20110217_AACCQI tymianski_v_Page_27thm.jpg
a585b7335cdd98d7c37193e861f89861
9a0401784d0e9b304da0990b3d5369cb1f99cc82
F20110217_AACCLL tymianski_v_Page_39.tif
15d11581ddcdb85d8df0a2d44473cd60
1344145a4ad80a622498bf464ede4eeb6d4f429e
48845 F20110217_AACCVG tymianski_v_Page_14.pro
3bb817b933d3a9b72d51422151e65bbd
f0a98486b3e5603d9c78d76f3adbedd60757ff71
10901 F20110217_AACCQJ tymianski_v_Page_39.QC.jpg
d83fbc8a5454e7638419aa5a9ebc1874
863c21e6ee5471d5db7c9fcdd6c978f3f7e3c793
59085 F20110217_AACCLM tymianski_v_Page_45.jpg
bcc41d6a6b78e459cfb8c1aee25849ad
98073a8c580bc3fa4a5454f147639c7bbd08c9fe
55371 F20110217_AACCVH tymianski_v_Page_17.pro
4ce1348e8617ace9696c1a9de5f57b36
87d538fa9dac288e368049379813b4db09a49ab2
478 F20110217_AACCQK tymianski_v_Page_52.txt
5e304979f9b3934da82096057b73603d
9fd2b621474c89bd5b5c7fadc6e219515c181d19
3109 F20110217_AACCLN tymianski_v_Page_21.QC.jpg
5c382f1b638d21e19c3f4383da3d7ffd
b1b68be3bc856f1f84ded501a0209a379c5e45aa
27841 F20110217_AACCVI tymianski_v_Page_18.pro
3ea5d5cd989322f301b4c1b24d782797
2803e6085d33fc9e4138d33d193ef3c5c87f3c9d
960808 F20110217_AACCQL tymianski_v_Page_33.jp2
1e8b9aec864d72010143d937de268fe7
4872fffdcdcccdf54822ac04154ca097dcde659c
F20110217_AACCLO tymianski_v_Page_38.tif
d553be7eca0eb90676454e963559ed1d
bf3c11e39cdfaa9af07f8c2dfffa0dc36a5e1c3d
24502 F20110217_AACCVJ tymianski_v_Page_19.pro
b5e531813155a0db32e8195de728c318
093d744fca8f9caf137479e9e159b56a0e317979
F20110217_AACCQM tymianski_v_Page_21.tif
a4e9d2d6893a879e5d0942b89ed3e14d
3bf0cdec7d995402b8be3ea369217dcfabca4a33
1433 F20110217_AACCLP tymianski_v_Page_02.QC.jpg
05d726b7777fbf89c6a0750115b32511
f882aeed751d160715d821a78a7c3b89aecbd88f
52435 F20110217_AACCVK tymianski_v_Page_20.pro
5cfafb21d12095d8245293dc58ea90c0
ac101e00d2a00ffca4392820a7bf5358e2bc25e7
9944 F20110217_AACCQN tymianski_v_Page_10.jpg
420297869004c5467422857cff7d2256
7aa9d49ecce1279079c74f2b403ab0337cb1f127
1989 F20110217_AACCLQ tymianski_v_Page_25.txt
12e349e82dc336926de058d08c39b5b0
c60840d490ebd0761b943c86fe9078d0380a9745
923 F20110217_AACCQO tymianski_v_Page_03thm.jpg
247315ed13e7460a0259650c50a7ba68
f45d96ed5348895e591371dfe203996a32bf4840
21712 F20110217_AACCLR tymianski_v_Page_24.QC.jpg
bb64f375ddb90db1b71cd94e93fdae60
d8ddc31fa76277aa46e08ba057ac66ec9ae3b147
27807 F20110217_AACCVL tymianski_v_Page_27.pro
25f3d73c2c76903382a4b4a13a4bb0b6
c6f0bbb4db493d30b9ee89111e6e025b7729edab
76410 F20110217_AACCQP tymianski_v_Page_36.jpg
1c5e2d1c56a19fe7f719690e60aba9f8
85865953c87bfa2f35ca06713dea4c5472cd2855
F20110217_AACCLS tymianski_v_Page_61.tif
1fac63721ac491bfdc962d52131e8ee3
0e07ce9421e532048ebcb038ab961015d9ef3dcd
35735 F20110217_AACCVM tymianski_v_Page_30.pro
c639eee1f06d6999a22f3efc1a1f9d05
83fc57322bdc9d30f636fce159cea08333f50f6b
80469 F20110217_AACCQQ tymianski_v_Page_37.jpg
fca78259cac50b164a74a280d5ddd121
0361d1b324f46b77d078c13eba9a6d5430e15a8e
4550 F20110217_AACCLT tymianski_v_Page_53.QC.jpg
d7c4b6ba8ca09d32a5dacd2a7fcb8a77
9c8fe204ae905d5ee84acee62cb34fd38daa318b
29615 F20110217_AACCVN tymianski_v_Page_31.pro
2b200058e97cb570a7d885f3b2a49f1d
e2983be2f5837c7402130cf824450aeeeeed1014
17210 F20110217_AACCQR tymianski_v_Page_49.QC.jpg
8ead6b520a4ddf97873cd1293c1d4323
3f1852a26bcd7e1360364c312db5546e1bce5b99
6927 F20110217_AACCLU tymianski_v_Page_14thm.jpg
f2363f194aeeda2d8340027b3f20d517
4dd6d0d28839983861f3173ba50963dfb9569863
1066 F20110217_AACCVO tymianski_v_Page_39.pro
25bb8eb9fc5ca733af614ea7decf787f
851472c873f98573a960962f230f33420a80b784
10043 F20110217_AACCQS tymianski_v_Page_63.QC.jpg
c891638d1e376d85b949b3af0d9bc040
e831c17096cb1e3d5d849f2a9d0c60bd53b818db
945082 F20110217_AACCLV tymianski_v_Page_37.jp2
7cd42d3e119bb13f3ef2fa39bb6dea10
b2b2af891f0eccb4a13bf826938d6f6eb1cc5fb0
19304 F20110217_AACCVP tymianski_v_Page_41.pro
4749977971adf6c8cefcedef03569972
1fc5d56909904a7c403d0f000662967fbd5ab2f4
13295 F20110217_AACCQT tymianski_v_Page_43.QC.jpg
d4cfe578a232ae6e964f8d5a514afedf
bd83065cedf93390f825d0b7edd51db43499b4db
3217 F20110217_AACCLW tymianski_v_Page_53.pro
6c9a9ff721eca2a633502eb365999dfc
7a24e150ce29ba0bbb538cdba9dcc79b62b7fd1a
17024 F20110217_AACCVQ tymianski_v_Page_43.pro
c34e9ec2a44d710e53b8e55177f53e12
f89751652b6d7e33b668738a486ed1603f110541
680551 F20110217_AACCQU tymianski_v_Page_19.jp2
8185cbd54f00d238d0be013a67c755be
4d088110e10be2515b2e74ca15b2660f922cd99c
11423 F20110217_AACCLX tymianski_v_Page_53.jpg
722243776c8b5a475c8f366ffdae8c5f
9b523f493e121fec5ffe343ff2bbf781cc514e32
19112 F20110217_AACCVR tymianski_v_Page_44.pro
ad0b580ce6bce0a5522bf1c00a110df0
ebfcd2c8abb421cf9008429b3eb99ddcc6f095f0
60005 F20110217_AACCQV tymianski_v_Page_27.jpg
d32b1b974ef0332bcf8cf45d518ff045
8b89afc17b4b2fca46788c2dd9509acf42919879
27193 F20110217_AACCVS tymianski_v_Page_45.pro
99ac85bc0b0f009aa73d1ebfc6c2d37c
79bf79c12a3262de9a52a63e8610064d5b0e011a
45777 F20110217_AACCQW tymianski_v_Page_56.jpg
93508ee8c2245e5275a7e6fae1590715
333532c988e6cddb77c216db2a386f8a267ff2b4
75845 F20110217_AACCJA tymianski_v_Page_34.jpg
75bef08f73238efd56ea5085adca21ff
5d5ab91d25c59361308bb3cc0d82fa9e26d9ff49
81048 F20110217_AACCLY tymianski_v_Page_40.jpg
ac120b20b47cb363d4831de02ef859a1
b748711269ae3e689e1647d808d58ec97f5b2bd4
20784 F20110217_AACCVT tymianski_v_Page_46.pro
f0aad947ce43e1f6f61d64c1e4589182
d1da88f8c436176c1c9ed3d1ee3086ced4a8f6a6
33706 F20110217_AACCQX tymianski_v_Page_50.pro
f9f6eaea484befddd706a9b807f40360
883d75adabaa153c670ca884ba288283642c184f
67181 F20110217_AACCJB tymianski_v_Page_50.jpg
1facbd9600816e64f5cc10892c56fcdf
2319c5ef9450d4fa2df8f2fb42c3738beb89b838
55753 F20110217_AACCLZ tymianski_v_Page_13.pro
e65f7eca80c37d324d84c6b49f4c2f17
6a8253a2ef5a69e71044bd938bda47f8c067fc2f
19199 F20110217_AACCVU tymianski_v_Page_47.pro
49a7f401bc082245d40ade6870891c0f
1391f5383e8f47876406cb8cd7510a86ab559050
465757 F20110217_AACCQY tymianski_v_Page_29.jp2
b1a55d724aff3c4a53c651444edaa0c9
4210e0bc7852181b4d49741e669728f708bd52f1
F20110217_AACCJC tymianski_v_Page_56.tif
8d4b417cca6b553100383e0755f0c47a
4df6fa3487f387c80efed05d16dca4304c5fce2a
11314 F20110217_AACCVV tymianski_v_Page_52.pro
da4969df8dd40794c45f252506f5ece0
251a86f2e32816e894fe557520a7fba94dd866b1
1956 F20110217_AACCQZ tymianski_v_Page_61.txt
0b4150e963767dd316ecd0973108e17d
41754433ecd1ccb731c63a978fdceb18caf4e235
F20110217_AACCJD tymianski_v_Page_14.tif
3ae7b4304c6470acb821e61a9ae055c0
84285a34c309d637286ea4f41c1c1a3905b71cea
19212 F20110217_AACCVW tymianski_v_Page_54.pro
47b2b72b5b9a6e23eec2c855ee9f0659
54c5942a18e71f1927051060d9ccc7e4ebf7e106
325672 F20110217_AACCOA tymianski_v_Page_58.jp2
39a4010b7d21dd25ea628ed7df9c0bd7
c6dae51cc0c300c5aeae5ec443c4d07a6c2ef09a
121 F20110217_AACCJE tymianski_v_Page_39.txt
44f55ce0eba461df8c682e27e980e010
b82c54202d2d661933e63bf6ce328e3d9192e62e
3250 F20110217_AACCVX tymianski_v_Page_55.pro
9a391fcc49675f18bf48cc7a4046df8e
b96189d686c9463c1ab195e7bd6a9b5dfbf5a64d
28377 F20110217_AACCOB tymianski_v_Page_16.QC.jpg
9f66253d98cea87c016f368a5697b54e
ab95c13a91116870f0e8e9f472428d07530419e8
57313 F20110217_AACCJF tymianski_v_Page_46.jpg
06a1e99959d7c4666acbd3fdf0d7e6f9
589ac8c6ec9935a1becef17acc84d6898128792f
6763 F20110217_AACCVY tymianski_v_Page_56.pro
f60bb677a8ec92f5a62d9e247407dfc1
929e88335e54407d8cc132dc5eb61ca03aa493ed
3281 F20110217_AACCOC tymianski_v_Page_15thm.jpg
81363eb851f317cfcac8f78080dd09bc
160434a6c98b0707a0ab9e7f4e0d34a6e9ff02f5
4650 F20110217_AACCJG tymianski_v_Page_56thm.jpg
00e8b890081e215efc06ceeaca4c97cf
1986da2ad85ce46f8b77d9dd3c55cd9552aec09a
23975 F20110217_AACCTA tymianski_v_Page_29.pro
0ee44a6ab283c244fb4ddaae1732c8c7
a457f9cba4f7841a08c08b205d7aaded98edaeb4
2570 F20110217_AACCVZ tymianski_v_Page_57.pro
06fbd31c7354a43db666a9e05d6ac0a1
0fc4a5ed65f4c3b3992b6df416863ba498da4f4d
24041 F20110217_AACCOD tymianski_v_Page_28.pro
8233c3daeb6831a8a074df87e8748302
0ebfbf12e8405c60e3f605f60ad776dde7819553
499 F20110217_AACCJH tymianski_v_Page_60.txt
6bff0264b428427a6cf5c13abf9ffc25
378028108de9ba60f77e7853d316e940b2857031
1270 F20110217_AACCTB tymianski_v_Page_55thm.jpg
ecdd92c70aa7bbcc7fb730bbffe73e5a
cee65717c61177dfb78b98c83263e9ba926b1b64
20790 F20110217_AACCOE tymianski_v_Page_48.QC.jpg
61acf9c4e3cafa49c3f326284fa4cd9a
82ec0e1e95f867af2a53eac60675cce3eccf968b
571842 F20110217_AACCYA tymianski_v_Page_52.jp2
e48af351dae9c4a0f37fa43ca53e3246
081dd3eb84c796657eec6cb267357d97047bc26c
14766 F20110217_AACCJI tymianski_v_Page_60.QC.jpg
f6b59f1da83a114c8c34d4d6a4b6fa70
7943dd75e4304c6a90cfe6b0996a5c47b7b0300e
1245 F20110217_AACCTC tymianski_v_Page_24.txt
8b022980efa12ea38c69f1ba24dfa6fe
6f95af71fbdc20a96bb318df802795961bd7a48c
4695 F20110217_AACCOF tymianski_v_Page_62.pro
33b1ccd4014db2f9c33a87376c123879
4bde2d6f48f3ad2c5d428f2db5e05708cd3e186f
333068 F20110217_AACCYB tymianski_v_Page_59.jp2
5370943cfc53a609b0a1e178372e7a5c
011eb6a6c2d3bc3403b40014435d2958cb154f34
1312 F20110217_AACCJJ tymianski_v_Page_38.txt
ed8d0aedefd6e18c333611304d1b8ac9
f9d9c159116f6208e7156b06a4d7690f3aed4899
7645 F20110217_AACCTD tymianski_v_Page_38thm.jpg
2e08bc7d4dce25bbcd6e1df6e1e69f7a
a243247403041a9449f9fbbd418bf82dbbc201a0
F20110217_AACCOG tymianski_v_Page_46.tif
35e8c3f9e4e6c795dc6bf94a70c4c958
b0ef75c920e977ffe73f761e75ff16acae970010
106916 F20110217_AACCYC tymianski_v_Page_62.jp2
1c8112e285713fa01e12658cc94f7e96
d92a27b640ec467319e870136c01c6e081992bf4
5020 F20110217_AACCJK tymianski_v_Page_19thm.jpg
97a2c483edf9cfb8cc9c0717ac23d53c
0df5459e4289e9ca4c8fafe61d6dd1fb2d85c695
4438 F20110217_AACCTE tymianski_v_Page_10.pro
d7c05f6462d2840bb571b8fd95303609
898968f42dc5261e2e1dafa71dd4cf023ee27732
1930 F20110217_AACCOH tymianski_v_Page_16.txt
bd64ec9ff0a0e0305325733d665c6448
5ac36963614144475a9892891bd7d2e764304a3a
11648 F20110217_AACCYD tymianski_v_Page_59.QC.jpg
fe6f9de2356dc598f810cbff6cdc2beb
16779884af22f681ba13ef4bdc18ff1cdfd0ddce
70073 F20110217_AACCJL tymianski_v_Page_07.jpg
e50a6bd2314e89d661502ffd5bff7d45
5234dca29a925fa5e13b23a8a5ce51e09cb6d291
15186 F20110217_AACCTF tymianski_v_Page_44.QC.jpg
dd10348ea40d6a30a87e6b19bdcb8754
52091b586d55c37e6f13f10272e4be0f1c6aef46
4613 F20110217_AACCOI tymianski_v_Page_52thm.jpg
90c89fdae787f0281d9a95e4a536d69d
4736a0b13c43287fc656e82ab647c1d3343214cb
12624 F20110217_AACCYE tymianski_v_Page_58.QC.jpg
1649a798f3132cfa5bcd523bd56fa912
44c6b8fd79884a045efcef94ab52a7289d2b3896
18981 F20110217_AACCJM tymianski_v_Page_45.QC.jpg
15af6861028aa4c38b6bf3e84b2c8805
150e5d81cff089d335faf411a3ba30c9bbf80471
677128 F20110217_AACCTG tymianski_v_Page_23.jp2
859b835743b940ab7ec6b8930f1a37a8
52791ef836a38644d1dc7e15dbbce1baba68571a
31560 F20110217_AACCOJ tymianski_v_Page_23.pro
89e6494fae65b693cefd1195bb7688c2
7a2e34d4c5fafcca7c46c193fc2264c8ba3a56b9
51907 F20110217_AACCJN tymianski_v_Page_49.jpg
85573302bec5bfd726bc7c66f13cd8a8
9619ca13fb026e68bfee798de810816fd6bb5236
1442 F20110217_AACCTH tymianski_v_Page_27.txt
6dee27d37f9da6cbaac6631780cc5668
bb0e6e9871fb0ed34de640058460205e0d06e85a
18475 F20110217_AACCOK tymianski_v_Page_51.QC.jpg
f4ac8334cd0a533d7b4355d4ce533d69
217f507d8f7dae97daf2706f3e24094fd4cb000f
3024 F20110217_AACCYF tymianski_v_Page_54thm.jpg
9b7a1262c5f5b1e53a7c88e4db4c6109
abc8ddbdb6636d42f54dd61a06a0e23b9437127b
389534 F20110217_AACCJO tymianski_v_Page_32.jp2
efc5e265631f8820f0fd0c8c41c45387
2ead643575c28d3da3610fb7e86790919c70d2bc
F20110217_AACCTI tymianski_v_Page_40.tif
50f7a324bf0b36068a4fd8d184dbdea8
0578811fb31142a10324161f2829024399e6d0c8
33282 F20110217_AACCOL tymianski_v_Page_13.QC.jpg
ce933e6d107b307fa83ef6da8538b036
b37f9cbe5ea60b0bdc93cbacdd2a105bdb9f2e66
16967 F20110217_AACCYG tymianski_v_Page_29.QC.jpg
6aa6deb04432105af280857d78e04287
ed5669c87b4e957b5a2ead02cab21c1f260c4b3a
86016 F20110217_AACCJP tymianski_v_Page_53.jp2
126bde6a840a5fcc128966a5a51b353d
e7627ec2d574e7d79e38db8cba8595719c4c81a7
1547 F20110217_AACCTJ tymianski_v_Page_31.txt
656591d1617be6ecb81f846dea8c8986
8ac40c3b5af67a851d82b87d147cb54ca6ac9766
22021 F20110217_AACCOM tymianski_v_Page_04.jpg
4f260a59548ed5955fdc17751a0702ba
6d4c20e555c9ddbd5fcb310d05bb6ac92438d77a
7210 F20110217_AACCYH tymianski_v_Page_04.QC.jpg
d18178e6b681ced96d7b0d2da0508db5
8ac253125fc948af15ce16ff8bfe354c21134205
17018 F20110217_AACCJQ tymianski_v_Page_22.QC.jpg
a8522a28ae154dfe892b281f64c07f5a
93ff4f29a4ba9b2c685d85c2e41e6a18c605587b
77103 F20110217_AACCTK UFE0014860_00001.mets FULL
58ce57a3a4f471ca6e2bfd8088d00450
9cac8deed616c11328d3636926da7fc0c7577691
11729 F20110217_AACCON tymianski_v_Page_62.jpg
75f32d6fbc21f1a80f17821d2188da09
45e6c5b67606794fff295356a3779f5bddbc7ba5
4986 F20110217_AACCYI tymianski_v_Page_26thm.jpg
8fc3640f936a57cee8aebe466c43bb9b
f937be6e797bc8e96f2708ddfb9f77f3a1c5061b
F20110217_AACCJR tymianski_v_Page_30.tif
5ca27edf91cbc9125c01b8e27d086e24
6487d8fa57c991dd5c73ed8f2f792ca5c09d11bc
84645 F20110217_AACCOO tymianski_v_Page_21.jp2
1fabbe390717dfd05105519fcab666c4
3c8b5aa6dcf0f3fa700492c9e0c2f70ee7072dd7
5273 F20110217_AACCYJ tymianski_v_Page_46thm.jpg
6829e76bf3e71614addb53bd22dd74cc
05648bbe63fc230e0e79cda93eaa8caaa98d8953
36007 F20110217_AACCJS tymianski_v_Page_59.jpg
69169f7cd5dc91902132bb5337238634
59af76230c8e4f081b99731187c2922478fcfefa
6387 F20110217_AACCOP tymianski_v_Page_61thm.jpg
710d9d7d2a303ac38543607801fe5d74
cef570080f93a74c9e90ec9691510baf08bb2f82
1869 F20110217_AACCYK tymianski_v_Page_04thm.jpg
5052476f37bb25ca9fd581f3615325c5
1cf75b078ce3b7da43fdfe5f8c995ea251756103
F20110217_AACCJT tymianski_v_Page_54.tif
66109eebe8596dac93f39b803daeec51
b2982f513914b8258bf3b56a441f78ff6eb898ee
F20110217_AACCTN tymianski_v_Page_01.tif
989eb940dcc75e08aed771f6b427338f
875e80363bd1885a0f041510b65c49228e07fe0d
71640 F20110217_AACCOQ tymianski_v_Page_05.jpg
9280994ac332a2a89a7c2bc6e1d22fed
915f01a6b604699a80615716349a9121bc99670c
28154 F20110217_AACCYL tymianski_v_Page_25.QC.jpg
b0f956ef22388af0f5e9328ab441bb48
2f71807d3cc2bf52fb39090f249e515e215deceb
3811 F20110217_AACCJU tymianski_v_Page_55.QC.jpg
f104ba76b39a5769688c1c473945f64b
26c9194bbe07f98b10e4ef5e79b2b2210830b920
F20110217_AACCTO tymianski_v_Page_03.tif
6fc838675fd6dc4a6fecd65c45cc318d
3c1cafe7ced5a2e79f36279e7c9b8505baf50764
24692 F20110217_AACCOR tymianski_v_Page_36.QC.jpg
4a46127af4453f3b0f6bb48e36480029
ce2917e73f9d9b131596e569a0c0287d6c71f2ad
3246 F20110217_AACCYM tymianski_v_Page_39thm.jpg
6ff8b8b83dd6b3cc6ff59dc0c967aa5b
81dc284247688465da424d4d47e98e83c04a01e1
F20110217_AACCJV tymianski_v_Page_18.tif
d532c02a8ed1a9ca0f7d5e2aa7b870a9
59e06555b30b8887e4f3701e9a0ecd46fdbc1603
F20110217_AACCTP tymianski_v_Page_06.tif
b3d4e12136fab80524f95ab3d337f643
7285ab7e2cec5aaf2f38c1b7e00a374d68f44212
19182 F20110217_AACCOS tymianski_v_Page_26.QC.jpg
4b49a45bc38418e86f1f7caa25195061
3008fa1720188b7e7f5e5985beef98b9ebb982c1
7132 F20110217_AACCYN tymianski_v_Page_37thm.jpg
7cb2a043a95084e9a96808d4645f32cd
a84dc3f701000b4aa556bb8aaeeb8caeb4479470
F20110217_AACCTQ tymianski_v_Page_07.tif
576aec3d3b72a554061367231bb22f63
272db49c25d6bda9c76527d549055e81ebefd241
6969 F20110217_AACCOT tymianski_v_Page_25thm.jpg
49c0c6240a48c6979be8c37ee6e9b9c3
09595a2cb0cb02a98b3480c5045db140acfceca2
23743 F20110217_AACCYO tymianski_v_Page_34.QC.jpg
9dcce92b857a62b8ccbdcdf6d38d57e9
