<%BANNER%>

Palynomorphs and Selected Mesofossils from the Cretaceous Dakota Formation, Minnesota, USA

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110218_AAAACE INGEST_TIME 2011-02-18T14:00:19Z PACKAGE UFE0013780_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 5316 DFID F20110218_AABHXF ORIGIN DEPOSITOR PATH hu_s_Page_174thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
20041ba8e9ac8056fb7eb20999012969
SHA-1
949eb7be41429b41de344cc4c6224830275a9fd1
8423998 F20110218_AABIBV hu_s_Page_151.tif
4103bfbf3c2bfb3cfad66e52ac201973
7633712aa7e0e00f28e9fffaefb5d28d4245925e
2277 F20110218_AABHXG hu_s_Page_221.txt
2f564057ed12c3eb75bc46b0168929bd
403ebf63220f7f7e04a8eb980e8818fee13040df
F20110218_AABIBW hu_s_Page_152.tif
cf932ca84637720492167d6af71245f4
74779abef6c0aeb2b3a3023a546f0d6c06820570
2060 F20110218_AABHXH hu_s_Page_118.txt
1b1be47deeab1ff702ef20eb17ba4111
052484ca2363c364762f1ba795e348f12e5c2932
F20110218_AABIBX hu_s_Page_153.tif
64f8f249fcc402f3cb1fadccb626761c
b8b10c25049717598aeb4f8089d912e93ab057a4
81014 F20110218_AABIUA hu_s_Page_105.jpg
140347f73ed52930f49f59527411047d
07f6a8f46bc1cf692f942b9a06aa718375ecf723
1977 F20110218_AABHXI hu_s_Page_102.txt
2f395fa00ce8e4f35f8e54816619af26
750384a768749a8562235b4cf8c26e577b76faea
F20110218_AABIBY hu_s_Page_154.tif
e94dd17a21924a292bb88e5311c8b658
4d18768e9699b4fb99aabbe457ee69e80c7f145e
24705 F20110218_AABIUB hu_s_Page_105.QC.jpg
dd45ca2e6fb448b623dbf4794fdb1a53
f51ffbaf235b710b19d65603513139aa09fd03df
F20110218_AABHXJ hu_s_Page_162.tif
60d6590f6fb32eed170ee8f1b85b2d49
14a7ab0743010be3353e7dc1f6f2e964166531b7
F20110218_AABIBZ hu_s_Page_155.tif
10fba4918d0220fafea14999ea1ef31a
aeeb4c372aab20122ac308194cc8a162c4547b31
84571 F20110218_AABIUC hu_s_Page_106.jpg
aa041bf49c7f343eac2a4b18c993fa9d
07a00ad8c984e30b22592dacd9b233bf755630c1
50610 F20110218_AABHXK hu_s_Page_099.pro
60fedbcd33b2c1a1aa48089c1341f081
96eb461c93441801d893f940c7ed069f4b8f55c4
79998 F20110218_AABIUD hu_s_Page_107.jpg
656eade7a0fb85098414cab9c3fb1e06
16985677808f1bbf03fcdc362666bfd91cb7a8fe
47595 F20110218_AABHKA hu_s_Page_172.pro
054168ce58d3065d6d84c2e63cca8ef7
93d2edcaa7c2acb3a348d73be24f8ec7e3888375
84088 F20110218_AABHXL hu_s_Page_104.jpg
59aaff76768150e0c5415c5c12459a9b
ce65200c6bda1b352c57b95f82f0fcbeb5b0fa5f
24447 F20110218_AABIUE hu_s_Page_108.QC.jpg
84d6ba87af7510a1bc256c527cdaa009
c7c069be7423d89a8c666e5647e3be2ac2d85715
1051966 F20110218_AABHKB hu_s_Page_156.jp2
e9df5408241de0ba0012a226bacecb1a
0f8f4351873a65fd28ffd8c4f988683dfbe4bc36
5475 F20110218_AABHXM hu_s_Page_020thm.jpg
7162e5d0fd0a35b50c0d26fb7d29d21e
7fdf8e107f99fc1b75dc73b62fc43ff37c612b45
81292 F20110218_AABIUF hu_s_Page_110.jpg
c6479bfad05b53d710a8204339a68fdc
f6ba569d676b82c1d982e0b010c8a66f18fdc22e
19992 F20110218_AABHKC hu_s_Page_206.QC.jpg
283c8281b1e3e310a6ad41e192894719
f7eae8b9235500dd0f78b784ced734927231ccfc
22901 F20110218_AABHXN hu_s_Page_135.QC.jpg
abd21241b99e690e2754f6992510062a
8868656f560da8f0c4f6a14aec9dd1ba727e925c
24804 F20110218_AABIUG hu_s_Page_110.QC.jpg
989b90bfa0cde91bf67322ee3688a13a
4636a77f22afde813a87475c2aa8e5ab201a32f2
23336 F20110218_AABHKD hu_s_Page_076.QC.jpg
165c825ddb67ead9042485782df3af7f
1924183090c87f8cd88d30c9d7d138d2e2d37636
F20110218_AABHXO hu_s_Page_126.tif
f13f43c10d0ba2dded477915f47bf913
550c77f3348f324bf4163d8e115339db4b85b581
86528 F20110218_AABIUH hu_s_Page_111.jpg
c9657071ba6b61a7eb4cdb0ac7d088a6
235b9ef6a106f22af91481e5ade39ce9563ba308
F20110218_AABHKE hu_s_Page_216.tif
76fcdce93b3c0daf6b25b298d92dba21
de82f9908b50cc163819d5dee7efa4afcebc1bcd
65758 F20110218_AABHXP hu_s_Page_208.jpg
a51c1a79a0334f9925cc6b766c98b7da
8f7af4ed9a57b44e5651a53a9abbb5cd728e83e3
24726 F20110218_AABIUI hu_s_Page_112.QC.jpg
19b9d313cea0ffc4e79747b8fc939629
05b3a3abbfe48b8923e72ced7dc372400e2764fa
912967 F20110218_AABHKF hu_s_Page_012.jp2
cf16d3a438c0ebf278ce4ff8d1f95d68
d172f36d7d81588ece67f75ae7dc02ca9a1d541a
1051963 F20110218_AABHXQ hu_s_Page_028.jp2
d882f98f72e64f89fc01e02458f9d74e
7c59f15eef9880e07d8ef3ce3dd2631c49eeedab
64586 F20110218_AABIUJ hu_s_Page_113.jpg
206ce8af90f92ab62b0701372ae5e18a
7db33fd6dc3f24b1d1efbe3f155cf90bdf882851
17134 F20110218_AABHKG hu_s_Page_159.QC.jpg
c49ebf448f67f5076fdf78bc339c8e31
016684636ed7abf54b701c8fc14ff97ebf991d29
51977 F20110218_AABHXR hu_s_Page_141.pro
4123683f36a0527822de4da31830562d
2885afd0b147d2ca47509558a7a23ac3e86349c2
20500 F20110218_AABIUK hu_s_Page_113.QC.jpg
0258112c40b028b9ea3884658577c1f2
b92b11615411249f2f69a46d0e3cbdde2198bcb0
9481 F20110218_AABHKH hu_s_Page_164.QC.jpg
a206a19ef49d8ce8aef6c9239a0bb5e4
5b66b6f1cfd671a5eb76400f97fe0e362f256bcc
2301 F20110218_AABIHA hu_s_Page_125.txt
52ee117f04bca06d853aec0f5fb3f0d0
64c8a7afad4d292f0b4d75d283ffcdcf662d2892
6692 F20110218_AABHXS hu_s_Page_225thm.jpg
96b6bfc682f1b825936b5f00dc403f41
df77c126e73c66623dbf9d82bac95f516b21fc45
8748 F20110218_AABIUL hu_s_Page_114.QC.jpg
5671b963c5784229b74f1663fd61e22a
857933fac05d8bc081217d0f319896aca8b7a500
F20110218_AABHKI hu_s_Page_041.tif
52e62d05c935013c50044490bdbd97e5
99deaf19caae77a921ba58ecb43ba3febcfaf7cc
1239 F20110218_AABIHB hu_s_Page_126.txt
2e084ca073b18a44e1244bb4e75cea39
0d0dc0ce630eeb60e35b2251dfa9cfefd09627af
26948 F20110218_AABHXT hu_s_Page_106.QC.jpg
409de9e884750652e8ed5cc4bee8d877
1a131127da28781c4c81e5f398e307a2f9909e35
30755 F20110218_AABIUM hu_s_Page_115.jpg
aa635661613d33c0f17bcdf7318a723f
88666d68620718403a443ec84a39a9b7faebc7ad
5602 F20110218_AABHKJ hu_s_Page_173thm.jpg
e9dcb6289c4f2be92ae7a2a298702b11
8a076b7cf5619284272107ca6f2b0ecf063e58d9
738 F20110218_AABIHC hu_s_Page_127.txt
66aeec09bf8c87c6251065d690c0e0b5
f3647822c2d00713d41ece3a00e195091af2c9e7
F20110218_AABHXU hu_s_Page_047.tif
63cc86cbd29a6c47c7d26c6d0589f89b
c7cab6c340750f8d263fd393102d1d993e7e0dd6
18522 F20110218_AABIUN hu_s_Page_117.jpg
c9740a09c259197df9a5292c9c08bba1
967fafb59a3027b83eb7cd241fcdeaf67eae6c33
23110 F20110218_AABHKK hu_s_Page_051.QC.jpg
5228502c04d469e4635f715af58c7b76
a6d6d19e9718c523fa1af0c7f660325f7ea581ea
561 F20110218_AABIHD hu_s_Page_128.txt
faa55c27eb5d8797826d11a4ca7ba326
419d4e9fd74608d2a73281621b0a9594b55b1a8f
2366 F20110218_AABHXV hu_s_Page_039.txt
bc71e208e1827c6bef9db95fc3a16950
8566ddc0d64b3eec7ca7e7fe0184dffe23263ca5
5768 F20110218_AABIUO hu_s_Page_117.QC.jpg
4d079299e4fb62c4950f520b4d130fb8
d28cbbf092d3e45c61cb0f89b7d09e6c6ef690c1
51546 F20110218_AABHKL hu_s_Page_132.pro
c81d0c68b3ca9cc4130eeda65e210d5b
b0f8a5057fcfbec0b7eda0c7b45c9f9f69825b04
535 F20110218_AABIHE hu_s_Page_130.txt
93bd9b64be1627c25e3a881f8d60b9b5
35558549c1c22266153cc72fba82e53cd9420e20
86368 F20110218_AABHXW hu_s_Page_057.jpg
1e019406e925e614ed225db63e60b24b
ef354f84b8e3d9c0c6183607104061252e27fe3c
15799 F20110218_AABIUP hu_s_Page_118.jpg
40809efef0b89e58f0984114e9731bf5
567287f7c4c32bb689b7254843023a3053106253
F20110218_AABHKM hu_s_Page_138.tif
febf11c80400aac930a36c6a462b258f
5cca72bc3da6b2e09d22a0443e838a4dac756494
1900 F20110218_AABIHF hu_s_Page_133.txt
3e7e99d09cd5d8ee91a788a39a493a4e
f0be3d3c477bf8cb486bafdca37915a4f744901a
2872 F20110218_AABHXX hu_s_Page_028.txt
bdd669d231b82a6adaad09806e09d394
fcdde88a45af0525287f9f188c3e4d360cc78467
4846 F20110218_AABIUQ hu_s_Page_118.QC.jpg
d22293960e01839aecbf09a6b5095d33
7511d0867eda5256f1f01898afc2d639a4ef16cb
5689 F20110218_AABHKN hu_s_Page_018thm.jpg
ed090c09477be12238529d67936f0561
a382b892b1c0fea9d50af87bb4a73445164ad85e
1561 F20110218_AABIHG hu_s_Page_134.txt
351c6ce665ae8103065cdf0cf40153a6
9a67a9f305e5bbb5c9fc92153ce7a059f7da63d5
82933 F20110218_AABHXY hu_s_Page_151.jpg
2308028c7045ef728b7a1fc36b7b1af3
f08e4844841812f4603260183cda5f1fa700016d
42761 F20110218_AABIUR hu_s_Page_119.jpg
3b0b2ae7effe3c6f53ee5e2b62f68c08
f0b47ab9f7366123c27f932ee6069a09eb778d11
322289 F20110218_AABHKO hu_s_Page_116.jp2
eb8aebee5bf357fdd7f0e97faef64266
087b9929f4f37c2516b7ab59bcdfc1da077c503e
1790 F20110218_AABIHH hu_s_Page_135.txt
823f2f732a59062082d55fa9a4ac9838
5bed18e0b43986c434fd377afe9c3ee2be5a153d
F20110218_AABHXZ hu_s_Page_043.tif
360321f64c7300d99dcc377e55614e2f
a27b07677050ddf450130689d8dde43fd85853a8
1051911 F20110218_AABJEA hu_s_Page_180.jp2
b301a1a4e46c1ff045dfad51ea385ab0
c38f134f8c18800d6531764805a66f6a4b5d793f
28694 F20110218_AABIUS hu_s_Page_120.jpg
0e59a541918a6bbfaa06235b8726f99b
4c1022cef96e597778db26aea293af20f88197ab
20670 F20110218_AABHKP hu_s_Page_092.jpg
11fe09e722773e0393e4f7055b0b3e53
8f50b7e8bc4323d21917796ec7881db3912f0cac
1888 F20110218_AABIHI hu_s_Page_139.txt
698b640476c5a92905d8ba8efdc6260d
a93b3930de0510506f3e25a0c56c15efe2ca2217
1051956 F20110218_AABJEB hu_s_Page_182.jp2
d7cb181652286c9e24f67f8aab0a7c76
224fc0b1710b3096e89bdbc2f30362e0124f04b1
9501 F20110218_AABIUT hu_s_Page_120.QC.jpg
9e1441d4057b74c02285c613c4fd61b6
85e5ecfd6605621b912b812d417533d6de8c32a8
F20110218_AABHKQ hu_s_Page_091.tif
e50339d51e8aab93784a7d139f7f33c2
411601c0caba45d1dec49d7ee4f6de82890d2f64
1971 F20110218_AABIHJ hu_s_Page_142.txt
6eae81d930c744c91a683c678d2de962
268de7ff8d1b9a74f49c058ed32736a91365bc28
134581 F20110218_AABJEC hu_s_Page_183.jp2
f86f9955d4d97f1504e64f0013d3b84f
a8c55b507524ff7dc37b9c3daac0945247726275
26550 F20110218_AABIUU hu_s_Page_122.jpg
b387c86887403c18610efb722167093c
b272e91803c012ac8f587daad3ff66831ef28892
1051815 F20110218_AABHKR hu_s_Page_217.jp2
827488bc949f68f66165f15c3986332c
ec56cac2ff4c2d408a4efe5638cee3421da82073
2004 F20110218_AABIHK hu_s_Page_144.txt
acc85d635b404e25934a8b9d83847a7c
551f49706ffcb7f528790207c343daee7dfa0a6c
20859 F20110218_AABJED hu_s_Page_184.jp2
7716e6ccc72782b00c484c8e4d2498dc
b11e49b0dd83258bd2dab2e2a2509ec577f1cc5b
55175 F20110218_AABIUV hu_s_Page_124.jpg
db9c9edae159d4c7a1264137d8a5f21d
3ec40bf4a694d185115d81851537bf29cbccbd30
1787 F20110218_AABIHL hu_s_Page_145.txt
118d978774458c8a5e637a16d200f05f
218f525cccd36ec5d4d82a83113d5f67d6b6fc3a
1051762 F20110218_AABJEE hu_s_Page_186.jp2
3099a4fe1e9cb51bf2b6ab18307d4790
d8c8582b76c3a89919921bae238808427af66bc2
14314 F20110218_AABIUW hu_s_Page_125.QC.jpg
438fee1f5112d2837845469561652a91
0d5ac3e19aee6590a57f8ed75d48c5adf2d49192
1986 F20110218_AABHKS hu_s_Page_099.txt
1aea56c6e3e2422e38da37925613f5cf
6221cd5b162b91b19fec65fe1765923147f2017e
1954 F20110218_AABIHM hu_s_Page_146.txt
56a0054ec0b114af75f218374cf25776
1cb1d16e44236c9caccf7da51e5ccec7b2a9922c
1051949 F20110218_AABJEF hu_s_Page_187.jp2
37bcb0749cbfb0e1dabe950abca96864
9afcf819ddb48962b248c8588323d895ef5db67c
13154 F20110218_AABIUX hu_s_Page_126.QC.jpg
ab38499d6bf72126684b24f46ee0942c
9e1a57910f55fe740f83a3a615206378704c9213
24811 F20110218_AABHKT hu_s_Page_121.pro
b3212c7de03ede8e71422303d307b2c9
b9b7339801878d6bff8c46cf26776535b2c78d5a
1902 F20110218_AABIHN hu_s_Page_147.txt
793e6f90141a26e17af8d6ae1966aa74
a83377b578ad6272a64af245f69340704ac28b4f
1051950 F20110218_AABJEG hu_s_Page_188.jp2
b0338210149188e8bfa1203f0c49b983
d0fe38780f55ffb9fc6d5b9cddf354ab1c259590
39363 F20110218_AABIUY hu_s_Page_127.jpg
3931b0692aeed3bc121766daf77efa2d
03927a80c655083714ab95f75bdfa8c30d66ce1d
19838 F20110218_AABHKU hu_s_Page_026.QC.jpg
b7e7db669dfe42942ecbdcf57cb502a1
1360e94f1d54afe1e67d367063353bdc3a2436af
1051979 F20110218_AABJEH hu_s_Page_189.jp2
e6432461fa0790bd06323611fc3b79c3
f97d110f870ee1d5a88c114fe628b1daffd15641
12324 F20110218_AABIUZ hu_s_Page_127.QC.jpg
9f69d19577aa4ba8ee65c01c8ce07b5f
9e9006728d23277ccc888bf8b8f06d56a5d6beb4
1026036 F20110218_AABHKV hu_s_Page_094.jp2
3d9b390a57f8d3ef3cb81d05d9097dfa
8ef10d4093c960431f4ed8849aeb684a706016c4
1820 F20110218_AABIHO hu_s_Page_148.txt
1c0859621963097bd5fe5883073ded3c
b22347f94141010c0b5383783e38da08e264040e
1051918 F20110218_AABJEI hu_s_Page_191.jp2
1e1c4121a3926808c3ea07cfbe3757f3
f5a093a542844ff5e386a247727acca577fc86a2
F20110218_AABHKW hu_s_Page_142.tif
58a95c773da7f6d4bb7a7189889b9023
42ae3776a2ee31c9248bc70f8ee7ca4f382ec976
2026 F20110218_AABIHP hu_s_Page_150.txt
324c2995010b67f2b718183e7724f934
cee1227d6adca39ad7b66939545681646ac45068
1051982 F20110218_AABJEJ hu_s_Page_192.jp2
4c741e64944fc1ad76c4d155babe0949
18e68b411ca4ab5cb305c2620bd5ad2031613e8f
1051941 F20110218_AABHKX hu_s_Page_216.jp2
7925cefb7ea7a7f8d95250455ef15453
80212edb181dc31844e046dc05e5ed2bd6cd821d
1958 F20110218_AABIHQ hu_s_Page_151.txt
4f4a75eb728693819105f0ad5474da8d
e4d0afc2b1ed89a8d422580fc36e223532f44ae1
1926 F20110218_AABHKY hu_s_Page_174.txt
c315203db239bfe9f412f8ff88df2624
c50f19a72f9174608c9ee0bf3e2f1a4ce6cb6465
1036 F20110218_AABIHR hu_s_Page_152.txt
27b937ae2ba3500ddc8df8b25bd46fc9
009808ccf7c9e7a9c9b000f1f427531d89532c24
1051796 F20110218_AABJEK hu_s_Page_193.jp2
fa8df4aaf702f8cdc6d4323f2991a5a5
4be5eaf8e7974b3a55c45bc14c1a95c78456462a
1051978 F20110218_AABHKZ hu_s_Page_095.jp2
31b7c4f460a6e8823b4ef63bcc58d02c
48a78a8daaa79e77da3f6dc8184e2def70c6fddc
1865 F20110218_AABIHS hu_s_Page_156.txt
572b7b92837eff24be590e10a9b96f99
303f5bf01b685ba06d6baae6fd7d66ba80ea50e2
1051914 F20110218_AABJEL hu_s_Page_194.jp2
92351c27590d077333e6bf090b88e94e
b8128bce6c2bc5b9b9871c1475ccc08b9384795b
1605 F20110218_AABIHT hu_s_Page_159.txt
4c4155557a023cca22c87a8b495ce8e7
2f239dd176c3b72ba6867075a7e8ff484735ccc2
F20110218_AABJEM hu_s_Page_196.jp2
b9f03d122a0c28cd85ad110ca7f22cb4
51d61d4f00204416591177327f7c7ddcbd47af8e
1488 F20110218_AABIHU hu_s_Page_161.txt
a7015c67fdb9acd663ed8d8f0cefc259
d99f399845d454c364e15851a070369de85c78cc
1051887 F20110218_AABJEN hu_s_Page_197.jp2
4b35b3dd6fa6dab16113f261b22e45c9
11bfd8a4cb869a64dfb3fb2879411fd00dbdb611
1228 F20110218_AABIHV hu_s_Page_162.txt
fb67c45ea0fdd4dc6027eade6a9a3450
24e07ac17e3dc8f59f00f42c948725799ffe8f87
1051779 F20110218_AABJEO hu_s_Page_198.jp2
b6815933d265bd5245b184961b0037c5
b97f76d844246a5939615d8be5c3bd2bd4f2af1a
2323 F20110218_AABIHW hu_s_Page_163.txt
5fefffd2915453a3bb794baa68434116
bfb6bd7f2998b191b7b31acde96fd1a048a2267b
1051809 F20110218_AABJEP hu_s_Page_199.jp2
6ae50f40b28968e6e34493269881e4b1
6d303b04aeb300ed18a846fe11568303355c6bdf
910 F20110218_AABIHX hu_s_Page_164.txt
fd28c7cc865820fc4ac4d8350c6d9558
9d6265297697644a5e334db33ea144c45e03a0e6
1051945 F20110218_AABJEQ hu_s_Page_200.jp2
caa600a71109dc559af4917d34fd1e62
be96c235fdabc040281b9cfca3492d5bd1eb6b3b
2319 F20110218_AABIHY hu_s_Page_165.txt
b3bda6dff7eefc2e382103ece44d6480
f8ddd266c635e9beaf8b4eaa47c91054b355af3d
1051977 F20110218_AABJER hu_s_Page_203.jp2
72c169e727c75ff2678ca09bf741e490
2c01db541fdcac87d7fe99517530e435c7fe088a
1439 F20110218_AABIHZ hu_s_Page_167.txt
8809b6e87c52e0941cf08d6f6dd2b704
250e840560e93d98fea72dacc0d3cff448f5c1c9
F20110218_AABJES hu_s_Page_205.jp2
f434e0c66f24f0a9cbe6b0c1a660cfd5
a607dabf656bcc2707f2ad9314785b6f33e2c0b0
947239 F20110218_AABJET hu_s_Page_206.jp2
31a89985e8ab48ee7f3dfce5ffc9088b
9a86eba23ed6ad48e4c1090268f066b0587a8a1e
1051869 F20110218_AABJEU hu_s_Page_207.jp2
e74a40991d4a9c1c1047bb75e17f2d54
0fccc009a03b098e2eee5909e9814e359a10a641
510 F20110218_AABHQA hu_s_Page_216.pro
b7cbcffe769faf832f9ff19b5963e1c1
2e1f80d81051f76466cf52b02df3cb984220e39f
1051858 F20110218_AABJEV hu_s_Page_209.jp2
7ce899155f4e5475b1734741cce8dea6
4b5e1001bba285a0d724635d1414c6aba88e6adb
1510 F20110218_AABHQB hu_s_Page_113.txt
ca2cf35258ae7c7349af9cc569336373
edcf96b9b915623b6a4bbd632ca381238165bf91
459605 F20110218_AABJEW hu_s_Page_212.jp2
ab80e587da90233a1cb2b8a9c5808784
a79791dd68925648d93135d466d7616cd23fae1b
2094 F20110218_AABHQC hu_s_Page_136.txt
41f351785ffb03b9e03c27cad9546472
0ddad788ac1b43a870607891504fb4c4150c2324
1051937 F20110218_AABJEX hu_s_Page_213.jp2
dd2000ffd3e6c004799cc82442af97f1
a12d924fb3166c9072762bb98b8f4368b787c900
2163 F20110218_AABHQD hu_s_Page_208.pro
75a9ff8e366ac3a745fd737c11019950
edc8893297e44edda0845b678ea17a82721361d3
198540 F20110218_AABJEY hu_s_Page_214.jp2
94dbc5f146c2642be2f2c8594d25a426
3aa2f1471018170201c959dfdb1acb77311329bc
4139 F20110218_AABHQE hu_s_Page_124thm.jpg
cca49856997d984d0d3fe36fdc5cf27b
fad20897ab9c90a62a3b49a685509d24993d4602
1051743 F20110218_AABJEZ hu_s_Page_215.jp2
4de3b9ff79ce6f35716f7b86efa2de33
e6cdc1ab65af203c67e1a4b7fcfebbe193473868
25570 F20110218_AABHQF hu_s_Page_209.QC.jpg
76d23feb672e8ee6ef717d1e551587df
d9c39423400f87ea4ef452a0ae9ea1f622147898
26987 F20110218_AABHQG hu_s_Page_137.QC.jpg
8301929e94fb51504a1e5cd4157fa0c7
9aa913d89e149e10f6e1514791ffc3347a24b495
44321 F20110218_AABINA hu_s_Page_145.pro
5c99c62c3eaa5d1369a4cce0df0f661a
098b134c4ae50671a8f5a4c4927a078db01fd75d
482 F20110218_AABHQH hu_s_Page_186.pro
7c1ef3513a7278d96f9f74e58f21cd57
32ca0b71af2cc07a3d1d6dc3339da10109f27ec6
48245 F20110218_AABINB hu_s_Page_147.pro
373e2450c47cf7521fa96a7553ace292
69baa4599e52b543781dcdf254cec486af0d8bf5
1051980 F20110218_AABHQI hu_s_Page_077.jp2
bdb085ef0727d44b2b5d079e28e2b707
0b0606e2debe35112f62f1a857510e7706148849
45860 F20110218_AABINC hu_s_Page_148.pro
110371263371bc5faa27fda4583696c1
40b64fd0aeb11a65150404b634fa4a7bfdc28a2a
13294 F20110218_AABHQJ hu_s_Page_214.jpg
ac5b18aa5ac60ab422b62c7c7f61e54e
271c74befbe5355c987b89745e71cf4a8cba2556
49716 F20110218_AABIND hu_s_Page_151.pro
d10753109371779e4a5243036d6035e3
476ff72c4fd26fa4bf5a831f478ef51c621cba9f
85447 F20110218_AABHQK hu_s_Page_071.jpg
49c0268edcbe5b24aa282ae7ea60a0af
68375cc1f9db2243fa649fcbcc6af9035bee2c2d
26084 F20110218_AABINE hu_s_Page_152.pro
1281b6d2c935707464809c842e0d4ae4
4e613392a0782aafbe09f48610681d62f56df423
79833 F20110218_AABHDA hu_s_Page_147.jpg
47505cbdfe045819afecc5f9c5b96a60
55f4672c4a04ff7c2e8b878bb46ed3fd0b031dc0
65442 F20110218_AABHQL hu_s_Page_193.jpg
415d20bcb15bee40bc66d5d00ad52182
5e308e29fd2d3d56a38450f1cdd8fc195b838a79
44755 F20110218_AABINF hu_s_Page_153.pro
2ab952456e570655dc20e4fd5e2d5760
db7fa256cc4cc5b20674f973cbe6734da27fc100
43639 F20110218_AABHDB hu_s_Page_083.pro
0164fb47e32840323db3cda00f840d9a
52df2211a039ca855c8190345569a97d2b8db4c7
2241 F20110218_AABHQM hu_s_Page_042.txt
4ef7bec0cb299f1b998f4e78f5ecfdac
e7875aefcc27bb5fa032a80eb95fdd94248ed47e
48372 F20110218_AABING hu_s_Page_154.pro
096e49eca0099d8f6b9150b2bdf8cbcc
9061f75ee0831a124d8eb1854a4b723ece8f6cea
140 F20110218_AABHDC hu_s_Page_209.txt
b2c130c1222221ba224539d89a0fb6f7
ccf6b5ab9a006903e0865b8984cc537a53467eb4
23047 F20110218_AABHQN hu_s_Page_065.QC.jpg
225298a4f8efcae82e1b78022f307f8b
16d1b3d68f173680e8704aa2099fa6f4eb70ba30
48442 F20110218_AABINH hu_s_Page_155.pro
338e4b8a9b975501fc13db91d29b002e
18de81b87b48a30a163d1958d0368532990667f9
6615 F20110218_AABJKA hu_s_Page_194thm.jpg
8b74af6dcdaa44a7fce6c5c0330398c0
314ab7a9102b81fbf33a2024541ddd4649a523bc
11275 F20110218_AABHDD hu_s_Page_167.QC.jpg
7fedff03490e7a8e7cebe0b0fda38afe
9f2f401798309a78e44e2193d242bb7a3da13a09
6009 F20110218_AABHQO hu_s_Page_177thm.jpg
e1dcab8d880f9aa4f578b82043994a12
5b759cd4623ee7897404e3742e4f70511d279d2e
44969 F20110218_AABINI hu_s_Page_158.pro
26a0bce5cb4ca16c64c5d7a49e693235
6d5884f5e2c64ea77351cae5d6594bda3e505a87
6103 F20110218_AABJKB hu_s_Page_196thm.jpg
bcb2b1bffb693c64db4f99d025f78639
5173b6d7bc0d195ef5489f048d71d4573ab24d85
5560 F20110218_AABHDE hu_s_Page_055thm.jpg
5a76ffb94ff440e28834ba491e8ffbe6
afd10e520867a90f3cbacf17e428054c47df7b57
86366 F20110218_AABHQP hu_s_Page_061.jpg
1d0e9915a347d10b9e0655aad24a2104
52beeef8eed68d2b64e664734d6b535a48880304
36072 F20110218_AABINJ hu_s_Page_159.pro
c193c38b3b1af61f0306698c2ee1e53e
c2cf64f59f2002af85dcd2a7ccd0a405d5fd0d84
7117 F20110218_AABJKC hu_s_Page_199thm.jpg
043411a1338707ff99dac8d601d28d1b
a3b34d852c63d8e1b173cc0d076c1c037faa94f2
42501 F20110218_AABHDF hu_s_Page_126.jpg
6bd47f0171d976651c3fef9bae43244d
13fbd305feeb8db7ffb330386ec95663970a7eff
2063 F20110218_AABHQQ hu_s_Page_044.txt
5022f407daf8c338e4b2539a3097ace0
af11472fb8bedf161c5a1acf7162fc1a4c8c0334
26651 F20110218_AABINK hu_s_Page_161.pro
3086d6d0d72e9f5675ddf5910e68d33f
a7e6cdf0e052cd4e71869d409475e5cc19ea2c8a
6486 F20110218_AABJKD hu_s_Page_200thm.jpg
a979a8a7db1f19a5631a399dcbdf9e16
31a78ef8be6766261806dcab7e27f767c6be32f4
66121 F20110218_AABHDG hu_s_Page_207.jpg
3bc9e5ad6dde55edbfc7ca0e7e784380
2143cf4a4d87d3c1d8af3985e048dae0d0a4ef12
1051961 F20110218_AABHQR hu_s_Page_015.jp2
ac8cbdb29ba45685c5b07a476bfa840a
39c2b8bfcb4cfe52f1ed408b2975b28d35f4cdb5
26267 F20110218_AABINL hu_s_Page_162.pro
47f200ff23629fd1725823378d816593
b12e60205afa6a7423c409efa0600d30edc1a8ab
6993 F20110218_AABJKE hu_s_Page_201thm.jpg
29226b63c95535fc23accda69c83a164
2abe487f7ff2f550f589006762162548f4015450
2580 F20110218_AABHDH hu_s_Page_027.txt
a145d90c61a80c8f6968374ddf401d48
354d491b403454c157407b545d7daabd4903c741
F20110218_AABIAA hu_s_Page_070.tif
26084ba195b22239abbf8f00d37b9329
286c6790c841a7d01443c79fa8ebc9a72711483a
79243 F20110218_AABHQS hu_s_Page_045.jpg
2fe55aabb91a74491ffade170d8ee40f
6630cc0dd41ff3044cef473623f2fa7519ee8e03
39882 F20110218_AABINM hu_s_Page_163.pro
3072cb34091f9429a8e6197970b3c354
e7346361fc868d1a0934699771ecf1a2d72b58c3
7639 F20110218_AABJKF hu_s_Page_203thm.jpg
bf49e66ed9cc5bbffb81e86433cee960
c0628d6c25e38ee52860b7edbc2b1bec6771d901
41156 F20110218_AABHDI hu_s_Page_079.pro
f249aa4b37d3cc99659b7e3c7fb4fbf2
4648081029f305ae283ea120afbe913b3e3318a0
F20110218_AABIAB hu_s_Page_071.tif
6d2a9c68c0904a572d60e4f71050317c
5db3514a435e0e7ca9ce1fdf92cef6af4258ea35
18578 F20110218_AABHQT hu_s_Page_121.jpg
26bd50747e4ea4c944b07543b4b8af62
a7d99e1ff31a757838f126bd91ef534ab2c16866
19032 F20110218_AABINN hu_s_Page_164.pro
9ab1f1e870779b069326d58567968e5f
f5715a35d5db385f3f4e07f7dacb69e0ac34ca97
7054 F20110218_AABJKG hu_s_Page_205thm.jpg
3a4da947e8543c6bd1a5d86066b2123f
2ab905724ad36bb973c79db2bec404098f458f84
69148 F20110218_AABHDJ hu_s_Page_188.jpg
acbbb4260a7e719fcfd13b22f086a284
2c137f686297cf010c7c096b869a9a6a7211999a
F20110218_AABIAC hu_s_Page_072.tif
6fdd4546af6671aba63eb68a9ce6c0dd
50a50a20cb68820873a58adc86f9fe7b101e9514
22933 F20110218_AABHQU hu_s_Page_001.jpg
dc2cec17391e613a6fd0771becb3fbfe
a8c68dabeb6d3e9dbfb284393ba9b74537c05b29
25950 F20110218_AABINO hu_s_Page_167.pro
15e66b81ef5d0cc4e5185aa7a6957cf5
d30d459458acd2878699d68f87103a15e059f8a6
6534 F20110218_AABJKH hu_s_Page_206thm.jpg
0205c05941f7e1aa266689d8edf4f5df
12f2b38b44a4ba1dca7728e960c8d32058cb7643
22212 F20110218_AABHDK hu_s_Page_024.QC.jpg
f3bb603503775662a7e170af3f1beb87
6d8d8b7d4a34753a2717af6f3c0114f0e23ff9e0
F20110218_AABIAD hu_s_Page_074.tif
bb9de77bd2c0c1375c64ef308bcdb0cf
99af1b895a43257d9eb9191063bcacdc7d8050ed
64571 F20110218_AABHQV hu_s_Page_196.jpg
20a0600a4fc5bd773ee1afe6b7b32e15
bf21b99115e86ae7bbf663fd62e4b9ba6129d1b9
32988 F20110218_AABINP hu_s_Page_169.pro
35ef64e56b3e4031f48bce260bf03019
2a154e21331ee6ab3eb46495d2bd078c63bed88a
6789 F20110218_AABJKI hu_s_Page_207thm.jpg
3589162e13d03e8337ba899ca4088797
8e03c43951061f0e10f9caaf1ffbdd13e09e0f29
F20110218_AABIAE hu_s_Page_076.tif
ee09f8958c9da275f3d9f017d17eae88
d9c9d61ea5cad8fbfe6516b4395fa1d873ce9191
F20110218_AABHQW hu_s_Page_101.tif
3ff41a61295cf6dfd70ad84e135114e0
463afc8c5789c1f4c54de65309364fe2c8120a09
25237 F20110218_AABINQ hu_s_Page_170.pro
fdefa6ffd66ade1b6ff696943638f7d3
cb7a4b041519eff4f85b52757b6f72b5dd073214
6774 F20110218_AABJKJ hu_s_Page_210thm.jpg
a41d3f0d0e2254cfe191e1668b8f4e09
1b3654dd6a0a559b7c3286fefb6b1810e7e2633c
F20110218_AABHDL hu_s_Page_198.pro
118679de9f88cc45bd0754ebf9721348
840c39dd616af4520a857950e211f739cf4c444b
F20110218_AABIAF hu_s_Page_077.tif
1a8227aa4af01806b152f77617a98c35
82313d00bdcab8a03da8838541ca1f60ab658150
24553 F20110218_AABHQX hu_s_Page_025.QC.jpg
ceec78256d54ed60f97badb39c735f80
edf82c567ad7415e8ffa53a4883156e2d7bfdb09
55696 F20110218_AABINR hu_s_Page_173.pro
f0a822b55ad90e87c6c71bfa98bd5863
95e6bed674597ba1bc7cd1015087e50fc54a0720
6470 F20110218_AABJKK hu_s_Page_211thm.jpg
f7924b59cbec92d2247b79606893478a
12178341ea0e7d8bbbe8c15541b6d44371c03a15
6299 F20110218_AABHDM hu_s_Page_031thm.jpg
20ba3d0e298eda95576361387eae44d1
aec48499a05e7dd499574407dbc5ae628fec07cc
F20110218_AABIAG hu_s_Page_078.tif
c55bb3f51be484de5831aed4cc62fe7e
4c6b4b6b5140a48f973d950439ae5a69c9657f0f
73548 F20110218_AABINS hu_s_Page_176.pro
1aadc7ddbe297d0d1ae80cd862819618
2347d44e379516f096e511c93c3dde8e239e6e03
2682 F20110218_AABJKL hu_s_Page_212thm.jpg
9b8d3dc3885326df15985480be37083a
2adbfaaf99d1e28307bcf615ee18f062d0b1e60a
F20110218_AABHDN hu_s_Page_150.tif
12b01a695d0ecc7b2f9e3a2ab92f538e
31e4603506df26229747e3b62a6bef40f8c8846e
57052 F20110218_AABHQY hu_s_Page_221.pro
8a3c0fb968769cb6dfb25bd994cc6086
e727a056797a667c0b330e09bb3f7cbe92aba581
68164 F20110218_AABINT hu_s_Page_177.pro
beef4f2e84061b37638c16fdd027d315
81b6a53485282a96d457911ab94d0ad4d8039dde
6535 F20110218_AABJKM hu_s_Page_215thm.jpg
0e1a5f3f5cd15891b819f866183f6728
c1761dc80eba3a12cf4f959b9f8e9c2d611490b2
F20110218_AABHDO hu_s_Page_128.tif
36b9439daa8de60647279eeaf64afde0
2da9af1b955f74efbf6d3e9752e187c101765a8b
F20110218_AABIAH hu_s_Page_079.tif
61eb7b178e105291d0fab6077930eb4f
9c3e0d50a881df88e207ac05bc91f00be3fb9088
10693 F20110218_AABHQZ hu_s_Page_011.pro
96dc8c44fcf817b57acf701dd1db07a8
af488a69f05a11d8f2cd334191f076fce6db4091
5900 F20110218_AABJKN hu_s_Page_217thm.jpg
3ede006c77a6c255100e9f3d1797f5d6
e6b2e4da3233f7920f17f06260acc20986c3019a
6438 F20110218_AABHDP hu_s_Page_132thm.jpg
458211479c6e87604276f34fd1a02974
a8b905bb0d473d87766ef0de8a1e625ff29620a3
F20110218_AABIAI hu_s_Page_081.tif
618526775a2d5c4d0ff9291b76a7aac4
4eb3a88b27e8b5454233badeb4597fd326b229a8
62343 F20110218_AABINU hu_s_Page_181.pro
647dbf5997c9f63ddba46d8d665aa546
88547c4a9590ad8b8204c7369d621eea270afdd0
6781 F20110218_AABJKO hu_s_Page_218thm.jpg
74cd34f75f1b9a7f5fcee70063f2846b
9e2855e1ec242d2f2baed00dbafc2ca9a31555c1
698860 F20110218_AABHDQ hu_s_Page_019.jp2
b2865c934fcab0654a3a3f5a91a235e6
6d9e5a8ae85a7411e03f38bd6a65f60b9565e393
F20110218_AABIAJ hu_s_Page_082.tif
d6d4b486c130d762408d601ce78fcab1
edf68de28a0c6a529caf6503dd0f09b8ba727c37
71441 F20110218_AABINV hu_s_Page_182.pro
4558eefc04b4a05b40e0822a0deb74cd
4be0a834ba442b017e2bfeb8bd2bd0814a8d4810
6196 F20110218_AABJKP hu_s_Page_219thm.jpg
83f9ee7652a89ba42108919fd8dbc3e8
6e9e1a62d69682659ca3a80d5448143fa525ff8f
F20110218_AABHDR hu_s_Page_104.tif
54c5788a05dd23f92d434a059efecba5
ae73e5b0616e9ec4078dee9b5dcdf31de8cb4023
F20110218_AABIAK hu_s_Page_084.tif
d6d23467c100991d0f9fa6151f4fed15
fe0f2a9e9447193178cf9486984326929b74bb1f
5934 F20110218_AABINW hu_s_Page_183.pro
c06f67067dc8d8aa6e20398822aee1b5
7189b3226e2572a21c692510aadfbc556a24e7ab
6265 F20110218_AABHDS hu_s_Page_154thm.jpg
025aa2dc0fe9ce16a35244ee977b783e
737717654986abbc76b7a557bcd731a84808bafd
F20110218_AABIAL hu_s_Page_086.tif
44655ff0ccfdfdd0e70618101fe1dc3e
c82ceb2e98727ed9856d6ec3169cca6150880947
978 F20110218_AABINX hu_s_Page_190.pro
64bef6e5ae5d880c8311190adaabf4bd
fdbe5092964112e6ac533404c74a8edc6094f13e
6391 F20110218_AABJKQ hu_s_Page_221thm.jpg
f36e37f6669b8c82fef8871dfcdfdc93
37cded28f26babdfde7620c13dee9cf423445ca2
2350 F20110218_AABHDT hu_s_Page_050.txt
326640c30eb7c996e7926642e6828095
ad5124f2c197c7f21b7e1972bb12d5f3235726cc
F20110218_AABIAM hu_s_Page_087.tif
6c7372e1bc5d4003ee506ba91ade82e7
69a2526d067bf562f7b69a34e3b253e1397a10be
690 F20110218_AABINY hu_s_Page_191.pro
8dad916687dcabc1ef72cb97e2ee67d9
4b36fee9f6dc5ae3a75a44b20adfe67212e50df8
6420 F20110218_AABJKR hu_s_Page_222thm.jpg
8ed44d98cba51d78ae9939b87de697ed
ee983b2689dbda616de92ab959c1006ee7fa6426
88 F20110218_AABHDU hu_s_Page_199.txt
996f92496b4952e2074e946fe801ca9f
bd48f7da539d4884ca49745a7da46f936e1f2eae
F20110218_AABIAN hu_s_Page_088.tif
ad0b0a0686d4a3895c0f4d5046699241
2299eb7fbb853d988fb4d131fbcd84f2bc49c346
614 F20110218_AABINZ hu_s_Page_192.pro
d5b0256f0d2c81c4e8af0846836c277f
39e74386e36abc5c63d24fec905f428eb4ef527a
6261 F20110218_AABJKS hu_s_Page_224thm.jpg
ff4cd5514bec56ef45ba7f21a3f1605b
373135ce44bcc0ccfb9edd1862c1c0d76c5ad01d
74168 F20110218_AABHDV hu_s_Page_020.jpg
315cc2de69413d277bb612cae3a8ab9e
58d122540c3e84d34891e3c74c708679e76fbb4b
F20110218_AABIAO hu_s_Page_089.tif
a17f4d87b69e0f9d201525b63d98b0df
c4217da3a2c9d9980f25e3935fab544096b67a4c
6028 F20110218_AABJKT hu_s_Page_226thm.jpg
d58f706b2a0a4ee62ca1ef67cd53300a
e7f9940c4525f1f23414d8a47de3dcfa87d0aaa4
763 F20110218_AABHDW hu_s_Page_086.txt
81d6f1012889263dd0751a383f50b10e
a8ee73aa13f01313f640f3798b30959c89f3012f
F20110218_AABIAP hu_s_Page_090.tif
786c5ed81686eb9b7163e28c29cd46ed
290cc9dae1aacd6f42625c398a7648b0a8b521b3
6632 F20110218_AABJKU hu_s_Page_229thm.jpg
3dc79d837a51a508fd0fbda44ffd58eb
99157f9189dd2aa4a04cca7f97159331bb98078e
50924 F20110218_AABHDX hu_s_Page_144.pro
2464ddee4a1e6ffa3d6e1be4f513791f
ab42b6df5f0d1c25c135e8d6967f789aa4008f58
1215 F20110218_AABHWA hu_s_Page_117.txt
f96f3e95c861a2bafe5b7482765ed3dd
91b0335dda0b596394605588bc2ae4e4425b027b
F20110218_AABIAQ hu_s_Page_094.tif
e78500dde5e0b030157169bab180a2ec
953f7aa44f1cc12f4863caf6cc93b30a4efb9503
263593 F20110218_AABJKV UFE0013780_00001.mets FULL
ed5eeb34d882808e311d2e72f3e4d450
14029371c5e6b7a0df9289c242c8ca568b7f288b
25846 F20110218_AABHDY hu_s_Page_178.QC.jpg
d6e83d37adfea79d7ef30ed05a232307
61699dba86619fb7f1f29bd3c2059c4191da628f
90046 F20110218_AABHWB hu_s_Page_217.jpg
5c0c94d832e1dfe41ef09d88d62bd779
bf8771080db843f22dc7ded81abd23a055e434c6
F20110218_AABIAR hu_s_Page_096.tif
af2618ca6314ca16e8f3f5fc519bd671
3441bcac511cda4089066654dbcdcbac1f7aa1b6
2452 F20110218_AABHDZ hu_s_Page_223.txt
6805c60978c419d32a47540c6ddbfe61
3c1b2fd29a4a58fff97dfb7525639926b16832ca
82786 F20110218_AABHWC hu_s_Page_213.jpg
ab00a12e652547d3c377003eaad03770
53261fe2e9ea7af8ba8d31ac9aeca7eb7c0f8679
F20110218_AABIAS hu_s_Page_097.tif
5eb64aeb3e80073412f86de86ab03dd6
3c95c5c45e3836b171cd4f79d71c945ed68d9b1f
1051889 F20110218_AABHWD hu_s_Page_178.jp2
7453e1cb0dd9b5e3a6131a345489c09a
52860729d9393cfd8178a3da4cda2a561dbcd170
F20110218_AABIAT hu_s_Page_098.tif
4ac1b63077c1fc7189cb23b94e7c3151
966bf4341000c1f7c98eba69d5d979cf9e3bf7ad
68319 F20110218_AABHWE hu_s_Page_070.jpg
25ce44198ad0346f6ae85ecb4a2e09ec
e7f3661f39862555aec5b2a3cf1179e48d5cca99
F20110218_AABIAU hu_s_Page_100.tif
39f3a588aef8fb62301506251d0bd046
18058fa03f2217a284529bcfb110f2733e37b413
6334 F20110218_AABHWF hu_s_Page_144thm.jpg
979a0ecae8acb8f2f748ec5ff5989554
4e9cc6230640e00704b3736b2fe5c2401b4b9eb7
F20110218_AABIAV hu_s_Page_102.tif
723d60bd291c129801f0dfa22a23d43b
dbc13d5747acf31e1b487a74eb1741d480fa398d
100375 F20110218_AABHWG hu_s_Page_222.jpg
6197729809be671f89001849856acae2
149425c04bccb19f314fce59b6a672defd0a6092
F20110218_AABIAW hu_s_Page_105.tif
3d3515afd5abc6e02a4c677f815cea89
9d698386486890f4b9baeac25b547cd7799bc1f0
75392 F20110218_AABHWH hu_s_Page_216.jpg
e624c6c51f9ea6cb112fb5f8f8d471b7
eb08197cce6ab364934fd7e8a8863ed1652dfd10
F20110218_AABIAX hu_s_Page_106.tif
98602b1b0099d4193dc765b1398c05a9
7d9ad7b14451e488291c5c57b0ca21dc3588a34f
51784 F20110218_AABITA hu_s_Page_088.jpg
517f2b201bd4199461ff8cd67f7c3e22
9163f1a4b8f8b0dfc0090b74abdf733445044cb4
1051984 F20110218_AABHWI hu_s_Page_219.jp2
0f0550a13322662ac0448e3e8a76766b
7a53aa7467c8223cff95447a80ab227b061252de
F20110218_AABIAY hu_s_Page_107.tif
5bc8094b5d33e9a328f4e78065acb1c4
fc000f391c6f2143bf3dc0dbfc322a55196d7dc6
22460 F20110218_AABITB hu_s_Page_089.QC.jpg
0a80112268940a966b5a1517ff7bd382
3fa5d0ac9f28d8905a0c3ca51a7aa7ba0adcb2a8
443362 F20110218_AABHWJ hu_s_Page_009.jp2
107d451c806341eab3494015745f3408
3be7d22f7bc7ea630e28a1e4bc8c6945e7c61d98
F20110218_AABIAZ hu_s_Page_108.tif
2df00d125d57619f5662376ffd998c71
1bc11f4bfc43d366a98aec52b8028b8704f97da3
29857 F20110218_AABITC hu_s_Page_090.jpg
550dd7546be1f11a58853568f3f24fff
9c39ee82f40b4cc4e01f2588520185d98643d095
23318 F20110218_AABHWK hu_s_Page_081.QC.jpg
d7005dc40e1e25e362fe3e7d31402c81
2fdcdec98c4822d93441e0749e84f805cb11924c
9025 F20110218_AABITD hu_s_Page_090.QC.jpg
6e812f776eb316e648c7a4daa30a7032
953348f089fd9a410787df133ffdbff8aa86fe46
2056 F20110218_AABHJA hu_s_Page_111.txt
fb0f2984fd1694d5e3b58065bc778f1e
74291c8e866481c7d1f621f6c3460adf92a16368
1907 F20110218_AABHWL hu_s_Page_105.txt
689a7c6fef5197118c9ac24314299110
063526cc8568865a2e3cd96008e90a5e14534fb6
55040 F20110218_AABITE hu_s_Page_091.jpg
448f024a746344b7687465b98177dec6
ee7d8aad9e2f09de6b32f04d4176f4a9d2dab9d4
2811 F20110218_AABHJB hu_s_Page_166thm.jpg
337c0531d9a3491b3679bac62f3f4e4f
5df2a309d7da9a920c4c57cee562c0d6df5a97b2
6652 F20110218_AABHWM hu_s_Page_228thm.jpg
3aa96c30d7358c7dcd684d82e60afecc
f79c65f7f59ab37dd1537fa20abc70e48580d57a
19214 F20110218_AABITF hu_s_Page_091.QC.jpg
9757788b10a65a0be1e6b8a8406b48a3
ae5e2a1721609382b94ce112eefd414464654049
48793 F20110218_AABHJC hu_s_Page_045.pro
f7085744ca5310464c04d1ab392ca41f
cec4db5a945566266f8f0446cf8b5f2869df52a3
2149 F20110218_AABHWN hu_s_Page_101.txt
9db7fd0477e5b06458cde7fc70561fc8
7aaac5f09511a2616721aaf58cae4ccda8acbf32
34160 F20110218_AABITG hu_s_Page_093.jpg
4ba78776aa38eb6b79e02d5fede4ff58
d5c851369bed870ad1404fce91354f1f0adb2980
1017501 F20110218_AABHJD hu_s_Page_004.jp2
c7ca184ca461642aa03ce8146a4ab6b4
37c02a7bf8545b1afc5123fd845c582ba812e325
5540 F20110218_AABHWO hu_s_Page_042thm.jpg
9f5afcb4502c14c5ed0512afaabac57d
de01430b2571d73501b4893a21f07a529b2a9d81
10764 F20110218_AABITH hu_s_Page_093.QC.jpg
c9cf3390a4f22d582241a58e0b5b6973
3dfab58be33aa9901ab64a086332c31cf165fc2f
28476 F20110218_AABHJE hu_s_Page_129.jpg
25c655cebb33087c8402294215553b8d
7cc571ca3b3510de95329b3d335a6d23319fb834
F20110218_AABHWP hu_s_Page_220.tif
e03b46ae97264e6d034760c06db5bc91
62f8c8e069d13e6096ca6f2d75c709ba2dc1950c
77272 F20110218_AABITI hu_s_Page_094.jpg
a075219bf74cbcefb4735cf5ba520d5e
894c6c25037c858fd50f83bb93abf8afd0aa1c21
64839 F20110218_AABHJF hu_s_Page_229.pro
8b976456dfcef25df22e8eda139a6087
f37467816f3b348a158dc49d2f0338c7a3dd1e6c
F20110218_AABHWQ hu_s_Page_085.tif
5a0cead72593ee94cc46b4ae5605c08b
2f858d027b8444a87612c0ddbcc2ebeb166b0e0c
23982 F20110218_AABITJ hu_s_Page_094.QC.jpg
b4e0e8a0bd139fcc6072773610b8daeb
180742c519747af5266d3eb42f458da8e2cc61a2
49929 F20110218_AABHJG hu_s_Page_174.pro
d40b3bb7474f494b1a2f95a40aabf972
3a24339fbb3fd67b5e35b0b708961a6526ae9f27
320750 F20110218_AABHWR hu_s_Page_129.jp2
848b1a26c22d85331fa9565c67a91e95
7e2b7e70e23975a2fee95c567b0f94724c7cb54c
81943 F20110218_AABITK hu_s_Page_095.jpg
693aa8fdbc13e938dc9f7fbad1805a31
42fb614254ec02bbcec335220818c4398f578720
F20110218_AABHJH hu_s_Page_113.tif
610984ef267cdef0cc206cf23ad60bb7
fbcc10cddfaa73e8fd092d0e5eb8f068b06018db
1747 F20110218_AABIGA hu_s_Page_081.txt
302b36d17d5a0790d8acf50b37c33994
c0d548c0a24589fc91097b0a29513a3e08c780b8
1051933 F20110218_AABHWS hu_s_Page_033.jp2
c0e1f08b5504de64f29717faf49f32a8
5582ede0954c33ce4dc43f03f1f32c59b1e5fb99
25090 F20110218_AABITL hu_s_Page_095.QC.jpg
007a279085a19599fb7de49993d4c3ad
9f7aa47d1352fc5ab8a78e705d2127ce0bbac194
80352 F20110218_AABHJI hu_s_Page_146.jpg
3a0d3672e5fd5324ca20004430d8a52c
7dde84c43e10f93527bb77bd02224c121a829e5f
209 F20110218_AABIGB hu_s_Page_085.txt
0d096637e1532e1749e9f801d83189e7
710d4f64d098cbabe692cf25fa6d9e4f223048ed
2214 F20110218_AABHWT hu_s_Page_055.txt
6fc3cbf88a054728c1a3dcbe43625681
55f7c6c13cd0f6f0bbdecbbdb60d05c475b39cda
80726 F20110218_AABITM hu_s_Page_096.jpg
d6de5d97dcbf26ac574194200ba25b3f
c1def979dd1bae75345a529478a562030c84a606
487 F20110218_AABHJJ hu_s_Page_003thm.jpg
b34022ee13ba77f79cb1f65c15f761f7
23fee2e3f5987d782dd2a067f4fcb309b7c684d8
994 F20110218_AABIGC hu_s_Page_087.txt
134c49312f943920ab8e11c9fff108ca
3ed3bb125c8d88896b19b93bb07e2f5b0b2b61b8
40163 F20110218_AABHWU hu_s_Page_160.pro
c6c1982f706c37ab7257c90b14bfbd45
55b55fde78d85cf7ecbf11eeaa5ea42786d4e57f
25312 F20110218_AABITN hu_s_Page_096.QC.jpg
3a83d982831a7e6a94066d2e08ac2e10
86364bf32b62803d8ac5c9840355484906552abb
2403 F20110218_AABHJK hu_s_Page_218.txt
3605815d11801187c60f77f586a5d50d
ed02c2bc530e94a19443cbc4243bd0c297d6d8fe
1154 F20110218_AABIGD hu_s_Page_088.txt
695bae9bf29575fdbea6a044ef4249d8
b46fb318e88f948978661ce52d336634bbe579f9
466 F20110218_AABHWV hu_s_Page_001.txt
b6184b20b0e8aa395778d5bd05635dbd
57aca59885bf48aca8197e8e45c104a9647e5393
55893 F20110218_AABITO hu_s_Page_097.jpg
96ed8f3edc0c76b5dce75c52282cd1ba
51c4b56ec33990014b01d392d525e5c8a4804a82
1874 F20110218_AABHJL hu_s_Page_130thm.jpg
d22a2bca9e3a87ec4107e11d164f5674
c1fba095de703d8227af7b53faf9378526b21a05
1892 F20110218_AABIGE hu_s_Page_089.txt
5006e01012e507f891a8d7f80226e6f6
883a0e909ac831ac76b529166b9163df904f7172
6242 F20110218_AABHWW hu_s_Page_142thm.jpg
9b009f9e88137e6d9721a189eda6f6d8
6addb01f02208b73c26c287a0856896ef3d21b83
18267 F20110218_AABITP hu_s_Page_097.QC.jpg
3d0f952c650fbe565f54aa535d2a6ef8
eb7a370e6159f78e9d220f6d1401ea9cbd22b5f2
3470 F20110218_AABHJM hu_s_Page_152thm.jpg
99d78beac430bec334b9eaa4ee5bcafd
e114379342b561a6898e96b3cd6eba239e3b0bbb
159 F20110218_AABIGF hu_s_Page_090.txt
339a99ecab484637bda72cbcd94e269c
71c8a702322d55f0f2b8542d318d130a603a72ca
24132 F20110218_AABHWX hu_s_Page_175.QC.jpg
a79890c7e3fd0547a91e3bcd9916065d
451d303493d61d8671dc72ad727e983116960a18
78958 F20110218_AABITQ hu_s_Page_098.jpg
21a2a7f72106c0d344490619ba3ebacd
d953ab8474994b66df6f646fe7fc890b25c49f24
52019 F20110218_AABHJN hu_s_Page_149.pro
f3303ade58b87ee8e5a5b4f7f1cf1c97
6e8ff8e3618208b4c167c2b12347e40cbf32baec
384 F20110218_AABIGG hu_s_Page_092.txt
29424bf213536ab91563d82ee96e3e36
d620911991d14ad8478fc15a7931cf685689f66d
5077 F20110218_AABHWY hu_s_Page_116.QC.jpg
309e3022a6dc31c066f768d5f632a49a
90c4c2b3c085299174d08e723f943b8abdb19cbc
24354 F20110218_AABITR hu_s_Page_098.QC.jpg
28a6f9ffa111fc01f024eac747b4bd37
23f4e9f19bbd27b90432d7fbbcb721666e669d9a
F20110218_AABHJO hu_s_Page_134.tif
ecdbc42f412532bf2e4deadb90bdf428
77f45b20b2899c34fcda31bf5e06a36eb9eefe4f
1794 F20110218_AABIGH hu_s_Page_094.txt
2fedbe046eed93874c9013d0f9c75f91
ec38fa1da58f70297fa2f3a677c88c86ea201fd5
63344 F20110218_AABHWZ hu_s_Page_031.pro
3a2002f48a7178898c8e08035f184758
e4c56f469c865a709473bbbfc9a79a04d71c462e
1051952 F20110218_AABJDA hu_s_Page_142.jp2
956cbc816a3ef1df2ac03f7f6855feb6
f01bc58a7a272d9d313337d104f800a15223109a
25762 F20110218_AABITS hu_s_Page_099.QC.jpg
b2c42310c44925b65ae7e16f336eca14
28d2fd9391de9a0439983c3ebd6f4250cdd70c37
21979 F20110218_AABHJP hu_s_Page_054.QC.jpg
61097cfc0d56f3ef3dc871cace7a97f5
fcf334046a2986392ee49c64792b73b3b7d1f7ed
1923 F20110218_AABIGI hu_s_Page_095.txt
8637c0491b04a147d2b84776b68ac6d3
c0202dc23c13b0837063686095b0001c929b5945
1051957 F20110218_AABJDB hu_s_Page_143.jp2
c1e5e3e1889a10fd087266dd702f6782
b5c87e8754c360dda965bb984bf7fb65a3d843fd
90897 F20110218_AABITT hu_s_Page_101.jpg
d0712eb4636a92c71058862ee91fe671
3ed9e3ce758da38551550bd1d0a7e800a17a5efa
5772 F20110218_AABHJQ hu_s_Page_077thm.jpg
3923a448e33fb848ad78a1d05be0aee3
6a1ab05aa130a02bc5feb1068bc0b248d2e5a634
1875 F20110218_AABIGJ hu_s_Page_096.txt
f72f1a384f358f9e203d4e7689393e02
75d1585d87d4aec36ae8193897384a247f830e2a
1051969 F20110218_AABJDC hu_s_Page_144.jp2
49b9cd621ea4a5911e2f1df025b3d90c
e9bc2b35d5248c305e1e0ea82f5488ba03ae647c
26766 F20110218_AABITU hu_s_Page_101.QC.jpg
746001d2fe4db707429ee03669951860
d37fd6d384246aa5a14ae5721c63fd49e505b996
1268 F20110218_AABIGK hu_s_Page_097.txt
1514ca3b9383d052ccb0bf2dccc3ed5d
3c95ea38f1123ce35b48eb16e4f183dfb98dd267
1051944 F20110218_AABJDD hu_s_Page_147.jp2
9a62fc28715767a64b17fd3eab9ea4a4
62c92ee573fc411d91b371c52ea40faa54d39c78
84201 F20110218_AABITV hu_s_Page_102.jpg
0e1608f7003cb71ee65bcfe5c3d887bc
538bc8955fc7f77e1233cadbe1bbc9dd9731e1b3
48863 F20110218_AABHJR hu_s_Page_044.pro
cc610e9e5180abf211550d7f1527db8f
1c42d0baf435d9db9408ba984b8de438b190de48
1903 F20110218_AABIGL hu_s_Page_098.txt
d7d6de4e1b28b6d87c03d6876b1f26bc
37a5380ae196085f978d82a310ea8cf402759f12
1051932 F20110218_AABJDE hu_s_Page_148.jp2
7b1bcd683a5893da9325520afb34c372
0d2823e7d470a2f9e9ef43907dec2a49ecf47c05
25808 F20110218_AABITW hu_s_Page_102.QC.jpg
57a03e085c9286066c35f40634582e17
2f66af74eb478a08623376fcc43c0a4670fb661d
81361 F20110218_AABHJS hu_s_Page_007.jpg
73d2d9c966717d7d1946ac129f2440c1
0badfd248739bd278abf4abd4da92f4d4a6f5802
1998 F20110218_AABIGM hu_s_Page_100.txt
c87ed7f192090e844933b5520c2641e9
550278d75cd995ebafc889e47923cb3685aef61e
F20110218_AABJDF hu_s_Page_149.jp2
ca9ce399e7b1577186a8774e67c42138
db54c1091698e570197bc28516c6b7fd09c6fe06
85910 F20110218_AABITX hu_s_Page_103.jpg
dd772c42396f04796a45e9ca5593b153
4d7648dca8e54a36969a9e98e6b0b7cbb5ef7dce
25627 F20110218_AABHJT hu_s_Page_140.QC.jpg
2330cc6ce4b115c88f4198e865025ca8
9129cb126e327b291f69b198f52b947b1d63c757
1051954 F20110218_AABJDG hu_s_Page_150.jp2
ab2a65e2dca0b1aab8c712f87329af26
b29c8a56bbe9262778462da69f9eabff14ae1dea
26414 F20110218_AABITY hu_s_Page_103.QC.jpg
1c3b0a44634590c111f0922ea7fc0671
87a12430b88ac627e146c23d9ecdeba099c5ff88
3650 F20110218_AABHJU hu_s_Page_161thm.jpg
8d4f88b6aa9869d6297e67e4e2547a8e
d7d8362d19c91ad81674bc6b8bdbafff4062e178
2021 F20110218_AABIGN hu_s_Page_103.txt
70787c94344c9adb7f21be983d5367d0
99b7c7cce490dcae88ffa297251a09cecf27fbba
1051967 F20110218_AABJDH hu_s_Page_151.jp2
9791ef49461607386d931a25ba532edf
a1c679db31b217dffbc446799a56022bd6bd166c
25906 F20110218_AABITZ hu_s_Page_104.QC.jpg
e4eaf1579a1270e1c0f63a2438d82a9d
2674ce5f653fa6bd948d93d32c22fe60f6cad9d4
1449 F20110218_AABHJV hu_s_Page_213.pro
9b4b0113618ccbe5e4d1e7dd47f56c7e
c702dde06c8ee9ba1dfbe9f2e8fa0d019b563351
2012 F20110218_AABIGO hu_s_Page_104.txt
7c4884ddffa69f8da04995fe02d6301e
ee8e79828685b24bb485a585af42ad9db86950fe
610626 F20110218_AABJDI hu_s_Page_152.jp2
a4111514404cc76588f36caef429039d
367b4029123bb014a7e581f0238cb30e66481250
286875 F20110218_AABHJW hu_s_Page_230.jp2
ff5351325fa6f5b9f0299316b13f9c02
38fb7540573598a84dda3d11b88dcf587c9778e0
1925 F20110218_AABIGP hu_s_Page_107.txt
bb796878710179de966fc75a511f3701
67d47c7ba2e8bcdb7d61706b6a43e3c3fcfc1703
F20110218_AABHJX hu_s_Page_066.tif
5d2c322433e6e4ea7ed9c3ddeb99f127
2b507addbe6a8fb28a5aee8eaf3032c176416c7c
1935 F20110218_AABIGQ hu_s_Page_110.txt
bb1faa3294d516da72c3f9b0610e80b3
6f8426e3671b9332328a4d3a93c7e092282d6ed3
1032267 F20110218_AABJDJ hu_s_Page_153.jp2
22da513b6acef9bb0a7bf9fed2c002fd
9f09b7ea276f1871e2f9cc15587e67a8e2f6e25e
F20110218_AABHJY hu_s_Page_037.tif
a520985abd44e345964d3716fb85f744
4d79ab4e1c860c8990da08fe8f7a03c68ad0484b
1857 F20110218_AABIGR hu_s_Page_112.txt
1fd92a8bf6e16dd6ecaecaab7d1ef1d0
ac7174aa8b372cda1bca289be0193e20e5d7a303
F20110218_AABJDK hu_s_Page_155.jp2
dc79c56674b797c70deaa72f38ab1afa
d67e3d840a68476505487f7614f9c6edef69f581
F20110218_AABHJZ hu_s_Page_056.tif
da10b2e5120bb981f80c5096d26f1108
846155e6001d8a0eb9df23c4a442e8b4d1dd72ac
945 F20110218_AABIGS hu_s_Page_114.txt
b188cdd2511af3534a24789e4a0bc45f
1f0e2c2d00b86eeb404424f8d9caf26c9dd868a1
77119 F20110218_AABJDL hu_s_Page_157.jp2
8919ccae879953f36909037971deaa00
4033c8c3c72f777e41ac48f888898c7c6f36740a
1702 F20110218_AABIGT hu_s_Page_115.txt
5196e5ba1d47f90915c6641f02f2fb34
6ca0c819f76528a6fbf969c605e9a3fc5d90e6be
994956 F20110218_AABJDM hu_s_Page_158.jp2
1b8aaaeacf478a9c3e7a3bff5d28b73f
0e623702e76fa8a9567616d41cc49be12d8beb66
1111 F20110218_AABIGU hu_s_Page_116.txt
fead1da4a7476921a096bb27fb63e029
ebf8318bd63c80295df31189d1debf96cbdb2467
772900 F20110218_AABJDN hu_s_Page_159.jp2
fb98e21658c3a8a270261f0fd8134ec9
1bd01a993080cc3152042dee46c660e13ef49938
2375 F20110218_AABIGV hu_s_Page_119.txt
e73aa7103b647a089e89a0c752f92c54
43963b4ac1b3ed275caf6ec5917dabb2576f4470
431526 F20110218_AABJDO hu_s_Page_160.jp2
a6a097a7ce00590c707ff64efe70f074
1a75c84db9ce73211e8aec025d03ac1a0c9f01fb
F20110218_AABIGW hu_s_Page_120.txt
39f1d9c7d15c6d276da264c121ed14b8
510c546800414cfd6053c062d058c25bc7b1c117
428082 F20110218_AABJDP hu_s_Page_163.jp2
841f91f3e19b802c455ad4a430cb1841
7db14b9d585fbfcf0fd658d3e133891b454a046d
2518 F20110218_AABIGX hu_s_Page_122.txt
d5528ef2f5f3d7fc6d9fb7dba35be615
30667d8889cd658c93f062c1677644ca4ce40daf
93589 F20110218_AABIZA hu_s_Page_219.jpg
b575730c748590d26ce9d4ba8d722157
8b55fc8695f65e317fadbce529d8793f590723a4
368492 F20110218_AABJDQ hu_s_Page_164.jp2
a89962d2fd962194f6f93d0c7330fc0a
5ed471bac58a51b02e40cfefc89436167625f671
2018 F20110218_AABIGY hu_s_Page_123.txt
e45e4f5f415e3eee5d28018f65a3ae81
632de9d95b7fa3f5e0a107b54ef8a58d154c68d8
25938 F20110218_AABIZB hu_s_Page_219.QC.jpg
15a16b166b279a71030c9e9d6cef0ce3
82d99c3554fcae207afd4a537c364af87647b622
452603 F20110218_AABJDR hu_s_Page_165.jp2
e7a6d8190e488386865174e85831df34
a3f4420485c575c27672cb15ccf26c28c2741ee8
2475 F20110218_AABIGZ hu_s_Page_124.txt
6b610809aee7e157af5d97ee119fd6d5
66773105755320407bdad629a2dc41abb8a25ef3
23827 F20110218_AABIZC hu_s_Page_220.QC.jpg
87babee74ccd4a74971c7e1a38572036
ad7b10836a792e04c5f99f50ecfa133929ed8e54
458626 F20110218_AABJDS hu_s_Page_167.jp2
c9db2bf44c7cc453a30e2664de972a4f
9d4c627a61567bc712e985c2225859c36967d173
92541 F20110218_AABIZD hu_s_Page_221.jpg
67b32eab0e05146786d3c216f0b58003
b6715c0f6f25da1e793459411f62111de3e549c5
472594 F20110218_AABJDT hu_s_Page_168.jp2
4cf681e028937fc73cc508f7989a735d
77067a2d25ea3706ed6251047d453271a8e0821d
25256 F20110218_AABIZE hu_s_Page_221.QC.jpg
45ae5543d78816f472b3ec73a3c7e6aa
6c48c73907c7d81eab8b8006a77256eb686a443b
540647 F20110218_AABJDU hu_s_Page_169.jp2
4e3fb7369669be2be8f053250f700e75
5b7e9f319f2f2a8d226bc32fb516eb1bf3470e84
84779 F20110218_AABHPA hu_s_Page_016.jpg
af3376c441db6af899941b07f1e8824a
89ff9c2e18fcc6f0941f711dd967e8538517fa00
100526 F20110218_AABIZF hu_s_Page_223.jpg
43e7ef576e163731334fb26fc32e23b6
79225f70c02c515e89361f9631928d128c50379a
449810 F20110218_AABJDV hu_s_Page_170.jp2
809d04d186dd7166fc61b26f8e128eb0
5eb44636a262914ec9c1efdcb124383be47c6728
6292 F20110218_AABHPB hu_s_Page_208thm.jpg
6badf9f8c2821fab8a987a969f99e6df
50d857dc3abd796ecfa3522a48979e3f83113b7c
99871 F20110218_AABIZG hu_s_Page_225.jpg
5e92ff3e035b2c315ad2b43233284789
73249f318f2f3e4c10601ebfc3c6015d50faf01c
1051981 F20110218_AABJDW hu_s_Page_173.jp2
aa1d3b36d33733083dade6c628723030
146dbba2c0f812993794c57514887b4f03846c43
2332 F20110218_AABHPC hu_s_Page_180.txt
ce7ca3ac6468c5071568d5479060113a
f2b365f28e3f0723de977f4a7f3ba40b57e3fe0c
94193 F20110218_AABIZH hu_s_Page_226.jpg
37e6008910e1f6ef844ff8b1bd7da54b
ac9ea541960a1aceef8669e6e6c2aef4981e01fe
F20110218_AABJDX hu_s_Page_174.jp2
f1a6820c7737b2857336d6207d26a1d9
3951c9e4d76f1ba8580b85fff0198717f2be68b2
68742 F20110218_AABHPD hu_s_Page_205.jpg
cf03ac5cff1bdf186e5bd63e91aa47d7
1391b9adb48ae4fff14e4232857f1d5f9aac3bec
25635 F20110218_AABIZI hu_s_Page_226.QC.jpg
7dc2636b7f46df97d3b88db53b296bfa
caedf22d72ac6edb20aeb6ea36c0e79e6c597e01
1051910 F20110218_AABJDY hu_s_Page_176.jp2
964081bf441b2f9d4d8eff3e6119bced
61dc5cba79561bf3989398b7f53f46b5e5fcba99
48170 F20110218_AABHPE hu_s_Page_125.jpg
fd8ca20c0a9b90275c2cb8c6f8f4114a
3d64ce351405105bc9a076478a5844516007d10b
95951 F20110218_AABIZJ hu_s_Page_227.jpg
d19692063a7c9a3e0cc21455d4686266
1c81f8f6b5b3078951d1066c76001b3c9aa880f5
F20110218_AABJDZ hu_s_Page_177.jp2
b3fd9cff48e8436066b0f2a9a24d4aaf
31860a18ea3e246fe52f9e95321b4b27eadf1c2d
57479 F20110218_AABHPF hu_s_Page_038.pro
3e7d9f2461f13cec1d09729c8ceac1e9
0dbee2471516ce49d824e0342472c12338d70da4
26190 F20110218_AABIZK hu_s_Page_227.QC.jpg
35ae971e9cda8bf6b149325921b4ab4a
e4a1649e638008d18ab27d75559b28f33944df20
85255 F20110218_AABHPG hu_s_Page_199.jpg
9296de09399bdae8bcd6da26c3c040ef
dabf4c28225c826b15732a960c015267057ee077
49741 F20110218_AABIMA hu_s_Page_109.pro
dc681c6aa4e027296cac66520740f215
35ee7f23fece2ac3b577f181aba9d6389bb13f09
91960 F20110218_AABIZL hu_s_Page_228.jpg
7e94fa1c12e64d8d83504a324969bb15
81b50fb80264ff7c66890c5aec64a2b51e4c420d
5864 F20110218_AABHPH hu_s_Page_056thm.jpg
86c74c8b306f678d9f75047f3347eb52
0d6ccbbe7e19e8f4c78bf61aefe7309773692370
51491 F20110218_AABIMB hu_s_Page_111.pro
b90502d3b6d8a41a8e323445a474793f
16f7cbfcd6d3e9ba823ff59ffa7011fdd2ab6d2b
F20110218_AABIZM hu_s_Page_228.QC.jpg
cb83024e80b78c0650561b37922ea182
76ad7f0fa9404ef92c487ab5045a5b0ecf47ed5f
6174 F20110218_AABHPI hu_s_Page_191thm.jpg
718018896e33d4cbb75ba80db731c9e9
b1b0ed81fec87675cf3a0f2ac324d8c03079b93a
47060 F20110218_AABIMC hu_s_Page_112.pro
6c5e755b0c184d2423249632a763aef5
3dabd5ff2395352f3cbaaebfa0d0ce7de0fcd7f7
106007 F20110218_AABIZN hu_s_Page_229.jpg
530bcd0bf20b0c07e871a15fb29370c5
307388a6080bfc1f933914b402c2fc1f80c6bd1e
F20110218_AABHPJ hu_s_Page_219.tif
71b4a3ae16d2019686605759744f29a0
04b62c1643f2473cce77143c4351ce3476eba5e6
37718 F20110218_AABIMD hu_s_Page_113.pro
2081fd7deef317a3d47188d2ac55e0fb
5b9fa0e21cb7baddb4a4e9939e877d81047e54cd
27891 F20110218_AABIZO hu_s_Page_229.QC.jpg
94d85273670938db89f0529d97f16097
82dc2e457fcef3295dabe63fab1ee0fd4a2b504a
53585 F20110218_AABHPK hu_s_Page_074.pro
a621ca38eec973de0f44e7185a39502e
842d3a362b0edddc3cddcb140083ec9f7c3fc34d
15620 F20110218_AABIME hu_s_Page_114.pro
4f25218b40cd09453cb2eab39d7bba1b
ed7534fb245e61a8bdb44b00444283cc21c1446e
64881 F20110218_AABHCA hu_s_Page_035.pro
d75b4181a13a3e11c8a354d36fac8e57
9e0743b6a5564efb80804b00b8d3734f675808c8
24591 F20110218_AABIZP hu_s_Page_230.jpg
51ac1c4a3f21aa5db5ee37c221d6243c
5b72a6a18fecc7fb1f67d80d4965cb45e56ba339
6411 F20110218_AABHPL hu_s_Page_106thm.jpg
ae67b208ffd4e683e2993c2b179daa31
f0071f54c5d7151241b9067c5b32eb61b4ab30e2
19608 F20110218_AABIMF hu_s_Page_116.pro
8954b791c684ce72dc1fe5743f24ae8f
10a9569ad6384441d8f557421a9db59cc58113cf
1882 F20110218_AABHCB hu_s_Page_069.txt
f8305acef19b985fad29fd3dd8a20900
355b6750bc0db5546b16ab235ca1b7844957e5ec
8033 F20110218_AABIZQ hu_s_Page_230.QC.jpg
9c5a2feb6bfef77779e35992b9187050
c0eb63fac2e701c44f31d28696dc33be91fa4351
48537 F20110218_AABHPM hu_s_Page_146.pro
51bca099bbec5bef794c96d63f42fa26
4435f499dd5eb17389bd231f9c5142e6e69bee87
21688 F20110218_AABIMG hu_s_Page_117.pro
70f24aa440311724613c9632f1f2d609
6601f02e85cee671e8d003f503d470dae1b5f2c0
3162 F20110218_AABHCC hu_s_Page_093thm.jpg
bc8d6f519dcbe1c4a6edc35748ab88b6
2cfb5d817f689ec76bf5cd8140da285d9cccc49a
252216 F20110218_AABIZR hu_s_Page_001.jp2
a62bad4505fe6219a4a56446cc07c46a
faa4f088576a842be9905d09fbcf0afbb79325f0
67839 F20110218_AABHPN hu_s_Page_201.jpg
98aed2ad57497918894e815685fd566a
5da84881d0946ce4b72d05935e349c8b32cf9ebb
16828 F20110218_AABIMH hu_s_Page_118.pro
65e62e0b47e388ea638f84a02531c1ad
f52a4f9ff5b1fc9fdbecd6be2ff945b92c8cc7e4
5725 F20110218_AABJJA hu_s_Page_153thm.jpg
62b11e364f16dd819e716f4b5c2d55f0
c721d2b619320d034092c2730f4eeffa51516132
1549 F20110218_AABHCD hu_s_Page_118thm.jpg
44d629f0a44302aff79522d8099fc5fd
61edecf49a60ca37bd425def6b8be5dfc458da81
25845 F20110218_AABIZS hu_s_Page_002.jp2
c027ef84b2d9b50625f8abd35cc977b5
6f95d726bdafc7a5c5cb5dae8a457ef55c49d1e2
1959 F20110218_AABHPO hu_s_Page_109.txt
b8b0fbb82ff339b46f0676cf35a867ee
5588d36dce28c17ac48f2423c7d912efe8af1951
36973 F20110218_AABIMI hu_s_Page_120.pro
fd07f0de2702c96ce1a99f23cda69012
a45a73d91524bef3d469a4bbb24585c6e265e6db
6061 F20110218_AABJJB hu_s_Page_156thm.jpg
6f57a927129c0305141347352e6a2c38
0a5bf0e0511d9a17863c7adb84ca85ed00e3de1f
109714 F20110218_AABHCE hu_s_Page_037.jpg
299a9629ea45b119a5c87c5c0dd63206
d5bc4b81087cd43dfd5b31a3d9738a609b58265d
476044 F20110218_AABIZT hu_s_Page_005.jp2
24a1d0be3907e022b3b3196223b134e4
e5399b46d5616f76d8d43252792717600ec177ab
8425398 F20110218_AABHPP hu_s_Page_117.tif
c3f75f6ad058b75183829721ce819c97
81aad22346c74db2d0eba96714bc8175f1552896
36821 F20110218_AABIMJ hu_s_Page_122.pro
b68babe3bdc5f3854718829883329359
ed2e92ef56ea48a1010889ce09a1bf02b963834d
817 F20110218_AABJJC hu_s_Page_157thm.jpg
127bdc1eddbaff7b0baf3dfb57427d4b
972d7a29cf1c53845ecd08a5e2c0a2bf9d514f5b
72637 F20110218_AABHCF hu_s_Page_186.jpg
e74cb6edd8b91298ec094c15d0b8fe00
3fb8fdc44af64e7c905b4369c7299b62677155a2
684732 F20110218_AABIZU hu_s_Page_006.jp2
496c3c1ce64517f78908cb642cd15d32
165c9a820568b65e7fc5dd1430389be0e83cc529
6132 F20110218_AABHPQ hu_s_Page_133thm.jpg
ca88eb008a4c1831a22b5eb498fd87a5
9bef9facbd9bce989120779aa7e4db5eba2561f9
35242 F20110218_AABIMK hu_s_Page_123.pro
b3f8a3a095ee431cdce4ed678e9f826d
d0cdae371b3b2d201acb8045a9e48cb2caf2883b
5441 F20110218_AABJJD hu_s_Page_158thm.jpg
a086e7a2975a5aea451194745b867bd2
8da9d7cc34fade717119e4d1a0ea2930c25c39d9
22213 F20110218_AABHCG hu_s_Page_216.QC.jpg
0cd101028f6d3dd86b7e9d2da003de8f
27602dee02809f8ab7953677060b029debdd613e
64298 F20110218_AABIZV hu_s_Page_008.jp2
0b04a8a62480ab3c54da23eec01aed00
5dee1db31f0b03a1d0e38cf34a91c46f6e9bcd05
53329 F20110218_AABHPR hu_s_Page_065.pro
85fe01251db6ea7989e16b5820027da6
63e5548eacd88e538e6e68552d674d00a34332ad
45566 F20110218_AABIML hu_s_Page_124.pro
9f517c8affef584b6967d87ded4e84db
1609489fb2ceb53e7bce61e008a007b3ef64cfbf
4457 F20110218_AABJJE hu_s_Page_159thm.jpg
476fbaf0d4f04d30c4581ee8f758e874
b22d3dac1bd42ba74098b1c7941e640ad245f067
6054 F20110218_AABHCH hu_s_Page_121.QC.jpg
f4cceddf64b87940511859879158a76e
19fe706151bf8ef4ed614094139dcd3a7f6fdc91
904990 F20110218_AABIZW hu_s_Page_010.jp2
506c4ea4a6c7643753d395bba80ac65d
06581ec25e420daecd3cb2f1206acef95d552fdf
1051983 F20110218_AABHPS hu_s_Page_042.jp2
536684356043a2bcaf9f4fc8f326bbbc
6ce79ca638750e6de9a09534f06a50238ffca9a2
40214 F20110218_AABIMM hu_s_Page_125.pro
b64139cf9e3121d8c434c2aa3dc009aa
ea7635e47a856e66159e0876d2277abfa0f88036
3251 F20110218_AABJJF hu_s_Page_163thm.jpg
a8742951b667167de696fadde91c4314
e3f43f6bcff8a11059f98aad19453e9abb9c0540
22938 F20110218_AABHCI hu_s_Page_059.QC.jpg
4ccd0af46d4a12b0b9b848722b0999fc
34f239c156487d60bfc9a458560e271726329d90
147974 F20110218_AABIZX hu_s_Page_011.jp2
4fe2bb9b05311e7dffab45842467daa2
2a6b6e5e5b0bbb38dcef5da442d85d6eaefb546e
50418 F20110218_AABHPT hu_s_Page_102.pro
871e77458c8a7d0b27259ec2fb336f51
67749dc466b9e77237114bfd85a9a44e7e874258
20232 F20110218_AABIMN hu_s_Page_126.pro
88935bfc5d8e3d9ac2934276b3f8d758
1425948e720cc54febf570d5ba6c5ea44fa302fc
3012 F20110218_AABJJG hu_s_Page_164thm.jpg
19512ddd1f78ae3ddd66fd6eae276a11
71475b6604f1cae410170d31509ec62185130694
86261 F20110218_AABHCJ hu_s_Page_149.jpg
57829ad89f5343a62e16b257bec69b74
2c93c53297fe7f9630987001351c5a86063b3c8e
709821 F20110218_AABIZY hu_s_Page_013.jp2
5a1f624a97e34fce98f55fd5031c2c6e
543f66be1646ad68a0db1d7610aef41ad0b7a9b3
618 F20110218_AABHPU hu_s_Page_129.txt
bfa15f0355dac43ca762548c5a694c4b
792542a53369221988d2432b9e50484f0573dfe4
14594 F20110218_AABIMO hu_s_Page_127.pro
1b057b070ea9c4058be1bb75fbfe7cca
8378ea97ff13592d969a5acfcd993c27f944c4d2
2786 F20110218_AABJJH hu_s_Page_165thm.jpg
8d59bf1b11aa7a5de66c9c6d5c2a82d4
a290df42103ef2280a27a2bae0a33b53ef75af36
982522 F20110218_AABIZZ hu_s_Page_014.jp2
ce18d44ff71a5c5da48b413b4128ef8b
e40a521df2f624c25b000b07ddbb2ce6a09c7459
6399 F20110218_AABHPV hu_s_Page_195thm.jpg
97b20bbcd30e0eadad6b4d7c3fa0b379
51883f0de7351e7d2f22b580b3fdd450af537ecc
12930 F20110218_AABIMP hu_s_Page_128.pro
68c110955de4587f582e5dac92380f8b
3c31c30806d9cc0021817db6351126ccb812e269
3434 F20110218_AABJJI hu_s_Page_168thm.jpg
8b37c441f8c4293d5ea024ba47da0b9d
cd1a0b079175a0dcded4f9c6d63f6a0fb28ab541
63085 F20110218_AABHCK hu_s_Page_032.pro
3b76ee442d0ab0f93bbdb30536ffdc3c
9f4bdf8cfa73032a873a0f457b274f26e9e5c902
F20110218_AABHPW hu_s_Page_045.tif
9e78103b5b44c88346f395f69015c52d
9d0ad451f30559153a50bc585c9e86b8a6d3c86b
14044 F20110218_AABIMQ hu_s_Page_129.pro
3e15445005dfd24318d30cd539d197e5
b2f6e14be2c64237e8d7501c066dc77cfcca4cf6
3597 F20110218_AABJJJ hu_s_Page_169thm.jpg
2344858f1878878be21e3b5cd36c29ad
9524ba4be941ea64f47ce32bab07f1f4557b1e30
859386 F20110218_AABHCL hu_s_Page_171.jp2
93eeb3fd375f32e567bcadfa8f7f4404
53a4264bb140a43bc2a56f0dcb31abcddbeef3c0
7599 F20110218_AABIMR hu_s_Page_130.pro
3c8882070191d20b81970164a72be751
1aa3f175891a28e2a1ae7bb9cd03c0c6a4ec6458
4469 F20110218_AABJJK hu_s_Page_171thm.jpg
ff0cb1d0728edd2c554e7f8b3578dcb4
88f274cd28bb34ec5d286f92aa7be359a4c40c46
83044 F20110218_AABHCM hu_s_Page_060.jpg
9b2f2cab7771b6284b932aba1c0cd7fc
5bcdc090fddfc90df6071639268bf66add826680
2219 F20110218_AABHPX hu_s_Page_077.txt
7d3de5e0e052ca01a80a1c1577c9f975
4789c0c00c0df7078e2e40c41d7ca88c6f9c2a23
43663 F20110218_AABIMS hu_s_Page_131.pro
3c474a81b4d8e112d9395d0c8f1bada3
6dfc12292edfd99d41c6f4b67a3e401d3db4f2fd
4973 F20110218_AABJJL hu_s_Page_172thm.jpg
1928dcffe59266c2c959439f52952ab8
1629e81e12f67fd39fab3352fe5b766bd880773c
F20110218_AABHCN hu_s_Page_125.tif
b84e2354be137ae2837b0755c4484c8c
fc181d29051d7107d80cb33d19739e8bae4ed4e3
1051975 F20110218_AABHPY hu_s_Page_210.jp2
e65e975c119da41a09fa13766a70e307
d4f8433ca768c5e89f26b81beb9c07c8deb79326
5846 F20110218_AABJJM hu_s_Page_175thm.jpg
c36cbf4c7185f5575baae959b258c74f
892507961fc3947e85cb37a82aef1f881088a467
F20110218_AABHCO hu_s_Page_058.tif
06f6a985cd5cc7f3b2a49300f497b4bc
e2c5551a8f5c2a92fc9e0270061dc33db7e7bf41
22086 F20110218_AABHPZ hu_s_Page_045.QC.jpg
89d695909b5b0d97dfbf4558d3a3a70e
b8021de74f7b7dfea0659e9690b1a90da5329840
47872 F20110218_AABIMT hu_s_Page_133.pro
b8f31976e9119b3b407e0e8e583c45f4
90f7a9bc1fdb9aae75b71b3242be8f8f731e13bc
6245 F20110218_AABJJN hu_s_Page_176thm.jpg
580551df11e3d02af5c0ace763f6b017
80c10f8620afd2ee2a63f6efdee955dbbfb924bd
5638 F20110218_AABHCP hu_s_Page_135thm.jpg
d856315c78d109e6f41fd88d7158a19d
ca49d57c97268eaedd9cb80b897cb70a988cacc2
38981 F20110218_AABIMU hu_s_Page_134.pro
024b8d873fd83038a86773620c829deb
b09ea028175c3987fa57e27145561b7c9b219e50
6117 F20110218_AABJJO hu_s_Page_179thm.jpg
c925d8c17fb8197ae3cd1f54a037e376
7b07337e187523baa8894b8271876ba350f5b836
F20110218_AABHCQ hu_s_Page_011.tif
8cf15efd76847321b4cb538e84b7f3fc
e446fe5dc72bc3ac18000c407f4af4fbc3eb26b3
52165 F20110218_AABIMV hu_s_Page_136.pro
94161ed401245a824d1551316b37e931
5d23eaad7a354e7dda6c3408af44ada99bd7e908
6389 F20110218_AABHCR hu_s_Page_216thm.jpg
f65bb7e511abccdd872f419d70dcad50
5a2cfada21ff3ef9a1f6dd69711a129a1544fed6
48630 F20110218_AABIMW hu_s_Page_138.pro
8c11d1e0f2f0808459a49be3ddf52942
d8632146f227683562ac42ca0b0be057400abcba
6052 F20110218_AABJJP hu_s_Page_180thm.jpg
d1d41b4d342e4c0559e6aa93fd3fae0f
66cb5ac897747c4534dd86d3dcde4c691f6d10d9
2946 F20110218_AABHCS hu_s_Page_167thm.jpg
34b9981b002e7cf918cc252b4abf7cfc
26b70f4d16bc257d96e9be472864c56c520c7470
46322 F20110218_AABIMX hu_s_Page_139.pro
aea2e0c1bf9fe7f7ab415441f21c6c89
d8b7c112510e347d14e951ed91a74e3e8126809c
5430 F20110218_AABJJQ hu_s_Page_181thm.jpg
7beb2737d4125f45779db3e99c954c21
ceaddd5d6a5fdff1f04cffd61bd9e841cdef6ce6
1051882 F20110218_AABHCT hu_s_Page_046.jp2
4d50a2ee5e9ccf8edda30f197e32e1b8
63b3411608a99ead43286c3bcc15670418137615
49637 F20110218_AABIMY hu_s_Page_140.pro
7d96902f6b62aa55b0d8972fb1177eda
8a3bf544b991295995059821409831b543c041a6
6762 F20110218_AABJJR hu_s_Page_182thm.jpg
eb2a0c5a9a7a77e1e97c0021fddaa0e8
683bb6fb8f99ce364092d6c00359be8283814db5
1051943 F20110218_AABHCU hu_s_Page_218.jp2
409484579ef08e3f0cb0929ff1e3c6b1
adbc06dc85b8b0c65a131f57bf23cd1ccef00fb6
49923 F20110218_AABIMZ hu_s_Page_142.pro
3f689926951616864f36964c02e71946
4f7b1c9c76cffabef7a0ffdd5a33a02115daa0e7
1032 F20110218_AABJJS hu_s_Page_183thm.jpg
a7c4288aa02c5a20ded14179d09c6830
130e1863a8f4c4404838b87137dfa996495ccac1
929364 F20110218_AABHCV hu_s_Page_080.jp2
2119307337edd725fddbaa05210be78d
e9decdb0bf37ea37fd37d7b58d0c4e3e8c2d4bc4
456 F20110218_AABJJT hu_s_Page_184thm.jpg
cd54cac62a01c73c97db824d0a87895a
2f987ab41a6be79651062b51635ea24b2d65a6eb
6839 F20110218_AABHCW hu_s_Page_001.QC.jpg
de8b3e753530c109264b32c8893b54ef
e8cebd08e80170b26284c07011022b05408feb3b
6071 F20110218_AABJJU hu_s_Page_185thm.jpg
19a84dd60c8d3497737329a55c82c148
43a26e71cad346fc25455d53ba491b3fb4c0d397
2101 F20110218_AABHCX hu_s_Page_230thm.jpg
f9e1ee5aa22aa51a221cb52d00ccfdae
ade39b21b602fd65a27e1612f4b69b76b6e942cd
53504 F20110218_AABHVA hu_s_Page_052.pro
d989180ce9a31b224543b3cddc8c1834
6fbc06e8143431a1b8a6d3c86bbb5a61f35bc156
5208 F20110218_AABJJV hu_s_Page_186thm.jpg
3fbe26cee0e574dac504b41f1802618f
042ca7032fafaea3ce0156c784ec0f8a1ff3c4e5
F20110218_AABHCY hu_s_Page_036.tif
2f0943cb69b9a975715cd92a4e26f1d9
01181b5309226c7e2b77f234a2d163eb2eae5f4d
82244 F20110218_AABHVB hu_s_Page_155.jpg
ea70487259ff935cf3d1d3a1d0183467
95992ebb6e8edd4e6a25536798e5e6c98737bc19
4824 F20110218_AABJJW hu_s_Page_187thm.jpg
0bbca75a7963ad758b4120ed8ce79fee
9b460b5ec62dc6f2f7db8f085d6f040bbfbfb57d
5925 F20110218_AABHCZ hu_s_Page_178thm.jpg
7b98d8cad4dafa750e56a50a3febb1e1
58042fe982cbde50619692d533305c91fc483934
55023 F20110218_AABHVC hu_s_Page_029.pro
18a1b66e45452d5b4a70ffd2ebe3a0ee
7f91e53ce0e8c2df64b1c67df95645e8a0ce695b
5012 F20110218_AABJJX hu_s_Page_188thm.jpg
37dbe26954755fadecbfbe7860570e81
98cd0d03ea723923c520a6c8328df5617c3d19cd
44940 F20110218_AABHVD hu_s_Page_004.pro
a883c08a90112a506a51be21552c8e8b
a9f8b9fe3deb22bf854002db9b4f116e48adec1e
6173 F20110218_AABJJY hu_s_Page_192thm.jpg
e668989c9cb5f79b467b972c76bc0a47
df2cad66791f2de6403e42fc958500cd29beaada
2449 F20110218_AABHVE hu_s_Page_115thm.jpg
d321caa71eba65053539ff25bab08f54
9558041a538046351353e64129ddfaff8fa8ce4b
5543 F20110218_AABJJZ hu_s_Page_193thm.jpg
a4eda9915114172480cc50feb0a05ead
00a13ffa2847d1b8648fc85bfb7157e36e72bfa5
5494 F20110218_AABHVF hu_s_Page_044thm.jpg
1797baf64afa8f5308fcf8973a29fb1a
18b3fb40867c379563d0020b56dd63fe76ab22a1
468399 F20110218_AABHVG hu_s_Page_162.jp2
17597f5a2c0fd0808c58a2ff6c1c885b
8349963281d1aa56e0e577f0d61ac384919e51f3
78579 F20110218_AABHVH hu_s_Page_172.jpg
b5d44d4b71cd8e9b1fb69f287f2ee2ff
0512e2caf7995ae65c6960f16a6345c7d2a72213
20294 F20110218_AABISA hu_s_Page_069.QC.jpg
c82495e3cb4fc499efd105febc1267f5
0b7f1ca3520ecdcba1d5b13c943cfa9dc3ef836e
57873 F20110218_AABHVI hu_s_Page_066.pro
4c1338fb2bb6ae052d27e7eb44f4efcb
138948308f28a92b1231c087714e8ccad530e947
24090 F20110218_AABISB hu_s_Page_071.QC.jpg
1cf28d4b5d6e95bfd46bcc76973aeb08
728d48725d0b24f9541e95a21922897e9af71901
2523 F20110218_AABHVJ hu_s_Page_067.txt
7b9bd4f6f8fa7cab1001b63628ab8a69
07078600cf6cc42437ade4682f2d1237fcf4545b
23628 F20110218_AABISC hu_s_Page_072.QC.jpg
11d49e6ca18be9f7e9689a31ad5b58ad
b4aa83c3174b41f94442a53ee09d6dbf9a9d5050
36752 F20110218_AABHVK hu_s_Page_087.jpg
836abbf4d1873dbc98471dcf87e30be5
c5ebd9277c53cb035a699476d0dd755c26ef2849
100275 F20110218_AABISD hu_s_Page_073.jpg
b3ce68321ef3088818629bac218f9609
eb21e81204d224743e0773be5e3d16f2c05dfc1b
76483 F20110218_AABHIA hu_s_Page_135.jpg
c61ed349b7dfc98475be811269d004a3
6289290a15ec0e126adfe59f4f7ead025fca938e
49818 F20110218_AABHVL hu_s_Page_015.pro
84671488f810135cb7398e55b9d56c47
a89727bfb64e86d3e1f13af4eaed899a55194ecb
90312 F20110218_AABISE hu_s_Page_074.jpg
c2500a96c20a1af0502d6874649f599a
d65b1322dba26a8551029b4e87c96404e327f003
7283 F20110218_AABHIB hu_s_Page_213thm.jpg
7ebd8f892bc7f2d1e27b94f167685282
ffa4a73533bb90d48761e22e6af7ef947f9bf133
F20110218_AABHVM hu_s_Page_109.tif
bc6b6b5c59bbcf1452e7f2b887450d94
73dbbfce91acf9e3e5b404922cbfc618fa0b858d
24030 F20110218_AABISF hu_s_Page_074.QC.jpg
cefc078b9fba63ad2e51fb85cb850184
b48067435634970d62a7e83abf1a90c62f862837
23233 F20110218_AABHIC hu_s_Page_205.QC.jpg
87277ed90a8372af0903b6f8354c1eb0
980b7f3c202830645e6018379ad6a5b6c985383c
25140 F20110218_AABHVN hu_s_Page_224.QC.jpg
2bedb78d0365cde29447e08bd91c8c0b
106eee95575cb64143bcc873802b4fae1fb7edfc
20127 F20110218_AABISG hu_s_Page_075.QC.jpg
38a1d725be6bb7fc7338cd97c17e0d99
1038c4a693b2523180165d09a8321223044a5825
395157 F20110218_AABHID hu_s_Page_090.jp2
b4ebc116debedd163b995743baf15a50
dfa643c2cc81c48225257b5ff1ff0f22216e41bb
74824 F20110218_AABHVO hu_s_Page_033.pro
f7372a60cc0ad7dde263ef0419326649
1239e58e9ad3cbb053def53ba64ccc71f58d381f
87086 F20110218_AABISH hu_s_Page_076.jpg
3e86698221f72c68224eb77baa8a8bed
01d1b6595753f3bbabf6805cf7980b7b2352842e
84522 F20110218_AABHIE hu_s_Page_053.jpg
e843f61804a1c7847ba9fef121acec02
c5b8ad8fee37eb2588cb1f122c99729d80953f2d
67477 F20110218_AABHVP hu_s_Page_089.jpg
1ad71ab934fe50067d63c247c53cf781
8aac86b4cf29f08592741e4015cfc02e7d1ea16a
86855 F20110218_AABISI hu_s_Page_077.jpg
2509bdd7cd27adfcac13876f4528d1be
07dda44af4b36a6521ef4dfcda2a1161291d7d92
4622 F20110218_AABHIF hu_s_Page_079thm.jpg
d872d0e85de9d5b7b65034489d58c253
5eeb9a4a2252f5e32c69a246056795c230169980
269525 F20110218_AABHVQ hu_s_Page_118.jp2
5cb7b6805e537a1ab7bacc311826d07a
21f4e0a52e7e3cd3a4a9d07e521827a23b7a249e
24946 F20110218_AABISJ hu_s_Page_077.QC.jpg
b4dbe07d6437e14248c863af6695d149
63b20bb819fe2d4434e34f809a9ec10b43fd544c
F20110218_AABHIG hu_s_Page_069.tif
4a42ebdfa8281c09cde2a487181c6c53
db72f21748faf69eb47fc2f739ebdbc88968f235
2176 F20110218_AABHVR hu_s_Page_063.txt
e5c02b85640a73cd2c88e3741b9f192f
cffb4aa46f47fe853a2797d29e5487c0db9bdc55
78319 F20110218_AABISK hu_s_Page_078.jpg
3925c341d0c8a70d7f5a8f04788d6dcf
30f2807fa49497c4db4fff4af4bb3fee9e044d4f
F20110218_AABHIH hu_s_Page_181.txt
6890b67e81a2796428d26b915f482d30
e6d52ace404a661d3ee72233f26f17fd3a53c841
2540 F20110218_AABIFA hu_s_Page_036.txt
1c46498e489f298e01d5575e08e3c7ca
0e1d49719490f1f19b6086ec07bd2b9b3ef0d05f
49 F20110218_AABHVS hu_s_Page_184.txt
c5e42dac4304da1d51a3cfa9f93038bc
77e406dec323fe0252326cb093db197b95f08345
21183 F20110218_AABISL hu_s_Page_078.QC.jpg
373b2bd7e01eecd3de84083da64a7c0f
960c51d60d270d3b13610250f51ce96c6c048a10
5358 F20110218_AABHII hu_s_Page_021thm.jpg
eb02ee772f8ee0d8e09e03033a4d69a6
5048ec0d18eba0b5d44b65908692966e3d0f73c0
2404 F20110218_AABIFB hu_s_Page_038.txt
ff4096ccf8d122a7d9a650eaa595e033
47599ba5594cfdf1ebae77a82b781789c960df23
556357 F20110218_AABHVT hu_s_Page_123.jp2
acdcb1df80d498f8a25ee8f281959280
78598e350fdcd840123487587f5a6b75fb59c502
67185 F20110218_AABISM hu_s_Page_079.jpg
4275d263534e7910f7d5b23c1254ca88
d3d69007d76e2efe57cbe9ae783c5bf4b458ceb2
25561 F20110218_AABHIJ hu_s_Page_066.QC.jpg
955c1ddc260a8f20aca97e1f32979051
46b2d679192c2fc83db9f79af4ab30a633f9d536
2407 F20110218_AABIFC hu_s_Page_040.txt
1547608e0ac4ad27a68d8f87966bd998
a8f3084661b74f430c0db06250a4aff0449223fe
F20110218_AABHVU hu_s_Page_092.tif
15d9a832d796bc508a7c73511eba6c0a
e536c1d3af040436365926c20c29efe1335f91b1
19016 F20110218_AABISN hu_s_Page_079.QC.jpg
f6f1b05f4f2d8d3e388558042f56c403
e26a6e1beb97a9aba6d0c333ed59e78065ae6a32
88772 F20110218_AABHIK hu_s_Page_175.jpg
41022ba25b8eeecd2654e6797f7faba4
22323bc3d1e9a4c444257fcd8edc3a4f4e8a80d0
2536 F20110218_AABIFD hu_s_Page_041.txt
8a84e0b90a331a7cf9e00472b7a8719f
c08a540d754ff16b735b8e887a2542092544db02
434 F20110218_AABHVV hu_s_Page_011.txt
2e877189390497ced44612f7f6abc229
1c83616f2184b4fa7a87325478433a7ac23f4fe5
70454 F20110218_AABISO hu_s_Page_080.jpg
b27c6b8392bc2fa7d7c19cebd2a71557
8abb54eb2c1b67c4c4dce846e80f399bda1b4458
F20110218_AABHIL hu_s_Page_213.tif
2693aea04598e9ce1d97f0c91dd5b40d
8de7891a6d249a9116f58ed298e201e5bb42741b
2517 F20110218_AABIFE hu_s_Page_043.txt
f9781a6bc02f5ea54d8f79f2ff2c0957
1324a5ee5b71d47f76506328ffc99b6a61d31a23
9191 F20110218_AABHVW hu_s_Page_115.QC.jpg
c0a985ae50cc36ea62471c441b320876
cf99559c3f37b02666d2b426575e32a2207fec5f
21861 F20110218_AABISP hu_s_Page_080.QC.jpg
e6f37dd75285f482e05c425b97a8fab5
d10ddc7a46293d1e1c1f0873e59059e11445e74c
1843 F20110218_AABHIM hu_s_Page_172.txt
4e469ce8bc7b1faf4edf9724a6730dd8
4de1acc0ba24cb018efefb8c5a2ec1549c27d633
2058 F20110218_AABIFF hu_s_Page_045.txt
621d6688a56a75b3287daaadc7d525d0
ab7e835e40e5407ff8f9472b6ed16a3363d654f1
27457 F20110218_AABHVX hu_s_Page_177.QC.jpg
b32666cefbfbc37b5b1750dae15bbb58
e33490d67173e30ecb9a6ad8ec3cfa199927804d
74405 F20110218_AABISQ hu_s_Page_081.jpg
4ed18fd0df747ea59da4f044cf76544b
0c6af3ac8e318df6508c347cbfa575a8818d4866
F20110218_AABHIN hu_s_Page_096.jp2
946a8904c0070403df35111241b0c88c
4269a05f7b839513f81d2386286289eacc0c67c1
2119 F20110218_AABIFG hu_s_Page_046.txt
b0cc1ebaf851a77a9bd469ce90c4e50e
f8f931af6e2effd3fa4b360a36e9fea54b7e6a3f
9241 F20110218_AABHVY hu_s_Page_129.QC.jpg
104a703c1b106428434309b3c537e91b
962f13264de69e5b2cdd3205ddd6f40184a9a213
83099 F20110218_AABISR hu_s_Page_082.jpg
2c8f46d5b4b8c62182b7795da86c0507
96657ec5ade4dc80a9e6c2a67734224bd1a84b17
26202 F20110218_AABHIO hu_s_Page_064.QC.jpg
cde7575b205d563590265fbb3229897e
7d840c89b4e2a4ab086811097bd086219b935937
2289 F20110218_AABIFH hu_s_Page_047.txt
dc89c16594d45e1e6c078a2b77536aee
d35358b41b7469156541e0b24b3ac8fa026df049
F20110218_AABHVZ hu_s_Page_210.tif
314159ababa0555555675560e7c6e7cf
45034129bb797a8b7f5671c9d6612be45c3ee8d6
F20110218_AABJCA hu_s_Page_103.jp2
1069437b174709c754e69f8cf6145ed7
712a477ae4ac1f396a429d7891f452e6c6109fa1
26177 F20110218_AABISS hu_s_Page_082.QC.jpg
2a1dc809410495fd7b43350d95a43bdf
51e910841b2515f9e5f3eb5caaaa4ea9a8b11669
2076 F20110218_AABHIP hu_s_Page_048.txt
a438df147f3b965c61cf68601be23c01
bfaf963c877f400df73ec64df59d81ac382f35be
2011 F20110218_AABIFI hu_s_Page_049.txt
5903c3b9eb9c647902ee2fe06dfc5f07
7346f473a6b472dffb7c58318cbb5eaba69f969b
F20110218_AABJCB hu_s_Page_104.jp2
39f9633bea5c0c5a503611b1201e40ad
2cd348cac46993542d9c4a0f38e6d4fe514e5bfe
73422 F20110218_AABIST hu_s_Page_083.jpg
93a88c9c7a72a20920939f9269d6ddea
3e8ebc2e749ceb51bd4514251f847cd532c205a9
2242 F20110218_AABIFJ hu_s_Page_051.txt
f0cd2eb1a6f6fcddbf4eac7070f8d716
ca7c512c74dd71aac1ecb8a7f765d113735cc41b
F20110218_AABJCC hu_s_Page_105.jp2
a42e832f9d866f6d7b59e4edd753f5a1
819db274c728ed70326a45c086193fb2b08d52f4
22950 F20110218_AABISU hu_s_Page_083.QC.jpg
0265565ca0fcc419f17e94d2ed34e2e0
a5265545a6c5f12ff7f8f56a2037ff81acb79525
816 F20110218_AABHIQ hu_s_Page_005.txt
c81ebb99ec2568f602f168d80983c011
3a567dcc48062d25e16d04c2d769655a23aad020
2377 F20110218_AABIFK hu_s_Page_056.txt
43f90fa639c9d95239badacbed56e845
1bece2feb9e06ef817e4886992af8649905fc950
1051928 F20110218_AABJCD hu_s_Page_106.jp2
254b9b01d5684d085372a3121e9d4660
9c4fcabed24996f42a8cbeb82f81f646cca416a3
11940 F20110218_AABISV hu_s_Page_084.QC.jpg
d86f46614e46ed464a81efd64ec8de24
8795e70310c1e423afc07e2199e262c20aeea4b5
40043 F20110218_AABHIR hu_s_Page_171.pro
95a7389b210f4f9bc062e9ad965e1aa8
6f68600a98781adec77d728513e73dab6ac9c766
2218 F20110218_AABIFL hu_s_Page_057.txt
878288f38656de1c954bfe02de47a646
55fa676ec249349a9c865b7c7529703ed39d206c
1051964 F20110218_AABJCE hu_s_Page_107.jp2
f16e690a891442aea6c833229994870f
2d49f232d2a6b5a6583729b6fc158927e8c78df2
9702 F20110218_AABISW hu_s_Page_085.QC.jpg
2e18f751e07315767689a97154ba6cd4
5aac008cee779ddd30190bfb8b101687b470f6ee
2085 F20110218_AABHIS hu_s_Page_008.QC.jpg
32ea008e9c302e4f10a0bdd5e09a9d66
a6d278096eeb5c074a40d228195a5f3bd009c4ab
F20110218_AABJCF hu_s_Page_108.jp2
bd66cb314256ad20fb55816b1df59e3c
7d68aa407c266571794fffa4714b2d2856a50f1b
43951 F20110218_AABISX hu_s_Page_086.jpg
14cfaf9684d9ea6d995ae38ca321e3c9
d05e297ffc809fd29f989ce2c63023b348add9c5
12753 F20110218_AABHIT hu_s_Page_123.QC.jpg
904868702f86679af23602594838ebc9
e215b77fcd29745c6fdd51e96c85e19f9385cc72
2621 F20110218_AABIFM hu_s_Page_058.txt
2b7d370f155902c845dc8c29ef17754e
e7f779122d2ac069eb2f0ac3c79cead8f6a9f75a
F20110218_AABJCG hu_s_Page_112.jp2
b7277d4a6633fefd608df059d3b98552
631d7994381cfb7f2129db3f758545507d0ffc9f
12108 F20110218_AABISY hu_s_Page_086.QC.jpg
9daa411cbc7c1a77821f345276f19830
b8305cd5a8988599d8e96d313055941937e001dd
F20110218_AABHIU hu_s_Page_040.tif
938fea6b9bac32de5661bc45f4fe9326
7631745ec5afffdf0ba15864ea4f3f5f476ce0a5
2260 F20110218_AABIFN hu_s_Page_061.txt
18a7bc377dcfe6c34d8824a6d9347c8a
ba277e3ecfa4ea0b24ca4ef33160ad0b1da3ebbd
862790 F20110218_AABJCH hu_s_Page_113.jp2
a89d8f97a745f2a1670c1e563d64a076
0aa8042a4f1f58a20db291802e4e3e943ba4a1b6
F20110218_AABHIV hu_s_Page_109.jp2
d7136d0072e8607ee37f50f930907123
cb2c6e227ad0e34e96280cfb0cb6637cade3ef4f
2636 F20110218_AABIFO hu_s_Page_064.txt
2e8afb3d272ee18f37232454d5fe5943
1e7fa5ce13ec7f052f41d9ba018f01e98480c8d4
12353 F20110218_AABISZ hu_s_Page_087.QC.jpg
cc4f6aa7faaf1303c2a1b1eba63f0cbb
711069e0e05d6ada0cfa3998a441d2529b883693
995812 F20110218_AABHIW hu_s_Page_145.jp2
ae810cd9eb2e1aabafd4541001186637
4798b43bd4a956222400ccb765664b539641978e
2406 F20110218_AABIFP hu_s_Page_066.txt
0d3a972031e1c5509a2f614511b01891
784c8cba785f7b53cab225c6bf55bb0cff53a08e
320787 F20110218_AABJCI hu_s_Page_114.jp2
eec59bcbd6eb5c223ca0a4a9cb3c49d3
e95ee5fb1d4c8d491a0b453876bf9fb83ae8911b
F20110218_AABHIX hu_s_Page_189.pro
a89a9d50bc64323d2bae307a69418b06
2fdf7d46e60fc24d456685041df36bb3aa07a51b
1878 F20110218_AABIFQ hu_s_Page_068.txt
261036287d9504b2674a07166363342f
e1aec4826e8fc0be01abb2fc51ef5ff3e931419b
358255 F20110218_AABJCJ hu_s_Page_117.jp2
013780616c49a06f7f7a67c27b9bc1e9
339c01a2b3b9084d3ce9d93808867448fe1abba0
F20110218_AABHIY hu_s_Page_110.jp2
abde5035c26b5ebd5e4d9ffcbccc10c0
798dfc6c5716389e6678645682f8be9d0990adc9
1830 F20110218_AABIFR hu_s_Page_070.txt
be8037675eb59bbc7322780e52343f3e
0c66d179573e3dfbc9cd73227fa5bfbd4ed9f263
593777 F20110218_AABJCK hu_s_Page_120.jp2
ee3fbe7ad4e84b801acb1d3dc4a3a207
012071cb7028bc1e4e23ab27928eae0d2806fb21
964474 F20110218_AABHIZ hu_s_Page_020.jp2
ea99e9f20118ea89e3e7051fc25a75aa
7fd5db225e9ebb6ceaac6f36b160bd73b4fb552b
F20110218_AABIFS hu_s_Page_071.txt
74dc65f73771ec0ba6c4220b976e2d77
3e644d03138ac0852e6ec451627b0b58e36b4b20
349144 F20110218_AABJCL hu_s_Page_121.jp2
a60a39071575a51d47f9d0a4511749b1
2811eaeaf4bb90af8138f3cbd1e71be83f48fff7
F20110218_AABIFT hu_s_Page_072.txt
d3a5f2dc1067b8dc4d947832f31bfc93
4b3ce86b07a913b8d512357ec1a98eff70e32ae8
535195 F20110218_AABJCM hu_s_Page_122.jp2
f662659a39e8d8b58ddd55d5928c0092
45c1452cbb19978e4af77649ecfbe24ca9a23a33
2471 F20110218_AABIFU hu_s_Page_073.txt
05f1f3654d14a450e2346e3f0977c918
dfa0aea16fdebb1c066df07d5cf458b1132c3342
704365 F20110218_AABJCN hu_s_Page_124.jp2
3b67be6122a8d9cca42b93e3391fd4c5
1ce0a30cfb1001366aad16f76077742692cd8216
2237 F20110218_AABIFV hu_s_Page_074.txt
6bf7a99dfb42b9fcda84cbbed996172f
63082961f6d9f767c9de09b071219b864758b129
632597 F20110218_AABJCO hu_s_Page_125.jp2
ffdb02452d51964e4c1f839915e02b60
0e613b2c8583069297ed9a9950203d79d6169118
1931 F20110218_AABIFW hu_s_Page_075.txt
92d75d34d972e60ab342cf4964d7a2c2
5cea22cb26f4d30f6f559d84ac38bc7787e35ba3
517457 F20110218_AABJCP hu_s_Page_126.jp2
941322885cfd01041f69442a0800116b
c3472f0ca9c705eaf1ea0fcdd7b7b1ee9f395001
2222 F20110218_AABIFX hu_s_Page_076.txt
32cee98cf3d355d813301f79b12e57ef
a1c69fbce7ebef493ab96d9dae86f9a936443057
19751 F20110218_AABIYA hu_s_Page_193.QC.jpg
8f5c62c623310f5a78cc60d44a43e19f
9e087e399f2fd0a4e003d4069fe97ea816009d5e
407367 F20110218_AABJCQ hu_s_Page_127.jp2
3b8a12c938822c0dd1a8e46b0dfbff6d
e33611b38b94d6ef453971aff49cdd5a25a7f624
2030 F20110218_AABIFY hu_s_Page_078.txt
d50ecbe1651ccd63c2af44da250d791f
b52fdc044ca6171387f721c655ac7b12ec1c4059
69433 F20110218_AABIYB hu_s_Page_194.jpg
8687718d46ba75682757a4f8a47a9fcf
096d4026455ec1c985c41db0fb5356f13a72c514
325829 F20110218_AABJCR hu_s_Page_128.jp2
28ec76f3be8496dc9f36d680723850a2
82a55fba6d0b3fda107ecf95318f3d1136b0d9de
1773 F20110218_AABIFZ hu_s_Page_079.txt
c90f10641b50de1c714e84b101556704
c03a4cdc33c2bb15a5732f7731a9a9c2ab4dd500
21937 F20110218_AABIYC hu_s_Page_194.QC.jpg
7442dbf8bf3f436c5eaafcb58cd6a8af
97c9ee14aec28573edc19b02c7c8290b701d8ca1
219226 F20110218_AABJCS hu_s_Page_130.jp2
dbee654673081623884f90a83ba0ce04
babf2236cf50ca055462647ecf03c28d09abed83
73339 F20110218_AABIYD hu_s_Page_195.jpg
41cc7517b81e9359b87a9de8ed332c61
482c136e92c3e3bda88ff476d958c9fc8183bf58
1051973 F20110218_AABJCT hu_s_Page_132.jp2
1c38693a68123f46ff65c2e47e5fb440
aaa706f85b7ac0279508a83dd6ad471d50d3df8b
23248 F20110218_AABIYE hu_s_Page_195.QC.jpg
dd4f0328a80a0b51242bc6a3b902e329
c67f3a921b5afa634282fda7a51d95700ac8b49f
1051972 F20110218_AABJCU hu_s_Page_133.jp2
b87e0494bef2ba3bae02e86d376470ea
679c43247619003724d217823d5561cd13cbcfa1
5576 F20110218_AABHOA hu_s_Page_083thm.jpg
174e7d3fa91c35094a4c559d579fb793
517e35611d49ed93224315736fea79ba4acd9045
21310 F20110218_AABIYF hu_s_Page_196.QC.jpg
5c385bbb51114218073d7f789d8f722f
305d6253e29145f19bc969e87ea2322cd869036d
1016813 F20110218_AABJCV hu_s_Page_135.jp2
6bcf9ec0f742829c516ba95435302773
ad88dcf6f38a3bbd8c2f3a2473c83363e55690c8
38939 F20110218_AABHOB hu_s_Page_166.pro
daa593ffb1923ea532df059045e665d1
768564311dc497d0ce04cc08dfc8fccb30eabf77
59560 F20110218_AABIYG hu_s_Page_197.jpg
9eb54a028bb1e467911f172814a7c384
af24f3b630474a517b7d8ba11f43483e94584422
1051927 F20110218_AABJCW hu_s_Page_137.jp2
a522f17b17a3310642643eb392efcab4
9bef44088514debb712acec2b7adc539ba4a87a0
121 F20110218_AABHOC hu_s_Page_214.txt
d46d54a78706241b46242177e0cf7033
ab5129d94740cdb7e62981e5fc3b68a1f52a0a7b
21048 F20110218_AABIYH hu_s_Page_197.QC.jpg
f0d9e2e5d36c078a1fb06ca8dfb10265
f1da459ac4d22f62685f1d0aa73e4cc40910356e
F20110218_AABJCX hu_s_Page_138.jp2
6182b248e5547506a2285e95ac183850
d5cea1e0d7ff07d5f86fef50a382e8261bb87aa0
100966 F20110218_AABHOD hu_s_Page_179.jpg
441fff38661fba26446707cbc97590f4
a1614cb0fea90c49f6cf084da68b1f7755222fb8
66060 F20110218_AABIYI hu_s_Page_198.jpg
b8eab68513a61208b2771c52ff7cf6ab
403b617052e1527e28bf3b016385bc9465136173
1051929 F20110218_AABJCY hu_s_Page_140.jp2
0be72c4285fb450390339c8dc4a322b1
53b7cc27290bc43d67ac345fadc4419947f1bf7d
98862 F20110218_AABHOE hu_s_Page_041.jpg
f545fe9bc73952456d1582c9dc7f5d80
07b94412fecbee770a557682f3c6af6ac37ba27c
26876 F20110218_AABIYJ hu_s_Page_199.QC.jpg
ec7d0ff10d102eead10b54ae176a2e8b
57c9320ae851b26409008ad98fdefa5553f4c229
F20110218_AABJCZ hu_s_Page_141.jp2
c109aac806af525b97a22be8fbaa6997
5bab38d906c97d80b176b1022d86ae408b137cfa
57408 F20110218_AABHOF hu_s_Page_056.pro
403b5454c0a27235f2161758cac6a99f
03b45e450d6ca0f17dc9c327fdfe4e6be379b2e2
69281 F20110218_AABIYK hu_s_Page_200.jpg
df3c50cdd75e186c16e79e9e66b43aae
9472f7d5dfa77f8d52d93f0eb25a12be3617836b
43353 F20110218_AABHOG hu_s_Page_135.pro
060327afe7248c37743c55d0b2baf7b7
a92a6513a7ae66897e8bd30c117871c599251493
44670 F20110218_AABILA hu_s_Page_075.pro
78491660f40d1d2d310d7bed3f3b3d07
3c7510d11550774d497e40f92c15b58164fffd65
21797 F20110218_AABIYL hu_s_Page_200.QC.jpg
31a0b8e197d2d6dfcc74d0198fe63d23
6d60db03631e65859e1f00a15c0d2929c389bf14
F20110218_AABHOH hu_s_Page_016.jp2
361a20c4752f812cc082cb1b217e4847
4831a7fb8c287d02b094fb042fe08b11867b6943
52765 F20110218_AABILB hu_s_Page_076.pro
eb30f345958463db6ec5a2716cb783ec
e54d9441eb9ad7876fbd5f56b7681222904d3cf9
22634 F20110218_AABIYM hu_s_Page_201.QC.jpg
90ca33cc944390aac0404b9bc80f7630
5adb313fed25aaaba1a491f6c1496de1c38566b5
50049 F20110218_AABHOI hu_s_Page_143.pro
a319062c28d880795acd58de6a5318d9
21952059ddc9a412d872b7a39d047b0f499c7ad9
52948 F20110218_AABILC hu_s_Page_077.pro
ceb69871ced0ecdd87e858af646aaf77
5c004dc6b80c8fb0a35bff20b12a22c9179aa300
65192 F20110218_AABIYN hu_s_Page_202.jpg
fdba08a70488e600b03a90af0208b2c5
7e0314aa61408c1d466f186e07aaabef1c97c600
1869 F20110218_AABHOJ hu_s_Page_108.txt
c87db67cbe02cbda1949f71d8667fdc0
b35ff7d06b523c0878997d1d1ead3acf3ce5a60d
47838 F20110218_AABILD hu_s_Page_078.pro
af7348c8c998e5cfc02a0676dbb7b2be
e545f57362c2000d55f1c3a2e9be768f3e8361aa
22200 F20110218_AABIYO hu_s_Page_202.QC.jpg
2b36719d9b4090b32620329111c753a0
0b580aeafde7a6f2b29fafff8906e19ab1c6c9d1
1334 F20110218_AABHOK hu_s_Page_091.txt
4ac3a83dad16158071bfc14e50a0c8b8
50be6c2e01776df8b30e29f2ceab3fa3d2a9d30d
40734 F20110218_AABILE hu_s_Page_080.pro
98c9623c3564aef4bca824534d169241
8c71f5cbd9651645f2b437a3f631f236e3663ab4
F20110218_AABHBA hu_s_Page_093.tif
d532b9b8eb58106c13c53cd929a4d334
1aa1de10f453a4a3dcb26187af87fc4b3b46bf44
73444 F20110218_AABIYP hu_s_Page_203.jpg
bcabaaf47bf9971822b4c1fa5e2ea071
f2df7dbe69fc280d4b6018d3277b1fc551ab0408
3178 F20110218_AABHOL hu_s_Page_086thm.jpg
be8db6d2386c7c3224a355ba8b8176ed
19d3a695895c9198804f8ac69f5c1a07e77165e6
43770 F20110218_AABILF hu_s_Page_081.pro
46f1010e929e4dca4364820e5c7afba9
aa4455c8c6a97d056e9c15fde4ac8ca4f7243146
23862 F20110218_AABHBB hu_s_Page_204.QC.jpg
c9d4f886af032f1fd0b93f4697e95ad4
f64dab130015a82b7116d619357f08050ef08e07
25697 F20110218_AABIYQ hu_s_Page_203.QC.jpg
7a409bf1c41ad7df47b4cdc96548cec3
cc9eb351ae6afb770216f8edc6715896c9ce2a94
30447 F20110218_AABHOM hu_s_Page_114.jpg
d3b044a70f147588e80b4217b8c05860
7d66a1faceb12500fcfd0b3bb1986f1ac4dba553
50224 F20110218_AABILG hu_s_Page_082.pro
48b0fa3ff636f0c8df06ea6e654fddd2
0878ff908c0d9d342b419959bdba2a6f0b52441f
6516 F20110218_AABHBC hu_s_Page_227thm.jpg
c4c67e3161bee1619e50d05d426a6880
dc316dbc6ded08efb8638e785373c5d1f78baaf7
68908 F20110218_AABIYR hu_s_Page_204.jpg
cebf2ac5490e5f320e3d155e9597d085
0bde341b81882df54f00048493a0c3b26bce6593
26990 F20110218_AABHON hu_s_Page_141.QC.jpg
8f1c0b4bd6924ee86836e532dcbe2938
fbbf6d64467af8bafb6f1e00ab7d72022b1c57e2
6266 F20110218_AABILH hu_s_Page_084.pro
d5ce352aaf452752ad6916706e8ea1cd
cb7f49a6edc254f49ca8e80319b43a848ff934b8
6203 F20110218_AABJIA hu_s_Page_108thm.jpg
eb0535e2f931c857e87fcea5ee4dd4e4
4bcb5ebfa96bf49e4f3854feee800ce04fcd973c
1976 F20110218_AABHBD hu_s_Page_082.txt
5827338ddcca17ac4755578d87ca7f36
cb16727890450d5cb81f1c7fa3a19cc12eab69d9
23021 F20110218_AABIYS hu_s_Page_207.QC.jpg
1d9c40ef9840d81be663a6abc6cf6668
f1969e031a8fe7b32d544fa75a84b801e7c9e02f
87435 F20110218_AABHOO hu_s_Page_055.jpg
b6bf47485cf745ae26ae474a96eaf2b2
69d7f96c604821f6e5846a65f853de0814c2e9c3
3599 F20110218_AABILI hu_s_Page_085.pro
9f40a6053b6f10eb76fb07a7511ca43c
30de644b7d8eb2ca211d37fb7dcd2ffce4108d59
6512 F20110218_AABJIB hu_s_Page_111thm.jpg
c268e33c83d439e073cb673db0311f54
e2f6dfbfa9803ea0ebfd8014c315127b291a895e
5707 F20110218_AABHBE hu_s_Page_057thm.jpg
30741186c5b7f36998bd37c122d11676
9fb087f73ab2ef140b0fc503c133fbf5c378985b
77082 F20110218_AABIYT hu_s_Page_209.jpg
39d6ff55e69447c943a8aad2af35131f
b6ba335446f3e720a7721a238e6e2dfd36513ec7
1051931 F20110218_AABHOP hu_s_Page_204.jp2
250254afc8d08c5f3fa278fc88525347
b788abe4f9dec66381e74954ee2f19c411b11b16
13141 F20110218_AABILJ hu_s_Page_086.pro
f1ffcb85e528b4c902b3d9acabcdfd1f
b2e0c30c2fa792bda455dfbce33307e074e0b074
1724 F20110218_AABJIC hu_s_Page_116thm.jpg
7b10dbdf4bb0814468f2677938a45faa
f67f8687c083f657f8a579819b48daaa110c1352
3428 F20110218_AABHBF hu_s_Page_160thm.jpg
c2c999f1213850cb284100b029d9b1da
b7e84a18e7f89fafc8fc4dfec044f63ebb604e1d
25213 F20110218_AABIYU hu_s_Page_210.QC.jpg
85dd423db9e9d6317aca4a299ae2c22e
a828afbba97d4ed7118dc8be3fa7b8d3216e7ff2
647650 F20110218_AABHOQ hu_s_Page_088.jp2
bf58ac4ec390136a50c2bb6a91f59185
8c3493c32250d3b42ab0315c8aa4c92aa14dadce
19309 F20110218_AABILK hu_s_Page_087.pro
a1811c60f1398a3a124b782e8219ade1
bff29a519779c5b3cd4b645054b6328ffcec9b08
1891 F20110218_AABJID hu_s_Page_117thm.jpg
2cc00bc57dd8bbebc4e65af95d7d849b
4ac07aed502fbe10ee59e5ee13edc7bb6ebef7c2
88844 F20110218_AABHBG hu_s_Page_072.jpg
c8e441ee5ba854aa9d6d07d2e5bba1ac
6098af977bcc8bf3d626efbf2a71ab6fa4507f62
27901 F20110218_AABIYV hu_s_Page_212.jpg
f21ffe456b7789f93798629506bfca70
46d0cfa1125da9a6a6a29d778b43a6862e7d961b
51105 F20110218_AABHOR hu_s_Page_053.pro
6262e91a6c2a9d7d1a74fe1b7718ff0e
c6f774802ca68804c9ad7934221257503ef34129
17997 F20110218_AABILL hu_s_Page_088.pro
7709b242fcc7b11f586d2f94b0a8b80e
37a2a3af499f61d75d17ee13fac5a7c4fed0a17f
3435 F20110218_AABJIE hu_s_Page_119thm.jpg
a52219286d347927d12feafdf7cd3839
1a6abcdad8ca8f182e25dcd53497102675dd3db3
F20110218_AABHBH hu_s_Page_120.tif
c42e7d1332e78fbd5fe4bbc4ca4b6162
38e4562d5aa7a1ca00edbbed807c2538537a0ff4
9116 F20110218_AABIYW hu_s_Page_212.QC.jpg
ebfa3c827ff7b09cccb012921144e636
add9cb0d04b7418f7f7754ec057eaf50ead8051d
85138 F20110218_AABHOS hu_s_Page_065.jpg
6cb0b9a6cbfa62d014349960403cc932
a4a175a9ece8540ef1bb3ca61ac74c9577ec80f4
36642 F20110218_AABILM hu_s_Page_089.pro
ff9a38159ae186985050ddbc946a98bb
5e09a0e7d8c162690e3e4c79901ce7015b5d582a
1889 F20110218_AABJIF hu_s_Page_121thm.jpg
0b4562e0701eb166fe09f731ad258d8a
d00d83243f8825d7d6cdd06941d28a8c9ec58b74
455483 F20110218_AABHBI hu_s_Page_161.jp2
838129484d58d76addb84cb2be3fa688
332d18ea4894c7e0756b8ec0011e944528072579
25163 F20110218_AABIYX hu_s_Page_213.QC.jpg
ca45f320e61120b6a428ea1595a33034
46a807a440e4ddf33ea9b797915386d18edd2bfe
14736 F20110218_AABHOT hu_s_Page_124.QC.jpg
8b70fe9c09e95dcdbef2e3b8121f39a8
fd2463aa90a0cd518a7440725a30384e33cf9b37
2819 F20110218_AABILN hu_s_Page_090.pro
2c4aed4aea184cbb74d61e247c0e8eba
8e5b1fe8d85e439a39cc9b2926baa01b84c0e3c2
F20110218_AABJIG hu_s_Page_122thm.jpg
7d35a5d8638d335946a3eea0e54b13f3
79d8dc4b4b14b53a1274050ef9f0f33f2315066a
68527 F20110218_AABIYY hu_s_Page_215.jpg
ec56191660bd0bdee6626ebfd49e90c3
0c0e2a47c24515b1b418800ddf1c2e7e4c71bbc4
1041314 F20110218_AABHOU hu_s_Page_049.jp2
462c9dc2086daf9250c8adc7360fa557
1092b9d9ffc73cf3b8001b7910cab1333a793e47
13531 F20110218_AABILO hu_s_Page_093.pro
389806a3431ff4ef8019b993f0470878
9a22ac85d78cb3abe009c46be7e9a4a161d333b6
3349 F20110218_AABJIH hu_s_Page_123thm.jpg
5c3549eec2fb2594c1dc13dd61eeb1d7
49cb4df024a6162fca0b570780b6eba68eada9de
1051958 F20110218_AABHBJ hu_s_Page_067.jp2
7330426c73e20ae02313386dfcda1901
75ddc6e94f39c0015c450340208eecbefe0ef4a3
24699 F20110218_AABIYZ hu_s_Page_217.QC.jpg
7988f1784b767315ce5de6d3a0a5b080
e50a4afb4227d649c8475c38aceaca2067cd1dea
1746 F20110218_AABHOV hu_s_Page_083.txt
7e331a60871902fb330f179dfc5f4706
b35c326608810bfa9a24e0a595224d39238a8903
44128 F20110218_AABILP hu_s_Page_094.pro
dddb4e99261ec5cc9ba2f23ed2ece873
d0cec10c4892a9a1b310d65314f4b9c908bba7c2
3673 F20110218_AABJII hu_s_Page_125thm.jpg
f6bb1ca80142633468fc74b333d1e246
a88ff2053b467f25fa4798663e1d043d9d084241
6089 F20110218_AABHBK hu_s_Page_107thm.jpg
eefdd48d7adb081f3a85b66a6abf97f1
913481a4a9c8f6db5dde4f4bd45b4be846978b37
48650 F20110218_AABILQ hu_s_Page_095.pro
3543cb5567b75f35b91e277dc0fd81cd
592cd670665a2400d0f03455a208405af598337d
3390 F20110218_AABJIJ hu_s_Page_126thm.jpg
83d9cf5b37c07939a90653bbd6e8cf2f
8ddb58f208c472c554722dae18de854bf8e059f0
2084 F20110218_AABHBL hu_s_Page_149.txt
e1c49c015ab47a5c62759efbf8401836
a5faf209d9a58a1e6b034ea10ab74b3864673793
5229 F20110218_AABHOW hu_s_Page_054thm.jpg
dda2d24a0b9a30ba677b18e6c2b20c0c
8b06a25c4632ac43c3e49209b724251d2442dd64
47594 F20110218_AABILR hu_s_Page_096.pro
db2d09053055745e9beed3e6626b7850
59e166c04f5a00f46a2a2f120c51b90ed2b335f5
3543 F20110218_AABJIK hu_s_Page_127thm.jpg
75ea2cfc71e39331a07b1f53df9169e1
9b4a58ac076569f2a5cbce25233099930a00ed9d
1828 F20110218_AABHBM hu_s_Page_020.txt
099e6911363fecbde2c450794f311ce3
11f7ecf87764df86c0e6e986d5d3da4806b58efe
1051935 F20110218_AABHOX hu_s_Page_195.jp2
f0a015eff7ac07ddf6ac58ab409e458a
19da5bd7b8cc64b0e27a3fef6cce265bf103cb51
2883 F20110218_AABJIL hu_s_Page_128thm.jpg
702f407fd427027ed1440266b0f74309
65215285da35d6d7d416be15dbdba36c6937e08a
950636 F20110218_AABHBN hu_s_Page_026.jp2
966cd1121f3f5b25c66f71ce321a183d
0bc6269c5a0845900ae5b4d3caa10e3f4c0fe52e
906349 F20110218_AABHOY hu_s_Page_119.jp2
4c10f8ec4c56f7860d7a31108b9018c1
0edf1b0db13b87dece9f9d72ccac0438578a491f
31604 F20110218_AABILS hu_s_Page_097.pro
9cc7aaced02b9d7713dcffbc583e2b7b
633a30f9809212df9a637b86ae3600a305c3f796
2737 F20110218_AABJIM hu_s_Page_129thm.jpg
d2722ab210beea8ec71c43c6e39d7747
ae804c13ac7539a88060cdb2bd8b7394ff107d5b
635975 F20110218_AABHBO hu_s_Page_115.jp2
a49cb7f7f97e0164ae30044eb9e71344
29942a5acffd3eb5309d4478b1923f666e235e1c
122 F20110218_AABHOZ hu_s_Page_193.txt
e7849ff6699f9078dcdeeefd252089a0
cbf75579fe4a0536af151e4cefe298bf78c20ff8
45723 F20110218_AABILT hu_s_Page_098.pro
a1e27797abff9eb6f3e8bcd8f91c6337
cf9dbe8f9c5402a2eb60c4d520a6e43f5f51cf06
5482 F20110218_AABJIN hu_s_Page_131thm.jpg
da0cf2c5aec48e8a00786be6a0b4ef84
2b604f59cb124b2c7d6a47e073d97a7c7605f599
F20110218_AABHBP hu_s_Page_135.tif
06e7babbb184b343239f81abe90a4cd1
48372e9219a345a0722af068c958883b7fe87f5d
50931 F20110218_AABILU hu_s_Page_100.pro
bb00759399c64fd058ed231fc23ac513
6a1364f3e9e1c4af4e70179502a6aaa810df918a
F20110218_AABHBQ hu_s_Page_192.tif
d9bb6b5e67c5a11858a892fe1c3bb696
80f28c551c6d14c4b33e5f0e99b5364b5bfc0f89
53937 F20110218_AABILV hu_s_Page_101.pro
1d9497dfd919f8bf649102005b850cbe
0483aea3f83304529e907b10882e19e7271587c4
4921 F20110218_AABJIO hu_s_Page_134thm.jpg
34209c32d301aa72fc32a18ab6aa5e5e
094cfc48a64a91bd11e21bf6c486203bb4bbd7b9
31 F20110218_AABHBR hu_s_Page_192.txt
065ca7084c9bbf637f3779e77ed76955
f90804db9540c755375d8e4d6cc544e5078be4ce
51182 F20110218_AABILW hu_s_Page_104.pro
73d223da4ef756722ec4b9a310a61d95
be632e532447e5df743e20d169fd02056cef5bdc
6189 F20110218_AABJIP hu_s_Page_138thm.jpg
0791ba93364688a0512fd5ab2db87e0e
c5dbdff9d9502dff66ded3456749db301f0085b0
79068 F20110218_AABHBS hu_s_Page_108.jpg
3d6b965ac48e764b76d1c09c6cae616f
3a2866d5e028b39a745997c8d5e11d0a0a8fd3c7
48290 F20110218_AABILX hu_s_Page_105.pro
4aa12be4b71bb348f380decfe82cce08
ef951bb4071b866e5d3e8d753b9c1af1a41b779d
5862 F20110218_AABJIQ hu_s_Page_139thm.jpg
71806f886ed6b6eefdff8e9b2e31c952
e976cc68256c66f98882ba95cee1be3ef342f926
F20110218_AABHBT hu_s_Page_029.jp2
fe81964c3ace97dede6085a67ba26fef
35aa6421784d4920f8081ac836b02b9788d24a60
48710 F20110218_AABILY hu_s_Page_107.pro
22634f7e5768cfec71bb84a586bed5d7
65bc0f0c48d6f24c7e6cf4775d69fe135ba64a8e
6344 F20110218_AABJIR hu_s_Page_141thm.jpg
ddef477ff4a9357827ca7a6c58e21a9f
07aefde21d2bbf7a3fe174f26a34f4d53049a352
4089 F20110218_AABHBU hu_s_Page_002.jpg
ca8710b7be5d33437b33d3e1d194227c
2ffad7be4812a863ee2e5ce3b3ab7a9e195f5390
47320 F20110218_AABILZ hu_s_Page_108.pro
f3849471325916ed956d5f5332d78c07
b85d14b5a1d09a2808fb829af76b1d7a993bdcbc
6326 F20110218_AABJIS hu_s_Page_143thm.jpg
a0dc1a060d022fdea35875d6dd14e541
576cb6bed08c03d093ec0cc60182fbffc345f248
3239 F20110218_AABHBV hu_s_Page_170thm.jpg
7f0b2cd829e90792870b5f70cd741516
90e966ce0c87a8a957c7bbbc62e68b1b3ecdbce1
5735 F20110218_AABJIT hu_s_Page_145thm.jpg
4d17e160ec91fd456ac864d9526488d2
e8144df92910c6df8d06a8e588ab2f92921291cc
79263 F20110218_AABHBW hu_s_Page_112.jpg
85fd137f8932f615e51c507933faabd7
4913e0e71327753d8c21659a1bb922d15da0d8fd
5752 F20110218_AABJIU hu_s_Page_146thm.jpg
336b63ccef59c437c36a423c4b060958
6425042f67ab0beaf4ccec5c6f41d14476b69ce6
56005 F20110218_AABHBX hu_s_Page_206.jpg
1e50b021b6fdec606122f0f1add23d02
92e72b862dc909ffe7970185d9ea846e8281c272
84879 F20110218_AABHUA hu_s_Page_220.jpg
44c851bf4141f7422598b92f824c73a2
ac196bcc6e6167849a0047139f63f5e7078c4ac8
5960 F20110218_AABJIV hu_s_Page_147thm.jpg
ad82f5bb5b5395bd804e9aae258e67d0
01357d00b9da5f2ca220d06e8ae0af03b96ddcf8
6463 F20110218_AABHBY hu_s_Page_099thm.jpg
c6e994f1b95d16a68341a0d83036e089
467cebf3a07f17a67dd85c6f7159105571d64576
F20110218_AABHUB hu_s_Page_057.tif
a68c32c1cdca8361dac2e6b1cf542853
4053d338b470606b57e8daa1ac5cf81b246f3d90
5757 F20110218_AABJIW hu_s_Page_148thm.jpg
70d4fd1dda2b7e18dfe6a7a8050ff7ae
824b29e13407dec4a135557f9f49897c25073f89
F20110218_AABHBZ hu_s_Page_150.QC.jpg
b0a124bed12f6b5d5e5f194a486bdaf1
54b73798bccb2fcf5f7cad74c72bd207acce36a7
61393 F20110218_AABHUC hu_s_Page_067.pro
a1280134148951e04aa938198493cc5c
b73ad795dc9aa85456d332298ca73fbc8b3287a5
6434 F20110218_AABJIX hu_s_Page_149thm.jpg
72b36935361229961b0fb2e429634e17
ae502d7c88b439219659be1ee306ecfd96732480
1051805 F20110218_AABHUD hu_s_Page_185.jp2
68e770d34a80ad6e438f4e9a547446ff
f655bf07a21c6eae8656fe0432bfc906f7ae0885
6508 F20110218_AABJIY hu_s_Page_150thm.jpg
afe46e79a62e5ea2cdf6f3b56c939016
55c5b7cf34a8aad8afdf1b06d84c82133c893627
25125246 F20110218_AABHUE hu_s.pdf
2251a8066239512bd484732be5ae8da5
873158b937fa8038eb75ecb6eccb478173beb3e0
6201 F20110218_AABJIZ hu_s_Page_151thm.jpg
f419b786f40ed7f97704a942568d490b
cddb939ade40c42528e9de476cc15563d46b52ac
1966 F20110218_AABHUF hu_s_Page_143.txt
677c662d06a936ecce5a54f6f68ebb5f
c93b7560d6e9042d38ae15e75fbedb94d8a9bd81
F20110218_AABHUG hu_s_Page_083.tif
3a4b62b4d5890fa93731746ffdc84a3a
66ad428aa4d87f460526a22f392a20b56c16b581
5290 F20110218_AABHUH hu_s_Page_065thm.jpg
fa5fa39178a84bdea39e3820df20a5a3
507027c938213ab44bfc2ab675a07ba2692719e6
89499 F20110218_AABIRA hu_s_Page_047.jpg
a709438a50edfe715b5e2f0836e7283e
fd6641110838d6255645b0f7b79674a862571142
26316 F20110218_AABHUI hu_s_Page_073.QC.jpg
33eaff301732eb8da1a2bfd104b2808f
1a7a476ab2598e5bc9e5f96fd3bc40b29860c7ac
24165 F20110218_AABIRB hu_s_Page_047.QC.jpg
d378bdcb6d3122ae4c907f5ea81b40a8
debf41222d6bb803eda8acb871de10201b5c3a78
21442 F20110218_AABHUJ hu_s_Page_208.QC.jpg
c32fc8c3a55ca784ded4b228da2bbd8d
190f79def0f8f1888d6f5c3ba035e933293037c3
83527 F20110218_AABIRC hu_s_Page_048.jpg
67f17dd7658bfabccbb480bde77da630
9bd1cfe47d952c6306a1b4d9b2bb6c3c297cacf0
6135 F20110218_AABHUK hu_s_Page_092.QC.jpg
877ef131917516cb11f64588de5425a2
f0f46f449e64debac121f215ccc8e8f928a461cd
22439 F20110218_AABIRD hu_s_Page_048.QC.jpg
2d94f0c85c8f8e6d247769c9dad64a56
3530803a70deeb27857b5cf2ba39194dc2f1397d
3537 F20110218_AABHHA hu_s_Page_184.jpg
e6e5d2f388a630a2908c98fc1088c8bc
07f77b3f09f24a488371cde008902fccd042e67f
F20110218_AABHUL hu_s_Page_039.jp2
831a873bd20ba2232810d4fd997ddae3
d304bc0a9043a04bb34a27830d94f05b26f21a1c
76539 F20110218_AABIRE hu_s_Page_049.jpg
3718297562befee2057146f68c065401
c0578a634af35f5bb1dd70ddd296cc8d57263dc7
16573 F20110218_AABHHB hu_s_Page_088.QC.jpg
a491d6558842e08cd87f6fb7f1ffd9bd
df89691728efba77dcef5c791d02c436a54d5c31
F20110218_AABHUM hu_s_Page_075.tif
b4e9ea9cbf73c5000761c327d9c4c1f8
50dd3daaa298378d6ace074bec3d4561f33996f9
21018 F20110218_AABIRF hu_s_Page_049.QC.jpg
38102cc4b0a30573a5f61cee977eab63
e146f2f3d7358c6d3c98257f985c48b6eb3e914f
79073 F20110218_AABHHC hu_s_Page_210.jpg
6361177f05b1747604cdd36622eebe1d
3e2ac7c9273fed02a1f43e9665695c335373203f
F20110218_AABHUN hu_s_Page_188.pro
78a54792183170b4f76f635b87ae68ea
9e0c23ecb07c1ba6ce1bb958550ddb9dfaacdea1
91993 F20110218_AABIRG hu_s_Page_050.jpg
8455ba03e6fa5d307665847143f2ac12
997288c66804f9a1185be44041732f1f5a1533e7
85245 F20110218_AABHHD hu_s_Page_143.jpg
dc77f03a7e71db9f92bef9c34285ea59
1e5b0f56f33ae89c7ea4bce92526939e6a31fd02