8ca46a0247375c434a31ef0f1084f081e2abb214
20636 F20110217_AACCJW tymianski_v_Page_23.QC.jpg
3ae7f747a49215fc31843df1da717a19
30f12000e89b75d3589a27462276a374a165dba1
F20110217_AACCTR tymianski_v_Page_08.tif
c7ab0df2e5210b604ed1cf3f985c3158
53620dd9609a013f9d8d46aee62b91fa67c74972
58390 F20110217_AACCOU tymianski_v_Page_26.jpg
2555a256b9188bc1525dead395eb4e75
2d56b95f91a817b968017f4942370f47a8b25f20
4869 F20110217_AACCYP tymianski_v_Page_07thm.jpg
45db8ed9210e91c7c38e0d2805941a2d
0760dbfc33e0d2fef0e4bbb678a70e88d5da1031
4704 F20110217_AACCJX tymianski_v_Page_41thm.jpg
88adffd9b12d51e517bb4b12dc243c2b
348f10b32b477d11ae70904d2d76121646d1cb29
F20110217_AACCTS tymianski_v_Page_12.tif
4a6607f089cc3e02c98f73b186586bbb
c76d0587487b8955308dc9f9c32e92006aa8960a
44017 F20110217_AACCOV tymianski_v_Page_06.jpg
1ee3d26946b9c1cd48d3a48ee3b05682
4c059a76993c776b7e5d5f22a2c7124fd71bd0d7
19152 F20110217_AACCYQ tymianski_v_Page_27.QC.jpg
0e2e4e12d301e9f57bab7f65d53229db
1277368c6bfd7c35bc0299be68c743a4c711be4b
F20110217_AACCJY tymianski_v_Page_04.tif
cf11bf13afacff46fa691351321a96e5
2b9283d2707efa4c555b0c8758fb0c7b27e21e3c
F20110217_AACCTT tymianski_v_Page_13.tif
f89da8cfa8d62e81230a48353ec042c7
7503741efc92a25705f369716de5bab3d0399c14
18396 F20110217_AACCOW tymianski_v_Page_47.QC.jpg
117409847156ba85360d14fdc88a7af9
2aa25b4d0e817900323198f3ba7b17d1e6df4dc7
14076 F20110217_AACCYR tymianski_v_Page_15.QC.jpg
d89e0da3a494099a14d7215c4013daac
d0e4fbb4ad39c907698bbb296986988f6693ab49
F20110217_AACCJZ tymianski_v_Page_20.tif
a9a269f7fcb027ea031472a11757d83b
2dad3454455e4a7a47afa470e30c5ec4b6a99494
F20110217_AACCTU tymianski_v_Page_19.tif
82948fe5ed6ae02f5e32cf59e6b0e7f3
7defafab2ee4e15de4761a7a3306a94b3d6f5725
61182 F20110217_AACCOX tymianski_v_Page_47.jpg
8dbd28f955be1d7faab115f42c3ff0d1
b3a2798bc2fafb3c2998ff9991572fe70447ca66
5114 F20110217_AACCYS tymianski_v_Page_23thm.jpg
1eb23994671c30f930049293de27de35
33d2b913edca004bcb3192dfa5ad66e9dc3d1209
F20110217_AACCTV tymianski_v_Page_26.tif
037b6bbe6e99a4a662e25c0d4c6053d2
a9956f3245f009e15b8ebf2194eb20493d79aee7
1160 F20110217_AACCOY tymianski_v_Page_19.txt
cf2950f0ede110878a4c08b9e9e7f7c3
6cd139f41e8a4dadefb1065011e2e194eae277e6
4743 F20110217_AACCYT tymianski_v_Page_45thm.jpg
07dfad38cdd05008e018a54e3f9c5a3a
0331db5d4e387efb10da1beacacdd28c7e4cc801
F20110217_AACCTW tymianski_v_Page_27.tif
b75a6c582c524a7ac5210fc6f6fe11d0
829aa8cafee18b2427aa9b82c723a378aabaaa15
F20110217_AACCMA tymianski_v_Page_48.tif
f61b1ed18b5dc491d5e17d788741232c
f62f1d20bded15c7e88ef7390757df75e3a1632f
1487 F20110217_AACCOZ tymianski_v_Page_53thm.jpg
20bff0fa4bb88938ab67f0b247901ede
19d25f2a6a31f287f25fba6c8e00fe9d204d2990
5053 F20110217_AACCYU tymianski_v_Page_28thm.jpg
dbfc1230e9d7ad411f2871f499497d6b
80ebd7891cf5860bfa8afabcc15a06f1c84d585f
F20110217_AACCTX tymianski_v_Page_28.tif
c8049c6e51e93abcde71df1b13494e98
1a352ac8b453d5c43d0b0ecb4cfaacc93028093a
17856 F20110217_AACCMB tymianski_v_Page_41.QC.jpg
08d3d24bb61e3dbf6f608dbf85f530cd
ba3f5f514cbc7e30e66762c8ecc1dcb33d4801cf
18624 F20110217_AACCYV tymianski_v_Page_28.QC.jpg
63d3037019f3e9a96aa6beffb94e188f
1cc4ff8fa077212932a91de759bc3db9be0963ba
F20110217_AACCTY tymianski_v_Page_31.tif
a3776308c37ad84f4096c40b3dd87db6
d4a607bcbb14362227388299e312952f654f9efb
753194 F20110217_AACCMC tymianski_v_Page_30.jp2
fc28c109dbca9cf88ba250bca4f91317
e678d79b5020b43f146ee0ba0be917447c010eef
30464 F20110217_AACCYW tymianski_v_Page_14.QC.jpg
a74f33e4c5f288ea289b9116b291d121
f1dac0ae4d326b6421404e0de4ea2756694bff45
F20110217_AACCTZ tymianski_v_Page_34.tif
9871cb288d873c83de6315a0343e6816
616fd9e1e8c60b2972914427cf87ad249861ce5d
1333 F20110217_AACCMD tymianski_v_Page_02.pro
415c883014af66407ed3af47d31be6b9
d1cc78181ae0773e7bf7988829b352077b767477
F20110217_AACCRA tymianski_v_Page_53.tif
97fa8f5c47d2f66f3a5508f864127632
457b4b7e9d535e6e0d27d58e7987bfdea80c54e9
25499 F20110217_AACCYX tymianski_v_Page_12.QC.jpg
e876125931e603d503f396ceca091e28
e8908dc6343af741d4dff746361c8b9ad6c789e1
19123 F20110217_AACCME tymianski_v_Page_19.QC.jpg
00d07e7a848eacccd90efab615f1f5e3
eb8d579d6edc36ac652dd15a8b0baceeeb4a2e36
1051942 F20110217_AACCRB tymianski_v_Page_38.jp2
918bc7e6e2324c2d1576758a6c3a1138
cebdc3c4501ed2c9deaba2160ede2b4efdbdb9c4
3730 F20110217_AACCYY tymianski_v_Page_62.QC.jpg
76fe8977092cf599f8cd4c8ff73681f1
bf6cd69854211d2d0dbcd6435c677a7027624ce7
F20110217_AACCMF tymianski_v_Page_60.tif
dfb7fd75650a043f88564c2aaa98fb59
2a1350e823de2609d26c9c500ec47c0989069a5c
9262 F20110217_AACCWA tymianski_v_Page_58.pro
a36f9ad21417f8bdd6494411edea16ca
ed9a3886a6d8b4920feec1782880166a8127b786
241 F20110217_AACCRC tymianski_v_Page_21.txt
089b348367ccb488ba1a40df0527659a
80fb35b7e317ec81c73376c3bfdbd6d99545dc36
4150 F20110217_AACCYZ tymianski_v_Page_60thm.jpg
dc3c2930807237a1b7c1aa05fee85f9b
0e96b94a84262c767c2f15287265332c2231f77b
330 F20110217_AACCMG tymianski_v_Page_53.txt
662e4c8b7b5d7114ff41de3a83f731c2
dbb02cc21a0a33c9220b03e41bfbab31edd4f63c
3434 F20110217_AACCWB tymianski_v_Page_59.pro
29a584fde4a8a0ee105b95962a126b94
b6ee51cc98733028202152939e74a002f223aecb
1041578 F20110217_AACCRD tymianski_v_Page_35.jp2
95fb1748f0ca13fb99538ccc31437da4
fba5b8f5dcfcf1749a0d05312a883dac168b9564
15980 F20110217_AACCMH tymianski_v_Page_49.pro
c45425abf03a2160f3c31f16fd5ac9c1
271a2f71df7a70a3dc9d3103529378b21ab94afe
10372 F20110217_AACCWC tymianski_v_Page_60.pro
93ddf8e5fd0d4bc89bbaf191755ed114
abe1a129ff6482c3389b5e14829bc6b4342715cf
22771 F20110217_AACCRE tymianski_v_Page_51.pro
beae876551563316a10962ce9cd8a0fc
09fe5db1f508604652c476245bcbfd6630824220
657149 F20110217_AACCMI tymianski_v_Page_28.jp2
cba4fcc836c13b73e055ae48f364949f
d7fed24ea4a7217f50bc26b1203fcf663d51b681
29280 F20110217_AACCRF tymianski_v_Page_32.jpg
99b2c5ddfc2c43f21c68f8baed54b2df
b9d53ffde5a124282d30795ae959d7f89d0aad0a
2197 F20110217_AACCMJ tymianski_v_Page_13.txt
3554dcd9a5502a0c890d666b78c2eb74
6336e8c127b782251305eff91dbad4a3e34717af
48042 F20110217_AACCWD tymianski_v_Page_61.pro
0c67625f1f261e33fa111e3fd39644f0
950c09b7141163fca8e62a342cf6c93494b53856
13529 F20110217_AACCRG tymianski_v_Page_06.QC.jpg
75a141ecfcf8356eb3080c0dd517973e
5c6cd5a7b4643483aa7985041ae916c806013a61
3766 F20110217_AACCMK tymianski_v_Page_08thm.jpg
a347c7155073c25d9893c4ac7a8c4a6a
f56321e3b26cba121d289b8825ff627b2057fea0
22537 F20110217_AACCWE tymianski_v_Page_01.jpg
1535c37455ca662b760bdb568a5b6111
94f1d73c15ad74c4512637ede557e3896c3fd323
26271 F20110217_AACCRH tymianski_v_Page_37.QC.jpg
b1f1aabad6e620cd78bc85fd82308630
9aad78f227ce50931acd458978572f3604263cd7
1738 F20110217_AACCML tymianski_v_Page_30.txt
36d8709a314b059bc8b656b17eea64f1
ddc4b3f21e711b1b2722807444d146dbdd9a7e88
5024 F20110217_AACCWF tymianski_v_Page_02.jpg
21449e7facc5b5d312001255bcdde13b
970b92223405b2554612848ca2951088526e6ae7
F20110217_AACCRI tymianski_v_Page_32.tif
985406781738e30ba74dfd3494375a66
039d413f899acf7070c733a26ac90915c6b11d3f
1916 F20110217_AACCMM tymianski_v_Page_09.txt
6340bd19e609a4a7255ed5f8b3a74193
80b48c85d6f77c213bcdd38fb82c807390a77d1a
7439 F20110217_AACCWG tymianski_v_Page_03.jpg
315a0538a155fe421b5c44b9f87a611e
7c6caea89292c8b515c74aa16ba2a21102ec8296
4857 F20110217_AACCRJ tymianski_v_Page_47thm.jpg
786882453f40479508f8ddd15caaff35
5d8efe85fd5959fabc4c6a98446442744fbdab12
25898 F20110217_AACCMN tymianski_v_Page_09.QC.jpg
5269313b99503515628f4b94ff0a2584
43f3d6a0b2fc04292bfaf013c16be5d1beb5bc24
54613 F20110217_AACCWH tymianski_v_Page_08.jpg
4b84cf93e7ff2d8c86bf44b5f9d449fa
52c2147b3638aea7bcb42efd3043726e585ef35d
1555 F20110217_AACCRK tymianski_v_Page_12.txt
6d10ab455a15dbe8f8d125e5b4996f6f
bc2429add06cabe612e75a10a2abefbe008bdbc1
97639 F20110217_AACCMO tymianski_v_Page_55.jp2
b671c1ecfe605eca904c8fe4f4a39dbf
4af476a596d99b8ecc1a80e0846bba8d41041e03
61563 F20110217_AACCWI tymianski_v_Page_11.jpg
acc5da88cc78b81b5e480946f57ce6d8
c3da6b82819bc23d5c57155f362e2617b579bf1c
1838 F20110217_AACCRL tymianski_v_Page_01thm.jpg
e980fc450e185763d7bba5b5ebc4afa0
56ba12745bca3dbb692f54aa5e008b4a5f43fe0b
F20110217_AACCMP tymianski_v_Page_50.tif
9a5ed38360876e9a28fae9ebb7150436
59dd89eefc000a8b65e2145ddd475ea3569ded5d
80380 F20110217_AACCWJ tymianski_v_Page_12.jpg
3ee8b4c9de176121845f16934a082378
161d075951f2b451f20ccc20d3e8e82c5d2dac8e
105771 F20110217_AACCRM tymianski_v_Page_17.jpg
4925108941575ef4d14424b019ce0572
e4977d093ab347796600a1e006eb6626b7c27995
849 F20110217_AACCMQ tymianski_v_Page_54.txt
634a7d4d8e59acb11072f492fa15cd27
a416209ce784b1969c9e22f9783a9a6234e7a900
96323 F20110217_AACCWK tymianski_v_Page_14.jpg
49c935ab71d2f21ae8813ccb528c7889
d8ec53c536b22f3101d911d407d72403ba8e6b38
17988 F20110217_AACCRN tymianski_v_Page_46.QC.jpg
277a2ebc8d9ee54ecfc45dd1b4110354
9e516484ee9e255a584a76425efc9afeb474467d
31729 F20110217_AACCMR tymianski_v_Page_38.pro
8d3710cf2dd667f7b16942364a02e372
9017b8cdefa330811c75a8e4ce641f7935c11d04
91244 F20110217_AACCWL tymianski_v_Page_16.jpg
977c13d11eee9ad2a9f1406b0e766469
f4987d340b4c7c395f5bbff0f49582902fcad0ba
F20110217_AACCRO tymianski_v_Page_11.tif
07dee40d09a892633bfbbe4a2538336b
241e3edd211a381ac57d74a3ac998e045077a5d0
947530 F20110217_AACCMS tymianski_v_Page_36.jp2
bec69a771afb026feb8d49e4988c4291
af08d1659ed0616bf886be0eeebafcf68e7faaad
56018 F20110217_AACCWM tymianski_v_Page_18.jpg
3ef1470f6a184a9a40edd2c87ec3c83b
618a0b718a120fbeba2927686af1d59cff741bdb
610 F20110217_AACCRP tymianski_v_Page_63.txt
188c30ec9cde6cec9d9c8b9a3c3109c4
09aeef26af38ad52fee80934bab670ff61ae7fb5
25793 F20110217_AACCMT tymianski_v_Page_40.QC.jpg
bf404ab26adf1d07407db737f6b22c46
fc70f363c271f0a9228ce1c12e521397884e54b5
60533 F20110217_AACCWN tymianski_v_Page_19.jpg
df7ede2ee33ae1a79e680b953a3ac23a
d799178927185b00d0addea4a5be8f8a9a306943
12610 F20110217_AACCRQ tymianski_v_Page_54.QC.jpg
035a0da4c32d96ef006da43c3614d192
f731317d9aaf48302b0f6b459f5c27b7ad2fb348
631306 F20110217_AACCMU tymianski_v_Page_49.jp2
7a63d8ea4a49c14fbfc5b042d530f08d
e542c8b75ff3c432ddeba60ae6f317f6feb0d9ae
101604 F20110217_AACCWO tymianski_v_Page_20.jpg
62433443c96e77809819e1e631307226
f47c71160f26441937fc3762902cdf4dec6654b2
5780 F20110217_AACCRR tymianski_v_Page_42thm.jpg
c7a13dc0a24e6da297815fc8b69255cd
2ab26369b9749c1ed0d6a648a30ca6d1fdda923a
3560 F20110217_AACCMV tymianski_v_Page_58thm.jpg
c789eefd844cef4bc31bc2c8092af71b
1164e98b8dc2e55c9294afe8da0508816950b1ff
8655 F20110217_AACCWP tymianski_v_Page_21.jpg
8a8e82ca8483ca696159434244aecea7
de41f67876efe5a19b9a9e6a89ea8f49bb63fdb2
20575 F20110217_AACCRS tymianski_v_Page_05.QC.jpg
b75ac3862bdc41d223feecd302ee38b3
597427c670afaa4a4a836a14b11ebc9adcbf3a07
634761 F20110217_AACCMW tymianski_v_Page_45.jp2
42bb35a91e3ee4ff3613c0c0307321ce
602a3d947cfdcacf0ce6f45ba65833c820c735b2
50834 F20110217_AACCWQ tymianski_v_Page_22.jpg
c9826ac61690bb251731557c68aa9e14
f2713b19bb80d6307ac22029185318c2c71fd4d0
10036 F20110217_AACCRT tymianski_v_Page_04.pro
d02e0d6019d7a1cfc25616bd3d63eb60
f2bc889bf71b050802559cfa5cd099354e9cbebb
62327 F20110217_AACCWR tymianski_v_Page_23.jpg
4e390e2196b63a69675cc7ebfc521b7b
8337e55578e764b64cda7ad33d09f0da612ada16
7151 F20110217_AACCRU tymianski_v_Page_20thm.jpg
53f7ead128bb6623d26a42cb0659502f
c73027cba81a9c4c608f7cf70ee8ac80986a38d0
F20110217_AACCMX tymianski_v_Page_57.tif
6eb060a1cd7c95b4c3f30a66ff8853fb
be2bcaab6a9024c3349ad9f60fa384e658290bb5
63996 F20110217_AACCWS tymianski_v_Page_24.jpg
0dcff02d382ad7b171bf37e54d9d155d
e34d8cd07edbbd4d97822397685bb5347ed79026
F20110217_AACCRV tymianski_v_Page_35.tif
edc8b63973cd48a9146f0b5031ad7938
ec9441f3d8ae4560b5077eb3800b3d88f9677c49
14033 F20110217_AACCMY tymianski_v_Page_63.pro
514c9352843850d3a1e0d93c5aa521f0
369fd2cf4fe50fc95353be969e2717650c381c4e
58309 F20110217_AACCWT tymianski_v_Page_28.jpg
f90f102060e34feb0199b9a05c92efb0
dc47651b74aad12da8c3457da3dc20a0e9facb1a
693511 F20110217_AACCRW tymianski_v_Page_51.jp2
66c2b7aba406853a70cb10a660825d9c
e4f932ee216ee6a12f8114e86b772f40d99d83aa
16475 F20110217_AACCKA tymianski_v_Page_52.QC.jpg
259d2ab56cd73813c2a9f4558faac5d9
6128bfaa3e31e3a3fc4d5ffc4a2881bfeb3fb70e
57293 F20110217_AACCWU tymianski_v_Page_31.jpg
c47a39801fe34ff96b59ab0ae91c59c5
0f7037e00828a4cd4b54629bf38364f546a12511
6571 F20110217_AACCRX tymianski_v_Page_01.QC.jpg
64dbdf445bb4471c4dfc7f5908123e63
94bbe33e12a10e4c64053bf70239042aa5550a4b
F20110217_AACCKB tymianski_v_Page_62.tif
38abdd96ef3f8c5ace6f15d2f4f4b076
0cfd1c638559a7743e482864d72d7ebd98195f5e
2507 F20110217_AACCMZ tymianski_v_Page_63thm.jpg
31822c342d91cab9c9c16967c804e83c
b70d285563daa3f8270f012966ab9539f2312619
99291 F20110217_AACCWV tymianski_v_Page_38.jpg
a54b8dfbc60272fd10f65ea513334cfb
7a8bab7a9e48bebfb2f65a6786e92fa17120d8f8
29320 F20110217_AACCRY tymianski_v_Page_48.pro
3bd7317cc406010054fd1de2db7764a2
4b242c0d792d2a518abe85787c14510d2ec7dbb3
652283 F20110217_AACCKC tymianski_v_Page_27.jp2
7c784d50ffbb29d99b34e4b83a6b8719
0230cade4ce8d7a06b8be86951a0b2d321fbd502
53872 F20110217_AACCWW tymianski_v_Page_41.jpg
4bfdcb2b213f8864b95e05d09567b3db
b14ae6a6e2037d8c8086e6c855b1c9988ed6f7f5
72175 F20110217_AACCPA tymianski_v_Page_42.jpg
cdd1ac70baf5570a9b8d51538077f38c
bd079562d133db0815fa400291589e3e910a515d
200566 F20110217_AACCRZ tymianski_v_Page_01.jp2
89036278718228e0774d8fe7a0c7823c
1af241e04b5fbf172ce9ea245bd22f9a0a8b2f43
1207 F20110217_AACCKD tymianski_v_Page_28.txt
6b5b2965475ef2545cbf973440d05696
cece7e0f3690239a06aba3f7ed7961e571d88381
38174 F20110217_AACCWX tymianski_v_Page_43.jpg
16c0ee1bd8b81a7e246af0f2b3034fc4
83afd682e35f24b00f864257e254f153ac83589d
29396 F20110217_AACCPB tymianski_v_Page_34.pro
f9aa0c14b83a098b82807f4811987519
f6889d2982b401fa3563b7520b1d11a6ab4a46fb
5071 F20110217_AACCKE tymianski_v_Page_48thm.jpg
c8d4f0d4c4b4699a963615157e5ab2d2
b317a797816c87c896126f6caad5733c91d6e977
44251 F20110217_AACCWY tymianski_v_Page_44.jpg
e31caa885c2c788e73b14fbe618a6dd7
fa8e00a4febf0f92320f4ddbbfe6b5291674a2ca
751524 F20110217_AACCPC tymianski_v_Page_48.jp2
e3e2e65c9f7abee97e128286f406e024
5f7d64aefc405d6f86923da2b904d5c6b2956c4f
1051973 F20110217_AACCKF tymianski_v_Page_14.jp2
6cf5523de4127e73f7414ead7f207afa
d9ab687c541e85fe5e49dd205bbed8f470bfd0ea
F20110217_AACCUA tymianski_v_Page_36.tif
959a174102b6e04163a0528d98ac628d
b549e1e5d14dd84d1ff38c2d8141536535cab0e0
68102 F20110217_AACCWZ tymianski_v_Page_48.jpg
28359d7845cceeba2a9eb631d754cd9a
86944941f7b547cafbfd6c0a5ed46cc1ef7c7974
41065 F20110217_AACCPD tymianski_v_Page_35.pro
0065f6fbf8c3990f6df5a7edebc0ac14
86b39609a6417fe67e2bab95d8d95ccebd5c649f
346105 F20110217_AACCKG tymianski_v_Page_57.jp2
76a89fca5106c498281de2ff687b7ff0
cee13bdc64048bee2f283db44381278625b72cd8
4983 F20110217_AACCPE tymianski_v_Page_11thm.jpg
9a31f02ce244efc8eb21ffa0354664b6
6832bb05550b548640fcbd33da2e67de9123702e
234798 F20110217_AACCKH tymianski_v_Page_04.jp2
2b235eadaa54ba810b328775b2cfc48a
f73a61ae69a487fe4f812bd518425e20dd87f974
F20110217_AACCUB tymianski_v_Page_42.tif
c552fa51793b2b26db0b9681b8fa65f1
d09148e9898bde2ffafb8dd8658715866927faf8
22224 F20110217_AACCZA tymianski_v_Page_07.QC.jpg
15c9ada883fa8e75990aa28fa04d6255
77ec0a86610121fed66665a9a3349b50ee404d75
2101 F20110217_AACCPF tymianski_v_Page_20.txt
c2ab37f620edbe961625957df1f13dc5