F20110218_AABHUO hu_s_Page_194.tif
92eb0093eda49cc540178c6e6c61a8f9
95995ad9ef91a8f6c102e0049d44617608f48a06
24650 F20110218_AABIRH hu_s_Page_050.QC.jpg
039fefce5e7dc166487d800e8bc680b9
ac8db6c3a406e3b1bfa39e1d11cedca1372bafcf
4447 F20110218_AABHHE hu_s_Page_003.jpg
db4727a1a7023215e25aa2a4242061be
cff6815345298dc8cef730945359b869df4d414b
82841 F20110218_AABHUP hu_s_Page_138.jpg
42d6a9fb5a7805d061bfcd7a37655662
7520190a68ea5bc2b10192c5da0ea14feed94375
85389 F20110218_AABIRI hu_s_Page_051.jpg
569911f9d080dc9bd25e0dd0eaa49a39
a6f25ce0bd6cea2133c29e0ed5893f9f1e5bee82
24314 F20110218_AABHHF hu_s_Page_063.QC.jpg
5be03697c2440d712244e19da83fb3e3
1e38bb3c59567d555df2eef74348b92ebd873b50
6380 F20110218_AABHUQ hu_s_Page_103thm.jpg
1f5f89c14b4c78d988c918b895eebec5
d393b6637e609fd0e6a777eb1eafbec07a35838b
89178 F20110218_AABIRJ hu_s_Page_052.jpg
7c9c7628bea10e1ea6733a4b0f1479d9
c39db3d682090bdb78e158d49f3d6a4d6ef74398
29236 F20110218_AABHHG hu_s_Page_085.jpg
e6c64eef47198ca4ac6e70c3e3295809
d06b44fb308a240433b72fe3d2b04435c44a4008
1051865 F20110218_AABHUR hu_s_Page_202.jp2
b3467ae1bb87551aff43feaca06adf2c
2697860d11afd4f9ef5cd9824dd67b5f00c074e8
23963 F20110218_AABIRK hu_s_Page_052.QC.jpg
ffd93c728bdd7402c311ae64dad53196
5d5ea721e021ead6ada5d146b32fb2b466fa3192
2280 F20110218_AABHHH hu_s_Page_166.txt
6f652d5f9f81504f2c3d0f573d91467b
57582b3be3e8cf8bac35ee8aabe3610929971cc3
F20110218_AABIEA hu_s_Page_227.tif
2ded7be94302e0fb4477df8c33b4e208
c0112f0c5c243cb0fdfc02bfbc1d2c4ef10baa96
1846 F20110218_AABHUS hu_s_Page_153.txt
d98de512b852d1ef7eae4e9f206d93a1
f431a9ae47c80c07ccb8ed1e76b9988eca3429f6
82200 F20110218_AABIRL hu_s_Page_054.jpg
26f8343a9e02ce95db66395ba4f1291c
07de0e3f3df61f1316b8762bb51bbc73ecee7b86
7968 F20110218_AABHHI hu_s_Page_157.jpg
6fc40f491939f607b4c99709a2151243
837e50fcbbd17fd7c9310c50428e45a01bda5a89
F20110218_AABIEB hu_s_Page_229.tif
f93d48a2ac5165f09f9ed30d60bca91d
ae6ad114ff132e569187574a4530216fcae74d38
F20110218_AABHUT hu_s_Page_059.jp2
8571ecf85fca6d5691fb68588f11189a
43f045999c8b1321a21a4bd71408416a5f459524
24098 F20110218_AABIRM hu_s_Page_056.QC.jpg
b86613a9ebd598a8510d18e75c3858ba
be6458d7c537129ae8b851e248c5b667553580fc
7310 F20110218_AABHHJ hu_s_Page_204thm.jpg
bf67dca36d38869edcfa52d1d740eb1c
9e9fa21c3c034658cfb953ac3591b0e1e9bf4da0
F20110218_AABIEC hu_s_Page_230.tif
f12eef4eda083ab10eb2bc57be8eb48a
ba4c48622bdf20b4ca71cd8529406db22e4b4537
F20110218_AABHUU hu_s_Page_034.tif
74c69d13f96ca17c7b7ae50ea32eded7
eaa3722fbe8277c4c7a42366ab14540d2452480c
23507 F20110218_AABIRN hu_s_Page_057.QC.jpg
8cc324628c9df11919ce898f7fd03372
64f8e9767c7091cf52ed2460b8bb0359bf414625
F20110218_AABHHK hu_s_Page_198.tif
3e910190b2d363df3087647be5fa8ded
5adda0e00bfee2370b3daae3e875486d730226ba
108 F20110218_AABIED hu_s_Page_002.txt
a4c44603f1eafb42089f4de11f37779e
255ee0e3a84ba1fce8cda17bdca523e79ee52ad5
F20110218_AABHUV hu_s_Page_064.tif
d4cb392854d4ee22d1307467d459b486
e371eaf29589c34bda317e228e7e8b9e83fd7b46
103749 F20110218_AABIRO hu_s_Page_058.jpg
902543bda91e07f8566881d172853d55
b1e5d02921f322345985e5c4dfb4eb6c7ec64889
60644 F20110218_AABHHL hu_s_Page_218.pro
774a65484850e12134353f06b0ede64e
516184acc4d4adc102ee5f5cf500728ad74700ff
1799 F20110218_AABIEE hu_s_Page_004.txt
f88c93ca46d8f72d2612b4f236e0d93e
ad42380dfaab994cabdd515da09596ab02574764
64223 F20110218_AABHUW hu_s_Page_058.pro
63341072ca64fb75275a0d3e7632406d
d0640e56ad3ec0458aae05cfbc22280edcad6e4b
85465 F20110218_AABIRP hu_s_Page_059.jpg
7e1e60519f50c3cca48cd2f020fbd989
4555c717428f097b7d3127355f87b33b8b138b11
748 F20110218_AABHHM hu_s_Page_215.pro
ec7553667b2626701ac258c7250e99c6
74478c6ac85223441ea5aac6823bbeeb5440a93c
2502 F20110218_AABIEF hu_s_Page_006.txt
f771249ff55b674d0a994149b1d4d33c
93415fe46eefd0a5bd93ad0c91687b001b1edc0c
3489 F20110218_AABHUX hu_s_Page_087thm.jpg
4774ca9324b9d093ac9a0dea09762f87
3018820b606b1db24ee228b9ee0c651c0ed60d8e
23109 F20110218_AABIRQ hu_s_Page_061.QC.jpg
7196bd804f49c55d86199b1b06f75319
7889fb6886d5c2161a69bc17d00e21993d3a5dd4
1003379 F20110218_AABHHN hu_s_Page_018.jp2
2f23d57a46e235e47ecaec43b263b5a3
3145a65facd5254680672f3fd9abde3e2a46a7e4
3559 F20110218_AABIEG hu_s_Page_007.txt
a82cd0cdb3c1061526c8188abc5483c0
6b05b995d896ca9a3545e84736a4b52121811aae
2046 F20110218_AABHUY hu_s_Page_141.txt
3c3f561e7864c154ee544e1969537426
4d7b5ab9cb4eef5c913a780d9f390e9fc9b92ab4
90295 F20110218_AABIRR hu_s_Page_062.jpg
8df85b008b9974806c720b0154c5c9ee
1cf5719847d7e071b2479325e2b8fb3fa000e917
21532 F20110218_AABHHO hu_s_Page_211.QC.jpg
0f313a75cc0a4f059f82e33b9b664959
0f3c95ef1eae05d841c9e195efe2136707afc0c4
273 F20110218_AABIEH hu_s_Page_008.txt
4f38d0587f9c41d1bad54453504c7c43
26355d761f4ee03c37eefff89aeeb1e1f61dce57
F20110218_AABHUZ hu_s_Page_099.tif
ed15c595b7197e215867d9ecb48130b9
622e2884878f53c79518419bbd2a61f23d390a91
1051970 F20110218_AABJBA hu_s_Page_062.jp2
699dd3188f17dc19a96c093e9d12d084
7293cdd037346bc58a23bc316487ca3b773c6638
23912 F20110218_AABIRS hu_s_Page_062.QC.jpg
bfcb4cee81d6e39d7e0a0446845a6177
ecfed15525b6e8f86967d5a822ff11a4544d56f8
1211 F20110218_AABIEI hu_s_Page_009.txt
373a3354bca5b9892644efc5f62aee99
8c26f0948f040d665aac6246099eba9446363cff
F20110218_AABJBB hu_s_Page_063.jp2
2e2b4870dccdf61eac9c5d19c52c120d
a72974f76bbe8e2d6af0b097b5f872ccfd2f0472
89460 F20110218_AABIRT hu_s_Page_063.jpg
7d32fbab2c2e1f536dfe27a3002a7826
9051e1b705eaaa3367d5899dc15c10dede18f7f2
29155 F20110218_AABHHP hu_s_Page_019.pro
ee4d95f87f2c620d2129fdca13cdd269
22e1febc0eac63ca9ce500acaf727fbfcc2d287f
2267 F20110218_AABIEJ hu_s_Page_010.txt
a3d280e0306fcb54e956c1f599d99e25
6d728448cb4954570b9383fa422218082277a585
F20110218_AABJBC hu_s_Page_064.jp2
98f8945af8989a3578e6cf2461664b58
d10d56a9df1cc88e19b2534e2d960d46b1211fb7
102555 F20110218_AABIRU hu_s_Page_064.jpg
297aadb5b823929bb35ad3734ca82f3c
53f87d60a1998e6d45123bd67e49af8342ef8998
F20110218_AABHHQ hu_s_Page_021.tif
1eac6d4b8fe88109cd20af9b901e31b4
4ab006b1ce016832e86a70be4c76355b3ae0e3f0
1700 F20110218_AABIEK hu_s_Page_012.txt
0e4746418725594b75ac99a1a434bed4
a7b7861f5f9fb781187c98d8e0851f88596a7d7e
1051985 F20110218_AABJBD hu_s_Page_065.jp2
66404986d78a5e92768fe73aa03df3f5
a18add7dc7b26bd9fed8ef60507fb39db9b38bde
98015 F20110218_AABIRV hu_s_Page_067.jpg
a6e73b52975a0609efeffbf3ecc84651
bef5ecd796747cd56e4275d5141e4baae4298da9
5259 F20110218_AABHHR hu_s_Page_189thm.jpg
14924aebc062d9470fb1396840f744a9
0e00f24b79a87df731af50addd84152e1cb149ce
F20110218_AABJBE hu_s_Page_066.jp2
c7c9b9541a8271d307cb4b19b2919554
4ee1f0ad3c32c3f7ae6d96f619f6e697120922bc
F20110218_AABIRW hu_s_Page_067.QC.jpg
cb4a53eb0e72f62dd895267078fb177a
d9ac336aafb124c0024c90212bc595a3f3f2b3f2
123 F20110218_AABHHS hu_s_Page_196.txt
7e08493449d40e4f83e887acccaeecae
9fc3502e6045cb77e241a71eee1bc056fcf2b5b9
1691 F20110218_AABIEL hu_s_Page_017.txt
d0147adb046625272d3b164ac6fd5bc2
7bc73892d1060c94e4dc5310e2dbfa9709f42e89
991925 F20110218_AABJBF hu_s_Page_068.jp2
fb66139a8235d5ae0a62d34ce25d786e
762c2c4dc811c97a229c109970fa01a86383f461
75564 F20110218_AABIRX hu_s_Page_068.jpg
a7664fda8d0ae25963315be2286a6566
caced4e481eaab6bf99fa44da586fd0c4dfba43f
25727 F20110218_AABHHT hu_s_Page_015.QC.jpg
8bef9b72ad9b18e28c356e69f22f8815
1f2b7d358d75db8f761d5cefb4a5a7d42df1e97e
1803 F20110218_AABIEM hu_s_Page_018.txt
446a70883721fdf9dc314a5a107fcb3d
ab5b94560d5ce87960874f7f2a6440582b20f875
969350 F20110218_AABJBG hu_s_Page_069.jp2
7ba1d2cda8770e9933b1106c50fce37c
6782d4da55af28fe8be396cd30c7d7451742ceee
82142 F20110218_AABHHU hu_s_Page_044.jpg
291e04178ca6a80cd368fda7d09b09c0
97cef3640dc936ece4e31cb6bf15835244805267
1210 F20110218_AABIEN hu_s_Page_019.txt
c14d4284bb0b9b4f5840455803ea0f83
856e9bd202b6811b322d7569c66fb85c65d247b1
21758 F20110218_AABIRY hu_s_Page_068.QC.jpg
c73d0b1508f7d3a598bfa889480947ca
d62bd750ee672480edce4767d6f60863dd4dbf46
1051860 F20110218_AABHHV hu_s_Page_060.jp2
885c45f00ddd4ea1f76c578f4ef7ee68
3e41f3dcd081ae848925a0178563f8b73591c7e8
1887 F20110218_AABIEO hu_s_Page_021.txt
8c94480abb5be49212083a3d45ae9d51
0d9679c1d057118826e43938aadc05b22116af7d
879875 F20110218_AABJBH hu_s_Page_070.jp2
4c40f893cf7d66bd8836b7337c9529ae
d7e4cbfd677bd9f3dafa929de02ddb7300a23a3d
73726 F20110218_AABIRZ hu_s_Page_069.jpg
09d7e085b516cd34364b88698adaa5f1
b6735d9a1a2f5884a403733dea75942e45b3cd5c
13041 F20110218_AABHHW hu_s_Page_119.QC.jpg
8f7f9b0a39c60a2df613b3953a308b81
cf90eb300f3f4ce0450e0043f5b5a8f3df5ccb18
F20110218_AABIEP hu_s_Page_022.txt
f4750e629add2ca1bec7adb53ad3e907
cadde8711cba9ee9d4f2c538a6e9c27e8da4f37b
F20110218_AABJBI hu_s_Page_071.jp2
52f8f5da9566108bf7791b97533dde61
7831280eae72ea8aa144e781c5d1ace8a89489e7
F20110218_AABHHX hu_s_Page_121.tif
dbfb3ffccebd580d6ac3060224bc2ab9
782c23517aed669ee6fa239711792935c4860651
271 F20110218_AABIEQ hu_s_Page_023.txt
1824d66134614197baa9c990218253d2
56ba6b26ff84481d156fde7876c10301499f040a
1051971 F20110218_AABJBJ hu_s_Page_072.jp2
cdb255a2fb727f65ba77f9e77855fdd9
cd7554ad60e54af7134064abf81a1a3f2e0403d9
6849 F20110218_AABHHY hu_s_Page_202thm.jpg
488711838ed676dcf817a7cd854214c6
623290497429857fb0829bb4f563ef278dcea1cf
1693 F20110218_AABIER hu_s_Page_024.txt
c81ea97b2d5a7487a4a2b3bf115b4f3a
ffb1ffc91b597dcdeb347d2010ed36e2e9ee8124
F20110218_AABJBK hu_s_Page_074.jp2
9286d411cd6aaf89ca3713b42984b818
0b7faf46329df3b1a69aca9c6b8df508c06b65bb
F20110218_AABHHZ hu_s_Page_175.jp2
36580856619fddcbce9a5d99c03cffc5
02e7d8c8975c437ab859f836303b49d752ce43d8
F20110218_AABIES hu_s_Page_025.txt
382d3abc5e9462779cdbbd2ed2673083
a46254e6587e9d9f240d5d41a9a50fe425bfb9e9
F20110218_AABJBL hu_s_Page_076.jp2
bdbfe5ae72316db92f5ee520473713f6
655a3eb45c5808461e0e7d6ea615b16efb0f139d
2285 F20110218_AABIET hu_s_Page_029.txt
f7a99bf1450f3957d92e81a7c77600ad
85644d2ac660521315779a3e3f147035d757709a
1026937 F20110218_AABJBM hu_s_Page_078.jp2
96f3201e4a7330cc4948424f0047df83
98eb7358d867936bcfe4dbf87aa3780ac6ef6200
2526 F20110218_AABIEU hu_s_Page_030.txt
8bcf095a1c1d7611f50f98228baa021b
678d954cbb0d8f3707b318f2027326b66f83b405
998793 F20110218_AABJBN hu_s_Page_081.jp2
6aef836facb090dc0b8acce24527219d
dc72d0960e0ce71d79acb569be533646e7f13dc5
2581 F20110218_AABIEV hu_s_Page_031.txt
1ee98ee49defefdfe39d0baa6dded94e
978b270e8bce0862f855541b8cc92c3b628b2093
1051960 F20110218_AABJBO hu_s_Page_082.jp2
9953a916bc18d4f564f5c4d03ce7e961
bb30e9bb5bd33bec73b178f6580b1f4bd2d8b62a
2584 F20110218_AABIEW hu_s_Page_032.txt
bd1b73ce556400470d2f1e6c8a75941b
d99c915624be01d5dde559fade19010dd7d31485
986787 F20110218_AABJBP hu_s_Page_083.jp2
39bb541fb80231e9a6e22b38b31ec48f
6e7a9614315438a2b0e696fddb4194ab598801da
3002 F20110218_AABIEX hu_s_Page_033.txt
4c1aef1d506f8dfd0993cd56861a9448
ca28731fa439764e65b4dc3b1f09e7bca2669305
11209 F20110218_AABIXA hu_s_Page_170.QC.jpg
7b8cafe51653d2eb964f820051fb1906
32d372a796ed28fb987f379f3c90b38f04940939
341977 F20110218_AABJBQ hu_s_Page_085.jp2
1b548dfe0d44fdb1d2b4cfdfd141bd05
e423c0b7914fbd3af35269e491e0a73de9ee45e5
2734 F20110218_AABIEY hu_s_Page_034.txt
efd4a600f567f84852ddb93d3c7328d4
fc499643e606b585765379c5a768f5e55eb97cc7
17228 F20110218_AABIXB hu_s_Page_171.QC.jpg
47f069bacccec80bded3609eb2e5e3e3
13625a97eb41787945a5fded48755f7c0a25d9f9
552837 F20110218_AABJBR hu_s_Page_086.jp2
e477a6eb56c7da2982cbb1202c3e9c12
e1b26723d5e13b3badc106dd56dad0f8a9c9ebe9
2628 F20110218_AABIEZ hu_s_Page_035.txt
5a05e52195abfc876aded0600976dda3
9fa2a414c87b4cf3bf2df69398ec69f93e838a73
90281 F20110218_AABIXC hu_s_Page_173.jpg
22839a4003472ed36998312c2f74cb16
b67f6256e3f0272409f232b073df21dd4f4e0ff7
407101 F20110218_AABJBS hu_s_Page_087.jp2
41fe4229aedfd499cd032068b0b31478
c72c91d4a2f2b5362b406a152320248fa7b50e12
116531 F20110218_AABIXD hu_s_Page_176.jpg
30f9f0153a377846e4c621d7d49aa385
80adb1d4fd490296a3c30f485a587e5606819881
683035 F20110218_AABJBT hu_s_Page_091.jp2
c3413378779e200ea4360723dd611e5c
b5ddbe92bca833242d528c1ecb46a8b72bd3176f
29481 F20110218_AABIXE hu_s_Page_176.QC.jpg
d2a6a295f03fa5878a4cf8e2f38f9397
cc5a06ffd334d38abf9e4269e238e4536f76a84b
243203 F20110218_AABJBU hu_s_Page_092.jp2
56f165e31717a6eeee63969706b985c0
0e3600645694d3c94573ca59c3b95e723b80abe3
F20110218_AABHNA hu_s_Page_143.tif
94a4e5a4288f6d255ac73e8afe5661e4
f0475f830c6bebfac6727d7c6a00bbca92f43b2c
101029 F20110218_AABIXF hu_s_Page_178.jpg
a767e2368aad52e0dd445b0bd839b79d
cfc0954aa9e78cf315fe5e9416f7428f790d989f
730473 F20110218_AABJBV hu_s_Page_097.jp2
00201e1f9bf527c846783a5dd1614d16
ccf475e65ef36ccc36ce1e14c216c4dbade97bed
499 F20110218_AABHNB hu_s_Page_002thm.jpg
24bd8f6cd548b62fe3050447825d18ba
fdcc39d0199cf2a34ca92dbc394a0c45091d7d64
26690 F20110218_AABIXG hu_s_Page_179.QC.jpg
563ca4b122828a82e4f124b438beb321
93a9cf8aa41a92dadfd4cece43e3462bad5945ae
1051939 F20110218_AABJBW hu_s_Page_099.jp2
b61f8dc1072754bb40ae29c06aa09f7d
780969cd1833151ac072db8bbfbf006779c9d2e5
1046246 F20110218_AABHNC hu_s_Page_098.jp2
277e91c0e4cda1385254d07aa472b490
540ea53b8a3fabb0e804c464a7bbd4058add0457
100782 F20110218_AABIXH hu_s_Page_180.jpg
62153c29e4a89b163baabdb654aa3f41
0143a8cdf00ce7075e50b44ff3bfc03562a05e55
F20110218_AABJBX hu_s_Page_100.jp2
657d5b36f2ff8af6760443cc465fd16d
35c3d1e00d88de5401bb3c28a16520e574728029
F20110218_AABHND hu_s_Page_173.tif
6cfebc8c9bf960593c3ad2ea600f7dce
234ad92adb0386d9d3421ff31ce751bee27436bf
25837 F20110218_AABIXI hu_s_Page_180.QC.jpg
4c25f70dbfffba1f3bc95275550e45f4
f8958506b41b587dd22f980499c3c2dbc05f4472
F20110218_AABJBY hu_s_Page_101.jp2
6df2a17bc2ed8d9edef92555125e4863
4e64047d7cf0c8e101bff6f93480828b59d10911
6150 F20110218_AABHNE hu_s_Page_190thm.jpg
44bcf7a8af07b51c944b4d5f4ec87753
a914dc90470d6f836b71c7b9db652279d7e46c19
98350 F20110218_AABIXJ hu_s_Page_181.jpg
beb5c1a91dbb415af5d4b98b38370235
e548d3eb2e62cc77315c63971773c350eaba4459
F20110218_AABJBZ hu_s_Page_102.jp2
edbeb6a1da5f24f0717eaa621c050702
ae315f3ff2ac31c41cede3fd6c424413c5667fa4
F20110218_AABHNF hu_s_Page_065.tif
4c5ef232840a9b2c6afb87ce0a80d57c
c15f438873836661a77ea989476a33005db9680a
29211 F20110218_AABIXK hu_s_Page_182.QC.jpg
9e39364178b8def56b92cee8b2bf8fc4
c0ecf01dc8f36b473a6ee60977008c79eefb0191
F20110218_AABHNG hu_s_Page_197.tif
683c48f4cb13d0056041403d9fe8341f
43b5fdf8dfbca967977a67f72e243b2656cb78a2
46454 F20110218_AABIKA hu_s_Page_021.pro
b931035e9d10c554450ce14d29f8970d
6468101b4fe07d3e303b9aa2819145fdc1b729ab
13304 F20110218_AABIXL hu_s_Page_183.jpg
2585cae76792324d228af68bd5e974c3
795baf6f817a97de1160cbffa5d0b464fde389ab
77407 F20110218_AABHNH hu_s_Page_004.jpg
08abf88b3dc7f86a90196eb4f315e218
a8378c798b34eea666638e7d0f920c244fd2ae5d
47795 F20110218_AABIKB hu_s_Page_022.pro
53184f06fff5ff5b4ee0be8e8f625cf4
4574c48c1bb4595a7e0dddc48012a4dc5d36f545
3878 F20110218_AABIXM hu_s_Page_183.QC.jpg
5ede658e4e2d3e8876a0a68a4c72a89e
d5105acdaa27e38a7c038d27a924eab510d9bbe3
F20110218_AABHNI hu_s_Page_130.tif
9a49e3d7e633f91928c4164bc26e9c4d
a214f4f0ee069c1c73b4638777a3c12857e3bedd
5561 F20110218_AABIKC hu_s_Page_023.pro
96a1cb1af0c38f444f33f7e3c030c0a8
369d524ea35e9ed0fb49aaea65d89ae115a2b988
1195 F20110218_AABIXN hu_s_Page_184.QC.jpg
7b396977f6fc2569548c11265865ac88
85a1b210e7c4737c24032257de08fe53b701d3c4
1051974 F20110218_AABHNJ hu_s_Page_208.jp2
217ec5600a5e42b44374df1ac73463ce
d7053870d4a28f09e9d0d037369aa80143651fd6
40924 F20110218_AABIKD hu_s_Page_024.pro
788c3804ec1180a11da6fa3fd3f9212d
86a1f29aea1cdff1bd6cb64a3486335513dd4fd9
84246 F20110218_AABIXO hu_s_Page_185.jpg
b193346b3edca9dd4d5456813c344399
f01a20b75ed1badf64d2e4802d9ea862aad8805f
F20110218_AABHNK hu_s_Page_035.tif
9cbbf88b28280e2b2a3b61175c046eba
6674b71fc28e91849a876f77db1d12d2c3af78c3
45076 F20110218_AABIKE hu_s_Page_025.pro
fde8d8aa870faf60e4438e98d2efcf2c
171e0fc899e6c2867a5112dbe9c454c35ce6edcb
23466 F20110218_AABIXP hu_s_Page_185.QC.jpg
ff80e63b0c382ba65ffb63af3d88b590
be932948b01b2811df14d68e25e14c232b9624f2
2169 F20110218_AABHNL hu_s_Page_175.txt
c0510f71d9e9776b3daf5e1642070c3b
c34046459c2ae8d3d92f30794b11e7842d87a9fd
61516 F20110218_AABIKF hu_s_Page_030.pro
ed0cad8fab15a95a11a691b2b66ac3c1
3eb00a3de218dd065c0487daa36e318a69b5ee9b
20003 F20110218_AABIXQ hu_s_Page_186.QC.jpg
e1280a0a77f931b4b8947e0b914f277c
eb43fa39f7d2819392a3b00aba5fd578b97e4afb
1916 F20110218_AABHNM hu_s_Page_155.txt
9d0e34bdc00b5ab35aa02d191d33a07b
d04b4f256212b8841e119fde7c2dfefb69fa901a
69048 F20110218_AABIKG hu_s_Page_037.pro
710ee6988b5fb362fe007f103ccb5819
332e83f16776316add1032b0dcd659bef79eb2f6
77164 F20110218_AABIXR hu_s_Page_187.jpg
da239f1e9cf636a20cad4334d37e44f9
aad1c66bc2ed60e4baf200039ddbc9a7589037ad
6634 F20110218_AABHNN hu_s_Page_130.QC.jpg
2afcb37ae195d082b61b8e38d0435b0f
731a3a622b85b46370297e1ba82157bb86d74a29
58223 F20110218_AABIKH hu_s_Page_040.pro
bc709820345139eed0d83a2e4e965ea6
2968b1e75fcfe3f59c69965c483bb72f751dd1a7
6049 F20110218_AABJHA hu_s_Page_067thm.jpg
1ae1715fbb6a04d7fd72b8b87defe96a
3f6b70984d5c8ad77759c07ab8b20a34daf93ace
19312 F20110218_AABIXS hu_s_Page_187.QC.jpg
a203e77a5d3c702cdf5c987c08c959af
79850b30098578cd14acdbfb13fec4b15e510a24
3057 F20110218_AABHNO hu_s_Page_005thm.jpg
48d724e05b1e790d20016712c046a677
1ed22f1137bf24fbac9d7d4bc8156efc6fcdc837
61567 F20110218_AABIKI hu_s_Page_041.pro
ac9462b9b2b08bee10742e229cea38a7
482d85aada8e171340482c3034b85b74e2556440
5417 F20110218_AABJHB hu_s_Page_068thm.jpg
4a4c98bf5a8dbc83ae009c3d59ecc168
307f0800704afaa365c4b162911c98897307de65
18957 F20110218_AABIXT hu_s_Page_188.QC.jpg
76d8a5a0782bef32c60639d5b98b7e5f
e24072b8e0ee7564183a626e564e5e1a31ec2ff3
27584 F20110218_AABHNP hu_s_Page_218.QC.jpg
f8e80c6f72f7474e4230216338e8ba08
bb360fdd6ef8a3d05cca32123cd08258c23873ca
60970 F20110218_AABIKJ hu_s_Page_043.pro
c9f3fe87cb720e7e4fafc8a73ca0d481
47f2177fc35b66338367c52da5238c3d1a018222
4951 F20110218_AABJHC hu_s_Page_069thm.jpg
4247e6fd8567c3f04d865aad6950b707
0e2570b6e976183715243623bcecb6c94b52ef83
19632 F20110218_AABIXU hu_s_Page_189.QC.jpg
3444856a34ee6a5d9f65a7f8c7f40df3
bb3aafa4e0062eb531277f6fa7097d440512107d
94642 F20110218_AABHNQ hu_s_Page_066.jpg
59a431370ace6627bc7090a59feed04c
1fd88c3188b0011b00048271a096ada18894a175
50923 F20110218_AABIKK hu_s_Page_046.pro
d23124aab4d634be28b02245871b980d
758eae0e160ee3eef2311d627accb9dd5bc1f1ea
5755 F20110218_AABJHD hu_s_Page_071thm.jpg
9c54727ce2f013083b3e23846cd1b40e
3763ac1e8c33d15957e7edea8a83264872a95d5f
69203 F20110218_AABIXV hu_s_Page_190.jpg
e8897ae5fce25f890c493b7fd29b9a44
504a1c1bc28acb6e73497f569221bc5511df81f2
815035 F20110218_AABHNR hu_s_Page_089.jp2
b539c7e15877e3945f9690edaae53419
c8291b42c3dff84266f713dc06f882bfb0e7de7c
54910 F20110218_AABIKL hu_s_Page_047.pro
18cb438c9cbeb576f4b4a340d775396e
126126ce33c7d9b58953e613f71bdc2d7d151ae8
5478 F20110218_AABJHE hu_s_Page_072thm.jpg
99aadb2ff91786776fc1907424b301d9
095db4e1715ccca96b54990b59dab77cad6635ea
21536 F20110218_AABIXW hu_s_Page_190.QC.jpg
2901a71634ce7892a279fe074e87de1f
6de9778de44f48d394707cee0fe5553d7ef49901
5992 F20110218_AABHNS hu_s_Page_110thm.jpg
6868dc99434f8a5c540940e00094f094
43a0573abc6d56d7f88421ae7376bd9888eef783
49631 F20110218_AABIKM hu_s_Page_048.pro
7c6b81777a16fa2f3d13686688bbf9f8
f392a846337b5c6f86aa53be7bfe4f6294c0fa9a
5871 F20110218_AABJHF hu_s_Page_074thm.jpg
1e5615b7c139e6102d10f4b6f66f8915
3d105cd00371d427f3321d2decf9de90131800e0
22418 F20110218_AABIXX hu_s_Page_191.QC.jpg
ff8de6cdfde3d2add926a1dd8cb43ea7
1305f3671521db47dba22ab219b61a18ee807afe
966145 F20110218_AABHNT hu_s_Page_075.jp2
24124d823c1dcac3f6371c9a77a9c086
40676b291c8a3182d2146e610dd5645b4026d4af
46686 F20110218_AABIKN hu_s_Page_049.pro
761e28b0cefbb661b43ca781493b8df2
e4cf6ad09e6aea2377efa8d5312bb2aae24d14f0
5092 F20110218_AABJHG hu_s_Page_075thm.jpg
d82a415d057d2f3f03c938daabe6ea09
6a4f106a37cd260b40afa2adbd509480d810e9c2
56396 F20110218_AABIXY hu_s_Page_192.jpg
b125d5074491ec478aab25695f5305e7
4eb5e5bf66eeef1344c1871a9cc280087ce8c4f3
2025 F20110218_AABHNU hu_s_Page_132.txt
915abcfb5f05958392032b9b4d805c21
da5971ce9d314b3d1c51e2b778b1617b9bc57082
56519 F20110218_AABIKO hu_s_Page_050.pro
332832b9965deca6a050cf16c5e1d4e6
0c94dc41000f8aa43e3da21538db3aefa26df165
F20110218_AABJHH hu_s_Page_078thm.jpg
def7b0aaddcb78201fddbde7c232c609
0474e2c2425723659c17f7e45f9033c45a01a04d
19963 F20110218_AABIXZ hu_s_Page_192.QC.jpg
fa0410856c4dc76a0b968529220e02d2
c8428abbd110ed2ef41bc732f8b7672fcca87b42
53654 F20110218_AABIKP hu_s_Page_051.pro
2f2f63176c93ebdd75cb5f99ffce83e5
936f132d1514a5031a33d3c1fce2f9f025408101
5185 F20110218_AABJHI hu_s_Page_080thm.jpg
2312ea14d36d2fad0e1976b6bed3e5ab
d3b8da1f953270f733e79e99bff9b49b66bf9fac
2189 F20110218_AABHNV hu_s_Page_121.txt
c217c1c5852d9bb77501ec62c11bc9f2
7dcfa241242232510a7044d78c3715c8c3c02af0
52767 F20110218_AABIKQ hu_s_Page_055.pro
bd9de109c6dd3fb6303577729aeb0e32
5a159bc4a87ab9c946338186f74daa208c256b9e
5833 F20110218_AABJHJ hu_s_Page_081thm.jpg
40cebb6e76c14d1be789b84988d05d25
f7d0aff576e3b9f2e89847ec2a58b962a82bf5f1
982981 F20110218_AABHNW hu_s_Page_021.jp2
cb85d6921433622eb87fa9908d315122
c271148b884822a3c3e610e1fe25ee512f43b671
3696 F20110218_AABJHK hu_s_Page_084thm.jpg
2e91564d0c70812f4d2bbc6a8666e775
198cf2a7d5ad2d2475b8079cbdd600d1fa623403
12058 F20110218_AABHNX hu_s_Page_005.QC.jpg
8de88794f5a2ecaf32fb50070b05a007
2c0e3adef9191b0c75128ef679788bc808ac0128
52904 F20110218_AABIKR hu_s_Page_057.pro
7c9f018f88bf1b13014d4f78467642b8
312779b4e96e270a6d0524dc4bd1d35f144fdbf2
2886 F20110218_AABJHL hu_s_Page_085thm.jpg
d03ee1c7afa874b4d5bd860324b1812c
e4ef952641e543a93a0484d213e7fb8349fbe33a
5574 F20110218_AABHNY hu_s_Page_051thm.jpg
1aa102abe54c640ad9222348a91bfa42
e8ecc25361ebb3b73a8a14fadb0ec5100199ff18
49644 F20110218_AABIKS hu_s_Page_060.pro
d5cbc10c992441dc36bced0e658e40e8
2e4fda682e30ceeab0356eb11b762a84f8961362
4236 F20110218_AABJHM hu_s_Page_088thm.jpg
4ec717036b424f2aa26a65a8f655453e
f5ee4bb54ba1bf3c8b46477fab00821e99bbdfa5
78451 F20110218_AABHNZ hu_s_Page_025.jpg
ef860ed38fc3266d4cce6ad7c604671e
78c904bac834f62938eb6973c1f2cec276fa263a
53610 F20110218_AABIKT hu_s_Page_061.pro
fb6cce0ee21fe18bb6fa2ff3a45a454b
5b2190acd77017911f774b2bb5f556cbc66fdfcf
64788 F20110218_AABIKU hu_s_Page_064.pro
053e7cb6ad42c1e4032f0607fb541647
ab9a7a9eb8c53d7b2924e4dd8c91224c9fef86e8
5610 F20110218_AABJHN hu_s_Page_089thm.jpg
c857b462e6eda6118900c30b002431d4
db40d173ec03b1618615a4d095f7cd7624127192
43449 F20110218_AABIKV hu_s_Page_068.pro
d0887c16670bc4f43956572d443d89ee
4f888d1db311ff93e6fdac7f872d66177b9162e3
2390 F20110218_AABJHO hu_s_Page_090thm.jpg
8746b9c24857a7dbb0419e23aef8a8d2
cbd65f0085a318836b227869ff3f29c304959fbd
44157 F20110218_AABIKW hu_s_Page_069.pro
dfbee5074a6e6291141cd04fe33c11dd
7c356ca14b81956711596f7c9ef002b2960ddf05
5232 F20110218_AABJHP hu_s_Page_091thm.jpg
a400a6c74c854ae86f1296157e8d6b3f
9426ab46c0fb68607ec41043457aa4ae21a2457e
41841 F20110218_AABIKX hu_s_Page_070.pro
0e13ed5811db182162bc41a3cc0fd183
28706eb5d3ecc80527b13ae37453bd22b9ad2460
1711 F20110218_AABJHQ hu_s_Page_092thm.jpg
a5888135a6575f6ce5496bf7828871ee
b9c687adddd2c458daa1b389de5183b23b3a0683
1207 F20110218_AABHAT hu_s_Page_013.txt
3449ec8c7f9e8afceac695944ef8037f
bc54b9c8070baad194edeef0012e539b5ce376c9
49390 F20110218_AABIKY hu_s_Page_071.pro
4cbef1a65341092a0c1be577b7609fd2
c503c2d482d0ad51a8528fcde261e3dbbbbc2581
5819 F20110218_AABJHR hu_s_Page_094thm.jpg
e41e80be2d6f18f9fea84c02ce48dbd6
88a9f272676a9f482cf47faa7da21837fda5ef0d
61606 F20110218_AABHAU hu_s_Page_178.pro
4d277470aeb84b693a90db2185b28ca3
3f5bfd6c826969e694fdeedff00fa565357b86c6
60431 F20110218_AABIKZ hu_s_Page_073.pro
006578a3f628feac2c151223f4a57727
65c482d2b08cb66ce1d513784b7ec2dcfa826020
6263 F20110218_AABJHS hu_s_Page_095thm.jpg
1983304b4490fb5ea75b7e76836e78ff
2d75a5894e5fb1ac43e22d19a8d2483b15db45f8
6190 F20110218_AABHAV hu_s_Page_140thm.jpg
3708deb9f8c5136c4ee1d67ebda7de7a
43377bcafca0ebc684e4a00b3fb2b3a9f5d2dda9
6151 F20110218_AABJHT hu_s_Page_096thm.jpg
2e5fa2aacb7f48516a336cbc29fddc12
97dd7ff1d5f673a3f2a15a089a36a5c95e9e37c9
37894 F20110218_AABHAW hu_s_Page_161.jpg
c2559341e8b4c0ee62a75367ea0f58bc
53803a922a009f896e3ffd42cb89ce142e5f3bba
4459 F20110218_AABJHU hu_s_Page_097thm.jpg
5392e591a9eefa9d713a6ff78091607b
70373848be846aa55554779e68d7e0c3f4747066
23645 F20110218_AABHAX hu_s_Page_173.QC.jpg
cf79556f01fac2d604bd6c4238fab1a3
3db5290a47360a283b7b5f7ad1f517305bb43b90
F20110218_AABHTA hu_s_Page_217.tif
6a3af4fd5a16d09f003caeb1c2145b12
39c11d211d2a985d475f7001ad9eff70a52fcee4
5931 F20110218_AABJHV hu_s_Page_098thm.jpg
dc38a203fa967312cc72d064e5758a6a
7385aa0d7faf0ee1b3d014ba650c68ff1f70ca06
52997 F20110218_AABHAY hu_s_Page_013.jpg
eef979a02eaf3df2899286092ab990cf
0ae9ef9957365f8742863716778514f9b86b9731
F20110218_AABHTB hu_s_Page_179.tif
b1fe2935c06be7015acf375b033d52f6
81d0fed63b9303469ce929fc27842f8cc2c3e5c2
6381 F20110218_AABJHW hu_s_Page_100thm.jpg
07a55fe9831cd3249c00a597d3c00e81
c808a8fbb37efdb973b7bd7e5ce418035ccc64ca
452187 F20110218_AABHAZ hu_s_Page_084.jp2
cbad7fd296bbf7284d48e3f76f743679
07725652a05e7f25a3e611ecd0ae337d07de1792
11838 F20110218_AABHTC hu_s_Page_230.pro
a9f17b0de39aa0e717869db142dcf486
b289b70c4014a03969b1663790d9ca77f020b077
6243 F20110218_AABJHX hu_s_Page_101thm.jpg
29b29665999a04b24dc7cca77f6cd8ea
499f9c14f9dd5d3da815bb1c097078f0c7bf43da
1993 F20110218_AABHTD hu_s_Page_140.txt
1062bacb10aaca0c3002556cdbea64d1
d780d453d61e5bb81f1607807b52b66c810f3e26
6408 F20110218_AABJHY hu_s_Page_104thm.jpg
9546cead75e3be8e4a8016a139147b0b
c47ec9694c85135b251579e9f1b06bbef12073a8
6719 F20110218_AABHTE hu_s_Page_198thm.jpg
1a785829349239c8eaa740ac5040afc0
73acccf262e93b26bf81924894b1b8be5ecf69e7
5916 F20110218_AABJHZ hu_s_Page_105thm.jpg
4b5a313f80418fdab1d7d10f813629ef
ccc852ab12d7ff5e5d8e5097440924462e03e710
50465 F20110218_AABHTF hu_s_Page_137.pro
f09c931df7a0f1e8d079269e1f572907
b14558d66d1538bbb732875aa52309e879edc043
1039206 F20110218_AABHTG hu_s_Page_007.jp2
0465d485a83c5978e06368f3d6c68c36
668030de18f23e398f7f4fbc9fb90b083976e0f7
26452 F20110218_AABIQA hu_s_Page_027.QC.jpg
2d769906afdc8aef4ac3de7b5dec15bc
a0e5285fce4bfe011f8dd610afa20276543f4d80
5845 F20110218_AABHTH hu_s_Page_030thm.jpg
734262f8af0b1a6ad49a27b6d2e132c9
7a2752e9c30f3662752aebbe83d44bcdf33931d8
110401 F20110218_AABIQB hu_s_Page_028.jpg
8c996c4f73f64d1663327de6953cfb5c
e98eafdb1a97802f8da040eda15e6a25f290834e
47160 F20110218_AABHTI hu_s_Page_156.pro
fca020ba1877ae435d9cc6dcd7e1fc16
316825b2ed44e95b6ffb6814c37d352bbec668ed
3267 F20110218_AABHTJ hu_s_Page_157.pro
4cafcb29a9c88b90920609c75b206fc4
b3168bc2bed9ae0e2246a9f14529b227ce2983cf
27746 F20110218_AABIQC hu_s_Page_028.QC.jpg
d02eeaf388f2358a0a99a2eabbf9a55d
fc308f9a87dab3a10f19754b1650a831303f20ba
25039 F20110218_AABHTK hu_s_Page_155.QC.jpg
9b4a5d6453b00c0b94058d669e26000b
7fe562439ea5bf066a4542d5edaad359743f0249
23206 F20110218_AABIQD hu_s_Page_029.QC.jpg
62c2da8cad649ae83ecc47f0fe7febd5
34dbd6ea9371d127ae9900fa64aca4d90d5d9df4
20805 F20110218_AABHGA hu_s_Page_172.QC.jpg
610c720c1f675be5a7121d8a7657cda3
49991f609eb84bf2a9fca6c563486b9f4e022ae8
1029896 F20110218_AABHTL hu_s_Page_139.jp2
5e243f2600eef9258aaae03d0e08307f
09cd8b987c5541126157bae3fa3b50f791e6e49e
95534 F20110218_AABIQE hu_s_Page_030.jpg
ae975586f92889ccccb36394c401848e
8bcb5484d3addb7d35732e39e6888f4307b76a36
92473 F20110218_AABHGB hu_s_Page_039.jpg
0cc6dec2f85fc9a1d2e6f9d0c4dfb5bf
66ffa66d1d4db9e874a902ae66926bfc66807c19
1051965 F20110218_AABHTM hu_s_Page_073.jp2
7974bbbf97d4208df05cb972029a751a
47f27a197db1359e81e4e0ac0337bcf654fe06f7
25194 F20110218_AABIQF hu_s_Page_030.QC.jpg
e3d8c5b6410c67473484985a82f2276f
787d117c0cc4c5d6bf6df3fec1ad981649e04267
F20110218_AABHGC hu_s_Page_025.tif
92106a66cc1db3786338ef80e714256e
e768ac36cfe93317b8842d01f96448f1c57ff8e0
F20110218_AABHTN hu_s_Page_112thm.jpg
428e97930ac85c45f069040e05f68838
8b8ed53f7d671704ba6ed952c31b514ef2226539
26584 F20110218_AABIQG hu_s_Page_031.QC.jpg
666e7a56c53935561a9497dc32855826
85e5779b45ad8f5217365730f1009011c59e2dea
97848 F20110218_AABHGD hu_s_Page_218.jpg
02de334e9216b9ed3e204727f05d6aef
ee1f7aece85e6fd62347fa0fbdad1c2809482c44
2135 F20110218_AABHTO hu_s_Page_053.txt
1d978cb480f2658dd2e71ecc8fd5e5ce
94cfc38d95d82f35305b32e9172468352efd3ae3
99645 F20110218_AABIQH hu_s_Page_032.jpg
473d9582945729993e8457485311ece2
8d878630efade9931130984adc9e17b076ca33a4
11566 F20110218_AABHGE hu_s_Page_023.jpg
b068dbc359b556a3613241b4a430396d
31f75781d3b4d96d11f78e2465a6145bbb26f878
1798 F20110218_AABHTP hu_s_Page_014.txt
eca03e6cd05589c84381bf9bbe6afe8a
269187fb6248a2688ba5ec740a46f6cebf965fa0
26398 F20110218_AABIQI hu_s_Page_032.QC.jpg
6fcb326c6f04d09297c4c633a590ef24
bcb8970df1c801c035cce369cb00f87ba7c0ba15
1051948 F20110218_AABHGF hu_s_Page_146.jp2
3f8415c92a76b765df4180445eaed30d
bd765471532977d1d4d0001f8177d64b958a0080
25292 F20110218_AABHTQ hu_s_Page_151.QC.jpg
19459c65ac643f7eadfe99832d3108f8
d2655d3ec7fd48baf373804b64f0963cde77f13c
117794 F20110218_AABIQJ hu_s_Page_033.jpg
d44c6629eeffd654c48869f9878b54a6
e20a94ec15578eef29973767df05efdd37339282
63205 F20110218_AABHGG hu_s_Page_027.pro
791324ac60697dcd70929fe3e412a8ce
2f26234c3280fa20c0251ce64bbfb48fc901caaf
28040 F20110218_AABHTR hu_s_Page_223.QC.jpg
776c30bbffefecdb40f40b3a5237bfad
028e4f5747eeb5f78f4227c35d3508f4b65eba34
28904 F20110218_AABIQK hu_s_Page_033.QC.jpg
b2f139a5a54621c701d0431b38bf378d
e52c8dd1bccdc4d6bdf09acc9899d0648e9e3354
6209 F20110218_AABHGH hu_s_Page_155thm.jpg
8bd76b609e8057114d55a30023fbcedb
34a9ae14bf498714888878ed535c576d1985e685
F20110218_AABIDA hu_s_Page_188.tif
db12860799ff13f9d19c2ec067a19e80
599c18aa2945c0161cd1b80f44c3a5af8410c261
F20110218_AABHTS hu_s_Page_201.jp2
332239ec1fe455c38f7642dd996a5f2a
45477c96ece6d904961985b0fd27dddad28376e3
28026 F20110218_AABIQL hu_s_Page_034.QC.jpg
7de0c5ffdf4006d2895602553af22b1f
dedd3ef22e45a55855de95baa1cc698b88dccf7e
1031179 F20110218_AABHGI hu_s_Page_172.jp2
3bbdd181e2722d4a5ecfc3756ad0049a
d2a763d8b72c131a4901f2b30c3698dfc4dc4f51
F20110218_AABIDB hu_s_Page_189.tif
18cf5be58308f244f6fbd52165122f52
eb8f0ef2ada0b8363fab9f07c42ef02f2f38337e
723 F20110218_AABHTT hu_s_Page_187.pro
7f0afe7a3116872d02d13f778833654b
9ab176aa15678125bb656558f11d21441058c92f
99902 F20110218_AABIQM hu_s_Page_035.jpg
8961dbc52d9e7a148cb828c7007877f3
4cb3962f45abeac8a80e8cbf8e86c3a41af97a37
25322 F20110218_AABHGJ hu_s_Page_138.QC.jpg
2e141dd61e1f023865909f78b76123b0
6b7f7aacbab7ffd9554813f1b0c64c2ea111b495
F20110218_AABIDC hu_s_Page_190.tif
22e4a92ce45a3107639526a3c482f6cf
85f43a3e8c373ff029d4e2192f2e762a9d78740c
80993 F20110218_AABHTU hu_s_Page_174.jpg
036c1575d333558c5ce1a4ff52eae8c4
c7b737c627d07a42beaaebdd18ee5b0b4200d84a
26059 F20110218_AABIQN hu_s_Page_035.QC.jpg
470db57dde4bb9a6dea531b1c0a8c300
8190fac16d307edb0f8a103454b8b9006b2b36ab
54909 F20110218_AABHGK hu_s_Page_072.pro
09c3359028520d6b48510e6173e1ae56
bca1a6a87eb3dcd5a48799e8a47a6e5c9512dad8
F20110218_AABIDD hu_s_Page_191.tif
0cda966743cacd44c3fd87e162ccb11a
c7d7def1b6507e617e3311dde2b6174d8bc73c0f
5552 F20110218_AABHTV hu_s_Page_076thm.jpg
649e1533c5c756e474b84a94870b0f21
52c9a6e14b162d80eb88b13835c6fdce548b1433
98489 F20110218_AABIQO hu_s_Page_036.jpg
0f007f9eca69748055ff9511906d1e7f
e1bfe6328461b7b584f4f422452c6bf92bd54830
F20110218_AABHGL hu_s_Page_202.tif
2930867294ae99bf0b99fbb5dc25413f
9fb20df9cacdca45fa86a1b416dd3359ec651f9c
F20110218_AABIDE hu_s_Page_193.tif
ae2aad530c5fcaa2b33fc5044cf59221
9cfdcbe3b2e95a5c9cb1a6f5e0507f2690ba2719
688 F20110218_AABHTW hu_s_Page_093.txt
c012941bd97b939101042391d2305749
4921ea7329f01cc05b3b3e51c81fc7ea40bb4815
26475 F20110218_AABIQP hu_s_Page_036.QC.jpg
fe72fc4ffca367196176f4e55dd229ad
efbe9ec924469109dd14a2e2f0d2d43d55e8aa9b
F20110218_AABHGM hu_s_Page_040.jp2
373bb341518e3ddd92322f6ce47772cc
b2f49d48995494926e5d26a77e8e657acc3d6fd9
F20110218_AABIDF hu_s_Page_195.tif
f4e8aebe483a192961a22e1407fb51b5
ad8dc8703dddfd7551a80e287555867ea23b1af8
26112 F20110218_AABHTX hu_s_Page_222.QC.jpg
a810901d2fcb1944b77eb5343bfb1e8f
d01b2afaf594db2bb255a0157348d3a20512cccc
28809 F20110218_AABIQQ hu_s_Page_037.QC.jpg
157af9f7269d6b971ad074395c7d7c4c
19fe66bfba22e618c3a9c924b708f8cc41887d6d
4966 F20110218_AABHGN hu_s_Page_070thm.jpg
f5edf329992485dfb7df50b747e282be
e9a1bd99370659247a104106a0b0ef835652f148
F20110218_AABIDG hu_s_Page_196.tif
afa9ea158e5e6f09154a37262e8f8c55
9f904f4dd4a68466c83abf2dd38e42eae47c007a
1791 F20110218_AABHTY hu_s_Page_001thm.jpg
5ba259dd8fd6ad212c1f0151e07ecde1
316ee321609d4e629fa926c349ab9edf8bfdec9f
94018 F20110218_AABIQR hu_s_Page_038.jpg
739d62f2c14052da3ced9a6b12cc8ff7
5469ceceac95e66f798833dd8ff8d086962607e6
F20110218_AABIDH hu_s_Page_199.tif
49c0bed30e6bfbc8bf7a1b2499a7079c
07a5e5393a8904454c932ac47fc3f6ec9c4421c6
F20110218_AABHTZ hu_s_Page_179.jp2
5d500154c19e1fa0c2214085ad260875
c68708346ada6050bf683a48896d794efe91494b
1051936 F20110218_AABJAA hu_s_Page_022.jp2
4fe302fac3a40cd2cae396f41c17eafe
12d7260ff1b439d2de5f634e255eb812c3fe32cc
26118 F20110218_AABIQS hu_s_Page_038.QC.jpg
d3f86fe887d071643a044540eec04cc2
f921859edf65d521731c9a225710906d241c0a7b
1296 F20110218_AABHGO hu_s_Page_003.pro
75b3c6ebe0fd8b1c36ed6fc055dab510
c807d476f99fde19466d2ea261371ab9e95d8be4
F20110218_AABIDI hu_s_Page_200.tif
98a27e53aacb48e38a3503b4b179af67
73f8465129e2443a5f7e4b087b637e7bc2849ead
128316 F20110218_AABJAB hu_s_Page_023.jp2
9d24d750d9565c2e4e6325989922e387
440478a9ac2da3d01f3df47f7d1002d3c91a29ae
24919 F20110218_AABIQT hu_s_Page_039.QC.jpg
44e6286a6de40d904be01ae19527b3de
282ecbed1a3b30ed923c3154c54ad195246b17bc
F20110218_AABHGP hu_s_Page_228.tif
7c020f56b7b3df1bf97e9a5e3db1eb14
a0fbb776a79f034992c69ddca372e3cf8879f4eb
F20110218_AABIDJ hu_s_Page_201.tif
da7ff1d433600125b30a9045f2b96ca9
9cdad996651ff5b86328e8a5bd7112856067cfb5
943250 F20110218_AABJAC hu_s_Page_024.jp2
57c568bfdc54638c0015db06faf99cd7
244c17ff25f47ddf845b79fccda7ce17355c2228
26020 F20110218_AABIQU hu_s_Page_040.QC.jpg
e9c13b83a899389d1cd4f8eb5725853c
988b930056db15c6fa38e7fa608851cb310c31c2
7369 F20110218_AABHGQ hu_s_Page_008.jpg
c553c252574a6dfc14aa5eeb4bdf4ec8
42156945a9183da28556d382a323fda3f35b745f
1051934 F20110218_AABJAD hu_s_Page_027.jp2
2cd6a217d9c309d66b6f23a372970080
c266cc3f0996cba48a1935101071f2f54faa61b2
83684 F20110218_AABIQV hu_s_Page_042.jpg
5092346b410526f587c6f41d61e42b49
eaa59bcbb736bd880afab38fc8fe14a1b01499f4
50952 F20110218_AABHGR hu_s_Page_106.pro
7c5e8c428df7f4b7db2dde65c31b6273
a43a80c828c3d1223bb65d8c574f225b9207d4aa
F20110218_AABIDK hu_s_Page_203.tif
dd02fd09b3e17a5bffbe471c1307a257
8e5e57380fea415ca7a246d275ae85959d9b84cd
1051924 F20110218_AABJAE hu_s_Page_030.jp2
0cd113a54b529cf7aa9d4991f05a8faf
1d7bf10c064342426c845b3a450dda5999607f37
96591 F20110218_AABIQW hu_s_Page_043.jpg
091e663be4c46ab1fbb4a70d2d825d1a
8c216af305ba019d99d6bc41e461e9513f147594
412614 F20110218_AABHGS hu_s_Page_166.jp2
b05ab3cc2b142e8bb3abaa32b21e77cd
c0fa0f3f32791af760a2e0b616c6bb1a57abff29
F20110218_AABIDL hu_s_Page_206.tif
03ce99c5d797b747de2004040bb2f33e
1e2445132d4255df9768e735e41229f8baac6cf6
F20110218_AABJAF hu_s_Page_031.jp2
6bb14116da9e1f037e8e041de8db5469
69779df739c205bdeea39ed3b347647c60a5ce61
86447 F20110218_AABHGT hu_s_Page_141.jpg
222bea150895fa8bb6f91eaa7206e17a
075d5da0c00ae00026ad84a3bc88428fdab080e2
F20110218_AABIDM hu_s_Page_207.tif
42d6dc11659509a46238e0683c08e8e7
505cc9a4a6fdce396e430eb4889fc80b64ea7e48
26299 F20110218_AABIQX hu_s_Page_043.QC.jpg
625f8aaee94ee5e62da4d2f4c4d1987b
5659cc5435bbcb3b5dfbcea1fc0febae9cbbb241
16606 F20110218_AABHGU hu_s_Page_019.QC.jpg
c3cc7ca7b49fc4adabb1e0468ad90375
1b176894c696935f8052f80c8bf84520e81fd1c4
F20110218_AABIDN hu_s_Page_208.tif
ae12e7e2ff11fcd9c3dfd81462865e25
65d12e862cea0ca21ed7c84c69065ad53355bb2d
F20110218_AABJAG hu_s_Page_032.jp2
e5c8b37dec3808a416ea87dd0dcd6871
fecfda2e67952b000a729f5e6dd225936c39de9a
22659 F20110218_AABIQY hu_s_Page_044.QC.jpg
949949cb22eedf24c70ada3431051b22
7e0da9a109e86504dd73aa0f38689861a817092f
2664 F20110218_AABHGV hu_s_Page_160.txt
4248c2a0a07b432d16a2f026713c9858
0d9d6a8164253b386dd3f6f2726bfcaf8d19c1d1
F20110218_AABIDO hu_s_Page_209.tif
bbaeac816be28dda9800f5ebf53d955d
3c40bb7cb1b4f0f9e42fbac83f8fdc4158c56879
F20110218_AABJAH hu_s_Page_035.jp2
40c2ea1b8426b34b83150b62ca92b288
bb3a5b13ea993518c5791399bd736feb1bf792b6
84313 F20110218_AABIQZ hu_s_Page_046.jpg
2d419d32cbb96a69ea28ebe433e8be15
5a684b2cc9dc982ec59208516b2c8b6486976fd2
113826 F20110218_AABHGW hu_s_Page_182.jpg
8463bd7ed811e4d48d3eafeeba7a726d
47c5345892652c137f9f2d63cb6eab6a4ff32222
F20110218_AABHZA hu_s_Page_023.tif
e29ce0b3d57621e4c11dbec161f929d1
19fe6b012588a48abb16b22707b295b03fbb4c5d
F20110218_AABIDP hu_s_Page_211.tif
85dfb64c10ecfcddeb343dfeefe02bd4
ef1e17f084414b5e13568afe9b583699e61d60ef
F20110218_AABJAI hu_s_Page_036.jp2
b6a940797fdeb206dd0ced34dba19e1d
2c17f454f26a4b910efb528280c18f11e12d6027
53219 F20110218_AABHGX hu_s_Page_042.pro
70f9f44bfd4f13ead10236eff4a9f223
e4aa01927806124a5949cebedc1329ade2b95a4b
F20110218_AABIDQ hu_s_Page_212.tif
f272f53de012276f1a5e2ab1f657ce47
1f52f886c5e97addca829e8399edbe5cfedbdc60
1051962 F20110218_AABJAJ hu_s_Page_037.jp2
0b2f2a02412c5bb8f3acc518eb3f8675
4b0e068b670b827a05a126d8284f662c9a316647
F20110218_AABHGY hu_s_Page_053.tif
2f56d0ae13f5c830a4abfe02ac32c9f8
fba2a4fd42242a5e0249b53c43581e7b240ba347
F20110218_AABHZB hu_s_Page_024.tif
b438e278488324f435d9e25f63dfaace
b6f06c1eb0f329cd067ff1976b393aac15e1c705
F20110218_AABIDR hu_s_Page_214.tif
3e5ce6aabaf05fc1b9841fcd6892ee4c
70068696b729ba0451fdf2a684487f269f6fb0dc
1051907 F20110218_AABJAK hu_s_Page_038.jp2
b88ea377585598b4c9ceea907dd0ef71
7bd6ae2cf9a8d34a8a132433380bab44d91946b2
24736 F20110218_AABHGZ hu_s_Page_156.QC.jpg
dce961108e780795d187cb4828b5b1f0
327f6c3a6a387f817ffcd2475c7aeefe20cae7ee
F20110218_AABHZC hu_s_Page_026.tif
376cac3adf1b3fba58818e109caf5435
bd177afacea8d4c9485f15e9fbb48e883e04e2c6
F20110218_AABIDS hu_s_Page_215.tif
91e3f56ac3d08ab1763d90932e455729
13d28936a69cd5c1036ea410a8a4a2e104244a5a
F20110218_AABJAL hu_s_Page_041.jp2
9ce99eaa4c74874dbb8658963cc62d06
b8b26810bd1274e687335fc65c7b20aebfd8ad41
F20110218_AABHZD hu_s_Page_027.tif
9170630289238cb6f8a2f62be8a9e369
22949440cb88ae091a1d7bf80bb2b5a112d6a74a
F20110218_AABIDT hu_s_Page_218.tif
7e1ede06df0f686f957a7ec218c38417
f8dd05d9a64ed9079897968c56489f4e3cca4873
F20110218_AABJAM hu_s_Page_043.jp2
81682c3dfafae09dc3ea16e190aa2e5c
40f486a0ae52d5c0c1c327650839dd753b4b42e6
F20110218_AABHZE hu_s_Page_028.tif
e412b0b53b7573f7bcb963a384742ffa
9d864153a52227a8a6c48ceac7765cdab4eea4bd
F20110218_AABIDU hu_s_Page_221.tif
3f279ac52d384811b07d1be547ee3971
9bd6aba0128a7ca136e2d40aaabbca3bff9d189a
F20110218_AABJAN hu_s_Page_044.jp2
1b8912cc1719bbf4f74415c2bebbb1d0
b62c2052bdf0bfa434a4193eb2c38b5c74a55520
F20110218_AABHZF hu_s_Page_029.tif
909a27c2b680e4524520110675c62296
46c09611972146edb383707f3f5ec307fbc75bb4
F20110218_AABIDV hu_s_Page_222.tif
79f936e1b8a274825fd704d494f343a0
bcf2fa39384ddad58fe448f4ecf7fc1a32cb1447
F20110218_AABJAO hu_s_Page_045.jp2
cc704d0ad7cb93d63b1117fa20d3b81e
e94a6e26a1a22cd12802324b824efa5d3d07e73e
F20110218_AABHZG hu_s_Page_030.tif
12055811f82bc11cadc3141d1811c07b
b8b01f23d67bd1fc800e52deeea9182868110ac4
F20110218_AABIDW hu_s_Page_223.tif
a197c0aa59e1c683d1e85355a1e2005e
3ef9532053be4566d6e86918049a9699ef73f112
F20110218_AABJAP hu_s_Page_047.jp2
17cd193708fc4f0ae5717a39c9bd9b2e
4cc355c96c953f10d7aa8fcbded3f9d76d9dc9db
F20110218_AABHZH hu_s_Page_031.tif
9e12c81ab5ab5e1fa78b01f4e6e1608a
b74d0fc7bbb93f14ac4f4dda37711baf89a8b4e9
F20110218_AABIDX hu_s_Page_224.tif
1c43e9d3ba6e81e046f91569c33100b2
90d7b03a2a68ad3b4151cac531fe29f31cb3392c
14696 F20110218_AABIWA hu_s_Page_152.QC.jpg
b98b3023f6f04cab796e47bffb38342c
ed3f9232557a5d95baf0a60a759b820adc050fa1
F20110218_AABJAQ hu_s_Page_048.jp2
6d5f06b8fd4109e1034b35b841cd002c
f1c268eae29fa635aed18ae3b761ebab3730be25
F20110218_AABHZI hu_s_Page_032.tif
2b6afe6a96cfc918bef10d9036e4affb
9a07e7bf49d2fe3fb2acf71d671ae9213f570ffa
F20110218_AABIDY hu_s_Page_225.tif
a98b447592320ee74c08fac8c451c0f6
fae6b1cb8288d5531cfef7928a650dc3b38e2881
76056 F20110218_AABIWB hu_s_Page_153.jpg
8368f78b6024f9663587ae7abda26964
3a49840c1dae9d7cbcbf3ea73ba34db88f8dec2d
F20110218_AABJAR hu_s_Page_050.jp2
358a780b01670694c890d4cd74fb9d37
8b42e0e2746a1d456270d0d1b7baad0ca53b0cc6
F20110218_AABHZJ hu_s_Page_033.tif
d78d8c03aa1905d878ce0cce6fdac5ed
4402c72b83ce5d9cfad2360b400b8469d4b781e6
F20110218_AABIDZ hu_s_Page_226.tif
38c2962c0b480583b2e2b4718840ee5b
b81f73cbce6a0549075f2f02274b6cebe7bcc0d0
23550 F20110218_AABIWC hu_s_Page_153.QC.jpg
c09ad9d22cbb1b17b6d82845ecf333e0
3db9d851f4e05db38e64b27da2dc3e180653fe2f
1051901 F20110218_AABJAS hu_s_Page_051.jp2
40d90215ed188ff75b0a277d636609c6
9b663613aac73e7de8758671765eb9456d3dd953
F20110218_AABHZK hu_s_Page_039.tif
f2a452c73cff2978583990affcfb02e6
ce255d548eb943f47ee897da1e044702290b83d8
81874 F20110218_AABIWD hu_s_Page_154.jpg
5174a82160e8d83eae6188486547f867
ba4614f4d0bf807caf80b2382b3240e91b534faf
1051986 F20110218_AABJAT hu_s_Page_052.jp2
66b317fab5bad5117a55442798c2de5d
c49f1dca7ab26eeee23e0392a2de24f3fd4e19c1
F20110218_AABHMA hu_s_Page_080.tif
fabe86c171d947b170db3cc866cb2e27
41a9c4725056e68506da9613aff2576619dd57f4
F20110218_AABHZL hu_s_Page_042.tif
e19df88841b4746ec6657a667ab7e3c6
4a0feea4e095c778c7365992532f8d6039842c85
24955 F20110218_AABIWE hu_s_Page_154.QC.jpg
b745ce2eb95733620b282db4ea997bfc
4a874cc8c5d06feba5b1b015c9aef366a0060ea4
F20110218_AABJAU hu_s_Page_053.jp2
66a55c2c73d4723ce147c13ea45f03b2
84a1eceaee023bd93f8d4f1fe80501c1126b8762
60488 F20110218_AABHMB hu_s_Page_180.pro
7f2b8a2dca51b567654a5824b79827ac
9badd03c867a56e416985d704183e4c22ddcc87b
F20110218_AABHZM hu_s_Page_044.tif
92376ed9962a75764390c166a978c27e
680f943d17334b8d83b1e2daba3f0442c95a49c9
79866 F20110218_AABIWF hu_s_Page_156.jpg
50da495f78126b54894036a311d1b0b5
ad58de83fc110fdb93578d645c7dc540e9b7aee8
F20110218_AABJAV hu_s_Page_054.jp2
019beb75d02d38d4c089357447f59868
f8f1f138a424018c57695c70a30ac7edd2005187
F20110218_AABHMC hu_s_Page_224.txt
f1343143e9411bffb1cb92802f493a00
3c39176d17e6eff8609cb7517e365f900bf31e03
F20110218_AABHZN hu_s_Page_046.tif
aaa1ac7f4315783b6a49375b6f5c9e50
d5a13ac4fc36d396a0491ad4577476de6c068c10
2859 F20110218_AABIWG hu_s_Page_157.QC.jpg
db5bbbe837d01e9b03e20ff2db8e2adc
7da05e02f16efb381a310c30d1ae1384218650a3
1051908 F20110218_AABJAW hu_s_Page_055.jp2
aabe627545ccf8048282364618d95bd5
b4e674b1119ca31ae54cc28f7389a9bdff4996ed
50937 F20110218_AABHMD hu_s_Page_054.pro
3c028240b649872a031cb6d7866cb0db
f5ebeb77adb9d50be333d7bea04de6d7b51f0ede
F20110218_AABHZO hu_s_Page_048.tif
fbc4898a6cbe79363afda187d1133422
99a98a1d2e8f0f77b156d8ce9655201f774ab8c2
76517 F20110218_AABIWH hu_s_Page_158.jpg
e9b228c9fa881bf0aedb9f76096a67a9
df53a0eb168a20acab71c36d6bae0a2656fff066
F20110218_AABJAX hu_s_Page_056.jp2
8f2a3f9357534cc5a775632a30d49af9
2ee677e53d47f2dd24531f2e3ea45986510a1efa
5291 F20110218_AABHME hu_s_Page_092.pro
c0b4212736d4d978b9726887fce8af00
4fb1b44a2d35b71d734ac1be5a5a940b30064bd1
F20110218_AABHZP hu_s_Page_049.tif
46efb764c5f6fe82553a2c13fa83158d
03774ce5a2fe3f1a8e1f21931245d9ad5ee56446
21944 F20110218_AABIWI hu_s_Page_158.QC.jpg
d2c128c8ab1b81d981357c496ffd98c8
c07db2071a8712ee0796f5221936ee3c191c6a5c
1051870 F20110218_AABJAY hu_s_Page_057.jp2
8d4f12dc80a7f8bfb9ada083c5daf162
9f57e792f9890ae16825d345083a918ffd55ff49
16143 F20110218_AABHMF hu_s_Page_116.jpg
4dc792a096e677130a0384bb01856a8f
ebe763cb9f533b253b681661b2e6ae95b486d648
F20110218_AABHZQ hu_s_Page_051.tif
7f0c8ce2bead390e27ce6195e3c315d4
ebee672382cc4715c9a78452b2c05d08d687f991
35181 F20110218_AABIWJ hu_s_Page_160.jpg
65c5a7878e5bd4c3f64f2d03a4151932
55dd60fea93bd00385f28061fc9275c8fdaec845
F20110218_AABJAZ hu_s_Page_061.jp2
9c16e72229922a639c403bab6d84d4cc
2cabd1b7e1214360abf04bf3dd7e21191cd0e7b3
F20110218_AABHMG hu_s_Page_102thm.jpg
08092e13c6e31dfcc5eee8c66438f7f1
16234b603bfc1a7817cdbab53cca7059829287d0
F20110218_AABHZR hu_s_Page_054.tif
815b157a657bdd16e40adceda6edc2ca
c2527644de632804669f18dc34112133dc6f3085
11121 F20110218_AABIWK hu_s_Page_160.QC.jpg
0b5774c5a0df21006f67c4ad2757b3d7
54523b21fa410f3be1f9a6c56b10d08a94d17e5c
6284 F20110218_AABHMH hu_s_Page_136thm.jpg
1ef7ac5faf0c88e93eec2a08d77f3cec
6c510da8f998f27ea7a0157270d10b8962efe06c
156 F20110218_AABIJA hu_s_Page_211.txt
5d38a11032c616b689dc07d9dd3e6265
d4feb1553f43f0a3b9262f090b45f1d4d0ee5967
F20110218_AABHZS hu_s_Page_055.tif
8286d5031ffbd0a081f51243bd16310a
875aaa3647fed98c5a6bd5d81a6ba6fb9d882a72
12000 F20110218_AABIWL hu_s_Page_161.QC.jpg
51b286f1c952673f5a69edb4b0d9fbec
b9a41e2e3c6fd75008755682690ff7721cce6cd6
F20110218_AABHMI hu_s_Page_196.pro
39958a2b32cd06f4047951b78719a250
4452ea6209b33273b3db761ab0ce66882871ca1d
58 F20110218_AABIJB hu_s_Page_212.txt
ca94bf476c4edf61642bd15a8d090dc7
0c87472c65c84d536df07ff950ad7a7f31fc0bef
F20110218_AABHZT hu_s_Page_059.tif
8175039bc6a88be55c165ccfad044c59
15e0fe20f9df18bb6c225956e4ac4e90023d586e
35754 F20110218_AABIWM hu_s_Page_162.jpg
40e05455d875da9e105ee95e9430fa9d
375c5f76756632ab54ee9cf8d799a76350b2c1de
51640 F20110218_AABHMJ hu_s_Page_150.pro
5c68af5724fa7d75dca7c4f63c677b76
204657c7be14cb6bd9c97b8e38b3a7a469533612
28 F20110218_AABIJC hu_s_Page_215.txt
7bb794d7ba5820b2ad7533463fe088c9
07aa6f19403bc6ffbc43b04cf1cff0ec8a81d234
F20110218_AABHZU hu_s_Page_060.tif
1b878a54c16efede7f5b1b6a14b0e86f
b01beffd8f692deabcb65839c0d2c9a639860cab
10758 F20110218_AABIWN hu_s_Page_162.QC.jpg
201923064242c8f7cfe7448521aef99f
bf119e0bd042a0b712dc65c9cfab463a33fcaa00
49867 F20110218_AABHMK hu_s_Page_119.pro
91c25c88b7a41e5663630c9bcfea2722
a6badaf72c1e2462d54a41e945fdc4e2497db425
F20110218_AABIJD hu_s_Page_216.txt
858f9d8c3d54e9204cbd748db94ae21f
4b32412b8785bb8528d9e4eee0e4aabb7cd0d104
F20110218_AABHZV hu_s_Page_061.tif
f4847efceb51ef926a37c834e63be234
60e993864626b0264ef73c039ca89d46df1569ca
35222 F20110218_AABIWO hu_s_Page_163.jpg
35d2c5c38fc75cc9502b760947488771
3f42193203ff972c5e1018656c14584bc7a4ac3e
57754 F20110218_AABHML hu_s_Page_159.jpg
da1b5e2459e9dafacbf2fb01775f3900
51d516928feccf4bdb4025b7b8164e988ad543f5
F20110218_AABIJE hu_s_Page_219.txt
9553e5cbf8f455c9ffba19921973c0c5
401a7e4eacb30afd0efc252b35fa2a0cb32336b1
F20110218_AABHZW hu_s_Page_062.tif
972fdc8e494013d8b9f8ee8b21815951
d7c9e406413fffff657cafc4479134cc9e83de2c
10553 F20110218_AABIWP hu_s_Page_163.QC.jpg
6b91b9ca4b876a5a23d777c0b3c992e8
60e471c3cc6d071e11d58004a4e5b4e5983d0dcd
2102 F20110218_AABIJF hu_s_Page_220.txt
96dca201c15ffd748a71fd276f6bd70a
e818d403fe4b94f79a926a6524f5fe86ebf562a2
F20110218_AABHZX hu_s_Page_063.tif
c7af49d622922452fbe530d94cdd30f8
acf78b5c6c71a83b99678f03edcd717901bba1e6
30934 F20110218_AABIWQ hu_s_Page_164.jpg
44225c41d2d9485eb5bde8e85d7cc5d4
b1b69d23a83c293f32385bef3ee7eb5008206179
83988 F20110218_AABHMM hu_s_Page_099.jpg
8246eb9b25985bd387882c71b5eac81e
595d2b03ace9df25d7d76494379cdcd8e17d9a70
2401 F20110218_AABIJG hu_s_Page_222.txt
84c324de8cf56eeeb6d5156fe6d2b89a
01066d5ba32c1f9ba9cc0d940e455b0780bdbd13
F20110218_AABHZY hu_s_Page_067.tif
bcbf1bbcbd0969eaafc19d5154dc3f97
c97cab16801896ce59b11985b594b9d099d31cd2
34432 F20110218_AABIWR hu_s_Page_165.jpg
f912cf7368c3b52a5157019dbc66ae68
b46753a06e5353abcc0917a38644dda9d9413691
4779 F20110218_AABHMN hu_s_Page_113thm.jpg
4fdc84fd74b00b2c6bb05bc1af1ddc9c
934269b666079cf27dc0edd8ff639a3984805c55
2512 F20110218_AABIJH hu_s_Page_225.txt
2a6c1f40caf0522de6b9db76ec764104
a0940a5d9e3955c958aa76ad4c97f23d04bfd51b
F20110218_AABHZZ hu_s_Page_068.tif
d6e0a9ea9c4cb9926ecdf116e2dd546d
a12a06ea8cf2b39edd50f7374dff543a97e6f296
6235 F20110218_AABJGA hu_s_Page_028thm.jpg
9d31a9d059ed345c66a205c7be7aa006
60f8781382b8eb4195b790d2d8b09657f63e8b3b
10023 F20110218_AABIWS hu_s_Page_165.QC.jpg
f82c393a3f8e887c11e0c79346f9d308
eec78ae101c38fd12f812ec699dfb06c4eca5cd7
F20110218_AABHMO hu_s_Page_186.txt
6030226e36d6011732a98ba34d06cab1
331dce44542ca6bd7cbbe08f452a3fc925b794c3
2311 F20110218_AABIJI hu_s_Page_226.txt
21fafdb42a68c8c00f39a57b8351197a
f35182672b3cd1484ac25d2731a08f8df789d81e
5432 F20110218_AABJGB hu_s_Page_029thm.jpg
c0810db6cb8b4323490c4a4c3e4d4528
eba1c180cfd4421924441f418a3f37c2cae3d446
33233 F20110218_AABIWT hu_s_Page_166.jpg
f57be02e8c087500a875d2a689342ad5
6903bb093215ddd23d427c1983096edb211d72c1
F20110218_AABHMP hu_s_Page_141.tif
cc2a03fdf89156f302559342e8250955
f31cfe43b1ebd5a3b113cd19e9b7f0d30fd4d6ba
2330 F20110218_AABIJJ hu_s_Page_227.txt
94cf5f16b49a4360efedbb4b7bb0f544
e85e6721d157281e4e09f8f232f415f6580d2207
6032 F20110218_AABJGC hu_s_Page_032thm.jpg
78aa7f5def6ef903a74faebc2f3ac94e
6b580bfe3d88c7aebd9a9b9ac7f2c9383f859374
9683 F20110218_AABIWU hu_s_Page_166.QC.jpg
b1ed25efebf3c0a1c350c3538c58a4d0
77de792367b6795c178973603594de51e9469238
F20110218_AABHMQ hu_s_Page_103.tif
574ee4f920fb4fa482074fcd0fee0a49
039ec8787f8dd86ac8cf715c4860a3256122ddb9
2232 F20110218_AABIJK hu_s_Page_228.txt
464c5b9a8bd192b13e1e661222b049df
ec6e0b3405b10322c0d5c687d3678e8730ba1cf3
6423 F20110218_AABJGD hu_s_Page_033thm.jpg
10cb06f40e8d20c0910ca58a2e8389a9
519cd7c9f0fa81329b1da17c7b8f5dd086a58909
37122 F20110218_AABIWV hu_s_Page_167.jpg
fca81695b55b14041a969b2e577b5a59
5dcd82c1adc199d43c686c63368e6a7becdb933e
F20110218_AABHMR hu_s_Page_190.jp2
d3a277688816e0eebbdff3cdb9f78e1c
874f6041814a8a211eff9ae9a8763a02425b8434
2574 F20110218_AABIJL hu_s_Page_229.txt
5dd93b54f3cbf8597bde871dd30f6300
0bdbc9dcaf94a9d648bf0e7cc681644570b60b9e
6726 F20110218_AABJGE hu_s_Page_034thm.jpg
d21e851a76e7d562f09d0b83a6a458fa
4498108a73574d7b5830d3f96afed3a4cd46d542
38099 F20110218_AABIWW hu_s_Page_168.jpg
f4e4fd3d115aeb12c052009b3b16e014
385662edb3a33dad8cbfdd583391e24bcd3dd794
F20110218_AABHMS hu_s_Page_073.tif
e4e5a07ef74b4f8c939f02ef226d8c57
a76dd6416b1127d5aae3cbcd8088bba5428a2ce0
520 F20110218_AABIJM hu_s_Page_230.txt
cc57c6373dd11d0d1414eb577d77fdae
36f3a18cc47ad6f55cd1d6f9e703a01fa1a3ba03
6063 F20110218_AABJGF hu_s_Page_035thm.jpg
c3eaa0ea75c8363f557fd5e96360805a
3c8b54de6f0bf7c6f281634aaef271a45d321f2e
11362 F20110218_AABIWX hu_s_Page_168.QC.jpg
ffa37bc26fb39353d7e79abbca399219
92eef5064c03d48c4f726b8eed8bd366202c3fd4
739 F20110218_AABHMT hu_s_Page_184.pro
1c1140c5ae7c750ca4546ba31fb564b4
9cffc87b72af3ad27ee4a9b38eca0bb0c74b2c0a
8437 F20110218_AABIJN hu_s_Page_001.pro
c423d5c68c442a1676183d37760270ff
d5b40e5988d979ea7625b702005d33b6e8ecd516
6184 F20110218_AABJGG hu_s_Page_036thm.jpg
0ab59b9233049598658b210d99d3fae5
f4af31b799f79524b56b53f819ec2e38134e527d
12100 F20110218_AABIWY hu_s_Page_169.QC.jpg
93206afcf23d64e5ff0d60a2bf6d247c
187ce1cedaabf06690dcb211765792a1a44c5c1a
1066 F20110218_AABIJO hu_s_Page_002.pro
705d559b8d289bbf44e5be2c48775c11
8a0a7b76c6e6e20d3a218d8bdb24301d819a470a
6530 F20110218_AABJGH hu_s_Page_037thm.jpg
f15879e77b279ef3bf7810caecbfb62b
f59d789f87d9afcf7734cfee3fb4818e58eb3ca2
35908 F20110218_AABIWZ hu_s_Page_170.jpg
26ce476496dfd13f46f16977f5ca5861
cca6fbcac504c2e5ba6f7b11db768bbedf794dfc
73542 F20110218_AABHMU hu_s_Page_191.jpg
64f50daed832f1ed892bf9b7b872e6dc
7c044b05e85a535dfbd3dd1a97d3bb21ae1fefe4
20360 F20110218_AABIJP hu_s_Page_005.pro
55a2eedc300818a6aefac412369f3dbc
2ea1379900dd3d29530d23b1487dd0288ca08845
6156 F20110218_AABJGI hu_s_Page_038thm.jpg
f0ff7246b5244d135d8d19241ff5c197
ca05e5083a8709c13394a92a254dd5ed0df950ad
193 F20110218_AABHMV hu_s_Page_205.txt
a28b1979e2b9a5a9291844a091117247
8805d0e4a010f93f004ab68d63736671c28b010f
5915 F20110218_AABJGJ hu_s_Page_039thm.jpg
188bca48ab493bc533fa6831fa540822
5eb58888c61e42561d7778347485364c1c10ff5d
2247 F20110218_AABHMW hu_s_Page_062.txt
749c3d88a6aca7630157db8688b3d9f7
ca5850aba03453b5e85b25a0d03a46f629569cd2
62387 F20110218_AABIJQ hu_s_Page_006.pro
77aa3084363286668546d8440689d371
619963014ffc4810177684da2bd09ed04b28a9d0
6188 F20110218_AABJGK hu_s_Page_040thm.jpg
7dcc5b7de8c76cb8234b5cdbf6d3462e
56443a61b98eb2273984c3f1b44d2b9de4247271
20570 F20110218_AABHMX hu_s_Page_134.QC.jpg
e044d4e77b57fdd9ebf59f0a1450d84a
bdc75b44fb6503f6ced5d8816d2573d7fff9f217
87916 F20110218_AABIJR hu_s_Page_007.pro
2f3c044ac2a194d4599f66d8b2eb9353
66527dc8130b9c8a07e9d9877bdbe9b154b1e4ae
6315 F20110218_AABJGL hu_s_Page_041thm.jpg
7911902184899ea065fde46a5ac515b0
4bb9a96078f44fa540f887afe7c04e41c5dc4a28
71633 F20110218_AABHMY hu_s_Page_189.jpg
1eaff9fdda3b1a555cd820b88016a80f
92b4cadc0121228fd581838adcfbe98ce13a53d3
F20110218_AABIJS hu_s_Page_008.pro
6de16b278ee1a725a385cabdb81511e6
64cce2790fe132f0f94b88e5b0ccda9047f0699f
1910 F20110218_AABHMZ hu_s_Page_154.txt
85b12af2c601508a02900316ea6a9587
0bbea61314e28d5c28e13a34f15a9fb63dc8d858
28762 F20110218_AABIJT hu_s_Page_009.pro
fc8294ea2281fa91148b3379235c8207
dafa4e34958ad0fedeaa82f3cad935a6f54afb67
6008 F20110218_AABJGM hu_s_Page_043thm.jpg
1bbf0a7d7d4b7f636d73f443f0ce5e40
2217768e3fa8e5d3f7259160fa982d5684c5a3cd
55884 F20110218_AABIJU hu_s_Page_010.pro
ca6f7ca7a2f4dba494eab70763c59cdf
198fba4d16db1d8665fe13d28269c2ea5bb4f322
5318 F20110218_AABJGN hu_s_Page_048thm.jpg
05d15bd5b6c2b961833b0a98d92ae36a
682514757529f625de591f7165ba8300bb0d6f30
43781 F20110218_AABIJV hu_s_Page_014.pro
a7ad39a11ace1e005ee9c6268d6ecba4
0b8d2fb5976e71f9f8f459233eba33cd4af9ed3e
4859 F20110218_AABJGO hu_s_Page_049thm.jpg
d05c46e5f4248ec3f524b781e341c287
b03a2934c4d13265c0fc913e176758a51596dcf8
50216 F20110218_AABIJW hu_s_Page_016.pro
1cc02002b1f947f5a47856c757e6ada5
f666db44a8849412480744c9da2ea8be13295928
5809 F20110218_AABJGP hu_s_Page_050thm.jpg
7fc920e6c7c81cb47163f46152031482
6394ca494711c34f54e5cb6915322cfdd012efab
41094 F20110218_AABIJX hu_s_Page_017.pro
2b51ef62e5387c74e37e1a52596f5000
37c82f93504414c86e36136e550d552b63229bf8
5537 F20110218_AABJGQ hu_s_Page_052thm.jpg
3232db6a5cf1e8090e803ab6ecd114de
f60daaaae5bacf5d0645b222a36174fc689605dc
44018 F20110218_AABIJY hu_s_Page_018.pro
d92abe038b0a3cf6ea8770ea0640addf
fe118bbbc438a8b670a09c203e5d7a097c3e5cb6
5257 F20110218_AABJGR hu_s_Page_053thm.jpg
3ce862d06a12d388e2c61b6bbb7e5b2a
77684622e0ecd47098d943c50cfab48590e91ade
45519 F20110218_AABIJZ hu_s_Page_020.pro
9e6b173e70532a5bfb6c1c0fe18e4836
a2df01916d9807177afce80beb75d4054e801e1d
6213 F20110218_AABJGS hu_s_Page_058thm.jpg
8ce47dccfed6ffdd41590285d995079a
f6204fd8dc0d8643acebcd9bb921be6b4265b1e4
5373 F20110218_AABJGT hu_s_Page_059thm.jpg
ff65d26ab40333d157ce5f067d382b44
6035fdb23af1da49c305be4e8b8570558ae0944c
5412 F20110218_AABJGU hu_s_Page_060thm.jpg
71baa3db6602de14f636df55c3073430
6c7467b8de446a483de0132559b000bb5c79e245
85873 F20110218_AABHSA hu_s_Page_132.jpg
f87f45da1b493f8c0722fe25a897eea0
3ed2999ab70582fe464984270ac898aaffcb2f26
5502 F20110218_AABJGV hu_s_Page_061thm.jpg
b8a4959fbc96ce841ff682f4d7cc05ee
fa97be4495dcfbbcfce07d0c696ed75e4ca33ee9
7075 F20110218_AABHSB hu_s_Page_209thm.jpg
ee7f8a41218cb21331ee400ad86c0853
e7f6f6e37133eed2b23ab474aa0718da2146c548
5727 F20110218_AABJGW hu_s_Page_062thm.jpg
a52c7e48c573cd03c21d73a4d2c5686b
c2daa23e35d65cd5d9b130dfc5a0a45ecd6a27a0
22133 F20110218_AABHSC hu_s_Page_020.QC.jpg
e8a55df680d6725c641fea1b497f2a5c
28a31d908ae4350627ec919cef2320b8ea05c7d8
5652 F20110218_AABJGX hu_s_Page_063thm.jpg
252ccfc887e4e9ea25bd5ee9ce8fc8db
63bce6cbfb7651e2ac2ea9c470525c1b8bed42cc
172 F20110218_AABHSD hu_s_Page_157.txt
8dce378126f74d9f2749997248c8907f
23d0a1e2bba00c55b500bb876f2b6ea9500a4852
6018 F20110218_AABJGY hu_s_Page_064thm.jpg
8692d2893b584016a90f8274a7769832
700822e18e4f997d0f885a7a3559c0537435d9f8
22020 F20110218_AABHSE hu_s_Page_060.QC.jpg
a5952faf70d30dabc4f69f054f430e78
36a658e488327da82695ae0c785607c02aa554ac
5817 F20110218_AABJGZ hu_s_Page_066thm.jpg
2e4b73d22fcad7ab6ba8ae86decf7fd9
31eb141997432e19e4fc827ea364c37ad41265da
22250 F20110218_AABHSF hu_s_Page_198.QC.jpg
dc0e5740734853cc094b61557786e1df
a943f7f9ddae6cd04f190a0cd1e38bbd0b8bfaf7
1051900 F20110218_AABHSG hu_s_Page_223.jp2
25aea8ff790f6d44817732668b20dcf3
a840980bbdeb9e754f95e4df40dc2ab8c389948c
1194 F20110218_AABIPA hu_s_Page_003.QC.jpg
bc80623a6de2e9bb794bf86325af4ebe
d4c7b09aa01a745633903abc3fae98341b8330a9
1920 F20110218_AABHSH hu_s_Page_138.txt
80856f350d3fe9340439bc498a1543f5
75791828a3e5bb73c71ec1be730b234014483d21
24317 F20110218_AABIPB hu_s_Page_004.QC.jpg
96c3bd90a45b46398ec30a88b897c19f
a7ddee3106420d01f9efcf94775c1822632a6039
6015 F20110218_AABHSI hu_s_Page_073thm.jpg
e20793b9beb8e8f9d1fb8e25cc492220
d82680464d943039b72786c4b1ed449013e67916
38390 F20110218_AABIPC hu_s_Page_005.jpg
d43afaecd2a43bc3711d4b884b516c67
598a57be5f74a31b8bfbc07ab931adad3d42151d
1051921 F20110218_AABHSJ hu_s_Page_229.jp2
916edaec11d4e6b82bde08a27a30ff61
1f559a008d4ad42b30420527c4b4ba82a5227ec7
19523 F20110218_AABIPD hu_s_Page_007.QC.jpg
9383c0f708e7b90243395a442ea8a67a
1d8a069bc269affe35eac14c2759addce776a535
23455 F20110218_AABHSK hu_s_Page_042.QC.jpg
7fef803a832dd9f651be2aca7bdc87d6
6235b80dc4c660ea7c68bb8043f2a66e1c42a4f6
35670 F20110218_AABIPE hu_s_Page_009.jpg
c24b0e6789ee08dc728f94ffc0a79648
d7c3b55def4e4f2bade91bc01ce2b833b632653d
84900 F20110218_AABHFA hu_s_Page_100.jpg
540d06435904566d6c4eda585957f89f
b492f038d55005704f01a53955a3e2cccf525569
1972 F20110218_AABHSL hu_s_Page_158.txt
62aef6c6df58636b2f913a48f5fc4ffc
1f7b43f7402229322a6a71fdfd659c153d4cdb81
10417 F20110218_AABIPF hu_s_Page_009.QC.jpg
897f9d3e6f3d058f005c859fed6ddc90
186f7ba9ec84cca479bf5fee7aa93cb75607d177
38646 F20110218_AABHFB hu_s_Page_012.pro
37a0d66a9abb9a46d2bfdcfc8752e0e8
767320dffdec744e34fb728b4c5caf2e07f341ac
63531 F20110218_AABHSM hu_s_Page_211.jpg
7783b587f27deaffc78609cdfbbbe480
9eb4bc1ff60a4138e5ce7ecd001a7beee4682c74
66050 F20110218_AABIPG hu_s_Page_010.jpg
459b035029470423a79dabdeabbb3e07
e2e62e4a267cbfa05c66f8fd9f0975927172ad1a
82270 F20110218_AABHFC hu_s_Page_109.jpg
effd2f10b3f9ab4130a74ea9a9bde2ba
a3f0bf40653008672616fc60396af959976b217c
663 F20110218_AABHSN hu_s_Page_201.pro
b5b6b7067dbf8fef24f9aec3d9d0f285
3f215fce87749056ab5d47792729fa07e0d62545
19158 F20110218_AABIPH hu_s_Page_010.QC.jpg
3b7c6ffe22a857aef4d24f65cce86e00
4c6c8763cf397834d9edbdb7ed84e838901b0e2f
63563 F20110218_AABHFD hu_s_Page_171.jpg
fa40ca015cfb85a62ab57dea0a88ffd9
8a701dd1c102f881d35775f0e28a4ec570ca6a4b
52787 F20110218_AABHSO hu_s_Page_063.pro
cc7342fabfcc9f690ed44eda7cfcd53f
387b60d6324582841e094f3b22f58abfb743680d
13082 F20110218_AABIPI hu_s_Page_011.jpg
4173af8dc8923b4618c4b325d5a2ea91
0f7eac7aa417f65390bbc65d7b3411636a41c063
314 F20110218_AABHFE hu_s_Page_084.txt
38c5f0fd55d92ed17b16f7d5e0435208
3eb88614a865424f6a6c48d446f199b13679ab5a
2236 F20110218_AABHSP hu_s_Page_065.txt
dd303025ac66972619d4948c43caea29
98e87595f0a26bf293792fc448f5f4e86a583276
3817 F20110218_AABIPJ hu_s_Page_011.QC.jpg
f90dab7e8fd5123568e21361ccfdb452
4b0264657bd46c203d6f35444fb73bc473551289
F20110218_AABHFF hu_s_Page_052.tif
c70599ee6ed6df1545240123ade6786f
ae822e3982c26115045503ab44a23793c11cfb3e
28601 F20110218_AABHSQ hu_s_Page_003.jp2
8b7077e77af5f4c3a5dee30ba7eb6718
837ae8e058dfbe553c64524f79559ae74318bf32
67860 F20110218_AABIPK hu_s_Page_012.jpg
0d147f9847985ccb732119dadac3f1dc
5b488ae4efad863d93abc4bc66eac45a0d2a2cfe
61744 F20110218_AABHFG hu_s_Page_036.pro
9c61c272817da255496954fedded6551
a761f3225f2ea5de4b8887668bb36e865a1fa642
6639 F20110218_AABHSR hu_s_Page_197thm.jpg
0488e474d1dc62c74f4b6a0d648e7c8b
a5ce26c59a39d4c0aa63a5a0e5ba7cd0bb2071a7
20077 F20110218_AABIPL hu_s_Page_012.QC.jpg
9318f058e28961f3075e92bcce68c516
dfdfe03d67fb80358265fc83df1c7239e89b7e95
61696 F20110218_AABHFH hu_s_Page_179.pro
9ed5fcfaf0ac0a33394b28fe35c0739a
076911ce3535fad4b1bf870f8f2cf2bc045f8ea8
F20110218_AABICA hu_s_Page_156.tif
3357d96fbc21920a54367d984b222c2c
81b68b6db254898981f6e9eff7ea97156e257fc6
F20110218_AABHSS hu_s_Page_147.tif
622105683a445956bb848fbcdbc5333f
788db867ac1790e2474198e103c935f671c42287
74356 F20110218_AABIPM hu_s_Page_014.jpg
a8a833a50006cc75ae2812e382d88c61
637ccf54aa89636ef9a76911c7732b021926680a
F20110218_AABHFI hu_s_Page_095.tif
3041a3f33d84bd3e016fb2db55da1440
4730ab36412547d886045fa92d5e9fbb070cdb0e
F20110218_AABICB hu_s_Page_157.tif
df6e825064777b36ebfb4b25e458d4fe
bc87167d0ba27dd7284ab8848027804928a3d40e
F20110218_AABHST hu_s_Page_175.tif
a8a975c754240835f78561fc8f5c82ff
68ea2e802025320d8e9f890ec759d0ff6e40ac4c
22931 F20110218_AABIPN hu_s_Page_014.QC.jpg
37ae957206e1710bc96637da0a09bcd1
7e4041a6e96873254772e4139798c21c26bb581f
5163 F20110218_AABHFJ hu_s_Page_046thm.jpg
ae5da746f108dac87ca192fadb4517e9
cc374860070766ec9ff0fbf5e0a38f8256be6626
F20110218_AABICC hu_s_Page_158.tif
4a6caa243e3d1d5eb66ea69b6fb8ad49
47384b27e298747b25dd1c2e05eb8e014cfe2d6f
2245 F20110218_AABHSU hu_s_Page_052.txt
5d63e6c206ef0c8c88d8e7e03a4073b6
27c49410e80b42bcaab3039a3b9c7de38d8fd2cd
6121 F20110218_AABHFK hu_s_Page_109thm.jpg
7f18de3a157fa39b976f5f0846cf5757
fc951792b8a58188c5713f480a4c6fb352ec878f
F20110218_AABICD hu_s_Page_159.tif
c4892874023bb6fe3e036a6e3cb3a416
8f1d9b1e7a2c6e6111bed9c7be88e8ceeb925b19
54498 F20110218_AABHSV hu_s_Page_062.pro
5d3a82f397326600708f24ad36309de3
3f91c4e8dc660334f3763609575b023c2ba6e964
82962 F20110218_AABIPO hu_s_Page_015.jpg
bdbdbe62f3211d59900e6172e175a615
5c641e1e6aad153ac5fc22fa1b3c70b17b8ef729
F20110218_AABHFL hu_s_Page_010.tif
e90b6630b57c4c76cd0710a67dba344a
265ffe3ac36b9143b53e1c59cef66cd5221c1baa
F20110218_AABICE hu_s_Page_160.tif
8bcdc1a384d444b4453425fba31549e7
2df231766258021ce4f34d1ba1f7cdd1d029589d
2010 F20110218_AABHSW hu_s_Page_137.txt
d0b714e248662fb4072653e02aff9a86
bbb870e7bb39bf10632d96330987b2d4067ef3aa
26088 F20110218_AABIPP hu_s_Page_016.QC.jpg
53b080b06134b6c0377ffe4c46f5be40
84351384f0eb8a24ee673c2450f3b02dcbf6a97f
12861 F20110218_AABHFM hu_s_Page_006.QC.jpg
a0dd725b96d1556596b4a2ec89686fd4
20f2043f07b22f746fce70dbbd590620dc52da56
F20110218_AABICF hu_s_Page_163.tif
081c714e6f5b604193ac66984b6097cf
9a98a3b8a325408a3219aee3a5ad2c1d74dbb47e
108883 F20110218_AABHSX hu_s_Page_177.jpg
9ec07c18d5974c57468bf0e9098aa956
31b9da203ed891f1e6cfce25b158eb5e703cc2e4
19811 F20110218_AABIPQ hu_s_Page_017.QC.jpg
3b8467ba841368354ca7cf24cd4c15b6
f4c131a0e47a9d89717d4c2c45c96df8ad1da375
F20110218_AABICG hu_s_Page_164.tif
db5dec9e4a9e2f7b520597227eb289b0
2497d56ead242e548e2e4b129ab226501bfc25e2
26675 F20110218_AABHSY hu_s_Page_058.QC.jpg
bd9b3501450e4fa4ed5b3abec3caccf5
8d8314a956274f88ecabfcc05a44a89a1a42f710
76580 F20110218_AABIPR hu_s_Page_018.jpg
4710a6d2b14496b9669c5517b1cc3b11
d9303f68491da5492b5cb81cbaf492479594d48c
62051 F20110218_AABHFN hu_s_Page_223.pro
afafd2b9544f104408d0d142f2630962
8e693a10e5c357ca41976a74e5be696c4a4c2cc2
F20110218_AABICH hu_s_Page_165.tif
495c576b34885c9eb0e8b2de7c663330
7e454777893fbf872ff29089d69793b2f08ee870
25511 F20110218_AABHSZ hu_s_Page_181.QC.jpg
f89a1af49bd495be462f944ea3a323c6
2eb3f4fd71ff7068c0247cd75afefa30a740f15b
52434 F20110218_AABIPS hu_s_Page_019.jpg
9c2bed92e29a2c8ff8020c2fba1c344a
0268877e3eb63dc2227498298d82438a15a13b52
1051968 F20110218_AABHFO hu_s_Page_211.jp2
24d290947dde183a13d4c087a49a01e2
9677b25a8ba676cc255e49c29d1195622159dc79
F20110218_AABICI hu_s_Page_166.tif
6af453d3d488d711280d1ee2ecbe82f4
b89482ae00e95ff8d6249fcca95c0f7ed06c3bf3
73575 F20110218_AABIPT hu_s_Page_021.jpg
31156b602e50513502b34d42e1a4e140
f0c67f7ef70473a7b6b27560a6a65274c6f0adb1
51502 F20110218_AABHFP hu_s_Page_103.pro
5cdc1093cbf99936f9c262e76039bc0d
3a47468b6a8955ce59212f8a5522ada9a0f72819
20947 F20110218_AABIPU hu_s_Page_021.QC.jpg
e79fbd9131c42dba63235ad82bb867c1
b1a982ee6b7f03a8a2327c9cbe7f3f0ccdb2689c
F20110218_AABHFQ hu_s_Page_144.tif
8a2920bb379e1f32a5635d75bf4d48e1
f6ce733a3be903d2ab330a2bf4ed61f2616d96f0
F20110218_AABICJ hu_s_Page_168.tif
25854eef13779a36ed2115ad7385ff99
f8435613c56614abd2aed35db415820d109894e8
24822 F20110218_AABIPV hu_s_Page_022.QC.jpg
bddb8c37744bce5f5cc2ef85015130b3
7cf14d5fb01bd54f0d66d84a7573a4e6041324c2
F20110218_AABHFR hu_s_Page_050.tif
3b81ea3f7770fe2d2bf01381ca8d7d57
06b6994fc411bf2b9b5f8914c0675c1ef25752a7
F20110218_AABICK hu_s_Page_169.tif
8bea6093a46595eb2d146a338b5e2ca4
46795b7a17a3e02ee7711981e64a56726e8166ef
22730 F20110218_AABHFS hu_s_Page_053.QC.jpg
f39d8cc18fa6f775f781ed71086fe3e0
51cae849a37450f1c9ac257060cc9af0a502d0cc
F20110218_AABICL hu_s_Page_170.tif
35f22ae3bdb8f6f525415beae4aa94cf
61908c53ba69b34741476853b9ec80f452b0d604
3814 F20110218_AABIPW hu_s_Page_023.QC.jpg
7a4a1f72393013a371c31708716cf981
24c04af6ed16d12b96e6157c7995ca53427ef735
F20110218_AABHFT hu_s_Page_136.jp2
1ada15fdabae1ff60a1197ea57a917c6
a1cef528702f7fa52096bac4d5e827b789ec9727
F20110218_AABICM hu_s_Page_171.tif
fa62a371d12e869a18f7e5e7930ab2df
e270de1c5a85a439b76c25fc0d460c695d671f03
70054 F20110218_AABIPX hu_s_Page_024.jpg
601975e7d3d9047f483acf87e8c5ecc1
baeea6a77d0d528bc1cb882ee3cf3546a0cb82de
F20110218_AABHFU hu_s_Page_181.jp2
19f77af9ef03f2f80be89a3bd773a58a
5ba1e8bc8e960a49ad4c6ea9246a202d82ef4e2c
F20110218_AABICN hu_s_Page_172.tif
c1340f4212d509715c5672d7d0345992
1dacfa9019537bf3cc45dab29b63700b74b6335f
72955 F20110218_AABIPY hu_s_Page_026.jpg
2673d3b2ff2dbf7b867377f7b28b2f5d
17d24a644d139c9ed93fd0eef27f3c3ff496265c
68902 F20110218_AABHFV hu_s_Page_017.jpg
a456945c22e639d5a14b4b6c4d206c20
86fc285ca37931f48e365bec6fc00ccea482555c
F20110218_AABICO hu_s_Page_174.tif
94977c6e14813c3d0ba5222dd120d04c
979ea2ecb80b7a5de0bda4ed1fb22774dd4cc9e7
98996 F20110218_AABIPZ hu_s_Page_027.jpg
fda1e6d0bac66773af5e65f838fc55b9
6713e769c1f0d7a5735cc17c8a5714064bee126d
2810 F20110218_AABHFW hu_s_Page_037.txt
1a6117e8b588e9a74f592774ae12c02e
6ddd8bf32d2a5a466c385a6bd71c07d5ff2bf90e
F20110218_AABICP hu_s_Page_176.tif
e0784775219d1596fad8fcc9413f7cc0
8b8e376cc388b1ec19193f8954d0c7d1826fdaad
26230 F20110218_AABHFX hu_s_Page_041.QC.jpg
58b21e500f3dcd9e840b6bef7dc04aca
d38e39cdcd7012ecd5d001be6eb3fe67e04290e5
106 F20110218_AABHYA hu_s_Page_003.txt
a91f5342b771b018a63843d124d2d804
5a5352bf3c380e00af2c67a8f1d675001b15a856
F20110218_AABICQ hu_s_Page_177.tif
b9329bd1fb7d25cd49023f5d5ca77d73
e772250231202f9939f2b1d09b2032cb32c0db1d
90211 F20110218_AABHFY hu_s_Page_224.jpg
d1f266fb4b1f87b1de3d1aca04169505
e2b9da14a20aab67fe6783b744217568cae65769
27161 F20110218_AABHYB hu_s_Page_225.QC.jpg
35a982b7be55c00732a82863fe2f0659
29a859603a3fdbc0baaacfd6e904fca8dda824c5
F20110218_AABICR hu_s_Page_178.tif
f9e2ef83a3d6acfbcfad22913f2aee0f
8e7a9ed37708d5af7b66100a5ccde6a5b2234f3e
F20110218_AABHFZ hu_s_Page_123.tif
8d2fb79757f3dc2f41423ae770d30042
6000f28c7ef0e802f2305922dc839ae41984a457
F20110218_AABHYC hu_s_Page_205.tif
d3f44618f15789852923a2a8293e519a
57ea0d2d5dfa17b9818883004973fee010ff8611
F20110218_AABICS hu_s_Page_180.tif
4a0d3482633d7196c33265b4a07cd585
1d239c315044cdf7de995c261593146a80609c90
5407 F20110218_AABHYD hu_s_Page_045thm.jpg
3f476b09666902c8585bdccffcd938a9
ad819f208fe1af17e863e7e244dac326090cad8c
F20110218_AABICT hu_s_Page_181.tif
739b910d602fa292cc91b66f15e434a3
19efd7097f5b73074078020c690aacc36eb0ccfb
2132 F20110218_AABHYE hu_s_Page_217.txt
917df2e69e142f81d8c99a1a3daa7884
83735146cd5a59af25acc2eaa9cade217ed10499
F20110218_AABICU hu_s_Page_182.tif
ce8c025fc44da15405bb8c6ef2babfd6
db2376e499bb142270febd5e7841796ed6cea840
363267 F20110218_AABHYF UFE0013780_00001.xml
df22265681bf05aeb780474f32e1a43b
fd91a2e82534bd389e38cb852ac4fdeed81fa138
F20110218_AABICV hu_s_Page_183.tif
8a9b6cfbef211547a9b6ffa73b7b95df
6a722d42cf850489ffba07e2dba84c7ee9a0c8d8
F20110218_AABICW hu_s_Page_184.tif
8433e4c95fda9454c8c6af65d39467d4
854afa76744daffec12b0f0b9d8fa62da88a1b70
F20110218_AABICX hu_s_Page_185.tif
33537aa99a65b7a261a16d7585d86668
2b3f770849de2bacf05ef2c4e07ad914b9a46f62
30311 F20110218_AABIVA hu_s_Page_128.jpg
2aeb54d911d07f9662fe806ebf3ee4f9
0377382867789d5f2839f2328cc2b0750d0459c7
F20110218_AABHYI hu_s_Page_001.tif
ae15ea754bde66cf6c3d2c11d717b318
6cf01e270851b6aa0eb633fb12ccf9dfd66bd0d8
F20110218_AABICY hu_s_Page_186.tif
2a19521b57515c53c0cb5e9d452f863b
2c0ccb8e6e894d930451a80926ea8771a1d78b31
9773 F20110218_AABIVB hu_s_Page_128.QC.jpg
46c65d5b9a2303fd4db941f1e80c1e1b
e19c810afbe17b22ce46c1f0bf832b4c0f828406
F20110218_AABHYJ hu_s_Page_002.tif
182533f48f1ed48ccc86c787e382daf2
64b40d1d390d81c8feea88464074c170522e08fb
F20110218_AABICZ hu_s_Page_187.tif
3870efdfa6bbdaf61988e3d7e41f228f
1bd9213208373013a5814468c12f6a70184b5d2f
20779 F20110218_AABIVC hu_s_Page_130.jpg
1972ccde9d5ae28bab1fc22f45266fda
597c0e8fffc7d23964ccf0fe66c3a90e6630f17b
F20110218_AABHYK hu_s_Page_003.tif
2b4dfbb2e6e5b33c35f10d5772f70334
b707f96f1b62b9b8dd353ace26e934baf88b15ce
75539 F20110218_AABIVD hu_s_Page_131.jpg
8d04e08ba2033b8e2b8b78dc3e5cadc9
8ec075aef888c0bda1cd749a8d8cbcd809be92cf
34323 F20110218_AABHLA hu_s_Page_084.jpg
aea472f781a842cc5f788eb1db1e0751
048f04f5cb0d2d03bfb82f99617e2221b799a1ce
F20110218_AABHYL hu_s_Page_004.tif
6fc4c5fb20562096cc458cf4297ef529
cf2d103d3ac26fa8a41b05a1fab89d48cb9de877
23310 F20110218_AABIVE hu_s_Page_131.QC.jpg
1b077927ff1364a17809792fc9119d39
511ae97e9bab44d6c799c09f5e3f34f509c9eb5e
57907 F20110218_AABHLB hu_s_Page_226.pro
d97ad7b274bca24b41115cffb4eecad5
86749fee4e226b586a5d450eaa521738627bd012
F20110218_AABHYM hu_s_Page_005.tif
c74485e47de64b5914261b3577079151
b60c0c48ae1d6f54f0683b28777f8bf85863613a
26788 F20110218_AABIVF hu_s_Page_132.QC.jpg
843cb2b7adc7f9ecd94cd80bde23c37b
10ac8f1b4fa476090168dfd85135b7dd319c46b3
906682 F20110218_AABHLC hu_s_Page_017.jp2
697bbcfdfab1fbb0368823e10eda7a30
f1f1a10b9f4fb4fbaf41e73459b7c07df5595319
F20110218_AABHYN hu_s_Page_006.tif
215080871b18562747629ac4e9fefadc
92579c98bb82bf8f1394ec47986248aa7978b65c
78304 F20110218_AABIVG hu_s_Page_133.jpg
df5374424728de4e218dfa37ce743035
1d3ab2b8bdd7dec040e12bad11ebcfa8e115f04d
F20110218_AABHLD hu_s_Page_019.tif
103c34414c7ff4544dfb2be97445ddef
8df55dc0508dda52ef55992a4ce5ed0a26c9eee0
F20110218_AABHYO hu_s_Page_007.tif
850d534089adadbee7bc3ca8a8f8149a
05625ac66815e5234aa4a49d0bac798ec267c9b1
24306 F20110218_AABIVH hu_s_Page_133.QC.jpg
bd407a2d5a7a42747aa43132f7b1b168
9fabea441a6239c868b7653ab3c8d65f0d7b27fa
75771 F20110218_AABHLE hu_s_Page_139.jpg
ea086a10c6107433831b692ba60d7381
c131dceb53ad111322e6ebe5716878be7645dfdd
F20110218_AABHYP hu_s_Page_008.tif
9ac4ba7c89f8978fe1becbac2a76c22c
fab5e007a93b1feb370a7867c11aeb29259675e0
66812 F20110218_AABIVI hu_s_Page_134.jpg
f88d7fa68adc3aa766bd4e8c9c318fd3
8cb1766df0178d26ec070e0e6ff52bb6bf596ea8
1750 F20110218_AABHLF hu_s_Page_185.pro
af06dee049482d9a6131c51601be5b80
aa33cc70b363d326623e82def09c6c4dfe1c059b
F20110218_AABHYQ hu_s_Page_009.tif
11d29f9550d3f443ce8a76175e05a119
70988fb175bab36aca658e32e23f25ca4f60cbcd
88950 F20110218_AABIVJ hu_s_Page_136.jpg
4afd6b9a282c3d0cc50b41efa339ff2a
5c6dd2e05c67936dc8d93ac3e6b4e1f9250b7ca7
40223 F20110218_AABHLG hu_s_Page_165.pro
fd8eccfbae4cc2e135d5e85884f70bd1
c3bfb52a9c295a607a5431c9d18b194a9ab619b3
F20110218_AABHYR hu_s_Page_012.tif
abff34b5c90eb3424d8975f11948ebae
b0e74c4d4a5874fb5c2a62aeb52a8379dc1eca0e
27308 F20110218_AABIVK hu_s_Page_136.QC.jpg
dd61ea32e8491d2a2d1a0ff75f9bc476
ef48d50a676a3c4afafd3df9e676e5a14dd90cf8
1500 F20110218_AABHLH hu_s_Page_214thm.jpg
f7d46f9845347392d67e70813ff0b0e9
198925eb876ecff8c1697641ee9a0b3606a26a6a
1162 F20110218_AABIIA hu_s_Page_168.txt
5bea1f4de500adf402cb9292908c94c7
f15acb072ffb107f75e5af36eac62725981dd5cf
F20110218_AABHYS hu_s_Page_013.tif
bb6ed7981c3f2ef700c874d272194cb7
1aa5b091cd178378f2234fd7e67d13d7656c4eaa
85067 F20110218_AABIVL hu_s_Page_137.jpg
ca9247bbf44ca26c3fc21784220b67c6
dce11379c2b7b660e1d503311373a245ee911fc0
6020 F20110218_AABHLI hu_s_Page_082thm.jpg
d6e711325a8371eb9f1d1d6b06052f26
d9b45a68725877880811ecf6f5396ba3811cad4a
1740 F20110218_AABIIB hu_s_Page_169.txt
d0968e00953709fb8d3c83c935603e53
c4cf43625bd77a097d83a7fe1966b0d15c7b9b18
F20110218_AABHYT hu_s_Page_014.tif
a7c4c82fa47640bc21cfbaeddddc2051
6e126bc1ce0528268bde1c332f22c7a20b230c70
23146 F20110218_AABIVM hu_s_Page_139.QC.jpg
8444648656e5112d124ac7e1e4d77f85
f35e449f512d12d39a668c672789cca795700de2
1275 F20110218_AABHLJ hu_s_Page_170.txt
f8c420412ffa25054081c58cd5465dff
7b279451a61b298cb73fa58a957bedf04af26563
1610 F20110218_AABIIC hu_s_Page_171.txt
4a7bc05a63c36122f9bcd6a728513daa
152222f0047d9ee4cfdd05e6dff6a2993aa0cd86
F20110218_AABHYU hu_s_Page_015.tif
9b360f498feb80e8509991137629b929
202e179cbf59bfc070b8cd56931dfab80e353502
82834 F20110218_AABIVN hu_s_Page_140.jpg
47c011274ae55f82aa7523eed42f9001
194f6b179511c5c151349dae81f16eef055b3592
24136 F20110218_AABHLK hu_s_Page_018.QC.jpg
071f10c391542f6e00c74d8a89f4022b
de211c281300a5c83d41ae4620a83b701a5da65e
F20110218_AABIID hu_s_Page_173.txt
dda464519b21425cbc1a6776c5b2fadd
6800c71521fbc9e1cea766776a893d56a14514f5
F20110218_AABHYV hu_s_Page_016.tif
914db9e425ac97b8d7ed44f7a13a187e
48bf34e43e51bc215a1c3cc00238405e2e3f5232
82439 F20110218_AABIVO hu_s_Page_142.jpg
9a7963e74a598a27efb9dd837b685446
6ca6f5ff7cbcf77dddf95e57a4e165901f553ee5
27551 F20110218_AABHLL hu_s_Page_091.pro
08c4598fa9ee183cb564c89f4e348b45
85864b9013285e0d3fed2f215273d0c020c40796
2826 F20110218_AABIIE hu_s_Page_176.txt
b2691757b1ec2368c449fba1adcf75f0
8baf16b07b44afbc43e39add48c323f1c08c3a3a
F20110218_AABHYW hu_s_Page_017.tif
f87cbd83d38aafaf0ae184b2ce3f1983
03e3d6f3ba05496360eb14206f7857d1c6de7022
25807 F20110218_AABIVP hu_s_Page_142.QC.jpg
de949ed7a29c9083520eebcd8d912244
64d29dea66e27c30a71c264d08e2474bac1a2ae3
25126 F20110218_AABHLM hu_s_Page_107.QC.jpg
6853e2243e8377cadaeb6e6a74957a65
69874d600b0851e8ec0971906b65e7f9e32f69b2
2622 F20110218_AABIIF hu_s_Page_177.txt
86ce31c67ffcd59b6997931685a32429
9b979b64ab84ae046dd250006cb66bd1a2f345f4
F20110218_AABHYX hu_s_Page_018.tif
ec5ab17588545d58fda27c4f70d95097
3b1f004c7936d14f37455cbc9f3451025aac0232
26426 F20110218_AABIVQ hu_s_Page_143.QC.jpg
a525d96ad3f162e0ab226de1715b4100
1a83543a6a349a5dbd0f34b353b6092c4b0b7896
1981 F20110218_AABHLN hu_s_Page_016.txt
5e1ed4bdb9f2ece9ebf2cff9b21d60f6
f7617a1486f159a96ce4fd0415902d76dd46bc3d
F20110218_AABIIG hu_s_Page_178.txt
372cf36ad738586ebf8d553a080e710e
eb874288641e0dce9d0be52591c839ac9f9bfb5f
F20110218_AABHYY hu_s_Page_020.tif
b900eec818e3d6fc88b25a0bd9dbfda0
87b04b9c1a3c8a8528def4c97edac43c3e828b83
84717 F20110218_AABIVR hu_s_Page_144.jpg
8ea66f2a715bd1408c9ff35e7ef10189
bf660561942640c83b8ca6447443ebef7b4fde20
111 F20110218_AABHLO hu_s_Page_190.txt
3761b2d04a288f9ea428a37262e8857a
368aea25a6509180cdf39a9fcb80abeeb87718e7
2383 F20110218_AABIIH hu_s_Page_179.txt
21278903e95728d87e24d0b05d619b87
336152dcea68a81060a354ce45b2fe8daa22430d
F20110218_AABHYZ hu_s_Page_022.tif
24269ca626269ea3aac1b2ff7e3e41c0
10afc22f45167e0dabf03215c270facdeb432676
F20110218_AABJFA hu_s_Page_220.jp2
0c90f3e7f16c78c36cee41954ddca7a1
f9a9c1f246dce315247fe26566a7eeabf7768c01
25828 F20110218_AABIVS hu_s_Page_144.QC.jpg
84de8e8dcc004eccd8fff126b3a3731e
63d755f07fefea86a178f9026cb18f1705fa9e82
F20110218_AABHLP hu_s_Page_131.txt
c0f7f90eb80f376feec2ccbfcee19c33
e6051855ec06a45d67950b43bb958fa26440a559
2745 F20110218_AABIII hu_s_Page_182.txt
3432de1f3ae0cf495bf7b183b3e7128e
a2a1cce51fe78df9e15a2164ad67b3453dc1dd9f
F20110218_AABJFB hu_s_Page_221.jp2
3e0eb97dcd394a0c854eb2a548953a82
682889ed6fd23ce0e6d51de4d15823ea0ed0aff8
76715 F20110218_AABIVT hu_s_Page_145.jpg
688e9cdaaf92b10f7bbe078624bf3bd1
ef4e167a06b1825515da39b161777a5e8e22f1fc
421780 F20110218_AABHLQ hu_s_Page_093.jp2
98c105e516a10795c2e5bf3eba4a5b39
e0f66da5bd1dbd3dc6039f5761fd5c4ef4e48602
272 F20110218_AABIIJ hu_s_Page_183.txt
f02789bac39a345e6aeeb773a0ca4851
ec71ca64068e23b0856e403b4494265a7d6bdda2
F20110218_AABJFC hu_s_Page_224.jp2
956b06d272177e4394ce727d11b8fbc7
fd55b7833c84686a4aea109c5ac0fd41b6d8ac61
22640 F20110218_AABIVU hu_s_Page_145.QC.jpg
0462ab122dac35dc5da56a827686ce4d
0e3d4cc3d31837d2cff97f9cd109748a7405c8ce
F20110218_AABHLR hu_s_Page_106.txt
fc07c0e8300865dd046dc8100265e971
3da6dc6ac5413a8b8a6fefbc748158bc9ed8c32c
282 F20110218_AABIIK hu_s_Page_185.txt
f3312236ab816409bb581ab6af4eb42f
088e29e5106d61c7605aeaf7c01163f534ea4dd8
F20110218_AABJFD hu_s_Page_225.jp2
24f10273e62f6db7df329f381dc6a1ec
52dd9c412047384445276ed690c10eebfb420cf3
23810 F20110218_AABIVV hu_s_Page_146.QC.jpg
1b7b74499a454610cec08b5a41df3803
0e18ba7c4d05ed123661c9c2972b4abd665f8e0f
26945 F20110218_AABHLS hu_s_Page_111.QC.jpg
fd1c5cd0dfbda19cad0d14d15547ad35
66d9640e45ecf7ae608a9fca880bf98cf16c1e98
252 F20110218_AABIIL hu_s_Page_187.txt
e2642157ca1da02bc95857ec7948943c
35fd7bfb801da910ba7ea4d99c7faef5cac60e5f
F20110218_AABJFE hu_s_Page_226.jp2
d0a1fdab3b94f76b8fb4d09149e98436
835b09013790c4e46f7e111bd14df65ba92b23b3
25201 F20110218_AABIVW hu_s_Page_147.QC.jpg
2bb2216ae95dc1150ae529caaaf7c9fe
74cd809e10a1ca3b6d27e1f9f8f62c17a95c0b3c
F20110218_AABIIM hu_s_Page_188.txt
ab1e6a159ec24166805d5caf4da6186e
4f9f708288c68d43beb25855b958b08b74ff6369
F20110218_AABJFF hu_s_Page_227.jp2
c9a7fb2661d4f940c93b08a0a4f96f76
4b2efbbccbf75d162a2e72d690db55d452ef23c1
24697 F20110218_AABIVX hu_s_Page_148.QC.jpg
db92033a7c248d5039555019570d2325
f52312e82ec1270c0f11c550091483464b122870
F20110218_AABHLT hu_s_Page_060.txt
2118fd8342833d62bff5aed0957c5591
a4e03cbe03f9d1a21c7b1ac97b84c54827bef403
118 F20110218_AABIIN hu_s_Page_189.txt
cdcfe1193eb1648518c981be33c130f1
6636dc6031438418a082d2bd5e2a70542bee975f
1051947 F20110218_AABJFG hu_s_Page_228.jp2
70d64665e41f3a23fc936ad04bf2f17b
3c96cfcc1961e35281f09e890c8df1fd44c6e7b0
27754 F20110218_AABIVY hu_s_Page_149.QC.jpg
f5235ebb7e95b8c7e1ab0d39fd8dd49e
37a2eee576f7178b929a3db1951c70739dbe6682
73558 F20110218_AABHLU hu_s_Page_075.jpg
c9512e098197c7f0b5fbc0be6b8f15bc
4ca8105b1a27c1263d8cab2fd6f4ab64b0637305
64 F20110218_AABIIO hu_s_Page_194.txt
f570ddf9e30b768016429b53f9a05773
fdde3924535ff84032419e40f9add3feb322dec6
5870 F20110218_AABJFH hu_s_Page_004thm.jpg
4b2a13ea96498d587b25356fd61094ed
eac8ce6b65cbd3f459483f590d153a905a86da60
85913 F20110218_AABIVZ hu_s_Page_150.jpg
4eb6f49fb3a140735ade452af6c5123b
bd0450ab2548fd679b5bc0958913cadcccb5314b
F20110218_AABHLV hu_s_Page_136.tif
7bcffa84949fbf1af10b55b816638e91
6a2aee126ba0ff2e5b243971dd9d85d97f3775c0
3191 F20110218_AABJFI hu_s_Page_006thm.jpg
9aafc79765087b1a0ccfcc3fc9a7957f
867947f37f84126a5dde55e95b3c369ee0e28e1d
25949 F20110218_AABHLW hu_s_Page_109.QC.jpg
cf62568aa194d9137d34b5527a69d5bc
5f5c2b28481403afe4e1838e82ca607c0a072aac
177 F20110218_AABIIP hu_s_Page_195.txt
8c1886aceb8ed3511db5c58d5ac44be1
44298a4f0e4e2d379daf951c8ea5a0f22befcab1
4435 F20110218_AABJFJ hu_s_Page_007thm.jpg
7043962a4e0b09c7f5262dabb21ee12d
75b5de867db8490df98bf451d925071d64d394d5
F20110218_AABIIQ hu_s_Page_197.txt
1f89dc39be33919d59858186750dc383
04f4a04c98ffcbc4e15b7076910bd048e1c4f1c3
726 F20110218_AABJFK hu_s_Page_008thm.jpg
be60b331384492a677e033241a7993f3
ec07060a8eed9fb473af07f96e80dd06aba457e5
54666 F20110218_AABHLX hu_s_Page_006.jpg
068599f2102eb1bd6c911aa1a197edcd
f476c625239096703bda042d3e0aa285900efcb9
F20110218_AABIIR hu_s_Page_198.txt
ddede71d4cbbd0bc5a462c42fa5ad080
f43761a237ee3055f4cbfa80a863c89aa0ce369f
85072 F20110218_AABHLY hu_s_Page_029.jpg
d14b38c281387037b52f3046065d9cf0
b5ec9c7d48232992da8f8e1b39785503178dffe6
110 F20110218_AABIIS hu_s_Page_200.txt
9173dd80fb8307ea6cf5d39185303fd1
54aa221ace5b1c976ec24ae7215a4640bb620583
F20110218_AABJFL hu_s_Page_009thm.jpg
7daa6ea2482837f8c624652efa15e1b6
fa7c330de307f9868a1c1e87ff63815eff5b6310
F20110218_AABHLZ hu_s_Page_025.jp2
3a747ff1a8fe0ab269e75138c6c612d6
bd752d70eec39bfbeeb1c97cb11bd4d147bb5c1c
73 F20110218_AABIIT hu_s_Page_201.txt
90b7e575c1468f5921011e2581fdac23
67e81e2945ce65cf5260368a0de6f47f46b79f60
4575 F20110218_AABJFM hu_s_Page_010thm.jpg
4cfe082aefdd8f22f2cc09c04739383c
b719dab010d1b2c8b19918b7d66ed879f0b0ac32
F20110218_AABIIU hu_s_Page_202.txt
bbf2659f28a2c498e8750e21f43f6582
60bd0707c778c319b328ae681142488af3a24709
1110 F20110218_AABJFN hu_s_Page_011thm.jpg
dc55415ff63305303d09eaecc8785366
3c2142833d78a4960950438dc9cefaa0051e523a
187 F20110218_AABIIV hu_s_Page_203.txt
ab229851d845bb350dd0846ac2309a5c
3075e5466b89ff12ceb6e641879cae4da8a7dfe1
4955 F20110218_AABJFO hu_s_Page_012thm.jpg
89040564755d3e3383177b7fe808249f
d83666be60f39795869083c0f3a6826405b04cbe
F20110218_AABIIW hu_s_Page_204.txt
982fc2c0a6681a75a9e84f4aa3ea6032
503f44212af25de6329d26f9db6ec04d1b150d0e
4030 F20110218_AABJFP hu_s_Page_013thm.jpg
018a23cd8bbeb9f3fdf75c935a96e114
0a048335bb531e00a0151729016d88f7cc84f30d
F20110218_AABIIX hu_s_Page_207.txt
27055c822033f17d7b44467be0da39b6
7a66dcbd6e80bad0d013d52a1053582590f58862
5507 F20110218_AABJFQ hu_s_Page_014thm.jpg
8f9ce2fc50bb83a1cfad8d7199e8d87b
07c797c3060385866b0e8bae7f3888ddef10af50
175 F20110218_AABIIY hu_s_Page_208.txt
3382ca093fc8e72afdb35175bab4579e
234f9119425c36c4a78d4ca25a023715ed05e457
F20110218_AABJFR hu_s_Page_015thm.jpg
e30e50f9801775f0b8cd97420a268336
064d2652802303523288e8ff161fa2dbb21f8aa4
186 F20110218_AABIIZ hu_s_Page_210.txt
fa886a07e9f894fa18719c0e6b8a305e
61e3c9a164ff9b8a64d99198a887c886f682975d
6274 F20110218_AABJFS hu_s_Page_016thm.jpg
fda92abfea68122d06b872b492d57304
320e53236d25a6dcff17a85d21cbc60aa6052a66
4712 F20110218_AABJFT hu_s_Page_017thm.jpg
f67b7e45da1eb058b3ca2161b92700c2
1755d8c77d3a7e97f06c1926885e589cdc27c4b3
4395 F20110218_AABJFU hu_s_Page_019thm.jpg
395336e29323062e62126a5f331e1e77
de1b9923961934fc0ca6fc72728b3de320427330
2690 F20110218_AABHRA hu_s_Page_120thm.jpg
7480b34472ca610619658715492161ce
0cee7b05161f2ee882be837912203cbe5ff9b380
6070 F20110218_AABJFV hu_s_Page_022thm.jpg
5a461a917e74ae29fcec48fc9c776981
1b2d611ece4cea8cb550217a719bdd0ba2ede6b2
F20110218_AABHRB hu_s_Page_204.tif
02631d0dd970b3db9ab07debfa8efa23
ed3c848f93480eadf9f43c0f645894ba1678a7f4
1212 F20110218_AABJFW hu_s_Page_023thm.jpg
7f9d18d8d74e0132faeb613c42135536
6bbdaed261009d272a9d9b558966a14188fb20ec
4587 F20110218_AABHRC hu_s_Page_026thm.jpg
644c86c39b645d86bef2fb9bcd6e0aaa
56f7cfa929c3738c70977f0f0c6fc1bf5ff9474f
5243 F20110218_AABJFX hu_s_Page_024thm.jpg
4a365336234b05e6422115112e416c03
685cac416c7c6602377d94bd6fa6d835a30a1bbe
42663 F20110218_AABHRD hu_s_Page_026.pro
23c6a9c74c473f0774f6847411c3cd86
ebfc021b9bd3432040a2d5b94697af11cc40837f
F20110218_AABJFY hu_s_Page_025thm.jpg
e8989bff44ff22d2ecc68e883f9aadb6
abf159efd2cb434f77e68838879867f565c1c10f
24078 F20110218_AABHRE hu_s_Page_168.pro
58af13220f9e9d5fe459709bc5e57f3d
f05857f7a30296734f492585929f6859362d69b8
F20110218_AABJFZ hu_s_Page_027thm.jpg
8b8131ee6b4a14cbd39ec7c8dab18c9b
210c61cd7ac428dad59b6e4d8195d8fbdb020f05
19485 F20110218_AABHRF hu_s_Page_070.QC.jpg
f2068c0e08c84d8c37cb7a698cda03eb
9a2152dd646ae0498cf992d608e5534f5f0ec59d
2198 F20110218_AABHRG hu_s_Page_114thm.jpg
c32753ee3fefa0d6d7bd45db8f91e24b
86681f0eb586a66bdd8d4bc024016c82c4b95ec4
F20110218_AABIOA hu_s_Page_193.pro
3804f11c173e30a36c78281349a897d6
554eb3273fdbac1158b946a7c99accc0c806840a
21579 F20110218_AABHRH hu_s_Page_215.QC.jpg
6592f98550b21010135f3ddcc99cb4e0
a8d552a016a5b934372c2a3f64e750a4e9aa8008
637 F20110218_AABIOB hu_s_Page_194.pro
9c9bc24fdd86f215400138dfe4d09c68
a952650d04f94c536e47cbd74a30531b2c47c7e7
F20110218_AABHRI hu_s_Page_059.txt
84006ad41bde3078639f739cb183322f
3a8e7faec9f281e5f7e5bb9d801e98ae63ef5b33
710 F20110218_AABIOC hu_s_Page_195.pro
48cf663ef650db4831631d10cd6073ea
84019031be7292fd292f5a8ea0efe174fe57c359
101415 F20110218_AABHRJ hu_s_Page_031.jpg
bf13eea57172d65609ef76211ce44572
53fc8eae114b1e5eb8837ef7e80b28c17f83aa75
F20110218_AABIOD hu_s_Page_197.pro
1a41eb948d1fe9cdef744c5aa54f1a14
c4707395277d93d10c1dad848acc3d27c66916fd
6316 F20110218_AABHRK hu_s_Page_137thm.jpg
5f25317d787b0c6aafa0d1d10c28194d
892c7dcc75ff70d16af395774cd1b9ac0ccec81f
778 F20110218_AABIOE hu_s_Page_199.pro
797a347bb4081f9f14b94392c2b9ab3b
5965855b08da741adc57cca17db513e43b76b6ed
1020769 F20110218_AABHEA hu_s_Page_131.jp2
f036325759859af727a9fbf9bae323fe
fb59b432d0728cac71b13d9a24ef166cdc314a5f
869582 F20110218_AABHRL hu_s_Page_079.jp2
0a42eb63248b69d223262323815c3f23
d79baa7c9a99eab5536cce4244aae6310b5c02a1
F20110218_AABIOF hu_s_Page_200.pro
e61ab9dacba2142448f6f6d58603be12
dbe85a9598e3ff6656b72b49573e1a1c50304aca
68004 F20110218_AABHEB hu_s_Page_034.pro
bead24ce7d362dc75f8d002c8a942663
9a4cb8521dd7eecffae0a14502d6ec1d4fea296d
F20110218_AABHRM hu_s_Page_154.jp2
48f2503f25750770d0d2dab112bba5bf
693ceb052edeb9d3c13540aa21f5a03c32f413fe
1624 F20110218_AABIOG hu_s_Page_202.pro
f6dc1aa9cf718bd3933504b49d8194b9
a14c2c4bce8607b070836a6f8747c19eeecefc08
F20110218_AABHEC hu_s_Page_034.jp2
dcda4c95f576cb2e0c9babb058bc4294
f530e5df95626613c1b22ebb048b693909f75887
46113 F20110218_AABHRN hu_s_Page_152.jpg
cab7a5f73bc18f396e5aeaf9a41591b2
c2649ed1248635769d2b5e901df15164f11e33eb
2846 F20110218_AABIOH hu_s_Page_203.pro
0f87d6c5db3ffbb75cb6ca4d12cf8ca3
5953a3800de4bf1c47174df4d67cc803bca98342
102 F20110218_AABHED hu_s_Page_213.txt
55ce01e950c3f0ac43a104028e4320ed
76744b8ca5beec3fde3e487033b6c1b8ceb0db5f
40427 F20110218_AABHRO hu_s_Page_169.jpg
c39e66a1b30bab8fb0e7f409315c2b7b
bbd2c2f0c28a833fe6c8b713fdd9200360661d92
1347 F20110218_AABIOI hu_s_Page_204.pro
183f93b32dc27cf14853a6404aad217f
944f8aa89a8b13d978549bf511fc4a07c0cbba60
F20110218_AABHEE hu_s_Page_167.tif
e6cd830c4a0cb84503da426ff51194bc
276e3c566278f07f5a7197a9c08fa1bb0bdff222
3512 F20110218_AABHRP hu_s_Page_162thm.jpg
85e27788d08347570b49b0f46ef394ce
c0b40b9440a8afdb4aa746e2a7d3d9e2187d1b9f
3542 F20110218_AABIOJ hu_s_Page_205.pro
16dc86a8a7b5c4cb16831fca8e248eb5
56bb2614af25835b39cb5cc6bcc3c1733a990dcc
106138 F20110218_AABHEF hu_s_Page_034.jpg
4f23214f64e12d933d26c9f2ba55edd4
6b2f6355ec1a90bc21ce505551e6ff33d148b111
F20110218_AABHRQ hu_s_Page_111.jp2
e1ce0413d581e40056c99c116e77de71
32a47dc718b64fbcd295341af233d3f2c9524e10
1471 F20110218_AABIOK hu_s_Page_206.pro
e7ce10c0682c00827978d246cd508de7
70a9ef3bb45168e1473bc98ed0a87f0d9d55a1b3
91966 F20110218_AABHEG hu_s_Page_056.jpg
b7361e5830f11994a0bf382f51d53cb5
ae9cf17d33ac39c9b36af072065c00baf4cc34b2
7481 F20110218_AABHRR hu_s_Page_122.QC.jpg
99b1cdf239cfd45f07011dcf94537cb7
7f983af57aa25db5b79811afb864d794db99b120
2775 F20110218_AABIOL hu_s_Page_207.pro
912ab07efa04bf6adf5e529f04fd69f5
1f01e21cb48b916fae10ce0f24b15ad238a7f786
71759 F20110218_AABHEH hu_s_Page_028.pro
cfa867dad81b0ab7a66814ad0f12ba73
4f96680b24f12089af796d0c1a8e3a3b324b6e7e
F20110218_AABIBA hu_s_Page_110.tif
b1dbdd6af2b0ec1b51ab076a548ec9a6
4c7a7965902e2f6a5101e14da08b780967c7bf33
56516 F20110218_AABHRS hu_s_Page_175.pro
05bda84494624c8afc7d66703ecec03f
74063857f986a87a2130c5f10a9f13bbe189991f
1436 F20110218_AABIOM hu_s_Page_209.pro
c5fef77833390e91d7c94e6da0b0fe96
2bbb4a0ef3cf6d00c679b3efe20668d22276c39d
78572 F20110218_AABHEI hu_s_Page_148.jpg
87d0f83416f3faa3ad58883625c23c06
1fab162ddb8610c921f88d6793fe5fb41328797d
F20110218_AABIBB hu_s_Page_111.tif
077066b2f87478d759994a2cdfc00cca
5c2d48dfe595ef0fa98f6587f7bd64018ddba0f6
1963 F20110218_AABHRT hu_s_Page_015.txt
08fa65e525c26566fddd3e0b487025f3
fe210ba0233db7607c628ae0caec67c2d0d5bf7f
1245 F20110218_AABION hu_s_Page_210.pro
59bce6120a6cd0f332ccccd2fc33c1e8
5419bac5f55dc9eef825538f6e126cb328cc523f
F20110218_AABHEJ hu_s_Page_058.jp2
b12b4f05a798bd0945a3b4b9a11fa524
6272bd4b7fae466632156c1788470d282a5f0015
F20110218_AABIBC hu_s_Page_112.tif
f4a511055ff59d89960833867e2d4b2c
63c2abf59d2f2c31453fbf4b4416889b1e4c20a0
43092 F20110218_AABHRU hu_s_Page_123.jpg
37c410e1241375b11eb52f3a2d611777
c6a2d864dcdbdd46d895f43effb6e5d197dfad24
2568 F20110218_AABIOO hu_s_Page_211.pro
a28792542853c254835df4643a7466bf
8588903363493105508825b967de77790ad7f2dd
30404 F20110218_AABHEK hu_s_Page_013.pro
5e0bd0b0cab74527389df20cd79bb454
71e4ab0fdce4f3577f29b85a48f4764f7ce6d10e
F20110218_AABIBD hu_s_Page_114.tif
a4080889cbaefb23226ed5c04ab834a4
40bf6f26618b7a851a2519d6a4d988d6090fb602
896255 F20110218_AABHRV hu_s_Page_134.jp2
867636447a0456fc89419e0ee4516c3c
717543414d60fa5bdf46aa346d4f1d13a7ad43e3
853 F20110218_AABIOP hu_s_Page_212.pro
075c4415e6fbbd28c695527942a46d42
546b84e397eb30e9b7a30e360a315ad5cfb62a88
1701 F20110218_AABHEL hu_s_Page_080.txt
0fd67a7bc355a809e6ff9a43298e1470
0f5bd8eb3f28e06a7e8c460e40b58d2aa17f6e4e
F20110218_AABIBE hu_s_Page_115.tif
d07c33e7f9537b11692f0acc6ec2ed39
dee6906a1e4e18f1d296aff64529b1dbd813686f
16566 F20110218_AABHRW hu_s_Page_013.QC.jpg
90c8f5b8ce6a66a9fbc282c633ac638f
8985262900adb588ab8baf34270ef3ba880682e0
F20110218_AABIOQ hu_s_Page_214.pro
6bf877143ab9a7b4c41077c300b7e855
9e6a4ce1007555abb7fbdda8679c5a997fe71c7f
F20110218_AABIBF hu_s_Page_116.tif
94891bfca462dddab3cdb9f199fb4e5b
c1eae298035bcc845c8a59efd813443b8c819757
52601 F20110218_AABHRX hu_s_Page_059.pro
07d33f562131c289cd2e1d086d005b62
cf2c4f1a08d89445d95e77900778f242d6f4c6f7
53709 F20110218_AABIOR hu_s_Page_217.pro
deb8ebe4af7be2e758f74e75b0aef942
d2824c51a6078d96b83387ac619b66f9cd40a8a4
F20110218_AABHEM hu_s_Page_038.tif
9f45c6ab96d2ea14a1beef381b4fb423
701a77cb71b09f1e559453e10e28fe0c834f87e6
F20110218_AABIBG hu_s_Page_118.tif
6bd12a8c43ca8acb87e19371ed69888a
1a9fa433fea6afe174017ed7bd3f17f6ba8d26cb
81019 F20110218_AABHRY hu_s_Page_022.jpg
4c11bc1b719b5660795a285cbda6b71e
7cb71426ffe6ec6aa3825cadd0c526b9b698a8f0
58297 F20110218_AABIOS hu_s_Page_219.pro
1a1f183e60d1aad16ac8d9465988920d
f6fee8fc2cb915a910aa4813ec3a2c5c22eb7d5a
22040 F20110218_AABHEN hu_s_Page_046.QC.jpg
80b971b7b168694c48c78059a7960ddd
5c882053af9789f75033736e4cbb2033828fbf1c
F20110218_AABIBH hu_s_Page_119.tif
21c4d57b3edf2b337aaf00449ec5dea3
e647af53b90092d4b66bd8151415b4ce95d974e4
52546 F20110218_AABIOT hu_s_Page_220.pro
384c118b06493b5ae8cf60613dd3ae08
42767e9e7ff3c5a2ab324a65744ca4f16c735cd2
22955 F20110218_AABHEO hu_s_Page_055.QC.jpg
5caeadf9930999a850b68526c6eaae82
04ff57ad9309ce373bce44fc32510d6b2bb281f1
1879 F20110218_AABHRZ hu_s_Page_026.txt
e30ce609ca5b720f02f218c30e34290f
65213199295551d49a7abdece92503fcb55cfb9b
60352 F20110218_AABIOU hu_s_Page_222.pro
2fa44da4238a1b6c659dcd67d7ea5b9b
58831f3ae7dfbeddc90497eefd4795a7de189e47
6793 F20110218_AABHEP hu_s_Page_223thm.jpg
bfc94b7b3bbbbf81c6a3d06901c670cb
a209c56db26dad6cc05fd3aa6d22f5ddcf73c790
F20110218_AABIBI hu_s_Page_122.tif
c3ddd079dfae9684a092c99445af25ab
b8996286e3dcb6c0d80f25dbe8a1154d609e9fa3
36492 F20110218_AABHEQ hu_s_Page_115.pro
11f68442b6550e8565540f101b6ecd2c
860a469781c912225be54320eab5e4d3c5c9aa4f
F20110218_AABIBJ hu_s_Page_124.tif
f0d1482469f45ff44bc8775b034107c3
43b5719e0aa2a7146e7da05328bbc64956540a6b
56963 F20110218_AABIOV hu_s_Page_224.pro
6da1f0f25b6d4d0dd36b6714acaf42e1
da7a9173e6f016c787c1921fa235ce5a4bf368ad
2145 F20110218_AABHER hu_s_Page_054.txt
f386f9a46ac2da9ae0ce09fff4c9a009
d7aabf4412a33d0571e83a66eaeab77ac398f128
F20110218_AABIBK hu_s_Page_127.tif
0d93a1e028b60230118b25fb9b8f9b72
1afd3fcfef3a73489cea868ec5393853ea391e15
63265 F20110218_AABIOW hu_s_Page_225.pro
94e84555e7e8c87ff8cf80afe6d54b82
77482f078d4ddff814edd39772746260e9bfa563
21770 F20110218_AABHES hu_s_Page_174.QC.jpg
4bb0ec7c92154525bf5c7fcf3e089f6b
ddff24090241789d0dbd581c67f4110f76886d29
F20110218_AABIBL hu_s_Page_129.tif
5fce55b30f79d85bb9f253f1e04d893e
3f34a500c34333c3d0432f5d82bd947a4f6701ae
58556 F20110218_AABIOX hu_s_Page_227.pro
146b43b3b7e95b694e8d21c9b40d22b3
7b9e457dbddb5841d64b03f62513e00e0a9d664c
26365 F20110218_AABHET hu_s_Page_100.QC.jpg
537b40acae5f164a071664d4d666be95
16688f3dc9c7975b5bbe88cd7680c0b17531c2f8
F20110218_AABIBM hu_s_Page_131.tif
479b24c7dfcf1f40fa0fd6851bf139b2
6dc5b4c68727a9005bfe832bbfc081c0eb4e5bba
56316 F20110218_AABIOY hu_s_Page_228.pro
d94af755c6745a1719c9d9d12c67b50f
1812d3e410ea9443de1fcc2e925d2c196b60f8bf
5667 F20110218_AABHEU hu_s_Page_047thm.jpg
31be4cacae7bc5309e11c1a1061f699d
c69ab862741799292c2993dac5619928acbb52b5
F20110218_AABIBN hu_s_Page_132.tif
674d2790f1317c5cd16be7bfd0796a66
70843f4b72da0225ef5ed68933dcc3fbc903c1c9
F20110218_AABHEV hu_s_Page_145.tif
2aa6dc0f6a5280675ee2ccabf70d1746
b1a0e8288e91fc7dd744f508c09ba3b88fceaf95
F20110218_AABIBO hu_s_Page_133.tif
09ba69ced9d116775711509035d906ef
4cd6b4ecfe5da842268841f807a40a2e331d62aa
1307 F20110218_AABIOZ hu_s_Page_002.QC.jpg
cd9456ed5f6a8a3b41e38ea6686d4e76
20d97668fc6a0d8171b4c2aca50951ec3fe41aa0
F20110218_AABHEW hu_s_Page_222.jp2
48bba124bb86beaaa14a8843bf622e35
82147743fc7b7aa9bf7cf891125db5e67de381fd
F20110218_AABIBP hu_s_Page_137.tif
1eeeaef1bf2f574638c2be0bc56a6d6b
033db635caa2c8b34f305a5321a589ace761920d
F20110218_AABHEX hu_s_Page_161.tif
fdf4660576009210ffdf553af87d5701
c34cd70f042ee482418d4590647ebfc9e6200715
163 F20110218_AABHXA hu_s_Page_206.txt
79f4d38ce1a06e2052985fd7b4ba8134
d683a43c7f0e83d25136a7d0c9cb2ed425e1a57f
F20110218_AABIBQ hu_s_Page_139.tif
7cceee79e0cd90b005b53d7e45621b56
b1e817cb3875d871da02566241772c736e6d613a
49026 F20110218_AABHEY hu_s_Page_110.pro
d11abf1176de002c3639d3b1626be6aa
bb1a963f843c5c35e9358fa639fd726de40f60ee
78 F20110218_AABHXB hu_s_Page_191.txt
1ea88bec08de0ddea72921dfa47eeef4
4796e9896099d66004b7f14fbe25b6c4fe91b25e
F20110218_AABIBR hu_s_Page_140.tif
e9e080c52ed59e949dad3f052de9f169
d1a35c0c8800643384df207ad1770006e14f0e45
5949 F20110218_AABHEZ hu_s_Page_220thm.jpg
803d994517b1ed251c7fa781d16d1ef0
4afb6bdcafbe554f50d30a25a89bcafb251d02f3
57110 F20110218_AABHXC hu_s_Page_039.pro
a57dab98fd866d0bb31166f9e05288af
68e70a40f0bda104c4473557e9413853753d79e7
F20110218_AABIBS hu_s_Page_146.tif
4cb661c79d9f8ed76b7d547a6300edc7
59545706433a48a280363556225e7e3950fc768e
93455 F20110218_AABHXD hu_s_Page_040.jpg
0324b078c08fcb58e2f5a54574d3be34
32d6c70cf504d33e728e2196efa753534541b16d
F20110218_AABIBT hu_s_Page_148.tif
e652898a0dfd4c850b0990424ef9e65d
710eaf797088f5df8ba5ad36cfb8e217eca6549a
4299 F20110218_AABHXE hu_s_Page_214.QC.jpg
09ad17ba1b8a434b11331ec934495c22
8398d6bf89d18018eb04ef1b14553400ffa96a43
F20110218_AABIBU hu_s_Page_149.tif
d39260bbefb69babd7a001c3a2b13896
2ec5dfb2cd6e0fe8f3b7405fcec1045c02cab78a



PAGE 1

PALYNOMORPHS AND SELECTED MESO FOSSILS FROM THE CRETACEOUS DAKOTA FORMATION, MINNESOTA, USA By SHUSHENG HU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006

PAGE 2

Copyright 2006 By Shusheng Hu

PAGE 3

To Yuxian, David, Mark, and my parents.

PAGE 4

iv ACKNOWLEDGMENTS I would like to thank my advisor, Dr David Dilcher, for his advice and encouragement. I also thank Dr. David Jarz en, one of my Ph.D. committee members, for his assistance and rigorous training in pa lynology. I thank my other Ph.D. committee members, Drs. Mark Brenner, John Jaeg er, Walter Judd, Steven Manchester, Ellen Martin, Neil Opdyke, Gustav Paulay, and Anthony Randazzo, for their helpful suggestions and critical readi ng of the manuscript. I am grateful to Dr. Francisca ObohIkuenobe at the University of Missouri-Rolla and Dr. John Wr enn at the Louisiana State University for providing helpful suggestions an d discussions while visi ting their labs in 2004. I thank Drs. Satish Srivastava, Doug Nic hols, Geoffrey Norris, Alfred Traverse, Mary Dettmann, Martin Farley, Wolfram Krs chner, Carlos Jaramillo, David Pocknall, and Jim Riding for useful palynological discu ssions. Thanks go to Drs Francis Putz and Alexandre Trindade for discussion concerning statistics. I would like to thank Drs. Hongqi Li, Hongshan Wang, and Xin Wang for acad emic discussion and encouragement. Many thanks go to Rich Barclay, Margaret Landis, Sarah Corbett, Paula Mejia, Judy Chen, and Elizabeth O’Leary for their s upport and help during my tenure at the University of Florida. Special thanks go to Terry Lott, Kent Perkins, Paul Zeigler, Guenther Mauk, Bill Greene, and Mike Lee for their assistance in various ways. Thanks go to Dr. Rick Lupia and Amy McClain fo r providing a loan from the Sam Noble Oklahoma Museum of Natural History for my us e at the University of Florida. Thanks go to Lynda Schneider and Karen Kelley for TE M and SEM technical assistance. I thank

PAGE 5

v Dr. Frank Potter and Scott Gooler for their help during the 2003 a nd 2004 field season. Thanks go to Professor Meitang Mei for encouraging me to pursue a Ph.D. Financial support was provided by Dilc her-Becker Funds, 2003; Evolving Earth Foundation, 2004 grant; Sigma Xi Grant In Aid of Resear ch, 2004; Graduate Student Council of the University of Florida fo r Travel Grants, 2003 and 2004; Danker Fund, 2004, from the Department of Geological Scienc es, University of Florida; and the Deep Time Project, NSF DEB-0090283. Finally, I tha nk my wife Yuxian and my son David for their support and assisting me in the field during the summers of 2003 and 2004. I thank my parents Yuqing Hu and Xiuchan Wang for the support and guidance they have given me throughout my life.