2ff1ba9b4b922de6420e0fb645392309eb9e3668
10247 F20110217_AACCKI tymianski_v_Page_32.pro
dc1c5b691823fd50073a995c39bf428d
f874f8b85c9ff8bbdf606e1bea4ee090365c6cf4
F20110217_AACCUC tymianski_v_Page_45.tif
e62187996772ad114a220975c20793e6
eb8ebaab4108f1be8c213da5019f8f45259926ed
4664 F20110217_AACCZB tymianski_v_Page_31thm.jpg
1e6483c23ea27abd672688b5bee52607
f87949c6e7738467d882a64d50a07f70b7678327
17542 F20110217_AACCPG tymianski_v_Page_08.QC.jpg
fb6c52725204cb65f52398f788f6f639
870f841650da470aca0d356ec3a3e798b85d63cf
88268 F20110217_AACCKJ tymianski_v_Page_35.jpg
caafe4f77ff8bdad9a8e00b37740f87d
34efe4559bbd02c9847bf95a5ea9798a7e595e2e
F20110217_AACCUD tymianski_v_Page_47.tif
a844d71b9c05f87401fcf582f210ddf0
085e648dab719f751bd8e227821632be96a0d095
15976 F20110217_AACCZC tymianski_v_Page_56.QC.jpg
d92e5e086b31c41b4d6d3c7f7db3d2b4
c146fa640b118e373507d9979700fea1b2d628de
85547 F20110217_AACCPH tymianski_v_Page_09.jpg
e47883dce91d0eb97176a13ed1fa877f
115514b11136fe2e77fa6404531aa040450d1d2a
F20110217_AACCKK tymianski_v_Page_59.tif
019152f4d6bc9d8e2819fad9f6155e39
c7e14d5921b265f3e58770ecb4666f4bb29b65fd
F20110217_AACCUE tymianski_v_Page_49.tif
b3c02679f08f5bf4a75f178bb4206cb9
d613b4598d5f3db7fb5bd0afd77b71120f12ac80
18884 F20110217_AACCZD tymianski_v_Page_31.QC.jpg
a048589838ae31f3541d2d62e2b33b91
e54509dca5ea9d99d8f3075b5782f9ca5d5a095f
1787 F20110217_AACCPI tymianski_v_Page_05.txt
ff3fb59882fe8e31c3d5631089b9cac6
5184d72ef8be10a3d72bc29799a43f3bbf659d4d
31509 F20110217_AACCKL tymianski_v_Page_38.QC.jpg
0f9a74ed7de5d5543a2065bf6a1f36c3
11961cee700628e3cd3795e48c97caf4be5abea9
F20110217_AACCUF tymianski_v_Page_52.tif
f110808e30ddb0845781b11018f68bf4
697c815ec83861b3f91359396175741820530145
2529 F20110217_AACCZE tymianski_v_Page_06thm.jpg
870826f377d12283361da9f52bbaba01
1e3e5e812e40d2678b6a145ce06ea8a302dac6eb
36875 F20110217_AACCPJ tymianski_v_Page_57.jpg
000d37e420fefdbfa12f18e3ca5c8cd7
3df1c92f9a46d92db1e200e65703c167b7a2d652
2280 F20110217_AACCKM tymianski_v_Page_03.QC.jpg
1fd7ecc38ff260424d7ffb9a24d6ad8a
0a74d65ded0f6b5ba731940ee2a4e377a5da89c6
F20110217_AACCUG tymianski_v_Page_55.tif
73c13bde1f814a6daa524e4278e4e667
b73b8ca6141e04fafabde9d473c2495556624b4d
5209 F20110217_AACCZF tymianski_v_Page_51thm.jpg
56cd092173957f8f8e53ec65423fad0b
a3f6886cb933c18af37e45cce87021f34026adca
46537 F20110217_AACCPK tymianski_v_Page_16.pro
b7105ba1c1270384195c3f50e33c0f6b
ecdfab10e4a6437ad032a6d147217a5610059e14
1540 F20110217_AACCKN tymianski_v_Page_29.txt
bba6d2d97823a63499d9990da4df1405
0afa820fec7909bb1052a62d8807ed033cef0b80
369 F20110217_AACCUH tymianski_v_Page_01.txt
a1e9d2e0694f9ec3f0df8fc4b17bd97d
4eaa9c44748e98a3eaf963afb9e11d471e4bbb21
1051975 F20110217_AACCPL tymianski_v_Page_13.jp2
0511d5cb6e8405d95de74e3732f62439
7fa0aef578631b13e48f0db075110dc69ce55265
F20110217_AACCKO tymianski_v_Page_02.tif
3dca9b133a6f02fc4e2d263867358bec
5f5f4edae466e0aecf37d2211fc897c8a90a272c
123 F20110217_AACCUI tymianski_v_Page_02.txt
f212c02bc5bf1edeb8d7114084b8d86d
6f10e3c6bde1ad842072887e5ba5c7e368df46d9
3717 F20110217_AACCZG tymianski_v_Page_43thm.jpg
988388a1c5741b12db52b97dfc7eb8fe
714fcc372014dde97197d8c7698d084dfafc7ff6
402 F20110217_AACCPM tymianski_v_Page_59.txt
a292f2d8e65c2c5b774fc108a1ec50c8
aa7955137a2be594dc65e8d8d146be6f0669188c
447 F20110217_AACCKP tymianski_v_Page_04.txt
9e67fbc7c69a9186e442966da7746e09
67952ad3147c2e9af60feb373066d12dda701f02
197 F20110217_AACCUJ tymianski_v_Page_03.txt
e39c1dc1202f677033983ec47269f305
4b9b794a7bcb84c837481def133dead584e2db75
6553 F20110217_AACCZH tymianski_v_Page_16thm.jpg
eb03f4fcb39461eb5de1f14b8531cca5
0ef87fddf78e8735f476e694ddb0d03d3a253905
F20110217_AACCPN tymianski_v_Page_16.tif
9909aeb6beedb439b270db17d9efad09
1eaffe22c0a66964a085c974df9db2eba20b8ab5
22326 F20110217_AACCKQ tymianski_v_Page_42.QC.jpg
4fe468da8ea9fc91425a8b8214ce1c00
e4131cabd3da53e871fcaaf5e828044652c5e9ad
1096 F20110217_AACCUK tymianski_v_Page_06.txt
b7fca511b55c4eee41ddc5c5d95f4710
898954733fd99adcd85122d27258d9fb88d42320
4658 F20110217_AACCZI tymianski_v_Page_22thm.jpg
f3ea649660a3da2b290c273a8677feb6
02618dd50f3b913655977849fc12004ed50940e0
F20110217_AACCPO tymianski_v_Page_37.tif
15ecff702cfc61ed64350e300f31d0ef
d7e37f8281c4c0fc62265f0d30eefebeb3fc0932
438220 F20110217_AACCKR tymianski_v_Page_54.jp2
1734c4b536162626122a66372a400c9e
ab18caf7207b6a971b761651c4c985e57d99874d
1402 F20110217_AACCUL tymianski_v_Page_08.txt
9a272bddb7cffcd3c55e9c65d14e3fab
4cbd1afa0879420d7180bfc96b212b542d390fda
12154 F20110217_AACCZJ tymianski_v_Page_57.QC.jpg
34195a08734b24295d815224f27d183f
24ffe326c035d2c442bec4f5dc1d807112536879
F20110217_AACCPP tymianski_v_Page_22.tif
2695aae556338617487c71ba097df7e1
77bd18845167b8d7e341714f485efff04827f20b
705 F20110217_AACCKS tymianski_v_Page_56.txt
906c67434ceb993744349f82ee9844b4
7480059dd15c6cf2b98e8ebeeb623e11cc4237c0
179 F20110217_AACCUM tymianski_v_Page_10.txt
0ec5555d0a2c8cdc68ed6646a3bf4cb0
3adea886d3437152cc4310fc7dc0f68a228a7c7f
1015 F20110217_AACCZK tymianski_v_Page_10thm.jpg
2a945a8d3d0b37e5f1096e95662994a2
09383fbf8555bc526b216ce68d69541591653294
267 F20110217_AACCPQ tymianski_v_Page_62.txt
7c58afad567acfbf2fe18d99a4740ebb
72059ed5908b77a9376e4e6191a3885243d358e8
F20110217_AACCKT tymianski_v_Page_23.tif
ed6cf5dde4a7c7f8105ee59ebc26944b
779fa94a49065dcb3c41326591bbffaaa812f863
2003 F20110217_AACCUN tymianski_v_Page_14.txt
573767cae8d564f9bd634dd98e0e9622
39accd5f34e6184c82dde221bcaa7db55949ba35
28177 F20110217_AACCZL tymianski_v_Page_35.QC.jpg
77ef0c994fb074ed2bff097ebb4698f8
286e05877ce8e6874181b87313f1796055eec639
7486 F20110217_AACCPR tymianski_v_Page_13thm.jpg
84518b3a9928873529779e0cf6e2f36e
124f78177f3d06877e61d72c2f1314354970f359
57337 F20110217_AACCKU tymianski_v_Page_03.jp2
61777e6db4fa917777f1037d73ace8d7
6b929f910fd7c192a8fa0b1c6ed2f6ed51b68505
2181 F20110217_AACCUO tymianski_v_Page_17.txt
c240d2a628c4cc8daf416446875d2ce6
055dc69df882ec73c34673cea53800ce30d5edb6
31744 F20110217_AACCZM tymianski_v_Page_20.QC.jpg
aa2dbf17821012b216078ac9cc3e869c
15c58b3752e07d4e7b49bd35beca5b1e1436ec63
850 F20110217_AACCPS tymianski_v_Page_41.txt
59c642fbed4ffc5d29057d09a544280c
2ffcc01fb011f6c3bfab9fbde226921679dc577f
2021 F20110217_AACCKV tymianski_v_Page_07.txt
79e9b87fc2074dc6f414e86ce22fc60d
f765beb1682f95cb7a4d69b0c85586dded9ba625
1150 F20110217_AACCUP tymianski_v_Page_18.txt
ef6c63cf85438a17cda658e3b15796e7
8345750905846555e89c5579f7cc2ff727760f04
104509 F20110217_AACCZN UFE0014860_00001.xml
89446acd11ddae9a9b5e8707f465451a
c5ddcf2e579a41fe39541ca0b07ee29b226fdf62
F20110217_AACCKW tymianski_v_Page_17.tif
6950f016626d677fc8f009e82d34c415
a8dc4decab5b3530573789d3a1421de18c8f06f9
1372 F20110217_AACCUQ tymianski_v_Page_22.txt
2e0222dc821f812994b4035dc8e7b4e7
0a6743a12b687173b6a0fd445bcfdcf895dc506e
2830 F20110217_AACCPT tymianski_v_Page_03.pro
9ee083144964ea5d450a76f298a3ff77
55ad8d41a18ab37020e8ae5126b4f723619397ad
18973 F20110217_AACCZO tymianski_v_Page_11.QC.jpg
edad5c693a1ceedf939d76572fa4d3b3
1d506b06d60eef6e5a2473554e750f1668b35e42
F20110217_AACCUR tymianski_v_Page_33.txt
1563941439336295a90b5f1022946681
51ef2dbb60e9e9a64ec711446d0419cc779d1b78
29046 F20110217_AACCPU tymianski_v_Page_11.pro
4028d5f63d8da9a22c9a706807038500
6cd705d3145c471e80bb949ca947e295726efa83
22828 F20110217_AACCZP tymianski_v_Page_30.QC.jpg
ea1d938c547a3bd39c38bbb72732b676
9fb9517765f921613079a61b9a6050774f350a43
24894 F20110217_AACCKX tymianski_v_Page_24.pro
ccdba6c1d12cec182febc0c9355c1dd4
a6ba20a6d47a0f9ab9104f79ca4d18693dc945fe
1291 F20110217_AACCUS tymianski_v_Page_34.txt
dbcf08d5350fc3236e0eadda1c3d116a
4698119c18e7a11fe02cdc4db11fe6ea3b9b628f
31195 F20110217_AACCPV tymianski_v_Page_37.pro
bf59f976879f9b49a7eb1259073a2d70
3665dfdb564671dbcc2b9fabb5bf83d6d78a629a
8348 F20110217_AACCZQ tymianski_v_Page_32.QC.jpg
f2f334badcd137e3f724fcf1ed8cd939
615f351d93dfed19cf35fa77c3227dc2dc2ac0d8
F20110217_AACCKY tymianski_v_Page_29.tif
bd8c444a898da971c8ad909a26080a28
8dea2ac482f3466fac11be824d308cb1ac09f087
1686 F20110217_AACCUT tymianski_v_Page_35.txt
33644baec274ec3be072e6d82a2cb228
28b1e367eb7e14d2ecc4ae4dee43fb2407a17495
F20110217_AACCPW tymianski_v_Page_15.tif
14d85905f23f31e81bf9500e37b72c7f
0cd5ad72e584e48a91dff7e510727445f4155f69
22010 F20110217_AACCZR tymianski_v_Page_50.QC.jpg
af45db75c95ff40019db17b582caa470
f2b5c1b1f3b9e44d4a3190571095e877f0401dfe
5716 F20110217_AACCKZ tymianski_v_Page_24thm.jpg
a579b1493fe4c8162bfec529b9b36bd9
af2c41f1517ed77a47a3d9cb7c955f51a7e3d10b
1285 F20110217_AACCUU tymianski_v_Page_37.txt
1eae87a9373641290054f6a71fd6dd6f
b31175be7e4efb642697d118db4176397e8705ae
F20110217_AACCPX tymianski_v_Page_44.tif
a3965ce082ef1725d0fbcfbbc12f7e62
c54cf041963cfb3a1d2e8a92abf3c86e43e2c6c3
6005 F20110217_AACCZS tymianski_v_Page_09thm.jpg
729b838c962d3dc8eb71688c1c9d38ff
0a2c1503eb0e4517004f9931f92152c7fa8dd0d7
1761 F20110217_AACCUV tymianski_v_Page_40.txt
ac13dc1139db0e9d2a9ba82dfc850e1e
59de0c8c66586304a4c413fb3bed90bee291d400
944929 F20110217_AACCPY tymianski_v_Page_09.jp2
e60d362d0d45ad343ab3d798f0996e8f
6ee3749026ff31cec0d6a1647a02a024613ce8e1
7587 F20110217_AACCZT tymianski_v_Page_17thm.jpg
6b64a227fd36e6e8cacc5de8b55a43fe
77f4c2817ff915ef0bbb4f8c6794b8b283c51df2
F20110217_AACCUW tymianski_v_Page_43.txt
1811bbaab67fba51d2f2606a65cc0800
e27adcca3b26711b917b6d6404359515e0654bc0
F20110217_AACCNA tymianski_v_Page_33.tif
ce694e367b41ef44a3b5943bb456eebc
0397a0ac048a20975dc33da04996371f246df145
47373 F20110217_AACCPZ tymianski_v_Page_29.jpg
f6935025516ac82efe126acc91d8ea4a
f96dca4b3353279d1a38e28905e26aaa546bb339
4172 F20110217_AACCZU tymianski_v_Page_18thm.jpg
90693f9ae2e5ceaf538ee872c459b951
f05c8790b0d02036cd4240424c4b5710b385aea5
1251 F20110217_AACCUX tymianski_v_Page_45.txt
8367414ca12a4ca9133af7ca72264bc0
93a749c49bf70d8909b28d6a8ed6e919586ba242
F20110217_AACCNB tymianski_v_Page_10.tif
242e680e2aacaa5b51d45155f3a3f0e8
8cd4fe4334ef0d5659f0a9d1b3f169ea1adf7f0d
969 F20110217_AACCZV tymianski_v_Page_21thm.jpg
0342ae8c1a2ef82174aaae572e18e3ba
7db6eb4cbc89de4e9eb048758a4c22f20687eae9
1062 F20110217_AACCUY tymianski_v_Page_46.txt
2e51da84c82d863423482148b618546e
a3bf854735a8b191dae8a019d4a75483e5b7fe21
6874 F20110217_AACCNC tymianski_v_Page_35thm.jpg
aa67e53379d1573742f62f432dad972c
651815d0a714d336f58f5854788ec106119dc034
5960 F20110217_AACCZW tymianski_v_Page_33thm.jpg
b72523218e842655c23b9cd2e0bc0478
55c766a854f78e9a7f83caf53cd39d6588854640
1420 F20110217_AACCSA tymianski_v_Page_26.txt
f4e1706b8694435893c7f20c8e76df90
bafa302484c6535f00c8bea72157f263de029e87
884 F20110217_AACCUZ tymianski_v_Page_47.txt
3536145b502934d4c49914d45727d565
25d3a62bd489447f28b5bd8ad8bd1ac6d129240d
47776 F20110217_AACCND tymianski_v_Page_52.jpg
eecbde8afb30a3883bae772e8a02c659
302c004e87ea74ef4a7a6b8ab98c47c917d33819
6616 F20110217_AACCZX tymianski_v_Page_36thm.jpg
a96cab75d426fd3893b2c7bea5d49695
d008a11c792368ea732485786f35d5217d0e6f48
F20110217_AACCSB tymianski_v_Page_41.tif
b3c6b848a292f21f3e43a17e1b73774e
385bae3225f429209005ad7d4b40486921a857ee
3302 F20110217_AACCNE tymianski_v_Page_10.QC.jpg
6866c86af9a4ceefb32c2e308296ac47
fa0a57cc9e462f88ee7a1561fa0b462bcf22fdaf
1008 F20110217_AACCZY tymianski_v_Page_62thm.jpg
d5b257641526b8a88796d62c785c2b3c
9a1c578261b70b6ea7d1de46a5b3789db4b4571f
F20110217_AACCSC tymianski_v_Page_51.tif
49ea3af8e602819453b7e6f95435a843
e569bd9a7c152ee4bb5a5ea040af46e237da8bcc
752692 F20110217_AACCNF tymianski_v_Page_50.jp2
9c9bed0f74bc328de1aab518d2b8235d
523712545ea4cd8ea5141e573d34ba4774b069d9
56695 F20110217_AACCXA tymianski_v_Page_51.jpg
6d150751fbd4a06084cf14b1275f9ec3
e1f5b8f4524703c585d167a59b8be465bc78944a
F20110217_AACCSD tymianski_v_Page_43.tif
ceaaea6b1c80125a0de122b8d32159dd
23dffd0406828bd27c9a60a03897b05ac052e46c
24944 F20110217_AACCNG tymianski_v_Page_26.pro
5487115e2196a490284d4bc47ae63107
c2c49ef13617d36be21eacf5be605643dc0aeec3
39812 F20110217_AACCXB tymianski_v_Page_54.jpg
b3844e5039d03cd472c8bc14a7ea791f
dcc083a79da1dcf378ef58878c8448863be3c3b9
42953 F20110217_AACCSE tymianski_v_Page_25.pro
07efae03fe9c4b568756e6d4c96c950b
21983dec64f605710d288f72bcb77d709a320e4e
424514 F20110217_AACCNH tymianski_v_Page_60.jp2
497ec97d06fbae6f01fa4bfec033586a
0fd37d1672c9529310b63b2368f808a798fdd00b
12100 F20110217_AACCXC tymianski_v_Page_55.jpg
e4ceca9cef31e5f8b9929b1d3308d1e1
888d6924f0170b10bf785dcd007ec4712358ce08
F20110217_AACCSF tymianski_v_Page_63.tif
a156cfc2039713542d66c96fa809e11c
46baeae47a120f9ed93c0bf3846be6fd1fb57377
F20110217_AACCNI tymianski_v_Page_09.tif
ed12698e0540a731161b8390d96c6a99
acf39b9c0a55e2f2e2d4e7949193132995f700d1
36796 F20110217_AACCXD tymianski_v_Page_58.jpg
6f69204bf3bbe60cba689fc9829e832a
cb8f08f60537a5f0756293b50dca0f8ddd61501d
1057 F20110217_AACCSG tymianski_v_Page_36.txt
e668eeb1aa96b54742ed0428d4f923d1
2bbf2ad193708090aa2115e978db1faf86c8268c
41033 F20110217_AACCNJ tymianski_v_Page_40.pro
c88502c74deb022b4fdf8fc8d60003d6
c7054d8107d272bc67c09ca5c5fc2fa1a8a37482
46187 F20110217_AACCSH tymianski_v_Page_07.pro
a77c29a194a331a7fe8f81edb5ff877d
31203ff76d9edd9e2fc44e35f5888c2de0912ad4
1467 F20110217_AACCNK tymianski_v_Page_51.txt
7058aae1994fbcb51b5077b8a849d01f
694f1706db3c971ec96f5e0581790ba6dcbe9f37
45815 F20110217_AACCXE tymianski_v_Page_60.jpg
ab03fc41522ab698ed682bb854d8fec8
a18d489b8dd013b9863fcae813cae79f3a06e5ec
4339 F20110217_AACCSI tymianski_v_Page_05thm.jpg
a2b7a588b6140f5d192020dc4765b8a8
82281ddd3515632f8b9c355c1f5c81ea281efe55
604 F20110217_AACCNL tymianski_v_Page_02thm.jpg
74fecf6247dedd3deeea4f67aaf208e6
a6d3a13af6f887673daf7c3c4c6a3edcbd6b2f6a
94086 F20110217_AACCXF tymianski_v_Page_61.jpg
4b6a7da8e08f53c50464dce0d30ef3ff
b61819864ef1f1a56608209927447a98108ea5dd
1051955 F20110217_AACCSJ tymianski_v_Page_20.jp2
24ed049a08cb2e81e373c55ed339a570
4a1cf33e3f4208e2b89a0014c5e727ee85cadaf5
427225 F20110217_AACCNM tymianski_v_Page_56.jp2
1576ac5056ff6caa8dabb4c1a7260685
62ff6d6a0920836aea2559392886c71388e8d70d
30832 F20110217_AACCXG tymianski_v_Page_63.jpg
94809e03398f6c2b3fa27fbf5470bfc0
43666860286be27ae7b4417d28f61e3463c81c3d
33038 F20110217_AACCSK tymianski_v_Page_17.QC.jpg
bb05171807e8f001a3bfe11e41892943
048d7e50100f4731132043387fbbb920f1413846
45409 F20110217_AACCNN tymianski_v_Page_15.jpg
2a131143eaa4d98467da902dddee872b
e3ca7fe40f03bd60dc735599b1c4fffb9e9d75eb
32198 F20110217_AACCXH tymianski_v_Page_02.jp2
659bc8a74d04d7b0c4a337170c9247f5
273a1eea7715b184f181a512c4e2ef92d2b2d701
5563 F20110217_AACCSL tymianski_v_Page_50thm.jpg
d181eada737fc26c92a32c01938b703d
6ac418a78bee4b16c077c912748773e06ef64cb6
4897 F20110217_AACCNO tymianski_v_Page_29thm.jpg
91dfd87090278ec4dd26896535feecd7
ac10e98f902435f4a22bb722a083ed29663573be
581386 F20110217_AACCXI tymianski_v_Page_05.jp2
b538301d3e159f4cb0b145c14d14a25c
b40153a5cafa27bb79e2364d688cf609ccd85297
26771 F20110217_AACCSM tymianski_v_Page_61.QC.jpg
cf583ca418fb2beed298c338226dd2e7
bacc33f5a3ce7821dcf315945525bc8089864cfb
926735 F20110217_AACCNP tymianski_v_Page_25.jp2
54cfe9a5e57c516c185ab9eb038a7042
24409c57a3e89bb9b571b1df8a696eb57716b608
647587 F20110217_AACCXJ tymianski_v_Page_07.jp2
eceaaa1e2e6956d53bcede4c4cd3c6cb
e0bd16c785f8c6ba7472aa0606863291206963d0