PAGE 6

vi TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES.............................................................................................................ix LIST OF FIGURES.............................................................................................................x ABSTRACT......................................................................................................................x ii CHAPTER 1 INTRODUCTION........................................................................................................1 2 MATERIAL AND METHODS....................................................................................5 3 PREVIOUS WORK....................................................................................................11 4 SYSTEMATIC PALEONTOLOGY..........................................................................13 Angiosperm Pollen.....................................................................................................13 Gymnosperm Pollen...................................................................................................25 Spores......................................................................................................................... 36 Algal, Fungal and Megaspore.....................................................................................55 Dinoflagellate Cysts and Acritarchs...........................................................................58 Dinoflagellate Cysts............................................................................................58 Acritarchs............................................................................................................63 5 GEOLOGICAL SETTING: REGIONAL AND STUDY AREA..............................67 Regional......................................................................................................................6 7 Stratigraphy and Sedimentary Environments in Study Area......................................68 Courtland Clay Pit...............................................................................................68 Highway 4 Clay Pit.............................................................................................69 Ochs Clay Pit.......................................................................................................69 The Stratigraphic Relationships of the Localities.......................................................70 6 THE AGE OF THE DAKOTA FORMATION IN MINNESOTA............................81

PAGE 7

vii 7 IMPLICATION OF POLLINAT ION BIOLOGY AND EARLY LATE CRETACEOUS COASTAL VEGETATION............................................................85 Implications for Pollination Biology of the Early Late Cretaceous Angiosperm Pollen......................................................................................................................85 Angiosperm, Fern and Gymnosperm Divers ity in Coastal Areas during Early Late Cretaceous...............................................................................................................93 Comparison with Other Late Cretaceous Assemblages Recovered from Coal Bearing Sequences..................................................................................................98 8 COMPARISONS BETWEEN ANGIOSPERM MEGAFOSSIL AND MICROFOSSIL RECORDS....................................................................................118 9 EUSPORANGIATE FERNS FROM THE DAKOTA FORMATION, MINNESOTA, USA (WITH DAVID DILCHER, HARALD SCHNEIDER AND DAVID JARZEN)....................................................................................................122 Abstract.....................................................................................................................12 2 Introduction...............................................................................................................123 Material and Methods...............................................................................................124 Results.......................................................................................................................1 26 Generic Diagnosis.............................................................................................126 Species Diagnosis..............................................................................................126 General morphology...................................................................................126 Spore morphology......................................................................................127 Description........................................................................................................127 Systematic Remarks..........................................................................................128 Generic Diagnosis.............................................................................................132 Species Diagnosis..............................................................................................132 General morphology...................................................................................132 Spore morphology......................................................................................133 Description........................................................................................................133 Systematic Remarks..........................................................................................134 Discussion.................................................................................................................136 10 CONCLUSIONS......................................................................................................140 APPENDIX A PROCESSING PROCEDURES USED BY GLOBAL GEOLAB LIMITED, CACADA.................................................................................................................145 B PALYNOMORPH RA W DATA SHEET................................................................147 C PLATE EXPLANATION.........................................................................................158 D PLATES....................................................................................................................171

PAGE 8

viii REFERENCES................................................................................................................204 BIOGRAPHICAL SKETCH...........................................................................................217

PAGE 9

ix LIST OF TABLES Table page 7-1 Criteria for pollination interpretation.....................................................................101 7-2 Inferred mode of pollination for angiosperm pollen taxa from Courtland Clay Pit...........................................................................................................................1 02 7-3 Inferred mode of pollination for angiosperm pollen taxa from Ochs Clay Pit......106 7-4 Inferred mode of pollination for angiosperm pollen taxa from Highway 4 Clay Pit...........................................................................................................................1 09 7-5 Angiosperm pollen distribution in three di fferent environments in Ochs Clay Pit.110 7-6 Fern spore distribution in three diffe rent environments at Ochs Clay Pit..............111 7-7 Gymnosperm pollen distribution in thr ee different environments at Ochs Clay Pit...........................................................................................................................1 12 7-8 Relative abundance of bisaccate pollen in estuaries at Ochs Clay Pit...................113

PAGE 10

x LIST OF FIGURES Figure page 2-1 Map of Minnesota, showing th ree localities in study area.........................................6 5-1 Map of North America with the locati on of Western Interior Seaway during the Cenomanian (early Late Cretaceous). ...................................................................71 5-2 Area of west-central United States in which the lithostratigraphic name “Dakota” is used. ....................................................................................................72 5-3 Schematic cross section of lower Uppe r Cretaceous sediments in southwestern Minnesota. ...............................................................................................................73 5-4 Detailed stratigraphic columnar section of lower section at Courtland Clay Pit.....74 5-5 Detailed stratigraphic columnar section of upper section at Courtland Clay Pit.....75 5-6 Sketch map of the Dismal Swamp, US A; an example of a coastal swamp and coastal lake developed along the coastal areas. .......................................................75 5-7 Detailed stratigraphic columnar section of SW section at Highway 4 Clay Pit.......76 5-8 Detailed stratigraphic columnar section of NE section at Highway 4 Clay Pit.......76 5-9 The morphological elements of a meandering river system....................................77 5-10 Detailed stratigraphic columnar section at Ochs Clay Pit........................................78 5-11 Ideal sequence of lacustrine deposits.......................................................................79 5-12 Inferred stratigraphic relationships outcrop sections in study areas.......................80 7-1 Selected angiosperm pollen relative abundance analysis in three different environments at Ochs Clay Pit...............................................................................113 7-2 The distribution of terrestrial pal ynomorphs in lake, swamp, and estuarine sediments at the Ochs Clay Pit...............................................................................114 7-4 Relative abundance of bisaccate pollen in coastal swamps at Ochs Clay Pit........115

PAGE 11

xi 7-5 Relative abundance of bisaccate pollen in coastal lake environments at Ochs Clay Pit...................................................................................................................116 7-6 Relative abundance analysis of dominant non-bissacate gymnosperm pollen in three different environments..................................................................................117

PAGE 12

xii Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy PALYNOMORPHS AND SELECTED MESO FOSSILS FROM THE CRETACEOUS DAKOTA FORMATION, MINNESOTA, USA By Shusheng Hu August 2006 Chair: David Dilcher Major Department: Geological Sciences The middle Cenomanian palynomorphs and selected mesofossils from the Dakota Formation of south central Minnesota were investigated. A total of 218 palynomorphs were recovered. Terrestrial palynomorphs include 41 types of angiosperm pollen in which five types are described as new speci es, 42 types of gymnosperm pollen, and 78 types of spores of ferns and fern allies. S pores of ferns and fern allies are most diverse among the terrestrial palynomorphs. Othe r palynomorphs include two types of megaspores, ten types of algal spores and colonies, seven types of fungal spores and fruiting body, 18 types of dinoflagellate cysts, and 20 types of acritarchs. Based upon the occurrence of Artiopollis indivisus Balmeisporites glenelgensis Cicatricosisporites crassiterminatus Dictyophyllidites impensus and Nyssapollenites sp., the age of the Cretaceous sediments exposed in south central Minnesota is probably middle Cenomanian. Based upon the analysis of a ngiosperm pollen morphological characters, the pollen types that appear to be insect-p ollinated accounted for 77% on average, and the

PAGE 13

xiii pollen types which appear to be wind-pol linated accounted for 23% on average during the middle Cenomanian. The characteristic vegetation elements of the coastal swamps during middle Cenomanian were diverse angiospe rms, dominant ferns and fern allies, and a relative low abundance of gymnosperms. The Trochodendrales and Buxales of the eudicots, which were not recovered from leaf fossil records, probably were present during the middle Cenomanian based upon the angiospe rm pollen records. Two new marattioid ferns, Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. and Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov., are described based on charcoalified isolated spor angia and synangia. These fossils provide evidence for the existence of marattioid ferns during the mid-Cretaceous in North America and give the first unequivocal documentation of the Marattiaceae in post Jurassic times. Spores of Goolangia minnesotensis are comparable with the dispersed spore Dictyophyllidites impensus which was distributed from Arizona to Alberta in west central North America during the middle Cenomanian.

PAGE 14

1 CHAPTER 1 INTRODUCTION The mid-Cretaceous was a critical period in the evolution of angiosperms. During this time, angiosperms began their adaptive radiation, and major lin eages first appear (Upchurch and Dilcher, 1990; Dilcher, 2000) It has been suggested that early angiosperms diversified and became domina nt along river channels during the midCretaceous (Retallack and Dilcher, 1981; Wing and Boucher, 1998). Retallack and Dilcher (1981) further hypothesi zed that disturbed coastal area s were very important sites for early angiosperm worldwide dispersal. But as far as we know the data about early angiosperms in coastal areas during the midCretaceous are very limited (Retallack and Dilcher, 1981) because of poor environmen tal interpretations and limited megafossil collections. During the past 30 years early angiosperm pollination biology has been understood substantially through the studies on numerous Cretaceous fossil flowers (Dilcher et al., 1976; Dilcher 1979; Crepet, 1979; Friis a nd Skarby, 1981; Dilcher and Crane, 1984; Crane and Dilcher, 1984; Crane, et al., 1986; Drinnan, et al., 1990; Friis, et al., 1999, 2000a, 2000b; Dilcher, 2001). It was a wide ly accepted hypothesis that the dominant angiosperm pollination modes were insect -pollination during the early Cretaceous (Crepet and Friis, 1987; Friis et al., 1999; Field and Aren s, 2005; Wing and Boucher, 1998). Dilcher (1979), on the other hand, pres ents evidence to s upport the presence of limited wind pollination by mid-Cretaceous time Dilcher (1979) also proposed the hypothesis that the independent lineages of some anemophilous flowers may have

PAGE 15

2 developed very early and separately fr om entomophilous flowers from a common ancestral bisexual stock. Moreover, Dilcher (2000) suggested that wind pollination was also important for Cretaceous angiosperms in addition to insect pollin ation. More studies are needed to better understand the role of pollination in the evolution of early angiosperms. The palynological data may pr ovide new information about the diversity of pollination profiles of angiosperms during the Cenomanian. Research on plant megafossils deposited along the Western Interior Seaway began with Lesquereux (1895) who described 437 species of angiosperms. However, Upchurch and Dilcher (1990) and Wang H. (2002) found only 20-25 species of angiosperms at each of several localities and Wa ng H. (2002) estimated 150-200 to tal species of angiosperms when six localities are tallied together. It is important al so to undertake a palynological investigation of these sediment s in order to provide evidence for angiosperm diversity as recorded by pollen during the mid-Cretaceous. Mesofossils often consist of charcoalif ied plant remains, which are mid-sized fossils between the larger megafossils and smaller microfossils. When plant tissues are charcoalified, delicate struct ures, such as anthers c ontaining pollen (Crane and Herendeen, 1996) and sporangia containing spores, are often well preserved. Therefore mesofossils provide additional characters that allow comparisons to morphological features unique to reproduc tive structures of extant plants. This information complements the megafossil and microfossil record by providing information not otherwise available. Dispersed pollen or s pores may be related to a taxon with known affinities. The geographic distribution of a parent plant may be determined based upon the distribution range of the dispersed pollen or spores. However, mesofossil

PAGE 16

3 investigation is limited in Western Interi or Seaway (X. Wang, 2004) and there is no previous mesofossil research for the Cretaceo us sediments in south western Minnesota. “Dakota Formation” is used as a lithostra tigraphic unit across a vast area of central and west-central North America (Ravn and Witzke, 1995). This name has also often been used without consideration of the rela tionship to the type Dakota Formation, either lithostratigraphically or chronos tratigraphically (Witzke et al ., 1983). Thus the age and lithology of the Dakota Formation are probably not the same from the west margin to the east margin of the Western In terior Seaway. Currently, the age of the Dakota Formation in southwest Minnesota is thought to be Cenomanian (Se tterholm, 1994). However, because of the absence of marine fossils, this suggestion for a Cenomanian age is mainly based upon the interpretation from the paleobo tanical work of Lesquereux (1895) and the palynological studies of Pi erce (1961). The paleoflora s of Lesquereux (1895) and palynofloras of Pierce (1961) need reexamin ation and reinterpre tation (Upchurch and Dilcher, 1990; Wang H., 2002; Hu et al., 2004b). Austin (1972) proposed that the nonmarine Cretaceous sediments in the Mi nnesota River Valley are about middle Cenomanian based upon clay mineralogy. Se tterholm (1994) also proposed that the upper mudstone unit in east-central Minneso ta of the Dakota Formation may be time equivalent to the Graneros Shale in wester n Minnesota, and both units are placed in the late Cenomanian. The age of the Dakota Formation in southwest Minnesota remains uncertain at this time. Therefore investigations of ancient coasta l deposits should provide new data about early angiosperms. Considering that pollen and spores are more broadly distributed than leaves and therefore provide a broader regiona l record than plant megafossils (Jaramillo,

PAGE 17

4 1999), the palynological record may provide a view with a different bias for early angiosperm diversity. Mid-Cr etaceous sediments, rich in pollen and spores exposed recently at Courtland Clay Pit, Highway 4 Clay Pit, and Ochs Clay Pit in southwestern Minnesota, provided an opportuni ty for a palynological invest igation. The present study will focus on the following topics: 1. Establish a record of the palynomorphs recovered from a series of samples collected from freshly exposed sections. 2. Use the described palynofloras, correlate the sections from three isolated clay pits (Courtland Clay Pit, Highway 4 Clay Pit, and Ochs Clay Pit) where the sedimentary relationships ar e difficult to determine in the absence of marine megafossils. 3. Determine the age of the sediments that is currently controversial and in question based upon the palynomorphs recovered from samples of the clay pits. 4. Consider the role of insect pollination and wind pollination in the evolution of early angiosperms as inferred from palynological data. Possible pollination profiles of some early angiosperms during early Late Cretaceous will be presented. 5. Present early angiosperm di versity during early Late Cr etaceous in coastal areas, especially coastal swamps, based upon palynological investigation. 6. Compare the megafossil (leaf) and microfoss il (pollen) record of angiospeprms to assess the role of microfossils in an an alysis of early angiosperm diversity. 7. Use of mesofossils in order to understand fern taxa not previously known from the Cretaceous.

PAGE 18

5 CHAPTER 2 MATERIAL AND METHODS Three localities which are located in southwest Minnesota (Figure 2-1) — Courtland Clay Pit (lat. 4416'29" N, long. 9423' 13"W) (Plate 1, Figs. 1-2; Plate 2, Figs. 1-2), Highway 4 Clay Pit (lat. 4426'05" N, long. 9443'37"W) (Plate 5, Figs. 1-2) and Ochs Clay pit (lat. 4413'26" N, long. 9500'42" W) (Plate 3, Figs. 1-2; Plate 4, Figs. 1-2) are investigated in this res earch. I undertook my field work in the summer of 2003 (May 23-May 29) and the summer of 2004 (June 3-June 12). Five stratigra phic sections were measured. Pollen samples were collected vert ically at about 30 centimeter intervals from each of the sections sampled. At the Courtla nd Clay Pit 23 samples were collected, nine samples were processed and eight samples had abundant palynomorphs. At Highway 4 Clay Pit, 12 samples were collected, eight sa mples were processed, and three samples had abundant palynomorphs. At Ochs Clay Pit 27 samples were collected, eight samples were processed, and seven samples have abundant palynomorphs. The Canada Global Geolab processed 4 samples (sample 18297, 036690, 036708, and 036710) from Courtland Clay Pit in 2003 (see Appendix A for the processing methods used by Canada Global Geolab). I processed all of the other samples that I studied in this research my self in the chemical lab of the Paleobotany and Palynology Laboratory of the Florida Museum of Natu ral History during the summers of 2004 and 2005. In order to avoid any bias caused by th e different processing methods, I have also reprocessed all those samples originally pr ocessed by Canada Global Geolab (except for sample Courtland 18297).

PAGE 19

6 Figure 2-1. Map of Minnesota, showing thr ee localities in study area.(Scale 1:7,500,000) Processing methods for siliciclastic and lig nite samples are described below. Siliciclastic samples: 1. Crush a 10 g sample using a mortar and pestle. 2. Sieve a crushed sample using a tea strainer until the entire sample is sieved. 3. Put the crushed sample into a 1000 ml glass beaker and gradually add 25% HCL acid. If the reaction is too strong, add se veral drops of alcohol. Add enough of the 25% HCL acid to fill half of the beaker. At the same time, stir gently with a glass rod. 4. Cover the beaker with a Petri dish. 5. Wait about 2 hours until the sample has set tled and all effervescence has ceased. 6. Pour the waste acid out and wash with dist illed water until the slur ry is neutral. 7. Transfer the sample into a 600 ml plastic beaker and slowly pour100 ml of 49% HF acid into the slurry while stirring. Exercise caution when using HF. 8. After 6 hours, dump the waste acid and add 100 ml of 49% HF acid. 9. Wait for at least 3 days while stirring occasionally.

PAGE 20

7 10. Dump the waste acid and wash the sample using distilled water until the slurry is neutral. 11. Transfer the slurry into a 50 ml glass tube. 12. Add enough 25% HCL acid into the t ube to fill half of the tube. 13. Put the tube into a water bath (about 90C) for about 5 minutes. At the same time stir the sample occasionally. 14. Repeat this procedure at least 3 tim es until the supernatant is clear. 15. Oxidize the sample using the following procedure: First, pour enough 10% nitric acid into the tube to fill half of the tube Second, put the tube into a water bath for about 5 minutes while stirring occasi onally. Third, check one drop under the microscope. If strong oxidation is neede d, repeat the procedur e using 50% nitric acid. 16. After the oxidation procedure, wash the sample 3 times using distilled water. 17. Pour enough 5% ammonium hydroxide to fill half of the tube. 18. Wait about 5 minutes while stirring occasionally. 19. Check one drop under the microscope. 20. Wash with distilled water at least 3 ti mes or until the supern atant is clear. 21. If the slurry is gritty, pour enough zinc ch loride heavy liquid (specific gravity about 2.0) to fill half of the tube. 22. Centrifuge the sample for 30 to 40 minutes at 2000 rpm. 23. Pour out the top part of the mixture (h eavy liquid and organic residue) into a 250 ml beaker and dilute with distilled water. 24. Centrifuge for the mixture for 10 minutes at 2000 rpm. 25. Wash and centrifuge the residue for 10 minutes at 2000 rpm at least 3 times. 26. If the residue is full of fine organic pa rticles, add 10 ml of Darvan #1 solution and 20 ml of distilled wate r, stirring thoroughly. 27. Centrifuge for 1 minute under about at 1500 rpm.

PAGE 21

8 28. Dump the supernatant and repeat the pr evious step and this step until the supernatant is clear. If the palynomorphs are present in the supernatant, stop processing and keep the supernatant. 29. If using acetolysis, first wash with glacial acetic acid. Second, pour enough acetolysis mixture to fill half of the tube and put it into a hot bath (90 C) for 3 minutes. Third, wash with glacial acetic acid. Fourth, wash with distilled water 3 times. If staining with Safranin-O, first pour distilled water and one or two drops of HCL and Safranin-O into the tube and s tir. Second, wash with distilled water 3 times. 30. After acetolysis or staining, wash the sample using 50% glycerin. 31. Centrifuge for 10 minutes. 32. Place the tube upside down for at least half hour. The residual material is ready for making slides. Lignite samples: 1 Crush 2 g of lignite using a mortar and pestle. 2. Sieve the crushed sample using a tea stra iner to sieve until the entire sample is sieved. 3. Mix the crushed and sieved sample with 2 g of potassium chlorate in a 50 ml glass tube. 4. Add 5 cc of concentrated nitric acid drop by drop into the tube. 5. Wait for several hours and check if the palynomorphs are visible. 6. Centrifuge and decant the supernatant. 7. Add 5% KOH and place into a water bath (90 C) for 3-5 minutes. At the same time checking frequently the condi tion of the palynomorphs. 8. Centrifuge and wash 3 times. 9. If the palynomorphs are not well concen trated, use heavy liquid to process the sample using the same procedure used to c oncentrate the silicicalstic rock sample. 10. If the palynomorphs are not transparent enough, add 10% n itric acid to the sample and place it into a water bath (90C) for 3 minutes.

PAGE 22

9 11. Use the same procedures (ammonium hydroxide, Darvan #1, 1% Safranin-O staining and acetolysis) used to process the silicicalstic rock samples. The procedures for slide preparation follows: 1. Throughly mix a small amount of gly cerol gelatin with the residue. 2. Put one drop onto a microscope slide (size: 3 x 1 x 1mm). 3. Cover the sample with a number 1 cover glass (size: 22 x 30 x 1). 4. Place the slide on a warming table to make sure the residue spreads evenly. 5. Prepare at least 3 slides for each sample. 6. Label slides as soon as possibl e to avoid loss of data. At least two slides were s canned in order to build a catalogue of pollen and spore types for each sample. When making polle n count, at least 300 palynomorphs were counted. A ZEISS Axiophot™ microscope and an AxioCam digital camera and imaging capturing software were used for the pal ynomorph identification and photography. Slides are stored in the Paleobotany and Palynol ogy Collection of the Florida Museum of Natural History, Gainesville, Florida, USA. Pollen and spore identifica tion were made through comparisons with images and descriptions in published papers and the holotype materials of Hedlund, Richard .W. which are deposited in the Sam Noble Oklahom a Museum of Natural History. Published papers on the Western Interior Seaway, Atlantic Coastal Plai n and Gulf Coast were used as primary reference sources for palynomo rph identification (Bergad, 1973; Brenner, 1963, 1967; Burden and Hills, 1989; Hedlund, 1966; Norris, 1967; Phillips and Felix, 1972a, 1972b; Pierce, 1961; Ravn and Witzki, 1995; Singh, 1964, 1971, 1983; Srivastava, 1992; Tschudy, 1973; Wa rd, 1986). Other papers also included in this work from similar age sediments from other parts of the world include Below, 1984; Couper,

PAGE 23

10 1953; Davey, 1969, 1970; Dettmann, 1963, 1973; Jarz en, 1979; Srivastava, 1975; Zippi, 1998. Methods used for the mesofossils that were isolated from organic rich clay samples are given in Chapter 9.

PAGE 24

11 CHAPTER 3 PREVIOUS WORK Along the eastern margin of the Western In terior Seaway (WIS), Pierce described 103 species of spores and pollen which he recovered from the lowermost upper Cretaceous of Minnesota (Pierce, 1961). He did not consider the sedimentary facies. Farley and Dilcher (1986) undertook resear ch concerning the relationships between miospores and depositional environments of the Dakota Formation from north-central Kansas and adjacent Nebraska. They chose f our different sedimentary facies from three localities. They presented the pollen and spore flora f ound, but did not consider the vegetation succession through time. Ravn (1981) made preliminary observations of the palynology of the Upper Dakota Formation lignites in northwestern Iowa and northeastern Nebraska and described 125 pal ynomorph species. Later Ravn and Witzke (1995) published their palynostratigraphic res earch of the Dakota Formation from the same area, focusing on biostratigraphy. On the western margin of the WIS, May and Traverse (1973) undertook the palynological investigation of the Dakota Formation in Willis Creek Canyon, Paunsaugunt Plateau, near Bryce Canyon, Uta h. About 40 genera and 125 species of palynomorphs were identified. Although th ese authors mentioned the sedimentary environments in their abstract, detailed disc ussion and identification of the sedimentary environments were not presented in their paper. Therefore it is not possible to correlate any relationship between palynomorphs and the sedimentary environments.

PAGE 25

12 Agasie (1969) studied palynomorphs from the middle carbonaceous member of the Dakota Sandstone in northeastern Arizona. About 39 species of palynomorphs were recovered. Fern spores domi nated the assemblage, while gymnosperm pollen was rare. Agasie indicated that ferns and angiosperm s probably dominated the coal swamps with minor gymnosperm presence. In the same way, Romans (1975) studied the palynomorphs recovered from coal seams of the Dakota Sandstone in Black Mesa, Arizona. There were 62 pollen and spore species in the Dako ta Sandstone. Fern spores dominated the assemblage with angiosperm pollen being the least abundant in the assemblage. Moreover, Romans (1975) did not give any spec ific placement of the coalforming swamp on the Dakota landscape and its sedimentary environments. Hedlund (1966) studied the palynology of the Red Br anch Member of the Woodbine Formation (Dakota equivalent), in Oklahom a. He reported 74 forms of spores and pollen grains in the Red Branch palynological assemblage. Fe rn spores and angiosperm pollen dominate the assemblage. Hedlund noted that th e sedimentary environment was probably nonmarine because of the absence of marine palynomorphs. Cretaceous palynomorphs from Atlantic Coas tal Plain were very important for this research. Brenner (1963) investigated the palynomorphs of the Potomac Group identifying about 125 palynomorph taxa. Two major zones were divided based upon palynological characteristics. Later, Doyle and Robbins (1977) undertook further palynological research in the Atlantic Coasta l Plain and suggested five major zones based upon the changes observed in the assembla ges of angiosperm pollen through the reconstructed section.

PAGE 26

13 CHAPTER 4 SYSTEMATIC PALEONTOLOGY Angiosperm Pollen Anteturma POLLENITES Potonie 1931 Turma PLICATES Naumova emend. Potonie, 1960 Subturma MONOCOLPATES Iversen & Troels-Smith, 1950 Genus Clavatipollenites Couper, 1958 Type species: Clavatipollenites hughesii Couper, 1958. Clavatipollenites tenellis Phillips & Felix 1972 Plate 6, Figs. 1-3 Pollen grains free, monosulcat e; circular to subcircula r; exine 2.5 m, two layered, nexine about 1 m, sexine coarse columell ae, pila with a big head (about 0.5 m in diameter), pila head link together; reticulate lumina ca. 1min diameter, irregular. Dimensions : 28 m (1 grain). Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : Albian, Louisana (Phillips and Felix 1972b); Albian and Cenomanian, Atlantic Coastal Plain, US A (Doyle and Robbins 1977); and Cenomanian, northwestern Alberta (Singh 1983). Clavatipollenites sp.2 Plate 6, Figs. 4-6 Pollen grains free, monosulcat e; circular to subcircula r; exine 1 m, two layered, sexine columellate, pila dense, pila head link together; micr oreticulate, lumina less than 0.5 m in diameter. Dimensions : 20(24)28 m (2 grains). Occurrence : Ochs Clay Pit, Courtland Clay Pit. ? Clavatipollenites sp.3 Plate 6, Figs. 7-9 Pollen grains free, monosulcat e; circular to subcircular; sulcus narrow, often split into two halves; exine 2 m, two layered, sexi ne columellate, pila dense, pila head not developed; granulate to microfoveolate. Dimensions : 24(27)29 m (4 grains). Occurrence : Ochs Clay Pit. Genus Liliacidites Couper, 1953 Type species: Liliacidites kaitangataensis Couper, 1953.

PAGE 27

14 Liliacidites sinuatus Hu, sp. nov. Plate 6, Figs. 10-13 Pollen grains free, monosulcate; elliptic al, sulcus wide; exine 2 m, two layered, sexine columellate, pila rare and thick, ca. 1 wide; reticulate, lumina ca. 4-7 m in diameter, elongate to irregular, mu ri sinuous, ca. 0.6 m wide. Dimensions : 18(22)25 x 33(34)34 m (2 grains) Holotype : 046535-PY02A, Y39/1 Remarks : This species is distinct from other species of Liliacidites by its sinuous muri and relatively large lumina. Liliacidites crassatus differs in having smaller lumina (1 to 2.5 m). Occurrence : Ochs Clay Pit Name derivation : The species name sinuatus from the Latin sinuous meaning full of bendings. Liliacidites giganteus Singh 1983 Plate 6, Fig. 14 Pollen grains free, monosulcate; elliptic al, sulcus not clea r; exine 2.5 m, two layered, sexine columellate, pila head fused together by membrane; reticulate, lumina ca. 1-6 m in diameter, polygonal, muri ca. 1.2 m wide, with a single row of granules on the muri surface. Dimensions : 48 x 76 m (1 grain) Remarks : There are two rows of granules on the muri for the holotype (Singh 1983). Occurrence : Courtland Clay Pit. Distribution : Cenomanian, northwestern Alberta (Singh 1983). Liliacidites cf. reticulatus (Brenner) Singh 1971 Plate 6, Figs. 15-19; Plate 7, Figs. 1, 2 Pollen grains free, monosulcate; ellip tical, sulcus narrow and long, reaching to margin; exine 2 m, two layered, sexine co lumellate, pila ca. 1.5 m high, pila fused together by membrane; reticulate, lumina ca. 1-2 m in diameter, polygonal, muri ca. 0.5 m. Dimensions : 19(20)23 x 22(24)28 m (5 grains) Remarks : Compared with the holotype desc ribed by Brenner ( 1963), the lumina are smaller, muri are narrower, and grain si ze is slightly bigger fo r this species. Occurrence : Ochs Clay Pit, Courtland Clay Pit and Highway 4 Clay Pit. Distribution : Barremian to Albian, Maryland (Brenner 1963); Albian, Oklahoma (Hedlund and Norris 1968); and middle to la te Albian, northwestern Alberta (Singh 1971). Liliacidites cf. inaequalis Singh 1971 Plate 7, Figs. 3, 4 Pollen grains free, monosulcate; sulcus wide open; exine 1-2 m, two layered, sexine columellate, nexine le ss than 0.5 m; reticulate, lumina ca. 2-3 m in diameter, polygonal, lumina size decreasi ng toward poles, there are gr anules on the muri. Dimensions : 15 (16) 18 x 22 (24) 26 m (3 grains)

PAGE 28

15 Remarks : The lumina are 3 to 6 m in the middle region for the holotype of L. inaequalis (Singh 1971). Also the size of L. inaequalis is larger than this species. Occurrence : Highway 4 Clay Pit. Liliacidites sp.2 Plate 7, Figs. 5-7 Pollen grains free, monosulcate; sulcus wi de open; exine 1 m, two layered, sexine columellate, pila rare, not clear; reticulate lumina ca. 1-4 min diameter, size uneven, polygonal, muri width eve n, ca. 0.5 m wide. Dimensions: 21 m (1 grain) Remarks: It differs from Liliacidites sp.3 in its thinner ex ine and absence of the small fovea on the muri. It differs from Liliacidites sp.5 in its smaller lumina and thinner exine. Occurrence : Ochs Clay Pit. Liliacidites sp.3 Plate 7, Figs. 8-10 Pollen grains free, monosulcate; elliptic al, sulcus wide open; exine 2 m, two layered, sexine columellate, pila rare and th ick, ca. 0.5 m wide; reticulate, lumina ca. 0.5-4 m in diameter, elliptical to round to polygonal, muri with occasional small fovea. Dimensions : 15(21)31 x 19(30)43 m (11 grains) Remarks : It is distinct from other species of Liliacidites in its small fovea on the muri. Liliacidites sp.3 is similar to in situ pollen of early or middle Albian wellpreserved flower Virginianthus calycanthoides from the Puddledock locality, Virginia (Friis et al., 1994) in shape, aperture, and or namentation. Friis et al. (1994) suggested that these in situ polle n grains are similar to Clavatipollenites However the typical features of Clavatipollenites such as lumina size 1 m or less and closely spaced pilate columellae (Burden and Hills, 1989) were absent on these in situ pollen grains which possess sparse and short columellae (Friis et al., 1994). The only difference is that Liliacidites sp.3 (which is 21 x 30 m) is larger than in situ pollen of Virginianthus calycanthoides (which is 18 m in diameter). Occurrence : Ochs Clay Pit Liliacidites sp.4 Plate 7, Figs. 11-13 Pollen grains free, monosulcat e; circular to subcircular, sulcus not clear; exine 1.52.5 m, two layered, nexine thicker than sexine sexine columellate, short pila with big pila head (ca. 0.5 m in diameter); reticula te, lumina ca. 0.5-2 m in diameter, polygonal, muri ca. 0.5 m wide, with granules on it. Dimensions : 29(37)48 m (9 grains) Remarks : It is very similar to Retimonocolpites reticulates Brenner, 1963. But its size (17-22 m) is much smaller than Liliacidites sp.4. It also differs from other species in its circular shape and granules on the muri Although there are granules on the muri of Liliacidites cf. inaequalis except for its oval shape, its size and lumina are smaller than Liliacidites sp.4. Occurrence : Ochs Clay Pit

PAGE 29

16 Liliacidites sp.5 Plate 8, Figs. 1-3 Pollen grains free, monosulcat e; circular to subcircular, sulcus narrow; exine 2 m, two layered, sexine columellate pila rare; reticulate, lumina ca. 1-7 m in diameter, polygonal to ovate, there are small granules on muri. Dimensions : 20 (23) 25 x 23 (24) 25 m (2 grains) Remarks : Although there are gran ules on the muri of Liliacidites cf. inaequalis and Liliacidites sp.4, the large lumina of Liliacidites sp.5 can differentiate from them. It differs from others in th is study in its larger lumina and granules on the muri. Occurrence : Highway 4 Clay Pit. Genus Retimonocolpites Pierce, 1961 Type species: Retimonocolpites dividuus Pierce, 1961. Retimonocolpites dividuus Pierce 1961 Plate 8, Fig. 4 Pollen grains free, monosulcate; amb ci rcular to subcircu lar, colpi long and straight, somewhat raised; exine 1.5 m, two layered, nexine about 1 m, sexine columellate, pila short about 0.5 m high; reticulate, lumina 0.5-1.5 m in diameter, polygonal. Dimensions : 32(35)38 m (2 grains). Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : Albian to Cenomanian, North America and Europe (Ravn and Witzke, 1995). Genus Spinizonocolpites Muller, 1968 Type species: Spinizonocolpites echinatus Muller, 1968. ? Spinizonocolpites sp. Plate 8, Figs. 5, 6 Pollen grains free, with enci rcling colpus (?); subcircula r to elliptical, sulcus not clear; exine 1 m, two layered not clear; scab rate, with short spines (ca. 3 m). Dimensions : 25 m (1 grain). Remarks: This pollen type has often b een compared with extant Nypa fruticans of the Palmae (Germeraad et al., 1968). Occurrence : Courtland Clay Pit. Genus Stellatopollis Doyle, 1975 Type species: Stellatopollis barghoornii Doyle, 1975. Stellatopollis largissimus Singh 1983 Plate 8, Fig.7 Pollen grains free, monosulcat e; elliptical, sulcus long and extending nearly the full length of the grain; exine 4 m, two layered, sexine columellate; reticulate, each lumen surrounded by 4-8 clavate projections, the projection ca. 3 m high, the head of

PAGE 30

17 projection ca. 1.5 m in diameter, subtriangular the head of projections form a crotonoid sculptural pattern in surface view. Dimensions : 64 x 123 m (1 grain). Occurrence : Courtland Clay Pit. Distribution : Cenomanian, northwestern Alberta (Singh 1983). Stellatopollis sp. Plate 8, Fig. 8 Pollen grains free, monosulcate; elliptic al, sulcus not clea r in this single occurrence; exine 1 m, two layered, sexine columellate, pila very short; reticulate, lumina ca. 1-1.5 m, forming an indis tinct crotonoid sculptural pattern. Dimensions : 38 x 53 m (1 grain). Remarks: This grain differs from Stellatopollis largissimus Singh 1983 in its smaller size and indistinct crotonoid sculptural pattern. Occurrence : Courtland Clay Pit. Genus Doyleipollenites Ravn & Witzke, 1995 Type species: Doyleipollenites robbinsiae Ravn & Witzke, 1995 Doyleipollenites robbinsiae Ravn & Witzke, 1995 Plate 8, Figs. 9-11 Pollen grains free, trichotomo sulate; subtriangular, rays of sulcus extending to or entire of the radius and thickened; exine 1.5 m, two layered, sexine ca. 1 m; foveolate to reticulate, lumina uneven, ca. 0.5-1 m, lumi na are larger in inte rradial areas (ca. 1 m) and decrease near th e sulcus (ca. 0.5 m). Dimensions : 22(27)34 m (7 grains) Remarks: The lumina are smaller than the holotype (which is 1-3 m). Doyleipollenites robbinsiae is similar to in situ pollen associated with Early or Middle Albian fruiting units Anacostia virginiensis from the Puddledock locality, Virginia (Friis et al., 1997) in shape, aperture, and ornamenta tion. Only difference between them is that Doyleipollenites robbinsiae with a diameter of 22(27)34 m, is larger than in situ pollen on a fruiting units Anacostia virginiensis which is 12(13)15 m in diameter. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : ?upper Albian, Atlantic Coasta l Plain, United States (Doyle 1973); ?middle Albian to ?lower Cenomanian, Atlant ic Coastal Plain, Unite d States (Doyle and Robbins 1977); ?lower to upper Cenomania n, northwestern Iowa and northeastern Nebraska (Ravn and Witzke 1995). Turma JUGATES Erdtman, 1943 Subturma TETRADITES Cookson, 1947 Genus Artiopollis Agasie, 1969, emend. Type species: Artiopollis indivisus Agasie, 1969. Artiopollis indivisus Agasie, 1969 Plate 8, Fig. 12; Plate 9, Figs. 1-7

PAGE 31

18 Pollen in tetrads, following Fisher’s law; pollen grain tricol pate, isopolar; amb circular to subcircular; exine ca. 2 m, two layered, sexine columellate, with dense pila; microreticulate, lumina about 0.5 m in diameter. Dimensions : For entire tetrad 17(23)31 m (10 tetrads); for individual pollen grain 9(15)19 m (9 grains). Occurrence : Ochs Clay pit. Remarks : The exine of specimens recovered from Ochs Clay Pit is somewhat thinner (2 m) than that of the holotype (2.5 to 3 m). Subturma TRIPTYCHA Naumova, 1939 Genus Cupuliferoidaepollenites Potonie, Thomson, & Thiergart, 1950 Type species: Cupuliferoidaepollenites liblarensis Thomson in Potonie, Thomson, & Thiergart, 1950. Cupuliferoidaepollenites sp Plate 10, Figs. 4-7 Pollen grains free, isopolar; subprolate, prolate to perprolate (P/E=1.25-2.38), amb circular to subcircular; tricolpate, colpi ne arly extending to the pol es, somewhat raised, apocolpia small; exine thin, ca. 0.6-1 m, two layered, nexine very thin, sexine scabrate. Dimensions : equatorial view 7(11)17 m x 10( 16)25 m (10 grains); polar view 12(16)22 m (5 grains). Remarks : This species may be similar to Psilatricolpites psilatus Pierce, 1961. It differs from P. psilatus (21 x 29 m) in being smaller. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Genus Foveotricolpites Pierce, 1961 Type species: Foveotricolpites sphaeroides Pierce, 1961. Foveotricolpites sp. Plate 10, Figs. 8-10 Pollen grains free, isopolar; subprolate (P/E =1.14-1.2), amb circular to subcircular; tricolpate, colpi nearly extending to the poles not straight, apocolpia small; exine ca. 1.5 m, two layered, sexine foveolate, fov ea irregular to elongate, 0.5-1.5 m, fovea becoming smaller and fewer toward colpi and poles. Dimensions : equatorial view 30(33)35 x 36(38)40 m (2 grains); polar view 30 m (1 grain). Remarks : This species may be similar to Foveotricolpites concinnus Singh, 1971. But fovea are angular and equidimensional to occasionally elongated (1-2 m) in F. concinnus Also, fovea size is relatively c onstant toward colpi and poles in F. concinnus This species is distinct from Foveotricolpites sphaeroides in its larger size and the unthickened aperture margin. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Genus Fraxinoipollenites Potonie 1951 ex Potonie 1960 Type species: Fraxinoipollenites pudicus (Potonie) Potonie 1951

PAGE 32

19 Fraxinoipollenites constrictus (Pierce) Chlonova, 1976 Plate 10, Figs. 11-15 Pollen grains free, isopolar; prolate (P/E= 1.37-1.94), amb circular to subtriangular, tricolpate, colpi nearly extending to the poles, ragged, apocolpia small; exine 1.5m, two layered, nexine thinner than se xine, sexine columellate; sexi ne microfoveolate, fovea less than 0.5 m and faint. Dimensions : equatorial view 18(24)34 x 28(38) 48 m (11 grains); polar view 30(35)38 m (5 grains). Remarks : Fraxinoipollenites constrictus was described as “sculpture of small, close-spaced baculae” (Pierce 1961). Singh (198 3) indicated that it is microfoveolate. Occurrence : Highway 4 Clay Pit and Courtland Clay Pit and Ochs Clay Pit. Distribution : ? Cenomanian, Minnesota (Pie rce 1961); Cenomanian, Alberta (Singh 1983); and lower to middle Cenoman ian, northwestern Iowa and northeastern Nebraska (Ravn and Witzke, 1995). Genus Rousea Srivastava, 1969 Type species: Rousea subtilis Srivastava, 1969. Rousea cf. delicipollis Srivastava, 1975 Plate 10, Figs. 16-18 Pollen grains free, isopolar; prolate (P/E =1.64), tricolpate, apocolpia small; exine 0.8 m, exine thickness decreasing toward colp i, two layered, sexi ne columellate, pila rare and short, but with thick pila head, ca. 0.5 m wide; reticulate to foveolate, lumina 0.3-1.5 m, irregular to elongate, lumina size decreasing toward colpi and poles. Dimensions : equatorial view 14 x 23 m (1 grain), polar view 16(23)35 m (7 grains). Remarks : The lumina are circular in Rousea delicipollis But lumina are irregular to elongate in the specimens described here. Occurrence : Highway 4 Clay Pit and Courtland Clay Pit. Genus Satishia Ward, 1986 Type species: Satishia glyceia Ward, 1986. Satishia sp. Plate 10, Figs. 19-20 Pollen grains free, isopolar; tricolpate, colpi ragged, apocolpia small; exine 1 m, two layered not clear; sexine microreticulate, lumina 0.5-1 m, lumina decreasing toward colpi not poles. Dimensions : 28 m (1 grain). Remarks: It differs from Rousea in that the lumina of Rousea become finer toward the poles and toward the colpi margins. The type species Satishia glyceia Ward 1986 has larger (1.3-2.8 m) lumina compared with specimen (lumina 0.5-1 m) described here. Occurrence : Courtland Clay Pit. Genus Striatopollis Krutzsch, 1959 Type species: Striatopollis sarstedtensis Krutzsch, 1959.

PAGE 33

20 Striatopollis paraneus (Norris) Singh, 1971 Plate 11, Figs. 1-6 Pollen grains free, isopolar; subprolate (P/E =1.2), amb circular to subcircular; tricolpate, colpi nearly extending to the pol es, apocolpia small; exine ca. 0.8 m, two layered, nexine very thin; st riato-reticulate, striate ridge ca. 0.3 m wide, lumina equidimensional, ca. 0.3 m in diameter, lumina arranged into rows between striae, striae closely spaced, ca. 0.3 m apart. Dimensions : equatorial view 15 x 18 m (1 gr ain); polar view 21 m (1 grain). Remarks: Striatopollis paraneus is similar to in situ pollen of early Cenomanian inflorescence Spanomera mauldinensis which was discovered at Mauldin Mountain locality of Maryland (Friis et al., 1991), in size, aperture, and the unique ornamentation. Drinnan et al. (1991) indicated that the in situ pollen grains of Spanomera mauldinensis were comparable to the dispersed pollen species Striatopollis paraneus Occurrence : Courtland Clay Pit. Distribution : Middle and late Albian, central Alberta (Norris 1967); Albian, Oklahoma (Hedlund and Norris, 1968); and middl e and late Albian, northwestern Alberta (Singh 1971), Cenomanian, Bathurst Islands, No rthern Territory and Mornington Islands, Queensland, Australia (Dettmann 1973). Genus Tricolpites Cookson ex Couper, 1953 Type species: Tricolpites reticulatus Cookson, 1947. Tricolpites labeonis Hu, sp. nov. Plate 11, Figs. 7-15 Pollen grains free, isopolar; subprolate, prolate (P/E=1.21-2), amb circular to subcircular; tricolpate, colpi nearly extending to the poles, apocolpia small; exine thin, ca. 0.5 m, two layered, sexine columellate, pila ve ry short; microreticulat e, lumina less than 0.5 m. SEM studies have shown that there is an about 0.7 m wide margin along the colpi on which the lumina are small (less than 0.1 m in diameter) and rare or absent. Dimensions : equatorial view 6(10)14 x 9(14)19 m (14 grains); polar view 18 m (1 grain). Holotype : 046526-PY03A, Y37 Remarks : Tricolpites labeonis Hu is similar to Tricolpites minutus in size and ornamentation, but it is differentiated from Tricolpites minutus by its narrow margin along the colpi on which lumina are rare, tiny or absent. Tricolpites labeonis is also similar to in situ pollen of early to middle Albian flower Aquia brookensis from “Bank near Brooke” locality, Virginia, in shape, size, and ornament ation, especially the feature of lumina diminishing in size and becoming more scattered along the margin of colpi (Crane et al., 1993). The only difference is that the verrucate surface of colpi membrane for in situ pollen of Aquia brookensis is absent in Tricolpites labeonis Occurrence : Courtland Clay Pit, Ochs Clay Pit. Name derivation : Species name labeonis is from Latin, meaning large lips. Tricolpites nemejci Pacltova 1971 Plate 12, Figs. 1-3

PAGE 34

21 Pollen grains free, isopolar; subprolate to perprolate (P/E=1.16-2.06), amb circular to subcircular, tricolpate, colpi nearly exte nding to the poles, apocolpia small; exine 1.5 m, two layered, sexine columellate, with de nse pila; microreticulate, lumina 0.2-0.6 m in diameter, irregular, circular to elongate. Dimensions : equatorial view 17(19)21 m x 22( 27)35 m (10 grains); polar view 21(26)31 m (4 grains). Remarks : Compared with Tricolpites cf. vulgaris this species has a thicker exine, dense pila, and small lumina. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : Cenomanian, Czech Republic (Pacltova 1971); Lower Cenomanian, Atlantic Coastal Plain (Doyle and Robbi ns 1977); upper Albian, Kansas (Ward 1986); middle Cenomanian, northwestern Iowa and nor theastern Nebraska (Ravn and Witzke 1995). Tricolpites cf. vulgaris (Pierce) Srivastava, 1969 Plate 12, Figs. 4-7 Pollen grains free, isopolar; prolate (P /E=1.64), amb circular to subcircular; tricolpate, colpi nearly extending to the poles, apocolpia small; exine thin, ca. 1 m, two layered, sexine columellate; sexine reticulat e, lumina polygonal to elongate, 0.5-1 m in diameter. Dimensions : equatorial view 11(14)19 x 16(20)24 m (5 grains). Distribution : Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit. Tricolpate sp.4 Plate 12, Figs. 8-10 Pollen grains free, isopolar; subprolate to prolate (P/E=1.16-1.55) amb circular to subcircular, tricolpate, colpi nearly extendi ng to the poles, apocolpia small; exine 1-2 m, thickness uneven, two layered, sexine columellate with few pila, pila head small, less than 0.5 m in diameter; reticu late, lumina 0.5-5 m in diamet er, muri thin less than 0.5 m in width. Dimensions : equatorial view 11(15)18 x 17(21)24 m (3 grains); polar view 15 m (1 grain). Remarks : This species can be differentiated from Tricolpites cooksonae in following features: 1. T. cooksonae has smaller lumina (0.4-1.8 m). 2. T. cooksonae shows granules on muri. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Tricolpate sp.7 Plate 12, Figs. 11-13 Pollen grains free, isopolar; amb circular to subcircular, tricolpate, colpi nearly extending to the poles, colpi edge slightly ragged, apocolpia small; exine ca. 1 m, two layered, nexine very thin, le ss than 0.5 m; sexine microf oveolate, fovea less than 0.5 m. Dimensions : polar view 17(18)18 m (2 grains). Remarks: It differs from other tricolpate type species encounted in this research in its smaller size (18 m), ragged colpi, and microfoveolate sexine.

PAGE 35

22 Occurrence : Ochs Clay Pit, Courtland Clay Pit. Tricolpate sp.8 Plate 12, Figs. 14-16 Pollen grains free, isopolar; amb triangular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine thin, ca. 0.8 m, two layered, nexine and sexine 0.4 m each; sexine scabrate to faint granulate. Dimensions : polar view 23(26)28 m (2 grains). Remarks: It differs from other tricolpate type species encounted in this research in its scabrate to faint granulate sexine. Occurrence : Ochs Clay Pit. Tricolpate sp.10 Plate 12, Figs. 17-19 Pollen grains free, isopolar; subprolate to prolate (P/E=1.2-1.89) amb circular to subcircular, tricolpate, colpi nearly extendi ng to the poles, apocolpia small; exine 2.5 m, two layered, sexine columellate, with dense pi la; reticulate to fove olate, lumina 0.5-1 m in diameter between colpi and less than 0.5 m toward colpi, i rregular, polygonal to elongate, muri relatively thick ca. 0.5 m and with granules (ca. 0.3 m) on it. Dimensions : equatorial view 14(21)32 x 19(29)40 m (9 grains); polar view 46 m (1 grain). Remarks: It differs from other tricolpate type sp ecies in this research in its larger size (21 x 29 m) and thick muri with granules on it. Occurrence : Ochs Clay Pit. Tricolpate sp.11 Plate 12, Figs. 20-22 Pollen grains free, isopolar; subprol ate (P/E=1.27-1.33), amb circular to subcircular, tricolpate, colpi nearly exte nding to the poles, apocolpia small; exine 0.8-1 m, two layered, sexine columellate, with shor t pila; microreticulat e to microfoveolate, lumina uneven, 0.2-0.8 m in diameter, lumina size decreasing toward colpi and poles. Dimensions : equatorial view 11(12)12 x 14(15) 16 m (2 grains); polar view 11(13)14 m (2 grains). Remarks: It differs from other tricolpate type sp ecies in this research in its smaller size (13 m), microreticulate to microfoveolat e, and lumina decrea sing toward colpi and poles. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Tricolpate sp.12 Plate 13, Figs. 1-3 Pollen grains free, isopolar; subprol ate (P/E=1.15-1.22), amb circular to subcircular, tricolpate, colpi nearly extendi ng to the poles, apocolpia small; exine 1m, two layered, sexine columellate rare pila, with thick pila head (ca. 0.5 m), reticulate, lumina uneven, 0.5-1.5 m in diameter, irre gular, muri narrow, ca. 0.2 m wide. Dimensions : equatorial view 13(16)18 m x 15(19) 22 m (2 grains); polar view 14 m (1 grain).

PAGE 36

23 Remarks: It differs from other tricolpate type species in this research in its reticulate with uneven lumina (0.5-1.5 m), and thick pila head (ca. 0.5 m). Occurrence : Ochs Clay Pit. Tricolpate sp.14 Plate 13, Figs. 4-6 Pollen grains free, isopolar, prolate (P/E =1.46-1.67), tricolpate, colpi straight and nearly extending to the poles, apocolpia small; exine 1 m, two layered, sexine columellate, pila not perpendicular to nexine; microfoveolate, fovea less than 0.5 m in diameter. Dimensions : equatorial view 9(11)13 m x 15(18)20 m (3 grains). Remarks: It differs from other tricolpate type sp ecies in this research in its smaller size (11 x 18 m), straight colpi, and tilted pila. Occurrence : Ochs Clay Pit. Subturma PTYCHOTRIPORINES Naumova, 1939 Genus Dryadopollis Srivastava, 1975 Type species: Dryadopollis argus Srivastava, 1975. Dryadopollis minnesotensis Hu, sp. nov. Plate 13, Figs. 7-14; Plate 14, Fig. 1 Pollen grains free, isopolar; prolate s pheroidal, subprolate to prolate (P/E=1.111.88), tricolporate, apocolpia small; exine 1 m two layered, sexine columellate, pila short size; microreticulate, lumina 0.1-1 m muri ca. 0.5 m wide, lumina decreasing toward colpi and poles, ora small, about 0.8 m in diameter. Dimensions : equatorial view 8(15)19 m x 15( 19)23 m (5 grains), polar view 16(17)19 m (13 grains). Holotype : 036694-PY01A, S31/1 Remarks : This species is distinct from Dryadopollis argus Srivastava, 1975, and Dryadopollis vestalis Ward, 1986, in its smaller lumina a nd ora, and thinner exine. Occurrence : Courtland Clay Pit. Name derivation : minnesotensis is from the state name “Minnesota” where the fossil pollen was recovered. Dryadopollis minutus Hu, sp. nov. Plate 14, Figs. 2-4 Pollen grains free, isopolar; subprolate (P/E=1.11-1.88), tricolporate, apocolpia small; exine thin, ca. 0.5 m, two layered, se xine columellate, pila very short size; microreticulate, lumina 0.1-0.5 m, muri ca. 0.2 m wide, lumina decreasing toward colpi and poles. Dimensions : equatorial view 8 x 10 m (1 grain), polar view 9(10)10 m (2 grains). Holotype : 036704-PY01A, L41 Occurrence : Courtland Clay Pit. Remarks: It is similar to Dryadopollis argus but its size and lumina are smaller. Name derivation : Species name minutus indicating the grain is very small.

PAGE 37

24 Genus Foveotricolporites Pierce, 1961 Type species: Foveotricolporites rhombohedralis Pierce, 1961. Foveotricolporites rhombohedralis Pierce, 1961 Plate 14, Figs. 5-10 Pollen grains free, isopolar; prolate sphe roidal, spheroidal, s ubprolate to prolate (P/E=1.03-1.55), amb circular to subcircular; tricolporate, colpi nearly extending to the poles, pore ca. 6 m, apocolpia small; exine ca. 2.5 m, two layered, nexine ca. 1 m, sexine coarse columellae, head of pila fu sed together; foveolate, fovea irregular to elongate, 0.5-1 m. Dimensions : equatorial view 20(27)31 m x 31( 34)39 m (4 grains); polar view 42(47)51 m (4 grains). Remarks : Caprifoliipites acopus Ward, 1986, has similar features, but its size is smaller (15-18 x 19-24 m) and its fovea size is larger (1.3-2 m). Also, the fovea become smaller toward the colp i and poles in some specimens recovered in Minnesota. Occurrence : Ochs Clay Pit, Courtland Clay Pit. cf. Foveotricolporites sp. Plate 14, Figs. 11-13 Pollen grains free, isopolar; prolate (P /E=1.58), amb circular to subcircular, tricolporate, colpi nearly extending to the pol es, slightly raised, apocolpia small; exine ca. 2.5 m, two layered, sexine decreasing to ward colpi and nexine increasing toward colpi in thickness; foveolate, fovea ca. 0.5 m. Dimensions : equatorial view 19 x 30 m (1 gr ain); polar view 27 m (1 grain). Remarks : It is similar to Foveotricolporites sp., but the wall stru cture is different. Occurrence : Courtland Clay Pit. Genus Phimopollenites Dettmann 1973 Type species Phimopollenites pannosus (Dettmann and Playford) Dettmann 1973 Phimopollenites striolata Hu, sp. nov. Plate 14, Figs. 14-21; Plate 15, Figs. 1-3 Pollen grains free, isopolar; prolate s pheroidal, subprolate to prolate (P/E=1.061.62), amb circular to subcircu lar; tricolporoidate, colp i slightly ragged and raised, apocolpia small; exine 1-2 m, two layere d, nexine thinner than sexine, sexine columellate, pila dense with expended pila h ead; sexine microreticul ate, lumina less than 0.5 m. SEM studies have indica ted that there are striates on the inner wall of lumina. Dimensions : equatorial view 12(14)19 x 16(19) 21 m (10 grains); polar view 15(18)24 m (7 grains). Holotype : 046517-A1, + 10 , N29/3 Remarks : This species has striate structure (muri with weak, transverse striations) on the inner wall of lumina that is different from other species of Phimopollenites as seen in SEM images. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit. Name derivation : Species name striolata is from Latin, diminutive for furrow.

PAGE 38

25 Genus Nyssapollenites Thiergart 1937 Type species Nyssapollenites pseudocruciatus (Potonie) Thiergart 1937 Nyssapollenites sp. Plate 15, Figs. 4-12 Pollen grains free, isopolar; prolate sphe roidal, subprolate to prolate (P/E=1-1.56), amb circular to subcircular; tricolporate, colpi nearly extending to the poles, pore ca. 1m, apocolpia small; exine ca. 0.8-1 m, two la yered; sexine scabrate to microfoveolate, fovea very small. Dimensions : equatorial view 9(11)14 x 11(14) 17 m (7 grains); polar view 11(14)15 m (3 grains). Occurrence : Ochs Clay Pit, Courtland Clay Pit. Remark : This species is distinct from Nyssapollenites albertensis Singh, which has a larger pore (ca. 2.5 m) and thickened pore and colpi margin. Tricolporate sp.2 Plate 16, Figs. 1-3 Pollen grains free, isopolar; spheroidal, subprolate, to prolate (P/E=1.12-1.58), amb circular to subcircular; tr icolporate, colpi nearly extendi ng to the poles, pore ca. 1.5 x 3 m, apocolpia small; exine ca. 1 m, two laye red; sexine striate, striae ca. 0.5m wide. Dimensions : equatorial view 19(25)30 x 17(18) 19 m (2 grains); polar view 15(17)19 m (2 grains). Occurrence : Ochs Clay Pit. Genus Psilatricolporites Van der Hammen, 1956 ex van der Hammen and Wijmstra, 1964 Type Species: Psilatricolporites operculatus van der Hammen and Wijmstra, 1964 Psilatricolporites subtilis (Groot, Penny and Groot) Singh 1983 Plate 16, Fig. 4 Pollen grains free, isopolar; subprolate (P/E =1.27), amb circular to subcircular; tricolporoidate, colpi nearly extending to the poles, raised, pore not clear, apocolpia small; exine thin, ca. 1 m, two layered; sexine psilate to scabrate. Dimensions : equatorial view 11 x 14 m (1 grain); polar view 11(12)12 m (2 grains). Occurrence : Ochs Clay Pit. Remarks : This species is distinct from P. distinctus which has larger pores (ca. 2m). Distribution : Cenomanian to Coniacian, easter n United States (Groot, Penny and Groot 1961); Cenomanian, Atlantic Coastal Plain of United States (Brenner 1967); Cenomanian to Coniaci an, Alberta (Singh 1983). Gymnosperm Pollen Anteturma POLLENITES Potonie Turma SACCITES Erdtman Subturma DISACCITES Cookson

PAGE 39

26 Genus Alisporites Daugherty, 1941 Type species: Alisporites opii Daugherty, 1941. Alisporites rotundus Rouse, 1959 Plate 16, Fig. 5 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to subspherical, microreticulate, proximal cap ca. 3.5 m; sacci coarser re ticulate, lumina 14 m, polygonal. Dimensions: Overall breadth 45(77)112 m (5 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ? upper Jurassic, western Canada (Rouse 1959); middle Albian, eastcentral Alberta (Singh 1964). Genus Cedripites Wodehouse, 1933 Type species: Cedripites eocenicus Wodehouse, 1933 Cedripites cretaceous Pocock 1962 Plate 16, Fig. 6 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, proximal cap ca. 4 m thick, reticulate to granulate; sacci reticulate, lumina 1-3 m, irregular and uneven. Dimensions : Overall breadth 95 m; overall height 69 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : McMurray Formation, Alberta (P ocock 1962); middle Albian, eastcentral Alberta (Singh 1964); Al bian to ? Cenomanian, central Alberta (Norris 1967); and middle to late Albian, nort hwestern Alberta (Singh 1971). Cedripites sp. Plate 16, Fig. 7 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, proximal cap ca. 2 m thick, reticulate; sacci distally pendant, sacci reticulate, lumina 13 m, irregular and uneven. Dimensions : Overall breadth 88 m; overall height 58 m; sacci height 33 m; sacci depth 55 m (1 specimen). Remarks: It can be distinguished from Cedripites canadensis by the reticulate proximal cap surface. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Genus Parvisacites Couper, 1958 Type species: Parvisacites radiatus Couper, 1958. Parvisaccites radiatus Couper 1958 Plate 16, Fig. 8 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, granulate, proximal cap ca. 3 m; sacci semicircular, reticulate to rugulate, with thickening or ribs at the proximal root with corpus.

PAGE 40

27 Dimensions : Overall breadth 45 m; overall height 36 m; sacci height 23 m; sacci depth 30 m (2 specimens). Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Wealden and Aptian, England (Couper 1958); McMurray and Clearwater Formations, Alberta (Pocock 1962) ; Barremian to Albian, Maryland (Brenner 1963); middle Albian, east-central Alberta (Singh 1964); Albian to ? Cenomanian, central Alberta (Norris 1967); and mi ddle to late Albian, north western Alberta (Singh 1971). Genus Pityosporites Seward, 1914 Type species: Pityosporites antarcticus Seward, 1914 Pityosporites constrictus Singh 1964 Plate 16, Fig. 9 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, microreticulate, proximal cap thin, less than 1 m; sacci coarser reticulate to rugulate. Dimensions : Overall breadth 66 m; overall height 52 m; sacci height 34 m; sacci depth 32 m (1 specimen). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution : Throughout much of the Cretaceous of North America and Europe. ? Pityosporites constrictus Plate 16, Fig. 10 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, fine reticulate to granulate; sacci coarser reti culate to rugulate, with thickening or ribs at distal root. Dimensions : Overall breadth 75 m; overall height 43 m; body breadth 53 m; body height 43 m; sacci height 27 m; sacci depth 45 m (1 specimen). Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Genus Podocarpidites Cookson, 1947 ex Couper, 1953 Type species: Podocarpidites ellipticus Cookson, 1947 Podocarpidites canadensis Pocock, 1962 Plate 16, Fig. 11 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical, fine granulate; sacci coarser reticulate, with radial thickening at dist al sacci junction with corpus. Dimensions : Overall breadth 126 m; body breadth 65 m; sacci depth 74 m (1 specimen). Occurrence : Ochs Clay Pit. Distribution : Deville and Ellerslie Members, Alberta (Pocock 1962); middle Albian, east-central Alberta (Singh 1964); and middle to late Albian, northwestern Alberta (Singh 1971). Podocarpidites minisculus Singh 1964 Plate 16, Fig. 12

PAGE 41

28 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical, fine reticulate; sacci coarser reticulate, with radial thickening at dist al sacci junction with corpus. Dimensions : Overall breadth 70 m; overall height 52 m; sacci height 31 m; sacci depth 49 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : middle Albian, east-central Albert a (Singh 1964); and middle to late Albian, northwestern Alberta (Singh 1971). Podocarpidites sp. Plate 16, Fig. 13 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to subspherical, scabrate to granulate; sacci reticulate, lumina irregular, with radial thickening at distal sacci junction with corpus. Dimensions : Overall breadth 71 m; overall height 33 m; sacci height 24 m; sacci depth 35 m (1 specimen). Remarks : It is different from Podocarpidites minisculus Singh in its scabrate to granulate corpus. Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Genus Pristinuspollenites Tschudy, 1973 Type species: Pristinuspollenites microsaccus Tschudy, 1973 Pristinuspollenites crassus (Pierce) Tschudy, 1973 Plate 17, Fig.1 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical, granulate; sacci small, not borderi ng the furrow, coarser granulate. Dimensions : Overall breadth 52 m; overall height 47 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Distribution : ?Cenomanian, Minnesota (Pierce 1961). Pristinuspollenites inchoatus (Pierce) Tschudy 1973 Plate 17, Fig. 2 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical to spherical, granulate to r ugulate; sacci small and elongate bordering the distal furrow, coarser granulate. Dimensions : Overall breadth 64 m; overall height 64 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ?Cenomanian, Minnesota (Pierc e 1961); and lower Barremian to upper Albian, western Canada (Burden and Hills 1989). Pristinuspollenites microsaccus (Couper) Tschudy 1973 Plate 17, Fig. 3 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical, microreticulate; sacci small and arc-shaped, granulate to reticulate sulcus not clearly defined,

PAGE 42

29 Dimensions : Overall breadth 31(37)42 m; overall height 30(43)55 m (2 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Middle Jurassic, southeaste rn England (Couper 1958); upper Campanian, north-central Montana (Tschudy 1973). Pristinuspollenites pannosus (Pierce) Tschudy 1973 Plate 17, Fig. 4 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical to spherical, granulate; sacci small and se rpentine, parallel and bordering the narrow distal furrow. Dimensions : Overall breadth 49 m; overall height 49 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ?Cenomanian, Minnesota (Pierce 1961). Pristinuspollenites sulcatus (Pierce) Tschudy 1973 Plate 17, Fig. 5 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus subspherical to spherical, granulate; sacci small and elongate, not bordering the distal furrow, but parallel with it, microreticulate. Dimensions : Overall breadth 40(46)51 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ?Cenomanian, Minnesota (Pierce 1961). ? Pristinuspollenites sp. Plate 17, Fig. 6 Pollen grain free, heteropolar, bilateral; vesiculate, multisaccate; corpus subspherical, granulate to rugulate; with 2 small flaccid sacci on each side of distal furrow, not bordering the furrow; exine ca. 1.5 m. Dimensions : Overall breadth 30 m (1 specimen). Occurrence : Courtland Clay Pit. Pristinuspollenites sp. 2 Plate 17, Fig. 7 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus elliptical, granulate to reticulate; sacci flaccid, small and elongate, not bordering the furrow; exine ca. 1.5 m. Dimensions : Overall breadth 27 m, overall height 38 m (1 specimen). Occurrence : Courtland Clay Pit. Genus Punctabivesiculites Pierce, 1961 Type species: Punctabivesiculites constrictus Pierce, 1961 Punctabivesiculites parvus Pierce, 1961 Plate 17, Fig. 8

PAGE 43

30 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal, faint reticulate to granulate; sacci small and elongate, granulate to rugulate, with radial thickening on distally pendant sacci. Dimensions : Overall height 49 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit, Ochs Clay Pit. Distribution : ? Cenomanian, Minnesota (Pierce 1961). Genus Rugubivesiculites Pierce, 1961 Type species: Rugubivesiculites convolutus Pierce, 1961 Rugubivesiculites convolutus Pierce 1961 Plate 17, Fig. 9 Pollen grain free, heteropola r, bilateral; vesiculate, bi saccate; corpus rugulate, rugulae not dense; sacci granul ate, rugulate to reticulate. Dimensions : Overall breadth 67(73)78 m; overall height 46(48)50 m; sacci height 24(26)27 m; sacci depth 28(38)48 m (2 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ?Cenomanian, Minnesota (Pierce 1961). Rugubivesiculites cf. multiplex Pierce 1961 Plate 17, Fig. 10 Pollen grain free, heteropolar, bilatera l; vesiculate, bisaccate; corpus dense rugulate, rugulae tortuous, ps ilate to scabrate in interridge areas; sacci granulate, microreticulate to rugulate, flaccid. Dimensions : Overall breadth 63(69)74 m (2 specimens). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Rugubivesiculites multisaccus Singh, 1983 Plate 17, Fig. 11 Pollen grain free, heteropolar, bilateral; ve siculate, bisaccate; corpus contour not clear, psilate to scabrate; with ca. 5 small and irregular saccate pouches on the proximal surface of the central body, sacci microreticulate. Dimensions : Overall breadth 79 m; overall height 37 m; body breadth 23 m; body height 20 m; big sacci height 11 m; big sacci depth 17 m; small sacci height 7 m; small sacci depth 11 m (1 specimen). Occurrence : Highway 4 Clay Pit. Distribution : Early Cenomanian, Al berta (Singh 1983). Rugubivesiculites cf. reductus Pierce 1961 Plate 17, Fig. 12 Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to subspherical, rugulate only along the pr oximal roots of sacci; proximal surface microreticulate, sacci flaccid. Dimensions : Overall breadth 50 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

PAGE 44

31 Rugubivesiculites rugosus Pierce 1961 Plate 17, Fig. 13 Pollen grain free, heteropolar, bilatera l; vesiculate, bisaccate; corpus dense rugulate, rugulae ridge like; sacci fine reticulate, flaccid. Dimensions : Overall breadth 59 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Mainly Albian to Maastrichtian, Northern Hemisphere. ? Rugubivesiculites sp. Plate 17, Fig. 14. Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate (?); corpus rugulate, rugulae short and low; sacci foveolate, and seems around entire central body. Dimensions : Overall breadth 44 m (1 specimen). Occurrence : Courtland Clay Pit. Turma ALETES Ibrahim Subturma AZONALETES Luber emend. Potonie & Kremp Infraturma GRANULONAPITI Cookson Genus Araucariacites Cookson ex Couper Type species: Araucariacites australis Cookson, 1947. Araucariacites australis Cookson 1947 Plate 17, Fig. 15 Pollen grain free; subspherical to spheri cal; inaperturate, with folds on surface, granulate; exine thin, ca. 1 m. Dimensions : 60(62)64 m (2 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Jurassic to Tertiary, worldwide. Infraturma PSILONAPITI Erdtman Genus Inaperturopollenites Pflug ex Thomson & Pflug emend. Potonie Type species: Inaperturopollenites dubius (Potonie & Venitz) Thomson & Pflug, 1953 Inaperturopollenites sp. Plate 17, Fig. 16 Pollen grain free; spherical, inaperturate, with folds on su rface, psilate to scabrate; exine thin, ca. 1 m. Dimensions : 30 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Genus Taxodiaceaepollenites Kremp, 1949 ex Potonie, 1958 Type species: Taxodiaceaepollenites hiatus Kremp, 1949 ex Potonie, 1958. Taxodiaceaepollenites hiatus (Potonie) Kremp 1949 Plate 17, Fig. 17

PAGE 45

32 Pollen grain free; inaperture, but splitti ng open, with folds on surface, psilate to scabrate; exine thin, ca. 1 m. Dimensions : 27 m (1 specimen). Remarks: It differs from Inaperturopollenites sp. in that it splits open. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Middle Albian to Miocene, worldwide. Turma PLICATES Naumova emend. Potonie Subturma PRAECOLPATES Potonie & Kremp Genus Eucommiidites Erdtman emend. Hughes Type species: Eucommiidites troedssonii Erdtman, 1948. Eucommiidites sp.1 Plate 17, Fig. 18 Pollen grain free; elliptical, zonisulcate, distal sulcus widen at ends, other two sulcus narrow, psilate; exine ca. 1 m. Dimensions : 11(18)24 x 20(30)39 m (2 specimens). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Eucommiidites sp. 2 Plate 17, Fig. 19 Pollen grain free; elliptical, zonisulcate, distal sulcus short and narrow at ends, other two sulcus longer than dist al furrow, psilate; exine ca. 0.5 m. Dimensions : 16 x 18 m (1 specimen). Occurrence : Ochs Clay Pit. Subturma POLYPLICATES Erdtman Genus Equisetosporites Daugherty emend. Singh Type species: Equisetosporites chinleana Daugherty, 1941. Equisetosporites sp.1 Plate 17, Fig. 20 Pollen grain free; elliptical, pol yplicate, ridge dense, ca. 0.2 m apart from each other; ridges ca. 1.5 m wide; exine ca. 1 m. Dimensions : 17 x 40 m (2 specimens). Remarks: It differs from E. sp.2 in its dense ridges, and from E. sp.3 in its thin ridges. Occurrence : Courtland Clay Pit, Ochs Clay Pit. Equisetosporites sp.2 Plate 18, Fig. 1 Pollen grain free; ellip tical, polyplicate, ridge sparse, ridge ca. 1.5 m wide, ridge scabrate; exine ca. 1.2 m. Dimensions : 11(13)14 x 37(38)38 m (2 specimens). Remarks: It differs from E. sp.3 in its thin and sparse ridges. Occurrence : Courtland Clay Pit.

PAGE 46

33 Equisetosporites sp.3 Plate 18, Fig. 2-3 Pollen grain free; ellip tical, polyplicate, ridge dense, less than 1 m apart from each other; ridge wide, ca. 4 m wide; ridge scabrate. Dimensions : 20(21)21 x 34 m (2 specimens). Occurrence : Courtland Clay Pit. Subturma MONOCOLPATES Iversen & Troels-Smith Genus Cycadopites Wodehouse ex Wilson & Webster Type species: Cycadopites follicularius Wilson & Webster, 1946 Cycadopites sp. Plate 18, Figs. 4, 5 Pollen grain free; elliptical monosulcate, sulcus long and extending full of the grain, sulcus margin raised a little; fa int granulate to scabrate; exine ca. 1 m. Dimensions : 10(18)27 x 27(37)46 m (5 specimens). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Entylissa Naumova 1939 ex Ishchenko 1952 Type species: Entylissa caperatus (Luber) Potonie & Kremp 1954. Entylissa sp. Plate 18, Fig. 6 Pollen grain free; elliptical, monosulcate, furrow broadens at both ends, scabrate to fine granulate; exine ca. 2.5 m. Dimensions : 27(29)32 x 45(51)57 m (4 specimens). Occurrence : Highway 4 Clay Pit. Genus Monosulcites Cookson, 1947, ex Couper, 1953 Type species: Monosulcites minimus Cookson, 1947. Monosulcites sp. 1 Plate 18, Fig. 7 Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain, sulcus becoming narrow at ends, scab rate to granulate; exine ca. 2 m. Dimensions : 30(36)44 x 45(57)67 m (3 specimens). Remarks : Monosulcites sp. 1 differs from Monosulcites sp. 2 in that the ornamentation of the latter is rugulate to verrucate; in additi on the sulcus of Monosulcites sp. 2 does not become narrow at the ends. It differs from Monosulcites sp. 3 in that its size is much smaller than Monosulcites sp. 3 (79 x 100 m). Monosulcites sp. 4 is smaller and has thinner exine compared with Monosulcites sp. 1. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Monosulcites sp. 2 Plate 18, Fig. 8

PAGE 47

34 Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain, granulate, rugulate to verr ucate; exine two la yered, sexine alveolate, exine1.2-2.5 m. Dimensions : 32(39)48 x 47(54)63 m (5 specimens). Remarks : It differs from other three Monosulcites species in this chaper in its regulate to verrucate ornamentation. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Monosulcites sp. 3 Plate 18, Fig. 9 Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain, scabrate to granulate; exine two layered, ca. 3 m. Dimensions : 79 x 100 m (1 specimen). Remarks : It differs from other three Monosulcites species in this chaper in its large grain size. Occurrence : Ochs Clay Pit. Monosulcites sp. 4 Plate 18, Figs. 10, 11 Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain, sulcus often folded, granulate; exine 0.5 m. Dimensions : 15(20)23 x 24(26)30 m (3 specimens). Remarks : It differs from other three Monosulcites species in this chaper in its small grain size and thin exine. Occurrence : Ochs Clay Pit. Genus Sabalpollenites Thiergart, in Raatz, 1938 Type species: Sabalpollenites convexus Thiergart, in Raatz, 1938. Sabalpollenites scabrous (Brenner) Wingate, 1980 Plate 18, Fig. 12 Pollen grain free; subcircula r to circular, monosulcate, sulcus extending full length of grain, granulate to regu late; exine two layered, sexine alveolate, exine 2 m. Dimensions : 35(40)45 m (2 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Albian to lower Cenomanian, Maryland (Brenner 1963); Cenomanian, New Jersey and New York (Kimyai 1966, 1970); middle Cenomanian, Louisana and Mississippi (Phi llips and Felix 1972b); upper Al bian, Oklahoma (Wingate 1980), and lower to middle Cenomanian, northwe stern Iowa and north eastern Nebraska (Ravn and Witzke 1995). Turma POROSES Naumova emend. Potonie, 1960 Subturma MONOPORINES Naumova 1939 Genus Bacumonoporites Pierce, 1961 Type species: Bacumonoporites baculatus Pierce, 1961

PAGE 48

35 Bacumonoporites baculatus Pierce, 1961 Plate 18, Fig. 13 Pollen grain free; subcircula r to circular; monoporate, ap erture circular, ca. 16-35 m in diameter, granulate, bacu late to regulate; exine 1.5-4 m. Dimensions : 27(43)65 x 27(49)74 m (4 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ? Cenomanian, Minnesota (Pierce 1961). Genus Classopollis Pflug, 1953 emend. Pocock and Jansonius, 1961 Type species: Classopollis classoides Pflug, 1953 emend. Pocock and Jansonius, 1961. Classopollis torosus (Reissinger) Couper 1958 Plate 18, Fig. 14 Pollen grain free; circular, monoporate, ap erture circular to triangular, ca. 11 m in diameter; microreticulate to granulate, w ith equatorial circular ornament; exine 1.5 m. Dimensions : 24(25)28 m (3 specimens). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Distribution : Albian to lower Cenomanian, Ma ryland (Brenner 1963); ? lower to upper Cenomanian, northwestern Iowa and nor theastern Nebraska (Ravn and Witzke 1995). Genus Exesipollenites Balme, 1957 Type species: Exesipollenites tumulus Balme, 1957 Exesipollenites sp. Plate 18, Fig. 15 Pollen grain free; circular, m onoporate, pore circular, ca. 3 m in diameter, differentially thickened areas present around the pore, scabrate; exine ca. 1.5 m. Dimensions : 32 m (1 specimen). Occurrence : Courtland Clay Pit. Subturma POLYSACCITES Cookson 1947 Genus Punctamultivesiculites Pierce, 1961 Type species: Punctamultivesiculites inchoatus Pierce, 1961 Punctamultivesiculites cf. inchoatus Pierce, 1961 Plate 18, Fig. 16 Pollen grain free, heteropolar; vesiculate, multisaccate; corpus elliptical, granulate; sacci small and numerous, ca. 30, sacci granulate to verrucate, exine ca. 2 m. Dimensions : 43 x 51 m (1 specimen). Remarks : The holotype only has ca. 10 small sacci. Occurrence : Ochs Clay Pit.

PAGE 49

36 Spores Anteturma SPORITES Potonie, 1893 Turma TRILETES Reinsch emend. Dettmann 1963 Subturma AZONOTRILETES Luber emend. Dettmann 1963 Infraturma LAEVIGATI Bennie & Kidston emend. Potonie 1956 Genus Biretisporites Delcourt & Sprumont emend. Delcourt, Dettmann, & Hughes 1963 Type species: Biretisporites potoniaei Delcourt & Sprumont, 1955. Biretisporites sp.1 Plate 18, Fig. 17 Spores tetrahedral, trilete, amb subtria ngular; laesurae long a nd straight, extending full distance of spore radius, laesurae slightly raised and gaping sometimes; sides convex, apices rounded; sculpture scabrate, densely small pits present; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 28(35)42 m (5 specimens) Occurrence : Courtland Clay Pit. Biretisporites sp.2 Plate 18, Fig. 18 Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore radius, laesurae distinct and ra ised; sides straight; sculpture scabrate; small folds along interradial edge; spore wall of uni form thickness, thin, less than 1 m thick. Dimensions : 27 m (1 specimen) Remarks : It differs from Biretisporites sp. 1 in its absence of pits for the ornamentation. Occurrence : Courtland Clay Pit. Genus Cyathidites Couper 1953 Type species: Cyathidites australis Couper, 1953. Cyathidites australis Couper 1953 Plate 18, Fig. 19 Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius, laesurae gapping; sides concave, apices wellrounded; sculpture s cabrate, with densely small fovea; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 57(58)60 m (3 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution : Jurassic and Cretaceous, worldwide. Cyathidites minor Couper 1953 Plate 18, Fig. 20

PAGE 50

37 Spore tetrahedral, tr ilete, amb triangular; laesurae near ly extending full distance of spore radius, laesurae gapping; si des slightly concave, apices rounded; sculpture scabrate; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 24(26)28 m (4 specimens) Occurrence : Courtland Clay Pit. Distribution : Jurassic and Cretaceous, worldwide. Cyathidites punctatus (Delcourt and Sprumont 1955) Delcourt, Dettmann, and Hughes, 1963 Plate 19, Fig. 1 Spore tetrahedral, trilete, amb subtriangular; laes urae extending full distance of spore radius, laesurae gapping; si des concave, apices well-rou nded; sculpture scabrate to granulate; spore wall thi nner at apices (ca. 1.5 m) and thicker at inte rradial areas (ca. 2.5 m). Dimensions : 51(52)53 m (2 specimens) Occurrence : Courtland Clay Pit. Distribution : Wealden and Aptian, England (Couper 1958); Upper Mesozoic, southeastern Australia (Dettmann 1963); and Cenomanian, Oklahoma (Hedlund 1966). Genus Deltoidospora Miner emend. Potonie Type species: Deltoidospora hallii Miner, 1935 Deltoidospora hallii Miner 1935 Plate 19, Fig. 2 Spore tetrahedral, trilete, amb triangular; laesurae extendi ng full distance of spore radius, laesurae distinct; si des convex, apices well-rounded; sculpture scabrate; spore wall of uniform thickness, ca. 1.5 m thick. Dimensions : 32 m (1 specimen) Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Throughout much of the upper Mesozoic, worldwide. Deltoidospora sp. Plate 19, Fig. 3 Spore tetrahedral, tr ilete, amb subtriangular; laesurae extending nearly full of spore radius, laesurae distinct and raised; sides convex; sculptur e scabrate; spore wall ca. 1 m. Dimensions : 77 m (1 specimen) Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Genus Undulatisporites Pflug in Thomson & Pflug 1953 Type species: Undulatisporites microcutis Pflug in Thomson & Pflug, 1953. Undulatisporites sp. Plate 19, Fig. 4 Spore tetrahedral, trilete, amb subcircular; laesurae sinuous, extending 2/3 of spore radius; sides convex, apices well-rounded; scul pture scabrate to ps ilate; spore wall of uniform thickness, ca. 1 m thick.

PAGE 51

38 Dimensions : 37 m (1 specimen) Occurrence : Ochs Clay Pit. Genus Dictyophyllidites Couper emend. Type species: Dictyophyllidites harrisii Couper, 1958. Dictyophyllidites impensus (Hedlund) Singh, 1983 Plate 19, Fig. 5 Spore tetrahedral, tr ilete, amb subtriangular; laesurae distinct and raised, laesurae nearly extending full distance of spore radius ; sides convex; sculpture psilate; spore wall ca. 2 m thick. Dimensions : 53 m (1 specimen) Remarks : This type of spore is similar to that from Goolangia minnesotensis and may have affinity to Marattiaceae. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay pit. Dictyophyllidites sp.1 Plate 19, Fig. 6 Spore tetrahedral, trilete, amb triangular; laesurae extendi ng full distance of spore radius, laesurae distinct and ga pping; arcuate thickening at inte rradial areas; sides slightly convex, apices rounded; sculpture scabrate; sp ore wall of uniform thickness, thin, less than 1 m thick. Dimensions : 25(26)27 m (2 specimens) Occurrence : Courtland Clay Pit. Genus Stereisporites Pflug 1953 Type species: Stereisporites stereoides (Potonie & Venitz) Pflug 1953. Stereisporites sp. Plate 19, Fig. 7 Spore tetrahedral, trile te, amb subtriangular; cingulum present (ca. 2 m); laesurae short and only half of spore radius, laes urae gapping; sides convex, apices rounded; sculpture scabrate; spore wall thickened at apices, ca. 1.5 m. Dimensions : 33(39)44 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Auritulinasporites Nilsson 1958 Type species: Auritulinasporites scanicus Nilsson, 1958. ? Auritulinasporites sp. Plate 19, Fig. 8 Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore radius, laesurae distinct and th ickened; distinctly thickened “lips” delineate a triangular area around the laesurae; sides concave; sc ulpture scabrate; spore wall of uniform thickness, ca. 1.5-2 m thick. Dimensions : 48(48)49 m (3 specimens) Occurrence : Ochs Clay Pit, Highway 4 Clay Pit.

PAGE 52

39 Infraturma APICULATI Bennie & Kidston emend. Potonie 1956 Genus Concavissimisporites Delcourt & Sprumont emend. Delcourt, Dettmann, & Hughes 1963 Type species: Concavissimisporites verrucosus Delcourt & Sprumont, 1955. ? Concavissimisporites sp. Plate 19, Fig. 10 Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius; sides concave or slight convex, apices wellrounded; sculpture granulate, verrucate to rugulate; spore wall thin, less than 1 m thick. Dimensions : 24(32)39 m (4 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Baculatisporites Thomson & Pflug 1953 Type species: Baculatisporites primaries (Wolff) Thomson & Pflug 1953 Baculatisporites comaumensis (Cookson) Potonie 1956 Plate 19, Fig. 9 Spores tetrahedral, trilete, amb subtriangul ar; laesurae distinct and raised, laesurae extending full distance of spore radius; side s convex; sculpture b aculate to verrucate; baculae ca. 2.5 m high, dense on distal side an d reduced on proximal side. Dimensions : 34 m (1 specimen) Occurrence : Courtland Clay Pit. Distribution : Late Triassic to Cretaceous, worldwide. Baculatisporites sp. Plate 19, Fig. 11 Spores tetrahedral, trilete, amb elliptical to circular; laesurae gaping; sides convex, apices rounded; sculpture bacu late and baculae size 1.2 x 1.0 m; spore wall of uniform thickness, about 1.8 m thick. Dimensions : 34 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Converrucosisporites Potonie & Kremp 1954 Type species: Converrucosisporites triquetrus (Ibrahim) Potonie & Kremp, 1954. Converrucosisporites sp. Plate 19, Figs. 12, 13 Spore tetrahedral, trilete, amb triangular; laesurae exte nding full of spore radius, laesurae gapping; sides concave; verrucate, baculate and coni, evenly distributed; spore wall about 0.8 m thick (excluding ornamentation). Dimensions : 39(44)48 m (2 specimens) Occurrence : Ochs Clay Pit. Genus Neoraistrickia Potonie 1956 Type species: Neoraistrickia truncatus (Cookson) Potonie 1956.

PAGE 53

40 Neoraistrickia sp. Plate 19, Fig. 14 Spore tetrahedral, trilete, amb triangular; laesurae difficult to observe due to ornamentation; sides stra ight or convex; sculptur e baculate, baculae ca. 0.5 m high and 2.5-3.5 m wide, baculae denser at apices on distal view; spor e wall of uniform thickness, about 3 m thick. Dimensions : 47 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Ceratosporites Cookson & Dettmann 1958 Type species: Ceratosporites equalis Cookson & Dettmann 1958. ? Ceratosporites sp. Plate 19, Fig. 15 Spore tetrahedral, trile te, amb triangular; laesurae not clear because of ornamentation; sides convex; sculpture ech inate on distal side, echinae ca. 3 x 5 m, small pits on the surface of echinae; sculptur e psilate on proximal side; spore wall thick (ca. 5 m) Dimensions : 34 m (1 specimen) Occurrence : Courtland Clay pit, Highway 4 Clay Pit. Genus Impardecispora Venkatachala, Kar & Raza 1969 Type species: Impardecispora apiverrucata (Couper) Venkatachala, Kar & Raza, 1969. Impardecispora sp.1 Plate 19, Fig. 16 Spore tetrahedral, trilete, amb triangular; laesurae distinct and raised, laesurae extending 2/3 of spore radius; sides convex; sc ulpture verrucate, big verrucae at apices region on distal side; proximal si de reduced and relatively smooth. Dimensions : 34 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Verrucosisporites Ibrahim emend. Smith & Butterworth 1967 Type species: Verrucosisporites verrucosus (Ibrahim) Ibrahim, 1933. Verrucosisporites sp. Plate 19, Fig. 17 Spore tetrahedral, trilete, amb subtriangular; laesurae ex tending ca. 2/3 distance of spore radius, laesurae gapping; sides concave; sculpture verru cate; spore wall of uniform thickness, about 1 m thick. Dimensions: 27(36)51 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Granulatisporites Ibrahim 1933 Type species: Granulatisporites granulatus Ibrahim 1933.

PAGE 54

41 ? Granulatisporites sp. Plate 19, Fig. 18 Spore tetrahedral, trilete, amb subtriangular; laes urae extending full distance of spore radius, laesurae not straight; sides c onvex, apices rounded; a distinct triangular depression on the proximal surface; sculpture scabrate to granulat e; granules connect each other to form dense regulate structure; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 38(38)39 m (3 specimens) Occurrence : Courtland Clay Pit. Genus Punctatriletes Pierce 1961 Type species: Punctatriletes punctus Pierce, 1961. Punctatriletes punctus Pierce, 1961 Plate 19, Fig. 19 Spore tetrahedral, trilete, amb triangular; laesurae extending more than 2/3 of spore radius, laesurae distinct and straight; sides convex; sculpt ure granulate; spore wall of uniform thickness, ca. 2 m thick. Dimensions : 48(50)51 m (2 specimens) Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ? Cenomanian, Minnesota (Pierce 1961). Genus Phaeoceros cf. Phaeoceros form A Jarzen, 1979 Plate 19, Figs. 20, 21 Spore tetrahedral, trilete, amb sub circular to trian gular; laesurae sinuous and bifurcating when reaching the spore wall, exte nding nearly full distance of spore radius; sides slightly convex, apices rounded; baculate, ca. 3 m high and 1 m wide, baculae dense and big on distal surface and rare and small on proximal surface; spore wall 1.5-3 m, uneven. Dimensions : 56 m (1 specimen) Occurrence : Ochs Clay Pit. Infraturma MURORNATI Potonie & Kremp 1954 Genus Lycopodiacidites Couper 1953 Type species: Lycopodiacidites bullerensis Couper, 1953. Lycopodiacidites sp.1 Plate 19, Figs. 22, 23 Spore tetrahedral, trilete, amb triangular; laesurae extendi ng full distance of spore radius, laesurae distinct a nd slightly sinuous; sides conve x; sculpture regulate. Dimensions : 25 m (1 specimen) Occurrence : Courtland Clay Pit. Lycopodiacidites sp.2 Plate 19, Figs. 24, 25

PAGE 55

42 Spore tetrahedral, trilete, amb subtriangular to circul ar; laesurae distinct and straight, laesurae extendi ng full distance of spore radius; si des convex; sculpture rugulate, rugulae dense and delicate (less than 1 m wide); spore wall ca. 1 m thick. Dimensions : 36(42)47 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Foveotriletes van der Hammen ex Potonie 1956 Type species: Foveotriletes scrobiculatus (Ross) Potonie 1956. Foveotriletes sp. Plate 19, Fig. 26 Spore tetrahedral, tr ilete, amb triangular; laesurae near ly extending full distance of spore radius, laesurae slightly raised; side s straight or slight ly convex; sculpture foveolate, fovea rounded, 1.5-2 m. Dimensions : 46 m (1 specimen) Occurrence : Courtland Clay Pit. ? Foveotriletes sp. Plate 19, Figs. 27, 28 Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore radius, laesurae distinct, laesur ae circled by distinctive thickeni ng areas; sides straight or slightly concave; sculpture granulate with sm all pits; spore wall of uniform thickness, ca. 1.5 m thick. Dimensions : 29(37)45 m (2 specimen) Remarks : It differs from Foveotriletes sp. in its ornamentation that is granulate with small pits. Also it has dist inct thickening areas around laesurae. Occurrence : Courtland Clay Pit. Genus Foveosporites Balme 1957 Type species: Foveosporites canalis Balme 1957. Foveosporites sp. Plate 20, Fig. 1 Spore tetrahedral, trilete, amb triangular; laesurae distin ct and straight, laesurae extending 2/3 of spore radius; sides convex to concave; sculpture foveolate, fovea irregular. Dimensions : 35 m (1 specimen) Remarks : It differs from Foveotriletes sp. in its irregular fovea. The fovea is rounded for Foveotriletes sp. Occurrence : Courtland Clay Pit. Genus Lycopodiumsporites Thiergart ex Delcourt & Sprumont 1955 Type species: Lycopodiumsporites agathoecus (Potonie) Thiergart, 1938. Lycopodiumsporites marginatus Singh, 1964 Plate 20, Figs. 2, 3

PAGE 56

43 Spore tetrahedral, trilete, amb subcircula r; laesurae raised, extending nearly full distance of spore radius; psilate and with several irregular ridges on proximal surface; reticulate on distal surface, lumina 15-26 m, muri polygonal at th e areas of 3 lumina connecting, muri ca. 1 m wide in other areas, forming a 9 m high membrane layer. Dimensions : 61 (73)79 m (3 specimens) Remarks : The lumina are 9-14 m on the holotype. Occurrence : Ochs Clay Pit. Distribution : Middle Albian, east-central Al berta (Singh 1964); Albian to ? Cenomanian, central Albert a (Norris 1967); Albian, Ok lahoma (Hedlund and Norris 1968); and middle to late Albian, northwestern Al berta (Singh 1971). Lycopodiumsporites sp. 1 Plate 20, Fig. 4 Spore tetrahedral, trilete, amb triangular; laesurae extendi ng full distance of spore radius, laesurae slightly raised; sculpture reticulate, muri membrane like (ca. 4 m high), thickness even, muri polygonal, ca. 8 m in diameter. Dimensions : 35 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Klukisporites Couper 1958 Type species: Klukisporites variegatus Couper, 1958. Klukisporites sp.1 Plate 20, Fig. 5 Spore tetrahedral, tr ilete, amb subtriangular; laesurae not clear; sides straight to slightly convex; sculpture foveol ate, fovea irregular, ca. 2.5-4 m long; spore wall ca. 2.5 m thick. Dimensions : 28 m (1 specimen) Occurrence : Courtland Clay Pit. Klukisporites sp.2 Plate 20, Fig. 6 Spore tetrahedral, trilete, amb subtriangular; laesurae di stinct; sides straight to slightly convex; sculpture foveolate on distal side, fovea irregular, size 9 x13 m to 9 x 23 m; sculpture proximal side scabrate with small pits; spore wall ca. 4 m thick. Dimensions : 61 m (1 specimen) Remarks : It differs from Klukisporites sp. 1 in its large spore size and large fovea size, and from ? Klukisporites sp. in its absence of thickened apices and tori on proximal surface. Occurrence : Courtland Clay Pit. ? Klukisporites sp. Plate 20, Figs. 7, 8 Spore tetrahedral, trilete, amb subcircular; laesurae extending 2/3 of spore radius, sinuous and slightly raised; side s convex, apices thickened, ca. 7 m thick; sculpture

PAGE 57

44 reticulate (?), lumina 21 m and 36 m on distal surface, muri 12 m wide, a tori exist on proximal surface; spore wall ca. 3.5 m thick. Dimensions : 89 m (1 specimen) Remarks : It differs from other Klukisporites in its thickened apices and tori on proximal surface. Occurrence : Ochs Clay Pit. Genus Taurocusporites Stover 1962 Type species: Taurocusporites segmentatus Stover, 1962. Taurocusporites segmentatus Stover 1962 Plate 20, Fig. 9 Spore tetrahedral, tr ilete, amb subtriangular; zonate, zona with concentric annular crassitudes; laesurae extending full distance of spore radius, laesurae distinct and thickened, laesurae do not reach into zona ; sides convex; sculpture verrucate. Dimensions : 37(42)51 m (6 specimens) Occurrence : Courtland Clay Pit. Distribution : Neocomian to Cenomanian, North America and Europe (Ravn and Witzke, 1995). Genus Januasporites Pocock 1962 Type species: Januasporites reticularis Pocock 1962 ? Januasporites sp. Plate 20, Fig. 10 Spore tetrahedral, trilete, amb triangular; zonate, zona membrane like and with wide base blunt spines on surface; laesur ae extending full distance of spore radius, laesurae distinct; side s convex, apices well-rounded; spore wall ca. 1.5 m thick. Dimensions : 42(54)65 m (including zona) (2 specimens) Occurrence : Ochs Clay Pit. Genus Cicatricosisporites Potonie & Gelletich 1933 Type species: Cicatricosisporites dorogensis Potonie & Gelletich 1933. Cicatricosisporites coconinoensis Agasie, 1969 Plate 20, Fig. 11 Spore tetrahedral, trilete, amb circular to subcircular; laesurae distinct and raised, extending nearly full distance of spore radius ; sides convex, apices r ounded; relative wide (ca. 2 m ) and dense ridges on distal surface and nearly smooth on proximal surface; spore wall 2 m. Dimensions : 30(40)50 m (2 specimens) Occurrence: Highway 4 Clay Pit. Distribution : Cenomanian, northeastern Arizona (Agasie 1969). Cicatricosisporites crassiterminatus Hedlund, 1966 Plate 20, Figs. 12, 13

PAGE 58

45 Spore tetrahedral, tr ilete, amb triangular to subtriangul ar; laesurae raised and nearly extending to equator; sculptur e cicatricose, ridge dense and relatively wide (ca. 1.5-3 m wide), 1 m apart from each other, interconnected ridges enclose circular to elongate lumina, 2-2.5 m. Dimensions : 39 (44) 48 m (2specimen) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution : Cenomanian, North America (Hedlund 1966, Kimyai 1966, Agasie 1969, Romans 1975, May and Traverse 1973, and Singh 1983). Cicatricosisporites cf. crassiterminatus Hedlund, 1966 Plate 20, Figs. 14, 15 Spore tetrahedral, trilete, amb subtriangular; laesurae sl ightly raised and nearly extending to equator; sculpture cicatricose, ridge wide (6-8 m wide) and width uneven, interconnected ridges enclose elongate or rounded lumina; spore wall 5-8 m, uneven. Dimensions : 91 m (1specimen) Remarks : The holotype is only 56 m. Also there are no thickened areas at apices for this species. Ridge width is wider and th e thickness of spore wall is thicker than that of holotype. Occurrence : Ochs Clay Pit. Cicatricosisporites hallei Delcourt and Sprumont 1955 Plate 20, Fig. 16 Spore tetrahedral, trilete, amb triangular; laesurae extending to equator, laesurae straight and distinct; sculpture cicatricose, ridge delicate and relatively narrow (less than 1 m wide). Dimensions : 25 m (1 specimen) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Distribution : Middle Albian, east-central Al berta (Singh 1964); Albian to ? Cenomanian, central Alberta (Norris 1967); Albian and Cenomanian, Oklahoma (Hedlund 1966; Hedlund and Norris 1968); a nd middle to late Albian (Singh 1971). Cicatricosisporites hughesi Dettmann 1963 Plate 20, Figs. 17, 18 Spore tetrahedral, trilete, amb triangular to subtriangul ar; laesurae nearly extending full of the spore radius; sculpture cica tricose, ridge sinuous and wide (4-6 m wide), 3-7 m apart, there are 3 ridges in each interrad ial area, which are nearly parallel to each other and to the side of spore. Dimensions : 30 (39) 48 m (2 specimens) Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : Aptian, Albian, and ? Cenomanian, southeastern Australia (Dettmann 1963); Albian to ? Cenomanian, central Albert a (Norris 1967); Maastrichtian and Danian, California (Drugg 1967); and middle to late Albian, northwestern Alberta (Singh 1971). Cicatricosisporites sp.1 Plate 20, Fig. 19

PAGE 59

46 Spore tetrahedral, trilete, amb subtriangular; laesurae ne arly extending to equator, laesurae distinct and raised; sculptur e cicatricose, ridge dense (ca. 1.5-2 m wide). Dimensions : 37(39)40 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Cicatricosisporites sp.2 Plate 20, Fig. 20 Spore oblique, trilete, trilete mark not clear; sculpture ci catricose, ridge dense and delicate; spore wall ca. 1 m. Dimensions : 43 m (1 specimen) Remarks : It differs from Cicatricosisporites hallei in its larger size, and from other Cicatricosisporites in this chapter in its de nse and delicat e ridges. Occurrence : Highway 4 Clay Pit. Cicatricosisporites sp. 4 Plate 20, Figs. 21, 22 Spore tetrahedral, trilete, amb subtriangular; laesurae not clear because of ridges; sculpture cicatricose, ri dge dense and wide (2.5 m wide), small pits on the ridges. Dimensions : 47 m (1 specimen) Remarks : It differs from other Cicatricosisporites in this chapter in its dense and wide ridges with pits. Occurrence : Ochs Clay Pit, Courtland Clay Pit. Genus Costatoperforosporites Deak 1962 Type species: Costatoperforosporites fistulosus Deak, 1962. Costatoperforosporites sp. Plate 21, Fig. 1 Spore tetrahedral, trilete, amb triangular; laesurae slightly sinuous, extending nearly full distance of spore radius; sides sl ightly convex, apices r ounded; wide (ca. 6-7 m) and dense ridges evenly distributed, with small fovea on the ri dges; spore wall 2.5-5 m, uneven. Dimensions : 52(72)90 m (4 specimens) Occurrence : Ochs Clay Pit. Genus Ischyosporites Balme 1957 Type species: Ischyosporites crateris Balme,1957 ? Ischyosporites sp. Plate 21, Figs. 2, 3 Spore subtriangular, trilete; laesurae sinuous and raised, extending nearly full of spore radius; psilate to scabrate on proximal su rface and faint reticulate on distal surface, lumina 2-7 m, muri ca. 1 m wide, irregular; spore wall ca. 2 m. Dimensions : 51(57)63 m (2 specimens) Occurrence : Ochs Clay Pit.

PAGE 60

47 Genus Retitriletes van der Hammen ex Pierce em end. Doring et al., in Krutzsch 1963 Type species: Retitriletes globosus Pierce, 1961. Retitriletes sp.1 Plate 21, Fig. 4 Spore tetrahedral, trilete, amb circular to subcircular; laesurae extending 2/3 distance of spore radius, laes urae not straight; sculpture re ticulate, lumina polygonal (ca. 5 m in diameter) and muri thickness not even. Dimensions : 27(29)31 m (2 specimens) Occurrence : Courtland Clay Pit. Retitriletes sp.2 Plate 21, Figs. 5, 6 Spore tetrahedral, trilete, amb triangular; laesurae nearly extending full distance of spore radius; sides convex, apices rounded; sc ulpture reticulate, lumina shape irregular (1.5-3 m in diameter) and muri thickness not even; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 29 m (1specimen) Remarks : It differs from Retitriletes sp.1 in its smaller and irregular lumina, and from ? Retitriletes sp. in its smaller size. Occurrence : Courtland Clay Pit. ? Retitriletes sp. Plate 21, Figs. 7, 8 Spore tetrahedral, trile te, trilete mark not clear, amb nearly circular; sides convex; sculpture reticulate, lumina polygonal, 3-6 m in diameter. Dimensions : 40 m (1 specimen) Remarks : It differs from other Retitriletes in this chapter in its larger size. Occurrence : Highway 4 Clay Pit. Genus Stoverisporites Burger in Norvick & Burger 1975 Type species: Stoverisporites microverrucatus Burger, 1975. ? Stoverisporites sp. Plate 21, Fig. 9 Spore tetrahedral, trilete; laesurae raised, with thick “lips” or “arcuate”; incomplete fovea on distal surface and psilate on proximal surface; spore wall thick, ca. 5 m. Dimensions : 73(78)83 m (2 specimens) Occurrence: Highway 4 Clay Pit. Infraturma TRICRASSATI Dettmann 1963 Genus Gleicheniidites Ross ex Delcourt & Sprumont emend. Dettmann 1963 Type species: Gleicheniidites senonicus Ross 1949.

PAGE 61

48 Gleicheiidites senonicus Ross emend. Skarby 1964 Plate 21, Fig. 10 Spore tetrahedral, trilete, amb triangular; laesurae extendi ng full distance of spore radius, laesurae long and raised; sides concave with interridial crassitudes, crassitude ca. 4 m wide; sculpture psilate; spore wa ll of uniform thickness, less than1 m thick. Dimensions : 19(22)25 m (3 specimens) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : upper Mesozoic, Southeastern Australia (Dettmann 1963). ? Gleichiidites sp. Plate 21, Fig. 11 Spore tetrahedral, trilete, amb triangular; laesurae exte nding full of spore radius, laesurae thickened and raised ; sides concave; sculpture scabrate; spore wall ca. 0.5 m. Dimensions : 21(24)26 m (2 specimens) Remarks : There are no interradial crassitudes for this species. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Genus Sestrosporites Dettmann 1963 Type species: Sestrosporites irregulatus Dettmann 1963 Sestrosporites sp. 1 Plate 21, Fig. 12 Spore tetrahedral, trilete, amb subtriangular; laes urae extending full distance of spore radius, laesurae distinct and sinuous s lightly; sides convex with thicker (ca. 2.5 m) interridial crassitudes and crassitude membrane like; sculpture foveol ate; hilate on distal view. Dimensions : 41 m (1 specimen) Occurrence : Courtland Clay Pit. Sestrosporites sp. 2 Plate 21, Figs. 13, 14 Spore tetrahedral, trilete, amb subtriangular; zonate, zona membranous, ca. 4 m thick; laesurae extending full distance of s pore radius, laesurae s lightly sinuous; sides convex; sculpture foveolate, f ovea irregular, elongate, ca. 1 m; spore wall ca. 3 m. Dimensions : 53(56)59 m (excluding zona) (2 specimens) Remarks : It differs from Sestrosporites sp. 1 in its uniform thick zona and larger size. Occurrence : Ochs Clay Pit. Genus Camarozonosporites Pant ex Potonie emend. Klaus, 1960 Type species: Camarozonosporites cretaceous (Weyland & Krieger) Potonie, 1956. Camarozonosporites sp.1 Plate 21, Fig. 15

PAGE 62

49 Spores tetrahedral, trilete, amb elliptical to circular; laesurae extending nearly full distance of spore radius, laesur ae gapping; crassitude present at interradial areas; sides convex; sculpture regulate, dense and delicate, ca. 1-2 m wide. Dimensions : 27(29)30 m (2 specimens) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Camarozonosporites sp.3 Plate 21, Figs. 16, 17 Spores tetrahedral, trilete, amb circular to subcircular; zonate, crassitude thicker at interradial areas (7 m wide) than that at apical areas (2.5 m wide); laesurae raised and slightly sinuous, extending full distance of spore radius; side s convex; sculpture regulate on distal surface, rugulae thick and wide, ca. 5 m wide, smooth and psilate on proximal surface. Dimensions : 50(57)61 m (3 specimens) Occurrence : Ochs Clay Pit. Suprasubturma PERINOTRILITES Erdtman Genus Crybelosporites Dettmann, 1963 Type species: Crybelosporites striatus Dettmann, 1963. Crybelosporites sp. Plate 21, Figs. 18, 19 Spore subcircular, trilete, l aesurae ragged and raised, exte nding nearly full of spore radius; scabrate to granulate; with perine, pe rine membrane like, with hair like process on the surface, hair ca. 3.5 m long; spore wall ca. 2.5 m. Dimensions : 47(54)62 m (excluding perine) (5 specimens) Remarks : This species probably shares affin ity with the Salviniaceae (Hall, 1964). Occurrence : Ochs Clay Pit. Turma MONOLETES Ibrahim 1933 Subturma AZONOMONOLETES Luber 1935 Infraturma LAEVIGATOMONOLETI Dybova & Jachowicz 1957 Genus Laevigatosporites Ibrahim 1933 Type species: Laevigatosporites vulgaris (Ibrahim) Ibrahim,1933. Laevigatosporites ovatus Wilson and Webster 1946 Plate 21, Fig. 20 Spore monolete; aperture about half spor e length; sculpture ps ilate to scabrate; spore wall thin and less than 1 m. Dimensions : 19(22)24 x 30(34)36 m (6 specimens) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Upper Mesozoic, Australia (D ettmann 1963); middle Albian, eastcentral Alberta (Singh 1964).

PAGE 63

50 Laevigatosporites cf. irroratus Hedlund 1966 Plate 21, Fig. 21 Spore monolete; oval to ellipt ical, aperture about 2/3 of spore length; sculpture fine granulate; spore wall thin, ca. 0.6 m. Dimensions : 22(24)25 x 27(28)28 m (2 specimens) Occurrence : Highway 4 Clay Pit. Laevigatosporites sp.2 Plate 21, Fig. 22 Spore monolete; aperture long; scabrate, w ith fine granules occasionally; spore wall ca. 1 m. Dimensions : 32 x 61 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Microfoveolatosporis Krutzsch 1959 Type species: Microfoveolatosporis pseudodentatus Krutzsch 1959 Microfoveolatosporis pseudoreticulatus (Hedlund) Singh, 1963 Plate 21, Fig. 23 Spore monolete; elongate bean shaped; aper ture not clear; sculpture granulate to microfoveolate; spore wall about 1.2 m. Dimensions : 21(23)25 x 50(53)56 m (3 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution : Cenomanian, southern Oklahoma (Hedlund 1966); Albian, southern Oklahoma (Hedlund and Norris 1968); middle Cenomanian, northwestern Alberta (Singh, 1983); and middle Cenomanian, northwe stern Iowa and north eastern Nebraska (Ravn and Witzke, 1995). Turma HILATES Dettmann, 1963 Genus Aequitriradites Delcourt & Sprumont emend. Cookson & Dettmann 1961 Type species: Aequitriradites dubius Delcourt & Sprumont emend. Delcourt, Dettmann & Hughes 1963. Aequitriradites spinulosus (Cookson and Dettmann) Cookson and Dettmann 1961 Plate 21, Fig. 24 Spores tetrahedral, trilete, amb subtriangul ar; zonate, zona with small pits, ca. 12 m thick; laesurae extending full distance of s pore radius and extendi ng to the margin of the zona; sculpture baculate, one thinning area (hilate) pr esent; spore wall of uniform thickness, about 1.5 m thick. Dimensions : 38(40)41 m (excluding zona); 64 m (including zona)(2 specimens) Occurrence : Courtland Clay Pit. Distribution : Lower Cretaceous, eastern Au stralia (Cookson and Dettmann 1958a); and middle Albian, eastcentral Alberta (Singh 1964).

PAGE 64

51 Genus Triporoletes Mtchedlishvili emend. Playford 1971 Type species: Triporoletes singularis Mtchedlishvili, in Mtchedlishvili & Samoilovich, 1960. Triporoletes involucratus (Chlonova) Playford, 1971 Plate 21, Fig. 25 Spore elliptical to circular, aperture ab sent; zonate, zona thin and membranous; spore central body undulate; 4 convex projections and 4 concave embayments present; fine closely spaced, radially arrange d, sinuous wrinkles on distal side. Dimension : 35 m (1 specimen) Occurrence : Courtland Clay Pit. Distribution : Albian, Saskatchewan and Manitoba (Playford 1971); and Cenomanian, northwester n Alberta (Singh 1983). Triporoletes reticulatus (Pocock) Playford 1971 Plate 21, Figs. 26, 27 Spores tetrahedral, trilete mark absent, am b subtriangular; zonate, zona very thin, ca. 1 m thick at the apices; sculpture reticulate on distal surface, lumina 5-11 m, psilate to scabrate on proximal surface; spore wall ca. 2 m. Dimensions : 36 (44) 49 m (3 specimens) Remarks : The Zlivisporis has a distinct trilete mark which reaches up to the equator. Zona is absent and reticulum is a rranged into a sparse ne t on the distal side. Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Albian to Cenomanian, worldwide. Triporoletes sp.1 Plate 22, Fig. 1 Spores tetrahedral, trilete, amb subtri angular; zonate, zona membranous like; laesurae extending full distance of spore radius and extending to the margin of the zona, slightly sinuous; sides convex, apices rounded; sculpture scab rate; spore wall of uniform thickness, about 1.2 m thick. Dimensions : 34(36)38 m (excluding zona) (3 specimens) Remarks : Densoisporites with interradial thickenings situated near the proximal pole. For Triporoletes the proximal aperture is not clea r or absent, and the zona have a flask-shaped to conical invagination at each radial position of the equator. Occurrence : Courtland Clay Pit. Triporoletes sp.2 Plate 22, Figs. 2, 3 Spores tetrahedral, trilete, amb subtria ngular; zonate, zona membranous; laesurae extending full distance of spore radius and extending to the margin of the zona and laesurae branching in zona, laesurae sinuous ; sides convex, apices rounded; sculpture scabrate on proximal side and reticulate on distal side, lumina polygonal and 11-13 m in diameter, muri ca. 1 m; spore wall of uniform thickness, about 1.5 m thick. Dimensions : 42(44)45 m (4 specimens)

PAGE 65

52 Remarks : It differs from Triporoletes reticulates in its clear trilete mark, from Triporoletes sp.1 in its reticulate feat ure on distal side, from Triporoletes sp.3 in its sinuous laesurae and smaller size. Occurrence : Courtland Clay Pit. Triporoletes sp.3 Plate 22, Fig. 4 Spores tetrahedral, trilete, amb triangul ar; zonate, zona membranous, usually not complete and broken; laesurae extending full distance of spore radius and extending onto zona, laesurae distinct and relatively strai ght; sides convex, apices rounded; sculpture scabrate; spore wall of un iform thickness, about 1.2 m thick. Dimensions : 49(51)52 m (excluding zona) (3 specimens) Remarks : It differs from Triporoletes reticulatus in its clear trilete mark, from Triporoletes sp.1 and Triporoletes sp.2 in its straight laesurae and larger size. Occurrence : Courtland Clay Pit. Genus Chomotriletes Naumova 1939 ex 1953 Type species: Chomotriletes vedugensis Naumova, 1953. Chomotriletes sp. Plate 22, Fig. 5 Spore elliptical, inaperture; nearly concentric thin (less than 0.5 m) ridges on spore surface. Dimensions : 35 m (1 specimen) Occurrence : Courtland Clay Pit. Spore type 1 Plate 22, Figs. 6, 7 Spores tetrahedral, trilete (?), amb s ubtriangular; laesurae not clear because of splitting; hilate in distal view; sculpt ure scabrate, granulate to regulate. Dimensions : 40(43)46 m (2 specimens) Occurrence : Courtland Clay Pit. Subturma ZONOTRILETES Waltz Infraturma AURICULATI Schopf emend. Dettmann Genus Appendicisporites Weyland & Krieger 1953 Type species: Appendicisporites tricuspidatus Weyland & Krieger, 1953. Appendicisporites auritus Agasie 1969 Plate 22, Fig. 8 Spores tetrahedral, trilete, amb triangular ; laesurae not clear because of ridges; sculpture cicatricose, ridge wide (2-6 m wide), with wide and blunt appendages. Dimensions: 81 m (1 specimen) Occurrence : Ochs Clay Pit. Distribution : Cenomanian, Arizona (Aga sie 1969; Romans 1975); and Cenomanian, northwester n Alberta (Singh 1983).

PAGE 66

53 Appendicisporites matesovae (Bolkhovitina) Norris 1967 Plate 22, Fig. 9 Spore subtriangular, aperture not clea r; dense ridges on surface (ca. 1.5 m wide); sparse baculae on ridges, baculae 6 m high and 2 m wide. Dimensions : 37 m (excluding baculae) (1 specimen). Occurrence : Courtland Clay Pit. Distribution : Albian to ? Cenomanian, central Alberta (Norris 1967); Cenomanian, Oklahoma (Hedlund 1966); and middle to late Albian (Singh 1971). Appendicisporites cf. matesovae (Bolkhovitina) Norris 1967 Plate 22, Fig. 10 Spore subtriangular, aperture not clea r; with ridges on surface (ca. 4 m wide), 2.5 m apart from each other; baculae on ap ices and distal surface, baculae 15 m high and 4 m wide, unclear for proximal surface. Dimensions : 56 m (excluding baculae) (1 specimen) Remarks : The baculae in the holotype (3-8 m long and 2-4 m wide) are shorter than those of this species. Occurrence : Ochs Clay Pit. Appendicisporites potomacensis Brenner 1963 Plate 22, Figs. 11, 12 Spores tetrahedral, trilete, amb triangular ; laesurae not clear because of ridges; sculpture cicatricose, ridge wide (2-2.5 m wide), ridges fused before projecting spore outline. Dimensions : 44(50)56 m (2 specimens) Occurrence : Courtland Clay Pit. Distribution : Barremian to Albian, Maryla nd (Brenner 1963); Albian to ? Cenomanian, central Alberta (Norris 1967); middle Albian, ea st-central Al berta (Singh 1964); and middle to late Albian (Singh 1971). Appendicisporites problematicus (Burger) Singh, 1971 Plate 22, Figs. 13, 14 Spores tetrahedral, trilete, amb triangul ar; spore with appendages at apices, appendage ca. 12 m high and 6 m wide; laesurae extending near ly full of spore radius; sculpture cicatricose; ridge wide, ca. 3 m, ridges sinuous, 2 m apart from each other; ridges on distal surface parallel to spore si des and forming a triangle in the center. Dimensions : 58(76)90 m (4 specimens) Occurrence : Ochs Clay Pit. Distribution : middle to late Albian, nor thwestern Alberta (Singh 1971). Genus Plicatella Maljavkina 1949 emend. Potonie 1960 Type species: Plicatella trichacantha Maljavkina 1949. Plicatella fucosa (Vavrdova) Davies 1985 Plate 22, Fig. 15

PAGE 67

54 Spore tetrahedral, trilete, amb triangular; laesurae not clear because of ridges; sculpture cicatricose, ridge wide (2.5-3 m), ridges fused outside of the outline of spore. Dimensions : 45(48)50 m (2 specimens) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : ? lower to middle Cenomanian, nor thwestern Iowa and northeastern Nebraska (Ravn and Witzke 1995). Plicatella witzkei Ravn 1995 Plate 22, Fig. 16 Spore tetrahedral, trilete, amb triangular; laesurae not clear because of ridges; sculpture cicatricose, ridge de nse and relatively narrow (1-2 m wide), ridges fused outside of the outline of spore, tiny pits present on some ridges. Dimensions : 44(44)45 m (3 specimens) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Distribution : middle to upper Albian, Alberta (Norris 1967); and upper Albian, Wyoming (Ravn 1995) Plicatella sp.1 Plate 22, Fig. 17 Spore tetrahedral, trile te, amb subtriangular to elliptic al; laesurae extending ca. half of the radius, gapping; sculpture cica tricose, ridge de nse and wide (2.5 m wide), ridges apart from each other ca. 0.5 m, ridges fused outside of the outline of spore. Dimensions : 32 m (1 specimen) Occurrence : Courtland Clay Pit. Plicatella sp.2 Plate 22, Figs. 18, 19 Spore tetrahedral, trilete, amb subtriangular; laesurae ex tending more than 2/3 of the spore radius, laesurae ga pping; sculpture cicatricose, ridge dense and wide (6 m wide), ridges fused outside of the outline of spore; appendage small and short. Dimensions : 48 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Trilobosporites Pant ex Potonie 1956 Type species: Trilobosporites hannonicus (Delcourt & Sprumont) Potonie 1956 Trilobosporites purverulentus (Verbitskaya) Dettmann, 1963 Plate 22, Fig. 20 Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius, distinct and straight; sides c oncave, apices well-rounded; scul pture scabrate to foveolate, fovea (ca. 1.5-3 m) on apices region and other part of surface scabra te; spore wall ca. 2 m thick. Dimensions : 43(48)52 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution : Aptian and Albian, southeastern Australia (Dettmann 1963); middle Albian, Oklahoma (Hedlund and Norris 1968); Albian, Saskatchewan and Manitoba

PAGE 68

55 (Playford 1971); Cenomanian, Louisiana (Ph illips and Felix, 1972a); and Cenomanian (Singh 1983). Algal, Fungal and Megaspore Genus Laevigatasporites Potonie & Gelletich 1933 Type species: Laevigatasporites magnus (Potonie) Potonie & Gelletich 1933 Laevigatasporites sp. Plate 23, Fig. 1 Spore large, subcircular; inaperture, psila te to scabrate, full of folds on surface; spore wall very thin, ca. 0.5 m. Dimensions: 81 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Genus Oedogonium Link 1820 Type species: Oedogonium cretaceum Zippi, 1998 Oedogonium cretaceum Zippi, 1998 Plate 23, Fig.2 Oospore, spherical to subspherical; th ick outer wall surrounding a solid porous body. Dimensions : 24 m (1 specimen). Remarks : Modern species of Oedogonium are distributed in fresh water throughout the world (Tiffany, 1930; Fritsch, 1961) and can indicate slow moving or still shallow fresh water (Zippi, 1998). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Distribution : Albian, Ontario (Zippi 1998). Genus Ovoidites Potonie 1951 ex Thomson and Pflug 1953 emend. Krutzsch 1959 Type species: Ovoidites ligneolus Potonie ex Krutzsch, 1959. Ovoidites grandis (Pocock) Zippi, 1998 Plate 23, Fig. 3 Spore elliptical; splitting equa torially into two elongate sections, psilate; spore wall ca. 1 m. Dimensions : 58(74)89 x 125(152)178 m (2 specimens). Occurrence : Ochs Clay Pit. Distribution : Cenomanian, Oklahoma (Hedlund 1966); Albian, Ontario (Zippi 1998). Ovoidites sp. Plate 23, Fig. 4 Spore elliptical; splitting equa torially into two halves, psilate to scabrate; spore wall ca. 1 m.

PAGE 69

56 Dimensions : 16(19)24 x 30(39)54 m (4 specimens). Occurrence : Courtland Clay Pit, Ochs Clay Pit. ? Ovoidites sp. 1 Plate 23, Fig. 5 Spore elliptical; aperture wide, splitting e quatorially into two halves; reticulate, lumina uneven, 0.5-4 m, muri uneven, 0.5-1 m; spore wall 1-2 m. Dimensions : 48 x 80 m (1 specimen). Occurrence : Highway 4 Clay Pit. ? Ovoidites sp. 2 Plate 23, Fig. 6 Spore elliptical; aperture wide, splitting e quatorially into two halves; verrucate to baculate; spore wall 1 m. Dimensions : 48 x 80 m (1 specimen). Occurrence : Ochs Clay Pit. Genus Palambages O. Wetzel 1961 Palambages sp. Plate 23, Fig. 7 Algal colony, individual cell ca. 15 m; ca. 16 cells in colony; the cell wall is psilate to scabrate; there are folds on cell surface. Dimensions : colony 38 x 54 m (1 specimen) Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Genus Pediastrum Meyen 1829 Pediastrum sp. Plate 23, Fig. 8 Algal colony; with spines, spines conn ected each other, spine point blunt. Dimensions : colony 28 x 35 m (1 specimen) Occurrence : Courtland Clay Pit. Genus Schizosporis Cookson and Dettmann emend. Pierce 1976 Type species: Schizosporis reticulates Cookson and Dettmann, 1959. Schizosporis reticulatus Cookson and Dettmann, 1959 Plate 23, Figs. 9, 10 Probable algal colony; individual cell ca. 5 x 8 m. Dimensions : 107 x 117 m (1 specimen). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Distribution: Berriasian to Cenomanian (? Earl y Turonian) in North America, Australia, and Europe (Zippi, 1998). Genus Tetraporina Naumova emend. Lindgren 1980 Type species: Tetraporina antique Naumova, 1950.

PAGE 70

57 Tetraporina sp. Plate 23, Fig. 11 Spore quadrate; sides concave, surface psilate to scabrate. Dimensions : 47 m (1 specimen). Remarks : Tetraporina is similar to several genera of the modern Zygnemataceae (Jarzen, 1979) based on the characteristics such as size, wall thickness and overall quadrate morphology. Occurrence : Courtland Clay Pit, Ochs Clay Pit. Fungal spore type 1 Plate 23, Fig. 12 Individual cell square to rectangular; cell wall ca. 0.5 m, each cell with an opening to connect each other. Dimensions : cell 7 x 8 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit. Fungal spore type 2 Plate 23, Fig. 13 Individual cell (?), ovate; ps ilate, cell wall thin, ca. 0.5 m, thinning area present on the center of the cell. Dimensions : 32 x 53 m (1 specimen). Occurrence : Highway 4 Clay Pit. Fungal spore type 3 Plate 23, Fig. 14 Individual cell (?), irregula r, central body elliptical. Dimensions : 12 x 25 m (1 specimen). Occurrence : Highway 4 Clay Pit. Fungal spore type 4 Plate 23, Fig. 15 Individual cell irregular elongate, at least 9 indivi dual cells link together. Dimensions : cell 4 x 22 m (1 specimen). Occurrence : Courtland Clay Pit, Highway 4 Clay Pit. Fungal spore type 5 Plate 23, Fig. 16 Individual cell square to rectangular; cell wall ca. 1 m, cells may be linked together by a central “canal”. Dimensions : cell 12 x 12 to 11 x 16 m (1 specimen). Occurrence : Highway 4 Clay Pit, Ochs Clay Pit. Fungal spore type 6 Plate 23, Fig. 17 Individual cell (?), ovate to elliptical; wall ca. 2.5 m.

PAGE 71

58 Dimensions: 18 x 28 m (1 specimen). Occurrence: Highway 4 Clay Pit. Fungal fruiting body of th e family Microthyriaceae Plate 23, Fig. 18 Fruiting body circular, with ra diating rows of cells; cells square to elongate, 5 to 9 m long and 3 to 6 m wide; there is a hole in the center of the body. Dimensions : body diameter 59 m (1 specimen) Remarks : This is the same as the specimen Si ngh (1971) described. It is similar to the species of Microthallites described by Dilcher (1965). Occurrence : Courtland Clay Pit. Distribution : Late Albian, northwest ern Alberta (Singh 1971). Megaspore type 1 Plate 24, Fig. 1 Spore circular; probably scabrate to fi ne granulate; proximally surmounted by a prominent trifoliate acrolamella, echinae (ca. 4 m long) evenly distributed on surface of acrolamella. Dimensions : Spore body: 62 m; overall length of the body and acrolamella: 136 m (1 specimen). Occurrence : Highway 4 Clay Pit. Genus Balmeisporites Cookson and Dettmann 1958 Type species: Balmeisporites holodictyus Cookson and Dettmann, 1958. Balmeisporites glenelgensis Cookson and Dettmann Plate 23, Figs. 2, 3 Spore circular; reticulate, lumina 8-18 m, muri ca. 3 m, with acrolamella; spore wall ca. 5 m. Dimensions : Spore body: 156 m; overall length of the body and acrolamella: 190 m (1 specimen). Occurrence : Ochs Clay Pit. Distribution : Upper Cretaceous, Victoria, Australia (Cookson and Dettmann 1958b); Cenomanian, Oklahoma (Hedlund 1966); Cenomanian, Arizona (Agasie 1969; Romans 1975); middle to upper Cenomania n, northwestern Iowa and northeastern Nebraska (Ravn and Witzke 1995). Dinoflagellate Cysts and Acritarchs Dinoflagellate Cysts Genus Oligosphaeridium Davey and Williams 1966 Type species: Oligosphaeridium complex (White) Davey and Williams, 1966. Oligosphaeridium reniforme (Tasch) Davey, 1969 Plate 25, Figs. 1, 2

PAGE 72

59 Central body elliptical, with apical archaeopyle; with f unnel-shaped processes that expanded gradually from base to the distal ends, the extremities of the processes are flat with short (ca. 2 m) hair like spines. Dimensions : Size of central body: 50 x 55 m; length of processes: 17-22 m; width of processes at base: 2-6 m; width of processes at distal ends: 18-22 m. (1 specimen) Occurrence : Ochs Clay Pit. Distribution : Albian to Cenomanian, Saskatchewan (Davey 1969). ? Oligosphaeridium sp. Plate 25, Figs. 3-6 Central body elliptical; with funnel-shaped processes whose width is smallest at middle of the processes, the extremiti es of the processes are serrate. Dimensions : size of central body: 59 x 68 m; length of processes: 10-17 m; width of processes at base: 1-3 m; width of processes at distal ends: 4-9 m. (1 specimen) Remarks : The processes are slender for this species compared with those of Oligosphaeridium reniforme. Occurrence : Ochs Clay Pit. Genus Nyktericysta Bint, 1986 Type species: Nyktericysta davisii Bint, 1986 Nyktericysta cf. pentagona (Singh, 1983) Bint, 1986 Plate 25, Figs. 7, 8; Plate 26, Fig. 1 Cyst proximate, pentagonal shape; two layered, epiphragm membrane, wrinkled, epiphragm is appressed to endophragm except for at horns; one apic al, two lateral and two antapical horns; there is a small appendage on the tip of apical and antapical horns; cingulum and tabulati on are not clear. Dimension : 50(57)64 x 79(81)83 m (4 specimens) Remarks : Compared with the specimens from middle Cenomanian that Singh described in 1983 (75 x 111 m), the specimens described here are smaller. Also, the reticulate structures are not clear on endophragm. Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Canningia Cookson & Eisenack 1960a Type species: Canningia reticulata Cookson & Eisenack 1960a ? Canningia sp. Plate 26, Fig. 2 Proximate cyst, with an apical archeopyle; having evenly distributed processes, tip of process branching, ca. 4 m long. Dimension : 40 x 61 m (1 specimen) Occurrence : Courtland Clay Pit.

PAGE 73

60 Genus Coronifera Cookson and Eisenack emend. Davey 1974 Type species: Coronifera oceanica Cookson and Eisenack, 1958. Coronifera oceanica Cookson and Eisenack, 1958 Plate 26, Figs. 3-5 Central body elliptical; gra nulate to scabrate, with spines, spine simple, not furcating; antapical process present, extremities of antapical process serrate. Dimensions : size of central body: 36(41)45 x 42(46)49 m; length of processes: 912 m; antapical process 7(8)9 x 10 m. (2 specimens) Occurrence : Ochs Clay Pit. Distribution : Upper Aptian, Germany (Eisenack 1958); Albian, Australia (Cookson and Eisenack 1958); Albian to Cenomanian, England (Cookson and Hughes 1964; Davey 1969); and Albian, Saskatchewan (Davey 1969). Genus Cyclonephelium Deflandre & Cookson emend. Stover & Evitt 1978 Type species: Cyclonephelium compactum Deflandre & Cookson 1955 Cyclonephelium cf. vannophorm Davey, 1969 Plate 26, Figs. 6, 7 Shell subcircular; with apical prominence and two reduced antapical horns; with apical archaeopyle; granular shell wall with shor t processes which bifurcating sometimes, process shape irregular; a wide sulcus presen t from antapical horn to archaeopyle margin. Dimension : overall length of shell (including operculum): 74(81)88 m; overall width of shell: 66(69)72 m; length of processes: 4 m. (2 specimens) Remarks : The processes are shorter than those of the holotype (up to 8 m). Occurrence : Ochs Clay Pit. ? Cyclonephelium sp. Plate 26, Figs. 8, 9 Shell elliptical, operculum probably gone, antapical horns not clear; psilate to scabrate; with short funnel shaped proce sses, extremities of processes serrate. Dimension : overall length of shell: 88(93)98 m; overall width of shell: 62(73)84 m; length of processes: 2-5 m. (2 specimens) Occurrence : Ochs Clay Pit. Genus Odontochitina Deflandre emend. Davey 1970 Type species: Odontochitina operculata Deflandre & Cookson, 1955. cf. Odontochitina sp. Plate 26, Fig. 10 Single isolated horn; regulate to scabrate; one circular (8 m in diameter) thinning area in the middle of the hor n, another thinning area (ca.3 m in diameter) at the tip of the horn. Dimension : 63 x 26 m for entire specimen and 44 x 11 m for horn (width in middle of horn) (1 specimen) Occurrence : Courtland Clay Pit.

PAGE 74

61 Genus Pterodinium Eisenack 1958 Type species: Pterodinium aliferum Eisenack, 1958. cf. Pterodinium cingulatum subsp. cingulatum Plate 26, Fig. 11 Cyst proximochorate, subcir cular shape; subs pherical body with high parasutural septa, septa membrane; there are pits on central body surface; cingulum and tabulation are not clear. Dimension: 31(38)44 m (2 specimens) Remarks : The holotype specimen (50-54 m) is larger than specimens found here. Occurrence : Courtland Clay Pit. Genus: Subtilisphaera Jain & Millepied 1973 Type species: Subtilisphaera senegalensis Jain & Millepied 1973 Subtilisphaera deformans (Davey and Verdier) Stover and Evitt, 1978 Plate 26, Fig. 12 Cyst proximate; pericyst forming a prom inent, broad-based conical apical horn, two uneven antapical horns; left antapical ho rn is nearly as long as apical horn, right antapical horn is vestigia l; pericyst membranous, both pe ricyst and endocyst fine granulate, endocyst appressed laterally to one side of pericyst, tabu lation not clear. Dimensions : pericyst size: 48 x 87 m; endocyst size: 44 x 50 m (1 specimen) Occurrence : Ochs Clay Pit. Distribution : middle Albian, France (Davey an d Verdier 1971); Albian, eastern Canada (Bujak and Williams 1978); and Albi an to middle Cenomanian, northwestern Canada (Singh 1983). Genus Geiselodinium Krutzsch 1962 Type species: Geiselodinium geiseltalense Krutzsch 1962 cf. Geiselodinium sp. Plate 27, Fig. 1 Cyst cavate, heart shape; periphragm psilate and endophr agm with fine granules; tip of apical horn and antapica l horns blunt; cingulum and sulcus present but tabulation is not clear. Dimension : 36(43)47 x 47(48)50 m (3 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Trithyrodinium Drugg emend. Lentin & Williams 1976 Type species: Trithyrodinium evittii Drugg, 1967. ? Trithyrodinium sp. Plate 27, Figs. 2, 3 Cyst proximate; two layered, w ith a short apihorn, ca. 9 m long; two antapihorn may exist, periphragm psilate and endophr agm hairy, tabulation not clear.

PAGE 75

62 Dimensions : 48(52)58 x 65(69)73 m (3 specimens) Occurrence : Ochs Clay Pit. Dino cyst type A Plate 27, Fig. 4 Cyst single wall, thin; elliptical shape; psilate; a lot of folds on the surface; tabulation are not clear. Dimension : 34(36)39 x 48(49)50 m (3 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Dino cyst type B Plate 27, Fig. 5 Cyst proximochorate; subcircular to el liptical shape; subspherical body with membrane-like short parasutural septa; cingulum and tabulation are not clear. Dimension : 42(43)44 m (3 specimens) for subcircular shape; 38(41)43 x 45(47)48 m for elliptical shape (2 specimens). Occurrence : Courtland Clay Pit, Ochs Clay Pit. Dino cyst type C Plate 27, Fig. 6 Cyst single wall, thin; subcircular shape; microgranulate; a lot of folds on the surface; tabulation are not clear. Dimensions : 39 m (1 specimen) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Dino cyst type D Plate 27, Fig. 7 Cyst single wall, very thin; subcircular sh ape; dense hair-like processes on surface, ca. 3 m long; a lot of folds on the surf ace; tabulation are not clear. Dimensions : 31(33)35 x 36(37)37 m (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Dino cyst type H Plate 27, Fig. 8 Cyst single wall, thin; subcircular shape; short hair-like shor t processes on surface and tip of process branching; a lot of fold s on the surface; tabulat ion are not clear. Dimensions : 29 x 30 m (1 specimen) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Dino cyst type I Plate 27, Fig. 9 Cyst two layered, subcircular; both epicys t and endocyst with granules, granule size uneven, 0.2-0.6 m. Dimensions : 41 m (1 specimen) Occurrence : Ochs Clay Pit.

PAGE 76

63 Acritarchs Genus Micrhystridium Deflandre 1937 Type species: Micrhystridium inconspicuum Deflandre, 1937. Micrhystridium singulare Firtion, 1952. Plate 27, Fig. 10 Central body polygonal; processes more than 10 on surface, processes fluffy and sinuous, hollow, ca. 14-16 m long; test wall very thin and psilate. Dimensions : diameter of central body ca. 25 m; maximum length of process ca. 16 m. (1 specimen) Remark : The process is longer than th e central body for the holotype. Occurrence : Courtland Clay Pit. Distribution : Albian to Cenomania n, England (Davey 1969). Micrhystridium sp.1 Plate 27, Fig. 11 Central body nearly circular; sparse pr ocesses on surface, processes rigid and strong, tip is very sharp, ca. 7-12 m long; test wall very thin and psilate. Dimensions : diameter of central body ca. 24 m; maximum length of process ca. 12 m. (1 specimen) Remark : The processes have broad bases and taper gradually. Occurrence : Courtland Clay Pit. Micrhystridium sp.2 Plate 27, Fig. 12 Central body subcircular to elliptical; spar se short processes on surface, processes curled at the tip, and sharp, ca. 5-7 m long; test wall membrane like, psilate. Dimensions : diameter of central body ca. 34(35)35 x 41(42)42 m; maximum length of process ca. 7 m. (2 specimens) Remark : The processes are without broad bases. Occurrence : Courtland Clay Pit. Micrhystridium sp.3 Plate 27, Fig. 13 Central body irregular; dense hair like processes on surface, long, ca. 13-17 m; processes curled and tip of processes sharp; test wall thin and psilate. Dimensions : diameter of central body ca. 24(27)30 x 30(34)37 m; maximum length of process ca. 17 m. (2 specimens) Remark : The processes are without broad bases. Occurrence : Courtland Clay Pit, Ochs Clay Pit. Micrhystridium sp.4 Plate 27, Fig. 14 Central body circular; thick and stiff pro cesses uniformly dist ributed, long, ca. 11-17 m; processes tapering distally but tip is blunt; test wall th in and scabrate.

PAGE 77

64 Dimensions : diameter of central body ca. 30 m; maximum length of process ca. 17 m. (1 specimen) Remark : Compared with M sp.1, the processes of this species are thicker and longer. Occurrence : Courtland Clay Pit. Micrhystridium sp.5 Plate 27, Figs. 15, 16 Central body circular; with rare a nd sharp processes, process ca. 4-5 m long, less than 1 m wide at base; test wa ll thin and scabrate. Dimensions : diameter of central body ca. 11(12)12 m; maximum length of process ca. 5 m. (2 specimens) Occurrence : Courtland Clay Pit, Ochs Clay Pit. Genus Pterospermella Eisenack 1972 Type species: Pterospermella aureolata (Cookson & Eisenack) Eisenack 1972 Pterospermella australiensis (Deflandre & Cookson) S.K. Srivastava, 1984 Plate 27, Fig. 17 Overall subcircular and cent ral body nearly circular; ce ntral body opaque; the flank scabrate. Dimensions : overall diameter ca. 23 m; central body ca. 11 m. (1 specimens) Remark : This species is relatively smaller compared to other species. Occurrence : Courtland Clay Pit. Distribution : Barremian, France (Srivastava 1984) Genus Veryhachium Deunff emend. Downie & Sarjeant 1963 Veryhachium reductum Deunff 1961 Central body triangular; bearing a process at each corner; the process hollow and tapering distally to a fine point; test wall thin and psilate to scabrate. Dimensions : diameter of central body 20(29)38 m; length of process ca. 10(12)13 m. (2 specimens) Occurrence : Ochs Clay Pit, Courtland Clay Pit. Distribution : Ordovician, Silurian, Permian, Triassic, Jurassic and lower Cretaceous, France and England (Davey 1969). Veryhachium cf. reductum Deunff Plate 27, Fig. 18 Central body triangular; bearing a process at each corner; the process hollow and tapering distally to a fine point; test wall thin and psilate to scabrate. Dimensions : diameter of central body 46 m; maximum length of process ca. 21 m. (1 specimen) Remark : It is bigger than the holotype (12(16)21 m ). Occurrence : Courtland Clay Pit.

PAGE 78

65 Veryhachium sp.1 Plate 27, Fig. 19 Central body slightly inflated; at least 6 curved processes present; processes hollow, tip of processes blunt; test wall very thin and scabrate. Dimensions : diameter of central body ca. 19 m; maximum length of process ca. 24 m. (1 specimen) Remark : The processes are not circular in cross section Occurrence : Courtland Clay Pit. Veryhachium sp.2 Plate 27, Fig. 20 Central body triangular; 3 curved processe s radiated from central body; processes hollow, tip of processes sharp; test wall thin and granulate. Dimensions : diameter of central body ca. 18 m; maximum length of process ca. 30 m. (1 specimen) Occurrence : Courtland Clay Pit. Veryhachium sp.3 Plate 27, Fig. 21 Central body nearly rectangular; bearing a process at each co rner; the processes hollow and tapering distally to a fine point; processes wide based and 11-15 m long; test wall very thin and scabrate to psilate. Dimensions : diameter of central body ca. 11x18 m; maximum length of process ca. 15 m. (1 specimen) Occurrence : Courtland Clay Pit. Acritarch type A Plate 27, Fig. 22 Central body circular; hollow processe s uniformly distri buted; processes acuminate, bifid or branched-bifid ; test wall thin and psilate. Dimensions : diameter of central body ca. 19(20)21 m; maximum length of process ca. 11 m. (2 specimens) Occurrence : Courtland Clay Pit. Acritarch type B Plate 27, Fig. 23 Central body irregular or elliptical; ho llow processes uniformly distributed; processes long and acuminate, bifid or bran ched-bifid; test wall thin and psilate. Dimensions : diameter of central body ca. 9 x 15 m; maximum length of process ca. 18 m. (1 specimen) Remark : The shape is different from acritarch type A. Occurrence : Courtland Clay Pit. Acritach type C Plate 28, Figs. 1, 2

PAGE 79

66 Central body elliptical; dense processes uni formly distributed; processes long and bifurcating; test wall th in and fine granulate. Dimensions : diameter of central body ca. 59 x 68 m; length of process ca. 10-13 m. (1 specimen) Occurrence : Ochs Clay Pit. ? Acritarch type 1 Plate 28, Fig. 3 Cyst single wall; subcircular shape; reticu late or regulate; folds on the surface; tabulation are not clear. Dimensions : 27 x 30 m (2 specimens) Occurrence : Courtland Clay Pit. ? Acritarch type 2 Plate 28, Fig. 4 Cyst single wall, relatively thick, ca. 1 m; elliptical shape; scabrate, a lot of folds on surface; tabulation are not clear. Dimensions : 37 x 59 m (1 specimen) Occurrence : Courtland Clay Pit. ? Acritarch type 3 Plate 28, Fig. 5 Cyst single wall, thin; subcircular to ellipt ical shape; sparse granules on surface and there is a pit on each granule, a lot of fold s on the surface; tabulation are not clear. Dimensions : 35 m for subcircular shape (1 specimen); 21 x 31 m for elliptical shape (1 specimen) Occurrence : Courtland Clay Pit. ? Acritarch type 4 Plate 28, Fig. 6 Cyst single wall, thin; subcircular to ci rcular shape; fur-like short processes on surface, a lot of folds on the su rface; tabulation are not clear. Dimensions : 26(30)30 m (2 specimens) Occurrence : Courtland Clay Pit. ? Acritarch type 5 Plate 28, Fig. 7 Cyst single wall, very thin membrane-like, subcircular shape; a lot of folds on the surface; tabulation are not clear. Dimensions : 28(31)34 x 35(36)37 m (2 specimens) Occurrence : Courtland Clay Pit.

PAGE 80

67 CHAPTER 5 GEOLOGICAL SETTING: REGIONAL AND STUDY AREA Regional During the early Cretaceous, two epicontinen tal seas, the Boreal in the north and the Gulf in the south, were present on continental North America, with the Boreal Sea advancing southward and the Gulf Sea northward (Obradovich and Cobban, 1975). These two seas joined togeth er to form the Western Inte rior Seaway, a continuous sea extending from the Artic to the Gulf of Mexico across the North America continent, which was present by the Late Albian age (Witzke and Ludvigson, 1996) (Figure 5-1). The Western Interior Seaway was transg ressive during the Late Albian to the Cenomanian (Kauffman, 1977) and was bordered on the west by the Cordilleran thrust belt and on the east by the cratonic platform (D yman, et al., 1994). Because of variable rates of subsidence rela ted to tectonic and sediment load ing, an asymmetric sedimentary basin with thick Cretaceous sediments in the west and thin sediments in the east, was formed (Dyman, et al., 1994). The type area of the Dakota Formation is located in northeastern Nebraska and northwestern Iowa along the Missouri River (Ravn and Witzke, 1995). “Dakota” is used as a lithostratigraphic unit acr oss a vast area of central a nd west-central North America (Ravn and Witzke, 1995) (Figure 5-2). However, this name often has been used without consideration of the relations hip to the type Dakota, eith er lithostratigraphically or chronostratigraphically (Witzke, et al., 1983) So the age and lithology of the Dakota

PAGE 81

68 Formation are probably not the same from th e west margin to the east margin of the Western Interior Seaway. The Dakota Formation, a sequence of nonmarine to marginal marine facies, is the oldest Cretaceous sediment in southwes tern Minnesota (Witzke and Ludvigson, 1994). The Dakota Formation in southwestern Minnesota includes tw o units, the lower sandstone lithostratigraphic unit, which is similar to the Nishnabotna Member, and the upper mudstone lithostratigraphic unit, which is similar to the Woodbury Member of the Dakota Formation in age and lithology (Sette rholm, 1994) (Figure 53). Currently, the age of the Dakota Formation in southwest Minnesota is thought to be Cenomanian (Setterholm, 1994). However this suggesti on for Cenomanian age is mainly based upon the interpretation of Lesque reux (1895) and Pierce (1961). The interpretations of megafossils by Lesquereux (1895) and mi crofossils by Pier ce (1961) all need reexamination and reinterpretation (Upchurch and Dilcher, 1990; Wang H., 2002, Hu et al., 2004). The age of the Dakota Formation in southwest Minnesota is uncertain at this time and will be addressed in this dissertation. Stratigraphy and Sedimentary Environments in Study Area Courtland Clay Pit The sediments at Courtland Clay Pit ar e dominated by laminated mudstone (Figure 5-4 and Figure 5-5). Hajek et al. (2002) interpreted the sedimentary environment as a large lake based upon the mmto cm-scale lami nae, scattered well-preserved leaves, and siderite concretions. Lake Drummond in Virgin ia is a typical coastal lake and may be a good analogy of the large Cretaceous lake at Courtland Clay Pit (Figure 5-6).

PAGE 82

69 Highway 4 Clay Pit The sediments at Highway 4 Clay Pit c onsist predominantly of tabular crossbedded sandstone and carbonaceous siltstone (Figure 5-7and Fi gure 5-8). Hajek et al. (2002) interpreted the sedimentary environmen t as a tidally influenced meandering river system based on the inclined heterolithic st ratification (IHS) and tabular cross-bedded fine-grained sandstone. Oxbow lake, ri dge and swale, and levee are important environments associated with a m eandering river system (Figure 5-9). Ochs Clay Pit The sediments at Ochs Clay Pit are domi nated by silty mudstone and siltstone (Figure 5-10). Sloan (1964) indicated that the sediments below the lignite layer probably represent the lacustrine environment based on the varved mudstone and abundant leaf fossils, and the sediments above the lignite layer probably represent the estuarine environment based upon the silty and sandy muds tone and several vertebras of sharks. The lignite layer extended broadly and its thickness is relatively constant. The ash content of the lignite is 32%-41%. This kind of lignite is probably not from the peat accumulation in close association with active clastic depositional environments such as on the floodplain of meandering rivers, in co astal mires close to active beach barrier systems, in interdistributary bays and even levees of delta tops (McCabe, 1987). The lignite in the locality may represent the dist al side of the coastal swamp, which is not close to the active beach barrier systems. According to Walther’s Law (Boggs, 2001), the lignite probably represented a coastal sw amp. The Dismal swamp in Virginia and North Carolina is a typical coastal swamp a ssociated with the bar-built estuaries and lakes, and may be a good analogy of the Cret aceous coastal swamp at Ochs Clay Pit (Figure 5-6). Twenhofel (1932) suggested that the ideal lacustrine sequence for a low-

PAGE 83

70 energy lake (Figure 5-11) is one in which the lacustrine mud deposits are overlain by peat deposits of swamps. For a high-energy la ke the ideal sequence has sediments that coarsen upwards (Visher, 1965) (Figure 511). According to these ideas, the top lacustrine sediments at Ochs Clay P it seem to represent a low-energy lake paleoenvironment. The Stratigraphic Relationships of the Localities The Cretaceous sediments at the three clay pits studied here in southwestern Minnesota were isolated from each other. It is very difficult to make correlations between these three clay pits based upon thei r lithology. Megafossils are not satisfactory for comparative dating between these localit ies because even numbers of leaves are available in our collections and a stratigraphic sequence of leaf species have not been worked out yet for the Dakota Formation leaf fossils. However, plant microfossils are abundant in the sediments at these three clay pits. Pollen has been successfully used for Dakota Formation stratigraphic zonatons of other areas (Brenner et al. 2000). Based upon the common occurrence of Liliacidites reticulatus, Tricolpites cf. vulgaris, Phimopollenites striolata and Fraxinoipollenites constrictus in sample 036710 at Courtland Clay Pit, in sample 046517 at Highw ay 4 Clay Pit, and in sample 046522 at Ochs Clay pit, I suggest that the sediment s from which these samples were collected represented time equivalent de posits (Figure 5-12). Thus it is possible to make some stratigraphic comparisons between these three cl ay pits. The pollen studies also provide a framework for paleoenvironmental interpretations of localities.

PAGE 84

71 Figure 5-1. Map of North America with the lo cation of Western Inte rior Seaway during the Cenomanian (early Late Cretaceous). Modified from Parrish, et al., 1984, Parish, et al. modified fr om Ziegler et al., 1983.

PAGE 85

72 Figure 5-2. Area of west-centr al United States in which the lithostratigraphic name “Dakota” is used. (f rom Ravn et al., 1995).

PAGE 86

73 Figure 5-3. Schematic cross section of lower Upper Cretaceous sediments in southwestern Minnesota. (from Setterholm, 1994)

PAGE 87

74 Explanation Figure 5-4. Detailed stratigra phic columnar section of lowe r section at Courtland Clay Pit.

PAGE 88

75 Explanation Figure 5-5. Detailed stratigra phic columnar section of upper section at Courtland Clay Pit. Figure 5-6. Sketch map of the Dismal Swam p, USA; an example of a coastal swamp and coastal lake developed along the coasta l areas. (in Stach et al., 1982, after Teichmeuler, 1962).

PAGE 89

76 Explanation Figure 5-7. Detailed stratigraphic columnar section of SW secti on at Highway 4 Clay Pit. Explanation Figure 5-8. Detailed stratigraphi c columnar section of NE sec tion at Highway 4 Clay Pit.

PAGE 90

77 Figure 5-9. The morphological elements of a meandering river system. (from Walker and Cant, 1984)

PAGE 91

78 Explanation Figure 5-10. Detailed stratigraphic colu mnar section at Ochs Clay Pit.

PAGE 92

79 Figure 5-11. Ideal sequence of lacustrine de posits. After Visher (1965) and Twenhofel (1932). (from Picard and High, 1981)

PAGE 93

80 Explanation Figure 5-12. Inferred stratigra phic relationships, outcrop secti ons in study areas. (Solid line indicates the time equivalent level.)

PAGE 94

81 CHAPTER 6 THE AGE OF THE DAKOTA FO RMATION IN MINNESOTA Based upon fossil leaves, Lesquereux (1895) assigned some Cretaceous sediments that outcropped in Minnesota to the “Dakota group” and related them to the Cenomanian. Pierce (1961) also indicated that the Cretaceous deposits of the Dakota Formation in Minnesota are of Cenomanian age based upon a palynological investigation. Later, Austin (1972) proposed that the nonmarine Cretaceous sediments (above the weathered residuum of the Precambrian and Paleozoic basement rocks) in the Minnesota River Valley are about middle Cenomanian base d upon clay mineralogy. Setterholm (1994) suggested that the thick mudstone unit adj acent to the Minnesota River Valley resembles the Woodbury Member of the Dakota Forma tion in age and lithology. But Setterholm (1994) proposed that the upper mudstone unit ma y be equivalent to Graneros Shale which is placed in late Cenomanian in Minnesota. So it is obvious the accurate age assignment for the Dakota Formation in Minnesota is not cl ear due to the absence of marine fossils. Palynological investigations have been co mpleted in Alberta (Singh, 1983), the Rocky Mountain Region (Nichols, 1994), and northwe stern Iowa and northeastern Nebraska (Ravn and Witzke, 1995). Therefore, pollen and spores may be used as a tool to determine the age of mid-Cretaceous nonma rine sediments in the Western Interior Seaway. Both Liliacidites giganteus and Dictyophyllidites impensus occur first in the upper Shaftesbury Formation of the Peace River area in northwester n Alberta, Canada. Based upon a “Fish-scale” marker bed and its compar ison with marine fauna, the age of the

PAGE 95

82 upper Shaftesbury Formation was assumed to be Cenomanian (Singh, 1983). Therefore, the dark gray clay sediments in Courtland Clay Pit from which Liliacidites giganteus and Dictyophyllidites impensus were recovered is here consid ered to represent Cenomanian age sediments in Minnesota. Moreover, both Cicatricosisportites crassiterminatus and Stellatopollis largissimus recovered from the C ourtland Clay Pit and Artiopollis indivisus, Appendicisporites auritus and Cicatricosisportites crassiterminatus recovered from the Ochs Clay Pit all appear in Ceno manian or younger sediments in North America such as northwestern Alberta (Singh, 1983) and Arizona (Agasie, 1969). Based upon the pollen data, it appears th at the Cretaceous sediments in south central Minnesota probably are Cenomanian in age. The megaspore Balmeisporites glenelgensis was found only in the lignite of Ochs Clay pit. This species also occurs in th e Cenomanian sediments in the Peace River area of northwestern Alberta, Canada (Singh, 1983). Balmeisporites glenelgensis also occurs in the Sergeant Bluff lignite and the Stone Park lignite that outcrop in northwestern Iowa and northeastern Nebraska. The age of th ese lignites was placed as middle and upper Cenomanian (Ravn and Witzke, 1995). Ag ain, based upon the common occurrence of Balmeisporites glenelgensis, the lignite layer at the Ochs Cl ay Pit can be correlated with the Sergeant Bluff lignite and Stone Park lig nite, suggesting that the age of the lignite layer and the sediments above the lignite laye r at Ochs Clay Pit are probably middle to upper Cenomanian Witzke et al. (1996) and Br enner et al. (2000) also indicated that the first occurrence of Dictyophyllidites impensus and Cicatricosisporites crassiterminatus probably represent the middle Cenomanian. Dictyophyllidites impensus occurs at

PAGE 96

83 Courtland Clay Pit, Ochs Clay Pit and Highway 4 Clay Pit and Cicatricosisporites crassiterminatus occurs at Courtland Clay Pit and Ochs Clay Pit. So the sediments exposed at Courtland Clay Pit, Ochs Clay Pit and Highway 4 Clay Pit are all probably middle Cenomanian. Nichols (1994) made a revision of the palynostratigraphic zonation for the upper Cretaceous nonmarine sediments in the Rocky Mountain Region. This palynostratigraphic zonation is based upon a co mparison with marine ammonite zones. He stated that the first occurrence of th e psilate tricolporate pollen type (such as Nyssapollenites sp.) and the obligate tetrads (such as Artiopollis indivisus ) are representative of middle Cenomanian age. Both Nyssapollenites sp. and Artiopollis indivisus occur in Ochs Clay Pit and Nyssapollenites sp. occurs in Courtland Clay Pit. Because the exposed sediments in Courtland Cl ay Pit, Highway 4 Clay Pit and Ochs Clay Pit contain typical middle Cenomanian marker pollen, they are best considered as middle Cenomanian in age. This middle Cenomanian age is in conflic t with other pollen data that has been published. The angiosperm pollen types which o ccur in upper Zone I II, Atlantic coastal plain, Potomac Group sediments (Doyle and Robbins, 1977) included “ Foveotricolporites” rhombohedralis Retimonocolpites sp. A, Striatopollis sp. B, cf. Tricolpites barrandei and Tricolpites nemejci The sediments at th e Courtland Clay Pit contain very similar pollen such as Foveotricolporites rhombohedralis Retimonocolpites dividuus Striatopollis paraneus Tricolpites cf. vulgaris and Tricolpites nemejci The age of the Potomac Group Zone III was sugge sted to be lower Cenomanian ? (Doyle and Robbins, 1977). However, based upon typical pollen from several pollen studies (Singh,

PAGE 97

84 1983; Ravn and Witzke, 1995; Nichols, 1994), the age of the sediments at the Courtland Clay Pit probably are middle Cenomanian rath er than “lower Ceno manian ?”. This suggests that a revision in age may be in or der for the pollen Zone III established for the Atlantic coastal plain, Potomac Group. Doyle and Robbins (1977) mentioned that Zone IV “have not ye t been studied in detail”. Also the samples from which polle n were recovered were from outcrops, not from cores of wells. Considering that the fi rst Normapolles triporat e type pollen occurs in Zone IV and they are absent in the middle Cenomanian sediments in northwestern Iowa and northeastern Nebraska (Ravn a nd Witzke 1995), and northwestern Alberta (Singh 1983), the middle Cenomanian to lowe r Turonian age of the Zone IV may be doubtful. So defining the age of the middle Cenomanian by the occurrence of Normapolles triporate pollen probably should be open to question. Considering the comparison with Singh (1983), Nichols (1994), Ravn and Witzke (1995), Witzke et al. (1996), and Brenner et al. (2000), the age of Cretaceous sediments exposed in Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit is probably middle Cenomanian.

PAGE 98

85 CHAPTER 7 IMPLICATION OF POLLINATION BI OLOGY AND EARLY LATE CRETACEOUS COASTAL VEGETATION Implications for Pollination Biology of the Early Late Cretaceous Angiosperm Pollen During the past 30 years early angiosperm pollination biology has been understood substantially through the research on Cret aceous fossil flowers (Dilcher et al. 1976, Dilcher 1979, Crepet 1979, Friis and Skar by 1981, Dilcher and Crane, 1984, Crane and Dilcher, 1984, Crane, et al., 1986; Drinna n, et al., 1990; Frii s, et al., 1999, 2000a, 2000b, Dilcher, 2001). It was a widely accepte d hypothesis that the do minant angiosperm pollination modes were insect-pollination in early Cretaceous (Crepet and Friis 1987, Friis et al., 1999; Field and Arens, 2005; Wing and Boucher, 1998). Even some ancient relatives of extant wind-pollinated taxa were insect-pollinated during the Cretaceous, such as Late Albian insect-pollinated flowers of Platanus -like plants (Crane, et al., 1986) and Campanian (Late Cretaceous) insect-pollina ted Fagaceous flowers (Herendeen, et al., 1995). During Cenomanian a showy flower th at is bisexual from Dakota Formation in Nebraska implied insect pollination (Basinger and Dilcher, 1984). Also Drinnan et al. (1990) described a lauraceous flower whic h was probably insect-pollinated based upon the modified stamens that may have served as pollinator rewards. For the rosids, magnoliids, and hamamelids, insect pollination probably was important (Crepet et al., 1991) by Cenomanian time. It seems that insect pollination was very common during Cenomanian. Dilcher (1979), on the other hand, presents evidence to support the presence of wind pollination by mid-Cretaceous times. Dilcher (1979) also proposed the

PAGE 99

86 hypothesis that the independent lineages of some anemophilous flowers may have developed separately from entomophilous flowers from a common bisexual ancestral stock. Moreover Dilcher (2000) indicated that wind pollination along with insect pollination mechanisms is also important fo r Cretaceous angiosperms. But Whitehead (1969) indicated that anemophily may evolve s econdly in angiosperms. He wrote this at a time when Magnolia was considered to repr esent the characters of the ancestor of modern flowers and when insects were thought to have been important in the evolution of angiosperms. So perhaps more studies need to be done for a better understanding the role of pollination in the evolution of early angi osperms. The palynological data may provide new evidence about the diversity and nature of pollination profiles of angiosperms during the Cenomanian. Generally the pollen types of wind-pollinated plant might be overrepresented in some paleoenvironments (Cohen, 1975). On the other hand the pollen of insectpollinated plants could be very rare or absent in areas some distance from the zoophilous plants (Faegri and Iversen, 1989; Friis, et al., 1999). But some insect-pollinated angiosperms often produce large amounts of polle n as reward for their pollinators (Faegri and van der Pijl, 1979). Lupia et al. (2002) described a new insect pollinated angiosperm flower (Santonian), which produced large quan tities of pollen. But there is no indication that this abundantly produced pollen was di spersed any distance from the plant that produced it or that it was likely to become in corporated into sedime nts. Faegri and van der Pijl (1979) indicated th at the large number of pollen grains produced by insectpollinated flowers may result in some accident al wind pollination. Re tallack and Dilcher (1981) suggested that some early angiosperms were probably generalists, pollinated by

PAGE 100

87 insects and wind. It is possi ble that the generalists may produce large numbers of pollen grains for wind-pollination while also bei ng visited by insects that might serve as accidental pollinators. Understanding the modes of angiosperm pollination is very important for reconstructing angiosperm diversity in diffe rent habitats based upon palynological data obtained from dispersed pollen in Cretaceous age sediments. The presence and the relative abundance of angiosperm pollen comb ined with the pollination modes of parent plants should indicate which kinds of angi osperm pollen were autochthonous. Doyle and Hickey (1976) indicated that Clavatipollenites Retimonocolpites and Liliacidites are probably insect-pollinated pollen based upon their well-developed reticulate exine sculpture. Friis et al. (19 99) indicated that the majority of pollen forms from early angiosperm flowers are monosulcate, which ma y be recognized as dispersed pollen as Clavatipollenites Retimonocolpites and Liliacidites The discrepancy between the rareness of dispersed angiosperm pollen types and the richness of in situ pollen types from angiosperm reproductive organs may indicat e widespread insect pollination (Friis et al., 1999). The only reliable wind-pollinated angiosperm pollen probably is Asteropollis type pollen based upon th e floral organs and in situ pollen which are closely comparable to extant wind-pollinated Hedyosmum (Friis et al., 1999) of the Chloranthaceae. Pedersen et al. (1991) describe s a new earliest Cenomanian fruit Couperites mauldinensis from West Mauldin Mountain locality in Maryland and the in situ pollen adhering to the sessile stigma is of the Clavatipollenites type. Although in situ pollen is comparable to extant chloranthaceous genus Ascarina which is wind-pollinated, this Clavatipollenites type pollen probably is from insect-pollinated plants based upon the presence of probable

PAGE 101

88 pollenkitt in Couperites in combination with an unelabor ated stigmatic area (Pedersen et al.,1991). Friis et al. (2000a) desc ribed a staminate structure with in situ monosulcate Liliacidites -type or Retimonocolpites -type pollen. Based upon the same type pollen in the insect coprolite, the fossil flowers with in-situ Liliacidites -type or Retimonocolpitestype pollen were thought to be insect-pollinated. Also, in sects very probably dispersed very small pollen (9-17 m) because of de flection around the stigma by boundary layers of air flow (Retallack and Dilcher, 1981). The methods I used for pollination interpretation are as follows: 1. Use former researchers’ results about the pollinati on interpretation. 2. Analyze taxa which have no pollination data from references based upon the criteria for pollination interpretation (table 7-1). 3. Consider the clump as the first factor when analyzing pollen characteristics. Pollen in pollen clumps consisting of more than 10 grains (or tetrads) will be considered to be insect-pollinated. 4. Consider size as the second factor. If the average pollen diameter is less than 20 m or more than 40 m, the pollen will be considered to be insect-pollinated. According to the methods for pollination interpretation proposed above it is possible that the modes of angiosperm pollination during early Late Cretaceous can be partially decoded. Twenty-six angiospe rm pollen taxa were recovered from the Courtland Clay Pit (Table 7-2). Of these, tw enty taxa appear to be insect-pollinated, which accounted for 77% of total angiosperm assemblage, and six taxa appear to have been wind-pollinated, accounting for 33% (T able 7-2). The maximum relative abundance of Tricolpites cf. vulgaris accounted for 16% (for a total of 52 pollen grains out of 318 palynomorphs counted); th e maximum relative abundance of Cupuliferoidaepollenites sp. accounted for 10% (for a tota l of 30 pollen grains out of 304 palynomorphs counted); the maximum relative abundance of Tricolpites labeonis

PAGE 102

89 accounted for 9% (for a total of 27 pollen gr ains out of 304 palynomorphs counted); the maximum relative abundance of Rousea cf. delicipollis accounted for 9% (for a total of 26 pollen grains out of 302 palynomorphs counted); and the maximum relative abundance of Dryadopollis minnesotensis accounted for 7% (for a total of 21 pollen grains out of 318 palynomorphs counted ). Moreover the po llen clumps of Tricolpites cf. vulgaris (15+), Tricolpites labeonis (30+), Rousea cf. delicipollis (10+), Dryadopollis minnesotensis (10+, plate 13, fig. 11) were recovered fr om the lacustrine sediments at the Courtland Clay Pit. Based upon the occurren ce of these pollen clumps which were from insect-pollinated plants, these pollen taxa s hould be from local. Considering that the maximum relative abundance of these insect-pol linated pollen taxa is all greater than 5%, I propose that 5% of the maximum relative abundance is considered as an acceptable limit to define a local lake flora apart from a non-local lake flora. Therefore the plants releasing pollen grains such as Tricolpites cf. vulgaris Cupuliferoidaepollenites sp., Tricolpites labeonis Rousea cf. delicipollis and Dryadopollis minnesotensis probably inhabited coastal lake areas during the mi ddle Cenomanian. However, because of the rare or low abundance of the other pollen type s that probably were insect-pollinated (15 types) it is not possible to determine their sour ce plants (Table 8-3). Drinnan et al. (1991) suggested that Early Cenomanian flower Spanomera mauldinensis were probably insectpollinated. And the in situ pollen from Spanomera mauldinensis is comparable to Striatopollis paraneus (Drinnan et al. 1991). Consid ering that the stamens of Spanomera mauldinensis show abundant in situ pollen (Drinnan et al 1991), the low relative abundance of Striatopollis paraneus which is 2% (for a total of six pollen grains out of

PAGE 103

90 302 palynomorphs counted), may imply that the source plants of Striatopollis paraneus were probably not in situ but transported for a short di stance (maybe regional). Pollen taxa such as Fraxinoipollenites c onstrictus, which appear to be windpollinated and its relative abundance of 7% (f or a total of 20 pollen grains out of 302 palynomorphs counted), may have grown also around lake areas because all other types with wind-pollinated pollen morphology were rare or low abundance (Table 7-2). Inasmuch as the wind-pollinated flowers usually produce large amounts of pollen, it is probable that the plants rel easing Fraxinoipollenites constr ictus pollen inhabited areas near the coastal lakes. At Ochs Clay Pit, 29 angiosperm pollen types were recovered. There are 20 taxa that appear to be insectpollinated, wh ich accounted for 69% of total angiosperm assemblage, and 9 taxa appear to have been wind-pollinated, which accounted for 31% (Table 7-3). Moreover some types of insect-pollinated angiosperm taxa had high relative abundance among the a ngiosperm pollen group in some samples. In the lacustrine deposits the maximum relative abundance of Tricolpites labeonis accounted for 53% (for a total of 164 pollen grains out of 310 palynomorphs counted); the maximum relative abundance of Tricolpites cf. vulgaris accounted for 20% (for a total of 59 pollen grains out of 295 palynom orphs counted); and the maximum relative abundance of Cupuliferoidaepollenites sp. accounted for 11% (for a total of 31 pollen grains out of 295 palynomorphs counted). The lignite considered here to represent coastal swamps has a very different pollen profile. The maximum relative abundance of Artiopollis indivisus accounted for 17% (for a total of 50 pollen grains out of 301 palynomorphs counted). In the estuarine deposits the maximum relative abundance of Artiopollis indivisus accounted for 37% (for a total of 113 pollen grains out of 306

PAGE 104

91 palynomorphs counted). This situation ma y indicate that the parent plants of Tricolpites labeonis Tricolpites cf. vulgaris Cupuliferoidaepollenites sp. probably grew in close proximity to the coastal lake areas. At the same time the parent plants of Artiopollis indivisus may have inhabited the coastal swamps. The pollen clumps of Artiopollis indivisus (plate 9, figs. 57, the largest clump including more than 100 tetrads) were only recovered from the lignite samples. And the pollen clumps of Cupuliferoidaepollenites sp. (plate 10, fig. 4 ca 10 pollen grains), Tricolpites labeonis (plate 11, figs. 13-15, ca 200 pollen grains) and Psilatricolporites subtilis (plate 16, fig. 4, more than 100 pollen grains) were discovered only from the lacustrine sediments at the Ochs Clay Pit. Pollen clumps is almost never found during routine pollen counts of the slides. Most pol len clumps are located by scanning the entire slide under low power objective and then studying the clumps one by one under higher magnification to identify the specific type of pollen comprising the clump. These pollen clumps may imply that the parent plants we re probably local and not so far from the depositional sites. So the parent plants of Artiopollis indivisus Cupuliferoidaepollenites sp., Tricolpites labeonis and Psilatricolporites subtilis probably inhab ited coastal areas during early Late Cretaceous. In view of the relatively high pe rcentages the parent plants of Tricolpites cf. vulgaris may also have grown in coastal areas. Also swamps were relatively closed environments and most of the pollen/spores recovered from lignite can be considered as autochthonous (Travers e, 1988). Other insect-pollinated pollen recovered from lignite, such as Liliacidites sinuatus, Liliacidites sp. 3, Liliacidites sp. 4, Nyssapollenites sp., Doyleipollenites robbinsiae Clavatipollenites sp. 2, and Tricolpate sp.11 may have grown in swamps.

PAGE 105

92 For wind-pollinated pollen taxa (9 taxa to tal), the relative abundance is relatively low in all three environments. Tricolpites nemejci and Fraxinoipollenites constrictus have the highest relative abundance among the wind-pollinated pollen group. The maximum relative abundance of Tricolpites nemejci and Fraxinoipollenites constrictus both accounted for 2% (for a total of six polle n grains out of 295 palynomorphs counted) in the lacustrine sediments. So wind-polli nated pollen probably were not from local at Ochs Clay Pit. In the Highway 4 Clay Pit, seven angios perm pollen taxa were recovered from sediments representing a meandering river envi ronment (Table 7-4). Six of these pollen taxa were from insect-pollinated plants (a ccounting for 86% of the angiosperm pollen taxa) and one type was from a wind-pollin ated plant (accounting for 14% of the angiosperm pollen taxa). The maximum relative abundance of Phimopollenites striolata accounted for 62% (for a total of 188 pollen grains out of 303 palynomorphs counted). For Tricolpites cf. vulgaris the maximum relative abundance accounted for 15% (for a total of 45 pollen grains out of 303 palynom orphs counted). Also pollen clumps of Phimopollenites striolata (plate 14, figs. 19-21, ca 50 grains) and Tricolpites cf. vulgaris (plate 12, fig. 7, ca 10 grains) were discovered from this locality. It is possible that the parent plants of Phimopollenites striolata and Tricolpites cf. vulgaris may have inhabited areas along a meandering river. Because of the rare occurrence and low abundance for other insect-pollinated pollen types (Table 7-4), it is not possible to determine if they represent local or regi onal vegetation. The relative abundance of Fraxinoipollenites constrictus which is wind-pollinated, accounted fo r 5% (for a total of 14 pollen grains

PAGE 106

93 out of 303 palynomorphs counted). So wind-pollinated plants which released Fraxinoipollenites constrictus probably have grown in meandering areas. In conclusion, based upon the analysis of angiosperm pollen types from the Courtland Clay Pit, Ochs Clay Pit, and Highway 4 Clay Pit, the pollen types that appear to be insect-pollinated accounted for 77% of all pollen types on average, and the pollen types which appear to be windpollinated accounted for 23% of all pollen types. It seems that the wind-pollination was not dominant by the middle Cenomanian. Also, the pollen, because of the characteristics of the pollen grains as discussed previously, such as Artiopollis indivisus Cupuliferoidaepollenites sp., Tricolpites labeonis and Psilatricolporites subtilis Tricolpites cf. vulgaris Rousea cf. delicipollis and Dryadopollis minnesotensis all appear to be insect-pollin ated. The plants producing these pollen forms probably inhabited coastal areas during early Late Cretaceous based upon their relatively high relative abundance and the presence of pollen in clumps. At the same time, the pollen, such as Phimopollenites striolata and Tricolpites cf. vulgaris both appear to be insect-pollinated, suggesting that the parent plan ts probably inhabited meandering river areas during the early Late Cretaceous based upon their relatively high relative abundance and the presence of pollen in clumps. It seems that the parent plants of Tricolpites cf. vulgaris had a wide range of distribu tion. Also wind-dispersed pollen by early angiosperms may not have been a well developed syndrome of their pollination biology until middle to late Cenomanian. Angiosperm, Fern and Gymnosperm Diversit y in Coastal Areas during Early Late Cretaceous Ochs Clay Pit is used as a case study of diversity of the coas tal areas during early Late Cretaceous. In this pit sediments from lake, swamp and estuary environments are

PAGE 107

94 preserved. The question of species abundance and the relative abundance of the different elements in the floras of these environments is addressed here. There are 29 types of angiosperm pollen recovered from the sediments representing coastal lakes, coastal swamps, and estuarie s (Table 7-5). The pollen recovered from coastal lake environments, contains 21 types and is the most diverse. There are 15 types of angiosperm pollen recovered from the sw amp sediments. There are 16 types of angiosperm pollen recovered from estuarine sediments. A total of 15 types of angiosperm polle n types were recovered from the lignitic sediments of the coastal swamp (Table 7-5). Liliacidites sinuatus was present only in the coastal swamps. It is possi ble that the plant releasing Liliacidites sinuatus pollen could grow only in coastal swamp environments. Artiopollis indivisus is distributed in the coastal lake, swamp and estuary environm ents. However the relative abundance was different in each environment (Figure 7-1). Its relative abundance changes from 5% in coastal lake environment to 55% in the coas tal swamp environment. This may indicate that the plant releasing Artiopollis indivisus pollen was growing in the swamp and the pollen clumps (plate 9, figs. 5-7; plate 10, figs 1-3) were dropped a nd incorporated into the swamp sediments. Only dispersed pollen of this type was found in the lake sediments. There are only eight types (38%) of po llen in coastal lake sediments that overlapped with coastal swamp pollen. In the same way ther e are only nine types (43%) of pollen in coastal lakes that overlapped with estuarine pollen. This is because plants inhabiting other environments besides lakesi des and coastal swamps may have increased the pollen diversity within the lake sediment s. However, there are 11 types of pollen

PAGE 108

95 (accounting for 79% of pollen types from coas tal swamps and 69% of pollen types from estuaries respectively) shared by coastal sw amps and estuaries. This situation may indicate that the pollen from plants inhabiti ng coastal swamps or adjacent areas were the major input of the estuaries. A total of 32 types of ferns and fern alli es spores were recovered from the coastal lake sediments of Ochs Clay Pit (Table 7-6) In contrast, the s pores recovered from coastal swamps and estuaries were in both cas es, 16 types. There we re 13 types (41%) of spores in coastal lakes which overlapped with coastal swamp spores. At the same time, there were 12 types (38%) of spores in coastal lakes which overlapped with estuarine spores. However the shared s pores between coastal swamp a nd estuaries were 11 (69%). So the patterns of spore distribution were si milar to those of angiosperms (Figure 7-2). The spore data support the premise that the ma jor botanical input of estuaries come from coastal swamp and adjacent areas. The spore diversity recovered fr om coastal swamps indicates the diversity of ferns and fern allies in these coas tal swamps. The diversity of ferns and fern allies (16 types) was slightly higher than that of angi osperms (15 types) in coastal swamps. Because Trilobosporites purvernlentus was only recovered fro m lignite, the ferns releasing this type of spore may have gr own in coastal swamps. But its relative abundance is just 1% among the spore group of ferns and fern allies suggesting that the fern and fern ally that released Trilobosporites purvernlentus was not a dominant member of the coastal swamp community. From relativ e abundance analysis of selected spores of ferns and allies at Ochs Clay Pit (Figure 7-3) the dominant ferns and fern allies in coastal

PAGE 109

96 swamps were the ferns and fern allies which produced Gleichiidites senonicus (31%) and ? Gleichiidites sp. (42%) because their relative abunda nce was high among coastal lakes, coastal swamps, and estuaries. Moreover, Deltoidospora hallii ? Auritulinasporites sp., Laevigatosporites ovatus were important elements in the coastal swamps and adjacent areas because of their relatively high abundan ce in coastal lakes, coastal swamps, and estuaries. One type of megaspore Balmeisporites glenelgensis was only recovered from lignite. It is probable that th e habitat of the plant releasing Balmeisporites glenelgensis may have been restricted to coastal swamps. There were 28 types of gymnosperm pollen in the coastal lake environments (Table 7-7). 21 types of gymnosperm pollen were recovered from coastal swamps and 18 types of gymnosperm pollen recovered from estuarie s. The coastal lake environments had the most diverse gymnosperm pollen, coastal swam ps second, and the estu aries least (Figure 7-2). Among the gymnosperm pollen recovered fr om coastal swamps 14 types (67%) are bisaccate pollen. The pollen count data indi cate that the relative abundance of all 14 bisaccate pollen types was not hi gher than 5% (Figure 7-4). Traverse (1988) suggested that most pollen (including bisaccate pollen) fall as the “pollen rain” very near the parent plants and “at least 95% of all pollen has nor mally settled down well within a kilometer of the source plant”. Because wind-pollinated plants are producers of a great number of pollen grains (Faegri and Iversen, 1989), the low relative abundance of bisaccate pollen in coastal swamps probably indicates that the plants releasing these bisaccate pollen types did not grow in the coastal areas. The bisa ccate pollen in coastal lake environments showed the same pattern (Figure 7-5) and did not exceed 5% relative abundance.

PAGE 110

97 Bisaccate pollen became especia lly rare in estuaries (Table 7-8). Except for Cedripites cretaceous (accounting for 1%), Rugubivesiculi tes cf. reductus (accounting for 3%), other bisaccate pollen taxa were not found when the pollen count was made. The infrequent to rare occurrence of bisaccate pollen in the coastal lake environment and estuaries may support the inference that the plants releas ing bisaccate pollen did not inhabit coastal areas (Retallack and Dilcher, 1981). Other non-bisaccate pollen types such as ? Eucommiidites sp., Araucariacites australis, Bacumonoporites baculatus, Inap erturopollenites sp., Monosulcites. sp.2, Sabalpollenites scabrous, Taxodiaceaepollen ites hiatus may have grown in coastal swamps or adjacent areas. Among them ? Eucommiidites sp. was only recovered from coastal swamps and the plant releasing this ty pe of pollen may have been restricted to coastal swamps. Six other types of non-bisa ccate pollen occurred in all three different environments. The plants releasing polle n Inaperturopollenites sp., Sabalpollenites scabrous, and Taxodiaceaepollenites hiatus may have been dominant among the gymnosperm plants in coastal swamps a nd adjacent areas because of their higher percentage among the gymnosperm groups in different environments (Figure 7-6). Considering that the relative abundance of Sabalpollenites sc abrous was the highest in coastal swamps among coastal la kes, coastal swamps, and estu aries it is probable that the plants releasing Sabalpolleni tes scabrous may have been more prosperous in coastal swamps than in other environments. Species diversity analysis suggests that gymnosperm pollen is most diverse (21 types), spores of ferns and allies second (16 types), and angiosperm pollen least (14 types) in coastal swamps. The species divers ity of ferns and allies, and angiosperm was

PAGE 111

98 similar. Considering that bi ssacate pollen may not be local and that gymnosperm species diversity may be seven types at most, that is far below the diversity of ferns and fern allies, and angiosperms. On the other ha nd the relative abundan ce data show that angiosperm and gymnosperm had the same abundance (31%). But the ferns and fern allies had a higher abundance (38%). This result may suggest that although angiosperms became important in the view of species divers ity the ferns and allies may still have been important in the ecosystem. This result s upports the conclusion suggested by Farley and Dilcher (1986), Coe et al (1987), and Skog and Dilcher (1994). Comparison with Other Late Cretaceo us Assemblages Recovered from Coal Bearing Sequences Agasie (1969) studied the late Cret aceous (Cenomanian) palynomorphs from northeastern Arizona. The most productive samp les of that study, were black shales and the least productive were coals. This situation differs from Ochs Clay Pit where the lignite was very productive. Agasie indicat ed that the plants in coal swamps are composed primarily of ferns and angiosperm s with a minor number of gymnosperms. This swamp plant composition in general was similar to the coastal swamps recovered from Ochs Clay Pit. Although detailed sedi mentary environment interpretation were not provided, the author implied that the areas probably consisted of the low-lying coastal plains or swampy areas that were covered by ferns and angiosperm trees according to the occurrence of microplankton. While spores of ferns and fern allies dominated in both localities, the dominant elements were di fferent. The most abundant genera were Appendicisporites and Cicatricosisporites in northeastern Arizona while Gleichiidites and Deltoidospora were dominant genera at Ochs Clay Pit. For angiosperm pollen, the general pattern was similar for both localities in dominance of tricolpate pollen, absence

PAGE 112

99 of triporate pollen, and small size of non-monosul cate pollen. Significant differences are obvious in gymnosperm pollen between these tw o localities. Bisacat e pollen types were dominant in northwestern Arizona while inaperturate polle n types (such as Inaperturopollenites ) were dominant at the Ochs Clay Pit. Ravn and Witzke (1995) studied the earl y Late Cretaceous (middle Cenomanian) palynomorphs in northwestern Iowa and nor theastern Nebraska. The most productive samples are lignite in these areas. One lign ite sample from Sergeant Bluff was examined in detail. The authors pointe d out that angiosperm pollen wa s more diverse in the lignite although it was still subordinate to the spores of ferns and fern allies. Unfortunately the authors did not make a detailed analysis fo r the diversity of angi osperms and ferns and fern allies making further comparisons impossible. Key angiosperm elements from Sergeant Bluff lignite sample, Doyleipollenites robbinsiae Artiopollis indivisus Tricolpites nemejcii are also present in the lignite re presenting coastal swamps at Ochs Clay Pit. The common spores of ferns and fern allies include Gleicheniidites senonicus Deltoidospora hallii Dictyophyllidites impensus Microfoveolatosporis pseudoreticulatus which were recovered from the lignite samples from northwestern Iowa and northeastern Nebraska, and Ochs Clay Pit. Gymnosperm pollen included Pristinupollenites pannosus and Rugubivesiculites convolutes in these two lignite samples from northwestern Iowa and northeas tern Nebraska and Ochs Clay Pit. Moreover, the megaspore, Balmeisporites glenelgensis occurs in both lignite samples. So probably the lignite assemblages from nor thwestern Iowa and northeastern Nebraska, and Ochs Clay Pit represent similar swamps.

PAGE 113

100 Farley and Dilcher (1986) examined th e palynoflora of the Linnenberger Ranch lignite in Kansas. They suggested that th e lignite represents a swamp environment. However, earlier Farley (1982) indicated that the locality was tidally influenced and the proximity of the sea was obviously based upon the Dakota Graneros contact, which is only a few meters above the Linnenberger Ranc h locality. Thus it is possible that the swamp that Farley and Dilche r (1986) studied represents a coastal swamp. Spores of ferns and fern allies (17 t ypes) were most diverse; gym nosperm pollen (10 types) was second; and the pollen of angiosperms (9 types) was third. At the same time the spores of ferns and fern allies were most abundant; th e pollen of angiosperm was second; and the pollen of gymnosperm was least abundant. Bi saccate pollen was absent in the lignite and Araucariacites was the only abundant gymnosperm pollen. The authors suggested the ferns and fern allies constituted the understory beneath angiosperms and rarer gymnosperms. Therefore based on the comparison with pa lynological assembla ges recovered from coal or lignite from northwestern Arizona, northwestern Iowa and northeastern Nebraska, and central Kansas, it is possible that the char acteristic floristic features in the coastal swamps during the early Late Cretaceous were diverse angiosperms, dominant ferns and fern allies, and a relative low abundance of gymnosperms.

PAGE 114

101 Table 7-1. Criteria for pollination interpretation Insect-pollinated pollenWind-pollinated pollen Surface feature ornamental, sticky and oily surface smooth and dry surface Pollen size varies, small to large size20-40 m in diameter Dispersal method large clumps individually or in small groups Pollen production varies, small to large quantities large quantities (From Whitehead, 1969, Frankel and Ga lun, 1977; Retallack and Dilcher, 1981, Traverse, 1988; Faegri and Iversen, 1989; Dafni, 1992, Proctor et al., 1996)

PAGE 115

102 Table 7-2. Inferred mode of pollination for angiosperm pollen taxa from Courtland Clay Pit. (“Abundance” equals the numbers o f angiosperm pollen found in 3 counts of around 300 each which included all palynomorphs) TaxaUnitApertureOrnamentationDimensions Pollination Abundance Clavatipollenites tenellis monadmonosulcatereticulate28 (1 grain)insect-pollinated0 Clavatipollenites sp.2 monadmonosulcatereticulate 20 (24) 28 (2 grains) insect-pollinated0 Doyleipollenites robbinsiae monadmonosulcate reticulate to foveolate 22 (27) 34 (7 grains) insect-pollinated2 Liliacidites giganteus monadmonosulcatereticulate 48 X 76 (1 grain) insect-pollinated0 Liliacidites cf. reticulatus monadmonosulcatereticulate 19 (20) 23 X 22 (24) 28 (5 grains) insect-pollinated0 Stellatopollis largissimus monadmonosulcatereticulate 64 X 123 (1 grain). insect-pollinated0 Stellatopollis sp. monadmonosulcatereticulate 38 X 53 (1 grain). insect-pollinated0 Retimonocolpites dividuus monadmonosulcatereticulate 32 (35) 38 (2 grains) insect-pollinated0 Cupuliferoidaepollenites sp. monadtricolpatescabrate 7 (11) 17 X 10 (16) 19 (10 grains) insect-pollinated79 Tricolpites cf. vulgaris monadtricolpatereticulate 11 (14) 19 X 16 (20) 24 (5 grains) insect-pollinated 145 Tricolpites labeonis monadtricolpatereticulate 6 (10) 14 X 9 (14) 19 (14 grains) insect-pollinated 48

PAGE 116

103 Table 7-2—continued. TaxaUnitApertureOrnamentationDimensions Pollination Abundance (count) Tricolpate sp.4monadtricolpatereticulate 11 (17) 21 X 17 (22) 25 (5 grains) insect-pollinated13 Tricolpate sp.7monadtricolpatemicrofoveolate 17 (18) 18 (2 grains) insect-pollinated0 Tricolpate sp.11monadtricolpate reticulate to foveolate 11 (12) 12 X 14 (15) 16 (2 grains); 11 (13) 14 (2 grains) insect-pollinated0 Phimopollenites striolata monadtricolporoidatemicroreticulate 12 (14) 19 X 16 (19) 21 (10 grains), 15 (18) 24 (7 grains) insect-pollinated0 Dryadopollis minnesotensis monadtricolporatemicroreticulate 8 (15) 19 X 15 (19) 23 (5 grains), 16 (17) 19 (13 grains) insect-pollinated 24

PAGE 117

104Table 7-2—continued. TaxaUnitApertureOrnamentationDimensions Pollination Abundance (count) Dryadopollis minutus monadtricolporatemicroreticulate 8 X 10 (1 grain), 9 (10) 10 (2 grains) insect-pollinated 1 Nyssapollenites sp. monadtricolporatemicrofoveolate 9 (11) 14 X 11 (14) 17 (7 grains); 11 (14) 15 (3 grains) insect-pollinated3 Rousea cf delicipollis monadtricolpate reticulate to foveolate 14 X 23 (1 grain), 16 (23) 35 (7 grains) insect-pollinated 26 Satishia sp. monadtricolpatemicroreticulate 28 (1 grain). wind-pollinated (?)0 Striatopollis paraneus monadtricolpatestriato-reticulate 15 X 18 (1 grain); 21 (1 grain). insect-pollinated 6 Fraxinoipollenites constrictus monadtricolpatemicrofoveolate 18 (24) 34 X 28 (38) 48 (11 grains), 30(3)38 wind-pollinated20

PAGE 118

105Table 7-2—continued. TaxaUnitApertureOrnamentationDimensions Pollination Abundance (count) Foveotricolporites rhombohedralis monadtricolporatefoveolate 20 (27) 31 X 31 (34) 39 (4 grains); 42 (47) 51 (3 grains) wind-pollinated2 cf. Foveotricolporites sp. monadtricolporatefoveolate 19 X 30 (1 grain); 27 (1 grain) wind-pollinated0 Tricolpites nemejci monadtricolpatemicroreticulate 17 (19) 21 X 22 (27) 35 (10 grains); 21 (26) 31 (4 grains) wind-pollinated (?)1 ? Spinizonocolpites sp. monadmonosulcatescabrate 25 (1 grain). wind-pollinated (?)0

PAGE 119

106Table 7-3. Inferred mode of pollination for angiosperm pollen taxa from Ochs Clay Pit. (“Abundance” for lacustrine equals the numbers of angiosperm pollen found in 3 counts of around 300 each which included all pal ynomorphs; “Abundance” for swamps or estuarine equals the numbers of angios perm pollen found in 2 counts of around 300 each). LacustrineSwampsEstuarineTotal Artiopollis indivisus tetradtricolpate microreticulate 17 (21) 27 (whole tetrad), 9 (13) 15 (individual grain)(7 tetrads) insect pollinated2390145258 Retimonocolpites dividuus monadmonosulcatereticulate 32 (35) 38 (2 grains) insect pollinated6006 Clavatipollenites tenellis monadmonosulcatereticulate 28 (1 grain) insect pollinated1001 Clavatipollenites sp.2 monadmonosulcatereticulate 20 (24) 28 (2 grains) insect pollinated0112 Liliacidites sp.2 monadmonosulcatereticulate 21 ( 1 grain ) insect pollinated0000 Liliacidites sp.3 monadmonosulcatereticulate 15 (21) 31 X 19 (30) 43 (11 grains) insect pollinated020727 Liliacidites sp.4 monadmonosulcatereticulate 29 (37) 48 (9 grains) insect pollinated0426 Liliacidites cf. reticulatus monadmonosulcatereticulate 19 (20) 23 X 22 (24) 28 (5 grains) insect pollinated0000 Liliacidites sinuatus monadmonosulcatereticulate 18 (22) 25 X 33 (34) 34 (2 grains) insect pollinated0808 Doyleipollenites robbinsiae monadtrichotomosulcate reticulate to foveolate 22 (27) 34 (7 grains) insect pollinated0224 Tricolpites labeonis monadtricolpatereticulate 6 (10) 14 X 9 (14) 19 (14 grains) insect pollinated1711122204 Cupuliferoidaepollenites sp. monadtricolpatescabrate 7 (11) 17 X 10 (16) 19 (10 grains) insect pollinated4292475 Tricolpites cf. vulgaris monadtricolpatereticulate 11 (14) 19 X 16 (20) 24 (5 grains)insect pollinated9901100 Tricolpate sp.4monadtricolpatereticulate 11 (17) 21 X 17 (22) 25 (5 grains) wind pollinated311032 Taxa Abundance UnitApertureOrnamentationDimensions Pollination

PAGE 120

107Table 7-3—continued. LacustrineSwampsEstuarineTotal Tricolpate sp.7monadtricolpatemicrofoveolate 17 (18) 18 (2 grains) insect pollinated4004 Tricolpate sp.11monadtricolpate reticulate to foveolate 11 (12) 12 X 14 (15) 16 (2 grains); 11 (13) 14 (2 grains) insect pollinated 0224 Tricolpate sp.12monadtricolpatereticulate 13 (16) 18 X 15 (19) 22 (2 grains); 14 (1 grain) insect pollinated002121 Tricolpate sp.14monadtricolpatemicrofoveolate 9 (11) 13 X 15 (18) 20 (3 grains) insect pollinated0088 Phimopollenites striolata monadtricolporoidate microreticulate 13 (16) 19 X 16 (19) 23 (6 grains) insect pollinated170017 Psilatricolporites subtilis monadtricolporoidatescabrate 11 X 14 (1 grain); 11 (12) 12 (2 grains) insect pollinated2002 Nyssapollenites sp. monadtricolporate microfoveolate 9 (11) 14 X 11 (14) 17 (7 grains); 11 (14) 15 (3 grains) insect pollinated122620 Fraxinoipollenites constrictus monadtricolpate microfoveolate 18 (24) 34 X 28 (38) 48 (11 grains), 30 (35) 38 (5 grains) wind pollinated7007 Tricolpate sp.10monadtricolpate reticulate to foveolate 14 (21) 32 X 19 (29) 40 (9 grains); 46 (1 grain) wind pollinated04610 Foveotricolpites sp. monadtricolpatescabrate 30 (33) 35 X 36 (38) 40 (2 grains) wind pollinated3003 TaxaUnitApertureOrnamentationDimensions Pollination Abundance

PAGE 121

108Table 7-3—continued. LacustrineSwampsEstuarineTotal Foveotricolporites rhombohedralis monadtricolporatefoveolate 20 (27) 31 X 31 (34) 39 (4 grains); 42 (47) 51 (3 grains) wind pollinated4004 ? Clavatipollenites sp.3 monadmonosulcate microfoveolate24 (27) 29 (4 grains) wind pollinated (?)0628 Tricolporate sp.2monadtricolporatestriate 17 (18) 19 X 19 (25) 30 (2 grains), 15 (17) 19 (2 grains) wind-pollinated (?)0000 Tricolpites nemejci monadtricolpatemicroreticulate 17 (19) 21 X 22 (27) 35 (10 grains); 21 (26) 31 (4 grains) wind pollinated (?)851124 Tricolpate sp.8monadtricolpatescabrate 23 (26) 28 (2 grains) wind pollinated (?)2002 TaxaUnitApertureOrnamentationDimensions Pollination Abundance

PAGE 122

109 Table 7-4. Inferred mode of pollination for angiosperm pollen taxa from Highway 4 Clay Pit. (“ Abundance” equals the numbers o f angiosperm pollen found in 3 counts of ar ound 300 each which included all palynomorphs) TaxaUnitApertureOrnamentationDimensions Pollination Abundance (count) Liliacidites cf. inaequalis monadmonosulcatereticulate 15 (16) 18 X 22 (24) 26 (3 grains) insect-pollinated3 Liliacidites cf. reticulatus monadmonosulcatereticulate 19 (20) 23 X 22 (24) 28 (5 grains) insect-pollinated2 Liliacidites sp.5 monadmonosulcatereticulate 20 (23) 25 X 23 (24) 25 (2 grains) insect-pollinated1 Phimopollenites striolata monadtricolporoidatemicroreticulate 12 (14) 19 X 16 (19) 21 (10 grains), 15 (18) 24 (7 grains) insect-pollinated219 Tricolpites cf. vulgaris monadtricolpatereticulate 11 (14) 19 X 16 (20) 24 (5 grains) insect-pollinated63 Rousea cf delicipollis monadtricolpate reticulate to foveolate 14 X 23 (1 grain), 16 (23) 35 (7 grains) insect-pollinated 0 Fraxinoipollenites constrictus monadtricolpatemicrofoveolate 18 (24) 34 X 28 (38) 48 (11 grains), 30 (35) 38 (5 g rains ) wind-pollinated14

PAGE 123

110 Table 7-5. Angiosperm pollen distribution in three different environments in Ochs Clay Pit. TaxaLacustrineCoastal swampsEstuarine Clavatipollenites tenellis † Foveotricolpites sp. † Foveotricolporites rhombohedral i † Fraxinoipollenites constrictus † Liliacidites reticulatus † Liliacidites sp.2 † Phimopollenites striolata † Psilatricolporites subtilis † Retimonocolpites dividuus † Tricolpate sp.7† Liliacidites sinuatus † Tricolpate sp.12† Tricolpate sp.14† Artiopollis indivisus ††† Cupuliferoidaepollenites sp. ††† Nyssapollenites sp. ††† Tricolpites labeonis ††† Tricolpites nemejci ††† Liliacidites sp.3 †† Tricolporate sp.2†† Doyleipollenites robbinsiae ††† Tricolpites cf. vulgaris †† Tricolpate sp.4††† Tricolpate sp.8†† Clavatipollenites sp.2 †† ? Clavatipollenites sp.3 †† Liliacidites sp.4 †† Tricolpate sp.10†† Tricolpate sp.11††

PAGE 124

111 Table 7-6. Fern spore distri bution in three different environments at Ochs Clay Pit TaxaLacustrineCoastal swampsEstuarine Appendicisporites cf. auritus † A. cf. matesovae † Cicatricosisporites cf. crassiterminatus † C. hughesi † C. crassiterminatus † Concavissimisporites sp. † ? Concavissimisporites sp. † Costatoperforosporites sp. † Crybelosporites sp. † D e l to id ospora sp. † ? Januasporites sp. † ? Klukisporites sp. † cf. Phaeoceros form A † Plicatella fucosa † Triporoletes reticulatus † Undulatisporites sp. † Trilobosporites purvernlentus † Verrucosisporites sp. † Lycopodiacidites sp.2 † A. problematicus ††† ? Auritulinasporites sp. ††† Camarozonosporites sp.1 ††† C. sp.3††† Deltoidospora hallii ††† Dictyophyllidites impensus ††† Gleichiidites senonicus ††† ? Gleichiidites sp. ††† Laevigatosporites ovatus ††† Converrucosisporites sp. †† Ischyosporites sp. †† Lycopodiumsporites marginatus †† Punctatrile tes punctus †† Cicatricosisporites sp.4 †† Cyathidites australis †† Stereisporites sp.1 †† Microfoveolatosporis pseudoreticulatus †† Sestrosporites sp.2 ††

PAGE 125

112 Table 7-7. Gymnosperm pollen di stribution in three different environments at Ochs Clay Pit TaxaLacustrineCoastal swampsEstuarine Cycadopites sp. † Equisetosporites sp.1 † Eucommiidites sp. 1 † Monosulcites sp.1 † M. sp.3† Pristinupollenites microsaccus † P. canadensis † P sp. † Punctamultivesiculites cf. inchoatu s † ? Eucommiidites sp. † Monosulcites sp.4 † Alisporites rotundus ††† Araucariacites australis ††† Bacumonoporites baculatus ††† Cedripites cretaceus ††† C. sp. ††† Inaperturopollenites sp. ††† Monosulcites sp.2 ††† Pristinupollenites pannosus ††† Parvisacites radiatus ††† Rugubivesiculites rugosus ††† R. convolutus ††† Sabalpollenites scabrus ††† Taxodiaceaepollenites hiatus ††† ? Pityosporites constrictus †† Pristinupollenites sulcatus †† Podocarpidites minisculus †† Punctabivesiculites parvus †† Pristinupollenites inchoatus †† Pityosporites constrictus ††† Rugubivesiculites cf. multiplex †† R cf. reductus ††

PAGE 126

113 Table 7-8. Relative abundance of bisaccate pollen in estuaries at Ochs Clay Pit TaxaPercentage (%) Alisporites rotundus 0% Cedripites cretaceus 1% Cedripites sp.0% Pristinupollenites pannosus 0% Parvisacites radiatus 0% Rugubivesiculites rugosus 1% R. convolutus 0% Pristinupollenites inchoatus 0% Pityosporites constrictus 0% Rugubivesiculites cf. multiplex 0% R cf. reductus 3% 0% 10% 20% 30% 40% 50% 60% Lacustrinecoastal swampestuarine Artiopollis indivisus Cupuliferoidaepollenites sp. Tricolpites labeonis Tricolpites nemejci Nyssapollenites sp. Figure 7-1. Selected angiospe rm pollen relative abundance an alysis in three different environments at Ochs Clay Pit

PAGE 127

114 0 5 10 15 20 25 30 35 LakeSwampEstuaryNumber of types Fern Spore Gymnosperm Pollen Angiosperm Pollen Figure 7-2. The distribution of terrestrial palynomorphs in lake, swamp, and estuarine sediments at the Ochs Clay Pit 0% 10% 20% 30% 40% 50% lacustrine coastal swamps estuarine ? Auritulinasporites sp. Deltoidospora hallii Gleichiidites senonicus ? Gleichiidites sp. Laevigatosporites ovatus Figure 7-3. Relative abundance an alysis of selected spores of ferns and allies at Ochs Clay Pit

PAGE 128

115 0% 1% 2% 3% 4% 5% 6% coastal swamps Alisporites rotundus Cedripites sp. Cedripites cretaceus Pristinupollenites pannosus Parvisacites radiatus Rugubivesiculites rugosus Rugubivesiculites convolutus ? Pityosporites constrictus Pristinupollenites sulcatus Podocarpidites minisculus Punctabivesiculites parvus Pityosporites constrictus Rugubivesiculites cf. multiplex Rugubivesiculites cf. reductus Figure 7-4. Relative abundance of bisaccate po llen in coastal swamps at Ochs Clay Pit

PAGE 129

116 0% 1% 2% 3% 4% 5% coastal lakes Alisporites rotundus Cedripites sp. Cedripites cretaceus Parvisacites radiatus ? Pityosporites constrictus Podocarpidites canadensis Podocarpidites minisculus Podocarpidites sp. Pristinupollenites inchoatus Pristinupollenites microsaccus Pristinupollenites pannosus Pristinupollenites sulcatus Punctabivesiculites parvus Rugubivesiculites rugosus Rugubivesiculites convolutus Figure 7-5. Relative abundance of bisaccate po llen in coastal lake environments at Ochs Clay Pit

PAGE 130

117 0% 10% 20% 30% 40% 50% 60% 70% 80% lacustrine coastal swamps estuarine Inaperturopollenites sp. Sabalpollenites scabrus Taxodiaceaepollenites hiatus Figure 7-6. Relative abundance analysis of dominant non-bissacate gymnosperm pollen in three different environments

PAGE 131

118 CHAPTER 8 COMPARISONS BETWEEN ANGIOSPERM MEGAFOSSIL AND MICROFOSSIL RECORDS Wang H. (2002) undertook research on the megafossil angiosperm leaves of Courtland Clay Pit. He described 13 gene ra and 23 species of angiosperms based upon leaf fossils. Although none of Wang’s fossils we re assigned to extant genera, the extant orders Magnoliales, Laurales, Proteales, and Saxifragales and similar extant families Lauraceae, Cercidiphyllaceae, Chloranthaceae, and Platanaceae were identified. Among them the Lauraceae with four genera and ni ne species had the highest diversity. The Cercidiphyllaceae and Platanaceae both with one genus and one species, respectively, had the lowest diversity. The Lauraceae al so had the highest species abundance (102 specimens) while the Platanaceae had the second highest species abundance (36 specimens). There were 26 pollen taxa r ecovered from the sediments at Courtland Clay Pit. Tricolpites cf. vulgaris (145 pollen grains found as a result of 3 counts of around 300 palynomorphs in each count), Cupuliferoidaepollenites sp. (79 pollen grains), Tricolpites labeonis (48 pollen grains), Rousea cf. delicipollis (26 pollen grains), Dryadopollis argus (24 pollen grains), Fraxinoipollenites constrictus (20 pollen grains), a nd Tricolpate sp.4 (13 pollen grains) were the most abundant species. Tricolpites labeonis was similar to Tricolpites minutus in pollen size and ornamentation. Tricolpites minutus has affinities with Platanaceae based upon a Cretaceous me sofossil investigation (Crane et al., 1986, Friis et al., 1988). On the other hand, the Tricolpites labeonis is also similar to in situ

PAGE 132

119 pollen of the Early to Middle Albian flower Aquia brookensis from the “Bank near Brooke” locality, Virginia in pollen shape, size, and orname ntation (Crane et al., 1993). Crane et al. (1993) suggested that Aquia brookensis has affinities with Platanaceae based upon floral characters. Thus, the higher abundance of Tricolpites labeonis may be consistent with the megafossil record in wh ich Platanaceae was the second most abundant species. Doyle and Hickey (1976) indicated that the tricolpate pollen in late Albian and Early Cenomanian may have a relationship to platanoid leaves based upon their cooccurrence. Friis and Pedersen (1996) suggested that the dispersed pollen genus Tricolpites may have a relationship with extant Platanus based upon in situ pollen morphology of three mid-Cretaceous platanoid flowers. The tricolpate and reticulate pollen of extant Platanus of Platanaceae (Erdtman, 1943) appears to be very similar to Tricolpites cf. vulgaris The Tricolpites cf. vulgaris is the most abunda nt pollen type and its abundance might be explained by the abunda nce of leaves that co-occur w ith them. Although magnoliids, which include eight genera and 14 species (Wang H., 2002), have the highest diversity among the megafoss il flora in the megafo ssil record, the nonLauraceae species were only four, which incl uded two species of Chloranthaceae. In contrast, the leaf megafossils of Lauraceae (W ang H., 2002), with nine species that are the dominant types of angiosperms. This group is absent in the pollen record so it is probable that the palynoflora unde rrepresents this family. This is one bias that the pollen record may have because pollen of Lauraceae has very low sporopollenin content in the exine and they do not normally preserve well and survive the fossilization process (Traverse, 1988). One exception is a Turonian Lauraceae flower with in situ pollen from New Jersey described by Here ndeen et al. (1994).