PAGE 1

AIRBEARINGKINEMATICCOUPLINGByVADIMJACOBTYMIANSKIATHESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA2006

PAGE 2

Copyright2006byVadimJacobTymianski

PAGE 3

ThisworkisdedicatedtomyparentsJacobR.TymianskiandNatalyaN.Viranovskaya.

PAGE 4

ACKNOWLEDGMENTSMyadvisor,Dr.JohnZiegert,isinstrumentalinguidingthisprojecttoasuccessfulcompletion.Hisinsightandexpertiseintheeldofprecisiondesignandmetrologyareinvaluable.Aswell,mygratitudeisextendedtofellowgraduatestudentsChi-HungCheng,AbhijitBhattacharyyaandScottPayneforprovidingcreativeinputandobjectivecriticism. iv

PAGE 5

TABLEOFCONTENTS page ACKNOWLEDGMENTS ............................. iv LISTOFFIGURES ................................ vii ABSTRACT .................................... ix CHAPTER 1AIRBEARINGKINEMATICCOUPLING ................ 1 1.1Introduction ............................... 1 1.2MotivatingNeedforRepeatability ................... 4 1.3KinematicCouplingConcept ...................... 4 1.4ResearchGoals ............................. 4 2CURRENTSTATEOFTHEART ..................... 6 2.1LiteratureReview ............................ 6 2.2CommercialCouplings ......................... 8 3CONCEPTUALDESIGNOFABKC .................... 9 3.1ComponentLayout ........................... 9 3.2AutomatedTesting ........................... 10 4KINEMATICANALYSIS .......................... 12 4.1SpatialGeometry ............................ 12 4.2Kinematics ............................... 13 4.3GlobalStiness ............................. 17 5SYSTEMCOMPONENTS .......................... 23 5.1Base ................................... 23 5.2Top .................................... 24 5.3Damper ................................. 24 5.4AirBearing ............................... 25 5.5CapacitanceProbeHolder ....................... 26 5.6Electro-MechanicalSystem ....................... 26 5.7DataAquisitionSystem ........................ 27 v

PAGE 6

6TESTRESULTS ............................... 30 6.1TestCongurations ........................... 30 6.2DriftTest ................................ 30 6.3NoFloat ................................. 33 6.3.1Repeatability .......................... 33 6.3.2Impact .............................. 34 6.4HalfFloat ................................ 35 6.5FullFloat ................................ 36 6.5.1Repeatability .......................... 36 6.5.2Impact .............................. 38 6.6SolidSphereContact .......................... 40 6.6.1Repeatability .......................... 40 6.6.2Impact .............................. 41 7CONCLUSIONS ............................... 44 APPENDIX COMPONENTDRAWINGS ........................ 45 REFERENCES ................................... 51 BIOGRAPHICALSKETCH ............................ 53 vi

PAGE 7

LISTOFFIGURES Figure page 1{1Cartesiandegreesoffreedom ......................... 1 1{2Conventionalkinematiccouplingusing3ballsmatedinto3v-grooves .. 2 3{1Airbearingdegreesoffreedom ........................ 9 4{1Pluckerlineinspaceanditsdeningvectors ................ 12 4{2Airbearingdirections ............................ 14 4{3Coordinatesystems .............................. 16 4{4Capacitanceprobeorientation ........................ 17 4{5Hertzian .................................... 18 4{6LoadingenvelopeofABKC.XandYareinmeterswhileZisnondimensionalstiness.UniformityoftopsurfacesigniesthatstinessofanABKCdoesnotsignicantlyinsidetheloadingenvilope. ....... 22 5{1Bearingstacksonbase ............................ 23 5{2Top ...................................... 24 5{3Damperwithfoamandbearings ....................... 25 5{4Doublesidedairbearingswithmanifold .................. 26 5{5Capacitanceprobeholder .......................... 27 5{6Controlboard ................................. 28 5{7Experimentalsetup .............................. 29 6{1Capacitanceprobedrifttest ......................... 31 6{2Drifttesthistogram ............................. 31 6{3Drifttestrecordandensembleaverages ................... 32 6{4Autocorrelationofdrifttestsignal ..................... 33 6{5Directreadingofsixcapprobes ....................... 33 vii

PAGE 8

6{6Transformedcomponentsofcartesianmotion ................ 34 6{7Nooatloadcurve .............................. 34 6{8NooatFRF ................................. 35 6{9Halfoatdirectprobereadingsandpressure. ............... 36 6{10Halfoatuncompensatedmatingrepeatability. .............. 36 6{11Halfoatcompensatedmatingrepeatability. ................ 37 6{12Halfoatcompensatedrotationalmatingrepeatability. .......... 37 6{13Fulloatuncompensatedmatingrepeatability. ............... 38 6{14Fulloatcompensatedmatingrepeatability. ................ 39 6{15Fulloatcompensatedrotationalmatingrepeatability. .......... 39 6{16FRFofafullyoatedABKC ........................ 40 6{17Transformationhistograms .......................... 41 6{18ABKCconvertedtoballatconguration ................. 41 6{19Stictionresultingininabilityofconventionalcouplingtomate. ...... 42 6{20BallatcontactFRF. ............................ 42 6{21LoadtestingofABKC ............................ 42 6{22Loadcurve .................................. 43 viii

PAGE 9

AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofMasterofScienceAIRBEARINGKINEMATICCOUPLINGByVadimJacobTymianskiAugust2006Chair:JohnZiegertMajorDepartment:MechanicalandAerospaceEngineeringThe"kinematiccoupling"isawellknowndeviceusedtoachievehighlyrepeatablepositioningofonemachineorinstrumentelementrelativetoanother.Normallyitconsistsof3precisionballsattachedtotherstmatingelementinatriangularpattern.Theseballsmatewith3v-groovesinthesurfaceofthesecondmatingelement,creatingsixball-on-atpointcontactsbetweenbodies.Ideallythisarrangementwouldresultinmatingrepeatabilityofthesameorderasthesurfaceroughnessofballsandv-grooves.Inreality,frictionforcesatthecontactpointslimittherepeatabilityandaccuracyofthecouplingandcanresultinwearovertime.ThispaperdescribesanovelairbearingkinematiccouplingABKCdesignwhereball-on-atcontactsarereplacedwithintermediateelementsconsistingofdouble-sidedporouscarbonairbearings.Airbearingsaredesignedwithoneplanarsurfaceandoneconcavesphericalsurfacesothatanindividualairbearingrestrictsonlyasingledegreeoffreedom.Eachdoublesidedairbearingstackexhibitsstinessonlyintheaxialdirectionwhenloaded.Whensixofsuchairbearingstackelementsareplacedattheappropriatelocationsbetweenmatingbodies,theywillfullyconstrainmotionofonebodywithrespecttoanother.Overconstraint ix

PAGE 10

iseliminatedandmatingrepeatabilityisimprovedascomparedtosolidcontactkinematiccouplingsduetoeliminationoffrictionandwearattheconstraints. x

PAGE 11

CHAPTER1AIRBEARINGKINEMATICCOUPLING1.1IntroductionThisthesisdescribestheconcept,design,manufacturingandtestingofanovelkinematiccoupling.Porouscarbonairbearingsareusedasmatingelementsbetweenthetopandbottompartsofacoupling.Thisthesisencompassesallissuesaswellastheirresolutions,encounteredintheprocessofAirBearingKinematicCouplingABKCdevelopment.Thekinematiccouplingisawellknownandwidelyuseddeviceforprovidinghighlyrepeatablepositioningofonemachineorinstrumentelementrelativetoanother.Ingeneral,instrumentelementsorevenwholemachinescanbethoughtofasrigidbodieslocatedinspace.EachbodyhassixdegreesoffreedomthatdeneitspositionandorientationinCartesianspace;threetranslational-X,Y,Zandthreerotational-x,y,z. Figure1{1.Cartesiandegreesoffreedom Inordertolocateorconstrainonebodywithrespecttotheothertheabovelistedsixdegreesoffreedomneedtobeconstrained.Thedesiredapproachisto 1

PAGE 12

2 constrainexactlysixdegreeoffreedomindependentlywithoutoverconstrainingthebodies.Thisistheareawherekinematiccouplingsoerseveralbenets.Inthecommonballandv-groovecoupling,thetwobodiesmakecontactatsixpoints.Normallyakinematiccouplingconsistsof3precisionballsattachedtotherstmachineelementinatriangularpattern.Theseballsmatewith3v-groovesinthesurfaceofthesecondmachineelement,creatingball/atpointcontactsat6locationsoneachbody,seeFigure 1{2 .Ateachofthesepoints,relativemotionbetweenthetwobodiesisrestrictedalongalineperpendiculartothesurfacesofthev-grooves.Thus,aproperlydesignedkinematiccouplingwillconstrain6degreesoffreedom.Akinematiccouplingdeterministicalylocatestwobodiesonewithrespecttoanother. Figure1{2.Conventionalkinematiccouplingusing3ballsmatedinto3v-grooves Ideally,eachcontactisintendedtoprovideconstraintalongasinglelineinspacetopreventtranslationalmotionalongthatline,thusrestrictingasingledegree-of-freedomofrelativemotionbetweenthebodies.Ifthesixcontactpointsarearrangedproperly,theywillrestrictallsixdegreesoffreedomofrigidbodymotionwithoutoverconstraint.Thisisanover-simplicationoftheactualsituationwherefrictionforcesatthecontactslimittherepeatabilityandaccuracyofthecoupling,andcanresultinwearovertime.

PAGE 13

3 Solidcontactkinematiccouplingsareinherentlylimitedinperformancebyparasiticfrictionalforces.Inmachineandinstrumentconstructionthemostcommonwayofinterfacingtwobodiesisthroughanareacontact,whichprovideshighstinessandloadcapacity.Whenpreloaded,thesecontactsresistrelativemotionofthebodiesthroughfriction.Oneoftheawsoftheareacontactisitslowrepeatabilityinmating.Whentwobodiesarematedtheyshouldsettleintoalowestenergystate.Thiswouldresultinastableequilibrium,andanincreaseinmatingforceshouldnotproduceanyrelativemotionbetweenbodies.Inareacontact,frictionalforcearisesassoonasthereisphysicalcontactandwillopposerelativemotionbetweenbodiestowardsanenergeticallystableconguration.Currentsolidcontactkinematiccouplingsconsistofmatingelementsthatbehaveasareacontactsastheloadincreases,andthepositioningrepeatabilityperformanceisreducedbyfriction.Inthispaperanovelkinematiccouplingisdescribedwheretheball-atcontactsarereplacedbydoublesidedporouscarbonairbearingsdesignedtorestrictrelativemotionalongasinglelineinspacewhileprovidingvirtuallyzerofrictionforcesinallotherdirections.Anairbearingstackisconstructedinsuchawayastoconstrainonlyonedegreeoffreedom.Byusingsixoftheairbearingstacksassembledinanon-singularcongurationakinematiccouplingisformed.Atzerorelativevelocityairbearingsprovideanalmostfrictionlesscontactbetweenmatingbodies.Absenceofthefrictionalforceallowsamuchbetterrepeatabilitythansolidcontactkinematiccouplings.Itisknownthatairbearingsoperatedwithgapsontheorderof5)]TJ/F15 11.955 Tf 12.059 0 Td[(25mcanexhibitstinessonthesameorderofmagnitudeasHertziancontactsinball-atpairs,butarecapableofcarryingmuchhigherloads,thusgivingtheABKCthepotentialtocarrylargerloadsthananequivalentlysizedball-atcoupling.InthefollowingsectionsthedesignoftheABKC,modelingofitskinematicbehavior,

PAGE 14

4 andexperimentaldataforcouplingrepeatability,stiness,andloadcapacityaredescribed.Filmthicknessdependenceonairsupplypressureandpreloadisinvestigated,aswellastheresultingimpactoncouplingstiness.Dierentcongurationsofthecouplingarealsotested.1.2MotivatingNeedforRepeatabilityTechnologicaladvancescontinuouslydemandhigherandhigherlevelsofmechanicalaccuracy.Whileecientactivecompensationschemesforimprovedprecisiondoexist,mechanicalprecisionisstillfundamentallyimportant.Precisionassemblyiscriticalonbothendsoftheinstrumentsizescale.FromMEMSassemblytolargetelescopemirrorpositioning,repeatablematingofmachinecomponentsiscrucial.1.3KinematicCouplingConceptUsingakinematiccouplingasaninterfacebetweentwobodiesallowsforacertaindegreeofrepeatabilitytobemaintainedthroughmanyengagement-disengagementcycles.Theconceptofkinematiccouplingandkinematicconstrainthasbeenknownandusedforalongtime.Whentwobodiesareconnectedthroughakinematiccouplingseveralbenetsarerealized.Thermallyinduceddimensionalchangesareaccommodatedanddonotcauseinternalstresses.Also,componentscanbeofloweraccuracyandlowercostwhilestillmaintaininghighlyprecisepositioning.Componentsinterfacedthroughkinematiccouplingscanbemovedandlaterbeplacedbacktotheoriginalpositionwithhighrepeatabilitywithoutexpensiveactivepositionfeedbackdevices.1.4ResearchGoalsOneofthemaingoalsofthisresearchistodeterminetheperformanceparametersofanABKC.Thematingrepeatabilityisofprimaryinterest.IftheABKCistobesuccessfulyusedinthefuturemanyotheroperatingparametersneedtobequantied.Staticanddynamicstinessesareveryimportant

PAGE 15

5 parameterswhendescribingacoupling.Staticstinessdeterminesdeectionunderloadwhiledynamicstinesscharacterizestheresponseofacouplingtoimpactorvibratorydisturbances.Individualairbearingstinessgreatlyvarieswithairlmthickness,andinturnisdependentonsupplyairpressure.Conventionalkinematiccouplingshaveverylowdampinganddonotprovidesubstantialvibrationdampingandisolationcharacteristics.ImpacttestingisperformedtodeterminehowmuchdampinganABKChas.Solidcontactkinematiccouplingssuerthedegradationinperformancefromwearassociatedwithrepeatedmatingoftribologicalsurfaces.Experimentalyitispossibletodetermineiftheproblemofsurfacewearcanbemitigatedbyairlmbetweenanairbearingandsurfaceitrestsagainst.

PAGE 16

CHAPTER2CURRENTSTATEOFTHEART2.1LiteratureReviewThemechanicsandperformanceofkinematiccouplingshavebeenstudiedextensivelybymanyauthors[ 1-13 ].Ingeneral,acouplingcanbeanalysedusingthevectormethodoutlinedinSchmiechenandSlocum[ 7 ].Thisapproachtotheanalysisofkinematicsystemsreducestomatrixanalysis.Twocharacteristicassumptionsaremadeinthisanalysis:1.errormotionsaresmalland2.alldeformationoccursatthecontactpoints.Thesesimplifyingassumptionsallowinclusionoffrictionatpointcontactsinthemodel.SummingupfrictionforceandHertziancontactforceproducesaresultantthatisnotnormaltothecontactsurface.ThisrequiresachangeofsystemmatrixanduseofmodiedHertzianstresscalculationsforobliquecontacts.Culpepperetal.[ 4 ]reportonthedesignandconstructionoftheprototypeactuatedcouplingallowingpositionadjustmentin6-DOF.Akinematicmodelforaneccentricball-shaftactuationisdevelopedandprototypeperformancematchesthismodelwithin10%.Intheexperimentballsandgroovesaremadefrom304Lstainlessandareprotectedbya3.5mTiNcoatingandhigh-pressuregrease.Overthecourseofmorethan500engagementsstabilized1repeatabilityofbetterthan1:9mand3:6radwasreported.However,frictionatthecontactpointsdidnotallowthecouplingstobeadjustedwhilematedandloaded.Authorsassumethatshortwearinperiodof50cycleisperhapsindicativeofgreasebeingdisplacedfromthecontactandnottribologicalwearofthesurfaces.EarlierinvestigationsbySlocumandDonmezarepresentedinatwopartarticle[ 9 ]and[ 10 ]describedesignandtestingofaball-atcouplingwitha45kN 6

PAGE 17

7 preloadconstructedwithceramicballs.Duringtesting3repeatabilityof0:3mwasachieved.Fornon-actuated,conventionalkinematiccouplingsrepeatabilityof0:1mispossible[ 8 ].Suchhighlevelofrepeatabilityispossibleforaperiodoftimeafterthewear-inandbeforethedegradationofperformanceduetoburnishingfromfurthermatingandwearatthecontacts.Thenumberofengagementspossibleatsuchahighlevelofrepeatabilitydependsontheball-atmaterialbutwillallwaysdegradewithrepeatedmating.Polished,ceramicsurfaceshaveparticularlygoodperformanceintermsofwear.Oneoftheadvantagesofakinematiccouplingisitsabilitytocenteritselforcometotheminimalpotentialenergystate.Solidcontactcouplingsarenotallself-centering.Forsomecongurationsthereexistacriticalcoecientoffrictionfortheball-atinterface.Ifitisexceeded,thecouplingwillnotself-centerunderasteadypreloadwithoutinterventionandmanualadjustment.Insummary,variousimplementationsofthekinematiccouplingconcepthavebeendevelopedovertheyears.Overallperformanceofanindividualcouplingisdeterminedbyseveraldesignconstraintssuchas:loadbearingcapacity,spatialconstraints,contactpairorientationandmaterial.Adjustablekinematiccouplingsaresubjecttothesameperformancelimitingfactors.Themostsignicantofthemisfriction.Mechanicalassemblyaccuracyisinherentlylimitedbyfrictionandhysteresis.Wearisanissuewithhighaccuracysurfaces.Duringmatingtheorderinwhichcontactingpairsarebroughtintocontactinuencesrepeatability.IdeallyeachcontactpairwouldrestrictonlyoneDOFthatisnormaltocontactingsurfacesbutitisnotthecase.Oncecontactingsurfacesarebroughtintocontactparasiticfrictionalforcesarise.Theseforcesresistsettlementofacouplingintoalowestenergystateanddegraderepeatability.Anotherlimitationoftraditionalkinematiccouplingsistheirrelativelylowloadcarryingcapacity.Alloftheapplied

PAGE 18

8 loadmustbecarriedviaHertziancontactswhichresultsinveryhighstressesandthepotentialforplasticdeformationatthecontactpoints,furtherreducingtherepeatabilityofthedevice.2.2CommercialCouplingsMostkinematiccouplingssoldareintegratedintothelargermechanism.Forexamplelargemirrorsegmentsintheoplicaltelescopesareheldinastructurecalled'wietree'whichisessentiallyaseriesofkinematiccouplingsarrangedasapyramid.Suchanarrangementallowsforaccomodationofthermalexpansionofindividualmirrorsegmentswithoutstrainingthewholemirrorassembly.Anotherapplicationisinthesupportofgranitebasesofcoordinatemeasurementmachinesandgraniteopticaltables.Evenlargediamondturningmachinesarekinematicalysupported.Whatiswidelyavailableinthemarketplaceisindividualcouplingcomponentssuchaspolishedspheresmadefromhardsteelorceramicandhardenedats.Itisleftuptothedesignertopickappropritaematingelementsandtodeterminetheirarrangement.