PAGE 133

120 Doyleipollenites robbinsiae is one type of trichotomo colpate pollen recovered from both the Courtland Clay Pit and the Ochs Clay Pit. Also, Doyleipollenites robbinsiae is similar to in situ pollen on Early or Middl e Albian fruiting units Anacostia virginiensis from Puddledock locality, Virginia (Friis et al., 1997) in pollen shape, aperture, and ornamentation. Friis et al. (1997) indicated that Anacostia virginiensis has affinities with magnoliids or monocotyledons. Pedersen et al. (1991) described a new type of early Cenomanian fruit Couperites mauldinensis from the West Mauldin Mountain local ity, Maryland, and the in situ pollen adhering to the sessile stigma were Clavatipollenitestype. Pedersen et al. (1991) suggested that the dispersed pollen assigned to Clavatipollenites may have relationships to several distinct magnoliid families. Friis et al. (1999) studied the diversity of pollen associated with angiosperm reproductive structures in early Cretaceous flor as from Portugal and pointed out that the majority of pollen types of early angiosperm s are monosulcate, which may be recognized as Clavatipollenites Retimonocolpites and Liliacidites if they were disp ersed. Friis et al. (1999) suggested that thes e species with monosulcate pollen may have magnoiid affinities. Liliacidites sp.3 recovered from the Ochs Clay Pit is similar to in situ pollen of the Early or Middle Albian well-preserved flower Virginianthus calycanthoides from Puddledock locality, Virginia (Friis et al., 1994) in pollen shape, aperture, and ornamentation. Virginianthus calycanthoides is closely comparable to members of the family Calycanthaceae, which is a magnoliid of the order Laurales(Friis et al., 1994). The monosulcate pollen recovered from the Courtland Clay Pit as Clavatipollenites

PAGE 134

121 tenellis Clavatipollenites sp.2, Liliacidites giganteus and Liliacidites cf. reticulatus may correlate with the non-Lauraceae ma gnoliid megafossil record. The Trochodendrales and Buxales of the eudicots were absent in the leaf megafossil flora. But Striatopollis paraneus is similar to in situ pollen of an early Cenomanian inflorescence Spanomera mauldinensis which was discovered at the Mauldin Mountain locality of Maryland (Friis et al., 1991), in pollen size, aperture, and unique ornamentation. Drinnan et al. (1991) also indicated that the in situ pollen of Spanomera mauldinensis were comparable to the dispersed pollen species Striatopollis paraneus Spanomera mauldinensis provides the most comp lete evidence of midCretaceous angiosperms related to extant Tr ochodendrales and Buxales (Friis et al., 1991). So the palynoflora can complement th e megafossil flora, which may have a bias because of fossilization and preservation. From the comparison between the megafossil record and the microfossil record at the Courtland Clay Pit, it is clear that both records are influenced by biases. A combination of mega and microfossil data wi ll provide the most complete interpretation of the fossil floras. As an example, in addition to the magnoliids (which include Magnoliales and Laurales), Prot eales, Saxifragales, the Troc hodendrales and Buxales of the eudicots probably were also present in Courtland areas during middle Cenomanian based upon the microfossil records.

PAGE 135

122 CHAPTER 9 EUSPORANGIATE FERNS FROM THE DAKOTA FORMATION, MINNESOTA, USA (WITH DAVID DILCHER, HARAL D SCHNEIDER AND DAVID JARZEN) Abstract Fossil records of the eusporangiate fern family Marattiaceae are common in Paleozoic and early Mesozoic sediments. Ho wever, the occurrence of this family during the Cretaceous and Tertiary is unknown. W ithin the Marattiaceae, extant species of Marattia are distributed worldwide, while Danaea occurs only in the New World, and Angiopteris and Christensenia show disjunct distributi ons throughout the Old World tropics except Africa. Two previously unknown marattioid ferns, Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. and Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen ge n. et sp. nov., are described in this paper based on charcoalified isolated sporangi a and synangia recovered from the Dakota Formation of the Courtland Clay Pit in south central Minnesota. Thes e isolated sporangia and synangia have sessile, thick-walled spor angia and large spore output per sporangium which is consistent with features of ex tant eusporangiate ferns. The spore wall ultrastructure of Goolangia minnesotensis and Mesozoisynangia trilobus supports affinities with extant Marattiaceae. These fossils provide evidence for the existence of marattioid ferns during the mid-Cretaceous in North America and present the first unequivocal documentation of the Mara ttiaceae in post Jurassic times. ____________________ Adapted from Hu, S., Dilcher, D.L., Schneider, H., Jarzen, D.M., 2006. Eusporangiate ferns from theDakota Formation, Minnesota, U.S.A. Int J Plant Sci 167: 579-589.

PAGE 136

123 Introduction Outcrops of the Dakota Formation in south central Minnesota often consist of clay sediments rich in plant fossils. The plant fossils from these mid-Cretaceous sediments have been studied for megafossils (Lesquereux, 1895 ; Wang H., 2002) and palynomorphs (Pierce, 1961; Hu, et al., 2004a, 2004b). Here we report sporangia similar to those of eusporangiate ferns, isolated from Dakota Formation sediments exposed in southern Minnesota. Previous to this study, fossils of eusporangiate ferns such as Marattiaceae and Ophioglossaceae have not been recove red from the Dakota Formation or other Cretaceous sediments worldwide (Tidwell and Ash, 1994; Collinson, 1996, 2001). However fossil leptosporangiate ferns have been recovered from Dakota Formation in Kansas and Nebraska (Skog and Dilc her, 1992, 1994) and include species of Schizaeaceae, Gleicheniaceae, Matoniacea e, Dicksoniaceae and Marsileaceae. Additionally an assemblage of eight megas pore taxa, some of which have Marsileaceae affinities, were recovered from the Dakot a Formation of Iowa (Hall, 1963, 1974). Although the eusporangiate ferns have existe d since the Carboniferous (Pryer et al., 2004), the Cretaceous fossil record lacks evid ence for the occurrence of the marattioids and ophioglossids, traditionally assigned to th e eusporangiate ferns. A good fossil record for the Marattiaceae exists from the Carbonife rous to the Jurassic (Mamay, 1950; Stidd, 1974; Van Konijnenburg-Van Cittert 1975, 2002; Hill, 1987; Wan and Basinger, 1992; Liu et al., 2000; Wang et al., 2001; Wang Y., 2002), with a ga p in the fossil record from the Jurassic to the Recent. The Ophioglossaceae are almost unknown as fossils with a single fossil record from the Paleocene of wester n Canada (Rothwell and Stockey, 1989). This report presents evidence for the presen ce of eusporangiate fern sporangia, with affinities to the Marattiaceae, from the midCretaceous of mid-continental North America

PAGE 137

124 found preserved as charcoalified mesofossils with their associated spores. This study provides a new record of marattioid ferns to what is already known from other fern mesofossil studies of gleichenioid ferns (Ga ndolfo, et al, 1997) and heterosporous ferns (Lupia, et al., 2000). Material and Methods Samples were collected from dark, gr ay clays of the Dakota Formation of Cenomanian age (Setterholm, 1994) in Minnesota Considering that Br enner et al. (2000) recognized Dakota Formation sediments in centr al Kansas and Nebras ka as Late Albian in age and the transgressive seas of the Western Interior Seaway moved towards the northeast, the age of the Dakota Formation sedi ments in south central Minnesota must be not older than Late Albian and perhaps as young as lowermost Cenomanian. Organic rich gray, clay samples containing charcoa lified mesofossils were collected from the Courtland Clay Pit, in south central Minne sota, about two miles from New Ulm (lat. 4416'29" N, long. 9423'13"W). Samples we re immersed in a detergent (Alconox™) solution (ca. 2 teaspoons of dete rgent per liter of water) over night or longer to thoroughly disaggregate the samples. The sl urry was then sieved through 500 m and 125 m mesh sieves using flowing tap water. The air-d ried residue containing many charcoalified specimens was sorted and specimens select ed and identified using a WILD M5-84581 dissecting microscope at 6 to 50 X magnification. Specimens were immersed in 25% HCl overnight to remove carbonate materials, then washed three times in distilled water and immersed in 49% HF for 48-72 hours to remove silicates. Samples were neutralized through several washes in distilled water. F our complete or nearly complete isolated sporangia and synangia were selected for detailed study by light microscope (LM), transmission electron microscope (TEM) and sca nning electron microscope (SEM).

PAGE 138

125 For LM studies, spores were removed fr om the sporangia and treated with 5% KOH solution for about six hours, effectively disaggregating the spores. Samples were washed twice with distilled water and once w ith a 50% glycerin solution. The resulting residue was mounted on microscope slides us ing glycerin jelly and photographed using a ZEISS Axiophot™ imaging system. At least 29 spores from each sporangium were measured and observed for s pore dimensions and morphology. Fragments of entire sporangia containing spores were removed and prepared for TEM using standard protocols (Hajat, 2000). Samples were infi ltrated with 100% acetone for ten minutes. This was followed by an acetone and Spurr’s epoxy resin solution series of 30%, 50%, 70%, and 100% with the samples remaini ng in each for one hour. The infiltrated specimens were transferred to molds and embedded in 100% Spurr’s epoxy resin and placed in an oven at 60C for 24 hours. Ultrat hin sections were made using a Reichert Ultracut R™ ultra-microtome equipped with a diamond knife. Sections were transferred to butvar coated grids, and stained with 2% uranyl acetate for ten minutes and Reynolds lead citrate for five minutes. Sections we re examined and photographed using a Hitachi H7000™ transmission electron microscope at an accelerate voltage of 75 kV. SEM samples were mounted on stubs using carbon adhesive tabs and graphite glue, and photographed using a FESEM Hitachi S4000™ at an accelerate voltage of 2-6 kV. In order to estimate the spore number in each sporangium, we first calculated the actual sporangial area in whic h the spores were present. We then counted the spore layers and the spore number per layer in a cross section of sporangia. Next, we estimated the total numbers of cross sections per sporan gia. A final estimate of total spore count

PAGE 139

126 was reached by multiplying the number of hypothe tical cross sections by the spore count of the section measured. Results Family: Marattiaceae Genus: GOOLANGIA Hu, Dilcher, H. Schne id. et Jarzen gen. nov. Type species: Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. Generic Diagnosis Sporangium sessile with thick sporangi al walls. Sporangium is elongate, asymmetrical, with a basal attachment scar for half of its length. The edge above the attachment scar is thin a nd the opposite edge consists of a ridge of cells elongated transversely to the sporangium. The orientati on of surface cells adjacent to this ridge is perpendicular to the long axis of the spor angium. Sporangium is homosporous and with numerous (1,000 +) spores. Spores trilete, ps ilate to scabrate and randomly covered with globules. Laesurae are raised and frequently bifurcate before reaching the equator. Etymology: “Gool” representing the name “G ooler” for Mr. Scott Gooler, owner of the Courtland Clay Pit, and “angia” from the Gr eek, capsule or containe r, referring to the sporangia. Species: Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen sp. nov. Species Diagnosis General morphology Sporangium is elongate, el liptical, slightly asymmetr ical, and measures 1.2 x 3.5 mm (Plate 29, Fig. 1). An attach ment scar is evident (Plate 29, Fig. 2), along about half the length of one edge of the sporangium. The edge above the attachment scar is very thin (17 m). The opposite edge consists of a ridge (ca 90 m thick) of cells elongated transversely to the sporangium (Plate 29, Fi gs. 2, 3). The orientation of surface cells adjacent to this ridge is perpendicular to th e long axis of the sporangium (Plate 29, Fig.

PAGE 140

127 3). These cells are 10 x 27-51 m. Sporangium cr oss-section is 142 m thick (Plate 29, Fig. 6), consisting of an upper multicellular layer (29 m thick) and a lower multicellular layer (38 m thick) surrounding a chamber filled with spores (Plate 29, Fig. 6). Homosporous spores number about 4,500. Spore morphology Spores are circular to subcircular with a trilete mark (Plate 29, Figs. 4, 5). No distinction between exospore a nd perispore is visible, and the wall is between 1 to 2 m thick. Size range is 47-77 m (average 60 m, 29 spores measured). Laesurae are slightly raised, extending to the equator and frequently bifurcate a bout 2/3 of the length before reaching the equator (Plate 29, Fig. 5, a rrow). Ornamentation is psilate to finely scabrate and randomly covered with globules (Plate 29, Figs. 4, 5). Etymology: “minnesotensis” named for Minnesota where the fossil was discovered. Type material: holotype: 19007-036708-M1. Specimen deposited in the Paleobotany/Palynology Collection, Flor ida Museum of Natural History, Gainesville, Florida, USA. Type locality: Courtland Clay Pit, New Ulm, Minnesota, USA. Formation: Dakota Formation. Age: Latest Albian to earliest Cenomanian Description The evident attachment scar is important because it suggests that the elongate sporangium was part of a synangium. We view this sporangium as one of a cluster of sporangia (Plate 30, Figs. 1, 2) rather than consisting of a number of individual sporangia fused together. We emphasize this because along the elongate axis of the sporangium, spores appear to form a superficially con tinuous mass that is separated into 13 to 15 groups by cracks on the surface (Plate 29, Fig. 7). The spores (Plate 29, Figs. 4, 5) ranged in size from 47 to 77 m with a mode of 56 m. The spores are unremarkable in their or namentation and therefor e an isolated spore

PAGE 141

128 would not be recognized as belonging to th e Marattiaceae. Spor e ultrastructure as observed using TEM shows the important char acters that demonstrate their similarity with extant species of the Marattiaceae. The spore wall consists of a perispore (P ) (120-130 nm) and an exospore (E) (3-6.7 m) (Plate 29, Figs. 8, 9). The thin and ho mogenous perispore forms a nearly continuous layer surrounding the exospore (Plate 29, Fig. 9). Spherical granules are attached to the surface of the perispore (Plate 29, Fig. 9, a rrows). The exospore is thicker in the proximal face than in the distal face (Plate 29, Fig. 8). The exospore is differentiated into a homogenous outer exospore layer ( Ee in Plate 29, Fig. 11), a thicker and less dark middle exospore layer ( Em in Plate 29, Figs. 10, 11 ) with cavities, and a thin and dark inner exospore layer ( Ei in Plate 29, Fig. 11, upper arrow). The outer exospore layer is homogenous and up to 3.2 m thick. The middle exospore layer is 2-6 m thick with a maximum thickness at the flank of the aperture (Plate 29, Fig. 11). The cavities of the middle exospore layer have a diameter of 7-21 nm (Plate 29, Fig. 10, arrow). The transition between the inner and middle layer is clearly visible whereas the transition between middle and outer layer is less obvious. The inner exospore layer is thickest (200 nm) at the base of the aperture and its thic kness gradually decreases (to 30-33 nm) toward the apical part of the proximal fold and th e distal face (Plate 29, Fig. 8). A subapertual mass is present below the apertural slit (Plate 29, Fig. 11, lower arrow). Systematic Remarks The morphology of Goolangia minnesotensis resembles extant eusporangiate fern sporangia in the following characters. G. minnesotensis is sessile, has thick sporangial walls (ca 34 m thick), and has a large number of homosporous spores (ca 4,500). Ophioglossaceae and Marattiaceae are the only eusporangiate fern families. These two

PAGE 142

129 families can be distinguished by ultrastructure s of the spore walls. The ultrastructure of the spore walls of both families is distinctive in having three layers. The layers in Ophioglossaceae show numerous lamellae in the middle layer while these lamellae are only weakly developed in Marattiaceae (T ryon and Lugardon, 1991). The ultrastructure of the fossil spores, found in G. minnesotensis exhibits three layers (Plate 29, Fig. 11) showing small cavities in the middle exos pore layer which lacks any lamellae. The middle exospore layer can be most clearly obser ved in the apical part of the aperture. The fossil spore wall ultrastructure is similar to the Marattiaceae rather than the Ophioglossaceae (Tryon and Lugardon, 1991). Goolangia minnesotensis represents a single sporangium dispersed from a sporangial cluster laterally fused basally for ha lf of its length (Plate 30, Figs. 1, 2). The spores are present throughout the entire individual sporangium which lacks any internal septa or chambers. A scar clearly demarcates the extent of the fusion of the sporangia with others to form a synangium (Plate 30, Fi g. 1). The attachment scar terminates at about one-half of the sporangial length. The re st of the inner margin of the sporangium is thin (ca 17 m) in sectional view. This c ontrasts with the thickened ridge (ca. 90 m) that extends along the outer margin of the s porangium and may have functioned to open the sporangium along the inner thin area. G. minnesotensis may be close to Angiopteris judging from the morphology of the sporangium and spore wall ultrastructure. However G. minnesotensis sporangia are fused for about half of their length, while Angiopteris sporangia are fused basally. The size of Goolangia minnesotensis seems to be larger (3.5 mm long) than extant Angiopteris sporangia (0.3-0.6 mm long) (Hill, 1 987). The middle Jurassic fossil

PAGE 143

130 sporangia of Angiopteris blackii from Yorkshire, England, range in size from 0.6-1.1 mm long (Hill, 1987). Some Paleozoic fossil marattialeans had relatively large sporangia; Eoangiopteris goodii Millay may be up to 2 mm long (Millay, 1978), Sclocopteris major Mamay is 2.1-2.9 mm long (Mamay, 1950), and Millaya tularosana Mapes and Schabilion is 1.7-2.0 mm long (Mapes and Schabilion, 1979). The sporangium size (3.5 mm long) of G. minnesotensis while large, may not be inconsistent with earlier described fossil spora ngia of Marattiaceae. Angiopteris blackii Eoangiopteris andrewsii and E. goodii have basal attached sporangia (Hill, 1987; Millay, 1978; Mamay, 1950), while Sclocopteris major and Millaya tularosana have laterally attached spor angia (Millay, 1979; Mapes and Schabilion, 1979). Goolangia minnesotensis is most similar to the basally fused sporangia of A. blackii (Hill, 1987) of middle Jurassic age, and E. andrewsii (Mamay, 1950) and E. goodii (Millay, 1978) of Pennsylvanian ag e. These synangia consist of individual sporangia clustered and fused at their base as seen in A. blackii with 4-16 sporangia per sorus, E. andrewsii with 5-8 sporangia per sorus and E. goodii with 10-19 sporangia per sorus (Hill, 1987; Mamay, 1950; Millay, 1978). The basic differences between Goolangia and Eoangiopteris are obvious and they are as follows: 1) the sporangia of Goolangia were laterally fused basally for half of their length and those of Eoangiopteris were attached laterally at base and free from each other distally (Mamay, 1950; Millay, 1978); 2) the dehiscence of Goolangia occurs along upper half of the sporangium and that of Eoangiopteris extends entire length of the sporangium (Mamay, 1950); 3) the spore output of Goolangia is relatively high ( 1,000 +) and that of Eoangiopteris is low (a maximum of approximate ly one hundred) (Mamay, 1950); 4) the

PAGE 144

131 ornamentation of the spores of Goolangia is psilate to scabrate a nd that of the spores of Eoangiopteris is verrucate (Millay, 1978). Compared with spores of ex tant Marattiaceae, including Angiopteris the in situ spores of Goolangia minnesotensis are unique in several aspects. First, the ornamentation of the fossil spores is psilate to scabrate which is not comparable with the conspicuously ornamented spores of exta nt Marattiaceae ferns (Tryon and Lugardon, 1991). Second, the spore number per sporangium in Angiopteris is about 1,500 (Bower, 1923) and may range as high as 2,000-2,500 (Chang, 1975). Fossil Angiopteris blackii have a spore number of 3,000 per sporangium (Hill, 1987). The estimated spore content of 4500 for G. minnesotensis is larger than extant specie s or those from earlier fossil records. Third, considering the published r ecord of spore sizes ranging from 20-40 m (Camus, 1990) for extant species of Mara ttiaceae, the spore size of 47-77 m for G. minnesotensis although relatively large, is closely compared with the spore sizes of Paleozoic marattialean species, e.g. Scolecopteris major, 45-55 m; S. iowensis, 65-80 m; Eoangiopteris andrewsii 45-60 m (Mamay, 1950); E. goodii, 57-83 m (Millay, 1978); and Millaya tularosana, 90-113 m (Mapes and Scha bilion, 1979). Millay (1978) considered that large spores might constitute a primitive character in Marattiaceae. Although Lycopodiaceae and Psilotaceae have sessile and homosporous sporangia, Goolangia minnesotensis clearly differs from them in the nature of its spore ultrastructure. Spore wall ultrastructure of Lycopodiaceae is unique in having compact lamellae that are elaborated in centripetal sequence, and that of the Psilotaceae in its slightly undulate surface of outer exospore layer (T ryon and Tryon, 1982; Tryon and Lugardon, 1991). Moreover the elongate-ellipso idal shape and monolet e aperture in the

PAGE 145

132 spores of the Psilotaceae clearly set them apart from the spores of G. minnesotensis (Tryon and Lugardon, 1991). Family: Marattiaceae Genus: MESOZOISYNANGIA Hu, Dilcher, H. Schneid. et Jarzen gen. nov. Type species: Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. Generic Diagnosis Synangium sessile, consisting of three basally fused trilobed sporangia. Each thick-walled sporangium has a cen tral protruding lobe and two la teral lobes. Cells on the tip of the central lobe are elonga ted parallel to the lobe surf ace with thickened cell walls. Sporangium is homosporous and with numerous (800 +) spores. Spores trilete, psilate to scabrate, with few globules on the sp ore surface. Laes urae are raised. Etymology: “Mesozoi” meaning Mesozoic, “s ynangia” indicating the nature of the sporangia typical of eusporangiate ferns. Species: Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen sp. nov. Species Diagnosis General morphology The individual sporangia occur as fused synangium consisting of three sporangia (Plate 31, Figs. 1, 2, 7, 8), or as isolated 3-lobed sporangium (Plate 31, Figs. 5, 6). Individual sporangia ar e trilobed (Plate 31, Figs. 5, 6), ra nging in size from 0.6 X 0.6 mm to 0.9 X 1.2 mm. The sporangium consists of an upper multicellular layer (36 m thick) and a lower multicellular layer (39 m thick) surrounding a chamber filled with spores (Plate 32, Fig. 1). The sporangium in cross-section was 116 m thick (Plate 32, Fig. 1). Each individual sporangium may contain abou t 3,800 spores, whereas the smallest of the sporangia (Plate 31, Fig. 8) may contain a bout 900 spores. Spores are homosporous.

PAGE 146

133 Spore morphology Spores are subtriangular to circular with a trilete mark (Plate 32, Figs. 2, 3). The spore wall is between 0.5 to 1.5 m thick. Spores range from 27 to 44 m (average 33 m, 63 spores measured). The laesurae are ra ised and extend to the equator (Plate 32, Figs. 2-5). Ornamentation is psilate to finely scabrate wi th few globules on the spore surface (Plate 32, Figs. 2-5). Etymology: “trilobus” meaning each fo ssil sporangium has three lobes. Type material: holotype: 19007-036708M2. Paratypes: 19007-036708-M3, 19007-036708-M4. Specimens deposited at the Paleobotany/Palynology Laboratory, Florida Museum of Natural Histor y, Gainesville, Florida, USA. Type locality: Courtland Clay Pit, New Ulm, Minnesota, USA. Formation: Dakota Formation. Age: Latest Albian to earliest Cenomanian Description The individual sporangia were attached basal-centrally (Plate 31, Fig. 6, arrow denotes the attachment scar), each sporangium having a central protruding lobe and two lateral lobes (Plate 31, Fig. 5, arrows). Each synangium consists of three sporangia (Plate 31, Figs. 2, 8, arrows). Cells on the tip of the central lobe of the middle sporangium (Plate 31, Fig. 2) are elongated parallel to the lobe surface with thickened cell walls (Plate 31, Fig. 3). There are no spores in the tip of this central lobe (Plate 31, Fig. 4, arrow), perhaps suggesting that it is a sterile lobe. Average size of spores is 33 m while the mode is 32 m. The smooth ornamentation of the spores makes it very difficult to link dispersed spores to the Marattiaceae. Spore ultrastructure (TEM) is important in establishing relationship with the Marattiaceae. Granules are often found in masses betw een spores (Plate 32, Fig. 9), or are attached to the surface of the spore and o ccasionally form granule masses. The spore

PAGE 147

134 wall consists of an exospore (1-1.9 m) ( E in Plate 32, Fig. 6). A peri spore is not visible. The exospore is slightly thicke r at the proximal face than at the distal face (Plate 32, Fig. 6), and is differentiated into a homogenous outer exospore layer ( Ee in Plate 32, Fig. 7), a middle exospore layer ( Em in Plate 32, Fig. 8) with cavitie s (Plate 32, Fig. 8, arrow), and a thin and dark inner exospore layer ( Ei in Plate 32, Fig. 7, arrow). The transition between the inner and middle layer is clearly visible, whereas the transition between the middle and outer layer is often undetectable. The outer exospore laye r is homogenous and up to 1.6 m. The middle exospore layer is 252 nm thick with a maximum thickness at the flank of the aperture. The cavities of the middle exospore layer have a diameter of 728 nm (Plate 32, Fig. 8). The inner exospore laye r is thickest (56 nm) at the base of the aperture, and its thickne ss gradually decreases (to 28 nm) to ward the apical part of the proximal fold and the distal face (Plate 32, Fig. 7). Systematic Remarks The observed features of basal sporangia attachment, a thick sporangia wall (ca 31 m in average), a large spore output (ca 900-3,800) and homospory suggest that these specimens have eusporangiate fern affinities. The spore ultrastructure of Mesozoisynangia trilobus is relatively simple compared with that of Goolangia minnesotensis Although inner, middle and outer e xospore layers may be differentiated, the middle exospore layer, with cavities, is thin and less developed. It differs from Ophioglossaceae spore ultrastructure becau se the middle exospore layer lacks the lamellae typical of that family. The spores of M. trilobus are comparable to extant Marattiaceae because in the middle exospore la yer lamellae are absent and cavities are rare.

PAGE 148

135 The basally fused synangia are similar to those of Angiopteris Compared with spore output per sporangium of 1,500-2,500 in extant Angiopteris (Bower,1923; Chang, 1975) and the fossil Angiopteris blackii producing about 3,000 spores per sporangium (Hill, 1987), the spore output of Mesozoisynangia trilobus of 900-3,800 spores per sporangium is comparable to Angiopteris The spore size of M. trilobus (27-44 m) is also comparable to that of extant Angiopteris (20-37 m) as is the spore wall ultrastucture. The absence of a perispore in M. trilobus spores may indicate that the spores were immature (Wang et al., 2001). Although a comparison of the fossil specimens with extant Angiopteris is strong, there are significant differences. The three-lobed sporangium differs from that of extant Angiopteris which is typically a s quat obovoid shape (Hill, 1987) Additionally, spore ornamentation is not comparable with extant Angiopteris spores which display tuberculate to rugate ornamentation. There are important fossil records of Marattiaceae in North America from the Late Carbonifer ous to Permian (Mamay, 1950; Stidd, 1974; Millay, 1979). Acaulangium Millay, Cyathotrachus (Watson) Mamay, Scolecopteris Zenker and Eoangiopteris Mamay are the best-known genera of petrified marattialean synangia in North America (Millay, 1979) Among them, the sporangia of Eoangiopteris are free from each other and may have given ri se to the extant basally fused synangia of Angiopteris (Mamay, 1950). Characteristics of s porangia shape and low spore number in each sporangium (maximum ca. 100) (Mamay, 1950) exclude the possibility that Mesozoisynangia trilobus share affinities with Eoangiopteris The ancestors of M. trilobus are unknown.

PAGE 149

136 In summary, Mesozoisynangia trilobus is similar to Angiopteris in having basally fused synangia, spore output per sporangium, spore size, and spore wall ultrastructure. However, the morphology of the individual spor angia and spore ornamentation differ. Discussion The finding of this fossil eusporangiate fern material indicates that the elements of Marattiaceae were present in North Ameri ca during the mid-Cretaceous. Spores of Goolangia minnesotensis are comparable with the dispersed spore Dictyophyllidites impensus (Hedlund) Singh, differing only in spore wa ll thickness, being twice as thick in D. impensus Judging from the distribution of D. impensus which has been recovered in sediments from Arizona, Oklahoma, Utah, Wyom ing to Alberta and even in the deep sea core near the Bahamas (Singh, 1983), G. minnesotensis may have had a wide distribution in North America. To our knowledge, this is the first record of Marattiaceae in Cretaceous deposits worldwide. The poor fossil record of maratioid ferns in the Dakota Formation may be partly explained by the su sceptibility of their fronds to decay (Hill, 1987). On the other hand, charcoalified pl ant remains, produced by wildfires (Scott, 2000) are almost pure carbon and are chemica lly highly inactive and may remain threedimensional in the fossil mate rial (Eklund et al., 2004). The sedimentary environment at the C ourtland Clay Pit during mid-Cretaceous may have been a large lake (Hajek et al., 2002) with low water energy. The charcoalified isolated fern sporangia and synangia under th ese conditions would be well preserved. Considering that modern elements of Mara ttiaceae are ecologically specialized in the shaded floor of wet, tropical and subtropical forests, especially along streams, gullies and ravines (Tryon and Tryon, 1982; Camus, 1990), the fossil sporangia would have been easily transported to sedimentary basins as their habitats were generally close to the river

PAGE 150

137 systems. This also implies that the pale oclimate in Minnesota dur ing the mid-Cretaceous probably was lacking freezing weather (subtropical). However, the angiosperm fossil leaf record shows a mean annual temperature (MAT) of 21C (Dilcher et al., 2005), typical of a warm temperate climate. Proba bly frosts were infre quent or absent, and moisture abundant. These forests may have pr ovided extensive habitats for the evolution and diversity of ferns, which as understory plants, probably dominated the ecosystem (Coe, et al., 1987; Skog and Dilcher, 1994). The existence of two different types of Angiopteris -like ferns during mid-Cretaceous contri butes to our understanding of the fate of these ferns during the late Mesozoic and their present day diversity. Evidence suggests that a diversificati on of pteridophytes occurred in the Cretaceous after or during the rise of the angiosperms (Schneider et al., 2004). The diversity of ferns during the de position of the mid-Cretaceous Dakota Formation sediments can be best understood when we consider other fern spore and megafossil data from the Dakota Formation. Th e relative abundance of fern spores varies from 45% to 47% in sediments analyzed from Kansas and Nebraska (Farley and Dilcher, 1986). There are 22 species reported as spores (Farley and Dilcher, 1986) and 12 species reported as megafossils at the Rose Creek loca lity in Nebraska (Skog and Dilcher, 1994). These taxa are form species and do not corres pond to natural species Their affinities usually are unknown or speculative. In addition, fern spore morphology among related taxa is often similar making specific iden tification difficult or impossible (Tryon and Tryon, 1982). Analyzing the fern diversity ba sed only upon miospores will create a bias similar to that already observed for megafo ssils. The megafossil record reflects local environment while pollen and spore record s reflect regional vegetation (Dilcher and

PAGE 151

138 Farley, 1988; Potter, 1976). Wang (2004) noted that mesofossils recovered from the Dakota Formation reflected a re gional bias as do pollen and spore records published by Farley and Dilcher (1986). Fr iis et al. (1999) suggested th at mesofossils might reflect local vegetation because they are deposited clos e to their parent plants. The dilemma of regional vs. local origin of the eusporangiate fern spora ngia is evident and for now remains an open question. Mesofossils consist of charcoalified plant remains and are mid-sized fossils between larger megafossils and smaller microfossils. When plant tissues are charcoalified, delicate struct ures, such as anthers c ontaining pollen (Crane and Herendeen, 1996) and sporangia containing spores, are often well preserved. Therefore these mesofossils provide additional characte rs that allow comparisons to morphological features unique to extant plants. This information complements the megafossil record providing information not otherw ise available. In this study, new information includes the nature of the sporangia a nd the spores contained within them. Dispersed spores may be related to a taxon with known affinities making it possible to compare some midCretaceous dispersed spores with eusporangiate ferns. The data presented here represent only tw o taxa. However the total diversity of eusporangiate vs. leptosporangiate ferns pres ent during the mid-Cretaceous probably can not be determined from only dispersed spores and mesofossils. The broad distribution of mid-Cretaceous ferns can be seen from both megafossil and microfossil records of the Dakota Formation. There were 12 -14 fern megafossil species in the western coastal plain of the Western Interior Seaway (Rushforth, 1971) and 10 of the same species are present in the eastern coastal plain of the We stern Interior Seaway while two species are

PAGE 152

139 unique (Skog and Dilcher, 1994). The spore ta xa found in mid-Cretaceous localities of the Dakota Formation in Arizona (Agasi e, 1969; Romans, 1975), Utah (May and Traverse, 1973), Oklahoma (Hedlund, 1966), Ka nsas and Nebraska (Farley and Dilcher, 1986), and Minnesota (Pierce, 1961) are all similar (Farley and Dilcher, 1986). Although angiosperms may have become more diverse during the mid-Cretaceous, the pteridophytes still dominated the eco system (Skog and Dilcher, 1994). Goolangia minnesotensis and Mesozoisynangia trilobus are the first eusporangiate ferns recorded in the Dakota flora of North America. This di scovery indicates that pteridophytes had a higher diversity during the Cretaceous than prev iously thought. Although it is clear that the leptosporangiate ferns diversified during the Cretaceous along with the diversification of angiosperms (Schneider et al., 2004), this study suggests that th e eusporangiate ferns may also have been an element in this same ecosystem.

PAGE 153

140 CHAPTER 10 CONCLUSIONS Based upon the palynological and palybot anical investigation of the Dakota Formation, early Late Cretaceous sediments at the Courtland Clay Pit, Highway 4 Clay Pit, and Ochs Clay Pit in south central Mi nnesota, the following conclusions are reached. There are 218 types of palynomorphs recognized. Among them, 41 types of angiosperm pollen were recovered, five of wh ich are described as new species. The new species are Dryadopollis minnesotensis Hu, sp. nov., Dryadopollis minutus Hu, sp. nov., Liliacidites sinuatus Hu, sp. nov., Phimopollenites striolata Hu, sp. nov., and Tricolpites labeonis Hu, sp. nov.. At the same time 42 types of gymnosperm pollen, and 78 spores of ferns and fern allies were recovered. S pores of ferns and fern allies were the most diverse among the terrestrial palynomorphs. Moreover, tw o types of megaspores, ten types of algal spores and colonies, seve n types of fungal spores and fruiting body, 18 types of dinoflagellate cysts, and 20 types of acritarchs were recove red. The discovery of typical marine dinoflagellate cysts, such as Oligosphaeridium reniforme (Tasch) Davey, 1969, Coronifera oceanica Cookson and Eisenack, 1958, Cyclonephelium cf. vannophorm Davey, 1969, and Subtilisphaera deformans (Davey and Verdier) Stover and Evitt, 1978, in the sediments above the lignite at Ochs Clay Pit suppor ts the interpretation of estuarine environments by Sloan (1964). Based upon the common occurrence of Liliacidites reticulatus, Tricolpites cf. vulgaris, Phimopollenites striolata and Fraxinoipollenites constrictus in sample 036710 at the Courtland Clay Pit, in sample 046517 at the Highway 4 Clay Pit, and in sample

PAGE 154

141 046522 at the Ochs Clay Pit, I propose that the sediments from which these samples were collected represent time equivalent deposits (F igure 5-12). Thus it is possible to make some stratigraphic comparisons between these three clay pits. By comparison with the results of Singh (1983), Nichol s (1994), Ravn and Witzke (1995), Witzke et al. (1996), and Brenner et al. (2000), based upon the occurren ce of megaspore Balmeisporites glenelgensis fern spores Dictyophyllidites impensus and Cicatricosisporites crassiterminatus and angiosperm psilate tricolporate pollen type Nyssapollenites sp. and the obligate tetrad Artiopollis indivisus in the research areas, the age of the Cretaceous coeval sediments exposed at the Courtland Cl ay Pit, Highway 4 Clay Pit and Ochs Clay Pit is probably middle Cenomanian. Based upon the analysis of angiosperm polle n characteristics from the Ochs Clay Pit, Courtland Clay Pit, and Highway 4 Clay P it, the pollen types that appear to be insectpollinated accounted for 77% of all pollen type s, and the pollen types that appear to be wind-pollinated accounted for 23% of all polle n types. Wind-pollinated plants probably were not dominant around coastal lakes, sw amps, and the inland meandering river areas during the middle Cenomanian. It is probable that 15 angiosperm pollen t ypes recovered from the lignite represent plants that may have inhabited coastal sw amps and adjacent areas during the middle Cenomanian. Based upon the occurrence, re lative abundance, and pollen clumps, the angiosperms releasing Liliacidites sinuatus and Artiopollis indivisus may have grown in the swamps. On the other hand, the angiosperm s releasing Fraxinoipo llenites constrictus, Liliacidites reticulatus, Phimopollenites striol ata, and Tricolpites cf. vulgaris may not have grown in coastal swamps.

PAGE 155

142 The species diversity of ferns and fern allies (16 types) wa s slightly higher than that of angiosperms (15 types) in coastal swam p and adjacent areas during the Cenomanian. Based upon relative abundance analysis it appear s that the dominant ferns and fern allies in coastal swamps may have been th e ferns or fern allies that produced Gleichiidites senonicus (31%) and ? Gleichiidites sp. (42%). Moreover, Deltoidospora hallii ? Auritulinasporites sp., Laevigatosporites ovatus may have been important elements in the coastal swamps and adjacent areas. Based upon relative abundance, the plants releasing bisaccate pollen probably did not inhabit the coastal areas. But other non-bisaccate pollen such as ? Eucommiidites sp., Araucariacites australis Bacumonoporites baculatus Inaperturopollenites sp., Monosulcites sp.2, Sabalpollenites scabrous Taxodiaceaepollenites hiatus may have grown in coastal swamps or adjacent ar eas. Among them, the plant releasing ? Eucommiidites may have been restricted to coasta l swamps. Also, the plants releasing pollen Inaperturopollenites sp., Sabalpollenites scabrous and Taxodiaceaepollenites hiatus may have been dominant among the gymnos perm plants in coastal swamps and adjacent areas. The palynological data recovered from samples representing coastal swamps suggest that although angiosperms became impo rtant in species diversity the ferns and fern allies still play an important role in the ecosystem. This conclusion supports that proposed by Farley and Dilche r (1986) and Coe et al ( 1987). Based on the comparison with palynological assembla ges recovered from coal or lignite from northwestern Arizona, northwestern Iowa and northeastern Nebraska, and central Kansas (Agasie, 1969; Farley, 1982; Farley and Dilcher, 1986; Ra vn and Witzke, 1995), it is possible that

PAGE 156

143 the characteristic vegetation elements of th e coastal swamps during Cenomanian were diverse angiosperms, abundant ferns and fe rn allies, and a relative low abundance of gymnosperms. A comparison between the megafossil record and the microfossil record at the Courtland Clay Pit indicates that both record s are influenced by biases. The best method is to combine the results from both the mega fossil record and the microfossil record in order to reach a final interpretation of the natu re of the fossil floras. At Courtland Clay Pit, in addition to magnoliids (which include Magnoliales and Laurales), Proteales, Saxifragales which were rec overed from leaf records, th e Trochodendrales and Buxales of the eudicots were all present during middle Cenomanian based upon the microfossil records. Also the in situ pollen records of mesofossil inve stigations were crucial for an accurate interpretation of the dispersed pollen records. Two new marattioid ferns, Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. and Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov., were discovered based on char coalified isolated s porangia and synangia recovered from the Dakota Formation of the C ourtland Clay Pit. These fossils provide evidence for the existence of marattioid ferns during the Cenomanian in North America and present the first unequivocal documenta tion of the Marattiac eae in post Jurassic times. The in situ spores of Goolangia minnesotensis are comparable with the dispersed spore Dictyophyllidites impensus (Hedlund) Singh. Accordi ng to the distribution of D. impensus which has been recovered in sedime nts from Arizona, Oklahoma, Utah, Wyoming to Alberta and even in the deep sea core near the Bahamas (Singh, 1983), G.

PAGE 157

144 minnesotensis appears to have had a wide distri bution in North America (Singh, 1983) during middle Cenomanian.

PAGE 158

145 APPENDIX A PROCESSING PROCEDURES USED BY GLOBAL GEOLAB LIMITED, CACADA Acid Digestion/Cleaning 1. 5-15 grams of sample is placed in a 250 polypropylene beaker. The specific weight for each sample is measured and recorded on the proce ssing record. Then two lycopodium spore tablets (batch # 124961) are added to each sample. 2. A 10% solution of HCL is added, watchi ng for an overly violent reaction, which is dampened with an atomized spray of distilled water from a spray bottle. This minimizes the dilution of the acid. 3. Allow time for carbonates to di ssolve, generally overnight. 4. Decant the spent HCL. Add distilled wa ter, allow settling and decanting again. The sample is diluted and decanted three times to remove any remaining calcium ions, which can produce a precipitate when HF is added. 5. 70% HF is added, watching for any viol ent reaction, which is dampened with distilled water as above. The sample in HF is oscillated for up to four hours until digestion completed. 6. Pour the digested sample into a 50ml. Po lypropylene test tube and centrifuge for five minutes at 2000RPM. Carefully decant the top or the spent HF. 7. Add distilled water while vortexing and centrifuge for two minutes. (Repeat until neutral) 8. This washing/centrifuging is repeated until the fine caustic material has been removed. (Three or four times) 9. To allow for a better heavy liquid sepa ration, add a few drops of concentrated HCL vortex while adding water a nd centrifuge for four minutes. Heavy Liquid Separation 1. Add Approximately 25ml of ZnBr2 Sp. Gravity 2.0; vortex thoroughly. 2. Place each test tube in an ultrasonic bath for approximately ten seconds.

PAGE 159

146 3. Allow the samples to sit for ten minutes before centrifuging for fifteen minutes at 2000 RPM. I feel that the ten-minut e wait allows for better separation. 4. Pour off the “float” into another 50ml t ube, wash and centrifuge for two minutes at 2000 RPM, repeat three times 5. Transfer the remaining resi due to a 20ml glass tube. Examine a small smear of the residue to determine th e amount of oxidation required. Oxidation 1. Place approximately 3ml of Schultz solution on the residue, vortex and place the tube in a hot bath for a time determined in step 14. (Notetime of oxidation for these samples was approximately 30 seconds.) 2. Remove the spent Schultz solution by washing and centrifuging until neutral. Check small smear of residue to s ee if the oxidation is sufficient. 3. Add a 10% solution of NH4OH (and place in hot water bath) for two minutes. Centrifuge and wash three times as in step 17. 4. Examine the residue to determine if th e desired level of oxidation has been achieved. If more is requires repeat steps 16-18 Mounting of Slides 1. The sieved fractions are pipetted off a nd mixed in one drop of polyvinyl alcohol with a glassstirring rod. 2. When the polyvinyl alcohol/residue has dried, one drop of clear casting resin added and the cover slip is turned and sealed. Permanent curing occurs in approximately one hour.

PAGE 160

147 APPENDIX B PALYNOMORPH RAW DATA SHEET Table 1. The spreadsheet of palynom orphs from Courtland Clay Pit. Fraxinoipollenites constrictus 20P Liliacidites giganteus P Liliacidites cf. reticulatus PP Nyssapollenites sp. PPP3 Phimopollenites striolata P Retimonocolpites dividuus P Rousea cf delicipollis P26P Satishia sp. P ? Spinizonocolpites sp. P Stellatopollis largissimus PP Stellatopollis sp. P Striatopollis paraneus 6 Tricolpites cf. vulgaris 44PPPP52P49P Tricolpites labeonis 27PPP15P6P Tricolpites nemejci 1PP Tricolpate sp.413PPPP Tricolpate sp.7PP Tricolpate sp.11P Total angiosperm pollen 122115133 Gymnosperm pollen Alisporites rotundus 3PP11 Araucariacites australis 1PP Bacumonoporites baculatus PPP Cedripites cretaceus PP C. sp. 2PPP43 Classopollis torosus 3PP1 Cycadopites sp. 1P2P Equisetosporites sp.1 P

PAGE 161

148 Table 1--continued. Taxa 03669003669403670203670403670703670803670903671018297 Gymnosperm pollen Alisporites rotundus 3PP11 Araucariacites australis 1PP Bacumonoporites baculatus PPP Cedripites cretaceus PP C. sp. 2PPP43 Classopollis torosus 3PP1 Cycadopites sp. 1P2P Equisetosporites sp.1 P E. sp.2 P5 E. sp.3 6 Eucommiidites sp. 1 P Exesipollenites sp P Inaperturopollenites sp. 80PPPP34P49 Monosulcites sp.1 1P M sp.2 P1 M sp.3 M. sp.4 P Pityosporites constrictus 3PPP6PP Pristinupollenites sulcatus 2PPPPP4 P. inchoatus 1PP P. microsaccus P23 P. pannosus 1PPP9 P. crassus P P. sp. P P. sp.2 1 Punctabivesiculites parvus 1P cf. Punctamultivesiculites inchoatus 1 Rugubivesiculites rugosus 2P1P5 R cf. multiplex PP2P R cf. reductus 111 R. convolutus PPPP ? Rugubivesiculites sp. P Sabalpollenites scabrus 3P8P25 Taxodiaceaepollenites hiatus 38PPPP23P18 Total gymnosperm pollen 14491125

PAGE 162

149 Table 1--continued Taxa 03669003669403670203670403670703670803670903671018297 Spore ? Acanthotriletes sp. P Aequitriradites spinulosus PP Triporoletes sp.1 P1P Triporoletes sp.2 14PP Triporoletes sp.3 P Appendicisporites cf. matesovae P A. potomacensis P Auritulinasporites sp. PP ? Auritulinasporites sp. 10PPP2P10 Baculatisporites comanmensis P Baculatisporites sp. P Biretisporites sp.1 PP Biretisporites sp.2 P Camarozonosporites sp.1 PPP3 ? Cerotosporites sp. PP ? Chomotriletes sp. P Cicatricosisporites crassiterminatus 2 C. hughesi P C. hallei P C. sp.1 P2 C. sp.4P ? Concavissimisporites sp. P Cyathidites australis P Cyathidites minor 1PPPP Cyathidites punctatus PP4 Deltoidospora halii 4PP2 Dictyophyllidites sp.1 PP Dictyophyllidites impensus 11 Foveosporites sp. 1 Foveotriletes sp. P Gleichiidites senonicus 1PP37 ? Gleichiidites sp. PP ? Granulatisporites sp. P Impardecispora sp.1 P Klukisporites sp.1 P Klukisporites sp.2 P Laevigatosporites ovatus 1PP11 L. sp2 P

PAGE 163

150 Table 1--continued Taxa 03669003669403670203670403670703670803670903671018297 Lycopodiacidites sp.1 P Lycopodiacidites sp.2 1P Lycopodiumsporites sp. P Microfoveolatosporis pseudoreticulatus P Neoraistrickia sp. P Plicatella fucosa PP2 P. witzkei PPP P. sp.1 P P. sp.2 1 Retitriletes sp.1 P R sp.2 P Stereisporites sp.1 P1 Sestrosporites sp.1 P Taurocusporites segmentatus P1 Trilobosporites purvernlentus PP Triporoletes reticulatus PPP Triporoletes involucratus P Verrucosisporites sp. PP spore type 1 P Total spore 232539 Total terrestrial palynomorphs 289231297 Algal and fungal spores Fungal spore sp.16PPPP5P Fungal spore sp.4P Fungal spore sp.74 Fungal fruiting body (Microthyriaceae) P Laevigatasporites sp. PP4 Oedogonium cretaceum P Palambages sp. PP Pediastrum sp. PP Ovoidites sp. 1P3 Schizosporis reticulatus P Tetraporina sp. P Total algal and fungal spores 7133

PAGE 164

151 Table 1--continued Taxa 03669003669403670203670403670703670803670903671018297 Dinoflagellate cysts and acritach ? Canningia sp. P Dino A4PP32PP Dino B1P Dino CP4P Dino DP2 Dino FP Dino HP cf. Geiselodinium sp. P Nyktericysta cf. pentagona P1 cf. Odontochitina sp. P cf. Pterodinium cingulatum subsp. c ingulatum P Acritach type AP Acritach type BP ? Acritach type 11 ? Acritach type 21 ? Acritach type 3P4 ? Acritach type 4P ? Acritach type 5P Micrhystridium singulare P Micrhystridium sp.1 23 M. sp.2 P M. sp.3 PP7P2 M. sp.4 PPP M sp.5 P Pterospermella australiensis P Veryhachium cf. reductum 1 Veryhachium sp.1 1 Veryhachium sp.2 P Veryhachium sp.3 P Total dinofla g ellate c y sts and acritach 8742 Total palynomorphs 304318302

PAGE 165

152 Table 2. The spreadsheet of palynom orphs from Highway 4 Clay Pit. Taxa 046517036716036717 Angiosperm pollen Liliacidites cf. inaequalis 2P1 Liliacidites reticulatus 2PP Liliacidites sp.5 P1 Phimopollenites striolata 188256 Rousea cf delicipollis P Tricolpites cf. vulgaris 45612 Fraxinoipollenites constrictus 14 Total angiosperm pollen 2513120 Gymnosperm pollen Araucariacites australis 157 Bacumonoporites baculatus 1816 Cedripites cretaceus 54 C. sp. 21717 Classopollis torosus 1 Entylissa sp. 6P Inaperturopollenites sp. 11166 M sp.2 2610 Parvisacites radiatus 3131 ? Pityosporites constrictus P122 Podocarpidites minisculus P11 P. sp. 89 Pristinupollenites sulcatus 552 P. inchoatus 84 P. microsaccus 33 P. pannosus 389 P. crassus 3 Punctabivesiculites parvus P1212 Rugubivesiculites multisaccus 92 Rugubivesiculites rugosus 112620 R. convolutus 11519 Sabalpollenites scabrus 22029 Taxodiaceaepollenites hiatus 312 Total gymnosperm pollen 43222208

PAGE 166

153 Table 2—continued. Taxa 046517036716036717 Spore ? Auritulinasporites sp. 11312 Camarozonosporites sp.1 1 ? Cerotosporites sp. PP Cicatricosisporites coconinoensis PP C. sp.2 P C. sp.3 P Deltoidospora hallii 712 Deltoidospora sp. 2 ? Dictyophyllidites impensus PPP Gleichiidites senonicus 538 ? Gleichiidites sp. 64 ? Laevigatosporites irroratus 1 Laevigatosporites ovatus P3 P. witzkei 1P P. fucosa P Punctatriletes punctus 39 ? Retitriletes sp. P ? Stoverisporites sp. PP Triporoletes reticulatus PP Total spore 73873 Total terrestrial palynomorphs 301291301 Megaspore Megaspore type 1P Algal and fungal spores Fungal spore sp.121 Fungal spore sp.2P Fungal spore sp.31 Fungal spore sp.47 Fungal spore sp.521 Fungal spore sp.61 Laevigatasporites sp. 1P Oedogonium cretaceum 2 Palambages sp. 3 ? Ovoidites sp.1 2 Total algal and fungal spores 2165 Total palynomorphs 303307306

PAGE 167

154 Table 3. The spreadsheet of pal ynomorphs from Ochs Clay Pit. Taxa 046522046526046533046535046536046540046545 Angiosperm pollen Artiopollis indivisus 698405032113 Clavatipollenites tenellis 1 Clavatipollenites sp.2 11 ? Clavatipollenites sp.3 611 Cupuliferoidaepollenites sp. 3111 P 45177 Doyleipollenites robbinsiae P 2 P 2 Foveotricolpites sp. 3 Foveotricolporites rhombohedralis P 4 P Fraxinoipollenites constrictus 7 Liliacidites sp.2P Liliacidites sp.3P 101025 Liliacidites sp.4 4 P 2 Liliacidites sinuatus 8 P Liliacidites cf. reticulatus P Nyssapollenites sp. 1226 Phimopollenites striolata 116 Psilatricolporites subtilis 2 Retimonocolpites dividuus 6 Tricolporate sp.2 PPP Tricolpites labeonis 716456616 Tricolpites nemejci 6223101 Tricolpites cf. vulgaris 5929111 Tricolpate sp.4201011 Tricolpate sp.74 Tricolpate sp.82 P Tricolpate sp.1022 P 6 Tricolpate sp.1122 Tricolpate sp.12912 Tricolpate sp.1462 Total angiosperm pollen 15185196818491169

PAGE 168

155 Table 3—continued. Taxa 046522046526046533046535046536046540046545 Gymnosperm pollen Alisporites rotundus 1 P 51 PP Araucariacites australis 131231 Bacumonoporites baculatus 2 PPP 11 Cedripites cretaceus 31 P 2111 C. sp. 75 P 62 PP Cycadopites sp. 101010 Equisetosporites sp.1 31 Eucommiidites sp. 1 2 ? Eucommiidites sp. 1 Inaperturopollenites sp. 24806025426433 Monosulcites sp.1 3 M. sp.25 P 213 M. sp.3 P M. sp.441 Pityosporites constrictus 21321 ? Pityosporites constrictus 3 P 31 Pristinupollenites sulcatus 11 P 31 P. inchoatus 1 P P. microsaccus 3 P. pannosus 41 P 4 PP Parvisacites radiatus 1 P 1 P 41 P Podocarpidites minisculus 22 P. canadensis P P sp. 2 Punctabivesiculites parvus 114 P Punctamultivesiculites cf. inchoatus 1 P Rugubivesiculites rugosus 63 P 3 P 1 R cf. multiplex 31P R cf. reductus 431 R. convolutus 47161 P Sabalpollenites scabrus 116215911 Taxodiaceaepollenites hiatus 7161431254 Total gymnosperm pollen 8815592917610146

PAGE 169

156 Table 3—continued. Taxa 046522046526046533046535046536046540046545 Spore Appendicisporites auritus P A. cf. matesovae P A. problematicus PPP ? Auritulinasporites sp. 6329223 Camarozonosporites sp.1 5 P 25 C. sp.3P P 1 Cicatricosisporites cf. crassiterminatus P Cicatricosisporites hughesi 2 C. crassiterminatus P C. sp.4P P Concavissimisporites sp.P ? Concavissimisporites sp.P Converrucosisporites sp.P 1 Costatoperforosporites sp. 1 P Crybelosporites sp.P Cyathidites australis P 1 P 2 Deltoidospora halii 13131028142014 Deltoidospora sp. 1 Dictyophyllidites impensus 11 PP Gleichiidites senonicus 1412630311210 ? Gleichiidites sp. 64533438 Ischyosporites sp. 1 P 1 P ? Januasporites sp. P ? Klukisporites sp. P Laevigatosporites ovatus 1561161 Lycopodiacidites sp.2 1 Lycopodiumsporites marginatus P P Microfoveolatosporis pseudoreticulatus PP cf. Phaeoceros form AP Plicatella fucosa P Punctatriletes punctus 1 P Stereisporites sp.1 123Sestrosporites sp.2P 21 Trilobosporites purvernlentus 11 Triporoletes reticulatus 1 Undulatisporites sp. P Verrucosisporites sp.P Total spore 514718117886734 Total terrestrial palynomorphs 290287306289248259249

PAGE 170

157 Table 3—continued. Taxa 046522046526046533046535046536046540046545 Algal and fungal spores Fungal spore sp.121P Fungal spore sp.51 Oedogonium cretaceum 4182664 Ovoidites grandis PP Ovoidites sp. 2326136 ? Ovoidites sp.2P 1 Palambages sp. 4 P Schizosporis reticulatus PP Tetraporina sp. 1 Total algal and fungal spores 5949521911 Megaspore Balmeisporites glenelgensis 1 Total megaspore 0000100 Dinoflagellate cysts and acritach Coronifera cf. oceanica P Cyclonephelium cf. vannophorm 1 P ? Cyclonephelium sp. 22 Dino A3 P 4 Dino B 3 Dino C P 1031 Dino D11 Dino H2 P Dino I P cf. Geiselodinium sp. 6 Nyktericysta cf. pentagona P 2 Oligosphaeridium reniforme 2 Oligosphaeridium sp. 21 Subtilisphaera deformans 1 ? Trithyrodinium sp. PPP Acritach type C PP Micrhystridium sp.3 11 M sp 5 3 Veryhachium reductum 1 P Total dinoflagellate cysts and acritach 62646 Total palynomorphs 295302310298301304306

PAGE 171

158 APPENDIX C PLATE EXPLANATION Plate 1 1. Courtland Clay Pit. Showing collection site. 2. Lower section at Courtland Clay Pit. Plate 2 1. Upper section at Courtland Clay Pit. 2. Close up of upper section at Courtland Clay Pit. Plate 3 1. Overall view of the Ochs Clay Pit. 2. Close up of the section at Ochs Clay Pit. Plate 4 1. Lignite layer evident at Ochs Clay Pit. 2. Close up of Ochs Clay Pit upper sediment s representing transitional environments. Plate 5 1. Overall view of the Highway 4 Clay Pit. 2. Close up of southwest (SW) sec tion of Highway 4 Clay Pit. Plate 6 (All scale bar is equal to 10 m unless otherwise indicated) 1. Clavatipollenites tenellis Phillips & Felix 1972, 046526-PY03A, N40, high focus. 2. Same as 1, mid-focus. 3. Same as 1, low focus 4. Clavatipollenites sp.2, 046535-PY02A, U40/4, high focus. 5. Same as 4, mid-focus. 6. Same as 4, low focus. 7. ? Clavatipollenites sp.3, 046536-PY05B, L23/1, high focus. 8. Same as 7, mid-focus. 9. Same as 7, low focus. 10. Liliacidites sinuatus Hu, sp. nov., 046535-PY02A, S33/3, mid-focus. 11. Liliacidites sinuatus Hu, sp. nov., 046535-PY02A, Y39/1, high focus, holotype. 12. Same as 11, mid-focus. 13. Same as 11, low focus. 14. Liliacidites giganteus Singh 1983, 036708 + 10 O41/4, mid-focus. 15. Liliacidites cf. reticulatus (Brenner) Singh 1971, 036716-A5 + 10 M16, mid-focus, showing entire pollen clumps. 16. Liliacidites cf. reticulatus (Brenner) Singh 1971, 046522-PY01A, O33/4, high focus.

PAGE 172

159 17. Same as 16, mid-focus. 18. Same as 16, low focus. 19. Same as 15, high focus, showing part of pollen clumps closely. Plate 7 (All scale bar is equal to 10 m unless otherwise indicated) 1. Same as 19 in plate 6, mid-focus. 2. Same as 19 in plate 6, low-focus. 3. Liliacidites cf. inaequalis Singh 1971, 046517-A1 +10 S26, high focus. 4. Same as 3, mid-focus. 5. Liliacidites sp.2, 046533-PY03A, Q22/1, high focus. 6. Same as 5, mid-focus. 7. Same as 5, low focus. 8. Liliacidites sp.3, 046535-PY02A, Y30/2, high focus. 9. Same as 8, mid-focus. 10. Same as 8, low focus. 11. Liliacidites sp.4, 046535-PY02A, G34, high focus. 12. Same as 11, mid-focus. 13. Same as 11, low focus. Plate 8 (All scale bar is equal to 10 m unless otherwise indicated) 1. Liliacidites sp.5, 036716-PY01A, U35/3, high focus. 2. Same as 1, mid-focus. 3. Same as 1, low focus. 4. Retimonocolpites dividuus Pierce 1961, 046522-PY01A, H42/1, mid-focus. 5. ? Spinizonocolpites sp., 036690 + 10 P41/4, high focus. 6. Same as 5, mid-focus. 7. Stellatopollis largissimus Singh 1983, 036690 + 10 R43/3, mid-focus. 8. Stellatopollis sp., 036710 + 10 K34/1, mid-focus. 9. Doyleipollenites robbinsiae Ravn & Witzke, 1995, 046533-PY03A, M38/3, high focus. 10. Same as 9, mid-focus. 11. Same as 9, low focus. 12. Artiopollis indivisus Agasie, 1969, 046522-PY01A, Q28, high focus. Plate 9 (All scale bar is equal to 10 m unless otherwise indicated) 1. Same as 12 in plate 8, mid-focus. 2. Same as 12 in plate 8, low focus. 3. Artiopollis indivisus Agasie, 1969, SEM, 046533 stub3, scale bar = 5 m. 4. Same as 3, scale bar = 2 m. 5. Artiopollis indivisus Agasie, 1969, 046535-PY02A, S32, mid-focus. Showing pollen clumps. 6. Same as 5, high focus, showing part of pollen clumps closely. 7. Same as 6, mid-focus.

PAGE 173

160 Plate 10 (All scale bar is equal to 10 m unless otherwise indicated) 1. Artiopollis indivisus Agasie, 1969, 046535-PY03A, L23/2, high focus. Showing pollen clumps. 2. Same as 1, mid-focus. 3. Same as 1, low focus. 4. Cupuliferoidaepollenites sp., 046522-PY01A, Q18/4, mi d-focus. Showing pollen clumps. 5. Cupuliferoidaepollenites sp., 046522-PY01A, x45, mid-focus. 6. Cupuliferoidaepollenites sp., SEM, 036708 stub12. Showing pollen clumps. 7. Same as 6, close-up of one pollen grain. 8. Foveotricolpites sp., 046522-PY01A, S41, high focus. 9. Same as 8, mid-focus. 10. Same as 8, low focus. 11. Fraxinoipollenites constrictus (Pierce) Chlonova, 1976, 046517-A1, R24/3, midfocus. 12. Fraxinoipollenites constrictus (Pierce) Chlonova, 1976, 046517-A1, R13/3, high focus. 13. Same as 12, mid-focus. 14. Same as 12, low focus. 15. Fraxinoipollenites constrictus (Pierce) Chlonova, 1976, SEM, 046522 stub2. 16. Rousea cf. delicipollis Srivastava, 1975, 046517-A1, H15/4, high focus. 17. Same as 16, mid-focus. 18. Same as 16, low focus. 19. Satishia sp., 036690 +10 N39/1, high focus. 20. Same as 19, mid-focus. Plate 11 (All scale bar is equal to 10 m unless otherwise indicated) 1. Striatopollis paraneus (Norris) Singh, 1971, 036710-PY01B, O33, high focus. 2. Same to 1, mid-focus. 3. Same to 1, low focus. 4. Striatopollis paraneus (Norris) Singh, 1971, 036710-PY01B, H32/3, high focus. 5. Same to 4, mid-focus. 6. Same to 4, low focus. 7. Tricolpites labeonis Hu, sp. nov., 046526-PY03A, Y37, high focus. 8. Same to 7, mid-focus. 9. Same to 7, low focus. 10. Tricolpites labeonis Hu, sp. nov., SEM, 046533 stub3. Scale bar = 2 m. 11. Tricolpites labeonis Hu, sp. nov., SEM, 046533 stub3. Scale bar = 2 m. 12. Tricolpites labeonis Hu, sp. nov., SEM, 046533 stub3. Scale bar = 2 m. 13. Tricolpites labeonis Hu, sp. nov., 046533-PY03A, R35/1, high focus. Showing pollen clumps. 14. Same as 13, mid-focus. 15. Same as 13, low focus. Plate 12 (All scale bar is equal to 10 m unless otherwise indicated) 1. Tricolpites nemejci Pacltova 1971, 046535-PY02A, B41/4, high focus.

PAGE 174

161 2. Same as 1, mid-focus. 3. Same as 1, low focus. 4. Tricolpites cf. vulgaris (Pierce) Srivastava, 1969, 046522-PY01A, C37/3, high focus. 5. Same as 4, mid-focus. 6. Same as 4, low focus. 7. Tricolpites cf. vulgaris (Pierce) Srivastava, 1969, 036717-PY01A, S21, mid-focus. Showing pollen clumps. 8. Tricolpate sp.4, 046522-PY01A, M45/1, high focus. 9. Same as 8, mid-focus. 10. Same as 8, low focus. 11. Tricolpate sp.7, 046526-PY03A, Y42/1, high focus. 12. Same as 11, mid-focus. 13. Same as 11, low focus. 14. Tricolpate sp.8, 046526-PY03A, Y23/2, high focus. 15. Same as 14, mid-focus. 16. Same as 14, low focus. 17. Tricolpate sp.10, 046535-PY 02A, R32/4, high focus. 18. Same as 17, mid-focus. 19. Same as 17, low focus. 20. Tricolpate sp.11, 046535-PY02A, x48, high focus. 21. Same as 20, mid-focus. 22. Same as 20, low focus. Plate 13 (All scale bar is equal to 10 m unless otherwise indicated) 1. Tricolpate sp.12, 046540-PY03A, J19, high focus. 2. Same as 1, mid-focus. 3. Same as 1, low focus. 4. Tricolpate sp.14, 046540-Py03A, S29, high focus. 5. Same as 4, mid-focus. 6. Same as 4, low focus. 7. Dryadopollis minnesotensis Hu, sp. nov. 036694-PY01A, S31/1, high focus. 8. Same as 7, mid-focus. 9. Same as 7, low focus. 10. Dryadopollis minnesotensis Hu, sp. nov., 036708 + 10 N36, mid-focus. Showing pollen clumps. 11. Dryadopollis minnesotensis Hu, sp. nov., 036708 + 10 M35/1, mid-focus. Showing pollen clumps. 12. Dryadopollis minnesotensis Hu, sp. nov., 036708 + 10 N34/3, mid-focus. Showing pollen clumps. 13. Dryadopollis minnesotensis Hu, sp. nov., SEM, 036708, Stub 12. Showing pollen clumps. Scale bar = 6 m. 14. Same as 13, close-up of the pore. Scale bar = 1 m. Plate 14 (All scale bar is equal to 10 m unless otherwise indicated) 1. Dryadopollis minnesotensis Hu, sp. nov., SEM, 036708, Stub 11. Showing pollen clumps.

PAGE 175

162 2. Dryadopollis minutus Hu, sp. nov., 036704-PY01A, L41, holotype, high focus. 3. Same as 2, mid-focus. 4. Same as 2, low focus. 5. Foveotricolporites rhombohedralis Pierce, 1961, 046526-PY03A, P44/4, high focus. 6. Same as 5, mid-focus. 7. Same as 5, low focus. 8. Foveotricolporites rhombohedralis Pierce, 1961, 046526-PY03A, U26/3, high focus. 9. Same as 8, mid-focus. 10. Same as 8, low focus. 11. cf. Foveotricolporites sp., 036708 +10 R35/1, high focus. 12. Same as 11, mid-focus. 13. cf. Foveotricolporites sp., 036708 +10 E42, mid-focus. 14. Phimopollenites striolata Hu, sp. nov., 046517-A1, + 10 N29/3, high focus. 15. Same as 14, mid-focus. 16. Same as 14, low focus. 17. Phimopollenites striolata Hu, sp. nov., 046517-A1, + 10 R22/1, high focus. 18. Same as 17, mid-focus. 19. Phimopollenites striolata Hu, sp. nov., 046517-A1, + 10 F14, high focus. Showing pollen clumps. 20. Same as 19, mid-focus. 21. Same as 19, low focus. Plate 15 (All scale bar is equal to 10 m unless otherwise indicated) 1. Phimopollenites striolata Hu, sp. nov., SEM, 046517 stub 1, polar view. Scale bar = 2 m. 2. Same as 1, close-up of pollen surface. Scale bar = 1 3. Phimopollenites striolata Hu, sp. nov., SEM, 046517 stub 1, equatorial view. Scale bar = 2 m. 4. Nyssapollenites sp., 046533-PY03A, W30/3, high focus. 5. Same as 4, mid-focus. 6. Same as 4, low focus. 7. Nyssapollenites sp., 046533-PY03A, x42, high focus. 8. Same as 7, mid-focus, 9. Same as 7, low focus. 10. Nyssapollenites sp., SEM, 046533 stub3. Scale bar = 2 m. 11. Same as 10, close-up of pollen surface. Scale bar = 1 m. 12. Same as 10, close-up of pore. Scale bar = 1 m. Plate 16 (All scale bar is equal to 10 m unless otherwise indicated) 1. Tricolporate sp.2, 046526-PY03A, x43/3, high focus. 2. Same as 1, mid-focus. 3. Same as 1, low focus. 4. Psilatricolporites subtilis (Groot, Penny and Gr oot) Singh 1983, 046522-PY01A, N29/3, mid-focus. Showing pollen clumps. 5. Alisporites rotundus Rouse, 1959, 046526-PY03A, U28/4, mid-focus. 6. Cedripites cretaceous Pocock 1962, 036716-A5, + 10 H32, mid-focus.

PAGE 176

163 7. Cedripites sp., 036716-A5, + 10 P25, mid-focus. 8. Parvisaccites radiatus Couper 1958, 036716-A5, + 10 P15/1, mid-focus. 9. Pityosporites constrictus Singh 1964, 036708 + 10 G41/3, mid-focus. 10. ? Pityosporites constrictus 036716-A5, + 10 V12/4, mid-focus. 11. Podocarpidites canadensis Pocock, 1962, 046526-PY03A, U28/4, mid-focus. 12. Podocarpidites minisculus Singh 1964, 036717-PY02A, T41, mid-focus. 13. Podocarpidites sp., 036716-A5, + 10 L12/2, mid-focus. Plate 17 (All scale bar is equal to 10 m unless otherwise indicated) 1. Pristinuspollenites crassus (Pierce) Tschudy, 1973, 036717-PY01A, Q20/2, mid-focus. 2. Pristinuspollenites inchoatus (Pierce) Tschudy 1973, 036717-PY01A, R26/1, midfocus. 3. Pristinuspollenites microsaccus (Couper) Tschudy 1973, 036708 +10 F39/2, midfocus. 4. Pristinuspollenites pannosus (Pierce) Tschudy 1973, 036708 +10 E34, mid-focus. 5. Pristinuspollenites sulcatus (Pierce) Tschudy 1973, 036708 +10 x39/1, mid-focus. 6. ? Pristinuspollenites sp., 036702-PY01A, L34, mid-focus. 7. Pristinuspollenites sp. 2, 036710 +10 W42, mid-focus. 8. Punctabivesiculites parvus Pierce, 1961, 036716-A5, +10 V31/4, mid-focus. 9. Rugubivesiculites convolutus Pierce 1961, 036717-PY01A, S27/4, mid-focus. 10. Rugubivesiculites cf. multiplex Pierce 1961, 046535-PY02A, W26/3, mid-focus. 11. Rugubivesiculites multisaccus Singh, 1983, 036717-PY01A, Q29/3, mid-focus. 12. Rugubivesiculites cf. reductus Pierce 1961, 046536-PY05B, S24/4, mid-focus. 13. Rugubivesiculites rugosus Pierce 1961, 036708 +10 F29/1, mid-focus. 14. ? Rugubivesiculites sp., 036708 +10 E31/2, mid-focus. 15. Araucariacites australis Cookson 1947, 036708 +10 F40/3, mid-focus. 16. Inaperturopollenites sp., 036690 +10 R40/1, mid-focus. 17. Taxodiaceaepollenites hiatus (Potonie) Kremp 1949, 036708 +10 G28/2, midfocus. 18. Eucommiidites sp.1, 046522-PY01A, H20/2, mid-focus. 19. Eucommiidites sp. 2, 046536-PY05B, O49/1, mid-focus. 20. Equisetosporites sp.1, 046526-PY03A, T40/3, mid-focus. Plate 18 (All scale bar is equal to 10 m unless otherwise indicated) 1. Equisetosporites sp.2, 036708 +10 W38/4, mid-focus. 2. Equisetosporites sp.3, 036708 +10 O32, mid-focus. 3. Equisetosporites sp.3, SEM, 036708 stub 12. Scale bar = 6 m. 4. Cycadopites sp., 046522-PY01A, R25/1, mid-focus. 5. Same as 4, low focus. 6. Entylissa sp., 036717-PY01A, M22, mid-focus. 7. Monosulcites sp. 1, 036708 +10 M31, mid-focus. 8. Monosulcites sp. 2, 036717-PY01A, x23, mid-focus. 9. Monosulcites sp. 3, 046526-PY03A, Q35/1, mid-focus. 10. Monosulcites sp. 4, 046540-PY03A, M40/2, high focus. 11. Same as 10, mid-focus. 12. Sabalpollenites scabrous (Brenner) Wingate, 1980, 036708 +10 F27/2, mid-focus.

PAGE 177

164 13. Bacumonoporites baculatus Pierce, 1961, 036717-PY01A, S24/3, mid-focus. 14. Classopollis torosus (Reissinger) Couper 1958, 036708 +10 M41, mid-focus. 15. Exesipollenites sp., 036708 +10 x38/2, mid-focus. 16. Punctamultivesiculites cf. inchoatus Pierce, 1961, 046526-PY03A, Y37, mid-focus. 17. Biretisporites sp.1, 036710 +10 R31/1, mid-focus. 18. Biretisporites sp.2, 036690 +10 Y31/2, mid-focus. 19. Cyathidites australis Couper 1953, 036708 +10 T30/1, mid-focus. 20. Cyathidites minor Couper 1953, 036708 +10 D29, mid-focus. Plate 19 (All scale bar is equal to 10 m unless otherwise indicated) 1. Cyathidites punctatus (Delcourt and Sprumont 1955) Delcourt, Dettmann, and Hughes, 1963, 036710 +10 O39, mid-focus. 2. Deltoidospora hallii Miner 1935, 036717-PY01A, R41/3, mid-focus. 3. Deltoidospora sp., 036716-A5 +10 U38/1, mid-focus. 4. Undulatisporites sp., 046526-PY03A, x48, mid-focus. 5. Dictyophyllidites impensus (Hedlund) Singh, 1983, 036717PY01A, M24, mid-focus. 6. Dictyophyllidites sp.1, 036710 +10 T32/1, mid-focus. 7. Stereisporites sp., 036708 +10 C40/3, mid-focus. 8. ? Auritulinasporites sp., 036717-PY01A, R25/4, mid-focus. 9. Baculatisporites comaumensis (Cookson) Potonie 1956, 036690 +10 V35, midfocus. 10. ? Concavissimisporites sp., 036690 +10 V41/4, mid-focus. 11. Baculatisporites sp., 036710 +10 V35, mid-focus. 12. Converrucosisporites sp., 046533-PY03A, N23, high focus. 13. Same as 12, mid-focus. 14. Neoraistrickia sp., 036710 +10 L28/4, mid-focus. 15. ? Ceratosporites sp., 036708 +10 H44/2, mid-focus. 16. Impardecispora sp.1, 036690 +10 V43/2, mid-focus. 17. Verrucosisporites sp., 036710 +10 U37, mid-focus. 18. ? Granulatisporites sp., 036708 +10 E39/4, mid-focus. 19. Punctatriletes punctus Pierce, 1961, 036717-PY01A, L25/1, mid-focus. 20. cf. Phaeoceros form A Jarzen, 1979, 046522PY01A, H44/1, high focus. 21. Same as 20, mid-focus. 22. Lycopodiacidites sp.1, 036708 +10 O36, high focus. 23. Same as 22, mid-focus. 24. Lycopodiacidites sp.2, 046540-PY03A, T34/3, high focus. 25. Same as 24, mid-focus. 26. Foveotriletes sp., 036710 +10 V29/1, mid-focus. 27. ? Foveotriletes sp., 036708 +10 J36, high focus. 28. Same as 27, mid-focus. Plate 20 (All scale bar is equal to 10 m unless otherwise indicated) 1. Foveosporites sp., 036690 +10 T47/4, mid-focus. 2. Lycopodiumsporites marginatus Singh, 1964, 046526-PY03A, Q42/1, high focus. 3. Same as 2, mid-focus. 4. Lycopodiumsporites sp. 1, 036710 +10 N33/4, mid-focus.

PAGE 178

165 5. Klukisporites sp.1, 036690 +10 V33/4, mid-focus. 6. Klukisporites sp.2, 036690 +10 P39, mid-focus. 7. ? Klukisporites sp., 046526-PY03A, O20/4, high focus. 8. Same as 7, low-focus. 9. Taurocusporites segmentatus Stover 1962, 036708 +10 L41/4, mid-focus. 10. ? Januasporites sp., 046526-PY03A, M40/4, mid-focus. 11. Cicatricosisporites coconinoensis Agasie, 1969, 036717-PY01A, S31/1, mid-focus. 12. Cicatricosisporites crassiterminatus Hedlund, 1966, 046533-PY03A, P25/3, high focus. 13. Same as 12, mid-focus. 14. Cicatricosisporites cf. crassiterminatus Hedlund, 1966, 046526-PY03A, Q27, high focus. 15. Same as 14, low focus. 16. Cicatricosisporites hallei Delcourt and Sprumont 1955, 036690 +10 Y42/1, midfocus. 17. Cicatricosisporites hughesi Dettmann 1963, 046526-PY03A, N40/2, high focus. 18. Same as 17, mid-focus. 19. Cicatricosisporites sp.1, 036710 +10 W37, mid-focus. 20. Cicatricosisporites sp.2, 036716-A5 +10 J25/3, mid-focus. 21. Cicatricosisporites sp.4, 046526-PY03A, J24/2, high focus. 22. Same as 21, mid-focus. Plate 21 (All scale bar is equal to 10 m unless otherwise indicated) 1. Costatoperforosporites sp., 046522-PY01A, P29/4, mid-focus. 2. ? Ischyosporites sp., 046526-PY03A, E33/4, high focus. 3. Same as 2, low focus. 4. Retitriletes sp.1, 036708 +10 R31/1, mid-focus. 5. Retitriletes sp.2, 036708 +10 Q28/4, high focus. 6. Same as 5, mid-focus. 7. ? Retitriletes sp., 036716-A5 +10 M28, high focus. 8. Same as 7, mid-focus. 9. ? Stoverisporites sp., 036717-PY01A, R36/2, mid-focus. 10. Gleicheiidites senonicus Ross emend. Skarby 1964, 036710 +10 S36/1, mid-focus. 11. ? Gleichiidites sp., 036716-PY01A, U18/1, mid-focus. 12. Sestrosporites sp. 1, 036710 +10 P33, mid-focus. 13. Sestrosporites sp. 2, 046535-PY02A, G34, high focus. 14. Same as 13, mid-focus. 15. Camarozonosporites sp.1, 036708 +10 H29/4, mid-focus. 16. Camarozonosporites sp.3, 046526-PY03A, V45/4, mid-focus. 17. Same as 16, low focus. 18. Crybelosporites sp., 046533-PY03A, W32/3, high focus. 19. Same as 18, mid-focus. 20. Laevigatosporites ovatus Wilson and Webster 1946, 036710 +10 K44/3, midfocus. 21. Laevigatosporites cf. irroratus Hedlund 1966, 036717-PY01A, N22/3, mid-focus. 22. Laevigatosporites sp.2, 036690 +10 N38/4, mid-focus.

PAGE 179

166 23. Microfoveolatosporis pseudoreticulatus (Hedlund) Singh, 1963, 036710 +10 G35/3, mid-focus. 24. Aequitriradites spinulosus (Cookson and Dettmann) Cookson and Dettmann 1961, 036708 +10 H38/4, mid-focus. 25. Triporoletes involucratus (Chlonova) Playford, 1971, 036690 +10 D28/4, midfocus. 26. Triporoletes reticulatus (Pocock) Playford 1971, 036710 +10 T46/1, high focus. 27. Same as 26, mid-focus. Plate 22 (All scale bar is equal to 10 m unless otherwise indicated) 1. Triporoletes sp.1, 036708 +10 Q38, mid-focus. 2. Triporoletes sp.2, 036708 +10 O35/3, high focus. 3. Same as 2, mid-focus. 4. Triporoletes sp.3, 036708 +10 F37/1, mid-focus. 5. Chomotriletes sp., 036690 +10 M42/1, mid-focus. 6. Spore type 1, 036710 +10 O35, mid-focus. 7. Same as 6, V32/3, mid-focus. 8. Appendicisporites auritus Agasie 1969, 046526-PY03A, R42, mid-focus. 9. Appendicisporites matesovae (Bolkhovitina) Norris 1967, 036690 +10 E41, midfocus. 10. Appendicisporites cf. matesovae (Bolkhovitina) Norris 1967, 046526-PY03A, C25, mid-focus. 11. Appendicisporites potomacensis Brenner 1963, 036708 +10 D30/1, high focus. 12. Same as 11, mid-focus. 13. Appendicisporites problematicus (Burger) Singh, 1971, 046535-PY02A, K37, high focus. 14. Same as 13, mid-focus. 15. Plicatella fucosa (Vavrdova) Davies 1985, 036708 +10 F41, mid-focus. 16. Plicatella witzkei Ravn 1995, 036708 +10 Q29/1, mid-focus. 17. Plicatella sp.1, 036708 +10 O35/1, mid-focus. 18. Plicatella sp.2, 036690 +10 L39/4, high focus. 19. Same as 18, low focus. 20. Trilobosporites purverulentus (Verbitskaya) Dettma nn, 1963, 046536-PY05B, K20/2, mid-focus. Plate 23 (All scale bar is equal to 10 m unless otherwise indicated) 1. Laevigatasporites sp., 036708 +10 V35, mid-focus. 2. Oedogonium cretaceum Zippi, 1998, 036717-PY01A, P31, mid-focus. 3. Ovoidites grandis (Pocock) Zippi, 1998, 046526PY03A, T49/2, mid-focus. 4. Ovoidites sp., 036710 +10 Q36/1, mid-focus. 5. ? Ovoidites sp. 1, 036717-PY01A, S24/4, mid-focus. 6. ? Ovoidites sp. 2, 046526-PY03A, C21/2, mid-focus. 7. Palambages sp., 046526-PY03A, O24, mid-focus. 8. Pediastrum sp., 036708 +10 F34, mid-focus. 9. Schizosporis reticulatus Cookson and Dettmann, 1959, 036710 +10 U40, mid-focus. 10. Same as 9, low focus.

PAGE 180

167 11. Tetraporina sp., 036690 +10 W45, mid-focus. 12. Fungal spore type 1, 036717-PY01A, H29/4, mid-focus. 13. Fungal spore type 2, 036717-PY02A, R32/2, mid-focus. 14. Fungal spore type 3, 036716-PY01A, T30/3, mid-focus. 15. Fungal spore type 4, 036716-PY01A, T31, mid-focus. 16. Fungal spore type 5, 036716-PY01A, R34/4, mid-focus. 17. Fungal spore type 6, 036716-PY01A, R36/1, mid-focus. 18. Fungal fruiting body of the family Microthyriaceae, 036690 +10 K34/3, mid-focus. Plate 24 (All scale bar is equal to 10 m unless otherwise indicated) 1. Megaspore type 1, 036717-PY01A, F28/1, mid-focus. 2. Balmeisporites glenelgensis Cookson and Dettmann, 046536-PY05B, S36/2, midfocus. 3. Same as 2, low focus. Plate 25 (All scale bar is equal to 10 m unless otherwise indicated) 1. Oligosphaeridium reniforme (Tasch) Davey, 1969, 046540-PY03A, x23/2, high focus. 2. Same as 1, mid-focus. 3. ? Oligosphaeridium sp., 046540-PY03A, U37, high focus. 4. Same as 3, mid-focus. 5. ? Oligosphaeridium sp., 046540-PY02A, P48/2, high focus. 6. Same as 5, mid-focus. 7. Nyktericysta cf. pentagona (Singh, 1983) Bint, 1986, 036708 +10 L30/2, high focus. 8. Same as 7, mid-focus. Plate 26 (All scale bar is equal to 10 m unless otherwise indicated) 1. Nyktericysta cf. pentagona (Singh, 1983) Bint, 1986, 036690 +10 P35/4, mid-focus. 2. ? Canningia sp., 036690 +10 D43/3, mid-focus. 3. Coronifera oceanica Cookson and Eisenack, 1958, 046540PY03A, O39/2, high focus. 4. Same as 3, mid-focus. 5. Same as 3, low focus. 6. Cyclonephelium cf. vannophorm Davay, 1969, 046540-PY03A, Q36/4, high focus. 7. Same as 6, mid-focus. 8. ? Cyclonephelium sp., 046540-PY03A, T20/1, high focus. 9. Same as 8, mid-focus. 10. cf. Odontochitina sp., 036708 +10 B34, mid-focus. 11. cf. Pterodinium cingulatum subsp. cingulatum 036708 +10 K39/2, mid-focus. 12. Subtilisphaera deformans (Davey and Verdier) Stover and Evitt, 1978, 046545PY02A, W23, mid-focus. Plate 27 (All scale bar is equal to 10 m unless otherwise indicated) 1. cf. Geiselodinium sp., 036708 +10 Q32/2, mid-focus. 2. ? Trithyrodinium sp., 046526-PY03A, M20/4, high focus. 3. Same as 2, low focus. 4. Dino cyst type A, 036708 +10 G35/2, mid-focus. 5. Dino cyst type B, 036690 +10 K32/1, mid-focus.

PAGE 181

168 6. Dino cyst type C, 036708 +10 O37/2, mid-focus. 7. Dino cyst type D, 036708 +10 O35, mid-focus. 8. Dino cyst type H, 036690 +10 C28, mid-focus. 9. Dino cyst type I, 046545-PY02A, J22, mid-focus. 10. Micrhystridium singulare Firtion, 1952, 036690 +10 T32, mid-focus. 11. Micrhystridium sp.1, 036708 +10 N43, mid-focus. 12. Micrhystridium sp.2, 036708 +10 O44, mid-focus. 13. Micrhystridium sp.3, 036690 +10 U32, mid-focus. 14. Micrhystridium sp.4, 036690 +10 R39, mid-focus. 15. Micrhystridium sp.5, 046540-PY03A, U28/4, high focus. 16. Same as 15, mid-focus. 17. Pterospermella australiensis (Deflandre & Cookson) S.K. Srivastava, 1984, 036708 +10 Q35/4, mid-focus. 18. Veryhachium cf. reductum Deunff, 036690 +10 R47, mid-focus. 19. Veryhachium sp.1, 036708 +10 K41/1, mid-focus. 20. Veryhachium sp.2, 036690 +10 P35/2, mid-focus. 21. Veryhachium sp.3, 036690 +10 x39/4, mid-focus. 22. Acritarch type A, 036690 +10 F33/2, mid-focus. 23. Acritarch type B, 036690 +10 O42/3, mid-focus. Plate 28 (All scale bar is equal to 10 m unless otherwise indicated) 1. Acritarch type C, 046540-PY03A, H30, high focus. 2. Same as 1, mid-focus. 3. ? Acritarch type 1, 036690 +10 W27, mid-focus. 4. ? Acritarch type 2, 036690 +10 U35, mid-focus. 5. ? Acritarch type 3, 036690 +10 W34/3, mid-focus. 6. ? Acritarch type 4, 036690 +10 W36/3, mid-focus. 7. ? Acritarch type 5, 036708 +10 S44/2, mid-focus. Plate 29 Dissecting microscope, light microscopy (L M), SEM and TEM images of sporangium and in situ spores of Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen (Holotype 19007-036708-M1). 1. Overview of sporangium. Scale bar = 1 mm. 2. Close up of attachment scar (arrows). Scale bar = 1 mm. 3. Close up of thickened edge, showing the or ientation of surface ce lls adjacent to this ridge as perpendicular to the long axis of the structure. Scale bar = 80 m. 4. Detail view of a spore, showing spores randomly covered with globules. Scale bar = 10 m. 5. Detail view of a spore, showing scabrate ornamentation and bifurcating trilete mark (arrow). Scale bar = 10 m. 6. Close up of cross section of sporangium, detailing the upper and lower multicellular layer. Scale bar = 60 m. 7. Surface view of sporangium, with superficially continuous spore mass. Scale bar = 100 m.

PAGE 182

169 8. Spore TEM section, showing exospore (E) is thicker at the proximal face than in the distal face. Scale bar = 5 m. 9. Spore TEM section, showing thin perispore (P ) and the granules (arrows). Scale bar = 1 m. 10. Close up of proximal fold, showing middle exospore layer (Em) with cavities (arrow). Scale bar = 0.5 m. 11. Close up of aperture area, showing i nner exospore layer (Ei) (arrow), middle exospore layer (Em) and outer exospore layer (Ee). Scale bar = 2.5 m. Plate 30 Suggested reconstruction of Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen. 1. Synangium with seven spora ngia. Scale bar = 1 mm. 2. Individual sporangium, splitting open from upper half of left thin edge (te, arrow) for spore release; attachment scar (as, arrow) on lower half of left edge. Scale bar = 1 mm. Plate 31 Dissecting microscope and SEM imag es of sporangia/synangia of Mesozoisynangia trilobus Hu, Dilcher, H. Sc hneid. et Jarzen. 1. One side of synangium (Holotype 19007-036708-M2). Scale bar = 1 mm. 2. Obverse side of synangium (Holotype 19007-036708-M2), showing three sporangia (arrows) attached with each othe r basally. Scale bar = 1 mm. 3. Close up of the central lobe (Holotype 19007-036708-M2), showing cells at the tip of the lobe as elongated and parallel to the lobe surface. Scale bar = 36 m. 4. Close up of cross section of the centra l lobe (Holotype 19007-036708-M2), there are no spores in the tip of the lobe (arrow de notes the end of spores). Scale bar = 100 m. 5. One side of sporangium (Paratype 19007-036708-M3). Note that the three lobes of this isolated sporangium are indica ted by arrows. Scale bar = 1 mm. 6. Obverse side of the sporangium (Paratype 19007-036708-M3), arrow denotes attachment scar. Scale bar = 1mm. 7. One side of part of synangium (P aratype 19007-036708-M4). Scale bar = 100 m. 8. Another side of synangium (Paratype 19007-036708-M4), showing three sporangia (arrows) attached with each othe r basally. Scale bar = 1 mm. Plate 32 LM, SEM and TEM images of sporangium and in situ spores of Mesozoisynangia trilobus Hu, Dilcher, H. Sc hneid. et Jarzen. 1. Cross section of sporangium (Hol otype 19007-036708-M2). Scale bar = 100 m. 2. Detail view of spore (Holotype 19007-036708-M2). Scale bar = 10 m. 3. Detail view of spore (Paratype 19007-036708-M3). Scale bar = 10 m. 4. Close up of spores (Holotype 19007-036708-M2. Scale bar = 20 m. 5. Close up of spores (Paratype 19007-036708-M3. Scale bar = 20 m. 6. Spore TEM section (Holotype 19007-036708-M2), showing exospore (E). Scale bar = 2 m. 7. Apertural area of spor e (Holotype19007-036708-M2), showing inner exospore layer (Ei) and outer exospore la yer (Ee). Scale bar = 1 m.

PAGE 183

170 8. Close up of spore aperture area (Holotype19007-036708-M2), showing cavities (arrow) in middle exospore laye r (Em). Scale bar = 400 nm. 9. Granules between spores (Parat ype 19007-036708-M3). Scale bar = 2 m.

PAGE 184

171 APPENDIX D PLATES

PAGE 185

172 Plate 1

PAGE 186

173 Plate 2

PAGE 187

174 Plate 3

PAGE 188

175 Plate 4

PAGE 189

176 Plate 5

PAGE 190

177 Plate 6

PAGE 191

178 Plate 7

PAGE 192

179 Plate 8

PAGE 193

180 Plate 9

PAGE 194

181 Plate 10

PAGE 195

182 Plate 11

PAGE 196

183 Plate 12

PAGE 197

184 Plate 13

PAGE 198

185 Plate 14

PAGE 199

186 Plate 15

PAGE 200

187 Plate 16

PAGE 201

188 Plate 17

PAGE 202

189 Plate 18

PAGE 203

190 Plate 19

PAGE 204

191 Plate 20

PAGE 205

192 Plate 21

PAGE 206

193 Plate 22

PAGE 207

194 Plate 23

PAGE 208

195 Plate 24

PAGE 209

196 Plate 25

PAGE 210

197 Plate 26

PAGE 211

198 Plate 27

PAGE 212

199 Plate 28

PAGE 213

200 Plate 29

PAGE 214

201 Plate 30

PAGE 215

202 Plate 31

PAGE 216

203 Plate 32

PAGE 217

204 REFERENCES Agasie, J.M., 1969. Late Cretaceous pal ynomorphs from northeastern Arizona. Micropaleontology, 15: 13-30. sss Austin, G.S., 1972. Precambrian Sioux Quartzit e and Cretaceous rocks of southern Minnesota, Field trip guidebook for Pale ozoic and Mesozoic rocks of southeastern Minnesota, pp. 55-63. Basinger, J.F., Dilcher, D. L., 1984. Ancient bisexual flowers. Science, 224(4648): 511513. Below, R., 1984. Aptian to Cenomanian dinofla gellate cysts from the Mazagan plateau, northwest Africa (sites 545 and 547, deep sea drilling project leg 79). In: Hinz, K., Winterer, E. L., et al. (Editors), Initial Reports of the Deep Sea Drilling Project. U.S. Government Printi ng Office, Washington, pp. 621-649. Bergad, R.D., 1973. North American species of the Cretaceous megaspores Balmeisporites and Monophyllosp orites. Micropaleontology, 19(1): 53-67. Boggs, S., 2001. Principles of sedimentol ogy and stratigraphy. Pr entice Hall, 726 pp. Bower, F.O., 1923. The ferns, II. Cambridge University Press, Cambridge. Brenner, G.J., 1963. The spores and pollen of the Potomac Group of Maryland. Waverly Press, INC., Baltimore, 215 pp. Brenner, G.J., 1967. Early angiosperm pollen diffe rentiation in the Albian to Cenomanian deposits of Delaware (U.S.A.). Revi ew of Palaeobotany and Palynology, 1: 219-227. Brenner, R.L., Ludvigson, G.A., Witzke, B.J., Zawistoski, A.N., Kvale, E.P., Ravn, R.L., Joeckel, R.M., 2000. Late Albian Kiow a-Skull Creek marine transgression, lower Dakota Formation, eastern margin of We stern Interior Seaway, U.S.A. Journal of Sedimentary Research, 70(4): 868-878. Bujak, J.P., Williams, G. L., 1978. Cretace ous palynostratigraphy of offshore southeastern Canada. Geological Survey of Canada Bulletin, 297: 19 pages. Burden, E.T., Hills, L.V., 1989. Illustrated key to genera of Lower Cretaceous terrestrial palynomorphs (excluding megaspores) of western Canada. AASP C ontributions Series Number 21. The American Associat ion of Stratigraphic Palynologists Foundation.