PAGE 19

CHAPTER3CONCEPTUALDESIGNOFABKC3.1ComponentLayoutThegeometricarrangementofairbearingstacksinanABKCisoneofthemostimportantfactorsdeterminingitsperformance.Bearingstackorientationhasdirectinuenceonthestiness,repeatabilityanddirectionalrangeinwhichacouplingcanbeloaded.InthelayoutchosenABKCbearingstacksareplacedinpairsonmutuallyperpendicularfaces.Eachairbearingstackallowsfreerotationaboutall3coordinateaxesandfreetranslationin2directionsonlyrestrictingoneDOF,seeFigure 3{1 .InotherwordsairbearingstackisonlystiinZdirecton.PlacingtwobearingsononefaceallowstheconstraintofonetranslationalandonerotationalDOF.Sincepairsofbearingsarelocatedonthreemutuallyperpendicularfacesofthebase,threetranslationalandtreerotationalDOFareconstrained. Figure3{1.Airbearingdegreesoffreedom 9

PAGE 20

10 Inordertomonitorthepositionofthetopwithrespecttobottomitisneededtomeasuresixindependentlineardisplacements.Themostconvenientnon-contactmethodiscapacitivesensing.Thismethodmeasuresthecapacitanceofanelecticeldbetweentheprobeandthetarget.Asdistancebetweenprobeandtargetchangessodoesthecapacitance.AresonatingRCcircuitisusedtotrackchangesincapacitanceandamicroprocessorisusedtoconvertcapacitancechangesintodistancechanges.Readingrotationaldisplacementismoredicultwithnon-contactmethods.Thatiswhysixlineardisplacementsaremeasuredandlaterconvertedintothreecartesianmotionsandthreerotationsaroundmutuallyperpendicularaxes.Ifsixcapacitanceprobesarelocatedonthebasewiththeiraxiesparalleltotheaxesofairbearingstackstwobenetsarerealized.First,directcapacitanceprobereadingsprovidemeasurementoftheairgapvariationofindividualbearingstacks.Second,directreadingsaretransformedtoprovidecartesiandisplacementsandrotations.IndividualcomponentswillbedescribedinmoredetailinChapter5.3.2AutomatedTestingForseingalargeammountoftestingthatABKCistoundergoitisdesignedtobeautomated.SincereengagementrepeatabilityofthrABKCisofprimaryinterest,testingwillconsistofunmatingandmatingthetopforthousandsofcycles.TominimisetheerrorintroducedbyahumanoperatortheABKCisdesignedtobefullyautomatedfortestinganddataaquisition.ToobtaindatathatisstatisticalymeaningfulnumeroustestingscenarioswithmanyengagementsoftheABKCareplanned.Theactuationsystemconsistsofapneumaticcylinderwithastrokeof10mmthatiscomputercontrolledtoprovideprecisetimingandsequencecontrolduringmeasurements.Thepositionisregisteredthroughsixchannelsofcapacitancedistancesensors.Theperformanceofairbearingsisstronglyinuenced

PAGE 21

11 byairpressure.Apressuretransducerisplacedclosetotheairbearingsmanifoldtorecordanyuctuationsinthesupplyairpressure.

PAGE 22

CHAPTER4KINEMATICANALYSIS4.1SpatialGeometryKinematiccouplingisdesignedtoconstrainexactlysixdegreesoffreedomofabody.Inordertodothisawaytocontrolsixspatialcoordinatesisdevised.IfitischoosentocontrolsixlinearortranslationalvariablesthenitbecomesconvenienttorepresentthemthroughuseofPluckercoordinates.InPluckercooridinatesalineinspaceisdenedwithrespecttothecoordinatesystemOintermsofvectors~Sand~So.Theresultingvectorhassixelements.Vector~risavectorfromthe Figure4{1.Pluckerlineinspaceanditsdeningvectors originOtoanypointontheline.Vector~Sisaunitvectoralongthedirectionoftheline.Componentsl;m;nofthevector~Sarealsothedirectioncosinesoftheline.Vector~SOisacrossproductofthevectors~rand~SandisthemomentofthelineabouttheoriginofthecoordinatesystemO.~r=rx;ry;rz~S=l;m;n{1 12

PAGE 23

13 ~SO=~r~S=ijkrxryrzlmn=p;q;r{2~S;~SO=l;m;n;p;q;r{3J=2666666666666664l1m1n1p1q1r1l2m2n2p2q2r2l3m3n3p3q3r3l4m4n4p4q4r4l5m5n5p5q5r5l6m6n6p6q6r63777777777777775{4AssemblingsixPluckerlinecoordinatesintoaJacobianmatrixJfullydescribestheinstanteneouskinematicsofakinematiccoupling.Inorderforthekinematiccouplingtoconstrainallsixdegreesoffreedomofabody,thesixrowsofJmustbelinearlyindependent,i.e.theJacobianmatrixmustbenon-singular.Otherwiseadegeneratecouplingiscreated,constrainingveorlessDOF.4.2KinematicsIthaslongbeenrecognizedthatthekinematiccouplingiskinematicallyequivalenttotheGough-StewartplatformandmanyotherparallelkinematicmechanismsPKM.Forthisreason,thesameanalysismethodsusedtomodeltheinstantaneouskinematicsofaPKMcanbedirectlyappliedtotheABKC.EachstrutinaPKMorcontactpairinakinematiccouplingorairbearingstackinABKCcreatesaforcealongaparticularlineinspace.ThePluckerlinecoordinatesofeachofthelinescanbewrittenas:~Si=li;mi;ni;pi;qi;rii=1:::64{5

PAGE 24

14 Figure4{2.Airbearingdirections where:l;m;narethedirectioncosinesoftheline,andp;q;rarethecomponentsofthemomentofthelineabouttheorigin.TheJacobianmatrixofaPKMrelatessmallmotionsalongthesixlinestochangesinthepositionandorientationoftheplatform.TherowsoftheJacobianmatrixaresimplythePluckercoordinatesofthesixstrutaxesinaPKM,orthesixlinesofcontactforceinABKC.Therefore,8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:1234569>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;=2666666666666664l1m1n1p1q1r1l2m2n2p2q2r2l3m3n3p3q3r3l4m4n4p4q4r4l5m5n5p5q5r5l6m6n6p6q6r637777777777777758>>>>>>>>>>>>>><>>>>>>>>>>>>>>:xyzxyz9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;{6Where:x,y,zarethedisplacementsofapointontheplatformwhichisinstantaneouslycoincidentwiththeoriginofthecoordinatesysteminwhichallofthevectorsareexpressed,x,y,zarerotationsoftheplatformaboutthe

PAGE 25

15 coordinateaxes,and1:::6aresmalldisplacementsofthecontactpointalongthelineofforce.Thecartesiantranslationsandrotationsoftheplatformrelativetothebase,resultingfromsmallchangesindisplacementsalongthecontactlines,areobtainedusingtheinverseoftheJacobian.Ifthedeviceisinasingularposition,theinverseJacobiandoesnotexistandthesystemslosesoneormorerestraintsofdegreesoffreedomoftheplatform.FortheABKCdescribedhere,thereare2Jacobianmatricesofinterest,onefortheairbearingstacks 4{7 ,andoneforthecapacitanceprobes 4{8 thatmeasurerelativemotions.Jbearing=26666666666666640:70710:40820:577491:3398)]TJ/F15 11.955 Tf 9.299 0 Td[(90:6613)]TJ/F15 11.955 Tf 9.298 0 Td[(47:76070:70710:40820:577432:8451)]TJ/F15 11.955 Tf 9.298 0 Td[(124:433347:76070)]TJ/F15 11.955 Tf 9.299 0 Td[(0:81650:5774)]TJ/F15 11.955 Tf 9.299 0 Td[(124:1849)]TJ/F15 11.955 Tf 9.299 0 Td[(33:7719)]TJ/F15 11.955 Tf 9.298 0 Td[(47:76070)]TJ/F15 11.955 Tf 9.299 0 Td[(0:81650:5774)]TJ/F15 11.955 Tf 9.299 0 Td[(124:184933:771947:7607)]TJ/F15 11.955 Tf 9.299 0 Td[(0:70710:40820:577432:8451124:4333)]TJ/F15 11.955 Tf 9.298 0 Td[(47:7607)]TJ/F15 11.955 Tf 9.299 0 Td[(0:70710:40820:577491:339890:661347:76073777777777777775{7Jcap=26666666666666640:70710:40820:5774115:4635)]TJ/F15 11.955 Tf 9.299 0 Td[(74:5380)]TJ/F15 11.955 Tf 9.298 0 Td[(88:70700:70710:40820:57745:9043)]TJ/F15 11.955 Tf 9.298 0 Td[(147:104196:78700)]TJ/F15 11.955 Tf 9.299 0 Td[(0:81650:5774)]TJ/F15 11.955 Tf 9.299 0 Td[(122:2835)]TJ/F15 11.955 Tf 9.299 0 Td[(62:7253)]TJ/F15 11.955 Tf 9.298 0 Td[(88:70700)]TJ/F15 11.955 Tf 9.299 0 Td[(0:81650:5774)]TJ/F15 11.955 Tf 9.299 0 Td[(130:348168:438796:7870)]TJ/F15 11.955 Tf 9.298 0 Td[(0:70710:40820:57746:8200137:2633)]TJ/F15 11.955 Tf 9.298 0 Td[(88:7070)]TJ/F15 11.955 Tf 9.298 0 Td[(0:70710:40820:5774124:443778:665496:78703777777777777775{8BothJacobiansareexpressedrelativetoacoordinatesystemOxedtothecenterofthetopplatform,withtheZ-axisperpendiculartothetopsurfaceandtheXandYaxesalongthetopsurface,Figure 4.2 .BothJacobiansareobtainedfromasymbolictranformationgivenin 4{9 .Firstcoordinatesystemthatisattached

PAGE 26

16 tothebasewithitsaxesalongtheedgesisdened.Theneachlineofcontactandeachaxisthroughthecapacitanceprobecanbedinedbytwopointsonthatline.NexttransformationTtakesavectorfromtheorigintoapointdenedinacoordinatesystemattachedtothebasepyramidandtranslatesittothecoordinatesystemattachedtothetopofABKC.Onceallpointshavebeentransformedtothetopcoordinatesystemtheydenecontactlinesandcapacitanceprobeaxesinthetopcoordinatesystem.JbearingandJcaparedierentnumericalyduetothefactthatthephysicallocationsofairbearingstacksandcapacitanceprobesdonotcoincideintheABKC,Figure 4.2 Figure4{3.Coordinatesystems T=266666664sinysinysinxsinycosxX0cosx)]TJ/F22 11.955 Tf 9.298 0 Td[(sinxY)]TJ/F22 11.955 Tf 9.299 0 Td[(sinycosysinxcosycosxZ0001377777775{9x=)]TJ/F15 11.955 Tf 9.299 0 Td[(=2)]TJ/F22 11.955 Tf 11.955 0 Td[(acosp 1=3

PAGE 27

17 y=3=4X=Y=Z=0:1597m Figure4{4.Capacitanceprobeorientation 4.3GlobalStinessMostkinematiccouplingsareconstructedoutofsixcontactpairs.Eachcontactpairisusuallymadeupofaballandatandsometimesofacylinderandcylinder.Thesearrangementscreateaninterfacethatmostcloselyresemblesapointcontact.Ideallyeachcontactpointwouldbeinnitelysti,butitisnotthecase.ForsolidtosolidcontactcouplingseachinterfacewillpossessHertziancontactstiness,Eq. 4{10 .EachcontactpairalsotransmitsforcesFxandFyaswellasmomentMz.k=dP d=E2PR1 3where1 E=1)]TJ/F22 11.955 Tf 11.955 0 Td[(21 E1+1)]TJ/F22 11.955 Tf 11.955 0 Td[(22 E2{10EisamodulusofelasticityobtainedfromballandatmoduliE1andE2.1and2arePoissonsratiosofballandatmaterials.RisballradiusandPisload.ForairbearingstacksusedinABKCthestinessisobtainedexperimentally

PAGE 28

18 Figure4{5.Hertzian oritcanbecalculatedusinganumericalmetodbasedonageneralizedonedimentionalow[ 6 ].Theglobalstiness,K,ofakinematiccouplingisdependentontheindividualstinessofitselements,ki,andtheirspatialarrangement.JisaJacobianandkisanelementstinessmatrix.Firstequations 4{19 and 4{26 aredirived.Equation 4{19 isbasedontheforceequilibriumprincipleandequation 4{26 isbasedondisplacementcompatibilityprinciple.Usingthesetwoequationstheglobalstinessmatrixisdened.Anexternalwrench~WisappliedtothetopofABKC~W=[Px;Py;Pz;Mx;My;Mz]{11willresultinsixforcesatthesupports,fi=[f1:::f6].SixequationsareobtainedfromstaticequilibriumXFx=Px+Xfili=04{12XFy=Py+Xfimi=0{13XFz=Pz+Xfini=0{14

PAGE 29

19 XMx=Mx+Xfipi=0{15XMy=My+Xfiqi=0{16XMz=Mz+Xfiri=0{17Rearranging8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:PxPyPzMxMyMz9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;=)]TJ/F28 11.955 Tf 11.291 74.242 Td[(2666666666666664l1l2l3l4l5l6m1m2m3m4m5m6n1n2n3n4n5n6p1p2p3p4p5p6q1q2q3q4q5q6r1r2r3r4r5r637777777777777758>>>>>>>>>>>>>><>>>>>>>>>>>>>>:f1f2f3f4f5f69>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;{18~W=)]TJ/F15 11.955 Tf 9.299 0 Td[([J]T~fi{19Nowalookatthedisplacementcompatibility.Theplatformisgivenasmalltwistdisplacement,T,consistingofcartesianmotionofthecoordinatesystemcenterandangularmotions.T=[x;y;z;x;y;z]T{20Displacementofapointinabodycanbefoundfrom:~p=~+~~rp{21Onceassembledintoamatrixthedisplacementofasinglepoint~pinabodyis:~p=8>>>><>>>>:xyz9>>>>=>>>>;+ijkxyzxyz{22Expandingthedeterminantgives

PAGE 30

20 ~p=8>>>><>>>>:x+yz)]TJ/F22 11.955 Tf 11.955 0 Td[(zyy+zx)]TJ/F22 11.955 Tf 11.955 0 Td[(xzz+xy)]TJ/F22 11.955 Tf 11.956 0 Td[(yx9>>>>=>>>>;AtthispointanassumptionthatforsmalldisplacementsofthetoptheJacobianofABKCdoesnotchangeismade.Thisassumptionisvalidwhenthetopdisplacementsaresmallcomparedtotheoverallsizeofthecoupling.InABKCeachPluckerlineisdenedbytwopoints,oneinthetopbodyandoneinthebottombody.IftherelativedisplacementbetweentwopointsissmallcomparedtothedistancebetweenpointsthenthePluckerlinecoordinateswillremainvirtuallythesame.ThisassumptioncanbeextendedtostatethatifthePluckerlinecoordinatesareconstantandthereismotionbetweentopandbottomthanpointsdeningPluckerlinesmustmovealongthoselines.Tonddisplacementsnormaltoindividualairbearingsaprojectionof~pon~Siffound.Afterfactoring~p~S=lx+my+nz+yn)]TJ/F22 11.955 Tf 11.955 0 Td[(zmx+zl)]TJ/F22 11.955 Tf 11.955 0 Td[(xny+xm)]TJ/F22 11.955 Tf 11.955 0 Td[(ylz{23RecallingthatfromthedenitionofthePluckerlines8>>>><>>>>:pqr9>>>>=>>>>;=ijkxyzlmn=8>>>><>>>>:yn)]TJ/F22 11.955 Tf 11.955 0 Td[(zmzl)]TJ/F22 11.955 Tf 11.955 0 Td[(xnxm)]TJ/F22 11.955 Tf 11.955 0 Td[(yl9>>>>=>>>>;{24nextrelationshipisobtainedi=Si~T{25Inmatrixformitbecomes~=[J]~T{26Wisanexternallyappliedwrench 4{11 ,fiisaforceateachairbearing,iisanormaldisplacementateachairbearing,~Tisasmalldisplacementofone

PAGE 31

21 matedbodywithrespecttotheother.Deectionimultipliedbystinesskiofanairbearingwillresultinaforcefithroughabearing.Inmatrixform~f=[k]~wherek=2666666666666664k1000000k2000000k3000000k4000000k5000000k63777777777777775{27Substitutingequation 4{26 into 4{27 andsubsequentlysubstitutingtheresultinto 4{19 weobtain~W=)]TJ/F15 11.955 Tf 11.291 0 Td[([J]T[k][J]~T{28Theterm,)]TJ/F15 11.955 Tf 11.291 0 Td[([J]T[k][J],istakentobetheapptoximateglobalstiness,K,ofanABKCdenedforsmalldisplacements.GlobalstinessoftheABKCisusedtovisualizetheenvelopeinthecouplingcanbeloaded.Airbearingstackscanonlyresistacompressiveload.BasedonthegeometryasurfaceinFigure 4{6 isconstructed.AforcethatcanbeappliedtothetopafABKCisdirecteddownandisboundbythesidesoftheplot.Thetopsurfaceoftheplotrepresentsrelativestinessofthecouplingloadedinthepermissiblerange.ItssmoothnesssuggeststhatduetothesymetryoftheABKCitsresponcetoloadisuniformthroughouttheworkvolume.

PAGE 32

22 Figure4{6.LoadingenvelopeofABKC.XandYareinmeterswhileZisnondimensionalstiness.UniformityoftopsurfacesigniesthatstinessofanABKCdoesnotsignicantlyinsidetheloadingenvilope.

PAGE 33

CHAPTER5SYSTEMCOMPONENTS5.1BaseThebaseismachinedoutofthesolidpieceof2024-T6aluminum.Monolithicconstructionassuresrigiditywhiledecreasingoverallpartcount.Thecouplingdesignutilizes3mutuallyperpendicularsurfacesonthebasetolocateairbearingstacks.Convexlensesareepoxiedinpairstoeachfaceonthebase.Tofacilitatelocatinglensesonfacestwopocketsaremachinedoneachface.DetaileddrawingisprovidedintheAppendixA.Oneairbearingstackrideoneachofthelenses,Figure 5{1 ,providingrestraintforcesalongalinenormaltotheface,thusfullyconstrainingall6-DOFofrelativemotionbetweentopandbottom.Capprobeholdersaremountedtothebasewithoneholderperface.Aircylinderisxedtothetopofbaseandwillprovideactuationforce.Baseisinstalledonagranitebasewithasheetofrubberasavibrationdamper. Figure5{1.Bearingstacksonbase 23

PAGE 34

24 5.2TopThetopismachinedfromasingle5in.thickaluminumbillet.Aluminumstockisroughmachinedonhorisontalmachinigcenterandnishmachinedusingcustom-madeadjustablexturing.Thenalmassofthetopisapproximately20kg.DetaileddrawingofthetopisintheAppendixA.Planarglasssurfacesareepoxiedinpairstoeachofthreemachinedfacestoprovidebearingsurfacesfortheairbearingstacks.Figure 5{2 showsthetopwithglassplatesreplacedwithsteelplatesforsolidcontactrepeatabilitytesting.Threemutuallyperpendicularsurfacesmachinedinthealuminumaresuitableascapprobetargetsandareusedassuch. Figure5{2.Top 5.3DamperPairsofbearingsonindividualfacesareconnectedbyremovabledampers,Figure 5{3 .Atsomeoperatingconditionsaeroelasticinstabilityisencounteredandfoammediaischosenasdampingmaterial.Foamspacer10mmthickaroundeachbearingstackprovidssucientdamptingwithnegligibleconstraintinthelateralandrotationaldirections.DrawingofthedamperisprovidedintheAppendixA.

PAGE 35

25 Figure5{3.Damperwithfoamandbearings 5.4AirBearingAtwosidedairbearingstackisconstructedoutoftwo40mmdiameterairbearingsavailablefromNewWayAirBearingsInc.partnumberS104001.Concavesurfaceisroughmachinedononebearingusingaconventionallatheandcustombuilttooling.Thesphericalconcavesurfacewitharadiusof258mmisgeneratedbyaexurebasedmechanismmountedinthetailstockofalathewiththeairbearingbeingmachinedmountedinthespindle.Asinglepointturningmulti-passopperationiscarriedoutuntillthedesiredamountofmaterialisremoved.Toproduceanalconcavesurfacewitharadiusof258.40mmaroughmachinedairbearingislappedagainstaglasslensusing1000gritsiliconecarbideSiCpowderfromExtexInc.partnumber16826.Awaterbasedslurryispreparedandisreappliedtothesurfacebeinglappedtomaintainthematerialremovalrate.Wetlappingproducedagoodsurfacenishanddidnotclogtheairbearing.Twoairbearings,onewithplanarsurface,onewithconcavesurface,areepoxiedtogetherbacktobacktoformatwosidedairbearingstack.Eachstackismatedtoaconvexlenssurfaceononesideandaplanarglassdiskontheother.Sinceanairlmseparatesmatingsurfacesfromtheairbearingsduringoperation,glassisanacceptablechoice.Duetothefactthatbearingsurfacesconformwelltotheporousgraphite,eachbearingisabletobearaloadofmorethan200Nwithoutdamageevenwhiledeated,Figure 5{4

PAGE 36

26 Figure5{4.Doublesidedairbearingswithmanifold 5.5CapacitanceProbeHolderCapacitanceprobeholdersareprovidedfor6capacitanceprobesonthebase.Theseprobesreaddirectlyagainsttheinnersurfaceofthetopandprovidedirectmeasurementofrelativemotionandpositioningrepeatabilityin6DOF.UsingJacobianderivedfromlocationandorientationofcapacitanceprobeswetransformcapacitanceprobereadingsintoacartesiancoordinateframe.Eachofthreeholdersxestwocapacitanceprobesatarightangleforeasypositioning,Figure 5{5 .5.6Electro-MechanicalSystemABKCisdesignedtooperateautonomouslyinatemperaturecontrolledenvironment.Figure 5{6 showshowthemainboardintegratesapowersupplyandallelectro-mechanicalcomponents.Theinuenceofanoperatorontheexperimentalresultsisremovedthroughfullautomation.Matingrepeatabilitytests

PAGE 37

27 Figure5{5.Capacitanceprobeholder arefullyautomatedintermsofdataaquisitionandmechanicalengagementanddisengagement.Mechanicalactuationisaccomplishedbyasingleactingpneumaticpistonwithastrokeof10mm.Duringmatingteststhepistonispressurisedthroughasolenoidvalvewhilereturnactionisspringloaded.Aonewayneedlevalveisinstalledontheexhaustporttoprovidecontrolleddescentrateforthetop.Deliveryofvacuumandcompressedairtotheairbearingsisaccomplishedthroughasolenoidvalvebankcontrolledbyasetofoptoisolatedrelays.RelaycontrolisachievedthroughLabView7.1.Avacuumpumpisusedtosupplyvaccuumtothelowersetofairbearings.WhenvacuumisonandtheABKCisunmatedairbearingstacksremaininplace.Whenthevacuumpumpisoasolenoidvalveisactivatedtopreventpressurisedbackowthroughthepump.5.7DataAquisitionSystemThedataaquisitionsystemisfullyintegratedwiththeelectro-mechanicalactuationsystemandisimplementedinLabView7.1.Figure 5{7 showsthecompleteexperimentalsetupduringloadtesting.Dataaquisitionsystemconsists

PAGE 38

28 Figure5{6.Controlboard ofsixcapacitanceprobesandpressuretransducer.C-1capacitanceprobesfromLionPrecisionInc.aredrivenbyDMT20modules.EachofthesixcapacitanceprobechannelsdrivenbyDMT20moduleoutputs5Vlinearizedsignalforthedisplacementrangeof0.254mm.Capacitanceprobedataisrecordedwitha16bitNationalInstrumentsPCI6251DAQcard.Theoreticalywitha16bitDAQitispossibletoresolvedisplacementsof3:876e)]TJ/F15 11.955 Tf 12.075 0 Td[(3m.CoaxialcablesfromcapacitanceprobesandpressuretransducerarewiredtotheDAQcardthroughCB68LPRI/Oblock.Solenoidvalvesaredrivenbyadedicated24Vpowersupply.Duringimpacttestingasolidstatelow-passlterwithacutofrequencyof3KHzisusedtoavoidaliasing,sinceinthistestweareinterestedinthehigherfrequencysignal.Impacttestingisdoneusinganinstrumentedforcehammertoexcitethesystemwithanimpulse.Capacitanceprobesarecontinuouslyreadat20KHzandthedataisheldinabuerlargeenoughtoholdthelast3secondsofdata.Whenthehammerhitisdetected,datainthebueriswrittentoale.SubsequentlydataisanalyzedinMatlab.

PAGE 39

29 Figure5{7.Experimentalsetup

PAGE 40

CHAPTER6TESTRESULTS6.1TestCongurationsThefollowingsectionswilldescribevariousmodesofoperationandtestingofABKC.ItispossibletooperatetheABKCin`fulloat'modewithbothupperandlowerbearingspressurizedandoating.Anotherpossibilityistodeateloweroruppersetofbearingsandopperatein`halfoat'mode.ItisalsopossibletouseABKCasaconventionalkinematiccouplingwithbothtopandbottombearingsdeated-the`nooat'mode.Inthe`solidcontact'testsABKCisconvertedintoaconventionalkinematiccouplingbyreplacingairbearingswithball-atpairs.AseparateLabViewapplicationiscreatedforeachseriesoftests.DataissavedintextlesandlaterprocessedinMatlab.6.2DriftTestToestablishtheperformanceenvelopeofthecapacitanceprobemeasurementsadrifttestiscarriedoutoveraperiodofover24hours.Forthistestasinglecapacitanceprobeisattachedtoan"'L'"shapedaluminumbracket.Thebracketbothholdsthecapprobeandalsoservesasaxedtarget.RawdataispresentedintheFigure 6{1 .Everysecond300samplesaretakenat3000Hzandaveragedtomakeasingledatapoint.Samplingat3000Hzensuresthatharmonicnoizefrom60Hzbuildingwiringaveragesout.ThissamplingschemeischosentomatchthesamplingdoneduringtheactuatedtestsofABKC.Standarddeviationoverthe24hourperiodis0:018mandrangeis0:144m.Ahistogramofthedata,Figure 6{2 ,showsthatthedataisclosetonormallydistributed. 30

PAGE 41

31 Figure6{1.Capacitanceprobedrifttest Figure6{2.Drifttesthistogram Populationof90300pointsisdividedinto301recordsof300pointseach.Twovectorsarecalculated,onefortimeandoneforensembleaverages.Figure 6{3 showsthatitisclearthatthereisatrendinthedriftdatabycomparingtimeandensembleaverages.Periodofascillationisapproximately9minutes.AnotherwayofcheckingfortrendsistolookatautocorrelationinFigure 6{4 .Wecanseefromautocorrelationthatdriftdataisnotpurelyrandombutthatthereisaweak

PAGE 42

32 Figure6{3.Drifttestrecordandensembleaverages periodiccomponent.Todeterminethefrequencyofaperiodiccomponentwelookatthetimelagandaperodiccomponentwithaperiodof27minutescanbeseen.Itcouldbeaharmonicofa9minuteoscillationseeninthetimeaveragedatabutthecorrelationisnotstrong.Theexperimentiscarriedoutinatemperaturecontrolledroom,butthetemperatureuctuationsareunavoidable.Forthepurposeofourexperimentsweassumecapacitanceprobestoproducerandomlydistributedsignalthatistimeinvariant.AnotherdrifttestisconductedwithsixcapprobesmountedontheABKC.Thistesttakesintoaccountstructuraldeformationsthatresultfromroomtemperatureuctuationsandmayinuencemeasurements.Figure 6{5 showsdirectreadingswhileFigure 6{6 showsX;Y;Zcomponentsofrelativemotionafterthetransformationintocartesiancoordinateframe.Asabasisforfurtherexperimentswetakethelargeststandarddeviationofalldrifttestsof0:018mtobeastandarddeviationofacapacitanceprobe.

PAGE 43

33 Figure6{4.Autocorrelationofdrifttestsignal Figure6{5.Directreadingofsixcapprobes 6.3NoFloat6.3.1RepeatabilityDuringthe"nooat"repeatabilitytestingofadeatedABKClowersetofbearingsremainsundervacuumfortheduratonofthetesttopreventthemfromshifting.Thefollowingsequenceofactionsisperformedbythecontroller: 1. Pressurizethetopbearings. 2. UnmatetheABKC. 3. MatetheABKC.

PAGE 44

34 Figure6{6.Transformedcomponentsofcartesianmotion 4. Deatetopbearings. 5. LettheABKCsettleandtakepositionreading. 6. Repeatsteps1-5.ForcomparisonwithafullyoatedABKCaloadtestisperformedonadeatedcouplingwitharesultingstinesscurvepresentedinFigure 6{7 Figure6{7.Nooatloadcurve 6.3.2ImpactImpacttestingisperformedwhilebothtopandbottombearingsaredeated.Figure 6{8 showsanFRFproducedbytappinganABKCwithaninstrummentedhammerinthemiddleofatopsurfaceinthedownwardverticaldirection.

PAGE 45

35 Figure6{8.NooatFRF 6.4HalfFloatFora"halfoat"testthebottomsetofbearingsisdeatedandheldundervacuumtoxthemonthebaseforthedurationofthetestwhiletopbearingsareheldpressurized.Controllercarriesoutthefollowingsteps: 1. UnmatetheABKC. 2. MatetheABKCandallowittosettle. 3. Recordpositiondata. 4. Steps1-3arerepeated.Figure 6{9 showaportionofdataobtainedfor100engagementsofABKC.Strongdependenceofairlmthicknessonpressureisevidentwithslopeofapproximately1:5m=bar.Fluctuationsinthesupplypressureareattributedtothecompressorcyclingonando.ItispossibletoestimatetherepeatabilityofABKCifthepressureweretostayconstant.Figures 6{10 and 6{11 showtheuncompensatedandcompensatedrepeatability.Standarddeviationforuncompensateddatais0:076mand0:060mforcompensateddata.DuetothegeometryofABKCangularrepeatabilityisveryhigh,seeFigure 6{12

PAGE 46

36 Figure6{9.Halfoatdirectprobereadingsandpressure. Figure6{10.Halfoatuncompensatedmatingrepeatability. 6.5FullFloat6.5.1RepeatabilityThemostinterestingresultsareobtainedinthefulloattests.IntheseteststheABKCisputthroughaseriesofengagementanddisengagementcycleswithbothtopandbottombearingspressurized.Themaininterestisinthepositional

PAGE 47

37 Figure6{11.Halfoatcompensatedmatingrepeatability. Figure6{12.Halfoatcompensatedrotationalmatingrepeatability. repeatabilitybutwearealsointerestedinthefrequencyresponse.OverthousandsofcyclesthetopoftheABKCisremovedandthenreplacedintoitsposition.Followingaretheactionsthecontrollerperformsforeachofthousandsofcycles. 1. Deatelowerbearings. 2. Applyvacuumtolowerbearings.

PAGE 48

38 3. UnmatetheABKC. 4. MatetheABKCandallowittosettle. 5. Pressuriselowerbearingstoachievefulloat. 6. Recordpositiondata. 7. Repeatfromstep1.Thepositionofthetopwithrespecttothebottomisrecordedandstored.Sixcapacitanceprobesaresampledsimultaneouslytocaptureinstantaneousrelativedisplacement. Figure6{13.Fulloatuncompensatedmatingrepeatability. 6.5.2ImpactImpacttestsareconductedtocapturethenaturalfrequenciesofthesystem.AnFFTofimpulseandresponseistakenandatransferfunctionisobtainedbydividingresponseofthesystembytheinputexcitation.Capturingdataat20KHzactuallyallowsustoseestructuralmodesthatstartatarround3000Hz,butinthisexperimentweareonlyinterestedintherigidbodymodesinFigure 6.5.2 .ToevaluatehowtheuncertaintyincapacitanceprobemeasurementspropagatesthroughcalculationsMontecarlosimmulationisused.Eachofsix

PAGE 49

39 Figure6{14.Fulloatcompensatedmatingrepeatability. Figure6{15.Fulloatcompensatedrotationalmatingrepeatability. capprobereadingsissimulatedasnormalydistributednumberwithastandarddeviationof:018mAfterthecapacitanceprobereadingsaretransformedintoacartisiancoordinatesystemwecanlookatahistogramoftopposition.SincetheJacobianusedincoordinatetransformationisconstantthetransformationislinear.Montecarlosimulationisusedonlytovisualisehowtransformationwill

PAGE 50

40 Figure6{16.FRFofafullyoatedABKC modifythehistogramofinputdata.Wecanassumethattheonlyinputtothesystemisarandomerrorinthesignalcomingfromeachcapprobe.Thisresultsinanerrorinthecartesianpositioncalculation.BycomparingahistogramofaperturbationgaussiantothatoftopmotioninFigure 6.5.2 weareabletoseeanydierences.Allsixcapacitanceprobeshavenormalydistributederrors.WhentheseerrorsaretransformedintocartesianmotionweseethatduetothesymetryXandYmotionshavesimilarhistograms.DuetogeomeryoftheABKStheerrorinpositionforXandYdirectionsisgreaterthantherangeoferrorincapprobereadings.OntheotherhandtherangeofmotionintheZverticaldirectionislessthantherangeofcapprobeerror.6.6SolidSphereContact6.6.1RepeatabilityTocomparetheperformanceoftheABKCwithconventionalkinematiccoupling,airbearingsarereplacedwithsolidball-atcontactpairs,Figure 6.6.1 .Intherepeatabilitytestoneoftheshortcomingsofconventionalkinematiccouplingsbecomesapparent.Theballatcouplingwillnotseatallthewayunder

PAGE 51

41 Figure6{17.Transformationhistograms Figure6{18.ABKCconvertedtoballatconguration itsownweightduetothefrictionalforcesthatariseatthecontactpoints.ABKCdoesnothavethisproblem.Figure 6.6.1 illustrateshowduringautomatedtestingcouplingisunabletocometotheequilibrium.Manualsettingisrequiredtoseatthecoupling.6.6.2ImpactImpacttestingofsolidcontactkinematiccoupingisconductedfollowingthesameprocedureasforafullyoatedABKC.Figure 6.6.2 showsanFRFforaverticalimpact.

PAGE 52

42 Figure6{19.Stictionresultingininabilityofconventionalcouplingtomate. Figure6{20.BallatcontactFRF. Theloadcapacityofsolidcontactcouplingistestedbyplacingweightsonituptoatotalloadof115kgasshowninFigure 6.6.2 .Figure 6.6.2 showstheverticaldisplacementoftheplatformasafunctionofappliedload. Figure6{21.LoadtestingofABKC

PAGE 53

43 Figure6{22.Loadcurve

PAGE 54

CHAPTER7CONCLUSIONSAnovelkinematiccouplingbasedonairbearingtechnologyisdevelopedbuiltandtested.Thepositioningrepeatabilityofapointonthetopcenteroftheplatform,over1000successiveengagementcycles,isfoundtovarylessthan233nmfromnominal,withastandarddeviationof33nm.Theorientationofthetopplatformvarieslessthan1:082rad,withastandarddeviationof0:184rad.Thecouplingiscapableofsupportingloadsinexcessof100kg.TherepeatabilityoftheABKCsurpassesreporteddataforconventionalball/groovecouplingswhilenonoticeablewearisdetected.AtthesametimeABKCiscapableofcarryingsubstantiallylargerloadsthanconventionalkinematiccouplings. 44

PAGE 55

COMPONENTDRAWINGSBaseDrawingTopDrawingDamperDrawingAirBearingDrawingCapacitanceProbeHolderDrawing 45

PAGE 56

46

PAGE 57

47

PAGE 58

48

PAGE 59

49

PAGE 60

50

PAGE 61

REFERENCES [1] Schouten,Rosielle,P.Schellekens,Designofakinematiccouplingforprecisionapplications"inPrecisionEngineering1997;20;46-52. [2] C.Araque,C.K.Harper,P.Petri,Lowcostkinematiccouplings"2.75-PrecisionMachineDesignFall2001ClassReport,MassachusettsInstituteofTechnology,Cambridge,MA,USA [3] M.L.Culpepper,Designofquasi-kinematiccouplings"inPrecisionEngineering2004;28;338-357. [4] M.L.Culpepper,M.Kartik,C.DiBiasio,Designofintegratedeccentricmechanismsandexactconstraintxturesformicron-levelrepeatabilityandaccuracy"inPrecisionEngineering2005;29;65-80. [5] L.C.HaleandA.H.Slocum,Optimaldesigntechniquesforkinematiccouplings"inPrecisionEngineering2001;25;114-127. [6] J.-S.Plante,J.Vorgan,T.El-Aguizy,A.H.Slocum,Adesignmodelforcircularporousairbearingsusingthe1Dgeneralizedowmethod"inPrecisionEngineering2005;29;336-346. [7] P.Schmiechen,A.H.Slocum,Analysisofkinematicsystems:ageneralizedapproach."inPrecisionEngineering,1996;19;11-18. [8] A.H.Slocum,Designofthree-groovekinematiccouplings"inPrecisionEngineering1992;14;67-73. [9] A.H.Slocum,A.Donmez,Kinematiccouplingsforprecisionxturing-Part1:Formulationofdesignparameters"inPrecisionEngineering1988;10;85-91. [10] A.H.Slocum,A.Donmez,Kinematiccouplingsforprecisionxturing-Part2:Experimentaldeterminationofrepeatabilityandstiness"inPrecisionEngineering1988;10;115-122. [11] R.R.Vallance,C.J.Vogan,A.H.Slocum,Preciselypositioningpalletsinmulti-stationassemblysystem"inPrecisionEngineering2004;28;218-231. [12] M.Barraja,R.R.Vallance,TolerancingkinematiccouplingsinPrecisionEngineering2005;29;101-112. 51

PAGE 62

52 [13] M.J.VanDoren,Precisionmachinedesignforthesemiconductorindustry",DoctoralThesis,MassachusettsInstituteofTechnology,Cambridge,MA,USA,May1995.

PAGE 63

BIOGRAPHICALSKETCHVadimTymianskiwasborninRussiaatthetimewhenitwasstillapartofSovietUnion.AfteraccompanyinghisparentsforthemovetotheUnitedStatesin1992heattendedtheUniversityofFloridaandgraduatedin2001withBSME.Afterworkingasadesignengineer,thirstforknowledgebroughthimbacktoUFinapursuitofamaster'sdegree.Vadim'sfutureplansincludeconductingdoctoralresearchatClemsonUniversityandfurtheringhisconsultingpracticeofProductandInstrumentDesignLLC. 53


Permanent Link: http://ufdc.ufl.edu/UFE0014860/00001

Material Information

Title: Air Bearing Kinematic Coupling
Physical Description: Mixed Material
Language: English
Creator: Tymianski, Vadim Jacob ( Dissertant )
Ziegert, John C. ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2006
Copyright Date: 2006

Subjects

Subjects / Keywords: Mechanical and Aerospace Engineering thesis, M.S
Dissertations, Academic -- UF -- Mechanical and Aerospace Engineering
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
theses   ( marcgt )

Notes

Abstract: The "kinematic coupling" is a well known device used to achieve highly repeatable positioning of one machine or instrument element relative to another. Normally it consists of 3 precision balls attached to the first mating element in a triangular pattern. These balls mate with 3 v-grooves in the surface of the second mating element, creating six ball-on-flat point contacts between bodies. Ideally this arrangement would result in mating repeatability of the same order as the surface roughness of balls and v-grooves. In reality, friction forces at the contact points limit the repeatability and accuracy of the coupling and can result in wear over time. This paper describes a novel air bearing kinematic coupling (ABKC) design where ball-on-flat contacts are replaced with intermediate elements consisting of double-sided porous carbon air bearings. Air bearings are designed with one planar surface and one concave spherical surface so that an individual air bearing restricts only a single degree of freedom. Each double sided air bearing stack exhibits stiffness only in the axial direction when loaded. When six of such air bearing stack elements are placed at the appropriate locations between mating bodies, they will fully constrain motion of one body with respect to another. Overconstraint is eliminated and mating repeatability is improved as compared to solid contact kinematic couplings due to elimination of friction and wear at the constraints.
Subject: contact, coupling, repeatability
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 63 pages.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2006.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 003614603
System ID: UFE0014860:00001

Permanent Link: http://ufdc.ufl.edu/UFE0014860/00001

Material Information

Title: Air Bearing Kinematic Coupling
Physical Description: Mixed Material
Language: English
Creator: Tymianski, Vadim Jacob ( Dissertant )
Ziegert, John C. ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2006
Copyright Date: 2006

Subjects

Subjects / Keywords: Mechanical and Aerospace Engineering thesis, M.S
Dissertations, Academic -- UF -- Mechanical and Aerospace Engineering
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
theses   ( marcgt )

Notes

Abstract: The "kinematic coupling" is a well known device used to achieve highly repeatable positioning of one machine or instrument element relative to another. Normally it consists of 3 precision balls attached to the first mating element in a triangular pattern. These balls mate with 3 v-grooves in the surface of the second mating element, creating six ball-on-flat point contacts between bodies. Ideally this arrangement would result in mating repeatability of the same order as the surface roughness of balls and v-grooves. In reality, friction forces at the contact points limit the repeatability and accuracy of the coupling and can result in wear over time. This paper describes a novel air bearing kinematic coupling (ABKC) design where ball-on-flat contacts are replaced with intermediate elements consisting of double-sided porous carbon air bearings. Air bearings are designed with one planar surface and one concave spherical surface so that an individual air bearing restricts only a single degree of freedom. Each double sided air bearing stack exhibits stiffness only in the axial direction when loaded. When six of such air bearing stack elements are placed at the appropriate locations between mating bodies, they will fully constrain motion of one body with respect to another. Overconstraint is eliminated and mating repeatability is improved as compared to solid contact kinematic couplings due to elimination of friction and wear at the constraints.
Subject: contact, coupling, repeatability
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 63 pages.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2006.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 003614603
System ID: UFE0014860:00001


This item has the following downloads:


Full Text











AIR BEARING
CINEMATIC COUPLING
















By

VADIM JACOB TYMIANSKI


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2006

































Copyright 2006

by

Vadim Jacob Tymianski




































This work is dedicated to my parents Jacob R. Tymianski and Natalya N.

V ii i ..!, -1. 1 i .















ACKNOWLEDGMENTS

My advisor, Dr. John Ziegert, is instrumental in guiding this project to a

successful completion. His insight and expertise in the field of precision design and

metrology are invaluable. As well, my gratitude is extended to fellow graduate

students Chi-Hung Cheng, Abhijit Bhattacharyya and Scott Payne for providing

creative input and objective criticism.















TABLE OF CONTENTS
page

ACKNOWLEDGMENTS ................... ...... iv

LIST OF FIGURES ..................... .......... vii

ABSTRACT ....................... ........... ix

CHAPTER

1 AIR BEARING CINEMATIC COUPLING ...... ......... 1

1.1 Introduction .. .. .. ... .. .. .. .. ... .. .. .. .. ... 1
1.2 Motivating Need for Repeatability ......... ......... 4
1.3 Kinematic Coupling Concept ........... .......... 4
1.4 Research Goals ............................. 4

2 CURRENT STATE OF THE ART ........ ......... ... 6

2.1 Literature Review ............................ 6
2.2 Commercial Couplings ......................... 8

3 CONCEPTUAL DESIGN OF ABKC ...... ........... 9

3.1 Component Layout ........................... 9
3.2 Automated Testing .................. ........ .. 10

4 KINEMATIC ANALYSIS .................. ....... .. 12

4.1 Spatial Geometry .................. ......... .. 12
4.2 Kinem atics .................. ............ 13
4.3 Global Stiffness .................. .......... .. 17

5 SYSTEM COMPONENTS .................. .. 23

5.1 Base ................... ... ... ............. 23
5.2 Top ... ................... ..... ....... .. 24
5.3 Damper ................... ..... ....... 24
5.4 Air Bearing .................. .......... .. .. 25
5.5 Capacitance Probe Holder .................. .. 26
5.6 Electro-Mechanical System... ........... . .. 26
5.7 Data Aquisition System .................. .... .. 27









6 TEST RESULTS ............................. 30

6.1 Test Configurations .................. ........ .. 30
6.2 Drift Test .................. ............. .. 30
6.3 No Float ................... ..... ....... 33
6.3.1 Repeatability .................. ....... .. 33
6.3.2 Impact .................. ........... .. 34
6.4 Half Float .................. ............. .. 35
6.5 Full Float .................. ............. .. 36
6.5.1 Repeatability .................. ....... .. 36
6.5.2 Impact .................. ........... .. 38
6.6 Solid Sphere Contact .................. ....... .. 40
6.6.1 Repeatability .................. ....... .. 40
6.6.2 Impact .................. ........... .. 41

7 CONCLUSIONS .................. .......... .. 44

APPENDIX

COMPONENT DRAWINGS .................. .... .. 45

REFERENCES ................... ... ... ........ .. 51

BIOGRAPHICAL SKETCH .................. ......... .. 53















LIST OF FIGURES
Figure page

1-1 Cartesian degrees of freedom ............. ... ..... 1

1-2 Conventional kinematic coupling using 3 balls mated into 3 v-grooves 2

3-1 Air bearing degrees of freedom .......... ....... 9

4-1 Plicker line in space and its defining vectors ............... .12

4-2 Air bearing directions .................. ......... .. 14

4-3 Coordinate systems .................. ........... .. 16

4-4 Capacitance probe orientation .................. .... .. 17

4-5 Hertzian .................. ................. .. 18

4-6 Loading envelope of ABKC. X and Y are in meters while Z is non
dimensional stiffness. Uniformity of top surface signifies that stiffness of
an ABKC does not significantly inside the loading envilope. ...... ..22

5-1 Bearing stacks on base .................. ......... .. 23

52 Top ..... ............................... .24

5-3 Damper with foam and bearings .................. .. 25

5-4 Double sided air bearings with manifold ................. 26

5-5 Capacitance probe holder .................. ....... .. 27

5-6 Control board ............... ............. .. 28

5-7 Experimental setup .................. ......... .. .. 29

6-1 Capacitance probe drift test .................. ..... .. 31

6-2 Drift test histogram .................. .......... .. 31

6-3 Drift test record and ensemble averages .................. 32

6-4 Autocorrelation of drift test signal .................. .. 33

6-5 Direct reading of six cap probes .................. .. 33











6 Transformed components of cartesian motion . ....

7 No float load curve . ...................

8 No float FRF . . . . . . .

9 Half float direct probe readings and pressure. . .....

10 Half float uncompensated mating repeatability . ....

11 Half float compensated mating repeatability. . .....

12 Half float compensated rotational mating repeatability ....

13 Full float uncompensated mating repeatability . ....

14 Full float compensated mating repeatability . .....

15 Full float compensated rotational mating repeatability .. ..

16 FRF of a fully floated ABKC . .............

17 Transformation histograms . ..............

18 ABKC converted to ball flat configuration . ......

19 Stiction resulting in inability of conventional coupling to mate.

20 Ball flat contact FRF . .................

21 Load testing of ABKC . .................

22 Load curve . . . . . . .


. 34

. 34

. 35

. 36

. 36

. 37

. 37

. 38

. 39

. 39

. 40

. 41

. 41

. .. 42

. 42

. 42

. 43















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

AIR BEARING
CINEMATIC COUPLING

By

Vadim Jacob Tymianski

August 2006

C'!I in: John Ziegert
Major Department: Mechanical and Aerospace Engineering

The "kinematic coupliin is a well known device used to achieve highly

repeatable positioning of one machine or instrument element relative to another.