PAGE 218

205 Camus, J.M., 1990. Marattiaceae. In: K.Kubitzki (Editor), The Families and Genera of Vascular Plants. Pteridophytes an d Gymnosperms. Springer-Verlag, Berlin Heidelberg, pp. 174-180. Chang, C., 1975. Morphology of Archangiopteris Christ & Gies., and its relationship with Angiopteris Hoffm. Acta Bot. Sin., 15: 235-247. Coe, M.J., Dilcher, D.L., Farlow, J.O., Ja rzen, D.M., and Russell, D.A., 1987. Dinosaurs and land plants. In: E.M. Friis, Chal oner W.G., Crane, P. R. (Editors), The origins of angiosperms and their bi ological consequences. Cambridge University Press, Cambridge, pp. 225-258. Cohen, A.D., 1975. Peats from the Okefenokee swamp-marsh complex. Geoscience and Man, XI: 123-131. Collinson, M. E., 1996. “What use are fossil ferns ?” – 20 years on: with a review of the fossil history of extant pteridophyte fa milies and genera. In: Camus, J. M., Gibby, M., Johns, R. J., (Editors), Pteridology in Perspetive. Royal Botanic Gardens, Kew, pp 349-394. Collinson, M.E., 2001. Cainozoic ferns and their distribution. Brittonia, 53(2): 173-235. Cookson, I.C., Dettmann, M. E., 1958a. Some tr ilete spores from Upper Mesozoic deposits in the eastern Australian region. Proc. Roy. Soc. Victoria, 70: 95-128. Cookson, I.C., Dettmann, M. E., 1958b. Cret aceous "megaspores" and a closely associated microspore from the Australian region. Microp aleontology, 4: 39-42. Cookson, I.C., Eisenack, A., 1958. Microplankt on from Australian and New Guinea Upper Mesozoic sediments. Proc. Roy. Soc. Victoria, 70(1): 19-79. Cookson, I.C., Hughes, N. F., 1964. Microplankt on from the Cambridge Greensand (midCretaceous). Palaeontology, 7(1): 37-59. Couper, R.A., 1953. Upper Mesozoic and Cainoz oic spores and pollen grains from New Zealand. New Zealand Geological Surv ey, Paleontological Bulletin 22. R. E. Owen, Government Printer, Wellington, 77 pp. Couper, R.A., 1958. British Mesozoic microspor es and pollen grains. Palaeontographica, Abt. B, 103: 75-179. Crane, P.R., Dilcher, D. L., 1984. Lesqueria: an early angiosperm fruiting axis from the mid-Cretaceous. Annals of th e Missouri Botanical Garden, 71: 384-402. Crane, P.R., Friis, E. M., Pedersen, K. R., 1986. Lower Cretaceous angiosperm flowers: fossil evidence on early radiati on of dicotyledons. Science, 232: 852-854.

PAGE 219

206 Crane, P.R., Herendeen, P.S., 1996. Cretaceous fl oras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobota ny and Palynology, 90: 319337. Crane, P.R., Pedersen, K. R., Friis, E. M., Dr innan, A. N., 1993. Earl y Cretaceous (Early to Middle Albian) Plata noid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Systematic Botany, 18(2): 328-334. Crepet, W.L., 1979. Insect pollination: a pale ontological perspective. BioScience, 29: 102-108. Crepet, W.L., Friis, E. M., 1987. The evolution of insect pollination in angiosperms. In: E.M. Friis, Chaloner W.G., Crane, P. R. (Editors), The origins of angiosperms and their biological consequences Cambridge University Press, pp. 181-201. Crepet, W.L., Friis, E. M., Nixon, K.C., 1991. Foss il evidence for the evolution of biotic pollination. Philos. Trans. R. Soc., 333: 187-195. Dafni, A., 1992. Pollination ecology: A practical approach. Oxford University Press, Oxford, 250 pp. Davey, R.J., 1969. Non-calcareous microplankt on from the Cenomanian of England, northern France and North America. Part I. Bulletin of the British Museum (Natural History) Geology, 17(3): 103-180. Davey, R.J., 1970. Non-calcareous microplankt on from the Cenomanian of England, northern France and North America. Part II. Bulletin of the British Museum (Natural History) Geology, 18(8): 333-397. Davey, R.J., Verdier, J. P., 1971. An investig ation of microplankton assemblages from the Albian of the Paris Basin. Verha ndelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Natuur kunde, Eerste Reeks, Deel 26(2): 58 pages. Dettmann, M.E., 1963. Upper Mesozoic microflo ras from south-eastern Australia. Proceedings of Royal Soci ety of Victoria, 77(part 1): 1-152. Dettmann, M.E., 1973. Angiospermous pollen from Albian to Turonian sediments of eastern Australia. Spec. Publs geol. Soc. Aust., 4: 3-34. Dilcher, D.L., 1979. Early angiosperm reproducti on: an introductory report. Review of Palaeobotany and Palynology, 27: 291-328. Dilcher, D.L., 2000. Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record. PNAS, 97(13): 7030-7036.

PAGE 220

207 Dilcher, D.L., 2001. Paleobotany: some aspect s of non-flowering and flowering plant evolution. Taxon, 50: 697-711. Dilcher, D.L., Crane, P. R., 1984. Archaeanthus : An early angiosperm from the Cenomanian of the Western Interior of North America. Annals of the Missouri Botanical Garden, 71: 351-383. Dilcher, D.L., Crepet, W. L., Becker, C. D., 1976. Reproductive and vegetative morphology of a Cretaceous angiosperm. Science, 191: 854-856. Dilcher, D.L., Farley, M.B., 1988. Cenomanian miospores and co-occurring megafossils in the midcontinent of North Amer ica, 7th Internationa l Palynology Congress, Brisbane, pp. p.39. Dilcher, D.L., Wang, H., Kowalski, E., 2005. Da kota Formation paleoclimate estimates from Late Albian angiosperm leaves, Annual meeting of the Nort h-Central Section of the Geological Society of America, Minneapolis. Doyle, J.A., 1973. Fossil evidence on early e volution of the monocotyledons. Quart. Rev.Biol., 48: 399-413. Doyle, J.A., Hickey, L.J., 1976. Pollen and l eaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: C.B. Beck (Editor), Origin and early evolution of angiosperms. Columbia University Press, New York, pp. 139206. Doyle, J.A., Robbins, E. I., 1977. Angiospe rm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plai n and its application to deep wells in the Salisbury Embayment. Palynology, 1: 43-78. Drinnan, A.N., Crane, P. R., Friis, E. M., Pe dersen, K. R., 1990. Lauraceous flowers from the Potomac Group (mid -Cretaceous) of eastern North America. Bot. Gaz., 151(3): 370-384. Drinnan, A.N., Crane, P. R., Friis, E. M., Pe dersen, K. R., 1991. Angiosperm flowers and tricolpate pollen of Buxaceous affin ity from the Potomac Group (mid-Cretaceous) of eastern Noprth America. Am erican Journal of Botany, 78(2): 153-176. Drugg, W.S., 1967. Palynology of the upper Moreno Formation (Late CretaceousPaleocene) Escarpado Canyon, Ca lifornia. Palaeontographica, 120: 1-71.

PAGE 221

208 Dyman, T.S., Cobban, W. A., Fox, J. E., Hammon d, R. H., Nichols, D. J., Perry, W. J., Porter, K. W., Rice, D. D., Setterholm, D. R., Shurr, G. W., Tysdal, R. G., Haley, J. C., Campen, E. B., 1994. Cretaceous rocks from southwestern Montana to southwestern Minnesota, northern Ro cky Mountains, and Great Plains region. In: Shurr, G.W., Ludvigson, G. A.; Hammond, R. H. (Editors), Perspectives on the eastern margin of the Cretaceous West ern Interior Basin. The Geological Society of America, Inc., pp. 5-26. Eisenack, A., 1958. Mikroplankton aus dem norddeutschen Apt nebst einigen Bemerkungen ueber fossile Dinoflagell aten. Neues Jb. Geol. Palaeont., 106(3): 383422. Eklund, H., Cantrill, D.J., Francis, J.E., 2004. Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. Cretaceous Research, 25(2): 211-228. Erdtman, G., 1943. An introduction to pollen an alysis. The Ronald Press Company, New York, 239 pp. Faegri, K., Iversen, J., 1989. Textbook of pollen analysis. John Wiley & Sons, London, 328 pp. Faegri, K., Pijl, L. Van Der, 1979. The princi ples of pollination ecology. Pergamon press, Oxford, 244 pp. Farley, M.B., 1982. An assessment of the correl ation between miospores and depositional environments of the Dakota Formati on (Cretaceous), north-central Kansas and adjacent Nebraska. Master thes is, Indiana University, Bloomington, 181 pp. Farley, M.B., Dilcher, D.L., 1986. Correlati on between miospores and depositional environments of the Dakota Formation (mid-Cretaceous) of North-Central Kansas and adjacent Nebraska, U.S.A. Palynology, 10: 117-133. Field, T.S., Arens, N. C., 2005. Form, function and environments of the early angiosperms: merging extant phy logeny and ecophysiology with fossils. New Phytologist, 166: 383-408. Frankel, R., Galun, E., 1977. Pollination mechanisms, reproduction and plant breeding. Springer-Verlag. Friis, E.M., Crane, P. R., Pedersen, K. R ., 1988. Reproductive struct ures of Cretaceous Platanaceae. Biol. Skr. Dansk Vid. Selsk., 31: 1-55. Friis, E.M., Crane, P. R., Pedersen, K. R., 1991. Stamen diversity and in situ pollen of Cretaceous angiosperms. Pollen et Spores, 44: 197-224.

PAGE 222

209 Friis, E.M., Crane, P. R., Pedersen, K. R., 1997. Anacostia a new basal angiosperm from the Early Cretaceous of North America and Portugal with Trichotomocolpate/monocol pate pollen. Grana, 36: 225-244. Friis, E.M., Eklund, H., Pedersen, K. R., Crane, P. R., 1994. Virginianthus calycanthoides gen. et sp. nov. -a calycanthaceous flower from the Potomac Group (Early Cretaceous) of eastern North Amer ica. International Journa l of Plant Sciences, 155(6): 772-785. Friis, E.M., Pedersen, K. R., 1996. Angiosperm po llen in situ in Cret aceous reproductive organs. In: J.M. Jansonius, D. C. Mc Gregor (Editors), Pal ynology: principles and applications. American Associati on of Stratigraphic Palynologists Foundation, pp. 409-426. Friis, E.M., Pedersen, K. R., Crane, P. R., 2000a. Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Western Portugal. Inte rnational Journal of Plant Scie nces, 161 (6 Supplement): 169182. Friis, E.M., Pedersen, K. R., Crane, P. R ., 2000b. Fossil floral structures of a basal angiosperm with monocolpate, retic ulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana, 39: 226-239. Friis, E.M., Pedersen, K.R. Crane, P. R., 1999. Early angiosperm diversification: the diversity of pollen as sociated with angiosperm repr oductive structures in early Cretaceous floras from Portugal. Anna ls of the Missouri Botanical Garden, 86: 259296. Friis, E.M., Skarby, A., 1981. Structurally preser ved angiosperm flowers from the Upper Cretaceous of southern Sweden. Nature, 291: 485-486. Fritsch, F.E., 1961. The structure and reproducti on of the algae. Volume 1. Cambridge University Press, London, 791 pp. Gandolfo, M.A., Nixon, K.C., Crepet, W.L., Ratcliffe, G.E., 1997. A new fossil fern assignable to Gleicheniaceae from Latge Cretaceous sediments of New Jersey. American Journal of Botany, 84(4): 483-493. Germeraad, J.H., Hopping, C. A., Muller, J., 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6: 189-348. Groot, J.J., Penny, J. S., Groot, C. R., 1961. Plan t microfossils and age of the Raritan, Tuscaloosa, and Magothy Formations of the eastern United States. Palaeontographica, Abt. B, 108: 121-140.

PAGE 223

210 Hajat, M. A., 2000. Principles and technique s of eletron microscopy: biological applications. 4th ed. Camb ridge University Press, Cambridge. Hajek, E., Rogers, R. R., Setterholm, D. R ., Gooler, S., 2002. Large lakes and tidally influenced rivers in the late Cretaceous of southwes tern Minnesota, 2002 GSA Annual Meeting, Abstracts with programs, Denver, pp. p.279. Hall, J.W., 1963. Megaspores and other fossils in the Dakota Formation (Cenomanian) of Iowa, (U.S.A.). Polle n et Spores, 5(2): 425-443. Hall, J.W., 1974. Cretaceous Salviniaceae. Anna ls of the Missouri Botanical Garden, 61(2): 354-367. Hedlund, R.W., 1966. Palynology of the Red Br anch Member of the Woodbine Formation (Cenomanian), Bryan Count y, Oklahoma. The University of Oklahoma, Norman. Hedlund, R.W., Norris, G., 1968. Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. Po llen et Spores, 10: 129-159. Herendeen, P.S., Crane, P. R., Drinnan, A. N., 1995. Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceo us) of central Georgia, USA. International Journal of Plant Sciences, 156(1): 93-116. Herendeen, P.S., Crepet, W. L., Nixon, K. C., 1994. Fossil flowers and pollen of Lauraceae from the Upper Cretaceous of New Jersey. Plant Systematics and Evolution, 189: 29-40. Hill, C.R., 1987. Jurassic Angiopteris (Marattiales) from North Yorkshire. Review of Palaeobotany and Palynology, 51: 65-93. Hu, S., Dilcher, D., Jarzen, D. M., 2004a. Evidence for changes in angiosperm pollen diversity and abundance during the mid-Cretaceous. Palynology, 28: 248. Hu, S., Dilcher, D.L., Jarzen, D.M., 2004b. The palynological assemblages from Courtland Clay Pit, Minnesota. Geol ogical Society of Amer ica Annual Meeting, Abstracts with Programs: p.527. Hu, S., Dilcher, D.L., Schneider, H., Jarzen, D.M., 2006. Eusporangiate ferns from the Dakota Formation, Minnesota, U.S.A. Int J Plant Sci 167: 579-589. Jaramillo, C., 1999. Middle Paleogene pal ynology of Colombia, South America: biostratigraphic, sequ ence stratigraphic, and divers ity implications. Ph. D. Dissertation, University of Florida, Gainesville, 416 pp. Jarzen, D.M., 1979. Spore morphology of some Anthocerotaceae and the occurrence of Phaeoceros spores in the Cretaceous of North America. Pollen et Spores, 21(1-2): 211-231.

PAGE 224

211 Kauffman, E.G., 1977. Geological and biological overview: West ern Interior Cretaceous basin. Mountain Geologist, 14: 75-99. Kimyai, A., 1966. New plant microfossils from the Raritan Formation (Cretaceous) in New Jersey. Micropaleontology, 12: 461-476. Kimyai, A., 1970. Plant microfossils from the Raritan Formation (Cretaceous) in Long Island. Pollen et Spores, 12: 181-204. Lesquereux, L., 1895. Cretaceous fossil plants from Minnesota. Geol. and Nat. Hist. Surv. of Minnesota, 3: 1-22. Liu, Z.-H., Li, C.-S., Hilton, J., 2000. Zhutheca Liu, Li et Hilton gen. nov., the fertile pinnules of Fascipteris densata Gu et Zhi and their significance in marattialean evolution. Review of Palaeobotany and Palynology, 109: 149-160. Lupia, R., H. Schneider, G. M. Moeser, K. M. Pryer, and P. R. Crane, 2000. Marsileaceae sporocarps and spores from the late Cretaceous of Georgia, U.S.A. International Journal of Plant Sciences, 161(6): 975-988. Lupia, R., Herendeen, P.S., Keller J.A., 2002. A new fossil flower and associated coprolites: evidence for angiosperm-i nsect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Intern ational Journal of Plan t Sciences, 163(4): 675686. Mamay, S.H., 1950. Some American Carboniferous fern fructi fications. Annals of the Missouri Botanical Garden, 37(3): 409-476. Mapes, G., Schabilion, J.T., 1979. Millaya Gen. N., an upper Paleozoic genus of marattialean synangia. Amer ican Journal of Botany, 66(10): 1164-1172. May, F.E., Traverse, A., 1973. Palynology of the Dakota Sandstone (Cenomanian) near Bryce Canyon National Park, s outhern Utah. Geoscien ce and Man, 7: 57-64. McCabe, P.J., 1987. Facies studies of coal and co al-bearing strata. In: A.C. Scott (Editor), Coal and Coal-bearing Strata: Recent Advances. Blackwell Scie ntific Publications, London, pp. 51-66. Millay, M.A., 1978. Studies of Paleozoi c marattialeans: the morphology and phylogenetic position of Eoangiopter is goodii sp. n. American Journal of Botany, 65(5): 577-583. Millay, M.A., 1979. Studies of Paleozoic Marat tialeans: a monograph of the American species of Scolecopteris. Pa laeontogr Abt B Palaeophytol, 169: 1-69.

PAGE 225

212 Nichols, D.J., 1994. A revised palynostratig raphic zonation of the nonmarine Upper Cretaceous, Rocky Mountain region, Unite d States. In: M.V. Caputo, Peterson, J. A., Franczyk, K. J. (Editors), Mesozoic Systems of the Rocky Mountain Region, USA. The Rocky Mountain Section, Soci ety for Sedimentary Geology, Denver, pp. 503-522. Norris, G., 1967. Spores and pollen fro m the Lower Colorado Group (Albian-? Cenomanian) of central Albe rta. Palaeontographica, Abt. B: 72-115. Obradovich, J. D., Cobban, W. A., 1975. A timescale for the late Cretaceous of the Western Interior of North America. In : W.G.E. Caldwell (Editor), The Cretaceous system in the Western Interior of North America, pp. 31-54. Pacltova, B., 1971. Palynological study of A ngiospermae from the Peruc Formation (?Albian-lower Cenomanian) of Bohe mia. Sbornik Geol. Ved, Paleont., P, 13: 105141. Parrish, J.T., Gaynor, G. C., Swift, D. J. P ., 1984. Circulation in the Cretaceous Western Interior Seaway of North America, a review In: D. F. Stott, Glass, D. J. (Editors), The Mesozoic of middle North America. Ca nadian Society of Petr oleum Geologists, pp. 221-231. Pedersen, K.R., Crane, P. R., Drinnan, A. N., Friis, E. M., 1991. Fruits from the midCretaceous of North America with pollen grains of the Clavatipollenites type. Grana, 30: 577-590. Phillips, P. P., Felix, C. J., 1972a. A study of Lower and Middle Cretaceous spores and pollen from the southeastern United St ates. I. Spores. Pollen et Spores, 13(279348). Phillips, P. P., Felix, C. J., 1972b. A study of lower and middle Cretaceous spores and pollen from southeastern United States. Pollen et Spores, 13: 447-473. Picard, M.D., High, L. R., 1981. Physical stratigr aphy of ancient lacustrine deposits. In: F. G. Ethridge, Flores, R. M. (Edito rs), Recent and ancient nonmarine depositional environments: models for explorati on. Society of Economic Paleontologists and Mineralogists, pp. 233-259. Pierce, R.L., 1961. Lower Upper Cretaceous Plant Microfossils from Minnesota. The University of Minnesota Press, Minneapolis, 86 pp. Playford, G., 1971. Palynology of Lower Cr etaceous (Swan River) strata of Saskatchewan and Ma nitoba. Palaeontology, 14: 533-565. Pocock, S.A.J., 1962. Microfloral analysis and age determinations of strata at the Jurassic-Cretaceous boundary in the West ern Canada Plains. Palaeontographica, Abt. B, 111: 1-95.

PAGE 226

213 Potter, F. W., 1976. Investigations of angios perms from the Eocene of southern North America: pollen assemblages fr om Miller Pit, Henry County, Tennessee. Palaeontographica, Abt. B 157: 44-96. Proctor, M., Yeo, P., Lack, A., 1996. The natu ral history of pollination. Timber Press. Pryer, K. M., Schuettpelz, E., Wolf, P. G., Sc hneider, H., Smith, A. R., Cranfill, R., 2004. Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany 91: 1582-1598. Ravn, R.L., 1981. Preliminary observations on the palynology of upper Dakota lignites from northwestern Iowa and northeastern Ne braska. In: Brenner, R. L. et al., (Editors), Cretaceous stratigraphy and sedimentati on in northwest Iowa, northeast Nebraska, and southeast South Dakota. North-Central S ection, Geological Society of America, Iowa Geological Survey Guidebook Series 4, pp. 123-127. Ravn, R.L., Witzke, B. J., 1995. The palynostra tigraphy of the Dakota Formation (? Late Albian-Cenomanian) in its type area, northwestern Iowa and northeastern Nebraska, USA. Palaeontographica, Abt. B, 234: 93-171. Retallack, G., Dilcher, D.L., 1981. A coastal hypo thesis for the disper sal and rise to dominance of flowering plants. In: K. J. Niklas (Editor), Pa leobotany, paleoecology and Evolution, Praeger, New York, NY, pp. 27-77. Romans, R.C., 1975. Palynology of some Uppe r Cretaceous coals of Black Mesa, Arizona. Pollen et Spores, 17: 273-329. Rothwell, G.W., Stockey, R.A., 1989. Fossil Op hioglossales in Paleocene of western North America. American Journal of Botany, 76: 637-44. Rouse, G.E., 1959. Plant microfossils from Kooten ay coal-measures strata of British Columbia. Micropaleontology, 5(3): 303-324. Rushforth, S.R., 1971. A flora from the Dakota sandstone Formation (Cenomanian) near Westwater, Grand County, Utah. Bri gham Young University Science Bulletin, 14(3): 1-44. Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S., and Lupia, R., 2004. Ferns diversified in the shad ow of angiosperms. Nature, 428: 553-557. Scott, A.C., 2000. The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164: 281-329.

PAGE 227

214 Setterholm, D.R., 1994. The Cretaceous ro cks of southwestern Minnesota: Reconstructions of a marine to nonmari ne transition along the eas tern margin of the Western Interior Seaway. In: Shu rr, G.W., Ludvigson, G. A.; Hammond, R. H. (Editors), Perspectives on the eastern ma rgin of the Cretaceous Western Interior basin. The Geological Society of America, Inc., Boulder, pp. 97-110. Singh, C., 1964. Microflora of the Lower Cr etaceous Mannville Group, east-central Alberta, Bulletin 15. Resear ch Council of Alberta, Edmonton, 238 pp. Singh, C., 1971. Lower Cretaceous Microfloras of the Peace River area, northwestern Alberta, 1, bulletin 28. Res earch Council of Alberta, Edmonton. 299 pp. Singh, C., 1983. Cenomanian microfloras of the Peace River area, northwestern Alberta, Bulletin 44. Alberta Re search Council, Edmonton, 322 pp. Skog, J.E., Dilcher, D. L., 1994. Lower vascul ar plants of the Dakota Formation in Kansas and Nebraska, USA. Revi ew of Palaeobotany and Palynology, 80: 1-18. Skog, J.E., Dilcher, D.L., 1992. A new species of Marsilea from the Dakota Formation in central Kansas. American Journal of Botany, 79(9): 982-988. Sloan, R.E., 1964. The Cretaceous System in Minnesota. University of Minnesota, Minneapolis, 64 pp. Srivastava, S.K., 1975. Microspores from th e Fredericksburg Group (Albian) of the southern United States. Pa leobiologie Continentale, 6(2): 1-119. Srivastava, S.K., 1984. Barremian dinoflagellate cysts from southeastern France. Cah. Micropaleont., 2: 1-90. Srivastava, S.K., 1992. Dinocyst biostratigraph y of Cenomanian-Coniacian Formations of the western Gulf Coastal plain, sout hern United States. Pal aeobotanist, 39(2): 155235. Stach. E., M., M.-Th., Teichmuller, M., Taylor G.H., Chandra, D., Teichmuller, R., 1982. Stach's Textbook of Coal Pe trology. Gebruder Borntraeger, Berlin, 535 pp. Stidd, B.M., 1974. Evolutionary trends in th e Marattiales. Annals of the Missouri Botanical Garden, 61(2): 388-407. Teichmuller, M., 1962. Die Genese der Kohle. C. R. 4. Congr. intern. Strat. Geol. Carbonifere, Heerlen, 1958, 3: 699-722. Tidwell W. D., Ash, S. R., 1994. A review of selected Triassic to Early Cretaceous ferns. Journal of Plant Research 107: 417-442.

PAGE 228

215 Tiffany, L.H., 1930. The Oedogoniaceae. Columbus, Ohio. 253 pp. Traverse, A., 1988. Paleopalynol ogy. Unwin Hyman, Boston, 600 pp. Tryon, A.F., Lugardon, B., 1991. Spores of th e Pteridophyta. Springer-Verlag, New York, 648 pp. Tryon, R.M., Tryon, A. F., 1982. Ferns and allied plants. Springer-Verlag, New York, 856 pp. Tschudy, B.D., 1973. Palynology of the Upper Campanian (Cretaceous) Judith River Formation, north-central Montana. Ge ological Survey Professional Paper 770. United States Government Printing Office, Washington. Twenhofel, W.H., 1932. Treatise on sedime ntation. Williams and Wilkens Co., Baltimore, 926 pp. Van Konijnenburg-Van Cittert, J. H. A., 1975. Some notes on Marattia anglica from Jurassic of Yorkshire, England. Re view of Palaeobotany and Palynology 20: 205-214. Van Konijnenburg-Van Cittert, J. H. A., 2002. Ecology of some Triassic to Early Cretaceous ferns in Eurasia. Revi ew of Palaeobotany and Palynology 119: 113-124. Visher, G.S., 1965. Use of vertical profile in environmental reconstruction. American Association of Petrol eum Geologists Bulletin, 49: 41-61. Walker, R.G., Cant, D. J., 1984. Sandy fluvial syst ems. In: R.G. Walker (Editor), Facies models. Wan, Z., Basinger, J. F., 1992. On the fern Pectinangium Li et al., emend. (Marattiales), with spores in situ fr om the Permian of southern China. Review of Palaeobotany and Palynology, 75: 219-238. Wang, H., 2002. Diversity of Angiosperm Leaf Megafossils from the Dakota Formation (Cenomanian, Cretaceous), North West ern Interior, USA. Ph.D. Dissertation, University of Florida, Gainesville, 395 pp. Wang, X., 2004. A study of plant mesofossils from the Dakota Formation Kansas, USA. Ph D. dissertation, Univers ity of Florida, Gainesville, 375 pp. Wang, Y., 2002. Fern ecological implications from the Lower Jurassic in Western Hubei, China. Review of Palaeobotany and Palynology 119: 125-141. Wang, Y., Guignard, G., Lugardon, B., Barale G., 2001. Ultrastructure of in situ marattia asiatica (Marattiaceae) spores from the lo wer Jurassic in Hubei, China. International Journal of Plant Sciences, 162(4): 927-936.

PAGE 229

216 Ward, J.V., 1986. Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa Formations (Albian) of Kansas, U.S.A. Palaeontographica, Abt. B, 202: 1-81. Whitehead, D.R., 1969. Wind pollination in th e angiosperms: evolutionary and environmental consider ations. Evolution, 23(1): 28-35. Whitehead, D.R., 1983. Wind pollination: So me ecological and evolutionary perspectives. In: l. Real (Editor), Pollination Biology. Academic Press, Inc., Orlando, pp. 97-108. Wing, S.L., Boucher, L.D., 1998. Ecological as pects of the Cretaceous flowering plant radiation. Annu. Re v. Earth Planet. Sci., 26: 379-421. Wingate, F.H., 1980. Plant microfossils from the Denton Shale Member of the Bokchito Formation (Lower Cretaceous, Albian) in southern Oklahoma. Okla. Geol. Surv. Bull., 130: 1-93. Witzke, B.J., Ludvigson, G. A., 1994. The Dakota Formation in Iowa and the type area. In: Shurr, G.W., Ludvigson, G. A.; Ha mmond, R. H. (Editors), Perspectives on the eastern margin of the Cretaceous West ern Interior Basin. The Geological Society of America, Inc., pp. 43-78. Witzke, B.J., Ludvigson, G. A., 1996. Coarse-gra ined eastern facies. In: B. J. Witzke, Ludvigson, G. A. (Editors), Mid-Cretaceo us fluvial deposits of the eastern margin, Western Interior Basin: Nishnabotna Member, Dakota Formation. A field guide to the Cretaceous of Guthrie County. Iowa Department of Natural Resources, pp. 19-30. Witzke, B.J., Ludvigson, G. A., Poppe, J. R., Ravn, R. L., 1983. Cretaceous paleogeography along th e eastern margin of the Western Interior Seaway, Iowa, southern Minnesota, and eastern Nebraska and Sout h Dakota. In: M.W. Reynolds, Dolly, E. D. (Editors), Mesozoic pa leogeography of the west-c entral United States. Soc. Econ. Paleontologists Mineralogists, Denver, pp. 225-252. Witzke, B.J., Ludvigson, G. A., Ravn, R. L ., Brenner, R. L., Joeckel, R. M., 1996. Palynostratigraphic framework for mid-Cr etaceous strata, eastern margin of western interior basin. Geolog ical Society of America, Abst racts with Programs, 28: A185. Ziegler, A.M., Scotese, C. R., Barrett, S. F., 1983. Mesozoic and Cenozoic paleogeographic maps. In: P. Brosche, Seundermann, J. (Editors), Tidal friction and the Earth's rotation II. Springer-Verlag, Berlin, pp. 240-252. Zippi, P.A., 1998. Freshwater algae from the Mattagami Formation (Albian), Ontario: paleoecology, botanical affinities and systematic taxonomy. Micropaleontology, 44 (supplement No.1): 1-78.

PAGE 230

217 BIOGRAPHICAL SKETCH Shusheng Hu was born on July 18, 1965, in Sha nxi, China. He obtained a Bachelor of Engineering degree in geology from Sha nxi Mining College in 1985. He received a Master of Engineering degree in geol ogy from Beijing Graduate School, China University of Mining and Technology in 1991. In August of 2000 he began his studies toward the degree of Doctor of Philosophy at the University of Fl orida, Gainesville, Florida, USA.


Permanent Link: http://ufdc.ufl.edu/UFE0013780/00001

Material Information

Title: Palynomorphs and Selected Mesofossils from the Cretaceous Dakota Formation, Minnesota, USA
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0013780:00001

Permanent Link: http://ufdc.ufl.edu/UFE0013780/00001

Material Information

Title: Palynomorphs and Selected Mesofossils from the Cretaceous Dakota Formation, Minnesota, USA
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0013780:00001


This item has the following downloads:


Full Text












PALYNOMORPHS AND SELECTED MESOFOSSILS FROM THE CRETACEOUS
DAKOTA FORMATION, MINNESOTA, USA















By

SHUSHENG HU


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2006


































Copyright 2006

By

Shusheng Hu


































To Yuxian, David, Mark, and my parents.















ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. David Dilcher, for his advice and

encouragement. I also thank Dr. David Jarzen, one of my Ph.D. committee members, for

his assistance and rigorous training in palynology. I thank my other Ph.D. committee

members, Drs. Mark Brenner, John Jaeger, Walter Judd, Steven Manchester, Ellen

Martin, Neil Opdyke, Gustav Paulay, and Anthony Randazzo, for their helpful

suggestions and critical reading of the manuscript. I am grateful to Dr. Francisca Oboh-

Ikuenobe at the University of Missouri-Rolla and Dr. John Wrenn at the Louisiana State

University for providing helpful suggestions and discussions while visiting their labs in

2004. I thank Drs. Satish Srivastava, Doug Nichols, Geoffrey Norris, Alfred Traverse,

Mary Dettmann, Martin Farley, Wolfram Kiurschner, Carlos Jaramillo, David Pocknall,

and Jim Riding for useful palynological discussions. Thanks go to Drs Francis Putz and

Alexandre Trindade for discussion concerning statistics. I would like to thank Drs.

Hongqi Li, Hongshan Wang, and Xin Wang for academic discussion and encouragement.

Many thanks go to Rich Barclay, Margaret Landis, Sarah Corbett, Paula Mejia, Judy

Chen, and Elizabeth O'Leary for their support and help during my tenure at the

University of Florida. Special thanks go to Terry Lott, Kent Perkins, Paul Zeigler,

Guenther Mauk, Bill Greene, and Mike Lee for their assistance in various ways. Thanks

go to Dr. Rick Lupia and Amy McClain for providing a loan from the Sam Noble

Oklahoma Museum of Natural History for my use at the University of Florida. Thanks

go to Lynda Schneider and Karen Kelley for TEM and SEM technical assistance. I thank









Dr. Frank Potter and Scott Gooler for their help during the 2003 and 2004 field season.

Thanks go to Professor Meitang Mei for encouraging me to pursue a Ph.D.

Financial support was provided by Dilcher-Becker Funds, 2003; Evolving Earth

Foundation, 2004 grant; Sigma Xi Grant In Aid of Research, 2004; Graduate Student

Council of the University of Florida for Travel Grants, 2003 and 2004; Danker Fund,

2004, from the Department of Geological Sciences, University of Florida; and the Deep

Time Project, NSF DEB-0090283. Finally, I thank my wife Yuxian and my son David

for their support and assisting me in the field during the summers of 2003 and 2004. I

thank my parents Yuqing Hu and Xiuchan Wang for the support and guidance they have

given me throughout my life.
















TABLE OF CONTENTS



A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES ....................................................... ............ .. ............ ix

LIST OF FIGURES ............................... ... ...... ... ................. .x

ABSTRACT .............. ..................... .......... .............. xii

CHAPTER

1 IN TRODU CTION ................................................. ...... .................

2 MATERIAL AND METHODS................................................................. 5

3 P R E V IO U S W O R K ................................................................................ ............. 11

4 SYSTEMATIC PALEONTOLOGY ......................................................... 13

A ngiosperm Pollen .......... .. .......................... ................. .. ............ 13
Gym nosperm Pollen .................................. .. ......... .... ...............25
S p o re s ...............................................................................3 6
Algal, Fungal and Megaspore .................................................................55
Dinoflagellate Cysts and Acritarchs ................... .. .................. ...............58
D inoflagellate C ysts ............................................ .. ........ .... ...........58
A critarch s ................................................................6 3

5 GEOLOGICAL SETTING: REGIONAL AND STUDY AREA ...........................67

R eg io n al ................................. ...... ......................................................... ............... 6 7
Stratigraphy and Sedimentary Environments in Study Area ....................................68
Courtland Clay Pit .................. ................................. ................. 68
H ighw ay 4 C lay P it .............................. ........................ .. ........ .... ............69
O chs Clay Pit ...................................................................... ............. ................. 69
The Stratigraphic Relationships of the Localities.....................................................70

6 THE AGE OF THE DAKOTA FORMATION IN MINNESOTA.........................81









7 IMPLICATION OF POLLINATION BIOLOGY AND EARLY LATE
CRETACEOUS COASTAL VEGETATION .............. ................ .....................85

Implications for Pollination Biology of the Early Late Cretaceous Angiosperm
P o llen ............................................. ... ...... .... ...... ...... .................. 8 5
Angiosperm, Fern and Gymnosperm Diversity in Coastal Areas during Early Late
C retaceous ....................................................... ....... .. ....................... 93
Comparison with Other Late Cretaceous Assemblages Recovered from Coal
B hearing Sequences ........................................ ................. .... ....... 98

8 COMPARISONS BETWEEN ANGIOSPERM MEGAFOSSIL AND
MICROFOSSIL RECORDS ................................................ 118

9 EUSPORANGIATE FERNS FROM THE DAKOTA FORMATION,
MINNESOTA, USA (WITH DAVID DILCHER, HARALD SCHNEIDER AND
D A V ID JA R Z E N ) ......................................................................... ..................... 122

A b stract .......................................... ... .................... ............................ 12 2
Introduction .......................... ............. ... .. .................................123
M material and M methods ......... .............................. ............................. ............... 124
R e su lts .......................... ............. ... ....................................................... 1 2 6
G eneric D iagnosis ..................... .. ........................ .. .. ...... .............. 126
S p ecies D iag n o sis ......... ...... ................ .......................... ........ ..................... 12 6
G general m orphology ........................................................ ............... 126
Spore m orphology ......................................... ...... ............. .. 127
D e scrip tio n .................................................................... 12 7
System atic R em arks .................................. ................. .... ....... 128
G eneric D iagnosis ..................... .. ........................ .. .. ...... ...............132
Species D iagnosis......... ...................................... ................ .. .... ..... .. 132
G general m orphology ........................................................ ............... 132
Spore m orphology ..................... ................. ........................133
D e scrip tio n .................................................................... 13 3
System atic R em arks .................................. ................. .... ....... 134
Discussion ................................. ................................. ......... 136

10 CONCLU SION S ................................ .. .. ......... .. .............140

APPENDIX

A PROCESSING PROCEDURES USED BY GLOBAL GEOLAB LIMITED,
C A C A D A ...........................................................................14 5

B PALYNOMORPH RAW DATA SHEET......... ........... .......... 147

C PLATE EXPLANATION .......................................................... ............... 158

D P L A T E S ....................................................................................17 1









R E F E R E N C E S ...................................... ........................................................... .. 2 0 4

B IO G R A PH IC A L SK E T C H ........................................ ............................................217
















LIST OF TABLES


Table page

7-1 Criteria for pollination interpretation .......... ................................ ...............101

7-2 Inferred mode of pollination for angiosperm pollen taxa from Courtland Clay
Pit ............. ......................... ................................. 102

7-3 Inferred mode of pollination for angiosperm pollen taxa from Ochs Clay Pit... ...106

7-4 Inferred mode of pollination for angiosperm pollen taxa from Highway 4 Clay
P it .......... .. ..... ................................... ... ................. ............... .. 10 9

7-5 Angiosperm pollen distribution in three different environments in Ochs Clay Pit. 110

7-6 Fern spore distribution in three different environments at Ochs Clay Pit.............. 111

7-7 Gymnosperm pollen distribution in three different environments at Ochs Clay
P it .................. .................... .............................. ................. 1 12

7-8 Relative abundance of bisaccate pollen in estuaries at Ochs Clay Pit .................13
















LIST OF FIGURES


Figure page

2-1 Map of Minnesota, showing three localities in study area..................... ........6

5-1 Map of North America with the location of Western Interior Seaway during the
Cenomanian (early Late Cretaceous). ................................................. ............... 71

5-2 Area of west-central United States in which the lithostratigraphic name
"D akota" is used. .....................................................................72

5-3 Schematic cross section of lower Upper Cretaceous sediments in southwestern
M innesota. .......................................... ............................. 73

5-4 Detailed stratigraphic columnar section of lower section at Courtland Clay Pit. ....74

5-5 Detailed stratigraphic columnar section of upper section at Courtland Clay Pit. ....75

5-6 Sketch map of the Dismal Swamp, USA; an example of a coastal swamp and
coastal lake developed along the coastal areas ............................................ ........... 75

5-7 Detailed stratigraphic columnar section of SW section at Highway 4 Clay Pit.......76

5-8 Detailed stratigraphic columnar section of NE section at Highway 4 Clay Pit. ......76

5-9 The morphological elements of a meandering river system.. ...............................77

5-10 Detailed stratigraphic columnar section at Ochs Clay Pit................... .......... 78

5-11 Ideal sequence of lacustrine deposits.. ........................................ ............... 79

5-12 Inferred stratigraphic relationships, outcrop sections in study areas.. .....................80

7-1 Selected angiosperm pollen relative abundance analysis in three different
environments at Ochs Clay Pit.......................... ......... ................... 113

7-2 The distribution of terrestrial palynomorphs in lake, swamp, and estuarine
sedim ents at the O chs Clay Pit ...................................................... .............. 114

7-4 Relative abundance of bisaccate pollen in coastal swamps at Ochs Clay Pit ........ 115









7-5 Relative abundance of bisaccate pollen in coastal lake environments at Ochs
C lay P it .................................................................................................... ..... 1 1 6

7-6 Relative abundance analysis of dominant non-bissacate gymnosperm pollen in
three different environm ents ........................................... ............................... 117















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

PALYNOMORPHS AND SELECTED MESOFOSSILS FROM THE CRETACEOUS
DAKOTA FORMATION, MINNESOTA, USA

By

Shusheng Hu

August 2006

Chair: David Dilcher
Major Department: Geological Sciences

The middle Cenomanian palynomorphs and selected mesofossils from the Dakota

Formation of south central Minnesota were investigated. A total of 218 palynomorphs

were recovered. Terrestrial palynomorphs include 41 types of angiosperm pollen in

which five types are described as new species, 42 types of gymnosperm pollen, and 78

types of spores of ferns and fern allies. Spores of ferns and fern allies are most diverse

among the terrestrial palynomorphs. Other palynomorphs include two types of

megaspores, ten types of algal spores and colonies, seven types of fungal spores and

fruiting body, 18 types of dinoflagellate cysts, and 20 types of acritarchs. Based upon the

occurrence of Artiopollis indivisus, Balmeisporites glenelgensis, Cicatricosisporites

crassiterminatus, Dictyophyllidites impensus, and Nyssapollenites sp., the age of the

Cretaceous sediments exposed in south central Minnesota is probably middle

Cenomanian. Based upon the analysis of angiosperm pollen morphological characters,

the pollen types that appear to be insect-pollinated accounted for 77% on average, and the









pollen types which appear to be wind-pollinated accounted for 23% on average during

the middle Cenomanian. The characteristic vegetation elements of the coastal swamps

during middle Cenomanian were diverse angiosperms, dominant ferns and fern allies, and

a relative low abundance of gymnosperms. The Trochodendrales and Buxales of the

eudicots, which were not recovered from leaf fossil records, probably were present during

the middle Cenomanian based upon the angiosperm pollen records. Two new marattioid

ferns, Goolangia minnesotensis Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov. and

Mesozoisynangia trilobus Hu, Dilcher, H. Schneid. et Jarzen gen. et sp. nov., are

described based on charcoalified isolated sporangia and synangia. These fossils provide

evidence for the existence of marattioid ferns during the mid-Cretaceous in North

America and give the first unequivocal documentation of the Marattiaceae in post

Jurassic times. Spores of Goolangia minnesotensis are comparable with the dispersed

spore Dictyophyllidites impensus, which was distributed from Arizona to Alberta in west

central North America during the middle Cenomanian.














CHAPTER 1
INTRODUCTION

The mid-Cretaceous was a critical period in the evolution of angiosperms. During

this time, angiosperms began their adaptive radiation, and major lineages first appear

(Upchurch and Dilcher, 1990; Dilcher, 2000). It has been suggested that early

angiosperms diversified and became dominant along river channels during the mid-

Cretaceous (Retallack and Dilcher, 1981; Wing and Boucher, 1998). Retallack and

Dilcher (1981) further hypothesized that disturbed coastal areas were very important sites

for early angiosperm worldwide dispersal. But as far as we know the data about early

angiosperms in coastal areas during the mid-Cretaceous are very limited (Retallack and

Dilcher, 1981) because of poor environmental interpretations and limited megafossil

collections.

During the past 30 years early angiosperm pollination biology has been understood

substantially through the studies on numerous Cretaceous fossil flowers (Dilcher et al.,

1976; Dilcher 1979; Crepet, 1979; Friis and Skarby, 1981; Dilcher and Crane, 1984;

Crane and Dilcher, 1984; Crane, et al., 1986; Drinnan, et al., 1990; Friis, et al., 1999,

2000a, 2000b; Dilcher, 2001). It was a widely accepted hypothesis that the dominant

angiosperm pollination modes were insect-pollination during the early Cretaceous

(Crepet and Friis, 1987; Friis et al., 1999; Field and Arens, 2005; Wing and Boucher,

1998). Dilcher (1979), on the other hand, presents evidence to support the presence of

limited wind pollination by mid-Cretaceous time. Dilcher (1979) also proposed the

hypothesis that the independent lineages of some anemophilous flowers may have









developed very early and separately from entomophilous flowers from a common

ancestral bisexual stock. Moreover, Dilcher (2000) suggested that wind pollination was

also important for Cretaceous angiosperms in addition to insect pollination. More studies

are needed to better understand the role of pollination in the evolution of early

angiosperms. The palynological data may provide new information about the diversity of

pollination profiles of angiosperms during the Cenomanian.

Research on plant megafossils deposited along the Western Interior Seaway began

with Lesquereux (1895) who described 437 species of angiosperms. However, Upchurch

and Dilcher (1990) and Wang H. (2002) found only 20-25 species of angiosperms at each

of several localities and Wang H. (2002) estimated 150-200 total species of angiosperms

when six localities are tallied together. It is important also to undertake a palynological

investigation of these sediments in order to provide evidence for angiosperm diversity as

recorded by pollen during the mid-Cretaceous.

Mesofossils often consist of charcoalified plant remains, which are mid-sized

fossils between the larger megafossils and smaller microfossils. When plant tissues are

charcoalified, delicate structures, such as anthers containing pollen (Crane and

Herendeen, 1996) and sporangia containing spores, are often well preserved. Therefore

mesofossils provide additional characters that allow comparisons to morphological

features unique to reproductive structures of extant plants. This information

complements the megafossil and microfossil record by providing information not

otherwise available. Dispersed pollen or spores may be related to a taxon with known

affinities. The geographic distribution of a parent plant may be determined based upon

the distribution range of the dispersed pollen or spores. However, mesofossil









investigation is limited in Western Interior Seaway (X. Wang, 2004) and there is no

previous mesofossil research for the Cretaceous sediments in south western Minnesota.

"Dakota Formation" is used as a lithostratigraphic unit across a vast area of central

and west-central North America (Ravn and Witzke, 1995). This name has also often

been used without consideration of the relationship to the type Dakota Formation, either

lithostratigraphically or chronostratigraphically (Witzke et al., 1983). Thus the age and

lithology of the Dakota Formation are probably not the same from the west margin to the

east margin of the Western Interior Seaway. Currently, the age of the Dakota Formation

in southwest Minnesota is thought to be Cenomanian (Setterholm, 1994). However,

because of the absence of marine fossils, this suggestion for a Cenomanian age is mainly

based upon the interpretation from the paleobotanical work of Lesquereux (1895) and the

palynological studies of Pierce (1961). The paleofloras of Lesquereux (1895) and

palynofloras of Pierce (1961) need reexamination and reinterpretation (Upchurch and

Dilcher, 1990; Wang H., 2002; Hu et al., 2004b). Austin (1972) proposed that the

nonmarine Cretaceous sediments in the Minnesota River Valley are about middle

Cenomanian based upon clay mineralogy. Setterholm (1994) also proposed that the

upper mudstone unit in east-central Minnesota of the Dakota Formation may be time

equivalent to the Graneros Shale in western Minnesota, and both units are placed in the

late Cenomanian. The age of the Dakota Formation in southwest Minnesota remains

uncertain at this time.

Therefore investigations of ancient coastal deposits should provide new data about

early angiosperms. Considering that pollen and spores are more broadly distributed than

leaves and therefore provide a broader regional record than plant megafossils (Jaramillo,









1999), the palynological record may provide a view with a different bias for early

angiosperm diversity. Mid-Cretaceous sediments, rich in pollen and spores exposed

recently at Courtland Clay Pit, Highway 4 Clay Pit, and Ochs Clay Pit in southwestern

Minnesota, provided an opportunity for a palynological investigation. The present study

will focus on the following topics:

1. Establish a record of the palynomorphs recovered from a series of samples
collected from freshly exposed sections.

2. Use the described palynofloras, correlate the sections from three isolated clay pits
(Courtland Clay Pit, Highway 4 Clay Pit, and Ochs Clay Pit) where the
sedimentary relationships are difficult to determine in the absence of marine
megafossils.

3. Determine the age of the sediments that is currently controversial and in question
based upon the palynomorphs recovered from samples of the clay pits.

4. Consider the role of insect pollination and wind pollination in the evolution of early
angiosperms as inferred from palynological data. Possible pollination profiles of
some early angiosperms during early Late Cretaceous will be presented.

5. Present early angiosperm diversity during early Late Cretaceous in coastal areas,
especially coastal swamps, based upon palynological investigation.

6. Compare the megafossil (leaf) and microfossil (pollen) record of angiospeprms to
assess the role of microfossils in an analysis of early angiosperm diversity.

7. Use of mesofossils in order to understand fern taxa not previously known from the
Cretaceous.














CHAPTER 2
MATERIAL AND METHODS

Three localities which are located in southwest Minnesota (Figure 2-1) -

Courtland Clay Pit (lat. 44016'29" N, long. 94023'13"W) (Plate 1, Figs. 1-2; Plate 2, Figs.

1-2), Highway 4 Clay Pit (lat. 44026'05" N, long. 94043'37"W) (Plate 5, Figs. 1-2) and

Ochs Clay pit (lat. 44013'26" N, long. 95000'42"W) (Plate 3, Figs. 1-2; Plate 4, Figs. 1-2)

are investigated in this research. I undertook my field work in the summer of 2003 (May

23-May 29) and the summer of 2004 (June 3-June 12). Five stratigraphic sections were

measured. Pollen samples were collected vertically at about 30 centimeter intervals from

each of the sections sampled. At the Courtland Clay Pit 23 samples were collected, nine

samples were processed and eight samples had abundant palynomorphs. At Highway 4

Clay Pit, 12 samples were collected, eight samples were processed, and three samples had

abundant palynomorphs. At Ochs Clay Pit 27 samples were collected, eight samples

were processed, and seven samples have abundant palynomorphs.

The Canada Global Geolab processed 4 samples (sample 18297, 036690, 036708,

and 036710) from Courtland Clay Pit in 2003 (see Appendix A for the processing

methods used by Canada Global Geolab). I processed all of the other samples that I

studied in this research myself in the chemical lab of the Paleobotany and Palynology

Laboratory of the Florida Museum of Natural History during the summers of 2004 and

2005. In order to avoid any bias caused by the different processing methods, I have also

reprocessed all those samples originally processed by Canada Global Geolab (except for

sample Courtland 18297).





























Figure 2-1. Map of Minnesota, showing three localities in study area.(Scale 1:7,500,000)


Processing methods for siliciclastic and lignite samples are described below.

Siliciclastic samples:

1. Crush a 10 g sample using a mortar and pestle.

2. Sieve a crushed sample using a tea strainer until the entire sample is sieved.

3. Put the crushed sample into a 1000 ml glass beaker and gradually add 25% HCL
acid. If the reaction is too strong, add several drops of alcohol. Add enough of the
25% HCL acid to fill half of the beaker. At the same time, stir gently with a glass
rod.

4. Cover the beaker with a Petri dish.

5. Wait about 2 hours until the sample has settled and all effervescence has ceased.

6. Pour the waste acid out and wash with distilled water until the slurry is neutral.

7. Transfer the sample into a 600 ml plastic beaker and slowly pourl00 ml of 49% HF
acid into the slurry while stirring. Exercise caution when using HF.

8. After 6 hours, dump the waste acid and add 100 ml of 49% HF acid.

9. Wait for at least 3 days while stirring occasionally.










10. Dump the waste acid and wash the sample using distilled water until the slurry is
neutral.

11. Transfer the slurry into a 50 ml glass tube.

12. Add enough 25% HCL acid into the tube to fill half of the tube.

13. Put the tube into a water bath (about 900C) for about 5 minutes. At the same time
stir the sample occasionally.

14. Repeat this procedure at least 3 times until the supernatant is clear.

15. Oxidize the sample using the following procedure: First, pour enough 10% nitric
acid into the tube to fill half of the tube. Second, put the tube into a water bath for
about 5 minutes while stirring occasionally. Third, check one drop under the
microscope. If strong oxidation is needed, repeat the procedure using 50% nitric
acid.

16. After the oxidation procedure, wash the sample 3 times using distilled water.

17. Pour enough 5% ammonium hydroxide to fill half of the tube.

18. Wait about 5 minutes while stirring occasionally.

19. Check one drop under the microscope.

20. Wash with distilled water at least 3 times or until the supernatant is clear.

21. If the slurry is gritty, pour enough zinc chloride heavy liquid (specific gravity about
2.0) to fill half of the tube.

22. Centrifuge the sample for 30 to 40 minutes at 2000 rpm.

23. Pour out the top part of the mixture (heavy liquid and organic residue) into a 250 ml
beaker and dilute with distilled water.

24. Centrifuge for the mixture for 10 minutes at 2000 rpm.

25. Wash and centrifuge the residue for 10 minutes at 2000 rpm at least 3 times.

26. If the residue is full of fine organic particles, add 10 ml of Darvan #1 solution and
20 ml of distilled water, stirring thoroughly.

27. Centrifuge for 1 minute under about at 1500 rpm.









28. Dump the supernatant and repeat the previous step and this step until the
supernatant is clear. If the palynomorphs are present in the supernatant, stop
processing and keep the supernatant.

29. If using acetolysis, first wash with glacial acetic acid. Second, pour enough
acetolysis mixture to fill half of the tube and put it into a hot bath (90 C) for 3
minutes. Third, wash with glacial acetic acid. Fourth, wash with distilled water 3
times. If staining with Safranin-O, first pour distilled water and one or two drops of
HCL and Safranin-O into the tube and stir. Second, wash with distilled water 3
times.

30. After acetolysis or staining, wash the sample using 50% glycerin.

31. Centrifuge for 10 minutes.

32. Place the tube upside down for at least half hour. The residual material is ready for
making slides.

Lignite samples:

1 Crush 2 g of lignite using a mortar and pestle.

2. Sieve the crushed sample using a tea strainer to sieve until the entire sample is
sieved.

3. Mix the crushed and sieved sample with 2 g of potassium chlorate in a 50 ml glass
tube.

4. Add 5 cc of concentrated nitric acid drop by drop into the tube.

5. Wait for several hours and check if the palynomorphs are visible.

6. Centrifuge and decant the supernatant.

7. Add 5% KOH and place into a water bath (900C) for 3-5 minutes. At the same time
checking frequently the condition of the palynomorphs.

8. Centrifuge and wash 3 times.

9. If the palynomorphs are not well concentrated, use heavy liquid to process the
sample using the same procedure used to concentrate the silicicalstic rock sample.

10. If the palynomorphs are not transparent enough, add 10% nitric acid to the sample
and place it into a water bath (900C) for 3 minutes.









11. Use the same procedures (ammonium hydroxide, Darvan #1, 1% Safranin-O
staining and acetolysis) used to process the silicicalstic rock samples.

The procedures for slide preparation follows:

1. Throughly mix a small amount of glycerol gelatin with the residue.

2. Put one drop onto a microscope slide (size: 3 x 1 x Imm).

3. Cover the sample with a number 1 cover glass (size: 22 x 30 x 1).

4. Place the slide on a warming table to make sure the residue spreads evenly.

5. Prepare at least 3 slides for each sample.

6. Label slides as soon as possible to avoid loss of data.

At least two slides were scanned in order to build a catalogue of pollen and spore

types for each sample. When making pollen count, at least 300 palynomorphs were

counted. A ZEISS AxiophotTM microscope and an AxioCam digital camera and imaging

capturing software were used for the palynomorph identification and photography. Slides

are stored in the Paleobotany and Palynology Collection of the Florida Museum of

Natural History, Gainesville, Florida, USA.

Pollen and spore identification were made through comparisons with images and

descriptions in published papers and the holotype materials of Hedlund, Richard .W.

which are deposited in the Sam Noble Oklahoma Museum of Natural History. Published

papers on the Western Interior Seaway, Atlantic Coastal Plain and Gulf Coast were used

as primary reference sources for palynomorph identification (Bergad, 1973; Brenner,

1963, 1967; Burden and Hills, 1989; Hedlund, 1966; Norris, 1967; Phillips and Felix,

1972a, 1972b; Pierce, 1961; Ravn and Witzki, 1995; Singh, 1964, 1971, 1983;

Srivastava, 1992; Tschudy, 1973; Ward, 1986). Other papers also included in this work

from similar age sediments from other parts of the world include Below, 1984; Couper,






10


1953; Davey, 1969, 1970; Dettmann, 1963, 1973; Jarzen, 1979; Srivastava, 1975; Zippi,

1998.

Methods used for the mesofossils that were isolated from organic rich clay samples

are given in Chapter 9.














CHAPTER 3
PREVIOUS WORK

Along the eastern margin of the Western Interior Seaway (WIS), Pierce described

103 species of spores and pollen which he recovered from the lowermost upper

Cretaceous of Minnesota (Pierce, 1961). He did not consider the sedimentary facies.

Farley and Dilcher (1986) undertook research concerning the relationships between

miospores and depositional environments of the Dakota Formation from north-central

Kansas and adjacent Nebraska. They chose four different sedimentary facies from three

localities. They presented the pollen and spore flora found, but did not consider the

vegetation succession through time. Ravn (1981) made preliminary observations of the

palynology of the Upper Dakota Formation lignites in northwestern Iowa and

northeastern Nebraska and described 125 palynomorph species. Later Ravn and Witzke

(1995) published their palynostratigraphic research of the Dakota Formation from the

same area, focusing on biostratigraphy.

On the western margin of the WIS, May and Traverse (1973) undertook the

palynological investigation of the Dakota Formation in Willis Creek Canyon,

Paunsaugunt Plateau, near Bryce Canyon, Utah. About 40 genera and 125 species of

palynomorphs were identified. Although these authors mentioned the sedimentary

environments in their abstract, detailed discussion and identification of the sedimentary

environments were not presented in their paper. Therefore it is not possible to correlate

any relationship between palynomorphs and the sedimentary environments.









Agasie (1969) studied palynomorphs from the middle carbonaceous member of the

Dakota Sandstone in northeastern Arizona. About 39 species of palynomorphs were

recovered. Fern spores dominated the assemblage, while gymnosperm pollen was rare.

Agasie indicated that ferns and angiosperms probably dominated the coal swamps with

minor gymnosperm presence. In the same way, Romans (1975) studied the

palynomorphs recovered from coal seams of the Dakota Sandstone in Black Mesa,

Arizona. There were 62 pollen and spore species in the Dakota Sandstone. Fern spores

dominated the assemblage with angiosperm pollen being the least abundant in the

assemblage. Moreover, Romans (1975) did not give any specific placement of the coal-

forming swamp on the Dakota landscape and its sedimentary environments. Hedlund

(1966) studied the palynology of the Red Branch Member of the Woodbine Formation

(Dakota equivalent), in Oklahoma. He reported 74 forms of spores and pollen grains in

the Red Branch palynological assemblage. Fern spores and angiosperm pollen dominate

the assemblage. Hedlund noted that the sedimentary environment was probably non-

marine because of the absence of marine palynomorphs.

Cretaceous palynomorphs from Atlantic Coastal Plain were very important for this

research. Brenner (1963) investigated the palynomorphs of the Potomac Group

identifying about 125 palynomorph taxa. Two major zones were divided based upon

palynological characteristics. Later, Doyle and Robbins (1977) undertook further

palynological research in the Atlantic Coastal Plain and suggested five major zones based

upon the changes observed in the assemblages of angiosperm pollen through the

reconstructed section.














CHAPTER 4
SYSTEMATIC PALEONTOLOGY

Angiosperm Pollen

Anteturma POLLENITES Potonie 1931
Turma PLICATES Naumova emend. Potonie, 1960
Subturma MONOCOLPATES Iversen & Troels-Smith, 1950
Genus Clavatipollenites Couper, 1958
Type species: Clavatipollenites hughesii Couper, 1958.

Clavatipollenites tenellis Phillips & Felix 1972
Plate 6, Figs. 1-3
Pollen grains free, monosulcate; circular to subcircular; exine 2.5 jim, two layered,
nexine about 1 rim, sexine coarse columellae, pila with a big head (about 0.5 tm in
diameter), pila head link together; reticulate, lumina ca. 1 imin diameter, irregular.
Dimensions: 28 sm (1 grain).
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: Albian, Louisana (Phillips and Felix 1972b); Albian and
Cenomanian, Atlantic Coastal Plain, USA (Doyle and Robbins 1977); and Cenomanian,
northwestern Alberta (Singh 1983).

Clavatipollenites sp.2
Plate 6, Figs. 4-6
Pollen grains free, monosulcate; circular to subcircular; exine 1 [tm, two layered,
sexine columellate, pila dense, pila head link together; microreticulate, lumina less than
0.5 [nm in diameter.
Dimensions: 20(24)28 [tm (2 grains).
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

? Clavatipollenites sp.3
Plate 6, Figs. 7-9
Pollen grains free, monosulcate; circular to subcircular; sulcus narrow, often split
into two halves; exine 2 [tm, two layered, sexine columellate, pila dense, pila head not
developed; granulate to microfoveolate.
Dimensions: 24(27)29 [tm (4 grains).
Occurrence: Ochs Clay Pit.

Genus Liliacidites Couper, 1953
Type species: Liliacidites kaitangataensis Couper, 1953.









Liliacidites sinuatus Hu, sp. nov.
Plate 6, Figs. 10-13
Pollen grains free, monosulcate; elliptical, sulcus wide; exine 2 [im, two layered,
sexine columellate, pila rare and thick, ca. 1 wide; reticulate, lumina ca. 4-7 [um in
diameter, elongate to irregular, muri sinuous, ca. 0.6 [tm wide.
Dimensions: 18(22)25 x 33(34)34 [tm (2 grains)
Holotype: 046535-PY02A, Y39/1
Remarks: This species is distinct from other species of Liliacidites by its sinuous
muri and relatively large lumina. Liliacidites crassatus differs in having smaller lumina
(1 to 2.5 ptm).
Occurrence: Ochs Clay Pit
Name derivation: The species name sinuatus from the Latin sinuous, meaning full
of bendings.

Liliacidites giganteus Singh 1983
Plate 6, Fig. 14
Pollen grains free, monosulcate; elliptical, sulcus not clear; exine 2.5 jim, two
layered, sexine columellate, pila head fused together by membrane; reticulate, lumina ca.
1-6 pm in diameter, polygonal, muri ca. 1.2 pm wide, with a single row of granules on
the muri surface.
Dimensions: 48 x 76 [im (1 grain)
Remarks: There are two rows of granules on the muri for the holotype (Singh
1983).
Occurrence: Courtland Clay Pit.
Distribution: Cenomanian, northwestern Alberta (Singh 1983).

Liliacidites cf. reticulatus (Brenner) Singh 1971
Plate 6, Figs. 15-19; Plate 7, Figs. 1, 2
Pollen grains free, monosulcate; elliptical, sulcus narrow and long, reaching to
margin; exine 2 [im, two layered, sexine columellate, pila ca. 1.5 [im high, pila fused
together by membrane; reticulate, lumina ca. 1-2 [im in diameter, polygonal, muri ca. 0.5
lm.
Dimensions: 19(20)23 x 22(24)28 [m (5 grains)
Remarks: Compared with the holotype described by Brenner (1963), the lumina
are smaller, muri are narrower, and grain size is slightly bigger for this species.
Occurrence: Ochs Clay Pit, Courtland Clay Pit and Highway 4 Clay Pit.
Distribution: Barremian to Albian, Maryland (Brenner 1963); Albian, Oklahoma
(Hedlund and Norris 1968); and middle to late Albian, northwestern Alberta (Singh
1971).

Liliacidites cf. inaequalis Singh 1971
Plate 7, Figs. 3, 4
Pollen grains free, monosulcate; sulcus wide open; exine 1-2 [m, two layered,
sexine columellate, nexine less than 0.5 [im; reticulate, lumina ca. 2-3 [m in diameter,
polygonal, lumina size decreasing toward poles, there are granules on the muri.
Dimensions: 15 (16) 18 x 22 (24) 26 [tm (3 grains)









Remarks: The lumina are 3 to 6 [pm in the middle region for the holotype of L.
inaequalis (Singh 1971). Also the size ofL. inaequalis is larger than this species.
Occurrence: Highway 4 Clay Pit.

Liliacidites sp.2
Plate 7, Figs. 5-7
Pollen grains free, monosulcate; sulcus wide open; exine 1 [um, two layered, sexine
columellate, pila rare, not clear; reticulate, lumina ca. 1-4 [umin diameter, size uneven,
polygonal, muri width even, ca. 0.5 upm wide.
Dimensions: 21 [m (1 grain)
Remarks: It differs from Liliacidites sp.3 in its thinner exine and absence of the
small fovea on the muri. It differs from Liliacidites sp.5 in its smaller lumina and thinner
exine.
Occurrence: Ochs Clay Pit.

Liliacidites sp.3
Plate 7, Figs. 8-10
Pollen grains free, monosulcate; elliptical, sulcus wide open; exine 2 rim, two
layered, sexine columellate, pila rare and thick, ca. 0.5 sm wide; reticulate, lumina ca.
0.5-4 tm in diameter, elliptical to round to polygonal, muri with occasional small fovea.
Dimensions: 15(21)31 x 19(30)43 [im (11 grains)
Remarks: It is distinct from other species of Liliacidites in its small fovea on the
muri. Liliacidites sp.3 is similar to in situ pollen of early or middle Albian well-
preserved flower Virginianthus C il//)'mhei, ,I'\ from the Puddledock locality, Virginia
(Friis et al., 1994) in shape, aperture, and ornamentation. Friis et al. (1994) suggested
that these in situ pollen grains are similar to Clavatipollenites. However the typical
features of Clavatipollenites such as lumina size 1 ism or less and closely spaced pilate
columellae (Burden and Hills, 1989) were absent on these in situ pollen grains which
possess sparse and short columellae (Friis et al., 1994). The only difference is that
Liliacidites sp.3 (which is 21 x 30[im) is larger than in situ pollen of Virginianthus
(I.)ly m1h11,i id' (which is 18km in diameter).
Occurrence: Ochs Clay Pit

Liliacidites sp.4
Plate 7, Figs. 11-13
Pollen grains free, monosulcate; circular to subcircular, sulcus not clear; exine 1.5-
2.5 [um, two layered, nexine thicker than sexine, sexine columellate, short pila with big
pila head (ca. 0.5 ism in diameter); reticulate, lumina ca. 0.5-2 ism in diameter, polygonal,
muri ca. 0.5 upm wide, with granules on it.
Dimensions: 29(37)48 [im (9 grains)
Remarks: It is very similar to Retimonocolpites reticulates Brenner, 1963. But its
size (17-22 [tm) is much smaller than Liliacidites sp.4. It also differs from other species
in its circular shape and granules on the muri. Although there are granules on the muri of
Liliacidites cf inaequalis, except for its oval shape, its size and lumina are smaller than
Liliacidites sp.4.
Occurrence: Ochs Clay Pit









Liliacidites sp.5
Plate 8, Figs. 1-3
Pollen grains free, monosulcate; circular to subcircular, sulcus narrow; exine 2 [im,
two layered, sexine columellate, pila rare; reticulate, lumina ca. 1-7 tm in diameter,
polygonal to ovate, there are small granules on muri.
Dimensions: 20 (23) 25 x 23 (24) 25 [pm (2 grains)
Remarks: Although there are granules on the muri of Liliacidites cf. inaequalis
and Liliacidites sp.4, the large lumina of Liliacidites sp.5 can differentiate from them.
It differs from others in this study in its larger lumina and granules on the muri.
Occurrence: Highway 4 Clay Pit.

Genus Retimonocolpites Pierce, 1961
Type species: Retimonocolpites dividuus Pierce, 1961.

Retimonocolpites dividuus Pierce 1961
Plate 8, Fig. 4
Pollen grains free, monosulcate; amb circular to subcircular, colpi long and
straight, somewhat raised; exine 1.5 itm, two layered, nexine about 1 itm, sexine
columellate, pila short about 0.5 itm high; reticulate, lumina 0.5-1.5 itm in diameter,
polygonal.
Dimensions: 32(35)38 [tm (2 grains).
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: Albian to Cenomanian, North America and Europe (Ravn and
Witzke, 1995).

Genus Spinizonocolpites Muller, 1968
Type species: Spinizonocolpites echinatus Muller, 1968.

? Spinizonocolpites sp.
Plate 8, Figs. 5, 6
Pollen grains free, with encircling colpus (?); subcircular to elliptical, sulcus not
clear; exine 1 itm, two layered not clear; scabrate, with short spines (ca. 3 itm).
Dimensions: 25 [im (1 grain).
Remarks: This pollen type has often been compared with extant Nypafruticans of
the Palmae (Germeraad et al., 1968).
Occurrence: Courtland Clay Pit.

Genus Stellatopollis Doyle, 1975
Type species: Stellatopollis barghoornii Doyle, 1975.

Stellatopollis largissimus Singh 1983
Plate 8, Fig.7
Pollen grains free, monosulcate; elliptical, sulcus long and extending nearly the full
length of the grain; exine 4 jim, two layered, sexine columellate; reticulate, each lumen
surrounded by 4-8 clavate projections, the projection ca. 3 jim high, the head of









projection ca. 1.5 [im in diameter, subtriangular, the head of projections form a crotonoid
sculptural pattern in surface view.
Dimensions: 64 x 123 [m (1 grain).
Occurrence: Courtland Clay Pit.
Distribution: Cenomanian, northwestern Alberta (Singh 1983).

Stellatopollis sp.
Plate 8, Fig. 8
Pollen grains free, monosulcate; elliptical, sulcus not clear in this single
occurrence; exine 1 jLm, two layered, sexine columellate, pila very short; reticulate,
lumina ca. 1-1.5 rim, forming an indistinct crotonoid sculptural pattern.
Dimensions: 38 x 53 [m (1 grain).
Remarks: This grain differs from Stellatopollis largissimus Singh 1983 in its
smaller size and indistinct crotonoid sculptural pattern.
Occurrence: Courtland Clay Pit.

Genus Doyleipollenites Ravn & Witzke, 1995
Type species: Doyleipollenites robbinsiae Ravn & Witzke, 1995

Doyleipollenites robbinsiae Ravn & Witzke, 1995
Plate 8, Figs. 9-11
Pollen grains free, trichotomosulate; subtriangular, rays of sulcus extending to 3% or
entire of the radius and thickened; exine 1.5 rim, two layered, sexine ca. 1 rim; foveolate
to reticulate, lumina uneven, ca. 0.5-1 jim, lumina are larger in interradial areas (ca. 1
jlm) and decrease near the sulcus (ca. 0.5 jim).
Dimensions: 22(27)34 jim (7 grains)
Remarks: The lumina are smaller than the holotype (which is 1-3 im).
Doyleipollenites robbinsiae is similar to in situ pollen associated with Early or Middle
Albian fruiting units Anacostia virginiensis from the Puddledock locality, Virginia (Friis
et al., 1997) in shape, aperture, and ornamentation. Only difference between them is that
Doyleipollenites robbinsiae, with a diameter of 22(27)34 jim, is larger than in situ pollen
on a fruiting units Anacostia virginiensis, which is 12(13)15 jim in diameter.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: ?upper Albian, Atlantic Coastal Plain, United States (Doyle 1973);
?middle Albian to ?lower Cenomanian, Atlantic Coastal Plain, United States (Doyle and
Robbins 1977); ?lower to upper Cenomanian, northwestern Iowa and northeastern
Nebraska (Ravn and Witzke 1995).

Turma JUGATES Erdtman, 1943
Subturma TETRADITES Cookson, 1947
Genus Artiopollis Agasie, 1969, emend.
Type species: Artiopollis indivisus Agasie, 1969.

Artiopollis indivisus Agasie, 1969
Plate 8, Fig. 12; Plate 9, Figs. 1-7









Pollen in tetrads, following Fisher's law; pollen grain tricolpate, isopolar; amb
circular to subcircular; exine ca. 2 jim, two layered, sexine columellate, with dense pila;
microreticulate, lumina about 0.5 [im in diameter.
Dimensions: For entire tetrad 17(23)31 tm (10 tetrads); for individual pollen grain
9(15)19 tm (9 grains).
Occurrence: Ochs Clay pit.
Remarks: The exine of specimens recovered from Ochs Clay Pit is somewhat
thinner (2 ipm) than that of the holotype (2.5 to 3 ipm).

Subturma TRIPTYCHA Naumova, 1939
Genus Cupuliferoidaepollenites Potonie, Thomson, & Thiergart, 1950
Type species: Cupuliferoidaepollenites liblarensis Thomson in Potonie, Thomson,
& Thiergart, 1950.

Cupuliferoidaepollenites sp.
Plate 10, Figs. 4-7
Pollen grains free, isopolar; subprolate, prolate to perprolate (P/E=1.25-2.38), amb
circular to subcircular; tricolpate, colpi nearly extending to the poles, somewhat raised,
apocolpia small; exine thin, ca. 0.6-1 rim, two layered, nexine very thin, sexine scabrate.
Dimensions: equatorial view 7(11)17 [im x 10(16)25 [im (10 grains); polar view
12(16)22 tm (5 grains).
Remarks: This species may be similar to Psilatricolpitespsilatus, Pierce, 1961. It
differs from P. psilatus (21 x 29 [im) in being smaller.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

Genus Foveotricolpites Pierce, 1961
Type species: Foveotricolpites sphaeroides Pierce, 1961.

Foveotricolpites sp.
Plate 10, Figs. 8-10
Pollen grains free, isopolar; subprolate (P/E=1.14-1.2), amb circular to subcircular;
tricolpate, colpi nearly extending to the poles, not straight, apocolpia small; exine ca. 1.5
rlm, two layered, sexine foveolate, fovea irregular to elongate, 0.5-1.5 rim, fovea
becoming smaller and fewer toward colpi and poles.
Dimensions: equatorial view 30(33)35 x 36(38)40 ism (2 grains); polar view 30 ism
(1 grain).
Remarks: This species may be similar to Foveotricolpites concinnus, Singh, 1971.
But fovea are angular and equidimensional to occasionally elongated (1-2 jtm) in F.
concinnus. Also, fovea size is relatively constant toward colpi and poles in F. concinnus.
This species is distinct from Foveotricolpites sphaeroides in its larger size and the
unthickened aperture margin.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

Genus Fraxinoipollenites Potonie 1951 ex Potonie 1960
Type species: Fraxinoipollenites pudicus (Potonie) Potonie 1951









Fraxinoipollenites constrictus (Pierce) Chlonova, 1976
Plate 10, Figs. 11-15
Pollen grains free, isopolar; prolate (P/E=1.37-1.94), amb circular to subtriangular,
tricolpate, colpi nearly extending to the poles, ragged, apocolpia small; exine 1.5Lm, two
layered, nexine thinner than sexine, sexine columellate; sexine microfoveolate, fovea less
than 0.5 tpm and faint.
Dimensions: equatorial view 18(24)34 x 28(38)48 ism (11 grains); polar view
30(35)38 [im (5 grains).
Remarks: Fraxinoipollenites constrictus was described as "sculpture of small,
close-spaced baculae" (Pierce 1961). Singh (1983) indicated that it is microfoveolate.
Occurrence: Highway 4 Clay Pit and Courtland Clay Pit and Ochs Clay Pit.
Distribution: ? Cenomanian, Minnesota (Pierce 1961); Cenomanian, Alberta
(Singh 1983); and lower to middle Cenomanian, northwestern Iowa and northeastern
Nebraska (Ravn and Witzke, 1995).

Genus Rousea Srivastava, 1969
Type species: Rousea subtilis Srivastava, 1969.

Rousea cf. delicipollis Srivastava, 1975
Plate 10, Figs. 16-18
Pollen grains free, isopolar; prolate (P/E=1.64), tricolpate, apocolpia small; exine
0.8 jtm, exine thickness decreasing toward colpi, two layered, sexine columellate, pila
rare and short, but with thick pila head, ca. 0.5 tm wide; reticulate to foveolate, lumina
0.3-1.5 rim, irregular to elongate, lumina size decreasing toward colpi and poles.
Dimensions: equatorial view 14 x 23 [im (1 grain), polar view 16(23)35 [im (7
grains).
Remarks: The lumina are circular in Rousea delicipollis. But lumina are irregular
to elongate in the specimens described here.
Occurrence: Highway 4 Clay Pit and Courtland Clay Pit.

Genus Satishia Ward, 1986
Type species: Satishia glyceia Ward, 1986.

Satishia sp.
Plate 10, Figs. 19-20
Pollen grains free, isopolar; tricolpate, colpi ragged, apocolpia small; exine 1 rim,
two layered not clear; sexine microreticulate, lumina 0.5-1 rim, lumina decreasing toward
colpi not poles.
Dimensions: 28 sm (1 grain).
Remarks: It differs from Rousea in that the lumina of Rousea become finer toward
the poles and toward the colpi margins. The type species Satishia glyceia Ward 1986 has
larger (1.3-2.8 jtm) lumina compared with specimen Luminaa 0.5-1 Ism) described here.
Occurrence: Courtland Clay Pit.

Genus Striatopollis Krutzsch, 1959
Type species: Striatopollis sarstedtensis Krutzsch, 1959.









Striatopollis paraneus (Norris) Singh, 1971
Plate 11, Figs. 1-6
Pollen grains free, isopolar; subprolate (P/E=1.2), amb circular to subcircular;
tricolpate, colpi nearly extending to the poles, apocolpia small; exine ca. 0.8 rim, two
layered, nexine very thin; striato-reticulate, striate ridge ca. 0.3 tm wide, lumina
equidimensional, ca. 0.3 [im in diameter, lumina arranged into rows between striae, striae
closely spaced, ca. 0.3 [im apart.
Dimensions: equatorial view 15 x 18 tm (1 grain); polar view 21 tm (1 grain).
Remarks: Striatopollisparaneus is similar to in situ pollen of early Cenomanian
inflorescence Spanomera mauldinensis, which was discovered at Mauldin Mountain
locality of Maryland (Friis et al., 1991), in size, aperture, and the unique ornamentation.
Drinnan et al. (1991) indicated that the in situ pollen grains of Spanomera mauldinensis
were comparable to the dispersed pollen species Striatopollisparaneus.
Occurrence: Courtland Clay Pit.
Distribution: Middle and late Albian, central Alberta (Norris 1967); Albian,
Oklahoma (Hedlund and Norris, 1968); and middle and late Albian, northwestern Alberta
(Singh 1971), Cenomanian, Bathurst Islands, Northern Territory and Mornington Islands,
Queensland, Australia (Dettmann 1973).

Genus Tricolpites Cookson ex Couper, 1953
Type species: Tricolpites reticulatus Cookson, 1947.

Tricolpites labeonis Hu, sp. nov.
Plate 11, Figs. 7-15
Pollen grains free, isopolar; subprolate, prolate (P/E=1.21-2), amb circular to
subcircular; tricolpate, colpi nearly extending to the poles, apocolpia small; exine thin, ca.
0.5 jtm, two layered, sexine columellate, pila very short; microreticulate, lumina less than
0.5 tm. SEM studies have shown that there is an about 0.7 tpm wide margin along the
colpi on which the lumina are small (less than 0.1 tm in diameter) and rare or absent.
Dimensions: equatorial view 6(10)14 x 9(14)19 ism (14 grains); polar view 18 ism
(1 grain).
Holotype: 046526-PY03A, Y37
Remarks: Tricolpites labeonis Hu is similar to Tricolpites minutus in size and
ornamentation, but it is differentiated from Tricolpites minutus by its narrow margin
along the colpi on which lumina are rare, tiny or absent. Tricolpites labeonis is also
similar to in situ pollen of early to middle Albian flower Aquia brookensis from "Bank
near Brooke" locality, Virginia, in shape, size, and ornamentation, especially the feature
of lumina diminishing in size and becoming more scattered along the margin of colpi
(Crane et al., 1993). The only difference is that the verrucate surface of colpi membrane
for in situ pollen ofAquia brookensis is absent in Tricolpites labeonis.
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Name derivation: Species name labeonis is from Latin, meaning large lips.

Tricolpites nemejci Pacltova 1971
Plate 12, Figs. 1-3









Pollen grains free, isopolar; subprolate to perprolate (P/E=1.16-2.06), amb circular
to subcircular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine 1.5
rlm, two layered, sexine columellate, with dense pila; microreticulate, lumina 0.2-0.6 tim
in diameter, irregular, circular to elongate.
Dimensions: equatorial view 17(19)21 [tm x 22(27)35 [tm (10 grains); polar view
21(26)31 tm (4 grains).
Remarks: Compared with Tricolpites cf. vulgaris, this species has a thicker exine,
dense pila, and small lumina.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: Cenomanian, Czech Republic (Pacltova 1971); Lower Cenomanian,
Atlantic Coastal Plain (Doyle and Robbins 1977); upper Albian, Kansas (Ward 1986);
middle Cenomanian, northwestern Iowa and northeastern Nebraska (Ravn and Witzke
1995).

Tricolpites cf. vulgaris (Pierce) Srivastava, 1969
Plate 12, Figs. 4-7
Pollen grains free, isopolar; prolate (P/E=1.64), amb circular to subcircular;
tricolpate, colpi nearly extending to the poles, apocolpia small; exine thin, ca. 1 itm, two
layered, sexine columellate; sexine reticulate, lumina polygonal to elongate, 0.5-1 [tm in
diameter.
Dimensions: equatorial view 11(14)19 x 16(20)24 [im (5 grains).
Distribution: Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit.

Tricolpate sp.4
Plate 12, Figs. 8-10
Pollen grains free, isopolar; subprolate to prolate (P/E=1.16-1.55), amb circular to
subcircular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine 1-2 rim,
thickness uneven, two layered, sexine columellate, with few pila, pila head small, less
than 0.5 [tm in diameter; reticulate, lumina 0.5-5 [tm in diameter, muri thin less than 0.5
[tm in width.
Dimensions: equatorial view 11(15)18 x 17(21)24 [im (3 grains); polar view 15 [im
(1 grain).
Remarks: This species can be differentiated from Tricolpites cooksonae in
following features: 1. T. cooksonae has smaller lumina (0.4-1.8 ism). 2. T cooksonae
shows granules on muri.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

Tricolpate sp.7
Plate 12, Figs. 11-13
Pollen grains free, isopolar; amb circular to subcircular, tricolpate, colpi nearly
extending to the poles, colpi edge slightly ragged, apocolpia small; exine ca. 1 [im, two
layered, nexine very thin, less than 0.5 [im; sexine microfoveolate, fovea less than 0.5
[lm.
Dimensions: polar view 17(18)18 [im (2 grains).
Remarks: It differs from other tricolpate type species encounted in this research in
its smaller size (18 jtm), ragged colpi, and microfoveolate sexine.









Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Tricolpate sp.8
Plate 12, Figs. 14-16
Pollen grains free, isopolar; amb triangular, tricolpate, colpi nearly extending to the
poles, apocolpia small; exine thin, ca. 0.8 jim, two layered, nexine and sexine 0.4 jim
each; sexine scabrate to faint granulate.
Dimensions: polar view 23(26)28 [im (2 grains).
Remarks: It differs from other tricolpate type species encounted in this research in
its scabrate to faint granulate sexine.
Occurrence: Ochs Clay Pit.

Tricolpate sp.10
Plate 12, Figs. 17-19
Pollen grains free, isopolar; subprolate to prolate (P/E=1.2-1.89), amb circular to
subcircular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine 2.5 jim,
two layered, sexine columellate, with dense pila; reticulate to foveolate, lumina 0.5-1 jim
in diameter between colpi and less than 0.5 jim toward colpi, irregular, polygonal to
elongate, muri relatively thick ca. 0.5 jim and with granules (ca. 0.3 jim) on it.
Dimensions: equatorial view 14(21)32 x 19(29)40 jim (9 grains); polar view 46 jim
(1 grain).
Remarks: It differs from other tricolpate type species in this research in its larger
size (21 x 29 jim) and thick muri with granules on it.
Occurrence: Ochs Clay Pit.

Tricolpate sp.ll
Plate 12, Figs. 20-22
Pollen grains free, isopolar; subprolate (P/E=1.27-1.33), amb circular to
subcircular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine 0.8-1
jlm, two layered, sexine columellate, with short pila; microreticulate to microfoveolate,
lumina uneven, 0.2-0.8 jim in diameter, lumina size decreasing toward colpi and poles.
Dimensions: equatorial view 11(12)12 x 14(15)16 jim (2 grains); polar view
11(13)14 jim (2 grains).
Remarks: It differs from other tricolpate type species in this research in its smaller
size (13 jim), microreticulate to microfoveolate, and lumina decreasing toward colpi and
poles.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

Tricolpate sp.12
Plate 13, Figs. 1-3
Pollen grains free, isopolar; subprolate (P/E=1.15-1.22), amb circular to
subcircular, tricolpate, colpi nearly extending to the poles, apocolpia small; exine 1 jim,
two layered, sexine columellate, rare pila, with thick pila head (ca. 0.5 jim), reticulate,
lumina uneven, 0.5-1.5 jim in diameter, irregular, muri narrow, ca. 0.2 jim wide.
Dimensions: equatorial view 13(16)18 jim x 15(19)22 jim (2 grains); polar view 14
jim (1 grain).









Remarks: It differs from other tricolpate type species in this research in its
reticulate with uneven lumina (0.5-1.5 .im), and thick pila head (ca. 0.5 .im).
Occurrence: Ochs Clay Pit.

Tricolpate sp.14
Plate 13, Figs. 4-6
Pollen grains free, isopolar, prolate (P/E=1.46-1.67), tricolpate, colpi straight and
nearly extending to the poles, apocolpia small; exine 1 rim, two layered, sexine
columellate, pila not perpendicular to nexine; microfoveolate, fovea less than 0.5 .im in
diameter.
Dimensions: equatorial view 9(11)13 [im x 15(18)20 [im (3 grains).
Remarks: It differs from other tricolpate type species in this research in its smaller
size (11 x 18 pm), straight colpi, and tilted pila.
Occurrence: Ochs Clay Pit.

Subturma PTYCHOTRIPORINES Naumova, 1939
Genus Dryadopollis Srivastava, 1975
Type species: Dryadopollis argus Srivastava, 1975.

Dryadopollis minnesotensis Hu, sp. nov.
Plate 13, Figs. 7-14; Plate 14, Fig. 1
Pollen grains free, isopolar; prolate spheroidal, subprolate to prolate (P/E=1.11-
1.88), tricolporate, apocolpia small; exine 1 jim, two layered, sexine columellate, pila
short size; microreticulate, lumina 0.1-1 im, muri ca. 0.5 tm wide, lumina decreasing
toward colpi and poles, ora small, about 0.8 .im in diameter.
Dimensions: equatorial view 8(15)19 [im x 15(19)23 [im (5 grains), polar view
16(17)19 tm (13 grains).
Holotype: 036694-PY01A, S31/1
Remarks: This species is distinct from Dryadopollis argus Srivastava, 1975, and
Dryadopollis vestalis Ward, 1986, in its smaller lumina and ora, and thinner exine.
Occurrence: Courtland Clay Pit.
Name derivation: minnesotensis is from the state name "Minnesota" where the
fossil pollen was recovered.

Dryadopollis minutus Hu, sp. nov.
Plate 14, Figs. 2-4
Pollen grains free, isopolar; subprolate (P/E=1.11-1.88), tricolporate, apocolpia
small; exine thin, ca. 0.5 jim, two layered, sexine columellate, pila very short size;
microreticulate, lumina 0.1-0.5 jim, muri ca. 0.2 jim wide, lumina decreasing toward
colpi and poles.
Dimensions: equatorial view 8 x 10 jim (1 grain), polar view 9(10)10 jim (2
grains).
Holotype: 036704-PY01A, L41
Occurrence: Courtland Clay Pit.
Remarks: It is similar to Dryadopollis argus, but its size and lumina are smaller.
Name derivation: Species name minutus indicating the grain is very small.









Genus Foveotricolporites Pierce, 1961
Type species: Foveotricolporites rhombohedralis Pierce, 1961.

Foveotricolporites rhombohedralis Pierce, 1961
Plate 14, Figs. 5-10
Pollen grains free, isopolar; prolate spheroidal, spheroidal, subprolate to prolate
(P/E=1.03-1.55), amb circular to subcircular; tricolporate, colpi nearly extending to the
poles, pore ca. 6 rim, apocolpia small; exine ca. 2.5 rim, two layered, nexine ca. 1 rim,
sexine coarse columellae, head of pila fused together; foveolate, fovea irregular to
elongate, 0.5-1 ism.
Dimensions: equatorial view 20(27)31 sm x 31(34)39 sm (4 grains); polar view
42(47)51 pm (4 grains).
Remarks: Caprifoliipites acopus Ward, 1986, has similar features, but its size is
smaller (15-18 x 19-24 tm) and its fovea size is larger (1.3-2 tm). Also, the fovea
become smaller toward the colpi and poles in some specimens recovered in Minnesota.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

cf. Foveotricolporites sp.
Plate 14, Figs. 11-13
Pollen grains free, isopolar; prolate (P/E=1.58), amb circular to subcircular,
tricolporate, colpi nearly extending to the poles, slightly raised, apocolpia small; exine
ca. 2.5 rim, two layered, sexine decreasing toward colpi and nexine increasing toward
colpi in thickness; foveolate, fovea ca. 0.5 ism.
Dimensions: equatorial view 19 x 30 [im (1 grain); polar view 27 [im (1 grain).
Remarks: It is similar to Foveotricolporites sp., but the wall structure is different.
Occurrence: Courtland Clay Pit.

Genus Phimopollenites Dettmann 1973
Type species Phimopollenitespannosus (Dettmann and Playford) Dettmann 1973

Phimopollenites striolata Hu, sp. nov.
Plate 14, Figs. 14-21; Plate 15, Figs. 1-3
Pollen grains free, isopolar; prolate spheroidal, subprolate to prolate (P/E=1.06-
1.62), amb circular to subcircular; tricolporoidate, colpi slightly ragged and raised,
apocolpia small; exine 1-2 rim, two layered, nexine thinner than sexine, sexine
columellate, pila dense with expended pila head; sexine microreticulate, lumina less than
0.5 im. SEM studies have indicated that there are striates on the inner wall of lumina.
Dimensions: equatorial view 12(14)19 x 16(19)21 ism (10 grains); polar view
15(18)24 tm (7 grains).
Holotype: 046517-A1, + 10 ft, N29/3
Remarks: This species has striate structure (muri with weak, transverse striations)
on the inner wall of lumina that is different from other species of Phimopollenites, as
seen in SEM images.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit.
Name derivation: Species name striolata is from Latin, diminutive for furrow.









Genus Nyssapollenites Thiergart 1937
Type species Nyssapollenites pseudocruciatus (Potonie) Thiergart 1937

Nyssapollenites sp.
Plate 15, Figs. 4-12
Pollen grains free, isopolar; prolate spheroidal, subprolate to prolate (P/E=1-1.56),
amb circular to subcircular; tricolporate, colpi nearly extending to the poles, pore ca.
Il m, apocolpia small; exine ca. 0.8-1 jim, two layered; sexine scabrate to microfoveolate,
fovea very small.
Dimensions: equatorial view 9(11)14 x 11(14)17 ism (7 grains); polar view
11(14)15 jim (3 grains).
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Remark: This species is distinct from Nyssapollenites albertensis Singh, which has
a larger pore (ca. 2.5 jim) and thickened pore and colpi margin.

Tricolporate sp.2
Plate 16, Figs. 1-3
Pollen grains free, isopolar; spheroidal, subprolate, to prolate (P/E=1.12-1.58), amb
circular to subcircular; tricolporate, colpi nearly extending to the poles, pore ca. 1.5 x 3
jlm, apocolpia small; exine ca. 1 jim, two layered; sexine striate, striae ca. 0.5 jm wide.
Dimensions: equatorial view 19(25)30 x 17(18)19 jim (2 grains); polar view
15(17)19 jim (2 grains).
Occurrence: Ochs Clay Pit.

Genus Psilatricolporites Van der Hammen, 1956 ex van der Hammen and
Wijmstra, 1964
Type Species: Psilatricolporites operculatus van der Hammen and Wijmstra, 1964

Psilatricolporites subtilis (Groot, Penny and Groot) Singh 1983
Plate 16, Fig. 4
Pollen grains free, isopolar; subprolate (P/E=1.27), amb circular to subcircular;
tricolporoidate, colpi nearly extending to the poles, raised, pore not clear, apocolpia
small; exine thin, ca. 1 jim, two layered; sexine psilate to scabrate.
Dimensions: equatorial view 11 x 14 jim (1 grain); polar view 11(12)12 jim (2
grains).
Occurrence: Ochs Clay Pit.
Remarks: This species is distinct from P. distinctus, which has larger pores (ca.
2 jm).
Distribution: Cenomanian to Coniacian, eastern United States (Groot, Penny and
Groot 1961); Cenomanian, Atlantic Coastal Plain of United States (Brenner 1967);
Cenomanian to Coniacian, Alberta (Singh 1983).

Gymnosperm Pollen

Anteturma POLLENITES Potonie
Turma SACCITES Erdtman
Subturma DISACCITES Cookson









Genus Alisporites Daugherty, 1941
Type species: Alisporites opii Daugherty, 1941.

Alisporites rotundus Rouse, 1959
Plate 16, Fig. 5
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to
subspherical, microreticulate, proximal cap ca. 3.5 jim; sacci coarser reticulate, lumina 1-
4 jim, polygonal.
Dimensions: Overall breadth 45(77)112 jim (5 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ? upper Jurassic, western Canada (Rouse 1959); middle Albian, east-
central Alberta (Singh 1964).

Genus Cedripites Wodehouse, 1933
Type species: Cedripites eocenicus Wodehouse, 1933

Cedripites cretaceous Pocock 1962
Plate 16, Fig. 6
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
proximal cap ca. 4jim thick, reticulate to granulate; sacci reticulate, lumina 1-3jim,
irregular and uneven.
Dimensions: Overall breadth 95jim; overall height 69ism (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: McMurray Formation, Alberta (Pocock 1962); middle Albian, east-
central Alberta (Singh 1964); Albian to ? Cenomanian, central Alberta (Norris 1967); and
middle to late Albian, northwestern Alberta (Singh 1971).

Cedripites sp.
Plate 16, Fig. 7
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
proximal cap ca. 2 ism thick, reticulate; sacci distally pendant, sacci reticulate, lumina 1-
3 jim, irregular and uneven.
Dimensions: Overall breadth 88 jim; overall height 58 jim; sacci height 33 jim;
sacci depth 55 ism (1 specimen).
Remarks: It can be distinguished from Cedripites canadensis by the reticulate
proximal cap surface.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Genus Parvisacites Couper, 1958
Type species: Parvisacites radiatus Couper, 1958.

Parvisaccites radiatus Couper 1958
Plate 16, Fig. 8
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
granulate, proximal cap ca. 3 jim; sacci semicircular, reticulate to regulate, with
thickening or ribs at the proximal root with corpus.









Dimensions: Overall breadth 45 rim; overall height 36 rim; sacci height 23 rim;
sacci depth 30 [m (2 specimens).
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Wealden and Aptian, England (Couper 1958); McMurray and
Clearwater Formations, Alberta (Pocock 1962); Barremian to Albian, Maryland (Brenner
1963); middle Albian, east-central Alberta (Singh 1964); Albian to ? Cenomanian, central
Alberta (Norris 1967); and middle to late Albian, northwestern Alberta (Singh 1971).

Genus Pityosporites Seward, 1914
Type species: Pityosporites antarcticus Seward, 1914

Pityosporites constrictus Singh 1964
Plate 16, Fig. 9
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
microreticulate, proximal cap thin, less than 1 jim; sacci coarser reticulate to regulate.
Dimensions: Overall breadth 66 rim; overall height 52 rim; sacci height 34 rim;
sacci depth 32 im (1 specimen).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Throughout much of the Cretaceous of North America and Europe.

? Pityosporites constrictus
Plate 16, Fig. 10
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
fine reticulate to granulate; sacci coarser reticulate to regulate, with thickening or ribs at
distal root.
Dimensions: Overall breadth 75 rim; overall height 43 rim; body breadth 53 rim;
body height 43 rim; sacci height 27 rim; sacci depth 45 [m (1 specimen).
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.

Genus Podocarpidites Cookson, 1947 ex Couper, 1953
Type species: Podocarpidites ellipticus Cookson, 1947

Podocarpidites canadensis Pocock, 1962
Plate 16, Fig. 11
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical,
fine granulate; sacci coarser reticulate, with radial thickening at distal sacci junction with
corpus.
Dimensions: Overall breadth 126 rim; body breadth 65 rim; sacci depth 74 [m (1
specimen).
Occurrence: Ochs Clay Pit.
Distribution: Deville and Ellerslie Members, Alberta (Pocock 1962); middle
Albian, east-central Alberta (Singh 1964); and middle to late Albian, northwestern
Alberta (Singh 1971).

Podocarpidites minisculus Singh 1964
Plate 16, Fig. 12









Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical,
fine reticulate; sacci coarser reticulate, with radial thickening at distal sacci junction with
corpus.
Dimensions: Overall breadth 70 rim; overall height 52 rim; sacci height 31 inm;
sacci depth 49 tm (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: middle Albian, east-central Alberta (Singh 1964); and middle to late
Albian, northwestern Alberta (Singh 1971).

Podocarpidites sp.
Plate 16, Fig. 13
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to
subspherical, scabrate to granulate; sacci reticulate, lumina irregular, with radial
thickening at distal sacci junction with corpus.
Dimensions: Overall breadth 71 rim; overall height 33 rim; sacci height 24 inm;
sacci depth 35 itm (1 specimen).
Remarks: It is different from Podocarpidites minisculus Singh in its scabrate to
granulate corpus.
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.

Genus Pristinuspollenites Tschudy, 1973
Type species: Pristinuspollenites microsaccus Tschudy, 1973

Pristinuspollenites crassus (Pierce) Tschudy, 1973
Plate 17, Fig.1
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical,
granulate; sacci small, not bordering the furrow, coarser granulate.
Dimensions: Overall breadth 52 rim; overall height 47 .im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.
Distribution: ?Cenomanian, Minnesota (Pierce 1961).

Pristinuspollenites inchoatus (Pierce) Tschudy 1973
Plate 17, Fig. 2
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical
to spherical, granulate to regulate; sacci small and elongate, bordering the distal furrow,
coarser granulate.
Dimensions: Overall breadth 64 rim; overall height 64 [im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ?Cenomanian, Minnesota (Pierce 1961); and lower Barremian to
upper Albian, western Canada (Burden and Hills 1989).

Pristinuspollenites microsaccus (Couper) Tschudy 1973
Plate 17, Fig. 3
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical,
microreticulate; sacci small and arc-shaped, granulate to reticulate, sulcus not clearly
defined, .









Dimensions: Overall breadth 31(37)42 rim; overall height 30(43)55 [im (2
specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Middle Jurassic, southeastern England (Couper 1958); upper
Campanian, north-central Montana (Tschudy 1973).

Pristinuspollenites pannosus (Pierce) Tschudy 1973
Plate 17, Fig. 4
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical
to spherical, granulate; sacci small and serpentine, parallel and bordering the narrow
distal furrow.
Dimensions: Overall breadth 49 rim; overall height 49 [m (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ?Cenomanian, Minnesota (Pierce 1961).

Pristinuspollenites sulcatus (Pierce) Tschudy 1973
Plate 17, Fig. 5
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus subspherical
to spherical, granulate; sacci small and elongate, not bordering the distal furrow, but
parallel with it, microreticulate.
Dimensions: Overall breadth 40(46)51 [im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ?Cenomanian, Minnesota (Pierce 1961).

? Pristinuspollenites sp.
Plate 17, Fig. 6
Pollen grain free, heteropolar, bilateral; vesiculate, multisaccate; corpus
subspherical, granulate to regulate; with 2 small flaccid sacci on each side of distal
furrow, not bordering the furrow; exine ca. 1.5 inm.
Dimensions: Overall breadth 30.im (1 specimen).
Occurrence: Courtland Clay Pit.

Pristinuspollenites sp. 2
Plate 17, Fig. 7
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus elliptical,
granulate to reticulate; sacci flaccid, small and elongate, not bordering the furrow; exine
ca. 1.5 Lm.
Dimensions: Overall breadth 27 rim, overall height 38 [im (1 specimen).
Occurrence: Courtland Clay Pit.

Genus Punctabivesiculites Pierce, 1961
Type species: Punctabivesiculites constrictus Pierce, 1961

Punctabivesiculites parvus Pierce, 1961
Plate 17, Fig. 8









Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal,
faint reticulate to granulate; sacci small and elongate, granulate to regulate, with radial
thickening on distally pendant sacci.
Dimensions: Overall height 49 jim (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit, Ochs Clay
Pit.
Distribution: ? Cenomanian, Minnesota (Pierce 1961).

Genus Rugubivesiculites Pierce, 1961
Type species: Rugubivesiculites convolutus Pierce, 1961

Rugubivesiculites convolutus Pierce 1961
Plate 17, Fig. 9
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus regulate,
rugulae not dense; sacci granulate, regulate to reticulate.
Dimensions: Overall breadth 67(73)78 jim; overall height 46(48)50 jim; sacci
height 24(26)27 jim; sacci depth 28(38)48 jim (2 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ?Cenomanian, Minnesota (Pierce 1961).

Rugubivesiculites cf. multiplex Pierce 1961
Plate 17, Fig. 10
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus dense
regulate, rugulae tortuous, psilate to scabrate in inter-ridge areas; sacci granulate,
microreticulate to regulate, flaccid.
Dimensions: Overall breadth 63(69)74 jim (2 specimens).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Rugubivesiculites multisaccus Singh, 1983
Plate 17, Fig. 11
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus contour not
clear, psilate to scabrate; with ca. 5 small and irregular saccate pouches on the proximal
surface of the central body, sacci microreticulate.
Dimensions: Overall breadth 79 jim; overall height 37 jim; body breadth 23 jim;
body height 20 jim; big sacci height 11 im; big sacci depth 17 jim; small sacci height 7
jlm; small sacci depth 11 jim (1 specimen).
Occurrence: Highway 4 Clay Pit.
Distribution: Early Cenomanian, Alberta (Singh 1983).