Normally it consists of 3 precision balls attached to the first mating element in a

triangular pattern. These balls mate with 3 v-grooves in the surface of the second

mating element, creating six ball-on-flat point contacts between bodies. Ideally this

arrangement would result in mating repeatability of the same order as the surface

roughness of balls and v-grooves. In reality, friction forces at the contact points

limit the repeatability and accuracy of the coupling and can result in wear over

time. This paper describes a novel air bearing kinematic coupling (ABKC) design

where ball-on-flat contacts are replaced with intermediate elements consisting of

double-sided porous carbon air bearings. Air bearings are designed with one planar

surface and one concave spherical surface so that an individual air bearing restricts

only a single degree of freedom. Each double sided air bearing stack exhibits

stiffness only in the axial direction when loaded. When six of such air bearing

stack elements are placed at the appropriate locations between mating bodies, they

will fully constrain motion of one body with respect to another. Overconstraint









is eliminated and mating repeatability is improved as compared to solid contact

kinematic couplings due to elimination of friction and wear at the constraints.














CHAPTER 1
AIR BEARING CINEMATIC COUPLING

1.1 Introduction

This thesis describes the concept, design, manufacturing and testing of a

novel kinematic coupling. Porous carbon air bearings are used as mating elements

between the top and bottom parts of a coupling. This thesis encompasses all issues

as well as their resolutions, encountered in the process of Air Bearing Kinematic

Coupling (ABKC) development.

The kinematic coupling is a well known and widely used device for providing

highly repeatable positioning of one machine or instrument element relative to

another. In general, instrument elements or even whole machines can be thought of

as rigid bodies located in space. Each body has six degrees of freedom that define

its position and orientation in Cartesian space; three translational X, Y, Z and

three rotational 0,, O, 0z.





9Z
oz


X y
X oY Y

Figure 1-1. Cartesian degrees of freedom


In order to locate or constrain one body with respect to the other the above

listed six degrees of freedom need to be constrained. The desired approach is to









constrain exactly six degree of freedom independently without over constraining

the bodies. This is the area where kinematic couplings offer several benefits. In

the common ball and v-groove coupling, the two bodies make contact at six points.

Normally a kinematic coupling consists of 3 precision balls attached to the first

machine element in a triangular pattern. These balls mate with 3 v-grooves in

the surface of the second machine element, creating ball/flat point contacts at 6

locations on each body, see Figure 1 2. At each of these points, relative motion

between the two bodies is restricted along a line perpendicular to the surfaces

of the v-grooves. Thus, a properly designed kinematic coupling will constrain 6

degrees of freedom. A kinematic coupling deterministicaly locates two bodies one

with respect to another.














Figure 1-2. Conventional kinematic coupling using 3 balls mated into 3 v-grooves


Ideally, each contact is intended to provide constraint along a single line in

space to prevent translational motion along that line, thus restricting a single

degree-of-freedom of relative motion between the bodies. If the six contact points

are arranged properly, they will restrict all six degrees of freedom of rigid body

motion without overconstraint. This is an over-simplification of the actual situation

where friction forces at the contacts limit the repeatability and accuracy of the

coupling, and can result in wear over time.









Solid contact kinematic couplings are inherently limited in performance

by parasitic frictional forces. In machine and instrument construction the most

common way of interfacing two bodies is through an area contact, which provides

high stiffness and load capacity. When preloaded, these contacts resist relative

motion of the bodies through friction. One of the flaws of the area contact is its

low repeatability in mating. When two bodies are mated they should settle into

a lowest energy state. This would result in a stable equilibrium, and an increase

in mating force should not produce any relative motion between bodies. In area

contact, frictional force arises as soon as there is physical contact and will oppose

relative motion between bodies towards an energetically stable configuration.

Current solid contact kinematic couplings consist of mating elements that

behave as area contacts as the load increases, and the positioning repeatability

performance is reduced by friction.

In this paper a novel kinematic coupling is described where the ball-flat

contacts are replaced by double sided porous carbon air bearings designed to

restrict relative motion along a single line in space while providing virtually zero

friction forces in all other directions. An air bearing stack is constructed in such

a way as to constrain only one degree of freedom. By using six of the air bearing

stacks assembled in a non-singular configuration a kinematic coupling is formed.

At zero relative velocity air bearings provide an almost frictionless contact between

mating bodies. Absence of the frictional force allows a much better repeatability

than solid contact kinematic couplings.

It is known that air bearings operated with gaps on the order of 5 25pm can

exhibit stiffness on the same order of magnitude as Hertzian contacts in ball-flat

pairs, but are capable of carrying much higher loads, thus giving the ABKC the

potential to carry larger loads than an equivalently sized ball-flat coupling. In the

following sections the design of the ABKC, modeling of its kinematic behavior,









and experimental data for coupling repeatability, stiffness, and load capacity

are described. Film thickness dependence on air supply pressure and preload

is investigated, as well as the resulting impact on coupling stiffness. Different

configurations of the coupling are also tested.

1.2 Motivating Need for Repeatability

Technological advances continuously demand higher and higher levels of

mechanical accuracy. While efficient active compensation schemes for improved

precision do exist, mechanical precision is still fundamentally important. Precision

assembly is critical on both ends of the instrument size scale. From MEMS

assembly to large telescope mirror positioning, repeatable mating of machine

components is crucial.

1.3 Kinematic Coupling Concept

Using a kinematic coupling as an interface between two bodies allows

for a certain degree of repeatability to be maintained through many

engagement-disengagement cycles. The concept of kinematic coupling and

kinematic constraint has been known and used for a long time. When two bodies

are connected through a kinematic coupling several benefits are realized. Thermally

induced dimensional changes are accommodated and do not cause internal stresses.

Also, components can be of lower accuracy and lower cost while still maintaining

highly precise positioning. Components interfaced through kinematic couplings can

be moved and later be placed back to the original position with high repeatability

without expensive active position feedback devices.

1.4 Research Goals

One of the main goals of this research is to determine the performance

parameters of an ABKC. The mating repeatability is of primary interest. If the

ABKC is to be successful used in the future many other operating parameters

need to be quantified. Static and dynamic stiffnesses are very important






5


parameters when describing a coupling. Static stiffness determines deflection

under load while dynamic stiffness characterizes the response of a coupling to

impact or vibratory disturbances. Individual air bearing stiffness greatly varies

with air film thickness, and in turn is dependent on supply air pressure.

Conventional kinematic couplings have very low damping and do not provide

substantial vibration damping and isolation characteristics. Impact testing is

performed to determine how much damping an ABKC has.

Solid contact kinematic couplings suffer the degradation in performance from

wear associated with repeated mating of tribological surfaces. Experimentaly it is

possible to determine if the problem of surface wear can be mitigated by air film

between an air bearing and surface it rests against.















CHAPTER 2
CURRENT STATE OF THE ART

2.1 Literature Review

The mechanics and performance of kinematic couplings have been studied

extensively by many authors [1-13]. In general, a coupling can be analysed using

the vector method outlined in Schmiechen and Slocum [7]. This approach to

the analysis of kinematic systems reduces to matrix analysis. Two characteristic

assumptions are made in this analysis: 1. error motions are small and 2. all

deformation occurs at the contact points. These simplifying assumptions allow

inclusion of friction at point contacts in the model. Summing up friction force

and Hertzian contact force produces a resultant that is not normal to the contact

surface. This requires a change of system matrix and use of modified Hertzian

stress calculations for oblique contacts.

Culpepper et al. [4] report on the design and construction of the prototype

actuated coupling allowing position adjustment in 6-DOF. A kinematic model for

an eccentric ball-shaft actuation is developed and prototype performance matches

this model within 10 In the experiment balls and grooves are made from 304L

stainless and are protected by a 3.5pm TiN coating and high-pressure grease. Over

the course of more than 500 engagements stabilized la repeatability of better than

1.9pm and 3.6prad was reported. However, friction at the contact points did not

allow the couplings to be adjusted while mated and loaded. Authors assume that

short wear in period of 50 cycle is perhaps indicative of grease being displaced from

the contact and not tribological wear of the surfaces.

Earlier investigations by Slocum and Donmez are presented in a two part

article [9] and [10] describe design and testing of a ball-flat coupling with a 45kN









preload constructed with ceramic balls. During testing 3a repeatability of 0.3pm

was achieved.

For non-actuated, conventional kinematic couplings repeatability of O.lpm is

possible [8]. Such high level of repeatability is possible for a period of time after

the wear-in and before the degradation of performance due to burnishing from

further mating and wear at the contacts. The number of engagements possible at

such a high level of repeatability depends on the ball-flat material but will alh--iv-

degrade with repeated mating. Polished, ceramic surfaces have particularly good

performance in terms of wear.

One of the advantages of a kinematic coupling is its ability to center itself or

come to the minimal potential energy state. Solid contact couplings are not all

self-centering. For some configurations there exist a critical coefficient of friction

for the ball-flat interface. If it is exceeded, the coupling will not self-center under a

steady preload without intervention and manual adjustment.

In summary, various implementations of the kinematic coupling concept have

been developed over the years. Overall performance of an individual coupling is

determined by several design constraints such as: load bearing capacity, spatial

constraints, contact pair orientation and material. Adjustable kinematic couplings

are subject to the same performance limiting factors. The most significant of

them is friction. Mechanical assembly accuracy is inherently limited by friction

and hysteresis. Wear is an issue with high accuracy surfaces. During mating the

order in which contacting pairs are brought in to contact influences repeatability.

Ideally each contact pair would restrict only one DOF that is normal to contacting

surfaces but it is not the case. Once contacting surfaces are brought in to contact

parasitic frictional forces arise. These forces resist settlement of a coupling into a

lowest energy state and degrade repeatability. Another limitation of traditional

kinematic couplings is their relatively low load carrying capacity. All of the applied









load must be carried via Hertzian contacts which results in very high stresses and

the potential for plastic deformation at the contact points, further reducing the

repeatability of the device.

2.2 Commercial Couplings

Most kinematic couplings sold are integrated into the larger mechanism. For

example large mirror segments in the oplical telescopes are held in a structure

called 'wiffle tree' which is essentially a series of kinematic couplings arranged as

a pyramid. Such an arrangement allows for accommodation of thermal expansion of

individual mirror segments without straining the whole mirror assembly.

Another application is in the support of granite bases of coordinate

measurement machines and granite optical tables. Even large diamond turning

machines are kinematicaly supported.

What is widely available in the marketplace is individual coupling components

such as polished spheres made from hard steel or ceramic and hardened flats. It is

left up to the designer to pick appropritae mating elements and to determine their

arrangement.















CHAPTER 3
CONCEPTUAL DESIGN OF ABKC

3.1 Component Layout

The geometric arrangement of air bearing stacks in an ABKC is one of the

most important factors determining its performance. Bearing stack orientation

has direct influence on the stiffness, repeatability and directional range in which a

coupling can be loaded. In the layout chosen ABKC bearing stacks are placed in

pairs on mutually perpendicular faces.

Each air bearing stack allows free rotation about all 3 coordinate axes and free

translation in 2 directions only restricting one DOF, see Figure 3-1. In other words

air bearing stack is only stiff in Z direction. Placing two bearings on one face allows

the constraint of one translational and one rotational DOF. Since pairs of bearings

are located on three mutually perpendicular faces of the base, three translational

and tree rotational DOF are constrained.














Ox

Figure 3-1. Air bearing degrees of freedom









In order to monitor the position of the top with respect to bottom it is needed

to measure six independent linear displacements. The most convenient non-contact

method is capacitive sensing. This method measures the capacitance of an electric

field between the probe and the target. As distance between probe and target

changes so does the capacitance. A resonating RC circuit is used to track changes

in capacitance and a microprocessor is used to convert capacitance changes in to

distance changes.

Reading rotational displacement is more difficult with non-contact methods.

That is why six linear displacements are measured and later converted into three

cartesian motions and three rotations around mutually perpendicular axes. If six

capacitance probes are located on the base with their axies parallel to the axes of

air bearing stacks two benefits are realized. First, direct capacitance probe readings

provide measurement of the air gap variation of individual bearing stacks. Second,

direct readings are transformed to provide cartesian displacements and rotations.

Individual components will be described in more detail in C'! lpter 5.

3.2 Automated Testing

Forseing a large amount of testing that ABKC is to undergo it is designed

to be automated. Since reengagement repeatability of thr ABKC is of primary

interest, testing will consist of unmating and mating the top for thousands of

cycles. To minimise the error introduced by a human operator the ABKC is

designed to be fully automated for testing and data acquisition. To obtain data that

is statistical meaningful numerous testing scenarios with rn in_: engagements of the

ABKC are planned. The actuation system consists of a pneumatic cylinder with a

stroke of 10mm that is computer controlled to provide precise timing and sequence

control during measurements. The position is registered through six channels of

capacitance distance sensors. The performance of air bearings is strongly influenced






11


by air pressure. A pressure transducer is placed close to the air bearings manifold

to record any fluctuations in the supply air pressure.















CHAPTER 4
CINEMATIC ANALYSIS

4.1 Spatial Geometry

Kinematic coupling is designed to constrain exactly six degrees of freedom of a

body. In order to do this a way to control six spatial coordinates is devised. If it is

choose to control six linear or translational variables then it becomes convenient

to represent them through use of Pliicker coordinates. In Plficker coordinates a

line in space is defined with respect to the coordinate system O in terms of vectors

Sand So. The resulting vector has six elements. Vector F is a vector from the

hZ

So


SS /




X Y

Figure 4-1. Plficker line in space and its defining vectors


origin 0 to any point on the line. Vector S is a unit vector along the direction of

the line. Components 1, m, n of the vector S are also the direction cosines of the

line. Vector So is a cross product of the vectors r and S and is the moment of the

line about the origin of the coordinate system 0.


F= (rry9,r,) S =(l,rm,n) (4-1)











i j k

So x = r r, -(p, q,r) (4-2)

Smn


(S; So) (1, m, n; p, q, r) (4-3)



11 mi ni pi ql ri

12 M2 n2 P2 q2 r2

13 m3 n83 p3 q3 r3

14 M4 n4 P4 q4 r4

15 m5 n5 P5 q5 r5

16 m6 n6 6 P 6 r6

Assembling six Plicker line coordinates into a Jacobian matrix J fully describes

the instanteneous kinematics of a kinematic coupling. In order for the kinematic

coupling to constrain all six degrees of freedom of a body, the six rows of J must be

linearly independent, i.e. the Jacobian matrix must be non-singular. Otherwise a

degenerate coupling is created, constraining five or less DOF.

4.2 Kinematics

It has long been recognized that the kinematic coupling is kinematically

equivalent to the Gough-Stewart platform and many other parallel kinematic

mechanisms (PKM). For this reason, the same analysis methods used to model the

instantaneous kinematics of a PKM can be directly applied to the ABKC. Each

strut in a PKM or contact pair in a kinematic coupling or air bearing stack in

ABKC creates a force along a particular line in space. The Plicker line coordinates

of each of the lines can be written as:


Si= l, i, ni; pi, qi,ri i 1... 6


(4-5)





























Figure 4-2. Air bearing directions


where: 1, m, n are the direction cosines of the line, and p, q, r are the components

of the moment of the line about the origin. The Jacobian matrix of a PKM relates

small motions along the six lines to changes in the position and orientation of the

platform. The rows of the Jacobian matrix are simply the Pliicker coordinates of

the six strut axes in a PKM, or the six lines of contact force in ABKC. Therefore,

A1 11 mi ni p i ql ri K

A2 12 m2 n P2 p 2 r2 6y

A3 /3 r3 n3 p3 q3 r3 6,
< > = < > (4-6)
A4 /4 m4 n4 p4 q4 r4 Ct

A5 /5 m n5 P 5 q5 r5 Cy

A6 /6 M6 n6 6 (6 r6 6 cz

Where: 68, 6y, 6, are the displacements of a point on the platform which is

instantaneously coincident with the origin of the coordinate system in which

all of the vectors are expressed, e', e,, ce are rotations of the platform about the









coordinate axes, and A1... A6 are small displacements of the contact point along

the line of force.

The cartesian translations and rotations of the platform relative to the

base, resulting from small changes in displacements along the contact lines, are

obtained using the inverse of the Jacobian. If the device is in a singular position,

the inverse Jacobian does not exist and the systems loses one or more restraints

of degrees of freedom of the platform. For the ABKC described here, there are 2

Jacobian matrices of interest, one for the air bearing stacks (4-7), and one for the

capacitance probes (4-8) that measure relative motions.


91.3398

32.8451

-124.1849

-124.1849

32.8451

91.3398



115.4635

5.9043

-122 2";%

-130.3481

6.8200

124.4437


-90.6613

-124.4333

-33.7719

33.7719

124.4333

90.6613



-74.5380

-147.1041

-62.7253

68.4387

137.2633

78.6654


Both Jacobians are expressed relative to a coordinate system O fixed to the

center of the top platform, with the Z-axis perpendicular to the top surface and the

X and Y axes along the top surface, Figure 4.2. Both Jacobians are obtained from

a symbolic transformation given in (4-9). First coordinate system that is attached


Bearing












Jcap -


0.7071

0.7071

0

0

-0.7071

-0.7071



0.7071

0.7071

0

0

-0.7071

-0.7071


0.4082

0.4082

-0.8165

-0.8165

0.4082

0.4082



0.4082

0.4082

-0.8165

-0.8165

0.4082

0.4082


0.5774

0.5774

0.5774

0.5774

0.5774

0.5774



0.5774

0.5774

0.5774

0.5774

0.5774

0.5774


-47.7607

47.7607

-47.7607

47.7607

-47.7607

47.7607



-88.7070

96.7870

-88.7070

96.7870

-88.7070

96.7870


(4 7)













(4 8)









to the base with its axes along the edges is defined. Then each line of contact

and each axis through the capacitance probe can be difined by two points on that

line. Next transformation T takes a vector from the origin to a point defined in a

coordinate system attached to the base pyramid and translates it to the coordinate

system attached to the top of ABKC. Once all points have been transformed to

the top coordinate system they define contact lines and capacitance probe axes

in the top coordinate system. Jbearing and Jap are different numericaly due to the

fact that the physical locations of air bearing stacks and capacitance probes do not

coincide in the ABKC, Figure 4.2.


Z




Y



X




YpZp



Figure 4-3. Coordinate systems



sin(0y) sin(0y)sin(0x) sin(0y)cos(0x) X

0 cos(Ox) -sin(ox) Y
T (49)
-sin(Oy) cos(0y)sin(0x) cos(Oy)cos(0x) Z

0 0 0 1

Ox = -(7/2 acos(1/3)










Oy = 37/4

X =Y = Z = 0.1597m

CenterAxis








\ /'r^^ ^ &&^x
,\e / ente-r








CenterAxis


Figure 4-4. Capacitance probe orientation


4.3 Global Stiffness

Most kinematic couplings are constructed out of six contact pairs. Each

contact pair is usually made up of a ball and flat and sometimes of a cylinder and

cylinder. These arrangements create an interface that most closely resembles a

point contact. Ideally each contact point would be infinitely stiff, but it is not

the case. For solid to solid contact couplings each interface will possess Hertzian

contact stiffness, Eq. 4-10. Each contact pair also transmits forces Fx and Fy as

well as moment Mz.


dP 1 1 1 v2 1 v22
dk (6E2 PR where 1 + (4-10)
d6 E El E2

E is a modulus of elasticity obtained from ball and flat moduli El and E2. V1

and v2 are Poissons ratios of ball and flat materials. R is ball radius and P is

load. For air bearing stacks used in ABKC the stiffness is obtained experimentally























Fx Fy

Figure 4-5. Hertzian

or it can be calculated using a numerical method based on a generalized one
dimentional flow [6]. The global stiffness, K, of a kinematic coupling is dependent
on the individual stiffness of its elements, ki, and their spatial arrangement. J
is a Jacobian and k is an element stiffness matrix. First equations (4-19) and
(4-26) are dirived. Equation (4-19) is based on the force equilibrium principle and
equation (4-26) is based on displacement compatibility principle. Using these two
equations the global stiffness matrix is defined.
An external wrench W is applied to the top of ABKC

W [PA, P, P, M, ,,M ,, IM] (4-11)

will result in six forces at the supports, fi = [fi ... f6]. Six equations are obtained
from static equilibrium
F PF + Pfil 0 (4-12)

Fy Py + fm = 0 (4-13)

F=P fn=0 (4-14)









M, M- M, + fPi -= 0 (4-15)

M [ -=M +yf -0 (4-16)

M,- M, + 0 (4-17)

Rearranging
P ll1 12 13 /4 15 /6 fl

Py mi m2 m3 m4 m5 m6 f2
Pz nI n2 n3 n4 n5 n6 f3
< > < > (4-18)
Mx pi P2 P3 P4 P5 P6 f4

1M, q1 q2 q3 q4 q5 q6 f5

Mz rI r2 r3 r4 r5 r6 f6


=- [J]Tf, (4-19)

Now a look at the displacement compatibility. The platform is given a small

twist displacement, T, consisting of cartesian motion of the coordinate system

center 6 and angular motions e.


T [6, 6y, 6, x, ,y, eiT (4 20)


Displacement of a point in a body can be found from:


p 6 + c'x rp (4-21)


Once assembled into a matrix the displacement of a single point 6J in a body

is:
6x i j k
P = 6y + e Y, e, (4-22)

6z x y z
Expanding the determinant gives










6, + CyZ CZY
6p= 6y + eZX Xz

6, + CxY At this point an assumption that for small displacements of the top the Jacobian

of ABKC does not change is made. This assumption is valid when the top

displacements are small compared to the overall size of the coupling. In ABKC

each Pliicker line is defined by two points, one in the top body and one in the

bottom body. If the relative displacement between two points is small compared

to the distance between points then the Pliicker line coordinates will remain

virtually the same. This assumption can be extended to state that if the Pliicker

line coordinates are constant and there is motion between top and bottom than

points defining Pliicker lines must move along those lines. To find displacements

normal to individual air bearings a projection of 6p on S if found. After factoring


6p J S = I6b + 61, + lzb + (,i, zm)u + (zl xn)ey + (xm yl)cz (4-23)


Recalling that from the definition of the Plicker lines


p i j k iiT zm

q xy z = zl- xn (4-24)

r I m n xm yl

next relationship is obtained

A, = Sif (4-25)

In matrix form it becomes

A [J]T (4-26)

W is an externally applied wrench (4-11), fi is a force at each air b, ii:7.