Rugubivesiculites cf. reductus Pierce 1961
Plate 17, Fig. 12
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus ellipsoidal to
subspherical, regulate only along the proximal roots of sacci; proximal surface
microreticulate, sacci flaccid.
Dimensions: Overall breadth 50 jim (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.









Rugubivesiculites rugosus Pierce 1961
Plate 17, Fig. 13
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate; corpus dense
regulate, rugulae ridge like; sacci fine reticulate, flaccid.
Dimensions: Overall breadth 59 tim (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Mainly Albian to Maastrichtian, Northern Hemisphere.

? Rugubivesiculites sp.
Plate 17, Fig. 14.
Pollen grain free, heteropolar, bilateral; vesiculate, bisaccate (?); corpus regulate,
rugulae short and low; sacci foveolate, and seems around entire central body.
Dimensions: Overall breadth 44 tim (1 specimen).
Occurrence: Courtland Clay Pit.

Turma ALETES Ibrahim
Subturma AZONALETES Luber emend. Potonie & Kremp
Infraturma GRANULONAPITI Cookson
Genus Araucariacites Cookson ex Couper
Type species: Araucariacites australis Cookson, 1947.

Araucariacites australis Cookson 1947
Plate 17, Fig. 15
Pollen grain free; subspherical to spherical; inaperturate, with folds on surface,
granulate; exine thin, ca. 1 itm.
Dimensions: 60(62)64 [tm (2 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Jurassic to Tertiary, worldwide.

Infraturma PSILONAPITI Erdtman
Genus Inaperturopollenites Pflug ex Thomson & Pflug emend. Potonie
Type species: Inaperturopollenites dubius (Potonie & Venitz) Thomson & Pflug,
1953

Inaperturopollenites sp.
Plate 17, Fig. 16
Pollen grain free; spherical, inaperturate, with folds on surface, psilate to scabrate;
exine thin, ca. 1 [im.
Dimensions: 30 [im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Genus Taxodiaceaepollenites Kremp, 1949 ex Potonie, 1958
Type species: Taxodiaceaepollenites hiatus Kremp, 1949 ex Potonie, 1958.

Taxodiaceaepollenites hiatus (Potonie) Kremp 1949
Plate 17, Fig. 17









Pollen grain free; inaperture, but splitting open, with folds on surface, psilate to
scabrate; exine thin, ca. 1 jim.
Dimensions: 27 [im (1 specimen).
Remarks: It differs from Inaperturopollenites sp. in that it splits open.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Middle Albian to Miocene, worldwide.

Turma PLICATES Naumova emend. Potonie
Subturma PRAECOLPATES Potonie & Kremp
Genus Eucommiidites Erdtman emend. Hughes
Type species: Eucommiidites troedssonii Erdtman, 1948.

Eucommiidites sp.l
Plate 17, Fig. 18
Pollen grain free; elliptical, zonisulcate, distal sulcus widen at ends, other two
sulcus narrow, psilate; exine ca. 1 itm.
Dimensions: 11(18)24 x 20(30)39 [tm (2 specimens).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Eucommiidites sp. 2
Plate 17, Fig. 19
Pollen grain free; elliptical, zonisulcate, distal sulcus short and narrow at ends,
other two sulcus longer than distal furrow, psilate; exine ca. 0.5 [im.
Dimensions: 16 x 18 [im (1 specimen).
Occurrence: Ochs Clay Pit.

Subturma POLYPLICATES Erdtman
Genus Equisetosporites Daugherty emend. Singh
Type species: Equisetosporites chinleana Daugherty, 1941.

Equisetosporites sp.l
Plate 17, Fig. 20
Pollen grain free; elliptical, polyplicate, ridge dense, ca. 0.2 itm apart from each
other; ridges ca. 1.5 itm wide; exine ca. 1 [tm.
Dimensions: 17 x 40 stm (2 specimens).
Remarks: It differs from E. sp.2 in its dense ridges, and from E. sp.3 in its thin
ridges.
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Equisetosporites sp.2
Plate 18, Fig. 1
Pollen grain free; elliptical, polyplicate, ridge sparse, ridge ca. 1.5 stm wide, ridge
scabrate; exine ca. 1.2 tm.
Dimensions: 11(13)14 x 37(38)38 [im (2 specimens).
Remarks: It differs from E. sp.3 in its thin and sparse ridges.
Occurrence: Courtland Clay Pit.









Equisetosporites sp.3
Plate 18, Fig. 2-3
Pollen grain free; elliptical, polyplicate, ridge dense, less than 1 tim apart from each
other; ridge wide, ca. 4 .im wide; ridge scabrate.
Dimensions: 20(21)21 x 34 tim (2 specimens).
Occurrence: Courtland Clay Pit.

Subturma MONOCOLPATES Iversen & Troels-Smith
Genus Cycadopites Wodehouse ex Wilson & Webster
Type species: Cycadopitesfollicularius Wilson & Webster, 1946

Cycadopites sp.
Plate 18, Figs. 4, 5
Pollen grain free; elliptical, monosulcate, sulcus long and extending full of the
grain, sulcus margin raised a little; faint granulate to scabrate; exine ca. 1 itm.
Dimensions: 10(18)27 x 27(37)46 [im (5 specimens).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Entylissa Naumova 1939 ex Ishchenko 1952
Type species: Entylissa caperatus (Luber) Potonie & Kremp 1954.

Entylissa sp.
Plate 18, Fig. 6
Pollen grain free; elliptical, monosulcate, furrow broadens at both ends, scabrate to
fine granulate; exine ca. 2.5 im.
Dimensions: 27(29)32 x 45(51)57 im (4 specimens).
Occurrence: Highway 4 Clay Pit.

Genus Monosulcites Cookson, 1947, ex Couper, 1953
Type species: Monosulcites minimus Cookson, 1947.

Monosulcites sp. 1
Plate 18, Fig. 7
Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain,
sulcus becoming narrow at ends, scabrate to granulate; exine ca. 2 im.
Dimensions: 30(36)44 x 45(57)67 [m (3 specimens).
Remarks: Monosulcites sp. 1 differs from Monosulcites sp. 2 in that the
ornamentation of the latter is regulate to verrucate; in addition the sulcus of Monosulcites
sp. 2 does not become narrow at the ends. It differs from Monosulcites sp. 3 in that its
size is much smaller than Monosulcites sp. 3 (79 x 100 .im). Monosulcites sp. 4 is
smaller and has thinner exine compared with Monosulcites sp. 1.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Monosulcites sp. 2
Plate 18, Fig. 8









Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain,
granulate, regulate to verrucate; exine two layered, sexine alveolate, exinel.2-2.5 inm.
Dimensions: 32(39)48 x 47(54)63 [im (5 specimens).
Remarks: It differs from other three Monosulcites species in this chapter in its
regulate to verrucate ornamentation.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Monosulcites sp. 3
Plate 18, Fig. 9
Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain,
scabrate to granulate; exine two layered, ca. 3 rnm.
Dimensions: 79 x 100 [im (1 specimen).
Remarks: It differs from other three Monosulcites species in this chapter in its large
grain size.
Occurrence: Ochs Clay Pit.

Monosulcites sp. 4
Plate 18, Figs. 10, 11
Pollen grain free; elliptical, monosulcate, sulcus extending full length of grain,
sulcus often folded, granulate; exine 0.5 inm.
Dimensions: 15(20)23 x 24(26)30 [im (3 specimens).
Remarks: It differs from other three Monosulcites species in this chapter in its
small grain size and thin exine.
Occurrence: Ochs Clay Pit.

Genus Sabalpollenites Thiergart, in Raatz, 1938
Type species: Sabalpollenites convexus Thiergart, in Raatz, 1938.

Sabalpollenites scabrous (Brenner) Wingate, 1980
Plate 18, Fig. 12
Pollen grain free; subcircular to circular, monosulcate, sulcus extending full length
of grain, granulate to regulate; exine two layered, sexine alveolate, exine 2 inm.
Dimensions: 35(40)45 [im (2 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Albian to lower Cenomanian, Maryland (Brenner 1963);
Cenomanian, New Jersey and New York (Kimyai 1966, 1970); middle Cenomanian,
Louisana and Mississippi (Phillips and Felix 1972b); upper Albian, Oklahoma (Wingate
1980), and lower to middle Cenomanian, northwestern Iowa and northeastern Nebraska
(Ravn and Witzke 1995).

Turma POROSES Naumova emend. Potonie, 1960
Subturma MONOPORINES Naumova 1939
Genus Bacumonoporites Pierce, 1961
Type species: Bacumonoporites baculatus Pierce, 1961









Bacumonoporites baculatus Pierce, 1961
Plate 18, Fig. 13
Pollen grain free; subcircular to circular; monoporate, aperture circular, ca. 16-35
lm in diameter, granulate, baculate to regulate; exine 1.5-4 rm.
Dimensions: 27(43)65 x 27(49)74 [m (4 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ? Cenomanian, Minnesota (Pierce 1961).

Genus Classopollis Pflug, 1953 emend. Pocock and Jansonius, 1961
Type species: Classopollis classoides Pflug, 1953 emend. Pocock and Jansonius,
1961.

Classopollis torosus (Reissinger) Couper 1958
Plate 18, Fig. 14
Pollen grain free; circular, monoporate, aperture circular to triangular, ca. 11 im in
diameter; microreticulate to granulate, with equatorial circular ornament; exine 1.5 jm.
Dimensions: 24(25)28 [m (3 specimens).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.
Distribution: Albian to lower Cenomanian, Maryland (Brenner 1963); ? lower to
upper Cenomanian, northwestern Iowa and northeastern Nebraska (Ravn and Witzke
1995).

Genus Exesipollenites Balme, 1957
Type species: Exesipollenites tumulus Balme, 1957

Exesipollenites sp.
Plate 18, Fig. 15
Pollen grain free; circular, monoporate, pore circular, ca. 3 m in diameter,
differentially thickened areas present around the pore, scabrate; exine ca. 1.5inm.
Dimensions: 32im (1 specimen).
Occurrence: Courtland Clay Pit.

Subturma POLYSACCITES Cookson 1947
Genus Punctamultivesiculites Pierce, 1961
Type species: Punctamultivesiculites inchoatus Pierce, 1961

Punctamultivesiculites cf. inchoatus Pierce, 1961
Plate 18, Fig. 16
Pollen grain free, heteropolar; vesiculate, multisaccate; corpus elliptical, granulate;
sacci small and numerous, ca. 30, sacci granulate to verrucate, exine ca. 2 im.
Dimensions: 43 x 51 im (1 specimen).
Remarks: The holotype only has ca. 10 small sacci.
Occurrence: Ochs Clay Pit.











Spores

Anteturma SPORITES Potonie, 1893
Turma TRILETES, Reinsch emend. Dettmann 1963
Subturma AZONOTRILETES Luber emend. Dettmann 1963
Infraturma LAEVIGATI Bennie & Kidston emend. Potonie 1956
Genus Biretisporites Delcourt & Sprumont emend. Delcourt, Dettmann, & Hughes
1963
Type species: Biretisporites potoniaei Delcourt & Sprumont, 1955.

Biretisporites sp.l
Plate 18, Fig. 17
Spores tetrahedral, trilete, amb subtriangular; laesurae long and straight, extending
full distance of spore radius, laesurae slightly raised and gaping sometimes; sides convex,
apices rounded; sculpture scabrate, densely small pits present; spore wall of uniform
thickness, about 1.2[m thick.
Dimensions: 28(35)42[m (5 specimens)
Occurrence: Courtland Clay Pit.

Biretisporites sp.2
Plate 18, Fig. 18
Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct and raised; sides straight; sculpture scabrate; small folds along
interradial edge; spore wall of uniform thickness, thin, less than 1 [m thick.
Dimensions: 27 [tm (1 specimen)
Remarks: It differs from Biretisporites sp. 1 in its absence of pits for the
ornamentation.
Occurrence: Courtland Clay Pit.

Genus Cyathidites Couper 1953
Type species: Cyathidites australis Couper, 1953.

Cyathidites australis Couper 1953
Plate 18, Fig. 19
Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius,
laesurae gapping; sides concave, apices well-rounded; sculpture scabrate, with densely
small fovea; spore wall of uniform thickness, about 1.2 [im thick.
Dimensions: 57(58)60 [tm (3 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Jurassic and Cretaceous, worldwide.

Cyathidites minor Couper 1953
Plate 18, Fig. 20









Spore tetrahedral, trilete, amb triangular; laesurae nearly extending full distance of
spore radius, laesurae gapping; sides slightly concave, apices rounded; sculpture scabrate;
spore wall of uniform thickness, about 1.2 [m thick.
Dimensions: 24(26)28 [m (4 specimens)
Occurrence: Courtland Clay Pit.
Distribution: Jurassic and Cretaceous, worldwide.

Cyathiditespunctatus (Delcourt and Sprumont 1955) Delcourt, Dettmann, and
Hughes, 1963
Plate 19, Fig. 1
Spore tetrahedral, trilete, amb subtriangular; laesurae extending full distance of
spore radius, laesurae gapping; sides concave, apices well-rounded; sculpture scabrate to
granulate; spore wall thinner at apices (ca. 1.5 .im) and thicker at interradial areas (ca. 2.5

Dimensions: 51(52)53 rm (2 specimens)
Occurrence: Courtland Clay Pit.
Distribution: Wealden and Aptian, England (Couper 1958); Upper Mesozoic,
southeastern Australia (Dettmann 1963); and Cenomanian, Oklahoma (Hedlund 1966).

Genus Deltoidospora Miner emend. Potonie
Type species: Deltoidospora hallii Miner, 1935

Deltoidospora hallii Miner 1935
Plate 19, Fig. 2
Spore tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct; sides convex, apices well-rounded; sculpture scabrate; spore
wall of uniform thickness, ca. 1.5 [im thick.
Dimensions: 32 [m (1 specimen)
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Throughout much of the upper Mesozoic, worldwide.

Deltoidospora sp.
Plate 19, Fig. 3
Spore tetrahedral, trilete, amb subtriangular; laesurae extending nearly full of spore
radius, laesurae distinct and raised; sides convex; sculpture scabrate; spore wall ca. 1 m.
Dimensions: 77 [m (1 specimen)
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.

Genus Undulatisporites Pflug in Thomson & Pflug 1953
Type species: Undulatisporites microcutis Pflug in Thomson & Pflug, 1953.

Undulatisporites sp.
Plate 19, Fig. 4
Spore tetrahedral, trilete, amb subcircular; laesurae sinuous, extending 2/3 of spore
radius; sides convex, apices well-rounded; sculpture scabrate to psilate; spore wall of
uniform thickness, ca. 1 mr thick.









Dimensions: 37 [m (1 specimen)
Occurrence: Ochs Clay Pit.

Genus Dictyophyllidites Couper emend.
Type species: Dictyophyllidites harrisii Couper, 1958.
Dictyophyllidites impensus (Hedlund) Singh, 1983
Plate 19, Fig. 5
Spore tetrahedral, trilete, amb subtriangular; laesurae distinct and raised, laesurae
nearly extending full distance of spore radius; sides convex; sculpture psilate; spore wall
ca. 2 tm thick.
Dimensions: 53 sm (1 specimen)
Remarks: This type of spore is similar to that from Goolangia minnesotensis and
may have affinity to Marattiaceae.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay pit.

Dictyophyllidites sp.l
Plate 19, Fig. 6
Spore tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct and gapping; arcuate thickening at interradial areas; sides slightly
convex, apices rounded; sculpture scabrate; spore wall of uniform thickness, thin, less
than 1 tm thick.
Dimensions: 25(26)27 [im (2 specimens)
Occurrence: Courtland Clay Pit.

Genus Stereisporites Pflug 1953
Type species: Stereisporites stereoides (Potonie & Venitz) Pflug 1953.

Stereisporites sp.
Plate 19, Fig. 7
Spore tetrahedral, trilete, amb subtriangular; cingulum present (ca. 2 ipm); laesurae
short and only half of spore radius, laesurae gapping; sides convex, apices rounded;
sculpture scabrate; spore wall thickened at apices, ca. 1.5 jim.
Dimensions: 33(39)44 [im (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Auritulinasporites Nilsson 1958
Type species: Auritulinasporites scanicus Nilsson, 1958.

? Auritulinasporites sp.
Plate 19, Fig. 8
Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct and thickened; distinctly thickened "lips" delineate a triangular
area around the laesurae; sides concave; sculpture scabrate; spore wall of uniform
thickness, ca. 1.5-2 tm thick.
Dimensions: 48(48)49 [im (3 specimens)
Occurrence: Ochs Clay Pit, Highway 4 Clay Pit.









Infraturma APICULATI Bennie & Kidston emend. Potonie 1956
Genus Concavissimisporites Delcourt & Sprumont emend. Delcourt, Dettmann, &
Hughes 1963
Type species: Concavissimisporites verrucosus Delcourt & Sprumont, 1955.

? Concavissimisporites sp.
Plate 19, Fig. 10
Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius;
sides concave or slight convex, apices well-rounded; sculpture granulate, verrucate to
regulate; spore wall thin, less than 1 ism thick.
Dimensions: 24(32)39 [tm (4 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Baculatisporites Thomson & Pflug 1953
Type species: Baculatisporites primaries (Wolff) Thomson & Pflug 1953

Baculatisporites comaumensis (Cookson) Potonie 1956
Plate 19, Fig. 9
Spores tetrahedral, trilete, amb subtriangular; laesurae distinct and raised, laesurae
extending full distance of spore radius; sides convex; sculpture baculate to verrucate;
baculae ca. 2.5 [m high, dense on distal side and reduced on proximal side.
Dimensions: 34 stm (1 specimen)
Occurrence: Courtland Clay Pit.
Distribution: Late Triassic to Cretaceous, worldwide.

Baculatisporites sp.
Plate 19, Fig. 11
Spores tetrahedral, trilete, amb elliptical to circular; laesurae gaping; sides convex,
apices rounded; sculpture baculate and baculae size 1.2 x 1.0 [im; spore wall of uniform
thickness, about 1.8 itm thick.
Dimensions: 34 [m (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Converrucosisporites Potonie & Kremp 1954
Type species: Converrucosisporites triquetrus (Ibrahim) Potonie & Kremp, 1954.

Converrucosisporites sp.
Plate 19, Figs. 12, 13
Spore tetrahedral, trilete, amb triangular; laesurae extending full of spore radius,
laesurae gapping; sides concave; verrucate, baculate and coni, evenly distributed; spore
wall about 0.8 [m thick (excluding ornamentation).
Dimensions: 39(44)48 [tm (2 specimens)
Occurrence: Ochs Clay Pit.

Genus Neoraistrickia Potonie 1956
Type species: Neoraistrickia truncatus (Cookson) Potonie 1956.









Neoraistrickia sp.
Plate 19, Fig. 14
Spore tetrahedral, trilete, amb triangular; laesurae difficult to observe due to
ornamentation; sides straight or convex; sculpture baculate, baculae ca. 0.5 rm high and
2.5-3.5 .im wide, baculae denser at apices on distal view; spore wall of uniform
thickness, about 3 [m thick.
Dimensions: 47 [m (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Ceratosporites Cookson & Dettmann 1958
Type species: Ceratosporites equalis Cookson & Dettmann 1958.

? Ceratosporites sp.
Plate 19, Fig. 15
Spore tetrahedral, trilete, amb triangular; laesurae not clear because of
ornamentation; sides convex; sculpture echinate on distal side, echinae ca. 3 x 5 rim,
small pits on the surface of echinae; sculpture psilate on proximal side; spore wall thick
(ca. 5 C.m)
Dimensions: 34 rm (1 specimen)
Occurrence: Courtland Clay pit, Highway 4 Clay Pit.

Genus Impardecispora Venkatachala, Kar & Raza 1969
Type species: Impardecispora apiverrucata (Couper) Venkatachala, Kar & Raza,
1969.

Impardecispora sp.l
Plate 19, Fig. 16
Spore tetrahedral, trilete, amb triangular; laesurae distinct and raised, laesurae
extending 2/3 of spore radius; sides convex; sculpture verrucate, big verrucae at apices
region on distal side; proximal side reduced and relatively smooth.
Dimensions: 34 Crm (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Verrucosisporites Ibrahim emend. Smith & Butterworth 1967
Type species: Verrucosisporites verrucosus (Ibrahim) Ibrahim, 1933.

Verrucosisporites sp.
Plate 19, Fig. 17
Spore tetrahedral, trilete, amb subtriangular; laesurae extending ca. 2/3 distance of
spore radius, laesurae gapping; sides concave; sculpture verrucate; spore wall of uniform
thickness, about 1 im thick.
Dimensions: 27(36)51 rm (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Granulatisporites Ibrahim 1933
Type species: Granulatisporites granulatus Ibrahim 1933.









? Granulatisporites sp.
Plate 19, Fig. 18
Spore tetrahedral, trilete, amb subtriangular; laesurae extending full distance of
spore radius, laesurae not straight; sides convex, apices rounded; a distinct triangular
depression on the proximal surface; sculpture scabrate to granulate; granules connect
each other to form dense regulate structure; spore wall of uniform thickness, about 1.2
im thick.
Dimensions: 38(38)39 [m (3 specimens)
Occurrence: Courtland Clay Pit.

Genus Punctatriletes Pierce 1961
Type species: Punctatriletes punctus Pierce, 1961.

Punctatriletes punctus Pierce, 1961
Plate 19, Fig. 19
Spore tetrahedral, trilete, amb triangular; laesurae extending more than 2/3 of spore
radius, laesurae distinct and straight; sides convex; sculpture granulate; spore wall of
uniform thickness, ca. 2 rm thick.
Dimensions: 48(50)51 rm (2 specimens)
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ? Cenomanian, Minnesota (Pierce 1961).

Genus Phaeoceros
cf. Phaeoceros form A Jarzen, 1979
Plate 19, Figs. 20, 21
Spore tetrahedral, trilete, amb sub circular to triangular; laesurae sinuous and
bifurcating when reaching the spore wall, extending nearly full distance of spore radius;
sides slightly convex, apices rounded; baculate, ca. 3 .im high and 1 im wide, baculae
dense and big on distal surface and rare and small on proximal surface; spore wall 1.5-3
rlm, uneven.
Dimensions: 56 Crm (1 specimen)
Occurrence: Ochs Clay Pit.

Infraturma MURORNATI Potonie & Kremp 1954
Genus Lycopodiacidites Couper 1953
Type species: Lycopodiacidites bullerensis Couper, 1953.

Lycopodiacidites sp.l
Plate 19, Figs. 22, 23
Spore tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct and slightly sinuous; sides convex; sculpture regulate.
Dimensions: 25 Crm (1 specimen)
Occurrence: Courtland Clay Pit.

Lycopodiacidites sp.2
Plate 19, Figs. 24, 25









Spore tetrahedral, trilete, amb subtriangular to circular; laesurae distinct and
straight, laesurae extending full distance of spore radius; sides convex; sculpture regulate,
rugulae dense and delicate (less than 1 [im wide); spore wall ca. 1 [im thick.
Dimensions: 36(42)47 [tm (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Foveotriletes van der Hammen ex Potonie 1956
Type species: Foveotriletes scrobiculatus (Ross) Potonie 1956.

Foveotriletes sp.
Plate 19, Fig. 26
Spore tetrahedral, trilete, amb triangular; laesurae nearly extending full distance of
spore radius, laesurae slightly raised; sides straight or slightly convex; sculpture
foveolate, fovea rounded, 1.5-2 rm.
Dimensions: 46 rm (1 specimen)
Occurrence: Courtland Clay Pit.

? Foveotriletes sp.
Plate 19, Figs. 27, 28
Spores tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae distinct, laesurae circled by distinctive thickening areas; sides straight or
slightly concave; sculpture granulate with small pits; spore wall of uniform thickness, ca.
1.5 rm thick.
Dimensions: 29(37)45 [m (2 specimen)
Remarks: It differs from Foveotriletes sp. in its ornamentation that is granulate
with small pits. Also it has distinct thickening areas around laesurae.
Occurrence: Courtland Clay Pit.

Genus Foveosporites Balme 1957
Type species: Foveosporites canalis Balme 1957.

Foveosporites sp.
Plate 20, Fig. 1
Spore tetrahedral, trilete, amb triangular; laesurae distinct and straight, laesurae
extending 2/3 of spore radius; sides convex to concave; sculpture foveolate, fovea
irregular.
Dimensions: 35 [m (1 specimen)
Remarks: It differs from Foveotriletes sp. in its irregular fovea. The fovea is
rounded for Foveotriletes sp.
Occurrence: Courtland Clay Pit.

Genus Lycopodiumsporites Thiergart ex Delcourt & Sprumont 1955
Type species: Lycopodiumsporites agathoecus (Potonie) Thiergart, 1938.

Lycopodiumsporites marginatus Singh, 1964
Plate 20, Figs. 2, 3









Spore tetrahedral, trilete, amb subcircular; laesurae raised, extending nearly full
distance of spore radius; psilate and with several irregular ridges on proximal surface;
reticulate on distal surface, lumina 15-26 rim, muri polygonal at the areas of 3 lumina
connecting, muri ca. 1 [m wide in other areas, forming a 9 [m high membrane layer.
Dimensions: 61 (73)79 im (3 specimens)
Remarks: The lumina are 9-14 [m on the holotype.
Occurrence: Ochs Clay Pit.
Distribution: Middle Albian, east-central Alberta (Singh 1964); Albian to ?
Cenomanian, central Alberta (Norris 1967); Albian, Oklahoma (Hedlund and Norris
1968); and middle to late Albian, northwestern Alberta (Singh 1971).

Lycopodiumsporites sp. 1
Plate 20, Fig. 4
Spore tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae slightly raised; sculpture reticulate, muri membrane like (ca. 4 rm high),
thickness even, muri polygonal, ca. 8 rm in diameter.
Dimensions: 35 [im (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Klukisporites Couper 1958
Type species: Klukisporites variegatus Couper, 1958.

Klukisporites sp.l
Plate 20, Fig. 5
Spore tetrahedral, trilete, amb subtriangular; laesurae not clear; sides straight to
slightly convex; sculpture foveolate, fovea irregular, ca. 2.5-4 irm long; spore wall ca. 2.5
im thick.
Dimensions: 28 [m (1 specimen)
Occurrence: Courtland Clay Pit.

Klukisporites sp.2
Plate 20, Fig. 6
Spore tetrahedral, trilete, amb subtriangular; laesurae distinct; sides straight to
slightly convex; sculpture foveolate on distal side, fovea irregular, size 9 x13 [im to 9 x
23 rm; sculpture proximal side scabrate, with small pits; spore wall ca. 4 [im thick.
Dimensions: 61 [im (1 specimen)
Remarks: It differs from Klukisporites sp. 1 in its large spore size and large fovea
size, and from ? Klukisporites sp. in its absence of thickened apices and tori on proximal
surface.
Occurrence: Courtland Clay Pit.

? Klukisporites sp.
Plate 20, Figs. 7, 8
Spore tetrahedral, trilete, amb subcircular; laesurae extending 2/3 of spore radius,
sinuous and slightly raised; sides convex, apices thickened, ca. 7 utm thick; sculpture









reticulate (?), lumina 21 .im and 36 .im on distal surface, muri 12 .im wide, a tori exist on
proximal surface; spore wall ca. 3.5 tm thick.
Dimensions: 89km (1 specimen)
Remarks: It differs from other Klukisporites in its thickened apices and tori on
proximal surface.
Occurrence: Ochs Clay Pit.

Genus Taurocusporites Stover 1962
Type species: Taurocusporites segmentatus Stover, 1962.

Taurocusporites segmentatus Stover 1962
Plate 20, Fig. 9
Spore tetrahedral, trilete, amb subtriangular; zonate, zona with concentric annular
crassitudes; laesurae extending full distance of spore radius, laesurae distinct and
thickened, laesurae do not reach into zona; sides convex; sculpture verrucate.
Dimensions: 37(42)51 [im (6 specimens)
Occurrence: Courtland Clay Pit.
Distribution: Neocomian to Cenomanian, North America and Europe (Ravn and
Witzke, 1995).

Genus Januasporites Pocock 1962
Type species: Januasporites reticularis Pocock 1962

? Januasporites sp.
Plate 20, Fig. 10
Spore tetrahedral, trilete, amb triangular; zonate, zona membrane like and with
wide base blunt spines on surface; laesurae extending full distance of spore radius,
laesurae distinct; sides convex, apices well-rounded; spore wall ca. 1.5 im thick.
Dimensions: 42(54)65 [m (including zona) (2 specimens)
Occurrence: Ochs Clay Pit.

Genus Cicatricosisporites Potonie & Gelletich 1933
Type species: Cicatricosisporites dorogensis Potonie & Gelletich 1933.

Cicatricosisporites coconinoensis Agasie, 1969
Plate 20, Fig. 11
Spore tetrahedral, trilete, amb circular to subcircular; laesurae distinct and raised,
extending nearly full distance of spore radius; sides convex, apices rounded; relative wide
(ca. 2 rm ) and dense ridges on distal surface and nearly smooth on proximal surface;
spore wall 2 im.
Dimensions: 30(40)50 [m (2 specimens)
Occurrence: Highway 4 Clay Pit.
Distribution: Cenomanian, northeastern Arizona (Agasie 1969).

Cicatricosisporites crassiterminatus Hedlund, 1966
Plate 20, Figs. 12, 13









Spore tetrahedral, trilete, amb triangular to subtriangular; laesurae raised and nearly
extending to equator; sculpture cicatricose, ridge dense and relatively wide (ca. 1.5-3 [m
wide), 1 im apart from each other, interconnected ridges enclose circular to elongate
lumina, 2-2.5 rm.
Dimensions: 39 (44) 48 [m (2specimen)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Cenomanian, North America (Hedlund 1966, Kimyai 1966, Agasie
1969, Romans 1975, May and Traverse 1973, and Singh 1983).

Cicatricosisporites cf. crassiterminatus Hedlund, 1966
Plate 20, Figs. 14, 15
Spore tetrahedral, trilete, amb subtriangular; laesurae slightly raised and nearly
extending to equator; sculpture cicatricose, ridge wide (6-8 im wide) and width uneven,
interconnected ridges enclose elongate or rounded lumina; spore wall 5-8 rim, uneven.
Dimensions: 91 [im (Ispecimen)
Remarks: The holotype is only 56 rm. Also there are no thickened areas at apices
for this species. Ridge width is wider and the thickness of spore wall is thicker than that
of holotype.
Occurrence: Ochs Clay Pit.

Cicatricosisporites hallei Delcourt and Sprumont 1955
Plate 20, Fig. 16
Spore tetrahedral, trilete, amb triangular; laesurae extending to equator, laesurae
straight and distinct; sculpture cicatricose, ridge delicate and relatively narrow (less than
1 nm wide).
Dimensions: 25 rm (1 specimen)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.
Distribution: Middle Albian, east-central Alberta (Singh 1964); Albian to ?
Cenomanian, central Alberta (Norris 1967); Albian and Cenomanian, Oklahoma
(Hedlund 1966; Hedlund and Norris 1968); and middle to late Albian (Singh 1971).

Cicatricosisporites hughesi Dettmann 1963
Plate 20, Figs. 17, 18
Spore tetrahedral, trilete, amb triangular to subtriangular; laesurae nearly extending
full of the spore radius; sculpture cicatricose, ridge sinuous and wide (4-6 ism wide), 3-7
lm apart, there are 3 ridges in each interradial area, which are nearly parallel to each
other and to the side of spore.
Dimensions: 30 (39) 48 Crm (2 specimens)
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: Aptian, Albian, and ? Cenomanian, southeastern Australia (Dettmann
1963); Albian to ? Cenomanian, central Alberta (Norris 1967); Maastrichtian and Danian,
California (Drugg 1967); and middle to late Albian, northwestern Alberta (Singh 1971).

Cicatricosisporites sp.l
Plate 20, Fig. 19









Spore tetrahedral, trilete, amb subtriangular; laesurae nearly extending to equator,
laesurae distinct and raised; sculpture cicatricose, ridge dense (ca. 1.5-2 jm wide).
Dimensions: 37(39)40 jim (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Cicatricosisporites sp.2
Plate 20, Fig. 20
Spore oblique, trilete, trilete mark not clear; sculpture cicatricose, ridge dense and
delicate; spore wall ca. 1 im.
Dimensions: 43 irm (1 specimen)
Remarks: It differs from Cicatricosisporites hallei in its larger size, and from other
Cicatricosisporites in this chapter in its dense and delicate ridges.
Occurrence: Highway 4 Clay Pit.

Cicatricosisporites sp. 4
Plate 20, Figs. 21, 22
Spore tetrahedral, trilete, amb subtriangular; laesurae not clear because of ridges;
sculpture cicatricose, ridge dense and wide (2.5 irm wide), small pits on the ridges.
Dimensions: 47 irm (1 specimen)
Remarks: It differs from other Cicatricosisporites in this chapter in its dense and
wide ridges with pits.
Occurrence: Ochs Clay Pit, Courtland Clay Pit.

Genus Costatoperforosporites Deak 1962
Type species: Costatoperforosporitesfistulosus Deak, 1962.

Costatoperforosporites sp.
Plate 21, Fig. 1
Spore tetrahedral, trilete, amb triangular; laesurae slightly sinuous, extending
nearly full distance of spore radius; sides slightly convex, apices rounded; wide (ca. 6-7
jlm) and dense ridges evenly distributed, with small fovea on the ridges; spore wall 2.5-5
jlm, uneven.
Dimensions: 52(72)90 jim (4 specimens)
Occurrence: Ochs Clay Pit.

Genus Ischyosporites Balme 1957
Type species: Ischyosporites crateris Balme,1957

? Ischyosporites sp.
Plate 21, Figs. 2, 3
Spore subtriangular, trilete; laesurae sinuous and raised, extending nearly full of
spore radius; psilate to scabrate on proximal surface and faint reticulate on distal surface,
lumina 2-7 jim, muri ca. 1 im wide, irregular; spore wall ca. 2 im.
Dimensions: 51(57)63 jim (2 specimens)
Occurrence: Ochs Clay Pit.









Genus Retitriletes van der Hammen ex Pierce emend. Doring et al., in Krutzsch
1963
Type species: Retitriletes globosus Pierce, 1961.

Retitriletes sp.l
Plate 21, Fig. 4
Spore tetrahedral, trilete, amb circular to subcircular; laesurae extending 2/3
distance of spore radius, laesurae not straight; sculpture reticulate, lumina polygonal (ca.
5[im in diameter) and muri thickness not even.
Dimensions: 27(29)31 [im (2 specimens)
Occurrence: Courtland Clay Pit.

Retitriletes sp.2
Plate 21, Figs. 5, 6
Spore tetrahedral, trilete, amb triangular; laesurae nearly extending full distance of
spore radius; sides convex, apices rounded; sculpture reticulate, lumina shape irregular
(1.5-3 .im in diameter) and muri thickness not even; spore wall of uniform thickness,
about 1.2 tm thick.
Dimensions: 29 [im specimene)
Remarks: It differs from Retitriletes sp. 1 in its smaller and irregular lumina, and
from ? Retitriletes sp. in its smaller size.
Occurrence: Courtland Clay Pit.

? Retitriletes sp.
Plate 21, Figs. 7, 8
Spore tetrahedral, trilete, trilete mark not clear, amb nearly circular; sides convex;
sculpture reticulate, lumina polygonal, 3-6 .im in diameter.
Dimensions: 40 [im (1 specimen)
Remarks: It differs from other Retitriletes in this chapter in its larger size.
Occurrence: Highway 4 Clay Pit.

Genus Stoverisporites Burger in Norvick & Burger 1975
Type species: Stoverisporites microverrucatus Burger, 1975.

? Stoverisporites sp.
Plate 21, Fig. 9
Spore tetrahedral, trilete; laesurae raised, with thick "lips" or arcuatee"; incomplete
fovea on distal surface and psilate on proximal surface; spore wall thick, ca. 5 rsm.
Dimensions: 73(78)83 tm (2 specimens)
Occurrence: Highway 4 Clay Pit.

Infraturma TRICRASSATI Dettmann 1963
Genus Gleicheniidites Ross ex Delcourt & Sprumont emend. Dettmann 1963
Type species: Gleicheniidites senonicus Ross 1949.









Gleicheiidites senonicus Ross emend. Skarby 1964
Plate 21, Fig. 10
Spore tetrahedral, trilete, amb triangular; laesurae extending full distance of spore
radius, laesurae long and raised; sides concave with interridial crassitudes, crassitude ca.
4 tm wide; sculpture psilate; spore wall of uniform thickness, less than 1tm thick.
Dimensions: 19(22)25 [im (3 specimens)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: upper Mesozoic, Southeastern Australia (Dettmann 1963).

? Gleichiidites sp.
Plate 21, Fig. 11
Spore tetrahedral, trilete, amb triangular; laesurae extending full of spore radius,
laesurae thickened and raised; sides concave; sculpture scabrate; spore wall ca. 0.5 jim.
Dimensions: 21(24)26 tm (2 specimens)
Remarks: There are no interradial crassitudes for this species.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Genus Sestrosporites Dettmann 1963
Type species: Sestrosporites irregulatus Dettmann 1963

Sestrosporites sp. 1
Plate 21, Fig. 12
Spore tetrahedral, trilete, amb subtriangular; laesurae extending full distance of
spore radius, laesurae distinct and sinuous slightly; sides convex with thicker (ca. 2.5 itm)
interridial crassitudes and crassitude membrane like; sculpture foveolate; hilate on distal
view.
Dimensions: 41 [im (1 specimen)
Occurrence: Courtland Clay Pit.

Sestrosporites sp. 2
Plate 21, Figs. 13, 14
Spore tetrahedral, trilete, amb subtriangular; zonate, zona membranous, ca. 4 .im
thick; laesurae extending full distance of spore radius, laesurae slightly sinuous; sides
convex; sculpture foveolate, fovea irregular, elongate, ca. 1 rim; spore wall ca. 3 inm.
Dimensions: 53(56)59 .im (excluding zona) (2 specimens)
Remarks: It differs from Sestrosporites sp. 1 in its uniform thick zona and larger
size.
Occurrence: Ochs Clay Pit.

Genus Camarozonosporites Pant ex Potonie emend. Klaus, 1960
Type species: Camarozonosporites cretaceous (Weyland & Krieger) Potonie,
1956.

Camarozonosporites sp.l
Plate 21, Fig. 15









Spores tetrahedral, trilete, amb elliptical to circular; laesurae extending nearly full
distance of spore radius, laesurae gapping; crassitude present at interradial areas; sides
convex; sculpture regulate, dense and delicate, ca. 1-2 .im wide.
Dimensions: 27(29)30 [im (2 specimens)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Camarozonosporites sp.3
Plate 21, Figs. 16, 17
Spores tetrahedral, trilete, amb circular to subcircular; zonate, crassitude thicker at
interradial areas (7 ism wide) than that at apical areas (2.5 ism wide); laesurae raised and
slightly sinuous, extending full distance of spore radius; sides convex; sculpture regulate
on distal surface, rugulae thick and wide, ca. 5 itm wide, smooth and psilate on proximal
surface.
Dimensions: 50(57)61 tm (3 specimens)
Occurrence: Ochs Clay Pit.

Suprasubturma PERINOTRILITES Erdtman
Genus Crybelosporites Dettmann, 1963
Type species: Crybelosporites striatus Dettmann, 1963.

Crybelosporites sp.
Plate 21, Figs. 18, 19
Spore subcircular, trilete, laesurae ragged and raised, extending nearly full of spore
radius; scabrate to granulate; with perine, perine membrane like, with hair like process on
the surface, hair ca. 3.5[m long; spore wall ca. 2.5 im.
Dimensions: 47(54)62 [m (excluding perine) (5 specimens)
Remarks: This species probably shares affinity with the Salviniaceae (Hall, 1964).
Occurrence: Ochs Clay Pit.

Turma MONOLETES Ibrahim 1933
Subturma AZONOMONOLETES Luber 1935
Infraturma LAEVIGATOMONOLETI Dybova & Jachowicz 1957

Genus Laevigatosporites Ibrahim 1933
Type species: Laevigatosporites vulgaris (Ibrahim) Ibrahim, 1933.

Laevigatosporites ovatus Wilson and Webster 1946
Plate 21, Fig. 20
Spore monolete; aperture about half spore length; sculpture psilate to scabrate;
spore wall thin and less than 1 im.
Dimensions: 19(22)24 x 30(34)36 [m (6 specimens)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Upper Mesozoic, Australia (Dettmann 1963); middle Albian, east-
central Alberta (Singh 1964).









Laevigatosporites cf. irroratus Hedlund 1966
Plate 21, Fig. 21
Spore monolete; oval to elliptical, aperture about 2/3 of spore length; sculpture fine
granulate; spore wall thin, ca. 0.6 itm.
Dimensions: 22(24)25 x 27(28)28 [tm (2 specimens)
Occurrence: Highway 4 Clay Pit.

Laevigatosporites sp.2
Plate 21, Fig. 22
Spore monolete; aperture long; scabrate, with fine granules occasionally; spore wall
ca. 1 tm.
Dimensions: 32 x 61 [im (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Microfoveolatosporis Krutzsch 1959
Type species: Microfoveolatosporis pseudodentatus Krutzsch 1959

Microfoveolatosporis pseudoreticulatus (Hedlund) Singh, 1963
Plate 21, Fig. 23
Spore monolete; elongate bean shaped; aperture not clear; sculpture granulate to
microfoveolate; spore wall about 1.2 itm.
Dimensions: 21(23)25 x 50(53)56 [im (3 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Cenomanian, southern Oklahoma (Hedlund 1966); Albian, southern
Oklahoma (Hedlund and Norris 1968); middle Cenomanian, northwestern Alberta
(Singh, 1983); and middle Cenomanian, northwestern Iowa and northeastern Nebraska
(Ravn and Witzke, 1995).

Turma HILATES Dettmann, 1963
Genus Aequitriradites Delcourt & Sprumont emend. Cookson & Dettmann 1961
Type species: Aequitriradites dubius Delcourt & Sprumont emend. Delcourt,
Dettmann & Hughes 1963.

Aequitriradites spinulosus (Cookson and Dettmann) Cookson and Dettmann 1961
Plate 21, Fig. 24
Spores tetrahedral, trilete, amb subtriangular; zonate, zona with small pits, ca. 12
ltm thick; laesurae extending full distance of spore radius and extending to the margin of
the zona; sculpture baculate, one thinning area (hilate) present; spore wall of uniform
thickness, about 1.5 [im thick.
Dimensions: 38(40)41 [tm (excluding zona); 64 [tm (including zona)(2 specimens)
Occurrence: Courtland Clay Pit.
Distribution: Lower Cretaceous, eastern Australia (Cookson and Dettmann
1958a); and middle Albian, east-central Alberta (Singh 1964).









Genus Triporoletes Mtchedlishvili emend. Playford 1971
Type species: Triporoletes singularis Mtchedlishvili, in Mtchedlishvili &
Samoilovich, 1960.

Triporoletes involucratus (Chlonova) Playford, 1971
Plate 21, Fig. 25
Spore elliptical to circular, aperture absent; zonate, zona thin and membranous;
spore central body undulate; 4 convex projections and 4 concave embayments present;
fine closely spaced, radially arranged, sinuous wrinkles on distal side.
Dimension: 35 ism (1 specimen)
Occurrence: Courtland Clay Pit.
Distribution: Albian, Saskatchewan and Manitoba (Playford 1971); and
Cenomanian, northwestern Alberta (Singh 1983).

Triporoletes reticulatus (Pocock) Playford 1971
Plate 21, Figs. 26, 27
Spores tetrahedral, trilete mark absent, amb subtriangular; zonate, zona very thin,
ca. 1 jim thick at the apices; sculpture reticulate on distal surface, lumina 5-11 jim, psilate
to scabrate on proximal surface; spore wall ca. 2 irm.
Dimensions: 36 (44) 49 jim (3 specimens)
Remarks: The Zlivisporis has a distinct trilete mark which reaches up to the
equator. Zona is absent and reticulum is arranged into a sparse net on the distal side.
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Albian to Cenomanian, worldwide.

Triporoletes sp.l
Plate 22, Fig. 1
Spores tetrahedral, trilete, amb subtriangular; zonate, zona membranous like;
laesurae extending full distance of spore radius and extending to the margin of the zona,
slightly sinuous; sides convex, apices rounded; sculpture scabrate; spore wall of uniform
thickness, about 1.2 jim thick.
Dimensions: 34(36)38 jim (excluding zona) (3 specimens)
Remarks: Densoisporites with interradial thickenings situated near the proximal
pole. For Triporoletes, the proximal aperture is not clear or absent, and the zona have a
flask-shaped to conical invagination at each radial position of the equator.
Occurrence: Courtland Clay Pit.

Triporoletes sp.2
Plate 22, Figs. 2, 3
Spores tetrahedral, trilete, amb subtriangular; zonate, zona membranous; laesurae
extending full distance of spore radius and extending to the margin of the zona and
laesurae branching in zona, laesurae sinuous; sides convex, apices rounded; sculpture
scabrate on proximal side and reticulate on distal side, lumina polygonal and 11-13 jim in
diameter, muri ca. 1 jim; spore wall of uniform thickness, about 1.5 jim thick.
Dimensions: 42(44)45 mrn (4 specimens)









Remarks: It differs from Triporoletes reticulates in its clear trilete mark, from
Triporoletes sp.l in its reticulate feature on distal side, from Triporoletes sp.3 in its
sinuous laesurae and smaller size.
Occurrence: Courtland Clay Pit.

Triporoletes sp.3
Plate 22, Fig. 4
Spores tetrahedral, trilete, amb triangular; zonate, zona membranous, usually not
complete and broken; laesurae extending full distance of spore radius and extending onto
zona, laesurae distinct and relatively straight; sides convex, apices rounded; sculpture
scabrate; spore wall of uniform thickness, about 1.2 ism thick.
Dimensions: 49(51)52 [im (excluding zona) (3 specimens)
Remarks: It differs from Triporoletes reticulatus in its clear trilete mark, from
Triporoletes sp.l and Triporoletes sp.2 in its straight laesurae and larger size.
Occurrence: Courtland Clay Pit.

Genus Chomotriletes Naumova 1939 ex 1953
Type species: Chomotriletes vedugensis Naumova, 1953.

Chomotriletes sp.
Plate 22, Fig. 5
Spore elliptical, inaperture; nearly concentric thin (less than 0.5 [im) ridges on
spore surface.
Dimensions: 35 [im (1 specimen)
Occurrence: Courtland Clay Pit.

Spore type 1
Plate 22, Figs. 6, 7
Spores tetrahedral, trilete (?), amb subtriangular; laesurae not clear because of
splitting; hilate in distal view; sculpture scabrate, granulate to regulate.
Dimensions: 40(43)46 [im (2 specimens)
Occurrence: Courtland Clay Pit.

Subturma ZONOTRILETES Waltz
Infraturma AURICULATI Schopf emend. Dettmann
Genus Appendicisporites Weyland & Krieger 1953
Type species: Appendicisporites tricuspidatus Weyland & Krieger, 1953.

Appendicisporites auritus Agasie 1969
Plate 22, Fig. 8
Spores tetrahedral, trilete, amb triangular; laesurae not clear because of ridges;
sculpture cicatricose, ridge wide (2-6 stm wide), with wide and blunt appendages.
Dimensions: 81 stm (1 specimen)
Occurrence: Ochs Clay Pit.
Distribution: Cenomanian, Arizona (Agasie 1969; Romans 1975); and
Cenomanian, northwestern Alberta (Singh 1983).









Appendicisporites matesovae (Bolkhovitina) Norris 1967
Plate 22, Fig. 9
Spore subtriangular, aperture not clear; dense ridges on surface (ca. 1.5 .im wide);
sparse baculae on ridges, baculae 6tm high and 2 tm wide.
Dimensions: 37 tm (excluding baculae) (1 specimen).
Occurrence: Courtland Clay Pit.
Distribution: Albian to ? Cenomanian, central Alberta (Norris 1967); Cenomanian,
Oklahoma (Hedlund 1966); and middle to late Albian (Singh 1971).

Appendicisporites cf. matesovae (Bolkhovitina) Norris 1967
Plate 22, Fig. 10
Spore subtriangular, aperture not clear; with ridges on surface (ca. 4 .im wide), 2.5
lm apart from each other; baculae on apices and distal surface, baculae 15 .im high and 4
lm wide, unclear for proximal surface.
Dimensions: 56 .im (excluding baculae) (1 specimen)
Remarks: The baculae in the holotype (3-8 itm long and 2-4 tm wide) are shorter
than those of this species.
Occurrence: Ochs Clay Pit.

Appendicisporites potomacensis Brenner 1963
Plate 22, Figs. 11, 12
Spores tetrahedral, trilete, amb triangular; laesurae not clear because of ridges;
sculpture cicatricose, ridge wide (2-2.5 [im wide), ridges fused before projecting spore
outline.
Dimensions: 44(50)56 [im (2 specimens)
Occurrence: Courtland Clay Pit.
Distribution: Barremian to Albian, Maryland (Brenner 1963); Albian to ?
Cenomanian, central Alberta (Norris 1967); middle Albian, east-central Alberta (Singh
1964); and middle to late Albian (Singh 1971).

Appendicisporites problematicus (Burger) Singh, 1971
Plate 22, Figs. 13, 14
Spores tetrahedral, trilete, amb triangular; spore with appendages at apices,
appendage ca. 12 .im high and 6.im wide; laesurae extending nearly full of spore radius;
sculpture cicatricose; ridge wide, ca. 3 rim, ridges sinuous, 2 .im apart from each other;
ridges on distal surface parallel to spore sides and forming a triangle in the center.
Dimensions: 58(76)90 [im (4 specimens)
Occurrence: Ochs Clay Pit.
Distribution: middle to late Albian, northwestern Alberta (Singh 1971).

Genus Plicatella Maljavkina 1949 emend. Potonie 1960
Type species: Plicatella trichacantha Maljavkina 1949.

Plicatellafucosa (Vavrdova) Davies 1985
Plate 22, Fig. 15









Spore tetrahedral, trilete, amb triangular; laesurae not clear because of ridges;
sculpture cicatricose, ridge wide (2.5-3 .im), ridges fused outside of the outline of spore.
Dimensions: 45(48)50 im (2 specimens)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: ? lower to middle Cenomanian, northwestern Iowa and northeastern
Nebraska (Ravn and Witzke 1995).

Plicatella witzkei Ravn 1995
Plate 22, Fig. 16
Spore tetrahedral, trilete, amb triangular; laesurae not clear because of ridges;
sculpture cicatricose, ridge dense and relatively narrow (1-2 rm wide), ridges fused
outside of the outline of spore, tiny pits present on some ridges.
Dimensions: 44(44)45 [m (3 specimens)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.
Distribution: middle to upper Albian, Alberta (Norris 1967); and upper Albian,
Wyoming (Ravn 1995)

Plicatella sp.l
Plate 22, Fig. 17
Spore tetrahedral, trilete, amb subtriangular to elliptical; laesurae extending ca. half
of the radius, gapping; sculpture cicatricose, ridge dense and wide (2.5 .im wide), ridges
apart from each other ca. 0.5 rim, ridges fused outside of the outline of spore.
Dimensions: 32 [m (1 specimen)
Occurrence: Courtland Clay Pit.

Plicatella sp.2
Plate 22, Figs. 18, 19
Spore tetrahedral, trilete, amb subtriangular; laesurae extending more than 2/3 of
the spore radius, laesurae gapping; sculpture cicatricose, ridge dense and wide (6 .im
wide), ridges fused outside of the outline of spore; appendage small and short.
Dimensions: 48 [m (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Trilobosporites Pant ex Potonie 1956
Type species: Trilobosporites hannonicus (Delcourt & Sprumont) Potonie 1956

Trilobosporites purverulentus (Verbitskaya) Dettmann, 1963
Plate 22, Fig. 20
Spore tetrahedral, trilete, amb triangular; laesurae extending 2/3 of spore radius,
distinct and straight; sides concave, apices well-rounded; sculpture scabrate to foveolate,
fovea (ca. 1.5-3 .im) on apices region and other part of surface scabrate; spore wall ca.
2irm thick.
Dimensions: 43(48)52 rm (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Aptian and Albian, southeastern Australia (Dettmann 1963); middle
Albian, Oklahoma (Hedlund and Norris 1968); Albian, Saskatchewan and Manitoba









(Playford 1971); Cenomanian, Louisiana (Phillips and Felix, 1972a); and Cenomanian
(Singh 1983).


Algal, Fungal and Megaspore

Genus Laevigatasporites Potonie & Gelletich 1933
Type species: Laevigatasporites magnus (Potonie) Potonie & Gelletich 1933

Laevigatasporites sp.
Plate 23, Fig. 1
Spore large, subcircular; inaperture, psilate to scabrate, full of folds on surface;
spore wall very thin, ca. 0.5 itm.
Dimensions: 81 [im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.

Genus Oedogonium Link 1820
Type species: Oedogonium cretaceum Zippi, 1998

Oedogonium cretaceum Zippi, 1998
Plate 23, Fig.2
Oospore, spherical to subspherical; thick outer wall surrounding a solid porous
body.
Dimensions: 24 stm (1 specimen).
Remarks: Modem species of Oedogonium are distributed in fresh water
throughout the world (Tiffany, 1930; Fritsch, 1961) and can indicate slow moving or still
shallow fresh water (Zippi, 1998).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.
Distribution: Albian, Ontario (Zippi 1998).

Genus Ovoidites Potonie 1951 ex Thomson and Pflug 1953 emend. Krutzsch 1959
Type species: Ovoidites ligneolus Potonie ex Krutzsch, 1959.

Ovoidites grandis (Pocock) Zippi, 1998
Plate 23, Fig. 3
Spore elliptical; splitting equatorially into two elongate sections, psilate; spore wall
ca. 1 tm.
Dimensions: 58(74)89 x 125(152)178 [im (2 specimens).
Occurrence: Ochs Clay Pit.
Distribution: Cenomanian, Oklahoma (Hedlund 1966); Albian, Ontario (Zippi
1998).

Ovoidites sp.
Plate 23, Fig. 4
Spore elliptical; splitting equatorially into two halves, psilate to scabrate; spore
wall ca. 1 tm.









Dimensions: 16(19)24 x 30(39)54 [im (4 specimens).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

? Ovoidites sp. 1
Plate 23, Fig. 5
Spore elliptical; aperture wide, splitting equatorially into two halves; reticulate,
lumina uneven, 0.5-4 jim, muri uneven, 0.5-1 [im; spore wall 1-2 [im.
Dimensions: 48 x 80 [im (1 specimen).
Occurrence: Highway 4 Clay Pit.

? Ovoidites sp. 2
Plate 23, Fig. 6
Spore elliptical; aperture wide, splitting equatorially into two halves; verrucate to
baculate; spore wall 1 [im.
Dimensions: 48 x 80 [im (1 specimen).
Occurrence: Ochs Clay Pit.

Genus Palambages O. Wetzel 1961
Palambages sp.
Plate 23, Fig. 7
Algal colony, individual cell ca. 15 jim; ca. 16 cells in colony; the cell wall is
psilate to scabrate; there are folds on cell surface.
Dimensions: colony 38 x 54 [im (1 specimen)
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Genus Pediastrum Meyen 1829
Pediastrum sp.
Plate 23, Fig. 8
Algal colony; with spines, spines connected each other, spine point blunt.
Dimensions: colony 28 x 35 [im (1 specimen)
Occurrence: Courtland Clay Pit.

Genus Schizosporis Cookson and Dettmann emend. Pierce 1976
Type species: Schizosporis reticulates Cookson and Dettmann, 1959.

Schizosporis reticulatus Cookson and Dettmann, 1959
Plate 23, Figs. 9, 10
Probable algal colony; individual cell ca. 5 x 8 irm.
Dimensions: 107 x 117 jim (1 specimen).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.
Distribution: Berriasian to Cenomanian (? Early Turonian) in North America,
Australia, and Europe (Zippi, 1998).

Genus Tetraporina Naumova emend. Lindgren 1980
Type species: Tetraporina antique Naumova, 1950.









Tetraporina sp.
Plate 23, Fig. 11
Spore quadrate; sides concave, surface psilate to scabrate.
Dimensions: 47 jim (1 specimen).
Remarks: Tetraporina is similar to several genera of the modern Zygnemataceae
(Jarzen, 1979) based on the characteristics such as size, wall thickness and overall
quadrate morphology.
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Fungal spore type 1
Plate 23, Fig. 12
Individual cell square to rectangular; cell wall ca. 0.5 jim, each cell with an opening
to connect each other.
Dimensions: cell 7 x 8 im (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit, Ochs Clay Pit.

Fungal spore type 2
Plate 23, Fig. 13
Individual cell (?), ovate; psilate, cell wall thin, ca. 0.5 jim, thinning area present on
the center of the cell.
Dimensions: 32 x 53 jim (1 specimen).
Occurrence: Highway 4 Clay Pit.

Fungal spore type 3
Plate 23, Fig. 14
Individual cell (?), irregular, central body elliptical.
Dimensions: 12 x 25 jim (1 specimen).
Occurrence: Highway 4 Clay Pit.

Fungal spore type 4
Plate 23, Fig. 15
Individual cell irregular elongate, at least 9 individual cells link together.
Dimensions: cell 4 x 22 jim (1 specimen).
Occurrence: Courtland Clay Pit, Highway 4 Clay Pit.

Fungal spore type 5
Plate 23, Fig. 16
Individual cell square to rectangular; cell wall ca. 1 jim, cells may be linked
together by a central "canal".
Dimensions: cell 12 x 12 to 11 x 16 jim (1 specimen).
Occurrence: Highway 4 Clay Pit, Ochs Clay Pit.

Fungal spore type 6
Plate 23, Fig. 17
Individual cell (?), ovate to elliptical; wall ca. 2.5 um.









Dimensions: 18 x 28 [im (1 specimen).
Occurrence: Highway 4 Clay Pit.

Fungal fruiting body of the family Microthyriaceae
Plate 23, Fig. 18
Fruiting body circular, with radiating rows of cells; cells square to elongate, 5 to 9
tm long and 3 to 6 [im wide; there is a hole in the center of the body.
Dimensions: body diameter 59 [im (1 specimen)
Remarks: This is the same as the specimen Singh (1971) described. It is similar to
the species ofMi /1i ,vhllite described by Dilcher (1965).
Occurrence: Courtland Clay Pit.
Distribution: Late Albian, northwestern Alberta (Singh 1971).

Megaspore type 1
Plate 24, Fig. 1
Spore circular; probably scabrate to fine granulate; proximally surmounted by a
prominent trifoliate acrolamella, echinae (ca. 4 itm long) evenly distributed on surface of
acrolamella.
Dimensions: Spore body: 62 [im; overall length of the body and acrolamella: 136
ltm (1 specimen).
Occurrence: Highway 4 Clay Pit.

Genus Balmeisporites Cookson and Dettmann 1958
Type species: Balmeisporites holodictyus Cookson and Dettmann, 1958.

Balmeisporites glenelgensis Cookson and Dettmann
Plate 23, Figs. 2, 3
Spore circular; reticulate, lumina 8-18 [tm, muri ca. 3 [tm, with acrolamella; spore
wall ca. 5 itm.
Dimensions: Spore body: 156 [im; overall length of the body and acrolamella: 190
ltm (1 specimen).
Occurrence: Ochs Clay Pit.
Distribution: Upper Cretaceous, Victoria, Australia (Cookson and Dettmann
1958b); Cenomanian, Oklahoma (Hedlund 1966); Cenomanian, Arizona (Agasie 1969;
Romans 1975); middle to upper Cenomanian, northwestern Iowa and northeastern
Nebraska (Ravn and Witzke 1995).


Dinoflagellate Cysts and Acritarchs

Dinoflagellate Cysts

Genus Oligosphaeridium Davey and Williams 1966
Type species: Oligosphaeridium complex (White) Davey and Williams, 1966.

Oligosphaeridium reniforme (Tasch) Davey, 1969
Plate 25, Figs. 1, 2









Central body elliptical, with apical archaeopyle; with funnel-shaped processes that
expanded gradually from base to the distal ends, the extremities of the processes are flat
with short (ca. 2 .im) hair like spines.
Dimensions: Size of central body: 50 x 55 rim; length of processes: 17-22 inm;
width of processes at base: 2-6 rim; width of processes at distal ends: 18-22 inm. (1
specimen)
Occurrence: Ochs Clay Pit.
Distribution: Albian to Cenomanian, Saskatchewan (Davey 1969).

? Oligosphaeridium sp.
Plate 25, Figs. 3-6
Central body elliptical; with funnel-shaped processes whose width is smallest at
middle of the processes, the extremities of the processes are serrate.
Dimensions: size of central body: 59 x 68 rim; length of processes: 10-17 inm;
width of processes at base: 1-3 tm; width of processes at distal ends: 4-9 inm. (1
specimen)
Remarks: The processes are slender for this species compared with those of
Oligosphaeridium reniforme.
Occurrence: Ochs Clay Pit.

Genus Nyktericysta Bint, 1986
Type species: Nyktericysta davisii Bint, 1986

Nyktericysta cf. pentagon (Singh, 1983) Bint, 1986
Plate 25, Figs. 7, 8; Plate 26, Fig. 1
Cyst proximate, pentagonal shape; two layered, epiphragm membrane, wrinkled,
epiphragm is appressed to endophragm except for at horns; one apical, two lateral and
two antapical horns; there is a small appendage on the tip of apical and antapical horns;
cingulum and tabulation are not clear.
Dimension: 50(57)64 x 79(81)83 tm (4 specimens)
Remarks: Compared with the specimens from middle Cenomanian that Singh
described in 1983 (75 x 111 pm), the specimens described here are smaller. Also, the
reticulate structures are not clear on endophragm.
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Canningia Cookson & Eisenack 1960a
Type species: Canningia reticulata Cookson & Eisenack 1960a

? Canningia sp.
Plate 26, Fig. 2
Proximate cyst, with an apical archeopyle; having evenly distributed processes, tip
of process branching, ca. 4 Crm long.
Dimension: 40 x 61 Crm (1 specimen)
Occurrence: Courtland Clay Pit.









Genus Coronifera Cookson and Eisenack emend. Davey 1974
Type species: Coronifera oceanica Cookson and Eisenack, 1958.

Coronifera oceanica Cookson and Eisenack, 1958
Plate 26, Figs. 3-5
Central body elliptical; granulate to scabrate, with spines, spine simple, not
furcating; antapical process present, extremities of antapical process serrate.
Dimensions: size of central body: 36(41)45 x 42(46)49 rim; length of processes: 9-
12im; antapical process 7(8)9 x 10 rm. (2 specimens)
Occurrence: Ochs Clay Pit.
Distribution: Upper Aptian, Germany (Eisenack 1958); Albian, Australia
(Cookson and Eisenack 1958); Albian to Cenomanian, England (Cookson and Hughes
1964; Davey 1969); and Albian, Saskatchewan (Davey 1969).

Genus Cyclonephelium Deflandre & Cookson emend. Stover & Evitt 1978
Type species: Cyclonephelium compactum Deflandre & Cookson 1955

Cyclonephelium cf. vannophorm Davey, 1969
Plate 26, Figs. 6, 7
Shell subcircular; with apical prominence and two reduced antapical horns; with
apical archaeopyle; granular shell wall with short processes which bifurcating sometimes,
process shape irregular; a wide sulcus present from antapical horn to archaeopyle margin.
Dimension: overall length of shell (including operculum): 74(81)88 rim; overall
width of shell: 66(69)72 rim; length of processes: 4 rm. (2 specimens)
Remarks: The processes are shorter than those of the holotype (up to 8 pm).
Occurrence: Ochs Clay Pit.

? Cyclonephelium sp.
Plate 26, Figs. 8, 9
Shell elliptical, operculum probably gone, antapical horns not clear; psilate to
scabrate; with short funnel shaped processes, extremities of processes serrate.
Dimension: overall length of shell: 88(93)98 rim; overall width of shell: 62(73)84
rlm; length of processes: 2-5 rm. (2 specimens)
Occurrence: Ochs Clay Pit.

Genus Odontochitina Deflandre emend. Davey 1970
Type species: Odontochitina operculata Deflandre & Cookson, 1955.

cf. Odontochitina sp.
Plate 26, Fig. 10
Single isolated horn; regulate to scabrate; one circular (8 im in diameter) thinning
area in the middle of the horn, another thinning area (ca.3 ism in diameter) at the tip of
the horn.
Dimension: 63 x 26 [im for entire specimen and 44 x 11 [Im for horn (width in
middle of horn) (1 specimen)
Occurrence: Courtland Clay Pit.









Genus Pterodinium Eisenack 1958
Type species: Pterodinium aliferum Eisenack, 1958.

cf. Pterodinium cingulatum subsp. cingulatum
Plate 26, Fig. 11
Cyst proximochorate, subcircular shape; subspherical body with high parasutural
septa, septa membrane; there are pits on central body surface; cingulum and tabulation
are not clear.
Dimension: 31(38)44 [tm (2 specimens)
Remarks: The holotype specimen (50-54 [tm) is larger than specimens found here.
Occurrence: Courtland Clay Pit.

Genus: Subtilisphaera Jain & Millepied 1973
Type species: Subtilisphaera senegalensis Jain & Millepied 1973

Subtilisphaera deformans (Davey and Verdier) Stover and Evitt, 1978
Plate 26, Fig. 12
Cyst proximate; pericyst forming a prominent, broad-based conical apical horn,
two uneven antapical horns; left antapical horn is nearly as long as apical horn, right
antapical horn is vestigial; pericyst membranous, both pericyst and endocyst fine
granulate, endocyst appressed laterally to one side of pericyst, tabulation not clear.
Dimensions: pericyst size: 48 x 87 rim; endocyst size: 44 x 50 tim (1 specimen)
Occurrence: Ochs Clay Pit.
Distribution: middle Albian, France (Davey and Verdier 1971); Albian, eastern
Canada (Bujak and Williams 1978); and Albian to middle Cenomanian, northwestern
Canada (Singh 1983).

Genus Geiselodinium Krutzsch 1962
Type species: Geiselodinium geiseltalense Krutzsch 1962

cf. Geiselodinium sp.
Plate 27, Fig. 1
Cyst cavate, heart shape; periphragm psilate and endophragm with fine granules;
tip of apical horn and antapical horns blunt; cingulum and sulcus present but tabulation is
not clear.
Dimension: 36(43)47 x 47(48)50 tm (3 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Trithyrodinium Drugg emend. Lentin & Williams 1976
Type species: Trithyrodinium evittii Drugg, 1967.

? Trithyrodinium sp.
Plate 27, Figs. 2, 3
Cyst proximate; two layered, with a short apihorn, ca. 9 [tm long; two antapihorn
may exist, periphragm psilate and endophragm hairy, tabulation not clear.









Dimensions: 48(52)58 x 65(69)73 [m (3 specimens)
Occurrence: Ochs Clay Pit.

Dino cyst type A
Plate 27, Fig. 4
Cyst single wall, thin; elliptical shape; psilate; a lot of folds on the surface;
tabulation are not clear.
Dimension: 34(36)39 x 48(49)50 [m (3 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Dino cyst type B
Plate 27, Fig. 5
Cyst proximochorate; subcircular to elliptical shape; subspherical body with
membrane-like short parasutural septa; cingulum and tabulation are not clear.
Dimension: 42(43)44im (3 specimens) for subcircular shape; 38(41)43 x
45(47)48 tm for elliptical shape (2 specimens).
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Dino cyst type C
Plate 27, Fig. 6
Cyst single wall, thin; subcircular shape; microgranulate; a lot of folds on the
surface; tabulation are not clear.
Dimensions: 39 [m (1 specimen)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Dino cyst type D
Plate 27, Fig. 7
Cyst single wall, very thin; subcircular shape; dense hair-like processes on surface,
ca. 3 tm long; a lot of folds on the surface; tabulation are not clear.
Dimensions: 31(33)35 x 36(37)37 im (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Dino cyst type H
Plate 27, Fig. 8
Cyst single wall, thin; subcircular shape; short hair-like short processes on surface
and tip of process branching; a lot of folds on the surface; tabulation are not clear.
Dimensions: 29 x 30 im (1 specimen)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Dino cyst type I
Plate 27, Fig. 9
Cyst two layered, subcircular; both epicyst and endocyst with granules, granule size
uneven, 0.2-0.6 nm.
Dimensions: 41 [m (1 specimen)
Occurrence: Ochs Clay Pit.









Acritarchs

Genus Micrhystridium Deflandre 1937
Type species: Micrhystridium inconspicuum Deflandre, 1937.

Micrhystridium singulare Firtion, 1952.
Plate 27, Fig. 10
Central body polygonal; processes more than 10 on surface, processes fluffy and
sinuous, hollow, ca. 14-16 rm long; test wall very thin and psilate.
Dimensions: diameter of central body ca. 25 rim; maximum length of process ca.
16 m. (1 specimen)
Remark: The process is longer than the central body for the holotype.
Occurrence: Courtland Clay Pit.
Distribution: Albian to Cenomanian, England (Davey 1969).

Micrhystridium sp.l
Plate 27, Fig. 11
Central body nearly circular; sparse processes on surface, processes rigid and
strong, tip is very sharp, ca. 7-12 [im long; test wall very thin and psilate.
Dimensions: diameter of central body ca. 24 rim; maximum length of process ca.
12 m. (1 specimen)
Remark: The processes have broad bases and taper gradually.
Occurrence: Courtland Clay Pit.

Micrhystridium sp.2
Plate 27, Fig. 12
Central body subcircular to elliptical; sparse short processes on surface, processes
curled at the tip, and sharp, ca. 5-7 .im long; test wall membrane like, psilate.
Dimensions: diameter of central body ca. 34(35)35 x 41(42)42 rim; maximum
length of process ca. 7 inm. (2 specimens)
Remark: The processes are without broad bases.
Occurrence: Courtland Clay Pit.

Micrhystridium sp.3
Plate 27, Fig. 13
Central body irregular; dense hair like processes on surface, long, ca. 13-17 inm;
processes curled and tip of processes sharp; test wall thin and psilate.
Dimensions: diameter of central body ca. 24(27)30 x 30(34)37 rim; maximum
length of process ca. 17 nm. (2 specimens)
Remark: The processes are without broad bases.
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Micrhystridium sp.4
Plate 27, Fig. 14
Central body circular; thick and stiff processes uniformly distributed, long, ca. 11-
17 jm; processes tapering distally but tip is blunt; test wall thin and scabrate.









Dimensions: diameter of central body ca. 30 rim; maximum length of process ca.
17 nm. (1 specimen)
Remark: Compared with M. sp.1, the processes of this species are thicker and
longer.
Occurrence: Courtland Clay Pit.

Micrhystridium sp.5
Plate 27, Figs. 15, 16
Central body circular; with rare and sharp processes, process ca. 4-5 .im long, less
than 1 tm wide at base; test wall thin and scabrate.
Dimensions: diameter of central body ca. 11(12)12 rim; maximum length of
process ca. 5 jim. (2 specimens)
Occurrence: Courtland Clay Pit, Ochs Clay Pit.

Genus Pterospermella Eisenack 1972
Type species: Pterospermella aureolata (Cookson & Eisenack) Eisenack 1972

Pterospermella australiensis (Deflandre & Cookson) S.K. Srivastava, 1984
Plate 27, Fig. 17
Overall subcircular and central body nearly circular; central body opaque; the flank
scabrate.
Dimensions: overall diameter ca. 23 jim; central body ca. 11 im. (1 specimens)
Remark: This species is relatively smaller compared to other species.
Occurrence: Courtland Clay Pit.
Distribution: Barremian, France (Srivastava 1984)

Genus Veryhachium Deunff emend. Downie & Sarjeant 1963
Veryhachium reductum Deunff 1961
Central body triangular; bearing a process at each corner; the process hollow and
tapering distally to a fine point; test wall thin and psilate to scabrate.
Dimensions: diameter of central body 20(29)38 jim; length of process ca. 10(12)13
jlm. (2 specimens)
Occurrence: Ochs Clay Pit, Courtland Clay Pit.
Distribution: Ordovician, Silurian, Permian, Triassic, Jurassic and lower
Cretaceous, France and England (Davey 1969).

Veryhachium cf. reductum Deunff
Plate 27, Fig. 18
Central body triangular; bearing a process at each corner; the process hollow and
tapering distally to a fine point; test wall thin and psilate to scabrate.
Dimensions: diameter of central body 46 jim; maximum length of process ca. 21
jlm. (1 specimen)
Remark: It is bigger than the holotype (12(16)21 im ).
Occurrence: Courtland Clay Pit.









Veryhachium sp.l
Plate 27, Fig. 19
Central body slightly inflated; at least 6 curved processes present; processes
hollow, tip of processes blunt; test wall very thin and scabrate.
Dimensions: diameter of central body ca. 19 jim; maximum length of process ca.
24jim. (1 specimen)
Remark: The processes are not circular in cross section
Occurrence: Courtland Clay Pit.

Veryhachium sp.2
Plate 27, Fig. 20
Central body triangular; 3 curved processes radiated from central body; processes
hollow, tip of processes sharp; test wall thin and granulate.
Dimensions: diameter of central body ca. 18 jim; maximum length of process ca.
30 im. (1 specimen)
Occurrence: Courtland Clay Pit.

Veryhachium sp.3
Plate 27, Fig. 21
Central body nearly rectangular; bearing a process at each corner; the processes
hollow and tapering distally to a fine point; processes wide based and 11-15 jim long; test
wall very thin and scabrate to psilate.
Dimensions: diameter of central body ca. 11x18 jim; maximum length of process
ca. 15 im. (1 specimen)
Occurrence: Courtland Clay Pit.

Acritarch type A
Plate 27, Fig. 22
Central body circular; hollow processes uniformly distributed; processes
acuminate, bifid or branched-bifid; test wall thin and psilate.
Dimensions: diameter of central body ca. 19(20)21 jim; maximum length of
process ca. 11 im. (2 specimens)
Occurrence: Courtland Clay Pit.

Acritarch type B
Plate 27, Fig. 23
Central body irregular or elliptical; hollow processes uniformly distributed;
processes long and acuminate, bifid or branched-bifid; test wall thin and psilate.
Dimensions: diameter of central body ca. 9 x 15 jim; maximum length of process
ca. 18 im. (1 specimen)
Remark: The shape is different from acritarch type A.
Occurrence: Courtland Clay Pit.

Acritach type C
Plate 28, Figs. 1, 2









Central body elliptical; dense processes uniformly distributed; processes long and
bifurcating; test wall thin and fine granulate.
Dimensions: diameter of central body ca. 59 x 68 jim; length of process ca. 10-13
jlm. (1 specimen)
Occurrence: Ochs Clay Pit.

? Acritarch type 1
Plate 28, Fig. 3
Cyst single wall; subcircular shape; reticulate or regulate; folds on the surface;
tabulation are not clear.
Dimensions: 27 x 30 jim (2 specimens)
Occurrence: Courtland Clay Pit.

? Acritarch type 2
Plate 28, Fig. 4
Cyst single wall, relatively thick, ca. 1 lm; elliptical shape; scabrate, a lot of folds
on surface; tabulation are not clear.
Dimensions: 37 x 59 jim (1 specimen)
Occurrence: Courtland Clay Pit.

? Acritarch type 3
Plate 28, Fig. 5
Cyst single wall, thin; subcircular to elliptical shape; sparse granules on surface and
there is a pit on each granule, a lot of folds on the surface; tabulation are not clear.
Dimensions: 35 jim for subcircular shape (1 specimen); 21 x 31 jim for elliptical
shape (1 specimen)
Occurrence: Courtland Clay Pit.

? Acritarch type 4
Plate 28, Fig. 6
Cyst single wall, thin; subcircular to circular shape; fur-like short processes on
surface, a lot of folds on the surface; tabulation are not clear.
Dimensions: 26(30)30 jim (2 specimens)
Occurrence: Courtland Clay Pit.

? Acritarch type 5
Plate 28, Fig. 7
Cyst single wall, very thin membrane-like, subcircular shape; a lot of folds on the
surface; tabulation are not clear.
Dimensions: 28(31)34 x 35(36)37 jim (2 specimens)
Occurrence: Courtland Clay Pit.














CHAPTER 5
GEOLOGICAL SETTING: REGIONAL AND STUDY AREA

Regional

During the early Cretaceous, two epicontinental seas, the Boreal in the north and

the Gulf in the south, were present on continental North America, with the Boreal Sea

advancing southward and the Gulf Sea northward (Obradovich and Cobban, 1975).

These two seas joined together to form the Western Interior Seaway, a continuous sea

extending from the Artic to the Gulf of Mexico across the North America continent,

which was present by the Late Albian age (Witzke and Ludvigson, 1996) (Figure 5-1).

The Western Interior Seaway was transgressive during the Late Albian to the

Cenomanian (Kauffman, 1977) and was bordered on the west by the Cordilleran thrust

belt and on the east by the cratonic platform (Dyman, et al., 1994). Because of variable

rates of subsidence related to tectonic and sediment loading, an asymmetric sedimentary

basin with thick Cretaceous sediments in the west and thin sediments in the east, was

formed (Dyman, et al., 1994).

The type area of the Dakota Formation is located in northeastern Nebraska and

northwestern Iowa along the Missouri River (Ravn and Witzke, 1995). "Dakota" is used

as a lithostratigraphic unit across a vast area of central and west-central North America

(Ravn and Witzke, 1995) (Figure 5-2). However, this name often has been used without

consideration of the relationship to the type Dakota, either lithostratigraphically or

chronostratigraphically (Witzke, et al., 1983). So the age and lithology of the Dakota









Formation are probably not the same from the west margin to the east margin of the

Western Interior Seaway.

The Dakota Formation, a sequence of nonmarine to marginal marine facies, is the

oldest Cretaceous sediment in southwestern Minnesota (Witzke and Ludvigson, 1994).

The Dakota Formation in southwestern Minnesota includes two units, the lower

sandstone lithostratigraphic unit, which is similar to the Nishnabotna Member, and the

upper mudstone lithostratigraphic unit, which is similar to the Woodbury Member of the

Dakota Formation in age and lithology (Setterholm, 1994) (Figure 5-3). Currently, the

age of the Dakota Formation in southwest Minnesota is thought to be Cenomanian

(Setterholm, 1994). However this suggestion for Cenomanian age is mainly based upon

the interpretation of Lesquereux (1895) and Pierce (1961). The interpretations of

megafossils by Lesquereux (1895) and microfossils by Pierce (1961) all need

reexamination and reinterpretation (Upchurch and Dilcher, 1990; Wang H., 2002, Hu et

al., 2004). The age of the Dakota Formation in southwest Minnesota is uncertain at this

time and will be addressed in this dissertation.

Stratigraphy and Sedimentary Environments in Study Area

Courtland Clay Pit

The sediments at Courtland Clay Pit are dominated by laminated mudstone (Figure

5-4 and Figure 5-5). Hajek et al. (2002) interpreted the sedimentary environment as a

large lake based upon the mm- to cm-scale laminae, scattered well-preserved leaves, and

siderite concretions. Lake Drummond in Virginia is a typical coastal lake and may be a

good analogy of the large Cretaceous lake at Courtland Clay Pit (Figure 5-6).









Highway 4 Clay Pit

The sediments at Highway 4 Clay Pit consist predominantly of tabular cross-

bedded sandstone and carbonaceous siltstone (Figure 5-7and Figure 5-8). Hajek et al.

(2002) interpreted the sedimentary environment as a tidally influenced meandering river

system based on the inclined heterolithic stratification (IHS) and tabular cross-bedded

fine-grained sandstone. Oxbow lake, ridge and swale, and levee are important

environments associated with a meandering river system (Figure 5-9).

Ochs Clay Pit

The sediments at Ochs Clay Pit are dominated by silty mudstone and siltstone

(Figure 5-10). Sloan (1964) indicated that the sediments below the lignite layer probably

represent the lacustrine environment based on the varved mudstone and abundant leaf

fossils, and the sediments above the lignite layer probably represent the estuarine

environment based upon the silty and sandy mudstone and several vertebras of sharks.

The lignite layer extended broadly and its thickness is relatively constant. The ash

content of the lignite is 32%-41%. This kind of lignite is probably not from the peat

accumulation in close association with active plastic depositional environments such as

on the floodplain of meandering rivers, in coastal mires close to active beach barrier

systems, in interdistributary bays and even levees of delta tops (McCabe, 1987). The

lignite in the locality may represent the distal side of the coastal swamp, which is not

close to the active beach barrier systems. According to Walther's Law (Boggs, 2001),

the lignite probably represented a coastal swamp. The Dismal swamp in Virginia and

North Carolina is a typical coastal swamp associated with the bar-built estuaries and

lakes, and may be a good analogy of the Cretaceous coastal swamp at Ochs Clay Pit

(Figure 5-6). Twenhofel (1932) suggested that the ideal lacustrine sequence for a low-









energy lake (Figure 5-11) is one in which the lacustrine mud deposits are overlain by peat

deposits of swamps. For a high-energy lake the ideal sequence has sediments that

coarsen upwards (Visher, 1965) (Figure 5-11). According to these ideas, the top

lacustrine sediments at Ochs Clay Pit seem to represent a low-energy lake

paleoenvironment.

The Stratigraphic Relationships of the Localities

The Cretaceous sediments at the three clay pits studied here in southwestern

Minnesota were isolated from each other. It is very difficult to make correlations

between these three clay pits based upon their lithology. Megafossils are not satisfactory

for comparative dating between these localities because even numbers of leaves are

available in our collections and a stratigraphic sequence of leaf species have not been

worked out yet for the Dakota Formation leaf fossils. However, plant microfossils are

abundant in the sediments at these three clay pits. Pollen has been successfully used for

Dakota Formation stratigraphic zonatons of other areas (Brenner et al. 2000). Based

upon the common occurrence ofLiliacidites reticulatus, Tricolpites cf. vulgaris,

Phimopollenites striolata and Fraxinoipollenites constrictus in sample 036710 at

Courtland Clay Pit, in sample 046517 at Highway 4 Clay Pit, and in sample 046522 at

Ochs Clay pit, I suggest that the sediments from which these samples were collected

represented time equivalent deposits (Figure 5-12). Thus it is possible to make some

stratigraphic comparisons between these three clay pits. The pollen studies also provide a

framework for paleoenvironmental interpretations of localities.































* Study areas


Figure 5-1. Map of North America with the location of Western Interior Seaway during
the Cenomanian (early Late Cretaceous). Modified from Parrish, et al., 1984,
Parish, et al. modified from Ziegler et al., 1983.




































Figure 5-2. Area of west-central United States in which the lithostratigraphic name
"Dakota" is used. (from Ravn et al., 1995).




























EXPLANATION

f_ -k Uriaoner


'D -- C*WV


Figure 5-3. Schematic cross section of lower Upper Cretaceous sediments in
southwestern Minnesota. (from Setterholm, 1994)


West


C~dd" a roKc=l&careous shale
r r e hostratigraphic unit


SBlue HAi Membar




shoe hthobtatmgrapric to"

_ woo_*- -M o _.. .. .. _-_ --_- -_

SM Nihnaottna Me too.m ato,. ..r.
segcndst r th =rlr3=86aPMWri WZ


smaine


East





































Explanation

I-----'
u-I,~


~r=r.
----I
I--a-I
~W~2CA


silsuome


Figure 5-4. Detailed stratigraphic columnar section of lower section at Courtland Clay


(cm) LUhologol dicdription SWmpl n

a m 7ss ylow*n oy 036707
m anton.. wuh I 03b704
-"-. 280 cConuwron
- 038702

-. d OwX gray nmuvton. 03699
- ieercafld vth tin
-. organic rich layers
-- -" 03694 lscustine
(ted upon
S----" 036890 the prert
- s-y and
-_ pole grn stsrton. Isek et aL,
-_ gnran s ecrOse 2002
- 127.5 upward


/ gyash /gnr n sandstone
Swth roundfd pyrit
conrtmons


fine sandstone











Thk LOcVLmhotoSIa descrloton Semplen SliNSAW
(em) emlonbenft
Sgray mudstaone.
---- 120 wth crcoat
036710
Slacusbrine
-_~ _((based upon
the present
---- bnl nhv a II 036709 study and
110 neaow moic @t036709 M t.
_- 10 conco, 2002)
036708



Explanation





mudstonc
Figure 5-5. Detailed stratigraphic columnar section of upper section at Courtland Clay
Pit.



























Figure 5-6. Sketch map of the Dismal Swamp, USA; an example of a coastal swamp and
coastal lake developed along the coastal areas. (in Stach et al., 1982, after
Teichmeuler, 1962).











hicknr Lithological description Samples SodWmenlry
(cm) *nviranmen
*.- naumyelowlsh
S m*idtone. with
a mutlone pebbis

I-- O illy groy muCfrone
asc meandering
S- 046519 river system
(based upon
70 the present
... crboneceous sa@y 046518 study and
.: S. siflone.wth erarcoal Haik eIt al
anpe..s. 2002)
*- '~ 0465 17
S.lpIght gray to yellowish
I... C cors* nnatone. wih
w*. of orga rc de4b 04e515


Explanation


L--nea


---- ..-'


LIZ)''


'* .- **-'- ;'
.;:. ; -.*
*'* "* *


mudlsone silsone medium sandstone coarse sandstone
Figure 5-7. Detailed stratigraphic columnar section of SW section at Highway 4 Clay Pit.


ckneM Uthological descflption Samples Sedimentary
ScmI environments
g 6* mdunlm antdOM.
with mudsitoM pebtns

225 036717 menrul;rng
g uay OuN0%ay rlver system
Smutones (hchcNal 03716 (based upon
..23. ca nthe present
b...k.... \ llt~n WicrMoll 036715 tUly 0nd
Io. Sand pebbls; blobablMr d k et al..
2002)

;.., mum ylowlsh
... nd~one, wh lor of 048292


Explanation


rr 121



mudsonc


siltstone


medium sandstone


coarse sandstone


Figure 5-8. Detailed stratigraphic columnar section of NE section at Highway 4 Clay Pit.


























Figure 5-9. The morphological elements of a meandering river system. (from Walker
and Cant, 1984)













111"I MoWW9W~on I|"*oa I"ny
___ ceII) w*nr UwwvrfY'sa


eay Mfuf seoM


,


. .




*. i..
m

4m 4

~1










* a



- -
me







am
. .





C'
.-
- -
I a
-
.. I
-mm
*. -


hn l a ur altown
otop


tarmne
basedd Upon tW
prsnl study and
Soan. 19G4)


coastal swamp
presentt study)


a a


044M


sy mudat and sfttn
nswbodft. aON*"


aMol i mnudston

torn oDoam r op


mu~ion sencalw er I
[lrr** r ly muooone,
|m~coers sand nd
grave of cmn_


sifovn snld guy ul"wow
F1 r Ico I C1, %Wr&"0 pr
-CSoo. m-s
|12fmf


046522


lacuslire
(Cwae upon me
prest study and
S1Cn, 19S4)


Explanation





mudstonc







uine sandsonem


sisoltwe


inebded mudstone inclbeded rmudtotne
and Slslone and fine sandsone


lignik


Figure 5-10. Detailed stratigraphic columnar section at Ochs Clay Pit.


2S


w


N'
200



210












Ito


MIN, N fm ., Nnd.


p


19l. aMck


stlonM. lvem. "AM
cflwal and c~Smonc


a s


7S



s0


I a &


I .


~
I,
,,
,I
,1
,,
C'L~
~1
~I_
-.I
I r


048640






79


Agitated Quiet

0 <


















-- _


Figure 5-11. Ideal sequence of lacustrine deposits. After Visher (1965) and Twenhofel
(1932). (from Picard and High, 1981)



























Highway 4 Clay I
SW section


Counlad CIpy PH


upper


OcB Cay Pit















Pit




.-.


Explanation
1696 'C.9-y h.--


sib wo


imoe Hntmvo mcCundm ton Wc" MC and*oW tiitse


Figure 5-12. Inferred stratigraphic relationships, outcrop sections in study areas. (Solid
line indicates the time equivalent level.)


sctai Hlighway 4 Clay Pi
NE section





?1,*':'';


Courlad Clay Pih
lower secion





--.




.. .


inteuled mn aio inrmser d mr dmto
umd sihce mad linm smdsanm














CHAPTER 6
THE AGE OF THE DAKOTA FORMATION IN MINNESOTA

Based upon fossil leaves, Lesquereux (1895) assigned some Cretaceous sediments

that outcropped in Minnesota to the "Dakota group" and related them to the Cenomanian.

Pierce (1961) also indicated that the Cretaceous deposits of the Dakota Formation in

Minnesota are of Cenomanian age based upon a palynological investigation. Later,

Austin (1972) proposed that the nonmarine Cretaceous sediments (above the weathered

residuum of the Precambrian and Paleozoic basement rocks) in the Minnesota River

Valley are about middle Cenomanian based upon clay mineralogy. Setterholm (1994)

suggested that the thick mudstone unit adjacent to the Minnesota River Valley resembles

the Woodbury Member of the Dakota Formation in age and lithology. But Setterholm

(1994) proposed that the upper mudstone unit may be equivalent to Graneros Shale which

is placed in late Cenomanian in Minnesota. So it is obvious the accurate age assignment

for the Dakota Formation in Minnesota is not clear due to the absence of marine fossils.

Palynological investigations have been completed in Alberta (Singh, 1983), the Rocky

Mountain Region (Nichols, 1994), and northwestern Iowa and northeastern Nebraska

(Ravn and Witzke, 1995). Therefore, pollen and spores may be used as a tool to

determine the age of mid-Cretaceous nonmarine sediments in the Western Interior

Seaway.

Both Liliacidites giganteus and Dictyophyllidites impensus occur first in the upper

Shaftesbury Formation of the Peace River area in northwestern Alberta, Canada. Based

upon a "Fish-scale" marker bed and its comparison with marine fauna, the age of the









upper Shaftesbury Formation was assumed to be Cenomanian (Singh, 1983). Therefore,

the dark gray clay sediments in Courtland Clay Pit from which Liliacidites giganteus and

Dictyophyllidites impensus were recovered is here considered to represent Cenomanian

age sediments in Minnesota. Moreover, both Cicatricosisportites crassiterminatus and

Stellatopollis largissimus recovered from the Courtland Clay Pit and Artiopollis

indivisus, Appendicisporites auritus and Cicatricosisportites crassiterminatus recovered

from the Ochs Clay Pit all appear in Cenomanian or younger sediments in North America

such as northwestern Alberta (Singh, 1983) and Arizona (Agasie, 1969). Based upon the

pollen data, it appears that the Cretaceous sediments in south central Minnesota probably

are Cenomanian in age.

The megaspore Balmeisporites glenelgensis was found only in the lignite of Ochs

Clay pit. This species also occurs in the Cenomanian sediments in the Peace River area

of northwestern Alberta, Canada (Singh, 1983). Balmeisporites glenelgensis also occurs

in the Sergeant Bluff lignite and the Stone Park lignite that outcrop in northwestern Iowa

and northeastern Nebraska. The age of these lignites was placed as middle and upper

Cenomanian (Ravn and Witzke, 1995). Again, based upon the common occurrence of

Balmeisporites glenelgensis, the lignite layer at the Ochs Clay Pit can be correlated with

the Sergeant Bluff lignite and Stone Park lignite, suggesting that the age of the lignite

layer and the sediments above the lignite layer at Ochs Clay Pit are probably middle to

upper Cenomanian

Witzke et al. (1996) and Brenner et al. (2000) also indicated that the first

occurrence of Dictyophyllidites impensus and Cicatricosisporites crassiterminatus

probably represent the middle Cenomanian. Dictyophyllidites impensus occurs at









Courtland Clay Pit, Ochs Clay Pit and Highway 4 Clay Pit and Cicatricosisporites

crassiterminatus occurs at Courtland Clay Pit and Ochs Clay Pit. So the sediments

exposed at Courtland Clay Pit, Ochs Clay Pit and Highway 4 Clay Pit are all probably

middle Cenomanian.

Nichols (1994) made a revision of the palynostratigraphic zonation for the upper

Cretaceous nonmarine sediments in the Rocky Mountain Region. This

palynostratigraphic zonation is based upon a comparison with marine ammonite zones.

He stated that the first occurrence of the psilate tricolporate pollen type (such as

Nyssapollenites sp.) and the obligate tetrads (such as Artiopollis indivisus) are

representative of middle Cenomanian age. Both Nyssapollenites sp. and Artiopollis

indivisus occur in Ochs Clay Pit and Nyssapollenites sp. occurs in Courtland Clay Pit.

Because the exposed sediments in Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay

Pit contain typical middle Cenomanian marker pollen, they are best considered as middle

Cenomanian in age.

This middle Cenomanian age is in conflict with other pollen data that has been

published. The angiosperm pollen types which occur in upper Zone III, Atlantic coastal

plain, Potomac Group sediments (Doyle and Robbins, 1977) included

"Foveotricolporites" rhombohedralis, Retimonocolpites sp. A, Striatopollis sp. B, cf.

Tricolpites barrandei and Tricolpites nemejci. The sediments at the Courtland Clay Pit

contain very similar pollen such as Foveotricolporites rhombohedralis, Retimonocolpites

dividuus, Striatopollis paraneus, Tricolpites cf. vulgaris, and Tricolpites nemejci. The

age of the Potomac Group Zone III was suggested to be lower Cenomanian ? (Doyle and

Robbins, 1977). However, based upon typical pollen from several pollen studies (Singh,









1983; Ravn and Witzke, 1995; Nichols, 1994), the age of the sediments at the Courtland

Clay Pit probably are middle Cenomanian rather than "lower Cenomanian ?". This

suggests that a revision in age may be in order for the pollen Zone III established for the

Atlantic coastal plain, Potomac Group.

Doyle and Robbins (1977) mentioned that Zone IV "have not yet been studied in

detail". Also the samples from which pollen were recovered were from outcrops, not

from cores of wells. Considering that the first Normapolles triporate type pollen occurs

in Zone IV and they are absent in the middle Cenomanian sediments in northwestern

Iowa and northeastern Nebraska (Ravn and Witzke 1995), and northwestern Alberta

(Singh 1983), the middle Cenomanian to lower Turonian age of the Zone IV may be

doubtful. So defining the age of the middle Cenomanian by the occurrence of

Normapolles triporate pollen probably should be open to question.

Considering the comparison with Singh (1983), Nichols (1994), Ravn and Witzke

(1995), Witzke et al. (1996), and Brenner et al. (2000), the age of Cretaceous sediments

exposed in Courtland Clay Pit, Highway 4 Clay Pit and Ochs Clay Pit is probably middle

Cenomanian.














CHAPTER 7
IMPLICATION OF POLLINATION BIOLOGY AND EARLY LATE CRETACEOUS
COASTAL VEGETATION

Implications for Pollination Biology of the Early Late Cretaceous Angiosperm
Pollen

During the past 30 years early angiosperm pollination biology has been understood

substantially through the research on Cretaceous fossil flowers (Dilcher et al. 1976,

Dilcher 1979, Crepet 1979, Friis and Skarby 1981, Dilcher and Crane, 1984, Crane and

Dilcher, 1984, Crane, et al., 1986; Drinnan, et al., 1990; Friis, et al., 1999, 2000a, 2000b,

Dilcher, 2001). It was a widely accepted hypothesis that the dominant angiosperm

pollination modes were insect-pollination in early Cretaceous (Crepet and Friis 1987,

Friis et al., 1999; Field and Arens, 2005; Wing and Boucher, 1998). Even some ancient

relatives of extant wind-pollinated taxa were insect-pollinated during the Cretaceous,

such as Late Albian insect-pollinated flowers of Platanus-like plants (Crane, et al., 1986)

and Campanian (Late Cretaceous) insect-pollinated Fagaceous flowers (Herendeen, et al.,

1995). During Cenomanian a showy flower that is bisexual from Dakota Formation in

Nebraska implied insect pollination (Basinger and Dilcher, 1984). Also Drinnan et al.

(1990) described a lauraceous flower which was probably insect-pollinated based upon

the modified stamens that may have served as pollinator rewards. For the rosids,

magnoliids, and hamamelids, insect pollination probably was important (Crepet et al.,

1991) by Cenomanian time. It seems that insect pollination was very common during

Cenomanian. Dilcher (1979), on the other hand, presents evidence to support the

presence of wind pollination by mid-Cretaceous times. Dilcher (1979) also proposed the









hypothesis that the independent lineages of some anemophilous flowers may have

developed separately from entomophilous flowers from a common bisexual ancestral

stock. Moreover Dilcher (2000) indicated that wind pollination along with insect

pollination mechanisms is also important for Cretaceous angiosperms. But Whitehead

(1969) indicated that anemophily may evolve secondly in angiosperms. He wrote this at

a time when Magnolia was considered to represent the characters of the ancestor of

modern flowers and when insects were thought to have been important in the evolution of

angiosperms. So perhaps more studies need to be done for a better understanding the role

of pollination in the evolution of early angiosperms. The palynological data may provide

new evidence about the diversity and nature of pollination profiles of angiosperms during

the Cenomanian.

Generally the pollen types of wind-pollinated plant might be overrepresented in

some paleoenvironments (Cohen, 1975). On the other hand the pollen of insect-

pollinated plants could be very rare or absent in areas some distance from the zoophilous

plants (Faegri and Iversen, 1989; Friis, et al., 1999). But some insect-pollinated

angiosperms often produce large amounts of pollen as reward for their pollinators (Faegri

and van der Pijl, 1979). Lupia et al. (2002) described a new insect pollinated angiosperm

flower (Santonian), which produced large quantities of pollen. But there is no indication

that this abundantly produced pollen was dispersed any distance from the plant that

produced it or that it was likely to become incorporated into sediments. Faegri and van

der Pijl (1979) indicated that the large number of pollen grains produced by insect-

pollinated flowers may result in some accidental wind pollination. Retallack and Dilcher

(1981) suggested that some early angiosperms were probably generalists, pollinated by









insects and wind. It is possible that the generalists may produce large numbers of pollen

grains for wind-pollination while also being visited by insects that might serve as

accidental pollinators.

Understanding the modes of angiosperm pollination is very important for

reconstructing angiosperm diversity in different habitats based upon palynological data

obtained from dispersed pollen in Cretaceous age sediments. The presence and the

relative abundance of angiosperm pollen combined with the pollination modes of parent

plants should indicate which kinds of angiosperm pollen were autochthonous. Doyle and

Hickey (1976) indicated that Clavatipollenites, Retimonocolpites and Liliacidites are

probably insect-pollinated pollen based upon their well-developed reticulate exine

sculpture. Friis et al. (1999) indicated that the majority of pollen forms from early

angiosperm flowers are monosulcate, which may be recognized as dispersed pollen as

Clavatipollenites, Retimonocolpites and Liliacidites. The discrepancy between the

rareness of dispersed angiosperm pollen types and the richness of in situ pollen types

from angiosperm reproductive organs may indicate widespread insect pollination (Friis et

al., 1999). The only reliable wind-pollinated angiosperm pollen probably is Asteropollis-

type pollen based upon the floral organs and in situ pollen which are closely comparable

to extant wind-pollinated Hedyosmum (Friis et al., 1999) of the Chloranthaceae.

Pedersen et al. (1991) describes a new earliest Cenomanian fruit Couperites mauldinensis

from West Mauldin Mountain locality in Maryland and the in situ pollen adhering to the

sessile stigma is of the Clavatipollenites type. Although in situ pollen is comparable to

extant chloranthaceous genus Ascarina, which is wind-pollinated, this Clavatipollenites

type pollen probably is from insect-pollinated plants based upon the presence of probable