Ai is a normal displacement at each air b, ii-. T is a small displacement of one









mated body with respect to the other. Deflection Ai multiplied by stiffness ki of an

air bearing will result in a force fi through a bearing. In matrix form


ki 0 0 0 0 0

0 k2 0 0 0 0

0 0 k3 0 0 0
f [k] A where k (4-27)
0 0 0 k4 0 0

0 0 0 0 k 0

0 0 0 0 0 k6
Substituting equation (4-26) in to (4-27) and subsequently substituting the result

in to (4-19) we obtain

W [J] [k] [J] T (4-28)

The term, [J] [k] [J], is taken to be the apptoximate global stiffness, K, of

an ABKC defined for small displacements. Global stiffness of the ABKC is used

to visualize the envelope in the coupling can be loaded. Air bearing stacks can
only resist a compressive load. Based on the geometry a surface in Figure 4-6 is

constructed. A force that can be applied to the top af ABKC is directed down and

is bound by the sides of the plot. The top surface of the plot represents relative

stiffness of the coupling loaded in the permissible range. Its smoothness slr.--- -I

that due to the symetry of the ABKC its response to load is uniform throughout
the workvolume.




































0.8-

0.6-

0.4

0.2

0
0.2 0.3
0.1 0.2
0 0.1
-0.1 01 0
-0.2 0-0.2
Y X


Figure 4-6. Loading envelope of ABKC. X and Y are in meters while Z is non
dimensional stiffness. Uniformity of top surface signifies that stiffness
of an ABKC does not significantly inside the loading envilope.















CHAPTER 5
SYSTEM COMPONENTS

5.1 Base

The base is machined out of the solid piece of 2024-T6 aluminum. Monolithic

construction assures rigidity while decreasing overall part count. The coupling

design utilizes 3 mutually perpendicular surfaces on the base to locate air bearing

stacks. Convex lenses are epoxied in pairs to each face on the base. To facilitate

locating lenses on faces two pockets are machined on each face. Detailed drawing

is provided in the Appendix A. One air bearing stack ride on each of the lenses,

Figure 5-1, providing restraint forces along a line normal to the face, thus fully

constraining all 6-DOF of relative motion between top and bottom.

Cap probe holders are mounted to the base with one holder per face. Air

cylinder is fixed to the top of base and will provide actuation force. Base is

installed on a granite base with a sheet of rubber as a vibration damper.



















Figure 5-1. Bearing stacks on base









5.2 Top

The top is machined from a single 5in. thick aluminum billet. Aluminum

stock is rough machined on horisontal machinig center and finish machined using

custom-made adjustable fixturing. The final mass of the top is approximately 20

kg. Detailed drawing of the top is in the Appendix A. Planar glass surfaces are

epoxied in pairs to each of three machined faces to provide bearing surfaces for the

air bearing stacks. Figure 5-2 shows the top with glass plates replaced with steel

plates for solid contact repeatability testing. Three mutually perpendicular surfaces

machined in the aluminum are suitable as cap probe targets and are used as such.





















Figure 5-2. Top


5.3 Damper

Pairs of bearings on individual faces are connected by removable dampers,

Figure 5-3. At some operating conditions aeroelastic instability is encountered and

foam media is chosen as damping material. Foam spacer 10mm thick around each

bearing stack provides sufficient dampting with negligible constraint in the lateral

and rotational directions. Drawing of the damper is provided in the Appendix A.




















Figure 5-3. Damper with foam and bearings


5.4 Air Bearing

A two sided air bearing stack is constructed out of two 40mm diameter air

bearings available from New Way Air Bearings Inc. part number S104001. Concave

surface is rough machined on one bearing using a conventional lathe and custom

built tooling. The spherical concave surface with a radius of 258mm is generated

by a flexure based mechanism mounted in the tailstock of a lathe with the air

bearing being machined mounted in the spindle. A single point turning multi-pass

operation is carried out until the desired amount of material is removed. To

produce a final concave surface with a radius of 258.40mm a rough machined air

bearing is lapped against a glass lens using 1000 grit silicone carbide (SiC) powder

from Extex Inc. part number 16826. A water based slurry is prepared and is

reapplied to the surface being lapped to maintain the material removal rate. Wet

lapping produced a good surface finish and did not clog the air bearing.

Two air bearings, one with planar surface, one with concave surface, are

epoxied together back to back to form a two sided air bearing stack. Each stack is

mated to a convex lens surface on one side and a planar glass disk on the other.

Since an air film separates mating surfaces from the air bearings during operation,

glass is an acceptable choice. Due to the fact that bearing surfaces conform well to

the porous graphite, each bearing is able to bear a load of more than 200N without

damage even while deflated, Figure 5-4.


































Figure 5-4. Double sided air bearings with manifold


5.5 Capacitance Probe Holder

Capacitance probe holders are provided for 6 capacitance probes on the base.

These probes read directly against the inner surface of the top and provide direct

measurement of relative motion and positioning repeatability in 6 DOF. Using

Jacobian derived from location and orientation of capacitance probes we transform

capacitance probe readings in to a cartesian coordinate frame. Each of three

holders fixes two capacitance probes at a right angle for easy positioning, Figure

5-5.

5.6 Electro-Mechanical System

ABKC is designed to operate autonomously in a temperature controlled

environment. Figure 5-6 shows how the main board integrates a power supply

and all electro-mechanical components. The influence of an operator on the

experimental results is removed through full automation. Mating repeatability tests





























Figure 5-5. Capacitance probe holder


are fully automated in terms of data acquisition and mechanical engagement and

disengagement. Mechanical actuation is accomplished by a single acting pneumatic

piston with a stroke of 10mm. During mating tests the piston is pressurised

through a solenoid valve while return action is spring loaded. A one way needle

valve is installed on the exhaust port to provide controlled descent rate for the top.

Delivery of vacuum and compressed air to the air bearings is accomplished through

a solenoid valve bank controlled by a set of optoisolated re-,1v. Relay control is

achieved through LabView 7.1. A vacuum pump is used to supply vaccuum to

the lower set of air bearings. When vacuum is on and the ABKC is unmated air

bearing stacks remain in place. When the vacuum pump is off a solenoid valve is

activated to prevent pressurised back flow through the pump.

5.7 Data Aquisition System

The data acquisition system is fully integrated with the electro-mechanical

actuation system and is implemented in LabView 7.1. Figure 5-7 shows the

complete experimental setup during load testing. Data acquisition system consists






























Figure 5-6. Control board


of six capacitance probes and pressure transducer. C-l capacitance probes from

Lion Precision Inc. are driven by DMT20 modules. Each of the six capacitance

probe channels driven by DMT20 module outputs 5V linearized signal for the

displacement range of 0.254mm. Capacitance probe data is recorded with a 16 bit

National Instruments PCI 6251 DAQ card. Theoreticaly with a 16bit DAQ it is

possible to resolve displacements of 3.876e 3pm. Coaxial cables from capacitance

probes and pressure transducer are wired to the DAQ card through CB68LPR I/O

block. Solenoid valves are driven by a dedicated 24V power supply. During impact

testing a solid state low-pass filter with a cutoff frequency of 3KHz is used to avoid

aliasing, since in this test we are interested in the higher frequency signal. Impact

testing is done using an instrumented force hammer to excite the system with an

impulse. Capacitance probes are continuously read at 20KHz and the data is held

in a buffer large enough to hold the last 3 seconds of data. When the hammer hit

is detected, data in the buffer is written to a file. Subsequently data is analyzed in

Matlab.


LAVAMr-_














































Figure 5-7. Experimental setup















CHAPTER 6
TEST RESULTS

6.1 Test Configurations

The following sections will describe various modes of operation and testing of

ABKC. It is possible to operate the ABKC in 'full float' mode with both upper and

lower bearings pressurized and floating. Another possibility is to deflate lower or

upper set of bearings and operate in 'half float' mode. It is also possible to use

ABKC as a conventional kinematic coupling with both top and bottom bearings

deflated the 'no float' mode. In the 'solid contact' tests ABKC is converted in to

a conventional kinematic coupling by replacing air bearings with ball-flat pairs. A

separate LabView application is created for each series of tests. Data is saved in

text files and later processed in Matlab.

6.2 Drift Test

To establish the performance envelope of the capacitance probe measurements

a drift test is carried out over a period of over 24 hours. For this test a single

capacitance probe is attached to an "'L"' shaped aluminum bracket. The bracket

both holds the cap probe and also serves as a fixed target. Raw data is presented

in the Figure 6-1 .

Every second 300 samples are taken at 3000Hz and averaged to make a single

data point. Sampling at 3000Hz ensures that harmonic noize from 60Hz building

wiring averages out. This sampling scheme is chosen to match the sampling done

during the actuated tests of ABKC. Standard deviation over the 24 hour period is

0.018pm and range is 0.144pm. A histogram of the data, Figure6-2, shows that the

data is close to normally distributed.





























11.2
0 5 10 15 20
Time, h

Figure 6-1. Capacitance probe drift test

3000-


'E 1500


1000


0.06 0.04 0.02 0 0.02 0.04 0.06 0.08
Displacement, pm

Figure 6-2. Drift test histogram


Population of 90300 points is divided into 301 records of 300 points each.

Two vectors are calculated, one for time and one for ensemble averages. Figure

6-3 shows that it is clear that there is a trend in the drift data by comparing time

and ensemble averages. Period of ascillation is approximately 9 minutes. Another

way of checking for trends is to look at autocorrelation in Figure 6-4. We can see

from autocorrelation that drift data is not purely random but that there is a weak










Record average

11.3




11.25
0 50 100 150 200 250 300

Ensemble average
11.311-'---,,-----
I ', ] M "

711.308-
CF

11.306

0 50 100 150 200 250 300

Figure 6-3. Drift test record and ensemble averages


periodic component. To determine the frequency of a periodic component we look

at the time lag and a periodic component with a period of 27 minutes can be seen.

It could be a harmonic of a 9 minute oscillation seen in the time average data

but the correlation is not strong. The experiment is carried out in a temperature

controlled room, but the temperature fluctuations are unavoidable. For the purpose

of our experiments we assume capacitance probes to produce randomly distributed

signal that is time invariant.

Another drift test is conducted with six cap probes mounted on the ABKC.

This test takes in to account structural deformations that result from room

temperature fluctuations and may influence measurements. Figure 6-5 shows direct

readings while Figure 6-6 shows X, Y, Z components of relative motion after the

transformation into cartesian coordinate frame. As a basis for further experiments

we take the largest standard deviation of all drift tests of 0.018pm to be a standard

deviation of a capacitance probe.













128.3

128.25

128.2

S128.15

S128.1

128.05

128

127.95

127.9-
0 1 2 3 4 5
Shift, s


6 7 8 9
x 104


Figure 6-4. Autocorrelation of drift test signal

0.03

0.02

0.01

E 0





0.03

0.04

0 5 10 15 20 25
Hours


Figure 6-5. Direct reading of six cap probes



6.3 No Float


6.3.1 Repeatability


During the "no fl ., I repeatability testing of a deflated ABKC lower set of


bearings remains under vacuum for the duraton of the test to prevent them from

shifting. The following sequence of actions is performed by the controller:


1. Pressurize the top bearings.


2. Unmate the ABKC.

3. Mate the ABKC.

















E
0-

0.02
0
0.02
0.03
0.04
--Z
0 5 10 15 20 25
Hours


Figure 6-6. Transformed components of cartesian motion



4. Deflate top bearings.

5. Let the ABKC settle and take position reading.

6. Repeat steps 1-5.

For comparison with a fully floated ABKC a load test is performed on a deflated

coupling with a resulting stiffness curve presented in Figure 6-7.


3
0 200 400 600 800 1000
Load, N


Figure 6-7. No float load curve



6.3.2 Impact

Impact testing is performed while both top and bottom bearings are deflated.

Figure 6-8 shows an FRF produced by tapping an ABKC with an instrummented

hammer in the middle of a top surface in the downward vertical direction.





















0 2000 4000 6000 8000 10000
Hz

Figure 6-8. No float FRF


6.4 Half Float

For a "half float" test the bottom set of bearings is deflated and held under

vacuum to fix them on the base for the duration of the test while top bearings are

held pressurized. Controller carries out the following steps:

1. Unmate the ABKC.

2. Mate the ABKC and allow it to settle.

3. Record position data.

4. Steps 1-3 are repeated.

Figure 6-9 show a portion of data obtained for 100 engagements of ABKC. Strong

dependence of air film thickness on pressure is evident with slope of approximately

1.5pm/bar. Fluctuations in the supply pressure are attributed to the compressor

cycling on and off. It is possible to estimate the repeatability of ABKC if the

pressure were to stay constant. Figures 6-10 and 6-11 show the uncompensated

and compensated repeatability. Standard deviation for uncompensated data is

0.076pm and 0.060pm for compensated data. Due to the geometry of ABKC

angular repeatability is very high, see Figure 6-12.












U 7*S


-Capi
Cap2
-0.05 Cap3
Cap4'
Cap5
-0.1 Cap6

E
L -0.15


0
.2


-0.35-


6.215


6.18 2
(L
a-
6.145 2



6.11


-Pressure
---`%.075
40 60 80 10C.075
Cycles


Figure 6-9. Half float direct probe readings and pressure.


0.2

0.15

0.1

0.05

E 0

2 0.05

t 0.1

0.15

0.2

0.25

0


H111


200 400 600 800 1000 1200 1400 1600
Cycles


Figure 6-10. Half float uncompensated mating repeatability.



6.5 Full Float


6.5.1 Repeatability


The most interesting results are obtained in the full float tests. In these tests


the ABKC is put through a series of engagement and disengagement cycles with


both top and bottom bearings pressurized. The main interest is in the positional





















iriii.1II IIiu I i~ lIhk~IJIL.VI/I~J III~II


0 200 400 600 800 1000 1200 1400 1600
Cycles


Figure 6-11. Half float compensated mating repeatability.


x
Y


21
CF
0

01
cc

2

3

4

5
0 200 400


600 800 1000 1200 1400 1600
Cycles


Figure 6-12. Half float compensated rotational mating repeatability.



repeatability but we are also interested in the frequency response. Over thousands

of cycles the top of the ABKC is removed and then replaced into its position.


Following are the actions the controller performs for each of thousands of cycles.


1. Deflate lower bearings.

2. Apply vacuum to lower bearings.


0.3

0.25

0.2



0.1

0.05

0

0.05

0.1

0.15

0.2


x104
F-











3. Unmate the ABKC.

4. Mate the ABKC and allow it to settle.

5. Pressurise lower bearings to achieve full float.

6. Record position data.

7. Repeat from step 1.

The position of the top with respect to the bottom is recorded and stored. Six

capacitance probes are sampled simultaneously to capture instantaneous relative

displacement.



0.15
0.1

0.05
0
0.05
.2
0.1
0
0.15

0.2
0.25
-x
0.3 y
z
0 200 400 600 800 1000 1200
Cycles

Figure 6-13. Full float uncompensated mating repeatability.



6.5.2 Impact

Impact tests are conducted to capture the natural frequencies of the system.

An FFT of impulse and response is taken and a transfer function is obtained by

dividing response of the system by the input excitation. Capturing data at 20KHz

actually allows us to see structural modes that start at around 3000Hz, but in this

experiment we are only interested in the rigid body modes in Figure6.5.2.

To evaluate how the uncertainty in capacitance probe measurements

propagates through calculations Montecarlo simulation is used. Each of six






























Figure 6-14. Full float compensated mating repeatability.


Figure 6-15. Full float


400 600 800
Cycles

compensated rotational


1000 1200


mating repeatability.


cap probe readings is simulated as normal distributed number with a standard

deviation of .018pm After the capacitance probe readings are transformed in to

a cartisian coordinate system we can look at a histogram of top position. Since

the Jacobian used in coordinate transformation is constant the transformation is

linear. Montecarlo simulation is used only to visualise how transformation will












4000

3500

3000

S2500

2000

1500

1000

500

100 200 300 400 500 600 700 800
Hz

Figure 6-16. FRF of a fully floated ABKC


modify the histogram of input data. We can assume that the only input to the

system is a random error in the signal coming from each cap probe. This results

in an error in the cartesian position calculation. By comparing a histogram of a

perturbation (gaussian) to that of top motion in Figure 6.5.2 we are able to see

any differences. All six capacitance probes have normal distributed errors. When

these errors are transformed in to cartesian motion we see that due to the symetry

X and Y motions have similar histograms. Due to geomery of the ABKS the error

in position for X and Y directions is greater than the range of error in cap probe

readings. On the other hand the range of motion in the Z (vertical) direction is less

than the range of cap probe error.

6.6 Solid Sphere Contact

6.6.1 Repeatability

To compare the performance of the ABKC with conventional kinematic

coupling, air bearings are replaced with solid ball-flat contact pairs, Figure 6.6.1.

In the repeatability test one of the shortcomings of conventional kinematic

couplings becomes apparent. The ball flat coupling will not seat all the way under












Input error

30 -

20 -

10-

0 08 406 404 402 0 002 004 006 008
Error, pm
X direction error

30 i





0 08 406 404 402 0 002 004 006 008
Error, pm
Z direction error

30 -




0 ^ ^all I L L
408 406 404 402 0 002 004 006 008
Error, pm


Figure 6-17. Transformation histograms


















Figure 6-18. ABKC converted to ball flat configuration



its own weight due to the frictional forces that arise at the contact points. ABKC


does not have this problem. Figure 6.6.1 illustrates how during automated testing


coupling is unable to come to the equilibrium. Manual setting is required to seat


the coupling.


6.6.2 Impact


Impact testing of solid contact kinematic couping is conducted following the


same procedure as for a fully floated ABKC. Figure 6.6.2 shows an FRF for a


vertical impact.









Solid Contact Direct Probe Reading


Figure 6-19. Stiction resulting in inability of conventional coupling to mate.


Figure 6-20. Ball flat contact FRF.


The load capacity of solid contact coupling is tested by placing weights on it

up to a total load of 115 kg as shown in Figure6.6.2. Figure 6.6.2 shows the vertical

displacement of the platform as a function of applied load.


Figure 6-21. Load testing of ABKC







































































200 400 600
Load, N


Figure 6-22. Load curve


800 1000


-1



-2


E
=-L -3
cF
o

S-4-



-5



-6



-7
0















CHAPTER 7
CONCLUSIONS

A novel kinematic coupling based on air bearing technology is developed

built and tested. The positioning repeatability of a point on the top center of the

platform, over 1000 successive engagement cycles, is found to vary less than 233

nm from nominal, with a standard deviation of 33 nm. The orientation of the top

platform varies less than 1.082/rad, with a standard deviation of 0.184/rad. The

coupling is capable of supporting loads in excess of 100 kg. The repeatability of

the ABKC surpasses reported data for conventional ball/groove couplings while

no noticeable wear is detected. At the same time ABKC is capable of carrying

substantially larger loads than conventional kinematic couplings.















COMPONENT DRAWINGS

Base Drawing

Top Drawing

Damper Drawing

Air Bearing Drawing

Capacitance Probe Holder Drawing
















&-/ \\u\\
0' c"J -
'0


0 \


o w \
C: O

s w

n 10




0 -, U\



F
U)







q cu L
S <: E






x
C(Uc XX '1O>

0





0

C.
1. ,
^--^S ^--^\Z-- .5^^


cu"
Cal







































m





O
006



--
U)









C-



0 m(
0)*-_9


1\
o00
--od --


o
Q)
W L

H- -

,w (



o


wu)Q








48







Co



.0
o Iw I






C) -
0.




o (0
0 _O LO ,

>L 6

o\ C




",)
/ <..
cu ) y of

of 0 uwZ-c



VC ZO > 7
->. \ |
U 0\ 0)o iU E





OD !Z

















-j:
LU 0
o svs co 5a











-j 0











C"'
































m ~ z
w<




U)w


.-- C ,
0)

o z co o
oLL w
c0) 0> E
>, wM E E co
10 E 0 >- 0

sO C.I < a



w-0


E


. 0
LU















w
1 0



o O0




o --
a N
U



O N
I-
0o




C, 0 z

m o m o
(D >,0 (9u ) E z"

S -.5 E E5


(l? W, ,
0-; '4 O
10 Z 0 '


1 -----------------T-s- -^ |-----------[ o.S.s x w
Sxxxg
0 (3X ~


31/ UL















REFERENCES


[1] Schouten, Rosielle, P. Schellekens, "Design of a kinematic coupling for
precision applications" in Precision Engineering 1997;20;46-52.

[2] C. Araque, C. K. Harper, P. Petri, "Low cost kinematic couplli;,- 2.75-
Precision Machine Design Fall 2001 Class Report, Massachusetts Institute of
Technology, Cambridge, MA, USA

[3] M. L. Culpepper, "Design of quasi-kinematic coupllli;,- in Precision
Engineering 2004;28;338-357.

[4] M. L. Culpepper, M. Kartik, C. DiBiasio, "Design of integrated eccentric
mechanisms and exact constraint fixtures for micron-level repeatability and
acci y in Precision Engineering 2005;29;65-80.

[5] L. C. Hale and A. H. Slocum, "Optimal design techniques for kinematic
couplings" in Precision Engineering 2001;25;114-127.

[6] J. -S. Plante, J. Vorgan, T. El-Aguizy, A. H. Slocum, "A design model
for circular porous air bearings using the 1D generalized flow method" in
Precision Engineering 2005;29;336-346.

[7] P. Schmiechen, A. H. Slocum, "Analysis of kinematic systems: a generalized
approach." in Precision Engineering,1996; 19;11-18.

[8] A. H. Slocum, "Design of three-groove kinematic couplingi; in Precision
Engineeringl992;14;67-73.

[9] A. H. Slocum, A. Donmez, "Kinematic couplings for precision fixturing Part
1: Formulation of design pi ii, I. i- in Precision Engineering 1988;10;85-91.

[10] A. H. Slocum, A. Donmez, "Kinematic couplings for precision fixturing Part
2: Experimental determination of repeatability and stiffness" in Precision
Engineering 1988;10;115-122.

[11] R. R. Vallance, C. J. Vogan, A. H. Slocum, "Precisely positioning pallets in
multi-station assembly system" in Precision Engineering 2004;28;218-231.

[12] M. Barraja, R. R. Vallance, "Tolerancing kinematic couplings" in Precision
Engineering 2005;29;101-112.






52


[13] M.J. Van Doren, "Precision machine design for the semiconductor iii' li-li
Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, May 1995.















BIOGRAPHICAL SKETCH

Vadim Tymianski was born in Russia at the time when it was still a part of

Soviet Union. After accompanying his parents for the move to the United States

in 1992 he attended the University of Florida and graduated in 2001 with BSME.

After working as a design engineer, thirst for knowledge brought him back to UF in

a pursuit of a master's degree.

Vadim's future plans include conducting doctoral research at Clemson

University and furthering his consulting practice of Product and Instrument

Design LLC.